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Abstract 

In this thesis, the problem of subsynchronous mechanical oscillations in the shaft assembly of 

a turbo-generator with its steam turbine stages is studied, when the generator is connected 

to a Thyristor Controlled Series Capacitor (TCSC) compensated transmission line. 

The first three-phase thyristor controlled series capacitor was installed in 1992. The 

usefulness of this device for mitigating subsynchronous resonance has been established. There 

are, however, issues remaining to be investigated. A point of contention is the nature of the 

behaviour of TCSC towards subsynchronous frequencies. Although T C S C does not have 

resistive components as such, it puts up significant resistance to the subsynchronous current 

flow when in open-loop operation. This characteristic, known as passive damping, has been 

observed both on network analyzers and in simulations. Here, with the aid of analytical 

relations and discrete Fourier analysis, a physical explanation is provided for this behaviour. 

. The average steady-state linearization, although an efficient method for obtaining linear 

models for switching circuits, fails to capture the passive damping of T C S C . The Poincare 

mapping technique, on the other hand, provides the state matrix of the discrete linear time-

invariant system that is equivalent to the linearized time-periodic model of the switching 

circuit in the sense of Lyapunov. Therefore it is accurate in the eigenvalue analysis for 

stability studies. 

Poincare mapping together with a perturbation method is used here to find a linearized 

discrete model for a T C S C compensated system, in which the small signal variation of the 

state is explicitly given in terms of the small signal variation of the T C S C firing angles. The 

model is used first for the eigenvalue analysis and then for the design of an all-stabilizing 

closed-loop controller for small signal control of the thyristor firing angles in order to damp 

subsynchronous mechanical oscillations. 
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A B S T R A C T iii 

In the past, Poincare mapping has been used to derive continuous dynamic models for the 

TCSC alone, by first finding the discrete advance map, and then by converting the equations 

to the continuous domain. 

Here, we discretize the generator, line and T C S C equations together to arrive at a state 

space model for the entire system. The First IEEE Subsynchronous Resonance Benchmark 

Model is our case study. The method is general enough, however, to be used for other 

configurations as well. 

Finally, the steady-state relations of TCSC in non-equidistant firing are developed, and 

its dynamic behaviour with the new open-loop firing scheme is studied using transient sim­

ulation. 
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Chapter 1 

Introduction 

Reactive compensation in alternating current electric power systems is used for power 

factor correction, load balancing, improvement of voltage regulation, and increase of the 

transfer capacity. 

Compensators are generally divided into shunt and series types. Compensation of a load 

is always shunt, since the compensating device is connected in parallel with the load at the 

supply point. Compensation of a transmission or distribution system, on the other hand, 

can be shunt or series. 

Compensation becomes necessary when a transmission line is very long. In theory, a 

lossless line which is a quarter wavelength long is impossible to operate because in open 

circuit, the receiving end voltage becomes infinity (for the lossy line, the voltage would not 

be exactly infinity, but still extremely high). Lines are much shorter in practice, yet need to 

be compensated to improve their voltage regulation. 

Series compensation is essentially a set of capacitor banks installed in series with the 

transmission line. The effective inductive reactance of the line is reduced by the amount of 

the capacitive reactance of the compensator. Series compensation improves the steady-state, 

the transient, and the voltage stability of the system. However, it potentially gives rise to a 

serious instability problem that needs careful study. 

The problem occurs in the range of frequencies below the synchronous frequency of the 

1 
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network, and hence is labeled subsynchronous. A three-phase capacitor bank in series with 

the inductances in each phase forms three oscillators. Also, the mechanical shaft of a large 

turbo-generator has natural oscillators with frequencies below the synchronous frequency of 

the network. Under a subsynchronous resonance (SSR) condition, a mechanical oscillator in 

the shaft interacts with the electrical oscillators formed in the three-phase network. As a 

result, excessively distorted currents and voltages at frequencies below the rated frequency, 

and large torsional torques on the shaft assembly of the turbo-generator develop. 

In a power system prone to subsynchronous resonance, small disturbances trigger the 

interplay between the mechanical and electrical subsystems and cause a gradual increase 

of the energy of the oscillations, which takes several seconds (up to a minute) to reach 

dangerous levels. For example this can happen at the time of synchronizing a generator 

with an energized network. Following a major disturbance, such as a short circuit, energy 

is forcibly absorbed into the oscillators, and the process speeds up to a few seconds or even 

less. 

An unwanted phenomenon leading to damage, subsynchronous resonance must be diag­

nosed, and prevented by implementing counter-measures. 

Several methods in the time and frequency domain have been applied to study subsyn­

chronous oscillations in power systems. From a physical point of view, the system under 

study is nonlinear. The connection between the electrical network and the mechanical shaft 

assembly happens through the air gap of the synchronous machine where the electromagnetic 

torque develops. This torque is described by a nonlinear relationship among the currents 

flowing in the windings of the rotor and the stator. Moreover, advanced power systems of 

today have many power electronic devices that switch branches in and out of the network 

periodically, and are highly nonlinear. Therefore, in order to make a rigorous judgment 

about the risk of a scenario or the effectiveness of a proposed solution, detailed nonlinear 

modelling becomes necessary. However, in order to apply the powerful linear control design 

techniques, linear models of the system around an operating point are needed. 

The increasing use of high-power electronic devices in power transmission, has led to 

the recent development of the "Flexible A C Transmission System" (FACTS) concept, a 
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technology that enables the power grid to be utilized closer to its theoretical thermal capacity. 

FACTS is not a single, high-power electronic controller, but rather a collection of controllers, 

which can be applied individually or collectively in a specific power system [1]. 

One of the FACTS devices used for series compensation is the Thyristor Controlled 

Series Capacitor (TCSC). A major advantage of T C S C is that it significantly reduces the 

subsynchronous resonance problem. 

1.1 Thesis Motivation 

This work was motivated by the realization that T C S C shows a behaviour towards subsyn­

chronous frequencies that, although recognized, is not fully understood. The first researchers 

to report on this characteristic, known as "passive damping", were Ron Hedin and Stephen 

Weiss who published a paper comparing the subsynchronous damping of different series com­

pensation methods. Although TCSC does not have main resistive components, it poses a 

significant resistive behaviour towards subsynchronous frequencies. 

The switches used for implementing TCSC are thyristors which rely on natural zero-

crossings of the current to turn off. Therefore, no energy loss can be attributed to their 

commutation specially when thyristors are considered ideal. However, the passive damping 

still shows itself in simulations with ideal switches. 

The initial question posed to us was the origin of this effect, and whether it is enough 

to rely on for all cases to damp subsynchronous oscillations. Is there a way to increase the 

damping in TCSC compensated systems? 

It has to be emphasized that TCSC, by virtue of its special structure that resembles 

that of an LC filter, is already expected to reduce the risk of subsynchronous resonance. 

However, this structural similarity, does not explain passive damping, because this effect has 

a resistive nature, while a parallel combination of a linear capacitor and inductor, does not 

have any resistance. 
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1.2 Thesis Objectives 

Based on the understanding of the situation as depicted above, the need for a thorough 

study of the damping in TCSC compensated systems was recognized. The immediate goal is 

to shed light on the resistive behaviour of TCSC, and to find out where it is rooted. Then, 

equipped with this understanding, the next aim is to find ways to increase the damping 

of TCSC towards subsynchronous disturbances to arrive at a more reliable means of series 

compensation. 

In order to control the TCSC, a proper dynamical model is needed. Therefore, in the 

quest for better control of the switching of the TCSC thyristors, one naturally has to obtain 

a model that is able to characterize the behaviour of the system in an efficient way. In short, 

in this thesis we seek to analyze the behaviour of TCSC with regards to subsynchronous 

oscillations, and to increase the damping effect of TCSC on subsynchronous disturbances by 

controlling the firing of the thyristors. 

1.3 Thesis Organization 

In this chapter, after a general description of the problem of subsynchronous resonance, the 

motivation for the work and the goals of the research are stated. The remaining chapters 

contain the work that was done in order to achieve the goals of the thesis. These are organized 

as follows: 

Chapter 2 presents the background material and contains the literature overview on the 

topic of subsynchronous oscillations, with emphasis on the use of thyristor controlled series 

capacitors. A chronological account of events and developments related to this topic is 

presented. 

The theory of Floquet and the Poincare map are two key concepts that are used in this 

work. They are in essence equivalent, with the former arising from linear systems theory 

and the latter from a geometrical point of view. These concepts and the relation between 

them are explained in detail. Finally the theory of observer-based stabilizing controllers is 
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briefly reviewed. 

In Chapter 3, first a comparison is made between a system of two linear coupled oscillators 

and a simplified power system in which subsynchronous instability occurs. The comparison 

is aimed at gaining more insight into the problem of subsynchronous resonance by avoiding 

the complexity of detailed models needed for realistic situations. The machine in the study is 

a two-phase synchronous machine with a magnetic core of infinite permeability and a shaft 

consisting of two masses. With all the measures taken to simplify the system, there is a 

certain amount of modeling that is unavoidable. 

Then, the First IEEE Subsynchronous Resonance Benchmark Model with fixed series 

compensation is studied using transient simulation and eigenvalue analysis. This will form 

the basis for the treatment of thyristor controlled compensation in later chapters. 

In Chapter 4, a physical explanation is provided for the passive damping or resistive 

behaviour of TCSC at low frequencies using analytical calculations and discrete Fourier 

transformation. The resistance is then obtained for a typical TCSC for the range of sub-

synchronous frequencies in three different synchronization schemes. The study yields the 

frequency response of TCSC in open loop operation. This response varies considerably with 

the synchronization scheme. 

Two linearization techniques have been applied in the past to obtain linear dynamical 

models for TCSC. These techniques, namely the average steady-state and the Poincare map 

linearization are compared with regards to their treatment of the passive damping. The 

Poincare map modelling is chosen for its accuracy in portraying this characteristic. 

Chapter 5 explains in detail the steps taken in order to complete the linear model pre­

viously developed for T C S C compensated systems based on the Poincare mapping concept. 

That model was aimed at assessing the stability of the system by obtaining the eigenvalues. 

In order to make it suitable for damping controller design, the missing part is the coefficient 

set that gives the dependence of the model on the changes in the firing angles of the thyris­

tors. A general method to calculate these coefficients is presented, where the parameters of 

the model are obtained by calculating the perturbation from the periodic orbit of the circuit. 
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The First IEEE Subsynchronous Resonance Benchmark Model with T C S C is linearized 

at different operating points, and the effect of changing the steady-state conduction angle 

on the stability of the subsynchronous modes is studied by eigenvalue analysis. 

Chapter 6 discusses the control and damping of the subsynchronous oscillations. Using 

the model developed in chapter 5, an all-stabilizing firing controller based on pole placement 

technique is designed for the TCSC to damp subsynchronous mechanical oscillations. The 

controller is made to work with two different sampling rates to determine the effect on the 

damping of subsynchronous modes. Also a comparison is made between our model and the 

models developed by other research groups. The comparison is qualitative, however, since 

an exact quantitative comparison requires data that is not available in the publications. 

Chapter 7 is a discussion on the steady state theory of T C S C . This is a result obtained 

as a byproduct of the damping controller design, but it is a separate subject. We develop 

relations that describe the steady state of the TCSC, and yield its compensation level with 

an open-loop firing scheme more general than the equidistant firing strategy. A dynamical 

study with respect to subsynchronous instability is included. 

Finally in Chapter 8 the work is concluded by highlighting the obtained results and 

making suggestions towards future research. 

The contributions of this thesis are summarized as follows: 

• Analytical explanation of the resistive behaviour of TCSC at subsynchronous frequen­

cies, and deriving the frequency response of TCSC with respect to the subsynchronous 

oscillations. 

• Development of a linear discrete state-space representation of a T C S C compensated 

system and its use in the design of a closed-loop SSR-damping controller for T C S C . 

• Introduction of deviation angle in the open loop firing of TCSC, and deriving the 

analytical relations describing the fundamental reactance, the capacitor voltage, and 

the inductor current of TCSC with deviated firing. 



Chapter 2 

Background 

While the installation of series capacitors on transmission lines started as early as the 

1920s [2], subsynchronous resonance caused by series capacitors was detected in 1970 at 

the Mohave power plant [3, 4] only after it had actually happened. The interaction of 

the electrical and mechanical subsystems causing oscillations between the rotors of a turbo­

generator shaft assembly was rarely studied, because the shaft was usually assumed to be one 

rigid body. By 1937, three types of problems associated with series capacitor applications 

were already known and thoroughly investigated [5]: 

1. Distorted and excessively large transformer exciting currents, due to saturation. 

2. Hunting of synchronous machines. 

3. Self-excitation of induction motors. 

The first effect, called ferroresonance, happens when an unloaded or very lightly loaded 

transformer is energized through a series capacitor, resulting in abnormally large and dis­

torted exciting currents. These transient may currents persist for a long time, and may settle 

into a steady state with harmonic content. 

Hunting is a periodic variation in speed of a synchronous machine from its rated speed 

at low frequencies (in the order of 1 Hz). During hunting the rigid body mode of the machine 

is excited. That is, the rotor oscillates as one mass around the rated mechanical speed. This 

7 
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effect can arise even without a series capacitor, but the presence of a capacitor may make it 

worse. 

Consider an induction motor connected through a series capacitor bank to a line. Since 

the inductance in the series path is large, the natural frequency of the resonance between 

the capacitor and the equivalent inductance is less than the synchronous frequency of the 

network. A disturbance in the system causes currents at this lower frequency to flow in the 

line and in the armature windings. These currents see the induction machine as a generator. 

The impedance of the circuit is low at the resonance frequency due to the cancellation of the 

inductive and capacitive reactances. Therefore, these currents become sustained and may 

reach relatively large values. The induction motor is said to be self-excited in this condition. 

In 1941, Concordia and Carter presented a theoretical work [6] to show that hunting and 

self-excitation are two aspects or special cases of a single, more general, characteristic which 

they called negative damping of electrical machinery. The equations presented there are 

one step short of incorporating subsynchronous oscillations between rotor masses, although 

with the limited computational power of those days, calculating the response of a system of 

differential equations was much more of a problem than forming the equations themselves. 

During the years to follow, while some utilities in North America became heavily involved 

in compensating their transmission systems using series capacitors, others refrained because 

of inherent risks [7]. In 1970, a little before the incident at the Mohave plant, Rustebakke 

and Concordia [7] published yet another paper drawing attention to the problem of self-

excited oscillations in series compensated transmission lines, but subsynchronous resonance 

was again missed. Finally, in 1973 a sound analysis of the self-excited torsional oscillations 

[8] was presented and the foundations for the more advanced analysis methods of today were 

laid. 

SSR phenomena are divided into three types: Induction Generator Effect, Torsional 

Interaction, and Torque Amplification. Induction generator effect is very similar to the 

self-excitation of induction machines. The latter two, during which a shaft torque starts in­

creasing until it reaches destructive levels, are more similar to hunting in principle. However, 

torque amplification, which follows a major disturbance, is the more severe of the two. The 
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modelling detail needed to study torsional interaction and torque amplification is the same. 

In the next section these three types are described from a physical point of view. 

Although the serious damage which occurred in two extreme cases in 1970 and 1971 [9] 

has been avoided since then (for example, by using SSR relays to trip a turbo-generator), 

the SSR problem still remains a field open to more investigation. 

First, it has been discovered that if such oscillations are present, fatigue in the shaft 

material reduces its life expectancy [10]. Second, this type of interaction arises not only with 

series capacitor compensation, but also with other power system components such as power 

system stabilizers, high voltage DC converter controls, static var compensators, high speed 

governor controls, and variable speed drive converters [3]. 

The thyristor controlled series capacitor (TCSC) has been found to be effective in damp­

ing subsynchronous oscillations [11]. This characteristic is so important to system planners 

that the first prototypes of TCSC are installed in locations where it is possible to perform 

SSR tests in order to verify theoretical studies. 

Table 2.1 lists some dates of events and developments related to subsynchronous reso­

nance and T C S C . 

Table 2.1: Chronological History 
First practical induction machine 1890 

First production of power capacitors 1914 
First usage of capacitor for series compensation 1928 At Ballston, N.Y. [12] 
Two-reaction theory for synchronous machines 1929 By R. H. Park 

Two-reaction theory applied for analysis of 
series capacitor in the armature circuit 

1937 By S. B. Crary 

Analysis of hunting and self-excitation 
as two aspects of a more general nature 

1941 By C. Concordia & G. K. Carter 

First occurrence of subsynchronous 
torsional instability 

1970 At Mohave Power Plant 

First theoretical analysis of self-excited 
torsional oscillations with series capacitors 

1973 By C E. J. Bowler, 
D. N. Ewart k C Concordia 

First demonstration of thyristor-controlled 
series capacitor 

1991 By ABB, Sweden 

First three-phase TCSC 1993 At Kayenta Substation 
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2.1 Physical Nature of SSR 

Fig. 2.1 shows a diagram of a synchronous generator connected to a series compensated 

transmission line. 

NETWORK 

THEVENIN 

EQUIVALENT 

HP IP LP GEN 

Figure 2.1: Synchronous generator connected to a series compensated line 

The system inductances, together with the series capacitor in each phase, form a reso­

nance circuit with the natural frequency 

'»- = W S O T H Z ( 2 1 ) 

where fs is the rated electrical frequency of the network. Xtot is the sum of the reactances 

of the Thevenin equivalent circuit, the line, and the transformer, and X" is the generator 

subtransient reactance. Xc = l/(2irfsC) is the reactance of the capacitor. The value of fNe 

is less than fs. 

For any disturbance, three-phase currents at frequency f^e Hz flow in the armature [3]. 

The positive sequence components of these currents produce a magnetic field which rotates 

at an angular mechanical speed of (^)2irfNe rad/s, p being the number of machine poles. In 

the rest of this discussion, for the sake of clarity, the number of poles is assumed to be 2, so 

there is no need to distinguish between the electrical and the mechanical radians. 
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Since the speed of the rotor is higher than 2irf^e rad/s, the rotor circuits turn faster 

than this rotating magnetic field. In this situation an induction generator is formed, and 

mechanical energy is converted to electrical energy at the corresponding subsynchronous 

frequency. During this time, the machine acts as a synchronous generator at fs Hz and as 

an induction generator at //v e Hz (Induction generator effect). 

Torsional interaction is the interplay between the mechanical shaft system and a series 

capacitor compensated electrical network. Small signal disturbances in a power system result 

in simultaneous excitation of all the natural electrical and mechanical modes. The turbine-

generator shaft responds to disturbances with oscillations at torsional natural frequencies. 

The oscillation of the generator rotor at the frequency f^m Hz causes modulation of 

the terminal voltage. This modulation results in a subsynchronous voltage component at 

frequency fs — / w m H Z and a supersynchronous voltage component at frequency fs + / jv m 

Hz. When the subsynchronous frequency is close to a network natural frequency fNe Hz, the 

resulting armature currents produce a magnetic field which is phased to produce a torque 

which reinforces the aforementioned generator rotor oscillations. This phenomenon is termed 

torsional interaction. One way of perceiving torsional interaction, is the insertion of negative 

resistance in the generator armature as viewed from the terminals, and the insertion of a 

negative damping torque on the generator rotor as viewed from the mechanical system. 

Following a significant disturbance in a series capacitor compensated system, large elec­

tromagnetic torques that oscillate at a frequency fs — fNe Hz develop. If this frequency is near 

any mechanical mode / jv m Hz of the shaft, the resulting shaft torques are much larger than 

those produced by faults in a system without series capacitors and the mechanical oscillations 

are forced to increase rapidly. This effect is referred to as shaft torque amplification. 

2.2 Analysis Methods of Subsynchronous Resonance 

This section is a short account of the methods that are used to study subsynchronus res­

onance. For a comprehensive list of publications on the analysis methods, field tests and 

other related studies, see [13, 14, 15, 16, 17]. 
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The most common tools for the study of SSR are [18]: 

1. Frequency scanning 

2. Eigenvalue analysis 

3. Torque per unit velocity method 

4. E M T P analysis 

Frequency scanning is a cost-effective method applied as a preliminary analysis to roughly 

locate problematic frequencies. This technique computes the equivalent resistance and reac­

tance, seen by looking into the network from a point behind the stator winding of a particular 

generator, as a function of frequency [19]. 

If a linearized time-invariant state space description of the system is available, eigenvalue 

analysis can be performed to determine whether the natural modes of the system are stable 

or not. The state space model is either continuous 

x(i) = Ax( t) 4- Bu(t) (2.2a) 

y(t) = Cx ( i ) + Du(t) (2.2b) 

or discrete 

x(n + 1) = Ax(n) + Bu(n) (2.3a) 

y(n) = Cx(n) + Du(n) (2.3b) 

where x G E " 1 is the state vector, u G W1* is the input vector, and y G M"* is the vector of 

outputs. A G K " * x n * , B G R n * x n « , C G Rnvxn* and D G Rnvxn- are the system constants. 

For eigenvalue analysis, only the A-matrix is needed. On the other hand, to design feedback 

controllers, the full model has to be available. 

The eigenvalues are the solutions of the equation 

det(Al - A ) = 0 (2.4) 
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In the continuous domain, if an eigenvalue lies on the right-hand side of the joo-axis in 

the s-plane, then it is unstable. In the discrete domain, if an eigenvalue lies outside the unit 

circle in the z-plane, it is unstable. 

Eigenvalue analysis is an attractive method since it provides the frequency and the damp­

ing of all the modes for the entire modelled system. However, power systems are nonlinear 

and time-varying. Their linearization about the steady state may result in a linear time-

periodic system, especially if electronic switching is present. Care must be taken when trying 

to study the stability of time-varying systems using eigenvalue analysis. It is tempting to 

suggest that if for each n, all the eigenvalues of A(n) lie inside the unit circle, then the zero 

state, 0, of x(n + 1) = A(n)x(n) is asymptotically stable (a similar statement can be made 

about the continuous system). However, this is not always the case [20]. In Section 2.7, some 

results from the linear systems theory that enable eigenvalue analysis to be safely applied to 

time-periodic systems are reviewed. 

The torque per unit velocity method is another frequency domain approach commonly 

used to estimate damping of SSR modes. Its basic idea is to trace the effect of a small 

sinusoidal mechanical disturbance through the electrical network [21]. 

E M T P simulations take care of several nonlinearities and imbalances which are difficult 

to deal with by other methods. The differential equations are solved numerically step by step 

in discrete time. As SSR phenomena are relatively slow transients, it may be necessary to run 

E M T P simulations for many seconds (even minutes) to be able to observe the phenomena 

of interest. 

In this thesis, the eigenvalue and E M T P analysis methods are used to study the behaviour 

of thyristor controlled series capacitor compensated systems with regard to subsynchronous 

oscillations. 
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2.3 Compensation with Thyristor Controlled Series Ca­
pacitor 

In recent years a considerable amount of effort has been dedicated to research into the use 

of power electronics for fast switching of reactive compensation. A growing interest among 

North American utilities spurred the Electric Power Research Institute (EPRI) to initiate 

the Flexible A C Transmission System (FACTS) project [22]. 

T C S C is an important member of the FACTS devices family. It is intended to perform 

the following tasks [23]: 

1. Direct control of power flow and mitigation of loop flow 

2. Transient stability control; improving the transient stability of the power system 

3. Damping of power oscillations and mitigation of subsynchronous resonance 

The idea of TCSC was formed during the 1980s by Vithayathil of Bonneville Power Ad­

ministration, and Hingorani of Electric Power Research Institute. Hingorani later proposed 

the more general concept of Flexible A C Transmission System [4]. 

In a TCSC module, the series capacitor is provided with a parallel path, consisting of a 

back-to-back thyristor switch and a surge inductor, as shown in Fig. 2.2. Also included is a 

metal oxide varistor (MOV) for overvoltage protection, and a bypass circuit breaker, typical 

of series capacitors. A complete TCSC system comprises several such modules in series, and 

is added to a conventional series capacitor bank as part of an overall installation to aid power 

system performance [24]. 

In this thesis, a thyristor is modelled as an ideal lossless switch which turns on instantly 

when the anode to cathode voltage is positive, and the gate pulse is on. It turns off at the 

instant when the current from anode to cathode goes through zero and the current direction 

is going to change. In reality a thyristor, as any other semiconductor switch, has limitations 

that must be taken into account in the design of TCSC. 

There are already three prototype projects in operation in the USA that have demon­

strated the successful implementation of thyristor controlled series compensators [4]. The 
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Figure 2.2: T C S C module power circuit 

analysis, based on the torque per unit velocity method [25] and the experimental data based 

on SSR performance tests [11], have indicated that TCSC does not normally contribute to 

SSR. It is even claimed by Piwko and others [11] that T C S C is SSR neutral and can reduce 

SSR effects caused by nearby fixed series capacitors. 

Taking a general look at the TCSC structure, it is evident that it resembles an LC filter 

except for the thyristors in the inductive branch. Fig. 2.3 compares the frequency response 

of the susceptance1 of a single capacitor and that of a parallel combination of a capacitor and 

an inductor that yields the same total compensation at 60 Hz. The LC combination goes 

into the inductive region for frequencies below the point indicated by a +. Therefore, the 

possibility of resonance between the electrical and mechanical subsystems is automatically 

eliminated for frequencies below that point. This characteristic is termed detuning of the 

resonance. 

TCSC also shows detuning, however its behaviour is more complex than an LC filter. 

Specifically there is damping associated with the switching action that happens in the device. 

TCSC, even in open loop operation, shows a resistive behaviour towards disturbances at 
1Susceptance, B, is the imaginary part of the admittance, Y, such that Y = G + jB. 
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Figure 2.3: Comparison of the frequency response of a capacitor and an LC filter 

frequencies below its switching frequency. This behaviour was first reported by Ron Hedin, 

Stephan Weiss, and others who observed it both on a transient network analyzer and in 

simulation [25, 26]. The damping associated with the open loop operation of the T C S C is 

termed passive as opposed to the active damping effected by higher level controls [27]. 

From the viewpoint of this work, publications about T C S C are categorized into the 

following groups. 

F A C T S concepts: These publications review FACTS technology, its origins; the ways in 

which it is changing the transmission and distribution of power, and the role of T C S C 

in the set of FACTS controllers, for example [1, 28, 29, 30, 31]. 

S S R characteristics: Many publications discuss the SSR characteristics of T C S C . Ref­

erences [21, 27, 32, 33, 34, 35, 36] analyse the SSR mitigation with this device using 

linearized models. Detailed E M T P simulations are very useful for this purpose [25, 37], 

however, they give less general results about the behaviour of the system. The fact 

that TCSC shows a pronounced nonlinear behaviour makes E M T P simulation meth-
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ods more reliable than others. The IEEE SSR benchmark models [38, 39], extended 

to include a thyristor controlled series capacitor, are normally used as the test cases. 

Fig. 2.4 shows the system chosen as the test case in this thesis. The parameters of the 

system are given in Appendix B. 

TCSC 

Figure 2.4: First SSR Benchmark Model System extended to include a T C S C 

Ci rcu i t behaviour: This group of publications discusses the circuit behaviour of T C S C . 

It is common practice to apply a sinusoidal current source to the device and calculate 

the resulting voltage [22, 40, 41, 27, 42]. What are known as capability curves give the 

voltage or reactance of TCSC as a function of line current [24, 43]. 

In order to apply eigenvalue analysis in a circuit containing TCSC, a linear model must 

be available. This is a major issue, since T C S C is highly nonlinear, and linearizing 

it by averaging the steady state is inadequate to show the true behaviour of T C S C 

in stability studies [27, 44]. A method to use instead of steady-state averaging, is 

the linearization of a Poincare map [41, 45, 32]. This technique captures the passive 
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damping characteristic of TCSC, and therefore is very well suited for subsynchronous 

resonance studies. More about this method will appear later on. 

F i e ld test results: The first demonstration project of TCSC was commissioned in 1991 at 

the 345 kV Kanawha River Substation in West Virginia, USA, of American Electric 

Power Service Corporation. This was a test installation of thyristor switches in one 

phase for rapid switching of series capacitor segments, and was supplied by A B B of 

Sweden. In October 1992 the first three-phase T C S C was installed at the 230 kV 

Kayenta Substation in Arizona by Western Area Power Administration (WAPA). A 

large prototype three-phase TCSC was installed in 1993 at the 500 kV Slatt Substation 

in Oregon by Bonneville Power Administration (BPA). This project was sponsored 

by Electric Power Research Institute (EPRI), and the equipment was developed by 

General Electric. There are papers that describe the field tests performed at these 

sites, for example [11, 46, 47]. 

Other topics: The problems and interests associated with TCSC are numerous and defi­

nitely not confined to SSR mitigation. T C S C provides more controllability over the 

flow of power in the line [48], and affects many types of stability in a power system. 

On the other hand, because it produces harmonics [49], it may be a source of problems 

as well. 

2.4 Fundamental Reactance and Capability Curves of 
TCSC 

Fig. 2.5 shows a single-phase TCSC connected to a sinusoidal current source is(t). The 

voltage across the capacitor is denoted by vctc, a n d the current through the inductor is 

denoted by iuc-

Suppose that the time origin has been chosen such that is(t) = \/2Iscosujst. This 

circuit achieves steady state when the anti-parallel thyristors are fired with equal delays 

with respect to the zero-crossings of either the capacitor voltage or the line current. Typical 

steady-state waveforms of a single-phase T C S C with equidistant firing are given in Fig. 2.6 
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Figure 2.5: A single-phase T C S C 

for the capacitive mode and in Fig. 2.7 for the inductive mode. Capacitive mode means 

that the fundamental reactance of T C S C is capacitive, and inductive mode means that 

the fundamental reactance of the T C S C is inductive. This is evident from the figures by 

noting that in the capacitive mode (Fig. 2.6), vctc lags is by 90°, and in the inductive mode 

(Fig. 2.7), vctc leads is by 90°. 

-90 0 90 180 270 360 450 540 630 
Lost [deg] 

Figure 2.6: Steady-state waveforms of T C S C in capacitive operation 

As shown in the figures, the zero-crossing of the capacitor voltage is used to define the 

firing angle, a. The firing pulse generator, however, is either synchronized with the zero-
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crossings of the capacitor voltage, vctc, or those of the line current, is [4]. If the line current 

is used for synchronization, the gate pulse is sent to the appropriate thyristor a — 90° after 

the zero-crossing of is. As discussed in Chapter 4, the frequency response of the T C S C is 

dependent on this synchronization. 

To preserve the meaning of a, measured by definition from the capacitor voltage zero-

crossing, the turn-on angle is generally referred to by <f> = L>Jston, where ton is the instant when 

a thyristor starts conducting. Note that for the time origin chosen in Fig. 2.6 and Fig. 2.7, 

4> = a. In addition, regardless of the time origin and reference point for measurement, we 

have Ac/> = Aa. The turn-off angle is generally referred to by r = cost0ff, with t0ff being the 

instant when the current in the inductive branch vanishes. The angle of advance is defined 

by 

B = 180° - a deg (2.5) 

where = means "equal by definition". In steady state the conduction angle, a, equals 28. 

In writing the steady state relations of the T C S C waveforms, it is convenient to use the 
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following parameters [4]: 

uNtc = , / rad/s (2.6) 
V LtcCtc 

A U)Ntc XCtc / r , „ x 
K = — = V 3 ^ ( 2 ' 7 ) 

cjivtc is the natural resonance frequency between Ctc and L t c , and AC is the ratio of this 

frequency to the synchronous frequency. Xctc and Xitc are the reactances of the capacitor 

and inductor, respectively. 

The current through the inductor during the conduction time is 

•̂2 cos j3 
htc{t) = -o— -V2I s [cosu s t cosojNtct} , —B < cost < B (2.8) 

AC — 1 C O S ACp 

In steady state, the capacitor voltage at ojsti = —B, when one of the thyristors turns on, 

is given by 

Vci = ^ ^ s ^ c t c [ s i n ft — K c o s g tan KB] (2.9) 

Because of the symmetry of the waveforms, at u)st2 = (3, when the thyristor turns off, we 

have 

vctc{t2) = VC2 = -Vci (2.10) 

The expression for vctc(t) is 

^j2IsXctc . cos/3 . 
———[-smust + K --" 

AC — 1 C O S AC/3 

uctc(t) = Vrc2 + V^/ s A'ctc[s ina; s t -s in^] , B < ust < TT - B (2.12) 

"WctcW = — —7— [ - s m w s t +Ac - -3 - - - r sincujvtetj , ~P<ust<B (2.11) 

In steady state, vctc is periodic with the fundamental frequency equal to the synchronous 

frequency of the network, and contains odd harmonics of the order 3, 5,7, • • •. 

The equivalent reactance of TCSC at the fundamental frequency, XTCsc, is obtained by 

dividing the rms magnitude of the fundamental component of vctc by Is, and is given by 

Y Vctc _ Xltc (2/3 + sin IB) 
-&TCSC - —J— — A ctc — 77 r 

i-s -X-Ctc — A j r , t c 7T 
AX2

Ctc cos 2B [/ctan/c^-tan^] 
A'ctc - XLtc ( A C 2 - 1) 7T 
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The variation of Xxcsc/Xctc as a function of 8 is shown in Fig. 2.8. This characteristic 

is obtained for the synchronous frequency. The appropriate value for K, ensures that there 

is only one resonance point for 0 < 8 < 90°. The resonance advance angle, BNtc, is obtained 

from cos K,8Ntc = 0. The typical value of (3mc is 35°. Near the resonance point, T C S C has 

a very high impedance that results in a very high voltage drop. Hence, it is necessary to 

operate T C S C such that XTCsc / XCtc stays within limits of typically 2 and 3. 

o 
to 
O 

PNtc 
i x li 
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B [deg] 

Figure 2.8: Variation of the equivalent reactance of T C S C as a function of 8 

A set of capability curves [24] in terms of module voltage versus line current for a single 

TCSC module is given in Fig. 2.9. For operation in the capacitive region, the maximum firing 

advance angle, 8, limits the capability up to a value of line current where the maximum 

voltage constrains the operation. The maximum voltage constraint is typically given for 

three durations: continuous, 30-minutes, and a few seconds (1 to 10, depending upon system 

requirements). 

Inductive operation is limited by the maximum firing delay, a, at low line currents, and 

maximum thyristor current at high line currents. Between these constraints is an additional 

limiting characteristic related to harmonics. The harmonics cause additional heating in 

the surge inductor and thyristor, and may cause peak voltages which approach the voltage 
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withstand capability of the capacitors and M O V . 
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Current [pu] 

Figure 2.9: Typical TCSC V-I capability curves for a single module 

The T C S C capability can also be illustrated in terms of reactance versus line current, 

as shown in Fig. 2.10. This figure shows the gap in control range between capacitive and 

inductive operation, as well as in the dynamic range with increasing line current. 

2.5 Linear Time-Periodic Systems 

A three-phase power system with a TCSC is instantaneously unbalanced. However, it re­

turns to its original state after one cycle of the main period (1/60 s). The power system 

state equations can be linearized between any two switching instants. The dynamics of the 

system at all times are described by different sets of state equations connected by boundary 

conditions that relate the states before and after each switching. The equations obtained 
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Figure 2.10: Typical TCSC X-I capability curves for a single module 

this way are linear time-periodic. 

If an equivalent linear time-invariant system can be found by means of a transformation 

that preserves the stability properties of the linear time-periodic system, then eigenvalue 

analysis can be performed on the transformed system and the results extended to the original 

one. The following definitions and theorem from the linear systems theory [20] show that 

such a transformation indeed exists. 

Definition 1 Let P e ( 3 ( i ) be an nx x nx matrix defined over — oo < t < oo. It is assumed 

that P e g (£) and P e c / ( i ) are nonsingular and continuous for all t. Let xeq = P e g ( i ) x . 

Then the dynamical equation 

x = A ( t )x + B(t)u 

y = C(t)x + D(t)u 

(2.14a) 

(2.14b) 
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and the dynamical equation 

c e g = Aeq(t)xeq + Beq(t)u (2.15a) 

y = Ceq(t)xeq + D e g(t)u (2.15b) 

where 

Aeq(t) = [P e g(t)A(t) + P ^ P - 1 ^ ) (2.16a) 

Be,(t) = Pe,(*)B(t) (2.16b) 

C e g ( t) = C ^ P - 1 ^ ) (2.16c) 

De,(t) = D(t) (2.16d) 

are said to be equivalent, and Peq(t) is said to be an equivalence transformation. 

Definition 2 A matrix P e < ?(£) is called a Lyapunov transformation if (1) PegOO and P eg(£) 

are continuous and bounded on t 0 < t < oo and (2) there exists a constant m such 

that 

0 < m < | det[Pe,(i)] j for all t > t0 (2.17) 

Theorem 1 Assume that the matrix A in (2.14a) is periodic with period T. Let P e g(i) be 

defined as 

P e ^ ^ e ^ * - 1 ^ ) (2.18) 

where \&(t) is a fundamental matrix 2 of x = A(t)x [20]. Then the dynamical equation 

in (2.14) and the dynamical equation 

(t) + Pe,(*)B(*)u(t) (2.19a) 

y(i) = C W P - 1 ^ ) ^ ! * ) + D(t)u(t) (2.19b) 

where Aeq is a constant matrix, are equivalent in the sense of Lyapunov. 
2 A fundamental matrix is by definition an nx x nx matrix whose columns are nx linearly independent 

solutions of x = A(i)x. 
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A Lyapunov transformation preserves the stability of a dynamical equation, but an equiv­

alence transformation in general does not. According to the above theorem the existence of 

a Lyapunov transformation that transforms the periodic matrix A(t) to a constant one is 

guaranteed. 

The homogeneous part of this theorem is the so-called theory of Floquet. It states that 

if x = A ( t )x and if A(t + T) = A(t) for all t, then its fundamental matrix is of the form 

P~q(t)eAeqt, where P ^ 1 ^ ) is a periodic function. Furthermore, x = A ( i ) x is equivalent in 

the sense of Lyapunov to x e g = A e g x e g . 

^(t) is generally not known, so it may be very difficult to find this transformation. The 

matrix Aeq, however, can be found by numerical methods. Consider the linear time-varying 

dynamical equation (2.14) where we assume [20] 

A(t + T)=A{t) (2.20) 

for all t and some positive constant T. Let ^(t) be a fundamental matrix of x = A(t)x. 

Then ty(t + T) is also a fundamental matrix of x = A(t)x. This is shown by noting that 

4f(t + T) = A(t + T)#(* + T) = A{t)V(t + T) (2.21) 

The matrix function ^f(t) is nonsingular for all t; consequently, so is *J?(t + T). Hence, 

there exists a nonsingular constant matrix F such that 

•#(i + T) = *(t)F (2.22) 

For the nonsingular matrix F, there exists a constant matrix Aeq such that 

eAe"T = F (2.23) 

We can take to be the identity matrix and numerically (see section 5.2) calculate 

F = *( t + T) . 

Here a clear advantage of discrete modelling becomes apparent. To get Aeq, a matrix 

logarithm has to be calculated which involves approximation. However, F is actually the 
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A-matrix of the sampled-data system obtained by discretization with the time step T. The 

eigenvalues of F are called the Floquet multipliers of the system. The Poincare map is an 

essentially equivalent, geometrical view on this matter, as discussed in the next section. 

2.6 Poincare Map 

The stability of any system which is periodic with period T can be studied using the concept 

of Poincare map. Suppose a nonlinear dynamical system is given by 

x = f (x) (2.24) 

An orbit based at x 0 is a solution curve of the differential equation (2.24) with the initial 

condition x 0 at t0. A point x 2 in the space where f vanishes, namely f (x 2 ) = 0 is called a 

fixed point or zero. If an orbit based at a point x 0 in the neighborhood of a zero x 2 , tends 

towards it, x(t) —> x 2 as t —> oo, then x 2 is said to be asymptotically stable. 

Instead of approaching a fixed point, the solution curve of a nonlinear system can move 

in a closed or periodic orbit. A periodic solution is one for which there exists 0 < T < oo 

such that x(i) = x(t + T) for all t. The stability of solution curves can be studied in the 

vicinity of a closed orbit by use of the Poincare map or advance map. To explain the map 

in a simple way, consider a dynamical system with three state variables in Fig. 2.11 [50]. 

7 is a periodic orbit in the 3-dimensional space R 3 , where the dimension is the number 

of state variables. A cross section E has been chosen such that 7 has an intersection with 

it at point pz. E is chosen small enough such that pz is the only intersection. Now choose 

a neighborhood of pz in E and denote it by Note that i9 C E . The Poincare map 

P M : i9 —> E for a point p0 G d is defined to be the point px = PM(p0) e E to which the 

orbit based at po first returns. 

The point px, in turn, is mapped into another point p2 6 E . If the mapping is continued, 

a set of discrete points in space (p0, px, p2, • • •) is obtained. Clearly we have PM(pz) = pz. 

In other words, pz is a fixed point of the Poincare map. The stability of the orbits in the 

vicinity of the periodic orbit based at pz is determined by the behaviour of the sample points. 
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Figure 2.11: Demonstration of the Poincare map 

In the last section, the Floquet multipliers were introduced. In fact, the eigenvalues of 

the Jacobian of the linearized Poincare map are the same as the Floquet multipliers. 

In order to find the Jacobian, equations (2.24) are linearized about the periodic orbit, and 

then integrated over one period. A n excellent treatment of the Poincare mapping method 

for stability studies of switching circuits can be found in [51]. 

The Poincare map is used in Chapter 5 to derive a linearized sampled-data state-space 

model for a TCSC compensated system. The map is obtained by integrating the system 

differential equations, taking into account the changes in equations and coordinates when 

switchings occur. 

In an ideal steady-state condition, a TCSC compensated system returns to its original 

state after T = 1/60 s (corresponding to the synchronous frequency of 60 Hz). However, this 

time step is too large for implementing an effective damping controller for the instabilities 

that occur in the range of subsynchronous frequencies. T can be reduced to one-third of that 

value by taking into account the three-phase symmetry of the network. Reducing the time 
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step to one-sixth of the synchronous period so that only one current pulse is included in the 

time span, results in a discrete time-periodic model for the system. However, it is possible 

to obtain a linear time-invariant model by eliminating the zero-sequence variables. This is 

discussed in detail in Chapter 5. 

2.7 Observer-based Stabilizing Controller 

While it is possible to study the stabilizing controllers from a more general standpoint, the 

observer-based formulation is more relevant to the work presented in Chapter 6 of this thesis, 

and therefore it is reviewed here. The references for this section are [52, 53, 54]. 

In a discretized model of the system given by 

an eigenvalue of A lying outside the unit circle, implies internal instability. The control action 

u = — kx(ro) can stabilize the system provided that [A B] is stabilizable. Pole placement 

with full state feedback is not very practical, however. First, for an nx-dimensional system, it 

requires nx measurements, which, in turn, means nx transducers. Such a controller would be 

both expensive and bulky. Further, to be implementable all the states have to be measurable. 

In a synchronous machine model with a round rotor, the damper windings are not real 

windings but are used to simulate damper bars and eddy current effects in the iron core of 

the rotor. Even if a state formulation could be obtained where all states were measurable, 

it might not be the preferred formulation. Therefore whenever state feedback is considered, 

normally a state observer is also designed to replace the actual state measurements in u(n) = 

—kx(n) with "observations" x(n) of the states, making the control law u(n) = —kx(n). So 

we are poised to think of a two-stage controller: The first stage is an observer to generate 

an estimate of the plant's state; the second stage is to feed back this estimate as though it is 

the state. The observer is in essence a dynamical system with the same number of states as 

the system it wants to observe. A straightforward way to obtain an observer for the system 

x(n + 1) = Ax(ra) + Bu(n) (2.25a) 

y(ra) = Cx(n) + Du(n) (2.25b) 
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in (2.25) is 

x(n + 1) = Ax(n)'+ Bu(n) - Lo6[Cx(n) + Du(n) - y(n)] 

yofc(n) = x(n) 

(2.26a) 

(2.26b) 

If the observer gain Lob is selected such that the eigenvalues of A — LobC are within the 

unit circle, the difference between x(n) and x(n) approaches zero with time. For fast error 

dynamics, the gain matrix L„6 must be designed such that the eigenvalues are sufficiently 

inside the unit circle. For this, the observability of [A C] is required. Fig. 2.12 shows a plant 

with the observer in (2.26) and a feedback controller. 

•k 
T 

l l («) 

i(n) 

Plant 

A B 
C D 

A - LobC 

1 0 0 

Observer 

Figure 2.12: Plant and observer 

y(n) 

If the measurements of some of the states are available, an observer can be made to esti­

mate only the ones that are not available. In that case the control law becomes —k[x! X2J*, 

where xx is the vector of the observed states and x2 is the vector of the measured ones. 

The observer in Chapter 6 is a partial observer designed to only estimate the states of the 

turbo-generator.' 

A systematic approach to the design of observers is Kalman filtering. This method takes 

into account the uncertainty in the model and the measurements, and has proved very useful 

in practice. The relations of the discrete Kalman filter are reviewed next. 
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2.7.1 Discrete K a l m a n Observer 

Suppose the system is governed by linear stochastic difference equations 

x(n + 1) = Ax(n) + Bu(n) + Ew(n) (2.27a) 

y(n) = Cx(n) + Du(n) + Gw(n) + v(n) (2.27b) 

where w(n) is the input or process noise, and v(n) is the output or measurement noise. 

They are assumed to be independent random variables, white and with normal probability 

density functions such that 

pdf(w) = M(0, Q w ) (2.28) 

pdf(v) = j\f(0, R v ) (2.29) * 

where Af(0, Q w ) means a normal distribution with zero mean and covariance Q w . The 

matrices Q W and R V are the process and measurement noise covariance matrices. Even 

if there are no noises or disturbances in the system, Q W and R V can be used as design 

parameters to set the gains of the observer [55]. This is in fact how they are used in Chapter 

6, as we do not consider stochastic processes in developing the damping controller for the 

TCSC compensated system. 

Kalman filtering is a method by which we first predict the next state, using the available 

measurements, and then correct our prediction when the new measurements arrive. So at 

time n, we have the measurement y(n) and the prediction we make when we are at time 

n — 1, that is x(n|n — 1). Eq.(2.30) provides the prediction for the next step. Eq. (2.31) 

yields the correction x(n|n) which is used to build the control action. 

x(n + l\n) = Ax(n|n - 1) + Bu(n) + LKl\y(n) - Cx(n|n - 1) - Du(n)] (2.30) 

x(n|n) = x(n|n - 1) + M w [ y ( n ) - Cx(n|n - 1) - Du(n)] (2.31) 

where L K T and M-KI are the gains of the Kalman observer. M.K[ is termed innovation gain. 

Here a general-purpose math package [56] is employed for calculating these gains given the 

parameters Q W and R V . 
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The equations for the discrete Kalman filter can be represented in the general form of 

(2.25) as follows 

x ( n + l |n ) = ( A - LKlC)x(n\n - 1) + [B - LKlB LKl] 

yKl{n) = x(n|n) = (1 - MKlC)x{n\n - 1) + [-MKlT> MKl] 

2.8 Conclusion 

This chapter is aimed at providing both a literature overview and a background on the topic 

of subsynchronous resonance and compensation with thyristor controlled series capacitors. 

The physical nature of subsynchronous resonance and its analysis methods are discussed. 

The Floquet theory and the Poincare map, two useful concepts equivalent in essence, that 

enable the eigenanalysis to be extended to switching circuits, are explained in this chapter. 

Finally, the theory of observer-based stabilizing feedback controllers is briefly reviewed 

to be used later in Chapter 6 when the feedback control of TCSC is discussed. 

u(n) (2.32) 

u(n) (2.33) 



Chapter 3 

Subsynchronous Resonance with 
Fixed Capacitors 

The details with which synchronous machines must be modeled depend very much on the 

type of transient study to be done [57]. In subsynchronous resonance studies, the machine 

model is much more detailed than for example the models employed for short-circuit, and 

simplified stability studies. 

While it is necessary to involve the detailed models in order to obtain valid results, it 

helps for educational purposes to take out the not-so-critical details, to arrive at a model 

which more clearly shows the nature of the interactions taking place. 

In this chapter, we introduce a simplified model in order to understand the physical 

nature of the energy flow into a subsynchronous mode of oscillation. In this respect, first a 

linear coupled oscillator is studied. Then a fictitious model for SSR is introduced and used 

to study the flow of energy into the subsynchronous mode. We simplify the system as much 

as possible, but still keep enough detail to be able to capture the phenomenon of interest. 

Having gained insight into the matter, in the last section of the chapter we return to the 

practical models, and discuss the simulation of the First Subsynchronous Resonance Bench­

mark Model with fixed series compensation. A standard case is simulated, and linearized for 

eigenanalysis. 

33 
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3.1 Linear Coupled Oscillators 

Subsynchronous resonance is, in essence, a coupled oscillator problem and in that respect it is 

informative to make a comparison between it and a well-analyzed coupled oscillator system. 

Here we choose a simple system of two identical pendulums connected with a spring, as 

shown in Fig. 3.1, and study the energy transfer in the system. 

Figure 3.1: Coupled pendulums 

If damping is ignored, this system is closed, that is it does not exchange energy with the 

medium, and therefore its energy content is conserved. The situation depicted in the figure 

is when one of the pendulums is at rest in its equilibrium point, while the other has been 

deviated. Upon the release of the pendulums, the energy stored in the mass-spring structure 

will turn into kinetic energy, most of it being used to accelerate the deviated pendulum. If 

the coupling is weak, that is when the force constant of the coupling spring is small compared 

to the pendulum constants [58], the energy gradually transfers to the pendulum on the left, 

increasing its amplitude of oscillation until it comes to a full swing, leaving the first one at 

rest in the middle. Then the reverse process starts, and in the absense of damping, this 

back-and-forth energy transfer continues indefinitely. Fig. 3.2 shows the changes in position 

of the pendulums with time for m\ = m 2 = 0.50 kg, I = 0.25 m, and k = 2.50 N / m . This is 

the familiar phenomenon of beats. 
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0.05 

-0.05 

0.05 

-0.05 

Figure 3.2: Positions of the pendulums 

The energy which was once located in one oscillator, is transfered to the other one. Note 

that although the "location" of energy changes within the system, the modes of oscillation 

are decoupled and do not exchange energy with each other. To see this more clearly, we 

write the dynamical equations of the coupled pendulums. 

d2Xi Qn k 
dt2 

d2x2 

~dtF 

~ x i - —{xi- x2) I m 

• ^ 2 + A ( l l _ l 2 ) 

I m 

(3.1a) 

(3.1b) 

In (3.1), Xi and x2 are the deviations of the pendulums from their equilibrium points, 

respectively, as shown in Fig. 3.1. The pendulums are assumed to be long enough so that 

their deviations along the y-axis can be neglected. They have the same length I and the same 

mass m. g0 is the gravitational constant. If (3.1a) and (3.1b) are added to and subtracted 

from each other, we get 

^ ( X i + X2) = -y (Xi + X2) (3.2a) 

(3.2b) 

which are the equations of two independent oscillators. X\ + x2 and X\ — x2 are the modes of 

oscillation of the coupled pendulums. With any set of initial conditions, these modes can be 
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excited. It is also possible to excite only one of them. Suppose both oscillators are deviated 

exactly the same amount to the right. When they are released, they swing together without 

exchanging energy with the spring. In this case only the first mode is excited. In another 

scenario, if the pendulums are deviated the same amount but in the opposite directions, only 

their differential mode of oscillation is excited. 

In a subsynchronous resonance situation we again have two oscillators. Reference [9] has 

a plot of the mechanical and the electrical torques during a torque amplification process 

which is similar to the first 5 s in Fig. 3.2. Can we conclude that when SSR happens, 

energy is transfered to the mechanical oscillator from the electrical one within one mode? 

That seems to be the case, at least when torque amplification occurs, however a closer 

examination reveals otherwise. In the next section, we introduce a simplified system in 

which subsynchronous resonance happens and use it to study the energy transfer in the case 

of SSR. 

3.2 A Simplified Model for SSR Study 

Two-phase A C machines give rise to rotating fields very similar in nature to those set up by 

three-phase machines. The first step in our simplification is therefore to consider a two-phase 

synchronous machine instead of a three-phase one in which the following assumptions are 

made [59]: 

1. The windings are sinusoidally distributed, so each current-carrying winding produces a sinu­
soidal magnetic field in the air gap. 

2. Permeability of the core is infinite, so the magnetic circuit is linear (no saturation) and the 
entire magnetic field is concentrated in the air gap. 

3. Saliency in the machine is ignored so the magnetic characteristics along the d and q axes are 
the same. 

4. Magnetic flux leakage is ignored. This means that all the flux produced by a winding passes 
through the core. 
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With these assumptions it is possible to accurately describe the self and mutual induc­

tances of the machine in terms of its dimensions [59]: 

LWiWi = (NWi/2)(NWj/2)7rn0r£a-lcos(ZWlWj) (3.3) 

where 

NWi — Number of turns of winding i 
Ho = 47T1CT7 Hm 

r = Radius of the rotor m 
£ = Axial length of the generator rotor m 

ag = Air gap length m 
ZWtWj = Angle between the axes of windings i and j rad 

Both the self inductance of a winding and the mutual inductance between two windings 

can be calculated from (3.3). Fig. 3.3 is a pictorial representation of the two-phase machine. 

The convention of [60] is used, whereby the d axis leads the q axis. 

a axis 

q axis 

Figure 3.3: Pictorial representation of a two-phase synchronous machine 
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We write the flux linkage equations for the two stator and one rotor circuits: 

ipa = Laaia + Labib + LaFiF 

ipb = Lbaia + Lbbib + LbFiF 

Ipp = L-Faia + LFblb + Lpplp 

(3.4) 

(3.5) 

(3.6) 

Since the angle between the two stator windings is 90° and the rotor is round, the mutual 

coupling, Lab = Lba, between them is 0. In this machine only the mutual inductances between 

the rotor winding and each of the stator windings are variable. 

ipa = Lsia + Mpip cos 9 (3.7) 

ipb = Lsib +MFiF sin 6 (3.8) 

ipF = MFia cos 9 + MFib sin 9 + LFiF (3.9) 

Note that in our ficticious machine, with all stray inductances neglected, we have 

M\ = LSLF (3.10) 

In other words, the square of the maximum mutual inductance between the rotor field 

winding and each of the stator windings is equal to the product of their self-inductances. 

The schematic of the ficticious machine is shown in F i g . 3.4. Mutua l inductances are omitted 

from the schematic for clarity, but are present wi th the values determined from (3.3). 

Let us write the voltage equations 

(3.11) 

Using (3.7), (3.8) and (3.9) to write out the flux linkage derivatives in (3.11)we get 

Va Rs 0 0 ia 

Vb = — 0 0 — 4>b 
0 0 RF 

dia dip 
,— Mp—— cosfV + Mpipuj sin 9 
dt dt 

vb = —Rsib — ipb = —Rsh — Ls—r ~ MF—^s\i\9 — Mpipuj cos9 
dt dt 

di 
dt dt ~r dt 

Va = -Rsia ~1pa = -RSia - L, 

—vF = —RFiF — ipp = —RFiF — Mp^1- cos9 — MF^- sin# — L F ^ F 

Mpiaui sin 9 — MFibco cos 9 

(3.12) 

(3.13) 

(3.14) 
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v ' 0 

a 

n 

Figure 3.4: Schematic diagram of the ficticious two-phase synchronous machine 

A transformation similar to Park's transformation for three-phase machines is used to 

make the mutual inductances constant 

P = 
cos 9 sin 9 
sin 9 — cos 9 

where 9 is the generator rotor angle. The inverse of P is Q = P 1 = 

transformation to the flux linkages and voltage equations gives 

tpd 0 Mp ' id 
tpq = 0 0 
1pF _ MF 0 LF iF 

(3.15) 

P . Applying this 

(3.16) 

—: — 

RS 0 0 id 
0 RS 0 ig 
0 0 RF 

U) 

0 1 0 
- 1 0 0 
0 0 0 

tpd " tpd 

i>g — tpq 
Ipp _ 

(3.17) 

Now, suppose the machine is connected to an infinite bus through a series LC circuit, as 

shown in Fig. 3.5 for phase a. 

Writing the Kirchhoff's Voltage Law (KVL) equations for both phases, and transforming 

the differential equations to the dq frame using (3.15), yields 

Vd 

1 J 

Vood 
Voog + 

VCd 
VCq J 

+ uL 0 1 
- 1 0 

+ L 
d 
~dt 

id (3.18) 
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ooa 

Figure 3.5: External circuit connected to the machine 

If the infinite bus voltage is taken to be 

Voob{t) = N / ^ K O COs(ust + QIoo - 7r/2) 

then we have 

C0S(<5 + 7r/2 — Qfoo) 

sin(5 + 7r/2 — c too) 

Vocd 
= y/2Vao 

fooq 

where 5 = 9 — ust — ir/2. 

If we define 

R 
Rs 0 0 
0 Rs 0 
0 0 RF 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

A 
Ls + L 0 M f 

0 
MF 

Ls + L 0 (3.23) 

N = 
0 1 0 

- 1 0 0 
0 0 0 

(3.24) 

then combining (3.16), (3.17), and (3.18) yields 

d_ 
dt 

iF 

• L _ 1 ( R + wN) 
id VCd Vood 

h - I T 1 

VCq - I T 1 

Vooq 
0 

(3.25) 
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Equations (3.25) are the state equations of the currents in the system. Note that since 

the machine has two phases, and is symmetrical with no stray inductances, the equivalent 

inductances of the machine in the d-axis and q-axis are equal to a stator self-inductance, 

Ld — Lq — Ls. 

The state equations for the capacitor voltages are 

d Vcd = — LU 
0 1 " VCd 1 

+ C 
id 

dt 
= — LU 

-1 0 VCq _ 

1 
+ C 

(3.26) 

Next we obtain the state equations of the mechanical system. The electromagnetic torque 

is given by 

tqe = h^d ~ ^d^q = MFiFiq 
(3.27) 

We assume that the shaft consists of two rigid rotors, connected through a spring as 

shown in Fig. 3.6. 

l 
co, e 

h J h 
K 

J 

Turbine Generator 
Figure 3.6: Shaft assembly of the simplified model 

The differential equations describing the dynamics of the shaft are 

du>i tql 
dt 

du 
~dt 

MF 

j iFh 

(3.28a) 

(3.28b) 

Equations (3.25)-(3.28) describe the dynamics of the simplified system. 

These equations are next used to simulate an example case. We use the parameters from 

[61] for the simplified system. 
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K = 132.8295 • 106 Nm/rad 
kgm 2 J = 7425.254 
Nm/rad 
kgm 2 

Ji = 13094.151 kgm 2 

Rs 
= 0.0 Q 

Rp = 0.702 n 
Ls 

= 3.536 mH 
LF. = 3.226 H 

L .= 0.865 H 
C = 26.22 uF 
fs = 60 Hz 
Va = 22.0 kV 

The isolated shaft system has a natural frequency of 26.65 Hz as determined by eigenvalue 

analysis. The value of capacitance has been deliberately chosen to give rise to a natural 

electrical frequency of 60 — 26.65 = 33.35 Hz. Note that when the equations of the system 

are referred to the rotor side, the electrical frequencies appear as their complements with 

respect to the synchronous frequency. 

In the simulation results that follow, the generator is switched into an external network 

which consists only of a capacitor and an inductor in each phase. The infinite voltage source 

is therefore shorted. The system is nearly closed except for the voltage source and the 

resistance in the rotor field circuit. 

The generator terminal voltage is equal to its rated value of 22.0 kV in the beginning. 

Using (3.12), and noting that in steady state the first three terms are zero, the steady state 

field current is obtained as 

IF = (3.29) 

which in turn is used to find the field voltage Vp = Rplp. 

Initially, there is no charge on the capacitor plates. Fig. 3.7 shows the speeds of the 

rotors and Fig. 3.8 the currents of the d and q axes. 

The simulation is run for well past the ability of a physical system to take the oscillations 

before getting damaged. It is evident from Fig. 3.7 and Fig. 3.8 that the energies of the 

electrical and mechanical oscillations grow simultaneously, and not at the expense of each 

other. This is unlike the pendulum example that was studied in the previous section. 
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Figure 3.7: Rotor speeds of the two-phase synchronous machine 
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Figure 3.8: Stator currents of the two-phase synchronous machine 

Fig. 3.9 shows the kinetic energy of the rotors obtained from 

(3.30) 

The energy of the oscillations comes from the kinetic energy of the rotors (which are 

turning at synchronous speed in the beginning), causing the average rotational speed to 

drop. Since the rotors are highly massive, a small drop in the average speed is enough to 

provide the energy of the oscillations even at their peak. 
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(a) (b) 

Figure 3.9: Kinet ic energy of the rotors 

So, during a subsynchronous resonance condition, the energy of a mode of oscillation 

increases. This energy can come from another mode. The nonlinearity in the system makes 

this phenomenon possible, since in a linear system the modes are decoupled and do not 

exchange energy with each other. 

3.3 IEEE First SSR Benchmark Model with Fixed Com­
pensation 

We choose the First I E E E Subsynchronous Resonance Benchmark Model , referred to as 

" F B M " , to be our test case for the following reasons: 

1. This system has 5 subsynchronous modes of oscillation. Therefore it provides flexibility in 
changing the series compensation level to excite different modes. 

2. It has been the major case study in the literature on subsynchronous resonance. 

3. Although subsynchronous resonance develops in other configurations as well, the most com­
mon and severe case is when a synchronous generator is radially connected to the network 
by a series compensated transmission line. 

This section discusses the F B M parameters, its nonlinear dynamical equations, and eigen­

value analysis for a standard case with fixed series compensation to prepare for the more 

involved analysis with thyristor controlled compensation in later chapters. 
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The dynamical equations of the F B M with thyristor controlled series compensation are 

given in Appendix B, and linearized in Chapter 5. To avoid repetition here, whenever the 

equations are the same or similar, reference is made to the appropriate location. 

The external network of phase a with a fixed capacitor is shown in Fig. 3.10, where 

R a t o t

 a n d L a t o t denote the total resistances and inductances of the transformer, the line and 

the infinite bus in phase a, respectively. There are also mutual resistance and inductance 

between the phases that are not shown in the figure. 

la R a m

 L a t o t Q 

~^-^m m m — ) i 
+ V C f l - + 

vGena v 

Figure 3.10: The external network connected to the turbo-generator in F B M 

Since the system has three-phase symmetry the resistance and inductance are the same 

in all phases. Furthermore, the mutual components between any two phases are equal. If 

the mutual elements are denoted by Rabtot
 a n d L a b t o t , then the differential equations of the 

three-phase network become 

VGena V<xa Ratot Rabtot Rabtot 

VGenb — Voob = Rabtot Ratot Rabtot 
v G e n c _ _vooc_ _Rabtot Rabtot Ratot 

Latot Labtot Labtot 

Labtot Latot Labtot 

.Labtot Labtot Latot 
dt 

VCa 

.% + VCb 

yCc_ 

(3.31) 

In F B M the parameters of the transformer, the line, and the infinite bus are given in 

terms of symmetrical components. A three-phase balanced inductance matrix 

(3.32) 
L a Lab Lab 

Lab La Lab 

Lab Lab L a 

becomes 

L a + 2Lab 

0 La 

0 
L ab 

0 
0 

-'ab 

(3.33) 
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when the system phasors are transformed into the symmetrical components. Having (3.33), 

it is straightforward to obtain the self and mutual parameters for each of the network com­

ponents in order to build the matrices in (3.31). 

We write (3.31) in the compact form 

vGen,abc ~ voo,abc — R-iaftc + L — i a ft c + Vc,abc 

at 
(3.34) 

These equations are next transformed into the Odq reference frame by use of the power-

invariant Park transformation 

P(0) 
l/y/2 l/y/2 l/y/2 

2/3 cosfl C O S ( 0 - 2 T T / 3 ) C O S ( 0 + 2TT/3) 

[ sm6 s in(0-27r /3) sin(0 + 2TT/3) 

(3.35) 

where 0 is the angular position of the generator rotor, defined to be the position of the d-axis 

of the rotor with respect to the axis of phase a winding of the stator. The inverse of P is 

denoted by Q, and is equal to the transpose of P , that is Q = P _ 1 = P*. The transformed 

equations of the external network in (3.34) are in the form 

VGenfidq ~ voo,0dq — PRQi()dg + P L Q ( —iodg ^rQiodq) + vC,0dq 
dt 

(3.36) 

P R Q and P L Q again have the general form given in (3.33). Therefore, when working 

in Odq reference frame, the symmetrical components can be readily used. Also note that 

dP 
Q P—— = UJ 

dt 

0 0 0 
0 0 - 1 
0 1 0 

(3.37) 

where u is the angular speed of the generator rotor. Since time is in per unit with the base 

ts = I/we S , the form of equations in actual quantities and in per unit are the same. 

The generator terminal voltages VGenfldq can be expressed in terms of the synchronous 

machine stator and rotor currents. The zero axis, direct axis, and quadrature axis equivalent 

circuits of a synchronous generator with four rotor windings are shown in Fig. 3.11, Fig. 3.12, 

and Fig. 3.13, respectively. The rotor windings on the direct axis are denoted by ' F ' and 
lD\ and those on the quadrature axis are denoted by lQ' and 'G". 
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'o 

vGenO 

Figure 3.11: 0-axis circuit of the synchronous generator 

Lf - LAD 
vGend 

Figure 3.12: d-axis circuit of the synchronous generator 

Ln - LAn R„ h 

^Genq 

Figure 3.13: g-axis circuit of the synchronous generator 

In Fig. 3.12 and Fig. 3.13, the flux linkages ipa a n d tpq

 a r e 

tpd = Ldid + L A D i F + L A D i D 

ipg = Lqiq + LAQ%Q + L A Q i G 

(3.38) 

(3.39) 
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The differential equations of the synchronous generator are given below. These equations 

can be derived from the equivalent circuits. 

VGenO 0 0 0 0 0 0 
VGend 0 Ra 0 0 ULAQ ULAQ id 

VGenq 0 -uLd Ra —LOLAD —LOLAD 0 0 ig 

- V F = — 0 0 0 R F 0 0 0 i F 

0 0 0 0 0 RD 0 0 i D 

0 0 0 0 0 0 RQ 0 iQ 

0 0 0 0 0 0 0 RG ic 

L 0 0 0 0 0 0 0 i o 

0 LD 0 LAD LAD 0 0 id 

0 0 LQ 0 0 LAQ LAQ 
d 

i q 

0 LAD 0 L F LAD 0 0 
d t 

i F 

0 LAD 0 LAD L D 0 0 d t 
i D 

0 0 LAQ 0 0 LQ LAQ i Q 

0 0 LAQ 0 0 LAQ L G _ 

(3.40) 

Using the notation defined in Appendix B, (3.40) is written in the following compact 

form. 

v G e n , 0 d q 

—VFDQG 

Rodq - uMLodq -CUMLSR 

04x3 R -FDQG 

l0dq 

i-FDQG 

Lodq L5R 
d t 

1-Odq 

i-FDQG 

(3-41) 

The last step to obtain the current equations is to substitute VGenfldq
 m (3-41) using the 

external network equations in (3.36), and rearranging the terms. The final result is 

l0dq 

}FDQG. 
= r 1 ( u N - R ) iodj - I T 1 vc,odq - I T 1 

voo,0d<7 

}FDQG_ . ^ 4 x l . _—VFDQG_ 
(3.42) 

where the variables L , N , and R are defined in Appendix B. 

The differential equations for the capacitor voltages are the same as given in (B.16). 

Also, the mechanical differential equations do not alter when the series compensation is 

changed from fixed to thyristor controlled. These equations are given in (B.25) and (B.26). 

The shaft has 5 natural subsynchronous modes with frequencies given in Table 3.1. 
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Table 3.1: Mechanical modal frequencies of the IEEE First SSR Benchmark Model 

Mode Frequency [Hz] 

TM1 15.71 

TM2 20.21 

TM3 25.55 
TM4 32.28 

TM5 47.45 

The mechanical dampings in F B M are given in terms of modal dampings indicated by 

damping decrements. Theoretically, any set of modal dampings can be converted to equiv­

alent self and mutual dampings by means of the reverse transformation from the modal 

domain to the spring-mass domain [18]. Unfortunately, such a reverse transformation leads 

to mutual dampings between not only the adjacent elements, but among all elements irre­

spective of their physical location on the shaft. The spring-mass model does not provide 

for these fictitious mutual damping elements, but represents mutual damping only between 

adjacent elements. To be able to use the modal dampings in the mass-spring model, [18] 

introduces a parameter fitting technique, called "modal adjustment", that we review next. 

3.3.1 Approximate Method to Calculate Self-Dampings 

The spring-mass model can be adjusted to simulate the measured modal dampings as long 

as the damping adjustments are relatively small. In the following an approximate method 

is described for making these adjustments. 

The dynamics of the turbine-generator shaft are given by 

J9 + D e - f - K 9 = t q (3.43) 

where J is the diagonal inertia matrix, D is the diagonal damping matrix, and K is the 

non-diagonal spring constant matrix either in per unit or in actual quantities. 

The reason why D is diagonal, is that we are not considering the shaft damping between 

adjacent masses. These dampings are smaller than the dampings to reference and can often 

be neglected [18]. If these dampings are not neglected, then D will become a tri-diagonal 
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matrix. The modal decomposition can still be performed in this general case. Note that D 

is unknown, and has to be determined from the modal dampings. 

Since K is not diagonal, equations (3.43) are not decoupled. However, there always exists 

an equivalence transformation that decouples this system. The dampings, D , are unknown 

but small, therefore in finding the transformation matrix, we neglect them, and consider the 

system as 

J 9 + K 9 = t q (3.44) 

or 

9 + J - X K 9 = J ~ \ (3.45) 

Suppose we denote the equivalence transformation by Pmo<f, then 

9 mod = PmodQ (3.46) 

Applying this transformation to (3.45) yields 

PmodQ + PmodJ : K 9 = P m o d J _ 1 t q (3.47) 

or 

Qmod + (PmodJ _ 1 KP~^)9 T O O d = (P m odJ _ 1 ) tq (3.48) 

The second term on the left-hand side of (3.48) has to be diagonal in order for the 

equations to be decoupled. Therefore the transformation matrix we are seeking is actually 

one that diagonalizes J _ 1 K . This transformation consists of the mode shapes (eigenvectors) 

of J _ 1 K as its columns. 

Having obtained Pm0d, we now turn our attention to the dampings. The modal dampings 

are obtained from the self dampings by 

D m o d = PmodBP^od (3.49) 
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where T)mod is the diagonal matrix of modal dampings. In F B M the modal dampings are 

given in terms of damping decrements, indicated in the Appendix B by md. The relation 

between a damping decrement and a modal damping is given by 

Dirnod md; (3.50) 
2 J imod 

where Jimod is the modal moment of inertia. Similar to (3.49), the relation between the 

modal moments of inertia and actual moments of inertia is J m o d — P' mod3Pm

l

od- Since we 

neglected the dampings in finding Pmod, the non-diagonal elements of (3.49) may be nonzero. 

However, we only consider the diagonal elements. If Pmod is given by 

Pmod — 

PU P\2 
P21 P22 

Plnr, 
P2nrl (3.51) 

\Pnml Pnm2 Pnmnn _ 

where nm is the number of masses, then it can be shown that the ith diagonal term of the 

transformation in (3.49) is 

Dimod = Dxp2

xi + D2p\i DnmPn„ (3.52) 

Finally the equations that determine the self dampings from the modal dampings, Dimod 

i = 1, 2, • • • , nm, are 

(3.53) 

Equation (3.53) is used in this thesis to obtain the self dampings from the modal damping 

specifications. If a modal damping is not given, its value is assigned zero. Some of the 

dampings calculated this way may come out to be negative, which are clearly fictitious 

values. This does not however pose a problem for the eigenvalue analysis [18]. 

Pu Pli • 2 
Pnml " A " Dimod 

2 2 
P\2 P22 ' Pnm2 D2 

— 
D2mod 

2 2 
Plnm P2nm 

•• p2 

1 Tim Tim _ 
ll-m Dnmmod 

3.3.2 Analysis of a Standard Case 

In order to test the validity of the dynamical equations of the system, as obtained above, 

here we use them to simulate the standard case 1-T of the F B M [38]. 
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The reactance of the series compensation, Xc = 0.371 pu, is tuned approximately to 40 

Hz both during and after the fault to excite the second torsional mode TM2 with frequency 

20.21 Hz. The fault is a three-phase to ground short circuit at busbar B (Fig. 2.4). The 

prefault voltage in phase a is zero. The reactance of the fault is taken to be 0.04 pu. The 

fault clearing process starts at 0.075 s after the fault, with each phase opening at the next 

occuring line current zero-crossing. During the fault,.the system dynamical equations are 

changed. This is taken into account in the simulation. 

Fig. 3.14 shows the electromagnetic torque, and two of the shaft torques for 0.5 s. 

MATLAB® differential equation solver ODE15s is used for the simulation. The curves 

are in agreement with those provided by [38]. 

4 

H 1 

_21 i i i i I 
0 0.1 0.2 0.3 0.4 0.5 

t[s] 

Figure 3.14: Torques in F B M Case 1-T 

Eigenvalue analysis requires the nonlinear equations to be linearized first. The equations 

of the F B M with partly fixed and partly thyristor controlled compensation are linearized for 

different switch combinations in Section 5.3. To obtain the Jacobian for fixed compensation, 

it suffices to omit the rows and columns pertaining to the T C S C voltages in (5.31), (5.32), 

and (5.33). Note that the Jacobian is the A-matrix of the continuous linearized system. 

Fig. 3.15 shows the movement of the eigenvalues in the s-plane when compensation is 
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varied from 30% to 90%. The arrows indicate the direction of increasing compensation. 

Only the first 4 subsynchronous modes are shown; the change in TM5 is small. The case 

of Xc = 0.371 pu is indicated by a dot on the curves. It is seen that at this particular 

compensation level, the largest undamping is that of TM2, and therefore it is the dominant 

unstable mode. 
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Figure 3.15: Movement of the eigenvalues in the s-plane with compensation level 

3.4 Conclusion 

In this chapter the transient, nonlinear simulation of the subsynchronous resonance is dis­

cussed with both simplified and detailed models. 

The comparison of the simplified system with a linear coupled-oscillator reveals that the 

nature of energy flow into the subsynchronous modes of oscillation is more complicated, and 

relies on the nonlinearity of the system. When a subsynchronous mode is self-excited, the 

energy of both the mechanical and the electrical oscillations increases, while in the case of 

the linear coupled oscillators the energy content in each mode is constant. 

Since the First Subsynchronous Resonance Benchmark Model is the chosen test case in 

this thesis, in the last section, the parameters and dynamical equations of this system are 
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studied. The approximate method, by means of which the modal damping decrements are 

transferred into self-dampings is explained. The standard case 1-T in [38] is simulated to 

insure that the derivation is correct. 

Finally, the shift of the eigenvalues of the linearized system with compensation level is 

shown. Since the linearized model is continuous, the eigenvalues are plotted in the s-plane. 

In the following chapters, where the series compensation is partly fixed and partly thyris­

tor controlled, the linearized model is discrete. Therefore the eigenvalues are plotted in the 

z-plane, and their position relative to the unit circle determines their stability. 



Chapter 4 

Passive Damping of Thyristor 
Controlled Series Capacitor 

A point of contention is the nature of the response of a T C S C to disturbances at sub-

synchronous frequencies. Specifically, it has been shown that a T C S C operating in open 

loop possesses a resistive characteristic at subsynchronous frequencies [25, 27]. This result 

is surprising since a TCSC with ideal switches does not have any resistive element. So the 

question is then posed as to the whereabouts of the energy dissipated in the calculated re­

sistance. Note that the commutation of thyristors in a T C S C is not forced, and therefore 

no energy loss can be attributed to it. In other words, an ideal thyristor in a T C S C turns 

off when it is not carrying current, so at the time of turning off, there is no energy stored in 

the inductor in the corresponding thyristor branch. 

Here we investigate the source of this resistance, and suggest a way to compute it when a 

periodic steady state exists or can be approximately assumed for the circuit. The calculated 

resistance is compared with that by another method, proposed to obtain the frequency 

response of TCSC, which also yields a resistive component at each subsynchronous frequency. 

Then, three open-loop firing schemes are compared with respect to the impedance they 

present to subsynchronous currents. 

Finally, the dynamic model of a single-phase TCSC based on the linearization of the 

55 
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Poincare map is tested for accuracy in capturing the passive damping. 

4.1 Fundamental Concepts 

When a circuit consisting only of passive elements responds to a current waveform i(t) applied 

to its terminals with a voltage waveform v(t), then (as is well known), the instantaneous 

power consumed by the circuit is given by 

p(t) = v(t)i(t) (4.1) 

Now, suppose the current and the voltage are both periodic with period T. Then the 

equivalent resistance of the circuit is calculated by 

_ < p(t) >T _ ± fTv(ri)i(v)dT] 

I is the rms value of the periodic current. The only requirement on the current and 

voltage is that they both be periodic with a common period. If in (4.2), instead of the total 

current, a purely sinusoidal component with period Tj (obtained from Fourier analysis) is 

used, then Req can be taken as the equivalent resistance at the corresponding frequency. 

Note that T/Tj is an integer. We make use of this point in interpreting the behaviour of a 

TCSC at a single frequency. 

4.2 Method of Resistance Calculation 

In order to study the behaviour of TCSC at a subsynchronus frequency consider Fig. 4.1, 

where a single-phase T C S C is shown to be injected by a current of the form 

i(t) = V2IS sm(cost + 7S) + y/2Ih sin(w hi + <yh) (4.3) 

The magnitude of the subharmonic current, J^, is much less than the magnitude of the 

synchronous current, Is, and the disturbance in the line current does not drive the T C S C 

out of its normal operation. Therefore, small signal analysis is applicable. 
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> • 

Figure 4.1: A single-phase T C S C 

A current of the form (4.3) is not necessarily periodic. For example, it would not be 

periodic for cos = 2n60 rad/s and Luh = 100 rad/s. Here, however, we choose to work with 

frequencies that result in a periodic current waveform. The justification is that for any 

irrational number, there exists a sufficiently close rational number. Therefore, theoretically, 

using frequencies whose ratio is rational does not prevent the analysis being done with any 

desired precision. 

Another issue, which is more important from a practical point of view, is that the period 

of the waveform in (4.3) can be much longer than the period of its constituent sinusoids. 

Take for example us = 27r60 rad/s and u>h — 27r47 rad/s. The periods of the corresponding 

sinusoids are 1/60 = 0.0167 s and 1/47 = 0.0213 s, while the period of their summation is 

1.0 s. 

If i(t) results in a periodic voltage waveform across the T C S C terminals wi th the same 

period as that of the current, or a rational ratio of it, we can use (4.2) to calculate the total 

equivalent resistance of the T C S C . A firm statement about the periodicity of the voltage is 

formidable however, for two reasons: 

1. The behaviour of the T C S C depends on the firing policy, and a result obtained for one policy 
is not necessarily valid for another. 

2. The waveform in (4.3) can have a very long period, which means we may need to take into 
account a great number of switchings in order to firmly validate the periodicity. 

Let us analyze the open-loop firing with respect to the zero crossings of the current 

waveform in (4.3). W i t h this assumption, the firing system is unaware of the subsynchronous 
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current, and looks for the zero crossing in the total current to send the gate pulse after a fixed 

time (a — -K/2)/UJs, a being the firing angle by definition calculated from the zero crossing 

of the capacitor voltage. As an example, take f s — 60 Hz and fh = 47 Hz. The current 

waveform repeats after 1 s. The smallest possible period for vctc(t) is therefore 1 s. So at 

least 120 current pulses have to be considered to see if vctc{t + 1) and dvctc(t + l)/dt are 

equal to vctcif) a n d dvctc(t) / dt for a chosen set of initial conditions. 

The differential equations of the system are analytically solved for the 'on' and 'off' states 

separately. Suppose the gate pulse is sent at ton and the inductive branch immediately starts 

to conduct until its current passes through zero. Then the inductor current, inc(t), and the 

capacitor voltage, vctc{t), during this time are 

htc{t) = h cosu)N t c(t - ton) + h2smujNtc(t - ton) + 

CO Ntc V2IS sm(ust + js) + N t c

 2V2Ih sm(coht + lh) (4.4) 
^ N t c ~ UJ2

MC - UJ2

H 

vctc(t) = Ltc—^ = - kiU)NtcLtcsinujNtc(t - ton) + k2u N t c L t c cos ujNtc(t - ton) + 

V2IS cos{cust + 7s) + ^f^^V2Ih cos(coht + lh) (4.5) , ,2 , ,2 v " s ~ " » \ ~ s » i i s ; i 2 , ,2 
U N t c ~ Us WjVfc _

 U h 

where 

ujNtc = -j== (4.6) 
V Mc^tc 

, _ uj%tcy/2Is sin(ujston + 7S) ujNtcy/2Ih sin{tohton + jh) 
1 ~ 7? 7? 77- 77 ^ ' 

U s - ^ N t c U h ~ 1 X 1 Ntc 

+ uNtcL0sV2Is cos(ujston + 7S) ^ coNtcuJhV2Ih cos(mht0n + 7fe) 
UmcLtc w 2 - a;2 - u2

Ntc 

If an 'off' state starts at t0ff, then the capacitor voltage from this time until the time 

when the inductive branch comes back to the circuit is 

\l~2i \[21 
vctc(t) = -pr cos(ujst + 7*) -pr- cos(ix>ht + jh) + ks (4.9) 

UsUtc U h U t c 

file:///l~2i
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h = Vctcitoff) + l=r COs((Jsto// + 7,) H — COs(uJhtoff + 7/j) (4.10) 

With a set of initial conditions, equations (4.4)-(4.10) are solved successively to see if at 

the end of 1 s we return to the conditions which existed at the beginning of the simulation. 

Instead of going through the cumbersome procedure of iteration with different sets of initial 

conditions, we start with zero initial conditions and simulate long enough until the circuit 

achieves steady state. Although there is no resistance in the circuit, the discontinuous mode 

of operation helps to eliminate the transient response owing to the natural frequency w^rtc-

This is checked for the example case in the next section, before proceeding with the resistance 

calculation. 

4.3 Numerical Example 

To be able to make comparisons, the TCSC in [62] is used as an example. The parameters 

are 

Ltc = 7.0 mH (4.11a) 

C t c = 500 uE (4.11b) 

fs = 60 Hz (4.11c) 

fh = 47 Hz (4.11d) 

a = 80° (4.11e) 

The conduction angle a, corresponds to a firing angle a — 180 — a/2 = 140° (the delay 

from the zero crossing of the current becomes 140° — 90° — 50°). The injected current is 

chosen as 

i(t) = sin(27r60 + TT/2) + 0.1 sin(27r47) (4.12) 
v v ' N v ' 

i$(t) ih(t) 

In the simulation results that follow, a 50 us time step is used. An iterative procedure is 

employed to improve the accuracy of the zero crossing instants to ± 1 0 - 1 2 s. Simulation is 
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started with zero ini t ial conditions and allowed to run for over 1.6 s. The code is written in 

MATLAB®. F ig . 4.2 shows the capacitor voltage in two time spans that are apart by 1 s. 

10r 

5-

o 

> 
o 

1.6 1.54 1.56 1.58 

t[s] 

Figure 4.2: Capacitor voltage in two time spans apart by 1 s 

The mean of the difference between the two waveforms in F i g . 4.2 is in the order of I O - 1 3 

V . Therefore for our purpose, vCtc has achieved the state of periodicity and we can apply 

(4.2) to the waveforms in t e [0.5 1.5] s. 

The total resistance of the T C S C to the current in (4.12) is found to be 

R •eq 

I2s + II 
= 3.31 • I O - 8 (4.13) 

This value is less than the accuracy of the calculation. Therefore, it is not significant and 

can be assumed to be zero. However, when only the subsynchronous current is taken into 

account, we get 

Rh = ll2v°*WMd<l = 4.6338 (4.14) 

Also, with only the synchronous current, 

flf vCtc(v)is(v)dv Re 
I2 

-0.0463 fi (4.15) 



4.3. Numerical Example 61 

So the resistance at 47 Hz is obtained at the expense of a slightly negative resistance at 

60 Hz. Now, let us compare the results just obtained with F F T analysis results. Fig. 4.3 

shows the F F T of vctc and i. 

TJ 

'3 
n3 

-200. 
40 45 50 55 60 65 70 75 80 

/ [Hz] 

Figure 4.3: F F T of the capacitor voltage and the line current 

The F F T of the current has elements with nonzero magnitude only at 47 Hz and 60 

Hz, as expected. A close examination of the F F T shows that the voltage and the current 

components at these two frequencies are 

V47 = 0.52768ej26M45 

147 = 0Mejgo 

V60 = 3.83648e^'90346 

Im = 0.5e>° 

(4.16a) 

(4.16b) 

(4.16c) 

(4.16d) 

So the resistance values calculated from F F T components become 

i ? 4 7 = Re<( X^- 5> = 4.6338 
Z47 . 

R60 = Re<( ^ > = -0.0463 
60 

ft 

which are in perfect agreement with the results obtained in (4.14) and (4.15). 

(4.17) 

(4.18) 
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A method for obtaining the frequency response of a T C S C is proposed in [62], which im­

plies a different way of calculating resistance, based on the assumption that the steady-state 

turn-on and turn-off instants of a thyristor in a T C S C are not altered by the small-signal sub-

harmonic current. Hence the linearity principle applies, and the effect of a subsynchronous 

current source can be investigated, once the other sources are set to zero. A synchronously 

varying resistor is used to replace the thyristor. This method allows for the forced commu­

tation of the inductor current, which is a, dissipating action in nature, and as a result, no 

negative resistance is observed at synchronous frequency. Fig. 4.4 shows the variation in the 

capacitor voltage and inductor current for the T C S C parameters in (4.11). The occurrence 

of forced commutation is evident. The current used for the simulation is 

ih(t) = 0.1cos(27r47i) (4.19) 

t[s] 

Figure 4.4: Sample of vctc a n d iuc from the method of [62] 

The resistance of the thyristor during 'on' and 'off' states is assumed to be 10~6 and 10 1 0 

0, respectively. The resistance at 47 Hz is found by F F T analysis from 

V47 = 0.4526e j 1 6 0- 9 0 (4.20a) 

J 4 7 = 0.05e- j 1 8 0 (4.20b) 
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to be 

RA7 = R e j Iplj = 8.5540 ft (4.21) 

The difference, between the value of resistance in this case and the value of resistance 

obtained before, can be explained by the fact that the source of resistance is completely 

different in the two cases. 

4.4 Frequency Response Curves of T C S C 

The resistance observed at a subsynchronous frequency is a virtual resistance that appears 

because of the switching action in the device. It is, therefore, in order to ask how the 

resistance changes with the conduction angle and the firing policy used. 

Fig. 4.5 shows the changes observed in resistance as a function of frequency at certain 

conduction angles for the test circuit and the T C S C with L and C of (4.11). The numbers 

given in the legend are the conduction angles in degrees. The reactance is also given to 

make the plots more useful for subsynchronous resonance studies. Capacitive reactance is 

shown as positive, hence the label 'Cap. React.'. To obtain these plots, the frequency of 

the disturbance current is varied over the range of 5 Hz to 115 Hz in steps of 1 Hz, and 

the simulation is allowed to run for 1.5 s in each case. The accuracy of the zero crossing 

detection is enhanced by an iterative procedure. Then the F F T of the waveforms in the time 

span of [0.5 1.5] s is used to obtain the resistance and the reactance. The time step used 

for the simulation is increased to 500 us, with the resulting Nyquist frequency of 1000 Hz, 

which is still enough for accuracy in the range of frequencies plotted in the figure. 

The firing policy used so far to obtain the previous results is to send the pulse gate to 

the positive polarity thyristor, (a — ir/2)/u)s s after detecting the positive-to-negative zero 

crossing in the line current, and vice versa. With this policy, the device acts as a capacitive 

reactance, together with resistance on the subsynchronous disturbances. Here, the following 

two firing methods are examined and compared with the former: 

1. Gate pulse to the positive thyristor is sent a/tjs s after the negative-to-positive zero crossing 
in the capacitor voltage and vice versa. 
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Figure 4.5: Frequency response curves for the T C S C in (4.11) 

2. Gate pulse to the positive polarity thyristor is sent (a + n/2)/tos s after the negative-to-
positive zero crossing in the line current and vice versa. 

Fig. 4.6 shows the plots of resistance and reactance at a 90° conduction angle with the 

above three open-loop firing policies. In Fig. 4.6, 'Cpn' denotes firing with respect to the 

positive-to-negative zero crossing in the line current, while 'Vnp' is with respect to the 

negative-to-positive zero crossing in the voltage, and 'Cnp' is with respect to the negative-

to-positive zero crossing in the line current. It is interesting to note that the resistance 

becomes negative for frequencies below 12 Hz for the 'Cnp' policy. For these frequencies, the 

resistance observed at the synchronous frequency is positive, which leads to the same result 

obtained before, namely that the total energy consumption by the device is zero. 

The resemblance of the frequency response to that of a parallel LC circuit is most pro­

nounced for the 'Vnp' scheme. 
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Figure 4.6: Frequency response curves for a = 90° and different firing policies 

4.5 Passive Damping in T C S C Dynamic Models 

The existing dynamic models developed for small signal analysis of T C S C fall into one of 

two categories [27]: 

1. Linearization of the average steady-state or power flow model. 

2. Linearization of the Poincare map. 

In the first approach, the thyristor-controlled inductive branch is replaced by an equiv­

alent linear inductor which in parallel with Ctc gives the same compensation level at the 

synchronous frequency. This method fails to capture the passive resistive behaviour of the 

TCSC. The eigenvalues of the linear model lie on the imaginary axis of the s-plane and the 

TCSC shows an undamped response to subsynchronous excitations. 

In Chapter 2, it was stated that the dynamics of any system which is periodic with 

period T can be studied by sampling the system state once per period [45]. The system 

dynamics are described by the discrete model that maps the change in the sampled states 

from one sampled point to the next. This concept is formalized as the Poincare map from 

the dynamical systems theory. Linearization of the Poincare map incorporates a resistive 
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behaviour. The question is how this resistive behaviour compares to the resistance calculated 

by power considerations. 

The discrete model for a single-phase TCSC, obtained by linearization of the Poincare 

map, is derived in Appendix A , and is given by (A.15). For convenience, the relation is 

repeated here. 

Avctc{kn + 7r) = cosnaAvctc(kTr) + (—l^a^Acp H -—cosKG I Ai(rf)dri + 

——- / cos[K,(kir + f - n)]Ai(r])dr]-\ — / Ai(rj)drj 

(A.15) 

This map basically predicts the small signal change in the capacitor voltage sample taken 

after ix rad, Avctc(k^ + 7r), given the small signal change in the present sample, Avctc(kn), 

the small signal change in the firing angle, A(f), for the firing that happens at some instant 

between kir rad and kir + 7r rad, and the small signal variation of the line current during 

kit < uist < krr + jr. For the meaning of other variables see Appendix A . 

Notice that the Jacobian of the Poincare map, alias the A-matrix of this linear model, is 

cos/ttr < 1. Therefore, the model has an eigenvalue inside the unit circle, which means that 

the model shows damping. 

In the derivation of (A.15), the half wave symmetry of the T C S C waveforms has been 

exploited to reduce the advance map to half the period, thereby reducing the amount of 

calculations. A<ft and Ai(-) are the inputs. 

The complexity of the map with regard to Ai is because in the differential equations from 

which (A.15) is derived, the line current i is the forcing function. 

References [27, 32] have assumed that the small signal variation of the current, Ai(t), 

is given by Ai^costost — Aiqsmcust, with Aid a n d Aiq constant (zero-order hold). That is, 

the input expressed in terms of Aid and Aiq remains constant between two sampled points. 

This assumption has been made to be able to simplify the map and convert the linear model 

from discrete to continuous time. However, it reduces the accuracy of the model. 
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Here, we rather stay in the discrete domain and are more concerned about the accuracy, 

therefore this assumption is relaxed. For a detailed derivation of the continuous-time models 

for TCSC in the ^-reference frame see [27, 32]. 

The model in (A.15) is linear. The linearity with respect to Avctcikn), and A(f> is evident. 

To see the linearity with respect to Ai(-), take two current waveforms Ai^(-) and A^ 2 )(-); 

kir < cost < kn + n, and denote the response of (A.15) to each of them by y\ = Av^^ilm + it) 

and y2 = Avc

2\c{k'K + IT), respectively. Then it is straightforward to show that the response 

to aiAi^(-) + a2Ai^(-) is a\y\ + a2y2, where a\ and a2 are two real numbers. 

The linearity means that if the input Ai is a sinusoidal current, the steady-state output 

points (after transients have died) should also lie on a sinusoid, with the same frequency. 

On the other hand, (A.15) is supposed to portray the small-signal behaviour of the T C S C at 

subsynchronous frequencies. Therefore, if Ai(t) = IhSm(tOht + 7/J, then the sample points 

must lie on the voltage component of TCSC with the same frequency. 

The voltage components of the TCSC voltage at different frequencies are obtained by 

Fourier analysis. Both the magnitude and phase of each frequency component are determined 

by F F T . Note that the virtual resistance of the TCSC is basically a phase shift between the 

voltage and current at a subsynchronous frequency. If the disturbance Ai(t) is applied to 

(A. 15), and the resultant sample points lie on the subsynchronous voltage component, then 

the discrete model captures the correct resistance at that frequency. In the following, this 

point is investigated for the example considered in Section 4.3. 

When Ai is a sinusoid, the integrals in (A.15) can be computed analytically. To use 

(A. 15), A(fi needs to be determined as well. Note that the firing of T C S C is done with 

respect to the line current zero-crossings. Suppose tz is the time at which the line current 

passes through zero, and that the steady-state current is denoted by i* such that 

i(t) = i*(t) + Ai{t) (4.22) 

With the time origin for the waveforms assumed as in the Appendix A , we have i*(t) = 

y/2Issm(ust + 7r). Fig. 4.7 shows a situation where the zero-crossing in the line current is 

shifted to the right with respect to the zero-crossing in the steady-state current i*. Without 
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the disturbance Ai, the zero-crossing at cosiz = kir is used for setting the firing time imme­

diately after kit (synchronization with the line current). With the disturbance, when the 

zero-crossing at tz is detected, a gate pulse is sent to the appropriate thyristor after a fixed 

time corresponding to the angle 4> = ustz — ir/2 + a, thus A<f> = cosAtz. Therefore 

- Ac/) , A0 , 
tz = tz + — = kir + — 4.23 

® s A t z 

(4.24) 

V2IS sin(/c7r + A(f) + TT) + y/2Ih sin( — (kir + A<f>) + jh) = 0 (4.25) 

Linearization of (4.25) based on the small-signal assumption yields 

Acf) « ( - l ) f e ^ sin(—kir + lh) (4.26) 

Fig. 4.8 shows the 47 Hz component of the capacitor voltage, V 4 7 , obtained from F F T 

analysis, together with the sample points obtained by applying the disturbance, ih(t) in 
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(4.12) to (A.15). The TCSC parameters are those given in Section 4.3. The sample points 

follow the waveform very closely, which is an indication of the accuracy of the model. The 

waveform of the current is also given for comparison. Note that the phase shift between the 

current and voltage is not exactly 90°. 
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Figure 4.8: Comparison of with the sample points from Poincare map 

4.6 Conclusion 

Various studies have shown that the TCSC has a resistive behaviour towards subsynchronous 

currents. This phenomenon is, for the most part, independent of the actual resistance in the 

TCSC elements. When T C S C shows a positive resistance at a subsynchronous frequency, the 

energy is absorbed at that frequency and injected into the synchronous frequency. Therefore, 

the resistance at the subsynchronous frequency is obtained by a regenerative behaviour at 

the switching frequency that shows itself as a negative resistance, so that the ideal device 

does not dissipate energy, as expected. 

The frequency response of TCSC is completely dependent on the firing scheme used for 

triggering the thyristors. While this result applies without argument for closed loop controls, 

the analysis contained here emphasizes the validity of the same statement about the open 
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loop controls as well. 

The dynamic model of TCSC, obtained by the linearization of the Poincare map, captures 

the passive damping, while the average steady-state model does not. 



Chapter 5 

Linear Model Derivation for a T C S C 
Compensated System 

In the last chapter the linearization of a single-phase T C S C was discussed. It was shown 

that the linear model based on the Poincare map captures the damping behaviour of the 

TCSC at subsynchronous frequencies. Throughout that analysis, the line current was as­

sumed to be the forcing function. With this assumption, modular modelling of T C S C be­

comes possible. The linear models developed for a three-phase T C S C in [27, 32] are based 

on this supposition. However, the interface of the linear model thus obtained with the rest 

of the system has to be justified. This is especially true if the model is going to be used to 

design a feedback loop which aims at affecting the line currents by small signal variation of 

the TCSC firing angles. 

To avoid this problem, a more general way is taken here to linearize the system dynamical 

equations. The Poincare map or advance map of the nonlinear state space description of the 

whole system is linearized. Therefore, the line currents are among the state variables. The 

model is an outgrowth of the one introduced in [35]. The analysis in [35] assumes that the 

firing instants are constant, and therefore is short of giving the dependence of the advance 

map on the variations of the firing angles. This assumption is reasonable because the goal 

of that study is to obtain the eigenvalues of the linearized system to be able to assess the 

small signal stability at an operating point, with the T C S C in open loop operation. 

71 
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Our treatment includes the variation of the firing angles. The model that is obtained is 

a sampled-data state-space model that allows the design of a feedback loop in order to vary 

the firing angles near a steady-state angle to increase the damping of subsynchronous modes 

of oscillation. 

In the rest of the chapter, first the derivation of the model is explained in the general 

case. Then the model is derived for the equations of the First Subsynchronous Resonance 

Benchmark Model including a three-phase TCSC. In the next chapter, this model is then 

used to design the gains of a feedback controller that is able to eliminate subsynchronous 

instabilities. 

5.1 Model Derivation 

In order to simplify the discussion, the conduction angle a is assumed to be less than 60°, 

so that at every instant either all thyristors are off or only one of them is conducting. This 

situation, depicted in Fig. 5.1, is typical when T C S C is operating in the capacitive mode, 

which is the mode of interest here. The discussion, however, is general and applies to other 

situations as well. 

Between any two instants in time that none of the thyristors change their state, the 

power system with its nonlinearities, such as the generator torque equation, the trigonometric 

nonlinearities and the magnetic core saturation1, is described by 

where x, x t o , and t 0 are the system state at time t, the initial state and the initial time, 

respectively. g(x, £ ) , the rate of change of state with time, is a set of nonlinear, time-varying 

equations. The dependence of x on the external sources, that is the turbine torques and 

the infinite voltage buses, is implicit in g, though not shown to simplify notation. Since 

the model is derived for a single operating point, these external sources appear as constant 

parameters in the differential equations. Equation (5.1) is the integral form of x = g(x, t) 
1The data provided for the IEEE First SSR Benchmark Model does not include the saturation curve, 

therefore in our study on this system, it is not taken into account. 

to 

(5.1) 
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Figure 5.1: Steady-state waveforms of a three-phase T C S C in capacitive operation 

with initial conditions x = x 4 o at t = t0. It is deliberately written in this form to show the 

functionality of the final state with respect not only to the time t, but also to the initial time 

to and initial state x t o . This information is necessary in the derivation of the linear model. 

Suppose x € RUx, where x is the state vector when all thyristors are off. If a thyristor 

turns on at time cf), a state variable will be added to the state vector and an equation to the 

set of differential equations. We will indicate this by an appropriate subscript, for example 

x a , g a . Since the current in the thyristor branch cannot change instantaneously, the following 

relation holds at the turn-on instant 

xQ(</-) = QJX ( ^ ) (5.2) 

where Qj is an (nx + 1) xnx matrix that consists of an identity matrix of order nx augmented 

with a row of zeros. Similarly at a switch-off time r we have 

x(r) = P j X a ( r ) (5.3) 

with P j = Qj*. Pj and Qj are termed the projection and injection matrices, respectively 
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[51]. Also note that when a switch turns off, the rate of change of current in its branch 

becomes zero. Therefore at a switch-off time 

g(x ( r ) ) r )=P j g 0 (x a ( r ) , r ) (5.4) 

However, at a switch-on time the similar relation does not hold, that is 

ga(xa(</>),<^Qjg(x(0),</>) (5.5) 

This is because when a thyristor turns on, the rate of change of current in its branch 

suddenly jumps to the nonzero value vctc(</>)ILtc, where VQU is the TCSC capacitor voltage, 

and Ltc the reactance in the thyristor branch. 

Equations (5.2)-(5.5) are the boundary conditions between adjacent regions. With the 

help of these relations, the state variation at the end of one region is mapped into the state 

variation at the beginning of the next region. 

The model developed in this section is a sampled-data model with a fixed sampling rate of 

360 Hz. Fig. 5.2 shows two sampling instants, t 0 and t i , taken with the sampling rate of 360 

Hz. When the circuit is in steady state, six equidistant line current zero-crossings happen 

in one period. Therefore, if the first sample is taken at a line-current zero-crossing, the next 

sample will also coincide with the zero-crossing in another phase. In a real situation, the 

time span between two line current zero-crossings is variable. So t\ may not exactly coincide 

with a zero-crossing. 

In the next chapter, a controller based on the model developed here is designed for the 

TCSC firing. There, the sample points are the zero-crossing instants of the line currents. 

This is an approximation. However, since the variation of the time interval between the 

zero-crossings is small, the controller works properly. 

Three time spans are identified between to and t\. During [to 4>] and [r ti] all the 

thyristors are off, while during [</> r] the thyristor in phase b is conducting. Note that 

turn-on time <fi, and the turn-off time r are variable. 

Starting with the third time span, the small signal variation of the state at t\ as a result 
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Figure 5.2: Current pulses in two phases and the line currents 

of the variation of the state at r and the change of r itself, is 

Ax(ti) 
<9xT 

Ax(r ) + 
<9xtl 

dr 
AT (5.6) 

where A x denotes the small signal variations of the state variables about the periodic orbit. 

The orbit is identified by such that x(t) = x*(t)+Ax(t). The symbol '|*' means evaluation 

at the steady state or periodic orbit. x t l and x r in the partial derivatives mean x( i i ) and 

x(r) , respectively. Since t\ is a fixed sampling point, its derivative does not appear in (5.6). 

At r the thyristor in phase b turns off. Hence, (5.3) holds, and we have Ax( r ) = 

P jAx f t ( r ) , where A x h ( r ) is the small signal state variation at the final time of the second 

time span. Ax(,(r) is dependent on Axj(0), A</>, A r as follows 

Ax f e (r) 
<9x, br Ax 6(0) cbc, br A</> + 

<9xbT 

dr 
AT (5.7) 

Due to the boundary condition (5.2) at </>, we have Axfc((/>) = QjAx(0). Finally, in the 

first time span Ax(^) is obtained as 

Ax(0) Ax(t0) + d4> 
A(f) (5.8) 
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Note that since t 0 is fixed, its derivative is absent from (5.8). When (5.6)-(5.8) are 

combined with the aid of the boundary conditions, the linear map that advances the state 

variation from t 0 to t i is obtained as 

A x ( * i ) = "53" P J Qi 53^ A x ( f o ) <9xT 

dxT

 j 

<9X6T 

dx 

cbc, Qj 

to 

9xrf, <9x 
+ 

6T 

60 9c/. d(j> 
Acf>-

dxh <9xfcr <9xtl 

* J — — I -<9xT dr dr 
AT (5.9) 

where the symbol 'I*' has been omitted to simplify the notation, with the understanding 

that the partial derivatives are calculated on the steady-state orbit. If these derivatives can 

be obtained in an efficient way, then the model is practical. 

First we notice that dxtl/dxT, d~x.brI'dxbj, and dx<j,/dxto are state transition matrices. A 

state transition matrix, <fr(t, to), of the homogenous linearized system around the steady-state 

operating point 

dAx <9g 
dt dx 

Ax = 3(t)Ax(t) (5.10) 

is the matrix that maps the small signal state at t 0 to the small signal state at t. J is the 

Jacobian matrix. If J satisfies the following commutativity property 

J(t)( / J(V)dV 

'to 
Hv)drj J(t) 

to 
(5.11) 

then the state transition matrix has the closed form [20] 

* ( M o ) = e x P 3{rj)dn 
to 

(5.12) 

where exp is the matrix exponential function. However, (5.11) is not satisfied for our system, 

so <fr(t, t 0) has to be calculated numerically in each region. The numerical calculation of the 

state transition matrix is the subject of Section 5.2. 

Next, dx^/dcp and dxbT/dr in (5.9) are of the form dx/dt which is equal to g(x, t). So 

they are readily available. 

http://d~x.br
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It remains to be seen how dxtl/dr and dx^/dcf) are calculated in the general case of a 

non-linear time-varying system. If the equation (5.1) is differentiated with respect to x i o and 

t 0 we get 

^ 1 + / " ^ * , (5-13) 
# x t 0 Jto 5 x 5 x t o 

<9x (9K <9x 
arr-gM+JAd" (514) 

These are recursive relations because dx/dxto and dx/dtQ appear on both sides. Using 

(5.13) and (5.14), it is possible to show by successive substitution that 

<9x dx 
dto dx, 

-g(x 4 o , t 0 ) = -* ( t , t 0 )g (x f o , t 0 ) (5.15) 
to 

The procedure of deriving (5.15) from (5.13) and (5.14) is shown in Appendix C. Ac­

cording to (5.15), the partial derivative of the state at final time with respect to the initial 

time is obtained by multiplying the negative of the state transition matrix and the derivative 

function evaluated at the initial time. The significance of (5.15) is that it is obtained for a 

linearized time-varying system. The derivation for linear time-invariant systems is straight­

forward because the solution for x in terms of t0, x i o and t is expressed in a closed form 

using exponential functions. 

Equation (5.15) together with (5.4) allows us to simplify the advance map given in (5.9). 

Using <£» and g in the notation, the model for the linear system that advances the state from 

time to to time t i becomes 

A x ( t : ) = AAx(to) + bA<f> (5.16) 

with 

A=**(tuf)Pi*l{f,$)Qi**$,t0) (5.17a) 

b =^ ( t 1 , f )P j ^ ( f , 0 ) [Q j g(x* (^ ) , 0 ) - g 6 ( x ^ ) , 0 ) ] (5.17b) 

where the asterisk denotes a steady-state time function, and overbar on a variable denotes 

its steady-state value. It is noteworthy that the linear model does not depend on A r , the 
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variation in the turn-off time. In fact, the coefficient of A r is 

bT = <&*(t , f)P j g 6 (x*(r) , f) - <r(i,f)g(x*(f),f) 

= ^ ( t , f ) [ P j g b ( x * ( f ) , f ) - g ( x * ( f ) , f ) ] 

0 (5.18) 

The last line follows from (5.4). References [27, 45] have shown that the coefficients 

of the turn-off time are zero by using linear time-invariant representation for the system 

between two switching instants. The result here is obtained for the case of linear time-

varying systems. Therefore, this is a general characteristic, that is the linearized models of 

switching systems with unforced commutation do not depend on switch-off time variations. 

By incremental energy arguments, [51] identifies a source of damping associated with 

diodes or thyristors turning off. Since the method of Jacobian calculation used here is 

practically the same as there, this damping is included in the Jacobian (or equivalently, in 

the A-matrix of the model). 

The linear model just obtained is valid for the positive pulse in phase b. Generally, if the 

discretization time step is chosen smaller than the period of the switching pattern, the linear 

system indices will be different for positive and negative pulses and for the three phases. 

For a TCSC compensated system, the models for the three phases are the same, but the 

positive and negative pulses have different zero-sequence components. Before proceeding to 

the controller design in the next chapter, the system state space description is reduced by 

eliminating the zero-sequence components. However, if they are to be kept, the linearized 

systems for the positive and negative pulses have to be distinguished from each other, for 

example by 

A x ( n + 1) = ApAx(n) + bpA</>(n) 

A x ( n + 1) = A„Ax(n) + bnA0(n) 

(5.19) 

(5.20) 
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5.2 Numerical Calculation of the State Transition M a ­
trix 

As indicated in the last section, for obtaining the linear system model we need to numerically 

calculate three state transition matrices. Recall that a state transition matrix is the matrix 

that advances the state in a certain time interval with the input being identically zero. For 

the first interval, this is shown as 

Ax(^) = **(0, t o )Ax(t o ) (5.21) 

Since the system is linearized, the effect of each input can be taken one at a time, with the 

other inputs set to zero. To get the first column of <!>*(</>, t 0) we apply Ax( t 0 ) = [10 . . . Of 

and numerically integrate (5.10) from t 0 to </>. The other columns are calculated in a similar 

way. The following example shows how MATLAB® is used to find the state transition 

matrix. 

Example 

Suppose a nonlinear set of differential equations is given as 

A 
X = 

— ̂ fx~i + x\ 

pi. 
f(x) (5.22) 

and we want to calculate the state transition matrix $(1,0) of the linearized system around 

the path 

x\{t) = t + 1 

x*2{t) = cost 

(5.23a) 

(5.23b) 

The Jacobian of the nonlinear system is 

•dfi dfi 
I 

J(x) = 
dxi 8x2 
df2 df2 

dxi dx2 

-1 
2^x~i 

1 

2x 2 

0 

J is the A-matrix of the linearized continuous system 

d A x 
dt 

J ( x ) A x 

(5.24) 

(5.25) 
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whose state transition matrix is to be calculated. M A T L A B ® O D E solvers numerically 

integrate a set of differential equations. The derivative function is passed to the O D E solver 

in a separate file. For the current example the following file is used 

function Dxdot = deriv(t,Dx) 

xstar = [t+1; cos(t)]; 

x l = xstar(l); 

x2 = xstar(2); 

A = [-l/2/sqrt(xl) 2*x2; ... 

1 0 ]; 

Dxdot = A*Dx; 

The linearized equations given in (5.25) are to be integrated from time 0 to time 1, once 

with the ini t ia l condition DxO = [1; 0] to get the first column of $(1 , 0), and once wi th the 

ini t ial condition DxO = [0; 1] to obtain the second column of $(1 ,0) . The following code 

does the task. 

Phi = zeros(2, 2); 

DxOl = [1; 0]; 

Dx02 = [0; 1]; 

DxOvector = {DxOl; Dx02}; 

tspan = [0.0 1.0]; 

options = odeset('RelTol', le-3, 'AbsToP, le-6, 'MaxStep', le-3); 

for i = 1 : 2 

DxO = DxOvector {i}; 

[t,Dx] = ode45('deriv', tspan, DxO, options); 

Phi(:,i) = Dx(length(t),:)'; 

end 

The numerical integration solution is returned in the vectors t and D x . The last row of 

D x corresponds to the final time of the integration. The above program yields the following 
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state transition matrix 

1.3235 1.7706 
*(1,0) 

1.0607 1.9183 
(5.26) 

As seen in the example, the state transition matrix is calculated about the periodic orbit 

of the system. Finding x* is not a trivial task. One has to find the algebraic unknown 

x(0) such that x(0 + T) = x(0). However, since the current harmonics of the T C S C are 

mainly confined to its LC loop, and do not enter the line, the load flow solution is a good 

approximation for the periodic orbit. 

For this purpose, the T C S C is replaced by its equivalent reactance at the fundamental 

frequency. After the load flow, time vectors with the desired time step are built for each of 

the ideal steady-state waveforms to be able to update <9g/<9x, as the integration proceeds. 

For this step, the non-sinusoidal ideal waveforms of the T C S C variables are used. Once the 

state transition matrices are ready, (5.17a) and (5.17b) are employed to calculate the A and 

b matrices. 

The algorithm to obtain the discrete linear model parameters is therefore as follows: 

1. Find the Jacobian of the nonlinear dynamical equations. 

2. Perform a load flow for the system in the given operating point. 

3. Build the ideal steady-state time vectors for each of the states. This is the approximate 
periodic orbit of the Poincare map. 

4. Calculate the state transition matrix for each of the time spans by introducing a distur­
bance in each state one at a time and integrating the linearized equations, (5.10), along the 
approximate orbit. 

5. Use (5.17a) and (5.17b) to calculate A and b. 

In the next section, the steps are worked out for a particular example. 

5.3 Linearization of the I E E E First SSR Benchmark 
Model with T C S C 

The model discussed in the previous sections is tested here on the IEEE First Subsynchronous 

Resonance Benchmark Model. It is modified to include a series compensation that is partly 
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fixed and partly thyristor controlled, as shown in Fig. 2.4. The system parameters are given 

in Appendix B . l , and state equations appear in Appendix B.2. The state of the unfaulted 

system with all the thyristors off is defined as 

X = [lQ, %d, 'lq, %F, «£ ) , IQ, «G. VCO, VCd, VCq, VctcQ, VCtcd, Vctcq, 

W l , 0 J 2 , UJ3, CU 4, OJ, Cd5, 9i, 92, 03, 84, 9, 85]* (5.27) 

where i0, id and iq are the line currents, ip, io, IQ, and iG are the rotor currents, vco, vcd, 

and vcq are the fixed capacitor voltages, vctco, voted, and vctcq are the thyristor-controlled 

capacitor voltages and u>iS and #;'s are the rotor speeds and angles, respectively. 

In the transient simulation, more state variables will be added to the state vector in 

(5.27) when topological changes happen, for example when thyristors turn on or when a 

fault occurs. The nonlinear equations are listed in matrix form in (5.28) for the case with 

all thyristors off. 

i<ldq 

iFDQG 

VC,Odq c -^ i s o 3 x 4 ] 

VCtcfidq 
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0 6 x 7 

0 0 6 X 7 

Is — L _ 1 13 

04x3 04x3 

06X3 
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0 e x 3 

06x3 

0 l X 3 0 i X 6 

I 3 0 3 x e 

09X3 09x6 

0 6 X 3 le 

06x3 06xe 
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0 3 x 6 
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e 
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-y/3VX s i n ( 0 - i - f - a o o ) 

v / 3 V o o C O s ( c ) - t - | - a o o ) 

-VF 

tql 

tq2 

tq3 

tq4 

1>ae 

tq5 

(5.28) 

Note that (5.28) can be written in the compact form 

x = A(w)x + Bu(i o d o , IFDQG, 8, t) (5.29) 

In (5.29), the mechanical torques tqi, tq2, tq3, tq4, tq5, the voltage parameters of the infinite 
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bus VQO and a^, and the field voltage Vp are constant, because the model is obtained at one 

steady-state operating point. 

The electromagnetic torque is a function of the currents in the generator stator and rotor, 

therefore u is dependent on these currents. Note that B is a constant matrix, obtained by 

multiplying the first two matrices in the second row of (5.28). The explicit dependence 

of (5.29) on t can be eliminated by using the machine load angle S(t) which is given by 

<J = 0 - t - 7 T / 2 . 

The dynamical equations describing the case where any of the thyristors is on are con­

veniently described using the notation in (5.29). For example, if the branch in phase a is 

conducting, iLtca is added to the state variables. The equations then look like the following: 

OlOxl 

x„. = 
x 

I'Ltca 

A(w) 25x25 

| _0 1 X 1 0 L ^ I I O O J Q ^ ) 0 l x l 2 

u(iod<j, i-FDQGi <$) 

- C f c P ( 0 ) 

0l2xl 

0 

B 
0ix9 

A 
Aa(u, 0)xa + B a u(i o d ( ? , \FDQG, 5) (5.30) 

where P(#) and Q(9) are Park's transformation matrices. The Jacobians of the system 

in each region are the A-matrices of the linearized system. They are needed in order to 

calculate the state transition matrices. The Jacobian of (5.29) is 

d 
J = — [A(w)x + Bu] = A(w) + 

cx 
dA 

025x17 T T - X ^25x7 
OOJ 'all 

(5.31) 

By using (5.28), we have 

dA 
dto x = 

L - : N l-Odq 

'iFDQG 

M v , Ctcfldq 

0l2xl 

(5.32) 
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and 
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dx. 
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(5.33) 

dt qe 

dL dip dip, d%Q die 
(5.34) 

The relation for the electromagnetic torque in terms of the machine currents is given in 

(B.33). So each of the terms in (5.34) is available. 

The Jacobian for the interval with a thyristor in phase a conducting is 

j a = Aa{uj,e) + 0 26x17 dto X a 0 26x5 
dAc 

de "
x a 026x2 B a 

du 
dxn 

(5.35) 

with 

dAa_ 
du x 

\}FDQG\ 

M v C j o d ( / 

M v Ctcfidq 

O l 3 x l 

OK 
d6 X = 

0 10x1 

° i c de l L t c 

0 12x1 
VCtcO 

Voted 

Vctcq. 

(5.36) 

The matrix du/dxa is similar to (5.33) with a row and a column of zeros added in the end. 

W i t h the Jacobians at hand, the next step is to find the periodic cycle of the circuit, so 

that the state transition matrices be computed on the orbit. For this purpose, a load flow 

solution is used to approximate the periodic orbit. 

In the case studies of this section, the linear model is computed for two different sets of 

series compensation parameters, and the eigenvalues are examined to see if they portray the 

stability of the system. 
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Note that since the obtained model is discrete, the stability of an eigenvalue is determined 

by its position in the z-plane relative to the unit circle. However, since it is convenient to 

identify the subsynchronous modes by their frequencies, the eigenvalue results are presented 

both in discrete and continuous domains, where the continuous eigenvalues are obtained with 

the procedure explained next. 

5.3.1 Convers ion of Eigenvalues from Discrete to Cont inuous 

In a TCSC compensated system, continuous and discrete dynamics are both present, and 

interact with each other. The discrete events are the firing instants of the thyristors which 

affect and are affected by the continuous states of the system. 

The model we have derived is a sampled-data model with a fixed time step, during which 

one discrete event (firing instant) occurs. The A-matrix of this model corresponds to the 

matrix F in (2.23). The model is internally stable if all its eigenvalues are inside the unit 

circle. 

Suppose the matrix Aeq in (2.23) has an eigenvalue Xc — ac + jbc. Then, the matrix F 

has an eigenvalue Xd = e^ac+jbc^T. If Xd is multiplied by its complex conjugate, Xd

 2 , the 

resultant number is e2acT. Therefore, the real part or the damping of the corresponding 

continuous-time eigenvalue is determined by 

a c = ^ l n ( A d A d ) (5.37) 

The continuous-time frequency is not determined uniquely by the discrete-time eigen­

value. In fact, the entire frequency domain of —oo < / < oo Hz is mapped into — f^y < f < 

fwy Hz, where f^y is the Nyquist frequency fNy = 1/(2T) Hz. Notice that 

e ( a c + j b c ) T = e a c T ^ ^ + j £ a c T g m ^ A ^ + 

By calculating arctan(6 d/a d) and adjusting the arc such that — IT < bcT < it, then the 

value of bc is obtained in —ui^y < bc < to^y. 
2Since x is used to indicate the steady-state value of a variable x, to avoid confusion, the complex 

conjugate is denoted by x. 
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With a small enough time step, the subsynchronous modes are represented without alias­

ing, however there is a possibility that a mode with a frequency higher than the Nyquist 

becomes aliased into the subsynchronous region. Since the frequencies of the mechanical 

modes of the isolated shaft assembly, given in Table 3.1, do not change considerably when 

the shaft is incorporated into the electromechanical system, it is relatively easy to distinguish 

the real subsynchronous modes in the set of eigenvalues obtained by the above conversion. 

Note that the frequency response of the discretized system is generally different from the 

original system. For simplicity assume that the original system is completely continuous. 

There are several methods available to discretize this system in order to obtain discrete-time 

models. They are based either on numerical integration methods or, like here, on the state 

space method. The particular method used for discretization and the sampling frequency 

affect the dynamic characteristics of the resulting system [55]. For frequencies well below 

the Nyquist frequency, the response of the discrete system is a good approximation of the 

continuous system. The following example illustrates this point. 

Example 

Suppose a continuous linear time-invariant scalar system is given as 

x = Ax(t) + bu(t) (5.39) 

The transfer function of this system is 

H ^ s ) = 7^74 ( 5- 4°) 

To discretize (5.39), we solve the differential equation for x(nAt) given the initial condi­

tion x(nAt — At). 

rllAt 

x{nAt) = eAAtx{nAt - At) + / eA{nM-v)bu(r])dri (5.41) 
J n A t - A t 

Assuming the input to be u(nAt — At) in the time span nAt — At < t < nAt, the input 

comes out of the integral, and the following discrete system results 

x{n) = Fx(n - 1) + gu(n - 1) (5.42) 
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where 

F = eAAt (5.43a) 

9 = j(eAM ~ 1) (5.43b) 

The discrete transfer function is found by taking the ^-transform of (5.42) 

Hd(z) = J^J (5.44) 

To compare the frequency response of (5.40) and (5.44), take A = —0.1, and b = 0.1, 

and At = 1/360 s. We plot the ratio of the continuous transfer function for s = jco, to the 

the discrete transfer function for z = e^uAt in Fig. 5.3. 

frequency [Hz] frequency [Hz] 

(a) (b) 

Figure 5.3: Comparison of the continuous and discrete transfer functions 

Fig. 5.3(a) shows that at very small frequencies, the magnitude ratio is close to unity. As 

the frequency increases, the difference in the magnitude of the original continuous system 

and that of the discretized one increases. Since the time step is 1/360 s, the Nyquist fre­

quency is 180 Hz. For this particular example, the magnitude of discrete transfer function 

for frequencies below 60 Hz, is less than 5% different from the corresponding continuous 

magnitude. 
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The phase of the discrete system increases linearly with frequency with respect to the 

continuous system phase as shown in F ig . 5.3(b). 

5.3.2 Case S tudy 1 

In this case the value of the fixed capacitor and the thyristor controlled capacitor are chosen 

as given in the appendix B . l . The total capacitive reactance is 0.371 pu when the thyristor 

valves are blocked. The dominant unstable mode under the blocked mode is T M 2 wi th fre­

quency 20.21 Hz. T C S C is set to work with 164° corresponding to a steady-state conduction 

angle of 32°. 

Casel: Load Flow 

W i t h Xctc = 0.25 pu, n = 3 and B = (TT/180)(180° - 164°) rad, the fundamental reactance 

of T C S C , calculated from (2.13), is equal to 0.2785 pu Therefore the nominal degree of 

compensation of the line [9] is 

k _ t * £ + * ™ > = 0.121+0.2785 = ^ % ^ 

The terminal characteristics are given as Pt = 0.9 pu, Vt = 1.0 pu and PF = 0.9. Using 

the terminal voltage as the reference phasor 3 we wi l l have 

Va = 1.0 Z 0.0 pu (5.46) 

Ia = P * Z cos" 1 PF = 1.0 Z - 25.84° pu (5.47) 
Vt • PF 

Z = 0.02 + j(Xltot -Xc- XTcsc) = 0.02 + J0.3005 pu (5.48) 

V^a = Va- ZIa = 0.8903 Z - 17.094° pu (5.49) 

is the phasor of the infinite bus voltage (see F ig . B . l ) . X\tot = 0.7 pu is the total 

positive-sequence reactance of the line, the transformer, and the infinite bus. Z is the total 

series impedance, including the compensation. The machine torque angle 5, as indicated in 

F i g . 5.4, is obtained by finding the angle of the phasor Eqa which is along the same direction 

as the internal E M F Eq [60]. 
3 I f V = VZ6, then v(t) = y/2V cos(ust + 9). 
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d axis 

Figure 5.4: Location of the q axis from a known terminal current and voltage 

Eqa = Va + RaIa + jXqIa = 2.3270 Z 41.4046° pu (5.50) 

Eq = Eqa + j(Xd - Xq)Id = 2.40075 Z 41.4046° pu (5.51) 

Xd and Xq are the d-axis and g-axis synchronous reactances. Their values in pu are equal 

to Ld and Lq, respectively given in Table B . l . Having determined Eq, we proceed to find 

the field current and voltage 

/ o p 

IF = ^ — ^ = 2.505 pu (5.52) 
XAD 

VF = RFIF = 0.00352 pu (5.53) 

In the simulations, the time when the current in phase a crosses zero downwards has been 

chosen as the initial time. Therefore, the angles calculated above need to be adjusted ac­

cordingly. The initial mechanical angles are then easily calculated. The initial state variable 

values are listed in Table 5.1, where the electrical variables on the stator side are given in 

the dq rotor reference frame, using the Park transformation (3.35). 

The load flow results are used to construct the limit cycle of the system. In this cycle, all 

the electrical variables except for the TCSC voltages are constant. The fact that most of the 

harmonics produced by the TCSC do not enter the line supports the assumption of sinusoidal 
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Table 5.1: Initial state variable values used for simulation 

Elec. [pu] Mech. [pu] 
io 0.0 1.0 
id -1.597258 w2 1.0 
ig 0.669900 w3 1.0 
lF 2.504958 w4 1.0 
iD 0.0 LU 1.0 
%Q 0.0 CU5 1.0 
io 0.0 0i -1.871256 
vco 0.0 -1.882234 
VCd -0.081058 -1.895517 
VCg -0.193268 -1.935119 
vo -0.018423 9 -1.967920 

Vctcd -0.187629 h -1.973194 
Vctcq -0.447367 

line currents. For the T C S C voltages the relations presented in Section 2.4 are used to build 

the time response of vctca, vctcb, and vctcc, and then by applying the Park transformation 

on them, the waveforms for vctco, vctcd, and vctcg are obtained. The mechanical speeds are 

all constant. The rotor positions change linearly with time, for example the waveform of 9\ 

becomes 9i(t) = t + #i(0) rad. 

Casel: Linear System Parameters 

The A n and b n matrices for a time span including a negative pulse, and A p and hp matrices 

for a time span including a positive pulse, are obtained by following the procedure outlined 

above. Fig.5.5 shows the b vector elements for the first 13 variables in (5.27). The elements 

for the rest of the variables are very small and negligible. 

The 11th element pertains to the zero sequence component of the TCSC voltage, vctco-

This is the only significant zero-sequence component; the elements for iQ and vCo (1 and 

8) are very small. Since the equations for io and vco are independent from the rest of the 

equations, they can be omitted, without concern, to reduce the size of the state space to 

23. The condition number [63] for the reduced-order system is decreased several orders of 

magnitude as compared to the full-order system. This is because the zero-sequence variables 
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Figure 5.5: The b vector coefficients for the positive and negative pulses 

are weakly controllable. The impact of the zero-sequence voltage of the TCSC is studied 

more carefully before its omission, since it is not entirely decoupled from the rest of the 

variables. This is considered in the eigenvalue analysis in the next section. 

Casel: Eigenvalue Analysis 

According to Theorem 1 in Section 2.5, if we want to study the stability of the time-periodic 

system, we need to find either the matrix A e g or the matrix F. Since the TCSC compensated 

system returns to its original state after 1/60 s , the advance map that transfers a disturbance 

through this time is 

A A A A A A (AnAp) (5.54) 

Notice that the three-phase symmetry helps reduce the time step to one-third of the main 

period or 1/180 s. This is evident from (5.54) because multiplying a matrix by itself does 

not change its stability properties. If A n A p has an eigenvalue inside the unit circle, (AnAp)3 

has a corresponding eigenvalue inside the unit circle and vice versa. 

Furthermore, the only difference between the elements of A n and A p happens in the 

rows and columns pertaining to the zero sequence variables, io, VCO, and vctco- Eliminating 
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these rows and columns from A„ and Ap, results in the same reduced-order matrix which 

we denote by A. The discretization time step for A is one-sixth of the main period. 

The eigenvalues of AnAp and the eigenvalues of A are listed in Table 5.2 and Table 5.3, 

respectively. 

Table 5.2: Case 1: Eigenvalues of A n A p , T — 2TT/3 [pu] 

Discrete Eigenvalue Absolute Value Continuous Eigenvalue Frequency [Hz] 
-0 .48013313 ± jO.20194118 0.52087240 -0.31142652 ± j l . 30990553 78.59433170 

-0 .23593926 ± jO.33156072 0.40693961 -0 .42928408 ± j l . 04529775 62.71786472 

-0 .08563509 ± jO.99632559 0.99999902 -0 .00000047 ± jO.79093792 47.45627536 

0.04260674 ± jO.53793211 0.53961680 -0 .29454615 ± jO.71226133 42.73567994 

0.42883831 ± jO.90393112 1.00049676 0.00023712 ± jO.53849704 32.30982244 

0.62756285 ± jO.77883923 1.00021282 0.00010160 ± jO.42616070 25.56964182 

0.76068177 ± jO.64826641 0.99944289 -0 .00026608 ± jO.33698518 20.21911059 

0.85183065 ± jO.52475363 1.00049079 0.00023428 ± jO.26361946 15.81716734 

0.99801154 ± jO.06081952 0.99986302 -0 .00006541 ± jO.02906110 1.74366598 

0.81911446 + jO.00000000 0.81911446 -0.09526925 + jO.00000000 0.00000000 

0.89282838 + jO.00000000 0.89282838 -0.05412584 + jO.00000000 0.00000000 

0.97624711 + jO.00000000 0.97624711 -0 .01147803 + jO.00000000 0.00000000 

0.99749027 + jO.00000000 0.99749027 -0 .00119981 + jO.00000000 0.00000000 

0.99761641 + jO.00000000 0.99761641 -0 .00113944 + jO.00000000 0.00000000 

0.65383177 + jO.00000000 0.65383177 -0 .20287728 + jO.00000000 0.00000000 

0.00000000 + jO.00000000 0.00000000 -17.03649054 + jO.00000000 0.00000000 

In both tables there are eigenvalues that have very close frequencies to those in Table 3.1. 

Therefore, these modes are the subsynchronous modes of oscillation. The tables suggest the 

existence of unstable modes at 32.30 Hz, 25.56 Hz and 15.82 Hz, because the corresponding 

eigenvalues lie outside the unit circle. 

In Table 5.2 the undampings of the 32.30 Hz and 15.82 Hz are very close and larger than 

the undamping of 25.56 Hz mode. The undamping of 32.30 Hz is slightly more than that of 

15.82 Hz. In Table 5.3 the dominant pole is the 15.82 Hz. 

Fig. 5.6 is the shaft torque of the generator-exciter when TCSC is blocked. A small 

disturbance is introduced in the field current to initiate the subsynchronous interaction. 

The unstable mode is TM2. Fig. 5.7 shows the torque on the generator-exciter shaft for 



5.3. Linearization of the IEEE First SSR Benchmark Model with T C S C 93 

Table 5.3: Case 1: Eigenvalues of A (no zero-sequence variables), T — n/3 [pu] 

Discrete Eigenvalue Absolu te Value Cont inuous Eigenvalue Frequency [Hz] 

-0 .07219212 ± J0.81497168 0.81816290 -0 .19164847 ± jl. 58436971 95.06218279 

0.44549746 ± jO.67965550 0.81264973 -0 .19810503 ± jO.94593575 56.75614481 

0.67615231 ± jO.73676119 0.99999950 -0 .00000048 ± j/0.79093793 47.45627581 

0.84545001 ± jO.53447024 1.00022205 0.00021202 ± J0.53833247 32.29994820 

0.90229163 ± jO.43158311 1.00019707 0.00018817 ± jO.42604450 25.56266971 

0.93816944 ± jO.34551758 0.99977213 -0 .00021763 ± jO.33697004 20.21820249 

0.73338012 ± J0.21818583 0.76514800 -0 .25562130 ± jO.27613530 16.56811773 

0.96296059 ± jO.27296636 1.00090146 0.00086044 ± jO.26377030 15.82621774 

0.99918502 ± J0.03423854 0.99977146 -0 .00021826 ± jO.03270927 1.96255627 

0.90888102 + jO.00000000 0.90888102 -0 .09123502 + jO.00000000 0.00000000 

0.94486812 + J0.00000000 0.94486812 -0 .05415399 + jO.00000000 0.00000000 

0.98861336 + jO.00000000 0.98861336 -0 .01093582 + jO.00000000 0.00000000 

0.99892704 + jO.00000000 0.99892704 -0 .00102515 + jO.00000000 0.00000000 

the first 5 s when T C S C is set to work with 164° with firing synchronized with the line 

current. The same disturbance is applied to the field current, although since the T C S C is 

instantaneously unbalanced, the oscillations start even without additional disturbance. The 

simulation confirms that in this case TM1 is the dominant unstable mode. The result is 

also in general agreement with [27] where the dominant unstable mode is T M 1 , when the 

compensation level is about 70%4. 

Next we see what happens if we keep the compensation level constant, and change the 

firing angle of the TCSC. Fig. 5.8 shows how the eigenvalues move as the conduction angle, 

a is increased from 0 to 40°. This is equivalent to decreasing the firing angle from 180° to 

160°. The reduced-order matrix without the zero-sequence variables is used for the plot. 

The arrows show the direction of increasing conduction angle. 

As is evident from the figure, increasing the conduction angle shifts the eigenvalues further 

into the unit circle. The eigenvalues of the mechanical modes are located very close to the 

unit circle and their movement is not seen in Fig. 5.8. Let us zoom into the location of these 

eigenvalues. Fig. 5.9 shows the pattern of movement of the eigenvalues of the mechanical 

modes. TM0 is the rigid body mode. The undamping of T M 1 , TM2, TM3 and TM4 initially 
4 I t is not clear i f the compensat ion level i n [27] is calculated by (5.45). 
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Figure 5.6: Generator-exciter torque, T C S C blocked, Dominant unstable mode TM2 

increases, then these modes start moving towards the unit circle. 

5.3.3 Case S tudy 2 

In this case the total compensation level is set to 55.4% both in the blocked mode and 

when the TCSC is operating with a = 164°. In the blocked mode, that is with fixed 

series compensation, TM3 with 25.55 Hz is the dominant unstable mode. This is evident 

from Fig. 5.10 where the speed response of the high-pressure turbine is shown to a small 

disturbance in the field current. 
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To get the same compensation level when T C S C is set to work with a = 164°, the 

parameters of the series compensation are chosen as Xc = 0.180 pu, X C t c = 0.08505 pu, and 

K = yft. 

The eigenvalues of the discretized model with and without the zero sequence variables 

are listed in Tables 5.4 and 5.5, respectively. The eigenvalues of A N A P suggest instability 

at modes 32.27 Hz, 25.59 Hz and 15.88 Hz, with 32.27 Hz or TM4 being the dominant one. 

On the other hand, the eigenvalues of A in Table 5.5, while showing instability in the same 

modes, suggest the dominant mode to be TM3. 

Fig. 5.11 shows the speed of the high-pressure turbine. The dominant unstable mode is 

TM3, which is consistent with the reduced-order model. 
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Figure 5.10: High-pressure turbine speed, T C S C blocked, Dominant unstable mode T M 3 

5.4 Conclusion 

A linear discrete state space model for a T C S C compensated system is derived. The model 

is basically the linearized advance map or Poincare map of the whole system. 
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Table 5.4: Case 2: Eigenvalues of A n A p , T = 2TT/3 [pu] 

Discrete Eigenvalue Absolu te Value Cont inuous Eigenvalue Frequency [Hz] 

-0 .82753894 ± jO.03000533 0.82808274 -0 .09007002 ± jl.48269542 88.96172504 

-0 .15248584 ± jO . 26619720 0.30677822 -0 .56418686 ± i0.99837826 59.90269550 

-0 .08563504 ± jO.99632552 0.99999895 -0 .00000050 ± i0.79093790 47.45627407 

0.43065530 ± j '0.90446907 1.00176259 0.00084083 ± i0.53782450 32.26947021 

0.44512583 ± jO.69818451 0.82800883 -0 .09011264 ± jO.47900460 28.74027586 

0.62769255 ± ^ 0 . 7 8 0 2 3 1 6 1 1.00137870 0.00065783 ± i0.42652909 25.59174536 

0.76058602 ± jO.64851702 0.99953260 -0 .00022322 ± i0.33710596 20.22635747 

0.85075216 ± jO.52682684 1.00066266 0.00031629 ± i 0 . 2 6 4 7 3 1 6 1 15.88389634 

0.99535442 ± jO.06919809 0.99775688 -0 .00107221 ± i0.03314054 1.98843230 

0.89301021 + J0.00000000 0.89301021 -0 .05402861 + jO.00000000 0.00000000 

0.99626227 + iO.00000000 0.99626227 -0 .00178798 + iO.00000000 0.00000000 

0.98009184 + jO.00000000 0.98009184 -0 .00960134 + iO.00000000 0.00000000 

0.99853667 + jO.00000000 0.99853667 -0 .00069920 + iO.00000000 0.00000000 

0.00000000 + ^0.00000000 0.00000000 -16.84392458 + iO.00000000 0.00000000 

0.20179971 + iO.00000000 0.20179971 -0 .76417273 + iO.00000000 0.00000000 

0.83222021 + iO.00000000 0.83222021 -0 .08769033 + iO.00000000 0.00000000 

Table 5.5: Case 2: Eigenvalues of A (no zero-sequence variables), T = 7r/3 [pu] 

Discrete Eigenvalue Absolu te Value Cont inuous Eigenvalue Frequency [Hz] 

-0 .02562151 ± jO.93351122 0.93386276 -0 .06534181 ± i l . 5 2 6 2 0 2 8 0 91.57216773 

0.39248558 ± jO.60039444 0.71729939 -0 .31728681 ± i0 .94711396 56.82683748 

0.67615232 ± ^0.73676115 0.99999948 -0 .00000050 ± i0 .79093790 47.45627420 

0.84620693 ± jO.53418856 1.00071154 0.00067922 ± i0.53771931 32.26315875 

0.81683493 ± jO.42598168 0.92123813 -0 .07833929 ± i0.45903609 27.54216546 

0.90270880 ± jO.43233805 1.00089928 0.00085836 ± i0.42652251 25.59135088 

0.93811596 ± jO.34567407 0.99977603 -0 .00021390 ± i0 .33712796 20.22767736 

0.96209553 ± jO.27392794 1.00033210 0.00031708 ± i0 .26487865 15.89271904 

0.99821796 ± j '0.03499962 0.99883135 -0 .00111663 ± i 0 . 0 3 3 4 6 8 1 3 2.00808785 

0.94498909 + iO.00000000 0.94498909 -0 .05403173 + iO.00000000 0.00000000 

0.99927142 + iO.00000000 0.99927142 -0 .00069600 + iO.00000000 0.00000000 

0.99000570 + iO.00000000 0.99000570 -0 .00959187 + jO.00000000 0.00000000 

0.91237852 + iO.00000000 0.91237852 -0 .08756737 + iO.00000000 0.00000000 

The eigenvalues of the linear model are able to predict the stability of the subsynchronous 

modes. With the zero sequence variables omitted, the eigenvalue results are better able 

to predict the dominant unstable mode. This is confirmed by comparison with detailed 
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Figure 5.11: High-pressure turbine speed, a = 164°, Dominant unstable mode TM3 

nonlinear transient simulation. One possible reason is that in obtaining the linear system 

parameters, an approximate orbit has been used. 

The model also takes into account the variations of the firing instants. Therefore it can be 

used to make small changes in the firing angles to increase the damping of the subsynchronous 

modes. This is the subject of the next chapter, where the model is used to adjust the gains 

of a feedback controller for damping subsynchronous oscillations. 



Chapter 6 

SSR Damping Controller for T C S C 

The SSR mitigation property of the thyristor controlled series capacitor in open-loop 

operation has two reasons behind it: 

1. Detuning: The reactance of T C S C , similar to that of a tuned LC filter, can become inductive 
at low frequencies. 

2. Passive damping: Although T C S C does not have large resistive components, it can appear 
to be resistive at a subsynchronous frequency. This is due to a regenerative behaviour, which 
occurs at the switching frequency, resulting in a drain of energy out of the subsynchronous 
modes [64] (see Chapter 4). 

However, both of the above characteristics are subject to change, depending on the firing 

policy. In particular, T C S C shows a capacitive-resistive behaviour throughout the subsyn­

chronous region when the firing is synchronized with the line current[62, 64]. Also, there is 

no guarantee that the vir tual resistance provided by the T C S C is large enough to neutralize 

the negative damping of a subsynchronous mode. This was observed in the examples of the 

last chapter on the I E E E First Subsynchronous Resonance Benchmark Model , where the 

T C S C wi th open-loop firing was able to reduce the undamping and change the frequency of 

the dominant unstable mode, but the problem was not totally solved. 

So, in order to make sure that the subsynchronous modes are well damped, a closed-loop 

control is necessary. The linear discrete model developed for a T C S C compensated system 

in the last chapter, given by (5.16) and (5.17), advances the system states to one-sixth of 

99 
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the main period forward in time. Since dependence of the small signal variation of the state 

at the end of the time step is expressed not only in terms of the variation of the state at the 

beginning of the time step, but also in terms of the variation of the firing angle, the model 

can be used to adjust the gains of a feedback stabilizing controller. 

In this chapter, a controller is designed to vary the firing angles near a steady-state 

value to add damping to subsynchronous modes in the First SSR Benchmark Model. The 

performance of two different discretization time steps are compared. In the end, a comparison 

is provided with other research work that has been done in this area. 

6.1 Controller Design 

The first case study of the previous chapter, where TM1 is the dominant unstable mode, 

is considered here for the design of a closed-loop firing scheme. Pole placement with state 

feedback is the design method. 

A simplified block diagram of the closed-loop system is shown in Fig. 6.1. 

Plant 

A 0 

> TCSC + r Turbo 
Transmission Generator - T — 

r 1 | 1 
i 1 ! 

— i ! 
1 , 

1 

A(O,A0 

Ai, dq 

Ax Sys 

Ax Kl 

Kalman 
Observer 

Figure 6.1: Simplified block diagram of the closed-loop system 

The area enclosed in the rectangle, the "plant", is the system we have linearized and 

discretized in the last chapter. Inside the plant the turbo-generator is identified from the 

TCSC and transmission system in order to show the input to the Kalman observer which 
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exclusively observes the turbo-generator states. The output of the Kalman observer is termed 

A x ^ . The vector of small signal changes in the fixed and the thyristor controlled capacitor 

voltages is denoted by Axsys = [Avcd Avcq Avctcd AvctcqY- The change in the firing 

angle effected by the controller is A(f>. The line currents and the generator terminal voltages 

in the d and q axes are denoted by A i ^ and A\Gen,dq, respectively. Finally, A9 and Aui are 

the generator rotor angle and speed. 

To adjust the feedback gain vector k the reduced-order model with 22 states is used. 

This model generally results in smaller gains for the controller compared with the model 

where the zero sequence variables are retained. 

Table 6.1 lists the eigenvalues before and after the controller is added. The open-loop 

eigenvalues are the same as those in Table 5.3. The eigenvalues with absolute values greater 

than 1 or very close to the unit circle are shifted radially inside the unit circle, with the rest 

of the eigenvalues unchanged. The feedback gain vector is given in (6.1). 

k = [ -0.586 -0.424 -0.543 -0.553 -0.351 -0.352 

0.114 -0.078 0.193 0.093 
(6.1) 

-9.270 13.246 -16.196 15.716 14.606 -0.661 

0.452 0.596 3.884 2.615 -8.751 0.944] " 

Table 6.2 shows the corresponding continuous-time modal dampings and frequencies of 

the open-loop and closed-loop systems. The conversion explained in Section 5.3.1 is used to 

obtain the continuous-time counterparts of the discrete eigenvalues. The modal dampings 

are the real parts of the continuous eigenvalues multiplied by = 27r60 rad/s. This is 

because in the state space model, time is in per unit based on = 1/UB S. 

For this example, it is assumed that the states Aid, Aiq, Avcd, Avcq, Avctcd, Avctcq, 

Aw, AO are directly measured. The discrete Kalman estimator is designed for the generator 

separately, taking the terminal voltages of the generator, Avoend and AvQenq as the inputs, 

and Aid, Aiq, Aco and A6 as the outputs as shown in Fig. 6.1. The remaining states, that 

is the four rotor currents, the speeds and the angles of the other rotors are estimated. The 

input and measurement noise covariances in the description of the Kalman filter, Q w and 

R v (see Section 2.7.1), are used as design parameters. They are both set to unity. 
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Table 6.1: Shifting the discrete eigenvalues by feedback 

mode Eigenvalues of Absolute Eigenvalues of Absolute 
A value A - b k Value 

1,2 -0.07219212 ± jO.81497168 0 81816290 -0.07219212 ± jO.81497168 0 81816290 
3,4 0.44549746 ± jO.67965550 0 81264973 0.44549746 ± jO.67965550 0 81264973 
5,6 0.67615231 ± jO.73676119 0 99999950 0.67598359 ± jO.73657735 0 99974997 
7,8 0.84545001 ± jO.53447024 1 00022205 0.84151725 ± jO.53198405 0 99556934 
9,10 0.90229163 ± jO.43158311 1 00019707 0.89856564 ± jO.42980090 0 99606678 
11,12 0.93816944 ± jO.34551758 0 99977213 0.93411586 ± jO.34402469 0 99545237 
13,14 0.73338012 ± jO.21818583 0 76514800 0.73338012 ± jO.21818583 0 76514800 
15,16 0.96296059 ± jO.27296636 1 00090146 0.94491063 ± jO.26784982 0 98214032 
17,18 0.99918502 ± J0.03423854 0 99977146 0.99485523 ± jO.03409018 0 99543913 

19 0.90888102 + jO.00000000 0 90888102 0.90888102 + jO.00000000 0 90888102 
20 0.94486812 +jO.00000000 0 94486812 0.94486812 + jO.00000000 0 94486812 
21 0.98861336 +jO.00000000 0 98861336 0.98861336 + jO.00000000 0 98861336 
22 0.99892704 + jO.00000000 0 99892704 0.99892704 + jO.00000000 0 99892704 

Table 6.2: Comparison of open and closed loop dampings in continuous domain 

mode Modal Damping Modal Damping Frequency [Hz] 
(open loop) (closed loop) 

1,2 -72.24977265 -72.24977265 ±95.06218 
3,4 -74.68383654 -74.68383654 ±56.75614 
5,6 -0.00018004 -0.09002162 ±47.45628 
7,8 0.07992911 -1.59858213 ±32.29995 
9,10 0.07093759 -1.41875178 ±25.56267 
11,12 -0.08204403 -1.64088070 ±20.21820 
13,14 -96.36696020 -96.36696020 ±16.56812 
15,16 0.32437953 -6.48759054 ±15.82622 
17,18 -0.08228342 -1.64566831 ±1.96256 

19 -34.39479205 -34.39479205 0.00000 
20 -20.41557182 -20.41557182 0.00000 
21 -0.38647246 -0.38647246 0.00000 
22 -4.12270810 -4.12270810 0.00000 

Because of the switching action in the circuit, a 360 Hz frequency is present in the 

waveforms. The dynamic model derived here does not take this into account. If the estimator 

uses the same time step, 1/360 s as the model for the controller, aliasing occurs, and the 

360 Hz appears as DC. To avoid this effect for the design of the Kalman filter, a time step of 
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1/2400 s is used to be able to capture the 360 Hz component. The output from the Kalman 

observer is passed through a notch filter, tuned for 360 Hz, before the variables are fed into 

the controller. The notch filter is formed by discretizing the following transfer function 

s2 + 0.5s + 36 
H, notch 00 s2 + 5s + 36 

(6.2) 

Fig. 6.2 shows the Bode diagram of the filter in equation (6.2). The frequency axis is in 

Hz, so the frequency of 360 Hz corresponds to 6 pu in equation (6.2). 
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Figure 6.2: Bode diagram of the notch filter 

Fig. 6.3 is the detailed block diagram of the nonlinear system, together with the controller 

and Kalman estimator. The continuous signals are shown with solid lines. The discrete 

signals are shown with broken lines. As mentioned above, the Kalman observer uses a faster 

sampling rate. This is indicated in the diagram by using dotted lines for faster signals versus 

dashed lines for the slower ones. 

In Fig. 6.3, a, stands for the steady-state firing angle. v*Gend, v*Genq are the steady-state 

waveforms of the generator terminal voltage in the d and q axes, respectively. Also 

X-Sys = \VCd VCq VCtcd VctcaY (6-3) 

y*Gen = ft <H* (6-4) 

are the steady-state waveforms of those variables, v^a and v^g are the infinite bus voltages. 

tqi, tq2, tqz and tq4 are the turbine torques, and vF is the field voltage. 
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Figure 6.3: Block diagram of the system with the controller and Kalman observer 

The variation in the state, A x is formed by setting the elements of A x s ^ and A x K ; in 

order, corresponding to (5.27) without the zero-sequence variables. A limiter is used after 

the gain block, to avoid firing angle deviations larger than 5°. 

6.1.1 S imula t ion Resul ts 

The time-domain simulation verifies the results of the eigenvalue analysis. The detailed 

non-linear model is used for simulation. A three-phase fault to ground at busbar B (see 

Fig. 2.4) is simulated. Fig. 6.4 shows the speed deviation of the exciter rotor for 3 seconds 

without the controller. The simulation starts at steady state at the time when the phase 

a line current has a positive to negative zero crossing. The fault is applied at t = 1/120 s 

(= 7r pu), and the fault clearing process starts 0.075 seconds later, with the circuit breaker 

in each phase interrupting the respective current flow in its zero crossing. 

Then the controller is activated to make adjustments in the firing delay angles of the 
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t[s] 

Figure 6.4: Exciter rotor speed deviation with open loop firing control 

T C S C thyristors. The controller generates an output at each line current zero-crossing for 

the next immediate firing to follow. For example, the Acp for the negative pulse in phase b is 

determined at the time of positive-to-negative zero-crossing in ia, that for the positive pulse 

in phase a at the time of negative-to-positive zero-crossing in ic, and so on (see Fig. 5.1). 

The steady-state firing angles of the thyristors in each phase are synchronized with the 

line current zero-crossings in the same phase. 

Fig. 6.5 shows that the 15.82 Hz mode is well damped even after a major disturbance. 

Note that the scale of Fig. 6.5 is different from that of Fig. 6.4. 

Fig. 6.6 shows the variations of the firing angle about the steady-state value of 164° with 

the controller in action. The time domain simulations are conducted using MATLAB® O D E 

solvers for stiff problems. 

There is a small 360 Hz component present in the waveforms at steady-state conditions, 

as shown for Aid in Fig. 6.7. This unmodelled dynamic behaviour is quite insignificant. 

However, it may get amplified through feedback gain, so a designer should be aware of it. 
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Figure 6.5: Exciter rotor speed deviation with closed loop firing control 
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Figure 6.6: Control of the firing angle 

6.1.2 Eigenvalue Sensitivity Analysis 

The simulations in the previous section show that the controller is able to stabilize the system 

in the face of a major disturbance. Therefore, the approximations made in order to arrive at 
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Figure 6.7: Variations of id during steady state 

the linear model, namely using the ideal steady-state waveforms instead of the exact periodic 

orbit, and omitting the zero-sequence variables, are valid. 

The participation matrix [65] is a measure of the sensitivity of the eigenvalues to the 

elements of the state matrix. In order to define this matrix, the concepts of right and 

left eigenvectors are needed. A discussion on these eigenvectors and the derivation of the 

participation matrix is provided in Appendix D. An advantage of the participation matrix 

is that it is independent of the scaling and units associated with the state variables. 

The magnitudes of the participation factors of the state matrix of our case study related 

to the subsynchronous modes are listed in Table 6.3. 

As an example, the value listed under TM4 and id, that is 2.0798e — 3, means 

= 0.0020798 
d\7 

dan 

(6.5) 

where A 7 and A 8 are the eigenvalues associated with the mode TM4, and an is the element 

in the first row and first column of A. 

From the numbers in the table, it is apparent that the subsynchronous eigenvalues are 
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Table 6.3: Participation factors related to subsynchronous modes 

TM1 TM2 TM3 TM4 TM5 

id 1.8548e- 2 6.8422e - 4 1.3507e - 3 2.0798e - 3 3.6009e - 7 

iq 
1.2656e - 2 9.3998e - 4 2.3662e - 3 2.3617e - 3 2.9709e - 7 

iF 4.0454e - 3 1.1970e- 4 2.0466e - 4 2.6758e - 4 3.6242e - 8 

ID 1.5918e- 2 5.9032e - 4 1.1589e- 3 1.7893e - 3 3.1044e - 7 

iQ 7.2925e - 3 5.3163e - 4 1.3096e - 3 1.2779e - 3 1.5905e - 7 

ia 2.2042e - 3 1.5838e - 4 3.8691e - 4 3.7557e - 4 4.6528e - 8 

VCd 6.4686e - 4 5.7808e - 5 1.8051e- 4 2.3967e - 4 7.7231e - 8 

VCq 2.8277e - 4 2.1546e - 5 5.6273e - 5 6.4553e - 5 2.2283e - 8 

VCtcd 9.2276e - 4 9.9458e - 5 3.4867e - 4 4.6529e - 4 7.3105e - 8 

Vctcq 1.3786e - 3 1.3296e - 4 4.1813e- 4 5.0786e - 4 7.9242e - 8 
Ul 7.4008e - 2 1.4995e - 2 2.4309e - 1 2.2754e - 2 1.2821e- 1 
C02 

6.9269e - 2 8.6823e - 3 4.7444e - 2 1.0158e- 4 3.4634e - 1 
U)3 1.2848e- 1 2.5653e - 3 1.1963e - 1 7.1366e - 2 2.4527e - 2 
U>4 1.6416e- 2 1.8445e - 2 2.0297e - 2 2.9212e- 1 8.7749e - 4 
CO 1.6148e- 1 1.6144e - 2 6.3354e - 2 1.1169e - 1 3.8572e - 5 

C05 4.8014e - 2 4.3898e - 1 5.7404e - 3 1.6176e - 3 6.8237e - 8 

0i 7.4009e - 2 1.4995e - 2 2.4309e - 1 2.2754e - 2 1.2821e - 1 

02 6.9269e - 2 8.6823e - 3 4.7444e - 2 1.0158e- 4 3.4634e - 1 

03 1.2848e - 1 2.5654e - 3 1.1963e - 1 7.1366e - 2 2.4527e - 2 

04 1.6416e - 2 1.8445e- 2 2.0297e - 2 2.9212e- 1 8.7749e - 4 
9 1.6378e - 1 1.6344e - 2 6.3936e - 2 1.1235e- 1 3.8643e - 5 

05 4.8015e - 2 4.3898e - 1 5.7404e - 3 1.6176e- 3 6.8237e - 8 

more sensitive to the rotor speeds and angles. This is expected because these modes are 

primarily related to the mechanical subsystem. Specifically, TM5 is very insensitive to the 

electrical states. 

Note that the participation matrix gives the sensitivity of the eigenvalues with respect 

to the diagonal elements of A. The sensitivity to the off-diagonal elements are also readily 

available using the right and left eigenvectors as explained in Appendix D. 
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6.2 Performance Comparison of Two Sampling Rates 

The controller described in the previous section updates its output six times in one cycle of 

60 Hz. Here we want to compare the performance of two different sampling rates. That is, we 

would like to see how the dampings of the subsynchronous modes are affected if the control 

action updates twice in one main period instead of 6 times. This means in one discretization 

time step 3 current pulses are included, and the same control action, A 0 is applied to them. 

In order to obtain the linear model with the new sampling rate, notice that it contains 

three time spans of the model with the smaller time step, T = n/3 pu. Let us denote these 

time spans by [0 7r/3], [IT/3 2TT/3], and [27r/3 IT]. Using the model derived for T = IT/3 pu, 

the small signal change at the end of each of the time segments is 

AAx(-)+bA<j) (6.6) 

AAx(^) + bA(/> (6.7) 

AAx(O) + bA</> (6.8) 

In writing (6.6)-(6.8), the same firing angle change has been applied to the pulses. Com­

bining the above three yields the linear model that advances the system state to half a period 

later 

AX(TT) = A 3Ax(0) + [A 2b + Ab + b] A 0 

= A 3Ax(0) + b3A</> (6.9) 

To have a common base for comparison, we keep the same gains used for the damping 

controller with T = TT/3 pu. Therefore, the closed-loop system in this case becomes A 3 — 

[A2b + Ab + b]k. Let us compare the eigenvalues of this matrix with the eigenvalues of 

A — bk which is the closed loop system with sampling rate of TT/3 pu. These are given 

in Table 6.4 and Table 6.5, respectively. Only the subsynchronous modes are listed in the 

tables. 

The eigenvalues of the system with larger time step are slightly less damped. Fig. 6.8 

AX(TT) = 

A x ( | , = 
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Table 6.4: Eigenvalues of A - b k , T = TT/3 [pu] 

Discrete Eigenvalue Absolute Value Modal Damping Frequency [Hz] 

0.67598359 ± jO.73657735 0.99974997 -0.09002162 47.4563 
0.84151725 ± J0.53198405 0.99556934 -1.59858213 32.2999 
0.89856564 ± jO.42980090 0.99606678 -1.41875178 25.5627 
0.93411586 ± jO.34402469 0.99545237 -1.64088070 20.2182 
0.94491063 ± jO.26784982 0.98214032 -6.48759054 15.8262 
0.99485523 ± jO.03409018 0.99543913 -1.64566831 1.9626 

Table 6.5: Eh; ̂ envalues of A 3 - b 3 k , T = 7T [PU] 

Discrete Eigenvalue Absolute Value Modal Damping Frequency [Hz] 
-0.79193606 ± jO.60993025 0.99958873 -0.04936226 47.4658 
-0.12655312 ± J0.98110893 0.98923729 -1.29852530 32.4500 
0.22232705 ± jO.96403749 0.98934200 -1.28582414 25.6712 
0.47932453 ± jO.86232066 0.98658447 -1.62075920 20.3108 
0.63104641 ± J0.71034983 0.95016653 -6.13416142 16.1278 
0.98106716 ± jO.10161014 0.98631506 -1.65353294 1.9710 

shows the damping of the TM1 mode with two different sampling rates. The transient 

simulation confirms that the damping is less in case of slower control update. 

It must be noted that this comparison shows the general trend with different sampling 

rates. If the control parameters are optimized by repeating the design cycle for each of the 

models, the controller performance can be improved in each case. 

6.3 Comparison with Other Research Work 

The work contained here, as in the case of [27, 32], is based on the Poincare mapping 

techniques, elaborated in [21, 45, 51], and particularly relevant to this work, in [35]. 

References [27, 32] have derived stand-alone continuous LTI models for the T C S C itself. 

They first linearize the advance map of a single-phase TCSC by taking a time step equal to 

T = TI pu. This is shown in Appendix A. Then, the maps for the three phases are stacked 

together, and converted to the dq reference frame. Finally, the equations are converted from 
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Figure 6.8: Damping of TM1 mode with (a) T = TT/3 [pu] and (b) T == 7r [pu] 

discrete to continuous. 

In the last section the damping of the subsynchronous modes with the sampling step of 

T = 7r were found to be slightly less than the dampings obtained by T = TT/3 pu. However, in 

[27, 32], the line currents are assumed to be the forcing functions and, therefore, independent 

quantities. This approach ignores the loading effect of the T C S C on the line currents, which 

has an adverse effect on the damping of subsynchronous oscillations. The models haven't 

been used to design damping controllers, and therefore, a rigorous comparison cannot be 

made. 

Reference [66] develops a discrete model for a TCSC compensated transmission system 

by assuming the generator terminal voltages to be constant. Again, the model is not used 

for damping controller design. 

Our development yields a discrete state space model for a TCSC compensated system, 

where the line currents are among the state variables. The model also includes the turbo­

generator dynamics without the assumption of constant terminal voltages. 

Furthermore, similar to [27, 32, 66] but more general, the dependence of small signal 

variations of the state variables on the deviation of the firing angles is taken into account. 
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Our model is basically an extension of the model developed in [35]. That model is 

geared towards eigenvalue analysis, for which only the A-matrix of the homogenous linearized 

system (see (5.10)) is needed. Therefore, firing angle deviations are neglected. Our main 

contribution to the model presented in [35] is the inclusion of firing angle deviations, through 

the calculation of the coefficients (b) of the forcing function in the form of 

Ax(n + 1) = A(n) Ax(n) + b(n) u{n) (6.10) 

where n is the discrete time corresponding to t — nAt, with At being the discretization 

step, and u is the firing angle deviation. Sampling the state with a frequency higher than 

the frequency of the repetition of the waveforms will generally yield periodically varying A 

and b matrices, indicated by (n). The only difference between the parameters of the model 

developed for a region containing a positive pulse, and a region containing a negative pulse, 

was found to be in the zero-sequence variables. 

There are publications that discuss SSR damping controller design for T C S C . The state 

space model used for controller design in [34] is obtained by approximating the steady-

state reactance of the T C S C (Fig. 2.8), using an exponential function of the form XTCSC — 

XC + KBe-ala% where KS and ac are chosen to fit the function into the capacitive region of 

Fig. 2.8. This model is converted to continuous-time, before interfacing it with the turbine-

generator model, and then used to design a state feedback controller. The system analyzed 

there is the First Subsynchronous Resonance Benchmark Model. Self damping of 0.2 per 

unit and mutual damping of 0.3 per unit is added to each shaft section, while the dampings 

provided in the standard benchmark model [38], are in terms of modal dampings at no load. 

In our work to be conservative, we have assumed the modal dampings to be the same 

under loaded conditions, and calculated the self dampings by use of the method provided 

in [18]. The mutual dampings are neglected. From a comparison of the plots, the damping 

that is observed in our simulations is more than the damping reported in [34]. 

Reference [67] introduces a method for designing a damping controller for T C S C by 

combining Fourier analysis with torque per unit method, which basically traces the effect of 

a small sinusoidal mechanical disturbance through the electrical network. 
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Reference [68] reports the design of a robust controller for damping subsynchronous 

oscillations. The studied system consists of two sets of nonidentical turbine-generators con­

nected to an infinite bus through a partly fixed, partly thyristor-controlled series compen­

sated line. This is actually an extension of the IEEE Second Benchmark Model, system-2. A 

reduced-order continuous model of the system is used for the design, however the modelling 

details of T C S C are not discussed. 

The work presented here is the usage of the sampled-data model of the whole system, 

obtained by linearization of the Poincare map, for the design of an SSR stabilizing controller 

for TCSC [69]. 

6.4 Conclusion 

An SSR damping controller is designed for the thyristor controlled series capacitor based on 

a discrete state space model derived from Poincare mapping techniques. The I E E E First 

SSR Benchmark model with fixed capacitor-TCSC compensation is used as the case study. 

The discretization is done with a sampling frequency six times the synchronous frequency. It 

is shown that the controller can successfully stabilize the otherwise unstable 15.79 Hz mode. 

Although the model is derived and verified for a special case, the method is general and 

can be applied to other configurations as well. Since the model is a state space linearization 

of the whole system, the dimension of the model grows rapidly with the number of machines 

included in the study. However, for the application of the controller design techniques, 

usually the most relevant elements in the system are modeled in detail, with the remaining 

elements replaced by simple models. 



Chapter 7 

General Steady State of Thyristor 
Controlled Series Capacitor 

This chapter elaborates on the steady-state theory of thyristor controlled series capaci­

tors. This steady state has always been calculated with the pulses equally distanced. This 

is not a necessity, however, for a TCSC to obtain steady state. 

Here, a more general situation is recognized, and the relations capable of describing it are 

presented. The dynamical behaviour of TCSC with regard to subsynchronous oscillations is 

studied under the general steady state using the electromagnetic transients simulation. 

7.1 Deviated Fir ing 

A fundamental characteristic of TCSC in deriving its steady-state relations, is that the 

current of the thyristor-controlled branch is mainly confined to the LC loop and does not 

contaminate the line current with harmonics. Therefore, the assumption of a purely sinu­

soidal line current can be made. The assumption remains valid if the pulses for the positive 

and negative half cycles are not equidistant, but sent alternately </? degrees sooner and <p 

degrees later than the symmetrical case, here referred to as the base case. 

To illustrate the idea, Fig.7.1 shows the line current, the capacitor voltage and the thyris­

tor current pulses in one period of a single phase TCSC circuit. The base case current pulses 
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are also shown as dashed lines for comparison. 
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Figure 7.1: Symmetrical vs. deviated firing 

When the pulse is shifted by the deviation angle op from the base pulse, it is no longer 

symmetrical with respect to the axis passing through its maximum point. Therefore, o\ and 

o~2 are used to indicate the pulse widths to its right and left of the maximum point. The 

situation is depicted in Fig. 7.2 with a bit of exaggeration. Note that the conduction angle 

is a = <j\ + 0 2 . 

It should be emphasized that because the switches used to implement T C S C are thyris­

tors, the only controllability is over their turn-on times. So, splitting the conduction angle a 

into <7i and a2, does not mean we have control over the turn-off times of the switches. The 

additional parameter is obtained by a firing policy which assigns two different firing angles to 

every two consecutive pulses. It is shown that the same compensation level at synchronous 

frequency can be achieved by different sets of conduction and deviation angles. 

In the following, the analytical relations, with deviation angle taken into account, are 

presented. Next, the numerical procedure for using these relations is outlined, and the char­

acteristic curves of the general and base case are compared. A discussion of the dynamical 

implications of introducing a new variable tp in the firing of thyristors is next presented, 
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<7{ -p G 2 

Figure 7.2: Symmetrical and unsymmetrical pulses 

based on transient simulation. 

7.2 Analytical Relations 

Fig. 7.3 shows two consecutive unsymmetrical pulses in an exaggerated manner. It is assumed 

that the circuit has reached steady state. The line current, which is the same as in Fig. 7.1, 

is not shown for clarity. With the chosen time origin, is(t) = y/2Iscoscost. 

Suppose at the turn-on instant of the inductive branch to conduct the negative pulse, 

that is at cost = —o\ + ip, the capacitor voltage is Vci- The current continues to flow until 

uist = (72 + if, when the thyristor turns off. At this instant the capacitor voltage is denoted 

by Vc2- Note that unlike for the symmetrical case, Vci \£ —Vc2- The voltage at the turn-on 

instant of a positive pulse is equal to the voltage at the turn-off instant of a negative pulse 

and vice versa. 

In order to determine Vci and Vc2, we need to solve the differential equation 

d2vctc 
1 

- V2L sin ujst -vctc 18 a 
(7.1) 

dt LtcCtc y^tc 

once for a negative pulse and once for a positive pulse. Using Xctc = l / w s C t c , XLtc = tosLtc, 
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Figure 7.3: Calculating the steady state with unsymmetrical pulses 

and K — ^/Xctc/Xitc, equation (7.1) is written 

d2vctc 2 r 
j;—7T2+K vctc = ~ V2IsXCtcsmust 

The initial conditions for the negative pulse are 

Vctc(~cri + <p) = Vci 

dvctc 
d(ujst) 

= Xctci8(-o-i + <p) 

whereas for the positive pulse we have 

Vctc{K -cr2-(p) = VC2 

dvctc 
d(u)st) -K — (T2—<P 

(7.2) 

(7.3a) 

(7.3b) 

(7.4a) 

(7.4b) 

The argument of the variables in (7.3) and (7.4) is expressed in terms of angle instead of 

time for convenience. 
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After solving the differential equations, the voltage at the final time u)st = cr2 + cp of 

the negative pulse is set to Vc2, and that for the positive pulse to VCi- Thus two algebraic 

equations are obtained whose simultaneous solution yields the unknowns Vci and Vci- In 

the following the final calculation results are presented. 

Vci and Vci are given by 

V^IsXctc Vci = 
K2 - 1 

. . cos K(<JI + cr2) 
+ KCOSf-O"! + Cp)- -. f 

sin K{ai + o~2) 
C0S(<72 + cp) . , , 

- « - : r — sin(—ox + op) 
sin K[O\ + 02) 

(7.5) 

VC2 = 
V2IsXt s^Ctc 

K - 1 
cos K(O~I + a2) 

KCOs(<72 + cp)- -, r 

sin K(O"I + <72J 

cos(—ai + </?) sin K{O-\ + <r2). 
sin(a 2 + cp) (7.6) 

The voltage across the capacitor becomes 

vctc(t) = VCi + V2IsXCtc[sinujst - sin(-<7i + cp)} < u>st < —ai+tp 

(7.7) 

Vctc{t) = 
V2ISXC tc 

K2 - 1 
COS(-<Ti + <p) 

K— ; r COS K{U)st — cp — O2) — sin K{O\ + a 2) 
cos(cr2 + cp) 

"sin /C(CTI + a 2) 
cos K, (cost — cp + o~i) — sin cost -CTI+1/3 < W s t < 0-2+l/J 

(7.8) 

^ c t c ( ^ ) = Vc2 + V2IsXCtc[sinujst - sin(<r2 + cp)] cr2+V<Ust<% (7.9) 

with t>ctcW = vctdn/us - t); for § < w st < ^ , and w C i c(t + 27r/ws) = vCtc(t) elsewhere. 

The current through the inductor is 

iLtcit) = - y — -
C0S(—<Ti + </?) . , . COS(cr2 + cp) . 

sin K(o;st — cp — 02) r;—7^— N sin K ( w s i — (/? + <7i) sin K(O"I + u 2 

+ cosw st 

sin « ( a i + u 2) 

-<TI+<P < e < a2+ip (7-10) 
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By setting the derivative of either the positive or the negative current pulse to zero at 

the maximum point, the relation between o\ and G2 is obtained as 

K C O S ( — o \ + cp) cos KG2 — K cos(<72 + <p) cos KO\ — sin K(G\ + a2) sin up = 0 (7.11) 

Equation (7.11) shows that once tp and CTI (or o2) are set, then cr2 (or G\) is determined 

as well and cannot be chosen freely. 

The fundamental reactance of T C S C is obtained by calculating the first Fourier coefficient 

of the capacitor voltage and dividing it by the current magnitude. 

K2(K2 + l)XCtc X TCSC — ^ C t c Xr.tr — 
0 

KTCT 
7T(K2 - 1) 

X, Ctc 
2TV{K2 - l ) 2 

sin 2(—o\ + to) — sin 2(a2 + (p) 

2 K Xctc 
TT(K2 — l ) 2 sin KG 

COS KG C O S 2 ( — G\ +<£>) + 

cos KG cos 2(a 2 + v?) — 2 cos(—CTI + tp) cos(a2 + cp) 

(7.12) 

In (7.12), G = G\ + <r2. A nonzero results in a net DC voltage across the capacitor in each 

phase with the value 

V2IsXctc 
vDC = 

7T 
cos(a2 + tp) - cos(-<7i + </?)] + 

(I ~ ^—^) [Vci - V2IaXctcSm(-<ri + <p)} 
l 71" 

(I _ ^ 1 ^ ) [yC 2 _ v^J ,Xc t c sin(a2 + p)] 
Z 7T 

(7.13) 

Note that if tp = 0, then o\ = G2 = G j2 and the above relations simplify to the familiar 

ones for the symmetric firing given in Chapter 2, and repeated here, with 8 replaced by a/2 

for ease of comparison. 

V< ci 
y/2IsXctc r . cr G KG-, 

-Vc2 = — o s m K cos — tan — 
° K — 1 2 2 2 J 

(7.14) 

V V K V V « 2 ( « 2 + l)XCtc . 
^ T C S C — ^ C t c 7-\\ 7 V A C t c T - ^ TTo S l n °" 

7r(K 2 — 1) 7T(K;2 — l ) 2 

+ vr7^Tp C 0 S 2 t a n T ( 7 - 1 5 ) 

http://Xr.tr
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7.3 Computational Issues 

The relations for the steady-state behaviour of T C S C become more complicated by intro­

ducing the deviation angle op. Specifically, instead of one conduction angle a, two angles 0\ 

and o2 appear in the equations. However, once these two are determined, the problem is as 

straightforward as the one without op. 

One theoretical l imit for op is obtained by noting that, as the magnitude of op is increased, 

a point is reached where every two adjacent pulses (in one phase) exactly touch each other. 

Since the pulses cannot overlap, we must have ~ < op < |. 

Corresponding to a certain deviation angle there is a maximum conduction angle that is 

achievable. Each curve in F ig . 7.4 is obtained for one deviation angle. For op > 0 (op < 0), the 

value of <72(<Ji) is assigned and gradually increased, while the value of <7i(<72) is numerically 

calculated using (7.11), until the line of o~i + a2 = 180° is hit. 

For large deviation angles the calculated value shows a sudden jump, such that o~\ + cr2 

goes beyond the 180° line. This is the case for ± 2 0 ° and ± 3 0 ° in F i g . 7.4, where the plotting 

is carried out only up to the discontinuity. In the lower part of the figure, where the curves 

meet, T C S C is in the capacitive mode and in the upper part, where they diverge, i t is in the 

inductive mode. In the following, two types of problems are discussed. 

Given: the conduction angle a 

If the conduction angle a = o~\ + cr2 is given, then (7.11) is reduced to 

ftCOs(<72 — o~ + op) cos KG2 — Kcos(a2 + op) cos K.(a2 — cr) — sin KG sin op — 0 (7.16) 

M A T L A B ® ' s fsolve routine with the ini t ial guess of a/2 rapidly converges to the solution 

for a2. It is easy to verify that if (<Ti, a2, op} constitutes a solution, then {a2, o~\, —op} is 

also a solution. Substitution in (7.12) shows that these two sets give the same compensation 

level. So the curves of T C S C reactance vs. conduction angle, parameterized by the deviation 

angle, coincide for ±op. As an example, we plot the reactance curves for the Kayenta [45] 
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Figure 7.4: o\ vs. cr2 for different deviation angles 

TCSC with Ctc = 176.84 pF and Ltc = 6.74 mH in Fig. 7.5. The solid line is the curve for 

cp = ±20° and the dashed line is that of the base case. 

Given: the reactance XTCSC 

If a given compensation level, corresponding to a symmetrical firing angle a, is sought, 

together with a certain deviation angle, then (7.11) and (7.12) must be solved simultaneously 

to determine o~\ and CT2. The initial guess of TT — a for both angles is good for a rapid 

convergence. 

Table 7.1 lists four possible ways of achieving the same compensation level with the 

Kayenta TCSC where tp is varied from 0° to 15°. 

It is evident from Fig. 7.5 and Table 7.1 that the fundamental reactance of TCSC, 

especially in the capacitive region, is very insensitive to the changes of the deviation angle. 
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Figure 7.5: Fundamental reactance vs. conduction angle 

Table 7.1: Comparison of deviation angles, X^cscI'Xctc = 1-65 
a o-i 0-2 

56 28 28 0 

56.079 27.949 28.130 5 

56.316 27.976 28.340 10 

56.713 28.081 28.633 15 

7.4 A Dynamical Study 

Several studies [11, 37, 70, 71, 72] have shown the advantages of T C S C for the series com­

pensation of transmission lines. In addition to the ability of controlling the power flow in 

a line, T C S C increases the dynamical stability of the system. It is especially effective in 

mitigating the subsynchronous resonance. 

In the last section it was shown that by changing the deviation angle, T C S C can be 

set to work in different steady states, while providing the same compensation level. This is 

an open loop firing control. While it is informative per se to know that T C S C shows such 

behaviour, it would be even more worthwhile to study the dynamical characteristics with 
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this type of control, to see if there is any advantage to be gained by it. 

In fact, the analysis contained in this chapter was motivated by an observation made 

while working on the damping controller design for a T C S C tested on the IEEE First Sub-

synchronous Resonance Benchmark Model [38]. 

It must be emphasized that the controller in Chapter 6 is a closed-loop controller that 

works based on equidistant firing. A discrete linear state space model of the system in the 

rotor reference frame (see Section 5.3) is used to design the controller gains. 

When the zero sequence of the TCSC was included in the state variables, although the 

controller was able to damp the oscillations, the variations of the firing angle around the 

steady-state value would not decrease beyond a certain value. This is contrary to the common 

expectation that, as the magnitude of the disturbance decreases, the control action will also 

decrease. 

A closer examination of the firing angle variations revealed that in the steady state the 

pulses are alternately shifted back and forth in time almost by the same amount. Therefore, 

the question arose whether this is the reason why the oscillations are damped, or whether 

this is just a harmless effect arising as a result of the control action. 

Let us take a look at the steady-state Odq voltage components of a three-phase T C S C 

with equidistant firing (Fig. 7.6). 

The average of the zero sequence component is 0, however, it oscillates significantly 

around it. A linear state feedback controller checks for the difference between the instan­

taneous value of all the states with their steady-state values, and based on the differences, 

produces a control action (here a deviation in the firing angle). A naive comparison of the 

zero sequence variable with 0 makes the controller put out an action to bring the difference 

to zero. Since the zero sequence of TCSC is weakly controllable, a large action is needed to 

make a small change in it. The zero sequence voltage is also weakly coupled to the other 

states, so while the controller makes a significant change in its output value, other variables 

hardly change. Normally all the zero sequence variables are eliminated to arrive at a reduced 

order system before the design of the controller. 
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Figure 7.6: Odq waveforms of a TCSC voltage with equidistant firing 

Fig. 7.7 shows the Odq voltage components of the same T C S C with deviated firing. The 

compensation level is the same in both figures. This is evident by noticing that the d and q 

components have the same average level. The zero sequence component however, is shifted 

down. 

0.2 

0.1 

0) 

a 

I 

-0.1 

-0.2 

-0.3 

-0.4 

-0.E 

VctcO 

Vctcd 

Vctcq 

0.21 0.24 0.25 0.22 0.23 

t[8) 

Figure 7.7: Odq waveforms of a TCSC voltage with deviated firing 
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To complete this section, we compare the mechanical behaviour of the shaft in two cases: 

once with equidistant firing and the other wi th deviated firing. Note that these are both 

open-loop firing strategies. The I E E E First Benchmark Model is used for the study. F ig . 7.8 

shows the current waveforms and the torque on the generator-exciter shaft section with 162° 

equidistant firing. The parameters of the system are given in Appendix B . l . No fault is 

simulated. The shaft torque is gradually increasing. F i g . 7.9 shows the currents and the 

same shaft torque when a deviation angle of 15° is used and the compensation level is kept 

the same. The shaft torque increase is faster in this case. Simulations at other operating 

points with different deviation angles show that the dynamic characteristics wi th regards to 

subsynchronous resonance are either not much different or worse for the deviated firing. 
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Figure 7.8: Equidistant firing 

7.5 Conclusion 

A new variable is introduced for the open-loop firing control of the T C S C . There are theo­

retically infinitely many combinations of a and </?, which give rise to the same compensation 

level. However, it was observed that the steady state and the dynamic characteristics of the 

device are practically indifferent to small deviation angles. 

When subsynchronous interaction is present, large deviation angles may cause a shaft 

torque to increase faster than with equidistant firing. Therefore, we conclude that this type 
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Figure 7.9: Deviated firing, op = 15° 

of firing is not very useful to address the problem of subsynchronous oscillations. The fact 

that a DC voltage appears across the TCSC as a result, can limit the level of deviation more 

than the theoretical values derived here. 



Chapter 8 

Conclusion and Future Work 

The present chapter summarizes the results of the study elaborated in the previous 

chapters, and makes suggestions to continue the research. 

8.1 Conclusion 

In this thesis, the problem of mechanical subsynchronous oscillations is studied in the pres­

ence of thyristor controlled series capacitors. 

The passive damping of T C S C at subsynchronous frequencies is thoroughly investigated. 

This behaviour has been observed both on network analyzers and in simulations, however 

the explanation that it happens as a result of energy being absorbed at a subsynchronous 

frequency and injected into the switching frequency is a contribution of the present work. 

In order to show this point, the resistance of a TCSC in periodic operation was calculated 

first by power considerations and next by the discrete Fourier analysis of the waveforms, and 

found to be the same. 

The global view is that in TCSC, because of its nonlinearity, the frequency response at 

different frequencies are correlated. The phase shift between the voltage and the current at 

a subsynchronous frequency, is between 0 and 90°. This leads to the conclusion that energy 

is being dissipated at that frequency. However, in the synchronous frequency another effect 
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is taking place at the same time. The phase shift between the current and voltage at the 

synchronous frequency is slightly higher than 90°. This phase shift is much less than the 

one happening at the subsynchronous frequency, which is the reason why it went unnoticed 

when the passive damping was ini t ia l ly observed. 

T C S C damping and detuning effects help toward mitigating subsynchronous resonance. 

However, these effects are variable, and dependent on the synchronization scheme and the 

operating point of the T C S C . Larger conduction angles are more effective in damping sub-

synchronous oscillations. 

The common practice is to use T C S C as part of a total series compensation. The larger 

the portion of T C S C in the compensation, the more it affects the dynamics of the system. 

The system studied in this thesis is the First I E E E SSR Benchmark Model wi th a fixed 

capacitor, T C S C compensated line. It was observed that T C S C does not stabilize a l l the 

subsynchronous modes in open loop operation. This is consistent with the results reported 

in [27], and [35]. Therefore, in order to make certain that subsynchronous oscillations get 

damped properly, closed-loop control of the firing angle of the T C S C is necessary. 

Sampled-data models, based on the Poincare mapping concept, are able to represent the 

system dynamics well enough for the effective design of feedback controller gains. This is 

shown by deriving the model for the study system. 

Two approximations were applied in deriving the model: 

1. The periodic orbit of the system is approximated by the load flow solution. To do the 
load flow, T C S C is replaced by its fundamental reactance at 60 Hz. After the line current 
is determined, for the T C S C capacitor voltage and inductor current the ideal steady state 
waveforms given in Section 2.4 are used. The model was transformed into the rotor Odq 
reference frame. 

2. After the model is obtained the zero-sequence variables are omitted. This includes the zero-
sequence component of the line current, the fixed capacitor voltage, and the T C S C voltage. 

The eigenanalysis was performed both with and without the zero-sequence variables, and 

the results were compared wi th detailed transient simulation. The conclusion was that while 

both systems identify the unstable subsynchronous modes of oscillation, the system without 
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the zero-sequence variables is more successful in predicting the dominant unstable mode. 

Next, the reduced-order model was used to adjust the gains of a feedback controller that 

shifts the unstable subsynchronous modes inside the unit circle, thus stabilizing the system. 

The eigenvalue analysis was confirmed by transient simulation where a three-phase short 

circuit was used to initiate the interaction between the mechanical and electrical subsystems. 

The system with the closed-loop firing controller was able to recover after the fault removal, 

while the open-loop system became unstable. 

In the last chapter, a new open-loop firing strategy is introduced where the pulses are 

alternately shifted back and forth in time by the same amount. The underlying assumption 

of sinusoidal line current is left untouched. Detailed analytical relations are calculated for 

the new firing. When firing is done with a non-zero deviation angle, a DC voltage appears 

across T C S C . Transient simulation studies show that large deviation angles aggravate the 

subsynchronous oscillation problem. 

8.2 Suggestions for Future Work 

As long as the magnitudes of the disturbances are small, it is reasonable to analyze the 

passive damping at each subsynchronus frequency separately. However, one has to keep in 

mind that T C S C is highly nonlinear. The study of the resistive behaviour of T C S C can be 

extended by applying more than one subsynchronous current at the same time to see if the 

phase shifts in the subsynchronous currents are correlated in some way. 

Since the model developed in Chapter 5 is able to characterize the behaviour of the 

system, more advanced control techniques such as robust control, can be investigated to 

improve the controller performance. 

The observer, designed for the turbo-generator, needs samples from the generator rotor 

angle and speed deviations. This poses a limitation on the installation location of the T C S C 

to be near the generator site. In order to possibly eliminate this limitation, an investigation 

is needed to see if the system can be modelled in such a way that the feedback signal does 

not rely on the generator variables. 
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As the next step, a system in which subsynchronous interactions happen between two 

or more machines can be linearized and studied for the damping of oscillations with the 

method of this thesis. A systematic order reduction is necessary to reduce the dimension of 

the linear model beyond what is obtainable by omitting the zero-sequence variables. 
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Appendix A 

Linear Discrete Model of Single-Phase 
T C S C 

Here, the linear Poincare map is derived for a single-phase TCSC by assuming the line 

current to be the forcing function. Consider the steady-state waveforms of a T C S C in 

Fig. A . l . 

10st [rad] 

Figure A . l : Calculating the Poincare map for a single-phase T C S C 

The time origin has been selected such that kit is a point where the capacitor voltage 
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becomes maximum. In the following discussion, the argument of the waveforms is sometimes 

expressed in terms of the angle instead of time for ease of reference. So an angle of kit rad 

corresponds to a time of ki\/ujs s, with cos being the synchronous speed. 

The map we are seeking to find, advances vctc{kn) to half a period later vCtc(kn + 7r). 

The waveforms repeat with a period of 2ir rad. However, because of the half-wave symmetry, 

we need only consider the changes up to TT rad. 

When either thyristor conducts, the circuit has the dynamics [27] 

dx 
dt 

- Ax(t) + bi(t) A = ^ Ctc 

0 I 

1 
Ctc 

0 
(A.l) 

with the state vector x = [vctc iucY and input i. In the non-conduction mode, inc = cx = 

[1 0]x = 0, and the dynamic equations are transformed into 

dvctc 
vctc = —jj- = PjAqj^cte + Pbi(t) = Ovctc + jj-i (A.2) 

where pj = [1 0] and qj = pj*. Following the procedure detailed in [51], the advance map 

from Vctcikn) to Vctc{k-K + TT) is found by integrating the system equations in any interval 

when the switch remains either on or off, and by mapping the changes forward in time using 

Pj, and Qj. 

1. Interval [kir kit + <f>] 

The thyristor is off in this interval, so we have 

vctdkn + <t>) = vCtc{k7r) + 

where the integration variable is 77 = cust. 

s^tc Jkir 
i(rj)dn (A.3) 

2. Interval [kir + </> kit + r] 

The thyristor is on, so there are two state variables, vctc and iLtc. The solution of the 

dynamical equation (A.l) yields 

-1 pk-K + T 

x(A;7r + r) = e ^ ^ / b r + <j>) + — — / e^^-^c^i^dr] (A.4) 
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We notice that r — cf) = a, where o is the conduction angle. Also with the matrix A 

given in (A.l) we have 

„A<T 
COS KG 

L tc 

Ctc 
sin KG 

tc 

Sin KG COS KG 
tc 

(A.S) 

where K = LON/LOS is the ratio of the T C S C natural frequency to the synchronous 

frequency. 

3. Interval [krr + r kir + TT] 

In this interval, the thyristors are off and similar to the first interval we have 

Vctc{k-K + 7r) = vctdkn + r) H — - / i(rj)dr] (A.6) 
w s G 4 c J k 7 r + T 

With the maps of all the intervals at hand, we notice that at kit + r 

vctcikir + T) = pjx(A;7r + r) (A.7) 

If vctc{kir + T) in (A.6) is substituted according to (A.7), then 

vctcikir + 7r) = pjx(A;7r + r) 
kir+TT 

Now x(A;7r + r) in (A.8) is substituted according to (A.4) 

vctcikn + 7r) = pjeA c rx(A;7r + <f>) + 
UsCtc s^tc JkTT+tj) 

USCtc Jk% + T 

kn+n 
i{rf)drj 

At kn + 6 we have 

(A.S) 

(A.9) 

x(&7T + </>) = qjVcfc(&7r + </>) (A.10) 

By replacing x(&7r + (j)) in (A.9), and using (A.3) to replace vctc{kft + <f>) in turn, we get 

vctc{kn + vr) = P je A < TqjU C t c (A ;7r) H r^-PjeA , Tc|j / i(r])dr] + 
^ S ^ t C JklT 

1 

U s C t c Jk-K+(f> 

klT+T 

LO iWc Jk-K+T 

( A . l l ) 
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Using (A.5), the advance map from kit to kir + TT looks like 
pkn+<j> 

vctc(kTT + 7r) = cos navctc(k^) H p̂— cos KO" / i(n)drj + 
Us&tc Jk-K 

k-K+T 

COS[K(A,-7T + T — r])]i(ri)dr] 
klT + TT 

i(ri)dn (A.12) 

The advance map is a function of vctc(kn), (f>, r, and a functional of i(£), that is, it 

depends on all the values of the function i(t); tost G [k% kw + ir]. This is shown as follows 

vctc(kir + TT) = f{vCtc{k7r), <f>, r , i{-)) (A.13) 

The linearized discrete model of the T C S C is obtained by calculating the linear variation 

of (A.13) around a steady-state periodic orbit based at (vCtc(k7v), <f>, f, «*(•))> where overbar 

denotes a steady-state value and asterisk denotes a steady-state waveform. If we denote the 

small signal change by ' A ' , then 

AvCtc(kTT + 7r) = 
df 

dvctc(kn) Avctc(kn) + 
dj_ 
d(f> 

A<j) + 
dr 

AT + 

Af(vctc(kn)J,f,Az(-)) 

(A.14) 

After detailed calculations 

Avctdkn + 7 r ) '= cos KaAvctdkir) + '(—l)ka<i,A(f) -\ —— COSKCT / Ai(rj)dr) 
UsCtc Jkir 

j rkit+T j rkn+TT 

— / cos[K,(k7r + f — r])]Ai(r))drj-\ — / Ai(r])dr] 
^tc Jkir+4> UgCtc Jkn+f 

with 

y/2Is K _ a KG a 
—-x,—5 sin KO(K COS - tan — - sin - ) 
cosutc KA — 1 2 2 z 

(A.15) 

(A.16) 

Notice that Avctc{kn + n) is independent of the change in the turn-off angle r . The same 

result is reported in [45]. If the disturbance current, Ai(rj) in (A.15), is substituted with 

Ai(rj) = Aidcosrj — Aiq sin rj (A.17) 

and the integration performed with the assumption that Aid and Aiq remain unchanged 

(zero-order hold assumption), then the relations given in the appendix of [27] will be reached. 



Appendix B 

First I E E E Subsynchronous 
Resonance Benchmark Model 

B . l System Parameters 

The generator reactances and resistances in F i g . 3.11, F ig . 3.12, and F i g . 3.13 are listed in 

Table B . l . These parameters are in per unit, based on the stator quantities [60] 

SB = stator rated rms apparent power per phase = 892.4/3 M V A 

VB = stator rated rms line-to-neutral voltage = 500/\ /3 k V 

^>B — generator rated angular speed = 2rr60 rad/s 

Table B . l : Generator parameters 
LQ Ld LAD Lp LD Lq LAQ LQ LQ 

0.135 1.79 1.66 1.722 1.665 1.71 1.58 1.906 1.675 

Ro Ra Rp RD RG RQ 

100 0 0.53/377 1.54/377 5.3/377 3.1/377 

Table B.2 lists the parameters of the turbo-generator shaft system which consists of four 

turbines, the generator, and the exciter as shown in F ig . 2.4. The high-pressure turbine is 

assigned number 1, wi th the other rotors denoted by ascending numbers. The generator 

rotor is not numbered, but is indicated by G for the spring constants between the generator 

rotor and its adjacent rotors. 
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Table B.2: Shaft assembly parameters 
H\ Hi H3 Hi H H$ 

0.092897 0.155589 0.858670 0.884215 0.868495 0.0342165 
Ki2 K2z KM KiG KG5 

19.303 34.929 52.038 70.858 2.822 
mdi mdi mdz mdi md^ 
0.05 0.11 0.028 0.028 0 

The inertia constant, H, measured in units of second, is related to the moment of inertia, 

J, by 

H^ML (B.l) 

where SB3 is the rated three-phase M V A of the system, and um is the mechanical angular 

speed. The values of inertia constant in Table B.2 are given for com = coB- The spring 

constants are indicated in pu torque/rad with the base torque defined by tqs = SBZ/^B-

The mechanical dampings are given in terms of no-load modal damping decrements, md, 

with the unit of 1/s. Note that the numbers assigned to damping decrements refer to the 

mechanical modes TM1-TM5. The frequencies of these modes for the isolated shaft system 

are given in Table 3.1 in Chapter 3. 

The positive-sequence and zero-sequence reactance and resistance of the line, the trans­

former, and the infinite bus (see Fig. 2.4) are given in Table B.3. 

Table B.3: Line, transformer & infinite bus reactances 
X-ljinel XLineO H-Linel Rhine® XTranl XrranO Xool XcoO 

0.50 1.56 0.02 0.50 0.14 0.14 0.06 0.06 

The series compensation parameters used for controller design in Chapter 6 are given 

in Table B.4. In the eigenvalue analysis of Chapter 5, where the parameters of the series 

compensation are varied to study the effect on the stability of subsynchronous modes, the 

parameter values are duly indicated. 

In Table B.4 the values of the fixed and thyristor controlled capacitors have been chosen 

to give a total reactance of 0.371 pu in the blocked mode. The value of the inductance in the 

thyristor branch is calculated from Ltc = l/K2Ctc- A small resistance is introduced in series 
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Table B.4: Series compensation parameters 
C Ctc K a Afimax Rtc 

1/0.121 4 3 164° 5° 3.57 • 10~4 

=(0.1/Z f l) 

with the inductance to eliminate the transient response when the T C S C is in the bypassed 

mode. 

The generator power output, power factor and terminal voltage are 0.9 pu, 0.9, and 1.0 

pu, respectively. The reactance of the fault is Xpauit = 0.04 pu. 

B.2 Summary of State Equations 

The modelling of the system follows closely that of [35]. The per-unit system of [60] is 

used for the differential equations. A l l variables, including time, are in per unit. The base 

time is tB = l/coB S. The stator equations are referred to the rotor side, using the Park 

transformation (3.35). F i g . B . l is a one-line diagram of the external circuit in which the 

series compensation is partly fixed and partly thyristor-controlled. 

TCSC 

Q 
vGena c v 

Figure B . l : One-line diagram of the First SSR Benchmark Model with T C S C 

Ra^t a n d L a t o t are the total series resistance, and the total series inductance of the line, 

the transformer, and the infinite bus. 

The equations of the system with T C S C are obtained by substituting F i g . 3.10 in Section 

3.3 with F i g . B . l , wri t ing the equations of the external circuit, and combining them with the 

generator equations. In the following, the dynamical equations of the system are summarized. 
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B.2.1 Cur ren t Equat ions 

l0dq 

^FDQG. 

==L _ 1(u;N-R) 

- l VCtcfidq 
04x1 

^FDQG 

- L _ 1 

— L - 1 

voo,0dg 

- V p D Q G 

vC,0dq 
O4XI 

(B.2) 

where iodq = [*o id i q \ is the vector of stator currents, IFDQG — [ip i D icj ic}1 is the vector 

of rotor currents, vc,odq = [vco vcd vcqY is the vector of the fixed capacitor voltages, and 

vctc,odq = ivctco vctcd vctcqY is the vector of the TCSC voltages. The meaning of other 

parameters is as follows 

L = 
Lorf? + P L Q LSR 

JSR JR 

N 
M(L 0 d g + PLQ) M L S R 

0 4x3 0 4x4 

(B.S) 

(B.4) 

R 
R-Orfg + P R Q o 3 x 4 

04x3 R F £ > Q G 

J0dq diag(L0, L D , LQ) 

(B.5) 

(B.6) 

0 0 0 0 
LAD LAD 0 0 

0 0 LAQ LAQ 

(B.7) 

L F LAD 0 0 
LAD L D 0 0 

0 0 LQ LAQ 
0 0 LAQ L G 

(B.S) 

M = 
0 0 0 
0 0 - 1 
0 1 0 

(B.9) 
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Kodq = diag( RQ, R A , RA) (B.10) 

RFDQG = diag( R F , R D , RQ, RG ) ( B . l l ) 

voo,0dg -y/ZVra sin(6> - t - f - a^) 

\Z3Voo C0S(9 - t - | - ttoo) 

VFOQG = [ V " F 0 0 Of 

(B.12) 

(B.13) 

P L Q and P R Q represent the total series reactance and resistance of the line, the trans­

former and the infinite bus respectively. 

P L Q = d i a g ( X 0 ( o t , Xltot, Xltot) 

= diag( 1.76, 0.7, 0.7) 

P R Q = d iag ( J R L i n e 0 , RL 

(B.14) 

(B.15) 

B.2.2 F i x e d Capac i tor Equat ions 

(B.16) 

B.2.3 T C S C Equat ions 

These equations change with time as the thyristors turn on and off. If all the thyristors are 

off we have 

Vctcfidq — yr'^dq + uMvCtc,0dq (B.17) 

With the thyristor in phase a on, the current in the corresponding branch is added to 

the state variables 

vctc,odq = 77-iodg + w M v c t C ) 0 d q - -^-P'(9) 

iaLtc = j - [ l 0 0]Q(6>)vctC]0d(? 

I'aLtc (B.18) 

(B.19) 

file:///Z3Voo
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where P(9) and Q(0) are the Park transformation matrices. Any combination of switches 

can be similarly handled. For example, if the thyristors in phases a and c are on, we have 

1 1 
VCtcfldq = - X T ^ d q + uMvctcfidq ~ 7^P(#) 

^aLtc 1 "1 0 0" 
i c L t c . L t c 0 0 1 

1 0 
0 0 
0 1 

^aLtc 

icLtc 

(B.20) 

(B.21) 

B.2.4 Mechan ica l Equat ions 

If the base quantities for the moment of inertia, the damping, and the spring constant are 

chosen as 

SB3 
JF 

DI 
S B3 
CO B 

KB=**=t, qB 

(B.22) 

(B.23) 

(B.24) 

then the form of mechanical equations in per unit and in actual units is the same. Note that 

time is in per unit as well. Usually inertia constant, H, is used instead of moment of inertia, 

where J in per unit equals 2toBH. Inertia constant, H, is measured in units of second. The 

mechanical equations in terms of H are 

tu = 

e 

2toB 

H - 1 K 0 
2u)t 

•H^Dcu 
J B 

tu 

with 

tU = [ W i W2 W3 U 4 W LU5 

0 = [ Qi 02 # 3 #4 6 95 ]' 

(B.25) 

(B.26) 

(B.27) 

(B.28) 



B.2. Summary of State Equations 149 

H = diag ( t f 1 ; H2, H3, H4, H, H5) (B.29) 

K 

K12 - K 1 2 0 0 0 0 

-K12 K12 + K23 -K23 0 0 0 

0 -I<23 K23+K34 -K34 0 0 

0 0 -K34 K34+KI5 -K45 0 

0 0 0 - K I G K4G+KG5 -KGs 

0 0 0 0 - K G 5 KGs 

(B.30) 

D = diag(A, D2, D3, DA, D, D5) (B.31) 

The mutual damping between adjacent masses is neglected. The damping coefficients 

to the reference are calculated from the modal dampings using the approximate method of 

Section 3.3.1 [18]. 

t q — [tq\ tq2 tq3 tq4 — tqe t g5 * (B.32) 

tqe = ^[(Ldid + L A D i D + LADiF)iq - (Lqiq + L A Q i Q + LAQiG)id] (B.33) 



Appendix C 

Derivation of Equation (5.15) 

To derive (5.15), the value of dx/dxto and dx/dt0 given by (5.13) and (5.14) 

ĉ x ^ fl dg dx 
d*t0 Jto dxdxto 

dx rl ds. dx 

an = igf/i (5-14) ' to 

are substituted into their own right-hand side. After one substitution, (5.13) becomes 

dx rl dg / n dg dx \ J 

dxt0 J v = t o dx \ J i = t 0 dx dxto 

The substitution of (5.13) into ( C l ) yields 

dx r* dg /** dg n dg 
d*to Jto 5 x h=to d * k=to 5 x 

"* dg r dg dx 

The procedure can be continued indefinitely. Let us now examine (5.14). After one 
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substitution of (5.14) into itself we get 

dx 
di 

The substitution of (5.14) into (C.3) results in 

<9g <9x 
* ; » d ^ ( C 4 ) 

=to ^x at0 

Comparing (C.2) and (C.4) already shows the similarity between the relations as they 

evolve. By continuing the substitution more and more similar terms are branched off the 

last integrals on the right-hand side, and added to the series. Assuming that 

Jn=tQ dx Js=t0 9x Ji=t0 dx 

tends to zero ( which is a sufficient condition for the series to converge), the last integrals 

become zero in the limit, and we get 

dx dx 
dt0 dxto 

-g(x t 0,t 0) (C.6) 



Appendix D 

Participation Matrix 

First we review the definition of the left and right eigenvectors [65]. For. any eigenvalue 

Xi, the column vector Vj which satisfies 

A v , = A zv, (D.l) 

is called the right eigenvector of A associated with the eigenvalue A;. 

Similarly, the row vector w* which satisfies 

W i A = A ? W i _ (D.2) 

is called the left eigenvector associated with the eigenvalue Aj. 

The left and right eigenvectors corresponding to different eigenvalues are orthogonal. In 

other words, if A* is not equal to Aj, 

WjVi = 0 (D.3) 

On the other hand, for the left and right eigenvectors of the same eigenvalue we have 

W i V j = ki, where ki is a non-zero constant. It is common practice to normalize the vectors 

so that 

w i V i = 1 (D.4) 
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To determine the sensitivity of the eigenvalues to the elements of the state matrix, we 

differentiate (D.l) with respect to ay (the element of A in the Ith row and jth column). 

dA dwi d\i x dv 
Vi + A - — = - — V i + Ai 

da daij dan 
(D.5) 

Premultiplying by W j , and noting that W i V i = 1 and Wj(A —Ajl) = 0, the above equation 

simplifies to 

3A <9Ai 
W j — V i = — — 

daij da^ 
(D.6) 

A l l elements of dA/daij are zero, except for the element in the Ith row and j th column 

which is equal to 1. Hence 

<9A, 
da, 

WilV 3" (D.7) 

Thus the sensitivity of the eigenvalue Aj to the element ay of the state matrix is equal 

to the product of the left eigenvector element wu and the right eigenvector element Vj{. 

The participation matrix is defined as [65] 

with 

r = [T i y 2 • ~Ynx] 

7ii V l i W i l 

72i V2iWi2 

= 

1nxi V n x i V J i n x 

(D.8) 

(D.9) 

The element 7 f c i = VkiWik is termed the participation factor. It is a measure of the relative 

participation of the kth state variable in the ith. mode, and vice versa. The participation 

factor 7fei is actually equal to the sensitivity of the eigenvalue Ai to the diagonal element 

akk of the state matrix. Note that because normalized eigenvectors are used to obtain 

the participation matrix, the sum of the participation factors associated with any mode 

(Sr=i o r w ^ n a n y state variable (Ylk=i 7*i) ^ s e c l u a l to 1. 


