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Abstract ii 

Abstract 

Acquiring a three-dimensional perception of an object or a scene, from regular 
(single-camera and 2-D) video, is a trivial task for humans. The automatic im
plementation of such a task has been, and still is, one of the major problems of 
computer vision. The new approach introduced in this thesis focuses on volume 
reconstruction of an object from image sequences taken by a single camera. One 
of the numerous applications of this approach is 3-D object tracking in video. 
This can be used in very low bit-rate customized video transmission schemes. 

A multi-objective pose estimation method is introduced that computes object 
relative pose between two input frames. One advantages of this method is that it 
does not use any feature point, thus it does not suffer from problems with feature 
point detection and tracking. Also, the method does not assume any model for 
the object at the outset, hence it can be applied to an arbitrary object. The 
method, however, requires a depth-map, which is not readily available from an 
image sequence. To overcome this requirement, an iterative scheme is employed. 
The first round of pose estimation between consequent frames is performed, as
suming flat depth-maps. Pose estimates are then adjusted to reduce the error by 
maximizing a novel quality factor for shape-from-silhouette volume reconstruc
tion. Shape-from-silhouette is applied to construct a 3-D model (volume), which 
provides depth-maps for the next round of pose estimation. The feedback loop 
is terminated when pose estimates do not change much, as compared to those 
produced by the previous iteration. Based on our theoretical study of the pro
posed system, a test of convergence to a given set of poses is devised. To handle 
input sequences with unknown frame order, the input sequence undergoes a pre
processing stage, in which the frames of the sequence are re-ordered to obtain 
the most accurate pose estimation. A theoretical validity criterion for volume 
reconstruction by shape-from-silhouette is established. This criterion is used to 
produce a volume reconstruction quality factor, which plays an important role in 
pose estimation adjustment. The reliable performance of our system is proved via 
several simulations carried on both synthetic and real image sequences. Effects 
of pose sampling rate, distribution of pose samples, and error in input pose on 
volume reconstruction quality by shape-from-silhouette are studied. It is shown 
that high levels of pose error cannot be compensated by increase in pose sampling 
rate, and that volume reconstruction at high pose sampling rates is more sensitive 
to pose error. 
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1: Introduction 

Through the process of imaging, the three-dimensional (3-D) world is projected 

onto a two-dimensional (2-D) image plane. That is, a whole dimension is lost by 

imaging. Animals use vision, inarguably their most powerful sense, to recover the 

lost depth information, hence perceive and then interact with the world. The task 

of extraction or recovery of 3-D information for a subject from its 2-D images is 

called 3-D modeling, 3-D reconstruction, or, volume reconstruction. 

For known subjects, the problem of volume reconstruction can be reduced 

to object recognition and model fitting. For unfamiliar subjects, however, we 

need more information to understand their 3-D structure. In order to do this, we 

use the so-called visual clues1 (Figures 1.1 and 1.2), available in 2-D images of 

subject, that point out its original 3-D structure. All visual clues illustrated in 

Figures 1.1 and 1.2 are, however, static. That is, they do not utilize the fact that 

the input we receive from the real world is almost always a sequence of images, not 

a single image. The dynamic visual clue to the 3-D structure is the relative motion 

between camera and subject. Motion is the most general visual clue we use: it 

usually works when other visual clues are not present (e.g., unknown texture) or 

fail to function (e.g., stereo vision for far-camera field, or single-camera sequence). 

For example, when we encounter an unknown new object, we usually look around 

it to perceive its shape. Motion is also the most important visual clue available 

1 Also known as visual cues. 



Chapter 1. Introduction 2 

in a monocular (regular single-camera) video as this also helps us to understand 

the shape of an unfamiliar object shown in a video sequence. 

Motivated by the ability of the human visual system to understand the 3-

D volume of an object, shown in an image sequence, the problem of automatic 

retrieval of 3-D information from monocular video is addressed in this thesis. 

The significance of this attractive problem is highlighted through a number of its 

crucial applications as discussed in Section 1.2. 

1.1 Problem statement 

The central problem of the thesis is stated as follows. 

Volume reconstruction of a general arbitrary object shown in a monoc

ular image sequence is desired. 

1.1.1 Input 

The monocular image sequences are chosen as input because of the following 

reasons. 

• Abundance . Almost all of the existing image and video archives and 

databases are monocular. Selection of monocular image sequences as in

put allows for application of the proposed solution to the image sequences 

in such archives, hence, it allows the creation of enriched multimedia content 

from regular image and video. 

• Ava i l ab i l i ty . For objects that no longer exist (the head of a deceased per

son, for instance), pictures or video footages are the only data available. In 
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such cases, any other type of input (e.g., stereo or range images; Chapter 2) 

cannot be obtained. 

• Ease of capture. The input required for capturing the volume of a new 

object is a video footage showing the object in various poses. Acquisition of 

such input is easy and inexpensive as compared to other types of input, such 

as multi-camera image sequences or range images, mentioned in Chapter 2. 

Note that unlike video sequences, in which the frames are inherently ordered 

by the time of capture, the order of images in an image sequence may not be 

known. The resulted reconstructed volume, however, should be invariant with 

respect to the frame order in the input sequence. 

1.1.2 Output 

The reconstructed volume (3-D or CAD model) of the object is the desired output, 

which can be optionally textured, using the texture information available in the 

input images. 

1.1.3 Subject 

The subject is considered a general arbitrary object. It means we do not deal 

with scenes. This does not cause any harm to the generality of the problem, since 

a scene can be decomposed to several objects, which can be treated individually 

by the proposed method. 

Our focus is on reconstruction of general arbitrary objects. That means we 

consider the subject unknown and cannot assume any model for it at the outset. 
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On the bright side, we do not have to worry about object recognition, which is a 

difficult problem by itself. 

Furthermore, we also assume that the subject is opaque and rigid. Non-rigid 

subjects can either be decomposed to rigid parts, or approximated by a rigid 

body, plus small variations. The reflection from the object's surface is preferred 

to follow the Lambertian model [3] closely (i.e., not to be shiny). The Lambertian 

model requires uniform distribution of the reflected light in all directions. This 

preference is made to avoid generation of bright spots (reflected images of the 

light sources) that may not move according to the object motion. Note that this 

is not a strict requirement, since the system can handle bright spots as outliers. 

Several classes of semantic models for video data are compared in [1] (Fig

ure 1.3), based on the level of abstraction and the granularity of data processing. 

It is imperative to see where our methods fit in this general picture: our methods 

involve processing of frames (i.e., fine granularity of data processing). The infor

mation extracted by our methods from video is the relative pose of the object in 

each frame and a 3-D model of the object. Such information corresponds to an 

average level of abstraction. Therefore, our methods fall into the same region as 

"motion detection" (object tracking). 

1.2 Applications 

To demonstrate the significance of the central problem of this thesis (Section 1.1), 

we describe three crucial applications of the proposed solution in this section. 
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Figure 1.1: Some visual clues to depth information. There is no visual clue in 
the first picture. In the second picture, the same object is rendered under a 
light source: depth-clue is shading and reflection. A checkered (known) texture is 
mapped onto the object in the third picture. 
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Figure 1.2: Random-dot stereogram (courtesy of coggeshall.org). The sole depth 
clue in stereograms is stereo vision. To see the depth structure, one has to cross 
his or her eyes so that the image seen by one eye partially overlaps with the one 
seen by the other eye. The successful viewer sees the figure of the second picture 
standing out of the background. 

http://coggeshall.org
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Figure 1.3: Comparison of video data semantic models [1]. Our methods fall into 
the "motion detection" category. 
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1.2.1 Content-based video retrieval (CBVR) 

The wealth of information in images and videos, particularly in large archives, is 

almost useless if it cannot be searched and retrieved effectively. The traditional 

search and retrieval techniques, developed in database engineering, are suitable for 

raw data, that is the type of data with no distinction between the representation 

and the content (meaning). These techniques are not capable of handling im

ages and videos whose contents are very different from the representation: unlike 

raw data, images and videos have rich high level meaning, while their low-level 

representation (e.g., at pixel level) does not carry the content. The research on 

content-based image and video retrieval began in response to this need. 

One kind of information available in videos is the 3-D motion and structure of 

the subject. This information is required for high level scene/object description or 

representation, navigation through scenes, 3-D reconstruction of objects or scene, 

rendering images of scenes from arbitrary viewpoints and so on. However, to the 

best of the author's knowledge (Chapter 2), the state-of-the-art CBVR techniques 

are unable to fulfill queries about 3-D motion or geometry of subject. 

The method proposed in this thesis can be used in the following fashion to 

equip an existing CBVR engine for handling 3-D-related queries. We first apply 

the method to every clip. This yields a 3-D model of the object, for each video 

clip, as well as an index of the amount of relative 3-D motion of the object for 

each frame in the clip. Using the newly generated index, the CBVR engine is now 

capable of answering new high-level queries, such as the following: 

• Motion-related. Find (parts of) a sequence in which the object undergoes 

a specific type of motion, such as pure translation, a specific amount of 
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rotation at a given direction, or rotation at a given speed, etc. 

• Structure-related. Find a sequence in which the 3-D model of the subject is 

"closely" approximated by a specified 3-D shape (e.g., sphere, or cube), or 

a given 3-D model. 

Note that before being able to answer any structure-related query, a function 

should be defined for the CBVR engine to measure the similarity of two 3-D 

models. For an example, see the function that is used for measuring the similarity 

of the reconstructed volume to a sphere in Section 4.3.1. 

The method can also be used, together with a content-based image retrieval 

(CBIR) engine, operating on an image database, for answering 3-D-related queries. 

In order to do this, the images in the database should first be.classified, according 

to the subject shown in them, making a "virtual clip" for each subject. Thus, 

each virtual clip consist of every image that shows a certain subject in a variety of 

poses. The rest of the procedure is the same as the one just described for CBVR 

enhancement, operating on the virtual clips instead. 

1.2.2 3-D scanner: building a virtual copy from (videos of) an object 

The concept of a digital museum is that, instead of displaying an original object, 

which can be invaluable, its 3-D model is displayed, even on the Internet, and 

the original object is securely stored in a safe place. Also, in generation of virtual 

reality environments (e.g., for military training, and entertainment), we often need 

to insert a model of a real object in the virtual world. 

In such circumstances, a laser range scanner is used to capture several range 

images (depth-maps) of the object from known viewpoints.. The volume of the ob-
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ject is made by stitching the range images together. The volume is then textured, 

using the regular images captured from the same viewpoints. 

The drawback of this method is that it requires use of very expensive equip

ment (namely, a laser range scanner). The operation also has to be performed in 

a controlled environment. Finally, the method requires availability of the original 

object. Therefore, the method cannot be used at all, when some footage or a few 

pictures are the only things left from the object (Figure 1.4). 

Photos or footage 
of a deceased 

person 

Proposed Convert to 
method wireframe & edit 1 

Flexible 
3-D model 

Figure 1.4: Head reconstruction and animation. In the example shown, the orig
inal object (head) is not available. The final result, a flexible model of the head, 
can be animated with the original or a modified texture (e.g., with added facial 
hair). 

The method proposed in this thesis can be used at the centre! of a 3-D ob

ject scanner. Such a 3-D scanner provides an inexpensive, versatile, and easy 
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alternative to the currently used procedure for object scanning. 

1.2.3 3-D object tracking in video 

In addition to a 3-D model of the subject, our proposed method generates an 

index of the 3-D motion of the subject for each frame of the input video sequence. 

Therefore, our method can be used as a 3-D object tracker. 

Similar to the MPEG-4 video coding standard, our method can be used in 

a coding scheme (Figure 1.5) that provides a very low transmission bit rate for 

interactive video. By interactive video, we mean that the output video can be 

customized by the user (see receiver side in Figure 1.5). The difference with the 

MPEG-4 standard is that, here, the objects and their motion parameters are 3-D 

rather than 2-D. 

Note that the transmission bit rate can be reduced even further by replacing 

the 3-D models inputs of the scene rendering block with generic 3-D sprites that 

are locally available. Thus, the one-time transmission of the 3-D object models 

are no longer necessary, leaving only the motion parameters to be sent, a task 

which requires only an ultra-low amount of channel capacity. 

1.3 Thesis organization 

The remainder of this thesis is organized as follows. Chapter 2 reviews the research 

work related to the subject. Chapter 3 introduces the method of multi-objective 

relative pose estimation. In Chapter 4, the method of shape-from-silhouette (SFS) 

is reviewed; the effects of pose error and sampling rate on reconstruction quality 

are discussed; and a validity criterion for volume reconstruction by SFS, along with 

its application in pose estimation, are introduced. Chapter 5 presents the volume 
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feedback loop structure that, among its other merits, eliminates the depth-map 

requirement for relative pose estimation. The thesis is concluded in Chapter 6 

with an extended summary, limitations, and suggested lines of future work. 
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Transmitter side 

Input video 
sequence 

Proposed 
method 

Object model (transmitted once) 

Motion parameters 

To the transmitter 
Traditional 

channel 
coding 

Model 
compression 

Receiver side 

Models (add/remove/replace) 

Motion parameters 
(add/remove/change) 

Customized 
video 

Figure 1.5: A very low bit-rate 3-D video coding scheme for interactive video trans
mission, an example of the proposed method application in 3-D object tracking 
in video. The 3-D model of the object is transmitted only once, and sending the 
motion parameters only requires a low bit-rate. Therefore, for longer sequences, 
the bit-rate will be lower. At the receiver, the user may have several streams 
coming from different sources for different objects. The user can control all inputs 
to the scene renderer, in order to customize the output video (hence the term 
"interactive" video coding is used). 
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2: Related research 

The central problem of this thesis (defined in Section 1.1) lies on the borders of 

computer vision, computer graphics, and image processing with direct applications 

in content-based image and video retrieval. In this chapter, we briefly review the 

related literature in these fields to show the recent advances and the diversity of 

approaches to relevant problems. Thesis contributions, along with a comparison 

between the existing and the proposed methods, conclude this chapter. 

2.1 3-D volume reconstruction (3-D modeling) 

To begin with, we should clarify our meaning of the terms "3-D volume recon

struction or 3-D modeling". By these terms we mean the act of making a whole, 

solid 3-D model of an object. Figure 2.1 shows the relationships among different 

(classes of) methods relevant to the subject, their inputs and their outputs. In 

this section, we review and compare some representative methods, in the order 

of their output type. Methods that do not take monocular video as input (e.g., 

range imagery), or do not produce a solid volume as output (e.g., feature-based 

methods) are also discussed, for comparison. 
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Temp la te match ing 

Light field (Lumigraph) 
genera t ion 

1. Direct ly: 
Feature point / region 

t racking & tr iangulat ion 
(shape- f rom-mot ion or 
structure-from-motion) 

V ia opt ic f low. 

S p a r s e vo l ume 
(point c loud) 

M o d e l - b a s e d methods 

Figure 2.1: Topics in the literature that are related to 3-D volume reconstruction, 
and their relationships. Methods are shown by rectangles and data (input or 
output) are shown by circles. The common input to all methods, except for 
some cases of range imagery (bottom left), is the image sequence of the subject. 
Note that pose information (at the centre) is almost always required for volume 
reconstruction. 
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2.1.1 Solid volume output 

Much work in computer vision has been devoted to extracting a depth-map1 from 

various visual clues. These methods have a categorical name: "Shape from X", 

where X is the visual clue based on which the depth-map is computed. These 

methods extract the part of the object's external surface that is facing the camera. 

Needless to say, riot only many depth-maps are required for reconstruction of the 

object, but also a tool is necessary to integrate (stitch) all surface pieces into a 

seamless volume. 

Some visual clues used to make depth-maps are stereo, known texture, con

tour, shading. See [4, 5] on how these clues and their combinations are used to 

derive depth-maps. Stereo methods need pictures taken from two (or more) cam

eras having known relative geometry. Use of shading requires the reflectance map 

and the lighting of the scene to be known. Another class of algorithms requires 

additional information about texture of, or contours on, the surface of the object, 

which are not usually available. Given the input described in the problem state

ment (Section 1.1), we realize that our solution cannot be based on any of these 

clues. Regular video footage is not taken by stereo cameras; the object's texture 

and the lighting of the scene are not known a priori. Therefore, we do not discuss 

the literature on such methods any further. 

The problem of integrating surface pieces has a 2-D counterpart called "image 

registration or alignment", which has been solved through several approaches [6, 

7, 8]. Such methods are able to put small images, each showing part of a large 

1 For a pixel that represents an actual point on the object, depth value is defined as the distance 
between the camera and the corresponding point on the object. The depth-map of an image 
gives the depth value for each pixel in the image. 
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image, together to make the larger one. Unlike a jigsaw puzzle, whose pieces do 

not have any part of the large image in common, the input images to registration 

methods need to have some overlap. In fact, the common part should be the 

major area of the images or the methods fail to function. We did not find any 

registration method performing the same task for surface pieces. What we did 

find [9] helps to integrate a set of points in 3-D space into a surface. In other 

words, this method requires the poses of depth-maps (their places in the 3-D 

space) to be known. Poses are not usually known and should be estimated. 

To date, the most accurate approach to 3-D modeling is "Range Imagery" [10, 

11]. In this approach, the original object is scanned by laser range scanners from 

several viewpoints. The captured range images2 are then integrated to a seamless 

volume of the object. The volume can be textured arbitrarily (e.g., with the 

images taken from the object). 

The silhouette of an object from a viewpoint is the same as the extremal 

boundary of its image from the same viewpoint. Seales [12] builds a 3-D model 

of an object using the extremal boundaries of its images from various viewpoints. 

This task is performed by extracting all edges and classifying them into two cat

egories, namely fixed edges (physical edges, e.g., the edge between two adjacent 

faces of a cube), and occluding contours (extremal boundaries that do not neces

sarily correspond to any physical edge, e.g., silhouette of a sphere). The object 

pose is then estimated by tracking the fixed edges. Knowing the pose of each oc

cluding contour, the corresponding piece of the object's surface can be recovered. 

Finally, all surface portions are put together into the whole object surface, which 

2 A range image is not necessarily accompanied by a regular image. A depth-map. however, 
usually comes with a regular image of the object, since it is derived from a regular image 
using visual clues. 
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can be manipulated with traditional graphics tools. Local surface reconstruction, 

using the extremal boundary of the object, was addressed for the first time in [13]. 

The problem with [12] is that it requires a trinocular image sequence of the sub

ject (i.e., all views of the subject should be captured by a camera rig consisting 

of three cameras). The method of [14] has the same problem. Such methods, 

therefore, cannot be applied to common single-camera video or image sequences. 

There are also SFS methods that reconstruct the object volume, instead of 

its surface. The basic idea is to build the smallest bounding volume for the 

object. The task is accomplished by realizing the intersection of cylindric (or 

conic) volumes, made by stretching the silhouettes (extracted from the input 

images) in the direction of the viewpoints (from which the image is taken) to the 

origin and beyond, to obtain the part of the 3-D space that is shared by all of those 

volumes. The result is intuitively the tightest possible bounding volume for the 

object, considering the available viewpoints. The choice between conic or cylindric 

types of volume depends on whether perspective or orthographic projection is 

assumed. The latter is a special case of the former in far-camera cases. In [15], an 

algorithm for fast implementation of the method, using an octree representation 

of the object, is developed. The work is mainly based on [16], which, for the first 

time, introduced 3-D volume reconstruction out of images taken from arbitrary 

views. The object surface can be obtained from the reconstructed volume, as 

described in Section 4.2, where a graphical description of volume reconstruction 

by SFS is also given. 

After comparing to other 3-D reconstruction methods, we found this class of 

methods well suited to our problem. That is because it can work with monocular 

image sequences; it provides a scalable solid volume reconstruction (i.e., it gives 
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the best possible model with any amount of available data); and it functions for 

arbitrary rigid opaque objects (does not assume any model for the subject). None 

of the other methods discussed so far, and in the remainder of this chapter, can 

fulfill all of these conditions. Hereafter, when we use the terms "SFS" or "SFS-

based (volume) reconstruction", we mean the method that reconstructs the object 

volume out of the input silhouettes and is elaborated in Section 4.2. 

Another approach to 3-D modeling is space carving by photo-consistency 

(e.g., [17, 18]). The basic idea of this approach is an extension of SFS: elements of 

the prototype volume (originally opaque) are projected to pixels on the input im

ages (viewpoints are known), and are coloured accordingly. The volume elements 

that do not project to any pixel, are made transparent (or carved out, hence the 

name space carving). An advantage of this approach over SFS is the capability it 

has to reconstruct concave objects. The method is, however, much more complex 

computationally. 

2.1.2 Light field rendering 

In 1996, Levoy and others [19] introduced "light field rendering," a new approach 

to 3-D object modeling for use in computer graphics. Gortler and others [20] 

also reported a similar approach at the same time. These methods attempt to 

comprehensively sample all possible appearances of the object: the input images 

are considered as the 2-D slices of a 4-D function called "light field". The light 

field, which is the 3-D model of the object, should be constructed by sampling the 

space of possible appearances densely. To retrieve a specific object appearance, 

one should compute a slice of the 4-D light field at the desired position and 

orientation. The problem with this approach is that, in order to construct a 
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usable light field, a large number of samples (viewpoints) are required. Therefore, 

these methods cannot be applied to cases where a whole lot of views are not 

available in the capture phase. 

2.1.3 Sparse volume (point cloud) output 

See Section 2.2.1. 

2.2 Pose estimation methods 

All 3-D reconstruction approaches, discussed in Section 2.1, share a common re

quirement: they all need the poses (camera viewpoints) of the input, images to be 

known. Such information is readily available, when the input images are taken 

in a controlled environment (e.g., camera position is controlled by a robot, or 

its location is estimated by detection of special markers, which are put in the 

scene for this purpose, in the image). We do not, however, assume a controlled 

input sequence. Therefore, the pose information should be estimated using one 

of the following approaches: model-based, template matching, and feature-based 

methods. Each class of methods is described below. 

2.2.1 Feature-based methods 

These methods are based on the premise that some points on the objects are 

special: side tips of the mouth and the pupils of the eyes are examples of such 

points in a human face. These points, which can be easily recognized (detected) 

and tracked through multiple images, are called feature points. 

When an object moves (relative to camera), the projections of the feature 

points move in the images of the object. Assuming the object is rigid (i.e., feature 
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points are moving together coherently), one is able to derive the trajectory of 

the points and their relative geometry (a "point cloud" or sparse volume). In 

some simple situations (e.g., reconstruction of a planar object), this information 

is enough to estimate the structure of the underlying object. Other names for 

this problem are "shape-from-motion" and "structure-from-motion". The camera 

should be calibrated at the outset, or calibration should be performed in parallel. 

As an advantage of this class of methods (e.g., [21, 22]), we can mention 

simplicity of concept and implementation. However, the number of feature points 

are not usually enough to describe the structure of the object to be modeled 

to the desired resolution. So, one need to use less easily-recognized points to 

achieve a higher resolution. In that case, the task of feature points detection and 

tracking in multiple images becomes the a substantial problem. This problem 

(also addressed in stereo imaging) is known as (feature) point matching or point 

correspondence, and in spite of the large volume of research on it. the methods 

are still computationally intensive and prone to error. 

Some examples of the feature-based methods are briefly discussed in the fol

lowing. Paraperspective (a simplified perspective) projection of feature points is 

assumed in [23], rather than orthographic projection, so that in addition to far-

camera motions, near-camera and in-depth motions of the feature points can be 

tracked as well. An improved point correspondence method with a reduced num

ber of mismatches is addressed in [24]. Extended non-linear Kalman filters are 

used in [25, 26] for motion and structure estimation from feature points. Camera 

calibration and motion estimation from feature points are performed simultane

ously in [21]. 

Another class of methods for motion and structure estimation operate on 
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the optic (or optical) flow as their input. The concept of optic flow is loosely 

defined [27] as "apparent motion of brightness patterns, due to relative motion 

of camera and the object." The computation of optic flow is not a well-defined 

problem. Therefore, an additional constraint is added to derive the desired result. 

A usual constraint is smoothness of the resulting optic flow. One problem is 

that in multi-object scenes (even an object and the background), this constraint 

does not hold true on the boundaries. Moreover, the computation of optical 

flow involves numerical differentiation, which is a noisy process. Most accurate 

methods for optic flow computation rely on corresponding "feature-regions" or 

points in consequent images, which, as mentioned before, is not a straight-forward 

task. As a result of this, we put the optic flow class of methods in the feature-based 

category. Below are examples of the related literature in this area. Adiv [28] takes 

a single optic flow field as input and derives motion parameters and depth-map of 

the subject, which is assumed to be a single rigid object. In a similar work [29], 

computation of the optic flow from consequent frames is also included in the 

method. In [30, 31], attempts are made to analyze and alleviate the effects of noisy 

input (optic flow) on accuracies of the estimated the structure and motion. The 

input optic flow might be induced by several independent moving rigid objects. 

These multi-object motions are a source of severe errors in structure and motion 

estimates, that are also studied. 

Feature based methods cannot be used effectively for 3-D reconstruction of 

sophisticated objects. Since there are a limited number of real feature-points in 

objects, such methods either resort to derive only a sparse structure of the object, 

or sacrifice the reconstruction accuracy for a higher resolution. 
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2.2.2 Model-based methods 

Methods are reported that estimate the parameters of a 3-D model for a planar 

surface. The method in [32] requires poses of the input images to be known. 

The work in [33] tackles the same problem with unknown pose input images, 

but it is not stable. Both of the methods have a main concept similar to that of 

optic flow-based methods (Section 2.2.1); they get around optic flow computation, 

using simplifying assumptions of rigidity and being planar for the subject. The 

former assumption is very restrictive, making such methods inappropriate for our 

problem. 

Some feature-based methods are designed for specific domains. Such methods 

put their knowledge of the domain into a model, making the task of structure 

estimation merely parametric. We use human head (face) pose estimation as an 

example. As an application to face pose estimation, the user's face pose (and 

gaze) can be used to make a convenient human-computer interface (HCI). 

The methods developed for human head (face) pose estimation rely on detec

tion of a number of feature points on the face (e.g., center and tips of eyes, tips of 

nose and mouth) and on tracking those feature points in image sequences [34, 35]. 

For pose estimation, the geometry of these points is compared with the geome

try of such points stored in the database, thus deriving an estimate for the face 

pose. In [36], the relationship between visible regions of skin and hair is used to 

determine the pose. The method fails for bald people, who do not have the usual 

hair region. An advantage of this method is that it does not depend on (facial) 

feature point detection or tracking. In [37], the authors use a similar technique 

for gesture recognition. In [38], the authors use the eye contours to estimate poses 

of the head. A relatively different method [39] uses neural network processing 
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on regions of the face that are automatically extracted, based on colours. After 

the learning phase, the system is able to estimate the head and face pose. The 

severe problem with the method is that it should undergo learning, each time the 

pose of a new person's head is to be estimated. Bozdagi and others [40] fit a 3-D 

wireframe model to the head, shown in the input image sequence. The pose of 

the person's head is estimated by the pose of the fitted model's head. 

Model-based methods cannot be used for pose estimation of a general object. 

They are, however, optimized to perform efficiently for their destined objects. 

Some pose estimation methods assume depth-map information is available 

for one frame [41], or all frames [42] in the input sequence. Although these can 

be used for the pose estimation of a general object, these methods fall into the 

model-based category since the depth-map is actually information about the 3-D 

structure of the object. 

2.2.3 Template matching 

In methods based on template matching (e.g., [43]), the appearances of the object 

in various poses are recorded in a learning phase. In the operation phase, the 

appearance of the object, with an unknown pose, is compared to the recorded 

(known pose) appearances. The pose of the object is then estimated, based on 

the recorded appearances that are most similar to it. The problem is that it is 

not always easy to capture the appearance of an object from all poses. Moreover, 

if the desired pose estimation precision is doubled, the number of appearance 

captured from different poses in the learning phase should be increased 4 to 8 

times, depending on use of 2- or 3-variable poses. The bottom line is that template 

matching is more a technique for pose recognition than pose estimation. 
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2.3 Content-based image retrieval (CBIR) 

Before development of content-based techniques, retrieval systems relied on anno

tations (metadata) of each item of the database to answer a query. The task of 

annotating was done by an expert. For large image databases, such a task is very 

cumbersome and labor-intensive. Moreover, images contain much more informa

tion than one or two paragraphs worth of annotation. In other words, images can 

be interpreted differently, based on viewer's purpose or perspective. Therefore, 

static annotations or keywords, written once in the past, cannot necessarily play 

their role in the future. Thus, it would be useful if annotation could be performed 

automatically or not performed at all. That is the motivation for CBIR.. A good 

perspective of this field can be found in [44]. 

The main concept behind a typical CBIR system is to retrieve a number 

of images from the database in response to user's query about the contents of 

images. The use of image processing methods allows utility of information residing 

in images, rather than annotations, for indexing the image database. There are 

two types of queries: syntactic and semantic. A semantic query is natural to 

humans, while a syntactic query may not be. For example, the query "Find 

an image with 30% or more pure yellow coloured pixels" is syntactic, and the 

query "Find an image of a snow-capped mountain" is semantic. There are several 

primitive features (such as area and circumference of the object mask, that area 

divided by that circumference squared, chain code or Fourier descriptor for that 

circumference, colour histogram for the object, etc.) that can be computed for 

an image, using image processing techniques. While syntactic queries can be 

answered, using only these pre-computed features, semantic queries should be 
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first decomposed to several syntactic ones and then put forward to the system's 

search engine. Not all semantic queries can be broken down to syntactic ones. 

That is why generic CBIR systems still use text annotations or other cues from 

images' content, if any is available. 

Attempts to close the loop of searching for an image, using a CBIR system, 

by putting the user as the feedback box, have been made [45, 46]. This technique 

is called "relevance feedback". A CBIR system, equipped with relevance feedback, 

retrieves a specific number of images having the highest relevancy to the user's 

query. As the meaning of "relevance" is different for the user and the machine, 

the user should select some of the output images which are relevant, to help the 

machine to understand his or her intention. The system retrieves relevant images 

again, but this time with a better idea of relevance. This process is repeated until 

the desired images are retrieved or the user stops. 

The query types that current CBIR systems support are given in the follow

ing. Colour distribution in the form of colour histogram can be handled by all 

systems. For gray-scale and binary images, this role is played by texture, distri

bution, or density of pixel whiteness. Sketch or outline is another type of query: 

the user depicts the outline of the desired object and the system will retrieve 

some images having the most similar sketch to the input. See [47] for an online 

showcase. Some methods [48, 49] allow for spatial relationships (relative location) 

among the objects (shown in the image) to be queried. A category of queries, 

which is built on the above mentioned concepts, is the "same X " , where X can 

be colour, texture, or outline. The input to such a system is an image and the 

desired output is image(s) with the same property specified in the input, image. 

A very high level type of query, made possible by the relevance feedback tech-



Chapter 2. Related research 27 

nique, is "I can recognize what I want, when I see it". To fulfill this query, the 

system provides the user with some randomly chosen images from the database; 

the user selects those which are (most) relevant to what he or she has in mind. 

This process is repeated until the favorite matches are found. 

There are many image search and retrieval systems available. Many of them 

have CBIR engines. QBIC (Query By Image Content [50]) is a good example: 

it was one of the first practical CBIR engines that is now a commercial product 

from IBM. It accepts most of the query types discussed above. An online demo 

is available at [51]. 

Before concluding our account on CBIR, we would like to mention some works 

on how CBIR systems can be evaluated and compared to each other. A couple of 

quantitative measures of performance are defined in [52]: "recall" is ratio of the 

number of relevant images retrieved to the total number of relevant images in the 

database; "precision" is the number of relevant images retrieved divided by the 

total number of retrieved images. A system has a better performance if both of 

these ratios are higher. In [53] some qualitative measures are defined. 

2.4 Content-based video retrieval (CBVR) 

The simplest approach to CBVR is to consider each video clip in the database as 

a set of frames, and treat the collection of frames as an image database and run a 

CBIR engine on it. The problem with this approach is that due to the very large 

number of frames (5 minute footage = 9000 frames), the resulting image database 

becomes very large. Therefore, the CBIR engine cannot work efficiently. 

A solution to this problem is to reduce the number of frames put into the 

image database. This can be done by keeping only one (or a few) representative 
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frames for each shot (a group of frames showing actions, continuous in time and 

space), in the image database, and removing the rest. This approach is called 

"shot and key-frame(s)". A number of shot detection methods are compared 

in [54]. A clue for detection of shot boundaries is the sudden changes in frames 

that consist of considerable variations in some or all primitive features. Some of 

the shot parameters (e.g., duration) are also useful and are stored in the database 

as metadata. Then a CBIR engine is run on the resulting image database. This 

is the way videos are treated by QBIC [50], a CBIR engine which is extended to 

a CBVR system. 

The main disadvantage of "shot and key-frame" method of video represen

tation for CBVR is that it cannot be used to answer spatio-temporal queries. A 

query type in this category is the "animated sketch" introduced in [55]. In addi

tion to texture, colour, and sketch of the object being sought, the user can specify 

the motion and zoom factor change of the object. The system rejects possible 

sketch matches if their motion, considering previous and next frames, do not con

form with the motion specified in the query. Answering queries of this type, which 

is the actual strength of CBVRs over CBIRs, is an advantage for the object-based 

approaches discussed in the following. 

Shot detection can also be performed, based on objects: objects in the videos 

are detected and tracked and when they appear or disappear, we are on a shot 

boundary. This kind of shot detection involves segmentation of a video into ob

ject^) (and background), and tracking each of the objects during their life-span 

through the video. The currently used tracking methods do not actually track the 

(3-D) objects: they just track the 2-D (deformable) mask of the objects. That 

is why these methods cannot provide 3-D information about the tracked objects. 
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Much work (e.g., [56, 57]) is done and is being done in this area because of its im

mediate application in object-based video representation and manipulation within 

the MPEG-4 [58] standard. For example, in [57] object tracking is practiced by 

finding the texture content of the initial object mask in the next frames, and col

lecting the regions found to make a new object mask, ensuring the spatial integrity 

of the object mask. The method is designed with the aim of extracting MPEG-4's 

Video Object Planes (VOP). 

Note that to our best knowledge, none of the existing approaches to CBVR 

the retrieval of 3-D structure or motion of objects from video. 

2.5 Thesis contributions and comparison with existing solutions 

A summary of contributions made in the thesis follows. For more details see 

Section 6.1, or the corresponding chapters. 

Chapter 3: contributions 

A method for multi-objective relative pose estimation (with depth-map) is in

troduced and experimentally validated. Two pose similarity measures are also 

introduced and compared. This work is published in [41]. 

Chapter 3: comparison with existing methods 

While providing pose estimates with a good (superb, in some cases) accuracy, the 

proposed method has the following advantages over the existing pose estimation 

approaches. 

• It is not model-based. Therefore, it can be used for an arbitrary object. 
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• Unlike template matching methods, it does not require a learning phase 

prior to operation. 

• It is not vulnerable to the usual problems of feature-based methods, such as 

feature-point detection (or selection), tracking, and low density of feature 

points. 

Chapter 4-' contributions 

The effects of pose sampling rate, viewpoint distribution, and error in input pose 

on volume reconstruction quality (experimental work), along with a validity cri

terion for SFS-based volume reconstruction (theoretical work) are studied. The 

latter study yields a quality factor for SFS-based volume reconstruction that is 

used in stand-alone pose estimation and volume reconstruction method of Chap

ter 5. Part of this work is published in [59], and the rest in [60]. 

Chapter 4-' comparison with existing methods 

To our best knowledge, there are not any comparable work in this area. 

Chapter 5: contributions 

A method for stand-alone simultaneous pose estimation and reconstruction by 

volume feedback is introduced. The method is successfully tested with both real 

and synthetic input sequences. Parts of this work are published in [61, 62, 63], 

and as a whole in [60]. The details follow. 

• A theoretical convergence study of the system provides a test for convergence 

to the given poses. 
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• Computational complexity of the system is studied (theoretical work). 

• The effects of sampling rate and spatial (voxel) resolution on pose estimation 

error are studied. 

• As compared to the multi-objective relative pose estimation [Chapter 3], the 

method has the following advantages. 

— No depth-map is required as input. 

— A new pose similarity measure is introduced that is functional for all 

types of objects. 

— A two-step translation compensation scheme, based on single vector 

colour optic flow computation, is employed. This allows for translation 

of the object in the input sequence as well as rotation. 

— The input sequence undergoes a pre-processing stage, in which the 

frames of the sequence are re-ordered to obtain the most accurate pose 

estimation, hence volume reconstruction quality. This allows for han

dling input sequences with unknown frame order. 

Chapter 5: comparison with existing methods 

The method introduced in this chapter can be used for pose estimation, volume 

reconstruction, or both. When used as a pose estimator, the proposed method 

has all advantages of the method of Chapter 3 over existing methods, plus the 

merits mentioned above. 

All existing approaches to volume reconstruction require pose information 

for input images (or silhouettes). The proposed method, however, only needs an 
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image sequence of the object as its input. As compared to light field rendering 

method, which requires a comprehensive sampling of viewpoints, the proposed 

method has the advantage of being scalable. That is, volume reconstruction can 

be performed with any number of input images, and the reconstruction quality 

can be improved by providing images from other viewpoints. 

If one accepts point-clouds as volumes, the feature-based methods can be 

considered as functionally compatible with the proposed method, in the sense 

of performing pose estimation and volume reconstruction at the same time. Our 

method, however, does not suffer from inherent problems of feature-based methods 

(mentioned above), and its output is a solid volume regardless of feature point 

density. 
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3: Multi-objective relative pose estimation 

3.1 Introduction 

In this chapter, we introduce a method for estimating the relative pose of a rigid 

object shown in an image (typically taken from a video sequence), with respect to 

a reference pose of the object. The method can be used to index a video sequence, 

based on the object pose. This, in turn, can aid 3-D information retrieval from 

video. We evaluate different objectives for measuring pose similarity and different 

optimization algorithms for finding a match between a rotated 3-D reference patch 

and an unknown pose image. 

A few terms that are used throughout the chapter are defined in the following. 

The relative pose of the object shown in frame B with respect to frame A, is the 

amount of rotation needed to take the object from its pose shown in frame A 

(reference), to the pose shown in frame B (target). We abbreviate this parameter 

as the relative pose between frames B and A. For each frame, an absolute pose is 

defined as the pose of the object with respect to some global (fixed) reference for 

the pose. Thus, the relative pose between frames B and A can also be defined as 

the difference between their absolute poses. 
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3.2 The method 

The input of the method is a sequence of images (or frames) of an object, the 

poses of the object in the input frames is to be determined. The object undergoes 

3-D rotation in the sequence. The poses are to be computed relative to a reference 

pose in the input sequence for which we have also a depth-map. We use the depth 

information to rotate part of the object visible in the reference pose and compare 

it with the unknown-pose image. When the correct pose of the object in the 

input sequence is encountered, the rotated part of the reference pose becomes 

very similar (ideally coincides) with the unknown-pose image of the object. 

The idea of this method is inspired by [64]. Koch describes a method of 

3-D scene analysis by synthesis. We use this idea in our pose estimator, where 

the transformation is performed on the reference image (projected on the depth-

map), and the rendered result is compared to the real image with the unknown 

pose, to estimate the pose. The structural difference of this work with [64] is that 

Koch assumed a parametric model for the subject (human face and shoulder); we, 

on the other hand, do not assume any model for the object to keep the method 

functional for arbitrary objects. 

The block diagram of our pose estimator is depicted in Figure 3.1. I\ and I2 

indicate the image of reference pose and an image of unknown pose, respectively. 

The depth-map of I\ is assumed to be known. The output, P, is the pose estimated 

for I2. To compute the pose, the system rotates I\, a 3-D surface patch, to match 

I 2. The rotated I\ is projected into the image plane and segmented. Then, it 

can be compared to l2. Comparison can be based on the object masks of the two 

images or the combination of that and the texture difference of the images. A 
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threshold is imposed to decide whether or not the two masks coincide (i.e., the 

amount of rotation is enough). The loop is repeated until the pose is estimated 

2 
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Figure 3.1: The block diagram of the proposed pose estimator. I\ is the reference 
frame with known depth-map. P is the estimated pose of I2 w.r.t. I\. 

In the following, we outline our assumptions. One assumption is the avail

ability of the depth-map for the reference frame. A depth-map can be obtained 

by a stereo technique (e.g., triangulation) anytime the object undergoes a known 

amount of pure translational motion in the input image sequence. The frame 

ending such a motion can be considered as the reference frame. We also assume 

that the motion of the object from its reference pose (that in I\) to the pose in I2 

is a pure 3-D rotation. Finally, we assume that the weak perspective projection 

closely approximates the imaging process, and the object is opaque and rigid. 

3.2.1 3-D rotation 

The first module of the system is in charge of 3-D rotation of the 3-D patch of 

I\. Let a point specified by a vector r = (x,y,z)T rotate around the origin and 

reach r' = (x', y', z')T, where T denotes transposition, r' can be computed from r 

by r' = Rr. R can be determined by the amount of rotation around each axis. It 
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can be shown easily that R = RxRyRz, where 

cos <p 

- sin 

0 

sin ( 

cos ( 

0 

0 

0 

1 

R7 

1 0 0 

0 cos 8 sin 8 
0 — sin 8 cos 6 

^ cos tp 0 — sin tp ^ 
Rv = 

V 

o 1 o 

sin tp 0 cos tp 

and tp, 8, and <p> are the amounts of rotation around X-, Y- and Z-axes, respectively. 

I\ is generated from a 2-D image and the corresponding depth-map by first 

fitting a surface to the depth-map. Then, the surface is textured with the 2-D 

reference image. 

3.2.2 Perspective imaging 

The imaging module is a virtual pinhole camera. It makes a 2-D perspective image 

out of the 3-D object. According to the notation introduced above, the projection 

of a point r in 3-D space to the image plane is (X, Y), where 
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and zo is the vertical distance from the origin of the object space (I\ location) to 

the image plane. With no loss of generality, we take ZQ = 1. 

While computing a perspective image of a 3-D scene from a certain view, one 

should take care in identifying which parts of the object occlude the other parts 

from that view. A standard technique in computer graphics for performing such 

a task is z-buffering [65]. Since the graphics functions in Matlab, which we use for 

our experiments, provide mechanisms for modeling occlusion transparently, we do 

not elaborate on this matter any further. 

3.2.3 Segmentation 

Although we assume segmentation is already performed, the object masks are still 

required by our algorithm and should be computed. To fulfill this need, we paint 

sides of the object not visible in the reference frame as well as the background, 

by a single colour not often seen on the object. Then the object mask for the 

rotated I\ is easily computed by separating those pixels having a colour different 

than the background. This method may set aside single pixels having exactly 

the same colour as the background from the mask. The remedy is to process the 

mask by a morphologic filter [66, 67] to cover small uncovered areas within the 

mask. The object mask for I2 and the initial object mask for the image of I\ 

(before integration with a textured surface) are made semi-automatically. These 

images can be segmented automatically, if the footage is made in a controlled 

environment (e.g., having a uniform colour and lighting in background). 
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3.2.4 Comparison and threshold 

This module is the main part of the system. We investigate two methods to 

compare the rotated 3-D mask (rotated I\) to the unknown pose image, I2. The 

first method is to compare the object masks, which are binary images, in I i and 

I2 by computing the area of the regions where they do not overlap. That is, the 

area of (Ii U I2) — (h D I2), where U and D indicate set union and intersection 

operations respectively. This is reasonable since we know that the two masks 

coincide when I\ undergoes the same amount of rotation as the pose of I2 with 

respect to h (Figure 3.2). 

Figure 3.2: Object mask comparison. Left: reference frame of a cube, I\. Middle: 
frame with unknown pose, l2.- Right: object mask of l\ and I2 compared. The 
white area is the difference between the two masks and it shrinks (here vanishes) 
as 11 rotates up to the cube pose in I2. 

Mask comparison is a good measure of pose similarity as long as no new part 

of the object is revealed in I2. When I2 has some newly revealed parts, the mask 

of rotated I\ can cover only a part of I2 mask (i.e.. the newly parts in /•> cannot, 

be covered by h). This is the case when the object is "smooth" (e.g., a sphere) so 

that even a small rotation reveals a new part not seen before, or when the object 
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rotation is large in "rough" objects (e.g., a cube). In such cases, the area of mask 

difference is not minimized at the correct pose; thus, the mask difference cannot 

be used as the measure of pose similarity between I2 and rotated I\. 

Our solution for the case discussed above is to add a measure of texture 

difference to the mask difference and use the sum to measure the similarity of I2 

and rotated I\. The intuition behind this measure is firstly, as we said above, the 

fact that the mask difference is not minimized at the correct pose. Secondly, the 

texture difference, which can be measured only in the common region of masks 

(Ii D I2), is minimized at least in two poses: the correct pose and when I\ turns 

its back to the camera (when all previously visible parts disappear). In the former 

case, the texture of both /j and I2 is exactly the same all over 7] fl I2. In the 

latter case, I\ has shrunk to null, making I \ C \ I 2 = 0. Thus, any texture difference 

measure integrated over Ix fl I2 becomes zero. 

We demonstrate our intuition with an example. The experiment of this ex

ample is designed to show inability of either mask difference or texture difference 

alone as pose similarity measures and the functionality of their combination. In 

Figure 3.3(left) the view from the reference pose of a 3-D object is given. It is also 

regarded as the 3-D mask, Ii, built from the reference frame and the correspond

ing depth-map. The object is a textured symmetric prism. Note that only two 

faces of the object, which is "rough" in the sense introduced above, are visible 

from the reference pose. The object is then rotated to a known large amount. 

The captured view is given in Figure 3.3(right). Three faces are visible from this 

pose, one is seen before and the others are not. 

Now we rotate I\ for a set of angles and measure both the area of (/, U /2) — 

(h fl I2) and the texture difference integrated over I\ fl / 2 . The results are given 
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Figure 3.3: Setup for the experiment, comparing three pose similarity measures 
namely, texture difference, mask difference and combination of texture and mask. 
Left: Reference frame of a textured prism, I\. Right: 72- The pose is actually 
known, (60, 70) degrees, and is used as the ground truth. 

in Figure 3.4. Before interpreting the results, we review a few points. 

The set of 3-D rotations we use for the experiment are limited to combinations 

of horizontal (around Z-axis of the object coordinate system) and vertical (around 

the line of horizon) rotations only. In other words, we disregard possible rotations 

around the camera optical axis (the so called "roll" rotation). This simplifying 

assumption not only does not hurt the generality of the solution, but also helps 

us to visualize the results because in this case the desired pose similarity measure 

is a function of two rotation variables (i.e., a 3-D surface reaching its minimum in 

the correct 2-variable pose). That is, if we consider the roll rotation, the measure 

is a function of three rotation variables (i.e., a 4-D surface reaching its minimum 

at the correct 3-variable pose). The target of the camera is set on the origin of the 

object coordinate system, where the object is also centred. The mask difference is 
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measured as the number of pixels that lie in (7i U I2) - (h H I2). The last note is 

on how the texture difference is measured: we simply take the absolute difference 

of colour values for each pixel of I2 and the rotated I\. These values are then 

summed over (I\ fl I2) to form the texture difference measure. 

-60 -40 -20 
Horizenlai Holaiion (decrees) 

80 100 -200 
40 60 80 100 

-40 -20 0 20 40 

Figure 3.4: Comparing mask difference (left), texture difference (right) and their 
sum (bottom) as pose similarity measures. The sound measure should have its 
minimum at the correct pose (60, 70) degrees. All graphs are produced using 
values linearly normalized between 0 and 1 (see the colour scale on bottom right). 

Interpretation of the results of the experiment (Figure 3.4) follows. The cor

rect pose at which we expect a good similarity measure to have a global minimum, 

preferably the sole minimum, is (60, 70) degrees. The view from this pose is given 
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in Figure 3.3(right). We observe that both mask difference and texture difference 

have a local minimum at the correct pose. However, both of the measures have 

outlier regions that easily deflect any optimization algorithm seeking a minimum. 

For the mask difference (Figure 3.4(left)), there are two outlier regions like val

leys horizontally stretched: one at the middle, and the other at the bottom of 

the graph. For the texture difference (Figure 3.4(right)), there are two outlier 

regions on the left (bottom and top), and one more at the right side of the graph. 

Confirming our intuition, the sum of texture difference and mask difference (Fig

ure 3.4(bottom)) has a global minimum at (60, 70). The minimum is located at 

the correct position considering that the sampling period of the rotation angles is 

5 degrees. 

This experiment is conducted to demonstrate the open loop operation of the 

pose estimator system. It shows that the sum of mask and texture difference is 

an appropriate pose similarity measure for large rotations of rough objects. In 

Section 3.3, we give experimental results to prove good performance of the system 

in a closed loop (normal) operating mode. 

3.2.5 Feedback algorithms 

Here, we discuss a couple of optimization algorithms we use to close the feedback 

loop of the system: a deterministic minimum search algorithm [68] and a genetic 

algorithm [69]. 

The deterministic minimum seeking algorithm (DMSA) we use is multidimen

sional, unconstrained and nonlinear [68]. This method requires an initial guess 

(which is naturally relative pose of (0, 0) for small rotations), from which it senses 

the gradient of the surface of the similarity measure and follows that gradient to 
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get into a local minimum. The method is not helpful when one looks for the global 

minimum probably located far from the initial guess. 

The genetic algorithm (GA) [69] is appropriate in cases that a global minimum 

is sought. The genetic algorithm is not deterministic; its random nature helps 

not to be trapped in the local minima. It requires a range of permitted values for 

arguments (in our case, the range of permitted rotations), as well as the resolution 

with which the arguments should be coded. For example, if the resolution is set 

to 5 bits and the range of the argument is 2 to 10, the argument can take 25 = 32 

equidistant values between 2 and 10, yielding a resolution of (10 — 2)/32 = 0.25. 

3.3 Experiments 

The first experiment is designed to show that the mask difference pose similarity 

measure is good enough to estimate the pose of a rough object undergoing a small 

rotational motion (i.e., no new faces of the object shows up). The object is that 

of Figure 3.3. The reference pose, Ix, is the same as that in Figure 3.3(left) and 

the pose to be determined, which is also the ground truth, is set to several values 

between (-85, -85) and (60, 70) degrees. 

We use a DMSA to close the feedback loop of our system with an initial 

guess of (0, 0), which is a reasonable guess for small rotations. The search is 

performed on a rectangular grid from (-180, -90) to (180, 90). If the method 

converges, the grid size (the distance between adjacent nodes of the grid) is the 

maximum value for pose estimation error. There is a tradeoff between the grid 

size and the convergence speed of the method. Considering the value of grid size, 

our system performs well for small rotations using the mask difference as the pose 

similarity measure (Table 3.1). As we expected, the mask difference does not 
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perform effectively for large rotations. 

Ground Truth Grid Size Estimated Pose CPU Time 
(5,0) 2 (4, 0) 29.76 

(10,-10) 3 (9, -9) ' 51.25 
(0, 20) 3 (0, 18) 52.01 

(-40, 30) 5 (-40, 25) 98.88 
(60, 70) 10 (40, 10) 72.25 • 

(-85, -85) 5 (-5, 16.56) 36.19 

Table 3.1: Experiment 1. Angle pairs in Ground Truth and in Estimated Pose 
columns designate the amounts of horizontal and vertical rotations. The angle 
amounts are in degrees. The CPU time is in seconds. 

The second experiment demonstrates that the sum of mask difference and 

texture difference performs effectively in estimating the pose of a rough object 

undergoing large rotations from the reference frame. The object shown in Fig

ure 3.3(left) (at the reference pose) is used for the experiment. Two algorithms 

are used to close the feedback loop and their results are compared. The first one 

is a GA coding the first (from -180 to 180 degrees) and the second pose (from 

-90 to 90 degrees) variables with 6 and 5 bits, respectively. Hence the grid size 

becomes 5.7 (5.8) degrees for the first (second) pose variable. Using overlapping 

generations in our GA (i.e., copying the best four individuals of each generation 

to the next), our GA locks on a set of deepest minima of each generation. Results 

are shown in Table 3.2. Note that GAs, inherently, have moderate convergence 

properties, although they usually find a point near the global minimum. For a 

more accurate estimate, one may run a DMSA after a GA and use the result of 

the GA as the initial guess for the DMSA. 

To the aim of devising a method faster than G A , we apply the DMSA. that 
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Ground Truth Grid Size Estimated Pose CPU Time 
(5,0) 6 (2.86, -8.71) 2409 

(10,-10) 6 (14.29, -8.71) 990 
(80, 70) 6 (82.86, 66.77) 2640 

(-85, -85) 6 (-2.86, 66.77) 3300 
(5, 60) 6 (8.57, 55.16) 1815 

(80,-10) 6 (77.14, -8.71) 1320 

Table 3.2: Experiment 2.a (GA feedback). Angle pairs in Ground Truth and in 
Estimated Pose columns designate amounts of horizontal and vertical rotations. 
Angle amounts are in degrees. The CPU time is in seconds. Grid Size value is 
approximate. 

was used in the first experiment, five times with initial guesses at (0, 0), (-60, 

-45), (60, -45), (-60, 45), and (60, 45) in the second part of Experiment 2. These 

points are selected so that each quadrant of the search space (i.e., the rectangular 

region between (-180, -90) and (180, 90)) has one initial point near its centre. The 

selected points performed better than the exact centres of quadrants (i.e., (-90, -

45), (90, -45), (-90, 45), and (90, 45)). Initial guess of (0, 0) is added to compensate 

for mediocre performance of DMSAs started from the centre of quadrants that do 

not perform well for target poses near (0, 0). Among the resulted five minima, we 

select the deepest one as the final estimated pose. To be comparable with GA's 

grid size, we select a grid size of 5 degrees for both pose variables. The results 

of this experiment are given in Table 3.3. According to the results, faster and 

better convergence is achieved by the DMSA method with multiple initial points, 

as compared to the GA method. 

We run the pose estimator on a smooth object, a textured sphere (Figure 3.5), 

in our third experiment. The reference pose is taken right above the equator (in 

Figure 3.5 the north pole is visible on the top). We try estimation for both large 
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Ground Truth Grid Size Estimated Pose CPU Time 
(5,0) 5 (5, 0) 591.48 

(10,-10) 5 (10,-10) 571.82 
(80, 70) 5 (80, 70) 545.6 

(-85, -85) 5 (0, 75) 654.73 
(5, 60) 5 (5, 60) 822.53 

(80,-10) 5 (80, -10) 632.14 

Table 3.3: Experiment 2.b (Multiple DMSA feedback). Angle pairs in Ground 
Truth and in Estimated Pose columns designate amounts of horizontal and vertical 
rotations. Angle amounts are in degrees. The CPU time is in seconds. 

Figure 3.5: Textured sphere used in the third experiment. 

and small rotations with both of the feedback mechanisms used in Experiment 2. 

The sum of mask difference and texture difference is used as the pose similarity 

measure. The results are given in Tables 3.4 and 3.5. 

Incorrect estimation for pose (5, 0) in Experiment 3.a can be justified by 

the random nature of the GA. No feedback can do better for the pose (-85, -85) 

because the mask area of the rotated I\ at that pose is almost zero, that is, parts 

of the object visible in I2 in this pose were not visible in I] at all. 

While multiple DMSA is faster than GA, it fails to converge to the correct 

pose in a couple of cases more than GA (the last two rows of Table 3.5). 

Based on the experiments reported in this section, we list the pose similar

ity measures and feedback methods suitable for our pose estimator in different 
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Ground Truth Grid Size Estimated Pose CPU Time 
(5,0) 6 (180,-8.71) 1515 

(10,-10) 6 (8.57, -8.71) 949 
(80, 70) 6 (82.86, 72.58) 2555 

(-85, -85) 6 (-157.14, 2.9) 620 
(5, 60) 6 (2.86, 60.97) 1598 

(80,-10) 6 (77.14, -8.71) 4002 

Table 3.4: Experiment 3.a (GA feedback). Angle pairs in Ground Truth and in 
Estimated Pose columns designate amount of horizontal and vertical rotations. 
Angle amounts are in degrees. The CPU time is in seconds. Grid Size value is 
approximate. 

Ground Truth Grid Size Estimated Pose CPU Time 
(5,0) 6 (6, 0) 223.89 

(10,-10) 6 (12, -12) 193.3 
(80, 70) 6 (-178.42, -4.36) 210.25 

(-85, -85) 6 (72, 42) 117.72 
(5, 60) 6 (174, 0) 483.1 

(80,-10) 6 (114,-48) 199.29 

Table 3.5: Experiment 3.b (Multiple DMSA feedback). Angle pairs in Ground 
Truth and in Estimated Pose columns designate amount of horizontal and vertical 
rotations. Angle amounts are in degrees. The CPU time is in seconds. 

situations in Table 3.6. 

All experiments reported in this section are coded in Matlab and conducted 

on an Ultra-Sparc 10 Sun machine. 

3.4 Concluding remarks 

Results of our experiments show that cases where smooth objects have undergone 

small or large rotation, or cases where rough objects have undergone large rotation, 

cannot be handled if there is no discriminating information in texture (e.g., the 
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Object Type Small Rotation Large Rotation 
Rough MD / DMSA MD+TD / Multiple DMSA 
Smooth MD+TD / Multiple DMSA MD+TD / GA 

Table 3.6: Suitable pose similarity measure / feedback for different situations. 
MD: Mask Difference. TD: Texture Difference. DMSA: Deterministic Minimum 
Seeking Algorithm. GA: Genetic Algorithm. 

texture is uniform on the entire surface of the object). 

The distribution of texture difference or mask difference values might be 

useful to set up a better feedback or to identify useful information. For example, 

if the texture difference does not change for different pixels, we can conclude that 

the underlying object is uniformly textured. Therefore, in this case, the texture 

information may not help in pose estimation at all. 

A limitation of our method is that it loses accuracy in estimation of the 

pose along with the increase in amount of rotation. That is because the target 

pose has smaller previously seen part, so the texture difference is measured by 

integration over a smaller area, causing more noise in the result. The phenomenon 

is responsible for the wrong pose estimation for ground truth value of (-85, -85) 

degrees in all reported experiments, because the mask of reference frame has 

an area of almost zero when rotated to (-85, -85) degrees. Note that the mask 

difference term cannot alleviate the problem, since it just removes the outliers 

and has no contribution to the determination of the correct pose. This limitation 

encourages gradual pose estimation as described below. 

Small rotations of rough objects are more tractable in two aspects: one, mask 

difference is enough for comparing different views and needs less computation over 

mask-and-texture difference. Two, the feedback loop can be closed by a DMSA. 
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which is much faster than a GA. These advantages encourage estimation of gradual 

change in pose that occurs frequently in frames of a video sequence. 

Pose estimation, specially when a GA is used for minimization to handle 

large rotations, is very time consuming. Therefore, further work, perhaps code 

optimization, is needed to reduce the processing time to make the task more 

manageable. 

Finally, more computationally efficient comparison measures that converge 

onto a single minimum at the correct pose should be devised. 
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4: Shape-from-silhouette 

4.1 Introduction 

The extraction of 3-D information from an image sequence involves two steps. 

The first step is finding the poses/camera viewpoints of/from which the images 

are taken. The next step is fusion of images, now with known poses, into a 3-D 

model (volume) of the object. 

Our choice for the second step above is "shape-from-silhouette" (SFS) method 

because of its simplicity in concept and use. The rest of the chapter is organized 

as follows. The tool we implemented for SFS-based volume reconstruction is 

reviewed in Section 4.2. Section 4.3 investigates the effects of viewpoint (pose) 

distribution, pose sampling rate, and pose error in volume reconstruction quality. 

In Section 4.4, we introduce a validity criterion for volume reconstruction by 

SFS, along with the application of the criterion in pose estimation. Section 4.5 

concludes the chapter. 

4.2 A reconstruction tool based on SFS 

Following [15], we perform volume reconstruction from known-pose silhouettes. 

We intersect cylindric volumes made by stretching silhouettes in the direction of 

pose (to the coordinate origin), one for each available silhouette, with a cube. 
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This cube is centered on the origin and contains discrete equidistant points, each 

called a "voxel" (volume element; by analogy with pixel). We call this cube the 

"material cube" from which the output object is made by "carving". The number 

of voxels in the material cube is determined by the resolution desired for the 

output volume. 

Each voxel in material cube is projected orthographically onto planes whose 

normals are pose directions. For each pose, the projected voxels are then tested to 

see if they lie on or off the silhouette of that pose. Details on how to project the 

voxels onto the planes are given in Appendix A. A voxel remains on material cube 

if "all" of its projections into silhouette planes lie within silhouettes. Otherwise, 

the voxel is cut out from the cube. 

After the cube is carved by all available silhouettes, we have the tightest 

possible bounding volume of the object with desired resolution. While such rep

resentation for a volume has its benefits (see comparison below), one may want 

to find the boundary surface to the object because most 3-D graphics tools work 

with surface models rather than volume models. To this aim (Figure 4.1), we first 

eroded the outermost layer of the carved cube by a 3-D morphologic filter. Then 

we XORed the carved cube with its eroded copy. The result is the voxels on the 

surface of the carved cube which are part of the original volume but do not exist 

in the eroded copy. A surface is then fitted to these voxels using 3-D graphics 

tools. The 3-D morphologic erosion filter used is simply a generalization of its 2-D 

type described in [66, 67]: a voxel will be present in the output (filtered) volume 

if all of 26 voxels in its cubic vicinity are present. Otherwise, the voxel will be 

omitted. 

As compared to [15], our method is simpler but slower. That is because we 
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Figure 4.1: Making the cover surface of a volume. Left: cross section of a discrete 
sphere. Middle: cross section of the sphere eroded. "x"s are put in place of 
eroded voxels. Right: computed cover surface. 

compute, for each voxel, whether it lies within a cylindric volume or not. However, 

this criterion is investigated for each block, comprised of several voxels, in [15]. 

The advantage of our method, however, is that it is easily broken into modules 

that can run in parallel: the silhouette from each pose can be used to carve the 

material cube independently. Next, all of the carved cubes are ANDed, since a 

voxel in the output volume should be present in "all" of the cylindric volumes. 

This is not the case for [15], since two volumes in "octree" representation cannot 

be unified in a computationally simple way. 

Reliable performance of our reconstruction method is demonstrated in a few 

examples (Figure 4.2). 

4.3 Factors influencing the reconstruction quality 

The quality of volume reconstruction in the two-step reconstruction paradigm 

discussed in the beginning of Chapter 4 depends on several factors, namely: 

• pose error, 

• volume quantization, 



Chapter 4. Shape-from-silhouette 53 

• image quantization, 

• pose sampling rate (number of views), 

• viewpoint distribution (location of viewpoints), and 

• object concavity. 

The system we proposed for 3-D information retrieval from monocular video, 

uses a pose estimator (Chapters 3) and a silhouette-based volume reconstruction 

method (Section 4.2). For quality assessment of the reconstructed 3-D models, in 

this section we address sensitivity of this volume reconstruction method to choice 

of viewpoints, pose sampling rate and pose error. 

Some of the factors given above are discussed in the literature: recent studies 

on sampling requirements of the light field rendering [19], a method for fusion 

of images into a 3-D profile of the object, are given in [70, 71]. To the best of 

authors' knowledge our work on sampling requirement of silhouette-based volume 

reconstruction method is the first in the in the subject. Although a class of studies 

(e.g., [72]) addressed the problem of camera viewpoint control to maximize a 

quality measure. 

Object concavities are a source of reconstruction error, since silhouette-based 

reconstruction methods are inherently able to make a model of the object up to 

the object's "visual hull" [73], which does not include most of the concavities. 

Our literature search for other issues of reconstruction quality assessment did 

not produce any result. From the above-mentioned issues of silhouette-based vol

ume reconstruction quality analysis, here we explore the effects of pose error, pose 
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sampling rate (Section 4.3.2) and viewpoint selection/distribution (Section 4.3.1) 

on the reconstruction quality. 

4-3.1 Viewpoint distribution 

The capture phase of 3-D volume reconstruction consists of taking images of the 

subject from different viewpoints. In this section we introduce a new uniform 

distribution of viewpoints for 3-D volume reconstruction and compare it to the 

traditional viewpoints distribution through an experiment. 

Consider the object is located at the center of a large sphere. And each 

viewpoint is corresponding to a point on that sphere. We call this sphere the 

"focal sphere". Note that for each viewpoint on focal sphere, there is another 

viewpoint so that the segment connecting these two viewpoints is a diameter of 

the focal sphere. Assuming orthographic projection, the silhouette of the object 

is the same from these two viewpoints (i.e., one of these viewpoints is redundant 

as long as silhouette-based volume reconstruction is concerned). Therefore, all of 

the information of object's silhouette can be captured from viewpoints located on 

only half of the focal sphere, which we call "focal hemisphere". 

In [74, 15], the object is placed on a turn-table. While the table is turning, 

images are taken by a stationary camera. Changes in camera elevation result 

in viewpoint distribution depicted in Figure 4.3 (top). Note that this sampling 

scheme is denser near the pole of the focal hemisphere, thus it is not uniform. 

To distribute the viewpoints evenly, one should have the same density of 

viewpoints on different spots of the focal hemisphere. To this aim, we first flat

tened a differential surface element of the focal hemisphere. Viewpoints are taken 

as nodes of a grid projected onto the flattened hemisphere. In other words, the 
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angular distance of neighboring viewpoints should be scaled by 1/cosx, where x 

denotes the latitude on which the viewpoints are placed. Thus, less number of 

viewpoints can be inserted near the pole, giving almost uniform viewpoint distri

bution all over the focal hemisphere. An example of such viewpoint distribution 

is depicted in Figure 4.3 (bottom). 

To show better performance of the new sampling scheme, we use both tra

ditional and the new sampling scheme to take samples for silhouette-based re

construction of a sphere. The outcome is given in Figure 4.4 (top). As shown 

in the graph, for a certain reconstruction quality, considerably fewer samples are 

needed using our proposed sampling scheme. Here, the reconstruction quality is 

defined as the volume difference between the reconstructed and the ideal sphere 

normalized by the volume of the reconstructed sphere. The metric is estimated by 

a function of standard deviation and mean value of the radius of the reconstructed 

sphere. 

We run the experiment again using a prism as the object. In this experiment, 

the reconstructed volumes are XORed with the representation of the object in the 

same voxelized space (a view of that is given in Figure 4.5), where the experiment 

is performed. The result (Figure 4.4 (bottom)) is the number of voxels remained 

after XOR operation, normalized by the number of voxels comprising the object. 

Please note that the reconstruction of a sphere and a prism are different 

(Chapter 3) in the sense that a sphere is a smooth object (i.e., infinite number of 

samples is required for its exact reconstruction), while a prism is not. The new 

sampling scheme outperforms the traditional scheme in both situations. 
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Figure 4.2: 3-D reconstruction examples. Top row: Input silhouettes of poses 
(left to right) (0,0,1), (1,0,0) and (1,1,0). Middle row: 3-D models built from 
silhouettes in top row. Bottom row: Models all carved by a circular disk silhouette 
from different directions: (1,0,0) and (0,1,0) made the model at the left. (1,1,0) 
and (—1,1,0) made that at the center, (0,0,1), (1,1,1), (—1,1,1), (1, —1,1), and 
(—1,-1,1) made one at the right. To build the models silhouettes were used 
cumulatively from left to right. 
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Figure 4.3: Viewpoint distributions: the traditional (top) and the uniform (bot
tom). 
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Comparision of traditional and proposed sampling schemes 
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Figure 4.4: Comparison of the reconstruction quality using the traditional (V) 
and the (new) uniform ('x') distribution of viewpoints in reconstruction of a sphere 
(top) and a prism (bottom). 
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Figure 4.5: The prism used in the experiments in the voxelized space. 
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4-3.2 Effects of pose error and sampling rate 

In this section, we discuss the effects of pose error and sampling rate variation 

on silhouette-based reconstruction quality. We model error of the pose estimator 

under study [Chapter 3] by a white random process with a uniform distribution 

ranging from ±0.2 to ±10 degrees, depending on working condition of pose esti

mator (e.g., grid size, image resolution, depth quality/resolution, etc). We also 

vary the sampling rate to see how many samples are sufficient for a specific level 

of pose error and reconstruction quality. 

Because of its superior performance over the traditional sampling, the uniform 

sampling scheme (Section 4.3.1) is used. The object is a prism (Figure 4.5). We 

compare the reconstructed volume with the prism itself in voxel space and take 

the normalized difference as the measure for reconstruction error. The carving is 

performed over a cube of 201x201x201 by silhouettes of size 512x512. The same 

pseudo-noise pattern is used in all of the experiments (i.e., only the noise level is 

changed) to limit the random effect of noise on the results. 

The result is given in Figure 4.6 (left). For small levels of pose error (i.e., 

±0.2, ±0.5 and ±1 degrees; the lines that stick together on the graph), the effect 

of pose error is negligible (as compared to the true pose graph in Figure 4.4 

(bottom)). That means errors of less than ±1 degrees are tolerable by silhouette-

based volume reconstruction, at least for simple "rough" (Chapter 3) objects 

like prisms. The reason is that the factors affecting the reconstruction process 

(Section 4.3) dominate the small errors in pose. 

For higher values of error, we observe deviation from small error level curves. 

In high noise levels, interestingly, the increase of sampling rate cannot enhance the 

reconstruction quality (Figure 4.6 (left)). For example, with error of ±10 degrees 
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in pose, the reconstruction quality becomes almost independent of the sampling 

rate, while at an error level of ±5 degrees in pose, there is an inverse relationship 

between the number of samples and the reconstruction. Although some increase 

in the sampling rate causes some reconstruction degradation. 

The result is also depicted in Figure 4.6 (bottom) from another point of view: 

it is observed that reconstruction with a large number of samples is more sensitive 

to pose error (i.e., reconstruction degradation with the increase of pose error level 

is faster for a large number of samples). That is, since the total reconstruction 

error is small, a small error in pose degrades the quality considerably. It is also 

observed that when pose error is large enough (±10 degrees), the quality is de

graded regardless of the sampling rate: all curves approach a single point with 

the increase of pose error. Small and local deviations of some of curves from the 

trend of quality degradation by error increase are because of the randomness in 

the model assumed for pose error. 

4.4 Validity criterion for volume reconstruction by SFS 

The input to a silhouette-based reconstruction method is a set of silhouettes, each 

having a pose value. In this section, we address the relationships between the 

input silhouettes and their poses that must hold to produce a volume by SFS. 

These relationships can be verified to see if the correct poses are assigned to the 

input silhouettes. 

We denote the set of silhouettes (binary images: object 1, and background 

0) by Mi, and their (absolute) poses by Piy i — l,---,N. Volume reconstruc

tion is performed by projecting each voxel of the initial volume, which should be 

large enough to contain the whole reconstructed volume, to each silhouette in the 
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direction of its pose. The voxel is carved out if it is projected to a background 

pixel in at least one silhouette. In other words., the voxel remains in the final 

reconstructed volume if it projects to foreground pixels in all silhouettes. 

Note that we can always perform carving with one silhouette at a time (order 

does not matter) without a loss of generality. That is, for each silhouette, we 

carve out the voxels projecting to the background pixels. For the next silhouette, 

we continue with the remaining voxels. 

Definition. For a pixel fi E Fi (foreground pixels of Mi), A{fi) is defined as the 

set of voxels marked by fi (a pixel in foreground of Mi). That is, 

A(fi) = {v | Ri(v) = fi}, 

where Ri(v) is the projection on Mi in the direction of Pi. Note that each voxel 

is allowed to be marked by (at most) N pixels. 

For better visualization, consider the line passing through all the members 

of A(fi): this line is perpendicular1 to the Mi plane and pierces it at fi. The 

following theorem holds if the correct poses are assigned to silhouettes. 

Theorem 4.4.1 For each foreground pixel fi of Mit i — 1, • • • ,N, 

3 t> e A(fi) | Rj(v) G Fj V j = l } - . - , N . 

That is, there is at least one voxel marked by fi that is not carved out by any of 
the silhouettes. 

1 Orthographic projection is used for simplification. The same principles hold for weak per
spective projection [75] with appropriate scaling of the input silhouettes. 
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Proof. By contradiction. Suppose all of the voxels marked by fi are carved out. 

Then, there is no voxel v left in the reconstructed volume for which R\(v) ~ fi. 

However, the reconstructed volume is a superset of the visual hull [73] of the 

object, which is a superset of the object volume. Assuming an opaque object, 

there is no voxel of the object volume that can make pixel /,; in the foreground of 

Mi. This contradicts /» E F t . Q.E.D. 

4-4-1 Application to pose estimation 

The relationship between silhouettes and poses of an opaque object stated in 

Theorem 4.4.1, can help us verify the input to the SFS method. For instance, to 

a specific set of silhouettes, one may only assign certain poses. Otherwise, the 

silhouettes and their poses cannot belong to a real object. This is desirable for one 

interested in the pose estimation of the object: it means shrinking the solution 

space for pose. 

We are particularly interested in this application since we already have pose 

estimates (using methods of Chapters 3 or 5) we wish to verify. Thus, we adopt 

Theorem 4.4.1 to generate a measure of "validity" for a set of pose estimates, or 

equivalently, a measure of "wellness" for the reconstructed volume. 

We count a violation when Theorem 4.4.1 is violated for a pixel E Fifi = 
1, • • •, N. In other words, a violation happens when all voxels that are marked by 

fi get carved out by other silhouette(s). 

For a set of silhouettes and their poses, one can use the number of violations 

as a measure of validity of the set of input poses. That is, a better set of input 

poses makes fewer violations. Counting the number of violations by keeping track 

of voxels marked by each foreground pixel is cumbersome; fortunately, there is an 
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easier way to do this. 

We run SFS on the set of input silhouettes and their poses to get the re

constructed volume (V). Next, we project V onto each silhouette's plane. Each 

violation corresponds to one foreground pixel that no voxel is projected on it. 

Therefore, the number of violations for foreground pixels of M; is the number 

of "on" pixels in the image Mj © PH{V), where © denotes the XOR operation. 

Therefore, the total number of violations is given by summation over i— 1, • • •, N. 

To use as a reconstruction quality measure, this method is integrated with our 

silhouette-based reconstruction tool (Section 4.2). The resulted routine receives a 

set of silhouettes and their poses as the input and gives the reconstructed volume 

and the reconstruction quality factor as the output. The reconstruction quality 

factor is defined as the number of violations negated. Thus, a better volume 

reconstruction process is associated with a higher quality factor. The quality 

factor thus defined is always non-positive and the best possible reconstruction is 

associated with a zero quality factor. 

4.5 Concluding remarks 

In this chapter, we introduced a new sampling scheme for silhouette-based volume 

reconstruction. The new scheme outperforms the traditional scheme for the same 

number of samples. We investigated the effects of pose sampling rate (the number 

of silhouettes used for reconstruction) and pose error (the amount of deviation 

between estimated pose for a silhouette and its true value). We demonstrated 

that (Section 4.3.2): (1) low levels of pose error (up to ±1 degree) are tolerable by 

silhouette-based reconstruction for simple rough objects. (2) High levels of pose 

error cannot be compensated by increase in the sampling rate. (3) Reconstruction 
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at high sample rates is more sensitive to pose error. 

We also studied the relationships between silhouettes and their poses in the 

input to a silhouette-based reconstruction method. This study furnishes a SFS-

based volume reconstruction quality factor. 

Some ways to extend this work are studies on: one, effects of a random 

sampling scheme. Two, effects of silhouette quantization. Three, effects of volume 

quantization. Four, other metrics for reconstruction quality such as one based on 

comparison of silhouettes of the reconstructed object and the original object from 

several (e.g., a random set of) viewpoints. 
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Figure 4.6: Comparison of the reconstruction quality at various levels of pose 
error and sampling rates. Top: pose error (degrees) used as parameter. Bottom: 
the number of samples used as parameter. 
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5: Pose estimation and object reconstruction by volume 

feedback 

5.1 Introduction 

In this chapter, we form a volume feedback loop from the 3-D reconstruction tool 

of Chapter 4, and a variation of the pose estimation method of Chapter 3. That is, 

first, initial pose estimates for images in the input sequence are derived in a pre

processing step. Next, an approximate volume of the object is reconstructed from 

input silhouettes and initial pose estimates. This volume is then used by a pose 

estimation method (variation of the method in Chapter 3), for a new round of pose 

estimations. The new set of pose estimates are used for volume reconstruction, 

hence closing the volume feedback loop. 

This system proves to be functional (Section 5.5) by adding a block to im

prove pose estimates using the theoretically developed criterion of Section 4.4 for 

reconstruction quality by shape-from-silhouette. 

Similar to the method of Chapter 3, the method of this chapter neither as

sumes any model for the object at the outset, nor uses any feature points. 

Advantages of the method of this chapter over the method of Chapter 3 are: 

one, pose estimation and volume reconstruction are performed simultaneously for 

all images in the input sequence. Two, a single pose similarity measure is used 
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for all types of objects and all amounts of rotations. Three, this chapter's method 

does not require any depth-map at the outset since it builds up the depth-map for 

every input frame starting with the assumption of flat depth-maps for all frames. 

Four, thanks to the initial multi-reference pose estimation, the method can be also 

applied in situations where the frames are not necessarily ordered. These merits 

are achieved at the expense of longer processing times as compared to the method 

of Chapter 3. 

The ideal conditions for operation of the proposed method follow. 

• The object is convex and rigid. 

• The camera model is effectively approximated by either orthographic or 

weak perspective projections. 

Nevertheless, the method is successfully tested (Section 5.5.2) for inputs not sat

isfying some of these conditions. For more details and reasons of the above-

mentioned limitations, see Section 5.6. 

The remainder of this chapter is organized as follows. Section 5.2 provides 

an overview of the system and describes its building blocks. In Section 5.3, the 

integration of system blocks into the volume feedback loop structure is addressed. 

A basic account on complexity analysis of the system run time is given in Sec

tion 5.3.1. Section 5.4 is devoted to a theoretical study of convergence for the pro

posed system. To demonstrate the favorable performance of our system, results 

of several experiments on both synthetic and real input sequences are reported in 

Section 5.5. Some conclusions are drawn in Section 5.6. 
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5.2 Building blocks 

The basic modules of our proposed system (Figure 5.1) are described in this 

section. Before going through a detailed description of the modules, an functional 

overview of the system is given. 

First, an initial estimate of the object pose in each frame is made (Sec

tion 5.2.2). Then a volume of the object is reconstructed by shape-from-silhouette 

using the initial pose estimates. This volume provides the depth information re

quired for enhanced relative pose estimation (RPE; Section 5.2.1). The new es

timates are used to reconstruct a new volume of the object. This volume goes 

through a quality control mechanism (Section 5.3) and is fed to the RPE to close 

the feedback loop. Vital for the convergence to the true object volume, this block 

adjusts relative pose estimates to make a better volume in accordance with the 

quality factor introduced in Section 4.4. Convergence is checked by comparing the 

resulting set of relative poses to that of previous iterations. The loop is terminated 

if these two sets are similar. 

5.2.1 Relative pose estimator 

The relative pose estimator (RPE), the main part of the processing in the system 

(Figure 5.1), is used to estimate the relative pose between consequent frames. 

That is, each frame is used as the reference for the next one. According to this 

way, the very first frame has no reference. We consider the first frame as our 

global reference for the pose, having an absolute pose of 0. 

The method we use for RPE is very similar to the method of Chapter 3 

(published in [41]) for the pose estimation of a rigid body in several frames. The 
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method of Chapter 3 neither works with feature points, nor assumes a model for 

the object at the outset. The main restriction of this method is the requirement 

of a depth-map for at least one of the input frames. Inspired by the idea of 

[41], here we remove the depth-map requirement to build an stand-alone volume 

reconstruction method from regular image sequences. 

The idea of the RPE method we use here is to rotate the reference 3-D patch 

until its image becomes "similar" to the target frame. To generate the reference 

3-D patch, the texture of the reference frame is mapped onto its depth-map. The 

relative pose between the reference and target frames is then estimated by the 

amount of rotation required for the above mentioned matching. The selection of 

a similarity measure is quite important. As compared to the ones used in [41], 

the single similarity measure used here results in accurate pose estimates for both 

object types ("smooth" and "rough" as defined in [41]). In this way, the object 

type does not need to be identified at the outset for effective application of the 

method introduced in this chapter. 

The depth-map information fed to the RPE is always in the form of the 

volume; for the first time the object volume is reconstructed based on initial pose 

estimates. Other times the volume is reconstructed based on estimates produced 

in the last RPE call. To generate a textured 3-D patch from the reference frame 

and the volume, we either obtain a depth-map from the volume and map the 

reference frame texture on it, or map the texture on the volume itself. To texture 

the input volume, we either use all of the available frames to texture the whole 

volume (e.g. by voxel coloring), or just rotate the volume to the absolute pose 

of the reference frame (computed using the last estimate for relative poses) and 

texture map the reference frame onto the volume. In both cases above, the second 
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choices are used since they are computationally cheaper; in the former case, one 

processing step is eliminated, and in the latter case, the required texture mapping 

is a standard procedure which can be performed swiftly by the existing graphics 

hardware on most computers. 

Shape-from-silhouette builds the volume in the voxel space by carving [15]. 

Before mapping the texture of the reference frame onto the volume, we have to 

transform the volume from the voxel space to a mesh (vertices and laces) format. 

To this aim, we dilate the volume by a 3 x 3 x 3 structuring element. Then, a 

surface (mesh) is fitted through all the voxels belonging to the dilated volume, 

but not present in the original volume. 

After mapping the reference frame texture onto the reconstructed volume, 

the volume is rotated around its centre, and its images are compared to the target 

frame. To measure the similarity between the target frame and rotated reference 

patch, we use the sum of the filtered texture difference, normalized by the number 

of pixels in the common area of the silhouettes. More precisely, 

where, /\- is the relative pose between frames i (reference) and j (target), r 

denotes the amount of rotation with respect to the initial pose of the volume, 

which is set to TX=\ -Pfc-i,fc, where Pk-\,k is the pose between frames k — 1 and k 

from the last round of estimation. The texture difference function, r(.), is given 

by the following. 

Pij = argmin (r(r)} (5-1) 

r(r) Sp \lRef(p) ~ T̂arget (P) I 
\ \ M R e f n M T a r g e t \ \ P £ M f o f n M T a r g e t 

(5.2) 
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That is, for all pixels in the common area of the silhouettes of the target (Mr a T . g e t ), 

and of the image of the rotated reference patch (M/?£/), sum up the absolute 

difference of intensity values of target and reference, normalized by the number of 

pixels in D Mrarget- In other words, compute the average intensity difference 

between target and reference per pixel. 

Generally pose variables (P, P and r) are 3 x 1 vectors. The proposed 

system is fully capable of working with 3-D pose. However, in all experiments 

reported in this chapter scalar (1-D) poses are used. That is because much more 

time is required to run the system with 2-D or 3-D pose (the run time computed 

in Section 5.3.1 squared or cubed). 

The above formulation (Equations (5.1) and (5.2)) is for gray scale images. 

To extend the method to color images, there are two options: (1) before going 

through the method, sum up all (2/3 in the case of YIQ/RGB coloring scheme) 

color components to get the gray scale reference and target images; and (2) for 

each color component use the method to determine Pij. An estimate of the relative 

pose can then be computed as a function of these color poses. 

We observe that even a function as simple as the average of the color poses 

gives a better estimate than the estimate given by option (1), mentioned above. 

To reduce the effect of noise introduced in the imaging process (due to mis-

calibration, for instance), we employed a simple filter on the difference images 

(| Iftejip) — Irargetip) I) before summation over all pixels. The filter eliminates 

low intensity pixels from the sum. 

Throughout the experiments reported in this chapter, we use the average of 

color poses, derived from Equations (5.1) and (5.2), with filtered difference images. 
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Figure 5.1: Block diagram of the proposed system. Thick lines indicate the data 
flow of volume and the set of relative poses. The part in the dashed box is studied 
in Section 5.4. 
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5.2.2 Flat depth-map pose estimation (FDMPE) 

As the first step of our proposed method for volume reconstruction, we need to 

achieve an initial estimate of the object pose for each frame. 

To this aim, we use our relative pose estimation (Section 5.2.1) method for 

every pair of consecutive frames, assuming flat depth-maps for all reference frames. 

Other assumptions for depth can be made, however a flat depth-map seems to be 

the most impartial. 

Note that the assumption of depth (flat or other) does not restrict our method 

in any way. In other words, our method still works for arbitrarily shaped objects. 

However, the more the initial depth-map assumption is similar to the real object 

depth-map, the faster the method converges to the volume of the object. 

After making this initial estimate, a volume of the object is made by shape-

from-silhouette to be used for the RPE. To make this volume, we need the absolute 

poses assigned to all frames. Thus, we assign pose 0 to the first frame, and use 

the cumulative sum of the relative poses as the absolute poses of the other frames. 

5.2.2.1 Unknown frame order case: multi-reference FDMPE 

The method we just described can be used in cases where we know the order of 

input frames in advance, such as frames extracted from a video clip. When we 

do not have any information about the order of input frames, we use multiple 

reference frames for each target, and estimate the relative pose (with the assump

tion of a flat depth-map) between them. A table is made out of the results, pose 

estimates and difference measures for each possible pair of input frames (e.g., 

Table 5.1). 

For each target, we select one frame as the reference according to the follow-
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ing two rules, based on which Algorithm 1 is devised. Example 5.2.1 illustrates 

operation of Algorithm 1. 

• Maximum similarity. The selected reference frame should give the mini

mum difference (maximum similarity measure) at the estimated pose among 

all other reference candidates for this target. 

• Connectivity. One should be able to connect any arbitrary pair of frames 

through a chain of reference-target frames. That is because, for each frame, 

we should be able to compute the absolute pose required for volume recon

struction. To this aim, we may have to select the second most similar frame 

as the reference (i.e., relaxing the maximum similarity rule above). 

Algorithm 1 Selection of the best reference for each target. 
1: Sort pairs of frames in ascending order of their difference measures and put 

the result on the list L. Therefore, the first frame pair on L (i.e., L(l, 1) and 
L(l,2)) has the minimum difference measure. 

2: Construct the frame list F of length N (number of frames); Each element has 
a list of possible connected frames (CF; initialized empty) and a binary flag 
for connectivity check (CCF; initialized 1 for one arbitrary element, and 0 for 
others). 

3: for K = 1 to length(L) do 
4: Append L(K,2) to F(L(K, l)).CF. {Connecting L(K,2) and L(K, 1) ...} 
5: Append L(K, 1) to F(L(K, 2)).CF. 
6: if F(L(K, \)).CCF OR F{L{K, 2)).CCF then 
7: Set CCFs of F(L(K, 1)), F(L(K, 2)) and every frame on their CF lists 

to 1. 
8: end if {Connecting L(K,2) and L(K, 1): Done.} 
9: if all frames are connected (AND CCFs of all F elements) then 

10: Break. 
11: end if 
12: end for 
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Pose Estimates (Degrees) Difference Measures 
Target: A B C D E A B C D E 

<v o c 

A n/a 36 56 68 72 n/a 87 129 181 225 
<v o c B 0 n/a 44 64 88 139 n/a 98 154 191 
<D C 0 0 n/a 52 88 191 151 'n/a 119 156 

P h D 4 4 4 n/a 40 229 189 140 n/a 106 
E 0 0 0 68 n/a 294 251 187 91 n/a 

Table 5.1: Multi-reference flat depth-map pose estimates and difference measures 
for Example 5.2.1. 

Example 5.2.1 We use five consecutive frames, 10 degrees apart, from a prism 

(Figure 5.3). For simplicity, the relative pose estimation is performed over gray 

scale targets, and references are the results of summation over all color compo

nents. The results are given in Table 5.1. 

The L list is as follows. 

Difference measure 87 91 98 106 119 129 

Frame pair A B E D B C D E C D A C 

The connectivity is reached after the fifth iteration of the "for" loop (Algorithm 1). 

At this stage, the frames on the F list are connected as depicted in Figure 5.2. 

Therefore, A is the reference for B, B for C, C for D and D for E, as expected for 

an ordered sequence. E n d of example. 

C A D B E 

Figure 5.2: Connectivity diagram of the frames in Example 5.2.1. 



Chapter 5. Pose estimation and object reconstruction by volume feedback 77 

The amount of pose estimates is approximately four times the ground truth 

values (10 degrees). We may use the method discussed in Section 5.3 to get 

a scaled set of relative poses giving the best volume reconstruction quality. In 

contrast, we may always scale down the resulting pose estimates. Since volume 

reconstruction quality control is performed later during the process anyway, this 

choice is not critical as long as the order of frames is correct. Thus, the second 

choice is used for simplicity and to lessen computational burden. Therefore, the 

relative pose estimates between consecutive frames in Example 5.2.1 are 9, 11, 13, 

and 10 degrees, using a scale factor of four. 

Although performing the relative pose estimation among all pairs of frames 

is cumbersome, this has to be performed only once at the start of processing and 

does not need to be done in real time. 

5.3 Volume feedback loop 

The main contribution discussed in this chapter is to enhance pose estimations 

(equivalently, object volume estimations) through the feedback of volume (pose) 

information. That is, we reconstruct the object volume (based on the last round of 

pose estimations) and use depth information for a new round of pose estimations 

between consecutive frames. 

During the experimental verification of this method, we noticed that, al

though relative pose estimates approach the same pattern for the ground truth 

relative poses between frames, the sum of the relative pose estimates remains al

most constant through iterations of the volume feedback loop. Thus, even after 

several iterations, the pose difference between the last and the first frames is al

most the same as that value computed with the initial pose estimates, assuming 
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a flat depth-map. 

Example 5.3.1 In an experiment, 10 frames are taken from a textured prism 

every 10 degrees. Hence, the ground truth relative pose set is {10, • • •, 10}i xg, 

and the correct pose difference between the last and the first frames is 90 degrees. 

Except for the lack of corrective measures for the relative pose, the experiment 

in this example is the same as the first experiment reported in Section 5.5 with 

a high voxel resolution. The initial (flat depth-map) estimation gives a relative 

pose set of {5, 7, 8, 9,11,12,15,17,13}. After five iterations, we reach a relative 

pose set of {11.8,12.2,11.5,11.1,10.8,10.1,9.5,9.8,11.1} which does not change 

much during the next iterations (convergence). One may observe that the pattern 

of relative pose estimates appears to approach the ground truth: the standard 

deviation of the relative pose set changes from 3.9 degrees (initial estimation) to 

0.9 degrees (fifth iteration). Considering the precision of the method (less than 2 

degrees), the pattern of the relative pose at the fifth iteration is uniform, the same 

as that of the ground truth relative pose. However, the pose difference between 

the last and the first frames (i.e., the sum of the relative poses in each set) does 

not change much (from 97 to 97.9 degrees), and is several degrees off the true 

value (90 degrees). End of example. 

Deviation of the FDMPE results from the true values are because of the 

assumption flat depth-map for all input images. However, we still do not know 

why this deviation is not corrected through iterations of the volume feedback loop 

by itself. The theoretical convergence study of Section 5.4 does not shed any light 

on this matter either, since it assumes deviations from the true pose values are 

small. While the reason of this phenomenon is unknown, its dramatic result is 
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known: the reconstructed volume does not converge to the object volume, unless 

some control mechanism is employed. 

As mentioned above, the pattern of relative pose estimates converges to the 

ground truth, except for a scale factor. This observation, along with our work 

on validity criterion for shape-from-silhouette (Section 4.4), inspired a solution 

to remedy this problem. The method we developed in Section 4.4.1 takes a set 

of silhouettes and their relative poses as the input, and yields a quality factor 

for volume reconstruction as the output. Here, we use this quality factor in our 

algorithm to ensure convergence to the ground truth. 

To achieve correct estimates for a relative pose, we run the method for volume 

reconstruction quality control on the original set of relative pose estimates and 

two scaled sets of it: one set with a scale factor of below 1, and the other with a 

scale factor of above 1. Among these three sets of relative poses, we use the set 

that gives the best reconstruction quality. 

We use scale factors 0.9 and 1.1 based on the following observations. Scale 

factors very far from one (e.g. 0.2 and 5) do not make good volume candidates (see 

comments on initial pose estimation in Section 5.6). Scale factors very close to one 

(e.g. 0.9999 and 1.0001) make volumes same as the volume made by the original 

set of pose (unit scale) because of limited reconstruction resolution. Even if the 

accuracy were not limited, scale factors very close to one make the convergence 

time very long. Finding the optimal parameter values for the fastest convergence 

can be an extension to the method. For instance, scale factors farther from one in 

early iterations that approach one through the course of iterations may accelerate 

the method. 
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In Example 5.3.1, if we have a relative pose set1 of 5i.0 = {11.8, 12.2, 11.5, 

11.1, 10.8, 10.1, 9.5, 9.8, 11.1} by the end of the fifth iteration, we can make two 

scaled sets out of it: 5 0. 9 = 0.9 5Lo = {10.6, 11, 10.4, 10, 9.7, 9.1, 8.6, 8.8, 10} 

and = 1.1 Si.0 = {13, 13.4, 12.7, 12.2, 11.9, 11.1, 10.5, 10.8, 12.2}. Using our 

volume reconstruction quality factor, we see that 5o.9 gives the best reconstruction 

quality compared to Si.o and Si.\. Hence, we choose S0.9 as the relative pose set 

required in the next iteration. 

Our experiments (Section 5.5) show that the method for volume reconstruc

tion quality control ensures the convergence of estimated relative poses to the 

ground truth values. 

After each iteration, the estimated relative poses are compared to values from 

the previous round of estimation. The feedback loop is terminated if the difference 

between the two sets is smaller than a certain threshold. 

5.3.1 Complexity analysis 

The proposed system (Figure 5.1) has one feedback loop (volume feedback) pre

ceded by one processing block (FDMPE). The processing time also depends on 

how many times the loop is iterated before convergence. 

FDMPE takes 0(N 2 ) to complete since it performs computations for all pos

sible pairs of N input frames. In the case of ordered frames in the input, however, 

the run time of this block reduces to O(N) since computations are performed for 

all pairs of consecutive frames only. 

RPE takes the main part of processing time of the loop. Its processing time 

1 This set would change if the pose correction method were used in the previous iterations. It 
might be a good idea not to use the pose correction method within the first few iterations 
(Section 5.6). 
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is 0(N) since the frames are already ordered and computations are needed for all 

pairs of consecutive frames. 

Assuming the number of iterations needed for convergence is almost constant 

(justified by observing the results reported in Section 5.5), the total processing 

time for the system is approximated by O(N), and O(N) + 0(N 2) for the cases 

of known, and unknown frame order respectively. 

5.4 Convergence issues 

Although the estimated poses (and consequently the reconstructed volume) con

verge to their true values in a wide variety of experiments reported in Section 5.5, 

we want to know whether convergence occurs for any given input (i.e., segmented 

image sequence). In this section, we study convergence of the proposed method 

in the light of Poincare-Lyapunov theorem [76] adopted from perturbation theory 

for multi-variable non-linear systems. The result of this study is a convergence 

test for the proposed system at a given vector of relative poses. 

Consider the part of system inside the feedback loop (inside the dashed box 

in Figure 5.1). The input, s, and the output of this subsystem are n x 1 vectors of 

relative poses2, n = N—l (N: number of frames in the segmented image sequence). 

We denote the non-linear function of this subsystem by F(-). Assuming the sum 

of all relative poses does not need adjustment (i.e., always unit-scaled vector is 

chosen; see Section 5.3), F(-) is a time-constant function. 

2 Actually we also have reconstructed volumes both at the input and the output of the sub
system. However, these volumes only facilitate the processing and have no new information 
because they are reconstructed from input/output vectors of relative poses and the segmented 
image sequence at the system input. Also, the segmented image sequence is not considered as 
an input in the convergence analysis, since it does not change through the course of iterations. 
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Since F(-) is put in a feedback loop, the iteration equation is given by 

A s 

which is also the measure of convergence: if || F(s) — s || is less than a threshold, 

the feedback loop is stopped. We are interested in studying behavior of F(-) in 

the neighborhood of q, a point (or vector; we use these two words interchangeably 

hereafter) for which F(q) = q. Substituting s = y + q into the iteration equation 

above, we obtain 

— = F(y + q) - y - q 

The Poincare-Lyapunov theorem [76] is quoted below. 

Theorem 5.4.1 If (a) all solutions of the linear system ^ = Ax approach the 
origin as t —>• oo, (b) the initial value, c, is sufficiently close to the origin, (c) 
the non-linear term, h(x), consists of a vector all of whose components are power 
series lacking constants and linear terms, then the solution of 

^ = Ay + h{y), 

y(o) 

approaches the origin as t —> oo. 

Restating our problem in terms of Theorem 5.4.1, we want to know whether 

or not the solution of 
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y{0) = Sinu - q 

approaches the origin as t —> oo, where G(y) = F(y + q) — y — q, and Sinn is the 

initial relative pose estimate vector given by FDMPE (Section 5.2.2). 

Before using Theorem 5.4.1, we have to expand G(y) in form of Ay + h(y) 

according to condition (c) of the theorem. A is total derivative[77) of Q(-) at the 

origin. Functions F(y) and consequently Q{y) do not have closed forms. Therefore, 

we have to estimate the total derivative numerically. 

Assuming small test vectors (yj), h(yi)s are small as well. Following the least 

squares (LS) approach, we want to find an A to minimize £ || h(yi) ||2. That is, 

A = a r g m m ^ \ \ G { y m ) ~ B y m \ \ 2 . (5.3) 
Vm. 

The solution (see Section 5.4.1 for derivation) is 

A = G Y T { Y Y T ) ~ \ (5.4) 

i n which Y n x p = { y u y 2 , • • - , y p } , G n x p = { G { y i ) , G { y 2 ) , • • - , G { y P ) } , and T stands 

for transposition. 

We can improve LS estimation (̂ 4) of G(-) total derivative by increasing the 

number of test vectors (p) and distributing the test vectors uniformly. In our 

experiments, we used Y = e{I, —1} meaning p = 2n vectors on both positive and 

negative directions on all n coordinate axes. Ideally, e is desired to be very small, 

however since computation of F(-) involves quantized reconstruction and imaging, 

it cannot be less than half a degree in practice. 

Condition (b) of Theorem 5.4.1 is met, if Sinu is close to q. A given by 
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Equation (5.4) is a good estimate of the total derivative of Q(-) at the origin, 

therefore, condition (c) of the theorem is also satisfied. Condition (a) is satisfied 

if, and only if, all eigenvalues of A have negative real parts [78]. Hence, a test for 

convergence of the proposed method to qn x i , a given vector of relative poses, is 

stated in Algorithm 2. 

A l g o r i t h m 2 A test for convergence of the method to relative pose vector q. 
1: Q(-) must be zero at the origin. That means F(q) must be equal to q. 
2: Select a number (p) of small test vectors, Y n X p = {2/1,2/2, • • • ,yP}, uniformly 

distributed around the origin. 
3: Compute G n x p = {G{y i ) , Gfa) , • • • , G(y P ) } -
4: Use Equation (5.4) to estimate the total derivative of G{-), A, at the origin. 
5: Compute eigenvalues of A. The proposed method converges to q, if all eigen

values of A have negative real parts. 

All cases presented in Section 5.5.1 are examined by this test (Algorithm 2) 

for convergence to the ground truth vectors of relative poses. Results confirm 

convergence universally. 

5.4-1 Least squares estimation of total derivative 

The least squares estimation of G(-)'s total derivative at the origin requires min

imization of the following error function, E(B), with respect to B — {bij}. The 

notation is the same as that of Equation (5.3). 

v 
E(B) = E 110 W - Bym\\2 

m=l 
V 

E (G(ym) - Bym)T(G(ym) - Bym) 
m=l 

V 

E iO(ym)TG(ym) - 2yT

mBTG{ym) + yT

mBTBym}. (5.5) 
m—l 
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The last expression is reached using yJriBTQ(ym) = Q{ym)TBym. 
To this aim, we solve the following set of equations simultaneously for the 

elements of B . 

dE(B) . 1 , — - — = 0 , i = l , - - - , n , j = l , - - - , n . obij 

We substitute E(B) from Equation (5.5) and change the order of the two linear 

operators, and £ m = i - We reach the following equation. 

0 = 9E(B) 
dbij 

= t ~ [ 0 ( y m ) T G ( y m ) - 2 y l B T g ( y m ) + y l B T B y m ) . 
m=i °°n 

In order to derive the solution in matrix form, we switch to a new notation: Y n x p = 
{yi j} = {j/1,1/2, •••,%,}, G n x p = {gi j} = 0(1/2), •• - ,0{y P )} , and x * m / x m , 

is the mth column/row of matrix X. In the following, the partial derivatives are 

computed after application of.the new notation. 

0 = HQS. 
db^ 

v Q 

= YsarT ~ 2yJm B T9*m + y 1 m B T B y m i ) 
m=l O0ij 

— 2 ^ ] yj'm(̂ i*y*m dim)-
m=l 

The last sum must be zero and can be written as the following vector product. 

{KY - gim)yl = 0. (5.6) 
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The scalar Equation (5.6) is for a fixed % and a fixed j. For a fixed j and Vi, 

we obtain an array of scalar Equations (5.6) that can be written as the following 

vector equation. 

(BY -G)yl = QnxX. (5.7) 

Vj, we have an array of Equations (5.7) that can be summarized in one matrix 

equation: 

(BY - G)YT = 0nxn =*• BYYT = GYT. 

Under the circumstances discussed in Section 5.4, the inverse of YYT exists. 

Therefore, 

B = GYT{YYT)-\ 

5.5 Experiments 

Results of several experiments are reported in this section to show the reliable 

performance of our proposed method in various conditions. The experiments 

are performed on three different textured objects: a sphere, a prism (synthetic se

quences) and a human head (real sequence). For the synthetic sequences, we select 

pose samples and use our method to estimate the relative poses between frames 

and to reconstruct the volume of the object. The experiments are conducted for 

different pose sampling rates and space (voxel) resolutions. The good result of 

the head sequence shows viability and robustness of the proposed method. 



Chapter 5. Pose estimation and object reconstruction by volume feedback 87 

5.5.1 Results for synthetic sequences (textured prism and sphere) 

Three views of each object are shown in Figure 5.3. Color 3-D versions of the 

objects used in the experiments are available from [2]. A chroma-keying scheme 

is used to segment the synthetic sequences. 

Figure 5.3: Front, left and top orthographic views of the two objects used in the 
experiments. For color 3-D models of the objects, see [2]. 

In our first experiment, 10 pose samples are taken every 10 degrees (ground 

truth) from the prism. These pose samples are fed to the system with voxel 

resolutions of 111 (Low), 161 (Moderate), and 211 (High). The voxel resolution 

is defined as the number of voxels making the length of the prism. The output 

of the system after each iteration is compared to the ground truth. That is, the 

resulting set of estimated relative poses after each iteration is compared to the set 

of ground truth relative poses. The results are given in Figure 5.4. 

For all three voxel resolutions, the initial pose estimation is the same, hence 

the same error value. At first glance, it seems there is no relationship between the 
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I t e r a t i o n 

Figure 5.4: Maximum pose error for low, moderate and high voxel resolutions. 
Iteration # 0 is the flat depth-map (initial) pose estimation. 

voxel resolution and quality of estimation. However, one can see that for a higher 

voxel resolution, the convergence criterion is reached later, and the maximum 

amount of pose errors of the final iteration is less. 

In Figure 5.4, there is a substantial overshoot at the third iteration for high 

voxel resolution. The same overshoot also occurs in other graphs where the results 

of this experiment are used for comparison. We reviewed the experiment for 

possible mistakes; the results are correct and some fluctuations are normal through 

iterations before convergence. 

It is imperative to see how the reconstructed volume evolves during itera

tions (Figure 5.5). The voxel resolution is set to High (211). It is observed that 



Chapter 5. Pose estimation and object reconstruction by volume feedback 89 

the reconstructed volume gradually converges to the ground truth volume of the 

object. Note that although the maximum pose error value for the last iteration 

is slightly higher than that of its previous iteration (see Figure 5.4, "High" voxel 

resolution curve), the volume improves in the last iteration by having the same 

orientation as the ground truth volume. 

Figure 5.5: Evolution of reconstructed volume through iterations. From left to 
right: initial (flat depth-map results), one iteration before the last, the last itera
tion, and ground truth volume, un-textured, all shown from the same view. 

The second experiment investigates the performance of the system for differ

ent sampling rates. At the constant voxel resolution of 211, we sampled the prism 

with periods of 6.9 (High sampling rate), 10 (Moderate), and 15 (Low) degrees. 

The sampling period is defined as the amount of rotational distance between two 

consecutive poses. The resulting set of estimated relative poses after each iteration 

is compared to the set of ground truth relative poses (Figure 5.6). 

One may see that, although there seems to be no relationship between the 

sampling rate and the maximum pose error through iterations, the final value of 

the maximum pose error is lower at higher sampling rates. However, if we nor

malize the results by sampling periods (Figure 5.7), we see that during iterations, 

Initial Iteration 6 Iteration 7 (Last) Ground truth 
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Figure 5.6: Maximum pose error for low, moderate and high sampling rate. Iter
ation # 0 is the flat depth-map (initial) pose estimation. 

lower sampling rates result in lower normalized error levels. It is also observed 

that the final value of the normalized error is independent of sampling rate. The 

search for maximum similarity in the RPE routine is discrete. The final value 

of normalized error depends on the gap between two consecutive points on that 

search grid, if the convergence criterion is tight enough. 

A sphere, an example of a smooth3 object, with a black and white texture, 

is selected as the subject of the next experiment. 16 poses of the sphere, taken 

3 Unlike a rough object (e.g., a prism), a smooth object does not have any (sharp) edges, 
hence its silhouette does not change abruptly by small rotations; in the case of a sphere, the 
silhouette does not change at all. Also unlike a rough object, even a small rotation reveals 
part of the object not seen in the previous pose. See also [41]. 
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Figure 5.7: Maximum pose error (normalized by sampling period) for low, mod
erate and high sampling rate. Iteration # 0 is the flat depth-map (initial) pose 
estimation. 

every 12 degrees, are fed to the system with a 211 voxel resolution. The results 

are satisfactory (Figure 5.8). 

5.5.2 Human head sequence 

In this experiment, eleven frames of a sequence showing a human head are fed to 

the system as input. Frames 1, 6, and 11 are shown in Figure 5.9. AH frames and 

their silhouettes (semi-automatically computed based on color) can be obtained 

from [2]. The following merits of the system will be shown by good performance 

of the system, that is, successful reconstruction of the head volume in this exper-
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Figure 5.8: Maximum pose error for the sphere. Iteration # 0 is the flat depth-
map (initial) pose estimation. 

iment. The system is shown to be robust to the following effects. 

• Shadow. Unlike frames of the synthetic sequences used in the experiments 

of Section 5.5.1, shadow is present in parts of the frames in the head se

quence. 

• Imperfect segmentation. The method used for segmentation classifies 

some background pixels as the silhouette of the object. 

• Translation. The object (head) in this sequence undergoes translation, as 

well as rotation [2]. 
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Figure 5.9: Frames 1,6, and 11 of the head sequence, the input to the system in 
the experiment reported in Section 5.5.2. 

5.5.2.1 Object translation compensation 

The original proposed system (Figure 5.1) only permits rotation of the object 

in the input sequence. To handle translations, the following adjustments are 

made. One, all frames of the input sequence are translated so that the centres of 

mass of their silhouettes are placed at the same point. Two, in the RPE block 

(Section 5.2.1), we compensate for the translation between the reference patch 

and the target before searching for their relative pose. 

The first task above is conducted by computing the centre of mass for each 

silhouette. Next, each frame is copied into a certain template so that the centre 

of mass of its silhouette falls at the same point as the centre of the template. 

Performing this task prevents the opposing silhouettes from carving out details 

generated by each other (Figure 5.10). 

Compensation for the translation between the reference patch and the target 

in RPE block (the second task above) is performed by computing a single optic 

flow vector for all pixels on the foreground using the first method described in [79]. 
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Figure 5.10: The silhouettes of frames 1 (Mi) and 11 (Ma) of the head sequence. 
M n subtracted from flipped M i . Details (black/white parts) carved by M n / M i 
are destroyed by the other silhouette, unless the silhouettes are moved to have the 
same centre of mass (Section 5.5.2). 

The 3-D reference patch is then moved according to the computed translation 

vector. The usual problems with optic flow computation methods are avoided 

since only a single vector is computed based on the motion information of a large 

number of pixels. For more details, see Appendix B. 

5.5.2.2 Results 

The results are given in Figures 5.11 and 5.12. Note that, except for the sum of 

relative poses (i.e., the amount of absolute pose for the last frame), we do not 

have any other information about the true values of poses, either relative or abso

lute. That is because the input sequence is shot in an uncontrolled environment 

with a regular consumer camera. Therefore, unlike the previous experiments, the 

performance cannot be checked by comparison of the pose estimates to the true 

values. 

To see the improvement of the pose estimates through iterations, the sum of 
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Figure 5.11: The sum of relative poses through iterations for the head sequence. 
The ground truth value of the sum is 180 degrees. 

all relative poses is monitored (Figure 5.11). The sum approaches the true value 

of 180 degrees and, at the final iteration, the sum differs only 7 degrees from the 

true value, which means an average error of only 0.7 degree on each relative pose. 

The reconstruction quality factor is also increasing through iterations (Fig

ure 5.12); the best reconstruction quality occurs at the last iteration. Note that 

because of imperfect segmentation of the input sequence, the final value of the 

quality factor for this sequence is approximately 20% lower than the corresponding 

values for the synthetic sequences of Section 5.5.1. 

One also observes the convergence to the true volume qualitatively (Fig

ure 5.13). The reconstructed volumes at four iterations are used to render the 
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Iteration number 

Figure 5.12: The reconstruction quality factor through iterations for the head 
sequence. 

first frame of the sequence. In other words, the reconstructed volume is textured 

and observed at the absolute pose estimate of the first frame in several iterations. 

The details of the object (especially notice the nose and lips area) absent from the 

reconstructed volume in early iterations, appear gradually and are fully present 

in the final volume made at the final iteration. 

Compared to the experiments with synthetic input sequences, the head se

quence seems to require more time to converge, perhaps because it is a more 

complicated object with more details. Also note that the number of frames re

quired for perfect reconstruction of a prism is 2 (one on the prism axis, the other 

perpendicular to the axis). This number is infinite for a human head. In the case 
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that only a certain level of reconstruction accuracy is required, we still do not 

know how many input frames are needed. This question is listed as a future work 

in Section 5.6. 

5.6 Concluding remarks 

In this chapter, the question of "How to reconstruct object volume using a certain 

set of input images?" is addressed. In some situations, however, we have to select 

a subset of the input images. For example, in the case of availability of a large 

number of input images, a subset of images are selected to maintain a desirable 

level of accuracy in volume reconstruction, as well as a reasonable processing 

time. Considering that the processing time of our method is 0(N 2) + O(N) (N 

is the input size; Section 5.3.1), the question of "How much input is needed for a 

certain reconstruction precision?" is of importance, and should also be addressed 

in future work. 

The initial pose estimation with a flat depth-map assumption (Section 5.2.2) 

is of critical importance. That is, in the case that initial set of pose estimates are 

way off the ground truth, the system may not converge to a good solution at all. 

One might use a random search tool, such as a genetic algorithm, to search the 

solution space for the relative pose set that gives the best reconstruction quality 

(Section 4.4). In this way, although a good initial solution can speed up the 

method towards convergence, a bad one cannot lead to a total disruption. 

In Section 5.5.2, successful volume reconstruction and pose estimation from 

an un-calibrated input image sequence is reported. That is, while volume recon

struction and feedback use orthographic projection (or weak perspective4 [75]), 
4 The assumption of weak perspective projection, even in small distance/size ratios, introduces 
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the method is operational for regular video footage as long as perspective effects 

are small (i.e., the camera is not too close to the object and the object remains 

close to the optical axis of camera). 

For segmentation of the object from background, we used a semi-automatic 

method for the real sequence and chroma-keying (a production technique) for 

the synthetic sequences. Although our experiments showed the robustness of the 

method to un-calibrated input images and errors in segmentation, comprehensive 

study of the effects of errors in segmentation and camera parameters has to be 

conducted in a continuation of this work. 

Shape-from-silhouette is only able to reconstruct the object volume up to its 

visual hull [73]. Due to this inherent limitation, our method cannot reconstruct 

the volume of concave objects better than their visual hull accurately. In the case 

of a concave object, however, the resulting volume can be refined, using photo-

consistency conditions [81], to a better approximation of the true object volume. 

One possible extension to this work is using other visual cues (e.g., shading), 

when available, along with silhouette information to enhance the reconstruction 

accuracy, especially for concave objects. Another line of future work is to handle 

paraperspective [75], and full perspective input images. 

Currently, the search for the estimate of relative pose (Section 5.2.1) is ex

haustive. Use of a heuristic search instead, can expedite the whole system, since 

RPE is the major part of the processing. A possible disadvantage is that a heuris

tic search is prone to error. Thus, we have to study how much error we can afford 

in estimation of relative poses, and ensure the error level of the selected heuristic 

negligible errors as long as the object lies close to the optical axis of camera [80] (i.e., the 
camera is focused on the object). Therefore, assumption of orthographic or weak perspective 
is not a serious limitation for our method. 
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search tool is less than the permitted error level. 

In addition, to speed up the process, we are investigating the elimination of 

the relative pose correction step (Sections 5.3 and 4.4.1) in the few first iterations. 

The intuition behind this idea is to let the system learn the pattern of relative 

poses before trying to correct possible scaling errors. Questions, such as "How 

many iterations should be exempted from pose correction to leave the quality of 

the final reconstructed volume unchanged?" should be addressed in the feasibility 

study for this alteration. 
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Figure 5.13: The first frame of the sequence, rendered from the volumes recon
structed at iterations (from left to right, and top to bottom) 0 (initial estimation), 
1, 7, and 9 (final). Note gradual improvement of details, especially in the lips and 
nose area. 
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6: Conclusion 

In this chapter, an extended summary of the thesis is given. The summary 

includes contributions made to the literature (a distinctive list of contributions is 

given in Section 2.5). A number of ways to improve, and generalize the methods 

introduced in this thesis, along with their limitations, are also discussed. 

6.1 Extended summary 

Background 

The three-dimensional perception of an object (a scene) is closely related to the 

ability to distinguish between various poses of the object (pictures taken from 

different camera viewpoints). Several methods [Chapter 2], such as shape-from-

silhouette, light field rendering, and space carving using photo consistency, have 

addressed reconstruction of an object (a scene) from its images, taken from known 

poses (camera viewpoints). That is, these methods are not readily usable for ex

traction of 3-D information from monocular video sequences. Among the existing 

methods that can provide the required pose information, only feature-based meth

ods function for general objects and are suited to images taken in uncontrolled 

environments. Feature-based methods, however, suffer from their need to detect 

and track feature points across images in the sequence. 
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Applications 

Applications for the central method developed in this thesis include the follow

ing [Chapter 1]: creation of digital museums, 3-D extensions to MPEG video 

coding standards (by 3-D object tracking in video), and generation of virtual en

vironment (e.g., photo-realistic, computer generated animation), all from regular 

video footage that are shot in uncontrolled environments. The system also gen

erates an index of object poses for frames of the input sequence. Such an index 

can be used as an aid to existing image or video content-based retrieval engines, 

to answer higher-level, more complex queries. 

Contributions 

A detailed description of contributions is given below. A list of contributions, 

without details, is given in Section 2.5. 

Multi-objective relative pose estimation 

A novel approach for rigid object pose estimation selects one frame as the refer

ence for object pose and projects it to its depth-map, to create a 3-D reference 

patch [Chapter 3]. The reference patch is then rotated until it reaches a view 

that seems "similar" to the unknown-pose view. A number of pose similarity 

measures were tested for different types of objects, undergoing various amounts 

of rotation from the reference pose. It is shown that the sum of texture and mask 

differences, in most cases, can be used as an effective pose similarity measure, 

capable of unique determination of the correct pose. A number of optimization 

methods (e.g., a genetic algorithm) are used as the feedback that relates pose 
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comparison to the reference frame rotation. The study recommends using differ

ent similarity measures and feedback methods for different types of objects. The 

proposed method has the following advantages over the existing pose estimation 

approaches: one, it is general, not model-based. Two, unlike template matching 

methods, it does not require a learning phase prior to operation. Three, it is not 

vulnerable to problems with feature-point detection, tracking, and low density of 

feature points. 

3-D modeling by shape-from-silhouette: effects of sampling rate and pose error 

As mentioned above, pose information is used by a reconstruction method (shape-

from-silhouette, selected for simplicity) to generate a 3-D model of the object 

shown in the video. The quality of the reconstructed 3-D model depends on the 

silhouette samples (viewpoint distribution), among other things. An improved 

viewpoint distribution is introduced and its performance is compared to the ex

isting method empirically. Also, the effects of pose sampling rate variation and 

different levels of pose error, on silhouette-based reconstruction quality, are inves

tigated. It is shown that, in the presence of considerable pose error, increasing 

the sampling rate cannot enhance the reconstruction quality, and that the recon

struction process is more sensitive to pose error at higher sampling rates. 

3-D modeling by shape-from-silhouette: validity criterion 

Specific relationships between the input silhouettes and their poses must hold, in 

order to produce a valid volume by shape-from-silhouette. These relationships, 

which are introduced for the first time by the author, can be verified to check 

if correct poses are assigned to the input silhouettes. Based on verification of 
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these relationships, a novel quality factor for volume reconstruction by shape-

from-silhouette, is developed and used to select the best set of pose estimates 

from several candidates. 

Elimination of the depth-map requirement by volume feedback: simultaneous pose 
estimation and object reconstruction 

Multi-objective pose estimation [Chapter 3] requires the depth-map for at least one 

frame of the input sequence. Thus, the method has to rely on another technique 

(e.g., stereo vision). To eliminate this requirement and to make the method the 

first stand-alone correspondence-less method for volume reconstruction and pose 

estimation from video, a volume feedback scheme is adopted [Chapter 5]. Initially, 

the object pose is estimated in each image, assuming flat depth-maps. Shape-

from-silhouette is then applied to make a 3-D model (volume), which is used for 

a new round of pose estimations, this time by a model-based method that gives 

better estimates. Before repeating this process, by building a new volume, pose 

estimates are adjusted to reduce error by maximizing a novel quality factor for 

shape-from-silhouette volume reconstruction. The feedback loop is terminated 

when pose estimates do not change much, as compared to those produced by the 

previous iteration. 

Based on a theoretical study of the proposed system, a test of convergence 

to a given set of poses is devised. Reliable performance of the system is also 

proved, by several experiments on both synthetic and real image sequences. Com

putational complexity of the proposed system, and effects of sampling rate and 

voxel resolution on pose error are studied. In addition to the merits of the multi-

objective pose estimation technique, elaborated in Chapter 3, the new system has 
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the following advantages: one, translation of the object in the input sequence is 

allowed and is compensated for in two stages [Section 5.5.2, Appendix B]. Two, 

the frames in the input sequence are re-ordered to achieve the best possible pose 

estimation [Section 5.2.2]. Three, a single procedure works for different types of 

objects and different amounts of relative pose. 

6.2 Limitations 

Specific limitations of each method are discussed at the end of the corresponding 

chapters. In the following, general limitations of the approach are reviewed. 

The proposed pose estimation methods fail to function for un-textured ob

jects. Note that even the human visual system cannot effectively distinguish pose 

or volume of a un-textured object under uniform illumination. That is, when no 

visual clue (e.g., shading or texture) is available except for silhouette changes (if 

any). 

As a result of using shape-from-silhouette for volume reconstruction, the re

construction accuracy is limited to that of the visual hull of the object [73]. That 

is because SFS-based reconstruction relies on the object silhouettes, which are not 

affected by object concavities (e.g., the nostrils in human face) at all. Note that 

if the method is used for generation of a virtual object, the model usually looks 

fine after texturing (e.g., the nostrils are coloured black, which is the case, unless 

in a special lighting situation). 
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6.3 Future work 

In addition to the following, a few improvements and extensions, for each specific 

method, are discussed at the end of the corresponding chapters. 

Short term goals 

• In what manner and how much errors in segmentation of the input images, 

and camera calibration affect volume reconstruction and pose estimation 

accuracy? 

• Use of other reconstruction methods, instead of shape-from-silhouette, in 

the volume feedback structure. At a higher computational cost, they may 

result in a better reconstruction quality, especially for concave objects. 

Long term goals 

• Fusion of depth information provided by other visual clues (e.g., shading). 

• Fusion of volume (depth) information acquired from other video sequences or 

pictures of the subject. This may require use of a new volume representation 

that accommodate minor changes (non-rigidity) in the subject. 

• How much input is needed for a certain reconstruction accuracy? 

• A nearly real-time 3-D information retrieval system from video, based on 

the proposed approach may be achieved by converting codes from Matlab to 

C++, implementation on dedicated hardware, and optimizing the methods 

for speed. 
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• Application of the accelerated method, as described above, to very low bit-

rate 3-D video coding, as outlined in Section 1.2.3. 

• Application of the enhanced method, as described above, to non-rigid vision-

based tracking of human body (or parts, e.g. hands) for the purpose of 

human-computer interaction (HCI). 
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A: Orthographic projection 

Here, we describe how to project a point of material cube (Section 4.2) a = 

( a i , d2 , a z ) T to a plane with normal n = ( n - i , n z , n z ) T to find out if the projection 

lies inside or outside of the silhouette from that pose. T denotes transposition. 

The material cube is assumed to be centered on the origin of the coordinates 

O = (0, 0, 0) T. For the point a and the normal n, consider the plane P passing 

through a with the normal n. We want to derive 2-D coordinates of a in this 

plane. Then, we can tell if a is projected within silhouette or not (Figure A.l). 

Figure A.l: Orthographic projection onto the silhouette plane 

We define xo, the center of view, as the point where a line emanating from 

O and perpendicular to the plane P , pierces that plane. x 0 will be regarded as 
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the origin of the 2-D coordinates in which silhouette information is given. We 

do so because in our method (described in Section 4.2), the cylindrical volumes 

are supposed to aim at O, the origin, as their middle point. x 0 must satisfy the 

following equations: 

n • (x0 — a) = 0 

xo x n — O 

where • and x denote dot and cross vector products respectively. The first equa

tion states the fact that xn is on the plane P, while the second tells us that the 

direction of segment Ox0 and n are the same. Given that the length of n is 1, the 

solution to the system above is, 

xQ = (n • a) n, (A.l) 

after simplification. The last step to find a 2-D coordinate system is to define 

unit vectors in the plane P. Assuming the images, from which silhouettes are 

extracted, are taken by a camera with 0° of roll (i.e., the horizon line remains 

horizontal in the image), we define the horizontal unit vector, as the unit 

vector perpendicular to vectors n and (0,0,1)T. And the vertical unit vector, Ij, 

is defined as the unit vector normal to Ii and n. Symbolically, 

( 0 , 0 , l ) T x n 
* | | (0,0, irxn| | ' 

n x Ij 
J WnxIiW 

where || • || is vector length operator. Doing the math and simplification gives 
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(note that ||n|| = 1) the following. 

It = 

- n 2 

Tlx 

V 0
 J 

^(1 " "§) 

- n 3 n i 

- n 3 n 2 

V n5 

(A.2) 

J 

When |n 3 | = 1 (i.e., the normal vector and Z-axis are in the same direction), 

Ii and Ij become undefined. This situation occurs when silhouettes are from top 

and bottom views of the object. We define Ii and Ij for these situations as follows: 

(A.3) 

(1,0,0)T for n = ( 0 , 0 , l ) T 

(-1,0,0) r for n = (0,0,-1) T 

/; = (0,1,0) T 

The above definition ensures that (Ii x Ij) \\ n (i.e., (Ii,Ij,n) make a basis 

for a right-handed coordinate system). Our choice makes definition of Ii and Ij, 

in special cases, compatible to the regular derivation discussed above. 

Now its fairly simple to find projection of a onto the plane P, in which 

silhouette data are given: 

ax = (a - xQ) • Ii 

ay — (a — XQ) • Ij, 
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where a x and a y are X and Y coordinates of a point a of the material cube projected 

orthographically onto the plane P (with normal n), in which silhouette data is 

given (Figure A.l). Ii and Ij are unit vectors in the plane P, which are given by 

Equations (A.3) and (A.2). x 0 is the middle point of the silhouette frame and is 

calculated by Equation (A.l). 
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B : T r a n s l a t i o n c o m p e n s a t i o n i n t h e R P E b l o c k b y o p t i c f l o w 

The following lines are added to the RPE block to compute a single value 

optic flow (function svOF(.)), and to move the 3-D reference patch accordingly. 

All codes are in Matlab. 

transComp=svOF(double(iRef),iTarget) 

camdolly(-transComp(2), transComp(l), 0, 'movetarget', ' p ixe l s ' ) 

The first method described in [79] is implemented in the following function. 

Rx, Ry, and Rt denote §f, and R, G, and B are the colour components of 

the RGB colouring scheme. Spatial partial derivatives (such as Rx) are computed 

for iO, the "average" image of iRef and iTarget. All partial derivatives are 

computed for the centres of all four-pixel neighborhoods (i.e., four adjacent pixels). 

function u=svOF_(iRef.iTarget,iO) 

7. Single Value Optic Flow for foreground pixels , where 

7, Rt+Bt+Gt are non-zero. 

7. This routine gives a correct answer of flows up to 1 p i x e l . 

7. Use svOF() for larger flows (translations). 

if nargin==2, iO=(iRef+iTarget)/2; end 
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Dt=iTarget-iRef; 

Rt=Dt(:,: ,1); 

Gt=Dt(:,:,2); 

Bt=Dt(:,:,3); 

Rt=filter2([.25 .25; 

Gt=filter2([.25 .25; 

Bt=filter2([.25 .25; 

.25 .25],Rt,'valid') 

.25 .25],Gt,'valid') 

.25 .25],Bt,'valid') 

Rx=filter2([-.5 

Gx=filter2([-.5 

Bx=filter2([-.5 

Ry=filter2([-.5 

Gy=filter2([-.5 

By=filter2([-.5 

.5;-.5 .5],i0( 

.5;-.5 .5],i0( 

.5;-.5 .5],i0( 

-.5;.5 .5],i0( 

-.5;.5 .5],i0( 

-.5;.5 .5],i0( 

: ,1 ),'valid') 

: ,2),'valid') 

:,3),'valid') 

:,1),'valid') 

:,2),'valid') 

: ,3),'valid') 

msk=(Rt~=0)I(Gt~=0)I(Bt~=0); 

if ~any(msk(:)), u=[0;0]; return, end 

Rx=Rx(msk);Ry=Ry(msk);Rt=Rt(msk); 

Gx=Gx(msk);Gy=Gy(msk);Gt=Gt(msk); 

Bx=Bx(msk);By=By(msk);Bt=Bt(msk); 

A=[Rx Ry;Gx Gy;Bx By]; 

b=-[Rt;Gt;Bt]; 

u=inv(A'*A)*A'*b; 
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The function above, svOF_(.), fails to compute an optic flow (translation) 

larger than one pixel. The following function, svOF(.), calls svQF_(.) to recover 

the translation recursively, one pixel at a time. 

function uv=svOF(iRef,iTarget) 

°/, single value OF for foreground pixels, where 

'/, Rt+Bt+Gt are non-zero. 

% Each +1 in uv(l)/uv(2) means a down/right iRef shift 

'/, i s required to match iTarget. 

for K=-l:l,for L=-l:l, 

nu=svOF_(circshift(iRef,[K,L]).iTarget); 

u(K+2,L+2)=nu(l); 

v(K+2,L+2)=nu(2); 

end, end 

n=u.'2+v.~2; 

[K,L]=f ind(n==min(n(:))); 

uv=[K(l),L(l ) ] - 2 ; 

if all(uv==[0 0 ] ) , return, end 

uv=uv+svOF(circshift(iRef,uv),iTarget); 


