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Abstrac t 

Separation of sources is an important problem in signal processing where one 

tries to extract two or more underlying signals from their recorded mixtures. 

Blind source separation is the problem of extracting sources armed only with 

the knowledge of the observable mixtures and necessarily, some assumptions 

on the underlying sources or their statistics. Applications of blind source 

separation abound, from EEG and fMRI in the field of neuroscience, to 

speech and audio recognition and separation, to face recognition, financial 

series analysis and communications. 

In this thesis we explore blind source separation in the case where there 

are more sources than available mixtures, i.e. the under-determined case. 

We take into account both attenuations and delays in the mixing process, 

utilizing sparsity of the sources for demixing. We provide the theoretical 

framework for source separation and present simulation results to validate 

our method. 

There are existing techniques that solve the blind source separation prob­

lem for instantaneous under-determined mixtures, and ones that solve the 

anechoic under-determined problem for two mixtures only. The proposed 
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technique is novel in that it is the first to solve the blind source separation 

problem in a general anechoic setting where no restrictions are put on the 

number of mixtures, and no assumptions are made on the number of sources. 
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Chapter 1 

Introduction 

Blind Source Separation (BSS) can be described as the problem of extracting 

underlying original sources from a number of observations where the sources 

are mixed together in some way. An example would be discerning what the 

various speakers are saying in a crowded room. Humans can do that with 

relative ease, being able to focus in and listen to what a particular person is 

saying. Machines on the other hand need sophisticated algorithms to do even 

a moderate job of it. Thus, solving the BSS problem usually entails making 

some assumptions about the underlying sources and about the mixing model. 

Generally, the more restrictive the assumptions and the model, the easier is 

the solution at the cost of the algorithm being less applicable to more general 

problems. Over the last few years, BSS algorithms have been developed 

for a wide variety of models, ranging from linear, anechoic, and echoic on 

one hand to over-determined, even-determined and under-determined on the 

other. O'grady et al. [39] provided a good literature review of the available 

methods in blind source separation over the range of assumptions made and 

models used. In the coming few pages we provide a similar review. 

Assuming that we have m mixtures of n sources, the BSS problem is 
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defined as overdetermined if m > n, even-determined if m = n and under-

determined if m < n. Moreover, the mixing is considered instantaneous if 

only attenuations but no delays between the sources and the sensors are con­

sidered. The mixing is considered anechoic if both attenuations and delays 

are considered but no reverberations are taken into account. Finally, the 

echoic mixing model takes all attenuations, delays, and reverberations due 

to multiple paths (or echoes) into account. Naturally, as the model starts 

to include more parameters and as the number of sensors becomes less than 

the number of sources, the problem becomes harder and more involved. Fi­

nally, the models can be made more realistic by incorporating noise, usually 

modeled as white and gaussian [39]. 

1.1 Prevalent Mixing Models 

As previously mentioned, generally three mixing models prevail in the blind 

source separation literature. They are as follows: [39]: 

n 

(1.1) 

n 

(1.2) 

L n 

(1.3) 
fc=i j=i 
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where Xi(t), i — 1,... ,m is the mixture observed at the ith receiver, Sj(t) 

is the jth source, j — l,...,n. The instantaneous mixing model (1.1) is 

the simplest one taking only the attenuations ay between each jth source 

and it,} receiver into account. The anechoic model (1.2) is more realistic in 

most scenarios taking both the attenuations and the delays Sij between 

the sources and receivers into consideration. Finally, the echoic model (1.3) 

considers multiple paths from sources to receivers as well. Thus, a*, and 5^ 

are the attenuations and delays associated with the jth source, ith receiver 

and kth path, where up to L paths are considered. In what follows, we will 

present a literature review of the methods used to solve each of the BSS 

problems, when the mixing is under-determined, even-determined, and over-

determined. 

1.2 The BSS Story So Far 

In this section we will discuss the prevalent trends in estimating the mixing 

parameters for the three mixing models presented. We separate this stage 

from the source recovery stage because only in the even-determined case is 

recovery of the mixing matrix sufficient for source recovery. In the under-

determined case further processing will be required. However, since many 

approaches directed at the even-determined case perform mixing matrix es­

timation and source estimation simultaneously we might also allude to that 

in what follows. 
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1.2.1 Instantaneous Mix ing 

For instantaneous mixing- especially in the even-determined case- a powerful 

tool that has found increasing use is independent component analysis (ICA). 

First expressed by Jutten and Herault [23] and [24], then developed in an 

information maximization framework by Bell and Sejnowski [6], ICA assumes 

statistical independence of the sources and tries to extract n sources from n 

recorded mixtures, i.e. it assumes m = n. This method, from an information 

theoretic point of view, tries to minimize mutual information and, from a 

statistical signal processing point of view, tries to maximize independence to 

extract the mixing matrix [39] (or its inverse) by using higher-order cumu-

lants. Moreover, rather than estimate the mixing matrix, ICA approaches 

generally try to estimate the unmixing matrix which leads to easier numerical 

computations and faster convergence [39]. Several researchers have investi­

gated ICA using various criteria for independence. Hyvarinen and Oja [20] 

developed the fastICA approach which maximizes non-gaussianity as a mea­

sure of independence. Some other algorithms that rely on second order sta­

tistics [7] exist, and are based on diagonalization of a whitened covariance 

matrix. 

To extend the ICA approach, Lewicki and Sejnowski [28], and Lee [27] 

then expanded it into the over-complete (under-determined) case, where 

there are more sources than available recorded mixtures. They use a max­

imum a posteriori approach to estimate the mixing matrix. The common 

factor in ICA approaches is the assumption of statistical independence of the 
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sources and of a linear mixing model used to perform the separation. A very 

good survey of such techniques can be found in [21]. 

Other approaches, tackling the under-determined mixing scenario ( [9], 

[47], [29] and [30]) assume sparsity of the sources in some transform domain, 

as well as a linear mixing model to solve the BSS problem for instantaneous 

mixtures with more sources than mixtures. All these methods exploiting 

sparsity use one form or another of the following observation. Note that in 

equation 1.1, if all sources are zero except the jth one, then we will have 

Xi(t) = a,ijSj(t). In other words if we were to plot all the recorded mixtures 

against one another on a scatter plot, we would obtain a line for over source 

Sj whose orientation is given by the a^'s. Figure 1.1 shows two scatter plots. 

The first one is obtained by plotting the time-domain mixtures against each 

other, and the second is obtained by plotting the STFT mixtures. Note that 

three different line orientations can be seen in the transform domain scatter 

plot, and what remains is to estimate the mixing parameters by identifying 

the line orientations. One approach that can be used to identify the lines 

in such a scatter plot is to use a clustering technique. For example, [47] 

estimates the mixing matrix as follows. They normalize their data vectors to 

have unit norm, and map them onto a hemisphere of the unit hyper-sphere (to 

avoid having two clusters for every source, one on each hemisphere). A fuzzy 

C-means clustering stage will follow to estimate the cluster centers which are 

used as columns of the mixing matrix [39]. Such approaches generally use 

constrained I1 minimization for separation, which they prove also maximizes 
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Scatter Plot in Time Domain Scatter Plot In STFT Domain 

Figure 1.1: Scatter plots of two instantaneous mixtures, in the time domain 
(left) and in the STFT domain (right). The STFT was done with a window 
length of 64ms and an overlap of 50%. Note that the line orientations, and 
therefore the mixing parameters, in the figure on the right are clear. 

sparsity. 

Separation techniques in the instantaneous case depend on whether the 

system is even-determined (or over-determined) on one hand or under-determined 

on the other. Note that equation 1.1 in matrix notation becomes x(t) = 

As(t), where A is the matrix composed of the weights ay. In the even-

determined case, extracting estimates s e s t(t) of the sources s(i), is done by 

a linear transformation: sest(t) = Wx(t), where W = A~}t, and Aest is the 

estimated mixing matrix. The over-determined case can be transformed to 

the even-determined one by applying some dimension reduction technique 
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like Principal Component Analysis (PCA). On the other hand, separation 

in the under-determined mixing scenario usually relies on some sparsity as­

sumptions. Thus, m-sources are extracted at each time point and the others 

are set to zero, effectively reducing the problem (point-wise) to an even-

determined one. This is done by using constrained I1 minimization, as in [9] 

and [30], for example. 

The constrained I1 minimization problem can be formulated using a prob­

abilistic framework is as follows. Assume that we have our estimate Aest of 

the mixing matrix A, obtained using one of the methods mentioned previ­

ously (scatter plots, clustering...), and that the sources follow a Laplacian 

distribution and are independent. Thus, the prior p.d.f. of sest would be: 

PM = Yb

e~M/b- (1-4) 

The problem would be to find the estimates sest as such, under the constraint 

x(i) = Aestsest(t): 

s est = argmaxP(s e s t (£) |A e 5 t ,x(t)) 
s e s t 

= argmaxP(x(t)|i4 e s t,s e s t(t))P(s e s t(i)) 
S e s t 

= argmaxP(s e s t(i)) 
S e s t 

= arg max e~ i=il 5 e s tl 
S e s t 

n 

= arg min | ses« | 
S e s t Z ' 

i = l 
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Reintroducing the constraint the problem becomes: 

P i : find arg min | | s e s t | | i , subject to A e s t s e s t = x, ( 1 . 5 ) 
S e s t 

The aim of presenting this derivation here is to show how by formulating and 

solving the P i problem presented above, we are assuming both sparsity and 

independence of the sources. Methods like the ones presented in [9] and [30] 

separate the sources in the under-determined instantaneous case by solving 

P i . Later on, we shall encounter a complex version of the P i problem, but 

as an approximation to a harder non-convex problem, which we formulate to 

solve for sources in the under-determined anechoic scenario. 

1.2.2 Anechoic Mixing 

There are several approaches that deal with both attenuation and delays in 

the case of more sources than mixtures. Anemuller, Sejnowski, and Makeig [3] 

proposed a complex independent component analysis technique, which ex­

tracts an equal number of sources from mixtures in each of various separate 

spectral bands to solve the BSS problem for electroencephalographs data. 

However, this entails identifying whether sources extracted from different 

spectral bands correspond to each other or not, and may also involve solving 

a permutation problem. Jourjine et al [22], and Rickard and Yilmaz [45] 

developed an algorithm called the Degenerate Unmixing Estimation Tech­

nique (DUET) that exploits sparsity in the Short Time Fourier Transform 
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(STFT) domain, and uses masking to extract multiple sources from only two 

mixtures. The assumption, which they call W-Disjoint Orthogonality, is that 

in the time-frequency (TF) domain, only one source is active at every point. 

Therefore, what remains is to assign every TF point to its respective source 

and transform the signals back to the time domain. To that end, a two-

dimensional histogram of relative attenuations and delays between the two 

mixtures is constructed. Due to the approximate W-Disjoint Orthogonality 

of the sources, several peaks, each corresponding to one source will appear 

in the histogram. Detecting those peaks is thus equivalent to estimating the 

mixing parameters. Next, TF points are assigned to their closest peaks, and 

a TF mask is constructed for each source. For a certain source, if the mask 

value is 1 at a certain TF point, the value of that TF point is set to the value 

of the corresponding point in one of the mixtures. The process is repeated 

for all the sources in the TF domain, and finally the extracted sources are 

transformed back into the time domain. 

Some other algorithms that rely on similar concepts for separation of 

multiple sources from two mixtures were developed as well. For example [8], 

uses ideas from the instantaneous case to estimate the mixing parameters. 

A scatter plot technique is used to approximate the attenuations by estimat­

ing line orientations using a kernel density method. The method works by 

dividing the scatter plot in a radial grid from 0 to u radians, and assigning 

weights to the bins on the grid based on the proximity of the data points to 

the bin directions. Combining the results from all the bins on the grid yields 
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a kernel density function whose local maxima correspond to the attenuations 

of the mixing process. Once that is done the delays are estimated using the 

real and imaginary values of the STFT points. Delay values for a certain 

source are iteratively changed until the kernel function is maximized. The 

procedure is repeated for all the sources and this way the delay parameters 

are estimated as well. After the amplitudes and delays are extracted, Bofill 

uses second order cone programming, a technique that allows for I1 minimiza­

tion in the complex domain, to recover the sources in the TF plane. Finally, 

the sources are transformed back into the time domain. 

Also, [11] proposes a method that uses a minimum mean square error 

estimator in the frequency domain to estimate the signal spectra from noisy 

observations and then applies K-means clustering to identify the sources. 

This method also uses simple masking based on the assumption that only 

one source is active at every time-frequency point to perform the separation, 

and is very similar to DUET in that sense. 

Despite the fact that DUET and the approaches of [8] and [11] are con­

fined to the case of two mixtures (m = 2), they open the door for algorithms 

such as the one we present in this thesis to solve the problem of anechoic 

mixing even when we have more than two mixtures available. 

1.2.3 Echoic Mixing 

The most involved of the three mixing models discussed in section 1.1, echoic 

mixing is a challenging BSS problem. One of the earliest developments that 
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made attempts at this possible is the PhD thesis of Lambert [26] and subse­

quently [25] that built an 'FIR matrix algebra' and used it for blind separation 

of convolutive mixtures. Lambert provided methods for inverting FIR filters, 

and used them to determine the inverse of the mixing process. Generally, esti­

mating the inverse mixing process is done in the Fourier (frequency) domain, 

where convolutions are transformed to multiplications [39]. This transforms 

the problem into the instantaneous mixing problem at every frequency cell. 

One then has to solve multiple instantaneous mixing problems. This idea 

was used by Smaragdis [42], who extended the Infomax approach of Bell and 

Sejnowski [6] to complex data allowing for separation of convolved mixtures 

using a powerful statistical approach to be accomplished. On the other hand 

this introduces the problems of scaling and permutation. A source compo­

nent extracted at a particular frequency might not be extracted in the same 

bin at another frequency, and it might be scaled differently. Thus, techniques 

have to be used to match the various sources across frequency bins. Errors 

in solving the permutation and scaling problems could lead to interference 

between extracted sources and artifacts within each source, respectively. 

We will not go much further into the literature of echoic mixing BSS since 

all available algorithms currently are unable to solve the under-determined 

problem. 

A brief overview of the work that has been done in the various problems 

associated with blind source separation by various researchers is presented 

in table 1.1. It shows that for the problem of under-determined BSS in the 
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Table 1.1: The Various Blind Source Separation Problems and the Main 
Contributions Solving Each Case 

Number of Mixtures Mixing Model Number of Mixtures 
Instantaneous Anechoic Echoic 

over/even-determined (m < n) 
under-determined (rn — 2) 

under-determined (any m > 2) 

[23], [6], [21], [7],... 
[32], [27], [9], [46], [30],... 

[27], [9], [46], [30],... 

[22], [45], [8],... 
[22], [45], [8],... 

Our contribution 

[26], [42] 

anechoic case, solutions have only been proposed for the two-sensor case, 

while no solutions have been proposed for the under-determined echoic case. 

The contribution presented in this theses is a technique that solves the 

under-determined anechoic BSS problem without restricting the number of 

mixtures to two. We call this technique the Blind Anechoic Under-determined 

Source Separation technique (BAUSS). 

1.3 The Two-Step Approach 

An important contribution by Theis and Lang [43] formalizes a two step 

approach to over-complete (under-determined) blind source separation. They 

assert that for solving the under-determined BSS problem, recognizing the 

mixing parameters is insufficient, and further processing is needed to extract 

the sources. The solution to the problem is thus in two steps, the first of 

which is blind mixing model recovery and the second is blind source recovery. 

In [9] and [30] such an approach is used, whereas [28] fuses the two steps into 

one. 

In our work, we follow the two step approach. We illustrate a demix-
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ing algorithm for anechoic mixtures with delays, utilizing the STFT as our 

transform domain, and perform separation using a geometric interpretation 

of I1 minimization. 

1.4 Organization of the Thesis 

Following the introduction, we provide a brief overview of the mathematics 

and the algorithms we are going to use throughout. We discuss the STFT 

and its properties, as well as constrained I1 minimization followed by an 

overview of K-means clustering. We then discuss the metrics we use to eval­

uate the performance of the BSS algorithm. Next, we discuss the proposed 

method for solving the anechoic BSS problem in the under-determined case. 

We begin with a mathematical formalization of the problem. We then ex­

plain how we utilize sparsity of mixtures in the STFT domain to extract 

feature vectors. We describe our feature vectors and the reasoning behind 

selecting them, combining the feature vectors used in [45], [9] and [30]. We 

show how by using clustering in the feature space we are able to extract the 

mixing model parameters. Next, we explain our algorithm for recovering the 

unknown sources by capitalizing on the mixing parameters we extracted and 

the sparsity of the sources in the transform domain. We show how this step 

is a generalization of the I1 minimization procedure employed in [9] and [30] 

to the case where delays are included in the mixing model. We also present 

an enhancement of the algorithm outlined above aimed at suppressing inter-
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ference and reducing distortions caused by errors in estimating the mixing 

matrix, failure of the sparsity assumption, or high levels of noise. Finally, 

we report the results we obtained running the algorithm on both synthetic 

and real mixtures and we present our conclusions and outline directions for 

future work. 

1.5 Contributions of the Thesis 

One can see from table 1.1 that the existing techniques for under-determined 

blind source separation are restricted to the instantaneous case and to the 

anechoic case with two mixtures only. In this thesis we present a technique 

that can extract sources in an anechoic environment without the need for as 

many mixtures as sources, and without limiting the number of mixtures to 

two. Obviously this is important, since scenarios may arise and experiments 

can be designed with multiple sensors detecting multiple sources. One would 

naturally want to utilize all the available information rather than use only 

two mixtures to perform the separation. 

Our results indicate that the technique we present in this thesis improves 

on the results achieved by DUET, with gains in performance even in the case 

of two mixtures while successfully extending under-determined BSS to the 

more general anechoic setting. 
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Chapter 2 

Background 

In this chapter, we will cover the theoretical background material used 

in this work. Recall that we are using a two step approach to solve the BSS 

problem. In fact, each of these two steps contains various processing sub-

stages, as can be seen in Figure 2.1. Because we use a variety of tools and 

methods for blind source separation of mixtures of delayed and attenuated 

sources in these various sub-stages, we believe it will be useful to first sur­

vey these methods. In section 2.1 we provide an overview of the desirable 

properties governing the choice of transform, and present the STFT in this 

context. We also cover implementation issues such as sampling and inversion. 

We show how certain signals, such as speech, exhibit the desirable property 

of sparsity in this transform domain. In section 2.2, we explain why spar­

sity is desirable and how it allows us to perform separation by focusing on 

the mathematical basis behind our technique for separation, constrained I1 

minimization. Section 2.3 is dedicated to an overview of k-means clustering, 

the technique that we subject our feature vectors to, in order to extract the 

mixing parameters. Finally, section 2.4 aims at introducing the performance 
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Step 1: Blind Mixing Model Recovery 

Step 2: Blind Source Recovery 

Mixtures in 
Transform 

Blind Source Extraction 
(constrained 11 minimization) 

Inverse Transform 

Extracted Sources 

Figure 2.1: The various sub-stages used in each of the two steps of our pro­
posed technique. After transforming the data, feature vectors are extracted 
and used to estimate the mixing parameters via clustering. Both the mixing 
parameters and the mixtures in the transform domain are then used in the 
second step of the algorithm to recover the sources. 
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measures we use to assess the quality of our separation technique. 

2.1 Transform of Choice 

As a first step in solving the anechoic BSS separation problem, we need to 

transform the data to an appropriate domain. The transform of choice must 

have certain properties that make blind mixing model recovery and blind 

source recovery easier. While one could choose from a variety of transforms 

such as complex wavelets and wavelet packets, or even over-complete dictio­

naries of bases (combinations of several transforms), we choose to use the 

STFT for a number of reasons. Mainly, signals like speech are sparse in that 

domain. Moreover, the STFT is linear and the STFT of a delayed signal is 

a complex constant multiplied by the STFT of the original signal. Of some 

importance as well is the fact that the STFT is not very computationally 

intensive. 

We shall capitalize on most of these properties in chapter 3 to extract 

the appropriate features and subsequently the mixing parameters as well 

as to recover the sources. In what follows we will present the STFT as 

a logical extension to the regular Fourier Transform, briefly discussing the 

afore mentioned properties as well as implementation issues. 
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Table 2.1: Properties of the Fourier Transform 

Property Function Fourier Transform 
Translation/Time delay 

Linearity 
/(* " r) 

afi(t) + bf2(t) 
A e- j W / (w) 

afi(u>) + 6/2 M 

2.1.1 Fourier Transform 

The Fourier transform of a function f(t) is given by: 

/

+00 

f(t)e-**df (2.1) 
-00 

Furthermore, its inverse is given by 

/(*). = — J f(u)e^dw. (2.2) 

The Fourier transform, which is a continuous and bounded function of fre­

quency (LO) measures how much oscillations there are at each (ui). Two 

important properties of the Fourier transform, i.e. linearity and translation, 

that are relevant to this work are reported in table 2.1. Both properties can 

be derived by a simple change of variables in the Fourier integral. 

Another important property of the Fourier transform, known as Parseval's 

relation is: 

/
+00 1 r+00 

\f(t)\2dt = ^- l/MI2^. (2-3) 
Put into words, equation (2.3) simply states that the Fourier transform con-



Chapter 2. Background 20 

serves 'power', i.e. power in the time domain is equal to power in the fre­

quency domain. 

As we are concerned with digital signals, we are thus interested in the 

discrete counterpart of the Fourier transform. The N-point discrete Fourier 

transform (DFT) of a digital signal f[n] is denned as: 

N-l 

f[k} = ^f[n}e-jk2m/N, (2.4) 
n=0 

and its inverse is defined as: 

fc=0 

Here also Parseval's relation holds, as do the properties of the Fourier trans­

form discussed previously in table 2.1. As for implementation, the DFT of 

a signal can be calculated by means of the Fast Fourier Transform (FFT) 

via O(NlogN) operations. For this work, this brief overview of the Fourier 

transform will suffice; a more extensive discussion of both the Fourier trans­

form and the DFT, as well as of their properties can be found in [37], [40], 

or any good book on signal processing. 

2.1.2 The Short Time Fourier Transform 

Shortcomings of the Fourier transform, namely its assumption of stationarity 

of the signal, prevent it from being a very useful tool for the analysis of 

real world time-varying signals. A more reasonable assumption in that case 
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would be stationarity over short periods of time. Motivated by that, we now 

consider the Short Time Fourier Transform. 

The Short Time Fourier Transform (STFT) of a function /(£), also known 

as Windowed Fourier Transform (WFT), can be expressed mathematically 

as follows: 

/

+oo 
f(t)g(t - T)e~^dt, (2.6) 

•oo 

where g(t) is a real and symmetric window, normalized so that ||<7|| = 1 

and so that \\g(t - T)e-jut\\ = 1. Note here that the term g(t - r)e _ J ' w t in 

equation 2.6 is simply a translation (time shift) of g(t) by r and a frequency 

modulation (frequency shift) by u [37]. 

Gabor introduced this transform to measure the frequency variations of 

sound [37], in 1946. One can observe that it represents a one dimensional 

signal by a two dimensional one, showing the changes in frequency content 

over time. Its inverse is given by: 

-1 r+oo r+oo 

f(t) = — / / Fw[f]{T,uj)g(t - r)e^drduj. (2.7) 

Moreover, it conserves the energy of the signal: 

/
+oo - i p+oo r+oo 

\f(t)\2dt = ± / \Fw\f](T,U)\2dTdu>. (2.8) 
•oo ^ J-oo J-oo 

For a proof of the reconstruction relation and the energy preservation rela-
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tion, one can refer to [37]. The discrete version of the STFT follows from the 

continuous one in a manner similar to how the DFT follows from the Fourier 

Transform. 
N-l 

Fw{f)[k,l] = YJf[n]9\n-k)e-^N (2.9) 

Also its inverse is given by: 

/ N = jf E £ ~ k]e^N (2.10) 
fc=o /=o 

As Previously mentioned, the STFT transforms a one dimensional signal into 

a two dimensional one in Time-Frequency (TF) space. It basically consists 

of performing the Fourier transform on a windowed segment of the signal, 

sliding the window by one sample and then repeating. Computationally, 

performing the STFT to obtain a representation of the signal at every k and 

I, i.e. V7c, I such that 0 < k < N, 0 < I < N requires 0(N2logN) operations, 

and is thus more expensive than the regular Fourier transform. However, the 

properties of the Fourier transform illustrated in table 2.1 hold for the STFT 

as well. This is obvious from the fact that the STFT is nothing more than 

the Fourier transform performed on short, windowed, overlapping portions 

of the signal. 

Also worth noting is the fact that there is a time-frequency resolution tradeoff 

in the choice of window-length with the STFT. The longer the window is, 

the higher the frequency resolution and the lower the time resolution [37]. 

Furthermore, the STFT is a highly redundant TF representation. To remove 
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this redundancy one usually samples the STFT on a rectangular grid. Figure 

2.8 shows two examples of sampled STFT grids, one for a transform with a 

higher time resolution and the other with a higher frequency resolution. 

Possible STFT grid: 
Higher Time Resolution 

Possible STFT grid: 
Higher Frequency Resolution 

>> 
o 
c 
OJ 
O" 
0J 

o 
c 

OJ 

OJ 

Time Time 

Figure 2.2: STFT grids using two different window sizes. The one on the left 
has better time resolution, while the one on the right has better frequency 
resolution. 

If sampling is used, then perfect reconstruction can be achieved only if 

certain conditions hold [1]: 

1. Number of frequencies at which the STFT is calculated is at least equal 
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to the window length. 

2. Sampling is done at a rate of at least 2B samples per second (to avoid 

aliasing), where B is the bandwidth of the window used. 

Condition 2 stems from the fact that the window chosen can be viewed 

as a filter of bandwidth B in the frequency domain; to avoid aliasing, one 

has to sample the signal at least at twice that frequency. 

Thus, one reconstruction procedure called the overlap-add technique [1], 

which shall be used in this work is as follows. 

Overlap-add Method: 

1. Perform the inverse Fourier transform on one frame. 

2. Multiply the resultant time domain portion of the signal by the window 

used. 

3. Move to the next frame and go back to step 1, repeating until all frames 

have been transformed back into the time domain. 

4. Shift each time domain signal relative to the previous one by the overlap 

amount and add all of them together. 

2.1.3 Examples Using the STFT 

The importance of the STFT stems from the fact that it does not assume 

stationarity of the signal to be transformed except over the support of the 

chosen window. On the other hand the Fourier transform assumes that the 
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signal is stationary over its entire duration. Figure 2.3 shows the Fourier 

transform magnitudes of two signals S\(t) and S2{t): 

Sl(t) 

s2(t) 

where fx = QQHz and f2 = 120Hz 

One can see that the Fourier transforms of these two signals contain no 

timing information. On the other hand their STFT magnitudes illustrated 

in figure 2.4 clearly shows the switching nature of s2(t) and the stationary 

nature of Si(t). 

2.1 A Sparsity in the STFT Domain 

While one could choose from a variety of 'sparsifying' transformations, we 

have opted to use the STFT for the reasons previously mentioned. In the 

previous section, we defined the STFT, its inverse, as well as conditions for 

perfect reconstruction. Having the mathematical properties of the STFT, 

we can now move on to show how certain signals, such as speech, exhibit 

sparsity in the STFT domain. 

Sparsity is the opposite of density; it usually refers to the number or 

percentage of zero (or more loosely, near zero) coefficients in a given ma­

trix or data-set. In [13] sparsity means that most coefficients 'do not differ 

sin(27r/i£) + sin(27r/ 2i), for i < 2 

2sin(27r/1£) , for t < 1 

2 sin(2vr/2t) , for 1< t < 2 
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Fourier Transform of s^t) 

800 

1 1 1 1 1 I 

600 -

400 -

200 

v. . 
50 100 150 200 250 300 350 400 450 

Frequency 
Fourier Transform of s^t) 

50 100 150 200 250 300 350 400 450 
Frequency 

Figure 2.3: Fourier transform magnitudes of si(t) (Top) and S2(t) (Bottom). 
Note that both transforms are very similar and that all timing information 
is lost. 

STFT of s 1 (t) 

500 i 

g 200 

Figure 2.4: STFT of s^t) (Top) and s2(t) (Bottom). Note that the timing 
information is preserved, where it can be seen that at t=l, one sinusoid 
switches off while the other switches on. 



Chapter 2. Background 27 

significantly from zero'. Furthermore, a distribution is defined as sparse 'if 

most of the probability mass lies close to zero'. That means that proba­

bly, a few coefficients will hold most of the signal power. Thus, sparse data 

representations are obviously very important in coding because they provide 

good coding efficiency [13]. In blind source separation, sparsity is of great 

importance as well. Cardoso [10] noted that the accuracy with which the 

mixing parameters in a BSS model can be estimated is a function of how 

non-gaussian the sources are. A consequence of that is that sparse sources 

improve the accuracy in the estimation of the mixing parameters. Of equal 

importance is that given sparser sources, the quality of separation achieved 

is higher [46], [47]. This leads to the conclusion that a transformation that 

yields a sparse representation of the data is desirable, both for estimating 

the mixing parameters correctly, and for performing separation. 

In an experiment to illustrate the sparsity of speech in the STFT domain, 

we use 50 speech sources of 50000 samples each, sampled at 16000Hz from the 

TIMIT database and transform them to the STFT domain using 3 different 

window sizes of 32ms, 64ms, and 128ms with an overlap factor of 50% and 

using a Hamming window. Next, we sort the STFT coefficients of each in 

decreasing order of power, and plot their average cumulative powers, which 

can be seen in figure 2.5. Also plotted on the same figure are the average 

cumulative power of both the unaltered time domain sources and of their 

Fourier transforms. Table 2.2 shows the percentage of coefficients needed to 

represent 90%, 95%, 98% and 99% of the total signal power, using the STFT 
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with varying window sizes, the time domain signal and Fourier transformed 

signals. We can see that the STFT window-sizes of 32ms and 64ms demon­

strate similar performance, with the latter being superior in terms of sparsity, 

capturing 98% of the total signal power with only approximately 9% of the 

coefficients. For further illustration of the sparsity exhibited by speech in the 

STFT domain, figure 2.6 shows the normalized histograms of the same 50 

speech sources in the time domain and in the STFT domain. It is obvious 

from this figure as well that the transform domain exhibits a much sparser 

signal representation, as can be seen from the fact that the magnitudes of 

most coefficients are concentrated near zero. 

Table 2.2: The Percentage of Coefficients Needed to Represent Various Per-

Percentage Percentage of Points Needed 
of the STFT: STFT: STFT: Fourier Time 

Total Power 32ms 64ms 128ms Domain Domain 
90.000 2.6781 2.2656 2.6999 16.954 14.098 
95.000 5.0167 4.5710 5.5212 24.604 23.756 
98.000 9.4100 9.1439 11.032 34.560 38.970 
99.000 13.650 13.697 16.428 41.640 51.104 

2 . 2 Sparsity and the 1° - ll Equivalence 

In this section we discuss, under the assumption of sparsity, the solution 

to constrained optimization in the case of an over-complete dictionary, i.e. 

one where we have more than enough vectors to span the space. Balan 
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Cumulative Power Distribution for 
STFT with Various Window Sizes, Original Signal, Frequency Domain Signal 

100 
Percentage of Points 

Figure 2.5: Average cumulative power of the time domain signals, frequency 
(Fourier) domain signals and STFT of speech for window sizes of 32ms, 64ms 
and 128ms. The STFT with 32ms and 64ms window length exhibit a sparser 
representation of the data (more power in fewer coefficients). The original 
time domain representation and the frequency domain representation both 
exhibit very low sparsity. 
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(a) average probability density of the magnitudes 
of 50 time-domain speech signals 

(b) average probability density of the magnitudes 
of the STFT of the same signals, with a window 
length of 64ms and 50% overlap 

Figure 2.6: Average probability density of the absolute value of 50 speech 
signals in time domain (a), and of the absolute value of the same 50 sources 
in time-frequency domain (b). Note how much more sparse the TF data are. 
In both sub-figures, the values have been normalized to the range [0 1] 
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et al [4] define the estimation of a sparse signal representation as one with 

the minimum number of nonzero components. Finding the solution to such 

a problem is hard. Fortunately, under certain assumptions and conditions, 

mostly related to the sparsity of the signals, equivalent easier problems can be 

defined and solved. Several important papers ( [15], [14], [4], [30]) discuss such 

methods for finding the sparsest possible solution to constrained optimization 

problems. 

To that end, it is important to define lp norms, for p > 0 [37], [4] as : 

I ] / H P = ( £ M O I : 

\ n 

and 

ll/llo = \supp{f)\ forp = 0, 

where supp(f) = {k\f[k} ^ 0} is the support of / and |5| is the cardinal 

of the discrete set S. In other words, the 1° norm is simply a count of the 

non-zero terms that f[k] contains. Intuitively, minimizing this number will 

maximize sparsity. Thus, we now recognize the equivalence between solutions 

maximizing sparsity and those minimizing the 1° norm. 

2.2.1 Ma themat i ca l Formula t ion 

To mathematically formalize the problem we are dealing with, we present the 

following. Consider a set of n m-dimensional vectors a,, j = 1,..., n similar 

to [17], with n > m and let A be the (m x n) matrix with these vectors as 
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its columns: 

A = [a1|a2|...|an]. (2.11) 

Using a set of n weights (or variables) s, any linear combination of A can be 

written in matrix notation as 

x = As. (2.12) 

In general, given x and A, it is not possible to recover a unique solution for 

s without making any further assumptions, as equation 2.12 is comprised of 

a set of m linear equations with n unknowns, and n > m. However, if s 

contains only a few non-zero terms, then it may be possible to recover s by 

trying to find the sparsest possible solution to equation 2.12, i.e. solving: 

Po : find s, such that ,4s = x and ||s||o is minimized. (2.13) 

Equivalently: 

Po : find arg min ||s||o, subject to As = x. (2-14) 
3 

As [17] notes, solving 2.14 is generally not feasible in general since it requires a 

combinatorial approach, where one tries all possible combinations of columns 

of A. Thus, it is convenient to find an equivalent, or even similar problem, 

that is easier or more straight-forward to solve. As previously mentioned, 

several authors ( [15], [14], [17], [44], [4], [30], [36]) have investigated the use 
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of the I1 norm as a substitute to the 1° norm, to obtain the following problem: 

Pi : find arg min ||s||i, subject to As = x. (2.15) 
3 

Pi can be solved efficiently by linear programming in the real case, and by 

second order cone programming [33] in the complex case, which makes it more 

preferable to solve than the P0 problem. The seminal paper by Donoho and 

Huo [15] proves that the solution to 2.14 and 2.15 are unique and identical as 

long as the underlying realizations of s are sufficiently sparse. This result is 

proved for the case of the mixing matrix A composed of two orthogonal bases. 

Donoho and Elad [14] later extend these results to the case of general non-

orthogonal dictionaries. They derive sufficient conditions defining how sparse 

the underlying sources should be for the solution to be: 

1. unique, and 

2. attainable via P minimization. 

They introduce the notion of spark, the smallest number of linearly dependent 

columns of a matrix, and derive the sufficient condition for the solution to 

2.15 to be unique. First, however, to highlight the difference between the 

rank and spark of matrices we present a simple example in figure 2.7, where 

two matrices Ai and A2 have the same rank but different sparks. 
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Going back to the uniqueness condition, it is established whenever the 

number of non-zero terms in s is less than spark (A)/2 [15], [14]: 

spark(A) 
M o < n • ( 2 - 1 6 ) 

It is not hard to see that the spark of an (m x n) matrix A satisfies the 

following [14]: 

2 < spark(A) < Min(n, rank(A) + 1) (2.17) 

Thus, in the case of under-determined mixing: 

n> m=> Min(ra, rank(A) + 1) = rank(A) + 1. (2.18) 

Thus, depending on the properties of A, solving 2.14, will yield a unique 

answer for s, as long as the number of nonzero components of s is less than 

^ y i . This can be seen by substituting m +1 as the upper bound of spark(A) 

in 2.17, and then assuming that spark(A) is at its upper bound, substituting 

it in 2.16. In other words, if the matrix A is well behaved, and its spark 

is bigger than its rank, we could simultaneously extract active sources, 

while still maximizing sparsity, assuming we could solve problem Po- This 

means that in a BSS context, from two mixtures we could extract two sources 

(at every point!), and from 5 mixtures we can extract 3 sources that solve 

2.14. 
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1 0 0 1 
0 1 0 1 
0 0 1 1 

A 2 = 
1 0 0 1 
0 1 0 0 
0 0 1 0 

Figure 2.7: Two matrices Ai and A^. Note that while rank{A\) 
rank(A2) = m — 3, spark(A\) = m + 1 = 4 ^ spark(A2) = 2. 

Thus far we have discussed the conditions pertaining to the uniqueness 

of the solution to P0. We will now discuss the conditions pertaining to its 

equivalence to the solution of P\. Donoho and Elad [14], and also Gribonval 

and Nielsen [18] independently derived very similar results related to M(A), 

the mutual coherence of A, where 

M(A) := m a x i m a , ) ! . (2.19) 

More specifically, they conclude that if: 

k i l o < f(A) 
[1 + 1/M(A)} 

(2.20) 

then the solution to 2.14 can be obtained by solving 2.15. It is worth men­

tioning here that for any A, where (n > m), Spark(A) > [i4]_ This; 

means that if inequality 2.20 is indeed satisfied, the solution to P\ (equation 

2.15) is necessarily unique and the sparsest. Note that these results apply to 

both the real M m and the complex spaces C m as generalized by [44]. 
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The theoretical results we have presented so far in this section are impor­

tant, because they prove that the BSS problem we formulate in the coming 

chapters is tractable provided sufficiently many of the unknown sources are 

zero at every Time-Frequency point. 

Another comment on 2.15, is that solving it does not require a priori 

knowledge of which sources are zero or even if any of them are zero. We just 

know that if sufficiently many of them are simultaneously zero, the solution 

to 2.15 matches the solution to 2.14 and is unique. Moreover, the solution 

to 2.15 is easily achievable via linear programming in the real case and via 

second order cone programming [33] in the complex case. In this work, and 

in the context of over-determined BSS with delays, we will run into these 

constrained optimization problems. To solve them, we adopt an approach 

based on a geometric interpretation of the I1 norm, which we will present in 

a subsequent section. 

2 . 2 . 2 P e r f o r m a n c e A n a l y s i s o n s o l v i n g P i 

The results presented in the previous section provide sufficient conditions for 

the uniqueness and recoverability of s from A and x in the under-determined 

case, i.e. when we have more unknowns than equations. More importantly 

these conditions are either hard to compute (complexity of spark computa­

tion) or rather stringent. For instance, note that the condition in equation 

2.20 relates to M(A), which in turn relates to the two 'closest' vectors of 

A. In other words, if A contains two vectors ai « aj that are very close to 
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one another, then |(ai,aj)| ~ 1, and M(A) is at least equal to that. This 

consequently means that f(A) of equation 2.20 is equal to or slightly larger 

than one. The effect is that the solutions to the minimization problems PQ 

(2.14) and Pi (2.15) are only guaranteed to be identical if only one term in 

s is nonzero. Li et al. [31] make an observation similar to this one and offer 

simulations and a probabilistic analysis into the recoverability of s in the 

case where x , A, and s are all real. Their results show that even when the 

conditions set in equation 2.20 are not met, we may still be able to extract 

the correct solution to 2.14 by solving 2.15. 

Bearing in mind that in the BSS problem, we have no guarantee that 

the sources are maximally sparse, except via transforming them into the 

STFT, it is worth running some simulations to determine the recoverability 

of the sources under certain looser assumptions on sparsity. Thus, we proceed 

to conduct our own recoverability analysis on sparse complex sources, and 

complex mixing matrices trying to answer the following questions: 

• Can we still recover good estimates of the sources if the conditions for 

uniqueness of the P 0 solution and equivalence to Pi solution are not 

met? 

• What if the sources we are looking for are not solutions to P 0? 

• How sparse do the sources have to be for us to be able to extract them? 

• To what extent will the extraction be succesful? 
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To get an idea about the answers to these questions, we generate random 

complex mixing matrices from a uniform distribution. We also generate 

random complex sources from an exponential distribution (for the sake of 

ensuring some kind of sparsity). Furthermore, we fix the number of sources to 

10, and repeat our simulations 1000 times for each of the following settings. 

We vary the number of mixtures available m from 2 to 10 and force the 

number of active sources, i.e. non-zero sources to be I, letting / vary from 

1 to m. We then extract our estimate of the sources during each iteration 

using the 'geometric approach' to solving Pi which will be outlined in a latter 

section. Finally, we calculate the percentage of times when the solution to 

Pi is identical to the actual sources we are trying to extract, and we report 

the results in table 2.3. Table 2.3, verifies that for any number of mixtures 

available, if only one source is active, the solution to Pi matches the sources. 

Also as the number of mixtures available increases, the approach can extract 

an increasing number of sources correctly. For example, with 8 mixtures 

available, we can extract up to 3 active sources perfectly and up to 5 active 

sources 85% of the time. Naturally, when we have 10 available mixtures we 

can solve for the 10 sources perfectly, regardless of how many of them are 

active, since the system of equations 2.12 is now even-determined. Table 2.4 

shows the average signal to noise ratios obtained with the same experiment. 

It aims at proving that even if we do not have perfect reconstruction, the 

errors that are introduced, still allow for acceptable signal to noise ratios. 

Figure 2.8 shows how the success rate decreases when we attempt to solve 
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Pi for 7 mixtures of 10 sources as'the number of active sources varies from 1 

to 7. 

Table 2.3: Percent of times where the extracted sources using I1 minimization 
matches actual sources. 

Available 
Mixtures (ra) 

Number of Active Sources (1) Available 
Mixtures (ra) 1 2 3 4 5 6 7 8 9 10 

2 100 10.2 - - - - - - - -
3 100 44.3 5.6 - - , - - - - -
4 100 64.7 23 4.4 - - - - -
5 100 92.1 61.3 26.2 5 - - - - -
6 100 94.6 72.8 43.4 20.3 4.8 - - - -
7 100 100 98.2 86.1 58.4 31.1 8.8 - - -

. 8 100 100 99.9 98.1 87.8 70.4 41.9 17.6 - -
9 100 100 100 99.9 99.2 95.6 84.5 64.8 36.9 -
10 100 100 100 100 100 100 100 100 100 100 

Table 2.4: Signal to Noise Ratio (SNR) in dB of extracted sources using I1 

minimization. 
Available 

Mixtures (m) 
Number of Active Sources (1) Available 

Mixtures (m) 1 2 3 4 5 6 7 8 9 10 
2 303 2.6 - - - - - - - -
3 301 6.6 3.1 - - - - - - -
4 297 9.4 5.8 4 - - - - - -
5 281 16.1 10.2 7.6 5.4 - - - - -
6 285 16.6 11.9 9.1 7.6 6.1 - - - -
7 296 283 27.7 18.9 13.8 11.2 8.9 - - -
8 281 294 54.2 29.2 20.4 16.6 13.5 11.7 - -
9 285 286 285 50.8 34.9 28.7 22.1 18.4 15.4 -
10 288 287 276 288 288 288 284 287 287 287 
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Performance when we have 7 mixtures of 10 sources available 

Number of Active Sources 

Figure 2.8: Success Rate (in %) of the solution to P\ capturing the correct 
sources when we have 8 mixtures and 10 sources. 

2.2.3 Section Summary and Perspective 

Recall that in this work we are dealing with blind source separation, in the 

case where we have more sources than available mixtures. The aim of this 

section was to show the following: 

Given a transformation that yields a very sparse representation s of the 

sources in such a way as to satisfy equation 2.20, and given both the mixing 

matrix A (under-determined with m < n), and the observation vector x in 

the transform domain , we can recover s precisely, via solving Pi, and then 

inverse transform to obtain the sources. 

Also, even if the conditions outlined for uniqueness and equivalence are 
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not met, or if the solution we are looking for is not necessarily the sparsest 

possible, we can still expect good recoverability of sources by solving Pi as the 

results of table 2.3 indicate. 

In blind source separation, the only information we have is the observa­

tion vector x. Necessarily we have to make some assumptions on the sources 

to be able to extract them. In the previous section, we demonstrated that 

for speech signals the STFT is a very sparse representation. Thus, for the 

purpose of separation of speech sources, we already have established a 'spar-

sifying' transformation and the observation vector(s) x. What remains is for 

us to be able to formulate the problem in the same form as that of P i , i.e. 

as a linear mixing, and -once that is done- to be able to estimate the mixing 

matrix A . Then, we can proceed to extract the sources by solving Pi . 

2.3 K-means Clustering 

In the previous sections we have proven that the STFT is a sparsifying trans­

form for signals like speech. We have also shown that given sparse sources, 

we can solve under-determined mixing problems if both the mixing matrix 

and the observation vectors (mixtures) are known. In the case of blind source 

separation we only have the observation vectors and hence have to estimate 

the mixing matrix. Fortunately, sparsity of the sources in the transform do­

main allows us to extract and use certain feature vectors and estimate the 

mixing matrix by clustering these vectors. The feature vectors we select, 
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and the rationale for using them will be explained in a later chapter. In this 

section we will briefly discuss k-means clustering and some minor variations 

of it, which we shall use subsequently. 

2.3.1 The K-means A l g o r i t h m 

Perhaps one of the most widely used clustering algorithms available to us, k-

means clustering [35] is attractive because of its simplicity and relative speed. 

K-means partitions data (possibly multi-dimensional) into K-mutually exclu­

sive clusters [38], returning indices indicating which cluster each data point 

belongs to and the cluster centers. Moreover, it performs partitioning by 

minimizing the distances within each cluster, while maximizing the distances 

between clusters [38]. 

The k-means algorithm is described in any good book on classification or 

pattern recognition. Here we will present it in a manner similar to [34]. 

The k-means Algorithm: 

1. Initialize the first K-cluster centers. 

2. Assign each sample point (or vector) to its nearest cluster according to 

some distance measure. 

3. Compute the new cluster centers as the average of the points in that 

cluster (if using the Euclidean distance). 

4. If any cluster center has changed, repeat steps 2 and 3, otherwise ter­

minate. 
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Table 2.5: K-means cluster centers extracted using Euclidean and City-block 
distance measures. , 

distance measure k-means Extracted Cluster Centers 
cityblock 
Euclidean 

(4.976, -2.999) 
( 4.983,-3.033) 

(4.024,3.988) 
(4.133, 4.029) 

(-4.025,1.996) 
( -4.164,1.988) 

(0.006,1.997) 
(0.034,2.018) 

Possible choices of distance measures that k-means, and the respective cluster 

center updates one can use are [38]: 

• Euclidean distance (I2 norm) => new cluster center is the mean of the 

points in that cluster 

• City block distance (I1 norm) =4* new cluster center is the median of 

the points in that cluster 

2.3.2 An Example of Clustering using the K-means 

Algorithm 

As an example of using the k-means clustering algorithm, we simulate 4 

clusters where each is sampled from a 2-dimensional Laplacian distribution 

with the following cluster centers (5,-3), (4,4), (-4, 2), and (0,2), and we 

run the k-means algorithm using the two distance measures outlined in the 

previous subsection to obtain the cluster centers reported in table 2.5. The 4 

clusters and the extracted centers using the city-block distance measure can 

be seen in figure 2.9. 
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Figure 2.9: A n example with four different 'classes' (in color) and the ex­
tracted cluster centers using I1 distance (black crosses) 

2.4 BSS Performance Measures 

In this section we will discuss the performance measures we selected to as­

sess the proposed algorithm. Concerns for the evaluation of BSS performance 

were first outlined by Schobben et. al in [41]. These were later developed 

mathematically by Gribonval et. al in [18] to measure the quality of blind 

source separation from more than one aspect. They incorporate several mea­

sures of distortion: interference, algorithmic artifacts, and noise. They also 
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include a measure of the total distortion incurred from all these contributions 

combined. Thus the measures introduced by [18] are: Signal to Interference 

Ratio, Signal to Artifact Ratio, Signal to Distortion Ratio, and Signal to 

Noise Ratio. In this work we use these measures to quantify the quality of 

separation of the proposed algorithm and thus it is necessary to provide a 

brief overview of how they were derived in [18]. 

The argument presented [18] is that a simple measure of distortion of a 

certain signal s, estimated by seat, cannot be done using the standard relative 

distortion measure: D± = ^ | ~ s ° ^ , because of certain intrinsic ambiguities of 

BSS techniques. The relevant ambiguity here is that of scaling. In other 

words, a BSS algorithm can only extract underlying sources up to a mul­

tiplicative constant (and usually an error), i.e. sest = cs + e. Under such 

ambiguities, the distortion measure Di, would highly penalize such scaling 

and would thus be inappropriate. As an alternative Gribonval et. al [18] 

suggested the following total distortion measure: 

n | | s e s t | | 2 — | (sestis) | 2 ro m\ 
D t o t a l = ' ( } 

where (x(t),y(t)) = 2~2tx(t)y(t)i i s the inner product of x and y [18]. Thus 

projecting sest on s and calling the remaining orthogonal error term etotai, we 

obtain [18]: sest = (sest, s) s + 

As previously mentioned, this total error term can be further decomposed 

into various contributions [18] due to interference from other sources, artifacts 
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forced by the algorithm, and noise. Thus we obtain [18]: 

(total — (interference ~f" (artifacts ~f" (noise (2.22) 

To be able to explicitly define each of these contributions, we must first define 

the following [18]: 

• P s , the orthogonal projector onto the subspace spanned by all the 

sources. 

• P s , n , the orthogonal projector onto the subspace spanned by all the 

sources and the noise signals combined. 

Now, for a particular source Sk and its estimate Sk,est, the various errors are 

defined in [18] as: 

• ^-interference — P's'Sfc,est {Sk,esti •Sfc) &k 

• (-noise — Ps,n f̂c,es£ Ps^k fest' 

• ^artifact = $k,est Ps,n^fc,est 

This leads to the following definitions of the various distortions and the total 

distortion [18]: 
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p . | | S f c , e s t | | 2 - | ( ' S f c , e s r . > ' S f c } | 2 

• L)total — 1 7 — H o • 

Finally, [18] defines the Signal to Distortion Ratio (SDR), Signal to Interfer­

ence Ratio (SIR), Signal to Noise Ratio (SNR) and Signal to Artifact Ratio 

(SAR): 

. SDR = Wlog10D-lal 

• SIR= 101og10 £~L /e rence 

. SNR=10log10D-o\se 

. SAR=10logwD;r\ifact. 

Note that computing these distortion measures involves computing P s S f c ] e s t 

and P s , n Sk,est- Not making any assumptions about the orthogonality of the 

original sources [18] notes that: 

n 

PSSk,est = £ CiSl = c T s , (2.23) 
1=1 

where c = conj(G)~1dm, G = ssH, and d f c = ((sk,est,Sj))™=1 is a vector of 

the projections of Sk^st on all the sources. Also, assuming that all the noise 

signals at the receivers are orthogonal (uncorroloated) to one another and to 

all the source signal, [18] obtains: 

m 

PS,nSk,est = PSSk,est + £ (Sfc,est,™i) ™ i / I K IP, ( 2 - 2 4 ) 
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where is the noise affecting the ith mixture. Matlab routines to compute 

all these measures presented in [18] are available online [16], and were used 

in this thesis. 
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C h a p t e r 3 

T h e s i s C o n t r i b u t i o n 

In this chapter we mathematically formulate the problem of BSS in an ane­

choic environment and explain the approach taken to recovering the sources. 

3.1 Mixing Model and Problem Definition 

First we describe the anechoic mixing model. Given n sources s i ( £ ) , . . . , sn(t), 

and m mixtures x\(t),...,xm(t), such that 

n 

xk(t) = Y^akjsj(t ~ faj), k = l,2,...,m (3.1) 

where a^j and S^j are scalar attenuation coefficients and time delays asso­

ciated with the path from the j t h source to the kth receiver, respectively. 

Without loss of generality we set 5\j = 0 for j = 1,... ,n. 

n 

f f c (w,r ) = ^ a f c i s j ( w > r ) e - f c ' ^ , k = l,2,...,m (3.2) 

3 = 1 

The short time Fourier transform (STFT) of a function s with respect to 
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a fixed window function W is defined as 

Fw[s}(r,u) := - = / W(t- T)Sj(t)e-^dt (3.3) 
V27T J-oo 

which we shall usually refer to as S(T,U). Throughout this chapter , we shall 

use 

FW[SJ(--S)](T,LU) = exp{-iLu5)Fw[Sj}(r-5,io) 

» exp{-iLo5)FW[SJ}(T,Lo). (3.4) 

This assumption is realistic as long as the window function W is chosen 

appropriately. We have briefly touched on this issue in section 2.1.2. A more 

detailed discussion can be found in [5]. 

Main Problem. Given x \ , . . . , x m , estimate si,...,sn in the general case 

where n > m and n is unknown . Taking the STFT of x\,... ,xm with respect 

to an appropriate window function W and using (3.4), the mixing model (3.2) 

reduces to 

x(r,u) = A(u)s(r,u), (3.5) 

where 

x = [x i . . . xm}T, s = [J i . . . s„] T , (3.6) 
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and 

A(u) a2]e" • • • a 2„e 

1 
-iu>S2n 

u m l c ' • • • U ' m n ^ 

(3.7) 

From this point on, instead of the continuous STFT, we shall use the 

equivalent discrete counterpart, i.e., we shall consider the samples of the 

STFT of s on a lattice in the time-frequency plane given by 

Sj[k,l] = Sj(kT0,lu>0) (3.8) 

where ro and UJQ are the time-frequency lattice parameters. The equivalence is 

nontrivial and only true if the family {elluotW{t — kro) : k, I G Z} constitutes 

a Gabor frame for the signal space of interest [12]. For this, one needs an 

appropriately chosen window function W with sufficiently small r 0 and cu0 as 

discussed in section 2.1.2. Note that, in the discrete framework, the mixing 

model can now be written as 

£[k,l}= A(luj0)s[k,l}. (3.9) 

with x, s as in (3.6), and A as in (3.7). 

To solve the above BSS problem, we propose a 2-stage algorithm, as 

introduced in Section 1.3. In the first stage, we use a clustering approach 

aimed at estimating the mixing parameters, i.e., all attenuation and delay 
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coefficients. In the second stage, we utilize the mixing matrices, formed by 

our mixing parameters, to perform demixing in the TF plane. 

3.2 Blind Mixing Model Recovery 

3.2.1 STFT Sparsity 

In order to estimate the mixing parameters of our model, we utilize the fact 

that time-frequency representations of speech signals are sparse, thus few 

coefficients will capture most of the signal power [45], We have verified this 

assumption in section 2.6. 

3.2.2 Feature Vector Extraction 

Having represented our mixtures in the TF domain, we now proceed to con­

struct a 2m — 1 dimensional feature space where the first m coordinates are 

the normalized attenuations of the mixtures and the remaining m — 1 dimen­

sions are the delays of the mixtures relative to the first one. Note that we 

omit the delay of the first mixture relative to itself. 

Let x be as in (3.6). First, at each point [k, I] on the TF lattice, we define 

the normalized attenuation vector 

X a t[&! I] '• — F i ••• F« 
[k,l]. (3.10) 

\x[k, 1} 

Here || • || denotes the Euclidean norm. Note that the resulting xat[fc,Z] 
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correspond to points on the unit sphere of R m . 

Next, we calculate the complex phases —lu>oAji[k,l] of mixtures Xj, j = 

2,..., m relative to the mixture xx at each TF point [k, I], as in [45]. More 

precisely, 

Finally, we append the m-dimensional feature vector x a t defined in (3.10) to 

obtain: 

F[M] 
&l\k,l] 

ll*IMll A 2 i [M] Aml[k,l] 

(3.12) 

Note that if at a TF point [k,l] only one source, say sj, is active, i.e., 

sj[k, 1} ^ 0 and Sj[k, 1} — 0 for j ^ J , the feature vector will reduce to 

F [ M = Fj 

°2J (3.13) 

where C = {Y^I^JY^2• l n this case Fj does not depend on [k,l], and 

is completely determined by the mixing parameters in the Jth column of 

the mixing matrix, given in (3.7). Moreover, the converse is also true, i.e., 

given Fj, one can extract the mixing parameters. Therefore, if the sources 

have disjoint TF representations, the feature vector F[k, 1} corresponding 
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to any TF point [k,l], at which at least one source is active, will be in 

the set { F i , . . . , Fn}. Once we obtain this set, we can compute the mixing 

parameters using (3.13). 

In practice, it is unrealistic to expect that the sources have disoint TF 

representations. However, as discussed in Section 3.2.1 as well as in [45], 

speech signals have sparse Gabor expansions. Therefore, it is highly likely 

that there will be an abundance of TF points at which one source is dominant. 

In other words, there will be several points in the TF plane where one source 

has a high contribution while the other sources have a near zero contribution. 

Thus in the feature space, points F[k, I] will tend to cluster around Fj,j = 

1,..., n, the coordinates representing the columns of the mixing matrix. At 

this stage, having extracted the feature vectors of all significant TF points 

- T F points at which the mixtures | not smaller than a threshold-, we 

perform K-means clustering to obtain the cluster centers and consequently 

the parameters of the mixing model. In summary: 

Parameter Estimation Algorithm: 

1. Compute the mixture vector x[k, I], as in (3.6) at every TF point [k, I]. 

2. Compute the corresponding feature vector F[k, I], as in (3.12), at every 

TF point [k,l]. 

3. Peform some clustering algorithm (e.g., K-means) to find the n cluster 

centers in the feature space. The cluster centers will yield estimates of 

the mixing parameters. 
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4. Compute the columns of the mixing matrix using the parameters found 

in step 3. Normalize each column so that its Euclidean norm is 1. (Note 

that the renormalization only rescales the attenuations, and does not 

affect the delays.) 

Figure 3.1 shows a three dimensional view of the extracted cluster centers 

and the real cluster centers from 3 mixtures of 5 sources. 

3.2.3 Inherent Assumptions and Limitations 

The proposed parameter estimation algorithm will yield a meaningful esti­

mate of the mixing parameters only if certain assumptions hold. First, due to 

the periodicity of the complex exponential and to avoid phase indeterminacy 

we assume that 

\oo6ij\ < Tr, • (3.14) 

for all i,j and every to. This amounts to assuming that 

\5max\ < ft/Umax, (3.15) 

where 5max is the largest delay in the system and tomax is the highest frequency 

present. If tomax = u>s/2, where us is the sampling frequency, then this means 

that our maximum allowed delay is one sample [45]. This entails that the 

spacing between any two microphones be limited to d < 2nc/uis, where c 

is the speed of sound [45]. Note that we do not need to know the actual 

spacing between the microphones - only that it is within the bound. Second, 
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Figure 3.1: 3-D view of real (crosses) and estimated (circles) parameters as 
recovered from the K-means clustering stage. The algorithm was run on 3 
simulated mixtures of 5 sources (m=3, n=5), with the user solving for 6 
sources. Note the proximity of the real to the estimated parameters. Also 
note the estimated source parameter that does not correspond to any real 
one. Displayed are the 3-dimensional normalized attenuation parameters. 
The delay parameters have not been included. 
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due to the same problem of phase indeterminacy we also assume that all the 

attenuations â - present in the mixing model are positive. This is due to the 

following equality, 

= - A E - ^ + ^ ) = -AE-MS±^HF (3.16) ae 

which leads to two possible attenuation-delay pairs for every entry in the 

feature vectors of (3.13). We avoid these problems in this work by assuming 

delays that are limited to one sample at most and positive attenuations. The 

positive attenuation assumption holds for anechoic audio mixtures. 

3.3 Blind Source Extraction 

Having obtained the cluster centers, we must now use them to extract the 

sources. The cluster centers can be used to construct the mixing matrix A[l\. 

A[l}^[d1[l}\a2[l}\...\~an[l}), (3.17) 

where the dj[2]'s are the columns of the mixing matrix and are constructed 

from the cluster centers in a manner following that of equation (3.7). 

A[l] a2ie 

am]e" 

• • a2ne i/u;o02n 

Oitn.n. 6 
—iluo5r, 

(3.18) 
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Next, we want to estimate the individual sources s 1 ; s2, sn. Equiva­

lently, we want to find [sf [A;, I],..., s„[k, l]]T =: se[k, I] such that: 

A[l]se[k,l}=X[k,l}. (3.19) 

Thus at each TF point [k,l], we have m equations (corresponding to the m 

available mixtures that we have), with n> m unknowns (sf [A:, I],..., s^[k, I}). 

Assuming that this system of equations is consistent, it has infinitely many 

solutions. 

3.3.1 Sparsity and I1 Minimization 

The importance of sparsity of the sources in the transform domain stems 

from the fact that it means that only a few of them will have large STFT 

coefficients at a given TF point. Thus, in addition to satisfying (3.19), s e 

should also be sparse. Motivated by this, we consider: 

n 
P0 : find § e,such that i § e =:X and ] T J s f [fc,l}\° is minimized (3.20) 

i = l 

and 

n 
Pi : find se,such that ^is e = X and ^ [/c, Z]|1 is minimized (3.21) 

i = l 

Seeking the sparsest possible solution to (3.19) is equivalent to solving 

P 0 , as discussed in section 2.1.4. Recalling that solving P 0 is difficult and 
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noting that the solution is very sensitive to noise, we consider P i , the closest 

convex optimization problem to PQ [15]. The solution to Pi is not the sparsest 

possible solution in general. However, it will yield a minimally spread solution 

[4], and, at least in certain cases, one can prove that the solution to Pi is 

the sparsest possible as discussed in section 2.2. Since we are considering 

general anechoic mixing and using the STFT domain, our mixing matrix is 

both complex and frequency dependant and for our application, we are not 

necessarily interested in the sparsest possible solution. We are interested in 

obtaining reasonable estimates of the sources in the TF plane. Motivated by 

this and the argument presented in section 2.1.4, we will solve Pi as a tool 

to extract our sources. 

3.3.2 Solving Pi 

Several methods, such as linear programming, exist for solving (3.21). In this 

work we adopt an approach similar to that of [46]. In [46], which deals with a 

real and constant mixing matrix A, a simple geometrical approach to solving 

the optimization problem is proposed. They state that when the columns of 

the mixing matrix are normalized to the unit sphere, the optimal solution to 

(3.21) will include at most m of the original sources. They call the solution 

incorporating these sources the shortest path decomposition from the origin 

to the point. In [43], it is proved that finding the shortest path as presented 

in [46] amounts to minimizing the I1 norm. This shortest path may only 

include directions available in the columns of the mixing matrix. 
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Figure 3.2: An example case with 2 mixtures and 3 extracted sources. The 
best ll decomposition as proposed in [29] and [9] is shown. 

Thus, we are trying to find a 'best' Z1 decomposition of an m-dimensional 

vector by using the best m out of n available vectors. Given that the optimal 

I1 solution satisfying the constraint will contain at most contributions from 

m sources, we can now proceed to formulate a system of m-equations and 

m-unknowns and solve it at each TF point. Figure 3.2 shows the optimal 

I1 decomposition of a 2-dimensional vector at some arbitrary TF point into 

contributions from the two sources that leads to the shortest path. The 
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lengths of the contributions from each source will be the extracted magnitude 

of the STFT of those sources at this particular TF point. 

3 . 3 . 3 S o u r c e S e p a r a t i o n 

Given that all the extracted time delays A were referenced to the first mix­

ture, we reference our mixtures to the first one as well. We do that by 

subtracting at each TF point, the phase of the first mixture from the phases 

of the other mixtures. We must now select the m-sources that are most 

likely to be active at any given TF point. Selecting the first of these sources 

is easy; it is the one whose cluster center vector is closest to the mixture 

feature-vector. We select the other m-1 vectors by a process of trial and er­

ror. We solve the m equations of (3.19) with all possible combinations having 

m active sources. We then select the combination that gives us the smallest 

I1 norm satisfying (3.21). 

Remark: The parameter estimation part of our algorithm is based on 

the assumption that one source is active at most TF points, so that clustering 

yields good estimates. On the other hand, the source separation stage relaxes 

this assumption and, depending on the number of available mixtures, will 

work even if many sources are active at some of the TF points. 

In other words, we are constructing and solving a system of m-equations 

of m-unknowns at each time-frequency point [k,l]: 

x[k,l}= Ar[l}se

r{k,l] (3.22) 
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with the vector s£ being the vector of the m unknown sources we are solving 

for at this stage. Ar[l], is the reduced estimated mixing matrix of size mxm 

composed of the columns of A corresponding to the active sources. x[k,l], 

which is a column vector containing the STFT values of the mixtures at [k, 1} 

is known. Also, Ar[l], can be constructed from the attenuation and damping 

parameters extracted in the clustering step. The solution thus is: 

sr[k,l] := A;l[l)x[k,l\ (3.23) 

sv[k,l] := 0; 

where v indexes the n — m sources assumed to be not active at [k,l]. We 

solve (3.23) for all possible combinations of m out of n available sources, and 

choose the solution that yields the minimum I1 norm. Finally, we correct the 

phase of the sources by preserving their magnitude and adding the phase of 

the first mixture since all delay features were referenced to the first mixture. 

We finally calculate the inverse transform using the overlap-add method as 

outlined in section 2.1.2 to obtain our estimate of the sources. 

3.3.4 Effects of Changing the Number of Sources 

In real applications, the number of sources contributing to the mixture is 

typically unknown a priori. In [30], it is proven that an overestimate of the 

number of sources will yield no obvious degradation in the performance. The 

argument is that if a user estimates h > n sources, the estimated mixing 
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matrix A' of size m x h will contain estimates of all the columns of the real 

mixing matrix A, in addition to columns not corresponding to the mixing pa­

rameters of any source. In the case of overestimating the number of sources, 

the optimization problem (3.21) will change to: 

n 
P[ : find s'e,such that i 's ' e = X and ] P |s'-[k,l]\x is minimized (3.24) 

i = i 

and the solution to (3.24) will be s'e = [sT, A s r ] T where s is sufficiently 

close to s and As is sufficiently close to zero. Our results will show that 

this conclusion, reached for a real and constant mixing matrix, holds for our 

variable complex mixing matrix as well. 

3.4 Interference Suppression and Distortion 

Reduction 

The algorithm discussed extracts n-sources from m-mixtures. It accomplishes 

that by extracting m-sources at each time-frequency point which minimize 

the I1 norm. The correct recovery of a source at a TF point depends on some 

assumptions: 

1. No more than m-sources are active at that TF point. 

2. The columns of the mixing matrix are extracted correctly in the mixing 

model recovery stage. 
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3. There is no noise affecting the mixtures. 

If the above assumptions hold, then our decomposition of the mixtures into 

their source contributions will be good. We avoid the problem of having 

more than m-active sources at each TF point since we cannot solve for more 

than m-unknowns using m-equations while still satisfying the l1 sparsity as­

sumption. By using a suitable window size for the STFT, this ensures that 

we obtain a sparse representation of our data. In cases where more than 

m-sources are active at a large number of TF points, then the problem will 

become intractable to our approach, since the sparsity assumption will be 

violated, and I1 minimization may no longer be appropriate. This scenario 

though is highly unlikely with speech sources where a reasonable number of 

mixtures is available and we will show in the results section that our algo­

rithm does not encounter this problem. A more important issue is that it 

is likely that the clustering stage will not perfectly yield the columns of the 

mixing matrix. It is therefore possible that our estimates of the sources might 

be negatively affected by this. Also, under the sparsity assumption, it is very 

likely that there are less than m-sources active at many TF points. In that 

case, the combination of an error in the estimates of the mixing directions, 

coupled with the fact that several sources are inactive, and the existence of 

noise might lead us to falsely assign contributions to sources that are silent. 

These contributions, which the algorithm assigns as source activity, could 

in fact be due to projections of contributions from other sources, and pos­

sibly due to noise. To circumvent this problem, we introduce a power ratio 
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parameter that the user sets, based on noise level or assumed difficulty of sep­

aration. Accordingly, after resolving the contribution of each of the sources, 

i.e. solving (3.23), we inspect each source's contribution to the total power 

of all sources at that TF point. We preserve the k highest sources, where 

1 < k < m which collectively contribute to at least p% of the total power. We 

then redistribute the power of the truncated sources among the remaining 

ones, while still maintaining the power percentages. The argument behind 

this is that if a source is inactive, noise will still project on its direction, and 

give a contribution albeit a small one. Thus, to get rid of these unwanted 

small contributions, we introduce this parameter. To recap, 

Interference Suppression Algorithm: At each TF point: 

1. Sort the source estimates in decreasing order. 

2. Preserve the first (highest) k sources that.contribute to at least p% of 

the total power. 

3. Set the remaining estimates to zero. 

4. Normalize the sources so that they have the same total power as cal­

culated prior to this stage. 
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Experiments and Results 

We evaluate the performance of our algorithm by presenting results on both 

simulated and real mixtures. To assess the quality of the separation we uti­

lize the performance measures suggested in [18] where three measures are 

proposed: Source to Distortion Ratio (SDR), Source to Interference Ratio 

(SIR) and Source to Artifact Ratio (SAR). Recall from section 2.4 that SAR 

measures the distortions due to algorithmic or numerical artifacts such as 

"unnatural zeros" in the STFT. SIR, on the other hand measures the in­

terference still present due to other sources in an extracted source. Finally, 

SDR is a measure of all types of distortion, whether artifacts, interference or 

noise. In [18] it is claimed that informal listening tests correlate well with 

the nature of the perceived distortion as quantified by the SIR and SAR 

measures. Our own informal listening tests confirm this claim. 
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4.1 Synthetic Mixtures, Random Mixing 

Parameters 

The algorithm was first tested on synthetic mixtures of 5 sources, of which 

two are speech and three are music. We generated 5 mixtures comprised of 

delayed and attenuated versions of these sources with the mixing parameters 

randomly selected and shown in Table 4.1. 

Table 4.1: Mixing parameters 
si S2 S3 s4 ss 

an 0.57 0.55 0.42 0.32 0.28 
an 0.26 0.41 0.49 0.52 0.46 
au 0.42 0.20 0.55 0.52 0.74 
an 0.37 0.58 0.47 0.32 0.25 

0.54 0.40 0.24 0.51 0.33 
hi 0.01 -0.62 0.08 0.72 0.80 
hi 0.42 -0.61 -0.70 0.71 0.64 
hi -0.14 0.36 0.40 0.19 0.29 
hi -0.39 -0.39 -0.24 -0.01 0.64 

Figure 4.1. shows the TF decomposition of one of the sources, one of the 

mixtures, and the corresponding extracted source, when using four mixtures 

for separation. Figure 4.2. shows all the original sources, mixtures, and ex­

tracted sources, when using 4 mixtures to perform the separation. Tables 4.2, 

4.3 and 4.4 show the demixing performance based on SIR, SAR, and SDR 

respectively. All the reported results are obtained by running the algorithm 

with the user parameters n = 6 and p = 0.8, where n and p are as defined in 

sections 3.3.4 and 3.4. Each column in these tables indicates the performance 
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(a) Original Source Spectrogram (b) Mixture 1 Spectrogram 

(c) Extracted Source Spectrogram 

Figure 4.1: The spectrogram of one of the original sources (a), one of the 
mixtures (b), and the corresponding extracted source (c) from 4 mixtures of 
5 sources, when the user estimates the existence of 6 sources. 
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(c) Extracted Sources 

Figure 4.2: The original sources (a), delayed and attenuated mixtures (b),and 
extracted sources (c), from 4 mixtures of 5 sources, when the user estimates 
the existence of 6 sources. 
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before demixing as well as when using either 5, 4, 3, or 2 of the available 

mixtures for demixing; the last column reports the corresponding results ob­

tained using DUET, the anechoic demixing technique briefly discussed in 

chapter 1. From the tabulated results, one can observe from the last row of 

Table 4.2 that even when we are demixing 5 sources from just 2 mixtures, 

there is a mean gain in SIR of over 16 dB, which is quite significant, with the 

average gain reaching over 30 dB when utilizing all five available mixtures. 

The improvement in the SIR indicates that the demixing has been successful. 

This highlights the importance of our proposed technique for achieving siz­

able improvement in performance by utilizing all the available information at 

hand. Similarly when looking at the SDR, which measures all the distortions 

that the extracted source signal has incurred, a gain ranging from 3dB to 

over 16dB is achieved when using two to five mixtures respectively. The fact 

that the demixing performance improves with the use of more information is 

obvious, but that does not take away from the importance of quantifying it. 

The interesting point to note, however, is the degradation of the SAR upon 

separation from approximately 20 to 13 dB with the use of all five mixtures 

and to 0 dB with the use of just two. This can be attributed to the fact that 

our algorithm is non-linear in nature, and acts on the TF transform of the 

mixtures, extracting the sources in that domain. This introduces numerical 

artifacts, such as unnatural zeros or non-smooth transitions in the STFT of 

the sources, which are reflected by the SAR values reported. Moreover, upon 

comparison of the results of SDR, SIR and SAR obtained by applying our 
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algorithm on 2 mixtures only, with the results obtained by applying DUET, 

we note that our algorithm on average outperforms DUET in every single 

criterion (last 2 columns of Tables 4.2,4.3, and 4.4). 

Table 4.2: Demixing Performance with mixtures of 5 sources, p = 0.8, n = 6 
: SIR 

Signal to Interference Ratio (SIR) in dB 
Source Before Aft er Demixing with BAUSS After 

Demixing Number of Mixtures Used for Demixing Demixing 

5 4 3 2 with DUET 

Sl -7.4246 32.4152 25.6948 18.7628 12.4747 9.1474 
S2 -4.0727 37.8785 18.1916 18.9401 10.7621 4.3941 
S3 0.5228 17.9173 13.1723 22.6597 17.7238 5.8776 
s4 -2.5051 29.8467 19.1309 10.8810 16.3982 16.868 

-5.0683 17.4729 9.0028 12.3569 6.3972 4.4940 
mean -3.7096 27.1061 17.0385 16.7201 12.751 8.1561 

mean gain 0 30.8157 20.7481 20.4297 16.4608 11.8657 

As an experiment to push the limit of the algorithm, we tested it on 5 

mixtures of 10 sources, using random delays and attenuations. We used the 

same 5 sources of the previous experiment, adding 5 other speech sources. 

The resulting mixtures were not sparse, even in the TF plane, as can be 

seen from figure 4.3., which makes the separation harder. The algorithm 

performs quite well even in this scenario as the results in Table 4.5 indicate. 

The average gains in SIR, SAR and SDR of approximately 18.8, 4.9 and 12.3 

dB respectively, attest that the algorithm has performed remarkably well in 

a scenario where there is a much higher number of sources than mixtures. In 

fact, all but the last extracted source were recovered fairly successfully and 
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Table 4.3: Demixing Performance with mixtures of 5 sources, p = 0.8, n = 6 
: SAR 

Signal to Artifact Ratio (SAR) in dB 
Source Before After Demixing with BAUSS After 

Demixing Number of Mixtures Used for Demixing Demixing 

5 4 3 2 with DUET 

Sl 20.6601 11.6572 10.6055 7.7185 0.5058 1.6507 
S2 22.8100 12.6903 7.2641 7.2175 -5.1410 -1.6890 
S3 22.8100 14.5325 7.9361 3.5051 2.3721 -0.3896 
Si 20.6601 16.0863 13.3220 7.4717 4.6826 0.97023 
S5 17.4866 12.0881 5.4458 6.8700 -2.3201 -3.2989 

mean 20.8854 13.4109 8.9147 6.5566 0.0199 -0.5503 
mean gain 0 -7.4745 -11.9707 -14.3288 -20.8655 -21.4357 

Table 4.4: Demixing Performance with mixtures of 5 sources, p = 0.8, h — 6 
: SDR 

Signal to Distortion Ratio (SDR) in dB 
Source Before Aft er Demixing with BAUSS After 

Demixing Number of Mixtures Used for Demixing Demixing 

5 4 3 2 with DUET 

-7.4684 11.618.4 10.4617 7.3366 0.0132 0.5124 
S2 -4.1042 12.6765 6.8662 6.8832 -5.5927 -3.7573 
S3 0.4746 12.8450 6.6403 3.4295 2.1765 -.21348 
s4 -2.5630 15.9030 12.2679 5.6028 4.3072 0.7737 

-5.1687 10.9243 3.4960 5.5963 -3.6670 -5.1217 
mean -3.7659 12.7934 7.9464 5.7697 -0.5525 -1.9455 

mean gain 0 16.5594 11.7124 9.5356 3.2134 1.8204 
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Table 4.5: Demixing Performance with 5 mixtures of 10 sources, p = 0.8, 
h = 12 

SIR (dB) «i » 2 «3 s 4 S 5 '6 S 7 38 39 sin mean 
mixtures -8.12 -5.78 3.88 -9.71 -3.7.1 0.929 0.754 -8.17 -0.92G -5.58 -3.65 

extracted sources 13.7 11.8 26.3 14.7 16.4 16.6 15.5 18 16.2 2.16 15.1 
gain 21.8 I T r, 22.4 24.4 20.1 15.6 14.7 26.2 17.1 7.74 18.8 

S A R (dB) •1 "2 S 3 s 4 3 5 S 6 •17 Sfi 39 sin mean 
mixtures 2.D3 4.08 2.63 4.08 3.27 -4.14 -0.89 -0.89 -3.16 -3.16 0.446 

extracted sources 1.72 5.03 2.79 3.76 8.69 6.69 9.24 7.03 6.51 1.87 5.33 
gain -0.01 0.946 0.163 -0.327 5.42 10.8 10.1 7.02 9.67 5.03 4.89 

S D R ( . i B ) s 1 » 2 S 3 S 4 S 5 S G 3 7 »8 SQ sin mean 
mixtures —10.2 -7.52 -0.71 -11.3 -5 .IJ7 -7.4 -4.91 -12 -7.69 -11.2 -7.89 

extracted sources 1.28 3.96 2.77 3.28 7.93 6.18 8.22 6.64 5.97 -2.19 4.4 
gain 11.5 11.5 3.48 14.5 l.'l.O 13.6 13.1 18.6 13.7 9.01 12.3 

the speakers' sentences could be discerned without difficulty. One other thing 

to note from the results of this experiment is that there was an improvement 

even in the SAR values. A possible reason for this is that due to the high 

number of sources, the number of points in the T F plane that the algorithm 

sets to zero is less; thus, the extracted sources exhibit less artifact. 

Figure 4.3: The Spectrogram of one of the mixtures. The T F plane of the 
mixture is not sparse, making the separation harder. 
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4 . 2 Synthetic Mixtures, Anechoic Room 

Mixing Parameters 

In addition to the experiments mentioned in the previous section, we per­

formed additional ones where the mixing parameters are derived from an 

anechoic room model as used in [8]. The simulated scenarios involved three 

microphones and several sources placed around the room. We repeated ex­

periments extracting 3, 4, 5 and 6 sources from 3 mixtures (60 repetitions 

each) and compared the results to those of DUET. The results can be seen in 

tables 4.6, 4.7, 4.8, 4.9, and 4.10. There is an obvious advantage in the use of 

the proposed algorithm, stemming from the use of the information present in 

all mixtures. One other thing to note is that we ran the algorithm feeding it 

the correct cluster centers (and hence the correct mixing parameters) in the 

case of three mixtures and six sources, with p=0, and obtained an average 

SDR of 5.4341dB, which is close to the 5.23dB obtained with the estimated 

cluster centers and p=0.6, as reported in table 4.10. We believe this validates 

the extra process we perform to reduce distortion as explained in section 3.4. 

As for the selection of the parameter p, from the results reported throughout 

this section, it seems that values in the range of 0.6 — 0.8, generally give good 

performance of the algorithm. 
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Table 4.6: Average Demixing Performance (60 various runs) with 2 mixtures 
of 3 sources, n = 3 

BAUSS DUET 
P = l p = 0.8 p = 0.6 

DUET 

SIR (dB) 
SAR (dB) 
SDR (dB) 

20.291 
10.679 
9.6128 

22.164 
10.590 
9.4363 

25.783 
9.7515 
9.0542 

24.279 
9.2522 
8.7223 

Table 4.7: Average Demixing Performance (60 various runs) with 3 mixtures 
of 3 sources, h = 3 

BAUSS DUET 
p=l p = 0.8 p = 0.6 

DUET 

SIR (dB) 
SAR (dB) 
SDR (dB) 

19.730 
14.225 
12.711 

28.919 
14.082 
13.774 

40.191 
13.033 
13.007 

22.622 
8.2051 
7.9123 

Table 4.8: Average Demixing Performance (60 various runs) with 3 mixtures 
of 4 sources, h — 4 

BAUSS DUET p=l p = 0.8 p = 0.6 
DUET 

SIR (dB) 
SAR (dB) 
SDR (dB) 

16.991 
10.718 
8.9965 

21.196 
10.655 
9.6780 

25.918 
10.401 
9.8149 

17.436 
7.2363 
4.6757 

Table 4.9: Average Demixing Performance (60 various runs) with 3 mixtures 
of 5 sources, h = 5 

BAUSS DUET 
p=l p = 0.8 p = 0.6 

DUET 

SIR (dB) 
SAR (dB) 
SDR (dB) 

13.984 
6.8408 
5.5626 

16.601 
6.9605 
6.1441 

19.970 
6.8718 
6.3774 

12.982 
4.9712 
2.3890 
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Table 4.10: Average Demixing Performance (60 various runs) with 3 mixtures 
of 6 sources, h = 5 

BAUSS DUET p = l p = 0.8 p = 0.6 
DUET 

SIR (dB) 
SAR (dB) 
SDR (dB) 

13.081 
5.7519 
4.3056 

15.035 
5.8750 
4.7992 

17.751 
5.9576 
5.2393 

11.953 
3.7166 
1.9419 

4.3 Real Mixtures 

To test the proposed techniques in a real setting, we used the real anechoic 

mixtures posted on [19], which have two sources and two microphones. The 

microphones are placed 35cm apart, and the sources are placed 60° degrees 

to the left of the microphones and 2m on the mid-perpendicular of the micro­

phones respectively [19], [2]. It is worth noting that while we know a priori 

that we have two mixtures with two sources involved, we run the algorithm 

completely assuming that there are four sources. As discussed in the previ­

ous section and as our results indicate, this does not degrade the separation 

performance. Table 4.11 shows that our algorithm slightly outperforms the 

algorithm detailed in [2] and whose audio separation results are in [19]. Our 

proposed algorithm does slightly better in SIR and by approximately 3dB in 

SAR and SDR. 

Table 4.11: Demixing Performance (in dB) with 2 real mixtures of 2 sources, 
p = 0.75, h = 4 

SIR [2] SIR (BAUSS) SAR [2] SAR (BAUSS) SDR [2] SDR (BAUSS) 

•si 26.232 41.277 4.5363 7.8223 4.4967 7.8200 
•S2 55.410 41.249 5.6433 7.9978 5.6433 7.9955 

mean 40.821 41.263 5.0898 7.9101 5.0700 7.9077 
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Conclusions and Future Work 

In this thesis, we have presented a novel blind source separation algorithm 

that can extract more sources than available mixtures in the anechoic case 

where both delays and attenuations play a part in the mixing model. The BSS 

technique presented combines the strengths of I1 minimization approaches 

with those of DUET, an approach that relies on TF masking. The tech­

nique relies on first extracting feature vectors of time-frequency points and 

utilizing them in a clustering stage to extract the parameters of the mixing 

model. This blind mixing model recovery stage is followed by a blind source 

extraction stage based on I1 minimization, as justified by the sparsity of the 

sources. We perform the constrained I1 norm minimization step with a tech­

nique known as shortest path decomposition. Furthermore, we presented an 

enhancement to the algorithm based on preserving only a percentage of the 

extracted signal power to reduce undesirable effects that we attribute to noise 

and clustering errors. 

We presented experimental results based on synthetic mixtures and real 

mixtures in anechoic environments. Our experiments highlighted the robust­

ness of the algorithm to user set parameters and to lack of knowledge of the 
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real number of sources a priori, thereby generalizing similar results obtained 

for instantaneous mixing. We measured the performance of our algorithm in 

terms of SDR, SIR and SAR. We showed that while it necessarily introduces 

artifacts due to its non-linear nature, we showed that it generally performs 

favorably with respect to all criteria. Our use of the preserved power ratio 

parameter enables the user to balance the types of distortion incurred, be­

tween artifact and interference. The optimal choice of this parameter, and 

its relationship to the estimated number of sources used for demixing and 

the actual number of sources remains a topic for further research. 

The technique presented in this thesis would be appropriate for non-

audio applications as well. Thus, other topics for future research include 

blind source separation applied to such mixtures as electroencephalography 

(EEG) recordings. Prevalent demixing techniques in that field assume an 

instantaneous mixing model, and there may be a lot to be gained by assuming 

a more general model utilizing both attenuations and propagation delays. 

Methods would have to be devised to generalize the proposed technique to 

be able to handle negative attenuations, or handle the phase indeterminacy 

problem before it could be successfully applied to EEG recordings. 
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