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Abstract 

The present study attempts to provide a new approach to 
Hilbert's philosophy of mathematics by going back to the origin 
of his foundational investigation and clearly describing the 
Problematik within which it was framed and developed. In so 
doing, its main objective is to identify and highlight the 
general intellectual tendencies invariably and continuously 
motivating Hilbert's research program throughout his long 
career. 

The study consists of two parts. In the first half, 
special emphasis is laid upon Hilbert's axiomatic method and 
his accompanying view of axioms and definitions. It is argued 
there that Hilbert's goal with his axiomatization program is to 
demonstrate the objectivity of mathematical judgment and 
inference and to systematize and thereby to increase our 
understanding of mathematics. The present study attempts to 
support this claim by embedding Hilbert's project in the 
context of the late nineteenth century movement of the 
"rigorization" of mathematics and by understanding it as a 
development of the methodological standpoint represented by 
Dedekind. 

On the interpretation presented here, then, Hilbert's 
foundational investigation was not, as is often claimed, 
motivated by the philosophical concerns for the absolute 
certainty and a prioricity of our mathematical knowledge and, 
indeed, it combated against the intrusion of such concerns by 
relegating framework-independent elements through the "new" 



methodological turn in the conception of axiomatics. In the 
second half of the study, this non-standard reading is extended 
to Hilbert's consistency program, and his first attempt of a 
direct consistency proof and Poincare's criticism of it are 
considered in this light. Hilbert's answer to Poincare came 
with the remarkable idea of proof-theory and the formulation of 
finitary mathematics as the framework for proof - theoretic 
considerations. But, seen from a philosophical viewpoint, this 
methodological move meant the re-introduction of the notions of 
truth and existence taken in the absolute sense and, as a 
result, a motivation for adopting (mathematical) 
instrumentalism as the philosophy of Hilbert's program arose. 
But even after this "epistemological" turn, the earlier view 
continued to be operative in Hilbert's thought, and this, I 
shall argue, explains the "tension" found in the philosophy 
behind Hilbert's program. 
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Introduction 

One of the greatest mathematicians of the twentieth 
century, David Hilbert, is regularly considered to be the 
founder of the formalist school, which, together with Bertrand 
Russell et al's logicist school and L.E.J. Brouwer et al's 
intuitionist school, forms the "three principal present-day 
philosophies of mathematics" [Eves 1990, p.266] 
Correspondingly, many of us today, when describing Hilbert's 
project in the foundations of mathematics, tend to characterize 
it with two key terms: "formalism" and "consistency-proof." By 
these terms, the two central theses of the Hilbert school are 
supposed to be captured: the one that mathematics is nothing 
more than a combination of meaningless symbols or "a game of 
formulae, ruled by certain conventions, which is very well 
comparable to the game of chess" [Weyl 1925, p.136]; and the 
other that once a proof is given (in metamathematics) that no 
contradiction arises in the formal system of mathematics, there 
are no more questions about its legitimacy. 

But Hilbert's project so considered seems hardly capable 
of offering a satisfactory philosophy of mathematics. Would it 
make any sense at all to talk of the freedom from contradiction 
if mathematics consisted entirely of strings of meaningless 

symbols and formulae? Or, perhaps more importantly, granting 
that there exists some way in which the consistency of 
mathematics can be considered through an investigation into 
such a game of formulae, how could a consistency-proof be 
sufficient for establishing the legitimacy of mathematics? To 
be sure, consistency, i.e., the possibility of being true, is a 
necessary but, in itself, not a sufficient condition for truth 



or certainty. It is quite obvious then that some important 
pieces are missing in such a portrayal of Hilbert's theory. 
But what are they? And how do they complete the picture? 

At this point, we turn our attention to the interpretation 
of Hilbert's philosophy of mathematics that has been accepted 
by the vast majority of philosophers of mathematics as that 
which is most able to provide an answer to these questions. 
The standard account agrees with the "naive" view that 
Hilbert's main objective with his program was, from the outset, 
to resolve epistemological worries about our mathematical 
knowledge and establish its truth and certainty.1 Hilbert's 
following remark is often quoted as textual evidence: 

The goal of my theory is to establish once and for all the 
certitude of mathematical methods. [Hilbert 192 6, 184] 

More specifically, on the standard account, Hilbert decided to 
undertake such an enterprise in order to protect the certainty 
of our mathematical knowledge from the double-threat of the 
set-theoretic paradoxes and the revisionist advocacy of Brouwer 
and Weyl. 

So how, on this account, does he try to achieve this goal? 
The basic story runs as follows. Looking over the whole of 
mathematics, Hilbert realizes that, in mathematics, there are 
two kinds of sentences. On the one hand, there are those which 
are clearly meaningful and of whose truth and falsity we seem 
1 The very first sentence of Philip Kitcher's influential paper "Hilbert's 
Epistemology" reads: 

Hilbert's approach to the foundations of mathematics is designed to 
defend the thesis that we can have certain mathematical knowledge 
(and that we do have such knowledge of parts of mathematics) . 
[Kitcher 1974, 99] 



to have certain knowledge because of an intuitive access we 
have to their objects or to the states of affairs they 
represent. On the other hand, there are those which appear 
meaningful but of whose truth and falsity we seem to be denied 
such intuitive access and thus about which we do not have 
certain knowledge. One way to restore the absolute certainty 
of mathematics would then be to "reduce" all of the second, 
problematic kind of sentences to the first, intuitable kind 
through "translations." Or if such a reduction or translation 
cannot be carried out for all, one could attain the desired 
goal by banishing from mathematics altogether those which 
refuse reduction. Very crudely, this is the path that the 
intuitionists encourage us to take. But, unlike the 
intuitionists, Hilbert was never of the opinion that we should 
do away with the part of mathematics that is not "reducible" to 
or "constructible" from the first, non-problematic kind. For 
him, it simply was too great a sacrifice to pay. 

Here an idea occurred to him, namely that the problematic, 
infinitary part of mathematics is nothing other than a 
particular instance of, what he termed in another context, 
"ideal elements." Ideal elements are introduced into a system 
merely for the purpose of simplifying or generalizing our 
thinking about a certain subject-matter, and thus they need not 
be considered to be tied to any intuitional basis. In 
projective geometry, points and lines at infinity are 
postulated so as to preserve the general validity of the 
principle of duality, and, in arithmetic, negative numbers are 
introduced so that the operation of subtraction may be 
performed universally. Analogously, it might be thought that 
sentences of infinitary mathematics are introduced as a useful 



means of deriving meaningful sentences of finitary mathematics. 
Just as with other types of ideal elements, sentences of 
infinitary mathematics are nothing more than purely formal 
devices and possess no "real" content of their own. The upshot 
of this is that there is no need to be concerned about the 
epistemological status of such meaningless formalism: they 
have no representational content and are neither true nor 
false. 

There is one condition to be met, however. This is that, 
since, in the actual practice of mathematics, infinitary 
mathematics is freely employed in the production of finitary 
results, it must be made certain that the use of the former 
never leads to incorrect finitary results; and this amounts to 
the demanding for a proof that the use of the meaningless 
sentences of infinitary mathematics is consistent with 
meaningful sentences of finitary mathematics. In other words, 
the point of a consistency proof is to establish the 
"instrumental usefulness" of infinitary mathematics with regard 
to finitary mathematics. That Hilbert seems to have understood 
a proof of consistency precisely in this form can be seen from 
passages such as the following: 

To be sure, one condition, a single but indispensable one, 
is always attached to the use of the method of ideal 
elements, and that is the proof of consistency; for 
extension by the addition of ideal elements is legitimate 
only if no contradiction is thereby brought about in the 
old, narrower domain,"that is, if the relations that 
result from the old objects whenever the ideal objects are 
eliminated are valid in the old domain. [Hilbert 1928, 
471] 

Moreover, since we must be certain of the truth of the 



consistency proof, such a metamathematical consideration must 
be carried out within the boundary of what is knowable, i.e., 
within finitary mathematics.2 In a nutshell, this is Hilbert's 
program. 

Thus, in explaining why Hilbert's consistency program is, 
at the same time, an epistemological project, the standard 
account ascribes to his theory of mathematics a view that is 
comparable to what is usually called "instrumentalism" in the 
philosophy of science. In other words, within the totality of 
the sentences constituting the discipline of mathematics, only 
some count as genuine knowledge. The rest are merely formal 
devices that are introduced into the system of "real," 
"contentual" mathematics so as to facilitate the production of 
genuine knowledge.3 It should be recognized here that, 
considered thus, what essentially distinguishes Hilbert's 
position from intuitionism seems to be neither its objective, 
nor its conception of what is genuinely knowable within the 
bounds of the intuitive,4 but its instrumentalist treatment of 

2 In his recent article on German philosophy of mathematics, Donald 
Gillies explain Hilbert's "formalist" philosophy in this way: 

To provide each branch with a foundation, all that was needed was to 
give a consistency proof for the corresponding formal system. For 
this purpose use had to be made of something which was not a formal 
system, but which had an indubitable character. This was intuitive, 
finitary arithmetic. [Gillies 1999, 189] 

^ Hence, according to the standard account, Hilbert's standpoint should 
not be confused with that of "strict" formalism, the view according to 
which mathematics is nothing but a combination of meaningless symbols. 
4 Strictly speaking, this is not correct, for, as Gentzen and Godel 
independently showed, it turns out that Hilbert's finitist standpoint is 
more restrictive than Brouwer's intuitionism. This, however, does not 
affect my point here insofar as, on the standard account, Hilbert does 
rely on the notion of intuition for his finitism. 
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what goes beyond the knowable in mathematics.5 It is on this 
ground that Hilbert is supposed to be able to characterize his 
own standpoint as the one that does not, contrary to Brouwer 
and Weyl, throw away infinitary mathematics altogether. 
Instead it rescues and preserves it. 

A close look at the content of this "rescue," however, 
might lead one to wonder whether the standpoint attributed to 
Hilbert by the standard account is not at odds with what 
Hilbert himself claims to achieve with his consistency program. 
On the one hand, Hilbert seems to maintain repeatedly and 
invariably that, through the consistency program, it will be 
established that all, not just some, mathematical statements 
are "incontestable and ultimate truths."6 In the beginning of 
the 1922 essay "The New Grounding of Mathematics: First 
Report," Hilbert illustrates the goal of his foundational 
project in this way: 

... in mathematical matters there should be in principle 
no doubt; it should not be possible for half-truths or 
truths of fundamentally different sorts to exist. Thus--
to give as an example a difficult and remote item on the 
agenda--it must be possible to formulate Zermelo's 
postulate of choice in such a way that, in the same sense 
of "valid" [giiltig] , it becomes just as valid and reliable 
as the arithmetical proposition that 2 + 2 = 4 . [Hilbert 

5 William Ewald thus writes: 

Despite Hilbert's fiery polemics against Kronecker, Weyl, and 
Brouwer, it should be observed that the entire controversy is an 
internal feud among constructivists. [Ewald 1996, 1116] 

6 In this connection, it might also be recalled that Hilbert made his 
intent known with the oft-quoted remark: 

No one shall drive us out of the paradise that Cantor has created 
for us. [Hilbert 1926, 191] 



1922, 198]7 

On the other hand, according to the standard, instrumentalist 
account, Hilbert's consistency program, if successfully carried 
out, would establish only the truth and certainty of finitary 
mathematics precisely because Hilbert considers the sentences 
of infinitary mathematics to be mere formal devices and thus 
devoid of cognitive content. 

Yet, considering the polemical and partisan nature of the 
articles and addresses where one finds such "strong" claims by 
Hilbert about the goal of his project, it might seem only 
natural to conclude that no interpretative problems are posed 
by the apparent discrepancy between those claims and Hilbert's 
instrumentalist treatment of infinitary mathematics. As a 
matter of fact, until quite recently, the scholarship has been 
virtually unanimous in endorsing the instrumentalist reading 
and recognizing the existence of a discrepancy; Cantor's 
paradise is, after all, the paradise of "gadgets" that make 
life smoother.8 This unanimity, however, has been broken by 
Michael Hallett's recent discussions of the issue.9 Hallett, 
through the careful examination of Hilbert's mostly unpublished 
lecture notes, has argued that a strongly anti-instrumentalist 
tendency can be found in various aspects of Hilbert's thinking 
and that its existence cannot simply be brushed aside as 
something extrinsic or accidental. More specifically, Hallett 
argues that 1) for Hilbert, the use of the method of ideal 

7 Similarly, when Hilbert says that the consistency of the axioms of 
analysis, if obtained, establishes the "incontestable and ultimate truths" 
of mathematical statements, he does not add any qualification. 
8 Kreisel 1983, 209. 
9 Hallett 1990. See also Hallett 1994, Hallett 1995. 
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elements, or the introduction of ideal elements, is not, as is 
claimed by the standard account, arbitrary but, rather, in some 
sense basic to the human thought process; 2) the ideal 
extension, in Hilbert's view, is just as much meaningful as the 
real theory being extended (insofar as certain conditions are 
satisfied) and, thus, it is not true that it is a mere formal 
device with no representational content. 

Provided that Hallett is right in pointing out the 
existence and importance of an anti-instrumentalist tendency in 
Hilbert's thinking, one might be inclined to reject the 
standard, instrumentalist account of Hilbert's program. But 
this, of course, would amount to abandoning what might seem to 
be the only interpretation that could account for the reason 
why Hilbert thinks the consistency program provides a 
definitive solution to the epistemological problem of grounding 
our mathematical knowledge. One might try, then, to find a way 
out by interpreting Hilbert's consistency program as a non-
epistemological project. This, however, would require much 
explaining, to say the least, in the face of the ample textual 
evidence which seems to indicate otherwise. 

Hence, if one would prefer the exegetical "cleanliness" of 
the instrumentalist account, there would seem to be no choice 
left but to conclude the existence of a discrepancy within 
Hilbert's text.10 One recent commentator on Hilbert's program 
thus acknowledged the "difficultness" of the problem and 
alluded to the possibility that "Hilbert and Bernays might not 
have been completely consistent in their positions,"11 whereas 
1 0 That is, insofar as one agrees with Hallett on the existence of an 
anti-instrumentalist tendency in Hilbert. 
1 1 Mancosu 1998, 160. It is to noted, however, that this is not Mancosu's 
conclusion. His attitude is rather to leave the issue open for further 
discussion. 



another spoke of Hilbert's "vacillation" and eventually came to 
the conclusion that "there is a strange tension in the 
philosophy behind Hilbert's program":12 

On the one hand, it values highly the transfinite part of 
mathematics, but on the other hand, it is ready to discard 
transfinite interpretations and to take transfinite 
propositions as just formal instruments, retaining only 
their finitary interpretations when possible. [Prawitz 
1993, 97] 

In short, the general atmosphere surrounding the issue of 
Hilbert's instrumentalism might best be described as the state 
of stalemate, as it were. Two opposing interpretations have 
been presented for the solution of the problem and, yet, 
neither seems to be able to come up with a satisfactory 
account. Nor does any promising alternative seem forthcoming. 

The goal of the present study is to attempt to provide a 
new approach to Hilbert's philosophy of mathematics. More 
specifically, in considering the so-called "Hilbert program" of 
the 1920s, the current study will return to the very origin of 
Hilbert's foundational investigation and to the Problematik 

within which it was framed and developed. By understanding the 
true purpose and scope of Hilbert's early research in the 
foundations of mathematics, and by carefully tracing its 
development in subsequent periods and his interactions with 
then-contemporary mathematicians, we will be able to recognize 
the general intellectual tendencies that invariably and 
continuously motivated Hilbert's research program throughout 
his long career. This understanding in turn will help us see 
clearly the "philosophical" pillars supporting the "technical" 

1 2 Prawitz 1993, 95, 97. 



or "mathematical" suprastrueture of Hilbert's consistency-
program . 

In particular, the present study will show that Hilbert's 
early foundational investigation was directly related to the 
late nineteenth century movement in mathematics generally 
referred to as the "rigorization" of mathematics. It will also 
show that his axiomatic method, and his accompanying views of 
axioms and definitions, were adopted as a response and a 
solution to two difficulties. These were the then-contemporary 
dispute between two different methodological standpoints, 
represented by his two great predecessors, Dedekind and 
Kronecker respectively, over the "arithmetization" of analysis, 
and the recent discovery of set-theoretical paradoxes. 
Hilbert's axiomatization program constructively took over 
Dedekind's project, which emphasized the importance of 
deductive rigor and the freedom of concept-formation13 in 
mathematics. This was in strong opposition to Kronecker's 
program of "strict arithmetization," which was primarily 
motivated by philosophical concerns for absolute certainty and 
the a prioricity of arithmetical knowledge. By carrying out 
the rigorous axiomatization of mathematics, and by constructing 
a "complete proof-structure," Hilbert's objective was twofold: 
to systematize, and thereby to increase our understanding of 
mathematics, and to demonstrate the objectivity of mathematical 
judgment and inference. 

What can be seen from this is that Hilbert's foundational 
investigation was not driven by epistemological concerns in the 
1 3 Throughout this study, the term "concept-formation" and its cognates 
are used to translate the German term "Begriffsbildung."  Accordingly, by 
"concept-formation," I do not mean the configuration of concepts existing 
in the timeless Platonic heaven. Rather, it means the forming  of 
concepts. 



"exalted" sense 1 4 and, indeed, that it combated against the 
intrusion of such concerns by relegating framework-independent 
elements through what the co-architecht of Hilbert's program, 
Paul Bernays called "the new methodological turn" in the 
conception of axiomatics. At the same time, however, the 
rejection of the "epistemic" character of mathematical 
propositions should not be taken as the elimination or 
suspension of the epistemological consideration of mathematics. 
Rather, as I shall argue, what is implicit in Hilbert's 
elimination of system-independent elements is the rejection of 
the standard notions of truth, existence, and knowledge which 
involve reference to such elements, and the relativization of 
these notions to the axiom system characterizing a field of 
knowledge. 

This, naturally, will raise a question concerning 
Hilbert's insistence on the need for a consistency proof: given 
that such notions as truth and existence are relativized to the 
relevant axiom system, why is a consistency proof necessary? 
On the interpretation presented here, the demand for a 
consistency proof, which was already on Hilbert's mind before 
the emergence of the set-theoretical paradoxes, will be 
explained in terms of Hilbert's interest in rigor and, 
accordingly, without reference to any exalted epistemological 
concerns. 

With such a non-standard interpretation of Hilbert's 
consistency program in mind, the present study examines the 
content of Hilbert's early attempt to obtain an absolute 
consistency proof for the axioms of arithmetic. We then 
1 4 The phrase is borrowed from Kitcher 1984. For the ease of description, 
I will follow Kitcher in claiming that anyone concerned in the philosophy 
of mathematics to show the certainty and aprioricity of mathematical 
knowledge is doing epistemology (of mathematics) in "the exalted sense." 
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examine Poincare's criticism of it. The main task of this part 
of the study will be to explain how the first attempt of a 
direct consistency proof, presented in the 1905 essay, was 
turned into the sophisticated, proof-theoretic consistency 
proof of the 1920s. It is argued that it was through Hilbert's 
effort to refute Poincare's objection that the former's 
(implicit) use of induction principle at the level of 
metamathematics came to signify the ultimate failure of his 
consistency proof. 

Hilbert's final answer to Poincare came with his 
remarkable idea of proof-theory and the formulation of finitary 
mathematics as the theory providing the framework for proof-
theoretic considerations. But, from a philosophical viewpoint, 
this methodological move meant that, despite the rejection of 
the framework-independent elements (and the subsequent 
relativization of those philosophical notions) executed in 
Hilbertian axiomatics, the notions of truth and existence in 
the absolute sense are re-introduced into mathematics. As a 
direct result of this "epistemological" turn, the "truth" of 
infinitary mathematics and the "existence" of the ideal 
elements occurring in it became problematic (because of their 
unintuitability), and thus a motivation for adopting 
(mathematical) instrumentalism as the philosophy of Hilbert's 
program arose. Nevertheless, even after the epistemological 
turn, the earlier view continued to be operative in Hilbert's 
thought and this, I shall argue, explains the aforementioned 
tension in the philosophy behind Hilbert's program. 



Chapter I 
Hilbert's Axiomatic Method 

§1. In 1899, the year in which his celebrated Foundations 

of Geometry  was published, Hilbert wrote a short paper entitled 
"Uber  den Zahlbegriff  [On the Concept of Number]." It was his 
first essay on the foundations of arithmetic. Hilbert starts 
the paper by describing and contrasting two different methods 
of investigation, each of which has traditionally been tied to 
a particular branch of mathematics. The first is often thought 
to have a close tie to arithmetic and is employed there in the 
following manner: 

Starting from the concept of number 1, one usually 
imagines the further rational positive integers 2, 3, 4 
... as arising through the process of counting, and one 
develops their laws of calculation; then, by requiring 
that subtraction be universally applicable, one attains 
the negative numbers; next one defines fractions, say as a 
pair of numbers--so that every linear function possesses a 
zero; and finally one defines the real number as a cut or 
a fundamental sequence, thereby achieving the result that 
every rational indefinite (and indeed every continuous 
indefinite) function possesses a zero. [Hilbert 1900a, 
1092] 

Hilbert calls this method "genetic" because, in it, the most 
general concept to be introduced (i.e. that of real number) is 
"engendered" by the successive extension of the simple, 
primitive concept (of number). The second method of 
investigation, by contrast, is regularly used, as Hilbert 
himself so successfully employed it in his 1899 book, in the 
field of geometry: 



Here one customarily begins by assuming the existence of 
all the elements, i.e. one postulates at the outset three 
systems of things (namely, the points, lines, and planes) 
and then--essentially on the pattern of Euclid--brings 
these elements into relationship with one another by means 
of certain axioms--namely the axioms of linking 
[Verkniipfung] , of ordering, of congruence, and of 
continuity. The necessary task then arises of showing the 
consistency and the completeness of these axioms, i.e. it 
must be proved that the application of the given axioms 
can never lead to contradictions, and, further, that the 
system of axioms is adequate to prove all geometrical 
propositions. [Hilbert 1900a, 1092-93, Hilbert's emphasis] 

For the obvious reason, Hilbert calls this procedure the 
"axiomatic" method. 

Now, despite the customary practice of applying the 
genetic method to arithmetic and the axiomatic one to geometry, 
it is not Hilbert's opinion that any intrinsic ties exist 
between the two items forming such a couple. As a result, he 
proposes to examine the concept of number through the axiomatic 
method instead of the customary genetic method. What is to be 
noted here, however, is that Hilbert does not propose the 
switching simply for the reason that it has rarely been done in 
the past. Rather, as can be seen from the following passage, 
his proposal is made on the basis of the belief that the 
axiomatic method is more suitable for the purpose of his 
project, which is a logical investigation into the foundations 
of the theory of number or arithmetic: 

Despite the high pedagogic  and heuristic value of the 
genetic method, for  the final presentation and the 
complete logical grounding  [Sicherung] of our knowledge 
the axiomatic method deserves  the first  rank. [Hilbert 
1900a, 1093, emphasis in original] 

The question is then why Hilbert thinks that the axiomatic 
-15-



method is generally to be preferred to the genetic one when it 
comes to the matter of the logical grounding of knowledge. 

To answer this question, we need not only examine the 
nature of the two investigative methods more closely. We also 
need to clarify what precisely is meant by the "logical 
grounding" of knowledge. Before tackling these problems, one 
thing must be recognized. This is the fact that whenever 
Hilbert refers to the "axiomatic" method in the context of 
foundational topics, it appears that he has his own brand of 
axiomatic method specifically in mind. Here, without getting 
into much detail, I would like first simply to point to some 
essential differences between traditional and Hilbertian 
axiomatics. In general, the axiomatic method may be 
characterized by the fact that, when constructing a theory in 
accordance with this method, one sets down, at the outset, a 
collection of basic statements and then proceeds, by purely 
deductive reasoning, to derive from them all the other 
statements of the theory. Hilbert's axiomatic method shares 
this characteristic, but it differs from the traditional, pre-
Hilbertian axiomatic method in its treatment of axioms and the 
basic concepts occurring in them. If the constructed theory is 
a non-logical one (e.g. geometry), both the initial and the 
derived statements of the theory are statements about its 
special subject matter (e.g. space) and thus involve special, 
non-logical terms (e.g. "point," "line"). Accordingly, in the 
traditional version of the axiomatic method, for the purpose of 
fixing the meanings of these non-logical terms, a list of 
explanations and definitions is usually introduced (for the 
basic terms of the theory) before the initial statements or 



"axioms" are set up.1 The axioms are then formulated in such 
a way that their truth about the objects of the theory is self-
evident in view of these explanations and definitions. 

By contrast, in Hilbert's axiomatic method, the axioms of 
a theory do not express truths about any special subject 
matter, and the meanings of the non-logical terms occurring in 
the axioms are not fixed by previously given definitions as in 
the old axiomatics, but by (and within) the axioms which only 
state how they are related to each other.2 In the quoted 
passage, where Hilbert describes the procedure of the axiomatic 
method as opposed to that of the genetic method, these 
distinctive characteristics of the Hilbertian axiomatic method 
are clearly visible: the basic concepts (point, line, plane), 
which are not previously anchored to any extra-theoretical 
understanding of them, are brought into relation to each other 
by means of the axioms (those of linking, of ordering, of 
congruence, and of continuity). Thus, when he talks there of 
"the axiomatic method," he is thinking of his version of the 
axiomatic method. 

Yet, this fact alone does not imply that Hilbert has his 
own axiomatics specifically in mind when, in the 1900 essay, he 
stresses the superiority of the axiomatic method to the genetic 
one with regard to "the final presentation and the complete 
logical grounding of our knowledge." Indeed, it appears that, 

1 The meanings of the other non-basic, non-logical terms occurring in the 
theory (e.g. "segment," "triangle") are all (explicitly) defined by means 
of the basic terms, whereas the logical terms (e.g. "and," "if ... then," 
"there exists") are assigned their usual meanings. 
2 In other words, in Hilbert's axiomatics, the non-logical terms of the 
theory do not refer to objects that are thought to exist independently of 
the theory. The logical terms, by contrast, receive their usual meanings 
just as in the old axiomatics. For more on these points and details of 
the Hilbertian axiomatics, see below. 
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by construing Hilbert's position in the following manner, one 
could well argue that what he means there is the preferability 
of the axiomatic method in general, not that of his own in 
particular. What Hilbert means by the "complete logical 
grounding of our knowledge" is basically to explore and clarify 
the logical relations among the statements constituting a 
domain of our knowledge. The axiomatic method is then more 
advantageous compared to the genetic method for the reason that 
it is designed exactly to investigate such relations. By 
contrast, the latter makes it its job to introduce various 
concepts comprising a theory by defining them solely in terms 
of its "basic" concept and is not concerned with the 
clarification of the logical relations among these concepts. 
In other words, the chief merit of the axiomatic method, in 
Hilbert's view, consists in its power to organize a body of 
knowledge in such a manner that the logical relations holding 
(and not holding) among the statements constituting it are made 
perspicuous. It follows, then, that there is no compelling 
reason why we must think that by "the axiomatic method, " he 
means his own method in particular, at least insofar as the 
pre-Hilbertian axiomatics seems capable of executing this task 
just as well as Hilbert's. 

This reading, however, is incorrect for two reasons. 
First, while systematization accounts for at least part of what 
is involved in Hilbert's project of "logical grounding," it 
does not exhaust the whole content of this project.3 Second, 
regardless of the precise nature of the project of logical 
grounding, it is not Hilbert's view that the two versions of 
the axiomatic method can be treated indiscriminately in this 

3 I shall come back to this point shortly. 
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context. As was mentioned above, one particular characteristic 
distinguishing his axiomatics from the traditional one is its 
conception of definition, according to which the meanings of 

rthe basic terms of a theory, such as "point," "line," and 
"plane" in geometry, are fixed by the collection of the initial 
statements or the axiom system as a whole. But how did he 
arrive at this non-standard view of definition in the first 
place? In his letter to Frege of 22 September 1900, Hilbert 
relates the circumstance in which he was led to it: 

I did not think up this view because I had nothing better 
to do, but J found  myself  forced  into it by the 
requirements  of strictness in logical inference  and in the 
logical construction of a theory. I have become convinced 
that the more subtle parts of mathematics and the natural 
sciences can be treated with certainty only in this way; 
otherwise one is only going around in a circle. [Frege 
1980, 51, my emphasis] 

This remark by Hilbert is of great significance for our 
purpose. For, providing that, for Hilbert, the "strictness in 
logical inference and in the logical construction of a theory" 
cited here and the "complete logical grounding of our 
knowledge" mentioned in the 1900 essay refer basically to the 
same thing (or if the latter is thought to involve the 
former),4 this clearly shows that, in his eyes, some sort of 
"necessary" connection exists between the "complete logical 
grounding" and the Hilbertian axiomatics, after all. 

4 It is also to be noted that these remarks come from precisely the same 
period. The talk upon which nUber  den Zahlenbegriff"  is based was first 
presented by Hilbert in September 1899 at the meeting of the Deutsche 
Mathematiker-Vereinigung  held in Munich. 
5 In this connection, it is also to be mentioned that, in his letter of 29 
December 1899 to Frege , Hilbert remarks that "[i]t was of necessity that 
I had to set up my axiomatic system". [Frege 1980, 38] 
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Moreover, as the second sentence in the above quotation further 
suggests, Hilbert seems to think that the foundational 
inquiries into various domains of our knowledge cannot be 
successfully carried out through a method of investigation that 
does not share the definitional procedure adopted in his 
axiomatics. It follows that, for Hilbert, the traditional 
axiomatic method must be distinguished, just as is the genetic 
method, from his version of axiomatics whenever the logical 
grounding of knowledge is at stake. 

§2. A complete logical grounding of knowledge requires 
the adoption of the Hilbertian method of axiomatics as one's 
chosen method of investigation; any other method of 
investigation falls short of providing such a grounding. This, 
as we saw above, is the conclusion Hilbert reaches via his 
early foundational investigations. But why does he arrive at 
such a conclusion? In order to answer this question, I would 
like first to consider more carefully how Hilbert came to adopt 
the axiomatic method and the accompanying view of definition 
for his investigation into the foundations of geometry. As we 
just saw, Hilbert, by his own account, was led to the (then) 
non-standard view of definition as he pursued "strictness in 
logical inference and in the logical construction of a theory." 
Yet, this concern for deductive  rigor itself was nothing 
unusual or extraordinary in the late nineteenth century; many 
of his contemporaries shared this concern, and some considered, 
just as did Hilbert, the axiomatic approach to be the most 
appropriate one to achieve rigor. But what then explains the 
idiosyncrasies of Hilbertian axiomatics? In considering this 



question, it is instructive to begin by comparing Hilbert's 
approach to those of his contemporaries who also adopted the 
axiomatic method as the procedure of investigation into the 
foundations of geometry; in particular, the philosopher Gottlob 
Frege's view gives us a good starting point precisely because 
of its profound differences from Hilbert's. 

What ultimately explains Frege's interest in rigor and the 
axiomatic method is his quintessentially philosophical concern 
for the truth and certainty of our mathematical knowledge. 
Very crudely, Frege's idea is that a proper epistemic 
justification can be given if, by means solely of truth-
preserving, logical deduction, geometry can be developed from a 
collection of basic propositions, of whose truth we have 
certain knowledge through pure intuition. For him, then, 
deductive rigor is important because it precludes the danger of 
"gaps" or "jumps" in the transition from one proposition to 
another which may harbor an unwarranted or possibly fallacious 
inference. On this view, the axiomatic approach is supposed to 
enable us to achieve rigor by making completely perspicuous the 
logical relations holding (and not holding) among the 
propositions of the theory. 

Furthermore, Frege's concern for certainty determines the 
ways in which he conceives axioms and definitions. For him, 
not only must the geometrical axioms, as the initial elements 
of the deductive chain, express truths about their subject 
matter so that propositions derivable from them will also 
express only truths. It is also the case that their truth must 
be epistemically transparent and "self-evident." In this way, 
there will be no doubt about their truth. According to Frege, 
this fact must also be unambiguously represented in the 



constructed theory. That is, in the construction of a theory, 
it must be clear what the axioms are about, and that they are 
true of this subject matter. For this reason, Frege demands 
that every theory begin with definitions, whose job is to fix 
the meaning of previously meaningless terms by means of a 
properly regimented and precise language such as his own 
Begriffsschrift.  In this way, "there is no doubt about the 
sense of the proposition and the thought it expresses" and "the 
only question can be whether this thought is true and what its 
truth rests on" [Frege 1980, 36]. Consequently, it is Frege's 
invariable opinion that 

axioms and theorems can never try to lay down the meaning 
of a sign or word that occurs in them, but it must already 
be laid down. [Frege 1980, 36] 

Now, given such a view of definitions and axioms, it is no 
wonder that Frege was baffled when he found in Hilbert's 
monograph on geometry the idea that the meaning of the (non-
logical) terms occurring in an axiom system is fixed by the 
axiom system as a whole: 

I have my doubts about the proposition that a precise and 
complete description of relations is given by the axioms 
of geometry (sect. I)6 and that the concept 'between' is 
defined by axioms (sect. 3). Here the axioms are made to 
carry a burden that belongs to definition. To me this 
seems to obliterate the dividing line between definitions 
and axioms in a dubious manner, and besides the old 
meaning of the word 'axiom', which comes out in the 
proposition that the axioms express fundamental facts of 

6 Hilbert writes there: 

The points, lines and planes are considered to have certain mutual 
relations and these relations are denoted by words like "lie," 
"between," "congruent." The precise and mathematically complete 
description of these relations follows from the axioms of geometry. 
[Hilbert 1899, 3, emphasis in original] 



intuition, there emerges another meaning but one which I 
can no longer quite grasp. [Frege 1980, 35-36] 

In addition to the issue of definitions and axioms, Frege could 

not understand why Hilbert insisted on providing a consistency 

proof for the axiom system insofar as the self-evident truth of 

the geometrical axioms implies that they do not contradict each 

other. 

Confronted with such reactions from Frege, the first thing 
Hilbert did was to make it absolutely clear that the intentions 
guiding their respective investigations "differ in kind."7 

While Hilbert did not dwell on what he took Frege's intention 
to be, he described the motivation guiding his Festschrift, 

Foundations  of Geometry  as follows: 

My intention in composing the Festschrift  was: to make it 
possible to understand the most beautiful and important 
propositions of geometry (unprovability of the parallel 
axiom, of Archimedes'[s] axiom, provability of the 
Killing-Stolz axiom etc.), so as to make it possible to 
give definite answers (some of which turn out very 
unexpected). [Frege 1980, 41]8 

Hilbert's primary concern is not to provide a proper epistemic 
justification for our geometrical knowledge, but rather to 
understand and give definite answers to various theoretical and 
metatheoretical questions. It is presumably for this purpose 
that he tries to "rigorize" inferential process in geometry 

7 In the beginning of his letter to Frege of 29 December 1899, Hilbert 
writes: 

. . . One more preliminary remark: if we want to understand each 
other, we must not forget that the intentions that guide the two of 
us differ in kind [Frege 1980, 38]. 

8 The remark is found in the draft (or excerpt) by Hilbert. 
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through the employment of the axiomatic method. But in what 
sense is rigorization thought to be required for this purpose? 

The important point to be noticed here is that Hilbert is 
interested in understanding  as much as in establishing the 
cluster of the propositions, which he regards as "the most 
important results of geometrical inquiries."9 Indeed, in the 
introduction of the Foundations  of Geometry,  Hilbert appears to 
claim that understanding and deducing go in tandem: 

This present investigation is a new attempt to establish 
for geometry a complete, and as simple as possible, set of 
axioms and to deduce from them the most important 
geometric theorems in such a way  that the meaning of the 
various groups of axioms, as well as the significance  of 
the conclusions that can be drawn  from  the individual 
axioms, come to light. [Hilbert 1899, 2, my emphasis] 

What this means, I think, is that Hilbert's interest in rigor 
is motivated, at least in part, by his desire to systematize 

geometry. 1 0 The axiomatization of a field of knowledge, if 
successful, would introduce a small number of fundamental 
propositions and derive from them every (true) result in the 
field solely in accordance with the rules of logic. What is to 
be recognized is that, in so doing, the axiomatic method 
enables us to achieve an orderly and systematic presentation of 
9 The letter quoted above continues with the following words: 

It was of necessity that I had to set up my axiomatic system: I 
wanted to make it possible to understand  those geometrical 
propositions [ich wollte die Moglichkeit  zum Verstandnis  derjenigen 
geometrischen Satze geben] that I regard as the most important 
results of geometrical inquiries: ... I wanted to make it possible 
to understand  [verstehen] and answer such questions as why the sum 
of the angles in a triangle is equal to two right angles and how 
this fact is connected with the parallel axiom. [Frege 1980, 38, my 
emphasis] 

1 0 The following account is loosely based upon Philip Kitcher's discussion 
of "systematization" in [Kitcher 1984, 180-182, 217-220], 
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the theoretical results, which might otherwise be disordered 
and completely dispersed in the field, and gives us a unifying 
perspective on them. This is not all. Systematization by 
axiomatization would, on the one hand, enhance our 
understanding of the previously accepted results by exposing 
clearly their logical relations to each other and to the small 
number of fundamental propositions: On the other hand, it also 
lead us to, and enables us to understand, various hitherto 
unknown results by deriving them from the basic propositions. 
This fits quite well with Hilbert's own description of the goal 
of his geometrical investigation and, indeed, he is later to 
write that the axiomatic method serves the purpose of 
"orienting" [Orientierung]  and "ordering" [Ordnung]  a field of 
knowledge.11 It would seem then that one sense in which rigor 
or strictness in logical inferences is important for Hilbert is 
that, in the absence of it, we would be unable to achieve a 
systematic presentation, and thus a clear understanding of, the 
propositions constituting a field of knowledge. 

§ 3 . Another point we should pay heed to concerning 
Hilbert's interest in rigor is his emphasis upon the 
"definiteness" of the manner in which various theoretical and 
metatheoretical questions are answered by means of his 

1 1 Hilbert emphasizes the "ordering" and "unifying" function of the 
axiomatic method in the paper "Axiomatic Thought" published in 1918. In 
this connection, it is also to be noted that in the Paris address Hilbert 
maintains that "the rigorous method is at the same time the simpler and 
the more easily comprehended" [Hilbert 1900b, 1099] . 
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axiomatic method.12 Neither in the quoted letter to Frege nor 
in its draft, can we find a clear statement from Hilbert about 
what this definiteness consists in, but it does not seem so 
difficult to get an idea of his meaning. For instance, in the 
conclusion to the 1899 essay, Hilbert writes: 

The present treatment is a critical investigation of the 
principles of geometry. In this investigation the ground 
rule was to .discuss every question that arises in such a 
way so as to find out at the same time whether it can be 
answered in a specified  way  with some limited means. 
[Hilbert 1899, 106, my emphasis] 

Although Hilbert does not explicitly say so, it seems quite 
clear that what he says here captures at least part of what he 
means by "definiteness." That is, for him, to give a definite 
answer to a question is to answer it in a specified way with 
some limited means, whatever he may take such a means precisely 
to consist of. In fact, shortly after the above passage, 
Hilbert talks of the close relation between this "ground rule" 
and the proverbial demand for purity in mathematical reasoning: 

The ground rule according to which the principles of the 
possibility of a proof should be discussed at all is very 
intimately connected with the requirement for the "purity" 
of the methods of proof which has been championed by many 
mathematicians with great emphasis. This requirement is 
basically none other than a subjective form of the ground 
rule followed here. [Ibid., 107] 

1 2 In the letter to Frege, Hilbert writes: 

That my system of axioms allows one to answer such questions in a 
very definite manner, and that the answers to many of these 
questions are very surprising and even quite unexpected, is shown, I 
believe, by my Festschrift as well as by the writings of my students 
who have followed it up. [Frege 1980, 39] 
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But why does he think that such a rule is necessary for 
mathematical investigations? Or, to put it differently, in his 
view, what is supposed to be achieved through the fulfilment of 
the demand for purity? 

A short answer to these questions is given when it is 
realized that Hilbert considers the "ground rule" or the demand 
for purity to be a general requirement for the solution of a 

mathematical problem. In his 1900 Paris address "Mathematical 
Problems," Hilbert writes: 

It remains to discuss briefly what general requirements 
may be justly laid down for the solution of a mathematical 
problem. I should say first of all, this: that it shall 
be possible to establish the correctness [Richtigkeit] of 
the solution by means of a finite number of steps based 
upon a finite number of presuppositions [Voraussetzungen] 
which are implied in the statement of the problem and 
which must always be exactly formulated. This requirement 
of logical deduction by means of a finite number of 
processes is simply the requirement of rigour in carrying 
out proofs [Strenge in der Beweisfiihrung]  . [Hilbert 1900b, 
1099, translation modified] 

Here, the "rule" is presented with a little more detail and is 
identified with the requirement of "rigor," but the message is 
clear: it is required for the solution of mathematical 
problems. To understand the exact meaning of this claim, 
however, we have to recognize a few more things yet. First, 
the fact that Hilbert considers the requirement of rigor to be 
a general requirement for the solution of a mathematical 
problem seems to imply that, for him, rigorization is not 
sought in order to solve any specific mathematical problem that 
has previously remained unsolved.13 Indeed, here again, Hilbert 

refers to the importance of rigor for the enhancement of our 
1 3 For more on this point, see the next chapter. 

-27-



understanding of mathematical propositions: 

. . . only by satisfying this requirement [of rigor in 
reasoning] do the thought content [gedankliche Iriha.lt] and 
the fruitfulness [Fruchtbarkeit]  of the problem attain 
their full effect [Ibid., 1099, translation modified]. 

His interest in rigor, however, is not exhausted by such a 
concern for the enhancement of understanding alone. To see 
this, we should note, secondly, the fact that Hilbert's 
formulation of the requirement of rigor or purity seems to come 
directly from his notion of effective  process. Accordingly, it 
shares certain general features with it. In his 1892 paper, 
Hilbert talks of a number that "can be actually found by means 
of calculation in a finite number of operations," while, in the 
paper published a year later, he describes a decision procedure 
as a way "in which one can decide whether or not 8 is a 
completely algebraic function through processes that are finite 
and surveyable from the outset."14 What can be seen from these 
descriptions is Hilbert's emphasis on the perspicuity and the 
finite character of the processes in question. As we saw 
above, these same characteristics are stressed by Hilbert when 
he describes the "ground rule" of his geometrical investigation 
as the one according to which every question that arises should 
be answered "in a specified  way with some limited means." In 
keeping with this observation, Hilbert's requirement of rigor 
in the proof presented in the Paris address may then be 
interpreted to be comprised of two parts: a) that the rules 
1 4 My translation. The original reads respectively, "sich . . . mittels 
Rechnung durch eine endliche Anzahl von Handlungen wirklich finden lasst" 
[Hilbert 1935 vol. 2, 275]; "wie man durch endliche und von vornherein 
iibersehrbare Prozesse entscheiden kann, ob 5 eine ganz algebraische 
Funktion ... ist oder nicht". [Ibid., 321] Cf. Webb 1980, 75. 
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of inference employed in the proof must be antecedently 
specified; b) that the proof-procedure must be "limited" in 
the sense that the solution is obtained from a finite number of 
premisses in a finite number of inferential steps. To be sure, 
in the Paris address, Hilbert does not clearly state what 
exactly these rules of inference are, but given his 
identification of the requirement of rigor with that of 
"logical deduction" in a finite number of steps, it seems 
reasonable to assume that he has in mind the rules of logic 
taken in the ordinary sense for such an antecedently specified 
means of proof. 

Now, with a better understanding of Hilbert's notion of 
rigor in hand, our task is to find out what function rigor is 
to serve for him. But before going into this question, there 
is one more thing to be noted. This is the fact that Hilbert 
seems to think that the fulfilment of these points is required 
for something other than the mere solution of a mathematical 
problem. In the 1900 address, he describes rigor in the proof 
as a requirement for a "perfect" solution of a problem,15 while, 
in the Festschrift,  he says that a rigorous proof for a 
problem, or for the unprovability of the problem, is necessary 
if "the drive for knowledge" is to be satisfied: 

... if in the course of mathematical investigations, a 
problem is encountered, or a theorem is conjectured, the 
drive for knowledge is then satisfied only if either the 
complete solution of the problem and the rigorous proof of 
the theorem are successfully demonstrated or the basis for 
the impossibility of success and hence the inevitability 
of failure are clearly seen. [Hilbert 1899, 106] 

At first glance, it might be thought that Hilbert's reference 
15 ibid., 1100. 



to "knowledge" suggests that his interest in rigor stems 
ultimately from the standard, epistemological concern for 
certainty, just as in the case of Frege. That is to say, it 
might be thought that Hilbert insists on the thorough 
implementation of rigor in order to provide a justification for 
our believing the truth of mathematical propositions. Yet, 
given Hilbert's clear statement about the difference of the 
intentions guiding his investigation from Frege's, and his non-
standard view of definition and axiom, it seems unlikely that 
this is the case. In fact, as he writes in a paper published 
in 19 09, the requirement of rigor or of "logical deduction in a 
finite number of steps" is not only not motivated by the 
concern for truth, but even opposed to and hardly compatible 
with it in the context of his foundational investigations: 

In the case of modern mathematical investigations, ... I 
remember the investigations into the foundations of 
geometry, of arithmetic, and of set theory--they are 
concerned not so much with proving a particular fact or 
establishing the correctness of a particular proposition, 
but rather much more with carrying through the proof of a 
proposition with restriction to particular means or with 
demonstrating the impossibility of such a proof. [Hilbert 
1935 vol.3, 72, my translation] 16 

But what, then, is the point of "rigor" for Hilbert? 
What, if not truth or validity, does he think is achieved by a 
proof with some specified means? What is implicit in his 
insistence upon the requirement of rigor, I suggest, is his 

16 Bei gewissen modernen mathematischen Untersuchungen ... ich erinnere an 
die Untersuchungen tiber die Grundlagen der Geometrie, der Arithmetik, und 
der Mengenlehre--handelt es sich nicht sowohl darum, eine bestimmte 
Tatsache zu beweisen oder die Richtigkeit eines bestimmten Satzes 
festzustellen, sondern vielmehr darum, den Beweis eines Satzes mit 
Beschrankung auf gewisse Hilfsmittel zu fuhren oder den Nachweis fur die 
Unmoglichkeit einer solchen Beweisfuhrung zu erbringen. 



concern for the objectivity  of mathematical judgment and 
reasoning. Hilbert's requirement of rigor, as we just saw, 
consists of two demands: one for the antecedently fixed rules 
of inference and one for the finitude of the whole proof-
procedure. The fulfilment of these conditions guarantees the 
objectivity or intersubjectivity of a proof in the sense that 
it not only eventually terminates, but also that it terminates 
with the same result, no matter who carries it out. The result 
may or may not correspond to one's expectation: it may provide 
a solution to a problem, or it may demonstrate the insolubility 
of the problem. In either case, if the proof is constructed in 
full accordance with the requirement of rigor, its result is 
"definite" and "indisputable." This indisputability of the 
result, however, does not mean that its truth is indubitable 
and our knowledge of it certain; what it means is rather that 
insofar as one follows the antecedently specified rules, one 
will reach the same result in a finite number of steps.17 For 
Hilbert, it is in this non-justificatory sense that rigor 
serves to provide a "perfect" or "complete" solution to a 

1 7 Concerning the notion of rule-following, Ludwig Wittgenstein raised 
such questions as "What is it to follow one rule rather than another?" 
"Can we distinguish the following of one rule incorrectly from the 
following of a different rule correctly?," and there has been much 
discussion among philosophers. This issue does touch upon my 
interpretation of Hilbert's concern for rigor, but I shall not get into it 
here. 



problem and to satisfy the "drive for knowledge."18 Thus he has 
no qualms in maintaining, at the same time, that his 
foundational investigations are not to be understood in the 
standard, epistemological sense. Correspondingly, for him, the 
main function of logic as rules of inference is not to preserve 
or transmit the truth and a prioricity of the initial 
propositions through transition from one proposition to 
another. Rather, it is to assure the objectivity of such a 
transition itself. Although it is slightly anachronistic to 
cite it, what Hilbert wrote about his proof theory in the late 
1920s would help us see what is at stake in his pursuit of 
rigor: 

... our understanding does not practice any secret arts, 
but rather always proceeds according to well-determined 
and presentable [aufstellbar]  rules. And this is at the 
same time the guarantee for the absolute objectivity of 
its judging [seines Urteilens].  [Hilbert 1929, 233] 

Indeed, such a concern for the objectivity of mathematical 
judgment and proof, I think, explains not only why Hilbert is 
interested in deductive rigor, but also why he is led to the 
sort of the view that he holds of definitions and axioms. Once 
again, a comparison with Frege' s view is useful. As we saw 
1 8 In the beginning of the 1900 address, Hilbert characterizes the notion 
of "completeness" or "perfectness" in terms of "clearness" and "ease of 
comprehension": 

An old French mathematician said: 'A mathematical theory is not to 
be considered complete [vollkommen] until you have made it so clear 
that you can explain it to the first man whom you meet on the 
street.' This clearness and ease of comprehension [Diese Klarheit 
und leichte Fa&lichkei t] , here insisted on for a mathematical 
theory, I should still more demand for a mathematical problem if it 
is to be perfect  [ vol Ikommen] ; for what is clear and easily 
comprehended attracts, the complicated repels us. [Hilbert 1900b, 
1097, my emphasis] 



earlier, in accordance with his intended goal of justifying our 
geometrical knowledge, Frege demands that the axioms of 
geometry, from which the other geometrical propositions are 
derived by means of (truth-preserving) logical deduction, must 
be true of their subject-matter. He also demands that, in the 
construction of a theory, the meaning of the basic terms 
occurring in the axioms be antecedently fixed by using a 
precise language, such as his Begriffsschrift,  so that there 
can arise no question about the propositional content of the 
axioms, and thus about their truth. 

But how exactly is definition carried out on Frege's 
account? Given that the axioms are a true representation of a 
certain theory-independent realm of objects, it would follow 
that the basic terms occurring in them denote these theory-
independent objects. This, in turn, would imply that in order 
for the definition of the basic terms to be possible, we must 
possess, independently  of the axioms, the knowledge of what 
objects are denoted by them and, indeed, of what these objects 
essentially are. That is, on Frege's account, we define the 
meaning of the basic terms by means of our extra-theoretical 
knowledge of the subject-matter of geometry and, in accordance 
with this definition, formulate the axioms as self-evident 
truths about it. 

The problem with such a procedure is that precisely 
because the subject-matter of geometry is conceived to be 
independent of the axioms, there seems to be no common 
framework within which we can give an answer to questions such 
as "What objects are denoted by the basic terms of geometry?" 
or "What are the essential properties of these objects?" Thus, 
once a disagreement arises over the acceptability of a proposed 



definition, there would be no way to settle the dispute; in the 
absence of a common framework, no party would be either correct 
or incorrect. By the same token, if, in such a case, one 
simply goes ahead and introduces a definition, this would 
amount to presupposing (extra-theoretical) knowledge of the 
subject-matter; and, consequently, one's construction of theory 
becomes dogmatic. In other words, the traditional view of 
definition makes the process of definition conditional upon, 
and thus relative to, one's background philosophical views. I 
think these are some of the points that Hilbert had in mind 
when he wrote to Frege as follows: 

You say my explanation in sect. 3 is not a definition of 
the concept 'between', since it fails to give its 
characteristic marks. But these characteristic marks are 
given explicitly in axioms II/l to II/5. . . . You say 
further: 'The explanations in sect. 1 are apparently of a 
very different kind, for here the meaning of the words 
"point", "line", ... are not given but are assumed to be 
known in advance.' This is apparently where the cardinal 
point of misunderstanding lies. I do not want to assume 
anything as known in advance; I regard my explanation in 
sect. 1 as the definition of the concepts point, line, 
plane--if one adds again all the axioms of groups I to V 
as characteristic marks. If one is looking for other 
definitions of a 'point', e.g., through paraphrase in 
terms of extensionless, etc., then I must indeed oppose 
such attempts in the most decisive way; one is looking for 
something one can never find because there is nothing 
there; and everything gets lost and becomes vague and 
tangled and degenerates into a game of hide-and-seek. 



[Frege 1980, 39] " 

Now, Hilbert's claim that "one is looking for something 
one can never find because there is nothing there" might be 
thought to suggest that his concern has to do with the non-
existence or abstract nature of mathematical objects and, 
therefore, that he would not object to the traditional method 
of definition in cases where a theory deals with concrete 
objects to which we have direct epistemic access. Such a 
reading, however, is mistaken. First, as Hilbert writes 
immediately after the quoted passage, it is his contention that 
the consistency of the geometrical axioms guarantees the truth 
of the axioms and the existence of the things defined by them.20 

Second, as we saw earlier, it is also Hilbert's opinion that 
not only "abstract" sciences such as mathematics but the 
natural sciences too must also be treated in the manner of the 
Hilbertian axiomatics: 

In my opinion, a concept can be fixed logically only by 
its relation to other concepts. These relations, 
formulated in certain statements, I call axioms, thus 

19 Letter to Frege of 29 December 1899. In the corresponding passage in 
the draft (or excerpt), Hilbert puts the points in this way: 

Instead of 'axioms' you can say 'characteristic marks' if you like. 
But if one is looking for another definition of, e.g., 'points', 
perhaps through paraphrase in terms of extensionless . . . , then I 
reject such attempts as fruitless, illogical and futile. One is 
looking for something where there is nothing. The whole 
investigation becomes vague and tangled and degenerates into a game 
of hide-and-seek. [Frege 1980, 41] 

Note Hilbert's.use of the term "illogical" to describe the traditional way 
of definition. 
2 0 Is this not a sheer contradiction to Hilbert's denouncement of the 
epistemological character of his foundational investigation we saw above? 
I shall come back to the issues surrounding Hilbert's "identification" of 
consistency with truth and existence in Chapter 3. 
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arriving at the view that axioms (perhaps together with 
propositions assigning names to concepts) are the 
definitions of the concepts. I did not think up this view 
because I had nothing better to do, but I found myself 
forced into it by the requirements of strictness in 
logical inference and in the logical construction of a 
theory. I have become convinced that the more subtle 
parts of mathematics and the natural sciences can be 
treated with certainty only in this way; otherwise one is 
only going around in a circle. [Frege 1980, 51] 

Indeed, for Hilbert, the traditional method of definition, 
which involves reference to theory-independent objects, is 
objectionable regardless of the ontological and epistemological 
status of the definienda. For, insofar as the basic terms of a 
theory are thought to denote objects existing independently of 
its axioms, there would be no "rigorous" procedure by means of 
which we can settle questions about the referents of these 
terms and their nature, whether they be "abstract," 
mathematical terms such as "point" and "real number" or 
"concrete," physical terms such as "gold" and "water."21 in 
short, such a definitional procedure is "illogical" and lacks 
objectivity. 

But how, then, does Hilbert solve the difficulties 
associated with the traditional method of definition? As is 
indicated in the above remark, Hilbert gets to the root of the 
problem. That is, he tries to solve the problem by denying the 
underlying assumption that the non-logical (basic) terms 
21 In this connection, it has been pointed out by Michael Hallett that 
Hilbert's position on meaning is to be examined against the backdrop of 
certain late 19th century developments in classical physics, in 
particular, the anti-metaphyical tendencies found in Heinrich Hertz's 
views of physical theories. According to Hallett, Hertz argued that 
questions about the metaphysical nature of an object or concept, or 
questions about the "essential" meaning of terms are futile if they are 
posed over and above the properties and relations ascribed to them by a 
system of physical theory. For more on Herz's influence upon Hilbert, see 
Hallett 1990, 219-223 and Webb 1980, 78-81. 
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occurring in the axioms have theory-independent denotations. 
Once it is denied that there are theory-independent objects to 
which the non-logical terms of the theory are supposed to 
refer, it is both unnecessary and impossible to formulate 
(theory-independent) definitions of these terms: their meanings 
need not and cannot be fixed in reference to theory-independent 
concepts or objects. As a result of this unanchoring, the non-
logical terms in a theory constructed in accordance with 
Hilbert's axiomatic method become "place-holders," as it were. 
Even so, it is important to recognize that this does not mean 
that they are devoid of meaning or, simply, meaningless. Since 
these terms occur in sentences (i.e. in the axioms of the 
theory), they obtain (intra-systematic) meaning from their 
relations to each other. Consider, for instance, the following 
proposition, which is one of the geometrical axioms Hilbert 
presents in the Foundations  of Geometry: 

For every two points A, B there exists a line a that 
contains each of the points A, B.[Hilbert 1899, 3] 

The non-logical terms "point," "line," and "contains" here have 
no theory-independent meanings attached to them. Thus, they 
should be seen as mere place-holders. Nevertheless, they do 
obtain some sort of meaning or sense through their co-
occurrence in the axiom: the axiom gives us information about 
what it is to be a point or a line in terms of the incidence-
relation, whereas the sense of this incidence-relation is 
(partially) determined through the manner in which it holds (or 
does not hold) between these elements. At this stage, the 
"meanings" of these basic terms are quite general, but they 



will become more and more specific and determinate as they 
occur in a series of axioms. In Hilbert's own words, 

The points, lines and planes are considered to have 
certain mutual relations and these relations are denoted 
by words like "lie," "between," "congruent." The precise 
and mathematically complete description of these relations 
follows from the axioms of geometry. [Hilbert 1899, 3] 

In the Festschrift,  Hilbert lists five groups of axioms, some 
nineteen in total, each of which contributes to this meaning-
fixing.22 

The upshot of all this is that, in the Hilbertian 
axiomatics, the meaning of a (non-logical) term is determined 
by an axiom system as a whole and is not "complete" until the 
building of the system is complete.23 Furthermore, it also 
follows that a change in an axiom system implies a change in 
the meaning of a term occurring within it; accordingly, in 
Hilbert's view, it is quite possible that one and the same non-
logical term has different meanings in different axiom systems, 
as he remarks in the quoted letter to Frege: 

Every axiom contributes something to the definition, and 
hence every new axiom changes the concept. A 'point' in 
Euclidean, non-Euclidean, Archimedean and non-Archimedean 
geometry is something different in each case. [Frege 1980, 
40] 

2 2 Hilbert explicitly states that "each of these groups expresses certain 
related facts basic to our intuition" [Hilbert 1899, 3] . But this 
reference to the alleged source of the geometrical axioms, as Ernest Nagel 
points out, "is essentially a biographic statement," and should not be 
thought to imply that Hilbert considers the technical terms occurring in 
the axioms as denoting certain theory-independent objects. 
2 3 In the quoted letter to Frege, Hilbert writes that "the definition of 
the concept point is not complete till the structure [Aufbau] of the 
system of axioms is complete" [Frege 1980, 42], 
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This, then, is what is usually understood by "implicit 
definition" and "definition by axioms." 

Furthermore, since, on Hilbert's conception, definition or 
meaning-fixing is executed entirely and solely by means of the 
logical relations formulated in a group of explicitly stated 
statements, the whole procedure is completely perspicuous. In 
fact, as a result of this methodological turn, questions about 
the properties of the defined concepts, which seemed previously 
to require metaphysical investigations into the essence of 
objects, are now expressible as questions about the properties 
of the axiom system as a whole and thus treatable as questions 
falling in the domain of mathematics and logic. To mention one 
example, instead of trying to decide the "correctness" of the 
proposed definition of a term in a field of knowledge through 
metaphysical investigations into what the term in question 
denotes and what its referent essentially is, Hilbert's 
axiomatic method allows us to formulate the question as one 
about whether it is possible to deduce, from the axioms fixing 
the meaning of the term, a class of statements which are 
commonly accepted as true in the field. Moreover, by providing 
such a means of question-formulation, Hilbert's axiomatic 
method, at the same time, guarantees the freedom  of concept-
formation: one is free to propose one's own definition of a 
concept insofar as it is put forward in the form of an axiom 
system and, hence, susceptible to rigorous and objective 
treatment. 

§4. Let me recapitulate what I have argued so far. 
First, a careful reading of the text showed us that Hilbert 



thinks what he calls "a complete logical grounding of 
knowledge" requires the adoption of Hilbertian axiomatics as 
one's chosen method of investigation. Next, in order to 
understand this claim, we examined how Hilbert came to adopt 
the axiomatic method and his accompanying view of definition 
for his investigation into the foundations of geometry. In so 
doing, special attention was paid to Hilbert's emphasis upon 
"strictness in logical inference and in the logical 
construction of a theory," and we were led to the conclusion 
that there are at least two primary concerns motivating 
Hilbert's pursuit of rigor and the adoption of his (then) non-
standard view of definitions and axioms. One of them has to do 
with Hilbert's desire to enhance our understanding of 
geometrical propositions. He tries to achieve this goal by 
systematizing the accumulated results of the science through 
axiomatization. The problem, however, is that while this 
project of systematization by axiomatization accounts partially 
for his interest in rigor, it alone does not seem capable of 
explaining the distinctive characteristics of Hilbertian 
axiomatics. To consider this point, we then examined Hilbert's 
notion of "rigor" more closely. What we learned from this 
examination is that, for Hilbert, rigor involves not only the 
strict observance of logical laws in all proofs, but also the 
finitude, and thus the perspicuity and executability, of the 
whole proof-procedure. This, I then argued, suggests that 
Hilbert's interest in rigor stems ultimately from his concern 
for the objectivity of mathematical judgment and reasoning. 
Finally, to support this claim, I tried to show that Hilbert's 
concern for objectivity led him to relinquish the assumption of 
theory-independent denotations which underlies the traditional 



conception of definitions and axioms. 
The idea of banishing extra-systematic elements from the 

construction of a scientific theory thus essentially 
characterizes Hilbert's axiomatic method. However, I do not 
mean to claim that it is his concern for objectivity that is 
solely responsible for the introduction of this view. Here, we 
have, obviously, to take into account manifold developments 
which took place in geometry and mathematics in general, and in 
neighboring exact sciences such as physics, towards the late 
nineteenth century. In this connection, Hilbert's principal 
collaborator in the foundational investigations, Paul Bernays, 
refers to some extrinsic factors that were conducive to 
Hilbert's "new methodological turn" in the conception of 
axiomatics. Following Bernays's account, I go over these 
points briefly. First, Bernays notes that physicists around 
that time started to adopt both empirical statements and mere 
hypotheses as axioms of physical theories so that the results 
of multifarious experiences could be encompassed in a statement 
of general character; and, consequently, that the "demand that 
each axiom should express an a priori knowable truth was soon 
abandoned" [Bernays 1922b, 191] . 24 

Second, the discovery of non-Euclidean geometry and 
Helmholtz's influential arguments for the empirical character 
of the geometrical axioms, according to Bernays, led many to 
give up on their belief in the a priori knowledge of geometry. 
Towards the mid-nineteenth century, the age-old effort to 
demonstrate the parallel postulate from the other assumptions 
of Euclidean geometry by means of the indirect, or reductio ad 

2 4 As an example of this, Bernays cites "the two propositions about the 
impossibility of a perpetuum mobile of the first and second type, which 
Clausius put at the top as axioms of theory of heat" [Bernays 1922b, 191]. 
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absurdum, method of proof resulted in the construction of new 
systems of geometry, which, although no contradictions seemed 
to follow in them, seemed to be in violent contradiction to 
what habitual "intuitions" tell us about the nature of space if 
their non-logical terms are understood in the ordinary manner.25 
The first proof of the consistency of one of such new 
geometries was presented by Beltrami in 1868, 2 6 in which he 
showed that the plane non-Euclidean geometry of Lobachevsky and 
Bolyai can be represented, with certain restrictions, on a 
surface of constant negative curvature such as the 
pseudosphere, or tractoid.27 The significance of Beltrami-style 
consistency proofs is twofold. In the first place, by giving a 
Euclidean "model" to the newly "invented," non-Euclidean 
geometries, they established conclusively that the "bizarre" 
non-Euclidean geometries are consistent if Euclidean geometry 
is consistent.28 j n the second place, as Ernest Nagel points 
out, these proofs, by offering an interpretation of the new 
geometries in terms of "intuitions" of familiar Euclidean 
surfaces, "took the wind out of the sails of those who insisted 
that the new systems could not be construed as 'geometries' 
even though they were consistent calculi, on the ground that 
they lacked an 'intuitive content'" [Nagel 1979, 243], 
25 Very roughly, the idea'goes as follows. We start by assuming the truth 
of the negation of the parallel postulate, together with that of the other 
axioms of Euclidean geometry. If we succeed in deriving a contradiction 
in this non-Euclidean system, it will show the inconsistency of the system 
and thus that it is impossible for those statements to be true 
collectively. Since this means that it is impossible that the negation of 
the parallel postulate is true, or the parallel postulate is false while 
the others true, the parallel postulate is implied by the other axioms. 
26 "Saggio di interpretazione della geometria non-Euclidea," Giornale di 
Matematiche  6 (1868): 74-105. 
27 p o r more detailed discussion of Beltrami's and others' consistency 
proofs of non-Euclidean geometries, see Eves 1990, 65-70. 
2 8 For more on consistency proofs, see Ch. 4. 
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An important consequence of this course of events is the 

liberation of geometry from the question of validity and thus 

its separation from geometry as a physical science. Given that 

seemingly "incorrect" non-Euclidean systems are, in the logical 

sense, as legitimate as Euclidean geometry, there arises the 

possibility of studying various systems of "geometry" without 

regard to their applicability to physical space and, thus, 

without regard to the epistemic character [Erkenntnischarakter] 

of their axioms. 2 9 On the other hand, as Howard Eves observes, 

[w]ith the p o s s i b i l i t y of inventing such p u r e l y 
"artificial" geometries it became apparent that physical 
space must be viewed as an empirical concept derived from 
our external experience, and that the postulates of a 
geometry designated to describe physical space are simply 
expressions of this experience, like the laws of a 
physical science. [Eves 1990, 68] 3 0 

Another important development occurred four years after 

2 9 Note the striking contrast between such a conception of pure geometry 
and the Kantian theory of geometry which dominated Europe's philosophical 
landscape at the time of the discovery of the non-Euclidean geometries. 
According to Kant, geometrical reasoning requires for its very possibility 
"construction in pure intuition, " and since the pure intuition of space 
constitutes a condition for the possibility of our experience, Euclidean 
geometry, which is the only geometry representable by means of pure 
intuition, is necessarily valid of the objects of experience. 
3 0 This roughly corresponds to main theses of Helmholtz. Helmholtz's 
primary concern was to argue against the so-called "nativist" school of 
physiology, that human perceptions (such as our perception of space) are 
not simply determined by innate, physiological mechanisms, but that 
(conscious and subconscious) psychical processes are also involved. As 
regards our spatial perception, Helmholtz first thought (mistakenly) that, 
with the condition that space be three dimensional and infinite, our 
universal experience of the congruence of rigid bodies determined space as 
Euclidean. But when Beltrami's aforementioned paper appeared, he realized 
his mistake and added the principles of mechanics to the experiential 
basis for our geometry, and thereby made it dependent upon conscious 
experience subject to proof or disproof by experiment. For a detailed 
account of Helmholtz's investigations into the foundations of geometry, 
see Richards 1975. 



the publication of Beltrami's paper when Hilbert's future 
colleague at Gottingen, Felix Klein, applied considerations 
drawn from the algebraic theory of groups to geometry.31 Very 
crudely, the chief results of Klein's investigation may be 
explained as follows.32 Within each geometry, there are certain 
transformations which may be carried out without changing the 
relations or properties characteristic of that geometry. For 
example, such transformations as translations, rotations, and 
reflections in lines leave unchanged or invariant those 
properties which are characteristic of ordinary Euclidean 
geometry, e.g., length, area, congruence, parallelism, 
perpendicularity, similarity of figures, collinearity of 
points, and concurrence of lines. Given such mutual 
relationships between the properties characteristic of a 
geometry and certain transformation groups, the idea suggests 
itself that a geometry can be characterized by either of the 
two. Thus, instead of saying that Euclidean geometry studies 
those metrical properties listed above, we may also say that it 
studies those properties which remain invariant under the group 
of transformations comprised of translations, rotations, and 
reflections in lines. 

What we must see here is that Klein thereby opened a way 
to consider the concept of "geometrical" from an abstract 
perspective, that is, the "geometrical" simply as that which is 
characterized by an invariance with respect to a certain set of 
algebraic operations. With the help of this simple but 
powerful idea, some very surprising results follow. Here I 
3 1 " Vergleichende Betrachtungen iiber neue geometrische Forschungen," 
Mathematische Annalen, Bd. 43, 1872. 
3 2 A more detailed account of Klein's so-called Erlangen Program can be 
found in Eves 1990, 128-132 and Nagel 1979, 242-249. My account is 
basically an abridged version of these two writers'. 
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mention only three, which are of particular importance for our 
purpose. According to one such result, if the groups of 
transformations which characterize respectively two different 
geometries have the same formal content and thus are formally 
identical, then these geometries, whatever their respective 
fundamental elements might be, are structurally identical in 
the sense that "for every theorem about an invariant property 
in one geometry, there is a 'dual' theorem about a 
corresponding invariant property in each of the others."33 

Second, Klein established the structural identity, in this 
sense, of the Euclidean and non-Euclidean (Lobachevskian and 
Riemannian) geometries. Further he showed that the differences 
among these three types of geometries could be construed as 
stemming entirely from the differences in their definitions of 
metrical notions such as distance, angle, area, and volume. 
Klein thus succeeded in giving a conclusive answer to the 
question of the precise nature of the logical relations between 
Euclidean and non-Euclidean geometries, which Beltrami-style 
"model-theoretic" approaches were unable to answer.34 Finally, 
the particular manner in which Klein demonstrated the 
structural identity of the three types of geometry provided, at 
the same time, a unitary and systematic picture of geometry. 
Klein obtained all of these geometries by using the concept of 
3 3 Nagel 1979, 246. Of the abstract nature of group-theory, Klein writes 
elsewhere that the concept of groups is manifestly characteristic of "a 
wholly intellectual mathematics that has been purged of all intuition; of 
a theory of pure forms with which are associated not quantities or their 
symbols, numbers, but intellectual concepts, products of thought, to which 
actual objects or their relations may, but need not, correspond." F. 
Klein, Vorlesungen  iiber die Entwicklung  der Mathematik  im 19. Jahrhundert, 
"Die Grundlehren der mathematischen Wissenschafteen," XXIV (1926), I, 335, 
quoted in Cassirer 1949, 30. 
3 4 As we saw above, all that they showed was that certain non-Euclidean 
geometries (e.g., geometry of Lobachevsky and Bolyai) are consistent if 
Euclidean geometry is consistent. 



"distance" defined entirely in the language of projective 
geometry (as a theory of invariance of projective 
transformations). This meant that it could be developed 
without employing any postulate of parallels or axioms of 
congruence, and thereby showed that these metric geometries 
could be taken to be "contained" in projective geometry.35 

Apparently, Bernays had in mind these consequences, which 
had resulted from group-theoretic approaches such as Klein's,36 

when he referred to a "powerful change" brought about by the 
"systematic development of geometry": 

Mathematical abstraction had, starting with elementary 
geometry, raised itself far above the domain of spatial 
intuition and had led to the construction of comprehensive 
systems, in which ordinary Euclidian [sic] geometry could 
be incorporated and within which its lawlikeness appeared 
only as one particular among others of equal mathematical 
rights. With this a new sort of mathematical speculation 
opened up by means of which one could consider the 
geometrical axioms from a higher standpoint. [Bernays 
1922b, 191] 

The upshot of all this was a growing awareness among the 
scientists of the time that "this mode of consideration had 
nothing to do with the question of the epistemic character of 
the axioms": 

Accordingly, the necessity of a clear separation between 
3 5 To be more precise, the transformation group of the metric geometries 
is contained as a subgroup in the transformation group of projective 
geometry, under which, of the previously mentioned properties, only 
collinearity of points and concurrence of lines remain invariant. In this 
manner, Klein established a "sequence of nesting geometries," progressing 
from metric to affine and projective geometry and finally to analysis 
situs or topology in terms of their respective transformation groups. 
3 6 In this connection, the geometrical research of Sophus Lie must be also 
mentioned. 



the mathematical and the epistemological problems of 
axiomatics ensued. The demand for such a separation of 
the problems had already been stated with full rigor by 
Klein in his Erlangen Programme. [Ibid., 191-192] 

The primary significance of Hilbert's Festschrift,  on Bernays's 
view, consists in the fact that in it such a separation was 
executed, for the first time, with full consciousness and with 
full rigor, in the mould of the axiomatic method: 

The important thing, then, about Hilbert's "Foundations of 
Geometry" was that here, from the beginning and for the 
first time, in the laying down of the axiom system, the 
separation of the mathematical and logical [spheres] from 
the spatial-intuitive [sphere], and with it from the 
epistemological foundation of geometry, was completely 
carried out and expressed with complete rigor. [Ibid., 
192] 

Although it is arguable whether the content of the denial of 
extra-systematic meaning and denotation, which characterizes 
Hilbertian axiomatics,37 can be exhausted by such a separation 
of the logico-mathematical from the epistemological, Bernays's 
account helps us see the general intellectual atmosphere in 
which Hilbert's investigation into the foundations of geometry 
is embedded and from which his view of definitions and axioms 
arose. 

§5. So far my consideration has focused on how the two 
types of axiomatics differ, and we have yet to examine 
Hilbert's view on the genetic method. As we saw above, Hilbert 
explains in his 1900 essay that, in a theory-construction in 
accordance with this method, various general concepts are 

3 7 I shall consider this in some detail in Ch. 3. 
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engendered through the successive extensions of the basic or 
primitive concept(s) of the theory. But in what sense may 
concepts be said to be "basic" and "primitive" there? 
Apparently, one sense Hilbert attaches to these terms is 
psychological (and genetical) . This is why, later in the 
essay, he speaks of "the high pedagogic and heuristic value of 
the genetic method": the genetic method delivers not only a 
method of theory-construction, but also a psychological aid 
which facilitates the learning of a scientific theory. Our 
question is then how the genetic method fares with regard to 
the problem of a complete logical grounding of knowledge. 
Before tackling this question, however, we need to have a 
better picture of this method of investigation; in particular, 
we must. get clear about what is precisely meant in his 
seemingly figurative manner of speech: a concept is engendered 

by the successive extension of a theory's basic concept. 
Generally speaking, in constructing a theory in accordance 

with the genetic method, one usually begins with the definition 
of its fundamental concepts. To put it slightly differently, 
here one usually begins by specifying the objects of the theory 
with their essential properties. After this is done, the 
fundamental operation(s) of the theory are introduced which are 
(universally) applicable to these objects, and the laws of 
operations are laid down as general truths, from which various 
results follow deductively. At this point, however, one may 
find that the theory constructed thus far falls short of one's 
goal of reconstructing an existing discipline, where numerous 
operations unknown to the constructed theory are freely and 
universally applied to the "objects" that are not found in its 
objective domain. It is at this point that a need arises for 



the "successive extension" of the theory's basic concept(s) in 
such a way that certain hitherto only limitedly executable 
operations become universally applicable. 

To illustrate and to understand the "mechanism" of this 
procedure more clearly, let us consider its employment in a 
particular discipline. Suppose that we wish to reconstruct, in 
accordance with the genetic method, the mathematical discipline 
of arithmetic--conceived in such a broad sense that analysis is 
included--as a theory whose subject matter consists of the 
natural numbers and their interrelations. The first thing we 
would do is specify the objective domain of the theory by means 
of some essential properties of the natural numbers and define 
their relations (e.g. =, <, >) . After this is done, the 
fundamental operations of arithmetic, in terms of which other 
possible operations on the natural numbers are definable, would 
be introduced: addition and multiplication, for instance, might 
be chosen as arithmetic's basic operations and introduced using 
definitions. Furthermore, certain relevant properties of these 
operations (e.g. commutativity, associativity) would then be 
established and laid down as the rules of operations, in 
accordance with which innumerous calculational results would 
follow in a purely deductive manner. 

It goes without saying, however, that the constructed 
theory is, at this point, still far from exhausting the whole 
content of arithmetic. To mention one particular difference 
between the two: in ordinary arithmetic, we find, in addition 
to the natural numbers, such things as the integers (positive, 
zero, and negative), on which such an operation as subtraction 
is universally applied, whereas, in the constructed theory, we 
find none of these: although subtraction might be introduced 



into it as the inverse operation of addition, it could not be 
carried out universally on the natural numbers. Now, one way 
of amending the situation would be to extend the domain of the 
theory simply by postulating a new type of object called 
"integer" to which the hitherto only partially executable 
operation of subtraction is universally applicable, whatever 
"subtraction" might mean with regard to the newly introduced 
object.38 This, however, is not how the situation is dealt with 
in the genetic method. According to this method, theory-
construction is to be proceeded by means of so-called 
"constructive definitions," in which newly introduced objects, 
relations, and operations are defined solely in terms of the 
basic objects, relations, and operations specified at the 
outset of the theory-construction. The point here is not 
merely to capture all and only those properties of the objects, 
relations, and operations to be introduced, but to do this by 
employing only the initially specified and thus "authentic" 
concepts of the theory. In the case at hand, definitions of 
the integers, their relations, and operations on them are 
available which capture the content of what is understood by 
them in ordinary arithmetic and are formulated solely in terms 

3 8 To do this would amount to jettisoning the initial assumption that 
arithmetic is the theory of natural numbers and their interrelations. 
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of natural numbers, their relations, and operations on them;39 

consequently, the reconstruction of arithmetic would proceed by 
establishing laws of operations and deducing further results 
from them. 

It would seem, then, that, strictly speaking, there 
exists, in a theory-construction in accordance with the genetic 
method, neither an "extension" of the theory's basic concept(s) 
nor an "engendering" of new concept(s). To refer to the above 
example, what exists in providing constructive definitions of 
integers is neither that the basic concept of the theory, that 
of natural number, is extended in such a way that it now 
comprehends the previously heterogeneous concept of integer, 
nor that a new concept of integer is engendered from the 
concept of natural number. Rather, the definition, if 
successful, establishes that the term "integer" may be 
construed as a short-hand symbol for ordered pairs of natural 
numbers and that every statement about integers is expressible 
as, or translatable into, a statement about natural numbers. 
What is achieved in constructive definitions is then not so 

3 9 The definition of the integers as ordered  pairs of natural numbers, 
for instance, would do the job. The motivation for this definition stems 
from the fact that any integer, whether it is positive, zero, or negative, 
is representable as the difference m - n of two positive whole numbers m 
and n, e.g., 2 = 4 - 2 , 0 = 1 - 1 , -3 = 2 - 5 , etc. But since 
subtraction cannot be carried out on the natural numbers when m < n, the 
integers are introduced instead as ordered pairs <m, n> of natural 
numbers, where by <m, n> we really have in mind the difference m - n. 
Accordingly, an integer <a, b> is said to be equivalent  to another integer 
<c, d> if and only if a+d=b+c (because a - b = c - d if a + d = b + 
c) , where "a," "£>, " "c, " "d, " designate arbitrary natural numbers; " + " the 
addition of two natural numbers; and "=" the identity of two natural 
numbers. Similarly, since (a - jb) + (c - d) = (a + c) - (b + d) , the sum 
of two integers <a, b> + <c, d> is defined to be the ordered pair of 
natural numbers <a + c, b + d>, whereas <a, b> - <c, d> may be defined to 
be <a + d, b + c> because (a - b) - (c - d) = (a + d) - (£> + c) . Other 
relations of the integers and operations on them could be constructively 
defined in a similar manner. For more details of such "constructions," 
see Eves 1990, 191ff. 



much an "extension" as a "reduction" in the sense that the 
integers are theoretically dispensable: it is not necessary to 
consider them as something that is distinct from the objects 
and relations in the initial theoretical domain. By the same 
token, if one succeeds in giving constructive definitions to 
all the concepts used in a scientific discipline, this would 
establish that every statement comprising this discipline is 
translatable into a statement about those fundamental objects 
which are specified at the outset of the theory-construction 
and, therefore, that the discipline can be thought of as the 
theory of those objects and their interrelations.40 

§6. But why would one seek to carry out such a reduction? 
As the case of the construction of an arithmetical theory might 
suggest, a primary reason for employing the genetic method is 
usually epistemological or ontological or both. The idea is 
that one begins a theory-construction with an epistemologically 
privileged class of objects as its basis, and that if one 
succeeds in establishing, by means of a stepwise introduction 
through constructive definitions, that all the higher-level 
concepts of a scientific discipline (including those which are 
of an epistemologically problematic nature) are theoretically 
dispensable, i.e., all its statements are translatable into 
statements about the basic objects, then one would thereby 
succeed in establishing the legitimacy and certainty of the 
"knowledge" in question in the sense that the correctness of 
all its (true) statements are, in principle, knowable or 
4 0 In the case of arithmetic, a successful theory-construction in 
accordance with the genetic method would yield what is usually referred to 
as the "arithmetization" of analysis: it would show that arithmetic 
(conceived in the broad sense) can indeed be construed as the theory of 
natural numbers and their interrelations. 
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verifiable. But the fact that the genetic method is usually 
adopted for epistemological purposes also means that its 
application usually comes with the assumption that the theory 
constructed according to this method has a theory-independent 
realm of objects as its subject matter; consequently, the 
fundamental concepts of the theory are defined in reference to 
these theory-independent objects by means of one's pre- or 
extra-theoretical understanding of them; 4 1 the fundamental 
operations are selected and formulated in accordance with the 
nature of the objects and their relations; and the laws of 
operations express general truths about these objects as well 
as about the operations. However, it would seem, then, that 
the genetic method (accompanied by such an assumption) would be 
considered by Hilbert as not suitable for the logical 

construction of a theory for precisely the same reason that he 
rejects traditional axiomatics. 

Yet, provided that Hilbert's objection to the old 
axiomatics is that the assumption built into this method about 
the epistemic character of a theory and its axioms could hinder 
a thorough investigation into the logical structure of a 
scientific knowledge, it might well be argued that the 
objection is not applicable to the genetic method per se, since 
such an assumption is not embedded in the genetic method as a 
procedure of theory-construction. To be sure, the 
relinquishment of the assumption, and thus the elimination of 
extra-theoretical elements from a theory-construction, would 

4 1 This may mean either that the definition involved here is an explicit 
definition, in which the concept(s) are defined by means of (extra-
theoretical) terms whose meaning is already known, or that the objects of 
the theory themselves are "exhibited" as in Hilbert's "concrete-contentual 
number theory," in such a way that the signs themselves constitute the 
theory's subject matter. 



imply that the definition of basic concept(s) must be carried 
out without recourse to any extra-theoretical elements and, 
therefore, that it not be an explicit definition. But the 
"problem" seems surely to be soluble by defining the basic 
terms contextually, i.e. by implicit definition. To take the 
case of arithmetic as an example, instead of beginning the 
theory-construction with an explicit definition of "natural 
number," we might begin by listing a series of operational 
rules such as this:42 

If a and b are natural numbers, then a + b = b + a; 

where the terms "natural numbers" and " + " have no theory-
independent meaning attached to them, and where the logical 
terms "if ... then" and "=" are assigned their normal meanings. 
Thus, these "laws" of operations collectively determine the 
meaning of operational signs, and the so-defined operations, in 
turn, define "natural numbers" as their operational results or 
simply as objects satisfying these operations. Once the 
concept of natural number is defined purely intra-theoretically 
in this manner, theory-construction would proceed by means of a 
stepwise introduction of a "new" concept through explicit or 
constructive definitions. 

It is true that the axiomatic method is employed here in 
contextually defining the basic concept of arithmetic and thus 
providing the starting-point for the theory-construction 
However, unless Hilbert goes as far as to identify the 
4 2 Strictly speaking, these operational "laws" are not sufficient for the 
construction of a theory of natural numbers, and we have to add a few more 
axioms, which include a partially formalized version of the principle of 
mathematical induction. For the complete list of such axioms or 
postulates, see Eves 1990, 184. 



distinction between explicit and implicit definition with that 

between genetic and axiomatic method, there seems to be no 

reason why implicit definition should not be used with the 

genetic method, nor does there seem any reason to conclude that 

the genetic method is not capable of providing an appropriate 

procedure of investigation for what Hilbert calls the logical 

grounding of knowledge, insofar as the relevant metatheoretical 

proofs (e.g., completeness, consistency) are forthcoming.43 

4 3 In connection with Hilbert's aforementioned criticism of the "mistaken" 
procedure often found in the contemporary physicists' theoretical 
investigation, Frege presented the following objection to the stepwise 
introduction of concepts used in the genetic method: 

Indeed, the defect of the genetic method lies precisely in this: 
that the concepts are not ready [fertig]  and are nevertheless used 
in this less than ready and hence not properly usable state, and 
that we never know whether a concept is finally ready. So it 
happens that after a proposition has been proved it becomes false 
again because of the continued development, for the thought 
contained in the proposition becomes a different one. Such changes 
are especially dangerous, for since the wording remains the same, 
one does not even become fully aware of the change. [Frege 1980, 44] 

The concept of "number," for instance, appears to undergo certain changes 
in the theory-construction in accordance with the genetic method: at the 
beginning, "number" means natural numbers, whereas, in the subsequent 
stages of development, it would also mean integers as, say, ordered pairs 
of natural numbers; rational numbers as, say, ordered pairs of integers; 
real numbers as, say, Dedekind cuts in the set of rational numbers and so 
on. Thus, one and the same sign "1," for instance, might designate the 
natural number 1 in one context and the ordered pair <1, 0> in another. 
This fact, however, does not create such a problem as Frege mentions, 
insofar as those members of a newly introduced class which correspond to 
the class constituting the domain of the theory at the immediately 
preceding stage have precisely the same (formal) properties as their 
counterparts. Take the case of integers as an example. Providing that 
all natural numbers, x, are defined as members of the class which have 
the form <x + a, x>, it can be shown that they behave precisely in the 
same manner in every context: that they are isomorphic. 

-55-



Chapter II 
Two Kinds of the Arithmetization of Analysis 

§1. In the first chapter, we saw, among other things, 
that the pursuit of rigor or strictness in the logical 
construction of a theory led Hilbert to oppose the assumption 
of extra-systematic meaning and denotation which traditionally 
accompanies the construction of a scientific theory. The 
characteristic features of Hilbert's axiomatic method are to be 
understood in reference to this circumstance. Even so, the 
scope of Hilbert's remark in the 1900 essay about the 
superiority of the axiomatic over the genetic method for the 
complete logical grounding of our knowledge is not confined to 
this point. In considering Hilbert's intent in that remark, it 
is important to recognize that his early writings on the 
foundations of mathematics were intended to be his solution to 
a dispute between two different methodological standpoints. 
These two standpoints were motivated by two different concerns 
about foundational issues, as well as by the then-recent 
discoveries of the set-theoretical paradoxes. More 
specifically, it remains to be seen that Hilbert's early 
foundational project is directly related to the problem of the 
so-called "arithmetization" of analysis, in response to which 
two radically different attempts were put forward by Dedekind, 
Cantor, and Weierstrass on the one hand and Kronecker on the 
other. Furthermore, while these mathematicians all employed 
the genetic method for the implementation of their desired 
arithmetizations, Hilbert's axiomatic method was meant to 
articulate and develop what he took to be the true core of the 
former approach in opposition to the latter's advocacy of 



"strict arithmetization." Thus, if we are to grasp a proper 
sense of the Problematik, within which Hilbert's discussion of 
the axiomatic and genetic methods is framed, it is all but 
imperative that we first acquire a clear understanding of this 
dispute and its philosophical significance. Accordingly, in 
this chapter, I shall first briefly explain some pointed 
features of the problem of arithmetization of analysis and then 
outline two different kinds of arithmetization put forward by 
Dedekind and Kronecker. When this is done, I will consider how 
these two attempts differ and what explains the difference, 
with a special emphasis on Dedekind's project in his 1872 essay 
Continuity And Irrational Numbers  in order better to understand 
the nature of Hilbert's early foundational investigation. 

The.problem of arithmetizing analysis found its formidable 
contenders through the personal charisma of the great 
nineteenth century number theorist, Dirichlet. Dirichlet, who 
was the successor of Gauss in Gottingen and whose influence on 
then-contemporary mathematicians can be characterized as a 
"spiritual" one,1 was firmly convinced and repeatedly claimed 
that "every theorem of algebra and higher analysis, no matter 
how remote, can be expressed as a theorem about natural 
numbers."2 If we, for the time being, leave aside the question 
of Dirichlet's intent with this claim and focus on the 
technical side, we can see that a first step toward the 
fulfilment of his "demand" had already been taken in the 182 0s, 

when Cauchy succeeded in defining the basic concepts of 
1 Concerning Dirichlet's influence, Howard Stein writes, "it is not too 
much to characterize Dirichlet's influence not only upon those who had 
direct contact with him . . . but upon a later generation of 
mathematicians, as a spiritual one (the German geistig would do better)." 
[Stein 1988, 241] 
2 Dirichlet's remark is reported by Dedekind in the preface to his 1888 
essay. See Dedekind 1888, 792. 



analysis--continuity, differentiability, and series sum--in 
terms of the concept of limit, which itself is formulated in 
the language of algebra, i.e., a general science of 
quantities. 3 

Cauchy's proposal, however, fell short of full 
arithmetization insofar as his theory of limits relied 
ultimately upon an intuitive geometrical notion of the 
continuum or the real number system: the existence of limits 
asserted in its various principles could not be established 
without appeal to the intuitive notion. It seemed, then, that 
what was required to complete the arithmetization of analysis 
was to establish the arithmetizability of the real number 
system itself: that the real number system can be expressed 
solely in terms of the natural numbers, their interrelations, 
and (number theoretic) operations on them.4 This challenge was 
taken up by some of the greatest minds of the day; as a result, 
different but equivalent ways of constructing real numbers were 

3 By this I do not mean to say that Cauchy introduced these definitions in 
order to "arithmetize" analysis. For Cauchy's motive, see Kitcher 1984, 
246-250. Cauchy's definition of "limit" reads: 

When the values successively attributed to the same variable 
approach indefinitely a fixed value, eventually differing from it by 
as little as one could wish, that fixed value is called the limit of 
all the others. [Cauchy 1821, 19, translated in Birkhoff 1973, 2] 

Accordingly, Cauchy's definition of "continuity," for instance, may be 
paraphrased as follows: 

f is continuous on [a, b] if and only if |f(x + h) - f(x)| tends to 0 
as h tends to 0.[Kitcher 1984, 246] 

4 Admittedly, the above is a very crude description of what is 
unquestionably one of the most interesting and important episodes in the 
history of mathematics. For more on the development of analysis, see 
Philip Kitcher's excellent account in Kitcher 1984, 229-71. 
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put forward before the turn of the century.5 

Dedekind, a "student" and colleague of Dirichlet's at the 
University of Gottingen,6 arrived at his definition of real 
numbers in 1858 and published it fourteen years later in the 
little monograph, Continuity and Irrational Numbers.  In it, 
Dedekind says that a real number is defined by (not as)7 a 
separation or a cut {Ai, A2) of the (ordered) set of rational 
numbers into two non-empty subsets, Ai and A2, in such a way 
that (1) every rational number is either in Ai or in A2, (2) 
every element of Ai is less than every element of A2 . As 
Dedekind himself reveals, he arrived at this definition through 
his insight that the essence of our intuitive, geometrical 
understanding of "continuity" is captured in the principle: 
that if all points of a straight line are divided into two 
classes in such a way that every point in the first class lies 
to the left of every point in the second class, then there 
always exists one and only one point of the line which produces 
this separation of the line into the two classes. Assuming the 
correctness of this principle, Dedekind thus tried to carry out 
the desired arithmetization of the notion of the real number by 
"translating" the geometrical statement into what he considered 
to be the language of number theory. He then proceeded to 
5 With regard to this effort, the names of Weierstrass and Cantor, in 
addition to that of Dedekind, must be mentioned. 
6 When in 1855 Dirichlet arrived from Berlin to succeed Gauss's 
professorship in Gottingen, Dedekind, who had become a member of the 
faculty a year before (the year in which Riemann too was habilitated), 
started to attend Dirichlet's lectures in number theory, differential 
equations, and the theory of definite integrals. For more on the 
historical background, see Ewald 1996, 753-54. 
7 According to Dedekind, while a real number can be regarded as 
"completely defined" by a cut, it is not to be identified with a cut 
itself: by means of such a definition, we "create" a "new" number which 
"corresponds to" or "produces" a cut [Dedekind 1872, 773]. I will come 
back to this point shortly. 



define the ordering of the reals as well as operations on them 
in purely arithmetical expressions; finally, he established the 
continuity of the "new domain" of the real numbers and also 
demonstrated, by referring to this new domain only, and thus 
without appealing to intuitive geometrical evidence, some 
fundamental theorems of analysis, which are concerned with the 
existence of limits. 

Now, in connection with Dirichlet's remark about the 
arithmetizability of analysis, two things might be mentioned 
concerning Dedekind's definition of the real number. First, in 
the 1872 essay, Dedekind defined the real number system in 
terms of the rational numbers and simply assumed the 
definability of the latter in terms of the natural numbers. 
Second, and more importantly, in Dedekind's construction of the 
real number system, the notion of what we now call "set," 
together with various set theoretical operations, is employed 
in an essential manner. The question arises, then, whether his 
definition is purely "arithmetical"--whether it might not 
contain an element foreign to arithmetic or the theory of the 
natural numbers.8 Dedekind's reply to the question could be 
found in his other foundational essay, Was  sind und was sollen 

die Zahlen, published sixteen years after Continuity and 

Irrational Numbers.  To put it simply, it was a logicist one: 
that arithmetic is a part of logic, and that the set 
theoretical principles required for the definition of the real 
numbers are available as the laws of logic. 

A proposal for a radically different way of arithmetizing 
analysis was put forward by Kronecker, Dirichlet's student from 
his Berlin period. As we saw above, in view of Cauchy's (both 
8 Dedekind himself considered a cut as a "purely arithmetical phenomenon" 
[eine rein arithmetische Erscheinung]. See Dedekind 1888, 793. 
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explicit and implicit) appeal to the intuitive geometrical 
notion of the continuum in justifying his theory of limits, 
various ways of constructing the real number system were 
proposed; and Dedekind's construction exemplifies one such 
proposal. Kronecker, however, was simply dismissive about all 
these attempts "to grasp and to give foundations to the concept 
of 'irrational' in all its generality" [Kronecker 1886, 156]. 
But, given that, in Dedekind's definition, the real number 
system is constructed from the natural numbers in a purely 
arithmetical fashion, what would be Kronecker's reason for 
dismissing such an attempt altogether?9 To put it simply, his 
reason is that Dedekind's construction, just as other 
"arithmetization" attempts, makes essential use of completed 
infinities or infinite totalities. But why, then, does he 
object to the use of completed infinities in the definition of 
a concept? 

Kronecker's answer to this question is that it might make 
the concept undecidable. That is, once completed infinities 
are employed in the definition of a concept, there might be no 
effective method for telling whether a given object falls under 
the concept so defined. In the Dedekindian definition, a real 
number is defined by a cut of rationals, or equivalently by a 
"left set," i.e., one of the two infinite (sub) sets of 
rationals generated by the cut. It would seem, then, that, in 
general, there is no effective method for deciding whether a 
given object falls under the concept of real number so defined-

9 In this connection, the following episode might be indicative of 
Kronecker's attitude toward Dedekind's attempt: when in 1880 Kronecker 
nominated Dedekind for membership in the Berlin Academy, he submitted a 
report which described Dedekind's work in detail, but did not bother to 
mention the latter's Continuity and Irrational Numbers.  For more on this, 
see Ewald 1996, 942. 



-whether an infinite set of rationals has all the properties 

listed in the definition.10 

Accordingly, Kronecker maintained that the arithmetization 
of analysis must be effected without involving undecidable 
concept-formations and hence without the use of completed 
infinities.11 Furthermore, as the following passage from the 
1887 essay "On the Concept of Number" clearly indicates, it was 
his contention that such a "strict" arithmetization of analysis 
was not only theoretically necessary but also technically 
realizable: 

... The word 'arithmetic' is here not to be understood in 
the usual restricted sense, but rather as including all 
mathematical disciplines with the exception of geometry 
and mechanics--especially, therefore, algebra and 
analysis. And I also believe that we shall one day 
succeed in 'arithmetizing' the entire content of all these 
mathematical disciplines--that is, in grounding them 
solely on the number-concept taken in its narrowest sense, 
and thus in casting off the modification and extensions of 
this concept, which were mostly occasioned by the 
application to geometry and mechanics. [Kronecker 1887, 
949 ] 1 2 

In particular, in the 1887 essay, he provided an effective 
method for constructing from the natural numbers, the integers, 
1 0 Similarly, Kronecker objected to Weierstrass's definition of the 
irrational numbers on the ground that there is no decision procedure for 
telling whether an infinite set characterizing a sequence defines an 
irrational or not. See Webb 1980, 73 and Mancosu 1998, 155. In this 
connection, Kronecker's rejection of the Cantorian set-theoretical 
mathematics and the applications deriving from it is also often mentioned, 
while the "myth" of his personal attack on Cantor has recently been 
questioned by Edwards. See Edwards 1995. 
1 1 As for the reason why Kronecker considers undecidable concepts to be 
inadmissible, see below. 
1 2 In a footnote attached to the above passage, Kronecker remarks that, by 
"the modifications and extensions of this concept," he means "especially 
the addition of irrational and continuous quantities" [Kronecker 1887, 
949] . 



rationals, and algebraic reals,13 on the basis of which (at 
least parts of) analysis could be re-obtained.14 Even so, at 
the time of the publication of his Lectures on the Theory  of 

Numbers  in 1901, full continuity seems to have remained beyond 
the reach of his strict arithmetization program, as he writes 
in the introductory chapter that "from the entire domain of 
this branch of mathematics [i.e. analysis], only the concept of 
limit or bound has thus far remained alien to number theory" 
[Kronecker 1901, vol.1, 4-5].15 

§2. Now, given that what essentially distinguishes 
Kronecker's arithmetization of analysis from Dedekind's (and 
others') is its insistence on the decidability of the concepts 
employed in the attempt, and that this methodological 
restriction is precisely what makes the desired goal of 
arithmetization much more difficult, if not impossible, for 

1 3 An algebraic number is any number x, real or complex, that satisfies 
some algebraic equation of the form: 

anxn + an-ix"-1 + ... a±x + ao = 0 (n > 1, an * 0) 

where the a^ are integers. For example V2 is an algebraic (real) number, 
since it satisfies the equation: 

x2 -2 = 0. 

See Courant & Robbins 1941, 103. 
1 4 As has been pointed out by some commentators, Kronecker's program has 
recently been "revived" in spirit in the investigation in Reverse 
Mathematics: they have shown that a good deal of analysis and algebra can 
be done in conservative extensions of primitive recursive arithmetic. See 
Sieg 1990 and Marion 1995. 
1 5 Translated and quoted in Stein 1988, 257. Stein offers a stronger 
reading of the passage; according to him, the last phrase "the concept of 
limit . . . has remained alien to number theory" must be taken "to mean 
irreducible to the finitary  theory of the natural numbers--which 
reducibility is what Kronecker's constructive program aimed at" [ibid., 
257-58] . 



Kronecker, we naturally wonder why he is so emphatic about 

imposing this condition.16 In addition, we are not alone in 
wondering about Kronecker's motive. Dedekind, who was made 
aware, in a different context,17 of Kronecker's criticism 
against his methodological procedure, decided to reply to it in 
the 1888 essay. According to Dedekind, in setting a veto on 
the use of undecidable concepts, "Kronecker ... has endeavoured 
to impose certain limitations upon the free formation of 
concepts in mathematics which I do not believe to be justified" 
[Dedekind 1888, 797] . A concept, thinks Dedekind, is 
"completely determined" when it is determined whether an object 
does or does not fall under it.18 Moreover, for him, whether an 
object does or does not fall under a concept is determined 
independently of our knowledge. That is, it is a matter of 
indifference for this determination in what manner it is 
brought about, and whether we are in possession of a procedure 
for deciding upon it. It would follow that, in Dedekind's 
view, a concept could be completely determined whether or not 
there is such a decision procedure available to us: the 
absence of the decision procedure has no bearing upon whether a 
concept is completely determined or not. He thus cannot agree 
1 6 It is to be noted that Kronecker arrived at this view before  the 
"discovery" of set-theoretic paradoxes. 
1 7 In his 1886 essay "Uber einige Anwendungen der Modulsysteme auf 
elementare algebraische Fragen," Kronecker criticized Dedekind's 
introduction of the concepts of "module," "ideal," etc. for their 
undecidability. Incidentally, it is also on this occasion that Kronecker 
expressed his. disagreement with "the introduction of various new concepts, 
which have been used in many recent attempts (first of all by Heine) to 
grasp and to give foundations to the concept of 'irrational' in all its 
generality" [Kronecker 1886, 156, translated and quoted in Marion 1995, 
192], See also Stein 1988, 251. 
1 8 In the 1888 essay, a "system," instead of a concept, is used to make 
this point: a system or a set S is "completely determined when, for every 
thing, it is determined whether it is an element of S or not" [Dedekind 
1888, 797]. 



with Kronecker that a concept must be decidable. What is 
crucial in mathematics, according to Dedekind's methodological 
standpoint, is the determinacy, not the decidability, of a 
concept.19 

Given Dedekind's emphasis on the independence of 
mathematical "state of affairs" from decidability, it might 
seem that what is at stake here between the two is the ontology 

of mathematical objects: Dedekind, a supporter of realism or 
Platonism, thinks that the objects of mathematics exist 
independently of the mathematician, whereas Kronecker, an 
advocate of a sort of idealism, holds that what exists in 
mathematics is what can be constructed by the mathematician and 
only that.20 The discrepancy between such an interpretation and 
the text, however, seems quite apparent when, for instance, it 
is noticed that the alleged "Platonist" proclaims in the 
preface to his 1888 essay that "numbers are free creations of 
the human mind" [Dedekind 1888, 791]; whereas the "quasi-
idealist" seems to affirm the mind-independent existence, at 
least, of the natural numbers in his famous aphorism that "God 
created the integers; everything else is the work of man."21 

What then explains the difference in the two 
mathematicians' attitudes toward the method of concept-
formation and of the arithmetization of analysis? In the case 
1 9 This, however, does not mean that Dedekind sees no further requirements 
for concept-formations in mathematics. For more on this, see below. 
2 0 Ewald, for instance, seems to suggest that it is Kronecker's "strong 
opinions about mathematical ontology" that is the ultimate source of his 
intolerance for completed infinite collections and for non-constructive 
definitions. See [Ewald 1996, 942], 
2 1 Incidentally, these words do not appear anywhere in Kronecker's 
published writing. Its first occurrence in print is believed to be 
Heinrich Weber's obituary of the former published in 1893, according to 
which the remark in question was made by Kronecker in a lecture to the 
Berlin Naturforscher Versammlung in 1886. 
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of Kronecker, the answer seems to lie in his concern for the 
epistemological status of arithmetic in the broad sense. 
Immediately after the above quotation from the 1887 essay, 
where Kronecker expresses his hope for a strict arithmetization 
of analysis, we find him conclude the preface with the 
following remark: 

The difference in principle between geometry and mechanics 
on the one hand and the remaining mathematical disciplines 
(here gathered together under the term 'arithmetic') on 
the other is, according to Gauss, that the object of the 
latter, number, is merely our mind's product, while space 
as well as time also have outside of our mind a reality, 
whose law we cannot completely prescribe a priori. 
[Kronecker 1887, 949, emphasis in original]22 

As the footnote attached by Kronecker to this passage might 
indicate, what he presents here seems, on the surface, to be 
nothing more than a brief description of Gauss's view of 
mathematics, which was also the standard one among his 
contemporaries. However, a careful reading of the text would 
make us realize that it is much more than just a customary 
salute, as it were, toward his great predecessor: rather, it 
expresses a wholehearted aspiration on Kronecker's part to 
complete a task bequeathed by Gauss. More specifically, in 
explicitly classifying analysis (and algebra) under the title 

2 2 In a footnote, Kronecker quotes from Gauss's letter to Bessel of 9 
April 1830, which reads: 

It is my deepest conviction that the theory of space has a 
completely different position in our a priori knowledge than does 
the pure theory of quantity. Our knowledge of the former utterly 
lacks the complete conviction of necessity (and also of absolute 
truth) that belongs to the latter; we must in humility grant that, 
although number is merely the product of our mind, space also 
possesses a reality outside of our mind, and that we cannot entirely 
prescribe its laws a priori. [(Quoted in) Kronecker 1887, 949] 
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of arithmetic and, at the same time, emphasizing the a priori 

character of arithmetic so considered (or at least by 
contrasting it to the a posteriori nature of geometry and 
mechanics), Kronecker is revealing his intention of providing a 
solution to an epistemological problem through the mathematical 
discussions developed in the subsequent sections of the essay. 
In a nutshell, his attempt to achieve strict arithmetization is 
designed to achieve the epistemological "grounding" of 
analysis. 

For many mathematicians in the nineteenth century 
(including Gauss), the "discoveries" of (consistent) non-
Euclidean geometries meant two things: first, geometrical 
propositions do not express necessary truths; second, their 
objective validity cannot be known or justified independently 
of experience. Some concluded from this that the (then) 
predominant Kantian doctrine of the pure intuition of space and 
time, which was supposed to account precisely for the (non-
logical) necessity and aprioricity of geometrical truths, was 
mistaken and should, accordingly, be abandoned. This chain of 
events, however, put the epistemological status of analysis in 
limbo. As Cauchy showed, various basic concepts of analysis 
are definable in terms of the limit-concept, and this latter 
presupposed full continuity. But once the Kantian notion of 
the pure intuition of the continuum is rejected,23 it would 
appear that the notion of continuity, which is essential to 
analysis, must come from perceptual intuition, as it seems 

2 3 See Friedman 1992, 71-80 for how Kant tried to "ground" analysis 
through his theory of construction in pure intuition. The calculus was 
traditionally considered as an extension of algebra, i.e., a general 
science of quantities: accordingly, Euler, for instance, rejected geometry 
as a basis for the calculus and tried to base it on arithmetic and 
algebra. For the historical background, see Kline 1980. 
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indeed to be the case with Cauchy's foundational studies, and 
therefore that analysis has an empirical, a posteriori element, 
just as geometry does. 

Kronecker could not tolerate such a consequence. In his 
view, analysis, while it originated from geometry, "has been 
developed independently on its own ground," and cannot be 
demarcated from arithmetic as the theory of the natural numbers 
[Kronecker 1901, vol.1, 5].24 Moreover, it is his (and Gauss's) 
invariable position that we have direct epistemic access to the 
objects of arithmetic and are capable entirely of prescribing 
its laws independently of experience. Thus, Kronecker attempts 
to establish the a prioricity and "absolute truth" of analysis 
by constructing it from arithmetic in the strict sense: with 
an epistemologically privileged class of objects as its basis, 
he attempts, by means of a stepwise introduction through 
constructive definitions, to show that all the higher-level 
concepts of analysis are theoretically dispensable, and hence 
that all the statements of analysis are translatable into those 
of number-theory, whose correctness is, in principle, knowable 
a priori. Now, in view of the epistemological nature of 
Kronecker's project, it is quite understandable why he opposes 
the use of completed infinities and undecidable concepts in 
general in the arithmetization of analysis. To quote Hilbert, 
the use of such a concept "makes statements possible whose 
correctness is not decidable in a finite number of operations" 
[Hilbert 1920b, 944]. In other words, Kronecker cannot accept 
the use of undecidable concepts because it makes the truth of 

2 4 Quoted and translated in Stein 1988, 243. 
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mathematical knowledge unverifiable. 2 5 

§3. Dedekind did not consider the main objective of his 
foundational investigations to be epistemological (at least in 
the sense of Kronecker). This much seems certain given the 
fact that he thought it quite unnecessary and, in fact, 
mistaken to impose, as Kronecker does, the restriction upon the 
concept-formation with regard to its decidability. But, on the 
other hand, it seems also to be the case that Dedekind, like 
Kronecker, engages in some sort of "reductionist" project when 
he attempts to characterize the real number system in the 
language of arithmetic in the celebrated Continuity and 

Irrational Numbers.  In the preface to the first edition of his 
second foundational essay published sixteen years later, he 
describes his earlier project as follows: 

In my earlier memoir on continuity (1872) I have already 
shown (at any rate for the example of irrational numbers) 
how the step-by-step extension of the number-concept is 

2 5 An objection to the philosophical or epistemological interpretation of 
Kronecker's writings has recently been put forward by Mathieu Marion. 
According to Marion, Kronecker's lack of interest in philosophical or 
foundational questions should indicate that "his foundational stance was 
not dictated by some kind of misplaced philosophical thesis" [Marion 1995, 
206] . Rather, the kernel of his polemic lies in his emphasis on the 
"algorithmic aspects of mathematics" as opposed to the non-algorithmic or 
"descriptivist" style exemplified in Dedekind's, or more recently in 
Bourbaki's approach. Marion's interpretation gives a coherent, unitary 
picture to sundry aspects of Kronecker's mathematical works and deserves a 
careful consideration. However, I will not do so here since my goal is to 
delineate the Kronecker/Dedekind dispute in order better to understand 
what is behind Hilbert's early foundational investigations and also to 
provide a "rational construction" of Hilbert's  view of this controversy. 
As I shall argue later, and as the above quotation seems to indicate, 
Hilbert did think that Kronecker conceived and constructed his program 
essentially from the epistemological perspective. Moreover, it seems to 
me that even if Marion is correct in emphasizing the "algorithmist" style 
of Kronecker's standpoint, the question still remains why Kronecker 
insists on this. The reason seems to lie in his philosophical and 
epistemological concern for aprioricity and certainty. 
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subsequently to be carried out--the creation of zero, of 
the negative, rational, irrational, and complex numbers--
always by a reduction to earlier concepts, and indeed 
without any introduction of foreign concepts ....[Dedekind 
1888, 792] 

The obvious exegetical problem for us here is what, if not an 
epistemological endeavour, is the point of such a "reduction" 
for Dedekind. Indeed, this question becomes even more pressing 
when we realize that he recognizes no general methodological 
value or need in a reduction as such: 

I see nothing meritorious--and this was just as far from 
Dirichlet's thought 2 6--in actually performing this 
wearisome circumlocution and insisting on the use and 
recognition of no other than natural numbers, [ibid., 792] 

It would seem then that a successful interpretation of 
Dedekind's enterprise in the 1872 essay must be able to account 
for two things: first, its goal is not epistemological in the 
sense of justifying the truth and certainty of analysis; 
second, while Dedekind seems to employ reduction as a means to 
achieve this goal, he does not attach any general significance 
to reductionism as such. 

In considering these points, I would like to begin by 
examining Dirichlet's claim about the arithmetization of 
analysis: "every theorem of algebra and higher analysis, no 
matter how remote, can be expressed as a theorem about natural 
numbers." Although the emphasis here is laid upon the 
reducibility of algebra and analysis to arithmetic, the claim 
can be taken to contain another sub-thesis, which is logically 

2 6 Dedekind's report of Dirichlet's remark about the arithmetization of 
analysis occurs between the above quotation and this one. 
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independent of the reductionist one. That is, in claiming that 
theorems of analysis are theorems of number-theory, I think 
Dirichlet is also implying that analytical theorems can be 
demonstrated in "gap-free" proofs. To be sure, in Dedekind's 
formulation of Dirichlet's claim, analytical theorems are said 
to be deducible from arithmetical ones, but the demand for gap-
free proofs does not in itself involve their reduction to 
arithmetical ones. Conversely, the expressibility of 
analytical statements in the language of arithmetic does not in 
itself call for their demonstration in gap-free proofs. In 
typical accounts of the development of analysis in the 
nineteenth century, the terms "arithmetization" and 
"rigorization" and their cognates are often used virtually 
interchangeably, as was the case in the works of the analysts 
themselves. Despite such a common practice, however, it is 
important to see that the demands for these two ideals do not 
imply each other and can be carried out independently. In 
fact, among the mathematicians of Dedekind's day were some 
exceptions who were aware of these points and who emphasized 
the importance of the distinction. 

Here I quote a passage from the lecture Felix Klein 
delivered to the Royal Academy of Sciences of Gottingen in 
1895, which was entitled "Uber  Arithmetisierung  der 

Mathematik"  : 

. . . since I consider that the essential point [of the 
arithmetizing of mathematics] is not the mere putting of 
the argument into the arithmetical form, but the more 
rigid logic obtained by means of this form, it seems to me 
desirable ... to subject the remaining divisions of 
mathematics to a fresh investigation based on the 
arithmetical foundation of analysis. [Klein 1895, 967] 



Klein here clearly recognizes that what has been brought about 
by the recent attempts of arithmetizing analysis can be 
separated into two components--"putting of the argument into 
the arithmetical form" and "the . . . rigid logic obtained by 
this form"--and that the latter moment is applicable to the 
fields which do not deal with numbers in the strict sense. To 
be sure, Klein here seems to be saying that such a "rigid 
logic" is to be obtained upon "the arithmetical foundation of 
analysis" and hence that rigorization requires  a translation 
into, or reduction to, arithmetic. But, when actually 
discussing the execution of rigorization in the domain of 
geometry, he explains that 

... this might very well be done, as it was originally, on 
purely geometrical lines; but in practice on account of 
the overwhelming complications that present themselves, 
recourse must be had to the processes of analysis, that is 
to the methods of analytical geometry. [Ibid., 967] 

In other words, on Klein's view, it is not in the logical, but 
merely in the practical, sense that a translation into the 
language of arithmetic is required for the rigorization of 
geometry.27 

If we now go back to Dedekind's project in the 1872 essay, 
we also notice that while there Dedekind attempts to 
characterize the concept of the real number in the language of 
2 7 As we shall see in the next chapter, Hilbert vigorously argued for the 
possibility and necessity of rigorization in the fields of geometry and 
other non-arithmetical (and non-mathematical) disciplines. Incidentally, 
Hilbert was offered a professorship at the University of Gottingen in 1895 
(due partially to a strong recommendation from Klein) and was there by the 
March of the same year. Since Klein's lecture was delivered on 2 November 
1895, it is most probable that Hilbert heard the lecture. For more on 
Hilbert's appointment at Gottingen, see Reid 1996, 45ff. 

-74-



arithmetic and, consequently, opens a way to reducing analysis 
to the theory of numbers, he does not consider such a reduction 
or arithmetization itself to be the main objective of his 
project. His primary goal there, rather, is to rigorize 
analysis, and arithmetization is used as a means for 
rigorization. This point is made quite clear at the very 
beginning of the essay, where he relates to the reader the 
course of events and the train of thought that led him to the 
foundational issues: 

The considerations which form the subject of this pamphlet 
date from the autumn of 1858. I was then professor in the 
Polytechnic School in Zurich, and I found myself for the 
first time obliged to lecture upon the elements of the 
differential calculus; I felt more keenly than ever before 
the lack of a truly scientific foundation for arithmetic. 
In discussing the concept of the approach of a variable 
magnitude to a fixed limiting value--in particular, in 
proving the theorem that every magnitude which grows 
continually, but not beyond all limits, must certainly 
approach a limiting value--I took refuge in geometrical 
evidence. Even now I regard such invocation of geometric 
intuition [Anschauung] in a first presentation of the 
differential calculus as exceedingly useful from a 
pedagogic standpoint, and indeed it is indispensable, if 
one does not wish to lose too much time. But no one will 
deny that this form of introduction into the differential 
calculus can make no claim to being scientific. For 
myself this feeling of dissatisfaction was so overpowering 
that I resolved to meditate on the question until I should 
find a purely arithmetical and perfectly rigorous 
foundation [Begrtindung] for the principles of 
infinitesimal analysis. [Dedekind 1888, 767]28 

Here Dedekind talks, in general terms, of the lack of a "truly 
scientific" foundation for arithmetic and of the need to 
replace the customary appeal to geometrical intuition with a 

28 Note the similarity in tone between this passage and Hilbert's 1900 
paper, in which he emphasizes the preferability of the axiomatic over the 
genetic method for the complete logical grounding of our knowledge. 



"purely arithmetical" and "perfectly rigorous" grounding of 
this discipline. But in order better to understand his point 
in the passage, special attention must be paid to the remark 
that, in proving a certain fundamental theorem of analysis, he 
took refuge in geometrical evidence, but that such a procedure 
can in no way be considered "scientific." With regard to 
Dedekind's meaning of "scientific," we can find a similar use 
of the term in the opening remark of the 1888 essay: 

In science nothing capable of proof ought to be believed 
without proof. [Dedekind 1888, 790]29 

In a "scientific" theory, or in the construction of one, no 
proposition that can be inferentially justified should be 
accepted unless it is given a proof. It would seem, then, that 
the overpowering feeling of dissatisfaction which drove 
Dedekind to foundational investigations stemmed from the fact 
that he had to accept a proposition which is capable of proof 

on the basis of geometrical evidence rather than proof. To 
amend such an "unscientific" state of analysis, he set himself 
the task of finding a foundation from which the fundamental 

29 Dedekind continues the passage with the following words: 

Though this demand seems reasonable, I cannot regard it as having 
been met even in the most recent methods of laying the foundations 
of the simplest science; viz., that part of logic which deals with 
the theory of numbers. 

What is of interest for our purpose is the fact that, in a footnote 
attached to this passage, Dedekind cites as examples of recent works on 
the topic Kronecker's 1887 essay, along with Helmholtz's 1887 essay on 
counting and measuring and E. Schroder's Lehrbuch der Arithmetik und 
Algebra (1873), and writes that "the appearance of these memoirs has 
induced me to publish my own views" [Dedekind 1888, 790]. In other words, 
Dedekind sees these works as lacking in rigor in the sense that they 
accept what is capable of proof unproved. I shall come back to this point 
in connection with Hilbert's criticism of Kronecker. 
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theorems of analysis can be proved. Thus, when he later 
actually embarks on the project, he describes his task in the 
following terms: 

the problem is to indicate a precise characteristic of 
continuity that can serve as the basis for  valid 
deductions. [Dedekind 1872, 771, my emphasis] 

In other words, it is important for Dedekind not so much to 
capture the notion of continuity in a vocabulary of arithmetic 
as to characterize it in such a way that the fundamental 
theorems of analysis could be deduced from it. Such a 
characterization, once found, would provide a "truly 
scientific" and "perfectly rigorous"  foundation for analysis 
because it would make valid deductions possible: those 
fundamental theorems of analysis, which previously had to be 
accepted without proof, would be given an inferential 
justification in a "gap-free" proof. 

This point can be further elaborated against the 
background of the technical issues involved. As we saw above, 
in the preface to the 1872 essay, Dedekind refers specifically 
to a theorem of analysis: that if a magnitude grows continually 
but not beyond all its limits, then it approaches a limiting 
value. This theorem, or any one equivalent to it, he writes 
later, can form "a more or less sufficient foundation for 
infinitesimal analysis" [Dedekind 1888, 767]; accordingly, it, 
together with other limit existence theorems Cauchy 
accentuated, plays a crucial part in the development of this 
discipline. What is to be recognized here is that, by the mid 
nineteenth century, i.e., by the time of Dedekind's composition 
of Continuity and Irrational Numbers,  precisely these 

-77-



fundamental theorems of analysis came to appear as problematic 
to the eyes of mathematicians. I said earlier that Cauchy's 
attempt in the 1820s to formulate the basic concepts of 
analysis in terms of the algebraic (quantitative) notion of 
limit marked a first step toward the arithmetization of 
analysis. Even so, it fell short of full arithmetization 
because, for some reason, Cauchy did not try to establish 
theses about convergence, continuity, and differentiability (to 
wit, theorems asserting the existence of limits) in a rigorous 
manner. Instead he implicitly and explicitly appealed to 
geometrical evidence for their acceptance. 3 0 Initially, 
Cauchy's eclectic, unrigorous procedure was considered 
acceptable because of the presumed isomorphism between analytic 
(algebraic or quantitative) and intuitive (geometrical) notion 
of continuity; in fact, the applicability of these theorems to 
the intuitive domain was thought to confirm the correctness of 
Cauchy's algebraically formulated principles. But as the 
research progressed, the disparity between the two became more 
and more conspicuous, and "mathematicians became more wary of 
the traditional geometrical reasonings to which Cauchy had 
helped himself when the algebra became difficult" [Kitcher 
1984, 262]. Consequently, there arose amongst mathematicians 
3 0 For instance, Cauchy "proves" the Intermediate Zero Theorem by 
appealing to a geometrical representation of a continuous curve. His 
"proof" begins with the assumption that a continuous function f can be 
represented by a continuous curve. Given that f ( a) < 0 < f(b), 
geometrical considerations show that there is a c such that a < c < b and 
f(c) = 0 : a continuous curve must cross the axis between a and b. This 
argument is fallacious for the content of Cauchy's algebraically defined 
notion of continuity cannot be exhausted by the geometrical representation 
of continuous curves: there are functions satisfying Cauchy's criterion 
for continuity which cannot be represented by continuous curves. This 
point can be clearly shown, for instance, by the existence of everywhere 
continuous nowhere differentiable functions, the first example of which 
was given by Bolzano in 1834 and which were later made famous by 
Weierstrass's investigation in 1872 [Boyer 1949, 269-270]. 
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the demands for the rigorization of analysis and, in 
particular, for the "gap-free" proof of the limit existence 
theorems. 31 

Dedekind's attempt in the 1872 essay was designed to do 
just this, to prove the fundamental theorems of analysis in a 
rigorous manner. 32 And his solution to this problem? To put it 
simply, he found his solution when he hit upon the idea that 
the desired basis for valid deductions is a "purely 
arithmetical" foundation. More specifically, he tried to solve 
the problem by characterizing the notion of the real numbers in 
such a manner that there are real numbers satisfying the 
conditions laid down in those limit existence theorems. What 
is to be noticed here, however, is this: his primary goal 
being to provide a gap-free proof for the fundamental theorems 
of analysis, he could as well have argued for a non-
arithmetical basis.33 To put this point in a modern manner, 
the adoption of arithmetic as the linguistic framework for the 
rigorization of analysis, and indeed the translation of its 
sentences into any other language, is not implied by the nature 
of his task, and that this explains his negative attitude 
toward reductionism in general. 

§4. Against this interpretation, however, it might be 
argued that while not being motivated by epistemological 
31 Thus, when Dedekind talks, in the preface to the 1872 essay, of the 
feeling of dissatisfaction over his inability to establish the fundamental 
theorems of analysis, it could well be seen as representing the general 
atmosphere surrounding the mathematical community of the time. 
32 it is therefore no mere accident that Dedekind ends the 1872 essay with 
the attempted proofs for the limit existence theorem mentioned in the 
preface and another one equivalent to it. This point is duly observed in 
Kitcher 1984, 263. 
33 As Kitcher points out, Bolzano, for instance, argued for an algebraic 
version of analysis [Kitcher 1984, 263-264] . 

-79-



concerns in the exalted sense of Kronecker, Dedekind has a 
different reason to wish to carry out a reduction of analysis 
to arithmetic. More specifically, it might be said that what 
he is after in the 1872 essay is to establish the uniformity  of 
analysis and arithmetic. For him, analysis is a form of 
knowledge which is concerned with numbers and constitutes a 
part of arithmetic, the science of numbers. This fact, 
however, is obscured by the presence of non-arithmetical, non-
numerical notions such as extensive quantity in the foundations 
of analysis. As a result, it might even be thought that 
analysis depends upon a type of knowledge other than 
arithmetic. Thus, Dedekind attempts to establish the 
monolithic nature of analysis and arithmetic by translating the 
heterogeneous mixture of analytic vocabulary uniformly into the 
language of number. Indeed, the fact that Dedekind sees a 
certain special connection holding between the two disciplines 
is quite apparent. After remarking on the foundational 
character of the limit existence theorem cited in the preface 
for the other propositions of analysis, Dedekind writes that 
his goal is "to discover its true origin in the elements of 

arithmetic" [Dedekind 1872, 767, my emphasis]. Furthermore, as 
can be seen in the following passage in the third section of 
the 1872 essay, Dedekind appears at least occasionally to 
affirm the necessity of arithmetization (i.e., the reduction of 
analysis to arithmetic) while stressing the uniformity of the 
two disciplines: 

It may in a general way be granted that such comparisons 
with non-arithmetical notions have furnished the immediate 
occasion for the extensions of the number-concept ... ; 
but this is certainly no reason for introducing these 
foreign notions into arithmetic itself, the science of 
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numbers. Just as negative and fractional rational numbers 
are formed by a free creation, and just as the laws of 
operating with these numbers must and can be reduced to 
the laws of operating with positive integers, so we must 
strive to give  a complete definition  of the irrational 
numbers using the rational numbers alone. [Dedekind 1872, 
771, my emphasis] 

Despite such an appearance, however, I think it is a 
mistake to claim along the lines of the above interpretation 
that, by reducing analytical to arithmetical propositions, 
Dedekind wants to show that analysis, as a part of arithmetic, 
has numbers as its proper objects, and that for him the 
reduction must, therefore, be to arithmetic. First and 
foremost, as we just saw, on this account the reduction of 
analysis to arithmetic would be necessary for the realization 
of Dedekind's goal. But if this were really the case, it would 
mean that, in denying the methodological importance of a 
reduction elsewhere, Dedekind is confused about his own 
standpoint. 

Second, it is to be noted that Dedekind, unlike Kronecker, 
never states in unambiguous terms that the proper object of 
analysis is numbers in the strict sense. This would be rather 
a strange thing if his primary goal were to establish that 
analysis deals with numbers. From antiquity (e.g., Aristotle, 
Euclid) through the late eighteen and early nineteenth 
centuries (e.g., Kant, Gauss), it was commonly thought that 
there are two distinct kinds of "quantity"--the discrete and 
continuous--and that they are mathematically represented by the 

theories of number and of continuous magnitude respectively.34 

In fact, even at the time of Dedekind's composition of the 
essay on continuity, it was still a prevalent view that 
3 4 Stein 1988, 242. 



analysis is concerned with continuous magnitude.35 Thus, if 
Dedekind thinks that number is the authentic object of analysis 
and wanted to demonstrate this fact, the 1872 essay would be 
the place to express this against the prevalent view of the 
time. Certainly, he is opposed to the introduction of non-
arithmetical notions such as extensive quantity into analysis 
and does not hesitate to make this known. In the preface to 
the 1888 essay, he states that "I wholly reject the 
introduction of measurable quantities,"36 and refers the reader 
to the third section of the 1872 essay, where, he says, some 
reasons for this rejection are advanced. It turns out, 
however, that his criticism of non-arithmetical notions put 
forward there is not directed toward the foundational view held 
by many then contemporary mathematicians, namely that analysis 
deals with continuous magnitude. If, as the proposed account 
claims, his goal was to establish that analysis is concerned 
with numbers, the introduction of non-arithmetical notions 
would be rejected for the reason that these notions do not 
pertain to numbers and thus fall within "foreign" disciplines.37 

Third, it is to be recalled that, in presenting his 
(arithmetico-set-theoretical) characterization of the real 
numbers, Dedekind emphasized that while a real number is 
completely defined by a "cut," it is not to be identified with 
the cut itself. Rather, according to him, by means of such a 

3 5 In the preface to the 1872 essay, Dedekind writes, "[t]he statement is 
frequently made that the differential calculus deals with continuous 
quantities, yet an explanation of this continuity is nowhere given" 
[Dedekind 1872, 767]. 
3 6 See Dedekind 1888, 793. Dedekind's statement in the 1888 essay was a 
response to Dini's remark to the effect that the former's theory of the 
real numbers rests upon the notion of measurable quantity. 
3 7 I shall consider Dedekind's criticism against the introduction of non-
arithmetical concepts in more detail later. 
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definition, we "create" a "new" number which corresponds to, or 
produces, a cut [Dedekind 1872, 773] . This talk of "creation," 
however, would be quite unintelligible if Dedekind's primary 
goal were to show that the proper objects of analysis are (the 
natural) numbers, insofar as such newly "created" real numbers 
would be (ontologically) distinct from the natural numbers.38 

§ 5 . But how then can we understand these aspects of 
Dedekind's foundational view which are inexplicable in terms of 
reductionism? In my opinion, these points can only be given a 
satisfactory account when we recognize that Dedekind's primary 
goal is not reduction, but rather rigorization. Let us first 
consider his rejection of the introduction of non-arithmetical 
notions into a scientific construction of analysis. As we just 
saw, Dedekind's discussion turns to the issue of "foreign" 
elements in the context where he comments on the (then) 
customary expositions of analysis. Correspondingly, his 
criticism against the introduction of non-arithmetical elements 
is framed in terms of the notion of extensive or measurable 
quantities, which is often employed in such expositions.39 More 
specif ically, in them, the concept of the real number is 
defined, with a direct reference to the (intuitive) notion of 

3 8 Apparently, the same point applies to the other types of numbers. In 
the above quotation, Dedekind says that while the calculational rules for 
negative and rational numbers are "reduced" to those for positive 
integers, negative and rational numbers themselves are "formed by a free 
creation." And thus, it would seem that they are thought to be distinct 
from positive integers. For more on this, see below. 
3 9 Thus, in §3 of the 1872 essay, after having described the customary 
characterization of the irrational numbers in terms of "the conception of 
extensive magnitudes," he immediately continues that "... such comparisons 
with non-arithmetical notions have furnished the immediate occasion for 
the extension of the number-concept ... but this is certainly no reason 
for introducing these foreign  notions into arithmetic itself, the science 
of numbers [Dedekind 1872, 771, my emphasis]. 
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extensive quantity, as the ratio of two such quantities of the 
same kind. Apparently, the idea behind this definition is that 
every number, including those which cannot be represented as 
ratios of whole numbers, is representable as a ratio between 
similar quantities, e.g., line segments, planes, volumes, etc., 
which, presumably, have the property of continuity. In other 
words, this definition attempts to "construct" the continuous 
number-domain by means of something continuous (without clearly 
explaining wherein this continuity consists). In so doing, it 
is committed to two tacit assumptions: 1) that extensive 
quantities exist (or we possess intuitive representations of 
them); 2) that they are continuous. 

As Dedekind sees it, the problem, however, is that, 
granting the real existence of such quantities (or of their 
representations in us), there is no guarantee that they are, in 
fact, continuous. To illustrate this, he chooses particularly 
to consider (the representation of) space, which is commonly 
thought inconceivable to be anything else than continuous. His 
argument is simple and right to the point. Contrary to the 
common belief in the full continuity of space, all that we know 
of space through Euclidean geometry does not entail its 
continuity: it is logically possible that the theorems of 
Euclidean geometry be all true; and space be discontinuous.40 

To put it in modern terms, Dedekind presents here an informal 
proof to the effect that Euclidean geometry has a model in 
which all ratios of length of straight segments are algebraic 

4 0 It appears, then, that, for Dedekind, Euclidean geometry is the science 
of space. 



numbers.41 Now, given that this argument succeeds in showing 
that extensive quantity (or its intuitive representation) might 
lack the property of continuity, it would follow that the 
proposed definition of the real numbers might also lack the 
relevant properties. This definition, as we saw, draws 
directly on the presumed continuity of such quantity. Thus, if 
extensive quantity fails to be continuous, then the domain 
consisting of the real numbers so defined would also fail to be 
continuous. 

But why does Dedekind think that such a failure 
constitutes a ground for rejecting the introduction of the 
notion of extensive quantity? To answer this, we have only to 
recall how Dedekind has come to what is understood here by the 
notion or the principle of continuity: Dedekind formulated it 
precisely in such a manner that it "can serve as the basis for 
valid deductions" of the fundamental theorems of analysis 
(asserting the existence of limits). Thus, to fail to provide 
a number-domain possessing the property of continuity, in his 
view, is to fail to provide such a deductive basis. Insofar as 
Dedekind's primary goal in the 1872 essay is to provide a gap-
free proof for those theorems, a definition failing to fulfil 
its intended function must be rejected. In other words, 
Dedekind's interest in rigour leads him to reject the 
introduction of non-arithmetical notions such as extensive 
magnitude into the concept-formation in analysis. 

Yet, it must be recognized at the same time that when 
Dedekind argues that space might not have the property of full 
continuity and, thus, that the desired characterization of the 
4 1 To be more precise, Dedekind argues that the constructive procedures 
found in Euclidean geometry (construction with straight-edge and compass) 
could be carried out in such a discontinuous space and, therefore, that 
full continuity is not required for their successful execution. 
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real numbers might not be obtained by defining them in terms of 
extensive quantity, he does not mean to say that such a 
characterization might not be formulated in a theory within 
which the notion of extensive quantity falls, or in a 
"language" whose vocabulary includes, among others, the term 
"extensive quantity."42 That is, in so saying, his point is not 
that (the language of) a non-arithmetical theory such as 
geometry or algebra (as a general science of quantity) is 
incapable of providing a framework for the rigorization of 
analysis. His point is rather that if we are to succeed in. 
proving the fundamental theorems of analysis, intuitive 
elements should not enter the process of concept-formation (or 
of inference). What Dedekind is really opposing in his 
criticism against non-arithmetical notions is not the 
introduction of non-arithmetical (e.g., geometric or algebraic) 
vocabulary into the language of analysis but, rather, the 
intrusion of an intuitive element into a system of language.43 

Dedekind himself, of course, did not have a methodological 
language to convey his meaning in this manner. But that he 
understands the notion of "non-arithmetical" or "foreign" from 
such a perspective can be confirmed by the fact that he 
occasionally contrasts it with the notion of "conceptual" or 
"logical," rather than with that of "numerical." Toward the 
end of his discussion of measurable quantities in the preface 

4 2 Once again, it is to be noted that Dedekind himself would not put the 
point in this manner. What is presented here and in what follows is meant 
to be a rational reconstruction in order to make explicit what is involved 
in Dedekind's reasoning. 
4 3 Accordingly, it is my contention that Dedekind's emphasis upon 
"uniformity" and "purity" is to be understood in the sense that definition 
should be free from an extra-linguistic or extra-theoretical element. 
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to the 1888 essay, Dedekind writes:44 

... without any notion of measurable quantities and simply 
by a finite system of simple steps of thought, man can 
advance to the creation of the pure continuous number-
domain; and only by this means is it in my opinion 
possible for him to render the notion of continuous space 
clear and definite. [Dedekind 1888, 793-794, my emphasis] 

Given that "the pure continuous number-domain" is what 
provides a basis on the ground of which the fundamental 
theorems of analysis can be given a proof, I take his point in 
(the first half of) this statement to amount to this: that, 
despite the common belief that it takes an appeal to extra-
theoretical, intuitive elements such as measurable quantities 
to formulate the characterization of continuity, we can 

actually "construct" the desired (deductive or inferential) 
basis without any appeal to intuition through a stepwise 
procedure of (logical) thinking. As a matter of fact, the 
second half of the quotation seems to suggest that, in 
Dedekind's view, a characterization of continuity that can 
serve as a basis for valid deductions can be obtained only by 
means of thought, and thus never through an appeal to 
intuition. 4 5 Thus, in opposing the introduction of non-
arithmetical elements into analysis, Dedekind is not denying 
the possibility of a non-arithmetical version of analysis. 
This stems from the circumstance that the main goal of his 
project, i.e., rigorization, does not necessitate the adoption 
4 4 Note, once again, that, both in §3 of the 1872 essay and in the preface 
to the 1888 essay, Dedekind uses the term "measurable quantity" all but 
interchangeably with the term "non-arithmetical" or "foreign" notion. 
4 5 I shall explain shortly the reason why Dedekind thinks such a 
characterization can make the notion of continuous space clear and 
definite. 



of arithmetic as a framework for the theory-construction. 

§ 6 . On the other hand, in Dedekind's view, certain 
requirements are to be imposed upon the process of concept-
formation in consequence of his demand that the basic concepts 
of a theory be formulated so as to be able to function as a 
basis for the valid deductions of its fundamental theorems. In 
a long footnote attached to his 1877 essay, Dedekind lists 
three items to be met when introducing new arithmetical 
elements: 1) "arithmetic must be kept pure of any mixture of 
foreign elements"; 2) all such elements must be "generated at 
the same time from one common definition"; 3) the definition 
must be "of such a nature as to permit as well a perfectly 
clear definition of the calculations (addition, etc.) that one 
will perform on the new numbers"46 [Dedekind 1877, 784] . In 
contrast to Kronecker's emphasis upon the decidability of 
concept-formation, Dedekind's thinking on this matter is not 
motivated by any epistemological concerns (in the exalted 
sense): rather, as can be clearly seen in the second and third 
items, the requirements imposed by Dedekind are directly 
related to his interests in the rigour and systematicity of 
theory-construction; the demand for the "purity" of 
arithmetic, as we just saw, is made because of his belief that 
a definition based upon a foreign (intuitive) element is 
incapable of formulating a characterization required for valid 

4 6 Dedekind thus criticizes the customary definition of the real number in 
terms of extensive quantity on this ground as well: that, on such a 
definition, we would not be able to formulate a clear definition of the 
operations on them so that even a simple theorem such as V2 • V3 = V6 
could not be demonstrated in a rigorous manner. See Dedekind 1888, 794 
and Dedekind 1877, 784. 



deductions.47 

In addition, Dedekind's demand upon definition has the 
following consequence with regard to the nature of a concept 
defined. If the basic concepts of a theory, as he insists, are 
formulated in such a way that they can collectively provide a 
basis for the valid deductions of its theorems, this would, of 
course, mean that the theorems can be deduced, solely in 
accordance with logic as the laws of thought, from a set of 
sentences (including those) which are generable from basic 
concepts. But, since the process of inference (and of the 
generation of sentences from concepts) is independent in all 
its parts from the content of the non-logical terms of the 
theory, it follows that the basic concepts possess certain 
formal  or relational properties which make the valid deductions 
of theorems possible. This, in turn, means that while the non-
logical terms used to define the basic concepts may have 
certain theory-independent referents (because of their ordinary 
meaning) , they need not be considered to be concerned 
particularly with these objects. These concepts are applicable 
to any domain that exhibits the relational properties expressed 
in them, and the theorems of the theory, which are "deducible" 
from them, would, under an appropriate interpretation, all 
express truths about the objects constituting that domain. 
This, then, is the reason why Dedekind thinks that his 
characterization of continuity can provide a "scientific basis 

for the investigations of all continuous domains"48 and render 
4 7 Dedekind later comes to the view that definition must not only be able 
to serve as a basis for valid deductions, but also be a deductive basis 
harbouring no internal contradictions. For more on this, see below. 
4 8 Dedekind 1872, 771, emphasis in original. Thus, for Dedekind, it is 
not, as for Frege, the contentual generality of numbers (or of the logical 
objects to which they are to be reduced) that explains the applicability 
of analytical (and, probably, arithmetical) principles. 
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the notion of continuous space clear and definite.49 

Furthermore, Dedekind's view of mathematical objects seems 
also to be conditioned by his conception of definition and, 
thus, by his interests in rigour. For him, the real numbers, 
for instance, are not things that exist independently of 
analysis: they are introduced as things that constitute a 
domain satisfying the continuity-principle, which, in turn, is 
formulated in such a way that the fundamental theorems of 
analysis can be established in a gap-free proof; they are 
nothing more or less. In Dedekind's view, then, any other 
properties which might be ascribed to them (because of the 
extra-theoretical meaning attached to the non-logical terms 
employed in their definition) are irrelevant and even 
undesirable. One way to avoid this would be to deny non-
logical terms of their (extra-theoretical) meanings and 
denotations;50 however, Dedekind chooses instead to speak as 
though "new" objects are "created" through our definition of 
them. In his letter to Heinrich Weber of 24 January 1888, 
Dedekind defends this procedure by referring to two points, the 
first of which, as Stein observes, very much anticipates the 
one Paul Benacerraf makes in a well-known paper:51 1) for the 

4 9 Stein characterizes Dedekind's project in the 1888 essay in this way: 

... it is not what numbers "are" intrinsically that concerns 
Dedekind. He is not concerned, like Frege, to identify numbers as 
particular "objects" or "entities"; he is quite free of the 
preoccupation with "ontology" that so dominated Frege, and has so 
fascinated later philosophers. [Stein 1988, 247, emphasis in 
original] 

5 0 This, of course, is the route Hilbert takes by means of his axiomatic 
method and implicit definition. Note, however, that Dedekind himself 
writes elsewhere that "All technical expressions [are to be] replaced by 
arbitrary newly invented (heretofore nonsensical) words; the edifice must, 
if it is rightly constructed, not collapse" [van Heijenoort 1967]. 
5 1 "What Numbers Could Not Be"(1965), Philosophical Review  74, 47-73. 
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sake of the homogeneity of all numbers, it is more expedient to 
proceed in this way; 2) there are many attributes of cuts that 
"would sound in the highest degree peculiar were they to be 
applied to the numbers themselves."52 It would seem then that 
what leads Dedekind to the seemingly idealistic manner of 
speech is not any philosophical (ontological, epistemological) 
concerns but rather his interests in (re)constructing analysis 
in one uniform linguistic framework. 

§7. Let us now go back to the exegetical problem posed 
earlier concerning Dedekind's foundational investigations in 
his 1872 essay and see how it can be answered. Our task was to 
find an account of Dedekind's project without ascribing to it 
any exalted epistemological objectives. Through a careful 
examination of the text, I have argued that what primarily 
inspires Dedekind's enterprise is his interests in providing a 
gap-free proof for the fundamental (limit-existence) theorems 
of analysis; that he tries to achieve this goal by constructing 
analysis in the language of arithmetic; but that since 
rigorization does not in itself imply reduction, his negative 
attitude toward reductionism is not inconsistent with the 
seemingly reductionist outlook of the 1872 essay. But, what, 
then, explains his interest in rigor? In the first chapter, I 
argued that the interest in rigor in the case of Hilbert's 
investigation into the foundations of geometry is explicable in 

5 2 Dedekind 1888b, 835. Similarly, concerning the definition of cardinal 
number as a class, Dedekind writes in the same letter: 

one will say many things about the class (e.g. that it is a system 
of infinitely many elements, namely, of all similar systems) that 
one would apply to the number only with the greatest reluctance; 
does anybody think, or won't he gladly forget, that the number four 
is a system of infinitely many elements? [Ibid., 835] 
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terms of his desire to enhance the understanding of geometrical 
theorems by means of systematization and his concern for 
establishing the objectivity of mathematical judgment and 
inference. 

The circumstance is somewhat different in Dedekind's case. 
First and foremost, Dedekind, unlike Hilbert, had a specific 
theoretical problem he wanted to solve and, in trying to find a 
solution to the problem, he found it impossible to achieve his 
goal by those non-arithmetical, intuitive elements which were 
(tacitly) employed in Cauchy's foundational investigation. As 
a result, he replaced them with the purely arithmetical 
concepts of continuity and real number. Here, then, the 
pursuit of rigor appears to be driven primarily by technical 
interests of mathematical research and have no further, deeper 
motivations. Such an interpretation has been put forward by 
Philip Kitcher. Kitcher's account is presented in the course 
of his attempt to provide a proper account of the history of 
research in the foundations of various mathematical branches 
and is supposed to explain, at one swoop, all the rigorization 
attempts which appeared in the history of mathematics. 5 3 

Another point characterizing Kitcher's account of rigorization 
is its explicitly anti-epistemological and anti-philosophical 
stance: 

... despite the "philosophical" remarks mathematicians 
sometimes insert into their preface, I see no reason to 
assume that those mathematicians have any exalted 
epistemological interests and that they become concerned 
when the reasonings in some branch of mathematics are 
incapable of furnishing a priori knowledge. [Kitcher 1984, 
213] 

5 3 One notable exception is Frege's attempt, which, according to Kitcher, 
was motivated by "misguided epistemological ideals." 
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What, then, leads mathematicians to foundational issues? In 
Kitcher's view, mathematicians attend to foundational issues 
"when [they] recognize that important problems cannot be solved 
without some clarification of language and techniques of 
reasoning" [Ibid., 215]. For Dedekind (and other nineteenth 
century analysts), it was the two "loose ends" left dangling in 
Cauchy's earlier attempt of the rigorization of analysis that 
constituted such problems: more specifically, one was to seek a 
definite resolution of the so-called Fourier question;54 the 
other was to give algebraic demonstrations of the existence of 
limits. For the purpose of carrying out the latter task, 
Dedekind rigorized analysis. His pursuit of rigor was thus 
"motivated by the need to fashion tools for continuing 
mathematical research" [Ibid., 271]. 

While it seems clear that this reading fits quite well 
with the actual content of the 1872 essay, one more instance 
might be cited, where Dedekind stresses the non-philosophical, 
technical nature of mathematical and scientific developments in 
general: 

... the greatest and most fruitful advances in mathematics 
and other sciences have invariably been made by the 
creation and introduction of new concepts, rendered 
necessary by the frequent recurrence of complex phenomena 
which could be mastered by the old notions only with 
difficulty. [Dedekind 1888, 792] 

Given the fact that this remark immediately follows the passage 
in which he denies the "meritoriousness" of a reductionist 
5 4 Roughly speaking, it asks whether and how any function can be given a 
trigonometric series representation. For more on this, see Kitcher 1984, 
249ff. 



enterprise, he is most probably counting his "creation and 
introduction" of the real numbers among those "fruitful 
advances in mathematics." That is to say, he considers his own 
project to be essentially a response and a solution to a 
research problem which has been barely tameable by the old 
notions. What is important to Dedekind is not any such exalted 
epistemological goals as the demonstration of the certainty and 
a prioricity of analysis, but a successful solution of a 
problem of research, and thus it matters little to him whether, 
say, the newly introduced arithmetical concept of real numbers 
is decidable. 

Against Kitcher's account, however, it might be argued 
that Dedekind's attempt in the 1872 essay, although it is not 
motivated by any exalted epistemological interests, does 
contain an epistemological element. More specifically, it 
might be said that for him the attempt constitutes an 
(epistemological) project of establishing the former's 
independence from other types of knowledge such as geometry and 

kinematics. 5 5 In connection with Kronecker's foundational 
investigations, I said earlier that the rejection of the 
Kantian notion of the pure intuition of space and time 
occasioned by the discoveries of consistent non-Euclidean 
geometries created a sort of epistemological vacuum in the 
foundations of analysis, and that Kronecker tried, by means of 
a reductionist program, to avoid the incursion of an a 

posteriori (geometrical) element into analysis and save the a 
5 5 Such an interpretation has been presented by William Demopoulos in his 
account of Frege's investigation into the foundation of arithmetic. This 
interpretation is intended by Demopoulos also to apply to the foundational 
interests of other nineteenth century analysts such as Cauchy, Bolzano, 
Weierstrass, Cantor and Dedekind. See Demopoulos 1994, 71. The 
interpretation of Dedekind's view presented in what follows is meant to 
develop Demopoulos's idea. 



prioricity and absolute truth of this essential component of 
arithmetic. But there is another epistemological sense in 
which it is desirable to eschew any appeals to a foreign 
element--be it a posteriori or a priori--in the foundations of 
a scientific discipline: the dependence of a fundamental 
principle of the discipline upon some foreign element would 
mean that the discipline lacks autonomy since this element 
presumably falls within the domains of "foreign" disciplines.56 

When faced with such "threats," one might try to establish 
the autonomy (and generality) of a discipline by "banishing" 
any foreign elements from its foundations. That Dedekind might 
have something like this in mind when he tried to arithmetize 
the real number system can be seen in the following passage: 

For our immediate purpose, however, another property of 
the system R [of real numbers] is still more important; it 
may be expressed by saying that the system R forms a well-
ordered domain of one dimension extending to infinity on 
two opposite sides. What is meant by this is sufficiently 
indicated by my use of expressions borrowed from geometric 
ideas; but just for this reason it will be necessary to 
bring out clearly the corresponding purely arithmetical 
properties so as to avoid  even the appearance that 
arithmetic is in need of such foreign  ideas [fremden 
Vorstellungen]. [Dedekind 1872, 768, my emphasis]57 

In other words, if the notion of continuity or dimensionality, 
which is essential to analysis, must come from non-arithmetical 
notions such as space, time, and "measurable quantities," it 
56 Moreover, in the case where the discipline in question is arithmetic 
(or analysis) , this would further imply that the general i ty or 
universality  usually associated with arithmetic will be lost along with 
its autonomy in case its "host" discipline should lack such generality. 
5 7 Later in the essay, Dedekind also writes that the fact that 
"comparisons with non-arithmetical notions have furnished the immediate 
occasion for the extension of the number-concept" is "certainly no reason 
for introducing these foreign  notions into arithmetic itself, the science 
of numbers [Dedekind 1872, 771, my emphasis], 
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would follow that analysis depends essentially upon those 
disciplines (e.g. geometry, kinematics, mechanics) to which 
these non-numerical notions properly belong. Dedekind thus 
attempts to establish the independence of analysis from these 
alien disciplines by defining the real number system solely in 
terms of numbers (and set-theoretic notions) and thereby 
demonstrating that the possibility of analysis does not 
presuppose any other type of knowledge than the theory of 
numbers (and set theory). Consequently, in engaging the 
seemingly "reductionist" project, Dedekind is not concerned 
with justification. 

I find this account ultimately unsatisfactory for two 
reasons. First, as I argued above, what Dedekind is really 
opposing in his criticism of foreign notions is not the 
introduction of non-arithmetical or non-numerical (e.g., 
geometrical or mechanical) vocabulary into the language of 
analysis, but rather the intrusion of intuitive or non-
conceptual elements into the purely "logical" process of 
mathematical reasoning. This point was made more explicit in 
Dedekind's second foundational essay, where he investigated the 
foundations of arithmetic: 

In speaking of arithmetic (algebra and analysis) as merely 
a part of logic I mean to imply that I consider the 
number-concept entirely independent of the notions or 
intuitions of space and time--that I rather consider it an 
immediate product of the pure laws of thought. [Dedekind 
1888, 790-791] 

Very roughly, in Dedekind's view, our knowledge of numbers is 
based upon certain set-theoretical principles which, in turn, 
derive ultimately from "the ability of the mind to relate 



things to things, to let a thing correspond to a thing, or to 
represent a thing by a thing, an ability without which no 
thinking is possible" [Dedekind 1888, 791].58 Accordingly, in 
the 1888 essay, Dedekind rigorizes arithmetic on the basis of 
logic in this broad sense; more specifically, he formulates 
some basic principles for the theory of "system," his term for 
set, and characterizes the notion of natural number (up to 
isomorphism) solely by means of the set theoretical, and thus 
logical, apparatus.59 

It might be thought, then, that the above "minimally" 
epistemological interpretation of Dedekind's rigorization 
project could be salvaged by saying that its aim is to 
establish the independence or autonomy of our "logical" 
knowledge from intuitive elements. Yet, there seems to be 
another reason why the "minimalist" reading does not work. It 
is true that if Dedekind's interest in rigor were mainly 
motivated by his concern for the epistemological independence 
of logic (taken in his broad sense), his project of 
rigorization would not be epistemological in the sense of 
justifying the truth of arithmetical and analytical theorems. 
What is to be recognized, however, is that, in arguing for the 
independence of our knowledge of these propositions, he is at 
least committed to the possibility of such knowledge: were the 
knowledge of arithmetic and analysis impossible, there would be 

5 8 As Hallett points out, this remark by Dedekind indicates that for him 
"set theory of some sort forms part of the 'laws of thought'" and thus of 
logic [Hallett 1990, 230]. In other words, for Dedekind what we might 
today call set theory and logic collectively or conjointly constitutes the 
necessary conditions for the possibility of thinking in general. And this 
is (part of) the reason why Dedekind, despite his unambiguous "logicist" 
statement, does not attempt at an reduction of the former to the latter. 
5 9 I shall discuss Dedekind's project in the 1888 essay in more detail in 
the next chapter. 



no sense in talking of its independence from intuitive notions. 
It would seem to follow from this that Dedekind would then have 
a very strong reason to be concerned about the decidability of 
concepts occurring in those propositions. But this clearly 
conflicts with the textual evidence. As we saw earlier, 
Dedekind vehemently argued against Kronecker's imposition of 
such a methodological restriction upon the "freedom" of 
concept-formation in mathematics. 

Should we conclude with Kitcher that Dedekind's 
foundational interest in rigor is motivated entirely by 
technical interests of mathematical research and has no 
epistemological or philosophical dimension to it? Admittedly, 
this is a difficult question to answer, but there are a few 
things which might be mentioned in this connection. First, 
Dedekind's notion of rigor, like Hilbert's, seems to involve 
something more than just "gap-free" proofs. In one of the 
passages quoted above, Dedekind emphasizes the importance of 
the finitude of proof-process: 

... without any notion of measurable quantities and simply 
by a finite system of simple steps of thought, man can 
advance to the creation of the pure continuous number-
domain; and only by this means is it in my opinion 
possible for him to render the notion of continuous space 
clear and definite.  [Dedekind 1888, 793-794, my emphasis] 

Although Dedekind finds the Kroneckerian requirement of the 
decidability of concepts unnecessary, he does seem to think 
that the finitude of deductive basis and the perspicuity of 
inferential process bring about clarity and definiteness in the 
foundations of the discipline in consideration. Elsewhere 
Dedekind links the simplicity of foundations with the themes of 



systematicity, unity, and generality: 

My efforts in number theory have been directed towards 
basing the work not on arbitrary representations or 
expressions but on simple foundational concepts, and 
thereby--although the comparison may sound a bit 
grandiose--to achieve in number theory something analogous 
to what Riemann achieved in function theory .... [Dedekind 
1932, 477, quoted and translated in Marion 1995, 197] 

These remarks, together with his emphasis on rigor as a 
requirement for the "scientificity" of arithmetic, seem to 
indicate that concerns very similar to Hilbert's are also 
operative in Dedekind's foundational investigation. 



Chapter III 
The Logical Grounding of Arithmetic 

§ 1 . . In chapter 1, we saw, in reference mainly to 
Hilbert's investigation into the foundations of geometry, that 
what motivates his pursuit of rigor and thus his conception of 
definitions and axioms, which characterizes the Hilbertian 
axiomatic method, is his concern for the systematicity and 
objectivity of mathematics. In chapter 2, we then considered 
two fundamentally different types of application of the genetic 
method exemplified in the so-called arithmetization of analysis 
by the two influential late nineteenth century mathematicians, 
Kronecker and Dedekind, on the assumption that Hilbert's 
introduction of the axiomatic method into the field of 
arithmetic was meant to be a response to the methodological 
dispute between the two. In the present chapter, I shall 
consider how precisely Hilbert's grounding of arithmetic is 
related to the attempts of his predecessors and how he actually 
tries by means of the axiomatic method to provide a decisive 
solution to the dispute and also to the emergence of set-
theoretical paradoxes. In particular, I shall argue that 
Hilbert's attempt of the logical grounding of arithmetic can be 
understood as a direct offspring of Dedekind's foundational 
approach and is designed to refute Kronecker's standpoint, 
which is dictated by the epistemological concern for the 
aprioricity and absolute truth of arithmetic. This then lead 
us to the question as to Hilbert's view on the epistemological 
status of mathematics, and I shall consider this question 
towards the end of the chapter. 

In our discussion of Dedekind's foundational project, we 



saw that what is usually meant by "arithmetization" can be 
distinguished into two, logically independent, components--
translation into the language of arithmetic and rigorization--
and that Dedekind's project should be viewed primarily as an 
attempt of the rigorization of analysis by means of 
arithmetization in the first sense. Moreover, it was also 
noted there that a clear awareness of the distinction was 
shared by Hilbert's teacher at Leipzig and later colleague at 
Gottingen, Felix Klein. Klein, while quite clear on the 
logical possibility of rigorization without arithmetization as 
reduction, nevertheless, thought that, for the rigorization of 
geometry, recourse to analytical methods was inevitable for 
technical reasons. On one level, Hilbert's 1899 Foundations  of 

Geometry-  can then be regarded as a realization of the Kleinian 
ideal of rigorized geometry "on purely geometrical lines." 
From fairly early on, Hilbert clearly understood the formal or 
content-independent nature of deductive relations and 
recognized that the possibility of rigorization is not limited 
to those parts of mathematics which are concerned with numbers. 
This insight led him to the adoption of the new kind of 
axiomatic method, in which the technical terms of a theory are 
stripped of any system-independent meaning and denotation and 
given their meaning through the axiom system as a whole. And 
he decided to apply this method to the relatively simple case 
of elementary geometry in order to carry out a complete 
"logical" grounding in this field.1 

1 In this connection, we should also pay attention to the enthusiasm 
Hilbert shows towards Hermann Minkowski's Die Geometrie der Z&hlen (1896), 
which demonstrates the possibility of "an arithmetical theory operating 
rigorously with geometrical ideas and signs" [Hilbert 1900b, 1101] . This 
fact, I think, confirms Hilbert's awareness that the possibility of 
rigorization does not necessitate the adoption of one particular 
linguistic framework. 



What is to be noted, however, is that Hilbert's 
rigorization of geometry carried out in his Festschrift  has a 
polemical aspect as well. As Hilbert's first doctoral student, 
Otto Blumenthal later pointed out in a biographical sketch of 
his great teacher, in carrying through "his ideal of a complete 
proof-structure [Beweisgebaude]"  outside the theory of numbers, 
Hilbert, at the same time, presented a counterexample to the 
view represented by Kronecker that "all mathematics that cannot 
be immediately tied to the natural numbers is contaminated with 
impure 'earthly remains' [Erdenrest] . "2 One year after the 
publication of the Festschrift,  in his Paris address 
Mathematische  Probleme, Hilbert made his disagreement with the 
Kroneckerian view explicit: 

While insisting on rigour in the proof as a requirement 
for a perfect solution of a problem, I should like, on the 
other hand, to oppose the opinion that only the concepts 
of analysis, or even those of arithmetic alone, are 
susceptible of a fully rigorous treatment. This opinion, 
occasionally advocated by eminent men, I consider entirely 
erroneous. [Hilbert 1900b, 1100] 

To be sure, Hilbert here does not name names, but whom 
precisely he means by "eminent men" becomes quite obvious when 
he continues the remark by saying that "such a one-sided 
interpretation of the requirement of rigor" leads, as a last 
consequence, to "the rejection of the ideas of the continuum 
and of the irrational number" [Ibid., 1100]. In contrast to 
Kronecker's narrow conception of rigor, Hilbert's view of rigor 
sees no such boundary: 

2 Blumenthal 1922, 68, translated and quoted in Hallett 1990, 211. 
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On the contrary I think that wherever, from the side of 
the theory of knowledge or in geometry, or from the 
theories of natural or physical science, mathematical 
ideas come up, the problem arises for mathematical science 
to investigate the principles underlying these ideas and 
so to establish them upon a simple and complete system of 
axioms, that the exactness of the new ideas and their 
applicability to deduction shall be in no respect inferior 
to those of the old arithmetical concepts. [Hilbert 1900b, 
1100]3 

Kronecker's conception of geometry, as we saw above, stems 
ultimately from his Gaussian view that the object of geometry, 
space, has a mind-independent existence and thus that we are 
unable to have a priori knowledge in this domain. It is to be 
recognized, however, that what Hilbert finds particularly 
objectionable here is not Kronecker's rejection of the 
aprioricity of geometrical knowledge; nor is Hilbert's 
objective with the rigorization of geometry the demonstration 
of its aprioricity. Rather, Hilbert's objection is directed 
toward the primacy of epistemological concerns in Kronecker's 
thinking over mathematical ones. Accordingly, Hilbert tries to 
refute Kronecker's claim about the impossibility of 
rigorization in non-arithmetical branches of mathematics on the 
mathematical ground, by actually constructing a rigorous, 
deductive system of geometry. Indeed, to present a 
philosophical argument against the assumption underlying 
Kronecker's position and thus confront him at the philosophical 
level would be tantamount to leaving the objective tribunal of 
mathematics and falling into a "game of hide-and-seek." 

Hilbert's fight against Kronecker does not end here. In 
Hilbert's eyes, Kronecker's emphasis upon the epistemological 
is harmful not only to geometry but also to mathematical (and 
3 Indeed, Hilbert lists as the sixth problem the "mathematical treatment 
of the axioms of physics" among his celebrated twenty three problems. 
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scientific) investigation m general. And, as a matter of 
fact, the threat of the Kroneckerian tendency is nowhere more 
serious than in the field of arithmetic, Kronecker's 
paradigmatic example of a priori knowledge. The threat is 
twofold. First, with regard to the foundations of arithmetic 
(in the narrow sense), Kronecker sees neither the necessity nor 
the possibility of giving a (gap-free) proof for the principles 
of arithmetic because of his philosophical conviction that "the 
integer--and, in fact, the integer as a general notion 
(parameter value)--is directly and immediately given." 
Second, as we saw above, the possibility of giving such a proof 
to the fundamental theorems of analysis is denied by Kronecker 
on two philosophical grounds: a) we do not have the a priori 
intuition of continuity; b) the proof would involve the use of 
undecidable concepts, and thus its correctness cannot be 
verified. What is happening here, as in the case of geometry, 
is that the demand for rigor, which, because of the "formal" 
character of deductive relations, is executable independently 
of any extra-systematic considerations, is overridden by the 
beliefs about the ontological/epistemological status of the 
(system-independent) objects the theory in consideration is 
supposed to be concerned with. Moreover, since such beliefs 
are accepted for some extra-systematic reason and are not 
susceptible to any objective treatment, they are nothing other 
than "dogmas." 

4 Hilbert 1905a, 130. Hilbert continues the remark with the following 
words: 

... this prevented him [Kronecker] from recognizing that the notion 
of integer must and can have a foundation. I would call him a 
dogmatist, to the extent that he accepts the integer with its 
essential properties as a dogma and does not look further back. 
[Ibid., 130] 



Needless to say, Hilbert cannot tolerate such a 
standpoint: it is his invariable contention that both 
arithmetical and analytical principles "must and can have a 
foundation." Thus, as Hilbert embarks on the rigorization or 
"logical grounding" of arithmetic and analysis, he explicitly 
identifies the implementation of this goal with the refutation 
of Kronecker's "dogmatic" standpoint.5 How then does he try to 
achieve this goal? To put it simply, Hilbert once again 
attempts to refute Kronecker's position by constructing a 
"complete proof-structure" for these disciplines. Yet, 
circumstances are somewhat different this time around as a 
consequence of the recent developments in the foundational 
investigations and set theory in particular. Thus, before 
considering Hilbert's project, I shall briefly go over some of 
the points particularly relevant for our later discussion. 

§2. As we have seen in passing, before Hilbert, Dedekind 
tackled, contra Kronecker, the problem of rigorizing arithmetic 
in his 1888 essay in the belief that the principles of numbers 
can and must be given a proof. Dedekind's solution exactly 
parallels his previous attempt in the foundations of analysis: 
he defines ("creates") the natural numbers as the things which 
constitute a (infinite) domain possessing those and only those 
characteristics which are required for the valid deductions of 
arithmetical principles. In outline, Dedekind's set-
theoretical definition of the natural numbers presented in the 
1888 essay proceeds as follows. After introducing various 
basic concepts of set theory (e.g., set, -subset, union, 

5 See the closing remark of the 1905 essay. 
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intersection, mapping, one-to-one mapping and so on),6 Dedekind 
first defines in terms of these set-theoretical ideas two 
important notions. The first is a chain [Kette]  relative to a 

mapping 0 or, simply, a 0-chain: a set K  is a chain relative 
to 0 if the image [Bild] of K  under 0, i.e., what results from 
K  by the mapping [Abbi ldung] 0, is a subset of K.  For 
instance, let 0 be x —» x. Then, any set K  is a chain relative 
to 0 since its image under 0, i.e., K,  is a subset (although 
not a proper subset) of K  itself. The second is the chain of A 
relative to 0, alternatively, (po(A) or AQ : A0 is the 
intersection of all 0-chains containing A. If we use the above 
example and let A be 1, then AQ will be {1} since {1} is the 
intersection, i.e., the common part, of all the 0-chains that 
contain 1. 

With these two notions in hand, Dedekind next introduces 
the notion of simply infinite system: by this he means a set N 
together with a mapping 0 of N  and an element 1 of N  satisfying 
the following conditions: a) 0 is a mapping of N  into 
itself;7 b) N  is the chain 1 0 relative to 0; c) 1 is not 

contained in the image N'  of N  under 0; and d) 0 is a one-to-
one mapping. The clauses a), c), and d) collectively state 
that N  is an infinite set: by a) , what results from N  by 0, 
i.e., N',  is a subset of N;  and, by c), N'  does not contain one 
element of N,  i.e., 1, and therefore N'  is a proper subset of 
N;  and finally, by d) , there exists a one-to-one mapping 

6 Here I basically follow the standard terminology of modern set theory. 
To mention some instances in which Dedekind's terminology differ, "system" 
is used for "set," "similar mapping" for "one-to-one mapping." 
7 A mapping (j> is said to be a mapping of a set S into itself if and only 
if the image of S under <p is a subset of S itself, that is to say, what 
results from S by (j) is a subset of S. 
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between the elements of N  and N'.  In other words, the elements 
of N  can be matched up one-to-one with those of its proper 
subset N',  which is possible only if N contains infinitely many 
elements.8 The role of the clause b) is to make sure that N  is 
the "smallest" of all the 0-chains containing 1. 

Finally, Dedekind introduces his definition of the natural 
numbers in this way: 

If in the consideration of a simply infinite system N 
ordered by a mapping 0 we entirely neglect the special 
character of the elements, simply retaining their 
distinguishability and taking into account only the 
relations to one another in which they are placed by the 
ordering mapping 0, then these elements are called natural 
numbers or ordinal numbers or simply numbers, and the 
base-element 1 is called the base-number of the number-
series N.  With reference to this liberation of the 
elements from every other content (abstraction) we are 
justified in calling the numbers a free creation of the 
human mind. The relations or laws which are derived 
entirely from the conditions [a), b), c), d) above], and 
therefore are always the same in all ordered simply 
infinite systems, whatever names may happen to be given to 
the individual elements ... form the first object of the 
science of numbers or arithmetic. [Dedekind 1888, 809] 

As we saw above, in the 1872 essay, Dedekind defined the real 
numbers as what produce (Dedekind) cuts and thus are distinct 
from cuts themselves. Similarly, here, in defining the natural 
numbers, Dedekind does not identify the natural number system 
with "instances" of simply infinite systems. For him, the 
natural number system is rather the structure instantiated in 
such instances. At any rate, Dedekind, with this definition in 
hand, goes on to prove, among other things, the principle of 
8 In fact, Dedekind defines the notion of infinity precisely in these 
terms: a system S is said to be infinite if and only if there exists a 
one-to-one mapping between S and a proper subset of S. See Dedekind 1888, 
806. 



mathematical induction and the legitimacy of definitions by 
primitive recursion and provides the standard recursive 
definitions of arithmetical operations (e.g., addition, 
multiplication, and exponentiation) . In this way, he 
demonstrates that the whole science of arithmetic can be 
developed from the "uniform" foundation (i.e., the concept of 
number) through purely logical processes. 

Now, while Dedekind's two foundational attempts presented 
in the 1872 and 1888 essays respectively share their overall 
goal and methodology, the later project differs from the 
earlier one in one respect: in the 1888 essay Dedekind not 
only tries to demonstrate the possibility of a gap-free proof 
for the principles of arithmetic by constructing a deductive 
basis, but also points, in clear terms, to the need for 
establishing that such a deductive basis does not contain 
"internal contradictions." More specifically, Dedekind thinks 
it necessary to establish that a simply infinite system, in 
terms of which the definition of the natural numbers is 
formulated, has an existence "in the realm of our ideas":9 

After the essential nature of the simply infinite system, 
whose abstract type is the number sequence N,  had been 
recognized in my analysis ..., the question arose: does 
such a system exist at all in the realm of our ideas? 
Without a logical proof of existence it would always 
remain doubtful whether the notion of such a system might 

9 Although it might be said that Dedekind expresses his concern for 
consistency already in the 1872 essay in connection with his criticism of 
the notion of extensive magnitude, his concern there has to do with the 
"real existence," and not with an "inner contradiction in the concept." 
On the other hand, Dedekind's concern for consistency can be clearly seen 
in his letter to Lipschitz of 27 July 1876: 

How shall we recognize the admissible existence assumptions and 
distinguish them from the countless inadmissible ones ... ? Is this 
to depend only on the success, on the accidental discovery of an 
internal contradiction? [Dedekind 1932, 477, quoted and translated 
in Sieg 1999, 4] 



not perhaps contain internal contradictions. Hence the 
need for such a proof (article 66 and 72 of my essay) . 
[van Heijenoort 1967, 101, emphasis in original]10 

Dedekind's somewhat peculiar, "logical" proof for the existence 
of infinite sets itself reads as follows: 

Theorem. There exist infinite systems. 
Proof. My own realm of thoughts, i.e., the totality S of 
all things which can be objects of my thought, is 
infinite. For if s signifies an element of S, then the 
thought s', that s can be object of my thought, is itself 
an element of S. [Dedekind 1888, 806-807] 

The mapping s —» s' is a one-to-one mapping between S and a 
proper subset of S itself, and therefore S is infinite. This, 
apparently, is Dedekind's point here. 

This "proof" has been widely criticized.11 In particular, 
the problematic nature of the notion of the totality of 
everything thinkable, which Dedekind employed in the proof, was 
soon pointed out by his long time friend Georg Cantor. Cantor, 
who is often considered the sole founder of set theory, had for 
some time been aware of the problems surrounding the use of 
such a notion through his set-theoretical investigation into 
infinite set and transfinite numbers. One such problem can be 
explained, roughly, as follows. According to Cantor, two sets 
have the same cardinal number when there exists a one-to-one 
mapping between them. So, for instance, the two sets {a, b, c} 
1 0 Letter to Keferstein of 27 February 1890. The essay Dedekind refers to 
is Dedekind 1888. In Hallett's view, a source of Dedekind's concern for 
consistency is found in his thesis that mathematical objects are "created" 
according to certain principles and on the basis of nothing else. Thus, 
the question naturally arises whether the creation are "possible" at all. 
See Hallett 1995, 146 and Hallett 1990, 226ff. 
1 1 Subsequently it came to be seen that the existence of infinite sets is 
a matter of postulation, rather than of proof. 
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and {d, e, f} have the same cardinal number, more precisely, 
the cardinal number three. The same applies to infinite sets, 
that is, sets containing infinitely many elements: two 
infinite sets have the same cardinal number if they can be 
placed in one-to-one correspondence. For instance, the set of 
natural numbers {1, 2, 3, ...} have the same cardinal number as 
the set of even numbers {2, 4, 6, ...} since the elements of 
the two sets can be placed into one-to-one correspondence, 
e.g., 1 with 2, 2 with 4, 3 with 6 and so on. The cardinal 
numbers of such infinite sets are called transfinite  numbers. 

In his theory of sets, Cantor established that, for any given 
infinite set, there is an infinite set of a greater 
cardinality, and hence that, just as there exists no greatest 
natural number, so there exists no greatest transfinite number. 
Consider, however, the notion of the totality of all sets, 
i.e., the "set" which includes all sets as its members. By 
definition, no set can have more members than such a "set" of 
all sets. But if so, it seems to follow that no transfinite 
number is greater than the cardinal number of this "set," which 
clearly contradicts Cantor's result that there exists no 
greatest transfinite number. 

After seventeen years of blank, Cantor resumed regular 
correspondence with Dedekind in 1899 and, in his letter of 3 
August of that year, informed the latter of the paradoxical 
consequences which would result from the use of notions such as 
the "totality of everything thinkable." In the letter, Cantor 
further explained that, of all the (definite) multiplicities, 
there are ones such that the assumption that all of their 
elements "are together" leads to a contradiction and it is 



impossible to consider them as "one finished thing."12 Cantor 
called these absolutely infinite or inconsistent multiplicities 

and stressed the need for distinguishing them from consistent 

multiplicities or sets, the totality of whose elements can be 
thought of without contradiction as "being together" and which 
can therefore be considered as "one thing." In his reply to 
this letter, Dedekind did not try to dispute the claim that his 
employment of the notion of the totality of everything 
thinkable in the proof for the existence of infinite systems 
leads to a contradiction, but complained about Cantor's 
distinction between consistent and inconsistent multiplicities: 

. . . You will certainly sympathize with me if I frankly 
confess that, although I have read through your letter of 
3 August many times, I am utterly unclear about your 
distinction of totalities [Inbegriffe]  into consistent and 
inconsistent; I do not know what you mean by the 'co-
existence of all elements of a multiplicity', and what you 
mean by its opposite.13 

§3. As we shall see shortly, Hilbert also found Cantor's 
criterion for the distinction utterly unclear and tried to 
improve it by means of his axiomatic method. But before 
considering that, we must understand how those problematic 
multiplicities were thought to form genuine sets in the first 
place. This question leads us to what Hilbert calls the 
"fundamental principle" in traditional logic: "a concept (a 
set) is defined and immediately usable if only it is determined 
for every object whether the object is subsumed under the 
concept or not" [Hilbert 1905a, 130]. Traditionally, this so-
called comprehension principle was relied upon as the sole 
1 2 Letter to Dedekind of 3 August 1899 in Ewald 1996, 931. 
1 3 Letter to Cantor of 29 August 1899 in Ewald 1996, 937. 
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criterion for the formation of concepts and, through them, 
classes. As we saw earlier, Dedekind, for one, appealed to 
this principle against Kronecker's imposition of methodological 
restrictions upon concept-formation. Apparently, Hilbert too 
was convinced of the legitimacy of the principle (in an 
unrestricted sense) until Cantor communicated to him of the 
said distinction between consistent and inconsistent 
multiplicities and paradoxical consequences resulting from the 
introduction of the latter.14 

What the principle of comprehension allows one to do, when 
used in an unrestricted manner, is to introduce a concept or a 
set solely by dint of its determinacy. Thus, on this 
principle, Dedekind's alleged set of all thinkable objects 
would be allowable and indeed exist insofar as it is 
determinate for any object whether it belongs to it or not. 
But, of course, the introduction of this "set," as we just saw, 
would result in a contradiction. Another example in which the 
unrestricted use of the comprehension principle led to a 
devastating result is found in Frege's foundational 
investigation. Very roughly (and anachronistically), it can be 
described as follows.15 In attempting to provide a foundation 
for arithmetic using only the notions of logic, Frege assumed 
that, for any given property P(x) , one could speak of the 
1 4 See Letter to Hilbert of 2 October 1897 in [Ewald 1996, 927] . 
According to Ivor Grattan-Guinness, Hilbert had been the main contact of 
Cantor's on this issue and told of the distinction between "ready" 
("fertig")  [i.e. consistent] sets and "absolutely infinite" sets as early 
as 1896. For more on the historical background, see Grattan-Guinness 
2000, 117-119 and Ewald 1996, 923-926. 
1 5 For the sake of brevity and clarity, here I do not rehearse how the so-
called Russell paradox arises from Frege's infamous Basic Law V. For a 
concise account of this important episode in the history of the philosophy 
of mathematics and the "derivation" of a contradiction from Basic Law V, 
see, for instance, Bell 1999, 196-199. The account presented here is 
based loosely upon Paolo Mancosu's presentation in Mancosu 1998, 67. 
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totality of objects which satisfy P(x) . In other words, he 
assumed that to any (determinate) property P{x) there 
corresponds a set of objects satisfying P{x) .16 Symbolically, 

3X (P{x) <-> x G X) , 

where X is a set, P a property, and x an object. Now, let P(x) 
be the property that applies to an object x just in case x is 
not an element of itself, i.e., P(x) = x £ x.17 it follows 

then that since, by assumption, to any property there 
corresponds a set of objects satisfying it, there must exist a 
set corresponding to this property as well. To put it 
symbolically, 

3x (x <t x x e X) . 

Let us call "R" the set to which an object x belongs if and 
only if x is not a member of itself, that is, 

x G R <-4 x i. x. 

Moreover, since x is supposed to be any arbitrary object, R 

itself can be substituted for x. We then obtain: 

R G R R <£ R, 

from which -a contradiction follows by the rules of logic. 

1 6 This, of course, is equivalent to the unrestricted form of the 
comprehension principle. 
1 7 The property is determinate since it must be the case that for any 
given set either it is a member of itself or it is not a member of itself. 
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Frege was informed of the paradox by Bertrand Russell in 1902 
and thereupon annexed an appendix to the second volume of his 
Basic Laws of Arithmetic, devoting it to the attempted solution 
to the problem. Russell himself published the paradox in his 
Principles of Mathematics  in 1903, and, subsequently, there 
followed a series of the discoveries of new paradoxes by 
mathematicians and philosophers. In consequence, as Ewald 
reports, "the view became widespread that the paradoxes had 
shaken the foundations of Cantorian set-theory" [Ewald 1996, 
924] . 

Thus, it appeared to the mathematical community at the 
beginning of the twentieth century that Kronecker's flat 
dismissal of set theory a few decades before might have had 
some basis after all.18 According to Volker Peckhaus, around 
1900, Hilbert, despite his wholehearted support for the 
Cantorian set theory since its inception, did not consider it 
as an independent subdiscipline of mathematics but rather 
merely as an "alternative methodological approach to 
arithmetic": 

In accordance with his "pragmatic" viewpoint, the 
appearance of contradictions was nothing to be alarmed 
about so long as the stock of accepted mathematical 
knowledge could be preserved by other means. [Peckhaus 
1994, 96] 

1 8 In the 1920 lectures, Hilbert describes Kronecker's attitude toward 
"the newly arisen Cantorian set theory" as that of "an ostrich-politics," 
wishing to know nothing about its accomplishments. In the lectures he 
also remarks: "The first in the younger generation who seriously took 
Cantor's side were Minkowski and I" [Hilbert 1920, 946] . According to 
Bernays, however, "[UJnder the influence of the discovery of the 
antinomies in set theory, Hilbert temporarily thought that Kronecker had 
probably been right there" [Reid 1996, 173]. The young Hilbert visited 
Kronecker twice (1886, 1888) at Berlin, a few years before the latter's 
death at the age of sixty-eight in 1891. 
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But, by 1904, Hilbert came to the realization that it was 
impossible to axiomatize arithmetic in the broad sense by 
purely mathematical means and, accordingly, the paradoxes of 
set theory loomed larger in his mind. In addition, given that 
a source of the paradoxes could, in Hilbert's view, be traced 
back to the unrestricted use of the comprehension principle, 
which had traditionally been accepted as the reliable criterion 
for concept-forming, the threat of the paradoxes clearly was 
not confined to the theory of sets alone.19 Thus, it was an 
urgent task for him to diagnose correctly the cause of the 
problem and prescribe a means to remove it. Yet, at the same 
time, this therapeutic means must not be something that 
unnecessarily restricts the freedom of concept-formation in 
mathematics. 

Now, to return to Hilbert's diagnosis of the cause of the 
paradoxes, he recognized that a contradiction arose when the 
notion of totality ("all" or "every") was applied, in an 
unrestricted manner, in a domain of objects which was formed in 
accordance with the comprehension principle.20 In the 1905 
paper, he explains the failure of Frege's logicism precisely in 
these terms: 

G. Frege  sets himself the task of founding the laws of 
arithmetic by the devices of logic, taken in the 
traditional sense. ... But, true to his plan, he accepts 
among other things the fundamental principle [i.e., the 

1 9 Note, however, that Hilbert's concern for consistency actually precedes 
and hence was not simply a reaction to the emergence of set-theoretical 
paradoxes. I shall come back to this point shortly. 
2 0 In his 1905 lectures, Hilbert writes: 

... [T]he most difficult concept is the concept 'all' or 'every', 
since through its use all the contradictions known to us arise, at 
least if one applies it in the traditional ways.... [Hilbert 1905b, 
254, quoted and translated in Hallett 1995, 156] 
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comprehension principle] . . . , and here he imposes no 
restriction on the notion "every"; he thus exposes himself 
to precisely the set-theoretic paradoxes that are 
contained, for example, in the notion of the set of all 
sets. [Hilbert 1905a, 130]2i 

However, this recognition helps us little in itself, for, as 
Hilbert points out in the 1905 lectures, all thinking depends 
upon such a collecting together [Zusammenfassung]  of totalities 
into a set, and yet we are not always led to a contradictory 
result: "The problem here is rather that of distinguishing the 
permissible collections from the impermissible."22 As was 
briefly noted above, an "answer" to this question was already 
given by Cantor in his distinction between consistent and 
inconsistent (or fertige  and nichtfertige)  multiplicities. A 
multiplicity, according to Cantor, can be "assembled together" 
into a set if it can be thought of as "ready," that is, "if it 
is possible without contradiction (as can be done with finite 
sets) to think of all its elements as existing together": 

... an 'assembling together' [Zusammenfassung]  is only 
possible if an xexisting together' [Zusammensein] is 
possible.23 

2 1 In a similar vein, Hilbert writes of Dedekind's project: 

... I would call his method transcendental insofar as in proving the 
existence of the infinite he follows a method that, though its 
fundamental idea is used in a similar way by philosophers, I cannot 
recognize as practicable or secure because it employs the notion of 
the totality of all objects, which involves an unavoidable 
contradiction. [Hilbert 1905a, 131] 

2 2 Hilbert 1905b, 215, quoted and translated in Hallett 1995, 156. See 
also Peckhaus 1994, 97. 
2 3 Cantor's letter to Hilbert of 2 October 1897 in Ewald 1996, 927-928, 
emphasis in original. 



The obvious problem with Cantor's criterion for distinguishing 
permissible from impermissible collections, however, is its 
utter unclarity: how are we to decide whether, say, the 
elements of the set {the Empire State Building, V2 } can "exist 
together"? We have already seen Dedekind confessing himself 
completely at a loss to comprehend Cantor's meaning. Hilbert, 
while acknowledging Cantor's awareness of the problem, also 
found the latter's treatment lacking in clarity and thus 
ineffective: 

G. Cantor sensed the contradictions just mentioned [i.e. 
the paradoxes of set theory] and expressed this awareness 
by differentiating between "consistent" and "inconsistent" 
sets. But since in my opinion he does not provide a 
precise criterion for this this distinction, I must 
characterize his conception on this point as one that 
still leaves latitude for subjective judgment and 
therefore affords no objective certainty". [Hilbert 1905a, 
131, emphasis in original] 

Hilbert's task then is to give an articulate expression to 
Cantor's notion of "can be thought of as existing together 
without contradiction" and to provide a criterion, according to 
which the permissibility of set- or concept-formations can be 
determined in an objective, and thus "rigorous" manner. 

"What is decisive is the recognition [Erkenntnis] that the 
axioms that define the concept are free from contradiction."24 

In this simple and confident statement, Hilbert's solution is 
implied in its entirety. Hilbert captures the Cantorian notion 
of the coexistence of all elements of a multiplicity as the 
consistency of a concept (or property) . And since, in his 
axiomatic method, a concept is defined by and within an axiom 

24 Letter to Frege of 7 November 1903 in Frege 1980, 52. 
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system, the consistency of the concept, in turn, can be 
understood in terms of the consistency of the axiom system as a 
whole. This insight, together with his analysis of the notion 
of consistency, finally leads him to the formulation that a 
concept-formation is permissible if it is impossible to deduce 
a contradiction in the axiom system defining it "by the 
application of a finite number of logical inferences."25 In 
thus characterizing the notion of consistency in terms of 
deducibility in a finite number of steps, the axiomatic method 
enables us not only to articulate Cantor's notion of 
"coexistence of the elements of a multiplicity" in terms of the 
consistency of an axiom system, but also to obtain a precise 
criterion for distinguishing permissible (consistent) from 
impermissible (inconsistent) concept-formations.26 

We saw earlier that the Hilbertian axiomatics is designed 
to make the rigorous construction of a theory possible in such 
a way that the correctness of a solution to a mathematical 
problem can be established by means of antecedently fixed rules 
of inference from a limited number of assumptions in a finite 
number of steps. What is to be recognized here is that, at the 
same time, the axiomatic method also enables us to formulate 
the criteria, according to which it can be determined in a 
precise manner whether the requirement of rigor is indeed 
satisfied by a system. To put the point simply, the axiomatic 
method made possible, for the first time, the objective 
treatment of what we today call "metatheoretical" questions. 

2 5 Hilbert 1900b, 1105. See also Hilbert 1899, 29. 
2 6 To mention another example, as we saw above, the traditional notion of 
the "correctness" of a definition is understood in terms of the 
completeness of the axiom system: a definition is "correct" if all the 
theorems of the relevant domain of knowledge can be derived in the axiom 
system formulating it. 



More specifically, Hilbert opened a way to a rigorous 
metatheoretical investigation by defining the key notions of 
metatheory in terms of "deduction," "derivability, " and 
"logical consequence." 2 7 In addition to the notion of 
consistency, those of independence and completeness are also 
defined in these terms and are considered by Hilbert as 
constituting, together with the consistency requirement, the 
adequacy conditions on axiom systems.28 As a quick look at the 
content of these conditions makes us see, they correspond to 
and further develop what Hilbert calls in a different context 
the requirement of rigor. Consequently, when it is 
demonstrated in a rigorous manner that an axiom system fulfils 
these requirements, we are entitled to claim that a complete 
logical grounding has been given to the field of knowledge in 
question. 

In conclusion, Hilbert's axiomatics thus takes over and 
gives a clear expression to the main objectives of Dedekind's 
foundational investigations (e.g., a gap-free proof for the 
arithmetical and analytical theorems from a consistent 
deductive base) and, in so doing, also points to ways to 
determine, in an objective manner, the successful 
implementation of these goals. This, I think, is at least part 
of Hilbert's meaning when he says in the 1900 essay that the 
axiomatic method is to be preferred for the "complete logical 
grounding [Sicherung] of our knowledge." As it turned out, 
2 7 In the next chapter, I shall consider in more detail how such a 
metatheoretical investigation proceeds with respect to the consistency of 
arithmetic. 
28 In the 1905 lectures, Hilbert states that "axioms are independent if 
none can be deduced from another," whereas an axiom system is complete if 
"all the remaining facts of the field of knowledge that lies before us are 
consequences of the axioms" [Hilbert 1905b, 11-13, quoted in Peckhaus 
1990, 59] . 



Hilbert would spend the rest of his long career trying to 
fulfil the ideal of complete logical grounding with regard to 
arithmetic in the broad sense. Yet, the important thing here 
is that, given that the relevant metamathematical proofs are 
forthcoming, a successful axiomatization of the real numbers 
would demonstrate against Kronecker that arithmetic in the 
broad sense can be rigorized and that the laws of number can 

have a (consistent) foundation from which they are deducible 
solely in accordance with rules of logic. Towards the 
execution of this rigorization program, in the 1900 essay,29 

Hilbert presented a (categorical) axiomatization for the reals 
following Dedekind's attempt in Continuity and Irrational 

Numbers,  and, in the 1905 essay, being convinced of his 
imminent success in finding a consistency proof for his axiom 
system, Hilbert confidently spoke of the "real refutation" 
[sachliche Widerlegung]  of Kronecker's dogmatic standpoint. 

§4. Now, given that one of Hilbert's main goals in his 
foundational investigation is to fight against the 
methodological restrictions Kronecker imposes upon the 
formation of concepts for the epistemological concerns and 
demonstrate the possibility of rigorization and thus the 
solvability of mathematical problems in a definite, objective 
manner, one naturally wonders how Hilbert himself sees the 
philosophical issues surrounding the foundations of 
mathematics. In this connection, I argued above that the 
primary concern with Hilbert's foundational investigation is to 
establish the objectivity of mathematical judgment and 

2 9 Wilfried Sieg points out that the title of the 1900 paper "Uber  den 
Zahlbegriff  [On the Concept of Number]" is Hilbert's polemical allusion to 
Kronecker's essay of the same title. See Sieg 1984, 165. 
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reasoning by means of rigorization, and that his project is not 
only not motivated by the concern for truth, but even opposed 
to it. 

One possible answer to the above question would then be 
that, as a mathematician, Hilbert is simply not interested in 
tackling such philosophical problems as truth, knowledge, 
existence, and, accordingly, has nothing particular to say. 
Indeed, here we might recall Hilbert's "cautionary" remark to 
Frege that "if we want to understand each other, we must not 
forget that the intentions that guide the two of us differ in 

kind."30 Given the explicitly philosophical nature of Frege's 
inquiries about Hilbert's Festschrift,  the latter's remark such 
as this might seem to suggest that not only is he not concerned 
with the epistemological questions in that work, but he has no 
intention of getting himself involved with them. As we briefly 
saw above, Paul Bernays, who was Hilbert's chief collaborator 
in the 1920s, understood the latter's early foundational 
investigation in this way and, in fact, maintained that its 
significance consists precisely in the clear separation between 
the mathematical and the epistemological problems of axiomatics 
carried out in it. It might seem, then, that it is not only 
futile but even mistaken to try to find a theory of knowledge 
in Hilbert's early foundational study. 

This interpretation seems to receive a further support 
when we look at general trends in mathematics in the late 
nineteenth century. As we saw earlier, in the field of 
geometry around that time, the view became widespread that 
geometry as a demonstrative or formal science is to be 
distinguished from geometry as a physical science. Seen from 

3 0 Letter to Frege of 29 December 1899 in Frege 1980, 38, my emphasis. 
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one angle, this distinction represented the mathematicians' 
demand for the autonomy and freedom of mathematics: by freeing 
geometrical terms from their assumed references and thus by 
relegating the question of objective validity, geometry can be 
developed in such a way that various operations, which 
previously could not be performed because of the restrictions 
arising from the tie to its "authentic" domain, can be carried 
out in a uniform and general manner. Seen from a philosophical 
perspective, however, this freeing of geometry from its special 
subject-matter was thought by many to imply that the "new" 
geometry is devoid of epistemic potency, as it were, and hence 
that questions concerning the epistemological status of 
geometry, if they were to be given a satisfactory answer, must 
be posed and considered with regard to the "old" geometry, 
which had its proper subject-matter. 

As a representative of this trend, Moritz Pasch's view 
presented in his influential Lectures on Modern  Geometry 

[Vorlesungen  iiber neuere Geometrie] (1882) might be mentioned. 
According to Pasch, geometry is, first and foremost, a natural 
science, whose concepts correspond to empirical objects, and, 
as such, receives justification from the facts of sensory 
intuition.31 On the other hand, with his clear awareness of the 
content-independent nature of deductive relations, Pasch 
recognized that geometry may be developed as a rigorously 
deductive science, which deals exclusively with the logical 

3 1 Pasch's view, while representative of the late nineteenth century 
tendency toward the separation between "formal" and "authentic" geometry, 
differs from other "empiricist" views of the time in that it considered 
the object of (authentic) geometry to be relations between bodies, rather 
than space or extension as such; accordingly, the validity of the 
geometrical axioms or what he calls "nuclear propositions" is established 
by sensory observation on bodies. For more on Pasch's view, see Nagel 
1978, 235-239. 



relations among geometrical propositions. Taken in this latter 
sense, geometry is a branch of logic and has no subject-matter 
and may be pursued without regard to epistemological concerns.32 

A similar tendency toward the separation between "formal" and 
"material" science is also detectable in other fields of 
mathematics in the mid to late nineteenth century. Algebra, 
which had traditionally been considered to be the general 
science of quantity and thus directly related to arithmetic as 
the theory of number, came to be viewed as a discipline which 
studies the transformations of symbols in accordance with 
certain specified rules, and, consequently, separated from 
general arithmetic or arithmetical algebra as the general 
theory of integers.33 Here too symbolic algebra as a formal 
science was considered as having no subject-matter (taken in 
the traditional sense) and thus no epistemological issues of 
its own. 

Accordingly, it might be thought that Hilbert's early 
foundational investigation is also to be understood against the 
background of this general tendency in the late nineteenth 
century mathematics, and, therefore, that it is in no way 
surprising if we should find no philosophy of mathematics in 
3 2 Pasch himself does not put his points in these terms. The view 
attributed to him here is rather "implied" by his formulation of issues. 
3 3 Here, I have in mind in particular the distinction between arithmetical 
and symbolic algebra introduced by George Peacock in his Treatise on 
Algebra (1842). According to Ernest Nagel, 

Peacock thus laid the basis for distinguishing between a system of 
marks having an explicit extrasystemic reference, concerning which 
questions of truth and falsity are significant; and a system of 
marks with no such explicit extrasystemic interpretation, concerning 
which questions of truth and falsity are meaningless. [Nagel 1978, 
180, emphasis in original] 

For a brief survey of the history of modern algebra, which focuses 
primarily on the works of English algebraists, see Nagel 1978, 166-193. 
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it. What is to be emphasized here, however, is that, unlike 
those nineteenth century mathematicians who viewed "pure" 
mathematics to be free from epistemological concerns, Hilbert 
does not seem to distinguish "logical" or "formal" geometry 
from "authentic" or "material" geometry, with regard to which 
philosophical questions can and must be posed and considered. 
Thus, insofar as Hilbert's foundational investigation is not 
motivated by concerns for truth, we would have to conclude 
that, for him, what is philosophical is not simply separated or 
bracketed but rather nonexistent. 

The above account, however, is not the only interpretation 
that can accommodate the absence of philosophical elements in 
Hilbert's early writings on the foundational issues. In the 
current literature in the philosophy of mathematics, it is 
sometimes claimed that Hilbert (temporarily) held the view 
called "deductivism" or "if-then-ism." 3 4 According to 
deductivism, mathematics is nothing but the business of 
deducing various results from axioms. It would follows that 
since deductive relations are independent of the content of 
statements, a deductivist does not have to commit himself to 
any particular view on the nature of mathematical objects: all 
that matters in mathematics is a deductive relation between 
statements, and it is irrelevant for him what the non-logical 
terms occurring in them represent or what it is for them to be 
true. Thus, on the deductivist reading, Hilbert's early 
foundational investigation does not contain any "philosophical" 
considerations (taken in the standard sense) not because he 

distinguishes "formal" mathematics as a branch of logic from 
3 4 To mention a couple of examples, Michael Resnik states that "Hilbert 
went through a deductivist period" [Resnik 1980, 105] . Stewart Shapiro 
also seems to endorse such a reading, entitling one section of Shapiro 
2000 "Deductivism: Hilbert's Grundlagen  der Geometrie." 
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"material" mathematics with its special subject-matter and 
considers them as pertaining to the investigation into the 
latter alone, but because, for him, mathematics just is a 
logical discipline and, as such, requires no philosophical 
discussions on such topics as the existence of mathematical 
objects and truths. 

What is puzzling, however, is the fact that, later in the 
aforementioned letter to Frege, Hilbert emphatically maintains 
that the consistency of a given system of axioms guarantees the 
"truth" of these axioms and the "existence" of the things 
defined by them: 

... as soon as I have laid down an axiom, it exists and is 
'true'; and this brings me now to a further important 
point in your letter. You write: 'I call axioms 
propositions ... From the truth of the axioms it follows 
that they do not contradict one another.' I found it very 
interesting to read this very sentence in your letter, for 
as long as I have been thinking, writing and lecturing on 
these things, I have been saying the exact reverse: if 
the arbitrarily given axioms do not contradict one another 
with all their consequences, then they are true and the 
things defined by the axioms exist. This is for me the 
criterion of truth and existence. [Frege 1980, 39-40] 

And this is no slip of the pen on Hilbert's part. A similar 
remark can be found in almost every work he composed in this 
early period.35 Given such textual evidence, we seem to have to 
reject as false the first, Bernaysian interpretation according 
to which, for Hilbert, pure mathematics distinguished from 
material mathematics has no subject-matter, and hence his early 
investigation into the former has no philosophical discussions 
on truth and existence. By contrast, on the second, 
deductivist account, Hilbert takes mathematics to consist in 
3 5 E.g. Hilbert 1900a, 1095, Hilbert 1900b, 1105, Hilbert 1905a, 134. 
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deductions from axioms, and thus he could adopt a "stance of 
agnosticism concerning the existence of mathematical objects 
and truths" insofar as "a mathematical deduction from axioms 
can be carried out without any presuppositions concerning the 
truth of the axioms or their ontology [Resnik 1980, 105]. On 
this reading, then, Hilbert need not but can maintain without 
contradicting himself that mathematics has its subject-matter. 

However, given that the chief merit of adopting the 
deductivist standpoint is such freedom to remain agnostic about 
the notoriously difficult philosophical issues, one might 
wonder why Hilbert would not take advantage of this freedom. 
Another point that seems to escape the deductivist account is 
the notion of truth and existence Hilbert presents in the 
quotation. Provided that he really means that the consistency 
of axioms guarantees their truth and the existence of the 
objects defined by them, it would follow that two consistent 
but mutually incompatible axiom systems would both be true. 
But how could, say, Euclidean and non-Euclidean geometries both 
be true?36 it seems obvious then that Hilbert is not using 
these concepts in the standard manner. And this explains why 
he could possibly speak of truth and existence while, at the 
same time, denying that his foundational investigation is 
motivated by the standard philosophical concerns for truth and 
so on. But, how, then, could we make sense of his remark? The 
deductivist account seems unable to explain Hilbert's intent 
insofar as it, just as other standpoints in the philosophy of 
mathematics, assumes the standard understanding of these 
notions. 

36 That is, assuming that they are both consistent. 
-129-



§5. In my opinion, what is implicit in Hilbert's approach 
is best understood as the relativization of the notions of 
truth and existence to the axiom system characterizing a field 
of knowledge. First of all, it is to be recalled that while, 
in Hilbert's axiomatic method, the non-logical terms occurring 
in the axioms of a theory are denied of system-independent 
meanings and denotations, they obtain (intra-systematic) 
meanings from their relations to each other formulated in the 
axioms. In accordance with this holistic conception of meaning 
and definition, Hilbert, like Dedekind, comes to the view that 
mathematical objects are not something existing independently 
of mathematical theories in which they occur and are waiting to 
be picked out by these theories, as it were. Rather, they just 
are (a system of) things that constitutes a domain satisfying 
the relational properties expressed in the axiom system and 
nothing more or less. Hilbert makes this point explicit in the 
1900 Paris address: 

The totality of real numbers, i.e., the continuum 
according to the point of view just indicated, is not the 
totality of all possible series in decimal fractions, or 
of all possible laws according to which the elements of a 
fundamental sequence may proceed. It is rather a system 
of things whose mutual relations are governed by the 
axioms set up and for which all propositions, and only 
those, are true which can be derived from the axioms by a 
finite number of logical inferences. In my opinion, the 
concept of the continuum is strictly logically tenable in 
this sense only. [Hilbert 1900b, 1105]37 

This view of mathematical objects is a crucial component of his 
"philosophy" of mathematics and appears to have remained 
invariable throughout his career. Still in 1922 Hilbert 

37 See also Hilbert 1900a, 1095. 



writes: "a real number is conceptually just a thing belonging 
to our system" [Hilbert 1922, 199]. 

As a consequence, for Hilbert, the notions of truth and 
existence should also be considered in relation to an axiom 
system. In the quoted letter to Frege, it is said that "as 
soon as I have laid down an axiom, it exists and is 'true'." 
In other words, if the existence of an object is implied by the 
axioms constituting a system, it exists, and, similarly, a 
statement is true if it is a logical consequence of the axioms. 
Since the axioms are consequences of themselves, on this 
conception, they are true and the objects defined by them exist 
as soon as they are laid down. With regard to the notion of 
truth, Hilbert thus writes elsewhere that "all propositions 
[Tatsachen] , and only those, are true [wahr] which can be 
derived from the axioms by a finite number of logical 
inference" [Hilbert 1900b, 1105] . 

But if, for him, truth and existence are relativized to an 
axiom system, why does he also maintain the need for a 
consistency proof? Would it not be the case that anything 
whose existence is implied by the axioms exists? Furthermore, 
how can we account for Hilbert's frequent remark about the 
equivalence of consistency and (mathematical) existence?38 To 
quote one such instance, Hilbert claims in the 1900 address: 

... the proof of the consistency of the axioms [of real 
numbers] is at the same time the proof of the mathematical 
existence of the complete system of real numbers or of the 
continuum. [Hilbert 1900b, 1105] 

3 8 See Hilbert 1900a, Hilbert 1900b, Hilbert 1905a. On one account, 
Hilbert identifies consistency and existence for most of his career. See 
Mancosu 1998, 178. 



On this question, Michael Hallett made the suggestion that 
Hilbert's view is best understood as a form of "internal 
realism."39 That is, instead of starting from the assumption 
that certain extra-theoretical objects and states of affairs 
exist and arguing that the objects that theories talk about 
correspond to these and their axioms express truths about 
these, Hilbert proposes that "if we are to continue to use such 
notions as 'existence' and 'truth of axioms', then these must 
be dealt with in a non-mysterious way via the notion of theory 
acceptance" [Hallett 1990, 225]. And once the question of the 
acceptability of a theory is settled in accordance with such a 
non-mysterious method, the only meaningful question about 
existence will be the one taken in the "internal" sense, which 
amounts to demonstrating, within an axiom system, a proposition 
of the form 3xA, even by non-constructive means. The proof of 
consistency, then, provides the required criterion for the 
acceptance of a theory in cognitively accessible terms. 
Understood thus, Hilbert is not precisely proposing to 
relativize the notion of existence (and of truth). But this 
does not mean that with the requirement of consistency, he is 
trying to answer the question of truth and existence considered 
in the traditional, external realist sense. Rather, his 
suggestion is to replace the standard, metaphysical notion of 
existence with the notion of theory acceptance formulated in 
terms of the consistency or the impossibility of deducing a 
contradiction in a finite number of logical steps. And he 
makes such a suggestion presumably because its alternative, 
i.e., the traditional manner of considering the issue of truth 
and existence, involves the reference to extra-theoretical 

3 9 Hallett 1990, 223-243, Hallett 1995, 147-148. 
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elements and has a danger of degenerating into the "game of 
hide-and-seek"; in short, it is motivated by his concern for 
the objectivity of mathematics. 

Hallett's account fits quite well with the textual 
evidence and seems capable of explaining why Hilbert insists on 
the necessity of a consistency proof while considering the 
notion of existence as being relative to the axiom system. 
However, as far as the notion of truth is concerned, it is not 
so clear whether Hilbert, as Hallett claims, thinks it 
necessary to justify the truth (taken in the external sense) of 
axioms and the propositions deducible from them through a 
consistency proof. That is to say, for the establishment of 
their truth, Hilbert does not seem to demand nothing over and 
above a proof within the relevant axiom system. For instance, 
consider the following remark in the 1922 essay: 

. . . despite the application of the boldest and most 
manifold combinations of the subtlest techniques, a 
complete security of inference and a clear unanimity of 
results reigns in analysis. We are therefore justified in 
assuming those axioms which are the basis of this security 
and agreement; to dispute this justification would mean to 
take away in advance from all science the possibility of 
its functioning.... [Hilbert 1922, 200] 

Hilbert here seems to be claiming that the fulfilment of the 
requirement of rigor (conceived in the sense we saw earlier) is 
just sufficient for the truth of the axioms of analysis. 

But why, then, does he insist on the need for a 
consistency proof? Admittedly, this is not an easy question to 
answer. In considering this, I want to call attention to the 
not so r e m a r k a b l e p o i n t that H i l b e r t ' s 
axiomatization/rigorization program is designed to be applied 



to an existing body of "knowledge" and hence is not a 
revisionist program. In other words, it is assumed in advance 
that there is a set of "correct" propositions, whose "truth" 
his program is supposed to establish, and these propositions 
function as "norms," as it were.40 It would seem then that an 
inconsistent axiomatization is undesirable for the reason that 
in it the negation of a "correct" proposition is deducible and 
thus the falsity of the "correct" one is provable (while, of 
course, the "correct" one is also deducible in such a system). 
In the 1905 lectures, Hilbert explains the source of our 
interest in the requirement of consistency along these lines: 

... from any contradiction, no matter how far removed, we 
can prove the falsehood of every correct statement. 
Hence, we could say that one contradiction in the whole 
realm of our knowledge [IVissen] acts like a spark in the 
gunpowder barrel and destroys everything. Therefore, 
every science [Wissenschaft]  must have an interest in 
dealing with a contradiction, no matter how far removed. 
[Hilbert 1905b, 217, quoted and translated in Hallett 
1995, 151, emphasis in original] 

Given Hilbert's denial of any extra-systematic denotation and 
meaning in his axiomatic method, the term "correct" here cannot 
be taken in the sense of some sort of correspondence between 
representation and the framework-independent object, and thus 
what he means by a "correct statement" should be read as a 
statement that is commonly accepted as a truth by the 
practitioners of the science in question. It would seem then 
that the requirement of consistency arises as a part of the 
general requirement of rigor, which states that the correctness 
4 0 In this connection, it might be recalled that, in the 1905 lecture 
notes, Hilbert defined the notion of completeness of an axiom system in 
terms of the deducibility of all the propositions commonly accepted as 
truths from its axioms. 



of (all and only) correct results be established by means of a 

finite number of steps based upon a finite number of 

assumptions. 4 1 

4 1 In the 1935 article "Hilbert's investigations into the foundations of 
arithmetic," Bernays reports that Hilbert considered consistency as a 
requirement of rigor: 

... the complete certainty of consistency is regarded by Hilbert as 
a requirement of mathematical rigor. [Bernays 1935, 201-202, my 
translation] 

[Die vollige GewiSheit der Widerspruchsfreiheit erachtet aber 
Hilbert als ein Erfordernis der mathematischen Strenge.] 
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Chapter IV 
The Path to Hilbert's Program 

§1. In the last chapter, we saw how, for Hilbert, the 
need for a consistency proof could and did arise from the 
reasons that have nothing to do with the epistemological 
concerns for certainty and truth (taken in the standard, direct 
realist sense). In the present chapter, we will examine how 
Hilbert actually tries to demonstrate the consistency of 
arithmetic in the 1905 essay. But before getting into this, I 
will first take a brief look at his first consistency proof 
presented in the Foundations  of Geometry  and consider some 
important points related to the problem of consistency. Now, 
if we start our discussion with the commonly accepted account 
in the current literature of this proof, it would typically 
look like this: 

Using techniques from analytic geometry, Hilbert (1899) 
constructed a model of all of the axioms using real 
numbers, thus showing that the axioms are 'compatible', or 
consistent. In contemporary terms, he showed that the 
axioms are satisfiable. [Shapiro 2000, 153] 

That is to say, Hilbert proved the (relative) consistency of 
the axiom system of geometry by assigning to its primitive 
terms certain arithmetical objects in such a manner that its 
axioms all come out true under the proposed interpretation. 
The end of the story. To be sure, the standard, model-
theoretic reading of Hilbert's consistency proof, I think, 
captures the kernel of his argument, but, in simply 
pigeonholing it in accordance with the modern understanding of 
semantics, we might be in danger of overlooking something of 
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philosophical importance. To begin with a minor point, the 
Hilbert of circa 1900, as was briefly noted above in passing, 
had yet to arrive at what we today call the "syntax/semantics" 
distinction, and his conception of consistency in this early 
period is, strictly speaking, neither syntactic nor semantic, 
but, simply, deductive: in the 1899 essay, it is stated that a 
set of axioms is consistent if "it is impossible to deduce from 
them by logical inference a result that contradicts one of 
them" [Hilbert 1899, 29]. It should not be thought, then, that 
Hilbert's proof there consists in finding a "model" for the 
disinterpreted  formulae of the formalized Euclidean geometry. 

How then does Hilbert's proof proceed? As we saw above, 
while, in Hilbert's axiomatic method, the non-logical terms 
occurring in an axiom system are denied of extra-systematic 
denotation and meaning, they are not empty formalisms and do 
retain their descriptive character. But, on the other hand, 
since their meaning is determined solely by the logical 
relations formulated in the axioms, they can be considered as 
place-holders or variables, for which any concepts can be 
substituted. Hilbert thus writes in a letter to Frege that a 
theory can be considered as a "scaffolding or schema of 
concepts together with their necessary relations to one 
another" and that "the basic elements can be thought of in any 
way one likes."1 It would seem then that the axioms of a 
theory, taken in the sense of the Hilbertian axiomatics, can be 
construed as propositional functions, from which we can obtain 
(true or false) propositions by substituting certain concepts 

1 Letter to Frege of 29 December 1899 in Frege 1980, 40. 
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for the variables occurring in them.2 And, as the quotation 
indicates, Hilbert himself seems to consider axioms in this 
manner when dealing with questions concerning their 
independence and consistency.3 

On this understanding of axioms, one way of establishing 
their consistency would indeed be to appeal to the so-called 
method of models, that is, to find a set of terms or concepts 
which, when substituted for the variables occurring in the 
axioms, converts all of these propositional functions into true 
p r o p o s i t i o n s . 4 in the Festschrift,  Hilbert constructs a model 
for his geometrical axioms using the concepts of the theory of 
the real numbers. As an illustration, let us consider (part 
of) the interpretation (call it I) and see how one of Hilbert's 
axioms comes out true on I. Of the five primitive terms found 
in Hilbert's axiom system, i.e., "point," "line," "on," 
"between," and "congruent" (as applied to segments and to 
angles), the two terms, "point" and "congruent" (as applied to 
segments), for instance, receive the following assignments by 
J: 5 

i) By a "point" we mean an ordered pair (x, y) of real 
numbers; 
ii) The segment, denoted by (xlr yi) (x2, yi) , is said to 

2 For example, from the propositional function "x is an F," we can 
obtain a (true) proposition "Kafka is a cat" by substituting the 
individual concept Kafka  the cat for x and the concept cat for F. 
3 By contrast, Resnik is of the opinion that Hilbert viewed the primitives 
as schematic letters rather than variables. See Resnik 1980, 112. 
4 In the 1905 essay, he calls this method "the method of a suitable 
specialization, or of the construction of examples" [Hilbert 1905a, 135]. 
5 For the sake of brevity, here I list only the assignments for those two 
terms. In the full list, each of the five primitives receive an 
assignment by I. 



be "congruent" to the segment, denoted by (x3, y 3) (x4, y 4) , 

if and only if 
(x2 - Xi)2 + (y2 - y1)2 = (x4 - x 3) 2 + (y4 - y 3 ) 2. 

Under the assignments made by I, one of the axioms 
characterizing the concept of congruence, which states that "if 
two segments are congruent to a third one they are congruent to 
each other," would read: if two segments (xi, yi) (x2, y 2) and 
(x3, y 3) (x4, y 4) are congruent to a third segment, denoted by 
(X5, y 5) (x6, y6) , then they are congruent to each other. That 
is, if (x2 - xi)2 + (y2 - yi)2 = (x6 - x 5) 2 + {ye ~ y$)2 and (x4 
- x3)2 + (y4 - y 3) 2 = (x6 - x5)2 + (y6 - y5)2, then (x2 - Xi)2 + 
(y2 - yi)2 = (x4 - x 3) 2 + (y4 - y 3) 2. It is fairly easy to see 
that the truth of this proposition follows solely from the 
relational properties of "=" by the rules of logic.6 This is 
rather a trivial case, and, of course, there are many cases 
where much care and ingenuity is required to demonstrate the 
truth of the (arithmetical) propositions resulting from the 
substituting various concepts for the (predicate) variables 
occurring in the geometrical axioms in accordance with the 
proposed interpretation.7 But the important point here is 
that, on the proposed interpretation, each of the geometrical 
axioms (qua propositional functions) is converted to a true 
proposition of the theory of real numbers, and that Hilbert 

6 Let us call the three segment "a," nb," and "c" respectively. What we 
have to do here then amounts to showing that if a = c and b = c, then a = 
b. Suppose a = c. and b = c. It follows from b = c by the reflexivity of 
"=" that c = b. Then, by the transitivity of "=," it follows from a = c 
and c = b that a = b. 
7 For more "interesting" cases, see Eves 1990, 92-98. 
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succeeded in establishing its truth in some appropriate manner 
and thereby proving the consistency of the axiom system. 

This, however, is not the end of the story: we have yet 
to understand why and how precisely the truth of the 
geometrical axioms on I amounts to their consistency. One 
might think that truth clearly implies consistency (possibility 
of truth) and that no further explanation is necessary, but 
that is not so. To see this, consider in what sense the 
"interpreted" axioms are said to be "true" here. In the above 
example, we saw that one of the axioms characterizing the 
notion of congruence, when interpreted according to the 
assignments made by J, is true because it can be proved from 
the relational properties of " = " by the use of the logical 
rules. What we must recognize, however, is that, strictly 
speaking, both the axiom(s) defining the meaning of "=" and the 
rules of logic are a part of the axiom system characterizing 
the theory of real numbers. In other words, the proposition 
resulting from the proposed interpretation is true in the sense 
that it is implied by the axioms of this theory; it is a truth 
of the theory of real numbers. This circumstance might be more 
easily seen in cases where the demonstration of (the truth of) 
an "interpreted" proposition clearly involves the use of 
various axioms of arithmetic, but, the point is the same. 

It follows that what we are really doing when constructing 
a model for an axiom system A is to assign to the primitive 
terms of A concepts of some other axiom system B in such a way 
that the axioms of A are logical consequences of the axioms of 
B. What is implicit in the process of "constructing" a model 
is then the recognition that the logical relations holding 
among the non-logical concepts occurring in the axioms of A are 



structurally similar to those holding among the non-logical 
concepts occurring in a certain set V of theorems of B. 

Furthermore, since the process of deduction depends in all its 
parts solely upon these logical relations, and thus completely 
independent of the non-logical content of the propositions, if 
a certain proposition PA is deducible from the axioms of A, 
then its counterpart or dual PB (i.e., the proposition 
structurally similar to PA) is deducible from T, and hence from 
the axioms of B. Thus, if a contradiction is ever deducible in 
A, then a contradiction must arise in B as well. To put this 
contrapositively, a contradiction never arises in A insofar as 
it is impossible to deduce one in B; or, more simply, A is 
consistent if B is consistent. That is, in assigning to the 
basic terms of an axiom system A concepts of some other axiom 
system B and further demonstrating the truth of the resultant 
propositions on this interpretation, we thereby establish the 
consistency of A conditional upon the consistency of B, or, to 
put it differently, we thereby reduce the consistency of A to 
that of B. That Hilbert sees the matter in this way can be 
confirmed by his remark in the Paris address "Mathematical 
Problems," where he summarizes the content and scope of his 
consistency proof for the geometrical axioms: 

In geometry, the proof of the consistency of the axioms 
can be effected by constructing a suitable field of 
numbers, such that analogous [analoge] relations between 
the numbers of this field correspond to the geometrical 
axioms. Any contradiction in the deductions from the 
geometrical axioms must thereupon be recognizable in the 
arithmetic of this field of numbers. In this way the 
desired proof for the consistency of the geometrical 
axioms is made to depend upon the theorem of the 
consistency of the arithmetical axioms. [Hilbert 1900b, 
1104] 



Now, does this mean then that any consistent proof by the 
method of models is a relative consistency proof and that the 
method of models is incapable of establishing the consistency 
of an axiom system in the absolute sense? Yet, there seems to 
be cases in which we feel convinced to have established the 
absolute consistency of a set of sentences in this method. 
More specifically, we seem to feel this way especially when the 
domain of a model is finite, that is, the domain specified by 
an interpretation consists of only finite number of elements. 
In such a case, we can, in principle, verify  the truth of a 
sentence on some interpretation I without resorting to the 
method of proof (which involves the use of the rules of 
inference) even if the sentence in question is a 
quantificational sentence. One might think then that if it is 
possible to construct a finite model for an axiom system, such 
a model, when constructed, would establish the absolute 
consistency of the system. This, however, is not true. 
Neither the finitude of the size of a model nor the 
verifiability of the "axioms"8 on J, in itself, implies the 
possibility of an absolute consistency proof. The first point 
to be stressed is that the verifiability of the axioms of a 
system (on I) , while enabling us to establish their truth 
without resorting to the method of deduction from the axioms of 
some other system, does not make their "truth" absolute or 
system-independent. 

Suppose we try to establish the consistency of the 
sentence (-form) "There exists an x such that x is i?-related to 
8 I.e., the propositions resulting from the assignments by I of certain 
concepts to the variables occurring in the axioms (which are taken to be 
propositional functions). 



b" by giving the interpretation I which assigns 2 to "b" and 
the "less-than" relation to "R" and whose domain is {1, 2, 3}. 
The sentence(-form), when interpreted, would be converted to 
something like: "There exists a number (in the domain) such 
that it is less than 2." This sentence is logically equivalent 
to the sentence "1 is less than 2 or 2 is less than 2 or 3 is 
less than 2," and its truth (on I) can be verified by checking 
the truth-value of the three disjuncts one by one and showing 
that at least one of them is true (on I). What is to be seen 
here is that, while, in this case, the truth of "(3x)Rxjb" under 
the proposed interpretation can be established without any 
explicit reference to an axiom system, this does not mean that 
its truth is to be taken in some system-independent sense. 
Indeed, considered strictly, the truth of the interpreted 
sentence is relative to the theory of number insofar as what 
those objects and relations which the sentence is about are 
formulated by the axioms of that theory. Consequently, the 
impossibility of deducing a contradiction from the sentence in 
question and thus its consistency, despite the verifiability of 
its truth (on I) , depends upon the consistency of the 
background theory, i.e., the theory of number, in terms of 
whose concepts the proposed model is constructed. 

In fact, this is nothing more than the recapitulation of 
what we saw above. That is, constructing a model for an axiom 
system A is tantamount to finding a set of propositions T which 
are logical consequences of the axioms of some other system B 
and are structurally similar to the axioms of A. Hence, no 
matter whether the domain of the theory characterized by the 

axiom system B consists of finite number of elements,9 the fact 
9 More precisely, as a set may be finite, denumerable, or uncountable, so 
a model is finite, denumerable, or uncountable. 
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remains that whatever is implied by the axioms of A is implied 
by r and by the axioms of B, and thus, A is consistent if B is 
consistent. It is true that if we had already established the 
consistency of B in the absolute sense, i.e., without reducing 
it to the consistency of yet another system, then the 
construction of a model for A using concepts of B, in 
conjunction with the knowledge of B's consistency, would 
establish the absolute consistency of A. But since the domain-
size of a theory obviously has no bearing on its consistency, 
the finitude of (the domain of) B does not imply the (absolute) 
consistency of B, and thus all that is achievable by the 
construction of a finite model of A in B is no more than the 
consistency of A relative to that of B. 

Despite all this, however, it is to be noted that there 
exists, or so we commonly believe, a way in which we can 
establish the absolute consistency of an axiom system by means 
of the method of models. As we just saw, the construction of a 
model could establish the absolute consistency of an axiom 
system A if (and only if) it is accompanied by the knowledge of 
the absolute consistency of the background theory from which 
the meanings assigned to A's primitive terms are adapted. What 
is to be seen here is that we are in possession of such a 
system whose absolute consistency is "given" to us, as it were. 
It is the real world, or more precisely, the set W of the 
propositions representing the states of affairs constituting 
it. To be sure, W is not a deductive system. But, no matter 
what exactly is meant by the term "the real world," we believe 
that in it there exists no contradictions. Correspondingly, 
the system consisting of the propositions representing the real 
world, we believe, is free of contradiction and is consistent 



in the absolute sense.10 Thus, if an interpretation is devised 
for the axioms of A in such a manner that the resulting 
propositions are members of M, then, given the consistency of 
W,  A is shown to be consistent.11 This perhaps explains why we 
feel to have established the absolute consistency of a 
collection of propositions when we have come up with a 
"concrete" model. It is to be recognized, however, that, even 
in such a case, what accounts for the consistency of the 
propositions in consideration is not their "truth" on the 
proposed interpretation per se, but rather the structural 
similarity holding between them and some members of VJ and the 
consistency of W. 

§ 2 . At this point, let us go back to Hilbert's 
consistency proof for his geometrical axioms in the 1899 
Festschrift.  As we saw above, it consists in assigning objects 
and relations adapted from the theory of real numbers to the 
geometrical axioms considered (implicitly) as a set of 
propositional functions. But since it is conducted in 
accordance with the method of models, all that it achieves is a 
consistency proof for geometry in the relative, conditional 
sense. The question then arises of the consistency of the 
arithmetical axioms, to which the consistency of the 
geometrical axioms is reduced. Once again, one might try to 
1 0 That is, W's consistency does not depend upon the consistency of some 
other system. 
1 1 It might be said that such a model need not correspond to the actual 
states of affairs and that all that is required here is its correspondence 
to some "possible" states of affairs. This is probably so. But my sole 
intention here is to point to our belief in the possibility of an absolute 
consistency proof by means of the method of models and to explain how this 
is supposed to work, and, accordingly, here I do not embark on the logico-
metaphysical considerations which are required to unpack the exact content 
of the "possibility" contained in our "intuition." 
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achieve this by constructing a model and reducing the 
consistency of arithmetic to that of some other branch of 
mathematics, but we cannot go on like this for ever: in this 
way we would never be able to "discharge" the antecedent of the 
conditional statement "A is consistent if B is consistent." 

For  this and the other reasons we saw earlier, Hilbert came to 
think that not only is a consistency proof necessary for the 
arithmetical axioms, but also "a direct method is needed for 
the proof of the consistency of the arithmetical axioms" 
[Hilbert 1900b, 1104, my emphasis] . How, then, did Hilbert 
tackle this task? 

In light of the above consideration, a consistency proof 
in the absolute sense can be obtained for an axiom system if a 
concrete.model is constructible. But, needless to say, as far 
as the axioms of arithmetic is concerned, this path does not 
seem open. As Dedekind's and others' investigations into the 
foundations of analysis revealed, the construction of 
arithmetic (in the sense of the theory of real numbers) 
requires, at minimum, the notion of the totality of natural 
numbers as a completed set. Dedekind, as we saw, believed to 
have established the consistency of this notion by the method 
of models, but it involved the use of the problematic concept 
and resulted in complete failure. As he was later to maintain 
vehemently and repeatedly, Hilbert was, from the outset, of the 
view that "the infinite is nowhere to be found in reality" 
[Hilbert 1926, 201] and did not consider model-construction as 
a solution to the problem. Thus, when he says in the quotation 
that a "direct" method is needed for the task, he specifically 
means a method that does not involve modelling. 

In the Paris address., Hilbert claims that he is 



"convinced" that a direct proof for the arithmetical axioms can 
be obtained "by means of a careful study and suitable 
modification of the known methods of reasoning in the theory of 
irrational numbers" [Hilbert 1900b, 1104].12 But it was not 
until in the 1905 essay that he presented the outline of a 
direct consistency proof. Its main idea is expressed in a 
deceivingly simple statement: we can "consider the proof itself 
as a mathematical object" [Hilbert 1905, 137] . As we saw 
above, the method of definition by axioms enabled Hilbert to 
formulate the consistency problem as that of the consistency of 
an axiom system and thus of the impossibility of deducing a 
contradiction in it. With this "deductional" conception of 
consistency in hand, Hilbert came to the realization that the 
consistency of an axiom system can be established without 
reducing it to the consistency of some other system if it is 
possible to show that, by following the rules of inference 
employed in mathematics, no two propositions can be derived in 
the axiom system that contradict each other. More precisely, 
his task is to prove a (metatheoretical) statement about the 
proofs constructible in the axiom system of arithmetic that, 
for every such proof, it is not the case that a finite number 
of inferential steps based upon the axiom set can lead to 
contradictory results. Formulated thus, this way of proving 
consistency is relative to the logical framework of the axiom 
system in consideration insofar as any small change in the 
rules of inference could affect the result of the proof, but it 
can establish the desired result directly, i.e., without regard 

l 2 In "On the Concept of Number," Hilbert writes: "To prove the 
consistency of the above axioms [for arithmetic], one needs only a 
suitable modification of familiar methods of inference" [Hilbert 1900a, 
1095] . 



to the consistency of a second system.13 

And this is not all. In attempting to achieve this goal, 
Hilbert introduces a completely new way of tackling the 
problem. Instead of meditating on the content of the 
propositions (or propositional functions) constituting an axiom 
set and the totality of the propositions deducible from them by 
the inference rules in some conceptual manner, Hilbert proposes 
to consider the axiom system in its outer garments, as it were. 
More precisely, he assumes14 that propositions are made up of 
what he calls "thought-objects" [Gedankendinge]  and proposes to 
consider the "syntactic" properties of the propositions qua the 
combinations of such objects by abstracting from their meaning-
content. With this switch of the viewpoint, Hilbert tries to 
solve the problem of consistency. 

Let us now briefly consider how he thought this "direct" 
consistency proof would proceed by following the sketch he drew 
in the 1905 paper.15 According to this sketch, the proof starts 
with the introduction of two "thought-objects," 1 (one) and = 
(equals), and we consider all the (finite) combinations 
generable by concatenation from these simple objects. For 
example, 

1 =, (11 =) (= =1), ( (11) (1) ( = ) ) (= =), 1 = 1 

are such combinations. (Simple) thought-objects and the 
combinations generable from them are the "building blocks" of 

1 3 Or so it seemed to the Hilbert of circa 1905. 
1 4 Strictly speaking, it is not quite clear whether he "assumes" that this 
is the case or is actually of the opinion that propositions consists of 
thought-objects. 
1 5 For the sake of clarity and brevity, the proof is slightly modified. 
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arithmetical propositions, but, at this point, none of these 
should be thought to have meaning. At this point, Hilbert 
introduces the logical connectives: for negation,16 "u." for 

conjunction, "o." for disjunction, "|" for implication, and the 
"A (x ( 0))" and "A(x< u>) for existential and universal 
quantification over proposition A containing the "arbitrary" x, 
respectively. Thus, well-formed formulae of the theory are, 
presumably, generated in the usual, recursive manner.17 He 
then lists the two axioms characterizing the notion of = 
(equals): 

1. x = x, 

2 . [x = y u. w{x) | w{y)  ] ,18 

where "w" denotes some (unexplained) propositional function. 
The following three axioms are later introduced with the 
addition of three further thought-objects, u (infinite set, 
infinity), f (successor), and f' (accompanying operation):19 

3 . f (ux) = u(f'x) , 
4. f (ux) = f (uy) |ux = uy, 
5. -.[f (ux) = ul] , 

1 6 In Hilbert's paper, "-" (bar) is put on the top of a "formula" or a 
combination, rather than "->" being attached in front. 
1 7 No axioms are set up for the logical connectives, and their meanings 
seem to be understood in the customary sense. Incidentally, here the 
existential quantification is considered as the abbreviation of 
disjunction while the universal quantification as the abbreviation of 
conjunction. 
1 8 That is to say, if x = y and w(x) , then w(y). 
1 9 In Hilbert's original, Fraktur  characters are used instead of bold 
letters. 



where the "arbitrary" object x stands for any of the five 
thought-objects and the combination ux (e.g., ul, u(ll), uf) is 
an element of the infinite set u. Although Hilbert does not 
say so, these axioms correspond to (part of) the axiom set 
Peano gave for the natural number system.20 Very crudely, 
Axiom 3 states that the successor of an element of the infinite 
set u (or, more simply, the successor of a natural number) is a 
natural number; Axiom 4 states that two natural numbers are 
equal if their successors are; and Axiom 5 says that 1 is not 
the successor of any natural number.21 As in the case of the 
first two axioms, these axioms contextually fix the meanings of 
the basic terms occurring in them. 

How then is a proof carried out in this system? Hilbert 
mentions two rules of "inference." According to the first, a 
new formula can be introduced by substituting for the 
"arbitrary" objects x and y occurring in the above axioms any 
arbitrary combination of the five simple objects taken as 
primitive. The second corresponds to the so-called "law of 
syllogistic reasoning": from A|B and B|C, A|C can be 
obtained.22 These rules are apparently considered as what we 
today call the rules of transformation; for here there is no 
mention of "implication" or "truth-preservation." 

With all this machinery set up, we are now ready to 
explain Hilbert's direct consistency proof. As was stated 
earlier, his goal is to demonstrate that, by following the 
rules of inference antecedently specified, no two propositions 
2 0 Peano, in turn, based his axiom set upon Dedekind's presentation. 
2 1 The point was duly observed in Poincare 1906a, 1041. Incidentally, the 
Peano axiom set includes two more axioms, the principle of complete 
induction and the one that states that 1 is a natural number. 
2 2 Later in the 1905 essay, Hilbert calls these two rules those of 
"specialization" and "combination," respectively. 
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can be derived in the axiom system that contradict each other. 
And since, in this system, two contradictory thoughts are 
expressed by two combinations of the forms a and ->a, 
respectively, its consistency can be established by showing 
that such a pair of combinations can never be obtained from the 
axioms (taken in the sense of the axiom-schemata) by the 
applications of the inference rules (taken in the sense of the 
transformation rules). 

Now, the idea behind the proof is as follows. As a close 
look at the five axiom(-schemata) and the transformation rules 
will reveal, Axiom 5 is the only one giving rise to 
propositions or combinations of the form ->a (since the other 
four axiom-schemata are all of the form a and since there is no 
rule allowing us to introduce ->) . It follows that a 
contradiction arises if and only if it is possible to derive a 
combination of the form: 

6. f(ux<°>) = ul.23 

But such a combination cannot result from Axioms 1-4 in any 
way. More specifically, Hilbert tries to establish this by 
introducing the definition of the following syntactic property: 
the equation or the combination of the form a = b is called a 
"homogeneous" equation if a and b consists of the same number 
of thought-objects. For example, 

(11) = (fu), (fll) = (ul =), (fulll =) = (uulllu) 

2 3 (The associated proposition of) 6 states that the combinations of the 
form f(uxl°l) = ul belong to the class of beings, whereas (the associated 
proposition of) Axiom 5 states that they belong to the class of non-
beings . 



are all homogeneous equations. With this property in hand, 
Hilbert then proves the impossibility of deriving a 
contradiction by showing that every combination derivable from 
Axioms 1-4 by the transformation rules is a homogeneous 
equation while any combinations of the form specified in 6 are 
not a homogeneous equation and thus cannot be obtained from 
Axioms 1-4 by the use of the transformation rules. 

To recapitulate the general features of this proof, it is 
designed to establish the consistency of an axiom system 
through the consideration of the syntactic entities employed to 
represent this system. For this purpose, a certain syntactic 
property is defined. To be more precise, it is defined to be 
such a property that if it belongs to the combination 
expressing a proposition A, it does not belong to the 
combination expressing the proposition that forms a 
contradiction with A. 2 4 It is then shown that every combination 
derivable from the axioms through the inference rules has this 
p r o p e r t y . 2 5 More specifically, it is shown that the 
combinations obtainable through the application of the 
substitution rule to the axiom-schemata have the property and 
that the transformation rules, when applied to these 
combinations, produce combinations that also have the property. 
Thus, if a combination is derivable from the axiom-schemata, it 
has the property. But since, in such a case, its 
"contradictory" combination, by definition, does not have the 
property, it is not derivable from the axiom-schemata. Hence, 
it is impossible that combinations expressing a proposition and 

2 4 In Hilbert's proof, a complication arises because the sentences of the 
theory are associated with certain "artificially" concocted propositions. 
2 5 For the sake of explanation, the description slightly differs from 
Hilbert's proof in the 1905 essay. 



any one contradictory to it are both derivable from the axiom-
schemata . 

There are a few things to be noted about Hilbert's 
proposal for a direct consistency proof made in the 1905 essay. 
First and foremost, as the above observation seems to indicate, 
some of the main features of his later consistency program, 
albeit very vaguely, are already detectable in this early 
attempt. The axioms of arithmetic (in the sense of the theory 
of natural numbers) are first presented with the rules of 
inference which are employed in proofs. We then completely 
abstract from the meaning-content of these propositions, focus 
on the syntactic features of these complex objects, and 
investigate proofs themselves as finite (syntactic) objects. 
By means of this "abstractive" procedure, which Hilbert later 
calls "formalization," and the subsequent syntactic 
consideration, the problem of consistency is then formulated 
and treated as the purely syntactic problem of the 
(un)derivability of a certain formulae in the axiom system as 
formalized. Second, the idea of studying mathematical proofs 
by abstracting from their content requires that the logic and 
the logical language employed in mathematical reasoning be 
specified. In keeping with his axiomatic treatment of geometry 
and arithmetic, what Hilbert should have done is first to 
"rigorize" our knowledge of logic in the manner of his 
axiomatic method and put them into such a condition that purely 
syntactic consideration is applicable. To be sure, in the 
essay, Hilbert emphasizes the need for "a partly simultaneous 
development of the laws of logic and arithmetic" and develops 
"logic" with arithmetic proper within one common frame. But 
the logic developed there is obviously too meager to cover all 



those inferential processes found in mathematical proofs, and 

the extra-systematic meanings of the logical terms are still 

presupposed.26 [without axiomatization, logical terms become 

symbols without "formal" meaning.] 

This lax attitude toward the logical framework of 
arithmetic, combined with the absence of a clear distinction 
between theory and metatheory, accounts for the ultimate 
failure of Hilbert's attempt in the 1905 essay. As we saw 
above, at the heart of Hilbert's direct, syntactic consistency 
proof lies the insight that there is a certain (syntactic) 
property that is shared by every formula derivable from the 
axioms of a (formal) system but not by its "contradictory" 
formula. Hilbert tries to establish this by showing that the 
initial items have such a property and that the formal rules of 
inference transmit the property, that is, items obtained 
through the application of the rules also have the property. 
In other words, in trying to establish the consistency of a 
(partial) system of arithmetic, Hilbert employs the so-called 
principle of mathematical induction. This, however, raises a 
serious problem for him. For since his ultimate goal is to 
obtain a proof for the consistency of full arithmetic and since 
any appropriate axiomatization of arithmetic would include the 

2 6 Towards the end of the essay, Hilbert talks of the need for adding "the 
familiar modes of logical inference" such as { (a —> b) & (~>a —» b) } —> b 
and {(a v b) & (a v c)} {a v (b & c)} [Hilbert 1905a, 131], 

-156-



induction principle, 2 7 to use this principle in the proof would 

be to presuppose the legitimacy of one of the very principles 

he is supposed to establish; in short, his approach to the 

foundations of arithmetic would be circular. 

§ 3 . As is well known, the apparent circularity involved 

in the use of the induction principle in Hilbert's 1905 attempt 

was first pointed out by another great mathematician of the 

time, Henri Poincare, in a series of articles which he 

published in 1905 and 1906 in response to the recent rise of 

the logicist movement in all over E u r o p e . 2 8 Seen from a 

technical perspective, Poincare's criticism gave Hilbert an 

occasion to reflect upon what is involved in metatheoretical 

investigations and thus to develop the inchoate effort of 1905 

into the sophisticated, proof-theoretic project of the 1920s. 

Accordingly, in the literature, it is usually touched upon in 

2 7 That is, if one does not choose to take a set-theoretical approach. As 
was briefly noted above, in Dedekind's (and in Frege's) attempt, the 
induction principle is deducible from the concept of number, which, in 
turn, is defined in terms of logic (including set theory). In addition to 
the discovery of set-theoretical paradoxes, Hilbert refers to the 
following point to explain his reservation about the (traditional) 
logicist standpoint: 

If we observe attentively, however, we realize that in the 
traditional exposition of the laws of logic certain fundamental 
arithmetic notions are already used, for example, the notion of set 
and, to some extent, also that of number. Thus, we find ourselves 
turning in a circle, and that is why a partly simultaneous 
development of the laws of logic and of arithmetic is required if 
paradoxes are to be avoided. [Hilbert 1905a, 131] 

Note, however, that Hilbert here considers the notion of set to be 
arithmetical. 
2 8 Three articles are published under the title "Les mathematique et la 
logique."  Louis Couturat, who was a chief proponent of the tenet in 
France, was apparently Poincare's main target in these articles. In 
addition, Cantor, Zermelo, Russell, Peano, and Hilbert, among others, were 
all criticized to varying degrees. 



the context of the pre-history of Hilbert's program and often 
explained as merely a technical obstacle which is to be 
overcome by Hilbert's later distinction between two types of 
induction. To treat Poincare's objection in this way, however, 
is to fail to recognize the philosophical significance it has 
for the subsequent development of Hilbert's foundational views. 
For this reason, I shall discuss the dispute briefly in what 
follows. 

At first glance, it might seem that not only does 
Poincare's interest in foundational issues of mathematics agree 
with Hilbert's, but also the former approaches these issues in 
essentially the same manner. Of the "formalist" tendency found 
in the "new mathematics," Poincare says the following: 

What strikes us in the new mathematics is its purely 
formal character: 'We think,' says Hilbert, 'three sorts 
of things, which we shall call points, lines, and planes. 
We stipulate that a line shall be determined by two 
points, and that in place of saying this line is 
determined by two points, we may say it passes through 
these points, or that these two points are situated on 
this line.' What these things are, not only we do not 
know, but we should not seek to know. We have no need to, 
and one who never had seen either point or line or plane 
could geometrize as well as we. . . . Thus, be it 
understood, to demonstrate a theorem, it is neither 
necessary nor even advantageous to know what it means. 
... I do not make this formal character of his geometry a 
reproach to Hilbert. This is the way he should go, given 
the problem he set himself. He wished to reduce to a 
minimum the number of the fundamental assumptions of 
geometry and completely enumerate them .... [Poincare 
1905, 1024] 

And how should we understand such fundamental assumptions? 
According to Poincare, (some of) these assumptions should be 



thought of as the so-called "definition by postulates,"29 which 
formulate the fundamental relations uniting the basic notions 
of a system and which enable us to demonstrate all their other 
properties:30 

Thus certain indemonstrable axioms of mathematics would be 
only disguised definitions. This point of view is often 
legitimate; and I have myself admitted it in regard for 
instance to Euclid's postulate. [Ibid., 1026] 

Given that these postulates are merely "disguised definitions," 
they are not, as were traditionally thought, self-evident 
truths about a certain subject-matter and are neither true nor 
false. This, however, does not mean, says Poincare, that the 
introduction of a system of postulates is a completely 
arbitrary matter and that there needs to be no justification 
for their introduction. What we must see here, in his view, is 
that, while postulates are nothing more than definitions, 
definitions, in fact, involve the assumption of the existence 
of the defined object. But, since mathematics is independent 
of the existence of material objects, the meaning of the term 
"existence" in mathematics can mean only "freedom from 
contradiction." It thus follows that "in defining a thing, we 
affirm that the definition implies no contradiction" [Ibid., 
1026] : 

If therefore we have a system of postulates, and if we can 
demonstrate that these postulates imply no contradiction, 
we shall have the right to consider them as representing 
the definition of one of the notions entering therein. 

2 9 For the reason we shall see shortly, Poincare reserves the term "axiom" 
for some other use. 
3 0 I.e., axioms taken in the sense of Hilbertian axiomatics. 
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[Ibid., 1026] 

Moreover, because elsewhere Poincare claim that "to have the 
right to lay down a system of postulates, we must be sure they 
are not contradictory, " it appears that he considers 
consistency as a necessary and sufficient condition for the 
legitimacy of concept-formations. 

How then does he think the consistency of a postulational 
system can be established? Poincare lists three possible ways 
of showing that a definition implies no contradiction. The 
first is the method of models. More specifically, he seem to 
have in mind here a proof by concrete model, as is indicated by 
the remark that "such a direct demonstration by example is not 
always possible."31 if a concrete model cannot be found, "it is 
necessary," says Poincare, "to consider all the propositions 
deducible from these postulates considered as premisses, and to 
show that, among these propositions, no two are 
contradictory."32 This then corresponds to Hilbert's direct 
method. According to him, this method can be subdivided into 
two cases. On the one hand, the number of the propositions 
deducible from the postulates in question might be finite. In 
such a case, we can directly verify the non-occurrence of such 
a pair. This case, however, is "infrequent and uninteresting," 
says Poincare. The number of the deducible propositions, on 
the other hand, might be infinite. If this is the case, a 
direct verification is no longer possible. And thus, in order 
to establish the underivability of contradictory propositions, 
we must resort to the so-called "principle of complete 

31 Poincare 1905, 1026. 
32 Poincare 1905, 1026. 



induction," which, according to Poincare's formulation, reads: 

If a property be true of the number 1, and if we establish 
that it is true of n + 1 provided it be of n, it will be 
true of all the whole numbers. [Poincare 1905, 1025] 

Now, as was noted above, a problem seems to arise in the 
case where the "postulates" whose consistency we are trying to 
establish by this method are those of arithmetic. Since, in 
this case, the first two methods are unable to provide the 
desired result, the third method must be employed for the 
proof. But to do so is to try to establish the consistency of 
a system of postulates by appealing to the very principle whose 
legitimacy is in question. Poincare points out that this is 
what happens and what is overlooked in the consistency proof 
Hilbert put forward in the 1905 essay. Poincare illustrates 
his point by referring to one part of Hilbert's proof, where 
the latter says that the two axioms characterizing the notion 
of = (equals) do not lead to a contradiction. To list those 
axioms once again, they are: 

1. x = x, and 
2 . [x = y u. w(x) | w(y)  ] . 

Very roughly, Hilbert's proof shows that all the propositions 
deducible from these axioms by the two inference rules are of 

the form a = a 3 3 and hence that these propositions cannot be 

contradictory. To this Poincare poses the following question: 
3 3 Hilbert says that this is the case if we select from all the 
"consequences" of the axioms those that have the simple form of the 
proposition a (assertion without supposition), and thus excluding 
conditionals. 



But how does he know that all these propositions are 
identities? We consider a series of consequences deduced 
from our axioms, and we stop at a certain stage in this 
series; if at this stage we have so far obtained nothing 
but identities, we can verify that, by applying to these 
identities any of the operations permitted by logic, we 
can obtain only new identities. 
One concludes that one can never obtain anything but 
identities; but to reason thus is to employ complete 
induction. [Poincare 1906a, 1041, emphasis in original]34 

Certainly, given that Hilbert's goal is to prove the universal 
statement that, for every proof in arithmetic, it is not the 
case that a contradiction is deducible from the axioms by means 
of the usual rules of inference in a finite number of steps, it 
appears necessary to apply complete induction. But we are not 
entitled to make this move because, as Poincare accentuates, 
"we do not yet know the principle of complete induction."35 

Now, providing Poincare is right about this, does it mean 
that a proof for the absolute consistency of the arithmetical 
axioms cannot be obtained? As far as Poincare himself is 
concerned, this might appear to be the case. Towards the end 
of the second essay, he states that, for the principle of 
induction, the demonstration of consistency is impossible.36 

But, here we should pay as much attention to the conclusion 

Poincare draws from this impossibility. As we saw above, in 
his view, postulates are "disguised definitions"; definitions 
involve the assumption that they imply no contradiction; and 
thus the laying down of a postulational system, if it is to be 
3 4 Later in the same paper, Poincare points to another use of complete 
induction in Hilbert's proof for the consistency of the five axioms for 
arithmetic, which make use of the notion of "homogeneous equations." 
3 5 Poincare 1905, 1033, emphasis in original. 
3 6 Poincare 1906a, 1049. However, as we shall see shortly, Poincare's 
claim is, in truth, a conditional one. 
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legitimate, requires the demonstration of consistency. A 
closer look at the text, however, would reveal that with this 
we have seen only one half of Poincare's thesis. In fact, the 
passage quoted above, when continued, reads as follows: 

If therefore we have a system of postulates, and if we can 
demonstrate that these postulates imply no contradiction, 
we shall have the right to consider them as representing 
the definition of one of the notions entering therein. If 
we cannot demonstrate that, it must be admitted without 
proof,  and that then will be an axiom; so that, seeking 
the definition  under the postulate, we should find  the 
axiom under the definition.  [Poincare 1905, 1026, my 
emphasis] 

Provided that we cannot demonstrate the (absolute) consistency 
of a certain indemonstrable proposition of a science, what this 
means, argues Poincare, is not that we cannot establish the 
legitimacy of the definition (implicitly) formulated by the 
proposition (qua a postulate). Rather, it means that, in this 
particular case, the assumption underlying the demand for a 
consistency proof is false. That is, it means that the 
proposition in question must not be viewed as a postulate or a 
definition in disguise. And, in Poincare's view, this, in 
turn, means that the proposition in question is an "axiom"--a 
truth in some robust sense;37 to be sure, there is only one 
such case, i.e., the principle of complete induction,38 but the 

3 7 I shall shortly try to explain what precisely is meant by the claim 
that the principle of complete induction is an axiom, a truth, and a 
synthetic a priori judgment. 
38 More precisely, it is what Poincare calls "pure intuition," which 
underlies the truth of induction principle and of all other analogous 
principles employed in mathematics. 



point is that there is such a case.39 

Indeed, to argue for the truth of induction principle, 
this is one of the primary purposes of Poincare's polemic 
against the "logicist" standpoint, to which, he thinks, 
Hilbert's foundational attempt belongs. Accordingly, we should 
not think that Poincare's point is just that the demonstration 
of consistency is impossible in the case of the arithmetical 
axioms. Rather, his argument is to be seen as having the form 
of disjunctive syllogism. Induction principle is either a 
postulate (and thus a disguised definition) or an axiom. 
Suppose the former is the case, and that induction principle is 
a postulate. We then have to obtain a consistency proof for 
its legitimacy. But since this leads to the unacceptable 
result, i.e., the impossibility of demonstrating the (absolute) 
consistency of arithmetic and thus of the whole mathematics, we 
should reject the assumption that induction principle is a 
disguised definition and accept that the principle is an axiom. 
Consequently, we find Poincare maintaining the impossibility of 
such a demonstration in one context, while speaking of its 
possibility in another. This can be clearly seen in his 
dispute with Couturat. 

Against the claim Poincare made in the first essay that 
the logicists's attempt to view the induction principle as a 
disguised definition requires a justification by a consistency 
proof, Couturat retorted that postulates are presumed to be 
free from contradiction until the contrary is proved, and thus 
that the onus probandi actually rests upon "those who believe 
3 9 By appealing to the first half of the quoted passage, Sieg speaks of 
Poincare's agreement with Hilbert on the "fundamental" point that 
mathematical existence means only freedom from contradiction. But, in 
simply ignoring the second half, I think that he misrepresents the 
former's position. See Sieg 1999, 7. 
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that these principles are contradictory."40 To this Poincare 

replied in the third essay with the following words: 

Needless to add, I do not assent to this claim. But, you 
say, the demonstration you require of us is impossible, 
and you cannot ask us to jump over the moon. Pardon me; 
that is impossible for  you, but not for  us, who admit the 
principle of induction as a synthetic judgement a priori. 
And that would be necessary for you, as for us. [Poincare 
1906b, 1056, my emphasis] 

Poincare's point here is twofold. First, there are cases in 
which the basic propositions of a field of knowledge are 
postulates and mere disguised definitions, as in the case of 
geometry. And, in such cases, the legitimacy of postulates or, 
more precisely, of the assumption made in them about the 
(mathematical) existence of the defined objects must be 
justified through a proof that they imply no contradiction. 
Second, the demonstration of consistency (in the absolute 
sense) requires the truth of induction principle and is 
impossible insofar  as one takes it to be a postulate. But once 
the truth of the induction principle is acknowledged, a 
consistency proof can be obtained. 

Immediately after the quoted passage, Poincare also 
explains what precisely his criticism of Hilbert's attempt in 
the 1905 essay consists in. Speaking strictly, Poincare's 
intent is neither to dismiss the latter's consistency proof on 
account of the circularity involved in the (implicit) use of 

4 0 Louis Couturat, "Pour la logistique  (response a M.  Poincare)," Revue de 
metaphysique  et de morale, 14 (1906), 208-250; quoted in Poincare 1906a, 
1056. By this remark, Couturat seems to insinuate that Poincare's claim 
about the impossibility of a consistency proof implies that the latter is 
of the opinion that the postulates in question are contradictory. This, I 
think, suggests that Couturat failed to see the true intent of Poincare's 
polemic. 



the induction principle in it nor to argue for the 
impossibility of a consistency proof for the arithmetical 
axioms. Rather, Poincare's objection has to do with Hilbert's 
failure to acknowledge the truth of the induction principle: 

What I have blamed Hilbert for is not his having recourse 
to it [the principle of complete induction] (a born 
mathematician such as he could not fail to see a 
demonstration was necessary and this the only one 
possible), but his having recourse without recognizing the 
reasoning by recurrence. [Poincare 1906b, 1056] 

In other words, Poincare is prepared to accept the correctness 
of Hilbert's "direct" (syntactic) method as a solution to the 
problem of consistency once the latter recognizes the synthetic 
a priori character of the induction principle. 

§4. So how did Hilbert respond to Poincare's "suggestion"? 
Given Poincare's conception of mathematical existence in terms 
of freedom from contradiction and his recognition of the need 
for a consistency proof, one might wonder whether Hilbert could 
not concede to Poincare's claim without giving up his goal, 
that is, whether he could not accept the (extra-systematic) 
truth of the principle of complete induction (at the level of 
metamathematics) and try to construct a consistency proof for 
arithmetic on this minimal basis. What we must recognize here, 
however, is this. Hilbert adopted the axiomatic method in 
order to implement what he called the logical grounding of our 
mathematical knowledge. And in so doing, he considered the 
axioms of a deductive system as having no extra-systematic 
denotations and meanings. As a result of this methodological 
move, the problem of consistency was brought to the fore, and 



Hilbert subsequently introduced, although still in an unclear 
manner, the method of formalization so that an absolute 
consistency proof for arithmetic could be obtained through 
metamathematical investigations into syntactic properties of 
formalized axiom systems. It would follow that, for Hilbert, 
to accept Poincare's suggestion and to admit, albeit for the 
restricted purpose of metamathematical investigations, that the 
principle of induction represents a certain system-independent 
content is nothing other than to abandon the methodological 
principle underlying the axiomatic method and the very need for 
a consistency proof. In fact, without a clear distinction 
between theory and metatheory, the system-independent truth of 
induction principle would mean that arithmetic (even in the 
sense of the theory of the natural numbers) could not be 
treated in the manner of the axiomatic method. 

Hilbert himself sees Poincare's objection in this light 
and clearly understands that it not only is directed toward the 
alleged shortcoming in his consistency proof but also signifies 
a clash between two foundational standpoints, which are 
motivated by two fundamentally different concerns: 

Poincare was from the start convinced of the impossibility 
of a proof of the consistency of the axioms of arithmetic. 
According to him, the principle of complete induction is a 
property of our mind--i.e. (in the language of Kronecker) 
it was created by God. [Hilbert 1922, 201]41 

In Hilbert's view, Poincare is convinced of the primitive truth 
of the induction principle primarily on the philosophical 
ground that the knowledge of this principle is directly and 
immediately given to us, and he tries to establish this 
41 See also Hilbert 1928, 472-473. 



philosophical thesis by arguing that a consistency proof cannot 
be obtained for the arithmetical axioms without presupposing 
the truth of the induction principle. As can be surmised from 
the above quotation, Hilbert thus sees a return of the 
Kroneckerian dogmatism in Poincare's foundational standpoint:42 

just as Kronecker's failure to recognize the possibility of and 
the need for a logical grounding of arithmetic stems from his 
belief in the a priori knowledge of the natural numbers with 
their essential properties, so Poincare's rejection of the 
possibility of a consistency proof for the arithmetical axioms 
stems from his adherence to what he calls the "Kantian" theory 
of mathematics, according to which our knowledge of mathematics 
is ultimately based upon synthetic a priori judgments and thus 
upon pure intuition. 

It follows that if Hilbert is to maintain the foundational 
approach embodied in his axiomatic method, it is imperative 
that he provide a solution to the problem of consistency 
without presupposing the extra-systematic truth of induction 
principle. But how does Hilbert deal with Poincare's argument 
which states otherwise? A short answer to this question is: 
in essentially the same manner as he attempted to refute 
Kronecker's dogmatism. That is, Hilbert tries to refute 
Poincare's claim about the impossibility of a consistency proof 
for arithmetic by actually proving it in a rigorous manner, 
rather than by confronting it in the philosophical arena. More 
specifically, Hilbert tries to achieve this by formulating the 
question of consistency in such a way that it could be given a 
univocal solution in strict accordance with antecedently 
4 2 In the lectures of the summer term 192 0, Hilbert portrays Poincare as a 
"successor" and an "advocate" of Kronecker's foundational approach 
[Hilbert 1920b, 945] . On the other hand, a positive appraisal of 
Poincare's work by Hilbert can be found in Hilbert 1930, 1164. 
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specified rules in a finite number of operations. Now, given 
the fact that what he has been seeking to achieve is to prove 

the consistency of the arithmetical axioms, this might seem to 
be a trivial point to make. But, as Hilbert was later to 
write, "all previous investigation into the foundations of 
mathematics fail to show us a way of formulating the questions 
concerning foundations so that an unambiguous [eindeutige] 
answer must result" [Hilbert 1922, 198], and thus, it was an 
epoch-making idea to formulate and treat such metatheoretical 
questions as that of consistency as purely mathematical43 

questions. How exactly, then, does Hilbert go about this task? 
Given its precise objective, the answer seems to suggest 
itself: a solution to the consistency problem should be sought 
by means of the axiomatic method. That is, set up an axiom 
system for the metatheory of ("formalized") arithmetic and 
formulate the problem of consistency as a problem pertaining to 
this system.44 As it turns out, however, this is not the path 
Hilbert actually took. And to see why not, we must first take 
a closer look at what is really involved in the so-called 
"petitio principii" charge Poincare raises against Hilbert's 
attempt in the 1905 essay. 

To reiterate the point we saw above, the problem seems to 

4 3 Here I am using the term "mathematical" for whatever is capable of a 
rigorous treatment, "rigorous" being taken in the sense I explained in 
Ch.l. In this connection, it is of importance to note that, in one of the 
papers published in 1922, Bernays describes "the great advantage of 
Hilbert's procedure" as resting on the fact that "the problems and 
difficulties that present themselves in the grounding of mathematics are 
transferred from the epistemologico-philosophical domain into the domain 
of what is properly mathematical" [Bernays 1922a, 220] . Earlier in the 
same paper, Bernays characterizes mathematics as "the general theory of 
the formal  relations and properties" [Ibid., 217]. 
4 4 More precisely, set up an axiom system for metatheory, derive the 
consistency statement from the axioms of this metatheory, and apply it to 
formalized axiom system of arithmetic. 

-169-



arise for Hilbert in the following way. Hilbert's goal is to 
prove the consistency of the arithmetical axioms by carrying 
out a syntactic consideration on the formalized axiom system of 
arithmetic and by showing that a pair of formulae of the forms 
a and -<a are not derivable in this system. And since there 
are infinitely many "consequences" which are derivable from the 
axioms by the use of the inference rules, it appears necessary 
to apply the induction principle in order to establish that a 
"contradictory" pair of formulae are not derivable. But the 
induction principle is one of the axioms whose consistency is 
to be established by the proof, and thus the proof is circular. 

The argument being so understood, one thing it calls our 
attention to is the inferential means employed in such a 
metatheoretical consideration and its reliability. To 
paraphrase this in the context of Hilbert's axiomatic method, 
one thing Poincare's circularity charge brings out is the 
question as to the consistency of the axiom system for 
metatheory. Let us call the formalized axiom system of 
arithmetic, A, and the axiom system for metatheory, MA,  in 
which the consistency proof is carried out. One objection to 
Hilbert's procedure in his 1905 proof would, then, be that the 
proof for the consistency of A in MA  establishes nothing in the 
absence of the consistency of MA,  for any proposition is 
provable in an inconsistent system. In other words, the 
question regarding the reliability of MA  arises whether or not 
the induction principle is contained in MA  as one of its 
axioms; for what is at stake is the consistency of MA  as the 
framework for metatheoretical investigations. 

What follows from this is that, strictly speaking, 
Hilbert's "direct" method, i.e., the method in which the 



consistency of an axiom system is established by means of the 
syntactic consideration on the formalized object-theory, 
provides a relative or conditional proof  for the absolute 
consistency of the axiom system in consideration: it is a 
relative or indirect consistency proof in the sense that the 
validity of a proof for the consistency of an axiom system in 
consideration depends upon the consistency of the axiom system 
constituting the metatheoretical framework. By contrast, what 
we earlier called the method of models, if successful, provides 
us with a (direct) proof for the consistency of an axiom system 
relative to the consistency of another. As we saw above, what 
takes place in the model method when we construct a model for 
(a set of) axioms A is that we find (a set of) propositions T 
of some other theory B which are structurally similar to A and 
thereby show that a contradiction does not follow from A if a 
contradiction does not follow from the axioms of B, which imply 
r. In short, here we prove that A is consistent if B is 
consistent. Needless to say, such a logical relation does not 
necessarily obtain, in Hilbert's direct method, between an 
axiom system in consideration and the axiom system for 
metatheory. Accordingly, we might note the following point. 
In constructing a model for A in B, we "embed" (the structure 
defined by) A into B. Consequently, the structural complexity 
of B, i.e., the "host" theory relative to which the consistency 
of A is established, varies in accordance with the structural 
complexity of A. By contrast, in Hilbert's "direct" method, 
one and the same axiom system could provide a framework for 
metatheoretical investigations because, once formalized and 



considered as a sort of "alternating game" 4 5 of formulae, 
object-theories which differ widely in their "contentual" 
complexity would all be reduced to the same level of structural 
complexity.46 

Now, given that Hilbert's "direct" method, if conducted in 
accordance with his axiomatic method, would require the 
consistency of the axioms of metatheory, our next question is 
whether the axiom system providing the inferential means for 
metatheoretical considerations is, in fact, consistent. And, 
of course, this is where Poincare's claim about the 
indispensability of the induction principle in the syntactic 
consistency proof comes into consideration. Evidently, if the 
consistency of this principle could be established 
independently, its use at the meta-level would cause no 
concern. But, argues Poincare, "we do not yet know the 
principle of complete induction," and therefore the consistency 
of the axiom system of metatheory, which includes the induction 
principle, must be proved in order to fulfil Hilbert's goal, 
i.e., the demonstration of the consistency of arithmetic. 
This, however, appears impossible since such a demonstration 
would have to be conducted in a direct manner and thus require 
a syntactic consistency proof, which, in turn, would presuppose 
the consistency of its meta-theoretical framework (i.e., meta-
4 5 Hilbert was later to use this phrase frequently in characterizing the 
nature of the formalized object-theory. See Hilbert 1923, 1138 and 
Hilbert 1928, 475. 
4 6 Towards the end of the 1905 essay, Hilbert thus writes that, considered 
"as a stipulation expressible by formulas": 

the axioms for the totality of real numbers do not differ 
qualitatively in any respect from, say, the axioms necessary for the 
definition of the integers. In the recognition of this fact lies, I 
believe, the real refutation of the conception of the foundations of 
arithmetic associated with L. Kronecker and characterized at the 
beginning of my lecture as dogmatism. [Hilbert 1905a, 138] 
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meta-theory) and ad infinitum. 
What we should do, then, might seem to be either to draw 

the negative conclusion that we are not certain of the 
consistency of arithmetic, and thus of the whole mathematics, 
or to assume or postulate the consistency of arithmetic, or of 
"reasoning by recurrence," as given.47 

As we saw above, this, however, is not how Poincare sees 
the state of affairs. According to him, the demand for a 
consistency proof arises only because the axioms of arithmetic, 
and especially the induction principle, are treated in the 
manner of Hilbert's axiomatic method. What the impossibility 
of a consistency proof (a la Hilbert) implies, in his view, is, 
then, the falsity of the underlying assumption that the 
arithmetical axioms can be considered as "disguised 
definitions." In other words, for Poincare, they are truths. 
Furthermore, for him, since the induction principle is neither 
logical nor empirical, it "presupposes a new and independent 
act of our intuition and (why not say it?) a veritable 
synthetic judgement a priori" [Poincare 1905, 1034].48 

It appears, then, that if Poincare is right, Hilbert has 
either to give up on the idea of providing a consistency proof 
for arithmetic or to accept the system-independent truth of the 
4 7 Janet Folina describes Poincare's polemic from a slightly different 
angle: 

. . . in order to justify the claim that a formal system is 
consistent--even one which encodes a nonstandard version of 
arithmetic--we effectively presuppose arithmetic (induction) at a 
higher level (in the metatheory). According to Poincare, the 
necessity of induction at higher logical levels, belies its (and 
also arithmetic's) deep epistemological status. [Folina 1994, 213] 

4 8 According to Poincare, pure intuition underlying induction principle 
constitutes a precondition for systematic thinking in general and thus 
even for logic. For more on his notion of intuition, see Folina 1992 and 
Folina 1994. 



induction principle. 4 9 The former option implies that 
Hilbert's ideal of complete proof-structure and of the logical 
"grounding" of mathematics must also be abandoned. The 
latter, on the other hand, means that something must be assumed 
to be "known" in advance in mathematics.50 This is the dilemma 
Hilbert was made to face by Poincare's polemic. 

4 9 Strictly speaking, there is a third option: to maintain the Hilbertian 
axiomatic approach while considering the consistency of the induction 
principle as given or primitive. I shall come back to this point later. 
5 0 It might be recalled here that, in his letter to Frege, Hilbert made 
the following remark: 

I do not want to assume anything as known in advance [ Ich will 
nichts als bekannt voraussetzen]. [Frege 1980, 39] 
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Chapter V 
Mathematics as a Presuppositionless Science 

§1. "For decades I have never lost sight of it."1 This 
is what Hilbert wrote of the problem of the consistency of the 
arithmetical axioms in 1922, some seventeen years after the 
publication of his Heidelberg lecture, in which the idea of a 
"direct" proof was first put forward. As we saw above, the 
circularity involved in the use of induction principles in his 
"direct" proof was soon pointed out by Poincare, and this 
presented a seemingly insurmountable obstacle for Hilbert's 
logical grounding of arithmetic. The only way out appeared to 
be to abandon the methodological principle guiding his 
foundational investigation: the total elimination of extra-
systematic elements from mathematics. Hilbert would eventually 
"return" to the proof-theoretic approach sketched in the 1905 
essay and finally find a way to escape Poincare's dilemma but, 
in the interim, he explored alternative foundational approaches 
seeking a solution to the problem.2 I cannot attempt here to 
delve into the complex and intriguing development Hilbert's 
foundational views underwent in the years between 1905 and 
1922. Yet, in order to facilitate the subsequent discussion, I 
will briefly explain the importance of Russell and Whitehead's 
logicist program as developed in their Principia Mathematica 

(1910-1913) . 

In the late 1910s Hilbert thought (for a short period) 
that the logicists' proposal of reducing arithmetic to logic 

1 Hilbert 1922, 200. 
2 Sieg 1999 presents a detailed account of the development of Hilbert's 
thought between 1905 and 1922 through a careful examination of his lecture 
notes. 



was the solution to the consistency problem. In "Axiomatic 
Thought" (1918), which is the only work on the foundational 
issues published during those seventeen years, Hilbert 
expressed his "conversion" to logicism in one single sentence:3 

The problem of the consistency of the axiom system for the 
real numbers can likewise be reduced by the use of set-
theoretic concepts to the same problem for the integers: 
this is the merit of the theories of the irrational 
numbers developed by Weierstrass and Dedekind. 

In only two cases is this method of reduction to another 
special domain of knowledge clearly not available, namely, 
when it is a matter of the axioms for the integers 
themselves, and when it is a matter of the foundation of 
set theory; for here there is no other discipline besides 
logic which it would be possible to invoke. 

But since the examination of consistency is a task that 
cannot be avoided,  it appears necessary to axiomatize 
logic itself and to prove that number theory and set 
theory are only parts of logic. 

This method was prepared long ago (not least by Frege's 
profound investigations); it has been most successfully 
explained by the acute mathematician and logician Russell. 
One could regard the completion of this magnificent 
Russellian enterprise of the axiomatization of logic as 
the crowning achievement of the work of axiomatization as 
a whole. [Hilbert 1918, 1113, my emphasis] 

From Hilbert's viewpoint, a main advantage of the logicist 
approach lies in the following circumstance. The central 
component of Poincare's polemic consists in the alleged 
indispensability of the induction principle as a means for 
carrying out a consistency proof. Thus, if it is possible to 
prove this principle within the theory which is going to 
receive the proof, we could take the sting out of Poincare's 
petitio charge. Of course, in such a case, the consistency of 
3 It is to be recalled that, in the 1905 essay, Hilbert explicitly denied 
the viability of this alternative. 



the object-theory in which the principle is proved would still 
be in question, but this would presumably pose no problem 
providing the object-theory is logic. Hilbert's fascination 
with the logicist program, however, did not last long, as he 
soon came to the realization that Russell and Whitehead's 
attempt to construct analysis from the resources of logic goes 
beyond the bound of what is logical with their introduction of 
the axiom of reducibility, and hence that the proposed 
"reduction" to logic is given only nominally.4 Bernays 
explains the circumstance in this way: 

When Russell ... introduced the very cautious procedure of 
the calculus of types, it turned out that analysis and set 
theory in their usual form could not be obtained in this 
way. And thus Russell and Whitehead, in Principia 
Mathematica,  saw themselves forced to introduce an 
assumption about the system of predicates "of the first 
type," the so-called "axiom of reducibility." 

But hereby one again returned to the axiomatic standpoint 
and gave up the goal of the logical grounding. [Bernays 
1922a, 216]5 

In short, the axioms of "logic" themselves require a 
consistency proof, and hence nothing is really gained by this 
4 A remark by Hilbert to this effect can be found in his lecture notes 
from this period. See Sieg 1999, 19. 
5 According to the standpoint motivating Russell's ramified theory of 
types, one takes for granted a domain of individuals with basic properties 
and basic relations between them, and, from this basis, all further 
predicates and relations are obtained, constructively, by the logical 
operations. The problem with the axiom of reducibility, in Hilbert's (and 
Bernays' s) view, lies in the fact that, with the introduction of this 
axiom, the system of basic properties and relations must be expanded in 
such a way that the demand made by the axiom can be met, but such an 
expansion cannot be executed by a logical procedure. For more on this see 
Sieg 1999, 19. Mancosu 1999 provides additional, important information on 
Russell's influence on Hilbert and the Hilbert school by way of a detailed 
account of Heinrich Behmann's 1918 doctoral dissertation, Die Antinomie 
der transfiniten  Zahl und ihre Auflosung  durch die Theorie von Russell und 
Whitehead. 



move. Thus, the idea of establishing the consistency of 
arithmetic by reducing  it to logic was considered ultimately a 
failure by Hilbert. 

Nevertheless, the axiomatization of logic carried out in 
Principia was of special importance to Hilbert's subsequent 
foundational investigations. As he later emphasizes, with the 
axiomatization (and the formalization) of logic, the modes of 
inference employed in mathematical proofs can be perfectly 
captured as purely symbolic operations, and thus "the 
mathematical inferences  and definitions  become a formal part of 
the edifice of mathematics."6 The upshot is that mathematical 
proofs (or their formal counterparts) themselves become 
amenable to a theoretical consideration. In Bernays's words 

This procedure of the logical calculus supplements the 
method of the axiomatic grounding of a science, to the 
extent that such a procedure makes possible, along with 
the exact laying down of the presuppositions as it is 
brought about by the axiomatic method, an exact pursuit of 
the inference  modes with the aid of which one proceeds 
from the principles of a science to its conclusions. 
[Bernays 1922b, 195-196, emphasis in original] 

To be sure, this idea of studying (the syntactic properties of) 
proofs was already present in the 1905 essay, but, despite 
Hilbert's emphasis there of the need for a "partly simultaneous 
development of the laws of logic and of arithmetic," the 
execution remained still very crude; and the logical frame of 
mathematics was left virtually untouched. The logical work of 
Peano, Frege, and Russell thus provided a ready means for 

6 Hilbert 1922, 204, my emphasis. 



Hilbert's proof-theory.7 

§2. Now, with this remarkable idea of proof-theory, we 
are ready to consider Hilbert's "new grounding of mathematics." 
But before saying anything about it, I first simply present 
Hilbert's "solution" to the problem of consistency in his own 
words: 

We turn to the solution of this problem [of the 
consistency of the axioms of analysis]. 

As we saw, abstract operations with general concept-scopes 
[Begr if f sumfangen]  and contents has proved to be 
inadequate and uncertain. Instead, as a precondition for 
the application of logical inferences and for the 
activation [Betatigung] of logical operations, something 
must already be given in representation [in der 
Vorstellung]:  certain extra-logical discrete objects, 
which exist [da sind] intuitively as immediate experience 
before all thought. If logical inference is to be 
certain, then these objects must be capable of being 
completely surveyed in all their parts, and their 
presentation [Aufweisung],  their difference, their 
succession (like the objects themselves) must exist for us 
immediately, intuitively, as something that cannot be 
reduced to something else. Because I take this 
standpoint, the objects [Gegenstande]  of number theory are 
for me--in direct contrast to Dedekind and Frege--the 
signs [Zeichen] themselves, whose shape [Gestalt] can be 
generally and certainly recognized by us--independently of 
space [Ort] and time, of the special conditions of the 
production of the sign, and of insignificant differences 
in the finished product. The solid philosophical attitude 
that I think is required for the grounding of pure 
mathematics--as well as for all scientific thought, 
understanding, and communication--is this: In the 
beginning was the sign. [Hilbert 1922, 202] 

7 The names of the three logicians are mentioned by Bernays in Bernays 
1922b. In this connection, Hilbert frequently speaks of the "pre-
established harmony," the "most wonderful and magnificent example" of 
which, according to him, can be found in Einstein's use of the results of 
Riemann's mathematical investigations in his theory of relativity. See 
Hilbert 1931, 266, for instance. 



Following Marcus Giaquinto's reading, Hilbert's claim in the 
quotation may be summarized as follows. First, Hilbert 
presents what he understands as the basic philosophical 
standpoint necessary for the "grounding" of mathematics (as 
well as for scientific thinking in general). It consists of 
three demands: 

(1) the elements of the domain must be extralogical 
concrete objects of which we have immediate awareness 
prior to all thought; 
(2) the domain must be completely surveyable; 
(3) the occurrence and arrangement of the objects must be 
immediately given ('anschaulich') as irreducible facts.8 

Hilbert then states that, on the basis of these requirements, 
he considers the objects of number theory--numbers--to be 
signs. 

Our question, naturally, is why he thinks the adoption of 
this standpoint provides a solution to the problem of 
consistency. To remind ourselves of the point at issue with 
Poincare's objection to Hilbert's "first" direct consistency 
proof, it is concerned with the circularity involved in the use 
of the induction principle in the proof: Hilbert's direct 
consistency proof, argues Poincare, requires the use of the 
induction principle, but the induction principle is one of the 
very principles that constitute the axiom system for arithmetic 
and thus whose legitimacy is at issue. With the "invention" of 
proof-theory, however, Hilbert comes to hold that the use of 
the induction principle as formulated in the axiom system for 

8 The list comes from Giaquinto 1983, 122. 
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arithmetic is not necessary for the proof and that there is no 
circularity in it, as Poincare alleges. 

The idea, roughly, goes as follows. As in the case of the 
1905 proof, Hilbert's goal is to show the consistency of the 
arithmetical axioms by demonstrating that no contradiction is 
deducible from them by the specified rules of inference. In 
the earlier attempt, he considered the propositions 
constituting mathematical proofs as being composed of thought-
objects and, by abstracting from their meaning-content, 
conducted a study on the syntactic properties of thought-
objects and their combinations generable by the rules of 
inference. This time around, by contrast, thanks to recently 
accumulating results in the field of logic, Hilbert is able 
completely to reproduce mathematical proofs with the reasoning 
processes occurring in them by means of purely symbolic 
operations. And, by abstracting from the meaning-content of 
such a symbolic system, he obtains the objects of his 
investigation. To quote Bernays's account, 

He [Hilbert] obtains this by taking the systems of 
formulas that represent those proofs in the logical 
calculus, detached from their contentual-logical 
interpretations, as the immediate object of study, and by 
replacing the proofs of analysis with a purely formal 
manipulation that takes place with certain signs according 
to definite rules. [Bernays 1922b, 196] 

In other words, Hilbert's proof-theory studies not the 
objects that the proofs in analysis denote, but rather the 
proofs themselves, or more precisely, proof-figures.  What is 
to be noticed is then this: that while, in principle, there is 
no bound to the complexity of the proof-figures that are to be 



considered in proof-theory, they do not form a continuous, 
infinite manifold that constitutes the domain of the theory of 
real numbers. On this conception of his project, Hilbert 
formulates the problem of consistency as that of showing that a 
formula of the form a ^ a is not derivable from the axioms of 
analysis by means of its methods of inference. More 
specifically, a consistency proof, in his formulation, proceeds 
first by assuming that a proof terminates with a formula of the 
form a ^ a and then shows, by means of a reductio argument, 
that this assumption cannot be the case. Hilbert's insight is 
then that, no matter how complex the proof-figure under 
consideration may be, the form of induction employed is finite. 
Why? Paolo Mancosu explains the situation as follows: 

... if I am working with a given proof-figure that ends 
with 0 ^ 0 , I can certainly look for the first occurrence 
of the expression 0 ^ 0 and there is no circularity here, 
since this appeal to the least number principle in the 
case of a finite proof figure is as harmless as the 
principle of induction on the finite proof figure. 
[Mancosu 1998, 167] 

For this reason, Hilbert (and Bernays) argues that we must 
distinguish two types of complete induction: 

the narrower form of induction, which relates only to 
something completely and concretely given, and the wider 
form of induction, which uses either the general concept 
of whole number or the operating with variables in an 
essential manner. [Bernays 1922a, 221] 

Poincare argues that a consistency proof is impossible (without 
presupposing the legitimacy and, in fact, the truth of the 
induction principle) since it requires the use of the induction 



principle. In saying this, he, of course, meant that the 
induction principle that is used in the proof is the very same 
principle whose consistency is to be established (as an axiom 
of arithmetic) . But if, as Hilbert argues, two types of 
induction are to be distinguished, and if the one used in a 
consistency proof is the narrower form, whereas the one 
receives the proof is the wider form, it is no longer apparent 
that there is any circularity involved in this procedure.9 

With the recognition of these points, we are in a position 
to understand at least part of Hilbert's meaning in the long 
quotation from the 1922 essay. When, in that passage, he talks 
of certain extra-logical discrete objects and their (epistemic) 
immediacy, complete surveyability, and so on, what he actually 
has in mind is a formalized axiomatic system, or more 
specifically, proof-figures in terms of which the problem of 
consistency is formulated and will be solved. His point is 
that, insofar as the consistency problem is formulable as a 
question concerning the concretely given objects of such 
characteristics, the use of the induction principle as 
formulated in number theory is not necessary, and thus a first 
step can be taken toward the refutation of Poincare's 
objection. 

This, however, is only a first step: for provided that 
Hilbert is right about the two different forms of the induction 
9 But can Hilbert really dispense with the use of full induction in 
metamathematics? A short answer to this question is "No": as Godel later 
showed, not even full induction is sufficient to prove the consistency 
statement for arithmetic. As regards the viability of Hilbert's reply to 
Poincare, a concise and informative discussion can be found in Mancosu 
1998, 165-167 and van Heijenoort 1967, 480-482. My goal here is not to 
disentangle technical details of this debate or to decide whether Hilbert 
succeeds in refuting Poincare, but rather to consider philosophical 
consequences that are brought about by Hilbert's adoption of the so-called 
"finitist standpoint." Accordingly, in the following, I will proceed 
without further pursuing this issue. 
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principle and that the one employed in a consistency proof for 
the axiom system of arithmetic is, in some sense, more 
restrictive and less problematic than the one contained in the 
arithmetical axioms, it would still have to be shown that the 
axiom system for metatheory, which, presumably, includes the 
narrower form of the induction principle, is consistent as 
well. Furthermore, in order that the "consistency statement" 
proved in metatheory, in fact, expresses a truth about a 
certain fact about extra-logical objects constituting formal 
system of arithmetic--the fact that a formula of the form a ^ 
a is not derivable in it, it would also have to be established 
that all the axioms of metatheory are applicable to these 
objects. 

Accordingly, it would seem that what Hilbert must do next 
is set up an axiom system (for metatheory) in such a way that 
various "facts" of the domain consisting of such extra-logical 
discrete objects are logical consequences of its axioms (which 
contains, among others, the narrower form of the induction 
principle).10 And after actually proving that the consistency 
statement is a theorem of this system,11 he would still have 
two more things to establish: a) that the axiom system for 
metatheory is consistent, and b) that the axioms constituting 
the system can be interpreted in such a way that they all 
express truths about those extra-logical objects.12 

1 0 It is to be recalled here that, as an adequacy condition of an axiom 
system, Hilbert states that its axioms are to be laid down in such a way 
that "all the remaining facts of the field of knowledge that lies before 
us are consequences of the axioms". [Hilbert 1905b, 11-13, quoted in 
Peckhaus 1990, 59] 
1 1 What sort of reasoning procedure would be admissible in such a system? 
I will come to this question shortly. 
1 2 Needless to say, once it is established that these objects provide a 
model for the axiom system, it would follow from this that the system is 
consistent. 



Only when all this is done, could Hilbert claim to have 
refuted Poincare's objection. Quite obviously, this would mean 
that, contrary to Poincare's claim, a direct or absolute 
consistency proof can be given to arithmetic, to whose 
consistency that of all other branches of mathematics may be 
reduced, and thus that Hilbert's ideal of "complete proof-
structure" has been realized. This, however, is not all. What 
we should note here is the following. According to Poincare, 
the need for a consistency proof arises in the first place 
because it is assumed that the arithmetical axioms can be 
considered "disguised definitions" and are treatable in the 
manner of the Hilbertian axiomatics just as those of various 
geometrical systems. Upon this understanding, he argues that 
what follows from the (alleged) impossibility of obtaining a 
(direct) consistency proof for arithmetic is, in fact, the 
falsity of the background assumption that arithmetic is 
axiomatizable in the Hilbertian manner. In other words, 
Poincare argues from the impossibility that the axioms of 
arithmetic, or, at least, the induction principle, are 
synthetic, framework-independent truths. The acquisition of a 
consistency proof for arithmetic would, then, refute this 
philosophico-epistemological part of Poincare's polemic: given 
the consistency proof, there would be no reason to think that 
the axioms of arithmetic differ from those of geometry in their 
epistemological status, nor would there be any need to 
introduce system-independent elements into the practice of 
mathematics. 

So what do Hilbert (and Bernays) actually do to deal with 
Poincare's objection? Do they set up an axiom system for 
metatheory, prove the consistency of arithmetic in it, and 



further establish the applicability of the metatheoretical 
system to the domain of formal objects? As was briefly 
mentioned above, it turns out that the route Hilbert and 
Bernays take is not the one described above. To be sure, they 
do try to produce a consistency proof for arithmetic, but, as 
we shall see shortly, they present the theory which serves as 
the framework for metamathematical investigations in a non-
axiomatic, "direct intuitive" manner. The reason for this is 
usually explained as a matter of mere convenience. Indeed, 
Hilbert himself at one place speaks in such a manner: 

In the definitive presentation of my theory, the grounding 
of elementary number theory also takes place by means of 
axioms; but here, merely for the sake of brevity, I appeal 
to the direct intuitive grounding. [Hilbert 1923, 1139 
footnote 3]13 

A closer look at the text, however, indicates that the fact of 
the matter is slightly more complicated than that. As we just 
saw, if one takes the axiomatic approach to the theory which 
provides the framework for metatheoretical reasoning, it 
becomes necessary to establish the consistency of the axioms of 
this metatheory (in order that the consistency proof for the 
object-theory carried out there has any significance at all). 
An apparent problem with this axiomatic procedure would then be 
that even if the axioms of the metatheory do not contain the 
wider form of the induction principle, and thus that Poincare's 
circularity charge may be thwarted at the "first" level, it 
will hit hard at the "second" level. That is, provided that 
the consistency of the obj ect-theory can be proved in the 
metatheoretical axiom system, it is still necessary to 
1 3 The significance of this passage will be discussed later. 
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establish the consistency of the latter. But given that a 
Hilbert-style syntactic consistency proof requires the use of 
the narrower form of the induction principle, this same 
principle needs to be applied in proving the consistency of the 
axioms of the metatheory which, presumably, contains this very 
principle as one of its members. Hence, once again, we are 
faced with the possibility of an infinite regress.14 

Apparently, Hilbert (and Bernays) think that the 
circularity at the level of metatheory was a real "circle," and 
they conclude from this that metatheory cannot be treated in 
the Hilbertian axiomatic method. This seems to be at least 
what is suggested in^ the following remark Bernays made in the 
article written as an introductory essay for Hilbert's complete 
works: 

Furthermore, the methodological standpoint of Hilbert's 
proof-theory is not yet developed to its full clarity in 
the Heidelberg lecture [i.e., the 1905 essay] . Some 
passages suggest that Hilbert wants to avoid the intuitive 
representation of number and replace it with the axiomatic 
introduction of the number-concept. Such a procedure 
would  result in a circle in the proof-theoretic 
considerations. [Bernays 1935, 200, my emphasis, my 
translation]15 

As we saw earlier, in the 1905 essay, simple thought-objects 
such as = (equals) are considered in the manner of Hilbert's 

1 4 Admittedly, it is not clear what exactly such an axiom system would 
look like. But, given the existence of the induction principle (in the 
narrower form) in the system, the model method would not be available 
here. 
1 5 Aufierdem ist auch der methodische Standpunkt der Hilbertschen 
Beweistheorie in dem Heidelberg Vortrag noch nicht zur vollen Deutlichkeit 
entwickelt. Einige Stellen deuten darauf hin, daS Hilbert die 
anschauliche Zahlvorstellung vermeiden und durch die axiomatische 
Einftihrung des Zahlbegriffes ersetzen will. Ein solche Verfahren wurde in 
den beweistheoretischen Uberlegungen einen Zirkel ergeben. 



axiomatic method and are defined by the axioms of the system. 
Thus, the above remark by Bernays, who collaborated with 
Hilbert for the formulation of the Hilbert program, does seem 
to indicate that this was their shared view.16 

In any case, it is to be stressed here that, in presenting 
the theory that provides the framework for proof-theoretical 
investigations, Hilbert chose a non-axiomatic approach. 
Another point to be noted, as is indicated in the above 
passage--as well as in the long quotation from Hilbert's 1922 
essay--is that Hilbert formulated this theory of extra-logical, 
discrete objects as the theory of numbers. More specifically, 
he introduced what he calls "elementary number theory" as the 
theory whose object domain consists exclusively of signs17 built 
up from l's, i.e., unary numerals and identified these signs 
with numbers. Why Hilbert made such an identification is a 
very complex issue, and I do not consider the question here.18 

For our purpose, what is important is as follows. First, in 
formulating the theory providing the framework for 

1 6 But, as is evinced by the above quotation from the 1923 essay, there 
seems to exist a vacillation on Hilbert's part concerning the axiomatic 
approach to metatheory. More on this later. 
1 7 Hilbert later dropped the expression "number-sign [Zahlzeichen]" for 
"numeral [Ziffer]"  because in his view these "signs" have no meaning 
[Bedeutung] of any sort and are not signs of anything. On this issue, see 
Bernays's footnote to Hilbert 1922 and Mancosu 1998, 172. 
1 8 As Hilbert was later to maintain, behind the identification there 
exists his conjecture that the basic linguistic and the basic arithmetic 
abilities are identical. In this connection, we might recall that 
Dedekind, in his logico-set-theoretical construction of arithmetic, 
emphasized the basicness of our ability of "mapping" as a precondition for 
rational thinking in general. Furthermore, the influence of the Kantian 
philosophy on Hilbert's thought need also to be taken into consideration. 
For an illuminating discussion on these issues, see Hallett 1994, 176-181. 
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metatheoretical considerations as a (contentual)19 theory of 

numbers/signs, Hilbert thought that he had finally refuted 
Poincare's circularity charge. His view seems to be that, in 
this theory, we make true statements on the basis of the 
epistemic access we have to the (extra-systematic) objects 
constituting its domain, and there is no need to worry about 
its consistency. To be sure, this theory does not consist 
solely of statements describing the results of such "number"-
theoretical operations as appending, say, "111" to "11." 
Instead it also contains such genuine theoretical statements as 
a + b = b + a, which states that the result of- appending a 
certain number-sign a to another number-sign b is the same as 
the result of appending b to a, and also deductions of a 
statement from other statements by the use of "logic."20 The 
point is that all those statements which constitute the theory 
of elementary arithmetic are true and their truth is verifiable 
or checkable in a finite number of operations. Indeed, Hilbert 
designed them to function in such a way. 

As the theory providing the framework for proof-
theoretical considerations, elementary number theory must admit 
the potential infinite so that, when employed as the 
metatheory, it can accommodate the maximal complexity of proof-

1 9 Here, by the term "contentual," I do not mean a theory which is not 
formalized. A theory, when axiomatized in the manner of Hilbert's 
axiomatics, has no extra-systematic denotation or meaning, but, as we saw 
earlier, this does not mean that it is meaningless; in fact, it has intra-
systematic denotation and meaning formulated by its axioms. In this 
sense, Hilbert sometimes talks of an axiomatized but not formalized theory 
as being contentual. But, on the other hand, he also talks of a theory 
considered as having certain extra-systematic denotation and meaning as 
contentual. Thus, in the above sentence, I am using the term "contentual" 
in this latter sense. 
2 0 That elementary number theory must contain all these statements is 
clear when it is realized that this theory is designed to provide the 
necessary apparatus for conducting a consistency proof. 
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figures. But, if such logical terms as "all" and "there 
exists" are applied to the totality of infinitely many number 
of objects without restrictions, we will no longer be able to 
verify the truth of statements formulable in the theory. For 
this reason, Hilbert limits the modes of inference admissible 
in the theory within a certain bound.21 Thus, if we are able to 
formulate  and actually prove the consistency statement within 
elementary number theory by means of the restricted, "finite" 
logic, Poincare's objection could be finally disposed of in a 
satisfactory manner. For, in such a case, first, no 
inferential apparatus employed in full arithmetic would be used 
in the proof, and thus we find no such circularity alleged by 
Poincare; second, any statement established in elementary 
number theory is a genuine truth. This roughly corresponds to 
the second half.of the long quotation from the 1922 essay.22 

As I noted above, it is not my intention to get into the 
issues surrounding Hilbert's finitary method and decide whether 
he is right in claiming the dispensability of the full 
induction principle at meta-level. Rather, what I want to call 
attention to here is a philosophical consequence that appears 
to be brought about by Hilbert's non-axiomatic approach to 
metatheory and his identification of numbers with signs. To 
put it simply, what the adoption of this so-called finitary 
standpoint seems to entail is the (re-)introduction of the 
system-independent notion of truth and existence into 
mathematics. As we saw above, Hilbert appears to be claiming 
2 1 But, at the same time, care must be taken not to impose too restrictive 
conditions upon the logic employed in elementary number theory; for this 
would lead to the consequence that metatheoretical investigations cannot 
be carried out to a satisfactory degree. 
2 2 As it turned out, much more powerful means than Hilbert expected are 
required to prove the. consistency statement for a consistent theory that 
contains a minimal amount of arithmetic. 
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that, m it, we have before us a domain of extra-logical, 
discrete objects, which, presumably, exist independently of the 
theory, and, on the basis of the epistemic access we have to 
this domain of theory-independent objects, we make true 
statements about them. But is this not precisely the sort of 
extra-mathematical, philosophical assumption that he tried 
continually to avoid? Did he not object to Frege that to 
introduce such extra-theoretical elements into mathematics is 
to play a game of hide and seek? 

What Hilbert should recognize here, it might be argued, .is 
that, in equating the impossibility of obtaining a consistency 
proof for the axiom system for metatheory with the 
impossibility of axiomatizing metatheory in the manner of the 
Hilbertian axiomatic method, he is subject to the same mistake 
as Poincare. To see this, we have only to consider what would 
happen if we start by assuming the consistency of the axiom 
system for metatheory MA  and its applicability to the domain of 
the extra-logical objects constituting the formal system of 
arithmetic. Would it be the case, then, that, by making such 
an assumption, we have abandoned the Hilbertian axiomatics? 
Not at all. Indeed, in such a case, we would assume that the 
axioms, or more precisely, axiom-forms of MA  are applicable to, 
and thus true of a domain of system-independent objects (under 
a certain appropriate interpretation J). It is to be realized, 
however, that this is not to assume that MA  has some proper, 
extra-theoretical subject-matter, which it is supposed to be 
about. To use the expressions we saw earlier in connection 
with the mid to late nineteenth century trend of 
"algebraization" or "formalization" in various branches of 
mathematics, to assume that MA  is applicable to a certain 



domain of objects is not to assume that it is a "material" or 

"authentic" science.23 It might seem, then, that Hilbert should 
have axiomatized what he calls elementary number theory and 
maintained the philosophical standpoint underlying his 
axiomatic method even if no (direct) consistency proof is 
possible for the axiom system for metatheory. 

One might want to object to this, however, that it 
blatantly goes against Hilbert's strong belief in mathematics 
as a presuppositionless science: to take this route would be 
to base the whole edifice of mathematics upon a dogma or a 
blind faith. But what, then, is the path Hilbert should have 
taken? Here we might want to reflect upon what originally led 
him to the banishment of extra-systematic elements from the 
construction of a scientific theory and thus to the adoption of 
the Hilbertian axiomatics. His goal in drastically modifying 
the traditional axiomatics, it is to be remembered, was to 
achieve a complete rigor in mathematics and thereby secures its 
objectivity. I also argued earlier that, for Hilbert, a 
consistency proof is pursued because it constitutes a part of 
the general requirement of rigor.24 But given that his ultimate 
goal is the securing of the objectivity or intersubjectivity of 
mathematics in the sense that a proof not only eventually 
2 3 For the same reason, Poincare is mistaken in claiming that the 
unavailability of a consistency proof for the induction principle entails 
its system-independent truth: the two issues are logically independent of 
each other. 
2 4 Very roughly, my argument for this claim went as follows. For Hilbert, 
rigor means that the correctness of (all and only) correct results are 
established by means of a finite number of inferential steps based upon a 
finite number of assumptions. Moreover, since his 
axiomatization/rigorization program is designed to be applied to an 
existing body of knowledge, this means that it is assumed in advance that 
there is a set of "correct" propositions, whose truth it is supposed to 
establish. It would seem then that an inconsistent axiomatization is 
undesirable because, in it, not only a "correct" proposition but also its 
negation is deducible. 



terminates but also terminates with the same result, no matter 
who carries it out, what is absolutely essential for achieving 
it is the antecedently fixed rules of inference and the 
finitude of the whole proof-procedure, but not so much the 
provability of all and only "correct" results, and hence such 
properties of an axiom system as completeness and consistency 
are of secondary importance. It might be argued, then, that 
what Hilbert should have done is to stop placing so much 
importance on the requirement of consistency altogether. 

But before conjecturing various possible paths Hilbert 
could and should have taken, we should ask once again whether, 
in adopting the non-axiomatic approach to elementary number 
theory, he really gave up on the idea motivating his axiomatic 
method: the banishment of framework-independent elements from 
the construction of a scientific theory. In considering this 
question, we might, first, take a little closer look at 
Hilbert's (and Bernays's) attitude toward the question of the 
axiomatizability of finitary mathematics as the framework for 
metamathematics. While Bernays seems quite adamant in 
maintaining the necessity of the non-axiomatic, intuitive 
approach, Hilbert himself, as we saw above, appears to have 
thought at least in the early 1920s that the axiomatic 
treatment of elementary number theory is possible and in fact 
theoretically desirable, as is indicated in a footnote attached 



to the 1923 paper:25 

In the definitive presentation of my theory, the grounding 
of elementary number theory also takes place by means of 
axioms; but here, merely for the sake of brevity, I appeal 
to the direct intuitive grounding [Hilbert 1923, 1139 
footnote 3]. 

That Hilbert meant by "elementary number theory" finitary 
mathematics can be seen from the text to which the above 
footnote is attached: 

The elementary theory of numbers can also be obtained from 
these beginnings by means of 'finite' logic and purely 
intuitive thought [durch rein anschauliche Uberlegungen] 
(which includes recursion and intuitive induction for 
finite existing totalities); here it is not necessary to 
apply any dubious or problematical mode of inference 
[Hilbert 1923, 1139], 

Second, and more importantly, we should recognize that, 
contrary to what appears to be suggested by Hilbert's such 
remarks as "certain extra-logical discrete objects, which 
exists intuitively as immediate experience before all thought" 
and so on, it is questionable whether what he takes to 
constitute the subject-matter of elementary number theory is 
really physical objects existing independently of any 
(epistemic) conditions. In this connection, it has recently 

2 5 In addition to the aforementioned passage from his 1935 article, 
Bernays writes in the first volume of Grundlagen  der Arithmetik: 

In number theory, we have an initial object and a process of 
succession. Both must be intuitively represented in a particular 
manner. [Hilbert and Bernays 1934, 20-21, my emphasis, my 
translation] 

[In der Zahlentheorie haben wir ein Ausgangsobjekt und einen ProzeS 
des Fortschreitens. Beides mtissen wir in bestimmter Weise 
anschaulich festlegen.] 



been argued by some scholars that, for Hilbert, the object of 
elementary number theory is not either a physical or mental 
object, but rather an iterative process, and this iterative 
process is representable in intuition.26 Although I do not get 
into the details of this interpretation, I want to emphasize 
one point which it brings up. That is, while Hilbert does not 
axiomatize elementary number theory in the manner of the 
Hilbertian axiomatics, he in no wise conceive of the object of 
this theory as something that exists in itself. Whether the 
object of elementary number theory is taken by him to be the 
iterative process itself or what is constructed through the 
process, its nature is completely determined in terms of the 
successive iteration of operations. For our purpose, what this 
means is that, regardless of Hilbert's non-axiomatic 
construction of elementary number theory, the philosophical 
core of his axiomatic method, i.e., the banishment of system-
independent elements, is preserved in it. 

Once number theory and its subject-matter is understood in 
reference to the iterative process or the iterativistic 
objects, however, we will have to distinguish two different 
classes of objects in arithmetic: those elements which can be 
constructed through the iterative process and those which 
cannot. And this seems to entail two different notions of 
truth and existence within Hilbert's philosophy of mathematics. 
For the first class, truth is no longer defined in terms of 
deducibility from axioms but rather of "checkability," and the 
notion of existence is not defined in terms of the relevant 
axiom system but now interchangeable with that of 
constructible. To put it in the most general of terms, this 

2 6 E.g. Hand 1989, 1990, and Zach 1998. 
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may seem to be precisely the circumstance in which one might 
begin to consider the possibility of an instrumentalist 
solution, that is, to dispose, as mere formal devices, of the 
elements which are formulated by the axioms of a theory 
constructed in the manner of Hilbert's axiomatics but not 
constructible through an iterative process. 

As was noted in the introduction, however, things are not 
so clear cut with the issue of Hilbert's alleged 
instrumentalism. To cite one instance which indicates the 
complexity of the issue, Michael Hallett's recent discussion of 
Hilbert's method of ideal elements shows that for Hilbert the 
distinction is a relative one. According to Hallett, Hilbert 
begins the section on ideal elements in the 1919 lectures by 
saying that the ideal is taken as opposed to the real 

... on the one hand as the un-actual [unwirklich] (the 
merely thought) rather than the actual [wirklich], on the 
other hand as the complete rather than the incomplete 
existing. 

Hilbert says he will deal only with the first characterization, 
for it is the one which plays the important role in 
mathematics. And in mathematics, continues Hilbert, the 
question of the actual/unactual arises in the form of the 
question of existence. But then: 

What do we mean by existence here? If one looks more 
closely, then one sees that existence is always meant with 
respect to the system which is taken as the starting point 
[das zugrunde  gelegtes System], ... 

In other words, for Hilbert, the real/ideal distinction is only 



a relative one. In fact, according to Hallett, Hilbert writes 
two pages later: 

The terminology of ideal elements thus properly speaking 
only has its justification from the point of view of the 
system we start out from. In the new system we do not at 
all distinguish between actual and ideal elements. 

An element, say V-l , is of a different status, i.e. ideal or 
unactual, when first added to the system of reals. However, 
once one has given a set of laws for the integration of this 
element into the previous system, then what was previously an 
ideal element is real and does exist as are and do the other 
elements. 

In the above I have tried to indicate the complexity of 
the issue and the need to re-examine Hilbert's philosophy of 
mathematics as a whole by identifying philosophical cores which 
underlie his various foundational attempts throughout his long 
career. In so doing, we have learned that what ultimately 
motivates Hilbert's foundational programs is his concern for 
the objectivity of mathematics and that he tries to achieve 
this goal through the realization of complete rigor. 
Accordingly, we must recognize that elementary number theory is 
designed, above all, to provide a means for the proof-theoretic 
considerations of formal axiomatic systems, and, consequently, 
it becomes possible to "talk of" mathematics by means of 
mathematical language within mathematics. In this way 
Hilbert's desire to treat such metatheoretical matters as the 
question of consistency in a rigorous manner is given a clear 
expression. 27 That is to say, what might be called the 
2 7 I do not mean by this, however, that for Hilbert rigor is possible only 
in mathematics. 



"epistemological" turn that is brought about with the 
formulation of a finitary consistency proof can be seen as an 
expression of Hilbert's invariable concern for rigor and of his 
attempt to realize the ideal of complete "proof-structure" in 
the science of mathematics. In this sense, I think it 
appropriate to conclude my discussion with the following 
quotation from his 1928 essay "The Foundations of Mathematics": 

... mathematics is a presuppositionless science. To found 
it I do not need God, as does Kronecker, or the assumption 
of a special faculty of our understanding attuned to the 
principle of mathematical induction, as does Poincare, or 
the primal intuition of Brouwer, or, finally, as do 
Russell and Whitehead, axioms of infinity, reducibility, 
or completeness, which in fact are actual, contentual 
assumptions that cannot be compensated for by consistency 
proofs [Hilbert 1928, 479]. 
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