OBJECT-ORIENTED ACTIVITY-BASED PROCESS MODELLING
by

DAVID LESLIE HOOD

BISM., St. Francis Xavier University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN BUSINESS ADMINISTRATION
in
THE FACULTY OF GRADUATE STUDIES

' MANAGEMENT INFORMATION SYSTEMS

THE UNIVERSITY OF BRITISH COLUMBIA

February 2005

© David Leslie Hood, 2005

Abstract
Many organizations seek to take advantage of the opportunities new technologies offer in
the current information age. New technologies can have an impact on the fundamental
organizational operations, altering well established policies and procedures. New
technologies have also been poorly implemented more often than not thus mitigating the
opportunities they offer. The poor implementation tends to be a direct result of a lack of
proper documentation of organizational processes. This improper documentation means
that any system built to support the processes that is based upon the improper
documentation will itself be faulty. This thesis develops the OBPM algorithm into an
objected graphical modeling language and process. The Activity-based Process Modeling

(ABPM) constructs have specific and well-defined semantics for real world business

[T

process representatlon F urther the change propagatlon algorrthm which is based upon a

"-..'l_\'..‘t v L

set of ontologlcally derlved rules is refined to create a systematlc process for modeling a

busmess process. The strength of the algorlthm is from its ontological real world

Lo “ T A A

foundatlons rather than programmmg or data design rules of thumb. This thesrs also

explores the relatronshlp of ABPM and OOEM. Both]anguages are de31gned to model a

SRS R l

specific v1ew of orgamzatlonal act1v1ty, 1rrespect1ve of how a later mformat10n system

artifact will be burlt By relating the two grammars usmg ontologlcal foundatlons we can

4‘| R A s |'
P .

acquire greater understandmg of an orgamzatlon w1thout losmg mformatlon F mally, this
R v

thesis proposes a set of desxgn pr1nc1ples for an ABPM CASE tool that is 1mplementat10n

Carendernie

mdependent Wthh means that no matter how one decides to lmplement ABPM if they
b NG

follow our requ1rements they will be able to create a tool to fully support the busmess

process model generation process.

' TABLE OF CONTENTS

ABSTRA(;T ... ii
TABLE OF CONTENTS..cvvovevrsserssmsssssssssssssssssses - i
LIST OF FIGURES . Wviii
LIST OF TABLES ' xii
ACKNOWLEDGEMENTS xiv
1. INTRODUCTION 1

LI MOtivation......ccovvereerieniinicrieiiecisieniiciene et ettt et nen et nes 1
1.2.'Thésiis ODJECHIVES.cvvierierienrriieerreie e rrecerseesreereeneesaes e teere e rrreaae e taesrnneareeaneean 4

1.3. Tﬁé'sis OULHNE. ... eveoeveeeveeseeee s es e ses s ssss e s esssn s s s snsnnees 5

2. PROCESS MODELINGIINTRODUCTIQN ossserenes 7
2. 1‘ Iplroduction 7
2.2. Eeﬁnlllon ofBllslness Prooesovl\/looellog...;..; 8
2.3. The Terrﬁmo]ogy 9
24. The Idfaal Process Model | | s e 10
25. Omolog_y B S 1l

2 5 1 B‘Wl/VP Ontology ‘14

: S AR . R . N . A Coe e

2.6. Current Busmess Process Modelmg TEChNIQUES. ...vevrveervereereesreeeeeseeseeesseseeennes 14

2 6 1 Colored Petrz NetS.....ovviiieieviiiiiiiiiiiciiieeennn - '.'....;...._ 15

2 62 Integrated Defmtlon 3 17

2 6 3 Event- controlled oncess Chazns 19

Ny Xavepr s, X . . .

REUNSORINESS

2. 7 Summary ettt e abee e are et e te bt e e st bt e s ke e e e tate e b tr e e s eta e s Rt e e braeeentaneesreeenn 20

3. OBJECT-ORIENTED ACTIVITY-BASED PROCESS MODELLING

(ABPM) 22
3.1, INTOAUCHON. .c.ceeeieetretere ettt sbe bbb n s a0 e 22
3.2. Ontology-Based Process Modeling (OBPM)........ccocvvviiiinnninn 22
3.2.1. OBPM AIGOFithi..........ccoooeiviiiimiiiiiiiiiiiiiiii st 24
3.3. Object-Oriented Activity-Based Process Modeling grammar...........ocooveievennen. 25
3.3.1. Classes and OBJeCtS...........ccoooueeiieiieeeieireeecrecee sttt esree e esneenes e 26
3.3.2, ASSOCIQLIO . .cveoceoveieeieeiiereeiiieneeeeevrtrnssessssenseesseesnaninsees e 28
333 Object Communication...'....'..‘ 29
3.3.4. The Combination of OBPM and Object-Orientation..................oeereennen. 30

3 3 4.1. Attnbutes s R s e 31

3 34.2. Operatlons and Change Propagatlon.;....‘......:..;.........; 31
3/'3.4'1.3 ACHVILIES.c.vevieeiiecveccccee 32

3 3 4.4.Laws........... | 33

3.3. 5 Map!p.z.n;g; Summéry...!..l.l ... 34
3.4. Meta model ofABPM.........................‘ 34
3.5. Graph1cal Representatlon 37
351 Domam Representatlon 38
352 External AGENL....oiieiiiiiiiiciccieereit et s R 38
3.3.3. I;I‘ter‘nal Aget(t..........j.....: e 39

, 354 Rlesoz;rces;......l...' R 42
355 Agents SharlngA Mutual Attrzbute.......’......‘..;A.... 42
356 ' ComposrteAgents 44

LR e e

3.5.7. Superagents and Subagents..................c.ccovovievnniiiiniininnnins SO 47
3.5.8. An Alternate NOIQLION..............c.ccocccvviviniiviiniiniiiiciiiii s 48
3.5.9. Allowed INtEractions...........ccccc....oovviiiiivvvveneseeseiieeceesiiennns rter e reeae s e 51
3.6. ABPM Modeling Process.........cocccciiiiiiii e, 52
3.6.1. Modeling RUIES............cccccocuviviiniiiiieniciiciiiiivie s 53
3.6.2. MOAEIiNG PrOCESS.......ccocureuverieiiirieeieieeeeietesteae ettt sessesaeae 57
3.6.3. MOdel INIEQFILY........cocevreiieieiiriiniiricstccit it 59
3.7. -An;Example .. SO 60
3.8, SUMMATY..coomiiiiiriiiiicii s bbb e ne e s eae 64
. LINKING OOEM AND ABPM.....cccocevvrvrrerernrenacs I 65
4.1. Introductlon........................T e 65
4.2. Object- Orlented Enterprlse Modeling (OOEM)......ccoceevvininne I 66
L : :

4.2.1. OOEMconstructs..,...» | 66
422 Request Propagatzon .. ornrenensarassirssenss 67
423 | How To Generate An OOEM.................. 67
424{ Graphtcal Representatton Of QOEM.....cocovviviiiniiiniiiiiviniiiinieincirenni 68
42:5 A Shortcommg Of QOEM.......ooooiriiiiiiiviiiiicreicniecteen e 69
4.3. I%asw Of CONVEISION.. ..ottt | - 69
4.4, ABPM To OOEM Conversmn ... 75
.4.4..1. é)BPM Tcz OOEM Conversmn Steps R 75

4. 42 'ABPM Tc; OOEM Conversmn Step Denvatlon...-. 75
4.5. OOEM To ;\BPM Convers1on 81

o I S . , :

451 OOEM To ABPM Conversion Steps ... 81

4.5. 2 OOEM TO ABPM Conversion Step Derlvanons 82
4.6. Convertmg DeCOmMPOSILIONS......eccreiiirrereeiiiieiieienicnt e 89
4.7. Converting Subagents/Superagents And Subclasses/Superclasses..................... 89
4.8, SUIMIMATY .c..ureeiieiieiteeiteetteerereteresreesressaes s sbessrnesnssesbe e bbb ostsssrreesabessbesestassaressrnenes 89

5. DESIGN PRINCIPLES OF AN ABPM CASE TOOL 90
5.1. lntreduction ... 90
5.2, SYSteM GOaIS...ccceorrirririiiiiiiiici s 90
5.3. System ReqUITEMENLS......cc.covvrviiiiiiiiiiiiiiie e 90
5.4. Constructs TO REPreSent........cccecveviiiriieiinnirenceneiicniiie et snes e 91
5.5, USET INTEIACHONS.ceveieresereceeiscseseeae e s ssse s s sesessesensssessssessssssesnsesessnsesss 95

5.5. _1 Drawmg ABPM Dlagram Interactlons .. 95

5 5. 1 1 Internal and Extemal Agents .. 95

5 5. 1 2 Agents Sharmg A Mutual Attr1bute............} 95

5 5.1.3. Superagents and Subagents 96

| 5\ 5.1.4. Compos1te and Component Agents R 97
5”5 2 Dlsplay Optlon 98
5. 5 3 OOEM and ABPM Conversmns................; ... 99
5 5. 3 l ABPM To OOEM Converter... .. 99
5 5 3. 2 OOEM To ABPM Converter...........cococennieniininns s 101

5 5. 4 Semantlc Checker 104
5.6. De51gn leltatlons...: BT 106
5.7. Summary.........:...;...: | 107

6. CONCLUSIONS AND FUTURE RESEARCH 108

';‘\\)].‘\ Lo vi

6.1. ’Th'esis SUMMATY...c.utiitiriinerreieneerceene e sa e e 108
6.2. CONMTIBULIONS. ..ottt e 109
6.3. Limitations And Future Research..........cccoccoiiiininnnnnniiiin, 110
BIBLIOGRAPHY ..cuccniienininennesisrensessnssesssssesassnesassses “ 113
APPENDIX A - STEP BY STEP DERIVATION OF THE ABPM FOR THE
ACME WAREHOUSE MANAGEMENT CASE........ ...116
APPENDIX B - AGENT ACTIVITY TEMPLATES FOR THE ACME
WAREHOUSE MANAGEMENT CASE 146
APPENDIX C-A DISCUSSION OF THE BWW ONTOLOGY 153
C.1 Static Model of ThinES........cocoeevrrrrerinieesineresse s seessesens ettt 153
C.2 Dynamic Model of Things.......ccccovieninenininiiccirccr e 154
C3 S;a;jc Model Of SYStems........ccviiiiii e, 155
C4 Dynamlc Modei Of SYSIEMS...evivvireriererrierriieeennees —— I 156
APPEND‘IX D MODELIN.G.(.}RAMMAR EXAMPLES |) —— 158
D.1 (.;;)ioyeg‘Pgtri Nets:; | 159

D.2 IDEF3 oottt ssssssssssssssssssssssssssssssssssasssssassss s 162

List of Figures

Figure 3-1 ABPM AZENt......coovuiviiriiiiinrenseenreieseesesceeneeneens e 30
Figure 3-2 ABPM Meta-Model..........ccovvivviininiiniiniiiiiiinieicnnenes 36
Figure 3-3 Domain Representation............ccccccovviinininiiinnincceeicne e 38
Figure 3-4 External Agent Representation..........cc.cccovevinvinniininicininiiine e 38
Figure 3-5 Internal Agent Representation............ccccocvviiviiiiivininicicneeiciienene, 39
Figure 3-6 Resource Representation.........coccvvveciinniinniiiiiiiniiniineiienecnneenens 42
Figure 3-7 Agents Sharing A Mutual Attribute Representation............cccecceeenn. 43
Figure 3-8 Different Operations changing one incoming interface attribute......... 43
Figure 3-9 Composite Agent Representation........c..ceccevveiiieenenn JUTTTRURRRN 44
'Figl\L'lI“e .3.- tO Adding A Composite AZENt.....c.ccccvrrierrieiiiiriniinnie e 45
F igure 3-11 Decomposition Of A Composite AZeNt......cccevvreeerrirvveseenrenieeseenrennens 46
Flgure 3 12 Superagent and Subagent Representanon .. 47
Flgure 3-13 Creatmg A Superagent 48
Flgure 3 14 Example Compressmg Down. To Agent Interactxene 48
Flgure 3 15 Example Compressmg Down To Activity Name.......cocecvevevinennnne. 48
Flgure 3-16 Internal Agent Template......cccooveniiiiieiieecceecc e 49
Flgure 3 17 Resource Template..........................t; 49
Fi 1gure 3 18 External Agent Template B e 50
Fltht‘e 3-19 Comp051te Agent Template 50
Flgure 3-20 Subagent Agent Te1t1p]ate - R 51
F igure 3-21 Al‘lo“wed Irtteractione For An External Agent............ - R 51

Vo s,

Figure 3-22 Allowed Interactions For A RESOUICE.......c.couovevievirmmiiincmncniincniins 51

. . i
i ..

Figure 3-23 Allowed Interactions For An Internal Agent..........cccoocvviiinnnns 52
Figure 3-24 Compressed ABPM Showing Agent Interactions...........ccecevivvevrenenne. 62
Figure 3-20 ABPM For The ACME Warehouse Management Case.................... 63
Figure 4-1 Proposed Relationship And Its Foundations..........ccccoocviniiiinennnns 65
Figure 4-2 OOEM For The ACME Warehouse Management Case...................... 68
Figure 4-3 The Enterprise Modeling Approach.........cccccevviiiiininincncvnininiii 70
Figure 4-4 OOEM reinterpreted as a state change view..........ccccocvvnniinnnnnnnnn. 70
Figure 4-5 The Process Modeling Approach..........ccccevvveviininiinniininniininn, 71
Figure 4-6 ABPM reinterpreted as a state change VIEWeeeeeeeeeeseeersesssereees s 71
Figu‘re 4-7 'fhe Ontological Meaning Approach........................; 72

Figure 4-8 Demonstrating Step 1 External Object Conversion; ABPM To

Figure 4-9 Demonstrating Step 2 Internal Object Conversion; ABPM To

ISR -t .

Figure 4-10 Demonstrating Step 3 Request and Response Identification; ABPM
' NN . , . N T I

N LA

YR .

g 010) 1Y T e 78
Figure 4-11 Demonstrating Step 4 Interface Attribute Conversion; ABPM To
: O . . e . . .

[

Figure 4-12 Demonstrating Step 5 Internal Attribute Conversion; ABPM To

[P T,

N
R

DOEM. .ttt ettt st st st bbb s besae e sre st e e s aesresasesareeatessnerens 79
Figure 4-13 Demonstrating Step 6 Service Creation; ABPM To OOEM............. 80
L. E S AN TR DR L IR ' D o

Figure 4-14 Demonstrating Step 1 External Agent Conversion; OOEM To

Figure 4-15 Demonstrating Step 2 Internal Agent Conversion; OOEM To

Figure 4-16 Demonstrating Step 3 Outgoing Interface Attribute Identification;
OOEM TO ABPM...oiiiiiiiiiiiiieicieiccierceencrstesne sttt sns s sr s sa s 84
Figure 4-17 Demonstrating Step 4 Incoming Interface Attribute Identification;
OOEM TO ABPM...coiiiiiiiiiiiiicicieneiitetciente ettt 84
Figure 4-18 Demonstrating Step 5 Activity Creation; OOEM To ABPM............ 85
Figure 4-19 Demonstrating Step 6; Outgoing Interface Attribute Assignment;
OOEM To ABPM...ooiiiiiiiiinceccnccned e 86

Figure 4-20 Demonstrating Step 7 Internal Attribute Identification; OOEM To

Flgure 4-21 Demonstratlng Step 8 Operation Identification; OOEM To ABPM..88

Fi 1gure 4 22 Demonstratmg Step 9 Resource Identlﬁcatlon OOEM To ABPM...88

Flgure 5-1 T\he Q_OEM Metamodel.......c.ccoceviniiiiiiiniiiii 92
Figure 5- 2 OOEM metamodel thh ontologrcal mear'n‘ng mcluded 93
Flgure 5- 3 ABPM metamodel with ontologlcal meanmg included.......... 94
FlgurelA 1 Ofﬁce Clerk Is Stable............j.l...‘ e 122

Flgure A 2 After Step 3 For Order Status: Customer And Wlthdrawal

Request , Warehouse .. 124
Flgure A 3A Tree Showmg All Of The Changes................ e e 140
Flgure A-4 Solutlon to the ACME Warehouse Case..;...‘ 141
Flgure A 5 Creatmg An Employee Superagent p— e ereees 143
Flgure A-6 The Decomposmon Of Warehouse......... 144

A..'!'..., . ;

Figure A-7 Warehouse Is A Composite e | AT 145
Figure B-1 Compressed Agent Interaction Diagram..........cocvveeeereeecencecnnnvenennns 146
Figure B-2 Forklift Operator Agent Template..........ccccoovviniiinniiinniiinien, 146
Figure B-3 Office Clerk Agent Template.........cccoviviininiiniiiniinineiccniens 147
Figure B-4 Truck Driver Agent Template..........cccoovvviviiniininniiniiieciciens - 147
Figure B-5 Planner Agent Template..........ccocoviviininininiiiinccn 148
Figure B-6 Customer Agent Template..........ccooviininniinnniiii e, 148
F igure B-7 Employee Agent Template.......c..ccocvevoverciiniinniiinninienninnn, 148
Figure B-8 Warehouse Agent Template..........ccocevevevivinenniininiiniinninennnn, 149
Figure B-9 Warehouse Agent Template in ‘Composited’ View....; 149-150
F 1gure B 10 Warehouse Worker Agent Template......coccecveeviviinnicnvniinninnncne. 151
Flgure B 11 Warehouse Manager Agent Template.........;............; 152
Frgure D 1 Colored Petri Net for the ACME Warehouse Case.........ccccoeervenenne 160
Flgure D 2 Process F low Descrrptron for the ACME Warehouse Case 163

Frgure D 3 ObJect State Transmon Network for the ACME Warehouse Case...164

Flgure D-4 EPC for the ACME Warehouse Case......oo..overvivinniisiinennnnn. 167-168

'.x)'

List of Tables

Table | Relative Cost To Fix An Error....c..c.cccvvcvivininiiiiicinnen 3
Table 2-1 Effects Of A Redesigned Process.........ccoovvcvivvincnvnnnnniincninininennn. 8
Table 2-2 BWW Ontology COonstruCts......c.ceevvviiieiiinininiiniiciieiinnecieenne s 13
| Table 2-3 BWWP Ontological Analysis of Colored Petri Nets...........ccccceeeennn. 16
Table 2-4 BWWP Ontological Analysis Of IDEF3...ccoiiiiiiiiininiciicine 18
Table 2-6 BWWP Ontological Analysis of EPC.......ccccoooniininniininnniininnn 20
Table 2-6 Demonstrating MOO and MOC.........cccceoviiriiniieniininn e 21

Table 3-1 Mapping Ontological Constructs And Premises To Object-Oriented

Constructs AN PreMISES.....evveniireerrieriiieie ettt 26
. Table 3-2 MapPiNg SUMMATY...c...ooveriereeieniirrireencsrreee et e 35
Table 3-3 Relatmg The Rules To The ABPM And OBPM Algorlthms 59
Table 4-1 Conversxon Table ... 73
Table 4-2 Questlons ofmterest in an ABPM to OOEM Conversion...........cc....... 75
Table 4- 3 Questlons of interest in an OOEM to ABPM Conversron 81
RTINS oo . . SRV
Table A l Step 3 For Order Status Customer....T .. 123
Table A- 2 Step‘?; ?For Wlthdrawal Request :Warehouse Manager 123
Table A-3 Step 3 For Ttem Ex1stence Warehouse .. 124
Table A-4 Step 3 For Search Results: Warehouse Manager | s 125
Tahle A 5 Step 3 For Transport Form::Planner.......cccccocuvnninn. 126
Table A-6 Step 3 For Transport Schedule::Warehouse Manager 127
. SR .
Table A- 7 Step 3 For Order Status: Oft' ice Clerk.......... e 128
Table A-8 Step 3 For Transport Orders::Truck Driver..... 129
Xii

Y

Table A-9 Step 3 For Pickup Notification::Warehouse Manager.........c.ccc......... 130

Table A-10 Step 3 For Ready Items::Warehouse WOrker.........ccocceevveeinvenneenene 131
Table A-11 Step 3 For Move ltems::Forkl‘ift Operator......c..ccccevvivvucinniiinininieens 131
Table A-12 Step 3 For Truck Status::Planner.........ccccooviviiiininiiiniinnennnn. 132
Table A-13 Step 3 For Ready To Load::Warehouse Worker..........cc.cocoiin. 133
Table A-14 Step 3 For Loaded::Truck Driver........c.ccccccovneiininnnnininenicinnns 134
Table A-15 Step 3 For Dropoff Notification:: Warehouse Manager.................... 135
Table A-16 Step 3 For Ready Receiving::Warehouse Worker.............ccceenenene. 136
Table A-17 Step 3 For Ready To Unload:: Warehouse WOTKET e, 137
Table A-18 Step 3 For Update Form::Warehouse Manager...........c.cccoevvveenennen. 138
Table A-19 Step 3 For Amva] Warehouse...................f 139
Table A 20 Step 3 For Items And Documentatlon Customer.....- 139
Table D- 1 Declaratnons for the ACME Warehouse Colored Petri Net........... . i61

Xiii

Acknowledgements
This thesis would not have been possible without the assistance and guidance of
Professor Yair Wand, my thesis supervisor. I am also indebted to Professor Carson Woo

for his many insightful and helpful discussions.
I also wish to extend thanks to two incredible people Young Eun Lee and Hang (Jasmin)
Zeng. Without the emotional and personal support of the two of you I would never have

made it this far.

Thank you all.

Xiv

1. Introduction

Documenting the processes of an organization is not a new concept. Organizations
document what is occurring in a process in an attempt to capture what happens in the
organization. Process models can be used to show where time and money are being spent
and can identify things like inefficiencies and bottlenecks. One of the more common uses
of process documentation is for business process reengineering (BPR). Organizations that
can successfully reengineer their processes often achieve a large significant competitive
advantage over their rivals. BPR typically involves a technelogical integration that was
heretofore unseen. However implementing technology is a poorly performed function.
Typically information system projects run over budget, over time, or the output does not
perform what is required. Typically, the problems that occur can be traced back to
incomplete or uhclear requirements concerning what occurs in a process (Standfsh, 1994,

Cl0, 1997).

1.1 Mo;t;vt’zti‘o;t-

In the ﬁeld of MIS there ex1st many process modelmg methods mcludmg EPC, IDEFO,
IDEF3, UML Actmty Dlagrams EDPM, Petr1 Nets, and PERT/CPM to name a few. Of
the methods no_t- one has emerged as the dommant paradlgm for organizational process

modeling. This raises the rather simple question of “why not?”

Looking at the literature about process modeling in the MIS field, we see that there is a
growing trend to suggest using several process modeling languages to capture all the

relevant information. An example of this would be the work of Bosilj-Vuk3i¢ & Hlupi¢

(2001), in which they suggest using both Petri Nets and IDEF3 for business process
modeling. The combination of multiple methods suggests that the methods themselves
are deficient and cannot fully represent a business process fully on their own. This
apparently answers our question above about why. there is not a dominant process
modeling methodology, however this raises a new question of “Is there a way to

represent a process completely in one modeling methodology?”

Before we answer this question we also need to consider why it is important to create
better business process models. An information system is an artifact that represents
another ‘real world’ system. If we can create a better model of the real world system then

we should be able to create better artifacts that represent that system.

Deve]opmg an 1nft>rmat10n system has been defined as a three step. ttahst‘ormatnon of
Analy51s DeSIgn and Implementatlon (Wand and Weber, 1990, p. 125) The analysns
stage 1s where what an mformatton system amfact w1ll dois formahzed based upon some
process -mod.e], 1.e. .a representation of what will happen is created. The design stage is
where the requirements (i.e. the representation) are translated into a model of the
mformatton system The Implementatlon stage is where the mformatlon system is
1mplemented based on the output of the design stage Everything is built up from the
analysis stage th‘eref(‘)re if there are errors made in the analysis stage they will propagate

through to the information system itself (Grause and Wemberg, 1989 Wand and Weber,

1995). Thus, better representations lead to better systems.

' We acknowledge there could be others, such as development or testing, but for the purposes of this
section the three phases are sufficient. '

.4

In terms of cost to fix an error the earlier an error is found in system development the
cheaper it will be. If we consider the cost ratio the difference is staggering. This
difference is also sensible since it is less expensive to, for example, draw a new diagram

than it is to build a new system.

Phase in Which Found | Cost Ratio

Reéquirements 1
Design 3-6
Coding 10

Development Testing 15-40
Acceptance Testing 30-70

Operation 40-1000
Table 1. Relative Cost to Fix an Error (Grause and Weinberg, 1989)

In our work on conceptual mbdeling we will be focusing above the requirements stage of
system development. In theory this should have an even lower cost ratio if errors are
made and found here than 1. Hence if we can improve process models and catch more

errors there will also be an impact on the bottom line of an organization.

There is a means of fully representing things that has been successfully used in the MIS
field. Ontology, a philosophy éoncerhing what exists, has been applied to the area of
enterprise modeling aﬁd séfves as the basis of object-oriented enterprise modeling
(OOEM), however it had ﬁot been applied to process modeling until recently (see, for
example, Wand, Woo, & Jung, 2000, Wand & Woo, 2002 Zhao, 1995).

In an attempt to assis£ i.n“(liAeveloping a robust organizational process modeling

methodology to solve the problems mentioned above Wang (2002), proposed Ontology-

based process modeling (OBPM). Currently OBPM exists only as an algorithm.

1.2 Thesis Objectives

As mentioned, OBEM exists only as an algorithm. This makes both ~using OBPM difficult
and the output difficult to interpret. To address this deficiency we will/ present a graphical
modeling grammar. This notation will be from the berspective of object orientation. Thus
the concepts of encapsulation, composition, classification, and communication will be

considered.

A graphical notation unto itself is not necessarily useful if it is not clear how to use the
notation. Thus following the notation there must be a process for generating an Object-
Oriented OBPM. The algorithm presented in Wang (2002) is textual and was not

des1gned wuth graphlcs or object-oriented constructs in mind. Hence we will develop a

process for generatmg an Ob_]ect Orlented OBPM

Another pomt of mterest would be that since OOEM and OBPM are both based on the

Bunge -Wand- Weber (BWW) Ontology and are used to model dlfferent orgamzatlonal

perspectlves then they should be related. We will develop a means to convert from the

\

activity-based Object-Oriented OBPM view to the interacting agent-based OOEM view

using the BWWP ontology as the basis of conversion.

Further, a CASE tool for OOEM has been developed It stands to reason, since there is a
relatlonshlp between OOEM and OBPM and there exists a CASE tool for OOEM, that it

is possrble to develop a CASE tool for OBPM ThlS also leads to the conclusion that if

they can both be represented in a CASE tool, then conversion between OOEM and

OBPM can also be captured in a CASE tool. Therefore a set of design principles for an

Objected-Oriented Ontology-Based Process Modeling CASE tool will be dev'eloped.

The objectives of this thesis can be summarized as follows:
1. Formalize OBPM into an object-oriented graphical modeling grammar.
2. Present a process for generating object-oriented OBPM diagrams
3. Explore and discover the relationship between OOEM models and Object-
oriented OBPM models and present a means of conversion between them osing
the BWWP ontology as a basis of conversion.
4. To present a set of design principles for an Object-Oriented OBPM CASE tool

and link it to the architecture of an OOEM CASE tool.

1.3 Thesis Outline
This thesis consists of five chapters.

Chapter two provrdes an introduction to process modeling and the related terminology. It
also presents the dlfferent aspects of process modelmg Examp]es of process modeling
techmques are presented to illustrate the different process modelmg aspects, and to

illustrate flaws present in ubiquitous methodologies.

Chapter three concerns Ontology based Process Modelmg (OBPM) It formalizes OBPM

into an obJect orlented modeling grammar called object-oriented activity based process

modeling(ABPM). It then introduces graphical modeling grammar for representing

object-oriented activity-based process models. It also presents a process for how to
create an ABPM. The .chapfefr includes an example to illustrate these points.

!
Chapter four introduces Object-oriented Enterprise modelihg'(OOEM). Since the
foundations of OOEM and ABPM are similar, this chépter links the two methodoloéies.
It also provides steps relating io how to switch between an ABPM and an OOEM and |

vice versa. It will include a running example to demonstrate the results.

Chapter five is a look at the design principles for the implementation of ABPM as a
CASE tool. It discusses what to add to an existing OOEM CASE tool to both rep;'esenf
ABPMs and for conversion between OOEMs and ABPM. It ends with a discussion of the

limitations of the proposed design.

Chapter six concludes the thesis with a summary and discussion of its contributions. It

also suggests further research that can be done.

i

2. Process Modeling Introduction

2.1 Introduction

Information systems offer the potential to supplement the ability to increase revenues
while lowering costs in the value creation process.of a business by greatly improving
both the efficiency and the effectiveness of a process. This is where business process
modeling comes in to play in the information systems field. From the business process
engineering perspective a process model can serve as: a focus for discussion, a way of
communicating a process to others, a starting point for analysis, a starting point for
design, a baseline for monitoring process improvement, and control for a real world

process (Huckvale and Ould, 1994).

Before we ‘present ‘the object-oriented ontology-based process modeling grammar, we
will provide a d'iscussion of the basic concepts behind business process modeling. We
will also discass hthe basic tenninology used in ousiness process modeling. We v;/ill then
look at whati h.as\ been 'proposed for the ideal process model. We then delve into the
ontologlcal perspectwe what it is, and why it is a better perspectlve th.an other views. We
will then look at several busmess process modeling languages These languages include
Petri Nets, Integrated Definition 3 (IDEF 3), and Event controlled Process Chains (EPC)
The languages’ are’ some of the most ublqultous process modelmg techmques. These
languages_yvi!l be analyzed in terms of their (process-oriented) ontoloéical completeness

and (process-oriented) ontological clarity. Our goal is to demonstrate how the languages

are deficient and why object-oriented ontology based process modeling will be beneficial.

2.2 Definition of Business Process modeling

All businesses strive to achieve their goals via some sort of process. A business process

can be defined as the sequence of activities that lead to value creation for the consumer of

a business’ goods and services. If a good or service is perceived to have a higher value

then consumers should be willing to pay more for the good or service. That said it stands

to reason that businesses will want to analyze their processes, with the goal of improving

them, so that their profits will be increased.

It has been argued (e.g. Hui, 1997, Ronﬁney, 1994, VBM, 2004) that redesigning a

business process can have many impacts on and benefits for an organization. A brief non-

exhaustive list of the impacts and benefits is presented below in table 2-1.

Impact of redesigned process

Benefits of the impacts

Task elimination
Parallel work enabled "

Decreased defects
Eliminate staff

Nk —

activities

Bottleneck and delay elimination

Eliminate rework and redundan

ISANN A S e

Less time spent on non value-added

— 0 00 N

Improved productivity
Reduced cycle times
Reducedcosts * '
Improved customer service

‘Improved quality and consistency

Increased revenues/charging higher
prices ‘
Increased competitiveness
Improved forecasting

Better capacity utilization

. Quicker delivery of new products

and services

11. Greater workload capacity

Table 2-1 Effects of a redesigned process (partially adapted from, Hui, 1997, p.8)
. A I ST :

Before we define business process modeling we need to look at and consider modeling

v .

itself. A model is an abstraction from the real world of something in the real world. In 4

this abstraction we leave out the facets of whatever we are modeling that are not relevant,

and emphasize those that are pertinent.

If we combine this definition of mddeling with our above deﬁniiion of a business process,
we can define business process modeling as: the creation of an abstract representation of
the real or proposed sequence of value creation activities performed within an
organization in order to achieve its business goals. Adapting from Wang (Wang, 2002),
the business process model will therefore include: participants in the business process, the
events that start activities in the business process, the activities triggered by the events in
the business process, the sequence of the 'activities of the businqss process that will be
pebrformed, .the sequence that events in a business process occurred, the resources that are
utilized iﬁ aﬁ activity.ofa business process, and t-he inputs and oﬁtputs of each ;lctivity of

the business process.

2.3 The Terminology

In an analysis of process modeling methodologies, Wang (Wang, 2002) found that
traditionally, the following constructs have been used in business process modeling:
process, agent, non-agent or resource, activity, operation, event, state, data, logical

connector, business rule, input, and output.

However, Wang (Wang, 2002), points out that many languages either do not include all

of these constructs (construct incompleteness), use many elements of the modeling

language to represent the same construct (construct redundancy), or use the same

construct to represent many elements (construct overload). This causes process models

using these languages to be incomplete and/or ambiguous. -

2.4 The Ideal Process Model |
Various process modeling methodologies focus on different aspects of what .is being
- modeled (Wang, 2002). The majority of process modeling languages fall into four
categories (Huckvale and Ould, 1994, citing Curtis et al., l992):
K , 1. Functional. A functional process modeling language is concerned with
A l representing what activities are being performed and the dataflows that connect
them. Examples in this category include EPC (Eyent-controlled Process Chains),
IDEF3 (Integrated DEFinition 3), and EDPM (Event-Driyen Proc‘ess Modeling).
2. Behalvioural. A behavioural ‘process modeling language is concemedeit\h |
representlng when activities oc’cur. They use sequencing, feedbacl,c loops,
1terat10n dec1s1on mak1ng, triggers, and the like. Examples in this category
mclude PERT/CPM (Project Evaluation Review Techmque/Crmcal Path
Method), P‘etn Nets, and EPC. |
3. 6rganiaational. Aniorganizational process modeling language is concemed with
representing ‘w.here and by whom activities are perfonned. They also include the -
physical commumcatron mediums and storage medla Examples in thlS category
1nclude‘ hl‘PC and EDPM.
4. Informatlonal An 1nfom1at10nal process mo‘deling language is concemed with

representmg the data entities that are generated or mampulated by a process such

as documents data artifacts, and products This 1ncludes thelr structure and

interrelationships. Examples of this include DFD (dataflow diagrams), IDEF3 and

EDPM.

Due to the fact that these four categories cover different areas, using a methodology from
each category should cover all the information necessary to fully represent a process.

However (as noted by Wand & Weber, 2002) this leads to potential issues of redundancy
and sufficient coverage. Redundancy refers to the same construct being represented more

than once. Sufficient coverage refers to all the relevant items of interest being captured.

This leads to the premise if a modeling language included all of the constructs from
section 2.3 it would thus cover the functional, behavioural, organizational, and |

informational perspectives”. This is one of the bases for Ontology-based Process

Modeling (OBPM). OBPM will be discussed in chapter 3.
2.5 Ontology

Ontology is a bran;:h of phllosophy about what exists in the real world It is of prime
concern when it comes to information systems modeling smce“the model should
accurately reﬁéct -what does or will exist in the real world®. If the model doeé ﬁot
accurately reflect this, then anything created based on the model (in this case an

information system) will itself be deficient.

.
ot

? Data itself would be left out of the ideal model since as Huckvale and Ould (1994) note data is typically
used to record the state of a process due to people having poor memories or as a means of implementing a
transaction, The transactiqn,i}sel'f is important not how it is implemented at this level.

According to Wand and Weber (Wand .and Weber 1993, ‘lv995) for a grammar to be
ontologically expressive, it needs to be both ontologically complete and ontologically‘
clear. Ontological completeness refers to there being at least one construct in the
grammar for every ontological construct. If this does not occur then con'struct

incompleteness (or construct deficit) occurs.

Ontological clarity refers to how clearly an ontological construct is represented in a '
grammar. Ontological clarity can be undermined via construct overload, construct
redundancy, and constru;:t excess. Construct overload occurs when an elqment of the
grammar represents more than one ontological construct. Construct ré;iundancy occurs
when more than one element of a grammar represents a single ontological‘constmct.
Construct excesé ‘occlurs wher; there is a-construct in the grammar that does not represer;t

any ontological construct.

Typically when a modeling grammar is ontologically deficient predictions can be made

IR I

as to where the language will suffer in capturing information about the domain of interest.

Approaches to solve the deficiencies usually involve usfng more than one grammar to

[RN B v f

model what is going on. However there is no formal basis for selection of which

grammars to use other than rules of thumb or things seeming to fit and workout.

3 In this case what will exist is not definite, but rather refers to a proposed information system that may or
not be built.

Object-Oriented Enterprise Modeling and Ontology-Based Process Modeling are both
" based on what has come to be known as the Bunge-Wand-Weber (BWW) Ontology. The

main principles of the BWW ontology can be summarized as follows (Wand and Woo,

1999):
e The world is comprised of things
e Things possess properties
¢ Things interact
e Every thing changes and every change changes things
e Things with similar properties can be grouped into classes

The constructs of BWW Ontology can be organized into four categories as shown in table
2-2 below (Zhao, 1995, Wang 2002). A complete discussion of the BWW constructs can

be found in appendix C.

Category BWW Ontology Construct

Static model of a substantial individual Thing, composite thing
' o ' ; Property, intrinsic or mutual property, hereditary or emergent
property*
State, conceivable state space, state law
Class, kind, natural kind

N —

Dynamic model of a substantial individual Event, conceivable event space
Transformation, transformation Iaw

History

Coupling

System

System Composition
system environment
system structure
system decomposition
subsystem

level structure

Static model of a system -

Stable and unstable state
Internal event and external event
Well defined event and poorly deﬁned event

Dynamic model of a system

W0 NN AW =W = bW

AR . -~ Table 2-2 BWW Ontology Constructs

* Here the use of ‘or’ does not mean intrinsic is interchangeable with mutual and hereditary is
interchangeable with mutual. ‘Or’ in this sense is a restrlcnon that the property can be one ofthem but not
both. :

2.5.1 BWWP Ontology

‘Some of the BWW ontology concepts are closely related to the concepts of process. The
process related BWW ontology concepts have been adapted to create the BWWP (BWW
Process) ontology. The BWWP éonstructs include the BWW ontological constructs of:
thing (simple thing and composite thing), property (intrinsic property and mutual
property, hereditary property and emergent propérty), state (stable state and unstable
state), event (internal event and external event), transformation, apd law (state law and
transformation law). The new constructs added in BWWP are: actor, non-actor, actuator,

propagator, and process (Wang 2002).

The new constructs of BWWP are explained as follows. A thing can be either an actor or

oMy e

a non-actor. A non-actor does not change the state of any thing including the non-actor
itself. Only an actor can change the state<of a non-actor. An éctor iAs an agtz;ator {f it
changes the state of at least o;le other- thing (éctor or non-ac’tor). An ac‘t.uator isa
propagator. if it.‘cihanges the state of at léast one éther actor. A process is a set of actors
and non-act;rs thét interagt with one another. A process is activated one or moré actors is
changed from‘ a stable‘ state to an unstable said. A process can be triggéréd by one or
more evelnts.‘W};en éll actor.s“ aﬁd non-actors are in stable étates a p‘ro';:essi is completed

(Wang, 2002).

2.6 Current Business Process Modeling Techniques

The purpose of this section is to demonstrate the differences between modeling

methovdologies and highlight their ontological deficiencies. The methodologies we have

chosen include Colored Petri Nets, Integrated Definition (IDEF3), and Event-controlled
Process and Chains (EPC). Petri Nets and I{Ii)'EFB were chosen due to the aforementioned
suggestion of using them together. EPC was chosen due to the fact it was developed and
is used by one of the largest providers of ERP providers SAP. It is beyond the scope of
this paper to perform an ontological analysis on all business process modeling techniques.
In order to perform this comparison we require a common reference point. The modeling
languages will be analyzed using the BWWP ontology. For those unfamiliar with the

grammars, an example using each grammar is provided in Appendix D.

2.6.1 Colored Petri Nets

Table 2-3 maps the Colored Petri Net constructs to BWWP Ontological Constructs.

It is readily apparent that Colored Petri Nets suffers from many ontological deficiencies.
First of all; construct deficit is present with respect to properties.-A'token is possessed by
a place, making it a property of a place. However there is no concept of an intrinsic token
possessed naturally by a-place, any token can lee;ve or enter a placé based on the firing
rules established. There is also no concept of an intrinsic arc or intrinsic firing rule. Other
places and transitions need to be established to have arcs and firing rules. Since there are

no intrinsic properties, there can be no hereditary or emergent properties.

The second ontological deficiency Petri Nets suffers from is construct redundancy.

Consider the BWWP construct of a property. Where there is a mapping, there is overload

between arcs and tokens. Is a property a token, or one of the variations on a directed arc?

i

BWWP Construct Colored Petri Nets Construct

Thing Place

Simple Thing. Place .

Composite Thing Place

Actor Place

Non-actor Place

Actuator Place

Propagator Place

Property Token, Directed Arc, Inhibitor Arc, Clearing Arc,

Priority Transition

Intrinsic property

N/A

Mutual property

Token, Directed Arc, Inhibitor Arc, Clearing Arc,

Priority Transition

Hereditary property N/A
Emergent property N/A
State Distribution of Tokens

Stable state

No transitions are enabled

Unstable state

One or more transitions are enabled

Event

Transition

Internal event Transition
External event Transition
Transformation Transition

Law Directed Arc, Inhibitor Arc, Clearing Arc, Priority
Transition :
State law I Directed Arc, Inhibitor Arc, Clearing Arc, Priority

Transition

Transformation law

Directed Arc, Inhibitor Arc, Clearing Arc, Priority

Transition

Process

Colored Petri Net

Taple 2-3 BWWP Ontological Analysis of Colored Petri Nets

Finally Petri Nets also suffers from construct overload. Arcs can represent both properties

and laws. The construct of a transition is also overloaded. IS a transition a transformation

or an event? .

Since it suffers from construct deficit, construct redundancy, and construct overload Petri

Nets are both ontologically incomplete and ontologically unclear.

2.6.2 Integrated Definition 3
IDEF3 has two main components for modeling: process flow description and object state
transition networks. Table 2-4 maps the IDEF3 constructs to BWWP ontological

constructs.

We start the analysis of IDEF3 with the process flow description diagram. Process flow
description diagrams suffer from construct deficit, construct overload, construct

/
redundancy, and construct excess. Construct deficit is readily apparent from the complete
lack of a construct to represent a thing. Also, properties, states, and events are only
partially represented. The UOB, links, junctions, and referents are all overloaded. That is,
they are used to represent more than one ontological construct. Construct redundancy
occurs wrth-property, law and process Lastly, the excess constructs occurs with
decomposed UOB UOB numbermg, link numbermg, Junctlon.numbenng,)partlal

descriptions, elaboratrons, and notes. Thus process flow description diagrams are neither

ontologically complete nor ontologically clear.

Object state transrtron networks suffer from construct deﬁcrt construct overload
construct redundancy, and construct excess. Construct deﬁcrt exist smce there 1s no

representation of a property and only partial representations of thing and event. Construct

A N

overload is present since a referent can be used to represent both a transformation and an

event. Construct redundancy occurs with state, event,]aw and process. Construct excess

v - o) . - & R TN

exists smce UOB numbermg, link numbermg, Junctlon numbermg, partlal descrlptlons

elaboratrons, and notes have no ontological meaning.

Object State

BWWP Process Flow Enhanced Transition

Construct Description Transition Networks | Schematics

Thing Object Object, first order objects,
second order objects

Simple Thing Object kind symbols Object kind symbols

Composite Hiding Object State Hiding Object State

Thing information information

Actor Individual symbol

Non-actor Individual symbol

Actuator

Propagator '

Property Links,Junctions,referents Links Junctions,referents Links,Junctions,referents

Intrinsic

property

Mutual property | Links Relation

Hereditary

property -

Emergent 7

property

State Activation plots Object state symbols, Object state symbols,

interval diagram

interval diagram

Stable state

State conditions, Exit
Conditions

State conditions, Exit
Conditions

Unstable state

State Conditions, Exit
Conditions. . -

State Conditions, Exit
Conditions- -

UOB .

Event UOB, scenario, Referent . UOB, scenario Referent
Internal event :

External event

Transformation UOB Link, referent Link, referent

Law Links, junctions, referents | Link, junction, referents Link, junction, referents
State law Simple precedence links, Weak transition link, Weak transition link,

constrained precedence
links, dashed links,
junctions

strong transition link, call
and continue referent

strong transition link, call
and continue referent

Transformation
law

Simple precedence links,
constrained precedence
links, dashed links,
junctions

Entry Conditions,
Transition Condition,
referent, junctions call and
wait referent, referents
attached to the same point,
temporal indeterminancy
marker

Entry Conditions,
Transition Condition,
referent, junctions call and
wait referent, referents
attached to the same point,
temporal indeterminancy
marker)

process

Scenario, activation plots

$cenario, Object
schematics, complex-
transition schematic

Scenario, Object
schematics, complex
transition schematic

Decomposed UOB, UOB
numbering, link
numbering, junction
numbering, partial
descriptions, elaborations,
notes

UOB numbering, link
numbering, junction
numbering, partial
descriptions, elaborations,
notes

UOB numbering, link
numbering, junction
numbering, partial .
descriptions, elaborations,
notes '

R}

Table 2-4 BWWP Ontological Analysis of IDEF3- R

I

Enhanced transition schematics suffer from the same problems as object state transition
networks, except the construct deficit is lower. Enhanced transition schematics partially

represent properties, and better represent a thing than object state transition networks.

Since the IDEF3 diagrams are meant to be used together, we need to consider whether
they achieve minimum ontological oveflap (MOO) and maximum ontological coverage
(MOC). MOO is when an ontological (':onstruct is represented in only one diagram with
the goal of reducing representations of a domain that are in conflict. MOC is v;/hen in the
combination of diagrams covers all phenomena with the goal of having a complete
representation of the domain (Wand and Weber, 2002, citing Green 1996). MOO is not
achieved in IDEF3. An example oftﬁe lack of MOO ig process flow descriptions use
activatién il).llc;ts to represent states wﬁereas the object tl;axllsition diagrér;ls usc; object state
symbols énd ~in:terval _diagr‘angs. MOC is not achieved is IDEF3. An exa-lmrljlt‘a of the lack

Y

of MOC is that none of the diagrams have a construct to represent an intrinsic property.

2.6.3 Event-controlled Process Chains

Table 2-5 Maps the EPC constructs into ontological constructs

To begin, EPC suffers from construct deficit. The concepts of Property, Thing, and Event -

are only partially represented. Since things are what perform actions, are affected, etc.

PR

and things are not fully represented we cannot fully represent what performs actions, are

affected, etc. When we look at event it is not immediately clear about those that are

L i

internal or external to the domain of interest. It can be argued that the event that starts the

process chain is external, but how is it known which events generated in the domain

affect.something outside the domain.

BWWP Construct

EPC Construct

Thing

Organizational Unit

Simple Thing

Composite Thing

Actor

Organizational Unit

Non-actor

Actuator

propagator

Property

Intrinsic property

Information/Material flow

Mutual property

Hereditary property

Emergent property

State

Stable state

No Events occur

Unstable state Event

Event Event

Internal event:

External event

Transformation Task

Law Control Flow + Connectors

State law Control Flow + Connectors

Transformation law Control Flow + Connectors
Process

Process

o Information Object, Organization assignment

Table 2-5 BWWP Ontological Analysis of EPC °

To end EPC also suffers from construct excess since the information object construct and

organization assignment constructs have no BWWP ontological meaning.

Since it suffers from construct deficit, and construct excess EPC is both ontologically

incomplete and ontologically unclear.

2.7 Summary

If we ju‘st do a simple count of the number of constructs each grammar has (see table 2-6)

our three grammars never achieve MOC even when all three are used together.

20

IDEF3

BWWP Colored Process Object . | Enhanced | Event- | Total
Construct | Petri _Flow State | Transition | Driven

Nets | Description | Transition | Schematics | Process

' Networks Chains

Thing 2 0 1 3 1 7
Simple Thing 2 0 1 1 0 4
Composite 2 0 1 1 0 4
Thing
Actor 2 0 0 1 1 4
Non-actor 2 0 0 1 0 3
Actuator 2 0 0 0 0 2
propagator 2 0 0 0 0 2
Property 5 3 3 3 0 11
Intrinsic 0 0 0 0 1 1
property
Mutual 5 1 0 1 0 7
property
Hereditary 0 0 0 1 0 1
property
Emergent 0 0 10 0 0 0
property
State 1 0 2 2 0 5
Stable state 1 0 2 2 1 6
Unstable state 1 0 2 2 1 6
Event '~ 1" 1 - 3 3 1 9
Internal event 1 0 0 0 - 0 1
External event | 1 0 0- 0- 0 - 1
Transformation | 1 1 2. 2 1 7
Law | 3 3 3 2 12
State law 5 4 3 3 2 18
Transformation | 5 4 7 7 2 25
law ’
Process 5 2 3 3 | 14
No mapping 0 7 6 6 1 20

Table 2-6 Demonstrating MOO and MOC

Also the multiple grammars really begin to make problems with MOO grow. To solve
this problem we suggest using one grammar designed using the BW WP ontology namely

ontology based process modeling (OBPM). OBPM is discussed in the next chapter.

21

3. Object-Oriented Activity-Based Process Modeling (ABPM)

3.1 - Introduction e e S N

The purpose of this chapter is threefold. The first goal is to introduce Ontology;Based
Process Modeling (bBPM). The second goal is to present a modeling grammar that can
be used to éenerate object-oriented activity-based process modeling diagrams. The third
goal is to introduce a modeling process to guide in the construction of ABPM diagrams in
a systematic way. This chapter closes with an example of an ABPM diagram based on the

ACME Warehouse Management case.

In order to accomplish the goals of this chapter the following concepts will be introduced:
agent activity, operation attribute resource, and law The relationships between the

SENIEE Lo oo B DA

concepts will also be developed.

3.2 Ontology-Based Process Modeling (i OBPM)

After havmg identified so many deﬁmencxes with other tibiqu1tous process modelmg
methodolo'giesthe question of is there a better method to capture bixsmess processes
remains? The answer is yes and no. Ontology-based process modeling (OBPM) has been
proposed; OBPM attempts Ito.capture what things are involved in a process, what they do,
and what is.done to them. It does have the advantages of being real world rather than
information systems oriented which allows for representations of a process independent
of howlit will be 1mplemented .ontologically complete and clear vand formally defined

rules to follow for constructing a business model to eliminate ambiguity and confusion,

however this methodology is neither graphical nor is the output easy to understand. The

22

results of an OBPM look like computer code. As noted, there are cognitive advantages to
visually repre‘sentir’tg inforrhation. “The humah ability to extract information from visual
scenes is much more fundamental than is our ability to manipulate data verbally or
arithmetically” (Zhang 1998, citing Schwartz and Howell, 1985) “Model diagrams enable
the analyst to extract process, understand, and respond to much relevant information. The
transfer of information is fast, accurate, and the user learning curve is minimized; the
analyst can thus build a conceptual model of ‘the problem with fewer perceptual errors”
(Zhang 1998, citing Brown 1988) “The diagrams can also serve as the interface between
a domain analyst with his/her customers. The visual model is indeed worth thousands of

words in terms of communicating with customers.” (Zhang, 1998, p.22)

Another problem wnth the current incarnation of the OBPM algorithm is that 1t is based
upon a set of modelmg mtegrlty rules. The premise behmd basmg the algorlthm on a set
of i mtegnty rules is that if the algonthm is followed correctly then any models generated

using the algorlthm w1ll be correct. The flaw with this approach is that not all ofthe

modelmg mtegnty rules are used in the OBPM algorithm.

. S o

The rest ofthls chapter is organized as follows to begm there will be a dlscussmn of the
OBPM algorlthm th|s will be followed by a dlscussmn concemmg object-orlentatmn and
its apphcatlon to OBPM a notation for creating obJect orlented actlv1ty -based process

models will be mtroduced, and then a process for creation and vahdatlon of object-

oriented activity-based process models will be presented.

23

3.2.1 OBPM Algorithm

The OBPM algorithm is presented here, It has three parts; the main routine, the affected
thing subroutine, and the decompose subroutine. The algorithm serves to identify: Events
(what triggers instability in things in a process), Activities (what happens in response to
events), Operations (the transformations that occur), and Resources (what is used during

transformations)

The main routine begins the modeling process. The events that trigger the process from
the environment are identified. For each triggering event the things in the environment
that are affected should be identified. Then the subroutine affected thing should be
invoked for each thing that was affected.

The affected thmg subroutme begms with 1fa thing is changed from a stable toa stable

)

state |t IS con51dered to be a resource and thls subroutme exits. If the thmg changes from
. t . . r - ST P

stable to unstable it is consndered to be an agent Agents mvoke the decompose

subroutme When the decompose subroutine exits and returns to the affected thing

. ¢ .
subroutine, the affected thing subroutine will exit and return to the main routme

The decompose subroutine 1dent1f ies the sequence of events that occur from when a thing
is affecte\d (becomes unstable) until the agent is ﬁnlshed changmg (becomes stable) The
entire sequence of events is known as an activity. Each event in the actwnty is an
operation. If in the course of the actlvuty other agents are affected then these agents will

themselves invoke the affected thing subroutine.

The output of the algorithm is a series of lists. The first list is the agent list, those agents
that participate in the process. Forv each agent there is also a list of the activities the agentA
performs and their sequence (called the Activity List) and a list of the operations for each
activity and their sequence (called the Operations List). The algorithm also produces a
resource list of theresources that are used in the process. The last list the algorithm
produces is an event list which is a list of the events that happen in the process, and their

sequence.
3.3 Object-Oriented Activity-Based Process Modeling Grammar

The concept of object orientation has been applied to MIS and is the basis of object-

orlented S);stenls There also exist graphlcal modeling languages that are obJect -oriented
such as OOEM Object-oriented modeling languages can also be used to create a model
of what is occurlmg mdependent of any implementation. It has been noted that object-
orientation allows a process model to be comprehenswe understandable changeable
adaptable and reusable (Hui, 1997). As shown in table 3- ll Wand and llVoo (2002)

previously mapped ontolog1cal constructs and premises into object constructs and

premises.

25

Ontologically-Based Concept or Premise |

Object Construct

Principles

The world is made of things possessing properties*

Objects and their properties are the fundamental
modeling constructs*

All things change and all changes are tied to things*

Encapsulation: state and behaviour are combined*

Things can combine to form composites*

Objects can form composite objects*

Things can affect each other’s state evolution*

Objects interact*

Things can be categorized into classes defined by
properties*

A class is a set of objects sharing a group of the
same properties*

Concepts

Thing* Object*

Actor Object with services

Non-actor Object with no services

Actuator Object with at least one joint state variable that it
owns, and one service to modify it.

Propagator An actuator object with at least one joint state
variable that it owns shared with an Actor Object

Properties* Not Modeled directly. See attributes*

Attribute functions*

Attribute*

Attribute representing inherent property*

Internal state variable*

Attribute representing mutual property*

Joint state variable*

State*

State (attribute values)*

Internal transformations*

Services*

Composite thing*

Composite objects*

Interaction

Communication (via requests)*

X acts-on y*

x and y have a shared state variable

modifiable by x
only* ...) _

Functional schema*

Definition of a class*

Event* .

State change* -

External event*

Request*

Internal event*

Action (execution of a service)*

Law

Service restriction

Process -

System

Table 3-1 Mapping Ontological Constructs And Premises

*denotes original mapping (Wand and Woo 2002)

As defined (Wart, Wand, & Woo, 1993) there are three general

To Object-Oriented Constructs And Premises

~

concepts of object

orientation: classes and objects, association, and object communication.

3.3.1 Classes and Objects

A class is a collection of things that share common'ifeatur"'le's'. An object is an instance of a

class. An object encapsulates its attributes and behaviours, that is, they are included with

the definition of the object. For example, my pet trout is an instance of the class trout. We

know that my pet trout has fins (property) and will swim (behaviour) from the definition

of a trout

When an object is defined only the properties and behaviours relevant for our purposes is
defined. Returning to our example, if we are hungry fishermen our definition of a trout
(probably) does not include any mention of the light refraction index of the skin of a
trout, but rather the fact it is an edible fish. Thus a definition of an object or class is not

always perfect. This is the object-oriented concept of abstraction.

As mentioned above, objects have properties. These are referred to as attributes.

Attrlbutes only possessed by an obJect are mtemal attributes, attrlbutes shared with

LN e

another object are mutual attributes. When the values of attributes are measured the result
is the state of the object. For example if our trout has fins, and the measure of the fins is

broken, we can say the state of the trout is injured.

Services are the behaviour of objects. Services are what change attribute values. They

have a well defined interface that is used to change attributes. When our trout friend

ot

swims the value of the attribute stomach contents will decrease and our trout will become

' . -
[N . e '

hungry.

. N ISR . . .
Encapsu]ation refers to storing the attributes and services (i.e. the state and behaviour), of
an obJect together so that other objects do not need to worry about unnecessary

tl
.-..- v .

, 1nformatron This means that only the objects behaviour can access or change its state.

27

\

The only way one object can find information about another is to send a request to the
object. If our trout wants to know if another (bigger) trout is hungry it can swim by its
line of sight (sending a message, “Hey, I’'m a smaller trout™). If the other trout tries to eat

our trout in response, then our trout knows the bigger trout is hungry.

Instantiation is a particula_tr occurrence of an object that can be distinguished from other
occurrences of an object. My pet trout is an instance that is different from all the other
trout objects that may exist, since its attribute denoting ownership has a value of “me
Services and attributes are always inherited from the class to which an object is a member
of. Hence all instances of trout will have the attributes and services of fish. However,
dlfferent mstances can have tiltferent values for thelr etttthhtes For exatmple my pet trout

may have speckled as 1ts skm color, whereas your trout may have rambow as its skin

color.

3.3.2 Association
'Ob_]CCtS can assocnate that 1s two or more objects can have a relatlonshlp The most.

1mpoxtant relatlonshnps between obJects are aggregation and c1a551ﬁcat10n

An aggregation is a collection of component objects. The aggregation can be
dlsaggregated into 1ts component obJects Aggregations typlcally possess characterlstlcs

that are not present in the individual components themselves A computer is an

-aggregation of a CPU, monitor, keyboard, etc. Combined they possess a new

P pAS

characteristic, processing power, that is not present in the components. A computer can

then be disaggregated (disassembled) into its components.

Classification refers to being able to create generalizations and specializations to
represent knowledge about classes. A generalization refers to identifying common
properties of things to assist in the creation of abstractions. For example, if we notice my
computer has a 17 inch monitor and your computer has a 15 inch monitor we may decide
a computer class can be created with the attribute moﬂitor size. A specialization is a more
specific class (subclass) that inherits everything from its parent (superclass). Typically a
subclass has attributes and services that the superclass does not. A laptop can be a
subclass of the class computer. It has all the properties of a desktop, for ¢xample

processing speed, and properties that a desktop does not have such as battery type.
3.3.3 Object Communication

Objects interact to request other objects perform services th.at the requesting‘object
cannot perférm. The services can be used to enforce‘ VC(I)n‘s-trz‘gints .on. the rélatidnship. A
student cal;i' request a‘.pro.fesscl)r to op(;.n a classroom. A .p.ro‘f-eslsor will not open the
classréc;m it; it does nof know that the student is a member of the profes.;,or"s i.nstitution.

ST

This enforces the constraint that professors only open classrooms to registered students.

29

Objects can interact with those both inside and outside the system. External objects make
requests to internal objects. Internal objects can make requests to both internal and

. /
external objects.

3.3.4 The Combination of OBPM and Object-Orientation

Object-orientation, obviously, centers around the object. OBPM centers around the agent.
\

According to the BWWP ontology an agent is a thing that possesses properties and

undergoes change via operations. An object possesses attr.ibutes and performs services. A

service is how an object _changes.lThe combined construct of an OBPM agent and an

object will hénceforth be referred to .as an object-oriented activity-based process

modeling agent (or just ageht for short). The aforementioned links are still ambiguous

and unclear. Figure 3-1 is an illustration of what we now call an agent.

The Agent
{ Change |) — ;

Intfarnal +—feseeeeeen 4 Qperation Incoming Change due to |

Attributes i Triggers ;| Interface ! another Agent |

Attribute ——=—=="

Laws -
. i Change | | Outgoing ——

freeeseieet Interface "|1-roromieseeeeneeee ey
. : Change in other Agents :
Attribute i (Change Propagation) !

Figure 3-1 ABPM Agent

. . N
Vo ' . v
v . e Cae v . ‘ R A N L

Here is a brief definition of Figure 3-1. An agent “communicates” with another agent via

changes. This “communication” can take on two forms. First an agent can have an

interface attribute changed by another agent. Second an operation of an agent may change
e . Hoes)

an interface attribute of another agent. A change to an interface attribute may trigger an

operation. An operation’s triggering or output may be governed by laws. An operation
- .)

30

changes either an internal attribute or an outgoing interface attribute. Each of the

constructs in figure 3-1 is discussed below.

3.3.4.1 Attributes

Recall that in BWWP attributes are used to represent the properties of a thing, which in
turn represent the state of the thing. In ABPM attributes can be used to represent the state
of the Agent. In figure 3-1 there are two main kinds of attributes; interface attributes and
internal attributes. Internal attributes are not known to other agents and can only be
accessed or changed via the services of the agent. This demonstrates object-oriented
principles of both encapsulation and object independence. Interface attributes can be

accessed (changed) by other objects.

Interface attributes model mutual properties of things. Agents interact with each other via
changing the value of mutual properties. Therefore all interface attributes have two
agents assomated with them an agent domg the changmg (an outgomg mterface

v

attrlbute) and the agent belng changed (ani 1ncommg 1nterface attrlbute)

Internal attnbutes are solely possessed by an Agent and are unknown to other agents. An
internal attrlbute is what is changed by an 1ntemal event in an agent

3.34.2 Operatlons and Change Propagatlon

Changes result from 1nteract10ns between agents. There are two types of changes

possible; a change in an agent caused by another agent and a change in an agent caused

B P

31

by itself. For our purposes a change can be defined as altering the value of an attribute.
An agent causes change in another agent by changing the value of an outgoing interface
attribute it owns which is associated with the incoming interface attribute of another

agent. An agent causes change in itself by altering the value of an internal attribute.

According to the object oriented literature a service is how an object does anything.
Hence for an object to affect itself or another object it needs a service. That said, in
OBPM agents affect themselves or each other via changes. Changes are carried out as

operations. Hence a change is implemented through an operation in ABPM.

When an agent has an interface attribute changed resulting in instability the agent
performs one or more activities to become stable. As part of an act1v1ty the agent may
change one or more agents causing them to become unstable These agents may then

change others, and so on. This is known as change propagation.

3.34. 3 Act|V|t|es

An activity is what happens in an agent from the t1me when it becomes unstable to the

LIS

time when it is stable All agents are imtially stable Instability is caused by an incoming

interface attribute bemg changed. When an activity occurs operations oceur until the

o
1

agent is stable. The operations will change some combination of internal and outgoing

interface attributes. Thus an activity is made of operations that use or modify attributes.

e

3.3.4.4 Laws
According to BWWP laws are properties of a thing. They restrict how a thing can

char{ge. In the case of ABPM the restriction is on what operations can occur in an agent.

Recall from chapter 2 in the discussion on the BWW ontology, “The set of values for the
attributes of a thing comprise the state of the thing. A conceivable state space for a thin‘g
is the set of all possible states a thing may ever assume. State laws serve to restrict the
values of the properties of a thing to a subset of the conceivable state space. State laws
must enforce a restriction due to either natural or human laws. A law is a property. For
example, most bank accounts have the restriction (state law) that the balance must be
greater thvar'r or equal to zero. This is due to the human law that people are only allowed to
spend up to the total amount of money that is in thelr bank account. The lawful state
space of a thmg is the set of states that exist for a thing that comply w1th its state laws. A
lawful state space is usually a subset of the conceivable state space.

oy

A trans.for’matron rs a state (attrlbute) change from one state to another state A lawful
Cn N
7 ansformatzon defines the events that are lawful for a thmg The lawful event space is
usually a_sph;et of the event space, and deﬁnes those events in a thing that are lawful.”
For ABP.M‘ a state law still enforces constramts They d.letatethe constramts on what the
output from an operatron 1Asl the output of an operatlon is an alteratron of the. yahte ofa
property Thus they restrict the values a property can be altered to and by extension they

)

restrict the lawful state space.

33

For ABPM transformation laws enforce constraints on which changes.could occur. They
restrict the possible set of transformations (i.e. operations, since operations are how the

transformations are carried out) to a set that are deemed lawful in an agent.

-

I3

In short, attributes and operations represent the properties and behaviour of agents, while
the state and transformation laws are the constraints on properties (attribute values) and

behaviour respectively.
3.3.5 Mapping Summary

Table 3- 2 summarizes how the OBPM constructs w1ll be mapped to- Object constructs to

create ObJect Orlented OBPM Constructs

34 Meta-model\ of ABPM

Figure 3-2 presents the ABPM meta-model. The metamodel can be used to show the
relatlonshlps between the constructs, as dtscussed abcve in at condelnsed manner The
meta-model sholws the»ABPM constructs as rectangles. The relationships between
constructs are shown using arrows. The cardinality numbers indicate the requirements on

the relationship. The inverted ¥ show that a construct exists in both the generalized and

e

“specialized role.

OBPM Construct Object Construct ABPM Construct
Agent Object Agent
Actor Specialization of an Object Agent
Resource Specialization of an Object Resource (An Agent with no services)
Properties Attribute Attribute

Intrinsic Property

Internal Attribute

Internal Attribute

Mutual Property

Shared Attribute

Incoming Interface Attribute +
Outgoing Interface Attribute

Composite thing

Composite object (aggregation)

Composite Agent(aggregation)

State

Attribute values

Attribute values

Agent in the domain of interest

Internal object

Internal Agent

Agent outside the domain of
interest

External object

External Agent

Operation

Service

Operation

Activity

The events that occur when an
Object becomes unstable

The events that occur when an agent
becomes unstable

Transformation law

Service restriction

Transformation law

State law

Service restriction

State law

Event

A trigger of a service

A trigger of an operation

Internal event

“An event inside the object

causing a transformation in the
object

Change of an internal attribute,
performed by an operation

External event

An event outside the object
causing a transformation in the
object .

Change of an incoming interface
attribute

X affects Y

X changes the shared attribute of | X changes its outgoing interface
XandY attribute which is tied to the incoming
interface attribute of Y
Stability No services required by an No operations required by an Agent
object
Inheritance Super and Sub agents

Inherited Attributes
Process)

Propagation

Process

Table 3-2 Mapping Summary

The meta-model is explained as follows: an agent is either internal or external. Internal

agents perform activities. An internal agent performs one or more activities, but the

activity is perfoi'med by only one agent.

Activities consist of operations and attributes. An activity must consist of one or more

operations; however the operations occur in only one activity. An activity involves

changes to two or more attributes; however the attributes are affected in only one activity.

An operation changes one or more attributes, the attributes can only be changed by one

operation.

3 Agent
Change ,
eneralization
Specialization
External Internai Operations | 4,
Agent Agent
1
1 1
1+ ! I t 1 perform change T Restr
: have Consist of estrict
Resource ‘
/ 2+ Ly 1+ 1+
Attribute 1 24 Activity 0+
1) le— Consist of — Mm—
changes 1 : A governs
/{\ govern . | 1
1+ Covecaization Laws
Interface Internal
only have
must have /}\ 1 Miﬂ — 1
1+ . Specialization
Cpecotzatgn. State Transformation
Incoming Outgoing Law Law
" Interface Interface

Figure 3-2 ABPM Meta-Model

/
!

An activity may be governed by zero or more laws, the laws govern only one activity. A
law is either a state law or a transformation law. State laws govern attributes, one state
law governs one attribute. A transformation law governs one or more operations, the

operations are governed by only one transformation law. |

Attributes are either internal a;tributes or interface attributes. Interface attributes can

further be broken up into incoming interface attributes and outgoing interface attributes.

36

Internal agents have two or more attributes, the attributes are only possessed By one
agent. Internal agents have one or rrjore incoming interféce_ attributes, the incoming
interface attribute(s) is(are) only possessed by one agent. Internal agents are required to
have at least one incoming interface attribute since something external to the agent is
what initiates change in the agent. The'requirement of two or more attributes refers to an
internal agent needing to both be changed (i.e. have one incoming interface attribute), and
then change something else (in itself or another agent). Hence at least two attributes, one
incoming interface + at least one other attribute it changes in response to being changed.
If an internal agent were to only have incoming interface attributes then it would be a
resource.

An external agent has one or more interface attributes that are changed, the interface

" attributes are possessed by only one agent. Resource are changed by agents. An agent can

change one or more resources, but the changes are performed by only one agent. A

[

resource only has incoming interface attributes. A resource can have one or more
. . . P

incoming interface attributes, but the incoming interface attributes are possessed by only

one resource.

['

3.5 Graphical Representation
We are now ready to introduce our graphical constructs for ABPM. The following
subsections will first show the construct then follow with an explanation of the construct.

The graphical constructs can be used to assist the user in following the ABPM modeling

process (as presented in section 3.6 below). : S .

3.5.1 Domain Representation

Agent1 | Agent2 i Agent3 | Agentd

Figure 3-3 Dor;min Represen(;tion

If we are trying to show the agents that interact in a process, we need to consider the
domain they will interacting in, i.e. the scope of the process. The domain in which they
interact will be represented using swimlanes, with the swimlanes themselves being the

boundary of an agent.

3.5.2 External Agent

External Agent Agent 1 Agent 2 : Agent 3

Figure 3-4 External Agent Represen‘tation

v

The name of an external agent is doublelined. External agents are what cause the initial
event(s) that occur outside the domain of a process. They perform activities that change
(affect) a property of a thing in the domain. An external agent may also have one or more

attribute changed by an agent in the system. The only information we need to represent in

38

the swimlane of an external agent are the incoming interface attributes from the system

and the outgoing interface attributes to the system.

Incoming interface attributes follow the notation:
agent that changed the attribute::attribute changed

Incoming interface attributes are how an agent receives a change from another agent.

Outgoing interface attributes follow the notation:
attribute changed::agent changed
Outgoing interface attributes are how an agent initiates change in another agent.

3.5.3 Internal Agent

External Agent | Internal Agent 1 : Internal Agent 2

i JActivity 1 Name
HAffected Attributes
i{State Law(s) I
_lincoming Interface Attribute(s) | :
i|Internal Attribute(s)
1 {Outgoing Interface Attributes(sy : [Activity 1 Name

iActivity1 Operations ' ggel;tz::(tsbutes a
gransftz?nnatlon Laws Incoming Interface Attribute(s)
i Opera(!on .| |Intemal Attribute(s) .
i peration i JOutgoing Interface Attributes(s
JActivity n Name JActivity 1 Operations
iJaffected Attributes i rransformation Laws
H : [Operation

. iJActivity n Operations i [Operation

i JActivity n Name
: |Affected Attributes

JActivity n Operations

Figure 3-5 Internal Agent Representation
Since external agents outside the domain affect agents in the domain we need internal

agents that.represent the agents within the domain. The name of an internal agent is

singly-lined.

'

An activity consists of attributes, operations and laws. In particular, an activity is the
attributes that are changed and the operatibns.that change them in response to the agent
receiving a change from another agent with the laws that dictate contraints on how they
are changed. An agent can receive an infinite number of changes from other agents hence

there could be an infinite number of activities.

In keeping with the concept of encapsulati(;n in the representation of an activity we keep
the attributes that are changed and the operations that change or use them together. Hence

we outline each activity to illustrate the encapsulation.

)

The first information included in the affected attributes of an activity is the state laws on

C R o htat

the attributes. A state law dictates if there are any restrictions on the values an attribute

can take. This is a freeform box of text before the incoming interface attributes of'an

activity.
Incoming interface attributes follow the notation:
agent that changed the attribute::attribute changed

Incoming interface attributes are how an agent receives a change from another agent.

Internal attributes are changed solely by the internal agent. They are changed via

operations.

40

Outgoing interface attributes follow the notation:
__attribute changed::agent changed
Outgoing interface attributes are how an agent initiates change in another agent. They are

changed via operations, which will also change the associated incoming interface

attribute of another agent.

When we look at the operations for an activity the first thing that is represented is the
transformation laws. Transformation laws dictate which behaviours (operations) occur
under what conditions. A transformation law is represented by a freeform box of text

before the operations of an activity.

An operation is whalt chan’ges an attribute. An operatlon may change several attributes but
must at least change one attrxhute Hence for every attribute that changes there must be an
operatlon that changes it. The attributes that an agent.changes are its internal attrlbutes
and its outgomg Al‘nterface attributes. Thus for every internal attribute and every outgoing
interface attribute there ie an operation that changes it.

The ternnohal sequence of attrlbutes and operat;cns shonld vbe kept the same. If the laws

and i mcommg mterface attrlbutes are removed from an actwnty, an attribute in position X

of the affected attrlbutes list, should have the operation that changes itin posntlon X of

the operatlons list. This is in keeping with the general notion of a process.

We also need to consider how do we number activities? Our solution fo this is that we
number them according to how many activities there are in an agent. So if an agent
performs ﬁine activities, they are numbered on'e through nine. Thu.s different agents will
ilave their own activity one. Typically process models will give eachtactivity its oWn
numbér thus there will only be one activity number one,‘etc.

)

3.5.4 Resources .

—_— 1

External Agent Internal Agent oo Resource

—_———— —
'

Incoming Interface Attribute

i Incoming Interface Attribute

Figure 3-6 Resource RepréSentation

Resources are those things that only are changed by other things. A resource is indicated
. - : T S R I

by a treble line around the name. When they are changed they go from one stable state to

another stable state. The have no internal transformations. Hence they have no

operations. Thus a resource will only have attributes of the notation:

agent that changed the attribute::attribute changed

TSy

3.5.5 Agénis Sharing A Mutual Attribute
The arrow in figure 3-7 designates that the agents share an interface attribute. The agent
at the tail of the arrow changes the outgoing interface attribute it has while the agent at

the head of the arrow is the receiver of the change via its incoming interface attribute. A

block arrow designates that an external agent changes some thing in the system.
. . B . . . ' N ! . . : Lot .

42

External Agent

Internal Agent 1

Internal Agent 2

Outgoing Interface Attribute :D

clivity 1 Name
ffected Altributes
State Law(s)

Incoming Interface Attribute
Internal Attribute

[Outgoing Interface Altribute
JOutgoing Interface Altribute

Activity 1 Operations
Transformation Laws
[Operation
[Operation

)peration

i {Activity 1 Name

1 |Affected Attributes

i iState Law(s)

» {Incoming Interface Attribute
i [internal Attribute

i Iinternal Attribute

JActivity n Name
Affected Attributes

Incoming Interface Attribute

! IActivity 1 Operations
i [Transformation Laws
i YOperation

i JOperation

JActivity n Operations

Figure 3-7 Ag;nts Sharing A Mutual Attribute Representation

Recall, we are creating models at the class level. When an arrow exists between two
activities in the same agent it shows one instance of agent can change another instance of

the same agent.

In the event an agent can change the exact same incoming interface attribute of another
agent from different activities, there are be multiple outgoing interface attributes but only

one incoming interface attribute that is changed. In this case the arrows are merged into

one doubled arrow as illﬁst.ratc‘d in ﬁgtire 3-8 7o T

f e

Internal Agent 1 ‘Internal Agent 2 - -

{[rctivity 1 Name 0
affected Attributes

" {foutgoing Interface Attribute

Activity 1 Operations | :
6‘1&!’3“0" Ec(ivity 1 Name

ffected Attributes

tate Law(s)
Incoming Interface Attribute
Internal Attribute
Internal Attribute

JActivity n Name
jaffected Attributes

JActivity 1 Operations
Transformation Laws
Operation
[Operation

Outgoing Interface Attribute

Activity n Operations

:[Operation

Figure 3-8 Different Operations changing one incoming interface attribute

3.5.6 Compositeagents . -
External Agent Internal Agent Composite Agent

Activity 1 Name -~ - : !
Affected Attributes =
State Law(s)

Incoming Interface Attribute(s)
Internal Attribute(s)

Outgoing Interface Attributes{s)}:
r‘\ctivity1 Name

: JAffected Attributes

HJActivity 1 Operétions

t|Transformation Laws : |State Law(s)
i|Operation 3’|Incoming Interface Attribute(s)
 [Operation i Jinternal Attribute(s)

S i |Outgoing Interface Attributes(s

Activity n Name

Affected Attributes Activity 1 Operations

Transformation Laws
Operation
Operation >

Activity n Operations

IActivity n Name
IAffected Attributes

, S i |Activity n Operations
Figure 3-9 Composite Agent Representation -

Composite agent:s in their composite view appear the same as any other agent except the

lines around their name are dashed. If an activity in a composite agent is underlined the

PR

activity is an emergent activity that would not exist without the 'ag'g}eg.a'ﬁon of

components. Acﬁiviticé_ﬁhat are not underlined are those from component agents.

R T T

The composite agent view is used since we may not be interested in all the details of a

e e m

i

composition. In those situations where we need to know the details of a composite agent

a composite agent can be decomposed down into its component agents. =" *

........

When a composite agent is created from component agents it must possess emergent

attributes, i.e.its own attributes that are not part of any component agent, thus they need

44

their own operations as well. The emergent attributes and operations would not exist
unless the agents are aggregated. Figure 3-10, illustrates how a composite agent can be
added to a diagram without having to rearrange the entire diagram. The composite agent

lists its component agents, while the components list that they are part of a composition.

Composite Agent i Agent2 ! Component Agent 1 i Agent3 | Component Agent 2
Component Agent 1 Composite Agent - ! Composite Agent
. : - eew wms wem smm N — e s w mw s
Component Agent n H : H
h g HActivity 1 Name ! {Activity 1 Name
: [activity 1 Name ‘Atfected Attributes ! i|atfected Attributes
i |Affected Attributes ; j|State Law(s) § i|state Law(s)
State Law(s) : —H Incoming Ingerface Attribute(s) . ; — Incoming In.terface Attribute(s)
____ ; mlﬁtedace Attribute(s) |: ijinternal Attribute(s) H i|internal Attribute(s)
_E.Ilnternal Attribute(s) [:[Outgoing Interface Attributes(s} | iJOutgoing Interface Attributes(s
Outgoing Interface Attributes(s i [activity 1 Operations [ty 1 Oporations
¢ |activity 1 Operations ' {|ransformation Laws i|Transformation Laws
! {Transformation Laws :|Operation ; + iJOperation
i foperation : !loperation ~————1— i[operation
i loperation ~—————F— P e P e

Figure 3-10 Adding A Composite Agent

The decbmpoéiiibn of a composite agent allows us tb see hl(Sv‘v tﬁ;a ager{t;t}'\ai make up the
composite‘ agent interact, and What atiributes and operatforg émerge from tﬁe |
composition in one figure. Figure 3-11 is an example of the decomposition for a
composite agenf. [deally we would include a diagram like ﬁgL;re 3-11 and not figure 3-10

when interésted in the composition of a composite agent. Howeveriwhqn' it is not feasible
Co) | : : ! .

t

to rearrange the diagram to have all the component agent's: side by side the arrangement in

figure 3-10 can be used.

The decomposition as shown in figure 3-11 can also be used to verify the integrity of a
i K N Lo

composite agent. By only including the composite and its components we can verify that

all incoming changes and outgoing changes are received and generated (respectively) by

the composition.or its components.

Component Agent 1 Component Agent 2

iJactivity 1 Name

i JAffected Attributes
:|State Law(s) :
—+Incoming Interface Attribute(s) | :
i[intemat Attribute(s)
1 [Outgoing Interface Attributes(sy :
: : JActivity 1 Name

! HActivity 1 Operations i Jaffected Attributes
| rransformation Laws [State Law(s) N
‘[operation +fincoming Interface Attribute(s) | |
‘foperation ¢ |intemal Attribute(s) :

¢ |Outgoing Interface Attributes(s

i Jactivity 1 Operations ;
: |Transformation Laws | f
: [Operation :
| [Operation

Activity 1 Name : .
Affected Attributes - : !
: State Law(s) :)
— " Incoming Interface Attribute(s)

nternat Attribute(s)
Outgoing Interface Attributes(s

- Activity 1 ration: . ce sl
Transformation Laws H
Qperation !
Operation 5 -

Flgure 3-11 Decomposition Of A Composite Agent

When decomposing a composite agent into its components the following must specified:

e Which incoming changes go to which component agent?

e Which incoming changes go to the composite agent (are emergent)?

e _Which outgoing changes are generated by which component agent?

e Which outgoing changes are generated by the composite agent (are emergent)?

‘o Which changes do the components use to interact with each other" These changes .
are not present in the composite view of the agent.

e Which internal attributes belong to the composite and the components?

e What laws exist on the incoming and outgoing changes of the components?

When the attnbutes are reassxgned to elther the composite or component the operation

that is assocxated w1th that attrlbute is reassngned as well. Component agents may require

new attributes and services not present in the composite agent to model the interaction of

<

the component agents. |

file:///State

3.5.7 Superagents And Subagents

As shown in figure 3-9, the agent on top is the superagent(i.e. the generalization), the
agents on bottom are subagents(i.e. the spec'ialization). Attributes and operatidns in the
superagent are inherited by the subagent. Inherited attributes and opérations are not
shown in the subagent. Subagents have attributes and operations possessed only by that
subagent. A subagent’s inherited attributes and operations can never be different froﬁ the
attributes and operations of the superagent (from the definition of a subclass), hence we
do not need to show them. Figure 3-13 shows how to represent superagents and

subagents when it is not feasible to rearrange the diagram to have them side by side.

Super Agent

" “Activity 1 Name

i Affected Attributes

| State Law(s)

"* ' Incoming Interface Attribute(s)
Internal Attribute(s)

Outgoing Interface Attributes(s)

Activity 1 Operations
H Transformation Laws
: iR - Operation—
: Operation

| Sub Agent 1 i Sub Agent 2 i

{Activity 1 Name

i Affected Attributes
—w|State Law(s) ' : HERT
ilIncoming Interface Attribute(s)
iinternal Attribute(s)

Outgoing Interface Attributes(s

HActivity 1 Operations . |i|Activity 1 Name ;
i|Transformation Laws:| i|Affected Attributes i
‘loperation i|State Law(s) :
‘JOperation Incoming Interface Attribute(s) | :

= - - {[internal Attribute(s) ;
i 1|Outgoing Interface Attributes(s

Activity n Name H
i|Affected Attributes ‘JActivity 1 Operations

i|Transformation Laws
i JActivity n Operations i|Operation —— —1+
H Operation :

Affected Attributes

ot

: . JActivity n Name

i JActivity n Operations

Figure 3-12 Superagent and Subagent Representation

Agent 1 Superagent i Agent2! SubAgent 1 i Agent 3 | Subagent 2
[Activity 1 Name ; ; Superagent | Superagent
i|Affected Attributes ! ' !
i[State Law(s)) {Activity 1 Name i [Activity 1 Name
fincoming Interface Attribute(s) | ! |Affected Attributes i ! |aflacted Attributes |,
{[Internal Attribute(s) : ‘|State Law(s) : ! |State Law(s)
i |Outgoing Interface Attributes(s) : —Hincoming Interface Attribute(s) | —fincoming Interface Attribute(s)
H o - iinternal Attribute(s) i [Internal Attribute(s)
Activity 1 Operations . :[Outgoing Interface Attributes(s) : i loutgoing Interface Attributes(s
{ ; Transfqrmenon Laws ; : . ‘
‘ i Operatfon : - |activity 1 Operations ; ! JActivity 1 Operations
{[Operation : iIrransformation Laws i |Transformation Laws
: : i[Operation : : [Operation
""" HOperaton ———— 1+ peration

-Fi:g;ure3;:l3 Creating A Superagent
3.5.8 An Alternate Notation
There are two situations where it is beneficial to have an ABPM with fewer details.
1. The details are not known
2. The diagrams are large and unwieldy
We can handle both situations using Agent Templates (AT). An AT table can be used to

store some or even all the pertinent details about the agent and an agent with less or even
T even afl the pertiner ,

no details a;;;;éérs in the ABPM. Since we‘a;eAfoc

;J;ing on chang"eA;;fof)a‘g;tibﬁ the two

suggested cgfnpressiong are eit;her retaining only the inte;rface attributes that are changed
in an activit'}{ (as per figure A3T1|4)’ or compressing an aétivity totéfly ciov&h to its name(as
per figure 3-15). - -

x . e

v

External Agent Internal Agent 1 Internal Agent 2
i Activity 1 Name :
: ' Jaffected Attributes i Jactivity 1 Name
" Outgoing Interface Attribute :Hincoming Interface Attribute | i* [Affected Attributes
' +|Outgoing Interface Attribute +oincoming Interface Attribute
- Incqmingvl'nterface Attribute utgoing Interface Attribute

"
t
'
'
i

Figure 3-14 ’Examble Compressing Down To Agent Interactions

External Agent : Internal Agent 1 K ‘Internal Agent 2

* .1, Outgoing Interface Aftribute :& Activity 1 Name ‘-Eé:tivit:/ 1 Namel R

- "Incoming Interface Attribute

" Figure 3-15 Examble Compressing Down To Aétivity Name

The internal agent template is presented in Figure 3-16. It will be filled in using the

notation developed above.

Agent

Attributes Operations

Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

38}

Figure 3-16 Internal Agent Template

The Resource template is presented in figure 3-17. Since it only has incoming interface
attributes all entries will be in the form:

agent that changed the attribute::attribute changed

Resource
Incoming Changes

Figure 3-17 Resource Template

With external agents less detail is needed than with internal agents. The only information
of interest is the incoming and outgoing interface attributes that are altered. The external
agent template is presented iﬁll'ﬁgurc 3- 1.8. Incoming intverfa(.:e attributes will follovw the
form:

» égent .that changed the attfibute::attribﬁfé changed)
Outgoiné iﬁterfaée attributes. w‘ill follnow the form:

o n

attribute changed::agent being changed

49

Agent
Incoming Changes | Outgoing Changes

Figure 3-18 External Agent Template

In a composite agent the agent template has extra rows. The extra rows indicate which
agents are components of the composite agent. The component agents are the same as
ahy internal agent and thus have the same agent template as an internal agent. The
composite agent template has two views (using the same template). The first view is just
of the activities of the conzposfte agent (i.e. the emergént attributes and operations). The
second view is the ‘composited’ view, that is, all the activities of the components that are
included in the composite and its emergent activities. The emergent attributes and |
operations would be italicized in the corﬁposite view to dlstmgmsh them from component
attributes and services (if the agent has been decomposed). Figure 3-19 shows the

composite agent template.

Agent
Component Agent 1; - B o
Component Agent 2:
Component Agent n
- ~_Attributes ‘ " Operations
Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

l . T T PR

Figure 3-19 Composite Agent Template '~ "'

The agent template for superagents is not different from the internal agent template. The

agent template for subagents has an extra row to indicate the superagent from which it is

derived. The attributes and operations that are shown are those that are unique to the

subagent. The subagent template is shown in figure 3-20.

Agent

Superagent:

Attributes Operations

Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

Figure 3-20 Subagent Agent Activity Template

3.5.9 Allowed Interactions
This section _sufnmarizes how the constructs are allowed to interact .

External agents: Initiate change in an agent in the system. Receive a change from an

i A

agent in the system. Refer to figure 3-21

External Agent | Agent 1 i Agent2 External Agent | Agent1 . | Agent2
..... —_— PP S i
Initiating a change in the system Receiving a change from an agent in the system

Figure 3-21 Allowed Interactions For An External Agent

Resources: Receive a change from an agent in the system. Refer to figure 3-22

Resource | Agent 1 i Agent2

Receiving a change from an agent in the system
... . . Figure 3-22 Allowed Interactions For A Resource .

Internal agent: Initiate change in both internal and external agents. Receive a change

from internal and external agents. Change a resource. Refer to figure 3-23

51

External Agent | Agent 1 i Agent2 External Agent | Agent 1 i Agent2

Changing alm agent outside ihe system Changinglan agent in the s&stem
External Agent ;| Agent 1 i Agent2 External Agent i Agent1 i Agent2
..... i .
Receiving ;‘a change from oultside the system Receiving a cha.rlge from an agen‘t in the system
Resource | Agent1 i Agent2
..... .

Cﬁanging aresource
Figure 3-22 Allowed Interactions For An Internal Agent

3.6 ABl"M Modeling Process

The main concept to keep in mind when generating an ABPM is change propagation.
That is, when one agent is changed; this change will cause the agent to change other
agents, which will lead to other agents being changed, and so on. Eventually, there are no
more agents that are changed _'fmd the process end; when all Ehg agents tha; are changed

ol M

become stable (stop changing).

_Frequently process-modeling languages lack a well-defined method for generating a
process model (Huckvale and'Ould, 1994, Wand-and Woo, 1999, Wang 2002). One of

the goals behind the development of OBPM was to eliminate problems with eXisting.

Lt

Hence we must provide a clear and unambiguous method to

v N i

create an ABPM. Thus we will present an algorithm for the graphic representation of

ABPMs. This algorithm is based upon a set of modeling rules.

3.6.1 Modeling rules
At this point we need to introduce a set of rules (Wand and Woo, 1999) and assumptions

to address the following points:

What is the scope of the model?

What agents should be included in the model?

What resources should be included in the model?

What agent properties and operations should be included in the model?
When to include composites agents?

When to subclassify agents?

When to begin a new activity?

NoUnkwb—

Due to the fact that they are developed specifically for object-oriented models that are

tod

ontologically based (albeit for enterprise modeling) we will use and adapt the rules
developed e'lsewhere_(Wand and Woo 1999) to answer the questions. Only when the rule

Lted o
-

is changed from its original intent will we define its development.

Rule #l: The scobe iaentiﬁ.c.z;‘ti;)n rule

This rule is used to deﬁne yhat should be included in the process model of the system. It
is based upl;)‘nf'th.e. b;:lief that énytﬁing that happens in the system is in response to
somethingthgppeniﬁg outside the syéterr;. Thaf is, something ‘oxutside.theAsystem affects

something-in the system causing the system to become unstable. This is the only way a

system can become unstable. Once a modeler decides what events happen which are

AN

53

external to the system, all direct and indirect actions due to the external event are in the
scope of the system. Thus the rule reads as follows: | |
Rule 1 (scope): The aspects of the system to be modeled are all and only those
needed to represent the effects of the relevant external events’.
| Rule #2: The affected thing identification rule
An event is a change. From- our ontological foundation only things change.‘To be
included a thing has to either be changing another thing or changed by another thing.
Thus the rule reads as follows:
Rule 2a (agent identification): The agents included should be those that are either
generating chan‘ges lin_ .the system, or are responding directly and indirectly to the
external.-‘chang'es.t"dthe system: | | o
Rule 2_b (Resotxr_ee identiﬁcatidn): The resources inc‘l\nded shonld be those that are
changed by agents in the system., R
The agent ldentlﬁcatlon rule highlights two klnds of agent. E;(temal agents are outside
the system that either change something in the system or are changed by something in the
system. Intetnal agents are the agents that make up the system An 1ntema1 agent must be
changed by at least one other agent. The resource 1dent1ﬁcat10n rule 1ndlcates that only
the resources used by 1ntemal agents should be 1nch1ded o |

Rule #3: The operatlon 1nc1u51on rule

Based on our mappmg operatlons represent transformatlons that happen to an agent.

Operatlons will be invoked by an unstable agent to change an attribute in an attempt to

54

become stable during an activity. An agent becomes unstable when the prerequisite
interface attributes (i.e. incoming interface attributes) of an activity have been changed.
Rule 3a (operation inclusion): An operation will be included in an activity if it is
invoked as a result of an agent attempting to become stable.
Rule 3b (transformation law inclusion): A transformation law will be included if it

affects what operations occur.

Rule #4: The attribute inclusion rule
Since all activity in a system is initiated due to an external change, only those attributes
that are part of the activities due to the external change should be included. The attributes
that are part of an act1v1ty are those that either |n1t1ate the act1v1ty or are changed by
operations durmg an actwuty The attrlbutes must be used or modlﬁed by an operatlon
Rtxle 4a (mterface attrlbute mcldston) an interface attribute w1ll be included if it
is known by and shared between two thmgs An outgomg mterface attribute can
ohly be.possessed by an agent whereas an 1ncommg 1nterface attrlbute can be
nossessed by anagent Or a resource. o - o
Rdle 4b (Internal attribute inclusion): an internal attribute will be included only

for those operations that do not act upon an interface attribute as defined from 4a.

An internal attribute is mtemal to an agent

..l\‘.~;..<f '-‘ . '

Rule 4c (state law mclusnon) a state law W1ll on]y be mcluded if it restrlcts the

o A R

values an attribute can be changed to.

[
[A

e Syl . L S

5 This is the original Wand and Woo (1999) definition of the rule.

55

Rule #5: The attribute ownership rule

Since properties belong to, things, every attribute is owned by only one agent. .
Rule S (attribute ownership): For every attribute in the model there is exactly one
agent that can modify it. For an internal attribute, the agent is the only one that
can access the value of the attribute. For interface attributes the agent that
possesses the outgoing interface attribute is the agent that modifies both the
outgoing interface attribute and the incoming interface attribute (even though the

incoming interface attribute is owned by another agent).

Rule #6: The composite agent rule
In some cases agents may need to be functioning together to respond to the changes

resultmg from the extemal stlmulus since neither may be able to respond on its own. This

.\L\t‘rr'l

creates emergent behavnour not present in either agent. Recall from ontology, that
Ve

composite things have emergent behavnour.

Rule 6 (Composite agents): A composite agent may be created only if it possesses
emergent attrlbutes not present in any of 1ts components A composrte agent

.*'x.) FERTURT DI

possesses all the attrlbutes and operations of its components.

Rule #7: The sub-classification rule
In some cases agents may have properties that are very similar. It may be beneficial to -
create a superclass to srmpllfy a model.

Rule 7 (Sub classrﬁcatlon) A sub-class should be created only when it has

AR TR RN

propertles not present in the superclass A sub class mherlts all propertres of the

56

superclass. In order to form a superclass two or more agents need to have some

properties in common.

Rule# 8: The new activity rule
The first change in an agent is always the beginning of a new activity. An activity is a
sequence of events and changes. Typically an actor becomes unstable, undergoes
transformations, then becomes stable. Later on, other changes may cause the agent to yet
again become unstable and the process repeats itself. Resources never become unstable,
they are stable, changed by another agent, then are stable.
Rule 8 (New activity) When an agent becomes unstable after being stable it is the
begmnmg ofa new actlvrty When an activity ends an agent is in a stable state
3.6.2 Modeling Process
If we follow the rules in a systematic manner we can produce an object-oriented activity-
based process model F urther there wrll be no need to check the lntegrlty of the model.

since by followmg the algorlthm correctly we ensure the model is correct. The gurdance

in applymg the rules comes from the orlgmal OBPM algorrthm That is, we identify the

Loy e

changes generated external to the system 1dent1fy what is affected by the changes and
then analyze what has been affected We can use thls to follow changes as they propagate

through the system. The following algorithm for creating ABPMs is designed to center

around change oropagation.

57

—_—

W

Identify the external agents.
For each external agent identify the changes generated.
For each change:. . .. e m e e
3.1. Identify the agent or resource that was changed
3.2. If a resource was changed identify the incoming interface attribute
3.3. If the agent is an internal agent:
3.3.1 [Ifthis is the first change to an agent, or the last act1v1ty of an agent has
gone through a sequence of instability-change-stability create a new
~ activity
3.3.2 Identify the incoming interface attributes that were modified
3.3.3 Identify any state laws that may restrict change
3.3.4 Identify any transformation laws that may exist for the i 1ncommg interface
attributes
3.3.5 Ifan agent becomes unstable:
3.3.5.1 Identify the operations that may occur
3.3.5.2 Identify any transformation laws that may affect what operations occur
3.3.5.3 Identify the internal attributes that will be affected
3.3.5.4 Identify the outgoing interface attributes that were modified
3.3.5.5 Repeat steps 3.3.5.1 to 3.3.5.4 until the agent becomes stable
3.3.6 Repeat step 3 for each outgoing interface attribute of an agent that was
changed in step 3.3.5.4
If needed identify-super-and subagents using the internal agents.
If needed identify composite and component agents using the internal agents.

Table 3-3 shows the relattonshlp between the rules, the ABPM algorlthm and the

.- s i

orlgmal OBPM algorlthm From this table we-can see how the proposed ABPM

algorithm encompasses and expands upon the ongmal OBPM algorithm. We can also see

- that by followmg the ABPM algorithm we force the modeling rules developed above in

section 3.6.1 to be followed

58

Step Rule | Purpose OBPM algorithm
1. Identify the external agents 2a Agent Identification
2. For each external agent identify the i Scope Identification =~ | Main
changes generated.
3. For each change: 2aand | Agent and Resource Main
3.1 Identify the agent or resource that was 2b Identification
changed
3.2 If a resource was changed identify the 4a Interface Attribute
incoming interface attribute Identification
3.3 If the agent is an internal agent: 8 Activity Identification | Affected thing
3.3.1 If this is the first change to an agent, or
the last activity of an agent has gone through
a sequence of instability-change-stability
create a new activity
3.3.2 Identify the incoming interface 4a Interface Attribute
attributes that were modified Inclusion
3.3.3 Identify any state laws that may restrict | 4c State Law Inclusion
change
3.3.4 Identify any transformation laws that 3b Transformation Law
may exist for the incoming interface attributes Inclusion ‘
3.3.5 If an agent becomes unstable: 3a Operation Inclusion Decompose
3.3.5.1 Identify the operations may occur
3.3.5.2 Identify any transformation laws that 3b Transformation Law
may affect what operations occur Inclusion
3.3.5.3 Identify the internal attributes that will | 4b Internal Attribute Sy
be affected Inclusion
3.3.5.4 Identify the outgoing interface 4a Interface Attribute Affected thing
attributes that were modified Inclusion '
3.3.5.5 Repeat steps 3.3.5.1 to 3.3.5.4 until 3 Operation Inclusion Decompose
the agent becomes stable ‘
3.3.6 Repeat step 3 for each outgoing 5 Attribute Ownership Decompose
interface attribute of an agent that was
changed in step 3.3.5.4
4. If needed identify super and subagents 7 Superagents and
using the internal agents. h Subagents
5. If needed identify composite and ~ 6 Composite and

component agents using the internal agents.

Component Agents

. Table 3-3 Relating The Rules To The ABPM And OBPM Algorithms

3.6.3 Model Integrity

Once a model has been constructed it may be necessary to check the model if the model

is semantically correct. Although the above modeling algorithm is supposed to ensure

semantic correctness there may be other ways to generate an ABPM (such as from an

OOEM, see the next chapter) that do not necessarily guarantee the model will be

59

semantically correct. We can check using a set of model integrity rules. The model
integrity rules reflect the modeling rules (Wand and Woo, 1999).

1. Every change in the system should be able to be traced back to an initial change from
an external agent. ' :

2. Every agent must have at least one activity.

3 Every Activity must have at least one operation

4. Every resource must only have incoming interface attributes.

5. Every attribute is changed by only one operation. " '

6. Every activity can only have one incoming interface attribute unless governed by a
transformation law

7. Every outgoing interface attribute must have a corresponding interface attribute and
vice versa.

8. Every composite agent must possess emergent attributes and operations not present in
the component agents

9. Every subagent must possess attributes and operations that are unique to the subagent
and are not inherited from the superagent.

3.7 An Example
We recognize that this chapter has presented a fair bit of new ideas and concepts. To

illustrate them, we wrll use the followmg example

RET . [AT

The ACME Warehouse Management Inc. Casé®

ACME Warehouse Management Inc. offers storage facilities and redistribution services
(between their different warehouses) across the nation. A customer can request space in
a particular waréhouse, request items to be transferred to another warehouse, or request
withdrawal of items from a particular warehouse (even for items not stored there).

For the purpose of this case, we only look at the activities involved'in processing a
withdrawal request. A customer contacts ACME headquarters to request a withdrawal.
An office clerk checks whether the customer has the authority to withdraw the items. The
clerk then passes the wzthdrawal request to the warehouse where the customer wants to
pick up the ztems R - : : S

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the requested items. If the
items are located the warehouse manager will ask the planner to arrange for

tiansportatzon for the requested items.
. A R s 1

% Based on acase in I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley, 1992

The planner’s responsibility is to schedule the company’s truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notified whether the transportation request can
or cannot be satisfied.

The warehouse manager will notify the office clerk if the request can be fulfilled or not,
and the reason. The office clerk will notify the customer as to the status of the request
(approved, or declined due to lack of authority, no inventory, or no transportation).

The planner issues transport orders to truck drivers. After receiving a transport order,
the truck driver informs the warehouse about the pickup of the items. The warehouse
manager will make arrangements to have the items ready when the truck arrives. When
the truck arrives at the warehouse the items are loaded. The truck driver then informs the
next warehouse about the delivery. When the truck has arrived at the next warehouse,
the items are unloaded. A warehouse worker finds space for the items and arranges to
have them moved to the allocated space. The worker updates the warehouse'’s inventory
information. Truck drivers are required to report the status of the truck and the delivery
to the planner after each step.

The customer will come to the warehouse on the required date to pick up the items. A
warehouse employee will check all the necessary documents and w111 deliver the items
with an- accompanytng documentation to the customer : '

Supplemental description’ -
Once-the office clerk has recorded the items to be withdrawn, he or she forwards the
request to the manager (foreman) of the warehouse. The warehouse manager is
responsible for directing the redistribution of items between warehouses: If the items are
not all available in the warehouse, transport requests are issued. The warehouse
manager fills out a redistribution form with the following information: items to be moved,
place from which to take the items, warehouse to transport the items to, quantity to be
moved, and'the date by when the redistribution must be done. The warehouse manager
forwards the form to the planner to organize the interwarehouse transportation of the
items. The items to be moved are marked as move-pending, and the planner initiates a
plan to have the items at the appropriate warehouse at the given date. Once
znterwarehouse transport plans are finalized, transport requests are 1ssued to the truck
drivers. = "' : S e T :

! - . T B . R A s K
The truck driver alerts the warehouse manager of the time he or she will be at the
warehouse to pick up the items. The warehouse manager gives appropriate requests 1o
the warehouse worker on the date of delivery to have the items ready for when the truck
is expected.-When the warehouse worker gets a request to fetch items, he or she, at the
appropriate time, orders forklift operators to move the items to the loading platform. The
forklift operators execute the internal warehouse operation. When the truck driver
arrives, the driver notifies the warehouse worker to have the items loaded into the truck.
The truck driver notifies the next warehouse manager when it is expected to arrive at the

next warehouse. The number of items in the current warehouse decreases, and the
transport request is marked as on transport.

When the truck has arrived at the next warehouse, the truck driver notifies the warehouse
worker to unload the items. The truck driver signs off the job. The warehouse workers ‘
receive the items and determine a place for them in the warehouse. Forklift operators are
told to move the items to the new place in the warehouse. When the truck driver confirms
the delivery of the items, the records are updated to reflect the new place for the items.
The transportation time is recorded and stored. The redistribution and interwarehouse
transport request are marked as performed. The warehouse worker fills in an inventory
update form and sends it to the warehouse manager for confirmation and update of the
inventory database.

When the customer has fetched the items the warehouse workers mark the withdrawal as
ready. The items are removed (decreased) from the information system.

Based on the case we develop the Compressed ABPM diagram showing only the agent

interactions in figure 3-24. Figure 3-25 is the full uncompressed ABPM.

Customer Office Clerk - Warshouse Planner . Truck Driver

Activity 1 Withdrawal Roquest Activity | Find hems

“Aflected Attributes o Aficcied Attributes

Customer: Withdrawal request Mlice Clerh::Withdrawal Reguest
Order Stutus:Customer r=1COrder Status::Oflice Clerk

Hiem Existence:: Warchouse

Withdrawal requestz:Ofice Clerk [
R

Activity. 2 Seyrch Fyw liems
Aftievted Attribuies Nt
[Warchouse Manager::Item Existenee

- Scargh Restilty:; Warchouw
NN . .
Activity 3 Devide if order cun prxecd Activity | Amange Transport
! Aftected Attributes Alfected Attributes « 4. . .
Activity 2 Notify shout onder status Foaw archy Seurch results Warch Transport Form Activity 1 Procend to pickup
1| Afected Auributes ‘Transpont Form::Planner - Transport Schedute:; Warehouse Allected Attributes
L 5 Warche Order Status Irder S soltice clerk Transpon oeders:: Truek Driver Planner:: Transport orders
Oflice Clerk::Order Status Inder Sttus:Customer Pichup Notification:: Warchouse

=t Truch Status::Planner
Ready to load:: Warchouse
= Truck Status::Plannes +

Activity 4 Notily sbout order status
Allected Autributes

“| Plaaner: Transport Schedule

Irder S ice clerh

o . B

Activity S Prepare fir pickup
Aflected Autritutes
Truch DriverzPickup Notificati

Activity 6 Load Truck

Afliected Attributes Activity 2 Procead o dropol?
i, N Truck Driver::Ready To Load . . Allected Attributes

On Transport:: Truck Driver Warchuusez:On Transport

DropofU Natification:: Warchouse

Activity 7 Ready Reveiving bt Truch Stotus::Planncr

Aflected Auributes T Ready To Unload:: Warchouse

Truck Driver:Dropol)’ - f==t Truck Status::Plunncr

Activity 8 Unlosd Truek
. . . \ Allected Auributes
LN Lo . . ' .2 | Truek DriversiReady To Unload - .

Activity 2 Revond Time
Activity 9 Fulil Pickup Alected Attributes
— Allected Attribuies Truch DriveriTruck Status el
Armival: Warchouse [T Customer:Arival

Warch ems and [i + ttems And [ion::Customer

Figure 3-24 Compressed ABPM showing Agent Interactions

62

Customer

Office Clerk

Warehouse

Planner

Truck Driver

Withdrawal request::Otlice Clerk

Activity |} Withdrawal Reguest
Affected Attribates

Customer:
Authorization Status
Withdrawal Reques:: Warchouse
Ordee Statn::Cosimer

hdrawal request

Ofice Clerkz:Order Stutus

Activity | Operations

Contact Warehouse and Notify About
Status are mutnally exclusise
Authurity Check

Contact Warch

Activity | Find fiems
Alected Anribuies

Notify ahout status

Activity 2 Natily about arder status
Atlected Attribures
W,

Mice Clerhi: Withdrumal Request
Inventory Information

OMiee Clerk
liem e Warchouse
Activity | Operations
Contact Other Warchouse and Natily
About Status are mutually exclusive
Cheek Inventory
y ubout status

h Order St
Order Statusz:Custonwr

act {her Warchouses

Activity I Operations
Notify ahout status

L Warchous;:hem Exisienes

Activity 2 Seweh For lems
Alecied Anributys

Inyentory Information
Search Results;; Warchouse
Activity 2 Operations
Cheeh Inventory

[Notify about warch mesulty

Activity 3 Decide if ordee can priweed
Altected Attributes

Urgder 8 g

1 Operations
Contaet plannct and nelity about
satus are mutually exclusive

Confoet 7

Notify about status

Activity 1 Armunge Trensport
Allected Attributes
Warchouse:: Transport Form
{nventory Information

Truck Information

Transport Schedule::Warchouse
Iranspont orders:: Truch Driver

Activity 4 Notify shout order status
Afected Attributes

Planner:: Iranspont Schedule
Order Statuszioflice clerk

Activity | Operations
Mark Insentory
Schedule Trucks
Natify About ransport
Iasue Orders

Activity 1 Proceed to pickup
Affected Anributes

Activity T Operations’

Arrisal: Warchouse [

Notify abont status

Planncr: Transport orders
Pickup Notification:: Warchouse
Truck Status::Planncr

Truck Status

Ready to kiad:: Warchouse
Truck Stat Tanner

Activity | Operations

Insentory Information
Ay ¥ Opcrations
Move hemy

Natity shout pickup
it Report truck status
Iorive to pickup warchouse

Act 6 Loud fruck
Allccted Attributes

Truch DrisersiReady 1o Losd
Insentory Information
On | ranypurt;; Truch Driser

Activity 6 Operations
Load Truch

Activity 2 Record Time
Affected Atributes

Truch Driver:Truck Status
T'ransport Information

Activity 2 Operations
Revord Time

Notify ready (o losd
e Report truch. status

Activity 2 Proceed o dropatl

Mark As On Transport

Activity 7 Ready Receiving
Aleercd Attributes

Affected Auributes

W archouse::On Transport
Dropof¥ Notification:: Warchous
Truck Stat lanner

Truck Status

Ready To Unload:: Warchouse
Truck Status::Planner

Activity 2 Operations

Trueh Deiver:Dropatt N
Warchouse Information
Movement Schedule
Actinity 7 Operations
Find Space

Artange Mosement

Activity 8 Unload ruck
Affected Anributes
Truck Driner::Read

iy About Dropoff

b= Report Truck Status

Drive To Dropofy

o tinload

Transpont Form
Warchouse Informution
Inventory information
Transport Form
Insentory Database

Adivily ¥ Operations

Receive liems

Determine Plice

Move ltems

Marh Transport Requiest As Performed
Update Inveniory Database

Activity 9 Fufil Pickup

Affected Attribates

t Customer::Arrival

Customer Infoemation

Inventony Information

lems And Documentation::Customer
Inventory Dutabase

At ity U Operaiions
Cheek Ducunxenly
Fetch hems

and |

Ieliver ems And Duocumeniziion

Remxne hems from the System

Notify Ready To Unload

Report Truck Status

Figure 3-25 ABPM For The ACME Warehouse Management Case

file://l:/isierice

A full step by step derivation of the diagram can be found in appendix A (including the
associated decomposition for Warehouse), while the associated agent temp]ates can be

‘found in appendix B. J

3.8 Summary

This chapter introduced the constructs of Ontology-Based Process Modeling. The

constructs were then mapped to object-oriented concepts. This led fo the introduction of
y :

an objected-oriented graphical notation for ABPM diagrams, along with a procedure for

their creation and validation. To illustrate the concepts an example was presented.

64

4. Linking OOEM and ABPM

4.1 Introduction

This chapter has the goal of relating Object-Oriented Enterprise Modeling (OOEM) and
Activity-Based Process Modeling (OBPM). OOEM is used to describe what things an
organization does. ABPM is used to describe how an organization does things. Thus, it is
logical that these two methodologies should be related. Also they have similar
foundations, which should simplify linking the methodologies. The following diagram
illustrates the proposed relationship.

Interacting Agents Activity View

Full Conversion
OOEM OoBPM

View View

\ /

<. v -Foundations Foundations

e \ Ontological

Model
Things, properties, etc

Partial Conversion

fe Figure 4-1.'Proposed Relationship And Its Foundations.

In particular.we consider.the following as to how we will relate the grammars:

s A business process is everything that occurs within the system from the initial
- request to the system to the final response from the system.

e A service is-everything that occurs within an object from the initial request to the
final response to that request That is, a process conﬁned to one object (i.e. what is
carried out). . o .

e Anactivity is part of a service. An activity is everythmg within a service confined
by (at most) 2 mteractrons

¢ An operation is part of an activity. The operations of an activity define how the
activity is carried out (and by extension a service is therefore carried out by
operations).

4.2 Object-Oriented Enterprise Modeling (OOEM)

The very first question that comes to m'ind in systems analysis is why would Enterprise
Modeling be needed? The retationship between systems analysis and enterprise modeling
can be clarified as: “Systems analysis is the process of understanding the organizational
“environment and specifying the requirements of 1t In order to specify the requirements of
a system correctly, a system analyst must first u.nderstand the related business areas by
developing a model of the enterprise” (Zhao, 1995, citing Gorman 1994). This suggests
that the very first activity in systems analysis should’be to develop'an enterprise model to
describe what an organiaation does, which will then lead to a process model being

developed later to illustrate how an organization does things

LT ‘o -
R N AL IR FHE T N

4.2.1. OOEM constructs7 o _ ' o /

This subsectlon will explam the graphrcal constructs used in OOEM.

¥ .
B RN B P
i

To begm there ex1st two kmds of objects Those that are external to the system and those

(SN

that are internal system Both krnds of objects possess attrlbutes and perform services.

Extemal objects make request to objects in the system or have requests made to them

.:_‘tt‘.t f'f/-»

ttttt

from the system Their servrces and attrrbutes are not modeled smce they are extemal to

the system, and the only thing that matters is the requests they generate or receive.

Internal objects receive requests via interface attributes. The request to an object triggers
" a service in the object. In the course of a service occurring one or more internal attributes

may be accessed, as well as one or more requests may be generated. A request may or

—

” This discussion of OOEM constructs is based on Wand and Woo0 2002

may not have a response generated. And said response may be generated directly or

indirectly due to the service it triggered. e

4.2.2 Request Propagation8

External objects affect internal objects by making requests to them. In order to satisfy the
request the object may invoke a service. A service is a series of actions that the object
performs. During the performance of said actions requests may be generated that affect
other objects (or the object itself). The affected objects may then generate requests in
fulfilling their responses to the requests made by the first object, and so forth. Wh.en all
requests to internal objects have been fulfilled and no further requests to internal objects
are gengrated the OOEM is considered complete. Hence an initial request propagates

through the system.

[

4.2.3 How To Generate An OOEM’
The algorithm for generating an OOEM is as follows:

1. Identify external objects
2. 'For each external object: -
2.1. Identify all requests generated
2.2. For each request, identify:
2.2.1. The object receiving it
2.2.2. 'The service invoked in the object - -+ o 0 T
2.2.3. The interface attribute '
2.2:4. The response returned by the service (if any) = -~
2.2.5. The internal attributes (if necessary)
2.2.6. All requests spawned by the service (if any) and repeat 2.2 for each
request '
3. If necessary, represent composite/component and/or super/sub-classes using those
found in 2.2.1

® This discussion of OOEM request propagation is based on Wand and Woo 2002

4.2.4 Graphical Representation Of OOEM

OOEM has.two commonly used representations. The first representation is using an
object communication diagram with intemai and external object templates. The object‘
communication diagram “...employs simple notation to represent objects (Zhao, 1995)”,
while the 'object templates are where the services, attributes; and request information are
stored. The second common method is to have all information on the graphic model. For
our discussion we will use the second method as illustrated in Figure 4-2 showing an
OOEM diagram for the aforementioned ACME Warehouse case (adapted from Wand and

Woo, 1999).

Warehouse

/customer N\ Pick-up Request Inventory Information

ltems & Withdrawal R.cquesls
o ‘ Documentation | Prepare Loadmg Requests
: . S ' i Prepare Unloading Requests

Item

Withdrawal i Start Loading.; Requests ¢ Availability
Request) i Start Unloading Requests ‘e
o Approve/Decline S . . i Customer Pickup Requests’ - Vo
+ Reason ; . '
Ve ™~ i Check ltem Availability
Office Clerk Withdrawal Request i Process Withdrawal Requests
Withdrawal Requests Approve/Decline | Prepare Loading Zt:;" ence
{Customer Information] + Reason ¢ Prepare Unloading ! query
’ . i Start Loading * . : .
Process Withdrawal Request H : H
_ J Transportation Request \ Start Unloading ;
ransportation Reques ‘Rrocess Customer Pickup Requests
Lgaded
' Prepare| St vt Prepure Sigrt - R
Loading| LopdingUnlgading Unloading
4 . Planner- _ - \ Approve/Decline - . Truck Driver \ .
. + Y .
Transport Planning Requests keason Transportation Requests
[Truck Information] Transp ort [Transport Status]
Plan Transportation & Orders)
. PO Do Transport Orders
Lruck Assignment J Transport Status k

Legend:

/" External Object\ 4 Internal Object A A

Interface Attribute Request
[Internal Attribute] . Response

\Serwce)

' . Figure 4-2 O0EM For The ACME Warehouse Management Case -
note: Warehouse is a composite object hence the dotted outline

® This discuéisiqn of the OOEM algorithm is directly from W‘and and Woo 2002

68

4.2.5. A Shortcoming of OOEM

In OOEM there is no indication of how the services are performed. A service is “...a
well-defined series of actions taken by the object with the goal of satisfying the request.
This series of actions models the state law of the thing” (Zhao, 1995). This sounds good,
but it raises the question of where is the ‘well-defined series of actions’ represented in
OOEM? Consider an OOEM service defined simply as sell goods. An executive may be
more interested in an expanded view such as stock shelves, price good, display
appropriate advertising, and markdown outdated inventory, in order to streamline the
selling goods aspect. Also Hui (1997) notes “OOEM describes workflow participants,
their responsibilities, and their interactions in a process; it does not capture the execution
order of w_ork. : ? .Convenlently, ABPM is concerned with representing series of actions
and their order I(proc.esses) Hence, if we can find the exact relatronshrp between OOEM

and ABPM we can relate what an organization does and how an organlzatlon does itina

NIRRT

well-defined manner.

et

4.3 Basis Of Conversion

The consrderatron to keep in mmd during the conversion process is that desplte different

PR VORI (SN

nomenclatures for the modehng grammars ontologlcally a thrng is strll a thmg,

property is still a property, etc. In order to establlsh a meanmgful conversion process

N N [. . oY L

between OOEM and ABPM we need to consider how things in each grammar respond to

N

an external event. An external event is a state change of some thing in the system.

R TR SR

69

As illustrated below in figure 4-3 in theﬂenterprise modeling approach an external object
generates a request to an object in the system causing it to_go from so' to s;'. The notation
s’ denotesrthe object y in state x. Each time there is a state change it will be noted in the
diagram. In servicing the request, Object 1 generates a request to Object 2, and so forth.
We can then reinterpret the OOEM approach into a state change view as illustrated in

figure 4-4 below.

s, Request s
Response s« | Object 4

s,!

Request

2
s1

Request s (opject 2

Legend _
S,» Object Ais'in state S,/ after the request is sent !
Request 52

Sy ¥ Object B isin state S, after the request is received . st f
SYB Object B is in state Sy after the response is sent Object A SA R nse - 52 ObJeCt B
S, Object A is in state S, after the response is received : ¢ - Response - s

‘Figure 4-3 The Enterprise Modelling Approach . -

Object 1 - Object 2 _Object 3 . Object 4
External S,! g '
. Regquest | ©0 s.3
, + . Object s | . 0
. 1 .
S Request
S A -
512 Request . ' ' So‘
8,1 s
2 Szz 313 s \
Regquest N P
s, s;* oo
3
Request
s - Response 3 s,
1 S 4
Response | S5 2
Sg!

-+« — - Figure 44 OOEM reinterpreted as a state change view - - -
We can 'look at the exact same serles of happenings from the process modelmg approach

As illustrated below in ﬁgure 4-5, an external agent causés a phangg in Agent 1 causing it

P .

70

http://to.gp.from

to go from so' to s,'. Each time there is a state change it will be noted in the diagram. In
response to the change activity 1 one is triggered. During activity | of agent | a change is
caused in agent 2, and so forth. We can then also reinterpret the ABPM approach into a

state change view as illustrated in figure 4-6 below.

External | Agent 1 Agent 2 Agent 3 Agent 4
Agent H :
:> [Activity 1 }——] Activity 1 Activity 1
s, s s, 82 s s
[Activity 210 Activity 1
:' 85! s} 54 5,4
<::J. Activity 3}
P e 5!
Legend Agent A

S Agent A is in state S, when activity n begins

‘ .syAAqentAis in sta‘te S, when activity n ends —- Activityn —

A A
s, s,

Figure 4-5 The Process Modeling Approach S

TN

Object 1 Object 2 Object 4

Object 3
External st
0 .
Agent Change 2 s.3
1 So ° g
8 Change) L . S
512 :I‘ “s°4
s,! 2 ’
2 S 3
2 S,
Change
3
s, 52
. 3 Change B
1 4
S, Change Sy
4
Change S’ 52'
¢!

Figure 4-6 ABPM reinterpreted as a state changé view
When we take these happenings back to the ontological level basically the same

happenings'oc'ciir in both gfamniafs; As illustrated below in figure 4-7 an external thing

modifies some mutual attribute that it shares with some thing internal to the system.

! -

Internal thing | goes from being in a stable state so' to an unstable state s !, Internal thing
1 will according to its laws transition from unstable state s,' to stable state szl, during
which time it will modify some mutual attribute it shares with internal thing 2 causing

internal thing 2 to transition from stable state s> 1o s.z, and so forth.

External Thing

Mutual Attributg Modification Internal Event Mutual Attribute Modification Internal Event

Internal Thing 1 <s°1,s11> Internal Thing 2 <soz,s12> Intérmal Thing 2 <s12,szz> .
stable unstable unstable stable stable unstable unstable stabie

Intenal Thing 1 <s,%,s,>

Mutual Attribute Modification

Mutual Attribute Modification Internal Event

b b L

Internal Thing 1 <s,’,s5'> Internal Thing 1 <s,1,s,'>

\ : Internal Event .
[

Internal Thing 3 <sg3,s,3> Intenat Thing 3 <s,3,s,%>

stable unstable unstable stable stable unstable unstable stable

Mutual Attribute Modification

Mutuat Attribute Modification

] |]|

Internal Thing 4 <s1“,sz‘> Internal Thing 1 <s“,ss1>'

Internal Event

l Internal Event
(nternal Thing 4 <sg¥,s, %> Internal Thing 1 <sg',sg">

stable unstable unstable stable stable unstable unstable I\I;O
oy N ' . . e T ;

Mutual Attribute Modification

. - : o . E)Ftsmal Thing
Figure 4-7 The Ontological Meaning Approach

Consider the dotted oval in figure 4-5, this could be where there is what we call an
OOEM service yet they are distinct ABPM activities. The only way to know is to
consider,thé interactions and what they mean on an ontological level.

J

From the ontological level the main difference between the two grammars is that in
ABPM you can expand the internal events and include information that you cannot
include in an OOEM. If we map the OOEM and ABPM constructs back to their

ontological meanings we get thie conversions in table 4-1.

ABPM Construct \

OOEM Construct Ontological Model of a process
(BWWP) Construct
Object Thing Agent ~
Object Simple Thing Component Agent
Composite Object B Composite Thing Composite Agent
Actor* Agent

Non-actor* Resource (An Agent with no
services)
Actuator* Agent with at least one outgoing
|- ~ _~ |interface attribute
Propagator* An actuator with at least one
outgoing interface attribute
. affecting an actor
Attribute Property Attribute

Internal attribute

Attribute representing an intrinsic
property

Internal attribute

Interface attribute

Attribute representing a mutual
property

Incoming Interface Attribute +
Outgoing Interface Attribute

Inherited properties of a subclass

Hereditary property-

Inherited properties of a subagent

Composite object emergent
properties

Emergent property

Composite agent emergent
properties

Attribute values

State

Attribute values

No services required by an object

Stable state

No operations required by an
Agent

Services required by an object

Unstable state

Operations required by an agent

State Change

Event

State change

Execution of a service

Internal event

Change of an internal attribute,
performed by an operation

Receiving a request or Receiving

" External event

Change of an incoming interface

a response attribute
‘Service Transformation Operation
part of a service Activity A sequence of transformations
Law Law Law '
State law State law State Law
Transformation law Transformation Law
What happens in a system from Process* The changes the interacting

an initial request to the final
response

agents and resources undergo
from when one agent becomes
unstable to all agents once again
being in stable states

Request/Response

Interaction

Change .

x and y have a shared interface
attribute-modifiable by x only

N

X acts-on 'y

x has an outgoing interface
attribute connected to.an
incoming interface attribute of y,
only x can modify the outgoing
interface attribute and thus by
extension the incoming interface
attribute ofy '

Definition of a class

Functional Schema

Definition of an agent

Table 4-1 Conversion Table

*Denotes a construct from the BWWP ontology not in the BWW Ontology

73

An OOEM transformation deals with only 1 incoming interface attribute and 1 service,
whereas the ABPM transformation laws are constraints on two or more operations hence

for this instance there is no mapping of a transformation law in table 4-1.

Keep in mind, in an ABPM to OOEM conversion we are movihg from a detailed view to
a more abstract view. As mentioned above an OOEM service represents a well-defined
series of actions, while ABPM delves into what those actions are. Hence we will be
losing details in an ABPM to OOEM conversion. Also since an ABPM diagram is a more
detailed diagram than an OOEM, it may not be possible ‘to fully construct an ABPM
based on an OOEM. Where needed, we will explicitly mention what information needs to
be retrievedl from dpmain knowlédge that cannot be foupd‘ m the OOEM digg;am.

M I

The fact ABPM is more detailed than OOEM also leads to issues of duplication.

Duplication is caused in ABPM due to the possibility of the same‘ event being initiated
via different activities, which does not occur in OOEM‘. Consider our solution to the
ACME caéé ‘f.rc,)m 'tlhe OOEM perspectivé, tﬁé respoﬁsé from .war‘elh.o‘use; to volfﬁce cierk of
“Appro;/e/i_)ecline + Rea;on’; is spa‘»;/ngd .in énly 1 sve.rv‘icé;the :sewi;:e précess
withdrawal Irequests‘.l _I~r1 ABIPM the éame inter‘action of notifyiﬁg thé' office clerk if the

order is approved or declined may occur in the first, third, or fourth activity of the

warehouse.

4.3 ABPM to OOEM Conversion

Due to the fact that an ABPM is more detailed than an OOEM the conversion process
may create duplicate requests, responses, or attributes. Duplicates can be left out, since
they are not needed in OOEM. We will use the ACME case as a running example of the

conversion process.

Table 4-2 illustrates the questions of interest and conversion steps that answer them.

Question Of Interest Conversion Step

How do we determine the external objects? | Step 1. External Object Conversion

How do we determine the internal objects? | Step 2. Internal Object Conversion

How do we determine requests? Step 3. Request/Response Identification
How do we determine responses? Step 3. Request/Response Identification
How do we determine interface attributes? | Step 4. Interface Attribute Conversion
How de we determine internal attributes? Step 5. Internal Attribute Conversion
How do we determine services? Step 6. Service Creation

Table 4-2 Questions of interest in an ABPM to OOEM Conversion

1,. * B
. s

We wxll now summanze the steps in the ABPM to OOEM conversion process Followmg
. . . ’ +

the summarization w1]l be the explanation behlnd each step and a short example to

i « (AN

illustrate each step.

44.1 ABPM To OOEM Conversion Steps
The Stepsifo’r converting from an ABPM to an OOEM are:

Step 1. External Object Conversmn Every ABPM external agent becomes an OOEM
external object Cn AR

Step 2. Intemal Object Conversion. Every. ABPMuntemal agent becomes an OOEM
internal object

Step 3. Request and Response Identification. Outgoing interface attributes become
requests. However if the last outgoing interface attribute is going to the same agent which
initiated the activity in which.the outgoing interface attribute is.found the and the
outgoing interface attribute used to initiate the activity'became a request; the outgoing
interface attribute becomes a response. This step may encounter duplicate changes,
duplxcates can be left out.

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a
change from an agent becomes an interface attribute to handle a request. This only
applies to those incoming interface attributes of which the associated outgoing interface
attribute became a request.

Step 5. Internal Attribute Conversion. An ABPM internal attribute becomes an OOEM
internal attribute. This step may generate duplicate internal attributes, duplicates can be
left out.
Step 6. Service Creation. Create a service to process every request. This step requires the
modeler to create a service themselves since the service is not present in the process
model.
4.4.2 ABPM To OOEM Conversmn Step Derlvatlon
Step 1. External Object Converswn Every ABPM extemal agent becomes an OOEM
external object..
The scope of a system does not change depending on what view of it is used. In our

' e . 0t . ! .
example there is only: one external ABPM agent, hence there is only one external OOEM

object ' et

Customer : Office Clerk | Warehouse | Planner | Truck Driver’

ABPM 7 ooem
Flgure 4 8 Demonstratmg Step 1 External Object Conversion; ABPM To OOEM

Step 2. Internal Object Conversion. Every ABPM internal agent becomes an OOEM

internal object - L . _ C

76

The scope of a system does not change depending on what view of it is used. As well,
things of interest are still things of interest regardless of level. In the ACME case there

are four ABPM internal agents hence there will be four OOEM internal objects.

=i

ABPM

.) oo - e .
OfYice Clerk . Warchouse Vo planer) [Truck Driver)
J

\.—.—.—/_——-rl \. J N\

OO0EM
Figure 4-9 Demonstrating Step 2 Internal Object Conversion; ABPM To OOEM

Step 3. Request and Response Identification. Outgoing interface attributes become

requests. However if the last outgoing interface attribute is going to the same agent which
. NERE

initiated the activity in which the outgoing interface attribute is found the and the

outgoing interface attribute used to initiate the activity became a request; the outgoing

R AN

interface attribute becomes a response'o. This step may encounter duplicate changes,

duplicates can be left out.

According to our mapping in table 4 l a change of an mcommg 1nterface attribute is

ontologically equivalent to to either a request or a response. An incoming interface attribute

is changed via changing the outgoing interface attribute that is associated with it.

Duplication may be caused by branching which occurs in process modeling that does not

occur in enterprise modeling.

10 This is a complete assumption on our part, made for simplicity. We recognize that an object may receive -
a response from an object it never made a request to, thus it should be possible to extend this step to be

more robust however we wrll use this snmple form. l b

PN

Customer Office Clerk ~ Warehouse ! Planner | Truck Driver

[::> Activity | Affected Attributes
_Customer:: Withdrawal request E :

4
'
i
i

Wlthdrawal Request: Warehouse AU :
Order Status::Customer ;
Activity | Operations !

ABPM

. . - ——
M : Office Clerk] Withdrawal Request L_M
‘ Approve/Decline + Reason ’ l—-——j

\) |

OOEM

Figure 4-10 Demonstrating Step 3 Request and Response Identification; ABPM To OOEM
*Recall a request appears at the tail of an arrow, a response at the head of an arrow

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a

change from an agent becomes an interface attribute to handle a request This only

applies to those mcommg interface attributes of Wthh the associated outgoing interface

attribute became a request.

An incoming interface attribute is how an agent handles (i.e. receives) external events.

An external’ event is handled (recewed) by an obJect through an interface attrlbute For

those incoming mterface attrlbutes Wthh the assocxated outgoing mterface attrlbutes

became a-response an interface attribute is not needed in the object since responses do not

e [TS SO U R o
have interface attributes associated withthem,”.‘ VI

i Responses ¢ah actually have interface attributes to handle them, however due to conventxon they
typically do not.

Customer | Office Clerk Warehouse i Planner ; Truck Driver

Activity | Affected Attributes
" Withdrawal chuesi::Warchouse

Activity 1 Operations

¥ Activity | Affected Attributes
i Office Clerk::Withdrawal Request |

Activity | Operations

ABPM

—\...
Office Clerk]| Withdrawal Request L Warehouse
] Withdrawal Request

\

- wh

- o

OOEM
Figure 4-11 Demonstrating Step 4 Interface Attribute Conversion; ABPM To OOEM

Step 5. Internal Attribute Conversion. An ABPM internal attribute becomes an OOEM
internal attribute. This step may generate duplicate internal attributes, duplicates can be

left out.

According to our mapping in table 4-1. an internal attribute is the same in both grammars.
The duplication is caused by branching that is present in process models but not in

enterprise modeling: ™"~ ™

Customer | Office Clerk " T i Warehouse; Planner | Truck Driver

[:> Activity | Affected Attributes ’ - -

Authorization Status, ' ., g 5:”\ G Office Clerk \

Activity 1 Operations : : [Authorization Status]

ABPM - o ‘ OOEM
Figure 4-12 Demonstrating Step S Internal Attribute Conversion; ABPM To OOEM

79

Step 6. Service Creation. Create a service to-process every request. This step requires the
modeler to create a service themselves since the service is not present in the process

model.

The important thing to keep in mind in that in OOEM every request requires a service.
What we know is that every request started as an outgoing interface attribute. If there'yare
duplicate outgoing interface attributes we know the activities in which the outgoing
interface attribute is found are part of the same service, since a request is spawned by
only one service. Thus a potential candidété for a service is the operation that changes the
outgoing interface attribute, and when there are duplicate outgoing interface attributes
there are multiple candidate operations for a service. It is still a mpd;lgr’s decigion to

A bl L . S . o0y

either use one of the candidate operations as a service or to create a service from scratch.

m 4 Office Clerk D —~_—
. Withdrawal Request Withdrawal Requests iLW-l
[Authorization Status]

B , o TN !
A\ . /R L o ——

OOEM Before Step 6

[Office Clerk B ———=
Customer Withdrawal Request Withdrawal Requests . l_IWarehouse X
N - [Authorization Status] l ’ C
Process Withdrawal Request \ e e
e . -

OOEM After Step 6
. Figure 4-13 Demonstrating Step 6 Service Creation; ABPM To OOEM
At this pomt we are finished the conversion. If we compare our solution after the

conversion to that in section 4.2.4 abbvé we see fﬁe 'diff'erén'ce' is the 'post' conversion
solution has more internal attributes. Since internal attributes are optional in OOEM the

L

solution is the same.

80

4.5 OOEM to ABPM Conversion

The following questions are of interest in an ABPM to OOEM conversion:

Question Of Interest

Conversion Step

How do we determine the external agents?

Step 1. External Agent Conversion

How do we determine the internal agents

Step 2. Internal Agent Conversion

How do we determine activities?

Step 5. Activity Creation

How do we determine outgoing interface
attributes?

Step 3. Outgoing Interface Attribute
Identification

How do we determine incoming interface
attributes?

Step 4. Incoming Interface Attribute
Identification

How de we determine internal attributes?

Step 7. Internal Attribute Identification

How do we determine operations?

Step 8. Operation Identification.

How do we determine state laws?

Step 5. Activity Creation

How do we determine transformation laws?

Step 5. Activity Creation
Step 8. Operation Identification

How do we determine resources?

Step 9. Resource Identification

Table 4-3 Questions of interest in an OOEM to ABPM Conversion

We will now summarize the steps in the OOEM to ABPM conversion process. Following

the summarization will be the explanation behind each step and a short example to

L RV

illustrate each step.

ol

4.5.1

-OOEM To ABPM Conversion Steps

The Steps for converting from an OOEM to an ABPM are:

Y

Step 1. Extemal Agent Conversion. Every OOEM external object becomes an external

ABPM agent.

Step 2 Every OOEM 1ntemal object becomes an ABPM: mternal agent »

tur‘.y" LR A

Step 3. Outgomg Interface Attrlbute Identlﬁcatron All requests and responses become

outgoing.interface attributes.

) N
t'.'-vt‘

. 1
1

Step 4. Incoming Interface Attribute Identification. All outgoing interface attributes
identified in step 3 require an incoming interface attribute. As well when we create the
incoming interface attribute we need to show the agents share a mutual attribute.

Step 5. Activity Creation. At this point we can create activities. Each time there is an
incoming interface attribute without a transformation law requiring other incoming

81

interface attributes to change to start the operations of the activity, it is the beginning of a
new activity. We can create transformation and state laws for the incoming interface
attributes using domain knowledge.

Step 6. Outgoing Interface Attribute Assignment. We can now assign the outgoing
interface attributes to the appropriate activity using domain knowledge. Duplicate
assignments are allowed.

Step 7. Internal Attribute Identification. Every OOEM internal attribute becomes an
ABPM internal attribute. We can the assign them to the appropriate activity using domain
knowledge. Additional internal attributes may need to be created using domain
knowledge. Duplication may occur ’

Step 8. Operation Identification. Create the operations that will be invoked to change the
outgoing interface and internal attributes using domain knowledge. We also have to
create transformation laws using domain knowledge that show if there are any restrictions
on the operations of the activity.

Step 9. Resource Identification. In the event there are agents only have incoming
interface attributes in all of their activities they are resources and need to be converted to
the appropriate resource notation.

, . . . P
\ P el

4.5.2 OOEM To ABPM Conversion Step Derivations

R (T PP

Step 1. External Agent Conversion. Every OOEM external object becomes an external

ABPM agent.

The scope of a-system does not change depending on what view of it'is used. In our
example there is only one external OOEM object, hence there is only one external ABPM
agent.

—_—

Tl

OOEM ABPM
Figure 4-14 Demonstrating Step 1 External Agent Conversion; OOEM To ABPM

A

Step 2. Internal Agent Conversion. Every OOEM internal object becomes an ABPM

internal agent

The scope of a system does not change depending on what view of it is used. As well,
things of interest are still things of interest regardless of level. In the ACME case there

are four OOEM internal objects hence there will be four ABPM internal agents.

P
Office Clerk | , Warehouse V (Planner) Truck Driver)
. }

1
\———J___gl . W \,)

OOEM

Vo ey

ABPM
Figure 4-15 Demonstrating Step 2 Internal Agent Conversion; OOEM To ABPM
Step 3. Outgoing Interface Attribute Identification. All requests and responses become

outgoing interface attributes.

Since requests and responses model interaction between two things in OOEM, they need

to model interaction between two things in ABPM. A change models interaction in
ABPM. A change is the-initiation of an event external to an-agent.-External events change

- e e N B

incoming interface attributes: Since incoming interface-attributes are only changed when

the associated outgoing.interface attributes are changed by operations in other agents,

requests and responses must become outgoing interface attributes.

83

S\ o — P
: Office Clerk . Warehouse)
Withdrawal Request "—l
Approve/Decline | I__.I

+ Reason { ...) A \ e o
OOEM
Customer i Office Clerk ! Warehouse : Planner ! Truck Driver

Order Status::Customer
: Wrthdrawal Request: Warehouse

H
)
‘

ABPM
Figure 4-16 Demonstrating Step 3 Outgoing Interface Attribute Identification; OOEM To ABPM

Step 4. Incoming Interface Attribute Identification. All outgoing interface attributes
identified in step 3 require an incoming interface attribute. As well when we create the

incoming interface attribute we need to show the agents share a mutual attribute.
PR

By definition all outgoing interface attributes need an associated incorning interface

.

attribute. We do not need additional information from the OOEM for this step.

Customer j Office Clerk Warehouse ! Planner : Truck Driver

Order Status::Customer
Wllhdrawal Request: Warehouse

ABPM, before step4

P o

Customer : Office Clerk : Warehouse ! Planner : Truck Driver

Office Clerk::Order Status ‘—hOrdcr Status::Customer '
. thdrawal Request: Warehouse—‘—'thce Clerk::Withdrawal Requesl S

ABPM, after stepd
Figure 4-17 Demonstrating Step 4 Incoming Interface Attribute Identification; OOEM To ABPM

Step 5. Activity Creation. At this point we can create activities. Each time there is an

incoming interface attribute without a transformation law requiring other incoming

v (L lon
. . Lo ol

84

interface attributes to change to start the operations of the activity, it is the beginning of a
new activity. We can create transformation and state laws for the incoming interface

attributes using domain knowledge.

As noted in our mapping in table 4-1 the transformation law information is not present in
OOEM. Thus we will have to use our domain knowledge. At this point (in the ACME
case) there do not appear to be any transformation laws. That means every incoming
interface attribute will be the beginning of a new activity. We need to create the state

laws using domain knowledge since they are not represented directly in OOEM

Customer E Office Clerk ! Warehouse : Planner : Truck Driver

H

! Customer:: Withdrawal Request 5 .
! Withdrawal Request;: Warehouse :
! Order Status::Customer

ABPM, before step 5,) [R P

Customer | Office Clerk Warehouse Planner ! Truck Driver

! Withdrawal Request: Warchouse :
! Order Status::Customer ' :
Activity | Withdrawal Request :
i [Affected Autributes : ' '
i [Customer:: Withdrawal Request |: , '
Activity | Operations - . P v

ABPM, after step 5§

“Figure 4- 18 Demonstrating Step 5 Activity Creation; OOEM To ABPM
*note the attrlbutes above the activity are outgoing interface attribute that have not yet been
v . . assigned to an activity. !!. - :

Step 6. Outgoing Interface Attribute Assignment. We can.now assign the outgoing
interface attributes to the appropriate activity using domain knowledge. Duplicate

assignments are allowed. -

(ST T s . ot ot

85

[EA\ETETE SN N

Duplicate assignments can occur since the same transformation may be triggered in
different activities. We must use the domain knowledge to assign the outgoing interface
attributes to the appropriate activity since the expanded activity view is not present in

OOEM.

(2]

ustomer_: Office Clerk : Warehouse ; Planner | Truck Driver
i Withdrawal Request::Warchouse : :
! Order Status::Customer

Activity | Withdrawal Request

1 |Affected Attributes

} [Customer::Withdrawal Request
i |Activity 1 Qpcrations

Activity 2 Notify about order status
i|Affected Attributes :
i |Warchouse::Order Status
i [Activity 2 Operations

ABPM, b:crore step 6

Customer : Office Clerk i Warehouse : Planner : Truck Driver

i |Activity | Withdrawal Request
Affected Attributes

i |Customer::Withdrawal Request
{1Withdrawal Request Warchouse
: |Order Status::Customer
Activity | Opcrations

i |Activity 2 Notify about order status| !
o i |Affected Attributes :
O R | |Warchouse::Order Status
Order Status::Customer

! |Activity 2 Operations

ABI;M, al'ter's(elp 6

Figure 4-19 Demonstrating Step 6 Outgoing Interface Attribute Assignment; OOEM To ABPM
Step 7. Internal Attribute Identification. Every OOEM internal attribute becomes an
ABPM internal attribute. We can the assign them to the appropriate activity using domain
knowledge. Additional internal attributes may need to be created using domain

knowledge. Duplication may occur

et N

According to our mapping an internal attribute is the same in both grammars. However in
OOEM internal attributes are optional, thus not all the ABPM internal attributes may be
identified. A modeler will have to use their domain knowledge (in our case that’s the

ACME Case) to identify any other internal attributes.

ER N

86

4 Planner N

[Truck Information]

N J
OOEM
Customer Offlce Clerk : Warehousc_;AE Planner i Truck Driver
3 Truck Information :
i Inventory Information* !
i Transport Information* |
ABPM

Figure 4-20 Demonstrating Step 7 Internal Attribute Identification; OOEM To ABPM
* denotes an attribute created using domain knowledge

Step 8. Operation Identification. Create the operations that will be invoked to change the
outgoing interface and internal attributes using domain knowledge. We also have to
create transformation laws using domain knowledge that show if there are any restrictions

on the operations of the activity.

We cannot use OOEM services to create ABPM operations since as mentioned above a
service may encompass many operatlons The only way outgoing interface and internal
attributes are changed is via operatlons As noted in our mapping in tab]e 4-1 the

transformation law information is not present in OOEM. Thus we will have to use our

domain knowledge. ».. .. - L dennio o .

Py

87

Customer : Office Clerk ! Warehouse LPlannor i Truck Driver

Activity 1 Withdrawal Request :
AfTected Attributes

Customer::Withdrawal request
Authorization Status : :
Withdrawal Request: Warehouse | : ;
Order Status::Customer : : :
Activity T Opcrations .

ABPM, before step 8

Customer : Office Clerk { Warehouse | Planner | Truck Driver

Activity | Withdrawal Request :
Affected Attributes i ! :
Customer::Withdrawal request i i H
Authorization Status : : :
Withdrawal Request: Warehouse
Order Status::Customer i :
Activity T Operations : i
Contact Warehouse and Notify About
Status are mutually exclusive :
Authority Check :
i| Contact Warehouse :
i Notify about status ! :

ABPNMI, after step 8
Figure 4-21 Demonstrating Step 8 Operation Identification; OOEM To ABPM

Step 9. Resource Identification. In the event thereare agents only have incoming
interface attributes in all of their activities they are resources and need to be converted to

the appropriate resource notation.

Resources are the only things that can receive change that are not agents.
Note: for our example there are no outgoing interface attributes that meet the criteria of

step 9, however an example would be something like figure 4-22 below.

Customor§ Office Clerk : Warehouse : Planner iTruck Driver ;| Stapler

Usc::Stapler

Activity T staple
Affected Attributes
Office Clerk::Use

ty L TR e . '

Staple Stuff

Customer: Office Clerk | Warehouse | Planner | Truck Driver | Stapler

-Use::Stapler Lo N YL DT AN

Office Clerk::Use

Staple Stufl’

ABPM, after step 9

"Figure 4-’22Demon§trating Step 9 Resource Identification; OOEM To ABPM

88

4.6 Converting Decompositions and Compositions
It should be noted that in our running conversion examples above we neglected to
mention and demonstrate the warehouse decomposition. The reason behind that is there

no need to show it. The Steps apply the same way in the decomposed view or the

composite view since in the decomposed view the component things are still things that

is

interact and will still interact in either OOEM or ABPM, the difference is the information

included.

4.7 Converting Subagents/Superagents And Subclasses/Superclasses
It should also be noted that in our running conversion examples above we neglected to
mention and demonstrate the generalization/specialization conversions between agents

R o ol

and classes and vice versa. They are still things so thus the steps apply the same way to

I B

the things in these relationships. The modeler needs to ensure that the correct

generalization and specialization notation for the grammar is used post conversion.

IR SIS

4.8 Summary' -
This chapter explained OOEM. It delved into the relationship between OOEM and
ABPM and introduced means to convert form one view to the other. This chapter also

used the examples from the ACME case to demonstrate the conversion process.

89

5. Design Principles of an ABPM CASE Tool

5.1 Introduction

One of the goals of this thesis is to take OBPM from an algorithm to a graphical
modeling grammar. To make it more useful as a modeling grammar a tool that supports
the ABPM modeling process can be developed. This chapter presents a set of design
principles for taking ABPM a step further and implementing it as a CASE tool. ABPM
has very specific semantics that proper design of a CASE tool can take advantage of. Our
only assumption is that there already exists some sort of CASE tool upon which OOEM

has been implemented.

5.2 System Goals

The mam goal ofthe CASE tool developmetlt 1s to implement ABPM in a visual manner.
This manner st‘lould’be consistent with both the semantlcs and the act1v1ty-based
graphlcal' \representatllons presented baek 1;1 chapter 3. However asa secondary goal it
should also support the ABPM to OOEM conversion and OOEM to ABPM conversion

from chapter 4.

5.3 System Requlrements

' 7
tt

Based on Zhang’s requnrements for a visual OOEM CASE tool (Zhang, 1998) we can
say the CASE tool will be required to support the entire ABPM model creation process.

In the initial stage the tool should allow the process modeler to gather and organize

LYY

mformatlon into an understandable model The tool should then be capable of applymg
. VAN o

the ABPM rules to a developed model to evaluate its semantic correctness. Once

evaluated it should be possible to change the model as needed until the rules are met.
Finally the tool should allow for the modeler to suspend activity at any time and resume it

later. No information should be lost during these actions (Zhang, 1998).

Also, the case tool should be able to support the analysis stage. That is, the user should be
able to change elements as desired so that they can see what happens when changes are

made. (Zhang, 1998) This directly supports process redesign efforts.

The CASE tool should also support the model conversion process from ABPM to OOEM
and from OOEM to ABPM without losing any information during the conversion

process.

In order to meet these reqmrements we need to consider two main areas: what constructs

P ERN ~ PERETER . i

to represent in the CASE tool and what interactions a user w1ll have with the CASE tool.

5.4 Constructe tn‘Repres.ent

If we wane to build npon the ex1st;ng OOEM CASE eool then when it eomes to constructs
to represen.t. I\;ve can first need to consider what is already.present m.an OOEM CASE
tool. We can then compare that with the constructs in ABPM After the comparision we

should then know what needs to be added to the CASE tool.

The basis of comparison will be the respective metamodels of both grammars. The

OOEM metamodel, as adapted from Tan (Tan, 1997) and his work on an OOEM CASE

91

tool to show attributes are either internal or interface and responses can be spawned by

services, is presented below in figure 5-1.

Object Request
d 9 Generate 1+ q
O+
0+ Sent 1+
Receive '
Attribute
|1 [1 1
Response Interface
Generalization / >
1+
Specialization
of Objects Own K
Generalization / Invoke
Specialization
1+ 1
Internal Interface
Spawn
Internal
1+ 1 1 1 1+| 0+
Provide -
rnal’ S Service
External . o
L— Access
o+ . 04
' ‘May-Own
0+ May-Provide p
Spawn 1

Figure 5-1 The OOEM Metamodel (adapted from Tan 1997)

We developed the ABPM metamodel back in chapter 3. The question now is how do we

relate the metamodels to create a CASE tool metamodel? The question is answered the

same way as how we related the two modeling grammars, use their ontological

foundations to establish what is there and what is not. Consider figure 5-2 below, as an

OOEM Metamodel with the ontological meanings of the constructs added.

Object ' + Request
J o+ Generate 1 9
0+
"—’ Thing 0+ Sent 1+ Interaction
Receive .
Attribute
|1 [1 1 1
Response Interface
Attribute
Generalization / 1+
Interaction Specialization
of Objects Own K
Generalization / I nVOke
Specialization 1
1+ 1
Internal Interface
Spawn
Internal Internal Mutual
Attribute Attribute
Internal
Thing
1s 1 1) 1+| 0+
Provide .
Service
External
L Access)
External 0+ 0+ Transformation
Thing — May-Own)
o o May-Provide K T
Spawn

- Figure 5-2 OOEM Metamodel with ontological meaning included

When we look at the ABPM model with the ontological meanings of the constructs added

we get the diagram in figure 5-3 below. Since an activity has no direct ontological

mapping we did not include its ontological meaning. The boxes that are double-lined

denote the constructs that are directly equivalent, and are thus already represented. The

dotted box denotes that although not directly equivalent on their own, combined an

outgoing interface attribute and incoming interface attribute have an ontological meaning

of interaction.

- .
e
[N

93

1 Agent

Thing
Change
. eaneralizaton
Specialization
External Internal Operations | 4,
Agent Agent Transformation
External Thing Internal Thing 1
1 1
1 1
1. | perform change T . Restrict
have Consist of estric
Resource ‘
2+ 1+ 1+ 1+
Resource —
Attribute ' Consist of 2 Activity 0+
1 k— Consist of — M—
Attribute
have 1 governs
/i\ govern | !
1+ Copeciataaton Laws
Interface Internal Law
only have ol
Attribute /{\
must have 1 Generaiization / 1
1+ Spacialization
G alization / H
i Shocialieation State Transformation
o L Oitanima - Law Law
State Law Transformation Law|

Figure 5-3 ABPM metamodel with ontological meaning included

From the two' me%amodels we can thus see, an ABPM inclﬁdés ali i'he:’constructs
presented in an OOEM. However the ABPM has additional constructs not present. Thus
the additional constructs to be represented are: Resource, Activity, Laws, State Laws, and
Transformation Laws, While the constructs that are already represented (ontologically)
but need to be configured to accept input as ABPM constructs are: Agent, External
Agent, Internal Agent, Attribute, Internal AttribLllte, Operations, Incoming Interface

Attributes, and Outgoing Interface Attributes..

94

5.5 User Interactions
The user interactions for the ABPM CASE tool are those related to drawing ABPM

diagrams, converting ABPM and OOEM diagrams, display option, and semantic checker.

5.5.1 Drawing ABPM Diagram Interactions
For all elements a user should be able to add, delete, and modify as desired. For the

elements where it is not obvious how to add, delete, or modify it will be discussed below.

5.5.1.1 Internal and External Agents

We recommend that when the agents and resources are implemented, that each construct
will have the assoc1ated agent template implemented with it as well. This will allow the
user to wotk from the view that is more convement for them When the user wishes to

make a modlﬁcatlon they should merely have to spemfy whxch view they w1sh to work

D

in. If chosen, changes made in the agent template view should be reflected in the diagram

when the template is closed.

5.5.1.2 Agents Sharmg A Mutual Attribute
When an incoming 1nterface attribute has an outgoing interface attribute associated with

it, an arrow from the operatlon that changes the outgoing interface attribute to the

HE SN oo

mcommg mterface attribute should drawn In the event the same outgomg 1nterface
attribute occurs in more than one activity, then when they are assomated with the

incoming interface attribute a function will have to run that automatically generates a

[

double- lmed arrow. When compressed without operatlons the arrows can automatically

oo b . B N TS

95

be redrawn to connect directly from the outgoing interface attributes to the incoming

interface attributes. Mores is said about compression in section 5.5.2 below.
5.5.1.3 Superagents And Subagents

If it is decided to turn an agent into a superagent, nothing special happens. When it is
decided to create a superagent from existing (sub)agents. A function to automatically
extract the agent activity template of the superagent should be called. The function would
pull out the attributes and operations of each subagent that they have in common. A
notification (reminder) that a subagent needs to have additional attributes not present in

the superagent may need to occur”, Any changes that are now routed to the superagent

'

should automatlcally be rerouted from the subagents in the dlagram The thrrd possibility

Vi N ~ “ ~ 0

is that existing agents could be grouped such that one of them is set to be a superagent

and the rest are subagents In this event the superagent would need to have its agent

[N IR S TIVERSIEY
activity template updated, much hke in the aforementioned second possibility, from the
common attributes and operations of the subagents. The original properties of the

superagent and those added from the-subagent(s) will need to be organized into activities
by the user. A prompt shoutd be issued to remind the user to reorgamze the properties of
the super agent. All attrlbutes and operatlons of the superagent that exist in the subagents
should be removed The attrlbutes and operatlons of the subagent then need to be |

Lot

reorgamzed into actlvmes A prompt (1f necessary) should be 1ssued to remlnd a user that

PN .

" This reminder‘may also help identify typos made in the subagents preventing a superagent from having a
non-empty agent template.

M)

96

a superagent cannot have an empty agent activity template and that each subagent must

have its own attributes and operations that are not present in the superagent.

5.5.1.4 Composite and Component Agents
A user should be able to switch between the composite and components view of an agent

at any point they desire.

There are three possibilities with composite and component agents. The first possibility is
there is a coﬁposite agent that is decomposed down into its components. In this case a
prompt is issued to the user for how many components there are and what there names
will be. .Sirllce we already know what the incoming gnd outgoing changes to the
composité ziigén‘t are Qe can issue a broﬁét for both ;vhlich incorﬁiné éhanges (actually the
interface attribute associated with the incoming change) go to which agent, then the entire
activity is asgigned to the component. The last prompt necessary is for what changes (if

any) do the components use to interact with each other. The user then needs a reminder

the component interactions all require activities.

T

The second case is that several components are combined to create a composite object. In
this case the' agent activity template of the composite is populated from the agent
templates of the components. Any interactions between the components are left out.
When the components have the same activity it is'only entered in the composite once.
When the components have an activity that is the same except for the incoming interface
attributes then only one activity will be entered in the composite; but both incoming

interface attributes will be placed in the activity and the user will be prompted for the

ol .
) Tie \\AI‘

transformation law that exists. The user should then be prompted for the emergent
attributes and operations of the composite. Lastly, the user should be asked if they wish

to view the composite in the composite view or the decomposed view in the diagram.

The last case is that from a collection of agents one is decided to be a composite agent
and the rest component agents. In that event the agent activity template of the composite
agent needs to be altered to: show its attributes and operations are emergent and to
include the attributes, and operations of the component agents (as aforementioned in
creating a composite) and to denote which component agent contributed which attribute
and operation. If a component and the composite agent have the same attribute or
operatlon 1t is denoted as bemg contrrbuted from the component not the composrte

Lastly, the user should be asked if they wish to view the composne in the comp031te view

or the decomposed view in the dlagram
. ol Y

5.5.2 Dlsplay Optlon

1 4'."r"r"'.'v~r

A dlsplay optlon should be mcluded to allow the ABPM to be shown as is, or in any
compressed v1ew the user desrres Since the information is stored in the agent templates

viewing the compressed agents will not lose any information. Spe01ﬁcally, the user

should be able to choose the dlsplay method for any agent in the model ThlS can be done

. o
REFTITN IERNRY VU '

for varrous reasons such some large agents may need to be compressed in order to
capture the ent1re system in a confined area (e.g an 8 5”x1 1? page) a user may only be

interested in viewing the 1nteract10ns, etc.

98

5.5.3 OOEM And ABPM Conversions

As established in chapter 4 it is possible to convert an OOEM to an ABPM and vice
versa. We assume there already exists some sort of CASE tool which has implemented
OOEM. The conversion process should be automated as much as possible to prevent
human error. However at steps where there is the possibility of ambiguity or lack of
information a user could be prompted to for the appropriate information. Each model
should have its own window. As well, the source file used to create the second diagram

should not be changed by the conversion process.

5.5.3.1 ABPM to OOEM Converter

For the sake of convenience we will assume the user has developed an ABPM that has

D

passed a semantlc 1ntegr1ty check The starting point is the user has selected the optlon to

convert the ABPM to an OOEM The CASE tool should mltlahze a new OOEM window

that is hnked to the current ABPM Usmg the ABPM to OOEM conversion process from

chapter 4,‘we ‘wxll dlSCUSS the converslon steps and highlight those that requxre user
interventioh. ” o

Step 1. External Object Conversion. Every ABPM external agent becomes an OOEM
external object.

This is a step that c.anb be automated. The system can automatically create a new empty
external object template for each external object. As well it can create the associated

graphical construct for an external object and place it in the diagram.

PR GUEINE U S RUR

Step 2. Internal Object Conversion. Every' ABPM 'internal agent becomes an OOEM
internal object

' v
[N

99

This is a step that can be automated. The system can automatically create a new empty
internal object template for each external object. As well it can create the associated
graphical construct for an internal object and place it in the diagram.

Step 3. Request and Response Identification. Outgoing interface attributes become
requests. However if the last outgoing interface attribute is going to the same agent which
initiated the activity in which the outgoing interface attribute is found the and the
outgoing interface attribute used to initiate the activity became a request; the outgoing
interface attribute becomes a response. This step may encounter duplicate changes,
duplicates can be left out.

This step can be automated. The system can first eliminate duplicate changes. Then it can
convert then to requests or responses as dictated. The requests and responses can then be
automatically placed in the diagram.

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a
change from an agent becomes an interface attribute to handle’a request: This only
applies to those incoming interface attributes of which the assocnated outgoing interface
attribute became a request.

This step can be automated. By keeping track of the changes _that became requests in the
prev1ous step‘the system can know whlch mcommg mterface attributes to convert to
interface attrlbutes ‘The mterface attrlbutes can the be automatlcally placed in the
diagram.

Step 5.-Internal-Attribute Conversion. An ABPM internal attribute becomes an OOEM
internal attribute. Thls step may generate duplicate internal attrlbutes dupllcates can be
leftout. *'v - o

This step can be automated. The system can first eliminate duplicate attributes. Then it

can put the 1nterna1 attr1butes into the obJect template Then the mtemal attrlbutes can

automatlcally be placed in the dxagram

v

100

Step 6. Service Creation. Create a service to process every request. This step requires the
modeler to create a service themselves since the service is not present in the process

model.

The system can automatically place one of the operations that are candidates for a service
in the diagram. The user can reminded that the services may not be correct, and that they
may either need to use a different one of the candidates for a service or create a new

service altogether for each request.

5.5.3.2 OOEM to ABPM Converter

For the sake of convenience we will assume the user has developed an OOEM that has
passed a'semantic integrity check. The starting point is the user has selected the option to
convert the OOEM toan-ABPM. The CASE tool should initialize a new ABPM window
that is linked to the current OOEM. Using the OOEM to ABPM conversion process from

chapter 4, we will discuss the conversion steps and highlight those that

[V ey

require user

intervention.

R IR IR BN
Step 1. External Agent Conversion. Every OOEM external object becomes an external
ABPM agent.

This is a step that can be automated. The system can automatically create a new empty
external agent template for each external agent. As well it can create the associated

graphical construct for an external agent and place it in the diagram.

101

Step 2. Internal Agent Conversion. Every OOEM internal object becomes an ABPM
internal agent

This is a step that can be automated. The system can automatically create a new empty
internal agent template for each internal agent. As well it can create the associated

graphical construct for an internal agent and place it in the diagram.

Step 3. Outgoing Interface Attribute Identification. All requests and responses become
outgoing interface attributes.

This is a step that can be automated. The system can do the conversion and then put them

into the first activity of the agent template to temporarily store them.

Step 4. Incoming Interface Attribute Identification. All outgoing interface attributes
identified in step 3 require an incoming interface attribute. As well when we create the
incoming interface attribute we need to show the agents share a mutual-attribute.’

This step can be automated. The outgoing interface attributes can be dissected for the

‘attribute changed’ part of the incoming interface attribute, while the agent possessing the

outgoing interface attribute is the ‘agent doing the change’ part. The incoming interface
attribute can then be stored in the agent template of the agent that possesses it.

Step 5. Activity.Creation. At this point we can create activities. Each time there is an
incoming interface-attribute without a transformation law requiring other incoming
interface attributes to change to start the operations of the activity, it is the beginning of a
new activity. We can create transformation and state laws for the incoming interface
attributes using domain knowledge.

The system can automatically put each incoming interface attribute into a new activity.

The user can'then be prompted for any transformation laws that exist and what incoming

interface attributes belong to-the same activity. -

102

Step 6. Outgoing Interface Attribute Assignment. We can now assign the outgoing
interface attributes to the appropriate activity using domain knowledge. Duplicate
assignments are allowed.

This is a manual process (unless there is only one activity in which case the assignment
can be automatically done done), in which the user can be prompted for which activity

the which outgoing interface attributes is altered in.

Step 7. Internal Attribute Identification. Every OOEM internal attribute becomes an
ABPM internal attribute. We can the assign them to the appropriate activity using domain
knowledge. Additional internal attributes may need to be created using domain
knowledge. Duplication may occur

This step can be partially automated. The system can do the conversion for the existing
OOEM internal attributes, however the user will have to be prompted for any extra

attributes. The user also needs to be prompted for which activities the attributes are used

[R SN SN | B

in.

. i
JOL N

Step 8. Operation Identification. Create the operations that will be invoked to change the
outgoing interface and internal attributes using domain knowledge. We also have to
create transformation laws using domain knowledge that show if there are any restrictions
on the operations of the activity.

It would drive a user insane if they were prompted for an operation for every outgoing
interface and internal attribute. We suggest one reminder about the fact the user needs to

create operations for every outgoing interface and internal attribute: At this point the

diagram would be in a com

Iovven o

pressed view that has no operations. The user can then rely on
the semantic checker (discussed in the next section) to ensure they have an operation for

every outgoing and interface attribute.

103

Step 9. Resource Identification. In the event there are agents only have incoming
interface attributes in all of their activities they are resources and need to be converted to
the appropriate resource notation.

This is a step that can be automated. The system can check if there are any agents with

that only have incoming interface attributes in its activities. If there are it can

automatically convert the agent to a resource.

5.5.4 Semantic Checker

The requirement of a semantic checker is rather intuitive. Modern tools (for example
Microsoft Word) provide facilities that perform error checking for the user. This makes
the tool more useful to the user. As well a tool that can check whether an ABPM diagram
is correct will help to reduce errors and lead to better models being created. How are
errors introduced to an ABPM? Errors-are introduced b'y"viOIating the semantic integrity
of the langhaée | thatlls by ;flolatlng the rules. Hence a semantic checker will be a useful
part of the too] to ensure the semantic m.tegrlty rulee are fcllowed When arule 1‘s violated

the error can be hlghhghted for the user.

The rules (from chapter 3) and how they should be implemented in the system are below:

R i NN

1. Every change in the system should be able to be traced back to an 1mt1al change from
an external agent. -~ - S . - \

The incoming interface attribute for each activity can be back tracked to the outgoing
interface attribute. The system can then backtrack the incoming interface attribute of the
activity that the outgoing-interface is a part of until an external agent is reached. If an

external agent is not reached then there is an error.

. ars .o T R L AT S PO

104

2. Eve'ry agent must have at least one activity.
The system can check if the activity count for each agent is greater than or equal to one.

[f it is not, there is an error.

3. Every Activity must have at least one operation
The system can check if the operation count for each activity is greater than or equal to

one. If it is not, there is an error.

4. Every resource must only have incoming interface attributes.
The system can check each entry in the resource template. If they are not incoming
interface attributes (notationally in the form: agent doing the change::attribute changed),

there is an error.

5. Every .a‘létr-ibute is chénge;d by one ope.ration.

In the agc;,nt template every outgoing interface attribute and interface attribute should
have one and only one operation. The system can check if this true, if not there is an
error.

6. Every activity éan only have one incoming interface attribute unless governed by a
transformation law.

In the ag(;.nt ‘tglrr;p‘la.t‘ej if ‘th.e.transformatipn law éssociated wiﬁh_ an inpoming interface

attribute is blank there should only be one incoming interface attribute for each activity.

o ' i

The system can check if this is true, if not there is an error.

7. Every outgoing interface attribute must have a corresponding interface attribute and
vice versa.

L I L

Two checks occur here. For each outgoing interface attribute, there has to be é check in
the activities of the agent it lists the on the ‘agent being changed’ part of the outgoing
interface attribute that there is in fact an incoming interface attribute for it. If not there is
an error. This check should keep track of the incoming interface attributes it found, if
there are other incoming interface attributes not found in during the check then there is an
error since those incoming interface attributes do not have an outgoing interface attribute

associated with them.

8. Every composite agent must possess emergent attributes and operations not present in
the component agents

The system can check if there additional attributes and operations not present in the
components. If'there are not any then there is an error

9. Every sixbageritmust possess attributes and operations that are unique to the subagent
and are not inherited from the superagent.

The system can check if there additional attributes and operations not present in the

superagents. If there are not any then there is an error
5.6 Design Limitations
The first implementation limitation is that the proposed design guidelines use the notation

developed in chapter 3. A user may wish to develop an entirely different notation for the
constructs. Even if that is the case, the requirements developed previously will still hold.
They merely need-to be implemented using the new notation. The second limitation is

that ABPM itself has not yet been rigorously tested, thus errors in ABPM will have

propagated through the design. The third limitation'is that the ABPM-CASE tool design

106

was based partially on the design of an existing OOEM CASE tool. This may have

introduced flaws of its own since an OOEM lacks information relative to ABPM.

5.7 Summary

This chapter proposed design principles for ABPM as a CASE tool. It defined the
constructs that needed to be added to an OOEM CASE tool. It also discussed user
interactions with such a CASE tool. The last thing this chapter considered was possible

design limitations.

107

6 Conclusions And Future Research

6.1 Thesis Summary

This thesis presented a new method for modeling organizational processes; Object-
Oriented Activity-Based Process Modeling (ABPM). We first looked at business process

modeling in general and why improvements were needed.

We then proceeded to further develop a modeling algorithm proposed by Wang (Wang
2002) into a graphical modeling grammar. We created the grammar by combining the
constructs of the Ontology-Based Process Modeling (OBPM) algorithm with object
oriented constructs. We then tied the new ABPM constructs to specific graphical

constructs. The essential constructs in ABPM are agent, attribute, and operation.

T

S

We then developed et rnodellng process for usmg the graphlcal ABPM constructs The
modellng process was based partlally on the work by Wang (Wang 2002) and partlally on
work by Wand and Woo (Wand and Woo,_2002). The rnodehng process is based upon
rules for: mlodel‘ scope, agent identiﬁcetion, operation inclusion, attribute inclusion,

attribute ownership, composite agents, sub-classification, and new activities. We also

. . BRI
' -

include a set of semantic integrity rules that can be used to check if a created ABPM is

semantically correct.

Based upon thelr similar theoretlcal foundatlons and purposes we then delved into the

et A TR A

relationship between Object Orlented Enterprlse Modellng (OOEM) and ABPM. We

developed a means to convert from one model to another, noting along the way that

PN i, U

108

ABPM contains more information than OOEM which should be the case since ABPM is

a more detailed view of organizational activity.

At this point we created design principles for the implementation of ABPM as a CASE
tool. We discussed the functional and non-functional requirements of such a CASE tool.
Next we proposed a possible development platform for ABPM. We also considered the

possible limitations of the proposed design architecture.

6.2 Contributions
This thesis developed the OBPM algorithm into an objected graphical modeling language
and process. The ABPM constructs have specific and well-defined semantics for real

world business process representatlon

[SACH BRI T

A noteworthy contrlbutlon is the refinement of the change propagatlon algonthm which

AETUP

1S based upon a set of ontologlcally derlved rules to create a systematlc process for

modellng a busmess process The strength of the algorrthm is from its ontologrcal real

BERERD R

world foundations rather than programmmg or data de81gn rules of thumb.

This thesis also makes a contribution by exploring the relationship of ABPM and OOEM.

[SCPF N

Both Ianguages are desngned to model a specrﬁc view of organ12at10nal act1v1ty,

irrespective of how a later mformatron system artrfact will be bu1lt By relatmg the two
grammars usmg ontologrca] foundations we can acquire greater understanding of an

N

organization without losing mformatlon

109

- e T A S I R

Our last contribution the development of a design principles for an ABPM CASE tool
that is implementation independent means that no matter how one decides to implement
ABPM if they follow our requirements they will be able to create a tool to fully support

the business process model generation process.

6.3 Limitations And Future Research

The foundations of ABPM were established by previous research. However ABPM itself
is a new grammar and methodology. It has been applied to very few cases and testing so

far has been limited. It also needs to be tested beyond an academic setting and in the real

world. This will allow for validation of the grammar and method.

f
Cun

We also make a srmplifymg assumption for our ABPM to OOEM conversion process

During step 3 (request and response identiﬁcation) regardmg how to 1dent1fy responses,

we assume that an Ob_]CCt can never receive a response from an object that has never made

[N RN

a request to it. Future research can be done on the ontological nature of both requests and

responses, so that a better form of the request and response identification step during the

R N A VLI EX TR

ABPM to OOEM conversron process can be developed

o L . ’ Lo LS

Another possible limitation is that we talk about both analysis principles (e.g. operation,

actrvrty) and de81gn principles (e g. attributes) in the same grammar This is due to the

o Ton vy

fact that we use ontological principles that have no busmess meaning, with a goal of

representmg processes Therefore when usmg the grammar for analysis and/or desrgn we

we . T TR

110

may have to convert ontological concepts to business concepts. For example attributes
may need to be converted to documents. Further research could be done to determine the

extent of the conversions necessary, if any.

Other areas of future research could focus on:

e ABPM does not allow for new state variables. The model ABPM is based upon
does not allow for creating and eliminating things. All changes are modeled as
changes of attribute values. Hence ABPM does not allow for creating and
eliminating resources. There are two possible responses to this observation. First
we can analyze everything in the domain, if all resources have been identified
beforehand, they cannot be changed if they do not exist. Second, ontologically
nothing appears or disappears,‘ we just change its name. Resaapch' could be'
undpntaken to determine which wduld be the‘rndre ‘apppopriate n1annar to deal
witn new or disappearing statp variables.

e Datais diaregarded is OBPM ‘alnd thus by extension in ABPM. However
computenzed mformatlon systems tend to pnmanly pass data An ontologlcally
based data modelmg grammar and method t}lat is related back to ABPM would
ﬁll thls gap - .

. Wand Woo and Jung (Wand, Woo, and Jung, 2000) proposed a means to convert
from an OOEM to a logical design of an information system. It should be possible
to convert from an ABPMtoa logical design of an infqrmati’onlsyvstem since we

can convert an ABPM to an OOEM and then a logical design of an information

system. The question arises is it possible for a direct conversion from ABPM to a

logical design? Another question also arises concerning if it is possible t.o create a
logical directly design from an ABPM will it be the same as the logical design
from an OOEM, and if they are different which one- is better?

Although we have proposed a set of design principles for aCASE tool, the
question remains of if it is implemented will it actually be useable and useful to
modelers?

Research can be done to compare ease of use, understanding, and quality of

ABPM models in relation to other business process modeling grammars.

112

Bibliography

Bosilj-Vuksié, V., & Hlupi¢ V.‘(2001). Petri Nets and IDEF Diagrams: Applicability and
Efficacy for Business Process Modeling. /nformatica 25(1), 123-133.

CIO Magazine. (1997). Anatomy of a Failure. Retrieved August 29, 2004, from
http://www.cio.com/archive/enterprise/111597_data.html

Grause, D.C., & Weinberg, G, M. (1989). Exploring Requirements: Quality Before
Design. New York, NY: Dorset House Publishing.

Huckvale, T. & Ould, M. (1994). Process Modeling: Why, What, and How. In K.Spurr,
P. Layzell, L. Jennison, & N. Richards (Eds.) Software Assistance for Business Re-
engineering (pp. 81-97). West Sussex, England: John Wiley & Sons Ltd.

Hui, S. (1997). An Object-Oriented Workflow Management System. M.Sc. Dissertation.
Faculty of Commerce and Business Administration, University of British Columbia.

I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley, 1992

Introduction to Petri Nets. (2004). Introduction to Petri Nets. Retrieved April 22, 2004
from http://worldserver.oleane.com/adv/elstech/petrinet.htm

Jensen, K: 4 ‘Brief Introduction to Coloured Petri Nets. In:'E. Brinksma (ed.): Tools and
Algorithms for-the Construction and Analysis of Systems. Proceeding of the TACAS'97
Workshop, Enschede, The Netherlands 1997, Lecture Notes in Computer 801ence Vol.
1217, Sprmger-Verlag 1997 203-207- :

Kemper, P. (2004, February 95). Lectuie on Petri-Nets. Retrieved Aprll 22 2004 from
http: //www iai. mf tu- dresden de/ms/lvbeschr/vwahl _petr1 html L

Kluge, W.: The Krckmg Horse Pass Problem Petrt Net News Letters No 54 (1998) PP-
3-15 C

Knowledge Based Systems Inc. (2000 June, 23) IDEF3 Method Report Retrreved April
22,2004, from www.idef. com/downloads/pdf/ldef3 fn. pdf

Tan, W. (William Tan Khoon Lee) (1997). 4 semantically-enhanced object-orzented
CASE tool for enterprise modeling. M.Sc. Dissertation. Faculty of Commerce and
Business Administration, University:of British Columbia.

Parsons, J.'& Wand, Y: (1997) Usmg Objects for Systems Analysis. Communications of
the ACM, 40(12),-104-110.-

Petri Nets. (2004). Petri Nets. Retrieved April 22, 2004 from http://www.petrinets.info/
AR . . . [: [*

. . . . - o . -
o . PR N . R I A

oty e

113

http://www.cio.eom/archive/enterprise/l
http://worldserver.oleane.com/adv/elstech/petrinet.htm
http://www.iai.inf.tu-dresden.de/ms/lvbeschr/vwahl_petri.html
http://www.idef.com/downloads/pdf/ideO_fn.pdf
http://www.petrinets.info/

Romney, M. (1994, October). Business Process Re-engineering. The CPA Journal
Online. Retrieved August 29, 2004, from
http://www.nysscpa.org/cpajournal/old/16373954.htm

The Standish Group. (1994) The Chaos Report. Retrieved August 29, 2004, from
http://www1.standishgroup.com//sample_research/chaos_1994_1.php

Value Based Management.net. (2004) Business Process Reengineering. Retrieved
August, 29, 2004, from http://www.valuebasedmanagement.net/methods_bpr.html

Wand, Y. & Wang, R. (1996). Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(11) 86-95.

Wand, Y. & Weber, R. (1990). Mario Bunge’s Ontology as a Formal Foundation for
Information Systems Concepts. In Dorn, G. & Weingartner, P. (Eds.), Studies in Bunge's
Treatise on Basic Philosophy, the Poznan Studies in the Philosophy of the Sciences and
the Humanities (pp123-150). Rodopi, Amersterdam

Wand Y. & Weber, R. (1993). On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems, 3, 217-237.

Wand, Y. & Weber, R. (1995) On the deep structure of information systems. Information
Systems Journal S, 203 223

Wand, Y. & Weber, R. (2002) Research Commentary Information Systems and
Conceptual Modelmg A Research Agenda Informatton Systems Research, 13(4), 363-
376. -

Wand Y. & Woo. C. (1999): Ontology-Based Rules for Object-Oriented Enterprise
Modeling. Working paper. Faculty of Commerce and Business Administration,’
Umver51ty of Bl‘ltlSh Columbia.

Wand, Y., Woo C & Jung, D. (2000). Object Orlented Modelmg From Enterprlse to
Logical Design. Proceedings of the Tenth Annual Workshop on Information
Technologtes and Systems (WITS 00, December 9-1 0, Brzsbane Australza) 25- 30

Wang, Q. (2002) A Proposal for a Process Modelmg Methodology. M.Sc. Dissertation.
Faculty of Commerce and Business Administration, University of British Columbia.

Wart, S., Wand, Y. & Woo, C. (1993). Object-Oriented Systems Analysis: An
Introduction. Faculty of Commerce and Business Administration, University of British
Columbia.

114

http://www.nysscpa.org/cpajournal/old/16373954.htm
http://wwwl.standishgroup.eom//sample_research/chaos_1994_l.php
http://Management.net
http://www.valuebasedmanagement.net/methods_bpr.html

Zhang, X. (1998). The Visualization of Object-Oriented Enterprise Modeling. M.Sc.
Dissertation. Faculty of Commerce and Business Administration, University of British
Columbia.

Zhao, H. (1995). Object-Oriented Enterprise Modeling. M.Sc. Dissertation. Faculty of
Commerce and Business Administration, University of British Columbia.

Zhou, M and Zurawski R: Introduction to Petri Nets in Flexible and Agile Automation.

In: M. Zhou(ed.): Petri Nets in Flexible and Agile Automation, Kluwer Academic
Publishers, 1999, pp.1-23

Zimmerman, A. (2004) Petri Nets. Retrieved April 22, 2004, from http://pdv.cs.tu-
berlin.de/~azi/petri.html

115

http://pdv.cs.tu-
http://berlin.de/~azi/petri.html

Appendix A — Step By Step Derivation Of The ABPM For The ACME Warehouse
Management Case
The purpose of this appendix is to illustrate the development of an ABPM following the
ABPM algorithm. We will use the ACME Warehouse Management Inc. case for this

demonstration. The case will be italicized to minimize confusion with the ABPM process

At this point we are at step | of the algorithm: Identify the external agents

ACME Warehouse Management Inc. offers storage facilities and redistribution services
(between their different warehouses) across the nation. A customer can request space in
a particular warehouse, request items to be transferred to another warehouse, or request
wzthdrawal of items from a parttcular warehouse (even for ttems not stored there)

For the purpose of this case, we only look at the activities involved in processing a
withdrawal request. A customer contac‘ts ACMé heodquarters to request a w1thdrawal
The scope. of the .process has been defined as the act1v1t1es 1nvolved in processmg a
withdrawal request at the ACME Warehouse Management facnlmes Where do
withdrawal requests come from? The customer. Hence the eustomer must be an external

agent.

We then move onto step 2 of the algorithm: for each extemal agent 1dent1fy the changes

oo ’ [T

generated. Customer generates 2 external changes: a customer contacts ACME

e

headquarters to request a withdrawal, and the customer will come to the warehouse on

the required date to pick up the items. Thus, the in terms of our notation changes

generated by Customer are ‘withdrawal request’ and ‘arrival’

Step 3 of the algorithm: for each change:, means we will look at what happens due to
withdrawal request and arrival separately. We will first analyze withdrawal request and
then arrival since arrival appears later in the case and logically the customer should not

arrive to pick up items until a request for the items has been made.

We are at step 3.1 Identify the agent or resource that was changed by withdrawal request
A customer contacts ACME headquarters to request a withdrawal. An office clerk checks
whether the customer has the authortty to wzthdraw the items. This raises the questlon of
was ACME headquarters er Ofﬁce Clerk the agent changed by Customer? The answer is
to look at what actually becomes unstable. Does ACME headquarters or the Office Clerk
act next" Thus the answer is Office Clerk ThlS does raise the possxbthty however that

there could be some sort of composrte agent ACME headquarters of which Ofﬁce Clerk

RN

o

is a component agent. This possibility will be discussed when we get to step 4.

We are at step 3.2. If a resource was changed identify the incoming interface attribute.

Office Clerk is an agent since it performs an action.
We are at step 3.3 If the agent is an internal agent:, Office clerk is an internal agent since

Office Clerk is in the domain of interest.

117

We are at step 3.3.1 If this is the first change to an agent, or the last activity of an agent
has gone through a sequence of instability-change-stability create a new activity. This is

the first change for Office Clerk so a new activity will be created.

We are at step 3.3.2: Identify the incoming interface attributes that were modified. Office
Clerk needs some sort of interface attribute to handle the withdrawal request. According

to our modeling grammar it will be Customer::Withdrawal Request.

We are at step 3.3.3: Identify any state laws that may restrict change. An office clerk
checks whether the customer has the authority to withdraw the items. The clerk then
passes the wzthdrawal request to the warehouse where the customer wants to pzck up the
items anrl tlee ojj“ ice clerk wrlll norzﬁti tlre custome;: ae ro rhe status of the request
(approved, or declrned due to lack of authortty, no inventory, or no transportation). And
Once the oﬁ"ice clerk lra:v recorded t)ze items to be wr'thdrawn, he or she forwards the
request to the marzager (foremqn) of the warehouse. There appear to be‘no state laws on

[C T

the i mcommg interface attrrbutes

We are at step 3.3.4 Identify any transformation laws that may exist for the incoming
mterface attributes. There do not appear to be any state laws restnctmg further change
since the ofﬁce clerk checks the customer authorization 1mmedlately upon receiving the

A e

withdrawal request.

We are at step 3.3.5: If an agent becomes unstable:, Office Clerk does become unstable

because it immediately performs an action upon receiving the withdrawal request.

We are at step 3.3.5.1: Identify the operations that may occur. An office clerk checks
whether the customer has the authority to withdraw the items. The clerk then passes the
withdrawal request to the warehouse where the customer wants to pick up the items and
the office clerk will notify the customer as to the status of the request (approved, or
declined due to lack of authority, no inventory, or no transportation). And Once the
office clerk has recorded the items to be withdrawn, he or she forwards the request to the
manager (foreman) of the warehouse. The warehouse manager is responsible for
directing the redistribytion of items between warehouses.
The Ofﬁce. Cle;k néed.s .tc\) pe‘rf;rm axl1 zll.uthorization status ;:iléck of thét cus‘tdmer and
then needs to either contact the appropriate warehouse or notify the customer that they
are refused due to not passing the authorization check. In terms of our modeling grammar

notation the services performed are Authority Check and either Contact Warehouse or

te T O

Notify About Status. The clerk recording items is actually part of the incoming request

14
from Customer ™.

St

We are at step 3.3.5.2 Identify any transformation laws that may affect what operations

occur. An office clerk checks whether the customer has the authority to withdraw the

[N P

items. The clerk then passes the withdrawal request to the warehouse where the customer

wants to pick up the items and the office clerk will notify the customer as to the status of

" Since ABPM does not deal with data we do not need to indicate a form being filled out.

e

119

the request (approved, or declined due to lack of authority, no inventory, or no
transportation). And Once the office clerk has recorded the items to be withdrawn, he or
she forwards the request to the manager (foreman) of the warehouse. The warehouse
manager is responsible for directing the redistribution of items between warehouses.
Contact Warehouse and Notify About Status are mutually exclusive'®. This means there
is a transformation law restricting which operation will happen. Since it is freeform we
can have the law read as Contact Warehouse and Notify About Status are mutually

exclusive.

We are at step 3.3.5.3: Identify the internal attributes that will be affected. An office clerk

checks whether the customer has the authority to withdraw the items. The clerk then
'(A"‘,"'U . . Lo . R Y

passes the wzthdrawal request to the warehouse where the customer wants to pick up the

items and the oﬂ‘ ice clerk wzll notify the customer as to the status of the request

o oo

(approved, or declined due to lack of authority, no inventory, or no transportation). And

RIS

Once the oﬁ” ce clerk has recorded the items to be wzthdrawn he or she forwards the

request to the manager (foreman) of the warehouse. The warehouse manager is

responszble Sfor dzrectzng the redzstrzbutzon of ttems between warehouses

e oo . NSRS oo HPRE P

The ofﬁce clerk only uses its own internal information in the authorlty check operation,
the other operations involve interaction with other agents. The notation according to our
grammar for this information on customer authorization status will be Authorization

Status.

' We assume the office clerk will not pass a withdrawal request to the warehouse when the customer has
not passed an authorization check.

120

We are at step 3.3.5.4: Identify the outgoing interface attributes that were modified. An
office clerk checks whether the customer has the authority to withdraw the items. The
clerk then passes the withdrawal request to the warehouse where the customer wants to
pick up the items and the office clerk will notify the customer as to the status of the
request (approved, or declined due to lack of authority, no inventory, or no
transportation). And Once the office clerk has recorded the items to be withdrawn, he or
she forwards the request to the manager (foreman) of the warehouse. The warehouse
manager is responsible for directing the redistribution of items between warehouses.
Contact Warehouse modifies an interface attribute that affects another agent; Warehouse
Manager. Notify About Status modifies an interface attribute that affects Customer.
According to our grammar the notation willl be'Withdrawal‘ Request::Warehouse Manager

and Order Status::Customer

We are at step 3.3.4.5: Repeat steps 3.3.4.1 to 3.3.4.4 until the ageht becomes stable.

[)

Since Office Clerk performs no more actions as a direct result of the incoming external

request it can at this point be considered stable.

U

Since we have reached a state where an agent is stable it is useful to show what we have
. o, ' T T Lo .

RN . PN .

developed. Figure A-1 shows where we currently are. Warehouse Manager is purposely

left nebulous is this case since we do not know if it is an internal agent or an external

LU

agent, or a resource.

121

Customer Office Clerk

Activity 1 Withdrawal Request
Affected Attributes
Customer::Withdrawal request
Authorization Status

: Withdrawal Request: Warehouse Manager
Withdrawal request::Office Clerk :c Order Status::Customer

H Activity 1 Operations
Contact Warehouse and Notify About
Status are mutually exclusive
Authority Check) :

: Contact Warehouse + Warehouse Manager

<+——1Notify about status ! .

Fi{;ure A-1 Office Clerk Is Stable

We are at step 3.3.6: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.4.4 were
Order Status::Customer and Withdrawal Request:: Warehouse. For ‘the sake of
conciseness from this point forward we will use a tabular format wherever possible.

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse“‘m'al‘zager will contact other Wa)‘ei;ou_seq Jfor the requested items. If the
items are located the warehouse manager will ask the planner to arrange for
transportation for the requested items and the warehouse manager will notify the office
clerk if the request can be fulfilled or not, and the reason. The office clerk will notify the

customer as to the status of the request (approved, or declined due to lack of authority,

no inventory, or no transportation) and The warehouse manager is responsible for

' coe

directing the redistribution of items between warehouses. If the items are not all

N

available in the warehouse, transport requests are issued. The warehouse manager fills

o .
R .

out a redistribution form with the following information: items to be moved, place from

which to take the items, warehouse to transport the items to, quantity to be moved, and

the date by when the redistribution must be done. The warehouse manager forwards the

ol

Jorm to the planner to organize the interwarehouse transportation of the items

Change: Order Status::Customer
Step Output

3.1 Customer is an existing agent

32 Customer is an agent

33 Customer is an external agent

Table A-1 Step 3 for Order Status::Customer

Change: Withdrawal Request:: Warehouse Manager

Step QOutput
3.1 Warehouse Manager is a new agent
32 Warehouse Manager is an agent
33 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
332 Office Clerk::Withdrawal Request
333 No state laws found
334 No transformation laws found
3.3.5 Warehouse Manager is unstable

3.3.5.1 Check Inventory

Contact Other Warehouses

Notify About Status

3352 Contact Other Warehouse and Notify
About Status are mutually exclusive

3.353 Inventory Information
3.3.54 . | Item Existence::Warehouse
Order Status::Office Clerk
3.3.5.5 - Warehouse Manager is currently stable

Table A-2 Step 3 For Withdrawal Request::Warehouse Manager

LAY

Since we have reached a state where an agent is stable it is useful to show what we have
developed. Figure A-2 shows where we‘curr,en'tly‘ aré. Planner is purposely left nebulous
is this case since we do not know if it is an internal agent or an external agent. Warehouse
is purposely left nebulous is this case sinée we d6 nc;t know 1f 1t 1:s én internal agent or an

external agent'S,

From this point forward we will not show the ABPM after each step in order to be more

concise.- We will however show the full ABPM after all the changes have:been addressed.

o

'® Recall that even though many warchouses may be contacted we only need to show one since we are
showing agents and not instances of agents in this diagram.

123

Customer Office Clerk Warehouse Manager

Activity 1 Withdrawal Request
; Aflected Atiributes :

Withdrawal request::Oflice ClerkE:: Customer:: Withdrawal request : -
H Authorization Status '

Withdrawal Request: Warchouse Manager
Qrder Status::Customer.

Activity | Operations

Contact Warehouse and Notity About

Status are mutually exclusive Activity | Find lems
Authority Check : Affected Attributes
H Contact Warchouse : Office Clerk::Withdrawal Request
Oflice Clerk::Order Status ‘—§—-N"l“}’ about status Inventory Information

Order Status::Oftice Clerk
lMem Existence::Warchouse.
Activity | Operations
Contact Other Warchouse and Notify
About Status are mutually exclusive
Check Inventory

Notify about status
Contact Other Warchouses

—* Warchouse

Figure A-2 After Steb 3 For Order Status::Customer And Withdrawal Request::War.ehouse

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were
Item Exist@nce::Warehouse, Transport Form::Planner, and Order Status::Office Clerk
If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the reqizested items. If the
items are located the warehouse manager will ask the planner. to arrange for

transportation for the requested items.

Table A-3 Step 3 For Item Existence::Warehouse

P AT O R

124

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was

Search Results:: Warehouse Manager.

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the requested items. If the
items are located the warehouse manager will ask the planner to arrange for
transportation for the requested items and the warehouse manager will notify the office
clerk if the request can be fulfilled or not, and the reason. And If the items are not all
available in the warehouse, transport requests are issued. The warehouse manager fills

out a redtstrtbutton Jorm with tlze Jfollowing mformatzon items to be moved place from

i O

which to take the ztems warehouse to transport the ztems to quanttty to be moved and

the date by when tlze redzstrzbutton must be done. The warehouse manager forwards the
AR S . .

form to the planner to organize the interwarehouse transportation of the items.

Change: Search Results: Warehouse Manager

" Step | " Qutput
3.1 Warchouse Manager is an existing agent
3.2. Warehouse Manager is an agent
33 Warehouse Manager is an internal agent
3.3.1 . | This is a new activity for Warehouse Manager
33.2 Warehouse Manager::Search Results
333 No state laws found
334 " | No transformation laws found
33.5 Warehouse Manager is unstable

3.3.5.1 ‘|- Contact Planner - - oL
Notify About Status
| 3.3.5.2 . | Contact Planner and Notify About Status are_
mutually exclusive
3.3.53 No internal attributes found
"l 3.3.5.4 | Transport Form::Planner
Order Status::Office Clerk
3.3.5.5 - --| Warehouse is currently stable
A4 Step 3 For Search Results::Warehouse Manager

125

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Transport Form::Planner and Order Status::Office Clerk.

The planner’s responsibility is to schedule the company’s truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notified whether the transportation request can
or cannot be satisfied and the planner issues transport orders to truck drivers and The
warehouse manager forwards the form to the planner to organize the interwarehouse

transportation of the items. The items to be moved are marked as move-pending, and the

planner initiates a plan to have the items at the appropriate warehouse at the given date.
, N * -‘_'., . . . L . [ECET .

[

Once interwarehouse transport plans are finalized, transport requests are issued to the

truck drivers.

V .
v

Change: Transport Form::Planner
Step Output
3.1 Planner is a new agent
132 ¢ Planner is an agent
33 Planner is an internal agent
3.3.1 This is a new activity for planner
332 Warehouse Manager::Transport Form
333 No state laws found
3.34 ‘No transformation laws found
3.3.5 Planner is unstable
" 3.3:5.1 Mark Items- =~ - .
Schedule Trucks
... 1 .. - [Notify About-Transport
: Issue Orders
3.35.2 No transformation laws found
3.3.5.3 | Inventory Information
Truck Information
ERTERY 3.3.5.4. | Transport Schedule::Warehouse Manager. " . -.* ~
Transport Orders:: Truck Driver
3.3.55 Planner is currently stable

Table A-5 Step 3 For Transport Form::Planner

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Transport Schedule::Warehouse Manager and Transport Orders::Truck Driver.

The planner’s responsibility is to schedule the company’s truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notified whether the tra;lzsportation request can
or cannot be satisfied.

The warehouse manager will notify the office clerk if the request can be fulfilled or not,

and the reason.

Change: Transport Schedule:: Warehouse Manager
Step - ' Output S

3.1 Warehouse Manager is an existing agent

[3.2° " -| Warehouse Manager is an agent -
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
332 Planner::Transport Schedule
333 No state laws found
334 No transformation laws found
335 Warehouse Manager is unstable
3.3.5.1 - '| Notify About Status
33.5.2 No transformation laws found
3.3.5.3... .| No internal attributes found
3354 Order Status::Office Clerk

. 3.3.5.5 Warehouse Manager is currently stable

Table A-6 Step 3 For Transport Schedule::Warehouse Manager

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of'an agent that
was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Order

Status::Office Clerk: . . . ;

127

The warehouse manager will notify the office clerk if the request can be fulfilled or not,
and the reason. The office clerk will notify the customer as to the status of the request

(approved, or declined due to lack of authority, no inventory, or no transportation).

Change: Order Status::Office Clerk
Step Output
3.1 Office Clerk is an existing agent

3.2 Office Clerk is an agent

33 Office Clerk is an internal agent
3.3.1 This is a new activity for Office Clerk
3.3.2 Warehouse::Order Status

3.3.3 No state laws found

334 No transformation laws found
3.3.5 Office Clerk is unstable

3.3.5.1 Notify About Status

3.3.5.2 No transformation laws found
3353 No internal attributes found
3.3.54 Order Status::Customer

3.35.5 Office Clerk is currently stable

Table A-7 Step 3 For Order Status::Office Clerk

We are at ,step 3. 2 5: repeat step 3 for each outgotng mterface attr1bute of an agent that

was changed in step 3 3.5. 4 The outgomg interface attribute from step 3.3. 5 4 was Order
Status::Customer. ThlS change was already dealt with. We can now return to the previous
change and repeat \st’ep 3 for another of the outgoing interface attributes that was changed

in step 3.3.5.4. In this case, webacktrack all the way to the change A’I‘rransport

Form::Planner which has another outgoing change of Transport Orders::Truck Driver.

The planner issues transport orders to truck drivers. After receiving a transport order,

the truck driver informs the warehouse about the pickup of the items. The warehouse

manager will make arrangements tq_have: the ,items,‘ready, when the truck arrives. When

the truck arrives at the warehouse the items are loaded The truck drzver then informs the
vy ' .

next warehouse about the delivery. When the truck has arrived at the next warehouse,

the items are unloaded. A warehouse worker finds space for the items and arranges to

b S 128

have them moved to the allocated space. The worker updates the warehouse's inventory
information. Truck drivers are required to report the status of the truck and the delivery
to the planner after each step and The truck driver alerts the warehouse manager of the
time he or she will be at the warehouse to pick up the items. The warehouse manager
gives appropriate requests to the warehouse worker on the date of delivery to have the
items ready for when the truck is expected. When the warehouse worker gets a request to
fetch items, he or she, at the appropriate time, orders forklift operators to move the items
to the loading platform. The forklift operators execute the internal 'warehouse operation.
When the truck driver arrives, the driver notifies the warehouse worker to have the items
loaded into the truck. The truck driver notifies the next warehouse manager when it is
expected to arrive at the next warehouse. The number of items in the current warehouse

decreases, and the transport request is marked as on transport.

Change: Transpon Orders::Truck Drlver

Step ' Qutput'’

3.1 Truck Driver is a new agent

‘3.2 Truck Driver is an agent’
33 Truck Driver is an internal agent

s 33.1 This is a new activity for Truck Driver .

332 Planner::Transport Orders
333 No state laws found
334 No transformation laws found -
3.3.5 Truck Driver is unstable

13.3.5.1 | Notify About Pickup - -~ "7ty 6o
Report Truck Status

Drive To Pickup Warehouse

Notify Ready To Load

.| Report Truck Status

!+ 133552 | No transformation laws found

3353 Truck Status

3.3.54 | Truck Status::Planner

Pickup Notification:: Warehouse Manager
o, - .| Ready To Load::Warehouse Worker... . .
Truck Status::Planner '
13355 Truck Driver is currently stable

Table A-8 Step 3 For Transport Orders::Truck Driver

R R o .. [

129

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were
Pickup Notification:: Warehouse Manager, Truck Status::Planner, Ready To

Load::Warehouse Worker, and Truck Status::Planner.

The planner issues transport orders to truck drivers. After receiving a transport order,
the truck driver informs the warehouse about the pickup of the items. The warehouse
manager will make arrangements to have the items ready when the truck arrives. When
the truck arr.‘ives at the warehouse the items are loaded and The truck driver alerts the
warehouse manager of the time he or she will be at the warehouse to pick up the items.
The warfeheuse m‘anager gives appropria{e requests to the wqrehouse worker on the date

to

of deltvery to have the ttems ready for when the truck is expected

AEG N

Change. Plckup Notification::Warehouse Manager
Step | Qutput :

3.1 Warehouse Manager is an existing agent

3.2 - Warehouse Manager is an agent

33 Warehouse Manager is an internal agent

3.3.1 This is a new activity for Warehouse Manager

33.2 Truck Driver::Pickup Notification

333 No state laws found

'3.34 | No transformation laws found

335 Warehouse Manager is unstable

3.3.5.1 - | Notify to Ready Items

3352 No transformation laws found

3.3.5.3 .| No internal attributes found

3354 Ready ltems::Warehouse Worker

3.35.5 Warehouse Manager is currently stable

: Table A-9 Step 3 For Pickup Notification::Warehouse Manager

We are at step 3.2.5: repeat'step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Ready

[tems:; Warehouse Worker:

The warehouse manager gives appropriate requests to the warehouse worker on the date
of delivery to have the items ready for when the truck is expected. When the warehouse
worker gets a request to fetch items, he or she, at the appropriate time, orders forklifi
operators to move the items to the loading platform. The forklift operators execute the

internal warehouse operation.

Change: Ready Items::Warehouse Worker
Step Output

3.1 Warehouse Worker is a new agent

3.2 Warehouse Worker is an agent

3.3 Warehouse Worker is an internal agent

33.1 This is a new activity for Warehouse Worker .

332 Warehouse Manager::Ready Items

333 No state laws found

334 No transformation laws found

335 Warehouse Worker is unstable

33.5.1 Issue Move Item Orders

3352 No transformation laws found

I 3.3,5.3 - . | No internal attributes found
3354 Move Items::Forklift Operator
13355 Warehouse Worker is currently stable

Table A-10 Step 3 For Ready Items::Warehouse Worker

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Move

Items::Forklift Operator* - -

Change: Move Items::Forklift Operator
Step Ouitput

3.1 - | Forklift Operator is a new agent -

3.2 Forklift Operator is an agent

33 Forklift Operator is an internal agent

3.3.1 This is a new activity for Forklift Operator

3.3.2 Warehouse Worker::Move Items'

333 No state laws found - -

334 No transformation laws found

3.3.5 Forklift Operator is unstable

3.3.5.1 Move Items

3.35.2 No transformation laws found

3353 Inventory Information
3354 No Qutgoing Interface Attributes found
3.3.5.5 Forklift Operator is currently stable

“Table A-11 Step 3 For'Move Items::Forklift Operator

oSt N AN I . . ety Yot) ¢

131

We are at étep 3.2.5: repeat step 3 for each outgoing interface attribute of an agent tha;
was changed in step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4
We can now return to the previous change and repeat step 3 for another of the outgoing
interface attributes that was changed in step 3.3.5.4. In this case, we backtrack to the
change Transport Orders::Truck Driver which has another outgoing change of Truck

Status::Planner.

The planner issues transport orders to truck drivers. After receiving a transport order,
the truck driver informs the warehouse about the pickup of the items. The warehouse
manager will make arrangements to have the items ready when the truck arrives. When
the truck arrives at the warehouse the items are loaded. | Thg truck driver then informs the

next warehouse about the delivery. When the truck has arrived at the next warehouse,
T e P P :
the items are unloaded. A warehouse worker finds space for the items and arranges to

Y

have them moved to the allocated space. The worker updates the warehouse’s inventory

information. Truck drivers are required to report the status of the truck and the delivery

v

to the planner after each step and The transportation time is recorded and stored.

Change: Truck Status::Planner
Step Output

3.1 Planner is an existing agent

3.2. -Planner is an agent

33 Planner is an internal agent

.. .1:33.1 - | This is a new activity for Planner

332 Truck Driver::Truck Status

333 No state laws found

334 No transformation laws found

3.3.5 Planner is unstable

3.3.5.1 | Record Time e T

3352 No transformation laws found
13353 Transport Information

3354 No outgoing interface attributes found
3355 Planner is currently stable

Table A-12 Step 3 For Truck Status::Planner

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4
We can now return to the previous change and repeat step 3 for another of the outgoing
interface attributes that was changed in step 3.3.5.4. In this case, we backtrack to the
change Transport Orders::Truck Driver which has another outgoing change of Ready To

Load::Warehouse Worker.

After receiving a transport order, the truck driver informs the warehouse about the
pickup of the items. The warehouse manager will make arrangements to have the items
ready when the truck arrives. When the truck arrives at the warehouse the items are

loaded. The truck driver then informs the next warehouse about the delivery and When

the truck driver arrives, the driver notifies the warehouse worker to have the items

loaded into the truck. The truck driver notifies the next warehouse manager when it is

expected to arrive at the next warehouse. The number of items in the current warehouse

S .

decreases, and the transport request is marked as on transport.

LN .

Change: Ready To Load::Warehouse Worker

“Step Output
3.1 Warehouse Worker is an existing agent
3.2 Warehouse Worker is an agent
33 Warehouse Worker is an internal agent
3.3.1 . | Thisis a new activity for Warehouse Worker
33.2 Truck Driver::Ready To Load
333 No state laws found
'3.34° | No transformation laws found

3.3.5 Warehouse Worker is unstable
13351 Load Truck: ’
Mark As On Transport
13.3.5.2 No transformation laws found
3.3.5.3 Inventory Information
3.3.54 On Transport::Truck Driver
'3.3.5.5 | Warehouse Worker is currently stable
Table A-13 Step 3 For Ready To Load::Warehouse Worker

133

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was
Loaded::Truck Driver.

When the truck arrives at the warehouse the items are loaded. The truck driver then
informs the next warehouse about the delivery. When the truck /1a.§ arrived at the next
warehouse, the items are unloaded. A warehouse worker finds space for the items and
arranges to have them moved to the allocated space. The worker updates the
warehouse's inventory information. Truck drivers are required to report the status of the
truck and the delivery to the planner after each step and The truck driver notifies the next
warehouse manager when it is expected to arrive at the next warehouse. The number of

items in the current warehouse decreases, and the transport request is marked as on

~ f

transport. And When the truck has arrived at the next warehouse, the truck driver notifies

the warehouse worker to unload the items. The truck driver signs off the job.
. AR SUENES EN

Change: On Transport::Truck Driver

Step | Output
3.1 Truck Driver is an existing agent
s 3.2 | Truck Driverisanagent’ + ' ...~

33 Truck Driver is an internal agent
3.3.1 This is a new activity for Truck Driver
33.2 Warehouse::On Transport
333 No state laws found

‘1334 No transformation laws found
335 Truck Driver is unstable

3.3.5.1 | Notify About Dropoff - - o
Report Truck Status
Drive To Dropoff ,
Notify Ready To Unload
Report Truck Status
13.3.5.2 ° | No transformation laws found
3.3.53 Truck Status
1-3.3:5.4: 1| ‘Dropoff Notification:: Warehouse Manager
Truck Status::Planner
Ready To Unload::Warehouse Worker
Truck Status::Planner '
3355 Truck Driver is currently stable

Table A-14 Step 3 For On Transport::Truck Driver

T

E :‘ - | | ' ‘ ' 134

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were
Dropoff Notification::Warehouse Manager, Truck Status::Planner, Ready To

Unload:: Warehouse Worker, and Truck Status::Planner.

The truck driver then informs the next warehouse about the delivery. When the truck has
arrived at the next warehouse, the items are unloaded and The truck driver notifies the
next warehouse manager when it is expected to arrive at the next warehouse. The number

of items in the current warehouse decreases, and the transport request is marked as on

transport.
Change: Dropoff Notification:: Warchouse Manager
Step - s Output '

3.1 Warehouse Manager is an existing agent
3.2 Warehouse Manager is an agent ".... - .. -
33 Warehouse Manager is an internal agent

13.3.1 This is a new activity for Warehouse Manager
3.3.2 Truck Driver::Dropoff Notification
333 No state laws found
3.3.4 " ""| No transformation laws found
335 Warehouse Manager is unstable'’
33.5.1 Notify About Receiving
3352 No transformation laws found
3353 No internal attributes found -~ . .: .
3354 Ready Receiving::Warehouse Worker
3355 Warehouse Manager is currently stable

Table A-15 Step 3 For Dropoff Notification::Warehouse Manager

We are at'step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Ready

Receiving:: Warehouse Worker-

R EEETRR VI

17 On the assumption the Warehouse Manager Will let the Warehouse Worker know a dropoff is coming,
much like how the manager let the worker know a pickup was coming.

- o : : 135

A warehouse worker finds space for the items and arranges to have them moved to the

allocated space.

Change: Ready Receiving::Warehouse Worker

Step Output
3.1 Warehouse Worker is an existing agent
3.2 Warehouse Worker is an agent
33 Warehouse Worker is an internal agent
3.3.1 This is a new activity for Warehouse Worker
33.2 Warehouse Manager::Ready Receiving
333 No state laws found
3.34 No transformation laws found
33.5 Warehouse Worker is unstable'®

3.3.5.1 Find Space

Arrange Movement

3352 No transformation laws found

3353 Warehouse Information

Movement Schedule

3354 No outgoing interface attributes found

3.35.5 Warehouse Worker is currently stable

Table A-16 Step 3 For Ready Receiving::Warehouse Worker

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in step;3.3.-5.4. There are no outgoing interface attributes from step 3.3.5.4
We can now return te the prevxous change and fe;;eat step.3 for another of the outgoing
interface attrlbutes that was changed in step 3. 3 5 4 In thlS case, we backtrack to the
change On Transpbrt::Truck Driyer‘_which has another outgoing change of Ready To
Unload::Warehous‘e iWorker.

When the truck has arrived.at' the next warehouse, hhe itehza are ulzloaa;ed. A warehouse
worker finds space for the items and arr anges t0 heve them moved to the allocated space.

The worker updates the warehouse s mventory mformatzon and When the truck has

arrived at the next warehouse, the truck driver notifies the warehouse worker to unload

[N : BEEARY R T T T D

' On the. assumption the Warehouse Worker will attempt to have the warehouse prepared before the truck
arrives

136

the items. The truck driver signs off the job. The warehouse workers receive the items and
determine a place for them in the warehouse. Forklift operators aré told to move the
items to the new place in the warehouse. When the truck driver confirms the delivery of
the items, the records are updated to reflect the new place for the items. The
transportation time is recorded and stored. The redistribution and interwarehouse
transport request are marked as performed. The warehouse worker fills in an inventory
update form and sends it to the warehouse manager for confirmation and update of the

inventory database.

Change: Ready To Unload::Warehouse Worker

Step Qutput
3.1 Warehouse Worker is an existing agent
T) .| Warehouse Workerisanagent ' + ' = " oo
33 Warehouse Worker is an internal agent
3.3.1 . | Thisis a new activity for Warehouse Worker
3.3.2 Truck Driver::Ready To Unload
333 No state laws found
'3.3.4 " " | No transformation laws found
33.5 Warehouse Worker is unstable
3.3,5.1 - | Receive Items '

Determine Place
Notify Forklift Operators
Ask For Confirmation
3352 No transformation laws found
33.53 Transport Form' s
Warehouse Information
3.3.54 . | Move Items::Forklift Operator
Confirmation Needed::Truck Driver
© 1 3.3.5.5 Warehouse Worker is currently stable
Table A-17 Step 3 For Ready To Unload::Warehouse Worker

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
‘ Boroso et T . . ! \n e

TN bty

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Move Items::Forklift Operatdr' and Update Form::Warehouse Manager. Move

Items::Forklift Operator has already been dealt. with..

The warehouse worker fills in an inventory update form and sends it to the warehouse

manager for confirmation and update of the inventory database.

Change: Update Form::Warehouse Manager
Step Qutput

3.1 Warehouse Manager is an existing agent

3.2 Warehouse Manager is an agent

33 Warehouse Manager is an internal agent

3.3.1 This is a new activity for Warehouse Manager

33.2 Warehouse Worker::Update Form

333 No state laws found

334 No transformation laws found

335 Warehouse Manager is unstable

3.35.1 Update Inventory Database

3352 No transformation laws found

3353 Inventory Database

3354 No outgoing interface attributes found

3.3.5.5 Warehouse Manager is currently stable

Table A-18 Step 3 For Update Form::Warehouse Manager

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that
was changed in'step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4

We can now return to-the previous change and repeat step 3 for another of the outgoing

RN

interface attributes that was changed in step 3.3.5.4. At this point we have dealt with all
the changes caused directly or indirectly by the external change WithdraWal
Request::Office Clerk. We now move onto the cha;lges caused by the external change

Arrival::Employee

The customer will come to the warehouse on the required date to pick up the items. A

o

warehouse employee will check all the necessary documents and will deliver the items

with an accompanying documentation to the customer and When the customer has

P

138

fetched the items the warehouse workers mark the withdrawal as ready. The items are

removed (decreased) from the information system.

Change: Arrival::Employee
Step Output
3.1 Employee is a new agent
3.2 Employee is an agent
33 Employee is an internal agent
33.1 This is a new activity for Employee
33.2 Customer::Arrival
333 No state laws found
334 No transformation laws found
335 Employee is unstable
3.3.5.1 Check Documents
Fetch Items
Deliver Items And Documentation
Remove Items from the System
3.3.5.2 No transformation laws found
3353 Customer Information
Inventory Information
Inventory Database
3354 Items And Documentation::Customer
33.5.5 Employee is currently stable . .

Coad

Table A-19 Step 3 For Arrival::Employee

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Items

And Documentation::Customer.

Change: Items And Documentation::Customer

Step Qutput
3.1 Customer is an existing agent
3.2 Customer is an agent
3.3 Customer is an external agent

Table A-20 Step 3 For Items And Documentation::Customer '

At this point we have handled all chénges directly and indirectly created due to all

external agents. The following tree shows the changes that were generated. Always

traversing the tree left shows the order in which the changes were handled. The changes

with a box around them are duplicate changes, and the number is used to match the

duplicates. -

139

Customer

Withdrawal Request::Office Clerk Arrival::Elmployce

Items and Documentation::Customer

[Order Status::Customer | Withdrawal Request:: Warehouse Manager
1

l | l

ltem Existence:: Warehouse ITranspon Form::Planner | |Order Status::Office Clerk I
2 3

Search Results::Warehouse Manager

|Tmnspon Form::Planner ' F)rder Status::Office Clerk I
| 2 3

Transport Schedule::Warehouse Manager Transport Orders:: Truck Driver

F)rdcr Status::Office Clerk , I I I l I
i - Pickup Notification:: Warehouse Manager [Truck Status::Planner Ready To Load::Warehouse Worker [Truck Status::Planner
4 4
|Order Status::Customer . | | . l
Ready ltems::Warehouse Worker On Transport:: Truck Driver
lMove ltems::Forklift Opcmtor‘l l I T I I

DropofT Notification::Warchouse Manager |Truck Status::Planner Ready To Unload::Warehouse Worker |Truck Status::Planner
I : l :

Ready Receiving::Warchouse Worker []

IMove ltems::Forklift Opcralor5 I Update Form::Warehouse Manager

Figure A-3 A Tree Showing All Of The Changes

Figure A-4 shows the solution we have developed at this point

We are now at step 4: If needed identify super and subagents using the internal agents.
If we stop and consider for a second what it means to be an employee of the Warehouse,
we can see f'hat itis in facta Sﬁper agent with the subagents warehouse worker,
warehouse manager, and forklift operator. That is, these agents are all employees that do
work at something called a warehouse (More about warehouse will be said in step 5

below). Figure A-5 shows where we currently are.

We are now at step 5: If needed identify composite and component agents using the
[T o |

internal agents. We noted above in two places where the possibility of composite agents

was suggested.

140

Emptoyes j Customer i Office Clerk W arvhons Maospre W orvbonsr Panaer Trork Detver Warvboosr Worker Farkin Operater

Activity | Wiehderm ol Request
Affrvied Artriaes
.

-

Wik ol [a Y

Avthorizativm Statns

Wthdtre of Reorst. Warchouse Maaaxs

Order Stamca:Custooer.

Actiswy | Opeearions

Comisct W archuomar sl Newify Abost
exctusive

Saates e mtnaty Aciviy | bond beme
Anthorny Oheck Aflecied Atmbetes
Comtas W o oquee
e Clerk vy Matas pravpe. ey bk

ematmn
Ovder Stomn:Office Clerk
o J

vttty | Fubl Pulun ‘Activy | Operations
Miviied Armibures i Comtact Other Warchse snd Nioify
¢

Al mpkoy e P —— Abot Susten aee mukuslty exchosive

Aflecred Annbutes Cheuk mvewnny Activnty | Scarch for ems
Waschounr Mo ity abet satus Aeved Atribuscs
Sder Mates Lwsonmy Comtact Other Warcheasrs Warrhonre e

Activy 2 Devide il dee van prinecd
Atmbtes

P — —

Al Awibates

Py, Yorm

ey I brmanmn

Tk tnemation

Trimeort Schedale W aehimer Manages

Hismapret reders : T Uver

Keimity T Operaioms

Aty 3 Pty st ey watus Mat o

‘Affecied Anibures Scheduie Irnks ey | Proceed o pckep
hduie Abow Hansport inbusrs

Order Stanas soffice chrk
Keiinity I Opersivoms
y abowt wanis

Actisiy 4 Nty sbet pickup
Aftected Anibutes

rach Driver Pickup Nosificatiom
Reaty e Warchouse ey
[ey ¥ Ot aioms Orive o pickup w archouar
Notify i Rrady hemn Noofy wwady te load ——
T et wuck .
Acrivwy | Prepere £ pckeg
‘Aflectad Arrberes
Warehoune
- Wove Mewme:Frt Ul Operamr
Ay koot T ey T Opcmms
Truch Driver:Track Semes 9=t Tumme Move Bem Onders
Teams Ly
Aty ‘NF-- Actnay 2 Load Prack
Recred Tiow Affecsed Ateinacs
Trect Devser:Ready To load
avewtry e
Un TopmonTrect Doy
wctivny * Preweed to drogell Aenmy 1 Opermicms
Affeesed Arnbcs Vosd Treet
Warchoure Worker:m Toamepent ALOx T
Dol ey aicw:: W srvhosre Manager
Trach Matms :Ponmer
Tk St
Weady Te ¢ alond W aeboum Worter
Ay § Sonfy shean drgll Treet see: Pamer
Aficend Anriboses oWy Y v
Trach Driver Dxpoff Abne Drvguift
Ready Reversmg archouse Worten Treet Sums
[Ranes Sopmmims Dive To Dropet?
Sonty © Resdy Rescinimg Nomty Rewdy To ' shosd——
ook Seoms “Acmuy 3 Ready Receivimg
Afiecred Arvibmars

Matayer:Ready Recenvmy
W archoase Infrmunon

Actinny 5§ pulate s emiory Detsbane
Affecwd Antnbuics

Warchouse Worker:t pe borm
vemony Dutsban

vy § Dpersion Mok Tosm et Reqmea Ax Perfoemed £
\pdaie tmsemiony Databare hom H

Figure A-4 Solution to the ACME Warehouse Case

There is no need to create a composite agent for ACME headquarters. There is only one
agent that could be part of such a composition, Office Clerk, and thus no further

information would be represented by creating a composite agent.

We can create a Warehouse composite agent. The case mentions a warehouse manager, a

warehouse worker, and a forklift operator that perform activities at the warehouse, these

141

Trea . [N T PRI S A SN

can become component agents. The attributes and operations of the already existing
Warehouse agent can become the emergent attributes and operations of the new

Warehouse composite agent.

Figure A-6 shows the composite agent warehouse in the decomposed view. When we

collapse the decomposed warehouse agent into its aggregate form we get figure A-7.

We have now gone through all the steps and are finished.

Customer

Office Clerk.

Empioyes

W arehouse

Track Driver

Actioy | Fufd Pctup

Astinal Linphoy e

yentory Dutabase

Ronary [Opersons
Aflected Arnbutes

pliy e “Werms and

LA
Withdene al reuent Ofice Clert)

Actty | Withdeaw sl Request
Aftested Armbutes
Customes,Wthdran af request
Autherization Status

Withdre ol Reqoent Waschousse Manaper
e Stagus. Custoner

Detiver hems And
Rermne Wems from the System

W arrhouae VManager

W arehouse W erker

Furkiits Operator

Actswy | Operamy
Contact Warchouse and Notify At
Status are mwtually exchusise
Authonn Check

Actwity 1 bind kems
Affected Attnibutes

Ol Clork Ordes Stats

Contms W Offive Clerk Withdsaw af Kerent
about vy Wveniony frmatun
xder Siatus (ffice Clark
e

Actiity 2 Notty b
Aflevted Attrbutes

Activiy | Opetatnes
Contact (thet W aretuse and Noiihy
At Moty are nmtnally exchisse
Chedh Inventony

Noatty about staus

Xwsity T Opertiomns
Nettfy about ustus

Contact (rhes Warchianes

Actinaty 2 Devde 1f
Aflected Atinbuies
Warehouse :Search reaults

et van poin ced

Actians § Scarch bt Rem
Aflexted Attobuies

Warehoune Manager. bem £ siene
nventiry ke nusteom

Scarch Results W archouse Mansger

ctnny | Opermions
Inventory

Tramquet Furm -Planne
Order Status il clek
Auingy > Ui,

Contact plansier and nnky abvad
astus are mtuslly exclusive

Nettly abrt search rewsits

Contat pl
Nowh about vaius

Activity 3 Notify sboot ordey simtus
Afkected Annbutes

Actaty | Amange Transpent
Aevted Attributes

Wamchouse Manayer Transpont Form
Insentory Inkematm

Truck inkurmatn

Tramepurt Schedule | W archoune Manaper
Transgnrt swders - Truck Drver

Xty T Uvatnons
Mark bnventory
Schedule Trucks

Planney.. Transpon Schedul
Order Mars- office clerh

Keirvity T Opevatnns
Notify sbou siatus .

Activty 4 Notify sbesit puckup
Aflecied Attnbutes
Truck Derver..Peckug X

Al Transport

Actviny | Prixeed 1o peckup
Affected Anbutes

m wdens
Prckup Noasfication ;W srehouse Manager
Truck Status :Planner

Truck Statas

Reahs w0 bomd ;W areheune Worker

Truck Statws “Plannct

AR T Operwans

NouBaton
Ready Wemy Warchouise Worket

ety ¥ Ppevmions
Notify 10 Ready Mems.

Activity | Prepare fiv probup
Aflected Atnbutes

Warchouse Manager. Remdy Bems
Muve Rems Forkhl Operater

Tty T Opsrationt

bt prdup

Drive 1o peckup warchouse

Actimty 1 Move liems
ted Atnibutes

Iyuse Move Rem Orders

Actsary Tt aed Truck
Affexted Annbutes

Warchouse Wrkar. Move Rems
Insentory i formenon
Aty T Operms

Move heme

Truck Drver. Ready Tol
Insentory nformanon
An Transport vk Drivey

Actraity 2 Operstions
bowd Truek

Nous reads 10 losd
Report truck st

Actroty 2 Record Tine
Affevied Anmbutes
Trwch Dnver . Truch Statuy *=—g——1

Teanypon bnfemation
Actimty T Operations

o
Resend Fime

Mark As O Transport

Actwty § Netify ahout dropoll
Atlectnd Attributes

Actin 2 Pron eed 0 dropofl
Aleuted Anbutes
mchouse W arker: On Trampn
Drupofl Netiestion W srchouse Manaeer
Tuck Marus - Plasner
Truch Status
Reads To | nhd :W mehouse Worker
Trik Status’ Plannt

XA 2 Opevationt
Atvat Dropl

Truck Dryver. Dropall Notificann
Ready Receivng ;W archoue Worker

Tctivty § Operations

Notih 1o Ready Reusvaing

Actiwity) Resdy Recervng
Affected Annbaites

Warchouse Manager :Ready Recervng
W archonise Information

Mavement Sciedle

X Y Mpcrations
Find Spove
Amanye Mavement

Activiy 6 Lpdate nventory Datshase
Affected Attributes

Attty 4 Unfoad Tk

Truck Status

Drive To Droptl
s Ready To Unboad
Fruch Starws

Move Nems' ekt Operator
Transne boam

U pdate Form W archouse Manaper
Activity 4 perations
Keuave kems
Deterenine Mave

Newifs Dbl Opctanes

Mart Tranpun Requess As Pertormed
Send | pdmc Frem

Xeivw 6 Dyeratwns
Update bventory Detabese

Figure A-5 Creating An Employee Superagent

http://ihdiii.il
http://Vti.it
file:///tlnhtitei
http://4Rep.ii

Cusiomer

Office Clerk

Truch Driver

Actty | bufil Pxtup
Affected Atinbuics

Arnal lmplnee

“ustoener Armal
Cusomee Infosmation
Inventon tnformstion

trems And Documemation: Costomer

Inventon Databuse

Rt ity T Teraions
Altected Atnbutes
Check Documents

Fetch hems
Delrver ems And [

Fmplasee.:licms and

Witldrawal fegquest: Office

Oifice Clerks Order Status

1y 1 Withdrawal Kequest
Allected Ainbuates

= Withdrawal request
Authorization Status

Withdrawal Request: Warehouse Manager
Urder Status: Customer.

Remove ltems trom the System

Warehowse Werker

Forklift Operator

Activity 1 Operations

Contact Warchouse und Notify About
Status are matually exclusive
Authonty Check

Aty 1 Find ltems
Allected ARtributes

Contact
Notifs ahout status

Activity 2 Notify shout order status
Affected Attributes

Mice Clerk::Withdsaw al Request
Insenton Inlormatson

Order Siatus' Oftice Cleek

Activity 1 Opeyations.

Contact {rher Warchouse and Nuouty
About Status are matually exclusie
Check nventory

Warchouse Manager: (srdet S
Cvdet Status: Customer

3 about status
Contact (kher Warchoues

Aciwity T (hperations

Notify abumt status

Activaty 2 Decide st order can proceed
Affected Atinbutes

Warehouse :Search resatts

Trarapont Form :Planner

Order Status' office clerk

Actinly 2 Operstions.

Contact planner and nonfy shout
status are mutually exclusne

Contact

v about status

Activm 3 Notify about order stalus
ed Attributes

Activity 1 Arrange Transport
Affected Alinhates

Warchouse Manager . Transpon Form
Invenony Information

Truck Information
Transpurt Schedule :Warchouse Managet
Teampunt arders :Truck Dnver

Retieity TOperatans
Mark Inventony
Schedule Trucks

Order Status” oftice clert

Acivvay Y Opcrafions

about status

Actinity 4 Notity about prehup
Afbected Altributes

About Transpon
T Or

Actisity | Provend 1o prekup
Afected Attnbutes

Planncr. Tranypon orders

Prckup Noufication W archoue Manager
Truck Status Manner

Truch Status

Ready 10 load | Warchouse Wivker

Truwck Dnver. Piotup
Ready lems :Waichwne Worker

Gty TOnerations

Nutity t Ready emn

Actisty | Prepare for prchup
Aflected Atinbutes

Warehouine Manager Reads e
Mane e Forkiifl Operator

Kevity T erutions

Nonfy about prekup

(s Move ltem Crdens

Activiy 2 Load Truch
Aflected Attributes

Actinsty 1 Mose ltems
Afleaied Attnbutes

Warchouse Worker::Move liems
Insenton Intormation

Repu trh status
e to pickup warehoune
Nonfy ready to hoed
Ri ok states

Actrviy T Operanons
Move liems

Actnity 2 Record Tume
Affected Altnhutes

Truck Driver.:Trock §
Transpont Intormation

Record Tome

Track Drover::Reads To |
Inventory Information
On Transpoet Truch Dniver

Activry 2 Operations
Lowd Truck

Mark As On Teanspont

§ Nouty about dropal?
Aflecied Atinbutes

Actity 2 Proveed to dropll
Affected Annbutes

Warehause Worker:.On Transpont
Dropaff Notficaton:Warchouse Manager
Truck Sutus :Planner

Truck Status

Ready To Unload - Warehse Werker
Truck Status :Planner

Ketreiiy T pcraione

Truch Driver. Droputd
Ready Recening: Warehouse Worker

Kewiiy § Operations

Nexify 1o Ready Revening

Actiny 3 Ready Recenning
Affected Anrnbutes
Warchuse Manager.
‘Warehause Information
Movement Schedule

cady Recersing

Activity 3 Operations
Find Space
Amange Mosement

Activtty 6 Update Inventory Ostabase
Affected Atiributes

Actiy 4 Unlued Trock
Affected Attnbutes

Notify Ahout Dropofl
Fruck Staus

Drive To Dropof®
Moty Reads TaVnload

Report Truck Status

Tewck I 'y To Unlusd
Transport Form

Warchouse tnformation

Move fiems_Forkhh ¢ peratr
Transpunt Fosm

Vpdate Form Warehouse Manager
Acuity 4 Opcrations.
Receise hems
Determne Place

Notify Forklifl Opersions

Mark Transport Reguest As Performed
d Update Form

Warehoure Worker:Vipdate Fornr
Inventay Databuse

Reiviny 8 Operations
Update Inventory Database

Astinaty) Search Tor hems
Ablected Atnibutes

W archouse Manager :Hem Exstencs
Inventony Information
Scarch Reoulty W archouse Managey

Actisily T.0pcrations
Chech Invenuony
Nutify about warch repults

Figure A-6 The Decomposition of Warehouse

144

http://Ai.-n.ns
http://Arti.it
http://Acli.it
http://Acti.it
http://aifc.mu.on
http://IVt.tr

Customer

Office Clerk

Warshouse

Planner

Truck Driver

Withdrawal nequest::Office Clerk

Office Clerk:Onder Status

Activity 1 Withdruwal Reguest
Aflected Attributes

Customer:: Withdral request
Authorization Status
Withdrawul Reques:Warchouse
Order StatusCustomer.

Activity | Operations

Contact Warchouse and Notify About
Status are mutually exchnive
Authority Cheek

Contasct Wareha

Activity | Find ltems
Affected Atributes

Notify about status

Activity 2 Notify about onder status
Allected Attributes
Warchouse:;:Order N

Office Clerk:: Withdrawal Request
I entory: Information
Order Statuss:Offiee Clerk

Tiem Existenc archous:,

Activity 1 Operations

Contset Other Warchouse snd Notify
About Status are mutually exelusive
Cheeh Inventory

rder Status::Customer

Notify ahout status
Contact (Other Warchouses

Activity 7 Operations
Notify about satus

Activity 2 Scarch For ltems
Allected Attributes
Warchousez:Item Existenee
Imentary tnformation
Scarch Results:: Warchouse
Activity 2 Operations
Check Insentary

AW archous

about search results

Activity 3 D
Afteeted Auributes

Scarch results
Transport FormizPlannee
Onber St clerk

f ardr can prococd

Activity 3 Operastions
Contact planner and aatify about
status are mutually exclusive

Activity | Amange Transpon
Allecied Autributes

Contact ph

Nutify ahout stalus

Transport Form
Invenwry Information

Truch Information

Transport Schedule::Warchouse
Transpon orders:: Truck Driver

Activity 4 Nutify about onder stotus
Afteeted Attributes

Activity | Operations
Mark [nventory
Scheduke Trucks

Plan

Notify About Transport
Issue Onders

Activity | Proceed to pickup
Altected Attributes

Planner:: [ranspont onkrs

Arrival:Warchouse [

Notify ubout status

Activity § Prepare for pickup
Afteeted Attributes

Pickup Notification:: Warchouse
Truck Status::Planner

Truck Status

Ready 10 loud:: Warehouse
Truck Status::Plannce

Activity | Operations

Truck Driver::Pickup
Ins cntory {nformation
Activity 3 Operutions
Move fems

Notify bout pickup

Report truck stutus
Drive to pickup warchouse

Activity 6 Load Truck
Aflected Attributes

Truck Driser::Ready To Looad
Inventory Information
On Teunspont::Truck Driver,

Activity 6 Operitions
Load Truch
Mark As On Transport

Activity 2 Record Time
Affected Attributes

Truck Driver:Trock Status
Transport Information

Activity I Operations
Revord Time

Natify ready 1o kad
= Report truck stutus

1

Activity 2 Proceed w dropolT
Aflected Attributes

Activity 7 Ready Reecising
Aftected Attributes

::On Transport
Dropofl Notification:: Warchouse
Truck Status::Planner

Truck Status

Ready To Unloud:: Warchouse
Truck Status::Planner

Activity 2 Operations

Truck Driver::Dropoll’
Warchouse Information
dule

Arrange Movement

Activity & Unload Track
Allected Attributes

Notify About Dropofl
b=t Report Truck Status
Drive T'o Dropofl

Truck Driver::Ready To Unload
Transpont Fonn
Warchouse Informution
Inventory Information
Transpon Form
Inventory Database

Tiv Peralions
Reeeive Items
Determine Place
Move ltems
Mark Fransport Request As Performed
Update fnventony Datshuse

Activity 9 Fuiil Pickup
Aflecied Attributes
Customer::Amival

Customer Information
Inventory Informution
liems And Documeniatio
Inventory Database

Acivity 9 Uperalions
Chech Documents
Fetch hems .

and |

Heliver ltems And |
Remove liems from the System

Figure A-7TWarehouse is a composite agent

Notify Ready To Unload

e Retport Truch Status

145

Appendix B — Agent Templates For The ACME Warehouse Management Case

Planner Truck Driver

Customer Office Clerk

Activity 1 Withdrawal Requcst Activity 1 Find llems
Affected Attributes ' Affected Attributes
Withdrawal request::Office Clerk Customer:: Withdrawal request + Office Clerk::Withdruwal Request
Order Suatus::Customer + =Order Status::Office Clerk :
: {tem Existence:: Warchouse :

Activity 2 Scarch For liems
Affected Altributes

[JWarchouse Manager::litem Existence
- Search Resulis:: Warchouse

Activity 3 Decide if order can proceed |i | Activity 1 Arrange Transport

Affected Attributes | Affected Attributes
Activity 2 Notify aboul order status *Warchouse::Search results ~+ Warchouse::Transport Form Activity | Proceed to pickup
Aflecled Attributes i Transport Form::Planner { (- Transport Schedule:: Warchouse i | Affected Attributes
N | Warchouse::Order Status - Order Status::office clerk Transport orders::Truck Driver - Planner::Transport orders
Office Clerk::Order Status # Order Status::Customer : i1 Pickup Notification::Warchouse
; Activity 4 Notify about order status [Truck Status::Planner
: Affcctod Attributes T Ready to load:: Warchouse
; Planner:: Transport Schedulet————1 : I:_-T“mk Status::Planner
Order Status::office clerk
Activity 5 Prepare for pickup ;
Affected Attributes : :
. Truck Driver::Pickup Notification i
Activity 6 Load Truck '
Affected Autributes ; i | Activity 2 Proceed to dropoff
Truck Driver::Ready To Load - + - ¢ | Affected Attributes
N N . |:On Transport::Truck Driver : R T - ' Warchouse::On Transport
Dropolf Notification:: Warchouse
Activity 7 Ready Receiving == Truck Status::Planncr
Affected Attributes .. +—+ Ready To Unload::Warchouse
, Truck Driver:: DropofT Notificatior® —F Truck Status::Planncr

Activity 8 Unload Truck :
Affected Auributes :
Truck Driver::Ready To Unload

Activily 2 Record Time
Affecied Attributes ;

Activity 9 Fufil Pickup
Affected Attributes ¢ | Truck Driver::Truck Status

Arrival::Warchouse [>’ Customer:: Arrival : H

Warchouse:: ltems and De jon. ltems And Documentation::Customer

Figure B-1 Compressed Agent Interaction Diagram

i Forklift Operator

Attributes . Operations

....................... g

5 i Internal. | Transformation |
State Law : Interface Attributes : Attributes Law : Operation

....................... Qe smsnmnnsnnnsannenensassssssrsonennnsnssssrennsashoaresessnnacnrnesesanansrarsasessansfarsssasanraserancnaessensnsesrossassrssdecssaseMescosnoorisonanann

Warehouse Worker::Move

; Move Items

: Inventory :
b d0formation o E e, ;

Figure B-2 Forklift Operator Agent Template

146

Office Clerk

Attributes Operations
Interface Internal Transformation
Activity State Law Attributes Attributes Law Operation
1 Customer::Withdrawal
request
Authorization Authority
Status Check
Withdrawal Contact Warehouse Contact
Request::Warehouse and Notify About Warehouse
Manager Status are mutually
Order exclusive Notify about
Status::Customer status
2 Warehouse
Manager::Order Status
Order Notify about
Status::Customer status
Figure B-3 Office Clerk Agent Template
Truck Driver
Attributes Operations
Internal Transformation
Activity | State Law Interface Attributes Attributes Law Operation
] Planner:: Transport orders " :
1
Pickup . . | Notify about
Notification::Warehouse . pickup
Manager
Truck Status::Planner Report truck
) status
Truck Status Drive to
: pickup
warehouse
Ready to load::Warehouse Notify ready
Worker to load
Report truck
Truck Status::Planner status
2 Warehouse Worker:;:On
Transport '
Dropoff

Notification:: Warehouse

Notify About

Manager’ Dropoff
Report Truck
Truck Status::Planner Status
.| Drive To
Truck Status Dropoff
Ready To . . Notify Ready
Unload::Warehouse Worker B To Unload
- Report Truck
Status

Truck Status::Planner

Figure B-4 Truck Driver Agent Template

147

Planner

Attributes Operations
Interface Internal Transformation
Activity State Law Attributes Attributes Law Operation
1 Warehouse
Manager:: Transport
Form
Inventory Mark
Information Inventory
Truck Information Schedule
Trucks
Transport Notify About
Schedule::Warehouse Transport
Manager
Transport Issue Orders
orders::Truck Driver
2 Truck Driver::Truck
Status
Transport
Information Record Time
Figure B-5 Planner Agent Template
Customer
Incoming Changes - Outgoing Changes -
Office Clerk::Order Status Withdrawal Request::Office Clcrk
Warehouse::Items and Documentation Arrival::Employee
o Figure B-6 Customer Agent Template o
Employee
Attributes o Operations
State ~ Internal Transformation
Activity Law Interface Attributes Attributes Law Operation
1 Customer::Arrival
' Customer Check Documents
Information
e Inventory Fetch Items
ok Information
Items And - Deliver Items
Documentation::Customer And
Documentation
Inventory Remove Items
L Database from the System

Flgure B-7 Employee Agent Template

148

Warehouse

Component Agent 1: Employee

Component Agent 2: Warehouse Manager

Component Agent 3: Warehouse Worker

Component Agent 4: Forklift Operator

Attributes Operations
Internal Transformation
Activity State Law | Interface Attributes Attributes Law Operation
1 Warehouse
Manager::Item
Existence
Inventory Check
Information Inventory
Search Notify about
Results::Warehouse search results
Manager

Figure B-8 Warehouse Agent Template

Warehouse (Composited)

Component Agent 1: Employee

Component Agent 2: Warehouse Manager

Component Agent 3: Warehouse Worker

Component Agent 4: Forklift Operator

Existence::Warehouse

Order Status::Office
Clerk

Warehouses and
Notify About Status
are mutually
exclusive

Attributes Operations
BN Cee Transformation

Activity . | State:Law | Interface Attributes | Internal Attributes Law Operation
1 v . Y LOffice ., L

Clerk::Withdrawal

Request S

Inventory Information ‘ Check
S . Inventory
Item Contact Other Contact Other

Warehouses

Notify about
status

Warehouse: :Item

Existence .
Inventory Information Check
Inventory
Search vl Notify about

.Results:: Warehouse

search results

3 -|. Warehouse::Search
results '
'] Transport ' Contact planner and | Contact
! " | Form::Planner- notify about status planner
Order Status::office . .. are mutually Notify about
clerk exclusive status

Planner::Transport

149

Schedule
Order Status::office Notify about
clerk status
S Truck Driver::Pickup
Notification
Inventory Information ' Move Items
6 Truck Driver::Ready
To Load
Inventory Information Load Truck
On Transport::Truck Mark As On
Driver Transport
7 Truck Driver::Dropoff
Notification
Warehouse Information Find Space
Movement Schedule Arrange
Movement
8 Truck Driver::Ready
To Unload
Transport Form Receive ltems
Warehouse Information Determine
Place
Inventory Information Move Items
Transport Form Mark
Transport
Request As
Performed
Inventory Database Update
CT : o Inventory
Database
9 Customer::Arrival : - :
Customer Information Check Documents
Inventory Information Fetch Items
ltems And.. . Deliver Items And
Documentation::Customer | Documentation
Inventory Database Remove Items from
the System

Figure B-9 Warehouse Agent Template in ‘composited’ view

Warehouse Worker

Superagent: Employee

Attributes Operations
Internal Transformation
Activity | State Law | Interface Attributes Attributes Law QOperation
! ‘ Warehouse
Manager::Ready Items
Move Items::Forklift Issue Move
Operator Item Orders
2 Truck Driver::Ready To
Load
Inventory Load Truck
Information
On Transport::Truck Mark As On
Driver Transport
3 Warehouse
Manager::Ready
Receiving
Warehouse Find Space
Information
Movement Arrange
Schedule Movement
4 Truck Driver::Ready To
Unload
Transport Form Receive Items
I Warehouse Determine
N Information Place
Move Items::Forklift Notify Forklift
Operator : . . Operators
Transport Form Mark
Transport
Request As
Performed
Update Form::Warehouse Send Update
Manager Form

Figure B-10 Warehouse Worker Agent Template

151

Warehouse Manager

Superagent: Employee

Attributes Operations
Internal Transformation
Activity | State Law | Interface Attributes Attributes Law Operation
1 Office Clerk::Withdrawal
Request
Inventory Check
Information Inventory
Item Contact Other Contact Other
Existence::Warehouse Warehouses and Warehouses
Order Status::Office Clerk Notify About Status Notify about
are mutually status
exclusive
2 Warehouse::Search results
Transport Form::Planner Contact planner and Contact
notify about status are | planner
Order Status::office clerk mutually exclusive Notify about
status
3 Planner::Transport
Schedule
Order Status::office clerk Notify about
status
4 Truck Driver::Pickup
Notification e
b Ready Items::Warehouse Notify to
Worker .- .. Ready Items
S Truck Driver::Dropoff "
Notification
Ready Notify to
Receiving::Warehouse Ready
Worker Receiving
6 Warehouse ‘
Worker::Update Form)
h Inventory Update
Database Inventory
Database

Figure B-11 Warehouse Manager Agent Template

f b
e

152

Appendix C - A Discussion of the BWW Ontology
The following discussion of the BWW Ontology is based on Parsons and Wand (Parsons
and Wand, 1997), Wand & Weber (Wand and Weber, 1993, 1995), and Wand and Woo

(Wand and Woo, 2002). Ontological constructs are italicized as they are introduced.
C.1 Static Model of things

The real world is comprised of things. There are simple things. A composite thing is
made up of other things (be it other composite things or simple things or some
combination thereof).

Things possess propéﬁies. 1Pr%>perties are either intrin;ig gf)qss/gé.sed so‘llely by one thing)
or mutual (lsh'fay‘eci with one of mérel olthclarlthing‘s)_. Propemes c;:xist indepé‘ndent of p?:ople
being awéré of theif éxistence. Attributes are nc# necessarily possesséd by al thiﬁg, but
may be as;ig‘;léd t;) ;hings by peop]ek ivn c‘>rde; to ﬁeasure the; pr‘operty. For example, a
property pfa thing'c‘ould be the ability to reflect a wavelength of light. People will then

attribute a color to this thing. Composite things possess hereditary properties that belong

PRI -

to its component things. Composite things also possess emergent properties that are not
possessed by any ;;ﬁlpon;aﬁt thing. As an e;(ar.r'lple acar ié a composite th’ing. Itbhas the
hereditary property burns ga;oline, from one of iAts’ compone-nt things tl;e gasoline
injected coﬁibustion engine. [t also possesses the emergent property maximum

acceleration

R

which is not possessed by any one component thing.

153

The set of values for the attributes of a thing comprise the state of the thing. A
conceivable state space for a thing is the set of all possible states a thing may ever
assume. State laws serve to restrict the values of the properties of a thing to a subset of
the conceivable state space. State laws must enforce a restriction due to either natural or
human laws. A law is a property. For example, most bank accounts have the restriction
(state law) that the balance must be greater than or equal to zero. This is due to the human
law that people are only allowed to spend up to the total amount of money that is in their
bank account. The lawful state space of a thing is the set of states that exist for a thing
that comply with its state laws. A lawful state space is usually a subset of the conceivable

state space.

A class is a set of things that all possess a common property. A kind is a set of things that

possess two or more common propertres It should be noted that common property does

PEETI [N it T T

not refer to mutual property All thmgs that are part of a natural kmd w111 possess the

same lawful state space.

AR

C.2 Dynamlc Model of thmgs

yow ! P BTt

Ontology has the prmcrple that every thing changes and that every change is the change

of propertles ofthmgs This is an event. Since the measures of propertles ofa thmg

N

o

comprise the state of the thing, and an event is changmg properties. An event is really the
change of the state of a thing. Ontology follows the principle of nominal invariance. That

is, a thing can change and still be the same thing. An event is carried out via

154

transformation (defined below). The event space is the set of all possible events that can

occur in a thing.

A transformation is a state (attribute) change from one state to another state. A lawful
transformation defines the events that are lawful for a thing. The lawful event space is
usually a subset of the event space, and defines those events in a thing that are lawful.

The history of a thing is the chronologically ordered states that it has traversed.

C.3 Static Model of systems
A coupling occurs when one thing acts on another thing that is, ths existence of one thing
affects the history of another thing. When this sitgation aFises among two thiqgs they are
said to bs soupled (or interact). A set sfthings can bs ca]l'ed a system if w\hcn the set of
things is bipla‘rtitioned there are couplings among the things in the two subsets. The things
that make up the system are its system composition.

. o . .'(‘)"4.". .
A system environment is composed of the things that are not in the system but interact
with things:in‘ tilel system Systeﬁs };a\;s a systeﬁ ‘struc.'ture.‘ A system structure consists of
the couplings.ar.nong the things in the.system, and>the couplings among fﬂings in the

system and things in the system environment.
At o T e

o b

There exist subsystems. A subsystem is a system of which the composition and structure

[

T S

are subsets of the composition and structure of another system. A system may be broken

down into a system decomposition. A system decomposition is a set of subsystems in

BN . [EORER PR S

155

which every component of the system is either one of the subsystems, or included in the
composition of one of the subsystems in the decomposition. Generally, system
decompositions require some sort of level structure. A level structure is a partial ordering
over the subsystems in the decomposition. The level structure defines which subsystems

are components of the system or other subsystems.

C.4 Dynamic Model of systems

Things, subsystems, and systems do not begin to change unless they are given impetus
from an external event (defined below). The state a thing, subsystem, or system remains
in unless it is forced to change by an external event is called a stable state. An unstable
State is a state that must be changed to another state by actions within the thing, ‘

subsystem or system Unstabihty occurs due to the transformation laws that exist within

T T

a thing, subsystem, or system. The end result of the state change caused due to instability

can be either a new unstable state or a stable state

L .

An external event is an event that affects a thing, subsystem, or system caused by some
other thmg in the env1ronment ofthe thing, subsystem, or system. Before an external

event occurs the thing, subsystem or system is in a stable state After an external event

.“.

the thing, subsystem, or system may be stable or unstable An mternal event occurs ina

thing, subsystem or system due to lawful transformations of the thing, subsystem or

ii.t VI

system. Before an internal event the thmg, subsystem or system is m an unstable state.

L

After an 1ntemal event the thmg, subsystem or system may be in either a stable state or

1 a‘. P

an unstable state.

156

Begides being internal or external, events can also be well-defined or poorly defined. A
well-defined event is one in which the state of the thing, subsystem, or system after the
event can be predicted just by knowing the state of the thing, subsystem, or system prior
to the event. A poorly-defined event is one in which the state of the thing, subsystem, or
system after the event cannot be predicted just by knowing the state of the thing,

subsystem, or system prior to the event.

157

Appendix D — Modeling Grammar Examples
The case used in our examples is the same one used in chapter three and is presented
again here in its entirety.
The ACME Warehouse Management Inc. Case'®

ACME Warehouse Management Inc. offers storage facilities and redistribution services
(between their different warehouses) across the nation. A customer can request space in a
particular warehouse, request items to be transferred to another warehouse, or request
withdrawal of items from a particular warehouse (even for items not stored there).

For the purpose of this case, we only look at the activities involved in processing a
withdrawal request. A customer contacts ACME headquarters to request a withdrawal.
An office clerk checks whether the customer has the authority to withdraw the items. The
clerk then passes the withdrawal request to the warehouse where the customer wants to
pick up the items.

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the requested items. If the
items are located the warehouse manager will ask the planner to arrange for
transportation for the requested items.

The planner’s responsibility is to schedule the company’s truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notlﬁed whether the transportation request can
or cannot be satisfied. - ~

The warehouse manager will notify-the-office clerk if the'request can be fulfilled or not,
and the reason. The office clerk will notify the customer as to the status of the request
(approved, or declined due to lack of authority; no inventory, or no transportation).

The planner issues transport orders to truck drivers. After receiving a transport order, the
truck driver informs the warehouse about the pickup of the items. The warehouse -
manager will make arrangements to have the items ready when the truck arrives. When
the truck arrives at the warehouse the-items are'loaded. The'truck driver then informs the
next warehouse about the delivery. ‘When the truck has arrived at the next warehouse, the
items are unloaded. A warehouse worker finds space for the items and arranges to have
them moved to the allocated space. The worker updates the warehouse’s inventory
information. Truck drivers are requlred to report the status of the truck and the delivery to
the planner after each step o s

'® Based on a'case'in'l.'Jacobson,‘Object-Oriented Software Engineering, Addison-Wesley; 1992

158

The customer will come to the warehouse on the required date to pick up the items. A
warehouse employee will check all the necessary documents and will deliver the items
with an accompanying documentation to the customer.

Supplemental description

Once the office clerk has recorded the items to be withdrawn, he or she forwards the
request to the manager (foreman) of the warehouse. The warehouse manager is
responsible for directing the redistribution of items between warehouses. If the items are
not all available in the warehouse, transport requests are issued. The warehouse manager
fills out a redistribution form with the following information: items to be moved, place
from which to take the items, warehouse to transport the items to, quantity to be moved,
and the date by when the redistribution must be done. The warehouse manager forwards
the form to the planner to organize the interwarehouse transportation of the items. The
items to be moved are marked as move-pending, and the planner initiates a plan to have
the items at the appropriate warehouse at the given date. Once interwarehouse transport
plans are finalized, transport requests are issued to the truck drivers.

The truck driver alerts the warehouse manager of the time he or she will be at the
warehouse to pick up the items. The warehouse manager gives appropriate requests to the
warehouse worker on the date of delivery to have the items ready for when the truck is
expected. When the warehouse worker gets a requést-to fetch items, he or she, at the
appropriate time, orders forklift operators to move the items to the loading platform. The
forklift operators execute the internal warehouse operation. When the truck driver arrives,
the driver notifies the warehouse worker to have the items loaded into the truck. The
truck driver notifies the next warehouse manager when it is expected to arrive at the next
warehouse. The number of items in the current warehouse decreases and the transport
request is marked as on transport C - S

When the truck has arrived-at the next warehouse, the truck driver notifies the warehouse
worker-to unload the items. The truck driver signs off the job. The warehouse workers
receive the items and determine a place for them in the warehouse. Forklift operators are
told to move the items to-the new place in the warehouse. When the truck driver confirms
the delivery of the items, the records are updated-to reflect the new place for the items.
The transportation time-is recorded and stored. The redistribution and interwarehouse
transport request are marked as performed: The warehouse worker fills in an inventory
update form'and'sends it to the warehouse manager for conﬁrmatron and update of the
inventory database. - - - e

When the customer has fetched the items the warehouse workers mark the wrthdrawal as
ready “The 1tems are removed (decreased) from the information- system

Vi
i A

e f [
VO e e .o . o . . T oy

D.1 ColoredPetrtNets BRI o

Frgure D- 1 shows the Colored Petri Net solution to the ACME Case.- * *

159

Check
Documents

Pickup

d = approved
Order [\

Withdrawal | (3.b.¢)
Request

"Remove Items
From The System

Deliver'ltems -
And Documentation

(a.b,c).d

Receive
Items

Movement

Arrange w

Issue Move |
Item Orders |

Load |
Truck

Determine y

Place

X

p

) Notify About
Status

Notify To
Ready Iltems

Notify To

/ Ready Receiving

Send Update

Form

Notify
. To Load

Notify To
Unload

Mark Transport
'Request As
Performed

items Marked
As On Truck,

f

Dropoff

Notify About

Authority
Check

(a,b,c),
d = authorized

Withdrawal
Request

(a,b,c).d b

Notify About
Status

Check
Inventory

b,d e
Check invento
For Items | ~& b
% '
d != approved

Search
Results

then 1'(g.f}
else 1°d = lack of inventory

Notify About
Pickup

(9.

Notify About
Transport

Arrange
Transport

Update Inventory
Database

Issue | afa.f)
Orders

Mark
Inventory

Drive To Dropoff
Warehouse

Drive To Pickup
Warehouse

Schedule
Trucks

Report Truck | | Record
Status Time

Figure D-1 Colored Petri Net for the ACME Warehouse Case

160

Declarations:

Token String Array
var h: Inventory Marked var a, g: Warehouse
var i: Trucks Scheduled var b: Items
var j: Notified About Transport var c: Customer
var k: Truck Schedule var d: Status
var |: Ready To Report var e: Items Not Found
var m: Notified About Pickup var f: Items Found

var n: Report Done

var o: At Pickup

var p: Loaded

var q: Items Need To Be Moved

var r: Movement Orders Issued

var s: Notified About Dropoff

var t: At Dropoff

var u: Space Found

var v: Movement Arranged

var w: Items Received

var x: Place Determined

var y: Transport Request Marked

var z: Update Form

var A: Customer Arrived

var B: Documents Checked

var C: Items And Documentation Delivered

Withdrawal Request > Notify About Status;

Table D-1 Declarations for the ACME Warehouse Colored: Petri Net

. C e

In a Colored Petri Net the ellipses are called places and represent locations or resource

stores. They reprgsegit the'}input and output of transiti‘ons‘. The- rectangles are called
transitions. ’ﬂl“r}a'iisit.i.c'ms are evénts,' activfties, or changes of éfaf_e. Transitions create or
destroy tokens. The aﬁows are’directed arcs and represent necessary pre and post
conditions of tr:a.r‘isiti‘c‘)n‘s. Each 'place hgs markers called toke-ns» that cbntain a data value.
The declaratic‘v)n's‘ iifdbl)(? t‘;e\l-lg\thgtype of value each token can takes. A ‘token’ declaration
would be just‘th'eiré Whéreéé a ‘sfring array’ declaration can hold a list of data. The

declaration table also tells which transitions have priority when two or more of them are

enabled at the same time; - SR

D.2 Integrated Definition 3
Figure D-2 contains the process flow description for the ACME case. Figure D-3 contains

the object state transition network for the ACME case.

In the process flow description the number box is a unit of behaviour (UOB). A

UOB is a situation that happens. The arrows represent precedence links, with what
happens at the tail of the arrow occurring before what happens at the head of the arrow.
An arrow with a triangle on it means that the item at the tail of the arrow must precede
the item at the head of the arrow. An arrow with a star means an the item at the head of
the arrow must come after the item at the tail of the arrow and the item at the tail of the

arrow must precede the item at the head of the arrow. The boxes with letters in them

P N IR

denote junctions. Junctions can be either and (&), or (O), or exclusive or(X), one vertical

line in a junction denotes it is asynchronous, two vertical lines note it is synchronous. A

UOB with either one or two vertical lines around the name is not a UOB but a referent.

One vert1ca1 line denotes it is a call and contmue referent two vertical lmes denote itisa

RUIUH L)

call and continue referent.

An Object State Transmon Network descrlbes the states an object travels through The

circles represent object states. The arrows are the links. The boxes are referents to UOBs

R TET A B

in the process flow descnpt]on The cxrcles with letters in them are Junctrons of e1ther and

(&), or (O) or excluswe or (X) Referents connected at the same point begln at the same

i [

time. Referents connected to a circle means the order in Wthh the occur is unknown but

they can begm to occur then and happen before other referents further down the lme

(N . . P ISEENIPEN

Clerk About

Contact ACME Report Truck Record Time -
Notify Office [

L] 16 | 37 | Status
8
Contact Other Check Notify' About
' Contact . Check Warchouses [Inventory —* Search Results
Warchouse Inventory
Authority Lﬂ“exﬂ__ ; - Pl e 1 10 | Issue Orders Notify About
Check 3 s | . - + Pickup
2 l Contact Planner Mark I[nventory . Schedule Notify About 14 [15]
t—el Trucks — Transport —‘E
7 | T] 13
Notify Notify Office
Customer About Clerk About
Status Status
4
UOB/Report Notify Ready Drive to Pickup UOB/Report
H Truck Status To Load P Warehouse + Truck Status
Notify About 16
Dropofl ._@ 20 | 18 1 16
2 |
Move ltems Issue Move Notify To
[ltemOrders [*—] Ready liems
a1 | 19 | 17 |
Pickup Order Mark Transport i i i Receive ftems Arrange Find Space Notify To
P Inventory Send Update Request Ap: Move ltems Notify Forklift Determine Place M 8 pa Read
3 Y F e—— | lovement te—— h——
Database [| oM T Performed [T . Operators — [] _R_"“I_K_
36 35 34 33] | 31 Lo [] L8 26 25
. | UOB/Report Notify Ready Drive to UOB/Report
Check Fetch ltems Deliver lems Remove ltems . ' Truck Status ToUnload [Dropoff '+ Truck Status
D - And) From The l]
T - Documentation System 16 29 27 _ 16
39 La T] 41 42
O R ISR B - . Figure D-2 Process Flow Description for the ACME Warehouse Case

163

- 4

Customer
About Status

UOB/Contact UOB/Authoity
ACME Check
1 2
vithdraval . / - UOB/Contact UOB/Schedule| UOB/Notify
@ O UOB:Check . Planner Trucks Office Clerk
—W \ ventoy 7 T About Status
. 3 ‘Withdrawal I [8
' I T X
. UOB/Mark UOB/Notity UOBNotTy
UOB/Notily UOBMNotify UOB Contact Inventory About Customer
Customer Office Clerk Warchouse Trany About Status
About Status About Status Manager 11 13 3
4] s 3
|
T
OB Nty
UOB/Check About Search
Inventory Resals TOBNoiTy UOBNotify
. UOB/Remove Customer Office Clerk
UOBPick UOB/Fetch 9 10
()rdl:r i Ttems < ‘I Items From About Status About Status
The Svstem 4 g
38 40 42 |
I i i _
UOB/Check U|O|B Dtll;ef Ué.)B/No(lf) 32*8’)8:3
. CINS an ustomer 1Ice
Documentation umentation About Status About Status
39 1 4 3
. UOB/Send UOB/Move UoB/Determint | [| voBR UOB Noty UOB/Drive UOB/Find UOBMNotly UOB/Record UOB/Repont || | | VOB Notty UOB/Record YOB/lssue UOB/kssue
Update Form Items Place ftems UML’ ©° To Dropoff Space R‘:’c ei“in; Time Truck Status Yy lo Time ove flem Orders
35 30 29 27 26 25 37 16 20 37 14
UOB/Update UU‘LM”“ UOB/Record UOB/Repont UOB/Armange UOB/Record UOB/Repart UOB’G‘:"‘ UOBL.oad UOB/Move UOB/Report UOBNarify
Inventory Transport Request Time Truck Status Movement Time Truck Starus As Truck Teems Truck Status About Pickup
Database As Performed Transpo
36 34 37 16 28 37 16 2 21 i6 15

Figure D-3 Object State Transition Network for the ACME Warehouse Case

164

D.3 Event-controlled Process Chains

Figure D-4 contains the EPC for the ACME case.

In EPC a rounded rectangle overlapping a hexagon denotes a process. A hexagon denotes
an event, when something happens. A rounded rectangle denotes a task, what happens.
An oval with a dashed vertical line denotes an organizational unit, who does the task. A

rectangle denotes an information object, data accessed, created, or changed.

A dashed arrow denotes a control flow. Control flows connect events to tasks, and tasks

to events. A solid arrow denotes an information/material flow, and connects information

oLy, .
S,

objects to tasks. A line denotes an organization assignment, and connects organizational

units to task.

Events and tasks may be combined using circles with either an inverted v, a v, or XOR in

them. These correspond to and, or, and exclusive or.

t
[

R TP ENVARTEN o _ 165

ithdrawal
Request

| Office Authority Authorization
|_Clerk Check Status

Cdnlact Warehouse T Office
Manager | Clerk

Inventory Check
Information Inventory

Notify About | Office
Order Status |_Clerk

Inventory
Checked

Planner
Contacted

Warehouse
{Manage

H
Inventory Mark : Planner
Information Inventory

Inventory
Marked

Truck Schedule | Planner
Information Trucks |

| Planner Notify About
] Transpont

arehouse
Manager

166

Notify About
Pickup

Notify To
e o Sa
; |Manager.

F)
| Planner Record Time Transport
] Information
Time
Recorded

¥
| Truck rive To Picku Truck
|_ Driver Warsehouse Status

Warehouse
| Worker

| Forklift
| Operatol

JOLO),
Inventory Load Truck
Information | Worker

]
Record Time Transport Mark As On
Information | Worker.
Time
Recorded

+ :
m Report Truck otify To Read Warehouse
Status Receiving |Manage

F)
PR @ Warehouse Find Space Warehouse
H H Information | Worker
] :
H I Truck Drive To Truck
| Driver Oropoff Status Space
L3 : Found
| Planner Record Time Transport T
Information 'At Dropoft H
: : ‘ Movement H Arrange]
T Movement | Worker
Time * ;
Recorded m Notify Ready
To Unload Movement

S 167

L 1 ¥
Report Truck Transport Receive Warshouse
|_Driver Slatus Form Items |_Worker
ruck Statu tems
Reponed Received

M
| Planner Record Time Transport Warehouse Detemine Warehousé
Information Information Place | Worker
Time
Recorded

Warehouse
| Worker

Inventory Move items I Forkiift Transport Mark Transpo Warehouse
Information | Operato Form Requesl As | Worker.

Warehouse
| Worker

L 3

: Inventory pdate invento Warehouse

; Database Database | Manage,
Customer :

Information | i
T H Updated
Documents i T
Checked

H .
Inventory Fetch ltems IEmployee ‘
Information 1 .
items
Fetched
Detiver ltems Employee
Apd Documentatpn |
Delivered
Inventory Remcve ltems| IEmponee '
Database rom The Syste A
Items
Removed

Figure D-4 EPC for the ACME Warehouse Case

168

