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Abstract 

Interactive television (ITV) is an attractive technology, which changes the 
way T V viewers experience home entertainment. In this thesis, we design an 
interactive television system, which truly gives T V viewers freedom to control 
and individualize the presentation of T V program content. In this context, 
we present methods that add extra video and audio streams (called incidental 
streams) containing interactive content, to the transmission line of a digital 
T V system. The addition of these extra streams does not result in increasing 
the transmission bandwidth, nor in degrading the picture or sound quality of 
the main T V program content. 

Our design consists of two major transmission mechanisms for trans­
mitting the incidental data, called deterministic and stochastic service classes. 
The deterministic service class is designed such that no incidental stream data 
packet is lost during transmission. On the other hand, the stochastic service 
class is designed such that some incidental data loss is possible; however, the 
data loss rate is bounded. We present a strategy based on scalable video cod­
ing, which in conjunction with the deterministic and stochastic service classes, 
achieves the best possible picture and sound quality for the incidental streams 
under the constraint of available bandwidth. 

We also present data transmission methods for the deterministic and the 
stochastic service classes. In the context of the deterministic service class, we 
employ a deterministic traffic model for modelling the traffic of main streams, 
and then design a data transmission scheme based on the 'Network Calculus' 
theory. In the context of the stochastic service class, we employ Hidden Semi-
Markov Models (HSMM) for modelling the traffic of main streams. We then 
design a data transmission scheme based on the 'Effective Bandwidth' theory. 

Furthermore, we design a data multiplexing system for the transmit­
ter head-end of the proposed interactive T V system. This includes a novel 
scheduling algorithm for controlling the multiplexing of incidental and main 
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streams data packets. 
We present numerical results of simulation experiments, which support 

the theoretical methods presented in this thesis. 
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Chapter 1 

Introduction 

Transport of the mails, transport of the hu­
man voice, transport of flickering pictures-in 
this century as in others our highest accom­
plishments still have the single aim of bringing 
men together. 

- Antoine de Saint-Exupery (1939) 

T ELEVISION systems are migrating to digital technology. More Digital 
Television (DTV) systems are being deployed around the world everyday. 

This change is creating an incredible technological revolution in the entertain­
ment industry. The new DTV technology not only delivers crystal clear picture 
and superior sound quality, but also allows new services to be added to TV pro­
grams. These add-in services enhance the TV viewer's experience by adding 
extra features or content to TV programs. For example, the presently avail­
able Electronic Program Guide (EPG) (see Figure 1.1) is an add-in service for 
DTV systems. EPG lists the programs that are or will be available on each 
TV channel, plus a short summary or a commentary for each program. 

Interactivity is the most attractive enhancement promised to be added 
to digital TV systems. However, the concept of 'interactivity' for TV is not 
clearly defined, and the term 'Interactive T V has been used for many different 
TV systems with many different features. For example, Video-On-Demand 
systems and TV systems with VCR-like functionality are occasionally referred 
to as 'Interactive TV.' In Video-On-Demand systems, viewers select a movie 
or TV show from a library, and that movie is played back on their TV. In TV 
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Figure 1.1: Screen shot of an Electronic Program Guide, EPG. EPG lets you 
search, navigate, and find out what's on your TV, all while watching TV. 

systems with VCR-like functionality, TV viewers can pause or rewind a live TV 
show, or save a TV show to watch later. This system is commercially available 
now. Today, 'Interactive T V mostly refers to the so-called ' Enhanced TV 
system defined by the Advanced Television Enhancement Forum (ATVEF) [2j. 
ATVEF is an industry alliance of many major companies. The goal of this 
forum is to standardize HTML enabled TV systems. With the Enhanced TV 
technology, a web page is displayed alongside a TV picture (see Figure 1.2) 
on the TV screen. Viewers surf this web page using their remote-controls to 
get more information about the program, do e-shopping, and so forth. There 
are two scenarios for sending the web page content. In the first scenario, the 
web page contents are seamlessly inserted into the broadcasted TV signal. In 
this scenario, no Internet connection is required. However, the size of the 
inserted web data is limited, and users are limited to the inserted web pages. 
In the second scenario, an internet link is inserted into the TV signal. This 
link is used by the receiver set-top box to download the web page content 
via an Internet connection. The 'Enhanced T V system is now commercially 
available (e.g., Microsoft WebTV©), and many TV shows are currently using 
this service. 
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T V picture 

Figure 1.2: Screen shot of an Enhanced T V . Enhanced T V lets you view extra 
H T M L based information about the current T V program, or surf the Internet, 
while watching T V 

Thus, current interactive T V systems are l imited to providing Wor ld 
Wide Web content. This content is mostly composed of text or still pictures. 
Besides, user interactions in current interactive T V systems are l imited to 
web-surfing-like actions, such as menu selection, typing a URL, and so on. 
Actual ly, in practice users interact wi th the web page content, and not with 
the T V program content. It is evident that current interactive systems for 
digital TV remain limited. This l imitat ion lies in the fact that none of the 
current interactive T V systems provide any control over the video or audio 
content of the T V program. 

1.0.1 A New Vision of Interactivity for Television 

Our vision of interactivity in Television is a system which allows T V viewers 
to control the final presentation of the T V program content. Such interactivity 
has been successfully implemented in D V D , which is a non-broadcast interac­
tive media. Therefore, this Interactive T V system could be considered as a 
technology that offers D V D - l i k e interactivity in broadcast digital T V systems. 
That is, the new Interactive T V system would enable T V viewers to control 
the final presentation of the video or audio content of a T V program as in a 
D V D player system. Important applications would include the followings 
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Multi-lingual audio, where viewers select the language of choice from an 
available set of languages. 

Parental management, where viewers select the content rating of a T V 
program. If the viewer selects the 'non-adult' version of a program, the 
receiver then seamlessly replaces the adult rated scenes of the program 
with a non-adult rated video sequence. 

Multi-angle video, where viewers can view a scene from one or more spa­
tially different angles. For example, during a soccer program, viewers 
can select to view the important scenes of the game from various angles. 

Video-in-Video, where viewers may select to open a small window in the 
corner of their displays. This small window shows a separate video that 
enhances the viewer's experience. For example, in a soccer program, the 
small window may display an important incident on the other side of the 
field. 

In the proposed system, viewers use their remote controls as if using 
a DVD-player remote control, to select choices regarding a T V program from 
a menu overlayed on top of the main video. This can include, for example, 
selecting a different language audio track, or switching between adult and 
non-adult versions of a movie. These choices are conveyed to the receiver and 
are used to select the appropriate video and audio sequences to be displayed. 
Hence, the viewer's experience of a T V program is customized based on his 
or her own choices. 

Thus, our proposed interactive T V system requires the transmission of 
extra video or audio streams alongside the main T V program stream. We 
call these extra streams 'incidental streams.'' Incidental streams carry the 
extra video or audio sequences required for an interactive T V application. For 
example, the audio stream of another language track in the multilingual audio 
application, or the video stream of a secondary camera angle in the multi-angle 
video application are incidental streams. 

Depending on the application, an incidental stream may carry a video 
or audio sequence with a limited and specified length, or an unspecified length. 
For instance, in the parental management application for a movie, the main 
stream carries the regular version of the movie, which we assume has a few 
'offending' scenes. For each offending scene, a non-offending version of the 
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same scene is transmitted as an incidental stream. In this case, each incidental 
stream has a limited length, equal to its corresponding scene length. On the 
other hand, in the case of the multilingual application, the incidental stream 
carries the audio stream of the other language track for the entire program. In 
this case, the incidental stream is a continuous stream whose length is equal 
to the length of the program. 

In order to receive and display a digital TV signal, the TV receiver 
must be equipped with a digital set-top box. A set-top box designed and pro­
grammed specifically for the proposed ITV application will be able to display 
the incidental streams. Conventional set-top boxes simply ignore the inciden­
tal streams and only display main streams. This makes the system backwards 
compatible with the presently available digital TV set-top boxes. Therefore, 
adding the incidental streams to a TV program does not effect the compati­
bility of the broadcasted TV signal with conventional digital receivers. 

1.1 C h a l l e n g e s 

In designing the proposed interactive TV system several issues and challenges 
must be addressed. 

Limited Transmission Bandwidth The channel bandwidth available for 
transmitting digital TV signal is limited. In most transmission media, 
such as Cable, Terrestrial and Satellite, a fixed channel is shared among 
a number of TV programs, where each program uses a fixed share of the 
transmission bandwidth. In the proposed interactive TV system, inci­
dental streams data must be accommodated in the same transmission 
channel as the main streams. However, reserving part of the transmis­
sion channel bandwidth for incidental streams is not an attractive ap­
proach for two reasons. First, the contents of incidental streams are not 
as important as the main program contents. This is because incidental 
streams usually carry enhancement content for a TV program; hence, 
incidental streams are expected to be viewed by much smaller TV audi­
ences than the main program content. Therefore, it is not cost-effective 
to reserve bandwidth for incidental data, which are of secondary impor­
tance. Second, depending on the application, incidental streams may 
carry video or audio clips, each with a limited length. For example, in 
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the parental management application for a movie, an incidental stream 
carries the non-offending version of the movie only when there is an of­
fending scene; otherwise, no incidental stream is broadcasted. Therefore, 
it is wasteful to reserve a fixed portion of bandwidth for an incidental 
stream, which may be utilized only during a few time intervals. 

K e e p i n g the Qua l i ty of M a i n Streams Intact As noted, main streams 
carry more important content than incidental streams do. Therefore, 
adding incidental streams to a TV program should not degrade the qual­
ity of the main streams. 

Compa t ib i l i t y w i t h Standard T V Receivers Adding incidental streams 
to a TV program should not make the broadcast signal incompatible 
with conventional TV receivers. Thus, it is necessary that our system 
design be compliant with the Digital TV standards. 

Same Channe l Transmission The incidental streams should be accommo­
dated within the same transmission channel used for main streams. It 
is not an attractive option to use other transmission mechanisms for 
sending incidental data. For example, consider a possible scenario for 
implementing the proposed Interactive TV system via adding Internet 
links to TV programs. These links would point to incidental video and 
audio streams located on the Internet. Then, the set-top box receivers 
would use these links to download the incidental streams yia a fast in­
ternet connection, and display them on the TV screen. However, the 
problem with this approach is that each TV receiver would be required 
to have a fast internet connection. In fact, this approach has been taken 
and implemented by a few manufacturers, but it has failed as its concept 
has been rejected by both the TV broadcasters and consumers. 

1.2 Thesis Scope 
As noted, the most important challenge in designing the proposed Interactive 
TV system arises from accommodating the incidental streams within the fixed 
bandwidth allocated for the main streams in the transmission line of a dig­
ital television broadcast system. In this thesis, we address this challenging 
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problem. We present novel solutions for adding incidental streams without in­
troducing any degradation whatsoever in picture quality of main streams, and 
without increasing transmission bandwidth. This is possible since the rate of 
main streams varies with time, and does not occupy its entire allocated band­
width at all times. The incidental streams are transmitted using the available 
bandwidth. Our method strives to make the most productive use of the avail­
able bandwidth, and delivers incidental video and audio content with the best 
possible picture and sound quality. 

Unlike current interactive TV technologies, the proposed system is a 
one way system. That is, no return path from TV viewers to the transmit­
ter or no Internet connection are required. Furthermore, adding incidental 
streams to a TV program using our method would not affect the compatibil­
ity of the broadcast signal with conventional digital TV receivers. In other 
words, a broadcast signal that carries both incidental and main streams is re­
ceivable by both conventional digital TV receivers and by receivers specifically 
programmed for the proposed ITV application. Conventional receivers will 
display the main streams, while receivers programmed for the proposed ITV 
application will be capable of displaying both incidental and main streams. 
These features make the proposed interactive TV system even more attractive 
to both consumers and TV broadcast companies. 

1.3 Our Approach 

1.3.1 F r a m e w o r k 

We encode the main video sequences with constant picture quality. Therefore, 
the main video streams are encoded at variable bitrate (VBR). It is well known 
that simple and slow activity video scenes require a smaller number of encoding 
bits than complex video scenes do; such that bitrate for complex scenes may 
reach the maximum allowed bitrate. Digital TV transmission media (e.g., 
cable or terrestrial) allow a fixed reserved bandwidth for each TV channel 
equal to the source maximum rate. Therefore, during simple scenes the allowed 
bandwidth is under-utilized. We propose to use these unused portions of the 
bandwidth for transmitting incidental stream data. 

Each data unit of an incidental stream contains time sensitive data. 
This means, each data unit should be transmitted before a certain transmis-
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sion deadline, so that it is available at the receiver at a certain time for de­
coding and presentation. Incidental stream data units are only transmitted at 
opportune moments, when the transmission bandwidth is not fully utilized by 
the main streams. In order to transmit incidental data units at these oppor­
tune moments, we propose that the transmitter receives each incidental data 
unit ahead of its transmission deadline, say by tw seconds. Each data unit 
is first buffered at the transmitter and then transmitted whenever some free 
bandwidth becomes available. It is vital to choose tw large enough so that the 
incidental data are transmitted and received by the receiver by the time they 
are to be decoded and presented to the viewer. Since decoders may receive the 
the incidental data units prior to their presentation time, these data have to 
be buffered at the decoder until their decoding time. 

1.3.2 M a x i m u m W a i t i n g T i m e 

An important question arises here: "for an incidental stream with a given 
bitrate R, what is the minimum tw ?" We will denote the minimum tw by 
Tw. Therefore, Tw is defined as the maximum time that the data units of 
an incidental stream with rate R might wait in the transmitter buffer before 
being transmitted. Once Tw is found, the transmitter should then receive 
the incidental data units tw > Tw seconds before their transmission deadline. 
This ensures that all incidental data units are transmitted on time and made 
available at the decoder prior to or by their decoding time. We discuss our 
approach to finding Tw in the next section. 

A small Tw is extremely desirable for three reasons. First, a small 
Tw reduces the inescapable delay in starting the presentation of an incidental 
stream in a live program. Suppose that the first data bit of an incidental stream 
is delivered to the transmitter system for transmission at time t. If we ignore 
the constant delays caused by multiplexing, transmission and demultiplexing, 
then the decoding of this incidental stream can start at the receivers at t + Tw. 
Hence, it is very attractive to have a small Tw, so that playback of incidental 
streams in live TV programs can start very shortly after they have actually 
been captured. Second, since the receiver buffers must be capable of storing 
Tw seconds of an incidental stream data, a smaller Tw then requires a smaller 
buffer size at the receivers. Third, a small Tw is advantageous when viewers 
change from one TV channel to another. With a smaller Tw, viewers experience 
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Figure 1.3: A transmission time-line, which illustrates the effect of Tw: the 
gray boxes show when the data of the ith data unit are actually transmitted. 

a shorter 'random access delay' for the incidental streams while they switch 
channels. By 'random access delay,' we mean the delay TV viewers experience 
from the moment they switch to a new channel to the time the playback of 
the new program actually starts. For the main video and audio streams, the 
random access time rarely becomes more than 0.5 seconds. This is because the 
coded main video and audio frames are broadcasted very close to their decoding 
and presentation times. To justify the effect of Tw on random access delay 
time for incidental streams, consider two transmitters offering two different 
maximum waiting times, Twx and 7V2, to an incidental stream of rate R. 
where Tw1 < Tw2- Assume the data units of the same incidental stream are 
sent to these two transmitters. In order to simplify the discussion, we ignore 
the delays caused by the transmission line and buffering at the receivers. Let 
^decode denote the decoding time of the ith data unit of the incidental stream 
(see Figure 1.3). Since each data unit arrives at the transmitter buffer Tw 

seconds before its decoding time, then tarriual = tdecode — Tw denotes the time 
when the data bits of the ith data unit arrive at the transmitter buffer. The 
gray boxes in Figure 1.3 show the time instances when the data bits of this 
data unit are actually transmitted. Now, suppose a TV viewer changes the 
channel on his or her receiver to this program at taccess. In this case, the TV 
receiver starts receiving the data of this channel at taccess. In the first system, 
the receiver completely receives the ith data unit of the incidental stream, 
while in the second system, the receiver misses this data unit. Therefore, the 
presentation of the incidental stream in the first system starts sooner (i.e., 
from the ith data unit) than in the second system. 
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1.4 Structure and Mechanisms of the System 
In this section, we introduce the mechanisms that we employ in the proposed 
system. Our objective here is to introduce the concept of each mechanism, and 
describe their roles. The details of each mechanism and our implementation 
approach are discussed in detail throughout the thesis. 

We refer to the different video or audio streams as 'traffic sources' and 
to the actual data as 'traffic' from here on. This is because each video and 
audio stream could be considered as a data generating source. 

Figure 1.4 illustrates the basic building blocks of the proposed transmis­
sion system. As shown, this system consists of the following units: admission 
control, traffic characterization, scalable coder, service classes, and data mul­
tiplexer. 

1.4.1 A d m i s s i o n C o n t r o l 

Before an incidental stream is added to a TV program, and actually starts sub­
mitting data to the transmitter for transmission, it is necessary to determine 
the rate R and the waiting-time tw for this stream. We refer to this mechanism 
as 'admission control.' The admission control mechanism determines whether 
or not a certain incidental stream is allowed to be transmitted. The admission 
control relies on some bandwidth provisioning mechanisms, which forecast the 
free bandwidth in the system in the future. 

The admission control mechanism is initiated by sending a connection 
request from the TV production studio to the transmitter. The connection 
request is sent in advance of the actual data, and conveys to the transmitter 
that an incidental stream is going to be added to the program in the near 
future. The connection request also conveys a set of minimum service param­
eters for the incidental streams, which are the minimum bitrate Rmm and the 
largest waiting-time t™ax that can be selected for this incidental stream. Then, 
the admission control must determine whether or not it can assign a bitrate 
R and a waiting-time tw to the incidental stream, such that R > Rmin and 
Tw <tw< t™ax. If the admission control can find such an (R,tw) parameter 
pair, then the incidental stream is accepted by the admission control. If not, 
then the incidental stream is rejected; that is, the incidental stream will not be 
added to the program. The above procedure is referred to as the 'admission 
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Figure 1.4: Structure of the proposed Transmission System. 

test.' 
Once the transmitter receives the actual data of an accepted incidental 

stream, it re-encodes the incidental stream with rate R; and makes the encoded 
data units available for transmission at exactly tw seconds before their decoding 
time. This will be described in more details in the next sections. 

1.4.2 Traf f ic C h a r a c t e r i z a t i o n 

The traffic characterization unit assigns a traffic descriptor to each main video 
source, and conveys them to the admission control unit. The traffic descriptor 
is used in forecasting the bandwidth required by the main streams, from which 
we can deduce the bandwidth available for the incidental streams. Therefore, 
the admission control unit uses the traffic descriptors in its bandwidth pro­
visioning mechanism to determine how much bandwidth will be available to 
the incidental streams. A traffic descriptor is composed of a set of parame-
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ters which contain useful and important characteristic information about the 
traffic shape of the source. Specifically, a traffic descriptor carries information 
about the traffic 'burstiness' of the sources. A 'traffic burst' refers to a state 
where a traffic source generates traffic at a rate higher than its average for a 
long period of time. We say a traffic source is bursty if it frequently generates 
traffic bursts. 

As it will be discussed later, extracting the traffic descriptors directly 
from traffic is not a straight forward process. For this reason, we employ a 
modelling approach, where we use a parameterized model for modelling the 
traffic; we then find the traffic descriptors from the model parameters. We 
refer to these parameterized models as Traffic Models. For pre-recorded TV 
programs, traffic models and traffic descriptors are obtained by using off-line 
algorithms. For live TV programs, the traffic models and traffic descriptors 
are obtained by monitoring traffic, and by using online methods. 

1.4.3 S e r v i c e C l a s s e s 

An incidental stream can be transmitted using one of three different service 
classes. These service classes are defined below. 

Determinis t ic Service Class: When an incidental stream is transmitted 
using the deterministic service class, the transmitter guarantees to send 
all the incidental data units on time and without any deadline violation 
or loss. The advantage of this approach is that the incidental stream 
experiences no data loss; hence the playback of incidental streams at 
the receivers will have no undesirable visual artifacts such as blocks or 
picture freezing. The disadvantage of this approach is that Tw (or R) 
is determined by the admission control process based on the most pes­
simistic bandwidth provisioning for incidental streams. This results in 
very large Tw (or small R), which is not desirable. 

Stochastic Service Class: When an incidental stream is transmitted using 
the stochastic service class, some of the incidental data units may be 
dropped (i.e., not transmitted); however, the data loss probability is 
guaranteed to be less than a certain threshold, say p%. The advantage of 
this approach is that Tw (or R) is determined using a more relaxed band­
width provisioning for incidental streams. This results in much smaller 
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Tw (or larger R) than that of the deterministic service class. However, 
this approach has the disadvantage that data loss is inescapable, and 
hence, playback of incidental streams will have some visual discrepan­
cies. 

Best Effort Service Class: In the best effort service class, the transmitter 
does not provide any guarantee of sending the incidental data. As the 
name 'best effort' implies, the transmitter uses any free bandwidth in 
the transmission line for sending the incidental data. Since no service 
guarantee is given, no admission control is necessary for this service class. 

As noted, each service class defined above has its own pros and cons. 
More precisely, if an incidental stream is transmitted with a deterministic ser­
vice class, then Tw should be selected large enough (or alternately, R is selected 
small enough) such that we always have enough bandwidth to send all the inci­
dental data on time. This means that Tw is selected such that even during the 
worst-case conditions, we find sufficient transmission opportunities for inci­
dental data. This worst-case condition happens when the bandwidth available 
to incidental streams is at its minimum. In this case, the admission control 
is performed based on a pessimistic bandwidth provisioning. Therefore, the 
bandwidth provisioning mechanism deviates far from a usual state of system. 
This means that on average, incidental stream data units will wait much less 
than Tw seconds in the transmitter buffer. This results in poor bandwidth 
utilization. Conversely, the bandwidth provisioning in the stochastic service 
class is based on a more relaxed approach. This results in much higher band­
width utilization. However, data loss is probable with this approach, which in 
some instances results in unattractive visual discrepancies in TV picture such 
as green blocks, picture freezing and so on. A solution, which offers a trade-off 
between visual quality and bandwidth utilization, is discussed below. 

1.4.4 Scalable Coding 
In order to achieve a compromise between high bandwidth utilization and the 
smooth playback of incidental streams, we use the scalable coding technique 
for encoding the incidental streams [3-5], In this technique, a video or audio 
sequence is encoded to more than one bitstream. The first stream is called the 
base layer stream and usually has a low bitrate. The other bitstreams are called 
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the enhancement layer streams, and carry a better picture or sound quality 
than that of the base layer alone. Unlike the base layer stream, the decoding 
of enhancement layer streams is not stand-alone, and requires the base layer 
stream during the decoding process. We propose to send the base layer stream 
using the deterministic service class, and the first enhancement layer stream 
using the stochastic service class. The second enhancement layer is transmitted 
using the best effort service class. This approach guarantees that the base layer 
stream data are delivered to receivers without any data loss. Therefore, the 
incidental stream is guaranteed to play back with the minimum quality offered 
by the base layer stream. Meanwhile, the first enhancement layer data will 
be transmitted by taking advantage of the bandwidth that is not utilized by 
the main and base layer incidental streams. Since the data loss is bounded, 
most of the enhancement layer stream data are expected to be transmitted on 
time. The second enhancement layer data are transmitted using the best effort 
service. Therefore, any bandwidth left over by other streams is utilized by 
the second enhancement layer. This approach results in an incidental stream 
playback with minimum picture or sound quality determined by the base layer 
stream, an average quality determined by the first enhancement layer, and a 
best quality determined by the second enhancement layer. 

Therefore, for an incidental stream that is to be re-encoded using scal­
able coding and transmitted with different service classes, two admission con­
trol processes must be performed. The first admission control process deter­
mines the rate Rbase and waiting-time t^se for the base layer stream. The 
second admission control process determines the rate Renk and the waiting-
time t^h at a given data loss rate, say p%, for the first enhancement layer 
stream. Since no service guarantee is offered in the best effort service class, 
no admission control process is necessary for the second enhancement layer 
stream. 

1 . 4 . 5 D a t a M u l t i p l e x i n g 

The multiplexing unit is responsible for multiplexing the main and incidental 
streams together. This unit handles the data units of each traffic source ac­
cording to their priority. The main streams have the highest priority, followed 
by the incidental streams with deterministic service class. This, in turn, is 
followed by the incidental streams that use the stochastic service class. The 
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incidental streams with the best effort service class have the lowest priority. 

1.5 Thesis Contribution and Structure 
This thesis consists of 6 chapters and 3 appendixes. Chapters 2-4 describe how 
the deterministic and stochastic service classes are designed. This includes the 
selection of the traffic model, the design of efficient model fitting methods, the 
selection of a traffic descriptor, and finally the admission control mechanism. 

In Chapter 2, we address the admission control problem for the deter­
ministic service class, and develop methods for the deterministic service class. 
We use the so called (a, p) model to model the traffic of main streams, and the 
so called 'traffic constraint function' as the traffic descriptor. This approach is 
based on the 'Network Calculus' theory, which studies the deterministic ser­
vice guarantees in a communication network. We develop efficient algorithms 
for fitting the (cr, p) model to a traffic source. These algorithms are useful 
in any application that employs the (<j, p) model, and are part of the novel 
contributions of this chapter. Finally, we design an admission control scheme 
for the deterministic service class. This admission control scheme is the most 
important novel contribution of this chapter. 

In Chapter 3, we design the stochastic service class. The approach 
taken is based on the recently introduced theory of 'Effective Bandwidth.' We 
develop a new physical interpretation of the effective bandwidth concept based 
on a data buffering model and the large deviation principles concept. Then, we 
design an efficient algorithm for admission control of the stochastic service class 
using the effective bandwidth concept. The two important contributions of this 
chapter are the physical interpretation of the effective bandwidth concept, and 
the admission control scheme for the stochastic service class. 

In Chapter 4, we address the traffic modelling problem for the stochastic 
service class. We examine different traffic modelling approaches for stochastic 
modelling of main streams, and select the family of Markovian signal models 
for modelling the data traffic in the proposed ITV application. We show that 
the 'Hidden Semi-Markov Models' capture the characteristics of digital TV 
traffic better than other Markovian models; hence, we employ this model. 
This line of development is one of the contributions of this chapter. Then, we 
present a new signal model for hidden semi-Markov models, and present novel 
methods for parameter estimation of this new signal model for both the off-
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line and online cases. This new signal model and its parameter identification 
algorithms are the most important contributions of this chapter, and are useful 
in other applications which employ hidden semi-Markov models. Finally, we 
show how the effective bandwidth of a source is obtained from the parameters 
of a hidden semi-Markov model. This line of development is also a part of 
contributions of this chapter. 

We design a conceptual transmitting system for the proposed interactive 
TV system in Chapter 5. We discuss the role and importance of 'packet 
scheduling policy,' and present a scheduling algorithm for multiplexing of main 
and incidental streams data. Even though this chapter does not include any 
major contributions, however, it shows how the deterministic and stochastic 
service class concepts are implemented and integrated together in an actual 
system. 

Finally, in Chapter 6, we present the thesis conclusion. We highlight 
the thesis contributions, and discuss the future research direction in this field 
as well. 
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Chapter 2 

Determinis t ic Service Class 

Things which matter most should never be at 
the mercy of things which matter least. 

Goethe 

Overview 
A scheme needed for the deterministic service class is presented. This includes 
traffic modelling for main streams, traffic model fitting, traffic descriptor and 
an admission control scheme. Using the methods presented in this chapter, 
one can determine the maximum waiting time for an incidental stream with a 
given rate. 

2.1 Introduction 

In this chapter, we present the scheme needed for implementing the deter­
ministic service class. For that, we need to forecast the minimum amount of 
bandwidth not occupied by the main streams. The approach taken is based on 
using a model to forecast the maximum data flow of each main video source. 
This model is referred to as 'traffic model', and the parameters which describe 
the maximum data flow of the source are referred to as 'traffic descriptors.' 
These traffic descriptors are then used in the admission control mechanism to 
obtain the rate and maximum waiting time of incidental streams. 

Our approach to this service class studies the transmission system in a 
worst-case condition scenario. In this scenario, all the main sources send the 
maximum possible traffic to the transmission system for long periods of time, 
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thus, during these times the bandwidth available for incidental streams is min­
imal. Using this minimum bandwidth knowledge, the rate and the maximum 
waiting time of incidental streams are then determined by the admission con­
trol mechanism. This ensures that even in worst-case conditions, there exists 
sufficient bandwidth to transmit the incidental data. 

The traffic descriptor of the main streams is used to specify the maxi­
mum traffic that the main sources can generate in any time period of length 
t. This traffic descriptor is known as the 'traffic constraint function' in the 
literature, and is defined in Section 2.2. This approach also requires that the 
traffic model captures the worst-case burstiness of a traffic source. That is, 
traffic models which capture the statistical properties of traffic are not needed 
here. 

The rest of this chapter is organized as follows. In Section 2.2, we 
discuss the current deterministic traffic models, and select the most suitable 
model for our application. The model we employ is called the (cr, p) model. We 
also show how the traffic descriptor is obtained from this model. In Section 
2.3, we address the issues that arise in fitting the (a, p) model to empirical 
traffic traces, and present efficient solutions for these issues. In Section 2.4, 
we present an admission control scheme. In Section 2.5, we present numerical 
results of applying the methods presented in this chapter to actual traffic 
sources. 

2.2 Traffic Characterization 
In this section we find a mathematical model for characterizing the traffic of TV 
video sources (i.e., the main streams). As described earlier, the term 'traffic 
of a video source' refers to the amount of data bits generated by the video 
encoder. The mathematical model that we seek should provide a deterministic 
bound on the amount of traffic a video source generates in any time interval. 
The important features of a good traffic characterization model are thus 1) 
accuracy in characterizing the traffic, 2) simplicity in implementation, and 3) 
ability to capture the useful characteristics of traffic in different time scales. 
For example, though the peak-to-average ratio of the bitrate of a source can 
roughly show how the burstiness of the source looks like in a large time-scale, 
it does not incorporate any information about the burstiness of the source on 
short time-scales. Therefore, it cannot be used in the design of an efficient 
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admission test. 
Although there is a great deal of related work on traffic characterization, 

much of this work cannot be applied to our problem. Most of these methods 
characterize the video sources using sophisticated stochastic models, such as 
Markov models [6-8], autoregressive [9,10], self-similar [11,12] and S-BIND 
[13,14] models. These approaches are all stochastic and.do not provide a 
deterministic bound on the traffic. 

The problem of deterministic characterization of video has been studied 
for other applications using different approaches [6,15-18]. These approaches 
study video bitrate variability at the frame level. Since none of these ap­
proaches address the rate variability of full screen video of TV programs at 
the scene level, the results of these studies are not valid for the proposed ITV 
application. 

In this section, we show how a deterministic traffic characterization 
is defined. Then we discuss the current parameterized deterministic traffic 
models, evaluate these models, and select a suitable model for the proposed 
ITV application. 

2.2.1 D e t e r m i n i s t i c Traf f ic C h a r a c t e r i z a t i o n 

We describe the traffic by means of a cumulative function defined as the 
amount of data (e.g., number of bits or packets) generated by the source in 
the time interval [0,t]. This functions is called the cumulative traffic function, 
and is defined as 

A(t)= fy{T)dT (2.1) 
Jo 

where y(r) is the bitrate of the source at time r. We use discrete time, where 
the time parameter t corresponds to an integer number representing the GOP 1 

number in the video sequence. Therefore, in our application y(r) denotes the 
number of bits generated by a video source during the rth GOP (i.e.. y(r) is 
the size of the rih GOP). In this case, 2.1 becomes 

t 
A(t) = J^y(r), Vt>0 (2.2) 

r=0 

1 Group Of Pictures (GOP) in M P E G terminology is the group of frames between two 
consecutive / frames. The GOP length in most NTSC T V programs is 15. Therefore, with 
a frame rate of 30 fps, each GOP corresponds to 15/30 = .5 seconds. 
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The traffic characterization of a source is obtained by defining the traffic 
constraint function A*(t), that defines an upper bound on the amount of traffic 
generated over any time interval of length t. Thus 

A*(t) > A(s + t) -A(s) Vs>0 (2.3) 

Note that the traffic constraint function A*(t) does not depend on s and hence 
provides a time-invariant bound for the function A. The traffic constraint 
function is always wide-sense increasing (i.e., A*(t) < A*(t + r) for r > 0 ). 
As discussed in [19] and [20], A*(t) defines a meaningful constraint only if it 
is subadditive, which means that A*(t + s) < A*(t) + A*(s) for all s, t > 0. If 
A*(t) is not subadditive, it can be replaced by its 'subadditive closure' [21]. 
The subadditive closure of a function f(t) is the function f'(t) defined with 
the following recursive equation 

/'(0) = 0, 
f'(t) = min [/(*), min [f'(s) + f'(t - s)}} , t > 0. (2.4) 

0<.s<t 

E m p i r i c a l Envelope 

The empirical envelope is the tightest traffic constraint function of a source 
and is defined as 

E(t) = m&x{A(s + t) - A{s)} Vs>0,Vi>0 (2.5) 
s 

The empirical envelope indicates the maximum burst size that a source gen­
erates in any time interval of length t. The shape of the empirical envelope 
function carries important information about the burstiness of the source in 
the worst-case conditions. For example, Figure 2.1 shows E(t) for a constant 
bitrate (CBR) and a typical variable bitrate (VBR) source. For the CBR 
source with rate R, the empirical envelope is a linear function of t with slope 
R, i.e., E(t) — Rt. For a VBR source with maximum bitrate R, E(t) is a con­
cave non-decreasing function. For a small t, E(t) of a VBR source is typically 
very close to Rt. 

Traffic characterization of mul t ip lexed sources 

Consider an ideal multiplexer with N input video sources. An ideal multiplexer 
does not delay the incoming traffic and generates a multiplexed stream of all 

20 



Figure 2.1: E(t) for a CBR and a typical VBR source. 

the input streams. The instantaneous rate of the multiplexed stream is the 
aggregate instantaneous rate of the input streams. If the N input streams 
are each characterized by the traffic constraint functions A*(i), i = 1, 2,.... N, 
then the multiplexed stream has the traffic constraint function A*mux such that 

2.2.2 P a r a m e t e r i z e d Traf f ic C h a r a c t e r i z a t i o n M o d e l s 

In order to use the concept of the traffic constraint function in a practical 
system, it is necessary to represent the function A*(t) with a parameterized 
model. Such a parameterized model would significantly facilitate the design 
of the admission tests of the incidental streams. Besides, by using a parame­
terized model, the sources can efficiently specify their traffic characteristics to 
the system, as only a few parameters need to be conveyed. 

As discussed above, the criteria used to evaluate a traffic characteriza­
tion model are accuracy, simplicity and efficiency of the model in capturing 
meaningful information about the burstiness of the sources. From the perspec­
tive of bandwidth provisioning, the model should be accurate. This means that 
A*(t) should be as tight as possible, so that we do not overestimate the traf­
fic of the source. Since the empirical envelope is the tightest bound for the 
traffic of a source, it is used as a benchmark for the accuracy of a traffic con­
straint function. While in general a model with more parameters can achieve 
a more accurate traffic constraint function, the additional parameterizations 
cause an increase in the complexity of the traffic model. Thus, the selection 

N 
(2.6) 

i=i 
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of an appropriate model must involve a compromise between accuracy and 
simplicity. 

There are five important parameterized deterministic traffic models 
studied in the literature, known as the peak rate model, the (r,T) model, 
the the (a, p) model, the (a, p) model and D-BIND model. 

The peak rate method The peak rate model is the simplest and the most 
widely used model of all traffic models. In this model, the traffic is 
described with only one parameter, the peak rate Rmax- The traffic 
constraint function for this model is given by A*(t) = Rmax x t for all t. 
The model is usually enforced for video sources by the rate control section 
of the source encoder. Note that the peak-rate model is appropriate for 
specifying CBR traffic, but will overestimate the traffic of VBR sources. 
This is illustrated in Figure 2.2-a, where the empirical envelope, E(t), 
and the peak-rate model traffic constraint function, A*(t), are shown for 
a VBR source. As shown, the A*(t) is not a good model for E(t) and 
overestimates the traffic for long time-intervals (i.e., for large fs). 

The (r, T) model The (r, T) model describes the traffic with a rate param­
eter r and a framing interval T. In this model, time is partitioned into 
frames of length T and the traffic generated during each frame interval 
is limited to rT bits. Thus, this model enforces an average rate r, while 
allowing for moderate bursts. The traffic constraint function for this 
model is given by: A*(t) = (\t/T] + l)r,Vt > 0, which is illustrated in 
Figure 2.2-b. 

This model is most suitable for VBR sources with small fluctuations in 
their bitrate. If a VBR source has large fluctuations in its bitrate, then in 
order to capture all changes in the traffic a large framing interval T must 
be selected. However, selecting a large T usually results in overestimation 
of the traffic. 

The (a, p) model The (a, p) model describes the traffic with a burst parame­
ter a and a rate parameter p [15,16]. In this model, the traffic constraint 
function is A*(t) = a + pt. Hence, this model enforces a rate p, while al­
lowing some burstiness up to a. Figure 2.2-c shows the traffic constraint 
function A*(t) for this model. Though this model is very simple, it has 
been successfully used in efficient characterizing of a large class of traffic 
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sources. This model can easily be implemented by using a leaky bucket 
traffic shaper2. Because of these attractive features, this model has been 
widely used in many traffic engineering applications. 

The (<T, p) model The (a, p) model is a generalization of the (a, p) model. A 
(o,p) model consists of a set of m (ai, pi) pairs, 1 < i < m. The traffic 
is limited by each (oi,pi) pair, i.e.,: 

A*(t) = mm(al + Plt), Vi > 0 (2.7) 
i 

Figure 2.2-d illustrates the A*(t) function for this model with m = 3 
piece-wise linear segments. As shown, the traffic constraint function for 
this model consists of m piecewise-linear segments. By increasing the 
number of (cr, p) pairs m, the model results in a tighter and more accurate 
constraint function for the traffic. This is illustrated in Figure 2.3, where 
the (a,p) model for a source is plotted for rn =1,2 and 3. As shown 
by increasing TO, the traffic constraint function A*(t) gets closer to the 
empirical envelope of the source. However, practical considerations, such 
as implementation complexity, limit the size of the model, rn. Therefore, 
there is a tradeoff between the accuracy of the model (which usually 
requires large m) and the simplicity of the model. 

The D-BIND model The D-BIND traffic model is a general traffic model 
that uses a number of rate-interval pairs {(Ri,Ii)\i — 1,... ,n} [24,25] 
The maximum rate over any interval of length Ii is restricted to Ri for 
all pairs i. The traffic constraint function is given as follows: 

A*(t) = R i \ ~ (t - Ii) + IUU for all h_x < t < h (2.8) 

The traffic constraint function of the D-BIND model thus consists of n 
piece-wise linear segments as shown in Figure 2.2-e. Note that the (a, p) 
model can be viewed as a special case of the D-BIND model since the 
(a, p) model defines an n segment concave piece-wise linear constraint 
function. It should be noted that the traffic constraint function of the 
D-BIND model in some instances may not be subadditive. 

2Efficient implementation of the leaky bucket mechanism is discussed in [22,23]. 
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Figure 2.2: Traffic constraint function for different traffic models. 
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(c) m — 3 

Figure 2.3: A*(t) for (B,p) model for m = 1,2 and 3. 

Several studies have evaluated these deterministic traffic models for 
modelling the video traffic3 with respect to accuracy and simplicity criteria 
(see [26,27] and [17]). In these studies, the simplicity of the models are eval­
uated based on the complexity of implementation of the admission control 
tests and the traffic monitoring and policing4 mechanisms. Meanwhile, it is 
shown in [27] how the parameters of each model can be expressed in terms 
of the other models. This enables a direct comparison of these models. All 

3 In all of these studies, the traffic video source is considered at frame level or A T M cell 
level. 

4 In traffic monitoring, the traffic of the source is monitored in real time to make sure 
that it complies with its traffic characterization model. If the real traffic does not comply 
with the model, the traffic shape is enforced to follow the model by a mechanism called 
traffic policing. 
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these studies indicate that the (a, p) model is superior to the peak-rate and 
(r, T) models. However, they also show that the use of a single (cr, p) model 
cannot usually achieve an acceptable accuracy for most of the applications. It 
is shown in [17] that the (cr, p) model which employs multiple (cr, p) models 
can accurately characterize the VBR video. 

We employ the (cr, p) model, as it is known to be simple and accurate 
for modelling VBR video [17,26,27]. In order to evaluate the (5, p) model 
with respect to its ability to capture useful characteristics of traffic for our 
application, we studied the empirical envelopes of several typical TV programs. 
Figure 2.4 shows E(t) for two typical TV programs, a movie and a news 
program. The results show that E(t) is a concave increasing function, with 
two expected characteristics. 1) For very small i's, Eit) is almost linear, that 
is E(t) w Rmaxt, where Rmax is the maximum rate of the source. 2) For very 
large t's, E(t) is also almost linear with the slope dE(t)/dt sa Ravg, where Ravg 

is the average rate of the source. For other t's, E{t) is a concave decreasing 
function. In order to capture these two important characteristics of the E(t), 
we select the first (a,p) pair of the model as 0\ = 0 and p\ = R,nax. In 
addition, the rate parameter of the last (o~,p) pair is set to p„L — Ravg. This 
selection captures the two important characteristics of E(t) in our model. The 
other (cr, p) pairs' parameters should be found so that A*(t) models the concave 
section of E(t). 

2.3 Fitting the (<r, p) Model to a Source 
We here address how to construct an accurate (a, p) model for a traffic source, 
specifically a video source, using a few (cr, p) pairs and a reasonable amount 
of computational effort. Finding an efficient and practical way of constructing 
a model, which offers the right trade off between accuracy, size and compu­
tational effort, is a real challenge. Such a model should be accurate in order 
to achieve high bandwidth utilization, and should include as few (cr, p) pairs 
as possible, so that it can be used in practical admission control schemes [27]. 
Computation time is very important for online traffic sources, where the (a, p) 
model should be constructed by monitoring samples from an online traffic 
source. 

There are many methods for selecting the (a. p) model parameters 
whose design objective is not to strive for high bandwidth utilization, but 
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Figure 2.4: E{t) for two typical TV programs. The traffic is normalized to its 
maximum rate, i.e., the maximum rate of these sources is 1. 

instead to select the traffic parameters according to bandwidth availability. 
These methods include Dual leaky bucket, fixed burst [28], concave hull [17], 
product [29] and maximum distance [17]. 

Characterization of a VBR traffic source with the goal of achieving high 
bandwidth utilization and use of the (a,p) model is studied in [1,17,30]. The 
benchmark in these methods for evaluating the accuracy of a traffic source is 
the empirical envelope of the source. Since E(i) is the most accurate traffic 
constraint function for a source, the approach of these methods is to first 
construct E(t), and then construct A*(t) as an approximation of E(t). 

However, construction of E(t) for all t is extremely time consuming and 
is not practical in real time applications. Existing methods use extrapolation 
techniques to reduce the computational load in finding E(t) for large time 
intervals (i.e., large t's), a process that in turn results in rough estimates of 
E(t). Moreover, finding the model parameters from the empirical envelope 
is also a challenge. Existing methods are based on a 'brute force' search 
approach, which is extremely time consuming. 

In this section, we present a new algorithm for constructing the em­
pirical envelope of a source. We show that our method results in a better 
approximation of E(t), when compared to existing methods. Moreover, due to 

27 



its speed and iterative design, our method can easily be employed for on-line 
traffic sources, where the source traffic is not known a-priori and the speed of 
the traffic characterization algorithm is important. 

We also present a unique and robust algorithm for obtaining the op­
timum model parameters from E(t). Since E(t) is the most accurate con­
straint function for a source, we select the (a, p) model parameters so that 
A*(t) > E(t) for all t, where A*(t) = minifa + pit) and A*(t) is as close to 
E(t) as possible. We use the 'divide-and-conquer' approach in our algorithm 
and set up the problem such that a powerful optimization method, called 
Sequential Quadratic Programming, can be applied to the problem. Unlike 
other methods in the literature, our method finds the model parameters di­
rectly from the true or sub-sampled E(t). In addition, our method is faster 
and more robust than the current methods and results in a near optimum 
model. 

In Section 2.3.1, we review previous works related to fitting a (5,p) 
model to a traffic source. We present our method for constructing the empirical 
envelope in Section 2.3.2. In Section 2.3.3, we present our method for obtaining 
the (a, p) model parameters from the empirical envelope. 

2.3.1 O v e r v i e w o f C u r r e n t M e t h o d s for F i t t i n g t h e (a, p) 
M o d e l t o a Traf f ic S o u r c e 

As mentioned above, all current methods are based on the two counterparts. 
First, constructing the empirical envelope, E(t), and second, finding the (5,p) 
parameters from E(t). We now discuss current methods for each part. 

Cons t ruc t ing E(t) from the traffic 

•In [17], the empirical envelope E(t) is obtained by running an exhaustive search 
and finding the maximum burst size in the entire stream. More precisely, if 
the instantaneous traffic rate of a source is given by y(i) and the total length 
of the source is N, then E[t) is constructed by calculating: 

The drawback of this approach is its extensive computational complexity. In 
order to compute E(t) for 1 < t < N, 0(N2) operations is required. In 

k+t-l 
(2.9) 
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addition, N is generally very large, specially for video traffic sources (e.g., 
N « 105 for a 2 hour movie when the traffic is considered at the frame level). 
Hence, for the majority of video sources, it is not practical to compute E[t) 
using equation 2.9. There are methods in the literature that strive to reduce 
this computational complexity [1,30]. In [1,30] E(t) is approximated using 
extrapolation. That is, E(t) for 1 < t < r is computed using equation 2.9, and 
E(t) for t > T , denoted by ET(t), is extrapolated from E(t), 1 < t < T. The 
extrapolation method used is either the "largest subadditive closure" with the 
computational complexity of 0(N2) (which is the same complexity if E(t) was 
constructed using equation 2.9), where 

ET{t)= mm {E(k) + E(t-k)} for t > T (2.10) 

or the "repetition extrapolation" with the computational complexity of 0(TN), 

where E(t) for t > r is obtained by simply repeating the first r values in the 
envelope (i.e., E(t), 1 < t < r) 

ET{t) = l-\E(T) + E(t-[-\T) for t>r (2.11) 
T r 

The parameter r is experimentally selected for each application. The disad­
vantage of this extrapolation approach is that it results in high utilization only 
for the small maximum waiting times Tw. For large Tw's, the traffic character­
ization based on ET(t) results in a poor network utilization. This is because 
for large t's, ET(t) is not a good approximation of E(t). This is illustrated in 
Figure 2.5, where E(t) and ET(t) for a typical video source are shown. We 
observe that ET(t) is not a good approximation for E(t) for large t's. 

F i n d i n g the model parameters from E(t) 

Once E(t) (or ET(t)) is found, A*(t) is constructed as a piece-wise linear ap­
proximation of E(t). The current approach includes two steps. First, since 
E(t) is not necessarily concave and sub-additive, it is replaced with the con­
cave hull of E(t), denoted by H(E) [17,18]. H(E) is the smallest piece-wise 
linear concave function larger than E [31]. Theoretically, H(E) can be used as 
A*. However, the number of piece-wise linear segments in Ti(E) is usually very 
large, resulting in an impractical large model size. For this reason, Ti{E) is 
replaced with another piece-wise linear function that has only a few linear seg­
ments. The idea behind this approach is to use a cost function to measure the 
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Figure-2.5: E(t) obtained from the direct approach, largest subadditive closure 
extrapolation, repetition extrapolation for r = 400 and sampling with 5 = 400. 
The source is a VBR MPEG-2 sequence, selected from the motion picture 
'Mission Impossible' with 720 x 480 resolution, frame rate 30 and maximum 
bitrate of 5 Mbps. 

difference between H(E) and the traffic constraint function of the new model 
(say A*).where the model size n is small enough. Then an algorithm with 
a heuristic approach is used to find the (cr, p) parameters of the A*n model. 
In this algorithm, each (o~i,Pi) pair is updated in each iteration through an 
exhaustive search through all the possible values for each (ai, p^ pair to find 
the one that minimizes the cost function (see [1,30]). The major drawbacks of 
this method are: 1) the computation of the convex hull of E and the heuristic 
approach to reduce the model size are both computationally expensive, 2) the 
heuristic method to reduce the model size is not always guaranteed to converge 
to a result, and 3) this method might converge to the local maximum of the 
cost function, thus it does not guarantee that the optimum parameters are 
found. 
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2.3.2 O u r A p p r o a c h t o C o n s t r u c t i n g t h e E m p i r i c a l E n ­

v e l o p e 

Here, we present a method that finds the exact values of E(t) for all 1 < t < r. 
For t > T , we find E(t) at equally 5 spaced samples t = 5, 25, ...,n5 (see Figure 
2.5). The sampling interval 5 is a positive integer. If 5 < r, then the samples 
at t = id for which iS < r are repeating and need not to be computed again. 
For simplicity, we present our algorithm for constructing E(t) for t < T and 
for samples of E(t) separately in sections 2.3.2 and 2.3.2, respectively. The 
number of operations to construct E(t) for 1 < t < r and the equally spaced 
samples of E(t) are 0(TN) and 0(nN) respectively. 

Cons t ruc t ion of E(t) for t < r 

Assume that the total number of bits generated by the source, y[i) for i = 
1,2,... ,N are given, where N is the total length of the source. In our case, 
N is the total number of GOP's in the whole video sequence. We like to find 
E(t) for t = 1, 2,..., T, where r < N. E{t) is given by [17] 

The objective is to construct sk for A; = 1,2,..., AT. The empirical envelope 
E(i) is computed as the max(sfc('i)). Sfc is easily constructed from sfc_i by 
shifting elements of Sfc_i down and adding y(k) to the result. Our algorithm 
consists of the following steps: 

1. Let k = 1 and initialize sx and e as follows 

k+t-l 
(2.12) 

We define vector sfc of size 1 x T as 

Sfc = y(k) ... Etfc-i E,t, (2.13) 

[y(i) o ••• < T X l 
(2.14) 

(2.15) e = Si 
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2. Let k = k + 1. Find Sfc and e using 

Sfc — ( s h i f t e l e m e n t s o f Sk-i d o w n b y o n e ) 

+ [y(k) 0 ••• 0] T (2.16) 
(2.17) e — max(e, Sfc) 

3. Repeat step 2 until the last input is reached, i.e, k — N. 

When the algorithm finishes, e is the empirical envelope of the source 
e(i) = E(i) for 1 < i < T. 

The computational complexity of our algorithm is only (D(TN), which 
is considerably less than 0(TN2) for a brute force approach using equation 
2.12. Due to the iterative structure of our method, it can easily be adopted in 
on-line applications, where the source traffic y[i) is not known a priori. 

Cons t ruc t ion of samples of E(t) for t — 5,25,..., n5 

Given the traffic source y(i), we like to compute E(t) for t — 5,25,... ,n5, 
where n is the number of samples to be computed. Let 

Then using equation 2.12, we have E(i5) = maxfc Afe(i). Our goal here is to 
construct Afc(i) in an efficient way rather than computing Yl^k-iS+i 2 / ( 0 f° r 

all 1 < k < N and 1 < % < n. Our algorithm iteratively constructs Ak, 
k — 1,2,... ,N and 1 < i < n. The key idea of our algorithm is that for each 
new k, we efficiently re-use some -pre-computed terms to construct A^ii). By 
doing so, our algorithm reduces drastically the number of operations required 
to construct each Ak{i). 

First, we define the vector Ak of size n x 1,. where Afe(i) is the sum 
of i6 consecutive input ending by y(k) as defined in equation 2.18. It can be 
easily shown that 

fc 
(2.18) 

l=k-iS+\ 

fc-(i-l)(5 

Ak(t) = Ak{i -1) + y ( 0 
;=fc-i<5+l 

= Ak{i - 1) + A f c _ ( i _ 1 ) 5 (l) for i > 1 (2.19) 

32 



Our algorithm relies on equation 2.19 to iteratively construct A*, for 
k — 1, 2,..., N. Equation 2.19 requires A f c(l), which is already computed in 
previous iterations. Hence, we save the first element of A*, in each iteration 
for future use. For this purpose, we use a vector A of size ((n — 1)5 + 1) x 1, 
where A f c(l) is pushed into A in each iteration. In kth iteration, we have 
A(i) — Afc_ i + 1(l) and equation 2.19 becomes 

A f c(i) = A f c ( i - l ) + A((i-l)<5+l) for i > 1 (2.20) 

The empirical envelope samples, i.e., E(t) at t — iS, are easily obtained as 
maxfc Afc(i). The algorithm is summarized as follows. 

1. Let k — 1. Initialize n x 1 vector A, n x 1 vector E$ and ((n— 1)5+1) x 1 
vector A as : 

Es = A=[y{l) y(l) ... y(l)]T (2.21) 
f A(l) for i = 1 , 

AU) = { K ' 2.22 
w I 0 for 1< % < (n - 1)5 + 1 

2. Let k = k + 1. Update A(l) as 

A(l) = A(l) + y(k)-y(k-5) (2.23) 

Note that if this algorithm is executed in parallel with the algorithm 
presented in 2.3.2 and 5 < r, then we have A(l) = sk(5). Hence, this 
step of the algorithm can be ignored. 

3. Update vector A 

f A(l) for i = 1 
A(i) = \ W 2.24 

W I A{i - 1) for 1< i < (n - 1)5 + 1 

4. Update A(i) for i > 1 using equation 2.20. 

5. Update Es — max(Eg, A). 

Steps 2 to 5 of the algorithm are repeated for k — 2, 3,..., Ar. When 
the algorithm finishes, we have E(i5) = Es(i), 1 < i < n. 
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A l g o r i t h m 1 Find the (a, p) model parameters. 
I N P U T S : E(t) for t = 1, 2, . . . , N; a criteria to end the algorithm (i.e., 
the size of the (a, p) model n, or the maximum acceptable error in the 
model). 
O U T P U T : ai and p* for 1 < i < n. 
1: Fi t a single (a, p) to E(t) for t = 1, 2, . . . , N 
2: A*(t) = a + pt 
3: wh i l e A* (t) does not satisfy the accuracy criteria or the model has 

not reached its maximum size do 
4: Find [T i ,T 2 ] such that for all t G [Ti,T2], A* (t) overestimates 

E(t) more than a threshold 
5: Fi t a single (cr, p) to E(t) for t G [TI, T2] 
6: Add the new (a, p) to the model 
7: A * (t) = min i ( (Ti + pit) 
8: end whi le 

Figure 2.6: Pseudo-code of our algorithm for obtaining the (a, p) model pa­
rameters from E(t). 

2.3.3 O b t a i n i n g t h e (cf, p) P a r a m e t e r s f r o m t h e E m p i r i ­

c a l E n v e l o p e 

Our method for finding the (a, p) model parameters from E(t) follows a divide-
and-conquer approach [31]. In this approach, the problem is broken into sub-
problems which are similar to the original problem but smaller in size, the 
subproblems are solved, and then the results are combined to create the solu­
tion to the original problem. Following this technique, we divide our problem 
to the subproblems of fitting a single (a, p) to the E(t) for a specific range of 
t, let us say t G [7i,T2]. This subproblem has a smaller size than the original 
problem and is easier to solve. In Section 2.3.3 we describe how we solve this 
subproblem, and how all the results are combined to obtain the final (a,p). 

Suppose E(t), for t — 1, 2,..., N, is given. Our algorithm first fits a 
single (cr, p) model to the whole input data. That is, we find a and p so that 
a + pt > E(t), and a + pt is a good approximation for E(t), for t = 1, 2,..., N. 
Then we proceed by reducing our problem to a subproblem of smaller size. For 
this, we first select the interval [TX,T2] such that A*(t) is not a satisfactory 
estimate for E(t) for all t G [Ti,T2]. For example, we find a [Ti,T2] such that 
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{A*(t) - E(t))/E(t) is greater than a threshold for all t € [T 1 ;T 2]. If there are 
more than one such interval, we select the one that A*(t) is the worst estimate 
for E(t). The same approach is then used, and a single (o~,p) is fitted to E(t) 
for t G [T1; T2]. This will add a new (cr, p) pair to our model. This procedure of 
adding a single (a,p) pair to the model is repeated until a criteria for ending 
the algorithm is met. This criteria depends on the application and is either 
the maximum number of (a, p) pairs in the model or an accuracy criteria. 
For example, in some applications the practical considerations may require 
that the model size does not exceed a certain size, say n. In this case, the 
algorithm ends when n (cr, p) pairs are added to the constructed model. On 
the other hand, some applications may require that a certain level of accuracy 
is preserved in the model, e.g., A*(t) does not overestimate E(t) more than a 
threshold, say p%. In this case, we add (cr, p) pairs to the model until A*(t) 
satisfies this accuracy criteria. 

Our sub-problem: fi t t ing a single (cr, p) to E(t) 

In each iteration of our algorithm, we need to solve the sub-problem of fitting 
a single (cr, p) to a part of E(t). That is, given E(t), T\, and T 2, we should find 
a and p such that: 1) a + pt > E(i) for all 1 < t'< N; this constraint ensures 
that the constructed model is concave and does not underestimate E(t) for 
any t, and 2) 0 + pt is an optimum approximation of E(t) for t € [T\,T2]. In 
order to measure the closeness between A*(t) and E(t) for t G p i ,T 2 ] we use 
the error function defined as: 

error{a, p) = ZjlTl (° + Pt ~ E{t)) 
= (T2 - 7\ + l)(a + ®g&p) - E S r , W) (2-25) 

The terms ESTJ E(t) and T 2 — T\ + 1 do not depend on o or p. Hence, we 
only need to minimize the function 

error(a, p) = o + ^~^-p (2.26) 

with the constraint a + pt > E(t) for all 1 < t < N. This is a classic optimiza­
tion problem and there are many standard approaches available in literature 
to solve such a problem [32]. We choose to employ the Sequential Quadratic 
Programming (SQP) method to solve this problem in our application. SQP 
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t 

Figure 2.7: Divide and Conquer approach in our algorithm, (a) First step: a 
single is fitted into the E(t). (b) Second Step: since A*(t) in step one 
was not a satisfactory estimate of E(t) for [Ti, T2], the (cr2, p2) is fitted to E(t) 
for t e [ T i , r 2 ] . (c) Third Step: the \<r3, p3) is fitted to E{t) for t G [Ti,T 2]. 

is a robust and state of the art technique for solving optimization problems. 
For implementation details of this technique see [32,33]. Using the SQP tech­
nique, we easily minimize the function defined in equation 2.26, and find the 
optimum a and p to our problem within a few iterations. 

Note that there are- other approaches to finding the parameters of a 
single (cr, p) model like the 'product method' [29], 'maximum distance' [34] 
and 'fixed burst' [28]. These methods use different optimality criterion for 
selecting the parameters. We should point out that instead of using SQP, any 
of the above mentioned approaches can be used to solve the subproblem of 
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T=0 T=0 

Figure 2.8: The General system S. 

fitting a single (a, p). 

2.4 Admission Control 
In this section we present a method which finds a bound on the waiting time 
of the incidental streams data. This method is based on the "Network Calcu­
lus" theory [19,35,36]. In Section 2.4.1 we discuss the basics of the Network 
Calculus and describe how the bound on the waiting time is obtained. Then, 
in Section 2.4.2 we present an algorithm that employs this method and finds 
J- W • 

2.4.1 N e t w o r k C a l c u l u s B a s i c s 

Consider a general system <S which is viewed as a black box; S receives the 
input data at the variable rate yin(t) and delivers the data after a variable 
waiting time at the variable rate y0ut{t)- In the proposed ITV application, 
S is the multiplexer on the transmitter side, that multiplexes the main and 
incidental streams. We define the cumulative function of the amount of data 
input and output to S as 

Vr > 0,Vi > 0 

Vr>0,Vt>0 (2.27) 

Ain{t) and Aout(t) are called the 'arrival' and 'departure' functions, re­
spectively [35,36]. The arrival and departure functions for a sample system are 

T=t 

Ain{t) = YlVin(T^ 
T=t 

Aout(t) = ^ V o u t i r ) , 

T=0 
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(a) Continuous time. (b) Discrete time. 

Figure 2.9: The arrival and departure functions: (a) Continuous time, where 
Ain and Aout are defined for all t > 0, (b) Discrete time, where Ain and Aout 

are only defined at discrete times denoted by dots. 

illustrated in Figure 2.9. From the arrival and departure functions we derive 
the following two quantities: 

Backlog: The backlog at time t is the amount of data waiting in the system 
S at time t and is given by Ain(t) — Aout(t). As shown in Figure 2.9, the 
backlog at ti is simply the vertical distance between Am{tx) and A o u t(t 2)-

W a i t i n g t ime (or delay): The waiting time at time t is the time that the 
incoming data at time t will wait in the system S before being served. The 
waiting time for the data that is input to the system at time t is given by: 

d(t) = min{r > 0 : Ain(t) < Aout{t + r)} (2.28) 

The waiting time at t0 is illustrated by d(t0) in Figure 2.9. If the traffic is 
continuous, then Ain(t0) = Aout(t0 + d(t0)), which means that all the input 
data to the system up to the time to are served by the time t0 + d(t0). 
As shown, for continuous traffic the waiting time is simply the horizontal 
distance between Ain and Aout. 

Bounds on W a i t i n g T i m e and Backlog 

Network Calculus gives computational rules for bounding the waiting time and 
backlog. Before discussing how these bounds are obtained, we need to define 
the service curve and the horizontal deviation concepts: 
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Service Curve : Assume Ain(t) and Aout(t) are given functions. We say that 
the system S offers the input a service curve /? if and only if for all t > 0, 
there exists some s, 0 < s < t such that 

Aout(t) - Am(t -s)> B{s) (2.29) 

where (3{t) > 0 for all t > 0. 
The service curve is an abstract concept, and indicates the capacity of sys­
tem in accommodating traffic during a time interval of length s. Roughly 
speaking, f3(s) is a lower bound on the amount of traffic that can depart from 
the system during any time interval of length s, that is Aout(t) — Aout(t — s) > 
P(s). To better understand the physical meaning of f3(s) we write the equa­
tion 2.29 as 

Aout{t) > Am{s) + (3(t - 5 ) (2.30) 

Then, a more precise physical interpretation of [3 is that if s is the beginning 
of a busy period, that is the backlog at s is zero (Aout(s) — Ain(s) = 0) and 
there are always some data waiting in the system in [s,t], then the system 
will send at least (3(t — s) data units in [s,t]. 

Hor izon ta l deviat ion: The horizontal deviation between the arrival and de­
parture functions denoted by h(Ain, Aonl) is defined as the maximum of all 
the waiting time values d(t), and mathematically is defined as 

h(Ain, Aout) — maxd(i) 

= max{min{r > 0 : Ain(t) < Aoat(t + r)}} (2.31) 

Now assume the input traffic to the system is characterized by the traffic 
constraint function A*n(t). This means that for ali i > s > 0 (see 2.2) 

Ain(t) - Ain(s) < Al(t - s) (2.32) 

Two theorems in the Network Calculus state that the backlog and waiting time 
in a system are bounded respectively by the vertical and horizontal deviations 
between the traffic constraint function of the input A*n[t) and the service curve 
of the system (3(t) (see [19,20,35,36]). Since we are interested in the bound 
on the waiting time, we only state the theorem that defines a bound on the 
waiting time: 
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High proirity Stream #1 A* (£) 

High proirity Stream #2 A* (t | 

High proirity Stream #N ^ j y (*> 

Low priority stream 
Low priority buffer 

(a) 

Equivalent high priority stream 

Low priority stream 

High priority buffer 

rateC 

Low priority buffer 

(b) 

Figure 2.10: a) The transmitter model with N high priority (main) streams, 
b) The equivalent model, where the ./V high priority input streams are replaced 
with one equivalent stream. 

Theorem 1 Assume a traffic source constrained by A*n(t) traverses a system 
S that offers the service curve 8(t). The waiting time d(t) for all t satisfies: 
d(t)<h(A*n,0) [35,36]. 

For a proof of this theorem, see Appendix 1. 

2.4.2 W a i t i n g - T i m e B o u n d i n t h e p r o p o s e d I T V a p p l i ­

c a t i o n . 

We model the multiplexer in our interactive TV application with the model 
shown in Figure 2.10-a. In this model, the inputs to the system are N main 
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streams and one incidental stream. The main streams have transmission prior­
ity over the incidental stream, i.e., the multiplexer serves the incidental stream 
only when the main stream's buffers are empty. The rate of the outgoing chan­
nel is constant, equal to C packets per second. We assume the traffic of the 
ith main stream is characterized by the traffic constraint function A*(t). As 
discussed in 2.2.1, all the main streams can be replaced with one equivalent 
high-priority stream, which is constrained by A*H(t) where 

N 

A*H(t) = J2AW (2-33) 

This is shown in Figure 2.10-b. We denote the arrival and departure functions 
for the low-priority input (i.e., the incidental stream) by Ain^(t) and Aout<i(t). 

Our motivation here is to first find the service curve for the low-priority 
input. Then, using theorem 1 we will find Tw. Consider an arbitrary time t. 
Call s < t the beginning of a busy period for the low-priority input, i.e., the 
backlog for low-priority input at s is zero (Airiii(s) — Aoui]£,(s)) and there is 
always some low-priority data waiting in the system during [s,t]. During [s,t] 
the high priority inputs can send up to A*H(t — s) packets to the system. Hence 
the system will send at least C(t — s) — A*H(t — s) packets of the low-priority 
input in [s,t]: 

Aout,L(t) - AouttL{s) > C{t - s) - A*H(t - s) (2.34) 

Since the backlog at s is zero then we have 

Aout,L{t) - Ain,L{s) > C(t - s) - A*„{t - s) (2.35) 

It follows from this equation that the service curve for the low-priority input 
is 0L(t) = Ct-A*H{t). 

The traffic constraint function for a constant bitrate incidental stream 
is given by 

where R is the rate of the stream. We use theorem lto find the maximum 
waiting time Tw in the proposed ITV application. That is, we consider a 
hypothetical system where the arrival function is A*nL(t) and the departure 
function is 0L(t). Theorem 1 states that Tw, defined as the maximum of d(t), is 
given by the horizontal deviation between A*nL and Pi, i.e., Tw = h(A*nL, Bi), 
where and A* L(t) are given in equations 2.35 and 2.36. 

41 



A l g o r i t h m 1 Find Tw 
INPUTS: (ui,pi) pairs for i = 1,2, ...,m; the incidental stream rate R; the 
incidental stream duration T and the channel rate C. 
OUTPUT: Tw 

1: for i = 1 to m do 
2 : ^ = ^ i ^ i 

' Pi-Pi-X 

ti is the abscissa of the intersection of the ith and i — 1th line segments of 
„ . _ (R-C+pi)xt+tTi i: di — R 

di is the horizontal distance between the Rxt and PL^I)-
4: end for 
5: i f T ^ oo then 
6: Find T such that (3L{T') = RxT 
7: dT=V -T 
8: else 
9: i f maXi{C — Pi) < R t hen 

10: dT = oo 
11: else 
12: dr = 0 
13: end i f 
14: end i f 
15: Tw = max{dr, maxj{dj}} 
16: RETURN 

Figure 2.11: Pseudo-code of our algorithm to find Tw. 

2.4.3 O u r A l g o r i t h m t o F i n d Tw 

Our algorithm is presented in Figure 2.11, which uses the method presented 
in the previous section and finds Tw. The inputs to the algorithm are the 
m parameter pairs (oi,pi) of the main stream constraint function A*H(t), the 
channel output rate C, the duration of the incidental stream T and the rate 
of the incidental stream R. We have 

(3L{t) = Ct-A*H(t) = Ct - mm{ai + p^} (2.36) 
i 

PL(t) = m a x { - a i + (C - Pi)t} (2.37) 
i 

As shown in Figure 2.12, /?£,(£) is a convex piece-wise linear and non-decreasing 
function. First, the algorithm finds U for i — 1, 2, . . , m, where U is the abscissa 
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Figure 2.12: BL{t) and A*L(t). 

of the intersection of the ith and i — 1th line segments of 3L- In the next step, 
the algorithm computes the horizontal distance di between A*L and 3Lit) for 
t = i = 1, 2,.., TO (see Figure 2.12): 

^ = i , - ^ M = + + * ( 2 . 3 8 ) 

R R v y 

If the incidental stream is a video or audio sequence of length T, then 
the horizontal deviation at t = T is computed and denoted by dr- Otherwise, 
that is if the incidental stream is a video or audio sequence with an unlimited 
duration, the algorithm checks if < Rt for very large time intervals (i.e.. 
for t —> oo). If this condition is not met, it means that the system cannot 
guarantee any maximum waiting time and d? is set to oo. Finally, Tw is found 
as the maximum of all dj's and dx-

2.5 Results 
In this section, we present the numerical results of implementing the meth­
ods presented in this chapter. First, we will evaluate the performance and 
accuracy of our model fitting methods presented in sections 2.3.2 and 2.3.3 
by comparing them with the current methods in literature [1,17]. Then, we 
will present the results of implementing our admission control scheme using 
empirical traffic traces from video sequences of typical TV programs. These 
results demonstrate how the rate R and the maximum waiting-time Tw depend 
on each other in a typical digital TV system. 
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2.5.1 N u m e r i c a l R e s u l t s o f ' M o d e l F i t t i n g ' m e t h o d s 

In our first experiment, we evaluated the performance and accuracy of our 
model fitting methods presented in sections 2.3.2 and 2.3.3 by comparing them 
with the current methods in literature [1,17]. The traffic source used in our 
experiment is an MPEG-2 video stream from the motion picture "Mission 
Impossible". This video stream was encoded with constant picture quality, 
with picture resolution 720 x 480, frame rate 30 and maximum bitrate of 4.5 
Mbps. The length of this video was about one hour, which corresponds to 
N « 105 frames. 

In our simulation, the time parameter is an integer number t € N = 
{0,1,2,...} that represents the GOP number in the MPEG video stream. 
Since the frame rate of the video stream is 30 fps and the GOP size is 15, each 
GOP is 0.5 seconds. Thus, the 25 minutes sequence represents 3000 GOPs. 
The traffic in our simulation is also discrete and represents the number of 
packets. We use constant size packets of 184 bytes. This conforms to the digital 
TV and MPEG-2 standards5. For example, if a source generates 2 MBits 
in the time interval [0, .5] (i.e., in the first GOP), then the discrete traffic is 
represented by ?/(l) = cei/[(2xl06)/(184x8)] — 1359 packets. In order to make 
the results transparent from the maximum bitrate of the source, we normalize 
the traffic to 1 by dividing y by its maximum. For example, in the previous 
example, if the maximum bitrate of the source is 4.5 Mbps and GOP-time = .5 
seconds, then we have y(l) = j S i g 1 , ) ! = 1359/1529 ~ .88. 

In our first experiment, we construct the empirical envelope E(t), and 
compare the speed of our algorithm with other methods in the literature. We 
construct E(t) using the direct method [17], the largest sub-additive extrap­
olation method [1], the repetition extrapolation method [1], and our methods 
presented in Section 2.3.2. Table 2.1 summarizes the computation time of 
each method. As shown, our algorithm speed is almost the same as that of the 
repetition extrapolation approach, and both are considerably faster than the 
direct method. However, the extrapolation approaches do not estimate E(t) 
for t > T closely, while our method finds the exact samples -of Eit) for t > T 
(see Figure 2.5). 

In our second experiment, we fit a (a, p) model to the whole empirical 
5The American and the European digital T V standards employ the MPEG-2 transport 

stream (TS) syntax for the transmission stream. Each packet in MPEG-2 TS syntax contains 
184 bytes of data payload plus 4 bytes header. 
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C o m p u t a t i o n M e t h o d E x e c u t i o n t ime 
(seconds) 

Direct 161.27 
approach 

Repetition extrapolation 17.28 
r = 200 

Sub-additive extrapolation 150.48 
T = 200 

Our sampling method 23.60 
T = 200. delta = 50 

Our sampling method 16.24 
T = 200, delta = 100 

Our sampling method 7.89 
T = 200, delta = 200 

Table 2.1: Execution time in seconds for calculating E[t) for 1 < t < 10000. 
Simulations were run on a PC with pentium IV processor at 1.7 GHz, using 
Matlab implementation. 

envelope E(t) using our method presented in Section 2.3.3, and the heuristic 
method presented in [1]. We computed the error function ^2^=1

 A ^^^^ a s a 

metric for the accuracy of each model. Table 2.2 summarizes the results. As 
shown, our method results in a more accurate model for the source than the 
method in [1]. 

In order to evaluate the effect of our sampling approach on the accuracy 
of the constructed (cr, p) model, we fit a (cr, p) model to the empirical envelope 
constructed by our sampling approach. Table 2.3 summarizes the results. As 
shown, the model parameters and the error function for the models constructed 
from the samples of E(t) are fairly close to the models constructed from the 
whole E(t). 

In our next experiment, we evaluate the accuracy of our method with 
respect to achieving high bandwidth utilizations. For this purpose, we use 
a metric that determines how closely a particular model A*(t) approximates 
E(t) with respect to bandwidth utilization [1]. We consider a single FCFS 
multiplexer with a switch that operates at r — 155 Mbps. We assume that all 
the input traffic sources connected to this switch are from the same source, 
which are all characterized by A*(t). We also assume that all the sources 
have an identical delay bound d. Assuming n sources are connected to this 
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our method method in [1] 
0 1.0000 

53.4927 0.3805 
11.4585 0.4622 
2.9396 0.5837 
1.7966 0.6573 

0 1.0000 
50.1352 0.3063 
13.4325 0.3293 
3.5398 0.5644 
1.2903 0.6888 

Error 65.47 93.96 

Table 2.2: Comparison of our method with the method in [1] for finding the 
(cr, p) parameters. E(t) constructed for all 1 < t < N. 

entire envelope 6 = 100 5 = 400 
0 1.0000 

53.4927 0.3805 
11.4585 0.4622 
2.9396 0.5837 
1.7966 0.6573 

0 1.0000 
53.4511 0.3805 
12.6243 0.4546 
4.4318 0.5515 
2.3172 0.6117 

0 1.0000 
90.5083 0.3567 
40.9453 0.3961 
13.9549 0.4475 
6.6479 0.5189 

Error 65.47 76.74 84.12 

Table 2.3: The model parameters constructed from the entire envelope (second 
column) and from E(t) for 1 < t < r and samples of E(t) at t ,= i5 for 
1 < i < N. T = 200, n<5 = N. 

switch. Then, as discussed in [15], these sources are supported by this FCFS 
multiplexer without maximum waiting time violation if and only if 

d>J2 A*(t) -txr, Vi > 0 (2.39) 
i=l 

We define the 'utilization ratio', U(A*,d), as the number of admissible sources 
using A*(t) to the number of admissible sources using the empirical enve­
lope E{t) at maximum waiting time d. Particularly, U(A*,d) is the maxi­
mum n that satisfies equation 2.39, divided by the maximum m that satisfies 
d > YZi E(l) -txr for Vi > 0. U(A*,d) shows how closely A*(t) approx­
imates E(t) with respect to bandwidth utilization. An ideal model, which 
admits the same number of streams as the empirical envelope, results in the 
constant U(A*,d) = 1. Figure 2.13 shows U(A*,d) for a (o,p) model of size 
4, constructed using our method and the method presented in [1]. As shown, 
our method results in a higher utilization ratio than that of the method in [1]. 

Figure 2.13 also shows the utilization ratio for a (cr, p) model constructed 
from samples of E(t). As shown, the utilization ratio for the model constructed 
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n B 4 | -

U(A ,d), exact value of E(t) is computed for all t, and model parameters obtained using our method 
U(A ,d), exact value of E(t) is computed for all t, and model parameters obtained using Liebeherr's method 

— U(A ,d), E(t) constructed by repetition extrapolation, x=200, and model parameters obtained using our method 
— U(A ,d), E(t) constructed by sampling, x=200, 5=100, n=30, and model parameters obtained using our method 

o e I I I I I i I i I i 
0 5 0 0 1000 1500 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0 5 0 0 0 

d 

Figure 2.13: Utilization ratio, U(A*,d). 

from samples of the envelope is very close to the utilization ratio for the model 
constructed from the entire envelope. This means that using some samples of 
E(t) are sufficient to construct an accurate (cr, p) model and the computation 
of the entire envelope is not required. 

We also study the utilization ratio curve for different parameters S and 
T . In practical applications, 5 and r should be selected such that the utilization 
ratio is close to one for the selected delay bound d, and the computation 
time is reasonable for the application. Based on this experiment, we suggest 
100 < r < 300, and 5 = r. This selection results in a reasonable utilization 
ratio for almost all maximum waiting times d. 

2.5.2 N u m e r i c a l R e s u l t s o f ' A d m i s s i o n C o n t r o l M e c h a ­

n i s m ' 

In this section, we present the results of applying our admission control method 
to a typical digital TV programs. All the video sequences used as the main 
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Sequence Name Source type 
1 Mission Impossible Action movie 
2 Muppets Children TV show 
3 News News show 
4 Talk Show Oprah Winfrey Show 
4 Documentary Documentary 
5 Court Show Judge Judy show 
6 Muppets show Sesame St. show 
7 Soap opera Days of our lives 
8 Cartoon Tigger movie 

Table 2.4: Video sequences used in our study. 

Compression Standard MPEG-2 
Resolution 720 x 480 

Rate 4.50 Mbps 
Frame rate 30 fps 
GOP size 15 

Number of P frames in each GOP 4 
Number of B frames in each GOP 10 

Table 2.5: Encoding parameters for the video streams used in our study. 

video streams (see table 2.4) were selected from typical TV programs. These 
video sequences were encoded with constant picture quality, and with a maxi­
mum bitrate of 4.5 Mbps. The picture quality of these videos was subjectively 
selected to be at a satisfactory level for TV applications. The length of every 
sequence used was 25 minutes. Table 2.5 summarizes the encoding parameters 
of the video sequences used in our simulation. 

By studying the empirical envelopes of the main video sequences, we 
observed that with m. = 5 (CT, p) pairs one can accurately model the video of 
most TV programs. Therefore, we select m = 5 in our application. Figures 
2.14 and 2.15 show the empirical envelopes and the fitted (a.p) models for 
the traffic sources. Table 2.6 shows the numerical value of the (<?, p) model 
parameters for each source. As shown, E(t) is an increasing function where 
E(t)/t « 1 for small £'s, and dE[t)/dt is approximately the average rate of the 
source for large fs. E(t) drops faster for large fs in video sources with simple 
content than video sources with active and complex content. The fitted (a, p) 
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model with five (cr, p) pairs is also shown in these figures. The (a, p) pairs 
are selected such that (cri,pi) — (0,1) and the rate parameter of the last 
(a, p) pair (i.e., p$) is the average rate of the source. As shown, the model 
can approximate the E(t) very well with only a few (cr,p) pairs in the (&,p) 
model. 
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Sequence Name (a, p) parameters 

1 Mission Impossible 

"60.5602 0.6376" 
20.1277 0.7025 
11.3654 0.7332 
7.8706 0.7615 

0 1.0000_ 

2 News 

100.9816 0.5018" 
30.4283 0.5727 
12.9072 0.6938 
2.1920 0.8130 

0 1.0000 

3 Talk Show 

"27.7782 0.4642" 
11.0175 0.4860 
4.9481 0.5433 
1.7709 0.6584 

0 1.0000 

4 Documentary 

103.1472 0.6157 
53.8328 0.6629 
20.7147 0.7503 
4.5189 0.8782 

0 1.0000 

5 Court Show 

"16.7626 0.4403" 
5.8024 0.6030 
2.3032 0.7112 
0.6417 0.8298 

0 1.0000_ 

6 Muppets show 

"40.4100 0.8688" 
36.5059 0.8703 
34.3194 0.8740 
3.8070 0.9445 

0 1.0000_ 

7 Soap opera 

"53.4927 0.3805" 
11.4585 0.4622 
2.9396 0.5837 
1.7966 0.6573 

0 1.0000 

8 Cartoon 

"23.4084 0.8482" 
8.3675 0.8680 
4.6805 0.8811 
0.6067 0.9556 

0 1.0000_ 

Table 2.6: Numerical values of (<r, p) model parameters for the main video 
sequences used in our simulation. 
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Simulation parameter 
set I (cable medium) 

Simulation parameter 
set II (terrestrial medium) 

Transmission rate 19.8 Mbps 39.8 Mbps 
Number of T V programs 
sharing the channel, N 

4 8 

Maximum bitrate assigned 
to each main video stream 

4.5 Mbps 4.5 Mbps 

Transmission capacity 
reserved for video streams 

18 Mbps 36 Mbps 

Transmission capacity 
reserved for audio streams 
and other ancillary data 

1.8 Mbps 3.8 Mbps 

Main video stream 
sources 

1. Mission Impossible 
2. News 
3. Talk Show 
4. Documentary 

1. Mission Impossible 
2. News 
3. Talk Show 
4. Documentary 
5. Court Show 
6. Muppets show 
7. Soap opera 
8. Cartoon 

Table 2.7: Simulation parameters. 

After fitting a (a, p) model to each video sequence, we conducted an­
other set of experiments where we considered a system similar to Figure 2.10, 
which consisted of N main (high-priority) streams and 1 incidental (low-
priority) stream. This system simulates the head-end of a digital TV trans­
mission system. We conducted two experiments using two different simulation 
parameters, as shown in Table 2.7. The first set of parameters are selected to 
simulate cable transmission medium, while the second set simulates a terres­
trial medium6. As noted, no portion of the transmission capacity is reserved 
for incidental streams. 

In order to illustrate the relation between R and Tw for the incidental 
stream, we plotted R versus Tw as shown in Figure 2.16. This graph is inter­
esting as it provides exemplary numerical values for the rate of an incidental 
stream in a typical digital TV transmission system. As we expected, R is an 

6 A 6 MHz channel in the cable medium is capable of delivering digital data at the 19.8 
Mbps rate. This capacity is usually shared by 4 or 5 T V programs. In terrestrial medium, 
a 6 MHz channel is capable of delivering at the 39.8 Mbps rate, which is usually shared by 
8 or 9 T V programs. 
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increasing function of TW. This means that by allowing a larger waiting time in 
the multiplexing system, the system can accept higher rate incidental streams. 
However, for very large TW, R becomes constant and equal to C — RaVg, where 
C is the transmission rate reserved for the main video streams and R.AVG is the 
total average rate of all the main streams. This is due to the fact that even by 
increasing TW, R cannot become larger than the channel rate minus the main 
streams average rate. 

In next experiment, we tested the accuracy of our admission control 
scheme via simulation by observing the waiting time of the incidental streams 
data units during multiplexing. The results showed that if an incidental stream 
with rate R and maximum waiting time TW is accepted by the admission test, 
then the waiting time of its data units in the system is always less than TW. 
However, for the incidental streams which were rejected by the admission test, 
the waiting time of some data units was more than TW seconds. 

2.6 Conclusion 

In this chapter, we presented methods for implementing the deterministic ser­
vice class. We employed a model for the traffic of main video sources. We used 
the concept of traffic constraint function, and the empirical envelope as the 
tightest traffic constraint function. After discussing the current approaches 
to deterministic traffic modelling, we selected the (a, p) model as the traffic 
model for our application. We showed that the (a, p) model can accurately 
model the empirical envelope of main video sources. 

Then, we presented efficient methods for fitting the (a, p) model to a 
traffic source. We showed that our model fitting methods result in a more 
efficient and more accurate model parameters than other methods in the lit­
erature. 

Next, we adapted the newly developed 'Network Calculus' theory, and 
designed an admission control mechanism for the deterministic service class 
of the proposed 1TV application. Our admission control mechanism finds the 
maximum waiting-time TW for an incidental stream with rate R. 

Our simulation results provided some exemplary numerical values for 
the maximum waiting-time TW and the rate R of an incidental stream in a 
typical digital TV system. 

The deterministic admission control scheme presented in this chapter 
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relies on the traffic constraint function of the main video streams, which is a 
worst-case estimate of the traffic a main video source can generate. Therefore, 
the obtained Tw is based on the most pessimistic forecast of the system. This 
approach is attractive since it ensures that no incidental data packet will be 
lost. However, it does not result in high utilization of available bandwidth. 
In the next chapter, we will discuss the stochastic service class, where Tw is 
found such that some data loss is possible, however, this data loss is limited. 
Our design of the stochastic service class is fundamentally different from the 
deterministic service class, and is based on a different type of traffic models. 
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Chapter 3 

Stochastic Service Class 

Chance favors only the prepared mind. 

-Louis Pasteur, A New Kind of Country, 1978. 

O v e r v i e w 
This Cha,pter presents a scheme for implementing the stochastic service class 
based on the 'effective bandwidth' theory. The effective bandwidth characteris­
tics are exploited. We also show how the effective bandwidth is used to design 
an admission control scheme for the stochastic service class of the proposed 
ITV application. Using the methods presented in this chapter, one can find Tw 

for an incidental stream with given rate R and data loss probability p. 

3.1 Introduction 

In this chapter, we develop a method for implementing the 'Stochastic Service 
Class.' As discussed in Chapter 1, when an incidental stream is added to a TV 
program using the stochastic service class, the transmitter does not guarantee 
to send all the incidental data units on time (i.e., before their transmission 
deadline). The data units which are not transmitted on time are considered 
lost data. Therefore, some incidental data loss is probable in the stochastic 
service class. However, the rate and waiting time of an incidental stream should 
be selected so that the data loss probability is less than a threshold. Therefore, 
an incidental stream that is to be transmitted using the stochastic service class 
should be first accepted by an admission control mechanism. This admission 
control mechanism verifies that the transmitter can send this incidental stream 
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with rate R and maximum waiting time tw and with a data loss probability less 
than a given threshold, say p%. Our ultimate goal in this chapter is to present 
a scheme, by which the admission control finds the maximum waiting-time Tw, 
given the rate R and the loss probability p% for an incidental stream. 

A key issue in implementing the stochastic service class is to find a 
suitable traffic descriptor, which encapsulates the stochastic properties of the 
main streams traffic. Then an accurate admission control using the selected 
traffic descriptor should be designed. Our approach here is based on the theory 
of 'effective bandwidth'. The main motivation behind this theory is to provide 
a measure of bandwidth usage by a traffic source in a communication network, 
which can adequately represent the statistical characteristics of the source. 
In this theory, each traffic source is described with a traffic descriptor called 
'effective bandwidth curve'. This theory then provides mechanisms to find 
a level of statistical service guarantee for usual network operations, such as 
multiplexing, buffering, etc. We use this theory to design the admission control 
mechanisms of our application problem. 

The rest of this chapter is organized as follows. In Section 3.2, the 
effective bandwidth is defined and its characteristics are described. In Section 
3.3, we show how the effective bandwidth is used to bound the data loss in 
general network operations. Based on this theory, we design an admission 
control mechanism for the stochastic service class in Section 3.4. In Section 
3.5, we discuss the current approaches to the numerical estimation of the 
effective bandwidth curve. 

3.2 Effective Bandwidth 
The theory of effective bandwidth was first introduced in the early 1990's by 
Gibbens and Hunt [37], Kelly [38], and Guerin et al [39]. Since then, this the­
ory has attracted much attention from both the mathematics and engineering 
communities, and emerged as a powerful but complicated mathematical the­
ory. Currently a great effort is in progress to expand the effective bandwidth 
theory and its applications. 

The associated mathematical theory of the effective bandwidth concept 
is built upon the theory of Large Deviation Principle, LDP, which studies the 
tail properties of probability distributions. The effective bandwidth of a source 
is closely related to the moment generating function of the arrival process of 
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the source. The moment generating function of a random variable contains 
more information about the stochastic characteristics of a process than its 
mean. Hence, traffic characterization methods based on the effective band­
width function are more accurate than the widely used traffic characterization 
methods based on 'Poisson processes', which rely on the average rate. 

A useful interpretation of the effective bandwidth concept is that the 
effective bandwidth theory gives the probability of a traffic source generating 
traffic at a rate higher than its average for a long period of time. More precisely, 
let us denote the instantaneous rate of a traffic source by y(t) and the average 
rate of the source by ji. Then we expect Y?T=i V^) to be close to at for large t's. 
Effective bandwidth theory bounds the probability that X)t=i 2 / ( 0 ~ ia> where 
a > a. Hence, under some mild conditions, the effective bandwidth theory 
gives the probability that a variable rate source generates traffic that is equal 
to a constant rate source with rate a during a long period. The probability 
that the source follows the effective bandwidth model is incorporated into the 
model through a parameter named 'scale factor1, 9. Therefore, the effective 
bandwidth is a function of the scale factor, usually denoted as a(6). The 
effective bandwidth value lies always between the average and the peak rate 
of the source. Higher levels of certainty result in a larger 9 and an effective 
bandwidth that is closer to the peak rate, e.g., a certainty value equal to one 
corresponds to 9 = oo and a(oo) is the peak rate of the source. 

The effective bandwidth concept can be viewed as a compromise be­
tween two alternative bandwidth allocation schemes, a pessimistic outlook 
and an optimistic one. In the pessimistic case, one uses a strict approach to 
bandwidth allocation, where the bandwidth allocation is based on the sources 
peak rate. This approach seeks to eliminate data loss. In the optimistic case, 
one uses a lenient approach to bandwidth allocation, where the bandwidth 
is allocated based on the source's average rate. This approach seeks to gain 
high bandwidth utilization. The effective bandwidth a(9) gives a spectrum 
between these two approaches, where the scale factor 0 < 9 < oo determines 
how lenient or strict this approach is. 

In next Section, we first briefly review the large deviation principle 
concept. Then, we present a precise definition of the effective bandwidth in 
Section 3.2.2. 



3.2.1 L a r g e D e v i a t i o n P r i n c i p l e 

As mentioned, the theory of effective bandwidth relies on the 'Large Deviation 
Principle', LDP. Large deviation principle is a theory that studies the tail 
properties of probability distributions. This theory refers to a collection of 
techniques used for estimating properties of rare events, such as the frequency 
of their occurrence, or the most likely manner of their occurrence. 

Large deviations do not apply to any event that has a very low proba­
bility of occurrence. Roughly speaking, a large deviation event is caused by a 
large number of unlikely things occurring together, rather than a single event 
of small probabilities. For example, winning a lottery cannot be studied with 
large deviations, since it is a single event composed of a single trial and cannot 
be broken into more than one sub-event. However, the probability that the 
average grade of a class in an easy exam becomes very low can be considered 
a rare event, since it can be decomposed to the improbable sub-events that 
each individual student gets a very low mark. In the proposed ITV applica­
tion, a large burst of traffic is generated by a source when the source starts 
sending traffic at a rate higher than its average, and continues to do so for a 
long period of time. Therefore, the occurrence of a large burst of traffic can 
be broken into many low-probability sub-events. 

One can consider LDP as a tool to turn the probability problems into 
deterministic optimization problems. Loosely speaking, to calculate the prob­
ability of a rare event, one assigns a cost to each sample path that would cause 
an event to occur. In the example of having a very low average grade for a big 
class in an easy exam, a path is that all the students get a low mark, and an 
alternate path is that many students get zero and only a few get very good 
marks. Then one finds the cheapest (or the most probable) path in that set 
of sample paths. The probability of event is then estimated by: 

F(event) = e - n x c o n s t (3.1) 

where n is an asymptotic parameter, usually the length of time over which we 
observe the process. Therefore, one can think about the rare events in terms 
of sample paths and costs, and to find the probability of a rare event, one can 
simply consider the cheapest way that the event can happen. 
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General Def ini t ion O f L D P . 

Let y(2),... be a sequence of a random processes. Let Y(t) = £ T = i y(r)-
We say that Y(1),Y(2),... satisfies the large deviation principle with the rate 
function / if (see [40]) 

1. For every closed set C C M. we have 

lim sup - log F(Y(n) € C) < - inf /(a) (3.2) 
ii—too Tl a£C 

2. For every open set G C R, we have 

lim inf - logP(y(n) £ ( ? ) > - inf /(a) (3.3) 

It is shown in the LDP theory that if the random variable Y has a finite 
moment generating function E(eeY) for all 6, where E denotes expected value, 
then Y satisfies the large deviation principle with the rate function I = A* 
where: 

A(0) = lim - logE(e e y w ) (3.4) 
t-*oo t 

A*(a) =sup[0a- A(0)] (3.5) 
e 

A((9) is called the 'Gartner-Ellis' limit. A*(a) is called the 'Legendre Transform' 
of A(9). Also, it is shown that A* (a) has the following characteristics: 

1. A*(a) is non-negative, i.e., A*(a) > 0 

2. A*(a) is strictly increasing in a. 

3: A*(a) attains its minimum at a — E(y), i.e., at the average of y. 

4. A*(E(y)) = 0 

5. A*(a) is convex, i.e., A*(aax + (1 - a)a2) < aA*(al) + (1 - a)A*(a2) 

6. If A*(a) is the Legendre transform of A((9), then A(r9) is the Legendre 
transform of A*(a) as well, i.e., (A*)*(0) = A(f9). For this reason, the 
two functions A* and A are called Legendre transform pairs. 
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3.2.2 E f f e c t i v e B a n d w i d t h D e f i n i t i o n 

Let y(t) denote the instantaneous rate of a traffic source. The arrival process 
is defined as Y(t) = YlT=oy(T)> which is the total traffic generated in [0,i]. 
Then the effective bandwidth for this source is defined as (see [41]) 

a{6) = lim -j- l ogE^W) , V# e K + (3.6) 
t—»oo Ot 

Parameter 9 is called scale factor. By definition, fy(0) — E(e9Y^) is the mo­
ment generating function of the random process Y(t). Therefore, the effective 
bandwidth of a traffic source is closely related to the moment generating func­
tion of the arrival process of the source. Figure 3.1 shows a typical effective 
bandwidth curve for a traffic source with bounded peak rate. It has been 
shown that [41] 

1. a (9) is a non-decreasing function of 9. 

2. a(0) lies between the average and peak rate of the source, i.e., K(y) < 
d{9) < y, where y denotes the peak rate of the source y. 

3. If we have ./V sources, each with arrival process Y^t), and if Y(t) is the 
multiplexed stream of these sources, i.e., Y(t) = ^ ^ ( i ) , then: 

a(0) = J > ( 0 ) (3.7) 
i 

4. It is shown that the shape of a{9) around 9 = 0 primarily depends on the 
mean, the variance and the higher moments of Y[t), while.the shape of 
a(9) for large 0's is primarily influenced by the tail distribution of Y(t) 
around it's maximum. This can be justified using the Taylor expansion 
of a{9) at 9 = 0 and 1/6? = 0. 

<*{0) = m + V20 + 0(92) (3.8) 

- ^ + 0 ( 1 ) (3.9) 

It is shown that ^ = E(y), % = |var(i/), % = y where y is the peak 
rate of y and ry4 is the average length of the periods that y is equal to its 
maximum, that is y is the average length of burst periods [41]. 
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<X(8) A(8) 
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a c 

Figure 3.1: A sample effective bandwidth curve a(6), and A(8), A* (9) and 
inverse of the effective bandwidth function 1(c) = a~l(6). The average rate of 
the source is .448. 

3.2.3 Physical Interpretation of Effective Bandwidth 

One useful physical interpretation of a(6) is that of using the effective band­
width concept to approximate the behavior of a VBR source with a constant 
rate. Suppose y(t) has a finite mean value E(y) = fi. We know from the law 
of large numbers that with probability 1, Y(t)/t —> fi as t —> oo. Thus the 
probability that Y(t)/t is away from u goes to 0 as t increases. In the the­
ory of large deviation principal, it is shown that this convergence to 0 occurs 
exponentially fast, that is, for a> fi, 

lim - logP(y(t) > ta) = -A*(a) (3.10) 
t—*oo t 

where A*(a) is known as the rate function. Roughly speaking, equation 3.10 
states that 

¥(Y(t)/t^a)^e-tA'{a) (3.11) 
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Therefore, the value of A* (a) indicates how difficult it is for Y(t)/t to be close 
to the constant rate a. A*(6) is related to a(9) with A*(a) = swpg[9a — 9a(9)]. 
That is A*(a) is the Legendre transform of 9a(9). 

3.3 Quantifying Data Loss in Communication 
Networks Using Effective Bandwidth 

In this Section, we describe how the effective bandwidth concept is used for 
quantifying the probability of loss in communication networks. Let us first 
consider a simple buffering model, where a single buffer of size B is filled by 
data from a variable rate source with rate y(t), and is emptied at constant 
rate c. (see Figure 3.2). Let W(t) denote the buffer workload at t. c is 
selected to be greater than the average input rate, but less than the maximum 
input rate. Therefore, we expect some data workload to build up in the buffer 
occasionally, and also that the buffer becomes empty regularly. It is shown 
that the probability of the buffer overflow, i.e., the probability that starting 
with an empty buffer the workload exceeds the buffer size before the buffer 
becomes empty again, is bounded as 

F(W(t)>B)<p (3.12) 

where p = e~B0*. 9* is selected such that a(9*) = c and t is large1. 
Equation 3.12 also gives a bound on the buffering delay, defined as 

d(t) = W(t)/c, 
F(d(t) > D) < p = e~Be' (3.13) 

where D — B/c is the maximum acceptable buffering delay. 
Validity of equations 3.12 and 3.13 have been proven [41-43]. An intu­

itional proof of these equations can be given based on equation 3.11 as follows. 
Note that a buffer overflow in this simple buffering model happens if the input 
has the rate a > c for at least B/(a — c) time units. According to equation 
3.11, the probability that the input behaves in that way is approximately 

exp{ —A*(a)\ (3.14) 
a — c 

xNote that the buffer workload random process, W(t), converges to a marginal distribu­
tion as t becomes large enough, usually denoted with W^. Therefore, ¥(W(t) > B) actually 
denotes the tail properties of the distribution. 
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y(t) 

Figure 3.2: A simple buffer of size B, filled at variable rate yt and emptied at 
constant rate c. 

where the parameter a can be any value larger than c. Let 9* be selected 

such that a(0*) = c. Then the probability that buffer occupancy reaches B is 

approximately given by: 

£ ^-dW'(B)} <3-15) 

Now we approximate this sum of exponentials wi th the exponential wi th the 

largest exponent, that is, by 

p ^ e x p { - . B A*(a')} (3.16) 
a* — a(9*) 

where a* is such that 

A*(«*) • A*(o) , 0 1 „ , 1 J = nun — -A -A - (3.17) 
a* - a(9*) a>a(s*) a - a(9*) 

However, from the definition of A* in equation 3.5, it can be noted that A* (a) > 

9a — 9a(9) for al l 9. Hence we have min — ^ ^ . = 9* and 
V ' a>a(6*) a - a(9*) 

P ^ e ~ B e ' (3.18) 

Therefore, one can say that a(9) is the rate at which the buffer must be 
emptied so that the buffer overflow probability decays exponentially wi th rate 

3.3.1 D a t a Loss P robab i l i ty in a Queuing M o d e l w i t h 
P r i o r i t y 

We consider a simple system wi th two prioritized inputs as shown in Figure 

3.3. The inputs are buffered at two different buffers of size BH and BL, and are 
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High priorily buffer 

VH(t) 

vdt) 

yH(t) + yL(t) 
I 

L o w priority buffer 

ih.it). 

BLit) 

(a) (b) 
The equivalent hypothetical buffer for 

A Multiplexer with prioritized inputs determining the low-priority buffer 
overflow probability 

Figure 3.3: A simple multiplexer model with prioritized inputs. 

then multiplexed to one output with constant rate c. The high-priority input 
has primitive priority over the low-priority input, which means high-priority 
packets will never be impeded by low-priority packets. 

Let and yi{t) be the rate of the high-priority and low-priority 
inputs at t respectively. The cumulative arrival functions for these inputs are 
denoted by Yfj and Y j r , where we have 

t 

YH(t) = J2yH(r), Vt>0 
T = 0 

t 

YL(t) = ^2yL(T), Vt>0 (3.19) 
T = 0 

Also, let yH and yL denote the maximum rate of the input sources. The output 
rate c is such that yH < c <yH + yL. Therefore, the high-priority buffer will 
never overflow, while it is possible that the low-priority buffer overflows. Also, 
c is greater than the average of y# + yi, which means that the low-priority 
buffer becomes empty regularly. Let p denote the probability that the low-
priority buffer overflows. 

Let Wi{t) be the low-priority buffer workload at t. The low-priority 
buffer overflows if WL(t) > BL- During [0,t] the high-priority source sends 
Yn(t) bits to the system and the system will transmit ext — Yait) bits from 
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the low-priority buffer data. Therefore, we have 

WL(t) yL[t) - ( c x t - YH(t)) 

(YL(t) + YH(t))-cxt (3.20) 

and thus 

F(WL(t) > BL) F((YL(t) + YH(t))-cxt> BL) (3.21) 

The right hand side of this equation can be interpreted as the probability 
of buffer overflow in a hypothetical single buffer of size Bi, filled at rate 
llL{t) + Un{t) and emptied at rate c. Therefore, in order to study the data 
loss probability of the low-priority source, we can replace the prioritized model 
with another model, which has a single hypothetical buffer of size Bi, filled 
at rate yi(t) + yu{t)\ and emptied at rate c, as shown in Figure 3.3-b. Then, 
as discussed in Section 3.3, if 9* is selected such that aH,(9*) + ai(9*) — c, we 
will have p = e~Be" or B = — \og(p)/9*. 

If the low-priority input source has a constant input rate R (i.e., yi(t) = 
R for all £), then we can find a bound on the time that the low-priority data 
units wait in the buffer. Let say that WL data units of the low-priority input 
are waiting in the buffer, as shown in Figure 3.4. Let di(t) denote the time 
that data unit #1 has being waiting in the buffer. Then, since the buffer 
fill up rate is constant, we have di{t) = Wi{t)/R. Therefore, F{di{t) > d,) = 
P ( l / I / i ( 0 > Rxd). Note that if the low-priority source is a variable rate source 
rather than a constant rate source, then this method will not be applicable. 

When the low-priority source has constant bitrate, we have 

which means that F(WL(t) > BL) is equal to probability of loss in a buffer 
of size Bi, filled with the high-priority source at rate and emptied at 
constant rate c — R. 

Now we extend the simple model in Figure 3.3-a to a system with 
./V high-priority inputs and one low-priority input, as shown in Figure 3.5-a. 
In this model, ./V high-priority sources are multiplexed with one low-priority 

¥(WL(t) > B L ) = n(YL(t) + YH(t) -cxt)>BL) 

= F{(R x t + YH{t) - c x t) > BL) 

= F(YH{t)-{c-R)xt> B L ) 

(3.22) 
(3.23) 
(3.24) 
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WL(t) 

data unit 
*WL(t) 

data unit #2 

Figure 3.4: A simple buffer filled at constant rate R and emptied at variable 
rate c. If the buffer workload is WL, then we know that the first data unit has 
waited WL/R seconds in the buffer. 

source. The ith high-priority input has the instant rate of yn,ii maximum rate 
of ym, and effective bandwidth of at(9). The maximum rate of multiplexed 
stream is c. c is selected such that Y^iLiVn.i < c < VL,I + Y^=iVH,ii therefore 
the high-priority buffers never overflows, but it is possible for the low-priority 
buffer to overflow. It is easily noted that the probability of the low-priority 
buffer overflow is given by F(WL(t) > BL) = F((YL(t) + £ 2 =i YHiri{t)) -cxt> 
BL), where is the arrival process of the ith high-priority input. As stated 
in property 4 in Section 3.2.2, the effective bandwidth of a multiplexed source 
is simply the sum of the effective bandwidths of all the sources. Therefore, 
the probability of the low-priority buffer overflow is bounded by e~m"', where 
6* is selected such that aL + YliLiai{Q*) ~ c- ^ t n e low-priority source 
has a constant rate, then ai(0) = R for all 9; and 9* is selected such that 
zZlx<0*) = c-R 

3.4 Admission Control for the Stochastic Ser­
vice Class 

In this Section, we describe how the effective bandwidth, and the queuing 
model presented in Section 3.3.1, are adapted to design an admission con­
trol test for our interactive TV system. Suppose N television programs are 
sharing one transmission line with constant capacity c. We assume that each 
main video stream is characterized by a known effective bandwidth curve, say 
ai(0) for the ith main video. Now suppose an incidental stream with constant 
rate R, maximum waiting-time d, and probability of violating the maximum 
waiting time constraint of p, is requested to be added to the system using 
the stochastic service class. The multiplexer system can be modelled with 
the buffering system shown in Figure 3.5. As discussed in Section 3.3.1, the 
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vUt) 

(a) 
A Multiplexer with N high-priority 

and one low-priority inputs 

BUt) 

(b) 
The equivalent hypothetical buffer for 

determining the low-priority buffer 
overflow probability 

Figure 3.5: A simple multiplexer model with N high-priority and one low-
priority inputs. 

following equations hold 

N 

p = e-Be' 

B = Rxd 

R (3.25) 

Hence, given two out of three parameters R, d and p, one can use the equa­
tion 3.25 to determine the third un-known parameter. If the triple (R,d,p) 
conforms to the quality requirements of the connection request, then the con­
nection request is accepted. 

3.5 Numerical Estimation of Effective Band­
width 

In this section, we describe the current approaches to estimating the effective 
bandwidth of a source. Before doing so, it is noted from the definition of 
effective bandwidth (equation 3.6) that a(6) closely depends on the 'moment 
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generating function'2 of the arrival process of the source. Therefore, to es­
timate the effective bandwidth, one should estimate the moment generating 
function or all the generating momentums3 of the arrival process of the source, 
which is a very complicated task. Also, note that in many applications such 
as in the proposed ITV application, the whole effective bandwidth curve, i.e., 
a{9) for all 9, should be estimated. This actually makes the estimation process 
even harder. 

Current approaches to numerical estimation of effective bandwidth are 
as follows. 

1. Direct A p p r o a c h Recall that the effective bandwidth a is defined by 

a{9) = lim -J-logIE(e9y(t)) 
t̂ oo 9t 

Thus, by monitoring the traffic one can use 
m 

akxm(9) = 8~lk-1 \og(m~l ^ ^ ( Y ^ - Y ^ - I ) ^ ( 3 2 ? ) 

i=i 

as an estimator for a [43-46]. This approach is attractive since it cir­
cumvents modelling the traffic source. However, this approach takes a 
very long time to converge to an accurate result. According to [43], an 
accurate estimator of a{9) requires that both k and m be large. So, the 
monitoring time A; x m may in fact be very lengthy. 
In [45], a technique called re-sampling or boot strap is proposed for this 
problem. In these approaches some synthetic data are generated, which 
are similar to the original data in 'some sense' [47-49]. These synthetic 
data are used along the original data, as a data set with a larger sample 
size, to estimate a(9) using equation 3.27. However, this approach intro­
duces two important and problematic issues. First, we should determine 

2Moment generating function of a random variable X is defined as 

rp(9) = E{eeX) (3.26) 

3The n'h momentum of random variable X is defined as E ( X n ) . Al l the momentums of 
X can be successively obtained by differentiating ip(9) w.r.t 6 and then evaluation at 8 = 0, 
that is ^"(0) = E(Xn) , n > 1. 
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how the synthetic data are generated. This depends on what kind of 
similarity concept is suitable for our data and application. In the origi­
nal bootstrap method, which was developed for i.i.d. random variables, 
the empirical distribution of the original samples F is estimated. Then 
new samples are drawn from this distribution F. However, this method 
is not suitable for dependant data, fn a method proposed for dependant 
data, called 'moving block bootstrap', the data is partitioned to blocks 
of size b, and the same algorithm is then performed on these blocks. 
However, the disadvantage of this method is that it destroys all the de­
pendency of lags larger than b, hence its is suitable only for short term 
dependant data. Furthermore, this approach introduces another com­
plication, which is selection of an appropriate block size b. The second 
issue in using the bootstrap method is to determine how many synthetic 
data are enough to find an accurate estimate of a(6). This question is 
usually addressed by either using a large sample size, which is thought 
to be sufficiently large in advance, or by continuing to generate synthetic 
data sets until the final estimate of a(9) does not change by adding a 
new set of synthetic data. For example, in each iteration we generate 
a new set of synthetic data and estimate the a(9). If this a(9) is close 
to the a{9) estimated in the previous iteration by less than a threshold, 
then this estimate of a{9) is accepted. Otherwise, more synthetic data 
are generated. 
In general, this approach is not appropriate for the proposed ITV appli­
cation, since the sample sizes from the traffic of a typical TV program are 
not large enough to result in an accurate estimate of a{9). Besides, using 
the bootstrap method is not appropriate, since the current approaches 
to generate synthetic data will destroy many important characteristic 
features in our original data. 

V i r t u a l Buffer Approach In this approach, a virtual buffer of size b is 
considered, which is filled with the source and is emptied at a constant 
rate c, such that c is between the average rate and peak rate of the source 
(see [42,44,50,51]). Let a_1(c) be the inverse of the a(9) function (i.e., 
a_1(c) = 9 a{9) = c). As mentioned in Section 3.3, the probability of 
buffer overflow can be estimated as exp(—ba~l(c)). Therefore, the buffer 
workload is monitored in simulation and the empirical distribution of 
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data loss, n(b), is obtained. Then, a~l(c) is chosen so that the distance 
between ix(b) and p(b) = exp(—ba~l(c)) is minimized [44]. The distance 
measure employed is usually the "Kullback-Leibler distance"4 measure 
[43,52]. The estimate for a_1(c) is given by: 

a-\c) = log(l + Z ^ n { b )

 B - ) 

Alternately, if a sufficient size of data is available, one can plot the 
logarithm of the loss probability versus b. As shown in [44], this plot 
has a straight part with slope a~l(c). Hence the slope of this part of 
this plot can be used as an estimate for a~l(c). 

The disadvantage of this method is that the buffer occupancy should be 
simulated for a long time to obtain an accurate estimate for a. This 
means that a large sample size is required to simulate the buffer occu­
pancy. Furthermore, this procedure should be repeated for each c to 
obtain the effective bandwidth curve, i.e., a(9) for all 9. On the other 
hand, this approach is attractive in that it does not assume any signal 
model for the traffic, which circumvents modelling the traffic. 

Model F i t t i n g Approach This is a two step approach. First, an appro­
priate parametric model for the source is selected, and its parameters 
are estimated. Second, the effective bandwidth is numerically computed 
or obtained from the model parameters. This approach has been carried 
out successfully in many different applications. An important advantage 
of this approach is that one can estimate the model parameters in real­
time, and use the current estimate of model parameters to update the 
effective bandwidth estimate online. 

Model fitting itself consists of several steps, including: 1) Model selec­
tion: a mathematical parameterized signal model should be selected for 
the traffic. 2) Model order selection: depending on the selected model, it 
is usually necessary to select the model size. There are some systematic 

4Kullback-Leibler distance or the relative entropy of two discrete distribution p and q is 
defined by 

d = £>log 2(^) (3.28) 
<?fc 
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approaches to this problem, like Akaike information criterion. Selecting 
a larger model size usually increases the complexity of the model. 3) 
Estimating the model parameters. For off-line traffic sources, traffic is 
known a priori and off-line parameter estimation methods can be used. 
This is usually easier than the online case, where the traffic itself is not 
know a priori. In online parameter estimation methods, the parame­
ter estimate is usually updated after observing each traffic sample, such 
that our estimate converges to the actual value of parameters gradually. 
The online methods are usually able to track the changes in the model 
parameters. 

We employ the traffic modelling approach in the proposed ITV appli­
cation to find the numerical value of the effective bandwidth curve of a traffic 
source. This modelling approach comprises three important issues. First, we 
should select a suitable traffic model, which can capture the important charac­
teristics of TV video traffic. Second, we should find model parameter identifi­
cation (i.e., model fitting) methods, which can estimate the model parameters 
from the actual traffic. Finally, we should design a method for obtaining the 
effective bandwidth from the model parameters. We address these three issues 
in the next chapter. 

3.6 Conclusion 

In this chapter, we presented a scheme for the admission control of stochastic 
service call. Our approach is based on the effective bandwidth theory. We 
defined the effective bandwidth, and exploited the important characteristics 
of this concept. Then, we showed how the effective bandwidth concept is used 
to design an admission control scheme for the stochastic service class. Using 
the methods presented in this chapter, one can find the maximum-waiting time 
for an incidental stream whose bitrate is R and data loss probability is p%. 

We also discussed current approaches for estimating the numerical value 
of the effective bandwidth curve from traffic samples of a source. We' selected 
a modelling approach, where a traffic source is modelled using a stochastic 
model, and effective bandwidth is then obtained from the model parameters. 
However, we did not indicate which stochastic model shall be used for the video 
sources in the proposed ITV application. In the next chapter, we address this 
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important problem. That is, we select a stochastic model for modelling the 
traffic generated by full-screen video sequences of TV programs. We justify 
our model selection by some evidence from traffic samples of video sequences 
of actual TV programs. We present methods for estimating model parameters 
from the traffic samples. We also show how the effective bandwidth curve 
is obtained from the parameters of the selected stochastic model. Using the 
methods presented in the next chapter, one can estimate the numerical value 
of the effective bandwidth curve for a main video source. Hence, the methods 
presented in this chapter, in conjunction with the methods presented in next 
chapter, complete the big picture of the admission control mechanism for the 
stochastic service class. 
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Chapter 4 

Video Traffic Modell ing 

All Models are wrong, but some of them are useful. 
Modelling should never be an end to itself, but an aid 
to understand our complex world. 

-George Box 

O v e r v i e w 
Stochastic modelling of main video streams traffic is considered, and General 
hidden Markovian models are discussed for these streams. Specifically, Hid­
den Semi-Markov Models, HSMMs, are selected for modelling the main video 
streams traffic. A new formulation for HSMMs is presented, which significantly 
improves the computational efficiency of HSMM parameter identification al­
gorithms. Based on our new formulation of HSMMs, efficient algorithms for 
off-line and online identification of an HSMM parameters are presented. Then, 
it is shown how effective bandwidth curve is obtained from HSMM parameters. 
Using the methods presented in this chapter, one can estimate the numerical 
value of the effective bandwidth curve of a video source. The estimated effective 
bandwidth curve is then utilized in the admission control of incidental streams 
in the stochastic service class, as discussed in Chapter 3. 

4.1 Introduction 

In this chapter we seek a stochastic model to characterize the traffic of the 
main video streams in a TV network. This model should accurately capture 
the important stochastic characteristics of the traffic. Our motivation is to 
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use this traffic model to find the numerical value of the effective bandwidth 
curve of the source. Hence, our objectives in this chapter are (1) to select an 
appropriate stochastic model for video traffic sources, (2) to present a method 
for estimating the model parameters from traffic (parameter identification), 
and (3) to obtain the numerical value of the effective bandwidth from the 
model parameters. As mentioned earlier, this traffic model is then used by the 
admission control unit to determine how much bandwidth will be available to 
the incidental streams that use the stochastic service class. 

Ideally, a good traffic model for our application should be (a) accurate 
enough to characterize the important statistical properties of the traffic (b) 
computationally efficient, and (c) could be used for obtaining the effective 
bandwidth curve. Note that video traffic demonstrates different characteristics 
at different time scales. Many of the current modelling efforts strive to capture 
the rate variability of traffic at the frame level. In those approaches, periodic 
pattern in frame sizes plays an important role in the traffic shape. This periodic 
pattern is caused by the frame coding pattern of DCT based video compression 
standards (e.g., IBBPBB frame coding pattern in each GOP of the MPEG-
2 standard). For the proposed ITV application, the traffic model should be 
able to capture the video rate variability at the GOP level (or scene level) 
rather than at the frame level. This is because the waiting-times in buffers in 
the proposed ITV application are much larger than the video frame rate, and 
hence, rate variabilities due to frame patterns are ruled out by buffering. 

The rest of this chapter is organized as follows. In Section 4.2, we review 
current approaches to video traffic modelling, fn Section 4.3, we present our 
modelling approach, which is based on 'Hidden Markov Models', HMMs. In 
so doing, we discuss the concept of 'state-duration modelling' using the notion 
of Semi-Markov signal models. We show that Hidden Semi-Markov Models, 
HSMMs, are a better model choice for the proposed ITV application rather 
than those based on the previously used HMMs. In Section 4.4, we present the 
theoretical background of HSMMs. As will be discussed, the challenging issue 
involved in employing HSMMs is that of 'parameter identification'. We address 
this problem in sections 4.5-4.7. For that effect, we first present a novel signal 
model for HSMMs in Section 4.5. Based on our new model, we present novel 
methods for parameter identification of HSMMs for the off-line and online cases 
in sections 4.6 and 4.7. In Section 4.8, we show how the numerical value of the 
effective bandwidth curve is obtained from the parameters of an HSMM model. 
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Finally, we present experimental results of applying the methods developed in 
this chapter to empirical traffic samples of typical TV programs in Section 4.9. 

4.2 Existing Stochastic Video Traffic Models 

Current modelling approaches for video traffic modelling (also known as 'source 
modelling' in literature) can be divided into five main classes: 

Renewal Traffic Mode l s Renewal models are mathematically simple and 
have a long history. These models describe the packets generation at 
certain points in time. Let An be the time between generation of nth 

and ('ft + 1)"' packets, then An in a renewal model is identically dis­
tributed, but its distribution function is allowed to be general. Poisson 
and Bernoulli processes are the most popular cases of renewal models 
in continuous and discrete-time cases respectively. In a Poisson process. 
A,L is described by an exponential distribution F(An < r) = 1 - e"Ar, 
where A is the average number of packets generated per time unit. 
These models have the severe drawback that the autocorrelation function 
of An for any non zero lag is equal to zero. Therefore, these models do 
not capture any dependency among the An's in the past nor in the future. 

Autoregressive processes Autoregressive (AR) models estimate the next 
signal value in a stochastic process as a function of previous signal values. 
The most important class of these models is the linear autoregressive 
models, with the form 

where yt is the random variable, a.;'s are real constants, and et is an 
i.i.d. random variable with zero mean. More complicated autoregressive 
models such as MA (Moving Average), ARM A (Auto Regressive Mov­
ing Average) and ARIMA (Auto Regressive Integrated Moving Average) 
have also being considered for modelling video traffic. The drawback of 
these models is that they cannot successfully model the marginal distri­
bution of the video traffic [53]. 

N 

(4.1) 
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T E S models The Transform-Expand-Sample (TES) modelling approach strives 
to simultaneously model both the marginal distribution and the auto­
correlation function of an empirical sample set. This means that TES 
models can capture the first and second order statistical characteristics 
of a stochastic time-series at the same time. 
TES models consist of two classes, called TES + and TES - . where the 
plus or minus superscript distinguishes between the cases where the 
model gives rise to processes with positive or negative lag-1 autocorrela­
tions respectively. TES models consist of two stochastic processes called 
background and foreground sequences [53-55]. Background sequences 
have the form: 

tc = { 
where U0 is uniformly distributed on [0,1), {Vn}^tl is a sequence of 
i.i.d. random variables, called innovation sequence, and the operator () 
denotes fractional part (also known as 'modulo-1 operator'). It is shown 
that the marginal distributions of £/+ and U~ are both uniformly dis­
tributed over [0,1), regardless of the distribution of Vn. The foreground 
sequence is of the form 

X n

+ = £>(£/+) X~ = D(UZ) (4.4) 

where D is a transformation from [0,1) to the real numbers 5ft, called 
distortion. 

Given an empirical data sample set, TES models select the innovation 
sequence Vn and the distortion function D, so that both the autocorrela­
tion function and the density function of the foreground process match 
the autocorrelation and density functions of the empirical data. 
The most important family of distortion functions consists of a com­
pound distortion function of the from [54,55] 

D(x) = Hy\Si(x)), XG[0,1) (4.5) 

(£/+_, +14) , n>0 [ - 1 

U+, n even 
1 - U~, n odd 1 ' ' 
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where the inner transform, S$(x), is a 'smoothing' transform called the 
stitching transform, and is parameterized by 0 < £ < 1. and is given by 

Q ( \ J yl^ 0 < y < £ 
* ( y ) = \ ( i - y ) / ( i - f l , * < v < i ( 4 6 ) 

The outer transformation, Hy1, is the inverse of the empirical distribu­
tion function (i.e., histogram) computed from empirical samples {Yn}^=1. 

The rationale for TES modelling approach is based on the following facts. 
First, all TES background processes are stationary, Markovian, and their 
marginal distributions is uniform in [0,1), regardless of distributions of 
innovation process Vn [54]. Second, the inversion method from elemen­
tary statistics, allows any uniform variate U on [0,1) to be transformed 
to a desired marginal distribution F by applying F~l(U). In particular, 
TES models use F = Hy. Third, for 0 < £ < 1 the stitching transform 
S^(Un) preserves the uniformity of Un; that is, S^(U^) is also uniformly 
distributed in [0,1). It is shown that the stitching transform has only 
a 'smoothing' effect. That is, a sequence {Ŝ  (£/+)} is more 'continuous 
looking' than an underlying sequence {U+}. It is shown that this trans­
form preserves uniformity, that is S^(U^) is also uniformly distributed 
in [0,1). Hence, it follows that any foreground TES process of the form 

Xn = Hy1(St(Un)) (4.7) 

obtained from the background process {Un} is always guaranteed to have 
the histogram distribution Hy, regardless of the selected innovation se­
quence Vn and the stitching parameter £. The choice of the density of 
the innovation sequence, fy, determines the autocorrelation function of 
the foreground process. Thus, TES modelling decouples the fitting of 
the empirical distribution from the fitting of the empirical autocorrela­
tion function. Since the former is guaranteed, one can concentrate on 
the latter. In practice, model fitting is carried out by a heuristic search 
for pairs (£, fy). The search is considered successful if the corresponding 
TES sequence gives rise to an autocorrelation function that adequately 
approximates its empirical counterpart [56-58]. 

Though TES models have been recently used for modelling video traffic 
with acceptable accuracy, their implementation is too computationally 
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complicated for practical applications. In practice, the heuristic search 
for (£, fy) relies on a brute-force computation and on selecting the best n 
combinations of (£,/y) pairs, in the sense that the resulting TES model 
autocorrelation function minimizes the mean square error with respect 
to the empirical autocorrelation function. Then, another algorithm is 
employed to select among the n candidate models the one whose sample 
path bears the 'most resemblance' to the empirical samples. Further­
more, it is still not known how a TES model can be used for obtaining 
performance guarantees in a communication network. Specifically, there 
is no method available for obtaining the effective bandwidth of a traffic 
source from its TES model 

Self-similar or Fracta l models These models are based on self-similar pro­
cess models. The self-similarity concept implies that samples of a pro­
cess demonstrate similar statistical characteristics when considered at 
different time scales. The key characterizing parameter is the so-called 
Hurst parameter, H, which captures the degree of self-similarity in a 
given empirical signal. Recently, many researches have used self-similar 
process models for modelling video traffic [12,53,59-63]. Most of these 
researches deal only with the statistical analysis of data sets, including 
the estimation of the Hurst parameter. These studies provide only lim­
ited information about traffic characteristics. Furthermore, very little 
research has been done on the analysis of communication networks (or 
queues) with self-similar sources. 

M a r k o v i a n Signal Mode l s Markov signal models have been successfully 
used for modelling video traffic [6,9,53,64]. One of the popular Marko­
vian models is the two state Markov chain (also called ON/OFF model), 
where one state represents the peak rate and the other represents the 
minimum rate. Though this model is simple an'd is useful for modelling 
video traffic in some cases, it is not accurate enough for modelling full­
screen video sources. The other commonly used model is the Markov 
Modulated Process, including the Markov Modulated Poisson Process. 

Most of the previous research on video modelling study the statistical 
characteristics of 'video conference' sources and not 'broadcast video' sources. 
Broadcast video traffic , such as TV video, has different characteristics from 
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those found in video conference applications. Usually, video conference se­
quences are encoded at a very low bitrate and consist of head and shoulder 
pictures with little or no camera movements. Hence video conference sequences 
differ from full-screen television video in two ways: first they consist of very 
rare scene changes and object movements in the picture; and second the bitrate 
of video conference streams has little fluctuations when compared to bitrate 
of full-screen video. 

4 . 2 . 1 S t o c h a s t i c M o d e l s for F u l l - S c r e e n B r o a d c a s t V i d e o 

The usual first step in modelling a real world's stochastic process is through 
analysis of the system generating the signal. The system that generates video 
traffic in digital TV applications is an MPEG-2 encoder. We are interested 
in modelling the amount of traffic that this encoder generates. MPEG-2 en­
coders use some important encoding parameters, such as number of slices, 
GOP pattern, GOP length, quantization scale and so on. These parameters 
affect the quality of the coded video, and are selected according to the appli­
cation needs. Unfortunately, given the input video sequence and the coding 
parameters, there is no procedure to obtain the statistical parameters of traf­
fic generated by the encoder. Therefore, it is not useful to incorporate the 
video coding parameters into the traffic model. However, analysis of MPEG-2 
encoding techniques can provide valuable insights into the video traffic shape. 
One important characteristic of MPEG video traffic is the periodic frame pat­
tern in each GOP. However, in the proposed ITV application, buffering delays 
for incidental streams (i.e., waiting-time in buffers) are much larger than video 
frame rates. This means that incidental buffer sizes are much larger than an 
average incidental video frame, and the periodic frame pattern in each GOP 
is filtered out during the buffering process. Thus, rate variability caused by 
the periodic frame pattern does not play any role in the proposed ITV appli­
cation. Since the buffering delay for an incidental stream in the proposed ITV 
application is usually more than a couple of seconds, we consider the video 
source rate at the GOP level rather than the frame level. Note that in most 
video streams in digital TV application, each GOP contains 15 frames, which 
results in a GOP length of .5 seconds. Therefore, we seek a traffic model which 
can capture the correlation between consecutive GOP sizes in a video stream. 

It is well known that each GOP size depends on the visual content of 
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its corresponding scene. Two features of a video scene that affect its corre­
sponding GOP size are 1) visual details in each frame, and 2) video activities, 
such as object movements, background movements (e.g., camera panning and 
zooming), scene changes, etc. In general, simple and non-active scenes result 
in a small GOP size, while complex scenes result in larger GOP sizes. This 
inspires us to select a traffic model which can capture the trend in video traf­
fic caused by the underlying scene changes in video, while capturing the rate 
fluctuations caused by other parameters. 'Hidden Markov Models' (HMMs) 
are known to match this intuitional requirement. These models consist of a 
hidden layer and an observable layer. The hidden layer is a Markov chain 
process, which determines the state of the signal. The state of the signal is 
not observable, and is considered 'hidden'. One can only observe the output 
of the observation layer. State of the signal at time t determines the spectral 
characteristics of the observable layer of the model. That is, statistical char­
acteristics of the observed signal at time t depend on the hidden state of the 
signal at time t. 

Other research studies have confirmed that HMMs are relatively suc­
cessful in capturing the video traffic characteristics of video conference and 
broadcast video sources [65-70]. HMMs have also been widely used in many 
other engineering applications such as speech processing, signal estimation, 
and queuing networks [71,72]. The underlying mathematical theory for these 
models is well established, and efficient algorithms are available for their im­
plementation. 

However, HMMs have a limitation. Before we exploit this limitation, 
we will present a few mathematical preliminaries on the Markov models in the 
next section. We will then discuss the limitation of HMMs, and use a new 
model, which can alleviate this limitation. 

4.3 Mathematical Background of General Marko-
vian Models 

4 . 3 . 1 M a r k o v C h a i n 

The simplest form of Markovian signal models is a 'Markov chain'. Consider 
the discrete-time stochastic process {st}, t = 1,2,..., which takes its values 
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from the set {1, 2 , N } . The space {1, 2,.... A/}, is called the state space. If 
st — i, then the process is said to be in state i at time t. st is a Markov chain 
if whenever the process is in state i, then the probability that it enters state 
j in next time-unit is constant. This property is the essence of Markovian 
signal models and is called Markovian Property, and simply states that the 
probability of transition from a state to another state does not depend on the 
previous states of the process, that is 

F{st = j |s t_! = i,5t_2 = k,...)= F{st = j\st^ = i) (4.8) 

Let aij represent the probability of going from state i to state j, that is 

aij=F(st = j\st.1=i) (4.9) 

Note that for all i and j, a^ is constant and time-invariant. The matrix 
A — [aij] is called the state transition probabilities matrix or state transition 
matrix. Note that since a '̂s are probabilities and since the process st should 
make a transition to one state at each time instance, we have 

N 

aZJ>0, l<i,j<N; £ ^ = 1, i = l,...,N (4.10) 
i = i 

Similarly, the n-step transition matrix An is defined, where A™- represents the 
probability of being in state j after n state transitions starting in state i. 

4.3.2 H i d d e n M a r k o v M o d e l s 

Hidden Markov Models, HMMs (also called Markov Modulated Processes, 
MMPs) are a powerful and widely used class of Markovian signal models. 
These models are 'doubly stochastic', and consist of a hidden layer and an 
observable layer. The hidden layer is a Markov chain process st, which follows 
equations 4.8-4.8, and determines the state of the signal at t. The state of the 
signal is not observable, and is considered 'hidden7. We observe the observation 
process yt. The spectral characteristics of the observed signal at time t is 
determined by the state of signal at t. A common model choice for modelling 
the observable layer is a parametric probability density function (pdf), where 
the pdf parameters are determined by the current state of the signal. This is 
denoted by 

¥(yt\st = i) = bi(yt) (4.11) 
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where bi(x) is a parameterized density function. For example, if bi(x) is a 
Normal distribution with mean /^ and variance of, then the probability of 
observing yt given that the state process is in state i at t, is 

1 2a? F(yt\st = ez) = ^==e ^ (4.12) 

which only depends on i. 
Note that rather than probability density functions, other stochastic 

models such as Poisson process or TES models, have being considered for 
modelling the observation layer of HMMs [57], 

4 . 3 . 3 L i m i t a t i o n o f H M M M o d e l s 

One disadvantage of HMMs lies in their limitation in modelling the 'state du­
ration' densities. State duration is defined as the time that the state process 
of an HMM spends in each state before making a transition to another state. 
Note that in a Markov chain, the probability of remaining in a state is con­
stant. That is, P(s t +i = i\st = i) = an, where ati is constant. Therefore, the 
probability of staying exactly d time units in state i is given by 

p(d) = a t 1 • (1 - au) (4.13) 

Hence, state duration densities in HMMs are limited to the form given 
in equation 4.13, which is known as 'Geometric' discrete distribution func­
tion in literature. This implies that the probability of staying d time units in 
each state exponentially goes to zero as d increases. However, the Geometric 
distribution is not appropriate for the state duration modelling of many phys­
ical signals. In order to remove this limitation, a more sophisticated model, 
called 'Semi-Markov chain,' is used where state duration densities are modelled 
with some non-Geometric distribution. A hidden Markov model that uses a 
semi-Markov chain for modelling the hidden state process is called 'Hidden 
Semi-Markov Model', HSMM. Generally speaking, HSMMs are more power­
ful in modelling physical signals than HMMs. However, HSMMs are more 
complicated. 
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4.3 .4 Selecting Between H M M and H S M M Modelling 
Approach for the Proposed I T V Application 

Is HSMM a better model choice for TV video traffic rather than HMM? The 
answer relies on whether Geometric distribution is a good model choice for 
state duration of video traffic processes or not. fn order to gain an insight to 
this matter, we conducted two different experiments using empirical bitrate of 
a few typical TV programs, as discussed below. 

The first experiment was based on an empirical approach to estimate 
the state sequence from the empirical bitrate traces of typical TV programs. 
In this experiment we first partitioned the video sequences to different scenes. 
The partitioning method used is similar to that presented in [73], where sud­
den jumps in the empirical bitrate of video is used to detect scene changes. A 
manual comparison of detected scene changes and video content showed that 
this method successfully captures the scene changes from the empirical bitrate 
record. Then, all scenes were partitioned into three clusters (low, medium and 
high bitrate) according to the average encoded GOP size of each scene. The 
clustering algorithm used is presented in [57]. The approach of this clustering 
algorithm is to partition the given data set, so that elements in each cluster are 
'closer' to each other than to elements in all other clusters. We assume that 
each cluster represents a hidden state of the Markov chain model. According to 
this classification, we constructed a 'state transition sequence' for each video 
sequence (see Figure 4.1). Next, we extracted the empirical state-duration 
traces for each state from the state transition sequence of each video, and cal­
culated the histograms of these state-duration traces. In order to determine if 
Geometric distribution is a good fit for these empirical state-duration traces, 
we used both visual histogram comparison and 'Q-Q plot technique' (see ap­
pendix B). Figure 4.2-a shows the histogram of one of the state duration for a 
'News' video sequence, and 4.2-b shows the typical shape of a Geometric and a 
Gamma distribution. It is noted that empirical data histogram reveals a curve 
shape more similar to Gamma distribution than Geometric distribution. Fig­
ures 4.2-c and d show the Q-Q plots for Geometric and Gamma distributions. 
As discussed in appendix B, if the statistical properties of the empirical data 
match the selected parametric distribution, then the Q-Q plot is expected to 
be approximately linear with an intercept of 0 and slope 1. It is noted that, the 
Q-Q plot for Gamma distribution is closer to a line with slope 1 rather than 

84 



(a) Normalized bitrate of the 'News' (b) Normalized bitrate of the 
sequence. 'Mission Impossible' sequence. 

3.5 ] 3.5 

(c) State transition path for 'News' (d) State transition path for 'Mission 
sequence. Impossible' sequence. 

Figure 4.1: Normalized bitrate and 'State transition path' for two typical T V 
programs. 

the Q-Q plot for Geometric distribution. Hence, we conclude that a discretized 
Gamma distribution is a better choice for modelling the state durations of TV 
video traffic. 

The second experiment was motivated by the results of the first experi­
ment. In this experiment, we used the 'likelihood ratio test' hypothesis testing 
method (see appendix C) to determine if an H M M model is a better choice 
for digital T V traffic sources rather than an H S M M model with Gamma state-
duration densities. We let yT = {yi,U2, • • • ,VT} denote the empirical bitrate 
trace of the video sequence under study. Then, we test the null hypothesis 
"HO: yT is an H M M " against UH1: yT is an H S M M " . Details of adopting 
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Sequence -21n(A) 
95% percentile point 

of x2 distribution 
with v = 3 degree of freedom 

Test result 

Mission Impossible II 21.29 7.815 Reject HO 
News 38.93 7.815 Reject HO 

Soap Opera 43.17 7.815 Reject HO 

Table 4.1: Results of likelihood ratio test for different typical TV video se­
quences. The number of states in HSMM and, HMM models is N = 3. 

the general likelihood ratio test method for conducting this hypothesis test 
are given in appendix C. In this test, the likelihood ratio A is computed as 
the likelihood of yT being generated by an HMM model to the likelihood of 
yT being generated by an HSMM model. It is shown that —2/n(A) has a x2 

distribution (see appendix C). Hence, —2/n(A) is compared to the 100(1 — a) 
percentile point of a x2 distribution, where a is the significance level of the 
test. Table 4.1 summarizes the result of this test for the empirical bitrate of 
a couple of TV programs. The significance level of the test is a = 5%. As 
shown, for all the sources, —2/n(A) is greater than the f00(l — a) percentile 
point, which means that the null hypothesis (i.e., 'JV is an HMM') should be 
rejected. 

Hence, we choose hidden semi-Markov models for modelling the TV 
video traffic in the proposed ITV application, where the state durations are 
modelled with Gamma distribution. In the next section, we present the math­
ematical formulation of HSMMs, and address the important issues raised in 
employing HSMMs. In Section 4.9, we present the result of fitting an HSMM 
model to empirical bitrate traces of typical TV programs. 

4.4 General Background on Semi-Markovian 
Signal Models 

4 . 4 . 1 S e m i - M a r k o v C h a i n s 

The discrete-time stochastic process {st}, t = 1,2,..., which takes its values 
from the state space {1,2, ...,N} is a Semi-Markov chain if the next state of 
signal depends only on the current state and the amount of time that signal 
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Figure 4.2: a) Histogram of state (or cluster) duration for one of the states in 
the News Sequence, b) Geometrical probability mass function, c) Discretized 
Gamma probability distribution function, d) Q-Q plot for Geometrical distri­
bution, e) Q-Q plot for Gamma distribution. 
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has spend in the current state. Formally, this condition is stated as 

P(st = i |s t _i = st_2 = • • • = st^d = i, st-d-i = k, • • •) = F(st = j\st-i = i, d) 
(4.14) 

where i 7̂  k. A — [â -] is known as the state transition probabilities matrix, 
where is the probably of going to state j from state i, knowing that the 
signal is leaving state i. 

dij = P(st = i | s t - i =i,st^ i) 

Note ay's are all constant, and are constrained to 
N 

Oij>0, l< i , j<AT; £ ^ - = 1, i = l,...,N (4.16) 
i=i 

All ajj's are zero. 
In a Semi-Markov chain, the state duration densities are modelled in 

some non-Geometrical form, unlike that of equation 4.13. This non-Geometrical 
from is usually denoted by a state duration probability mass function <Pi(d), 
where <Pi(d) is the probability that the signal stays exactly d time units in state 
i during its visits to this state. (fi(d) may be selected to be one of the known 
parameterized probability mass functions, such as Poisson, Binomial and so 
on. Alternately, <Pi(d) may be selected as a discretized probability distribution 
function, such as Normal or Gamma pdf. 

The signal generation process of a Semi-Markov chain st can be sum­
marized as follows. 

1. Start with a given initial state, e.g., st = i for t = 1. 

2. Select a duration d according to the state-duration density function of 
. the ith state, <pi(d). 

3. For the next d time units, stay at the same state i. 

4. Select the next state according to a constant state transition matrix 
A = [a,j], with the constraint that the signal should leave the current 
state (i.e., an = 0). 

5. Go back to step 2. 

(4.15) 
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4.4.2 Hidden Semi-Markov Models 

A Hidden Semi-Markov Model, HSMM, (also known as Semi-Markov Modu­
lated Process, SMMP) is similar to an HMM except, that the hidden state 
process is a semi-Markov chain. Generally speaking, HSMMs are a generaliza­
tion of HMMs and are more powerful in modelling physical signals. However, 
HSMMs are more complicated than HMMs. 

The most important problem that arises in using HSMMs is the identi­
fication of the model parameters. This identification problem is studied either 
in off-line or online cases, fn off-line case, given a set of observations from an 
HSMM signal, yT = {y\,y2, • • • ,VT}, o n e should find the parameters of the 
HSMM model, denoted by 6. In online case, one observes a signal sample yt 

at time t, and should update the current estimate of the model parameters 
6t such that 6t gradually converges to the actual model parameters. In the 
rest of this Chapter, we address the identification of HSMMs in both off-line 
and online cases, as they are both necessary in implementation of the pro­
posed interactive TV system. Off-line identification methods are necessary for 
estimating the model parameters of pre-recorded video streams. Online iden­
tification methods are employed for online model parameter estimation from 
live video sources. Ultimately, the estimated model parameters are used to 
find the effective bandwidth curve of sources. 

4.4.3 General Background on Identification of H S M M s 

fdentification of HSMMs is conceptually similar to identification of HMMs; and 
current approaches to the identification of HSMMs constitute a generalization 
of the identification methods for HMMs. There are powerful methods available 
for identification of HMMs. Off-line identification of HMMs is based on an 
iterative algorithm, known as Baum-Welch1 or Expectation Maximization, EM 
algorithm. This algorithm finds the maximum likelihood estimate of model 
parameters 9. That is, 6 is estimated so that P(3M#) ^s maximized. It is 
shown that the maximum likelihood estimate converges to the true parameter 
value as the sample size T increases. 

The EM algorithm consists of two steps in each iteration; the E or the 
Expectation step and the M or the Maximization step. The algorithm starts 

1The E M method method refers to a general class of approaches. The Baum-Welch 
algorithm is a variant of the E M algorithm for estimating the H M M parameters. 
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with an initial estimate of model parameters 6. Note that a part of an HMM 
model is hidden from us, and that is the state transition path of the underlying 
Markov chain, denoted by S T = {si, s2, • • • , sT}. In the E step the "optimal" 
state transition path ST is estimated from samples Vr and.current parameter 
estimates 9. This is done by estimating a set of so called forward and back­
ward variables, a t 's and (3t's. The forward parameters, at's, are computed by 
induction from a t _ i . Similarly, the backward parameters, /3t's, are computed 
from Pt+i- In the M step, the model parameters are re-estimated by finding 
the MLE estimate of 6 from the computed forward-backward parameters and 
yT- The E and M steps are iterated until 6 converges. 

The EM algorithm has been extended to the context of HSMMs by us­
ing 'explicit state duration modelling' [72,74-76] or 'parametric state duration 
modelling' [77]. The first approach estimates the density of the state durations 
for all possible values explicitly, while the second approach uses a parametric-
distribution to model the state duration, and only estimates the model pa­
rameters. However, current methods for identification of HSMMs, which are 
based on these two approaches, have the major drawback of greatly increased 
computational load compared to the HMM case. This increase in the compu­
tational load lies in the estimation formulas for forward-backward variables in 
the E step, where <xt (f3t) should be computed from {cxt-i, c* t_ 2 , • • • ,at_o} 
(and from { /3 t + 1 , (3t+2, • • • ,(3t+D}), instead of at-\ (A+i) m HMMs, where D 
is the maximum allowable state duration. More precisely, in EM algorithm for 
identification of HMMs, the forward variables at(j) are computed by induction 
from at_i's using 

In this equation at(j) is obtained by adding up the probability that st has 
traversed one of the state transition paths shown in Figure 4.3-a. While in 
identification of HSMMs, at(j) is computed as 

That is, the probability of being in state j at t is computed by summing the 
probability of the paths shown for d = 1, 2, 3, • • • , D in Figure 4.3-b. Similar 
equations are used for computing f3t's. 

l<t<T 
l<j<N (4.17) 

(4.18) 
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Figure 4.3: State transition paths that should be considered for computing 
at{j) in the HMM and HSMM cases. 

It is shown that current approaches to identification of HSMMs using 
the EM algorithm increase the memory usage by the factor D times and the 
computation load by D2/2 times, when compared to the EM algorithm for 
HMMs. Since D is usually large in many applications(e.g., D — 25 in most 
speech processing applications), these algorithms become impractical. 

In [78], an HSMM with N states and maximum state duration D is 
reformulated as an HMM with N D states, then the standard EM algorithm 
is used to estimate the model parameters. There are other approaches, which 
are based on the 'state duration dependant transition probabilities' [79]. In 
these approaches, the state transition matrix is time-varying or is replaced 
with a tensor. The drawback of the methods presented in [78,79] approaches 
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is addition of a large number of parameters into the model. These extra 
parameters should be estimated in addition to the usual HMM parameters, 
and this requires a large sample size in order to obtain an accurate estimate. 

Online identification of HSMMs is conceptually harder than the off­
line case. Currently, there are no available methods for on-line identification 
of HSMMs in the literature. However, the on-line identification of HMMs 
have been studied in [71,80-83]. These approaches are based on either the 
'recursive maximum likelihood', (RML), or the 'recursive prediction error', 
(RPE), techniques. In the RML approach, the current estimate of model 
parameters vector, 9t, is updated at each time instance in such a direction that 
the 'Kullback-Leibler' (KL) information measure is maximized, ft is shown 
that this results in the maximum likelihood estimate of the model parameters 
as t —> oo. 

The RPE method is a class of general numerical parameter estimation 
method. RPE algorithms are, in essence, 'Extended Kalman filters' (EKF). 
More precisely, RPE methods are a special class of Extended Kalman filters 
for the case when the unknown constant parameters of the model are viewed, 
and estimated, as states, fn this approach a norm V{9) that measures the 
prediction error of the model is defined. The model parameters are updated 
according to 

where is a search direction based on some information about V(9) ac­
quired at previous iterations, and A is a positive step size. There are different 
algorithms based on equation 4.60 which use different choices for the search 
direction / . The most important class of these approaches is the quasi-Newton 
methods, where the direction function /' is 

The mathematical theory for general RPE technique is presented in [84]. In 
[71,82], a formulation of HMMs is presented, which allows the general RPE 
scheme to be applied to on-line identification of the HMMs. The norm function 
used in this method is a weighted quadratic prediction error criterion: 

et+1 = ot + \-f (4.19) 

/« = -\V"{9t)\ 1 • V\9t) (4.20) 

T 
(4.21) 
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where e(k, 6) = y(k, 6) — y(k) is the prediction error. -ft is a normalizing 
factor and 8{t, k) is a weighting sequence, introduced to increase the effect of 
recent observations on the estimate. In [83], an algorithm based on the R P E 
technique is presented, which finds the M L E of the model parameters, and 
hence, can be considered as an RML algorithm. 

In summary, the existing off-line parameter identification methods for 
HSMM's are very computationally demanding, and none online parameter 
identification method have-been suggested. In the next section of this chapter, 
we will present new methods for identification of HSMMs for both off-line and 
online cases. Our methods are based on a new formulation of HSMMs. In 
our new signal model, we introduce a new variable to the traditional HSMMs, 
named the 'state duration' variable, dt. dt is actually a vector, where dt{i) 
denotes the time that the signal has spent in state i, given that the state 
at time t is i. We then use state duration dependent transition probabilities, 
where the probability of transition from state i to j is not constant and depends 
on dt(i). Hence, in our model, the probability of being in any state at time t 
depends on the state at t — 1 as well as dt-\. We model the state duration 
densities with parameterized probability density functions. 

We then present a novel version of the EM algorithm for off-line iden­
tification of HSMMs based on our model. Our algorithm finds the local max­
imum likelihood estimate of the model parameters. The major advantage of 
our method over current ones is that it has almost the same computational 
complexity as the EM algorithm for the HMMs, and hence is useful for a larger 
set of practical applications. 

We also present a sophisticated method for online identification of HSMMs, 
which is based on our proposed signal model. Our approach adaptively up­
dates parameter estimates, so that the log-likelihood of model parameters is 
maximized. We use an estimate of the Newton-Raphson direction as the up­
date direction of our model parameters. This choice results in a near optimum 
convergence rate in our algorithm. In this regard, our method is similar to the 
online identification algorithm for HMMs in [82]. 
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4.5 New Formulation of HSMMs 

4 . 5 . 1 H i d d e n (or M o d u l a t i n g ) L a y e r M o d e l l i n g 

We consider a signal model where the state of the signal at time t, st, t € N, 
is determined by a finite-state discrete-time semi-Markov chain. We assume 
the initial state s\ is given or its distribution is known. The state space has 
N distinct states. Without loss of generality, we assume st takes its values 
from the set {ei, e2, • • • , e^}, where et is a N x 1 vector with unity as the ith 

element and zeros elsewhere. If st = e*, we say the signal is in state i at time 
t. The semi-Markov property of the model implies that the probability of a 
transition from state ej to e.;, j ^ i, at time t depends on the duration spent 
in state e.j prior to time t. This can be written as 

F(st+1 = ei\st = st-i = ek, • • • ,8i = et) = F(st+1 = ei\st = ey,dt(j)) 
(4.22) 

where dt(j) is the duration spent in the jth state prior to time t, that is 

dt{J) = id\st-i = ej, • • • , s t _ d + 1 = ej, st_d ^ ej} (4.23) 

For each time t, we define the 'state duration' vector dt of size N x 1 as 

f d,(j) if st — e,-
d t = \, .f \ 3 (4-24) [1 if st ^ ej 

dt(j) is easily constructed from dt-i(j) as dt(j) = st{j) x dt-\(j) + 1, which 
can be written in vector format as 

dt = st © dt_i + 1 (4.25) 

where 0 denotes element-by-element product. 
We model the state duration densities with a parametric probability 

mass function, pmf, 4>i(d). This means the probability that st stays exactly 
for d time units in state i is given by (f>i(d). 4>i(d) should be selected so that 
it adequately captures the properties of the signal under study. Hence, selec­
tion of <f>i(d) should be justified by some evidence from samples of the signal. 
Though HMM state durations are inherently discrete, it is noted in many stud­
ies that continuous parametric density functions are also suitable for modelling 
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state durations in many applications, including speech processing [76,77]. In 
this approach state durations are modelled with the best fitting parametric 
probability density function, pdf, and then the discrete counterpart of this 
density function is taken as the best pmf. That is, if 4>i{x) is the continuous 
pdf for state duration of ith state, then the probability that the signal stays 

fd 

in state i for exactly d time units is given by / <pi(x)dx. Since negative 
Jd-l 

state durations are not physically meaningful, it is usually more appropriate 
to select 4>i(x) from the family of exponential distributions [76]. Specifically, 
the family of Gamma distributions are considered in [77] for speech processing 
applications. In this paper, we assume that <f>i(x) is a Gamma distribution 
function with shape parameter and scale parameter rji, that is 

<fc(d) = -^—d^-le'^d (0 < d < co) (4.26) 

where V is the gamma function. The mean and variance of <f>i are Vi/rn and 
Vi/rtf respectively (see [85]). Note that our signal model presented here is 
applicable with minor changes, if a pdf other than Gamma is selected. Fur­
thermore, let <f>i(x) denote the cumulative probability distribution function of 
<j>i(x), i.e., 

<&i(d) = F(st stays in state i for at most d time units) (4.27) 

= / <j>i{x)dx (4.28) 

We construct our model for HSMMs using state duration dependant 
transition probabilities. We define the state transition matrix Adt, as .Adt = 
[aij(dt)} where ai:j'(dt) = F(st+1 = ej\st = ei,dt(i)). Clearly, a;j(dt)'s are 
not constant and change in time; however, we will denote aij(dt) with â - for 
notational simplicity. The diagonal elements of Adt, a^s, are the probability 
of staying in state i knowing that st has been in state i for dt(i) time units. 

an = F(st+1 = ei\st = eh dt(i)) 

= F(st+i = ei\st = eu st_, = eu ... S ( _ d t ( i ) + 1 = ei; s t_ d ( ( l ) ̂  ê ) 
_ F(st+1 = eu st = ej,..., st-dt{i)+2 = e-i\St-dt{i)+i — ei} st-dt{i) ei) 

F(st - ei, st-i = ei,..., s f _ d t ( i ) + 1 = ei\st-dt{i)+i — eu st-dt(i) et) 
(4.29) 
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Meanwhile, the denominator of equation 4.29 can be written as 
HkLl ^(St+k ei,st+k-l = e i ; . . . , St-dt(i)+2 = ei\st-dt(i) + \ = ei,St-dt(i) 7̂  
ei) o r 2~lT=i ̂ (st stays in state i for exactly dt(i) — 1 + k time units), which 
is 1 — <&i{dt{i) — 1). Therefore, equation 4.29 can be written as 

° « ( d t ( t ) ) = i - ̂ ( 0 - i) ( 4- 3 0 ) 

The probability that the state process stays in the ith state during its 
visit to this state for exactly d time units is given by (1 — au(d)) • Yl'kZi au(k). 
By substituting a„ from 4.30, it is easily shown that the probability density 
function of the state space durations is actually equal to the selected model 
<f>i(d). 

For i 7̂  j, a,ij is the probability of leaving state i and entering state j, 
and is given by 

atj = ¥{st+i ^ ei\st = eudt(i)) x P(s t + i = eAst = et,i ^ j) 
= (1 - a.a) • a°- (4.31) 

where a°- = P(st+i = ej\st = ei,i ^ j) is defined as the probability of 
transition from state i to state j, knowing that the signal leaves state i. We 
write the matrix Adt in terms of a diagonal matrix P{dt) representing the 
recurrent state transition probabilities, and a constant matrix A° representing 
the non-recurrent state transition probabilities. 

Adt=P(dt) + {I-P{dt))A° (4.32) 

0 
PM) := { 1 - Hdt(i)) = (4.33) 

1 - *4(dt(i) - 1) ' J 

, \ , \ (4-34) 0 ,i = j 
\?{st+i = j\st = i) 

Note that a° are constrained to Yl!j=\a1j = Since P(dt) is a diagonal 
matrix, one can show that Ejli aij{dt) = 1 f° r a h t-
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Hence, the hidden state process st evolves in time based on the following 
equations: 

st+i = Adl • st + vl+i (4.35) 
Adt = P(dt) + (I - P(dt)) • A° 
dt+1 = st+1 Qdt + 1 

where vt+\ is a martingale increment; that is, E ( t ; t + 1 | s i , S 2 , • • • , st) = 0. 
REMARK. Our modelling scenario can be encapsulated as a time 

homogeneous first-order Markov model. Consider the 2-vector process St as 
St — (st, dt). st takes its values from the finite set {ei\i = 1, 2, • • • , N}, and dt 

takes its values from the infinite set {f?\i = 1, 2, • • • ,N;d = 1, 2, • • • }, where 
ff is a N x 1 vector with d as the ith element and unity elsewhere. According to 
equation 4.25, dt+\ depends only on st+\, st and dt, and according to equation 
4.22, st+i depends only on st and dt. Therefore, P(5 t+1|S ,

t) is independent of 
t, and hence St is a homogeneous first-order infinite states Markov chain. 

4.5.2 Observation Layer Modell ing 

The state process st is hidden and is not observed. We observe the observation 
process yt, where the probabilistic distribution of yt is determined by state at 
time t, i.e., st. In this paper, we assume that for each state i, yL has a normal 
distribution. That is, if st — et then F(yt\st = ê ) = N(yt, fJ-i,o~2), where 
Pi and of are the mean and standard deviation of the observation process yt 

for state i. We denote the probability of observing yt in state i with bi(yt) 
throughout this paper, that is 

k(ijt) = F{yt\st = (4.36) 

Therefore, yt may be written as 

yt = (At, st) + (Va2, st)wt (4.37) 

where fj, — / i 2 , • • • , P-N]', °"2 = [°~h ah ''' > aAf] > (•> •) denotes inner prod­
uct and wt is Gaussian white noise with zero mean and variance 1 . 

Equations 4.35 and 4.37 define the signal generation process in our sig­
nal model. Figure 4.4 summarizes and compares the signal generation process 
in our model with that of other HSMM signal models. 
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1. Start with an initial state, e.g., st — ei for t = 1. 

2. Initialize dt = [l 1 . . . l ] ' 

3. Generate yt based on the density function of the current state. 

4. Compute Adl (equation 4.32), and choose a new state st+i based 
on Adt-

5. Update the state duration variable, dt, using equation 4.25. 

6. Go to step 3. 

a) Our H S M M model. 

1. Start with an initial state, e.g., St — ei for t = 1. 

2. Select a duration d according to the ith state duration density 
function. 

3. For the next d time units, stay at state st, and generate yt based 
on the densities of state S j . 

4. Select the next state according to a constant state transition matrix 
A, with the constraint that the signal should leave the current 
state. 

5. Go to step 2. 

b) Traditional HSMM model. 

Figure 4.4: Comparison of the signal generation process in our model with 
that of existing signal models for HSMMs. 

4 . 5 . 3 M o d e l P a r a m e t e r i z a t i o n s 

There are iV2 + 3N parameters that define an HSMM signal using our model. 
These parameters are N 2 — non-recurrent transition probabilities a°-, the 
mean and variance of the observation process Hi and of for 1 < i < N, and 
the Vi and % parameters of the gamma distribution of the state-durations for 
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1 < i < N. We define 6 as a vector containing all the model parameters 
„ 0 

) uN-l,Ni 
& — (Mil M2, • • ' , P N , °2i " ' ' J a N >

 a12> a13> ' ' ' i a ' 

(4-38) 
^1,^2, • • • ,VN,VI,V2, ••• ,VN) 

4.6 A New Algorithm for Off-line Identifica­
tion of HSMMs 

In this section, we present a new algorithm for off-line identification of HSMMs. 
Our algorithm is based on the signal generation model presented in Section 
4.5, and requires less computational effort when compared to presently existing 
methods. 

Given a set of observations from an HSMM signal, = {yi,v2, • • • > yr}, 
we like to find 6, the parameters of the HSMM model. The algorithm we use 
is a variant of the EM algorithm. We first initialize 6 to an initial guess. 
Similar to the EM algorithm for identification of HMMs, in the 'E' step of 
our algorithm we define a set of probabilistic measures which describe the 
evolution of the hidden state variable st. We define 'forward variables' at(i) 
as the conditional probability of observing the partial sequence yi,y2, • • • ,yt 
and being in state i at time t, given the model parameters 0. That is, 

at(i)=F(8t = ei,y1y2...yt\0) (4.39) 

Let dt 
dt{l) dt(2) ••• dt(N) where 

dt(i) = E(dt{i)\8t = i,0,y1,y2,...,yt) (4.40) 

is our estimate of the state-duration variable for state i at time t. dt is initial­
ized to [l 1 • • • ' l] for t = 1. We reconstruct dt^i(i) iteratively as 

dt+1{i) = l+E(st(i)\ym...yt,e)-dt(i), l<i<N 

= l + -pQ--dt(i), l<i<N (4.41) 

i= l 

The state transition matrix Adt is updated for each t as 

Adt = P(dt) + (I - P(dt))A° (4.42) 
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where P is given in equation 4.33. 
The forward variable at(i) for t = 1 is initialized to the given initial 

state, that is, = for 1 < i < N. The other forward variables are 
constructed iteratively as 

N 

l < t < T, l < j < N (4.43) 

Similarly, the backward variables 6t{i) are defined as the probability of 
observing the partial sequence j / t + 1 , 7 / t + 2 , . . . ,yr, given the model parameters 
6 and that the state at time t is 

= W(yt+1yt+2... yT\st = eu 6) 

Bt's are computed by initializing BT{i) = 1, for 1 < i < N and constructing 
the other variables iteratively using 

JV 

Bt{i) = £Pt+i( j ) • ai3 • b3{yl+l) 1 < t < T, 1 < j < N (4.44) 

We define jt(i) as the probability of being in state i at time t, given the 
observation sequence V T and the model parameters 0. 

it{i) = nst = i\yT,o) 
jt(i) is expressed in terms of cc's and /?'s as 

N 

(4.45) 

(4.46) 

i=l 
Also, we define £t(i,j) as the conditional probability of being in state i 

at time t, and state j at time t + 1 

6 ( * , j ) = P ( S t = 2 , ^ + 1 = ^ , 0 ) 

j) is given in terms of a's and B's as 

a t(i)ayt)j(yt + 1)A+i(j) 
iV N 

(4.47) 

(4.48) 

^ ®t(i)a<ijbj{yt+i)Bt+i{i) 
i=l j = l 
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The variables 7 and £ are useful in interpreting the number of transitions 
between states. That is, Y^t=i 7t W ^s *he expected number of transitions from 
state i to any other state in a n < f YlJ=i €t(.hj) IS the expected number of 
transitions from state i to state j in J-V-

In step M of the algorithm, the model parameters 6 are updated to 
the maximum likelihood estimate of the model parameters computed from 
the forward-backward variables in step E . There are different approaches to 
obtaining the updating equations, all of which result in the same equations. 
These approaches are: 1) One can find 0 such that the 'Baum's auxiliary 
function,' Q, is maximized. Baum's auxiliary function is defined as the ex­
pectation of \og¥(yT, S\8)). It can be shown that maximizing the Baum's 
auxiliary function is analogous to maximizing the likelihood P ( V r | 0 ) . Hence, 
one can solve dQ/dO — 0 to obtain the update equations for the model param­
eters. 2) The problem can be set-up as a constrained maximization problem 
and the Lagrange-multiplier approach can be used to maximize the auxiliary 
function Q. 3) One can use the filtration variables, at's and f3t's, to count 
the expected number of transitions and use the concept of counting the event 
occurrence to obtain the update equations. We use the latter approach here, 
though the result is analogous if other approaches were used. Based on the 
definitions, Ylt=i 7t W * s ^ n e expected number of transitions from state i in 3^T 
and Ylt=i Ct{i,j) IS the expected number of transitions from state i to state j 
in V T . Then, the transition probabilities are estimated as 

0 expected number of transitions from state i to state j in V T 

expected number of transitions from state i in V T 

5>(*,J) 
_ t=i 

ELY iS) 
T-1 
^2 <xt(i)aijbj(yt+i)6t+i{j) 

_ t=i 
~ T - 1 

t=i 

101 

(4.49) 

(4.50) 



Similarly, the mean and variance of the observation process are estimated as 

T - l 

^lt(i)yt 

= T=i ( 4' 5 1 ) 

t=i 

T - l 

J2it(i)(yt - Hi)2 

^ = ( 4- 5 2) 

Let /j,iiS and a2

s be the mean and variance of the state-duration for state 
i respectively. fj,is, is estimated as 

T - l 

= ( 4- 5 3) 
£ > ( s t + i ^ , ^ = ^13^,0) 

We have P(S t + i 7̂  i, St = Z ^ T , #) = 1t(i) - £t(i, Hence, in terms of a's 
and /3's is given by 

T - l 

^at(i) (0t{i) ~ aiibi(yt+1)Pt+i{i)) dt(i) 
_ 4 = 1 

T - l 
(4.54) 

Y^aS) Wt{i) - aiibi(yt+i)Pt+i{i)) 
t=i 

Similarly, the variance of state-duration distribution is given by 

T - l 

£ a t 0 Q (8t(i) - aii6i(3/t+i)A+i(*)) _
 ^ M ) 2 

< t = * = 1
 r _ t ' ( 4 - 5 5 ) 

^ a i ( i ) (A(«) - aabi(yt+i)Pt+i{i)) 

t=i 
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• E Step: 

1. Forward Filtering: Compute ctt(i) and dt(i) for 1 < 
i < N and 1 < t < T — 1 using equations 4.41 and 
4.43. 

2. Backward Filtering: Compute (3t(i) for 1 < i < JV and 
1 < £ < T using equation 4.44. 

3. Find the State Probabilities: Compute £,t(i,j) and ji.(i) 
using equations 4.48 and 4.46. 

• M Step: 

1. Update the model parameters, 8: Use equations 4.49, 
4.51, 4.52, 4.54 and 4.55 to update the model param­
eters. 

Figure 4.5: ' E ' and ' M ' steps of our algorithm for off-line identification of 
HSMMs. 

The parameters of the state duration distributions, Vi and m, are given in 

Figure 4.5 summarizes our algorithm. The algorithm stops when the 
9 converges to a constant vector. The forward-backward algorithm has the 
computational complexity of 0(N2T) per pass and requires a memory of 3NT 
because all the forward-backward variables and the estimate's of the state 
duration variables need to be stored. 

4.6.1 Implementation Issues 

Choice of In i t ia l Est imates Since the EM algorithm finds the local max­
imum of the likelihood function, it is important to start the algorithm with 
suitable initial values. Though there is no straightforward method for select­
ing proper initial values, there are a few techniques in the literature which 
can assist in selecting the initial values. One of these methods uses segmen­
tation of the observations into states, and averaging the observations between 

terms of and of s as 

(4.56) 
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the segmented states. Segmentation can be performed manually, using max­
imum likelihood segmentation or the ''segmental k-means' method. For more 
information on these techniques, please refer to [86]. 

Scaling From equation 4.43 it becomes clear that as t increases, at's become 
small very fast, and can quickly fall out of the numerical range of any computer. 
The same argument applies to /?t's, when t decreases. To avoid this, we suggest 
using a scaling scheme similar to the scheme used in [72] and [86] for the 
HMM case, where at's are scaled to sum up to 1 for all t. More precisely, let 
at denote the unsealed variable, at(i) denote the scaled variable and d-t the 
local version of a's before scaling. Let ct be the scaling factor at time i , where 
ct — 1/ 2~2iLi &t(i)- Both a's and /?'s are scaled using ct, that is, at(i) — ctat(i) 
and J3i{i) = ct(3t(i). It can be easily shown that 

&t(i) = Ctat(i) A+iW = A+iA+iW (4-57) 

where Ct = n f = i c» a n ( ^ A + i = PI^Lt+i cs- Using these equations, it can 
be shown that the scaling factors are cancelled out in all of the final update 
equations, except equations 4.54 and 4.55. In order to cancel the scaling effect 
on equations 4.54 and 4.55, these equations should be rewritten as 

r - i 
(A(O c i _ 1 - aiibi{yt+i)Pt+i{i)) dt{i) 

M M = H=i ( 4- 5 8) 
^ " t W {Pt{i)ctl - aubi(yt+i)Pt+i(i)) 
t=\ 

T - l 

£"*(*) {Pi{i)ctl - aiibi(yt+i)Pt+i{i)) (M*) ~ M M ) 2 

4 , = l z L — r ~ 1 (4-59) 
{Pt{i)ctl - aabiiyt+JPt+^i)) 

t=i 

This assures us that the scaling will have no effect on parameter estimates. 

4.7 Online Identification of HSMMs 
In this section, we present a new algorithm for online identification oi HSMMs. 
Our algorithm is based on the signal generation model presented in Section 
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4.5. Our approach is to set up the problem of online identification of HSMMs 
such that the general recursive prediction error (RPE) method can be applied 
to the problem. First, we will present a general background on general RPE 
technique in Section 4.7.1. Then, we will present how we adopt this technique 
for online identification of HSMMs in Section 4.7.2. 

4 .7.1 G e n e r a l R P E t e c h n i q u e 

RPE is a class of general numerical parameter estimation, where a norm V(6) 
is defined that measures the prediction error and the estimate of the model 
parameters is updated according to 

et+l = et + x- /w (4.60) 

where is a search direction based on some information about V{0) acquired 
at previous iterations, and A is a positive step size. An important class of these 
methods is the Newton type algorithms, where the correction in 4.60 is chosen 
in the Newton Direction 

/W = -[K"(0 t)]-1-V : ,(0 t) (4.61) 

There are approaches that use values of function V as well as of its gradients. 
The most important subclass of these approaches is the quasi-Newton methods, 
which somehow form an estimate of V" and then use equation 4.61. 

Now consider a weighted quadratic prediction error criterion 
t 

V{d)^ltYJP{t,k)e\k,6) (4.62) 
k=i 

where e(k, 0) = y(k) — y{k) is the prediction error. B(t, k) is a weighting 
sequence with the following property 

B{t,k) = \{t)B{t-l,k) ,0<k<t-l (4.63) 
3(t,t) = 1 (4.64) 

7 is a normalizing factor. Then it is shown that the general search equation 
is given by 

Bt = 9t-i - MRt]-1 • V (4.65) 
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where V is the gradient of V, and Rt is a matrix that modifies the search 
direction. It is shown that this updating formula can be written as 

8t = + 7 t • [Rt]-1 • ib(t, 0 t_,) • e(£, 9t^) (4.66) 

where ijj is the gradient matrix of y with respect to 8 
The simplest choice for R is Rt — I, which results in the gradient or the 

steepest-descent method. This method becomes fairly inefficient in the region 
close to the minimum of the norm function. Choosing Rt = V"(9t), makes the 
equation 4.66 a Newton method, which typically perform much better close to 
the minimum. In this case, V" is given by 

N N 

t=i t=i 

It may however be quite costly to compute all the terms of ip'. Then an 
approximation of V" is used, where the second sum in equation 4.67 is ignored 

1 N 

(4.68) 
t=i 

which is by definition the Hessian of y. If we choose Rt = V" and use the 
approximation in equation 4.68, then it is shown that Rt is given as 

t 
Rt = -rt^2l3(t,k)-it>(k)-Tj;'(k) (4.69) 

fc=i 

It is also shown that Rt can be constructed recursively as 

Rt = Rt-i + 7tbJ>(W(t) - R(t - 1)] 
- (1 - 7 t ) • R(t - 1) + lt^' (4.70) 

The RPE algorithm is summarized with the recursive scheme presented 
in Figure 4.6. 

4.7.2 Online Identification of H S M M s Using the R P E 
Method 

Let 0t denote our estimate of the model parameters at t. We define the 'ob­
jective function' ^ ( 0 t ) = logP(yi, 2/2, • • •, Ut\dt), as the log-likelihood of the 
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1. e(t) = y(t) - y(t) 

2. 6t = 6t-1 + lt-[Rt]-l-W)-e{t) 

3. Rt = Rt.! + lt{m^'(t) ~ R(t ~ 1)] 

Figure 4.6: Parameter update equations performed in each step of a general 
RPE algorithm. 

observations up to time t given 9t. £t(9t) can be rewritten as 
t 

tt{ot) = J2 iogP(t / T | t / i , y 2 , • • •, yr-i-,et) 
T-l 

t 

= E M « t ) ( 4 - 7 1 ) 
T = l 

where = logP(yT|yi, y2, • • •, yT-i, Qt) is the log-likelihood increment. Our 
approach here is to update 6t in a direction that maximizes the objective 
function £t{Qt)- We use the recursive prediction error (RPE) method, where 
the parameters are updated in the Newton-Raphson direction (see [84] for an 
extensive discussion of this method). This selection greatly increases the speed 
of the algorithm. Starting with an initial guess for 9t at t = 1, 9t is updated 
at each time instance t using 

Ot+i - 9t + • iV+i • A+i (4-72) 

where Rt = d2£t(9)/d92 is an estimate of the 'Hessian Matrix', ipt = dut(9)/d0 
determines the search direction and is the gradient of ut with respect to 6t. Xt 

is a step size. Rt and ipt are called 'sensitivity parameters' and are estimated 
recursively in our algorithm. 

Figure 4.7 illustrates the basic block diagram of our scheme. The details 
of how each block performs its function are described in sections 4.7.4 to 4.7.7. 
Below, we summarize the basic function of each block. 

1. Estimation of hidden layer variables: Given the observation yt and model 
parameters estimate 9t, this block computes the forward variable at and 
state duration estimate dt. These variables are constructed iteratively 
from at-i and dt-\. 
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Figure 4.7: Recursive Prediction Error scheme for estimating HSMM param­
eters. 

2. Updating the gradient vector V't+i- Using the obtained ctt and dt, this 
block computes the gradient vector ipt+i- For this computation. dat_i/d9 
and ddt/dO should be estimated as well. Hence, this block constructs 
dat_i/d9 and ddt/d9 recursively and uses these parameters to update 

3. Updating the parameters estimate 9: This block updates the model pa­
rameters estimate, 9t, using equation 4.72. 

4. Updating Rt: This block recursively updates the estimate of the Hessian 
matrix, Rt, from and ibt. 

We present the details of each part of our algorithm in the following 
sub-sections. For simplicity, we use 9 instead of 9t in our notations. 

4 . 7 . 3 M o d e l P a r a m e t e r i z a t i o n s 

Similar to the off-line case, our signal model has N2+3N parameters. However, 
as shown in [71], it is more convenient to parameterize the model as 

9 = (AI, a2, c12, c13, • • • , cyv_1)iVl ^, v)' (4-73) 

where ctj are simply defined as ci3- = (a")1^2. This parameterization selection 
simplifies the development of the update equations. As in the off-line case, pt 
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and cr 2 are the vectors of the mean and variance of the observations process, 
and v and r\ are the vectors of the parameters of the gamma probability density 
functions of the state durations. 

4.7 .4 E s t i m a t i o n o f t h e H i d d e n L a y e r V a r i a b l e s 

As with the off-line case, we define the forward variables as at(i) = F(yiy2 • • - yt, st 

i\0). Let at = [at(l) ott{2) ••• at(N)] . Then the forward filtering recur­
sion equation is given by 

a t + 1 = BA'dat (4.74) 
where B is a diagonal matrix, bn = bi(yt+i) (see equation 4.36), and A'dt is 
the transpose of the state transition matrix (equation 4.35). The conditional 
estimate of the state at time t is given by 

7t = E(st\yuy2, • • • ,yu0) 
= ctt(cxul)-1 (4.75) 

Given the observations up to time t, the next state and next observation of 
the signal are estimated as 

T£-{8t+1\y1,y2,...,yu0) = A,

dt'yt (4.76) 

iit+i = (M,E(s( + i |yi ,2/ 2 , • • -,yt,0)) 
= (^A'dlat-{at,l)-1) (4.77) 

The estimate of the state duration variable is updated similarly to the off-line 
case (equation 4.41), as 

dt+i = E(st\yl,y2,..., yt, 9) © dt + 1 

= a t ( a t l l ) - 1 0 d t + l (4.78) 

The log-likelihood increment, ut+1 (equation 4.71), is given by 

ut+1 = logF(yt+l\yi,y2,...,yt;9) (4.79) 
N 

= l o g £ P ( 7 / t + i | s t + i = ei,y1,y2,...,yt;0) x P ( % = e ^ , y2,..., yt\ 0) 
i=i 

(4.80) 
= \og(l,BA'dtlt) (4.81) 
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4 . 7 . 5 G r a d i e n t V e c t o r U p d a t e E q u a t i o n s 

We denote the derivative operator with respect to variable x by D X , that is, 
Dx(.) = d(.)/dx . Thus, the gradient vector ipt is written as 

_ dut+i, 

dut+i dut+l dut+1 dut+1 dut+1 

dpi ' do2 ' dcij ' dfj,iiS ' da2

s J \e=et 

= (D^UI+I, DG2Ut+i, D C ut+l, s u t + 1 , D A 2 ut+i) (4.82) 

We write the elements of t/jt+i m terms of the derivative of the filtration 
parameters (i.e.,a,, and dt) with respect to the model parameters. Our esti­
mates of the derivatives of the at and d, are constructed recursively from their 
estimates at t — 1. For example, the first element of f/'t+i, DIHut+\. is writ­
ten in terms of D^ott and DHdt. D l t j a t + i and DHdt+i are also constructed 
recursively from DHctt and.DF L Jd t. In deriving the update equations, it is 
assumed that the probabilities of non-recurrent transitions (i.e., c^'s), and the 
parameters of the state duration probability density functions (i.e., v and 77) 
do not depend on each other. 

Thus, to calculate i/jt+\, we use the following equations for the deriva­
tives of ut+i with respect to a2, Cij, v and r\. 

1-D„ 

D^ut+i = 
(l,BA'dtlt)-1 ((l,D^(B)A'dtlt) + (l,BD^(A'dt)7t) + (1, BA'dtD^t))) 

(4.83) 

D I H L L = ^(aOa.Qt)" 1 + a t ( l , Z ? w ( a t ) ) - 1 (4.84) 

D^at = D^(B)A'dtat_! + B D ^ A ' J a t . ! + B A ^ ^ a ^ O 
(4.85) 

£> / J 4B = ( ^ = 5 ^ ) • B • diag(ej) (4.86) 

DtltAdt = D,t(P)(I-A°) (4.87) 
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d.ag { ( 1 _ ^ _ 1 ) ) 2 O Z> w * 

(4.88) 

D w d t = d t _ i 0 D ^ 7 t _ i + I> w d t _i 0 7 t _ i (4.89) 

{l,BA'dtlt)-1 ((l,Dai{B)A!dtlt) + (l,BDa,{A!dt)lt) + (1, BA'^D^))) 
(4.90) 

Da2jt = Da,(at){l,cxt)-1 + cxt(l,Dal(cxt))-x (4.91) 

Da?at = D^A'^oc^ + BD^A'Ja^ + BA'dDa,(cxt^) 
(4.92) 

DalB = ( ( ^ 2 ~ f ) 2 - • diag(e8) (4.93) 

Da?Adl = Da?(P)(I-A°) (4.94) 

d i a g { (i - Hdt - i))* 0 ^ 
(4.95) 

D ^ d t = D a ? ( 7 t - i ) © dt-i + 7 t - i © D^dt.x) (4.96) 
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(^BA'^t)-1 {(l,BDCmn{A>dt)lt) + (l,BA'dDCmM)) 

(4.97) 

D^iaMl,^)-1 + cxt(l,DCmn(at))-1 (4.98) 
BDCmn(A'dt)<*t-i + BA!dtDCmn{oLt-i) (4.99) 
-P-DCmn(A°) (4.100) 

{ 0 if m 7̂  i 

2cij iim = i,n = j ' (4.101) 
-2c„ m if m = i, n ̂  j 

4- £>„ 

(4.102) 
£>w7t = DIh{at){l,at)-1 + at{l,DTK{at))-1 (4.103) 

= B Z ^ f A ' J a , - ! + BA'dDm(at^) (4.104) 
^ A d t = ^ ( P ) ( / - A ° ) (4.105) 

Dm(P) is a matrix with all zero elements, except the element in row i 
and column i, which is given by 

1 - $(dt(0;7?i,t/j) . = 

^ 4 - ^>K(0 - 1;^,^)^ 
A»[$ W) - i)](i - - A„[<f>K(*))](i - -1)) 

(i - $(4(0 -1)) 2 

(4.106) 

DVi<&(d; rji, v%) is obtained by differentiating <f>(<i; r/j, z/j) as defined in equa­
tion 4.27 

DVi${d; Vi, ̂ i) = *{${d; r,t, u%) - r*, ^ + 1)) (4.107) 

D C m n U t + l 

Dr cx, 

DCmn Adt 

DCmna°3 
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5- Du 

DViut+l = (l,BA'dtlt)-1 {(l,BDUi{A'dt)lt) + (l.BA'dD^(lt))) 
(4.108) 

DVilt = A , ( a t ) ( l , a t ) - 1 + at(l, ^ (a , ) ) " 1 (4.109) 
DViat = B ^ ^ J a , . ! + B ^ D ^ a t . ! ) (4.110) 

A , ( A d t ) = A , ( P ) ( / - A ° ) (4.111) 

DVi{P) is a matrix with all zero elements, except the element in row i 
and column i, which is given by 

D 1 - $(d t(i);^,i/i) 

DVi[*(dt(i) - 1)1(1 ~ $K(*))) - DvjMdtWW ~ $ W) ~ 1)K 
( 1 - * K ( * ) ) ) 2 j 

(4.112) 

Unfortunately, differentiating §(d; rj, v) as defined in equation 4.26, with 
respect to v does not result in a simple form as in equation 4.107. How­
ever, we can easily find the numerical value of DVi§(d\r)i,vi). We have 

A,($(d;77,i/)) = (logfa) - ^(v))§(&\i),v) + / log(x)<̂ (x; v, u)dx 
Jo 

(4.113) 
where is the 'digamma' function [87,88]. The digamma function is a 
known special function defined as 

(4.114) 

where T(x) is the gamma function. The numerical value of the digamma 
function at any point is easily obtained from 

^(x+n) = < 
7 + J2(-l)k+1((k + l)xk , forn = 1 and -1< x < 1 

n—1 ^ 
h *(x' + 1) , for n > 1 and -1 < x < 1 

r 4 - A; • 
(4.115) 

fc=i 

113 



It is shown that only twenty terms of equation 4.115 suffice to compute 
the $(x) to the full machine precision in 32-bit floating point format [77, 
87]. The term log(x)4>(x; rj, v)dx is easily computed using numerical 
definite integral calculation methods. Therefore, we can compute the 
numerical values of DVi(§{dt(i) - 1) and DVi($(dt(i)), and substitute 
them into equation 4.112 to obtain DVi{P). 

4.7 .6 P a r a m e t e r U p d a t e E q u a t i o n s 

After finding tpt+i, the parameter vector 0 is updated using 

9t+l = 0t + \ t + 1 • RT^ • ifrt+i (4.116) 

4.7 .7 U p d a t i n g t h e H e s s i a n M a t r i x E s t i m a t e , Rt 

Rt is an estimate of the second derivative of the criterion function. Rt is 
updated recursively (see [84,89]) as 

Rt = Rt-i + \tmW{t) - R{t - 1)] (4.117) 

4.7 .8 I m p l e m e n t a t i o n Issues 

Our online identification algorithm finds the local maximum likelihood esti­
mate of the model parameters. Hence, similar to the off-line case, it is im­
portant to start the algorithm with proper initial values. Furthermore, the 
following issues should be considered when implementing our algorithm. 

Scaling 

Similar to the off-line case, the forward variable a., converges rapidly to zero 
as t increases. This can be avoided by using the same scaling technique as in 
the off-line case, where at is scaled as 

a t = a t { l , a t ) - 1 (4.118) 

It can be shown that this scaling does not affect the update and recursion 
equations. 
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Choice of the step size At 

At in equation 4.116 is a step size. In theory, Xt can be any sequence satisfying 
o o o o 

A t >0, ] T A t = co, J^A 2 <oo (4.119) 
1=1 t=i 

A common choice is At = 1/t, where Xt has a weighting effect on the norm 
function, such that recent observations have a stronger effect on the update 
than older observations. There is a trade-off between the 'tracking ability' 
and 'noise sensitivity' of the algorithm in selecting A t. Choosing a larger step 
size (e.g., Xt = 1/y/t) results in faster convergence of the estimate to the real 
parameters and allows the algorithm to track the changes in the actual parame­
ter values faster. However, selecting larger step sizes makes the estimate more 
sensitive to noise. The possibility of using different and more sophisticated 
choices for step sizes is discussed in [89,90] and [91]. 

A v o i d i n g ma t r ix inversion in the update equations 

The update equation 4.116 involves inversion of Rt. This matrix inversion can 
be avoided by using the matrix inversion lemma [89]. If A,B,C and D are 
matrixes then the matrix inversion lemma states 

[A + BCD}-1 = A'1 - A-XB[DA-IB + C - 1 ] - 1 ^ - 1 (4.120) 

By taking A = (1 — jt)Rt-i, B — D' = 'tp and C — 7 t , parameter 4.116 can be 
written as: 

R7l = 1 ( R ; \ - W W t t ) ( 4 1 2 1 ) 

Pro jec t ion of parameters to the constrained domain 

Since the parameters of an HSMM are constrained, the estimated parameters 
should be projected into the constrained space. More precisely, the parame­
ters Cij — {a°j)ll2 are constrained to J2iLi cn = 1- Thus, after updating the 
parameters using equation 4.116, ĉ -'s are re-normalized as 

4 = 7 # ^ r (4-122) TN c2-
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4.8 Effective Bandwidth of a Hidden Semi-
Markov Model 

In this section, we show how the effective bandwidth of a signal is obtained 
from its HSMM's parameters. Our approach is to reformulate the Semi-Markov 
chain of an HSMM as a Markov chain with larger number of states. First, we 
will show how the effective bandwidth of an HMM is obtained. Next, we 
show how a Semi-Markov chain is reformulated as a Markov chain with larger 
number of states. Finally, we show how the effective bandwidth of an HSMM 
is obtained using this approach. 

4 . 8 . 1 E f f e c t i v e B a n d w i d t h of H i d d e n M a r k o v M o d e l s 

In this Section, we show how the effective bandwidth of an HMM is obtained. 
Let yt be the observation process of an HMM with the hidden Markov state 
process xt, and with the transition probabilities matrix A. Let Y(t) be the 

t 

cumulative sum of observation process y in [0,t], that is Y(t) = ^^y T - Also 
r=0 

let ipi(9) be the moment generating function of the observation layer for state 
i, that is, <pi(0) = E(e6yt\xt = i). We define V̂ OM) := E(e 9 r«|x'i = i). We 
have 

116 



^(9,1) =E(e0Y{t)\xl =i) 

=E(eByi\x1 = i) x E(ee(yW-y'(1»|x-1 = 1) 
M 

=ip\0) J2^(e6Y{t)~YW\x2 = =i)x F{x2 = j\xx = i) 
i=i 

M 

=^(e)J2ne6Y{t)-YW\x2=j)a.lJ 

M 

^{e)^2neeY[t-l)\xi=j)al3 

i=i 
M 

= ^ ( 0 ) £ > * ( 0 , * K - (4.123) 
i=i 

-If we consider the vector $f(9,t) — [tpi(9,t)} and the diagonal matrix 
$(0) = diag[< î(0)], then the above equation can be written in matrix form as 

\b(0,t) =*(0) -A- # ( 0 , t - 1) (4.124) 

with the initial condition ^(9,1) = <&(9) • 1T, where 1 is a column vector with 
all its elements being one. 

Now let 7Tj be the probability that initial state x\ = i, and also let 
7T = [7ri , 7r 2 , ' • • , 7 T M ] , t l lUS 

E{eeY{t)) = 7T^{9,t) 
= TT{${9)Ay-l<b{9)l T (4.125) 

Since the transition matrix A is irreducible, then A is primitive. Since 
<J>(0) is diagonal, then matrix $(9) A is also primitive. Hence, we can use the 
Perron-Frobenious theorem (see Theorem 8.5.1 in [92]) from matrix theory to 
show that 

lim m9)A/sPm9)A)]n = L{9) (4.126) 

where L{9) is a constant matrix and sp($(9)A) is the spectral radius of the 
matrix $(9) A. The spectral radius of a matrix is simply the largest absolute 
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eigenvalue of that matrix. Therefore, equations 4.125 and 4.126 result in the 
following expression 

lim \ - logE(e<"'(t)) = (1/9) \og(sp(<5>(9)A)) (4.127) 
t—tea 9t 

Hence, we have 

a(9) = (1/9) log (sp($(6)A)) (4.128) 

where <f>(#) is a diagonal matrix. 

4.8.2 R e f o r m u l a t i n g a S e m i - M a r k o v c h a i n as a M a r k o v 

c h a i n 

Let st be a Semi-Markov chain with N distinct states, taking its value from 
the space {1,2,..., N}. We assume that the time that signal stays in each 
state is limited, say by D time units. This means that the state process st will 
not stay in any state for more than D time units. Our motivation in here is to 
reformulate the N state Semi-Markov chain st in the form of a Markov chain 
with N x D states. Our approach in similar to what was presented in [78]. 

Assume, that the state process is in state i at time t, i.e., st — i. Then 
define dt as the time that st has spent in state % prior to time t. That is 

dt = {d\st = z, st-i ='«,..., St-d+i = i, st-d (4.129) 

Notice that 
dw = \ d t + 1 l i S t + 1 = S t (4.130) 

L 1 Otherwise 
Therefore, dt+\ depends only on dt, st and s / + 1. Note that by definition, 
variable dt is restricted to 

if st+i = st and dt < D 

if st+i = st and dt = D (4.131) 
if st+i ^ st 

Now consider the vector stochastic process xt defined as xt = (st, dt). xt takes 
its values from the space {(i,d)|l < i < NA < d < D} and clearly is a 
finite-state process with N x D states. Note that 

au(dt) if xt = (i, dt) and x t + i = (i, dt + 1) 

(xl+i\xt) = { al3(dt) if xt = (i,dt) and xt+1 = (j, 1), i + 3 (4.132) 
0 Otherwise 
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where au(dt) is the probability that st stays in state i given that it has spent dt 

time units in state i. Similarly a,ij(dt) is the probability that st transits from 
state i to state j given that it has spent dt time units in state i. Note that 
F(xt+i\xt) is independent of t, and hence. xt is a Markov chain. For simplicity 
of notation, we will denote the state space for xt as {1,2,..., M) from now 
on, where M — N x D. If xt — m, then we have 

5f = [ ! !7r J + 1 ( 4 1 3 3 ) 

dt = m - (st - l)D 
Til — 1 

= m-[^-\D (4.134) 

where [xJ is the largest integer less than or equal to x. We also have vi — 
[st - l)D + dt. Let d = m - \J^\D, i = [ ^ J + 1 and j = [^\ + 1; then 
the state transition probabilities matrix for the Markov process xt is given by 

au{d) if n = m + 1, and L ^ j = j 
atj{d) i f n-L 3 5 1 J I> = l , a n d ^ J ^ L ^ J ( 4 1 3 5 ) 
0 Otherwise 

Since xt has M = N x D states, then the state transition matrix for xt has 
M2 = (ND)2 states. However, since variable dt is restricted based on equation 
4.131, it can be easily shown that (M2 - N2D) elements of the state transition 
matrix are zero and only N2D elements of the transition matrix are non-zero. 

4 . 8 . 3 E f f e c t i v e B a n d w i d t h o f a n H S M M b y R e f o r m u ­

l a t i n g as a n H M M 

Let yt be an HSMM, with state process st. Following the approach presented in 
Section 4.8.2, st can be reformulated as a Markov chain xt with larger number 
of states; Hence, yt can be modelled as an HMM with modulating (or hidden) 
process xt. Then, the effective bandwidth of yt is easily obtained using the 
equation 4.128 as presented in Section 4.8.1. 

Let bi(yt) = F(yt\st = i) denote the densities of the observation process 
yt when yt is considered as an HSMM. Also let <pi(6) be the moment generating 
function of the observation process, given that the state process is in state i, 
that is <pi(9) = E(eme\st — i). Now consider yt as an HMM with state process 
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xt. Let b'm(yt) denote the densities of the observation process given that state 
at time t is xt — m. According to equation 4.133, we have 

b'm(yt) = nyt\xt = m) (4.136) 

= nvt\st = L-

= 6 L 2 - i J + 1 (yO 

m — 1 J + l) (4.137) 
D 

(4.138) 

Based on this equation, one can easily construct the diagonal matrix 
$(6>) (see equation 4.8.2) of size ND x ND as 

${9) = diag{<Pl(0),--- ,<Pi(6),M9),--- ,<PN(9),--- ><PN(9)} » ' "> » ' •> ^ ' 

By substituting the obtained $(6) in equation 4.128, one can easily obtain the 
effective bandwidth of yt, ay(6). 

4.9 Numerical Results 
In this section, we present the numerical results of implementing the methods 
presented in this chapter. In Section 4.9.1, we present the results of applying 
the off-line and online identification methods presented in sections 4.6 and 
4.7 to synthetic data generated by simulating an HSMM. Our objective is 
to experimentally verify that our identification method actually finds the true 
parameter values. As our online identification method results in the same esti­
mate as the off-line method, we only apply the off-line identification algorithm 
to empirical traffic samples of a few typical TV programs in Section 4.9.2. We 
also present numerical results of estimating the empirical bandwidth curve for 
these sources. 

4.9.1 Numerical Results for Synthetic Data 

To verify that our identification methods give accurate estimates of an HSMM 
parameters, we conducted two experiments, one for the off-line case, and one 
for the online case. In our first experiment, the parameters of two HSMM 
signals, each having N = 3 distinct states, were estimated using the off-line 
algorithm presented in Section 4.6. The number of samples for each model was 

D t i m e s D t i m e s D t i m e s 

(4.139) 
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Parameter Actual parameter 
values for 

for model 1 

Actual parameter 
values for 

for model 2 

Initial parameter 
values for 

for models 1 and 2 

A° 
0 0.30 0.70 

0.75 0 0.25 
0.15 0.85 0 

0 0.30 0.70 
0.70 0 0.30 
0.50 0.50 0 

0.00 0.50 0.50 
0.10 0.00 0.90 
0.50 0.50 0.00 

-10 0 10 i -10 0 10" T -15 3 15 
a 2 5 5 5]' 10 10 10 1 8 8 8]' 

Ms 10 20 30' i 10 20 30]' 10 10 10' f 

n 5 10 15] 5 10 6]' ' l 10 20] 
V [50 200 45C )]' [50 200 180 i / [10 100 20C )]' 

Table 4.2: Actual and initial values of the parameters of HSMM models used 
in simulating our off-line identification algorithm. 

T = 10000. The actual values of the parameters are given in Table 4.2. The 
first model can be considered to be in a low-noise condition (i.e., |//,; — >̂ 
a2) while the second model is in high-noise condition. The initial values for 
the model parameters in both cases are similar, and are shown in Table 4.2. 
Figures 4.8 and 4.9 illustrate how some of the parameter estimates are updated 
in each iteration. We observe that the parameter estimates converge to the 
actual value of the parameters after a few iterations. The log-likelihood of 
the total observation yT given the parameters estimate, log(P(^T|^)) , is also 
plotted in figures 4.8-d and 4.9-d. As shown, this log-likelihood increases in 
each iteration, demonstrating that the algorithm finds the maximum-likelihood 
estimate of the model parameters. 

In the next experiment, we applied our method for online identification 
of HSMMs to two HSMM signals, with the parameters shown in Table 4.3. As 
shown, the actual parameters of the second model change at t = 5000. The 
results of estimating some of the parameters of these models are presented in 
figures 4.10 and 4.11, respectively. We observe that the parameter estimates 
converge to the actual value of the parameter as t becomes large, and that our 
algorithm successfully tracks the changes in model parameters. 
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Parameter Actual parameter 
values for 
model 1 

Actual parameter 
values for model 2 

1 < t < 5 x 10 3 

A" 
0 0.80 0.20 

0.50 0 0.50 
0.30 0.70 0 

0 0.50 0.50 
0.50 0 0.50 
0.30 0.70 0 

A4 [-10 0 i o l ' [-10 0 10]' 
a 2 [2 2 21' [4 4 4]' 

Us [10 20 30]' [10 20 30]' 

V [5 10 15]' [5 10 15]' 
V [50 200 450]' [50 200 450]' 

Parameter Actual parameter 
values for model 2 

5 x 10 3 < t < x lO 4 

Initial parameter 
values for 

models 1 and 2 

A° 
0.00 0.50 0.50 
0.15 0.00 0.85 
0.30 0.70 0.00 

0.00 0.50 0.50 
0.50 0.00 0.50 
0.50 0.50 0.00 

[-5 0 10]' [-13 4 20]' 

a2 [4 4 4]' [10 10 10]' 

Ms [10 20 30]' [5 10 10]' 

V [5 10 15]' [8 10 20]' 

V [50 200 450]' [40 100 200]' 

Table 4.3: Actual and initial values of the parameters of H S M M models used 
in simulating our online identification algorithm. 
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Figure 4.8: a-c) Parameter estimates for the first model versus the iteration 
number. The dotted lines show the actual value of the parameters, d) The 
log-likelihood function, log(P.(yi, 2/2, • • •, Vt\Q)), versus the iteration number. 
As shown, log(P(yi,y2, • • • ,Ut\9)) increases in each iteration. 
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Figure 4.9: a-c) Parameter estimates for the second model versus the iteration 
number. The dotted lines show the actual value of the parameters, d) The 
log-likelihood function, log(P(j/i, y2, • • •, Vt\Q)), versus the iteration number. 
As shown, log(P(y1; j / 2 , . . . ,yt\0)) increases in each iteration. 
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(c) 

Figure 4.10: Online estimation of a 3 state H S M M : a) state transition prob­
ability a° 2 ; b) observation mean for state 1, pi, c) state duration mean for 
state 1, /iSti. The dotted line shows the actual value of the parameter. The 
parameter estimate converges to the actual value of the parameter. 
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(b) 

Figure 4.11: Online estimation of a 3 state HSMM, where the actual parameter 
changes at t — 5000: a) state transition probability a 2 1; b) observation mean 
for state 1,^1- The dotted lines show the actual value of the parameter. The 
parameter estimates follow the temporal changes in the actual value of the 
parameter. 
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4 .9 .2 N u m e r i c a l R e s u l t s for E m p i r i c a l T V Traf f i c T r a c e s 

In this experiment, we first fitted an HSMM model to the empirical traffic 
traces of a few typical TV programs using the offline parameter identification 
method presented in Section 4.6. The empirical traffics are from the video 
sequences described in tables 2.4 and 2.5 in Section 2.5. Table 4.4 shows the 
numerical value of the estimated model parameters for three of the sources. 
Figures 4.12-4.14 show how the model parameters converge to the final esti­
mate as more iterations of the off-line algorithm are performed. 

Then, we obtained the effective bandwidth curve a(0) from the esti­
mated HSMM model parameters using the method presented in Section 4.8. 
Figure 4.15 shows the obtained effective bandwidth curves. As shown, a{9) is 
an increasing function of 6, where a(0) is the average rate and a(oo) is the 
maximum rate of the source. 

Then, we employed the obtained effective bandwidth curves in our ad­
mission control scheme, and plotted the maximum waiting-time Tw versus rate 
R (see Figure 4.16) for an incidental stream that uses the stochastic service 
class, and for a constant loss probability p. 

In next simulation, we examined the accuracy of our stochastic admis­
sion control mechanism. We considered a transmission system, which multi­
plexes N main video streams, one incidental stream using the deterministic 
service, and one incidental stream using the stochastic service. We conducted 
two experiments using two different simulation parameters, as shown in table 
4.5. The first set of parameters are selected to simulate cable transmission 
medium, while the second set simulates a terrestrial medium2. The incidental 
stream using the deterministic service class has the rate Then, we used 
the stochastic admission control scheme to obtain the loss probability for an 
incidental stream with rate R and waiting time Tw that uses the stochastic 
service class. Finally, we simulated the buffering operations in the transmis­
sion system3, and observed p the loss probability of incidental stream that uses 
stochastic service class. Figures 4.17-a and 4.17-b illustrate the loss probabil-

2 A 6 MHz channel in the cable medium is capable of delivering digital data at the 19.8 
Mbps rate. This capacity is usually shared by 4 or 5 T V programs. In terrestrial medium, 
a 6 MHz channel is capable of delivering at the 39.8 Mbps rate, which is usually shared by 
8 or 9 T V programs 

3The packet scheduling method employed in this simulation is described in detail in 
Chapter 5. 
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ity p versus R obtained from simulation and admission control scheme for the 
simulation parameter sets I and 11 respectively. As shown, the actual loss prob­
abilities obtained from simulation, shown by the plus signs, are very to the loss 
probabilities estimated by the admission control scheme. These results verify 
that our stochastic admission control scheme can accurately estimate the sys­
tem performance in terms of loss probabilities. Furthermore, it is noted that 
the admission control is more accurate for a larger Tw parameter. That is the 
actual loss values are closer the loss probabilities estimated by the admission 
control in Figure 4.17-a, where Tw = 30, than Figure 4.17-b, where Tw — 5. 
This is due to the fact that our admission control scheme is designed based on 
the assumption that the buffer waiting-time (or the buffer size) is very long. 
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Figure 4.13: Online estimation of H S M M parameters for the Documentary 
(Best Places in Canada) sequence. 
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Simulation parameter 
set I (cable medium) 

Simulation parameter 
set II (terrestrial medium) 

Transmission rate 19.8 Mbps 39.8 Mbps 
Number of TV programs 
sharing the channel, N 

4 8 

Maximum bitrate assigned 
to each main video stream 

4.5 Mbps 4.5 Mbps 

Transmission capacity 
reserved for video streams 

18 Mbps 36 Mbps 

Transmission capacity 
reserved for audio streams 
and other ancillary data 

1.8 Mbps 3.8 Mbps 

Rate of the incidental 
stream that uses the 
deterministic service class 

0.8 Mbps 1.5 Mbps 

Main video stream 
sources 

1. Mission Impossible 
2. News 
3. Talk Show 
4. Documentary 

1. Mission Impossible 
2. News 
3. Talk Show 
4. Documentary 
5. Court Show 
6. Muppets show 
7. Soap opera 
8. Cartoon 

Table 4.5: Simulation parameters. 
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(a) 
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Simulation parameter set I, p = .05 
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(b) Simulation parameter set. II, p = .05 

0 0.5 ^ 1.5 2 

(d) Simulation parameter set II. p = .01 

Figure 4.16: Tw versus R for an incidental stream that uses the stochastic 
service class. 
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Probabaility of loss versus R, T =30 
0.14 
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• Actual loss observed in experiment 

(a) Simulation parameter set I, Tw = 30 
Probabaility of loss versus R. T = 5 
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Probabaility of loss, computed by the admission control i 
Actual loss observed in experiment 

0 0.2 .0,4 0.6 0.8 

(c) Simulation parameter set I I , Tw = 5 

Figure 4.17: Probability of loss p versus rate R, where Tw is constant. The solid 
lines illustrate the loss probabilities obtained by the admission control scheme, 
and '+' signs illustrate the actual loss probabilities obtained from simulating 
the multiplexing system. As shown, actual loss probabilities obtained from 
simulation are close to what obtained from the admission control. 
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4 .10 Chapter Conclusion 
In this chapter, we studied stochastic traffic models for modelling the traffic 
of full screen video sources in digital TV. We showed that though HMMs can 
adequately capture most of the stochastic properties of video traffic sources, 
they cannot adequately model the state duration densities for the full screen 
video sequences. Therefore, we selected the more sophisticated HSMM models 
for modelling the video traffic sources in the proposed ITV application. Fur­
thermore, we gathered some evidence from empirical traffic samples of typical 
TV programs, which showed that Gamma distribution is a good model choice 
for modelling the state durations densities. 

Next, we presented a novel signal model for HSMMs. We showed that 
our signal model results in easier and more efficient parameter identification 
algorithms. Based on our new model, we presented a variant of the EM al­
gorithm for off-line identification of HSMMs. Furthermore, we presented an 
online identification algorithm based on our new signal model, and based on 
the general recursive prediction error technique. Using these methods, one 
can efficiently estimate the parameters of an HSMM for off-line or online cases 
from the traffic samples . 

Next, we showed how the numerical value of the effective bandwidth 
function is obtained from the parameters of an HSMM. Our approach is based 
on reformulating an HSMM as an HMM of a higher dimension. 

In summary, one can use the methods presented in this chapter to ob­
tain the numerical value of the effective bandwidth function of a source from 
the traffic samples. The obtained effective bandwidth curve is used in con­
junction with the admission control methods presented in Chapter 3 to find 
the maximum waiting-time for an incidental stream that uses the stochastic 
service class. 

Up to this point (i.e., Chapters 2-4), we have presented methods which 
find the maximum waiting time for an incidental stream that uses the deter­
ministic or the stochastic service classes. These methods determine when the 
data packets of an incidental stream should be made available to the transmit­
ter for transmission. In the next Chapter, we describe how the data packets 
of main and incidental streams are actually handled during multiplexing. 

137 



Chapter 5 

Broadcast Head-End 
Architecture 

If something anticipated arrives too late it finds 
us numb, wrung out from waiting, and we feel -
nothing at all. The best things arrive on time. 

-Dorothy Gilman, A New Kind of Country, 
1978. 

Overview 
A system for multiplexing main and incidental stream data is presented. The 
role and importance of packet scheduling policy is discussed, and a novel schedul­
ing algorithm is presented. Our approach ensures that all the main and inci­
dental streams are treated according to their importance. 

5.1 Introduction 

In this chapter, we present our design of the transmitter head-end for our 
interactive digital TV system. As discussed in Chapter 1, the digital TV 
standard requires that the encoded video and audio streams of a TV program 
be delivered to the TV receivers in the form of a single multiplexed stream 
called 'Transport Stream', (TS). The syntax of transport stream is defined in 
the digital TV standard. Here, we present our design of a multiplexer system, 
which is capable of multiplexing incidental streams data alongside the main 
streams data. Our system takes the priority of the main and incidental streams 
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into account, and manages the flow of the data packets in the system such that: 
1) all the main data packets are transmitted on time, 2) all the incidental data 
which are transmitted using the deterministic service class are transmitted on 
time, 3) the bandwidth that is not used by the main streams or deterministic 
service class streams is fairly shared among the incidental streams that use 
stochastic service class, and 4) the remainder unused bandwidth is fairly shared 
by the incidental streams that use the best-effort service class. 

One crucial part of our multiplexing system is a scheduling algorithm, 
which determines the order of packets in the interleaved packet sequence that 
forms the transport stream. We present a scheduling algorithm for our multi­
plexing system. Our scheduling algorithm employs a prioritizing policy, where 
input data streams are divided into six different priority classes. Data packets 
belonging to each class are considered for transmission only if the higher pri­
ority classes do not have any data packet ready for transmission. This ensures 
that more important data (e.g., main streams) are given a higher priority than 
less important data (e.g., incidental streams). Furthermore, we use a weighted 
fair queuing policy for scheduling the streams of each priority class. In this 
policy, the waiting time of each data packet is considered as the key decision 
factor to decide which packet must be served next. Our approach ensures 
that the bandwidth is fairly divided among the streams of each priority class. 
Our scheduling algorithm also ensures that the generated transport stream is 
compliant with the standard TV receiver model, as indicated by the American 
digital TV standard ATSC. This ensure that any standard digital TV receiver 
or set-top box can extract and decode the main streams from the transport 
stream generated by our system. 

The rest of this chapter is organized as follows. In Section 5.2, we 
present an overview of of standard digital TV multiplexing systems. Then, 
we present our design of multiplexing system for our interactive TV system in 
section 5.3. In 5.4, we present our scheduling algorithm. Chapter conclusion 
is presented in Section 5.5. 
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5.2 Multiplexing System Structure of 
Standard Digital T V System 

A conceptual diagram of a multiplexer system at the head-end of a TV trans­
mission system is shown in Figure 5.1. This system multiplexes the video and 
audio streams of a number of TV programs, and creates a multiplexed trans­
port stream. This transport stream is then broadcasted over a cable, terrestrial 
or satellite channel to the TV receivers. For most TV programs, the source 
video and audio source sequences are captured at a different location than the 
transmitter head-end. In this scenario, the source video and audio streams 
are usually delivered to the transmitter system through a private high-speed 
link, such as a satellite link. For more details about the standard digital TV 
transmitter architecture see [93-96]. 

5.3 Multiplexing System for Our Interactive 
T V System 

Figure 5.2 shows the diagram of our multiplexing system. The data inputs to 
our multiplexer systems are the video and audio streams, which come from 
a broadcast station in the case of live programs, or from an off-line storage 
medium in the case of prerecorded programs. The output is a single transport 
stream, which has the constant bitrate of RTS bps. As shown, our multiplexer 
system consists of four basic units: 1) 'TS packetizer' units, which packetize 
the input stream and generate TS packet streams; 2) 'Traffic Shaping Unit', 
which passes the TS packets to the multiplex buffers at a regulated rate: 3) 
'Multiplexing Buffers', which hold the TS packets ready for transmission; and 
4) 'Scheduling Unit', which takes the TS packets from the multiplex buffers 
and creates the multiplexed transport stream. We will discuss the mechanisms 
of these units in more details in the following sections. 

As shown, a 'scalable transcoder' re-encodes an incidental stream to 
generate a three layer scalable stream. In a general scenario, the base layer is 
transmitted using the deterministic service class; the first enhancement layer 
is transmitted using the stochastic service class; and the second enhancement 
layer is transmitted using the best effort service class. The bitrate of each layer 
is determined during the admission control process by the admission control 
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Figure 5.1: Conceptual diagram of a Transport Multiplexer. 

unit. 
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5.3.1 T S packetizer 

The TS packetizer units simply break the input bitstream into 184 byte units, 
add the 4 byte TS packet header as indicated by the standard, and generate the 
TS packets of size 188 byte. For more information about TS packet structure 
see [93,94,96,97]. 

5.3.2 Traffic Shaping U n i t 

As shown in Figure 5.2, the traffic shaping unit passes the TS packets from 
the packetizer units to the multiplex buffers. The function of this unit is to 
regulate the rate of packet submission to the multiplex buffers. This rate 
regulation is necessary to ensure that the actual amount of data submitted 
to the multiplex buffers is in accordance with the bandwidth reserved for 
the main streams. Furthermore, the traffic shaping unit controls when the 
incidental data packets are submitted to the multiplex buffers. That is, this 
unit is responsible for sending the incidental data to the multiplex buffer Tw 

seconds before their transmission deadline. 
As shown, the traffic shaping unit uses a buffer for each stream, and con­

trols the packet departures from each buffer by using a buffer control unit for 
each buffer. These buffer control units use different schemes for each stream, 
as described below. 

M a i n A u d i o Streams Main audio streams in digital TV applications have 
a constant bitrate. ff the bitrate of a main audio stream is Ri, then the 
buffer control unit ensures that no more than |" 8^ 8 4] TS packets are 
submitted to the multiplex buffer during each 1 second period, where 
\x] denotes the smallest integer greater than or equal to x. For this 
purpose, the buffer control unit uses a Token variable. The token variable 
is updated periodically every 1 second to r8x̂ 184 "I • Whenever a packet 
from the buffer is submitted to the multiplex buffers, its token variable 
is decremented. The buffer control unit sends a TS packet only if the 
assigned token variable is greater than zero. 

M a i n V i d e o Streams If a main video stream is characterized by its maxi­
mum bitrate and not a (a, p) model, then a similar scheme to what is 
used for main audio streams is used by the buffer control units. 
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However, if a main video stream is characterized by a (a, p) model, then 
the method used by the buffer control unit is different. In this case, the 
buffer control unit must ensure that the aggregate number of TS packets 
submitted to the multiplex buffer in any time window of length t is less 
than mini(<Ji + prf) 1. Fortunately, there is a very powerful and efficient 
method for implementing this mechanism based on Token Buckets. A 
token bucket is a mechanism for ensuring that the traffic generated by 
a source is compliant with a single (cr, p) model. A token bucket is 
simply a variable initialized to o and incremented at rate p. This variable 
is bounded from above by a. Whenever a packet is submitted to the 
multiplex buffer, the token bucket variable is decremented. The buffer 
control unit submits a TS packet only when the token variable is greater 
than zero. 

For a (<7, p) model consisting of N (o, p) pairs, N token buckets should 
be employed. The buffer control unit submits a TS packet only when 
the minimum of all the N token variables is greater than zero. This 
mechanism ensure that the total traffic delivered to multiplex buffer 
complies with the (a, p) model. 

PSI tables Program Specific Information (PSI) tables are data tables em­
bedded into the transport stream, which contain important information 
necessary for demultiplexing the transport stream [93,95,97]. For exam­
ple, PSI tables carry the so called 'identification numbers', which tell the 
digital TV receivers which packets should be decoded for a specific TV 
program. There are four types of PSI tables: Program Allocation Ta­
ble (PAT), Program Map Table (PMT), Conditional Access Table (CAT) 
and Private Tables [95,97]. Since PSI tables carry information necessary 
for decoding the transport stream, it is necessary that PSI tables are re­
peatedly inserted into the transport stream. The repetition frequency of 
PSI data is not specified by the MPEG standard. However, it is advised 
that the PSI tables be repeated between 10 to 50 times per second. 

We employ a token variable for controlling the transmission frequency of 
each PSI table. These token variables are updated periodically according 

•'Note that the variables a and p should be translated from bits and bps to 'TS packet 
count' and 'TS packets per seconds' by dividing them to 8 x 188 and rounding towards 
infinity. 
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to the repetition frequency of the PSI tables and the actual size of the 
PSI table in bytes. The buffer control unit of PSf tables submits a TS 
packet to the multiplex buffer only when the assigned token variable is 
greater than zero. 

Incidental Streams The function of buffer control unit for incidental streams 
is to send the incidental TS packets to the multiplex buffer TW seconds 
before their transmission deadline. Since incidental streams have a con­
stant bitrate, this mechanism is easily implemented by sending the first 
TS packet of an incidental stream exactly Tw seconds before the decod­
ing time of the first frame of the incidental stream; the consecutive TS 
packets are submitted to the multiplex buffer at the constant rate of 
the stream. For example, consider an incidental stream with maximum 
waiting time Tw and rate R bps, which is equivalent to Rj(8 x 188) 
TS packets per second. Also suppose that the decoding of this stream 
should start at time T. Then the buffer control unit will send the first 
TS packet of this stream at T — Tw to the multiplex buffer; and each 
consecutive TS packet is transmitted after (8 x 188)/i? seconds. 

5.3.3 M u l t i p l e x B u f f e r 

Multiplex buffers hold the TS packets that are ready for transmission. The 
size of multiplex buffers for main streams is selected such that these buffers 
never overflow. A buffer of size .5 x R, where R is the maximum bitrate of the 
stream in bps is usually enough. The size of multiplex buffers for incidental 
streams is Tw x R, where Tw is the maximum waiting time assigned to the 
incidental stream during the admission control process. 

5.4 Scheduling 

5.4.1 S c h e d u l i n g U n i t O b j e c t i v e 

Suppose the bitrate of transport stream is Rrs bps. Since each TS packet has 
the constant size of 188 bytes, then each TS packet is transmitted in exactly 
A = 1 „ 8 x 8 seconds. We call A a transmission time-slot. That is, a transmission 
time-slot represents the time required for sending 188 bytes of data. Hence a 
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Stream #1 

Stream #2 

Scheduler: 
Which packet wil l 

occupy the next 
Stream #N time-slot? 

Figure 5.3: Scheduling unit decides which TS packet should be sent at the 
next transmission time-slot. 

free time-slot represents the opportunity of sending only one TS packet. The 
function of the scheduling algorithm is to assign each transmission time-slot 
in the TS stream to one of the input streams, as shown in Figure 5.3. 

5.4.2 P r i o r i t i z i n g P o l i c y 

Our algorithm employs a prioritizing policy, where the input streams are di­
vided to different priority classes. Each class of streams is served only when 
higher priority streams do not have any data packet ready for transmission. In 
priority order, these classes are: 1) PSI tables, 2) main audio streams, 3) main 
video streams, 4) incidental streams with deterministic service class, 5) inci­
dental streams with stochastic service class, and finally 5) incidental streams 
with best effort service class. 

5.4.3 L i m i t a t i o n s I m p o s e d o n S c h e d u l i n g b y t h e D i g i t a l 

T V S t a n d a r d 

The digital TV standard has defined a reference model for the buffering pro­
cess in digital TV receivers, called 'Transport Stream System Target Decoder' 
or TS-STD. This reference model specifies a standard layered buffering struc­
ture required to de-multiplex and decode a transport stream [93-96]. It also 
specifies the minimum size of each buffer and how data flows between the 
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buffers. The purpose of this reference model is to standardize the buffering 
process at TV receivers. All digital TV receivers are required to implement 
the TS-STD, and all the transport streams must be generated in compliance 
with this reference model. 

Hence, our transport stream multiplexer must employ a mechanism to 
ensure that the generated transport stream is compliant with the reference 
target decoder. This function is performed by the scheduling unit. That is, 
the scheduling algorithm should ensure that assigning the current transmission 
time-slot to a specific stream will not result in a buffer overflow in the reference 
TS-STD model. We implement this mechanism by simulating the TS-STD 
model for each TV channel. Using the simulated TS-STD model, we first 
check that assigning the current time-slot to a stream does not result in a 
buffer overflow in the TS-STD model. 

5.4 .4 S c h e d u l i n g A l g o r i t h m 

As discussed before, the function of the scheduling algorithm is to decide which 
stream should occupy the next transmission time-slot in the transport stream. 

The mechanisms of our scheduling algorithm can be broken into two 
conceptual steps. In the first step, our algorithm creates a set of candidate 
streams. The candidate streams are selected by selecting the streams that 
1) whose multiplex buffer is not empty, 2) the TS-STD model allows them 
to be transmitted at the current time-slot, and 3) they have higher-priority 
than other streams that satisfy the first two conditions. Therefore, candidate 
streams are all selected from the same priority class, and are all eligible for 
transmission at the current time-slots. 

In the second step, the algorithm selects one stream among the can­
didate streams for transmission. Depending on the type of the candidate 
streams, we use different policies to decide which candidate stream should be 
transmitted. For PSI tables data, a simple round robin policy is used. For 
main streams (either video or audio), let Wi denote the buffer workload and 
Ri the maximum rate of the stream. Then, we select the stream for which 
Wi/Ri is maximum. For incidental streams (either deterministic, stochastic or 
best effort services), we use an 'Earliest Deadline First' (EDF) policy. Let Wl 

be the buffer workload, Ri the stream rate and Ti the maximum waiting time 
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Figure 5.4: Packet drop off in Multiplex buffers of stochastic and best-effort 
service classes. When a new packet arrives to a full buffer, it is pushed into 
the buffer. 

assigned to the stream. Then we assign the deadline 

W-
d l = T l ~ l t ( 5 ' 1 } 

to each stream. Note that a small dl means that data packets in the buffer 
are close to passing their maximum waiting time. The scheduler selects the 
stream that has the smallest d.;. 

5.4 .5 P a c k e t D r o p - O f f 

The admission control schemes, along with the mechanisms used by the traffic 
shaping unit, ensure that the multiplex buffers of PSI tables, main streams, 
and incidental streams using deterministic service will never overflow. That is, 
these mechanisms ensure that the aggregate number of TS packets submitted 
from these stream to the multiplex buffer during each scheduling cycle is less 
than or equal the number of packets that can be transmitted. Therefore, we 
expect to experience no packet drop off for these streams. 

However, we anticipate that the multiplex buffers of the incidental 
streams with stochastic and best effort service classes overflow occasionally. 
This overflow occurs when the transmission line is committed to the main and 
incidental streams with deterministic service class for a long time, and the 
scheduler cannot send enough TS packets from the incidental streams with 
stochastic or best effort service classes. .In this case, the exceeding TS packet 
in the multiplex buffer should be dropped off. This is shown in Figure 5.4. 
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As shown, when a new TS packet arrives to a full multiplex buffer, the new 
packet is pushed into the buffer. That is, a packet from the buffer beginning is 
dropped, other packets are shifted, and the new packet is added to the buffer 
end. The reason that we drop the first packet from the beginning of the buffer, 
and not the new packet, is that first packet has been in the buffer for more 
than the assigned maximum waiting time Tw, and hence it is too late to trans­
mit this packet. Note that the multiplex buffer size is Tw x R, and is filled at 
the constant rate R. 

5.5 Chapter Conclusion 
In this Chapter, we designed a multiplexer system for the transmitter head-end 
of our interactive TV system. We described the buffering structure required 
for handling the main, incidental and other ancillary data packets. Then, 
we presented a novel scheduling scheme for controlling the multiplexing op­
erations. Our scheduling method ensures that all the main and incidental 
streams data packets are treated according to their importance during the 
multiplexing process. 

Furthermore, our scheduling algorithm employs a technique which en­
sures that the broadcasted stream is backward compatible with conventional 
digital TV receivers. This guarantees that conventional digital TV receivers, 
which are not programmed for our interactive TV system, are able to display 
the main video and audio content without any discrepancy. 
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Chapter 6 

Thesis Summary 

In this thesis, we proposed and defined a new interactive system for digital TV. 
This system gives TV viewers the freedom to control TV program content. In 
so doing, we have introduced a new technological concept, which improves the 
home entertainment technology. 

We then addressed the most challenging issue involved in the design of 
the proposed interactive TV system. This issue concerns adding extra inci­
dental data to a digital TV transmission channel. This must be accomplished 
without increasing the bandwidth or degrading the quality of other programs. 
We then presented data transmission schemes for our interactive TV system 
that allows to transmit the incidental data. We efficiently took advantage of 
any unused bandwidth in the transmission channel to transmit the inciden­
tal data. We classified the transmission schemes of incidental data into three 
classes, deterministic, stochastic, and best-effort service classes. 

We proposed to use scalable video coding for the incidental streams. In 
this approach, an incidental stream is encoded to a three-layer scalable stream. 
The base, first enhancement and second enhancement layers are transmitted 
using the deterministic, stochastic and best-effort service classes respectively. 
This technique not only results in very efficient bandwidth utilization, but also 
improves the perceived picture or audio quality of incidental streams. 

We then designed an admission control scheme for the deterministic and 
stochastic service classes. These admission control schemes answer the crucial 
question of whether an incidental stream can be added to a TV program or 
not. Our approach in designing the admission control schemes was based on 
modelling the traffic of main video streams using a traffic model. This model 
is then used for designing the admission control test. 
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In the case of the deterministic service class, we employed the (a, p) 
model for modelling the traffic of main main streams. We developed methods 
for fitting the (a, p) model to traffic sources. These methods are more efficient 
and more accurate than previously available methods. In so doing, we helped 
to advance the knowledge in the deterministic traffic modelling field. We then 
adapted the 'Network Calculus' theory, and designed an efficient admission 
control scheme for the deterministic service class. 

For the stochastic service class, we employed Hidden Semi-Markov Mod­
els (HSMM) for modelling the traffic of main video streams. We developed 
efficient methods for the identification of HSMM model parameters for off-line 
and online cases. In so doing, we have advanced existing knowledge about 
the general semi-Markovian signal models, off-line and online identification 
of HSMMs, and stochastic traffic modelling of full-screen video sources. Us­
ing the 'Effective Bandwidth' theory, we then designed an efficient admission 
control scheme for the stochastic service class. 

Then, we presented our design of a data multiplexer for the transmit­
ter head-end of our interactive digital TV system. Our design is capable of 
multiplexing incidental stream data alongside the main streams data. We 
described how the flow of main and incidental data packets are controlled dur­
ing the multiplexing process. We presented a novel scheduling scheme, which 
determines the order of data packets in the broadcasted packet sequence. Fur­
thermore, we employed mechanisms which ensure that the conventional digital 
TV receivers can extract and display main video and audio content from the 
multiplexed stream. This makes our system backward compatible with the 
presently existing conventional digital TV receivers. 

We have tested the validity and efficiency of the methods presented in 
this thesis via simulation experiments. Numerical results of these experiments 
are presented throughout the thesis. 

In summary, this thesis presents efficient data transmission schemes for 
transmitting extra video and audio content alongside conventional digital TV 
data. By exploiting the methods presented in this thesis, new interactive TV 
applications are enabled, and the home entertainment technology is advanced. 
Furthermore, some research results presented herein, can benefit other research 
areas, such as deterministic traffic modelling, QoS enabled data networks, and 
semi-Markovian stochastic models. 
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6.1 Thesis Contributions Summary 
The major contributions of this thesis are summarized as follows, where they 
are listed in the order of appearance in the thesis. 

• N e w interact ivi ty concept: We defined a new interactivity concept 
for TV, which allows TV viewers to personalize the video or audio content 
of TV programs. This new interactivity concept drastically enhances TV 
viewers experience, and advances the home entertainment technology. 

• D a t a transmission before presentation t ime: We developed a novel 
transmission technique for transmitting the incidental data units ahead 
of their presentation time. This technique allows us to take optimal 
advantage of the transmission bandwidth that is unoccupied by the main 
streams. 

• Determinis t ic admission control: A new admission control scheme 
was developed in chapter 2 to be used in the deterministic service class. 
This is the most important line of development of this thesis in the 
context of the deterministic service class. 

• (CT, p) M o d e l fi t t ing: The algorithm presented in chapter 2 for fitting 
(a, p) model to a traffic source is one of the contributions of this thesis. 
This algorithm is useful in any application that employs (<?, p) model. 

• Phys ica l interpretat ion of effective bandwidth : A new physical 
interpretation of effective bandwidth is offered in chapter 3. Such in­
terpretation is important because it helps in advancing the stochastic 
queuing theory. 

• Stochastic admission control: A new admission control scheme was 
developed in chapter 3 to be used in the stochastic service class. This is 
the most important line of development of this thesis in the context of 
the stochastic service class. 

• E m p l o y i n g H S M M for model l ing the full-screen video traffic: 
We showed in chapter 4 that HSMMs are a better model choice than 
HMMs for modelling the stochastic properties of full-screen high bitrate 
video. This line of development advances the video modelling field. 
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• New signal model and identification algorithms for H S M M : We 
presented a new signal model for HSMMs in chapter 4 . This model re­
sults in more efficient model parameter identification algorithms. We also 
presented off-line and online parameter identification algorithms based 
on our new signal model. The new signal model and identification algo­
rithms are useful in any application that employs HSMMs, and are one 
of the most important contributions of this thesis. 

• Effective bandwidth of HSMMs: In chapter 4 , we showed for the 
first time how to obtain the effective bandwidth of an HSMM signal. This 
line development is useful in any queuing application that uses HSMM 
traffic. 

6.2 Future Research 
In this thesis, we mainly focused on the mechanisms used at the transmitter 
head-end. Obviously, in order to display an incidental stream, a digital set-box 
receiver is required, which should be specifically designed and programmed for 
the proposed ITV application. In the context of this thesis, a set-top box is 
considered as a black box equipped with a large buffer (e.g., a hard disk) for 
caching the incidental stream data. This set-top box is assumed to be capable 
of controlling the playback of main and incidental streams. Though, the design 
concepts for the set-top box receiver architecture are simple, there is room for 
improvement. Thus, it is beneficiary to exploit the set-top box architecture 
in more detail in future research. For example, one can improve the buffer 
management schemes used at the receiver end for controlling the cashing of 
the interactive content, such that the incidental data is not lost when a TV 
viewer switches channels, and such that the random access delay for incidental 
streams is reduced. One can also improve the user interface (e.g., menus where 
TV viewers select their choices about a TV program), such that TV viewers 
can interact with the TV program more efficiently, and navigate among the 
main and incidental streams easier. 

Furthermore, future research may improve the traffic models used in this 
thesis. For example, one can exploit the possibility of using stochastic traffic 
models other than HSMMs, such as self-similar models, or Transform-Expand-
Sample (TES) traffic models, for modelling the traffic of main video sources. 
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This can result in easier, more efficient, or more accurate traffic models. 
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Appendix A 

Proof of Theorem 1 in Section 
2.4 
Theorem 1 Assume a traffic source constrained by A*n(t) traverses a system 
that offers the service curve 8{t). The waiting time d(t) for all t satisfies: 
d(t) <h(A*n,8) [35,36]. 
P r o o f It follows from the definitions of d(t) (equation 2.28) and li(Am, Aout) 
(equation 2.31) that 

r < h(Ain, Aout) <==> Ain{t - T) > Aout{t) (A.l) 

Now consider some fixed t. From the definition of d(t), for all r < d(t) 
we have 

Ain{t) > Aout{t + T) (A.2) 

Now the service curve property at time t + r (equation 2.29) implies that there 
is some s such that 

Aout{t + T)> Ain{t + T-S) + 8{s) (A.3) 

So, from A.2 and A.3 we have 

Am(t) > Ain{t + T-S)+ p(s) (A.4) 

It follows from this equation that Ain(t) > Ain(t + r — s), which implies that 
t > t + r — s. Thus, 

8(s) < Am(t) - Am(t + T- s) < AUs - T) (A.5) 

From the definition of h(A*n, 8) (see A.l) and A.5 it follows that r < h(A*n, 8). 
Since this is true for all r < d(t), we conclude that d(t) < h(A*n,8), Q.E.I. 
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Appendix B 

Q-Q Plot 

The 'Quantile-Quantile' (Q-Q) plot, also known as 'probability plot' is a graph­
ical technique for assessing whether or not an experimental data set follows 
a given distribution such as the normal or Weibull [98-100]. This technique 
is also used for determining if two data sets come from populations with a 
common distribution. By a 'quantile', we mean the fraction (or percent) of 
points below the given value. That is, the 0.3 (or 30%) quantile is the point 
at which 30% percent of the data fall below and 70%fall above that value. 

A Q-Q plot is a plot of the quantiles of an experimental data set against 
the quantiles of the assumed distribution. If Q-Q plot is used to determine 
if two data sets come from the same distribution, then quantiles of the first 
data set are plotted against the quantiles of the second second data set. If the 
experimental data are actually from the assumed theoretical distribution, then 
the points in Q-Q plot should form approximately a straight line. This case 
is illustrated in Figure B.l-a. In this figure, the vertical axis is the quantile of 
the experimental data, and the horizontal axis is the quantile of a candidate 
probability distribution. As shown, the points in this Q-Q plot are very close 
to form a line. This indicates that the experimental data are actually drawn 
from a population with the assumed distribution. However, departures from 
this straight line indicate departures from the specified distribution. This 
is illustrated in Figure B.l-b. Hence, one can use the correlation coefficient 
associated with the linear fit to the data in the Q-Q plot as a measure of the 
goodness of the fit. 

In practice, Q-Q plots can be generated for several competing distri­
butions to see which provides the best fit. In this case the probability plot 
generating the highest correlation coefficient is the best choice since it gener-
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ates the straightest probability plot. 
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Appendix C 

Likelihood Ratio Test 

C l General Likelihood Test 
Let ST — {si,s2, • • • ,ST} be samples from a stochastic model, and let 6 de­
note the model parameters, which takes it values from the space Q. Using 
the maximum likelihood principle, one can estimate the model parameters by 
finding 6 such that L{6) = P(Sr|0) is maximized. This can be regarded as 
finding the 'best' explanation for the observed S^. 

Now suppose one wishes to test whether some of the model parameters 
are restricted ox not, for example, if some of the model parameters are bounded 
or if some of the model parameters are zero. Formally, this is denoted by 
testing if 0 G to, where to is a subspace of Q. The usual approach to this 
problem is based on the likelihood ratio concept, which is defined as 

sup L(0) 
A(Sr) = ̂ -JJ^ (C l ) supL(0) 

n 

That is, A (S T ) is the ratio of the best chance of observing ST for 6 G ui to the 
best chance of observing ST for 0 G Q . Since to C fi, then A is always between 
0 and 1. Values of A close to 1 suggest that the data are very compatible with 
6 £ LU. That is, ST is explained almost as well by the parameter estimates 
under 6 G to as by parameter estimates under 9 G fi. For these values of A 
we should accept 6 G to. Conversely, if A is close to 0, then the data would 
not be very compatible with 9 e w and it would make sense to reject 0 G to. 
This is the rationale behind the likelihood ratio test. A likelihood ratio test is 
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a hypothesis test for testing 

HO: 0 e cu (C.2) 

against 

HI: 0 6 fi, tu C fi (C.3) 

In order to obtain the rejection region and confidence intervals, it is 
necessary to know the distribution of A. However, this is ordinarily very com­
plicated. Fortunately, it is shown that under very general conditions —21n(A) 
has a x2 distribution with n degree of freedom, where n is the difference in the 
dimension of LU and fi. Hence, by comparing —2 ln(A) to the upper 100 x (1 — a) 
percentile point of a x 2 distribution, one can decide to reject HO or not. a is 
known as the significance level of the test, and is usually selected a — 5. 

R E M A R K As a general concept in hypothesis testing, the HI hy­
pothesis represent a more general case (or more complex concept) than HO. 
In these cases, the Hi hypothesis is adopted unless there is sufficient evidence 
to reject the special (or simple) hypothesis HO. This concept is conveyed in 
the test by the notion of w C fi. 

C . 2 Likelihood Ratio Test for testing the H M M 
model against H S M M model 

Suppose we have two signal model candidates for modelling an empirical se­
quence Sr, and would like to use the likelihood ratio test to determine which 
candidate is the better choice. The first model candidate is a Markov chain 
with N states. In such a model, the signal makes a transition to a new state 
or stays at the same state at each time instance. The next state of signal de­
pends only on the current state, and is selected according to a constant state 
transition probabilities matrix A = [a^]. This model is parameterized with 
9 — (an, • • • , ajv-i,jv). It is easily shown that state durations have a Geomet­
rical probability mass function, where the probability of staying exactly d time 
units in state i is given by ipi(d) = — au) 

The second model candidate is a Semi-Markov chain with the same 
number of states (i.e., Â  states). In this model, once the signal enters a new 
state, a state duration d is selected, and the signal stays exactly for d time units 
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in the same state. After d time units, the signal will make a transition to a new 
state. The state duration d for state i is selected according to the probability 
mass function <Pi(d), where (pi(d) is a discretized Gamma probability density 
function. That is, 

<Pi{d) = I ^j—x^le-^dx (C.4) 

Vi and i]i are parameters of the Gamma pdf. This signal model is parameterized 
with 6 = {al2,a13,--- , aN_ltN, rfU • • • ,r)N,vu--- ,vN), where A = [ai3] is the 
state transition probabilities. Note that a '̂s are zero, and X l j L i aij = 1 ror a n 

1 < i < N. 
We use the likelihood ratio test to determine if the Semi-Markov chain 

is a better model choice for the empirical trace ST- More precisely, we test 
the null hypothesis 'HO: Sy is generated by a Markov chain' against 'HI: 
ST is generated by a Semi-Markov chain'. According to equation C.3, it is 
necessary to parameterize the signal models such that HO represent a special 
case of HI. This means that we should model a Markov chain as a special 
case of a Semi-Markov chain with Gamma state duration densities. This is 
easily done by defining 

N 

HO: 0 ecu, to ={9\vx = v2 = • • • = vN = 1, ]T ciij = 1,1 < i < N} 
i = i 

N 

H l : 0 € n , ={0 | ^2 aij = 1,1 < i < AT} (C.5) 
J=I 

Note that LO is a subspace of fi. We should just show that conditions in HO 
represent a Markov chain. That is, letting vx — v2 = • • • = v^ = 1 in the 
Semi-Markov chain model will result in a Markov chain. This is easily done 
by letting Vi — 1 in equation C.6. 

= e - j ( d - i ) _ e-vd (C 6) 

Selecting an = e~v results in <f>i{d) = ct^ _ 1(l — an), which is identical to 
Geometrical state duration densities of Markov chains. 

Hence, one can find —2 ln(A) and compare it to the upper 100 x (I —a) 
percentile point of a \ / 2 distribution with degree of freedom to decide to 
reject the null hypothesis HO or not. 
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Note that the hypothesis testing approach presented here is applicable 
to testing the validity of a HMM model against a HSMM model for a given 
empirical trace 3̂ r with very minor changes. 
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