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The University of British Columbia 
Vancouver, BC Canada 

g r a d . u b c . c a / f o r m s / 9 f o r m l D = T H S page 1 of 1 last updated: 20-Jul-04 



Abstract 

Systematic error due to possible unmeasured confounding may weaken the validity of findings 

from observational studies investigating the effects of exposures on disease. Because study sub­

jects are assigned to exposure levels in a non-random way, hidden differences between exposure 

groups may bias effect estimates in a way which is difficult to predict. A solution is to conduct 

a Bayesian sensitivity analysis (BSA) which incorporates uncertainty about unmeasured con­

founding into the analysis as prior distributions on bias parameters. Markov chain Monte Carlo 

techniques can then be used to summarize the posterior distribution of the exposure effect given 

the data and prior belief's about unmeasured confounding. We consider B S A in the context of 

logistic regression models for a binary exposure, binary outcome, binary unmeasured confounder 

and covariate vector. Because the resulting model is not identifiable, standard theory governing 

the large sample behaviour of posterior distributions cannot be applied, complicating an evalu­

ation of the performance of B S A . However, using two simulation studies, we demonstrate that 

if the prior distribution for the analysis of datasets from a sequence of observational studies ap­

proximates the distribution from which study parameters arise, then the coverage probabilities 

of B S A 95% credible intervals will be approximately 95% when averaged over many studies. 

Moreover, we demonstrate that B S A credible intervals tends to yield greater coverages proba­

bilities of the true exposure effect compared to methods which ignore unmeasured confouding. 

As an example, we investigate the effect of possible unmeasured confouding on risk of elevated 

triglyceride levels among HIV infected persons treated with protease inhibitors. 
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Chapter 1 

Introduction 

Confounding can bias estimation of model parameters in observerational studies investigating 

the effect of exposures on disease in human populations (Szklo and and Nieto (1999)). Because 

study participants are not assigned to exposure levels using randomization, exposed subjects 

may be more predisposed to the outcome than no exposed subjects because of baseline dif­

ferences in risk factors for the outcome. Consequently, the observed exposure effect will be a 

mixture of the effect of the exposure and the effect of the confounder (Rothman and Greenland 

(1999)). 

For a variable to be a confounder, it must have three properties: It must be a risk factor 

for the disease; It must be associated with the exposure; and it must not be an intermediate 

variable between exposure and disease (Szklo and and Nieto (1999), Rothman and Greenland 

(2004)). A n example presented by Gordis (2004) involves the effect of coffee drinking on cancer 

of the pancreas. In such an investigation, smoking might be a potential confounding variable. If 

we assume: firstly, smoking is a risk factor for pancreatic cancer; secondly, smoking is associated 

with coffee drinking; thirdly, smoking is not caused by coffee drinking. Then by comparing a 

group of coffee drinkers and non-coffee drinkers without taking smoking into consideration, the 

association between coffee drinking and risk of pancreatic cancer would be biased because coffee 

drinkers are more likely to smoke, and are therefore at greater risk of pancreatic cancer. 
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Control for confounding is accomplished using analysis techniques which involve strat­

ification (Rosenbaum (2002). This proceedure is to compare exposed and unexposed subjects 

who appear similar with respect to measured convariates. If all confounding variables have 

been identified, then exposed and unexposed subjects in each strata can be treated as if they 

have been randomized into exposure levels. Multiple regression techniques including logistic 

regression are an example of stratified analysis (Rothman and Greenland (1998)). The imple­

mentation of regression methods is straightforward and there is a variety of software available. 

However, adjustment for measured confounders does not rule out unmeasured confound­

ing. Because study subjects are assigned to exposure levels in a non-random way, hidden 

differences may also be induced between exposure groups which cannot be adjusted for in the 

analysis. If these differences affect the outcome under study, then effect estimates will be biased 

in a manner which is difficult to predict. A popular solution is to conduct a sensitivity analysis 

wherein the model of the relationship between exposure and disease is expanded to include 

bias parameters which reflect the investigator's assumptions about unmeasured confounding. 

If the exposure effect estimates are insensitive to a broad range of bias parameter values, then 

concerns about unmeasured confounding are ameliorated. 

Sensitivity analysis was first proposed in the 1950's during the debate over the possible 

role of hidden confounders in the observed effect of tobacco smoking on the risk of lung cancer 

(see Cornfield, Haenszel, Hammond et al. (1959)). The method has seen later development 

by a numerous authors, including, Bross (1966), Schlesselman (1978), Rosenbaum and Rubin 

(1983), Yanagawa (1984), and Lin , Psaty, and Kronmal (1998). The books of Rothman and 

Greenland (1998) and Rosenbaum (2002) give in-depth coverage of the topic. 

Most sensitivity analysis is characterized by the use of models of unmeasured confound­

ing which are not identifiable, in the sense that bias parameters cannot be estimated consistently 

using the available data. For example, Schlessleman (1978) proposes a model relating the ob­

served relative risk to the true relative risk acting under the influence of the confounding effect 

of an unmeasured dichotomous variable U. His model incorporates three bias parameters: the 
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relative risk of disease due to U, the prevalence of U in the exposed group and the prevalence 

of U in the unexposed group. But since U is never observed to begin with, estimating any of 

these three quantities is not possible. 

Early pioneers in sensitivity analysis sought to overcome the challenge non-identifiability 

by using information external to the study to specify a range of possible values for the bias 

parameters. The investigator is then free to plug in parameter values, rendering the model 

identifiable. The remaining model parameters including the exposure effect can then be es­

timated using standard inference techniques. But such "externally adjusted" estimates suffer 

from the obvious limitation that different choices of bias parameters may result in different 

effect estimates depending on where information on bias parameters is obtained. Rosenbaum 

and Rubin (1983) use a more conservative approach which involves presenting effect estimates 

in tabular format using a range of possible bias parameters. 

But this strategy also has limitations. The resulting tables are unwieldy and burden the 

presentation of results. Lash (2003) notes that since existing custom in the biomedical literature 

does not demand a quantitative assessment of systematic error due to unmeasured confounding, 

authors who struggle to meet space restrictions find the inclusion of such tables unappealing. 

One can also argue that specifying ranges of bias parameters may yield conclusions which are 

unnecessarily pessimistic. Investigators tend to focus on effect estimates derived from the most 

extreme bias parameters under consideration. What is lost is the fact that small biases are 

often more plausible than large biases. 

Bayesian methods are well suited to sensitivity analysis because beliefs about the mag­

nitude of unmeasured confounding can be incorporated into the analysis as prior distributions 

on bias parameters. The posterior distribution of the exposure effect yields a single summary 

which quantifies uncertainty due to unmeasured confounding in addition to random error. This 

approach makes effective use of all available information and more accurately captures the levels 

of bias that can be induced by unmeasured confounding. 

A related method is Monte Carlo Sensitivity Analysis (MCSA) for quantifying uncer-
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tainty due to systematic error in observational studies (Greenland (2001, 2003, 2005), Lash 

and Fink (2003) and Philips (2003)). The M C S A procedure is implemented as follows: First, 

the usual non-identifiable model is obtained which is indexed by a set of bias parameters. The 

investigator then specifies a distribution for the bias parameters and samples from this distri­

bution repeatedly. Each random draw of bias parameters is substituted into the model to yield 

a corresponding effect estimate. The resulting distribution of effect estimates is conveniently 

summarized to yield an interval of values for the exposure effect which quantifies possible sys­

tematic error. Sampling variability can also be incorporated into the sensitivity analysis by 

using resampling techniques or methods based on the standard error of the effect estimates. 

(See Greenland (2001, 2005) for more details). 

M C S A shares many of the benefits of Bayesian approaches to sensitivity analysis and has 

the intuitive appeal of attempting to capture prior beliefs about bias parameters in a distribution 

rather than a range of values. M C S A implementation is somewhat less technical than Bayesian 

methods and sidesteps the difficulties of Markov chain Monte Carlo sampler convergence. But 

the difficulty is that the approach is not fully Bayesian, in the sense of applying Bayes rule to 

incorporate prior beliefs about unmeasured confounding into the analysis. Greenland (2001) 

notes that M S C A intervals cannot be interpreted as frequentist confidence intervals, in the sense 

of proper 95% coverage over repeated sampling. A Bayesian interpretation of M C S A intervals 

may also be problematic because the M C S A distribution of effect estimates is not necessarily 

coherent with prior beliefs about systematic error. Consequently, interpreting M C S A intervals 

may be challenging because of difficulties in assessing their coverage and optimality properties. 

Bayesian approaches to sensitivity analysis have been the topic of a number of recent 

articles including Robins, Rotnitzky and Scharfstein (1999), Greenland (2001, 2003, 2005), 

Scharfstein, Daniels and Robins (2003), Oakley and O'Hagan (2004) and Steenland and Green­

land (2004). The approach of Greenland (2003) involves a dichotomous exposure X, outcome 

Y and unmeasured confounder U, where subjects are classified on X and Y in a standard 2 

x 2 table. Greenland considers the unmeasured 2 x 2 x 2 table which is further stratified 
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over levels of U and models the expected cell counts using a log-linear model with parameters 

modeling the dependence and interaction between X, Y and U. His method might benefit 

further if measured covariates could be included in the analysis. 

Accordingly, we consider Bayesian sensitivity analysis in the context of a binary ex­

posure X, binary outcome Y, binary unmeasured confounder U and covariate vector Z. In 

Chapter 2, we present a model for unmeasured confounding using logistic regression models 

and include a discussion of prior specification for bias parameters and a posterior simulation 

using Markov Chain Monte Carlo methods. Chapter 3 discusses the results of two simulation 

studies which evaluate the performance of B S A relative to other methods of analysis which 

ignore unmeasured confounding. As an example of the method, Chapter 4 presents the imple­

mentation of B S A in a secondary analysis of a recent study which identified large increases in 

plasma triglycerides among HIV-infected persons treated with protease inhibitor. Chapter 5 

concludes with a discussion and directions for further research. 
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Chapter 2 

Bayesian Sensitivity Analysis 

2.1 A model for unmeasured confounding 

Let X, Y and U denote dichotomous variables taking values 1 or 0 to indicate the presence or 

absence of an exposure, disease or unmeasured confounder. Let Z denote a covariate vector 

with components which may be discrete or continuous. 

If we assume that associations between X, Y and U are not causal effects of X or Y 

on U, then U will be a confounder if (1) U and Y are conditionally dependent given X, (2) U 

and X are conditionally dependent given Y (Rothman and Greenland (1995)). To model these 

dependencies, we specify the joint distribution distribution of X, Y, U and Z as 

P(Y, X, U, Z) = P(Y\X, U, Z)P(U\X, Z)P{X, Z). (2.1) 

Previous models of unmeasured confounding with a dichotomous outcome, exposure, 

and confounder employ logistic regression models (Rosenbaum (2002), Lin , Psaty, and Kronmal 

(1998)). We follow in the same spirit letting 

logit[Pr(Y = 1\X,U,Z)] = a0 + aiX + XU + Zp, (2.2) 

logit[Pr([/ = l L Y , Z ) ] = 70 + 7 1 * (2-3) 

A few comments are in order. First, we assume that X and U do not interact in their 
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influence on Y. Extending equation (2.2) to include interaction terms is straightforward, but 

creates confusion about the targets of inference. Adding a term such as w..+a<iXU+..n to 

equation (2.2) would imply that both a\ and 012 govern the effect of X on Y and therefore a 

study of the exposure effect would need to consider each parameter separately, or some defensible 

average of the two. Interaction terms also requires the elicitation of additional prior distributions 

for non-identifiable parameters which may be challenging. Greenland (2003) discusses these 

issues in a similar setting and argues that including interaction terms has only a modest effect 

on inferences obtained from sensitivity analysis. 

Additionally, note that Equation (2.3) assumes that U and Z are conditionally indepen­

dent given X. This assumption is technically incorrect because if U and Z are both confounders 

of the association between X and Y, then this implies that U and Z must be conditionally 

dependent given X (Hernan and Robins (1999)). However, provided that Z is only weakly 

associated with X, equation (2.3) may be considered an adequate approximation. 

As with other models for unmeasured confounding, our model is non-identifiable and 

indexed by a set of bias parameters 70, 71 and A which reflect assumptions about the confounding 

effect of U. The quantity exp(A) is the conditional odds ratio of the association between U and 

Y given X and Z , and the quantity exp(7i) is the conditional odds ratios of the association 

between U and X given Y and Z. Similarly, the prevalences of U in the unexposed and exposed 

groups are given by ^ ^ ^ ^ and t ^ ^ 7 ^ + 7 1 ) • Non-identfiability is apparent from the fact that 

any two pairs of bias parameters (A, 70,71) 0 = (0, a, b) or (A, 70,71)' = (0, —a, —b) yield identical 

likelihoods for the observed data. To illustrate, first notice that among subjects with exposure 

X and covariate Z, the risk of disease is an average of the unobservable [/-specific risks of 

7 



disease. This average is given by 

P(Y = 1\X,Z) = P{Y = 1\X,U = 1,Z)P(U = l\X,Z) + 

P(Y = l\X, C/ = 0, Z)P{U = 0 | X , Z) 

exp(a0 + aiX + A + Z'B) \ ( exp(70 + 71) ) 

1 + exp(a0 + a i X + A + ) \ 1 + exp(70 + 71 

exp(a0 + " i X + Z'B) \ ( 1 
_ 1 + exp(cv0 + OiXX + y V1 + exp( 7 o + 7 l ) 

But now we see that substitution of either (A, 70,71)° or (A, 70,71)' into the above expression 

yields identical expressions for the marginal risk of Y. For (A, 70,71)° = (0, a, b), we have 

P(Y = 1\XZ) = ( e x p ( Q ° + m X + 0 U + \ ( e x P ( a + b M I 
1 1 ' ] \l + eM<xo + <xiX + QU + Z'P)J \l + exp(a + b)J 

exp(a0 + aiX + Z'B) \ f 1 
, 1 + exp(o;o + a\X + Z'B) J \ 1 + exp(a + b) 

and for (A, 70,71)' = (0, —a, —b) we have 

P(Y = 1\XZ) = ( e x p ( Q ° + a i X + 0 U + Z'8) \ ( e x P ( - a + -fr) . 
1 1 ' ' Vl+exp(a 0 + c k i * + 0<7 + Z'/?)y V l + exp(-a + - 6 ) / 

exp(a0 + OLXX + Z'B) \ ( 1 
, 1 + exp(a0 + ctiX + Z'B) J \ 1 + exp(-a + -b), 

These two expressions are identical. Hence two different sets of bias parameters yield the 

same distribution for the observed data. Distinguishing between either set of parameters is not 

possible implying that the model is not identifiable. 
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2 . 2 Prior specification 

Since ao,ai,(3 are the primary parameters of interest and do not govern the confounding be­

haviour of U, each is assigned a non-informative prior distribution which is independent normal 

with mean zero and variance equal to ten. Such a distributions asserts that, a priori, each 

parameter lies between ±1.96v/10 on the log odds scale with 95% probability or equivalently, 

between exp(-1.96\/T0) « 1/500 and exp(1.96\/l0) « 500 on the odds scale. 

For suitable values of ci, C2 and C3, we assign informative prior distributions for the bias 

parameters A, 70, and 71 as follows. Let 

represent the prior belief about the association between U and Y. The density /(A) is sym­

metric and centered at zero to reflect the fact that nothing is known about the direction of the 

association between U and Y. The variable U is not simply unmeasured but is also unknown 

and therefore little can be said about whether A is positive or negative. But this fact does not 

preclude a priori assertions about the possible magnitude of A. Large biases are unlikely since 

covariate information on strong risk factors for Y is usually collected at the design stage. Con­

sequently, we can specify the parameter c\ to restrict prior beliefs about the possible magnitude 

A prior distribution for 70 and 71 is assigned on the truncated bivariate normal distri­

bution 

To understand this choice of prior, ignore the restriction 71 > 0 for the moment and consider a 

prior distribution on the entire bivariate normal density. We then have Var(7o)=C2, Var(7i)=C3 

and Var(7o+7i)=Var(7o)+ Var(7i)+2Cov(70,7i)= c 2 +C3-2c 3 /2 = c2. Therefore, c3 limits the 

strength of the possible association between U and X. The parameter c2 restricts the possible 

/(A) oc exp 

of A. 

for 71 > 0. ' (2.4) 



magnitude of 70 and 70 + 71 and consequently, the exposure-specific prevalences of U which are 

given by ̂ x̂ o) a n d .l+ex̂C+̂i)" N o t e t'iat
 ^ s p r i o r distribution asserts that 70 and 71 are 

dependent a priori. 

Imposing 71 > 0 changes the prior variances of 70, 71, and 70 + 71, but does not affect 

on the resulting posterior distributions for the exposure effect OL\. The reason for this is that 

U is unobserved and hence the labeling U = 1 or U = 0 is somewhat arbitrary. Without 

the requirement that 71 > 0, we have an identifiability problem in which different sets of bias 

parameters result in an identical distribution for Y given X and Z except for a switching of 

the labels U = 1 and U = 0. To see why this is so, recall that given exposure X and covariates 

Z, the distribution of Y can be written as 

P(Y = 1\X,Z) = P(Y = l\X,U = l,Z)P(U = l\X,Z) + 

P(Y = 1\X, U = 0, Z)P(U = 0\X, Z) 

exp(a0 + ctiX + A + Z'B) \ ( exp(7o + 71) f 

1 + exp(a0 + ct\X + A + Z'B) J \ 1 + exp(7o + 71 

exp(cv0 + axX + Z'B) \ ( I \ ( 2 5 ) 

k 1 + exp(a0 + a\X + Z'B) J \ 1 + exp(7o + 71; 

But suppose that we instead define the unmeasured confounder as U* = 1 — U, by switching 

the labels of U. If we used the choice of bias parameters (A, —70, —71), then the distribution of 

Y", averaged over U*, would be written as 

P(Y = 1\X,Z) = P{Y = \\X,U* = 1,Z)P(U* = 1\X,Z) + 

P(Y = 1\X, U* = 0, Z)P(U* = Q\X, Z) 

= P(Y = 1\X,U = 0,Z)P(U = 0\X,Z) + 

P(Y = 1\X,U = 1, Z)P(U = l\X, Z) 

exp(a0 + axX + A + Z'B) 1 
1 + exp(a0 + aiX + A + Z'B) 1 + exp(-70 + -71) 

exp(a0 + a\X + Z'B) exp(~7o + -71) 

1 + exp(a0 + a\X + Z'B) 1 + exp(-7o + -71)' 

But this distribution is identical to the distribution in equation (2.5). 

+ 
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Hence requiring that 71 be greater than or equal to zero implies the a priori assumption 

that U is more prevalent in the exposed group than the unexposed group. The result is gains in 

efficiency of posterior simulation. The posterior distribution for the exposure effect a\ remains 

unchanged by this restriction. Therefore, the prior distribution in equation (2.4) can be seen 

as equivalent to the same distribution without the restriction 71 > 0. This logic permits the 

convenient interpretations of the parameters ci and C3 described above. For a related discussion 

on non-identifiability due to switching of parameter labels, see Shaffer and Chinchilli (2004). 

It should also be noted that there are at least two approaches to specifying prior dis­

tributions for bias parameters. Philips (2003) describes Bias-level sensitivity analysis and 

Target-adjustment sensitivity analysis. The former, proceeds by specifying a prior distribution 

for bias parameters, a priori, to yield a posterior distribution for the exposure effect which 

accounts for bias uncertainty. Target-adjustment sensitivity analysis operates in reverse. First, 

a posterior distribution is obtained which reflects only the usual random error. Then a family 

of prior distributions for bias parameters is identified, such that the respective posterior dis­

tributions for members of this family yield no clear decision about the effect of the exposure. 

If any member of this family is deemed a reasonable representation of prior belief's about bias 

parameters, then conclusions about the existence of an exposure effect in the original analysis 

can be more easily disputed. A n example of Target-adjustment sensitivity analysis is presented 

by Greenland (2003). Although our method is conducive to either approach, we favor Bias-level 

sensitivity analysis in this investigation. Philips (2003) notes that Target-adjustment sensitivity 

analysis is primarily concerned with assessing the plausibility of competing hypotheses. But 

this strategy may be less useful if investigator is interested in determining plausible ranges of 

the exposure effect. 
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2.3 Posterior simulation 

Let y, x and u denote vectors of length n of the observed responses, exposures and unmeasured 

confounders in n study subjects and and let z denote an n x p matrix of measured covariates. 

Our objective is to summarize the posterior distribution of the exposure effect given y, x and 

z and prior assumptions about unmeasured confounding described in Section 2.2. This can be 

accomplished via posterior simulation using Markov Chain Monte Carlo ( M C M C ) techniques 

that treat U as a latent variable which is integrated out of the joint posterior distribution of 

model parameters and U: 

f(a0,ai, A,/?, 70,71 ly) = J f(a0, au \ P, 7o, 7i, u\y)du. (2.6) 

Simulating from either f(a0,a-i,A, j3,70,71b) or f(a0,ai,A,/?,7o,7i,«|y) directly is 

challenging. Instead, we sample sequentially from the conditional distributions 

f(cto, ai, A, 3\jo,li,u, y), /(70,7i|"o, « i , A, 6, u, y), and f(u\a0, ai, A, /?,7o, 71, y). (2.7) 

This approach follows the general procedure of data augmentation which was first formalized 

by Tanner and Wong (1987), and can be shown to ultimately yield a sample from the desired 

posterior distribution /(fto, ct\, A, /?, 70,71, u\y). 

To sample from each of the conditional densities in equation (2.7), we begin with an 

expression for the joint distribution of y, u and model parameters 

f(y, O.Q, ax, A,/3,70,71, u) = f(y\a0, ax, A , 7 0 , 7 i » " ) /H7o , 7i)/(ao, \ P,7o, 7i) 

= yr [Y exp(^(a 0 + a\Xj + XUJ + Zjp)) \ f exp(ni(70 + 71^)) 

1A [ \1 + exp(a0 + aiXi + Xui + Zip)) \1 + exp(70 + 71^) 

/(a 0 ,ai ,A,/?,7o,7i,) (2-8) 

where yi and Ui denote the response and unmeasured confounder in the ith study subject, 

i e l , . . . , n . 

By conditioning appropriately, equation (2.8) yields unormalized expressions for each of 
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the conditional distributions in (2.7), 

n 

/(a 0,ai,A,/?|7o,7i.u,!/) K II 
i=l 
n 

/(7o,7i|ao,ai,A,/3,u,j/) oc JJ 
i=i 

exp(yj(g:o + aigj + Attj + ZjB)) 
1 + exp(a 0 + ctiXi + A ^ + Zj/3) J 

f(a0,au\,B), (2.9) 

exp(rti(7o.+ 7ia;i)) 

[ l + exp(7o +7i^i) 
/(70,7i), (2-10) 

1 + exp(ao + a i + Au* + Zij3) 

In equations (2.9) and (2.10), f (a.Q, ct\, \ B) and /(70,71) denote the prior distributions for 

ao,cci,/3, A, 70 and 71 which are specified in Section 2.2. 

Simulation from the desired posterior distribution, /(ao, cti, A, B, 70,71, u\y), can now 

be accomplished by simulating sequentially from each of the conditional densities (2.9), (2.10) 

and (2.11). Sampling from f(u\oto, a i , A, 70,71, y) is the most straightforward. Since Ui are 

dichotomous, the expression in equation (2.11) is easily normalized to yield the distribution of 

m given a0, ct\, B and j/j. 

exp(jyjA+7Q+7iXi) 

P(Ui = l|ao,ai,A,/3,7o,7i,2/i) - '-
( exp(O) \ , / exp(yjA+7Q+7i3:i) \ 
^l+exp(a 0 +a 1 +z i /3) j \l+exp(ao+ai+\+Zi0) J 

The Ui are conditionally independent given xt and model parameters, therefore sampling from 

the conditional density in equation (2.11) can be accomplished directly using a Bernoulli random 

variable. 

To sample from the conditional distributions f(ao, a\, A,/3|7o,7i, u, y) and /(7o,7i|o:o,  ai, 

X,B,u,y), note that both densities are simply the usual posterior distributions for logistic re­

gression. The expression in equation (2.9) is derived from the posterior distribution of a logistic 

regression of y on x, z and u. Equation (2.10) is obtained from a similar regression of u on x. 

Posterior simulation for logistic regression can be accomplished using the Metropolis 

Hastings algorithm with an independence sampler. (See Chib and Greenberg (1995) for an 

accessible introduction). The algorithm is an iterative procedure for sampling from a target 

density f(0) = ^p-, where k is an unknown constant of normalization. The implementation 

proceeds as follows: At iteration i, given a current sampled parameter value a candidate 
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value 9* is generated from a candidate generating density Q(6*) which possibly depends on 0W. 

We assign <— 9* with probability 

mm 
f(e*)Q(Q{i)) 1 

f(dW)Q(o*y 

(2.12) 

or assign < — #W otherwise. For a sufficiently large burn-in size k and simulation size M , 

Q(k+l\ Q(k+2\ ..., 0(k+M) constitute a dependent sample from the target density f(0). 

The choice of candidate generating density Q(9*) impacts the performance of the Metropo­

lis Hastings algorithm. For posterior simulation with logistic regression models, a common 

choice is an a multivariate normal density with mean equal to the maximum likelihood es­

timate of the model parameters and covariance matrix given by the inverse of the observed 

information. This candidate distribution is known to well approximate the posterior distri­

bution in large samples and yields high acceptance rates for candidate values. This choice of 

Q(9*) is an example of an independence sampler Metropolis Hastings algorithm because the 

candidate density does not depend on the current parameter values Another popular class 

of candidate distributions admits the so called random walk Metropolis Hastings algorithm. 

A n example is Q(9*) equal to a multivariate normal density, centered at 9^\ with a suitable 

choice of covariance matrix. At the ith iteration, a candidate 9* is generated consisting of 9^ 

plus noise. However, random walk Metropolis Hastings algorithms tend to perform poorly in 

logistic regression models, particularly for parameters of high dimension. Finding a suitable 

covariance matrix for the candidate density can be onerous with a poor choice leading to either 

high rates of rejection or slow movement movement through the target density. It is for this 

reason that independence sampler candidate distributions are popular for logistic regression. 

Adapting this idea in the present context, we use the Metropolis Hastings algorithm to 

sample from the conditional densities /(an,ai,A,/3|7o,7i,u,y) and /(70,7i|«o, A,/?,u,y). 

In both instances, a candidate density is obtained using a multivariate normal density with 

mean and covariance matrix obtained from fitting logistic regression models of y on x, z and u 

for the conditional distribution (2.9) and n o n i for the conditional density in (2.11). 

14 



To summarize, first let a 0

? ) , X^, P { i ), 7^, 7^ denote the sampled parameter values 

and let denote the simulated unmeasured covariate vector for n subjects at the i t h iteration. 

Simulation from the desired posterior distribution f{ao, a i , A, 8,70,71 |y) proceeds through the 

following five steps: 

1. Obtain starting values for the unknown parameters o$\ af\ X^°\ 8^°\ 7o°\ 7i°^ a n - d 

u^°\ Our method is to simulate the components of as Bernoulli(l/2) and then choose 

values for a 0 ° \ X^ and 8^> by regressing y on x, z, and and choose values for 

7o°̂  and 7^ by regressing on x. 

2. Generate a {j + 1 ), a {? + 1 ), X(i+i\ from / ( a 0 ) « i , A, 8\(^], 7^, u®, y) using the Metropo­

lis Hastings algorithm and a candidate generating density with mean and covariance ob­

tained fitting logistic regression of y on x, z and 

3. Generate 7 ? f r o m /(70,7i | a 0

i + 1 ) , a ^ + 1 ) , A ( i + 1 ) , u&, y) using the Metropo­

lis Hastings algorithm and a candidate generating density with mean and covariance ob­

tained by fitting logistic regression of on x. 

4. Draw from the conditional distribution f (u\(a (J + l ), af + 1\ X(i+1\ 8^i+l\7?'+1), 7? 

which can be determined exactly as outlined above. 

5. Repeat steps 2 through 4 a total of M + fc times where M is the desired number of 

posterior simulations and k is the number of burn-in iterations. 

6. Discard {u®\i 6 1 , . . . , M } to obtain {af ,af, X^, 8 ^ , ^ , \i € 1 , . . ,M}, a poste­

rior sample from the desired posterior distribution / ( a o , « i , A,/?,7o,7i|y). 

The sample a^\a^\ ..., a[ M^ is then a sample from the posterior distribution of the exposure 

effect given the data and prior beliefs about possible unmeasured confounding. We can see that 

the general procedure involves treating u as a latent variable which is simulated in Step 4 and 

then used to repeatedly fit logistic regression of y on x, u and z in step 2 to obtain a sample 
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from the posterior distribution of a\ as u is averaged over the prior distribution on the bias 

parameters A, 70 and 71 according to Bayes rule. 

The high acceptance rates of our choice of candidate generating distribution are advan­

tageous, but the scheme also has limitations. Iterative simulation through steps 2 to 4 requires 

fitting logistic regression models for each sampled value of it. This approach is very computa­

tionally intensive, particularly if standard regression packages are used. By writing a function 

in the R language which maximized the log likelihood using the Newton Raphson method with 

the ith sampled parameters as starting values for the maximization, substantial gains in speed 

were obtained compared to the glm() function. While slow posterior simulation is unlikely to 

be a problem for Bayesian sensitivity analysis of a single dataset, it is a major obstacles in the 

repeated analysis of simulated datasets. This issue is discussed in greater detail in Chapter 3. 

A more serious challenge is that the latent can periodically take on values which 

prevent fitting logistic regression on ifW. B y the very nature of the prior distributions speci­

fied in Section 2.2, the bias parameters A, 70 and 71 can occasionally take on extreme values 

depending on the choice of ci, C2 and C3 in equations (2.2) and (2.4). Extreme values of A or 71 

will yield values of wW which are highly correlated with the response or exposure respectively. 

Similarly, extreme values of 70 can result in values of with zero variation. Each of these 

instances can prevent fitting the regressions in steps 2 and 3 because the likelihood function 

cannot be easily maximized. Moreover, these events do not occur infrequently. Using a typical 

dataset of sample size 1000 with reasonable choices for c i , C 2 , and C3, regression model fitting 

fails about once out of every 50000 posterior simulations. 

Two possible solutions are implemented with good results. The simplest solution is 

to restrict the values to C\, c i and C3 thereby decreasing the prior probability of bias param­

eters which are large in magnitude. This method clearly has limitations because it prevents 

a sensitivity analysis involving large possible biases due to unmeasured confounding. A more 

complicated solution is to create an alternative procedure for assigning candidate distribution 

in steps 2 and 3. The Newton Raphson algorithm is an iterative procedure which maximizes 
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the log likelihood by attempting to obtain a sequence of parameter values which converge to a 

maximum. But this procedure will tend to fail if the second derivative of the log likelihood is 

small over the parameter space, as is typically the case if the variation of a covariate is small 

or if two covariates are highly correlated. In such instances the sequence of parameter values 

in the Newton Raphson algorithm may behave unpredictably and move rapidly away from the 

maximum to regions of the parameter space where the second derivative of the log likelihood 

tends to zero. A strategy for assigning a candidate distribution in steps 2 and 3 is carry out 

the Newton Raphson algorithm as usual, but condition on the values of the second derivative 

(or determinant of second derivative in the multivariate case). If the magnitude of the second 

derivative passes below some tolerance level, then fitting the regression is assumed to be not 

possible and an alternative scheme for assigning a candidate distribution is chosen. Our prefer­

ence is for a candidate distribution based on a random walk which samples each component of 

the regression model one at a time using a normal distribution and Metropolis Hastings steps. 

Regardless of the choice of candidate distribution at each M C M C iteration, we can compen­

sate appropriately by suitably modifying the Metropolis Hastings acceptance ratio. Hence the 

Markov property of the algorithm is preserved and convergence to the target distribution is 

guaranteed. Of course, the candidate distribution for the random walk component must be 

independently tuned to ensure a suitable acceptance rate. 
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Chapter 3 

Two simulation studies 

3.1 A simulation study using fixed parameter values 

To contrast the performance of Bayesian sensitivity analysis to other statist ical methods which 

ignore unmeasured confounding, we consider a comparison based on the analysis of simulated 

datasets. Datasets are simulated for three sample sizes, n =250, 1000, 4000, and two choices of 

fixed parameters 

0+ = ( a 0 , a i , A , / ? , 7 o , 7 i ) + 

= ( l o g (0 , l og ( £ ) , log ( £ ) , (log(2), - l o g ( 2 ) ) ' , l o g ( | ) , l og Q)) 

and 

6~ = (ao,ai,A,/?,7o,7i)~ 

= ( l o g ( | ) , log ( ? ) , - log ( ? ) , (log(2), - log(2))', log (jj) , log ( ? ) ) . 

In this setting, Z is a continuous vector of length 2 and the parameters 0+ and 6~ are chosen 

to yie ld reasonable prevalences of Y and U and dependencies between Y, X, U and Z. In 

particular, the following properties hold: 

• For [7 = 0 and Z = (0,0) ' the prevalence of the response Y i n the exposed and unexposed 

groups are exp(an + on)/(I + exp(an + a i ) ) = 60% and e x p ( a n ) / ( l + exp(ao)) = 40% 
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respectively. 

• The prevalences of the unmeasured confounder U in the exposed and unexposed groups 

are exp(70 + 7i ) / ( l + exp(70 + 71)) = 60% and exp(7o)/(l + exp(7o)) = 40% respectively. 

• The conditional odds ratio of the association between X and Y, given U and Z, is 

exp(ai) = 9/4. 

• The conditional odds ratios of the associations between the components of Z and Y, given 

X and U, is exp(3) = (2,1/2)'. 

• The conditional odds ratio of association between U and X, given Z and Y, is exp(7i) = 

9/4. 

• The conditional odds ratio of association between U and Y, given X and Z, is exp(A) = 

9/4 for 9+ and exp(A) = 4/9 for 0~. 

To understand the basis for selecting 9+ and 9", first note that the true odds ratio for 

the exposure effect of X on Y is exp(ai) = 9/4 for either parameter. But since U and X 

have a positive association, and since U is either positively (using 9+) or negatively (using 9~) 

associated with Y, this means that the effect of X on Y is confounded by U. Analyses which 

do not adjust for U will yield estimates of a\ which are either biased positively (using 9+) or 

biased negatively (using 9~). 

Using 9+ and 9~, we seek to simulate a collection of datasets for analysis with different 

methods. This provides a basis for comparing methods. To simulate a dataset of sample size 

n using the fixed parameters 9+ or 9~, we first simulate the exposure X as Bernoulli(l/2) and 

the components of Z as Uniform(-2,2). We then simulate the unmeasured confounder U for 

each subject using 70, 71 and the simulated X according equation (2.3). The responses Y for 

each subject are simulated with an, a i , A, 8 and the covariates X, U and Z using equation 

(2.2). 
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To study the performance of Bayesian sensitivity analysis on simulated datasets, denoted 

henceforth as B S A , we consider a comparison with two other inference techniques which we 

denote as N A I V E and G O L D . N A I V E is standard logistic regression of the observed data Y on 

X and Z, and is the usual technique for analyzing data with a binary outcome while ignoring 

unmeasured confounding. Since N A I V E does not adjust for U, the posterior distribution for the 

exposure effect a\ will tend to be biased. G O L D is logistic regression of Y on the complete data 

X, U and Z under the assumption that U is measured. While G O L D cannot be implemented 

in practice, it is a useful benchmark for comparison with B S A and N A I V E . 

For BSA, N A I V E and G O L D analyses of simulated datasets, we assign uninformative 

prior distributions for an, a i and B which are independent normal with mean zero and variance 

equal to 10. (See Section 2.1 for a discussion of this choice of prior distribution). For BSA, we 

specify prior distributions for bias parameters A,70 and 71 according to Section 2.2 with c i ,C2 

and C3 chosen to model prior beliefs about the possible magnitude of unmeasured confounding. 

We assign c\ = (log(6)/1.96)2 and C3 = (log(6)/1.96)2 to model the prior belief that the log odds 

ratio of the associations between U and Y, and between U and X are normally distributed with 

95% of the prior distribution lying between log(l/6) and log(6). We assign C2 = (log(6)/1.96)2 

to represent the prior belief that the exposure specific logit prevalences of U are normally 

distributed with 95% of the distribution lying between logit(l /(6+l)) and logit(6/(l+6)). 

For each of the fixed parameters 0+ and 6~, three datasets of sample sizes n =250, 1000 

and 4000 are simulated and then analyzed using BSA, N A I V E and G O L D . Posterior samples 

of size 50000 (1000 burn-in) are used to construct posterior histograms of the exposure effect 

and are displayed in Figures 3.1 and 3.2. Note that by construction, the true exposure effect 

for each of the datasets is known to be ot\ = log(9/4). In Figures 3.1 and 3.2, this is indicated 

with a vertical bar in each of the nine graphs. Examining the figures, it is clear that the 

N A I V E histograms are biased positively in Figure 3.1 or negatively in Figure 3.2 relative to 

G O L D and will likely yield poor coverage of the true exposure effect for large sample sizes. B S A 

posterior histograms are wider than N A I V E histograms, reflecting additional uncertainty about 
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Figure 3.1: Posterior histograms of the exposure effect a\ for BSA, N A I V E and G O L D analy; 
of datasets with sample sizes n =250, 1000 and 4000 using the parameter 9+. 
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Figure 3.2: Posterior histograms of the exposure effect a i for BSA, N A I V E and G O L D analys 
of datasets with sample sizes n =250, 1000 and 4000 using the parameter 0~. 
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unmeasured confounding that is modelled by the prior distributions on the bias parameters A, 

70 and 71. Figures 3.1 and 3.2 suggest that B S A credible intervals may yield better coverage 

of the true exposure effect than N A I V E intervals for these choices of fixed parameters. 

We note in passing that the M C M C mixing behaviour of B S A is poor. Figures 3.3 

and 3.4 depict M C M C chains for model parameters based on 1000 posterior simulations (after 

burn-in) from a simulated dataset with parameter 9+ and a sample size of 1000. For the pa­

rameters ao,cti,3, mixing appears to be adequate, but for the bias parameters A, 70,71, many 

iterations are required for the Markov chain to move thoroughly through the support of the 

target distribution. Moreover, the slow mixing appears to worsen as sample size increases. This 

is demonstrated in Figure 3.5, which displays M C M C chains for the bias parameter A, based on 

three datasets with sample sizes n=250,1000,4000 with fixed parameter 9+. While 50000 pos­

terior simulations may be adequate in the context of Figures 3.1 and 3.2, poor mixing presents a 

much more serious obstacle in the repeated analysis of simulated datasets. Unfortunately, there 

does not appear to be a straightforward solution to this problem because of current limitations 

in computing resources. Modifying the M C M C algorithm might yield modest improvement and 

will be investigated at a later time. Poor mixing in non-identifiable models has also be observed 

by Gustafson (2005) and Gelfand and Sahu (1999) who discuss the problem in greater detail. 

Naturally, the posterior histograms in Figure 3.1 and 3.2 are specific to the choice of 

simulated datasets. Hence the performance of B S A relative to N A I V E and G O L D is compared 

under repeated simulations. For sample sizes n =250, 1000, 4000 and parameters 9+ and 9", 

400 datasets are simulated and then analysed using BSA, N A I V E and G O L D . Posterior samples 

of size 2000 (500 burn-in) are obtained for each dataset and used to construct highest posterior 

density (HPD) 80% credible intervals. We choose the ft-level of 80% rather than the usual 95% 

to more easily highlight the differences in coverages between methods. 

A posterior sample size of 2000 in clearly inadequate given the poor mixing behaviour of 

BSA, but this brings to bear the computational challenges highlighted at the end of Section 2.2. 

B S A requires fitting two logistic regression models for each M C M C iteration, and thus repeated 
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Figure 3.3: M C M C mixing for model parameters a0, ax, X, p\, 62 based on 1000 posterior sim­
ulations (after burn-in) from a dataset with fixed parameter 0+ with n=1000. 
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Figure 3.4: M C M C mixing for model parameters 70,71 based on 1000 posterior simulations 
(after burn-in) from a dataset with fixed parameter 6+ with n=1000. 

posterior simulation from simulated datasets can be time consuming. Using a personal computer 

with dual 1.7GHz processors and 1Gb of memory, the simulation results presented in Chapter 

3 alone require more than one hundred hours of computing time. 

Table 3.1: Empirical coverages of the exposure effect a\ and average length of 80% H P D credible 
intervals for BSA, G O L D and N A I V E analyses of datasets simulated with parameter 0+. 

Sample sizes G O L D N A I V E B S A 
250 Coverage 77.5% 67.5% 81% 

Length 0.791 0.787. 0.911 
1000 Coverage 77.5% 56.2% 80.8% 

Length 0.39 0.377 0.596 
4000 Coverage 80% 27.3% 71% 

Length 0.194 0.189 0.447 

Tables 3.1 and 3.2 display the results of the simulation study including the empirical 

coverage probabilities of the true exposure effect, and the average credible interval length for 

BSA, N A I V E and G O L D credible intervals. In both tables, the empirical coverage of G O L D 
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Figure 3.5: M C M C mixing for the bias parameter A based on 1000 posterior simulations (after 
burn-in) from three datasets with fixed parameter 6>+ and increasing sample sizes n=250, 1000, 
4000. 
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Table 3.2: Empirical coverages of the exposure effect a\ and average length of 80% H P D credible 
intervals for BSA, G O L D and N A I V E analyses of datasets simulated with parameter B'. 

Sample sizes G O L D N A I V E B S A 
250 

4000 

1000 

Coverage 81.8% 71% 81.2% 
Length 0.796 0.749 0.912 
Coverage 79.5% 48.2% 80.5% 
Length 0.395 0.37 0.585 
Coverage 76.5% 11.5% 69.2% 
Length 0.194 0.185 0.458 

intervals approaches 80% as the sample sizes increases. This result is not unexpected because 

G O L D correctly adjust for U. As the sample size increases, large sample theory dictates that the 

G O L D posterior distribution is asymptotically normal with mean equal to the true value of a\. 

Credible intervals obtained from G O L D approximately match the usual frequentist confidence 

intervals and therefore, the G O L D coverage approaches 80%. In contrast, N A I V E coverage 

tends to degrade as sample size increases because of bias due to U. In Figures 3.1 and 3.2, we 

see that the N A I V E posterior distribution tends to be asymptotically biased suggesting that 

N A I V E coverages tends to zero with increasing sample size. B S A credible intervals provide 

better coverage of the true exposure effect relative to N A I V E and this appears to be true for 

our six choices of sample size and fixed parameter values. 

Comparing the lengths of B S A and N A I V E intervals, we see that improved coverage 

comes at the expense of greater uncertainty. As expected, the length of G O L D and N A I V E 

credible intervals decreases at the usual y/n rate, but B S A intervals shrink more slowly. In 

particular, the asymptotic distribution of the B S A interval is non-degenerate, since the model 

is non-identifiable, and therefore B S A intervals may be considerably longer than their N A I V E 

counterparts. For example, with sample size 1000 and the selected prior distributions and 

fixed parameters, B S A credible intervals appear to be roughly fifty percent longer than N A I V E 

intervals reflecting a substantial increase in uncertainty. 
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Our conclusions are limited to the specific choices of fixed parameters and prior distri­

butions and it is clearly desirable to explore the performance of B S A in greater generality. It 

is this idea that provides the motivation for the simulation study in Section 3.2. 
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3.2 A simulations study using sampled parameter values 

Simulations using fixed parameters may not be the best method to evaluate the performance 

of B S A . As suggested in Tables 3.1 and 3.2, the improvement in coverage for B S A relative 

to N A I V E depends on the choice of parameters used to simulate datasets. Parameters which 

reflect large biases (i.e. values of A, 70, 71 which lie far from the regions of highest density in 

the prior distributions (2.2) and (2.4)) yield B S A credible intervals with poor coverage of the 

true exposure effect, particularly for large sample sizes. Coverage improves when simulating 

datasets using fixed parameters which reflect smaller levels of bias. Fixing A = 0 or 71 = 0 

to reflect no unmeasured confounding yields B S A 95% credible intervals with coverage of the 

exposure effect which exceed 95%. 

Indeed since the posterior distribution for B S A does not obey the usual large sample 

rules governing identifiable models, it may be unreasonable to study it's performance using 

standard simulation methods. In identifiable models, large sample theory dictates that under 

the usual regularity conditions, the posterior mean is asymptotically normal, with mean equal 

to the true parameter value and that credible intervals have approximately matching frequentist 

coverage. Hence simulations with fixed parameter values can be used to demonstrate accept­

able coverage in large samples. In non-identifiable models, posterior distributions have different 

large sample properties. The posterior mean is again asymptotically normal but may be biased 

in a manner which is difficult predict and dependent on the choice of fixed parameters and prior 

distributions (Gustafson (2005)). Hence there is no reason to believe that in non-identifiable 

models, empirical coverages of credible intervals will tend to 95% in large samples and conse­

quently, simulation studies using fixed parameters may not be informative about the overall 

performance of B S A . This is not a deficiency of Bayesian methods. Without identifiability, no 

statistical method will afford interval estimates which have correct frequentist coverage levels. 

A n alternative is to simulate datasets using a range of different parameters values. One 

might specify a distribution function over the parameter space and use it to sample parameters 
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for the simulation study. Instead of simulating many datasets for a fixed parameter, a single 

dataset could be simulated for each of many sampled parameters. Assessing B S A using these 

simulated datasets might be more representative of overall performance of the method as a 

whole. 

This approach has interesting implications if we consider the following fact: If the distri­

bution used to simulate parameters is also used as a prior distribution for Bayesian analysis of 

simulated datasets, then the empirical coverages of simulated parameters will be exactly 95%, 

regardless of whether the model is identifiable or not. Specifically, consider a parameter 9 and 

model f{y\9) for the data y. Let f(9) denote a density function for 9. Denoting 9\,..., 9k as 

a sample of size k from /(#), we obtain k simulated datasets yi, • •. ,yk where the ith dataset 

is simulated from f{y\8i). Using f(9) as a prior distribution for Bayesian analysis, we obtain k 

posterior distributions f(9\yi),..., f{9\yk) where f{9\yi) oc f(yi\9)f(9). Since the distribution 

used to simulate the is identical to that used for analysis of simulated datasets, this implies 

that 1 — a posterior credible intervals obtained from f(9\yi) will cover the respective 9i with 

probability equal to 1 — a exactly. Moreover, this is not a large sample property. Proper 1 — a 

coverage of credible intervals is achieved regardless of sample size. Rubin (1984) discusses this 

idea and refers to such a sequence of intervals as well calibrated. 

Why is this result useful in the current context? Tables 1 and 2 suggest that coverage 

of the true exposure effect for B S A may be low in some instances or high in others. But one 

can argue that coverages may equal 95% when averaged over many different studies. Let us 

suppose that model parameters in a sequence of observational studies arise from some unknown 

density which we refer to as "Nature's prior". Data are collected in each study and posterior 

distributions are obtained using a separate prior distribution which we denote as "Investigator's 

prior". To obtain a sequence of credible intervals which cover the true exposure effect with 

probability 1 — a, it is clearly desirable to set the Investigator's prior equal to Nature's prior. 

Now practically speaking, Nature's prior cannot be known with certainty by the in­

vestigator and it would seem that obtaining such a sequence of credible intervals would be 
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difficult if not impossible. But it is possible that small deviations between the Investigator's 

prior and Nature's prior might not greatly affect the calibration. Using a reasonable choice for 

the Investigator's prior, the empirical coverages of 95% credible intervals over a sequence of 

different studies may remain close to 95% on average. Moreover, even if the two distributions 

are different, B S A may still yield intervals which outperform intervals obtained using methods 

which ignore unmeasured confounding. 

To explore this idea, we conduct a simulation using simulated parameters where the 

Investigator's prior for Bayesian analysis of simulated datasets differs from Nature's prior used 

to sample parameters. If we assume that both Nature's prior and the Investigators prior 

have the parametric form of equations (2.2) and (2.4), then it suffices to assess the effects of 

differences between Investigator's prior and Nature's prior exclusively for the parameters A, 70 

and 71. We can reasonably assume that in a sequence of studies, values of do, a\ and 0 arise 

from a distribution which is relatively uninformative (diffuse independent normal) and that an 

identical uninformative prior distribution is used to obtain posterior distributions for an, ct\ 

and Q. For the bias parameters A, 70 and 71, we model Nature's prior and the Investigator's 

prior following equations (2.2) and (2.4) using different combinations of the variance parameters 

C i , C 2 and C3 to reflect differences between the two distributions. 

For simplicity and ease of presentation, we assume that c\ = c 2 = C3 for both distri­

butions. Recall that c\ and C3 model prior beliefs about the association between U and Y, 

and between U and X respectively. The constant c 2 models prior beliefs about the preva­

lence of U for unexposed subjects. Letting cj = C\ = c 2 = C3 for the Investigator's prior 

and C J V = c\ = c 2 = C3 for Nature's prior, we contrast cj and CN for combinations of the 

values (log(3)/1.96) 2,(log(6)/1.96) 2 and (log(9)/1.96)2. These values are chosen in the same 

spirit as detailed in Section 3.1 to reflect realistic levels of confounding one might encounter 

in practice. For the parameters ao,oci,3, we assign identical distributions for Nature's prior 

and Investigators prior which are independent normal with mean zero and with variance equal 

to (log(15)/1.96)2. While this distribution is not strictly uninformative, it is chosen based on 
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the practical realities of conducting this type of simulation. Using a more diffuse distribution 

can result in sampled parameters values which are very large, thereby preventing regression 

analyses from working correctly during posterior simulation. Moreover, in some sense, these 

prior distributions are uninformative because they are diffuse relative to the typical effect sizes 

in epidemiological investigations. 

Table 3.3: Empirical coverages of the exposure effect a\ and average length of 80% H P D credible 
interval for various cj and C J V -

Investigator Nature 

C N - \ I M ) °N ~ [im ) C N ~ \ 1.96 ) 

ci = ( T ^ H 1 ) 78%, 0.540 73%, 0.525 67%, 0.533 

B S A C I = ( T # ) 2 90%, 0.654 77%, 0.651 74%, 0.653 
2 

°i = 91%> °-736 8 5 % ' °-741 8 2 % ' °-740 

N A I V E 74%, 0.503 70%, 0.490 65%, 0.512 

We simulate 400 datasets of sample size 1000 using parameters which are sampled from 

Nature's prior with C A T equal to (log(3)/1.96)2, (log(6)/1.96)2 or (log(9)/1.96)2. Each dataset 

is then analysed using B S A with three choices for the Investigator's prior corresponding to 

ci = (log(3)/1.96)2, (log(6)/1.96)2 or (log(9)/1.96)2. For comparison, N A I V E analyses are also 

conducted. 2000 posterior simulations (500 burn-in) are obtained for each dataset and method 

of analysis and choice of c/v, to obtain 80% credible intervals for the exposure effect. As in 

Section 3.1, we choose 80% credible intervals to more easily highlight differences in coverages. 

We are also faced with the same limitations of using small posterior samples of size 2000. 

Table 3.3 presents the results of the simulation. The upper half of the table shows a 

comparison of the empirical coverage probabilities and average length of 80% credible intervals 

for the exposure effect using B S A and different combinations of CN and c/. As expected, the 
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diagonal elements of the table are consistent with 80% reflecting proper coverage of the interval 

procedure because of equality between Nature's prior and the Investigator's prior. Indeed, 

standard errors for the coverage estimates, obtained using the usual formula 1.96i/p(l — p)/400, 

are all less than 2.5% indicating agreement with 80%. (2.5% corresponds to the worst case 

scenario with an empirical coverage percentage of 50%.) Correct 80% coverages indicate that 

simulation error due small posterior samples is not terribly important. 

On the off-diagonals, we see overcoverage or undercoverage of the true exposure effect 

depending on whether ci is greater or less than C J V - For example, a choice of cj = (log(9)/1.96)2 

and CN = (log(3)/1.96)2 models the instance where the investigator believes that large biases 

are present when in fact only small biases arise due to nature. The result is incorrect calibration. 

B S A credible intervals tend to cover the true exposure effect too often (91% of the time in our 

simulation), because they are too great in length. For N A I V E analyses, we assume that bias 

due to unmeasured confounding is absent and use uninformative prior distributions to obtain 

credible intervals for an, « i and 3. Consequently, we need only evaluate the performance of 

N A I V E for different values of cj\j. The results of this comparison are shown at the bottom of 

Table 3.3 and indicate that for large values of CN, coverage of N A I V E intervals is poor but 

tends to improve as CN approaches zero. 

Here we see the merit of B S A relative to N A I V E . For N A I V E analyses, proper 80% cov­

erage is achieved only in the absence of unmeasured confounding. For CN = 0, corresponding to 

the instance of no unmeasured confounding, the N A I V E posterior distribution is asymptotically 

normal with mean equal to the true exposure effect. Hence in large samples, N A I V E credible 

intervals have correct coverage probabilities irrespective of the value of the true exposure. But 

for most observational studies, the possibility of unmeasured confounding is everpresent and 

therefore c/v should be non-zero. In this case, B S A credible intervals will achieve correct 80% 

coverage when the Investigator's prior approximates Nature's prior. 

Critics may argue that since Nature's prior is unknown, there can be no guarantee that 

B S A credible intervals will achieve proper coverage. But Table 3.3 illustrates that sizeable 
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deviations between Nature's prior and Investigator's prior may still result in improved coverage 

of B S A relative to N A I V E . For example, achoice of cN = (log(9)/1.96)2 and c/ = (log(6)/1.96)2, 

reflecting sizeable differences between distributions, results in an empirical coverage of 73.8% 

indicating a sizeable improvement over the N A I V E coverage of 64.8% using the same choice 

for Nature's prior. Since the risk of unmeasured confounding is commonplace in observational 

studies, Table 3.3 suggests that an educated choice for the Investigator's prior may yield credible 

intervals which cover the true exposure effect more frequently on average than N A I V E intervals 

when averaged over many different studies. 

Our investigation is not without limitations. While B S A appears to outperform N A I V E 

in these simulations, we have by no means performed an exhaustive comparison of the effects of 

differences between the two distributions. The parameter c% which reflects prior belief about 

the prevalence of the unmeasured confounder, may have a different impact on overall calibration 

compared to c\ or C3. Exploring a comparison without the assumption that c\ = c<i = C3 for 

Nature's prior and the Investigator's prior would likely provide insight into such behaviour. 

Additionally, we base our comparisons on the assumption that the Nature's prior and the 

Investigator's prior follow the parametric models in equations (2.2) and (2.4). A n investigation 

of more complicated models might reveal subtleties that are lost in this simulation. 
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Chapter 4 

An application in the study of 

treatment for HIV/AIDS 

4.1 Protease inhibitors and risk of elevated triglycerides 

We consider a secondary analysis of a recent study by Levy, McCandless, Harrigan et al. (2005) 

which identified increases in plasma triglyceride levels among HIV-infected persons treated with 

triple drug combination therapy including a protease inhibitor (PI). Unscheduled blood lipopro­

tein measurements were taken from 709 HIV infected patients who were treated through the 

British Columbia Centre for Excellence in H I V / A I D S Drug Treatment Program between A u ­

gust 1996 and January 2002. A record of patient data including demographic characteristics, 

use of antiretroviral medication, and CD4 counts was maintained for all subjects. In regression 

analyses adjusting for age, sex, adherence, time-dependent CD4 count, time-dependent concur­

rent use of other therapy and correlation due to repeated measures on study subjects, Levy, 

McCandless, Harrigan et al. (2005) found that uninterrupted use of PI was associated with an 

annual increase of 22.8% (7.9%, 39.8%) in triglyceride levels. This estimate was obtained by 

restricting the analysis to subjects who were ever dispensed a PI over the course of therapy 

and by stratifying triglyceride measurements according the magnitude of cumulative exposure 
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to PI at the time each measurement was taken. 

We mimic this analysis in the context of a dichotomous exposure and dichotomous re­

sponse by estimating impact of PI exposure on risk of elevated triglyceride levels (> 5.6mmol/L). 

(National Cholesterol Education Program Adult Treatment Panel III (2001) guidelines). We 

conduct a retrospective study of antiretroviral naive patients who initiated triple drug combi­

nation therapy between August 1996 and January 2002 and were dispensed a PI at least once 

over the course of follow up. For the ith subject, with measurements j G 1.. . Ti, we observe the 

binary response Yjj taking values 1 or 0 to indicated presence or absence of elevated triglyc­

erides. We let Xij denote a binary indicator variable taking values 1 or 0 to denote whether the 

ith subject was dispensed a PI at the beginning of the month in which the jth measurement was 

taken. Fixed covariates including age, sex, baseline CD4 count and adherence to prescribed 

therapy are denoted with the vector Zi. Adherence is calculated as the ratio the number of 

months in which antiretroviral medications were dispensed to the number of months of follow-

up in the first year after therapy initiation. Incomplete adherence represents the gap between 

the time that the previous medication supply ran out until the next refill date. For details on 

this method for quantifying adherence see Wood, Hogg, Y i p et al. (2003,2004). 

Classifying subjects as "exposed" or "unexposed" to PI is challenging because all sub­

jects included in the analysis are dispensed a PI at least once over the course of follow-up. If 

we assume that the number and times of triglyceride measurements occur at random and in 

a way which does not depend on the data, then we can attempt to classify exposure status 

based on whether the subject was receiving a PI at the times when measurements were taken. 

Stratifying the n subjects into groups A, B or C where 

A = {i G 1,... , n\xij = 1 for Vj G 1,.. •,Tj}, 

B = {i G 1,..., n\xij = 0 for Vj G 1,... , Tj}, 

C = {i G 1,... , n\xia = 0, xn, = 1 for some a, b G 1,. . . , Tj}, 
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we assign exposure status Xi for the ith subject according to the rule 

X{ = 1 if i € A (exposed), (4.1) 

Xi = 0 if i 6 B (unexposed), 

where Xi is a binary indicator variable taking values 1 or 0 to indicate exposed or unexposed 

to PI. Therefore, subjects in group A (exposed) are those individuals who were receiving PI 

therapy at all of the times when measurements were taken. Group B (unexposed) are subjects 

who were not receiving therapy at all of the times when measurements were taken. Note that 

group B has non-zero membership because the measurement times for the ith subject need not 

correspond to months receiving PI therapy. 

Of course, this leaves an ambiguity for subjects in group C, the individuals who were 

receiving treatment at some measurement times but not others. But any attempt to dichotomize 

exposure status for these individuals will be unsatisfactory. For subjects in groups A and B, 

the classification scheme in equation (4.1) is reasonable if we assume that there are no carry­

over effects from changes in therapy. Subjects in groups A or B are observed as either always 

exposed or always unexposed at measurement times 1 , . . . , Ti and we may attempt to classify 

them as such. For subjects in group C, we choose to move these individuals into group B and 

classify them as unexposed by discarding all "exposed" data pairs (Y^-, Xij) where Xij = 1. This 

classification decision has certain consequences which become apparent when we consider the 

classification of disease status. 

For each subject, assign disease status Yi according to 

y i = m a x { ^ j | j e l . . . T i } . (4-2) 

Hence individuals are classified as diseased if they are ever observed to have elevated triglyc­

erides over the course of follow-up. Triglyceride measurements prior to therapy initiation are 

not available for most of the sample, but since triglyceride levels exceeding 5.6mmol/L are 

rare among men and women of the same age in the general population (MacLean, Petrasovits, 
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Connelly et al. (1999)), we assume that all subjects had triglyceride levels less than 5.6mmol/L 

prior to initiation of therapy. Based on this assumption, Yj is an indicator of incident cases of 

elevated triglycerides which occurred after PI exposure. 

A consequence of this disease classification is that subjects with many measurements 

over the course of follow-up are more likely to be classified as diseased. If the distribution of 

the number of measurements in exposed and unexposed groups were identical, this would not 

present a problem. But unfortunately, this is not the case. Subjects in group A are likely to 

have more measurements than subjects in group C by virtue of the fact that all subjects are 

exposed to PI at some point over the course of therapy. Hence, our method of assessing disease 

status has the consequence of inflating the observed risk of disease in the exposed group relative 

to the unexposed group. There does not appear to be a straightforward way of correcting this 

problem because the indicators of disease status Yij are time-varying. The allocation of subjects 

from group C to group B as described above will offset this bias somewhat. 
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4.2 Bayesian sensitivity analysis 

We identify 709 eligible subjects (91% male) with a median age of 38 years (IQR 33-44) and 

median CD4 count of 210 cells/^L(IQR 70-380) at the time of initiation of therapy. Based on 

records of PI dispensation at the times of triglyceride measurements, 333 subjects are classified 

as exposed and 376 as unexposed to PI. A total of 2216 measurements are used to identify 93 

incident cases of elevated triglycerides. 

Cross tabulating subjects by exposure and disease status 

Diseased Not Diseased 

Exposed 62 271 

Not exposed 31 345 

yields a crude log odds ratio of 0.93 with 95% confidence interval (0.48, 1.39) suggesting that 

PI exposure is associated with a increased risk of elevated tryglycerides. The corresponding 

odds ratio is 2.53 (1.62, 4.01). 

Treating Y as disease status, X as exposure status and Z as the vector of covariates age, 

sex, adherence and baseline CD4, we contrast N A I V E and B S A analyses of the data according 

to the definitions of Section 3.1. Age is coded in years, sex as binary with the value one for males 

and zero for females, adherence as a percentage between one and one hundred, and CD4 as cells 

per micro liter. Prior to analysis, all covariates are rescaled to mean zero and unit variance 

to improve M C M C posterior simulation. For the N A I V E analysis, we use uninformative priors 

for the regression coefficients (independent normal with mean 0 and variance 10). For BSA, 

we use the model and prior distributions of Sections 2.1 and 2.2 with three choices of prior 

distributions for the bias parameters A, 70, 71. Setting c = c\ = C2 = C3, we choose prior 

distributions with values of c equal to (log(3)/1.96)2, (log(6)/1.96)2 or (log(9)/1.96)2 to reflect 

three choices of increasing degrees of uncertainty about the possible magnitude of unmeasured 

confounding. 
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Table 4.1: Posterior means (95% H P D credible intervals) for covariate effects using N A I V E and 
B S A analyses. Values of c reflect three choices of prior distributions for bias parameters. 

Variable N A I V E B S A 

« = W c=(^)2 c=(^)2 

PI Exposure 0.84 (0.36,1.31) 0.85 (0.34,1.35) 0.86 (0.27,1.50) 0.88 (0.15,1.62) 
Gender 0.1 (-0.13,0.33) 0.1 (-0.13,0.33) 0.1 (-0.14,0.33) 0.1 (-0.13,0.34) 
Baseline Age 0.02 (-0.21,0.25) 0.02 (-0.21,0.25) 0.02 (-0.22,0.25) 0.02 (-0.22,0.26) 
Baseline CD4 0.55 (0.17,0.96) 0.55 (0.17,0.95) 0.55 (0.18,0.97) 0.56 (0.16,0.96) 
Adherence 0.88 (-0.17,1.96) 0.88 (-0.16,1.99) 0.89 (-0.12,2.05) 0.91 (-0.18,2.01) 

Table 4.1 gives posterior means and 95% H P D credible intervals for the log odds ratio 

of the PI exposure effect and other covariate effects using N A I V E and B S A methods with 100 

000 posterior simulations (after burn-in). A graphical comparison of N A I V E and B S A based 

on kernel density estimation of the posterior distribution of the exposure effect is provided 

in Figure 4.1. The results indicate that PI exposure is associated with increased risk of ele-
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vated triglycerides even after adjusting for measured covariates and assessing sensitivity to a 

unmeasured confounder. Moreover, the strength of the association is robust to a variety of 

assumptions about the magnitude of possible unmeasured confounding. A choice of c equal 

to (log(9)/1.96)2 reflecting the prior belief of strong confounding due to U yields a 95% H P D 

credible interval of (0.13, 1.58) which excludes zero. For most observational studies, B S A using 

such a large choice of c is unnecessary because modest rather than large levels of unmeasured 

confounding are expected. 

Table 4.1 and Figure 4.1 reveal also some interesting properties of B S A . As expected, an 

increase in c results in a posterior distribution for the exposure effect which is more diffuse. This 

finding is consistent with our intuition that greater uncertainty about unmeasured confounding 

results in greater uncertainty about the exposure effect. But interestingly, the posterior mean 

for B S A analyses are shifted slightly relative to N A I V E and the magnitude of this shifting 

appears to depend on c. Using the R function effectiveSize() (coda library), we estimate the 

effective sample size for 100000 M C M C posterior simulations of parameter a\ to be at least 

10000 for the chosen values of c. The largest standard deviation among the posterior samples 

for a i is 0.369. Consequently, simulation standard errors of the posterior means are less than 

0.0037=0.369/\/10000. Therefore, 95% confidence intervals for the posterior means do not 

overlap. This indicates that the B S A credible intervals are shifted relative to N A I V E intervals, 

although the shifting is small relative to the posterior standard deviations. 

It is important to emphasize that this shifting of the posterior means is not necessarily 

indicative of a better estimation a.\. As stated in Section 3.2, posterior means in non-identifiable 

models may be asymptotically biased in a manner which cannot be predicted without knowl­

edge of the true exposure effect. In a recent investigation, Gustafson (2005) studies the factors 

which influence the posterior distribution and asymptotic bias in non-identifiable models in­

volving misclassification. Several important variables are identified including: the location, 

orientation and concentration of the prior distribution; the relation between prior distribution 

and true parameters values; sample size. We do not consider such a thorough analysis in this 
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investigation, but note simply that the posterior mean appears to be shifted away from zero 

and that the degree of shifting depends on the choice of c. It is important to emphasize that the 

true exposure effect remains unknown and may be either greater than or less than the N A I V E 

estimate. 

The analysis would appear to present us with two unsatisfactory alternatives. On one 

hand, we have B S A which makes full use of available prior information but yields estimates 

which may be asymptotically biased in a manner which cannot be predicted. On the other, we 

have a N A I V E analysis which assumes artificially that unmeasured confounding is absent and 

may also yield biased estimates. The advantage of B S A becomes clear if we can guarantee that 

95% credible intervals have approximately 95% coverage when averaged over many different 

observational studies. In the study of the effect of PI exposure on risk of elevated triglycerides, 

the magnitude of unmeasured confounding remains unknown. Bayesian sensitivity analysis 

provides credible intervals which may yield large or small coverage probability of the true 

exposure effect depending on the magnitude of unmeasured confounding. However, by choosing 

a suitable value of c from Table 4.1, the coverage probability of the true exposure effect may be 

approximately 95% when averaged over many different studies. Moreover, even if we misspecify 

c, the average coverage of B S A intervals may exceed the coverage of the usual N A I V E analysis. 

To achieve correct 95% coverage, we must select credible intervals from Table 4.1 using 

the choice of c which most closely approximates the distribution from which study parameters 

can be expected to arise over repeated observational studies. Or equivalently, using the termi­

nology of Section 3.2, we must ensure that the Investigator's prior approximates Nature's prior. 

A reasonable choice for c is (log(3)/1.96)2. The logic of this choice of c rests on the following 

assumptions: In a typical sequence of unrelated observational studies involving logistic regres­

sion models, the magnitude of bias due to unmeasured confounding is small. The log odds 

ratio of the association between confounder and disease, and between confounder and exposure 

is usually close to zero on the log-odds scale, with magnitude less than log(3) about 19 times 

out of 20. The exposure-specific logit prevalences of the unmeasured confounder are typically 
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between logit(25%) and logit(75%) about 19 times out of 20. Strengthening this argument 

would require an appropriate literature review. 

Accordingly, our final interval estimate for the log odds ratio of the effect of PI on risk 

of elevated triglycerides is 0.85 (0.34,1.35) with corresponding odds ratio 2.3 (1.4, 3.9). The 

choice of c may only crudely approximate the distribution from which study parameters arise, 

but the simulations of Section 3.2 suggest that even a poor choice of c may yield intervals with 

better average coverage probabilities than N A I V E intervals. 

It is also of interest to consider the posterior distributions of the bias parameters A, 70,71 

themselves. Little is known about the possible values of bias parameters a priori and this is 

represented in the prior distributions of Section 2.2. But interestingly, the posterior distribution 

of bias parameters, given the data, may differ slightly from the prior distributions. Consider 

Figure 4.2 which superimposes the prior and posterior distributions for each bias parameter 

based on B S A with c = (log(6)/1.96)2. The differences between distributions is quite subtle. 

Table 4.2 highlights the differences in greater detail and includes means (95% CI) and medians 

(IQR) for the two distributions. ° 

Table 4.2: Prior and posterior distributions for bias parameters A, 70,71. 

Prior Posterior 
Median (IQR) Mean Median (IQR) Mean (95% CI)* 

A 0 (-0.56, 0.56) 0 -0.07 (-0.72, 0.57) -0.08 (-0.12,-0.04) 
7o -0.35 (-0.93, 0.21) -0.36 -0.40 (-0.97, 0.17) -0.41 (-0.44,-0.37) 
7i 0.61 (0.29, 1.00) 0.73 0.62 (0.30, 1.10) 0.73 (0.71,0.76) 

IQR = Interquartile range, CI = Confidence interval. 
* Confidence intervals are based on an effective sample size of 2000 from 100000 posterior 
simulations. 

Because of poor mixing, these results should be interpreted with caution. The effective 

sample size for 100000 posterior simulations is approximately 2000 for the bias parameters 

A, 7o,7i and therefore, the observed differences between prior and posterior may be an artifact 
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Figure 4.2: Prior and posterior distributions for bias parameters A, 70,71 

of poor mixing. Regardless, the prior and posterior distributions do appear to differ, particularly 

for the bias parameter A. Thus it would seem that while non-identifiability precludes consistent 

estimation of the bias parameters, there may be still may be something to be learned about 

them from the data. In the context of models for misclassification, Gustafson (2005) describes 

this phenomenon as "indirect learning" about non-identifiable parameters. In future, it would 

be informative to explore this behaviour in more detail. The use of M C M C thinning techniques 

or convergence diagnostics with multiple chains would permit a more valid comparison of prior 
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and posterior distributions. 

A n important implication of indirect learning is that B S A and M C S A may yield interval 

estimates for the exposure effect which differ slightly. Greenland (2005), describes a set of 

conditions in which M C S A intervals will approximate Bayesian credible intervals. One condition 

is that there can be no substantial indirect learning about bias parameters. While this condition 

appears to be satisfied in the current context, it would be informative to compare M C S A and 

B S A intervals in detail via simulation to explore the conditions in which the approximation 

hold correctly. 

45 



Chapter 5 

Diseussion and directions for further 

research 

5.1 Discussion 

Philips (2003) and Greenland (2005) argue that the reporting of results from observational 

studies should include a quantitative assessment of systematic error. The usual confidence 

intervals obtained using standard statistical packages quantify uncertainty due to random error 

only. But this is often dwarfed by uncertainty arising from systematic error due to unmeasured 

confounding, selection bias and misclassification (Greenland (2005)). In present context, we 

introduce a method for assessing sensitivity to unmeasured confounding in observational studies 

with a binary exposure X, binary response Y, binary unmeasured confounder U and covariate 

vector Z. Prior beliefs about unmeasured confounding are included in a Bayesian analysis as 

prior distributions over bias parameters which govern the confounding behaviour of U. The 

posterior distribution for the exposure effect is not only a tool for sensitivity analysis, but 

also a single summary which reflects uncertainty due to systematic error from unmeasured 

confounding in addition to the usual random error. We argue that credible intervals from B S A 

may yield more valid inference compared to standard methods because they better approximate 
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the total uncertainty in observational studies. This perspective is consistent with the recent 

initiatives of Greenland (2005) to quantify multiple sources of uncertainty due to systematic 

error using Bayesian methods. 

B S A provides a number of advantages compared to standard methods for sensitivity 

analysis. As illustrated in the example of Chapter 4, the investigator can explore the sensi­

tivity of effect estimates over a range of possible biases and present the results in a manner 

which requires less printed area compared to standard methods of sensitivity analysis which 

use tables. Credible intervals obtained from B S A may also be narrower than intervals obtained 

using standard methods. When reporting tables of effect estimates over a range of possible 

bias parameters, there is a tendency to focus attention on the most extreme effect estimates 

corresponding to the most extreme bias parameters, B S A incorporates the prior belief that 

small biases are often more likely than large biases and can therefore yield conclusions which 

are less pessimistic. 

Like other models of unmeasured confounding, our model is non-identifiable and in­

dexed by a set bias parameters which cannot be estimated consistently using the available 

data. Rather than achieve identifiability by plugging in specified values for bias parameters, 

we place informative prior distributions on bias parameters. This approach treats the unmea­

sured confounder U as a latent variable which is averaged over the prior distributions and later 

integrated out of the joint posterior distribution of model parameters. Our perspective is that 

while this model is non-identifiable, it is a better representation of observational data since the 

latent U and bias parameters A, 70, and 71 have have substantive meaning. Models of this type 

of are increasingly commonplace in the biostatistical literature and do not preclude a proper 

Bayesian analysis. (See for example Gustafson (2005) or Gelman (2004)) If the prior distribu­

tion is an accurate predata summary of knowledge, then the posterior is equally credible even 

if the model is not identifiable. 

Critics may tend to favor the N A I V E analysis for estimating exposure effects in observa­

tional studies. This method, described in Section 3.1, is standard logistic regression of Y on X 
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and Z while ignoring possible unmeasured confounding. Since the resultant models are identi­

fiable, the usual large sample theory for posterior distributions can be applied, simplifying the 

analysis. Additionally, the N A I V E approach requires no subjective prior distributions. What 

must be emphasized is that the N A I V E method is inherently subjective because it requires the 

subjective assumption that unmeasured confounding is absent. (Philips (2003)) While some 

investigators may be reluctant to incorporate prior beliefs into the analysis of observational 

data, the fact remains that the use of standard identifiable models may tend to oversimplify the 

mechanisms from which observational data arise, yielding biased estimates and intervals which 

are falsely precise. 

Non-identifiability complicates the implementation of Bayesian sensitivity analysis be­

cause the usual large sample theory governing the behaviour of posterior distributions is not 

applicable.(Gustafson (2005)) The posterior distribution does not converge to a single point 

at the true model parameter, but instead converges to a non-degenerate distribution which is 

strongly governed by the choice of prior. Thus, without identifiability, we have the paradox­

ical situation where the prior tends to dominate the posterior distribution as the sample size 

goes to infinity. The posterior mean is asymptotically normal, but may be biased in a manner 

which cannot be predicted without knowledge of the true model parameters. Consequently, as 

illustrated in Section 3.1, the coverage probability of 95% credible intervals does not tend to 

95% as the sample size increases. These facts are discouraging for some and may explain the 

limited use of non-identifiable models in the biostatistical literature. 

We demonstrate that, under certain conditions, the coverage probability of 95% B S A 

credible intervals may be approximately 95% when averaged over many different studies. Sup­

pose that the true model parameters from repeated observational studies arise from arise from 

a distribution with density function g(0) (Nature's prior) and the corresponding data are anal­

ysed with a prior distribution f(9) (Investigator's prior). In Section 3.2, we illustrate that if 

Nature's prior and the Investigator's prior are approximately equal (g{9) « /(#)), then the 

expected coverage probability of 1 — a B S A credible intervals may be approximately I — a. 
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How can this be interpreted? Suppose that an investigator conducts a sequence of 

observational studies and obtains 95% credible interval for the exposure effect in each study 

using Bayesian sensitivity analysis. In normal identifiable models, if the sample were large, 

then each interval would cover the true exposure effect with very high probability, regardless 

of the true value of the exposure effect. But since the model is not identifiable, some intervals 

may cover the true exposure effect with low probability, and others with higher probability. If 

the investigator chooses a prior distribution for data analysis which is approximately the same 

as the distribution from which study parameters arise, then the sequence of credible intervals 

will cover the true exposure effect with probability 95% on average. 

5.2 Limitations 

While we illustrate the conditions for proper coverage when averaging over many different stud­

ies, we provide no guidelines for determining the properties of Nature's prior, the distribution 

from which study parameters arise. Indeed, these properties cannot be determined from the 

available data, and the investigator must once again look outside the study to obtain the needed 

information to ensure that that credible intervals have correct 95% coverage over repeated stud­

ies. 

The simulation studies of Section 3.2 suggest that small differences between Nature's 

prior and the Investigator's prior may maintain approximately 1 — a coverage over repeated 

studies, but our comparison of the two distributions was not exhaustive. A more thorough 

investigation might reveal a specific individual role of the parameters C\, c 2 , C3 which was lost 

in the comparison. The conclusions of Section 3.2 are intended to be primarily descriptive in 

nature and motivate further research in the area. It remains possible that a casual choice for 

the Investigator's prior may yield coverages which are far from 95% on average. 

Technical challenges are a major hurdle in this investigation. The simulations of Sections 

3.1 and 3.2 are based on the analyses of 400 simulated datasets with only 2000 posterior 

49 



simulations. As illustrated in Figures 3, 4 and 5, many iterations are required to ensure that 

M C M C chains moves thoroughly through the support of the posterior distribution. By using 

only 2000 simulations, intervals obtained from posterior samples may be poorly representative of 

the posterior distribution and the empirical coverages of intervals may be prone to error. While 

the use of small posterior samples may be adequate for exploratory purposes, longer posterior 

simulations and improved algorithms are needed to better estimate coverage probabilities via 

simulation. However, it should also be emphasized that while the mixing of bias parameters is 

often very slow, this problem may be less serious than it seems. Different combinations of bias 

parameters may yield approximately equivalent level of bias in the exposure effect estimate. For 

example, if x is strongly associated with a weak risk factor for Y, then this may be approximately 

equivalent to the case where X is weakly associated with a strong risk factor for Y. 

5.3 Further research 

While the distributions presented in Section 2.2 are in a convenient parametric form for the 

Investigator's prior, it would be informative to consider a more general distribution for Nature's 

prior. In particular, to more rigorously identify the conditions for approximately correct 1 — a 

coverage of credible intervals. Additionally, since the prior distributions on bias parameters tend 

to dominate the posterior asymptotically, it would be informative to explore the performance 

and coverages of Bayesian sensitivity analysis using distributions other than normal densities 

presented in equation (2.2) and (2.4). 

A natural extension of B S A is to adapt the method to include other sources of system­

atic error in observational studies including selection bias and misclassification. Unmeasured 

confounding is only one possible source of bias and consequently, B S A will only poorly quantify 

the total uncertainty in observational studies. Greenland (2005) formalizes this idea in the con­

text of 'multiple bias modeling' which involves the use of a non-identifiable model indexed by a 

collection of bias parameters which model all sources of bias simultaneously . His discussion is 
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primarily framed in the context of the M C S A , and consequently our approach could be adapted 

along similar lines. 

A n interesting avenue of research is to adapt B S A to instances in which unmeasured 

confounding is thought to be particularly likely. The prior specification in Sections 2.2 is very 

general and assumes that little is known about the possible confounding behaviour of U. But in 

fact, there are many instances in epidemiological research where more information is available 

about U, despite the fact that U itself is unknown and unmeasured. One example builds on 

the following citation by Joffe (2000): 

"The argument is sometimes advanced that if adjustment for measured covariates fails to change 

the measure of effect, then there must be little unmeasured confounding". 

The logic of this statement rests on the assumption that the measured covariates Z 

are somehow informative about the confounding behaviour of U. How is this reasonable? 

In conducting observational studies, health researchers seek to collect information on as many 

confounding variables as conveniently possible. Presumably they will be successful in identifying 

at least a few of them. Therefore, if no measured covariates are determined to be confounders, 

then this may indicated that there is no unmeasured confounding (Joffe (2000)). This idea 

can be formalized into a Bayesian sensitivity analysis by modifying the model of Section 2.1 in 

such a way that the parameters 3 and A are treated as exchangeable, meaning that they are 

indistinguishable a priori with joint prior density / (A , 3) which is invariant to permutations. 

The joint distribution 

P{U, X, Z) = P(U\X, Z)P(X, Z) 

can also be suitably modified to something of the form 

logit[Pr(c7 = l | X , Z ) ] = 70+71* , 

logi t [Pr(X = l |Z)] = rio + mZ-

The parameters rji and 71 can then be treated as exchangeable to permit sharing of information 
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between the observed association of X and Z with the unmeasured association between X and 

U. 

A similar example where we have additional information possible unmeasured confound­

ing, is in assessments of confounding by indication in the study of the intended effects of ther­

apeutic interventions. The "intended effect" of a therapeutic intervention is defined as the 

efficacy of the intervention in curing or preventing the disease for which it was prescribed. "Un­

intended effects" refer to side-effects and the safety of the intervention. It is well known that 

observational studies investigating the intended effects of therapeutic interventions are partic­

ularly prone to unmeasured confounding because the risk factors of disease are often closely 

related to indications for prescription of treatment. (McMahon (2003) and Joffe (2000)). This 

confounding by indication for treatment can cause new treatments to appear non-efficacious or 

harmful and it is particularly difficult to adjust for using standard methods. 

Our approach to Bayesian sensitivity analysis could be tailored according to instances 

in which confounding by indication is thought to be likely. Existing methods for adjusting for 

confounding by indication are diverse, but suffer from of the limitations of the N A I V E method 

of analysis of Section 3.1 because they typically involve adjusting for measured covariates (Joffe 

(200)). Adapting Bayesian sensitivity analysis might involve adjusting the prior distributions 

in Section 2.2, for example, by specifying C3 to account for beliefs about the association between 

physician prescribing practices and latent risk factors for the intended outcome. Similarly, small 

values of C3 could be used in the evaluation of drug safety where confounding by indication is 

thought to be less likely. 
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