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Abstract n 

A b s t r a c t 

In this thesis we investigate the magnetic properties of (III ,Mn)V diluted mag
netic semiconductors in the low carrier concentration regime. Variational and 
perturbative methods are applied to an impurity-band model, in order to de
rive approximation schemes for computation of the dynamical and the static 
magnetic susceptibilities. Based on these, we carry out numerical simulations 
which allow us to investigate the effects of positional disorder of the M n atoms 
on the magnetic properties of the system. The magnetic susceptibilities are 
shown to depend sensitively on the amount of positional disorder. The results 
we obtain are consistent with previous studies of the spin wave spectrum and 
of the inhomogeneous ferromagnetic state of these materials. 
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Chapter 1 

I n t r o d u c t i o n 

Diluted magnetic semiconductors (DMSs) are a new class of materials obtained 
by doping an ordinary semiconductor with transition metals [1]. G a i _ x M n x A s 
is the most widely studied alloy of this group, since it has the highest reliable 
critical temperatures recorded to date: 150K for bulk samples with x = 0.05 [2] 
and 172K in digitally doped heterostructures [3]. In Gai-^Mn^As, substitution 
of a fraction x of the Ga atoms by Mn impurities introduces both localized Mn 
spins (5 = 5/2) and holes into the system. The exchange interaction between the 
holes' spins and the Mn moments are known to be anti-ferromagnetic. They give 
raise to hole-mediated ferromagnetic interactions between Mn spins, leading to 
a ferromagnetic state below the critical temperature T c . The interest in these 
materials is high due to their potential use of the spin degree of freedom in 
electronic devices. Concept devices have already been demonstrated, including 
spin-polarized light emitters [4] and electrically controlled ferromagnetism [5]. 

The magnetic properties of DMS have stimulated considerable theoretical 
interest in describing the physics of ferromagnetism. It is widely accepted that 
magnetization is due to charge-carrier mediated, effectively ferromagnetic, in
teractions between the Mn spins. It is also known experimentally that these 
alloys are heavily compensated, with hole concentrations much smaller than the 
Mn concentration, Ch =pCMn, p = 10 — 30% [6]. DMSs are alloy systems, with 
inherent positional disorder of Mn atoms. The spin-orbit coupling may also 
play a significant role in determining their properties. A theoretical treatment 
which takes into account all these factors and their effects on magnetic and 
transport properties of DMSs is not yet available. Instead, theoretical models 
have tended to concentrate on different aspects of the problem. The main trend 
that all theories agree on is that for low x and low carrier concentrations, Tc 

monotonically increases with increasing x and increasing hole concentration. 
The model we study in this thesis is an impurity band model [7]. It is 

expected to be (at least qualitatively) valid at low concentrations, below and 
near the metal-insulator transition. Low carrier concentration implies a long 
screening length for Coulomb interactions, opening up the possibility that holes 
are moving in an impurity band through hopping processes. The relatively few 
holes in this system are expected to first occupy states in such an impurity band 
located above the valence band (the existence of the valence band is neglected 
in the model we use). Experimentally, the presence of an impurity band at low 
doping concentration x has been confirmed in photoemission measurements, 
which show the Fermi energy to lie in an impurity band inside the gap, for 
x = 0.035 [8]. Conductivity measurements at low temperatures also reveal 
Mott variable-rang hopping behavior [9, 10]. 
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The low x in bulk DMS suggests that there are likely to be large spatial fluc
tuations in the magnetic properties due to spatial disorder of Mn ions positions. 
An impurity band model has the ability to study this type of disorder, unlike 
models which assume that the carriers occupy states in the valence band - this 
automatically implies translational symmetry and homogenous distribution of 
the holes throughout the whole system. Theoretical studies of this impurity-
band model have shown that at low concentrations, positional disorder has 
significant effects on the magnetic properties of the system. It was shown that 
disorder increases the critical temperature [7, 11]. It also leads to an inhomo-
geneous ferromagnetic state which can be characterized by weakly interacting 
Mn spins residing in low density regions which are practically devoid of holes, 
and strongly coupled Mn spins in the high density regions where the holes are 
located with large probability. The signature of such inhomogeneity should be 
seen in magnetic observables such as magnetic susceptibilities. In this thesis, we 
study static and dynamical magnetic susceptibilities and investigate the effect 
of positional disorder on their behavior. 

The thesis is organized as follows: in Chapter 2, we introduce the model and 
discuss typical parameter values. In Chapter 3, the Hartree-Fock approximation 
and its self-consistent solution are reviewed. Chapter 4 has two sections. The 
first is devoted to a derivation of the Random Phase Approximation (RPA) equa
tions which allow the computation of the transverse dynamical susceptibility at 
both zero and finite temperatures. The second section introduces the formalism 
for the calculation of the static longitudinal susceptibility using perturbative 
methods. The numerical and analytical results for these susceptibilities are pre
sented in the following two chapters. Chapter 5 describes the results for an 
ordered configuration of Mn spins, while in Chapter 6 we study the effects of 
positional disorder on the magnetic response functions. Finally, in Chapter 7 
we summarize our results. 
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Chapter 2 

T h e m o d e l 
The electronic configuration of Mn is 3d54s2. According to Hund's rule, each 
Mn has a spin— | from its half-filled 3d shell. This is the largest possible spin 
for a partially filled 3d shell, and explains why Mn is currently the magnetic 
dopant of choice. When doped into a III-V semiconductor such as GaAs, the 
valence-II Mn substitutes for the valence-III element (Ga). It therefore acts as an 
acceptor and introduces a charge carrier (hole) in the system. This implies that 
the concentration of charge carriers should equal the concentration of magnetic 
moments (Mn spins) in such systems. However, experimentally it is found that 
the hole concentration is considerably smaller - as little as 10-30% of the Mn 
spin concentration - due to compensation centers, such as Mn interstitials or As 
antisites [1, 12]. The magnetic properties of the DMS are due to.the exchange 
interactions between the Mn spins and the charge carrier spins. This interaction 
is known to be antiferromagnetic (AFM) [13]. 

All throughout this thesis we use an impurity-band model [7, 11, 14, 15] to 
investigate magnetic properties of the DMS materials. This model is justified 
near and below the metal-insulator transition (x « 0.03) where the density of 
charge carriers is not large enough to effectively screen the attractive Coulomb 
potential of the Mn dopants. As a result, bound impurity states are created 
about each Mn site, at an energy Eh = 1 Ry (= 112.4 meV, for Mn in GaAs 
[13]) above the top of the valence band. Due to interactions and wave-functions 
overlap, these impurity states broaden into an impurity band, and the holes 
first occupy states in this band. Only if the concentration of holes (or the 
temperature) is large enough, are states in the valence band itself occupied by 
holes. However, since the hole concentration is so small, we do not need to 
explicitly include the valence band states in our model. 

Although the charge carriers are holes, in the following we perform a particle-
hole transformation and use an electron-formalism to analyze this system. In 
other words, we in fact study an equivalent system doped with hypothetical 
donors, with impurity levels below a conduction-like band, instead of above a 
valence-like band. We also make the simplifying assumption that the isolated 
impurity wave-function for a charge carrier trapped near a Mn is a ls hydrogen 
orbital. This approach neglects both the complicated orbital form of the ac
ceptor wave-function (Ref. [13]) and the effects of the spin-orbit coupling. The 
former is not expected to lead to any qualitative changes. It has recently been 
proposed that spin-orbit coupling leads to frustration in the magnetic ordering 
by creating anisotropy in the magnetic exchanges [16]. However, subsequent 
work has raised doubts about the importance of anisotropy effects in such sys
tems [17, 18]. Such effects are not included in the present study. 



Chapter 2. The model 4 

The III-V host semiconductor is assumed to have the zinc-blende structure 
appropriate for GaAs. TV<j Mn dopants are placed at positions Ri, i = 1 , T V d 

on the TV x TV x TV F C C Ga sublattice, of lattice constant a (a = 5.65 A for 
GaAs), corresponding to a doping x — TVd/4TV3. The number of charge carriers 
is fixed to TVfc = pTVd, where we take p = 10%. All throughout this paper, we 
assume periodic boundary conditions. We investigate the Hamiltonian 

Ti. = tijc\aCja + ^2 JijSi • Sj. (2-1) 

Here, c|CT creates a charge carrier with spin a in the impurity state centered at 
site Ri. The first term describes the hopping of charge carriers between impurity 
states. We use the parameterization = 2(1 + r/as) exp (—r/as) Ry, where 
r = |Rj — Rj|, of magnitude and form appropriate for hopping between two 
isolated Is impurities which are not too close to one another [19]. For Mn in 
GaAs, the Bohr radius is as ~ 8A [7, 13]. This hopping term has been shown to 
lead to the appearance of an impurity band which has a mobility edge, as well 
as a characteristic energy for the occupied states in agreement with physical 
expectation [11, 21]. 

The second term of the Hamiltonian (2.1) describes the A F M exchange be
tween the Mn spin Si and the charge carrier spin Sj = ^CjaffapCjp, where a are 
the Pauli spin matrices. This A F M exchange is proportional to the probability 
of finding the charge carrier trapped at Rj near the Mn spin at Ri, and there
fore Jij = J\4>j(Ri)\2 = Jexp (—2\Ri — Rjl/ag^j. Based on calculations of the 
isolated Mn impurity in GaAs, we estimate the exchange coupling between a 
hole and its trapping Mn (Ri = Rj) to be J = 15 meV [7, 13]. 
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Chapter 3 

The Hartree. Fock 
Approximation 

As the first step and a basis for other approximations, we need to find the 
self-consistent mean-field solution of Hamiltonian (2.1). The detailed study 
of the mean-field approximation for this Hamiltonian has been performed in 
Refs. [7, 11]. In this section we derive the main results using the density ma
trix variational approach, which consists in expressing and then minimizing the 
thermodynamic potential of the system with respect to a trial density matrix. 

For the Hamiltonian (2.1) we use a variational Hartree-Fock Hamiltonian K, 
consisting of one-body fermionic operators and non-interacting Mn spins. We 
assume the symmetry is spontaneously broken in the ^-direction: 

K = Y i h i j , a 4 a c j a - Y i H i S i (3.1) 
ij,cr i 

The most general variational form for the mean field Hamiltonian would 
allow spin flips ^ • a hia,j/3c\aCj0 for the fermionic part and magnetic non-

collinearity Hi - Si, for the Mn spin part of K.. However, a previous study of 
this model [11] showed that the self-consistent mean-field ground state is always 
collinear, implying that the variational guess of Eq. (3.1) is appropriate. 

The thermodynamic potential (the free energy) can be shown to satisfy the 
variational principle [22], 

?eq < HK) = -kBTlnZ0 + Tr{V0[H - £}}. (3.2) 

Here, T>o is our trial density matrix for the mean-field Hamiltonian /C, 

P-0{£-tj£r) 
2>o = - — = . (3.3) 

where Sf = a

 c\acia l s the particle number operator. ZQ is the corresponding 
grand-canonical partition function, 

Z0 = Tre-l3(-lt-i*Ar). (3.4) 

The Hartree-Fock parameters hijt<T and Hi are found from minimizing J-()C) 
[Eq. (3.2)]. We first define the expectation values: 

Pji,<r = Tr^D^Cja} = - ^ dQ^Z° (3-5) 
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(St) = SMn(i)ez = Tr[D0Si}; 5 M n ( i ) = -y^1* (3-6) 

It can be easily checked that Sun{i), the expectation value of the M n spin 
at site i, is given by: 

Tr\s?e-^H<S*} 
Sun(i) = L

f flV„s0

J = Bs{pHi). (3.7) 

where Bs(x) = (5+1) coth[(5+ \)x] — \ coth f is the Bril louin function (5 = § 
for Mn) . It should also be mentioned that Pjj,a is by definition the probability 
of finding a charge carrier with spin a at site j. As a result, we must have: 

I > M , a = JVh. (3-8) 

The functional Tift) can be written in terms of pji%a and Sun{i) as: 

~ ^ Pji," + ^ HjSMnji)- (3.9) 

Its variation, can be expressed in terms of the variations of our tr ial density 
matrix parameters, SHi and <5ftyiCT which in turn imply changes in the expecta
tion values <55Mn(i) and 5pn%a'-

5T — ŷ 55Mn(t)| Hi + ^2 JiJ^Pih" 
i 3," 

(3.10) 

The thermodynamic potential is minimized by setting <5F = 0 and we find 
the self-consistent, mean-field equations to be given by: 

Hi = ~Yl ^JiJP}J,°- (3.11) 
3><r 

hij,a = Uj + —Sij ^2 JikSMn(k)- (3-12) 
k 

The first equation (3.11) simply states that the effective magnetic field act
ing on each M n spin is induced by charge carriers through the A F M exchange 
interactions. The second equation (3.12) relates the mean-field fermionic Hamil
tonian matrix elements to the kinetic terms ty coming from hopping and the 
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potential energy terms f <5y J2k JikSMn{k) arising from the A F M Heisenberg 
interaction with the spins of the M n impurities. 

In order to establish the procedure for determining the mean-field ground 
state self-consistently, we first diagonalize the fermionic contribution to the 
Hartree-Fock Hamiltonian Kei = ^ . CT'Kj>cjCTc7v We use a unitary trans
formation of the charge-carrier operators: 

i 

and diagonalize the fermionic contribution to K such that we have: 

Kel = ^ hih<*C\ac3v = ^2 Encrataana- (3-14) 

It follows easily from the unitary property of the transformation that 

^3 hi3\<y^na{j) = ^ iyVwO') + | JikSMn{k)lpna(i) = Ena1pna(i). (3.15) 
3 3 k 

After solving this eigenequation, we can calculate Pjj,a, defined in Eq . (3.5): 

Pjj," = Y^naUWrnaWiaL0™) = f (Ena)\lpna U)\2 (3-16) 
n,m n 

where f{Ena) = [exp(/3(Ena - p,)) + 1]_1 is the Fermi distribution. Eqs. (3.16) 
and (3.8) yield the equation for.determining the chemical potential p,: 

J2f(E™) = Nh (3.17) 
n,a 

As our last step, by using Eq . (3.16), we can rewrite E q . (3.11) as: 

Hi = -\ZJiMJ)i (3-18) 
3 

where Sh{i) is the average spin created by charge carriers at site i , given by 

Sh{i) = \ (Pit.r - Pa,i) = lj2a^™W2f(En^ (3-19) 

These equations can be used as the iteration steps to determine the self-
consistent mean fields and mean field ground state for a given temperature 
T. We start with an initial guess for the M n spins at each site Syin{i) for a 
given temperature; we then use diagonalization [Eqs. (3.15), (3.12)] to find all 
the fermionic energies Ena and wave functions ?/w(i). The chemical potential [x 
and charge carriers' spins s^ii) at each site are then determined from Eqs. (3.17) 
and (3.19). The effective fields Hi at each site can be derived using equations 
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(3.18) and the new values for Sun(i) are given by the Brillouin functions of Eq. 
(3.7). We repeat the iterations until the self consistency condition is reached. 
In this work we define self consistency by requesting that the variation between 
successive values of the average Mn spins be generally less than esc = 10 - 4 . 
Where needed, values for esc as low as 10 - 6 shall be considered. The same 
self-consistent Hartree-Fock equations can be obtained if one starts from the 
mean-field factorized approximation for the Hamiltonian [7]: 

HHF = Y, Ui&Cjo + YI JiJSUn(i)\c\acia + Y JiMi)Sl• (3-20) 

A detailed study of this mean-field approximation has been carried out in 
Ref. [11]. Here, we briefly review some important results which are relevant for 
the work we present in the following sections: 

(1) . In the limit T —> 0, irrespective of the positions of the Mn spins, the 
ground-state converges to a collinear ferromagnetic state, with Mn spins fully 
polarized in one direction (+z-axis) and charge carriers spins fully polarized in 
the opposite direction (-z-axis): 

i * > c c = n a i i i o> 
n=l 

\S(l),...,S{Nd)) = \S,S,...,S). 

The reason for this is that at zero temperature there is a gap between the last 
occupied spin-down energy level and the first spin-up energy level, leading to 
full polarization of the charge carriers. In turn, through the A F M interactions, 
this induces an effective magnetic field in the opposite direction, acting on the 
Mn spins; as a result, all Mn spins become fully polarized as well. For T = 0, 
the mean-field ground state of the whole system can then be written as 

Nh 

i*o>=rKii°>®i5'5>---'5> (3-21) 
P=i 

(2) . We can compute the magnetization for any finite temperature using it
erations, as explained earlier. We start the first iteration for the lowest temper
ature considered by assuming that all Mn spins are fully polarized, Sun(i) = f • 
After several iterations, the self-consistent values Sun{i) corresponding to this 
temperature are found. We then use these values as the initial guess for the 
next higher temperature considered, etc. This allows us to find, at each finite 
temperature, the self-consistent solution with the highest possible total magneti
zation. A typical example of a magnetization curve as a function of temperature, 
for different levels of disorder, is shown in Fig. 3.1, for four different types of 
disorder realizations. In increasing order of T c , the curves correspond to (i) 
a perfectly ordered Mn superlattice (which a superlattice constant of 3a); (ii) 
weak disorder, corresponding to randomly displacing each Mn in (i) to one of 
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2.5 k 

i i i i i i i i i 
0 0.2 0.4 0.6 0.8 

k Q T/ J 

Figure 3.1: The average Mn spin S W and carrier spins Sh, for x = 0.00926 
and p = 10%. In increasing order of T c , the curves are for ordered, 
weakly disordered, moderately disordered and completely random 
distributions of Mn (from Ref. [7]). 

the 12 nearest neighbor sites of the underlying F C C sublattice; (iii) moderate 
disorder, corresponding to a random distribution of Mn on the F C C sublat
tice, subject to the constraint that all Mn-Mn distances are greater than 2a; 
(iv) completely random distribution of Mn on the F C C sublattice. Such curves 
show that disorder has a significant effect on the magnetic properties, changing 
both the critical temperature as well as the shape of the magnetization curve. 
The explanation for this behavior is simple: in the ordered system, invariance 
to translations insures that holes are homogeneously divided amongst all the 
Mn spins. By contrast, in the disordered sample, there are fluctuations in the 
local concentration of Mn spins. Here, the (relatively few) holes reside in the 
regions with higher Mn concentration, where they can more effectively lower 
their total energy by interacting with more spins. As a result, the effective 
magnetic fields Hi in these regions are much higher than in the ordered case, 
pushing the characteristic temperature where these regions become magnetized 
to higher temperature and increasing Tc. On the other hand, spins in the low 
concentration regions, which are devoid of holes, have extremely weak effective 
fields Hi and do not magnetize unless the temperatures are also low, ksT ~ Hi. 
This explains why even at temperatures well below Tc there is still a sizable 
fraction of unpolarized spins. 

Each magnetization curve shows three different regimes. The first regime is 
below a temperature we call Tp, where the charge carriers become "frozen" at 
the bottom of the a =1 band (i.e. the charge carrier spins are fully saturated, 
Sh = —1/2). Below Tp, the Mn spins behave as if they are in a constant effective 
magnetic field [see Eq. (3.18)]. The second regime is Tp < T < Tc, where 
the holes begin to occupy some spin-up states, until they become completely 
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Figure 3.2: Mn and charge carrier average magnetizations as a function of T, 
for a random Mn configuration with x = 0.05 and p = 10%, and 
external magnetic field H = 0,5 and 10T. The overall magnetization 
is significantly increased at all T (from Ref. [11]). 

unpolarized at T = Tc. Finally, the third regime is T > Tc where both Mn and 
charge carrier spins are unpolarized. 

(3). In Ref. [11] the effects due to addition of other terms to the Hamiltonian 
(2.1) have been considered. The term which is relevant to our work describes 
an external constant magnetic field which fixes the direction of magnetization. 
In this case the Hamiltonian becomes: 

H = y ] tijcla

cjcr + y ] JijSi • Sj 

-9HbH £ | c+ cia - ~gnBH Y, St (3.22) 
i i 

The two new terms in Eq. (3.22) describe the interaction of the carrier and Mn 
spins with the external magnetic field H pointing in the z direction. It can be 
easily shown that its effect on the mean-field equations is to change Eqs. (3.11) 
and (3.12) into: 

(3.23) 

£ j i f c S f ( / c ) - S M F 
L k 

(3.24) 

The upper index H distinguishes between the mean-field equations and solu
tions of the cases with and without external magnetic fields. We can find the 
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magnetization for any values of temperature and magnetic field through the 
same iterational procedure described before. The only differences are that we 
diagonalize the charge carrier Hamiltonian matrix (3.24) instead of Eq. (3.12) 
to find the energies and wave functions; and that we use Eq. (3.23) for the 
effective magnetic fields instead of Eq. (3.11) to calculate each SMIIW- The de
pendence of the average magnetization on temperature for values H=0, 5, 10T 
is shown in Fig. 3.2. We see that even though the external magnetic field is 
opposite to the holes' spins and we therefore might expect to see depolarization 
of the holes, instead they are getting even more polarized. This is because as the 
magnetization SMn(i) °f the Mn spins is increased by the magnetic field, their 
contribution to the effective magnetic field experienced by holes increases, more 
than compensating the decrease due to the external field H [see Eq. (3.24)]. 
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C h a p t e r 4 

M a g n e t i c R e s p o n s e 
F u n c t i o n s 

4.1 Introduction 

The fundamental hypothesis of the linear response theory is that one can write 
a linear relation between an induced effect and the perturbation causing it. 
In this thesis we study the magnetic response functions (magnetic susceptibil
ities) for DMS materials described by the band impurity model (2.1). There 
are two types of magnetic response functions which will be studied: (a) the 
transverse dynamical susceptibility, which characterizes the linear response to a 
small, transversal time-dependent magnetic field, and (b) the static longitudinal 
susceptibility, which is the magnetic response function to a constant magnetic 
field applied parallel to the intrinsic magnetization direction. These quantities 
encode useful information about the magnetic properties of the system: the 
poles of the dynamical susceptibility give the spin-wave spectrum, whereas the 
static longitudinal susceptibility is divergent at the critical temperature Tc. 

In this chapter we describe the formalism to compute these susceptibilities at 
zero and at finite temperatures. In the following chapters, we use this formalism 
to compute the susceptibilities in both ordered and disordered systems. 

4.2 Dynamical susceptibility 

The most general linear coupling to a time and space dependent external field 
is described by the interaction term: 

Hext = Y ficM*) 4ac30 + Y (̂f) ' $ t4'1) 

Some examples are the coupling to external electric fields f>4>{t) or j • A(i) 
or magnetic fields S • B(t). The density of charge p, the density of current j 
and the spin S operators are all quadratic combinations of electron creation and 
annihilation operators. For the specific case of magnetic external fields the first 
term in [4.1] describes the coupling of the carriers to the magnetic field'and the 
second term describes the coupling of the Mn spins to the magnetic field: 
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Throughout this paper we assume that g = g. In Ref. [11] it was shown 
that the specific value of the g-factor for the holes is not important because the 
magnetic properties of the system are dominated by the Mn spins. Mn spins 
interact with at most one hole, and the external magnetic field can have a large 
effect on them. On the other hand, each hole strongly interacts with several Mn 
spins and the external magnetic field has little direct effect on the holes. 

For an interaction with an external magnetic field (4.2), the elements of the 
general interaction (4.1) are 

hi(t) = H(i, t) fi*,3*{t) = SijH'ii, t)~ 

where the factor —g^B has been absorbed into the units, and = Hx ± iHy. 
For computing the response functions, it is necessary to find a linear rela

tion between the effect (magnetization) and the perturbation (small magnetic 
field). This linear relation can be obtained applying many-body perturbation 
techniques. For zero temperature, the relevant approximation is the Random 
Phase Approximation, a limiting case of the Time Dependent Hartree-Fock Ap
proximation. For finite temperatures, a generalization based on a variational 
density matrix approach is used. 

4.2.1 T h e R a n d o m P h a s e A p p r o x i m a t i o n a t T = 0 

We are interested in finding the effects of the perturbation on the ground-state 
of the system. Since the reference state is the self consistent HF ground-state 
|\I/o) [Eq. (3.21)], it is convenient to work with the one-particle operators which 
diagonalize this state [Eq. (3.13)]. In terms of these operators, the external 
interaction becomes: 

Hext = ^ Y^ fna,mff(t) anaam0 + 
A £ > > ) • £ (4.4) 

where fna,m0 are given by: 

fna,m/3(t) = Y^a(i),>Pm0{j)fia,j0{t)- (4.5) 
ij 

and can be computed once the self-consistent HF ground-state is known. Here A 
characterizes the strength of the weak external field (A << 1) and is introduced 
as a device to keep track of the order of perturbation. Using perturbation theory 
the wave function of the system in the presence of Hext has the general form 
|*o(*)) + A|*i(i)) + . . . , where |*0(*)> = e- i B G S*/R |* 0) is the HF ground state 
wave function. The first order perturbation in the wave function induces small 
(first-order) deviations of the self-consistent fields from their ground-state self 
consistent values. For example, for an arbitrary observable operator A: 

(A) - (A)+X5(A) + 0(X2) (4.6) 
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where (A) = (^ol^l^o} is the self consistent mean-field value and: 

6(A) = {*0(t)\A\*1(t)) + cc (4.7) 

In the case of our Hamiltonian (2.1), the expectation values of the opera
tors Si and Si undergo such changes, which modify the mean-field Hamiltonian 
(3.20). The first order contributions must be included in the total perturbation; 
as a result, we define the effective interaction Hamiltonian as following: 

fleff (*) = Hext(t) + A g Jy • Sj + Si • 6(sj)] (4.8) 
i,3 

In terms of the HF operators, this becomes: 

Hes(t) = Hext(t) + A Y Jni,mi(i) [ alT

a m-t S{S~) + S(a^aml) 5~j 

5{St) + 5{aiiam,)St} 
n,m,i 

6(S?) + 5{alaam<J)Sl] (4.9) 
n,m,tT,i 

where 

Jna,mp(i) = g YI JiJ^natiWrnpti)- (4.10) 
3 

Throughout this thesis, we use the following index convention: indexes 
i, j, • • • run over all Mn sites, i = 1,..., 7Vd etc. Indexes p, p',... run over all the 
"particle" occupied spin-down states in the HF ground-state, p = l,...,Nh. etc; 
indexes h,h',... run over all "hole" empty spin-up states in the HF ground-state, 
h = 1,..., Nd etc. 

Using this effective perturbation, the first order correction |*i(t)) can be 
determined by solving the time-dependent Schrodinger equation up to first order 
in A, or by doing time dependent perturbation theory in the interaction picture. 
In either case, we find: 

I*, (t)) = e ( - * £ c s t > (T T r — «*P (-*"*) a+ a 

^ [°° dwyi(uj)exp{-iojt) S~ \ 

+ h J - ^ n.-Hi + i V T l f J 1 ^ ( 4 - U ) 

Here E^f — Epi_, respectively Hi, are the mean-field energy costs to flip a charge 
carrier spin, respectively a Mn spin [see Eqs. (3.1), (3.14)]. The coefficients 
Xhp{uj) and yi(uj) [the Fourier transforms of Xh,p(t) and yi(t)], are given by 

XhP(u) = A T , P | H + E J"Tj>i(0 * ( 5 r ) H (4.12) 
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= V2S ( + £ j n T i m i ( i ) J(al Tam i)(o,) J (4.13) 
\ n.m J 

We then obtain a set of self consistent equations for determining Xhp{u>) and 
Ui(u)), by calculating the expectation values 5(all^arni)(u>) and S(S~)(w) using 
the wave function (4.11) and definition (4.7), to find: 

<5(5r)(w) = - v ^ — ^ ^ — (4.14) 

B y inserting Eqs. (4.14) into Eqs. (4.12) and (4.13), we get the self consistent 
equations: 

< P(-w) = /hTplv-^) + H ^ T P I ^ 
2%i(^) 

hco — Hi + in 

* < » ' - - ^ g g / - « W ^ + ( C-4,) + i, <«5» 
These two equation can be reformulated in a more familiar form by defining 

a new set of unknowns Xh.p{u)) and Yi(uj): 

Y / \  xhp{.-<») 

~ n» + (Ehr-Epi) + iT, 

Yi(w) = . . , (4.16) 
Tiu) — Hi + ir) 

It should be noticed, by direct comparison with E q . (4.14), that the new vari
ables are just XhP{u) = —8(a\^avi)(uj) and Yi{uj) = S/2S5(S^)(LO). In terms of 
these variables, the self-consistency conditions Eq . (4.15), become: 

[Rw + Eh1 - Epl] Xhp(oj) = V2SJ2 JPiAT W y i H + ZPI.MH ( 4 - l ? ) 
i 

NH ND 

[hu - Hi] Yi(u) = -V2SY1Z JkhlWX»P(") + V k ' { u ) ( 4 ' 1 8 ) 

P = l h=l 

These equations can be recast in the standard R P A form: 

» » ( - * ) - ( * H ) - ( ? M 0 <«•) 
The vectors X and Y contain the unknowns Xhv and Yi . Matrices E, H, J 
have the elements EhP,h'p' = -6hh'$PP'{Ehi - EPi), H-i,i' = —$i,i'Hi, 2hP,i = 
\/2SJPl,hl(i) while f and h contain the external fields At.pl tV) a n d ~^~h?(UJ)-

http://At.pl
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In the absence of the external fields, this is an eigenequation whose eigen
values Tuo are the energies of the collective spin-wave modes, as well as the 
continuum of particle-hole spin-flipping excitations (see Ref. [15]). The dimen
sion of the RPA matrix is 7Vd + x Nd- Of these solutions Nd are proper spin 
collective mode and Nh x Nd are particle-hole spin-flip continuum modes. 

Because we have more Mn spins than charge carriers and because Mn have 
larger spins than the charge carriers, the dominant change in the magnetization 
of the system comes from changes in the Mn spins polarization, described by 
the Yi = V2S6(Sf)(uj) coefficients. We can find these by solving for the Xhp 

coefficients from equation (4.17) and inserting the solutions into equation (4.18) 
to obtain a system of Nd inhomogeneous linear equations: 

^ M I J H < S ( 5 + ) H = B I H (4.20) 
3 

where 

hTihuj + Ehi ~~ - k p i + % r ] 

BM = Shf(«>) - 2 s f ] y : / ; i ' h f ) f p i ^ { U J \ (4.22) 

In this method, for each w of interest we calculate the matrix M(o;) and 
the vector B(OJ), using HF ground-state known quantities. This allows us to 
find all 8(Sf)(w) expectation values. This method is much more efficient than 
directly solving the RPA matrix equation because we are dealing with much 
smaller matrices and therefore we can go to sizes as large as Nd « 500. If need 
be, the coefficients Xh,p characterizing the variations in the charge carrier spin 
expectation values can then also be computed, from Eq. (4.17). This approach 
has been justified in reference [15] for obtaining the spin-wave spectrum. 

Up to now the general form of an external interaction (4.1) has been used; 
restriction to the case of an external magnetic field [Eq. (4.3)] implies that: 

UlM^) = \j2H+{i,u)rpi(i)i'hM h+(uj) = H+(i,Lo) (4.23) 
i 

One important point to notice here is that each of the Bi(u>) source terms is 
a linear combination of H+(i,u>), i = 1, ...,Nd- Also, our variables in equation 
(4.20) are 5(S^~)(OJ) which imply that what we find in this approximation is 
a response function to a rotating transversal magnetic field, in other words a 
transversal dynamical susceptibility. 

The other aspect of this approximation is that even though we started with 
an external magnetic field with an arbitrary direction we find no changes of 
the magnetization in the longitudinal direction, 6(S?)(u>) = 0 if u> ^ 0. This 
is due to the fact that for any periodic variations of the magnetic field, the 
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induced magnetization along any fixed direction averages to zero over a long 
time interval. This argument also holds for finite temperatures. 

We can now define the transversal dynamical susceptibility as 

6(S$)(U) = x(?,u)H+($,w) 

where H+{i,uj) = e^RiH+{uj) and 5(St){uj) = ^J2ie~i?iiiS(S^)(tu). Since 

the inhomogeneous terms in E q . (4.20) are all proportional to H+(u>), we can 

set H+(u) = 1, solve for S(Sf)(ui) and use 

X ( g » = ^ ^ E e " " " - " ' ^ ) H (4-24) 
i 

The multiplying factor in the front has the role of establishing the correct units. 
For the dynamical susceptibility, all the samples we consider have the same 
concentration x = 0.01. Therefore we will set the proportionality factor to unity 
and express the susceptibility in units of 4x(gpb)2/a3. In disordered systems, 
expression (4.24) implies an average over many disorder realizations, so that 
invariance to proper lattice translations is regained. 

4.2.2 The Random Phase Approximation at Finite T 
In this section we generalize the formalism of the last section to finite tempera
tures. A t finite T, the system is not in a pure state and therefore an approxima
tion based on a density matrix should be used. To realize this two different steps 
must be taken: first the variational action of the system should be minimized 
to derive the equations of motion. Secondly, we apply perturbational methods 
to find the dynamical response function to the small external perturbation. 

Here again we consider the external interaction in the form of E q . (4.4). 
The full Hamiltonian is, then: 

W W = Y ^ic0!" + Y Ji^i • (cU^Yc3f>) 
i,3,<r i,3 

+\e»t{ Y fia,3i3(t) 4ac0 + Y Ut) • Si), (4.25) 
iaj/3 i 

where the factor A is used to keep track of the perturbation order and the factor 
evt is used to adiabatically turn on the perturbation at t = —oo. 

The variational principle for the time evolution of a system described by a 
density operator requires the minimization of the functional [22]: 

Sn = -dtTr^Ah^+iA[H,V}^+TrV(tf)A(tf), (4.26) 

where H is the time dependent Hamiltonian and Sn is a functional of the 
time dependent operators A(t) and T>{t). Here, V(t) represents a variational 
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density matrix operator of the system and A(t) any operator associated with 
some observable. The equations of motion for A(t) and T>(t) are obtained by 
requiring that S-n be stationary with respect to all possible variations of A(i) 
and V(t) subject to the conditions 

V(ti) = Vu A ( t f ) = A i . (4.27) 

where Ai and Vt are two fixed operators. 
The variational approximation is obtained by restricting ourselves to a cer

tain class of operators A(t) and V (t) which allow for the explicit calculation of 
Sn • The density matrix T>(t) is taken to be of the form 

V{t) = . (4.28) 

where the variational Hamiltonian K.(t) is chosen to be 

£(t) = Y h i a d 0 ( t ) c \ a c i & - Hi(t) • Si. (4.29) 

ij,ct(3 i 

The operator A . is taken to be of similar form as JC, i.e.: 

A(t) = Y a i a J 0 ( t ) c l c j 0 - J2 Mt) • Si. (4.30) 
*.J i 

The boundary condition (4.27) for the density matrix T> at the initial time 
ti = —oo is taken as 

73(-oo) = t>0 (4.31) 

where VQ is the Hartree Fock density matrix (3.3). The reason for this boundary 
condition is that at ti = —oo, the interaction with the external magnetic field 
vanishes due to the adiabatic factor e v t , and therefore the system is considered 
to be well described within the static mean-field scheme. 

W i t h these definitions for the class of variational operators A(t) and T>(t), 

we are now able to express the variation of the functional S-H in terms of V(t) 
and K,(t) matrix elements. Similar to the derivation for the static mean-field 
approximation, we define the following two expectation values 

Pia,jp(t) = T r \ b c \ p C i Q \ 

S(i,t) = Tr[V§i}. (4.32) 

The functional S-H can be expressed in terms of these expectation values: 

S H = -fi j d t ^ a . i a , j 0 ( t ) j t P j f 3 , i a ( t ) - Ai(t) • j t S { h t) 

a0 
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(*)) 
a/3 

- £ d t Y § & *) • ̂ ( * ) x (Jii^f-PiPJait) + Xe^S^Ut)) 

4 
+ Y au*Mtf)pii>.i°(tf) - Y ^(*/) • */) (4-33) 

where Hiajp(t) are defined by 

m 

We now calculate the variation of the functional Sn due to variations of the 
matrix elements of the operators A and T>. After a lengthy but straightforward 
calculation, we find: 

ssH = £ dt{ £ ^ ^ ( i ) r£^(t) + Y6&(t) • t}2) 

+ £ .««(*) T^f, + Y, SS(i, t) • } = 0 (4.35) 

where the expressions T 1 , T 2 , T 3 , T ' 4 wi l l be presented momentarily. The four 
equations of motion ( E O M ) , obtained from requesting that 5Sn = 0, are then: 

T^j0(t) = 0 i f 5 = 0 

r i V * ) = 0 f}4) = 0 (4.36) 

The first equation, T^^(t) = 0 reads 

ih^lPjP.iait) = Y, [Hj0,k\(t)pk\,ia{t) - PjP,k\(t)Hk\,ia{t)] (4.37) 
k\ 

^-S(i, t) = heS(i, t) x §{i, t) (4.38) 

where 
a, 

-*( 2) 

while the second equation, T\ = 0 , can be expressed as 

dt 

heff{i,t) = YJV^f-f>M°(t) + XeVthi(t). (4.39) 

Equation (4.37) is the simply the Heisenberg equation ifidp/dt = [H, p] for 
the expectation value of the operator CĴCJQ, since Hjp^xit) is the matrix el
ement of the effective fermionic Hamiltonian [Eq. (4.34)]. The second equa
tion describes the time evolution of the M n spin in an effective magnetic field 
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heff{i,t). The two other equations obtained, from requesting that 5S-H = 0 give 
the equations of motion for Oiajp(t) and Aj(t) defining the evolution of the op
erator A, which allow one to find its time-dependent expectation value. Since 
we are only interested in the expectation value of the Mn spins, given by Eq. 
(4.38), we do not need to use these supplementary equations. 

Equations (4.37) and (4.38) give the general time-dependence of those expec
tation values, for any value of the external coupling. However, we are interested 
in the linear regime where the external field is perturbationally small, and the 
expectation values are close to the self-consistent static solutions. The boundary 
condition X>(—oo) = VQ implies that 

Pj0,ia{ — oo) = 5a0 Pji,a 

S(J,-oo) = e,5 M n(i). (4.40) 
where pji>a and Sun(i) a r e the self-consistent static mean-field solutions at 
the same temperature T [Eqs. (3.5), (3.6)]. As the interaction is adiabatically 
turned on, to first order in perturbation theory we expect that these expectation 
values become of the general form: 

Pj0,ia(t) = 5ap Pji,a + Ae17' 6pj0,ia(t) + <D{\2) 

S(i, t) = ezSMn(i) + Aê * 5S(i, t) + 0{\2). (4.41) 

To first order in A, the effective Hamiltonian (4.34) defining the dynamics 
of the charge carrier operators, respectively the effective magnetic field (4.39) 
defining the spin dynamics become: 

Hia,jP(t) = S^hij,* + Ae"4 Hg^it) + 0(X2) (4.42) 

fceff (0 = E J H f P H * * * + X E V T ^eff (*. *) + ° ( x 2 ) - ( 4 - 4 3 ) 

ja 
where 

H&pit) = fia,j0(t) + Stj £ Jmia-f6S(m, t), 
m 

îff(M) = Y Jii-YSPjPJc(t) + hi(t) 

The first terms in Eq. (4.42) and Eq. (4.43) are just the static mean-field Hamil
tonian hij<a [Eq. (3.12)], respectively the static mean-field effective magnetic 
field Hi [Eq. (3.11)], as expected. 

We now substitute these expressions into Eqs. (4.37) and (4.38). The zero 
order terms recover the expected static mean-field solution, whereas the first-
order contributions give the following equations: 

k 

+eVt Y,lH%*(t)Pki,a - HiZa^PikA (4.44) 
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jt[e^6S{i,t)\ = e"*{ - Hi€z x <5S(i,t) + x e - ,5 M „( i )} . (4.45) 

These equations are in fact the RPA equations analogous to Eqs. (4.17) and 
(4.18). To demonstrated this we first Fourier transform them: 

k 

+ -H^MPWI (4-46) 
k 

(From now on we redefine the %r) —> n such that n has energy units). 
Equation (4.45) contains 3 different equations for the components 6Sr(i,t), 

where r = x,y,z. The equations for the x and y components can be grouped 
together by defining 6S+(i,t) = 5Sx(i,t) + i5Sv(i,t). After a Fourier transfor
mation, the resulting equations are: 

(fiw + iij)6Sz(i,w) = 0, 

(hu -Hi + iri) 6S+(i, w) = £ Jij5pjuMt)SMn{i) + h+(u>)SMn(i)- (4.47) 
3 

The first equation shows that for w ^ 0, we have 6Sz(i,uj) — 0 which indicates 
that SMn(i) is conserved. This means that the mean-field fermionic Hamiltonian 
(3.12) and therefore the mean field energy levels Ena, are all unchanged to first 
order in the perturbation. This implies that for u) 0 the chemical potential p, is 
also unchanged (to first order) from its static mean-field value. This can also be 
seen from the fact that from Eq. (4.46) it follows that {Tiu + irj) ]TV a 5pia,ia = 0 
which means that to first order, 

£pia,ia(w) = £ [Pii,a + XeVt5piaiia{ujj\ = £ p i i , a = N H 

i,a i,a i,a 

Thus far we have demonstrated that the mean-field Hamiltonian, energy levels 
and therefore the occupation numbers f(Ena) maintain their static mean-field 
values up to first order in the perturbation. We can therefore use the results from 
the static Hartree-Fock section to simplify Eqs. (4.46) and (4.47). This, how
ever, is only true for a time-dependent external field, to ^ 0. For a static external 
field UJ —* 0 and we cannot conclude anymore that 5Sz(i,aj) and £ ^ Spiaiia(uj) 
are zero. In fact, as we will demonstrate in the next section, these quantities 
are not zero in the static case. 

We can now proceed to diagonalize the RPA equations (4.46) and (4.47). 
We start by defining: 

Xnm{u>) = YJ^{iWm[{j)SpjiM{w) (4.48) 
y 

L M = IKKr) - f(Eml)} £ VnT(OdO') W ^ ) , (4-49) 
ij 
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Eq. (4.46) can be rewritten as: 

(TIUJ+ irj)6pjliil{uj) = E^fc.i^Pki.iT^) - /ifci.T 6pu,kt(u)] 
k 

k 

+\Y2,{Jik Pfr'l ~ JikPji,l}&s+(k>u) (4.50) 
1 k 

^Prom this we can derive an equation for Xnm(u>) [Eq. (4.48)], which, after we 
make use of the static Hartree-Fock equations for Pki,a and hjk,p [Eqs. (3.15), 
(3.16)], and use notation (4.49), becomes: 

[hu+Ehr- Epi+irj\Xhp(u>) = fhp(u>) + [f(Ehl) - f(Epi)} JpiM{j)5S+{j,uj) 

(4.51) 
while Eq. (4.47) can be rewritten as: 

ND ND 

[TIUJ -Hi + iV) 6S+(i,co) = E JviM^)Xhp{u) + fc,+ (w)SMn(i). (4.52) 
p = l h=X 

Equations (4.51) and (4.52) are the generalized RPA equations, i.e. the 
finite temperature generalization of the T = 0 RPA equations (4.17) and (4.18). 
However, unlike in the T = 0 case, there are now Nd + N% equations, because all 
the levels (p j) are occupied with some probability f(EPi) in the ground-state 
(at T = 0, only the lowest Nh levels are filled while the rest are empty). Similar 
to our approach in the T = 0 case, the values for Xap can be found from the 
first equation (4.51) and substituted into the second equation (4.52), giving a 
system of Nd linear equations [analogous to (4.20)]: 

MyWS+U, w) = Bi(u) (4.53) 

where 

Mij(uj) = 5ij(fiuj - Hi + 177) - 2SM n(i) 

^ E t S r ^ w - z w (4.54) ^ ^ h u + E^-E^ + ir,1 

Bt(u>) = SM^ht(.) + 2SMn(i) £ £ JjyW/°f(a;| (4.55) 

The matrix elements My(w) and Bi(uj) can be calculated for each to value, 
for any finite temperature. We can then solve for 8S+(j, ui) at each site j and use 
these values to find the finite-temperature transversal dynamical susceptibility 
in a manner similar to that described by Eq. (4.24). 
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4.3 Static Magnetic Susceptibility 
In this section we consider the static magnetic susceptibility describing the lin
ear response to a a uniform dc external magnetic field. The transversal static 
susceptibility is divergent for T < Tc, since a transversal magnetic field reorients 
the direction of the bulk magnetization, leading to a finite change in magneti
zation irrespective how small the applied magnetic field is. As a result, here we 
will discuss only the longitudinal static magnetic susceptibility. 

As discussed in the last section, application of a u> = 0 static external mag
netic field is expected to modify the static mean-field equations to first order. 
These corrections can be found perturbatively starting from the self-consistent 
equations in the presence of the magnetic field H, Eqs. (3.11) and (3.12). Sim
ilar to the first chapter, we use the upper index H to refer to solutions in the 
presence of the external field. For convenience, we define the magnetic suscep
tibility of M n spins and holes at each site as 

_ d S £ n ( z ) 

dH dH 
Our aim is to express these susceptibilities only in the terms of mean-field 

values of the unperturbed system (i.e., without an external magnetic field). As 
before, we continue to take g = g and set g\xB = 1 for simplicity. 

For the effective magnetic field of E q . (3.23), the expectation value of the 
M n spin is: 

SSL® = Bs(p[H - Jij *%(j)]), (4.56) 

where Bs(x) is the Brillouin function for S = § . It then follows that 

n(t) = / ? [ ! - £ Jij XhUWtfHi) (4-57) X M 

where Bs'(x) = dBs(x)/dx = | c s c / i 2 ( § ) - (5 + \)2csch2[{S + \)x\. The next 
step is to derive the dependence of Xh{i) on XMnW- To first order in H, we 
have 

S&n(i) = 5M»(*) + XMn(i)H + 0(H2). 
As a result, to first order, the charge-carrier Hamiltonian [see E q . (3.22)], 
becomes: 

h",a = hijia + Sij\[£ JijXun{j) - 1]H + <D(H2) (4.58) 
3 

and the perturbation of the mean-field Hamiltonian is 

H • Hp = H £ ^ [£ JijXMnU) - i\4 



Chapter 4. Magnetic Response Functions 24 

We'now use perturbation theory to find the energies E^a and eigenfunctions 
ip^aii) to first order. Here we restrict this calculation to the case of a disordered 
system where all degeneracies are lifted (the ordered case is considered in the 
next chapter). In this case, we have: 

JE" = Ena + E$H + 0(H2) 

V&W = </w(i) + i>{nJ(i)H + 0(H2) (4.59) 

where 

E$ = <Vw|Hp|Vw) = a £ • W a ( J ) X M n ( J ) - f (4.60) 

= E Ipkaii) (4.61) 
, , ^n<r - Eka r r 1 . Ena - Eka 

where Jna,mp{i) is defined in E q . (4.10). The last necessary step is to compute 
the variation of the chemical potential p,(H), to first order in H. We take 
derivatives with respect to H (and set H = 0) from the constraint on the 
number of particles, ^ 2 N A f(E^a) = Nh, to obtain: 

dp(H) 

dH 

where 

9(E) 

H=0 

1 df(E) 

En,9(En 

(4.62) 

-sech 
(5{E - u.) 

(3 dE 

The hole susceptibility Xhi}) can now be derived by taking the derivative 
with H of the finite H charge-carrier expectation value: 

na 

Setting H = 0, we find: 

XhW = £ f { [ ^ ( 0 C ( 0 + <*] / ( £ n f f ) + | V w « l 2 / 3 fe 
dfi 

dH 
g(En 

(4-63) 

Finally, we substitute the expressions for EnJ, ipnJ(i) and D>I}^ \ H = O from Eqs. 
(4.60),(4.61) and (4.62) to obtain: 

Xh{i) = £ AijXMnti) + Bi 
3 

where 

(4.64) 

^ = ̂EE/(£-){ Jka^aU^nai^kaii) + CC 

§ E i ^ ( o i 2 « 7 ( ^ ) { J ^ U ) -
 aEmaa^z7(E!!l)Ema) (4.65) 
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and 

Bi = j Y \ ^ ( i ) \ 2 9 ( E n a ) a- (4.66) 

Here it is worth mentioning that in E q (4.64), the dominant term is 53 • AijXMn(j) 
which expresses the indirect effect of the external field on the holes spins. This 
term is negative, i. e. it favors the increased polarization of the charge carriers, 
whereas the small positive term, Bi, coming from the direct coupling to the 
external field, favors the hole depolarization. 

The set of Eqs. (4.57) and (4.64) relate the susceptibilities XMn(i) and Xh{i) 
to one another. The self consistent equation for determining XMn(i) at each site 
i can be derived by substituting (4.64) into (4.57): 

£ [Si, + (3 RijBs'ifiHi)] XMnO') = /? (1 + Pi)Bs'{pHi) (4.67) 
3 

where 

Rij = £ f(Ena) £ ^ fca.ncrO ka.nati)} +p ^ Jna<n!r(i) Jn„,na{j)g(Ena) 

na k^tn k a n a 

, E n < 7 Tsma VaJna,na(i)Jma,ma(j)g{Ena) g(Ema) 

and 

Y.no9(.Erur) 

Pi = f E Jna.n.WgiEn) { 1 - C T ^ ^ ^ I ) . ( 4. 69) 

Once we derive XMn(*)> the values of Xh(i) can be obtained from (4.64). Having 
the solutions at all sites i = l,...,Nd, we define XMn = J2iXMn(i)/Nd and 
Xh = Y2iXh{i)/Nd as the total M n and hole susceptibilities in 4x(gu.B)2/a3 

units. Since there are fewer holes than M n spins and also each M n spin is five 
times bigger than a hole spin, we approximate the total susceptibility as being 
equal to the M n spin contributions: 

Xtotal = XMn + Xh ~ XMn. 

When comparing susceptibilities with different concentration we divide Xtotal 
by x and express it in x free unit 4(g[i,B)2/a3. 

It is useful to compare the formalism developed here with the conventional 
statistical formula for static susceptibility, which within mean-field approxima
tion is: 

= W £ « 5 A > " W W } = W £ * M n « 
ij d i -

where 

XM„(i) = H(Sf) - (Si)2} = f3B.'(PHi). (4.70) 
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Comparing this line with E q . (4.57) shows that this formula does not account 
for the effect that the supplementary polarization of the holes has on the M n 
spin susceptibility. This is obvious since this statistical formula only considers 
direct coupling of the external field to the M n spins and does not include the 
effective internal magnetic field Hint(i) = — . JijS% (j), as a source of external 
field dependence in free energy. Therefore it may only be used for models where 
the magnetic moments are interacting directly to one another. 

There are, however, two regions where XMni^) ^ XMn(i)- One is at very 
low temperatures T < Tp where the holes are already fully polarized and the 
supplementary external magnetic field has no effect on them. The second is 
for T > Tc, where all susceptibilities including Xhi}) are fast approaching zero. 
However, to find the susceptibility near and below Tc one has to use the full 
formalism derived in this section. 



Chapter 5. Results for the ordered case 27 

Chapter 5 

Results for the ordered case 

In order to understand the effects of disorder, we must first know the behavior 
of the system in the absence of disorder, i.e. in an ordered case. The ordered 
case corresponds to having the M n impurities placed in an ordered simple cubic 
lattice, with a superlattice constant = a/(4x)a. Strictly speaking, only 
concentrations x for which OL is commensurate with the GaAs lattice constant 
a are physically acceptable. In the ordered case, translational symmetry implies 
Sh(i) = Sh, Sun(i) = SMU for all sites i of the M n superlattice. Then, the charge 
carrier part of the mean-field Hamiltonian (3.20) can be diagonalized in k space, 

where 

Here, = 53â o ̂ 8 e x P ' ^) ' s * n e kinetic energy of the non-interacting 
electrons, where <5 indexes all the neighboring sites and tg = i y - for which 
\Ri — Rj\ = \5\. Also, Jo = where Jg = for which \R\ — R,\ = |<5|. If 
Nd is the number of M n spins, the spin expectation values at finite T are: 

** = ^ E E W ( % , ) (5-3) 
SMn = Bs(-PJ0sh) (5.4) 

where f(E^a) is the Fermi distribution, and the chemical potential p is found 
from the condition J2ka f(Eka) = A t T = 0 the situation is even simpler. 
In this case, f{E% ) = 9{kF — \k\)5„i, where the Fermi momentum is given 
by Nh = ^\k\<kF Since all spins are fully polarized, at T = 0 we find 
sh = -Nh/(2Nd) = - p / 2 whereas S M n = §. 

In the presence of a static external magnetic field, of interest for computation 
of the static susceptibility, these equations change to: 

E l = ^k + ^{JA-9HbH) (5.5) 

= ^ (5-6) 
ka 

SMn = Bs(l3(giMbH-J0si!)). (5.7) 
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• N = 18 
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Figure 5.1: Spin-wave dispersion in the ordered case. Lattices of linear size 
N = 15,18, 24 and 150, with respectively Nd = 125, 216, 512 and 
125000 Mn spins are considered. This corresponds to x = 0.0092 
and p = 10%. Dispersion is plotted along (—7r,0,0) —> (7r,0, 0), 
( — T T , — TT,0) —> ( 7 r , 7 r , 0 ) and (—TT, — TT, — IT) —> ( T T , T T , T T ) . From [15]. 

5.1 Dynamical transversal susceptibility 
Since singularities in the transversal susceptibility are linked to the collective 
magnetic excitations (spin-waves), we first briefly consider their spectrum in 
the ordered case. Due to the invariance to superlattice translations, each spin-
wave mode is indexed by a wavevector Q defining its spatial mode distribution, 
Yi ~ 6S+(i) ~ exp (iQ • Ri). We denote by TLUOQ the corresponding spin-wave 
energy. The spin-wave spectrum at T = 0 is then given by [15]: 

Pj0_ S \ J ( Q ) \ 2

 v m d ) ( 

Q 2 - 2Nd 2^n^ + e ^ _ H + Jos W 

where 
J(Q) = £ j ? e x p ( i Q - 5 ) . (5.9) 

<5 

(This dispersion can be obtained from the RPA equations (4.20) and (4.21) in 
the absence of the external field, as we show in the following). For each value of 
Q this equation can be solved numerically. The resulting spin-wave dispersion 
along three different directions in the Brillouin zone is shown in Fig. 5.1. In 
the long wavelength limit Q —> 0, one can show that the expected magnon 
dispersion hio^ ~ Q 2 is recovered [15]. 

We now discuss the dynamical transverse susceptibility in the ordered case. 
In the RPA response function equation (4.53), we found the magnetic response 



Chapter 5. Results for the ordered case 29 

6S+(i,v) to a general space dependent magnetic field H+(i,w). We begin by 
decomposing H+(i,u>) into its Fourier components H+(q,uj) as following: 

H+(i,u>) = -±=Y,H+ti>u) e x P W - i ? i ) - (5.10) VNd . 

Considering an external field with a particular wave vector Q, 

#+(g>) = V ^ ^ t f + H , 

the external field becomes: 

H+(i,u>) = H+(u)exp(iQ • Ri). (5.11) 

For this external magnetic field, the source term Bi(w) [see Eq. (4.55)] becomes: 

Bi(w) = exp( iQ-i? i )F + (a;)5M n 

x { l + J ( Q ) £ / ( ^ - g , T ) - / ( ^ | ) | ( 5 1 2 ) 

Since i3j ~ exp (iQ • Ri), the solutions of the RPA response equation (4.53), 
5S+(i,u>), should also have the same form, 

5S+(i,u) =6S+(Q,w)exp(iQ-Ri). (5.13) 

and the RPA equation (4.53) reduces to: 

l % , , SMn|J(Q) | 2 y^ / ( ^ - Q , T ) ~ f(Ek,j) \ S C I + / A , 
{ % U J - J ° S H ) 2 1 ^ ^n. + e,_^-e-k + J 0 S M N \ 5 S + { Q ^ 

^+H5M4l + J ( g ) E j ^ ; ^ } (5,4) 

This allows us to solve directly for 5S+(Q,UJ) and thus to find the dynamic 
magnetic susceptibility (in units of 4x(g/j,b)2/a3) 

6S+(Q,iv) = X(Q,u)H+(u>) (5.15) 

to be given by: 

X(<3.w) = , / ( E - - ) - / ( E - ) ( 5 ' 1 6 ) 

{TLUJ - J0sh) m ^ hu+e_^_e_+JJMn 

By comparing this expression against Eq. (5.8), we see that indeed the sus
ceptibility becomes singular when u> — UQ of a spin-wave (as already discussed, 
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Figure 5.2: The dynamic susceptibility w) at T = 0 for an ordered system 
with Nd = 125 spins, for x = 0.00926 and p = 10%. The three lines 
correspond to the allowed values q = (0,0,0) (full line), |f(|,0,0) 
(dashed line) respectively fj(§,0, 0) (dotted line). 
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Figure 5.3: The dynamic susceptibility x ( < ? i w ) at T = 0 for an ordered system 
with Nd = 216 spins, for x = 0.00926 and p = 10%. The four lines 
correspond to the allowed values q = (0,0,0) (full line), ff(g, g,0) 
(dashed line), f ^ ( § , §,0) (dot-dash line) respectively ^(§,§,0) 
(dotted line). 

at T = 0, Sh = — p/2, Sun = S). Equation (5.16) can be further simplified for 
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Figure 5.4: The dynamic susceptibility x(9>w) f ° r the ordered case, with N = 
18, Nd = 216 Mn spins and p = 0.10. We choose q= ff (±, |,0), 
and plot the susceptibility at four different temperatures, KT/ J — 
0,0.11,0.16 and 0.17. 

a homogeneous magnetic field, Q = 0, where we find: 

X (0 , . ) = ^ . (5.17) 

This becomes singular for %u = 0. This is due to the fact that the corresponding 
spin-wave energy for the Q = 0 mode is zero. This mode is the Goldstone boson, 
since due to rotational symmetry there is no energy cost for a global rotation 
of all the Mn spins. 

In Figs. 5.2 and 5.3 we plot xiQi^) at T = 0 for systems with linear sizes 
./V = 15, respectively ./V = 18, for certain allowed wavevectors in the Brillouin 
zone. The peaks in each x(<f>w) susceptibility clearly match to the energy of 
the spin-wave mode with the same q, plotted in Fig. 5.1. 

In Fig. 5.4 we show x(<f, w) vs. u at a fixed momentum q = ff(|, \ , 0) for 
four different temperature, ksT = 0J, 0.11J, 0.16J, 0.17J. We observe that the 
energy of the spin-wave mode Tvujq, signalled by the singularity, first increases 
with increasing T, but at temperatures closer to the critical temperature it 
starts to decrease towards ui = 0. This behavior is demonstrated more clearly 
in Fig. 5.5, where we plot the variation of the spin-wave energy %UJ^ with 
the temperature, for three different values of q corresponding to a lattice size 
N = 18. The initial increase with increasing temperature is due to the decrease 
of the Mn spin expectation value from SMn = 5/2 at T = 0 to a lower value 
at higher temperatures [see Eq. (5.8), (5.16)]. However, closer to the critical 
temperature both s^. and the energy gap between spin-up and spin-down states 
decrease, leading to a decrease of the spin-wave energies. 
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Figure 5.5: Temperature dependence of the spin-wave energies (position of sin
gularity in x(?i w ) ) f ° r three different wavevectors q = f j ( § , e>0)> 
| | ( § , § ,0) respectively 221(2, 2,0). Parameters are N = 18, Nd = 
216 Mn spins and p = 10%. 

5.2 Static longitudinal susceptibility 
In this section we derive a simple formula for the static longitudinal susceptibil
ity in an ordered system. We cannot directly use the results derived in Section 
(4.3) for this susceptibility, because there we used non-degenerate perturbation 
theory for the derivation. In the ordered case, electronic levels for k ^ 0 are 
degenerate due to various symmetries of the Brillouin zone. This degeneracy 
has to be taken into account, but otherwise the procedure closely mirrors that 
used in Section (4.3). 

We start with the self-consistent equations in the presence of a static mag
netic field, Eqs. (5.5), (5.6) and (5.7). The goal is to expressed the Mn and hole 
susceptibilities: 

in terms of the mean-field solutions in the absence of magnetic field, given by 
equations (5.2), (5.3) and (5.4). 

As the first step we take the derivative with respect to H from (5.7) to find: 

XMn = 
H=0 dH H=0 

XMn =0(1 -Jo Xh) BS'(-f3J0Sh) (5.18) 

where B's(x) = d/dxBs(x) and again we set gps = 1 for convenience. In order 
to find the second equation linking Xh to XMn, we start by finding the first order 
variation with H of the charge carrier eigenenergies, which follows directly from 
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(5.5) to be: 

E(l) =

 dEna 
dH 

a a (5.19) 

The variation with H of the chemical potential is given by [see Eq. (4.62)] 

dfi{H) 
dH H=0 

(5.20) 

where g(x) is the derivative of the Fermi distribution f(x). Finally, the hole 
susceptibility Xh can be related to X M n by taking the derivative of Eq. (5.6): 

Xh 
djj, 

g(En (5.21) 
2ATd ^ \ n a a\H 

Using Eqs. (5.19) and (5.20), this can be written in the simpler form: 

X f t = / 3 7 ( J o X M n - l ) , (5.22) 

where 
1 [\lZna9(Ena)f -\^Jnaag(ETla)f\ 

4Nd En„9(En 

Substituting Eq. (5.22) into Eq. (5.18), we find the Mn susceptibility to be 
given by: 

_ (3(l + pJ0y)Bs'(-l3JoSh) 
X M n ~ l + (fU0)*yB.'(-l3J0shy ( 5 ' 2 4 j 

which allows us to find the hole susceptibility Xh as: 

Xh 
r 1 - J0pBs'(-pJ0sh) , 

" P 7 L l + (/3Jo)27B.'(-)9Jbsh)J 

(5.25) 

These static longitudinal susceptibilities are plotted as a function of tem
perature in Fig. 5.6. As expected, the critical temperature Tc is marked by 
singularities in these quantities. 
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Figure 5.6: Mn and charge carrier static longitudinal susceptibilities as a func
tion of T, for an ordered Mn configuration with x = 0.00926 and 
p = 10%. The sample has a linear size N = 24 corresponding to 
Nd = 512. The inset shows the Mn and charge carrier magnetiza
tions for the same configuration. 
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Chapter 6 

T h e effect o f d i s o r d e r : 
n u m e r i c a l r e s u l t s 

Disorder was previously shown to increase the critical temperature [11] and to 
broaden the spin-wave spectrum [15]. This suggests that disorder should also 
have a significant influence on the magnetic response functions. In this chapter 
we analyze and interpret the effects of disorder on the magnetic susceptibilities. 

6.1 Dynamical susceptibility 
We study three types of disorder - weak, moderate and full disorder, as defined 
in Section 3. We adopt the notation XO{Q^)I XW{Q^), Xmi?^) and Xfii^) 
to refer to ordered, respectively the weak, moderate and full disorder dynamical 
susceptibilities. Consistent with the last section and Ref. [15], we consider 
samples with a Mn concentration x = 0.0092 and different sizes Nd = 125, 216 
and 512. Peaks in x(<f, ^) are directly linked to the spin-wave eigenenergies for 
the corresponding degree of disorder. We therefore begin this section with a 
short review of the effects of disorder on the spin-wave spectrum [15]. 

In Fig. 6.1 we show the spin-wave spectrum density of states (DOS) at T = 0 
for ordered, moderate and full disorder configurations. Disorder significantly 
broadens the density of states and considerable weight is transferred both to 
lower and to higher energies (notice that the scale in Fig. 6.1 is logarithmic). 
One important effect discussed in Ref. [15] is that disorder leads to localization 
of the spin-wave modes in the high and low-energy regimes. 

For full disorder configurations and the parameters considered, localization 
of the spin-wave modes occurs in the E > 1 meV and E < 5 x 10 - 3 meV 
ranges. The localized modes in the low energy regime E < 5 x 1 0 - 3 meV, which 
is more visible for the highest degree of disorder, are individual spin-flips of 
quasi-free Mn spins which are far from the regions where the holes are located. 
The localized modes in the high energy region E > 1 meV, which occur for 
both moderate and full disorder, are related to spin-flips inside strongly coupled 
clusters of Mn spins, where the holes are located with a high probability. The 
dynamical susceptibility is expected to show singularities at frequencies equal 
to those of spin-waves that can be excited by the external magnetic field. As 
a result, both the broadening of the spin-wave spectrum, and the appearance 
of localized spin-wave modes with increasing disorder, should be signalled by 
changes in the dynamical susceptibility. 

The method to compute the dynamical susceptibility was described in detail 
in Sec. (4.2). We briefly review it here. For each given disorder realization, 
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Figure 6.1: Average density of states p(log1 0 E) on a logarithmic scale for sys
tems with Na = 125,216 and 512 Mn spins in moderately/full dis
ordered configurations (upper/lower panels, full lines). The dotted 
line is the spin-wave density of states of a DMS with fully ordered 
(superlattice) configuration of Mn spins. All samples correspond to 
x = 0.00924, p = 10%. From Ref. [15]. 

the first step is to find the self-consistent Hartree-Fock solution. We compute 
the matrix M(w) [Eq. (4.54)] and the vector B(o;) [Eq. (4.55)] corresponding 
to an external magnetic field hf(u) = exp(z<f- Ri) where q is a wave vector 
in the Brillouin zone consistent with the boundary conditions of the ordered 
Mn superlattice with = a/(Ax)* = 3a (x = 0.0092). We then solve the 
inhomogeneous system of linear equations (4.53) to find 6S^(u>) for each site 
i = l,..,Nd- The dynamical susceptibility is then calculated from Eq. (4.24), 
by averaging over results from many disorder realizations. It is proportional 
to the average amplitude of the spins' precessional motion in the transversal 
direction. x{q, U) can also be related to the energy absorbed by the DMS from 
the external magnetic field through the fluctuation-dissipation theorem. 

The dynamical susceptibility Xo(<7><̂ ) for the ordered superlattice case was 
analyzed in Section (5.1) of the previous chapter [see Figs. 4.19, 4.20, 4.21]. It 
has singularities for frequencies in the spin-wave spectrum u> = UJ^, as expected 
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Figure 6.2: The dynamical susceptibility for ordered (black) and weakly dis
ordered (blue) Mn configurations at T = 0, for x = 0.00924, 
p = 0.10, N = 15. Panels correspond to <fi = ^ ( 5 , 0 , 0 ) (upper 

left); q2 

and g*4 = 

= £ ( § , 0 , 0 ) (upper right); <f3 £(l,i,§) (lower right). 
"I. 

(1,1,0) (lower left) 

from the conservation of energy and momentum. It should be noticed, however, 
that as we go to full disorder, the Mn superlattice with OL = 3a and its related 
Brillouin g-space loose their relevance, since translational invariance is broken 
and the quasimomentum q is no longer a good quantum number for any indi
vidual disorder realization. Average over all disorder realizations restores the 
translational invariance, but now corresponding to translations on the original 
F C C Ga lattice. As a result, q-vectors of the original F C C lattice with lattice 
spacing a should be used. However, we will only consider vectors in the g-space 
of the ordered Mn superlattice with ai = 3a even for the full disorder case, 
Xf(q,u>). The reasons are three-fold. First, the g-space of the Mn superlattice 
with aj, = 3a is a subspace of the g-space of the original lattice with lattice 
distance a. Secondly, this allows us to compare the effects of disorder at a given 
value of q, from fully ordered to fully disordered configurations. Finally, as we 
show below, in the fully disordered case, X/(<fi becomes roughly independent 
of q. As a result, investigating the behavior of Xf(q, w) at other values of q would 
not reveal additional information. A second computational issue that has to be 
addressed is the value of the small parameter 77, which cannot be set to zero in 
the numerical computations. A finite n is physically linked to a finite lifetime of 
the spin-wave modes, due to scattering on other spin-waves (such processes are 
neglected at the RPA level). The value of 77 only affects the height and width 
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Figure 6.3: Comparison of dynamical susceptibilities in the homogeneous case. 
Only for full disorder we see some variations from the expected 
Xo(0,w) = ^ behavior [Eq. (5.17)]. The u> -+ 0 divergence is 
cut-off by the finite value for r\ used in the numerical computations. 

of peaks associated with excitation of spin-wave modes in the system by the 
external magnetic field. In this study, we use the value r\ = 0.02J for XO{Q^) 

and TJ = 0.05J for XwXm{q,u) and 
We start our analysis on the effects of disorder by comparing XW{Q^) and 

Xo(9)W) at T = 0 for samples with linear size N = 15 (JV^ = 125 Mn spins). 
This is shown in Fig. 6.2 for four different wave vectors: q\ = ^-(^,0,0), 

& = f i d ' 0 ' 0 ) ' 9 3 = & ( t i i i 0 ) and q4 = £ ( § , § , § ) consistent 'with the 
system size considered. The weak-disorder results correspond to an average 
over 15 different disorder realizations. The vectors gj, i = 1, ..,4 are chosen in 
order of increasing magnitude, such that the corresponding spin-wave modes ujq 
of the ordered superlattice are also in increasing order. 

In the ordered case, the dynamic susceptibility has a single singularity at u> = 
W f . In a disordered case, for each individual disorder realization we see multiple 
peaks in Xw (<?i , since the momentum q is no longer a good quantum number of 
the spin-wave modes, and therefore the external magnetic field can excite many 
such modes. Averaging over many disorder configurations partially smoothes-
out such individual peaks corresponding to different spin-waves, although their 
signatures can still be seen in Fig. 6.2. Overall, the susceptibility now exhibits 
a broader peak. In each case we observe that this broad peak in Xw{q,u) 
is displaced from the corresponding ordered u>q value towards lower energies. 
This is consistent with the previous observation that increased disorder leads 
to increased weight for low-energy spin-waves. Another important aspect is 
that as we go to larger values of q, the broad peak of Xwiq,^) becomes even 
broader. The physical reason for this broadening is that the presence of the 
weak disorder is more acutely felt at shorter wavelengths. The effect of disorder 
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Figure 6.4: The dynamic susceptibility for three types of disorder, at T = 0. 
The upper graph corresponds to q = £ ( g , 0,0), the lower one cor
responds to q = £ ( § , 0 , 0 ) . Al l samples have N = 15, Nd = 125, 
x = 0.00926 and p = 10%. 

is least important for spatially homogeneous fields with q = 0. In this case, 

Xm(0,w) « Xw(0,u) « Xo(0,w) = 

and only for full disorder we see some variations in x / ( 0 ,u ; ) , shown in Fig. 6.3. 
As the next step we investigate higher degrees of disorder. In Figs. 6.4 

we show the susceptibilities XW(Q,U), Xm(Q,^>) and XfiQ^) f ° r f w o different 
wave vectors, gi = £ ( 5 , 0 , 0 ) and q2 = £ ( § , 0 , 0 ) , on a logarithmic energy 
scale. In order to reach to bulk limit, for each susceptibility plotted in Fig. 
6.4, we averaged over 20 different disorder realizations. We see that as we go 
to higher disorder, the peak in the dynamical magnetic susceptibility shifts to 
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Figure 6.5: for four values of q, corresponding to the same individual 
Mn disorder realization. The upper panel shows three smaller q val
ues while the lower panel compares f ° r two larger q values. 

lower energies and becomes broader. These changes are more pronounced for 
higher levels of disorder. Also notice that x / ( < f i i w ) ~ Xf(Q2,«)• As we show in 
the following, X / ( ° > w ) is roughly independent on the value of <j, when <f is large. 

In Fig. 6.5 we show Xf{Qiu) f ° r f ° u r values of k. All curves are for the same 
individual Mn disorder realization (not the bulk limit). The upper panel shows 
Xf(q,to) for three smaller values of q and the lower panel shows XfiQ^) for two 
larger values of q. We observe that the individual spin-wave peaks in x/(g,w) 
for various finite q occur exactly at same values of energy, since they all couple 
to the same spin-wave modes. The differences between curves corresponding 
to different q are mostly in the amplitude of peaks corresponding to various 
spin-wave excitations (peaks become sharper for lower wavelengths). There are 
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Figure 6.6: log[x(<f, w)] for three levels of disorder, for q = £ ( ± , 0,0), n = 0, p -
0.1 and x = 0.092. Curves are for individual disorder realizations. 

noticeable changes in x/(<fjw) in the limit |g| —» 0. In this limit, individual 
peaks still appear at the same frequencies as before, but they become weaker 
and some fade away (upper panel). Even such differences become less noticeable 
for higher q values (lower panel). Therefore we conclude that \f{q,Lo) is roughly 
independent of q, for finite q. 

As already discussed, as disorder increases we see the signature of all the 
spin-waves in the dynamical susceptibility. This is also true for the Goldstone 
mode, hto = 0. In the ordered case, coupling to this mode occurs only for a 
homogeneous field q = 0, in which case xo(0,w) = SMUFor any other 
value of q, Xo(<fi 0) = 0 (see previous section). In the disordered cases, however, 
coupling to the Goldstone mode is seen for all finite values of q as well. This is 
not apparent for the results shown so far, since they correspond to a finite value 
of 7] which removes the singularity. However, in Fig. 6.6 we plot log[x(<f, to)} 
versus Juo on logarithmic energy scale for three individual disorder realizations, 
for Tj = 0. From the linear behavior log[x(<f, u>)\ ~ — log[?m;] in the Juo —• 0 
limit, we conclude that the dynamic susceptibility in the disordered cases has 
an asymptotic limit of the type a/{Tito). Fig. 6.6 also confirms that increasing 
levels of disorder lead to a wider spectrum of finite-energy spin-waves, at both 
lower and higher energies. 

Fig. 6.6 also shows that for a finite q, the value of a decreases with decreasing 
disorder, as expected since in the ordered case we must have a = 0 (no coupling 
to the Goldstone boson for finite q, and therefore no to —* 0 singularity). The 
value of a can also be inferred for the curves corresponding to finite n values, 
since in that case the singularity a j'{Tuo + in) saturates to a value a/r? as to —» 0. 
For example, in Fig. 6.3 corresponding to q = 0, one can see that a —> Sun 
as the amount of disorder is decreased. On the other hand, Fig. 6.5 shows 
that for a given disorder realization, the value of a decreases as q is increased 
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Figure 6.7: log[x/(g,w)] for values of q, p and a; as in Fig. 6.6 and different n 
values. Curves are for individual disorder realizations. 

(upper panel), converging to a finite value ctf for large q (lower panel). Later 
on we discuss finite-size effects, and demonstrate that the value a/ increases 
with the system size (for example Fig. 6.9). This strongly suggests that the 
coupling to the Goldstone mode is a bulk effect. It can only be prevented from 
observation by a finite spin-wave lifetime corresponding to a finite value of rj, as 
demonstrated in Fig. 6.7. The effect of a finite r\ value is to remove the Gold
stone mode singularity and to decrease and broaden the peaks corresponding to 
coupling to the finite-energy spin-waves. 

In Fig. 6.8, x/(<?î ) is shown for two different sizes, TV = 15 (Nd = 125) 
in the upper panel and N = 18 (TVd = 216) in the lower panel. For each size 
the number of spin-wave excitations is equal to Nd. In order to have averages 
over similar numbers of spin-waves, we average over 20 and 40 different Mn 
spins configurations for N = 18 and TV = 15 respectively. In both cases we 
see excitations near Tuo ~ 5 meV. These excitations are related to high energy 
localized modes in the spin-wave DOS associated with nearest-neighbor Mn 
clusters [15], signalled by a peak in the DOS of Fig. 6.1. It is apparent that 
only a few peaks occur close to the lower and upper energy cut-offs, where 
the spin-wave density of states goes to zero. On the other hand, many peaks 
with large amplitude appear in the energy range where the DOS is maximum. 
All these facts show that the dynamical susceptibility calculated here is fully 
consistent with the spin-wave spectrum observations, discussed in Ref. [15]. 

In Ref. [15], the importance of size effects regarding the spin-wave states has 
been studied by examining three different sizes, TV = 15,18 and 24. The overall 
size-effects on the spin-wave DOS was found to be negligible as the DOS curves 
for these three sizes are very similar to one another (see Fig. 6.1). One size effect 
is that increase in the size TV shifts the lower cutoff of the spin-wave spectrum 
to lower values of energy. These observations are consistent with our results for 
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Figure 6.8: Xf f ° r t w o system sizes, at T = 0. The upper panel is for 
N = 15, Nd = 125 Mn spins and q = f f (§, §, f). The lower panel 
is for N = 18, Nd = 216 Mn spins and q= f f (§, | ,0) . All samples 
have x = 0.00926 and p = 10%. 

the dynamical susceptibility. Since different sizes have different allowed tf-values, 
consistent with their boundary conditions, it is not possible to compare x(<fi w) 
for two different size for the same value of q. However, as we mentioned before, 
in the fully-disordered case, the susceptibility is roughly independent on q for 
large enough values, and therefore we can make meaningful comparisons. The 
curves in Fig. 6.8 show very similar values for the dynamical susceptibilities 
corresponding to two different system sizes, implying small finite-size effects. 
On a logarithmic scale, we can also clearly see the the lower cutoff in energy 
shifts to lower values for larger system sizes (see Fig. 6.9). Thus, we find full 
agreement with the expectations based on the spin-wave DOS investigation. 
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Figure 6.9: X/(<f,w) f ° r t w o system sizes, at T = 0. The upper panel is for 
TV = 18, Nd = 216 Mn spins and q = £ ( ± , 0,0). The lower panel 
is for N = 24, Nd = 512 Mn spins and q = £ ( § , 0 , 0 ) . All samples 
have x = 0.00926 and p = 10%. 

6.2 Static Magnetic Susceptibility 
In this section we study the effects of disorder on the static magnetic suscep
tibility and its temperature dependence. The majority of the data is for a 
concentration x = 0.092. The disorder is characterized by the minimum dis
tance dmin allowed between any two Mn spins, 0.5 < dmin < 3. The cases 
dmin = 3, respectively dmin =0.5, correspond to the fully ordered, respectively 
fully disordered configurations. 

The method to compute the longitudinal susceptibility X M n ( * ) of the Mn spin 
at each site i = l,..,Nd was described in Section 4.3. Here, when comparing 
susceptibilities for the same concentration x, we define x = S i X M n ( i ) / N d , i.e. 
express susceptibilities in units of 4x(g^a) 2/a 3. When comparing results for 
different concentrations x, we will show Xtotai 

/x, which is therefore measured 
in x-independent units of 4(gp B ) 2 /a 3 . 

The computation based on solving Eq. (4.67) can only be efficiently used for 
smaller samples (up to Nd « 125), since the calculation of the matrix elements 
Rij in equation (4.67) becomes very time-consuming as the number of spins in
creases. For larger samples we use another method to calculate the longitudinal 
susceptibility, based directly on the definition 

X* S"«~SMn (6.1) 
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where S^n and Sun are the average spin with and without the static magnetic 
field. These quantities can be directly computed self-consistently through iter
ations, as described in Section 3. Again, we measure x m units of 4x(g/j,B)2/a3. 

The only issue for using definition (6.1) directly is related to the proper 
value for H to be used,, and the proper choice for the self-consistency criterion 
for a small but finite H. The definition (6.1) become precise for H —> 0, which 
suggests that we should use very small values for H. In turn, however, this 
requires the computation of 5 M I J and S^n to very high accuracy, so that the 
errors in the nominator of Eq. 6.1 are small relative to the small value of H in the 
denominator. We have found that we obtain good agreement between the two 
methods if we choose H = 10 - 4 meV and we define the self-consistency condition 
to be that the variation of the total magnetization in successive iterations is less 
than 10 - 6 . Even though achieving such a stringent criterion for self-consistency 
is quite time consuming, this method is still more time-efficient than the one 
described previously if the system size increases to Nd ^ 500. 

Similar to the previous section, we adopt the notation Xw(T), Xm(T) and 
Xf{T) for susceptibilities of systems with weak, moderate and full disorder, while 
Xo(T) is the susceptibility of the ordered Mn spin configuration. In Fig. 6.10 we 
show Xo(T) and Xw{T) in the upper panel and Xw{T), Xm(T) and Xf(T) in the 
lower panel for sample size N = 18 and x = 0.092. The insets focus in on the low-
temperature range. In order to reach to bulk limit, for each one of Xw(T), Xm(T) 

and Xf{T) we have taken an average over 30 different disorder realizations. As 
previously discussed, the susceptibility for the ordered Mn configuration has a 
singularity at Tc. For both T <TC and T > Tc, Xo(T) decreases monotonically 
to zero. The disordered configurations, however, have two distinct peaks in 
the static susceptibilities: one is marking the critical temperature T c , as in the 
ordered case. The second peak appears at very low temperatures, T <§; Tc, and 
can be best seen in the insets. With increased disorder, this peak has increased 
weight and amplitude, and shifts to lower temperatures. This low-temperature 
peak is due to the quasi-free Mn spins which appear in the disordered samples. 
These are spins which are far from the regions where the holes are located, 
and therefore their effective magnetic field Hi [Eq. (3.11)] is extremely small, 
Hi <S ksTc- For temperatures k^T > Hi, they behave like free spins, with a 
susceptibility Xi(T) ~ 1/T. The sum of these contributions explains the raise in 
susceptibility as T is lowered well below Tc. However, as T becomes comparable 
or less than Ht, these spins order feromagnetically and are frozen out. This 
results in x —> 0 as T —> 0, and explains the appearance of this low-temperature 
peak. With increased disorder, there are larger fluctuations in the distribution 
of holes in the system. As a result, more spins become weakly-interacting, and 
their effective fields Hi have a broader spectrum extending to lower values, 
explaining the increase in peak amplitude and its shift to lower temperatures. 

The peak appearing in x(7") at high temperatures marks the phase transition 
T w Tc, as expected. As observed previously [7, 11, 14], increased disorder leads 
to higher critical temperatures; this trend is clearly seen here, since the second 
peak in the static susceptibility shifts to higher temperatures for higher levels 
of disorder. It is important to notice that as disorder is increased the second 
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peak broadens and has a smaller magnitude. As we show in the following, the 
reason for these two effects is due to the formation of clusters. The spins with 
the largest contribution to this high-T peak are the strongly-interacting spins, 
from the regions (clusters) where the holes are located with a large probabil
ity. Consequently, they have very large effective magnetic fields Ht and order 
magnetically at high temperatures. With increased disorder, the fluctuations 
in the local concentration x of Mn spins are larger, implying a wider range of 
temperatures where the phase transition is taking place. 

We now proceed to substantiate these claims based on our numerical data. 
First it should be noticed that the susceptibilities shown in Fig. 6.10 are av-
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Figure 6.11: Left: the Mn and hole susceptibilities for a single disorder real
ization. Right: average Mn and hole magnetizations for the same 
disorder realization.7Vd = 512, x = 0.00924, p = 0.10. 

erages over multiple disorder realizations; the susceptibility x{T) f ° r e a c n indi
vidual Mn configuration looks rather different. For finite size samples as large 
as N=24, x(T) for each individual disorder realization shows several peaks at a 
few temperatures in the Tp < T < Tc range, as shown in Fig. 6.11 for a fully 
disordered configuration (Tp is the temperature below which the holes become 
fully polarized. The right panel shows the self-consistent average spin (Sun) 
and hole (sh) magnetizations for the same Mn configuration). Such peaks ap
pear in both the Mn and hole susceptibilities. They are symmetrically placed 
and of opposite sign. The peaks in Xhole are smaller (by roughly p = 10%). As 
explained briefly in section 4.3, even though the external magnetic field is in the 
opposite direction to the hole polarization, holes become more polarized in the 
presence of such a field due to their strong anti-ferromagnetic coupling to the 
Mn spins. This is the reason why Xhole is negative. Furthermore, since holes 
are fully polarized for T <TP, Xhole is zero in this range. 

The number of peaks and the temperatures at which they occur in the 
Tp < T <TC range, are different for different disorder realizations. By compar
ing magnetizations and susceptibilities curves it can be seen that the highest 
temperature peak in susceptibility always occurs exactly at the mean-field Tc. It 
is also perceived that these peaks are in fact singularities in the static suscepti
bility because they become substantially sharper if the self consistency criterion 
is made more stringent. 

The origin of these peaks can be inferred from examining the values XMn(i) 
at different sites, i = l,...,Nd, at temperatures where peaks form. We find 
that the peaks are not due to contributions from all sites i = 1, ...,Nd- Instead, 
each peak is only due to contributions of a distinct group of Mn spins which 
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Figure 6.12: Left panels: total susceptibility of two different disorder realiza
tions, near Tc. Parameters are TV = 15, x = 0.00934, p = 0.10. 
Right panels: magnetizations 5 M I I ( * ) of spins belonging to different 
clusters (shown with different colors) which order at temperatures 
where x has peaks. 

are placed in close spatial vicinity to one another. Such a group of Mn spins 
can be referred to as a cluster. Mn belonging to a cluster can be identified by 
examining which of the XMn(i), ' = !>•••! TV<i show substantial contribution to 
each peak of x- I n Fig. 6.12, we show the average magnetizations S M I I W for 
several Mn spins belonging to different clusters (shown in different colors), for 
two individual full disorder realizations (right panels). The total susceptibilities 
X for these two individual Mn configurations are shown in the left panels. We see 
that the critical temperatures of individual clusters are equal to temperatures 
where x has peaks. The critical temperatures of different clusters are directly 
related to their local densities. Even though it is not shown here, we find 
that the local hole polarization inside a cluster also becomes finite below its 
critical temperature. In other words, these peaks mark the temperatures where 
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Figure 6.13: Static susceptibility for five types of disorder, characterized by the 
minimum distance allowed between Mn spins, d m ; „ . Each curve is 
for one disorder realization (not the bulk limit). All samples have 
TV = 24, x = 0.00926 and p = 10%. 

individual strongly-coupled clusters order magnetically. 
Strictly speaking, the critical temperature Tc of a sample is not the mean-

field temperature where the most strongly-coupled cluster starts to polarize. 
Instead, several magnetized clusters must appear all throughout the sample, 
and correlations between their magnetizations must be established (through 
exchange of polarized holes) before long-range magnetic order develops. This 
implies that in real samples, this broad peak should extend up to a tempera
ture T* > Tc below which strong local ferromagnetic correlations, i.e. locally 
polarized clusters, exist, even though correlations between the magnetizations 
of different clusters are destroyed by fluctuations. 

In Fig. 6.13 we show x ( T ) for five different disorder realizations correspond
ing to different minimum allowed distances between Mn spins, dmin. Parameters 
are TV = 24 and x = 0.092. The range in which the phase transition occurs as 
well as the number of peaks becomes smaller for lower degrees of disorder (more 
homogeneous samples). For the lowest level of disorder, \w, results for different 
individual Mn configurations are very similar to each other and only show one 
peak at Tc. We have also found that for individual Mn configurations, the num
ber of peaks near Tc increases with system size. For example for full disorder 
realizations and x = 0.092, the number of peaks for TV = 18, 21 and 24 are 
usually around 2-3, 4-5 and 5-6 respectively. This is as expected, since larger 
systems typically have more clusters and a wider distribution of local densities. 
It follows that for larger sizes, the bulk limit can be reached by averaging over 
fewer different Mn configuration. In Fig. 6.14 we show Xf f ° r t w 0 s i z e s TV = 18 
and 21. In order to reach bulk limit for TV = 18 and 21 curves we have taken an 
average over 30 and 10 different disorder realizations, respectively. The curves 



Chapter 6. The effect of disorder: numerical results 50 

JO I 

20 

10 

nl 1 1 1 1 . 1 1 1 
0.4 0.5 0.6 0.7 0.8 

kT/J 

Figure 6.14: Xf(T) near Tc for two different sizes N=18 and 21. Curves are 
in bulk limit, corresponding to averages over 30, respectively 10 
disorder realizations. Parameters are x = 0.00926 and p = 10%. 

we obtain exhibit single broad peaks and are similar to one another, proving 
that size effects in Xf{T) are negligible for N > 18. 

Finally, in Fig. 6.15 we show Xf(T) for three different concentrations x = 
0.02, 0.03 and 0.04 in 4(gp,h)2/a3 units. This figure corresponds to individual 
disorder realizations, however the bulk limit is not hard to visualize. Increased 
concentration was shown to increases the critical temperature [7], and this is also 
seen here as the highest temperature peak in Xf shifts to higher temperatures 
with increasing x. However, for larger x we find fewer peaks in a smaller range 
of temperatures near Tc. This is because for higher x the fluctuations in the 
local concentrations are smaller, reducing the amount of clustering. Therefore 
in bulk limit we expect to see a decrease in the width of the phase transition 
peak as we go to higher concentrations. 
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Figure 6.15: Xf(T) for three different concentration x = 0.02, 0.' 
Curves are not in bulk limit. For all curves p = 10% 

03 and 0.04. 
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Chapter 7 

S u m m a r y a n d C o n c l u s i o n s 

In this thesis we studied static and dynamical susceptibilities for DMS at low 
concentrations, using an impurity band model. Susceptibilities were found to 
be strongly sensitive to positional disorder of Mn spins. 

The transverse dynamical susceptibility x(g, w) was considered as a function 
of energy hco, for various wave-vectors q consistent with the boundary conditions 
of the Mn supperlattice. The behavior uncovered is in agreement with that 
expected from the evolution of the spin-wave DOS spectrum: for a fixed value 
of q, disorder shifts the weight to lower energies and into a broader peak relative 
to the sharp peak present in an ordered system at the appropriate spin-wave 
energy. Disorder also changes the q dependence of x(<Z, w): for fully disordered 
Mn configurations and finite q, the susceptibility becomes roughly independent 
of the wave-vector. 

The static susceptibility was studied as a function of temperature for vari
ous levels of disorder. The positional disorder was shown to shift considerable 
weight to low temperatures and to substantially broaden the high temperature 
peak signalling the phase transition. The weight at low temperature is linked 
to the paramagnetic-like contribution of the quasi-free Mn spins. The broaden
ing of the phase transition peak is due to magnetic clustering, since clustering 
was shown to be responsible for the gradual phase transition over a relatively 
wide range of temperature (of order of O.U), as different regions of the sample 
become magnetically ordered. The effects of disorder are less important as the 
concentration x increases and the local fluctuations in Mn density decrease. 

In conclusion, it can be perceived from these results that the inhomogeneous 
nature of the ferromagnetic state of DMS in the low concentration regime leaves 
its mark on the magnetic susceptibilities. Its signatures should be clearly seen, 
and would help validate the impurity band model once measurements of these 
quantities are performed experimentally. 
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