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Abstract ii 

Abstract 

In this thesis, we attempt to construct a black hole solution with BMN plane wave asymp-
totics. We find it to be a very complicated problem. Through explicit computations, we 
showed the Penrose limit of the Schwarzschild Anti de-Sitter spacetime do not result "in a 
background with event horizon, in accord with the no go theorems reviewed which suggest 
the symmetries of plane wave spacetimes are not compatible with the existence of regular 
event horizon. The detailed boundary and light cone structure of the BMN spacetime are 
studied. It is made clear that the conformal boundary of the plane wave is not related to 
the boundary of Anti-de Sitter. In order to understand the concept of temperature and 
thermal state in the BMN background, we study the response of an Unruh monople detec­
tor following various trajectories. The detector response function shows the vacuum state 
natural to the BMN plane wave has very different thermal behavior from the Minkowski 
vacuum. In particular, observers following any Killing trajectory will not regard the plane 
wave vacuum as a thermal state. This result can be viewed as a semi-classical verification of 
the no-go theorems. We also review the solution generating technique, the null Melvin twist 
and the correspondence principle of the black string solutions so generated in the plane wave 
geometry. 
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Chapter 1. Introduction and Overview 1 

Chapter 1 
Introduction and Overview 

We will begin by giving an introduction to the recent developements leading to the current 
problem under investgation. It has long been obeserved that there is a connection between 
certain gauge theories and theories of gravitation. This connection is made explicit by the 
AdS/CFT correspondence [1]. This correspondence is realized in a way that it can be inter-
pretated as an example of the holography priciple which states there exists a dual description 
of gravitaional theory on a d dimensional spacetime as some field theory on the lower di­
mensional boundary of the spacetime. In the simplest example of the correspondence, the 
boundary field theory is the J\f = 4 super Yang-Mills theory and the dual quantum gravity 
theory lives on AdS5 x S5 . The correspondence is found to be a weak-strong coupling duality. 
It connects the strongly coupled regime of the gauge field theory to the weakly coupled sector 
of the gravitaional theory and vise versa. This makes the correspondence difficult to check 
but all the more significant. The behavior of gauge field theories in their strongly coupled 
regime has been a long standing problem. With the help of the AdS/CFT correspondence, 
we are able to gain understanding of strongly coupled gauge theory by studying weakly 
coupled gravity where all interactions are under control. More interestingly, the AdS/CFT 
correspondence is conjectured to be valid beyond the gravity limit. That is, the boundary 
field theory will encode all the information of the bulk, including all orders of corrections 
in the string tension a', and string coupling constant gs. This conjecture has passed many 
checks through calculations involving gauge theory operators whose behaviors are protected 
by symmetry all the way to the strongly coupled limit and compared with the corresponding 
supergtravity calculations. 

An interesting aspect of the AdS/CFT correspondence is how the boundary field the­
ory detects topology change in the bulk. Here by topology change we mean those with the 
boundary of the spacetimes left invariant. In the present case, we will consider two topologi-
cally distinct spacetimes that are asymptotically AdS. They are the pure AdS spacetime and 
the AdS-Schwarzschild black hole. It has been shown that there exists a thermal phase tran­
sition between the two spacetimes in the bulk gravitational theory [2]. On the field theory 
side this is translated into the de/confinement phase transtion of the Yang-Mills theory [3]. 
Most recently, it is found that there exist a particular limit of the AdS x S spacetime known 
as the Penrose limit [4] such that in the resultant plane wave spacetime the free string theory 
specturm can be solved exactly in the lightcone gauge [5]. Moreover the corresponding limit 
of the boundary CFT is also shown to be dual to the bulk string theory [6]. It led to the 
consideration of a plane wave/CFT correspondence. However, it should be noted that so 
far the boundary CFT is only understood as a limit of the original Yang-Mills theory, and 
a completely self-contained description of the field theory is yet to be found. In this thesis, 
we will consider the possiblity of an analogue of the thermal phase transition in the plane 
wave spacetimes. That is, we wish to find a black hole phase for the plane wave spacetimes 
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resultant from the Penrose limit. We will find such task is rendered very difficult by the sym­
metry properties of this class of spacetimes. In particular the existence of an event horizon 
is not consistent with the symmetries. We are then led to consider the analogue of Unruh 
radiation in these backgrounds in the hope that it will shed some light at the quantum level 
of the above inconsistency and how to modify the symmetry requirements. Lets start with 
a more detailed description of the AdS/CFT correpondence. 

1.1 A d S / C F T Correpondence: Motivation 
Consider the pure SU(N) Yang-Mills theory with Lagrangian: 

-0Tr[{dAf + A2 + Az + ...] = -0Tr[(dA)2 + V(A)] (1.1) 
g2 9 

where A(x) are traceless Hermitian matrices living in the adjoint representation of SU(N), 
and the traces are to ensure SU(N) gauge invariance of the action. The Feymann diagrams of 
the above theory can be represented with the double line notation due to't Hooft [7]: where 
the = 1..N are the SU(N) index. We see from fig(l.l). each propagtor contributes a 
factor of g2 while all the vertices carry a factor of 1/g2. Due to the trace on the vertices we 
need to identify the gauge index on the same single line, and there is a sum over i = 1..N 
for each closed single loop. As a result, we get a factor of N from each closed single line loop 
in a diagram. To summarize, each Feymann diagram will have a prefactor: 

(p 2) n o- °f propagators-no. of vertices j^no. of closed single lines ^ 2) 

It turns out the double line diagrams have a natural geometrical representaion. We can 
draw an arbitrary double line graph on a two dimensional boundaryless Riemann surface 
with appropriate number of holes and cycles (topology). The Feymann diagrams give a 
triangulation of the corrsponding Riemann surfaces. The power counting in (1.2) can now 
be rearranged into: 

(1 2) = NE(Ng2)n0' °^ propagators-no. of vertices ^ 2) 

where E is the Euler number of the Riemann surface E — no. of faces — no. of edges + 
no. of vertices = 2 — 2h where h is the genus of the correponding surface fig(1.2). ( the 
faces and edges refer to those in the triangulation) If we take the 't Hooft limit: N —> oo, 
g2N = A, the 't Hooft coupling, fixed, the Feymann diagram expansion is now seen as a 
genus expansion of the Riemann surfaces. Note due to the Hermiticity of the matrices, we 
need to include only orientable surfaces in the expansion. If we introduce additional matter 
fields transforming in the fundamentals of SU(N) into the theory, we will need to consider 
Riemann surfaces with boundary, as the fundamentals are represented by single lines in the 
double line notation. The partition function of the theory now has the form: 

log(Z) = y£NEfE(g2N) (1.4) 
E=2 
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We can focus on contributions from the planar diagrams (those can be drawn on a two sphere 
or a plane). Heuristically, if we consider diagrams with more and more loops and vertices 
(higher order in 0(A)), we would be filling up the Riemann surfaces with little triangles and 
the partition function is seen to approximate the summing of the world sheet configurations 
as in string perturbation theory. Let us make this more quantitative by looking at the du­
ality between AdS5 x S5 and M = 4 super Yang-Mills on i? 1 , 3 . 

The duality between type IIB string theory on AdS5 x S5 and gauge theory can be 
understood as a result of matching two equivalent descriptions of a stack of N D-3 branes 
in the appropriate limit. On one hand, a stack of D-3's in 1 0 dimensional Minkowski space 
can be discribed by the excitation of open strings ending on the branes, the closed string 
modes that propogate in the bulk off the branes, and their interactions. In this picture, 
strings are propagating in flat space with Dirichlet boundary conditions for the open strings 
at the loaction of the branes. At low energy, we can focus on the massless sectors of the 
string theory spectrum. This configuration can be described by an effective action with all 
the massive excitations integrated out. 

^eff = "S&rane ~\~ S c i o s e d s t r i n g -f- Sint (1-5) 

The closed string dynamics can be captured by the 1 0 dimensional supergravity action while 
the open strings are described by the Af = 4 super Yang-Mills. It can be shown that if we 
only keep the leading order terms in a', the close and open string sectors decouple. The 
low energy physics of the N closely positioned D-3 branes is just that of free 1 0 dimensional 
supergravity plus a super Yang-Mills theory living on the four dimensional world volume of 
the D-3 branes. 

On the other hand, from calculation of gravitons scattering off the D-3 branes and the 
Ramond-Ramond charges they carry, it can be deduced the presence of the stack of N D-
3 branes will generate a geometry which at large distances from the branes becomes an 
extremal black 3-brane solution of lOd supergravity carrying N units of Ramond-Ramond 
charge [ 8 ] . 

ds2 = r l l 2[-dt 2
 + dx2 + dy2 + dz2] + fl'2[dr2 + r2dn2) 

F5 = ( 1 + tfdtdxdydzdf'1 

f = l + ^,R* = 4sa'2N (1.6) 

for coincident branes. The horizon of the black three brane is at r = 0 . An excitation 
with energy E near the horizon will become E' = l im r = 0 f~ll4E as viewed by an observer 
at r = oo (/(r) approaches unity) due to the Tolman red shift factor. Therefore from the 
point of view of observers at infinity, all of the physics happening near the horizon of the 
D-3 branes are redshifted to low energy. To these observers, the low energy physics in the 
background generated by the stack of D-3 branes also contain two pieces: the first is the 
red shifted version of the near horizon behavior; the second is the low energy supergravity 
modes propagating in the bulk. In the low energy limit we are interested in, the two pieces 
also decouples. This can be seen as in this limit the bulk low energy modes would have 
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wavelength much larger than the scale set by the curvature of the black three brane. These 
modes are completely delocalized compared to a length scale that is "near" horizon. We 
now have two equivalent descriptions of the low energy physics in a background generated 
by a stack of N D-3 branes. In both versions there is a piece which is just the low energy 
10 dimensional supergravity modes. Since in both cases the supergravity modes decouple, 
we are then prompted to identify the other part from the two descriptions. We will relate 
the near horizon physics of (1.6) to the M = 4 super Yang-Mills theory living on the world 
volume of the D-3 branes. As the gravity modes decouple from the physics on the brane 
in the low energy limit, it is safe to assume the world volume of the D-3's to be the 1+3 
Minkowski spacetime. Note because of the red shift, the low energy excitations from the 
near horizon region as observed at infinity can in principle include modes with arbitarily 
high energy as measured by a near horizon observer. The duality is conjectured to exetend 
beyond the supergravity limit and include higher string modes. The near horizon geometry 
of (1.6) is the AdS5 X 5 5 as can be checked by taking r << R, and approximate f1/2 by 

In (1.7), the AdS part of the metric is written in the Poincare coordinate, which, however, 
only covers part of the AdS spacetime [Appendix A]. It is easy to see by taking the limit 
r —> oo that the metric (1.7) becomes conformal to the flat Minkowski space R1'3 (the radius 
of the internal five sphere shrinks to zero). To an observer living on the boundary of the 
AdS spacetime, the duality can be stated as: 

The type IIB string theory on AdS5 x S5 is dual to the M = 4 SU(N) super Yang-Mills on 
the conformal boundary R1'3 of AdS5 x 5 5. 

In this section we will introduce the mapping between the Hilbert spaces of the boundary 
field theory and the bulk string theory. First we will look at the parameters in the two 
theories and see how to map them to each other [1]. In the field theory, we have the Yang-
Mills coupling gYM and N from the gauge group SU(N) (and the theta angle which do not 
play an impotant role in the discussion to come). On the string theory side, there is the 
string coupling gs, the funadamental string length I2 = a' and from the background, the 
radius of AdS5 x S5, R, and the R-R five form charge N = R4/\Angsa'2). From calculations 
of how Dp-branes couple to Ramond-Ramond (p + l)-form potential, we can calculate the 
relationship between the Yang-Mills coupling and the Dp-brane tension TP OC l/gs(a')~ 2 
[9]. It gives us the following relation: 

R2/r2: 

ds2 = -^[-dt2 + dx2 + dy2 + dz2] + —dr2 + dSll (1.7) 

1.2 A d S / C F T Correpondence: The Duality 

(1.8) 

(1.9) 
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, and the 10 dimensional Newton's constant 

Gio <x a'4g2

s ~ ± (1.10) 

The relationship (1.9) gives evidence for our heuristic identification of the large N 't Hooft 
expansion and the string world sheet genus expansion in fig(1.3). The parameter a' is 
inversely proprotional to the't Hooft coupling A of the Yang-Mills theory. This indicates to 
perform perturbative canculations on the field theory side, we need to turn on the stringy (a1) 
corrections to the gravity computations. On the other hand, in order for the supergravity 
description in the bulk to be valid, we need the scale set by the curvature of the spacetime 
to be much larger than the string scale, that is: 

l « ( y Y ~ g 2

Y M N = \ (1.11) 

This says the dual field theory will give comparable result to the bulk supergravity calcula­
tion only if we include all the loop corrections (at the planar level). We have reached the 
conclusion that the AdS/CFT correspondence is a strong/weak coupling duality. As men­
tioned before, this makes the duality hard to check, but it also gives us a new avenue to the 
nonperturbative behaviors of gauge theories. Notice also, there are two limiting procedures 
involved. Take the gravity calculations, for example. We need to first dial down the string 
coupling constant to supress string interactions (the higher genus diagrams) then take the 
limit a —» 0, which allow us to focus on the supergravity contributions. The corresponding 
limits on the field theory side is to first take gYM to zero then take the large N limit in such 
a way that the 't Hooft coupling A = gYM^ 15 fixed but large. This will give us access to 
properties of the field theory at the planar level but at large't Hooft coupling. 

Next, we look at the symmetries of the two theories. The M = 4, SU(N) super Yang-Mills 
on R}>3 is a conformal theory. It has the conformal group SO(2,4) as its symmetry group. 
SO(2,4) also is the isomotry group of AdS^. The generators of SO(2,4) includes the usual 
Poincare algebra plus dilatation D = x^d^ and the special conformal generator K^, which 
induces the transformation: 

,„ x» + a^x2 

x v = 
1 + 2xvav + a2x2 

The scaling dimension A of an operator is defined by how it changes under dilataion. 

x" ->• ax", 0(x) 0\x) = aA0{ax) 

From the commutation relations between the translation generator P^, D, and K^, [1] we see 
the translations are raising operators and'the K^s are the lowering operators of the scaling 
dimension. In particular, the ones that are annhilated by if's are called primary operators. 
If we consider the Euclidean version of the theory, we can take the dilatation operator as the 
Hamiltonian. Since the theory is conformally invariant, the background spacetime can be 
replaced by S3 x R1 fig(1.4). A state in the space correpondes to an insertion of an operator 
at the origin of R1'3 and propagated with the dilatation generator. The "time" in this radial 
quantization acctually does not map to the global time coordinate of AdS5 x S5. The correct 
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combination in the Lorentzian sector is H — ^(P0 + K0) = dt, where t is the global time 
coordinate of AdS. However, the operator/ state correspondence has the advantage that the 
energy eigenvalues of a state is just the scaling dimension of the operator conjugate to it. In 
the S3 x R1 picture it is natural to denote the states by the scaling dimensions of the oper­
ators. This helps simplify the identification of the bulk and boundary Hilbert space. Since 
the background is the flat space we can use isometry to show the Hilbert space according 
to the two quantization schemes are isomorphic to each other. The isometry group of the 
S5 is SO(6). In the AdS/CFT picture it corespondes to th R-symmetry of the M = 4 super 
Yang-Mills theory. It will become important when we discuss the planewave limit of the 
duality 

The mapping between states in the bulk and the operators on the boundary (remember 
their scaling dimensions labels the states on the boundary) proceed as follows [10]: 

< ef'+oWM >CFT= ZsMng[<p(x,z)\i=0 = <Po{*)) 

where we have written the AdS metric in the form: 

ds2 = ^\{-dz2 + dx2) (1.13) 

These coordinates also only covers the Poincare patch, and the boundary is at z = 0 with 
the Xi's labeling it. In the following we will work in the Euclidean sector with z —> iz.' 
(1.12) says the boundary conditions on the bulk fields are to be considered as sources for 
the boundary theory operators with the appropriate scaling dimension. We will consider 
here only scalar fields. The cases with higher spin particles can be generalized natrually by 
considering adding tensorial operators to the CFT generating functional. The string theory 
partition function is viewed as a functional of the boundary value of the bulk fields. 

From the metric (1.13), it is easy to see the transformation z —> az, Xi —» axi is an 
isometry. when restricted to the boundary, the above transformation is just the dilatation. 
If the operator has scaling dimension A, in order for the exponent of the left hand side of 
(1.12) to be scaling invariant, the corresponding bulk field must have the behavior <p(z, x) ~ 
zA'4>0(x) with A' = 4 — A. If we solve the bulk scalar wave equation: 

(z2d2

z - 3zdz + Z2V'transverse ~ m2)(j)^Z, x) - 0 

with the ansatz zA'(po(x), we find there are two possible values for A' = 4. 

A' ± = 2 ± (4 + m 2 ) 1 / 2 (1-14) 

The positive root gives regular solutions on the boundary, while the negative one makes the 
solution diverge. Also since A+ + A'_ = 4, it makes sense to associate a bulk field with 
A'_ to the boundary operator with scaling dimension A' + . This is also motivated by the 
requirement that the bulk field is regular on the interior of the AdS space. 

Having established the dictionary, the first thing to notice is (1.12) gives us a way of 
obtaining correlation functions of the field theory operators at large A through perturbative 

(1.12) 
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supergravity calculations (the large N, large 't Hooft coupling limit is taken as outlined 
before). To do this, we need to obtain the general solutions of the bulk wave equation subject 
to certain boundary condition (f)o(x). In fact, we will relate the left hand side of (1.12) to 
supergravity partition function evaluated at on shell bulk fields with their boundary behavior 
as free variables. 

< efdMx)0(x) > C F T = e~^RA[,p{x'z)lz=0=Mx)] (1.15) 

The correlation functions are obtained by functional differentiation of both sides with respect 
to 4>o(x) evaluated at <J>Q(X) = 0 . The bulk wave fuction can be derived perturbatively by 
propagating the boundary condintion in to the bulk with the help of the "boundry to bulk" 
propagators. These propagators satisfies the homogeneous wave equation every where in the 
bulk, but approaches a delta function source on the boundary. 

limGboundary/bulk(z1,x1\0,x2) = ( 2 ,  Z - ^ ) A ' ~ ->• Z i ~ S { x i ~ x2) (1.16) 
zi-*0 Z-y "T \Xi — X2) 

For free scalar theories the bulk field is then 

(f)(zi,Xi) = I dx2Gboundary/bulk(Zl,X1\0,X2)<f>o(x2) (1-17) 
Jd 

In terms of these boundary to bulk propagators, the field theory correlation function can be 
represnted geometrically as in fig(1.5). 

Despite the diffuculties in checking the AdS/CFT correspondence directly, many tests 
has been performed and given evidences for the validity of the duality. These tests usually 
involves calculating quantities in the boundary field theory with no dependence on the 't 
Hooft coupling (often the ones protected from quantum corrections by symmetries) and com­
pare with the corresponding supergravity/string theory objects according to the prescription 
(1.12): The spectrum of Chiral operators are invariant under change of the coupling. It is 
shown the supergravity fields on AdS spacetime is in one to one correspondence with the 
chiral primary operators in the CFT. While single trace operators corresponds to single 
particle states, multiple trace operators are dual to multiple particle states [1]. The decen-
dents of a primary operator 0 (those obtained from acting derivatives or supercharges on 
the primaries), correspondes to excited states of the bulk field dual to 0. Although the 
full spectrum of type IIB string theory on AdS5 x S5 has not been mapped out entirely, 
it is congectured the non-chiral primary operators will correspond to single string states 
with higher excitations. Gauging certain global symmetry on the field theory side results in 
quantum anomaly that comes only from the one loop diagrams, and thus can be trusted at 
the large A regime. Such anomaly can be seen from the calculation of correlation functions 
of currents of the broken symmetry. Using the construction outlined above, the field theory 
and the supergravity calculation result in identical expressions for the anomaly in the large N 
limit [11]. Non-local operators such as Wilson loops in the boundary gauge theory of spacial 
shapes are protected by super symmetry. Calculations from both the bulk and boundary 
points of view are also shown to match [12]. Most Recently, certain limit of AdS5 x S5 

along a null geodesic around the equator of the five sphere is shown to result in a spacetime 
on which string theory spectrum can be solved exactly. This background is a maximally 
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supersymmetric plane wave solution of type IIB supergravity. Coresponding limit on the 
field theory side are also shown to be dual to the string theory on the plane wave geometry. 
We will discuss this limit in detail in a later section. We will now turn to finite temperature 
aspects of the AdS/CFT duality. 

1.3 Hawking Page Phase Transition and 
De/confinement Transition 

Considering the N~ = 4, SU(N) super Yang-Mills on the boundary of AdS5 x'S5, we have 
established a holographic picture for the AdS/CFT duality. If the duality is true to all orders 
of a' and N, we are to consider all backgrounds that are asymptotically AdS. This can be 
seen explicitly in (1.12) which asserts the generating functional of the CFT can be computed 
by summing over all the bulk fields including variations of the background metric for the 
string theory as long as they are subjected to certain boundary conditions. It is interesting 
to see how to describe topological changes in the bulk using the field theory language. There 
are two known solutions to Einstein's equations asymptotically AdS. The first one is the 
AdS spacetime (in this section, we willuse the conventions of [3]: 

ds\ = (1 + r2/b2)dt2 + r ^ 7 ^ + r ^ U (1.18) 

where b is related to the cosmological constant A = p-. We will be calculating the Eu-
clideanized partition function, the global time coordinate has been Wick rotated. The second 
solutionis the Schwarzschild-AdS black hole: 

dr 2  

dsj = (1 + r2/b2 - Mjr^dt2 + ( 1 + r 2 / y _ M / r B - 2 ) + (1.19) 

the temperature of the Euclidean black hole is determined by the requirement the manifold 
is smooth and complete at the horizon r 0 : 1 + r^/b2 — M/TQ~2 = 0. It is calculated to be: 

rp = r j + i? 
H 2itb2rQ 

The topology of AdS spacetime is Rn x S1, and the Schwarzschild-AdS has R2 x S*"-1. They 
are dipicted in fig(1.6). There is a significant difference in the two cases. In dsf, the temporal 
circle S1 is not contractble and we can set the period of it to any positive number. In ds2,, 
the temporal circle is contractible provided it has the correct period /3 = ij^, while it is the 
spatial circle being not contractible. r = r 0 is a lower bound for the radial coordinate and is 
a boundary of the spacetime. 

Hawking and Page [2] demonstrated that there is a gravitaional phase transition between 
AdS and AdS black hole. It is done by comparing the contributions to the partition function 
from the two geometries. Being solutions to the equations of motion, these are two saddle 
points for the Einstein-Hilbert Action with cosmological constant: 

Igravity = IE—H + Ifl—G 
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where IH-G is the Hawking-Gibbon's boundary term which cancells the contribution from 
varying the Ricci scalar to the equations of motion [13]. K is the extrinsic curvature on 
the boundary and Gn+\ is the n+1 dimensional Newton's constant. On asymptotically AdS 
spacetimes the boundary term acctually evaluate to zero, and we will ignore it from now on. 
When plugging in solutions of Einstein's equation, the bulk term become: 

T - U 

n + l 
J dn+1x{g)ll2 (1.21) 

In both metrics (g)1^2 = r" - 1 , however, the domain of integration in the t, and r coordinates 
are different. For AdS they are t E [0,6], r E [0,+co], where 6 could be any positive 
number and for Schwarzschild-AdS t E [0,6H], r E [r0,+oo], where 6H is constraint to be 
the inverse Hawking temperature. This is a direct consequence of the topology difference 
between the two spacetimes. Note the radial coordinate is integrated all the way to infinity. 
Both contributions to the partition function have the same divergence due to the infinite 
volume. In order to analyze the relative stability of the two saddle points, we need to 
regularize them. Following [2], we can subtract the AdS contribution from the black hole 
phase. To do so, however, we need to identify the two metrics on a large r = R submanifold. 
Namely, we will need to match the circumference of the time circle on r = R 

With the identification we found the differnce between the two solutions is: 

lim (Is

E~A

H

dS - IAdS

H) oc r , , \ , r ° o , L , (1.22) 
R^ooy E~H E H > Gn+1(nr2 + (n - 2)b2 v ' 

(1.21) turns zero at r 0 = b. From the usual thermodynamics relation Z = e _ / = e~l3F, we 
see that at small r 0 (low temperature), the AdS phase is energetically favorable, while at 
large r 0 (high temperature) S-AdS black hole is the dominant solution. There is a phase 
transition between AdS nad S-AdS black hole. With the regularized S-AdS contribution to 
the partition function, we can. also compute other thermodynamic quantities such as the 
energy and entropy of the black hole. 

We now consider phase transitions in the boundary field theory. It is shown in [10] at 
least in the large't Hooft coupling limit the large NA/" = 4 SU(N) super Yang-Mills theory 
on a compact manifold (here in particular we consider S1 x S3), has a de/confinement phase 
transition. The transition is characterized by the behavior of the order parameter: 

d = lim ^ (1.23) 

There exists a low temperature confining phase with C\ = 0 (or F(6 > 6H) ~ 0(1)) and 
a high temperature deconfining phase C\ ~ 0(1) (or F(6 < 6H) ~ 0(NS)). F(B) is the 
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free energy of the theory and (3 is the period of the temperal circle. The large N limit is 
essential for the de/confinement transition to exist on a manifold with finite volume. On 
the other hand, it is also known that the gauge theory on the decompactified background 
R3 x S1 is always in the deconfined phase. There is yet another order parameter for the 
de/confinement phase transition. Consider the expectation value of a Wilson line operator 
in the gauge theory: 

C2 =< W(C) >=< Tr[PefcA] > (1.24) 

In particular, we will consider the case when the Wilson line wraps around the temperal 
circle of the backgound. Introducing a Wilson line operator in the theory can be interpreted 
as adding an external static charge which transform in the fundamental representation of 
SU(N) (a quark) to the system. The expectation of the Wilson line is the cost of free energy 
of introducing the quark. 

< W(C) >~ exp(-F(P)8) (1.25) 

In the confining phase, the field theory can be considered as a theory containing only glue 
balls at finite temperature. It takes an infinite amount of free energy to introduce an external 
charge, and therefore the expectation value of the Wilson line (C2) is zero. In the decon­
fined phase the cost of free energy of such operation is finite and so is the order parameter Ci. 

The authors of [14] have utilized these order parameters and demonstrated de/confinement 
phase transition in weakly coupled large N gauge field theories on compact manifolds. Their 
result also shows in the confining phase the gauge theory spectrum has the Hagedorn be­
havior. The Hagedorn behavior is characterized by the exponential growth of the density 
of states with respect to increasing energy: p(E) = e^aE Therefore, when computing the 
thermal partition function of the system, we get a critical temperature P = PH, above which 
the thermal partition function diverges and the thermal ensemble is ill-defined. 

ZP = J p(E)e-?E (1.26) 

Studying the order parameters indincates the de/confinement transition could be either first 
order at a temperature below TH, or second order happening right at T#. 

It is well known the spectrum of single string states also exhibits Hagedorn behavior 
[15]. The Hagdorn temperature can be considered as the temperature at which perturba-
tive vacuum of string theory becomes unstable. This can be seen from the fact that some 
superstring states with nonzero winding around the themal circle become tachyonic if the 
period of the thermal circle is smaller than certain critical value PH [16]. It is argued there is 
corespondingly some kind of phase transition when the winding modes condense. The phase 
transition can again be first order below TH or second order occuring at exactly the Hagdorn 
temperature. The former is not truely a Hagdorn transition in that the partition function is 
not dominated by contributions from states with arbitrily high energy, while the latter is. In 
the AdS/CFT correpondence, we are identifying the Hilbert space of the Yang-Mills theory 
with that of the string theory. It is natural to identify the Hagdorn behavior and the phase 
transitions on both sides of the picture as well. The winding modes can be heuristically iden­
tified with the temperal Wilson lines used as order parameter of the de/confinement phase 
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transition. Going back to the strongly coupled field theory limit. According to AdS/CFT 
duality, this correspondes to the regime where supergravity results can be trusted. The super 
gravity descrition of the Wilson lines is proposed to be [17]: 

< W{C) >CFT~ e~Sc (1.27) 

where Sc is the minimal area of a surface in the bulk bordered by C on the boundary of 
the spacetime. Sc is calculated with respect to the appropriate bulk background geome­
try. The proposal is motivated by the picture that we can view (low energy) excitations of 
open strings stretched between a stack of N D-branes and one distantly seperated D-brane as 
states of very massive quarks, with the mass proportional to the seperation. (This is because 
open string ends carry Chan-Paton factors that transform in the fundamental of the SU(N)) 
If we take the quark to be static (m —> oo), the string can be considered to be stretched 
between the bulk of AdS and its boundary. Since Wilson lines in gauge theory correspon­
des to insertion of such a massive quark, in view of the prescription (1.12), the expectation 
value of these operators on the boundary should be dual to (in the supergravity limit) the 
exponential of the area of the superstring world sheet with the boundary condition that it 
ends on C. fig(1.7). In the low temperature phase, according to (1-21), the bulk geometry 
is that of the pure AdS. However, it has the topology such that the temperal circle is not 
contractable. Thus it is not the border of any string world sheet, and < W(C) >= 0. When 
the temperature is high, the dominating state in the bulk is the Schwarzscild-AdS black hole 
background. The black hole geometry admits contractable temperal circles, and thus C is 
the boundary of some string world sheet configuration. < W(C) > is nonzero. The above 
result suggests that we can associate the confining phase in the boundary filed therory to 
the bulk AdS geometry and the deconfined phase to the black hole background [3]. More 
importantly, the de/confinement phase transition is dual to the Hawking-Page phase transi­
tion. As we have seen in (1.21), the Hawking page phase transition is a first order one. It is 
also understood that it happens at a temperature lower than the energy scale where stringy 
corrections become important, that is, it happens below the Hagdorn temperature. 

^From the above analysis, we can make the following congecture: in the large N, weak't 
Hooft coupling limit, J\f — A SU(N) super Yang-Mills has de/confinement phase transition, 
which could be identified with the Hagdorn behavior in the free superstring theory. It is 
not clear, however, what is the phase beyond the Hagdorn temperature on the string theory 
side. (For more interesting speculations on this point see [14]) When the't Hooft coupling is 
large, we can approximate bulk theory by classical supergravity. The de/confinement phase 
transtions in the gauge theory is mapped to the Hawking-Page phase transition. The phase 
transition is first order and is below the Hagdorn temperature. Notice that the information 
about the de/confinement phase transition in the strong coupling limit is only obtained 
through the help AdS/CFT, since we have no control over the perturbation theory when A 
is large. 
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1.4 B M N Limit of AdS/CFT 
In the previous sections we have reviewed the basic elements of the AdS/CFT correspon­
dence. We have seen that it can teach us about the behavior of strongly coupled gauge 
field theory through tree level calculations on the supergravity side. More interestingly, the 
duality tells us how to relate the thermodynamics of string theory to the de/confinement 
phase transition in large N Yang-Mills theory. However, due to the fact that we do not 
know completely the spectrum of string theory on AdS$ x S5, we are not able check the 
correspondence completely with weakly coupled super Yang-Mills even just at the planar 
level. 

Recently, it is found by the authors of [6], that by taking the Penrose limit of the AdS5 x 
S 5, we are able to obtain a spacetime on which free string theory can be solved exactly in 
lightcone gauge [5]. The spacetime is a maximally super symmetric plane wave [18]. They 
also showed the corresponding limit on the field theory side contains states that can be 
mapped in a one to one manner to the string theory states on the plane wave background. 
The particular Penrose limit taken is to focus on the null geodesic that travels around the 
great circle of the S5. We will give detailed account of the Penrose limit in the next chapter. 
The BMN plane wave spacetime has the metric: 

ds2 = -2dudv + ix2r2du2 + dxi2 (1.28) 

t=1..8 

with null five form field strength: 

4 
-ful234 = ^«5678 = —f- (1-29) 

9s 
To establish the duality, we need to know the relations 

" = 2 7 ? W = / / W ( L 3 0 ) 

where t is the global time of AdS5 and ip is the azimuthal angle on the five sphere. The 
lightcone momenta are related to the conserved quantities of AdS5 x S5 through [1]: 

-?i = ^du = i{dt + di)) = A - j 
p p 

i J 
-ppv = ipdv = ^ 2 = ^ ( L 3 1 ) 

where R is the radius of AdS$ x S5. A = idt, is the energy and J = —id^ is the angular 
momentum around the five sphere in the original spacetime. The Penrose limit involves 
taking the limit R -> oo. The BPS condition requires physical states to satisfy A > J. As 
a result, only states with large five sphere angular momentum 

J ~ R2 ~ ( < 7 S A 0 1 / 2 - (gYMN)1/2 (1.32) 



Chapter 1. Introduction and Overview 13 

would survive the limit. If we are interested in free string theory spectrum, the large R limit 
can be taken as follows: first let gs -> 0, with gSN ~ 9YMN fixed, then take the large 't 
Hooft coupling limit with J/R2 and A — J fixed. If we are to consider string interactions, 
the large R limit can also be realized as taking N to infinity, J ~ iV 1 / 2 , while keeping gs, 
A — J fixed. In this case, we can trade in the usual perturbation parameters A, gS{9YM) 

with 

A ' - . ^ , ^ ^ (1-33) 

It is easy to see the relation gs ~ gs(pa'v)2 from (1.9). When considering states with fixed 
light cone momentum pv, the parameter A' governs the loop expansion in the Yang-Mills 
theory, while g's being the parameter in string loop perturbation. 

On the field theory side, the operator J = —id^p corresponds to the R charge which ro­
tates two of the six scalars in the theory. Remember that we can use isometry to relate the 
eigenvalues of the global time translation generator and the dilatation generator idt —> D. 
The relevant states live in a sector of the super Yang-Mills theory with large scaling dimen­
sions and large R-charges. Here we will also consider mapping operators in this sector, the 
BMN operators to string states on the plane wave background. 

The free string theory can be solved exactly on this background in the light cone gauge 
in the Green-Schwarz formulism [5]. The light cone Hamiltonian and its spectrum is given 
by: 

= £ ^ ( l + 4 ^ ? > (1.34) 
n 

We will now give the dictionary for the identification of field theory operators and free string 
states [6]. It is natural to consider first the operators with the lowest value of light cone 
momentum A — J . It turns out there is a unique single trace operator Tr[(Z)J], Z = <j)1+ i(j)2, 
where we have taken J = —id^ to be the generator that rotates the two scalars dr1, 4>2 in the 
gauge theory. The association is then: 

Ti[ZJ] -+ |0,p„ > (1.35) 

where |0,pu > is the lowest string state with no creation operators acting on it. In general 
we can insert operators into the chain of Z's in the trace above to make new operators 
with higher values of A — J , which would correspond to string states with higher light cone 
momentum. There is one subtlety, however, we need to impose the level matching condition 
on the field theory operator. This is done by summing over all the places of inserting the 
extra operators weighted by a phase factor proportional to the momentum. If the total 
momentum along the string is not zero, the cyclicity of the trace along with the phase factor 
will make the operator so constructed vanish. The mapping between the string world sheet 
creation operator and the inserted is found to be (for the bosonic part): 

a]i -» DiZ i=l..4 



Chapter 1. Introduction and Overview 14 

where D{ is the gauge theory covariant derivative, and 0's are the rest of the scalar fields. 
For example: 

j 

J2Tr[(Diz)Zl(f>3ZJ'l]e27Tinl/J -> o^a^n\0,pu > (1.36) 
i=i 

The above identification has been check by computing A - J in the Yang-Mills theory in 
expansion in A' and showed agreement with (1.33). 

With the free string spectrum constructed, the thermodynamical behavior of string theory 
on this background has also been considered. It is possible to compute the free energy 
explicitly. It is found there exists a Hagedorn temperature for strings on this background 
[19]. The Hagedorn temperature is an increasing function of p. When p is small the Hagedorn 
temperature approaches the flat space result: 

T h = u h y r ^ ( L 3 7 ) 

In the large p limit, the Hagedorn temperature is pushed to infinity, and we do not expect 
a phase transition to occur. 

In this thesis, we will attempt to understand if there is an analogue of the Hawking-Page 
phase transition for the plane wave background and if it can be associated with the Hagedorn 
transition found in the finite p string theory result. The first step will be to find a black 
hole phase in the plane wave spacetime. However, it has proven to be a difficult task. 

Before we move on, we will list perturbations of bosonic fields in type IIB supergravity 
around the BMN pp-wave background and refer to [5] for detailed definitions and their 
derivations. We will present their equations of motion to linear order of perturbation. We 
will see that these classical equations can all be related to the massless scalar equation. The 
field content of IIB supergravity are a complex scalar (the dilaton plus an axion), a complex 
two form potential consisting of the NS-NS three form and R-R three form field strength: 

dC2 = H3 + iF3 

and the R-R four form, (we will not be concerned with their Hodge duals). Using the nota­
tions in [] and use the light cone gauge: 

Complex Scalar Perturbation (<5$): 
V2<5$ = 0 (1.38) 

Complex Two Form Perturbation (Sbfj, Sb^-,, Sbiji where the unprimed indicies goes from 1..4, 
and the primed index goes from 5..8. This is the decomposition according to the 50(4) x 
50(4)' symmetry of the background. The superscript ± labels irreducible representations 
of SO (A) ): 

V26bif = 0 
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( V 2 ± i 4 m ) r 5 6 j = 0 

( V 2 ± iAppv)8b%, = 0 (1.39) 

Graviton and Four Form Perturbation (8hf-,8h^-l,8hij>,8h,8aij: ,8aijiiji ,8a. It turns out 
some of the graviton and four form equations of motions are mixed due to the nontrivial 
background. 

V28ciijiij' — 0 

( V 2 =F i4(J.pv)(6hiji ± Sciiji) = 0 

V28hij = W28hiir = 0 

(V2Ti&Wv)(8h±8a) = 0 (1.40) 
fig l . i 

Propagators: 

j 
loop: 

verticies: 

0(NA2) 
0(1) 0(1/NA2) 
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fig 1.5 

Bulk calculations of three and four point correlation functions. The circle is the boundary of AdS 
The dotted lines are boundary to bulk propagators. The solid line is bulk to bulk propagator 

fig 1.6 

A A 

Euclidean time cycle 

Topology of Euclidean AdS The time direction can be identified with 
any positive period. The time cycle is not contractible. 

time cycle 

finite spatial radius 

Topology of Euclidean Schwarzschild. The time cycle is contractible in this case 
The horizon is located at the tip, and it is of finit spatial radius. It is a boundary 
of the space. The spatial cycle is not contractible. 
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fig i.7 

The expectation value of a Wilson loop operator C on the boundary can be approximated by the exponential of the area of string world sheets bordered by 
C 
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Chapter 2 
The Penrose Limit 

2.1 Introduction 
In this section we will review the limiting procedure known as the Penrose limit and some 
of its properties. Folowing the original work of Penrose [4] , the idea of Penrose limit of a 
spacetime starts out from the observation: 
In a Lorentzian spacetime, in some neighborhood of a conjugate point free portion of a null 
geodesic, a coordinate system can be set up so that the metric takes the form: 

g^dX^dX" = ds2 = -2dUdV + AdV2 + BidVdXi + CijdXidXj (2.1) 

where {A, P>i, Cij} are smooth functions of {U, V, X1}. Following the above coordinate trans­
formation another diffeomorphic transformation is made: 

u = U 

Cl2v = V 

, fix* = X1 (2.2) 

The metric then takes the form: 

g^dx^dx" = ds2 = Cl2(-2dudv + Cl2Adv2 + ClBidvdx1 + Cijdxidxi) (2.3) 

Then the limit Cl —> 0 is taken, and a well defined new metric g' can be denned with the 
conformal rescaling 

^ = & o ^ ( 2 - 4 ) 

Because of the transformation (2.2), in the limit Q, —> 0, the components survived can depend 
only on u. g' is noted to be the Rosen form of a pp-wave spacetime: 

g'^ = (-2dudv + C'ijWdx'dx*) (2.5) 

The transformation (2.2) is the key that makes Cl —> 0 is a well defined limit (with the 
rescaling). Physically, the Penrose limit is a generalization of the concept of a tangent space 
at a point p of a manifold. Here a neghborhood along a null geodesic is getting scaled up 
as the limit Cl —>• 0 is taken. While the neighborhood of a point is a flat space, the Penrose 
limit of any null geodesic in any spacetime is a pp-wave. 

Similar sequence of operations (2.2), (2.4) can be taken on other objects defined on the 
spacetime, for example, gauge fields or Killing vectors. They will in general have different 
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scaling laws in order for the limiting procedure to be well defined ( in fact the scaling factor 
may vary from Killing vector to Killing vector). For a p-form potential, we need to impose 
certain gauge conditions. 

Am1i2..ip-1 = AUVil..ip_2 (2.6) 

and with the scaling 
A' = Vt-pA (2.7) 

It is interesting to note that another Penrose limit of (2.5) in the ^ takes the metric 
back to itself and along ^ takes it back to Minkowski space. 

We will now list several important properties of the Penrose limit: (I will here only state 
them will out proof. Rigorous treatment could be found in [18] 

1. The Penrose limit of a solution of supergravity is also a solution of supergravity. 

2. Under Penrose limit the dimension of the (super)symmetry algebra will not decrease. 
This does not say in the limit no two Killing vectors will become degenarate. it only says 
the total number of Killing vectors can not decrease. Also, even if the original spacetime 
do not have any supersymmetry, the resultant pp-wave after taking the Penrose limit will 
always preserve at least half of the maximal number of supersymmetry 

3. If two null geodesies are related by some isometry, the Penrose along them will also be 
isometric to each other. 

Another coordinate system usually used to describe pp-wave spacetimes is the Brinkman 
(or harmonic) coordinate. To get the metric from Rosen to Brinkman form, we need to 
perform the following transformation: 

u' = u 
1 
2J 

x' = Q)xj (2.8) 

v' = v + -Mij^x^x^ 

where Q satisfies 
CijQkQi — $ki 

while 
dQlQl 

du 3 

The resultant metric in Brinkman form is 

g'^dx^dx" = -2du'dv' + {Aij(u)xixi)du'2 +a dx'j (2.9) 

where 

^ = - d { C k ^ ] Q i (2-10) 
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it can be show always exist and is invertible. We will mostly be interested in the case 
when Cij(u) are diagonal, 

dj{u') = a?(«')<5ii (2-11) 

When this is the case, we have simply: 

where ' denotes differentiate with respect to u'. 

As seen from the above, the resultant metric from Penrose limit will be flat space if and 
only if 

(*(«'))" = 0 

If aj's are of the form of hyperbolic (or trignometric) functions, 

a* (it) = Asmh(pu) + B cosh.(pu) 

di(u) = Asin(pu) + Bcos(pu) 
the Aij is then a constant, diagonal matrix with positive (negative) eigenvalues. Notice when 
it is the case that a$ are trignometric, the metric in Rosen form could only covers a finite 
range of u until Oj(wo)=0, and the metric becomes degenerate. However, when expressed a 
in Brinkman form the metric is analytically continued to all values of it. In the next section, 
we will apply Penrose limit to spacetimes of the form AdS x S 

2.2 Penrose limit of AdSp x Sq 

The maximally supersymmetric planewave solutions to eleven dimensional and type IIB 
supergravity are [17]: 

3 1 9 9 

ds2 = -2dudv - ( X X + 4 51 * J 2M« 2 + Yldxi2 (2-13) 
j=l j=A i=l 

8 8 

ds2 = -2dudv - (J2 xi)du2 + d x i 2 (2-14) 
both of them can be obtained through Penrose limit of spacetimes of the type AdSp x S9. 
We will start by reviewing how this comes about. 

The type IIB supergravity solution is derived via the Penrose limit along a null geodesic 
in AdS5 x S5. The null line goes around the great circle of the 5-sphere while stays at the 
spatial origin of AdS. The metric of AdS$ x S5 in the covering space is: 

ds2 = R2(- cosh2(p)dt2 + dp2 + sinh2(p)fi02 + cos2{6)dip2 + dQ2 + sin2(fJ)dQ^2) (2.15) 
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where we have chosen the radius of AdS to be identical as that of the sphere. The Penrose 
limit in this case can be simply performed as a Taylor expension. Let 

u = t 

v = R2(t-^) (2.16) 

Note (2.16) is not the usual choice for light cone coordinates. It, however, has the advantage 
in interpretation that the time in the resultant metric could be identified with global time 
of AdS. The usual choice:u = ^ will also work and the gives an identical result in the 
limit, but u is periodically identified with the periodicity of ip. Performing also the rescaling 
Rp = x, R0 = y, we get in the limit R —> oo (take O = 1/R), 

R2{-{lW/R2)du2+dx2/R2+(x2/R2)d^l^-y^ 

= -2dudv - (x2 + y2)du2 + dx2 + x2d£l\ + dy2 + y2dfL2

3 (2.17) 

In type IIB supergravity, besides the metric field (2.15), there is also the R-R five forms: 

RA 

Fs, = A—dn5, FAdS5 = * F 5 

9s 

their Penrose limit is taken as prescribed in (2.6), (2.7), and we get: 

_ 4 
•̂ 1x1234 — -^5678 — — 

9s 

To get to thesolution presented in (1.27), (1.28), we need the redefinition u —>• pu, v —¥ ̂ . 
The procedure presented above, however, only works for certain particular trajectories, since 
it depends on the fact at small p and 6 the Taylor expension of cosh(p) and cos(0) do not 
contain terms with first order in 1/R. It would not have worked if we are expanding about 
a finite value of p and 9 or if the metric had other functional dependence. We will come 
back to this when we are discussing the Penrose limit in Schwarzchild-AdS black hole. From 
here on we will revert back to the more canonical procedure introduced in the previous sec­
tion and always perform a coordinate transformation adapted to the null geodesic we choose. 

The general form of the metric for AdSn x SD~n is: 

dr2 

ds2 = R2(-dt2 + sin(t)2(- + r2dQ2

n) + a2\d^2 + s i n 2 ^ ) ^ ^ ] ) (2.18) 
1 -f- r 

where a is the ratio of the radius of the sphere to.that of AdS. We have written the AdS 
part in a non static coordinate. We will again consider the Penrose limit along a null line 
going around the equator of the sphere. Note that despite the same motion on the sphere, 
t is not the same as the global time used in the previous derivation. We are following two 
different classes of null geodesies. We found that only the present class allows us to put the 
metric in the form (2.1). The coordinate transformation: 

u = aip + t 
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v = R2(t- aip) 

takes the metric to: 

ds2 = R2{-±dudv + s i n 2 ( ^ | ^ ) ( ^ + r2dOl) + a 2 s i n ' C ^ ^ d f i ^ (2.19) 

We also make the change in dfl: 

(2.21) 

dO2 = # 2 + sin 2(0)rifi 2_ 1 = 4#'2 + s m 2 ( < / ) 7 ^ 2 ) ^ n - i (2-20) 
R 

Taking the limit R —> oo, we get: 

n-2 D - n - 1 

ds2 = -dud« + sin 2(V2) Y d a ; i 2 + a 2 sin 2(«/2) ^ d^'2 

i=i j=i 

This is a pp-wave in the Rosen form. The C -̂'s are diagonal and are trigonometric functions. 
This coordinate system only covers u = (0,2n). We now perform the transformation (2.8) 
to get to the Brinkman form. Explicitly: 

u' = u/2 

^ n-2 cisin(u/2) ^ D-n—1 dsin(u/2) 

V' = V~2 ^{sm(u/2))xl2 ~ 2 ( s in ( t /2) ) ; C ' 2 

sin2(u/2) asin2(u/2) 

The metric in Brinkman form is: 

n-2 1 D - n - 1 

-2du'dv' - (J2x'i2
 + ~ Y x>J2)du'2 + Ydx'i2 (2-22) 

We have thus derived both (2.13) and (2.14). The difference in the eigenvalues are seen 
clearly here to come from the difference in the radius of AdS and the sphere. 

Note in this section we forgo the rescaling of the metric gn^- = Ci~2gij = R2gij- This is 
justified as we have an over all R2 in front of the metric, and it makes the limiting procedure 
well denned without the rescaling. However, if we look at all the dimensionful parameters 
in the space, they will still be rescaled according to the same rule as if we calculated their 
counterparts using the metric g'Q = Q - 2 ^ - . 

In the rest of this section we will give a heuristic argument for the fact that only the 
flat space and the metric with the above two forms can result from the Penrose limit of 
AdSp x Sg. Firstly, we note that AdS and the sphere are both homogeneous and isotropic 
and the product space is homogeneous. Every null geodesic with motion on the sphere can be 
related to the class considered in the previous example. Recalling property 3. of the Penrose 
limit in the previous section: the Perose limit of two null geodesies related by an isometry 
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will also be isometric. We see (2.22) is a generic result for null lines with motion in the sphere. 

We are left to check the null geodesies with only motion in the AdS. Since there is no 
motion along the sphere, Penrose limit acts like a uniform scaling: 

dQ2

n = dip2 + sin2(^fi2_i ^ dy2/R2 + j ^ Q 2 ^ 

where y = R2ip and R —>• co limit is taken. We saw explicitly it gives the Eulidean flat 
metric. We can now focus only on the AdS part. The argument using isometry still applies, 
we could take any null geodesic in AdS and examine its behavior in the limit. But there is a 
more elegant proof. We note that Penrose limit preserves null tensors made of the Riemann 
tensor and its derivatives. It is seen as the diffeomorphism transformations (2.2) do not 
change the nullness of the tensor field. The scaling changes the Riemann tensor and its 
derivatives only by an overall factor f2p. More specifically, this tells us that the Penrose limit 
(along any null geodesic) of a Ricci flat and conformal flat space will also have zero Ricci 
tensor and Weyl tensors. The AdS space, which is conformally flat, satisfies 

Rij = Agij 

and the scaling (2.4) takes one AdS space to another one with different radius. By the scale 
invariance of th Ricci tensor we have 

*8 = ̂ 2i* = A*yy

n 

Therefore we see the cosmological constant A n becomes zero in the limit and so do the Ricii 
tensors. The resultant spacetime has vanishing Ricii tensor and Weyl tensor, which implies 
zero Riemann tensor. Under Penrose limit (again, along any null geodesic), AdS becomes 
isometric to the flat space. The same analysis obviously applies to dS spacetime as well. 

Putting things together we have learned that for null geodesies in AdSn x SD~n with 
no motion along the sphere, the Penrose limit results in D dimensional flat space. For null 
geodesies with motion in the sphere, the Penrose limit gives results of the form (2.22). The 
eigenvules of Aij in the guu component depends on the relative radius and dimensionality of 
AdS and the sphere. 

2.3 Penrose Limit of Schwarzchild-AdS Black Hole 
One natural extension to the BMN/CFT correspondence is to examine its finite temperature 
version. As reviewed in the introduction, the picture in the AdS/CFT correspondence is such 
that the high temperature phase of the CFT is dual to the Schwarzchild-AdS (S-AdS) black 
hole solution in the bulk. Further, the Hawking-Page phase transition between Schwarzchild-
AdS and pure AdS is mapped to the de/confinement phase transition in the dual CFT. It 
has been realized string theory on the BMN spacetime has a Hagedorn temperature [19] 
beyond which perturbative description of string theory breaks down. It is therefore interest­
ing to see if we can associate a geometrical interpretation to the above picture. That is, to 
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find a black hole phase in the BMN spacetime. A natural starting point would be to take 
the Penrose limit of the Schwarzchild-AdS solution and examine if the idea of temperature, 
horizon would survive the limiting process. 

We will consider the Schwarzschild black hole in.AdS5 x S5, which has the metric: 

-h'(r')dt2 + ^—dr'2 + r'2dCl2 + # 2[# 2 + s in 2 ^)^ 2 ] (2.23) 
h(r') 

where 

we can factor out the R2 by 

the metric then looks like: 

r2 M 

r = r'/R 

t = t'/R 

R2[-h{r)dt2 + J^dr2 + r2dCl2

3 + d^2 + sin2(V>)^'4

2] (2.24) 

with 

%) = (! + r2 ~ ^ ) 

In this form we again have the property that the rescaling part of Penrose limit takes one 
S-AdS to another with a different radius. In other words, with arbitrary overall scaling, we 
have only one dimensionless parameter left M/R2. We have less symmetry in the metric and 
the calssification of Penrose limit along different trajectories is more difficult. We will start 
out with the in falling null geodesic with no angular momentum. The motion is in the t-r 
plane. To get the metric into the form (2.1), we need to consider the following coordinate 
transformation: 

t = j , .v du' + v 
E 

h{Eu')' 
r = Eu 

where E is an integration constant. The five sphere will scale as in (2.20) and gives a flat 
Eclidean metric, while the S-AdS part becomes: 

-2fl2Edudv + -ttAh(Eu)dv2 + [Eu)2{Sl2d^2 + sin 2(^)(i0 2 

(I have put in the scaling factors Cl) In the limit Q —>• 0, it is clear the metric Cl"2ds2 is just 
10 dimensional Minkowski. 

Next, we consider a in falling null geodesic which also travels around the great circle 
of the five sphere: (t(r), r(r), ip(r)). The condition of it being null and geodetic gives its 
tangent vector to be: 

^ ' ^ ( ^ ^ - ^ s > ( 2 - 2 5 ) 
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where A, and B are integration constants with A -)• "energy", B -> "angular momentum" of 
the trajectory. We now need a coordinate transformation adapted to the null line and take 
the metric to the form (2.1). The following coordinate transformation accomplishes this: 

u=2R'fw^wwir'=i(r) 
(A2 - B2h(r')y/< 

O E>2 D 

v = ^ - M > - W2(u + W/R)\ 

W = + A f ww^m?wdr'] (2.26) 

To see how it works, it is acctually clearer if we look at th Jacobian of the transformation. 

, {A2 - B2h(r)) 0 0 
9 M ) ' -4l 0 £ I (2.27) 

The first column is determined up to an over all constant by the requirement that u being 
the affine parameter along the null geodesic. It is just the transformation to the Eddington-
Finkelstein patch. The other two colunms are chosen so that guv = const and guw = 0. 
The choice is not unique, however, the resultant spacetime is. 

As usual, we need to follow with a transformation (2.2) that makes the limit well defined. 
Here we revert back to introducing an extra scaling parameter Cl and rescaling the metric 
by Cl~2 for easier interpretation. The metric turns into: 

R2Cl2[-2B2dudv-rB2Cl2dv2+2B2Cldwdv+(B2- —h{r))dw2+r2dn2-rsm2(B(vCl2+wCl+u))dCll} 
(2.28) 

In the limit Cl —> 0, the rescaled metric Cl~2gif 

D4 3 4 
R2[-2B2dudv + (B2 - — h{r(u)))dw2 + r{u)2 dx2i + s in 2 (£u) ^ dx2j] (2.29) 

i=l j=l 

This is a pp-wave in its Rosen form, to write it in the Brinkman form, we will need: 

v! — u 

\du(B2-^h{r{u))?l2 l ^ r ( « ) A a 1 du sm(Bu) A j 2 

V V 2 (B2 - §h(r(u))y/2 W + 2 r(«) ^ 2 sin(Bu) X 

w = 
(B2 - %h(r(u))y/2 

xn = 

A*' 

x{ 

r(u) 
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x .0 _ (2.30) 
sin(Bu) 

and we get: 

limit^0(n-2ds2) = -2du'dv'- B2[(l- > ' 2 + ( i + 
a )x,i2 + x'j2]du'2 + dx'i2 + dx'j2 

(2.31) 
r(u') 

where a = j^. I have absorbed the R2 

We could also consider the in falling null geodesies with angular momentum around the 
three sphere of the S-AdS. The form of the metric is more complicated but do not give new 
qualitative features. We will concentrate on the non-rotating case from here on. 

Some properties of the spacetime are in order. First of all, it does not have an event 
horizon. We will present a more general proof of this statement in a following chapter. Here 
we will give a heuristic argument. The main reason lies in the fact that under Penrose limit 
only information close to and along the null geodesic is retained. However, along the in 
falling null lines the presence of the Horizon is never felt. In other words the event horizon 
is not even an observer dependent horizon for these trajectories. When we focus only the 
geometry along the in falling null line, the property of the horizon as the boundary of the 
"visible" universe is lost. Second, we noticed at points corresponding to r = 0 in the original 
singularity, the metric becomes singular. In fact, it can be shown [20] for generic plane wave 
written in Brinkman form: 

Aij(u) = RiujU(u). Therefore, the singularity is a true curvature singularity, In this sense, 
we see that Penrose limit preserves the singularity of the original black hole in the form of 
a cosmological singularity. 

Now we come to interprate the scaling of the various dimensionfull quantities. By rescal-
ing we mean to recalculate them with respect to the metric f2-2<is2. In particular we would 
like to find out how the black hole temperature is changed in the limit. First we observe 

To check for consistency, we note a — M/R2 is not scaled (it is dinlensionless to begin with). 

The Hawking temperature for S-AdS has the form: 

ds2 = -2dudv — Aij{u)xlx3 du2 + dx 

R ^ Ra = R/Cl, M -» Mn = M/n2 (2.32) 

r 2 +R2 

2ixR?r+ 

where r + is the outter horizon and satisfies: 

h'(r+) = 0 r+ = ( 
[R2 + MR2)1/2 - R2 

2 
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^From (2.31) it is easy to see r+ oc ^ as expected on dimensional grounds. Putting these 
together we find T# = Thus when the Penrose limit is taken, the Hawking tempera­
ture goes to zero. A word of caution, we have been taking a quantity in the original S-AdS 
spacetime which can be associated with a geometrical object namely , the surface gravity 
of the event horizon. After the limit is taken it is no longer clear what this quantity really 
means, even though we can compute how it varies with the change of scale. In particular we 
have seen the spacetime obtained in the limit do not possess event horizon (which we will 
prove in the a following chapter). 

We will now consider another class of null geodesies in S-AdS. We choose to look at the 
null geodesies that travels around the three sphere of the AdS part. It turns out we can only 
perform the Penrose limit at certain radius. The null and geodetic condition gives: 

(r, t, )̂ = (0, - A ^ ^ ^ , (2.33) 

Here A corresponds to the angular momentum of the trajectory. We will seek for coordinate 
transformations that takes the metric to (2.1). The additional difficulty comes in as in the 
tangent vector we consider the orbits at fixed r while the metric has explicit dependence on 
the radius. We can circumvent the obsticle in two ways. First, one can perform a linearized 
coordinate transformation near a particular r 0 and Taylor expand the metric around this 
radius as in (2.17). We will get to the Brinkman form directly. However in order for the 
rescaling part of Penrose limit to be well defined we will need ^ ^ | r = r o = 0. Again, it is 
easier to first look at the Jacobian of the transformation. The one we will use is: 

d(r,t,iP) 
d(U,V,W) 

( 0 i 0 1 \ 

v 4 1 °/ 
(2.34) 

The first column is again dictated by the requirement u being the affine parameter along the 
null line. 

A2- h(r) r 2 

n A2

r h'(r0) 2r 0 l / , A2 h"(r0) 2., , 2 

With our condition on r0, — + ^ = 0, and set flw = (r — r0) the metric turns into: 

A 2 RM 1 A 
VL- 2ds 2 = fl2RD24w y d u 2 + 2Adudv + Tj-rdw 2 + r2sin(^)(#2 + cf> 2d( 2)} (2.35) 

The five sphere part is handled as before. The resultant pp-wave metric in Brinkman form 
is: 

A2 O U A  2  7  

ds 2 = -2dudv + Rl^r + (4)2E x ' 2 ^ 2 + dvj2 + Yldxi (2-36) 
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I have done some trivial rescaling to make the result cleaner. 

The second way to deal with the situation is to take the coordinate transformation: 

9(r,t,4>) _ ( 4 ° i n Av(1 1 V I O 

guv = 0 automatically. We have thrown the problem to the requirement guw = 0. In 
particular, we will need to Taylor expand around r 0 where guw = d(guw)/dr = 0 These 
conditions reads: 

2h(r0) = h'(r0)r0 

h"(r0)r0 = h(r0)h'(rQ) 
They are satisfied only for fine tuned values of M, R. When this is the case the metric 
becomes (Clw = r — r0): 

1 A 
-2Vl2Adudv + -—^Q2dw2 + r^O2 s i n 2 ( ^ « ) ( # 2 + cfdC) 

h(r0) r0 

The final form of the metric is: 

(2.38) 

For the above two cases, it is possible to take the value rn close to but not exactly on the 
event horizon. Also, it is clear either of the above plane wave spacetimes contain event 
horizons 

If, instead, we consider orbits going around the five sphere, it can be shown the conditions 
for r 0 involves h'(r0) = 0, which is not satisfied at any radius. We need to consider those 
orbits as special cases of (2.25). From the explicit construction, we learned the Penrose limit 
does not not retain enough global feature of the original spacetime to allow us to find the 
thermalized phase in the BMN/CFT correspondence. 
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Chapter 3 

Geometrical Properties of B M N 
Planewave 

In this chapter we will examine the geometrical properties of the BMN spacetime. In partic­
ular we will look in detail its causal structure, the Penrose diagram and how to obtain the 
Killing vectors from those of AdS5 x S5 through the Penrose limit. 

3.1 The Conformal Structure 
We start by studying the conformal structure of the BMN plane wave. In particular, we 
would like to learn about the form and location of its conformal boundary. Knowledge 
about the conformal boundary would help us gain a clearer geometrical interpretation of the 
BMN/CFT duality as holography. It is easiest to start from the Rosen form of the metric: 

8 
ds2 = -2du'dv' + sm2(pu') ] T dx'i2 (3.1) 

Remember the metric becomes degenerate at u' = 0, v! = ir/fi. A coordinate transformation 

u = — cot(pu') 

v = v'/p 

x^x* , (3.2) 

will bring the metric to: 

1 8 1 
ds2 = -(-2dudv + V dx12) = -{-2dudv + dr'2 + r'2dfl2

7) (3.3) 

which explicitly shows the conformal flatness of the BMN metric. Notice the coordinate 
transformation is only valid at the values of v! where the metric is well defined. Comparing 
to metric in the Brinkman, where u could take any real value, the conformal flatness is only 
a local one. We will continue following the standard technique of obtaining the Penrose 
diagram and try to map the metric into an Einstein static universe (ESU). In particular, we 
will find, since the flat space is conformal to the ESU, we will have two- conformal factors. 
One relating BMN to the flat space, the other relates the fiat space to the ESU. The con­
formal boundary of a space is defined by where the conformal factor diverges. We would 
have to pay attention to both contributions in order to learn the true boundary of the BMN 
spacetime. 
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This will be accomplished through the following sequence of transfortmation [21]: 

u = rcos(9) + t 

r' = rsin(9) 

rcos(9) — t 
v = 2 

this puts the flat space metric into the physical coordinate: 

(3.4) 

ds2 = —^{-dt2 + dr2 + r2(d62 + sin2(9)dn2) ' (3.5) 
1 + u 

The last part will give the familiar conformal diagram of the flat space. 

tdM.(^-~-) = r + t 

tan(~^ + C) = r - t (3.6) 

and we finally obtain: 

d g 2 = (l + {r + tp(l + (r-t)2) 2 + 2 + s i R 2 { 0 { d 9 2 + s i n 2 ( ^ ^ 2 7 ) ] ( 3 7 ) 

4(1 + ul) 

The expression in the square bracket is the ESU metric, which has the topology Rx S 9. The 
sphere has been parametrized with 

tp e (-oo, +oo), C e [0, IT], 9 € [0, T T ] 

We now take a closer.look at the conformal factor. Written in the {ip,C,Q} coordinates the 
prefactor 

+ + ' ) • ) ( !+ fr-«)')=(cwW;cM(0), (3-8) 

its divergence marks the conformal boundary of the flat space &t±ip + ( = ir, with all other 
coordinates arbitrary. This is a cone fig(3.1) (remembering we are in 10 dimensions). The 
factor 

1 + u2 1 + (cos2(0/2) tan(^) - sin2(f;/2) tan(^)) 2 

(3.9) 

2 
1 

i I /sin(»+cos(fl) sin(C) \2 
1 " r V cos(V>)+cos(C) I 

goes to zero at again ±ip + ( — ir except at the lines {9 = n,ip + C = 7 r } i {# = 0>—^ + C = ^li 
and the "point" ip = 0, ( = 7r, 9 = arbitrary. This indicates the boundary of the region where 
the coordinate transformation (3.2) is valid. The interior of the cones is a whole Minkowski 
space and also the u' 6 (—ir/p,7r/p), strip of the BMN spacetime. Note at the points on 
the cone where the prefactor remains finite, the size of the of the seven sphere shrinks to zero. 
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Putting the two contributions together, we see the conformal factor of the u' £ (0,ir/p) 
strip of the BMN plane wave diverges only on one dimensional lines on the cones ±ip + £ = 7r 
where (3.9) fail to cancel the infinities from (3.8). These are the true conformal boundaries 
of the BMN spacetime. ^From the point of view of (3.9) as the boundary of the validity for 
the Rosen coordinates, we see that it is possible to analytically extend the region to include 
points beyond the strip v! € (—TT/P^/P). The whole picture is illustrated in fig(3.2). To 
make the visualiztion easier, we have reparametrize the embedding of the nine sphere in R10 

x — — cos(C) = cos(ai) cos(/3) 

y = — cos(0) sin(£) = cos(a) sin(/3) 

r = — r' sin(#) sin(£) = r'sin(cv) 

where x, y, r (x', y', r') are the coordinates in the it!10 (r (r') is the radial coordinate of a R8 

subspace). The metric then becoms: 

.r, , ,s / A N N 9 , . , rx . ,^91(-dip2 + da2 + cos2(a)d/32 + sin2(a)dfl2) -
4[(cos(̂ ) + cos(C))2 + (sin(^) + cos(6>) sin(C))2] 

(3.10) 
In these coordinates, the extension beyond the Rosen patch is more easily picturized and the 
conformal boundary is then just a spiral line on the surface of the ESU cylinder fig(3.2). It 
is also easy to see the boundary is a null line. The timelike boundary of u' = ±oo are seen 
to be mapped to the timelike future and past of the ESU, which are two points 

When the metric is written in the Brinkman form 

ds2 = -2dudv - p:2f2du2 + df2 + f2dTf7 

there seems to be two distinct asymptotic regions namely, v —>• ±oo, f —» oo ( the timelike 
infinities u —> ±oo in the Brinkman coordinate are treated seperately as before). We would 
like to see how they are related to the one dimensional null boundary we just found. The 
key is to observe the coordinate transformation: 

u = —arccot(u) = — arccot([tan^" ^)(cos(fl) + 1) — tan( ^ ^)(cos(fl) — l)]/2) 

- 1 ^ 2 
v = v - 2 T T ^ r 

= (tan(^)(cos(6l) - 1) - tan(^^)(cos(0)) + l ) /4 - ^ 7 ^ 2 

r = r sin(u) = —^— [̂tan(—-—) + tan( )J sin(u) (3-11) 
Li Li LI 

We will focus on the piece of the boundary {ip + ( = 7r, 6 = 7r}. Consider if we approach 
the boundary following a path limitboundary tan(^^)((9 — 7 r ) 2 = finite. We see in particular 
u will be finite. Assume also, limboundary r oc limitboundary — 7r) —> oo Observ­
ing v oc tan(^y^), we can then choose our path so that the divergent piece in v cancels 
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leaving it finte. Approaching the conformal boundary in this fashion correspondes to tak­
ing f —> oo while keeping all the other coordinates finite. Similarly, if we instead require 
limboundary tan(^)(/9 - IT) = finite, this will imply \imboundary tan(^)(0 - n)2 0. In this 
case, we will not be able to cancell the infinite part in v. The result is to approach the 
v —» ±oo asymptotics with all the other coordinates kept finite. 

More generally, if we choose to look at general pp-wave metric, the above analysis would 
not be applicable. This is because not all pp-wave spacetimes are (locally) conformally flat. 
To analyze the boundary behavior, we can instead use the ideal point construction [22]. We 
will return to this point in a later subsection. 

We will close this section by examine if there is any relation between the conformal 
boundary of the BMN spacetime and that of AdS5 x S5. Notice using (3.14), we can write 
the metric of AdS5 x S5 in the following form: 

ds2 = R2{- cosh2(x/R)(du + + ^ + smh(x/R)dnl + cos2(y/R)(du - ^ ) 2 + | £ 

+ sin2 (y/R)dfl'2] 
2 2 2 

= d 4 M K + f l 2 [ ( - c o s h 2 ( x / / ? ) - l + | j ) * 2 + ( c o s 2 f e / f l ) - l + |5)<ii/<2 + ( s m h 2 ( x / / J ) - | j ) ( « ^ 

+(sin 2 (»/H) - £)dSii) 

where C is the conformal factor thet relates the BMN metric to the ESU. To get to the 
conformal boundary of AdS?, x S5, we would need to take x —> oo, while keeping all the 
other coordinates finite. This limit correspondes to the f —>• oo, u,v finte limit on the 
BMN side. Note that the divergence in C is due to the divergence in the factor that relates 
Minkowski space to the ESU, which goes like lirne_>ff/2tan(0) -> oo. In comparasion to the 
exponential divergence of cosh2(a;/i?) in the denominator, we see the metric (3.12) reduces 
to: 

ds2

boundary = -R2dt2 + R2dQ2

3 

the usual R x S3 boundary of AdS5. If instead we are interested in the R —> oo Penrose 
limit, it is easy to see we recover the BMN metric. From this point of view, it is clear the 
conformal boundary of the BMN spacetime is disconnected from the original boundary of 

(̂iS^ x S5. These are two distinct limiting process of the same metric. The Penrose limit 
focuses on a portion of the spacetime that is very far from the original bounndary where the 
CFT lives on. It appears the holography interpretation of the BMN/CFT correspondence is 
much more subtle. 
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3.2 Isometries of the B M N Spacetime 
In this section, we discuss the isometries of the BMN spacetime. We will also look at how to 
obtain the Killing vectors through the Penrose limit of the isometries of AdS$ x 5 5. Again, 
the BMN metric in the Brinkman form is: 

8 

-2dudv -H2^2 xi2du2 + dxi2 (3.13) 
i = l 

Through the general discussion in the previous chapter, we know it has at least as many 
Killing vector as its ancestor AdS5 x 5 5, whose isometry group is 50(2, 4) <g> 50(6) with 
totally 30 generators. Looking at the metric alone, it turns out the Penrose will enhance the 
symmetry. The obvious ones by looking at the BMN metric are: 

ZMij = x%dj - x3di i,j G 1...8 

while we also have rotations between the null direction v and the transverse components. 

Zi = — cos(pu)di + psm(pu)xzdv i = 1...8, 

Z\ = —fj,sin(pu)di — p2 cos(pu)xldv i = 1...8, 

The S0(8) symmetry generated by ZMij is the enhanced version of the original 50(4)<g>50(4) 
symmetry each coming from the three spheres in AdS^ and 5 5. This only happens in the 
limit when the radius of the two components are matched. Even in the presnt case, when 
considering the presence of the five.form fields needed to give gravitational support of the 
spacetime, the S0(8) symmetry is again broken to 50(4) ® 50(4). We will only get.the 
generators of 50(4)<g)5O(4) by considering the Penrose limit of the isometries of AdS$ x 5 5, 
to which we will now turn to. 

As discussed earlier, it is easy to see the zTMij.'s comes from rotations of the two three 
spheres. Penrose limit does nothing to them. For simplicity, we will now look at the Penrose 
limit of AdS2 x 5 2, which gives 

R2(- cosh2(p)dr2 + dp2 + cos2(9)dip2 + d92) -> -2dudv - (x2 + y2)du2 + dx2 + dy2 

where p = Rx, 0 = Ry. The isometry group of ,4<i52 x 5 2 is 50(2,1) (8) 50(3), the 6 
generators in the above coordinates are: 

Ai = dT, Bi = 

A2 = cosrdp — sin(r) tanh(p)<9T, B2 = cos(ip)dg + sm(ip) tan(9)d^ 

Az = sin(r)9p + cos(r) tanh(p)dT, B3 = — sm(t())d$ + cos(t/>) tan(f?)fy, 
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The Penrose limit is done through first: 

T = u + vCl2 p = Rx 

xjj = u- vQ20 = Ry (3.14) 
followed by the usual rescaling ds2 —> Vl~2ds2. The effect of the coordinate transformation 
(3.14) on the Killing vectors is ( we will write down the leading terms in fl"1) 

A1 = +±av, S i = - ^ 

A2 — -=-(cosu<9x — sin(u)xdv), B2 = — {cos{u)dy + sin(u)ydv) 
i L i L 

A3 = ^(sm(u)dx + cos(u)xdv), B3 = ^ ( - sin(u)dy + cos(u)ydv) 

In order for them to be well definedin the limit Q —» 0, we will need to perform the rescaling 
analogous to that for the metric. 

AX -> n2Ax Bt n2Bt 
A 2 , 3 -> QA2,3 52,3 -> ft£2,3 (3.15) 

Comparing with the set of Killing vectors of the BMN plane wave, we see the Penrose limit 
preserves almost all of them. However, the two Killing vectors Ai, Bi became degenerate 
under the limit, while there is no corresonding element for Zu. We can rectify the situation 
by considering instead of Ai, B\, their linear combinations 

A+ = Ax + B\ = dT + du 

A- = Al-B1 = dT-dlP^ ^dv 

The rescaling required no are 

A+ -> A+, A~ Q2A-
All of the Killing vectors of BMN plane wave are accounted for. We see now explicitly the 
rescaling factor differs from Killing vector to Killing vector, as aluded to in the previous 
chapter. 

Using another coordinate chart which would lead to the Rosen form of th plane wave 
metric, we can obtain all the Killing vectors in the Rosen coordinates. However as shown in 
[18] we still need to use various linear combinations of the original Killinfg vectors in order 
for the limit to be well defined. For completeness we will write down all the Killing vectors 
in the Rosen coordinates: 

u2 

Zu> = du> + ^- x'i2dv + c o t Q r o ) ^ , 
ZVI = dyl , 

ZM>. =x'id'j-x'j&i i,j E 1...8 

Z[ = ~ coi{pu)d\ + x'% i = 1...8, 
Zi = d'ii = 1...8, 

The mysterious rotations in v — xl are now manefestively the translations in xn 
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3.3 Lightcone Structure in B M N 
We have seen through explicit construction of the Penrose diagram, the BMN spacetime 
has a highly degenerate one dimensional null boundary. Here we will study carefully the 
causal structure of BMN. Through which we hope to shed some light on the nature of the 
one dimensional boundary. We will stick to the Brinkman form of the metric (3.13) in this 
section. 

To begin, note that any point on a constant xl2 — r2 = const plane can be shifted by 
the Killing vectors du, dv, ZMij to the point (0, 0, r 0, 0, 0...). And then by Z{ to the origin. 
Further since isometry does not change the causal structure, we can focus on first drawing 
the light cone at the origin of the spacetime, and use the Killing vectors to move it around. 
At the origin, consider the two class of causal curves: 

u = t 

^ l E A 2 s i n ( 2 ^ ) + C(t) 

x* = Aism({jit) (3.16) 

and 

u = t 

xl = Ai(l - cos(pt)) 

with C(t) an increasing function and C(0) = 0. Both class of causal curves pass through the 
origin at t — 0. When C(t) is a constant, the curves became null, while in general they are 
time like. The null curves in the first class are acctually null geodesies. Notice the curves 
in the first family go caustic at u = t = ir/p, while the second does not. The importance of 
the second class will become clear momentarily. They are not geodetic. Let us look at the 
null curves. In both classes they mesh to form null surfaces. It is easier to describe them if 
we eliminate the integration constants A^. The first family gives: 

v = £ ^2xi2cot(pu) = hx(u,r) (3.17) 

while the second family generates: 

V = (1 - c o l { p u ) Y + 4 s i n ( 2 ^) + rt1 ~ c o s ( ^ ) ) sm{pt)) = h2(u,r) (3.18) 

It is easy to see now a point (u0,v0,xl

0) is causally connected to the origin (in the future 
direction) if and only if it satisfies 

v0 > mm{hi(r0, u0), h2(r0, u0)} (3.19) 

We will choose to look at the constant xl slices. They are pictured in fig(3.3). There are 
several salient features to notice. First, In the limit xl goes to zero, both surfaces coincides 
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with v = 0 axis. Second, due to the divergence in the null direction v, the future of the 
origin contains every point on the plane u = n/p. More explicitly, any point with u = n/p, 
r / 0 will satisfy (3.19). However the future of a point is a closed set. Therefore we have to 
include the entire plane u = IT/p. It is not difficult to see just as in the flat space case the 
future of the u = c0 = const surfaces consist of the half space u > c0. As a result, the whole 
half space u > n/p is in the future of the origin. Similarly, we can conclude the past of teh 
origin contains the half space u < —n/p. 

We can now move the surfaces around by the Killing vectors. The translation in u — v 
planes is trivial. We will focus on shifting to nonzero transverse positions (and only in one 
direction). This requires the Killing vector — cos(pu)di + psin(pu)dv, which generates: 

\ 
u = u 

v' = — ̂ sm(2pu)c2 + x1psm(pu)c + v 

x'1 = — cos(pu)c + xl 

The origin is moved to (0, ...x'1 = c, 0...) The surfaces are moved to 

v' = — pcsin(pu')(xn — ccos(pu')/2) + ^(xn — ccos(pu'))2cot(pu') 

and 

. px'i2 - c2 + 2ccos(pu')(c - x'1) xH - ccos(pu') . „• . . . „ p2 (x'% - ccos(pu'))2 

4 (1 - cos{pu'))2 ^ (1 - cos(pu')) y ' V P 1 2 (1 - cos(^'))2 

The constant xn slices are shown in fig(3.4). Note when xn — c the surface from the second 
class is just 

which can be obtained by simply solving the metric for null surfaces with constant xn = c, 
—2dudv — p2c2du2 = 0. The qualitative feature does not change from the structure at 
the origin as expected. To summarize, fig(3.3), fig(3.4) illustrates the light cone structure 
of BMN. In particular, the future(past) of any point with u — c0 will include the region 
u > c0 + n/p(u < Co — n/p) 

We will close by briefly review the ideal point construction of causal boundary for plane 
wave spacetimes. More formal explorations of the causal structure of pp-wave spacetimes 
using the ideal point technique can be found in [23], [24]. The ideal point construction on 
a spacetime M is to first complete every future(past) endless causal curves with a point of 
infinity, the ideal points. We will denote the set of ideal points by I. We then identify points 
in I if they have the same past and future. The set I with proper identification will be a 
representation of the "boundary at infinity" for M. It is usually convenient to map a point 
p in / as the future(past) J ±(7 P) of the curve jp to which p is attached to. For the general 
planewave spacetimes 

-2dudv - fijiu^xidu2 + ] T dx12 (3.20) 
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with f(u) regular for all finit value of u the following can be proved [23]: 
1. All causal curves are either with u —> +oo or u asymptotic to a finite value c0 while v 
diverges to infinity. 

2. The former has the entire spacetime as its past and future. On the other hand, all causal 
curves approaching the same value u = c0 has the set S = {u < c0} as its past. 

3. the future(past) of any point with u = c0 will include the region u > co+ir jp(u < CQ — TV/P) 
just as in the BMN case. 

With these facts in mind it is easy to see we have to identify the future(past) ideal points 
associated with all curve asymptotes to u = Cn in the future (past). We can then label the 
ideal points by the values of the coordinate u. Further, from fig(3.5). we can see the future 
of the future ideal point fCQ is exactly the half space u > CQ + iv/p. Similarly, the past of 
the past ideal point pCQ+T,/n is exactly u < c0. The points fCo and pCo+n/n have the same 
causal future and past and thus should be identified according to our program. The causal 
boundary of a general plane wave spacetime (3.21) is always a one dimensional null line. This 
method does not require conformal flatness and in particular applies to the 11 dimensional 
plane wave supergravity solution. 

True boundary of the BMN spacetime. Everywhere else on the cone 
can be analytically continued across. 
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fig 3.3 
u 

u 

The light cone structure of the origin. The left hand side is the slicing at r=0. The graph on the right hand side is the slicing at nonzero r. The doted region is 
the future light cone of the origin. The important feature is that every point with u> is in the future of the origin. 
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The past ideal point fc is associated with the set of points with u<c. The future ideal point is associated with the set of points with u>c+ 
The two ideal points share the same causal future and past and they should be identified. This results in the one dimensional boundary of 
the spacetime. 
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Chapter 4 
Theorems Regarding No Evenet 
Horizons in PP-Wave 

We have been concerned with the problem of finding a black hole phase in the BMN/CFT 
correpondence. Black holes are.classically defined as a region hiding behind the event horizon. 
In this chapter we will review two theorems which suggest there is no event horizon and thus 
no black holes in pp-wave spacetimes. In fact the second theorem gives indications that no 
regular event horizons exist for spacetimes with a null Killing vector. 

4.1 No Event Horizons in PP-Wave 
To begin, we will try to look carefully at the definition of an even horizon in a spacetime. 
For the case of asymptotically flat spacetimes, the event horizon is defined as the boundary 
of the causal past of the future null infinity (the scri). That is, signals sent from a certain 
region of the spacetime (behind the horizon) will never reach the asymptotic infinity. In a 
general spacetime, however, the idea of asymptotic infinity may not be well defined. In the 
case of pp-wave spacetimes, 

ds2 = -2dudv - H(u, r, fl)du2 + dr2 + r2dfl2

n (4.1) 

where fl denotes the coordinates on the n-sphere, the authors of [25] propose we can adopt 
a working definition of (no) event horizon in pp-wave spacetimes: 

A pp-wave spacetime does not have an event horizon if and only if for any given point 
p:(uo,v0,r0,fl0) there is a future directed causal (null or timelike) curve that connects p to 
some point (u\ — u0 + e, V\, ri, flo), where e is a positive number and can be taken arbitrarily 
small, and v\, r\, can be taken to infinity. 

The key is to replace the asymptotic infinity by the idea of " points arbitrarily far" in the 
transverse and the null directions. Notice since dv is a null Killing vector, its integral curves 
are null geodesies. Therefore, we see that it is always possible to send light signals from any 
point of the spacetime to points with arbitarly large value of v. The event horizon can not 
stretch across the null direction even if it exists. We will now give the pecise statement of 
the theorem: 

Theorem 1: PP-wave spacetimes (4.1) with H(u, r, fl) nonsingular at finite value of its trans­
verse coordinates do not admit an event horizon. 

The proof proceed as follows. Given a point po:(̂ o> ô, ro, ^o), we will seek the condition 
on vi such that p0 can be causally connected to pi'.(uo + e, v±, r\, flo), where r\ can be taken 
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arbitrarily large. We will find there is no upper bound for v\. First assume H satisfies the 
nonsingular requirement, in particular, we have covered all the plane wave case (for which 
H(u, r, fl) = hij(u)xlxi) and the vaccum pp-wave solutions (we will come back to this later). 
Also, without loss of generality, we will assume H(u, r, fl) is regular on a small interval about 
uo. Therefore on the interval (r 0,ri) we can assume H(u,r,fl) > H0 =const. The proof will 
be technichally easy if we introduce the fiducial metric: 

ds) = -2dudv - H0du2 + dr2 + r2dfl2

n (4.2) 

Note that on the interval of interest ds2 > ds2 and therefore a causal curve in the fiducial, 
metric will also be causal in the pp-wave metric we are looking at. In other words, the light 
cone in the fiducial metric is smaller than that in the pp-wave. The task of looking for a 
causal curve connecting po,Pi i n pp-wave is reduced to finding the appropriate curves with 
ds2. Notice that ds2 is nothing but the flat Minkowski metric: 

-dt2 + dy2 + dr2 + r2dfl2

n 

(We can see this explicitly if we perform the coordinate transformation: u = — 5 7 2 (t — y), 

v = (H0)l/2y if H0 > 0 and u = {_H\)V* (t - y), v = {-H0)1/2t if H0 < 0. We do not have 
to do any thing if HQ — 0.) Since we know any points in the flat space can be causally 
connected to points with arbitrarily large values of y, r. We can conclude we will be able to 
do the same for the pp-wave metric. Let us make this more quantitative: we are looking for 
a curve C(r), 0 < r < 1 in the fiducial metric satisfying: 

C(0) = (u0,Vo,ro,tt0) 

C(l) = (u0 + e,vltri,QQ) 

-2uv - H0u2 + r2 + r(r)2tl2 < 0 

We can explicitly choose C(r) to be 

U(T) = UO + T€ 

V(T) = V0 + r ( u i - v0) 

r{r) = r 0 + r(rx - r 0 ) 

fi(r) = flo 

where the choice of v\ is restricted by the causal condition: 

-2eK - vQ) < H0e2 - (n - r0)2 . 

If we choose 
-H0e (n - rp)2 

v \ - v 0 > ——- + 

Therefore we have shown for any point po:(wo> ̂ o, ro, ^0), there exists a causal curve which 
connects po to a point pi with large values of null and transverse radial coordinates. 
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An improtant assumption made above is the regularity of H(u, r, fl) on the region (u0 — 
e, u0 + e) x [ro, ri]. As mentioned earlier all the plane wave spacetimes will satisfy this con­
dition. In particular, all the plane wave metric obtained in the Penrose limit of a spacetime 
(including the S-AdS geometry considered in section ) falls into this category. The impli­
cation of theorem 1 is such that we can not obtain spacetimes with an event horizon by 
taking the Penrose limit of any spacetime. The Penrose limit does not retain enough global 
structure of the original metric. Here we will show the theorem applies to all the pp-wave 
metrics satisfying the vaccum Einstein equation as well. This follows from the observation 
that the vaccum Einstein's equation having the form: 

VTH = 0 (4.3) 

where V r is the harmonic operator in the flat transverse directions. H(u, r, fl) have the 
usual decomposition into the spherical harmonics times rl, or r-(n~1+l)_ The sigularities 
are at r = 0, or r = oo. These are points at the boundary of our coordinate system, and 
therefore do not form obstructions for the causal curves used above. 

In the most general case of non-vaccum solutions with arbitrary sources, H(u, r, fl) can be 
virtually anything. There might be singularities in the transverse directions that interrupts 
the causal curves. However, as argued before the communication to large null coordinate 
v is unaffected as long as it remains a Killing vector. This suggests u — v plane should be 
"blackened" together. A black string solution is more likely easier to be found. 

4.2 Generalization of No Horizon Theorem 
In the previous section, we have seen the metric (4.1) do not admit an event horizon. One 
important defining quality of (4.1) is that they have a covariantly constant null Killing 
vector dv. (That it is covariantly constant can be checked straight forwardly by computing 
the Christoffel symbols) In this section we will explore the situation in a slightly generalized 
spacetime. In particular, we abandon the covariant constancy of dv. The metric we will 
consider has the form: 

e2A^[-2dudv + H(r, Vi)du2} + e2B[r)[dr2 + dfl2

n] + e2C{r)dy2 (4.4) 

The r dependence of the prefactor eA^ modifies the covariant constancy of dv, which remains 
a null Killing vector. We are interested in the particular case when f2 — r2 + VJ yf is large 
the metric approaches the BMN metric (3.13). In this case, the Killing vector du will be 
asymptotically time like, and we will choose it to be the measure of coordinate time in the 
following. The authors of [26] exploit the seperation property of the Ricci tensor of (4.4), 
and established a solution generating technique. Specifically, The Ricci tensor of the (4.4) 
has the form: 

R i j = B°. + -5ui5u±(e2A-2BV2H + e

2A-2CV2H + Wd&A + + £ Cj) (4.5) 
j 

where V 2 denotes the flat Laplacian in the spherically symmetric Rn+1, and V' 2 is the Lapla-
cian for the rest of the transverse directions. is the Ricci tensor computed from (4.4) 
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with H set to zero. This seperation is possible as a direct result of the null Killing direc­
tion dv. The solution generating technique is the for a given (asymptotically flat) solution 
with R^j = T-j it is possible to deform it by turning on additional matter source of th form 
ATjj = A T U U and obtain a new solution with nonzero H. The new matter source could be 
modified to give the desired asymptotic behavior of limbec H(f) ~ — f2. It also has to be 
compatible with the existing source T^. For form fields which contribute to the total source 
T-j + ATUU, we have to check they satisfy self duality and the Bianchi identity. Various 
asymptotically BMN spacetimes have been derived using the solution generating technique 
outlined above [26]. However, only extremal horizons are retained in the resultant space-
time. This gives indication that even the requirement of having a null Killing vector is to 
restrictive for regular horizon to exist. The exact statement of the no-go theorem proved in 
[26] is: 

Theorem 2. The solution generated by modifying the vacuum solution (4.4) (without the 
Hdudu term) with only adding null matter source Tuu(r, yt), do not admit a regular SO(n+l) 
invariant event horizon provided the source allows for the asymptotically timelike Killing vec­
tor du. 

Note the requirement on the asymptotic time is what we would impose if we are looking 
for black holes in asymptotically BMN plane wave spacetime. The proof proceeds with 
first finding the most general asymptotically flat vacuum solutions with the form (4.4) with 
H = 0 , that is setting T®u = 0. As shown in [26], the solution with the boundary condition 
linv^oo A(r), B(r), Cj(r) —v 0 can be found by directly solving the Einstein's equation: 

^ ) = « M i ; [ ^ p ) = «log( / (r)) 

B(r) = - r ^ - r l o g [ m 

n - l b L i _ a i 2 ( n - i ) J 
r 

r n 2 ( n - l ) 
C{r) = 1 - ^ (4.6) 

r 

with the constraint on the integration constants: 

(a + - ( a + £ Cj))2 + ̂ ( n ( a 2 + £ c2) + c, + a)2) = 1 (4.7) 

Examining the near horizon behavior of the functions A(r), B(r), Cj(r) we find: 

eMr) „ (r _ roy 

eB(r) „ ( r _ r o ) ( l - 2 a - £ C j ) / ( n - l ) 

ecj(r) „ ( r _ rQy3 (4.8) 
Note that for appropriate choice of the integration constants, the solution without H(f) is 
just the Schwarzschild solution in flat space with horizon r = r0. We will thus exam closely 
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the effect of the deformation near r 0 . 

It turns out we do not have to solve for H(f) explicitly. For the proof, we will leave 
it as an arbitrary function with the appropriate asymptotics. ( l i m b e c H(r) ~ —r2.) The 
minimal requirement for the existence of a horizon at r = r0 is such that it takes a null 
geodesic travelling in the u, v, r direction infinite coordinate time Au but finte proper time to 
reach the horizon. The requirement of finite proper time is to ensure that we can analytically 
continue across the horizon (that it is not the boundary of the spacetime). To truely establish 
the existence of the horizon we would need every null and timelike geodesics(that can reach 
the horizon) to satisfy this criterion. A null geodesic travelling in u,v,r statisfies: 

• -
 E 

v = e-2A{r)(EH(f)-G) 

f = [e-2A-2B(E2H-2GE)}^2 (4.9) 

where' denotes differentiation with respect to the proper time r. E, G are conserved quan­
tities alongthe trajectory. Using (4.9) we can show: 

A r = r° dr[e-2A-2B{E2H-2GE)Y1'2 

J oo 

Au = E dre~A+B{E2H - 2GE)~l/2 (4.10) 
J oo 

We are now in a position to analyze the behavior of the coordinate time and proper time 
near the assumed horizon r = r 0 . Assume first H ~ h[r — r0)9 near the horizon. For g > 0, 
it is easy to see from (4.10) we will need: 

„ , ( l - 2 . - £ c , ) > _ 1 | a _ ( l - 2 . - E e , ) s l 

( n - l ) ' ( n - l 

in order for the criterion to be met. Note the second condition can be written as: 

a + - a + ^-^->l (4.12) 
n n 

which is exactly the expresstion in the first term of (4.7). This says the first term in (4.7) 
is greater than 1. Since the rest of (4.7) are just sums of squares, we see there is no choice 
of a,Cj such that both conditions (4.7) and (4.11) are fulfilled at the same time. The same 
condition also applies if H is logrithmically divergent. When H has power law divergence, 
or g < 0, the conditions are modified to: 

a + (1 - 2a-^2cj)/(n-l) + \g\ > -1, a - (1 - 2a - ^Cj)/(n - 1) - \g\ > 1 (4.13) 

The second condition is more restrictive than the previous case. It is clear (4.7) can not be 
maintained, either. The same can be said if H has faster than power law divergence. Note in 
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the case H —» —co at the horizon, we have a repulsive singularity as in the case of negative 
mass Schwarzschild. 

We can thus conclude any modification according to the the solution generating procedure 
with addition of only null matter will not result in a spacetime with event horizon (the new 
solution will of course have the correct BMN asymptotics if proper boundary condition are 
imposed). Attempts to bypass the no go theorem have been made in [26] by adding sources to 
other components of the Einstein's equation. This will modify the form of A(r), B(r), Cj(r)) 
depending on the explicit sources put in. No general statement has been made for such 
general deformations. In the specific cases studied, no solution with regular even horizon 
has been found. However, various extremal black hole solutions are generated with this 
program. This strongly suggests we need to abandon the null Killing vector requirement at 
least near the horizon in order to find the desired black hole solution in BMN. 
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Chapter 5 
Unruh Effect in B M N PP-wave 

In the last chapter we have learned that the symmetry of plane wave spacetimes is not com­
patible with the existence of a nonextremal black holes. The same conclusion may be true 
for spacetimes with a null Killing vector. Before we start thinking about how to modify the 
symmetries of plane wave spacetimes, it would be beneficial to examine closely the definition 
of temperature and thermal states in the plane wave background. The thermal properties, in 
particular the Hawking temperature of stationary black holes, are related to the geometrical 
properties of their event horizons. More generally, all that is required is a Killing horizon. 
In flat space, it is known that observers following the orbits of the boost Killing vector will 
see the Minkowski vacuum as a thermal state. These observers can only see part of the 
Minkowski spacetime, the Rindler patch, with the Killing horizon as a causal obstruct. The 
observed temperature can also be related geometrically to the surface gravity of the Killing 
horizon. The near horizon geometry of static black holes is the Rindler spacetime. We can 
gain insights into the relationship between Hawking ration and event horizon by studying 
Unruh radiation and the associated observer dependent horizon. ' 

In the present, we study the results of putting an Unruh monopole detector in the BMN 
planewave. The Unruh detector has been one of the standard tool in analyzing thermal 
properties of a given quantum state. It is useful because in general curved spacetimes, the 
concept of particle in a state is not uniquely defined. It depends on the choice of time 
in carrying out canonical quantization. The hope is that we can determine which class of 
observers would see the vacuum state " natural" to the plane wave background as a thermal 
state. The meaning of "natural" will be explained later. If such trajectories exist, we will also 
need to relate the temperature observed to certain geometrical structure of the spacetime. 
Through this, we can learn more about the physical content of the no-go theorems in a 
semi-classical sense. We may also gain knowledge about how to modify the near horizon 
geometry -in order to find explicit black hole solutions in BMN plane wave. 

5.1 Unruh Monopole detector 
We start by giving a short review of the idea of putting a monopole detector in a curved 
spacetime with a scalar field. An Unruh detector can be viewed as a very heavy scalar par­
ticle, whose kinematics can be treated classically [27] [28]. Suppose the detector is following 
a trajectory described by x(r), where r is the proper time of the world line, while there is 
another light scalar field <f>[x(r)] interacting with the detector only on the trajectory. Math­
ematically this amounts to adding an interaction term L , n t = cm(T)(f)[x(T)] to the scalar 
field Lagrangian, where c is a small coupling constant and rn(r) is the detector's monopole 
moment operator. The detector can be regarded as a position dependent one point source 
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for the scalar field. 

The whole system can be discribed as a tensor product state as \nt > <8>\Ei >, where 
\nt > is the n particle state in the scalar filed Fock space and \Ei > is the ith excited state of 
the detector. Suppose now the scalar field is quantized with respect to some time like Killing 
vector dt, and is in its vaccume state \0t >. Assuming the detector starts out in \Ei >, the 
detector will in general not remain in its initial state due to interaction with the scalar field 
through Lint. If the detector undergoes a transition from \Ei > to \Ej > (while the scalar 
field goes from |0 t > to \nt >) and supposing c is small enough, we can approximate the 
amplitude of transition to first order in perturbation theory: 

/

+ CO 

m(T)4>{x(T)]dT\Ei > ® | 0 t > 
-co 

Let HT be the detector's Hamiltonian congugate to the proper time r. Using 

m(r) = eiHTTm{0)e-iH^T 

and HT\Ei >= Ei\Ei >, we can rewrite the transition amplitude as 

/

+oo 
dTe-i{Et-Ej)r < n t|^[a;( T)]|o t > (5.1) 

•oo 

We can then square the above expression and sum over all Ej and \nt > to obtain the 
total transition probability from |Ot > <g>\Ei > to all possible \nt > ®\Ej >'s: 

c 2 Y \ < Ej\m(0)\Ei > \2-Ai_>j(AE) 

where Ai^j(AE) is usually referd to as the "detector response function". It is given by: 

/

+ CC 
e-^EI-E^ATG+(x(T),x{r'))dTdT' (5.2) 

-oo 

, G+(X(T), X(T')) is the positive frequency Wightman function for the scalar field 

< Ot|0[s(r)]0[x(r')]|Ot > 

, and AE = E{ — Ej is the change in the detector energy when particles are produced 
(absorbed) (the energy is conjugate to r, and AT = r — r'). Notice that all the details 
of the detector is in the prefactor | < Ej\m(0)\Ei > | 2 , and the response function itself is 
independent of the internal structure of the detector m(r). 

If we are only measuring the amplitude of the detector making a transition from \Ei > 
to \Ej >, we can forgo the sum over the detector energy and focus only on A^ Effectively, 
it is to perform a Fourier resolution of the scalar propagator with respect to the energy con­
jugate to the proper time of the trajectory. From the scalar field point of view, the detector 
response function measures the probability of a particle with energy AE being produced at 
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T and annihilated at r', and the presence of the detector ensures energy conservation of the 
process through the term exp(—iAE(r - r')) Thus the detector response function relates 
the transition amplitude of the detector interacting with cp(x) to the propagation amplitude 
of 4>{x). 

5.2 Principle of detailed balance 
We are interested in whether the detector following a certain trajectory would percieve the 
vacuum |0* > as a thermal state with a constant temperature. Thermal properties of a state 
can be examined through many ways. For example one can check if the two point function 
in the state of interest satisfies the KMS condition[42], or when the transition rate can be 
defined, it should be proportional to a Plank factor E$AE_i if the state is thermal with tem­
perature 1/(3. 

Another way of defining temperature of a state is to couple the system of interest to an 
auxiliary one and analyse the occupation number for the states of the auxiliary system. In 
equilibrium we would expect the tansition propbability into and out of a state to be balanced: 

Ni(Ei)P(Ei Ej) = Nj(Ej)P(Ej -»• Et) 

, where N(E) is the population number of a state of the auxiliary system with energy E, and 
P(Ei —> Ej) is the amplitude of transition probability for the auxiliary system from state 
\Ei > to \Ej >. 

In our case the vacuum state |0t > of <p(x) is the one whose thermal properties we are 
interested in, and the detector serves as the auxiliary system which interacts with scalar field 
through the monople interaction term in the Lagrangian. In order to define temperature, we 
want the ratio of the population number of the detector energy eigenstates to be the Bose 
factor, that is: 

N _ P{Ej -> Ej) _ R(Ej-Ei) 

Nj P(Ei ->• Ej) 

This says the detector's energy levels are thermally populated. And since the detector 
is in equilibrium with the scalar field vacuum, we can thus conclude that the vacumm state 
is a thermal state with temperatuer 1/j3 as seen by the monopole detector. This criterion 
for determining thermicity of a state is referred to as "principle of detailed balance". As 
we have seen in the previous section the transition amplitude of the detector is related to 
the propagation amplitude of the scalar field with appropriate energy, the ratio we will be 
computing would be the ratio of the detector response functions [29] [30]: 

P(Ej -+ Ej) = A^j 
P(Ej -> Ei) Aj^ { ' ) 

We will demonstrate the use of " principle of detailed balance" in this context in the next 
subsection. 
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5.3 Flat Space Example 
We will choose to study a massless scalar field in flat D = n + 2 Minkowski space to illustrate 
the features of the detector response function. We use'the metric with (-, +, +, ...) signature: 

ds2 = -dt2+ £ dxi2 (5.4) 
i= l . .n+l 

We will consider a massless scalar field for simplicity. Solving the massless Klein-Gordon 
equation and performing canonical quantization with respect to the physical time , we get 
the usual plane wave expansion of the scalar field: 

4-co 
m = I 7 ^ < V e - i B t H p i x i + aU™-** (5-5) (2E) 1/2 " P ' " ' p 

The normalization factor and the assignment of creation and annihialation operators are 
done with respect to the conserved Klein-Gordon inner product [31]: 

(u\i, u2

pil) = ~i f ul* 2 2 1 

,where E is the constant t Cauchy surface. In fact, since the product is conserved, we can 
choose to evaluate it on any spacelike surfaces. 

The positive frequency Wightman function can be obtained by evaluating the p° integral 
of the scalar two point function along the prescribed contour (fig 5.1). 

The resultant Wightman function is thus: 

(-1)" 
G+(x(r), x(r')) = ( 4 7 r 2 [ _ 2 ( A u _ i e ) , A y _ i e ) + A x i 2 ] ) n / 2 ( 5 - 6 ) 

I have written the denominator in terms of light-cone coordinates: 

t + x 
u = 2V2 

The ie in the denominator is needed to make the intergral spatial momentum leading to 
G+(X(T),X(T')) convergent. In other words, we should regard the Wightman function as the 
distribution obtained in the limit e goes to zero. As a result, the poles of the Wightman 
function are shifted upward by ie. 

In calculating the response function, we need to integrate over the proper time. In order 
for the integral to converge, the contour needs to be closed upward (downward) if AE < 0 
(AE > 0 ). The form of the response function is thus determined by the pole structure of the 
two point function in the complex r plane. It is easy to see for static observers (x1 = const) 
the Whightman function does not have poles in the complex plane and therefore the detector 
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response function is zero. Physically, this means that static observers will not detect any 
particle production, and they would agree \0t > contains no particles. 

We can look at this result from the point of view of energy conservation. Going back to 
the expresstion of the unsquared transition amplitude (5.1). We work in four dimesions in 
this example. For an observer following the inertial trajectory: 

t = t 

x% = 8\iVt 

where v < 1 (the speed of light). Rewriting the above in terms of the proper time of the 
trajectory (t = r(l - f 2 ) - 1 / 2 ) , and use 

< nt\<l>[x{T)]\0t >= jd3k'-^< l f e |4 |0 , > e - ^ 

(5.1) becomes: 

1 giEt—ik-x 

ETJ2 / + ° ° dTe'^-S'M-^W^-1'*) oc ^ ( - { E i ~ Ej) + (-k[v + E)(l - v2)~^) 

Suppose our detector starts out in its ground state, that is Ej — Ei > 0 and notice that 
E > k\V for v < 1, the aregument of the delta function is always positive. The amplitude is 
always zero. We can see that for energetic reasons there is no particle detection. 

Another very important class of trajectory is : 

U(T) = (a)eo 

. V(T) = (-a)e^r (5.9) 

Observers following this class of trajectory have constatnt proper acceleration 1/a and are 
referred to as Rindler observers. Substituting this into the detector response function we 
found the Wightman function is a function of A r only and has the form 

^ f ) ' ^ 1 =
 ( i ^ " i X - « r ( 5 1 0 ) 

For this class of observers, we can define the rate of transition. The poles of the two point 
function are at 

r = T' + lirrm + ie 

where m is an integer. If we assume AE > 0, and close the contour downward we get after 
the T integration: 

~ e2nAEa _ ]_ X J " T 

The Planck factor 
AEn~l 
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shows that the detector energy levels are thermally populated while in interaction with the 
vaccum state \0t >. In other words, the result of the interaction is as if the detector is static 
but inmersed in a thermal bath of scalar particles with temperature The divergent 
integral is only a volumn factor. We can cure the divergence by adiabatically turning off 
the coupling, or in this case simply focus on the transition probability rate (per unit proper 
time) like we just did. 

Notice the temperature is proportional to the proper acceleration of the trajectory. In the 
next subsection we will investigate the connection between this property to certain geomet­
rical data, namely, the surface gravity, defined on the observer dependent horizon associated 
with this class of trajectory. 

^From the example above, we learned that when the two point function is a function of 
only A T , we can define 

as the rate of particle detection per unit proper time along the trajectory. This means the 
particle production as detected by our monopole detector is proper time translation invariant. 
Furthur, if G\ has the form of Plankian distribution in AE, we interperate the detector as 
in thermal equilibrium with the vaccum \0t >. 

However, it certainly not true that the Wightman function depends only on A T for all 
trajectories. When the Wightman function is not proper time translation invariant, we are 
not able to define G\. We have to go back to using (5.1), which is in general divergent (with 
the r' integration) unless we adiabatically turn off the detector. When this is the case, to 
determine the thermal properties, the principle of detailed balance has to be invoked. 

The dependence on the proper time along the detector path only shows that the detector 
is not coupled homogeneousely with the vacuum state of the scalar field. The inhomogeneity 
may be due to the nature of the quantum fields in this background or plainly the trajec­
tory. According to the principle of detailed balance, the detector could still be in thermal 
equilibrium if 

where (5 is the inverse temperature. If we further require the proper acceleration is constant 
along the trajectory, we are able to associate certain properties of the detector's kenematics 
to the temperature. On the othe hand, If the proper acceleration along the paths is not con­
stant, the vaccum |0t > as seen by the observer may not be a thermal state for all time but 
only for asymptotically early (late) proper time or the temperature registered in the spec­
trum of the detector is an averaged one. It is much harder to give geometrical interpretation 
to the temperature. This criterion implies the Plank distribution for the transition rate, 
whenever the Wightman function is a function of only A T , and the integral over (T + T') can 
be factored out. Note that while the numirator and the denominator are each a divergent 

oc e 
-0E (5.11) 
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expression, the ratio may still be well defined. 

Let us see how principle of detailed balance works on the Rindler trajectory. When 
evaluated along (5.8), the poles of the integrand are at r = r' + 2irmra. If Ei — Ej > 0 only 
the m = —1, —2,... poles contribute, the detector response function reads: 

/ . C O 

(-2*0 x ( J _ j T ' ( - i A E r - l ^ E a _ 1 ) (5.12) 
while if Ei — Ej < 0 the m = 0,1, 2,... poles contribute (remembering the m = 0 is shifted 
to the upper half plane), and we get: 

f°° 1 
(2*0 x ( ^ ' ( ^ E r - \ _ e _ 2 n A E a ) (5-13) 

The ratio of A^j over Aj^ is just e ~ 2 7 r o : A ' B , confirming the previous analysis. We have used 

n=0..oo 

in evaluating the residues. The positions of th poles and contours are dipicted in (fig 5.2). 

Having considered the trajectories with constant proper acceleration, we turn our atten­
tion to a class of observers whoes proper acceleration is not constant but the ratio (5.10) still 
gives a Bose factor. For this particular family of path, it turns out the notion of temperature 
is an asymptotic one. The trajectory is: 

u = arctan(sinh(r/a)) 

v = -a2/2smh(r/a) (5.14) 

They have proper acceleration: 
au = a 2 t a n h ( r / Q ; ) 

cosh(r/a) 

av =. —- sinh(r/o:) 

and magnitude ^ tanh2(r) which tends to a constant value when r —> ±oo. The two point 
function is not proper time translation invariant, we need to resort to (5.10). The poles are 
at 

T = r' + 2imir 

just as the Rindler case. It turns out the expressions for the transition amplitudes are exactly 
the same as (5.11) and (5.12). It follows the ratio is just again e - 2 7 r a A - B

) with temperature 
•—. Such notion of asymptotic temperature also happens in the case of black hole formation. 
In this case the observer is static (but accelerating) at infinity. Only at asymptotically late 
time will the observer percieve the presence of the black hole. The observer can then attribute 
the late time temperature to the horizon [34]. 
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5.4 Geometrical Aspect of Rindler Temperature 
Here, we would like to examine the connection between the thermal properties of a Rindler 
observer and the background geometry. One important question we would like to address is 
what are the criteria for thermal equilibrium. Before talking about it, we need to understand 
the some geometrical properties of the observer dependent horizons. 
Some terminology, ( We will use the definition according to [32] ) 

Null surface: Here we define a null surface to a D — 1 hypersurface with a null vector na 

orthognal to all of its tangent vectors and na is called the null generator of the null surface. 
For a Lorenzian signature spacetime na acctually lies in the null surface it generates. 

Killing horizon: A Killing horizon is a null surface whose null generator coincides with a 
Killing vector. 

Bifurcate Killing horizon: A bifurcae Killing horizon is a D — 2 space like hypersurface where 
a Killing vector xa vanishes. 

An important property of Killing horizons is the notion of surface gravity. By definition 
X aXa = 0, a constant, on a Killing horizon, it follows that Vc(x aXa) must be normal to the 
horizon. Since a Killing horizon is a null surface, xa l s a l s ° normal to the horizon. One can 
thus define aproprtional constant K as [33]: 

Vfo'tt) = -2nX

a (5.15) 

K is called the surface gravity. Taking the Lie derivative along xa °f the above equation and 
use the Killing equation: 

V a x t = -VbXa (5.16) 

it follows K has to be constant along the orbits of xa- It can be shown that [33]: 

K 2 = - l /2V a x 6 vV (5.17) 

,which can be related to the magnitude of the proper acceleration a2 = u cVcuaueVeua of the 
orbits of xa through: 

K2= lim {-x aXa)(acac) (5.18) 
x-^horizon 

where ua = (—x°Xc)~ 1^ 2X a  1 5 the proper velocity of the orbit of xa'• Note that as the horizon 
is approached (—x aXa) —>• 0, (a°ac) —>• oo. The above expression for the surface gravity has 
the physical interpretation (at where xa is time like): it is the force needed at the position 
~~X aXa = 1 to hold a test particle stationary just outside of the horizon. Here stationarity 
means following the orbits of the Killing vector. — x aXa serves as a redshift factor. It is this 
last relation that relates the Rindler temperature to the surface gravity. 

The special feature of a bifurcate Killing horizon is that K is acctually constant over the 
horizon, and it can be proved without restrictions on the dimensionality or use of Eistein 
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equation. (In contrast, the constancy of K on a Killing horizon is only proved for four di­
mensions and requires the use of Einsein equation and the dominant energy condition [32]. ) 
To relate bifurcate Killing horizons to the Rindler observer, recall first a Killing vector field 
is the infinitesimal generator of an isometry transformation. An isometry on a connected 
manifold ( where point can be connected by piecewise geodesic curves) is uniquely defined 
by its action on a point of the spacetime and its pull back action on the tangent space Tp. 
Suppose the Killing vector vanishes on a (D — 2) space like, static hypersurface S, that is, S 
is a fixed point for the isometry. The Killing vector is determined completely near S if we 
specify Fab = VaXb- Note by the Killing equation, Fab is anti-symmetric. 

The action of xa o n Tp is given by the Lie derivative of va with respect to x a , where 
va G Tp. Explicitly, it is related to Fab through: 

Lxava = Fa

b\svb 

where we have used the Killing equation and the fact that x a = 0 on S. Notice that the 
infinitesimal action of the isometry on the tangent space is given by FJb. In a small neigh­
borhood around 5, we can take the metric to be 

ds2 = ±dt2 + dx2 + hijdtfdy3' 

depending on the signature of the spacetime. is the metric of the spatial hypersurface S. 
Remembering xa vanishes identically on S, xa must commute with the generators of S. We 
can thus take the components Ff = Fj = 0. From the antisymmetry of Fab, we conclude, 
at least in a neighborhood of S, Fb is the generator of a Lorentz boost to spacetimes with 
Lorentzian signature and a rotation to Euclidean signatured ones. This allows us to gen­
eralize the concept of Rindler temperature once we understand how it works in flat space. 
We would expect observers following the orbits of a Killing vector with a bifurcate Killing 
horizon to observe Rindler temperature. 

We can now start to discuss the geometrical interpretation of Rindler temperature. Per­
forming a coordinate transformation on the flat space metric: (t, x —>• T,N, with —oo < r < 
+ 0 0 , and N nonnegative) 

t = Nsinh(T/N) 

x = Ncosh(r/N) 

The metric becomes: 

ds2 = —N2dr2 + dN2 + J2 dxi2 (5.19) 

this coordinate transformation is adapted to the integral curves of the Killing vector 

dr = xdt + tdx (5.20) 

With the coordinate limits on r and N, we see that the new metric covers only the right 
wedge of the original Minkowski space, (fig.5.3) 
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We can perform yet another transformation to bring the Rindler spacetime to: 

ds2 = eR(-dT2 + dR2) + dxi2 (5.21) 

with 

T = t 
R = ln(r) 

When the metric written in the Rindler coordinates r, N, it is easy to see in the Euclidean 
sector r —> IT, the metic has a conical singularity unless r is periodically identified with the 
correct period (3 (here (3 = 2ir). After solving the field theory in the Euclidean sector we need 
to impose appropriate boundary conditions in the time direction (periodic for bosons and 
anti periodic for fermions). The two point function after Wick rotated back to the Lorentzian 
sector will then be periodic in imaginary time as in (5.9). When quantized with respect to 
T , the two point function evaulated in the Minkowski vaccum \0t > has the properties of a 
thermal Greens function with temperature 1/(3. 

Associated with an observer following any of the integral curves CN (that is, with fixed 
N, and r being the proper time) is the observer dependent horizon: 

]%A '• x + t = 0 

which is the boundary of \JponCN lp , where Ip is the causal past of the point p. There is 
also the past horizon : 

hB : x — t — 0 
defined as the boundary of \JponCN lp ( IF denotes the causal future). The Killing vector dT 

is time like in the R, L region of the space time, and truns null on the horizons, and space 
like in U, D. The horizons x + t = 0, x — t = 0, are thus Killing horizons associated with 
dT. Notice that dT vanishes on the space like hypersurface HA f] hs '• t = 0, x = 0. S is a 
bifurcate Killing horizon. 

An observer following CN has proper acceleration acac = 1/N2, and the norm of the 
Killing vector dT on CN is —x2 + t2 = —N2. According to the results from the previous 
subsection, we know the Rindler temperature observed along Cjv is just Tjv = From 
(5.17) we see the surface gravity is the normalized proper acceleration on the horizon. We 
can then associate the Rindler temperature with the surface gravity by 

T = i^ 2ir 
To check for consistancy, the surface gravity calculated with (5.19) gives K = 1 

Putting these together we get the general relation between the observed temperature and 
surface gravity: 

TN = 
2 7 r ( - x a X a ) 2 

Again, the norm of the Killing vector ( x ° X o ) 1 ^ 2 serves as the red shift factor. And we can as­
sociate the horizon with the temperature as measured at where the norm is 1. The constancy 
of temperature can also be relared to the constancy of the surface gravity over JIAUIIB. 
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5.5 Conformal Killing Horizon and Its Surface 
Gravity 

In this section we will briefly discuss the idea of conformal Killing horizons and conformal 
invariance of Rindler temperature[35]. A conformal Killing vector ( a satisfies the equation 
[33]: 

LcGab = 2V ( a C 6 ) = 2f(x)Gab (5.22) 
f(x) is a position dependent conformal factor. Note that if ( a is a conformal Killing vector 
of a spacetime (M,Gab), then there exist a space time (M,h(x)Gab) such that ( a is a true 
Killing vector. 

Just like an ordinary Killing vector, if a null surface has its null generator being a con­
formal Killing vector, we will call it a conformal Killing horizon. We can analoguesly define 
the surface gravity of a conformal Killing horizon with Ki = (5.14) or K2 = (5.16). «i is 
well defined since it really is just a property of null surfaces. n2 is also mathematically well 
defined as it uses only the kinematic quantities of a vector field. However the two are no 
longer equal to each other. It can be shown that they satisfy the relation [35] 

KX = K 2 - f (5.23) 

Under a conformal transformation, a conformal Killing vector is still a conformal Killing 
vector, with possiblely changes in its conformal factor. Conformal Killing horizons also 
survives since they are null surfaces. It truns out K\ is also invariant under a conformal 
transformation: suppose 1. a conformal transformation takes Gab to G'ab = h(x)Gab, 2. ( is 
a conformal Killing vector of Gab then 

VaiG^CC^lharizan = V a ^ G ^ C (''^horizon 

= -2h(x)KiGaj(j + Va(h(x))GijCC3\korizm 

horizon 

Note by the nature of the conformal transformation, remains a conformal Killing vector 
for G'ab. The above-surface gravity is computed with respect to the "original" conformal 
Killing vector ( of G'ab. K2 will only be conformal invariant if the transformation has h(x) 
constant along the orbit o'f the conformal Killing vector (a. More generally, «i transforms 
for conformally related spacetimes in the following way. Assuming 1. G'ab —> h(x)Gab 2. £ is 
a conformal Killing vector of Gab: 

• • dxc • • 
KiG'ijCC^horizon = g^VMxWijCOlhorizon 

= -2-^Klh(x)(c+ -^Vc{h(x))GijCC,3\horizon 

— 2fc\H{x)C,a\florizon 

The above is only valid when the confromal factor h(x) is non-zero. Otherwise Gij(X3 

may not vanish on the horizon. Here the surface gravity is computed with the transformed 
conformal Killing vector Notice while it is true K\h(x) is constant along the integral 
curves of (' on the horizon, it may vary from orbit to orbit. 
In the next section, we will apply these considerations to the BMN pp-wave spacetime. 
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5.6 The Detector Response Function in the B M N 
Spacetime 

Recall that the BMN metric is: 

8 

ds2 = -2dudv - p2(J2 x2)du2 + J2 dx2- (5-24) 
i=i 

The Ricci scalar of the spacetime is zero. Therefore, a massless scalar field in trhis back­
ground is also a conformally coupled field. We will consider this case in the following. 
^From the above, the massless scalar wave equation, dIJ/((—g)1^2g^'/du(p(x)) = ,0, reads: 
(g = detG^ — -1) 

(-2dudv-C£x 2)d 2

v+d2)cf>(x) = 0, (5.25) 

We can take the eigenfunctions in the light cone directions to be just the plane waves and 
substitute 

f(u, v, z') = V p " V ' O * ) 

into the above wave equation. The remaining equation for the transverse directions have the 
structure of that of a harmonic oscillator: 

• (d2-p2r2p2

v + 2puPv)f'(xi) = 0 

Let 

x* = (nM^x* 
we then get 

The general solutions are: 

(-dP + r*-^8ign(pv))f'(xH) = 0 
A* 

a / 2 

uPv,ni(u,v,x>) = J v f K ^ ! 1 ' ) 1 / 2 ^ n , ( ( ^ ) 1 / 2 x > ^ e ^ " e ^ " , (5.26) 
. z, 'Hi-
2 = 1 

with 
psign(pv) ^2(2nj + 1) 

Vu = — • 2 ' ' 5 

and Hni are the Hermite polynomials. N is a normalization constant. Note the dispersion 
relation of pu follows from the normalisibility of the transeverse eignfunctions, and effectively 
imposes a periodic boundary condition on the wave functions in u with period 2n/p. This 
identification is closely related to the local conformal structure of the spacetime. The same 
situation is also seen in the solutions of wave equations on AdS spacetime. 

We now move on to quatizing the theory. It is well known that the plane wave space-
times do not possess Cauchy surfaces [36]. The best one can do is to choose a partial Cauchy 
surface such that the information of particle production in such spacetimes can be retained. 
That is, choosing surfaces such that the above chosen set of eigenfunctions is sufficient to 
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analyze any resonable initial data specified on them. Such partial Cauchy surfaces do exist 
and are the u = const slices [37], [20]. The only causal curves fail to intersect these surfaces 
are the ones going tangent to them. And they form a set of measure zero. 

With this choice, we can construct the Hamiltonian with respect to u. The canonical 
quantization is carried out as the following: 

7T = dv4>, 

[ <f>, Aequalu = i5{v - v')o{x{ - X% (5.28) 

and let 
/•+00 

d> = dpv'^2aPviniuPvtni+b-Pvtn.u-pvjni, (5.29) 

Taking u = const slices as our partial Cauchy surfaces, we can define the conserved scalar 
product: 

(Up^n^Up^^KG = / Upv,nidvU * p i | n i -U * p „,„ , ^ M ^ . n J 

where S is the u = const surfaces. We found, with respect to the Klein-Gordon product 
above, the normalization constant N can be fixed to be l / 2 ( 7 r p „ ) . As usually is the case for 
quantum field theory in curved spacetime, the choice for positive energy modes is not fixed 
a priori. More explicitly, it is up to some convention that we can define the scalar product 
above, and this will affect the infinitesimal shifts in the positions of the poles in the two 
point function. Here we will pick up the overall sign such that when the p —> 0 limit is 
taken, the fiat space result is recovered. 

Performing canonical quantization, we can relate the commutators to the Klein-Gordon 
product as: 

[ a p „ , n i , & - p ' t , , n ; ] = i(upv>ni,U_plvtn>,)KG 

= -sign (pv) 5 (p„ + p'v) 5Ht ,„< 

and 
[^WiiS;,,";] = [b-Pv,ni,b-P'v,rii\ = 0 

These relations establishes the negative pv modes annihilates particles and the positive pv 

modes creates. Therefore, the vaccum |0U >is defined to be annihilated by all a_P w i T l i, with 
pv positive. We can write 4>{x) with the mode expansion as: 

r+oo 

(p(x)= dpv^2aPv,niUpvtni+alvtniu*Pvtni (5.30) 

We can calculate the positive frequency Wightman function through the Penrose limit of the 
two point function of AdS5 x S5 [38], or using the fact that the BMN pp-wave is conformally 
related to the flat space. Here we will compute the two point function by direct mode 
summation using the eigenfunctions we found above. 

<0uMX(T)MZ(T')]|0u >= 
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+00 °_ / , , / _ \ l / 2 i2 H2 

2n>nj! 
ni i = l 

where A if denotes u — u', and A D denotes v — v' . The sums over the Hermite polynomials 
can be evaluated using the identity[39]: 

^Hn{oxi)Hn(ax'Mz/2)n/n\ = _ 
n=0 

1 „2 ,-ixix'i-x
2

iz
2-x ,

i

2z 2  

( l - z 2 ) ] 

if we take e~ iAu = z. The above identity is valid for z ̂  1, and in order to apply it in our 
situation we will need to regularize the sum by adding a factor e~e and define 

After performing the sum over all 8 transverse directions while remembering pu = ^(foi+i) 
we get: 

where 
cos(Au - ie)(x2 + x12) - 2x • x' 

I = Apv i A / ; A y 4sin(Aii-ze) 

Again, we will need to regularize the pv integration by way of introducing a factor e~ePv. 
The positive frequency Wightman function is thus 

(5.31) 
-(2Au sin(^Aci) - p(2xix'i - cos{pAu){x2 + x'?)))4 

The ie prescription is to replace 
Au —¥ Au — ie 

Av -> Av - ie (5.32) 

from these formula. The prescription reqired to make the pv integral convergent shifts the 
zeros of the denominator up by ie. This expression is previously obtained by [40]. Note that 
this propogator should not be used as the boundary to bulk propogator for the BMN plane 
wave, since we do not include modes that travel tangent to u=const planes in our complete 
set of eigenfunctions. 

A few words can now be said about the scalar field arise from the string theory spectrum, 
the field equation is 

((2dudv - (5>2)c\2 + 82) - icpdv)<t>{x) = 0 

The extra term will only modify the dispersion relation by changing the zero point energy 

_ psign(pv) J2(2ni) + 1 _ £ 
Pu — o o 
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Summing over all the transverse oscillators and integrate over pv, and regularize the diver­
gences as before, we found the two point function is 

_ e i c / x A u / 2 ( 2 s i n ( p A u ) + p(2xix'i - cos(pAu)(x2 + z- 2))) 4 

whuch only differ from the massless case by e~"^Au/2. Since the multiplicative factor e

l c ^ A u / 2 

does not introduce any new poles, we do not expect it to change the behavior of the detector 
response function. We will focus on the massless scalar field from here on. 

Again, we can define the rate of particle detection per unit proper-time only for the 
trajectory alnog which the two point function is a function of only A r . In the following we 
will try to find a trajectory such that the Wightman depends only on A T . For now, we will 
assume AE is positive ( considering only particle production ), and close the contour in the 
proper time integration downward. 

Firstly, notice if the seperation of the two points is small the denominator is just the 
proper seperation between the two nearby points. This shows that if we are evaluating the 
Wightman function along a particular trajectory U(T), v(r), Xi(r), the two point function 
will be proper time translation invariant ( depends only on A T = T — T') if and only if the 
trajectory is an integral curve of some Killing vector of the spacetime. More explicitly, the 
denominator will be of the form ( for two close by points on the trajectory) 

G W m r - T ' ) 2 . 

And we need LfGfJ,l/^fi^1' = L^G^U = 0. is the Lie derivative with respect to the tagent of 
the detector path (£M). 

Our task now is to compute the form of our detector response function along the orbits of 
the Killing vectors. In the BMN spacetime, we also have the R-R 5 form F + i 2 34 = F+5678 = p, 
which, breaks the apparent SO(8) symmetry in the transverse directions. We will only have 
S0(4)xS0(4) isometry left. Again, the set of Killing vectors are: 

Zu 

Zv — 3V, 

Zi = — cos(pu)di + psm(pu)xtdv i = 1...8, 

Z[ = —ps'm(pu)di — p2cos(pu)xldv i = 1...8, 

ZMij = xldj - x3di i,j e 1...4 or i,j e 5...8 

For our purposes, it is acctually safe to use the full S0(8) symmetry of the metric and not 
to restrict the i, j's in ZMi. 

First of all, we notice that The BMN space time does not possess a bifurcate Killing 
horizon. The only candidate from the set of Killing vectors above are Z,'s, and Z"s. They 
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would vanish on the D — 2 dimensional hypersurface Xj = 0, u = const, where the constant 
depends on which Killing vector we are discussing. However, due to the null Killing vector 
dv, these are null surfaces. If we push on to calculate Fb

a for them we find: (here we use the 
surface S:u = 0, x1 = 0, for the Killing vector Z'1, and write out only the u, v, x1 part of 
the matrix) 

/ 0 0 0 \ 
0 0 - / z I 

V -p 0 0 ) 

To make the meaning of the generator more explicit, we perform the following coordinate 
transformation: 

u = t + y 

2v = t-y 

The metric is transformed into: 

ds2 = -(1 + p2r2)dt2 - 2p2r2dtdy + (1 - p2r2)dy2 V 2 

and Fb\s becomes: 
0 0 p \ 
0 0 -p 
p n 0 / 

which correspondes to rotation in the y — xl plane while boosting in the t — y plane. The 
detector response function of a detector travelling in this fashion in flat space has been dis­
cussed in the literature. It is found that the ratio of (5.3) gives can be interpretated as 
having a temperature dependent on AE [41]. 

Coming back to the detector response function calculation. We note that the orbits of 
cZu + c'Zv + AiZi(BiZl) are the geodesies of the spacetime: 

U(T) — CT + Uo 

V(T) = C'T + (p/4) Y At sin(2pcr + ^) + v0 

i 
Xi(r) = Ai sm(pcr + fa) 

where c, c', and Ai are integration constants. 
The two point function evaluated along these trajectories has the simple form: 

(2c'Arsin(^cAr))4 y"'""J 

All the oscillations in the transverse directions cancels with the contribution from the in­
direction. It is clear that the denominator has no complex zeros, and thus the AT integral 
vanishes. The detectors following the geodesies do not detect particle production. 
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The special case of c'Zv + AiZ^B^Zl) has the orbit 

U{T) = u0 

V(T) = C'T - ^ A\p sm(pu0 + fa) cos( 0+<ji>i)T 2/2 

X j ( r ) = —cos(pu0)T 

and the two point function is proportional to 

1 
( r - r ' ) 4 

It is obvious that no particle production is detected, either. 

Next we check the class of orbits associated with aZu + bZMij • The integral curves goes 
around the center and is again a geodesic. And we find the two point function to be: 

G+(AT) OC 
(COS(6AT) — cos(apT))4 

We see again that there is no poles in the lower half complex A r plane. 

Let us pause to complete the check of all geodesies (since we have checked most of them). 
If we only have motion in u, and the transverse directions r, 9. A timelike geodesic would 
look like: 

T 

U{T) = A arctanh(-j-̂ -) 

r{r) = (c-T2)1'2 

T 
9(T) = B arctanh( — - T T ) 

(All 
due to the form of r ( r ) , the two point function is not periodic in imaginary proper time. 
This class of geodiscs still do not bare thermal signature. 

This is a result known for some time and is general for all plane wave spacetimes [36]. 
The reason for no cosmic particle production is due to the fact that we have a null Killing 
vector in the v direction. One can define a global frequency for the quantum fields associ­
ated with dv and there will be no mixings of positive and negative frequency modes in the 
Bogoliuobov transformantion. And thus no particle productions along geodesies. 

It turns out we only need to check one other class of trajectory, namely the ones that 
follows the Killing vector 

Z = aZu + b{Zi + CjkZMjk + dZv 

with typical orbits like (Here on we will focus on the case i=j=l, k=2 for clarity): 

U(T) = ar + Uo 

bp . . . . . bp . , , \ \ a(ba)2 . . sin(2aur), 
V(T) = dT+n. P , sm(p(a-c)r)- . ^ . sin(p(a + c)r) + . v y .AT 2 

v ; 2{pa-c) 2(pa + c) v v ' ' c2 - (ap)2K 4ap 
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sin(er) + 
bapsm(apr) 

cos(cr) 

c 2 — (ap)2 

be cos(apr) 
c2 — (ap)2 

Note that if we use Z[ instead of Zi, the trajectories only changes by a phase, and it is 
sufficient to check the case for only Z{. we find the following expressions for the two point 
function: 

For generic values if a, b, c, (5.33) does have poles in the lower half of the complex plane. 
However, in order for the response function to have a Plankian distribution in E, we need 
the two point function to be at least periodic in imaginary r. The response function does 
not corresponds to a thermal distribution for this class of trajectory, either. 

As seen from the above, we have checked all the cases such that the two point function 
depends only on A T . We showed that none of them gives the desired Plankian behavior in 
E. In order for us to see if there is an analog of Rindler observers in B M N spacetime, we 
need to resort to a more general definition of thermal equilibrium. We will mostly confine 
our attention to detector trajectories that are restricted to the center of the B M N spacetime. 

5.7 Trajectories with Thermal Signature 
When the Wightman function is not proper time translation invariant, we are not able to de­
fine the rate of particle production per unit proper time. However, it is still possible the ratio 
of the transition amplitudes (5.10) yields the Bose factor e _ / 3 A B . As noted above while the 
response function itself may be divergent, the ratio may still be well defined. Since we have 
already ruled out trajectories for which the two point functions are proper time translation 
invariant we do not expect to see the two point function when evaluated on the trajectories 
considered in the following to represent a thermal Green's function with constant tempera­
ture for all T. The temperature in the Bose factor is in some sense an averaged temperature, 
or since we are integrating over an infinite proper time interval, the result may very well 
represent the fact the integral is dominated by the late time behavior of the trajectory. We 
will now attempt to find trajectories that are "thermal" in view of the principle of detailed 
balance. 

We will do all the calculations in four dimensional B M N for simplicity. The two point 
function is just the quartic root of the 10 dimensional case (with the sum over i goes from 1 

((c2_Q

(

fe

Q/x)2 + d) sm{paAr) + 2(cos(cAr) - cos(a^Ar))) 4 

if i = j or k, otherwise the terms completely decouple and we get back 

(5.34) 

(2c 'Ars in(^cAr) ) 4 
(5.35) 

to 2 now). 

(2Avs'm(pAu) - p(2xix'i - cos(pAu)(x2 + x\2))) 
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where I have supressed the ie prescription in the denominator. It is the same as (5.31), and 
remember it shifts all the poles upward by ie. 

We first notice the center (x» = 0) is metrically flat, and all the Christoffel symbols 
are vanishing. We can compute what is the detector response function associated with an 
observer with constant proper acceleration confined to the center. It turns out the only class 
of observer with constant proper acceleration follows the path of the Rindler observers in 
flat space. 

U(T) = (ce)e° 

V(T) = (-a)e^ (5.36) 

where 1/cv is the proper acceleration. In flat space, these observers will find themselves im­
mersed in a hot bath of particles with temperature In the present case, this trajectory 
is not the integral curve of a Killing vector anymore. Therefore, the Wightman function is 
not propertime translation invariant. The two point function does resemble that of a Rindler 
observer's as it is periodic in imaginary r (or r ' ) . 

With the above trajectory, the two point function becomes 

V 
(e-r'A* _ E - T / a ) sixi(p(eT'la - eTla)) 

, and it has poles at (viewing r' as constant, we will carry out the r integration first. ): 

r = aln(— + eT'^a) + 2ima-jr 
A4 

where n,m e Z. (fig 5.4) The flat space Rindler observer sees only the contribution from the 
n = 0 poles, as we can see if —>• 0, the additional poles goes off to infinity. This suggests 
when looking at the p^2{x2)dv? term as a perturbation to the flat space metric, we have 
drastically changed the symmetry of the spacetime. In fact, this result is closely related to 
the conformal structure of the spacetime as we will elaborate below. If we are to find the 
analogue of a Rindler observer we need to adapt to the new symmetry properties of the 
BMN spacetime. 

We apply principle of detailed balance to the present case. After the r integration we 
have: 
AE > 0: 

. n —iAE f+°° J , 

1 C+°° u 
2 7 r A g Q _ 1 x -2m J](-ir / J^exp{r'/a - iAE{aln{n*/n + eT''°) - r'))dr' 

Where the first term is the contribution from the n — 0 poles, and it gives exactly the 
Plankian distribution with temperature ^ as seen by the Rindler observer in flat space, 
the divergent integral over r' is just a volume factor. The contribution from the n ^ O poles 
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diverges exponentially with r ' , which suggests the particle production rate is increasing as 
the detector follows the orbit. As a consistency check we see that the contribution from 
these extra poles are proportional to p, and that we can again recover the flat space result 
by taking p to zero. 
As for AE < 0, we get: 

^ ) l _ e - ^ E a X d T + 

1 f+°° II 
- x 217: ^(-ir / -^-exp(r'/a + iAE(aln{nir/p + e'>) - r'))dr' 
1 — e _ 2 7 r A £ , a

 J_00 nair 

Clearly, the ratio of the two expressions does not have the form e~@/SE. The detectors fol­
lowing constant acceleration trajectories at the center do not see the vacuum as a thermal 
state. 

Let us look closer at the behavior of the transition amplitude. The exponential growth of 
the ra^O poles can be understood through the following consideration. The B M N spacetime 
has R — 0, and our massless scalar field is automatically conformally coupled. It has been 
realized that the B M N spacetime is locally conformal to the flat space. This can be made 
explicit through the following coordinate transformations. First, 

v! = u 

v' = v + j sm(2pu + 20) ]P x'i2 

4 
i=l 

xH = xi / cos(u + cj)) ( 5 . 3 7 ) 

followed by, 

u" = t&n(pu' + <fi) 

v" = v'/p 

xni = xH ( 5 . 3 8 ) 

The first one is the standard transformation from the Brinkman form to the Rosen form of 
the plane wave metric, after which the metric becomes: 

8 

ds2 = -2du'dv' + cos2[pu' + ̂ ) ̂  d x ' i 2 

i=l 

'(f> here is a phase constant. The transformation is only valid for u G (<fi — ir/2p, <fi + IT j2p) 
and we need to use several patches to cover the whole spacetime. The second transformation 
takes the metric to : 

8 1 8 

ds2 = cos2(pu' + d>)(-2du"dv" + Y,dx"i2) = „2\(-2du"dv" + J2 dx"i2) (5-39) 
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After the coordinate transformation, the orbit (5.35) becomes: 

a2 

u" = tan(paeT/a),v" = {-a)/pe^ u" = tan(- —) 

The relation between u" and v" shows that for u (the original coordinate) to increase from 
0 (r = —oo) to u = +oo , the detector traverses through many cycles (from u" = —oo to 
+oo). (fig 5.4.) Each cycle contributes to a column (n = i (i fixed integer), m = arbitrary 
integer) of poles in the complex r plane. This is seen by putting each cycle individually into 
the flat space two point function, and noting that each path has the form (5.13), which is 
thermal in th esense discussed above. The proper time it takes for the detector to travel 
through one cycle gets shorter and shorter as u grows large. As p —v 0, the second coordinate 
transformation become singular. However, it is clear that we only have one big cycle (the 
Rindler trajectory) left and the flat space picture is again recovered. 

The Green's function respects the isometries of the spacetime, that is, it is invariant 
under a Killing transformation. Therefore the above analysis holds true also for trajectories 
that are related to (5.35) by some isometery. These related pathes will also have constant 
proper acceleration. It is interesting to note that we can use combinations of Zj, Z[ and ZMij 

to obtain off center trajectories from (5.35). We can repeat the same steps for the xl = const 
planes, which are also metrically flat. We found that due to the hyperbolic nature of the 
orbit we are considering, we still have the columns of poles for our two point functionand 
they are shifted compared to the center case, and the qualitative features are not altered. 

With the above knowledge, we see that if we were to find a trajectory for which (5.10) is 
satisfied, we need to conform to the conformal structure of the BMN spacetime. We found 
there are families of trajectory for which the ratio (5.10) is thermal. And we have seen them 
before. Consider, (again no motion in the transverse directions is assumed): 

U(T) = — arctan(sinh(cr)) 
A4 

w(r) = ^sinh(cr) (5.40) 

Note the range of U(T) is restricted to [— f ^ } , fig(5.5). This is in conformity to the local 
conformal flatness of the spacetime The proper acceleration of the trajectory is: 

c2 tanh(cr) 
p cosh(cr) 

^ sinh(cr) 

when T — ¥ oo we found the magnitude of the proper acceleration approaches a constant c2. 

The Wightman function with (5.39) has the form: 
1 

2̂ 2 (sinh(cr) — sinh(cr')) sin(arctan(sinh(cr)) — arctan(sinh(cr'))) 

au = 
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, which is not proper time translation invariant, but again periodic in imaginary proper time. 
The denominator has zeros at r = r' + 2 ^ 2 2 1 with them being a double zeros. 

The detector response function evaluates to give (after integration over r) 
AE > 0: 

. , f°° , . -iAE 1 , 
( - 2 7 r i ) x ( / dr — — — ) 

^_oo cosh(cT')#(r') e « 

where 
. . d(arctan(sinh(cr))). 

= ^ \r=x 

We see that the columns of poles in the complex plane sums to give the Planck distribution 
factors. 
The AE < 0 part can be similarly calculated to be: 

, , , r ° , . iAE 1 

it is easy to check the ratio of the emission and absorption amplitude is just 

e-2nAE/c 

Observers on this path observes a temperature of ^ after he follows through the trajectory. 

Note that the temperature is proportional to the value of the late time proper acceleration. 
This indicates that even though there is explicit proper time dependence in the two point 
function, in the asymptotic past and future, an observer following the path will percieve the 
vacuum |0U > as a thermal state. The ratio used on (5.39) reflects the dominant contribution 
of the late time contribution to the response function. We can see this clearly if we look at 
the late time behavior of the two point function. Along the trajectory we have: 

/ f 

— ̂ -(sinh(cr) — sinh(cr')) sin(arctan(sinh(cr)) — arctan(sinh(cr'))) 

when r is large: 
sinh(cr) -> eCT 

arctan(sinh(cT)) -¥ — — e CT 

and we get exactly the two point function of the flat space evaluated along the Rindler 
trajectory: 

or TT (5.41) 
sinh 2 (c^) V 1 

which is a thermal Green's function. 

To see the geometrical interpretation of this result, we will need to extend the trajectory 
to off the center and obtain a space filling congruence of trajectories with the same behavior. 
This can be done by either using the isometries Zj, Z[ or by explicitly finding the appropiate 
off-center paths. It should be noted the extension is not unique, and the observer dependent 
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horizons may not be the same for different extensions. For example, to extend the Rindler 
horizon from the t — x plane in the flat spacetime, we could have use the translational Killing 
vector dy or the rotational one ydx — xdy. Of course the horizons would have to agree on the 
orginal two dimensional plane. 

We choose the following two class of congruence as our extension. We will then adapt 
the coordinates to the parameters of the congruence. First, 

U(T) = — arctan(sinh(cr)) 
P 

V(T) = ^(/V2sinh(cr) - p2x2 arctan(sinh(cr))) 

Xi = const (5-42) 

This class is not obtained through the isometries of the spacetime. The observer dependent 
horizon is the null surfaces u = ^ and u = The trajectories approaches the horizons at 
r —>• oo or N —> 0. We will now perform a coordinate transformation to express the BMN 
metric in terms of N, r. We found the metric becomes: 

,o 9 , T 9 , o , r x , » r , u2carctan(sinh(cr))a;j 9 ds2 = -c2N2dr2 - 2Nctanh(CT)dNdr + 2^ V x

v 1 1 dXidr + dx2 (5.43) 
cosh(cr) 

As T —> +oo the metric approaches 

d 5

2 = -c

2N2dr2 - 2cNdNdr + dx2 

with further coordinate transformation: 

t = r 
r = ln(N)/c 

and 

T = t - r 
R = r 

the metric turns into: 

ds2 = c2ecR(-dT2 + dR2) + dx2 

which is just the Rindler space(5.20). 

There are a couple of subtle points. First the horizon is at N = 0 in the r, N, Xi co­
ordinates. However, in the T, R, coordinates, it is at T —)• oo, R —> oo, while in the 
usual coordinate transformation from flat space to Rindler, the horizon is mapped to T = 0, 
R —> oo. This rembles the situation in the near horizon geometry of a static extremal black 
hole. There one of the Killing horizons forming the bifurcate Killing horizon is pushed to 
infinity. It is consistent with what we saw in the previous chapter it is easier to generate 
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extremal black objects in backgrounds with the plane wave isometry. Second, in our con­
gruence, there is a "caustic" at r = 0 where all curves on the same Xi = const plane will 
intersect at u = 0, v — 0. Our coordinate transformation breaks down there. 

The second class is obtained by translation of (5.39) with the Killing vector Z{. 

u = — arctan(sinh(cr)) 

p x2 uN2 

v = sin(2 arctan(sinh(cr))) +. sinh(cr) 
2 2 2 

x'% = — Xi sin(arctan(sinh(cr))) (5.44) 

Notice this time the congruence become "caustic" at u = 0, v — 0, x% = 0, and the metric in 
the coordinate adapting to this family of curves will become degenarate at the origin. 

ds2 = -c2N2dr2 + -cNtanh(r)d + sin2(arctan(sinh(cr)))dx'i2 (5.45) 

Again, as r —> oo we obtain (5.20), the Rindler space metric. This family of curves can 
actually be obtained through the inverse of the series of coordinate transformations (5.36), 
(5.37) with (j) = 7r/2 of the Rindler trajectories in (5.35). We will examine the relationship of 
the thermal behavior and the properties of conformal transformations in the next sub section. 

From the above result, we can draw the conclusion that we have found a class of ob­
server such that as they travel along the trajectory, they will see the spacetime as going 
from Rindler to BMN planewave and back to Rindler. And they would be able to associate 
the temperature their particle detector measures to the acceleration at asymptotic past and 
future. Even though the congruence becomes ill defined at r = 0, we can see that the 
individual trajectories approach inertial trajectories. The caustic seems to be a feature of 
trajectories with this asymptotic thermal behavior. 

There is yet another class of observers for whom the ratio of the amplitude for particle 
production and absorption yields thermal result. 

U{T) = — sinh(cr) 
A4 

v(r) = 7^{N2 arctan(sinh(cr)) — p2x2 sinh(cr)) 

Xi = const (5.46) 

This class of observers have the same proper acceleration as the family considered above. 
The cancelation of the divergent factor in (5.10) is however more subtle. Restrict to the 
center again, we have the curves: 

U(T) = — sinh(cr) 
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v(T) = ^(JV2arctan(sinh(cT))) (5.47) 

Note it is just if we interchange u,and v in the previous class. However, this time u has 
infinity range, and do not seem to follow the local flatness of the spacetime. When evaluated 
on (5.45), the two point function has poles at 

r = -arcsinhC^- + sinh(er')) + 2inm/c 
c p 

with m,n € Z, arid n = 0 being double poles and n ^ O single poles: 
For AE > 0: 

_-]np-iAEf(T') 

( - 2 n r ) ( H A £ ) ^ e - ^ m / c ) + ^ e - M ( W c ) l e ) 
m=l..oo n^O V / 

where 
/(r') = - (— + sinh(cr')) - r' 

C 

7Z7T 71/7T 

h(r') = cosh(( h sinh(cr')) + 27rm/c)(arctan( h sinh(cr')) — arctan(sinh(cr'))) 
P P 

And for A E < 0: 

(+2i7r)((+iAE) e + A g ( 2 m , ) / c + ^ e + A ^ ( 2 7 r m ) / C ^ ) 

m=0..oo n^O ^ ' 

To see the cancelation we will need to make 

r' -> -T' 

n —> — n 

in the AE < 0 part. Thanks to the sum over n, and observe both /(r') and h(r') are both 
odd under the transformation we can see the ratio becomes just 

y -AE{2nm/c) ^ 
A^m=l..oo _ — 

E e+AE(2-Km/c) 
m=0..oo 

If we look at the two point function, which is proportional to: 

1 
(arctan(sinh(cr)) — arctan(sinh(cr'))) sin(sinh(r) — sinh(r')) 

we discover there is no suitable limit we can take to reduce it to the thermal Greens function 
of Rindler observers. It is primarily due to the term sm(pAu) and the fact that the trajectory 
do not respect the conformal structure of the space time. 

Also, after performing the coordinate transformation to r, JV, X j , we get: 

ds2 = —c2N2dr2 — cN cosh(cr) arctan(sinh(cr))d + cxl sinh(cr) cosh(cT)dx%dr + dx32 

There is no obvious limit we can take to make the metric Rindler. This family of curves also 
goes caustic at r = 0. There is no observer dependent horizon associated with this class of 
orbits. They can reach arbtrarily large vaue of u, and from the analysis in chapter 3, they 
can see the whole spacetime. 
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5.8 Temperature Inherited Through Conformal 
Tr ansfor mat ion 

In the previous section we have looked at various trajectories in the BMN spacetime, such 
that an observer following them would see the vacuum |0 > as being thermally populated 
according to the priciple of detailed balance. However, the proper accelerations along the 
trajectories are not constant. As a result, we are not able to relate the temperature observed 
directly to the kinematical properties of the trajectory as before. The best we can do for the 
class of observer (5.41), (5.43) is to argue the asymptotic past and future behavior dominates 
the intergral in calculating the response function. The temperature can then be associated 
to the asymptotic value of the proper acceleration. As discussed above, this point of view 
is supported by the asymptotic form of the two point function which approaches a thermal 
Green's function and the behavior of the metric, which approaches the Rindler space metric. 

Still we hope to understand the origin of the "thermal" properties of the detector response 
function. To this end, we again try to examine the conformal structure of the spacetime. 
First, let us take a closer look at the coordinate transformation in (5.36), (5.37). In partic­
ular, we will consider the effect of the transformation on the family of trajectories: 

u" = eCT 

V" = - ^ e ' C T 

2cz 

xni = 0 (5.48) 

where the "ed coordinates refers to those in (5.38). It is important to note that here r is 
not the proper time due to the conformal factor 1 + ^ „ 2 when the metric is expressed in these 
new coordinates. It is easist if if we describe these curves by 

V 

Performing the inverse of the coordinate transformation in (5.36), (5.37) with 0 = 7r / 2 , we 
get 

-2c\ 
u = arccot( —) 

v 
which is exactly the pathes (5.39). More generally, if we subject (5.39) to the coordinate 
transformation (5.36), (5.37) the result as we vary the value of <j> (for clearness we will set 
p= c = 1/21/2 in this section): 

v" + tan(0) . 
U l - t a n ( 0 > " 1 j 

Ignoring the conformal factor in (5.38), when 0 = 0, the family of curves in (5.39) are "in-
ertial" observers following u" — v" (or x" = 0 in physical coordinates). As 0 increase up 
to 7r/2, they became the "Rindler observers" in (5.47). Dispite appearances, they remain 
intergal curves of a Killing vector field for the Minkowski space. ( And by the conformal 
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relation they are conformal Killing vectors for the full BMN metric) 

Again ignoring the conformal factor in (5.38), we can extend (5.47) to a space filling 
congruence by using the translational Killings vectors d^a's. It turns out this extension 
corresponds exactly to the extension of (5.39) with Zj. This is simply because the dx'n's 
are just Zj's expressed in a different coordinate system. The observer dependent horizon 
associated with this congruence is hA : u" = 0, hB : v" = 0. The horizons are generated by 
the boost dT = u"du» — v"dvn. We know that we can relate the Rindler temperature observed 
by (5.14) to the surface gravity of the observer dependent horizon K. u"du» — v"dv" is now 
not a Killing vector of the BMN spacetime but a conformal Killing vector. Nevertheless, 
since a conformal factor does not change the norm of a null vector, dT still turns null on 
u" = 0, v" = 0, that is, they are conformal Killing horizons. The picture of the horizons is 
more complicated in u, v, x% coordinates. The u" = 0 surface is mapped to u = nir~^ and 
the v" = 0 surface is at v — ^ sin(2pu)xl2 

We can calculate the surface gravity of the conformal Killing horizon u" = 0, v" = 0 
defined as 

V a (^Xi) = - 2 « i X a 

As shown before, with this choice of definition for the surface gravity, we can relate it to the 
surface gravity calculated in the conformally related spacetime. All we need to do is to recall 
it from our computation of surface gravity of the Killing horizon in the Rindler space and 
multiply it by the conformal factor. K'[ = 1 • h(x)\horizon = 1 + ^ „ 2 \hoHzon- In this case, h(x) 
is constant on the horizon. The surface gravity is also constant over the surface hA U KB in 
the Minkowski space, and thus is constant on the corresponding horizon in the conformally 
transformed coordinates. 

It would be tempting to using 

" M-xaXaYi2 

again to relate the surface gravity so defined to the observed temperature (x = dT here). 
However, we have to be careful that (—xaXa) is no longer constant along the trajectory (5.47) 
anymore. The norm of the conformal Killing vector u"du» — v"dv" is 7V2/(1 + u"2) where 
TV2 is the norm claculated without the conformal factor. Notice that when <f> = ir/2 the 
norm does approach its constant value in flat space when u approches ^ ( u" = 0 ), where 
the horizon is. This explains why we have the asymptotic Rindler behavior with (5.43) as 
the Horizon is approached in the far past and future. In those limits the temperature and 
surface gravity relation is just as in (5.49). The above is a direct result of the conformal 
factor 1 + ^ » 2 being nonconstant along the orbits of the conformal Killing vector. To be con­
sistent, we can also consider the coordinate transformation with </> = 0. As shown before, 
the orbits are "inertial" after the transformation. Observers following the trajectory in flat 
space will see the temperature being zero. Note the conformal factor also goes to zero if we 
look at the late time effect limr_».00 u" —> oo as this time u" = tan(sinh(r)). The relation 
K" = Ki • h(x)\horizon is no longer valid. What we see here is that if we choose the wrong 

(5.50) 
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conformal transformation, the thermal properties inherited may not be explicit. 

It is known that there exists the analogue of a Rindler observer in AdS spacetimes 
[Appendix. A]. In contrast to the observer dependent horizon in AdS, where the metric is 
(when expressed with explicit conformal flatness): 

ds2 = R2 sec2(p)(-dT2 + dp2 + sm2(p)dfl2

n) 

Asec2(p)R2 . { _ d t 2 + d r 2 + r 2 d C l l ) 

[I + (r + t)2)(l + (r - t)2) 
j p 2 

(-dt2 + dr2 + r2dfl2

n) (5.51) 
(l-(t2-r2))2 

where the transformation involves 

,p + r , 
r + t = tan(—-—j 

Li 

r - t = -tan( -) 

The singularity at t2 — r2 = 1 comes from the sec(p) and is the conformal boundary of AdS. 
We can see in the last expression the conformal factor is invariant along the orbits of the 
boost generator rdt + tdr. Thus the relation (5.48) shows the temperature for observers fol­
lowing the integarl curves of the boost is constant as in the Rindler case and can be related 
directly to their constant acceleration along the trajectory . Similarly, the same effect occur 
if we choose to consider the second definition of surface gravity, which is only conformally 
invariant when the conformal factor is constant along the conformal Killing vectors. The 
same analysis also applies to the Schwarzschild black holes in their maximally extended Kr-
uscal coordinates. This also sets up the criterion for the conformal invariance of Hawking 
temperature. 

As for the family of curves in (5.45), (consider only the ones confined to the center) they 
are transformed to under (5.36), (5.37) with 0 = 7r /2 (other values of <p does not generate 
qualitative differences this time) 

u" = — cot(sinh(r)) 

v" = arctan(sinh(r)) (5.52) 

A picture of the orbit is dipicted in fig(5.6). We see again the multiple cycle structure as the 
trajectory with constant acceleration at the center. The diffenrence is that here the poles of 
the two point functions are arranged in a way that respects the symmetry required to make 
the inhomogeneous part of the ratio (5.3) cancell. It is easier to see in this picture that it 
does not have a well defined observer dependent horizon. This class of trajectory does not 
correspond to the integral curves of any of the conformal Killing vectors of Minkowski space, 
and thus not to orbits of conformal Killing vectors of the BMN spacetime, either. We are 
not able to relate it to the thermal signature of some true Killing trajectory. 
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In general, if the two point function is periodic in imaginary proper time of the trajectory, 
there is a chance that the observer can detect a thermal signature. According to principle of 
detailed balance, what is needed is not proper time translational invariance, but the poles 
of the two point function arranged in a proper way. In the example above, we can roughly 
relate the "thermalization" to the fact that each cycle in fig(5.6) are of the form (5.13), which 
do register thermal behavior. However, for the observer to see the vacuum as thermally 
populated, some subtle cancelation has to take place. From this point of view, we have a 
notion of equilibrium associated with the orbits (5.45). Among the "thermal" trajectories, 
some do in fact are integral curves of Killing vectors of in a conformally related spacetime. 
Through the relations of surface gravities of conformal Killing horizons in conformally related 
spacetimes, further geometrical meanings can be given to the thermal signature. Near a 
static black hole in asymptotically flat spacetime, the spacetime looks like the Rindler space. 
The event horizon corresponds to the the Killing horizon of the Rindler observers. For 
an observer following the generator of the Killing horizon in the near horizon region, the 
Minkowski vacuum is seen as a thermal state and used as the Hartle-Hawking vaccum. The 
Hawking temperature is defined as the red shifted Unruh temperaure as observed at spatial 
infinity. (Again for spacetimes hot asymptotically flat, the temprature is measured at the 
where the norm of the Killing vector is unity). However, it is not clear whether this more 
general notion of thermal equilibrium is enough to make the plane wave vacuum state an 
analogue of the Hartle-Hawking vacuum. In the conventional sense, since the two point 
function in the planewave vacuum has explicit proper time dependence (even for (5.39)), 
we reach the conclusion that no temperature of stationary black holes can be defined with 
respect to the vacuum state of the BMN plane wave. 

This is of course in accord with the no-go theorems, and can be viewed as a semi-classical 
verification of them. 

Contour used to get the positive frequency Wightman function 
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fig 5.2 

X 

X 

The poles and contour used to evaluate the detector response function for a Rindler observer. The poles are shifted upward to define the 
two point function as a distribution. The contour closes up for particle absorption (the detector gain energy) and it should be closed downward 
for particle emission (the detector loses energy). 

fig 5.3 

The right Rindler wedge, the coordinate system 5.18 
only covers this portion of the flat space. 

fig 5.4 

The orbit of (5.35) as seen in the 
conformally related coordinates 
u", v" 

The pole structure of the two point function 
evaluated on (5.35) The distribution is one sided 
with respect to the imaginary axis X 

X 

X 

X 
I 

— I — 

X 
X X 
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5.5 

A trajectory along which observers sees the vacuum as thermally populated. We will see that for this trajectory the temperature 
observed does have a geometrical interpretation. 

5.6 

Another orbit along which the vacuum state appears thermal 
However, we do not have a good geometrical interpretation for the temperature. 

The orbit on the left hand side as seen in an conformally related 
coordinate system. We see the multi-cycle structure as in fig 5.4 
It turns out the pole distribution of the two point function is evenly 
distributed with respect to the imaginary axis. 
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Chapter 6 
Black String Solution in B M N Plane 
Wave 

We have seen in Chap. 3 that the symmetry properties of pp-wave spacetimes or more 
generally, spacetimes with a null Killing vector are not compatible with the existence of a 
regular event horizon. We have also seen that this conclusion can be understood quantum 
mechanically by examine whether it is possible for the near horizon geometry of a black hole 
to be plane wave. More specifically, in the last chapter, we learned the conformal structure 
of BMN spacetime is very different from that of the Rindler spacetime which we associate 
with the near horizon geometry of a stationary black hole. It seems that we have to abandon 
the null symmetry dv at least near the event horizon in order for a black hole solution to 
be found. However due to the nonlinear nature of Einstein's equations, giving up certain 
symmetry requirements reduces its solvability. We can see immediately from Chap. 3, that 
the nice seperation property of the equations which allowed us to generate new solutions from 
a homogeneous solution will be lost. Many attempts has been made to find new solution 
generating techniques that will result in a black hole solution asymptotic to the BMN plane 
wave. For a nice review see [43]. In this chapter, we will first examine the possibility of having 
a small Schwarzschild black hole in the BMN spacetime. Then we will present a solution 
generating technique called the null Melvin twist due to [45], which succesfully generates 
various black string solutions asymptotically pp-wave. Unfortunately, these solutions are 
in the wrong background. Nevertheless, we will study its thermodynamical properties and 
in particular whether the correspondence principle applies in plane wave background. In 
[Appendix B], we will mention some other attempts in finding the black hole solution. 

6.1 Compatibility 
Despite the fact that we do not have an explicit solution for a black hole in pp-wave, we 
can still imagine having a small Schwarzschild black hole sitting in the pp-wave spacetime 
with some geometry that interpolates between them. Quantitatively we are considering the 
region of in the parameter space such that 1/M >• p, where M is the mass of the black hole. 
We are focusing in on the black hole and treating the five form as a perturbation in the 
Schwarzschild geometry. The five form perturbation would have to satisfy self-daulity and 
the Bianchi indentity dF5 = 0 set by the black hole geometry. The influence of the plane 
wave background comes in the asymptotic boundary condition on the field strength. Here the 
boundary condition is such that they approach the constant five form when the transverse 
distance gets large. The same consideration has been applied to the analysis of stability of 
a small black hole in product space AdSp x S9. Smallness is referred to as compared to the 
radius of the internal five sphere. When the radius of the black hole is smaller than the 
scale of the internal dimension, the metric (2.23) is no longer valid. We have to consider a 
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black hole sitting in 10 dimensional spacetime and not in an effective 5 dimensional AdS. 
Uptodate, the explicit form of the metric of a small black hole in AdS x S has not been 
found. However, it is proved to be stable with respect to five form perturbation along the 
lines described above [44]. 

The authors of [26] considered the black string background: 

ds2 = (1 - M/r6)dt2 + dy2 + l _ l

M / r & d r 2 + r2dtf7 

= -2dudv + du2 + (2M/r6-M2/r12)dv2 + Y^j^dr2 + r2dCl2 (6.1) 

where y = u — v, t = v, as the background for the five form perturbation. The choice of a 
black string instead of a black hole background is motivated by symmetry. The black string 
solution has the same number of transverse directions as the BMN planewave and the Killing 
vector dv is asymptotically null to be consistent with the planewave. The boundary condition 
on the five form perturbation will make it respect the null isometry at infinity as well. It is 
shown no five form with SO(8) symmetry in the transverse directions is compatible with this 
background. For M / 0 , the Bianchi identity will force the five form to be zero. However, if 
th symmetry is broken into 50(4) x 50(4), there exists non trivial five form solution that 
satisfies self-duality, the Bianchi identity and the asymptotic boundary condition of BMN 
plane wave. It is also shown the energy momentum tensor of the five form solution is regular 
on the horizon suggesting the back reaction of the perturbation will not deter the existence 
of the event horizon. 

The discussion do not give an explicit black string solution we seek. However, it shows 
it is possible for a black hole phase to exist in the plane wave background. We would need 
to be clever to find the proper matter support to break the null isometry while keeping 
the asymptotic behavior of the metric. The explicit solution may not be easy to construct 
though, as in the example of small black objects in AdSp x S9. 

6.2 Null Melvin Twist and Black Strings in Plane 
Wave Background 

In this section we will disscuss the solution generating technique by the authors of [45] known 
as the null Melvin twist. In general null Melvin twist changes the asymptotically flat space-
times to one that is asymptotically plane wave. It involves the follwing operations on a given 
solution of supergravity with at least one translational isometry: 

1. Boost along one of the translational invariant directions, say y, with a boost parameter 
7-

2. T-dualize in the direction of boosting. 
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3. Perform the twist along y with a twist parameter u. (we will discribe the twisting proce­
dure with explicit examples later) Notice that this will not change the isometry in dy. 

4. T-dual back along y. 

5. Boost back to the original frame with boost parameter —7. This will cancell the momen­
tum generated in the solution from step 1. 

6. Taking the limit co —>• zero, 7 —> 00, with the following combination of parameters fixed. 

1 7 u = -cue' 
p 2 

First consider using the above operations on the 10 dimensional flat space: 

ds2 = -dt2 + dy2 + dr2 + r2d£l2

7 

obviously the first boost and T-duality does not change the solution in any way. The twist 
here is best described by first breaking up the transverse directions into four two planes 
parametrized by Pi,4>i-

dr2 + r2dn?-> + p?d# (6.2) 
The twist operation is to replace dfc by d<pi + Widy. It is just a rotation in the two planes 
with the amount of rotation dependent on the position along the y-axis. 

x\ = cos(wiy)xi - sm(wiy)zi 

z'i = sin(wiy)xi + cos(wiy)zi 

after the twist and T-dualize back along y, we get 

ds2 = -dt2 + * 2 2dy2 + J > 2 + (P2 ~ i™iPl2 2W 

e 2 $ 1 rr WiP\ 2 

n , g = £ J 1 , 2dPiAdy (6.3) 

(6.3) is just the Melvin magnetic flux universe [46] with the flux turn on in each of the 
transverse two planes. W{S can be regarded as the strength of the magnetic flux in the two 
planes. If we continue with the program setting the flux strength to be the same Wi = w and 
take the double scaling limit as prescribed, we will obtain the 10-dimensional plane wave 
background with the same metric as the BMN pp-wave but is supported by NS-NS three 
form field strength instead of the R-R five form: 

ds2 = -(1 + pr2)dt2 + pr2dtdy + (1 - pr2)dy2 + dr2 + r2dQ2 

e2* = 1, H= ^r2{dt + dy) Ada (6.4) 

To get to the familiar Brinkman form of the metric we only need to use u — t + y,2v = t — y. 
The appearence of the NS-NS three form is from the combination of twisting (which gener­
ates off diagonal metric elements) and T-duality (which relates off diagonal metric elements 
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and NS-NS two form potential). Notice also the strength of the dilaton is scaled back to zero, 
due to the fact that we take w —> 0. The three form strength is null in this particular case. 
As expected, the procedure generates plane wave solutions from asymptotically flat ones. 
We can also obtain a plane wave background with the same metric as the BMN spacetime 
but is supported by R-R tow form potential by S-dual the solution (6.4). 

Now we apply the null Melvin twist to the 10 dimensional Schwarzschild black string 
solution in flat space. 

ds2 = -f(r)dt2 + dy2 + JJ^dr2 + ^dQ2. (6-5) 

The null Melvin twist generates the following black string geometry: 

*~wyH =mvw + d^<\z«) <«•«) 
where f(r) = 1 — k(r) — 1 + •!^-. If we do not take the boosting steps, we will end up 
with 

ds2 = -f(r)dt2 + — ^ d y 2 +
 l-^P^dr2

 + dp2 + (p2 - )#2 

1 + p2r2 fir) 1 + wlrl 

e 2 * = 1 rr
 WP\ 2 

I _ L 2 2 » g = i . 2 2dPiNdy (6.7) 1 + wzrz 1 + wzrz 

(6.7) is a black string embedded in the Melvin flux universe. Comparing with (6.3), we 
notice the presence of the black string does not change the dilaton and the magnetic flux 
in back ground (this is not the case for the black string in pp-wave (6.4) and (6.6)). It is a 
little awkward to use two coordinate systems for the transverse directions. Explicitly, the 
transverse part of the metric is: 

rW + jcos'(x« + - l ^ 0 ^ h l W l + ( VcosM*cos(« 

p2Mr2 cos(^i)cos(x)4 p2Mr2 sin(x)2 cos(x)2 cos(^i) cos(V>2) v , , 
i p T ^ M ) - ( 4(r4 + p2M) ) # 1 # 2 

p2Mr2 sin(x)2 cos(x)2 cos(^i) 1 2 2 p2Mr2 cos(x)4

 2 

4(r4 + ^ M ) # ^ 2 + ( r C O S ^ ~ 4(r* + p2M) 

p2Mr2 sin(x)2 cos(x)2 cos(V>2) , , , , /" 2 Mr 2 sin(x)2 cos(x)2 , , , , 
4(r* + p2M) ^ 2 # 1 - 4(r 4 + p2M) # 2 # 1 

1 2 /^M^sinfo^cos^) 2

 2 , / l 2 • , \ ( i \ M2Mr2cos(V;2)sin(x)4

w^ A l 

+ ( 4 r S m W 4(r 4 + a2M) } ^ 2 + ( I r S i n W C 0 S ^ 2 ) 4 ( r 4 + a2M) 
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/I 9 • / x p2Mr2 sin(x) 4. 2 1 . 2 / , . 2 . 
+ ( 4 r S m ( % ) ~ 4 ( 7 + ^ ) + 4 s m 2 ( x ) « ) 

If we set / i = 0 the above is just the metric of the seven sphere writen in coordinates with 
explicit U(l)x x 5 0 ( 4 ) i x 5 0 ( 4 ) 2 symmetry. The solution (6.4) has regular event horizon 
located at r = r 0 = M 1 / 6 . The generator of the horizon is the time like Killing vector ( = dt, 
whose norm is zero at the horizon. Despite the appearence of the cross terms Gty, there is 
no ergosphere. This is because the cross term also vanishes at the horizon. Taking r —> oo 
we return to the plane wave solution (6.3) in all of the fileds (the metric, the dilaton and the 
NS-NS two form). All the expressions above are in the string frame. 

Having identified the horizon and its generator, we can try to find other thermodynamic 
quantities of this background. These physical quantities have to be calculated from the 
Einstein frame metric. 

QEinstein g—l/2i ^string 

We can compute the surface gravity of the black string solution using (5.16): 

K2 = - ^ v a c 6 v a C 6 U 0 

In order to relate this to the temperature, we have to be careful about the normalization 
of the generator of the horizon as we have learnt from the last chapter. In asymptotically 
flat space times, we take the temperature as measured by an observer at spatial infinity as 
Gu = 1 there. Here we have the same ambiguity as in asymptotically AdS spacetimes, where 
we choose the temperature to be as measured at where the norm of the generator is 1. The 
Hawking temperature computed this way is: 

T„ = A = JLM->/a ( 6 . 8 ) 

We can also calculate the surface area of the event horizon per unit length of the black string. 
After some algebra, the area (of constant t, y, r) is: 

A = ^(k(r)-p2r 2y/2r\0 = ^M^ (6.9) 

The experience with asymptotically flat spacetimes will prompt us to conclude the entropy 
per unit length is: 

7 T 4 M 7 / 6 

Notice that both the temperature and the entropy defined this way are the same as that 
of the asymptotically flat black string (6.5) and are independent on p. This suggests the 
null Melvin twist does not change the thermodynamics of the spacetime. In general, it can 
be proven that the area of the event horizon is invariant under the null Melvin twist [45]. 
However to really identify the surface gravity and area of the horizon to temperature and 
entropy of the black string, we will need to look more carefully into what is really meant by 
asymptotically plane wave. We will return to this problem later. 
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6.3 Correspondence Principle for Black Strings in 
Plane Wave Background 

String theory has many successes in providing the microscopic interpretation of black hole 
entropy. However, most explicit calculations are restricted to counting states of extremal 
and near extremal black objects. The correspondence principle is due to the original idea of 
[47], which suggested that when the size of a black hole shrinks to the string scale and the 
curvature of at the horizon is strong, the black hole state can be approximated by a long 
single string with large mass. This correspndence is latter made quantitative in [48] where 
it is shown the entropy of a large class of black branes can be matched to the entropy of 
weakly coupled large mass string states with the possibility of presence of D-branes. Their 
calculation applies to black objects far from extremity, but the matching is only accurate up 
to a (dimensionless) constant of order of unity. This correspondence compliments the state 
counting technique and provides insight into the nature of black hole and thermodynamics 
of weakly coupled string theory. 

Let us start by reviewing the correspondence principle in asymptotically flat space. We 
will consider the simplest case of a Schwarzschild black hole with no charge and angular 
momentum. The metric is: 

= "(I - (^r2)d*2
 + ( 1 _ ( L } n - 2 ) ^

2
 + r2dtfn_2 (6.11) 

for an n + 1 dimensional spacetime. The mass of the black hole is given by MBH = G

Q , 

where Gn+l is the n + 1 dimensional Newton's constant and Gn+\ = Q2®1^ • The entropy 
of the black hole spacetime is : 

n - 1 n - 1 

SBH~£- = (6-12) 
^ n + i gfa 2 

In writing down the above expressions, we have taken advantage of the fact that we have 
well defined thermodynamical relations for these quantities in classical theory of gravity in 
asymptyotically flat spacetimes. That is, the Hawking temperature, entropy and ADM mass 
of the black hole solution has the familiar relationship dS = ^r. On the string side, the mass 
and entropy of a highly excited weakly coupled string state are: 

Mstr ~ (^2 

•str ~ a,l'2MstT ~ -j^tMstr (6.13) 
H 

where we have assumed the coupling is weak enough, and the string density of states ex­
hibits the Hagedorn behavior (TH

lat is flat space Hagedorn temperature). N is the excitation 
number of the state. 
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The precise statement of the correspondence priciple is [48]: 

When the size of the horizon of a black hole (in string frame) becomes of the order of 
typical string size, the black hole state is described by a state of weakly coupled strings 
and D-branes with the same charge and angular momentum. The mass of the black hole 
is identified with the mass of the string state up to dimensionless prefactors of order of unity. 

The condition on the black hole size ( or equaivalently, on the curvature invariants at the 
horizon) is to say the matching happens when the stringy corrections become important at 
the horizon, or the classical description of geometry becomes ill-defined around the horizon.. 
As an immediate consequence of the correspondence principle, we should find the entropy of 
the black hole state to be well approximated by the entropy of the dual string state. Turning 
the argument around, if we set the expressions for th black hole and string state entropy to 
be equal, it is easy to see that the masses of the corresponding states will be equal (up to 
constants of order one ) if the size of the horizon is approximately a'1!2 ~ TH

lat. In weakly 
coupled string theory, the scale of stringy corrections to geometry is generally set by T#. 
For the cross over to happen, we thus expect the curvature near the event horizon to be 
also of this magnitude when the radius of the horizon comes down to the scale of crossover 
r 0 ~ a'1/2. In flat space, this is trivial (since there is no other dimensionful quantities in 
this background). The curvature constant R2 = R^^R^px ~ 1/r4. The dimensionless 
quantity R2TH, is automatically of order unity. As for black strings in flat space we only 
need to note that when the string direction is compactified on a circle of radius r c, we have 
effectively a black hole in 9 dimensional spacetime. The argument above goes through with 
the effective 9 dimensional Newton's constant GQ = Gw/rc. The compactification radius is 
to be of the order of the cross over radius a'1/2 to ensure the analysis does not suffer the 
Gregory-Laflamme instability (transition between black string and black holes) [49] in this 
and the T-dualized background [50]. 

Now we are in position to apply the correspondence principle to the solution (6.6) [50]. 
On the black string side, we know that the entropy and temperature are invariant under the 
null Melvin twist. If the usual thermodynamic relation dE = TdS also survives, we have 
exactly the case of a ten dimensional black string in asymptotically flat spacetime. On the 
weakly coupled string theory part, we need to consider if the entropy of the strings has the 
Hagedorn behavior as before. This is done by taking advantage of the fact that the plane 
wave background (6.4) is a member of a large class of spacetimes which are related to the 
Minkowski space by T-duality, boosts and identifications (using the notations of [51]): 

ds2 = - fi(n)dt2 + ]jT f2i(n)dtdcpi + {rt)dtf + dr2 + e2<Ti(dy + Ai((a+i + c+i)d(pi + a+iC_idt))2 

4 

H2 
Ic-iFiritfdfa Adt + ]-F{ ri)r2[(a+i - c+i)d(pi + a+ic^idt] A dy 

e 
,2$ F{ri), e 

Fin) 
F'(Ti) 
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Ai = ^F'(rOr? 

/ i = 1 + ^ c ^ f F F ' , hi = c_«[l + £ $ > 2 , - a 2 , - c 2_> 2]FF'r 2 

F = 1 + I Ef(a-H - c +i) 2 - cijr? + | + * H ) 2 - ^ K 2 . ( 6 ' 1 4 ) 

The solutuon (6.4) can be obtained by setting all the a+i, c+i, c_,'s the same with c_ = 0, 
F = F' — 1 and making the gauge choice fa —> fa + pt — fj.y. Since free string theory can 
be solved exactly in this class of background, the partition function can be calculated. It 
is found, with the parameter values chosen above, the string spectrum does have Hagedorn 
behavior [50], [19]. The Hagedorn temperature is this spacetime with pure NS-NS form fields 
is the same as that in flat space. 

r«J) = T»" = i^ r 5 (6'15) 

,which is independent of the flux strenth p. We can then conclude the entropy of free strings 
on (6.4) is the same as that in Minkowski space. Setting the black string entropy and the en­
tropy of free string to be equal, we again, get the condition r 0 = a'1!2 for the correspondence 
to work. The curvature invariant R2 of the black string in plane wave background with pure 
NS-NS form fields is also independent of fj, and R2 ~ 1/r4 as in the asymptotically flat case. 
(The curvature is calculated in the string frame.) Therefore the correspondence principle is 
working in asymptotically plane wave spacetime. 

We can also repeat the steps for the black string solution with R-R form fields obtained 
by S-dualizing (6.6). The string theory spectrum on the S-dualized version of (6.4) also 
has Hagedorn behavior with entropy Sstr = Mstr/TH [50]. In this case both the Hagedorn 
temperature and the curvature invariant R2 (in string frame) have nontrivial dependence on 

A4-

TH ^ -Ji72> V s m a 1 1 

~ p, p large 

R2 ~ -7, p small 

~ ~6 > A4 large 

Equating the entropy on both sides, we get the usual condition on the crossover radius 
r 0 = 1/TH. With this and the expressions of TH and R2, we can check in both the small and 
large // cases the quantity R2/TH is of order unity. This gives evidence that the correspon­
dence principle is working even in the case where the Hagedorn temperature has non-trivial: 
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dependence on p. 

We have been calling the solution (6.6) as being asymptotically plane wave as its metric 
approaches the plane wave form when the transverse distance is large. However the precise 
notion of a spacetime being asymptotically plane wave is still an open question. In particular, 
we would like to check if the causal structure of a solution like (6.6) has the peculiar property 
shown in chapter 3. And also we need to examine its global structure with the ideal point 
construction. These has proven to be computationally complicated due to the form of the 
metric. Related to this, there is a major assumption in the above analysis being somewhat 
unjustified. This is the assumption that in the asymptotically plane wave background the 
usual thermodynamic relation dE = TdS is valid. Assuming the definitions of temperature 
and entropy are correct, we still need to find an appropriate definition for the ADM mass. 
This is complicated by the degenarated boundry of plane wave. The boundary can not 
be used as an usual Gauss surface for the momentum current. If we follow the standard 
procedure of saddle point approximation for the gravitational partition function, we find a 
further difficulty. Leaving the boundary term aside ( it is not clear whether it should be 
included), we find the bulk part of the (Euclidean) action to be divergent. Explicitly, the 
bosonic part of type IIB supergarity action is [52] 

S=^f dwx(-9yi2e-2*(R - ±H2 + 4^*0"*) (6.16) 

Using the equations of motion: ' 

Rfiu + 2 V m u V „ — -HupuHff = 0 

1, 
2 

- ^ V 2 $ + ( V * ) 2 - ^ r 7 2 = 0 (6.17) 

the on shell action can be written as: 

^saddle ^ [ dwx(-g)^2e-2i(8(V^)2 - 4V 2$) = ^ [ dwx{-gfl2e-^\H2 (6.18) 
K J K J 6 

To evaluate the action in the Euclidean sector, we choose to Wick rotate the Killing direc­
tion dt- This acctually results in a complex metric. However, since dt is the generator of the 
horizon, and the determinant of the metric after the rotation only changes its signature, this 
appears to be the correct choice. 

The action evaluated on the Euclideanized version of (6.6), we have: 

Mp2 -16r7p2M(3r2p2M + 2M + r 6 ) 
Vol 

poo 
h / dr(l + 

Jo r 4 ' (r4 + p2My 

It is easy to see as r —>- oo the expression is linearly divergent. Divergence of the bulk term 
is common in this type of calculations. We have seen this in chapter 1 when reproducing the 
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Hawking-Page phase transition. There the divergence is regulated by using the pure AdS 
space as a background since they share the same asymptotics and divergences. In this case 
it is more complicated as the absence of dilaton in the pure plane wave solution suggests 
its contribution to the action is zero. We are left with the problem of trying to find an 
appropriate background spacetime. Since the plane wave geometry (6.4) falls into the class 
of exactly solvable string theory background (6.14), a natural starting point is to search 
within this family. So far we have not been able to find a suitable choice. 
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Chapter 7 
Summary and Open Questions 

In this thesis we explore the possibility of finding a black hole solution in asymptotically 
BMN spacetime. This is motivated by the fact string theory in the plane wave exhibits the 
Hagedorn behavior [19]. If such solution is found, we would be able to understand more 
about the themodynamics of string theory on the BMN background and maybe relate the 
phase transition to behaviors of the dual BMN sector of the super Yang-Mills theory. Unfor­
tunately, explicit black hole solution of this kind seems to be very difficult to derive. Results 
summarized in chapter 4 of the no horizon theorems in pp-wave [25], [26] suggest if the black 
hole solutions exist, near the event horizon, the null Killing isometry which characterizes the 
pp-wave family has to be modified. Giving up symmetry requirements makes directly solving 
the Einstein's equations a very difficult task. These thereoms also makes it clear that we are 
not able to access the black hole solutions by taking Penrose limits of black hole spacetimes. 
The Penrose limit does not keep enough global structure of the original spacetime. One 
might atempt to find other limiting proceedure under which the event horizons are retained. 
However, with the holography direction in the BMN/CFT less than clear, it would seem we 
co not have too many guide lines in constructing such generalizations of the Penrose limit. 
It is for this reason, we are led to consider carefully the concept of temperature and thermal 
states in the BMN spacetime. 

With the knowledge that the Hawking temperature of stationary black holes can be 
viewed as the redshifted Unruh temperature from the near horizon geometry, we set out to 
see if we could find the analogue of a Rindler observerin the plane wave spacetime. We do 
this through the Unruh monopole detector following various trajectories in the BMN space-
time. We found observers following orbits of Killing vectors and geodesies do not observe the 
desired thermal spectrum. These observers do not see the vacuum of the BMN plane wave as 
a thermal state. Since the two point functions are not proper time translational invariant if 
evaluated on a non-Killing trajectory, we do not expect any observers in the BMN spacetime 
to regard the plane wave vaccum as a thermal state for all times. However, temperature itself 
is an averaged concept. We can still defined thermal equilibrium if we look at the behavior 
of the two point function averaged over the trajectory. We invoke the principle of detailed 
balance. As shown in chapter 5, we are able to find trajectories with thermal signature with 
this more general criterion for temperature. It is also argued if the "thermal trajectory" hap­
pens to be also the orbit of a true Killing vector of a conformally related spacetime, we can 
associate the temperature observed with certain geometrical quantities of the background, 
namely the surface gravity of conformal Killng horizon. In this case, thermal equilibrium can 
be connected with the constancy of the surface gravity over the conformal Killing horizon. 
Despite the generalized definition of thermal equilibrium, it is not clear if we can use it to 
define the temperature of a stationary black hole. This is because the state itself has explicit 
time dependence as viewed by such observers. Our result here is nontheless a semi-classical 
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verification of the no go theorems. 

Explicit black string solutions asymptotic to BMN are constructed using the null Melvin 
twist technique [45]. However, they are supproted by the wrong form fields. These solutions 
are supported by NS-NS or R-R three forms instead of R-R five forms which comes naturally 
from the Penrose limit of AdS5 x S5. These black string geometries are still interesting 
on their own, though. It is shown the correspondence principle is working in this spacetime 
[50]. In particular, they can teach us about thermodynamics of black objects in a plane wave 
background. It is not clear whether these solutions still have the peculiar boundary and light 
cone structure of pp-wave spacetimes shown in chapter 3. Whether the boundary behavior 
of these black string solutions can be used to define what is meant by " asymptotically plane 
wave" remains an open question. Further, as seen in the end of chapter 6, the bulk part of the 
IIB supergravity is linearly divegent when evaluated on the black string solution (6.6). And 
we are not able to use the pure plane wave geometry (6.4) as a background to regulate the 
divergence. This suggest that there is no phase transtion between the two solutions. (Again 
this point relies heavily on the details of teh boundary behavior of these backgrounds, and 
we have not treated the possible boundray term in the action properly) More work is needed 
to find an appropriate solution to the regularize the gravitational action. A natural starting 
point seems to search among the class of exactly solvable string theory backgrounds in [51] 
to which the NS-NS supported plane wave is a member. 

As described in section 6.1, It is consistent for an asymptotically BMN plane wave black 
hole solution with R-R five form field strength to exist. However, finding the explicit form 
of it may be a very challenging task. 
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Appendix A 
Geometry of Anti-de Sitter Space 

In this appendix we discuss the geometry of the AdS spacetime. It is easiest to consider 
the AdSn+\ space times as being a n+1 dimensional hyperboloid embedded in R2'n. The 
convention for the signature of R2'n here is chosen to be (-,+,+,...,+,-). The hyperboloid is 
defined by 

We will call R the radius of the anti-de Sitter space. Note the hyperboloid contains closed 
time like curves (figA.l). We can parametrize the hyperboloid with the coordinates 

x0 = R cosh(p) cos(t) 

xn+2 = -Rcosh(p) sin(i) 

Xi = i?sinh(p)Oi (A.2) 

where fli parametrizes the n sphere of the spacetime and E"=i = 1- Notice that the entire 
hyperboloid is covered once if t goes through [0, 27r] fig(A.l). The above parametrization 
lifts up the hyperboloid and describes the global covering of AdSn+x. The closed time like 
curves are also "unwrapped " after the the lifting, r now ranges (—oo,+oo). To see the 
causal structure of the global AdS, we refer to the technique of drawing its Penrose diagram. 
The AdS spacetime is locally conformally flat, and its Penrose diagram can be drawn on the 
Einstein static universe (fig. 1.4). We need the coordinate transformation tan(#) = sinh(p). 
The metric now takes the form: 

^ = cJl0) ̂  + + B i n 2 W d n » - i ) = c J j ^ 4 ^ ( A - 3 ) 

The conformal factor c ( Jf^ diverges at 9 — n/2, and this marks the conformal boundary 
of the AdS spacetime. From fig. (1.4), we can see the global AdS covers only half of the 
Einstein static universe, and the embedding tells us the boundary is timelike. The time 
like boundry is related to the fact that asymptotically AdS spacetimes (spacetimes with the 
same conformal boundary structure as AdS) are not globally hyperbolic. They do not pocess 
complete cauchy surfaces. Informations can be sent in from the time like boundary. This is 
a physical interpretation of the boundary to bulk propagator found in (1.15). If we multiply 
the metric by any function of 9 which goes to zero at 9 = TT/2 and have the multiplicity to 
cancell(regularize) the divergence of the conformal factor, we see the boundary of AdSn+i 
is Rt x The freedom in choosing the regularization factor is related to the dilataion 
isometry of the bulk AdS spacetime and the conformal isometry of the boundry (compacti-
fied) Minkowski space. 
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Another useful coordinate system is given by the parametrization: 

xn+2 = RUT 
Xi = Rux', 

xn+1 = ±(l-u\R>-Yx? + S)) (AA) 

It covers only half of the hyperboloid. The metric now becomes: 

ds2 = R2(^- + u2(-dr2 + J2dx'2)) (A-5) 

This is the form we get from looking at the near horizon geometry of a black 3-brane solution 
in (1.6), the Poincare patch. Notice this patch of the AdS spacetime is its self conformally 
flat. The entire patch can be conformally mapped to the flat spacetime. To see this, simply 
define U = —1/u, and the metric is: 

ds

2 = ^(dU2-dr2 + Yx'^ (A-6) 

The points with U = 0 (u = co) are the conformal boundary of this patch and is in fact part 
of the time like boundray of the global AdS spacetime. The points with U = oo (u = 0) 
marks where the coordinatization (A.5) breaks down (notice the metric is degenarate at these 
points). We can analytically continue across these "cosmological" boundaries and obtain the 
entire AdS hyperboloid. We can obtain this result directly from the metric (2.15) by pulling 
out appropriate conformal factors as was done in the end of chapter 5. Notice the coordinates 
are different for the flat space metric in (5.50) and (A.6). In (A.5), we also notice that the 
points u = 0 are the Killing horizon for the Killing vector dT. In fact, (A.6) has already been 
put in the form of Rindler spacetime as in (5.20). It is then obvious that observers following 
the orbits of dT are the analogue of the Rindler observers in AdS spacetime. 

We can understand this from another point of view. Going back to the embedding 
coordinates x0,Xi...xn+2, and consider an observer following the hyperbolic line along the 
hyperboloid in th embedding space 2,n : 

Xn+2 = Z 

xl - x\ = Z2 - R2 (A.7) 

with all other coordinates set to zero. This when projected onto the coordinates r, u,x\, is 
precisely the orbits of dT fig(A.2). In the embedding space, this trajectory follows that of an 
Rindler observer in R2,N with the familiar expression of temperature [53]: 

^embedding — ~2TT~ (A"'^) 



Appendix A. Geometry of Anti-de Sitter Space 91 

where a „ + 2 is the acceleration measured in the flat embedding spacetime. a n + 2 = (Z2 — 
R2)~ll2. Notice that there is a minimal value of Z for which the accelration is real. This 
corresponds to the point the trajectory turns from time like to space like, and thus does not 
cause real physical contradictions. This thermal behavior can also be checked by explicitly 
calculating the two point function in anti-de Sitter space and evaluate the detector responce 
function along the appropriate trajectory [53]. It is found, independent of the boundary 
conditions set for the wave equations, the detector response function contains the Planck 
factor along the orbits of dT. One can repeat this for de-Sitter space by considering Rindler 
observers in the embedding flat space. More generally this procedure works for Schwarzschild 
black holes in flat and AdS spacetimes with possiblely nonzero charges and momentum. The 
challenge is to find the proper embedding space. Thus this suggest we can map the Hawking 
radiation of a black hole geometry to the Unruh radiation in the embedding spacetime [54]. 

fig A . l 

AdS space as a hyperboloid embedded in a hyher dimensional flat space 
The time t is a periodic coordinate. There are closed timelike curves 
We need to decompatify the time direction to get the global AdS space 
which is causally well defined. 

fig A.2 

t 

The path followed by an observer with constant acceleration in AdS. 
This class of observer will measure a temperature analogue to the 
Rindler temperature in flat space. The temperature is proportional to 
the constant acceleration in the embedding space. 
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Appendix B 
Other Attempts of Generating Black 
Hole Solutions in Plane Wave 

One natural idea to consider is to glue together a black hole geometry with the plane wave 
spactime. We consider glueing together the BMN pp-wave (exterior) to the Schwarzschild 
black string (interior). The choice of black string is again motivated by symmetry. The 
metrics are: 

Black string: 
g^dx^dx" = -h(r)dt2 + dy2 + l/h{r)dr2 + r2dto2

n 

where h(r) defines the position of the horizon. (For d = n + 3 = 10 it is just 1 — M/r 6 ) . and 
du>2 is the metric on a n-sphere. 

BMN pp-wave: 
g°avdx»dxv = -2dudv + -p2r'2du2 + dr'2 + r'2dQ2

n 

We choose to match the metric on a r = r' = const surface. The induced metric on the 
d — 1 hypersurfaces are: 

-y^dx^dx" = -h(r)dt2 + dy2 + r2d£l2

n (B.l) 

with the normal co-vector n^dx" = l/hlj/2(r)dr and 

%vdxildxv = -2dudv + -p2r'2du2 + r'2dfl2

n (B.2) 

with n^dx" = dr 

The extrinsic curvatures are: 

Ki

livdx<idxv = -h1/2h'(r)dt2 + Ody2 + 2rhl/2dfl2

n (B.3) 

K^dx^dx" = -2p2r'du2 + 2r'dfl2

n (B.4) 

To glue the geometries together, we observe that on r — const, the induced metrics both 
inside and outside are just the 2-D Minkowski space cross a sphere, we make the following 
coordinate transformation on them. 

(B.l): 

T = h1/2(r)t 

Y = y 
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(B.2): 

• u=~(T-Y) 
pr1 

v — pr'Y 

The induced metric on both sides became(r = r' = const): 

-dT2 + dY2 + r2dQ2

n 

There is a jump however in the extrinsic curvature for any finite r. This is most eeasily seen 
when apply the same coordinate transformation on (B.3), (B.4). 

(B.3) -+ -j^-2{r)dT2 + 2h^2(r)dn2

n 

(BA) -» ^(dT2 - 2dTdY + dY2) + 2rdn2

n 

According to the Israel junction condition [55], we can calculate the energy momentum tensor 
of domain wall as: 

MGdS,v = K°v - K;u - lilv{K° - i T ) 
where K° and Kl are the trace of the respective extrinsic curvatures. The result for our case 
is: 

ftrt?^ = [ £ + £ ( 1 - h^)\dT> + ^dTdY + 0 - 2 " ( 1 ; " ' / 2 ) + ^]dY> 

In the inside coordinates: 

„ i r - 2 In, , , , , , , l 2 Ah}/2 , , . -2 2n(l-h}l2) h \ , 2 8nGdS;u = h[-^ + - (1 - hV*)]d* + -zjf-dtdy + [-^ - f + ^ ] c i y 2 

In the outside coordinates: 

SnG^ = ( , V ) £ * + £ ( 1 - ft1'2)]*2 + £ ( 1 - h1/2)dudv + [ ^ ^ ] * 2 

+ [ M i - 0 - ^ ^ + j ^ ] < « « 
2 n ( l ^ / 2 ) , h' 

r 
Unfortunately, we are not able to find suitable sources to account for the energy momen­

tum of the domain wall. It would be more interesting if we were able to find consistent ways 
to break the symmetries so that we can match the plane wave geometry to a black hole. 
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