Bridging the Gap between Soft and Hard eFPGA Design

by
Victor Olubunmi Aken’Ova
B.A.Sc. University of British Columbia, 2002

A thesis submitted in partial fulfillment of the requirements for
the degree of

Master of Applied Science Degree

The Faculty of Graduate Studies

Electrical and Computer Engineering

The University of British Columbia

March 2005

© Victor Olubunmi Aken’Ova 2005

Abstract

Bridging the Gap between Hard and Soft eFPGA Design

by

Victor Olubunmi Aken’Ova

Potential cost savings that come from the ability to make post fabrication changes in System-on-Chip
(SoC) designs make embeddable Field Programmable Gate Array (eFPGA) cores an attractive
design option. However, they are only available as “hard” macros from vendors as a small number
of fixed size cores, and may not be optimal in terms of atea, power or delay for a given SoC. A
“soft” eFPGA methodology [01][02] based on the ASIC design flow was used to create small
amounts of programmable logic but incurs significant overhead. In this thesis, it is shown that this
overhead can be reduced by deploying architecture-specific tactical standard cells in the ASIC flow,

making eFPGA generation configurable, and imposing a regular structure on eFPGA architectures.

For the set of benchmarks considered, the use of tactical standard cells resulted in area and delay
savings of 58% and 40% respectively, when compated to cores implemented with generic standard
cells [02]. Also, a proposed IP-generator-based approach for eFPGA design is shown to achieve
results that are competitive with commercial full-custom hard eFPGA cores. For example, for some
large benchmark circuits (over 1000 4-LUTs) the generated eFPGA fabrics were up to 40% smaller
than available hard eFPGA cores. Finally, it is shown that a regular structured architecture makes it
possible to generate fabrics with logic capacities that greatly exceed what was previously possible

[02] [15]. In addition, a structured layout approach yielded a 36% reduction (average) in wire lengths.

Table of Contents

Abstract e i
TADIE Of COMLEMLS ...ttt et s e ras s bR bbb bbbt bbb bbb bbbt b e 11
LISt OF FIQUIES. ... vttt ettt et sttt nnn vi
LSt Of TADLES. . .ottt sttt et s b bbb e bbb x
ACKNOWIEAZIMENLS ...ttt sttt et eaessse s eb st s s s e ssa e sanan s s sas X
Chapter 1 Thesis INtrOQUCHOMN.ovviviiiie ittt 1
1.1 ReSEarch MOUVALON c..cuvueiiiiiiicitctce ettt a bbb bbb bbbt 1
1.2 ReSEATCH ODJECHVES...uvuiurictiet et bbbt 3
1.3 Thesis OLGANIZAtION ..cuovueiviriririi ettt b bbb bbbttt csos 5
Chapter 2 Background and Related Previous Research.....co.vncininincnicc, 6
21 Overview of Integrated Circuit (IC) Design Techniques.....c..oocovereeriornenisincnniniicien. 6
2.2 Embedded Programmable Logic IC Design Techniques........ovoeerrneiininicnicniiis 12
221 Embedded Field Programmable Gate Array (€FPGA) ..ooovvivniniiiiicis 13
222 Embedded Mask Programmable Gate Atray (MPGA) ..ccoooiiiiiniiiniiiniiniiccnnens 17
223 Example Application: Bluetooth Base-band System-on-Chipccovvevenenrineciinns 19
2.3 Embedded Programmable Logic as an Intellectual Property (IP) ..c.ccvcceiiiiininiininiininnn. 21
231 Hard €FPGA TP ooooovoseccceseceiesenesoscrenesessseseses s 21
2.3.2 SOft €FPGA IP ...ttt b e ns 23
2.4 Research Problem Definition and Thesis Research FOcus ... 25
Chapter 3 An Embedded Programmable Logic Architecture Famuly ..., 27
3.1 Island-Style eFPGA ALChIteCtULes. cuivuiuiirieirireiistiseisi s 27
3.1.1 Bidirectional Routing Atchitectures for eFPGA designccovuerivervmmieriinisnnns 28
3.2 ALChItECtULAl ISSUES ..ouevueuietiiiiieieiiricieini et sa st 32
3.21 Input/Output DESIGil.....ovviriririiiiieieii e 32
322 Design for Testability........cooevveiviniiiinineiiiiennn ettt 36
323 SRAM POWEL UP STALE....cvvrviviriririretererereseietese ettt 38
Chapter 4 Island-Style eFPGA Design with Generic Standatd Cells ..o 40
4.1 The Existing Designn flowcoiiriiiiinininnninsieieiciniecnnes SO OO RPN 40

411 FLONt-FOd FIOW c...viiviiiiiiiiiiiceeete ettt eve et ere et s teeneereessasaessaessesaesssassessanseas 42

4.1.2 BaACK-ENA FLOW ittt ettt e e e eeeteiee s e e e eetttarasesesesesensssssssenennanseseees e 44
4.2 Design Flow Issues and SOIHONS.........ociiviiiiiiciint s 44
4.2.1 Combinational Loop-bacK........cecviviiiiiiiiininiiiiiiiiiieseieeee s 44
4.2.2 Architecture DISCIEPANCIES ...cvvuiiiriiriniiiiciiicc e enes 49
423 Static Timing EXCEPHONS ...covviiiiiiiiiiiiiiiiiiiciie i 49
4.2.4 Configuration POWEL ...c.c.cuiiiiiiiiiiiiiiiiii e 51
4.3 Design RESUILS ...ovuivieiriicic s bbb 54
Chapter 5 Island-Style eFPGA Design with Custom Standard Cellscoooorveermiiricninininirciie, 63
5.1 An Improved Design floW ..o s 63
52 Design of Custom Cells.........oiiiiiiiiiii e PR 65
5.2.1 SRAM Cell Citcuit Design......ccuoeuiviiiviriiiiieeiiesrcicsire e 65
5.2.2 Multiplexer Circuit Designcocvvviviiiiiiiiiiiiiiiincicee s 66
5.3 Layout Design.....ciiviiriiiicii e 72
5.4 Layout IMPIOVEMENTSccooiiiiiiiii e et 75
5.5 eFPGA Design Results........coiiii s 76
5.5.1 Area IMPLOVEIMENLS ...oouviiiiiiiiiiriiti ettt e e sae s ra b e s e s ane s e e neseas 76
5.5.2 Delay IMProvements.......cooiviiviiriiniiiiiiiieiiiiieie sttt et ee s s s esnens 77
5.6 Comparison to GILES ...t 82
5.7 Sensitivity Case StUAY ...cccccovivieiiiiiiii b 85
5.8 MUX SWILCH FVAIUATION cevvtiteeeeeeeeeteeeee et e et e et e eseeeesaeeessnesseesessseesassesessssessssssasseesssnssssrasersnes 89
Chapter 6 The Implications for eFPGA IP Designcccouuiiriiiiinmrninicininisissscssiseneeicisisene 90
6.1.1 Some “Real World” Case STUAIES .oviveiiiererrinieeeeieeeeereetiieieeeereesieieeerrsssiesseesssssnnnnens 91
6.2 A New Paradigm for eFPGA IP DesIgn ..ot 94
6.2.1 “Open” Architecture IP Library . ..ot 95
6.2.2 Configurable Architectute IPcccooeeieriiiiiieieririreieecieicc e 96
6.2.3 Domain-dtiven IP generation........cvvininieinriiiieiinieiieiseesess e 96
6.2.4 Automated Layout Eenerationcveveviveeieririeinieeieseisieesssesse s 98
6.2.5 SUMMALY 1vevtevttereetietene ettt b st b e e s e e b b sb b e b e b e n st s b e s bs s en e sneb et enene 100
Chapter 7 Final Conclusions and Future Research Workcoovvvnenincccnnniin. 101
7.1 COTICIUISIONS 1ttt ee et eeeeeee et eeeeeeeeeeetteeestesaseeesaneeasssesstnesasessasnesastesansaeesssssasssasesssasersnsensnsesssssaases 101

7.2 FUtire W OLK . oeeeeeieecnieneitcc ettt e e 104

iv

7.3 COMUIDULIOMNS tvvtevvieve ettt ettt et eett e et eeteenneeneeeerees e eanteaneeaneeaneeaneesnnesasteaneeanessaseeesesesstesssesrsesses 104

Appendix A Standard Cell Based eFPGA implementation Results..........ccocvvivnininicniininnininnnns 107
Appendix B Area Model for Standard Cell based eFPGA area Estimationccccveurivnicviniininnnns 111
Appendix C Details of Circuit Analysis Solutions for Multplexer CLECUItS.....ovrrrrrrrsrre 113
Appendix D Area estimation method for GILES and Full-custom eFPGASccooeuvvvviriciiennnne, 116
Appendix E A sample structured eFPGA layout and Bluetooth SoC Flootplanc.cccvvvivrieninnne. 123

BIDHOGIAPRY . ..ot e 125

List of Figures

Figure 2.1: A general overview of existing integrated circuit design techniques........cccoevveernennens 7
Figure 2.2: Sample generic standard cell layout for two CMOS logic functions...........ceveeveenns 8
Figure 2.3: Typical standard cell chip layout and a closer view of cell rows in chip ... 9
Figure 2.4: A programmable platform IC with an embedded PowerPC® processor.............cceeeueens 10
Figure 2.5: Typical flow for semi-custom cell, block, and core based ASIC designcccevviininnneniene. 11
Figure 2.6: 2x2 island style eFPGA core architecture and regular #/e architectureccevveeneeneens 13
Figure 2.7: programmable logic CLB of size 4 and a disjoint switch block topologyccccecee... 14
Figure 2.8: Input and output connection blocks in the eFPGA routing architecture..........o.ceeueeneens 15
Figure 2.9:VPR placement and routing of a sample user circuit in a 6x6 logic array.........ccecuevenene. 16
Figure 2.10: A MPGA logic tile layout, and a connectivity fabric of top metal layersc..cc.o.e... 18
Figﬁre 2.11: A System-on-a-Chip platform that implements the Bluetooth Protocol...................... 20
Figure 2.12: An example of architectural inefficiencies in existing hard eFPGA IP....................... 23
Figure 3.1: An island style eFPGA tile atchitecture with tri-stated routing switches..........cccceeuennins 28
Figure 3.2: Island style eFPGA tile architecture with multiplexed routing switches............c.cooveune. 29
Figure 3.3: Island style eFPGA tile with improved multiplexed routing switch 1.......c..ccceeiee 30
Figure 3.4: Island-style eFPGA tile with improved multiplexed routing switch 2 vt eraeraens 31
Figure 3.5: Programmable I/O pad connections and unused sWitch COMNNECHONS «.vvvevnrnerrrreenenns 33
Figure 3.6: Equivalent external input routing in standalone and embedded FPGAcovvvermecvenece. 34
Figure 3.7: A limitation of the nove/ embedded FPGA external I/O architecture 35
Figure 3.8: An embedded FPGA IP configuration architecture designed for test........ccocenveeeene. 37
Figure 3.9: Logic to prevent driver contention in bidirectional routing architecture..........c.ccceeuuene 39
Figure 4.1: Typical flow for semi-custom cell, block, and core based ASIC designccccovicnieuininunnn 42
Figure 4.2: Combinational and sequential loops in an island-style eFPGA tile BLE...............c..... 45
Figure 4.3: Example of combinational loops path in a multiplexed routing switch...........cccoovunni. 46
Figure 4.4: Technique to avoid loop breaking during synthesis and verification........c.c.ccccoveienien 47
Figure 4.5: VPR critical timing path trace for “golden-20" benchmark circuit apex4ccceneeeee. 50

Figure 4.6: Proposed configuration scheme targeting a single tile and row of tiles.........cooevennencnnee 51

Figure 4.7: Proposed scheme for glitch isolation during soft eFPGA configuration...........c.cceeuee. 53

Figure 4.8: Critical path delay comparison of three soff island-style architectures..........cccoeeeriennnne. 55
Figure 4.9: Overall core area comparison of three soft island-style architectures..........ccocvenennene. 56
Figure 4.10: Compatison of CMOS logic and pass transistor based multiplexers..........ccccovvennee. 60
Figure 4.11: transistor level illustration of a simple single-edge-triggered flip-flopccoeveernenn. 61
Figure 4.12: pie charts showing area distribution in a sof? island-style eFPGA tilecovveuvenennnnnenn. 62
Figure 5.1: an enhanced ASIC design flow for eFPGA design and implementation............cceu.ee. 64
Figure 5.2: SRAM transistor sizing for embedded FPGA configuration memorycccceveueenen. 66
Figure 5.3: multiplexer with minimum size output buffer and extré buffer stages.......c.cccooeeennnn. 66
Figure 5.4: a le§e1 restoring circuit for pass-transistor-based multiplexing logicccooevvieninennne. 67
Figure 5.5: Delay optimization problem specification for LUT input-selection pathsc.ce..... 68
Figure 5.6: Critical delay paths for the different multiplexing circuits in an eFPGAccocvennee. 69
Figure 5.7: Issues around input loading for pass tree networks in the ASIC flow.........c.ccuenneeeee. 70
Figure 5.8: two possible multiplexing-logic buffering schemes for eFPGA design........cccceevnnene. 71
Figure 5.9: RC net\%zork representation of repeater insertion in an eFPGA 5-LUT ... 72
Figure 5.10: standard cell layout structure before and after n-well cutout is made........cccccuvrrnnee. 73
Figure 5.11: illustration of resource allocation in a multiplexer standard cell layoutc.c...... 74
Figure 5.12: double height standard cell layout of 32:1 multiplexer (2 metal layers).........ccccveneennen. 74
Figure 5.13: 1 flip-flop used for configuration memory in the previous approaches..........cccoceverunne 75
Figure 5.14: area comparisons of customized tactical standard-cell-based eFPGA implementations
with generic standard cell, and full-custom implemMentationscocceveeiiriermnisnncneneniens 77
Figure 5.15: illustration of SPICE simulation setup to measure logic block delay.........c.ccoueneeee. 79
Figure 5.16: SPICE simulation setup to measure the routing switch element delay...........ccceceveenvee 80
Figure 5.17: delay compatison of customized tactical stahdard-cell—based eFPGA implementations
with genetic standard cell, and full-custom Implementationscceceverevverereiisrareesnsennanas 81
Figure 5.18: Core area comparison of product-term and island-style architectures..........c.cooevvenne 86
Figure 5.19: delay path comparison of product-term and island-style architectures..........cocceruennene. 88
Figure 5.20: Area-delay-product comparison of product-term and island-style core.......oovnvrvnnnne. 88

Figure 6.1: logic efficiency comparisons of a standard-cell-based eFPGA IP generator approach to a
commercial hard IP approach for 9 MCNC benchmarks........ccecveieininiiniininiinieninnnnnenn 92

vit

Figure A.1: Block level diagram of the test interface module with an eF PGA fabfiC.....eceveeverenn.. 107

Figure A.2: simulation waveform capture of eFPGA state transitions and reSpofiseevrrenn. 108
Figure A.3: simulation waveform capture of glitches and glitch isolation in a BLE........c.cccoueu..e. 108
Figure C.1: RC network representation of shared buffering scheme in an eFPGA..................... 113
Figure C.2: RC network representation of repeater insertion in an eFPGA 5-LUT..........c......... 114
Figure D.1: plot of layout area vs. inputs for general-purpose eFPGA multiplexers..........cccoeueneen. 116
Figure D.2: Plot of layout area (excluding the SRAMs) vs. select inputs for LUTccocveeuenne. 116
Figure D.3: Plot of layout area (excluding the function SRAMs) vs. inputs for LUT 117
Figure D.4: Area distribution between logic and routing components of eFPGA...................... 119
Figure D.5: ASIC gate density scaling after estimated improvements to routifig........cocevueeuueene 119
Figure E.1: Structured eFPGA layout for Bluetooth Baseband Encryption Module 123
Figure E.2: Bluetooth baseband SoC showing underutilized area around the core..............iu.... 124

List of Tables

Table 2.1: Comparison of eFPGA, MPGA and standard cell logic design methods...................... 18

Table 4.1: Area overhead of “soft” eFPGA design relative to full-custom approach...........cceueeee. 58
Table 4.2: Delay overhead of “soft” eFPGA design relative to a full-custom design........cccovevvennnns 59
Table 5.1: layout area improvements with tactical cells vs. generic standard cells........ccvevieinininnnnns 75
Table 5.2: The scaling factors for multiplexer logic bloating in GILES Virtex-E tile........cccoenee. 84
Table 6.1: Summary of Soft, Firm and Hard eFPGA implementation methodologies................... 100
Table A.1: Design tesults for 18 eFPGA cores with tri-state buffer based switches..................... 109
Table A.2: Design results for 18 eFPGA cores with original multiplexer switches 110
Table A.3: Design results for 18 eFPGAs using the speedy multiplexer switch 1........cc.cueeeee. 110

Acknowledgments

I would like to thank my supervisor Dr. Resve Saleh for the opportunity to work with him. His
enthusiasm and support over the years are unmatched. He was easily my most vocal Cheerleader. I

also would like to thank Dr. Guy Lemieux for teaching me everything I know about FPGAs.

I am also grateful to all the other professors of the SoC research Lab because I learned something
from all of them. I especially would like to thank Dr. Steve Wilton who spearheaded the Soft eFPGA

concept at UBC that ultimately led to my research topic. Thanks for all the comments and insight.

I would also like to thank the staff of the SoC lab. Roozbeh our CAD manager was a tremendous help
and always tried his best to cater to my many requests. Roberto our Test Lab manager was always
fantastic with the test lab equipment and great at finding solutions to all kinds of vexing problems.

Sandy Scott our administrative assistant was always cheerful and happy to help. I am grateful to you all.

I would also like to thank past and present student members of the SoC lab for their support. I
especially thank Pedram Sameni, James Wu, Ronald Fung, Louis Hong, Mohsen Nahvi, Marvin Tom,

Zion Kwok, Neda Nouri, Noha Kafafi, Julien Lamoureux, Rod Foist, Brad Quinton, and Kara Poon.

Almost last, but certainly not least, I would like to thank my entire family for the tremendous love and
support they have shown me my entire life. I am thankful to them for teaching me the value of hard

work and dedication. A very gigantic hug also goes to my dear Laura for easily being my best friend.

Many thanks to NSERC, PMC-Sietra, the Canadian Microelectronics Corporation and the University

of British Columbia for the financial and tool support that made all this work possible. Viva Canada.

In loving memory of my dearest Mama

Chapter 1

Thesis Introduction

1.1 Research Motivation

The increasing density of integrated circuit (IC) designs due to shrinking transistor sizes has led to
the emergence of System-on-Chip (SoC) design to cope with the resulting increase in design size and
complexity. However, this has resulted in significant increases in the cost of IC designs due to
corresponding increases in engineering and mask costs in the order of tens of millions of dollars.
Therefore, designers ate pursuing software and hardware methods to build programmable SoCs and
avoid the extra costs of chip re-spins. A programmable device can be used to compensate for errors,

adapt to changes in standards or design specifications and amortize costs over design derivatives.

Embedded Programmable Logic Cores (ePLCs) have emerged as a natural hardware solution to
meet this growing challenge because they allow logic functionality to be changed after fabrication.
Such cotes are generally suited to small and medium on-chip logic functions such as accelerator
functions for on-chip processors to speed up embedded software, data encryption circuits in
wireless devices that need to be changed from time to time, packét routing switches for the newly

emerging Network-on-Chip design paradigm [71], and I/O standards for data communication.

In spite of the potential cost benefits and useful applications of ePLCs in SoC design, commercial
success has been limited by a number of difficult issues that arise. These range from design and

implementation issues [14] to issues related to the nature of commercial ePLCs devices in general.

For example, common design problems concern the selection of blocks to make programmable, the

integration of fixed and programmable blocks and the size of the programmable block. However, by

far the biggest issue with ePLCs is the high area, power and delay overhead that they generally incur.

These overhead issues are not unique to ePLCs alone; it has also become an important issue for
stand-alone programmable logic devices like Field Programmable Gate Array (FPGA) chips.
However, this issue is more critical for ePLCs because they are needed in high performance IC
designs that have stringent area, speed, and power rquirements. Further, this problem is made even
worse because ePLCs, like FPGA chips, ate available in limited siies and ranges, and so designers
must select the smallest core or chip that will accommodate their circuit(s). The selected ePLC could
be much bigger than needed, slower, and consume more power, because vendors include excess
resoutces for potential circuit implementations. As a result, prospective users are sometimes forced

to abandon ePLCs altogether, and this has resulted in a general lack of interest in these devices.

Current commertcial programmable logic design techniques do not afford vendors much op‘portunity
to address some of the reasons for the overhead in ePLCs because they use expensive full-custom
design techniques to build ePLCs, and so have to find a cost effective tradeoff when designing their
products. Hence, for cost reasons, these vendors design a minimum set of cores that can serve the
broadest range of user applications possible while keeping the device pgrformance overhead within
tolerable bounds. This model wotks well for standalone FPGA chips because they are not used mn

high performance situations and therefore users can tolerate the additional performance overhead.

The above model is unsatisfactory for ePLCs because higher performance is often required.
Furthermore, because their application space is limited and target user circuits often share common

characteristics, surplus resources on the same scale as chips is not requited. For example, if 2
haracteristics, surpl th 1 FPGA chip t required. F ple, if

designer uses an ePLC for the purpose of allowing future “bug fixes” or design revisions, then it is
reasonable to assume that potential future circuit implementations will be of about the same size.
The existing model for ePLC design cannot take advantage of domain information, since tailoring
ePLCs for application specific scenatios is expensive for vendors. Howevet, if ePLCs are to make

inroads into mainstream digital design, domain knowledge should be exploited [01] in some fashion.

The potential benefits and the difficulties associated with embeddable programmable logic design
motivate the research work presented in this thesis report. For most of the béneﬁts to be realized,
current ePLC design methodologies must be revisited. For example, rather than a “one-size-fits-all”
model for designing programmable logic cores, an alternative approach that tailors cores to a
particular application domain might be more appropriate. Therefore, in this research, we explore

some new techniques that could make a “one-size-fits-few” design model feasible for ePLC design.

1.2 Research Objectives

Given the inherent difficulties associated with using ePLCs in high performance chip design, this
work proposes some new ways to reverse the current trends and make the use of ePLCs more
attractive to users. To achieve this goal, some important observations about curtent methodologies

for embedded programmable logic design will be made and solutions investigated and evaluated.

First, the advantages and disadvantages of the “soft” [02] and “hard” [44] ePLC design
methodologies are evaluated. Following from this, an embeddable progrannﬁable logic architecture

is implemented in a way that combines the best characteristics of the existing design methodologies.

Second, inefficiencies in area and speed that result from implementing a ePLC within an automated,
generic-cell-based design flow [02] are investigated, and the compared to previous research results.

The goal here is to pinpoint areas of the design flow that could benefit the most from optimization.

Third, #rchitecture-speciﬁc tactical cells are designed to replace generic cells and eliminate
mnefficiencies resulting from the use of a generic-cell-based IC design flow [02] [14] [15]. ollowing
custom cell design, area and speed improvements that can be achieved as a result of implementing
an embeddable progra@able logic architecture with custom cells in an automated design flow are

reported. The results obtained are then compared with other previous approaches [02][15][68].

Fourth, certain mefficiencies that exist in current commercial design approaches are investigated by

comparing our design results for area and speed to an existing commercial hard ePLC library [44].

Lastly, a new paradigm is introduced for embedded programmable logic design that combines

domain driven architectural exploration with a flexible and efficient semi-custom circuit design flow.

1.3 Thesis Organization

Chapter 2 of this thesis presents some general background on the research subject, summarizes
work done in this area to date, describes benefits and difficulties associated with existing ePLC
technologies and design methods, illustrates -potential uses of programmable technology on a

wireless IC (Bluetooth) and then introduces an approach for ePLC design explored in this thesis.

Chapter 3 describes variants of a well-known architecture to be used in the proposed approach for
embedded PLC design: This chapter includes a detailed description of some design issues that

were resolved during architecture specification in order to ensure proper ePLC operation.

Chapter 4 presents results obtained after implementing our ePLC in a “soft” design flow as
described in [14]. In Chapter 5, an alternative approach similar to wotk presented in [01][68][69]
which requires the design and implementation of architectﬁre—speciﬁc tactical cells is explored. The
details of design and implementation issues related to this work are presented. Next, our results are

compared with eatlier results obtained using architectures and approaches described in [14][15][68].

Chapter 6 compares the results obtained in Chapter 5 with estimates for commercial hard eFPGAs
[41], to illustrate key problems related to current design approaches. In addition, two blocks in a
Bluetooth baseband SoC are used to investigate the impact of eFPGA cores on area. Finally, a

novel design paradigm, for automatic embedded programmable logic generation is presented.

Chapter 7 summarizes the work presented, suggests topics for future work and lists contributions.

Chapter 2

Background and Related Previous Research

This chapter begins with a general overview of logic design methodologies and then focuses on
programmable logic design. In particular, two commercial technologies for embedded
programmable logic design are described. The description focuses on important features of both
approaches and highlights their advantages and disadvantages. Next, a wireless SoC platform is used
to illustrate potential applications of programmable logic in IC design. Also, issues related to
different methodologies for mprogrammable logic impiementation are discussed. Finally, a

description of the research problem and an outline of the focus of this thesis report are presented.

2.1 Overview of Integrated Circuit (IC) Design Techniques

Over the last three decades, several logic design methodologies have evolved to cope with
technological advancements in semiconductor circuit design. As shown in Figure 2.1, these

methodologies tend to fall into two main groups: full-custom and semi-custom IC design methods.

Full-customn design relies to a large extent on manual effort for most design decisions. For example,
design decisions such as transistot sizing, transistor layout, device placement and routing are all
carried out manually with the aid of rudimentary Computer-Aided Design (CAD) tools. This
technique offers the greatest flexibility from a designet perspective, because circuits can be tailored
to specifications with superior performance in terms of area, delay or power. However, there 1s a

high engineering cost overhead involved. Furthermore, given shrinking time-to-market windows and

shelf—lifé of IC products, it becomes more difficult to depend on full-custom techniques for IC
design. For example, a large IC design house like Intel® requires large teams of designers working
for the equivalent of hundreds of man-years to deliver high-performénce full-custom products such
as the Pentium® chip on schedule. This results in a huge expense that has an impact on the pricing
of such chips and the products ;chat use them (e.g., personal computers). Similatly, well-known
programmable logic device vendors like Xilinx® and Altera®, use full-custom techniques to design

their Field Programmable Gate Array (FPGA) devices, and this is part of the reason some of these

devices can cost anywhere from a few hundred dollars to a few thousand dollars per chip.

4 A
Digital IC design Methodologies

X \

full-custom \ l semi-custom

| >

SoC with eFPGA FPGA, MPGA standard cell IC

Figure 2.1: A general overview of existing integrated circuit design techniques

In order to reduce engineering effort of full-custom IC designs, some vendors resort to semi-cusiom
design techniques to deliver new products much faster and at lower cost. Semi-custom design relies
mote on automated flows and Electronic Design. Autémation (EDA) tools to mmplement circuits.
These EDA tools use libraries of pre-designed logic cells, blocks, and or cores to implement circuits

in much shorter ime but with some overhead costs, and certain restrictions on the IC designer.

Some examples of semi-custom design include: cell-based, block-based and or core-based ICs.
However, it is important to notice from Figure 2.1 that semi-custom designs do have elements of
full-custom design and vice-versa. In other words, some components like cells, blocks, or cores in a
semi-custom design, are implemented using full-custom techniques to some degtee. The extent to
which this “crossover” occurs depends upon performance requirements and time-to-market

constraints. Furthermore, full-custom designs can also make use of cells, blocks and cores as needed.

In standard-ce//-based semi-custom designs, vendors develop cell libraties that implement generic
logic gates such as NORs and NANDs with different dtive strengths and in accordance with a
constrained physical layout format. These libraries of logic gates are supplied to designers who then
map Register Transfer Level (RTL) descriptions of desited hardware behavior written in VHDL or
Verilog, into gates using logic synthesis tools such as Design Compiler® and Cadence-PKS®. A
more aggressive form of cell-based design allows designers to build custom cells and tools according
to their own specifications and tailored for a particular circuit ot group of circuits [46] [48] [53] [55].
Figure 2.2(a) and 2.3(b) below shows typical standard cell physical layouts. Usually PMOS devices
are in the top part of the cell near Vdd and NMOS devices ate in the lower patt of the cell near

Gnd. Figure 2.3(a) and 2.3(b) show a chip implementation of [19] that uses standard cells.

R N —— n-well

, i

2% d-trw 1R}
s 4
J'Akks o 7

AlliigiE

gnd _ _ p-well
(a) simple function _ (b) complex function

Figure 2.2: Sample generic standard cell layout for two CMOS logic functions

3
R
== aaa,

il
L
= g g

%
g
2
H

g i

(a) Full chip layout (b) Top corner of chip

Figure 2.3: Typical standard cell chip layout and a closer view of cell rows in chip

In order to implement the standard cell ASIC shown in Figure 2.3(a), special EDA tools are used for
placement and routing. Placement involves reading a net-list of gates generated through logic
synthesis and then arranging the corresponding standard cells in rows as shown in Figure 2.3(b).
Placement is automated and can be constrained for atea and performance. Standard cells are
arranged in rows so that power (Vdd) and ground (Gnd) rails of adjacent cells are connected by

abutment. Routing tools connect nodes (with metal wires) to implement the desired logic function.

In semi-custom block-based designs, vendors implement larger functions like arithmetic logic units
(ALUs), multipliers, and adders as blocks that designers can also include in a standard cell design.
One reason for doing this is that certain elements in a cell-based design are not efficiently
implemented with generic standard cell-based logic gates like NANDs and NORs. Therefore, circuit

blocks like ALUs, adders and multipliers would be included in a cell design to improve performance.

In core-based designs, vendors implement even larger and more complex circuits called cores, for

inclusion with cells and blocks in ICs. The most common cores atre microprocessor cores such as

the ARM7®, MIPS, and PowerPC® cores. For example, Figure 2.4 shows a Virtex-II Pro®

programmable platform IC [72] with an embedded PowerPC® microprocessor core (highlighted).

Figure 2.4: A programmable platform IC with an embedded PowerPC® processor

In order to design a semi-custom 1C, designers often use a flow similar to the one shown in Figure 2.5.
This flow is known as the ASIC flow [73]. As shown in Figure 2.5, design data that contains
dimensions, timing, drive-strength, and power requirements for cells, blocks, and cores are used in
EDA tools at all stages of the design flow. For example, during timing verification, timing and drive
strength data for cells, blocks, and cores used in a design are combined with resistance and
capacitance values extracted from metal traces after routing, and used to estimate the timing
characteristics of all valid signal paths. If a placed and routed design satisfies all timing requirements,
it is converted into a special layout file format called GDSII. A GDSII file contains all the design
data required to manufacture a chip. If a design does not meet timing, a new and improved net-list

must be created, placed, routed and again verified for timing until design goals are met (Figure 2.5).

10

Design data Design data : Design data

A/ r'd l

i i te-level | d
o) - omvess | > Gomresd) o it | P

'

: Timing RC
() o ()

Design data | Design data

Figure 2.5: Typical flow for semi-custom cell, block, and core based ASIC design

G-
i
Y

Stream
generation

A

-

<_.__.
yes

<

-
)@

Full-custom cell, block, and core based design flows includes most of the steps shown in Figure
2.5. Designs ére created and tested at the transistor level via circuit schematics and analog
simulations. In addition, full-custom designs are often hierarchical and structured so that complex
circuit designs can be better managed and optimized. Designers often begin full-custom designs by
first building cell-like entities that are then combined to form larger structutes like blocks and cores.
Placement of cells, blocks and cores relative to one another is done manually along with routing of
interconnects. Manual place and route often gives the best tesults but it is vety time consuming.
Microprocessor chips and programmable logic devices are often designed in this manner. For

example, programmable logic devices like FPGAs, are built from a single, highly-optimized full-

custom programmable logic block or tile, that is replicated to form a two-dimensional logic array.

2.2 Embedded Programmable Logic IC Desigh Techniques

Programmable logic ICs in the form of Field Programmable Gate Arrays (FPGA) have been
available for over two decades. In the last few years, there has been a push to develop embedded
FPGA cores that reside in a chip alongside hardwired or fixed logic. The idea is that the exact logic

function of a programmable core can be defined after fabrication, much like any stand-alone FPGA.

~The advantages of dﬁs approach include the ability to cater to multiple customers with a single
programmable chip, accommodate changes in standards or design specifications, or allow designets
to fix design errors that are caught after chip tape-out (if they are suitable for cotrection by the
embedded FPGA). An embedded FPGA or programmable fabric is usually arranged as a structured
array of logic blocks, switches and routing tracks. A logic function is implemented on the array by

using SRAM cells set to 0 or 1 to define logic functionality as well as define routing connections.

While programmable fabrics afford designers a tremendous amount of flexibility, thete is significant
overhead associated with this approach when compared to fixed logic (hardwired) ASICs.
Specifically, the area of programmable fabrics can be 50 to 100 times higher, speeds can be 2 to 10
times worse, and power dissipation is substantially higher. Over the past few years, the creation of
efficient programmable logic cores has been an active atea of research and development in an effort

to reduce overhead, improve ease of use, and make this option more attractive to chip designers.

So far, leading approaches for embedded programmable logic implementation include embedded
Field Programmable Gate Arrays (eFPGAs) [08] [41] [44] and Mask Programmable Gate Atrays

(MPGAs) [45] [60]. This section presents a general architectural overview of programmable logic

12

devices within an eFPGA context, followed by a general description of MPGAs. The important

features of each technology are emphasized, as well as their associated advantages and disadvantages.

2.2.1 Embedded Field Programmable Gate Array (eFPGA)

In this section, an overview of the popular island-style FPGA architecture [11] is presented. This

architecture (Figure 2.6) is the basis for many commercial programmable logic devices used today.

110 yo ——REGT

Vo —cB WO

(a) eFPGA core (b) eFPGA tile

Figure 2.6: 2x2 island style eFPGA core architecture and regular tile architecture

In Figure 2.6(a), CLB is a configurable logic block, SBLK is a routing switch block, LET is a left
edge tile, BET is a bottom edge tile, CON is a corner tile, REGT is a regular tile, BUF contains track
buffers for input connection blocks, and OB 1s an output connection block. Also, Figure 2.6(a)
shows an eFPGA core as a structured array of logic clusters, switches and routing tracks of width W.
The enlargement in Figure 2.6(b) shows that each regular tile contains a CLB, a switch block,
connection blocks and SRAM cells for configuration. The left and bottom edge tiles only contain

switch-blocks and connection blocks for routing. The corner tile connects the LETs and BETs.

13

Because logic blocks implement logic functions, they constitute the /ogic architecture of a
programmable fabric. Similarly, switch blocks and connection blocks constitute the routing architecture
because they route signals between tiles, and between the eFPGA and external logic via I/O ports.
SRAMs and decoders constitute the configuration architecture since they configure the fabric. In essence,

programmable logic devices are a combination of logic, routing, and configuration architectures.

Within the logic architecture, CLBs comprise one or mote basic logic elements (BLEs). The number
of BLEs in a CLB is its cluster size, N. For example, in Figure 2.7(a) the cluster size is 4. Each BLE
in a CLB is comprised of a K-input look-up-table (K-LUT), an edge-triggered flop (LUT-flop) to
generate a registered copy of the LUT output, and an output selection multiplexer (“H” in Figure
2.6(b)) to select between registered and unregistered LUT outputs. LUT input multiplexers (“M” in

Figure 2.7(a)) are used to drive K inputs of all N LUTs in a CLB of size N (4 in this example).

i

1
S |] t /2 i
! M XK xK M

. JFLOP FLOP
o1 || R LD 02
(me] |Las)

BLE 1 CLK CLK BLE2
s S:SEJ ' 18 Blﬂ

e Gy * / 1 |

M XK XK M

L FLOP
03 1 H= i
AP led| | |l B

BLE3 CLK ,r clk BLE4 - p

i

(a) tile CLB of cluster size 4 (b) disjoint switch topology

Figure 2.7: programmable logic CLB of size 4 and a disjoint switch block topology

The switch block design of the routing architecture is typically based on a disjoint topology [11] as
shown in Figure 2.7(b). This means a given net cannot hop between track “lanes”. For example, a

net that enters a switch on routing track 0 as shown in Figure 2.7(b) will exit and continue on track 0

14

until it terminates. Connection blocks connect CLB inputs and outputs to adjacent routing channels.
For example, in Figure 2.8(a) an input connection block multiplexer, G, sélects a net from track “2”
in the routing channel to drive a cluster mput I (the mput track buffers are used to minimize
loading). Output connection blocks drive cluster outputs (O in Figure 2.8) onto the routing channel.
An output connection block has a tri-state driver for each track that it can drive. The value in the

SRAM on the enable input of the tristate-driver determines whether or not a routing track is driven.

e {0 1 |12 2
selects L “

PN |

_ <3 | inplit puffers .
. / ; tristate

y
g

o % o L
5LB ‘a ('. (Mg‘ (Q ', - . N ‘ e L f% A SR
“m L .‘«m o ye—
LT Y T | CLB
(a) input connection path (b) output connection path

Figure 2.8: Input and output connection blocks in the eFPGA routing architecture

The configuration architecture includes configuration SRAMs, decoders, and a configuration finite
state machine. A row decoder selects a row in Figure 2.6a for programming, and combined with the

column decoder, can select a single tile for progtamming. A state machine controls configuration.

The bits (sequence of zeros and ones) needed to configure a programmable logic device are
generated using specialized CAD tools such as VPR [11]. The details of this tool ate outside the
scope of this work. However, at a high level, these CAD tools contain detailed models of

programmable logic architectures like the one shown in Figure 2.6. These models are used to decide

suitable placements for circuits that have been mapped into LUTs [11]. Once a suitable placement

for a circuit is found, it is routed [11]. FPGA routing involves finding suitable paths between all the
connected nodes (sources and sinks)in a circuit implementation given the available routing

resources in the target programmable logic device and any user-supplied path timing constraints.

Figure 2.9(a) shows a VPR screen capture of a 6x6 programmable logic device after placement. The
darker blocks represent occupied logic clusters. Figure 2.9(b) shows the same architecture after
routing. Figure 2.9(b) shows just routing tracks that are used. Placement and routing files for a given
circuit implementation are generated within VPR and used in software programs that generate the

appropriate sequence of zeros and ones needed to program a circuit on a programmable device.

31 O i

prt] o2 st

I
2

IR Ll ==
| et] P et Eal i

0 g i

L p i p gil
(a) after placement (b) after routing

Figure 2.9:VPR placement and routing of a sample user circuit in a 6x6 logic array

An eFPGA is essentially an unpackaged standalone FPGA (Figure 2.9) that has been stripped of its
I/O pad ring and adapted to function as an embeddable IP core. Like a standalone FPGA, the exact
logic function of the eFPGA can be decided after fabrication. Typically, an eFPGA would be used
to implement small to medium logic functions like microprocessor accelerator functions or

hardware data encryption algorithms that need to be reprogrammed periodically to adapt to changes.

16

2.2.2 Embedded Mask Programmable Gate Array (MPGA)

More recently, MPGA devicés like the eASIC® core [45] were introduced to eliminate some of the
~ shortcomings of eFPGA core;. An eASIC core is modeled on SRAM programmable look-up-tables
but the routing infrastructure between look-up-tables is quite different from eFPGAs. In particular,
the routing interconnect is either metal/ vié ;r just via programmable (one-time programmable). The
advantage here is that the extra logic needed for switch elements in the routing of a typical eFPGA

are no longer required. Therefore MPGAs tend to be are smaller, faster and more power efficient.

Furthermore, the wafers associated with a particular design can be processed in advance of final
metal/via programming. Thetefore, the turnaround time for a programmed design is only about a

week or two compared to a few months for so-called hardwired ASICs that are not programmable.

Although current MPGA cores are denser, faster, and more power efficient than an eFPGA, there is
a loss of flexibility because the routing interconnect is not reprogtammable. For ex'ample, once via
connections between metal layers for a particular circuit implementation are made, they cannot be
changed. Any further changes to the routing interconnect will require a new silicon die with an
unprogrammed embedded MPGA. Although changes in LUT functionality is possible

(reprogrammable SRAMs), the scope of such changes is limited once the routing has been finalized.

Figure 2.10(a) below shows a transistor-level full-custom layout of an MPGA tile [45] modeled on
the popular island-style architecture, and similar in many respects to the eFPGA tile shown in Figure
26(b) For example, the LUTs in an MPGA CLB are also programmable using SRAMs. The main

difference however, is the absence of reprogrammable routing switches in the MPGA tile. Instead,

17

an upper metal layer grid of potential global routing connections is used to form an interconnect
mesh or connectivity fabric [45] as Figure 2.10(b) shows. After fabrication, this grid has no connection
to lower layers of metal. Instead connections are only made after it has been determined what circuit
will be implemented in the MPGA, and which connections to the lower metal layers (hardwired) will
be needed to implement a logic function. Such connections are made with a via mask layer that

connects the uncommitted connectivity fabric to the hardwired “base array” [45] in Figure 2.10(a).

R ENEAN
URE J

[]ies

S SR

(a) MPGA base array (b) Connectivity Fabric

Figure 2.10: A MPGA logic tile layout, and a connectivity fabric of top metal layers

Table 2.1: Comparison of eFPGA, MPGA and standard cell logic design methods

0.18 micron CMOS eFPGA MPGA(eASIC®) | Standard Cell IC
Density (gate/mm?) 1.5K 30K 60K
Performance(MHz) 100 400 600

Power(nW/Gate/MHz) 1000 40 20-30

NRE (§) 0 30K 500K
Prototype TAT(days) 0 5-10 20-40

Table 2.1 [45], presents useful data on key features of eFPGA and MPGA technology that further
illustrates important differences between these embedded programmable logic solutions. For

example, the absence of reprogrammable routing in MPGAs makes them 20 times smaller than an

18

eFPGA of the same logic size. The Non-Recurring Engineering (NRE) costs and development turn-
around-times (TAT) for an eFPGA is more or less zero because a designer simply needs to load the
appropriate bitstream to get a wotking chip. On the other hand, designs with MPGA cores require
one or two metal and or via mask sets to program a core. In this case, IC manufacturing setvices are
needed and accounts for the NRE and TAT ovetrhead. The NRE costs and TAT for standard cell IC
(non-programmable) designs are even higher because all IC layers must be fabricated to realize a

working chip. However, standard cell IC designs have superior area, speed, and power efficiency.

An MPGA offers “static” ot one-time programmability that is suited to designs that do »o# require

“on the fly” reprogrammability for bug fixes, or hardware adaptability to changing standards. For

designers, who require reprogrammability, the ¢eFPGA is a better design choice, but as already

mentioned there are large area, performance, and power issues associated with this design approach.

2.2.3 Example Application: Bluetooth Base-band System-on-Chip

To illustrate potential applications of eFPGA and MPGA cores in a real chip design, we use a

Bluetooth SoC platform to show on-chip components that could be made hardware programmable.

Bluetooth is another name for the IEEE standard, 802.15, a 2.4GHz wireless radio frequency (RF)
communication protocol with an operational range of about 10-100 meters. A Bluetooth SoC
platform implements hardware and software components of the Bluetooth protocol as specified by the
Bluetooth Special Interest Group (SIG) [74]. As in most wireless SoCs, the Bluetooth SoC has a

microprocessor core, interface petipherals such as General Purpose I/0O (GPIO), system buses, radio

19

codecs, an RF interface and a dedicated ASIC core that implements the Bluetooth baseband protocol.

When fully implemented this SoC is a multi-million-transistor IC design with over 200 I/O pins.

Ry

MEMORY C:\j (_Z> CoPROC 1| |
CONTROL ARM7TOMI |

) IN eFPGA CORE

CoPROC 2

REGISTER

/

UART A
1IN eFPGA CORE

Q
o
14

IN MPGA CORE |i
i

|| CODEC,| RAM

/

BIUETOOTH CORE

Figure 2.11: A System-on-a-Chip platform that implements the Bluetooth Protocol

Figure 2.11 above shows a typical system level illustration of a Bluetooth SoC design. In this figure,
the larger blocks in the Baseband, such as the Link Management Controller (LMC), Radio
Frequency Interface Controller (RFIC), or radio encoder-decoder (CODEC) could be replaced with
one MPGA fabric. The LMC is a good candidate for programmability, because it changes as the
Bluetooth standard is revised. Furthermore, the RFIC and radio CODEC implementation depends
on the RF front-end chip and radio that a customer supports and so should also be adaptable.
MPGAs facilitate standards revisions and or product differentiation for customers because
stockpiles of unprogrammed chip die can be produced and then later programmed and repackaged
as needed. Using an eFPGA in this case would result in an unacceptably high area, power and speed
penalty. Instead, eFPGAs are best suited to small and medium functions like processor accelerators,
also known as coprocessors (CoPROC1 and CoPROC?2 in Figure 2.11) and perhaps low speed 1/O

protocols such as General Purpose I/O (GPIO) and Universal Asynchronous Receiver Transmitter

20

(UART). Accelerator eFPGAs can be used to speedup execution of parts of the Bluetooth software

Protocol Stack and I/O eFPGAs can be used to implement updated communication protocols.

2.3 Embedded Programmable Logic as an Intellectual Property (IP)

SoCs (like the Bluetooth chip) are not designed entirely by a single design team; instead, parts of the
chip are corﬁprised éf Intellectual Property (IP) obtained from third-party vendors. In other words,
parts of, and in some cases, the entire SoC, could be designed with in-house or third-party IP. The
aim of this paradigm shift, sometimes called the SoC revolution [07], is to boost productivity
through IP reuse. Productivity gains for derivative designs come from the ability to incorporate

pre-designed and pre-verified IP like MPGA and eFPGA cotes, into new designs relatively quickly.

In the IC design industry, there currently exists one way of embedding hardware programmable
logic in a SoC design such as the Bluetooth IC of Figure 2.11, namely, as hard Intellectual Property
or hard IP [41][44]. Mote recently in [02][14], a somewhat new approach for embedded
programmable logic design that was ﬁrét used in [01], was introduced as soft Intellectual Property or
soft IP. Since the focus of the rest of this thesis will be on embedded FPGA design, the following

sections, describe the hard and soft IP approaches within an embedded FPGA design context.

2.3.1 Hard eFPGA IP

The curtent approach for eFPGA usage is to purchase a core as a hard IP block from a vendor and
integrate the block into the design flow with the rest of the design circuitry. Hard IP implies that

the user cannot change the eFPGA design in any way because physical dimensions, speed, power

21

efficiency, and other characteristics are alteady fixed. The major advantage of this approach is that
the user does not need to design and build the programmable core or fabric, because a vendor has
already pre-designed a number of fabrics of differing sizes using structured, full-custom layout

techniques. Full-custom design techniques ensure that every hard eFPGA core is highly optimized.

However, in an effort to reduce design and support costs, hard eFPGA vendors offer as few
variations of the eFPGA core as possible. As a result, there are numerous sources of inefficiency or
underutilization. First, vendots typically offer a single eFPGA architecture that may not be ideal for
a particular application. Second, some eFPGA architectural parameters, such as the number of
inputs to a LUT, are determined by implementing a large number of proprietary benchmark circuits
and “choosing the one which gives the best performance on average”. While this approach makes
sense for potentially broad ranges of applications, it is not necessarily the best approach for a
specific application domain. Third, for a given architecture, the vendor can only offer a limited
selection of logic capacity or core sizes. For example, Actel’s Varicore [44] is offered only in sizes of
512, 1024, 2048, and 4096 four-input LUT. As a result, if the logic gate requirements just slightly
exceed a given core size, the user must buy the next-largest coré which is 2x larger. Fourth, the
smaller eFPGA cores are sometimes based on the same “layout tile” as the larger cores, leading to

unnecessary interconnect (touting) capacity for core sizes with fewer LUTs and logic capacity.

To illustrate these last two problems, the area overhead arising from having too many LUTs and too
many wires is shown in Figure 2.12. The x-axis is the desired number of LUTs for a given
application. The y-axis is the overhead or how much larger than necessary the smallest available hard
eFPGA cote is with logic and routing considered. As the number of LUTs needed increases along

the x-axis (including any spare LUTs the user may wish to reserve), the overhead decreases. Once

22

the logic capacity of a given core size is teached, e.g., 512 LUTs, the overhead drops to 1.5X (now
due to routing overhead only). However, if more LUT' are needed, the next larger size of eFPGA is
needed and the overhead jumps to almost 2.8X. The saw-tooth pattern in Figute 2.12 is repeated as

each eFPGA cote size becomes fully utilized and the next larger eFPGA core size is selected.

4.0 {

~ Underutilized LUTS + Routing
- ~ Underutilized Routing Only

N
(]
i

Area Overhead Factor
{unutilized capacity)

—

———
— — a———

-
(=

0 1024 2048 3072 4096
of LUTs Needed

Figure 2.12: An example of architectural inefficiencies in existing hard eFPGA IP

2.3.2 Soft eFPGAIP

Given the disadvantages of the hard IP approach, an efficient and less restrictive approach would
be preferable. A relatively new approach has been used to automatically generate an eFPGA fabric
within the ASIC design flow [01][02][15]. This is referred to as the soft PLC [02] [14] approach. The
main idea here is that an eFPGA architecture is desctibed in behavioral RTL using Verilog or
VHDL, and implemented alongside the rest of the user logic. Users implement the eFPGA using

logic synthesis tools that map the behavioral RTL to a standard cell library within the ASIC design

23

flow. ASIC place and route is performed as usual to create the physical IC layout. The main
advantages of this approach are flexibility and ease of use. Furthermore, this approach does not

restrict a designer to certain foundties, as may sometimes be the case with hard eFPGA cores.

Although the soft IP approach affords a designer much flexibility, significant inefficiencies exist in
this approach. For example, because this flow relies exclusively on logic synthesis for technology
mapping (mapping of RTL constructs to logic gates in a standard cell library) some elements of the
architecture are not efficiently built. For example, SRAMs that are used to hold program i)its in an
FPGA do not exist in standard cell libraries and so flip-flops (much larger cells) are used instead.
Similarly, mulu'plekers for implementing LUTs and éther large multiplexers in an eFPGA
architecture are built from discrete CMOS logic gates like NANDs and NORs. As a resﬁlt of these

logic implementation inefficiencies in soft IP, significant overheads in area, delay, and power occur.

Furthermore, there is no structure or regularity imposed during logic synthesis or layout of soft
eFPGA cores [02]. Consequently, it 1s possible that even identical repeated structures in the layout

have different path delays [14]. This is not necessarily a flaw, but it makes timing characterization of

eFPGA CAD tools more difficult. The tools and flow are made more complex because each timing

arc in the architecture must now be considered separately. In addition, wires may be longer than
necessary and thus increase delay. This is in contrast with the hard eFPGA IP approach that uses

architectures with well-defined repeated structures to simplify physical layout and CAD tool design.

Finally, although the flexibility and ease-of-use afforded by the “soft” eFPGA [02] [14] [15] design
methodology 1s highly desirable, design improvements that minimize the area, delay and power

overhead [01] [02] [14] associated with standard cell based embedded FPGAs are clearly needed.

24

2.4 Research Problem Definition and Thesis Research Focus

Following from preceding descriptions, hard aﬁd soft eFPGA IP design methodologies can be
viewed as two separate extremes of a design spectrum. On one extreme lies the hard eFPGA IP
methodology, based on full-custom design and with limited flexibility but relatively high density,
speed, and energy efficiency. On the other extreme is soft IP, which affords ample flexibility (due to
a semi-custom ASIC flow) but has much lower density, speed and energy efficiency relative to hard
eFPGA IP. Given these ptoblems with both ap.proaches, an optimum solution should aim to
combine their best features by: retaining the design flexibility afforded through design automation

(e.g. ASIC flow), and, at the same time, incurring significantly less area, speed and power overheads.

Following from the above problem description, the focus of this research is to investigate possible
improvements in the qua]ity (area, speed and power efficiency) of eFPGA circuits implemented
within an automated design framework. An automated framework such as the ASIC flow ensures
that the flexibility afforded by the soft IP approach is preserved. In addition, it has previously been
shown that the quality of standard-cell-based designs implemented with the ASIC flow can be
improved significantly through customization. For example, a study in [46] showed that the
replacement of generic standard cells with so-called “crafted” (architecture specific) standard cells in
a datapath circuit design reduced area and delay overhead factors to within 1.64 and 1.11 respectively
telative to an identical full-custom implementation. Furthermore, in [27] [68] [69] [70], an area

overhead factor of 1.36 relative to a full-custom implementation was reported using a flow similar to

the ASIC flow but instead using custom designed “FPGA-centric” ED.A tools and non-standard custom cells.

In this work, the ASIC flow is also used for eFPGA design and implementation. For this research,
an island-style programmable logic architecture has been selected as the reference platform because
such a choice has numerous benefits. For example, this architecture is the basis for most of the
programmable logic devices in use today, hence comparisons to commercial (full-custom) devices
are more relevant. Similarly, the CAD tools for this type of architecture are more Widespread and

mature (e.g., VPR tool) hence, they can be leveraged ditectly without any need for new CAD tools.

Next, the impact of tactical architecture-specific cells on the design quality of standard-cell-based
eFPGAs is investigated. In particular, after the island-style architecture has been implemented using
generic standard cells and the ASIC digital design flow, key sources of area, speed, and power
inefficiency are identified and improved through circuit desigﬁ and customization. This involves

creating new standard cells called tactical cells that can be incorporated in the ASIC design flow.

Futthermore, the implications of such an approach (as described above) for eFPGA IP design are
investigated. Specifically, design results obtained for a set of benchmarks are compared with results
that would be obtained if the same benchmarks were implemented using the hard IP approach. In
addition, two modules in an actual Bluetooth Baseband SoC, namely, the base-band frequency
hopping module and data encryption module are implemented in a standard-cell-based eFPGA.

This study gives an idea of the impact these eFPGAs can have on the area of a “real-world” design.
Finally, the ASIC flow was chosen for this research because it was decided that it would be useful to

fully investigate the appropriateness of existing ASIC tools for eFPGA design before embarking on

the expensive process of designing a new set of EDA tools for automatic eFPGA circuit generation.

26

Chapter 3

An Embedded Programmable Logic Architecture Family

3.1 Island-Style eFPGA Architectures

Any eFPGA design approach that is flexible (like the soft approach) must include a basic
architecture that is configurable. The popular island-style architecture provides such an opportunity.
Therefore, in order to explore the impact of configurable architectures on eFPGA IP design, this
chapter describes some variations of the island-style architecture so that area and speed tradeoffs can
be investigated over a set of benchmarks. The goal here\ is not necessarily to design the “best”
architecture because this is to some extent a function of the application domain [01}[03]. Héwever,
there are cases where there exists a clear advantage of one architecturé over another. For example,
data in [20] suggests that the area of LUT-based islana FPGA 'architectures could be improved by
making the routing interconnect directional rather than bidirectional. Implementing this, and other
potential eFPGA architectures, is beyond the scope of current work since we focué on block-level
(lower level) architecture optimizations. Architecture optimizations of the kind presented in [20] are
left to future research work. Consequently, the eFPGA atchitectures presented in the following

subsections are really detivative architectures of the well-known island-style FPGA architecture.

The research work presented in this section focuses on switch element circuit design (switch block
design) as well as resolving some problems normally associated with programmable logic design and
implementation, such as I/O design, design for ‘testability issues, and power-up issues. The

putpose of tevisiting some of these issues is to determine if any improvements can be made with

27

better circuit design. In addition, the total cost and overhead due to these architecture components

can be propetly assessed when more typical design considerations are taken into full account.

3.1.1 Bidirectional Routing Architectures for eFPGA design

In this section, four detivative architectures with bidirectional routing tracks are presented. The
architectures differ only in the switch used in the switch-block. These architectures are suitable for
implementing sequential and combinational circuits. The first architecture uses tri-stated routing
switches [11]; the second uses a multiplexed switch from [49], the third and fourth are based on

novel multiplexed switches that wete designed to improve the speed of the original design from [49].

Figure 3.1(a) shows a tile architecture based on tri-state routing switches [11][49]. As the enlarged
Figure 3.1(b) shows, each potential net route is controlled by a tri-state buffer pair. If a net is routed
from left to right across a switch, only one of two tri-state buffers (highlighted by the circle in Figure
3.1(b)) in that path can be turned on or enabled. The other buffer must remain turned off or else a
local combinational feedback loop will be created. Therefore, for every active route through the

switch, only one tri-state buffer is turned on. If no net is routed, both buffers in a pair are disabled.

A .’i. switch

o
H 1 &f

TR A

€ cL8

5 e L (O] od] od

Ty ey | e
5 iz
I ok BLE 'S

(a) tile with switch (b) switch details

Figure 3.1: An island style eFPGA tile architecture with tri-stated routing switches

28

The Jogic architecture of the second derivative architecture shown in Figure 3.2(a) is identical to the
tri-buffered island architecture in Figure 3.1(a). However, the routing architecture is based on the
multiplexed-switch presented in [49]. Each of the four multiplexers in this switch element routes a
net from one of three possible inputs to a foxrth and different direction. For example, in Figure 3.2(b),
a multiplexer and buffer pait (mux-buf) on the right side of the switch element (highlighted by the
circle in Figure 3.2(b)) can route nets from either the bottom, left, or topside of the switch to the

right output. The unused (floating) multiplexer inputs in Figure 3.2(b) can be tiéd to ground [20].

RS

(a) tile with switch (b) switch details

Figure 3.2: Island style eFPGA tile architecture with multiplexed routing switches

Figute 3.2(b) also shows that a net routed from left to right (or from any of the other two valid
sources) must traverse two levels of a pass transistor tree network and buffers before exiting. When
compared to the tri-buffered switch presented earliet, this architecture would have a higher delay
ovethead due to the NMOS pass-transistor multiplexing logic. However, previous work [49] showed

this design to be mote area efficient. These tradeoffs are examined further in the next chapter.

29

The architecture in Figure 3.3(a) is based on a no;r'el>sw'itch element called “Improved multiplexer
switch 17, It is similar to the original multiplexed switch presented earlier but with some important
modifications. As in the previous design, each of the four multiplexers in this switch routes a signal
from one of three possible directions to a fourth direction. The difference here is that nets routed from
left to right (or vice-versa) and from top to bottom (or vice-vetsa) across a switch are faster because
multiplexing logic is bypassed. Therefore, any critical nets that are routed vertically or horizontally
across several tiles in an eFPGA would have reduced delay. However, there is now an extra tristate

buffer for each of the four exit routes in a switch, and this contributes to the switch area overhead.

................. Py :—m\ Té_(zl_\
CEi
° 3 e ?switch §
if i ‘ fast
® iy s S o —
1 . i) N oo 2
i E ¥ [o4 i
6 m@@-a—s Saal
7 FLOP Q‘ 1
e o . '
Nz i =
T @CLK ELE.e Py) [a) zji“{%
Chystn, T Lg g i §:> }Q'-
(a) tile with switch (b) switch details

Figure 3.3: Island style eFPGA tile with improved multiplexed routing switch 1

Figure 3.3(b) shows that a smaller delay overhead would be expetienced by a net routed from left to
right in the new multiplexed switch compared to the original switch design in Figure 3.2(b). For
example, a net routed fr_om left to right across the switch experiences a single tri-state buffer delay
(circled in Figure 3.3(b)) by completely bypassing the extra multiplexer delay overhead. The same is
true for the reverse route (right to left) and also for vertical routes (top to bottom and reverse).
Only routes changing direction (e.g., turning from top to left) incur a multiplexer delay overhead.

Furthermore, only a single level multiplexer is used and this results in a smaller delay overhead.

30

A second novel switch configuration called “Improved multiplexer switch 2 was devised to reduce the
area overhead of the previous design and improve the speed of the original multiplexer switch
architecture [49]. In the novel tile architecture shown in Figure 3.4(a) below, an attempt is made to
combine the area efficiency of the original multiplexer switch design with the speed of “Improved
multiplexer switch 2”. In particular, it was observed that the speed of the original multiplexed
switch could be improved without any area penalty, simply by rearranging internal roﬁtes. To
achieve this, an “unbalanced” NMOS pass transistor network can be constructed as shown in Figure
3.4(b). Similar to the previous novel switch design, horizontal and vertical routes are connected to

the “fast” route through the pass-transistor tree network, thus speeding up these switch routes.

(a) tile with switch (b) switch details

Figure 3.4: Island-style eFPGA tile with improved multiplexed routing switch 2

31

3.2 Architectural Issues

During architecture specification, a number of practical design issues were considered so that this
design could be used in an actual SoC implementation at some point in the future. These issues
include I/O design, design-for-testability (DFT) issues and configuration SRAM powet-up issues.

In the following subsections, each problem is described and possible design solutions are presented.

3.2.1 Input/Output Design

In stand-alone FPGA chips, an I/O pad ring sutrounds the programmable core as shown in Figure
2.9. The large size of these pads means that the number of I/O on an FPGA device must be kept
somewhat low in order to save area. In embedded FPGAs, these large I/O pads are not needed and
therefore more I/O can be included without any significant increase in cote area or delay. In fact,
eFPGA I/0O are simply tiny metal segments around the core edges that serve as “contacts” for
external nets. It is irnportant. for eFPGA fabrics to be rich in I/O because some applications may
be very I/O intensive compared to their logic size. It would be undesirable to select a much larger
eFPGA fabric simply to gain access to rﬁore I/O. This is a problem that standalone FPGA users

sometimes face. Moreover, any unused I/O in the eFPGA adds very little to the area overhead.

In a typical implementation of a generic island style FPGA architecture [11] [13] [49], I/O pads are
connected to the channel routing tfacks via progtammable pass-gates (shown as darkened circles in
Figure 3.5(a)). Figure 3.5 is a section of the left edge of the programmable device shown earlier in
Figure 2.9 where “pq1” and “pw0” are CLBs. The temainder of the shaded rectangles in the figure

such as “pn”, and “out:pql” are input and output pads respectively. The pass-gates used to connect

32

I/O pads to the routing channel contribute to the area overhead, and their number increases as the
numbet of connections, routing channel width (W), and number of I/O increase. To avoid this, the
embedded FPGA I/O need to be redesigned in a more area-efficient manner. Rather than have
extra logic like pass gates to connect I/O to routing tracks, the switch-blocks around the edges of
the embedded FPGA could be used to implement the I/O. This is possible because some of the
logic in switch-blocks around the edges of an FPGA chip are unused (after place and route). For
example, Figure 3.5(b) is a section of th'e left edge of the placed and routed device in Figure 2.9(b). In
Figure 3.5(b) no nets are routed to the /&ff of the switch-block (the switch-block is the region
enclosed by dashed lines). Similarly, along the #9p edge of the lFPGA (refer back to Figure 2.9(b)), no

nets are routed to the fopside of the switch blocks, and likewise for the bottom and right edges.

prog ramm%i
pass gates

AN

i

(ai I/O p;ss gate connectors

Figure 3.5: Programmable I/0O pad connections and unused switch connections

As a result, unused “free” routing logic in the switch blocks around the edges of the FPGA could be
used for routing I/O. Typically, an external input such as “I” in Figure 3.6(a) would be routed into
the tile via the programmable pass-transistor that connects to routing track “2”. Similarly, an
external output such as “O” would typically be routed through the pass transistor that connects to

routing track “0”. Assuming that the tile in Figure 3.6(a) is situated on the top edge of an eFPGA

33

fabric, there would be no reason to route any nets, except external nets, through the top edge of the
switch-block. Figure 3.6(b) illustrates how the connectivity for input “I” and output “O” could be
implemented using the “free” routing légic along the top edge of a switch. As shown, the external
input “I” can be routed from the top port of the switch element that controls routing track “2”
because the top port is unused. Further, this signal can exit from the left port of the same switch

(see Figure 3.6(b)), since this segment of track is already “reserved” for input “I” in Figure 3.6(a).

Lo
unbised rout
2 \

~— .
1

i
rgutes “I" onitrack 2 W

______ ot o
I 18 roytes “O” externally

3 BN N Py) 2

(a) typical design (b) novel design

Figure 3.6: Equivalent external input routing in standalone and embedded FPGA

Similarly, as shown in Figure 3.6(b) the external-output “07, is driven by a net that is r01l1ted from
the left port of the switch element on routing track 0 to its top pott (the external output). This nove/
design approach eliminates the need for the programmable pass-transistors used in Figure 3.6(a)
which contribute to the area overhead in standalone FPGAs. In essence the I/O logic in Figure

3.6(a) has been “squeezed” into a single switch block in Figure 3.6(b) due to reuse of “free” routing.

However, the I/O implementation described above places a restriction on the eFPGA architecture.

In particular, there can be no overlapping IO connections., For example, as shown in Figure 3.7(a),

34

in a typical FPGA I/O implementation, extetnal inputs and outputs can have overlapping
programmable connections to the routing track since both will never be enabled at the same time.
Thetefore, if input “I” is driven on routing track 1 (via pass gate), then output “O” cannot be driven
on track 1 (pass gate is disabled to prevent signal contention). In the new design in Figure 3.7(b),
such overlaps would always lead to signal contention because there are no programmable pass gates
to use to isolate external nets from each other. To see how this occurs, consider that in Figure 3.7(a),
“I” can potentially be driven onto tracks 1 and 2, and so in the equivalent novel implementation in
Figure 3.7(b), the output of the tri-state on the topside of the switch on track 1, would be “wired” to
the output of the tri-state on the topside of the switch on track 2. Regarding output “O” which can

connect to track 0 or 1, the outputs of the respective topside tri-states would be “wired” together.

A A

1 O) .
Vf’ o\verlapping connecti
!

PV

N

o
-

Ao
signal

1N

L

= 1 2
(a) no 1/0 contention (b) /0 contention

Figure 3.7: A limitation of the novel embedded FPGA external I/O architecture

Notice from the above desctiption of the novel I/O implementation in Figure 3.7(b), that “I” and
“O” are actually “shorted” due to their shared connection to the output of the tri-state on the
topside of the switch on routing track 1. Basically, the outputs of all tri-states circled in Figure 3.7(b)
are shorted together so that signals “I” and “O” ate driven on all three tracks. This clearly leads to

signal contention. Therefote, only non-overlapping connections such as in Figure 3.6 can exist.

35

3.2.2 Design for Testability

Oﬁce a chip with an embedded FPGA 1is fabricated, it must be tested along with other blocks on the
chip. In particular, it should be possible to test the embedded FPGA fabric in isolation, as well as
within the context of the chip in which it is embedded. For testing to be successful, the embedded
fabric itself must be designed to be testable. Otherwise, it will be difficult to determine whether it
functions as expected. Testing an eFPGA core involves testing the logic, routing, and configuration
architectures. However, a configuration architecture that is testable is of crucial importance, because
if correct eFPGA configuration cannot be assured, then logic and routing architecture tests become

meaningless. Therefore, in this work a configuration architecture that is testable has been designed.

A testable design must be both controllable and observable. Control is needed to put the design
under test into a desited state, and observable nodes or outputs are needed for comparison with
expected results; Therefore, techniques and structures that facilitate controllability and observability
during configuration are necessary. Figure 3.8(a) is a high level illustration of the main parts of a
design solution. The serial input (SI) is used to load program and address bits. The address shift
register (SR) 1s used to shift in row and column addresses. Row and column address decoders are
used to assert word-lines (WLO, WL1, WL2) and column lines (CLO, CL1, CL2) based on target row
and column addresses. Clock gating logic in each tile (not shown) is used to turn on or off clocks to
configuration flip-flops based on the target row and column addresses. All configuration flip-flops

are also linked in a shift chain that can be routed through a multiplexer to an external output (SO).

36

) — Q1
WLO RN A\ e P
\Z'LN/*;;.M J\L"F'&LJ‘. J
J M cu L
WLT tileyselebtion logic N
g E L program bit se Q2
2 SN L : ”
8 & T \J
Q.
o
w2 i 3
L Q3
B N ’j’ﬁ:j} »
| Y SO
SISRIT-sI | B T =L
L. column decoder generates CLO, CL2, CL3 A P Si*
(a) Decode Logic : ~ (b) Normal Mode
- o1 S v . .. "Eﬂ
T g j e N0
j}ﬂ“ 1 r@j\ N { RS §4
[o j : SEK T RO T CLK
| o o JIL | N ?
CLK NN |
| ' Q2
g\ ﬂ ! ;") sram) sram
i I o
{vrﬂi """ * r : program teadback port
c L 1 e ML
bt sram sram sram
Q3
A e 4 o
DT =y ey ey
g, CLKTUM_ ; | 1 W ==-{ sram g—r - sram %,ww -»L‘{sram "
CLK s " i
(d) Fail-safe mode (c) Read-back mechanism

Figure 3.8: An embedded FPGA IP configuration architecture designed for test
The contents of the address shift register can also be routed to SO. Q1, Q2, and Q3 (highlighted in

Figures 3.8(b) and 3.8(d)) ate serial outputs of the programming shift chain of their respective rows.

Finally, a finite state machine controller (not shown for simplicity) is used to arbitrate configuration.

This architecture facilitates control and observation during testing of the configuration architecture.

For example, a row‘ decoder activates the v‘vorq—line [56] of a target row of tiles based on a row
address, and tile selection logic in each tile (simplified in Figure 3.8(a)) decides which tiles can be
targeted for programming. Figure 3.8(b) shows a single row being targeted for programming (top
row); hence, only the clock in that row 1s activated during programming. Individual tiles can also be
targeted for programming. Serial outputs from each row (Q1, Q2, Q3) facilitate observation of the
configuration bits for correctness because the program bits for each row can be shifted in, and then
shifted out and analyzed. Also, SRAM storage cells could be programmed and then read (see Figure
3.8(c)) to ensure proper functionality. A similar approach called read-back is used in commercial
SRAM-programmable logic devices [56][57]. Also, the scan output in the proposed architecture,

SO, allows the output from the programming shift chain, or address shift register to be analyzed.

To conclude, there are two modes of operation in the proposed configuration architecture: normal
mode and fail-safe mode. In normal mode, the finite state machine is functional and program bits
can be loaded into tiles individually or in rows. In fail-safe mode, the finite state machine is not
functional (also deactivated), and so a single shift chain is used for programming and all shift
registers are activated during configuration (Figure 3.8(d)). The output of this shift chain can be
observed at SO in fail-safe mode. In essence, this design is robust enough that limited testing of the

configuration architecture can still continue even if the configuration state machine is not working.

3.2.3 SRAM Power up State

The embedded FPGA architectures used in this research have bidirectional routing, which in our
case means there can be multiple potential divers per routing track. In order to prevent contention,

these drivers are tri-stated. Furthermore, after configuration, there can be just one driver per active

38

(driven) routing track. In other words, the SRAMs or flip-flops that are used to enable or disable
these tri-state drivers must hold the approptiate values. However, upon power up, and prior to
configuration, it is impossible to know what value the configuration cells (flip-flops or SRAMs) will
hold initially [56]. It is important to consider this because a situation could arise‘where all potential
drivers of a tri-stated routing track are enabled and driving opposing logic values on a routing track
(denoted by “X” in Figure 3.9(b)). This can create high-current short circuit paths from powet to
ground .through the tri-state devices. Such high current paths through transistors can cause
itreversible damage and résult in a bad chip (unusable routing tracks). Therefore, as a safeguard, it is
necessary to disable all tri-state drivers upon power-up. One possible solution is shown in Figure
3.9(b), where a NOR gate is used to disable all the tri-state drivets upon power-up. One input is set
to a high value (depends on the polarity of tri-state enable input) so that when the chip is powered
up, this signal is asserted and the tri-state enable logic disables all tri-state buffers. The other input

from the SRAM/Flip-flop (“0” input in Figure 3.9(b)) has no control over the tri-state buffer.

— ?{i AT
YT L)
y @‘—Wf_)g 44| e 8

| P X B TR 7
o <om |
|t BT
cix BLE Gik BE

(a) driver contention (b) no driver contention

Figure 3.9: Logic to prevent driver contention in bidirectional routing architecture

Once a circuit 1s programmed onto an eFPGA fabric, the SRAM value becomes the controlling

input to the NOR gate. The other input is set to alogic “0” value and becomes non-controlling.

39

Chapter 4

Island-Style eFPGA Design with Generic Standard Cells

4.1 The Existing Design flow

Given the eFPGA architecture design specifications described in the preceding chapter, the next
step involved implementing the architectures using generic standard cells [01][02][16] and the ASIC
flow. Although other programmable logic architectures have previously been implemented in this

way [01][02][16], the atchitectures desctibed in Chapter 3 wete selected for a number of reasons.

First, it has been observed in previous work [02] [14] that there are limitations on the size of circuits
that can be implemented using existing architectures. Therefore, it would be useful to compare the
programmable logic architectures described in the previous chapter with the previous approaches to

determine if it has similar limitations o is suitable for implementing circuits of much larger designs.

Second, there is the issue of combinational logic loops in standard-cell-based eFPGAs [02] [17] and
its impact on ASIC-flow-based eFPGA design. Combinational logic loops occur when the output of
a combinational logic block or gate is also one of its inputs. Combinational loops (in most cases) are
an indication of a design error. In an un-programmed eFPGA combinational loops may exist
(depending on the architecture) but afte; configuration combinational loops should no longer exist.
Traditional ASIC CAD tools are not equipped to handle such loops (whether due to a designer error
ot otherwise), and so these loops are “broken” by the ASIC tools, in ways that could affect the
accuracy of timing estimation during logic synthesis and optimization. Furthermore, this problem

also implies that architectqres of the type described in Chapter 3 will be affected because the

40

potential for combinational loops exists. Architectures described in previous work have either
designed such loops out of their architectures [02] with some loss in flexibility, or implemented dual
routing networks [17], all of which have resulted in some area penalty. Thetefore, the architectures

used in this research provide an opportunity to investigate alternative solutions to this problem.

A third reason for using the architectures described in Chapter 3 is their regular and modular
structure. This makes them well-suited to optimization experiments that will be carried out as part of
this work. For example, it is possible to change the routing architecture of an embedded

programmable logic fabric that uses one of these architectures by simply swapping switch blocks.

Fourth, since these architectures. are modeled on the island architecture, it is possible to leverage
existing FPGA CAD tools in this work. For example, CAD algorithms in the VPR CAD tool suite
are well-tuned for island-style architectures since the original version of the tool targeted this kind of
architecture. As a result, little or no FPGA CAD tool redesign is necessary. Furthermore, several
recent enhancements to this tool have also targeted island architectures. For exarﬁple, the power
model in [26], and the power-aware algorithms in [28], all tatget island-style architectures. Although
power is not the focus of this research, it would be straightforward to investigate power issues with
these eFPGA architectures and the new power-aware FPGA CAD tools. Likewise, a version of VPR
using 0.18-micron CMOS process data for area and speed characterization was developed in [49].
Since all of the research data presented here will be based on 0.18-micron CMOS process

technology data, it is possible to leverage this new version of the VPR CAD tool in this research.

41

Fifth, a stated future research goal is to have a collection of different “parent” architectures available
so that the most suitable architecture or its derivative, can be selected for a given domain

application. The derivative architectures presented in this research work contribute to this effort.

The ASIC design flow used in this work consists of a Front-End flow and a Back-End flow (shaded

parts of Figure 4.1). An ASIC flow using generic standard cells for eFPGA design is described next.

) S T

——

Design data |generic cellsjI Design data
~ -

——

7 eFPGA gate—level

—_——_—_—— /__s

eFPGA | _ f____>
— | bitstream :
~

-

f
{CADI

—— e -

<> S
Design data | bitstream) Design data
N -~

Figure 4.1: Typical flow for semi-custom cell, block, and core based ASIC design

4.1.1 Front-End Flow

Referring to the eFPGA ASIC design flow in Figure 4.1 [14], the “Front-End” flow consists of logic

synthesis of an RTL description of an eFPGA atchitecture, and its gate-level functional verification.

The RTL hardwate description of the architectures described in the previous chapter preserves
many of the user-definable parameters that exist in a generic, clustered island-style FPGA

architecture [11][49]. In particular, the cluster size (N), look-up-table input size (K), track width (W),

42

core dimension (number of regular tiles per column and row), and BLE input and output track
connections can be specified as generic statements in the eFPGA RTL description prior to logic

synthesis. Consequently, fabrics with valid combinations of these parameters are easily implemented.

The RTL description of a given eFPGA architecture is converted to a netlist of logic gates using
logic synthesis tools. These tools map RTL descriptions of eFPGA architectures written in Verilog
or VHDL to a gate netlist based on a library of generic standard cells [74]. The end result (gate
netlist) depends on the specific synthesis constraints. As a result, in this research, synthesis scripts

were parameterized so that constraints are automatically updated based on architecture parameters.

Gate level functional verification occurs after logic synthesis to ensure that the synthesized gate
netlist functions as expected. Gate-level functional verification of an eFPGA fabric requires more
effort compared to other kinds of logic since programming bits are also needed in order to test the
design. Prior to programming, an eFPGA gate netlist does not perform any specific logic function.
FPGA CAD tools are used to generate programming bits from place and route data of target or
example user circuits. As shown in Figure 4.1, generating eFPGA programming bits requires an
FPGA CAD [11] [28] flow. In the flow shown in Figure 4.1, VPR [1 1][50] is used for circuit
placement and routiﬁg on a given eFPGA architecture. Final placement and routing files for each
circuit are also generated by VPR. After the placemént and routing netlists for target user circuits
have been generated, specially designed scripts are used to parse these files and generate the

programming bits needed for the eFPGA gate netlist configuration. Once the eFPGA gate-level

netlist has been programmed and verified, the back-end design phase of the ASIC flow can begin.

43

4.1.2 Back-End Flow

Back-end ASI‘C design begins with the placement and routing of a verified gate netlist generated
during Front-End design. Back-end design or physical design as it is sometimes called, uses physical
geometries of logic cells in an eFPGA gate net]ist‘as well as timing constraints, to achieve the best
possible placement of cells within a specified core area. Additional cells not included in the original
gate-level netlist may also be included for clock tree optimization as needed. Routing tools connect

gate/cell pins with metal lines after placement, based on gate/cell connections specified in a netlist.

After routing, the geometries (width and length) of all wires in the soft eFPGA design are known
and so their impact on speed can be estimated using technology data, extracted RC values, and
static timing verification tools. As previously reported in [14], static timing verification of
_programmable logic architectures presents a unique set of challenges depending on the kind of
architecture. As shown in Figure 4.1 programming bits generated from FPGA CAD tools are
ptreprocessed into urnmg exceptions that aid static timing verification. Although not shown in Figure
4.1, gate-level functional verification is also performed using extracted RC values after routing. The

Back-end flow proceeds as usual after static timing checks and post—rouﬁng functional verification.

4.2 Design Flow Issues and Solutions

The implementation of ¢FPGAs using the ASIC flow in Figure 4.1 led to a number of CAD and

design problems. In the following sections we describe these issues and attempts to resolve them.

4.2.1 Combinational Loop-back

Combinational loops in digital logic cause difficulties for ASIC tools and should be avoided.

44

Likewise, in embedded FPGA architectures, these loops should not exist. However, prior to
programming, an eFPGA fabric is a network of several potential connections. Therefore, it is
possible for combinational loops to exist. If after programming, combinational loops still exist in an
eFPGA fabric, there is either a fault in the eFPGA design, or an invalid configuration bit-stream has

been loaded, or a bad design that contains such loops has been implemented on the eFPGA fabric.

During logic synthesis of thé 1sland-style architecture numerous combinational loops were detected.
This was not unexpected since the eFPGA architectures described in the previous chapter contain
potential combinational loop-back paths. As shown in Figure 4.2(a), the potential for combinational
loops exists because each BLE outpﬁt (output of H) is also a potentzal input to itself (via the local
routing multiplexer, M). In Figure 4.2(a), the output of the LUT (combinational logic) is selected by

the output selection multiplexer H and then fed back to the LUT input selection multiplexer M.

Combinational Loop Registered feedback

FLOP FLOP
]
D L
D
LUT r Q H LUT ['JQ H
CLK . CLK
(a) combinational loop (b) sequential loop

Figure 4.2: Combinational and sequential loops in an island-style eFPGA tile BLE

This multiplexer could porentially drive this input to the LUT output (the original “starting” point).
This is a combinational loop path because a series of combinational logic paths form a loop with no
distinct starting and endpoint.’ In contrast, the path in Figure 4.2(b) is not a combinational loop path.

It is a sequential loop path with distinct starting and end points because no timing arc or path exists

45

from the input D to output Q of the flip-flop that separates them. Unlike the combinational loop of

Figure 4.2 (a) this loop has a distinct starting point, Q, and endpoint, D as shown in Figure 4.2(b).

Furthermore, in switch elements, the existence of signal paths from the output of a driver to its
input as shown in Figures 4.3 is also another pofential source of combinational loopé, because similar
to the example described above, stérting and end points fqr these timing paths are indistinguishable.
.. Therefore, such paths are ;:11;0 repo;ted as. combinational loops by the ASIC design tools during

logic synthesis, because the eFPGA fabric has- not been programmed at this stage of the flow.

0

Figure 4.3: Example of comB_in_ational loops path in a multiplexed routing switch

The existence of combinatioﬁgl loops during eFPGA logic synthesis is a problem because synthesis
tools use automatic loop breaking techniques during logic optimization. This happens because
certain tools require combinational-loop-free logic to dperate propetly. Unfortunately, somewhat
arbitrary rules are used to break'tlixe loops. As a result, timing paths are created with new and
sometimes optimistic timing constraints [75].. Therefore, logic optimization steps, such as gate sizing
couid be affected (e.g., a gate with a weaker drive strength could be §elected, which results in

slower logic). Ovetly pessimistic constraints could also lead to larger gate sizes and increases in area.

46

In order to prevent automatic loop breaking during iogic synthesis and eliminate its possible
negative side-effects on timing optimization, p;':lth exceptions can be set to exclude potential
combinational loop paths-from considération during optimization. Fbr example, setting the select
input of the twé—input multiple.xer, H, in Figure 4.4(a) to a high logic state during synthesis, ensures
that only the registered LUT output is assumed to be the valid multiplexer inplut during logic
optimization. This is achieved by forcing one of the inputs of the OR-gate (see Figure 4.4(a)) to a
high logic state. In essence, a sequential loop like that shown in Figure 4.2(b) is created. A similar

approach is used to eliminate automatic loop breaking in switch elements as shown in Figure 4.4(b).

D Dl Q

NS CLK2
1 3

0
11 | A
Q

LUT J H D ¢t1 1}
] s :
CLK1 CLK2 ¢k *“1” CLK2(
(a) eFPGA tile BLE (b) eFPGA tile switch

Figure 4.4: Technique to avoid loop breaking during synthesis and verification

Of greater significance is the effect that combinational loops have on soft eFPGA gate-level
verification. Before gate-level functional simulation ;:an begin, the embedded FPGA must first be
programmed with bits that implement the desired logic function. However, during programming,
the logic value of the configuration flip-flops changes several times as the configuration bits are
;hift;:d into the fabric (configuration memory in standard-cell-based eFPGAs is implemented as a
shift chain of flip-flops [14]). Thus, it is almost certain that the fabﬁc will be forced into a number of
invalid states before programming is complete. It was observed during programming thatAsome of
these invalid stateé created combinational loops in the eFPGA similar to those described earlier.

ASIC logic simulators cannot resolve such loops and will terminate if combinational loops exists.

47

Whén a gate netlist functional simulation terminates due to combinational loops, even before the
eFPGA fabric under test has been programmed, the fabric cannot be verified. This implies that
eFPGA architectures of the kind described in the previous chapter cannot be re/iably implemented in
the ASIC design flow. This is not desirable, because all designs must be verifiable prior to
committing them to silicon. It is also not advantagéous to exclude this class of eFPGA since most of
the high performance FPGA architectures in use today incorporate some of the same features that
cause problems for the ASIC verification t;)ois. Furthermore, this problem could restricfdesigners

to unidirectional routing architectures of the kind described in previoﬁs work [02] [15] [16] [17].

A technique similar to the one used during logic synthesis (see Figure 4.4) is used to prevent the
occurrence of combinational loops during gate-level functional verification. However, in this case,
an actual port or pin must be added to the eFPGA fabric so that its value can be set appropriately.
This global input controls the NOR-gate in?ut ﬁot- driven by a flip-flop m Figure 4.4. As a result, it

1s possible to mask flip-flop transitions that cause combinational loop paths during programming.

To summarize, the implications of this rather simple solution to the combinational loop problem are
quite significant. It guarantees that all programmable logic architectures with potential
combinational loop-back paths can now be iinplemented using the standard ASIC design tools, and
with no impact whatsoever on the choice of routing architectures. For example, there should no
longer be any need for a dual interconnect tree (c'ovstly in area) described in [15] to cope with the
existence of potential feedback paths. Furthermore, it. should now be possible to implement a more

optimal central interconnect switch matrix for the product-term architecture presented in [15] [16].

48

4.2.2 Architecture Discrepancies

As shown in Figures 3.6 and 3.7, the I/O design for an émbedded FPGA is different from a
standalone FPGA. However, the VPR CAD software that was used in this research assumes a
standalone FPGA chip. Therefore, there is an I/O mismatch between the eFPGA architectures
used in this work and the architecture that VPR supports. A normal solution to this problem would
be to change the CAD software for VPR and adapt it to the different architectures we have
implemented. However, a different solution was developed that involved “mapping” between the
architecture assumed in VPR, and the architectures that were implemented. For example, because
the original VPR software routes external nets to I/O pads via programmable connections as shown
in Figure 3.6, the problem was to find the equivalent routing solution in our eFPGA architectures
because edge switch blocks are used to implement our I/O. All such mappings were incorporated in

configuration-bit-stream-generation programs that were implemented as patt of this research work.

4.2.3 Static Timing Exceptions

Static timing verification is an essential part‘ of the ASIC design flow. However, as pointed out
earlier, programmable logic arcilitectuxes are unlike other kinds of ASIC designs. For example,
before static tining veri.ﬁcation’of an eFPGA can commence, the eFPGA netlist must first be
“programmed”. This cannot be done in the same way as during functional verification because the
static timing verifier is not a simulation tool and does not create' a hardware model of the logic
design like a functional simulator can. However, it is possible to “prograrn”.an eFPGA gate netlist
using built-in commands for enabling and disabling timing paths during static timing verification.

This is essentially what happens when an eFPGA core or fabric is programmed with a bit-stream.

49

In collaboration with [14] a technique was devised to translate programming bits into explicit static
timing exceptions. However, the architectures used in this work have more complex routing
architectures, and it is nontrivial to incorporate these timing exceptions in the timing flow. Another
solution was to update the timing of the netlist after less explicit timing exceptions have been
applied, so that the timing database for the netlist is current. This technique was adequate for smaller
benchmarks but not for large benchmarks. Instead, for these larger circuits (>1000 LUTs), the
strategic use of the more explicit approach developed with [14] and described therein, completely
eliminated false timing from timing reports. More specifically, applying stringent exceptions to the
input and output connection blocks alone was sufficient. To confirm this, path delay reports from
the ASIC tools were compared with those from VPR to ensure the paths were true paths and not

false paths. For example, in Figure 4.5 the VPR-calculated critical path starting at “1” and ending at

“6”, matched exactly the critical timing path reported in the Primetime® static timing analysis tool.

A E S E EL &
AR R S RN
ﬁﬁﬁgﬁﬁf&;&@ ==
ZE EEREE B E zqm
gmgggu o B L
A CIEECEENCECMC wCRCR=

HYE RO RS o

NiEBEEEE SR =T O

M OE EE B OB S
._fzzux B ek

OE B E B E 8|z m =

B H = Cpl)

2 B R EEE RS S

Figure 4.5: VPR critical timing path trace for “golden-20” benchmark circuit apex4

50

4.2.4 Configuration Power

The configuration architectute of an eFPGA is used to load and hold the configuration bits that
implement a particular user function. As mentioned in Section 2.3.2, the use of flip-flops rather than
SRAMs for program storage is very costly, because flip-flops are larger and several are needed.

Furthermore, the large number of flip-flops in eFPGAs also requires’ a large net;x/ork of
conﬁgmaﬁon-related signals that are spread throughout the eFPGA. For example, it is expected that
the clock network for the configuration ﬂip—ﬂopslwi]l be quite extensive, and the results in [14]
suggest that this is the cas;:. This has implications for power dissipation in the clock network during
programming. In addition, the programming scheme used in an architecture implementation also
affects power dissipation. For example, in [i4], a single shift chain of flips-flops was used to
implement the eFPGA programming architecture. This approach forces all flip-flops in the chain to
be clocked for the entire duration of the configuration phasé. This means that all the flip-flops, and

their entire clock tree network, could potentially draw large currents from off-chip power supplies.

o nops T T ...veeT o sope T etons I Niosons 7
l';\uu.\ “;,\ “T\ '?\CCK - CLK - CLK
Y J W“l SEp? i ' 07 b)
je g | et [reeclli g e
hit Su i N a ht 28

H

T \R T VDDTg

ciock*gaupgdogicw

-Hile-clocktree Joa

(a) single tile programmed (b) entire row programmed

Figure 4.6: Proposed configuration scheme targeting a single tile and row of tiles

51

In order to make soft eFPGA configuration more power efficient, two schemes were proposed that
ate somewhat similar to the approach used in commercial SRAM-programmable FPGAs [56] [57]
(see also Figure 3.8(d)). In the first scheme shown in Figure 4.6(3.), a single tile in the soft eFPGA
can be targeted for programming so that only the clock network and configuration flip-flops for that
tile are activated during cqnﬁguration (see Figure 4.6(a)). In the second scheme shown in Figure
4.6(b), a single row of the embedded FPGA can be programmed. Again, this means that just the
clock network and configuration flip-flops for the target row are activated during programming.

Individual rows or tiles are targeted for programming until the entire eFPGA has been programmed.

- Clearly, the first scheme is more power efficient since only the capacitive loading on a tile clock tree

network and the total current (data dependent) drawn by all the flip-flop in the active tile contribute
to power. However, as the number of flip-flops targeted scales upwards from a single row to one

“gobal” program shift chain, power and energy increase. The programming time is roughly constant.

Another disadvantage of using flip-flops for eFPGA configuration storage is the likelihood of glitch
power dissipation. GIitches are rapid transitions that occur at the outputs of combinational logic in
response to changing inputs. Because flip-flops mth1s configuration scheme are part of a shift chain,
there i1s a good chance that the state of each flip-flop will toggle several times before the end of
configuration of a single eFPGA tile or row. Some of these ﬂip-ﬂops are inputs to combinational

logic and as such will cause transitions to occur at combinational logic outputs during configuration.

52

M1 GLoBAL E..

LUT

%7
CLK1 CLR CLKZ2

Figure 4.7: Proposed scheme for glitch isolation during soft eFPGA configuration

Figure 4.7 shows a proposed scheme to minimize the propagation of glitches to glqbal routing wires
(primary source of dynamic power dissipation) and other parts of the logic architecture during
configuration. A global masking input labeled “G” in Figure 4.7 is used to control the OR-gate
output, so that the registered (nbn-toggling) éﬁtput of a LUT is selected by the output multiplexer
“H” during the configuration phase. The transition that occurs on the registered output (shown as a
high-to-low transition. in Figure 4.7) prior to conﬁguration. is due to a global reset (CLR) on the
LUT—ﬂdp. The registered LUT output remains unchanged until programming is complete. The
embedded FPGA system clock (CLKi) is also inactive during the configuration phase to prevent
glitch propagation through the FLUT—ﬂovp to - tristate buffer inputs and other parts of the logic

architecture. CLKZ2 is the programming clock. The “Xs” in Figure 4.7 indicate disabled paths.

‘Without the above safeguard, glitches could be propagated through output drivers and onto routing

tracks and contribute to dynamic power dissipan'on. Ultimately, the magnitude of glitch power
dissipation is a function of the capacitance of routing tracks (function of the track wire length), the
width, W, of the routing channels in'a device, the number of connections from a given output to a

routing channel, the total number of routing tracks in a device (telated to core size), and how often

53

it is reprogrammed during operation. It is also important to notice that the glitch isolation scheme

shown in Figure 4.7 was also used to prevent combinational loops during functional verification.

Finally, a case study of an example design from [14][15][19] was used to successﬁiﬂy verify the
island-style fabric implementation from synthesis through to static timing signoff as shown in the

ASIC flow of Figure 4.1. Further details of this implementation are provided in Appendix A.1.

4.3 Design Results

Successful verification of the eFPGA RTL implementation meant that valid area and speed results
for architecture derivati.ve‘s presented in Chapter 3 could be obtained. It is useful to note that the

current design supports on/y architectures that have routing tracks that span one tle. In other words,

-each switch block is directly connected to only switch blocks in the nearest tiles. These tracks are

referred to as single segment length tracks [11). Likewise, tracks spanning L tiles are segment L tracks.

Figuré 4.8 shows a plot of critical path delays for 18 MCNC benchmatks. All delays are normalized
relative to the delay of an equivalent tri-buffered switch architecture. Results for 3 of 4 architectures
described previousiy in Chapter 3 are presented. Based on' the results, the eFPGA cores with tri-
buffered switches are on éverage 24% fa#ter than those implemented with the original multiplexed

switch described in [20] [49]. In terms of area, the cores implemented with tristate-buffer-based

 switches (tri-buff) are on average about 3.3% larger than multiplexer based switches (see Figure 4.9).

Based on these results, the tri-buffered switches have the smallest critical path delay overhead and a
relatively small area overhead when compared to the multiplexer based switch presented in [49]. In

an effort to reduce the delay overhead of the 6riginal multiplexer-based switch, a new switch

54

element referred to in Section 3.1.1. as “Improved multiplexed switch 17 was designed. This design
was contrived based on an important observation that 1s evident in Figure 4.5. In Figure 4.5, nets on
the critical path span several CLBs vertically and horigontally without changing direction. For example,
the path from “node 1” to “node 2” has long vertical and horizontal sections. Therefore, it was
anticipated that delay overhead could be reduced by creating fast horizontal and vertical routes
through the original multiplexer-based switch. Fast connections with single buffer delay overheads were
incorporated in the original multiplexer switch design as shown in Figure 3.3(b). This approach is

somewhat analogous to including long routing wires [11] [20] in programmable logic architectures.

o

Benchmark Circuits
Figure 4.8: Critical path delay comparison of three soft island-style architectures

2

=31.2

-

to Tri-
_Q
[¢e]

-
o

0.4

Relative
o
o

Critical path Delay (Normalized

[+
cmi50a
cmb
comp
cu
Sxp1
i1
inc
unreg
rds4
aluz

cli
9symml
term1
cht
exsp
apex4

Measured critical path delays showed that “improved multiplexer switch 17 is on average 11% faster
than the original multiplexed switch and only 2.6% larger. The tri-state-based switch is still
faster by about 13% and only 0.7% larger. From the plots in Figure 4.9 and data in Appendix A,

fabrics with larger dimensions provided the biggest speed gains. For example, two large circuits from

55

the MCNC benchmark suite, apex4 and ex5p, were sped up by 23% and 22% respectively. The

larger circuits show the biggest gains because critical nets follow longer vertical and horizontal paths.

1.04

o o
v
o o

to Tri-buff Area)
o
w
F =

Total Area (Normalized Relative

cc
unreg
alu2
clip
term1
cht
ex5p
apex4

=
E
@
o

Benchmark Circuits

Figure 4.9: Overall core area comparison of three soft island-style architectures

It 1s zery important to note that the area and delay results presented above ate semsitive to the
composition of the standard cell library used in the ASIC design flow. For example, architectures
using multiplexer-based switches and implemented with CMOS logic gates in generic standard cell
libraries are at a disadvantage because a significant area and delay overhead is incurred relative to
architectures that have multiplexers implemented with pass transistor logic [20]. On the other hand,
architectures with tri-buffered switches (see Figure 3.1) are at an advantage when compared to
multiplexer-based switches, because tri-state buffers are available as well-optimized cells in most

commercial standard cell libraries while pass-transistor-based multiplexers are not available.

56

For the above reasons, derivative architectures using the novel “improved multiplexer switch 2 and
“original multiplexer | switch” [20] [49] (see Figures 3.2, 34) are best implemented using pass
transistor logic in order to faz'rb/.compart.: area and delay overheads relative to thé tri-buffered switch
architecture. For example, in the original multiplexer switch design, it has been observed that the
multiplexet delay overhead dominates the tri-state buffer delay overhead by a factor of about 2.5.
This imbalance is due in 1arg¢ patt to the fact that the multiplexers are constructed from logic gates.

Furthermore, it is expected that the area superiority of multiplexer-based switches can be improved.

Given these observations, architectures based on the original multiplexer switch and “improved
multiplexer switch 2” offer the best chance to further close the speed gap and improve area relative
to the tri-buffered switch. This is because “improved multiplexer switch 17 has eight tristate buffers

per switch, compared to four for “original multiplexer switch” and “improved multiplexer switch 2”.

Another example of the sensitivity of the ASIC—ﬂow—based eFPGA deéign approach is evident in
results in [02] and [14]. For example, in [14], although the same architecture was implemented for
the same benchmarks circuits uséd in [02], the final area results differ éuite significantly, and in some
cases by over a factor of 2. The reason for this may be due to different emphasis during synthesis.
For example, a delay constrained logic synthesis usually results m larger area. Therefore, in this work,

similar constraints were applied to all circuits during logic synthesis to avoid any inconsistencies.

In addition to the architecture comparisons desctibed above, the area overhead of the standard cell
approach telative to full-custom design was investigated. Since the architectures implemented here
are identical to the architecture assumed in the VPR tool, it was possible to leverage the area model

in VPR for this purpose. The VPR tool reports area based on the number of minimum sized

57

transistors in a programmable logic device, and this can be easily converted to area in sq. microns.
For this comparison, the derivative architecture based on the original multiplexing switch was used
because the version of VPR that has been charactetized for 180nm technology is based on this

architecture. This eliminates any bias that may result from comparing slightly different architectures.

From the results in Table 4.1,:the standard cell approach has an average area overhead of about 6.8X
relative to a full-custom design. Another important observationv from Table 4.1 is the difference
between the esdmaped area z.md the actual area obtained for the real design. This estimate is based on
the area model in Appendix B that was developed as part of this research. Based oﬁ results in Table
4.1 the estimated area is on average within +5.8/-3.8% of the actual synthesis area. This implies that
the area model is quite accurate. This 'model was useful for predicting the core area before ASIC
implementation, so that only cores with acceptable area (and delay) overheads were implemented.

Table 4.1: Area overhead _of"-‘soft-” eFPGA design relative to full-custom approaéh

Estimated .| Actual % Area VPR Soft vs. VPR

| Circuit area (um?) | area (um? | difference | area (um? | area Ratio
Cc 419158 451298 7.7 62741.02 7.2
cm150a 221086 240130 8.6 33038.89 7.3
Cmb 248244 257889 3.9 36705.79 7.0
Comp 443320 475532 7.3 69590.83 6.8
Cu 306440 290039 -5.4 39844.19 7.3
5xp1 370696 366387 -1.2 51354.28 7.1
11 277208 267236 -3.6 40112.47 6.7
Inc 370696 366387 -1.2 51354.28 7.1
unreg 569176 604075 - 6.1 88647.52 6.8
rd84 2506527 2401023 -4.2 362839.93 6.6
apex7’ 1483108 1455608 -1.9 239553.32 6.1
alu2 2744876 2936981 7.0 437718.72 6.7
clip 1955266 2049542 4.8 321019.09 6.4
9symml 929304 848430 -8.7 120710.88 7.0
term1 1216817 1233960 1.4 181702.80 6.8
cht 1211974 1289779 6.4 196652.12 6.6
exsp | 23128464 22168164 -4.2 2832898.74 7.8
apex4 36441909 38133916 4.6 4567776.75 8.4

58

Téble 4.2 shows results obtainéd for critical path deléy. The second column shows delay results after
placement, routing and parasitic é)%traction. The third column shows delay results prior to placement
(without metal wire delay). Based on these results, it was estimated that on average, wire delay is
roughly 10.3% o.f the overall critical path delay. This result is not surprising since single segment
Alength wires are used in all architectuxés-considered. However, it is expected, that in architectures
timt have loﬁg wires, the delay overhead due to wires would be much greater. It is also interesting to
draw parallels between this resul£ and the results obtained in [14]. In [14], a flow was developed to
n"n'nimize.‘the' wire delay ovéthead on critical path; by rerqudgg nets along paths with less wire delay.
The expeﬁment in [14] yielded modest irnprovémenté and the resu’ltg obtained here show that a low
wire delay overhead is the likely reason. Fin:%lly, Tab‘le 4.2 aiso shows that the critical path delay
overhead of a standard cell eFPGA design relative to a full-custom. equivalent is about 1.8X.

Table 4.2: Délay overhead of “soft” eFPGA design relative to a full-custom design

Post layout | Pre layout % Wire VPR path | Softvs. VPR
| Circuit delay (ns) delay (ns) overhead | delay (ns) Delay Ratio
cc 10.3 9.6 =78 ~ 5.81 1.8
cmi180a | -~ 103 9.6 6.7 594 ' 1.7
cmb . 9.7 | 8.8 9.6 5.45 1.8
comp - 17.7 16.0 -9.8 9.79 1.8
cu 9.9 8.8 -11.5 4.68 2.1
5xp1 7.6 70 -8.0 4.85 1.6
1 11.3 9.9 -12.6 6.09 1.9
inc 8.3 7.5 -9.2 4.84 1.7
unreg v 10.1 9.3 -7.9 6.04 1.7
rd84 28.0 24.4 -12.7 15.2 1.8
apex’ 18.4 171 -6.8 10.8 1.7
alu2 28.7 236 =177 15.6 1.8
clip . 23.7 - 206 . . -13.2 - 13.7 1.7
9symml 14.5 12.2 -16.0 7.73 1.9
term1 18.6 15.6 -16.0 8.71 2.1
cht 9.6 8.9 - -1.3 6.65 1.4
ex5p ' 40.2 37.3 -8.0 20.7 1.9
apex4 56.7 511 -11.0 1 36.9 1.5

59

“The 18 benchmarks used in the above experiments were selected based on availability and size.
Further, MCNC benchmarks have historically bceﬁ used for FPGA research. In addition, it was

necessary to use benchmarks with sizes that span a wide raﬁge (32 to > 1000 4-LUTS 1n this case).

Given the area and delay overhead results reported in TaBles 4.1 and 4.2, 1t is necessary to find ways
to reduce the overhead. The use of custom cell libraries to improve ASIC designs is well
documented in [48], therefore, it is expected that the same techniques might be applicable in this
case. However, before embarking on designing custom cells, it was necessaty to first evaluate the
sources of inefficiency in‘ the éxiéting approach. As previously reported in [14] it is expected that the
biggest sources of area inefficiency comes from the use of standard flip-flops for configuration
memory and discrete CMOS logic gates like NAND-gates and NOR-gates for multiplexer
implementation. For example, as Figure 4.10 shows, a pass transistor network implementation of a

4:1 multiplexer contains a total of 13 transistors including inverting gates for complimentary select

signals (SO and S1). On the other hand 2 CMOS logic implementation with discrete gates has over
40 transistors in total. This translates to an area overhead of about 3X for a 4:1 multiplexer. Further,

itis also expected that the multiplexer area will grow exponentially with the number of select inputs.

- VDD—— s1

-

S0} sp

-
I
— 1
5 >

1 1,

o — | i 1
S0 — _J [—D

(a) 4:1 multiplexer in CMOS logic (b) 4:1 multiplexer in pass gate logic

Figure 4.10: Comparison of CMOS logic and pass transistor based multiplexers

60

ElMb-EMOb
5 | VDD“[POSITIVE VDD—[POSITIVE
Qr— FEEDBACK FEEDBACK

C[LOCK ﬁ_ ’ { | 2 2

ook | L] fowpor| &
MR R

~
R R

Figure 4.11: transistor level illustration of a simple single-edge-triggered flip-flop

C

‘Similarly, the area overhead of flip-flops is due to the fact that flip flops contain more transistors
and therefore occupy more area compared to 6T (six trénsistor) SRAM cells which are typically used
for program memory. The flip-flop design in Figure 4.11 comprises a total of 12 transistors.

Therefore an SRAM with six transistors (see Figure 5.2) is approximately Aa/f the size of a flip-flop

The pie charts in Figure 4.12 show the area overhead distribution in the “soft” implementation of
the island-style arc}.mjtecmre‘de'scribed earlier. From the chart in Figure 4.12(a), it is clear that
configuration membry (ﬂip-ﬂops) and multiplexers are the biggest contributors to area overhead.
“Other” in Figure 4.12(a) includes the BLE output tristate buffers, and shared buffers used to drive
the inputs of the connection block multiplexers. Figure 4.12(b) shows that the biggest contributors
to multiplexing logic area are the LUTs and the LUT input selection multiplexers (“M” in Figure
2.6(b)). Since generic standard cell multiplexgrs and flip-flops make up 88% of the total eFPGA
ssland-style tile area, and are also not efficiently built using the cutrent approach, they are prime
candidates for custom standard cell substitution. Moteover, it is expected that replacing generic
standard cell multip‘l_e)_(erslwi,ll have a signiﬁcant'impact on delay siﬁce mﬁltiplexers make up the

-logic and routing architecture. Furthermore, the results in Table 4.2 have shown that gate delay

61

comprises about 90% of the overall delay. Although the current research work is not focused on

power optimization, it is expected that power saving will occur as a side-effect of logic optimization.

e

.//
7 /

Mulitiplexer|

f
/" Input
Multiplexer
13%

Flip-flops
46%

LUT Input
Multiplexer

41%

(a) tile area distribution (b) multiplexer area distribution

Figure 4.12: pie charts showing area distribution in a soft island-style eFPGA tile

Finally, in the next thesis chapter, circuit-level design techniques that could improve area and

delay for standard-cell-based eFPGA fabrics are explored based on the observations in Figure 4.12.

62

Chapter 5

Island-Style eFPGA Design with Custom Standard Cells

5.1 An Improved Design flow

Hard and soft eFPGA fabric dgsign approaches have several advantages, but also have significant
disadvantages. For example, a harci eFPGA has superior area, speed, and power characteristics
compared to an equivalent soft eFPGA. However, hard eFPGAs are inflexible and can be very
inefficient depending on logic requirements. Soft eFPGAs on the other hand are flexible and offer
the best chance to match an eFPGA to an application, but have large area, delay, and pow?r overheads.
In particular, flip-flops usea for ;onﬁguration sforage, and the multiplexers used in routing and
LUT;, account fora signjﬁ;ant proportion of the area ovgrhead. The reason for this is simple: these
two circﬁits’ are the fnost petvasive in progtammable architectures, but generic standard cell libraties
do not include SRAM cells néeded for cOnﬁguration storage, or large fan-in mﬁltiplexers needed for
parts of the routing and logic architectures.‘ On the other hand, in hard eFPGAs, full-custom |

techniques are used to desigh much smaller configuration SRAMs and fast, wide fan-in multiplexers.

Given the inefﬁciencieé that exist in the hard and soft design approaches, a compromise approach
that combines'the best features of both approaches is needed. Such an approach should retain the
soft IP advantége of conﬁgurable architectures, that is, bit must rem@ flexible but at the same time,
incorporgte'some full—custpm desigq té.chrﬁques to Mzé area, ‘delay and power overheads.
However, any improvementé should fit within the ASIC digital design flow in order .to maintain the
ease of use charactetistics of the soft approach. Given the fact that configurable RTL descriptions of

eFPGA architectures have been designed and implemented in Chapter 4, this requirement has been

063

achieved. Therefore, the next stage of this research was to minimize area, delay, and power

overheads using full-custom design techniques, in order to derive the benefits of the hard approach.

Previous work in [46] [48] [53] has demonstrated that generic standard-cell-based ASIC designs can
be improved using customized standard cells. These are called sactical cells in [53]. Most of this
previous work was aimed at nonprogrammable ASICs, but in [01] [68] some of the same tc;chniques
have been used to design standard-cell-based programmable architectures. However, this work did
not take into account the sigﬁiﬁcant afea overhead due to wide-fan-in multiplexing logic (see Figure
4.12) and the potential savings that come from optimizing them (see Figufe 4.12). Also, work in [01]
showed afea improvements of 16-19% for a data-path afchitecture but 1t is anticipated that larger
gains might be possible in an island-style architecture [11]. This could be because the architecture in

[01] 1s not multiplexer—intensiv_e and has fewer circuits that benefit from the use of custom cells.

—

(23 >
Design data : |custom cells] o Design data
. ~ —_—

eFPGA : gate-level
by . Gate netlist M
, ' eFPGA

(‘

DeSIgn data . Design data

Figure 5.1: an enhanced ASIC design flow for eFPGA design and implementation

A modified ASIC digital design flow using custom standard cell libraries is shown in Figure 5.1.
The main difference is that customized standard cell data would be used for embedded
programmable logic generation, rather than generic standard cell librarjr data. The details of the

design and implementation of these customized standard cells is described in the next section.

5.2 Design of Custom Cells

Given the area distribution results obtained in the previous chapter, this section describes the

detailed design and implementation of SRAM and r_nultiplexihg logic cells for use in eFPGA cores.

5.2.1 SRAM Cell Circuit Design

The SRAIM circuit designlused in this‘ work is based on the 6-T (six transistor) cell [25] [56] [66].
However; the SRAM cell desigﬁ for FPGA circuits is different from conventional SRAMs in one
important regard, namely, FPGA SRAM cells Have dedicated read and write “ports” (one for writing
and another for reading). In other words, the cell is unidirectional. As a result, one of the inverters
‘in the cell acts as a “charge keeper” (via positive feedback) and keeps the vaiue written to the SRAM,
“bit”, from being lost, Whilé the other inverter acts as a “sensor” to quickly detect a new value being
written to the SRAM. Consider th¢ 6T cell of Figure 5.2: because the “sense” inverter i; driven by an
NMOS pass transistor that passes a weak logic “1” value, the sense inverter was skewed (larger
NMOS) At.o respond faster to a rising mput (i.e., when writing a logic “1” value to memory or setting
néde “bit” to logic “17). A slow responsé to a weak logic “1” input ié not desirable because the
programming time would increase. Moreover, the sense inverter is sized larger since it also is used as
an input driver in the function table of LUTs. In this case, the LUT input is connected to “bitb”.

Figure 5.2 shows transistor sizes obtained from SPICE simulations. All channel lengths are 0.18um.

65

T vDD

0.50um 0.50um
write read
L bit [P Gl bitb |
Q“-‘—“-—‘(—
1.2um1 ’ ! w~{#1.0um
0.50um | 0.75um

1

charge keeper <l7 sense inverter

Figure 5.2: SRAM transistor sizing for embedded FPGA configuration memory

5.2.2 Multiplexer Circuit Design

To minimize area overhead, pass transistor logic was used for multiplexer circuit design. All pass
transistors were minimum size because this gives the best area and speed tradeoffs [66]. As a result,
circuit design work was focused on issues like buffer sizing for pass tree select lines, output driver

sizing, and buffer insertion (repeaters) within the pass tree to improve speed in larger tree networks.

s R R

/
T minimum extra buffer _ LTI
T

| L}j@[i? e\ p jta‘?fsg }IE:“LM;
By 1l %’ W ,,,,,,,,,,,,,,,,,,, T

| 1 - 11
LT | e e

(a) single output driver ~ (b) multiple drivers

Figure 5.3: multiplexer with minimum size output buffer and extra buffer stages

66

The ou"cput driver inside each multiplexer circuit is é minimum sized invetter (Figure 5.3(a)) since
this pres_enté the smallest load for the pass .transistor network,‘ and higher output. drive strength can
be achieved with exfra buffer stages as needed (see Figure 5.3(5)). In additio‘n, because NMOS pass
t;ansistor gates transmit a weak high logic value (V,, —V7), a level restorer [11] [49] [66] was placed

at the output. This ensures that the input to the output driver is equal to the supply voltage, and
_prevents static power dissipation in the output driver. Since, eFPGAs typically contain a sigrﬁﬁcaﬁdy

large proportion of multiplexers, it is important to eliminate static power dissipation in these drivers.

Furthermore, the level-restorer must be. of the appropriate size because in cases where its transistor

T ratio is too large, it can “overpoWer” the pass tree driver, and the output buffer never switches.

WIL =0.50.36 um
.
L

| | ——T—\DD
charge\ll

Figure 5.4: a level restoring circuit for pass-transistor-based multiplexing logic

Buffer sizing of the select line drivers was done using. Logical Effort techniques as described in [25] g
[4]. For each size of multiplexing logic, the number of buffer (inverter) stages that gave the best
speed and area tradeoff was computed. As a result, the select lines for some multiplexer sizes were

inverting, while others were non-inverting. Notwithstanding this fact, an important aspect of the

design was ‘to recognize the strong coupling between LUT input multiplexers and the LUTs

67

themselves. In particular, optimization of each LUT select-signal-path must include the output

buffer of the LUT input multiplexer (as shown in Figufe 5.5) in order to achieve best results.

B A t
IngEa

1 T
PATH OPTIMIZATION P%LEM LUT INPUT MULTIPLEXER
T vbD
2!
_ -

/ F ~>
(Clo —e{>0 S
,g; Cin
Y

~ EXTRA BUFFERS AS NEEDED

Figure 5.5: Delay optimization problem specification for LUT input-selection paths

The above optimization is notvrequired for other mulﬁplexing circuits in the island-s'tyle eFPGA
architecture, because the critical path in all the other multiplexing logic circuits does not include the
select signal path. For example, the select-inputs of the LUT input multiplexer are driven by stazc
valueés that are stored in SRAMs after conﬁgﬁr’ation (see Figure 5;6(9.)). Therefore, the critical delay
path for this multiplexer is simply the path from’the multiplexer input to its output as shown in
Figure 5.6(a). However, ﬁhe‘critical delay path for a LUT is shown in Figure 5.6(b), and includes not

only the input-to-outpuf path delay of Figure 5.6(2) butalso the delay of the select-input-path.

68

D@J‘j delay patflw ~ :ﬁo j”:-ﬁdelay path "“J{>O

srami’ sram e

|
NEERY

T B

- sram =
=5 TL —==_Ti]!
Pl —-—4 . Fir=--

(a) “regular” multiplexer o (b) LUT multiplexer

Figure 5.6: Critical dela'y' paths for the different multiplexing circuits in an eFPGA

Also related to area reduction was the decision 7ot to include buffers at each input of wide fan-in
multiplexers but instead leave them as soutrce/drain inputs. For multiplexers used in implementing
LUTs, this was an obvious choice since these inputs are SRAM—driven, and the SRAMs had been
sized fo.r‘?his purpose. Howévér, for multiplexers used elsewhere in the eFPGA (é.g., the LUT-

MUXs), this decision required further consideration. In particular, difficulties arise during driver

sizing for source/drain inputs, because conventional ASIC tools are designed for CMOS logic with

gate inputs and not for pass. transistor logic circuits that have source/drain inputs. Furthermore,
soutce/drain capacitances when considered alone, underestimate the load of pass transistor logic

paths, while the loading CMOS gates of a given. size allow for accurate input load estimation.

Figures 5.7(a) and 5.7(b) illustrate the problem that diffusion loads pose for standard ASIC tools. In

'Figure 5.7(a) it is evident that specifying the input diffusion capacitance (C,;) of a pass transistor as

the input load is inaccurate, because, the real load is the RC network highlighted from the

multiplexer‘input‘to the output buffer input. Since standard ASIC tools are not designed to handle

69

RC loads of this type, the configuration shown in Figure 5.7(a) is recommended since the buffer gate

capacitance (C,) becomes the input load — ASIC tools are only able to interpret loads of this kind.

srami™ sram . : - STam rsram

c ™ VDD vDD — - e v P

= E Eg r | o<z,

Can ﬂ“j = ; L L%%Cg

w L ot ol

o T ==t T2

it $: | ' | ;l; g
(a) exposed RC loads (b) isolated RC loads

Figure 5.7: Issues around input Ioadlng for pass tree networks in the ASIC flow

However in our case, the multiplexer circuits can be designed with d1ffus1on inputs because the
eFPGA architecture allows multiplexers to benefit from buffer sharing. Therefore, rather than
buffering each multiplexer’s mputs and iricreasing the total cell area (see Figure 5.8), a single buffer
chain is used.to‘ drive multi'ple shared inputs (sheWn in Figure 5.8). Furthermore, rather than using
ASIC tools to get an inaccﬁrate' estimate of buffer sizing for these multiplexer inputs, a special case
of the Ehnere eéuation [42] for distributed RC networks [43] achieves accurate buffer sizing and
irnpeoVed circuit speed; Equations (C.0) through (C2) in Appendix C.1 ate based on equations in
[66] and are used to esfimate buffer sizing for a given pass transistor RC network (sinﬁlae to Figures
5.8 and Cl) Logical effort techniques are then used to find the number of stages and size of buffers
to drive the buffer oBtained from these equations. The approptiate buffers are then instantiated as
gates in the eFPGA descript:ion. This process is made easier because it is known exactly where these
buffers will be used in the eFPGA and so worst-case loading constrainte are easily estimated. An -

example calculation that uses these equations for buffer/driver sizing is presented in Appendix C.2.

70

CLB INPUT MULTI?I:EXFR

gl M

TING CHAN CUBINPUT MULTIPLEXER
VDD

4 4 oo
Bpi / T
T/ RIN

SEPARATE DRIVERS NOT AREA SHARED DRIVER CHAINS MORE
EFFICIENT EFFICIENT

Figure.5.8: twb possiblé multiplexing-logic buffering schemes for eFPGA desigh

In multiplexers with more than four levels of pass gates from input to output, repéatets are needed
‘in the pass tree RC network tolspeedup the criﬁcal path. A significant degradation in speed occurs as
the d_epth of the pass transistq’r'tree increases ;vi£h irblbcreasing input size. This result »is not very
surprising because it is known that the delay of a pass transistor netwérk is guadratic with the number
of paés tran_sistors in the v'_cr_ee. from mput to output (depth). SPICE e_xperirvnbents showed that
repeaters after every four levels of pass transistors sped up the CiICUité as needed. Also, since the

 pass tree transmits a weak high logic value, skewed gates are used in the repeaters. In particular, a

—% ratio of 1.5 was used because this gave the best area, speed, and power tradeoffs.

pmos

Finaﬂy, analytical results for the repeater problem in NMOS-only pass transistor tree networks in

Appendix (o) corro_bbrate the experimental results that were obtained throughSPICE simulations.

71

N

g

N
P
\ .
e

~d

e

~

T;LM .

| HEA>o

REPEATER

5-LUT —{>o

T
_32{>o~

Figuré 5.9: RC network representation of repeater insertion in an eFPGA 5-LUT

REPEATER

5.3 Layout-Design

Custom layoﬁt design was the next step after detailed trénsistor—level circuit design. Since this
research is concefneci Witil standard-cell-based design, and given the fact that not all the cells in the
eFPGA irnplémentation rx‘lay Be_ suBstituted with custom tactical cells, it was important that our
tactical cell layouts match the format of the original standard cell library [24] used in this work. For

example, rules for cell height, cell Width,..piﬁ location, n-well ovetlap had to be enforced throughout.

Perhaps the most important of the layou‘t challengeé had to do With how best to implement an
. NMOS pass Uaﬁsistor tree network within a s£an_dard cell format. As shown in Figure 2.2, a typical
standérd cell reserves the upper part of the cell (closer to Vdd) for the PMOS network of CMOS
logic. while the lower patt (closer to Gnd) is reserved for NMOS transistors of the CMOS pull-down

network. However, since the most area-efficient wide fan-in multiplexers are best implemented

72

using NMOS pass transistors, there was a potential problem of wasting the space in the upper

section of the standard cell. Therefore, it was necessary to find new ways to improve area efficiency.

In order to make the most efficient use of standard cell area for NMOS pass transistor network
design, a technique was devised to make good use of the otherwise wasted space reserved for PMOS
transistors. In particular, a significant portion of the n-well was cut out from the middle section of
each multiplexer cell so that more NMOS transistors could be included without increasing cell size.
Figures 5.10(a) shows a normal cell before making the n-well cut and Figure 5.10(b) is the result of
making the n-well cut. Notice that in Figure 5.10(b) the n-well around the fringes of the cell have

been reserved so that level-restoring logic that includes PMOS transistors can still be implemented.

(a) before n-well cutout (b) after n-well cutout

Figure 5.10: standard cell layout structure before and after n-well cutout is made

Further, part of the n-well regions were used to implement CMOS logic drivers (inverter chains) for
pass transistor gates. Also of importance, is the fact that no design-rule violations occur when these
cells are abutted against “normal” cells. In essence, fringe n-well regions preserve the continuous

n-well region that must extend across an entire standard cell row after cell placement and routing.

73

t.
ol buffers | pass tree buffers nwell

Figure 5.11: illustration of resource allocation in a multiplexer standard cell layout

In addition to the above design strategies, multi-height standard cells [78] were also used to create
more area-efficient designs. None of these new cells use more than two metal levels for routing.

Figure 5.12 shows a double-height standard cell that uses two metal levels in a 32:1 multiplexer.

gnd ‘ ‘_ n-well

row 2

row 1

Figure 5.12: double height standard cell layout of 32:1 multiplexer (2 metal layers)

74

5.4 Layout Improvements

Results from tactical cell implementation are provided in Table 5.1. They show that it is possible to
achieve area improvement factors of 2.5x for a single SRAM cell when compared to a flip-flop. In

addition, area reductions of between 3.5x and 7.6x for multiplexer and LUT circuits were achieved.

Table 5.1: layout area improvements with tactical cells vs. generic standard cells

Cell Generic Standazrd Custom Standazrd Improvement
Cell Area (um®) Cell Area (um®) Factor
1-SRAM 61 24 25
8:1 Mux 267 77 3.5
16:1 Mux 899 146 6.1
32:1 Mux 2,228 293 7.6
4-LUT 1,875 530 3.5
5-LUT 4,180 1,061 3.9

The SRAM cell is smaller than a flip-flop because it has fewer transistors (compare Figures 4.11 and
5.2). Also, the custom multiplexers are much smaller than generic standard cell implementations
because minimum size NMOS pass transistors occupy less area compared to CMOS logic gates (see

Figure 4.10). Furthermore area saving techniques described in Section 5.3 impact cell area efficiency.

vdd\ 2.5X |

(a) Flip-flop (routing only)

1X

(b) SRAM (Detailed)

Figure 5.13: | flip-flop used for configuration memory in the previous approaches

75

Figufe 5.13 shows a tactical standard cell SRAM alongside a standard cell flip-flop to further

illustrate the size differences that can exist between customized cells libraries and generic libraries.

5.5 eFPGA Design Results

Given the significant cell area reductions achieved with custom tactical standard cells relative to
generic standard cells, the next step was to evaluate their impact on the overall area and

performance of standard—cell—baséd, island-style eFPGA architectures described in prior chapters.

5.5.1 Area Improvements

In order to evgluatg: the impact of tactipal cells on ﬂ'le aréa of eFPGAs implemented with generic
standard cells, a detailed area breékdowﬁ of island architectures implemented using genéric standard
cells was péfforrned. Thesev fesults wete retrieved from reports generated from the ASIC design
tools. From these repor'ts it was péssible to measure the area contributi;)n of each cell or cell group
used 1n the svoft.eFPGA'implemenvtati.on. With.t.his information it was then straightforward to
replace ceﬂ-gfoupiﬁgs in the eFPGA with their equivalent tactical standérd ceh implementations.
Therefore, 1n order to estimate thé impact on area of tactical cells, the total eFPGA cote area was
re—calcuiated as if taétical cells had been used instead of generic standard éells. This was done for all

cell groups for which custom ‘tactic_al standard cell equivalents were designed and implemented.

Experiments show that on average, an area reduction of 58% is achievable for an island-style

architecture using customized tactical standard cells rather than generic standard cells. In Figure

5.14, the results are provided for a set of 9 MCNC benchmark circuité and all area results have been

normalized relative to the area per tile of a full-custom equivalent. Other circuits were considered
but only the results for some of the largest benchmarks (between 56 and 1300 4-LUTs) are shown.
Also, in Figure 5.14 the results obtained with custom tactical cells are compared with a full-custom
eFPGA of the same architecture. The area results for the full-custom implementations are based on
estimates of area obtained from a version of the VPR tool that is characterized for 0.18 um process
[49]. The results show an equivalent full-custom eFPGA is about 2-3X smaller than the

implementation that uses custom tactical standard cells. The average overhead (geometric) is 2.86X.

s

Normalized Area per Tile
(Relative to Custom eFPGA)
Q = N W b O O ~N @

o 3 ™ w0
o T = %

Benchmark Circuits
Figure 5.14: area comparisons of customized tactical standard-cell-based eFPGA

implementations with generic standard cell, and full-custom implementations

5.5.2 Delay Improvements

In order to evaluate the impact of tactical standard cells on eFPGA speed, a scheme was devised
that leveraged existing static timing verification tools in the ASIC flow. In particular, the eFPGA
gate netlist was “programmed” as described in the previous chapter and then a static timing report

was generated for the critical delay paths in the original eFPGA ASIC implementation. This report

77

details the timing contribution of standard (‘;ells and wires in the critical path. From this repott, it is
possible to identify the generic standard cells or standard cell groups that would be replaced with
tactical cells if the 'eFPGAbwe‘re implemented using these‘ cells. The main task was then to
characterize the ta;:tical cells for speed in a fashion that aécdunted for the loading and drive

characteristics of the cells that remained unchanged (that is, cells not replaced with tactical standard

cells).

SPICE simulations were use_d to characterize the tactical cells for speed. ‘However, rather than
. sixnuiate eéch cell in isolation, it was moré efficient to simﬁléte groups of tactical cells that were
connected as if in an éctual FPGA. FQr exa.mp.le, the schematic in Figuré 5.15 models the path
starting from an input connection block multiplexer input (“A” in Figure 5.15) and ending at the
output of a LUT in a BLE (“D” in Figure 5.15). Notice also that in £his figure the loading due to
othér patts of the eFPGA architecture have been included (e.g., LUT-MUXs). Also rﬁodeled is the
path starting at the output of a LUT and ending at the output of another LUT in the same CLB (e.g.
the path from “D” to “G” in Figure 5.15). As shown in Figure 5.16, the path from the input of a
BLE ou@ut .tristate buffer through one level of switch element and ending at one of four possible
- switch ‘outputs Was‘also simulated (the choice of switch output is unimportant since each one is

loaded about the same). This is the path from “B” to “C” in Figure 5.16. The goal of this SPICE

experiment was to determine the tlmmg overhead from the input to the output of a switch element.

Figure 5.15: illustration of SPICE simulation setlip to measure logic block delay

Duri'ng. the experimeﬁtal setup for speed characterization, it was important té ensure that we
simulated the ioadiﬁg effects due to cells 6r.ce11 groups that were not replacéd with tactical standard
cells. For example, the track buffers (see Figuer 5.8) in the original standard cell implementation
were of fixed drive strength for all eFPGA i;nplementadoﬁs. In the current irnpl¢mentadon, these
buffets are n.ot reéla;:ed with tactical éells aﬁd so it was irnporfant to accbunt for this in the SPICE
simulations. Thérefore, track buffers used in experiments depicted in Figures 5.15 and 5.16 are the

same ones used in the 'original standard cell implementation. There are other instances where a

similar approach was required, and so special scripts were created to extract this information from

the netlist .and create a database. This was needed because éells used to implement the same function
can differ depending on the value of N, for example, or timing constraints. Creating a database of
different irnple_rﬁentations and the cells used in each case, made it Possible to determiné the worst
case loading constraints fo¥ usé in all the SPICE simulations. All‘. tactical standard cell SPICE

simulations were done under nominal process conditions for 0.18um process technology node.

79

Figljre-5.1_6: SPICE simulation setup to measure the routing switch element delay

Once all paths of interest had been characterized for timing using extracted layouts of the tactical
standard cells, the data was used to back-annotate static timing reports generated during static timing
verification of the original eFPGA implementations. Scripts were created to annotate and

recalculate timing for all previously reported critical paﬁhs for different eFPGA implementations.

The implementation based on customized tactical standard cells shows an average circuit speedup
of 40% on the critical path, compared to an eFPGA implementation using genéric standard cells.
For the benchmark circuits considered, (includes some not shown in Figuie 5.17) the range of circuit

speedup was between 28% and 48%. Results for 9 MCNC benchmark circuits are shown in Figure

80

5.17 below as well as comparisons with equivalent full-custom implementations. Our timing results

for full-custom implementations of the same architecture are also based on estimates from a version
of the VPR CAD tool that was characterized for 0.18um process. Furthermore, the timing results

achieved with our custom tactical standard cells are within 10% of a full-custom implementation.

3

} I Generic Standard Cells H Tactical Standard Cells [custom }

~
2

N

=

0.5

(Relative to Custom eFPGA)
(2]

Normalized Critical Path Delay
o
cht
term1
9symml
apex7 |
clip]
rd84 —
alu2 |
ex5p
apex4

Benchmark Circuits
Figure 5.17: delay comparison of customized tactical standard-cell-based eFPGA

implementations with generic standard cell, and full-custom implementations

Although the current work has not focused on power reduction per se, it is reasonable to assume
power savings have been achieved as a side-effect of the work done here. For example, it is
reasonable to assume that since the overall cell area has been more than halved, gate capacitances

and interconnects would also experience similar reductions, and thereby reducing power dissipation.

81

5.6 Comparison to GILES

It Was. also useful to compare the standard cell approaéh with the GILES approach [68] [69] [70].
GILES is essentially an automated, ceH—Based, semi-custom design strategy for implementing
programméble logic tiles. This approach is similar to the standard cell approach used here except, a
new custom suite of “FPGA-aware” tools were develof)ed for this purpose. Specifically, an entirely
new back—end suite of too_ls. for cell plaéerﬁent and routing was devéloped. Furthermore the cells
used to implement prograrnrﬂable logic tiles do nof adhere to the standard cell. foﬁnat. For example,

cells are not necessarily the same height and so Vdd and Gnd lines may not always' be abutted.

In [68] the authors" reported that their approach resulted in a Virtex-E FPGA tile implementation
that was W1th1n 36% of the full-custom implementation of the séme tile. Their fesults also suggested
that a s?mdard cell based knplemeﬁtadoﬁ of the Virtex-E tile using custom SRAMs and pass
transistors in the output connection blpck [69], resulted in a tile implementation that was 75 %
larger than- £he full-custom version. The authors do acknowledge in [68] [69] that wide-fan-in
multiﬁlexers in the standafd cell implementatioh were not replaced with pass-transistor based
multiplexers. The multiplexers in the GILES implementation used pass-trahsistors. Our work has

already shown that this can have a significant irhpact on the densities achievable with standard cells.

In order to evaluate the impact of wide-fan-in multiplexers on the standard cell irnpléme'ntation of
the Virtex-E tile, it would have been ideal to have access to the netlist used to implement the tile.
However, sinc¢ this i_nforma.tion is not readily availablé, a reverse approach was used: rather than
.improve the standard cell impleme'ntatié_n with pass-fransistor;basecl. wide-fan-in rriultiplexers, the

GILES implémentation 1s made worse by “.blo'ating” the multiplexers in the “netlist” so that the cell

82

areas are at “pre-optimization levels”. In other words the cell areas are increased so that they equal
the area of a generic standard cell implementation of the same multiplexer. This was possible

because the database of al/cells used in the GILES irhplemehtaﬁon were provided by [69] [70].

To scale the multiplexers in the GILES implementation appropriafely, the areas of equivalent
generic staqda;rd cell irnpleméntgtic;ns had to be determined. For this purpose, the graphs in Figures
D.1 through D..3 were used. The plots labeled “X” in all three figures are basedkon a database of area
_results from the synthesis of different size multiplexers used througholut our research. For the
synthesized multiplexers, each data point is the average synthesis area for that size of multiplexer. In
addition, the plot labeled “Y” in _Figureb D.1 gives. the scaling ttﬂend for péss-transistor-based
multiplexers relaﬁve to the ﬁﬁmber of inputs, and is based on actual lajrdut results. Comparing our
léyout results with the lé.yout results for the GILES cells showed the area results are more-or less
identical. For example, based on our layout results (see plot “Y” in Figure D.1), a 25-mput
multiplexer has a layout area of l40uvrn2 while an equivalent GILES cell has an area of 174um?® (based
on supplied, unpublished data for .the GILES cells). Fi.gures' D.2 and D3 also use data based on
synthesivs results and_. actual layout results td predict the scaling trencis. A different plot was needed

for LUTSs because fullfusforh layouts of LUTs include buffers for fast select inputs (Figure D.2).

Table 5.2 shows the layout area and scaling.factors for our tactical cell layouts ana GILES cells,
versus the generic standard cell multiplexers and LUT implementations obtained using logic
synthesis. In all synthesis experiments, constraints were set to give the best balance between total
cell area and overall delay. The multiplexers listeci in Table 5.2 are the same ones used in the GILES
.implemenfation of the Virtex-E architecture. We have excluded 2-input multiplexérs because there

are very few of them and they are fairly small. Based on these scaling factors, the area of the GILES

83

implementation of the Virtex-E atchitecture increased by a factor of 1.62X. Given the initial results
in [68] that suggested the standard cell implementation was 1.55X the GILES cell area, the new
results obtained here suggest the tactical standard cell implementation is 0.96X the GILES area.

Table 5.2: The scaling factors for multiplexei' logic bloating in GILES Virtex-E tile

multiplexer | LUT size | tactical cell | GILES cell | generic cell scaling
inputs (K) area um? area um? area um? factor

. 4 149.02 107.59 810.78 5.44

12 70.13 71.87 333.85 ~..3.10

16 9148 107.59 448.93 4.17

25 139.51 174.24 707.86 4.06

26 . 144.85 181.21 736.63 4.07

4 27.44 24.39 103.69 3.78

6 . 38.11 39.20 161.23 4.11

8 , 48.79 52.71 218.77 . 4.15

" The results above would seem to place a tactical ceﬂ eFPGA within 36% of a .full—cu.storn design,
- which also contradicts estimates obtained from VPR. For this reason a methodology to estimate the
area overhe.ad was devised and 1s expla'ined 1n Appéndix D. Our estimates (see Table D.1) place a
tactical standard cell eFPGA at between 1.66X and 3.'11X. However, tile more likely estimate is
probably between 1.66X and 2.84X (closer to 1.66X) since these ésti?nates are ‘based on an

architecture (Virtex-II) that is similar to the island-style architecture used in this research work.

Tt should be noted that these results are sensitive to the synthesis constraints Iused to obtain the
generic standard cell areas. As a result, the scaling factor used here rnéy be léss or higher depending
on.the design emphasis (speed, area, or both) of the original GILES implementation. This is not
ciear from.the literatute that has been published on this topic. However, since all synthesis
constraints were tuned for area and delay optimization, it is likely that our scaiing factors are

reasonable. It is not possible to investigate this any further within the scope of the current work.

84

5.7 Sensitivity Case Study

In this section architecture sensitivity to standard cell libraries is investigated. For example, the
product-term architecture [15] [16] benefits from the fact that its prdduct—term block (roughly 76%
of core area) is based on. logic gates like NANDs and NORs that are already well tuned in most
commertcial standard cell libraries. 'fhis is not the case for the island—stylévarchitecture. Thetrefore, in
this experiment, tactical cells are used to implement some parts of the island-style architecture. In
particular, thé logic tomponent of the isigrid—style archjteétﬁre (contents of CLB excluding program
flip-flops) can benefit from the inclusion of tactical standard cells. This is essentially equivalent to
implementing the product—terrﬁ blocks 1n [15] [16] with NANDs and NORs. The routing
architecture for the island-style architecture (co‘nnvection blocks and switch blocks) and product-term
architecture (wide Ifan-in routing multiplexers) [15] are left unchanged. Figures 5.18 to 5.20 show the
experimental results..Island—MU_‘X and Island-Tribuf are island-style architectures with muitiplexed

and tri-state routing switches respectively, and PTB is the prod\ict-term-based architecture [15] [17].

The results in | Figure 5.18 ;how thqt for the set of benéhmarks considered, the product term
architec&ug is smaller than the LUT;based island-style architecture in all but 6ne case. On average

(arithmetic), th.e product term aréhite_cture is 34.85 % smaller than the island-style architecture. This
1s almost identical to the result pbtained from comparisons in [1.5] [16] with a different LUT-based
archiféctu_re [02] [14]. This would appear contrary to expectations since it has been observed that the
LUT-based island-style aréhitecture reéuires less area on average than the current implementation of
the LUT-based gradual architecture use.d.in éomparisons in [15]. Hence, one would expect a smaller

(less than 34.85%) average area differential between the island-style and product—term architectures.

85

Normalized Core Area (Relative
to PTB architecture)

O 0 O O 3 « = O D9 I~ N o = b=
ooEEon.'-:meox==E§-5
wv b3 '_h'UQEO
- ©O 0) cC = o gw
(&] =
£ < n ¥
(3] D

Benchmark Circuits
Figure 5.18: Core area comparison of product-term and island-style architectures

Furthermore, for this experiment, most of the benchmarks used are those for which the average
area overhead of the LUT architecture [02] relative to the product-term architecture is very high on
average (54.33%). Furthermore, analysis of the LUT-based island-style architecture showed that the
area of the core is reduced by an average of 23.5% when pass transistor based multiplexers are used
in the logic architecture. Therefore, the 34.4% area differential reported is in-line with expected
results. This means that if all the benchmarks used in experiments in [15] had been considered here,
the average area differential between the two architectures would likely be less than 34.85%. In
addition to demonstrating architecture sensitivity to cell libraries, these numbers demonstrate that

results obtained for different architectures are also sensitive to the benchmarks used in experiments.

86

The delay results in Figure; 5.19 shéw that the island-style architecture with multiplexed switch
elements [20] (Figure 3.2) is faster than the product—ferrn architecture for most of the benchmarks
considered. These are the results obtained after‘the inclusion of tac‘tical cells in the logic. architecture.
On average (arithmetic), and for the benchmarks considered, the LUT-based island-style
architecture was 19.7% faster than the product-term cote. The tri-buffered switch .architecture was
on average 37.4% faster. Although ndt shown, it was also found that even without the use of pass
transistor multiplexers in }the logic éfchifecture of. the island-style architectures, Isiénd—MUX and
Ibsland—TRIBUF are respectively 8.8 % and 29.4% faster than the product-term architecture. These
results suggest a significant change from the re;ults presented in [17], even-though the LUT based -
architecture used in [17] for compatisons is different from the one used in these expetiments. This
could be related td the fact that delay results used for the LUT-bz;sed architecture [02] are based on
non-functional urmng paths felétive to the éorre_sponding benchmarks. In other words, the fabric
was not programmed. Fﬁ_rthermore, it has been no.ted previously that the prégrammed and un-
programmed ;:ritical path delays results for the product-tetm architecture are very closely matched.
Howelver; this 1s nét the ;:ase for the 'graldual LUT-based architecture [02] that was used in [16] [17].
As a result .of the significant differéﬁcés in delay between the progr_amfned and un-programmed
versions of the LUT-based fabric used in [17], the speed gap between the product-term and the
LUT-based architecture is much larger than it should be. This explains (in part) why results obtained

‘here seem like a huge reversal in the delay'_ttends of LUT-based versus product-term architectures.

Figure 5.20, .cornp:ires' the area-delay-product for the produéf-term and island-style architectures.
‘For the set of_benchmérks .considered, the island-land style architecture, Islarid—TRIBUF, has on

average (geometric) an area-delay-product that is 0.99X that of the product-term architecture in [17].

87

o

} Wia}
|WwwAse
dip
Znie
lxade

¥8pd
bBaiun

L
-
m
4
K
©
o
ey
0
|

aul

]
Jdxg

Island-MUX

no
dwos
quo
eggiwo

2

¥ N - ® © ¥ o ©°

= - o o o o
(21n30931ydIe g1 d 0} 2ANEIDY)
Kejoq yed [eoi311D pazijeurion

its

ircu

Benchmark C

-style architectures

island

term and i

f product-

Ison o

delay path compari

.19:

5

igure

F

-TRIBUF

o
&
o
w0
O

WM™ W N W - 0 O
) o~ -~ o

(e1nyoanyoie g1 d 03 aAelay)
Jonpold Aejagealy pazijewloN

Yo
pui)
JwwAsg
dio
Znje
lxade
v8p4
Baiun
au)

H

bdxg

no
dwod
quo
BOG WO
20

ts

ircu

.

Benchmark C

f product-term and island-style core

iIson o

product compari

-delay

.20: Area

5

igure

F

88

The arithmetic average of the area-delay-product scaling factor for Island-TRIBUF is 1.11X telative
to the product-term architecture. Further, Island-MUX has geometric and arithmetic averages for
area-delay-product of 1.26X and 1.38X respectively relative to “PTB”. These results her show that

the area-delay product of Island-TRIBUF is comparableb to the product term architecture [15] [16].

5.8 Mux Switch Evaluation

Finally, “Improved multiplexer switch 2” was evaluated as a possible candidate for tactical cell
ﬁnplgmentédon in a future architecture implementation. This design is somewhat éf a variant of |
“multiplexer switch 17 because. it also aims to .speedup. hotizontal aﬁd vertical routes through a
switch elerﬁent. To evalﬁate' its potential, results. from SPICE simulations were used to annotate
some MCN_C benchmarks as described‘ eatlier. SPIC_E simulations revealed that the fast switch route
was 12.5% faster than the: “slow” routes.. For the s¥nallér benchmarks this only translated to a 1%
speedup. For larger bénchmarks like ex5p and apex4 speedups of 3% and 6% respectively were
achieved. It was anticipated that even larger speedups can be achieved for switch multiplexers with
wider fan-ins since slower paths will have more levels of pass gates relative to the fast path with a
single pass transistor (plué buffer delay for all paths). However, an independent stuciir in-[21] showed
that speedups of about 6% were achieved in architectures of this type. It is nét immediately obvious
why the gains were not higher but one reason could be due to the fact that most of the delay
reductions ;oﬁe from the use of longer wites (e.g. length 4 wires) in-the afchiteétutc [21]. It would
be interesting to see if the .proporu'on of leﬁgth 4 wires in the architecture could be reduced in favor

of these switches without adding signiﬁcanﬂy to area, and also reducing dynamic power dissipation.

89

Chapter 6

The Implications for eFPGA IP Design

The improved area. and Pérforrﬁance results of the‘ previous chapter have some important
implications for current eFPGA design and hnplementation stta_tegieé. Although the research work
presented in this thesis is an initial ¢Xplot’ation of potential irnplementatioﬁ and design strategies for
eFPGA circuits, and largely ir.l.dependent. of the lérger question of how eFPGA IP should be

delivered to the end-user, this thesis chapter provides a position on this larger research question.

At present, the popular method for delivering eFPGA IP to end-users is hard IP. However, as
illustratea in Figure 2.12, restrictions on cote size introduce'signiﬁcant inefficiencies. An altern‘ative
is the soft approach [14] [16] whete ;1 configurable RTL descriptioﬁ of an eFPGA can be
irnplemegteci using ASIC. tools .- and generic sta:nda'rd cell. lib.raries.‘ This approach allows
qustomizatién [48] that is irﬁpbssible .with hard IP (due to fixed hard IP coré_sizes and composition),
but the reliance on generic staﬁdard cellslintroduces signiﬁcaht inefﬁci_eﬁcies. A “middle-ground”
approach that combines positive elements of hard and soft IP approaches in a manner that allows

customization to user specification, and retains superior area and performance mettics is desirable.

The middle-ground approach suggested above would require an IP generator similar to commercial
SRAM generators that exist today [18]. Assuming a generator of this kind existed for eFPGA IP
and was based on customized libraties of standard cells, results in the following subsection are

intended to illustrate how such a generator would compare to the current hard IP approach.

90

6.1.1 Some “Real world” Case Studies

~ In order to compare an IP generator approach (based on customized standard cell libraries) with the

existing hard IP approach, 9 benchmark circuits were used. Each benchmark circuit can be viewed

as part of a different embedded application that might need to be modified in the future (for bug

fixes or upgrades). Seven of these circuits range from 56 to 200 LUTs, and the 2 largest benchmark

circuits have 1112 and 1340 LUTs respectively. For this experiment, the LUT input size (K) and
cluster size (IN) were fixed at 4 so that fair comparisons could be made with existing commercial
hard eFPGA IP cores [44]. Also, the impact of embédding FPGA cotes in a Bluetooth baseband

SoC is evaluated using reprogfammable Frequency hopping [74] and data encryption [74] modules.

Using data available from IBM and Xilinx [41], it was estimated that on average a hard eFPGA IP
core can implement anywhere from 800 to 1,371 equivalent ASIC gates per mm® in 180nm process.
This estimate was oBtained afté; correcting fof process scaling (90nm to 180nm). These estimates
are somewhat similar to estimateé published in [45]. However, these estimates assume that all the
logic in the eFPGA is used to irnple?nent a target circuit or benchmark. This is often not the case

since the logic fabric is s_ornetimés underutilized. We express logic underutilization in Equation (6.1).

6.1)

eFPGA corearea |]
logic clustersused /| Effective Logic Density

Underutilized Area per Logic Tile = (
Equation (6.1) measures logic inefficiencies in eFPGA IP. It normalizes the overall core area relative
to the actual number Qf logic. clusters that are used to implement a target application circuit.

Therefore, the fewer logic clusters a circuit implementation requires, given a certain core size, the

higher the underutilization. This.equation is used as the basis for the comparisons in this section. In

9

essence, the goal is to compare logic inefficiencies that exist in both the IP generator approach and
the hard IP approach. Results for 9 benchmarks are presented in Figure 6.1. In this figure, it is
assumed that hard eFPGA core sizes of 512, 1024, and 2048 LUTs are available, such as in Actel’s
Varicore [11]. To calculate core area (mm?) the reported ASIC gate capacity for each core [44] was

multiplied with the estimated equivalent ASIC gates per mm’for 180nm process technology.

-
2
o

Bhard Mtactical standard cell approach [Jcustom

-
N
o

=Y
o
o

o
o
=3

o
o
o

o
F
o

o
)
o

Normalized eFPGA Area Per Tile
c>(Relative to Hard eFPGA)
o
o

e
o

cht
term1
9symml
apex7
rd84
alu2
exp5s
apex4

Benchmark Circuits
Figure 6.1: logic efficiency comparisons of a standard-cell-based eFPGA IP
generator approach to a commercial hard IP approach for 9 MCNC benchmarks

The results in Figure 6.1 suggest that for small benchmark circuits, it is ze7y important to match the
logic capacity of cores to the circuit needs. Also, even for larger benchmarks such as ex5p and apex4
with over 1000 LUTs, the IP generator approach can still achieve effective logic densities that are
higher compared to the hard eFPGA IP approach. = From the results for the two largest

benchmarks, the use of customized standard cell libraries makes the IP generator approach

competitive. Furthermore, the use of configurable architectures in the IP generator approach makes

it possible to prune routing overhead to save area while hard IP tiles typically contain excess routing.

While an Ii’ generator based approach psing custom standard cell libraries generétes cores that are
larger than a full-custom eFPGA implerncﬁtatibn of the same size ana composition (Figure 5.14), it
still éan- achieve effective .logic densities (as defined in Equation (6.1)) that are superior or
comparable to the best available hard _eFPGA core (Figure 6.1).. This stems from the fact that
eFPGA vendors at present do not have the means to design full-custom eFPGAs for each
application, or customize one based on some other efficient circuit implementation method. Instead,

cores of fixed size and composition are built, and the inefficiencies predicted in Figure 2.12 occur.

The impaét of iﬁcludiné standard-cell-based eFPGA cores m a Bluetooth‘ baseband SoC was also
evaluated. Based on actual: eFPGA layo;lts and ésmnates of improvements due to tactical standard
cell suBsti_tutiori, an eFPGA &at implements the baseband frequency hopping (FH) module would
result in a core area increase of 31%. If instead the enﬁryption module eFPGA is included, core
area increases by 130% (2.3X). Both results assume an eFPGA with bidirectional routing and single
segment wires. Assuming a tactical standard cell implementation with length 4 (L4) dixectiogal wires,
the correstnding core area increase from the encryption module eFPGA is about 80% (1.8X). Its
is not expected that the FH module eFPGA would benefit signi.ﬁcantly in terms of area, from length
4 and directional wires. To pbut these results in pefsp'ecﬁve, consid;ar that the stﬁallest available hard
IP core in 180nm technology with a similar architecture is about 6.25mm? based on data in [41]
[44]. Ho.v.vever, FH module eFPGAs based on generic and tactical standard cells are respectively

5mm?” and 2.1mm’ in area. Further, the larger encryption module eFPGA (784 4-LUTs) with length

4 wires and directional routing [20] has an estimated area of 5.3mm?” This is still smaller than the

smallest available hard IP core [44] in 180 nm with a similar architecture. Lastly, the Bluetooth SoC
is I/O limited, (51% of unused area in Figure E1) hence, the inclusion of the FH module eFPGA or

encryption module eFPGA (L4 wire + directional routing + tactical cells) has no effect on die area!

Finally, although th.e tesults above show that the tactical cell approach surpasses the effective logic
deﬁsity of the hard IP approach, thete have to exist cases \.Vhere this is not true (See Figure 2.12).
However, with con:tinuecll efforts to improve autb.rnz;ted eFPGA generatioﬁ methods (e.g. using
other more efficient circuit b.uildi'ng bloc.ks)’, it may be possible to surpass effective logic densities of
existing i’xard eFPGA IP cotes [44] across all target circuit sizes. In essence; we advocate a departure
from the existing commercial hard eFPGA IP approach towards 2 more adaptable and efficient
methodology based on an eFPGA IP generator concept describéd herein. Préx}ious work [01] [02],

and the limited success of hard eFPGA IP, suggests the need for a paradigm shift in eFPGA design.

6.2 A New Paradigm for eFPGA IP Design

Despite the improv.ements reported here, there remains much wori; ahead if embedded eFPGA
cores are tovbecome mainstream.. In pérﬁéu_lar, aﬁ efficient IP generator'framé;xzork rﬁust be devised,
so that users can tailor programmable fabrics to their own needs. The results here have shown using
teal world examples, that significant inefficiencies exist in current hard IP design approaches, due to
the absence of application_—speciﬁc customization. When users of hard eFPGA IP are restricted to IP

with fixed sizes and resources, it is possible to end up with too much or too little of the resources

“needed for a given application. This has implications for area and speed, and presumably for power.

It has been shown in this thesis that standard cell libraries can be customized to improve the area
and performance of standard-cell-based eFPGAs. However, augmenting an eFPGA RTL
description with custom standard cell libraties is a deviation from the soft IP concept. For example,
process independence, one of the haﬂmarké of the soft IP concept, would Be sactificed, because,
new customized standard cell libraries have to be designed for each process migration. Moreover, it
is desirable to hide the details of an architecture implementation, since this is to some extent what
defines the competitiveness of a product in the market; Thetrefore, an IP-generator approach that is

similar to SRAM generators [18]is proposed. Some of its proposed features are described next.

6.2.1 “Open” Architecture IP Library

Simular to the “open source” gon;:ept used in Linux© software.development, it is desirable to have a
progrémmable logic architecture IP library. timf allows programmable logic architects and designers
to augment new architectures and related CAD software to an existing IP generator. This approach
makes it possible fér designers to select the eFPGA architecture that best suits their design.needs.
For example,.the tesults in Table 5.18 to 5.20 showed that the LUT-based.island style architecture is
the better choice for éertain benchmark circuits, while the product term architecture is better

choice for others. Cleatly, having the option to choose between architectures can be quite beneficial.

It is also expected that CAD infrastructure IP for architectures will include detailed area, speed and

power models in addition to placement and routing software algorithms. This would allow users to

evaluate the area, speed, and power characteristics of all architectures before deciding which to use.

6.2.2 Configurable Architecture IP

An ¢FPGA IP generator should contain architectures that afe configurable. This means that in
addiﬁon to having a pool of high-level architectures as described above, each architecture in the IP
library must itself be configurable (i.e., it must hav~e an associated set of modiﬁable parameters). For
example, if using the clustered island-style eFPGA architecture described in this thesis and in [11)
[13] [20] [22] [28] for an embedded application, users should have the optioﬁ to chaqge the routing
segment length distribution, LUT input size (K), channel width (W), cote dimension (Dx * Dy) or
other architecturé parameters as needed. The absence of such a flexible system in existing hard IP
approaches [44] is the re‘ason for the inefficiencies that were illustrated in this thesis and Figure 2.12.

Conﬁgurable eFPGA architectures may be described in RTL or in “architecture files” [11] [68].

6.2.3 Doméin-drivgn IP generation

Different parameterized high-level architectures in an architecture library, makes domain-driven IP
generation possible. In particular, it is possible to construct an eFPGA with the best available
architecture for a specific application (e.g., selecting a'product term architecture over a LUT-based

architecture) and with optimal parameter settings (e.g. with suitable channel width or core size).

The above approach is an improvement over existing approaches, because pfogtarnmable logic
designers in general implement programmable logic devices based on a large set of “golden”
benchmarké, and do not cétc_&:: to specific appﬁcédons. This can result in large area overheads due to
underutilized logic. Furthermore, it 1s expected that a largé area ovethead would also have a

negative impact on speed and power (due to higher capacitance). To compensate, the authors of

96

[67] advocated architecture families comprised of sibling architecm;es that are in essence scaled
down versions .of the same ;‘parent” architecture. The goal is that users will find an FPGA within
the collection that minimizes overhead. However, inventory costs associated with having a large
“family” limit the extent to which this can be done [67]. FPGA vendors use some of these same

techniques and it is in a sense equivalent to having a collection hard IP core sizes as is done in [44].

Applications intended for an eFPGA are much smalle:r in nﬁrnber and better underétood
beforehand; therefore, .inefﬁciencies associated with the usual design approach for standalone
FPGAs and hard eFPGAs referred to above; can be avoidea through domain specific
custérnization [01] of eFPGA IP. Standalone FPGAs do not present the same opportunities because
the potential application space i§ much larger aﬁd less is known about intended future applications.

Deciding on the most suitable eFPGA IP architecture implementaﬁon involves experiments with
example ci'r.cuits that are represéntative of the target application, and a series of paramefer sweeps to
determine the most suitable architecture implemehtation. In a SoC design for example, some of the
target applications would be known m gdvance due to re-use of application IP, and ther.efore it is
possible for SoC designers to tailér the'geﬁerated eFPGA IP to the SoC application. It is expected
that these optimization ekperiments, based on uset-supplied design constraints, would be

automated, and run within the proposed IP generator tool and therefore not visible to the user.

Finally, progtammable logic architectures in general are simple enough that they are relatively very
predictablé. For example, the relative sizes of the logic used will change givenb a particular

architecture implementation (e.g. different N or K values) but the logic function will be the same.

Furthermore, there is no need to build multiplexing logic with different drive strengths, because,

minimum sized pass transistofs have been found to give the best results in general [66] and
multiplexer inputs and outputs c:;m be buffered as needed. Aé a result, traditional and sometimes
complex logic synthesis of the kind used in Chapter 3 and in [14] [15] is not required, and only gate
resizing of input and output dﬁvef§ is needed in addition to selecting the size of multiplexing logic
(e.g. 2 32:1 versus 16:1 mulﬁpiexer). Thetefore, a reasonable a?proach could involve combining gate
tesizing with architecture optimization and using techniques similar to that used in [31] [35]. The end

tesult would then be a circuit-level architecture netlist that has been resized and is ready for layout.

v

6.2.4 Automate_d'Layout generation

A layout implemertation framework 1s needed to compliment architectural flexibility, so that
physical layouts of programmable logic éréhitecturés can be generated automatically. This could be
achieved with a scripted anci fully automated ASIC backend design flow with modifications for
eFPGA design [14]>[75] [78] , or a new custom desigﬁ flow as in [68].- Such a design flow would
typically include support for design pattitioning that allows regular programmable logic architectures

with repeated structures (e.g. eFPGAs) to be tiled and replicated (e.g. Cadence First Encounter [23]).

The need for an automated layout design flow that supports tile replication is based on the notion
that architectur;: P implernented in the proposed IP :génergtor should have a regular structure that
allows tile replication. Standalone FPGA chip’s and hardleFPGA cor‘es are built using a structured
approach that replicates a sﬁigle well-optimized tile to form a programmable logic array or fabric.
This approach allows tile re-use and improves the quality of design. A regular arrayéd architecture

like the island architecture makes it possible to build an eFPGA fabric from a single replicated tile.

98

In addition to facilitating tile re-use during design, a regﬁlar fabric also has a positive impact on the
quality of results achieved with existing EDA tools. For example, it was observ'ed that attempting
“flat” logic synthesis and or pla.ce and route ovf a large standard cell eFPGA.fabric can take several
hours and prociucé léss than desirable results, or in some cases lead to tool failure. However, a
“divide and conquer” strategy allows sjrnthesis to run till completion and achieves good results for
the la;gest MCNC benchmark circuits (> 1,000. 4-LUTS). A.regular fabric structure makes this
process straightforward, because a single tile (small in compaﬁson to the fabric) can be mapped to a
gate-level netlist rather easﬂy, and then r?:plicated a;t a higher level to form the programmable fabric.
This same principle of localized design‘ opﬁnﬂzation can be applied to physical layout design as well.

The fabric layout shown in Figure E.1 of Appendix E (784 LUTSs) was implemented in this way.

A tiled regular fabric also simplifies eFPGA characterization and eFPGA CAD deéign because
pést-xouting timing extraction a1“1d characterization needs to be done for a single tile (not the entire
fabric) and then applied to all tiles since identical nets in each tile will have the same wire length.
Otherwise, timing arcs in each tile must be extracted separately. This process can be time consuming
and reqtﬁrés eFPGA CAD tools to store more comialex databases. In a regular architecture like the

island-style architecture with repeated tiles, the same results can be achieved in much less time.

Finally it was observed that a regular layout structure (see Figure E.1) reduced wire lengths by
about 21% on average. However, because wite delays make up 10% of the overall delay on average,
the wire length reductions translated to a 3% reduction in delay for benchmarks regardless of size.

This result is not surprising since the architecture -used here has only short wire (single segment

length). It is expected that structure will have mote of an impact in architectures with long wires

[11]. Nonetheless, this result is significant, because it suggests results similar to those obtained in

[14] with a new CAD flow could have been achieved by imposing physical layout structure alone.

6.2.5 Summary

In the final analysis, the proposed eFPGA IP generator method which includes an “open”
architecture IP library, individually configurable progrémmable logic architectures, domain-driven IP
generation, and an autorﬁatéd layout generator that relies on highly optimized custom cle// libraries, lies
somewhere between the hard and soft IP approaches described previously, because, it aims to
combine only the best properties of both these IP approaches to achieve the best results. We call
the proposed approach the firm IP app’rOach because it is neither truly soft nor hard. In Table 5.2

below, we summarize key distinguishing characteristics of the soft, fitm, and hard IP approaches.

Table 6.1: Summary of Soft,'Firm and Hard eFPGA implementation methodologies

Soft eFPGA Firm eFPGA Approach Hard eFPGA

Behavioral RTL | Structural RTL or GateLevel
' Netlist

ASIC flow | Custom ASIC flow Full-custom flow
Custom tactical cells and
generic standard cells

Transistor-Level Design

Generic standard cells Full-custom design

Logic Synthesis Required _ No Logic Synthesis Required
Cells free to move - Regular, tiled structure | Regular, fixed-tile structure
Configurable architecture Fixed architecture '
Flexible size, Flexible size, shape can be

no fixed shape -~ fixed Fixed size and shape

Mixed with cells used for
rest of design (fixed logic)
Small Amount of Small-to-Medium Amount of Medium Amount of .
Programmable Logic Programmable Logic Programmable Logic

Designed as a separate core and inserted

Chapter 7

Final Conclusions and Future Research Work
7.1 Conclusions

In this thesis, a generic island style eFPGA was successfully implemented using the ASIC flow. In
the process, design issues were resolved that befqre now, excluded this ‘class of eFPGA architectures
from being implemented within the ASIC design flow. In particular, a “workatound” was devised to
prevent the oécﬁrrénce ‘of combinatiénai loops in eFPGA fabrics during logic synthesis and
functional verification. As a result, new architectures that conld enter states that create combinational
feedback ioops can be é%plored without any design ot ifnﬁlgmentation issues. Furthermore, this

solution was leveraged to minimize the occutrence of glitch power dissipation during programming.

‘ Also, a novel technique for implementing I/ O for island style eFPGAs that uses the switch blocks
around the cote periphery to implement I/O was introduced and successfully implemented. Two
novel multipléxing switches that improve speed of eFPGA fabrics by as much as 24% for the set of
benchrnarks. conlsidered‘ was also presented. A conﬁgurétion scheme (similar to that used in
commercial eFPGAs) that allows tiles in a fabric.to be programmed individually of in a row was
described éﬁd successfully implemented. This scheme has implications for testability programming
power. For example, the ability to program tiles individually facilitates fault diagnésis during testing.

Also, because only the clock networks of targeted tiles are activated, switching power in minimized.

In this thesis it was also shown that significant improvements in area and speed could be achieved

by using FPGA-centric tactical cells to implement eFPGAs rather generic standard cells. An average

101

c@re area reduction of 58% was achieved for the set of benchmérks considered. Compared to area
results reported by VPR for a full-custoin equivalent, tactical cell based eFPGAs are about 2-3X
larger. However, other estimates based on results for commercial fabrics show that this ovethead
lies somewhere between 1.66X and 3X. An average delay reduction of 40% was also achieved over

the same set of benchmarks. These delays were found to be within 10% of a full-custom equivalent.

In addition, results achieved with tactical standard ceHé were compated to results achieved with a
new approa.ch célléd GILES, which uses non—sténdétd cells and custom tools in é flow similar to the
ASIC flow. Reéults obtained showed that cell densities achievable with tactical standard cells are
comparable to those obtaingd for GILES. Consequently, it was also shown -that with tactical

standard cells, it is possible to achieve layout densities that are comparable to the GILES approach.

Ne)lct, the results obtained here were compated to the product term architecture in [15] [16]. The
purpose of this experiment was to measure how haﬁng close to optimal buildiﬁg blocks for each
architecture might affect conclusions. Since the NANDs and NORs used 1n the prodﬁct-'term
architecture are already close to oi)dmal' in £nost standard cell libraries, this érchitecture is at an
advantage relative to LUT-based architectums that rely more heavily on multiplexers. Multiplexers
built with fpical standard cell libraties are not optimal. In thls experiment, it was found that
including tactical multiplexers in the logic architecture of an island style ePFGA (equivalent to
having NANDs and NORs in product-term blocks) resulted in a delay improvement of about 35%
in the LUT-based island atchitecture relative‘to the product term architecture. It was also found that

without tactical cells, the LUT-based Island architecture is still about 20% faster on average.

In térms of area, the island-style architecture is roughly 35% larger. It is expected that this difference

would be even less if all the benchmarks used i [15] were considered. In terms of area-delay

product, and for the set of benchmarks circuits considered, both architectures are comparable.

In Chapter 6 it was shown that eFPGAs based on tactical standard cells are competitive with
commercial hard eFPGA cores. For the set of benchmarks considered, it was observed that higher
¢ffective logic densities could be achieved using tactical standard cell ePFGAs. This is possible because
tactical cell eFPGAs can be tailored for a given application, and so, the extra routing and logic

overcapacity that is associated with the hard eFPGA IP approach is avoided almost completely.

It was also shown using an actual 'Bluetooth baseband SoC design, that either of the baseband
frequency hopping or data énérjrption lmodules could be replaced with their eFPGA equivalents
withéut any impact in the éveraﬂ die area of the Bluetooth .SoC. This is possible because both
modules together account for less that 0.7 % of the SoC design area. Furthermore, this SoC design

isI/0O anited and so a significant portion of the area within the I/O ring can be used at no cost.

Furthert, in. Chapter 6, a new paradigm for eFPGA P désign was proposed to minimize the
overhead that is normally associated with pfograrnmable logic fabrics and possibly make them more
attractive to designers. In particular, a system based on an openv source architecture ﬁbrary was
proposed, so that désigners are abie to choose ﬁhe most suitable archi#ectute for a given application.
The resﬁlts in this thesis hﬁvé already shown that some circuits, for reasons.that’ are not yet fully
understood, appear to “prefer” one ar;hitecfure over another (other factors such as CAD tool

algorithms cannot be ruled out as a factor [12]). Other recommended features include configurable

architectures, such as the ones used here, and domain-driven IP generation to minimize overhead.

7.2 Future Work

: The tactical standard cells developed in this wotk need to be fully incorporated into the ASIC design
flow so that the results obtained in thesis can be further corroborated. Furthermore, it is also
expected that this will result in further savings due to reductions in the layout area overhead. In

thesis, a pessimistic estimate of layout area overhead for tactical standard cell eFPGAs was assumed.

Techniques to further minimize the FSRAM cell area overhead should be investigated further,
because SRAM constitute a large propbrtion of the fabric area, and are relatively easy to design. Data

in [25] suggests that as SRAM cell area of roughly 11um?® is possible in 180nm process technology.

Given the workaround for combinational loops presented in this thesis, it would be interesting to

see the improvements that can be made to previously implemented architectures in [02] [15] [16].

Finally a thip c_le‘sign identical to the one in [14] Qas implemented using the island architecture in
180nm précess. It would therefore be useful to also implement the same design using customized
tactical standard cells. This would present the chance to compare the power dissipation in both
approaches, since it is difficult to obtain exact estimates of power consumption with available ASIC

tools. Moreover, this would also be an excellent opportunity to corroborate cufrent findings.

7.3 Contributions

* A parameterizable island-style architecture was implemented in RTL. In addition, a novel

I/O design was deireloped that reuses excess routing resources around the eFPGA edges.

A clever workaround was devised for the combinational loop problem that plagued previous
architectures irnplémented in the ASIC flow. As a 'reéult, designers can now explore a
broader range of architectures. For example, the dual-network architecture [15] could be
improveci because the work dbne here implies that an extra routing network in no longer

needed. Also, the gradual architecture [02] can now be modified to support sequential logic.

Two novel switch designs, “Improved multiplexer S\lVitCh 1” and “Improved Multiplexer
switch 2” were introduced. For the set of benchmarks considered, these switches resulted in -
speedups of Betweén 1% and 24_%. However “Improved rnultiplexer switch 17 results in an
area overhead of 3% fof generic standard cells énd ébout 13% for tacti_cal standard cells.
Although maximum delay savings due to “Improved multiplexer switch 2” are not very high

(6%) area overhead in minimal or non-existent compared to the original multiplexer switch.

The design and implementation of tactical standard cells for the island-style architecture
implemented as part of this project resulted in area and delay savingé of 58% and 40%
respectively. Compared to a full-custom equivalent, our delay results ate within 10% and area

results are somewhere between 1.66X and 3X based on our estimates and those from VPR

It was shown that the densities achieved with the tactical standard cells devélbped as part of
this work are comparable to cells used in the GILES. This is possible because a novel
technique was devised to improve the layout area efficiency of pass-transistor-based

multiplexers. As a result, with the standard tools of the ASIC flow, it was possible to achieve

identical results to GILES which used custom-designed tools and a non-standard cell layout.

It was shown that standard-cell-based architectures are very sensitive to thé cells. that are
évailable in a library. Using a pr'oduct term architecture and the LUT-based architecture
developed here, it was shown that conclusions can change significantly when each

architecture is implemented with cells that are relatively well optimized for each architecture.

It was shown that an eFPGA fabric based on tactical standard cells developed as part of this
‘wotk, are competitive with a commercial library of hard eFPGA IP fabrics. In the example

considered, the tactical cell approach is better in all cases and for a range of circuit sizes.

Using an actual “real-world” wireless platform design, it was shown that two modules that
lend themselves to programmability, namely, the frequency ho?ping and data encryption

modules, could be ¢rhbedded in_ the SoC platform- Without any increase in the die area.

It was demonstrated in this tilesis that a regular eFPGA archi&cture has numerous benefits.
For example, it was _possible to implement a fabric with 784 4-LUTs in relatively short time
(in roughly 3 hours versus 17 hours for a flat design) by exploiting the regularity of the
| island;style eFPGA during synthesis and la).rout. This approach also resulted in a 21%
reduction in vs.lire lengths. Although this only translated into a 3% speedup of fabrics in
general, the implication is quite sigrﬁﬁéan’t, because .it .suggests the same results obtained in

[14] could have been achieved by imposing layout structure to better manage wire lengths.

A novel paradigm for eFPGA design based on an open architecture library was proposed to

enable designers select the best architecture for a given application and minimize overhead.

106

Appendix A
Standard Cell Based eFPGA implementation Results

Al

In ordef to verify the RTL implementation of the island-style architectures described in Chapter 3, a
reference design with an embedded core was implemented. This is the same reference design that
was used In previous Workv [14] [77]. Thf: design is a test interface for embedded core testing [76]. In
essence,.t.his design is an adaptor that allows an embedded IP cote in a SoC de'sign to “plug” into an

on-chip test network and receive test packets depending on the destination address of the packet.
next state logic

MEMORY | . A
CONTROL eFPGA |\
CORE |7
\ 21

packeT | TT
BUFFER pyp——

(::} ~ LOGIC

iR 1T

TEST PACKET SERIALIZER

'

Figure A.1: Block level diagram of the test interface module with an eFPGA fabric

As in previous work [14] the next state logic of the primary controller in this interface was replaced
with programmable logic, lea'vipg only the 6utput logic of the controller as fixed logic (see Figure
A.l). This design was successfully implernenteci and Figure A.2 shows a screen capture of gate-level
_simulatién waveform for the design. In Figure A.2 the states transition as expected (output of

embedded fabric) and the fixed output logic module responds to the state transitions as expected.

107

Finally, the measured crictical path delay through the eFPGA core (based on the original multiplexer

switch) was 33.2ns and 34.24ns for the entire chip. The eFPGA core area alone was 389,550um”.

"hiAlE

ac_data out{:.0}
AC_rey_en

si_rey eh

dlata_in[0:0]
walid

full

aniff p atate_oft 0}

srite poatate of2:0}
testelk

pOwer_up
rat
SLIAN_EN
g _o
serial_out
lut_a
testclk

Figure A.3: simulation waveform capture of glitches and glitch isolation in a BLE

Furthermore, all of the architecture, CAD, and design issues highlighted in the previous chapter and
in this chapter were resolved. For example, Figure A.3 shows a simulation screen capture from the
eFPGA configuration phase. As the figure shows, several transitions and glitches occur at the output
of the LUT during configuration as predicted (see Figure 4.7). Figure A.3 also shows that these
glitches have been isolated from the multiplexer output (“mux_o” in Figure A.3) using the scheme

llustrated in Figure 4.7. The power savings that result from combining this glitch isolation approach

108

http://11P.II

with tile-based and_row-_based configuration has not been méasured here. This is left to future

work when the fabricated test interface chip is tested, and measurements of power can be obtained.

A2

The data presented in Tables A.1 through A.3 were used to generate the plots shown in Chapter 4 of
this thesis. Synthesis results were obtained'using Synopsys Design Compiler. Layout was done using

Cadence First Encounter and critical path delays were obtained ﬁsing Prime Time Static Timing -

Analysis tool from Synopsys. All the results are for a 180nm process node standard cell library [24].

All critical path delay results in Tables A.1 through A.3 are for the worst case process corner.

TablevA.1: Design results for 18 eFPGA cores with tri-state buffer based switches

109

estimated synthesis % area layout critical path
Circuit area (um?) | area(um? | difference | area (um?) | delay (ns)
Cc ‘ 439018 471158 7.32 612505 7.74
Cm150a 229030 248074 8.32 322496 8.91
cmb 258836 - 268481 - 3.73 349025 8.54
comp 455733 487945 7.07 634328 16.30
cu - 317032 300631 -5.17 390820 8.25
5xp1 381288 376979 -1.13 490073 5.14
i1 289621 279649 -3.44 363543 9.66
inc 381288 376979 -1.13 490073 5.40
unreg 600952 635851 5.81 826606 6.88
rd84 2570245 2464741 -4.10 - 3204163 20.92
apex/ 1546660 1519160 -1.78 1974908 11.23
alu2 . 2792540 2984645 6.88 3880039 23.87
clip 2018818 2113094 - 4.67 2747022 18.05
9symmi 939896 859022 - -8.60 1116729 12.79
term1 1249090 1266233 1.37 1646102 15.92
cht 1275526 1353331 6.10 - 1759330 5.39
ex5p 23446224 22485924 -4.10 29231701 42.00
apex4 37571447 | 39263454 4.50 51042490 65.37

Table A.2: Désign results for 18 eFPGA cores with ori'gilnallmultiplexer switches

38133916

Estimated | synthesis % area layout critical path
circuit area (um?) | area (um?) | difference | area (umz) delay (ns)
cc 419158 451298 7.67 586687 10.43
cm150a 221086 . 240130 8.61 312169 10.28
cmb’ 248244 257889 3.89 335256 9.76
comp 443320 475532 7.27 618192 17.74
cu 306440 290039 -5.35 377051 9.92
5xp1 370696 366387 -1.16 476303 7.61
11 277208 267236 -3.60 347407 11.30
inc 370696 . 366387 -1.16 476303 8.29
Unreg 569176 604075 6.13 - 785298 10.12
rd84 2506527 2401023 -4.21 3121330 27.98
apex7 1483108 1455608 -1.85 1892290 18.37
alu2 2744876 2936981 7.00 3818075 28.73
Clip 1955266 2049542 4.82 2664405 23.69
9symml 929304 848430 | --8.70 - 1102959 14.53
term1 1216817 - 1233960 1.41 1604148 18.58
Cht 1211974 1289779 6.42 1676713 9.55
ex5p 23128464 | 22168164 -4.15 28818613 61.59
apex4 36441909 4.64 49574091 98.27

Table A.3: Design results for 18 eFPGAs using the speedy m‘ultiplexer switch 1

synthesis

estimated % area layout critical path

Circuit area (um?) | area (um?) | difference | area (um?) | delay (ns)
Cc 434740 466880 7.39 606944 9.07
cm150a 227319 246363 8.38 320272 9.96
Cmb 256554 266199 3.76 346059 8.86
Comp 453059 485271 7.11 630852 15.99

cu 314750 298349 -5.21 387854 9.10
5xp1 379006 374697 -1.14 487107 6.31

1 286947 276975 -3.48 360067 10.72
inc 379006 374697 -1.14 487107 6.49
unreg 594107 629006 5.87 817708 8.50
rd84 2556519 2451015 -4.13 3186320 24.49
apex’ 1532970 1505470 -1.79 1957112 15.52
alu2 2782273 2974378 6.90 3866691 26.19
clip 2005128 2099404 4,70 2729226 19.25
9symml 937614 856740 -8.63 1113763 14.16
term1 1242138 1259281 1.38 1637065 17.51
cht 1261836 1339641 6.17 1741534 7.25
ex5p 23377776 22417476 -4.11 29142719 47.23
apex4 37328135 39020142 4.53 50726185 77.20

Appendix B
Area Model for Standiard Cell baséd eFPGA area Estimation

Area breakdown of a tile in a étandard-ceﬂ-based island-style embedded programmable logic fabric.

The Routing Switch Block

Areay,,, =1318x W (original multiplexer switch), Area,,, ., =1483xW (tri-buffered switch design)
Area,,,, =1447xW (improved multiplexer switch 1 design) |

Configurable Logic Block
— . K _ 28 42541 -
huflipflops — lutinputmultiplexers — 3 3 . lutoutputmux
Area axNx2" + Area » Nx (]_—_[f + b(mod—)) + Area N(a) +
. _ _ oltoga 3V +2)]_y Jf) (ollog 2 (3N+1)]_y)
APea i ooy = N6+ €)+ Area s = KN([229205 |1)+ KN (b x mod 2220721) 4

Area reset log ic(2—inputORgat es),reset Yog icflipflop s =2N (a + d) + Arealulinputmu ltiplexerflops = I—log 2 (3N + 2)-|KN a

Tile Connection Blocks

Areaxtionblkou = |—WF; .IN(t ta+ e) + Ar eQbuﬁ"arraylnter = |—WF i -ﬂ_zlbttz__ly | + I—WE -Iq_”i;d _I + L(2N+23)mod4 J)Y +

Areabuﬁamﬂm’a = |-WF1 -”_2}\"1_+2Jq + [-WFI _](L2A2+2 _I+ I_(2N+25)mod4 J h +

[-WF‘ -.||.2]Y$—+2.h + I-WFI —I(|..2Af!+2_|+ |_(2N+26)m0d4 Jh +_Aredclbinpulmyxﬂops = ‘_log 2 |—WFI —I _b(zN + 2)+

! 1 . og., [WF;]]
-) zrloserF, Tl_]-l/* 2{' CH] -1
Area clbinputmu xes - (2N + 2))(('_'3— +bxmod +¥+——+1

3

Area of Peripheral Blocks

Areabuﬁarrayleﬁ +bottom = I—WE —II.#JY + |—WF: -| (|-21‘£+2 J + |_(2N+23)'"f'd4J)9 + Areaswilchesleﬁ +bottom = 2770W +
Areacornerblk =11080 Areatri-buffs left = |—WF0](L_}L\{—J+ Lﬂ)_’_;"_d“J) +vArealri—buj]Zv bot — I—WFo —I(I_—};I__]) +

clk log ic left + bottom = 6 xr+ Area = 2m +

Area sellogicleft+ bottom .
Area ri-buffs lefi flip flops |—WF0 —| (I_%_l'*' I_MJ)Q + Area -buffs bot flipflops I—WFO -| (L—LX——I)a

Configure and Clock logic

=3xr+ Area =m

edgetileselecflogic

=3xr+ Area =m+ Area

regulartileselecflogic

‘Area

regulartile clklogic edgetile clklogic

a = cellarea of programflop; b=averagecellarea of 2 : 1 CMOS multiplexer; ¢ = cell area of LUToutput flip- flop;
d =area of 2-input OR drivel , e= areaof 2-input OR drive 2; f =area of 4:1CMOS multiplexer;
q =area of intratiletrack buffers; s = areainter tiletrack buffers§ t = averagetri - state buffer cell area;

r=area of clock gating logic 2 input AND; m = area of tile selection logic OR2D1 + MUX2D1;

112

.'Append_ix C
Details of Circuit Analysis Solutions for Multiplexer Circuits

C1

Ryans = LW * R per Square

1 J_"W_LJ.

d;ff$ d;ffg dlffg; $

use logical effort e '

el lqwimti
- o iff
C = 3W ™ 2.0 fF per micron d g; dm:\]; dﬁf:; g;

Figure C.1: RC network representation of shared buffering scheme in an eFPGA
Delay = (B - l)l(D DR, 2C, i+ Rirans (C ay TC g)J+ Elmore Delay of active path (C.0)

Delay of active path = R,,,,,,s (2C,y + cse,f) (R, + R)zcd,.,, +(Rys +2R)Coy +C,) (C1)

D+l i

| Equatlon (C. 1) is based on the general Elmore delay equation: ' C, >R Where D is the depth of

i=1 j=1

the pass transistor tree, i is the number of nodes from source to sink, j is the number of resistors

from the source to the current node (i” node), and B is the number of branches in the pass tree.

Combining Equations (C.0) and (Cl) with B, D = 2, Rpersquare = 27 KQ, KZ-: (;)i58Um ,
18um

. fF .
rans =%><R per square, C,. = C,W, .C, =C, ¢ W ins Cejf,C =10, 2.Ou—m and solving for

"W (width of PMOS transistor nétwork) in Figure 5.11 gives the results in Equation (C.2) below:

S -18 -18
Delay,,,, =220 78x10™ - W (of PMOSin buffer) = — 210
- W : ' Delay, ., —78x10

(C2)

The value of W obtained in Equation (C.2) depends on the required target delay (Delay,,,.,)-

Thetefore, based on the results in Eéuaﬁori (C.2), this target delay must be greater than 78x107"%s

because, this represents the smallest delay that is achievable in the design example considered here.

C.2

R | {mn L% tran

Ceat* Ca $ g 2Cdnﬂ ;[;zcdm $ ZCddI $Cm+ Cq C +Cdff $chm+c
Figure C.2: RC network repreSentation of repeater insertion in an eFPGA 5-LUT
Delay = ﬁ(R,,a,, [Cooy +Cuy +(m=102Cy +C oy +C,]+ R(Cpy +C, I+ ”’(—";—)-Rcd,ﬁ) (C3)
Whete m is the number of NMOS pass transistors between repeaters and 7 is the depth of the pass
transistor tree. This translates to 7 sections of m pass transistors for the entire pass transistor tree.

n.

ODelay

Setting =0 gives —R,.(C., +C)+§Rcd,j, =0 | (C4)
o ,

(Cself + Cg)
RC,,

: : 2R
Reatranging equation (5.4) and solving for m gives m, = \/ = (C.5)

Where m

opt

is the optimal number of pass transistors needed between repeaters to minimize delay.

nmos

Finally, Equation (C.5) evaluates to épptoximately 4 pass transistors if a ratio of 1.5 is used.

pmos

Notice that this analytical result is identical to the result obtained experimentally through SPICE.

Appendix D
Area estimation method for GILES and Full-custom eFPGAs

D.1

1.00E+03
8.00E+02
6.00E+02
4.00E+02

2.00E+02

Total Multiplexing Logic Area
(Square microns)

0.00E+00
o G 10 15 20 25 30 35

Number of Inputs
Figure D.1: plot of layout area vs. inputs for géneral-pUrpose eFPGA multiplexers
8.00E+03
7.00E+03
6.06E+03 .
5.00E+03
4.00E+03
'3.00E+03

2.00E+03

SRAMSs (Square microns)

1.00E+03

Total LUT Area without Function

0.00E+00

Number of Select Inputs
Figure D.2: Plot of layout area (excluding the SRAMs) vs. select inputs for LUT

7.00E+03

S

- S

e

A
Ly

e

- WM&;\
G
S

4.00E+03

(suosoiw a1enbg) SWYNS
uoldUNZ INOYNM B3I LN [BI0L

40 60 80 100 120 140
Number of LUT Inputs

20

ts for LUT

the function SRAMSs) vs. inpu

ing

Plot of layout area (excludi

Figure D.3

117

D.2

Earlier area _estimates obtained from tﬁe VPR tool show that a tactical standard cell implementation
of a generic island-style eFPGA architecture is-about 2.86X the size of the equivaleﬁt full-custom
implementation. However, the results in [68] [69] have suggested the area overhead could be as low
as 1.36X. We next propose an alternative method to estimate the area overhead of a standard cell

eFPGA relative to a full-custom device and then compatre our results with previous estimates.

To impréve the quélity_of result'sl obtained, it was necessary to consider a large; set of benchmark
circuits. In parﬁcﬁlar, it :was necessary to add more circuits from the “golden 20” MCNC
b_énchmarks so that a more realistic éfea estimates might be obtained. This is needed because the
very large benchmarks in ;‘h'e MCNC suite require-a much larger routing infra%tructure compared to
the logic components (LUTs). In other words, the routing infrastructure of an FPGA scales at a
faster rate than the logic with increasing size of the benchmarks. A large rouﬁng interconnect
“degrades the area efﬁcienéy of programmable devices. Therefore, in order to capture this effect in
our estimates, it was nécessary to include more gélden 20 benchmarks to the initial set of
benchmarks used in this work. Figure D.4 .show.s the distﬁbution of_logic and routing for the

standard cell implementations of all the vb_enchmavrks considered. The general trend in this figure

confirms that routing in more dominant as the size of logic implemented in an eFPGA increases.

90.00

80.00 -

70.00 ~

60.00 -

logic

50.00

40.00

Fabric Area

30.00

20.00

Percentage of total eFPGA

10.00

60 105 240 322 390 459 2128 3520 4413
Equivalent ASIC gates

Figure D.4: Area distribution between logic and routing components of eFPGA

The proportion of routing and logic was mote or less split evenly for smaller benchmarks (less than

2128 ASIC gates in Figure D.4). For the larger benchmarks, routing made up 70% of the total area.

1.00E+03
9.00E+02
8.00E+02

E 7.00E+02

E. 6.00E+02
o

? 5.00E+02

(]
o 4.00E+02
(]

‘g 3.00E+02
2.00E+02
1.00E+02

0.00E+00

Soft eFPGA Fabric Gate Density (ASIC

5 ‘_E] L1 wires

L4 wires [JL4 + Directional |

S

1

|

60 105 240 322 390 459 2128 3520 4413
Equivalent ASIC gates

Figure D.5: ASIC gate density scaling after estimated improvements to routing

119

Figure D.5 shows the ASIC gate density (th(% equivalent ASIC gates in an AS.IC implementation of a
benchmark circuit divided by the area in mm?®, of smallest eFPGA needed to implement the circuit)
for the standard cell eFPGAs used to implement each benchmark. “L1” in Figure D.5 refers to an
island architecture with single segment or “length 17 [11] wires. “L4” refers to an island architecture
with | “length 4” wires and “L4 + Directional” refers to island architectures with “length 4”
directional wires as described in [20]. As expected, the density of the eFPGA fabrics degrades as the
circuit size increases. For examéle, in L1 eFPGAs; the equivalent ASIC gate density drops from 304
ASIC gates pet mm?® for the‘s_rnailer. benchmarks to 121 ASIC gates per mm? for larger benchmarks. |
This drop is made worse by the use of L1 wires becaus¢ larger circuits require longer wires than L1

" wires and so restricting the architecture to L1.wires introduces excess routing logic in the eFPGA.

To ‘co'rrect for the inefficiency ipttoduced by L1 wires, all wites wete changed to L§ wires.
However, because our current implementation of the generic island architecture supports only L1
wires., a good estimate of the effect of switching from L1 to L4 wires was needed. Estimates for the
area savings that resplt from changing from L1 to L4 ‘wires is provided in [11] for the same set of
golden 20 l;enchmarks used here; Based on the results in [11] an average overall area saviﬁg of 17%
is achieved. This coftection has been applieci to large circuits alone since smaller benchmarks do not
benefit much from L4 wires. Oﬁr change to L4 wires is a valid one because most modern island-
style architectures use an abuﬁdancé of 14 wires. Furthermore, a commercial eFPGA [41] used in

this compatison is based on the Virtex-II atchitecture [80] which has an abundance of L4 wires.

Next, directional wires were factored into the architecture because recent eFPGA architectures
(including the Virtex-II) use directional wires as opposed to bidirectional wires. Work done in [20]

gives an estimate of total area savings (25%) due to directional 1.4 wires versus bidirectional L4

120

wires. After accounting for .4 and directional wires, the average ASIC gate density of the eFPGA
fabrics used to implement the largest MCNC benchmarks improved to 203 ASIC gates per mm?>,

With the inélusion of tactical cells the density rises to 483 ASIC gates pet mm? for: large circuits.

To make comparisons to a full-custom eFPGAs, we use the gate densities repbrted in [45] as well as
detailed information in [41] about the ASIC gate capaéity of specific core sizes. For example, in [41]
the equivalent ASIC gate capacity for three core sizes (including core area) is provided. From this
| data it is éasy to calcﬁlage the equivalent ASIC density for. e;.ch core. Although this data is for a
-90nm process, estimates for 180nrﬁ process ate easily obtained. Table D.i shows area overhead

- results (Scaling factors) for tactical cell eFPGAs relative to full-custom eFPGAs in 180nm process.

‘Table D.1: estimated area overhead for tactical cell eFPGA relative to full-custom

relative to Relative to relative to relative to
Circuit range IBM-LOW IBM-MEAN IBM-HIGH eASIC estimate
All circuits 1.24 1.58 2.12 2.32
small only - 1.09 : 1.39 , 1.87 2.04

Large only - ' 1.66 2.1 2.84 3.1

Table D.1 shows scaling factors relative to indusfry éstimates of equivalent ASIC gate densities for
full-custom FPGAs. Based on data provided for three cores by IBM and Xllmx in [41], their smallest
eFPGA cofe has the loweét_equivaleﬁt ASIC gate density (800 ASIC gates per mm®).l This is called
“IBM—LOW” in Table D.1. The biggest of the three cores has ‘the higheét equivalept ASIC gate
density (1371 ASIC gates per mm?). This is referred to as “IBM-HIGH” in Table D.1. The next
biggest core has an equivalent ASIC gate density of 960 ASIC gates per mm”. The average of all

three gate densities is referred to as “IBM-MEAN?” in Table D.1. The ASIC gate density quoted by

'eASIC in [45] is 1500 ASIC gates per mm’. This is the number used to calculate the overhead in the

_ last column of Table D.1. The calculated overhead for only the small benchmark-circuits in Table

D.1 is not considered reflective of the true scaling and is presented simply for reference purposes.

The scaling factors when only large circuits are. considered, reveals some interesting trends. For
example, the overhead relative to IBM-HIGH ié almost identical to the VPR estimate obtained
eatlier. The overhead relative to the eASIC estimate is also close although it is not clear what type
of architecture.was used to oBtain this n_ﬁmber. This 1s an important factor in these estimates
because achievable densities are sensitive to til(:' type of architecture. For example, in. [04] densities
higher than 1500 ASIC gateé per mm?® have been reported. However, because the architecture is

quite different from the island-style architecture used in our analysis, it has not been.used in here.

The comparison to IBM-LOW -for large ;:ircuits' is closer to estimates obtained in [68] for the .
GILES itnblgmentgtion of the Virtex-E architecture. The differeﬂc¢ could be due to the fact that in
our estimates we .I;ave not tai(en full acivantage of the interconﬁect richness 1 the Virtex-1I
architecture ‘th'at helps keép area down and‘ density high. On the rothe;r hand, the GILES
implementation copied almost exactly the interconnect of the Virtex-E and so achieves higher

density. However, based on the data from our analysis we place the area overhead of a tactical

standard cell eFPGA relative to a full-custom equivalent at somewhere between 1.66X and 2.84X.

Appendix E
A sample structured eFPGA layout and Bluetooth SoC Floorplan

E.l

 regular tiles |

|
|
{
%
i
i

|
K=
2

clock network

— clock network

Re—— B

regular tiles | |

_clock .mtwm; L

R TSR

_ bottom edge tiles

Figure E.1: Structured eFPGA layout for Bluetooth Baseband Encryption Module

123

E.2

core area arm core

Figure E.2: Bluetooth baseband SoC showing underutilized area around the core

124

Bibliography

N
1

[01] S. Phillips, S. Hauck “Automatic Layout of Domain specific Reconfigurable Subsystems
_for System-on-Chip” FPGA 2002. .

,[02] N. Kafafi, K. Bozman, S.J.E. Wilton, “Architectures and Algorithms for Synthesizable
Embedded Programmable Logic Cores”, Proceedings of the ACM International .
Symposium on Field-Programmable Gate Arrays, Monterey, CA, pp. 1-9, Feb 2003.

[03] S.J.E. Wilton, R. Saleh, “Programmable Logic IP Cores in SoC Design: Opportunities and
Challenges”, Proceedings of the 2001 Custom Integrated Circuits Conference, pp. 63-66.

[04] M. Borgatti, F. Lertora, B. Foret, L. Cali, “A Reconfigurable System featuring
Dynamically Extensible Embedded Microprocessor, FPGA, and Customisable I/O”, IEEE
Journal of Solid-State Circuits, vol. 38, no. 3, pp. 521-529, March 2003.

[05] T. Vaida, “PLC Advanced Technology Demonstrator TestChipB”, Proceedings of the 2001
Custom Integrated circuits conference, pp. 67-70, May 2001.

[06] S. Knapp, D. Tavana, “Field configurable system-on-chip device architecture” Proceedings
of the IEEE 2000 Custom Integrated Circuits Conference, pp. 155-158, May 2000.

[07] Keating, Michael, and Pierre Bricaud. Reuse Methodology Manual. Boston: Kluwer
Academic Publishers, 1999.

[08] M2000, Inc, “M2000 FLEXEOStm Configurable IP Core”, http://www.m2000.fr.

[09] E. Ahmed and J. _Ros_e, “The effect of LUT and Cluster Size on Deep-Submicron FPGA
Performance and- Density”, ACM International Symposium on Field-Programmable Gate
Arrays, pp. 3-12, 2001. :

[10] Altera Corp. Stratix II Device Handbook, Vol 1, San Jose, CA, pp. 2-6 — 2-7, 2004

[11] V Betz, J. Rose, and A. Marquardt “Architecture and CAD for Deep-Submicron FPGAs”,
Kluwer Academic Publishers, 1999.

[12] A. Yan, R. Cheng, S.J.E. Wilton, “On the Sensitivity of FPGA Architectural Conclusions
to the Experimental Assumptions, Tools, and Techniques”, in the ACM International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, Feb. 2002, pp. 147-156.

[13] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FPGAs”, ACM
International Symposium on Fleld Programmable Gate Arrays Monterey, CA, pp. 203-
213, February 2000

[14] J. C H. Wy, "Implementatlon Consrdera‘uons for "Soft" Embedded Programmable Logic
Cores", M.A.Sc. thesis, October 2004.

125

http://www.m2000.fr

[13]

[16]

[17]

[18]
[19]

[20]

[21]
- [22]
(23]
[24]
[25]
[26]

[27]

28]

A. Yan, S.J.E. Wilton, “Seciuential Synthesizable Embedded Programmable Logic Cores
for System-on-Chip”, IEEE Custom Integrated Clrcults Conference, Orlando, FL, October
2004

A. Yan S.J.E. Wilton, “‘Product Term Embedded Synthesizable Logic Cores”, in the IEEE
International Conference on Field- -Programmable Technology, Tokyo, Japan Dec. 2003,
pp- 162-169

A. Yan, "Product-Term Based Synthesizable Embedded Programmable Logic Cores",
M.A.Sc. thesis, January 2005.

“ASAP”, http://www.Viragelogic.com/upload/documents/product broch _asap_ mem4.pdf

Victor O. Aken Ova, “A Parallel Core Access Interface for Test” EECE 578 Internal
Report April 2002

G. Lemleux, E. Lee, M. Tom. A. Yu, “Directional and Single-Driver Wires in FPGA
Interconnect”, IEEE Intematlonal Conference on Field Programmable Technology,
December 2004

D. Lewis et al, “The Stratix II logic and Routing Architecture”, in the ACM International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, Feb. 2005, pp. 14-20.

A. Marquardt, V. Befz, and J. Rose, “Using Cluster-based Logic Blocks and Timing-
Driven Packing to Improve FPGA Speed and Density”, ACM International Symposium on
Field-Programmable Gate Arrays, pp. 37-46, February 1999.

“SoC Encounter Data Sheet”, http://Www.cadence.com/datasheets/so’cencounter_ds.pdf

Virtual Silicon Technology Inc., “Silicon Ready Product Information Diplomat-18 High

Performance Standard Cells”, Sunnyvale, CA, 1998.

D. A. Hodges, H. G. Jackson and R. Saleh, Analysis and Design of Digital Integrated |

‘Circuits, Third Edition, McGraw-Hill, 2003

K. Poon, A. Yan, S.J.E. Wilton, “A Flexible Power Model for FPGAs”, to appear in 12th
International Conference on Field-Programmable Logic and Applications, September 2002

L. Kuon A. Egier, J. Rose, “Design Layout and Verification of an FPGA using Automated
Tools”, in the ACM International Symposium on Field- Programmable Gate Arrays,
Monterey, CA, pp. 215 — 226, February 2005 .

J. Lamoureux S.J. E Wilton, “On the interaction between power-aware FPGA CAD
Algorithms”, in the International Conference on Computer Aided Design, pp. 701 - 708,
November 2003

http://wvvw.viragelogic.com/upload/documents/product_broch_asap_mem4.pdf
http://www.cadence.com/datasheets/socencounter_ds.pdf

[29]

[30]

[31]

[32]

[33]

[34]

(331

[36]
[37]
[38]

[39]

[40]

4]
[42]

[43]

A. Singh, and M. Malgorzata, “Efficient Circuit Clustering for Area and Power Reduction
in FPGAs”, Proc. ACM International Symposium on Field-Programmable Gate Arrays,

" Monterey, CA, pp. 59-66, February 2002.

C. Souza, 2002, “IBM and Xilinx advance ASIC design”; Electronic supply and
Manufacturing. http://www.my-esm.com/showArticle?articleID=2915800

H. Tennakoon, Carl Sechen, “Gate Sizing Using Lagrangian Relaxation Combined with a
Fast -Gradient-Based Pre-Processing step” IEEE/ACM International Conference on
Computer Aided Design, pp. 395 — 402, 2002 :

R. Mé.hmud “An FPGA prlmerl for. ASIC demgners EEdesign 2004.
http://www.eedesign.com/article/showArticle.jhtml?articleld=18901725

K. Compton, “Research Focuses on applicatioh specific reconfigurable blocks”, EE Times
2002. http://www.eet.com/article/showArticle Jhtml‘7art1cleId“l 8307591

A. Marquardt, V. Betz, J. Rose, Speed and Area Tradeoffs in Cluster-based FPGA
Architectures, IEEE Transactions on VLSI Systems, pp 84 — 93 vol 8, Feb. 2000

E. Yoneno, P. Hurat, “Power ans Performance Optimization of Cell-based Designs with
Intelligent Transistor Sizing and Cell creation” IEEE Electronic Design Processes
Workshop, IEEE Press, Piscataway, N.J., 2001, pp. 155-162.

P. Holmberg, “Doméin-Specific Platform FPGAs”, FPGA Journal.
http://www.{pgajpurnal.com/articles/platform_xilinx:htm

C. Rowen, “Configurability . or Recohﬁgurability”, EE Times 2002.
http://www.eetimes.com/article/showArticle.jhtml?articleld=18307590

J Gabay, “Technology Advances Reshape Programmable Logic Offering”, EE Product
Center 2004. http://www.eeproductcenter.com/showArticle. jhtml?articleId=20300674

J. Gabay, “Second phase of FPGA and ASIC alternative positions itself to offer the best of
bothe Worlds” EE Product Center June 7, 2004.
http://www .eeproductcenter.com/showArticle.jhtml?articleld=20300674

K. Padalia, R. Fung, M. Bourgeault, A. Egier, J. Rose “Automatic Transistor and Physical

‘Design of FPGA Tiles From An Architectural Specification”, FPGA 2003.

P. Zuchowsky et. al “A Hybrid ASIC and FPGA architecture”, ICCAD 2002, pp187-194

J. Rubenstien, P Penfield, M. Horowitz, “Signal Delay in RC Networks” IEEE
Transactions on Computer Aided Design, vol. CAD-2, pp 202-211, July 1983

E. Elmore, “The transient Response of Damped Linear Networks with Particular Regard to
Wideband Amplifiers” Journal of Applied Physics, pp 55-63, January 1948

http://www.my-esm.com/showArticle?articleID=2915800
http://www.eedesign.com/article/sho
http://www.eet.com/article/showArticle.jhtml?articleId=l8307591
http://www.eetimes.com/article/show
http://www.eeproductcenter.com/showArticle.jhtml?articleId=20300674
http://www.eeproductcenter.com/showArticle.jhtml?articleId=20300674

[44]
[45]

[46]

[47]

(48]
[49]
[50]
(51]
[52]
(53]
[54]
(551

[56]
[57]

[58]

Actel Corp., “Varicore™ Embedded Programmable Gate Array Core 0.18mm Family”,
Tech. Datasheet Rel. 2.2, Dec. 2001.

L. Cooke, “Use of Configurable Cores in Platform based SoCs, eASIC corporation white
paper, eASIC web site, 2004. _

W. Dally, A. Chang, “The Role of Custom Design in ASIC Chips”, Design Automation
Conference 2000.

S. Yang, “Loglc Synthesis and Optimization Benchmarks, Technical Report Version 3.0,
MCNC, 1991

D. Chmnery, K. Keutzer,, Closing the Gap between ASIC and Custom, Kluwer Academlc
Publishers, 2002.

G. Lemieux, D. Lewis, Design of Interconnection Networks for Programmable Logic,
Kluwer Academic Publishers, 2003.

V. Betz J. Rose, A. Marquardt, Archltecture and CAD for Deep Submicron FPGAs,
Kluwer Academic Publishers, 1999.

Y. Khalilollahi, “What platform ASICs are and when to use them”, EEdesign 2005.
http://www.eedesign.com/article/showArticle.jhtml?articleId=57700299

L. Simsic, “Accelerating algorithms in hardware”, Embedded.com, 2004.

' http /lwww.embedded. com/showArtlcle Jhtml?articleld=1 75001 57

D. Bhattacharya, “Design-Specific standard Cells yield custom performance”,' EEdesign,
2004. http'//www eedesign. com/article/showArticle Jhtml?articleld=20301126

R. Wilson, “The constantly shifting promise of reconﬁgurablhty”, EE Times 2002
http /lwww .eet. com/artlcle/showArtlcle Jhtml?artlcleld—l 8307592

K. Scott, K. Keutzer, “Improvmg Cell Libraries for Synthesis”, IEEE Custom Integrated
Circuits Conference, 1994 pp. 128 = 131

P. Chow, S. Seo, J. vRose, K. Chung, G. Paez-Monzon, “The Design of a SRAM-Based
Field Programmable Gate Array — Part II: Circuit Design and Layout”, IEEE Transactions
of Very Large Scale Integration Systems vol. 7, No. 3, Sept. 1999.

P. Chow, S. Seo, J. Rose, K. Chung, G. Paez-Monzon, “The Design of a SRAM-Based
Field Programmable Gate Array — Part I: Architecture”, IEEE Transactions of Very Large
Scale Integration Systems vol. 7, No. 3, Sept 1999.

P. Osler, “Placement Driven Synthesis Case Studies on Two Sets of Chips: Hierarchical
and Flat”, ISPD April 2004 pp. 190 — 197

http://www.eedesign.com/article/showArticle.jhtml?articleId=57700299
http://Embedded.com
http://www.embedded.com/showArticle.jhtml?articleId=l
http://www.eedesign.com/article/show
http://www.eet.com/article/showArticle.jhtml?articleId=l

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. Panda, A. Dharchoudhury, T. Edwards, J. Norton, D. Blaauw, “Migration: A new |
technique to improve synthesized designs through incremental customization”, Design
Automation Conference June 1998 pp. 338 — 391.

L. Pileggi, H. Schmidt, A. J. Strojwas, P Gopalakrishnan, V. Kheterpal, A. Koorapaty, C.
Patel, V Rovner, K.Y. Tong, “Exploring Regular Fabrics to Optimize performance — Cost
Trade-Off”, Design Automation Conference June 2003 pp. 782- 787.

C. Chen, C. Chu, D. F. Wong “Fast and Exact Simultaneous Gate and Wire Sizing by
Lagrangian Relaxation”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, No. 7, July 1999

R. Wilson, “Panel debates merits of embedded FPGA megacells”, EE Times UK 2001.
http://www.eetuk.com/datenet/news/showArticle. jhtml?articleID=17407115

K. Atasu, L. Pozzi, P. lenne, “Automatic Application-Specific Instruction-set Extensions
Under Microarchitectural Constraints”, Design Automation Conference June 2003

M. Wang, A. Ranjan, A. Raje, “Multi-Million Gate FPGA Physical Design Challenges”,
IEEE Conference on Computer Aided Design November 2003, pp. 891 — 898

B. Zah1r1 “Structured ASICs Opportumtles and Challenges” International Conference on
Computer Design 2003

D. J. M. Rabaey, “D1g1tal Integrated Circuits: A des1gn perspectxve First Edition,
Prentice Hall, Inc., 1996

V. Betz and J. Rose, “Using Architectural Families to Increase FPGA Speed and Density”,
“ACM/SIGDA International Symposium on Field-Programmable Gate Arrays”, Monterey,

" CA, 1995, pp. 10 - 16

Ian Kuon, Aaron Egier, and Jonathan Rose, "Transistor Grouping and Metal Layer Trade-

- Offs in Automatic Tile Layout of FPGAs", Poster, International Symposium on Field

Programmable Gate Arrays (FPGA), Feb 2004.

Automated FPGA De51gn Venﬁcatlon and Layout" Ian Kuon, M.A.Sc. The51s University
of Toronto 2004

"Enhancmg and Usmg an Automatic De51gn System for Creating FPGAs" Aaron Egier
M.A.Sc. Thesis, _Umver31ty of Toronto, 2004.

Partha Pratim Pande, Cristian Grecu, André Ivanov, Res Saleh, "Design of a Switch for
Network on Chip Applications," IEEE International Symposium on Circuits and Systems,
ISCAS 2003, Vol. V, pp. 217-220, Bangkok, Thailand.

Spectrum Signal Processing's SDR-3000 Digital Transceiver Subsystem
http://www.rapidio.org/news/newsletter/2002/10/01/news .

http://www.eetuk.com/datenet/news/show
http://www.rapidio.org/news/newsletter/2002/

[73]
[74]
[75]
[76]
[77]

[78]

[791

[80]

Canadian Microelectronics Corporation, “Tutorial on CMC’s Digital IC Design Flow”
Document ICI-096, Part of Tutorial Release V1.3, May 2001.

The Wireless directory of . Bluetooth Products and services

- http://www.thewirelessdirectory.com/Bluetooth-Overview/Bluetooth-Specification.htm

Synopsys, “Chapter 8 Optlmlzlng the Design”, Design Compiler User Guide,
vers1on2002 05 :

Mohsen Nahvi, Andre Ivanov, “A Packet Switching Communication-Based Test
AccessMechanism for System Chips”, IEEE European Test Workshop, 2001, pp. 81 — 86

J.CH. Wu, V. Aken’Ova, S.J.E. Wilton, R. Saleh, “SoC. Implementation Issues for
Synthesizable Embedded Programmable Logic Cores”, in the Proceedings of CICC 2003

M. Satarini, “Prolific Improves standard cell generator”, EEdesign 2002.
http://www.eedesign.com/article/showArticle Jhtml?artrcleld 17407697

X111nx Vlrtex E 1.8V Fleld Programmable Gate Array product specification July 2002
DS002-1 (v2.3) '

Xilinx Virtex-II Platform FPGAs: Completé Data Sheet Product specification June 24
2004 DS031 v3.3

http://www.thewirelessdirectory.com/Bluetooth-Overview/Bluetooth-Specification.htm
http://www.eedesign.com/article/showArticle.jhtml7articleId-

