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Abstract

This thesis considers four important issues in cluster analysis: cluster validation, estimation
of the number of clusters, variable weighting/selection, and generation of random clusters.

Any clustering method can partition data into several subclusters. Hence it is important to
have a method to validate obtained partitions. We propose a cluster separation index to address
the cluster validation problem. This separation index is based on projécting the data in the two
clusters into a one-dimensional space, in which the two clﬁsters have the maximum separation.
The separation index directly measures the magnitude of gap between pair of clusters, is easy to
compute and interpret, and has the scale equivariance property.

The ultimate goal of cluster analysis is to determine if there exist patterns (clusters) in
multivariate data sets or not. If clusters exist, then we would like to determine how many there
are in the data set. We propose a sequential clustering (SEQCLUST) method that produces a
sequence of estimated number of clusters based on varying input parameters. The most frequently
occurring estimates in the sequence lead to a point estimate of the number of clusters with an
interval estimate.

For a given data set, some variables may be more important than others to be used to recover
the cluster structure. Some variables, called noisy variables, may even mask cluster structures. It '
is necessary to downweight or eliminate the effects of noisy variables. We investigate when noisy
variables will mask cluster structures, and propose a weight-vector averaging idea and a new noisy-
variable-detection method, which does not require the specification of the true number of clusters.

Simulation study is an important tool to assess and compare performances of clustering
methods. The qualities of simulated data sets depend on cluster generating algorithms. We pro-
pose a design to generate simulated clusters so that the distances of simulated clusters to their
neighboring clusters can be controlléd and that the shapes, diameters and orientations of the sim-
ulated clusters can be arbitrary.

We also propose low-dimensional visualization methods and a method to determine the

partial memberships of data points that are near boundaries among clusters.
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N otation, Abbreviations and Conventions

We follow the widely used conventions throughout the thesis. Latin upper-case letters X, Y,

Z, with or without subscripts, are used for random variables. Latin upper-case letters A, B, D, are

used for matrices. Bold Latin upper-case letters (e.g. X, Y, Z) are used as random vectors. Greek

lower-case letters (e.g. o, B, 7), with or without subscripts, are used for parameters in models.

Bold Greek lower-case letters (e.g. 8, 6, i) stand for parameter vectors. For a vector a matrix,

the transpose is indicated with a superscript of T'. All vectors are column vectors. The following

is a table of symbols and abbreviations used throughout the thesis.

Symbol | Meaning

n the number of objects

P the number of variables

Pt the number of non-noisy variables

P2 the number of noisy variables

ko the number of clusters

i the index for the i-th object

J the index for the j-th variable

k the index for the k-th cluster

) the probability density function of the standard normal distribution
P the cumulative distribution function of the standard normal distribution
~ “distributed as” or “has its distribution in ”

rv random variable

MLE maximum likelihood estimate (estimation)

sd standard deviation

XY rv X conditional on rv Y
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Chapter 1

Introduction

Cluster analysis is an exploratory tool to detect the natural groups (or clusters) in data sets
so that within a cluster, objects are “similar” to each other and that between clusters, objects
are “dissimilar” to each other. Cluster analysis can be applied to many fields of study, such as
life sciences, behavioral and social sciences, earth sciences, medicine, engineering sciences, and
information and policy sciences (Anderberg, 1973). ‘

Cluster analysis has a fairly long history, but research is still needed for things like comparing
partitions from different clustering methods, deciding on the number of clusters, variable weighting
and selection for forming clusters. This thesis makes new research contributions to these challenges

in cluster analysis.

1.1 Challenges

Clustering is a quite challenging problem since we do not know in advance how many clusters exist
in a data set and there is no unified definition of “cluster”. For example, for the data set illustrated
in Figure 1.1, either a 2-cluster partition or a 6-cluster partition seems fine. It depends on subject
knowledge about the data set to decide if the final number of clusters is 2 or 6. Again it depends
on subject knowledge to decide which similarity measure is appropriate. Another difficulty is how
to define “similarity”? For example, in Figure 1.2, is point A closer to point C or to point B?

For the example in Figure 1.2, we can visualize the cluster structure so that we can choose

a suitable similarity measure and check if the obtained partition is appropriate or not. However in
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Figure 1.1: Is the number of clusters 2 or 67

Cluster 1
Cluster 2

Figure 1.2: Is the point A is closer to the point C or to the point B?

real applications, data sets are usually in high dimensional space so that we could not verify the
clustering resuits by eye.

Furthermore, there are noisy variables, outliers, missing values, and measurement errors
which make the discovery of the cluster structure (the number of clusters and the partition) more
difficult.

Many methods have been proposed to deal with these difficulties. However these problems
still are not solved to satisfaction.

For example, for a specific data set, many internal validation methods have been proposed
to check the appropriateness of a partition (the number of clusters and the partition) of the data
set by using information obtained strictly from within the clustering process. Recent reviews on
this area can be found in Halkidi et al. (2001) and Kim et al. (2003). As Kim et al. (2003) pointed
out the main limitation of these validation methods is that they focused on only the compactness.
However, compactness might not be a good measure to check the appropriateness of a partition.
Some validation indexes emphasize external isolation (between-cluster variation). However those
indexes focused only on the distance between cluster centroids and hence have limitations in their

ability to provide a meaningful interpretation of structure in the data.



To systematically compare the performances of different clustering algorithms, simulated
data sets play an important role since their cluster structures are known and can be controlled.
Important features of simulated data sets include that (1) the distances between clusters could
be controlled; (2) the shapes, diameters, and orientations of clusters could be arbitrary. However,
there seems to be no systematic research as to how to generate simulated data sets which have
both these features.

Estimation of the number of clusters is an important and challenging issue. In real prob-
lems, subject-matter knowledge can provide only a rough range of the number of clusters. Many
methods have been proposed to estimate the number of clusters. The problem is still not solved to
satisfaction.
| For a given data set, some variables may be more important than others to be used to
recover the cluster structure. Some variables, called noisy variables, may even mask' the cluster
structure. It is necessary to downweight or eliminate the effects of noisy variables. Most existing
variable weighting/selection methods require the specification of the true number of clusters. What
are the effects if the specified number of clusters is not correct? There seems no research to address

this important issue. Moreover most existing methods are heuristic.

1.2 Scope
This dissertation concerns the following topics:
o Cluster validation
e Generation of simulatéd clusters.
e Estimation of the number of clusters
e Elimination or down-weighting the effect of noisy variables

We address these issues for the most common situation for which clustering methods are
used: (1) clusters are all convex in shape; (2) variables are all continuous type; and (3) there are

no missing values in data sets. We use Euclidean distance to measure the dissimilarity among data

points. With these assumptions, cluster analysis methods essentially optimize some criterion, for




example, minimize within cluster dispersion. We will not consider clustering based on connectivity
to handle non-convex-shaped clusters.

There is a trade-off of speed versus quality in cluster analysis. Our goals are (1) to get
good quality partitions at reasonable speed; (2) to propose methods that work well and quickly for
moderate size samples (cluster sizes of order several thousands and number of clusters of order 2

to 20).

1.3 Major Contributions
The new major contributions are

1. We propose a cluster validation/separation index which can be used to check the appropri-
ateness of a partition and to compare different partitions. This validation index is different
from existing internal validation indexes in that it directly measures the magnitude of the
sparse area between pairs of clusters and is easy to interpret. Under certain conditions, this

separation index is affine invariant and is easy to calculate.

2. We propose a weight-vector averaging idea and a variable weighting/selection method. Our
approach is different from‘ existing methods in that we can show theoretically that under
certain conditions, the populatioﬁ version of the new variable weighting/selection method
assigns zero weights to noisy variables and the obtained weights are scale equivariant. Com-
bined with the weight-vector averaging idea we propose, the new variable weighting/selection
method does not require the specification of the true number of clusters. A preliminary

theoretical validation of this approach is given in this dissertation.

3. We propose a design to generate simulated clusters so that the distances of simulated clusters
to their neighbor clusters can be controlled and that the shapes, diameters and orientations

of the simulated clusters can be arbitrary.

4. We propose a low dimensional visualization method to help validate partitions. This method
is different than existing methods in that it projects two clusters at a time and that the two

clusters have the maximum separation along the orthogonal projection directions.




5. We propose a two-step method to assign partial memberships for “boundary points”. It differs
from fuzzy clustering methods in that it has the property of assigning partial membership

only to points at boundaries of clusters.

6. We improve the ISODATA clustering method which simultaneously estimates the number of

clusters and obtains the partition of a data set. The key improvements are the merging and

splitting criteria.

7. We study the above issues with a theoretical basis.

1.4 Outline -

The outline of chapters is as follows:

Chapter 2: Introduction of a new validation/separation index with its three applications: (1)

cluster validation; (2) low dimensional visualization; and (3) assigning partial memberships.
Chapter 3: Proposal of a new design to generate simulated clusters.
Chapter 4: Proposal of a sequential clustering method to improve the ISODATA clustering method.

Chapter 5: Proposal of a new variable weighting/selection method.

Chapter 6: Summary and future research.




Chapter 2

Separation Index and Partial

Membership for Clustering

2.1 Introduction

Cluster analysis is an exploratory tool to detect the natural groups (or clusters) in data sets. Two
fundamental questions in cluster analysis are (1) how many clusters exist in a data set? (2) how
do we get a good partition of the data set? Many methods have been proposed to address these
two issues. Simulated data sets and real data sets with known cluster structures (including the
number of clusters and the partition) have been used to check and compare the performances of
these methods. However for a data set whose true cluster structure is unknown, how do we know
if the estimated cluster structure or partition is appropriate or not? And if we apply different
methods to the same data set, how do we know which partition is better? These are the main
issues that we are going to address in this chapter. More specifically, we try to answer the following

three questions:

1. Given the number of clusters, how do we compare the partitions obtained by applying different

clustering methods to the same data set.

2. Given a clustering method, how do we check if the specified number of clusters is appropriate

or not?

3. How do we compare different partitions with different numbers of clusters?




Cluster analysis usually is used as the first step to other data analysis, such as data reduction,
classification, prediction based on groups, and model fitting (Ball 1971). The performances of these
further analyses depend on the quality of the results of cluster analysis. So it is necessary to check
the appropriateness of the partitions.

If we have subject-matter knowledge of the data set, then we might have some idea about
the type of cluster structure. For the same type of cluster structure, there are many number-of-
cluster-estimation methods and clustering methods available. If the results of these methods are
similar to each other, then we can arbitrarily choose one. However if the results obtained by these
methods are not consistent, then we need a method to compare their performances without the
knowledge of the true cluster structure. If data points are in (projected) low dimensional space

' (e.g. one, two, or three dimension), then we can visualize the partitions and check which partition is
better. However in cluster analysis, data poinﬁs are usually in high dimensional space. So in general
we could not visualize the partitions except for some spebial cases where the cluster structure in
high dimensional space can be observed in (projected) low dimensional space. This again suggests
the need for methods to check and compare the partitions.

In this chapter, we propose a cluster separation index to address the cluster validation
problem. This separation index is based on the gap between pair of clusters whereas other previous
inter-cluster measures do not directly quantify the magnitude of the gap.

It is also easy to interpret fhe value of the separation index we propose. A negative value
of the separation index indicates that two clusters are overlapping; a zero value indicates that two
clusters are touching; and a positive value indicates that two clusters are separated. The separation
index we propose is easy to compute and has scale invariance property. |

The separation index not only can be used to check and compare the partitions, but also has
many other applications. Based on this separation index, we develop low dimensional projection
methods to help visualize the distance between a pair of clusters. In real problems, it is common
that clusters are close to each other. It makes sense to give a measure to indicate to which extent
a data point belongs to a cluster. We develop such a measure based on the separation index.

We first give a literature review on cluster validation indexes in Section 2.2. Then in

Section 2.3, we give the motivation, definition, and properties of the separation index. In Section 2.4,

we propose methods to check and compare partitions based on the separation index we propose.




One simulated data set and one real data set will be used to illustrate the performance of the
validation methods. Low dimensional projections based on the separation index are described in
Section 2.5. The application of the projections to determine a partial membership of data points

is given in Section 2.6. Discussion is given in Section 2.7.

2.2 Related Ideas

Many internal criterion measures have been proposed to validate the cluster structures (e.g. Milligan
1981; Halkidi et al. 2001; Lin and Chen 2002; Kim et al. 2003). An internal criterion measure
assesses the significance of a partition using information obtained strictly from within the clustering
process (Milligan, 1981). A better value of the internal criterion measure corresponds to a better
partition. Milligan (1981) compared the performances of thirty such internal criterion measures
and found that a subset of 6 internal criterion measures (Gamma, C index, Point-Biserial, Tau,
W /B and G(+)) which have relatively better performances.

The main motivation of many internal criterion measures studied in Milligan (1981), such
as C index, Point-Biserial and W/B, is to measure the compactness of clusters which can
be described by internal cohesion and external isolation. Internal cohesion means that objects
within the same cluster should be similar to each other at least within the local metric. External
isolation means that objects in one cluster should be separated from objects in another cluster by
fairly empty areas of space (Cormack 1971; Everitt 1974). The “true” cluster structure should
be internally cohesive and externally isolated. The internal cohesion is usually measured by the
within-cluster sum of squares and the external isolation is usually measured by the between-cluster
sum of squares.

However compactness may not be a good measure to check the appropriateness of a partition
or to compare the performances of partitions. In this situation, we think that external isolation
is better than compactness. That is, the more externally isolated a partition is, the better the

partition is. To illustrate this point, we generate a small data set with two clusters from bivariate

normal distributions N (p;, ¥;), where



Each cluster contains 100 data points. The 2-cluster partitions obtained by the clustering methods
clara (Kaufman and Rousseeuw 1990) and Mclust (Fraley and Raftery, 2002a, b) are shown in

the left and right panels of Figure 2.1 respectively. The values of C index, Point-Biserial and
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Figure 2.1: Left Panel: The 2-cluster partition obtained by clara. Right Panel: The 2-cluster
partition obtained by Mclust. The circles represent cluster 1 and the symbol “+”’s represent
cluster 2.

W /B are shown in Table 2.1. Smaller values of these internal criterion measure values indicate

Table 2.1: The values of internal criterion measures
C index Point-Biserial W/B

clara 3.12 2.66 207.17
Mclust 21.34 58.48 685.31

more compact cluster structures. By eye, we can see that the partition obtained by Mclust is better
than the partition obtained by clara since two clusters obtained by Mclust are more isolated than
those obtained by clara. However, the values of C' index, Point-Biserial and W /B indicate
that the partition obtained by clara is more compact than that obtained by Mclust. Note that this
result would be quite different if we scale the variables. The issue on variable weighting/selection
will be addressed in Chapter 5.

Not like other cluster validation methods involving a single summary value for a partition,

Lin and Chen (2002) proposed a cluster validation method involving a summary value, called

cohesion, for each pair of clusters. A low cohesion index value indicates well-separated cluster




structures. The cohesion index is in fact a variant of the average distance between two clusters.
Lin and Chen (2002) used joinability instead of the usual distance to measure the closeness of
one data point in one cluster to other cluster. However the average distance between two clusters
may not directly measure how far apart two clusters are. For the previous example, the cohesion
index values for the partitions obtained by clara and Mclust are 0.37 and 0.56 respectively. That
is, based on the cohesion index values, the two clusters obtained by clara are more separated than
those by Mclust. This contradicts the intuition from Figure 2.1.

Hoppner et al. (1999, page 191) mentioned a separation index to measure the overall com-

pactness of clusters. The separation index is defined as

D= min{ min [ (G, Gj) ]}

i=1,e,ko | G=1,mko,#i | MAXE=1 .k, diam (Ck)

where C}, is cluster k,
diam (Ck) = ma‘x{d(yuyj)l)’uy_] € Ck}a
and d(y;,y;) is a distance function, and
d(C;, Cj) = min{d(y:,y;)ly: € Ci,y; € C;}.

Actually

“ " maxgy,. k, diam (Cy)

is a measure of distance between two clusters, i.e., D;; is the the nearest distance between the two
clusters normalized by the maximum cluster diameter. We can see that the separation index D
emphasizes more the external isolation. For the previous example, the D values for the partitions
obtained by clara and Mclust are 0.017 and 0.109 respectively. The inequality 0.109 > 0.017
indicates that the partition obtained by Mclust is better than the partition obtained by clara.
However D is sensitive to outliers.

The separation index mentioned in HOppner et al. (1999, page 191), the cohesion index
proposed by Lin and Chen (2002), and the internal criterion measures studied in Milligan (1981)
are for “hard partitions” — the membership of a data point to a cluster can only take values
1 or 0. Many cluster validation indexes have been proposed for “soft” or fuzzy partitions — the
membership of a data point to a cluster can be any value between 0 and 1 depending on the distance

of the data point to the cluster. A recent review of these validation indexes can be found in Halkidi
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et al. (2001) and Kim et al. (2003). Kim et al. (2003) pointed out that the main limitation of
these indexes, such as partition coefficient and partition entropy (Bezdek 1974a, b), is that they
focused on only the compactness. Some indexes, such as Xie and Beni’s index (Xie and Beni 1991)
and CWB index (Rezaee et al. 1998), emphasize external isolation. However those indexes focused
only on the distance between cluster centroids and hence are limited in their ability to provide a
meaningful interprefation of structure in the data. For example, in Figure 2.2, the distance between
the two cluster centers in the upper panel is the same as that in the lower panel. However, the two
clusters are separated in the upper panel while the two clusters are overlappedbin the lower panel.

Upper Panel

OO
o

Lower Panel

Figure 2.2: An example illustrates that the distance between cluster centers is not a good measure
of the external isolation. '

Kim et al. (2003) proposed a fuzzy validation index based on inter-cluster proximity which
measures the degree of overlap between clusters. A low index value indicates well-partitioned
clusters. This index emphasizes the external isolation and has meaningful interpretation. However

this index is designed specifically for the partitions obtained by fuzzy clustering algorithms.

2.3 A Separation Index

In this section, we propose a geometric approach to get cluster separation indexes for any two
clusters in a partition. A separation index matrix is then a summary of a partition. OQur new
cluster separation index directly measures the magnitude of the gap or sparse area between pair
of clusters. This separation index is easy to compute and interpret, and has the scale invariance
property. Also, the projections associated with separation index lead to a method to determine the

partial memberships of data points that are near boundaries among clusters.
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2.3.1 Motivation and Definition

The motivation for the separation index we propose is based on the observation that two sets of
data points are regarded as two distinct clusters onIy if there exists a gap or sparse area between
these two sets. So it is natural to measure the degree of separation between two clusters based on
the gap or sparse area between them. The larger the gap is, the more separated the two clusters
are. If there is no gap or sparse area between the two clusters, then there is doubt about two
distinct clusters. For example, there are two obvious clusters in the left panel of Figure 2.3 because
there exists a gap area between the two clusters. We doubt that there exist two clusters in the
right panel of Figure 2.3 because there is no gap or sparse area between the two clusters, i.e. the
density of data points along the boundary of the two clusters are relatively high. The left panel of
Figure 2.3 also shows that the separation index based on the minimum distance between the two

clusters (i.e. distance between point A and B) might not be a good measure of the gap area.
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Figure 2.3: Left panel: There exist two obvious clusters. Right Panel: Cluster structure not
obvious. Circles represent cluster 1 and the symbol + represents cluster 2.

We first consider how to define a good measure of the magnitude of the gap for two clusters
in one dimensional space. Denote zi;, ¢ = 1,...,n1, as n; data points in cluster 1 and T2j,

= 1,...,n9, as ny data points in cluster 2. One possible measure of the magnitude of the gap

between the two clusters is

J = Ly(e/2) - Uy(e/2), (2.3.1)




where L;(a/2) and U;(«/2) are the sample lower and the upper @/2 quantile of cluster i (we assume
that cluster 1 is on the left-hand side of cluster 2). Figure 2.4 illustrates that the separation index
J* can summarize the gap area between the two clusters. It is less sensitive to outliers than indexes

based on min; T9;—max; z1;, such as Dun and Dun-like indexes (Halkidi et al. 2001). The parameter

The lower and upper alpha/2 percentiles of two clusters (alpha=0.05)
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Figure 2.4: The separation index J = La(a/2) — Ui(@/2) can capture the gap area between the
two clusters.

a can be regarded as a tuning parameter to reflect the percentage in the one tail that might be
outlying.

Based on the separation index J, we also can define a separating point Sy = [U1(a/2) +
L3(a/2)]/2 so that the data points on the left-hand side of Sy are treated as from cluster 1 and
data points on the right-hand side of Sy are treated as from cluster 2.

For multivariate data, we can first find a projection direction such that the two cluster
projections have the largest separation and then we use the value of the separation index for the
projected data as a measure of the magnitude of the gap between the two clusters. Figure 2.5
illustrates this idea. The separating point Sp in the projected space corresponds to a separating
hyperplane in the original space.

One limitation of the separation index J defined in Formula (2.3.1) is that it does not

consider the variations within the two clusters. Figure 2.6 gives an example where the value of the
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Figure 2.5: For high dimensional data, we can use the value of the separation index J for the
1-dimensional projected data as a measure of the magnitude of the gap between the two clusters.

separation index J between two clusters in the upper panel is the same as that in the lower panel,
while intuitively the two clusters in the lower panel are more separated than those in the upper

panel. One possible way to overcome this limitation is to normalize the separation index J with

Upper Pancl
Lower Panel
@ )
ut L2

Figure 2.6: An example illustrates a limitation of the separation index J.

Uz(a/2) - Ll(a/2), that iS,
_ L2(a/2) - Ul(a/2)
= Ua(a/3) = Ln(a)?)’ (23.2)

The tuning parameter a reflects the percentage in the two tails that might be outlying (see

J*

Figure 2.7). That is, we don’t want the few points that might be in the middle between “boundaries”
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Figure 2.7: The normalized separation index J* = [Lo(a/2) — Ui (/2)]/[U2(/2) — L1(a/2)] takes
account of both the external isolation and within-cluster variation. The tuning parameter « reﬁects
the percentage in the two tails that might be outlying.

of two clusters or points that are extremely far from the separating hyperplane to have an influence
on the separation index. For example, o = 0.01 means that for each cluster, the separation index
allows for 100(/2)% = 0.5% of the projected data points to lie in the extreme two tails away from
the hyperplane or may be “overlapping” with the other cluster in the middle.

The implicit assumption for the separation indexes J and J* is that clusters are convex in
shape. For example, the separation indexes J and J* are not suitable for a case like Figure 2.8
since cluster 1 is not convex. This assumption makes sense and most clustering methods explicitly
or implicitly require this assumption. Clustering methods typically find clusters that are separated
by hyperplanes.

To use the separation index J* to validate partitions, we need to assume that there are
gap or sparse areas among clusters although we can calculate J* for heavily overlapped cluster
structures with meaningful interpretations. For example, for the data points on the right panel of

Figure 2.3, we could not know if there is only one cluster or there exist two heavily overlapped

clusters, without other information.
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Figure 2.8: An example that the separation indexes J and J* would not work.

2.3.2 Optimal Projection Direction

To determine an “optimal” way of choosing the projection direction a when calculating the sep-
aration index J*, we use a population version of (2.3.2). Suppose cluster 1 and cluster 2 are
realizations of random samples from distributions Fy, F> respectively. Let X, ~ Fj, X9 ~ Fj. For
a vector a, let G1, Gy be the univariate distributions of a” X;,a” X,. Suppose the sign of a is such
that a’X; < aTX, with high probability (this is the theoretical equivalent of a good separating
hyperplane direction). The population version of (2.3.2) is

Gz '(a/2) - G{'(1 - a/2)
G;'(1-a/2) - Gi'(e/2)’

(2.3.3)

where Gi—l(a/Z), i = 1,2, are the lower quantiles of G; for i =1, 2.
If F; corresponds to N(8;,%;) for i = 1,2, then G; corresponds to N(a’8;,a” ¥;a) and

Gl (a/2) =a"0; - zqpValZ;a, G7'(1-a/2) =aT0; + ZopValSia.

(2.3.3) becomes

_al(6,-6,) - zos2(VaTSia + /aTTsa)
al (0, — 0,) + za/2(\/aT21a ++aT%a) .

For ease of computation, we will use (2.3.4) as a means to choose the separating hyperplane

J*(a)

(2.3.4)

or projection direction even if the true distributions are not multivariate normal. For a partition

from a clustering method, 8;,¥; are the sample mean vector and covariance matrix for cluster 1.
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One reason for using (2.3.4) as a criterion for choosing a is that there is a simple iterative algorithm
to find the a that maximizes (2.3.4), and properties of this optimal a can be studied.

From (2.3.4), J* satisfies J*(ca) = J*(a) where ¢ > 0 is a constant scalar. So we only need

consider the direction a € A, where
A={a:aTa=1anda’(8; - 6,) > 0}.

From (2.3.4), we also can see that J* € [—1,1) for all a € A. In fact, ifa > 0 and b > 0, then
—1 <(a—b)/(a+b) <1isequivalent toa >0and b>0. Ifa € A, then a = aT (6, — 0:) >0 and
b= z,2(VaTS1a ++/aTEsa) > 0. Hence J* € [-1,1) for a € A. When 8; = 05, then J* = —
When Ly = Uy, then J* =0, i.e., the two clusters would be considered as just touching each other.
It is easy to interpret the value of the separation index J*. A negative value of the separation index
indicates that two clusters are overlapping; a zero value indicates that two clusters are touching;

and a positive value indicates that two clusters are separated (see Figure 2.9).

GDQQ@Q

I*<0 J*=0
Figure 2.9: Interpretation of the value of the separation index J*.
Denote p; = a’@; and o; = val'S;a, i =1,2. If everything is unchanged except we move
the two clusters farther apart along the projection direction, then J* — 1 as p2 — p1 — oo. In fact,

J* is a monotone increasing function of pp — yy if ps — p; > 0 (with @, o7 and o5 fixed). Also J*

is a monotone decreasing function of z, s2(01 + 032) if pg — py is fixed and positive.

Theorem 2.3.1 The a € A that mazimizes J*(a) in (2.3.4) satisfies

) )
c- (\/a,TIE =+ \/GT; a) a=(0;—6,), (2.3.5)
1 2

where

T(0,—-61)

(2.3.6)

B valZia+ /aT2sa




[Proof:] Define the functions d(a; £1,¥3) and D(a; 21, ;) as

d(a; 34, 22) = \/aTZha + \/aTEQa,

p b
D(a; %1, %;) = — + 2__,
VaTSia +/aTZ:a

By taking the first derivative of J* in (2.3.4), we can get

8J*(a) _ 2242
oa [aT (62 — 61) + z4/2d(a; 34, 22)]2
- {d(a; Z1,22)(02 — 01) — a” (82 — 1) D(a; 81, T)a} . (2.3.7)

Let 8J*/0a = 0 to solve for the optimal a. We get

a® (8, - 0,)

0270 = ez 3

D(a; X1, 25)a.

The solution satisfying (2.3.5) corresponds to a maximum because for a vector g that is orthogonal
to 62 — 61, (2.3.4) becomes J*(g) = -1, indicating that g leads to a projection that does not

separate the two clusters (projections of cluster 2 within the range of projections of cluster 1). O
Corollary 2.3.2 If X, = ¥y = X, then the optimal projection direction satisfies

ax X0, - 0,). (2.3.8)

In particular, if L =1, then
' ax(0s—0,). (2.3.9)
The direction 2‘1(02 —.0;) is the well known Fisher’s discriminant direction.

Rewriting (2.3.5) with a by itself on the left-hand side, we propose the following fixed-point

iterative algorithm to calculate the optimal direction a.
1. Get an initial estimate of a from (2.3.9).
2. Normalize a, i.e. a + a/||al|.
3. Sett =1, alV « a.

4. Update a by the formula

att) = p-! (a(t);El, 22) (62— 61). (2.3.10)




5. Normalize D ie. a1 « altt)/|la®t)|. Stop if |a®tV) — a®)||2 < ¢, where € is a

small positive number, 10™* say. Otherwise, increment ¢ < ¢t + 1 and go back to step 4.

Note that we can drop the scalar ¢ in (2.3.10) because of the constrain a’a = 1. If the matrix
D is singular, we can use the Moore-Penrose generalized inverse (Wang and Chow, 1994). It is
theoretically intractable to prove the convergence for our problem. But empirical experience shows
that the convergence will be achieved within a few iterations. There might exist local maximum
points. So there is no guarantee the algorithm converges to a global optimum. Empirical experience
shows that two groups of data points have good separation along the projection directions obtained
by the algorithm. _

From the equation (2.3.5), we can see that the optimal direction a* does not depend on a
and Z,/;. Hence Theorem 2.3.1 still holds for more general elliptically contoured distributions, and

the separation index could be defined as

Jon _ 87(62— 61) — gopp(vaTBra + yaTTa) (2.3.11)
aT(6; — 0,) + ‘Ia/2(\/aTzla + \/aT22a), -

where ¢,/7 is the upper /2 percentile of the standardized univariate margin of the elliptically
contoured distribution. In fact, if F; corresponds to a elliptically contoured distribution with mean

vector 8; and covariance matrix X; for 4 = 1,2, then the lower and upper /2 percentiles of the

univariate distributions G; are

Gi'(a/2) =a"0; — g, pV/aTSia, Gi'(1-a/2)=a’8;+q,sVaTSia.
(2.3.3) becomes (2.3.11).
Theorem 2.3.3 [Affine invariance:] If we make the transformation Y; = AX; + b, then the

value of the separation index is unchanged and a% = (A~! T a L,i1=1,2.
Y: X

Proof: From

alA(8: — 01) — 702(\/al AZ1 ATay +/alAS,4Tay)

J*(ay) =
aDA(62 - 81) + z02(\/af AS1ATay +,/alA%,4Tay )

)

we can get J*(ay) = J*(ax) and ay,, = (A_I)Taj(i, i=1,2. O




2.4 Comparisons Based on the Separation Index
As we mentioned in Section 2.1, we try to answer the following questions?

Question 1: Given the number of clusfers, how do we compare the partitions obtained by applying

different clustering methods to the same data set.

Question 2: Given a clustering method, how do we check if the specified number of clusters is

appropriate or not?

Question 3: How do we compare different partitions (both the number of clusters and the parti-

tions may be different)?

In this section, we propose a solution for these three questions based on the pairwise separation
index matrices {, = (J%e)klx ke» £=1,...,M, where M is the number of partitions considered, k,
is the number of clusters in the ¢-th partition, J;f is the separation index between cluster ¢ and

j (i # j) in the £-th partition and J; is defined as —1. This solution is based on the following

criteria:

Criterion 1: Given a specified number of clusters, the ¢-th partition would be the best if its
minimum separation index value is the largest. That is,

min J;jt = max min Ji*f.
i<j £=1,.. .M i<j

Criterion 2: Given a clustering method, if the minimum separation index value min;; Ji*jt of the
t-th partition is negative or close to zero, then the corresponding number of clusters might
be under- or over-specified. Figure 2.10 illustrates the case where the number of clusters is

under-specified and the minimum separation index would be negative.

Criterion 3: Suppose that we want to compare two different partitions P; and P». If the minimum

separation index values, min;; J;‘je, ¢ = 1,2, of the two partitions have the same sign, then
i<j I [ (k1(ky = 1)/2)) of
Py is larger than that (3, ; Jij2 (k2(k2 —1)/2)) of P». Otherwise, P; is better than P, when

P, is better than P, when the average separation index value ()

the minimum separation index value of P; is positive.




Cluster 2

Cluster 1

Figure 2.10: The line A splits 12 clusters into two subclusters. The number 2 of clusters is under-
specified and the value of the separation index J* would be negative.

Criterion 3 uses average instead of max minimum separation index to avoid cases like that
shown in Figure 2.11. The four circles in Figure 2.11 illustrate 4 clusters. The left panel shows
a 2-cluster partition while the right panel shows a 4-cluster partition. The minimum separation
index of the 2-cluster partition is larger than that of the 4-cluster partition. However the 4-cluster
partition seems better than that of 2-cluster partition. By using average separation index, we might

avoid this problem.
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O

Figure 2.11: Using average separation index is better than using max minimum separation index
if the numbers of clusters of two partitions are different.

The above set of criteria is only one possible way to usethe separation index matrix to answer
Questions 1, 2 and 3. Other functions of the separation index matrix could be used. For example,
instead of using the average separation index value, we can use penalized average separation index

value to take into account the number of clusters.
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We use a simulated data set and a real one to illustrate the separation indexes and the
criteria. The simulated data set is in two dimensions for ease of illustration, and the real data set

has 13 dimensions.

2.4.1 A Simulated Data Set

In the simulated data set, there are two clusters generated from two bivariate normal distributions

with mean vectors and covariance matrices

0 1.86 2.65 7 3.62 1.90
0, = N 6, = )

0 265 914 | 2 1.90 2.38

Each cluster has 200 data points.

The left panel and right panel of Figure 2.12 show 2-cluster partitions of the data set,
obtained by clara and Mclust respectively, which we denote by Py and Pp; respectively. We can
see that the two clusters are quite close and detectable by eye. The separation index values (based
on cluster mean vectors and covariance matrices) of the partitions Pp; and Py, are Jfg =8x107°
and Ji5* = 0.12 respectively (with a = 0.05). Ji¥ = 0.00 indicates that the two clusters are
touching and J{§* = 0.12 indicates that the two clusters are separated. According to Criterion 1,
the partition Py is better than Pp. By visualizing the two partitions from Figure 2.12, we can
see that Pp is better Pp;.

Suppose that we use Mclust to get three different partitions with the number of clusters 2,
3, and 4 respectively. The three partitions are shown in Figure 2.13. Denote these three partitions

as P,(n2 ), ,(,? ), and PT(,? ) respectively. The separation index matrices of these partitions are:

~1.00 -0.12 0.33 0.2
1.00 0.2 -1.00 011 o0 012 -1.00 041  0.28
¢ = , ¢ =] -011 -1.00 0.28 (=
0.12  -1.00 033 041 —1.00 -0.16
011 028 —1.00
0.12 028 -0.16 -1.00

respectively. According to Criterion 2, 3-cluster and 4-cluster clusters are not as good as the
2-cluster partition.

Note that usually a clustering method will not produce overlapping subclusters if we use

the clustering method to split a compact cluster. Unlike touching clusters, these subclusters have

high density on the boundaries between clustefs. That is, the distributions of these subclusters are

skewed to the boundaries between clusters and hence the cluster centers are closer to the boundaries
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Figure 2.12: Two-cluster partitions of the simulated data set. Left panel: By clara. Right Panel:
By Mclust. The circles are for points from cluster 1 and the +’s are for points from cluster 2.

between clusters. Therefore when we use the formula (2.3.4) to calculate the separation indexes,
the values are negative instead of close to zero. Although, the subclusters can not be normally
distributed in this case, it is an advantage to use the formula (2.3.4) instead of the formula (2.3.3).
In this case, the formula (2.3.3) produces small positive separation index values and makes it
difficult to distinguish if the subclusters are touching or if the number of clusters is over-specified.

If we want to compare the partitions P,; and P,(n3 ), we can apply Criterion 3. The average

separation index values for the partitions P, and P,(,? ) are 0.00 and 0.09 respectively. Hence

according to Criterion 3, P,(n3 ) is better than Pp1. By comparing the left panel of Figure 2.12 and
the middle panel of Figure 2.13, we see that in the partition Pp; some points in the true cluster
2 are mistakenly grouped into cluster 1 and some points in cluster 1 are mistakenly grouped into
cluster 2. Although the partition P,(,f’ ) divides cluster 1 into two subclusters, there seems no obvious

misclassification. So intuitively, P,(,'? ) is better than Pp.

2.4.2 A Real Data Set

For the simulated data set in the previous subsection, we can easily visualize the cluster structure
since clusters are in the two-dimensional space. Real data sets are usually high-dimensional and
we may not be able to visualize the cluster structure from pairwise scatterplots. The importance

of the separation index will be clear in these cases. To illustrate this, we use the wine data set,
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Figure 2.13: Three partitions obtained by Mclust for the simulated data set. Left Panel: 2-cluster
partition; middle panel: 3-cluster partition; right panel: 4-cluster partition. The symbols “o”, “4”,
“x”, and “o” are for points from cluster 1, 2, 3, and 4 respectively.

available from the UCI Machine Learning site (Blake and Merz, 1998). There are 178 observations,
13 variables and 3 classes which represent 13 different chemical constituents of 178 Italian wines
derived from 3 different cultivars.

The pairwise scatterplots of the 13 variables do not show obvious 3-cluster or 3-class struc-
ture. The pairwise scatterplots of 4 randomly selected variables (variables 2, 6, 11, and 13) are
shown in Figure 2.14. Figure 2.14 also shows that the ranges of the variables are quite different. For
variable 11, the range is [0.48,1.71], while the range of variable 13 is [278,1680]. So we standardize
the 13 variables before we do further analysis so that the variance of each variable is 1.

Given that the number of classes is 3, we obtain two partitions by using clara and Mclust
respectively. Denote the two partitions as P,, and Pp,. The separation index matrices for

partitions Pp,, and Pp,, (with a = 0.05) are

—-1.00 0.04 0.41 —-1.00 0.10 0.44
¢,=1 004 -100 014 |, ¢y =| 010 -1.00 0.14
0.41 0.14 —1.00 044 0.14 —1.00

Since the minimum separation index value 0.04 (except diagonal elements) of ¢?, is smaller than
that of {7 (0.10), we think P, ,, is better than P, , according to Criterion 1. By comparing Py,
and Pp,, with the true partition of the wine data, we find that the misclassification rates of Pp 4,

and P, are 11 and 5 respectively. This demonstrates that the comparison result obtained by

applying Criterion 1 is good.
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Figure 2.14: The pairwise scatter plot of 4 randomly selected variables (variables 2, 6, 11 and 13)
for the wine data set.

For the clustering method clara with 2 to 4 specified clusters, the resulting matrices of

separation indexes (with a = 0.05) are:

-1 -0.13 0.29 0.46

-1 0.04 041
-1 0.06 -013 -1 0.03 0.39
) 004 -1 014{,
0.06 -1 029 003 -1 0.15
041 0.14 -1

046 039 015 -1

The numbers close to zero or less than zero in the 4-cluster partition suggest that choosing ky = 4
was too large (but when clustering data with known classes, there is always the possibility that one
of the classes will show up as more than one cluster). The results for the 2-cluster and 3-cluster

partitions suggest that there are 2 groups that are “close” and a third group is farther away.

2.5 Low Dimensional Visualization

The separation index matrix is a summary of closeness among clusters. If all indexes are large, then
we know clusters are quite far apart from each other. However, we might have trouble understanding

the cluster structure from the separation index matrix if some indexes are close to zero. In this
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case, it is useful to produce a 1-, or 2-dimensional projection, such as scatter plot of the first two
principal components, so that we can view the cluster structure.

In this section, we propose a new method to produce low dimensional visualization of clus-
ters.

Since we are interested in checking the appropriateness of a partition, we only need to study
the pairs of clusters which we are interested in, e.g. the nearest two clusters. It is natural to
project data points of the two clusters along the optimal projection direction a*. If we want a two-
dimensional projection, then we can find the second direction along which the projected data points
on the hyperplane orthogonal to the direction a* have the largest separation. Figure 2.15 shows

an example of this kind of one- and two-dimensional visualization. The data set is the simulated

Density Estimates of Projected Data (J°=0.12 aipha=0.05) Rotated Data (J*=0.12 alpha=0.05)
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Figure 2.15: Left panel: 1-dimensional visualization of the simulated data set. Right panel: 2-
dimensional visualization of the simulated data sets. The 2-cluster partition is obtained by Mclust.

data set used in Section 2.4. The 2-cluster partition is obtained by Mclust. The ticks along the
axes show the distributions/densities of the two clusters along the projection directions. L; and U;,
@ = 1,2, are also labeled on the axes. The separating points A and B are also marked in the plots.
For the one-dimensional visualization, kernel density estimates of the two projected clusters are
also shown in the plot to indicate the concentrations and variations of the two projected clusters.
Both the one- and two-dimensional visualizations indicate that there exists a sparse area between
the two clusters obtained by Mclust for the simulated data set.

Figure 2.16 and Figure 2.17 respectively show the pairwise one- and two-dimensional vi-
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Figure 2.16: Pairwise 1-dimensional visualizations of the 3-cluster partition obtained by Mclust for
the wine data. Left panel: cluster 1 vs cluster 2. Middle panel: cluster 1 vs cluster 3. Right panel:
cluster 2 vs cluster 3.
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Figure 2.17: Pairwise 2-dimensional visualizations of the 3-cluster partition obtained by Mclust for
the wine data. Left panel: cluster 1 vs cluster 2. Middle panel: cluster 1 vs cluster 3. Right panel:
cluster 2 vs cluster 3.

sualizations of the three clusters obtained by Mclust for the wine data set. The one- and two-
dimensional visualizations clearly suggest that clusters 1 and 2 and clusters 2 and 3 are separated

but “close” to each other; clusters 1 and 3 are well-separated.

2.6 Partial Membership

The separation indexes for a cluster partition indicate how far apart the clusters are. If some
clusters are close to each other, then the points near the boundaries between clusters might be
“misclassified” in the sense that they partly fit with more than one cluster. We use the idea of

partial membership to indicate points which are close to the boundaries among two or more clusters.
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If there are many points at these boundaries, then the boundaries between clusters are more vague.

For partial membership, each point is assigned a value between 0 and 1 for each cluster,
with a total sum of 1 for the values. The vague points are those which do not have a value of 1 for
one cluster (and 0 for the rest).

There are a few fuzzy clustering methods in the literature to determine the “optimal”
partial memberships of the data, but they do not necessarily have the property of assigning partial
membership only to points at boundaries of clusters. The fuzzy c-means algorithm is a classic
fuzzy clustering algorithm (Bezdek 1981; Hoppner et al. 1999). It obtains the partial memberships

and the partition of data points simultaneously by iteratively solving the following minimization

problem:
n ko
min 3 (hyl™ e - vill®,
xV 4
k=1 i=1
such that

y) € [0,1], Zh

where kg is the number of clusters, n is the number of data points, m is a real number larger than

1, h;(y) is the membership function of cluster i for the data point y, H = {hy,...,hk,} is the set

of fuzzy membership functions,
Dk=1 [hi(yr)]™ yi

is the fuzzy mean of the i-th cluster, and V = {vi,..., vy, } is the set of fuzzy cluster means.

v =

Kaufman and Rousseeuw (1990, page 190) proposed a fuzzy clustering algorithm, called
fanny, which has the same form of the objective function (with m = 2) as that of the fuzzy
c-means algorithm except that fanny uses distance instead of squared distance to measure the
difference between two data points.

One desired property of partial membership is that only points near boundaries between
clusters have membership values that are not equal to 0 or 1. In the special case of two clusters in
one-dimensional space, the larger the variable value is, the smaller should be its partial membership
for belonging to cluster 1 if cluster 1 is to the left of cluster 2. Both the fuzzy c-means algorithm
and fanny do not have this property. Figure 2.18 shows a plot of partial membership values for
cluster 1 versus the data points in one-dimensional space. The partial memberships are obtained by

fanny. The two clusters are generated from two univariate normal distributions N (0, 1) and N (4, 1)
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respectively. Each cluster has 200 data points. The memberships of cluster 1 of the right-end data
points increase as data points move further away from cluster 1, and this does not match intuition.
Note that convexity is implicitly assumed for this desired property, while fuzzy clustering methods

such as fuzzy c-means and fanny do not require this assumption.
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Figure 2.18: Plot of partial memberships of cluster 1 versus the data points. The circles indicate
cluster 1 while the triangles indicate cluster 2. The ticks along the axes indicate the distributions of
two clusters. The two clusters are generated from the univariate normal distributions N (0,1) and
N (4,1) respectively. Each cluster has 200 data points. The memberships are obtained by fanny.

In this section, we propose a two-step method to assign partial memberships. In the first
step, we obtain a “hard” partition from a clustering method. Then for each pair of clusters,
we project them along the optimal projection direction described in Section 2.3 and determine a
partial membership for the pair. Then the membership values are reweighted based on all pairs
of clusters to obtain the overall partial memberships. For a given pair of clusters, points closer to
the “separating” hyperplane correspbnding to the optimal projection will be assigned membership
values that are closer to 0.5, and points far from the hyperplane will be assigned a membership

value of 1 for the cluster it was found to be in.

In discriminant analysis, if the data were a mixture of two densities (classes):

f(¥) =mfi(y) + mafaly), m+me=1 m >0, >0,
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then given a future y value, the membership probabilities for the two classes are

7 fiy)
hily) = et —,
) Yia1mifi(y)

We think of the one-dimensional projections from clusters 71,72 as being the realization of

i=1,2. (4.1)

the mixture of two univariate distributions with density:
fly) = [ﬂ'ilfil:iz(y) + Ty figeiy (y)]/[ﬂ-il + 7Ti2]’ Ty, + M, =1, my > 0,m, >0,

where m; is the relative frequency for cluster i, and f;, ;, (y) is the density of the projections for
cluster ¢, based on the projection direction for the cluster pairs indexed by 4, 7. Then we could have
a pairwise membership similar to (4.1). To get actual numbers, we need values of f;,.,(y), fi s, (¥)
based on the data. Since we mainly are interested in identifying vague points, we will use univariate
normal densities for f;,.;,(y), fi,:, (y) based on the sample means and variances of the projections,
even though sometimes this will not be a good approximation.

Suppose the mean vector and covariance matrix of cluster i for a “Hard” partition are 8;
and ¥;, and the projection direction for cluster 4; vs é3 is a;, ;,, for i; # is. For a point y in cluster
i, define the pairwise partial membership for cluster 7, as

7i¢(a%(y=8;)/,/a} ;a5 .
Ri(y) =< 1r,-¢(ag§.(y—a,»)/\/a3;z,-a,-j)+7rj¢(a5(y~0j)/\/ag;z,~a,-j)’ J#
Rt el — RE ()], j =1,

where ¢ is the density function of the standard normal distribution and h}(y) is interpreted as
the average amount assigned to cluster ¢ in the pairwise comparisons. When all ky clusters are

considered, these are revised to

hi(y)
hi(y) = —,CO'L*—
For y in cluster 7, then one should have h;(y) > hj(y), j # i.

(2.6.1)

If the point y is in cluster ¢; and near the boundary of cluster 5, and far from the other
clusters, then one would have h}(y) =~ 0, j # 41,42, and h;, (y) =~ hi (¥)s iy (y) = R}, (y).

As a numerical example, suppose kg = 3, and y is in cluster 1, and near the boundaries of

clusters 2 and 3. If h3(y) = 0.4, h3(y) = 0.3, then the membership values are h;(y) = 0.65/1.35,
ha(y) = 0.4/1.35, ha(y) = 0.3/1.35.




Because of the approximation with normal densities (more generally one could use some
density estimation methods), and we only need a rough idea of which points are near boundaries
of clusters, we consider a point to be vague if

max hj(y) < ¢
7

where ¢ might be around 0.9.

The partial memberships obtained by Formula (2.6.1) have the desired property: points
closer to the “separating” hyperplane corresponding to the optimal projection will be assigned
membership values that are closer to 0.5, and points far from the hyperplane will be assigned a
membership value of 1 for the cluster it was found to be in. For the simulated data set described

at the beginning of this section, the partial memberships obtained by Formula 2.6.1 are shown in

Figure 2.19.
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Figure 2.19: Plot of partial memberships of cluster 1 versus the data points. The circles indicate
cluster 1 while the triangles indicate cluster 2. The ticks along the axes indicate the distributions
of two clusters. The partial memberships are obtained by the two-step method we propose.

Note that the two-step method we propose is different from some existing fuzzy clustering
methods in that fuzzy clustering simultaneously assigns partial cluster memberships and finds

cluster localization by solving an optimization problem, while the membership assignment in our
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two-step method is not optimal according to a given criterion. Our two-step method is a direct
approach to assign partial membership while the fuzzy clustering methods like fuzzy c-means use
an indirect approach.

In the following we use the two examples in the previous section to illustrate the performance
of the partial membership function we proposed.

Figure 2.20 shows the partial memberships of cluster 1 of the two clusters obtained by clara
for the simulated data set described in Subsection 2.4.1. The data points shown in the plot are not
on the original 2-dimensional space. Instead, they are on the projected 2-dimensional space based
on the method described in Appendix A. The points with membership values which are between 0

and 1 represent the vague points at the shared boundary of the clusters.
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Figure 2.20: Partial membership for the simulated data set. Partition is obtained by clara.

The partial memberships of clusters 1, 2, and 3 obtained by clara for the wine data set are
shown in Figure 2.21. Cluster 3 is well separated from cluster 1 and 2, so there are only two data

points in cluster 3 whose memberships are between 0.1 and 0.9.

The true classes of the wine data set are known. To illustrate the relationship of vagueness
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‘and misclassification, we check which data points are misclassified in the partition obtained by
clara. We found that some of vague points are misclassified, while some are not. For example, data
points yes, Y72, Y84, Y99, and yi11 are all vague points and misclassified points. Data points yeg,
y72 and ygg, yY111 belong to class 2 but are in clara cluster 1. Data point yg4 belongs to class 2
but are in clara cluster 3. The memberships of cluster 1 for data points yss, y72 ¥99, and y;11 are
0.73, 0.66, 0.84 and 0.65 respectively. The membership of cluster 3 for data point yg4 is 0.65.

We can see that our approach reasonably captures the vague points at shared cluster bound-

aries. The partial membership values for these vague points are reasonable.

2.7 Discussion

We have proposed a separation index between pair of clusters to measure the separation distance
between them; this applies to any pair of clusters obtained from a partition using a clustering
method. A separation index matrix is used as a sunimary of a partition, and partitions from
different clustering methods can be compared based on their separation index matrices.

The pophlation version of Formula (2.3.4) is used as motivation for the method. For data
and a partition obtained f_rom a clustering method, the cluster sample covariance matrices are used.
We view the separation indexes as summary of a partition, and they are not necessarily estimates
of population parameters.

Based on the projections associated with the separation indexes we have also proposed a .
two-step method to obtain partial membership values for points which are at the boundaries among
clusters.

In addition, the separation index we propose have many other applications. We can develop
a sequential clustering algorithm by merging and splitting clusters to simultaneously estimate the
number of clusters and obtain a “hard” partition; for examples two clusters with near zero sepa-
ration index could be merged, and a large cluster could be split into two parts and the separation
index of the subclusters can be computed. This application is implemented in Chapfer 4.

It might also be possible to obtain a partition by maximizing the minimum separation index.
For example, the stopping rule of the kmeans algorithm is that we stop reallocate data points until

the average within-cluster variation no longer decreases. We might modify it so that we stop




reallocate data points until the minimum separation index among clusters no longer increases.
This can be a future research topic.

Moreover, we can develop a method to generate random clusters with different amounts of
separation and with arbitrary covariance matrices. This application is implemented in Chapter 3.

The optimal projection direction associated to the separation index can be used to do 2-class
discriminant analysis. Actually, the optimal projection direction generalizes the famous Fisher’s
discriminant direction to allow different class covariance matrices.

In classification, researchers (e.g. Rosenblatt 1958) have proposed a separating hyperplane
to distinguish two groups. The aim is to minimize the distance of misclassified points to the
separating hyperplane. This kind of separating hyperplane is not unique. So researchers such as
Vapnik (1996) find a hyperplane thaf cuts two groups and maximize the minimum distance over
all points to the hyperplane. Clustering is generally used without knowledge of true classes, so our
optimal separating hyperplane tries to maximize the difference in projections of two clusters, rather
than minimize misclassification. Moreover, Vapnik’s (1996) method would not work for two classes
which are not linear separable. The separating hyperplane associated to the separation index J*
can work for linear non-separable cases.

Support vector machine generalizes Vapnik’s (1996) separating hyperplane idea to handle
linear non-separable cases and to separate non-linear boundaries by enlarging the feature space
(Hastie et al. 2001). A possible future research topic is to generalize the separation index J*

so that it can measure the magnitude of the gap or sparse area between two non-convex-shaped

clusters.
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Figure 2.21: The membership scatterplots of the scaled and centralized wine data set in the pro-
jected 2-dimensional space described in Appendix A. The “hard” partition is obtained by clara.
The top-left, top-right and bottom panels show membership for clusters 1,2, and 3 respectively.




Chapter 3

(Generation of Random Clusters

3.1 Introduction

Many clustering methods have been proposed and new methods continue to appear in the cluster
analysis literature. However, some methods have an ad hoc nature and hence it is difficult to study
their theoretical properties. Some methods do have some nice theoretical properties, but need some
specific assumptions. It is usually difficult to validate these assumptions. Even if these assumptions
can be easily checked, we still need a way to check the performa_nces of these methods when the
assumptions are not satisfied. Hence numerical evaluation techniques are needed.

One way to numerically evaluate the performances of clustering methods is to apply the
methods to real data sets whose class or cluster structures are known. The greater the agreement
is between the true partition and the partition obtained by the clustering method, the better
performance the clustering method has. However it is usually difficult to obtain real data sets
with known cluster structures. Moreover, real data sets may contain noisy variables, outliers,
measurement errors, and/or missing values. These problems are usually not easy to be detected
and removed effectively. Hence we could not know if the bad performance is due to these problems
or due to the method itself. Furthermore, there are no replications for real data sets. So we could
not know if the partition produced by a clustering method is by chance or not.

Simulated data sets do not have these drawbacks. They have known cluster structures and
are easy to generate. Moreover, we can control the noise and produce as many replicates as we

want. Furthermore we also can determine in which situations a clustering method works well and
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in which situations it does not work well. Hence simulated data sets are usually used to evaluate
the performances of clustering methods.

The qualities of simulated data sets depend on cluster generating algorithms. Many algo-
rithms have been proposed (e.g. Milligan, 1985; Gnanadesikan, et al. 1995; Zhang, et al. 1996;
Gubha, et al. 1998; Tibshirani, et al. 2001). It seems that Milligan (1985) is the most systematic in
addressing the problem of cluster generating. Milligan generated clusters from an experimental de-
sign point of view: the factors include the number of clusters, the number of dimensions (variables),
sizes of clusters, outliers, noisy variables, and measurement errors. In the design, cluster centers
and boundaries are generated one dimension at a time. Cluster boundaries are separated by a ran-
dom quantity in the first dimension. However there is no constraint on the isolation among clusters
in other dimensions. Multivariate normal distributions with diagonal covariance matrices are used
to generate data points. Data points are truncated if they fall outside the cluster boundaries.

The main limitation of Milligan’s (1985) method is that the degree of separation among
clusters is not controlled. The degree of separation is one of the most important factors to check
the performances of clustering methods. For data sets with close cluster structures, we expect most
clustering methods could not work well. If a clustering method could work well for closely-spaced
clusters, then it is reasonable to believe that this method is better than other clustering methods.
If clusters are well-separated from each other, then we expect all clustering methods could work
well. If a method does not work well for well-separated clusters, it is reasonable to believe that its
performance is worse than other clustering methods. Therefore it is desirable to control the degree
of separation. To the best of our knbwledge, no existing cluster generating algorithms consider the
degree of separation as a factor.

The cluster structures generated by Milligan (1985) are also not challenging since clusters
are separated in the first dimension and we can detect the cluster structures from pairwise scatter
plots. Furthermore the covariance matrices of clusters are diagonal which is usually not true in real
data sets. It is quite common in real data sets that clusters are overlapped in all dimensions and
covariance matrices are not diagonal.

By a random rotation, we can eliminate the property in Milligan (1985) that clusters are
separated only in the first dimension. It is also possible to allow the covariance matrices to have

different shapes, diameters and orientations. However it is not easy to control the degree of sepa-
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ration. At first thought, we can control the degree of separation by specifying the lengths of the
gaps between clusters in the first dimension rather than randomly generating the lengths of the
gaps. However this requires that the covariance matrices of clusters be diagonal. And we still can
not totally control the degree of separation among clusters since there is no control at all on the
isolation in other dimensions.

In this chapter, we improve the cluster generation method proposed in Milligan (1985) so
that the degree of separation among clusters could be set to a specified value while the cluster
covariance matrices can be arbitrary positive definite matrices. The cluster structures produced by

our algorithm have the following desired features:

e The theoretical degrees of separation among clusters can be set to a specified value, based on

a separation index.
e No constraint is imposed on the isolation among clusters in each dimension.
e The covariance matrices can have different shapes, diameters and. orientations.
o The full cluster structures generally will not be detected simply from pairwise scatter plots.

. Noisy' variables and outliers can be imposed to make the cluster structures harder to be

recovered.

The structure of this chapter is as follows: The overall cluster generating algorithm is listed
in Section 3.2. We give a quantitative description of the degree of separation in Section 3.3. In
Section 3.4, we discuss how to allocate the mean vectors or centers. We discuss how to generate co-
variance matrices in Section 3.5. In Section 3.6, we propose a method to generate noisy variables.
Random rotation is a technique used in -our cluster generating algorithm to produce clusters so
that cluster structures might not be detected from pairwise scatter plots. We describe the random
rotation technique in Section 3.7. In Section 3.8, we propose a method to generate outliers. In
Section 3.9, we propose a factorial design so that the simulated data sets can be used to systemati-
cally study the performances of clustering methods. The verification of the simulated data sets and

the discussion are given in Section 3.10. Finally, Section 3.11 contains a summary and proposes

possible future research topics.
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3.2 Overall Algorithm for Generation of Random Clusters

The main idea of our algorithm for generation of random clusters is to allocate cluster centers
to the vertexes of an equilateral simplex. Then we adjust the length of the simplex edges so
that the minimum separation among clusters is equal to the specified value Jy. Finally we scale
covariance matrices (but keep their shapes, diameters and orientations) so that the separations
between clusters and their nearest neighboring clusters are also equal to the specified value Jp.
The degree of separation is based on the separation index we proposed in Chapter 2. Other
separation indexes can be used. Data points are generated from a mixture of elliptically contoured
distributions (for which the univariate margin is fixed up to location and scale), which include
multivariate normal as a special case.

In this section, we give the overall algorithm for generation of random clusters. We will

describe the details later. The overall algorithm is given below:

Step 1 Input the number of dimensions p, the number of clusters kg, the degree of separation Jy for
neighboring clusters, the tuning parameter a for the separation index, the number of noisy

variables ps, the lower/upper eigenvalue parameters Amin and Amax for random covariance

matrices, and the range of cluster sizes [n, ny].

Step 2 Generate cluster centers and random covariance matrices in the p; non-noisy dimensions so
that neighboring clusters have theoretical separation index Jy (Details are given in Sections 3.4

and 3.5).

Step 3 Generate sizes of each cluster randomly from the range [ny, ny] and generate memberships

of each data point.

Step 4 Generate the mean vector and covariance matrix of the noisy variables (Details are given

in Section 3.6).

Step 5 Apply a random rotation to the cluster means and covariance matrices in Step 2 (Details

are given in Section 3.7).

Step 6 From Step 4 and 5, we have cluster means and covariance matrices for all kg clusters.




Step 7 Generate random vectors for each of the ky clusters from a given family of elliptically

contoured distributions.

Step 8 Calculate the theoretical separation index matrices and projection directions via the the-

oretical mean vectors and covariance matrices.

Step 9 Calculate the sample separation index matrices and projection directions via the sample

mean vectors and covariance matrices.

Step 10 Generate outliers. The memberships of outliers are assigned as zero (Details are given in

Section 3.8).

3.3 Degree of Separation

The key concept in the algorithm is the degree of separation. In this section, we propose a quantita-
tive description of the degree of separation based on the separation index we proposed in Chapter 2
(see Definition 2.3.4).

If two clusters are generated from two elliptically contoured distributions with mean vector
0 and covariance matrix Xy for £ = 1,2, and a common characteristic generator !, then the
theoretical separation index between the two clusters is
7t = al(02 — 61) — qo2(VVaTZ1a + \/aT22a),

a’ (8, - 6,) + qa/g(\/aT21a +valSa)

where oo € (0,0.5) is a tuning parameter indicating the percentage of data in the extremes to

ddwnweight, da/2 is the upper /2 percentile of the standardized univariate margin of elliptically

contoured distribution, and a is the optimal projection direction which maximizes J},.

Definition 3.3.1 Cluster ko is the nearest neighboring cluster of cluster ky if the separation

indez Jg, . between cluster ky and cluster ko is the smallest among the pairwise separation indezes
of cluster k1 and other clusters. That is,
Iy = min I b
Ruke ™ i, kot RU
where ko is the number of clusters. We denote Ji, min @8 the separation index between cluster ki

and its nearest neighboring cluster.

!Characteristic generator is term used in Fang et al. (1990)
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The degree of separation then can be measured by the separation indexes J; ., k =
1, ..., ko. ¥ J} i B = 1,...,k, are all close to zero, then the cluster structure is close. If
Ji min>» ¥ = 1,..., ko, are all quite large, then the cluster structure is well-separated. However it

is difficult to make a clear-cut decision on whether a cluster structure is “close”, “separated”, or
“well-separated”. For the factorial design in Section 3.9, we regard a cluster structure as close if
Jg min = 0.010, k = 1,... ko, as separatedif J; , =0.210,k =1,..., ko, and as well-separated
if Jin = 0.342, k=1,...,ko. The value 0.010 is the separation index between two clusters, which
are generated from two univariate normal distributions N (0,1) and N (A4,1), where A = 4. The
values 0.210 and 0.342 are the separation indexes when A = 6 and A = 8 respectively. The tuning
parameter o is equal to 0.05 when calculating these separation indexes. Figure 3.1 shows that the
densities of N (0,0) and N (0,4) are close to each other, the densities of N (0,0) and N (0,6) are

separated from each other, and the densities of N (0,0) and N (0,8) are well-separated from each

other.
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Figure 3.1: The left panel shows the densities of N (0,0) and N (0,4). The middle panel shows the
densities of N (0,0) and N (0,6). And the right panel shows the densities of N (0,0) and N (0, 8).

3.4 Allocating Cluster Centers

One key to generating cluster structures with specified degree Jy of separation is the allocation of

the cluster centers. If there are only two clusters, then it is easy to allocate the cluster centers so
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that the separation index is equal to Jy. However, if there are more than two clusters, then it is
not easy to allocate the cluster centers so that the sepafation indexes (J in, K = 1,..., ko, where
ko is the number of clusters) between clusters and their nearest neighboring clusters are equal to
Jo, except for the trivial case where the cluster covariance matrices are all equal to a multiple of
the identity matrix.

For the trivial cases, we can first generate a simplex in a p;-dimensional space whose edges
have equal length L, where p; is the number of non-noisy variables. Then we allocate cluster centers
to the vertexes of the simplex. Finally, we adjust the length L so that J; . = Jo, k=1,...,ko. If
the number kg of clusters is smaller than or equal to p; + 1, then we can take the first ky vertexes
as cluster centers. If kg is larger than p; + 1, then we can construct several simplexes and connect
them together until all cluster centers are allocated. Figure 3.2 illustrates the locations of the five

vertexes of two connected simplexes in a two-dimensional space.

Vertex 3 Vertex 5

Vertex 1 Vertex 2 Vertex 4

Figure 3.2: The five vertexes of two connected simplexes in a two-dimensional space

A simplex in a pi-dimensional space contains p; + 1 vertexes vq, ..., vp,4+1. These p1 +1
vertexes are linearly dependent. However all its proper subsets are linearly independent. That is,
there exists a non-zero vector = (z1,...,Zp,+1)7 for the homogeneous linear equation

1+l

E Z;V; = OPI’
i=1

where 0, is a p; x 1 vector whose elements are all zero, z;, ¢ = 1,...,p; + 1, are scalars. And

for any subset {vg; *j =1,...,m}, m € {1,...,p1}, the only solution for the homogeneous linear

equation
m
E .’Ej’Uej = Opl
j=1

is © = Op,.
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A simplex is a line segment, a triangle, and a tetrahedron in one-, two-, and three-dimensional
space respectively. The lengths of the simplex edges are not necessarily equal.

For the non-trivial cases where not all eigenvalues of cluster covariance matrices are equal,
we can still construct simplexes with equilateral edges to allocate cluster centers. However we can
only make sure the minimum separation index among clusters is equal to Jy and can not control

other separation indexes. To make sure JJ ;, = Jo, j =1,... , ko, we have to scale the covariance

matrices (but keep the cluster shape and orientation).
With following cluster-center-allocation algorithm, we can obtain mean vectors and covari-

ance matrices of clusters so that the theoretical separation indexes J; . , k = 1,..., kg, are all

equal to Jp.
Cluster-Center-Allocation Algorithm:
Stepv (a) Generate ko covariance matrices X, k =1,..., ko.

Step (b) Construct a p;-dimensional equilateral simplex whose edges have length 2. The first two
vertexes are v, = —e; and v2 = e; respectively, where the p; x 1 vector e; = (1,0,... ,O)T.

Denote the j-th vertex as v, 5 =1,...,p + 1.

Step (¢) If ky < p1 + 1, then take the first ky vertexes of the simplex as initial cluster centers. If
ko > p1 + 1, then we start adding vertexes from the following sequence after v, 1 until all
ko cluster centers are allocated:

vo+2%ey,...,p 41 +2%€,v2+4xe, ..., 1 +4xe,

v2+6*e1,...,vm+1+6*e1,

Essentially this just keeps on adding points on a shifted symmetric simplex.

Step (d) Calculate the separation index matrix J .-

Step (e) Scale the length of the simplex edge by a scalar ¢; so that the minimum separation index

min;; Ji*j among clusters is equal to Jy.

Step (f) Obtain the separation indexes, J ., k =1,...,ko, between clusters and their nearest

neighboring clusters, and obtain k* = arg lnauxk0 St min I 5o min > Jo, then go to Step (g).

Otherwise scaling is complete.




Step (g) Scale the covariance matrix Xy by a scalar cg so that J;. .. = Jo. Go back to Step (f).

min

In the above algorithm, we did not mention how to obtain the simplex vertexes except for
the first two vertexes. In fact the vertexes of a p-dimensional equiiateral simplex, whose edge length
is L = 2 and first two vertexes are v; = —ej and vy = e, are not unique. In the following, we

propose a way to obtain a set of vertexes for a p-dimensional equilateral simplex whose edge length

is 2 and first two vertexes are v1 = —e; and vy = e;.

We first describe how to obtain the third vertex for the p-dimensional simplex. Since the

simplex is equilatéra,l, we have
(v3 —v1)" (v3 — v1) =4,
(v3 —2)" (v3 — va) =4.

By adding the two equations, we can obtain

2
: _ 1
'U%”U3 - 2173'02 =4 - 5 Z ’va'Ui,

i=1
where
12
- - = T
Vo = -‘2-2’01‘ = (1)21,...,1)2,,) .
) ) =1 ‘
Let v3; = U1 and v33 = -+ = v3p = 0. Then we can get

2

1

2 _ § : T ~2 _

V39 = 4 — 5 v, U; + V91 + 2’(1321)22.
. i=1

Note that 799 = 0. Hence

By using the same technique, we can obtain the coordinates of the k-th vertex vy given vy, ..

v 1,2<k<p+1:
Vi = Ugg, 0 =1,...,k — 2,

v =0, 5=k,...,p,

1 1/2
1 T _
Vkk—1 = {4 ~ 1 > (i - o) (v; - 'Uk)} :
. i=1
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where

1 k-1
v = mzvz = (Tk1,- -, Okp)
i=1

3.5 Generating a Covariance Matrix

To generate a p X p covariance matrix X, we use the following decomposition:

T =QAQ",

where Q is a p x p orthogonal matrix, A = diag (A1,...,)p), ie.

M 00
A=l 0 . 0
0 0 A

P

AL 22>, 2 Ap > 0 are eigenvalues of 3. The j-th column of the orthogonal matrix Q is the
normalized eigenvector of ¥ corresponding to the eigenvalue A\;. The term “normalized” means
that each column of @ has unit length. In other words QTQ = QQT = I,, where I, is the
p-dimensional identity matrix.

The eigenvalues and eigenvectors determine the diameter, shape and orientation of the
matrix 3 respectively. Different eigenvalues and eigenvectors correspond to covariance matrices
with different diameters, shapes and orientations. To randomly generate a positive definite matrix X
is equivalent to randomly generating p positive real numbers Ay, ..., Ap, and a normalized orthogonal
matrix Q. | |

We can generate p eigenvalues with equal probability from an interval whose lower bound
is positive. The lower bound Api, and upper bound Apax of the interval determine the size and
variation of the eigenvalues. If the difference Apax — Amin is too large, then it is highly possible
that clusters generated are too elongated. It is not common in real problems that the shapes of
clusters are too elongated. If Ap;, is too large, then the diameters of clusters are too large. Given
the number of data points, the larger the diameter of a cluster is, the more sparse the data points
would be. So to avoid too elongated clusters and too sparse clusters, we use Api, = 1 and Ay = 10

when we generate simulated data sets. Other values can be used.
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To generate a p X p normalized orthogonal matrix Q, we can first generate a p x p lower
triangle matrix M whose diagonal elements are all non-zero. Then we use the Gram-Schmidt
Orthogonalization (Kotz and Johnson, 1983, Volume 3, page 478) to transform the lower triangle
matrix M to a normalized orthogonal matrix. Denote q; and m; as the j-th column of the matrices

Q and M respectively, 7 = 1,...,p. Then the procedure of the Gram-Schmidt Orthogonalization

is as follows:
Step 1 q; = m;.

Step 2

m a; .
q; =m; — Z qT lqm J=2,...,p
-1 4%

Step 3
-9 h N =+/aTqg.. i =1
QJ_ ’ where ”q]”_ quW]— Y 2
llg;

3.6 Constructing Noisy Variables

There is no unified definition of noisy variable. Milligan (1985) assumed that noisy variables are
uniformly distributed and are independent of each other and of non-noisy variables. We assume
that noisy variables are normally distributed and independent of non-noisy variables. However,
noisy variables are not necessarily independent of each other.

Like Milligan (1985), we require that the variations of noisy variables in the generated data
sets are sim_ilar to those of non-noisy variables. If noisy variables have smaller variations than those
of non-noisy variables, then we implicitly downweight noisy variables. Hence the data sets would
be less challenging. ' |

Denote the p; X p; matrix X* as the covariance matrix of non-noisy variables and the p, X py
matrix ¥y as the covariance matrix of noisy variables. One possible way to make the variations of
noisy variables similar to those of non-noisy variables is to make the ranges of eigenvalues of X
similar to those of X*.

If we assume that data points in non-noisy dimensions are from a mixture of distributions

with the density function f(z) = Zk L Tk fr(x), where 0 < m < 1 and ZII:O=1 7 = 1, then the
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covariance matrix X* of the mixture of distributions is
ko ’
‘ T
=) mBe+ Y, ek (e — te) (e — Bar)”
k=1 k<k'

where g, and Xy are the mean vector and covariance matrix of the k-th component of the mixture

of distributions. We can randomly generate the eigenvalues of X from the interval [}

513 A1, where

p1 is the number of non-noisy variables, A; and A} are the minimum and maximum eigenvalues of
the matrix ¥*. In this way, the variations of noisy variables would be similar to those of non-noisy
variables.

The mean vector .
0
p= ey
k=1
of the mixture of distributions can be used to generate the p; x 1 mean vector pq of the noisy vari-
ables. For example, we can randomly generate the ps elements of p, from the interval [min;j—; . p,
IJ';’ max;=1,...,p1 N;]
Once we generate the mean vectors and covariance matrices of non-noisy and noisy variables,

we can randomize the labels of variables to make the generated data sets closer to real data sets.

3.7 Rotating Data Points

In most cases, we could not detect the numbers of clusters of real data sets in high dimensional
spaces by lower dimensional scatter plots. However, the simulated data sets produced by the
methods mentioned in the cluster analysis literature do not always have this property. For example,
we can easily detect the numbers of clusters in data sets generated by Milligan (1985) from the
scatter plots of the first variable versus any one of other variables. This is because Milligan (1985)
intentionally makes sure that clusters are separated in the first dimension. The data sets generated
by our algorithm might have the same problem.

To improve the simulated data sets so that we could not detect the numbers of clusters
by scatter plots, we can simply transform these data sets by random rotations. To rotate a data

point x, we can apply the transformation y = Qx, where @ is an orthogonal matrix. We can use

the method proposed in Section 3.5 to generate an orthogonal matrix. We only rotate non-noisy




variables and do not rotate noisy variables because otherwise it is possible that noisy variables are
no longer noisy after rotation.

The effect of random rotation can be visualized by an example shown in Figure 3.3. In this

- [GeBE | e

- s e s ouom »

Figure 3.3: Effect of random rotation. The left panel shows the pairwise scatter plot of the original
dat set containing 4 well-separated clusters in a 4-dimensional space. The right panel is the pairwise
scatter plot after a random rotation.

example, the original data set has four well-separated clusters in a four-dimensional space. The

sammple separation index matrix is

—1.000 0.342 0.342 0.362
0.342 -—1.000 0.358  0.402
0.342  0.358 —1.000 0.341
0.362 0.402 0.341 —-1.000

The pairwise scatter plot in the left panel of Figure 3.3 shows obvious four-cluster structure. The
right panel of Figure 3.3 shows the pairwise scatter plot of the original data set after a random
rotation. We can see that there are two obvious clusters. However, the four-cluster structure is no

longer obvious.

3.8 Adding Outliers

Outliers, like noisy variables, are frequently encountered in real data sets. And outliers may affect
the recovery of true cluster structures. Therefore any cluster generating algorithm should provide

a function to produce outliers for simulated data sets.
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Milligan (1985) generated outliers for each cluster from multivariate normal distributions
‘N (py, 9%%), where p; and i, are the mean vector and covariance matrix of the k-th cluster,
k =1,...,kp. A point generated from N (g, QEk) is accepted as an outlier of the k-th cluster
if this point exceeds the boundary of the k-th cluster on at least one dimension. The number of
outliers of the k-th cluster is proportional to the size of the k-th cluster. There are either 20% or
40% additional points which are added to each cluster as outliers.

For simplicity, we generate outliers from a distribution whose marginal distributions are
independent uniform distributions. The outliers are generated for the whole data set instead of
for each cluster. The range of the j-th marginal uniform distribution depends on the range of
non-outliers in the j-th dimension. We set the range as [f1; — 4ﬁ}j, iy + 42]-], where /i; and ij are

the sample mean and standard deviation of the j-th variable respectively.

3.9 Factorial Design

We can use different combinations of the input parameters in our cluster generating algorithm
to generate data sets with different cluster structures. Like Milligan (1985), we can propose a
factorial design with input parameters as factors so that the simulated data sets can be used to
systematically study the performances of clustering methods.

The factorial design is an effective technique to decompose different factors which might
affect the performances of clustering methods. The factors include the type of data (categorical or
continuous), the number of data points, the number of variables, the number of clusters, the shapes,
diameters and orientations of clusters, the degrees of separation between clusters, sizes of clusters,
noisy variables, outliers, missing values, and measurement errors, etc. Not all these factors are
considered in this chapter. Those factors which are not considered in this chapter will be studied
in future research.

Before we propose our design, we briefly review the factorial design in Milligan (1985), which
has 3 factors: (1) the number of clusters; (2) the number of dimensions; and (3) sizes of clusters.
For the first factor, there are 4 levels — 2, 3, 4 or 5 clusters. There are 3 levels for the second
factor — 4, 6, or 8 dimensions. For the third factor, there are also three levels: all clusters have

equal size; one cluster contains 10% of the data points while the other clusters have equal cluster
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size; one cluster contains 60% of the data points while other clusters have equal cluster size. This
is summarized in Table 3.1. There are three replicates for each combination of the design. So the

design produces 3 X 4 x 3 x 3 =3 x 36 = 108 data sets.

Table 3.1: The design proposed by Milligan (1985)
Factors Levels
Number of clusters 2,3,4,5
Number of dimensions | 4, 6, 8 _
Cluster sizes All equal; 10% and others equal; 60% and others equal
Totally 4 x 3 x 3 = 36 combinations in the design.

Real data sets usually are not “clean” .' There exist outliers, noisy variables, measurement
errors, etc.. In Milligan’s (1985) design, different kinds of noises (e.g. outliers, noisy variables,
measurement errors, etc.) were imposed on the simulated clusters so that the simulated data sets
are closer to real situations.

Milligan did not consider the degree of separation as a factor. However the degree of
separation is important. If clusters generated are well-separated, then we expect any clustering
algorithm would have good performance. If a clustering method works poorly for well-separated
cluster structures, then we expect it cduld not work well for real data sets. If clusters generated
are close to each other, then we expect some clustering methods would work poorly. If a clustering
method has good performance for close cluster structures, then we expect it would work well for real
data sets. Thus, it is desirable to generate well-separated, separated, and close cluster structures
respectively.

In our design, there are four factors: (1) the number of clusters; (2) the degree of separation
— we regard a cluster structure as close if J; . = 0.010, k= 1,...,ko, as separated if J; . =
0.210, k = 1,..., ko, and as well-separated if J} . = 0.342, k = 1,...,ko; (3) the number p;
of non-noisy variables; and (4) the number p; of noisy variables The levels within each factor are
listed in Table 3.2. There are three replicates for each combination of the design. So the design
produces 3 x 3 x 3 x 3.x 3 =3 x 81 = 243 data sets. |

In our design, we do not consider cluster size as a factor. Instead, we will randomly generate
cluster sizes within a specified range. If the range is large enough, then it is possible to get quite
different cluster sizes. If the range is small enough, then we can get almost equal cluster sizes.

It is well-known (see Chapter 5) that noisy variables may mask true cluster structure. So in
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Table 3.2: The factors and their levels in our design

Factors Levels

Number of clusters 3,6,9

Degree of Separation - | close, separated, well-separated
Number of non-noisy variables p; | 4, 8, 20

Number of noisy variables py 1, 0.5p1, p1

Totally 3 x 3 x 3 x 3 = 81 combinations in the design.

our design, we explicitly add the number of noisy variables as a factor. For thé first level, we add 1
noisy variable. We expect clustering methods will still work well in this case. For the second level,
we add 0.5p; noisy variables, where p; is the number of non-noisy variables. We expect clustering
algorithms may not work well in this case except when clusters are far apart. For the third level, we
add p; noisy variables. That is, ha,lf of variables are noisy variables. We expect clustering methods

may not work well.

We expect a high ratio of noisy variables and close clusters to be the most difficult scenario

for clustering methods.

3.10 Verification and Discussion

Milligan (1985) used three different verification procedures to the data sets produced by his design:
¢ A discriminant analysis of each data set. However, Milligan (1985) didn’t mention the details.

e Check if clusters are overlapped on the first dimension.

o Apply four common hierarchical agglomerative methods to the data sets. Then count mis-
classification rates and calculate Rand indexes which measure the agreements between true

partitions and the partitions obtained by clustering methods.

For the data sets generated by our design, we only neéd to check whether the theoretical
and sample separation indexes, J; . and j,’:min, k=1,...,ko, are close to the specified degree of
separation Jo.» |

Our design produces 243 data sets. There are 81 data sets each for close, separated and
well-separated cluster structures. For data sets with close cluster structures, we pool the Jf . ’s

into a set Sj. and pool the j,: min S Into a set S; . Similarly, we can get sets Sy; and S j, for data
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sets with separated cluster structures and get sets S, and S 7, for data sets with well-separated
cluster structures.

We expect that all elements in S, are very close to 0.010 since we require them be equal
to 0.010 for the theoretical version based on mixtures of multivariate elliptically contoured distri-
butions. Similarly, we expect that all elements in Sy and Sy, are very close to 0.210 and 0.342
respectively. We also expect that the elements in the sets S, S j¢» and S, ~are close to 0.010,
0.210, and 0.342 r‘espectively. To check these, we can use the sample means, sample standard devi-
ations, estimates of biases, and estimates of MSE to measure the closeness of the obtained degrees
of separation to the specified degree of separation.

Let S be any one of the sets Sy, Sys, Syw, Sje Sjgr and S . Denote s; as the i-th element
of the set S and m as the number of elements in the set S. The estimates of the bias and MSE for

the specified degree of separation Jy are defined as
bias (S) = S — Jo,
MSE (S) = Var(S) + bias ()2,

- where

§=— Siy
o 1 & -
Var(8) = ——= (si - )2,

are the sample mean and variance of the set S respectively. The specified degree of separation Jg
can take values 0.010, 0.210, or 0.342.

When generating these 243 data sets, we set a = 0.05, Amin = 1, and Apax = 10 and we use
mixtures of multivariate normal distributions. The cluster sizes are randomly generated from the
interval [200, 500].

Table 3.3 lists the results for the sets Sy, Sy, and Sy,. We can see that the theoretical
degrees of separation of the data sets are very close to the specified degrees of separation. In fact
there is nothing random here. So Awe expect there is no variation among elements in each set.

Table 3.4 lists the results for the sets S jor Sjs and S; . We can see that the sample
degrees of separation of the data sets are close to the specified degree of separation. Overall the

sample degrees of separation are slightly larger than the specified degree of separation, although by
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Table 3.3: The sample means and standard deviations of the sets Sj., S5, and Sy, as well as the
corresponding estimates of biases and MSEs of J;.

Jo mean (sd) bias +vMSE

0.010 | 0.010 (0.000) -0.000 0.000

0.210 | 0.210 (0.000) -0.000 . 0.000

0.342 | 0.342 (0.000) -0.000 0.000

randomness some sample degrees of separation are smaller than the specified degrees of separation

by checking the log files produced by our algorithm.

Table 3.4: The sample means and standard deviations of the sets S, S;,, and S as well as the
corresponding estimates of biases and MSEs of J.

Jo mean (sd)  bias +/MSE

0.010 | 0.013 (0.016) 0.003 0.016

0.210 | 0.211 (0.015) 0.001  0.015

0.342 | 0.344 (0.013)  0.002 0.013

In addition to the separation indexes between clusters and their nearest neighbors, the sep-
aration indexes between clusters and their other direct neighboring clusters can also provide
useful information about the degree of separation of the cluster structure in a data set. In our al-
gorithm, the cluster k; is a direct neighboring cluster of the cluster k; if the distance between
the two cluster centers is equal to L, where L is the edge length of the simplexes.

When we generate the 243 data sets, we record the separation indexes between clusters and
their farthest direct neighboring clusters. We denote these separation indexes as the farthest
separation indexes. We also record the median of the separation indexes between clusters and
their direct neighboring clusters. We denote these separation indexes as the median separation
indexes. We pool the theoretical and sample farthest separation indexes of the data sets with close
cluster structures into the sets S;.; and S Jef respectively. Similarly, the sets S;.; and S Jef for
separated, Sjus and Sj,, f for well-separated. Similarly, we pool the theoretical median separation
indexes of the data sets with close, separated, and well-separated cluster structures into the sets

Sjems Sssm, and Sjym respectively. The sample median separation indexes are pooled into the sets

Siems Sjem> and S Jwm respectively. The means and standard deviations of these sets are listed in

Table 3.5 and Table 3.6.
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Table 3.5: Means and standard deviations of the median separation indexes.
Jo mean (sd) (set) mean (sd). (set)
0.010 | 0.043 (0.025) (Sjem) | 0.052 (0.026) (S
0.210 | 0.241 (0.026) (Sysm) | 0.249 (0.027) (S
0.342 | 0.372 (0.023) (Sjwm) | 0.379 (0.023) (

Jem)

Table 3.5 shows that the median separation indexes are still close to the specified degree of
separation. This is desirable since we want the separation indexes between clusters and their direct

neighboring clusters as close to the specified degree of separation as possible.

Table 3.6: Means and standard deviations of the farthest separation indexes. -
Jo mean (sd) (set) mean (sd) (set)
0.010 | 0.098 (0.054) (Sycf) | 0:111 (0.053) (Sjcf)
0.210 | 0.291 (0.051) (Syes) | 0.301 (0.051) (S, )
0.342 | 0.416 (0.044) (Sywys) | 0.424 (0.043) (Sjwf)

However, the farthest separation indexes in Table 3.6 are much larger than the specified
separation indexes because if ky > p, then not all cluster centers can be neighboring vertexes of a
simplex.

In our cluster generating algorithm, we calculate the separation indexes after generating the
mean vector and covariance matrix of the noisy variables. Table 3.3 shows that noisy kvariables do
not affect the projection directions and separation indexes if the true cluster structures are known.
In fact, we can show this theoretically.

‘ Suppose that clusters 1 and 2 are in a p-dimensional space. Without loss of generality,
suppose that the first p; variables are non-noisy and the remaining p, variables are noisy variables

(p = p1 + p2). Then we can partition the mean vectors and covariance matrices of the two clusters

as follows:

o Vi 0
we={ ], == ™ k=12,
0 0 Vv

where the p; X 1 vector 8y is the mean vector of cluster k on non-noisy dimensions, k = 1,2, the
p2 X 1 vector @ is the mean vector for noisy variables, the p; x p; matrix V1, is the covariance
matrix of cluster £ in non-noisy dimensions, k = 1,2, and the py x py matrix V is the covariance

matrix for noisy variables. Recall that we assume that noisy variables are independent of the
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non-noisy variables. That is why the covariance matrices are block-diagonal.

The optimal projection direction a* for cluster 1 and 2 satisfies:

a” [y — ) = Zoyo (\/aTzla + \/GTEW)
J*(a*) = max J*(a) = max
¢ *al {py — ]+ Zoy (\/aTzla + \/GTEW)

a{ [02 — 01] - Za/2 <\/a’{V111a1 + agVag + \/a{Vzua.l + ar{Vaz)

= max

ar{ [02 — 01] + Za/g (\/alTVmal + agVag + \/a’{Vgnal + azTVag)

It is not difficult to show that the function

_b—x
T b+z

h(z)

is a monotone decreasing function of z if b > 0. To maximize J*(a), we only need to minimize the
part containing as. For fixed a;, J*(a) reach its maximum when a; = 0. Therefore, the optimal
projection direction does not depend on the noisy variables. Consequently, the optimal separation

index does not depend on the noisy variables.

3.11 Summary and Future Research

In this chapter, we quantify the degree of separation among clusters based on the separation index
we proposed in Chapter 2 and propose a cluster generating algorithm which can generate clusters
with a specified degree of separation. We improve Milligan’s (1985) factorial design so that (1)
the theoretical degrees of separation for neighboring clusters can be set to the specified degree of
separation; (2) no constraint is imposed on the isolation among clusters in each dimension; (3) the
covariance matrices of clusters can have different shapes, diameters and orientations; (4) the full
cluster structures generally will not be detected simply by pairwise scatter plots.

To generate data sets, we assume that variables are all continuous and that clusters have
ellip.tically contoured structures. However the variables in real data sets usually have mixed-type
variables and are not elliptically contoured. We will investigate how to generate data sets with
mixed-type variables and non-elliptically contoured structures.

Missing values are common in real data sets and can be caused by different mechanisms.

We will investigate how to generate missing values in our future research.
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Chapter 4

A Sequential Clustering Method

4.1 Introduction

It is an important issue in cluster analysis to determine the number of clusters or an interval for
the plausible number of clusters. The ultimate goal of cluster analysis is to determine if there
exist patterns (clusters) in multivariate data sets or not. If clusters exist, then we would like
to determine how many there are in the data set. Many clustering methods (e.g. non-hierarchical
clustering' methods) require specification of the number of clusters as an input parameter. Although
hierarchical clustering methods do not need the information about the number of clusters, we have
to specify the number of clusters if we want to get a single partition instead of a tree structure.

It is a quite challenging problem to determine the number of clusters. First of all, there is no
universal agreement on the definition of the concept “cluster” (Section 3.1, Everitt 1974). Different
people may have different points of view on what constitutes a cluster and hence on how many
clusters exist. Moreover, the data usually are in high-dimensional spaces so that visualization is not
easy, and it is usually hard to detect their cluster structures from lower dimensional spaces. Even
though we can view how many clusters appear in a a lower dimensional space, it is still possible that
the true number of clusters is more than we can view. To illustrate this, we generate a simulated
data set, which consists of 4 well-separated elliptical-shaped clusters in a 4-dimensional space. The
pairwise scatter plot is shown in Figure 4.1. We can see that only 3 obvious clusters. Furthermore,
factors such as shapes, sizes, and orientations of clusters, the degree of separation among clusters,

noisy variables, and outliers may cause difficulties to determine the number of clusters.
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Figure 4.1: The pairwise scatter plot of a data sets containing 4 well-separated clusters in a 4-
dimensional space. The 4-cluster structure is not obvious from the plot.

Many methods‘ have been proposed to determine the number of clusters. These methods
can be grouped roughly into two categories: subjective and objective methods.

One example of a subjective method is to use the subject matter knowledge of the data
-set. Sometimes the experts in the subject fields may provide prior-information on the number of
clusters. This subject knowledge is very useful to give a rough range of the number of clusters.

Another example of a subjective method is based on a plot of the within-cluster sum of
squares versus the number of clusters. The number of clusters is determined subjectively by locating
the “elbow” point in the plot. The rationale is that although the value of the within-cluster sum
of squares is always monotone decreasing as the number of clusters increases, the decreases after
the true number of clusters tends to be not as steep as those before the true number of clusters.
Recent studies of the elbow phenomenon include Sugar (1998) and Sugar et al. (1999).

Tibshirani et al. (2001) and Sugar and James (2003) modified the above subjective method
so that the number of clusters can be determined relatively objectively. Tibshirani et al. (2001)
compared the curve based on the original data set wifh that based on reference data sets and
proposed a gap statistic based on these two curves. The maximum point of the gap statistic is

regarded as the number of clusters. This method is computationally intensive. Moreover, it may
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not be easy to specify an appropriate reference distribution. Sugar and James (2003) assigned an
appropriate negative power to a criterion called the minimum achievable distortion. They defined a
jurnp statistic as the difference between the minimum achievable distortion at the current number
of clusters and that at the previous number of clusters. The number of clusters is then determined
by finding the maximum point of the jump statistic. Sugar and James’s (2003) method has nice
properties. However these nice properties depend on the assumption that all cluster covariance
maitrices have the same shape.

Actually, the methods proposed by Tibshirani et al. (2001) and Sugar and James (2003)
belong to a sub-category of the objective methods. The common feature of the methods in this sub—
category is that a non-monotone function of the number of clusters is first defined. Then the number
of clusters is determined by finding the maximum or minimum point of the function. Milligan and
Cooper (1985) compared 30 methods in this sub-category by a Monte Carlo study. Dubes (1987)
and Kaufman and Rousseeuw (1990) also proposed methods belonging to this sub-category.

Pena and Prieto (2001) proposed another version of the concept of the gap statistic to
determine the number of clusters. Data points are first projected into a one-dimensional space.
The gap statistics are defined as the distances between the adjacent projected points. The number
ko of large gap statistics in the interior of the projected points indicates that there exist kg + 1

clusters.

Mode detection or bump hunting methods (e.g. Cheng and Hall, 1998) has also been used

to determine the number of clusters.

Peck et al. (1989) applied bootstrapping techniques to construct an approximate confidence
interval for the number of clusters. |

Many researchers assume that the data are from a mixture of distributions and determine
the number of clusters by estimating the number of components in the mixture of distributions.
References include Bozdogan (1993), Zhuang et al. (1996), Richardson and Green (1997), Fraley and
Raftery (1998, 2002), Stephens (2000), and Schlattmann (2002). To determine the number of clus-
ters, Bozdogan (1993) proposed the informational complexity criterion; Zhuang et al. (1996) pro-
posed the Gaussian mixture density decomposition (GMDD) method; Richardson and Green (1997)
used the reversible jump Markov chain Monte Carlo methods; Fraley and Raftery (1998, 2002) used
the BIC criterion; Stephens (2000) used the Markov birth-death process; and Schlattmann (2002)
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used bootstrap techniques. Frigui and Krishnapuram (1999) gave a brief review of robust clustering
methods based on the assumption of the mixture of distributions when the number of clusters is
unknown.

Another sub-category of the objective methods is to use data sharpening techniques. The
idea is to iteratively shrink data points toward dense areas. The number of cluste_rs corresponds to
the final number of converged points. There are mainly two approaches in this sub-category. The
first approach, gravitational clustering methods, is from the physical law point of view (Wright 1977;
Kundu 1999; Sato 2000; and Wang and Rau 2001). The second approach, mean shift methods, is
from the poiht of view of non-parametric density estimation (Fukunaga and Hostetler 1975; Cheng
1995;, Comaniciu and Meer 1999, 2000, 2001, 2002; and Wang et al. 2003).

Instead of shrinking data points toward to dense areas to merge data points, competitive

“cluster merging methods merge data points by changing their fuzzy memberships. These methods
first obtain a fuzzy partition with an over-specified number of clusters. Then clusters compete for
the data points based on the cluster sizes via a penalized fuzzy c-means method. The larger a

| cluster is, the more power this cluster has fo compete for data points. Clusters whose sizes are
smaller than a threshold will be deleted. The final partition gives the number of clusters. References
on competitive cluster merging methods include Krishnapuram and Freg (1992), and Frigui and
Krishnapuram (1997, 1999).

Lin and Chen (2002) proposed a simpler version of the cluster merging idea based on the
cohesion index they defined which measures the joinability (similarity) of two clusters. Like com-
petitive cluster merging methods, Lin and Chen (2002) first get a partition with an over-specified
number of clusters. Then two clusters are merged if they have the largest cohesion index among
all pairwise cohesion indexes and their cohesion index is larger than a specified threshold.

Cluster merging algorithms are intuitively appealing. However they require that the initial
number of clusters be larger than the true number of ciusters. It is not a problem to over-specify the
number of clusters if subject knowledge is available to provide a rough idea about the true number
of clusters. However, if there is no such subject knowledge available, then the initial number of
clusters may be too small. It is more reasonable to allow both splitting and merging. In this way,

the initial number of clusters can be under-specified.

The idea of using both splitting and merging to simultaneoﬁsly determine the number of
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clusters and do clustering can be dated back to the 1960’s. Anderberg (1973) and Gnanadesikan
(1977) mentioned a stepwise clustering method called the Tterative Self-Organizing Data Analysis
Techniques A (ISODATA), which was originally proposed by Ball and Hall (1965). The ISODATA
method has been extensively studied and been applied mainly to the image analysis and remote
sensing areas (e.g. Simpson et al. 2001; Huang 2002b). The ISODATA method is simple and
intuitively appealing. While it is flexible to have several thresholds to adjust, the user has to
choose suitable values for these thresholds by trial and error based on a priori knowledge about the
cluster structure (Carman and Merickel, 1990; Huang, 2002a). Moreover, the criteria for merging
and splitting usually are different and the splitting criterion usually is based solely on the within-
cluster variation without considering if the two subclusters from splitting are really well-separated.

In this chapter, we propose a sequential clustering (SEQCLUST) method that improves the
ISODATA method. The main improvements include:

e The SEQCLUST method produces a sequence of estimated number of clusters based on

varying input parameters. The most frequently occurring estimates in the sequence lead to a

point estimate of the number of clusters with an interval estimate.

e The same criterion is used to determine if two clusters should be merged or a cluster should

be split. And the criterion is based directly on the degree of separation among clusters.

Since the SEQCLUST method is closely related to the ISODATA method, we describe the
details of the ISODATA method and several improvements in Section 4.2. In Section 4.3, we give an
overview of the SEQCLUST method. We discuss the issue of initialization of the input parameters
in Section 4.4. Some pre-processes, such as the process to adjust the initial number of clusters
and the tuning parameter o, are described in Section 4.5. The merging niethod and the splitting
method are introduced in Section 4.6 and in Section 4.7 respectively. The post-processes of the
SEQCLUST method, such as the outlier-cluster detection, are described in Section 4.8. We check
the performance of the SEQCLUST method by comparing it with several other easy-to-implement

number-of-cluster-estimation methods through simulated and real data sets in Section 4.9. Further

discussion is given in Section 4.10.




4.2 ISODATA Method

The ISODATA method can estimate the number of clusters and obtain a partition of a data set
sirmultaneously. Although the user still has to input an initial number of clusters, the ISODATA
method in principle does not depend much on the initial number of clusters. If the initial number is
less than the true number, then we expect the ISODATA method could obtain the correct number
of clusters by splitting iterations. If the initial number is larger than the true number, then we
expect the ISODATA method could obtain the correct number by merging iterations. Although
some software packages such as Geomatica'! implement the ISODATA method, it seems that the

ISODATA method has not being implemented into common statistical software (e.g. SAS, R/Splus,
and SPSS) yet.

Since Ball and Hall (1965) proposed ISODATA, many variants have been proposed to im-
_prove its performance. We first illustrate ISODATA by the variant described in Anderberg (1973),

which consists of the following steps:

ISODATA Method:

Step 1 Initialize the input parameters: the initial number of clusters ko, ITERMAX, NCLST, NWRDSD,
THETAC, THETAE, and THETAN.
ITERMAX is the maximum allowable cycles of the merging and splitting.
NCLST is a upper bound of the number of iterations in the lumping step.
THETAN is a threshold used to decide if a cluster is too small to be discarded.
THETAC is a threshold on between-cluster distance to decide in merging.
NWRDSD is used to decide on thresholds for splitting and merging cluster.

THETAE is a scalar threshold on sample standard deviations to decide in splitting.
Step 2 Obtain an initial kp-cluster partition of the data set using a method such as kmeans.

Step 3 Delete outlier clusters whose sizes are smaller than the threshold THETAN. Update the

number of clusters kg.

'http://www.pcigeomatics.com/cgi-bin/pcihlp/ISOCLUS
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Step 4

If kp > 2 x NWRDSD, then a lumping iteration is invoked.

If ko < NWRDSD/2, then a splz"ttz'ng iteration is invoked.

If NWRDSD/2 < kg < 2 x NWRDSD and if the current iteration number is odd, then a

splitting iteration is invoked.

If NWRDSD/2 < kg < 2 x NWRDSD and if the current iteration number is even, then a

lumping iteration is invoked.
Update the number of cluster k.
Step 5 Obtain a ky-cluster partition.

Step 6 Repeat steps 3, 4, and 5 until these three steps have been repeated ITERMAX times or the

convergence criterion (e.g.'a full cycle with no changes in cluster membership) is satisfied.
A lumping iteration consists of the following steps:
Lumping Iteration:
Step L1 Calculafe the pairwise distances d;;, z, j =1,...,kp, among the cluster centers.
Stef) L2 Denote (i, jo) = arg min;x; d;;. If d;,j, < THETAC, then the cluster ig and jo are merged.

Step L3 If the iteration number is greater than NCLST or there is no merge, then stop the lumping
iteration. Otherwise go back to Step L1.

We can see that the merging criterion depends solely on the distances among cluster centers. The

variations in shapes/sizes of clusters are not involved. Moreover, without prior information, it is

difficult to set the thresholds THETAC and NCLST.

A splitting iteration consists of the following steps:
Splitting Iteration:

Step S1 Calculate the sample standard deviation s} for each variable, j =1,...,p, where p is the

number of variables.
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Step S2 Calculate the sample standard deviations si; of the k-th cluster in the j-th dimension,

k=1,...,kg, j =1,...,p, where kg is the number of clusters.

Step S3 Let S = {(k,j) : sk; > THETAE x s}, k = 1,...,ko,j = 1,...p}. Stop the splitting

iteration if S is empty.
Step S4 For (k,j) € S,

Step S4.1 Calculate the center my; of the cluster k in the j-th dimension.

Step S4.2 The data points in the cluster & are split into two subclusters according to whether

their j-th coordinates are larger than or smaller than my;.

Step S5 Go back to Step S2.

We can see that the splitting criterion depends merely on the within-cluster variations without
checking if there exists a gap or sparse area between the two subclusters or not.

Gnanadesikan (1977) mentioned another variant in which the splitting method is mbdiﬁed.
To determine if a cluster should be split or not, the cluster is first projected along the direction of
the first principal component. If the variance of the projected data is larger than a threshold, then
the cluster is split into two subclusters along the projected direction.

Simpson et al. (2000) determined if a cluster should be split or not based on its diameter.
The diameter is the distance between two carefully selected data points 2, and x5. If the diameter
is larger than a specified threshold, then the cluster is split into two subclusters. Two subclusters
are formed around the two carefully selected data points by applying the nearest neighbor rule.
That is, the data points which are closer to 2; form the subcluster 1 and the élata points which are
closer to 3 form the subcluster 2. The merging criterion is still based on the pairwise distances
among cluster centers. The initial number of clusters is 1.

The splitting criterion in Huang (2002) is based on cluster sizes and the user-specified upper
bound of the number of clusters. If the size of a cluster is greater than P% of the total size and
if the current number of cluster is less than fhe upper bound, then the cluster is split to two
subclusters. To split a cluster.into two subclusters, a hyperplé,ne is first obtained. The hyperplane
passes through the cluster center and is perpendicular to the line connecting the cluster center

and the data point which has the largest distance to the cluster center. The hyperplane splits the
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cluster into two parts. Huang (2002) then used the sample means of the two parts as the two initial
cluster centers for the k-means algorithm.

The above improvements on the splitting criterion still consider only the within-cluster
variations and may split an elongated cluster into two subclusters.

Carman and Merickel (1990) used Consistent AIC (CAIC) to determine if clusters should
be merged or split. A cluster is to be split if the CAIC value after the splitting is smaller than that
before splitting. Two clusters are to be merged if the CAIC value after the merging is smaller than
the value obtained before merging. To split a cluster into two subclusters, Carman and Merickel
(1990) directly used the k-means algorithm. The initial number of clusters is 1. (We point out in
Appendix B that there is a mistake in the CAIC formula used in Carman and Merickel (1990)).

Carman and Merickel’s (1990) improvement is easier to use than other improvements in
that no threshold is required for merging and splitting processes. Hence their improvement can
do merging and splitting automatically. Also Carman and Merickel’s improvement requires only a
single criterion instead of two separate criteria to determine if the merging or splitting is attempted.

However, we found that Carman and Merickel’s improvement usually overestimates the

number of clusters (see Appendix B). One possible reason is that the CAIC does not directly

measure the degree of separation among clusters.

4.3 SEQCLUST Method

In this section, we propose a sequential clustering method, SEQCLUST, based on the degree of
separation among clusters.

The SEQCLUST method is based on the assumptions that (1) clusters are compact or only
slightly overlapped, that is, there exist gaps or sparse areas among clusters; (2) data points in a
cluster are concentrated more toward the cluster center; (3) clusters are convex in shape. The main
idea of the SEQCLUST method is to directly use the magnitude of the gap or sparse area between
the two (sub)clusters to decide if two clusters should be merged into one cluster. The key issues
include (a) determining the threshold of the gap magnitude below which the two clusters should be
merged and (b) making the SEQCLUST method less sensitive to the choice of the input parameters.
It is desirable that the threshold could be automatically determined by the data themselves. The
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features of the SEQCLUST method include:
1. Estimation of the number of clusters and clustering can be done simultaneously.

2. Both the merging and splitting criteria are based on the degree of separation between the

pair of (sub)clusters.

3. It provides information about the stability of the estimated number of clusters, and an interval

estimate.

This section, we give the overall algorithm for the SEQCLUST method. We will describe
the details later. The main steps of the SEQCLUST method are given below:

SEQCLUST Method:
Step 1 Initializing the input parameters (Section 4.4)
Step 2 Pre-processing (Section 4.5)
Step 3 Splitting and merging until stable (Sections 4.7 and 4.6)
Step 4 Post-processing (Section 4.8)
The generic version of Step 2 contains thé following sub-steps:
Pre-processing:
Step PRE1 (Optional) variable scaling and variable selection/weighting.

Step PRE2 Adjust the initial number ko of clusters so that it is neither too large nor too small

(Subsection 4.4.1).
Step PRE3 Apply a clustering method to get a partition P with kg clusters. -

Step PRE4 Invoke the merging process.

Step PRES If after merging, there exists only one cluster, then we enlarge the value of the tuning
parameter « (See Equation 2.3.4) to allow more overlap, and invoke the merging process for

the partition P again. Update P and k. Stop if kg is 1.
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Step PRE6 Output kg, a and P.
The generic version of the merging process contains the following sub-steps:
Merging:

Step M1 Obtain a matrix of pairwise separation indexes and obtain the merging matrix that

indicates which pairs of clusters are eligible to be merged.
Step M2 Determine which eligible pairs of clusters should be merged. Merge these clusters.

Step M3 If the number of clusters does not change or there exists only one cluster, then stop

merging. Otherwise go back to Step M1.

In Step M1, we do not need to re-compute the separation indexes among clusters which are

not merged in the previous step.

The generic version of the splitting method contains the following sub-steps:
Splitting:
Step S1 Obtain the diameters of the ké clusters.
Step S2 Denote S as the set of clusters whose diameters are “close” to the maximum diameter.
Step S3 For each cluster in the set S

(1) Obtain a 2-cluster partition with two subclusters.

(2) If the two subclusters have a small separation index, then we do not split the cluster.

Otherwise split the cluster to these two sub-clusters.

Step S4 Determine the number of clusters kj. If k5 = ko, then stop splitting. Otherwise ko« kg
and go back to Step S1. ‘

The generic version of Step 4 contains the following sub-steps:

Post-processing:

Step POST1 Check if there are outlier clusters which have small numbers of data points relative

to non-outlier clusters




Step POST2 (optional) Outlier detection

Step POST3 Denote kj the final estimated number of clusters and P; as the corresponding par-
tition. Obtain another k§-cluster partition P; by the clustering algorithm specified in Step 1
of the SEQCLUST method. If the minimum separation index of P; is larger than that of P,

then P is output as the final partition. Otherwise P, is output as the final partition.

In the following sections, we outline one implementation of the SEQCLUST method.

4.4 Initializing the Input Parameters

The input parameters include the initial number of clusters, a sequence of the tuning parameter,
variable scaling indicator, and the clustering algorithm etc.. Different settings of the input param-
eters may produce different estimates of the number of clusters and/or different partitions. We try

to find a way to make the SEQCLUST method less sensitive to the initial input parameters.

4.4.1 The Initial Number of Clusters

Usually, practitioners have subject knowledge about the data sets and hence have a rough idea
about the range of the number of clusters. Therefore it would be not a problem for them to provide
an initial estimate of the number of clusters.

In case that one does not have any idea about the number of clusters, it might not be good
to randomly choose an initial number of clusters. If kg is too far away from the “true” number
of clusters, it will increase the computation time. Moreover, it will affect the precision of the
estimated number of clusters. For example, if ky is too small, then the clusters obtained might
not be separable and the SEQCLUST method might end up with a one-cluster partition. If kg is
too large, then the clusters obtained might be too sparse to be able to be merged together. For
example, for two singleton clusters (containing only one data point), the value of the separation’
index is 1. Hence the two singleton clusters could not be merged.

To automatically get a good initial estimate of the number of clusters, we use Calinski and
Harabasz (CH) index (Calinski and Harabasz, 1974):

tr (Bg)/(k — 1)
tr (Wg)/(n k)’

CH(k) = (4.4.1)

67



where k is the number of clusters, By and W are respectively between- and within-groups sum

of squares

ko
By = ) mi(® - 3) (@ —2),
k=1

ko ng
Wi = > (@r — @) (@ — )7,
k=11i=1
= Z?’:l - Thi _ 1 <
r = %o y &L = — T
2 k1 Mk "k i

The CH index measures the compactness of clusters. Clusters formed by the chosen algo-

rithm for each k. One can use

ko = arg r’xclg.%c CH(k)

as an estimate of the number of clusters?. Milligan and Cooper (1985) reported that the CH index
has good performance on deciding the number of clusters. Tibshirani et al. (2001) and Sugar and
James (2003) also studied the performance of the CH index. Due to its simplicity, we use the CH
index to get an initial number of clusters.

The function CH(k) does not always have unique maximum points. To save computing

time, we use

as an initial number of clusters, where ka1 is the smallest local maximum point of CH(k).
The reason that we add 10 to kmax1 is to avoid underestimating the number of clusters. In our
experience, an under-specified initial number of clusters is worse than an over-specified initial

number of clusters. The choice of the value 10 is somewhat arbitrary. Other values can be used.

4.4.2 The Initial Tuning Parameter

In the implementation of the SEQCLUST method we describe in this chapter, we use the separation
index we proposed in Chapter 2 to measure the magnitude of the gap between a pair of clusters.
The tuning parameter « in the separation index reflects the percentage in the two tails of the

1-dimensional projection of a cluster that might be outlying. It might affect the estimation of the

number of clusters when some clusters are close to each other.

2CH(1) is not defined.




If the cluster structure is quite obvious, then we expect that we can get the same estimate
of the number of clusters for a range of values of the tuning parameter o. So instead of one
value, we input a sequence of values of the tuning parameter to obtain a sequence of estimates
of the number of clusters and an interval estimate consisting of the whole range. Then the most
frequently occurring estimate in this sequence, i.e. the mode of the estimate sequence, is regarded
as the final estimate of the number of clusters. The variation of this estimation sequence provides
information about the stability of the final estimate of the number of clusters. The smaller the
variation is, the more stable the final estimated number of clusters is.

The sequence of estimates can also provide information about the lower and upper bound
on the number of clusters. For example, if the sequence of estimates is {2,2,3,3,3,3,5}, then the

final estimated number of clusters is 3. And we can regard [2,5] as an interval estimate.

4.4.3 Variable Scaling

In Chapter 2, we show that the separation index J* is theoretically. scale invariant. However,
scaliﬁg variables may distort the cluster structure and hence affect the performance of clustering
algorithms (Milligan and Cooper 1988; Schaffer and Green 1996). The SEQCLUST method requires’
a clustering algorithm to get an initial partition and to get the two-cluster sub-partition inv the
splitting process. So scaling variables may affect the performance of the SEQCLUST method.
The SEQCLUST method allows the user to determine if scaling is needed or not. If the
user does not make the decision, then the SEQCLUST method will use a very simple way to
automatically determine if scaling is required or not. The criterion is that if the ratio of the
maximum sample standard deviation to the minimum sample stahdard deviation is larger than 3,

then the variables will be scaled so that the mean and standard deviation of each variable are 0

and 1 respectively.

4.4.4 The Clustering Algorithm

In principle, any clustering algorithm can be used in the SEQCLUST method to obtain the initial
partition and two-cluster partitions in the splitting process. However, in practice, we need to
consider the availability, performance, and speed of clustering algorithms.

We use the statistical software R to implement our ideas. There are several clustering
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algorithms implemented in R, such as partitioning algorithms (kmeans, PAM, and CLARA) hierérchical
clustering algorithms (Ward), and model—\based clustering algorithm (EMclust and Mclust). All
these algorithms can get good partitions %or spherical—shaped clusters provided that the correct
number of clusters is given.

The kmeans algorithm is sensitive to the choice of initial cluster centers. So we modified
it by running the kmeans algorithm T' times (e.g. T = 10). Each time, the kmeans algorithm
is provided with a set of randomly selected cluster centers. Then we choose the partition whose
average within-cluster sum of squares is the smallest. We denote this modified kmeans algorithm
as MKmeans.

The PAM algorithm has a special mechanism to choose initial cluster centers and implements
robust techniques so that the resultant partitions are stable and robust. However PAM is quite slow
when handling large data sets. The CLARA algorithm improves the speed of the PAM algorithm by a
sampling technique. We denote PAM/CLARA as the mixed algorithm that.PAM is used if the number
of data points n in the data set is less than or equal to 200; otherwise the CLARA method is used.

The Mclust algorithm is a model-based agglomerative hierarchical clustering algorithm
which successively merges pairs of clusters corresponding to the greatest increase in the classifica-
tion likelihood among all possible pairs (Fraley and Raftery, 2002). Different covariance structures
correspond to different models. The EMclust algorithm provides more flexibility including the
choice of models and also can do clustering based on a sample of the data set. The R functions
EMclust and Mclust can allow the user to input a sequence of the number of clusters and select an

optimal partition by using BIC criterion. To distinguish different usages of EMclust and Mclust,

we introduce the notation:

EMclustO: obtains a kp-cluster partition by using the R function EMclust. If the total number of
clusters is greater than 500, then a sample of 500 data points is used to get the cluster centers.

Otherwise, all data points are used.

MclustO: obtains a ko-cluster partition by using the R function Mclust. All data points are used.

EMclust1: obtains an optimal estimate of the number of clusters from a sequence of candidate
number of clusters by using BIC model selection procedure. The R function EMclust is used.

If the total number of clusters is greater than 500, then a sample with size 500 is used to get
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the cluster centers. Otherwise, all data points are used.

Mclustl: obtains an optimal estimate of the number of clusters from a sequence of candidate
number of clusters by using BIC model selection procedure. The R function Mclust is used.

All data points are used.

The current implementation of the SEQCLUST method allows the user to choose a cluster-
ing algorithm from kmeans, MKmeans, PAM/CLARA, Ward, EMclustO, and MclustO. The clustering
methods EMclust1 and Mclust1 will be used in Sections 4.9.3 and 4.9.4 to compare the performance
with the SEQCLUST method. |

To havé ‘a rough idea about the speed of these clustering algorithms, we conductéd a simple
simulation study. In this simulation study, we generate data sets from the bivariate normal distri-
bution N (0, I2). For each sample size, we generate 100 data sets. Then we get a 2-cluster partition
for each data set. The system times used to get the 2-cluster partition are recorded. Then we
obtain the averages of the 100 system times 3 which are summarized in Table 4.1 and Figure 4.2.

From Table 4.1 and Figure 4.2, we can see that kmeans, PAM/CLARA, and MKmeans are fast while

Table 4.1: Average system time (seconds)

sample size | kmeans MKmeans PAM/CLARA EMclust0 Ward MclustO
100 0.000 0.007 0.009 0.097 0.006  0.0905
500 0.001 0.012 0.006 0.906 0.220  0.9361
1000 0.001 0.018 0.010 1.085 0.716  5.0111
1500 0.003 0.028 0.008 1.242 1.388  14.7580
2000 0.003 0.037 0.008 1.399 2.072  32.4534
2500 0.005 0.047 0.009 1.560 2.968 :
3000 0.006 0.056 0.009 1.749 4.091

3500 0.006 0.064 0.009 1.902 5.359

4000 0.008 0.078 0.010 2.081 6.992

4500 0.009 0.089 0.010 2.241 8.827

5000 0.010 0.100 0.011 2.433 10.866

EMclustO, Ward, and MclustO are relatively slow.

®I ran my R programs in a computing system with dual CPU (AMD Athlon(TM) MP 2000+) and 1Gb RAM.
The operation system is Linux with the Redhat 9.0 distribution.
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Figure 4.2: Plot of the average system time (seconds) versus the sample size.

4.5 Pre-Processing

The main task in the pre-processing step is to adjust the initial estimate of the number of clusters
and the value of a tuning parameter a.

If the initial estimated number kg of clusters is too large, then some cluster sizes will be too
small to be merged since the data points will be relative sparse if cluster sizes are small. To avoid
small cluster sizes, we require that the minimum cluster size be larger than a threshold like 30. If
the minimum cluster size is smaller than sizethr= 30, then we reduce the initial estimate of the
number of clusters by half (ko< ko/2) until the minimum cluster size is larger than 30 or the initial
estimate of the number ko of clusters is equal to 1. Instead of threshold on the number of data

points, we can use threshold of the percentage of the number of data points.

It is also not desirable that the initial estimated number of clusters is too small since in
this case we might end up with only oné cluster for multi-cluster-structure data sets. Figure 4.3
illustrates that if the initial estimated number of clusters is 1, then we could not accept the 2-cluster
split since the two sub-clusters are not separated. Hence we end up with one-cluster structure

instead of 12-cluster structure.To alleviate this problem, we can increase the value of the tuning

parameter « to allow more overlap (see Step PRE4 in page 65).
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Cluster 2

Cluster |

Figure 4.3: An example illustrates the need to avoid too small initial estimate of the number of
clusters.

Variable selection/weighting can eliminate or reduce the effect of noisy variables which may
mask the true cluster structures (see Chapter 5). So we incorporate the variable selection/weighting
procedure to the pre-process stage of the SEQCLUST method. In this chapter, we apply SEQ-
CLUST assuming there are no noisy variables in déta sets. We will discuss how to handle noisy

variables in Chapter 5.

4.6 Merging

The merging process consists of three parts: (1) checking which pairs of clusters are eligible to be
merged — denote S as the set of the eligible pairs; (2) deciding a subset S; of eligible pairs in S to

be actually merged; (3) developing an algorithm to fnerge the pairs of clusters in 5.

4.6.1 Mergable Pairs of Clusters

In the SEQCLUST method, whether a pair of clusters is eligible to be merged depends on the degree
of separation between the two clusters. There are many ways to measure the degree of separation
between two clusters (see Chapter 2). In the implementation of the SEQCLUST method, we use

the separation index we proposed in Chapter 2 to measure the degree of separation between the

two clusters.
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We may simply allow two clusters to be merged if their separation index is negative. When
the value of the separation index is close to zero, 0.01 say, there are two possibilities. One is
that two clusters are touching or separated. The other is that the two clusters actually overlap
and the positive value is due to the randomness of the data. To handle this situation, we can
either construct an asymptotic 100(1 — )% confidence lower bound * J; (ap) to be described in
Section 4.6.3 for the separation index or set a threshold Jr. If J} (ao) > 0 or J* > J7, then we do
not merge two clusters. Otherwise, we regard the two clusters as eligible cluster pair to be merged.

It is relatively objective to use an asymptotic confidence lower bound to determine if two
clusters are eligible to be merged or not. In addition to the location information, the asymptotic
confidence lower bound also uses the variation information about the two clusters. However the
precision of the asymptotic confidence lower bound depends on sample sizes, outliers, and dis-
tributional assumption of the linear projection. The threshold is less sensitive to sample sizes,
outliers, and the distrib.utional assumption. However it does not use the variation information at
all. Moreover different data sets may need different thresholds. The current implementation of

the SEQCLUST method automatically determines if J; (ag) or J. should be used by the following

criterion:
Merging Criterion:

(1) If the normal version of the separation index J* > 0 (see page 16) and its corresponding

asymptotic confidence lower bound J} (ag) > 0, then we do not merge the two clusters.

(2) Otherwise, we calculate the quantile version J7 (see page 14) of the separation index. If

J; > Jr, then we do not merge the two clusters. Otherwise, we merge the two clusters.

- Given a partition C, we can obtain a merging indicator matrix My, xk, based on the

above merging criterion. M;; = 1 if we do not merge clusters : and j. Otherwise M;; = 0.
Definition 4.6.1 Cluster i and j are called directly mergable if M;; = 0.

Because direct mergability is not a transitive operation, we need the following two definitions

and a complicated merging algorithm.

"“We use the notation ag to distinguish the confidence level from the tuning parameter o used in the separation
index (See Definition 2.3.4). '
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Definition 4.6.2 Cluster i and j are called indirectly mergable if M;; = 1 and there exist a
sequence {k1,...,ke} of clusters such that My, =0, My, =0, ..., My,; =0.

Definition 4.6.3 Cluster ¢ and j are called mergable if cluster i and j are either directly mergable

or indirectly mergable.

Once we obtain the set of mergable cluster pairs, we have at least two choices: (1) merge
the mergable cluster pair whose separation index is the smallest; (2) merge all mergable pairs. We

take the second choice to increase the speed of the SEQCLUST method.

-

4.6.2 Merging Algorithm

In this subsection, we propose an algorithm to merge all mergable pairs of clusters. The difficulty
is how to get the disjoint sets of mergable pairs of clusters from the merging indicator matrix. We
use matrix operations to move mergable clusters together and make use of the row and column
names to record the information of the disjoint sets of mergable pairs of clusters.

Let By be the k x k matrix with diagonal elements equal to 0 and off-diagonal elements
equal to 1. If the merging indicator matrix Mj has the form By, then no merging is needed.

The pseudo-code is given below:
Step 1 Initialize the row names and column names as L(1)=“1", ..., L(k) =“k”. Set t = 1.
Step 2 If M) = By, then go to Step 6. Otherwise go to Step 3.
Step 3 Denote v; as the ¢t-th row of the matrix M. Find the set S = {j:5 > i, vg; = 0}.
Step 4 If S is empty, then ¢ < ¢ + 1 and go back to Step 3. Otherwise, go to Step 5.

Step 5 Move the S[1]-th row and column to the (¢+ 1)-th row and column. Update the row names
and column names of the (£ + 1)-th row and column L(¢ + 1)«-L(t) U {S[1]}. Put in this new
row/column the product of the (¢ + 1)-th row with the ¢-th row and the (¢ + 1)-th column
with the ¢-th column. Delete the t-th row and column. k+k — 1. Go back to Step 2.

Step 6 The sets of mergable clusters are recorded in the row names or column names of the

merging indicator matrix. Merge clusters in each set to one cluster.




We give an example to illustrate the merging algorithm. In the example, the initial merging

indicator matrix Ms is:

“1” “2” 443” “4’7 “5”

“ 1 »
“2”
“3”
“4”
“5”

0
1
1
0
0

= ==

—_ - O D

0
1
1
0
1

0
1
1
1
0

At the first iteration, t = 1, S = {4,5}, and S[1] = 4. We move the S[1]-th row and column to the

(t + 1)-th row and column. The updated merging indicator matrix is

‘ B A e L 1
“1 0 0 1 1 0
“4” 10 0 1 1 1
“7 11 1 0 0 1
“ 11 1 0 0 1
“" 1 0 1 1 1 0

We then update the row and column names of the (¢ + 1) row and column. After we multiply

the (¢ + 1)-th row and column with the ¢-th row and column respectively, the updated merging

indicator matrix is

“17 “1 47 “2» «3r “§7
“1” 0 0 1 1 0
“141 0 0 1 1 0
“2r 1 1 0 0 1
“3” 1 1 0 0 1
“5” 0 0 1 1 0

We then delete the ¢-th row and column and the resultant merging indicator matrix is
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“1 4 «2» “3» “§
“1 47 0 1 1 0
“2r 1 0 0 1
“3” 1 0 0 1
“5” 0 1 1 0

In the second iteration, t is still equal to 1. The row and column names are L(1) =“1 47,

L(2) =42, L(3) =“3”, and L(4) =“5". The set S is equal to {4} and S[1] = 4. We move the

S[1]-th row and column to the ¢-th row and column. The resultant merging indicator matrix is

SR
a1 0 0 1 1
“5" 0 0 1 1
“ 1 1 0 0
“3” 1 1 0 0

We then update the row and column names of the (¢ + 1) row and column. we then multiply the

(t + 1)-th row and column with the ¢-th row and column respectively. After removing the ¢-th row

and column, we obtain

“1 4 5”

(13 1 4 5”
“2”
“3”

«gn gy
1 1
0 0
0 0

In the third iteration, t = 1 and S is empty. Then we set t«t+ 1= 2. Now S = {3}. Since

t+ 1 =3 = S[1], we do not need to move the S[1] row and column. We then update the row and

column names of the (¢ + 1)-th row and column. After deleting the t-th row and column, we obtain

“1 4 577 “2 3”
“145" 0 1
“2 3” 1 0

Now that My = B, we stop iteration and merge clusters 1, 4, and 5 to new cluster 1 and clusters

2 and 3 to new cluster 2.




4.6.3 Asymptotic Properties of the Estimate of the Separation Index

In Subsection 4.6.1, we mention a normality-based asymptotic 100(1 — ap)% confidence lower bound
of the separation index to check if a pair of clusters are mergable. In this subsection, we first study
the asymptotic properties of the estimated separation index and then construct a normality-based
asymptotic 100(1‘—- )% confidence lower bound J} (ap) of the separation index.

Given the projection direction a, the definition of the separation index under the normality

assumption is (Equation 2.3.4)

al (82 — 01) — 242(VaTE2a + /aTXsa)
aT(02 —-6q) + za/z(\/aTZQa + \/aTEQa),

J* =

where the tuning parameter o € {0,0.5] is in general different from the confidence level ag in the

asymptotic confidence lower bound Jj (ap).

Denote p; = a#;, Ti2 =al%;a, i =1,2. Then the separation index becomes

, _ (12 _ﬂl)‘za/2(7'1 +T2)
Jr = .
(B2 = 1) + 2zap2 (11 +72)

If we obtain the Maximum Likelihood Estimates (MLEs) of p; and 7;, 7 = 1,2, then we can
obtain the MLE J* of J* and know the asymptotic distribution of J*. Hence we can construct a
100(1 — ap)% confidence lower bound of the separation index.

We would like to emphasize that the asymptotic confidence lower bound derived in Subsec-
tion 4.6.3 is for any fixed projection direction a. In practice, the projection direction a depends on
the data points in the two clusters. Hence a is random instead of fixed. The sampling distribution
of J*(a) for a fixed would be very different from the sampling distribution of max,, J*(u).

The purpose of the asymptotic confidence lower bound in the merging criterion is only as
a less-subjective threshold of J* to determine if two groups of data points should be merged or
not. If the projection direction we choose is happen to be exactly equal to that obtained by the
data, then it seems that the asymptotic confidence lower bound can be used as a threshold. So

for simplicity we just regard that the projection direction a as fixed once we obtain it from data,

although this might not be rigorous.
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(1) MLE of J*

Suppose X1;, i = 1,...,n;, are data points from cluster 1, where n; is the size of cluster 1, and
Xoj, j = 1,...,ng, are data points from cluster 2, where ns is the size of cluster 2. Denote
71 =alXy,i=1,...,n1;,and zo; = aT Xo;, j = 1,... ;nz. Then under the normality assumption
of the projections and the assumption that a is fixed, zy; AN (p1,72), i =1,...,m1, and To; vid
N (p2,72), 5 =1,...,na.

The density function of normal distribution N (ug, 77), k = 1,2, are defined as

1 (-'Ek' ,u'k)2}
2 it

Trilp, Ti) = eXpl ————— .
f( Iczlk k;) /—2 k'p{ 2]3

and the log-likelihood function is

Ep1, 71, p2,72) = [Zlog(f(xldm,ﬁ))] + | D log (f(w2;lue, m2)) | - (4.6.2)
1=1

=1

It is well-known that the MLEs of y;’s and 7;’s are
ﬂi=3—:ia %231', izl,z?

where

1 & 1 &
Ti=— ) x5, and s;= | — ) (xi; — T;)?
i ijs i= Tij — Tq)”"-
T, 1 Un

Jj= ? j=1
Thus, the MLE of J* is

J* = (Z2 — B1) — 2a2(81 + 52)
(Z2 — 71) + Za/2(31 +82)‘

In the next subsection, we will derive the variance for the MLE J*.

(2) Asymptotic Variance of J*

Denote 9 = (1, 71, 2, 72)7 . Then the separation index J* is a function of n, i.e. J* = J*(n). Let
7 = (1,71, fi2, 72)7, i.e., ) is the MLE of 7.

By the property of maximum likelihood estimates,

V[T (@) = T ()] 5 N(0,[8* (n/om)T I~ (n)[8T* (n/8m)),




where I(n) is the Fisher Information matrix of the MLE #:

- (23]

and £(n) is the log-likelihood function (4.6.2).

The second derivatives are

2 m
I
0% nl 3 = 0
52 — 2 A i=1($1z — p1)
2 m
Oy} 73
52£ n2 3 o2 2
o2 ~ 2 4 jzl(ﬂﬂm ~ p2)
o 2 —
————-—————8H18T1 ‘ = —7__{,3 o (xli - l"’l)
8%¢ 2 2
Bmors - ;(xzj — p2)
Fl P B P
Op10pa ' bt Ori0pz | Omldme
The Fisher information matrix of 7} is
nl/ﬁ?» 00 0
, 0 2my/2 0 0
I(n) = N
0 0 mg/i? O
0 0 0 2n2/7'22
where n= (,U:l,Tl, /J‘2a7-2)T‘ -
We can get
o _ 224/2(T1 + T2)
8#1 [(/»‘2_‘“1)+za/2(7-1+7-2)]2,
o 2zpa-m)
o [(Hz — p1) + Za/2(m1 +Tz)]2’
aJ 22q/2(11 + 72)
Opz [(2 — p1) + zap2(m1 + 72)]2,
o 22q/2(p2 — 1)
o (12 = 1) + Zap2(m + 7))
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By using the delta method, we can get the asymptotic variance of J*(%)

= [8J"/om]" 17 (n)[8J" /om]

422 2 2 2
_ /2 i (T_l_l_T_z) [(uz 2#1) (11 + 1)
[(2 — 1) + 2ajo(m1 +72)]" \M1 n2

(3) Confidence Lower Bound of J*

To make sure that the 100(1 — ap)% confidence lower bound J (a) € [—1,1), we first transform
J* to h(J*) € (—o0, 00), where h is a continuous monotone increasing function such that A1
exists. Then we get a 100(1 — ag)% confidence lower bound hy, for h(J*). Finally we can get a

100(1 — )% confidence lower bound h~!(hy) for J*.

The transformation we use is
*Y __ I *

h(J )—tan(2J).
The reverse-transformation is

—1f 7% 2

h=(J*) = ;arctan(h).
Again using property of MLE
Va(h(J*) = h(J*)) S N (0,72 [K'(JM)]?),

where

sy = 1
mT) 2 [cos(%J*)]T

Note that h'(J*) > 0 since cos(#) > 0 when 6 € [-7/2,7/2] and J* € [-1,1). Hence

Valh(T) — RN o)
T (J*) T

by using the fact that
W (J*) B w(JT).

From

P(ﬁmUﬂ—Mﬁn

= < =1-
Th!'(J*) B Zao) 0
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we can get approximately

1’% < h(J*)) =‘1 -~ g

Therefore, a 100(1 — ap)% confidence lower bound of h(J*) is

P <h(j*) ~

* __ T Th’,(j*)zao
L =h(F) - T2

Finally an approximate 100(1 — ag)% confidence lower bound of J* is

T

’ 2v/n [cos(gj*)]2

2 o
Ji (o) = - arctan tan(%J*) — 24

, (4.6.3)
We can see that the asymptotic confidence lower bound (4.6.3) is a monotone increasing function of
the sample size n. This property makes sense. The larger the sample size is, the more information
we can get and hence the closer the confidence lower bound is to the true value of the separation
index. The asymptotic confidence lower bound (4.6.3) is also a monotone increasing function of the
confidence level ag. The larger «y is, the smaller 1 — ¢ is and hence the smaller the confidence we
have to make sure that the true value of the separation index is larger than the lower bound.
This formula for a “lower bound” will be reasonable to use even when a is random. It may
not be very good if the projection gives distributions far from normal. We use a small example to

illustrate this. In this example, there are 4 well-separated clusters in a two-dimensional space, each

containing 50 data points from a multivariate normal distribution N (u;,3;), i = 1,...,4, where
0 10 20 30 10 )
H1 = )y M2 = » U3 = )y Mg = ) Ui = yt=1,...,4
0 0 0 0 01

For the two clusters of a 2-split of the simulated data set obtained by MKmeans, the separation
index is —0.01 (& = 0.05) and the corresponding asymptotic 5% confidence lower bound is —0.015.
A one-dimensional projection of the two clusters along the optimal projection direction is shown in
Figure 4.4. Kernel densities are also shown in Figure 4.4. We can see that although the two clusters
are well-separated, the separation index and its asymptotic confidence lower bound are negative.
This is because the distributions of the two clusters are far from normal and hence the estimated

variances of the two projected clusters could not capture the dispersion of the points well.
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Density Estimates of Projected Data (J*=-0.01 alpha=0.05)

density estimates

T e T e Sy v
L1 0 10 ux 20 30 u2

projected data

Figure 4.4: If the one-dimensional projections are far from normal, then the separation index and
its asymptotic confidence lower bound may not be good.

This small example shows that it would be better to use both the normal-version and the
quantile version of the separation index to check if two clusters should be merged or not. A possible
merging criterion is the merging criterion in Section 4.6.1. .

The choice of the value J;. = 0.15 is based on the fact that we assume that J* = 0.01
if clusters are close to each other and J* = 0.21 if clusters are separated frbm each other (see
Section 3.3). So we want to choose a value between 0.01 and 0.21. The value we choose is 2 x

(0.01 4+ 0.21)/3 = 0.15. As small change of this value will not have big effect.

4.7 Splitting

The purpose of the splitting process is to check if there exists sub-cluster structure in current
clusters, that is, we want to know if there exist gaps within each current cluster.

We do not need to check the gaps for each current cluster if the cluster sizes are vary. The
reasoning is that if we could not split the cluster with the maximum “diameter”, then we likely could
not split other clusters either. So we only check if the clusters with the largest diameters need to be

split or not. Specifically, we try to split the clusters whose diameters 1y, satisfy (Ymax — ¥k)/Pmax <
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0.1, where 9,y is the largest diameter. The threshold 0.1 can be adjusted. There are many ways to
define the diameter of a cluster. We measure the diameter of a cluster by the trace of its covariance
matrix.

| Once we obtain the clusters which are eligible for splitting, we can check if an eligible cluster
can be split by dividing into two sub-clusters and considering the separation index.

In principle, we can use any clustering algorithm to obtain a 2-cluster split. However, not
all clustering algorithm could produce 2-cluster split as what we expect. For example, if we use
kmeans or PAM/CLARA to split the data points in Figure 4.5 into two sub—cluSters, then the middle
cluster may be split into two parts, each part paired with its closest group. If the separation index
of the two sub-clusters is about 0 the split does not take place. Hence we will end up with only 1
cluster for this data set. However, there exist three obvious clusters.

Scatter Plot of Clusters

dim 2
0
L

T T T T T
~10 -5 0 5 10

dim 1

Figure 4.5: An example shows that splitting a 3-cluster data set into two sub-clusters form a split

through the center of the middle cluster. The circles are for points from sub-cluster 1 and the
triangles are for points from sub-cluster 2. '

To handle this problem, we should choose clustering algorithms that will form a good 2-
split if there are 3 or more sub-clusters. We conduct a simple simulation study and find that Ward,
EMclustO and MclustO work well in 2-cluster splitting compared to the kmeans, MKmeans, and

PAM/CLARA algorithms. In this simulation study, each data set contains three clusters generated
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from bivariate normal distributions N (8;, X;), i = 1,2, 3, respectively, where

~10 0 10 10
6, = , 0y = , 03 = S =%,=3; = . (4.7.4)
0 0 0 01

Each cluster has 100 data points. There are 1000 replications in total. For each data set, we produce
2-cluster splits by the kmeans, MKmeans, PAM/CLARA, EMclustO, Ward, and MclustO algorithms
respectively. Then we check if the two sub-clusters shall be merged based on the separation index.
If we get only one cluster, then it indicates that the split was through the middle cluster rather
than through a gap. In the simulation, we set o = 0.05, ap = 0.05, and J} = 0.15. We record
in Table 4.2 the number of times of getting only one cluster after split/merge for each algorithm.

We can see that the MKmeans, Ward, EMclust0, and MclustO algorithms can produce good 2-split

Table 4.2: Times of getting only one cluster after merging 2 sub-clusters produced by 2-split
partitions. There are 1000 3-cluster data sets in total ( a = 0.05, ap = 0.05, and JJ = 0.15).
kmeans MKmeans PAM/CLARA Ward EMclust0 MclustO

k=1 3 0 878 0 0 0

system time | 0.029 0.043 0.039 0.107 0.513 0.470

partition, in this simple simulation study. The performance of MKkmeans may still be affected by the
initial cluster centers. So we prefer to use EMclust0, Mclust0 or Ward to produce 2-split partition.
Since the speeds of EMclustO and MclustO are slower than that of Ward, we will use the Ward
algorithm to do 2-cluster splitting. The Ward algorithm is slow when handling large data sets. We
will propose a method to improve the speed of the SEQCLUST algorithm in Section 4.10.

In the splitting step, we need to consider if it is possible that a cluster which is formed by
merging several clusters in the previous merging step will be split again. That is, is it possible
to result in an infinite loop? We think that it is possible to split a éluster formed by previously
merging process, but it will not result in an infinite loop. Suppose a cluster C is formed by merging
clusters C; and Cs in the previous step. If C; or C contains subclusters, then cluster C might be
split in the splitting process. The two subclusters C] and C} after splitting can not be same as C}
and C,. Otherwise, C; and C; would not be merged in the previous step. For the same reason, if
C is split into C] and Cj, then C{ and C}, could not be merged in the next step. For the simulated

and real data sets we tried, we did not find infinite loop cases.
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4.8 Post-Process

Sometimes clusters with small sizes will be obtained by the splitting process. So after mefging and
splitting, we need to detect these clusters and regard the data points in these clusters as potential
outliers. But how do we know if the sample size of a cluster is small or not? We simply check the
ratio of cluster sizes to the maximum cluster size. If the ratio is less than a threshold, 0.1 say, then
we regard the cluster is an outlier cluster, i.e. whose data points are regarded as outliers.

Denote ko as the final estimated number of clusters and P, as the corresponding partition.
We also can obtain a ko-cluster partition P, by using the clustering algorithm specified at the
initializing stage. We can compare the minimum separation index of the two partition. If the
minimum separation index of the partition P; is larger than that of P, then we use Py as the final

partition. Otherwise, we use P, as the final partition.

4.9 Comparative Study

In this section, we check the performance of the SEQCLUST method by using both simulated data
sets and real data sets. We also compare the SEQCLUST method with other methods which were
proposed in the literature to estimate the number of clusters.

In Subsection 4.9.1, we describe the criteria to measure the performance of the SEQCLUST
method. To compare with the SEQCLUST method, we select several number-of-cluster-estimation
methods which are used in Tibshirani et al. (2001) and Sugar and James (2003). These methods
are described in Subsection 4.9.2. The results for simulated data sets and real data sets are shown

in Subsections 4.9.3 and 4.9.4 respectively.

4.9.1 Measure of Performance

For both simulated data sets and real data sets in this chapter, we know the true numbers of clusters
and the true partitions. Therefore, to measure the performance of the SEQCLUST method, we can
count the number of underestimated and overestimated estimates of the number of clusters. The
sizes of underestimates and overestimates can also measure the performance of the SEQCLUST
method. Denote k} as the true number of clusters and kg as the estimated number of clusters.

Denote d as the difference kg — k. If ko < k, then the size of underestimate is —4. If ko > k2,
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then the size of overestimate is d.

In addition to the underestimates and overestimates of the number of clusters, we check the
agreement between the obtained partition with the true partition. We use the five external indexes
studied in Milligan (1986) to measure the agreement between the obtained partitions and the true
partitions.

Given two partitions U and V, let a be the number of point pairs which were grouped
together by both of partitions U and V, b be the number of point pairs where the partition U
placed them in the same cluster and the partition V placed them in different clusters, ¢ be the
frequency count for the opposite results and d be the count for the number of pairs where both U

and V placed the points in different clusters. Then the formula of the external indexes we use are:

Hubert and Arabie’s Adjusted Rand index | (a +d —np)/(a+b+c+d—ny)
Morey and Agresti’s Adjusted Rand index | (a +d —np)/(a+b+c+d—ny)

Rand index (a+d)/(a+b+c+d)
Fowlkes and Mallows index a/[(a+ b)(a + c)]/?
Jaccard index a/(a+b+c)
where
1 o ku_ kv
nhzm n(n? + 1) n+12n —n+1)Zn + - ZZn ,
1,—1] 1
] |k | kv ky kv
— _1)— = 2 _Z
N, = 2n(n 1) 5 2T Zn + = ZZn
i=1 ] =1 =1 j=1

ky and ky are the number of clusters in partition U and V respectively, n;; is the number of points'
in cluster ¢ as produced by partition U which also are in cluster j as produced by partition V', and
ng, = Y5Y nig, ng = L4 ni and n = 50 8 ni.

The advantages of these external indexes are (1) the number of clusters in the two partitions
can be different; (2) different labellings of the memberships of data points will not affect the index
values.

The third way to check the performance of the SEQCLUST method is to compare the
values of the five external indexes for the partitions obtained by the SEQCLUST method with

those obtained by other clustering algorithms which are provided with specifying true numbers of




clusters. The clustering algorithms we use are kmeans, MKmeans, PAM/CLARA, Ward, EMclust0, and
MclustO.

4.9.2 Other Number-of-Cluster-Estimation Methods

As mentioned in Section 4.1, many methods have been proposed to estimate the number of clusters.

In this chapter, we only consider six methods — CH, Hartigan, KL, Silhouette, EMclust1, and
Mclustl.

The CH method has already been mentioned in Subsection 4.4.1 (see page 68). The estimated

number of clusters corresponds to
ko = arg max CH(k).
0 = arg may (k)
The rationale is that the optimal number of clusters should correspond to the most compact cluster
structure.

The Hartigan method (Hartigan 1975) is based on the index:

Hk) = (n—k - 1) ( “;:1 - 1) , (4.9.5)

where Wy, is the within-group sum of squares (see page 68). The optimal number of clusters kg is
the minimum & such that H(k) < 10. The idea is to test if it is worth adding a (k + 1)-th cluster
to the model.

KL method (Krzanowski and Lai 1985) is based on the index

KL(K) :| DIFF(k) ‘

DIFF(k+1)
where
DIFF(k) = (k — 1)YPW_, — K2?W,.
The KL method uses
ko = arg rlrcl?:-a.%( KL(k)

as the estimated number of clusters.

The Silhouette index proposed by Kaufman and Rousseeuw (1990) is defined as:




where

bi——ai

8; = (4.9.7)

max(a;, b;)

and a; is the average distance of the data point y; to other points in the cluster A where y; belongs

to, 1.e.

1 :
G=—= Y dy,y,)),

(na—1) ;s

and b; is the average distance to points in the nearest neighbor cluster besides its own. Define
d(i,C) = average dissimilarity of the data point y; to all data points in Cluster C.

Then
b; = ggrfid(z,C).

This index s; can take values from —1 to 1. When the index is zero; then the data point
y,; has equal distance to its cluster and its nearest neighbor cluster. If the index is positive, then
the data point y; is closer to its cluster than other clusters. If the index is negative, then the data
point y; is wrongly assigned to the current cluster. Thus, if all data points are correctly assigned,
then average of s;’s should be close to 1.

The Mclust method (Fraley and Raftery 1998, 2002) is based on model selection theories.
To compare tWo models M; and M» for the same data D, one can use the Bayes factor
f(D|M;)
f(D|Mz)’
where

F(DIMy) = / F(D18x, M) £ (0,1 My) 6y,

is the integrated likelihood of model My, 8 is the parameter vector under My, f(0x| M) is
its prior density, and f(D|6, M) is the probability density of D given the value of 6y, or the
likelihood function of @;. Bjs > 1 indicates that model M; is better than model M. For more
than two-models, we choose the model whose integrated likelihood is the largest. Note thatv we use

the Bayesian abuse of notation with f standing for more than one density.
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Since it is difficult to calculate the integrated likelihood, Fraley and Raftery (1998, 2002)

proposed to use the Bayesian Information Criterion (BIC)
2log[f(D|My)] = 210g[f (D|8k, M) — v log(n) = BIC}

to approximate the value of the integrated likelihood, where v is the number of parameters to be
estimated in model M, n is the number of data points, and 6y is the maximum likelihood estimate

for parameter 8.

Fraley and Raftery (1998, 2002) assumed that data points are from a mixture of multivariate

normal distributions

ko
fl@) = med(a; py, ), (4.9.8)

k=1

where ¢(x; g, Xi) is the density of the multivariate normal distribution with mean vector , and
covariance matrix Y. Each component of the mixture corresponds to a cluster. The Expectation-
Maximization (EM) algorithm is used to obtain the maximum likelihood estimates of the parameters
in the model (4.9.8).

To obtain a partition, a hierarchical cluster structure is first obtained by successively merging
pairs of clusters corresponding to the greatest increase in the classification likelihood
n
[ ¢e(wilbse, 2e)
i=1
among all possible pairs where the ¢; are labels indicating a unique classification of each observation.
¢; =k if y, belongs to the k-th component.

The BIC approximation for the integrated likelihood in the case where data are from finite
mixture distributions may not be appropriate since finite mixture distributions do not satisfy the
necessary regularity conditions. However, as Fraley and Raftery (2002) argued, it was demonstrated

by several results that the BIC approximation is appropriate and has good performance in the

model-based clustering context.

4.9.3 Comparison on Simulated Data Sets

To compare the performances of the methods (SEQCLUST, CH, Silhouette, KL, Hartigan, EMclust1,
and Mclustl1), we use the 243 simulated data sets generated by the design proposed in Section 3.

The cluster structures of the 243 data sets can be classified into three groups — close, separated,
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and well-separated — each having 81 data sets. The total numbers of under- and over-estimates
of the numbers of clusters are g/iven in Table 4.3 and the average values of the 5 external indexes
and their standard errors are shown in Table 4.4. ,
* The SEQCLUST, CH, KL, and Hartigan methods use MKmeans clustering algorithm to obtain
partitions. The Silhouette method uses the PAM/CLARA clustering algorithm to obtain partitions.
The input parameters for SEQCLUST are o = 0.02,0.03, ... ,0.08, ap = 0.05, and J; = 0.15.
The lower and upper bounds of the number of clusters for EMclustl and Mclust are 1 and 20
respectively. The lower and upper bounds of the number of clusters for CH and Silhouette are 2
and 20 respectively. The upper bound of the number of clusters for KL is 21. Noisy variables and

outliers are excluded in the analysis. Original scales of the variables are used.

Table 4.3: The total numbers and sizes of underestimates and overestimates for the 243 data sets.

m_ and s_ are total the number and size of underestimates while m, and s, are the total number

and size of overestimates. For SEQCLUST, a = 0.02,0.03,...,0.08, ag = 0.05, and J; = 0.15.
close cluster structure (81 data sets)

Method m- (s-) my (s4)
SEQCLUST (MKmeans) | 9 (30) 0 (0)
EMclustl 2 (2) 16 (27)
Mclustl 1(1) 2 (4)
CH 141184  0(0)
Hartigan 0 (0) 81 (2078)
KL 3(17) 34 (297)
Silhouette 32 (81) 25 (110)
separated cluster structure (81 data sets)
SEQCLUST (MKmeans) | 0 (0) 0 (0)
EMclustl 0 (0) 17 (58)
Mclust1 0 (0) 4 (7)
CH 3 (6) 0 (0)
Hartigan 0(0) 81(1174)
KL 1(4) 21 (135)
Silhouette 8 (9) 8 (14)
well-separated cluster structure (81 data sets)
SEQCLUST (MKmeans) { 0 (0) 0 (0)
EMclustl 0 (0) 13 (13)
Mclust1 0 (0) 1(1)
CH 1) 00
Hartigan 0 (0) 81 (1043)
KL 0(0) 13 (95)
Silhouette 2 (3) 0 (0)
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Table 4.3 shows that for simulated data sets with separated and well-separated cluster struc-
tures, only the SEQCLUST method correctly estimates the number of clusters in all cases. The CH
method slightly underestimated the number of clusters, while the Mclust method slightly overesti-
mated the number of clusters. It seems that the KL and EMclust methods tend to overestimate the
number of clusters, while the Silhouette method is equal likely to slightly under- and over-estimate
the number of clusters.

For simulated data sets with close cluster structures, the SEQCLUST method tends to under-
estimate the number of clusters. Since clusters are close to each other, we expect underestimation
instead of overestimation. It is not surprising that the Mclust1l method has good performance
since the data sets are generated from mixtures of multivariate normal distributions. Now, the CH
method tends to underestimate much more while the KL, and EMclust1 methods tend to overesti-
mate the number of clusters. The Silhouette method is equal likely to under- and over-estimate
the number of clusters and the performance is much worse than the separated case.

The Hartigan method overestimates the number of clusters for all 243 data sets and the
degree of overestimation is quite large.

For Silhouette method, we did the same analysis by using MKmeans clustering method to
obtain partitions. The Silhouette method performs better in this case. This indicates that the
performances of these number-of-cluster-estimation methods depend on the clustering methods.

Table 4.4 shows that the recovery rates of the SEQCLUST method are relatively high even
for the data sets with close cluster structures. We can see that for the simulated data sets with
close cluster structures, even given the true number of clusters , the recovery rates of the partitions
obtained by EMclustO, MclustO, kmeans, MKmeans, PAM/CLARA and Ward are not high. This
implies that these data sets are challenging. For separated and well-separated cluster structures,
all methods except the Hartigan method can produce good results even if the number of clusters
is overestimated. It is a little bit surprising that the recovery rates of the EMclust1, KL, and
Silhouette methods are high although their sizes of the overestimates are large. This indicates
that these methods capture the main structures of data sets and that the overestimates may be due
to splitting large clusters into smaller subclusters. We also can observe that the performances of

the different clustering methods (EMclustO, MclustO, kmeans, MKmeans, PAM/CLARA and Ward)

are not the same.
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We conclude from the analysis on simulated data sets that the Hartigan and KL methods
are not recommended for determining the number of clusters. For data sets with close structures,
the CH and Silhouette methods are also not good to determine the number of clusters. Overall,
the SEQCLUST methods has good performance on determining the number of clusters for data
sets with close, separated, and well-separated cluster structures. Here the conclusions are rather

obvious, otherwise we would have needed a statistical comparison to check if the performances of

the different methods are statistically significant.

4.9.4 Comparison on Some Real Data Sets

Data Sets

The data sets we consider in this section are generated from the test data set in Alimogiu and
Alpaydin’s (1996) study on pen-based recognition of handﬁritten digits.

In their study, 44 writers are asked to write 250 digits (0, 1, ..., 8, and 9) in random order
inside boxes of 500 by 500 tablet pixel resolution. The z and y tablet coordinates and pressure
level values of the pen at fixed time intervals of 100 milliseconds are recorded. The z and y
coordinates are normalized so that data are invariant to translations and scale distortions and the
new coordinates are within the range [0,100]. Each digit sample is represented by 8 pairs of (z,y)
coordinates, which are regularly spaced in arc length. That is, each digit sample can be regarded
as a point in a 16-dimensional space. The pressure level values are ignored.

The 8 pairs of (z,y) coordinates implicitly contain the information on the orders of strokes
that the writer wrote the digits. In fact, it is this temporal signal of pen movements that makes
optical recognition different from a static spatial pattern.

The digits samples written by 14 writers consist of the writer-independent testing set. This
testing data set is available at UCI Machine Learning Repository (Blake et al. 1998), which is
represented by a 3498 x 16 matrix 5.

We generate three data sets from the testing set to cluster digits samples 6. The first data
set DAT1 consists of 1065 samples from digits 2, 4, and 6. These three digits are quite different. So

we expect clustering algorithms should perform well for the data set DAT1. The second data set

There should be 14 x 250 = 3500 samples in this testing set. However, there are actually 3498 samples at UCI
Machine Learning Repository.

‘SThese three subsets were initially created by my supervisor as blinded data sets.
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Table 4.4: Average values of the 5 external indexes and their standard errors (For SEQCLUST, o

= 0.02, 0.03, ..., 0.08, ag = 0.05, and J3 = 0.15)

close cluster structure (81 data sets)

Method HA MA Rand FM Jaccard
"SEQCLUST 0.742 (0.207) 0.743 (0.207) 0.892 (0.165) 0.812 (0.113) 0.689 (0.158)
(MKmeans)
EMclustl 0.841 (0.069) 0.841 (0.068) 0.953 (0.020) 0.872 (0.063) 0.877 (0.096)
Mclustl 0.853 (0.062) 0.853 (0.062) 0.956 (0.021) - 0.882 (0.055) 0.793 (0.086)
CH 0.554 (0.304) 0.554 (0.304) 0.790 (0.174) 0.690 (0.206) 0.538 (0.260)
Hartigan 0.227 (0.078) 0.230 (0.077) 0.814 (0.090) 0.375 (0.057) 0.163 (0.051)
KL 0.635 (0.233) 0.635 (0.232) 0.892 (0.095) 0.712 (0.179) 0.561 (0.233)
Sithouette 0.635 (0.207)  0.636 (0.207) 0.870 (0.118) 0.727 (0.146) 0.576 (0.195)
EMclust0 0.839 (0.092) 0.835 (0.092) 0.951 (0.028) 0.867 (0.080) 0.773 (0.114)
Mclust0 0.859 (0.051) 0.859 (0.051) 0.958 (0.015) 0.886 (0.049) 0.799 (0.078)
kmeans 0.803 (0.065) 0.803 (0.064) 0.941 (0.018) 0.842 (0.064) 0.731 (0.091)
MKmeans 0.811 (0.047) 0.811 (0.047) 0.943 (0.016) 0.849 (0.050) 0.740 (0.075)
PAM/CLARA | 0.536 (0.233) 0.537 (0.232) 0.855 (0.084) 0.632 (0.194) 0.490 (0.208)
Ward 0.765 (0.073) 0.766 (0.073) 0.930 (0.019) 0.811 (0.074) 0.689 (0.103)
separated cluster structure (81 data sets)
SEQCLUST [ 0.984 (0.007) 0.984 (0.007) 0.995 (0.002) 0.987 (0.006) 0.975 (0.012)
(MKmeans) '
EMclustl - 0.968 (0.055) 0.968 (0.055) 0.992 (0.012) 0.973 (0.046) 0.950 (0.084)
Mclustl 0.985 (0.023) 0.985 (0.023) 0.996 (0.006) 0.988 (0.019) 0.977 (0.035)
CH 0.968 (0.095) 0.968 (0.095) 0.986 (0.054) 0.978 (0.055) 0.960 (0.087)
Hartigan 0.413 (0.169) 0.415 (0.169) 0.843 (0.098) 0.547 (0.123) 0.317 (0.136)
KL 0.876 (0.201) 0.876 (0.200) 0.961 (0.077) 0.907 (0.145) 0.845 (0.230)
Silhouette 0.963 (0.052) 0.963 (0.051) 0.989 (0.017) 0.971 (0.040) 0.945 (0.073)
EMclust0 0.951 (0.108) 0.951 (0.107) 0.986 (0.030) 0.960 (0.086) 0.933 (0.138)
Mclust0 0.990 (0.007) 0.990 (0.007) 0.997 (0.002) 0.992 (0.005) 0.984 (0.011)
kmeans 0.943 (0.098) 0.944 (0.098) 0.982 (0.037)- 0.955 (0.073) 0.922 (0.119)
MKmeans 0.984 (0.008) 0.984 (0.008) 0.995 (0.003) 0.987 (0.007) 0.974 (0.013)
PAM/CLARA | 0.901 (0.114) 0.902 (0.114) 0.972 (0.032) 0.920 (0.096) 0.864 (0.147)
Ward 0.979 (0.012) 0.979 (0.012) 0.994 (0.003) 0.983 (0.011) 0.967 (0.020)
well-separated cluster structure (81 data sets)
SEQCLUST 0.999 (0.001) 0.999 (0.001) 1.000 (0.000) 0.999 (0.001) 0.998 (0.002)
(MKmeans)
EMclustl 0.986 (0.041) 0.986 (0.041) 0.996 (0.013) 0.989 (0.032) 0.979 (0.059)
Mclust1 0.998 (0.012) 0.998 (0.012) 0.999 (0.003) 0.999-(0.009) 0.998 (0.018)
CH 0.998 (0.006) 0.998 (0.006) 1.000 (0.001) 0.999 (0.005) 0.997 (0.010)
Hartigan 0.457 (0.209) 0.458 (0.208) 0.851 (0.100) 0.583 (0.151) 0.363 (0.185)
KL 0.935 (0.173) 0.935 (0.173) 0.981 (0.056) 0.951 (0.129)  0.920 (0.202)
Silhouette 0.996 (0.020) 0.996 (0.020) 0.999 (0.005) 0.997 (0.016) 0.994 (0.031)
EMclust0 0.974 (0.065) 0.974 (0.065) 0.993 (0.017) 0.978 (0.054) 0.961 (0.093)
Mclust0 0.964 (0.084) 0.965 (0.084) 0.991 (0.022) 0.971 (0.069) 0.950 (0.117)
kmeans 0.924 (0.120) 0.924 (0.120) 0.977 (0.047) 0.940 (0.087) 0.897 (0.145)
MKmeans 0.999 (0.001) 0.999 (0.001) 1.000 (0.000) 0.999 (0.001) 0.998 (0.002)
PAM/CLARA | 0.992 (0.012) 0.992 (0.012) 0.998 (0.003) 0.993 (0.011) 0.987 (0.021)
Ward 0.999 (0.001) 0.999 (0.001) 1.000 (0.000) 0.999 (0.001) 0.999 (0.002)




DAT2 consists of 500 samples from digits 4, 5, and 6. Since the digits 5 and 6 are similar to each
other, we expect it would be more difficult to detect the patterns in DAT2 than in DAT1. The third
data set DAT3 consists of 2436 samples from digits 1, 3, 4, 6, 8, 9 and 0. We expect it would be the
most difficult to detect the natural patterns among the three data sets DAT1, DAT2, and DAT3.
The three data sets are quite challenging in that the data classes are far from elliptical in

shape (see the pairwise scatter plots Figure 4.6).

» » n o®

Figure 4.6: Pairwise scatter plots of DAT1, DAT2, and DAT3 show that the clusters are far from
elliptical in shape. For each data set, there are 16 variables. Only 4 variables are randomly chosen
to draw the scatter plots.

Initial Analysis

Since we know the true membership of the samples, we can calculate the separation index matrix
and create the two dimensional projection by the technique described in Appendix A. We set
«a = 0.05 when we calculate the separation index.

The normal and quantile versions of the separation index matrix with o = 0.05 for DAT1 are
shown in Table 4.5. The minimum separation index value which is close to 0.5 indicates that the
three classes are well-separated. The two-dimensional projection for DAT1 is shown in Figure 4.7.
We can see that the samples of digits 2, 4, and 6 are separated.

The normal and quantile versions of the separation index matrix with o = 0.05 for DAT2
are shown in Table 4.6. the following two tables. The separation index values imply that the three
classes of digit samples are well-separated. The two-dimensional projection for DAT2 is shown in
Figure 4.8. We can see that the samples of digits 4, 5, and 6 are well-separated. However, there

exists obvious two sub-classes in the samples of digit 5. The two sub-classes correspond to two
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Table 4.5: The separation index matrix for DAT1 (a = 0.05)

Normal version Quantile version
“q7 “6” g “4” “6” “2”
“4” | -1.000 0.459 0.492 “4” 1 1.000 0.472 0.479
“6” | 0.459 -1.000 0.618 “6” | 0.472 1.000 0.633
“2” | 0.492 0.618 -1.000 “2” 10479 0.633 1.000

Two-Dimensional Projection (DAT1)
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Figure 4.7: 2-d projection for samples of digits 2, 4, and 6. Circles are samples for digit 2. The
symbol “4” are samples for digit 4. The symbol “x” are samples for digit 6.

temporal signals of pen movements when writers wrote the digits 5. Some writers first wrote the
horizontal stroke “-”, while other writers wrote “-” last. Figure 4.9 shows examples of these two
different writing order. The numbers and arrows in the figure indicate respectively the 8 pairs of
coordinates and temporal pen-movements when the digit was written on the tablet.

The normal and quantile versions of the separation index matrix with @ = 0.05 for DAT3
are shown in Tables 4.7 and 4.8 respectively. The minimum separation indexes indicate that the
9 classes of digit samples are separated. ~The two-dimensional projection for DAT3 is shown in
Figure 4.10. We can see that samples of digits 8 and 0 have the smallest separation index value
(normal version 0.156; quantile version 0.140). Also we can see from the Figure 4.10 that there are

two subclasses for digit 1. The two sub-classes correspond to two different ways to write the digit
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Table 4.6: The separation index matrix for DAT2 (a = 0.05)

Normal version Quantile version
“4” “6” “5” “4” “6” “5”
“4” 1 -1.000 0.457 0.298 “4” | 1.000 0.469 0.307
“6” | 0.457 -1.000 0.336 - “6” | 0.469 1.000 0.343
“5” 0.298 0.336 -1.000 “5” 1 0.307 0.343 1.000

Table 4.7: The normal version separation index matrix for DAT2 (a = 0.05)
“877 “1” “4” “9” “37’ “0” “6” .

“8” [ -1.000 0.574 0.635 0.664 0.648 0.156 0.411

“1” 1 0.574 -1.000 0.358 0.244 0.382 0.455 0.350

“4” | 0.635 0.358 -1.000 0.330 0.565 0.473 0.446

“9” | 0.664 0.244 0.330 -1.000 0.224 0.610 0.552

“3" 1 0.648 0.382 0.565 0.224 -1.000 0.674 0.538

“0” | 0.156 0.455 0.473 0.610 0.674 -1.000 0.394

“6” | 0.411 0.350 0.446 0.552 0.538 0.394 -1.000

Table 4.8: The quantile version separation index matrix for DAT2 (a = 0.05)
“8” “1” “477 “g” “3” “O” “6”

“8” | -1.000 0.569 0.635 0.646 0.654 0.140 0.435
“1” | 0.568 -1.000 0.391 0.189 0.382 0412 0314
“4” 1 0.635 0391 -1.000 0.301 0.584 0.442 0.456
“9” | 0.646 0.190 0.301 -1.000 0.229 0.614 0513
“37 1 0.654 0.382 0.584 0.229 -1.000 0.677 0514
“0” y 0.140 0413 0442 0614 0.677 -1.000 0.362
“6” | 0.435 0.314 0456 0513 0.514 0.362 -1.000




Two-Dimensional Projection (DAT2)

dim 2
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Figure 4.8: 2-d projection for samples of digits 4, 5, and 6. Circles are samples for digit 4. The
symbol “+” are samples for digit 6. The symbol “x” are samples for digit 5.

1. Some writers added an additional “-” at bottom of 1, while other writers did not. Figure 4.11
shows these two different writing orders.
The initial analysis in this subsection indicates that samples of digits are separated. However,

there might exist sub-classes for some digits.

Comparison Results

Like for simulated data sets, we compare the SEQCLUST method with other methods, such as
CH, Silhouette, Hartigan, KL, EMclust1, and Mclust1, which are used to estimate the num-
ber of clusters. The kmeans, MKmeans, PAM/CLARA, Ward, EMclustO, and MclustO methods
which are provided with specifying true number of clusters can be used as references. For the
SEQCLUST method, different clustering algorithms are used. The input parameters are o =
0.005, 0.010,0.015, 0.020, 0.025,0.030, ap = 0.05, and Jr = 0.15. The a values are smaller than
we used for simulated data sets because each variable in pen digit data sets is bounded by [0, 100]
with “mass” at the end points and hence projections tend to be short-tailed relative to the normal
distribution. That is, there are no “outlying” data points are in the pen digit data sets. Original

scales of the variables are used.
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Figure 4.9: Sample “reconstructed” handwritten digit 5. The left-panel shows an example that “-”
is the first stroke when writing the digit 5. The right-panel shows an example that “” is the last
stroke. '

The estimates of the number of clusters and values of the five external indexes for DAT1
are shown in Table 4.9. The estimated numbers of clusters obtained by the SEQCLUST method
are all equal to the true number of clusters. The recovery rates of the partitions obtained by the
SEQCLUST method are high. The interval estimates of the number of clusters obtained by the
SEQCLUST method are shown in Table 4.11. We can see that the performance of SEQCLUST
method is pretty good and stable for DAT1. CH and KL also have good performance for DAT1. The
poor performances of EMclust1 and Mclust1 suggest that the shape of clusters are far from normal.
Given the true number of clusters, all clustering methods (especially Ward and Mclust0) have good
performance probably because the 3 clusters are well-separated. The averages of sample digits in
the partition obtained by SEQCLUST with Ward are shown in Figure 4.12. The normal and quantile
versions of the separation index matrix for the partition obtained by the SEQCLUST method with
Ward are given in Table 4.10 (o = 0.01). 7 These two matrices indicate that the 3 clusters are well-
separated. The results for DAT2 are shown in Tables 4.12 and 4.13. Although the true number of
classes are used, the recovery rates of the six clustering algorithms (kmeans, MKmeans, PAM/CLARA,
Ward, EMclustO and MclustO) are low. This indicates that the three clusters are difficult to
detect in the 16-dimensional space. Again, the SEQCLUST method produces partitions with

"The « value is output with the final partition by the SEQCLUST method with Ward.




Two-Dimensional Projection (DAT3)
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Figure 4.10: 2-d projection for samples of digits 8, 1, 4, 9, 3, 0, and 6. The symbols “o”, “+”, “x”,
“o? “v”, “K”, and “x”, represent samples of digits 8, 1, 4, 9, 3, 3, 0, 6 respectively.

better recovery rates than those partitions obtained by other methods. Especially the SEQCLUST
method has better performance than the clustering methods provided with the true numbers of
clusters (kmeans, MKmeans, PAM/CLARA, Ward, EMclustO and MclustO. The 4-cluster partitions
obtained by the SEQCLUST method captures the two subclasses structure of the digit 5. For
example, for the partition obtained by the SEQCLUST method with Mclust clustering method, all
samples for digit 6 have been correctly grouped together. All samples except samples 398 and 482
for digit 4 have been correctly grouped together. All subsamples for digit 5 which “-” is written
in last stroke are correctly group together. All subsamples for digit 5 which “-” is the first stroke
are also correctly group together. However sample 398 and 482 are mistakenly assigned to the
the subsample where “-” is the first stroke. Thus, the SEQCLUST with Mclust has only two
misclassifications. Figure 4.13 shows the averages of samples from digit 4, 5, and 6 in the partition
obtained by SEQCLUST with Mclust. The samples 398 and 482 are shown in Figure 4.14 The 5-
cluster partition obtained by SEQCLUST with Ward finds another subcluster of the digit 5 samples.
Figure 4.15 shows the corresponding averages of the samples. All samples are correctly classified
except that there are four digit 4 samples are misclassified into two of the three subclusters of

the digit 5 samples. The samples 361, 398, and 482 are misclassified into the subclusters of digit
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Figure 4.11: Sample “reconstructed” handwritten digit 1. The left-panel shows an example that
an additional “-” is added at the bottom of the digit 1. The right-panel shows an example that no
additional “-” is added at the bottom of the digit 1.

5 samples shown in the bottom-middle panel of Figure 4.15. The sample 59 is misclassified into
the subclusters of digit 5 samples shown in the top-right panel of Figure 4.15. These four samples
are shown in Figure 4.16. The CH method still hés good performance in estimating the number of
clusters, while the KL method has poor performance for DAT2.

The normal and quantile versions 6f the separation index matrix for the partition of DAT2
obtained by the SEQCLUST method with Ward are given in Table 4.14 (o = 0.015). 8 These two
madtrices indicate that the 5 clusters obtained are well-separated.

The results for DAT3 are shown in Tables 4.15 and 4.16. The averages of the 10 subclusters
obtained by using SEQCLUST With Ward are shown in Figure 4.17. We can see that there are two
different ways to write the digit 8 and three different ways to write the digit 1. The SEQCLUST
method can produce better results in terms of the five external indexes. The estimated number of
clusters is reasonable by Figure 4.17. The estimated number of clusters and the recovery rates of
other methods are not good.

The normal and quantile versions of the separation index matrix for the partition of DAT3
obtained by the SEQCLUST method with Ward (@ = 0.015) are given in Tables 4.17 and 4.18

respectively. ° These two matrices indicate that the 10 clusters obtained are well-separated.

8The « value is output with the final partition by the SEQCLUST method with Ward.
°The a value is output with the final partition by the SEQCLUST method with Ward.
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Table 4.9: Results for unscaled DAT1 (kg = 3, n = 600, p = 16), which contains the digits 2, 4,

and 6.
Method ko HA MA Rand FM Jaccard | system time
SEQCLUST (kmeans) 310951 0951 0.978 0.967 0.937 7.41
SEQCLUST (MKmeans) 3 (0951 0.951 0.978 0.967 0.937 9.04
SEQCLUST (PAM/CLARA) | 30951 0.951 0.978 0.968 0.937 9.43
SEQCLUST (Ward) 3 11.000 1.000 1.000 1.000 1.000 80.53
SEQCLUST (EMclust) 3| 1000 1.000 1.000 1.000 1.000 108.10
SEQCLUST (Mclust) 3|1.000 1.000 1.000 1.000  1.000 94.24
EMclustl 6 | 0.766 0.767 0.903 0.843 0.711 181.60
Mclustl 24 [ 0.190 0.195 0.716 0.387 0.150 168.91
CH 30899 0.900 0.955 0.933 0.874 2.02
Hartigan 22 10.195 0.200 0.718 0.392 0.154 1.62
KL 310.899 0.900 0.955 0.933 0.874 1.34
Silhouette 2 |0.572 0.573 0.779 0.774 0.600 0.93
kmeans 0.899 0.900 0.955 0.933 0.874 0.01
MKmeans 0.899 0.900 0.955 0.933 0.874 0.04
PAM/CLARA 0.908 0.908 0.959 0.938 0.884 0.01
Ward 1.000 1.000 1.000 1.000 1.000 0.30
EMclust0 0.875 0.876 0.945 0.917 0.847 1.96
Meclust0 1.000 1.000 1.000 1.000 1.000 2.12

These three plen digits data sets are quite challenging in that clusters probably are far from
convex in shape. Moreover, the fact that there are different ways to write a digit causes difficulty
to check if the estimated numbers of clusters and the obtained partitions are good or not.

The performances of the Hartigan, KL, and Silhouette methods for these three pen digits
data sets are not good. Relatively, the performance of the CH method is better and the SEQCLUST

methods are among the best.

Overall, the SEQCLUST method is quite robust when we use it to analyze the pen digits

Table 4.10: The separation index matrix. for DAT1 (o = 0.01). The partition is obtained by the
SEQCLUST method with Ward.

Normal version Quantile version
1 2 3 1 2 3
11-1.000 0.618 0.492 1|-1.000 0.633 0.479
2| 0.618 -1.000 0.459 2] 0633 -1.000 0.472
3| 0492 0.459 -1.000 31 0479 0.472 -1.000




Figure 4.12: Left: Average of the digit 2 samples. Middle: Average of the digit 4 samples. Right:
Average of the digit 6 samples.

Table 4.11: Interval estimates of the number of clusters obtained by the SEQCLUST method for
DAT1

Method Interval | Method Interval
SEQCLUST (kmeans) (3, 3] SEQCLUST (Ward) (3, 4]
SEQCLUST (MKmeans) (3, 3] || SEQCLUST (EMclust) | [3, 4]
SEQCLUST (PAM/CLARA) (3, 4] SEQCLUST (Mclust) (3, 3]

data sets and shows good performance in estimating the number of clusters and getting partitions.
The SEQCLUST method detects that there are probably 3 different ways to write the digits 1 and
5 and two different ways to write the digit 8.

The clustering methods seem to produce well-separated clusters for DAT1, DAT2 and DAT3.
The reason that different methods get quite different partitions is probably because of the sﬁarseness

in high dimensional space.

4.10 Discussion

In this chapter, we propose a sequential clustering algorithm SEQCLUST which simultaneously esti-
mates the number of clusters and does clustering. The idea is to obtain a partition of a data set
by merging and splitting processes. The merging and splitting criteria are directly based on the
degree of separation among clusters. We apply the SEQCLUST method to both simulated data sets
and real data sets. The results show good performance of the SEQCLUST method for data sets with
separated or well-separated cluster structures which are elliptical in shape. For data sets with close

cluster structures, the SEQCLUST method sometimes underestimates the number of clusters, which
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|
Table 4.12: Results for unscaled DAT2 (ko = 3, n = 500, p = 16), which contains samples for digits

4, 5, and 6.

~ Method ko HA MA Rand FM Jaccard | system time
SEQCLUST (kmeans) 410.861 0.861 0.941 0.906 0.823 11.75
SEQCLUST (MKmeans) 5 (0.812 0.813 0.921 0.873 0.766 15.53
SEQCLUST (PAM/CLARA) | 5[0.791 0.792 0.912 0.859 0.742 11.06

| SEQCLUST (Ward) 5 (0833 0.834 0.930 0.888 0.789 62.38
SEQCLUST (EMclust) 410.821 0.822 0.923 0.879 0.781 90.05
SEQCLUST (Mclust) 410872 0.872 0945 0.914 0.836 99.60
EMclustl 6 | 0.680 0.682 0.870 0.781 0.619 127.64
Mclust1 25 | 0.173 0.179 0.712 0.367 0.135 108.80

CH 410763 0.764 0.899 0.838 0.716 1.73
Hartigan 17 1 0.233 0.238 0.729 0.429 0.186 0.96

KL 12 1 0.318 0.322 0.753 0.506 0.261 1.22
Silhouette 210125 0.126 0.492 0.569 0.357 0.89
kmeans 0.531 0.533 0.781 0.706 0.542 0.00
MKmeans 0.531 0.533 0.781 0.706 0.542 0.02
PAM/CLARA 0.531 0.532 0.782 0.702 0.538 0.01
Ward 0.625 0.626 0.826 0.763 0.613 0.22
EMclust0 0.624 0.625 0.825 0.763 0.613 1.84
Mclust0 0.606 0.608 0.817 0.751 0.598 1.61

Table 4.13: Interval estimates of the number of clusters obtained by the SEQCLU.S’_I‘ method for

DAT2
Method Interval || Method Interval
SEQCLUST (kmeans) [4, 5] || SEQCLUST (Ward) (5, 5]
SEQCLUST (MKmeans) (5, 5] SEQCLUST (EMclust) [4, 4]
SEQCLUST (PAM/CLARA) 4, 5] SEQCLUST (Mclust) 4, 4]

is what we might expect.

The SEQCLUST method proposed in Section 4.3 is quite generic. Different implementations
can be substituted. For example, we can replace the separation index with other indexes; we can
merge a pair of clusters at a time instead of merging all mergable clusters at once; we can‘uselr
different initialization method to obtain a suitable initial value of the number of clusters, etc..

Like other clustering algorithms, the SEQCLUST method can not be expected to work well
for all types of data sets. The SEQCLUST algorithm is designed to deal with continuous-convex-
type data. That is, each variable should be continuous. SEQCLUST should do better when the
shapes of clusters are approximately elliptical. The densities of data points decreases gradually

from cluster centers to cluster edges. This is because that the SEQCLUST method depends on the
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Figure 4.13: Top-left: Average of the digit 4 samples. Top-right: Average of the subcluster 1 of

the digit 5 samples. Bottom-left: Average of the subcluster 2 of the digit 5 samples. Bottom-right:
Average of the digit 6 samples.

separation index which for faster computation depends on the mean vectors and covariance matrices
of clusters. Therefore, clusters are required to be convex-shaped so that the covariance matrix is a
good measure of the shape, size, and orientation of a cluster.

Most clustering algorithms assume explicitly or implicitly that they are designed to deal with
continuous-convex-type data. It is challenging, but important, to develop clustering algorithms to
handle other data types, and we will try to extend the SEQCLUST algorithm in our future research.

It is quite common in practice that the data set contains missing values. Currently, the
SEQCLUST method could not handle missing values. Missing values can be produced by many
mechanisms. So we could not simply delete the data points containing missing values. We need
subject knowledge to decide which methods should be used to impute (fill in) the missing values.
After imputing the missing values, we can apply the SEQCLUST method. It would be another

future research area.

Outliers are also commonly encountered in real data sets. The mean vectors and covariance
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Figure 4.14: Top-left: Sample 398. Top-right: Sample 482.

Table 4.14: The separation index matrix for DAT2 (o = 0.015). The partition is obtained by the
SEQCLUST method with Ward.

Normal version Quantile version

1 2 3 4 5 1 2 3 4 5
-1.000 0.488 0.697 0.450 0.462 -1.000 0.467 0.713 0.447 0.470
0.488 -1.000 0.815 0.434 0.524 0.467 -1.000 0.795 0463 0.552
0.697 0815 -1.000 0.818 0.850 0.713 0.795 -1.000 0.815 0.860
.0.450 0434 0.818 -1.000  0.322 0.447 0.463 0.815 -1.000 0.297
0.462 0.524 0.850 0.322 -1.000 0.470- 0.552 0.860 0.297 -1.000

G W N -
UL W N =

matrices are sensitive to outliers. We will study ways to robustify the SEQCLUST method in our
future research. '

If there is no cluster structure shown in the given dimensions, then either there are really
no cluster in the data set, or some variables are non-informative variables and the cluster structure
is masked by these variables, or the cluster structure is in a higher dimensional space. For the
last case, we might detect the structure in a enlarged space by using a technique similar to that
used in support vector machines. A support vector machine is a supervised learning technique to
obtaiﬁ useful structure information from the training set. In cluster analysis, we do not have class
information. So we need study how to find a suitable enlarged space. This is a part of our future
research. We will propose variable selection/weighting method to downweight the effects of noisy
variables.

If cluster sample sizes are large, then the 2-split based on the Ward method will be too

slow. To handle this problem, we can sample. We first take 5 (say) samples from the cluster and
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Figure 4.15: Top-left: Average of the digit 4 samples. Top-right: Average of the subcluster 1 of the
digit 5 samples. Bottom-left: Average of the subcluster 2 of the digit 5 samples. Bottom-middle:
Average of the subcluster 3 of the digit 5 samples. Bottom-right: Average of the digit 6 samples.

then for each Sample, we apply the 2-split method. If 3 out of the 5 samples accept the split, then
we split the cluster into two subclusters. We take the sample whose 2-split produce the maximum
separation index and use nearest neighbor method to assign the rest of the data points to the two
subclusters.

Nowadays, data sets become larger and larger. It is important for a new clustering method
to handle huge data. The SEQCLUST method has the potential to handle huge data sets since
its merging and splitting process can be done based merely on the mean vectors and covariance
matrices. If the size of the data set is too large to be handled at once, then we can read a block of
data points at a time. For the current block, we apply the SEQCLUST method, then we summarize
the block by the number of clusters, the mean vectors and the covariance matrices. Finally, we check
if clusters could be merged or not by using the cluster sample sizes, mean vectors, and covariance

madtrices.

We did not consider the effect of cluster sizes on the performance of the SEQCLUST method.
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Figure 4.16: Top-left: Sample 59. Top-right: Sample 361; Bottom-left: Sample 398. Bottom-right:
Sample 482. '

If sample sizes are small relative to the number of dimensions (i.e. data are too sparse), then
SEQCLUST tends to overestimate the number of clusters and hence might not perform better than
simpler methods. It would be a interesting future research topic to see the effects of cluster sizes.
In this chapter, we also compare the performance of the SEQCLUST method with those of
other number-of-cluster-estimation methods. We conclude that the Hartigan, KL and silhouette
methods are not recommended for determining the number of clusters, buf the CH method is

acceptable. However, the CH method is not as good as the SEQCLUST method.
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Table 4.15: Results for unscaled DAT3 (kg = 7, n = 1000, p = 16), which contains the digits 1, 3,
4,6, 8,9, and 0.

Method ko HA MA Rand FM Jaccard | system time
SEQCLUST (kmeans) 10 | 0.686 0.688 0.927 0.730 0.573 47.95
SEQCLUST (MKmeans) 10 | 0.758 0.760 0.946 0.794 0.651 55.37
SEQCLUST (PAM/CLARA) | 9| 0.636 0.638 0.912 0.687 0.523 36.13
SEQCLUST (Ward) 10 | 0.784 0.78 0.951 0.816 0.684 264.68
SEQCLUST (EMclust) 13 | 0.770 0.771 0.928 0.709 0.528 230.02
SEQCLUST (Mclust) 10 |1 0.782 0.783 0.914 0.678 0.511 287.48
EMclustl 151 0.463 0.466 0.860 0.547 0.375 347.33
Mclust1 48 1 0.262 0.269 0.862 0.416 0.176 316.73
CH 310217 0.218 0.640 0.455 0.255 3.06
Hartigan 23 10.459 0.464 0.886 0.567 0.342 2.89
KL 20 | 0.502 0.506 0.893 0.601 0.381 2.49
Silhouette 19 | 0.482 0.486 0.889 0.583  0.364 1.43
kmeans 0.557 0.560 0.889 0.622 0.452 0.01
MKmeans 0.517 0.520 0.873 0.594 0.420 0.08
PAM/CLARA 0.579 0.582 . 0.895 0.641 0.471 0.03
Ward 0.582 0.585 0.894 0.644 0.475 2.04
EMclust0 0.358 0.362 0.816 0.473 0.303 5.23
Mclust0 0.473 0475 0.843 0.576 0.393 8.21

Table 4.16: Interval estimates of the number of clusters obtained by the SEQCLUST method for
DATS3

Method Interval | Method Interval
SEQCLUST (kmeans) [9, 11] || SEQCLUST (Ward) (10, 12]
SEQCLUST (MKmeans) (10, 13] || SEQCLUST (EMclust) | [3, 13]
SEQCLUST (PAM/CLARA) | [7, 11] || SEQCLUST (Mclust) [6, 10]

Table 4.17: The normal version separation index matrix for DAT3 (a = 0.015). The partition is
obtained by the SEQCLUST method with Ward.

1 2 3 4 5 6 7 8 9 10
-1.000 0.651 0.579 0472 0306 0.770 0.566 0.337 0.603 0.474
0.651 -1.000 0.777 0.684 0.728 0.239 0.577 0470 0.764 0.431
0578 0.777 -1.000 0.514 0.567 0.834 0.902 0.457 0.530 0.616
0472 0.684 0.514 -1.000 0.290 0.788 0.715 0.497 0.356 0.657
0306 0.728 0.567 0.290 -1.000 0.792 0.677 0.549 0.505 0.664
0.770 0.239 0834 0.788 0.792 -1.000 0.782 0.603 0.833 0.294
0.566 0.577 0902 0.715 0.676 0.782 1.000 0.636 0.545 0.550
0337 0470 0457 0497 0.549 0603 0.636 -1.000 0.703 0.392
0.603 0.764 0.530 0.356 0.505 0.833 0.545 0.703 -1.000 0.635
0] 0474 0432 0616 0657 0.664 0.293 0.550 0.392 0.635 -1.000

= O 00 DU W
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Figure 4.17: From left to right and from top to bottom, the digits are 4, 8,1, 3,9, 8,1,6,1,0

Table 4.18: The quantile version separation index matrix for DAT3 (a = 0.015). The partition is
obtained by the SEQCLUST method with Ward.

1 2 3 4 ) 6 7 8 9 10
-1.000 0.658 0.592 0.480 0316 0.776 0.564 0.285 0.568 0.439
0.658 -1.000 0.779 0.686 0.742 0.190 0.580 0470 0.778 0.432
0.591 0.779 -1.000 0.512 0.582 0.839 0.914 0.413 0479 0.608
0.480 0.686 0.512 -1.000 0.270 0.805 0.720 0474 0.346 0.666
0316 0.742 0.582 0.269 -1.000 0.790 0.658 0.497 0484 0.697
0.776 0.190 0839 0.805 0.790 -1.000 0.780 0.620 0.848 0.304
0.564 0.580 0914 0.720 0.658 0.780 -1.000 0.615 0.587 0.544
0.285 0470 0413 0474 0497 0.620 0.615 -1.000 0.699 0.369
0.569 0.778 0479 0.346 0.484 0.848 0.587 0.699 -1.000 0.619
0] 0439 0432 0.608 0.666 0.697 0.304 0.544 0.369 0.619 -1.000

= O 00 IO U R W
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Chapter 5
Variable Weighting and Selection

5.1 Introduction

In cluster analysis, the division into clusters can depend on the variables that are used as well as
how they are weighted. Usually researchers want to include all variables which might possibly be
relevant in the hope that the dimensions upon which subgroups differ will be represented by one
or more of these variables (Donoghue, 1995). However, including noisy variables can obscure
the genuine differences of interest (Gordon, 1981, section 2.4.5), hence fesﬁlt in low recovery rates
(Milligan, 1980). Even if the noisy variables would not obscure the genuine differences of interest,
it is better to not include them in order to get a more parsimonious description, hence to increase
the ability to produce output that can be visually inspected by a human. For example, in data-
mining, there are many variables, and one cannot expect them all be useful in forming clusters.
Deleting noisy variables can also save computing time and reduce the cost of future study.‘ Variable
weighting is also beneficial. Weights in cluster analysis are like regression coefficients in regression
analysis. It says something about the relative importance of variables for prediction (in this case,
prediction means predicting cluster membership). Noisy variables are not important to recover the
cluster structure and should be assign zero weights.

In this chapter, we will investigate when noisy variables will mask the cluster structure and
propose a new noisy-variable-detection method. |

To the best of our knowledge, little literature addresses the issue: when noisy variables will

mask the cluster structure. If we know when noisy variables will mask the cluster structure, then we
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can have a rough idea if the clustering results are reliable or not. So it is worthwhile to investigate
when noisy variables will mask the cluster structure.

Many methods have been proposed to eliminate or downweight the effect of noisy variables.
Most methods are heuristic and theoretical properties of theée methods were not given. Moreover,
the existing methods assume that the true number of clusters is known. Furthermore, some methods
are not easy to implement. We propose a new variable selection/weighting method, the population
version of which has desirable theoretically properties. This new method does not require that the
true number of clusters be known, and is easy to implement. The key ideas are (1) to construct a
weight vector for a given partition based on the linear combination of the eigenvectors of the product
maitrix of the between-cluster distance matrix and the inverse of the within-cluster distance matrix;
(2) to use a weight-vector-averaging technique so that the weight vector can be obtained without
the knowledge of the true number of clusters.

In Sections 5.2 and 5.3, we give a brief review on variable selection and variable weighting
methods in the cluster analysis setting. In Section 5.4 we give a mathematically rigorous definition
of noisy variable and desired properties that a variable weighting/ selection method should have. In
Section 5.5, we investigate when noisy variables will mask the cluster structure. In Section 5.6, we
propose a new variable weighting and selection method based on compact projection (CP method
for short) which can be used both to estimate the variable weights and to delete noisy variables. In
Section 5.7, we propose a weight-vector.-averaging technique so that a weight vector can be obtained
without the knowledge of the true number of clusters. A preliminary theoretical validation of this
technique given in Section 5.8 shows that under certain conditions, the population distributions
of the noisy variables do not change if we merge kg population clusters into ky — 1 population
clusters or if we split kg population clusters into ky + 1 population clusters where kg is the true
number of clusters. This result does not depend on any particular variable weighting or selection
procedure. However, the sample distributions of the noisy variables may change after we split kg
sample clusters into kg + 1 sample clusters. To overcome this difficulty, we propose in Section 5.9 to
iteratively use the weight-vector-averaging technique. Based on the results obtained in Sections 5.8
and 5.9, we propose a variable weighting/selection algorithm in Section 5.10. In Section 5.11, we
study the performance of the variable weighting/selection algorithm implemented by the CP method

through simulated data sets and real data sets respectively. In Section 5.12, we implement the CP
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method in the SEQCLUST algorithm proposed in Chapter 4. Discussion and future research are

given in Section 5.13.

5.2 Literature Review of Variablé Selection Methods in Cluster

Analysis

In linear regression analysis, the most common method for variable selection is the step-wise method
(Miller 2002) which includes forward selection (starting with a single variable and entering one
variable at a time), backward elimination (starting with all variables and entering one variable
at a time) and guided selection. Guided selection is a combination of the forward selection and
backward elimination. After each variable is added, a test is made to see if any of the previously
selected variables can be deleted. These approaches can also be used in cluster analysis (Beale et
al. 1967; Fowlkes et al. 1988; Milioli 1999).

Jolliffe (1972) proposes a variable selection procedure in which clustering methods are used
to classify variables into subgroups. After classifying variables into subgroups, Jolliffe (1972) selects
one variable from each subgroup and uses these selected variables to classify objects. One major
problem of this procedure is to decide how many subgroups to use and how to select representative
variables.

Projection pursuit is a dimension-reducing technique by projecting multivariate data to
lower dimension data, meanwhile keeping as much as possible of the structure information in
the original data (Huber 1985; Jones and Sibson 1987). Montanari and Lizzani (2001) propose
a variable selection procedure based on a one-dimensional projection.. They first get a weight
vector of variables based on the projection direction. Then they delete variables whose weights are
small. The projection direction is the direction such that the projected data are far from normally
distributed based on a x? statistic. It is not easy to obtain the projection direction. A special
optimization method, the simulated annealing algorithm, has been employed.

Principal component analysis is a special case of projection pursuit. The goal is to find a
projection such that the projected data have as much dispersion as possible. The dispersion usually
is measured by variance. Jolliffe (1972), Hastie et al. (2000), Ding (2003), and Liu et al. (2003)

propose variable selection methods based on principal component analysis.
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Many researchers propose univariate screening techniques to delete noisy variables. If a
variable fails to pass through the screening, then it is regarded as a noisy variable. Donoghue
(1995) proposed an index based on the skewness and the kurtosis to check if the variable is multi-
modal. The unimodal variables will be regarded as noisy variable and are deleted. Xing and Karp
(2001) screen variables by using the knowledge of distinct biological states (e. g. either ‘on’ or
‘off’). Li et al. (2003) use the coefficient of variation and the t-test to screen genes (variables).
Bagirov et al. (2003) screen variables by an average pairwise between cluster distance. Ding (2003)
use variance as an initial criterion to eliminate irrelevant genes (variables). Correlations among
variables might affect the performance of univariate screening.

Carmone et al. (1999) also consider variables one by one. For each variable, Carmone et
al. (1999) obtain a partition. Then they get a matrix of the agreement between each pair of the
partitions. The agreement is measured by Hubert and Arabie’s (1985) adjusted Rand index .
Finally Carmone et al. (1999) delete variables which correspond to rows of the index matrix such
that the sums of these rows are relatively small compared to other rows. The rationale behind
their algorithm is that for a noisy variable, the partition will be random. Therefore, the Hubert
and Arabie’s adjusted Rand index will be small if one of two variables is noisy. Brusco and Cradit
(2001) improve Carmone et al.’s (1999) method to handle possible high degree of correlation among
noisy variables and to deal with multiple sets of true cluster structures in the same data set.

Friedman and Meulman (2004) point out that the weight vector for each individual cluster
can be different and partially (or completely) overlap with those of other clusters. They obtain the

. set of weight vectors by minimizing an average negative penalized within cluster distance.

5.3 Literature Review of Variable Weighting Methods in Cluster
Analysis

The goals of variable weighting are (1) producing a more compact cluster structure with inter-
pretable rescaled variables; (2) improving the recovery rate of clustering algorithms; and (3) differ-
entiating the importance of variables.

Kruskal (1972) proposes a variable weighting method based on a kind of index of condensa-

tion which depends on the collection of inter-point distances. This kind of index does not depend
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on a tentative assignment of points to clusters and does not depend on any tentative description
of the low-dimensional structures around which the condensation presumably occurs. However,
Kruskal (1972) admits that it is difficult to select an appropriate condensation index to optimize
(DeSarbo et al. 1984).

By iteratively minimizing the weighted average within cluster distance and clustering, Lumel-
sky (1982) proposes a variable weighting method which combines the weighting procedure and the
clustering procedure. DeSarbo et al. (1984) and Makarenkov and Legendre (2001) proposed the
same approach but with three different objective functions. DeSarbo et al. (1984) use a stress-like
objective function to optimize weights of variables while Makarenkov and Legendre’s (2001) objec-
tive function is slightly different from that of Lumélsky (1982). Green et al. (1990) shows that the
performance of DeSarbo et al.’s (1984) algorithm depends on the approach used to find seed values
for the initial k-means partitioning. De Soete et al. (1985) present an alternating least-squares
algorithm to estimate simultaneously variable weights and the associated ultrametric tree in an op-
timal fashion. De Soete (1986, 1988) propose another variable weighting algorithm for ultrametric
and additive tree clustering. Makarenkov and Legendre (2001) reported that the solutions for the
optimization problem in De Soete (1986, 1988) may not be unique that degenerate solutions in the
optimization for additive tree reconstruction represent a pervasive problem.

Gnanadesikan et al. (1995) propose several variable weighting methods without advance
knowledge of the cluster structure. The weights are square roots of the diagonal elements of the
weighting matrix M. Different weighting methods correspond to different choice of the matrix
M. One promising choice of the matrix M is M = diag (B*) [diag (W*)]~! where B* and W* are
between and within sum-of-cross-products matrices which are estimated without advance knowledge
of the cluster structure (Art et al. 1982).

Carbonetto et al. (2003) propose a variable weighting method based on a Bayesian approach.
They assume that data are from a mixture of multivariate normal distributions and assign a mul-
tivariate normal prior to the component means. The covariance matrix of this multivariate normal
prior is diagonal. And the estimated diagonal elements of the covariance matrix are weights for
variables.

One common problem of these variable weighting and selection methods is that there has

not been a theoretical or empirical study of the effect of the variable weighting/selection over
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misspecified number of clusters.

5.4 Noisy Variables in Mixture of Multivariate Distributions

In this section we introduce some assumptions and definitions needed in this Chapter.

For motivation and analysis, we assume that data come from a mixture of multivariate
distributions with density f(z) = Ei":lwk fr(x) which has exactly ko modes, where fi(z) is a
unimodal density and mg, k = 1,... ko, are mixture coefficients such that m; > 0 and Z',:O:l e = 1.
We assume that the fx(z)’s have distinct mode/mean vectors.

With the probability distributions, we can give somewhat rigorous definitions of cluster and

noisy variable.

\

Definition 5.4.1 A (population) cluster C; is a multivariate distribution with unimodal density

fi(x).

Definition 5.4.2 A set of variables X1,...,Xp, is called unimodal-noisy variables if the joint
distribution of X1,...,Xp,, is unimodal and is the same for all components fe(z),k=1,...,ko, of

the mizture of distributions f(x) = fgl T fr(x)-

Definition 5.4.3 A set of variables X1, ..., Xp,, is called r-moment-noisy variables if the first
r-th moments of Xi,...,Xp,, is the same for all components fi(x),k = 1,...,ko, of the mizture

of distributions f(x) = ngl 7k fe(x), and X; is uncorrelated with non-noisy variables.

Definition 5.4.4 A weighting scheme has scale equivariance property if the weight w; for

variable X; and the weight wgc) for rescaled variable Xlgc) = ¢X; satisfy wl(-c) = w;/c, where ¢ is any

positive scale.
The last property is analogous to that in regression analysis.

Definition 5.4.5 A weighting scheme has the noisy-variables-detecting property if the weights

for noisy variables are zero or near zero.

Variable weighting and selection methods should have the noisy-variable-detection property.
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5.5 Effect of Noisy Variables

From simulation studies, we observed that noisy variables may or may not mask the true cluster
structure. To the best of our knowledge, there is little or no research which addresses the question
“when do noisy variables affect the recovery of the true cluster structure?” If we know when noisy
variables have an effect, then we can have a rough idea if the clustering results are reliable.

Let’s consider the simplest case in which there are only two clusters. Suppose that the first

py variables are non-noisy and the rest of the variables are noisy. Denote the mean vectors of the

two cluster centers as

M= ’ 7::1,27
B

where 6; is the mean vector of the i-th cluster in the first p; non-noisy dimensions and £ is the

mean vector of the noisy variables.

Then the difference between the distances from the data point X = (X7, XT)T to the two

cluster centers is

IX — g2 = 1X —pol® = [ X1 - 6112+ X2 - BI> - | X1 - 62]2 - | X2 - B2
= IX1- 01|~ | X1~ 6,°

which is unrelated to the noisy variables. That is, the noisy variables will not affect the partition
results if the mean vector of noisy variables is correctly estimated.

If cluster sizes are large enough and clusters are separated, then the estimation of 8 will
be precise, i.e. the B, will be very close (3; is the mean vector of noisy coﬁponen_t in the i-th

cluster). Hence noisy variables have a small effect on the recovery of the true clusters. To illustrate

this, we generate 100 data sets each of which contains two clusters from the multivariate normal

distributions N (u,, 3;), 1 = 1,2, where




That is, the two clusters are separated in the first dimension. The remaining p; variables are noisy
variables. The scalar 10 ensures that the variations of the noisy variables are similar to that of the
non-noisy variable. Denote X; as the non-noisy variable and C as cluster membership (C = 1,2
with probability 1/2 each). Then Var (X;) = E (Var (X1|C)) + Var (E (X;|C)) = 1 + (6/2)? = 10.
Each cluster has the same size m. The kmeans clustering algorithm is used to obtain 2-cluster
partitions. We use kmeans 1 to indicate that the theoretical mean vectors p;, 1 = 1,2, are used
as the initial cluster centers for the kmeans clustering algorithm. k-means 2 means that the initial
cluster centers are the sample mean vectors of the two clusters in the true partition. k-means 3
means that the initial cluster centers are randomly generated. The Hubert and Arabie’s (1985)
adjusted Rand index (HA index) is used to measure the agreement between the true partition and
the partition obtained by the kmeans clustering algorithm. The value of the HA index for perfect
agreement is 1. Table 5.1 shows the values of the HA index for different values of the cluster size

m and the the number p, of the noisy variables.

Table 5.1: Simulation results for detecting the effect of noisy variables when cluster sizes are large.
The entries in the table are the values of the Hubert and Arabie’s (1985) adjusted Rand indexes
and corresponding standard errors (in the parentheses).
m algorithm p2=0 pr =1 P2 =25 p2 = 10
10 k-means 1 | 0.998 (0.020) 0.932 (0.187) 0.044 (0.141) 0.019 (0.084)
k-means 2 | 0.998 (0.020) 0.932 (0.187) 0.042 (0.140) 0.020 (0.084)
k-means 3 | 0.998 (0.020) 0.741 (0.393) 0.030 (0.104) 0.014 (0.077)
50 k-means 1 | 0.995 (0.013) 0.989 (0.021) 0.207 (0.397) 0.030 (0.172)
k-means 2 | 0.995 (0.013) 0.989 (0.021) 0.207 (0.397) 0.030 (0.172)
k-means 3 | 0.995 (0.013) 0.800 (0.366 (
(0.012)
(0.012)
(0.012)
(
(

0.027 (0.1420 0.000 (0.012)

100 k-means 1 | 0.993 (0.012) 0.992 (0.014

k-means 2 | 0.993 (0.012) 0.992

k-means 3 | 0.993 (0.012) 0.772 (0.406) 0.003 (0.010) 0.001 (0.009)

500 k-means 1 | 0.995 (0.004) 0.994 (0.005

(
(
(
(
E
( 0.565 (0.492) 0.219 (0.413)
k-means 2 | 0.995 (0.004) 0.994 (0.005

(

(

(

(

(

(

(

0.414

(
(
(
E

0.320 (0.463) 0.090 (0.286)
(
E
0.565 (0.492) 0.219 (
(

)
)
)
)
)
)
0.014) 0.320 (0.463) 0.090 (0.286)
)
)
)
)
)
)
)

k-means 3 | 0.995 (0.004) 0.879 (0.313

1000 | k-means 1 | 0.994 (0.003) 0.994 (0.004

k-means 2 | 0.994 (0.003) 0.994 (0.004

k-means 3 | 0.994 (0.003) 0.916

10000 | k-means 1 | 0.995 (0.001) 0.995 (0.001) 0.994 (0.001) 0.596 (0.489
k-means 2 | 0.995 (0.001) 0.995 (0.001) 0.994 (0.001) 0.596 (0.489

k-means 3 | 0.995 ( )

(

(

(

(

( )

0.000 (0.002)  0.000 (0.002)

0.675 (0.465) 0.239 (0.427)

0.675 (0.465) 0.239 (0.427)
( )
( )
( )
( )

0.264) 0.030 (0.170) 0.000 (0.000

0.001) 0.945 (0.215) 0.040 (0.196) 0.020 (0.140
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We see that the value of the adjusted Rand index increases as the number of data points
increases, and decreases as the number of noisy variables increases. If cluster sizes are large enough
and clusters are separated, then the noisy variables have little effect on clustering. When cluster
sizes are equal to 10000 in the above example, the clustering results do not change too much when
the number of noisy variables is up to 5. From Table 5.1, we also can see that the initial cluster
centers may affect the results of the kmeans clustering algorithm.

If cluster sizes are not large enough, then whether the noisy variables matter or not might

depend on the following factors:

e degree of separation among clusters

clustering algorithms

the number of noisy variables

the relative variances of noisy variables to non-noisy variables.

outliers

Since most partitioning algorithms are based on the minimization of the trace of linear
combination of covariance matrices, we only need to make sure to get good estimates of covariance
matrices. However, for real data sets, cluster sizes usually are not large enough to get good estimates
of covariance matrices. So there is a need to develop algorithms to eliminate or at least downweight

effects of noisy variables.

5.6 A New Variable Weighting and Selection Method

In this section, we propose a variable weighting and selection method based on a compact projection
criterion (CP method for short). We first describe the motivation in Subsection 5.6.1 and then
introduce the CP method I in Subsection 5.6.2. An extension is given in Subsection 5.6.3.

In the following, we use a symbol with "~ to represent the sample version of a statistic and
use the symbol without ~ to represent the population version of the statistic. For example p;, is

the population version of the mean vector of the k-th cluster and i, is the corresponding sample

version.




5.6.1 Motivation

One purpose of variable weighting is to obtain a more compact cluster structure. That is, clus-
ters are internally more cohesive and externally more isolated from each bther. We first need
mathematical definitions for the concepts “internal cohesion” and “external isolation”. For one-
dirnensional data, one can define the internal cohesion (within-cluster variation) as the average

within-cluster sum of squares:

ko ni
.1 ®) _ k)2
a=~ Z (zj z )
k=1 j=1
where
& B _ L&k
n = an, X = E_ Z .’EJ .
k=1 ko1

And one can define the external isolation (between-cluster variation) as the average between-

cluster sum of squares:

ko
where
I=— X
n k=1j=1

Then the ratio of the isolation to the cohesion

D o

is a measure of the compactness of the clusters.

The definitions of cohesion and isolation can be easily extended to high-dimensional space:
k N

A - 1 *) _ =0 (® _ =)

A= 13 (e (o)

‘ 1

B = % 3 n; (5:(’“) -5:) (i:(k) —E)T.

Suppose that ng/n — 7 as n — oo. Assuming no misclassification of points to clusters, by

the law of large numbers, we can get

~

A£>A, Bﬂ)B, asn — 0o,




" where A and B are the population versions of internal cohesion and external isolatiom in

high dimensional space.

ko

A= Z T ks

- k= (5.6.2)
ko

B =Y m(p—p)(px— )",
k=1

pr and Xy are the mean vector and positive definite covariance matrix of the k-th component of

the mixture of distributions f(x) = ZZ"ZI fr(x), and

ko
B = Z Tk
k=1

By simple algebra, we can get

ko—1 ko
B = Z Z Thy Tk (i, — Boey) (B, — #k2)T
ki=1 ko=k;+1

We can use A~ B as a measure of compactness. However, there is no scalar measure to
compare two matrices. One way to overcome this difficulty is that we first project the data into
one dimensional space, then we use the definition of the compactness for one-dimensional space.
Denote the projection direction as u. Then the projected means and variances are u y; and

uT'Siu, k = 1,...,ky. And the population versions of the within- and between-cluster sum of

squares are
a(u) =ufAu, bu) =u’Bu.

The compactness for the projection is

r(u) = UTﬂ
T uTAu’
A larger value of r means that the projection direction u has greater between-cluster differences rel-
atively to the within-cluster differences in the projection, i.e. the cluster structure is more compact
in the projection. |

If u is a projection direction, the cu (¢ > 0) is also a projection direction. We normalize

the projection direction w so that max; |u;| = 1, where u; is the i-th element of u.
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We want to find a projection direction u* which maximizes r(u). That is, u* is the solution
of the maximization problem

uT Bu

max ———
v ul Au’

such that max lu;| = 1. (5.6.3)

It is well-known that the solution for (5.6.3) is u* = a; which is the normalized eigenvector
(max; |a;| = 1, where ay; is the i-th elements of a), corresponding to the maximum eigenvalue
A1 of the matrix A~! B (e. g. Gnanadesikan 1977, Section 4.2). In fact, if we know the class labels
of data points, then the optimization problem (5.6.3) is the well-known linear discriminant analysis
problem. In clustering problems, we do not know the cluster labels of data points. We obtain the
cluster mean vectors and covariance matrices based on the partition of a clustering method.

We can use a; as a “weight vector” (the elements of a; may be negative, so a; may not
be a true weight vector). The value of the compactness r increases after we weight variables with
a1 because 7(a;) > r(1), where 1 is the vector whose elements are all equal to one and r(1) is the

value of compactness with equal weighting. We give a small numerical example to illustrate this.

Suppose there are 2 clusters (each having 150 data points) generated from two bivariate normal

distributions N (p;, 3;), 1 = 1,2, where

0 6 1 -05
Mo T e )T s o

By plugging in the sample proportions 7, mean vectors ji, and covariance matrices f}k, k=1,2to
obtain A and B, we can get é&; = (1.000,0.370)T, #((1.000,1.000)T) = 7.420, and #(é&;) = 11.868.
The scatter plot of original and weighted data sets are shown in the left and right panel of Figure 5.1
respectively. |

Moreover the vector a; depends on the orientations of the clusters even if the mean vectors
are the same. For example, if we change the covariance in the matrix £ in the previous example
from —0.5 to 0.5, then &; = (1.000,0.201)7. The estimated r values for the original and weighted
data are 5.582 and 9.902 respectively. The scatter plot of original and weighted data sets are
shown in the left and right panel of Figure 5.2 respectively. Some variable weighting methods, such
as Lumelsky’s (1982) method, depend only on the diagonal elements of the covariance matrices.

However covariance information is also useful to determine the variable weights as these two small

examples illustrate.




Scatter Plot of Clusters (B/W=7.420) Scatter Plot of Clusters After Weighting (B/W=11.868)
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Figure 5.1: The effect of variable weighting. After weighting, the ratio of the between-cluster
distance to the within-cluster distance increases from 7.420 to 11.868. The weight vector is
(1.000,0.370).

We will show in the next subsection that the elements of a; corresponding to noisy variables
are zero. Thus we can construct a weight vector based on a; so that the weight vector has
noisy-variable-detection property. Since a; is a projection direction related to the measure of the
compactness of the clusters r(u), we call the variable weighting/selection methods based on a; as

compact projection methods (CP methods for short).

5.6.2 CP Method I

By the CP method, we select or weight variables based on the optimal projection direction u* = a;.

We first study some properties of the eigenvectors a;, i = 1,...,p, where p is the number of

variables.

Theorem 5.6.1 Suppose that the first py variables X;,..., X, are non-noisy variables and the
remaining py variables X, 41,..., Xp are noisy variables. Also suppose that the covariance ma-
trices X, k = 1,...,ko, are positive definite matrices. Then the eigenvectors a;, i = LisissP
corresponding to the positive eigenvalues, A\; > --- > Ay, > 0, of the matriz A"'B have the form

0§ = (,BiT,OT), where B; is a py X 1 non-zero vector.
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Scatter Plot of Clusters (B/W=5.582) Scatter Plot of Clusters After Weighting (B/W=9.902)
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Figure 5.2: The effect of variable weighting. After weighting, the ratio of the between-cluster
distance to the within-cluster distance increases from 5.582 to 9.902. The weight vector is
(1.000,0.201)7.

[Proof] By the definition of noisy variables, the mean vectors and covariance matrices of

components fx, k =1, ..., ko, of the mixture of distributions f can be partitioned as

0 Vii O
i = y X = ) k=17""k0$
6 0 Vv
where 0y’s are p; x 1 vectors, 8 is a pp x 1 vector, V'i;’s are p; X p; matrices, and V is a py X po
matrix. Then we can get
A 0 B; 0 A7'B; 0

A= , B= , A'B=
0 A, 0 0 0 0

where A; = Zz"zl 7 Vi1 and Ay =V and

ko—1 ko
Bi=Y > mm, [0k —6k)(6k - 6k,)7].
k1=1ke=k1+1

Denote Ay > --- > )\, as eigenvalues of the matrix A"'B.

Decompose the eigenvector a; of the eigenvalue \; as a; = (87, ¢7)T,i=1 ,p. By the

definition of the eigenvalue and eigenvector,
A'BL 0 ) [ B; B
0 0 §i £
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Therefore &, = 0 for positive eigenvalues A;, 1 =1,...,p;. | O
Next we study the relation between the eigenvectors o, i = 1,...,p, before and after

the transformation Y = HX, where the random vector X has the density function f(z) =

Zi"zl 7 fr(x). We first introduce the following lemmas.

Lemma 5.6.2 The non-zero eigenvalues of the matrix AB are the same as the non-zero eigenval-

ues of the matriz BA.

[Proof] Suppose ) is a non-zero eigenvalue of the matrix AB. Then there exists a non-zero
vector a such that ABa = Aa. Multiplying B on both sides of the equation, we get BA (Ba) =
A (Ba), where Ba is non-zero. By definition of eigenvalue, A is a non-zero eigenvalue of the matrix

BA.

Similarly, we can prove that if X is a non-zero eigenvalue of the matrix B A, then it is also

' a non-zero eigenvalue of the matrix AB. . O

Lemma 5.6.3 Suppose that Y = HX, where H is a non-singular matriz. Denote A* = HAHT
and B* = HBHT. Then

(1) The i-th largest non-zero eigenvalue A} of the matriz [A*]7! B* is equal to the i-th largest

non-zero eigenvalue \; of the matric A™'B,i=1,...p;

(2) af = H T o, where HT = (HT)—I, o} is the eigenvector of the matriz [A*]™' B* corre-

sponding to X} and a; is the eigenvector of the matriz A~ B corresponding to \j, i =1,...,p.
[Proof] By simple algebra,
[A*]"'B*=H TA'BH".

By Lemma 5.6.2, the non-zero eigenvalues of the matrix H~T A~'BHT are the same as the non-
zero eigenvalues of the matrix A" BHTH-T = A~!'B. Thus, A=A, i=1,...,p.

Now we show the second part of the Lemma. By definition of eigenvalue and eigenvector,
A_lBai =MNoy, i=1,...,p.

Thus,

HTA 'Ba; = \H Ta;,i=1,...,p.
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M oreover
HTA'B=(HTA'H ") (HBH")H T =[A"'B*H".
Therefore ‘
*1—1 * =T _\ _ y* -T . >
[A*]7 B* (H o)) =X (HTay),i=1,...,p,
i.e. H Tq; is the eigenvector of the matrix [A*]_1 B*, corresponding to the eigenvalue \. a
From the above analyses, we can see that the elements of the eigenvector a corresponding

to the noisy variables are zero and that a; has the scale equivariance property (see Definition 5.4.4).

Thus if our purpose is to delete noisy variables or to downweight noisy variables, then we can use

o1 as the weight vector w. That is
w = . (5.6.4)

However it is possible that some elements of the normalized eigenvector a; are negative. And there

is no meaningful interpretation for negative weight. So we instead can use the absolute values of

the elements of the eigenvector a; as the weight vector w’. i.e.

lo1]
w = . : (5.6.5)

|yl

Theorem 5.6.4 The weight vector w! has the 1-moment-noisy variable detection property.

[Proof] From Theorem 5.6.1, we know that the elements of the eigenvector a; which

correspond to noisy variables are zero. Thus, the corresponding elements of the weight.vector w

are zero. | O
Theorem 5.6.5 The weight vector w! has the scale equivariance property.

[Proof] From Lemma 5.6.3, we know that if we do linear transformation Y = HX, where

H = diag(h1,...,hy) and h; >0, j=1,...,p, then

-1

-1




Thus, ’wJI-*zhj—leI- fY;=hiX;,5=1,...,p O
If only variable selection is required, we can let non-zero elements of w! be 1.
For a data set, the assumptions of the population version of the CP method I could not be
exactly hold. However, we expect the two nice properties approximately hold for the data version

of the CP method I. That is, the weights for noisy variables are close to zero and wy =~ wx/c,

where ¢ > 0 (provided no variable dominants in a distance metric).

5.6.3 CP Method II

It is possible that some elements of the weight vector w! corresponding to the non-noisy variables
are zero. Thus, if we use w! as the weight vector, we might delete non-noisy variables.
We illustrate the CP method with the Ruspini data set (Ruspini 1970) which consists of 75

observations in a 2-dimensional space (see Figure 5.3). There are 4 obvious groups of data points so
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Figure 5.3: Scatter plot of the Ruspini data set

we use MKmeans to obtain a 4-cluster partition and p,, Xy, are replaced by the cluster sample mean

vectors and sample covariance matrices. The weight vector is @’ = (0.041,1.000)T. However, the

first variable is non-noisy.

To obviate this problem, we can use several eigenvectors instead of only the eigenvector
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corresponding to the maximum eigenvalue. More generally, we can use weighted eigenvectors

12
II-
w=— E tilal, t; .6.
y jlagl, >0, (5.6.6)
J=1
where 7 is the maximum element of the vector ) ?:1 tilejl, e, 5 = 1,...,p, are eigenvectors of

the matrix A™!B. To make sure that the elements of w!! corresponding to the noisy variables are
still zero, we require that the weights ¢; for eigenvectors corresponding to the eigenvalue zero are
zero (see Theorem 5.6.1).

For example, we can set t; = Aj, j = 1,...,p. Aj is a measure of the degree of separation
among clusters along the direction a;. So it is reasonable to assign more weight to the eigenvector
a; along which the degree of separation among clusters are larger.

For the Ruspini data set, the eigenvalues and eigenvectors of the matrix AT'B are M=
27.972, Ay = 8.187, & = (—0.005,0.111)7 and &, = (0.100,-0.002)T respectively. And the new
weight vector is W’ = (0.302,1.000)7 which improves the weight vector @’ = (0.041,1.000)T in
the sense that the element of ’1.“01 I is larger and not close to zero.

Other linear com_binations of eigenvectors ar.e also possible as long as the weights for eigen-
vectors corresponding to the eigenvalue zero are zero. We call this class of weight vectors as CP
weight vectors. Subsequently, the term CP weight vector specifically refers to the weight vector

(5.6.6) with t; = \i, i =1,...,p.

5.7 Weight Vector Averaging

In previous sections, we assume that the true number of clusters and cluster membership are known
(Ball and Hall 1965; Milligan and Cooper 1985; Zhuang et al. 1996; Frigui and Krishnapuram
1999; Stephens 2000; Comaniciu and Meer 2002; Fraley and Raftery 2002; Sugar and James 2003).
However, the true number of clusters is usually unknown in real data sets. Many methods have
been proposed to estimate the number of clusters. However their performance will be affected by
noisy variables. So we should estimate the number of clusters after we remove or downweight the
effects of noisy variables. Therefore, it is desirable that the variable selection/weighting procedures
do not depend much on the specification of the number of clusters.

One possible way is to first find weight vectors based on a sequence of specifications for
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the number of clusters and then use the average weight vector w!/! normalized by its maximum
element as the final weight vector.
To illustrate the idea, we generate a small data set consisting of 5 clusters in a 3-dimensional

space, each having 100 data points. The five clusters are generated from trivariate normal distri-

butions N (py, Eg), k =1,...,5, where

0 12 0 10 6
pr=10 |,pm=] 0 |,pu3=| 12 |, 4= 1| 12 |, H5=] 6 |,
0 0 0 0 0
1 0 O
$1=--=¥=]01 0
0 0 20

The third variable is a noisy variable and its variance is 20 so that the variation over the combined
clusters of the noisy variable is similar to those of the non-noisy variables. The scatter plot of the five

clusters in the first two dimensional space is shown in Figure 5.4. We first obtain the weight vectors
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Figure 5.4: Scatter plot of the simulated data set

for kg = 2,...,10 and then obtain the normalized average weight vector. When calculating the

(ko)

weight vectors, the sample cluster mean vectors fzfcko) and covariance matrices ﬁk s k=1,...,5,
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are used after applying a clustering method specifying ko clusters. Note that if ky is not the true

(ko) (ko)

number of clusters, then fi;”’ and ¥; " may not be estimating population quantities.

The results are listed in Table 5.2; we can see that the noisy variable (the third variable)
has weight close to zero for each kg. After weight vector averaging, the weight is still close to zero.
This example motivates us to average the weight vectors for a series of specification of the number

of clusters if the true number of clusters is unknown.

Table 5.2: Weight vectors for the simulated data set
ko wf oy oy | w]f @ff e
0.025 1.000 0.127 | 0.025 1.000 0.127
0.017 1.000 0.051 | 0.229 1.000 0.057
1.000 0.696 0.019 | 1.000 0.713 0.021
1.000 0.705 0.005 | 1.000 0.726 0.011
1.000 0.736 0.023 | 1.000 0.834 0.029
0.601 1.000 0.013 | 1.000 0.820 0.020
0.934 1.000 0.058 | 0.938 1.000 0.043
0.662 1.000 0.020 | 1.000 0.822 0.047
0 |0.047 1.000 0.043 | 1.000 0.994 0.054
T 1(0.650,1.000,0.044)T | (0.909, 1.000,0.052)T

[\

=0 00~ UL W

g)

The results for the Ruspini data set are listed in Table 5.3. Again weight vector averaging

Table 5.3: Weight vectors for the Ruspini data set
ko W Wl wi! il
. 0.673  1.000
0.783 1.000 | 0.802 1.000
0.041 1.000 | 0.302 1.000
0.286 1.000 | 0.517 1.000
0.636 1.000
0.190 1.000 | 0.333 1.000
0.130 1.000 | 0.364 1.000
0.174 1.000 | 0.628  1.000
0 0.070  1.000 | 0.663 1.000
T (0.291,1.000)T | (0.577,1.000)T
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has better performance.
In practice, researchers can use subject matter knowledge to determine a range of the number
of clusters that should hopefully include the true number of cluster. In the next subsection, we

provide a preliminary theoretical validation for the weight vector averaging technique.
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5.8 A Preliminary Theoretical Validation of the Weight Vector

Averaging

In this section, we assume that (1) kg (population) clusters are from a mixture of multivariate
normal distributions with ky component f(x) = 220:1 i fe(z), 0 < mp < 1, ngl mx = 1; (2) when
splitting, only one cluster will be split by a separating hyperplane; (3) when merging, only two
clusters will be merged.

We will show that under certain conditions, noisy variables are still noisy variables if we
split the ko clusters into ko 4+ 1 clusters or if we merge the k¢ clusters into kg — 1 clusters.

To do so, we first obtain the mean vectors and covariance matrices of the two parts of
a multivariate normal distribution N (g, X) which is truncated by a separating hyperplane in
Subsection 5.8.1. Then we show in Subsection 5.8.2 that to minimize the within-cluster distance,
the optimal separating hyperplane passes through the mean vector yu of the multivariate normal
distribution and is orthogonal to the eigenvector o corresponding to the maximum eigenvalue
A1 of the covariance matrix . In Subsection 5.8.3, we show that under certain conditions, the
cluster having the largest eigenvalue will be split when we split the kg clusters into kg 4+ 1 clusters.
In Subsection 5.8.4, we show that under certain conditions, the two clusters having the “smallest
distance” will be merged when we merge the ky clusters into kg — 1 clusters. Finally, we show in
Subsection 5.8.5 that under certain conditions, the mean vector and covariance matrix of the noisy
variables do not change when we split the ko clusters into kg + 1 clusters or when we merge the kg

clusters into kg — 1 clusters.

We expect that these results might hold for non-normal mixtures, but the mathematics for

the general case is not tra.ctabie.
5.8.1 Mean Vectors and Covariance Matrices of Truncated Multivariate Normal
Distributions

In this subsection, we obtain the explicit formula of the mean vectors and covariance matrices of
the two parts of a multivariate normal distribution N (g, ) which is truncated by a separating

hyperplane

al (z -b) =0.
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We first derive the density functions and then the moment generating functions. Finally

we derive the formulas for the mean vectors and covariance matrices from the moment generating

functions.

(1) Density Functions

The density functions of the two truncated multivariate normal distributions are

hm)-{gﬂ%)wﬂmdﬂ“pk%@‘“FE”@vwﬂ o (z - b) > 0,

0 a”(z —b) <0,
and
fala) = { am)y 2 = exp [ (o = ) =7 (@ - ) @ -5 <0,
a(z - b) >0,
where

a = [ (2m) /2 |5 exp [—3 (@ - 5" (@~ u>] da
' aT(z—b)>0 2

= P@’(Y-b)>0), Y~N(u, %),
= 1_¢[_M]

vaTZa
= ‘q) [G‘T(I"‘ — b)]
vaTsa |’
and similarly
6 = 1-0|2k-b
vaTSa
= 1- Cy.

(2) Moment Generating Functions

Suppose random vectors X; and X5 have dénsity functions fi(x) and fo(x) respectively. The

moment generating function of X is

‘gl(t) = E(eth‘)

1 T 1,
Y €xp (tT"’) (2m) P2 |27 2 exp | - (z-p) T (z-p d.
. €1 JaT(x—b)>0 2
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Note that

6§ = @-—pwIsz-—p) -2Tz
= T8 e - 22TV (u+3t) + pT =
= 272 2-22TS  (u+3t) + (p+ St)T 7! (1 + Tt)
—p+3) T N (p+ )+ TS
= - (p+Zt) S - (p+ 2] - (u+ Z)T T (p+ Bt) + pT T p
= - (p+3t)TZ @ - (u+ Tt)] - 2 [;ﬂ‘t + tht} .

Thus, we can get

tT'st
o) = Lew(uerS0) [ (2m) /2 |51/
ci 2 aT (z—b)>0

. exp [_ [®— (p+ Et)]T -1 [ — (u+ zt)]] s

2

1 r. tTSt T
= —-exp ut—i—T Pla"(Z-b)>0), Z~N(up+3t, %)
1

T T(y ~—
= clexp (p,Tt+t 22t> [1—¢(~a (p b+2t))]
1

vaTSa
1 T tTEt) (aT(p -b+ Et))
= —e t+ L .
oY (" ) JalZa

Similarly, we can get the moment generating function of X:

0= o s ) oo (St

(3) Mean Vectors and Covariance Matrices

To get the mean vectors E (X;) and covariance matrices Cov (X;), i = 1,2, we introduce some

notation in Table 5.4.

Hence ¢;(t) can be rewritten as




Table 5.4: Notations I

ki (t) = exp (ruTt +E2t) 1k (0)=1
oty = (3) 0 =0 (1)
kalt) = ¢ (USBB) (o) = ¢ (2 020)
Ra(t) = U2 ha(0) = 2D
RO =k®)(p+ ) | K0) =p
ky(t) = ks(t) o= k5(0) = k3(0) o2&
k4 (t) = —ka()ka(t) 24— | k3(0) = —k4(0)k3(0) 22—
4O = 2 4O = 22
The first derivative vector of g;(t) is
GO = g KOk + R Ok®]
= ok [ R0 G 20+ ko0 2]
- [kQ(t) (1 + 5) + ka(t) \/%] .
and the second derivative vector of g;(t) is
! T
A0 = 2D e) o+ 50) + alt) e |
T
+ 1’:21((3)) [kg(t) (1 + 267 + k()5 + kg(t)\/%] .
Thus
— _ k1(0) Ya
BOX) = 61(0) = (0 [l (14 20) + ka(0) 2]
- u + k3(0) Ea
k2(0) VaTsa
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and

Then

E (X:X1) = 4{(0)
! T
- 20 [0 6+ 20) + ka0 2L
kl(o) ' ‘ T ; aTz
+k2(0) [kQ(O) (£ + X0)" + ko (0)X + k3(0)ﬁ]
_ k3(0) uaT= + Zapu”  k4(0)k3(0) DaalS
= WS LG Vatsa k() aTTa
_ k3(0) pa™s + Zau?  k4(0)k3(0) TaaTS
= B e T aT S
Note that
T k3(0) Xa k3(0) Xa 17
O e k2(0) VaTEa] [ * k2(0) \/aTEa]
T, k3(0) paTE + Bap”  k2(0) TaaTE
R0) Vaiza  H(0) a’Za
We can get
Cov(X1) = E (X1XT) - (E(X)(E(X1))"

Similarly, we can

— T+ 5 4 ¥3(0) pa"S + Sap”  ky(0)ks(0) Zaa” D
k2(0)  VaTxa k2(0) aTZa

v k3(0) paTE + Sap”  k3(0) Zaa’x

- C k(0)  VaTsa  k2(0) oT=a

= ¥

k3(0) k3(0)] ZaaTx
2(0) [’““‘“’ kz(o)] VaTse

rewrite the moment generating function of X5 as

1

g2(t) = T=%(0)

ki(t) [1 - ka(2)] -

) O L= k@) + (DR ()}

Q
~

q

[~]

(—)-{m(t) (1= k201 + 26) — b Ok (0 Ta }
)

Ya
= Toh) {“ ~Halt)] (e + 3t) ~ ks(8) }

vVaTXa




and

and

ga(t) =

Thus

E (X2X7)

Note that

ki (t)

T
{[1—k2(t)l(u+2t)—ks(t) Za }

I~ k2(0) Ve
T
1 fﬁzm {‘klz(t) (1 +Z6)T + (1 - ko (£)] B — K5 (2) \/%} .
E(X2) = g3(0)
_ _ k3(0) 3a ’
- 1 - k2(0) VaTSa
92(0)
k1(0) _ _ Xa T
1— k2(0) {[1 k2(0)] (n + £0) k3(0)————m}
k1(0) , , oIS
ﬂ—_lm {—kz(ﬂ) (1 +20)T + [1 — kp(0)] = — K5(0) \/m}
S k3(0) pal’S + SapT N k4(0)k3(0) TaaTx

1-k2(0) VaTXa 1 -k2(0) vVaTxa

(E(X2) (E(X2))T = ["““’) {[1—kz(0)1u—k3<0) Ta }]

We can get

Cov (XQ)

T=ka(0) VaTza
ki(0) [ Za T
. .10 pa’TTap’ k23(0) Taa’s

“1-k0) VaTsa | [1-kO)] Yaisa

E (X:X7) - (E(X3)) (E(X2))T

ppT +3— k3(0) pa™E + ZapT N k4(0)k3(0) ZaaTx
1-k(0) VaTza 1 -%k(0) VaT2a
T 4 K20 _pa’S+Sapl  K(0) Taals

1-k(0) VaTSa  [1-k(0)? VaTxa
k3(0) | Zaa’E

1 — k2(0) [k4(0 T 1-k(0)] VaTza




In summary,

3 k3(0) Xa
E(X)=p+ 52(0) Valsa'
o k(0 k3(0)] Zaa’S
Cov(X;) =X - k2(0) [k4(0) + kQ(O)] VaTsa’ (5.8.1)
B (X)) = p - k3(0) Za -
2)=H- T k2(0) vVaTxa’ |

_ k3(0) k3(0) ZaaTE
Con (X0 = B+ T2y [0~ 0] o

The above results can also be derived from the results of Tallis (1965).

5.8.2 Optimal Separating Hyperplane

There are infinitely many separating hyperplanes to truncate a multivariate normal distribution

N (p,X). We want to find a separating hyperplane to minimize the mean square distance of a

random point X to the mean vector
MSD (a,b) = E [(X — p(C))T(X - p(C))]
= E[(X — )" (X — py)|a” (X — b) > 0] P(a” (X — b) > 0)
+E[(X — pp)T(X — py)la”(X - b) < 0] P(aT(X - b) < 0)
= ¢; tr [Cov (X})] + ¢ tr [Cov (X3)]

_ k3(0) k3(0)] a7 5%
"“2(0’{“(2)" 5 (0) [’“4“’)* Fa(0 )] aTza}

TEQ
+01- k2(0)]{tr (2) + 1 ;(c () 0) [k 0-17 —1(9220)] ZTE:}
B k3(0) 3(0) aTx2%q
= {r (E) - k3(0) {k (0 + k‘z(O) k4(0) + 1— k‘Q(O)} aTSa

_ k%(0) aT>%a
= (¥ - k2(0) [io’ — k2(0)] aT%a

where C is a random variable indicating which side of the separating hyperplane a” (z — b) = 0

the random point X belongs to.

Theorem 5.8.1

min MSD (a,b) = MSD (a1, p) = tr () - 4, ¢%(0),
a,b )

where Ay and ay are the largest eigenvalue and corresponding eigenvector of the covariance matriz
.




Table 5.5: Notation II

m1(8) = spi-ep m(0) = 4
m2(8) = =5 ~ 3() ma(0) =0
m3(6) = fae + Eap | ™(0) =8
m(0) = ¢(0)m1(6)m2(0) | m1(0) =0
my(0) = ¢(8)ma(6) my(0) = 8¢(0)

[Proof] We first show that given the direction a, the separation hyperplane should pass through
the mean vector g and then show that the optimal direction is a;. If the multiplicity of X\, is

greater than 1, then any eigen direction of A\; will minimize MSD(a, u).

Denote
. 2(0
where
aT(p - b) aT>%a

vaTsa ’ 7= aTsa

We introduce another set of notation in Table 5.5. Then to find the minimum point b* of

the function MSD (a, b) given a is equivalent to find the minimum point 6* of the function h(8).

The first derivative of the function h(0) is

h'(0) = —2n¢(0)¢'(0)m1(0) — nd*(0)m)(8)
= 2779¢2(9)m1(9) - 7l¢2(9)¢(9)m1(9)m2(9)
= n¢’(0)m1(6) [20 — $(0)m2(6)]

Let h'(f) = 0, we can get
1
0= Eqﬁ‘(@)mg(é?).
It is not difficult to see that § = 0 is a solution of h'(0) = 0.

To show that 6 = 0 is the unique global minimum point of the function h(6), we can show
that A'(#) > 0 for & > 0 and that h'(9) < 0 for § < 0. By the fact that m;(—8) = m,(8) and
ma(—0) = —ma(6), we can get that h'(—8) = —h'(#). Hence we only need to show that A'(8) > 0
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for 8 > 0.

R(6) >0V0 >0« 20 > ¢(0)ma(8) VO >0

28(0) — 1
“ 28>0 5o - a0

& 209(0)[1 — B(0)] > (0)[28(0) = 1] V8 >0

Ve >0

By the facts

1-9(0)= [ dla)de > 4(0),
we can get
209(0)[1 — ®(0)] > 20®(0) ().
We want to show that
20%(6)¢(0) > #(6)[22(6) — 1]
That is
1-29(6)1-6]>0.
Let
9(0) =1-2®(0)[1 — ).
The first derivative of g(8) is
9'(0) = -2[¢(6) ~ 3(6)] + 264(9)
> 20¢(0) > 0, V6 > 0.

The second last step is due to the fact that ®(0) > ¢(0) for > 0. So g(f) is a monotone increasing

function of 6 for all # > 0. g(0) = 0 implies that g(6) > 0 for all 6 > 0. Hence h'(6) > 0 for all
0 > 0 and h'(6) < 0 for all < 0. Therefore

h(0) = arg nbinh(ﬂ). |
= 0 is equivalent to aT(p.‘ — b) = 0 for any given a. That is,

b* = pu.
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So given a, the separating hyperplane passes through the mean vector u. We can get

aTX?q
alTSa’

MSD (a, p) = tr () — 4¢(0) (5.8.2)

Now given b = , we want to find a normalized direction a* such that [a*]” a* = 1 and
MSD (a*, p) = min MSD (a, p).
a

From formula (5.8.2), we know that to minimize MSD (a, p) is equivalent to maximize

aT3%q
alSa’

The solutions are a; and —a;, where a; is the normalized eigenvector of the matrix Z7'¥? = 3
corresponding to the ma,ximurﬁ eigenvalue A; (see Gnanadesikan 1977, Section 4.2). If we require the
first element of the maximum point be positive and if the eigenspace of Ay has rank 1 (multiplicity
of Ap is 1), then the solution is unique.

Now we show that (a1, p) is the global minimum point of the function MSD (a, b). Suppose
that (a*,b") is the global minimum point. Then MSD (a*, b*) < MSD (a1, ). From the previous
subsection and this subsection, we know that MSD (a*,b*) > MSD (a*, u) > MSD (e, p) leading
to a contradiction. By the uniqueness of the solution, (a*,b*) = (a1, ), and ming p MSD (a, b) =
tr () — 4 42(0). O

Thus, if we split a multivariate norﬁlal distribution to two parts via a separating hyperplane,

then the optimal value of MSD will decrease and the amount of decrease is 421 ¢%(0).

Corollary 5.8.2 The mean vectors and covariance matrices of the two truncated distributions fi

and fa, which are truncated by the optimal separating hyperplane ol (x — p) = 0, are

E(X1) = p+2VM¢(0)a;, Cov(X;) =3 - 4X4*(0)aial,

(5.8.3)
E(X2) = p - 2v/M4(0)a1, Cov(X3) =X — 4X¢%(0)a1al.

5.8.3 Which Cluster is Chosen to Split?

If we assume that when splitting ky clusters into ko + 1 clusters, one of kg cluster will be split,
then by intuition the cluster which has the largest size will be split if we want to make sure the

within-cluster sum of squares reach minimum after splitting. We can prove this theoretically.
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Theorem 5.8.3 Suppose that when splitting ko clusters into ko + 1 clusters, one of ko clusters
will be split by a hyperplane. Without loss of generality, suppose that the ko-th cluster will be split.
Suppose that the separating hyperplane is the optimal separating hyperplane which minimizes the
mean squared distance (MSD) of the ko-th component density. Then the internal cohesion and

external isolation (c.f. Formula (5.6.2)) before and after the splitting have the following relations:
A*=A-B;, B*=B+B;, A*+B*=A+B, (5.8.4)
where By = 4w, ¢*(0)Ag, ot -

[Proof]:
After splitting, the new internal cohesion is

ko—1

A* = Z TiBi + Mho 1 B ko,1 + Tho,2 Bko, 2>
i=1
where
_ — ko
7rk011 - 7Tk0,2 - 5
2
> = B o= g, — 40%(0) g, 06,0k
ko,1 — ko,2 = kg ko ko>

and Mg, is the maximum eigenvalue of the covariance matrix ¥z, and oy, is the eigenvector cor-
responding to Ag,. Tky,1 = Try2 = Tk,/2 is because that the optimal separating hyperplane passes
through the center and that the multivariate normal distribution is symmetric about the center.
We can get
ko
A = > mEi — dmg, d2(0) Mg age il
i=1

= A- 47rk0¢2(0))\k0akoa£0.

By definition, the new external isolation is

ko+1

=1

Since the.first ky — 1 clusters have not been changed,
ﬂl; = T, 2: =3, ll’: =pi t=1,...,k — L.
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The optimal mean vectors and covariance matrices of the two parts of the ko-th cluster are

Hio1 = Hko + 2¢(0) v/ Ao Ctko»
ko2 = Bko = 26(0) v/ Ako ko, (5.8.5)

o = Bz = Tk — 4¢2(0)>‘koak0q¥cwo'

We can get
ko+1
pt=Y mu
=1
ko—1
= Z T + ﬂ-;:o,lu'ko,l + ﬂZ:O,QIJ’ko,?
i=1 (5-8.6)
ko—1
= Z Tiki + Tho Lk,
=1
= “"'
Thus,
pi—pr=p,—p, i=1,... k-1
Also
(=) (=) = (- ) (=), i=1.. ko — 1,
and
Bioi — B = pgy 1 26(0)/ Akak, — b
= (ko — 1) + 26(0) v/ Ak ko
Thus
* * T T
(#ko,l —H ) (#ko,l el ) = (V’ko - N) (#ko - #)

’ T
+2¢(0) V A’C() l:(”’ko - y’) az‘o + akO (”ko - I'l') ]
+4¢2(0)/\koakoa£0.

Similarly,

Prg2 — B = gy — 2¢(0)\/mako ]

= (try — 1) = 26(0)v/ AkoCtky,
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and

(I"ko,2 - H*) (l"ko,2 - N*)T = (Hko - H) (Hko - M)T
~26(0)v/Nao [ (1t — 1) o, + cxky (it ~ )"
+46%(0) Ak, ko atfy -
Therefore

Wzﬂ (#k0,1 - I"*) (”’ko,l - M*)T + W—;q (Nko,z - M*) (#ko,z - #*)T

= Ty (biko — 1) (oo ~ M)T + 47Tk0¢2(0)/\koakoafo-

Thus, the new external isolation is

ko
B* = ) mi(pi— ) (1 — )7+ 4me, 2 (0) Mgkl
1=1

and
B* = B + 47, ¢*(0) Ao
Denote
By = 4mky¢?(0)Akoatko 0, . (5.8.7)
Then (5.8.4) obtains. O

Corollary 5.8.4 Suppose that when splitting ko clusters into ko+ 1 clusters, one of kg clusters will
be split by a hyperplane. Suppose that the splitting (separating) hyperplane is the optimal separating
hyperplane which minimizes the mean squared distance MSD of the kqy-th component density. Then
to minimize the trace of the new internal cohesion A*, the cluster whose m;\; is the largest should

be chosen to be split, where ); is the largest eigenvalue of the covariance matriz of the j-th cluster

and w; is the proportion of the j-th cluster.

5.8.4 Merging ky Clusters into ky — 1 Clusters

If we reduce by one cluster, we expect that the two clusters which are closest will be merged.
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Theorem 5.8.5 Suppose that when merging ko clusters into ko — 1 clusters, only two of ko clusters
will be split. Without loss of generality, we suppose Cluster kg — 1 and Cluster kg will be merged.

Then the internal cohesion and external isolation before and after merging have the following rela-

tions:
A*=A+B3;, B*=B-B3;, A*+B"“=A+B, (5.8.8)

where B3 = Tko—1Tko (’J”Co-*l - "Lko) (I‘l'ko—l - I‘l'ko)T/(”rko—l + 7”60)'

[Proof]:

The new internal cohesion and external isolation are:

ko—1
A = Zﬂ_:*zz*,
i=1
ko—1
*k * * * TavA
B™ = ) af(u - pm) (w5t - e
=1

where

*k

*% * % .
W, = Ty My = My, Ei = Ei, 1= 1,...,k0—2;
* %
7rk0——1 = Mgg—1 + Tkos

M1 = E (X|X € Cgy—1) P(X € Cyy—1) +E (X|X € C,) P(X € Ck,)

=E (X|X € Cgy_1) —2=L__ L B (X|X € Ck,) —20

Tko—1 T+ Tkg Tho—1 + Ty (5.8.9)
Mho—1 Tko .
= Mgt —
Mho—1 + Ty 0 Mho—1 + Tk 0’

where Cy, stands for the k-th component of the mixture. And

El*c:—l =E [(X - Nl*c;—l) (X - #2;—1)T X € Cko—l] P(X e Cko—l)

+ B [(X - o) (X - pia-1)1X € Copt| P(X € Ciy)

— .___7‘-5:_9:_1___. [2 ‘ . *k . Kk T]
Tho—1 + Tky ko1 + (Bko—1 = Mhg-1) (Bko-1 —~ Hig-1)
Tho

Tho—1 T Ty

[Eko + (B — Mrn_1) (l‘ko - ﬂZ;—l)T] .




We can get

*k Ty
Bro—1 — Bhg—1 = —————(Mgg—1 ~ Mio)s
0 0 7rk0—-1 +7Tk0 0 0

*ok ﬂ-ko—l
ko ~ Bkg—1 = —————— Mgy = Hry—1)-
0 0 7rk()-1 + 7Tko 0 0

Thus

ko—1

Zm T

o e (5.8.10)
= Z Wi+ Tho 1Bk -1

= I_L_
and

*k . To—1
ko—1 —

_ Tkl w4 Tho
0—

Thko—1 + Mo Tho—1 + Ty
Tho—1Tkg

(Tko—1 + Tko)?

ko
(5.8.11)
T
(ll'k:o-—l - Mko) (Nko—1 - Nko)

Therefore, we can get

Mhy—17Tk T
AY = E 34— - ~
; + 7rk;0 1 +7T (“ko—l ”ko) (I‘l’ko—l l“"ko)

e e
=A+ ko—1Tkg

- __ T
7flc0—1 +’ﬂ'k0 (I“"k()—l ”’ko) (I‘Lko—l I‘l'ko) .

Hence

Tho—1Tk T
tr (A*) = tr (A —rom2 0 - - .
r(A*) = tr (4) + oot T T (Bko—1 = Bky) (Bkg—1 — Bry)

By algebra, we can get

B*=B - Tho—1Tkq

— —_ T
Mho—1 + Tk (”ko_l IJ”"O) (p’ko—l I‘ko) .

Denote

Mha—1T
B3= ko—17Tkg

T
- — )7 8.12
e 1t (Hom1 = Hiko) (Bko 1 = o) (5.8.12)

Then (5.8.8) obtains. O




Corollary 5.8.6 Suppose that when merging ko clusters into ko — 1 clusters, only two of kg clusters
will be split. Then, to minimize the trace of the new internal cohesion tr (A**), we have to merge

the cluster pair k and k' such that

T Tt T
et g e ) (e~ )
is the smallest. If my = -+ = my,, then two clusters which have the smallest distance between means

will be considered for merging.

5.8.5 Effects of the Specification of the Number of Clusters

In this subsection, we will show that under certain conditions, noisy variables are still noisy variables

after splitting a cluster or merging two clusters. This provides a partial validation of our weight

vector averaging technique.

Theorem 5.8.7 Assume that the kg component densities of the mizture of distributions are nor-
mally distributed. Suppose that when merging kg clusters into ko — 1 clusters, only two of ky clusters
will be merged. Also suppose that the criterion to choose the two clusters to be merged is to minimize

the internal cohesion. Then dfter merging, the CP weights corresponding to the noisy variables are

ZETO0.

[Proof]: Suppose that the two nearest clusters are clusters kg — 1 and ko. From formulas (5.8.9)

and (5.8.11), the mean vector and the covariance matrix of the new merged cluster kg —1 respectively

are
*% Tho—1 Tk
Brom1 = —— ——Hgg1 + T Mg
° 7rk()—l + 7rko 0 ﬂ'ko—l + 7rko 0’
and
Tho—1 Tky Tho—1Tkg T
Sl Ry TRl ) (kg — Hikg)
- 0 0 ko—1 — Mko) \Bko—1 — Mg
o Thy—1 + Tkg Tho—1 T+ Mg ('"'Ico—l + 7Tk0)2 ( 0 0) 0 0/ 0

where p; and ¥;, 1 = ko — 1, ko, have the forms

i Vi O
M = g ’ z’i = ‘




It is straightforward to check that for the new merged cluster kg — 1, the mean vector and the
covariance matrix for noisy variables are still 3 and V respectively. If we assume noisy variables
are normally distributed, no change of the mean vector and covariance matrix indicates no change

of the distribution. Thus, the noisy variables are still noisy after the merging. O

Lemma 5.8.8 Suppose that a positive definite matriz X has the form

Vi O
0 VvV,

3=

where V1 is a p1 X py matriz and V5 is a ps X py matriz.

1. Suppose that X is an eigenvalue of the matriz 3. Then X is an eigenvalue of either V1 or Vo

or both.

2. Suppose that X is an eigenvalue of V' but not V5. Then its normalized orthogonal eigenvectors
ai, ..., ag for the matriz T have the form a; = ( ZT,OT)T, i=1,...,¢, where { < p; is the

multiplicity of the eigenvalue \.

3. Suppose that A\* is an eigenvalue of V3 but not V1. Then its normalized orthogonal eigen-

vectors By, ..., B, for the matriz 3 have the form B; = (OT,nIT), 1=1,...,t, where t < p,
s the multiplicity of the eigenvalue \*.

[Proof:] By definition, an eigenvalue A of the matrix ¥ satisfies the equation det (AT P —
3) = 0, where the function det (A) calculates the determinant of the square matrix A. Hence we
get det (AI,, — V1) = 0 or det (A, — V2) = 0. That is, X is an eigenvalue of either V'; or V5 or
both. The first part of the proof is completed.

Now we consider the second part of the lemma. Suppose the p; x 1 vectors &,i=1,...,¢,
are p; normalized orthogonal eigenvectors of A for the matrix V;. Then the p x 1 vectors § =
( €T, OT)T are normalized orthogonal eigenvectors of A for the matrix . And any eigenvector
& of X for the matrix ¥ can be expressed by a linear combination of §,1=1,...,£. Decompose
£ as &= ( f,g;{)T, where £, and €, are p; x 1 and py x 2 matrices respectively. Then there exist

scalars cy,...,cp such that

E * *
u =y £1 +...+c£ £e
& 0 0




This implies that €, = 0. The second part of the proof is completed. By symmetry, the third part

of the lemma is proved. ’ O

Theorem 5.8.9 Assume that the kg component densities of the mizture of distributions are nor-
mally distributed. Suppose that when splitting ko clusters into ko + 1 clusters, one of kg clusters
will be split by a hyperplane. Without loss of generality, suppose that the ko-th cluster will be split.
Suppose that the criterion to choose the cluster to be split is to minimize the internal cohesion and
that the criterion to choose the separating hyperplane is to minimize MSD of the ko-th component
density. Also suppose that the eigenvalues of the covariance matriz corresponding to non-noisy
variables are larger than those of the covariance matriz corresponding to noisy variables. Then

after splitting, the CP weights corresponding to the noisy variables are zero.

[Proof]: Without loss of generality, suppose that the cluster whose covariance matrix
has the largest maximum-eigenvalue is cluster kyp. From formula (5.8.5), the mean vectors and

covariance matrices for the two new split clusters are

I‘l’ko,l = y’ko + 2 V AIC()QS(O)C!ICO’ Eko,l = 2]k() - 4Ak0¢2(0)akoafo’

(5.8.13)
”’ko,Z = ”’ko -2 V AI<:()¢(0)‘1k07 Ek0,2 = Ek‘o - 4Ako¢2 (O)akoazoa

where py, and 3y, are the mean vector and the covariance matrix of cluster ko, Mg, and ay, are
the maximum eigenvalue and corresponding eigenvector of the matrix X, py, ; and g, ;, i = 1,2
are mean vectors and covariance matrices of the new split clusters.

We want to show that under certain conditions, ay, has the form (€%.,07), in which case
the mean vector and covariance matrix for noisy variables are unchanged.

Suppose that the first p; variables are non-noisy variables and the remaining p; variables
are noisy variables. If the largest eigenvalue comes from the covariance matrix V'; of the non-noisy
variables, then from Lemma 5.8.8, a, has the form ay, = (£ZO,OT), where £ is a p; X 1 vector
and 0 is pp x 1 vector whose elements are all zero. Thus, we can see from (5.8.13) that the mean
vectors and covariance matrices for noisy variables do not change after splitting. O

The assumption in Theorem 5.8.9 that the eigenvalues of the covariance matrix correspond-

ing to non-noisy variables are larger than those of the covariance matrix corresponding to noisy

variables may not be true.




To illustrate this, we generate a small data set consisting of 2 clusters in a 2-dimensional

space from bivariate normal distributions N (u,;, ¥;), 2 = 1,2,, each having 100 data points, where

0 6 1 0
y Mo = , Uy =g =
0 0 0 10

Py =

The second variable is noisy. The scatter plot and a 3-cluster partition obtained by MKmeans clus-

tering algorithm are shown in Figure 5.5. The right panel of Figure 5.5 shows that the distribution

dgm2
0

Scatter Plot of Clusters

Scatter Piot of Clusters

dim 2
o

Figure 5.5: The left panel shows the scatter plot of the data set in Example 2. The right panel
shows a 3-cluster partition obtained by MKmeans clustering algorithm.

of the noisy variable is no longer the same across clusters. The results for the simulated data set

are listed in Table 5.6. Table 5.6 shows that the weights (based on the sample mean vectors fi;, and

Table 5.6: Weight vectors for the simulated data set

W | o] @l | o7 ol
2 1.000 0.004 | 1.000 0.004
3 1.000 0.035 | 1.000 0.064
4 1.000 0.012 | 1.000 0.110
5 1.000 0.022 1.000 0.194
6 1.000 0.107 | 1.000 0.349
7 1.000 0.005 | 1.000 0.480
8 1.000 0.300 | 1.000 0.735
9 0.887 1.000 | 0.923 1.000
10 1.000 0.591 | 0.842 1.000
w7 | (1.000,0.234)T | (1.000,0.449)T

covariance matrices f}, k =1,...,ko, of the partition obtained by MKmeans) for the noisy variable

is no longer close to zero if the number of clusters is well over-specified.

We propose a possible improvement in the next section.
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5.9 Improvement by Iteration

In previous section, we shows that the weights of noisy variables computed from method in Sec-
tion 5.6 might be large if the largest eigenvalue of covariance matrices corresponds to the noisy
variables and if the number of clusters is over-specified. The weight vector averaging technique
could downweight the noisy variables in this case. However the weights for noisy variables are
still not close to zero. To overcome this problem, we propose to iteratively use the weight vector

averaging technique. More specifically, we propose the following algorithm:

Step 1 Set the initial weight vector as wo = 1,, where p is the number of variables and 1, is the

p % 1 vector whose elements are all equal to one. Set the iteration number ITMAX.

Step 2 Obtain a weight vector w by applying the weight vector averaging technique for the data
set Y weighted by wy.

Step 3 wy+w * wo/ max(w * wp), where the symbol * means point-wise multiplication. If the

current iteration number is greater than ITMAX, then output wp and stop. Otherwise go

back to Step 2.
For the example in the previous subsection (Subsection 5.8.5), the weight vectors are

1.000 1.000
w12 — . and w/hIT2 -

0.018 0.089

respectively after 2 iterations. @w’/!"'? means that we iterate twice the Method I with weight

vector averaging technique and w’///? means that we iterate twice the Method IT with weight

vector averaging technique. Now the weight for noisy variable is close to zero.
The weights of the noisy variables decrease with iteration. After some down-weighting, the

covariance matrix of the noisy variables will not dominate that of the non-noisy variables.

5.10 Overall Algorithm

Combining the results in the previous sections, we propose the following compact projection weight

vector averaging algorithm:

CP-WVA Algorithm




Step 1 Initialize the values of k:})ow, kPP, k(s)tep, €w, and mazxiter, where k},ow, kyPP, and k(s)tep are
the lower, upper bound and increment of the number of clusters, €., is the threshold to decide
if a variable is a noisy variable, and maziter is the maximum allowable number of iterations.
Input the n x p data matrix Y where nv is the number of objects and p is the number of
variables. Set iter<-0 and w 4 +1,. Set the value of flag which indicates variable weighting

or selection.

Step 2 Adjust the value of k{®™™ and ky*P so that the minimum cluster size of any partition is

greater than p + 1.

Step 3 Weight the columns of the data matrix Y by the weight vector wg,q. For each kg €
[k , kgPP] with step kg P, obtain a partition using a clustering method, and get the CP

weight vector w(*0), Let the average CP weight vector be

w = 1 Z wko),

ko€[kl™ kgPP] with step k3'P

where g is the number of items in the summation. Set w«w * w 5q / max(w * w oq ).
Step 4 iter«iter + 1. If iter < maziter, let w q +w and go to Step 3. Otherwise go to Step 5.
Step 5 For variable selection, set w; = 0 if w; < € and w; = 1 if w; > €.
Step 6 Output the final weight vector w.

Note that different clustering methods and variable weighting methods can be substituted in Step
3. Variables might be standardized in some way (e.g. the standard deviations of all variables are

equal to 1) before starting this algorithm.

In practice, researchers can use subject matter knowledge to determine a range of the number

of clusters that should hopefully include the “true” number of clusters.

5.11 Examples

In this section, we use simulated data sets and real data sets to study the performances of the

Algorithm 5.10 implemented with the CP method II.

151



To measure the performance of a variable selection method, we introduce type I error (e;)

and type II error (¢;;). Denote
Sot = {4 : variable ¢ is a true noisy variable},
Soo = {i : variable 7 is an observed noisy variable},
Sy¢ = {i : variable 1 is a true non-noisy variable},
S10 = {i : variable ¢ is an observed non-noisy variable}.

The type I error and type II error are defined as

|SOt n Slol
€r o T
| Sotl
€] = |Slt N SOo|
1S1e|

where |S| is the cardinality of the set S. Type I error measures the rate of missing noisy variables
and Type II error measures the rate of deleting non-noisy variables. We hope that both ¢; and
er7 are small. Especially, we want e;; small. That is, deleting non—noisy variables is worse than
keeping some noisy variables. If Sp; = 0, then we define ¢; = 0. If Sy; = 0, then we define ¢;; = 0.

To measure the agreement between the true partition and the partition obtained by cluster-
ing algorithms, we can use the five external indexes studied in Milligan (1986) (see Section 4.9.1).
For real data sets with known classes, we directly count the number of misclassifications.

We denote SCP (variable Selection method based on Compact Projection) and WCP (vari-
able Weighting method based on Compact Projection) respectively as the variable selection and
weighting method based on the Algorithm 5.10 implemented with the CP method II.

For each data set, we obtain three ko-cluster partitions where kg is the true number of
clusters of the data set. The first partition is obtained with all the original variables. The second
partition is obtained with the resultant non-noisy variables by SCP. The third partition is obtained
with weighted variables where weights are obtained by WCP. When doing clustering, we provide
the clustering algorithm with the true number of clusters. However, when calculating the weight

vectors we only assume that the true number of clusters is between 2 and 10. The input parameters

are set to k¥ =2, k0P =10, k3P =1, ¢,, = 0.1, and maziter = 2.
0 0 0




Table 5.7: Average Type I and II errors for simulated data sets.

data estimated Type I error estimated Type II error
close 0.028 (0.158) 0.052 (0.123)
separated 0.014 (0.112) 0.006 (0.030)
well-separated 0 (0) 0.012 (0.032)

5.11.1 Simulated Data Sets

In this subsection, we use 243 simulated data sets generated by the design in Section 3.9 to study
the performance of the Algorithm 5.10 implemented with the CP method II. There are 81 data
sets each for close, separated, and well-separated cluster structures. We use MKmeans clustering
algorithm to get partitions.

The average Type I and II errors and corresponding standard errors for the results obtained
by the SCP method are shown in Table 5.7. We can see from Table 5.7 that the averages of both
Type I and II errors are small. This indicates that the CP method is effective in detecting noisy
variables with a small probability of miéclassifying non-noisy variable as noisy. When data sets
have close structures, the variation of the estimated Type I errors are relatively large. This means
the distributions of Type I and Type II errors are heavily skewed, i.e. the performance of a few cases

are very bad. Overall, the performance is good. Table 5.8 shows that SCP and WCP can improve the

Table 5.8: The average values of the five external indexes for the 243 simulated data sets (the true
number of clusters is used for clustering, but not for SCP/WCP).

data (method) HA MA Rand FM Jaccard
close 0.728 (0.191) 0.729 (0.190) 0.923 (0.042) 0.778 (0.172) 0.662 (0.189)
close (SCP) 0.792 (0.095) 0.792 (0.095) 0.937 (0.027) 0.833 (0.087) 0.722 (0.110)
close (WCP) 0.519 (0.167) 0.520 (0.167) 0.855 (0.061) 0.615 (0.153) 0.462 (0.166)
separated 0.886 (0.231) 0.886 (0.231) 0.972 (0.054) 0.903 (0.200) 0.866 (0.243)
separated (SCP) | 0.983 (0.010) 0.983 (0.010) 0.995 (0.003) 0.986 (0.009) 0.973 (0.016)
separated (WCP) | 0.908 (0.084) 0.908 (0.084) 0.973 (0.026) 0.926 (0.070) 0.869 (0.108)
well-separated | 0.903 (0.247) 0.903 (0.247) 0.977 (0.060) 0.917 (0.213) 0.896 (0.255)
well-separated | 0.999 (0.001) 0.999 (0.001) 1.000 (0.000) 0.999 (0.001) 0.998 (0.002)
(scp)

well-separated 0.975 (0.059)  0.976 (0.058) 0.992 (0.021) 0.981 (0.045) 0.966 (0.075)
(scp)

recovery rate of clustering algorithm. In most cases, the average recovery rates for SCP and WCP are
relatively higher than those for equal weighting, while the standard deviations for SCP and WCP are

relatively smaller than those for equal weighting. The standard deviations for equal weighting are
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quite large. This indicates that sometimes, the recovery rates are quite low if noisy variables are
not downweighted or eliminated. In these cases, noisy variables mask the true cluster structures.
The performance of the WCP method is not as good as that of the SCP, especially for the data
sets with close cluster structures. It indicates that some non-noisy variables might be eliminated
or downweighted.
The table also shows that as the degree of separation among clusters increases, the effect
of noisy variables decreases, and better partitions and better weight vectors can be obtained. For

these 243 simulated data sets, overall SCP works better than WCP does.

5.11.2- Real Data Sets

In this subsection, we use the three pen digits data sets that we used in Section 4.9.4. These three
data sets are extracted from the testing set of hand-written. digit samples which is available at
UCI Machine Learning Repository (Blake et al. 1998). Each row of these data is a sample of a
hand-written digit. The 16 columns correspond to the 8 pairs of (z,y) tablet coordinate values of
the sample digits which are recorded according to the order of strokes that the writer wrote the
digits on the tablet. The data set DAT1 contains 1065 samples from digits 2, 4, and 6 and the data
set DAT2 contains 500 samples from digits 4, 5, 6 and the data set DAT3 contains 2436 samples from
digits 1, 3, 4, 6, 8, 9 and 0.

The digits 2, 4, and 6 are quite different and the stroke orders of each digit are almost
unique, i.e. there is no subclasses contained in each digit class. So it is relatively easy to detect
the class structures in DAT1. However, the stroke orders of some digits in DAT2 and DAT3 are not
unique so that several subclasses may be contained in these digit classes.

These three data sets are quite challenging in that the data classes are far from elliptical
in shape and some classes contain distinct subclasses. We compare 6 clustering algorithms —
kmeans, MKmeans, PAM/CLARA, Ward, EMclustO, and Mclust — to get ‘partitions. After variable
weighting/selection, we provide the true number of classes to the 6 clustering algorithms to obtain
the final partitions of these three data sets. In Section 5.12, we combine the SEQCLUST method
we proposed in Chapter 4 with the CP method so that we do not need to provide the true number
of classes. In either case, we do not need the true numbers of classes to obtain weight vectors.

The values of the five external indexes for the 3 data sets are listed in Table 5.9, 5.10,
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Table 5.9: Values of the external indexes for DAT1 (the true number of clusters is used for clustering,
. but not for SCP/WCP).

Method HA MA Rand FM Jaccard
kmeans 0.899 0.900 0.955 0.933 0.874
kmeans (SCP) 0.899 0.900 0.955 0.933 0.874
kmeans (WCP) 0.757 0.757 0.892 0.838 0.721
MKmeans 0.899 0.900 0.955 0.933 0.874
MKmeans (SCP) 0.899 0.900 0.955 0.933 0.874
MKmeans (WCP) 0.764 0.765 0.895 0.843 0.729
PAM/CLARA 0.908 0.908 0.959 0.938 0.884

PAM/CLARA (SCP) | 0.908 0.908 0.959 0.938 0.884
PAM/CLARA (WCP) | 0.752 0.753 0.889 0.835 0.717

Ward 1.000 1.000 1.000 1.000  1.000
Ward (SCP) 1.000 1.000 1.000 1.000 1.000
Ward (WCP) 1.000 1.000 1.000 1.000 1.000
EMclust0 0.896 0.896 0.954 0931 0.871
EMclust0 (SCP) 0.875 0.876 0945 0917  0.847
EMclust0 (WCP) 0.875 0.876 0945 0917  0.847
Mclust0 1.000 1.000 1.000 1.000  1.000
Mclust0 (SCP) 1.000 1.000 1.000 1.000 1.000
Mclust0 (WCP) 1.000 1.000 1.000 1.000 1.000

and 5.11 respectively. It seems that all variables in DAT1 are equally important to recover the true
cluster structure (the second line is the same as the first line for each triplet in Table'5.9). For DAT2,
SCP and WCP can improve the recover of the true cluster structures. For DAT3, the performance of
the CP method depends on the clustering algorithm used. Among the three data sets, DAT1 is the
easiest to find the cluster structure since the 3 classes are well-separated and there is no obvious
subcluster in each class.

For the data set DAT1, the normal and quantile versions of the separation index matrix with
a = 0.05 for the partition obtained by Ward (SCP) are shown in Table 5.12.

The corresponding two tables for the partition obtained by Ward (WCP) are shown in Ta-
ble 5.13 (a = 0.05).

The separation indexes show that the 3 clusters obtained by Ward (SCP) and Ward (WCP)
for the data set DAT1 are well-separated.

The normal and quantile versions of the separation index matrix for the partition of DAT2

obtained by the Ward method with SCP are given in Table 5.14 (a = 0.05).

The corresponding two separation index matrices for the partition obtained by the Ward
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Table 5.10: Values of the external indexes for DAT2 (the true number of clusters is used for clustering,
but not for SCP/WCP).

Method HA MA Rand FM  Jaccard
kmeans 0.531 0.533 0.781 0.706  0.542
kmeans (SCP) 0.604 0.605 0.816 0.750 0.596
kmeans (WCP) 0.627 0.628 0.827 0.764 0.615
MKmeans 0.531 0.533 0.781 0.706  0.542
MKmeans (SCP) 0.604 0.605 0.816 0.750 0.596
MKmeans (WCP) 0.647 0.648 0.836 0.777 0.632
PAM/CLARA 0.531 0.532 0.782 0.702 0.538

PAM/CLARA (SCP) | 0.565 0.567 0.800 0.721  0.562
PAM/CLARA (WCP) | 0.647 0.648 0.836 0.777 0.632

Ward 0.625 0.626 0.826 0.763 0.613
Ward (SCP) 0.632 0.633 0.829 0.767 0.619
Ward (WCP) 0.647 0.648 0836 0.777  0.632
EMclust0 0.624 0.625 0825 0.763 0.613
EMeclust0 (SCP) 0.627 0.628 0.826 0.766 0.616
EMeclust0 (WCP) 0.589 0.591 0.808 0.742  0.586
Mclust0 0.606 0.608 0817 0.751 0.598
Mclust0 (SCP) 0.606 0.608 0817 0.751  0.598
MclustO (WCP) 0.574 0.575 0.801 0.733  0.574

method with WCP are given in Table 5.15 (o = 0.05).

The séparation indexes show that the 3 clusters obtained by Ward (SCP) and Ward (WCP)
for the data set DAT2 are well-separated.

The normal and quantile versions of the separation index matrix for the partition of DAT3
obtained by the Ward method with SCP are given in Tables 5.16 and 5.17 (& = 0.05).

The corresponding two separation index matrices for the partition obtained by the Ward

method with WCP are given in Tables 5.18 and 5.19 (a = 0.05).

The separation indexes show that the 7 clusters obtained by Ward (SCP) and Ward (WCP)
for the data set DAT3 are well-separated.

5.12 Integration of CP to the SEQCLUST Method

In this section, we study the performance of the the SEQCLUST clustering method that we pro-
posed in Chapter 4 combined with the CP method. More specifically, we first use the CP method to
downweight or eliminate noisy variables, then apply the SEQCLUST clustering method to simul-
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Table 5.11: Values of the external indexes for DAT3 (the true number of clusters is used for clustering,
but not for SCP/WCP).

Method HA MA Rand FM Jaccard
- kmeans 0.488 0.491 0.864 0.570 0.396
kmeans (SCP) 0.433 0435 0.840 0.532 0.357
kmeans (WCP) 0.498 0.501 0.873 0.573 0.401
MKmeans 0.530 0.533 0.877 0.604 0.431
MKmeans (SCP) 0.502 0.505 0.870 0.580  0.407
MKmeans (WCP) 0.396 0.399 0.840 0.491 0.324
PAM/CLARA 0.579 0.582 0.895 0.641 0471
PAM/CLARA (scP) { 0.532 0.535 0.874 0.610 0.435
PAM/CLARA (WCP) | 0.501 0.504 0.872 0.577 0.404
Ward 0.582 0.585 0.894 0.644 0475
Ward (SCP) 0.642 0.644 0910 0.695 0.532
Ward (WCP) 0.553 0.555 0.879 0.628 0.454
EMclust0 0.461 0.464 0.854 0.550 0.376
EMclust0 (SCP) 0.409 0.411 0.835 0.511 0.338
EMclust0 (WCP) 0.579 0.581 0.892 0.643 0473
Mclust0 0.473 0.475 0.843 0.576 0.393
MclustO (SCP) 0.508 0.510 0.859 0.598 0.418
Mclust0 (WCP) 0.543 0.546 0.879 0.616 0.443

taneously estimate the number of clusters and obtain a partition.

For the 243 simulate data sets, we use the MKmeans clustering method to obtain partitions.

The average Type I and II errors for the simulated data sets are shown in Table 5.20. It is not

surprising that the values in Table 5.20 are quite similar to those in Table 5.7 since the CP method

does not directly use the information about the true number of clusters. For each data set, we

obtain three partitions. The first partition is obtained by directly applying the SEQCLUST method

to all variables (i.e. all variables get equal weights). The second partition is obtained by applying

Table 5.12: The separation index matrix for DAT1 (o = 0.05). The partition is obtained by Ward

(ScP).

Normal version

1 2 3
1{-1.000 0.459 0.492
2] 0459 -1.000 0.618
31 0492 0.618 -1.000

Quantile version

1

2

3

[\

1.000 0.472

0.472

1.000

0.479  0.633

0.479

0.633
1.000




Table 5.13: The separation index matrix for DAT1 (o = 0.05). The partition is obtained by Ward

(WCP).
Normal version Quantile version
1 2 3 1 2 3
11-1.000 0459 0.492 1| 1.000 0472 0479
2| 0459 -1.000 0.618 2 (0.472 1.000 0.633
3| 0492 0.618 -1.000 310479 0.633 1.000
Table 5.14: The separation index matrix for DAT2 (a = 0.05). The partition is obtained by Ward
(SCP).
Normal version Quantile version
1 2 3 1 2 3
14-1.000 0.267 0.850 1]-1.000 0.219 0.860
2 0.267 -1.000 0.675 2| 0.219 -1.000 0.689
3| 080 0.675 -1.000 3| 0.860 0.689 -1.000
Table 5.15: The separation index matrix for DAT2 (@ = 0.05). The partition is obtained by Ward
(WCP).

Normal version

1 2 3
11-1.000 0.386 0.774
2| 0.38 -1.000 0.697
3| 0774 0.697 -1.000

Table 5.16: The normal version separation index matrix for DAT3 (a = 0.05). The partition is

obtained by Ward (SCP).

Quantile version

1 2 3
11-1.000 0.342 0.787
21 0342 -1.000 0.713
3| 0.787 0.713 -1.000

1 2 3 4 5 6 7
1(-1.000 0.597 0457 0510 0384 0308 0435
2| 0597 -1.000 0445 0.132 0646 0.778 0.393
3| 0457 0.445 -1.000 0.240 0.491 0.748 0.380
4| 0510 0.132 0.240 -1.000 0.663 0.800 0.545
51 038 0646 0491 0.663 -1.000 0.324 0.464
6| 0308 0.778 0.748 0.800 0.324 -1.000 0.595
7] 0435 0393 0380 0.545 0464 0.595 -1.000




|
\
\
‘ Table 5.17: The quantile version separation index matrix for DAT3 (o = 0.05). The partition is
obtained by Ward (SCP).

1 2 3 4 5 6 7
-1.000 0.582 0.446 0.525 0.346 0.267 0.396
0.582 -1.000 0.456 0.097 0.659 0.788 0.384
0446 0.456 -1.000 0.201 0.451 0.738 0.349
0.525 0.097 - 0.201 -1.000 0.695 0.795 0.510
0346 0659 0451 0.695 -1.000 0.362 0.472
0.267 0.788 0.738 0.795 0.362 -1.000 0.585
0396 038 0349 0.510 0.472 0.585 -1.000

-1 T W

Table 5.18: The normal version separation index matrix for DAT3 (o = 0.05). The partition is
obtained by Ward (WCP).

1 2 3 4 5 6 7
-1.000 0.620 0.631 0.208 - 0.617 0.140 0.767
0.620 -1.000 0337 0.717 0.735 0.383 0.264
0.631 0337 -1.000 0.546 0.588 0.424 0.420
0.208 0.717 0.546 -1.000 0.748 0.484 0.765
0.617 0.735 0.588 0.748 -1.000 0.509 0.574
0.140 0.383 0.424 0.484 0.509 -1.000 0.614
0.767 0.264 0.420 0.765 0.574 0.614 -1.000

DU W N

Table 5.19: The quantile version separation index matrix for DAT3 (a = 0.05). The partition is
obtained by Ward (WCP).

1 2 3 4 5 6 7
-1.000 0.643 0.636 0.164 0.621 0.039 0.754
0.643 -1.000 0.317 0.707 0.707 0.381 0.207
0.636 0317 -1.000 0.518 0.606 0425 0.359
0.164 0.707 0.518 -1.000 0.759 0480 0.761
0.621 0.707 0.606 0.759 -1.000 0.469 0.590
0.039 0.381 0.425 0480 0.469 -1.000 0.618
0.754 0.207 0.359 0.761 0.590 0.618 -1.000

~N OO WN -

Table 5.20: Average Type I and Type II errors for simulated data sets obtained by the SEQCLUST
algorithm implemented with CP.

data Type I error Type II error
close 0.035 (0.162)  0.049 (0.118)
separated 0.013 (0.111) 0.008 (0.033)
well-separated | 0.000 (0.000) 0.015 (0.041)
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the SEQCLUST method to the remaining variables after eliminating noisy variables by using the SCP
method. The third method is obtained by applying the SEQCLUST method to the variables weighted
by the WCP method.

The total numbers and sizes of under- and over-estimate of the number of clusters are shown
in Table 5.21. And the average values of the five external indexes for the simulated data sets are

shown in Table 5.22. Both SCP and WCP perfofmed much better than the equal weighting method,

Table 5.21: The total numbers and sizes of under- and over-estimate of the number of clusters for
simnulated data sets obtained by the SEQCLUST algorithm implemented with CP (m_ and s_ are
total the number and size of underestimates while m and s, are the total number and size of

overestimates).
Data (Method) m_(s=) my (s4)
close 27 (145) 11 (33)
close (SCP) 14 (58) 1(1)
close (WCP) 58 (300) 2(7)
separated 8 (43) 2(7)
separated (SCP) 1(1) 0 (0)
separated (WCP) 6 (9) 0 (0)
well-separated 9 (45) 1(2)
well-separated (SCP) 0 (0) 0 (0)
well-separated (WCP) 2(2) 0 (0)

Table 5.22: Average values of the external indexes for the simulated data sets obtained by the
SEQCLUST algorithm implemented with CP

data (method)

HA

MA

Rand

FM

Jaccard

close
close (SCP)
close (WCP)

0.529 (0.369)
0.702 (0.263)
0.287 (0.351)

0.529 (0.369

0.288 (0.351

0.703 (0.336)
0.850 (0.229)
0.480 (0.345)

0.688 (0.212)
0.789 (0.153)
0.564 (0.207)

0.534 (0.274)
0.661 (0.204)
0.371 (0.260)

separated
separated (SCP)
separated (WCP)

0.901 (0.234)
0.984 (0.015)
0.945 (0.062)

)
0.702 (0.263)
)
)

0.901 (0.234
0.984 (0 015)
0.945 (0.062

0.944 (0.165)
0.995 (0.005)
0.984 (0.017)

0.929 (0.157)
0.987 (0.012)
0.955 (0.050)

0.889 (0.224)
0.974 (0.023)
0.917 (0.083) .

well-separated
well-separated
(scp)
well-separated
(SCP)

0.908 (0.253)
0.999 (0.002)

0.991 (0.026)

)
0.908 (0.253)
0.999 (0.002)

0.991 (0.026)

0.945 (0.172)
1.000 (0.001)

0.997 (0.008)

0.939 (0.166)
0.999 (0.002)

0.993 (0.020)

0.910 (0.240)
0.999 (0.004)

0.986 (0.038)

except that the WCP method performed poorly for the data sets with close cluster structures. This
indicates that the effects of noisy variables were downweighted. Again, as the degree of separation

among clusters increases, the effect of noisy variables decreases and we can get better partitions
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and weight vectors.

For the three pen digit data sets, we also compare the results obtained by equal weighting,
SCP, and WCP. The estimates of the number of clusters and the values of the five external indexes
for the 3 pen digits data sets are shown in Tables 5.23, 5.24, and 5.25 respectively. The interval
estimates of the number of clusters are shown in Tables 5.26, 5.27, and 5.28 respectively. For the
data sets DAT2 and DAT3, the estimated numbers of clusters are larger than the original number of
clusters. By the analysis in Section 4.9.4, we know that these overestimations are reasonable since
some classes of digit samples contain distinct subclasses.

We observe that the performance of the three methods (equal weighting, SCP, and WCP) are
sirnilar for the data set DAT1 in Wthh the 3 clusters are well-separated. For DAT2, whether SCP and
WCP can improve the recovery rates depends on the clustering method. For DAT3, both SCP and WCP
did not perform as well as the equal weighting method did. We also observe that the SEQCLUST
method implemented with CP could get better results than other clustering method combined with
the CP method (results in Table 5.23 are better than those in Table 5.9; results in Table 5.24 are
better than those in Table 5.10; results in Table 5.25 are better than those in Table 5.11;). For
these three data sets, the original variables all are on the same scale and theoretically no variable
is noisy, but some variables should be more important than others.

For the data set DAT1, the normal and quantile versions of the separation index matrix with
a = 0.01 for the partition obtained by SEQCLUST with Ward (SCP) are shown in Table 5.29. !

‘ The corresponding two tables for the partition obtained by the SEQCLUST method with
Ward (WCP) are shown in Table 5.30 (o = 0.015). 2

For the data set DAT1, the separation indexes show that the 3 clusters obtained by the
SEQCLUST method with Ward (SCP) and with Ward (WCP) are well-separated.

For the data set DAT2, the normal and quantile versions of the separation index matrix with
a = 0.015 for the partition obtained by SEQCLUST with Ward (SCP) are shown in Table 5.31. 3

The corresponding two tables for the partition obtained by the SEQCLUST method with
Ward (WCP) are shown in Table 5.32 (a = 0.015). *

For the data set DAT2, the separation indexes show that the 4 clusters obtained by the

1The o value is output with the final partition by the SEQCLUST method with Ward (SCP).
2The a value is output with the final partition by the SEQCLUST method with Ward (WCP).
3The o value is output with the final partition by the SEQCLUST method with Ward (SCP).
“The o value is output with the final partition by the SEQCLUST method with Ward (WCP).
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Table 5.23: Estimated numbers of clusters and external index values of DAT1 obtained by the
SEQCLUST algorithm implemented with CP (true kg = 3)

SEQCLUST (EMclust)*
EMclust0 (SCP)
EMclust0 (WCP)
SEQCLUST (Mclust)*
Mclust0 (SCP)

Mclust0 (WCP)

1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000
* The results are the same as those in Table 4.9.

Method kg HA MA Rand FM Jaccard
SEQCLUST (kmeans)* 3 0951 0951 0.978 0.967 0.937
kmeans (SCP) 3 0961 0.961 0.983 0974 0.949
kmeans (WCP) 3 0947 0.947 0976 0.964 0.931
SEQCLUST (MKmeans)* 3 0951 0951 0.978 0.967 0.937
MKmeans (SCP) 3 0951 0.951 0.978 0.967 0.937
MKmeans (WCP) 3 0970 0.971 0.987 0.980 0.961
SEQCLUST (PAM/CLARA)* | 3 0.951 0.951 0.978 0.968 0.937
PAM/CLARA (SCP) 3 0956 0.956 0.980 0.971 0.943
PAM/CLARA (WCP) 3 0995 0995 0.998 0.997 0.993
SEQCLUST (Ward)* 3 1.000 1.000 1.000 1.000 1.000
Ward (SCP) | 3 1.000 1.000 1.000 1.000 1.000
Ward (WCP) 3 1.000 1.000 1.000 1.000 1.000

3

3

3

3

3

3

SEQCLUST method with Ward (SCP) and with Ward (WCP) are well-separated.

For the data set DAT3, the normal and quantile versions of the separation index matrix with
o = 0.02 for the partition obtained by SEQCLUST with Ward (SCP) are shown in Tables 5.33 and
5.34. 3 The table shows that the 10 clusters are separated.

The corresponding two tables for the partition obtained by the SEQCLUST method with
Ward (WCP) are shown in Tables 5.35 and 5.36 (a = 0.02). ® The table shows that the 6 clusters

are separated.

For the data set DAT3, the averages of the separation indexes are listed in the following table:

version | SCP (Ward) WCP (Ward)

normal 0.593 0.484
quantile 0.591 0.462

From the above table, we can see that the partition obtained by SCP (Ward) is better than

®The a value is output with the final partition by the SEQCLUST method with Ward (SCP).
®The « value is output with the final partition by the SEQCLUST method with Ward (WCP).

162




Table 5.24: Estimated numbers of clusters and external index values of DAT2 obtained by the
SEQCLUST algorithm implemented with CP (true ky = 3)

SEQCLUST (EMclust)*
EMclust0 (SCP)
EMclust0 (WCP)
SEQCLUST (Mclust)*
Mclust0 (SCP)

MclustO (WCP)

0.821 0.822 0923 0.879 0.781
0.848 0.849 0.935 0.897 0.809
0.847 0.847 0.932 0.893 0.801
0.872 0.872 0.945 0.914 0.836
0.872 0.872 0.945 0914 0.836

0.784 0.785 0.907 0.854 0.743
* The results are the same as those in Table 4.12.

Method . ko HA MA Rand FM Jaccard
SEQCLUST (kmeans)* 4 0.861 0.861 0.941 0.906 0.823
kmeans (SCP) 5 0.813 0.814 0.922 0.874 0.766
kmeans (WCP) 4 0.853 0.853 0.937 0.901 0.814
SEQCLUST (MKmeans)* 5 0.812 0.813 0.921 0.873 0.766
MKmeans (SCP) 5 0.813 0.814 0.922 0.874 0.766
MKmeans (WCP) 4 0.853 0.853 0.937 0.901 0.814
SEQCLUST (PAM/CLARA)* | 5 0.791 0.792 0.912 0.859 0.742
PAM/CLARA (SCP) 5 0.789 0.790 0.911 0.857 0.739
PAM/CLARA (WCP) 4 0.806 0.807 0.918 0.869 0.761
SEQCLUST (Ward)* 5 0.833 0.834 0.930 0.888 0.789
Ward (SCP) 5 0.837 0.838 0.931 0.891 0.794
Ward (WCP) 4 0.881 0.882 0.949 0.921 0.848

4

4

4

4

4

4

that obtained by WCP (Ward) since the average separation index value of the former is greater
that of the latter. This conclusion is consistent with the comparison results by using the five
external indexes shown in Table 5.25. Note that unlike Rand indexes, the comparisons based on
the separation index matrices are comparisons without using the known class structures.

The clustering methods seem to produce well-separated clusters for DAT1, DAT2 and DAT3.

The reason that different methods get quite different partitions is probably because of the sparseness

in high dimensional space.

5.13 Discussion

In this chapter, we propose a method called CP to do variable weighting and selection. The weight
vector is based on the linear combination of eigenvectors of the product of the between-cluster
distance matrix and the within-cluster distance matrix. The weight vector has 1-moment-noisy-
variable-detection and scale-equivariance properties. We use weight-vector-averaging technique to

improve CP so that we can calculate the weight vector without the specification of the true number
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Table 5.25: Estimated numbers of clusters and external index values of DAT3 obtained by the
SEQCLUST algorithm implemented with CP (true ky = 7)

Method ke HA MA Rand FM Jaccard

SEQCLUST (kmeans)* 10 0.686 0.688 0927 0.730 0.573
kmeans (SCP) 10 0.688 0.690 0.930 0.732  0.572

kmeans (WCP)
SEQCLUST (MKmeans)*
MKmeans (SCP)
MKmeans (WCP)
SEQCLUST (PAM/CLARA)*
PAM/CLARA (SCP)
PAM/CLARA (WCP)
SEQCLUST (Ward)*
Ward (SCP)

Ward (WCP)

SEQCLUST (EMclust)*
EMclust0 (SCP)
EMclust0 (WCP)
SEQCLUST (Mclust)*
EMclust0 (SCP)

Mclust0O (WCP)

0.576 0.578 0.892 0.640 0.470
0.758 0.760 0.946 0.794 0.651
0.525 0.528 0.875 0.600 0.427
0.428 0.430 0.817 0.551 0.361
0.636 0.638 0.912 0.687 0.523
0.510 0.512 0.866 0.593  0.417
0.576 0.579 0.892 0.640 0.470
0.784 0.786 0.951 0.816 0.684
0.750 0.752 0.944 0.787  0.642
0.552 0.553 0.851 0.580  0.399
0.770 0.771 0.928 0.709  0.528
0.732 0.733 0.925 0.739 0.586
0.577 0.579 0.896 0.638  0.468
0.782 0.783 0.914 0.678 0.511
0.724 0.726 0.935 0.748  0.588

0.626 0.628 0.908 0.680 0.515
* The results are the same as those in Table 4.15.

w;;mw;mggmmwmmgm

of clusters. A preliminary theoretical validation of the weight-vector-averaging technique shows
that under certain conditions, the distributions of the noisy variables do not change if we merge ko
clusters into kg — 1 clusters or if we split kg clusters into .ko + 1 clusters where kg is the true number
of clusters.

.We applied CP to 243 simulated data sets generated from the design in Section 3.9 and
3 pen digits data sets studied in Chapter 4. The results shows that CP has good performance
on noisy-variable detection. The average Type I and II errors for the 243 simulated data set are
small. The SCP method has consistent good performance for the 243 simulated data sets in that
it improves the recover of the true cluster structures. The WCP method has good performance for
simulated data sets with separated and well-separated cluster structures. However its performance
for simulated data sets with close cluster structures is poor. The performances of the SCP and WCP
method for the 3 pen digits are mixed. From these observations we conclude that the performance
of a variable weighting/selection method depends on the partition (clustering method) and cluster

structures. For clusters convex in shape, SCP and WCP have good performance. For other cluster
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Table 5.26: Interval estimates of the number of clusters obtained by the SEQCLUST method
implemented with CP for DAT'1

Method Interval | Method Interval
SEQCLUST (kmeans) - (3, 3] || SEQCLUST (Ward) (3, 4]
kmeans (SCP) (3, 3] || Ward (SCP) (3, 4]
kmeans (WCP) ' (2, 4] | Ward (WCP) (3, 3]
SEQCLUST (MKmeans) 3, 3] | SEQCLUST (EMclust) | [3, 4]
MKmeans (SCP) (3, 3] || EMclust (SCP) (3, 4]
MKmeans (WCP) | [3, 3] || EMclust (WCP) (3, 3]
SEQCLUST (PAM/CLARA) | [3, 4] || SEQCLUST (Mclust) | 3, 3]
PAM/CLARA (SCP) (3, 4] | Mclust (SCP) 3, 3]
PAM/CLARA (WCP) 3, 3] | Mclust (WCP) 3, 3]

Table 5.27: Interval estimates of the number of clusters obtéined by the SEQCLUST method
implemented with CP for DAT?2

Method Interval | Method Interval
SEQCLUST (kmeans) [4, 5] || SEQCLUST (Ward) [5, 5]
kmeans (SCP) [5, 6]- || Ward (SCP) (5, 5]
kmeans (WCP) [4, 4 Ward (WCP) 4, 4]
SEQCLUST (MKmeans) [5, 5 SEQCLUST (EMclust) | [4, 4]
MKmeans (SCP) [5, 6] || EMclust (SCP) 4, 4]
MKmeans (WCP) [4, 5 EMclust (WCP) 4, 4]
SEQCLUST (PAM/CLARA) | [4, 5 SEQCLUST (Mclust) 4, 4]
PAM/CLARA (SCP) [4, 5] || Mclust (SCP) [4, 4]
PAM/CLARA (WCP) [4, 4 || Mclust (WCP) (4, 6]

shapes, SCP and WCP might not work well. We will study in future research on how to do variable
weighting/selection for non-convex-shaped cluster structures.
‘ For the CP method, there are still some questions unsolved. For example, how many itera-
tions do we need in CP? Currently, we set maziter = 2.
Another example is how to choose an appropriate value of the threshold e, which is used
to determine if a variable is noisy or not. One possible way is to take the same criterion used in
Montanari and Lizzani (2001). The rationale is given below.

If variables z1,...,z, are non-noisy and z ..., I, are noisy, then we can represent the
) sLq Yy g+1, y<Lp Y, P

within- and between-cluster distance matrices A and B as

Al 0 B1 0
A = ) B = ?
0 A 0 O

where B| = ZZ‘I’;} Zzg:klﬂ 7r1;17rk2 Ok, — Oky1) (O, 1 — Ok,‘,,])T, and the g x 1 vector 8y ; is the
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Table 5.28: Interval estimates of the number of clusters obtained by the SEQCLUST method
implemented with CP for DAT3

Method . Interval || Method Interval
SEQCLUST (kmeans) [9, 11] || SEQCLUST (Ward) (10, 12]
kmeans (SCP) [9, 10] || Ward (SCP) 8, 10]
kmeans (WCP) : (7, 9] || Ward (WCP) (5, 6]

SEQCLUST (MKmeans) [10, 13] || SEQCLUST (EMclust) | (3, 13]
MKmeans (SCP) [7, 8] || EMclust (SCP) (6, 11]
MKmeans (WCP) (3, 7] || EMclust (WCP) (7, 10]
SEQCLUST (PAM/CLARA) | [7, 11] || SEQCLUST (Mclust) | [6, 10]
PAM/CLARA (SCP) [7, 8] | Mclust (SCP) [9, 12]
PAM/CLARA (WCP) 5, 8] | Mclust (WCP) [9, 9]

Table 5.29: The separation index matrix for DAT1 (@ = 0.01). The partition is obtained by the
SEQCLUST method with Ward (SCP).

Normal version Quantile version
1 2 3 1 2 3
1|-1.000 0618 0.491 - 1]-1.000 0.632 0.478
2| 0.618 -1.000 0.459 2| 0.632 -1.000 0472
3| 0491 0459 -1.000 3| 0478 0472 -1.000

mean vector of non-noisy variables of the k-th cluster. Then

‘ -1
ap=| B0
‘ 0 0
By definition of the eigenvalue and eigenvector, we have

A_lBal = A1y,

where A\; and « is the largest eigenvalue and corresponding eigenvector of the matrix A~'B. That

Table 5.30: The separation index matrix for DAT1 (o = 0.015). The partition is obtained by the
SEQCLUST method with Ward (WCP).

Normal version Quantile version
1 2 3 1 2 3
1{-1.000 0.618 0.491 1|-1.000 0.632 0478
2| 0618 -1.000 0459 2| 0632 -1.000 0472
3| 0491 0459 -1.000 3| 0478 0472 -1.000
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Table 5.31: The separation index matrix for DAT2 (o = 0.015). The partition is obtained by the
SEQCLUST method with Ward (SCP). :

Normal version Quantile version

1 2 3 4 5 1 2 3 4 5
-1.000 0.487 0.696 0.456 0.462 -1.000 0.466 0.712 0434 0470
0.487 -1.000 0.815 0.440 0.517 0.466 -1.000 0.794 0.447 0.529
0.696 0.815 -1.000 0.816 0.850 0.712  0.794 -1.000 0814 0.859
0.456 0.440 0.816 -1.000 0.323 0.434 0.447 0.814 -1.000 0.295
0.462 0.517 0.850 0.323 -1.000 0.470 0.529 0.859 0.295 -1.000

Tt W N =
[ S RN R

Table 5.32: The separation index matrix for DAT2 (a = 0.015). The partition is obtained by the
SEQCLUST method with Ward (WCP).

Normal version Quantile version

1 2 3 4 1 2 3 4
-1.000 0.817 0.368 0.488 -1.000 0.808 0.321 0.511
0.817 -1.000 0.848 0.696 0.808 -1.000 0.857 0.712
0.368 0.848 -1.000 0.457 0321 0.857 -1.000 0.469
0.488 0.696 0.457 -1.000 0.511 0.712 0.469 -1.000

=W N =
W N e

Table 5.33: The normal version separation index matrix for DAT3 (o = 0.02). The partition is
obtained by the SEQCLUST method with Ward (SCP).

1 2 3 4 5 6 7 8 9 10
-1.000  0.380 0.504 0.595 0.530 0.595 0.636 0.655 0.464 0.419
0.380 -1.000 0.543 0.323 0.552 0.748 0.594 0.482 0.491 0.629
0.504 0.543 -1.000 0.559 0.525 0.831 0.895 0.385 0.727 0.756
0.595 0.323 0.559 -1.000 '0.274 0.810 0.770 0.437 0.698 0.697
0.530 0.552 0.525 0.274 -1.000 0.792 0.833 0.231 0.708 0.684
0.595 0.748 0.831 0.810 0.792 -1.000 0.790 0.830 0.324 0.278
0636 0.594 0.895 0.770 0.833 0.790 -1.000 0593 0.715 0.584
0655 0482 0.385 0437 0.231 0.830 0.593 -1.000 0.707 0.748
0.464 0491 0.727 0698 0.708 0.324 0.715 0.707 -1.000 0.342
0 041 0.629 0.756 0.697 0.684 0.278 0.584 0.748 0.342 -1.000

=000 OO R WN




Table 5.34: The quantile version separation index matrix for DAT3 (o« = 0.02). The partition is
obtained by the SEQCLUST method with Ward (SCP).

1 2 3 4 b} 6 7 8 9 10
-1.000 0.349 0.494 0594 0.512 0.585 0.617 0.642 0472 0.417
0.349 -1.000 0.571 0.347 0576 0.738 0.612 0.467 0.451 0.646
0494 0571 -1.000 0.605 0.514 0817 0.910 0.416 0.737 0.764
0.594 0.347 0.605 -1.000 0.245 0.818 0.747 0.451 0.716 0.710
0.512 0.576 0.514 0.245 -1.000 0.797 0.809 0.152 0.712 0.678
0.585 0.738 0.817 0.818 0.797 -1.000 0.777 0.827 0.362 0.237
0.617 0612 0910 0.747 0809 0.777 -1.000 0.622 0.716 0.572
0.642 0467 0.416 0.451 0.152 0.827 0.622 -1.000 0.727 0.767
0.472 0451 0.737 0.716 0.712 0.362 0.716 0.727 -1.000 0.283
01 0417 0646 0.764 0.710 0.678 0.237 0.572 0.767 0.283 -1.000

=0 00~ LN

Table 5.35: The normal version separation index matrix for DAT3 (o = 0.02). The partition is
obtained by the SEQCLUST method with Ward (WCP).
1 2 3 4 5 6
-1.000 0.544 0.767 0.651 0.208 0.140
0.544 -1.000 0.255 0.325 0.709 0.321
0.767 0.255 -1.000 0.426 0.765 0.614
0.651 0325 0.426 -1.000 0.619 0.429
0.208 0.709 0.765 0.619 -1.000 0.484
0.140 0.321 0.614 0.429 0.484 -1.000

S Ul W N

Table 5.36: The quantile version separation index matrix for DAT3 (a = 0.02). The partition is
obtained by the SEQCLUST method with Ward (WCP).
1 2 3 4 ) 6
-1.000 0.562 0.754 0.653 0.164 0.039
0.562 -1.000 0.204 0.316 0.697 0.327
0.754 0.204 -1.000 0.362 0.761 0.618
0.653 0.316 0.362 -1.000 0.569 0.418
0.164 0.697 0.761 0.569 -1.000 0.480
0.039 0327 0.618 0418 0.480 -1.000

(=23, G- N JU R




is,

(A7'By) an Aoy

0 )\1(112

Since A1 > 0, thus a2 = 0. If all variables are noisy variables, then B; = 0. Thus, A™!B = 0 and
a; can be any direction on the hyper-ball with radius 1. Hence w = a; can be any direction on

the hyper-ball with radius 1. According to Theorem 4 . 21 in Joe (1997, page 128), the marginal

distribution of w; has density

-1
gp(u) = [B <%, p%l)jl (1 _ u2)(1’—3)/2’ |’U,} < 1’

where B is the beta function and p is the number of variables. Thus we can take the same criterion

used in Montanari and Lizzani (2001). That is, if

I'LU]| < qlo(p)a

then regard variable z; is noisy, where ¢19(p) is the 10-th percentile of the random variable Y = |U]|,

where U has density g,. The distribution function of Y is

1 p-1\1"" _
p—)] (1-uw) 4y 0<y <.

P =Pr(vl <y =Pei-y<U <= [ (3.5

Finally, we want to point out that subject-matter knowledge should be used to help make
decision in variable weighting/selection; for example, we need to use subject-matter knowledge to

check if it makes sense that the variable declared as noisy are in fact less important.
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Chapter 6

Summary and Future Research

There exist many clustering methods, but there are issues such as estimating the number of clusters,
and variable selection/weighting that have not been well studied and/or not included in clustering
programs in statistical software. In this dissertation, we study these issues with a theoretical basis.

In particular, we addressed the following topics in cluster analysis for continuous data:

e Measuring the quality of a partition obtained from a clustering method.

Determining when noisy variables hinder the discovery of cluster structure

Elim‘inating or downweighting the effects of noisy variables

Determining the number of clusters

Visualizing cluster structure in lower dimensional space

Generating challenging simulated data sets for clustering algorithms

We have addressed these issues based on a separation index and a compact-projection-based vari-
able weighting/selection method. The separation index directly measures the magnitude of the
sparse area between a pair of clusters and can be used to validate the partitions, derive a low
dimensional visualization method, assign partial memberships to data points, control the distances
among clusters when we generating simulated data sets, and estimate the number of clusters. The

compact-projection-based variable weighting/selection method is to maximize the compactness of
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projected clusters, where the compactness is based on the within- and between-cluster distance ma-
trix. Both the separation index and the variable weighting/selection method have desired properties
under certain conditions.

The key assumptions of the separation index and the compact-projection-based variable

weighting and selection method are:
e variables are continuous;
e clusters are convex in shape;
e there are no missing values in data sets;

Also our methods might be sensitive to outliers since both the separation index and the compact-
projection-based variable weighting and selection method depend on the cluster mean vectors and
covariance matrices which are sensitive to outliers.

'~ In our future research, we would like to extend our methods to have the ability to
e handle of mixed type data (some continuous and some categorical variables)
e handle outliers and make methods less sensitive to them.

¢ handle missing values

The majority of the literature on cluster analysis deals with continuous type data. However,
it is quite common in real life problems that cases are described in terms of variables of mixed
type (binary, nominal, ordinal and continuous variables). There are mainly two approaches to
this problem (Gordon 1981, Section 2.42.): (1) Employ a general similarity coefficient which can
incorporate information from different types of variables (e.g. Gower 1971; Huang 1998; Guha et
al. 1999; Chiu et al. 2001); (2) Carry out separate analyses of the same set of cases, each analysis
involving variables of a single type, and to attempt to synthesize the results from the different
studies.

To extend our method to handle categorical variables, the covariance matrix might be re-
placed with a matrix of associations and distance would be replaced by dissimilarity.

In real data sets, it is common that a small portion of cases are scattered in-between and/or

outside the clusters. These cases, called outliers, may affect the discovery of true cluster structures.
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For continuous type data, researchers have proposed quite a few robust clustering algorithms to
separate outliers from, or to downweight outliers’ effects on, the majority cases. A simple method
is to regard clusters whose sizes are small as outliers (e.g. Zhang et al. 1996). Zhuang et al. (1996)
assumed a statistical model, in which the cases are divided into two parts: one part is the “majority”
which is the part of intefest and the other part is the “noise”. Zhuang et al. (1996) iteratively
applied this model to extract one cluster at a time. The cases left are regarded as oﬁtliers. Some
researchers (e.g. Fukunaga and Hostetler 1975; Guha et al. 1998; Comaniciu and Meer 2002) shrunk
cases toward cluster centers to downweight the effects of outliers. Frigui and Krishnapuram (1999)
gave a review on robust clustering algorithms and proposed a new robust clustering algorithm by
adding a penalty term and robustify the loss function in the objective function of the fuzzy c-means
clustering algorithm.

A simple extension of our method to handle a small portion of outliers is to replace the
covariance matrix with robust covariance matrix and use MAD to standardize data instead of SD.

Missing values are another commonly encountered problem in Statistics. The fact that few
assumptions can be made hinders the development of the techniques to deal with missing data in
cluster analysis (Gordon 1981, Section 2.4.3), and there is little cluster analysis literature address-
ing this problem. A general strategy mentioned in Gordon (1981) is to use weighted similarity
coeflicients, where missing values are assigned zero weights. Another method is to impute the

missing values.

To extend our method to handle missing values, a possible approach is to appropriately

modify the distance.

As we get more experience in applying our methods to larger and larger data sets, we will

study computational complexity and improve the time-consuming parts of our algorithms.
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Appendix A

Visualizing More Than Two Clusters

In cluster analysis, data sets are usually in high dimensional space (more than 3 dimension) and we
could not visualize hbw separated the clusters are.! Many methods have been proposed to project
high dimensional data into lower dimensions. A brief review is given in Dhillon et al. (2002). In this
appendix, we propose a new low-dimensional visualization method and compare it with principal
component analysis (PCA) and Dhillon et al.’s (2002) method.

Suppose that we obtain a partition for a high dimensional data set. We want to visualize
how far apart the clusters are from a projeétion of the data into a low ¢-dimensional space (¢t = 2
or 3). We want the clusters to be as separated as possible in the projection. That is, we try to find

a p X t (t < p) column-orthogonal matrix A* (with (A*)T A* =T ¢) such that

A* = arg max tr (ATBA), (A.0.1)
' Apxt,ATAZIt
where
9 ko—1 ko '
= — Y. R TRYA
B = &k ) Zl _Z E [(Yi - Y;3)(Yi - Y;)"] (A.0.2)
=1 j=i+1

. 2 ko 2

= w2 Tt ;— 0;) (0: - 6,)" 0.
kog z-i_lco(ko—l);j(o2 9;) (6: - 6;)" , (A.0.3)

Y; is the random point in cluster 4, kg is the number of clusters, 8; and 3; are the population mean

vector and covariance matrix of the i-th cluster. When dealing with data, the sample mean vectors

~

0; and covariance matrices 3;, ¢ = 1,..., ko, are used. Note that if A is a projection matrix in

! This appendix refers to Figure 2.20 (page 32) and Figure 2.21 (page 35).
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- ¢-climensional space, then tr (AT BA) is the average over pairs of clusters of the average distance
between projected points of two different clusters.

It is straightforward to show that the ¢ columns of the matrix A correspond to the orthogonal
eigenvectors of the first £ largest eigenvalues of B. The value of ¢ is a good choice if Z£=1 Aif Z?zl Aj
is sufficiently large, where Ay > --- > X, are the eigenvalues of B. That is, the projection to ¢
dimensions should be a good representation of the clusters in p-dimensional space if this ratio is
laxge. Note that with ¢ = 3, rotating 3-dimensional scatterplots can be used to see the projected
poOints.

The low dimensional method we propose is similar to the method proposed by Dhillon et

al. (2002) and to PCA. Instead of using the matrix B in the optimization problem (A.0.1), Dhillon

et al. (2002) used the matrix
ko i—1
i=2 j=1
while PCA uses the overall covariance matrix

1
n—1

C =

Z(yi - 9)y; - 9)",
i=1

where y, is the i-the data point, § = 3., y;/n, n; is the size of i-th cluster, and n is the total
number of data points.

We use two examples to illustrate the performances of these three methods. The first
example is the wine data set we used in Subsection 2.4.2. The 2-dimensional projections of the 3
clusters obtained by the clustering method CLARA are shown in Figure A.1. Data are scaled before
applying CLARA. These three projections look similar and shows that cluster 2 is close to cluster 1
and separated from cluster 3 and that clusters 1 and 3 are well separated.

To compare the performances of these three projections, we calculate the separation index

matrices for the projected three classes. Denote Jy, Jo, and J3 as the separation index matrices for

the projections obtained by our method, Dhillon et al.’s method, and PCA method respectively.




Then

-1.00 -0.02 0.33 -1.00 -0.01 0.33
Ji=1 -0.02 -1.00 0.09 yJa=1 -0.01 -1.00 0.08 )
033 009 -1.00 033 008 -1.00

-1.00 -0.06 0.31
Js=| -0.06 -100 0.07
031 007 -1.00

The minimum separation indexes of the three separation index matrices (—0.02, —0.01, and —~0.06)
indicate that the projected 3-cluster structure obtained by Dhillon et al. ’s method are slightly more
separated than those obtained by other two methods.

The second example is the Iris data set (Anderson 1935) which contains 3 clusters, each

having 50 data points in a 4-dimensional space. The 2-dimensional projections of the 3 clusters
obtained by CLARA are shown in Figure A.2.

The separation index matrices of the 3 projected cluster structures are given below:

-1.00 059 041 -1.00 0.58 041
J1 = 0.59 -100 -014 |,J):= 058 -1.00 -0.15 |,
041 -0.14 -1.00 041 -0.15 -1.00

—-1.00 0.57 041
Js = 0.57 -—1.00 -0.16
041 -0.16 -1.00

These three projections shows that cluster 1 is well separated from the other two clusters and that
clusters 2 and 3 are close to each other. From the plots, we.could not distinguish which projected
cluster structure is more separated. The minimum separation indexes of the three separation index
matrices (—0.14, —0.15, and —0.16) indicate that the projected 3-cluster structure obtained by our
method are slightly more separated than those obtained by other two methods.

The two examples show that the three methods have the similar performance to visualize

cluster structures. Note that

ko ko

ko
ZZ (v; - yj) (v; - yj)T.= 22 (vi—9) (y; —9)".
i=1

i=1 j=1
This explains why B and C lead to similar results. D is similar to B when clusters are separated

enough so that D dominates 2 ngl 3, /ko.
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Figure A.1: A 2-dimension projection of the 3 clusters of the wine data. The circles represent points
from cluster 1, the symbol “+”’s represent cluster 2, while the symbol “x’s represent cluster 3.
Top left: Using our visualization method. Top right: Using Dhillon et al. ’s (2002) method. Bottom:
Using PCA. The 3-cluster partition is obtained by CLARA.
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Figure A.2: A 2-dimension projection of the 3 clusters of the Iris data. The circles represent points
from cluster 1, the symbol “+”’s represent cluster 2, while the symbol “x” represent cluster 3. Top
left: using our visualization method; Top right: Using Dhillon et al. ’s (2002) method. Bottom:
Using PCA. The 3-cluster partition is obtained by CLARA.
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Appendix B

Carman and Merickel’s (1990)

Implementation of the ISODATA
Method

The CAIC criterion was proposed by Bozdogan (1987) . The general formula of the CAIC is
CAIC(t) = —2log(L(8y)) + t[log(n) + 1],

where L(8;) is the likelihood function evaluated at the maximum likelihood estimates of the pa-
rameters 83, n is the total number of data points, and ¢ is the number of free parameters.

'The CAIC formula in Carman and Merickel (1990) is derived under the assumptions that
data points in a cluster are from a multivariate normal distribution with diagonal covariance matrix
and that all data points are independent to each other. Suppose that data points zj1,. .. s L, aTE
from the k-th cluster, k = 1,..., ko, where kg is the number of clusters. Then the two assumptions
are equivalent to assume that xg; ~ N (g, Xi), where X, is the p x p diagonal covariance matrix,
p is the number of variables, and that @x;; k = 1,...,ko, i = 1,...,ny are all independent to each

other. And the likelihood function is

ko Ng [ T -1
_ _ i — 3 (e — )
9.) = p/2 1/2 _(wk Ky) k k
109 =TT { ony 137 2
ko n i P o N2 -1
=f[f[{(zw)"”/2|zk|—1/2exp 2oz (01— k) Py }
2 b
k=11i=1 R
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where 0, is the 2kp x 1 parameter vector containing the kgp means p; and the kop variances Xy,

k=1,...,ko,5=1,...,p. Then

ko ko p g
—2log(L(6,)) = nplog(2m) + > i log|Zel + Y D Bl Y " (wrsy — paas)-
k=1 k=1 j=1 i=1
W hen plugging in the maximum likelihood estimates of ug;; and Xy, k=1,...,ko, i =1,..., 7,

and j =1,...,p, we can get

~2log(L(0;)) = nplog(2r) + 35, ng log | x| + np
= np(1 + log(2m)) + S0 | ng log |84

Hence the CAIC in this special case is equal to

ko
CAIC(2kop) = np(1 + log(2m)) + ) _ ny log |Ek| + 2kop[log(n) + 1].
k=1

The last term of CAIC in Carman and Merickel (1990) is 2koplog(n) instead of 2kgp[log(n) + 1].
Although Carman and Merickel (1990)’s improvement is appealing, the criterion CAIC seems

not appropriate to determine if the merging or splitting is attempted. First of aH, the change of

the second terin in the CAIC formula
. ko

Tp = nylog|Sk|
k=1

is usually significantly larger than that of the term T3 = 2kyp[log(n) + 1]. And Tb tends to be
monotone decreasing as the number of clusters kg increases. This explains why Carman and Merickel
(1990)’s improvement tends to overestimate the number of clusters. To illustrate this, we generate a
cluster with 100 data points from the bivariate normal distribution N (0, I3), where 0 = (0,0)T and
I is the 2-dimensional identity matrix. The CAIC value for this cluster is 584.606 (T3 = —5.390,
T3 = 22.421). If we split the cluster into two subclusters by using the Ward hierarchical clustering
algorithm, then the CAIC value is 507.717 (T2 = —104.670 and T3 = 44.841). By this splitting
criterion, we accept the attempt to split the cluster into two subclusters. Therefore, the Carman
and Merickel (1990)’s improvement overestimates the number of clusters in this example.
Moreover, the diagonal covariance matrix is not common in real data sets. If we allow the
covariance matrices to be non-diagonal, then the number of free parameters is t = kop(p + 3)/2
instead of ¢ = 2kop. We recalculate the CAIC values in the previous example which are shown in

Table B.1. The number of clusters is still overestimated.

179




Table B.1: CAIC values in a small example when we use the general formula of CAIC.
ko T T3 CAIC
1 -5.988  28.026 589.613
2 | ~105.113 56.0517 ©518.514
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