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Abstract 

This thesis contains a study of track impact parameter resolution in the BABAR 
detector using lepton pair events from e+e~~ -» and from 7*7* —>• 
where I is either e or p,. The high number of these events in the data set 
and Monte Carlo simulations allows the tails of the resolution to be studied 
in detail. The Gaussian core of the resolution is consistent within 20% with 
the track-by-track errors returned by the track fitting software for both data 
and Monte-Carlo simulations. Beyond about three standard deviations (a) the 
non-Gaussian tail approximately obeys power laws. A simple parametrization 
is presented which fits the data well to beyond 10<r. The tail shape is consistent 
with that expected from a large-angle Coulomb scattering Toy Monte-Carlo. 
The GEANT4-based BABAR Monte Carlo software reproduces the core out to 
approximately 2a but the behaviour of the tails further out disagrees with the 
data and the predictions of Moliere theory. 
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Chapter 1 

Introduction 

i 

1.1 C P violation in the Standard Model 
The primary motivation of the BABAR Experiment is the measurement of C P -
violation phenomena in 5-mesons - mesons containing at least one b (bottom 
or beauty) quark [1]. C P is a quantum-mechanical operator, corresponding 
to changing the sign of the charge, and applying the 3-dimensional parity or 
mirror-reversal operator. We know that if a symmetry is respected in nature, 
there must be a corresponding quantity which is conserved; a result proved by 
Emmy Noether in 1918 [2]. It was believed that both C and P should be good 
symmetries of nature, until Madame Wu [3] observed parity violation in 1957. 
After this discovery, it was seen that the nuclear weak force is maximally parity 
violating, or that parity is never conserved in a purely weak interaction. The 
subsequently developed V - A theory of the weak interaction restored C P as a 
good (unbroken) symmetry, but CP-violation was observed experimentally at a 
level of 2 parts in 1000 in Kaon decay by Cronin and Fitch in 1964 [4]. Since that 
time, CP-violation has been one of the most heavily studied topics in particle 
physics, particularly due to Sakharov's realization that it is a necessary ingre
dient in any explanation of the matter-antimatter asymmetry of the universe 

It was later shown by the theorists Kobayashi and Moskawa that C P viola
tion is allowed in the Standard Model of particle physics if there are at least three 
generations of quarks that are mixed through the weak interaction [6]. If there 
are exactly three generations of quarks, then this weak mixing between quark 
flavours can be described mathematically by a 3x3 matrix normally written as: 

where the subscripts u, d, s, c, t, b stand for the "up", "down", "strange", 
"charm", "top" and "bottom" species of quarks, respectively. In principle each 
element of the so-called C K M (Cabibbo, Kobayashi, Moskawa) matrix can be 
complex, but the matrix must be unitary if there are only three generations 
of quarks in nature. Requiring V to be unitary reduces the number of free 
parameters from 18 (9 real and 9 imaginary numbers) to 9 real and imaginary 
numbers. W i t h six flavours of quarks in the Standard Model, there are five 
relative phases between the wavefunctions of the quarks. These five phases 
reduce the number of free parameters in V from 9 to 4. A 3x3 matrix containing 

[5]. 

(1.1) 
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Figure 1.1: Unitarity triangles constructed from the C K M matrix in a) standard 
quark-mixing parameters and b) Wolfenstein parameterization. 

four parameters can always be written as the product of three rotations plus 
a phase. It is this imaginary phase that is responsible for the phenomena of 
CP-violation. 

The parameterization of Wolfenstein [7], which is based on experimental 
measurements, is frequently used when discussing the latest results of tests on 
the unitarity of the C K M matrix. His parametrization is given by: 

/ l - A 2 / 2 A X3A(p-ir)) \ 
V=\ - A l - A 2 / 2 A 2 .4 (1.2) 

\ \3A(l-p-iri) -X2A 1 / 

where A is the Cabibbo angle and A, p and r] may be experimentally measured. 
In this parameterization, all experimentally observed CP-violation is related to 
the imaginary phase TJ in the bottom-left and top-right elements. It is also clear 
that as written, this form of the C K M matrix is not unitary at the level of A 4 , 
but it still provides a convenient method of comparison for experimental results. 

By measuring whether or not the C K M matrix is truly unitary, we can test 
for new particles beyond the three generations of quarks thus far observed, or 
physics beyond the laws of the ElectroWeak interaction. One convenient way of 
testing unitarity is by multiplying one column by a row of the conjugate matrix 
to obtain an equation with 6 elements: 

vudv:b + vcdv;b + vtdv;b = o (1.3) 
which can also be interpreted as the requirement that the sum of three complex 
quantities vanishes. This can be represented in the Argand plane as the so-called 
Unitarity Triangle, shown in Figure 1.1a. If the three sides are divided by VCdV*b, 
the triangle can also be expressed in terms of the Wolfenstein parameters, as 
shown in Figure 1.1b. 

1.2 B° -W Mixing and the C K M Matrix 

In any system in which the mass (energy) eigenstates are not identical to the 
flavour eigenstates of the particles, mixing between the different flavour states 
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wil l occur. For example, the kaons KS and KL are mass eigenstates, while the 
K° and K° are flavour eigenstates. In the case of the neutral B mesons, the mass 
eigenstates are not the same as the flavour eigenstates so the B ° and B° also mix 
quantum mechanically. Unlike the kaon system, however, the mass difference is 
large and the lifetime difference is negligible. The oscillation amplitude, A(t), 
has the same time-dependence in any two-level system: 

A(t) oc cos(Am t) (1.4) 

where A m is the mass difference between the two flavour eigenstates. 
The mixing parameter for the Bd mesons (consisting of a b and d quark-

antiquark pair) is then A m j . In the absence of CP-violation in mixing, the 
mass difference A m j = 2 | M i 2 | where M\i is the off-diagonal matrix element 
of the mass and decay matrix for the neutral B system. This matrix element 
is directly related to the C K M matrix elements Vtd and Vtb by the following 
equation: 

A/T
 GFmwVBmBdfBdBBd , 2 / 2 W T / * T / N 2 f, r\ 

Mu = ^ S0(mt/mw)(VtdVtb) (1.5) 

where GF is the Fermi constant of the weak interaction, mw is the W boson 
mass, rriBd, }Bd and Bsd are the mass, weak decay constant and Q C D bag 
parameter of the Bd meson. The Q C D bag parameter is proportional to the 
ratio between the nonperturbative coupling of the neutral B-mesons and the 
weak decay constant, and it is calculated using lattice Q C D . The function So(xt) 
can be approximated quite well by 0.784:rj' 7 6. For more details on this relation, 
please consult references [8] or [9]. 

By carefully measuring the time-dependent distribution of neutral B decays, 
physicists can determine these values of A m and M i 2 and thereby test the C K M 
matrix and the Standard Model. 

1.3 Measuring CP Violation in B decays 
The BABAR experiment is using the physics of B-decays and .D-decays to mea
sure the angles a, /? and 7 of the Unitarity Triangle. More details on the physics 
objectives of the BABAR experiment are given in reference [1]. 

The cleanest possible process for producing pairs of B mesons is to collide 
electron-positron pairs at the right energy to produce the T(4s) meson. The 
T(4s) decays into a pair of B mesons, either B ° , B ° , or B+,B~. In the BABAR 
experiment electrons and positrons are annihilated to produce the T(4s) meson, 
which decays almost instantly into a pair of B-mesons. The two B mesons 
are very nearly at rest in the centre-of-mass frame of the T(As). If the beam 
energies were symmetric, and the T(As) was at rest in the lab frame, time-
dependent analyses would not be feasible because the B lifetime is too short, 
approximately 10~ 1 2 seconds. At PEP-I I , however, electrons are accelerated to 
an energy of 9 GeV, and positrons are accelerated to an energy of 3.1 GeV, 
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before they collide. The collision creates a system with a C M (centre-of-mass) 
energy of -y/i = 10.58 GeV, corresponding to the mass of the T(4s) meson, and 
a Lorentz boost in the lab frame of /?7 = 0.58 because of the asymmetric beam 
energies. This means that the T(4s) is moving along the beam axis, in the 
direction of the e~~ beam, with a velocity of roughly one-half the speed of light. 

This Lorentz boost converts timescales of order 10~ 1 2 seconds into distances 
on the order of 10~ 4 metres, or roughly 100 / im. Clearly, excellent position 
resolution along the beam axis of the detector is crucial to any time-dependent 
analysis. Furthermore, knowledge of this resolution often constitutes one of the 
dominant sources of systematic uncertainty in time-dependent BABAR results. 

The cleanest measurement of C P violation in B decays is the measurement of 
interference between direct and mixed decays to C P eigenstates. As an example, 
consider the neutral B decay to J/X/JKS, where the decay can proceed through 
two channels, either B° —• J/ipKs, or B° -> J/ipKs. The initial state of the B 
can be "tagged" by identifying the flavour of the other B meson. By looking 
for a decay to a non CP-eigenstate, for example B —> Dlv, the flavour of the 
products, (or charge of the primary lepton) can be used to identify the parent 
B as either a B° or B°. The time-independent asymmetry between the two 
channels (direct and mixed) vanishes because the "tag" B meson wil l decay 
before the signal B roughly half the time. If the tag is before the signal, the 
sign of the asymmetry switches, and the time-integrated asymmetry wil l cancel 
to zero. If, however, the decay vertices of the B ' s are reconstructed, then the 
time-dependent asymmetry can be measured, and C P violation can be observed. 
In this way, knowledge of the position resolution of the BABAR detector is crucial 
for precise measurements of C P violation in B decays. 

The B E L L E experiment [10], which is nearly identical to BABAR provides 
an important source of competition as well as an important check for the consis
tency of physics quantities which are being measured for the first time in these 
B-factory experiments. 

1.4 Motivation for Track Impact Parameter 
Resolution Study 

Track impact parameter measurement is central to studies of both C P violation 
and neutral B mixing. Both are dependent on fitting to a time-dependent 
asymmetry, where the times have been determined by the difference in position 
along the beam direction between the particle tracks or the vertices formed by 
the particle tracks. The fit to an asymmetry includes models of the track impact 
parameter resolution. The resolution model parameters are in turn determined 
by the application of the model to "control samples", where the physics is known. 
For example, the track resolution in the BABAR dilepton B-mixing analysis is 
taken from a fit to the track impact parameter difference in J/ip —> decays, 
where both tracks must come from a single point in space [11]. These events 
provide a relatively small sample for fitting, concentrating only on the central 
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part of the distribution. 
Finite resolution moves events from the true At between the B decay times to 

a different At value. This increases the statistical error in the measurements. If 
the measurements are not compensated for the resolution it can also introduce 
systematic shifts in the results. Typically, the fits are repeated with several 
different models for the resolution, and the difference between them is taken as 
the systematic error. 

The tails of the resolution can be particularly difficult to deal with. Events 
with large reconstructed At values are very important for CP , mixing and life
time measurements, but a significant fraction of such events are actually events 
with small values of At and large systematic errors. 

The goal of this thesis is to measure the track impact parameter resolu
tion. A high-statistics control sample of BABAR data events is selected. A 
parametrization of the resolution is developed that works well out into the tails 
of the distribution. The resolution is comparable between data and the fully re
constructed BABAR Monte-Carlo simulations. The theory of Multiple Coulomb 
Scattering, its effects on track impact parameter resolution, and a corresponding 
resolution model are developed in Chapter 2. The physics processes responsible 
for creation of the lepton-pair events selected for this analysis are explained in 
Chapter 3. The BABAR detector is described in Chapter 4. The BABAR data-
acquisition electronics and software are described in Chapter 5. The process 
through which our control sample is selected from all of the BABAR data is doc
umented in Chapter 6. The analysis of the track impact parameter resolution 
for this control sample is detailed in Chapter 7. Finally, a summary of the 
findings of this thesis is presented in Chapter 8. 
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Chapter 2 

Multiple Coulomb 
Scattering 

2.1 Theory of Multiple Coulomb Scattering 

Coulomb scattering is the scattering of a charged particle by an atomic nucleus 
through the electrostatic force, or in the language of quantum field theory, 
through the exchange of a virtual photon. Scattering from an exponentially-
screened Coulomb potential is given by the screened Rutherford cross-section: 

da n (2Zze2\2 1 
— = 2tt 5 (2.1) 
dfi \ pv J ( s i n 2 ( 0 ) + X 2 ) 2 k ; 

where Z is the atomic number of the target material, z is the charge in units 
of e the electron charge, p is the 3-momentum magnitude, and v is the velocity 
magnitude of the incident particle. The parameter \a is known as the screening 
angle. Equation 2.1 does not include the relativistic spin-dependence, but this 
effect is washed out after many small-angle scatters. After integrating over the 
azimuthal angle <p, and making the small-angle approximation (sin(#) ~ 8), we 
arrive at the following relation: 

de a (0 2 + xl)2 a 0* ( } 

in which we can clearly see that the cross-section is proportional to 8~3. By re
peatedly applying the above cross-section, for each atomic layer, it is possible to 
calculate the distribution of final angles after an arbitrary path-length has been 
traversed. Williams [12], [13] was able to qualitatively describe the scattering 
distribution successfully with the sum of a central Gaussian and a single-scatter 
tail function. Several years later, Moliere [14] was able to give more exact an
alytical results, for a wide range of angles, although for practical applications 
this required the tabulation of numerical values. In the limit of small angles 
the resultant distribution for the angle of deviation 9 can be described by three 
separate terms to better than 1% accuracy [15]. The first term is a Gaussian 
core. Simply using this Gaussian term alone is accurate to better than 1% when 
considering relatively modest angles, 6 < 2a, and material thicknesses of more 
than 1000 atomic layers (which describes all practical experiments). The sec
ond term oscillates in the core and asymptotically approaches the Rutherford 
distribution at large angles. The third term is a higher-order correction. 
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The width of the central Gaussian peak scales roughly as the square-root 
of the thickness traversed, but there is an additional logarithmic dependence. 
The tabulated values calculated using the theory of Moliere have been fit to the 
following empirical relation: 

90 = 1 3 - 6 M e V z v ^ [1 + 0.038ln(x/X0)} (2.3) 
pep 

in which x is the thickness in terms of the radiation length of the material, 
XQ. The Particle Data Group [9] recommends the use of this formula as an 
approximation to the width of the central Gaussian of the Moliere distribution. 
As the angle 9 increases, the distribution approaches that of the single scatter, 
i.e. oc 9~3. The popular detector simulation software package, G E A N T , used 
the Moliere formulation of Multiple Coulomb Scattering in Version 3 [16]. 

Version 4 of G E A N T [17] is based on the theory of Lewis [18]. This theory 
is formulated in terms of the moments of the distributions rather than the 
distributions themselves. Approximate distributions are chosen which have the 
correct moments to within certain tolerances. This is identical in the core to 
the Moliere theory but is not necessarily the same in the far tails. The BABAR 
collaboration uses G E A N T 4 for all detector simulations. 

When simulating Multiple Coulomb Scattering (MCS), it is much more effi
cient to select the final angle from the complicated Moliere or Lewis distributions 
rather than to simulate single scatters millions or billions of times. Using the 
Moliere distribution directly to describe experimental data is rather awkward, 
but it is possible to create a parametrization that describes the distribution 
reasonably well out into the tails. 

2.2 Monte-Carlo Generation of MCS 
Distribution 

In order to generate a sample of events having the correct distribution, we re
peatedly sample angles from a simple distribution. This is more time consuming 
than using the Moliere or Lewis distributions, but is certain to provide us with 
the correct distribution far out into the tails. 

Figure 2.1 shows the distribution of scattering angles generated by a single 
throw of a random number following the simple 9~3 distribution, in the range 
0.005 < 9 < oo. A second uniform random number cos(cp), is selected from a 
flat distribution between -1 and 1. The original value of 9 is then multiplied 
by cos(0) to give a displacement centered on zero. Twenty thousand of these 
individual displacements were then added together to give the final deflection 
for a single particle. The entire process was repeated for 100,000 particles and 
the resultant distribution is shown in Figure 2.2. The Gaussian core of Multiple 
Coulomb Scattering is clearly visible, along with the power-law tail correspond
ing to the original 9~3 distribution used. This simple "Toy" Monte-Carlo model 
can be employed later to compare to the track impact parameter resolution dis-
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Figure 2.1: Angles generated from 9 3 distribution in the range 0.005 < 9 < oo. 

tributions in the experimental and GEANT-simulated data, as well as to help 
choose an appropriate parameterization of the resolution distribution. 

2.3 Parametrization of the Resolution 
Distribution 

In order to help us determine the best lineshape for describing the track impact 
parameter resolution we look more closely at the power-law behaviour of the tails 
of the distribution. We know that the inner 2a of the distribution is reasonably 
described by a Gaussian, and we will concentrate on the outer portions of the 
tail . Far enough out in the tails, the shape must asymptotically approach that 
of the Rutherford differential cross-section, a power-law of the form 9~3. The 
transition between the Gaussian core and the 9~3 power-law tail is usually 
described only approximately. 

The resolution due to M C S can be accurately described by a Gaussian core 
and a tail function which eventually becomes a power-law tail at large deflec
tions [15]. We will choose a tail which contains two separate power-laws. We 
construct a general formulation of this type of function using the following equa
tion: 

y(x)=N(l-f)G(x)+NfJ^ (2.4) 
AT 
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20 30 
Deflection Arb. Units 

Figure 2.2: Distribution of final deflections caused by scattering 20,000 times 
according to the screened Rutherford cross-section. 

G(x) = e i° 

T(x) = a~p-

T(x) = x — p 

T(x) = x — p 
ab 

2-KO-

x — p,\ < aa 

aa < \x — p\ < ba 

-Pb 

AT = 2[ H ' 1 - " - ) + — ) + 2 f 6("'-"-) 
1 - Pa 

x — p\ > ba 

fc(i-Pb) 

l-Pb 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

where N is the total number of events in the histogram, G{x) is the Gaussian 
core, T(x) is the tail function, AT is the area under the tail , and / is the fraction 
of the total events under the tail function. The parameters for the Gaussian 
core G(x) are the mean of the distribution p, and the width of the Gaussian a. 
The parameters for the tail function T(x) are: the inner breakpoint between the 
Gaussian core and the first power-law tail a, the power in the first power-law 
tail pa, the outer breakpoint between the first power-law tail and the second 6, 
and the power in the second power-law tail p0. 

Figure 2.3 is a plot of the function with the following values used to generate 
the plot, N = 10 6, p, = 0.0, a = 1.0, a = 3.0, b = 5.0, pa = 5.0 and pb = 3.0. 
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Figure 2.3: Plot of the function (Equation 2.4) used to describe the track vertex 
resolution in this study. The solid line is the function value, the 
dashed line is the tail function T(x), and the dotted line is the 
Gaussian core G(x). 

The function is dominated by the Gaussian core (dotted line in the Figure) in 
the range -2< x <2. We see that the tail function (dashed line in the Figure) 
is flat in the centre of the distribution, and falls off with two distinct power-
laws to either side. We note the the function is not smooth at either of the 
breakpoints, and this can present practical difficulties in achieving convergence 
when this function is used for curve-fitting. These problems are resolved when 
two of the four parameters a, b, pa and pb are held fixed. We know that the 
M C S distribution must eventually vary as 9~3 so we can fix Pb=3. We found 
that fixing the two breakpoints a, and b allowed the fitting algorithm to easily 
converge in all cases. 

As a first test of the ability of Equation 2.4 to describe track impact param
eter resolution distributions, we used it to fit the results of a Toy Monte-Carlo 
generated by the method described in Section 2.1. One hundred thousand events 
were generated with increasing numbers of scatters (N), ranging from N=2 up 
to N=20,000. A l l of the fits described in this section were performed with the 
two breakpoint parameters fixed at a = 3.0 and b = 5.0. These values were 
chosen based on the inspection of the tails described in the next section. The 
outer power-law was fixed at p0 = 3.0, the same power-law dependence as the 
Rutherford differential cross-section. Figure 2.4 is a plot of the fit to the same 
distribution shown in Figure 2.1, with N=20,000. We observe reasonable agree
ment well out into the tails of the distribution. Figure 2.5 is a plot of the pulls 
of the same fit. The pulls are calculated by taking the difference between the 
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Figure 2.4: Plot of the Toy Monte Carlo distribution. The solid line is a fit to 
Equation 2.4. 

3 
a. 

Figure 2.5: Plot of the pulls (data-fit / \Jdata) for the fit in Figure 2.4. 
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actual and fitted values, and dividing by the expected statistical error of yjn. 
We see that the data and fit function agree to within approximately 3 standard 
deviations over the range between -10 and +10. It is difficult, however, to ver
ify that our fitted function accurately describes the data well into the tails by 
looking at a log-plot covering several orders of magnitude, such as Figure 2.4. 
The pulls could also contain subtle systematic variations in the tails. 

2.4 A Closer Look at the Tails 
To more closely examine the agreement in the tails of the distribution we can re-
plot the data using a transformed variable, along with the suitably transformed 
fitting function. 

We now consider the transformed variable u = (x/a)~2, where x is the 
displacement generated by the method outlined above, and a is the width of 
the Gaussian core. If the distribution of x follows the power-law a ; - 3 then u 
will be flat. Any function transformed from f(x) to f(u) wil l be multiplied by 
a Jacobian factor of u _ 3 / 2 / 2 . We know that as x goes to infinity the power-law 
goes to -3. This means that u wil l be flat as it approaches zero. Figure 2.6 
shows a histogram of u when x has been generated according to the method 
described in the previous Section, as well as the transformed fit-function (solid 
line), transformed Gaussian core (dotted line) and transformed power-law tails 
(dashed line). We see that in terms of the transformed variable, u, the agreement 
between the Toy M C and fitting function is quite good over almost the entire 
range. We can see that there is more than one power describing the data between 
u=0 and u=0.1, or, equivalently, between x = oo and x =3. The graph is nearly 
flat between u=0 and u=0.04, meaning that a power-law exponent of-3 between 
5a and infinity wil l describe the shape well. Between 3<r and 5cr we see that the 
data must follow a faster fall-off, so the exponent must be larger. 

There is a small disagreement around u=0.05, corresponding to somewhere 
between 4 and 5cr. This disagreement occurs when the tail function peaks, 
and disappears as the tail decreases steadily. There also appears to be a small 
disagreement in the region of u < 0.01, corresponding to greater than 10CT. This 
discrepancy was also visible in the untransformed plot. Overall, we conclude 
that the parametrization given in Equation 2.4 describes the Toy M C quite well 
out to approximately lOc. 

2.5 Dependence on Number of Scatters 
The fitting process was repeated for different values of N , and the fitted param
eters tabulated as a function of N . The number of events returned by the best 
fit was consistent with the actual number N=100,000. Figure 2.7 is a plot of 
the fit results for the mean of the distribution (^i) versus the number of scatters 
(N). The mean of the distribution was generally consistent with zero, but var
ied between -0.007 and +0.004. This suggests that we can expect some small 
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Figure 2.6: Histogram of u = x~~2 for x generated by the M C S distribution, and 
the transformed version of the fitted function to the data (solid line). 
The Gaussian core (dashed) and power-law tail (dotted) components 
are also shown. 

Figure 2.7: Plot of the mean of the Multiple Coulomb Scattering distribution, 
/U, as a function of the number of scatters, N . 
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Figure 2.8: Plot of the fitted parameter representing the width of the core Gaus
sian, cr, as a function of the number of scatters, N . 

variation of the mean to occur simply as a result of the statistical fluctuations 
in the fitting procedure when we apply this model to experimental data. 

Figure 2.8 is a plot of the fit results for the width of the central Gaussian (cr) 
versus the number of scatters (N). We can clearly see a logarithmic dependence 
on the number of scatters. This is in general agreement with the dependence of 
the core width given earlier in Equation 2.3. We don't expect to see as much 
change in the experimental data since the thickness of material traversed in the 
detector doesn't vary by as many orders of magnitude. 

Figure 2.9 is a plot of the fraction of the events in the tail function, / , as 
a function of N . When we only have 2 scatters, the purported tail fraction is 
very high because the distribution is not at all Gaussian. By the time we have 
increased to 10 5 scatters, the tail fraction has dropped to approximately 2%. 
We can compare these fractions to the results found when we fit to the data, 
however, we note that the value of / is not really the number of events beyond 
3o\ It is largely determined by the area of the fiat tail function T(x) under 
the core Gaussian. A change in the width of the core Gaussian wil l therefore 
change the value of / substantially even if the other parameters describing the 
tail shape are unchanged. This behaviour must be borne in mind when we 
examine the value of / in our experimental data. 

Figure 2.10 is a plot of the exponent in the inner-portion of the power law 
tail, pa, as a function of N . It ranges between 3.0 and 4.0, increasing rapidly with 
N . Again, when N=2 the distribution is closer to that of the original x~3 than 
to the combination of a Gaussian and tail predicted by M C S theory. It appears 
that the value of pa asymptotically approaches a value of approximately 4.0, and 
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Figure 2.10: Plot of the fitted parameter representing the power in the inner 
power-law tail, pa, as a function of the number of scatters, N . 
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we can check to see if the same values are obtained in our fits to experimental 
data. If the fitting function did not take into account the value of the core 
width, i.e. if it used x~Pa instead of {^)~ P a we would expect the inner tail 
power to depend strongly on the core width. As the breakpoint moved into the 
core it would raise the value of pa and vice-versa. If we divide the track-impact 
parameters by the core width in the experimental data then we should not see 
this effect, and the inner power-law should be approximately 4.0 if the tails in 
the track impact parameter resolution distributions are really due to Multiple 
Coulomb Scattering. 

A l l of the behaviour seen in this Toy Monte-Carlo simulation should be 
clearly visible in the experimental data if the track impact parameter resolution 
tails are dominated by Multiple Coulomb Scattering. By dividing the devia
tions by the errors calculated by the tracking software we expect to obtain a 
distribution which closely resembles one of the Toy Monte-Carlo distributions. 
In real data we are unable to measure exactly the number of scattering layers 
a track has passed through, but we can construct a quantity that should be 
proportional to the amount of M C S and examine the resolution as a function of 
that quantity. On the other hand, if there are other significant contributions to 
the track impact impact parameter resolution which are not described by either 
the geometric detector resolution or the effects of Multiple Coulomb Scattering, 
then the experimental data should display markedly different behaviour than 
these Toy Monte-Carlo simulations. 
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Lepton Pair Production 
Processes 
In this chapter we examine the physical processes responsible for the events 
which we wil l use to study the track impact parameter resolution. In order 
to fully explore the tails of the impact parameter resolution functions, it is 
necessary to use a very large sample of dilepton events so that the distributions 
will be populated with a significant number at many a away from the central 
value. The easiest way to study the actual resolutions is to use the Q E D events 
that are already present in large quantities in the data to characterize the track 
impact parameter resolution functions. There are two main categories of events 
containing lepton pairs: the first is "Bhabha" scatters and the related muon 
pairs, and the second are "Two-Photon" events. 

3.1 Bhabha Scattering and Muon Pair 
Production 

This section describes the physical processes by which Bhabha scattering and 
muon pair-production occur. This interaction was named after H . J . Bhabha, 
who first described it in detail for electrons [19]. The process can be described by 
the two Feynman diagrams 1 in Figure 3.1a and b, known as the annihilation or t 
diagram and exchange or s diagram, respectively. The differential cross-section 
of the annihilation diagram is given by: 

£ = £ ( 1 + (3.1) 

where s = E2

cm is the square of the total energy in the C M frame. Muon pairs 
are only produced through the annihilation diagram. The angular distribution 
for electrons in the final state is more complicated, because it depends on the 
amplitude for both diagrams, including interference between them. The cross-
section for electron production strongly peaks at 6=0 in the C M frame, while the 
cross-section for muon production is more isotropic in the C M frame. The two 
final state leptons (either electrons or muons) will have nearly equal momentum 
magnitude in the C M frame. We expect these leptons should all have one-half 

' •Al l Feynman diagrams produced with the JaxoDraw [20] software package. 
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Figure 3.1: Bhabha-scattering of the incoming electron and positron to produce 
an outgoing lepton pair in the a) annihilation channel and b) ex
change channel. 

the total C M energy, or approximately 5.2 GeV. A simulated momentum spec
trum for electron pairs in the C M frame is shown in Figure 3.2. The spectrum 
was obtained using the " B H W I D E " event generator software package [21] and 
the standard BABAR reconstruction software described in Chapter 5 of this doc
ument. The spectrum for muon pairs is virtually indistinguishable from that 
of the electrons, except that the peak momentum occurs about 105 M e V lower 
due to the muon's larger mass. 

Lepton pairs scattered through the exchange diagram wil l still have most of 
their momentum along the beam axis, since the cross-section for that diagram 
peaks at 0 = 0, and their px spectrum will fall off rapidly. Lepton pairs which 
interact through the annihilation diagram will have a more isotropic distribution 
in the C M frame and a momentum spectrum peaking at about 5 GeV. The pr 
spectrum for leptons produced through annihilation also peaks at roughly 5 
GeV with a low-energy tail . 

The Feynman diagrams shown in Figure 3.1 can be modified by the emis
sion of real photons from either the initial or final state particles, as shown 
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Figure 3.2: Distribution of momenta in the C M frame for Bhabha-scattered 
electrons produced with the PEP- I I beam energies. 

in Figure 3.3. We expect a low-energy tail in the lepton spectrum, made up 
of leptons which have lost some of their initial energy by radiating a photon. 
In both initial and final state radiation, these processes wil l create final state 
leptons with less than 5 GeV of momentum in the C M frame, and the tracks 
will not be entirely back-to-back in the C M frame either. Initial state photons 
wil l tend to be emitted parallel to the incident beams, and wil l therefore es
cape down the beampipe without detection. These events wil l have only two 
visible charged tracks in them and nearly balanced transverse momentum, but 
missing energy. If the final state particles emit photons then the photons wil l 
normally be detected and could be included in the event reconstruction. If they 
are not included in the event reconstruction the events wil l be rejected because 
the charged tracks' px will not balance exactly. 

3.2 Two Photon Process 

In order to obtain a large number of dilepton events which have transverse 
momenta between 0 and 4 GeV we also consider the so-called Two-Photon 
events, produced via the following reaction: 

e + e~ -> e + e - 7 * 7 * e+e~l+r (3.2) 
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Figure 3.3: Feynman diagrams for a) exchange and b) annihilation diagrams 
with real photons radiated from all initial and final state particles. 
Normally only one of the four particles would emit a real photon. 

The general two photon process producing a fermion pair is shown in the Feyn
man diagram of Figure 3.4a. If the final state is hadronic the vertex can only 
be treated approximately, but if the final state is a lepton pair, as shown in 
Figure 3.4b, then the process can be treated exactly through a lepton hairpin. 
These two photon events have momentum spectra peaking at zero and falling 
off steeply with energy. Their transverse momenta are basically equal and can 
range up to 5 GeV. They represent the vast majority of dilepton events in which 
the C M momenta are less than 4 GeV. In addition, any one of the photons in 
Figure 3.3 can also produce a fermion pair. A simulated spectrum for muon pairs 
produced through the two-photon process is shown in Figure 3.5. The spectrum 
was produced using the " G A M G A M " event generator software package which 
is currently the two-photon physics standard for the BABAR collaboration, al
though it was originally written for the C L E O - I I experiment [22]. 
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Figure 3.4: Two-Photon production of a) generic fermion pair, b) lepton pair 
via a lepton hairpin. 
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Figure 3.5: Distribution of momenta in the CM frame for muons produced in 
the Two-Photon process with the initial beam energies of the BABAR 
experiment. 
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Chapter 4 

The BABAR Detector 

4.1 Overview 
The BABAR detector is located at the PEP- I I accelerator at the Stanford Linear 
Accelerator Centre (SLAC) , shown schematically in Figure 4.1. Electrons are 
accelerated to an energy of 9 GeV, and positrons are accelerated to an energy 
of 3.1 GeV, before they collide in the interaction region IR2. These energies 
create a system with a C M energy of 10.58 GeV, and a Lorentz boost in the lab 
frame of /?7 = 0.58. The BABAR detector, shown in Figure 4.2, is comprised of 

P E P II 

Figure 4.1: Schematic view of the PEP- I I accelerator at S L A C . 

five subsystems. The innermost is the Silicon Vertex Tracker, based on silicon 
micro-strip detectors. Next is a multi-wire drift chamber filled with an Argon-
Isobutane gas mixture, followed by a detector of internally-reflected Cerenkov 
light used for particle identification. A n electromagnetic calorimeter, composed 
of CsI(Tl) crystals, measures the photon energies and angles. A 1.5T supercon
ducting magnet encloses the inner four detector layers and the axial magnetic 
field forces charged particles to follow curved trajectories in the detector. The 
magnetic flux return is instrumented with resistive plate chambers to detect 
neutral hadrons and identify muons by penetration. Measurement of the track 
curvature determines the track momentum and combining the momentum with 
the velocity measured by the DIRC allows the determination of the particle 
mass. Full details of the BABAR detector design and performance can be found 
in [23]. 
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Figure 4.2: Cross-sectional view of the BABAR detector at the PEP- I I accelerator. A l l dimensions are in mm. 
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4.2 Silicon Vertex Tracker 

The micro-strip silicon vertex tracker (SVT) is composed of five double-sided 
layers. The layers are segmented into strips used to determine a passing parti
cle's location along both the z and <j> axes. In total, there are roughly 150,000 
individual strips read out from the S V T . When a charged particle passes through 
the active regions of silicon, it deposits energy which leads to the creation of 
electron-hole pairs. These pairs are swept apart by an applied voltage and the 
resulting current pulse is detected as a "hit" in one of the strips. The locations 
of hits are combined to infer the location of the track at each layer of the S V T . 

When attempting to measure the vertex of dilepton events, the resolution 
is primarily determined by the S V T , since the hits in the silicon are the clos
est points along the track to the beamspot and their spatial resolution is the 
best. For tracks with high transverse momentum (pr), the S V T can resolve the 
point of closest approach to the beamspot to within 50 pm, and sometimes as 
accurately as 10 pm. This resolution is primarily determined by the following 
factors: the strip size in the S V T , the angle at which the track traverses the 
S V T layers and the track momentum. Values are calculated for each track as 
they are reconstructed in the software, providing resolution estimates on a track 
by track basis. In addition, the alignment of the S V T with respect to the beams 
is calibrated on a continual basis, and contributes another systematic error to 
the vertex measurements. 

4.3 Multi-Wire Drift Chamber 

The multi-wire drift chamber (DCH) is filled with a mixture of helium and 
isobutane (C4H10) gases kept at 4 mbar above atmospheric pressure. The sense 
wires are kept at high-voltages ranging between 1900-2000V. There are a total 
of 28768 wires, and they are arranged into forty different concentric layers. 
Twenty-four of the forty layers are placed at a small angle relative to the z axis 
to measure the 8 angle of passing tracks. 

When a charged particle passes through the D C H , some of the gas is ionized 
along the path of the track and the ionized gas molecules are attracted to the 
ground wires while the liberated electrons are drawn toward the sense wires. 
The electrons collide frequently with gas molecules on their way to the sense 
wire, resulting in a constant drift velocity. When the electrons are very close to 
the wires, the increased electric field gives them enough energy to knock loose 
additional electrons from each gas atom. This creates a large gain in the signal 
picked up by the sense wire, on the order of 50,000 for this particular gas mixture 
and voltage setting. The resulting voltage pulses on the sense wires are read 
out and their arrival times are converted into distances from the wire, using the 
constant drift velocity. The position resolution ranges between 0.1 and 0.4 mm, 
depending on how far away from the wire the original track was located. This 
resolution is ultimately the limiting factor in determining how well the track 
curvature parameter u>, and hence the momentum, can be measured. 
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The other important measurement made by the D C H is of energy loss per 
unit distance, or dE/dx. The total charge deposited in each cell of the cham
ber is used to calculate the energy loss over the chamber width. There are a 
number of corrections applied to improve the measurement accuracy, including 
continuous updating of the gas pressure, temperature and gain, wire-by-wire 
geometrical constants and variation of the energy loss with the angle of the in
cident particle. Ultimately the accuracy of dE/dx measurements is roughly 7%. 
The measurement of dE/dx within the D C H can be used for particle identifi
cation in conjunction with the Detector of Internally Reflected Cerenkov Light 
(DIRC), or by itself for tracks which are within the acceptance of the D C H but 
miss the DIRC. 

4.4 Detector of Internally Reflected Cerenkov 
Light 

A charged particle travelling with velocity /3 = « /c in a medium of refractive 
index n produces Cerenkov light if n/3 > 1. For relativistic charged particles, a 
cone of Cerenkov radiation is emitted with a characteristic angle given by: 

cos(0c) = l/(n/3) (4.1) 

Measurement of the Cerenkov angle, in conjunction with knowing the particle 
momentum from the drift chamber, allows a determination of the particle mass 
and hence, the particle type. 

The D I R C sub-detector is a novel device used for the first time in the BABAR 
experiment. It is a ring imaging Cerenkov detector based on total internal re
flection and uses quartz bars as both the radiator and the light guide. The 
D I R C Cerenkov radiators are 4.9 m long rectangular quartz bars oriented par
allel to the z axis of the detector. The quartz has an index of refraction n=1.473. 
Through internal reflections, the Cerenkov light from the passage of a particle 
through the DIRC is carried to the ends of the bar, as shown in Figure 4.3. 
This radiation is captured by internal reflection in the bar and transmitted to 
the photon detector array located at the backward end of the detector (forward-
going light is reflected by a mirror located on the end of the bar). The high 
optical quality of the quartz preserves the angle of the emitted Cerenkov light 
during total internal reflection. 

A n advantage of the DIRC for an asymmetric collider, like PEP- I I , is that 
the high momentum tracks are boosted forward, causing a much higher light 
yield than for particles at normal incidence. This is due to two effects: the 
longer path length in the quartz and a larger fraction of the produced light 
being internally reflected in the bar. 

The photon detector array consists of about 11,000 conventional 2.5 cm-
diameter photomultiplier tubes. They are organized in a close-packed array at 
a distance of about 120 cm from the end of the radiator bars. The photo-tubes, 
together with modular bases, are located in a gas-tight volume as protection 
against helium leaks from the drift chamber. 
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Figure 4.3: Cross-sectional view of a quartz radiator in the D I R C , showing the 
internal reflections of the Cerenkov photons. 

To maintain good photon transmission for all track dip angles, the standoff 
region is filled with water to minimize the change in index of refraction. The 
water seal occurs at a quartz window that is glued to the quartz wedges. The 
standoff box is surrounded by a steel box which provides adequate magnetic 
shielding for the photo-tubes. 

The main design goal for the DIRC was to be able to distinguish pions and 
kaons at momenta greater than 2 G e V / c . The statistical separation between 
the two species ranges from about 10a at 2 G e V / c to approximately 2>a at 4 
G e V / c , easily meeting the specified design requirements. 

4.5 Electro-Magnetic Calorimeter 

The Electromagnetic Calorimeter (EMC) was designed to measure electromag
netic showers with high efficiency, high angular resolution, and high energy 
resolution over the range from 20 MeV to 9 GeV. The lower energy limit is de
termined by the need to reconstruct 7r°'s resulting from B decays, and the higher 
energy limit is necessary to measure Bhabha-scattered electrons and muons. The 
E M C is also helpful in identifying electrons. 

This sub-detector is divided into two parts, a cylindrical barrel surround
ing the inner detector systems, and a conical forward end-cap. The barrel is 
composed of 5880 Thallium-doped Caesium-Iodide crystals, arranged into 280 
separate modules, while the end-cap contains 20 modules of 41 crystals each. 
CsI(Tl) was chosen for the crystals primarily because of its high light yield and 
small Moliere radius which allow for excellent energy and angular resolution. 

High-energy photons and electrons travelling through the material of the 
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calorimeter create electromagnetic showers and the resulting photons are ab
sorbed by the crystals and re-emitted as visible light. These scintillation pho
tons are then detected by high-speed silicon photo-diodes mounted on the outer 
surfaces of the crystals. Silicon photo-diodes were chosen because of their ability 
to function properly inside the 1.5T magnetic field of the BABAR solenoid and 
because it is possible to match their absorption spectrum to that of the crystal 
light output. 

The measured energy resolution of the E M C ranges from 5% with a 6.13 
M e V radioactive source, down to 1.9% for Bhabha-scattered electrons at 7.5 
GeV. The angular resolution varies from 12 mrad at low energies to 3 mrad 
at high energies. Finally, the energy measured in the E M C is used with the 
momentum determined by the drift chamber in order to identify electrons with 
an efficiency of between 88-94%, and a pion misidentification probability ranging 
from 0.15-0.3%. 

4.6 Instrumented Flux Return 

The Instrumented Flux Return (IFR) was designed to identify muons with high 
efficiency and low contamination, as well as to detect long-lived neutral hadrons 
over a wide range of angles and momenta. The main objectives for the I F R are 
large coverage angles, good efficiency and good rejection of muon background 
down to momenta lower than 1 GeV/c . For the neutral hadrons, high efficiency 
of detection and good angular resolution are the most important criteria. 

The IFR is divided into three separate sections: a cylindrical barrel and 
forward and backward end-caps. Each section is composed of layers of iron 
absorber material interspersed with active detector layers. The iron absorbs 
energy from highly-penetrating muons and long-lived neutrals, as well as acting 
as the flux return for the solenoidal superconducting magnet. The number of 
layers of steel, and their thickness, were chosen using simulations to optimize the 
detection of muons and neutral hadrons. The steel absorber consists of 18 steel 
plates with thicknesses ranging from 2-10 cm. The active detector layers were 
originally Resistive Plate Chambers (RPCs) [24], that provide two-dimensional 
coordinates and precise timing information for passing particles. The barrel 
originally contained 19 R P C layers and the end-caps had 18 active layers. 

A n R P C consists of two bakelite plastic plates separated by a 2 mm gap 
containing a gas mixture of argon, freon and isobutane. The bakelite has a 
volume resistivity of approximately 10 1 1 — 10 1 2 i?cm. The inner surfaces of 
the gas-filled gap are coated with linseed oil in order to reduce high-voltage 
breakdown. A voltage of roughly 8 k V is applied between the two plates and 
the passage of a particle leads to the creation of a limited streamer between the 
plates. The plates are read capacitively with strips running along both the z 
axis and in the <j> direction. There are a total of approximately 50,000 channels. 

The efficiency of individual R P C modules can be determined using cosmic 
rays. Initially more than 75% of the modules had an efficiency greater than 90%, 
but at least 50 modules had already failed by the summer of 1999. Between 1999 
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and 2004 the overall efficiency of this detector system continued to degrade from 
98% to roughly 75%. The angular resolution of the system continued to meet 
the design criteria. 

Due to the continuing problems with R P C s , the BABAR collaboration de
cided in 2004 to undertake their replacement with another technology known 
as Limited Streamer Tubes (LSTs) [25]. These use extruded plastic tubes with 
wires inside, instead of the flat gaps. They have a long successful history, and 
are manufactured with a high degree of quality and reliability. The first two 
sextants of the I F R were disassembled and the LSTs were installed during the 
summer shutdown of 2004. The rest of the R P C modules wil l be replaced during 
the summer shutdown of 2006. 

The I F R is primarily used for particle identification of high energy muons 
and K^s. The efficiency of muon ID has continually decreased due over the past 
5 years due to the degradation of the R P C s , but this does not affect this analysis 
in any way. This analysis studies the vertex resolution of tracks identified as 
muons and is not concerned with the absolute number of muons, or the efficiency 
of their detection. 



Chapter 5 

Data Acquisition and Event 
Reconstruction 

5.1 Overview 

There are three distinct stages of reconstruction between the raw electronic 
pulses in the detector elements and the calculation of physics quantities of in
terest such as branching fractions and resonance masses. A schematic diagram 
of the BABAR Data-Acquisition system (Figure 5.1) depicts the main stages of 
the data reconstruction and storage process. Full details on the BABAR Data-
Acquisition system can be found in Reference [23]. There are two levels of 
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Figure 5.1: Schematic view of BABAR Data-Acquisition system. 

triggering in the BABAR experiment. They are commonly referred to as the 
Level-1 (LI) Trigger and the Level-3 (L3) Trigger. The Level-2 Trigger was not 
implemented. The Level-1 Trigger uses fast electronics along with a pipeline 
buffer in order to accept or reject events within 11 ^secs. The Level-3 Trigger is 
implemented in software and utilizes calculated physics values to decide whether 
to accept events for storage in the database, or reject them. 
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5.2 Hardware System 

The Front-End Electronics and Level 1 trigger system of the BABAR detector are 
shown schematically in Figure 5.2. In Step 1 of the process shown in Figure 5.2, 

Figure 5.2: Schematic view of BABAR Front-End Electronics and Level-1 Trigger 
system. 

events are initially just voltage pulses in various detector elements. In Step 
2, these voltage pulses are readout by attached Analog-to-Digital Converters 
(ADCs) which digitize the voltage, and in some cases, the waveform of the raw 
detector pulses. In Step 3, these digital signals are then passed into a circular 
buffer, which is being continually overwritten. This buffer is necessary to allow 
time for the L I trigger to consider a group of signals, and if desired, pass them 
along, before processing the next signals. In Step 4, the L I trigger fires within 
a window of 11-12 ps after an e + e~ crossing. If an event of interest is detected, 
all of the data channels are transferred from the detector to output buffers in 
Step 5. In Step 6, the detector signals make their way through the buffer, until 
reaching the top in Step 7. Once at the top of the buffer they are sent from the 
buffer to the ReadOut Modules (ROMs) in Step 8. The Readout Modules are 
responsible for sending information from the detector electronics to the BABAR 
computing system. 

The A D C and buffer are both part of the Front End Electronics (FEEs) that 
accompany each detector subsystem. Typically a single F E E card is designed 
to handle many detector elements in parallel, and R O M s are designed to gather 
the information from several F E E cards in parallel. The maximum rate for 
L I acceptance is approximately 2.5 kHz, and BABAR has normally operated at 
approximately 1 kHz, well within the available bandwidth. 

The standard L I trigger decision is based on three signal types: charged 
tracks in the D C H which have higher pr than a threshold value, clusters in the 
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E M C which have more than a minimum amount of energy, and muon tracks 
detected by the IFR. In order to calculate these quantities, a series of Field-
Programmable-Gate-Arrays (FPGAs) are used to perform basic reconstruction 
tasks like constructing track segments from D C H hits, adding energy in adjacent 
crystals of the E M C and determining where in the IFR muons have passed. The 
output of the F P G A s are then combined in hardware to generate the overall 
Level 1 Trigger signals. A n implementation of the same algorithms in software 
would not be fast enough to process events within the 12 ps window. 

If an L I accept is issued, then the data is passed on to the next stage, the 
Level-3 Trigger. 

5.3 L3 Trigger 
From the ROMs , the digital data representing signals in the detector elements 
pass through an Ethernet connection to a farm of 32 computers running the 
Level-3 Trigger software. The purpose of the Level-3 Trigger (L3) is to deter
mine whether or not the "event", made up of a collection of detector signals, 
represents an e+e~ collision, or a collection of random hits. The L3 trigger is 
essentially a refined and augmented software implementation of the L I trigger 
logic. 

For example, in the L3 D C H algorithm the track segments identified in the 
L I system are refined and refit, adding and subtracting adjacent hits and track 
segments in order to improve the quality of the fit. This allows a much better 
resolution on track parameters, and better rejection of tracks resulting from 
beam-gas or beam-wall interactions. The tracks are combined and averaged by 
the L3 software to determine an event time, *o-

The L3 E M C algorithm forms clusters of E M C hits just as the L I system did, 
but with added filters applied. The time at which the hit occurred is required 
to be within 1 ^s of t0, and the energy deposited in the crystal is required to 
be greater than or equal to 20 MeV. In addition to simply forming clusters, 
the centroid and lateral moment of each cluster is calculated and used later for 
particle identification. 

The event stream at this stage is dominated by Bhabha events. To economize 
on data storage costs, only a fraction of the Bhabha events are retained. Events 
are rejected based on one-prong and two-prong topologies, in which either only 
the positron, or both the positron and electron are seen in the detector. The 
rejection is scaled to produce a flat distribution in polar angle. Even after this 
rejection, approximately 30% of the stored events are either radiative Bhabhas 
passing the filter or Bhabhas stored for use in calibration. This analysis will 
focus on these "background" events and ignore events containing B mesons. 

If events pass the L3 trigger, they are stored on tape. The L3 trigger passes 
events at a rate of approximately 120 Hz, a rate chosen to balance the desire 
for completeness of the data sample and the burden of database storage and 
"offline" processing. 
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5.4 R e c o n s t r u c t i o n 

The reconstruction software can be thought of as a bridge between the data-
readout in the electronics and the end-user analysis system. One needs to re
construct enough physics information in order to make an informed decision 
about whether or not we have a signal event, or just background detector hits. 
Besides applying some of the calibration constants (particularly for the E M C ) , 
the reconstruction also repeats the preliminary track-finding, taking individual 
detector hits and associating them with each other into tracks and calorimeter 
clusters. The software used in reconstruction is built upon some of the same 
C + + classes as the end-user analysis software in order to improve reliability 
and consistency. Essentially, raw information from the detector is reconstructed 
into the object-oriented events that are used in the offline analysis software. 

For the purposes of the analysis in this thesis the primary task of the re
construction software is to construct three-dimensional trajectories for charged 
particles out of the individual hits in the S V T and D C H . This is done by first 
searching for a cluster of hits located in adjacent layers of the D C H , and con
structing a simple track segment from those hits. The charged particle tra
jectories can be described in terms of a 5-parameter helix and the measured 
value of the magnetic field in the detector. Figure 5.3 depicts the projection of 
a charged track into the x-y plane. The point-of-closest-approach ( P O C A ) is 
the point along the track helix closest to the z-axis. In the BABAR set of helix 
parameters, do is the perpendicular distance between between the P O C A and 
the z-axis, <po is the angle between the track momentum at the P O C A and the 
x-axis, Zo is the z-coordinate of the P O C A , p is the radius of curvature of the 
track, and the curvature ui = 1/p. The two parameters do and zo are referred 
to as the track impact parameters. 

Figure 5.4 depicts the projection of track momentum into the y-z plane. The 
momentum of the track is divided into two components, pr in the x-y plane, 
and pz along the z-axis. The track parameter tan(A) = pz/pr is the "dip" of 
the track away from the xy-plane. For the initial track fits, the hypothesized 
mass is equal to that of a pion, and if particle identification later shows that 
the track is an electron it is necessary to repeat the helix fit with the correct 
mass value. Note that determining the absolute origin of a helical track is not 
possible; we can only locate the point-of-closest-approach to the beam crossing 
and assume that primary particles have been produced at or near that point. 
Locating the origin of secondary particles is a more difficult problem, and wil l 
not be considered in this thesis. The group of hits associated initially with a 
track are used to perform a x2 fit in order to determine the best values for 
the track parameters. This is repeated iteratively, adding and removing hits in 
order to improve the fit results until convergence is achieved. 
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Figure 5.3: Projection of a charged track into x-y plane. Track parameters do, 
(f>o and p = are shown. 

5.5 Conversion from Helix Parameters 

There is one remaining task that is performed in the offline reconstruction code, 
the calculation of physics 4-vectors from the track helix parameters. In math
ematical terms, the conversion is from five helix parameters plus the magnetic 
field to three position (x,y,z) and three momentum (px, py, pz) values. The 
calculations are first performed at the point-of-closest-approach to the z-axis. 

The transverse momentum, px, is directly proportional to the radius of cur
vature of the helix, p, and the strength of the magnetic field, B: 

pT (GeV/c) = 0.2997 \B\ p (Tm) (5.1) 

with a factor of 0.2997 if the units are G e V / c for momentum, Tesla for the 
magnetic field and metres for the radius of curvature. From pr we can obtain 
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y 

Figure 5.4: Projection of track momentum into y-z plane. Track parameters pr, 
pz and A are shown. 

the x and y components of momentum: 

px =pT cos((p0) (5.2) 

Py =PTsin(0 o) (5.3) 

The z component of momentum can be calculated using the relation: 

pz =pT tan(A) (5.4) 

The (x,y,z) coordinates of any point along the track can be obtained from the 
values of do, 4>o, a n d the distance along the helix tp: 

x = -(do + —) sin(</>0) + — cos(V>) (5.5) 
CO id 

y = (d0 + —) cos(0o) + - sin(r/>) (5.6) 
LO LO 

z = ZQ + — tan(A)V; (5.7) 
cu 

Once these laboratory quantities have been calculated, and the mass is known, 
a relativistic 4-vector can be constructed for each track. Each event also has a 
beam-beam C M 4-vector associated with it. These are calculated as part of the 
offline calibration process. The beam-beam C M 4-vector can be used to rotate 
and boost the track 4-vectors into the C M frame. 

It is worth noting that the origin of the detector and the beamspot are not 
perfectly aligned. In fact the beam-crossings occur in a cigar shaped region of 
approximately 5 pm width in the x-direction, 100 pm width in the y-direction, 
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and a length of about 10 mm in the z-direction. This interaction region is 
located roughly at the detector coordinates of (x,y) = (-0.25, +2.8) where x and 
y are in mm. In addition, the z-axis of the detector is not perfectly aligned with 
the beam axis. It is rotated in the 9 and 0 directions by 20 and 10 milliradians, 
respectively. Tracks are reconstructed with respect to the detector origin and 
need to be rotated and shifted appropriately when we are calculating distances 
and angles with respect to the beam crossing. 
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6.1 Overview 

There are several fundamental requirements that our signal events must satisfy. 
The first is that they should contain two charged tracks emanating from the 
same point in space. The second is that they should contain tracks resulting 
from an interaction at the beamspot, and with no lifetime, meaning that the 
observed tracks were created at the point where the incoming beam particles 
collided. 

We need to exclude continuum uds events, charm events, B mesons and r 
pairs because all of these have significant lifetimes. By imposing cuts on the 
multiplicity and pr balance of the events we can remove nearly all of these 
sources of background, since they tend to have more final state particles than 
our events of interest. 

We also need to exclude events containing cosmic rays, beam-wall and beam-
gas interactions. These events have the right number of tracks, but don't origi
nate from the beam-crossing location in the center of the detector. These events 
can be removed by imposing cuts on the event geometry to distinguish them 
from our signal events. 

6.2 NTuple Creation 

To begin with, we load all recorded events which passed any of the triggers in the 
Data Acquisition System. These events contain tracks from e + e~ scatters, B 
and D decays, r pairs, continuum uds production, cosmic rays, beam-gas, and 
beam-wall interactions. I used database collections representing approximately 
19.2n6 _ 1 of data acquired during the year 2003. 

There are several different lists of charged tracks, photons and neutrals which 
are constructed from the raw data and could be used to fill an ntuple. Each list 
has a different set of requirements which a candidate must pass in order to be 
included. For this analysis I chose to use the following lists: 

• Charged Tracks = "GoodTracksLoose" 

• Photons = "GoodPhotonDefault" 

• Neutrals = "GoodNeutralLooseAcc" 
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The charged tracks are selected from all candidate charged tracks, based 
on hits in the S V T and D C H . The photons and neutral hadrons are selected 
from single-peaked clusters in the E M C which don't correspond to any of the 
charged track candidates. E M C clusters which are multiply-peaked are used in 
other processes searching for Ks's and 7To's, and are ignored in my analysis. The 
criteria used to fill each of the lists used in this analysis are given in Table 6.1. 

GoodTracksLoose GoodPhotonDefault GoodNeutralLooseAcc 
Track p r > 0.1 GeV Raw E > 0.1 GeV Raw E > 0.03 GeV 
Track p < 10 GeV n Crystals > 0 n Crystals > 0 
nHits D C H > 12 Lat Moment < 0.8 Lat Moment < 1.1 
D O C A in xy < 1.5cm 0.41 < 6 < 2.409 
D O C A along z < 10cm 

Table 6.1: Criteria of the track, photon and neutral lists used in this analysis. 

The first cuts we impose in our selection process are on event multiplicity: 

• ^Tracks = 2 

• 0 < Nphotons < 1 

• 0 < N N e u t r a i s < 1 

These cuts are implemented in the "BABAR Micro" code, before the generation 
of an ntuple file. This results in a considerable saving of computing resources. 
After these cuts were applied to the data sample, the resultant ntuple contained 
slightly more than 10.6 million events. Each additional cut improved the purity 
of the sample, and reduced it in size. The reduction in the number of events 
caused by each of the cuts I applied is detailed in Section 6.7 of this chapter. 
The resulting ntuple contains information on all charged tracks, photons and 
neutrals in each event satisfying the above criteria. 

In Figure 6.1, a plot is shown of the correlation between the transverse 
momenta (pr) of the two tracks in a small subset of the data. We can see a 
diagonal band representing events in which the transverse momentum of the two 
tracks balances quite exactly. We also see events which have more total energy 
than the beam-beam C M energy, and must be removed. 

6.3 Cosmic Rays 

The events in Figure 6.1, with two tracks both having px above 5.5 M e V are 
physically impossible for the initial beams to produce. They must have an origin 
outside of the detector, and we identify them as cosmic rays. The events with 
balanced pr less than 5.5 GeV are composed of both cosmic rays A N D our 
desired signal events, so we wil l need to use a measured quantity other than pr 
to discriminate between them. We will try to avoid using the track parameters 
which ultimately determine our quantities of interest ZQ and do. 
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Figure 6.1: Track px for all events with exactly two charged tracks. 

Cosmic rays traverse the detector more or less vertically, and are recon
structed as two separate tracks, one for each hemisphere. These two tracks 
have nearly the same values of do and ZQ, and come from locations uniformly 
distributed throughout the detector. Since we expect cosmic rays to traverse 
the detector more or less vertically, we can use the angle between the track mo
mentum and the x-y plane, the dip angle, to identify them. This angle is given 
by the helix parameter tan(A), as shown in Figure 5.4. This angle wil l be equal 
and opposite in sign for the two tracks created by a cosmic ray traversing the de
tector. Figure 6.2 shows a plot of of the quantity ^ t a n ( A ) for a small subset of 
events. The dashed lines in the figure represent a cut of | 2^tan(A)| < 0.1. This 
cut will remove a relatively small fraction of signal events who happen to have 
balanced values of tan(A). Figure 6.3 shows a plot of the transverse momenta of 
the two tracks with the requirement that ^ t a n ( A ) < 0.1 and Figure 6.4 shows 
the same quantities with a cut of 0.01. As we expect, the tracks labelled as 
cosmic rays do indeed have balanced pr, confirming our identification. In the 
future, I wil l refer to these two cuts as the Cosmic Ray Loose and Tight cuts. 

Finally Figure 6.5 shows track pr for those events left after applying the 
Loose cosmic ray cut. This is the cut chosen for the analysis, and after applying 
it to the initial data sample of 10.6 million events, I was left with 9.85 million 
events. We can clearly see that nearly all the events with unphysically high 
transverse momenta (pr > 5.5 GeV) have been removed simply by identifying 
them as cosmic ray events based on their dip-angle parameters. The few (< 10) 
remaining events with unphysically high px wil l be removed by further cuts. 
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Figure 6.2: The quantity ^ t a n ( A ) for a small subset of events in the ntuple. 
The dashed lines indicate a cut of | £ ] t an (A) | < 0.1 
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Figure 6.3: Track px for events with exactly two charged tracks and passing the 
Cosmic Ray Loose selection. 
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Figure 6.5: Track px for events left with exactly two charged tracks after ap
plying the Cosmic Ray Loose cut. 
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Figure 6.6: Track PT for events passing requirements for exactly 2 tracks, Cos
mic Ray Loose cut, and detector acceptance cuts. 

6.4 Detector Acceptance 

In the next step, I apply a cut to my data sample to remove events which have 
passed through the very edges of the acceptance of the detector and may not 
have information associated with them from all of the subsystems. These cuts 
also remove some events which were very poorly reconstructed. By ensuring 
that the tracks actually pass through the active regions of the S V T and D C H , 
we can eliminate these events. The acceptance of the BABAR detector in <f> is 
essentially complete, while the dip angle acceptance is restricted by the openings 
for the beampipe to be: —1.0 < tan(A) < 2.2. This cut wil l be referred to as the 
dip-angle cut. Figure 6.6 shows the effect this cut has on the px spectra of a 
small sample of events. As we can see, many of the events with unbalanced pr 
are removed, especially for values of px < 2 G e V / c . Relatively few px balanced 
events are removed. 

6.5 Beam-Gas and Beam-Wall Tracks 

Electrons or positrons which strike an atom of the residual gas in the vacuum can 
be measured in the detector. These beam-gas events wil l be px-balanced, but 
wil l not originate from the beam crossing region. They should have a relatively 
uniform distribution throughout the volume of the beampipe. We impose a 
rather loose cut on the reconstructed value of ZQ for each of the two tracks, 
requiring them to be within -3.0 cm < ZQ < 3.0 cm. This cut should include 
95% of all signal events, since the length of the beam bunches is roughly 1.0 cm. 
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The next class of events to be removed resulted from an electron or positron 
scattering off the material in the walls of the beam-pipe. These beam-wall events 
must be removed because they didn't originate from the beam crossing. Beam-
wall events are clustered at two hot-spots located on the sides of the beam-pipe. 
By plotting the x-y coordinates of the point-of-closest-approach ( P O C A ) of each 
track to the beamspot, (see Figure 6.7) we can clearly observe a cluster of tracks 
at the origin corresponding to the particles created at the beamspot. We also 
see two sinusoidal arcs in the plot which were created by the particles leaving 
the hot-spots on the walls. We can calculate the distance r between the track 
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Figure 6.7: Profile of track vertices in x-y plane, the sinusoidal curves are cre
ated by events originating from the beam-pipe walls. 

origin and the hot spots on the walls: 

r = | d 0 ±2.7sin(0o) ->ipcos(0o)| (6.1) 

where Yip is the nominal y-coordinate of the interaction point, as determined 
by the BABAR offline analysis system (See Section 5.4) and the value of 2.7 cm 
is the measured distance along the x-axis from the beamspot to the hotspots 
on the walls. Figure 6.8 shows the distribution of r for one of the hotspots, 
corresponding to the positive case. We can see a large peak at r=2.7 cm, 
corresponding to the beamspot, and a small peak at r=0, corresponding to the 
hotspot on the wall. A cut requiring r > 0.3 cm, as indicated by the dashed 
line, wil l clearly remove most of the tracks coming from the hotspot. The same 
distance is calculated individually for each of the two tracks in the event, and for 
both hotspots, corresponding to the positive and negative signs in Equation 6.1. 



Chapter 6. Event Selection 44 

r (cm) 

Figure 6.8: Distribution of the distance r between the track origin and one of 
the hotspots on the wall of the beampipe. A cut at r > 0.3 cm is 
indicated by the dashed line. 

Figure 6.9 shows the x-y locations of the P O C A s for the tracks, after removing 
the beam-wall events using the cut r > 0.3 cm: The diffuse background is 
primarily due to a combination of poorly-reconstructed tracks, i.e. tracks which 
have been Coulomb scattered through a large angle. Since the objective is to 
study in detail these distribution tails, we must carefully select any further cuts 
so that we don't remove any signal. 

6.6 Transverse M o m e n t u m B a l a n c e 

In this section several different cuts on px balance are explored, all using lab-
frame quantities. The values of px are slightly different in the C M frame because 
of the relative rotation between the beam axis and detector axis, but the effect 
should be less than the width of the cuts used here. 

Pairs of tracks resulting from the scattering of an electron or a positron by the 
residual gas in the beampipe will appear to come from the beamspot location in 
the x-y plane, but wil l have a flat distribution along the z-axis. These two tracks 
wil l not have balanced px, since one energetic particle is scattering off an atomic 
electron. They wil l also not be back-to-back in the x-y plane. By requiring that 
the two charged tracks are back-to-back in the x-y plane of the detector, we can 
eliminate many of the beam-gas events from our sample. Figure 6.10 shows a 
plot of the angle between the two tracks in the x-y plane, \A<f> — n\. A l l events 
in which the tracks are back-to-back in the x-y plane should be located near 0. 
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Figure 6.9: Profile of track vertices in x-y plane, after removing events originat
ing from the beam-pipe walls. 

The dashed line indicates a cut of \A<fi — ir\ < 0.2 radians. Figure 6.11 shows 
the transverse momenta of the tracks after requiring that \A(f> — TT\ < 0.2 for 
each event. This cut doesn't remove many events in the region where they are 
px-balanced, but it does significantly lower the number of events in which one 
of the two tracks has very low pr and the other is substantial. 

We now make a final requirement based on transverse momentum balance. 
Based upon inspection of the plot in Figure 6.11, the first choice is a relatively 
loose cut of |Apr\ < 100 MeV. This significantly cuts into the signal region, but 
likely wil l still include events with an unobserved photon in the final state. This 
cut removed approximately 40% of the events in the sample. A second, tighter 
cut was tested on the same sample of data, requiring \Apr\ < 10 M e V . This cut 
is stringent enough to eliminate virtually all events with unobserved photons in 
the final state, but by reducing the number of events in the sample by about 
85%, it would severely limit the statistics available for analysis, particularly in 
the regime of 2 < pr < 4 GeV, between the peaks due to the Bhabha and Two-
Photon processes. For the rest of the analysis, the looser cut on pr balance is 
used. 

Two-Photon Events are pr balanced and have low momenta for the two 
tracks, while the Bhabhas and muon pairs are also pr balanced but have higher 
momenta. A theoretical spectrum for the momentum of muons was shown 
in Figure 3.5. The lab momentum spectrum for all data tracks is shown in 
Figure 6.12. The Two-Photon peak is clearly visible just below 1 GeV in the 
data. Bhabhas and mu-pairs created through the annihilation diagram have 
momenta equal to one half the initial C M energy of the beams. Initial and 
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Figure 6.10: Angle between the two tracks in the x-y plane | A<f>—ir\. The dashed 
line represents a cut at 0.2 radians. 

final-state radiation produces a low-energy tail in the spectrum of electron and 
muon energies, as shown in the theoretical plot Figure 3.2. These events are 
clearly seen in the region of 3-5 GeV in the data plotted in Figure 6.12. 

For the purposes of this analysis, it is not necessary to separate the two 
contributions in the data; instead we will use samples of Monte-Carlo events 
produced by both processes. This wil l allow us to compare data to simulation 
over the full momentum range from 50 M e V to 5.5 GeV. 
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Figure 6.11: Track px, after requiring they be back-to-back in the x-y plane. 

6.7 Cut Selection Efficiency 

A summary of the selection performance of the applied cuts is listed in Table 6.2. 
The relative efficiency of each cut is obtained by dividing the number of events 

Cut Description Nevents Remaining Relative Efficiency e 

AllEvents 1.0e9 
Only2Trks 1.05e7 0.01 
CosmicLoose 9.85e6 0.94 
Acceptance 6.48e6 0.66 
Hot Spots 5.87e6 0.90 
back2back 5.18e6 0.88 
pt lab loose 3.00e6 0.58 
pt lab tight 4.50e5 0.15 

Table 6.2: Event selection statistics of the cuts used in this analysis. 

passing that cut, by the number of events passing the previous series of cuts. 
We can see that there are two cuts which remove the most events, the initial 
requirement on the numbers of different particles in the event, and the tightest 
requirement on transverse momentum balance. By placing the requirements on 
particle counts into the first step of my analysis procedure (the creation of an 
ntuple file), the use of local computing resources is much more efficient. The 
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Figure 6.12: Track momenta for all events remaining at loose px balance cut. 

final requirement on transverse momentum balance is too restrictive at 10 MeV, 
and so the requirement was set at 100 MeV, to keep a good level of statistics. 

6.8 The BABAR Particle ID System 

In the BABAR experiment, particle identification is a process which is performed 
in high-level physics analysis code, once tracks and energy clusters have already 
been found. These procedures are applied to every track and cluster in an event 
to give them membership in the various lists of electrons, muons, pions, kaons, 
protons and photons. For example, a charged track might be found which passes 
the criteria for membership in both the "loose" and "tight" electron categories, 
but not for the "very tight" list. This track would be listed as a member of both 
the "tight" and "loose" electron samples. 

In general, the identification schemes use either a series of cuts on di
rectly observed quantities such as dE/dx, the lateral moment of an electromag
netic shower in the E M C , the number of layers of the I F R that the candidate 
traversed, the number of associated photons detected in the D I R C , and the 
Cerenkov angle measured in the DIRC, or the identification schemes can use a 
neural network, Fisher discriminant or log-likelihood ratio involving combina
tions of the above variables. There are also some schemes which combine cuts 
on variables and the use of neural networks or discriminants. 

For my analysis, I have used the standard BABAR electron identification 
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system known as the PidElectronMicroSelector. There are several variations 
on this selector, eMicroVeryLoose, eMicroLoose, eMicroTight and eMicroVery-
Tight. The cuts used in each of these selectors are listed in Table 6.3 

Selector dE/dx E / p L A T Efficiency MisID 

eMicroVeryLoose 500-1000 0.5-5.0 -10-10 > 98% < 20% 
eMicroLoose 500-1000 0.65-5.0 -10-10 > 97% < 10% 
eMicroTight 500-1000 0.75-1.3 0-0.6 94-97% < 7% 

eMicro VeryTight 540-860 0.89-1.2 0-0.6 75-95% <2% 

Table 6.3: Cut-based selectors available in the PidElectronMicroSelector. 

The quantities used for the PID selection of electrons are: 

• dE/dx - the average energy loss per cm in the drift chamber 

• E / p - the energy measured in the calorimeter divided by track momentum 

• L A T - the lateral moment of the associated cluster in the calorimeter 

• Efficiency - percentage of electrons in control samples passing the selector 

• MisID - percentage of hadrons in control samples passing the selector 

In the next chapter of this analysis I use the "tight" electron selector. It has 
very good discrimination against pion contamination and is highly efficient for 
electrons with moderate momentum. The efficiency drops and MisID fraction 
rises for very low momentum electrons. In an analysis to determine absolute 
efficiency, the variations as a function of polar angle and momentum need to 
be taken into account on a track-by-track basis, but no such corrections are 
required for the present work. 

The muon selectors are applied in an identical way in software, though the 
criteria used for the cuts are somewhat different. In particular, information from 
the I F R was not used for electrons, but is crucial for good muon identification. 
The cuts used in each of the muon selectors are given in Table 6.4. 

Selector ECAL A X 2 Track Efficiency MisID 
muMicroVeryLoose < 0.5 > 2 N A 90% 20% 

muMicroLoose < 0.5 > 2 < 7 85% 10% 
muMicroTight 0.05-0.4 > 2.2 < 5 75% 3% 

muMicro VeryTight 0.05-0.4 > 2.2 < 5 70% 2% 

Table 6.4: Cut-based selectors available in the PidMuonMicroSelector. 

The quantities used for the PID selection of muons are: 

• ECAL - the total calibrated energy deposited in the calorimeter 

• A - the number of interaction lengths traversed by the track 
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• x 2 Track - The quality of the helix fit to the hits in the I F R 

• Efficiency - percentage of muons in control samples passing the selector 

• MisID - percentage of hadrons in control samples passing the selector 

In the next chapter of this analysis I use the loose muon selector, which 
has fairly good discrimination against pion and kaon contamination and is very 
efficient for muons with sufficient momentum. The efficiency drops and MisID 
fraction rises for muons with momentum less than about 1 GeV. As with the 
electron ID, absolute efficiency values are not important for the present work. 
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Chapter 7 

Analysis 

We have now selected the data sample necessary for analysing the track impact 
parameter resolutions and what remains is to calculate the resolution for each 
event in this sample. Once the resolution has been calculated it can be fit with 
an appropriate lineshape. Events can also be binned by relevant quantities like 
lab momenta and angles, to create a parametrization that is a function of track 
or event properties. 

The resolution of the track impact parameters is made up of three contribu
tions: the geometric resolution of the detector, the Gaussian core of the Multiple 
Coulomb Scattering distribution, and the tail of the Multiple Coulomb Scatter
ing distribution. The geometric resolution depends only on detector properties 
and on the angle of the track. The M C S contributions to the resolution depends 
on both track momentum and polar angle. The errors assigned to each track by 
the BABAR tracking software include the geometric and M C S core contributions, 
but don't take into account the tail of the M C S distribution. 

The calculated values for the difference in the track impact parameters wil l 
be divided by the errors assigned by the BABAR tracking software. If the software 
calculation of the tracking errors is correct, then we expect the distribution of 
differences to have a Gaussian core and tails created by M C S . The core width 
of the resolution distribution should be about la as long as the tracking errors 
are accurate. If the individually assigned tracking errors are larger than they 
should be, then the width of the core of the resolution distribution wil l be less 
than la, and conversely the core wil l be wider than la if the assigned tracking 
errors are too small. In this way, our data can provide a good crosscheck of the 
tracking system error calculations. 

7.1 Variable for d 0 Studies 
When considering the resolution in the x-y plane, the track impact parameter 
to use is do- While we know that the tracks originate within the beamspot, 
the horizontal size of the beam is larger than the resolution for high PT tracks. 
We obtain a more precise measure of the track resolution by comparing the do 
values of the two tracks to each other, rather than comparing each separately 
to the beamspot location. Since do is a signed quantity, two tracks which are 
back-to-back in the x-y plane should have Sd0=0- We take the sum of d 0 values 
for the two tracks in the event as our variable of interest. 

Our two tracks are not exactly back to back in the <fi angle due to the 
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beams being rotated relative to the z axis of the detector. This makes Edo 
depend somewhat on the beam position relative to the detector z axis. The 
default method of determining the track parameters for each charged track uses 
the detector origin as a reference point. By subtracting the location of the 
beamspot from the track-impact parameter values we can obtain measurements 
with respect to the beamspot, rather than the detector origin. 

We directly calculate do with respect to the beamspot in the following equa
tion: 

do = (XPOCA - xip) sin(</>0) - {ypocA - Vip) cos(0o) (7-1) 

where ( X P O C A , V P O C A ) is the point-of-closest approach of the track to the 
beamspot, in the x-y plane, and {xiP,yiP) is the nominal location of the in
teraction point, or beamspot in the x-y plane for each event. 

The error in the quantity Ed0, which we shall denote by a (Edo) is just the 
quadature sum of the do errors for each individual track. The track-impact 
parameter resolution in the x-y plane is now given by the expression: a^la\ • 
By dividing the separation by the error, we can determine whether or not the 
errors assigned by the BABAR tracking software are accurate and attempt to 
identify any tails of the distribution. 

7.2 Variable for ZQ Studies 

If the two tracks were exactly back to back in both 9 and <p, then they would 
have the same ZQ parameter, independently of the detector axes or production 
point. Two-photon events are typically not back to back in 9. In the BABAR 
experiment, even Bhabha and /x-pair events are not back to back in 9 due to the 
beam energy asymmetry. So rather than comparing the raw zo track parameters, 
we need to find the apparent production point of each track in the beamspot 
and compare those z coordinate values. 

First, I perform a \ 2 n t separately for each of the two tracks to locate 
its production point within the beampsot. The code for this fit procedure is 
contained in the default BABAR vertexing software known as GeoKin. I wil l 
denote this production point as afj, and it's associated covariance matrix by o~\. 

Second, in order to determine the best possible value of the production point, 
x'i, I take weighted averages of the two individual production points, using only 
the x-y information and weights W, given by the inverse of the covariance 
matrices, as in the following equation: 

4 = a'x ( W i x l + W a

t r u n c a t e d x j ) (7.2) 

4 = „'2 (waxa + W l

t r u n c a t e d x - i ) (7.3) 

( ^^xx ^Txy 0 \ 
Wyx Wyy 0 so that the x-y coordinates 

0 0 0 / 
of the two points are averaged and the z coordinate is recalculated at the position 
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of the x-y average. 
Applying this transformation yields the best possible estimate of the true 

production points, while still retaining the freedom for drastically different lo
cations along the z axis. Allowing this freedom along the z axis is crucial if 
we wish to use the results of this study to understand the resolution of the At 
distributions in the neutral B mixing analysis. 

The covariance matrices for the improved vertex coordinates x[ are now 
given by the following equations: 

o>x = [Wi + W 2

r u n c a t e d ] - 1 (7.4) 

4 = [Wj + w t

1

r u n c a t e d ] - 1 (7.5) 

Finally, we use the elements of the improved covariance matrices o\ to obtain 
the errors in the individual tracking parameters d'0 and z'0 through the usual 
expressions: 

= (7-6) 

where <Tj'2 is the [i,i] element of the covariance matrix cr-. Since the two tracks 
have independent sources of error, we add their errors in quadrature. 

In a similar manner to the expression used for do, we construct the quantity 
g (^ z ° 0 ) where the difference is momentum-ordered, i.e. Azo = zo(high p) - z 0(low 
p). This is done to eliminate the biases associated with the order in which tracks 
are recorded in an event. The software algorithm tends to locate tracks in a 
clockwise fashion, scanning through the r — (f> plane, and systematically identifies 
smaller track impact parameters before larger ones. The momentum-ordered 
quantity doesn't suffer from this systematic effect. 

The error in the denominator is given by the quadrature sum of the two 
errors calculated with Equation 7.6. Again, by dividing the difference by the 
assigned error value, we expect to obtain a central Gaussian distribution of width 
approximately 1, and wide tails consistent with Multiple Coulomb Scattering. 

7.3 Variable for Momentum and Angular 
Dependence 

The track impact parameter resolution can be broken down into two compo
nents. The first is the geometric resolution of the detector which is independant 
of track momentum. The other component of track impact parameter resolu
tion is the Multiple Coulomb Scattering which does depend on track momentum. 
Both of these contributions also depend on the track polar angle, 9. By con
structing a new variable which captures the momentum and angular dependence 
of M C S , we can use it to quantify the amount of scattering and compare the 
resolution distributions with the Toy M C predictions. 

Looking back to Equation 2.3, the core width of the M C S distribution, 9Q, 

is proportional to ^ X ^ X ° , where X is the thickness of the material traversed, 
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Xo is the radiation length of the material, and p is the momentum. The thick
ness of material traversed, X, is proportional to l / s in# , so the core width 9o 
scales as l / ( p s i n 1 / / 2 8). The lever-arm, or distance from the scattering point 
to the beamspot is rj sin#, so the do resolution due to M C S is proportional to 
l / ( p s i n 3 / 2 8). We can also use the relation px = psm9 to state that the do 
resolution is proportional to 1/(PT s i n 1 / 2 8). The same scattering angle changes 
the measurement of ZQ by an additional factor of 1/ sin (9, so the ZQ resolution 
due to M C S varies as l/(psin 5 / 26>) or l/(pTsin3/28). 

We can now write down the two relations governing the core width of the 
M C S contribution to the tracking resolutions: 

<*(Zdo) « . = - 7 7 ^ 7 7 7 ( 7 J ) 

(7.8) 

where cr(Sdo) is the core width of the Sdo resolution and <j(£s.Zo) is the core 
width of the Azo resolution. If we calculate the quantity on the right-hand 
side for each track, we can estimate the importance of M C S to the resolution 
distribution. 

But since the track impact parameter resolutions are calculated using two 
tracks, each with a different value of 9, we must modify the above expressions 
to use the 9 values from each of the two tracks. We define the following two 
quantities: 

1 1 

psin 3 / 2(0) ~ p T s i n 1 / 2 ( 0 ) 
1 1 

psin 5 / 2(0) ~~ p T s in 3 / 2 (0 ) 

2 sin(9isin6»2 , . 
Qd = PT1PT2 • O , • O (7-9 

sin 0i + sin 02 

rfl s in 3 6>! sin 3 92 . . 
Qz = PT1PT2 . 3 . 3 (7.10) 

sin 9\ + sin 92 

where the subscripts 1 and 2 refer to each of the two tracks. We can use l / Q 2 

as a measure of the importance of the M C S contributions to the resolution 
in each event. Small values of l / Q 2 represent events which are dominated by 
the geometric resolution and large values of l / Q 2 represent events which are 
dominated by Multiple Coulomb Scattering. 

Figure 7.1 shows the excellent results when fitting the functional form to 
the Sdo resolution data in the bin of events with 0.0 < l / Q 2 < 0.1. This 
range of l / Q 2 corresponds to events with large values of pr and sin#. This is 
the regime in which Multiple Coulomb Scattering is least important compared 
to the geometrical resolution. Higher values of l / Q 2 correspond to the regime 
in which M C S dominates the resolution. Figure 7.2 shows the results when 
fitting the functional form to the Sdo resolution data in the bin of events with 
10 < l / Q 2 < 50. The agreement is equally good. Figure 7.3 shows that the 
same functional form works equally well on the other track impact parameter, 
A^o, for data events in the low l / Q 2 bin; i.e. /i-pairs with 0 < l / Q 2 < 0.2. 
Figure 7.4 shows the same good agreement for AZQ /i-pair data in the high l / Q 2 
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dO Resolution 

Figure 7.1: Plot of Sd0 resolution for muon pairs in data, with 0.0 < l/Q2 < 
0.1. The fit (solid line) is to the function given by Equation 2.4. 
The dashed line depicts the tail function. 

dO Resolution 

Figure 7.2: Plot of Sd0 resolution for muon pairs in data, with 10 < l/Q2 < 50. 
The fit (solid line) is to the function given by Equation 2.4. The 
dashed line depicts the tail function. 
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zO Resolution 

Figure 7.3: Plot of Azo resolution for muon pairs in data, with 0 < 1/Q2 < 0.2. 
The fit (solid line) is to the function given by Equation 2.4. The 
dashed line depicts the tail function. 

zO Resolution 

Figure 7.4: Plot of Azo resolution for muon pairs in data, with 10 < 1/Q2 < 50. 
The fit (solid line) is to the function given by Equation 2.4. The 
dashed line depicts the tail function. 



Chapter 7. Analysis 57 

dO Resolution 

Figure 7.5: Plot of Ed0 resolution for electron pairs in data, with 0.0 < 1/Q2 < 
0.1. The fit (solid line) is to the function given by Equation 2.4. 
The dashed line depicts the tail function. 

bin, 10 < 1/Q2 < 50. We see that the distributions have a very similar shape 
for both track impact parameters. As one would expect, we also observe that 
the track impact parameter resolutions in data look nearly identical for both 
the muons and electrons. 

Figure 7.5 is a plot of the fit to e-pair Edo data in the low 1/Q2 (0.0 < 
1/Q2 < 0.2) bin. Figure 7.6 is a plot of the fit to e-pair Edo data in the high 
1/Q2 (10 < 1/Q2 < 50) bin. Figure 7.7 is a plot of the fit to e-pair Az0 data 
in the low 1/Q2 (0.0 < 1/Q2 < 0.2) bin. Figure 7.8 is a plot of the fit to e-pair 
A 2 0 data in the high 1/Q2 (10 < 1/Q2 < 50) bin. The fits for other values of 
1/Q2, which are not shown here, also gave good quality results for both electron 
and muon pair data events. By repeating the fitting procedure for several bins 
of 1/Q2, we can tabulate the parameterization as a function of 1/Q2. 

We perform the same fitting procedure on the G E A N T - 4 based Monte-Carlo 
events created with the BABAR simulation software as a way to check whether 
the simulation has the correct treatment of track impact parameter resolution 
errors and of Multiple Coulomb Scattering. Figure 7.9 is a plot of Edo resolution 
for muon Monte-Carlo events, and Figure 7.10 is a plot of AZQ resolution for the 
same sample of M C events. They both look reasonable. We can fit them with the 
same functional form used for the data, and compare the results. Figure 7.11 is 
a plot of Edo resolution in electron-pair Monte-Carlo events: it is qualitatively 
different from the other plots, and we conclude there is a problem with the 
simulation of this category of events. The BABAR simulation software is a large, 
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dO R e s o l u t i o n 

Figure 7.6: Plot of Sd0 resolution for electron pairs in data, with 10 < 1/Q 2 < 
50. The fit (solid line) is to the function given by Equation 2.4. The 
dashed line depicts the tail function. 

zO R e s o l u t i o n 

Figure 7.7: Plot of Az0 resolution for electron pairs in data, with 0 < 1/Q 2 < 
0.2. The fit (solid line) is to the function given by Equation 2.4. 
The dashed line depicts the tail function. 
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zO Resolution 

Figure 7.8: Plot of Az0 resolution for electron pairs in data, with 10 < 1/Q2 < 
50. The fit (solid line) is to the function given by Equation 2.4. The 
dashed line depicts the tail function. 

d0 R e s o l u t i o n 

Figure 7.9: Plot of Sd0 resolution for muon pairs in M C simulation, with 
0.25 < 1/Q2 < 0.5. The fit (solid line) is to the function given 
by Equation 2.4. The dashed line depicts the tail function. 
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r- F 

zO Resolution 

Figure 7.10: Plot of Azo resolution for muon pairs in M C simulation, with 
0.25 < l/Q2 < 0.5. The fit (solid line) is to the function given 
by Equation 2.4. The dashed line depicts the tail function. 

dO Resolution 

Figure 7.11: Plot of Edo resolution for electron pairs in M C simulation, with 
0.25 < l/Q2 < 0.5. The fit (solid line) is to the function given by 
Equation 2.4. The dashed line depicts the tail function. 
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zO Resolution 

Figure 7.12: Plot of Azo resolution for electron pairs in M C simulation, with 
0.25 < 1/Q2 < 0.5. The fit (solid line) is to the function given by 
Equation 2.4. The dashed line depicts the tail function. 

centrally administered project, so it was not possible for this problem to be 
corrected during the timescale of this analysis. Figure 7.12 is a plot of the AZQ 
resolution for the same electron M C events. It looks reasonable, but since there 
is a problem with the Sdo resolution, we choose not to use the Azo resolution 
for M C simulated electrons any further. 

7.4 Comparison of Data and G E A N T M C in 
Transformed Variable 

To examine the agreement in the tails of the distributions more closely is difficult 
because the number of events in each bin decreases so rapidly as we move away 

from zero. By examining the inverse-square of the resolution, u = 

o r u = ( Azo j ' w e c a n m o r e closely at the agreement between data 
and Monte-Carlo simulations in the tails of the distributions. This variable 
transformation has the useful property of mapping the horizontal range from 
ICT out to oo into the range between 1 and 0. It also rescales the height of the 
distribution from spanning 4 or more orders of magnitude onto a linear scale. 
Figure 7.13 is a plot of u for /x-pair 27do resolution in Data (open histogram) 
and Monte-Carlo (shaded histogram) in the the bin with 0.0 < 1/Q2 < 0.2. The 
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Figure 7.13: Plot of u for muon-pair Sdo resolution in Data (open histogram) 
and Monte-Carlo (shaded histogram) in the bin with 0.0 < l/Q2 < 
0.2. The solid curve is a transformed fit to ^i-pair data. The dashed 
curve is a transformed fit to /u-pair Monte-Carlo. The dotted curve 
is the transformed tail function of the /i-pair data, and the dot-dash 
curve is the transformed tail function of the /u-pair Monte-Carlo. 

solid curve is a transformed fit to p-p&ir data. The dashed curve is a transformed 
fit to ^j-pair Monte-Carlo. The dotted curve is the transformed tail function of 
the ^i-pair data, and the dot-dash curve is the transformed tail function of the 
/u-pair Monte-Carlo. We can clearly see kinks in the fit function where the tail 
function changes slope between the flat inner core and the inner power-law tail, 
as well as between the inner and outer power-law tails. We also observe that the 
fit function appears to be slightly higher than the data at the inner breakpoint, 
and slightly lower than the data on either side of this. From this, we conclude 
that for this sample of events, the parametrization used to fit the data works 
quite well, but not perfectly. 

The same plot was generated for both track impact parameters, Sdo and 
Azo, and for both /x-pairs and e-pairs, over the entire observed range of l/Q2 • 
The plots are presented in Appendices A ( A z 0 ) and B (Sdo). For ^-pairs 
there appear to be consistently fewer events in the tails of the Monte-Carlo 
distributions beyond 2a for both track impact parameters. We expect this 
deficit to result in lowered values for the tail-fraction parameter / , when fitting 
to the Monte Carlo events, compared to the data events. 
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The e-pair Monte-Carlo is clearly flawed in the calculation of the do reso
lution, and we are therefore suspicious of the zo resolution for those events as 
well, even though it appears more reasonable than do. By simply inspecting 
these plots we determine that the parametrization used to fit the data works 
well for the ZQ track impact parameter, out to roughly 10a or u=0.01. 

7.5 Comparison of Data and M C Fitted 
Parameters 

We now present comparisons between experimental data and BABAR Monte-
Carlo simulation, of the fitted parameters for muon samples, in both Sdo and 
Azo resolution. The comparison is made between our data which contains Bhab
has, /u-pairs and Two-Photon events, and fully-reconstructed Monte-Carlo sim
ulations of Bhabha and /Li-pair events. At the time this analysis was performed, 
only a tiny sample of several thousand Two-Photon events had been gener
ated and reconstructed for BABAR analysis. It was decided to use the tails of 
the Bhabha and /x-pair events in the low px regime to perform the analysis. 
This means that the fits to M C in the range of large 1/Q2 have quite large 
errors. The analysis could be repeated, at a future date, once a larger sample 
of Two-Photon lepton-pair events has been generated and reconstructed. No 
comparisons were made of electron-pair data and M C due to the strange shapes 
of the Sdo distributions in M C , and the likely errors in the generation of those 
simulated events. 

It is possible to allow all of the parameters in our model to float during 
the fits, but practical difficulties of convergence are often encountered in that 
case. If we look only at the most extreme edges of the tails we expect the 
power to be exactly 3.0 due to the Rutherford differential cross-section, so we 
fix the power in the outer tail at 3.0. By fixing the inner break-point at 3.0 
we effectively assign almost all events more than 3a away to be primarily the 
result of M C S . Finally, based on what we saw by looking at Toy Monte-Carlo, 
we also choose to fix the breakpoint between the inner and outer power-law tails 
at 5.0. This fitting procedure allows us to examine the behaviour of the mean, 
core width, tail fraction, and in inner power-law in more detail. The number of 
events returned by the fit were always consistent with the true number in the 
histogram. 

Figures 7.14-7.17 depict the fitted parameters versus 1/Q2 for the Sdo reso
lution in muon-pair events. Figure 7.14 is a plot of the mean of the distribution 
for muon-pair events in both data and Monte-Carlo. We see that the mean is 
consistent with zero, for both data and simulations, once 1/Q2 is greater than 
1.0. This means that for high energy muons, in both the data and Monte-Carlo, 
the mean of the Sdo resolution is shifted away from zero by between 2-3%. This 
effect cannot be explained at the present time. 

Figure 7.15 is a plot of the width of the Gaussian core for the Sdo resolution, 
in both data and Monte-Carlo muon-pair events. We see the core width steadily 
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Figure 7.14: Plot of the the mean of Sdo resolution for muon-pair events in the 
data (squares), and Monte-Carlo (circles) as a function of l/Q2-
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Figure 7.15: Plot of the core width of the Sdo resolution for muon-pair events 
in the data (squares), and Monte-Carlo (circles) as a function of 
l/Q2-
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Figure 7.16: Plot of the tail fraction of the Sdo resolution for muon-pair events 
in the data (squares), and Monte-Carlo (circles) as a function of 
l/Q2-

decreasing as the value of l/Q2 increases, in both the data and Monte-Carlo 
samples. This cannot be directly compared with the results we obtained fitting 
to Toy Monte-Carlo in Chapter 2. In that case we varied the number of scatters 
over several orders of magnitude, and kept everything else fixed. Here, we 
expect to see a fixed value of 1.0 if the tracking errors returned by the BABAR 
software are accurate. For the muon-pairs in the data, the tracking software 
systematically underestimates the errors by about 6% for low values of l / Q 2 . A t 
the other end of the spectrum in the data, the tracking software gets the errors 
about right when l / Q 2 is large. In the Monte-Carlo muon-pair events the same 
general trend occurs, the core width decreases as l / Q 2 increases. The Monte-
Carlo resolution has a core width consistently less than the data. This means 
that at low values of l / Q 2 , the tracking errors are estimated correctly in the 
Monte-Carlo, but at high values of l / Q 2 , the tracking errors are overestimated 
by about 12%. 

Figure 7.16 is a plot of the fraction of events assigned to the tail of the Sdo 
resolution, in both data and Monte-Carlo muon-pair events. We see that it 
varies between roughly 3-6%. This is a reasonable figure based on the results of 
fitting the Toy M C distributions, and indicates that M C S is the dominant source 
of the tails in the track impact parameter resolutions. The fraction quoted here 
is significantly larger than the fraction of events which lie outside of the inner 
3a of the resolution distribution due to the tail function being non-zero and flat 
beneath the core Gaussian. We cannot simply say that 3-6% of the events wil l 
be in the tail of the distribution function, but we can use the parameter / as 
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Figure 7.17: Plot of the power in the inner power-law tail (\pa\) of the Sdo 
resolution for muon-pair events in the data (squares), and Monte-
Carlo (circles) as a function of 1/Q2. 

a line-shape parameter. We note also that the Monte-Carlo appears to have 
significantly fewer events in the tail portion for all but the highest values of 
1/Q2 or the lowest values of track PT- This agrees with our expectation based 
on an examination of the transformed resolution variables. 

Figure 7.17 is a plot of the absolute value of the power pa in the inner power-
law of the tail of the Sdo resolution, in both data and Monte-Carlo muon-pair 
events. In the data, the power decreases from about 5.5 down to 3.5 as 1/Q2 

increases. There is much less change in the power in the Monte-Carlo, it remains 
between 4.0 and 4.5 over the entire range of 1/Q2. 

We compare the results of fitting to the data and Monte-Carlo distributions 
in the other impact parameter, ZQ, in a similar way. Figures 7.18-7.21 depict 
the fitted parameters versus 1/Q2 for the A^o resolution in muon-pair events. 
Figure 7.18 is a plot of the mean of the distribution for muon-pair events in both 
data and Monte-Carlo. For both data and simulations, the mean of the Azo 
resolution distribution is within ±0.08 from being exactly zero. The mean of 
the data distribution is generally negative, while that of the M C distribution is 
always positive. These values are not consistent within two standard deviations. 

Figure 7.19 is a plot of the width of the Gaussian core for the Az0 resolution, 
in both data and Monte-Carlo muon-pair events. In the data muon-pair sample, 
the core width ranges between 1.07 and 1.21, consistently larger than 1.0. This 
indicates that the BABAR tracking software consistently underestimates the ZQ 
tracking errors by 7-21%. The Monte-Carlo zo resolution has a core width 
consistently less than the data. It ranges from approximately 0.93 (in a bin 
with relatively few events) to 1.08. The tracking errors in zo are generally 
underestimated in the Monte-Carlo simulation, except in the vicinity of very 
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Figure 7.18: Plot of the the mean of A z 0 resolution for muon-pair events in the 
data (squares), and Monte-Carlo (circles) as a function of l/Q2-
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Figure 7.19: Plot of the core width of the Azo resolution for muon-pair events 
in the data (squares), and Monte-Carlo (circles) as a function of 
l/Q2. 
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Figure 7.20: Plot of the tail fraction of the AZQ resolution for muon-pair events 
in the data (squares), and Monte-Carlo (circles) as a function of 

l/Q2-
small values l / Q 2 , where they are overestimated. 

Figure 7.20 is a plot of the fraction of events assigned to the tail of the Azo 
resolution, in both data and Monte-Carlo muon-pair events. We see that the tail 
fraction parameter / varies between roughly 3-6% for the ZQ resolution in the 
/i-pair data. This is essentially the same fraction seen in the do resolution for 
these events. Again we note that the fraction quoted here is significantly larger 
than the true fraction of events which lie outside of the inner 3cr of the resolution 
distribution, and should mostly be interpreted as a line-shape parameter. We 
note that the Monte-Carlo appears to have between 3-10% of its events in the 
tail portion, somewhat higher than the data. This does not agree with what 
was expected, based on inspection of the transformed resolution variable. This 
disagreement illustrates the difficulty of interpreting the parameter / as a true 
representation of the fraction of events in the tail . At the highest values of l / Q 2 

the data and M C are consistent due to the large M C errors. 
Figure 7.21 is a plot of the absolute value of the power pa in the inner 

power-law of the tail of the Azo resolution, for both the data and Monte-Carlo 
muon-pair events. In the data events, the power ranges between 4.2 and 5.5, 
decreasing as l / Q 2 increases. This is the same behaviour seen in the Sdo data 
where the power also decreased as l / Q 2 increases. The Monte-Carlo events 
yield inner tail powers that are generally consistent with the data in the range 
of larger values of l / Q 2 , but are significantly smaller for the smallest values of 
l / Q 2 . This indicates poor agreement between the tail shape in data and M C 
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Figure 7.21: Plot of the power in the inner power-law tail (pa) of the Azo reso
lution for muon-pair events in the data (squares), and Monte-Carlo 
(circles) as a function of 1/Q2. 

for tracks with high pr-
The poor statistics in the Monte-Carlo sample of high 1/Q2 events lead to 

some large errors in the estimated parameters. These estimates should not be 
considered reliable until samples of Monte Carlo events with large numbers of 
low pr, Two-Photon e-pairs and /x-pairs can be generated. 

7.6 Correlation of Track Impact Parameters 

If the large displacements of events in the track impact parameter resolution 
tails really are due to Multiple Coulomb Scattering, then the quantities Edo 
and Az0 will be strongly correlated in each event. If an event is in the tail of 
the distribution of one track-impact parameter, it is more likely to be in the 
tail of the other as well. This is consistent with what we expect from Multiple 
Coulomb Scattering, that if a track is deflected through a large angle in the 
x-y plane, it is likely also deflected through a large angle with respect to the z-
axis. Other potential sources of large track impact parameters, such as detector 
misalignment, or errors in the tracking software, should mostly be uncorrelated 
in the two track impact parameters. 

Figure 7.22 (solid-line histogram) is a plot of the Sdo resolution for all muon 
pair events in the data. The dashed-line histogram represents all muon pair 
events in which AZQ is greater than 3<r. The dotted-line histogram represents 
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Figure 7.22: Histogram of a ^ d o ^ for muon events in data. Solid line is all 
muon-pair events. Dashed line is muon-pair events with AZQ > 3cr. 
Dotted line is muon-pair events with Azo > 5cr. 

all muon pair events in which Azo is greater than 5<r. We can see that as we cut 
out the events in the core of the Azo distribution we also remove events from 
the core of the Sdo distribution. Equivalently, events which are in the tails of 
the Azo distribution are much more likely to also be in the tails of the Sdo 
distribution. 

Figure 7.23 (solid-line histogram) is a plot of the Azo resolution for all muon 
pair events in the data. Again, the dashed-line histogram represents all muon 
pair events in which Sdo is greater than 3u. The dotted-line histogram rep
resents all muon pair events in which Sdo is greater than 5<r. We see that as 
we cut out the events in the core of the Sdo distribution we also remove events 
from the core of the Azo distribution. Events which are in the tails of the Sdo 
distribution are more likely to also be in the tails of the Azo distribution. These 
correlations provide additional evidence to suggest that the tails of the track 
impact parameter resolutions really are due to Multiple Coulomb Scattering. 
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Figure 7.23: Histogram of a^l0^ for muon events in data. Solid line is all 
muon-pair events. Dashed line is muon-pair events with Sdo > 3c. 
Dotted line is muon-pair events with Sdo > 5cr. 



72 

Chapter 8 

Conclusions 

8.1 Results of this Study 
After analyzing the resolution distributions of the track impact parameters for 
both data and Monte-Carlo events of the BABAR experiment, there are a number 
of conclusions we can draw. 

Firstly, the parameterization of Equation 2.4, using two power-law tails, 
describes Toy Monte-Carlo events generated with the Multiple Coulomb Scat
tering distribution quite well. The same parameterization also describes both 
of the track impact parameter distributions in BABAR data quite well out to 
values of approximately 20<r. The Monte-Carlo simulated sample of muon-pair 
events is fit well by the functional form of Equation 2.4 for both track impact 
parameters. The sample of Monte-Carlo simulated electron-pair events has a 
distinctly different distribution in the Sdo parameter, and we therefore conclude 
that there was an error somewhere in the simulation process for those events. 

For both data and Monte-Carlo muon-pair events, the width of the Gaussian 
core determined through fitting to Equation 2.4 is within 20% percent of being 
equal to the errors assigned by the BABAR tracking software. This demonstrates 
that the tracking software correctly models the contributions to the resolution 
from detector geometry and from the Gaussian core of the Multiple Coulomb 
Scattering distribution to the level of 20%, but that significant corrections be
tween 5-20% need to be applied to improve the level of agreement. The core 
widths in the experimental data and Monte-Carlo simulations are also system
atically different, with the Monte-Carlo distributions tending to have smaller 
widths by about 10% in both d0 and z0. 

Results of the fits to track impact parameter resolution show that the power-
law of the inner tail ranges between x~35 and x~55. This agrees reasonably 
well with what we observed in the M C S Toy Monte-Carlo. In Section 2.3 we 
saw that by fitting Equation 2.4 to Toy Monte-Carlo events generated with 
the exact multiple scattering distribution we obtained inner tail powers pa of 
approximately 4.0. This leads us to conclude that the tails in the track impact 
parameter resolution are dominated by Multiple Coulomb Scattering and not 
by effects like misalignment or failures of the track-fitting software. This also 
provides a physical motivation for the shape of our parameterization. 

We found additional evidence that the tails are mostly due to Multiple 
Coulomb Scattering by looking at the distribution of Sdo for events with large 
values of Azo and vice-versa. When tracks are widely displaced in one pa
rameter due to a large angle scatter, we expect them on average to be widely 
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displaced in the other parameter as well. Other possible sources of poor impact 
parameter agreement, like misalignment or software errors should be largely 
independent in do and 20 • We do indeed see a strong correlation between the 
two track impact parameters, as shown in Section 7.6. This correlation provides 
more direct evidence that M C S is the dominant source of the tails in the track 
impact parameter resolution. 

8.2 Future Plans 

Any experiments which require highly precise knowledge of track impact param
eter resolution wil l need to take into account the effects of Multiple Coulomb 
Scattering, especially the long tails. The parameterization developed here may 
prove useful for other researchers, but most importantly it helps increase aware
ness of the importance of Multiple Coulomb Scattering for track impact param
eter resolutions, by including the tails explicitly in the formulation. 

More directly, we see the possibility of using these results in several time-
dependent analyses in the BABAR collaboration. We may be able use this tech
nique to reduce the systematic uncertainty due to the track impact parameter 
resolution in future measurements of neutral B-mixing at BABAR . The ad
ditional effects of particle misidentification and confusion between direct and 
cascade leptons also contribute to the At resolution. This means any improve
ment in the measured results wil l ultimately depend on the relative importance 
of the tracking compared to the other contributions to the At resolution. 

In order to use the results more directly in other studies, it would be more 
convenient if the analysis were performed in terms of the variables pr and 9 for 
the tracks, rather than the combined quantity 1/Q2- This would make it easier 
to apply the parameterization on a track-by-track basis to the chosen data set. 
The problem with this approach is that the two tracks don't have the same 
values of 9, and we don't know which one of the two to blame for a large-angle 
scatter. The results of this thesis will have to be used in a less direct manner. 

Finally, it is clear that there are many areas in which the track impact 
parameter resolution in BABAR Monte-Carlo simulations doesn't agree with the 
actual data. These discrepancies wil l need to be either resolved or compensated 
for if the extensive collection of Monte-Carlo generated events is going to be used 
in future studies sensitive to the tails of the track impact parameter resolution. 
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Appendix A 

Tail Shapes in DATA and 
M C Simulation: AZQ 

B y using the transformed variable u = 1/x2, where x is either a ^ o - j or a ^ 0 ^ , 
we can more closely compare the shape of the tails between the data and Monte-
Carlo events. Figures A.1-A.8 are plots of the quantity u = {j^*^ ) for the 
muon-selected data and Monte-Carlo events. Figures A.9 -A. 14 are plots of the 
same quantity u for the electron-selected data and Monte-Carlo events. There 
are insufficient electron Monte-Carlo events at higher values of l/Q2 to make 
comparison possible. We don't trust the resolution for the electron M C in ZQ 
because it is obviously incorrect in do- See Section 7.5 for more details. 
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Figure A.3 : Plot of u = ( £ ^ i ) for ^-pair events with 0.25 < l / Q 2 < 0.5. 

Figure A.4: Plot of u = (Z^L) for /u-pair events with 0.5 < l / Q 2 < 1.0. 
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Appendix B 

Tail Shapes in DATA and 
M C Simulation: Ed,Q 

Figures B.1-B.8 are plots of the quantity u = (^^^ ) for the //-pair data 
and Monte-Carlo events. Figures B.9-B.14 are plots of the same quantity u for 
the e-pair data and Monte-Carlo events. Note that the e-pair M C resolution is 
obviously seriously flawed. The large spike at u=0 corresponds to a significant 
surplus of M C events at greater than 10a. 
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Figure B . l l : Plot of u = {^§^)2 for e-pair events with 0.25 < l/Q2 < 0.5. 
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Figure B.12: Plot of u = ( ) for e-pair events with 0.5 < l/Q2 < 1.0. 
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Figure B.13: Plot of u = {^§^)2 for e-pair events with 1.0 < 1 /Q 2 < 2.5. 
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Figure B.14: Plot of u = \ ^§jsl) for e-pair events with 2.5 < 1/Q 2 < 5.0. 
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