
OBJECT-ORIENTED ACTIVITY-BASED PROCESS MODELLING

by

DAVID LESLIE HOOD

BISM., St. Francis Xavier University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN BUSINESS ADMINISTRATION

in

THE F A C U L T Y OF G R A D U A T E STUDIES

M A N A G E M E N T INFORMATION SYSTEMS

THE UNIVERSITY OF BRITISH COLUMBIA

February 2005 , . . .

© David Leslie Hood, 2005

Abstract

Many organizations seek to take advantage of the opportunities new technologies offer in

the current information age. New technologies can have an impact on the fundamental

organizational operations, altering well established policies and procedures. New

technologies have also been poorly implemented more often than not thus mitigating the

opportunities they offer. The poor implementation tends to be a direct result of a lack of

proper documentation of organizational processes. This improper documentation means

that any system built to support the processes that is based upon the improper

documentation will itself be faulty. This thesis develops the OBPM algorithm into an

objected graphical modeling language and process. The Activity-based Process Modeling

(ABPM) constructs have specific and well-defined semantics for real world business

process representation. Further, the change propagation algorithm which is based upon a

set of ontologically derived rules is refined to create a systematic process for modeling a

business process. The strength of the algorithm is from its ontological real world

foundations rather than programming or data design rules of thumb. This thesis also

explores the relationship of ABPM and OOEM. Both languages are designed to model a

specific view of organizational activity, irrespective of how a later information system

artifact will be built. By relating the two grammars using ontological foundations we can

acquire greater understanding of an organization without losing information. Finally, this

thesis proposes a set of design principles for an ABPM CASE tool that is implementation

independent which means that no matter how one decides to implement ABPM if they

follow our requirements they will be able to create a tool to fully support the business

process model generation process.

u

TABLE OF CONTENTS

ABSTRACT ii

T A B L E OF CONTENTS » iii

LIST OF FIGURES viii

LIST OF TABLES xii

ACKNOWLEDGEMENTS xiv

1. INTRODUCTION 1

1.1. Motivation 1

1.2. Thesis Objectives 4

1.3. Thesis Outline 5

2. PROCESS MODELING INTRODUCTION..... 7 i ^
i . . . : . v i .

2.1.. Introduction 7
' , \ . (.

2.2. Definition of Business Process Modeling 8

2.3. The'Terminology 9

2.4. The Ideal Process Model 10

2.5. Ontology 11

2.5.J. BWWP Ontology 14

2.6. Current Business Process Modeling Techniques 14

2.6.1. Colored Petri Nets , 15

2.6.2. Integrated Definition 3 17

2.6.3. Event-controlled Process Chains 19

2.7. Summary ' 20

O B J E C T - O R I E N T E D A C T I V I T Y - B A S E D P R O C E S S M O D E L L I N G

(ABPM) 22

3.1. Introduction "-22

3.2. Ontology-Based Process Modeling (OBPM) 22

3.2.1. OBPM Algorithm 24

3.3. Object-Oriented Activity-Based Process Modeling grammar 25

3.3.1. Classes and Objects 26

3.3.2. Association 28

3.3.3. Object Communication 29

3.3.4. The Combination of OBPM and Object-Orientation 30

3.3.4.1. Attributes 31

3.3.4.2.Operations and Change Propagation 31

3.3.4.3. Activities ". 32

3.3.4.4. Laws 33

3.3.5. Mapping Summary 34

3.4. Meta-model of ABPM 34

3.5. Graphical Representation 37

3.5.1. Domain Representation 38

3.5.2. External Agent 38

3.5.3. Internal Agent 39

3.5.4.. Resources 42

3.5.5. Agents Sharing A Mutual Attribute 42

3.5.6. Composite Agents 44

3.5.7. Superagents and Subagents 47

3.5.8. An Alternate Notation 48

3.5.9. Allowed Interactions 51

3.6. A B P M Modeling Process 52

3.6. J. Modeling Rules 53

3.6.2. Modeling Process 57

3.6.3. Model Integrity 59

3.1. An Example • 60

3.8. Summary 64

4. L I N K I N G O O E M A N D A B P M 65

4.1. Introduction 65

4.2. Object-Oriented Enterprise Modeling (OOEM) 66

4.2.1. OOEM constructs 66

4.2.2. Request Propagation 67

4.2.3. How To Generate An OOEM. 67

4.2.4. Graphical Representation Of OOEM. 68

4.2.5. A Shortcoming of OOEM. 69

4.3. Basis O f Conversion 69
' - \ n

4.4. A B P M To O O E M Conversion 75

4.4.1. A B P M To O O E M Conversion Steps 75

4.4.2. A B P M To O O E M Conversion Step Derivation 75

4.5. O O E M To A B P M Conversion 81

4.5.1. O O E M To A B P M Conversion Steps 81

V

4.5.2. O O E M T O A B P M Conversion Step Derivations 82

4.6. Converting Decompositions 89

4.7. Converting Subagents/Superagents And Subclasses/Superclasses 89

4.8. Summary 89

5. DESIGN PRINCIPLES OF A N ABPM CASE TOOL 90

5.1. Introduction 90

5.2. System Goals 90

5.3. System Requirements 90

5.4. Constructs To Represent 91

5.5. User Interactions 95

5.5.1. Drawing A B P M Diagram Interactions 95

5.5.1.1. Internal and External Agents 95

5.5.1.2. Agents Sharing A Mutual Attribute 95

5.5.1.3. Superagents and Subagents 96

5.5.1.4. Composite and Component Agents 97

5.5.2. Display Option 98

5.5.3. O O E M and A B P M Conversions 99

5.5.3.1. A B P M To O O E M Converter 99

5.5.3.2. O O E M To A B P M Converter 101

5.5.4. Semantic Checker 104

5.6. Design Limitations 106

5.7. Summary 107

6. CONCLUSIONS AND FUTURE RESEARCH 108

6.1. Thesis Summary 108

6.2. Contributions 109

6.3. Limitations A n d Future Research 110

B I B L I O G R A P H Y 113

A P P E N D I X A - S T E P B Y S T E P D E R I V A T I O N O F T H E A B P M F O R T H E
A C M E W A R E H O U S E M A N A G E M E N T C A S E 116

A P P E N D I X B - A G E N T A C T I V I T Y T E M P L A T E S F O R T H E A C M E
W A R E H O U S E M A N A G E M E N T C A S E 146

A P P E N D I X C - A D I S C U S S I O N O F T H E B W W O N T O L O G Y 153

C l Static M o d e l o f Things '. 153

C.2 Dynamic M o d e l o f Things 154

C.3 Static M o d e l o f Systems 155

C . 4 Dynamic Mode l o f Systems 156

A P P E N D I X D M O D E L I N G G R A M M A R E X A M P L E S 158

D. l Colored Petri Nets 159

D.2 I D E F 3 162

D.3 E P C : ..: 165

vii

Lis t of Figures

Figure 3-1 ABPM Agent 30

Figure 3-2 ABPM Meta-Model 36

Figure 3-3 Domain Representation 38

Figure 3-4 External Agent Representation 38

Figure 3-5 Internal Agent Representation 39

Figure 3-6 Resource Representation 42

Figure 3-7 Agents Sharing A Mutual Attribute Representation 43

Figure 3-8 Different Operations changing one incoming interface attribute 43

Figure 3-9 Composite Agent Representation 44

Figure 3-10 Adding A Composite Agent 45

Figure 3-11 Decomposition Of A Composite Agent 46

Figure 3-12 Superagent and Subagent Representation 47

Figure 3-13 Creating A Superagent 48

Figure 3-14 Example Compressing Down To Agent Interactions 48

Figure 3-15 Example Compressing Down To Activity Name 48

Figure 3-16 Internal Agent Template 49

Figure 3-17 Resource Template 49

Figure 3-18 External Agent Template 50

Figure 3-19 Composite Agent Template 50

Figure 3-20 Subagent Agent Template 51

Figure 3-21 Allowed Interactions For An External Agent 51

Figure 3-22 Allowed Interactions For A Resource 51

viii

Figure 3-23 Allowed Interactions For An Internal Agent 52

Figure 3-24 Compressed A B P M Showing Agent Interactions 62

Figure 3-20 A B P M For The A C M E Warehouse Management Case 63

Figure 4-1 Proposed Relationship And Its Foundations 65

Figure 4-2 O O E M For The A C M E Warehouse Management Case 68

Figure 4-3 The Enterprise Modeling Approach 70

Figure 4-4 O O E M reinterpreted as a state change view 70

Figure 4-5 The Process Modeling Approach 71

Figure 4-6 A B P M reinterpreted as a state change view 71

Figure 4-7 The Ontological Meaning Approach 72

Figure 4-8 Demonstrating Step 1 External Object Conversion; A B P M To

O O E M . 76

Figure 4-9 Demonstrating Step 2 Internal Object Conversion; A B P M To

O O E M : 77

Figure 4-10 Demonstrating Step 3 Request and Response Identification; A B P M

To O O E M 78

Figure 4-11 Demonstrating Step 4 Interface Attribute Conversion; A B P M To

O O E M 79

Figure 4-12 Demonstrating Step 5 Internal Attribute Conversion; A B P M To

O O E M 79

Figure 4-13 Demonstrating Step 6 Service Creation; A B P M To O O E M 80

Figure 4-14 Demonstrating Step 1 External Agent Conversion; O O E M To

A B P M 82

Figure 4-15 Demonstrating Step 2 Internal Agent Conversion; OOEM To

ABPM 83

Figure 4-16 Demonstrating Step 3 Outgoing Interface Attribute Identification;

OOEM To ABPM 84

Figure 4-17 Demonstrating Step 4 Incoming Interface Attribute Identification;

OOEM To ABPM 84

Figure 4-18 Demonstrating Step 5 Activity Creation; OOEM To ABPM 85

Figure 4-19 Demonstrating Step 6; Outgoing Interface Attribute Assignment;

OOEM To ABPM . 86

Figure 4-20 Demonstrating Step 7 Internal Attribute Identification; OOEM To

ABPM 87

Figure 4-21 Demonstrating Step 8 Operation Identification; OOEM To ABPM..88

Figure 4-22 Demonstrating Step 9 Resource Identification; OOEM To ABPM...88

Figure 5-1 The OOEM Metamodel 92

Figure 5-2 OOEM metamodel with ontological meaning included 93

Figure 5-3 ABPM metamodel with ontological meaning included 94

Figure A- l Office Clerk Is Stable 122

Figure A-2 After Step 3 For Order Status::Customer And Withdrawal

Request:: Warehouse 124

Figure A-3 A Tree Showing All Of The Changes 140

Figure A-4 Solution to the ACME Warehouse Case 141

Figure A-5 Creating An Employee Superagent 143

Figure A-6 The Decomposition Of Warehouse 144

x

Figure A-7 Warehouse Is A Composite Agent 145

Figure B-l Compressed Agent Interaction Diagram 146

Figure B-2 Forklift Operator Agent Template 146

Figure B-3 Office Clerk Agent Template 147

Figure B-4 Truck Driver Agent Template 147

Figure B-5 Planner Agent Template 148

Figure B-6 Customer Agent Template 148

Figure B-7 Employee Agent Template 148

Figure B-8 Warehouse Agent Template 149

Figure B-9 Warehouse Agent Template in 'Composited' view 149-150

Figure B-10 Warehouse Worker Agent Template 151

Figure B-l 1 Warehouse Manager Agent Template 152

Figure D-l Colored Petri Net for the ACME Warehouse Case 160

Figure D-2 Process Flow Description for the ACME Warehouse Case 163

Figure D-3 Object State Transition Network for the ACME Warehouse Case... 164

Figure D-4 EPC for the ACME Warehouse Case 167-168

List of Tables

Table 1 Relative Cost To Fix A n Error 3

Table 2-1 Effects O f A Redesigned Process 8

Table 2-2 B W W Ontology Constructs 13

Table 2-3 B W W P Ontological Analysis o f Colored Petri Nets 16

Table 2-4 B W W P Ontological Analysis o f I D E F 3 18

Table 2-6 B W W P Ontological Analysis o f E P C 20

Table 2-6 Demonstrating M O O and M O C 21

Table 3-1 Mapping Ontological Constructs A n d Premises To Object-Oriented

Constructs A n d Premises 26

Table 3-2 Mapping Summary 35

Table 3-3 Relating The Rules To The A B P M A n d O B P M Algori thms 59

Table 4-1 Conversion Table 73

Table 4-2 Questions o f interest in an A B P M to O O E M Conversion 75

Table 4-3 Questions o f interest in an O O E M to A B P M Conversion 81

Table A - l Step 3 For Order Status::Customer 123

Table A - 2 Step 3 For Withdrawal Request::Warehouse Manager 123

Table A - 3 Step 3 For Item Existence::Warehouse 124

Table A - 4 Step 3 For Search Results::Warehouse Manager 125

Table A - 5 Step 3 For Transport Form::Planner 126

Table A - 6 Step 3 For Transport Schedule::Warehouse Manager 127

Table A - 7 Step 3 For Order Status::Office Clerk 128

Table A - 8 Step 3 For Transport Orders: :Truck Driver 129

x i i

Table A-9 Step 3 For Pickup Notification::Warehouse Manager 130

Table A-10 Step 3 For Ready Items::Warehouse Worker 131

Table A- l 1 Step 3 For Move ltems::Forklift Operator 131

Table A-12 Step 3 For Truck Status::Planner 132

Table A-13 Step 3 For Ready To Load::Warehouse Worker 133

Table A-14 Step 3 For Loaded::Truck Driver 134

Table A-15 Step 3 For Dropoff Notification::Warehouse Manager 135

Table A-16 Step 3 For Ready Receiving::Warehouse Worker 136

Table A-17 Step 3 For Ready To Unload::Warehouse Worker 137

Table A-18 Step 3 For Update Form::Warehouse Manager..... 138

Table A-19 Step 3 For Arrival::Warehouse 139

Table A-20 Step 3 For Items And Documentation::Customer 139

Table D-l Declarations for the ACME Warehouse Colored Petri Net 161

xiii

Acknowledgements

This thesis would not have been possible without the assistance and guidance of

Professor Yair Wand, my thesis supervisor. I am also indebted to Professor Carson Woo

for his many insightful and helpful discussions.

I also wish to extend thanks to two incredible people Young Eun Lee and Hang (Jasmin)

Zeng. Without the emotional and personal support of the two of you I would never have

made it this far.

Thank you all.

1. Introduction

Documenting the processes of an organization is not a new concept. Organizations

document what is occurring in a process in an attempt to capture what happens in the

organization. Process models can be used to show where time and money are being spent

and can identify things like inefficiencies and bottlenecks. One of the more common uses

of process documentation is for business process reengineering (BPR). Organizations that

can successfully reengineer their processes often achieve a large significant competitive

advantage over their rivals. BPR typically involves a technological integration that was

heretofore unseen. However implementing technology is a poorly performed function.

Typically information system projects run over budget, over time, or the output does not

perform what is required. Typically, the problems that occur can be traced back to

incomplete or unclear requirements concerning what occurs in a process (Standish, 1994,

CIO, 1997).

1.1 Motivation

In the field of MIS there exist many process modeling methods, including EPC, IDEFO,

IDEF3, U M L Activity Diagrams, EDPM, Petri Nets, and PERT/CPM to name a few. Of

the methods not one has emerged as the dominant paradigm for organizational process

modeling. This raises the rather simple question of "why not?"

Looking at the literature about process modeling in the MIS field, we see that there is a

growing trend to suggest using several process modeling languages to capture all the

relevant information. An example of this would be the work of Bosilj-VukSic & Hlupic

1

(2001), in which they suggest using both Petri Nets and IDEF3 for business process

modeling. The combination of multiple methods suggests that the methods themselves

are deficient and cannot fully represent a business process fully on their own. This

apparently answers our question above about why there is not a dominant process

modeling methodology, however this raises a new question of "Is there a way to

represent a process completely in one modeling methodology?"

Before we answer this question we also need to consider why it is important to create

better business process models. An information system is an artifact that represents

another 'real world' system. If we can create a better model of the real world system then

we should be able to create better artifacts that represent that system.

Developing an information system has been defined as a three step transformation of

Analysis, Design, and Implementation1 (Wand and Weber, 1990, p. 125). The analysis

stage is where what an information system artifact will do is formalized based upon some

process model, i.e. a representation of what will happen is created. The design stage is

where the requirements (i.e. the representation) are translated into a model of the

information system. The Implementation stage is where the information system is

implemented based on the output of the design stage. Everything is built up from the

analysis stage, therefore if there are errors made in the analysis stage they will propagate

through to the information system itself (Grause and Weinberg, 1989, Wand and Weber,

1995). Thus, better representations lead to better systems.

1 We acknowledge'there could be others, such as development or testing, but for the purposes of this
section the three phases are sufficient.

2

In terms of cost to fix an error the earlier an error is found in system development the

cheaper it will be. If we consider the cost ratio the difference is staggering. This

difference is also sensible since it is less expensive to, for example, draw a new diagram

than it is to build a new system.

Phase in Which Found Cost Ratio
Requirements 1
Design 3-6
Coding 10
Development Testing 15-40
Acceptance Testing 30-70
Operation 40-1000

Table 1. Relative Cost to Fix an Error (Grause and Weinberg, 1989)

In our work on conceptual modeling we will be focusing above the requirements stage of

system development. In theory this should have an even lower cost ratio if errors are

made and found here than 1. Hence if we can improve process models and catch more

errors there will also be an impact on the bottom line of an organization.

There is a means of fully representing things that has been successfully used in the MIS

field. Ontology, a philosophy concerning what exists, has been applied to the area of

enterprise modeling and serves as the basis of object-oriented enterprise modeling

(OOEM), however it had not been applied to process modeling until recently (see, for

example, Wand, Woo, & Jung, 2000, Wand & Woo, 2002 Zhao, 1995).

In an attempt to assist in developing a robust organizational process modeling

methodology to solve the problems mentioned above Wang (2002), proposed Ontology-

based process modeling (OBPM). Currently OBPM exists only as an algorithm.

3

1.2 Thesis Objectives

As mentioned, O B P M exists only as an algorithm. This makes both using O B P M difficult

and the output difficult to interpret. To address this deficiency we will present a graphical

modeling grammar. This notation will be from the perspective of object orientation. Thus

the concepts of encapsulation, composition, classification, and communication will be

considered.

A graphical notation unto itself is not necessarily useful i f it is not clear how to use the

notation. Thus following the notation there must be a process for generating an Object-

Oriented O B P M . The algorithm presented in Wang (2002) is textual and was not

designed with graphics or object-oriented constructs in mind. Hence we wil l develop a

process for generating an Object-Oriented O B P M .

Another point of interest would be that since O O E M and O B P M are both based on the

Bunge-Wand-Weber (BWW) Ontology and are used to model different organizational

perspectives then they should be related. We will develop a means to convert from the

activity-abased Object-Oriented O B P M view to the interacting agent-based O O E M view

using the B W W P ontology as the basis of conversion.

Further, a C A S E tool for O O E M has been developed. It stands to reason, since there is a

relationship between O O E M and O B P M , and there exists a C A S E tool for O O E M , that it

is possible to develop a C A S E tool for O B P M . This also leads to the conclusion that i f

they can both be represented in a C A S E tool, then conversion between O O E M and

O B P M can also be captured in a C A S E tool. Therefore a set of design principles for an

Objected-Oriented Ontology-Based Process Modeling C A S E tool will be developed.

The objectives of this thesis can be summarized as follows:

1. Formalize O B P M into an object-oriented graphical modeling grammar.

2. Present a process for generating object-oriented O B P M diagrams

3. Explore and discover the relationship between O O E M models and Object-

oriented O B P M models and present a means of conversion between them using

the B WWP ontology as a basis of conversion.

4. To present a set of design principles for an Object-Oriented O B P M C A S E tool

and link it to the architecture of an O O E M C A S E tool.

1.3 Thesis Outline

This thesis consists of five chapters.

Chapter two provides an introduction to process modeling and the related terminology. It

also presents the different aspects of process modeling. Examples of process modeling

techniques are presented to illustrate the different process modeling aspects, and to

illustrate flaws present in ubiquitous methodologies.

Chapter three concerns Ontology-based Process Modeling (OBPM). It formalizes O B P M

into an object-oriented modeling grammar called object-oriented activity based process

modeling(ABPM). It then introduces graphical modeling grammar for representing

5

object-oriented activity-based process models. It also presents a process for how to

create an ABPM. The chapter includes an example to illustrate these points.

i

Chapter four introduces Object-oriented Enterprise modeling (OOEM). Since the

foundations of OOEM and ABPM are similar, this chapter links the two methodologies.

It also provides steps relating to how to switch between an ABPM and an OOEM and

vice versa. It will include a running example to demonstrate the results.

Chapter five is a look at the design principles for the implementation of ABPM as a

CASE tool. It discusses what to add to an existing OOEM CASE tool to both represent

ABPMs and for conversion between OOEMs and ABPM. It ends with a discussion of the

limitations of the proposed design.

Chapter six concludes the thesis with a summary and discussion of its contributions. It

also suggests further research that can be done.

6

2. P r o c e s s M o d e l i n g I n t r o d u c t i o n

2.1 Introduction

Information systems offer the potential to supplement the ability to increase revenues

while lowering costs in the value creation process of a business by greatly improving

both the efficiency and the effectiveness of a process. This is where business process

modeling comes in to play in the information systems field. From the business process

engineering perspective a process model can serve as: a focus for discussion, a way of

communicating a process to others, a starting point for analysis, a starting point for

design, a baseline for monitoring process improvement, and control for a real world

process (Huckvale and Ould, 1994).

Before we present the object-oriented ontology-based process modeling grammar, we

will provide a discussion of the basic concepts behind business process modeling. We

will also discuss the basic terminology used in business process modeling. We will then

look at what has been proposed for the ideal process model. We then delve into the

ontological perspective, what it is, and why it is a better perspective than other views. We

will then look at several business process modeling languages. These languages include

Petri Nets, Integrated Definition 3 (IDEF3), and Event-controlled Process Chains (EPC).

The languages are some of the most ubiquitous process modeling techniques. These

languages will be analyzed in terms of their (process-oriented) ontological completeness

and (process-oriented) ontological clarity. Our goal is to demonstrate how the languages

are deficient and why object-oriented ontology based process modeling will be beneficial.

7

2.2 Definition of Business Process modeling

All businesses strive to achieve their goals via some sort of process. A business process

can be defined as the sequence of activities that lead to value creation for the consumer of

a business' goods and services. If a good or service is perceived to have a higher value

then consumers should be willing to pay more for the good or service. That said it stands

to reason that businesses will want to analyze their processes, with the goal of improving

them, so that their profits will be increased.

It has been argued (e.g. Hui, 1997, Romney, 1994, VBM, 2004) that redesigning a

business process can have many impacts on and benefits for an organization. A brief non-

exhaustive list of the impacts and benefits is presented below in table 2-1.

Impact of redesigned process Benefits of the impacts
1. Task elimination '
2. Bottleneck and delay elimination
3. Parallel work enabled
4. Eliminate rework and redundancy
5. Decreased defects
6. Eliminate staff
7. Less time spent on non value-added

activities

1. Improved productivity
2. Reduced cycle times
3. Reduced costs ;

4. Improved customer service
5. Improved quality and consistency
6. Increased revenues/charging higher

prices
7. Increased competitiveness
8. Improved forecasting
9. Better capacity utilization
10. Quicker delivery of new products

and services
11. Greater workload capacity

Table 2-1 Effects of a redesigned process (partially adapted from, Hui, 1997, p.8)

Before we define business process modeling we need to look at and consider modeling

itself. A model is an abstraction from the real world of something in the real world. In

this abstraction we leave out the facets of whatever we are modeling that are not relevant,

and emphasize those that are pertinent.

If we combine this definition of modeling with our above definition of a business process,

we can define business process modeling as: the creation of an abstract representation of

the real or proposed sequence of value creation activities performed within an

organization in order to achieve its business goals. Adapting from Wang (Wang, 2002),

the business process model will therefore include: participants in the business process, the

events that start activities in the business process, the activities triggered by the events in

the business process, the sequence of the activities of the business process that will be

performed, the sequence that events in a business process occurred, the resources that are

utilized in an activity of a business process, and the inputs and outputs of each activity of

the business process.

2.3 The Terminology

In an analysis of process modeling methodologies, Wang (Wang, 2002) found that

traditionally, the following constructs have been used in business process modeling:

process, agent, non-agent or resource, activity, operation, event, state, data, logical

connector, business rule, input, and output.

However, Wang (Wang, 2002), points out that many languages either do not include all

of these constructs (construct incompleteness), use many elements of the modeling

language to represent the same construct (construct redundancy), or use the same

9

construct to represent many elements (construct overload). This causes process models

using these languages to be incomplete and/or ambiguous.

2.4 The Ideal Process Model

Various process modeling methodologies focus on different aspects of what is being

modeled (Wang, 2002). The majority of process modeling languages fall into four

categories (Huckvale and Ould, 1994, citing Curtis et al., 1992):

1. Functional. A functional process modeling language is concerned with

representing what activities are being performed and the dataflows that connect

them. Examples in this category include EPC (Event-controlled Process Chains),

IDEF3 (Integrated DEFinition 3), and EDPM (Event-Driven Process Modeling).

2. Behavioural. A behavioural process modeling language is concerned with

representing when activities occur. They use sequencing, feedback loops,

iteration, decision making, triggers, and the like. Examples in this category

include PERT/CPM (Project Evaluation Review Technique/Critical Path

Method), Petri Nets, and EPC.

3. Organizational. An organizational process modeling language is concerned with

representing where and by whom activities are performed. They also include the

physical communication mediums and storage media. Examples in this category

include EPC, and EDPM.

4. Informational. An informational process modeling language is concerned with

representing the data entities that are generated or manipulated by a process/ such

as documents, data, artifacts, and products. This includes their structure and

10

interrelationships. Examples of this include DFD (dataflow diagrams), IDEF3 and

E D P M .

Due to the fact that these four categories cover different areas, using a methodology from

each category should cover all the information necessary to fully represent a process.

However (as noted by Wand & Weber, 2002) this leads to potential issues of redundancy

and sufficient coverage. Redundancy refers to the same construct being represented more

than once. Sufficient coverage refers to all the relevant items of interest being captured.

This leads to the premise i f a modeling language included all of the constructs from

section 2.3 it would thus cover the functional, behavioural, organizational, and

informational perspectives2. This is one of the bases for Ontology-based Process

Modeling (OBPM). O B P M will be discussed in chapter 3.

2.5 Ontology

Ontology is a branch of philosophy about what exists in the real world. It is of prime

concern when it comes to information systems modeling since the model should

accurately reflect what does or will exist in the real world 3. If the model does not

accurately reflect this, then anything created based on the model (in this case an

information system) will itself be deficient.

2 Data itself would be left out of the ideal model since as Huckvale and Ould (1994) note data is typically
used to record the state of a process due to people having poor memories or as a means of implementing a
transaction. The transaction,itself is important not how it is implemented at this level.

11

According to Wand and Weber (Wand and Weber 1993, 1995) for a grammar to be

ontologically expressive, it needs to be both ontologically complete and ontologically

clear. Ontological completeness refers to there being at least one construct in the

grammar for every ontological construct. If this does not occur then construct

incompleteness (or construct deficit) occurs.

Ontological clarity refers to how clearly an ontological construct is represented in a

grammar. Ontological clarity can be undermined via construct overload, construct

redundancy, and construct excess. Construct overload occurs when an element of the

grammar represents more than one ontological construct. Construct redundancy occurs

when more than one element of a grammar represents a single ontological construct.

Construct excess occurs when there is a construct in the grammar that does not represent

any ontological construct.

Typically when a modeling grammar is ontologically deficient predictions can be made

as to where the language will suffer in capturing information about the domain of interest.

Approaches to solve the deficiencies usually involve using more than one grammar to

model what is going on. However there is no formal basis for selection of which

grammars to use other than rules of thumb or things seeming to fit and workout.

3 In this case what will exist is not definite, but rather refers to a proposed information system that may or
not be built.

12

Object-Oriented Enterprise Modeling and Ontology-Based Process Modeling are both

based on what has come to be known as the Bunge-Wand-Weber (BWW) Ontology. The

main principles of the BWW ontology can be summarized as follows (Wand and Woo,

1999):

• The world is comprised of things

• Things possess properties
• Things interact
• Every thing changes and every change changes things
• Things with similar properties can be grouped into classes

The constructs of BWW Ontology can be organized into four categories as shown in table

2-2 below (Zhao, 1995, Wang 2002). A complete discussion of the B W W constructs can

be found in appendix C.

Category BWW Ontology Construct
Static model of a substantial individual 1. Thing, composite thing

2. Property, intrinsic or mutual property, hereditary or emergent
property4

3. State, conceivable state space, state law
4. Class, kind, natural kind

Dynamic model of a substantial individual 1. Event, conceivable event space
2. Transformation, transformation law
3. History

Static model of a system 1. Coupling
2. System
3. System Composition
4. system environment
5. system structure
6. system decomposition
7. subsystem
8. level structure

Dynamic model of a system 1. Stable and unstable state
2. Internal event and external event
3. Well defined event and poorly defined event

Table 2-2 BWW Ontology Constructs

4 Here the use of'or' does not mean intrinsic is interchangeable with mutual and hereditary is
interchangeable with mutual. 'Or' in this sense is a restriction that the property can be one of them but not
both.

13

2.5.1 BWWP Ontology

Some of the BWW ontology concepts are closely related to the concepts of process. The

process related BWW ontology concepts have been adapted to create the BWWP (BWW

Process) ontology. The BWWP constructs include the BWW ontological constructs of:

thing (simple thing and composite thing), property (intrinsic property and mutual

property, hereditary property and emergent property), state (stable state and unstable

state), event (internal event and external event), transformation, and law (state law and

transformation law). The new constructs added in BWWP are: actor, non-actor, actuator,

propagator, and process (Wang 2002).

The new constructs of BWWP are explained as follows. A thing can be either an actor or

a non-actor. A non-actor does not change the state of any thing including the non-actor

itself. Only an actor can change the state of a non-actor. An actor is an actuator if it

changes the state of at least one other thing (actor or non-actor). An actuator is a

propagator if it changes the state of at least one other actor. A process is a set of actors

and non-actors that interact with one another. A process is activated one or more actors is

changed from a stable state to an unstable said. A process can be triggered by one or

more events. When all actors and non-actors are in stable states a process is completed

(Wang, 2002).

2.6 Current Business Process Modeling Techniques

The purpose of this section is to demonstrate the differences between modeling

methodologies and highlight their ontological deficiencies. The methodologies we have

14

chosen include Colored Petri Nets, Integrated Definition (IDEF3), and Event-controlled

Process and Chains (EPC). Petri Nets and IDEF3 were chosen due to the aforementioned

suggestion of using them together. EPC was chosen due to the fact it was developed and

is used by one of the largest providers of ERP providers SAP. It is beyond the scope of

this paper to perform an ontological analysis on all business process modeling techniques

In order to perform this comparison we require a common reference point. The modeling

languages will be analyzed using the BWWP ontology. For those unfamiliar with the

grammars, an example using each grammar is provided in Appendix D.

2.6.1 Colored Petri Nets

Table 2-3 maps the Colored Petri Net constructs to BWWP Ontological Constructs.

It is readily apparent that Colored Petri Nets suffers from many ontological deficiencies.

First of all, construct deficit is present with respect to properties. A'token is possessed by

a place, making it a property of a place. However there is no concept of an intrinsic token

possessed naturally by a place, any token can leave or enter a place based on the firing

rules established. There is also no concept of an intrinsic arc or intrinsic firing rule. Other

places and transitions need to be establishedto have arcs and firing rules. Since there are

no intrinsic properties, there can be no hereditary or emergent properties.

The second ontological deficiency Petri Nets suffers from is construct redundancy.

Consider the BWWP construct of a property. Where there is a mapping, there is overload

between arcs and tokens. Is a property a token, or one of the variations on a directed arc?

15

BWWP Construct Colored Petri Nets Construct
Thing Place
Simple Thing. . _ Place - . .
Composite Thing Place
Actor Place
Non-actor Place
Actuator Place
Propagator Place
Property Token, Directed Arc, Inhibitor Arc, Clearing Arc,

Priority Transition
Intrinsic property N/A '
Mutual property Token, Directed Arc, Inhibitor Arc, Clearing Arc,

Priority Transition
Hereditary property N/A
Emergent property N/A
State Distribution of Tokens
Stable state No transitions are enabled
Unstable state One or more transitions are enabled
Event Transition
Internal event Transition
External event Transition
Transformation f' Transition
Law Directed Arc, Inhibitor Arc, Clearing Arc, Priority

Transition
State law i.'''' Directed Arc, Inhibitor Arc, Clearing Arc, Priority

Transition
Transformation law Directed Arc, Inhibitor Arc, Clearing Arc, Priority

Transition
Process Colored Petri Net

Table 2-3 BWWP Ontological Analysis of Colored Petri Nets

Finally Petri Nets also suffers from construct overload. Arcs can represent both properties

and laws. The construct of a transition is also overloaded. Is a transition a transformation

or an event? ,)

Since it suffers from construct deficit, construct redundancy, and construct overload Petri

Nets are.both ontologically incomplete and ontologically unclear.

16

2.6.2 Integrated Definition 3

IDEF3 has two main components for modeling: process flow description and object state

transition networks. Table 2-4 maps the IDEF3 constructs to BWWP ontological

constructs.

We start the analysis of IDEF3 with the process flow description diagram. Process flow

description diagrams suffer from construct deficit, construct overload, construct

redundancy, and construct excess. Construct deficit is readily apparent from the complete

lack of a construct to represent a thing. Also, properties, states, and events are only

partially represented. The UOB, links, junctions, and referents are all overloaded. That is,

they are used to represent more than one ontological construct. Construct redundancy

occurs with property, law, and process. Lastly, the excess constructs occurs with

decomposed UOB, UOB numbering, link numbering, junction numbering, partial

descriptions, elaborations, and notes. Thus process flow description diagrams are neither

ontologically complete nor ontologically clear.

Object state transition networks suffer from construct deficit, construct overload,

construct redundancy, and construct excess. Construct deficit exist since there is no

representation of a property and only partial representations of thing and event. Construct

overload is present since a referent can be used to represent both a transformation and an

event. Construct redundancy occurs with state, event, law, and process. Construct excess

exists since UOB numbering, link numbering, junction numbering, partial descriptions,

elaborations, and notes have no ontological meaning.

17

BWWP
Construct

Process Flow
Description

Object State
Transition Networks

Enhanced Transition
Schematics

Thing Object Object, first order objects,
second order objects

Simple Thing Object kind symbols Object kind symbols
Composite
Thing

Hiding Object State
information

Hiding Object State
information

Actor Individual symbol
Non-actor Individual symbol
Actuator
Propagator
Property Links,Junctions,referents Links,Junctions,referents Links,Junctions,referents
Intrinsic
property
Mutual property Links Relation
Hereditary
property —

Emergent
property
State Activation plots Object state symbols,

interval diagram
Object state symbols,
interval diagram

Stable state State conditions, Exit
Conditions

State conditions, Exit
Conditions

Unstable state State Conditions, Exit
Conditions, •.

State Conditions, Exit
Conditions ••

Event UOB . UOB, scenario, Referent • UOB, scenario Referent
Internal event
External event
Transformation UOB Link, referent Link, referent
Law Links, junctions, referents Link, junction, referents Link, junction, referents
State law Simple precedence links,

constrained precedence
links, dashed links,
junctions

Weak transition link,
strong transition link, call
and continue referent

Weak transition link,
strong transition link, call
and continue referent

Transformation
law

Simple precedence links,
constrained precedence
links, dashed links,
junctions

Entry Conditions,
Transition Condition,
referent, junctions call and
wait referent, referents
attached to the same point,
temporal indeterminancy
marker

Entry Conditions,
Transition Condition,
referent, junctions call and
wait referent, referents
attached to the same point,
temporal indeterminancy
marker

process ' Scenario, activation plots Scenario, Object
schematics, complex
transition schematic

Scenario, Object
schematics, complex
transition schematic

Decomposed UOB, UOB
numbering, link
numbering, junction
numbering, partial
descriptions, elaborations,
notes

UOB numbering, link
numbering, junction
numbering, partial
descriptions, elaborations,
notes

UOB numbering, link
numbering, junction
numbering, partial.
descriptions, elaborations,
notes

Table 2-4 BWWP Ontological Analysis of IDEF3

18

Enhanced transition schematics suffer from the same problems as object state transition

networks, except the construct deficit is lower. Enhanced transition schematics partially

represent properties, and better represent a thing than object state transition networks.

Since the IDEF3 diagrams are meant to be used together, we need to consider whether

they achieve minimum ontological overlap (MOO) and maximum ontological coverage

(MOC). MOO is when an ontological construct is represented in only one diagram with

the goal of reducing representations of a domain that are in conflict. MOC is when in the

combination of diagrams covers all phenomena with the goal of having a complete

representation of the domain (Wand and Weber, 2002, citing Green 1996). MOO is not

achieved in IDEF3. An example of the lack of MOO is process flow descriptions use

activation plots to represent states whereas the object transition diagrams use object state

symbols and interval diagrams. MOC is not achieved is IDEF3. An example of the lack

of MOC is that none of the diagrams have a construct to represent an intrinsic property.

2.6.3 Event-controlled Process Chains

Table 2-5 Maps the EPC constructs into ontological constructs

To begin, EPC suffers from construct deficit. The concepts of Property, Thing, and Event

are only partially represented. Since things are what perform actions, are affected, etc.

and things are not fully represented we cannot fully represent what performs actions, are

affected, etc. When we look at event it is not immediately clear about those that are

internal or external to the domain of interest. It can be argued that the event that starts the

process chain is external, but how is it known which events generated in the domain

affectsomething outside the domain.

B W W P C o n s t r u c t E P C C o n s t r u c t
Thing Organizational Unit
Simple Thing
Composite Thing
Actor Organizational Unit
Non-actor
Actuator
propagator
Property
Intrinsic property Information/Material flow
Mutual property
Hereditary property
Emergent property
State
Stable state No Events occur
Unstable state Event
Event Event
Internal event:

External event
Transformation Task
Law Control Flow + Connectors
State law Control Flow + Connectors
Transformation law Control Flow + Connectors
Process Process

Information Object, Organization assignment
Table 2-5 BWWP Ontological Analysis of EPC

To end EPC also suffers from construct excess since the information object construct and

organization assignment constructs have no BWWP ontological meaning.

Since it suffers from construct deficit, and construct excess EPC is both ontologically

incomplete and ontologically unclear.

2.7 Summary

If we just do a simple count of the number of constructs each grammar has (see table 2-6)

our three grammars never achieve MOC even when all three are used together.

20

I D E F 3

BWWP
Construct

Colored
Petri
Nets

Process
.Flow

Description

Object
State

Transition
Networks

Enhanced
Transition
Schematics

Event-
Driven
Process
Chains

Total

Thing 2 0 1 3 1 7
Simple Thing 2 0 1 1 0 4
Composite
Thing

2 0 1 1 0 4

Actor 2 0 0 1 1 4
Non-actor 2 0 0 1 0 3
Actuator 2 0 0 0 0 2
propagator 2 0 0 0 0 2
Property 5 3 3 3 0 11
Intrinsic
property

0 0 0 0 1 1

Mutual
property

5 1 0 1 0 7

Hereditary
property

0 0 0 1 0 1

Emergent
property

0 0 0 0 0 0

State 1 0 2 2 0 5
Stable state 1 0 2 2 1 6
Unstable state 1 0 2 2 1 6
Event 1 3 3 1 9
Internal event 1 •" •'' • • 0 0 o ' '• 0 ' 1
External event 1 • 0- ' ' 0 • o 0 1
Transformation 1 1 2 - 2 1 • : . . 7
Law 1 3 3 3 2 12
State law 5 4 3 3 2 18
Transformation
law

5 4 7 7 2 25

Process 5 2 3 3 1 14
No mapping 0 7 6 6 1 20

Table 2-6 Demonstrating MOO and MOC

Also the multiple grammars really begin to make problems with M O O grow. To solve

this problem we suggest using one grammar designed using the B W W P ontology namely

ontology based;process modeling (OBPM). O B P M is discussed in the next chapter.

21

3. Object-Oriented Activity-Based Process Modeling (ABPM)

3.1 " Introduction _ . . . _ .

The purpose of this chapter is threefold. The first goal is to introduce Ontology-Based

Process Modeling (OBPM). The second goal is to present a modeling grammar that can

be used to generate object-oriented activity-based process modeling diagrams. The third

goal is to introduce a modeling process to guide in the construction of ABPM diagrams in

a systematic way. This chapter closes with an example of an ABPM diagram based on the

ACME Warehouse Management case.

In order to accomplish the goals of this chapter the following concepts will be introduced:

agent, activity, operation, attribute, resource, and law. The relationships between the

concepts will also be developed.

3.2 Ontology-Based Process Modeling (OBPM)

After having identified so many deficiencies with other ubiquitous process modeling

methodologies the question of is there a better method to capture business processes

remains? The answer is yes and no. Ontology-based process modeling (OBPM) has been

proposed. OBPM attempts to capture what things are involved in a process, what they do,

and what is done to them. It does have the advantages of being real world rather than

information systems oriented which allows for representations of a process independent

of how it will be implemented, ontologically complete and clear, and formally defined

rules to follow for constructing a business model to eliminate ambiguity and confusion,

however this methodology is neither graphical nor is the output easy to understand. The

22

results of an OBPM look like computer code. As noted, there are cognitive advantages to

visually representing information. "The human ability to extract information from visual

scenes is much more fundamental than is our ability to manipulate data verbally or

arithmetically" (Zhang 1998, citing Schwartz and Howell, 1985) "Model diagrams enable

the analyst to extract process, understand, and respond to much relevant information. The

transfer of information is fast, accurate, and the user learning curve is minimized; the

analyst can thus build a conceptual model of the problem with fewer perceptual errors"

(Zhang 1998, citing Brown 1988) "The diagrams can also serve as the interface between

a domain analyst with his/her customers. The visual model is indeed worth thousands of

words in terms of communicating with customers." (Zhang, 1998, p.22)

Another problem with the current incarnation of the OBPM algorithm is that it is based

upon a set of modeling integrity rules. The premise behind basing the algorithm on a set

of integrity rules is that if the algorithm is followed correctly then any models generated

using the algorithm will be correct. The flaw with this approach is that not all of the

modeling integrity rules are used in the OBPM algorithm.

The rest of this chapter is organized as follows: to begin there will be a discussion of the

OBPM algorithm, this will be followed by a discussion concerning object-orientation and

its application to OBPM, a notation for creating object-oriented activity-based process

models will be introduced, and then a process for creation and validation of object-

oriented activity-based process models will be presented.

23

3.2.1 O B P M Algorithm

The OBPM algorithm is presented here. It has three parts; the main routine, the affected

thing subroutine, and the decompose subroutine. The algorithm serves to identify: Events

(what triggers instability in things in a process), Activities (what happens in response to

events), Operations (the transformations that occur), and Resources (what is used during

transformations)

The main routine begins the modeling process. The events that trigger the process from

the environment are identified. For each triggering event the things in the environment

that are affected should be identified. Then the subroutine affected thing should be

invoked for each thing that was affected.

The affected thing subroutine begins with if a thing is changed from a stable to a stable

state it is considered to be a resource and this subroutine exits. If the thing changes from

stable to unstable it is considered to be an agent. Agents invoke the decompose

subroutine. When the decompose subroutine exits and returns to the affected thing

subroutine, the affected thing subroutine will exit and return to the main routine.

The decompose subroutine identifies the sequence of events that occur from when a thing

is affected (becomes unstable) until the agent is finished changing (becomes stable). The

entire sequence of events is known as an activity. Each event in the activity is an

operation. If in the course of the activity other agents are affected then these agents will

themselves invoke the affected thing subroutine.

24

The output of the algorithm is a series of lists. The first list is the agent list, those agents

that participate in the process. For each agent there is also a list of the activities the agent

performs and their sequence (called the Activity List) and a list of the operations for each

activity and their sequence (called the Operations List). The algorithm also produces a

resource list of the resources that are used in the process. The last list the algorithm

produces is an event list which is a list of the events that happen in the process, and their

sequence.

3.3 Object-Oriented Activity-Based Process Modeling Grammar

The concept of object orientation has been applied to MIS and is the basis of object-

oriented systems. There also exist graphical modeling languages that are object-oriented

such as OOEM. Object-oriented modeling languages can also be used to create a model

of what is occurring independent of any implementation. It has been noted that object-

orientation allows a process model to be comprehensive, understandable, changeable,

adaptable, and reusable (Hui, 1997).As shown in table 3-1, Wand and Woo (2002)

previously mapped ontological constructs and premises into object constructs and

premises.

25

Ontologically-Based Concept or Premise Object Construct
Principles

The world is made of things possessing properties* Objects and their properties are the fundamental
modeling constructs*

All things change and all changes are tied to things* Encapsulation: state and behaviour are combined*
Things can combine to form composites* Objects can form composite objects*
Things can affect each other's state evolution* Objects interact*
Things can be categorized into classes defined by
properties*

A class is a set of objects sharing a group of the
same properties*

Concepts
Thing* Object*
Actor Object with services
Non-actor Object with no services
Actuator Object with at least one joint state variable that it

owns, and one service to modify it.
Propagator An actuator object with at least one joint state

variable that it owns shared with an Actor Object
Properties* Not Modeled directly. See attributes*
Attribute functions* Attribute*
Attribute representing inherent property* Internal state variable*
Attribute representing mutual property* Joint state variable*
State* State (attribute values)*
Internal transformations* Services*
Composite thing* Composite objects*
Interaction Communication (via requests)*
x acts-on y* ' • x and y have a shared state variable modifiable by x

only* ..• , •
Functional schema* Definition of a class*
Event* State change* • • ' '
External event* Request*
Internal event* Action (execution of a service)*
Law • • • Service restriction
Process System

Table 3-1 Mapping Ontological Constructs And Premises
To Object-Oriented Constructs And Premises

*denotes original mapping (Wand and Woo 2002)

As defined (Wart, Wand, & Woo, 1993) there are three general concepts of object

orientation: classes and objects, association, and object communication.

3.3.1 Classes and Objects

A class is a collection of things that share common features. An object is an instance of a

class. An object encapsulates its attributes and behaviours, that is, they are included with

the definition of the object. For example, my pet trout is an instance of the class trout. We

26

know that my pet trout has fins (property) and will swim (behaviour) from the definition

of a trout

When an object is defined only the properties and behaviours relevant for our purposes is

defined. Returning to our example, if we are hungry fishermen our definition of a trout

(probably) does not include any mention of the light refraction index of the skin of a

trout, but rather the fact it is an edible fish. Thus a definition of an object or class is not

always perfect. This is the object-oriented concept of abstraction.

As mentioned above, objects have properties. These are referred to as attributes.

Attributes only possessed by an object are internal attributes, attributes shared with

another object are mutual attributes. When the values of attributes are measured the result

is the state of the object. For example if our trout has fins, and the measure of the fins is

broken, we can say the state of the trout is injured.

Services are the behaviour of objects. Services are what change attribute values. They

have a well defined interface that is used to change attributes. When our trout friend

swims the value of the attribute stomach contents will decrease and our trout will become

hungry.

Encapsulation refers to storing the attributes and services (i.e. the state and behaviour), of

an object together so that other objects do not need to worry about unnecessary

information. This means that only the objects behaviour can access or change its state.

27

The only way one object can find information about another is to send a request to the

object. If our trout wants to know if another (bigger) trout is hungry it can swim by its

line of sight (sending a message, "Hey, I'm a smaller trout"). If the other trout tries to eat

our trout in response, then our trout knows the bigger trout is hungry.

Instantiation is a particular occurrence of an object that can be distinguished from other

occurrences of an object. My pet trout is an instance that is different from all the other

trout objects that may exist, since its attribute denoting ownership has a value of "me"

Services and attributes are always inherited from the class to which an object is a member

of. Hence all instances of trout will have the attributes and services of fish. However,

different instances can have different values for their attributes. For example my pet trout

may have speckled as its skin color, whereas your trout may have rainbow as its skin

color.

3.3.2 Association

Objects can associate, that is, two or more objects can have a relationship. The most

important relationships between objects are aggregation and classification.

An aggregation is a collection of component objects. The aggregation can be

disaggregated into its component objects. Aggregations typically possess characteristics

that are not present in the individual components themselves. A computer is an

âggregation of a "CPU, monitor, keyboard, etc. Combined they possess a new

characteristic, processing power, that is not present in the components. A computer can

then be disaggregated (disassembled) into its components.

Classification refers to being able to create generalizations and specializations to

represent knowledge about classes. A generalization refers to identifying common

properties of things to assist in the creation of abstractions. For example, if we notice my

computer has a 17 inch monitor and your computer has a 15 inch monitor we may decide

a computer class can be created with the attribute monitor size. A specialization is a more

specific class (subclass) that inherits everything from its parent (superclass). Typically a

subclass has attributes and services that the superclass does not. A laptop can be a

subclass of the class computer. It has all the properties of a desktop, for example

processing speed, and properties that a desktop does not have such as battery type.

3.3.3 Object Communication

Objects interact to request other objects perform services that the requesting object

cannot perform. The services can be used to enforce constraints on the relationship. A

student can request a professor to open a classroom. A professor will not open the

classroom if it does not know that the student is a member of the professor's institution.

This enforces the constraint that professors only open classrooms to registered students.

29

Objects can interact with those both inside and outside the system. External objects make

requests to internal objects. Internal objects can make requests to both internal and

external objects.

3.3.4 The Combination of OBPM and Object-Orientation

Object-orientation, obviously, centers around the object. OBPM centers around the agent.

According to the BWWP ontology an agent is a thing that possesses properties and

undergoes change via operations. An object possesses attributes and performs services. A

service is how an object changes. The combined construct of an OBPM agent and an

object will henceforth be referred to as an object-oriented activity-based process

modeling agent (or just agent for short). The aforementioned links are still ambiguous

and unclear. Figure 3-1 is an illustration of what we now call an agent.

to

I Change in other Agents ;
: (Change Propagation)

Figure 3-1 A B P M Agent

Here is a brief definition of Figure 3-1. An agent "communicates" with another agent via

changes. This "communication" can take on two forms. First an agent can have an

interface attribute changed by another, agent. Second an operation of an agent may change

an interface attribute, of another agent. A change to an interface attribute may trigger an

operation. An operation's triggering or output may be governed by laws. An operation

The Agent

Internal
Attributes

Laws

Change]
Operation

Triggers
Incoming
Interface
Attribute

Change du
another Ag

Outgoing
Interface
Attribute

30

changes either an internal attribute or an outgoing interface attribute. Each of the

constructs in figure 3-1 is discussed below.

3.3.4.1 Attributes

Recall that in BWWP attributes are used to represent the properties of a thing, which in

turn represent the state of the thing. In A B P M attributes can be used to represent the state

of the Agent. In figure 3-1 there are two main kinds of attributes; interface attributes and

internal attributes. Internal attributes are not known to other agents and can only be

accessed or changed via the services of the agent. This demonstrates object-oriented

principles of both encapsulation and object independence. Interface attributes can be

accessed (changed) by other objects.

Interface attributes model mutual properties of things. Agents interact with each other via

changing the value of mutual properties. Therefore all interface attributes have two

agents associated with them; an agent doing the changing (an outgoing interface

attribute), and the agent being changed (an incoming interface attribute).

Internal attributes are solely possessed by an Agent and are unknown to other agents. An

internal attribute is what is changed by an internal event in an agent.

3.3.4.2 Operations and Change Propagation

Changes result from interactions between agents. There are two types of changes

possible; a change in an agent caused by another agent and a change in an agent caused

by itself. For our purposes a change can be defined as altering the value o f an attribute.

A n agent causes change in another agent by changing the value of an outgoing interface

attribute it owns which is associated with the incoming interface attribute o f another

agent. A n agent causes change in itself by altering the value o f an internal attribute.

Accord ing to the object oriented literature a service is how an object does anything.

Hence for an object to affect itself or another object it needs a service. That said, in

O B P M agents affect themselves or each other via changes. Changes are carried out as

operations. Hence a change is implemented through an operation in A B P M .

When an agent has an interface attribute changed resulting in instability the agent

performs one or more activities to become stable. A s part of an activity the agent may

change one or more agents causing them to become unstable. These agents may then

change others, and so on. This is known as change propagation.

3.3.4.3 Activities

A n activity is what happens in an agent from the time when it becomes unstable to the

time when it is stable. A l l agents are initially stable. Instability is caused by an incoming

interface attribute being changed. When an activity occurs operations occur until the

agent is stable. The operations w i l l change some combination of internal and outgoing

interface attributes. Thus an activity is made o f operations that use or modify attributes.

32

3 . 3 . 4 . 4 Laws

According to BWWP laws are properties of a thing. They restrict how a thing can

change. In the case of A B P M the restriction is on what operations can occur in an agent.

Recall from chapter 2 in the discussion on the B W W ontology, "The set of values for the

attributes of a thing comprise the state of the thing. A conceivable state space for a thing

is the set of all possible states a thing may ever assume. State laws serve to restrict the

values of the properties of a thing to a subset of the conceivable state space. State laws

must enforce a restriction due to either natural or human laws. A law is a property. For

example, most bank accounts have the restriction (state law) that the balance must be

greater than or equal to zero. This is due to the human law that people are only allowed to

spend up to the total amount of money that is in their bank account. The lawful state

space of a thing is the set of states that exist for a thing that comply with its state laws. A

lawful state space is usually a subset of the conceivable state space.

A transformation is a state (attribute) change from one state to another state. A lawful

transformation defines the events that are lawful for a thing. The lawful event space is

usually a subset of the event space, and defines those events in a thing that are lawful."

For A B P M , a state law still enforces constraints. They dictate the constraints on what the

output from an operation is, the output of an operation is an alteration of the value of a

property. Thus they restrict the values a property can be altered to and by extension they

restrict the lawful state space.

33

For A B P M transformation laws enforce constraints on which changesxould occur. They

restrict the possible set of transformations (i.e. operations, since operations are how the

transformations are carried out) to a set that are deemed lawful in an agent.

In short, attributes and operations represent the properties and behaviour of agents, while

the state and transformation laws are the constraints on properties (attribute values) and

behaviour respectively.

3.3.5 Mapping Summary

Table 3-2 summarizes how the O B P M constructs will be mapped to Object constructs to

create Object-Oriented OBPM Constructs.

3.4 Meta-model of A B P M

Figure 3-2 presents the A B P M meta-model. The metamodel can be used to show the

relationships between the constructs, as discussed above, in a condensed manner. The

meta-model shows theABPM constructs as rectangles. The relationships between

constructs are shown using arrows. The cardinality numbers indicate the requirements on

the relationship. The inverted *F show that a construct exists in both the generalized and

specialized role.

34

OBPM Construct Object Construct ABPM Construct
Agent Object Agent
Actor Specialization of an Object Agent
Resource Specialization of an Object Resource (An Agent with no services)
Properties Attribute Attribute
Intrinsic Property Internal Attribute Internal Attribute
Mutual Property Shared Attribute Incoming Interface Attribute +

Outgoing Interface Attribute
Composite thing Composite object (aggregation) Composite Agent(aggregation)
State Attribute values Attribute values
Agent in the domain of interest Internal object Internal Agent
Agent outside the domain of External object External Agent
interest
Operation Service Operation
Activity The events that occur when an The events that occur when an agent Activity

Object becomes unstable becomes unstable
Transformation law Service restriction Transformation law
State law Service restriction State law
Event A trigger of a service A trigger of an operation
Internal event An event inside the object Change of an internal attribute,

causing a transformation in the performed by an operation
object

External event An event outside the object Change of an incoming interface
causing a transformation in the attribute
object .

X affects Y X changes the shared attribute of
XandY

X changes its outgoing interface
attribute which is tied to the incoming
interface attribute of Y

Stability No services required by an
object

No operations required by an Agent

Inherited Attributes Inheritance Super and Sub agents
Process Propagation Process

Table 3-2 Mapping Summary

The meta-model is explained as follows: an agent is either internal or external. Internal

agents perform activities. An internal agent performs one or more activities, but the

activity is performed by only one agent.

Activities consist of operations and attributes. An activity must consist of one or more

operations; however the operations occur in only one activity. An activity involves

changes to two or more attributes; however the attributes are affected in only one activity.

35

An operation changes one or more attributes, the attributes can only be changed by one

operation.

Figure 3-2 ABPM Meta-Model

An activity may be governed by zero or more laws, the laws govern only one activity. A

law is either a state law or a transformation law. State laws,govern attributes, one state

law governs one attribute. A transformation law governs one or more operations, the

operations are governed by only one transformation law.

Attributes are either internal attributes or interface attributes. Interface attributes can

further be broken up into incoming interface attributes and outgoing interface attributes.

36

Internal agents have two or more attributes, the attributes are only possessed by one

agent. Internal agents have one or more incoming interface attributes, the incoming

interface attribute(s) is(are) only possessed by one agent. Internal agents are required to

have at least one incoming interface attribute since something external to the agent is

what initiates change in the agent. The requirement of two or more attributes refers to an

internal agent needing to both be changed (i.e. have one incoming interface attribute), and

then change something else (in itself or another agent). Hence at least two attributes, one

incoming interface + at least one other attribute it changes in response to being changed.

If an internal agent were to only have incoming interface attributes then it would be a

resource.

An external agent has one or more interface attributes that are changed, the interface

attributes are possessed by only one agent. Resource are changed by agents. An agent can

change one or more resources, but the changes are performed by only one agent. A

resource only has incoming interface attributes. A resource can have one or more

incoming interface attributes, but the incoming interface attributes are possessed by only

one resource.

3.5 Graphical Representation

We are now ready to introduce our graphical constructs for A B P M . The following

subsections will first show the construct then follow with an explanation of the construct.

The graphical constructs can be used to assist the user in following the A B P M modeling

process (as presented in section 3.6 below).

37

3.5.1 Domain Representation

Agent 1 Agent 2 Agent 3 Agent 4

Figure 3-3 Domain Representation

If we are trying to show the agents that interact in a process, we need to consider the

domain they will interacting in, i.e. the scope of the process. The domain in which they

interact will be represented using swimlanes, with the swimlanes themselves being the

boundary of an agent.

3.5.2 External Agent

External Agent Agent 1 Agent 2 Agent 3

Figure 3-4 External Agent Representation

The name of an external agent is doublelined. External agents are what cause the initial

event(s) that occur.outside the domain of a process. They perform activities that change

(affect) a property of a thing in the domain. An external agent may also have one or more

attribute changed by.an agent in the system. The only information we need to represent in

38

the swimlane of an external agent are the incoming interface attributes from the system

and the outgoing interface attributes to the system.

Incoming interface attributes follow the notation:

agent that changed the attribute:attribute changed

Incoming interface attributes are how an agent receives a change from another agent.

Outgoing interface attributes follow the notation:

attribute changed::agent changed

Outgoing interface attributes are how an agent initiates change in another agent.

3.5.3 Internal Agent

External Agent Internal Agent 1 Internal Agent 2

Activity 1 Name
Affected Attributes
Stale Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)

Activity 1 Name
Affected Attributes
Stale Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s) Activity 1 Name

Affected Attributes .
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)

Activity 1 Operations
Transformation Laws
Operation
Operation '

Activity 1 Name
Affected Attributes .
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)

Activity 1 Name
Affected Attributes .
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)

Activity 1 Operations
Transformation Laws
Operation
Operation

Activity n Name
Affected Attributes

Activity 1 Operations
Transformation Laws
Operation
Operation Activity n Operations

Activity 1 Operations
Transformation Laws
Operation
Operation

Activity n Name
Affected Attributes

Activity n Operations

Figure 3-5 Internal Agent Representation

Since external agents outside the domain affect agents in the domain we need internal

agents that, represent the agents within the domain. The name of an internal agent is

singly-lined.

39

A n activity consists o f attributes, operations and laws. In particular, an activity is the

attributes that are changed and the operations that change them in response to the agent

receiving a change from another agent with the laws that dictate contraints on how they

are changed. A n agent can receive an infinite number of changes from other agents hence

there could be an infinite number of activities.

In keeping with the concept of encapsulation in the representation o f an activity we keep

the attributes that are changed and the operations that change or use them together. Hence

we outline each activity to illustrate the encapsulation.

The first information included in the affected attributes o f an activity is the state laws on

the attributes. A state law dictates i f there are any restrictions on the values an attribute

can take. This is a freeform box of text before the incoming interface attributes o f an

activity.

Incoming interface attributes fol low the notation:

agent that changed the attribute: attribute changed

Incoming interface attributes are how an agent receives a change from another agent.

Internal attributes are changed solely by the internal agent. They are changed v ia

operations.

40

Outgoing interface attributes follow the notation:

.. _. attribute changed::agent changed

Outgoing interface attributes are how an agent initiates change in another agent. They are

changed via operations, which will also change the associated incoming interface

attribute of another agent.

When we look at the operations for an activity the first thing that is represented is the

transformation laws. Transformation laws dictate which behaviours (operations) occur

under what conditions. A transformation law is represented by a freeform box of text

before the operations of an activity.

An operation is what changes an attribute. An operation may change several attributes but

must at least change one attribute. Hence for every attribute that changes there must be an

operation that changes it. The attributes that an agent changes are its internal attributes

and its outgoing interface attributes. Thus for every internal attribute and every outgoing

interface attribute there is an operation that changes it.

The temporal sequence of attributes and operations should be kept the same. If the laws

and incoming interface attributes are removed from an activity, an attribute in position X

of the affected attributes list, should have the operation that changes it in position X of

the operations list. This is in keeping with the general notion of a process.

41

We also need to consider how do we number activities? Our solution to this is that we

number them according to how many activities there are in an agent. So if an agent

performs nine activities, they are numbered one through nine. Thus different agents will

have their own activity one. Typically process models will give each'activity its own

number thus there will only be one activity number one, etc.

3.5.4 Resources

External Agent Internal Agent Resource

Incoming Interface Attribute

Incoming Interface Attribute

Figure 3-6 Resource Representation

Resources are those things that only are changed by other things. A resource is indicated

by a treble line around the name. When they are changed they go from one stable state to

another stable state. The have no internal transformations. Hence they have no

operations. Thus a resource will only have attributes of the notation:

agent that changed the attribute: attribute changed

3.5.5 Agents Sharing A Mutual Attribute

The arrow in figure 3-7 designates that the agents share an interface attribute. The agent

at the tail of the arrow changes the outgoing interface attribute it has while the agent at

the head of the arrow is the receiver of the change via its incoming interface attribute. A

block arrow designates that an external agent changes some thing in the system.

External Agent

Outgoing Interface Attribute

Internal Agent 1

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute
Internal Attribute
Outgoing Interface Attribute
Outgoing Interface Attribute

[Activity 1 Operations
Transformation Laws
lOperation
(operation •—
^Operation

Activity n Name
Affected Attributes

Incoming Interface Attribute

[Activity n Operations

Internal Agent 2

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute
internal Attribute
(internal Attribute

[Activity 1 Operations
Transformation Laws

[Operation
nation

Figure 3-7 Agents Sharing A Mutual Attribute Representation

Recall, we are creating models at the class level. When an arrow exists between two

activities in the same agent it shows one instance of agent can change another instance of

the same agent.

In the event an agent can change the exact same incoming interface attribute of another

agent from different activities, there are be multiple outgoing interface attributes but only

one incoming interface attribute that is changed. In this case,the arrows are merged into
!

one doubled arrow as illustrated in figure 3-8. " i

Internal Agent 1

Activity 1 Name
Affected Attributes

Outgoing Interface Attribute

Activity 1 Operations .

Operation |

Activity n Name
Affected Attributes

Outgoing Interface Attribute

Activity n Operations

Operation ' - —

Internal Agent 2

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute
Internal Attribute
Internal Attribute

[Activity 1 Operations
Transformation Laws
lOperation
[operation

Figure 3-8 Different Operations changing one incoming interface attribute

4 3

3.5.6 Composite agents
External Agent Internal Agent

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute^
Internal Attribute(s)
[Outgoing Interface Attributes(s)!

|Activity 1 Operations
Transformation Laws
Operation
Operation

lActivity n Name
lAffected Attributes

|Activity n Operations

Figure 3-9 Composite Agent Representation

Composite Agent

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute^
Internal Attribute(s)
[Outgoing Interface Attributes(s)!

(Activity 1 Operations
Transformation Laws
Operation
Operation

lActivity n Name
lAffected Attributes

lActivity n Operations

Composite agents in their composite v iew appear the same as any other agent except the

lines around their name are,dashed. If an activity in a composite agent is underlined the

activity is an emergent activity that would not exist without the aggregation o f

components. Act iv i t ies that are not underlined are those'from component agents.

The composite agent v iew is used since we may not be interested in all the details o f a

composition. In those situations where we need to know the details o f a composite agent

a composite agent can be decomposed down into its component agents:

When a composite agent is created from component agents it must possess emergent

attributes, i.e.its own attributes that are not part o f any component agent, thus they need

44

their own operations as well. The emergent attributes and operations would not exist

unless the agents are aggregated. Figure 3-10, illustrates how a composite agent can be

added to a diagram without having to rearrange the entire diagram. The composite agent

lists its component agents, while the components list that they are part of a composition.

Agent 1 Composite Agent Agent 2 Component Agent 1 Agent 3 Component Agent 2

Component Agent 1

Component Agent n

Composite Agent

i

Composite Agent
•

Activity 1 Name
Affected Attributes
State Law(s)
Incomino. Interface Attribute(s)
Internal Attnbute(s)

Activity 1 Name
Affected Attributes
Sfafe Law(s)
Incoming Interface Attribute(s).
Internal Attribute(s)
Outgoing Interface Attributes(s)

i

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)

•

Outaoina Interface Attributes(s)

Activity 1 Operations
Transformation Laws

Activity 1 Operations
Transformation Laws
Operation i

Activity 1 Operations
Transformation Laws
Operation
Operation

•

Operation Operation

Activity 1 Operations
Transformation Laws
Operation
Operation

•

Operation

Figure 3-10 Adding A Composite Agent

The decomposition of a composite agent allows us to see how the agents that make up the

composite agent interact, and what attributes and operations emerge from the

composition in one figure. Figure 3-11 is an example of the decomposition for a

composite agent. Ideally we would include a diagram like figure 3-11 and not figure 3-10

when interested in the composition of a composite agent. HoweverKvhen it is not feasible
• i ! i

to rearrange the diagram to have all the component agents side by side the arrangement in

figure 3-10 can be used; :

The decomposition as shown in figure 3-11 can also be used to verify the integrity of a

composite agent. By only including the composite and its components we can verify that

45

all incoming changes and outgoing changes are received and generated (respectively) by

the composition, or its components.

Composite Agent

Component Agent 1
Component Agent 2

[Activity 1 Name
[Affected Attributes
\State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)

[Outgoing Interface Attributes(s)|

[Activity 1 Operations
Transformation Laws

[Operation j
[operation

Activity 1 Name
Affected Attributes
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)|

[Activity 1 Operations
Transformation Laws

[Operation
[operation

Activity 1 Name
Affected Attributes -

State Law(s)
' Incoming Interface Attributefs)

Internal Attributed)
Outgoing Interface Attributes(s)

Activity 1 Operations
Transformation Laws

Operation
Operation

Figure 3-11 Decomposition Of A Composite Agent

When decomposing a composite agent into its components the following must specified:

• Which incoming changes go to which component agent?
• Which incoming changes go to the composite agent (are emergent)?
• -Which outgoing changes are generated by which component agent?
• Which outgoing changes are generated by the composite agent (are emergent)?
• Which changes do the components use to interact with each other? These changes

are not present in the composite .view of the agent.
• Which internal attributes belong to the composite and the components? <
• What laws exist on the incoming and outgoing changes of the components?

When the attributes are reassigned to either the composite or component the operation

that is associated with that attribute is reassigned as well. Component agents may require

new attributes and services not present in the composite agent to model the interaction of

the component agents.

46

file:///State

3.5.7 Superagents And Subagents

As shown in figure 3-9, the agent on top is the superagent(i.e. the generalization), the

agents on bottom are subagents(i.e. the specialization). Attributes and operations in the

superagent are inherited by the subagent. Inherited attributes and operations are not

shown in the subagent. Subagents have attributes and operations possessed only by that

subagent. A subagent's inherited attributes and operations can never be different from the

attributes and operations of the superagent (from the definition of a subclass), hence we

do not need to show them. Figure 3-13 shows how to represent superagents and

subagents when it is not feasible to rearrange the diagram to have them side by side.

Super Agent

Activity 1 Name
Affected Attributes

. State Law(s)
Incoming Interface Attribute(s)

Internal Attribute(s)
Outgoing Interface Attributes(s)

Activity 1 Operations
Transformation Laws

• • Operation -

Operation

Sub Agent 1

Activity 1 Name
Affected Attributes
Sfafe Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
Outgoing Interface Attributes(s)|

Activity 1 Operations
Transformation Laws '•
[Operation
[Operation

[Activity n Name
lAffected Attributes

[Activity n Operations

Sub Agent 2

[Activity 1 Name
lAffected Attributes
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
lOutgoing Interface Attributes(s)!

|Activity 1 Operations
Transformation Laws
lOperation
[Operation

Kctivity n Name
ffected Attributes

[Activity n Operations

Figure 3-12 Superagent and Subagent Representation

47

Agent 1 Superagent : Agent 2

lActivity 1 Name
[Affected Attributes
Srafe Lew(s)
Incoming Interface Attribute(s)
nternal Attribute(s)

lOutgoing Interface Attributes(s;

|Activity 1 Operations
Transformation Laws

lOperation
loperation

SubAgent 1

Superagent

lActivity 1 Name
[Affected Attributes
State Law(s)
Incoming Interface Attribute(s)
Internal Attribute(s)
lOutgoing Interface Attributes^

^Activity 1 Operations
Transformation Laws

lOperation
[Operation

Agent 3 Subagent 2
Superagent

lActivity 1 Name .
lAffected Attributes ,
]S!a(e Law(s)

ncoming Interface Attribute(s)
llnternal Attribute(s)
lOutgoing Interface Attributes^;

(Activity 1 Operations
Transformation Laws

lOperation
loperation

Figure3-13 Creating A Superagent

3.5.8 An Alternate Notation

There are two situations where it is beneficial to have an ABPM with fewer details.

1. The details are not known

2. The diagrams are large and unwieldy

We can handle both situations using Agent Templates (AT). An A T table can be used to

store some or even aU the pertinent details about the agent and an agent with less or even

no details appears in the A B P M . Since we are focusing on change propagation the two

suggested compressions are either retaining only the interface attributes that are changed

in an activity (as per figure 3-14), or compressing an activity totally down to its name(as

per figure 3-15).

External Agent Internal Agent 1

Outgoing Interface Attribute f_

Incoming Interface Attribute *

lActivity 1 Name
lAffected Attributes

ncoming Interface Attribute
lOutgoing Interface Attribute — |

Internal Agent 2

lActivity 1 Name
lAffected Attributes

ncoming Interface Attribute
{Outgoing Interface Attribute

Figure 3-14 Example Compressing Down To Agent Interactions

External Agent Internal Agent 1 Internal Agent 2

i Outgoing Interface Attribute | jj/JActivity 1 NameT- lActivity 1 Name |

Incoming Interface Attribute « i -

Figure 3-15 Example Compressing Down To Activity Name

48

The internal agent template is presented in Figure 3-16. It w i l l be f i l led in using the

notation developed above.. _ ...

Agent
Attributes Operations

Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

1
2

n

Figure 3-16 Internal Agent Template

The Resource template is presented in figure 3-17. Since it only has incoming interface

attributes all entries w i l l be in the form:

agent that changed the attribute: attribute changed

. . . . Resource .:
Incoming Changes

Figure 3-17 Resource Template

With external agents less detail is needed than with internal agents. The only information

of interest is the incoming and outgoing interface attributes that are altered. The external

agent template is presented in figure 3-18. Incoming interface attributes w i l l fo l low the

form:

agent that changed the attribute:attribute changed

Outgoing interface attributes w i l l fo l low the form:

attribute changed: :agent being changed

49

Agent
Incoming Changes Outgoing Changes

Figure 3-18 External Agent Template

In a composite agent the agent template has extra rows. The extra rows indicate which

agents are components o f the composite agent. The component agents are the same as

any internal agent and thus have the same agent template as an internal agent. The

composite agent template has two views (using the same template). The first view is just

of the activities of the composite agent (i.e. the emergent attributes and operations). The

second view is the 'composited' view, that is, all the activities o f the components that are

included in the composite and its emergent activities. The emergent attributes and

operations would be italicized in the composite view to distinguish them from component

attributes and services (i f the agent has been decomposed). Figure 3-19 shows the

composite agent template.

Agent
Component Agent 1
Component Agent 2

Component Agent n
Attributes Operations

Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

1
2

n
Figure 3-19 Composite Agent Template

The agent template for superagents is not different from the internal agent template. The

agent template for subagents has an extra row to indicate the superagent from which it is

50

derived. The attributes and operations that are shown are those that are unique to the

subagent. The subagent template is shown in figure 3-20.

Agent
Superagent:

Attributes Operations
Activity State Law Interface Attributes Internal Attributes Transformation Law Operation

1
2

n
Figure 3-20 Subagent Agent Activity Template

3 . 5 . 9 Allowed Interactions

This section summarizes how the constructs are allowed to interact.

External agents: Initiate change in an agent in the system. Receive a change from an

agent in the system. Refer to figure 3-21

E x t e r n a l A g e n t A g e n t 1 A g e n t 2 E x t e r n a l A g e n t A g e n t 1 A g e n t 2

- •

Initiating a change in the system Receiving a change from an agent in the system

Figure 3-21 Allowed Interactions For An External Agent

Resources: Receive a change from an agent in the system. Refer, to figure 3-22

R e s o u r c e A g e n t 1 A g e n t 2

Receiving a change from an agent in the system
Figure 3-22 Allowed Interactions For A Resource

Internal agent: Initiate change in both internal and external agents. Receive a change

from internal and external agents. Change a resource. Refer to figure 3-23

51

External Agent Agent 1 Agent 2 External Agent Agent 1' Agent 2

Changing an agent outside the system Changing an agent in the system

External Agent Agent 1 Agent 2 External Agent Agent 1 Agent 2

Receiving a change from outside the system Receiving a change from an agent in the system

Resource Agent 1 Agent 2

Changing a resource
Figure 3-22 Allowed Interactions For An Internal Agent

3.6 A B P M Modeling Process

The main concept to keep in mind when generating an A B P M is change propagation.

That is, when one agent is changed, this change will cause the agent to change other

agents, which will lead to other agents being changed, and so on. Eventually, there are no

more agents that are changed and the process ends when all the agents that are changed

become stable (stop changing).

Frequently process-modeling languages lack a well-defined method for generating a

process model (Huckvale and'Ould,1994, Wand and Woo, 1999,'Wang 2002). One of

the goals behind the development of OBPM was to eliminate problems with existing

process modeling languages. Hence we must provide a clear and unambiguous method to

52

create an A B P M . Thus we will present an algorithm for the graphic representation of

ABPMs. This algorithm.is based upon a set of modeling rules.

3.6.1 Modeling rules

At this point we need to introduce a set of rules (Wand and Woo, 1999) and assumptions

to address the following points:

1. What is the scope of the model?
2. What agents should be included in the model?
3. What resources should be included in the model?
4. What agent properties and operations should be included in the model?
5. When to include composites agents?
6. When to subclassify agents?
7. When to begin a new activity?

Due to the fact that they are developed specifically for object-oriented models that are

ontologically based (albeit for enterprise modeling) we will use and adapt the rules

developed elsewhere (Wand and Woo 1999) to answer the questions. Only when the rule

is changed from its original intent will we define its development.

Rule #1: The scope identification rule

This rule is used to define what should be included in the process model of the system. It

is based uponthe belief that anything that happens in the system is in response to

something happening outside the system. That is, something outside the system affects

something in the system causing the system to become unstable. This is the only way a

system can become unstable. Once a modeler decides what events happen which are

53

external to the system, all direct and indirect actions due to the external event are in the

scope of the system. Thus the rule reads as follows:

Rule 1 (scope): The aspects of the system to be modeled are all and only those

needed to represent the effects of the relevant external events5.

Rule #2: The affected thing identification rule

An event is a change. From our ontological foundation only things change. To be

included a thing has to either be changing another thing or changed by another thing.

Thus the rule reads as follows:

Rule 2a (agent identification): The agents included should be those that are either

generating changes in the system, or are responding directly and indirectly to the

external changes to the system.

Rule 2b (Resource identification): The resources included should be those that are

changed by agents in the system.

The agent identification rule highlights two kinds of agent. External agents are outside

the system that either change something in the system or are changed by something in the

system. Internal agents are the agents that make up the system. An internal agent must be

changed by at least one other agent. The resource identification rule indicates that only

the resources used by internal agents should be included

Rule #3: The operation inclusion rule

Based on our mapping operations represent transformations that happen to an agent.

Operations will be invoked by an unstable agent to change an attribute in an attempt to

become stable during an activity. An agent becomes unstable when the prerequisite

interface attributes (i.e. incoming interface attributes) of an activity have been changed.

Rule 3a (operation inclusion): An operation will be included in an activity if it is

invoked as a result of an agent attempting to become stable.

Rule 3b (transformation law inclusion): A transformation law will be included if it

affects what operations occur.

Rule #4: The attribute inclusion rule

Since all activity in a system is initiated due to an external change, only those attributes

that are part of the activities due to the external change should be included. The attributes

that are part of an activity are those that either initiate the activity or are changed by

operations during an activity. The attributes must be used or modified by an operation.

Rule 4a (interface attribute inclusion): an interface attribute will be included if it

is known by and shared between two things. An outgoing interface attribute can

only be possessed by an agent, whereas an incoming interface attribute can be

possessed by an agent or a resource.

Rule 4b (Internal attribute inclusion): an internal attribute will be included only

for those operations that do not act upon an interface attribute as defined from 4a.

An internal attribute is internal to an agent.

Rule 4c (state law inclusion): a state law will only be included if it restricts the

values an attribute can be changed to.

5 This is the original Wand and Woo (1999) .definition of the rule.

55

Rule #5: The attribute ownership rule

Since properties belong to. things, every attribute is owned by only one agent. .

Rule 5 (attribute ownership): For every attribute in the model there is exactly one

agent that can modify it. For an internal attribute, the agent is the only one that

can access the value of the attribute. For interface attributes the agent that

possesses the outgoing interface attribute is the agent that modifies both the

outgoing interface attribute and the incoming interface attribute (even though the

incoming interface attribute is owned by another agent).

Rule #6: The composite agent rule

In some cases agents may need to be functioning together to respond to the changes

resulting from the external stimulus since neither may be able to respond on its own. This

creates emergent behaviour not present in either agent. Recall from ontology, that

composite things have emergent behaviour.

Rule 6 (Composite agents): A composite agent may be created only if it possesses

emergent attributes not present in any of its components. A composite agent

possesses all the attributes and operations of its components.

Rule #7: The sub-classification rule

In some cases agents may have properties that are very similar. It may be beneficial to

create a superclass to simplify a model.

Rule 7 (Sub-classification): A sub-class should be created only when it has

properties not present in the superclass. A sub-class inherits all properties of the

56

superclass. In order to form a superclass two or more agents need to have some

properties in common.

Rule# 8: The new activity rule

The first change in an agent is always the beginning of a new activity. An activity is a

sequence of events and changes. Typically an actor becomes unstable, undergoes

transformations, then becomes stable. Later on, other changes may cause the agent to yet

again become unstable and the process repeats itself. Resources never become unstable,

they are stable, changed by another agent, then are stable.

Rule 8 (New activity) When an agent becomes unstable after being stable it is the

beginning of a new activity. When an activity ends an agent is in a stable state.

3.6.2 Modeling Process

If we follow the rules in a systematic manner we can produce an object-oriented activity-

based process model. Further, there will be no need to check the integrity of the model

since by following the algorithm correctly we ensure the model is correct. The guidance

in applying the rules comes from the original O B P M algorithm. That is, we identify the

changes generated external to the system, identify what is affected by the changes, and

then analyze what has been affected. We can use this to follow changes as they propagate

through the system. The following algorithm for creating ABPMs is designed to center

around change propagation.

57

1. Identify the external agents.
2. For each external agent identify the changes generated.
3. For each change:. - —

3.1. Identify the agent or resource that was changed
3.2. If a resource was changed identify the incoming interface attribute
3.3. If the agent is an internal agent:

3.3.1 If this is the first change to an agent, or the last activity of an agent has
gone through a sequence of instability-change-stability create a new

" activity
3.3.2 Identify the incoming interface attributes that were modified
3.3.3 Identify any state laws that may restrict change
3.3.4 Identify any transformation laws that may exist for the incoming interface

attributes
3.3.5 If an agent becomes unstable:

3.3.5.1 Identify the operations that may occur
3.3.5.2 Identify any transformation laws that may affect what operations occur
3.3.5.3 Identify the internal attributes that will be affected
3.3.5.4 Identify the outgoing interface attributes that were modified
3.3.5.5 Repeat steps 3.3.5.1 to 3.3.5.4 until the agent becomes stable

3.3.6 Repeat step 3 for each outgoing interface attribute of an agent that was
changed in step 3.3.5.4

4 If needed identify super and subagents using the internal agents.
5 If needed identify composite and component agents using the internal agents.

Table 3-3 shows the relationship between the rules, the A B P M algorithm, and the

original O B P M algorithm. From this table we can see how .the proposed A B P M

algorithm encompasses and expands upon the original O B P M algorithm. We can also see

• that by following the A B P M algorithm we force the modeling rules developed above in

section 3.6.1 to be followed

58

Step Rule Purpose O B P M algorithm
I. Identify the external agents 2a Agent Identification
2. For each external agent identify the
changes generated.

1 Scope Identification Main

3. For each change:
3.1 Identify the agent or resource that was

changed

2a and
2b

Agent and Resource
Identification

Main

3.2 If a resource was changed identify the
incoming interface attribute

4a Interface Attribute
Identification

3.3 If the agent is an internal agent:
3.3.1 If this is the first change to an agent, or
the last activity of an agent has gone through
a sequence of instability-change-stability
create a new activity

8 Activity Identification Affected thing

3.3.2 Identify the incoming interface
attributes that were modified

4a Interface Attribute
Inclusion

3.3.3 Identify any state laws that may restrict
change

4c State Law Inclusion

3.3.4 Identify any transformation laws that
may exist for the incoming interface attributes

3b Transformation Law
Inclusion

3.3.5 If an agent becomes unstable:
3.3.5.1 Identify the operations may occur

3a Operation Inclusion Decompose

3.3.5.2 Identify any transformation laws that
may affect what operations occur

3b Transformation Law
Inclusion

3.3.5.3 Identify the internal attributes that will
be affected

4b Internal Attribute
Inclusion

• i . . ; ,

3.3.5.4 Identify the outgoing interface
attributes that were modified

4a Interface Attribute
Inclusion'

Affected thing

3.3.5.5 Repeat steps 3.3.5.1 to 3.3.5.4 until
the agent becomes stable

3 Operation Inclusion Decompose

3.3.6 Repeat step 3 for each outgoing
interface attribute of an agent that was
changed in step 3.3.5.4

5 Attribute Ownership Decompose

4. If needed identify super and subagents
using the internal agents.

7 Superagents and
Subagents

5. If needed identify composite and
component agents using the internal agents.

6 Composite and
Component Agents

Table 3-3 Relating The Rules To The ABPM And OBPM Algorithms

3.6.3 Model Integrity

Once a model has been constructed it may be necessary to check the model if the model

is semantically correct. Although the above modeling algorithm is supposed to ensure

semantic correctness there may be other ways to generate an A B P M (such as from an

O O E M , see the next chapter) that do not necessarily guarantee the model will be

59

semantically correct. We can check using a set of model integrity rules. The model

integrity rules reflect the modeling rules (Wand and Woo, 1999).

1. Every change in the system should be able to be traced back to an initial change from
an external agent.
2. Every agent must have at least one activity.
3 Every Activity must have at least one operation
4. Every resource must only have incoming interface attributes.
5. Every attribute is changed by only one operation.
6. Every activity can only have one incoming interface attribute unless governed by a
transformation law
7. Every outgoing interface attribute must have a corresponding interface attribute and
vice versa.
8. Every composite agent must possess emergent attributes and operations not present in
the component agents
9. Every subagent must possess attributes and operations that are unique to the subagent
and are not inherited from the superagent.

3.7 A n Example

We recognize that this chapter has presented a fair bit of new ideas and concepts. To

illustrate them, we will use the following example

The ACME Warehouse Management Inc. Case6

ACME Warehouse Management Inc. offers storage facilities and redistribution services
(between their different warehouses) across the nation. A customer can request space in
a particular warehouse, request items to be transferred to another warehouse, or request
withdrawal of items from a particular warehouse (even for items not stored there).

For the purpose of this case, we only look at the activities involved'in processing cr
withdrawal request. A customer contacts ACME headquarters to request a withdrawal.
An office clerk checks whether the customer has the authority to withdraw the items. The
clerk then passes the withdrawal request to the warehouse where the customer wants to
pickup the items.

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the requested items. If the
items are located the warehouse manager will ask the planner to arrange for
transportation for the requested items.

6 Based on a case in I. Jacobson, ObjectrOriented Software Engineering, Addison-Wesley, 1992

The planner's responsibility is to schedule the company's truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notified whether the. transportation request can
or cannot be satisfied.

The warehouse manager will notify the office clerk if the request can be fulfilled or not,
and the reason. The office clerk will notify the customer as to the status of the request
(approved, or declined due to lack of authority, no inventory, or no transportation).

The planner issues transport orders to truck drivers. After receiving a transport order,
the truck driver informs the warehouse about the pickup of the items. The warehouse
manager will make arrangements to have the items ready when the truck arrives. When
the truck arrives at the warehouse the items are loaded. The truck driver then informs the
next warehouse about the delivery. When the truck has arrived at the next warehouse,
the items are unloaded. A warehouse worker finds space for the items and arranges to
have them moved to the allocated space. The worker updates the warehouse's inventory
information. Truck drivers are required to report the status of the truck and the delivery
to the planner after each step.

The customer will come to the warehouse on the required date to pick up the items. A
warehouse employee will check all the necessary documents and will deliver the items
with an-accompanying documentation to the customer.

Supplemental description

Once the office clerk has recorded the items to be withdrawn, he or she forwards the
request to the manager (foreman) of the warehouse. The warehouse manager is
responsible for directing the redistribution of items between warehouses: If the items are
not all available in the warehouse, transport requests are issued: The warehouse
manager fills out a redistribution form with the following information: items to be moved,
place from which to take the items, warehouse to transport the items to, quantity to be
moved, and'the date by when the redistribution must be done. The warehouse manager
forwards the form to the planner to organize the interwarehouse transportation of the
items. The items to be moved are marked as move-pending, and the planner initiates a
plan to have the items at the appropriate warehouse at the given date. Once
interwarehouse transport plans are finalized, transport requests are issued to the truck
drivers. ••• • • •

The truck driver alerts the warehouse manager of the time he or she will be at the
warehouse to pick up the items. The warehouse manager gives appropriate requests to
the warehouse worker on the date of delivery to have the items ready for when the truck
is expected.-When the warehouse worker gets a request to fetch items, he or she, at the
appropriate time, orders forklift operators to move the items to the loading platform. The
forklift operators execute the internal warehouse operation. When the truck driver
arrives, the driver notifies the warehouse worker to have the items loaded into the truck.
The truck driver notifies the next warehouse manager when it is expected to arrive at the

61

next warehouse. The number of items in the current warehouse decreases, and the
transport request is marked as on transport.

When the truck has arrived at the next warehouse, the truck driver notifies the warehouse
worker to unload the items. The truck driver signs off the job. The warehouse workers
receive the items and determine a place for them in the warehouse. Forklift operators are
told to move the items to the new place in the warehouse. When the truck driver confirms
the delivery of the items, the records are updated to reflect the new place for the items.
The transportation time is recorded and stored. The redistribution and interwarehouse
transport request are marked as performed. The warehouse worker fills in an inventory
update form and sends it to the warehouse manager for confirmation and update of the
inventory database.

When the customer has fetched the items the warehouse workers mark the withdrawal as
ready. The items are removed (decreased) from the information system.

Based on the case we develop the Compressed A B P M diagram showing only the agent

interactions in figure 3-24. Figure 3-25 is the full uncompressed A B P M .

I Mice C'lcrk::Ordcr Slulus ^

Office Cl«rk

Adivii) 1 Withdrawal Request
Affected Altrihultt

'CuMomcr::Withdraw ul request
Order Status: :Customcr

Activity 2 Notify about order
A Heeled Attributes
Warehouse-Order Status •
Order Status: :C ustiwncr

is and Docu mentation

Warehouse

Aclivilv I find Hem-,
Affected Attributes
•Office Clerk:: Withdrawal Rcuues
Order Status: Ollice Clerk
-hem Insistence:: Warehouse

Activity. 2 Seaah>j» Hems
Affected Ailributc*
..Warehouse Manager:;Item IMstcnec
Search Result*:; W archouse

Activilv 3 Decide if order can proceed
A Heeled Attributes
•Warehouse:: Search results
Transport r'orm::l'lunner
Order Status: :oltice clerk

Activity 4 Notify about order status
A Heeled Attributes
I'lunncniTrunsnorl Schedule*—•
(trder Slalus::nltice clerk

Activity 5 Prepare ti* pickup
Alleeted Attributes
Truck Driver:: Pickup Not i Ileal i

Activity 6 Load Truck
Alleeted Attributes
Truck Driver::Kcady lo L o a d * -

On Trunspnrt::Truek Driver

Activitj 7 Read) Receiving
Alleeted Attributes
Truck l>ri\er:!>ri>rH>ll'Nmilicatiorf-

Activily H I Inliud truck
Alleeted Attributes
Truck Driver::Heady To United "

Activity VFufil Pickup
Alleeted Attributes
<'ust omen: Arrival
Items And I)oeurncntaiion::Cusiorocr

Activity I Arrange Transport
Affected Attributes • i . .
Warehouse::Transport form
Tninvporl Schedule:;Warehouse
Transport orders::! ruck Driver —

Activity 2 Record lime
Alleeted Attributes
Truck Driver:: I ruck Status

Activity 1 Proceed to pickup
Alleeted Attributes
Planner:: Iran sport orders
Pickup Notification::* archouse
Truck Slaius^Plunncr
Read) lo load:: Ware house
1 ruck Suius:: Planner >, '

Aclivilv 2 Proceed lo dropoff
Alleeted Altrihules
Waivhuuse: :On Transport
Dn>potVNolilieation::WarehiHis
Truck Status: :Planncr
Ready lo Unload:Warehouse
Truck Status: :Planner

Figure 3-24 Compressed ABPM showing Agent Interactions

62

4Aciivii)) Withdrawal Request
AHecied Ariribiiics
Customer: :Wi!hdraual request
Authorization Status
Withdrawul Request: Warehouse
Order S |-""*:: ('" '- '"" k ' f

Office Clerk::Order Slums

Acliv ii> I Operations
Contact Warehouse und Noli I)
Status arc mutual I) exclusive
Auih.wit> Check
Con tut I Warehouse

: status

Aciivii) 2 Nmil) ahoul <i
Aliened Attributes
Warehouse;;< >rder Status

Aci ivi i j 2 Operai
Notify about slati

A L ti\il> 1 l ind hen
A Heeled Aiirihuk-s

•Oltice l'lerk::Wiihdruual Request
Inveniorv lnti>rmui <n
Order Si'jiiiv::Olliu Clerk

AUiVi1>i|'()^r1.li.t
Coniuel I Utter Wan. house and Notil'v
About Status are in liuillv exclusive
Check Inventor)

•Not if) about status
Conlacl 1 Mlier Ware hot.SCS

Aetiviij 2 !>vivch l-orlieim
Alleeled Attribute*
Warehouse;: Item l:\isierice
In senl W) Information
Search Resu lis: :Waa-house
Activit) 2Ojvroiions
Cheek Inventor)
Not it) about search result* ,

| Aetivit) 3 Decide iforder can proceed |
Alleetcd Attributes
Warcht>use::Search result

I transport Form:: Planner
Or.1 T Sums••iillkc clerk

| Actisitj } Operations
ilact planner und rvHih ahoui

I siaius are mutuall) exclusive
Coniuel planner

f Nolifv ahiul status

Aciivii) 4 Nolif) about order status
A fleeted Attributes
Planner:: I ransporl Schedule *
Order Staius::o11ke clerk
Aclivit) 4 Operai

f Nolil'v ahoul st

ivitv 5 Prepare liir pickup
,-eted Attributes

I I nick Driver.:l'ickup Noii lkuli

J Iru
Affect :led Attributes

| Iruck Driver:;Read) lol.<
torj In Tor mui it ui

On Iraiispori"'!ruek Drive
Aetivit) 6 Operations
Uvad Thick
Mark AsOn Transport —

Activity 7 Ready Receiving
Allccicd Aitribuks
I ruck Driver: Drop, ill 'Noli Ileal
Warehouse Infnrnuiion
Movx-mem Schedule
Activity 7 Operations
Find Space
Arrange Move men I

Aetivit) II Unload I ruck
Articled Attribute*
Iruck Driver::Rcod) lt> Unload •
Transntirt Form
Warehouse In Tor million
Inventory Information
Transport Form
Inventory Database

-AHivlifI()fwralHw'i
Receive hems
Determine Place
Move Items

Mark Transport Request As Perliirmed
Update Inventor) Database

[Aciivii) T u l l l Pickup
| A lie Clod Attrihirtcs

turner:: Arrival
turner Information

| Invert too Information
i * And DoeumcnlutioniiCusioincr
:ntor) Database

Activity I Arrange Irmnsporl
AlTeeied Attribute*

' W are hou*c::Tran spurt Form
Inventory Information
I ruck Information
Transport Schedule:: Warehouse
Iranspon orders::Track Driver
Activity I Operations
Marl Inventory
Schedule Trucks

•Nulif) Ahoul transport
Issue Orders

Activit) 1 Record rime
A Heeled Atlribtitcs
I ruck Driver:Truck Status
Iriinspnn In formal ion
Activitv 2 Operations
Reeord lime

Activity I Proceed In pickup
AITected Attributes

•' Planner:Transport order*
Pickup Notification:: Warehouse |
Truck S u i us:: Planner
Truck Status
Ready to kvod::Warehouse
Truck S tut u s:: PI an ner
Aciivii) I Operations

• - Notify annul pickup
' -Report truck status

Drive to pickup warehouse
• Notify ready lo load

• Report truck status

Aciivii) 2 Proceed lo dropoff
AlTeeied Aiiribuics

*W are house ::On Iransnort
Dropoff Noti ft cat ion:: Warehouse
• ruck Status: :Planncr
Truck Status
Ready To Unload::Warehouse
Truck Status::Planner
Aciivii) 2 Operations

-Notif) Ahoul Dropoff
• Report Truck Stilus
Drive To Dropoff

-Notify Ready l o Unload
• Report Truck Status

is and I Xicu mental ki
letch liems

4- IK-liscr rum
Remove Iter

. And DocumenlBlioi
s from ihc Sjstcm

Figure 3-25 A B P M For The A C M E Warehouse Management Case

file://l:/isierice

A full step by step derivation of the diagram can be found in appendix A (including the

associated.decomposition for Warehouse), while.the associated agent templates can be

found in appendix B. 1

3.8 Summary

This chapter introduced the constructs of Ontology-Based Process Modeling. The

constructs were then mapped to object-oriented concepts. This led to the introduction of

an objected-oriented graphical notation for A B P M diagrams, along.with a procedure for

their creation and validation. To illustrate the concepts an example was presented.

(

4. Linking O O E M and A B P M

4.1 Introduction

This chapter has the goal of relating Object-Oriented Enterprise Modeling (OOEM) and

Activity-Based Process Modeling (OBPM). OOEM is used to describe what things an

organization does. ABPM is used to describe how an organization does things. Thus, it is

logical that these two methodologies should be related. Also they have similar

foundations, which should simplify linking the methodologies. The following diagram

illustrates the proposed relationship.

Interacting Agents Activity View

Full Conversion OOEM
View

Foundations

Partial Conversion

OBPM
View

7 ~ ~
Foundations

Ontological
Model

Things, properties, etc

Figure 4-1. Proposed Relationship And Its Foundations.

In particular.we consider .the following as to how we will relate the grammars:

• A business process is everything that occurs within the system from the initial
request to the system to the final response from the system.

• A service is everything that occurs within an object from the initial request to the
final response to that request. That is, a process confined to one object (i.e. what is
carried out).

• An activity is part of a service. An activity is everything within a service confined
by (at most) 2 interactions.

• An operation is part of an activity. The operations of an activity define how the
activity is carried out (and by extension a service is therefore carried out by
operations).

65

4.2 Object-Oriented Enterprise Modeling (OOEM)

The very first question that comes to mind in systems analysis is why would Enterprise

Modeling be needed? The relationship between systems analysis and enterprise modeling

can be clarified as: "Systems analysis is the process of understanding the organizational

environment and specifying the requirements of it. In order to specify the requirements of

a system correctly, a system analyst must first understand the related business areas by

developing a model of the enterprise" (Zhao, 1995, citing Gorman 1994). This suggests

that the very first activity in systems analysis should'be to develop an enterprise model to

describe what an organization does, which will then lead to a process model being

developed later to illustrate how an organization does things

4.2.1. O O E M constructs7

This subsection will explain the graphical constructs used in O O E M .

To begin there exist two kinds of objects. Those that are external to the system and those

that are internal system. Both kinds of objects possess attributes and perform services.

External objects make request to objects in the system or have requests made to them

from the system. Their services and attributes are not modeled since they are external to

the system, and the only thing that matters is the requests they generate or receive.

Internal objects receive requests via interface attributes. The request to an object triggers

a service in the object. In the course of a service occurring one or more internal attributes

may be accessed, as well as one or more requests may be generated. A request may or

7 This discussion of OOEM constructs is based on Wand and Woo 2002

may not have a response generated. And said response may be generated directly or

indirectly due to .the service it triggered.

4.2.2 Request Propagation

External objects affect internal objects by making requests to them. In order to satisfy the

request the object may invoke a service. A service is a series of actions that the object

performs. During the performance of said actions requests may be generated that affect

other objects (or the object itself). The affected objects may then generate requests in

fulfilling their responses to the requests made by the first object, and so forth. When all

requests to internal objects have been fulfilled and no further requests to internal objects

are generated the O O E M is considered complete. Hence an initial request propagates

through the system.

4.2.3 How To Generate An O O E M 9

The algorithm for generating an O O E M is as follows:

1. Identify external objects
2. For each external object:

2.1. Identify all requests generated
2.2. For each request, identify:

2.2.1. The object receiving it
2.2.2. The service invoked in the object - • ' .;••;>- "... • -
2.2.3. The interface attribute
2.2.4. The response returned by the service (if any)
2.2.5. The internal attributes (if necessary)
2.2.6: Al l requests spawned by the service (if any) and repeat 2.2 for each

request
3. If necessary, represent composite/component and/or super/sub-classes using those

found in 2.2.1

This discussion of OOEM request propagation is based on Wand and Woo 2002

67

4.2.4 Graphical Representation Of O O E M

OOEM has two commonly used representations. The first representation is using an

object communication diagram with internal and external object templates. The object

communication diagram "...employs simple notation to represent objects (Zhao, 1995)",

while the object templates are where the services, attributes, and request information are

stored. The second common method is to have all information on the graphic model. For

our discussion we will use the second method as illustrated in Figure 4-2 showing an

OOEM diagram for the aforementioned ACME Warehouse case (adapted from Wand and

Woo, 1999).

customer . Pick-up Request

Items &
Documentation

Withdrawal
Request

Approve/Decline
+ Reason

Office Clerk

Withdrawal Requests
[Customer Information]

Process Withdrawal Request

Withdrawal Request

Approve/Decline
+ Reason

Transportation Request

Warehouse
Inventory Information
Withdrawal Requests
Prepare Loading Requests
Prepare Unloading Requests
Start Loading Requests
Start Unloading Requests
Customer Pickup Requests

Check Item Availability
Process Withdrawal Requests ;
Prepare Loading
Prepare Unloading
Start Loading
Start Unloading
Process Customer Pickup Requests-'

Item
Availability

llem
Existence
query

Prepare
Loading

Leaded

Stkrt • Prephre Slcrt ;
UndmgUnlcadingU'loading

. Planner

[Transport Planning Requests
[Truck Information],
Plan Transportation &
^ u c k Assignment

Approve/Decline
+ Reason

Transport
Orders

Transport Status

Truck Driver

Transportation Requests
[Transport Status]

Do Transport Orders

Legend:

/Ex te rna l ObjecK (Internal Object j
Request

Response C) Interface Attribute
[Internal Attribute]

Request

Response

Service

Request

Response

Figure 4-2 O O E M For The A C M E Warehouse Management Case
note: Warehouse is a composite object hence the dotted outline

' This discussion of the OOEM algorithm is directly from Wand and Woo 2002

68

4.2.5. A Shortcoming of O O E M

In O O E M there is no indication of how the services are performed. A service, is "...a

well-defined series of actions taken by the object with the goal of satisfying the request.

This series of actions models the state law of the thing" (Zhao, 1995). This sounds good,

but it raises the question of where is the 'well-defined series of actions' represented in

OOEM? Consider an O O E M service defined simply as sell goods. An executive may be

more interested in an expanded view such as stock shelves, price good, display

appropriate advertising, and markdown outdated inventory, in order to streamline the

selling goods aspect. Also Hui (1997) notes " O O E M describes workflow participants,

their responsibilities, and their interactions in a process; it does not capture the execution

order of work...." Conveniently, A B P M is concerned with representing series of actions

and their order (processes). Hence, if we can find the exact relationship between O O E M

and A B P M we can relate what an organization does and how an organization does it in a

well-defined manner.
. i , • / • • • • • .

4.3 Basis O f Conversion

The consideration to keep in mind during the conversion process is that despite different

nomenclatures for the modeling grammars, ontologically a thing is still a thing, a

property is still a property, etc. In order to establish a meaningful conversion process

between O O E M and A B P M we need to consider how things in each grammar respond to

an external event. An external event is a state change of some thing in the system.

69

As illustrated below in figure 4-3 in the enterprise modeling approach an external object

generates a request to an object in the system causing it to.gp.from so' to si 1 .The notation

s x

y denotes the object y in state x. Each time there is a state change it will be noted in the

diagram. In servicing the request, Object 1 generates a request to Object 2, and so forth.

We can then reinterpret the O O E M approach into a state change view as illustrated in

figure 4-4 below.

Request s , ' \ s 4 - Request
'External^
^Object Response s6< Object 1 Response s2<

Request

Legend
S W

A Object A is'in state S w after the request is sent
S X

B Object B is in state S, after the request is received
S y

B Object B is in state S y after the response is sent
S 2

A Object A is in state S 2 after the response is received

Request

Response s,

Figure 4-3 The Enterprise Modelling Approach). v . ;

Object 1 Object 2 Object 3 Object 4,

External
, Object

Request

Response

s 1

Request

Request

so

s 2

S 2

Request

Request

<5 '

S '

Response

- -- - - Figure 4-4 OOEM reinterpreted as a state change view • - - • -• •
We can'look at the exact same series of happenings from the process modeling approach.

As illustrated below in figure 4-5, an external agent causes a change in Agent 1 causing it

70

http://to.gp.from

to go from so1 to S|'. Each time there is a state change it will be noted in the diagram. In

response to the change activity 1 one is triggered. During activity 1 of agent 1 a change is

caused in agent 2, and so forth. We can then also reinterpret the A B P M approach into a

state change view as illustrated in figure 4-6 below.

External
Agent

Agent 1 Agent 2 Agent 3 Agent 4

1 > Activity 1 •—• Activity 1 — » Activity 1
: v L
: s i s s 3 I s 3
: v L
: s i
: v L
: s i

Activity 2 ' Activity 1
s , ' s 2 *

Activity 3

""V

Legend
S , A Agent A is in state S M when activity n begins
S r

A Agent A is in state S y when activity n ends

Agent A

Activity n

Figure 4-5 The Process Modeling Approach'

Object 1 Object 2 Object 3
External
Agent Change

Change

S 1

s 1

S 3

S 1

Change

Change

Change

Change

Object 4

s 0 "

Figure 4-6 A B P M reinterpreted as a state change view

When we take these happenings back to the ontological level basically the same

happenings occur in both grammars: As illustrated below in figure 4-7 an external thing

modifies some mutual attribute that it shares with some thing internal to the system.

71

Internal thing 1 goes from being in a stable state so1 to an unstable state s/. Internal thing

1 will according to its laws transition from unstable state s/ to stable state S2 1, during

which time it will modify some mutual attribute it shares with internal thing 2 causing

internal thing 2 to transition from stable state so2 to S | 2 , and so forth.

External Thing

Mutual Attribute! Modification Internal Event Mutual Attribute Modification Internal Event

\ 1 1 1 1 1 1 r~
Internal Thing 1 < s 0

1 , s 1

1 > Internal Thing 1 < s 1

1 , s 2

1 > Internal Thing 2 < s 0

2 , s 1

2 > Internal Thing 2 < s 1

2 , s 2

2 >
•table urn table unstable stable stable unstable

Mutual Attribute Modification

unstable stable

Internal Event Mutual Attribute Modification Internal Event

. i I i 1 1 I r~
Internal Thing 3 < s 0

3 , s 1

3 > Internal Thing 3 < s 1

3 , s 2

3 > Internal Thing 1 < s 2

1 , s 3

1 > Internal Thing 1 < s 3

1 , s 4

1 >
stable unstable unstable stable stable unstable unstable stable

Mutual Attribute Modification

Internal Event Mutual Attribute Modification Internal Event

1 I - 1 r- 1
Internal Thing 4 <s 0

4 , s , 4 > Internal Thing 4 < s / , s 2

4 > Internal Thing i <s 4

, , s 5

1 > Internal Thing 1 < s 5 \ s 6

1 >
unstabk, stable stable unstabte unstable stable stable unstable

Mutual Attribute Modification

External Thing

Figure 4-7 The Ontological Meaning Approach

Consider the dotted oval in figure 4-5, this could be where there is what we call an

O O E M service yet they are distinct A B P M activities. The only way to know is to

consider the interactions and what they mean on an ontological level.

From the ontological level the main difference between the two grammars is that in

A B P M you can expand the internal events and include information that you cannot

include in an O O E M . If we map the O O E M and A B P M constructs back to their

ontological meanings we get the conversions in table 4-1.

OOEM Construct Ontological Model of a process
(BWWP) Construct

ABPM Construct

Object Thing Agent

Object Simple Thing Component Agent

Composite Object Composite Thing Composite Agent
Actor* Agent

72

Non-actor* Resource (An Agent with no
services)

Actuator* Agent with at least one outgoing
interface attribute

Propagator* An actuator with at least one
outgoing interface attribute
affecting an actor

Attribute Property Attribute
Internal attribute Attribute representing an intrinsic

property
Internal attribute

Interface attribute Attribute representing a mutual
property

Incoming Interface Attribute +
Outgoing Interface Attribute

Inherited properties of a subclass Hereditary property- Inherited properties of a subagent
Composite object emergent
properties

Emergent property Composite agent emergent
properties

Attribute values State Attribute values
No services required by an object Stable state No operations required by an

Agent
Services required by an object Unstable state Operations required by an agent
State Change Event State change
Execution of a service Internal event Change of an internal attribute,

performed by an operation
Receiving a request or Receiving
a response

External event Change of an incoming interface
attribute

Service Transformation Operation
part of a service Activity A sequence of transformations
Law Law Law
State law State law State Law

Transformation law Transformation Law
What happens in a system from
an initial request to the final
response

Process* The changes the interacting
agents and resources undergo
from when one agent becomes
unstable to.all agents once again
being in stable states

Req uest/Response Interaction Change
x and y have a shared interface
attribute modifiable by x only

x acts-on y x has an outgoing interface
attribute connected to.an
incoming interface attribute of y,
only x can modify the outgoing
interface attribute and thus by
extension the incoming interface
attribute of y

Definition of a class Functional Schema Definition of an agent
Table 4-1 Conversion Table

*Denotes a construct from the BWWP ontology not in the BWW Ontology

73

An O O E M transformation deals with only 1 incoming interface attribute and 1 service,

whereas the A B P M transformation laws are constraints on two pr more operations hence

for this instance there is no mapping of a transformation law in table 4-1.

Keep in mind, in an A B P M to O O E M conversion we are moving from a detailed view to

a more abstract view. As mentioned above an O O E M service represents a well-defined

series of actions, while A B P M delves into what those actions are. Hence we will be

losing details in an A B P M to O O E M conversion. Also since an A B P M diagram is a more

detailed diagram than an O O E M , it may not be possible to fully construct an A B P M

based on an O O E M . Where needed, we will explicitly mention what information needs to

be retrieved from domain knowledge that cannot be found in the O O E M diagram.

The fact A B P M is more detailed than O O E M also leads to issues of duplication.

Duplication is caused in A B P M due to the possibility of the same event being initiated

via different activities, which does not occur in O O E M . Consider our solution to the

A C M E case from the O O E M perspective, the response from warehouse to office clerk of

"Approve/Decline + Reason" is spawned in only 1 service, the service process

withdrawal requests. In A B P M the same interaction of notifying the office clerk if the

order is approved or declined may occur in the first, third, or fourth activity of the

warehouse.

74

4.3 ABPM to OOEM Conversion

Due to the fact that an A B P M is more detailed than an O O E M the conversion process

may create duplicate requests, responses, or attributes. Duplicates can be left out, since

they are not needed in O O E M . We will use the A C M E case as a running example of the

conversion process.

Table 4-2 illustrates the questions of interest and conversion steps that answer them.

Question O f Interest Conversion Step
How do we determine the external objects? Step 1. External Object Conversion
How do we determine the internal objects? Step 2. Internal Object Conversion
How do we determine requests? Step 3. Request/Response Identification
How do we determine responses? Step 3. Request/Response Identification
How do we determine interface attributes? Step 4. Interface Attribute Conversion
How de we determine internal attributes? Step 5. Internal Attribute Conversion
How do we'determine services? Step 6. Service Creation

Table 4-2 Questions of interest in an ABPM to OOEM Conversion

We will now summarize the steps in the A B P M to O O E M conversion process. Following

the summarization will be the explanation behind each step and a short example to

illustrate each step.

4.4.1 ABPM To OOEM Conversion Steps

The Steps for converting from an A B P M to an O O E M are:

Step 1. External Object Conversion. Every A B P M external agent becomes an O O E M
external object. . , . •. ••

Step 2. Internal Object Conversion. Every A B P M anternal agent becomes an O O E M
internal object

75

Step 3. Request and Response Identification. Outgoing interface attributes become
requests. However if the last outgoing interface attribute is going to the same agent which

^ initiated .the activity in. which, the outgoing interface attribute.is. found the.and the
outgoing interface attribute used to initiate the activity'became a request; the outgoing
interface attribute becomes a response. This step may encounter duplicate changes, •
duplicates can be left out.

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a
change from an agent becomes an interface attribute to handle a request. This only
applies to those incoming interface attributes of which the associated outgoing interface
attribute became a request.

Step 5. Internal Attribute Conversion. An A B P M internal attribute becomes an O O E M
internal attribute. This step may generate duplicate internal attributes, duplicates can be
left out.

Step 6. Service Creation. Create a service to process every request. This step requires the
modeler to create a service themselves since the service is not present in the process
model.

4.4.2 A B P M To O O E M Conversion Step Derivation

Step 1. External Object Conversion. Every A B P M external agent becomes an O O E M

external object. '

The scope of a system does not change depending on what view of it is used. In our

example there is only one external A B P M agent,hence there is only one external O O E M

•i

object

Customer i Office Clerk Warehouse

ABPM OOEM
Figure 4-8 Demonstrating Step 1 External Object Conversion; ABPM To OOEM

Step 2. Internal Object Conversion. Every, A B P M internal agent becomes an O O E M

internal object

76

The scope of a system does not change depending on what view of it is used. As well,

things of interest are still things of interest regardless of level. In the A C M E case there

are four A B P M internal agents hence there will be four O O E M internal objects.

Customer : Office Clerk Warehouse i Planner Truck Driver

^)

.... i: : >

ABPM

Office Clerk , Warehouse 1 Planner 1 ruck Driver
' 1
l

-
1 1
V .

O O E M

Figure 4-9 Demonstrating Step 2 Internal Object Conversion; ABPM To OOEM

Step 3. Request and Response Identification. Outgoing interface attributes become

requests. However if the last outgoing interface attribute is going to the same agent which

initiated the activity in which the outgoing interface attribute is found the and the

outgoing interface attribute used to initiate the activity became a request; the outgoing

interface attribute becomes a response10. This step may encounter duplicate changes,

duplicates can be left out.

According to our mapping in table 4-1 a change of an incoming interface attribute is

ontologically equivalent to either a request or a response. An incoming interface attribute

is changed via changing the outgoing interface attribute that is associated with it.

Duplication may be caused by branching which occurs in process modeling that does not

occur in enterprise modeling.

This is a complete assumption on our part, made for simplicity. We recognize that an object may receive
a response from an object it never made a request to, thus it should be possible to extend this step to be
more robust, however we will use this simple form.

77

Customer Office Clerk Warehouse Planner Truck Driver

.... C Activity 1 Affected Attributes
Custpmer::Withdrawal request

Withdrawal Request::Warehouse
Order Status: :Customer
Activity 1 Operations

ABPM

^^Custonier^^ Office Clerk Withdrawal Request

1 Approve/Decline + Reason 1 Approve/Decline + Reason

Warehouse

O O E M

Figure 4-10 Demonstrating Step 3 Request and Response Identification; ABPM To OOEM
*Recall a request appears at the tail of an arrow, a response at the head of an arrow

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a

change from an agent becomes an interface attribute to handle a request. This only

applies to those incoming interface attributes of which the associated outgoing interface

attribute became a request.

An incoming interface attribute is how an agent handles (i.e. receives) external events.

An external'event is handled (received) by an object through an interface attribute. For

those incoming interface attributes which the associated outgoing interface attributes

became aresponse an interface attribute is not needed in the object since responses do not

have interface attributes.associated with them.11., . , :.

" Responses can actually have interface attributes to handle them, however due to convention they
typically do not.

78

Customer Office Clerk Warehouse Planner Truck Driver

Activity 1 Affected Attributes

Withdrawal Request::Warehouse

Activity 1 Operations

^ Activity 1 Affected Attributes
Office Clerk::Withdrawal Request

- •

Activity I Operations

ABPM

Office Clerk Withdrawal Request I

1 1 | Withdrawal Request

k-̂ 1
OOEM

Figure 4-11 Demonstrating Step 4 Interface Attribute Conversion; ABPM To OOEM

Step 5. Internal Attribute Conversion. A n A B P M internal attribute becomes an O O E M

internal attribute. This step may generate duplicate internal attributes, duplicates can be

left out.

Accord ing to our mapping in table 4 - 1 : an internal attribute is the same in both grammars.

The duplication is caused by branching that is present in process models but not in

enterprise m o d e l i n g : " " -

Customer i Office Clerk" Warehouse: Planner Truck Driver

.... 1: y Activity 1 Affected Attributes -
Authorization Status, . • j . . i

: Activity 1 Operations \

Office Clerk

[Authorization Status]

ABPM OOEM

Figure 4-12 Demonstrating Step 5 Internal Attribute Conversion; ABPM To OOEM

79

Step 6. Service Creation. Create a service to process every request. This step requires the

modeler to create a service themselves since the service is not present in the process

model.

The important thing to keep in mind in that in O O E M every request requires a service.

What we know is that every request started as an outgoing interface attribute. If there are

duplicate outgoing interface attributes we know the activities in which the outgoing

interface attribute is found are part o f the same service, since a request is spawned by

only one service. Thus a potential candidate for a service is the operation that changes the

outgoing interface attribute, and when there are duplicate outgoing interface attributes

there are multiple candidate operations for a service. It is stil l a modeler's decision to

either use one o f the candidate operations as a service or to create a service from scratch.

Customer X withdrawal Request

Customer\ withdrawal Request

Office Clerk
Withdrawal Requests
[Authorization Status]

O O E M Before Step 6

Office Clerk
Withdrawal Requests
[Authorization Status]

Process Withdrawal Request

Warehouse ̂

v J

Warehouse •

O O E M After Step 6

Figure 4-13 Demonstrating Step 6 Service Creation; A B P M T<> O O E M
A t this point we are finished the conversion. If we compare our solution after the

conversion to that in section 4.2.4 above we see the difference is the post conversion

solution has more internal attributes. Since internal attributes are optional in O O E M the

solution is the same.

80

4.5 OOEM to ABPM Conversion

The following questions are of interest in an A B P M to O O E M conversion:

Question Of Interest Conversion Step
How do we determine the external agents? Step 1. External Agent Conversion

How do we determine the internal agents Step 2. Internal Agent Conversion
How do we determine activities? Step 5. Activity Creation
How do we determine outgoing interface
attributes?

Step 3. Outgoing Interface Attribute
Identification

How do we determine incoming interface
attributes?

Step 4. Incoming Interface Attribute
Identification

How de we determine internal attributes? Step 7. Internal Attribute Identification
How do we determine operations? Step 8. Operation Identification.
How do we determine state laws? Step 5. Activity Creation
How do we determine transformation laws? Step 5. Activity Creation

Step 8. Operation Identification
How do we determine resources? Step 9. Resource Identification

Table 4-3 Questions of interest in an OOEM to ABPM Conversion

We will now summarize the steps in the O O E M to A B P M conversion process. Following

the summarization will be the explanation behind each step and a short example to

illustrate each step.

4.5.1 OOEM To ABPM Conversion Steps

The Steps for converting from an O O E M to an A B P M are:

Step 1. External Agent Conversion. Every O O E M external object becomes an external
A B P M agent. •• . • . . :

Step 2. Every . O O E M internal object becomes an A B P M internal agent

Step 3. Outgoing Interface Attribute Identification. A l l requests and responses become
outgoing.interface attributes. • •

Step 4. Incoming Interface Attribute Identification. A l l outgoing interface attributes
identified in step 3 require an incoming interface attribute. As well when we create the
incoming interface attribute we need to show the agents share a mutual attribute.

Step 5. Activity Creation. At this point we can create activities. Each time there is an
incoming interface attribute without a transformation law requiring other incoming

81

interface attributes to change to start the operations of the activity, it is the beginning of a
new activity. We can create transformation and state laws for the incoming interface
attributes using domain knowledge.

Step 6. Outgoing Interface Attribute Assignment. We can now assign the outgoing
interface attributes to the appropriate activity using domain knowledge. Duplicate
assignments are allowed.

Step 7. Internal Attribute Identification. Every OOEM internal attribute becomes an
ABPM internal attribute. We can the assign them to the appropriate activity using domain
knowledge. Additional internal attributes may need to be created using domain
knowledge. Duplication may occur

Step 8. Operation Identification. Create the operations that will be invoked to change the
outgoing interface and internal attributes using domain knowledge. We also have to
create transformation laws using domain knowledge that show if there are any restrictions
on the operations of the activity.

Step 9. Resource Identification. In the event there are agents only have incoming
interface attributes in all of their activities they are resources and need to be converted to
the appropriate resource notation.

4.5.2 O O E M To A B P M Conversion Step Derivations

Step 1. External Agent Conversion. Every OOEM external object becomes an external

ABPM agent.

The scope of a system does not change depending on what view of it'is used. In our

example there is only one external OOEM object, hence there is only one external ABPM

agent. '.v..

Customer

OOEM ABPM
Figure 4-14 Demonstrating Step 1 External Agent Conversion; OOEM To ABPM

82

Step 2. Internal Agent Conversion. Every O O E M internal object becomes an A B P M

internal agent

The scope of a system does not change depending on what view of it is used. As well,

things of interest are still things of interest regardless of level. In the A C M E case there

are four O O E M internal objects hence there will be four A B P M internal agents.

Warehouse ^ Office Clerk

1
\ .

Planner Truck Driver

O O E M

Customer Office Clerk Warehouse Planner Truck Driver

A B P M

Figure 4-15 Demonstrating Step 2 Internal Agent Conversion; OOEM To ABPM
Step 3. Outgoing Interface Attribute Identification. All requests and responses become

outgoing interface attributes.

Since requests and responses model interaction between two things in O O E M , they need

to model interaction between two things in A B P M . A change models interaction in

A B P M . A change is the initiation of an event external to ;an agent.-External events change

incoming interface attributes: Since incoming interface attributes are only changed when

the associated outgoing interface attributes are changed by operations in other agents,

requests and responses must become outgoing interface attributes.

83

1
Office Clerk

Withdrawal Request I
1 Approve/Decline

' + Reason
\ 1 Approve/Decline

' + Reason V

Warehouse •
1

v .

O O E M

Customer Office Clerk Warehouse : Planner Truck Driver
Order Status::Customer
Withdrawal Request::Warehouse i

ABPM

Figure 4-16 Demonstrating Step 3 Outgoing Interface Attribute Identification; OOEM To ABPM

Step 4. Incoming Interface Attribute Identification. All outgoing interface attributes

identified in step 3 require an incoming interface attribute. As well when we create the

incoming interface attribute we need to show the agents share a mutual attribute.

/ —

By definition all outgoing interface attributes need an associated incoming interface

attribute. We do not need additional information from the O O E M for this step.

Customer j Office Clerk Warehouse Planner Truck Driver

: Order Status::Customer . .
: Withdrawal Rcqucst::Warehouse

A B P M , before step 4

Customer Office Clerk Warehouse Planner Truck Driver

Office Clerk::Ordcr Status *— -Order Status::Customer :

Withdrawal Request::Warehouse-i—"Office Clerk::Withdrawal Request

A B P M , after step 4
Figure 4-17 Demonstrating Step 4 Incoming Interface Attribute Identification; OOEM To ABPM

Step 5. Activity Creation. At this point we can create activities. Each time there is an

incoming interface attribute without a transformation law requiring other incoming

84

interface attributes to change to start the operations of the activity, it is the beginning of a

new activity. We can create transformation and state laws for the incoming interface

attributes using domain knowledge.

As noted in our mapping in table 4-1 the transformation law information is not present in

O O E M . Thus we will have to use our domain knowledge. At this point (in the A C M E

case) there do not appear to be any transformation laws. That means every incoming

interface attribute will be the beginning of a new activity. We need to create the state

laws using domain knowledge since they are not represented directly in O O E M

Customer Office Clerk Warehouse Planner Truck Driver
Customer::Withdrawal Request
Withdrawal Rcquest.:Warchouse
Order Status: :Customer

ABPM, before ste p5

•

Customer Office Clerk Warehouse; Planner Truck Driver
Withdrawal Request::Warehouse
Order Status-Customer

: Activity I Withdrawal Request : : I
| Affected Attributes j j j
| Customer-Withdrawal Request j j j

' '." . •" ' j lAclivitv I Operations I j I i

ABPM, after step 5
Figure 4-18 Demonstrating Step 5 Activity Creation; O O E M To A B P M

*note the attributes above the activity are outgoing interface attribute that have not yet been
- 1 assigned to an activity ! : . •

Step 6. Outgoing Interface Attribute Assignment. We can,now assign the outgoing

interface attributes to the appropriate activity using domain knowledge. Duplicate

assignments are allowed.

85

Duplicate assignments can occur since the same transformation may be triggered in

different activities. We must use the domain knowledge to assign the outgoing interface

attributes to the appropriate activity since the expanded activity view is not present in

O O E M .

Customer Office Clerk
Withdrawal Request::Warehouse
Order Status:;Customcr ,
Activity 1 Withdrawal Request
jAffcctcd Attributes
|Customer::Withdrawal Request
Activity 1 Operations

Activity 2 Notify about order status
Affected Attributes
Warehouse: :Order Status
Activity 2 Operations

Warehouse : Planner i Truck Driver

ABPM, before step 6

Customer Office Clerk

Activity I Withdrawal Request
Affected Attributes
|Customcr::Withdrawal Request
Withdrawal Request Warehouse
lOrdcr Status::Customer
Activity I Operations

Activity 2 Notify about order status
Affected Attributes
Warehousc::Ordcr Status
lOrdcr Status::Customcr
Activity 2 Operations

Warehouse : Planner : Truck Driver

ABPM, after step 6

Figure 4-19 Demonstrating Step 6 Outgoing Interface Attribute Assignment; OOEM To ABPM

Step 7. Internal Attribute Identification. Every O O E M internal attribute becomes an

A B P M internal attribute. We can the assign them to the appropriate activity using domain

knowledge. Additional internal attributes may need to be created using domain

knowledge. Duplication may occur

According to our mapping an internal attribute is the same in both grammars. However in

O O E M internal attributes are optional, thus not all the A B P M internal attributes may be

identified. A modeler will have to use their domain knowledge (in our case that's the

A C M E Case) to identify any other internal attributes.

86

Planner

[Truck Information]

I - J
O O E M

Customer j Office Clerk Warehouse Planner Truck Driver

Truck Information
Inventory Information*
Transport Information*

ABPM

Figure 4-20 Demonstrating Step 7 Internal Attribute Identification; O O E M To A B P M
* denotes an attribute created using domain knowledge

Step 8. Operation Identification. Create the operations that w i l l be invoked to change the

outgoing interface and internal attributes using domain knowledge. We also have to

create transformation laws using domain knowledge that show i f there are any restrictions

on the operations o f the activity.

We cannot use O O E M services to create A B P M operations since as mentioned above a

service may encompass many operations. The only way outgoing interface and internal

attributes are changed is via operations. A s noted in our mapping in table 4-1 the

transformation law information is not present in O O E M . Thus we w i l l have to use our

domain knowledge. , . .

87

Customer Office Clerk i Warehouse : Planner

Activity I Withdrawal Request
Affected Attributes
Customer::Withdrawal request
Authorization Status
Withdrawal RequestrWarehouse
Order Status::Customer
Activity 1 Operations

Truck Driver

A B P M , before step 8

Customer : Office Clerk

Activity I Withdrawal Request
Affected Attributes
Customer::Withdrawal request
Authorization Status
Withdrawal Rcquest:Warehouse
Order Status: :Customer

Activity I Operations
Contact Warehouse and Notify About
Status are mutually exclusive
Authority Check
Contact Warehouse
Notify about status

Warehouse : Planner : Truck Driver

A B P M , after step 8

Figure 4-21 Demonstrating Step 8 Operation Identification; OOEM To ABPM

Step 9. Resource Identification. In the event there are agents only have incoming

interface attributes in all of their activities they are resources and need to be converted to

the appropriate resource notation.

Resources are the only things that can receive change that are not agents.

Note: for our example there are no outgoing interface attributes that meet the criteria of

step 9, however an example would be something like figure 4-22 below.

Customer Office Clerk : Warehouse

Usc:;Stapler

Staple Stuff"

Planner Truck Driver Stapler

Activity I staple
Affected Attributes
Office Clerk::Use

ABPM, before step 9

Customer Office Clerk ; Warehouse

Use:: Stapler

Staple Stuff"

Planner : Truck Driver Stapler

Office Clerk::Use

A B P M , after step 9

Figure 4-22Demonstrating Step 9 Resource Identification; OOEM To ABPM

88

4.6 Converting Decompositions and Compositions

It should be noted that in our running conversion examples above we neglected to

mention and demonstrate the warehouse decomposition. The reason behind that is there is

no need to show it. The Steps apply the same way in the decomposed view or the

composite view since in the decomposed view the component things are still things that

interact and will still interact in either O O E M or A B P M , the difference is the information

included.

4.7 Converting Subagents/Superagents And Subclasses/Superclasses

It should also be noted that in our running conversion examples above we neglected to

mention and demonstrate the generalization/specialization conversions between agents

and classes and vice versa. They are still things so thus the steps apply the same way to

the things in these relationships. The modeler needs to ensure that the correct

generalization and specialization notation for the grammar is used post conversion.

4.8 Summary

This chapter explained O O E M . It delved into the relationship between O O E M and

A B P M and introduced means to convert form one view to the other. This chapter also

used the examples from the A C M E case to demonstrate the conversion process.

89

5. Design Principles of an ABPM CASE Tool

5.1 Introduction

One of the goals of this thesis is to take OBPM from an algorithm to a graphical

modeling grammar. To make it more useful as a modeling grammar a tool that supports

the A B P M modeling process can be developed. This chapter presents a set of design

principles for taking A B P M a step further and implementing it as a C A S E tool. A B P M

has very specific semantics that proper design of a C A S E tool can take advantage of. Our

only assumption is that there already exists some sort of C A S E tool upon which O O E M

has been implemented.

5.2 System Goals

The main goal of the C A S E tool development is to implement A B P M in a visual manner.

This manner should be consistent with both the semantics and the activity-based

graphical representations presented back in chapter 3. However as a secondary goal, it

should also support the A B P M to O O E M conversion and O O E M to A B P M conversion

from chapter 4.

5.3 System Requirements

Based on Zhang's requirements for a visual O O E M C A S E tool (Zhang, 1998), we can

say the C A S E tool will be required to support the entire A B P M model creation process.

In the initial stage the tool should allow the process modeler to gather and organize

information into an understandable model. The tool should then be capable of applying

the A B P M rules to a developed model to evaluate its semantic correctness. Once

90

evaluated it should be possible to change the model as needed until the rules are met.

Finally the tool should allow for the modeler to suspend activity at any time and resume it

later. No information should be lost during these actions (Zhang, 1998).

Also, the case tool should be able to support the analysis stage. That is, the user should be

able to change elements as desired so that they can see what happens when changes are

made. (Zhang, 1998) This directly supports process redesign efforts.

The C A S E tool should also support the model conversion process from A B P M to O O E M

and from O O E M to A B P M without losing any information during the conversion

process.

In order to meet these requirements we need to consider two main areas: what constructs

to represent in the C A S E tool and what interactions a user will have with the C A S E tool.

5 . 4 Constructs to Represent

If we want to build upon the existing O O E M C A S E tool then when it comes to constructs

to represent we can first need to consider what is already present in an O O E M C A S E

tool. We can then compare that with the constructs in A B P M . After the comparision we

should then know what needs to be added to the C A S E tool.

The basis of comparison will be the respective metamodels of both grammars. The

O O E M metamodel, as adapted from Tan (Tan, 1997) and his work on an O O E M C A S E

91

tool to show attributes are either internal or interface and responses can be spawned by

services, is presented below in figure 5-1.

Spawn
Figure 5-1 The O O E M Metamodel (adapted from Tan 1997)

We developed the A B P M metamodel back in chapter 3. The question now is how do we

relate the metamodels to create a C A S E tool metamodel? The question is answered the

same way as how we related the two modeling grammars, use their ontological

foundations to establish what is there and what is not. Consider figure 5-2 below, as an

O O E M Metamodel with the ontological meanings of the constructs added.

92

0+

Receive

11

Object

Thing

Response

Interaction

1 +

0+

0+

Generate

— Sent "

1+

1 +

Generalization /
Specialization
of Objects

External

External
Thing

Attribute

Attribute

I 1 +

Attribute

Request

Interaction

I 1 1

Interface

Internal

Internal
Thing

Generalization /
Specialization

Internal

Internal
Attribute

1 +

Invoke

Interface

Mutual
Attribute

Provide

I— A c c e s s
o+ May-Own

o+ May-Provide

Spawn

1+ o+
Service

0-H Transformation

Spawn
Figure 5-2 O O E M Metamodel with ontological meaning included

When we look at the ABPM model with the ontological meanings of the constructs added

we get the diagram in figure 5 - 3 below. Since an activity has no direct ontological

mapping we did not include its ontological meaning. The boxes that are double-lined

denote the constructs that are directly equivalent,, and are thus already represented. The

dotted box denotes that although not directly equivalent on their own, combined an

outgoing interface attribute and incoming interface attribute have an ontological meaning

of interaction.

93

1 A g e n t

Thing

A g e n t

Thing

C h a n g e

o n l y h a v e

(jeneraluation /
Specialization

E x t e r n a l
A g e n t

External Thing

Internal
A g e n t

Internal Thing

Operations 1+
Transformation

11
Restrict

! | n c d m j r r g

: i h (e j f a c e : ; :
• Y acted, upon by X.

O u t g o i n g ! ;

•(nlerfatee:-
X acts, upon Y

S t a t e
L a w

State Law

T r a n s f o r m a t i o n
L a w

Transformation Lawl

Figure 5-3 ABPM metamodel with ontological meaning included

From the two metamodels we can thus see, an A B P M includes all the constructs

presented in an O O E M . However the A B P M has additional constructs not present. Thus

the additional constructs to be represented are: Resource, Activity, Laws, State Laws, and

Transformation Laws, While the constructs that are already represented (ontologically)

but need to be configured to accept input as A B P M constructs are: Agent, External

Agent, Internal Agent, Attribute, Internal Attribute, Operations, Incoming Interface

Attributes, and Outgoing Interface Attributes..

94

5.5 User Interactions

The user interactions for the A B P M C A S E tool are those related to drawing A B P M

diagrams, converting A B P M and O O E M diagrams, display option, and semantic checker.

5.5.1 Drawing ABPM Diagram Interactions

For all elements a user should be able to add, delete, and modify as desired. For the

elements where it is not obvious how to add, delete, or modify it will be discussed below.

5.5.1.1 Internal and External Agents

We recommend that when the agents and resources are implemented, that each construct

will have the associated agent template implemented with it as well. This will allow the

user to work from the view that is more convenient for them. When the user wishes to

make a modification they should merely have to specify which view they wish to work

in. If chosen, changes made in the agent template view should be reflected in the diagram

when the template is closed.

5.5.1.2 Agents Sharing A Mutual Attribute

When an incoming interface attribute has an outgoing interface attribute associated with

it, an arrow from the operation that changes the outgoing interface attribute to the

incoming interface attribute should drawn. In the event the same outgoing interface

attribute occurs in more than one activity, then when they are associated with the

incoming interface attribute a function will have to run that automatically generates a

double-lined arrow. When compressed without operations the arrows can automatically

95

be redrawn to connect directly from the outgoing interface attributes to the incoming

interface attributes. Mores is said about compression in section 5.5.2 below.

5.5.1.3 Superagents And Subagents

If it is decided to turn an agent into a superagent, nothing special happens. When it is

decided to create a superagent from existing (sub)agents. A function to automatically

extract the agent activity template of the superagent should be called. The function would

pull out the attributes and operations of each subagent that they have in common. A

notification (reminder) that a subagent needs to have additional attributes not present in

the superagent may need to occur 1 3 . A n y changes that are now routed to the superagent

should automatically be rerouted from the subagents in the diagram. The third possibil ity

is that existing agents could be grouped such that one o f them is set to be a superagent

and the rest are subagents. In this event the superagent would need to have its agent

activity template updated, much like in the aforementioned second possibil ity, from the

common attributes and operations of the subagents. The original properties o f the

superagent and those added from the subagent(s) w i l l need to be organized into activities

by the user. A prompt should be issued to remind the user to reorganize the properties o f

the super agent. A l l attributes and operations of the superagent that exist in the subagents

should be removed. The attributes and operations o f the subagent then need to be

reorganized into activities. A prompt (i f necessary) should be issued to remind a user that

1 3 This reminder may also help identify typos made in the subagents preventing a superagent from having a
non-empty agent template.

96

a superagent cannot have an empty agent activity template and that each subagent must

have its own attributes and operations that are not present in the superagent.

5.5.1.4 C o m p o s i t e a n d C o m p o n e n t A g e n t s

A user should be able to switch between the composite and components view of an agent

at any point they desire.

There are three possibilities with composite and component agents. The first possibility is

there is a composite agent that is decomposed down into its components. In this case a

prompt is issued to the user for how many components there are and what there names

will be. Since we already know what the incoming and outgoing changes to the

composite agent are we can issue a prompt for both which incoming changes (actually the

interface attribute associated with the incoming change) go to which agent, then the entire

activity is assigned to the component. The last prompt necessary is for what changes (if

any) do the components use to interact with each other. The user then needs a reminder

the component interactions all require activities.

The second case is that several components are combined to create a composite object. In

this case the agent activity template of the composite is populated from the agent

templates of the components. Any interactions between the components are left out.

When the components have the same activity it is only entered in the composite once.

When the components have an activity that is the same except for the incoming interface

attributes then only one activity will be entered in the composite, but both incoming

interface attributes will be placed in the activity and the user will be prompted for the

97

transformation law that exists. The user should then be prompted for the emergent

attributes and operations of the composite. Lastly, the user.should be asked if they wish

to view the composite in the composite view or the decomposed view in the diagram.

The last case is that from a collection of agents one is decided to be a composite agent

and the rest component agents. In that event the agent activity template of the composite

agent needs to be altered to: show its attributes and operations are emergent and to

include the attributes, and operations of the component agents (as aforementioned in

creating a composite) and to denote which component agent contributed which attribute

and operation. If a component and the composite agent have the same attribute or

operation it is denoted as being contributed from the component not the composite.

Lastly, the user should be asked if they wish to view the composite in the composite view

or the decomposed view in the diagram.

5.5.2 Display Option

A display option should be included to allow the A B P M to be shown as is, or in any

compressed view the user desires. Since the information is stored in the agent templates

viewing the compressed agents will not lose any information. Specifically, the user

should be able to choose the display method for any agent in the model. This can be done

for various reasons such some large agents may need to be compressed in order to

capture the entire system in a confined area (e.g an 8.5"xl 1" page), a user may only be

interested in viewing the interactions, etc.

98

5.5.3 O O E M And ABPM Conversions

As established in chapter 4 it is possible to convert an O O E M to an A B P M and vice

versa. We assume there already exists some sort of C A S E tool which has implemented

O O E M . The conversion process should be automated as much as possible to prevent

human error. However at steps where there is the possibility of ambiguity or lack of

information a user could be prompted to for the appropriate information. Each model

should have its own window. As well, the source file used to create the second diagram

should not be changed by the conversion process.

5.5.3.1 ABPM to O O E M Converter

For the sake of convenience we will assume the user has developed an A B P M that has

passed a semantic integrity check. The starting point is the user has selected the option to

convert the A B P M to an O O E M . The C A S E tool should initialize a new O O E M window

that is linked to the current A B P M . Using the A B P M to O O E M conversion process from

chapter 4, we will discuss the conversion steps and highlight those that require user

intervention.

Step 1. External Object Conversion. Every A B P M external agent becomes an O O E M
external object.

This is a step that can be automated. The system can automatically create a new empty

external object template for each external object. As well it can create the associated

graphical construct for an external object and place it in the diagram.

Step 2. Internal Object Conversion. Every A B P M internal agent becomes an O O E M
internal object

99

This is a step that can be automated. The system can automatically create a new empty

internal object template for each external object. As well it can create the associated

graphical construct for an internal object and place it in the diagram.

Step 3. Request and Response Identification. Outgoing interface attributes become
requests. However if the last outgoing interface attribute is going to the same agent which
initiated the activity in which the outgoing interface attribute is found the and the
outgoing interface attribute used to initiate the activity became a request; the outgoing
interface attribute becomes a response. This step may encounter duplicate changes,
duplicates can be left out.

This step can be automated. The system can first eliminate duplicate changes. Then it can

convert then to requests or responses as dictated. The requests and responses can then be

automatically placed in the diagram.

Step 4. Interface Attribute Conversion. An incoming interface attribute to handle a
change from an agent becomes an interface attribute to handlea request. This only
applies to those incoming interface attributes of which the associated outgoing interface
attribute became a request.

This step can be automated. By keeping track of the changes that became requests in the

previous step'the system can know which incoming interface attributes to convert to

interface attributes.The interface attributes can the be automatically placed in the'

diagram.

Step 5. Internal Attribute Conversion. An A B P M internal attribute becomes an O O E M
internal attribute. This step may generate duplicate internal attributes, duplicates can be
left out. • 1

This step can be automated. The system can first eliminate duplicate attributes. Then it

can put the internal attributes into the object template. Then the internal attributes can

automatically be placed in the diagram.

100

Step 6. Service Creation. Create a service to process every request. This step requires the

modeler to create a service themselves since the service is not present in the process

model.

The system can automatically place one of the operations that are candidates for a service

in the diagram. The user can reminded that the services may not be correct, and that they

may either need to use a different one of the candidates for a service or create a new

service altogether for each request.

5.5.3.2 O O E M to A B P M Converter

For the sake of convenience we will assume the user has developed an O O E M that has

passed a semantic integrity check. The starting point is the user has selected the option to

convert the O O E M to an A B P M . The C A S E tool should initialize a new A B P M window

that is linked to the current O O E M . Using the O O E M to A B P M conversion process from

chapter 4, we will discuss the conversion steps and highlight those that require user

intervention.

Step 1. External Agent Conversion. Every O O E M external object becomes an external
A B P M agent.

This is a step that can be automated. The system can automatically create a new empty

external agent template for each external agent. As well it can create the associated

graphical construct for an external agent and place it in the diagram.

101

Step 2. Internal Agent Conversion. Every O O E M internal object becomes an A B P M
internal agent

This is a step that can be automated. The system can automatically create a new empty

internal agent template for each internal agent. As well it can create the associated

graphical construct for an internal agent and place it in the diagram.

Step 3. Outgoing Interface Attribute Identification. All requests and responses become
outgoing interface attributes.

This is a step that can be automated. The system can do the conversion and then put them

into the first activity of the agent template to temporarily store them.

Step 4. Incoming Interface Attribute Identification. Al l outgoing interface attributes
identified in step 3 require an incoming interface attribute. As well when we create the
incoming interface attribute we need to show the agents share a mutual attribute.'

This step can be automated. The outgoing interface attributes can be dissected for the

'attribute changed' part of the incoming interface attribute, while the agent possessing the

outgoing interface attribute is the 'agent doing the change' part. The incoming interface

attribute can then be stored in the agent template of the agent that possesses it.

Step 5. Activity Creation. At this point we can create activities. Each time there is an
incoming interface attribute without a transformation law requiring other incoming
interface attributes to change to start the operations of the activity, it is the beginning of a
new activity. We can create transformation and state laws for the incoming interface
attributes using domain knowledge.

The system can automatically put each incoming interface attribute into a new activity.

The user can then be prompted for any transformation laws that exist and what incoming

interface attributes belong'to the same activity.

102

Step 6. Outgoing Interface Attribute Assignment. We can now assign the outgoing
interface attributes to the appropriate activity using domain knowledge. Duplicate
assignments are allowed.

This is a manual process (unless there is only one activity in which case the assignment

can be automatically done done), in which the user can be prompted for which activity

the which outgoing interface attributes is altered in.

Step 7. Internal Attribute Identification. Every O O E M internal attribute becomes an
A B P M internal attribute. We can the assign them to the appropriate activity using domain
knowledge. Additional internal attributes may need to be created using domain
knowledge. Duplication may occur

This step can be partially automated. The system can do the conversion for the existing

O O E M internal attributes, however the user will have to be prompted for any extra

attributes. The user also needs to be prompted for which activities the attributes are used

in. ' ! <••••••" " • ' - ' ' •' ••• ' ' •

Step 8. Operation Identification. Create the operations that'will be invoked to change the
outgoing interface and internal attributes using domain knowledge. We also have to
create transformation laws using domain knowledge that show if there are any restrictions
on the operations of the activity.

It would drive a user insane if they were prompted for an operation for every outgoing

interface and internal attribute. We suggest one reminder about the fact the user needs to

create operations for every outgoing interface and internal attribute. At this point the

diagram would be in a compressed view that has no operations. The user can then rely on

the semantic checker (discussed in the next section) to ensure they have an operation for

every outgoing and interface attribute.

103

Step 9. Resource Identification. In the event there are agents only have incoming
interface attributes in all of their activities they are resources and need to be converted to
the appropriate resource notation.

This is a step that can be automated. The system can check if there are any agents with

that only have incoming interface attributes in its activities. If there are it can

automatically convert the agent to a resource.

5.5.4 Semantic Checker

The requirement of a semantic checker is rather intuitive. Modern tools (for example

Microsoft Word) provide facilities that perform error checking for the user. This makes

the tool more useful to the user. As well a tool that can check whether an A B P M diagram

is correct will help to reduce errors and lead to better models being created. How are

errors introduced to an ABPM? Errors are introduced byviblating the semantic integrity

of the language, that is, by violating the rules. Hence a semantic checker will be a useful

part of the tool to ensure the semantic integrity rules are followed. When a rule is violated

the error can be highlighted for the user.

The rules (from chapter 3) and how they should be implemented in the system are below:

1. Every change in the system should be able to be traced back to an initial change from
an external agent.

The incoming interface attribute for each activity can be back tracked to the outgoing

interface attribute. The system can then backtrack the incoming interface attribute of the

activity that the outgoinginterface is a part of until an external agent is reached. If an

external agent is not reached then there is an error.

2. Every agent must have at least one activity.

The system can check if the activity count for each agent is greater than or equal to one.

If it is not, there is an error.

3. Every Activity must have at least one operation

The system can check if the operation count for each activity is greater than or equal to

one. If it is not, there is an error.

4. Every resource must only have incoming interface attributes.

The system can check each entry in the resource template. If they are not incoming

interface attributes (notationally in the form: agent doing the change:attribute changed),

there is an error.

5. Every attribute is changed by one operation.

In the agent template every outgoing interface attribute and interface attribute should

have one and only one operation. The system can check if this true, if not there is an

error. '

6. Every activity can only have one incoming interface attribute unless governed by a
transformation law.

In the agent template if the transformation law associated with an incoming interface

attribute is blank there should only be one incoming interface attribute for each activity.

The system can check if this is true, if not there is an error.

7. Every outgoing interface attribute must have a corresponding interface attribute and
vice versa.

i 105

Two checks occur here. For each outgoing interface attribute, there has to be a check in

the activities of the agent it lists the on the 'agent being changed' part of the outgoing

interface attribute that there is in fact an incoming interface attribute for it. If not there is

an error. This check should keep track of the incoming interface attributes it found, if

there are other incoming interface attributes not found in during the check then there is an

error since those incoming interface attributes do not have an outgoing interface attribute

associated with them.

8. Every composite agent must possess emergent attributes and operations not present in
the component agents

The system can check if there additional attributes and operations not present in the

components. IfThere are not any then there is an error

9. Every subagent must possess attributes and operations that are unique to the subagent
and are not inherited from the superagent.

The system can check if there additional attributes and operations not present in the

superagents. If there are not any then there is an error

5.6 Design Limitations

The first implementation limitation is that the proposed design guidelines use the notation

developed in chapter 3. A user may wish to develop an entirely different notation for the

constructs. Even if that is the case, the requirements developed previously will still hold.

They merely need to be implemented using the new notation. The second limitation is

that A B P M itself has not yet been rigorously tested, thus errors in A B P M will have

propagated through the design. The third limitation'is that the A B P M C A S E tool design

106

was based partially on the design of an existing OOEM CASE tool. This may have

introduced flaws of its own since an OOEM lacks information relative to ABPM.

5.7 Summary

This chapter proposed design principles for ABPM as a CASE tool. It defined the

constructs that needed to be added to an OOEM CASE tool. It also discussed user

interactions with such a CASE tool. The last thing this chapter considered was possible

design limitations.

107

6 Conclusions And Future Research

6.1 Thesis Summary

This thesis presented a new method for modeling organizational processes; Object-

Oriented Activity-Based Process Modeling (ABPM). We first looked at business process

modeling in general and why improvements were needed.

We then proceeded to further develop a modeling algorithm proposed by Wang (Wang

2002) into a graphical modeling grammar. We created the grammar by combining the

constructs of the Ontology-Based Process Modeling (OBPM) algorithm with object

oriented constructs. We then tied the new A B P M constructs to specific graphical

constructs. The essential constructs in A B P M are agent, attribute, and operation.

We then developed a modeling process for using the graphical A B P M constructs. The

modeling process was based partially on the work by Wang (Wang 2002) and partially on

work by Wand and Woo (Wand and Woo, 2002). The modeling process is based upon

rules for: model scope, agent identification, operation inclusion, attribute inclusion,

attribute ownership, composite agents, sub-classification, and new activities. We also

include a set of semantic integrity rules that can be used to check if a created A B P M is

semantically correct.

Based upon their similar theoretical foundations and purposes we then delved into the

relationship between Object-Oriented Enterprise Modeling (OOEM) and A B P M . We

developed a means to convert from one model to another, noting along the way that

A B P M contains more information than O O E M which should be the case since A B P M is

a more detailed view of organizational activity.

At this point we created design principles for the implementation of A B P M as a C A S E

tool. We discussed the functional and non-functional requirements of such a C A S E tool.

Next we proposed a possible development platform for A B P M . We also considered the

possible limitations of the proposed design architecture.

6.2 Contributions

This thesis developed the OBPM algorithm into an objected graphical modeling language

and process. The A B P M constructs have specific and well-defined semantics for real

world business process representation.

A noteworthy contribution is the refinement of the change propagation algorithm which

is based upon a set of ontologically derived rules to create a systematic process for

modeling a business process. The strength of the algorithm is from its ontological real

world foundations rather than programming or data design rules of thumb.

This thesis also makes a contribution by exploring the relationship of A B P M and O O E M .

Both languages are designed to model a specific view of organizational activity,

irrespective of how a later information system artifact will be built. By relating the two

grammars using ontological foundations we can acquire greater understanding of an

organization without losing information.

109

Our last contribution the development of a design principles for an A B P M C A S E tool

that is implementation independent means that no matter how one decides to implement

A B P M if they follow our requirements they will be able to create a tool to fully support

the business process model generation process.

6.3 Limitations And Future Research

The foundations of A B P M were established by previous research. However A B P M itself

is a new grammar and methodology. It has been applied to very few cases and testing so

far has been limited. It also needs to be tested beyond an academic setting and in the real

world. This will allow for validation of the grammar and method.

We also make a simplifying assumption for our A B P M to O O E M conversion process.

During step 3 (request and response identification), regarding how to identify responses,

we assume that an object can never receive a response from an object that has never made

a request to it. Future research can be done on the ontological nature of both requests and

responses, so that a better form of the request and response identification step during the

A B P M to O O E M conversion process can be developed.

Another possible limitation is that we talk about both analysis principles (e.g. operation,

activity) and design principles (e.g. attributes) in the same grammar. This is due to the

fact that we use ontological principles that have no business meaning, with a goal of

representing processes. Therefore when using the grammar for analysis and/or design we

110

may have to convert ontological concepts to business concepts. For example attributes

may need to be converted to documents. Further research could be done to determine the

extent of the conversions necessary, if any.

Other areas of future research could focus on:

• A B P M does not allow for new state variables. The model A B P M is based upon

does not allow for creating and eliminating things. Al l changes are modeled as

changes of attribute values. Hence A B P M does not allow for creating and

eliminating resources. There are two possible responses to this observation. First

we can analyze everything in the domain, if all resources have been identified

beforehand, they cannot be changed if they do not exist. Second, ontologically

nothing appears or disappears, we just change its name. Research could be

undertaken to determine which would be the more appropriate manner to deal

with new or disappearing state variables.

• Data is disregarded is O B P M and thus by extension in A B P M . However

computerized information systems tend to primarily pass data. An ontologically

based data modeling grammar and method that is related back to A B P M would

fill this gap.

• Wand, Woo, and Jung (Wand, Woo, and Jung, 2000) proposed a means to convert

from an O O E M to a logical design of an information system. It should be possible

to convert from an A B P M to a logical design of an information system since we

can convert an A B P M to an O O E M and then a logical design of an information

system. The question arises is it possible for a direct conversion from A B P M to a

logical design? Another question also arises concerning if it is possible to create a

logical directly design from an ABPM will it be the same as the logical design

from an OOEM, and if they are different which one is better?

• Although we have proposed a set of design principles for a CASE tool, the

question remains of if it is implemented will it actually be useable and useful to

modelers?

• Research can be done to compare ease of use, understanding, and quality of

ABPM models in relation to other business process modeling grammars.

112

Bibliography

Bosilj-VukSic, V. , & Hlupic V. (2001). Petri Nets and IDEF Diagrams: Applicability and
Efficacy for Business Process Modeling. Informatica 25(1), 123-133.

CIO Magazine. (1997). Anatomy of a Failure. Retrieved August 29, 2004, from
http://www.cio.eom/archive/enterprise/l 11597_data.html

Grause, D.C. , & Weinberg, G, M . (1989). Exploring Requirements: Quality Before
Design. New York, N Y : Dorset House Publishing.

Huckvale, T. & Ould, M . (1994). Process Modeling: Why, What, and How. In K.Spurr,
P. Layzell, L. Jennison, & N. Richards (Eds.) Software Assistance for Business Re-
engineering (pp. 81-97). West Sussex, England: John Wiley & Sons Ltd.

Hui, S. (1997). An Object-Oriented Workflow Management System. M.Sc. Dissertation.
Faculty of Commerce and Business Administration, University of British Columbia.

I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley, 1992

Introduction to Petri Nets. (2004). Introduction to Petri Nets. Retrieved April 22, 2004
from http://worldserver.oleane.com/adv/elstech/petrinet.htm

Jensen, K: A Brief Introduction to Coloured Petri Nets. In: E. Brinksma (ed.): Tools and
Algorithms for the Construction and Analysis of Systems. Proceeding of the TACAS'97
Workshop, Enschede, The Netherlands 1997, Lecture Notes in Computer Science Vol.
1217, Springer-Verlag 1997, 203-207

Kemper, P. (2004, February 5). Lecture on Petri-Nets. Retrieved April 22, 2004, from
http://www.iai.inf.tu-dresden.de/ms/lvbeschr/vwahl_petri.html

Kluge, W.: The Kicking Horse Pass Problem Petri Net News Letters No. 54, (1998), pp.
3-15 '

Knowledge'Based Systems, Inc. (2000, June, 23). IDEF3 Method Report. Retrieved April
22, 2004, from www.idef.com/downloads/pdf/ideO_fn.pdf

Tan, W. (William Tan Khoon Lee) (1997). A semantically-enhanced object-oriented
CASE tool for enterprise modeling. M.Sc. Dissertation. Faculty of Commerce and
Business Administration, University of British Columbia. '

Parsons, J. & Wand, Y: (1997). Using Objects for Systems Analysis. Communications of
the ACM, 40(12),-104-110.

Petri Nets. (2004). Petri Nets. Retrieved April 22, 2004 from http://www.petrinets.info/

113

http://www.cio.eom/archive/enterprise/l
http://worldserver.oleane.com/adv/elstech/petrinet.htm
http://www.iai.inf.tu-dresden.de/ms/lvbeschr/vwahl_petri.html
http://www.idef.com/downloads/pdf/ideO_fn.pdf
http://www.petrinets.info/

Romney, M . (1994, October). Business Process Re-engineering. The CPA Journal
Online. Retrieved August 29, 2004, from
http://www.nysscpa.org/cpajournal/old/16373954.htm

The Standish Group. (1994) The Chaos Report. Retrieved August 29, 2004, from
http://wwwl.standishgroup.eom//sample_research/chaos_1994_l.php

Value Based Management.net. (2004) Business Process Reengineering. Retrieved
August, 29, 2004, from http://www.valuebasedmanagement.net/methods_bpr.html

Wand, Y . & Wang, R. (1996). Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(1 J) 86-95.

Wand, Y . & Weber, R. (1990). Mario Bunge's Ontology as a Formal Foundation for
Information Systems Concepts. In Dorn, G. & Weingartner, P. (Eds.), Studies in Bunge's
Treatise on Basic Philosophy, the Poznan Studies in the Philosophy of the Sciences and
the Humanities (ppl23-150). Rodopi, Amersterdam

Wand Y. & Weber, R. (1993). On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems, 3, 217-237.

Wand, Y. & Weber, R. (1995). On the deep structure of information systems. Information
Systems Journal, 5,-203-223.

Wand, Y. & Weber, R. (2002). Research Commentary: Information Systems and
Conceptual Modeling - A Research Agenda. Information Systems Research, 13(4), 363-
376.

Wand Y . & Woo. G. (1999): Ontology-Based Rules for Object-Oriented Enterprise
Modeling: Working paper. Faculty of Commerce and Business Administration,
University of British Columbia.

Wand, Y., ! W o o , C , & Jung, D. (2000). Object-Oriented Modeling: From Enterprise to
Logical Design. Proceedings of the Tenth Annual Workshop on Information
Technologies and Systems (WITS'00, December 9-10, Brisbane Australia), 25-30.

Wang, Q. (2002); A'Proposal for a Process Modeling Methodology. M.Sc. Dissertation.
Faculty of Commerce and Business Administration, University of British Columbia.

Wart, S., Wand, Y. & Woo, C. (1993). Object-Oriented Systems Analysis: An
Introduction: Faculty of Commerce and Business Administration, University of British
Columbia.

http://www.nysscpa.org/cpajournal/old/16373954.htm
http://wwwl.standishgroup.eom//sample_research/chaos_1994_l.php
http://Management.net
http://www.valuebasedmanagement.net/methods_bpr.html

Zhang, X. (1998). The Visualization of Object-Oriented Enterprise Modeling. M.Sc.
Dissertation. Faculty of Commerce and Business Administration, University of British
Columbia.

Zhao, H. (1995). Object-Oriented Enterprise Modeling. M.Sc. Dissertation. Faculty of
Commerce and Business Administration, University of British Columbia.

Zhou, M and Zurawski R: Introduction to Petri Nets in Flexible and Agile Automation.
In: M . Zhou(ed.): Petri Nets in Flexible and Agile Automation, Kluwer Academic
Publishers, 1999, pp. 1-23

Zimmerman, A . (2004) Petri Nets. Retrieved April 22, 2004, from http://pdv.cs.tu-
berlin.de/~azi/petri.html

http://pdv.cs.tu-
http://berlin.de/~azi/petri.html

Appendix A - Step By Step Derivation Of The ABPM For The A C M E Warehouse
Management Case

The purpose of this appendix is to illustrate the development of an A B P M following the

A B P M algorithm. We will use the A C M E Warehouse Management Inc. case for this

demonstration. The case will be italicized to minimize confusion with the A B P M process

At this point we are at step 1 of the algorithm: Identify the external agents

A CME Warehouse Management Inc. offers storage facilities and redistribution services

(between their different warehouses) across the nation. A customer can request space in

a particular warehouse, request items to be transferred to another warehouse, or request

withdrawal of items from a particular warehouse (even for items not stored there).

For the purpose of this case, we only look at the activities involved in processing a

withdrawal request. A customer contacts ACME headquarters to request a withdrawal.

The scope of the process has been defined as the activities involved in processing a

withdrawal request at the A C M E Warehouse Management facilities. Where do

withdrawal requests come from? The customer. Hence the customer must be an external

agent.

We then move onto step 2 of the algorithm: for each external agent identify the changes

generated. Customer generates 2 external changes: a customer contacts ACME

headquarters to request a withdrawal, and the customer will come to the warehouse on

116

the required date to pick up the items. Thus, the in terms of our notation changes

generated by Customer are 'withdrawal request' and 'arrival'

Step 3 of the algorithm: for each change:, means we will look at what happens due to

withdrawal request and arrival separately. We will first analyze withdrawal request and

then arrival since arrival appears later in the case and logically the customer should not

arrive to pick up items until a request for the items has been made.

We are at step 3.1 Identify the agent or resource that was changed by withdrawal request

A customer contacts ACME headquarters to request a withdrawal. An office clerk checks

whether the customer has the authority to withdraw the items. This raises the question of

was A C M E headquarters or Office Clerk the agent changed by Customer? The answer is

to look at what actually becomes unstable. Does A C M E headquarters or the Office Clerk

act next? Thus the answer is Office Clerk. This does raise the possibility however that

there could be some sort of composite agent A C M E headquarters of which Office Clerk

is a component agent. This possibility will be discussed when we get to step 4.

We are at step 3.2. If a resource was changed identify the incoming interface attribute.

Office Clerk is an agent since it performs an action.

We are at step 3.3 If the agent is an internal agent:, Office clerk is an internal agent since

Office Clerk is in the domain of interest.

117

We are at step 3.3.1 If this is the first change to an agent, or the last activity of an agent

has gone through a sequence of instability-change-stability create a new activity. This is

the first change for Office Clerk so a new activity will be created.

We are at step 3.3.2: Identify the incoming interface attributes that were modified. Office

Clerk needs some sort of interface attribute to handle the withdrawal request. According

to our modeling grammar it will be Customer::Withdrawal Request.

We are at step 3.3.3: Identify any state laws that may restrict change. An office clerk

checks whether the customer has the authority to withdraw the items. The clerk then

passes the withdrawal request to the warehouse where the customer wants to pick up the

items and the office clerk will notify the customer as to the status of the request

(approved, or declined due to lack of authority, no inventory, or no transportation). And

Once the office clerk has recorded the items to be withdrawn, he or she forwards the

request to the manager (foreman) of the warehouse. There appear to be no state laws on

the incoming interface attributes

We are at step 3.3.4 Identify any transformation laws that may exist for the incoming

interface attributes. There do not appear to be any state laws restricting further change

since the office clerk checks the customer authorization immediately upon receiving the

withdrawal request.

118

We are at step 3.3.5: If an agent becomes unstable:, Off ice Clerk does become unstable

because it immediately performs an action upon receiving the withdrawal request.

We are at step 3.3.5.1: Identify the operations that may occur. An office clerk checks

whether the customer has the authority to withdraw the items. The clerk then passes the

withdrawal request to the warehouse where the customer wants to pick up the items and

the office clerk will notify the customer as to the status of the request (approved, or

declined due to lack of authority, no inventory, or no transportation). A n d Once the

office clerk has recorded the items to be withdrawn, he or she forwards the request to the

manager (foreman) of the warehouse. The warehouse manager is responsible for

directing the redistribution of items between warehouses.

The Off ice Clerk needs to perform an authorization status check o f that customer and

then needs to either contact the appropriate warehouse or notify the customer that they

are refused due to not passing the authorization check. In terms o f our modeling grammar

notation the services performed are Authority Check and either Contact Warehouse or

Noti fy About Status. The clerk recording items is actually part o f the incoming request

from Customer 1 4 .

We are at step 3.3.5.2 Identify any transformation laws that may affect what operations

occur. An office clerk checks whether the customer has the authority to withdraw the

items. The clerk then passes the withdrawal request to the warehouse where the customer

wants to pick up the items and the office clerk will notify the customer as to the status of

1 4 Since ABPM does not deal with data we do not need to indicate a form being filled out.

119

the request (approved, or declined due to lack of authority, no inventory, or no

transportation). And Once the office clerk has recorded the items to be withdrawn, he or

she forwards the request to the manager (foreman) of the warehouse. The warehouse

manager is responsible for directing the redistribution of items between warehouses.

Contact Warehouse and Notify About Status are mutually exclusive15. This means there

is a transformation law restricting which operation will happen. Since it is freeform we

can have the law read as Contact Warehouse and Notify About Status are mutually

exclusive.

We are at step 3.3.5.3: Identify the internal attributes that will be affected. An office clerk

checks whether the customer has the authority to withdraw the items. The clerk then

passes the withdrawal request to the warehouse where the customer wants to pick up the

items and the office clerk will notify the customer as to the status of the request

(approved, or declined due to lack of authority, no inventory, or no transportation). And

Once the office clerk has recorded the items to be withdrawn, he or she forwards the

request to the manager (foreman) of the warehouse. The warehouse manager is

responsible for directing the redistribution of items between warehouses.

The office clerk only uses its own internal information in the authority check operation,

the other operations involve interaction with other agents. The notation according to our

grammar for this information on customer authorization status will be Authorization

Status.

1 5 We assume the office clerk'will not pass a withdrawal request to the warehouse when the customer has
not passed an authorization check.

120

We are at step 3.3.5.4: Identify the outgoing interface attributes that were modified. An

office clerk checks whether the customer has the authority to withdraw the items. The

clerk then passes the withdrawal request to the warehouse where the customer wants to

pick up the items and the office clerk will notify the customer as to the status of the

request (approved, or declined due to lack of authority, no inventory, or no

transportation). And Once the office clerk has recorded the items to be withdrawn, he or

she forwards the request to the manager (foreman) of the warehouse. The warehouse

manager is responsible for directing the redistribution of items between warehouses.

Contact Warehouse modifies an interface attribute that affects another agent; Warehouse

Manager. Notify About Status modifies an interface attribute that affects Customer.

According to our grammar the notation will be Withdrawal Request::Warehouse Manager

and Order Status::Customer

We are at step 3.3.4.5: Repeat steps 3.3.4.1 to 3.3.4.4 until the agent becomes stable.

Since Office Clerk performs no more actions as a direct result of the incoming external

request it can at this point be considered stable.

Since we have reached a state where an agent is stable it is useful to show what we have

developed. Figure A - l shows where we currently are. Warehouse Manager is purposely

left nebulous is this case since we do not know if it is an internal agent or an external

agent, or a resource.

121

Customer Office Clerk

Activity I Withdrawal Request
Affected Attributes
Customer::Withdrawal request
Authorization Status
Withdrawal Request:Warehouse Manager
Order St.HiK--rnstnmer
Activity 1 Operations
Contact Warehouse and Notify About
Status are mutually exclusive
Authority Check
Contact Warehouse
Notify about status

Warehouse Manager

Figure A - l Office Clerk Is Stable

We are at step 3.3.6: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.4.4 were

Order Status::Customer and Withdrawal Request::Warehouse. For the sake of

conciseness from this point forward we will use a tabular format wherever possible.

If the warehouse does not have the items or does not have enough quantity of the items,

the warehouse manager will contact other warehouses for the requested items. If the

items are located the warehouse manager will ask the planner to arrange for

transportation for the requested items and the warehouse manager will notify the office

clerk if the request can be fulfilled or not, and the reason. The office clerk will notify the

customer as to the status of the request (approved, or declined due to lack of authority,

no inventory, or no transportation) and The warehouse manager is responsible for

directing the redistribution of items between warehouses. If the items are not all

available in the warehouse, transport requests are issued. The warehouse manager fills

out a redistribution form with the following information: items to be moved, place from

which to take the items, warehouse to transport the items to, quantity to be moved, and

the date by when the redistribution must be done. The warehouse manager forwards the

form to the planner to organize the interwarehouse transportation of the items

122

Chang e: Order Status::Customer

Step Output
3.1 Customer is an existing agent
3.2 Customer is an agent
3.3 Customer is an external agent

Table A-l Step 3 for Order Status::Customer

Change: Withdrawal Request::Warehouse Manager

Step Output
3.1 Warehouse Manager is a new agent
3.2 Warehouse Manager is an agent
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Office Clerk::Withdrawal Request
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable
3.3.5.1 Check Inventory

Contact Other Warehouses
Notify About Status

3.3.5.2 Contact Other Warehouse and Notify
About Status are mutually exclusive

3.3.5.3 Inventory Information
3.3.5.4 . Item Existence::Warehouse

Order Status:":Office Clerk
3.3.5.5 Warehouse Manager is'currently stable

Table A-2 Step 3 For Withdrawal Request::Warehouse Manager

Since we have reached a state where an agent is stable it is useful to show what we have

developed. Figure A-2 shows where we{currently are. Planner is purposely left nebulous

is this case since we do not know if it is an internal agent or an external agent. Warehouse

is purposely left nebulous is this case since we do not know if it is an internal agent or an

external agent 16

From this point forward we will not show the ABPM after each step in order to be more

concise. We will however show the full ABPM after all the changes have been addressed.

' Recall that even though many warehouses may be contacted we only need to show one since we are
showing agents and not instances of agents in this diagram.

123

Office Clerk Warehouse Manager

Withdrawal requesl::Ollice Clerk C

Office Clcrk::Ordcr Slatus '

Activity I Withdrawal Request
Affected Attributes
Customer::Withdra\val request
Authorization Slatus
Withdrawal Request:Warehouse Manager
Order S lnNis -Cnstomcr
Activity I Operations
Contact Warehouse and Notify About
Status are mutually exclusive
Authority Check
Contact Warehouse
Notify about status

Activity I Find Items
Affected Attributes
Office Clcrk::Withdrawal Request
Inventory Information
Order Slatus::Ollice Clerk
l l r m Fv i s l . ' n r r -War i ' ho i i s i -

Activity 1 Operations
Contact Other Warehouse and Notify
About Status are mutually exclusive
Check Inventory
•Notify about status
Contact Other Warehouses

Figure A-2 After Step 3 For Order Status::Customer And Withdrawal Request::Warehouse

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Item Existence::Warehouse, Transpprt Form::Planner, and Order Status::Office Clerk

If the warehouse does not have the items or does not have enough quantity of the items,

the warehouse manager will contact other warehouses for the requested items. If the

items are located the warehouse manager will ask the planner, to arrange for

transportation for the requested items.

i C h a n g e : Item Existence::Warehouse ;

i 3.1 i Warehouse is a new agent j
i 3.2 i Warehouse is an agent ; i

:| 3.3. j . Warehouse is an internal agent.:\ ..:;.\..;...v.......ij:..' .
i 3.3.1 i This is a new activity for Warehouse I
i 3.3.2 i Warehouse Manager::Item Existence j

, i. 3.3.3 i No state laws found
t -I t

i" 3.3.4 I No transformation laws found
t < t

! 3.3.5 j Warehouse is unstable i
1 '.' '' "i 3.3.5.1 ' "•; Check Inventory '• • •

i I Notify About Search Results j
i 3.3.5.2 i No transformation laws found . ,
i < i

: 3.3.5.3 \ Inventory Information I
i 3.3.5.4 j Search Results::Warehouse Manager i
i 3.3.5.5 i Warehouse is currently stable 'J

Table A-3 Step 3 For Item Existence::Warehouse

124

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was

Search Results::Warehouse Manager.

If the warehouse does not have the items or does not have enough quantity of the items,

the warehouse manager will contact other warehouses for the requested items. If the

items are located the warehouse manager will ask the planner to arrange for

transportation for the requested items and the warehouse manager will notify the office

clerk if the request can be fulfilled or not, and the reason. And If the items are not all

available in the warehouse, transport requests are issued. The warehouse manager fills

out a redistribution form with the following information: items to be moved, place from

which to take the items, warehouse to transport the items to, quantity to be moved, and

the date by when the redistribution must be done. The warehouse manager forwards the

form to the planner to organize the interwarehouse transportation of the items.

Change: Search Results::Warehouse Manager
Step Output ' '

3.1 Warehouse Manager is an existing agent
3.2- Warehouse Manager is an agent
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Warehouse Manager::Search Results
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable
3.3.5.1 •' Contact Planner 1 .

Notify About Status
3.3.5.2 . Contact Planner and Notify About Status are .

mutually exclusive
3.3.5.3 No internal attributes found
3.3.5.4 " Transport Form::Planner

Order Status::Office Clerk
3.3.5.5 - Warehouse is currently stable

A-4 Step 3 For Search Results::Warehouse Manager

125

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Transport Form::Planner and Order Status::Office Clerk.

The planner's responsibility is to schedule the company's truck fleet to accommodate

requests for transportation, taking into account the existing schedule of each truck and its

capacity. The warehouse manager will be notified whether the transportation request can

or cannot be satisfied and the planner issues transport orders to truck drivers and The

warehouse manager forwards the form to the planner to organize the interwarehouse

transportation of the items. The items to be moved are marked as move-pending, and the

planner initiates a plan to have the items at the appropriate warehouse at the given date.

Once interwarehouse transport plans are finalized, transport requests are issued to the

truck drivers.

Change: Transport Form::Planner
Step Output

3.1 Planner is a new agent
.3.2 ' Planner is an agent • •
3.3 Planner is an internal agent
3.3.1 This is a new activity for planner
3.3.2 Warehouse Manager: :Transport Form
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Planner is unstable

• 3.3;5.1 Mark Items
Schedule Trucks
Notify About Transport , , ..
Issue Orders

3.3.5.2 No transformation laws found
3.3.5.3 ~ Inventory Information

Truck Information
3.3.5.4. •' Transport Schedule::Warehouse Manager

Transport Orders::Truck Driver
3.3.5.5 • Planner is currently stable

Table A-5 Step 3 For Transport Form::Planner

126

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Transport Schedule::Warehouse Manager and Transport Orders::Truck Driver.

The planner's responsibility is to schedule the company's truck fleet to accommodate

requests for transportation, taking into account the existing schedule of each truck and its

capacity. The warehouse manager will be notified whether the transportation request can

or cannot be satisfied.

The warehouse manager will notify the office clerk if the request can be fulfilled or not,

and the reason.

Change: Transport Schedule::Warehouse Manager
Step Output

3.1 Warehouse Manager is an existing agent
3.2 ; • • • Warehouse Manager is an agent
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Planner: :Transport Schedule
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable
3.3.5.1 Notify About Status
3.3.5.2 No transformation laws found
3.3.5.3,,- , No internal attributes found
3.3.5.4 Order Status::Office Clerk
3.3.5.5 Warehouse Manager is currently stable

Table A-6 Step 3 For Transport Schedule::Warehouse Manager

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Order

Status::Office Clerk. '• .

127

The warehouse manager will notify the office clerk if the request can be fulfilled or not,

and the reason. The office clerk will notify the customer as to the status of the request

(approved, or declined due to lack of authority, no inventory, or no transportation).

Change: Order Status::Office Clerk
Step Output

3.1 Office Clerk is an existing agent
3.2 Office Clerk is an agent
3.3 Office Clerk is an internal agent
3.3.1 This is a new activity for Office Clerk
3.3.2 Warehouse: :Order Status
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Office Clerk is unstable
3.3.5.1 Notify About Status
3.3.5.2 No transformation laws found
3.3.5.3 No internal attributes found
3.3.5.4 Order Status: :Customer
3.3.5.5 Office Clerk is currently stable

Table A-7 Step 3 For Order Status::Office Clerk

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Order

Status::Customer. This change was already dealt with. We can now return to the previous

change and repeat step 3 for another of the outgoing interface attributes that was changed

in step 3.3.5.4. In this case, webacktrack all the way to the change Transport

Form::Planner which has another outgoing change of Transport Orders::Truck Driver.

The planner issues transport orders to truck drivers. After receiving a transport order,

the truck driver informs the warehouse about the pickup of the items. The warehouse

manager will make arrangements to have the items, ready, when the truck arrives. When

the truck arrives at the warehouse the items are loaded. The truck driver then informs the

next warehouse about the delivery. When the truck has arrived at the next warehouse,

the items are unloaded. A warehouse worker finds space for the items and arranges to

. - -. • 128

have them moved to the allocated space. The worker updates the warehouse's inventory

information. Truck drivers are required to report the status of the truck and the delivery

to the planner after each step and The truck driver alerts the warehouse manager of the

time he or she will be at the warehouse to pick up the items. The warehouse manager

gives appropriate requests to the warehouse worker on the date of delivery to have the

items ready for when the truck is expected. When the warehouse worker gets a request to

fetch items, he or she, at the appropriate time, orders forklift operators to move the items

to the loading platform. The forklift operators execute the internal warehouse operation.

When the truck driver arrives, the driver notifies the warehouse worker to have the items

loaded into the truck. The truck driver notifies the next warehouse manager when it is

expected to arrive at the next warehouse. The number of items in the current warehouse

decreases, and the transport request is marked as on transport.

Change: Transport Orders::Truck Driver
Step Output

3.1 Truck Driver is a new agent
'3.2 Truck Driver is an agent'
3.3 Truck Driver is an internal agent
3.3.1 This is a new activity for Truck Driver
3.32 Planner: :Transport Orders
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Truck Driver is unstable
3.3.5.1 Notify About Pickup - '•>••'.'../,. V '• ' '

Report Truck Status
Drive To Pickup Warehouse
Notify Ready To Load
Report Truck Status

3.3:5.2 No transformation laws found
3.3.5.3 Truck Status
3.3.5.4 •' Truck Status::Planner

Pickup Notification::Warehouse Manager
Ready To Load::Warehouse Worker, . ,
Truck Status::Planner

3.3.5.5 Truck Driver is currently stable
Table A-8 Step 3 For Transport Orders::Truck Driver

129

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Pickup Notification::Warehouse Manager, Truck Status::Planner, Ready To

Load::Warehouse Worker, and Truck Status::Planner.

The planner issues transport orders to truck drivers. After receiving a transport order,

the truck driver informs the warehouse about the pickup of the items. The warehouse

manager will make arrangements to have the items ready when the truck arrives. When

the truck arrives at the warehouse the items are loaded and The truck driver alerts the

warehouse manager of the time he or she will be at the warehouse to pick up the items.

The warehouse manager gives appropriate requests to the warehouse worker on the date

of delivery to have the items ready for when the truck is expected.

Change: Pickup Notification::Warehouse Manager
Step Output

3.1 Warehouse Manager is an existing agent
3.2 Warehouse Manager is an agent
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Truck Driver::Pickup Notification
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable
3.3.5.1 Notify to Ready Items
3.3.5.2 No transformation laws found
3.3.5.3 • No internal attributes found
3.3.5.4 Ready Items::Warehouse Worker
3.3.5.5 Warehouse Manager is currently stable

Table A-9 Step 3 For Pickup Notification::Warehouse Manager

We are at step 3.2.5: repeat'step 3 for each outgoing interface attribute of an agent that

was changed in step 33.5.4. The outgoing interface attribute from step 3.3.5.4 was Ready

Items::Warehouse Worker. - .

130

The warehouse manager gives appropriate requests to the warehouse worker on the date

of delivery to have the items ready for when the truck is expected. When the warehouse

worker gets a request to fetch items, he or she, at the appropriate time, orders forklift

operators to move the items to the loading platform. The forklift operators execute the

internal warehouse operation.

Change: Ready Items::Warehouse Worker

Step Output
3.1 Warehouse Worker is a new agent
3.2 Warehouse Worker is an agent
3.3 Warehouse Worker is an internal agent
3.3.1 This is a new activity for Warehouse Worker
3.3.2 Warehouse Manager::Ready Items
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Worker is unstable
3.3.5.1 Issue Move Item Orders
3.3.5.2 No transformation laws found
3.3.5.3 • No internal attributes found
3.3.5.4 Move Items::Forklift Operator
3.3.5.5 Warehouse Worker is currently stable
Table A-10 Step 3 For Ready Items::Warehouse Worker

We are at step 3:2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Move

Items: :Forklift Operator

Change: Move Items::Forklift Operator

Step Output
3.1 Forklift Operator is a new agent
3.2 Forklift Operator is an agent
3.3 Forklift Operator is an internal agent
3.3.1 This is a new activity for Forklift Operator
3.3.2 Warehouse Worker::Move Items'
3.3.3 No state laws found • -
3:3.4 No transformation laws found
3.3.5 Forklift Operator is unstable
3.3.5.1 Move Items
3.3.5.2 No transformation laws found
3.3.5.3 Inventory Information
3.3.5.4 No Outgoing Interface Attributes found
3.3.5.5 Forklift Operator is currently stable

Table A'-l 1 Step 3 For Move Items::Forklift Operator

131

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4

We can now return to the previous change and repeat step 3 for another of the outgoing

interface attributes that was changed in step 3.3.5.4. In this case, we backtrack to the

change Transport Orders::Truck Driver which has another outgoing change of Truck

Status::Planner.

The planner issues transport orders to truck drivers. After receiving a transport order,

the truck driver informs the warehouse about the pickup of the items. The warehouse

manager will make arrangements to have the items ready when the truck arrives. When

the truck arrives at the warehouse the items are loaded. The truck driver then informs the

next warehouse about the delivery. When the truck has arrived at the next warehouse,

the items are unloaded. A warehouse worker finds space for the items and arranges to

have them moved to the allocated space. The worker updates the warehouse's inventory

information. Truck drivers are required to report the status of the truck and the delivery

to the planner after each step and The transportation time is recorded and stored.

Change: Truck Status::Planner
Step Output

3.1 Planner is an existing agent
3.2 • Planner is an agent • '
3.3 Planner is an internal agent
3.3.1 • This is a new activity for Planner
3.3.2 Truck Driver: :Truck Status
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Planner is unstable
3.3.5.1 Record Time
3.3.5.2 No transformation laws found
3.3.5.3 Transport Information
3.3.5.4 No outgoing interface attributes found
3.3.5.5 Planner is currently stable

Table A-12 Step 3 For Truck Status-Planner

132

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4

We can now return to the previous change and repeat step 3 for another of the outgoing

interface attributes that was changed in step 3.3.5.4. In this case, we backtrack to the

change Transport Orders::Truck Driver which has another outgoing change of Ready To

Load::Warehouse Worker.

After receiving a transport order, the truck driver informs the warehouse about the

pickup of the items. The warehouse manager will make arrangements to have the items

ready when the truck arrives. When the truck arrives at the warehouse the items are

loaded. The truck driver then informs the next warehouse about the delivery and When

the truck driver arrives, the driver notifies the warehouse worker to have the items

loaded into the truck. The truck driver notifies the next warehouse manager when it is

expected to arrive at the next warehouse. The number of items in the current warehouse

decreases, and the transport request is marked as on transport.

Change: Ready To Load::Warehouse Worker
Step Output

3.1 Warehouse Worker is an existing agent
3.2 Warehouse Worker is an agent
3.3 Warehouse Worker is an internal agent
3.3.1 This is a new activity for Warehouse Worker
3.3.2 Truck Driver::Ready To Load
3.3.3 No state laws found

'3.3.4 No transformation laws found
3.3.5 Warehouse Worker is unstable
3.3.5.1 Load Truck

Mark As On Transport
3.3.5.2 No transformation laws found
3.3.5.3 Inventory Information
3.3.5.4 On Transport: :Truck Driver

' 3.3.5.5 ' Warehouse Worker is currently stable
Table A-13 Step 3 For Ready To Load::Warehouse Worker

133

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was

Loaded: :Truck Driver.

When the truck arrives at the warehouse the items are loaded. The truck driver then

informs the next warehouse about the delivery. When the truck has arrived at the next

warehouse, the items are unloaded. A warehouse worker finds space for the items and

arranges to have them moved to the allocated space. The worker updates the

warehouse's inventory information. Truck drivers are required to report the status of the

truck and the delivery to the planner after each step and The truck driver notifies the next

warehouse manager when it is expected to arrive at the next warehouse. The number of

items in the current warehouse decreases, and the transport request is marked as on

transport. And When the truck has arrived at the next warehouse, the truck driver notifies

the warehouse worker to unload the items. The truck driver signs off the job.

Change: On Transport: :Truck Driver
Step Output

3.1 Truck Driver is an existing agent
•3.2. Truck Driver is an agent < •• ..
3.3 Truck Driver is an internal agent
3.3.1 This is a new activity for Truck Driver
3.3.2 Warehouse: :On Transport
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Truck Driver is unstable
3.3.5.1 Notify About Dropoff ' • ' .' - '

Report Truck Status
Drive To Dropoff , • , • , •, •
Notify Ready To Unload
Report Truck Status

3.3.5.2 ' No transformation laws found
3.3.5.3 Truck Status
3.3:5.4' Dropoff Notification::Warehouse Manager

Truck Status::Planner
Ready To Unload::Warehouse Worker
Truck Status::Planner

3.3.5.5 Truck Driver is currently stable
Table A-14 Step 3 For On Transport::Truck Driver

134

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Dropoff Notification:: Warehouse Manager, Truck Status::Planner, Ready To

Unload::Warehouse Worker, and Truck Status::Planner.

The truck driver then informs the next warehouse about the delivery. When the truck has

arrived at the next warehouse, the items are unloaded and The truck driver notifies the

next warehouse manager when it is expected to arrive at the next warehouse. The number

of items in the current warehouse decreases, and the transport request is marked as on

transport.

Change: Dropoff Notification:: Warehouse Manager
Step Output

3.1 Warehouse Manager is an existing agent
3.2 Warehouse Manager is an agent '-• • - - •• •
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Truck Driver::Dropoff Notification
3.3.3 No state laws found
3:3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable17

3.3.5.1 Notify About Receiving
3.3.5.2 No transformation laws found
3.3.5.3 No internal attributes found
3.3.5.4 Ready Receiving::Warehouse Worker
3.3.5.5 Warehouse Manager is currently stable

Table A-15 Step 3 For Dropoff Notification::Warehouse Manager

We are at step 3.2:5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Ready

Receiving::Warehouse Worker

1 7 On the assumption the Warehouse Manager will let the Warehouse Worker know a dropoff is coming,
much like how the manager let the worker know a pickup was coming.

135

A warehouse worker finds space for the items and arranges to have them moved to the

allocated space.

Change: Ready Receiving::Warehouse Worker
Step Output

3.1 Warehouse Worker is an existing agent
3.2 Warehouse Worker is an agent
3.3 Warehouse Worker is an internal agent
3.3.1 This is a new activity for Warehouse Worker
3.3.2 Warehouse Manager::Ready Receiving
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Worker is unstable18

3.3.5.1 Find Space
Arrange Movement

3.3.5.2 No transformation laws found
3.3.5.3 Warehouse Information

Movement Schedule
3.3.5.4 No outgoing interface attributes found
3.3.5.5 Warehouse Worker is currently stable
Table A-16 Step 3 For Ready Receiving::Warehouse Worker

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step;3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4

We can now return to the previous change and repeat step.3 for another of the outgoing

interface attributes that was changed in step 3.3.5.4. In this case, we backtrack to the

change On Transport: :Truck Driver which has another outgoing change of Ready To

Unload::Warehouse Worker.

When the truck has arrived at the next warehouse, the items are unloaded. A warehouse

worker finds space for the items and arranges to have them moved to the allocated space.

The worker updates the warehouse's inventory information and When the truck has

arrived at the next warehouse, the truck driver notifies the warehouse worker to unload

On the. assumption the Warehouse Worker will attempt to have the, warehouse prepared before the truck
arrives

136

the items. The truck driver signs off the job. The warehouse workers receive the items and

determine a place for them in the warehouse. Forklift operators are told to move the

items to the new place in the warehouse. When the truck driver confirms the delivery of

the items, the records are updated to reflect the new place for the items. The

transportation time is recorded and stored. The redistribution and interwarehouse

transport request are marked as performed. The warehouse worker fills in an inventory

update form and sends it to the warehouse manager for confirmation and update of the

inventory database.

Change: Ready To Unload::Warehouse Worker
Step Output

3.1 Warehouse Worker is an existing agent
3.2 Warehouse Worker is an agent' - . \ .
3.3 Warehouse Worker is an internal agent
3.3.1 This is a new activity for Warehouse Worker
3.3.2 Truck Driver::Ready To Unload
3.3.3 No state laws found
33.4 " ' • No transformation laws found
3.3.5 Warehouse Worker is unstable
3.3.5.1 Receive Items

Determine Place
Notify Forklift Operators
Ask For Confirmation

3.3.5.2 No transformation laws found
3.3.5.3 Transport Form

Warehouse Information
3.3,5.4 Move Items::Forklift Operator

Confirmation Needed::Truck Driver
3.3.5.5 Warehouse Worker is currently stable

Table A-17 Step 3 For Ready To Unload::Warehouse Worker

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attributes from step 3.3.5.4 were

Move Items::Forklift Operator and Update Form::Warehouse Manager. Move

Items::Forklift Operator has already been dealt with..

137

The warehouse worker fills in an inventory update form and sends it to the warehouse

manager for confirmation and update of the inventory database.

Change: Update Form::Warehouse Manager
Step Output

3.1 Warehouse Manager is an existing agent
3.2 Warehouse Manager is an agent
3.3 Warehouse Manager is an internal agent
3.3.1 This is a new activity for Warehouse Manager
3.3.2 Warehouse Worker::Update Form
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Warehouse Manager is unstable
3.3.5.1 Update Inventory Database
3.3.5.2 No transformation laws found
3.3.5.3 Inventory Database
3.3.5.4 No outgoing interface attributes found
3.3.5.5 Warehouse Manager is currently stable
Table A-18 Step 3 For Update Form::Warehouse Manager

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. There are no outgoing interface attributes from step 3.3.5.4

We can now return to the previous change and repeat step 3 for another of the outgoing

interface attributes that was changed in step 3.3.5.4. At this point we have dealt with all

the changes caused directly or indirectly by the external change Withdrawal

Request::Office Clerk. We now move onto the changes caused by the external change

Arrival "Employee

The customer will come to the warehouse on the required date to pick up the items. A

warehouse employee will check all the necessary documents and will deliver the items

with an accompanying documentation to the customer and When the customer has

138

fetched the items the warehouse workers mark the withdrawal as ready. The items are

removed (decreased) from the information system.

Change: Arrival "Employee
Step Output

3.1 Employee is a new agent
3.2 Employee is an agent
3.3 Employee is an internal agent
3.3.1 This is a new activity for Employee
3.3.2 Customer::Arrival
3.3.3 No state laws found
3.3.4 No transformation laws found
3.3.5 Employee is unstable
3.3.5.1 Check Documents

Fetch Items
Deliver Items And Documentation
Remove Items from the System

3.3.5.2 No transformation laws found
3.3.5.3 Customer Information

Inventory Information
Inventory Database

3.3.5.4 Items And Documentation::Customer
3.3.5.5 Employee is currently stable .

Table A-19 Step 3 For Arrival::Employee

We are at step 3.2.5: repeat step 3 for each outgoing interface attribute of an agent that

was changed in step 3.3.5.4. The outgoing interface attribute from step 3.3.5.4 was Items

And Documentation::Customer.

Change: Items And Documentation::Customer
Step Output

3.1 Customer is an existing agent
3.2 Customer is an agent
3.3 Customer is an external agent

Table A-20 Step 3 For Items And Documentation::Customer

At this point we have handled all changes directly and indirectly created due to all

external agents. The following tree shows the changes that were generated. Always

traversing the tree left shows the order in which the changes were handled. The changes

with a box around them are duplicate changes, and the number is used to match the

duplicates.. •

139

C u s t o m e r

W i t h d r a w a l Request : :O f f ice C l e r k A r r i v a l : : E m p l o y e e

Items and D o c u m e n t a t i o n : : C u s t o m e r

O rde r Status: :Cus tomer W i t h d r a w a l Request : :Warehouse M a n a g e r

Item Ex is tence : :Warehouse

I
Search Resu l t s : :Warehouse M a n a g e r

[Transport F o r m : : P l a n n e r O r d e r S ta tus : :O f f ice C l e r k

ITransport F o r m : : P l a n n e r lOrder Status: :O f f i ce C l e r k

Transport S c h e d u l e : : W a r e h o u s e M a n a g e r Transport O r d c r s : : T r u c k D r i v e r

l
Order S t a t u s - O f f i c e C l e r k ,

Order Status : :Customer

P i c k u p N o t i f i c a t i o n : : W a r e h o u s e M a n a g e r

I
R e a d y I tems: :Warehouse W o r k e r

(Truck Status : :P lanner R e a d y T o L o a d : : W a r e h o u s e W o r k e r

•I

O n T ranspor t : :T ruck D r i v e r

T r u c k Status : :P lanner

M o v e l tems : :Fo rk l i f t Operator^

D r o p o f f N o t i f i c a t i o n : : Warehouse M a n a g e r

I
R e a d y R c c e i v i n g : : W a r e h o u s e W o r k e r

T r u c k Status : :P lanner R e a d y T o U n l o a d : : W a r e h o u s e W o r k e r T r u c k Status : :P lanner

M o v e l tems : :Fo rk l i f t O p e r a t o ^ I Update F o r m : : W a r e h o u s e M a n a g e r

Figure A-3 A Tree Showing A l l Of The Changes

Figure A-4 shows the solution we have developed at this point

We are now at step 4: If needed identify super and subagents using the internal agents.

If we stop and consider for a second what it means to be an employee of the warehouse,

we can see that it is in fact a super agent with the subagents warehouse worker,

warehouse manager, and forklift operator. That is, these agents are all employees that do

work at something called a warehouse (More about warehouse will be said in step 5

below). Figure A-5 shows where we currently are.

We are now at step 5: If needed identify composite and component agents using the

internal agents. We noted above in two places where the possibility of composite agents

was suggested.

140

There is no need to create a composite agent for A C M E headquarters. There is only one

agent that could be part of such a composition, Office Clerk, and thus no further

information would be represented by creating a composite agent.

We can create a Warehouse composite agent. The case mentions a warehouse manager, a

warehouse worker, and a forklift operator that perform activities at the warehouse, these

141

can become component agents. The attributes and operations of the already existing

Warehouse agent can become the emergent attributes and operations of the new

Warehouse composite agent.

Figure A-6 shows the composite agent warehouse in the decomposed view. When we

collapse the decomposed warehouse agent into its aggregate form we get figure A-7.

We have now gone through all the steps and are finished.

142

us I Wiihdmil Requcu J Alleged Aimhum •net. :W.ihdiii.il lequcil

| Oder Mum «ffli:« clcii

A(levied Annbmei
TrwV Otitr.Pitlup NMIKIMIIT

ADMcd Ann hum
I K u i M l

Activity 5 Ni»ify ihoil *m»(T Tn«*Ilfim.:[>.i|).»ff N.KilkMNin * R«ls Recti v«if :Wirch»iv Wider Vti.it> J npetakW
k>Rc*d> R«.n»nt -

ACUMI) fr I'ptuilt fcvcnK*) t>mhiic A %acd AnnhutEi Winhouic W»icr..I'pdwc Finn"—

A fleeted Arm bum
lruck Itnva.Rad) Toln

•»H>« Schedule iWirehiw

Actiiuv 1 Head} Racitine Altnicd Annhuin Wa-dmiw Slim per: Rent) Ri

Avium 11 nl.«J Truil. Allnled \tlnhtitei liullkiw. Rnd> Tiit'nli I runnel li«m
MiocHeim.l.iilinOpnoKi

tc W.rto.AW ken

A Heeled Ann hum
Pickup ".iiiSuiiiw ;Wneruiuw Muuyti I

ArViKd Annhum
DrifnfT S.iini.aHin'>ittieN«>w Manes
| Re*d> Tnl ni—) :tt>ch.<

Acimh. : DlwHuia. Si.iK Ahu Ihin'T -tR<p.n Tn*kM-«, e lo Dn̂ulT if> Rad> r.il'nl.*d 4Rep.ii Irwi Siiiui

Figure A-5 Creating An Employee Superagent

143

http://ihdiii.il
http://Vti.it
file:///tlnhtitei
http://4Rep.ii

•PS L'mtumcr:: Withdrawal rcqueii
Withdrawal ReuueirWarehi.u'.

j jr Jci. .Smut:. C um m i

Acimt. 2 Nmif. annul imlcr (*l» Affected Attribute*
t hdd Nlatin: Cmtim'i Ai.-n.ns J 1 ipcr>ti.«» •N.«ir> ihiwi uatui

[heel Inwnlun N«ils abcui iLMm Cunisct * *her Warehouvei
Annus : Decide if order cu A(Tttted Attribute!

Notify atxiul itatm

Aciism 1 Notify about order Aftecied At ti i hum Planner:: I rampurt Schedule*
Arti.it> J Operation.

Allotted Attributes. Truck I)mer.: Pickup Noulicatior Kead> Items :W«ch.K»c Worker

Truck l)nver.:I>iip..n"Nitilii.'kiliim— Heads Reccing "Witrehnuw Worker
AciMt. .sfVca™, N.<if\ IHRCJJ. Retei'

Acli.it> ft UpdJtc ln.enliir> IMahne A fTctlcd Ann hulvi Warehouse Worker.:! Jpdme Fornr>

Acti.it> I Prepare fin pick Allii ted AiintHim Warehouse MaiutEff :Keac

AITcclcd Alttibt I nut l)river::R Im colors Infori

I Activity I Arrange Transport Affected Allnhulei i Warehouse Manager: I ran̂nofl pom n senior. In fm manor
I Truck aifc.mu.on Tranifmrt Schedule ; Warchouvr Manager | 1ran\ra>rt nrdeti:Truck IVt.tr

.it> l rVmt»™

ACIISIIS 4 Unload Truck Affected Allnhulei
Truck Ifciwr::Rc«i) To Unload •—

| Warehouie biforrmtion Mow Items .FortJift I Iperjtof Transput Form | I Ipdae Form .Warehouse Manager
Determine Place Notify ForklitH>peritoti MarV Trampon Reqursi AJ Perform. -Send Update form

Act|.ii)_) Search Fur Item) Allecied Annhulcj * WarthouK MmJisuHcm liviiletKt biAcnitu] InMnulion Search Rt suits .Warehnuw Manajrt Acti«11>. 1 .L̂perot wfl* Check taiiemi*)
Nmib about x'lrch rnuhi

.'archou* Worker: :M..s* It. Truck Dmc iraospuel In

| AITected Altnlxiiei
ner.;~Iransp.iri order* atehnuw Manager

Truck Sun» lljnnrt

| Alice led Annhuiei rhouse Worker:., l>upiiff Truck Suiut | Truck Statin Is tollnload ;Wareh.»»eW k SLilus Planner
•f Nuih Annul Dropoff • Report fruck Slum e Tol)ri.r>.fT

Figure A-6 The Decomposition of Warehouse

144

http://Ai.-n.ns
http://Arti.it
http://Acli.it
http://Acti.it
http://aifc.mu.on
http://IVt.tr

Offlc* Clerk

in
Withdrawal request ::OlTicc

Ollice Clerk:;Ordcr Status •

iviiy 1 Withdrawal Request
cd Attributes

ithdrawul request
A u l hi ui/alii HI Status
Withdrawal Request: Warehouse
Order SlatuvTusinmcr

4A Heeled Attr
Customer:^'

Activity I Operations
Contact Warehouse and Notify Ahou
Status are mutually exclusive
Authority Check
Contact Warehouse-
Noiifv annul slulus

Aciivii)' 2 Noiily annul order statu?
All'eetcd Altribuies
Warehouse:;! >rdcr S t a t u s • "
Order Status: :Cusiomer

3 Opera
Noli IV about Mai

i vat:: Ware house

ise::1 terns and IXtcumeniation1

Aciivii) I Kind llerm
A (levied Attributes
Ol lke Clerk-Withdrawal Request
Inventor) Informal km
Order Status::! Wive Clerk Mem l-xiMemy-WaivhmiM-
Activity 1 Operatkms
Contact Other Warehouse and Notify
About Status are mutual I) exclusive
Cheek Inveniory
Noiily ahivui status
Contati Other Warehouses

Aetivit) 2 Search For Items
All'evted Attributes
Warehouse:: Item IMsiencv
lmcnitir> Information
Search Results:: Warehouse
Avlivilv 2 Operations
Check Inventory
Noiifv ahoul seiireh results

Aeiivitv 3 [Wide if order va
Articled Aiiribuics
•Warehouse::Search results
Transport Tnnn:: Planner
Onk-r SI:IIIIS"OIIK-L- cirri
Aeliviiy 3 Operations
Contact planner and noiily ahoul
slulus are mutually exclusive

Activity 4 Notify about order Mulus
Allevied Aiiribuics
Planner:: Transport Schedule «
Order Slums
Activity 1 Operaiion*
Notify about status

Aciivity i Prepare for pickup
All'evted Attribuies
Truck Driver:: Pick up Not i Ileal i

Aetivit) 1 Opcrulkms
Move (term

Aciivii) h Ixvud I ruck
All'evted Attributes
I ruck DrivcrRead) To Uiod •
Inventory Inliirmolion
)n Transport "Truck Driver

Activity 6 Opera
Ijiad Truvk
Mark As On Transport -

Aciivity 7 Ready Receiving
Affected Attribuies
Truck Drtvcr;;l)nipulTNotifii
Warehouse Informal kin
Movement Schedule

"Aciivify 7 Operations
t'ind Space
Arrange Movement

Aeiivitv K Unload I ruck
Allevied Aiiribuics
Tniek Driver::Reudy To Unload *
Transport Form
Warehouse Information
Inventory Information
1 ransport Form
Inventory Dalabasc
Activity H UpcralKins
Receive Items
Delermine I'liicc
Move Items
Mark Transport Request As Performed
llpdule Inveniory DtiUihasc

Aetiv i|v V Kufil Pickup
A (levied Ailrihute*

;:ArrivaJ
Customer In formal kin
Inveniory Information
Items And Document at k>
Inventors Database

Aviiv try v Operation*
Check Documents
Fetch Items
4)elivcr Items And Documcnuitxm
Remove Items from the Sysli

Aeiivitv I Arrange Transport
Allevied Aiiribuics
Warehouse:Transport Form
Inventory In formal km
Truvk In format iun
Transport Schedule::Warehouse
Transport ordcrs::Truck Driver

Activity I Operations
Mark Inventory
Schedule Trucks
Notify About transport
Issue Orders

Activity 2 Record Time
AlTeeied Attributes
Truvk Driver Truck Status
Transport In lor
Activity 2 Operai
Record Time

Activity I Proceed lo pickup
AlTeeied Attributes

• Planner:: Transport orders
Pickup Nolificalion::Warehim.se |
Truck Slat us:: Planner
Truck Status

Read) lo loud:: Wore house
Truck Status::Planner
Aclivirv I Opcralkxis

-Noiifv about pickup
• Report truck slulus
Drive lo pickup u are house

-Notify read) lo kvad
• Report truvk status

Aciivity 2 Proceed lo dropolT
j AtTcctcd Attribuies

A' are house:: On Transport
Dn<pofTNolitlcation::Warehouse]
Truck Status::Planner
truck Status
Ready To Unload::Warehouse
Truck Status::Planner
Aciivii) 2 Operations

• -Notify Ahoul DropolT
• • Report Truck Siaius

Drive To Drnnotr
"Notify Ready To Unload

. • Report Truck Status

Figure A-7Warehouse is a composite agent

Appendix B - Agent Templates For The A C M E Warehouse Management Case

Office Clerk

Withdrawal request::Oflicc Clerk L

Office Clerk::Order Status „

Arrival::Warehouse C
\V;ireliousc::ltcnis and Documentation.

Activity 1 Withdrawal Request
I Affected Attributes
)Customcr::Withdrawal request
p Order Status::Customcr

Activity 2 Notify about order status
Affected Attributes
Warehouse::Order Status * 11 11

Order Status: :Cuslomcr

Warehouse

Activity 1 Find Items
Affected Attributes

OfficeClcrk::Wiihdrawal Request
•Order Status::Officc Clerk
-Mem Existcncc::Warchousc

Activity 2 Search For Items
Affected Attributes
^Warehouse Managcr::licm Existence
Search Resulls::Warehouse

Activity 3 Decide if order can proceed
Affected Attributes

•Warehouse::Search results
Transport Form::Planncr
Order Stalus::office clerk

Activity 4 Notify about order status
Affected Attributes
Planner::Transport Schedule*

'Order Status::olTice clerk

Activity 5 Prepare for pickup
Affected Attributes
Truck Drivcr::Pickup Notification*

Activity 6 Load Truck
Affected Attributes
Truck Driver::ReadyTo Load*

.On Transport::Truck Driver .-—

Activity 7 Ready Receiving
Affected Attributes
Truck Driver;:Dropoff"Notificatiori*-

Activity 8 Unload Truck
Affected Attributes
Truck Drivcr::RcadyTo Unload "

Activity 9 Fufil Pickup
Affected Attributes

"Customer:: Arrival
-Items And Documcntation::Cuslomer

Planner

Activity I Arrange Transport
Affected Attributes
Warehouse::Transport Form
Transport Schedule::Warchousc
Transport ordcrs::Truck Driver —

Activity 2 Record Time
Affected Attributes
Truck Drivcr::Truck Status "

Figure B-l Compressed Agent Interaction Diagram

Truck Driver

Activity I Proceed to pickup
Affected Attributes
Planner::Transport orders
Pickup Nolification::Warehouse
Truck Status::Planner
Ready lo load::Warchousc
Truck Status::Planncr

Activity 2 Proceed to dropoff
Affected Attributes
Warchousc::On Transport
DropolT Noli fication::Warchouse
Truck Status::Planncr
•Ready To Unload::Warehouse
Truck Slatus::Planncr

Forklift Operator
Superagent: Employee

Attributes i Operations
Internal. j Transformation

Activity i State Law Interface Attributes Attributes Law Operation 1
I 1 1 Warehouse Worker: :Move

Items
j Inventory
j Information

Move Items 1

Figure B-2 Forklift Operator Agent Template

146

Office Clerk
Attributes Operations

Activity State Law
Interface

Attributes
Internal

Attributes
Transformation

Law Operation
1 Customer:: Withdrawal

request
Authorization
Status

Authority
Check

Withdrawal
Request:: Warehouse
Manager

Contact Warehouse
and Notify About
Status are mutually
exclusive

Contact
Warehouse

Order
Status: :Customer

Contact Warehouse
and Notify About
Status are mutually
exclusive Notify about

status
2 Warehouse

Manager: :Order Status
Order
Status: :Customer

Notify about
status

Figure B-3 Office Clerk Agent Template

Truck Driver
Attributes Operations

Activity State Law Interface Attributes
Internal

Attributes
Transformation

Law Operation
1 Planner: Transport orders

i

Pickup
Notification:: Warehouse
Manager

Notify about
pickup

Truck Status::Planner Report truck
status

Truck Status Drive to
pickup
warehouse

Ready to load::Warehouse
Worker

Notify ready
to load

Truck Status::Planner
Report truck
status

2 Warehouse Worker: :On
Transport
Dropoff
Notification:: Warehouse
Manager

. . •
Notify About
Dropoff

Truck Status::Planner1

Report Truck
Status

Truck Status
Drive To
Dropoff

Ready To .
Unload::Warehouse Worker

Notify Ready
To Unload

Truck Status::Planner
Report Truck
Status

Figure B-4 Truck Driver Agent Template

147

Planner
Attributes Operations

Activity State Law
Interface

Attributes
Internal

Attributes
Transformation

Law Operation
1 Warehouse

Manager: :Transport
Form

Inventory
Information

Mark
Inventory

Truck Information Schedule
Trucks

Transport
Schedule:: Warehouse
Manager

Notify About
Transport

Transport
orders: :Truck Driver

Issue Orders

2 Truck Driver: :Truck
Status

Transport
Information Record Time

Figure B-5 Planner Agent Template

Customer
Incoming Changes Outgoing Changes
Office Clerk::Order Status Withdrawal Request::Office Clerk
Warehouse::Items and Documentation Arrival::Employee

Figure B-6 Customer Agent Template

Employee
Attributes Operations

Activity
State
Law Interface Attributes

Internal
Attributes

Transformation
Law Operation

1 Customer:: Arrival
Customer
Information

Check Documents

Inventory
Information

Fetch Items

Items And
Documentation: :Customer

Deliver Items
And
Documentation

Inventory
Database

Remove Items
from the System

Figure B-7 Employee Agent Template

{ ".r.,-.\

148

W a r e h o u s e
C o m p o n e n t A g e n t 1: E m p l o y e e
C o m p o n e n t A g e n t 2: W a r e h o u s e M a n a g e r
C o m p o n e n t A g e n t 3: W a r e h o u s e W o r k e r
C o m p o n e n t A g e n t 4: F o r k l i f t O p e r a t o r

A t t r i b u t e s O p e r a t i o n s

Activity State Law Interface Attributes
Internal

Attributes
Transformation

Law Operation
1 Warehouse

Manager: :Item
Existence

Inventory
Information

Check
Inventory

Search
Results:: Warehouse
Manager

Notify about
search results

Figure B-8 Warehouse Agent Template

W a r e h o u s e (C o m p o s i t e d)
C o m p o n e n t A g e n t 1; E m p l o y e e
C o m p o n e n t A g e n t 2: W a r e h o u s e M a n a g e r
C o m p o n e n t A g e n t 3: W a r e h o u s e W o r k e r
C o m p o n e n t A g e n t 4; F o r k l i f t O p e r a t o r

A t t r i b u t e s O p e r a t i o n s

Activity State Law • Interface Attributes Internal Attributes
Transformation

Law Operation
1 .Office ,<„. .:.

Clerk:: Withdrawal,
Request

Inventory Information
'. : i

Check
Inventory

Item >
Existence:: Warehouse

Contact Other
Warehouses and
Notify About Status
are mutually
exclusive

Contact Other
Warehouses

Order Status::Office
Clerk

Contact Other
Warehouses and
Notify About Status
are mutually
exclusive

Notify about
status

2 Warehouse:: Item
Existence

Inventory Information '• Check
Inventory

Search
. Results:: Warehouse

.: — v ' . l '< Notify about
search results

3
• . • • ' . : :

Warehouse:: Search
results

. ; ' ! ! ' • :•
Transport 1

' Form::Planner-
Contact planner and
notify about status
are mutually
exclusive

Contact
planner

Order Status: :office ..
clerk

Contact planner and
notify about status
are mutually
exclusive

Notify about
status

4
' ' ' Planner: transport

149

Schedule
Order Status: :office
clerk

Notify about
status

5 Truck Driver::Pickup
Notification

Inventory Information Move Items
6 Truck Driver::Ready

To Load
Inventory Information Load Truck

On Transport: :Truck
Driver

Mark As On
Transport

7 Truck Driver::Dropoff
Notification

Warehouse Information Find Space
Movement Schedule Arrange

Movement
8 Truck Driver::Ready

To Unload
Transport Form Receive Items
Warehouse Information Determine

Place
Inventory Information Move Items
Transport Form Mark

Transport
Request As
Performed

Inventory Database
-

Update
Inventory
Database

9 Customer::Arrival
Customer Information Check Documents
Inventory Information Fetch Items
Items And
Documentation: :Customer

Deliver Items And
Documentation

Inventory Database Remove Items from
the System

Figure B-9 Warehouse Agent Template in 'composited' view

150

Warehouse Worker
Superagent: Employee

Attributes Operations

Activity State Law Interface Attributes
Internal

Attributes
Transformation

Law Operation
1 W a r e h o u s e

M a n a g e r : : R e a d y I t e m s

M o v e I t e m s : : F o r k l i f t

O p e r a t o r

I s s u e M o v e

I t e m O r d e r s

2 T r u c k D r i v e r : : R e a d y T o

L o a d

I n v e n t o r y

I n f o r m a t i o n

L o a d T r u c k

O n T r a n s p o r t : : T r u c k

D r i v e r

M a r k A s O n

T r a n s p o r t

3 W a r e h o u s e

M a n a g e r : : R e a d y

R e c e i v i n g

W a r e h o u s e

I n f o r m a t i o n

F i n d S p a c e

M o v e m e n t

S c h e d u l e

A r r a n g e

M o v e m e n t

4 T r u c k D r i v e r : : R e a d y T o

U n l o a d

T r a n s p o r t F o r m R e c e i v e I t e m s

W a r e h o u s e

I n f o r m a t i o n

D e t e r m i n e

P l a c e

M o v e I t e m s : : F o r k l i f t

O p e r a t o r

N o t i f y F o r k l i f t

O p e r a t o r s

••
T r a n s p o r t F o r m M a r k

T r a n s p o r t

R e q u e s t A s

P e r f o r m e d

U p d a t e F o r m : : W a r e h o u s e

M a n a g e r

S e n d U p d a t e

F o r m

Figure B-10 Warehouse Worker Agent Template

151

Warehouse Manager
Superagent: Employee

Attributes Operations

Activity State Law Interface Attributes
Internal

Attributes
Transformation

Law Operation
1 Office Clerk::Withdrawal

Request
Inventory
Information

Check
Inventory

Item
Existence: :Warehouse

Contact Other
Warehouses and
Notify About Status
are mutually
exclusive

Contact Other
Warehouses

Order Status::Office Clerk

Contact Other
Warehouses and
Notify About Status
are mutually
exclusive

Notify about
status

2 Warehouse::Search results
Transport Form::Planner Contact planner and

notify about status are
mutually exclusive

Contact
planner

Order Status: :office clerk

Contact planner and
notify about status are
mutually exclusive Notify about

status
3 Planner: :Transport

Schedule
Order Status::office clerk Notify about

status
4 Truck Driver::Pickup

Notification
Ready I terns:: Warehouse
Worker

- Notify to
Ready Items

5 Truck Driver::Dropoff
Notification
Ready
Receiving::Warehouse
Worker

Notify to
Ready
Receiving

6 Warehouse
Worker::Update Form

. „ • .

Inventory
Database

Update
Inventory
Database

Figure B-ll Warehouse Manager Agent Template

152

Appendix C - A Discussion of the BWW Ontology

The following discussion of the BWW Ontology is based on Parsons and Wand (Parsons

and Wand, 1997), Wand & Weber (Wand and Weber, 1993, 1995), and Wand and Woo

(Wand and Woo, 2002). Ontological constructs are italicized as they are introduced.

C.l Static Model of things

The real world is comprised of things. There are simple things. A composite thing is

made up of other things (be it other composite things or simple things or some

combination thereof).

Things possess properties. Properties are either intrinsic (possessed solely by one thing)

or mutual (shared with one or more other things). Properties exist independent of people

being aware of their existence. Attributes are not necessarily possessed by a thing, but

may be assigned to things by people in order to measure the property. For example, a

property of a thing could be the ability to reflect a wavelength of light. People will then

attribute a color to this thing. Composite things possess hereditary properties that belong

to its component things. Composite things also possess emergent properties that are not

possessed by any component thing. As an example a car is a composite thing. It has the

hereditary property burns gasoline, from one of its component things the gasoline

injected combustion engine. It also possesses the emergent property maximum

acceleration which is not possessed by any one component thing.

153

The set of values for the attributes of a thing comprise the state of the thing. A

conceivable state space for a thing is the set of all possible states a thing may ever

assume. State laws serve to restrict the values of the properties of a thing to a subset of

the conceivable state space. State laws must enforce a restriction due to either natural or

human laws. A law is a property. For example, most bank accounts have the restriction

(state law) that the balance must be greater than or equal to zero. This is due to the human

law that people are only allowed to spend up to the total amount of money that is in their

bank account. The lawful state space of a thing is the set of states that exist for a thing

that comply with its state laws. A lawful state space is usually a subset of the conceivable

state space.

A class is a set of things that all possess a common property. A kind is a set of things that

possess two or more common properties. It should be noted that common property does

not refer to mutual property. All things that are part of a natural kind will possess the

same lawful state space.

C.2 Dynamic Model of things

Ontology has the principle that every thing changes and that every change is the change

of properties of things. This is an event. Since the measures of properties of a thing

comprise the state of the thing, and an event is changing properties. An event is really the

change of the state of a thing. Ontology follows the principle of nominal invariance. That

is, a thing can change and still be the same thing. An event is carried out via

154

transformation (defined below). The event space is the set of all possible events that can

occur in a thing.

A transformation is a state (attribute) change from one state to another state. A lawful

transformation defines the events that are lawful for a thing. The lawful event space is

usually a subset of the event space, and defines those events in a thing that are lawful.

The history of a thing is the chronologically ordered states that it has traversed.

C.3 Static Model of systems

A coupling occurs when one thing acts on another thing that is, the existence of one thing

affects the history of another thing. When this situation arises among two things they are

said to be coupled (or interact). A set of things can be called a system if when the set of

things is bipartitioned there are couplings among the things in the two subsets. The things

that make up the system are its system composition.

A system environment is composed of the things that are not in the system but interact

with things in the system. Systems have a system structure. A system structure consists of

the couplings among the things in the system, and the couplings among things in the

system and things in the system environment.

There exist subsystems. A subsystem is a system of which the composition and structure

are subsets of the composition and structure of another system. A system may be broken

down into a system decomposition. A system decomposition is a set of subsystems in

155

which every component of the system is either one of the subsystems, or included in the

composition of one of the subsystems in the decomposition. Generally, system

decompositions require some sort of level structure. A level structure is a partial ordering

over the subsystems in the decomposition. The level structure defines which subsystems

are components of the system or other subsystems.

C.4 Dynamic Model of systems

Things, subsystems, and systems do not begin to change unless they are given impetus

from an external event (defined below). The state a thing, subsystem, or system remains

in unless it is forced to change by an external event is called a stable state. An unstable

state is a state that must be changed to another state by actions within the thing,

subsystem, or system. Unstability occurs due to the transformation laws that exist within

a thing, subsystem, or system. The end result of the state change caused due to instability

can be either a new unstable state or a stable state.

An external event is an event that affects a thing, subsystem, or system caused by some

other thing in the environment of the thing, subsystem, or system. Before an external

event occurs the thing, subsystem, or system is in a stable state. After an external event

the thing, subsystem, or system may be stable or unstable. An internal event occurs in a

thing, subsystem, or system due to lawful transformations of the thing, subsystem, or

system. Before an internal event the thing, subsystem, or system is in an unstable state.

After an internal event the thing, subsystem, or system may be in either a stable state or

an unstable state.

156

Besides being internal or external, events can also be well-defined or poorly defined. A

well-defined event is one in which the state of the thing, subsystem, or system after the

event can be predicted just by knowing the state of the thing, subsystem, or system prior

to the event. A poorly-defined event is one in which the state of the thing, subsystem, or

system after the event cannot be predicted just by knowing the state of the thing,

subsystem, or system prior to the event.

157

Appendix D - Modeling Grammar Examples

The case used in our examples is the same one used in chapter three and is presented

again here in its entirety.

The A C M E Warehouse Management Inc. Case

A C M E Warehouse Management Inc. offers storage facilities and redistribution services
(between their different warehouses) across the nation. A customer can request space in a
particular warehouse, request items to be transferred to another warehouse, or request
withdrawal of items from a particular warehouse (even for items not stored there).

For the purpose of this case, we only look at the activities involved in processing a
withdrawal request. A customer contacts A C M E headquarters to request a withdrawal.
An office clerk checks whether the customer has the authority to withdraw the items. The
clerk then passes the withdrawal request to the warehouse where the customer wants to
pick up the items.

If the warehouse does not have the items or does not have enough quantity of the items,
the warehouse manager will contact other warehouses for the requested items. If the
items are located the warehouse manager will ask the planner to arrange for
transportation for the requested items.

The planner's responsibility is to schedule the company's truck fleet to accommodate
requests for transportation, taking into account the existing schedule of each truck and its
capacity. The warehouse manager will be notified whether the transportation request can
or cannot be satisfied.

The warehouse manager will, notify theoffice clerk if the request can be fulfilled or not,
and the reason/The office clerk will notify the customer as to the status of the request
(approved,̂ or declined due to lack of authority; no inventory, or no transportation).

The planner issues transport orders to truck drivers. After receiving a transport order, the
truck driver informs the warehouse about the pickup of the items. The warehouse
manager willmake arrangements to have the items ready'when the truck arrives. When
the truck arrives at the warehouse the items are loaded. The'truck driver then informs the
next warehouse about the delivery. When the truck has arrived at the next warehouse, the
items are unloaded. A warehouse worker finds space for the items and arranges to have
them moved to the allocated space. The worker updates the warehouse's inventory
information. Truck drivers are required to report the status of the truck and the delivery to
the planner after each step. -

Based on a case in I. Jacobson, Object-Oriented Software Engineering, Addison-Wesley; 1992

158

The customer will come to the warehouse on the required date to pick up the items. A
warehouse employee will check all the necessary documents and will deliver the items
with an accompanying documentation to the customer.

Supplemental description

Once the office clerk has recorded the items to be withdrawn, he or she forwards the
request to the manager (foreman) of the warehouse. The warehouse manager is
responsible for directing the redistribution of items between warehouses. If the items are
not all available in the warehouse, transport requests are issued. The warehouse manager
fills out a redistribution form with the following information: items to be moved, place
from which to take the items, warehouse to transport the items to, quantity to be moved,
and the date by when the redistribution must be done. The warehouse manager forwards
the form to the planner to organize the interwarehouse transportation of the items. The
items to be moved are marked as move-pending, and the planner initiates a plan to have
the items at the appropriate warehouse at the given date. Once interwarehouse transport
plans are finalized, transport requests are issued to the truck drivers.

The truck driver alerts the warehouse manager of the time he or she will be at the
warehouse to pick up the items. The warehouse manager gives appropriate requests to the
warehouse worker on the date of delivery to have the items ready for when the truck is
expected. When the warehouse worker gets a request to fetch' items, he or she, at the
appropriate time, orders forklift operators to move the items to the loading platform. The
forklift operators execute the internal warehouse operation. When the truck driver arrives,
the driver notifies the warehouse worker to have the items loaded into the truck. The
truck driver notifies'the next warehouse manager when it is expected to arrive at the next
warehouse. The number of items in the current warehouse decreases, and the transport
request is marked as on transport. ' '- ' '

When the truck has arrivedat the next warehouse, the truck driver notifies the warehouse
worker to unload the items. The truck driver signs off the job. The warehouse workers
receive the items and determine a place for them in the warehouse. Forklift operators are
told to move the items to the new place in the warehouse. When the truck driver confirms
the delivery of the items, the records are updated to reflect the new place for the items.
The transportation time is recorded and stored. The redistribution and interwarehouse
transport request are marked as performed; The warehouse' worker fills in an inventory
update form'and'sends it to the warehouse manager for confirmation and update of the
inventory 'database. - ... :

When the customer has fetched the items the warehouse workers mark the withdrawal as
ready. The items are removed (decreased) from the information system.' -

D.l Colored Petri Nets

Figure D-l !shows the Colored1 Petri Net solution to the A C M E Case!- 1 1

159

Fetch
Items

Check
Documents

Pickup
Order

d - approved
(a,b, c)

Remove Items
From The System

Deliver Items
And Documentation

,(a.b) (
Withdrawal (a, b,

Request

Authority
Check

Receive ; Find
Items Space q /

Arrange
Movement

Move
Items

Issue Move
Item Orders

Mark Transport
1 Request As

Performed

Check
For Items

d != approved

Search
Results

else 1'd = lack of inventory

Drive To Dropoff
Warehouse

Arrange
Transport

Drive To Pickup
Warehouse

Report Truck
Status

Record
Time

Mark
h Inventory

Schedule
Trucks

Figure D-l Colored Petri Net for the ACME Warehouse Case

Declarations:

Token String Array
var h: Inventory Marked var a, g: Warehouse
var i : Trucks Scheduled var b: Items
var j : Notified About Transport var c: Customer
var k: Truck Schedule var d: Status
var 1: Ready To Report var e: Items Not Found
var m: Notified About Pickup var f: Items Found
var n: Report Done
var o: At Pickup
var p: Loaded
var q: Items Need To Be Moved
var r: Movement Orders Issued
var s: Notified About Dropoff
var t: At Dropoff
var u: Space Found
var v: Movement Arranged
var w: Items Received
var x: Place Determined
var y: Transport Request Marked
var z: Update Form
var A: Customer Arrived
var B: Documents Checked
var C: Items And Documentation Delivered

Withdrawal Request > Notify About Status;
Table D-l Declarations for the ACME Warehouse Colored Petri Net

In a Colored Petri Net the ellipses are called places and represent locations or resource

stores. They represent the input and output of transitions. The rectangles are called

transitions. Transitions are events, activities, or changes of state. Transitions create or

destroy tokens. The arrows are directed arcs and represent necessary pre and post

conditions of transitions. Each place has markers called tokens that contain a data value.

The declarations table tells the,type of value each token can takes. A 'token' declaration

would be just there whereas a 'string array' declaration can hold a list of data. The

declaration table also tells which transitions have priority when two or more of them are

enabled at the same time. -

161

D.2 Integrated Definition 3

Figure D-2 contains the process flow description for the A C M E case. Figure D-3 contains

the object state transition network for the A C M E case.

In the process flow description the number box is a unit of behaviour (UOB). A

UOB is a situation that happens. The arrows represent precedence links, with what

happens at the tail of the arrow occurring before what happens at the head of the arrow.

An arrow with a triangle on it means that the item at the tail of the arrow must precede

the item at the head of the arrow. An arrow with a star means an the item at the head of

the arrow must come after the item at the tail of the arrow and the item at the tail of the

arrow must precede the item at the head of the arrow. The boxes with letters in them

denote junctions. Junctions can be either and (&), or (O), or exclusive or(X), one vertical

line in a junction denotes it is asynchronous, two vertical lines note it is synchronous. A

UOB with either one or two vertical lines around the name is not a UOB but a referent.

One vertical line denotes it is a call and continue referent, two vertical lines denote it is a

call and continue referent.

An Object State Transition Network describes the states an object travels through. The

circles represent object states. The arrows are the links. The boxes are referents to UOBs

in the process flow description. The circles with letters in them are junctions of either and

(&), or (O), or exclusive or (X). Referents connected at the same point begin at the same

time. Referents connected to a circle means the order in which the occur is unknown but

they can begin to occur then, and happen before other referents further down the line.

163

UOB/Send
Update Form

UOB'Move
Items

UOB/Determirn
Place

UOB/Receive
Items

UOR'Notify
Ready To
Unload

UOB'Drive
To Dropoff

UOB/Find
Space

UOB/Notify
To Ready
Receiving

UOB/Record
Time

UOB/Rcport
Truck Status

I UOB Notify
Ready To

1 Load
35 33 31 30 29 27 26 25 37 16 20

UOB/Updaie
Inventory
Database

UOElMaA
Transport Request

As Performed
36 34

UOB/Record
Time

UOB/lssue
Move Item

Orders

UOB'Make
Pickup

Arrangements

•v ^ fr-

UOB/bsue
Orders

UOB'Notify
•Forklift
Operators

UOB/Record
Time

UOB/Rcport
Truck Status

UOB/Anange
Movement

UOB'Record
Time

UOB/Report
Truck Status

UOB/Notify
About

Dropoff

UOB-Mari
As On

Transport

UOB/Load
Truck

UOB/Move
Items

UOB/Dme to
Pickup

Warehouse

UOB/Report
Truck Status

UOB/Notify
About Pickup

32 37 16 28 37 16 24 23 22 21 18 16 15

Figure D-3 Object State Transition Network for the ACME Warehouse Case

164

D.3 Event-controlled Process Chains

Figure D-4 contains the EPC for the A C M E case.

In EPC a rounded rectangle overlapping a hexagon denotes a process. A hexagon denotes

an event, when something happens. A rounded rectangle denotes a task, what happens.

An oval with a dashed vertical line denotes an organizational unit, who does the task. A

rectangle denotes an information object, data accessed, created, or changed.

A dashed arrow denotes a control flow. Control flows connect events to tasks, and tasks

to events. A solid arrow denotes an information/material flow, and connects information

objects to tasks. A line denotes an organization assignment, and connects organizational

units to task.

Events and tasks may be combined using circles with either an inverted v, a v, or X O R in

them. These correspond to and, or, and exclusive or.

Vithdrawal
Request,

Notify About
Pickup

Truck
J Driver

At Dropoff^

Notify Ready
To Unload

Warehouse Find Space
Information

Drive To Truck
Dropoff Status Space

Found

Movement •
Arrange Schedule Movement

/MovemenN.
XArranged /

• 0 © ~

0 0

Warehouse^
J Worker^

<ruck Status\
Reported/

/ Items
\ Received

Warehouse Determine
Information Place

< Time \
Recorded/

/ Place \
NDeterminecK

Notify Forklift
Operators

Inventory Move Items
Information

•0

/ Moved \

Customer
Arrival
\

Customer Check
Information Documents

documents
Checked

1
Inventory

Information
Fetch Items Inventory

Information
Fetch Items

Send Update
Form

Form
Sent

Jppdate Inventory
Database

^Updated^N,

Items
Fetched

Deliver Items I.
And Oocumentatpn

Inventory
Database

Remove Items _
F(rom The Systejn

< Items \
Removed /

Figure D-4 EPC for the A C M E Warehouse Case

168

