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Abstract 

We present the ab initio Density Functional study of the electronic structure of Co 
adatoms on C u ( l l l ) surface. A number of Scanning Tunneling Spectroscopy (STS) 
experiments performed on the systems which contain magnetic adatoms on the noble 
metal surfaces (e.g., Co , Ce on C u , A g , A u (111) planes) [1, 6, 7] report the obser­
vation of intriguing resonances at the Fermi energy. However, the interpretation of 
these experiments in terms of the Kondo physics is not totally conclusive and gave 
rise to many questions that are s t i l l to be answered. The first step towards under­
standing the meaning of these experiments is to understand the electronic structure 
of such systems. The so called supercell approximation is used to simulate a C u slab 
consisting of C u ( l l l ) planes. The electronic properties of Co adatom on C u ( l l l ) 
surface is studied in a symmetric 2 x 2 supercell in the xy directions wi th fifteen 
C u ( l l l ) and two C o planes in the z direction. It is observed that Co is in the d8 

high spin state wi th the magnetic moment of 1.7 \IB per Co atom. The width of Co d 
D O S is a result of the coupling wi th the C u sp surface and bulk states. A t least the 
first three C u layers of the bulk C u slab have significant influence on the electronic 
properties of Co. 
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i 

Introduction 
Crystal surfaces are very special because they break the translational symmetry and 
thereby introduce different potentials at the crystal boundary as compared to the 
bulk. This changes the electronic structure near the surface, leading to new, poten­
tially interesting material properties. The special surface environment of a metallic 
crystal can be pushed to a more exotic limit by introducing magnetic impurities on 
them. Interaction of the quasi two-dimensional electron gas at the surface with the 
net spin of the magnetic impurity can bring the system into novel ground states that 
are currently a topic of intense research, both theoretical and experimental. 

Apart from their fundamental scientific importance, these systems are also of great 
technological importance. The miniaturization and increase in speed of electronic 
devices is fast approaching the limit where quantum effects interfere with the normal 
operation of the device. At this limit the future of the electronic industry is in great 
need of exploiting the fundamental interactions that govern the behavior of electrons 
in the solid. 

A recent series of scanning tunneling spectroscopy experiments with clever ma­
nipulations of magnetic atoms on various metal surfaces [1, 6, 7, 8] has produced 
some very intriguing results. Among these experiments, most notable is the 'quan­
tum mirage' experiment [1] where Manoharan et al studied an elliptical quantum 
confinement or corral built with magnetic atoms (Co) placed on a C u ( l l l ) surface. 
The issues addressed by the experiments are directly related to the general nature of 
electron correlations between the conduction electrons of a metal and their interac­
tions with surface impurities. Therefore, it is important, for both fundamental science 
and technologies, to carefully examine the results and the current interpretations of 
these experiments. In reality the results of the experiments which we shall discuss at 
length in the later part of the chapter, generated more questions than they answered. 
This motivated us to look at the electronic structure of Co impurities deposited on 
C u ( l l l ) surfaces starting from a very detailed study of the electronic structure of 
pure C u ( l l l ) plane. 

Chapter 1 of the thesis starts with a very general introduction to the nature of 
the interactions of conduction electrons with the localized impurity states and Kondo 
physics. This is followed by a discussion of how to interpret S T M spectra, in partic­
ular, the relation between dl/dV spectra and densities of states of the system. This 
discussion helps us to understand the justification behind the earlier S T M observa­
tion of the Kondo resonance. After setting up the ground work we discuss the very 
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important S T M experiments done by Manoharan et al [1] and some problems with 
the current interpretation of the experimental results. 

1.1 T h e A n d e r s o n i m p u r i t y m o d e l a n d t h e 

K o n d o e f f ec t 

The simplest model of a local magnetic moment associated with a spin S = 1/2 
impurity in a metallic host is known as the Anderson impurity model [2]. The An­
derson model starts with the Hamiltonian for the system of local magnetic moment 
in a metallic host: 

HAnderson = ^crC^C^^ + ^ e^a^da + Ud\^da^d\^dal 
k,cr a 

+ Y,^ac{tada + h.C.) (1.1) 
k,<T 

where the first term represents the energy of the noninteracting electrons of the 
Fermi sea, the second term represents the energy of an electron in the localized 
d or / level, the third term represents an on-site repulsion if two electrons try to 
occupy the localized level and-the last term represents coupling between the d-level 
and the conduction electrons. Also c k C T (c k ] ( r ) is the creation(annihilation) operator 
of an electron in the Fermi sea with wave vector k and spin a and d)a(da) is the 
creation(annihilation) operator of an electron in the localized d or f level with spin 
o~. U is the energy required for adding a second electron of opposite spin to the 
impurity level and V^a is the k dependent hopping parameter for connecting the 
electrons of the fermi sea to the localized impurity level. 

In the literature a single magnetic impurity in a nonmagnetic host is often referred 
to as a Kondo impurity. At sufficiently low temperature, the spin of the Kondo 
impurity interacts with the spin of the surrounding conduction electrons (causing 
spin-flip scattering) which results in a change of the temperature dependence of the 
resistivity notably a minimum in the resistivity at a characteristic temperature. This 
phenomenon is known as the Kondo effect. In other words, the Kondo effect is the 
many body response of the free electrons in the Fermi sea to the magnetic impurity. 

From the Anderson Hamiltonian one finds out that even for a small value of 
Vkd<rT the singly and doubly occupied states of the local level broadens by an amount 
F « 27T|Vk̂ CT|2/o0 as given by Fermi's Golden rule where po is the density of conduc­
tion electrons at the Fermi energy. In the regime e</ < Ep and e<i + U > Ep, the 
ground state of the impurity is always singly occupied therefore one has a magnetic 
impurity here. This regime of magnetic impurity is of central interest for the Kondo 
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problem. Anderson showed that Eq. 1.1 will lead to local moment formation when 
r « 2ir\Vkdt<T\2p0 < \ed\,ed + U. 

Using a canonical transformation in the local moment regime of the Anderson 
model, Schrieffer and Wolff [5] showed that the Anderson Hamiltonian (Eq. 1.1) can 
be transformed to the Kondo Hamiltonian with an energy-dependent exchange inter­
action Jkk' • The Kondo Hamiltonian describes the scattering of conduction electrons 
by a localized impurity spin in terms of the exchange interaction J k k / which is 

—exchange X ) 4 , k ' ( ^ 5 * k ) - ( ^ 5 * d ) . (1.2) 
k,k' 

where field operators are \I>k = ^ ^ , = ^ and 25 = a are the Pauli 

matrices. The form of J k k / is also calculated by Schrieffer and Wolff [5]: 

Jkk' = V£V k , d { 1 — — + - — — ) . (1.3) 
I et - ed - U tk, - ed - U ek - ed ek, - ed J 

At sufficiently low temperature (i.e., temperatures below a characteristic Kondo 
temperature TK , defined below) the spin of the conduction electrons together with the 
local moment tend to form a many body spin singlet ground state that collectively 
screens the local spin of the Kondo impurity. In this situation, if the spin of the 
magnetic ion is 1/2, the Kondo effect completely screens the ion spin at sufficiently 
large distances. This spin compensation in the conduction electron gas is usually 
called the 'spin compensation cloud' or 'Kondo cloud'. This means that the spin-flip 
scattering is frozen-out and we can treat the scattering as purely potential scattering. 
The impurity density of states (i.e. the density of states of the atomic d or / levels 
that give rise to the magnetic moment) develops a narrow DOS peak near the Fermi 
energy and this is called the Abrikosov-Shul resonance or Kondo resonance [3, 4]. 
The impurity density of states of the Anderson model in the local-moment regime is 
shown in Fig. 9 of [9]. 

Now we should emphasize the following points which have central importance to 
our work: 

1. In the Kondo model a characteristic temperature TR-, known as Kondo tem­
perature, is given by 

TK cx e x p ( - - ^ ) (1.4) 

where J(J > 0) is the antiferromagnetic coupling between the impurity spin and 
the spin of the host electrons that has been approximated as k independent, po is 
the density of states at the Fermi level. We already mentioned that at T w TK a 
spin compensation cloud is built up around the magnetic impurity. By noticing that 
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only those electrons are strongly scattered by the impuri ty whose energy is not much 
further from the Fermi level than the characteristic Kondo energy ksTx, one can 
realize that the spatial extension of this compensation cloud may be characterized by 
the 'coherence length' of the Kondo problem: 

KBJ-K 

where vp is the Fermi velocity and kg is the Bol tzmann constant. In the Kondo 
effect, the narrow resonance appearing in the scattering amplitude has the width 
/csT/f. Since ksTK can be small, the corresponding coherence length t\vrK is rather 
large. We should note that because of the large spatial extend of the Kondo cloud of 
electrons the effective impur i ty has become very large. It is this extra scattering at 
low temperatures that causes the resistivity to increase wi th decreasing temperature 
below the K o n d o temperature. 

2. We have seen that, in case of Anderson Hamil tonian, even for a small value of 
Vkd the singly and doubly occupied states of the local level broadens by an amount 
T « 2ir\Vkd\2

Po. 
The broadening of the localized states is originated from the one-electron scat­

tering processes between the localized states and conduction electrons. This can be 
described by the localized state Green function Gdt(7(uj) renormalized by the Coulomb 
repulsion. Thus the scattering (non-spin-flip) amplitude of the conduction electrons 
wi th incoming and outgoing momenta k and k', respectively can be expressed as: 

tkw,a(u) = VkdGdtlJ(u)Vdk, (1.6) 

Taking the imaginary part of Eqn . 1.6 wi th k — k' one can arrive at: 

lmtkki<T(uj) = ^\Vwd\2Pd,o{^)- (1.7) 

This equation plays a central role in our approach to the problem because according to 
the 'optical theorem' the total scattering cross section is proportional to the imaginary 
part of the forward scattering amplitude tkk>a(uj), and therefore it is proportional to 
pd,o{w)- Th i s connection is the reason for choosing to calculate the density of states 
of the localized states. We shall say more about this in Chapter 4. 

1.2 I n t r o d u c t i o n t o S c a n n i n g t u n n e l i n g 

m i c r o s c o p y 

Several S T M experiments done on metal surfaces wi th embedded magnetic atoms 
have observed a sharp suppression in the differential conductance dl/dV when the 
S T M t ip is in the immediate vicini ty of the magnetic impuri ty and the voltage is close 
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to zero [6, 7, 1, 13, 15]. This sharp suppression has been attributed as a manifestation 
of the Kondo resonance around the magnetic atom. To understand 'how' and 'what' 
is being observed by the dl/dV spectra one first needs to know about the tunneling 
mechanism in the S T M measurements. The treatment presented here closely follows 
Fiete et al [9]. 

The basic tunneling geometry and energy diagram is shown in Fig. 1 of [15]. One 
can take the S T M data in two different ways. One is called the 'constant current' 
method when the total current is kept constant by changing the height of the tip 
above the surface with the applied voltage. The data taken in this method is called 
the 'topographic image' of the sample that is being scanned. The other type of mea­
surements are called 'constant height' method where one keeps the distance between 
the tip and the surface constant thereby observes changes in the tunneling current 
with the applied voltage. 

For a system with very low temperature and small voltages applied in the tunnel­
ing current loop one can apply perturbation theory to compute the tunneling current 
in terms of the unperturbed tip and surface states. According to Fermi's golden rule, 
the current at position r and S T M bias voltage V is (the formula given here can be 
found in [9]) 

where e is the charge of the electron, t{y) is the tip(surface) states, / is the Fermi 
function and Mt^(r) is the matrix element from the tip to the surface state at r. The 
above equation illustrates that the tunneling current is proportional to the square of 
the matrix element between an occupied tip state and an empty surface state times a 
factor which gives the probability that the tip state is occupied and the surface state 
is empty. If one treats the tip as a point source then he/she gets |Mt)W(r)|2 oc |t/>„(r)|2 

where ^(r) are the eigenfunctions of the surface. At very low temperatures (~ 10 
K) one may substitute the Fermi functions by step functions and therefore use the 
relation J duj5(et + eV — OJ)5(LU — ev) — 5(et + eV — e„) to get 

where gt(e) is the density of states of the tip states. In Eq. 1.9 _ ^ \^Pu{r)\25{e-Ev) is 
the local density of states of the surface states at position r and energy e. Therefore 
replacing the sum over tip states by an integral one can write 

7(r) = ~T E |M t ,,(r) | 2 / ( £ i) [ l - f(ev)]8{et + eV - e„) (1.8) 

(1.9) 

eV 

(1.10) 

o 
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Assuming gt(e) is constant one gets, 

eV 
7(r)oc j LDOS{r,e)de, (1.11) 

o 

and 
^ « L O O S ( r , £ ) . (1.12) 

The above calculation is one of the ways to interpret S T M dl/dV data that relates 
it to the L D O S of the surface states. 

1.3 Spectroscopic observation of the Kondo 
resonance 

Madhavan et al [7] first reported the measurement of local electronic structure of an 
isolated Kondo impuri ty on a metallic surface. S T M was used to obtain spectroscopic 
data on individual C o atoms deposited onto A u ( l l l ) surface at 4 K . F i g . 2 and F i g . 
3 of [7] shows the differential conductance dl/dV spectra measured (Fig. 2) without 
and wi th a C o atom on A u ( l l l ) surface and (Fig. 3) wi th the S T M tip held at various 
distances from the center of the C o atom. It clearly shows a sharp suppression in the 
differential conductance dl/dV near the Fermi energy when the S T M tip is in the 
immediate vic in i ty of the magnetic impurity. 

The Kondo resonance has also been observed by L i et al [6] for the system of a 
single Ce impuri ty on A g ( l l l ) surface at 5 K . F i g . 1 and 2 [6] shows the presence of 
Kondo resonance on Ce adatom atom which is absent for nonmagnetic A g adatoms. 

Manoharan et al [1] reported observing the same sharp dip near the Fermi energy 
in the dl/dV spectra at the location of Co adatom on C u ( l l l ) surface as shown in 
F i g . 1 of [1]. K n o r r et al [8] also observe a Kondo resonance for Co adatoms on 
C u ( l l l ) surface (Fig . 2 of [8]) and the effect of surface state on the dl/dV spectra. 
The dip observed in the various experimetns just mentioned has been interpreted 
as a Kondo resonance. Madhavan et al [7] have done a detailed comparison of the 
experimental dip wi th the expected theoretical dip that one can expect due to Kondo 
effect. The explanation behind measuring the Kondo resonance as a dip in the dl/dV 
spectra and how good the experimental results fit wi th theory are the topics of Sec. 
1.5. It should be noted that among the large number of experiments performed on 
similar systems and conditions we have mentioned only the relevant ones for this 
particular work. 
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1.4 T h e q u a n t u m m i r a g e e x p e r i m e n t 

A very interesting property of a surface is that it can introduce energy levels in the 
crystal band gaps (often known as surface states). Th is is because the wave functions 
do not obey Bloch 's theorem in the direction perpendicular to the surface and can 
decay exponentially away from the surface towards both the bulk material and the 
vacuum. Therefore electrons are free to move in the plane of the surface which forms 
a type of two-dimensional electron gas there. Often, the surface-state band is only 
part ial ly filled, giving a low density on the surface, and a nearly quadratic dispersion 
relation wi th a constant effective mass. In case of the C u ( l l l ) surface the electrons 
in the quasi two-dimensional electron gas belong to the surface state band with an 
energy min imum at 0.45 e V below Fermi energy [18]. Now, i t is well known that the 
presence of defects in a metal like C u wi l l introduce charge screening that has an 
oscillatory component known as Friedel oscillations [23]: 

4>{v) = ^cos(2UFr). ' 

Crommie et al [10] reported confining the surface electrons by using a closed struc­
ture (corrals) built from iron adatom on C u ( l l l ) surface. Thei r S T M topographic 
image of a circular electronic resonator constructed wi th Fe adatoms on C u ( l l l ) sur­
face shows beautiful standing wave pattern (Fig . 2 of [10]) which are interpreted as 
the Friedel type of charge oscillations. 

Manoharan used the same idea of confined electrons but in an elliptical corral 
instead of a circular one and then use it to project the Kondo resonance. They first 
used a scanning tunneling microscope ( S T M ) to position cobalt atoms in an elliptical 
r ing, and then placed another cobalt atom at one of the two focal points of the ring. 
Now, while a circle has only one center an ellipse has two 'focal points' or foci. Just 
like i n an el l ipt ical room where a faint sound generated at either of the two foci can 
be heard clearly far across the chamber at the other foci Manoharan et al used a 
quantum state that concentrated large electron densities at each focus point of the 
ell iptical corral. W h e n they placed a cobalt atom at one focus, a mirage appeared 
at the other focus: the same electronic states in the surface electrons surrounding 
the cobalt atom were detected on the other foci by the spectroscopic measurement 
of S T M even though no magnetic atom was actually there. In other words, in the 
dl/dV spectra the same resonance line shape, width and zero-bias shift were detected 
on the empty foci as produced by the real atom only attenuated by a factor of about 
eight. 
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1.5 C u r r e n t t h e o r e t i c a l i n t e r p r e t a t i o n o f S T M 

r e s u l t s 

In the S T M experiments on metallic surfaces wi th magnetic impurities [1, 6, 7] one 
observes a dip in the dl/dV spectra at Fermi energy. This dip has been interpreted as 
a Kondo resonance exhibiting a Fano profile. To explain this observation it is impor­
tant to note that, i n systems like these, below TK, there exists a roughly Lorentz ian ' 
shaped L D O S of the 3d orbital near Ep. There is also a conduction electron L D O S of 
the substrate due to the Abrikosov- Shul resonance discussed in Sec. 1.1. The width 
of the resonance, AE, is proportional to the Kondo temperature, AE oc kgT^. M a d ­
havan et al [7] pointed out that for a tunneling experiment into the resonance, one 
should expect di/dV to reflect the d orbital spectral density and reveal a Lorentzian 
like peak about Ep- B u t this can only happen when one assumes that electrons can 
only tunnel into the d orbital of a magnetic impuri ty and ignores electron tunnel into 
the surrounding continuum of conduction band states. Th is situation is far away from 
reality where an electron tunneling form a S T M t ip to the Kondo resonance has two 
possible channels, i.e., d orbital and the continuum, and this leads to an additional 
quantum interference term. Effect of such interference for transitions from an arbi­
t rary in i t ia l state to a noninteracting discrete state in resonance wi th a continuum 
has been calculated by Fano [12]. The dl/dV spectra that has a Fano line shape 
varies wi th the lateral t ip-adatom distance r as shown in F i g . 2 of [8]. 

A t this point we want to illustrate the theory of this line shape which has been 
developed by Fano [12]. Let us consider an atomic system containing one discrete 
state (j) and a continuum of states tp£- Each of these states is non-degenerate. For 
such a composite system let the final state to be ^E- The ratio of the transition 
probabili ty from any ini t ia l state i through any transition operator T to the final 
state \&E and the transition probability from i to the in i t ia l unperturbed continuum 
state IJJE c a r i be represented by a single family of curves. These curves are represented 

by 

\^E\T\i)\2 (q + e)2 q2-l+2qe 
\WE\T\I)\2 l+e2 1+e2 { • ' 

where q is the so called Fano line shape parameter and e is an energy variable. 

According to P l i h a l and Gadzuk [15] the tunneling conductance can be written as 

D I , T r\ , Mrf ~l + 2q(r)e 

where e = (eV + AE)/(kBTx), c is the background dl/dV signal and AE is the small 
shift of the resonance from the Fermi energy [8], The Fano line shape parameter q(r) 
is given by 
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where G(r) is the modified conduction electron Green's function as seen by the tip 
and t(r) is a function proportional to the matr ix element for direct tunneling into the 
localized state. t(r) depends on the overlap of the t ip wave function wi th the localized 
state and it falls off rapidly wi th r following the relation t(r) = to exp[—d(r)/a] where 
d(r) is the t ip-adatom distance and a is the decay length. F i g . 1 of [12] shows line 
shapes for different values of q. From E q . 1.15 one can see that even for no direct 
tunneling to the localized state i.e., when t = 0, a Fano line shape can result due to the 
indirect tunneling from the t ip to the adsorbate by conduction electron propagation 
represented by ReG(r)/lmG(r). Knor r et al [8] reported for an on-atom (r = 0) 
position of the t ip from the fitting of the measured dI/dV(V) curves that the Kondo 
temperature TK for C o / C u ( l l l ) is (54 ± 2 )K and the value of the Fano parameter 
q = 0.18 ± 0.03. Manoharan et al [1] reported a similar value of TK = (53 ± 5)K of 
for the C o / C u ( l l l ) adatom-substrate system. 

This line shape is also detectable only for r < 10 A. Hence the dip seen in the 
S T M experiments are interpreted as the Kondo resonance [14] showing up as Fano 
resonance [12] that has a width that determines the Kondo temperature. 

Gunnarsson et al [25] tried to interpret the experimental line shape by neglecting 
the direct coupling between the tip and the adsorbate 3d orbital and with the sub­
strate d orbital . Jones-Jennings-Jepsen potential is used for the surface wave function 
and the adsorbate is modeled by a single d orbital and the momentum dependence 
of the hybridizat ion matr ix elements is considered explicitly. Results from the study 
matched quite well wi th the experimental data even when the surface states are not 
included in the calculation. 

1.6 P r o b l e m s w i t h t h e i n t e r p r e t a t i o n o f S T M 

r e s u l t s 

After specifying the features of the 'quantum mirage' experiment we address the 
unanswered questions that arise from it. One crucial issue is that once one knows 
how to get Kondo Hamil tonian then he/she can solve it for spin S = 1/2 systems. In 
Co we have 5 d orbitals (some of them are degenerate) wi th the number of electrons 
yet to be fixed for C o adatoms embedded in C u ( l l l ) surface. Therefore this problem 
of C o adatom is much more complicated and it is not clear what k ind of model 
Hamil tonian one should use in this case. 

In the above discussion we have always assumed that there is only one kind of 
substrate state that can be tunneled to. B u t the eigenstates of the substrate can be 
linear combination of atomic states wi th coefficients that are strongly energy depen-
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dent. This is why, in general, the matrix elements for tunneling from the t ip to the 
various atomic basis states can be very different because the tunneling matrix ele­
ments are strongly energy dependent. For example for Co on top of C u the tunneling 
to atomic d states w i l l have smaller matr ix elements than that to the more extended 
p and s states . Also because of the broken symmetry at the surface the p and s states 
mix w i th the d states and we have in general a very complicated problem. However 
the interpretation of the tunneling experiments is generally done wi th the assumption 
that Eq.s 1.11 and 1.12 are correct. 

Because the resonance at Fermi energy depends on temperature these experimen­
tal results are interpreted wi th the help of Kondo physics. Kondo cloud is related 
to Kondo temperature which is determined by the width of the resonance at Ep. 
Fano line shape is detected only wi th in the range r < 10 Awhere r is the lateral 
distance between the tip and adatom. B u t Kondo temperature estimated from the 
experiments are ~ 50K corresponds to a much bigger Kondo cloud compare to 10 Aa t 
least i f we use a simple interpretation that the energy scale determined by the width 
would tel l us what the range of states at the Fermi energy is that are involved. This 
would result in only a small number of k states and therefore a large cloud radius. 

In the interpretation of dl/dV spectra as a quantity proportional to L D O S one 
assumes the S T M t ip as a point source (represented by s orbital) wi th constant 
density of states. B u t this might not be the case and the orbitals present at the t ip 
might be playing an important role as the tunneling current is proportional to the 
tunneling matr ix element from the t ip to the surface. 

From E q . 1.15 one can see that Fano parameter depends on the lateral distance 
between the t ip and adatom. Therefore a change in this distance wi l l change the 
value of q which therefore expect to result in the dl/dV spectra. B u t no such change 
in the dl/dV spectra is noticed as one can see from F i g . 2 of [7], 

Since TK has a very sensitive dependence on electron density at a certain site we 
expect a variation of Tx if the C o adatom is placed near a step edge. B u t experiments 
[16, 22] d id not found any dependence of TK on the position of Co adatom on C u ( l l l ) , 
A g ( l l l ) or A u ( l l l ) . 

1.7 M o t i v a t i o n f o r t h e a b - i n i t i o s t u d y 

A s mentioned in the previous section that dl/dV measures local density of states 
( L D O S ) times the tunneling matr ix element squared, it is important to know the 
possible tunneling states present near the vicini ty of S T M t ip in real space. We also 
mentioned that the total scattering cross section of the conduction electrons scat­
tered by the impur i ty localized states is proportional to its (localized state) L D O S . 
Therefore one needs to know the electronic distribution of this Co adatom on C u ( l l l ) 
surface system. Also one wants to know the form of an effective hamiltonian for the 
system wi th numerical values for most important hopping parameters. To explain ex-
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perimental observations such as the width of Kondo resonance near Fermi energy, one 
must know the coupling between different states of the system. Prerequisite condition 
for that is to know the local density of states near Fermi energy. Therefore we want to 
study the electronic structure of Co adatom on C u ( l l l ) surface. Density functional 
theory ( D F T ) is one of the most efficient and accurate method for calculating the 
ground state electronic properties of a system of interacting electrons. W i t h i n D F T 
methods one can calculate different physical properties of the system wi th high level 
of accuracy. Therefore we treat this problem in hand wi th D F T method. 

The rest of the thesis is organized as follows: Chapter 2 gives a very brief in­
troduction to our main tool of investigation, namely the density functional theory. 
Results of our study are given in chapters 3 and 4 and they form the heart of the 
thesis. In chapters 3 and 4 we wanted to simulate the system of our interest, a single 
C o adatom on C u ( l l l ) surface. Chapter 3 only deals wi th how to make a slab made 
of C u ( l l l ) plane that effectively simulates the substrate used in the S T M experi­
ments. In chapter 4 we placed Co atoms on top of the slab and studied the electronic 
structure of Co . The results are discussed in chapter 5. 
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Chapter 2 

Density Functional methods 

Density functional theory ( D F T ) is one of the most successful approaches to quantum 
mechanical many-body electronic structure calculations of molecular and condensed 
matter systems. It is essentially a variational method whose success not only en­
compasses standard bulk materials but also complex materials such as proteins and 
carbon nanotubes. 

Tradi t ional methods for calculating electronic structure of a system of interacting 
electrons, like Hartree-Fock theory are based on the complicated many-electron wave 
function. The main objective of the density functional theory is to replace the many-
body electronic wave function with the ground state electronic density as the basic 
quantity. D F T is, therefore, derived from the ./V-particle Schrodinger equation and 
is entirely expressed in terms of the density distr ibution of the ground state, pcs(r), 
and the single particle wave function <j>j. Whereas the many-body wave function 
is dependent on 3 N variables, three spatial variables for each of the N electrons, the 
density is only a function of three variables and is a simpler quantity to deal wi th both 
conceptually and practically, i.e. D F T reduces the calculations of the ground state 
properties of systems of interacting particles exactly to the solution of single-particle 
Hartree-type equations. This is why it has been most useful for systems of very many 
electrons and therefore we decided to use D F T methods for calculating the electronic 
structure of a cobalt adatom on copper (111) surface. In particular, we used two 
powerful approximation methods such as Linear Muffin T i n Orb i ta l approximation 
( L M T O ) and Linear Augmented Plane Wave method ( L A P W ) to do our calculations. 
The L A P W program has the name W I E N 2 k and the method is also known as the 
Fu l l Potential Method . In this chapter we briefly discuss the formulation of D F T and 
important features of L M T O and full potential methods. 

2.1 T h o m a s - F e r m i t h e o r y f o r e l e c t r o n d e n s i t y 

One can start from Thomas-Fermi theory that says for interacting electrons moving 
in an external potential v(r) due to the ion cores, the relation between v(r) and the 
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density distr ibution p(r) is: 

p(r) = 7 ( M - ^ / / ( r ) ) 3 / 2 (2.1) 

veff(v) EE v(r) + J J ^ d r ' (2.2) 

where 7 = 5 ^ iwY^ a n d M is the r independent chemical potential. The second 
term in E q . 2.2 is the classical electrostatic potential generated by the density p(r) 
of al l the valence electrons. E q . 2.1 works best for systems of slowly varying density 
[26, 27].-

2 .2 T h e f i r s t H o h e n b e r g - K o h n t h e o r e m 

Hohenberg and K o h n started from Thomas-Fermi theory and establish the connection 
between the electron density and the many-electron Schrodinger equation (which is 
expressed in terms of ip(r%, r 2 , . . , TN))-

We start wi th Hohenberg-Kohn theorems which are at the heart of the density 
functional theory. 

The first Hohenberg-Kohn theorem states that 
The ground state density pcs(r) of a bound system of interacting electrons in some 
external potential v(r) determines this potential uniquely [28],[29]. 

Proof. Th i s proof is valid for a non-degenerate ground state. Let PGS{*) be a non-
degenerate ground state density of N electrons in the potential f i(r) corresponding 
to the ground state ipi and the energy E\. Then 

£1 = v & l f f i h M = j vi(r)pGS(r)dv+ ( ^ i l T + V y ^ ) (2.3) 

where Hi is the total Hamil tonian corresponding to v\, T and Vee are the kinetic 
and interaction energy operators for the electrons. Now one can assume that there 
exists a second potential i>2(r), not equal to t>i(r) + constant, wi th ground state 1/% 
necessarily ip2 e^ipi which gives rise to the same PGs(r)- Thus 

E2 = (V 2 | W 2 > = j v2(r)pGS(v)dv + (il>2\T+ Vee\ip2) (2.4) 

Since ip is assumed to be non-degenerate, the Rayleigh-Ri tz minimal principle 

gives 
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E1 < <̂ 2|ffl|V>2> 

E2 < ( V i l W i ) 

Addi t ion of E q . 2.5 and 2.6 leads to the contradiction. 

Ei + E2 < Ei + E2. 

Therefore it is proved that the existence of a second potential which is not equal to 
t>i(r) + constant and gives the same pGsiy) must be wrong. 

Also , pGs(r) determines the number of electrons, N 

N = j pGS(r)dr. (2.7) 

Since pGs(r) determines both N and v(r), it gives the full hamiltonian and all 
properties derivable from the hamiltonian through the solution of time independent 
or time dependent Schrodinger equation (even in the presence of the additional 
perturbation like electromagnetic fields). For example, the many body eigenstates 
4>°(Vii r2, T N ) , V , 1( ri> r2, •••! FN),---) the 2 particle Green's function G ( r i , t\] r 2 , t2) 
and so on. This theory is extended later in the case of degenerate ground state[30] 
and is also val id for the special case of non interacting electrons. 

2 .3 T h e s e c o n d H o h e n b e r g - K o h n t h e o r e m 

The most important property of an electronic ground state is its energy Ecs- One 
can calculate i t by variational principle: 

EGS = mini,(il>\H\il>) (2.8) 

Hohenberg and K o h n expressed the minimum energy using density. The derivation 
given below follow the steps of R . O . Jones[33] (but Levy[31] and Lieb[32] first showed 
the derivation in this way which is simpler than the original derivation by Hohenberg 
and Kohn) . One considers N electrons moving in an external potential vext(r), i.e., 
the hamiltonian is 

J vx(r)PGs(r)dr + (^2\T + Vee\^2) 

E2 + y"(fi(r) - t>2(r))pG S(r)dr 

j v2(r)PGS(r)dr + (^\T + Vee\^) 

Ei + J(v2(r) - ui(r))/9Gs(r)dr 

(2.5) 

(2.6) 
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N 
H = T + VEE + YJve*t(ri), (2.9) 

i=i 
where H and VEE are the kinetic and electron-electron interaction operators respec­
tively. Now Levy defined a universal functional (since the functional does not refer 
to any specific system and any specific potential) 

F\p] = min^P{^\T + V e e | V ) , (2-10) 

or 
F{p\ = (rmm\T+vee\rmin) ( 2 - i i ) 

where the min imum is taken over al l IJJ that give p. The density p at any position r i 
is defined to be 

p{ri) = N J dr2... j drNV>*(ri, r 2 , T N ) ^ ^ ! , r 2 , r N ) . (2.12) 

The second Hohenberg-Kohn theorem states 

E[p] = J dvvext(r)p(v) + F[p] > EGS, (2.13) 

J dvvext(r)PGs(r) + F[PGS] = EGS. (2.14) 

and 

Proof. Wr i t i ng v = 2~2iLi vext{r\) one gets 

/ drvext(r)p(r) + F[p\ = ( O + T + K e I C J > EGs, (2.15) 

according to the min imum property of the ground state. Use of the min imum property 
once more gives 

EGs = Woslv + T + Vee|V>GS> < + T + V e e | « > . (2.16) 

Now subtracting the interaction wi th the external potential gives 

WGS\T + VEE\^GS) < (^S

N\T + V y « > • • ( 2 - 1 7 ) 

The above equation is true only when 

( V G S I T + VJtfcs) = W O T + V^IC*). (2.18) 

Then one has 
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Eos = j drvext(r)pGS(r) + {ipGs\T + Vee\ipGs) 

= j drvext(r)PGs(r) + ( « T + 

= J drvext{r)PGS{r) + F[pGs}- (2.19) 

Hence the second Hohenberg-Kohn theorem is proved. It follows from E q . 2.18 
that if the ground state is non-degenerate, i/Cin = V'GS- If the ground state is 
degenerate V£Sn i s e c l u a l to o n e °f the ground state wave functions, and the others 
can also be obtained. The ground state density then determines the ground state 
wave function(s), from which all ground state properties can be calculated. These 
properties are therefore func t iona l of the density which the Hohenberg-Kohn theorem 
has stated before. B u t these theorems do not specify the form of the functional 
dependence of energy on the density. Hohenberg and K o h n only states that to get 
back to the Thomas-Fermi theory, (Vee) wi th respect to the ground state can be 
written as 

felKefe) = \ J d r d r ' ^ ^ . (2.20) 

However they d id not give the density representation of the kinetic energy part of 
the electrons. A t this point Kohn-Sham gives a set of single particle equations which 
largely remedied the problem involving the form of kinetic energy and is the next 
major step in the development of D F T . 

2 .4 T h e s e l f - c o n s i s t e n t K o h n - S h a m e q u a t i o n s 

Kohn-sham self-consistent equations are very similar to the Hartree self-consistent 
single particle equations for the approximate description of the electronic structure 
of atoms (Hartree equations are based on Thomas-Fermi theory where every electron 
is regarded as moving in an effective potential generated by the average charge density 
of al l the other electrons). Hartree equations are the following 
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| _ I V

2 + ^ ( r ) } ^ ( r ) = £ ; ^ ( r ) (2.21) 

N 
p(r) = J > , - ( r ) | 2 (2.22) 

3 = 1 

vH(r) = - - + f dr'r^- (2.23) r J |r — r ' | 

where in E q . 2.21 j denotes both spatial and spin quantum numbers, p(r) in E q . 
2.22 is the mean density (for which, in the ground state, the sum runs over N lowest 
eigenvalues) and VH(T) in E q . 2.23 is the effective single particle potential. In the 
expression for vj/(r) the first term represents the potential due to a nucleus of atomic 
number Z and the second term represents the potential due to the average density 
distr ibution p(r). 

To solve these equations one may start from a first approximation (e.g., Thomas-
Fermi theory), construct VH(T), solve E q . 2.21 and recalculate p(r) from E q . 2.22, 
which should be the same as the ini t ia l p(r). If it is not one iterates appropriately 
unti l it is. 

The Hartree differential E q . 2.21 takes the form of the Schrddinger equation for 
non-interacting electrons moving in the external potential u e / / - So for such a system 
the H K variational principle becomes 

Ev{T)[p] = J drv(v)p(r)+T{p(r)} > EGS, (2.24) 

where T[p(r)} is the kinetic energy of the ground state of non-interacting electrons 
wi th density distr ibution p(r). One wants E q . 2.22 to be stationary wi th respect to 
the variations of p(r) which leave the total number of electrons unchanged, and the 
Euler-lagrange equation for this purpose is 

6Ev[p(r)} = j M r ) | « ( r ) + ^ ^ U o s - ^ dr = 0, (2.25) 

where PGS is the exact ground state density for v(r) and e is a Lagrange multiplier 
to assure particle conservation. In this case the ground state energy and density can 
be obtained by solving the single particle equations 
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^ - I v 2 + U ( r ) - £ ? ^ i ( r ) = 0 (2.26) 

JV 

p G S ( r ) = £ | ^ . ( r ) | 2 (2.27) 

£ G S = X ; ^ - ( 2- 2 8) 
To match this description wi th the case of interacting electrons Kohn-Sham write 

the functional F[p(r)] in the following form 

F[p(r)} = T[p(v)} + I J d r d r ' ^ ^ - + ^ ( r ) ] , _ (2.29) 

where Exc[p(r)] is the so called exchange-correlation energy functional. The H K 
variational principle for interacting electrons is therefore 

Ev(r)[p] = J drv(v)p(v) + T[p(v)} d r d v ' ^ ^ + Exc[p(r)} > EGS. (2.30) 

The corresponding Euler-lagrange equation is 

8Ev[p(*)} = j6p(r){v(v) + 5-^^\p=pcs 

+ J < k ^ - p \ + . S p { r ) U P G S - 6 | d r = 0. (2.31) 

Now let one write 

and 

. . . l - ) ^ U , (2.32) 

U « „ ( r ) = „(r) + J + " . c M - (2.33) 

Substi tut ing these expressions in E q . 2.31 one finds that it has the same form 
as E q . 2.25 for non-interacting particles moving in an effective external potential 
veff(r). Therefore the minimizing density pGs(r) can be found by solving the single 
particle equation 
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( ~ ^ V 2 + veff(r) - E^j <fc(r) = 0 (2.34) 

wi th 

N 
P G 5 ( r ) - ^ | ^ ( r ) | 2 (2.35) 

Eos = E ^ + E*dPGs(r)} - j drvxc(r)PGS(r) - \ J d v d v ' 9 0 8 ^ 0 ^ . (2.36) 

These are the so called Kohn-Sham self consistent equations. If one neglects Exc 

and vxc altogether, the K S equations (2.34)-(2.36) reduce to the self consistent Hartree 
equations. 

Aga in to solve these K S equations self consistently one can start wi th a guess of the 
charge density PGS- B y using some approximate form for the functional dependence 
of Exc on density, one must compute Vxc as a function of r. The set of K S equations 
are then solved to obtain an ini t ia l set of K S orbital . Th is set of orbital is used to 
compute an improved density from E q . 2.35 and the process is repeated unt i l the 
density and exchange correlation energy converge to wi th in some tolerance. After 
getting the self consistent density, the electronic energy can be computed from E q . 
2.36. 

The K S orbital on each iteration can be computed numerically or they can be 
expressed in terms of a set of basis functions. Therefore by solving the K S equation 
one can find the coefficients in the basis set expansion. The choice of these basis sets 
comes wi th experience. 

2 .5 L o c a l d e n s i t y a p p r o x i m a t i o n 

Several different schemes have been developed for obtaining approximate forms for 
the functional for the exchange correlation energy. The main source of error in D F T 
usually arises from the approximate nature of Exc. The most widely used and most 
simple approximation for Exc is the local density approximation ( L D A ) in which 

EL

X

D = j PGs(v)exc[PGs(r)]dv (2.37) 

where ex c[p&s(r)] is the exchange-correlation energy per electron in a homogeneous 
electron gas of constant density. 

Also for spin polarized systems the local spin density approximation ( L S D A ) ap-
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pears to be the most accurate scheme for D F T calculations. In such a case Exc is 
given by 

ELSD = J PGs(r)exc[PGs^r),PGs,i(r)]dv (2.38) 

where exc[pGs,i(r), pGS,[{_r)] is the exchange-correlation energy per particle in a homo­
geneous, spin -polarized electron gas wi th spin-up and spin-down densities pGS,i(r) 
and pcs,i(r) respectively. 

These expressions for exchange-correlation energies are clearly approximations 
because neither positive charge nor electronic charge are uniformly distributed in 
actual systems. To account for the inhomogeneity of the electron density, a nonlocal 
correlation involving the gradient of P G S ( F ) is often added to the exchange energy 
(this is the so called generalized gradient approximat ion(GGA)) . There are many 
other amendments to Exc relative to the system that one wants to solve in practice. 

Two standard programs known as Tight binding-Linear muffin t in orbital-Atomic 
sphere approximation ( T B - L M T O - A S A ) and Linear augmented plane wave (also 
known as Fu l l potential method or W I E N 2 k ) are used to calculate electronic proper­
ties of the system of Cobalt impurity deposited on metallic C u ( l l l ) surface. These 
two programs basically solve the Kohn-Sham self consistent equations and deter­
mines the band structure, density of states, total energy and so on. Since Co has a 
net spin in this system, we used L S D A for the D F T calculations wi th in L M T O and 
full potential methods. 

2.6 T i g h t b i n d i n g - L i n e a r m u f f i n t i n o r b i t a l a n d 

a t o m i c s p h e r e a p p r o x i m a t i o n m e t h o d 

The tight binding-Linear muffin t in orbital method is a specific implementation of 
density functional theory wi th in the local density approximation ( L D A ) . In this 
method each atom in the unit cell is replaced by a sphere of volume of a single 
atomic cell. Th is is the so called atomic sphere approximation. In a crystal, atomic 
states feel the corresponding potential together wi th some additional potentials from 
the neighboring atoms. Therefore this problem is avoided by considering a constant 
potential outside the sphere and this is the muffin t in approximation of the atomic 
potential. 

In this program, the Wigner Seitz spheres are considered as atomic spheres. The 
crystal is divided up into regions inside muffin-tin spheres and an interstitial region. 
Inside the muffin-tin spheres the energy independent basis functions are constructed 
from linear combination of the functions <f>i(Eu, r) (solution of the radial Schrodinger 
equation at the fixed arbitrary energy Ev) and their energy derivatives 4>t(Ev,r). 
Therefore L M T O method is no longer exact for muffin-tin potential but the error in 
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energies and wave functions are of fourth and second order in the difference between 
eigenvalues of the secular equations (secular equations that one gets for using varia­
tional principle for Schrodinger's equation wi th energy independent basis functions) 
and E„. Another important feature of L M T O is that, in the interstitial region, the 
value of the potential is equal to the energy of the state being considered. Therefore 
the state has zero kinetic energy in that region which give rise to an additional error 
of order (Eigenvalue of the secular equation - Vmtz), where Vmtz is the potential in 
the interstit ial region. 

The program considers a set of s, p, d L M T O s per atom. For the system of Co 
impuri ty embedded on C u ( l l l ) surface, only s,p and d orbitals are considered for C u 
and Co and s and p orbitals for empty spheres wi th in L M T O calculation. Complete 
description of the theory of T B - L M T O - A S A method can be found in [35] and [36]. 

2.6.1 Projecting orbital character using Fatband plots 
The amplitude of a particular basis function in a given eigenvector present in a 
particular band of the band structure can be projected and displayed wi th the help of 
so called fatband plots. In these plots the amplitude of the projection is represented by 
a energy and k dependent width added to the band structure. The L M T O method 
expands the wave function in the atomic orbital basis set {Xi(k)} in the following 
form: 

where i is the atomic orbital index and n is the band index. Therefore at certain k 
point one can plot | c j ] n | 2 for a specific orbital basis function that gives the amount 
of that orbital character present in each bands of the band structure picture. This is 
the so called fatband plotting. Following is a simple example of fatband plotting. 

Let us consider 3 atoms having s orbital only sit t ing in a row. If we consider the 
nearest neighbor hopping parameter t and the crystal field spl i t t ing for the middle 
atom to be e then the hamiltonian can be writ ten as 

where these 3 s orbital wave functions make the basis set. For e = - 2 eV and t = - 1 
eV the eigenvalues are 

p,N 

(2.39) 

H = 
0 t 0 
t e t 
0 t 0 

E= [-2.73,0.00,0.73] 

and the corresponding eigenvectors are the following 
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" -0.33 0.71 0.63 
-0.89 0.00 -0.46 
-0.33 -0.71 0.63 

where i — th column represents i — th eigenvector. 
Now c*d of the 1st basis orbital in these three eigenvectors are 

•0.11,0.50,0.39 

Also c*Ci for the 2nd and 3rd orbital in the eigenvectors are 

0.79,0.00,0.21 
0.11,0.50,0.39. 

In a fat band plot the width of a level in this example represents the amount of 
selected orbital character in the eigenstate corresponding to that energy. Hence by 
plotting fatband one can project different orbital characters in each bands. 

2 .7 L i n e a r a u g m e n t e d p l a n e w a v e m e t h o d o r F u l l 

p o t e n t i a l m e t h o d ( W I E N 2 k ) 

This program uses the same basis functions defined with respect to a muffin-tin 
potential inside the atomic sphere as the LMTO program. The difference of this 
DFT scheme with LMTO is that in the interstitial region the trial wave functions 
are chosen to be a linear combination of energy independent augmented plane waves. 
Therefore it is free from the additional error that is present in LMTO for choosing 
vanishing kinetic energy for the MTOs in the interstitial region. This program is also 
known as the most accurate method for calculating the total energy of a system. But 
we can no longer simply project the orbital characters present in a specified band of 
the band structure because the basis set contains large number of plane waves in the 
interstitial region. Description of the full potential program can be found in [37]. 

We shall use both LMTO and WIEN2k programs simultaneously to calculate 
electronic properties for the system under consideration and then compare results 
calculated within both methods to interpret the experimental findings. 
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Chapter 3 

Cu Surface Electronic Structure 
Study 

3.1 C u b u l k e l e c t r o n i c s t r u c t u r e s t u d y 

To study properties of the adatoms on C u ( l l l ) surface one needs to learn first about 
the electronic structure of a C u bulk and (111) surface. C u bulk has face centered 
cubic ( F C C ) lattice and the space group Fm — 3m. The Br i l lou in zone (BZ) cor­
responding to this lattice is shown in F ig . 3.1. The electronic configuration of C u 
atom is [Ar ]4s 2 4p°3d 9 . Therefore only C u 4s, 4p and 3d orbitals are relevant for the 
electronic structure of C u bulk near Fermi level. 

A solid material contains 6.022 x 10 2 3 electrons and ion cores per c m 3 , but the 
three dimensional translational symmetry allows to reduce this problem to just one 
unit cell. According to the Bloch theorem, the solution of Schrodinger equation of an 
electron i n a periodic potential V r (r+R)= V(r) (where R is a lattice vector) has the 
form 

where the function u^r) has the same translational symmetry as the lattice,i.e., 
u k (r + R) = iik(r). Here the vector k is called the momentum vector of the electron 
since hk is the momentum. Replacing \I/k(r) in the Schrodinger equation by the above 
function we get a wave equation for u k(r). The eigenfunctions and eigenvalues of this 
wave equation are explicit functions of k as well as the energy is now a multi-valued 
function of k. Tha t is for each value of k, there is a large number of solutions, giving 
a set of discrete energies E\^,Eiy., ••• Since these energies depend on k, they vary 
continuously as k is varied over its range of values, forming energy bands for each 
level. Therefore we write energy eigenvalues as - E n > k , and refer to the subscript n as 
band index. Hence in the simple case such as C u bulk the electronic properties of the 
infinite crystal are determined solely by the electronic structure wi th in the first B Z . 

The electronic structure of C u bulk calculated along high symmetry lines in the 
first Br i l l ou in zone is shown in F i g . 3.2. Note that Fermi level is at zero energy. A s 
one can see the agreement between both methods, L M T O and F u l l potential, in this 
case is remarkable. The character of eigen functions at given energies is depicted by 
so-called fatbands calculated wi th in L M T O method. From F i g . 3.3 one can see that 

* u ( r ) = e x p i k r u k (r), (3.1) 
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Figure 3.1: Crys ta l structure of C u bulk and the corresponding Br i l lou in zone. 

atomic sp orbitals are highly mixed and form almost free electron like bands. However, 
at the lowest energies (from -10 to -5 eV), these bands bear mostly s character. As 
the band disperses toward Fermi energy, it gains more and more p character and near 
the Fermi energy it has mostly 4p orbital character. Strong overlap between the s 
and p orbital wave functions results in such large dispersion for the free electron like 
band in the band structure. O n the other hand the d orbi tal wave functions are more 
compact. Therefore direct d-d orbital overlap between neighboring atoms is smaller 
resulting in only a 4 eV bandwidth for 3d bands compare to basically infinite eV for 
sp bands. In contrast to simple atomic configuration of C u , the d band of the bulk 
material is fully occupied resulting in a dw configuration. 

3.2 S u p e r c e l l C a l c u l a t i o n s a n d r e l a t i v e e r r o r 

m i n i m i z a t i o n s 

To study the electronic structure of the surface one has to brake the periodicity of 
the lattice at least in one direction. The simplest way is to use a so called supercell 
approximation. 

In the supercell approximation, several neighboring unit cells are combined into 
one new cell using translation vectors of the original lattice. Th is 'bigger' unit cell 
is called a supercell. For example, an F C C crystal can be represented by three F C C 
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Full potential ami LMTO band structure 
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Figure 3.2: Band structure picture for Cu bulk crystal structure from Full potential 
and LMTO calculation. Lines represents LMTO bands and points rep­
resents Full potential bands in the first figure. Density of states (total 
and partial, calculated within full potential) are shown for Cu bulk in the 
lower panel. The zero of energy is at Fermi energy. 
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translation vectors and one atom per unit cell. A t the same time it can also be 
represented by three translation vectors of simple cubic crystal and four atoms per 
unit cell which is a supercell representation of F C C crystal for the same unit cell. To 
consider a supercell that combines several unit cells the translation vectors are chosen 
accordingly. For example, the following choice of the translation vectors for an F C C 
crystal 

a i = O.Ox - 0.5y + 0.55 

a 2 = 0.5£ - 0.5y + O.Oz 

a 3 = nx + ny + nz (3.2) 

(where n is an integer) together wi th one atom per unit cell represents a supercell 
that consists of n F C C unit cells in the (111) direction. 

This new choice of a larger unit cell is also an approximation because everything 
is s t i l l periodic in the crystal. For example, if one removes one of the four atoms in 
the F C C supercell (one that is represented by three S C translation vectors together 
wi th four atoms per unit cell), one would form a vacancy that w i l l then form a simple 
cubic lattice i n the crystal structure. The same idea is used to simulate vacuum 
in the crystal structure by removing several adjacent atomic planes. This is often 
called the slab approximation in which the system is modeled by a sequence like 
...\vacuum\Cuslab\vacuum\Cuslab\... If we then make the vacuum layer extremely 
large so that the C u slabs have vir tual ly no interaction and at the same time make 
the C u slabs also infinitely thick the influence of the surfaces at the top and bottom 
of the cu slabs would give an exact representation of the influence of breaking the 
translational symmetry at the surface. 

In this approximation there are two possible sources of error as far as the properties 
of the surface are concerned. First type of error arise when the spatial separation 
between two adjacent slabs is not large enough. In that case the layers of the slabs 
couple wi th each other. In the supercell geometry, required for calculations of the 
surface electronic structure the momentum components parallel to the surface are 
well defined quantum numbers, whereas the perpendicular component is formally 
also conserved because our slabs are periodic but for each k perpendicular vector 
now wi th in the very large super cell there would be a large number of bands. The 
number of bands would be equal to the number of C u layers in the C u slab. W i t h i n 
each such band the dispersion in the perpendicular direction w i l l go to zero as the 
distance between the slabs is increased so they no longer interact. In this l imit the 
state representing these band are discrete and have dispersion only in a direction 
parallel to the slab. Hence we do not expect to find any continuous dispersion of the 
energy bands along the direction perpendicular to the surface. B u t when the slabs 
are not separated enough, because of the coupling between slabs some dispersion i n 

file:///vacuum/Cuslab/vacuum/Cuslab/
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band structure along k±_ is present. The first step in this calculation is to determine 
the spatial separation between two slabs needed to decouple the surface layers of the 
adjacent slabs. 

The second type of error occurs when the slab is too th in . In contrast to the real 
material where one has only one surface, in the slab approximation there are two 
'physical ' surfaces. Therefore in the resulting band structure there wi l l be at least 
two sets of bands associated wi th different surfaces. If there is no coupling between 
them they should be degenerate. O n the other hand when the slab is too thin, the 
two surfaces of the same slab can couple to each other and the degeneracy on the 
surface states is lifted. 

Another effect is the change in the band width as a function of the number of layers 
in a slab. In a th in slab, atoms do not have all the hopping possibilities between the 
planes compare to bulk. This significantly reduces the band width for bands with 
different orbi tal characters compare to bulk band widths. Therefore it is important 
to make sure that errors due to slab approximation are minimized before doing any 
calculation. To do this we simply carry out calculations as a function of the slab 
thickness and the vacuum layer thickness to determine at which min imum thickness 
the errors introduced are small enough that they wi l l not influence the physics we are 
after. 

3.3 A single C u ( l l l ) plane 
The simplest starting point to understand the electronic structure of C u ( l l l ) surface 
is to look at the electronic structure of one single layer. Note that a C u ( l l l ) plane 
has tr igonal symmetry as shown in F i g . 3.4. The space group is P — 3 m l . The 
corresponding Br i l l ou in zone is shown in F ig . 3.4. We shall show later that in the 
full potential method a spatial separation of 20.95 a.u. between slabs is sufficient 
to decouple the layers of different slabs. Hence in the full potential calculation of a 
single layer, the lattice constant along direction perpendicular to the (111) plane has 
been taken to be 20.95 a.u. 

The slab approximation in L M T O method is introduced by replacing C u atoms 
wi th the empty spheres for the number of layers corresponding to the thickness of 
the vacuum layer we are t rying to simulate. We find that six layers of empty spheres 
between two C u ( l l l ) planes effectively serves as the vacuum between adjacent slabs 
in this case. Th i s corresponds to the distance of 26.63 a.u. between C u layers and 
is close to what we found for the full potential method. A comparative study of the 
band structure from L M T O and Wien2k-Ful l potential methods is shown in F i g . 3.5. 

Fig.(3.5) shows that bandwidths of bands bearing characteristics of different or-
bitals become significantly narrower than compared to bulk C u . For example, the 
bandwidth of 3d bands is 1.5 eV compare to 4 e V in bulk C u . This is expected 
since a single C u ( l l l ) plane is essentially two dimensional and it does not have the 
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hopping possibilities between the planes compare to C u bulk. The nearest neighbor 
coordination number is only 6 as compared to 12 in the bulk F C C structure. Very 
naively one would guess that the band width would be reduced by about a factor of 
two. 

Because of the symmetry of the C u ( l l l ) plane, the degeneracy of 4p orbitals is 
lifted resulting in different bands bearing different orbital characters of px,py and pz. 
One finds from fatband plots that the band crossing Ep has mostly px +py (about 60 
percent) orbi tal character and the band at 2 eV above Ep at the T point has mostly 
pz character. 

3.4 Electronic structure as a function of the 
number of layers 

In this section the electronic structure of a C u ( l l l ) slab is studied as a function 
of the number of layers in the slab. To make the slab, more C u ( l l l ) planes are 
gradually added to the single C u ( l l l ) plane. The study of important features of the 
corresponding band structures fixes the number of layers in the slab. 

As was discussed in the previous section, for a single layer the band width of 3d 
band gets significantly narrower than that of C u bulk. The most immediate change 
to notice from the band structure of three C u ( l l l ) planes is that most of the band 
width of the 3ri bands has been restored. 

Min imiza t ion of the error due to coupling between the layers of two adjacent slabs 
requires the study of the band structure wi th different slab separations. Therefore, 
wi th in full potential method, self consistent band structure calculations have been 
carried out for several spatial separations between adjacent slabs. The resulting band 
structures are shown in F i g . 3.7. One can clearly see that for 6.75 a.u. separation 
between two slabs, bands along the high symmetry line of T to A disperses strongly 
because of the presence of kz (k± to the surface for this case) dispersion. Upon 
increasing the spatial separation the bands become less dispersive along this T to 
A line. For a separation of more than 20.95 a.u. there is a negligible dispersion 
in the band structure along the specified line and the bands are almost completely 
flat. Hence for this spatial separation slabs are successfully decoupled. One therefore 
fixes this spatial separation between slabs in al l the later calculations by Wien2k-
full potential method. In L M T O method the same purpose is served by a spatial 
separation of 26.63 a.u. between two adjacent slabs. 

In the band structure calculated within full potential method for 7 C u ( l l l ) layer 
slab, Shockley surface states appear in the sp-band gap at T point. Because of the 
presence of two 'physical ' surfaces in the simulated crystal structure and the coupling 
between them, the degeneracy of the two surface states is lifted. Therefore two surface 
states show up below Ep at T point in the band structure. This is a result of choosing 
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a slab that is not thick enough to decouple the two surfaces of the same slab. Several 
band structures with different number of layers in the slab are studied in this respect. 
With the increase of the number of layers in the slab, the decrease in splitting between 
these two surface states at T point is observed. At the same time, together with the 
increasing number of energy bands, the bandwidths of different bands are restored to 
that of bulk Cu. Fig. 3.8 shows that in the band structure of a 15 layer slab, there 
are 15 almost two-dimensional free electron like bands in the lowest energy (-10 to -5 
eV) region bearing mostly Cu 4s character and the bandwidth for 3d bands is ~ 4 eV 
as in bulk Cu. Also the surface states are now almost degenerate at 0.6 eV below Ep 
at the T point are obtained. Therefore one can take the 15 layer slab as the system 
that is thick enough so that the two outer surfaces do not feel each other and this 
system forms the basis for our further investigation. 

3 .5 S l a b c o n s i s t i n g 15 C u ( l l l ) p l a n e s 

In order to study the electronic structure of Cu( l l l ) slab, band structure and density 
of states of the slab containing 15 (111) planes are investigated within LMTO and 
Full potential methods. 

The crystal structure is represented by a unit cell of length 76.16 a.u. including the 
spatial separation of 20.95 a.u. between two adjacent slabs within the full potential 
method. Position of the different atoms in Cu( l l l ) planes in the structure file are 
fixed according to the symmetry of the structure and the length of the unit cell. In 
LMTO 15 Cu( l l l ) planes and 6 layers of empty spheres are considered and the length 
of the unit cell is 82.824 a.u with 26.63 a.u. thick empty slab (a layered structure 
consisting of empty spheres only). The band structures calculated within Wien2k 
and LMTO are shown in Fig. 3.8. 

Fig. 3.8 shows the surface state at T point is found 0.6 eV below Fermi energy 
in full potential. This is quite consistent with the experimental result since Shock-
ley type surface states are detected by STM experiments [18] 0.4 ± 0.02 eV below 
the Fermi energy at T point. Recent Angle Resolved Photo Emission Spectroscopy 
(ARPES) experiment [38] observed surface state at 0.435 ±0.001 eV below the Fermi 
energy at T point. However band structure calculated within the LMTO method the 
Shockley state is found at 0.13 eV below the Fermi energy at the T point. The rest 
of the band structure looks almost the same in both cases. Since the full potential 
method is very time consuming and we will have to increase our unit cell even further 
in the study of Co on Cu we try to correct the LMTO method so that we can use 
this in the future. Therefore we try to correct LMTO and bring the surface state at 
the same energy position as it is in the full potential band structure. 

One can approach the problem in different ways. Our starting approach is to 
change the spatial separation between the surface Cu layer and the rest of the slab. 
The magnitudes of the coupling parameters between layers depend directly on their 
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spatial separation. Therefore by moving a layer towards or away from the slab one 
can effectively change the band structure. In Table 3.1 we show different separations 
(compare to the 4.83 a.u. separation of the layers corresponding to the bulk crystal 
structrure) between the layers and the energies of several features in the resulting 
band structures. 

In the L M T O method a finite amount of overlaps between atomic spheres are 
considered. The program is designed to allow for less than 15 percent overlap between 
two atomic spheres while an atomic and an interstitial sphere are allowed to overlap by 
20 percent. Therefore if the outermost plane is moved towards or away from the slab 
by a considerable amount, the radii of the atomic spheres in a plane should change. 
A s the L M T O basis set depends on the size of these atomic spheres, their changes are 
expected to make considerable difference in the band structure. W i t h i n L M T O we 
find that an increase of 0.4 a.u. length between the two outer most C u ( l l l ) planes 
and the rest of the slab changes both the radii of atoms in the outermost C u ( l l l ) 
plane and the next empty sphere layer. 

Our next approach is to change the nuclear charge of the outer most C u ( l l l ) 
plane. Changing the nuclear charge means changing the potential which can simulate 
a shift in the band s. B u t we found that by changing the charge by only 0.1 the whole 
band structure of the outer most C u plane is quite different as compared to the full 
potential band structure F ig . 3.9. 

Next we t ry to adjust the band structure by applying an external potential to the 
top most C u ( l l l ) layer. App ly ing a positive or negative potential means decreasing 
or increasing the electron density in that C u layer. Table 3.2 shows the potentials 
applied on different orbitals of C u plane and their effects in the band structure. 

Our results in Table 3.1 and 3.2 justifies the reason behind our next step of 
applying a potential to the empty spheres to try to get a similar band structure 
compare to full potential. From fatband plots one can see that C u Apz and the empty 
sphere Is band couple strongly wi th each other. Therefore, by applying a potential to 
the Is orbi tal of the empty sphere layer next to the C u ( l l l ) plane one should be able 
to change the position of the surface state in the band structure without very much 
affecting the rest of the band structure. In table 3.3 the amount of potential applied 
to the empty sphere layer and the resulting changes noticed in the band structure are 
presented. In this case, by applying an attractive potential to the empty sphere plane, 
we transfer some of the electron density of C u ( l l l ) plane to this empty layer. Results 
show that, wi th in L M T O method, -0.3 R y potential applied to the s orbital of the 
empty layer gives a band structure almost similar compare to that of full potential 
together wi th the surface state at -0.55 eV. 

Therefore we considered applying an external potential of -0.3 R y to the s orbital 
of the nearest empty sphere plane in our later L M T O study of the electronic structure 
of the system. In conclusion of this section we have found that the surface electronic 
structure can be very well simulated with a slab thickness of 82.824 a.u. and a vacuum 
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Table 3.1: Lis t of different distances between the outer most two C u ( l l l ) planes 
(symmetry of the crystal structure gives that the separation between any 
two C u ( l l l ) planes is d = 4.83 atomic unit (a.u.) along c axis) and changes 
in the corresponding band structures. 

Length added Posit ion of the Change in radii Changes noticed 
to the separation surface state of atoms and in the band 

between planes at T point empty spheres structure 

(in a.u.) (in eV) 

-0.5 -0.05 no change Same as in the 
case of -0.4 a.u. 

distance addition 

-0.4 -0.09 no change 3d bands are 
different compare 
to Fu l l potential 

-0.3 -0.1 no change Rest of the band 
structure is almost 

similar to that 
of F u l l potential 

-0.2 -0.15 no change 3d band near 
M point looks 

similar to that of 
Fu l l potential 

-0.1 -0.15 no change 3d band near 
M point changes 

0 -0.13 no change Almost similar 
compare to F u l l 
potential band 

structure accept a 3d 
band at M point 

0.1 -0.1 no change N o change in 
the rest of the 
band structure 

0.2 -0.08 no change 3d band near 
M point looks 

similar compare 
to F u l l potential 

0.3 -0.02 no change The band at M point 
crossing Ep starts to 
move away from EF 

0.4 0 radii change The band at M point 
crossing Ep moves 

further away from EF 
0.5 -0.2 radii change B a n d at M point 

crossing EF is 
different compare 
to Fu l l potential 
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Table 3.2: A table wi th different potentials applied on the last layer of C u ( l l l ) plane 
and their outcome in the band structures. 

Potential applied O n orbital Posit ion of surface Changes noticed in 

in Rydberg (Ry) state at T point 
(in eV) 

the band structure 

0.4 4s and 4p -0.39 4s bands change 
around K and 

M point 

0.2 4s and 4p -0.39 4s bands change 4s and 4p 
again around K 

and M point 

0.1 4s and 4p -0.25 4s bands start 4s and 4p 
to change around 
K and M point 

0 none -0.13 Almost similar compare 
to F u l l potential band 
structure accept a 3d 

band at M point 

-0.1 4s and 4p -0.12 3d band changes 
near M point 

-0.1 Ap only -0.12 3d band near 
M point changes 

-0.1 4s only 0 B a n d structure looks 4s only 
almost similar to that 

of Fu l l potential 

layer of 26.63 a.u. In order to get the surface state in L M T O and full potential at 
the same energy we can apply an external potential of -0.3 R y to the empty spheres 
adjacent to the outermost C u plane. 
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Table 3.3: A table wi th different potentials applied on the empty sphere plane next 
to the outer most C u ( l l l ) plane in the slab and their outcome in the band 

Potential O n orbital Posit ion of surface M a i n features of 

applied in state at T point the band structure 

Rydberg(Ry) (in eV) 

0.4 Is and 2p 0.4 No change in the 
rest of the 

band structure 

0 none -0.13 A 3d band around M 
point i n F u l l potential 
band structure is not 

present in L M T O 

-0.4 Is only -0.7 A 3d band develops 
near M point which 
looks the same as in 

F u l l potential 

-0.3 Is only -0.55 Almos t similar band 
structure compare 
to Fu l l potential 
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Figure 3.3: Fatband plots of 4s, Ap and 3d bands for Cu bulk calculated within LMTO 
method. The first panel shows that 4s bands are at the lowest energy 
level. All the 3d bands are below EF and bands crossing EF have mainly 
4p character. 
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Figure 3.4: One layer of C u ( l l l ) plane has triangular symmetry and these trans­
lat ion vectors (Sx = 4.18322f - 2.41518y,a 2 = 4.83037y and a 3 = 
20.947625) map the crystal structure as shown in the above figure. 
Here a l l the lengths are in atomic units (a.u.). Hexagonal Br i l lou in 
zone for C u ( l l l ) plane and the corresponding reciprocal lattice vectors 
(6i = 27 r ( 0 . 2 3 9 0 5 i ) , 6 2 = 2TT(0.11953X + 0.20702y) and 6 3 = 2TT(0.04774Z) 
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Pull potential mill LMTO band structure 

Figure 3.5: B a n d structure of a single layer of C u ( l l l ) plane by L M T O and Ful l 
potential. Lines represents L M T O bands and points represents Fu l l po­
tential bands in the above figure. 
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M K 

Figure 3.6: Fatband plot for Copper 4s, 4p2 and empty sphere Is bands. The width of 
all the bands have been decreased by sinificant amount and band crossing 
the Fermi energy has mostly px +py orbital characters. Also one can see 
in the middle panel that 4p2 band is above the Fermi energy at T point. 
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Figure 3.7: Self consistent full potential band structures of three C u ( l l l ) planes wi th 
unit cell length 14.6 a.u., 19.2 a.u., 24 a.u., 28.8 a.u. and 33.6 a.u. along 
c axis. B a n d structure in the first panel shows dispersion in kz along the 
high symmetry line of T to A. B u t wi th the increase of the length of 
the empty layer this kz dispersion decreases. In the fifth panel we notice 
that for the empty layer of distance 20.95 a.u., the bands along the high 
symmetry line of T to A are almost dispersionless. Therefore with this 
length of the vacuum layer, slabs are successfully decoupled. 
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Full potential and L M T O band structure 
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Figure 3.8: Band structures of 15 Cu( l l l ) plane by Full potential and LMTO method 
where lines represents LMTO bands and points represents full potential 
bands. Both the band structures are almost similar accept the surface 
states at T point which are found to be at 0.6 eV and 0.13 eV below Fermi 
energy respectively in full potential and LMTO method. 
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Figure 3.9: L M T O band structure of 15 C u ( l l l ) planes wi th 28.9e charge on the 
outer most C u plane. 

-0.3 Ry pot mi IL* 

K M CA I, 11 A 

Figure 3.10: B a n d structure plot of 15 C u ( l l l ) plane wi th -0.3 R y potential applied 
on the Is orbital of the nearest empty sphere plane. 
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Chapter 4 

Electronic Structure of Co 
Adatoms on a C u ( l l l ) Surface 

W h e n Co (a transit ion metal) is deposited on the non-magnetic metallic C u ( l l l ) 
surface, the interaction between the electrons in the part ia l ly filled d shell of C o 
and the electrons of the metal results in interesting magnetic phenomena. To try to 
understand the magnetic properties of a Co impuri ty in this system we study the 
electronic structure of Co adatoms on a C u ( l l l ) surface. 

Let us start wi th a monolayer of Co deposited on a C u ( l l l ) slab. A s discussed in 
the previous chapter, a slab consisting of 15 C u ( l l l ) planes has been chosen so that 
it is thick enough to decouple its two surfaces. A t the same time it is possible to do 
calculations wi th our available C P U power and memory. 

F i g . 4.1 shows the various spin polarized L D O S of one monolayer of Co on C u ( l l l ) 
surface. We find for this system that Co is ferromagnetic. The total number of 3d 
electrons which is obtained by integrating the part ia l density of C o 3d states up to 
the Fermi energy is 7.23 in this case wi th the magnetic moment of 1.72 \IB per Co . 
The majority of the states in the vicini ty of Fermi energy are C o 'spin down' states 
wi th most of the 'spin up ' states below it . 

Even though the central layers of the C u slab basically feels a cubic crystal field as 
in the bulk, the crystal field of the outermost C o layer is not cubic but trigonal. The 
point group symmetry of this trigonal crystal is D^d- The eg and t2g orbitals in the 
cubic coordinate system are not the basis function of the irreducible representation of 
Du- One therefore chooses a new coordinate system to represent the basis functions 
of the irreducible representation of this group. In this new coordinate system the z 
axis is the threefold rotation axis chosen along the (111) direction, (z,x) is the mirror 
plane and y is the twofold rotation axis as shown in F i g . 11 of [40]. The five d orbitals 
in the new coordinate system are given by the following combination of the d orbitals 
in the cubic coordinate system (written in terms of x',y', z' axes) 
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Figure 4.1: Density of states (DOS) plots for Co 3d electrons in the case of monolayer 
of Co on a Cu slab that contains 15 (111) planes. The upper panel shows 
DOS for the spin up electrons and the lower panel shows the spin up case. 
The zero energy is at Fermi energy. Most of the 'spin up' states are found 
below the Fermi energy while the 'spin down' states are centered around 
Ep. 
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These five d orbitals are categorized into three groups according to the irreducible 
representations of Dza- \3z2 — r 2 ) is called A\, \yz) and \zx) are called E(l) and 
\x2 — y2) and \xy) are called £'(2). 

Fatband plots show that in this crystal field, the degeneracy of the Co 3d orbital 
is partly lifted and we get a non-degenerate Ai band and doubly degenerate bands 
for E{1) and E{2). 

Our goal is to study the electronic properties of a Co adatom on C u ( l l l ) . To do 
this and still make use of the powerful band structure software we need to still have 
a periodic structure of Co adatoms in the x, y plane. These atoms though should 
be far enough apart that interactions between them is negligible. We start with a 
Co adtom layer in a 2 x 2 supercell in x and y directions. Together with the 15 
C u ( l l l ) layers in each slab and two Co atom, there are altogether 95 atoms in a unit 
cell. This is already a very large calculation which slows down the computational 
speed by a considerable amount. Apparently the problem of spending memory and 
C P U time can be avoided by trying to preserve symmetry of the system as much 
as possible. Ideally one would like to have one Co atom in a supercell to study its 
electronic structure on the Cu surface. But Co on both sides of the slab is the most 
symmetric case for the system under consideration. At the same time, the number 
of C u ( l l l ) planes in the slab is reduced from 15 to 11 for similar reasoning. The 
crystal structure is simulated by making a slab of 13 C u ( l l l ) planes using P — 3ml 
symmetry of the C u ( l l l ) slab and then replacing the outermost layers of C u ( l l l ) 
planes by a 2 x 2 superstructure of Co atoms with less number of Co atoms per plane 
compare to Cu. The calculation is done for the two cases a Co layer only on one side 
giving an antisymmetric situation and the more symmetrical case of a Co layer on 
both sides. The results are presented in Fig. 4.2. 

Fig. 4.2 shows no significant difference in the projected DOS plots of the sym­
metric and asymmetric combinations. Since the self consistent density functional 
calculation for asymmetric slab takes much more computer time, we choose to work 

= ~{\x'y') + \y'z') + \z'x'))-

= -±=(2\(x'f-(y>)2)-\y'z>) + \z'x')), 

= /I |3(z') 2
 - r2) - ^ ( 2 | * V > - \y'z') - | z V » , 

= - ^ H ( z ' ) 2 - (y')2) - + \z'x')), 

= - ^ l 3 ^ ) 2 - r 2 ) - ^ ( 2 | x y ) - | y V ) - | z V ) ) . (4.1) 
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Figure 4.2: Density of state (DOS) plots of Co 3d 'spin up' (the upper panel) and 
'spin down' (the lower panel) states for asymmetric (one Co atom on one 
side of Cu slab) and symmetric (two Co atoms, one on each side of the 
outer most Cu planes) slabs calculated within full potential method. A 
2 x 2 supercell is considered in these calculations. The zero of energy is 
at Fermi energy. 
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wi th a symmetric slab wi th Co impuri ty on C u ( l l l ) surface. 
Prom F ig . 4.2 we see that the overall width of the C o Ai states (in the local 

coordinate system) is about 0.5 eV together wi th some dips and peaks in the D O S . 
The wid th of the Co d states can result from two main mechanisms. The coupling of 
the C o - r i states wi th a C u sp bands, resulting in a k ind of v i r tua l bound state with a 
width given by 27r] V ^ d | 2 times D O S as described in chapter 1 for the Anderson model. 
Secondly the d states can attain a dispersional width because we have placed them 
in a lattice. The coupling between Co-d orbitals on neighboring Co sites can lead 
to a dispersional band wid th which could be important because the supercell under 
consideration is relatively small . B u t this is quite unlikely because d orbitals are quite 
compact and the coupling parameter between two d orbital is inversely proportional 
to the fifth power of the spatial separation between the atoms [39]. Of course one 
should also take into account the indirect hoping v i a C u states but also these are 
probably quite small . Following Harrison [39] the hopping parameters between sp-d 
orbital and d-d are given by 

h2r3J2 _ h2r3

d 

*ldm Vldm 17/0 > *ddm ^?fidm Tc V ^ ' ^ J 

md''z may 
where I is any of the 5 and p orbital, rn stands for a or n bonding, 77's are dimensionless 
universal constants also mentioned in [39] for different cases of I and m and d is the 
distance between atoms. The most important point to notice here is that these cou­
pling parameters are inversely proportional to the spatial separation between atoms. 
It decreases rapidly wi th the increase of d in the above expression. 

To make sure the origin of the widths for Co d states, a larger (3 x 3) supercell 
has been investigated and the resulting D O S calculated wi th in self consistent full 
potential method are compared to the 2x2 super cell in Fig.(4.3). . The calculation 
wi th a 2 x 2 supercell shows that the total number of 3d electrons is 7.24 wi th the 
magnetic moment of 1.97/^5. In a 3 x 3 supercell the total number of 3d electrons is 
7.24 wi th the magnetic moment of 2.00/ig. These numbers together wi th the D O S 
plots indicate that there is no significant difference between 2 x 2 and 3 x 3 supercell 
cases. One can therefore say that coupling between Co-d orbitals of two different Co 
atoms is not very strong even in the case of 2 x 2 supercell. The wid th in the D O S of 
Co d bands is coming from the coupling between C o d and the C u sp surface and bulk 
states. Hence our final choice for studying the electronic structure of Co impuri ty on 
C u ( l l l ) surface is the slab having 2 x 2 supercell geometry wi th 15 C u ( l l l ) planes 
along z axis and two C o atom per supercell (one on each side of the slab). 
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Figure 4.3: Density of state (DOS) plots of Co 3d spin up and down states for 2 x 2 
and 3 x 3 supercell structures (with two C o atoms per unit supercell of 
11 layer C u slab, calculated wi th in full potential method) are shown in 
the upper and lower panel, respectively. The zero of energy is at Fermi 
energy. There is no significant difference in the D O S for both spin up and 
down states. 
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4.1 Optimal C o - C u distance 
So far we have been using the distance between Co adatom wi th the C u surface which 
is same as the distance between two C u ( l l l ) planes in the slab. The width of Co 
d states is coming mainly from the coupling of these states wi th C u sp surface and 
bulk states. Coupl ing parameters change wi th the distance between atoms under 
consideration. Therefore a change i n the vertical distance between C o adsorbate and 
C u surface can result in significant change in the Co d density of states. It can also 
change the widths of different D O S together wi th their shapes. The ab initio density 
functional calculations provide the total ground state energy which can be used to 
find the equil ibrium vertical position of the Co atom on the C u ( l l l ) surface. 

Density functional method is based on the Born-Oppenheimer approximation that 
says, due to their heavy masses nuclei moves much slower than the electrons, therefore 
one can consider the electrons as moving in a field of fixed nuclei wi th zero nuclear 
kinetic energy and a constant nuclear potential energy. In this situation one can treat 
each configuration in the adiabatic l imit to find the configuration wi th lowest total 
energy. Therefore one looks for the lowest total energy configuration for a slab that 
contains 15 C u ( l l l ) planes together with two Co atoms in a 2 x 2 supercell. 

Fu l l potential calculation is the most accurate method for calculating the total 
energy of the system. Al though L M T O is very similar to full potential, once Co is 
moved from the equil ibrium position due to atomic sphere approximation, the total 
energy becomes completely different compare to that of full potential. 

F i g . 4.4 is a plot of different total energies as a function of the change in spatial 
separation between C o adatom and C u ( l l l ) surface. We find wi th in full potential 
method that a spatial separation of 4.79 a.u. between the C o adatom and C u surface 
yields the lowest total energy configuration for our system. The difference between 
the total energy of the configuration wi th equil ibrium distance between Co adatom 
and. C u surface and the configuration wi th lowest total energy is found to be ~ 1 eV 
per unit cell and so is very significant. Since there are 2 C o atoms per unit cell, the 
change i n energy associated wi th each C o atom is 0.5 eV . F i g . 4.5 shows the D O S 
of spin down C o d A\ states for different distances between the C o adatom and C u 
surface and we chose the second case of lowest total energy configuration for further 
investigation. 

From L M T O calculations of this system wi th the opt imal distance between Co 
adatom and C u surface we find that there are 7.56 electrons in the 3d orbitals with the 
magnetic moment of 1.70 PB per Co . Fu l l potential calculation gives that there are 
6.47 electrons in the 3d orbitals wi th the magnetic moment of 1.71 ps per Co . One 
notice that in the full potential calculation of the C o / C u ( l l l ) opt imal distance, due 
to the proper treatment of the atomic potential inside and outside of the muffin-tin 
sphere, the radius of the muffin-tin sphere decreases. Hence the amount of d electron 
present inside the atomic sphere (we integrate the electron density inside the sphere) 
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Figure 4.4: Tota l energy as a function of the distance between C o adatom and 
C u ( l l l ) surface. The zero of energy corresponds to the total energy of a 
configuration when the distance between the C o adatom and C u surface 
is 4.83 a.u. We notice that, total energy has a min imum for the system 
when the distance between Co adatom and C u ( l l l ) surface is 4.79 a.u. 

is smaller compare to that of the previous full potential calculation. 
F i g . 4.6 shows D O S plots for bands carrying different orbi tal characters calculated 

wi thin Wien2k full potential method. We find that the D O S for spin up electrons are 
centered below the Fermi energy and that for spin down electrons are mostly centered 
at the Fermi energy. Therefore we can comment that for spin up electrons al l five 3d 
orbitals are almost filled together with some unfilled orbitals for spin down electrons. 

Al though the shapes of the density of states calculated wi th in these two methods 
differ, the band widths look almost comparable in case of 4s, 4p and 3d bands. 
Comparison of D O S plots from L M T O and full potential method shows that the 
width of the C o d A\ is 0.5 eV in both cases. 

One cannot definitely say that i n the experiment one directly observes the D O S 
found from these single particle pictures. The dl/dV spectra is interpreted to measure 
the local density of states times the tunneling matr ix element squared. Therefore 
presence of an eigenstate that is a linear combination of atomic states wi th coefficients 
(that are strongly energy dependent) makes the tunneling matr ix element (which 
also becomes energy dependent) much more complicated. In such a situation it is 
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Figure 4.5: Partial DOS of Ax state in the case of three distances between Co adatom 
and C u ( l l l ) surface. DOS for optimal distance is shown in the middle 
panel. The zero of energy is at Fermi energy. 

important to know which atomic states are mostly responsible for tunneling and also 
the corresponding tunneling strengths. Here the radial parts of the orbital wave 
functions are equally important together with the angular symmetry. 

A n orbital character study of the band structure is carried on in this situation. 
Fig. 4.7 is a three dimensional plot of the L M T O band structure and the projection 
of the eigenfunction onto Co d A\ state. That is we plot the wave vector k and energy 
eigenvalues in the x,y plane and Mg = X^Li^kK^2 —

 r2)i)((3z2 — r2)^^) along 
z axis. It is like fatbands but without the scaling factor multiplied that is used in 
plotting them. This 3D plot shows that near the Fermi energy at the T point Co d A\ 
state strongly mixes with Cu sp surface and bulk states present in the vicinity of Co 
atom. At K point the height of this band is almost 0.8 meaning that at this point, 
the eigenfunction has mostly Co d A\ character that does not mix with Cu states. 

At this point Co d electron spin density in real space is studied. The density distri­
bution for spin up and down states can be written as Pyi(r) = niV ll&y l(r)\2 • 
Here is the occupation number and fa is the eigenfunction of Kohn-Sham Eq. 
Electron spin density is defined as ps = p^ — p\ where p\ and pi represents density of 
spin up and spin down electrons, respectively. 

The electron spin density of half of the slab is shown in Fig. 4.8 where we consider 
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Figure 4.6: The upper panel shows total and partial density of states for Co 4s, 4p 
and 3d spin up and spin down electrons in the case of optimal Co adatom 
and Cu surface distance calculated within full potential method. The 
lower panel shows partial density of states (PDOS) of different 3d states. 
One can see from the lower panel PDOS that all the spin up states are 
filled (centered below Ep) and spin down states are partially filled (PDOS 
centered at the Ep). The zero of energy is at Fermi energy. 
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Figure 4.7: L M T O band structure of C o / C u (111) calculated for optimized C o - C u 
distance. Co d 3z2 - r2 coefficient squared is plotted in the z axis. 

two 2 x 2 supercells in both x and y directions. The isosurfaces represented by red 
and blue show the surfaces of constant spin density of 0.005 and -0.005 electrons per 
unit volume, respectively. Since C o has rather large magnetic moment, the C u states 
are spin polarized too which leads to the spin density extended throughout the whole 
C u slab. A s described i n chapter 3, one needs four C u atoms per plane to map a 
2 x ' 2 supercell structure. These four C u atoms can be categorized into two groups 
wi th respect to the position of the Co atom. Firs t type of C u atoms have mult ipl ici ty 
3 that belongs to those triangles which has Co atom sit t ing on the threefold rotation 
axis on the plane above the triangle. Second type of C u has mul t ip l ic i ty 1 and sits 
at the center of the 2 x 2 supercell in the x, y plane. The magnetic moments of these 
different C u atoms induced by C o are listed in Table 4.1. The values of the magnetic 
moments together wi th F ig . 4.8 shows clearly that magnetism propagates throughout 
the whole slab. 

However one needs to look at the spin density distr ibution at this point since these 
numbers don't tel l us how and where exactly the spin states are present in the real 
space. From F i g . 4.8 we notice that the spin density is asymmetric in shape and also 
there is a large negative spin density blanket (the large blue shapes present between 
the Co adatoms and the first C u layer) between Co and first C u layer. Also the 
coupling between C o d states and C u conduction electron states is anti-ferromagnetic 
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Table 4.1: Lis t of the magnetic moments on different C u atoms in the C u layers of 
half of the slab. 

Magnetic moment on Magnetic moment on 

C u plane number C u wi th mult ipl ici ty 3 C u wi th mult ipl ic i ty 1 C u plane number 
(u-B per Cu) (U-B per Cu) 

Firs t -0.0071 0.0114 

Second -0.0136 -0.0126 

T h i r d -0.0041 -0.0075 

Fourth 0.0117 0.0082 

Fi f th 0.0007 -0.0019 

Six th -0.0052 -0.0069 

Seventh -0.0002 -0.0028 

Eigh th (middle most) 0.0065 0.0044 

which results in a small magnetic moment on C u in the first layer. From F i g . 4.8 
one can immediately see that the large spin down density compensates almost all of 
the spin up density in the muffin t in sphere of C u in the first layer. The density 
distr ibution is so anisotropic that we get a small negative magnetic moment for C u 
atoms wi th mult ipl ic i ty 3 (which is the integral of the spin density over the muffin 
t in sphere) and a small positive number for that of the C u atoms wi th mult ipl ici ty 1 
in the first layer. 
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Figure 4.8: This is a plot of electron spin density of half of the slab with 2x2 supercell 
structure. The number of unit cells is doubled in x and y directions. 0.005 
and -0.005 spin density isosurfaces are represented by red and blue colors, 
respectively (calculated within L M T O method). Large red spheres at the 
top most layer represents Co atoms and the remaining seven layers are 
C u ( l l l ) planes. As one can see magnetism propagates through the whole 
slab since we observe some (small or large) amount of both positive and 
negative spin density present in all layers of Cu. 



4.9: Three panels with cuts through three different Cu layers are shown here. Isolines show only positive spin 
density and this is only one unit cell. In the first panel the horizontal cut shows the Cu spin density in 
the first C u plane. Similarly in the second and third panels cuts show the spin densities in the second 
and third C u planes, respectively. One can see that in the second plane the spin density is quite spread 
all over the plane while they are relatively concentrated around C u atom in other planes. The second Cu 
layer is therefore different from any other Cu layers. 
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In Fig. 4.9 the isolines show only positive spin density. We notice that the 
second layer of Cu has the highest magnetic moment per Cu among all other layers 
although the its magnitude is quite comparable in other layers. As one can see from 
Fig. 4.9, the spin density is spread over the whole second Cu plane but it is highly 
concentrated around Cu sites in all other layers. Therefore we conclude that it is 
important to consider the spin density distribution since it is very anisotropic and 
gives rise to almost comparable magnetic moments through the whole Cu slab. 

Fig. 4.10 shows the Co electron spin down density for all Co spd states integrated 
in the energy window -0.2 to +0.2 Ry around the Fermi energy. As expected, the spin 
density has highest value at the center of the Co atom and the value decreases as one 
moves away from Co. This picture tells us that Co spd states mix with the first Cu 
layer states pretty strongly since we see some Co spin density in that layer. Cu states 
are not present in this picture because the occupation number for all those states 
are set to zero. The isolines in this picture correspond to different spin densities as 
indicated in the thermometer. 

The above investigation shows that a 2 x 2 symmetric supercell consisting of 15 
Cu( l l l ) planes with 2 Co atoms one on each side of the slab is sufficient for studying 
the electronic properties of Co adatoms on a Cu( l l l ) surface. We find that Co 3d 
states are split into non-degenerate A\ and two doubly degenerate E(l) and E(2) 
states by the surface potential of trigonal symmetry. Note that the Co adatom is not 
at a inversion center. Therefore Co p and d states can mix. In addition, we find that 
the width of the Co d states mainly arise from the coupling to Cu sp surface and bulk 
states. The calculated number of Co d electrons is 7.56 with the magnetic moment 
of 1.7 PB per Co which is consistent with a ds configuration of Co in the high spin 
state. The spin density calculated within the LMTO scheme shows a much longer 
range as compared to the part of the charge density associated with Co states. It is 
interesting to note that the induced magnetic moment in the second Cu layer is even 
bigger than the magnetic moment in the first layer. 
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Figure 4.10: The above picture shows the Co spin down density for al l Co states in 
the energy window of -0.2 to +0.2 R y around Fermi energy (calculated 
wi th in L M T O method). The isolines corresponding to different spin 
densities are shown in this picture. There is only one Co per unit cell. 
The part of density on the left of C o is coming from the neighboring 
cell. The horizontal cut shows Co density in the top C u layer. 



Chapter 5 

Outlook 

57 

5.1 T i g h t B i n d i n g H a m i l t o n i a n f o r 1 l a y e r o f 

C u ( l l l ) p l a n e 

With the knowledge of a basis set and relative hopping parameters one can write 
down the Hamiltonian matrix for a specific system in the tight binding method. 
Therefore solving the Hamiltonian one gets the eigenstates and eigenvalues hence the 
band structure. 

Our initial interest was to write a model Hamiltonian with approximate numerical 
values for important hopping parameters between orbitals of the magnetic system of 
Co adatom on Cu( l l l ) surface. Therefore we started with a single Cu( l l l ) plane. 
Density functional calculation for Cu( l l l ) slab shows that sp type states are present 
near the Fermi energy. Hence only 4s and 4p orbitals are chosen to represent each 
atoms in plane and the nearest neighbor hopping is considered between atomic or­
bitals. If the nearest neighbor hopping is mainly important for the system under 
consideration, almost similar band structure is expected from tight binding model 
compare to that of LMTO. For a single Cu( l l l ) plane, band structure calculated in 
tight binding method seemed to match pretty well with the band structure that we 
get from LMTO. 

Following is a description of the model Hamiltonian that we have for a single 
Cu( l l l ) plane. As mentioned, 4s and 4p orbitals are chosen to represent each atoms 
in the plane together with the nearest neighbor hopping only. Even though this is not 
a complete description of the system, it can help us getting approximate numerical 
values for hopping parameters. A mathematical package (MAPLE) is used to get the 
eigenvalues and the eigenvectors. The eigenvalues are plotted as a function of the 
wave vector to get the associated band structure. 

The basis set is written as {|4s) = |1),\Apx) = |2), |4py) = |3), \Apz) = |4)}. The 
4 x 4 Hamiltonian matrix is written in terms of this basis set is given by: 

( Hn # 1 2 # 1 3 Hu ^ 
£j _ # 2 1 # 2 2 # 2 3 # 2 4 

# 3 1 H32 # 3 3 # 3 4 

\ # 4 1 # 4 2 # 4 3 # 4 4 / 

where #^ stands for (i\H\j). The nearest neighbor hopping parameter between 
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different orbitals are represented by tsaa = a hopping between s — s orbitals, tspa = 

a hopping between s — p orbitals, tn>a = a hopping between p - p orbitals and 
tpjm — hopping between p — p orbitals. In the (111) plane one Cu atom has six 
nearest neighbors. The coordinates of an atom (O) and its six nearest neighbors 
{AUA2,A3,A4,A5 and A6) are (0,0,0) and (a,0,0), (a/2,\/3a/2,0), (-a/2,v /3a/2,0),(-
a,0,0),(-a/2,-\/3~a/2,0) and (a/2,-\/3a/2,0), respectively. 

Elements of this symmetric Hamiltonian matrix are the following 

Hn = 2ia ? ( 7{cos(k • ri) + cos(k • r 2 ) + cos(k • r 3 ) } 

Hn = 1.732ii s p f f{sin(k-r2) + sin(k-r3)} 
' H13 = itspa{2 sin(k • r x ) + sin(k • r2) - sin(k • r 3 ) } 

u 

Ep + 2tppv cos(k • ri) + (1.5tppa + 0.5ipp7r){cos(k • r 2 ) + cos(k • r 3 ) } 

0.866(£p p C T - £pp7r){cos(k • r 2 ) - cos(k • r 3 ) } 

Ul2 = i..iG4u,3p<T\&iu.\is. • i2) T s i n ^ R . • i 3 ; / 

' Hi3 = itspa{2 sin(k • r x ) + sin(k • r 2 ) - sin(k • r 3 ) } 
Hu = 0 
H22 — Ep 

H23 = O.J 
H24 = 0 
7/ 3 3 = Ep + 2£p p ( 7cos(k • r i ) + (0.5i p p C T + 1.5tppw){cos(k • r 2 ) + cos(k • r 3 ) } 

Hu = 0 
Hu = EPz + 2£pp7r{cos(k • r i ) + cos(k • r 2 ) + cos(k • r 3 ) } 

where k is the reciprocal lattice vector in k space. Here r i = A\ and — vx = A 4 and 
so on. Also in this symmetric matrix H2i — H{2, H3i — H^... Ep and EPz are the 
crystal field splitting for (px, py) and pz states. The resulting band structure is then 
compared with that of L M T O . Fitting of these two band structures give us relatively 
acceptable numerical values for the hopping parameters from tight binding method. 

Next we tried adding more C u ( l l l ) planes according to the symmetry of the 
crystal. But as more C u ( l l l ) layers were added to the single C u ( l l l ) plane, we found 
it quite difficult to fit the band structure from our model hamiltonian and that from 
the L M T O . Therefore we conclude that the next-nearest, next-next-nearest neighbor 
and so on hopping should be considered for the proper treatment of the system. 

5.2 S u m m a r y a n d o u t l o o k 

We have presented a rather detailed ab initio study of the electronic structure of Co 
adatoms on C u ( l l l ) surface. A careful look at the band structure and orbital charac­
ters of Cu bulk showed that 4p bands are dominantly present near Fermi energy. The 
band structure of a single C u ( l l l ) plane shows that the band widths corresponding 
to bands with different orbital charaters are reduced by considerable amount. With 
the increase of number of layers in the slab this band width is regained. Finally we 
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find that a slab thickness of 82.824 a.u. and a vacuum layer of 26.63 a.u. is our 
choice for studying the surface electronic properties of C u ( l l l ) slab. A n external 
potential of -0.3 R y applied to the nearest empty sphere layer wi th in L M T O method 
gives surface state at the same energy (-0.55 eV) compare to F u l l potential. 

In chapter 4 the electronic structure of C o adatoms on C u ( l l l ) surface is inves­
tigated. Self consistent density functional calculation of C o monolayer on C u ( l l l ) 
surface shows that C o is magnetic in this system. We find that a 2 x 2 supercell in 
x,y direction is sufficient for studying electronic structure of C o impurity. Trigonal 
crystal field at the surface of this simulated C u ( l l l ) slab lifted the degeneracy on the 
Co d states and non-degenerate A\ state and doubly degenerate E(\) and E(2) states 
are observed. The lowest total energy of the system is calculated when the distance 
between Co adatom and C u surface is 4.79 a.u. The change in energy (difference 
between total energies of the configurations wi th 4.83 a.u. and 4.79 a.u. distances 
between C o adatom and C u surface) associated wi th each C o atom is found to be 0.5 
eV. 

Par t i a l density of states ( P D O S ) plots for different C o d states show that al l the 
spin up D O S ic concentrated below the Fermi energy. Therefore spin up states are 
almost filled. For spin down states the D O S is centered at the Fermi energy indicating 
that they are part ial ly filled. A self consistent density functional calculation shows 
that there are 7.56 electrons in 3d states wi th a total magnetic moment of 1.70 JJLB 
per Co which is consistent wi th a d8 configuration of Co in the high spin state.. 

Near the Fermi energy at T point the C o d Ai (3z2 — r2) state strongly mixes wi th 
C u sp states. The trigonal crystal field at the surface allows the mixing between Co 
d and p states since C o is not at the inversion center. Th is is the difference between 
the C o / C u ( l l l ) case and the A g / A g ( l l l ) case where a l l the 3d states are filled for 
A g atoms. Al though d (especially 3z2 — r2) states cross the Fermi level, they are 
more compact compare to p states which are also present at EF . Therefore tunneling 
could be into p states rather than d states. 

The wid th of the Co d Ai state is a result of the coupling wi th the C u sp surface 
and bulk states. Also from the spin density plots we notice that C o adatoms polarize 
nearest C u layers of the slab by considerable amount. According to L M T O results the 
second C u layer has the highest magnetic moment per C u among all other layers. The 
spin density distr ibution is quite anisotropic and it is extended throughout the whole 
C u slab. Also at least three C u layers have significant influence on the electronic 
properties of C o . 

To outline the future direction of this project, we begin by noting that the amount 
of different orbi ta l characters present in the basis wave function is not known. There­
fore this subject needs to be investigated further. Once we can find out important 
orbi tal states present i n the wave function, a tight binding treatment of the basis set 
together wi th at least nearest and next nearest neighbor hopping may help us wri t ing 
an effective Hamil tonian for the system. 
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We note that the Co 3d spin down states centered at the Fermi energy and espe­
cially the Co d 3z2 — r2 states are narrow in energy and the density of states exhibits 
very sharp structures including a strong dip just below the Fermi energy. This sharply 
structured density of states would of course also be seen in a STM measurement and 
so from the present study it is not that clear that a more sophisticated interpreta­
tion such as in terms of the Kondo effect are needed. On the other hand we should 
also realize that the very small width of the d states will cause strong changes in 
the density of states if we add real correlations to the problem as in the Anderson 
impurity model including a Hubbard U. If large enough this would again split the 
d states at the Fermi energy into occupied and unoccupied regions with a gap and 
then we would be back to a Kondo like problem but very important would then be to 
take into account the sharp structure in the density of band states needed to produce 
the sharp structures in the Co d density of states. In other words the problem will 
be much more complicated than the simple Kondo models usually used. There is 
another important issue though seen in these calculations and that is the very sharp 
structure seen in the Co s and p density of states right at the Fermi energy. As has 
been mentioned in the introduction we expect much larger tunneling matrix elements 
from a tip to a solid for tunneling involving the Co 4s and 4p states than for the much 
more compact 3d states. The density of states of these seen in Fig 4.6 exhibit a sharp 
dip very close to the Fermi energy with a width of only about 50 meV. This could 
indicate a different origin of the dip seen in STM than that of the Kondo problem. 
Al l these issues should now be studied with appropriate models. LDA+U could be 
used to see what happens if U is switched on. One should look at the local projected 
density of states of other adatoms such as Cu or Mn to see if the sharp structure seen 
very close to Ep is characteristic of Co or is a general effect. In addition an Anderson 
impurity model should be developed and worked out using the strongly structured 
density of states and hybridization matrix elements. 
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