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Abstract 

Generalized linear mixed effects models (GLMMs) are popular in many longitudinal 

studies. In these studies, however, missing data problems arise frequently, which makes 

statistical analyses more complicated. In this thesis, we propose an exact method and an 

approximate method for GLMMs with informative dropouts and missing covariates, and 

provide a unified approach for simultaneous inference. Both methods are implemented 

by Monte Carlo E M algorithms. The approximate method is based on Taylor series ex­

pansion, and it avoids sampling the random effects in the E-step. Thus, the approximate 

method may be computationally more efficient when the dimension of random effects is 

not small. We also briefly discuss other methods for accelerating the E M algorithms. 

To illustrate the proposed methods, we analyze two real datasets, a AIDS 315 dataset 

and a dataset from a parent bereavement project, using these methods. A simulation 

study is conducted to evaluate the performance of the proposed methods under various 

situations. 
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Chapter 1 

Introduction 

1.1 Generalized Linear Mixed Effect Models 

Longitudinal data or repeated measurement data occur frequently in many applications 

where repeated measurements are obtained for each individual. Statistical analysis of 

longitudinal data are reviewed in Diggle, Liang and Zeger (1994). One of the key ad­

vantages of a longitudinal study over a cross-sectional study is to separate variation 

over time within an individual from difference among individuals, while a cross-sectional 

study can not do this because it simply records one measurement for each individual. So 

the analysis of cross-sectional data may confound time effect and may give misleading 

results. For longitudinal data, it is important to recognize two sources of variations: 

intra-individual variation produced by different measurements within a given individual, 

and inter-individual variation among different individuals. 

Generalized linear models (GLMs) such as logistic regression models, extend nor­

mal linear models to allow non-normal error distributions in the natural exponential 

family such as Poisson and binomial distributions. GLMs can handle not only continu­

ous variables but also discrete variables, as long as the distribution of the variable belongs 
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to the natural exponential family. Therefore, GLMs provide a unified different approach 

for continuous and discrete responses and have wide applicability in practice. For ex­

ample, in Agresti (1990), a sample of male residents of Framingham, Massachusetts, 

was collected according to their blood pressures. During a follow-up period, whether or 

not these male residents developed coronary heart diseases, was recorded and viewed as 

response. So the response variable is binary. To investigate the relationship between 

the blood pressure and the coronary heart disease, we can build a logistic regression 

model and then make statistical inferences based on this GLM. Generalized linear mixed 

models (GLMMs) are useful for longitudinal studies which extend GLMs by introducing 

random effects to account for correlation within the repeated measurements for a given 

individual. Such models can separate two kinds of variations, borrow information cross 

individuals and allow discrete and continuous responses. Therefore, GLMMs are very 

popular in the analysis of longitudinal data. A G L M M may be written as a hierarchical 

two-stage model. At the first stage, intra-individual variation is charactered by a G L M . 

In the second stage, inter-individual variation is represented through individual-specific 

regression parameters. Covariates are often introduced in the second stage to partially 

explain systematic variation. 

There are two main approaches to estimate parameters in GLMMs: (i) an exact 

likelihood inference based on numerical integration (Booth and Hobert (1999)), and (ii) 

an approximate inference based on linearization procedures via Taylor series expansion 

(Breslow and Clayton (1993); Vonesh et al. (2002)). In the exact inference, marginal 

likelihood is obtained by integrating out random effects from the joint distribution of re­

sponse and random effects. By maximizing the marginal likelihood, we obtain estimates 

of parameters of interest. However, the integration is usually intractable, one may use 

Monte Carlo approximations to evaluate it (Wei and Tanner (1990)). The exact likelihood 
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inference works well with a small dimension of random effects. However, computation 

may become quite demanding or unstable as the dimension of random effects increases. 

In such cases, we may consider the approximate inference which avoids this computation 

difficulty by integrating out the random effects. The strategy for the approximate infer­

ence is to iteratively solve L M E models based on second-order Taylor series expansion 

around current estimates. If the number of measurements for each individual is large 

enough, approximate methods may give reasonable estimates for parameters. Otherwise, 

approximate maximum likelihood estimates may be inconsistent. 

1.2 Missing Data Problems 

Missing data are a serious problem in many applications and arise frequently in lon­

gitudinal studies. Two kinds of missing data often occur in a longitudinal study: (i) 

missing covariates due to different measurement schedules for covariates and response or 

other problems; and (ii) missing responses due to dropout or missing visits. For example, 

individuals may withdraw or die before the end of study or do not come to the study 

center for measurements at scheduled times for various reasons. Missing data problems 

make statistical analysis in longitudinal studies much more complicated, since standard 

complete-data methods are not directly applicable. 

Commonly-used naive methods for missing data include the complete-case method, 

which deletes all incomplete observations, the mean imputation method, which substi­

tutes missing values with the mean values of observed data, and the last-value-carried-

forward method, which imputes a missing value by the immediate previous observed data. 

At the presence of missing data, the missing data mechanism must be taken into account 

in order to obtain valid statistical inference. Little and Rubin (1987) define three types 
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of missing data mechanisms. Missing data are missing completely at random (MCAR) if 

the probability of missingness is independent of both observed and unobserved data. For 

example, patients do not come to the study center because of reasons irrelevant to the 

treatment such as simply forgetting the appointment. Missing data are missing at ran­

dom (MAR) if the probability of missingness depends only on observed data, but not on 

unobserved data. For example, a patient may occasionally fail to visit the clinic because 

he/she is too old. Missing data are nonignorable or informative missing data (NIM) if the 

probability of missingness depends on unobserved data. For example, a patient fails to 

visit the clinic because he/she is too sick. If missing values are MCAR, the complete-case 

method will give unbiased, but inefficient estimates. If the missing data are not MCAR, 

the naive methods may give biased, even misleading results due to not taking missing 

data information into consideration. MCAR and MAR are called ignorably missing. We 

can ignore the missing data mechanism in likelihood inference when missing values are 

ignorably missing (Little and Rubin (1987)). 

Little (1992, 1995) gave a review on missing covariates in regression and drop-out 

in repeated-measures studies. Ibrahim, Lipsitz, and Chen (1999) proposed a Monte-Carlo 

E M method for estimating parameters in GLMs with nonignorable missing covariates. 

Wu and Wu (2001) estimated parameters in nonlinear mixed effects models with missing 

covariates (MAR) by a three-step multiple imputation method. Wu and Carroll (1988) 

considered linear mixed effect models with informative dropout and assumed missingness 

depending on random effects. Ibrahim, Chen and Lipsitz (2001) developed a Monte Carlo 

E M algorithm for estimating parameters in GLMMs with informative dropout. However, 

little literature considers parameter estimation in GLMMs with informative dropout and 

missing covariates simultaneously. 
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1.3 Motivating Examples 

1.3.1 Example 1 

Our research is motivated by a longitudinal study from the AIDS Clinical Trial Group 

(ACTG) Protocol 315 (Wu and Ding (1999)). In this study, 46 HIV infected patients were 

treated with a potent antiviral drug. Plasma HIV-1 RNA (viral loads) were repeatedly 

quantified on days 2, 7, 10, 14, 21, 28, and weeks 8, 12, and 24 after initiation of treatment. 

After the antiviral treatment, the patients' viral loads will decay, and the decay rate may 

reflect the efficacy of the treatment. The Nucleic Acid Sequence-Based Amplification 

assay that is used to measure the viral load has a detection limit. If the viral load drops 

below the detection limit after the treatment, the viral load can not be measured, which 

may indicate that the treatment may be successful. To investigate the treatment effect, 

one approach is to define the response as whether the viral load is below the detection 

limit or not, which is thus a binary variable. In this study, patients drop out before the 

end of the study, and the dropout may be informative. Thus, the response contains non-

ignorable missing values. Preliminary studies show that some baseline covariates such as 

CD4 cell counts, tumor necrosis factor (measured by TNF levels) and total complement 

levels (measured by CH50), may partially explain variation in the viral load trajectory. 

However, some of these covariates are also missing. Our objectives are to model the 

viral load trajectory and to identify covariates that may partially predict changes of viral 

loads, in the presence of informative dropouts and missing covariates. 

1.3.2 Example 2 

Our second example involves a longitudinal study from a parent bereavement project, 

which investigates the long-term mental outcomes of parents whose children died by 
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accident, suicide, or homicide. After their children's death, the parents usually experience 

a high level of mental distress. In this study, the mental distress of 239 parents were 

measured at baseline (i.e. 4 to 6 weeks after their children's death), and then at 4, 

12, 24 and 60 months post-death. The Global Severity Index (GSI), which is the most 

sensitive indicator of mental distress, is used to measure the parents' distress levels. A 

high GSI score indicates a high level of mental distress. If the parents' adjustment to their 

children's death goes well, their GSI scores will decrease over time, at least lower than 

their baseline GSI scores. To examine how the parents' mental distress changes over time 

after their children's death, we treat whether or not a parent's GSI score after baseline 

is lower than his/her baseline value as response. Several other relevant factors were also 

obtained at baseline, including parents' gender, marital status, age, education, annual 

income, the cause of death, age and gender of the deceased child. These baseline factors 

may be important predictors of parents' distress and thus are viewed as covariates. Note 

that some baseline covariates such as income contain missing values, and some responses 

are also missing. Our objectives are to investigate the change of parent's distress levels 

over time and to determine which covariates affect the parent's mental distress. 

1.4 Objectives and Outline 

In this thesis, we develop an exact inference method, implemented by a Monte-Carlo E M 

algorithm, to make simultaneous inferences for GLMMs with informative dropout and 

missing covariates. To avoid computational difficulties when the dimension of random 

effects is not small, we propose an approximate inference method, which integrates out 

the random effects for more efficient computation. 

The remainder of this thesis is organized as follows. Chapter 2 introduces GLMs 
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and GLMMs and reviews the literature about informative dropout and missing covari­

ates. Chapter 3 discusses the exact inference method for estimation of GLMMs with 

informative dropout and missing covariates. The approximate inference method based 

on linearization is presented in Chapter 4. We discuss dropout models and covariate 

models in Chapter 5. In Chapter 6, we apply our methods to two real data examples. 

Chapter 7 presents our simulation study. We conclude the thesis with a discussion in 

Chapter 8. 
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Chapter 2 

Generalized Linear Mixed Models 

and Missing Data 

2.1 Introduction 

Before we present our methods for estimating parameters in GLMMs with informative 

dropout and missing covariates, we give a brief introduction to GLMs, GLMMs, and 

methods for the missing data problems in this chapter. In Section 2.2, we introduce 

GLMs and the methods of estimation for parameters in GLMs. Section 2.3 describes 

GLMMs, briefly discusses two main methods for estimating parameters in GLMMs and 

reviews the literature for GLMMs. In Section 2.4, we give a literature review about 

methods of handling informative dropout and missing covariates respectively. 

2.2 Generalized Linear Models 

A classical linear model is useful to model a continuous response under the assumption 

that the response follows a normal distribution and a linear relationship exists between 
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the mean of the response and covariates. However, in practise, some non-normal dis­

tributions such as binomial, Poisson, etc, may be better assumptions for some response 

variables such as discrete variables. For example, we may want to study whether devel­

oping a heart disease relates to the blood pressure level. Here, we treat the health status 

of patients' heart as our response. The response is thus a binary variable which takes 

values of 0 or 1, where 0 means that a patient has a heart disease and 1 means that a 

patient has no heart disease. Obviously, here the assumption of normality is completely 

unrealistic. Moreover, frequently the mean of the response can not be expressed as a 

linear form of the covariates. In those situations, we can not use standard linear models. 

Generalized linear models (GLMs), which are a extension of classical linear models, 

can not only deal with variables whose distributions come from the exponential family but 

also allow nonlinear forms between the mean of responses and the covariates. Variables 

in the exponential family include continuous variables such as normal and exponential, 

and discrete variables such as binomial and Poisson. Due to the capability to handle 

continuous data as well as discrete data, GLMs unify different methodologies and thus 

have wide applicability in practice. 

2.2.1 M o d e l Specification 

GLMs are specified by three components including a random component, a systematic 

component, and a link function. 

Let y — (yi,y2) • • • IVN)T be a vector of independent and identically distributed 

(i.i.d) observations whose distribution belongs to the natural exponential family. Then 

the density function of each observation y* can be expressed in the form 

f(yu A) = exp{[yi6»i - ¥>(0i)]/a(0) + <Vu </>)}, (2.1) 
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where a(.), ip(.) and c(.) are specific functions, 6 = (#1,62, • • • , 6N)T is called the natural 

parameters, and <p is called the dispersion parameter. The random component of GLMs 

is specified by the above density function of the response variable. 

The systematic component specifies the relation between covariates CCJ to the linear 

predictor rji by a linear form 

V i = xJ(3 i = l,2,.•• ,N, (2.2) 

where j3 is a vector of regression parameters. ' 

The mean \i{ = E[%ji) is related to the linear predictor through the link component 

of GLMs 

rh = xj(3 = g(iii) i = l,2,---,N, (2.3) 

or 

Pi = g-1(Vi)=9~1(xJf3) i = l,2,---,N, (2.4) 

where g(.) which is a monotone and differentiate function called the link function. In 

the exponential family, if a link function g(.) satisfies g(fa) = Oi(fJ-i), then the link is 

called the canonical link or natural link. Binomial, Poisson and normal variables all have 

canonical link functions. A function g(/i,) = fa gives the identity link. For example, 

normal variables have the identity link function. In summary, GLMs allow for linear as 

well as non-linear models under a single framework. Moreover, GLMs make it possible 

to fit models where the underlying data are normal, Poisson, binomial, etc, by a suitable 

choice of the link functions. 

2.2.2 Maximum Likelihood Estimation in GLMs 

The principal method of estimation used in GLMs is the maximum likelihood method. 

In this section, we will briefly describe how to obtain the maximum likelihood esti-
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mates of parameters in GLMs. We assume <p is known, then c(yi, (f>) is a constant in the 

log-likelihood function about 9 and thus is not ignored in the following log-likelihood 

function. For N independent observations, the log-likelihood function is 

N 

l(0\y) = Y^m\yi) 
i=l 
N 

i=l 
N 

S o m e u s e f u l E q u a t i o n s 

Now we will derive some useful identities used in maximizing the likelihood function. 

The derivation of (2.5) with respect to 0$ gives 

dl 1 / d<p(0i)\ , . 

an i aytfli) ( 2 7 ) 

39} a{cp) de2 ' 1 ' ' 

The following is two well-known likelihood results that we use here: 

K i t ' - 0 - <2-8» 

i dl \ „ (d2l » 

Substituting (2.6) and (2.7) to (2.8) and (2.9) respectively gives 

and 

Efa) = M*<) = ^ , (2-10) 

i ay(^) I dmjQi) I 
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where V ( / / i ) = dni(6i)/d9i is often called the variance function. Equation (2.11) indicates 

that the variance of the response depends on its mean. We differentiate two sides of 

equation (2.3) with respect to (3 and obtain 

= dg{fM) d^j d9j 

Upon rearrangement, the above equation can be written as 

d6i 1 
d(3 V(ni)dg(fii)/dfjLi 

Maximum Likelihood Estimation 

(2.12) 

To obtain the maximum likelihood estimates .(MLEs) of /3, we differentiate (2.5) with 

respect to (3, and then apply (2.10), (2.11) and (2.12) to get the following score function 

dl(0\y) 
509) = 

0(3 

N .dkip^ddi E -Uh\Pi\yi) Wi 
d6i df3 (2-13) 

1 N 

= _ L _ y V i - fM ^ 
a(<^) ~[ V{ni)dg(pi)/diii 

Let 

W = diag" 1 {Vi^idgi^/d^f, ••• , VifMN^dgifi^/diJLftf}, 

X = (x1,x2,--- ,xN), 

A = d\B%{dg(ni)/dtiudgM/dya, • • • ,dg(ixN)/dfj,N} , 

Then (2.13) can be rewritten as 

= S((3) = -^-rXWA(Y - M)- (2-14) 
df3 a(4>) 
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MLEs can be obtained by solving the following score equation 

S(f3) = -^XWA(Y-»((3)) = Q- (2.15) 

The solution to the above equation (2.15) can be performed by Fisher scoring algorithm 

or Gauss-Newton algorithm. In the case of canonical links, both Fisher scoring and 

Newton-Raphson reduce to the iteratively re-weighted least squares algorithm. 

Under the regularity condition, MLEs of parameters in GLMs have the asymptotic 

normality property 

P^N((3,a(<l>)(XWXT)-1). 

As we see, the asymptotic covariance matrix of (3 is equal to the inverse of the expected 

Fisher information matrix, which is 

F(/3) = -E(^M) = -±-XWXT. (2.16) 
K 1 V d(3d(3T ' a(</>) y ' 

With a large sample size, we can apply this property to make inference about f3. 

2.2.3 Quasi-Likelihood Approach 

Based on the fact that the just first two moments of variables are mainly involved in the 

score function, Wedderburn (1974) proposed the quasi-likelihood method for estimating 

parameters in GLMs. The advantages of this method are that we do not need to make 

specific distribution assumptions, and that its estimators own the similar asymptotic 

properties as MLEs. 
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2.3 Generalized Linear Mixed Models 

2.3.1 Generalized Linear Mixed Models 

A G L M M is a extension of a G L M to longitudinal data by introducing random effects to 

account for correlation within repeated measurements for a given individual. It can sepa­

rate the inter-individual variation and the intra-individual variation and borrow strength 

across individuals. Thus, a G L M M is very popular in the analysis of longitudinal data. 

A G L M M may be written as a hierarchical two-stage model. In the first stage, the intra-

individual variation is specified by a generalized linear regression model. In the second 

stage, the inter-individual variation is represented through individual-specific regression 

parameters. 

Let yij denote the jth observation on individual i, % = 1, 2, • • • , JV; j = 1, 2, • • • , n,. 

Then there are a total of YliLi ni observations. 

• stage 1 (intra-individual variation) 

Let bi be the random effects associated with individual i. We assume that con­

ditioning on bi, observations ya,yi2,-'' ,VirH a r e independent and each has the 

density function from the natural exponential family. 

fiVijlP, bi) = exp{[j/y0y - (p(dij)]/a(<l>) + c{yij, </))}, (2.17) 

E{yij\p, h) = faj = g(x%(3 + z%bi), (2.18) 

where 0 is a dispersion parameter, Here we assume that (f> is known. The function 

g(.) is the link function, 77^ = xfj/3 + is the linear predictor, and at̂  and 

are two vectors of covariates such as time, baseline value, etc. 
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• stage 2 (inter-individual variation) 

r1i = xjf3 + zjbi, (2.19) 

bi~N(0,D), (2.20) 

where ^ = [rjn,--- ,r)ini)T, xt - (xa, • • •-, xini), and zt = (zn,--- ,zini), and /3 

is a vector of fixed parameters. We assume that the random effects, bi's, are i.i.d. 

The covariance matrix D in (2.20) quantifies the random inter-individual variation. 

2.3.2 Maximum Likelihood Estimation 

Let Vi = (y )T. From the preceding section, the joint density of y = (yl, • • • , yN) 

and 6 = (6i, • • • , 6jv) can be written as 

N m 

f(y, b\f3, D) = HH f(yij\(3, bMibilD). (2.21) 
i=i j=i 

Since random effects b are unobservable variables, we integrate out random effects and 

obtain the marginal distribution for y 

N . m 

f(y\(3,D) = TJ / lJ{/(yy|A W(M^)}* . - (2-22) 

Thus, the corresponding log-likelihood is 

N / . m \ 

l(f3,D\y) = yj J[fMP> KfiPiWh J . (2.23) 

If the above log-likelihood has a closed form, we can obtain the MLEs of param­

eters in GLMMs by solving the score equation as usual. However, usually integration 

with respect to random effects is intractable such that we can not get the closed form 

for the log-likelihood. This problem results in two main approaches of estimation for pa­

rameters in GLMMs including an exact likelihood inference method based on numerical 
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integration and an approximate inference method based on linearization procedures via 

Taylor series expansion. In the exact inference, when integration becomes intractable 

due to moderate to large random effects, one may solve this problem by implementing 

the Monte Carlo E M algorithm. The exact inference method works very well with a 

small dimension of random effects. However, the computation may become quite de­

manding or unstable as the dimension of random effects increases, while the approximate 

inference method avoids the computation problem by integrating out the random effects. 

The strategy for the approximate inference method is to iteratively solve L M E models 

based on first-order or second-order Taylor series expansion around current estimates. 

If the number of the intra-individual measurements (measurements for each individual) 

is large enough, the approximate method may give reasonable estimates for parameters. 

Otherwise, approximate MLEs may be inconsistent. 

2.3.3 Literature for Generalized Linear Mixed Models 

McCulloch (1997) derived a Monte Carlo Newton-Raphson algorithm and combined it 

with a simulated maximum likelihood method to come up with a hybrid method for 

GLMMs. His simulation study showed that the Monte Carlo E M algorithm, the Monte 

Carlo Newton-Raphson algorithm and the hybrid method worked well in calculating 

MLEs for GLMMs, and the hybrid method gave more precise estimators. Booth and 

Hobert (1999) proposed two new implementations for the maximum likelihood fitting in 

GLMMs. Both methods are carried out by the Monte Carlo E M algorithm. The main 

difference is that the first method uses a rejection sampling to generate samples from the 

exact conditional distribution of the random effects, while the second one uses a mul­

tivariate t importance sampling. Breslow (1993) proposed a penalized quasi-likelihood 

(PQL) method and a marginal quasi-likelihood (MQL) method, and demonstrated their 
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suitability for inference in GLMMs by simulation and application in several examples. In 

the simulation study, PQL and M Q L made correct inferences on regression coefficients, 

but underestimated parameters a bit (in absolute value). Vonesh (2002) proposed a 

conditional second-order generalized estimation equation (CGEE2) to estimate the pa­

rameters in GLMMs and also showed that the efficiency of estimators was improved due 

to the involvement of the second-order moment. 

2.4 Literature for Missing Data 

We frequently encounter the missing data (response or/and covariate) problem in prac­

tise. However, ignoring missing data or using overly simple methods to handle missing 

data often leads to invalid inference. Thus, it is very important to find appropriate ap­

proaches to deal with missing data in our hand. Various strategies for considering the 

missing data mechanism have been proposed in the recent literature. 

2.4.1 Literature of Informative Dropout 

Wu and Carroll (1988) considered linear mixed effect models with informative dropout 

under the assumption that the informative dropout could be modeled by a probit model 

which included the random effects as its covariates. Diggle and Kenward (1994) de­

rived a likelihood method to get MLEs in a multivariate linear model with informative 

dropout modeled by a logistic regression model which included the response as covariate. 

Computation of the likelihood was speeded up by using the probit approximation to the 

logit transformation. Their simulation work has shown that considering the informative 

dropout mechanism in the statistical inference reduces the bias caused by the ordinary 

least square (OLS) estimator or by only considering the informative dropout as M A R . 
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Little (1995) gave a review on modeling the dropout mechanism in repeated-measures 

studies. Regarding how to factor the dropout mechanism, models handling dropout were 

classified into selection models and pattern-mixture models. The main difference between 

two types of models is that we need to specify the form of missing data mechanism in the 

selection models while pattern-mixture models do not require that. He classified NIM 

into nonignorable Outcome-Based missing data where the dropout depends on missing 

values, and Random-effect-Based missing data where the dropout depends on future val­

ues. He also suggested to examine the sensitivity of results to the choice of missing data 

mechanism when we almost know nothing about the missing data mechanism. Ibrahim, 

Chen and Lipsitz (2001) developed a Monte Carlo E M algorithm to obtain MLEs in 

GLMMs with informative dropout and nonmontone missing data patterns. Moreover, 

they proposed that the missing data mechanism may be modeled by a logistic regression 

or a sequence of one-dimensional conditional distributions which may reduce the number 

of nuisance parameters. 

2.4.2 Literature of Missing Covariates 

Little (1992) defined three special types of patterns of missing covariates: (i) univariate 

missing data where only one covariate values are missing, (ii) monotone or nested missing 

data where the (j + l)th covariate Xj+1 is observed for every case in which the jth (j = 

1, 2, • • • ,p) covariate Xj is observed and (iii) a special pattern where two covariates can not 

be observed at the same time. He reviewed the methods of estimation in the' regression 

models with missing covariates. The six reviewed statistical methods dealing with missing 

covariates are compared in this paper, including complete-case methods, available-case 

methods, least squares on imputed data, maximum likelihood, Bayesian methods and 

multiple imputation. He suggested that the maximum likelihood, Bayesian methods and 

18 



multiple imputation would be a better choice for dealing with missing covariate problems. 

Moreover, he preferred the maximum likelihood in a large sample and Bayesian methods 

or multiple imputation in a small sample. Ibrahim (1990) analyzed the problem of missing 

covariates (MAR) in GLMs with discrete covariates and applied the E M algorithm to 

obtain MLEs under the assumption that the missing covariates came from a discrete 

distribution. The asymptotic variance of MLEs was estimated by computing the observed 

information matrix via Louis's method. Ibrahim, Lipsitz, and Ghen (1999) proposed 

a Monte-Carlo E M algorithm for estimating parameters in GLMs with nonignorable 

missing covariates. In this paper, they assumed a multinomial model for the missing data 

mechanism and a sequence of one-dimensional conditional distribution for unobserved 

covariates. Wu and Wu (2001) estimated parameters in nonlinear mixed effect models 

with missing covariates (MAR) by a three-step multiple imputation method. In first 

step, they fitted a hierarchical model without covariates. Then they imputed the missing 

covariates based on a multivariate linear model implemented by Gibbs sampler, and 

created B independent complete datasets in the second step. In the last step, they used 

the standard complete-data method to analyze each dataset and thus obtained the overall 

inference based on B analysis results. 
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Chapter 3 

Exact Inference for GLMMs with 

Informative Dropout and Missing 

Covariates 

3.1 Introduction 

In this chapter, we develop an exact inference method based on numerical integration to 

obtain MLEs for parameters in GLMMs with informative dropout and missing covariates. 

The proposed exact method is implemented by a Monte Carlo E M algorithm, which 

need to generate samples for missing values and random effects by Gibbs sampler in each 

E M step. In Section 3.2, we give a description of GLMMs with informative dropout 

and missing covariates, considered in this thesis. Section 3.3 describes a Monte Carlo 

E M algorithm for implementing the exact inference method. A detailed description of 

our sampling methods is provided in Section 3.4. In Section 3.5, we present a P X -

E M algorithm, which may boost the convergence rate of the standard E M algorithm. 

Computation issues regarding our algorithm are discussed in Section 3.6. 
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3.2 Models and Likelihood 

We assume that data are collected from N individuals. Let y{ = (yu, • • • ,yini)T', where 

ytj is the outcome for individual % at time Uj, j = 1,2,-•• , n$, i = 1,2, ••• ,JV. The 

response t/j may contain missing values due to dropouts. So we write y{ = (yobSti, ymis,i)> 

where yO0Sti corresponds to the observed components oiyt, and ymis j contains the missing 

components of yt. Let r, = (ra,-- - ,riTH)T be a vector of missing response indicators 

such that Tij = 1 if is missing for individual % at time Uj, and = 0 if yij is 

observed for individual i at time t^. Let a;, = (xa, • • • ,Xif)T be a (/ x 1) vector of 

time-independent covariates for individual i. Since the time-independent covariates may 

also contain missing values, we write Xi = (x^i, xmiSti), where xO0S!i = the observed part 

of Xi and xmiS^ = the missing part of Xi. Let Si = (sn, • • • , S j / ) T be a vector of missing 

covariate indicators such that = 1 if Xik is missing and Sik = 0 if xu- is observed, 

k = l,---,f. 

Let /(.) denote a generic density function. If the response and all covariates are 

completely observed for each individual, the corresponding G L M M can be written as a 

hierarchical two-stage model as follows. 

IMP, bi) = e x P [{ViAjM - vtfijMfiM) + c(Vij, 4>)], (3.1) 

Vij =9(lMj) = Al/3 + zJjbi, 
(3.2) 

bil^dN(0,D), j = l,---,m, i = l,---,N, 

where £ , (y i J |6 j) = pij and (j) is the dispersion parameter (here we assume that </> is 

known). The function g(.) is a link function, is the linear predictor, (3 = (/3i, • • • , (5P)T 

is a vector of fixed effects, and 6j = (bn, ••• • ,biq)T is a vector of random effects. The 

covariate Afj = (xf,tfj) is a (1 x p) vector, where is a vector of time-dependent 

covariates. Usually, the covariate vector ẑ - is a subset of Aij. The q x q matrix D 
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quantifies the random inter-individual covariance. By integrating out the unobservable 

random effects bi: we obtain the following complete-data marginal distribution 

/(!/!••• ,yN\Xl--- ,xN,f3,D) = l [ / Y[{f(yij\p,bi,Xi)f(bi\D)}dbi. (3.3) 

i=l J j=l 

In the presence of missing values in the response and covariates, the complete-

data marginal distribution becomes more complicated. When the missing responses 

are informative, we have to take into account the missing data mechanism, i.e., the 

distribution of the missing data indicators TV Otherwise, the estimates of parameters may 

be biased. In this thesis, we make the following assumptions: (i) The missing covariates 

are MAR, i.e, the missing covariate mechanism does not depend on any unobserved 

values, but may depend on observed values. In other words, the density function for the 

missing covariate indicator S j satisfies f(si\yuxt,S) = f ( s i \ y o b s i , x o b S t i , S ) , where S is a 

vector of parameters, (ii) The missing responses are informative, i.e, the missing response 

mechanism may depend on the unobserved values. We denote fir^y^Xi,^}) as the 

density function of the missing response indicator, where tf) is a vector of parameters, (iii) 

Let f(Xi\a) to be the density function for covariates X j , where a is a vector of parameters. 

Modeling strategies for specifying the missing data mechanism fir^y^Xi,^) and the 

covariate model f(xi\a) are explored in Chapter 5. By integrating out y m i s i and x m i S j i , 

we obtain the marginal distribution for the observed data ( y o b s , x o b s , r , s). 
N n p /* Tli 

f(y0bs,xobs,r,s\(3,D,ip,d,at.) =]J / Y[{f(yij\P,bi,xi)f(bi\D)f(xi\a) 
t=iJ J J j=i (3.4) 

fiTilVi, x u )f{Si\Xi, yi, 6)}dbidxmiStidymiSi, 

where y o b s = (yobSil, ••• , yobs,N), x o b s = (xobSil, ••• , x o b s > N ) , r = (n , • • • , r N ) and s = 

(si, • • • , SN). Rubin (1976) showed that the missing data mechanism can be ignored from 

likelihood inference if the data are MAR. Since we assume that the missing covariates 
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are M A R , ignoring the missing covariates mechanism leads to the the following observed 

data log-likelihood: 

Maximizing the above log-likelihood gives us the MLEs for parameters in the G L M M . 

However, the intractable integration in (3.5) makes the observed data log-likelihood diffi­

cult to maximize..In this thesis, we propose an exact inference via Markov Chain Monte 

Carlo techniques and an approximate inference method via Taylor series expansion. In 

next section, we describe the Monte Carlo E M algorithm in details, which implements 

the exact inference method. The approximate inference method will be illustrated in 

Chapter 4. 

The E M algorithm (Dempster, Laid, and Rubin, 1977) is a very useful and powerful algo­

rithm to compute MLEs in a wide variety of situations such as missing data and random 

effect models. Each iteration of a E M algorithm consists of an E-step that evaluates 

the expectation of "complete data" log-likelihood conditional on the observed data and 

previous parameter estimates, and a M-step that updates the parameter estimates by 

maximizing the expectation of the conditional log-likelihood. This iterative computation 

between the E-step and M-step till convergence leads to the MLEs. 

If we treat (yobSti, ymia^ xobsA, xmis4, bt, T\) = (yi} xt, fy, n) as the "complete data", 

l((3,D,ij>,cx\yobs,xobs,r,s 
(3.5) 

3.3 Monte Carlo E M Algorithm 
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the complete data density for individual i is given by 

f(yi)xi)bi,ri\f3,D,ip,a) 

= f{Vi\P, bi, ̂ i)/(x i|o;)/(6 i| JD)/(r i|t/ i, xu ip). 

This leads to the complete data log-likelihood 

JV 

i=l 
N 

= £ [log{/d/il)3,6i,Xi)} + l o g g i a ) } ( 3 - 6 ) 

i=l 

+ log{ / (6 i | £>)} + logifinlVi, xu iP)}], 

where 7 = (j3, a, ip, D) and (̂7; yt, xiy 7-j) is the contribution to the complete data log-

likelihood from the ith individual. Note that we are mainly interested in estimating the 

parameters (/3,D), and treat (cx,ip) as nuisance parameters. 

Ibrahim et al. (2001) proposed a Monte Carlo E M algorithm for estimating param­

eters in GLMMs with informative dropout without missing covariates. Here we extend 

their method to GLMMs with informative dropout and missing covariates for simultane­

ous inference. 

3.3.1 E-step 

Let 7^ be the current parameter estimates. Then the conditional expectation of the 

complete-data log-likelihood given the observed data for individual % at the (t + l)st E M 
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iteration is given by 

Qi{i\i(t)) 

E! (jiilf > Vii x i i Ti)\yobs,ii Xobs,ii fii ^) 

= / / /[log{/(j/ i | iS,6i ) a; i )} + log{/(aj i.|a)} 
(3.7) 

+ logl/^D)} + iog{f(n\yi, Xi,ib)} 

f{ymis,iiXrnis,iibi\yobs,i>Xobs,iirii7^)dbidym^ 

=h +I2 + I3 + h. 

In general, the above integration is intractable and does not have a closed form expres­

sion. However, this integral can be evaluated by using Monte Carlo approximations 

(Wei and Tanner (1990)). Specifically, a sample of size {(y^i3i,x^t ubf^), 

b\mi))} can be drawn from f ( y m i a i i , xmia,u bi\yobS:i, xobs^, ru 7 ( i ) ) via Gibbs 

sampler along with the adaptive rejection algorithm (Gilks and Wild, 1992). Then we 

may approximate QtOrl*/^) by 

1 rrii 

+ m log{/(aJo6»,i, âmL.iI")} 

+ - E 1 ° g { / ( ^ ) i ^ ) } 

(3.8) 

1 i=i 

For simplicity, we may take m; constant in each iteration. However, increasing m ; with 

each iteration may speed up the E M convergence (Booth and Hobert, 1999). The E-step 
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for all individuals at the (t + l)st iteration can be written as 

. C ? ( 7 | 7 ( i ))=£ft ( 7 l 7 W ) 
i = i 

= E E — l°g{f(yobs,i, Vmis,i\P> ^ \ X o b S t l , X^i)} 
i = l j=l 1 

+ E E ~ l o g { / ' ( X < ^ , i > V m i s M ) ) 
* = i i = i * (3.9) 

JV J7lj _ 

+ £ £ - i ° g { / ( * ? , i ^ ) } 

JV TOj 
v 

m,-
+ £ £ ~ l 0 S { / ( r ^ 0 b S , i . J/mL,i. </>)} 

t = l j = l 

=Q(1)(/3|7W) + g ( 2 ) (« |7 W ) + Q ( 3 ) (^l7 W ) + Q [ i ) W \ l [ t ) ) . 

3.3.2 M-s tep 

We can obtain the updated estimates 7^ + 1) at the (t + l)st iteration by maximizing 

Q(7 |7^) - Assuming that the parameters (3, a, D and ip are alldistinct, we can update 

(3, a, D and ip by maximizing Q^2\ and Q ( 4 ) separately at the M-step. The 

maximizer / 3^ + 1 ' for may be computed via iteratively re-weighted least squares where 

the missing values are replaced by their simulated values {y^is j , x^is t, 6^}. 

/ 3 ( t + 1 ) =argmax{Q ( 1 )(/3, |7 ( i ))} 

JV (3.10) 
=argmaxj^ ^ —{f(y0bs,u Vmu,i\P, b\J\xobsA, x ^ { ) } . 

t=l 3=1 

The maximizer £)( t + 1 ) for can be written as follows: 

L>(*+1) =argmax{Q ( 3 )(£>, |7 ( t ))} 

JV rm (3-11) 
=argmax£E — M/C^P)} 

1=1 .7 = 1 

26 



To update a and ip, one can use standard methods for commonly used models such as 

multivariate normal models and logistic regression models. 

=argmax{Q(2>(a,|7(t))} 
a 

N mi (3.12) 

=arg max VV- \og{ f {x o b s ^ , x^] 41 a)}, 

V ( t + 1 ) =argmax{Q^(^,|7(*))} 

Af m j (3.13) 
=argmax E E ~ l o g { / ( r ^ o b S , i > I/£L,i, */>)}• 

i=l 3=1 

To obtain the MLEs 7, we may start with any reasonable values for 7, which 

can be obtained by the complete-case method or other naive methods , and then iterate 

between E-step and M-step until convergence is reached. 
3.3.3 Variance Estimation 

The asymptotic covariance matrix of 7 can be obtained by the method of Louis (1982). 

Specifically, note that the observed information matrix equals the conditional expected 

complete information minus the missing information, that is, 

Iobsil) = Icom{l) ~ Imis\obs(l)- (3-14) 

Let 

and 

Qh\i) = E <?<(7l7) = E E -s<*h)> 
i=l ' i=l k = l r r k 
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Since /3, a, ip and D are distinct, matrices <2(7|7), Q(7|7) and ̂ •('y) are block diagonal. 

Then, based on (3.14), the asymptotic observed information matrix gives 

{ N mi N -\ 

E E " 5 « ( 7 ) ^ ( 7 ) - E 4 ( 7 l 7 ) Q r ( 7 | 7 ) • (3-15) 
i=l j = l ^ i=l J 

Thus, the asymptotic covariance matrix of 7 can be approximated by 

, c o v ( 7 ) = / ^ ( 7 ) . ( 3 - 1 6 ) 

3.4 Sampling Methods 

3.4.1 G i b b s Sampler 

As we can see from the preceding section, generating samples from the conditional dis­

tribution /(2/mi S, i,a;mj S ]i,6 i |t/ o h S )j,cc 06 S ii,ri,7 ( t )) is crucial for implementing the E-step of 

the Monte-Carlo E M algorithm. Gibbs sampler is a popular method to generate samples 

from a complicated multidimensional distribution by sampling from each of the full con­

ditional distributions in turn. Here we use the Gibbs sampler to simulate the "missing 

values" as follows. Set initial values y ^ i s i , x ^ i s i and b\°\ Supposed that the current 

generated values are yj*]S ) i, x { ^ i s i and bf\ 

Step 1. draw a sample for the missing responses {2/̂ }̂ from 

f{ymis,i\yobs,iiXobs,i,Xmis,iibi ,fi,^ ^), 

Step 2. draw a sample for the missing covariates {x^1-} from 

f{Xmis,i\yobs,ii v\nis}i xobs,i, °| \ ri,~f^), a n d 

Step 3. draw a sample {of + 1 )} from f ^ y ^ y ^ ^ X o ^ u X ^ 1 } ^ ^ ^ ) . 
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After a sufficiently large burn-in of d iterations, the sampled values will achieve a steady 

state, that is, {(y^ts]} > xm?s]i> b^1^), k = d + 1, • • • ,B} can be treated as samples from 

the multidimensional density function f ( y m i s A , xmis^, bi\yobs<i, x o b S t i , rit 7(t)). 

3.4.2 Adaptive Rejection Algorithm 

Gilk and Wilks (1992) proposed an adaptive rejection algorithm for effectively sampling 

any univariate log-concave density function. In the current situation, we can write 

f(Vmisj\Vob8,i>xi>bi,ru'Yit)) oc f(yi\bi,xi,P{t))fir^y^Xi,^), 

fiXmiaAVu xobs,i, bi, n,7 ( i )) oc /(yjbj, x{,P{t))f(xi\a(t))f{ri\yi, Xi,ip{t)), 

f i b ^ x u r u ^ ) oc fiyilbuXupMmbilD®). 

Density functions f(yi\bi,xi,j3^>) and f(bi\D^) often come from the exponential.fam­

ily, and thus are log-concave in each component of y m i s i , x m i S t i , and b, respectively. If 

/(rjlj/j, Xi,ip^) is log-concave in each component of y m i s < i and f(xi\D^) is log-concave in 

each component of x m i s < i , then the products of log-concave functions, f{ymiS,i\y0bs,u xi> bi, 

fi,7W), f(xmi8j\Vi,Xob8,i,bi,ri,'y(t)), and / ( b j l ^ a ^ r ^ W ) , are log-concave. So we can 

use the adaptive rejection algorithm to generate samples from f(ymiSti\y0bs,i,xi, bt, rt, 7^), 

f(xmis,i\yi'xobs,i,bi,ri,^) and / ( b ^ , xt,r*j,7(i)) respectively. Note that the adaptive 

rejection sampling can only be applied to the univariate case, but y m i s i , x m i S j and bj 

are often multidimensional. Thus, to implement the Gibbs sampler described earlier, 

we need to modify the sampling scheme to incorporate multidimensional variables, as 

described below. 

For example, suppose that ymis^ is a multivariate of dimension I, that is, y m i s t = 

)T. Since the function f{ymis^\yobs,i, xi, bi, Tj,7 ( t ) ) is log-concave with 
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respect to each component of y m i s i , and 

k,i\Vobs,ii {ymis,h,i, h ^ k}, Xi, bi, riy 7̂ ) OC f{ymiSti\yooS:i, Xi, bi, 7"j, 7 )̂, 

where k = l , - - - ,1, the function f{ymis^yobs^ {ymis,h,i,h ^ fc}, xit bi, rit 7«) is log-

concave with respect to y m i s Thus, another Gibbs sampler, together with the adaptive 

rejection sampling, can be used for generating a sample from f ( y m i S i i \ y o b s j , xiy 6j, 7**, 7 )̂. 

Specifically, we can proceed as follows. 

Step 1. use the adaptive rejection sampling method to generate j fr°m 

f{ymis,iAy0bs^{ymis,h^h> 2},xuburu~i®); 

Step 2. use the adaptive rejection sampling method to generate y^ts^li f r o m 

f(ymis,2,i\yobs,i,{yttslli>y{mis,h,i,h > 3 > , » i . b * > 7 ( t ) ) ; 

Step Z. use the adaptive rejection sampling method to generate y m i s t i from 

f(ymi8,l,i\Vob8,i> {yttsl,Vh ^ Xu 6;, rU 7W). 

After a burn-in period, the vector jy^ , 1 ^; • • • , 2/mis,V} m a y D e treated as a sample from 

f(ymis,i\Vobs^xhbi^in[t))- Samples from f(xmia,i\Vi>zofeSii,buru7(i)), and / ( b ^ , a:*, 

T*i)7 )̂ c a n D e obtained in a similar way. 

3.4.3 Reject ion Sampling 

When the density functions do not satisfy the log-concave property, the usual rejection 

sampling method can be used for generating the desired samples. For example, suppose 

that we want to sample from f(bi\yi,Xi,ri,'y®), which can be written as f(bi\y^Xi,ri, 

7M) = cf(bi\D^)f(yi\bi,xi,f3^), where c is a constant, then the usual rejection sam­

pling method can be described as follows. 
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Step 1. generate a random value b* from f(bi\D^), and draw a sample U from the Uni-

form(0,l), 

Step 2. accept b* as a sample from fibily^Xi,^,^^) if U < f(yi\bi,xI,^)/T where 

T — sup{f(yi\u,xi,(3^)}. Otherwise, reject b* and go to step 1. 
u 

Samples from f(ymi3ti\yobati,Xi,bi,ri,'yW) and f(xmia<i\yi,xobaji,bi,ri,'yW) can be ob­

tained in a similar way. 

3.4.4 S a m p l i n g M e t h o d for B i n a r y Var i ab l e s 

If the missing variables are binary variables, then we may use an easier way to generate the 

desired sample. Here, we take the missing response ymis, as an example. Suppose that 

the response is binary and we want to draw samples from f{ymiSi\y0bsi,xii bi,ri,*y^). 

For simplicity, here we assume that ymiSji is univariate. The corresponding sampling 

procedure is described as follows. 

Step 1. draw a sample U from the Uniform(0,l), 

Step 2. take 0 as a sample from f{ymiSti\yobSti, xu bu rh 7W) if U < f{0\yobSti, xu ru 7(t))-

Otherwise, take 1 as a sample. 

3.5 P X - E M Algorithm 

Although the E M algorithm is a very popular tool for estimation due to its easy imple­

mentation and stable convergence, it may converge quite slowly in some applications such 

as ours. To speed up the convergence, many acceleration methods have been proposed 

(e.g. Liu and Rubin, 1994a, Meng and Van Dyk, 1997), A particularly useful method is 
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the P X - E M algorithm (Liu et al, 1998) , which speeds up the E M algorithm by introduc­

ing additional working parameters to the model. For the P X - E M , the E-step is usually 

the same as the standard E M , while the M-step needs to maximize the expected log-

likelihood over the original parameters and the working parameters. Thus, the P X - E M 

algorithm can be obtained by simple modification of the standard E M . Liu et al (1998) 

showed that the P X - E M algorithm may dramatically accelerate the rate of convergence 

without loss of the simplicity and stability of the standard E M . Next, we show how to ap­

ply the P X - E M algorithm to GLMMs with informative dropouts and missing covariates. 

We may expand the G L M M (3.1)-(3.2) by introducing additional working parameters as 

follows. 

f(Vij\P*, bi) = exp [{yijdijinij) - <p(0ij(lMj))}/a.(<t>) + c(y«, <f>)], (3.17) 

Vij = 9(lMj) = ATj/3* + zJjAbi, 
(3.18) 

6 , ~ i V ( 0 , D * ) , j = l,..-,ni, i = l,-..,N, 

where A is a q x q matrix, called working parameters. The P X - E M algorithm is the stan­

dard E M applied to the expanded models (3.17)-(3.18) rather than the original models 

(3.1)-(3.2). Specifically, the E-step and the M-step are described as follows. 

E - s t e p : Let 0 ( 4 ) = ( /3* ( 4 \a * W V>*W,£>* ( i ), A ( i ) ) = {P{t\ot^\^t],D^,Iqxq) be the 

current estimates of the expanded parameters. The E-step of P X - E M is obtained by 

simply adding the working parameters A to Q(.), i.e, the E-step of the standard E M in 

Section 3.2.1. Then the conditional expectation of the complete-data log-likelihood given 

the observed data for the model (3.17)-(3.18) can be written as 
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N 

g*(0|0(*)) =^g*(©|0(t)) 
2 = 1 

N nu 

= E E ~ l°s{f(yobs,u V%L,i\P*, ^\xobSti, a£L,z)} 
i=l 3=1 ^ 

N mi ^ 

1=1 3 = 1 

N mi ^ 

+ E E ^ l o § { / ( 6 ? ) i ^ ) } 
i=i j=i 1 

N mi ^ 

+ E E ~ l o S { / ( r ^ o 6 S , i > Vmls^ V>*)} 
i=l j=l ^ 

=Q*W(P\ A|0(t)) + Q<2\a*\®W) + Q<3\D*\&^) + Q<4\ip-*\&V). 

(3.19) 

Obviously, everything in this E-step is the same as the E-step of the standard E M in 

Section 3.2.1, except the extra working parameters A in (3.18). 

M - s t e p : By the same standard maximization procedures as the M-step in Section 

3.2.2, we maximize Q*^\ Q*^2\ Q*^ and Q*^ separately to update the estimates of the 

expanded parameters to (3<t+l\ a < t + 1 \ ip<t+1\ D<t+^ and A( t + 1 ) . The only difference 

in this step between the P X - E M and the E M is that the P X - E M maximizes Q*^ over 

(3* and A, while the E M does this only over /3. The reduction to the original parameters 

in the models (3.1) — (3.2) gives 

p{t+l) _ )g»(t+i) ) a ( t + l ) = a*(*+i)> = £)(*+!) = \(t+l)Jj*(t+l)j{(t+l)T_ 

This iterative calculation between the E-step and M-step until convergence leads to the 

MLEs of parameters in the original models (3.1) — (3.2). 
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3.6 Convergence 

When carrying out the Monte Carlo E M algorithm, Monte Carlo samples for the "missing 

data" are drawn at each iteration to approximate true values. Consequently, Monte Carlo 

errors are introduced. One way to reduce the Monte Carlo errors is to increase the Monte 

Carlo sample size m*. However, the computation is intensive for a large rrij. Because the 

estimate 7^ in the initial E M steps is often far from the true values of the parameters, 

Monte Carlo samples of a large size may be wasted. Thus, we usually use a small m, 

at initial iterations, and then increase with the iteration, as suggested by Booth and 

Hobert (1999). 

After an initial burn-in period, the Gibbs sampler converges to a stationary state 

and thus produces draws from the conditional density function f(ymisi,xmis^,bi\yobSti, 

&obs,i, ri,7^)- Obviously, the determination of the burn-in period is very important. We 

way use common diagnostic methods to determine the burn-in period, such as time series 

plots. 

The proposed Monte Carlo E M algorithm often works well for the models with 

a small dimension of random effects. When the dimension of the random effects is not 

small, however, the proposed E M algorithm and Gibbs sampler may converge very slowly 

or even not converge. Therefore, in next chapter, we propose an approximate inference 

method which may avoid these convergence difficulties and may be much more efficient. 
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Chapter 4 

Approximate Inference for G L M M s 

with Informative Dropout and 

Missing Covariates 

4.1 Introduction 

In Chapter 3, we have described the exact inference method implemented by the Monte 

Carlo E M algorithm. However, the exact method may be computationally intensive and 

may even offer potentially computational difficulties such as slow or non-convergence. 

Moreover, when the dimension of random effects is not small, sampling random effects 

may result in inefficient and computationally unstable Gibbs samplers, which may lead 

to a high degree of autocorrelation and a lack of convergence. In the presence of missing 

response and missing covariates, these problems become more serious. In this chapter, 

we propose an approximate inference method which is not only much more efficient, but 

also avoids potential computational difficulties. This approximate method is obtained 

by Taylor series expansion and it avoids sampling the random effects in the E-step by 
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integrating them out. Pinheiro et al. (2001), in a different context, have showed that the 

convergence rate of the E M algorithm can be greatly improved by integrating out the 

random effects in the E-step. 

The outline of this chapter is as follows. In Section 4.2, we present the approximate 

inference method for GLMMs without missing values, and then extend this method to 

GLMMs with informative dropout and missing covariates implemented by the Monte 

Carlo E M algorithm in Section 4.3. In Section 4.4, we briefly describe the sampling 

methods used in Section 4.3. We conclude this chapter with a discussion about the 

P X - E M algorithm, an extension of the standard E M algorithm. 

4.2 Approximate Inference without Missing Values 

As described in Chapter 3, a G L M M is written as 

1/3, bi) = exp [ { y y 0 y ( / z « ) - ¥>(0y(/xy))}/a(#) + ^Va^)], (4.1) 

Vij = 9(tMj) = AjjP + zJjbi, 

(4.2) 

b ^ N ^ D ) , j = l,---,rH, i = l,---,N, 

where the notation is the same as (3.1)-(3.2) in Chapter 3. Denoting the observation 

vector as yt = (yn-- - ,yim)T, and design matrices as Ai = (An,-- - ,Afc) T and z% = 

(ZJI, • • • ,ziq)T, then the conditional mean and covariance of ?/j satisfy E(yi\bi) = fj,t = 

g~1(Af(3 + zjbi) and cov(y i|b i) = C f = diag{V(//y)/a(0), j = 1, • • • ,nj} respectively. 

The above G L M M yields a marginal log-likelihood function by integrating out the 
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random effects 

KP,D\Vi-m- ,VN) 
N Hi 

= l o g | /flfifiVijlfrbimbiWdbi 1 
[J i=lj=l ) 

/ e x P fe E { l0S(f(yij\P, bi)) + l o g ( / ( 0 i | D ) ) } | dbx • • • db 

(4.3) 

i=l 3 = 1 

To estimate the parameters in the G L M M , we need to maximize the log-likelihood func­

tion (4.3). However, in most cases, the integral in (4.3) is intractable. Evaluating the 

integral in (4.3) by Monte Carlo methods for the exact inference method may offer po­

tential computational problems, as noted earlier. Here, we consider a much more efficient 

approximate inference method based on Taylor series expansion. The following approxi­

mation is based on a second-order Taylor series expansion about the current parameter 

estimates 6, which is equivalent to the Laplace's approximation (see [20] [26]), 

d2k(6)I 
J ek^dO « (2TT)! 

0=0 
ok{0) (4.4) 

dOdOT1 

where 0 is a q x 1 vector, k{0) is a function of 0, and 6 is a maximizer to k(0). Applying 

the Laplace's approximation to the log-likelihood (4.3) yields 

l(P,D\yi • VN) ~ ~y log(27r) 
1 N 

5> 
i = l 

a2fci(64) 
dbidbj bi=b? 

N 

$ > ( & ? ) , (4:5) 
i = i 

where ki(bi) = Y^Li { l°g(/(yy|/3, bi)) + log(/(6j|D))|, and 6° maximizes the function 

Hh). 

Maximizing the approximate log-likelihood function (4.5) with respect to /3 and 

D, and maximizing &i(bj) with respect to 6j are equivalent to jointly solving the following 

score equations (see [20] [26]), 

E i 1 V W i - 1 J 5 i ( y i - ^ i ) = 0> ' 
(4.6) 

a(</»)^ T W i - 1 5 i (y i - ^) = D-%, i = 1, • • • , N, 
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where J5j is a x diagonal matrix with diagonal terms <9#(̂ y )/cty%- and Wt = B^Bi. 

It can be shown that the solution to (4.6) via Fisher scoring is equivalent to iteratively 

solving the following linear equations (see [20] [26]), 

ATW~lA ATW~XZ 

ZTW-XA ZTW-XZ + DA-X 

ATW-^y 

[ ZTW-'y ) 
(4.7) 

where i/j = A?p + zfbi + 5i(?/j - g 1(AfJ3 + zfbi)), J3 and b{ are the current es­

timates. Row vectors are yT = (yT, • • • ,yjf) and bT = (bf, • • • ,bff), and matrices 

are AT = (AT... ,AT

N), ZT = diag(zf, • • • ,zT

N), Dd = diag{L>, • • • , D} and W = 

diag{Wi, • • • , WN}- Solving the linear equations (4.7) is equivalent to solving the follow­

ing linear mixed effect (LME) model (see [3] [26]), 

y^Af/3 + zfbi + ei, i = l,---,N, (4.8) 

where ej's are independent with a normal distribution N(0,Wi), bj's are independent 

and have an identical normal distribution N(0, D), and and bi are independent. From 

(4.8) we can derive 

bAn ~ N (EiZiWr^y. - AtP), E j ) , (4.9) 

where E* = (ZiW^zf + J 9 - 1 ) - 1 , and 

yi~N(AT{3,zTDzi + Wi). (4.10) 

In summary, approximate estimates for GLMMs can be obtained by iteratively 

solving the liner mixed effect model (4.8), which can be easily handled by standard 

software packages such as Splus and SAS. 
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4.3 Approximate Inference with Missing Values 

In the previous section, we discuss an approximate inference method for the G L M M 

without missing values. However, in our G L M M (4.1) — (4.2), the response y{ is non-

ignorably missing and the covariate xt is ignorably missing. In this section we consider 

a similar method for GLMMs with missing values. Note that missing values in G L M M 

(4.1) — (4.2) correspond to missing responses in y{ and missing covariates in Xi in the 

L M E model (4.8) respectively. Here we write yt = (yobs^,ymiS}i), where yobSji contains 

the observed components of y{ and y m i s i contains the missing components of y i . Note 

that yobSti and ymis^ are appropriate functions of the missing and observed components 

of y{ respectively. So the missing response indicator for y{ is the same as the missing 

response indicator for yt. For L M E models with non-ignorable missing responses, Ibrahim 

et al. (2001) derived a much more efficient Monte Carlo E M algorithm by integrating out 

the random effects in the E-step. Here we extend their approaches to the G L M M with 

informative dropout and missing covariates by iteratively solving the L M E model (4.8) 

with non-ignorable missing responses and ignorable missing covariates. Since sampling 

random effects is avoided in the E-step, the rate of convergence of the E M algorithm may 

be greatly improved. The E-step and M-step are described in details as follows. 

E - s t e p : Let 7 ( t ) = (/3 ( t ) ,a ( t ) ,•j/> ( t ) ,£ ) (* )) be the current parameter estimates. The 

response in the L M E model (4.8) can be written as yt = Aj(3w + zfb^ + B<f\yi -

g-\AT^+zJbf)) where bf = ^ z ^ 1 (y-Af^), B® = ^ l ^ - i ^ c o ^ > } 

and W f } = B ^ B ^ „ m . 

' As in the previous section, the contribution of individual i in the (t + l)st iteration 
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is given by 

Qi{i\i[t)) 

J J J {\og(f{yi\!3,buxi))+\og(f{bi\D)) 

+ log (f(Xi\a)) + log (firiiyi,xuij>))} 

X J'(ilmis,ii xmis,it & i | j / c * . s , i ' xobs,i, r i , 7̂  ^)dbidymis idxr 

{ l o g ( / ( j / i | A f t i , ^ ) ) + log(/(bi|I>)) 

+ \ogtf{xi\a)) + log(firiljji, Xi, •0))} 

/(bi |j/ i ,a;i .7 W )^» 

filfmis,ii xmis,i\yobs,ii xobs,ii fit 7̂  ^)dymis,idxmis,i 

= h + h + h + h, (4.11) 

where /(yJ/3,6j, Xj) is the normal density with mean Af/3 + zfbi and covariance W/*'. 

Equation (4:9) implies b ^ , xu 7 ( t ) ~ N(bf\ Sf } ) , where S 4

W = ( Z j W ^ z f + Z ) « ~ 1 ) - 1 . 

After some algebra, we can integrate out the random effects 6, from (4.11) and 

obtain the following results 

/ i = - ^ l o g | ^ W | - ^ (yt - AJ(3 - zTbi)TW^\y, - Aff3 - zfbi) 

f(bi\iji,Xi,7^ ^)db^f (ymisi,xmiS^\yobsi,x0bs,t, ft,7^ ^)dymiSidxmiSti 

- l i o g i w ^ - ^ z i w r 1 ^ ) 

\ I J(Vi - AJ(3 - z?b®)TW®-\yi - AJ(3 - zjb®) 

f^Vmis,ii xmis,i\yobs,ii xobs,ii r i i 7̂  ^)dymiStidxmisj. 
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I2 = -l-\og\D\-l-J J {JibfDbiMbt^Xin^dbi} 

f{ymis,i>  xmis,i\yobs,ii  xobs,ii ^ii ^)dy'mis,id' Xmis,i 

= -1-log\D\--\tv(D-^f)) 

j^i ^^>i
 ^ ^ m i s > i '  X m i sAyobs,ii  xobs,ii  rii lf^)dymiStidxr 

Since f(Xi\a) and f(ri\yi,^.i,'d}) do not depend on bj, we have 

^ 3 = J J f{ xi\ a)f{ymis4> xrnisAyobs,ii xobs,i, rii'y^ ^)dymisidxmiSti, 

and 

— J J f{ Ti\yi> xi>^){ymis,i> xrnisAyobs,ii xobs,ii^ 

As we can see, integrals 7j, I2, h and I4 do not involve the random effects Oj. Thus 

we only need to generate random samples from f { y m i 3 i i , xmiS}i\y0bs,i,  xobs,i, ru 7(t)). This 

leads to a much more efficient E M than that for the exact method. 

Suppose that { ( y { ^ i s 4 , x^J, • • • , a&) 4 ) } is a sample of size m* generated 

from f(ymiSii,xmiSti\y0bs,ii x0bsti, fi, 7 )̂. Let x\ ^ = (x 0(,S )i, xUisi), y\ ^ = (y0bs,iiymls,i)-

Then 6 f f c ) = s f ^ W ^ f o W - At

T^), k = 1,2, • • • , m,. Thus C?j(7l7(i)) can be 

approximated as 

Qi{i\i[t)) - ^ W ^ - ^ i z i W ^ z ^ ) 

+ [ - i log |D| - W E ? ' ) - ̂  B&r̂ r')] 
1 fe=l 

fc=i fc=i 
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Therefore, the E-step for all individuals at the (t + l)st iteration can be written as 

Q ( 7 | 7 « ) = f ^ ( 7 | 7 « ) 
1=1 

- E [ - ^ ° s i ^ ( t ) i - ^ ^ ( i r l ^ ) 
i=l 

m. 

k=l 
N _ ~ rru 

i=l 1 k=l 

+E £ E /N'V)] + E [ i - E / ( ' . i * f » ! " . * ) ] 
=1 ' fc=l i=l ' fc=l 

= Q(1)(/3|7W) + Q(2)(^l7(t)) + Q ( 3 ) (« |7 W ) + QW(iph{t)). (4.13) 

M-step: Since the parameters in 7 are all distinct, we can maximize Q(7|7^) by max­

imizing and separately, leading to the updated estimate 7(i+1). These 

maximizations can be accomplished by standard complete data optimization methods. 

The covariance matrix for the parameter estimates, 7, can again be obtained using 

Louis's method (1982), as in Chapter 3. 

4.4 Strategies for Sampling the Missing Values 

To implement the E-step of the E M algorithm, we need to generate random samples for 

the missing response y m i s i and missing covariates xmiSii from the joint density function 

f(ymis,i>xmisAyob8,i>xobs,i,ri,'y(t)). As in Chapter 3, we can use Gibber sampler to draw 

the desired samples. The procedure is described as follows. Suppose that the current 

samples for missing values are y^ia^ and x^isi. 

Step 1. Draw a sample for the missing responses {y^s}} from 

fill mis,ill/obs,ii xobs,ii x

m i s , i i r i i 7̂  0> 
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Step 2. Draw a sample fror missing covarites {xmisi} from 

f(xmis,i\yobs,iiymis,i > Xobs,i> rii T*' 

After a burn-in period, the sampled vaules {ymis}i xm7s}) can.be treated as the true 

sample from the density function f{ymi3i, xmis,i\Vobs,ii xobs,iiri>7^ 
). Note that 

'f(Vmi8,AVoba,i>xi>ru'lf{t)) <x f(Vi\xi,'r{t))f(ri\yi,Xi,'yit)), 

where /(j/Ja^, 7^) is a normal density function with mean Af(3^ and covariance 

zfD^Zi. If the density function /(T*J|2/J, X j , 7^) is log-concave, we can use the adaptive 

rejection algorithm to draw sample in Step 1; otherwise, we may consider the general 

rejection sampling method. Similarly, since 

f(xmia,i I Vi, xobs,i, 7 W ) oc / ( & | x{, 7(t)) f{xt |7 w ) f(rt I Vi, Xi, 7(t)), 

as in Chapter 3, samples from f(xmiSti\yi, x0bSti, 7^) in Step 2, can be obtained using 

the adaptive rejection algorithm or the rejection sampling method, depending on whether 

both /(a3j |7^) and f(ri\yu ,̂7'*') are log-concave. 

4.5 P X - E M 

The E M algorithm described in Section 4.3 may still be quite slow. To improve the speed 

of the E M algorithm, in this section we again consider the P X - E M for the approximate 

method, which is obtained by applying the standard E M algorithm to an expanded model. 

Specifically, we introduce a q x q working parameter matrix V to the L M E model (4.8) 

and obtained the following expanded L M E model 

yi = Ajf3* + zfVbl + eu i = l,-..,N, (4.14) 
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where the €j's are independent error terms with an identical distribution N(0, Wi), bi l~d 

N(0,D*), and €j and bt are independent. Let 0 = ((3*, a*, tp*, D*, V), where is a 

vector of parameters for the dropout model and a* is a vector of parameters for the 

covariate model. Note that model (4.14) is reduced to model (4.8) when V = Iqxq. 

E-step: Let 0(*> = (f3{t),a^,ip{t),D{t),Iqxq) be the current parameter estimates. 

Then in the E-step the conditional expectation of the complete-data log-likelihood given 

the observed data for the expanded model (4.14) can be written as 

JV 

<?*(0|0«)=E ^ ( e i e W ) 

£ [ - \ log |wf I - l-HV?ZiWrlz*V^) 
i=i 

N 

i=l 
1 rat 

£ ( v i f c ) - %F ~ ̂ vb^fwr1^ - AJ(3* - zfvbT) 
1 k=l 

+ E [ - j log m - i ^ - E j . ) , _ _ L g ( «J-V- i f " ' ) 
i=l 1 fc=l J 

(4.15) 

where W® = diag { V J ^ ) ^ ^ ) / ^ ) 2 / ^ ^ ^ ^ , , ^ ^ ) } , i f = ( z ^ ^ z f + 

/jw-1)-!, = ( a ^ , ^ , ) , y f } - (ySL,,Vo*,i), ^ = s W ^ W i W - ' ^ W - A ^ W ) . 

The sample of size rrii {(y£] S i i , a£L,i)> • • • , (ySi, ̂ S )} i s d r a w n f r o m / ( i / m » , < > ami a,i| 

yobSti, xobSti, 7**, 0 ^ ) by Gibbs sampler along with the adaptive rejection algorithm. Again, 

everything in this E-step is the same as the E-step of the standard E M in Section 4.3, 

except the extra working parameters A in (4.15). 

M-step: In the M-step, we maximize <2* ( 1 ), Q*{2\. <2* ( 3 ), and <2* ( 4 ) separately to 
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update the parameter estimates to / 3 * ( t + 1 ) , a<t+1\ t/>*(t+1), D*(t+1) and V^t+1). Then the 

estimates of original parameters are given by 

p(t+i) = /g*(<+1);Q;(i+1) = a*(t+1),ip-{t+1)
 = t/>*(t+1), Jj( t + 1) = y(*+1)rj)*(t+1)v(*+1)T. 
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Chapter 5 

Covariate Models and Dropout 

Models 

5.1 Introduction 

In the previous chapters, we have discussed how to estimate the parameters in GLMMs 

with informative dropout and missing covariates. As we note earlier, to provide a valid 

inference, we need to specify a dropout model for the missing response, and a covariate 

model for the time-independent covariates, and then incorporate them into our analyses. 

In this chapter, we describe how to specify these models. Sections 5.2 and 5.3 introduce 

dropout models and covariate models respectively. In Section 5.4, we discuss sensitivity 

analyses for the dropout model and covariate model. 

5.2 Dropout Models 

A dropout model is the distribution for the missing response indicators r^. The param­

eters in the dropout model are treated as nuisance parameters and are usually not of 
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inference interest. Thus, we should try to reduce the number of nuisance parameters 

to make the estimation of /3 more efficient. Moreover, too many nuisance parameters 

may even make the G L M M unidentifiable. Therefore, one should be very cautious about 

adding extra nuisance parameters. 

Since the missing response indicators r^, are binary, a natural model for the r^'s 

is a logistic regression model as follows. We may assume 

Tli 

f i r ^ x ^ ) = H-'J(\ - - , • , • ) ' ( 5 . 1 ) 

i.e. an independent assumption for the r^'s, and 

M T 13 ) = H^;yi,Xi,tij), ( 5 . 2 ) 

where TI^ = P r ( r y = 1) and h(.) is an often linear function of y i 5 Xi and ty . To 

determine a suitable function /i(.), one can consider standard model selection techniques, 

such as the likelihood ratio test, A I C / B I C , or consider simple and reasonable linear 

functions. For example, if we believe that the current missing response indicator only 

depends on the current or previous response values, then it may be reasonable to assume 

h(ip; yit Xi, tij) = ipo + ipiVij + V ^ y i j - i - Note that the independence model ( 5 . 1 ) is simple 

and may not contain too many nuisance parameters, but it fails to incorporate possible 

correlation among the r^'s. 

To incorporate possible correlation among the r^'s, we may adapt the model 

considered in Ibrahim et al. ( 2 0 0 1 ) , 

f(ri} ip) =f(ril\yi, xutu V j / ^ l n i , yt, Xi,ti7 ip2) 

••• x / ( r y l r a , - - - , r i ) (j_i), y i 5 xu tu ip3) ( 5 - 3 ) 

• • • x /(r j j j jr j i , • • • , r j 5 ( n i _ i ) ,y i ; Xi,ti, ipni), 

where the ipfs are the parameters for the jth one-dimensional conditional distribution, 

ip = (•j/'i, 1P2, • • • J V ' M ) a n d M = maxlnj}. We assume that the i/>'s are distinct. 
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The one-dimensional conditional distributions in the product of (5.3) may be chosen 

to be logistic regression models. Again, one can choose parsimonious one-dimensional 

distributions in (5.3) by standard model selection techniques. Lipsitz and Ibrahim (1996) 

noted that model (5.3) approximates a joint log-linear model, a natural model for binary 

variables. 

5.3 Covariate Models 

When some covariates are missing, we need a distributional assumption for the covariates. 

The parameters in the covariate model are also viewed as nuisance parameters. Ibrahim 

(1990) proposed a saturated multinomial model for categorical covariates with missing 

values. A drawback of his method is that the saturated model greatly increases the 

number of nuisance parameters, which increases computation burden and may make the 

model unidentifiable. When the missing covariates are all continuous, we may assume a 

multivariate normal distribution for the covariates (see [15]). To allow both continuous 

and categorical covariates, we may write the covariate distribution as a product of one-

dimensional conditional distributions, as in Ibrahim, et al. (1999), 

f(Xi, CX.) =f(Xic\Xn, • • • , £ j ) C _ i , CX-c) 

. X f(XitC-i\Xn, • • • ,XitC-2,Oic-1) (5.4) 

• • • x /(arii.ai), 

where a = ( a i , a 2 , • • • , a c ) and a i , • • • , ac are distinct. The index c is the number of 

covariates that include missing values. Note that we do not need to make distributional 

assumptions for the completely observed covariates, which are conditioned on and are 

suppressed in the expressions. Note also that this modeling scheme allows the missing 

covariates to be continuous, categorical and mixed. For example, suppose that x\ is 
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continuous and x2 is binary. By the above modeling strategy, we may specify a normal 

distribution for x\ and a logistic regression model for x2 conditional on x\. 

5.4 Sensitivity Analyses 

Since both the dropout model and the covariate model are not verifiable based on the 

observed data, it is important to conduct sensitivity analyses. That is, we should try 

other plausible dropout models and covariate models, and then assess the sensitivity of 

results to those different models. If there is not much difference between the results based 

on different models, we draw a relatively reliable conclusion. Otherwise, the results may 

depend on the assumed models and the conclusions may not be reliable. 
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Chapter 6 

Real Data Examples 

6.1 Introduction 

In previous chapters, we have described an exact method and an approximate method 

for GLMMs with informative dropouts and missing covariates. In this chapter, we will 

discuss application of these methods to two real datasets. In Section 6.2, we consider a 

dataset from the AIDS Clinical Trial Group (ACTG) Protocol 315 and investigate the 

viral load trajectory after an antiviral treatment. In Section 6.3, we consider a dataset 

from a parent bereavement project to study the pattern of change of parents' mental 

distress over time after their children's death. In Section 6.4, we discuss computation 

issues in the analyses of our examples. 

50 



6.2 Example 1 

6.2.1 Data Description 

Our research is motivated by a longitudinal study from the AIDS Clinical Trial Group 

(ACTG) Protocol 315 (Wu and Ding, 1999). In this study, 46 HIV infected patients 

were treated with a potent antiviral drug, a combination of ritonavir, 3TC, and AZT. 

Plasma HIV-1 RNA (viral load) was repeatedly quantified on days 2, 7, 10, 14, 21, 28, 

and weeks 8, 12, and 24 after initiation of treatment. After the antiviral treatment, 

the patients' viral loads will decay, and the decay rate may reflect the efficacy of the 

treatment. Throughout the time course, due to individual characteristics, the viral load 

may continue to decay, fluctuate, or start to rebound (rise). The Nucleic Acid Sequence-

Based Amplification assay that is used to measure the viral load has a detection limit of 

100 RNA copies per ml plasma. If the viral load drops below the detection limit after the 

treatment, the viral load can not be measured, which may indicate that the treatment is 

successful. Note that patients with a viral load below the detection limit at early stage 

may have viral rebound and may have a viral load dropping again after rebound. Figure 

6.1 shows the viral load trajectories for six randomly selected patients. To investigate the 

treatment effect, one approach is to define the response as whether the viral load is below 

the detection limit or not, which is thus a binary variable. In this study, some patients 

drop out before the end of the study, and the dropout may be informative. Thus, the 

response contains non-ignorable missing values. We summarize our data in Table 6.1. 

As we see from Table 6.1, 8.9% of our responses are missing due to patients' dropout. 

Preliminary studies show that some baseline covariates such as CD4 cell counts, 

tumor necrosis factor (measured by TNF levels) and total complement levels (measured 

by CH50), may partially explain variation in the viral load trajectory. However, some of 
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Table 6.1: Summary statistics 

Variable Sample 
mean 

Sample 
standard deviation 

Percentage of 
missing values 

Response 0.1 0.3 8.9% 
CD4 175.4 87.5 0% 
CH50 242.3 49.6 15.2% 
T N F 60.0 29.0 8.7% 

# of patients: TV = 46. 
# of observations per patient: nj = 7 or 8. 

these covariates are also missing, since in the multi-center study some baseline covariates 

may not be measured at some centers. As indicated in Table 6.1, the baseline CH50 con­

tains approximately 15.2% missing values, the TNF level contains roughly 8.7% missing 

values and the CD4 cell count is completely observed. 

Our objectives are to model the viral load trajectory and to identify covariates 

that may partially predict changes of viral loads, in the presence of informative dropouts 

and missing covariates. 

6.2.2 Models 

Let tjij be the viral load status for patient i at the j th visit, i = 1,2,-•• ,N, j = 

1, 2, • • • ,rij, where N = 46 and nj = 7 or 8. If the viral load for patient i at the jtb. 

visit is below the detection limit, = 1; otherwise, y^ = 0. Naturally, we consider a 

logistic regression model for the binary response. To take into account the inter-patient 

variation and the intra-patient correlation, we add a random effect term bi to the logistic 

regression model and obtain the following G L M M . 

Pv(yij = l\f3,bi) \ 

l-Pv(Vlj = l\(3,bi)) ( 6 1 ) 

52 

logit{Pr( ?/j j = l|/3,6j)} = log 



where j3 = (fa,fa, fa,fa, fa), xu is the baseline CD4 cell count for patient i, xi2 is the 

baseline CH50 for patient i, x^ is the baseline TNF for patient i, and iy is the jth 

measurement time for patient i. The regression coefficients, fa, fa, fa, and fa, represent 

the fixed effects associated with the baseline CD4, CH50, TNF, and time respectively, and 

bi represents the random effect associated with each patient. We assume that b\, • • • ,b^ 

are independent and follow an identical normal distribution N(0, a2) with a2 unknown. 

In this study, the baseline CH50 and T N F contain missing values and the CD4 

cell count is completely observed. For this example, it appears reasonable to assume 

that the missingness of baseline covariates is MAR, i.e., the missingness may depend on 

the observed values but not on the missing values. To make a valid likelihood inference, 

we need to specify a model for the covariates which contain missing values. Since CH50 

and T N F are continuous and each approximately has a normal marginal distribution, the 

joint distribution of CH50 and TNF (i.e., Xi2 and x^) may be written as a product of 

two one-dimensional normal distributions. 

f(xi2,xa\xii,cx) = f{xa\xii,Xi2)f(xi2\xn), (6.2) 

where a = ( « ! , - • • , a 7 ) T , f(xi2\xii) is the density function of N(ot\ + a2Xn,a3), and 

f{xa\xii,Xi2) is the density function of iV(of4 + ct^xn + a§Xi2, aj). 

As noted earlier, 8.9% of the responses yy are missing due to patients' dropout. 

The dropout may be due to drug intolerance or drug resistance, so we assume that the 

response is non-ignorably missing or the dropout is informative, i.e., the missingness of 

responses may depend on the missing values. When the missing data (response) are non-

ignorable, we must model the missing data mechanism in order to obtain valid statistical 

results. To incorporate the missing data mechanism, we need to specify a distribution 

for the missing response indicator. The missing response indicator is defined as = 1 

if yij is missing; = 0 if is observed. Here, we use a logistic regression model for the 
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missing data indicator, which includes the current response j/y, CD4 cell count Xn and 

time tij as covariates and is chosen based on the likelihood ratio test. 

logit {Pr(r y = 1\4>)} = log | T T ^ ^ ^ y } = ^ + <t>m + + M j , (6.3) 

where <f> = (<f>o, 4>i, 4>2, 4>3)T- Thus, in model (6.3), we link the missingness of the response 

to the values being missing and therefore allow the response to be non-ignorably missing. 

For simplicity, we focus on the following independent model 

TV ni 

f(r\4>) = n i l P r ( ^ = W y { l - P'(ry = l ^ ) } 1 ^ -
i=l j=l 

More complicated models without assuming r^-'s being independent are possible as well, 

which contain more nuisance parameters and may be unidentifiable. 

6.2.3 Analysis and Results 

In this section, we analyze the A C T G protocol 315 dataset using our proposed methods. 

Note that before our analysis, covariates CD4, CH50 and T N F were standardized to 

avoid extremely small estimates. We consider the following methods to estimate the 

parameters in model (6.1) — (6.3) with informative dropouts and missing covariates: 

(i) the exact method using the Monte Carlo E M algorithm, 

(ii) the approximate method using the Monte Carlo E M algorithm. 

Table 6.2 shows maximum likelihood estimates of (3 = (/?o,Pi,P2,@3, At), along 

with their standard errors and p-values, based on the above two methods. Compared with 

the approximate method, the exact method sometimes gave somewhat larger estimates 

and smaller standard errors. For example, CD4 cell count is marginally significant (p-

value 0.107) based on the approximate method, but highly significant (p-value 0.025) 
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Table 6.2: Estimates for the AIDS data 

Methods Parameters 
Po Pi Pi Pz PA 

Exact Estimate -4.811 0.898 0.634 -0.745 5.869 
method SE 0.998 0.400 0.456 0.538 1.361 

p- value < 0.001 0.025 0.164 0.166 < 0.001 
Approximate Estimate -3.879 0.861 0.395 -0.291 6.240 

method SE 0.789 0.534 0.598 0.600 0.880 
p- value < 0.001 0.107 0.508 0.627 < 0.001 

* SE refers to the standard error. 

based on the exact method. Since the approximate method integrates out the random 

effects instead of sampling the random effects, it should be faster than the exact method. 

However, in this example, the E M convergence for the exact method is obtained in 

21 iterations, while the E M convergence for the approximate method is reached in 55 

iterations. This is probably because only one random effect is included in model (6.1). 

From Table 6.2, both methods indicate that the time covariate is highly signifi­

cant, suggesting a strong relationship between the viral load trajectory and time. The 

estimated coefficient for the time covariate, fa, is 5.869 based on the exact method. This 

means that the estimated odds of patients' viral loads dropping below the detection limit 

is exp(5.869) = 354 times higher when time increases by one unit (6 months). The exact 

method suggests that CD4 cell count may be associated with patients' viral loads. The 

estimated coefficient for CD4, fa, is 0.898. This means that the estimated odds of pa­

tients' viral loads dropping below the detection limit, is exp(0.898) = 2.45 times higher 

when CD4 increases by one unit (262 cell counts). Based on the p-values, the baseline 

CH50 and T N F do not appear to have significant effects on patients' viral loads, using 

either of the two methods of estimation. 
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As discussed in previous chapters, the P X - E M algorithm should have a higher 

convergence rate than E M . This is confirmed in this example. The number of iterations 

to convergence for the exact method is 21 by the E M algorithm, while the number of 

iterations to convergence for the exact method is 10 by the P X - E M algorithm. 

6.2.4 Sensitivity Analysis 

To check the sensitivity of our results to the choice of the covariate model, we re-analyze 

the dataset using the following alternative covariate models, which are obtained based 

on a standard model selection method - the likelihood ratio test. 

(i) Alternative Covariate Model 1 (CM1): Model (6.2) with a2 = a5 = 0. The two 

conditional distribution in the covariate model become Xi2\xn ~ N(cti,ctz) and 

~ iV(a 4 + aexi2, a 4), i.e., xi2 and x i 3 are independent of xa. 

(ii) Alternative Covariate Model 2 (CM2): Model (6.2) with a2 = a5 = a 6 = 0. The 

two conditional distributions in the covariate model become xi2\xn ~ N(oti,ct3) 

and Xi3\xn,Xi2 ~ N(a±,OLT), i.e., xu, Xi2 and x^ are independent. 

The estimates based on the original covariate model (6.2), and the alternative covariate 

models CM1 and CM2 are shown in Table 6.3. As we can see from Table 6.3, the three 

covariate models gave similar results. This suggests that parameter estimates and their 

standard errors may not depend on the covariate models. 

Similarly, we need to assess sensitivity of our results to the dropout models. We 

performed sensitivity analyses based on the following choices of the dropout models. 

(i) Alternative Dropout Model 1 (DM1): 

logit {Pr(ry = 1|<£)} = (j)Q + fayij-i + foVij + foxn + fatij] 
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Table 6.3: Sensitivity analysis for covariate models 

Covariate Parameters 
Models A) Ih ft 
Original Estimate -4.811 0.898 0.634 -0.745 5.869 
Model SE 0.998 0.400 0.456 0.538 1.361 
(6.2) p- value < 0.001 0.025 0.164 0.166 < 0.001 

Estimate -4.731 0.906 0.594 -0.767 5.754 
CM1 SE 1.007 0.387 0.433 0.520 1.375 

p- value < 0.001 0.019 0.170 0.140 < 0.001 
Estimate -4.893 0.921 0.676 -0.763 5.920 

CM2 SE 0.999 0.424 0.455 0.543 1.356 
p- value < 0.001 0.030 0.137 0.160 < 0.001 

* SE refers to the standard error. 

(ii) Alternative Dropout Model 2 (DM2): 

logit {Pr(ry = l \ < f > ) } = (po + (piVij-i + hVa', 

(iii) Alternative Dropout Model 3 (DM3): 

logit {Pr(r y = l\<f>)} = (p0 + <h^n + hUj-

Note that DM3 corresponds to an ignorable missing data mechanism (i.e., MAR) . Table 

6.4 gives the estimates, standard errors, and p-values based on the original dropout 

model and the alternative dropout models DMI , DM2 and DM3 respectively. As we can 

see from Table 6.4, all these dropout models, except dropout model DM2, gave similar 

results. Dropout model DM2, which excludes CD4 and time, produced slightly smaller 

absolute values of estimates and standard errors. But this does not affect our conclusion. 

Thus, our results are not very sensitive to the choice of the dropout models. 
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Table 6.4: Sensitivity analysis for dropout models 

Dropout Parameters 
Models ft ft ft ft ft 
Original Estimate -4.811 0.898 0.634 -0.745 5.869 
Model SE 0.998 0.400 0.456 0.538 1.361 

. (6.3) p- value < 0.001 0.025 0.164 0.166 < 0.001 
Estimate -4.911 1.047 0.611 -0.735 6.656 

D M I SE 1.027 0.417 0.500 0.613 1.341 
p- value < 0.001 0.012 0.221 0.230 < 0.001 

Estimate -3.761 0.772 0.428 -0.323 6.011 
DM2 SE 0.571 0.299 0.311 0.324 0.898 

p- value < 0.001 0.010 0.168 0.318 < 0.001 
Estimate -4.867 0.949 0.630 -0.753 6.153 

DM3 SE 1.001 0.410 0.466 0.549 1.345 
p- value < 0.0001 0.021 0.177 0.171 < 0.001 

* SE refers to the standard error. 

6.2.5 Conclusion 

Based on our analyses, we conclude that a patient's viral load tends to more likely drop 

below the detection limit if he/she stays longer in the study, and a patient with a higher 

baseline CD4 cell count is more likely to have his/her viral load below the detection limit 

over the time course. In this example, the exact method converged much faster than the 

approximate method, and gave smaller standard errors. Also, different covariate models 

and different dropout models lead to essentially the same results, so our conclusions may 

be robust. 
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6.3 Example 2 

6.3.1 Data Description 

Our second example involves a longitudinal study from a parent bereavement project, 

which investigates long-term mental outcomes of parents whose children died by accident, 

suicide, or homicide. After their children's death, the parents usually experience a high 

level of mental distress. In this study, the mental distress of 239 parents were calculated 

based on their answers in the questionnaire, at baseline (i.e. 4 to 6 weeks after their 

children's death), and then at 4, 12, 24 and 60 months post-death. The Global Severity 

Index (GSI), which is the most sensitive indicator of mental distress, is used to measure 

the parents' distress levels. A high GSI score indicates a high level of mental distress. If 

the parents' adjustment to their children's death goes well, their GSI scores will decrease 

over time, at least lower than their baseline GSI scores. Figure 6.2 shows the profiles of 

GSI scores for six randomly selected parents from 239 parents enrolled in this study. To 

investigate how the parents' mental distress changes over time after their children's death, 

we treat whether or not a parent's GSI score after baseline is lower than his/her baseline 

value as response. Several other relevant factors were also obtained at baseline, including 

parents' gender, marital status, age, education, annual income, cause of death, age, and 

gender of the deceased child. These baseline factors may be important predictors of 

parents' distress and thus are viewed as covariates. Summary statistics for the response, 

education and income are given in Table 6.5. 

Since the response is binary, we consider a G L M M model for analysis. Note that 

some baseline covariates such as income contain missing values, and some responses are 

also missing since some parents may be not in a good mood at the scheduled time. As 

indicated in Table 6.5, 4.2% of incomes are missing and 19.7% of responses are missing. 
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Table 6.5: Summary statistics 

Variable Sample 
mean 

Sample 
standard deviation 

Percentage of 
missing values 

Response 0.7 0.5 19.7% 
Education 13.7 -2.3 0% 

Income 4.67 1.9 4.2% 
# of parents: N = 239. 

# of observations per parent: = 4. 

Our objectives are to investigate the change of parent's distress levels over time and to 

determine which covariates affect the parent's mental distress. We will use the methods 

developed here for G L M M models with informative dropouts and missing covariates. 

6 . 3 . 2 M o d e l s 

To get a parsimonious model, we used standard model selection techniques such as the 

likelihood ratio test to determine which covariates should be included in our model. 

Since some covariates and responses contain missing values, model selection were carried 

out based on the complete-case method. Based on these analyses, we include income, 

education, and time as covariates in the model. Note that education does not have 

missing values, while income contains 4.2% missing values. 

We denote y^ as the response for parent % at the j th time after baseline, i = 

1, 2, • • • , N, j•= 1, 2, • • • , n{. Here N = 239 and nt = 4. If GSI for parent i at the j'th 

time is lower than his/her baseline GSI, yy = 1; otherwise, y^ = 0. We consider the 

following G L M M to investigate the effects of covariates on the mental distress. 

Pr(yi3- = 1|/3A) \ 
1 -P r (yy = 11/3,6,)/ ( g 4 ) 

= fa + fiixn + (32Xi2 + fotij + h, 

logit {Pr(y y = l|/3,6 i)} = log 
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where (3 = (Po, Pi, P2, Ps), %n is the education level for parent i, xi2 is the annual family 

income for parent i, and ti3- is the j th scheduled time for parent i. The regression coeffi­

cients, Pi, p\, and Pz, represent the fixed effects associated with the parents' education 

level, income, and time respectively, and 6$ represents the random effect associated with 

each parent. Here, we assume that , frjv are independent and have an identical 

normal distribution N(0,a2) with a2 unknown. 

. Note that income xi2 contains approximately 4.2% missing values. Here, we assume 

that the missing income is M A R . To incorporate missing covariates, we need to specify 

a model for income. We assume the following covariate distribution 

xi2\xn ~ N(cti + a2xn,a3). (6.5) 

Note also that 19.7% of responses yi3- are missing. The response (i.e., GSI status) is 

missing probably due to parents' high stress, so we assume that our response is non-

ignorably missing, i.e., the missingness of responses may depend on the missing values. 

To incorporate the missing data mechanism in our analysis, we specify a distribution 

for the missing response indicator. Recall that the missing response indicator is defined 

as = 1 if yij is missing; = 0 if j/y is observed. Here, we use a logistic model 

for the missing response mechanism, which includes the current response value yy, the 

immediate previous response value yij-i, education xn , and time Uj as covariates. 

f Pr(r - = 1|0) 1 

logit {Pr(r y = 1|0)} = l o g ^ _ p r ^ = ^ j = 4>o + (piVij-i + faVij + h^n + <M«> 

(6.6) 

where <p = (4>o, (f>i, §2, <i>z)T• We assume that the r^-'s are independent for all i and j. 

Note that the covariates in model (6.6) are selected based on the likelihood ratio test. 
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Table 6.6: Estimates for the Parent Bereavement data 

Methods Parameters 
ft ft ft ft 

Exact Estimate -1.882 0.182 0.083 0.345 
method SE 0.966 0.070 0.165 . 0.258 

p- value 0.051 • 0.010 0.612 0.181 
Approximate Estimate -1.579 0.139 0.058 -0.239 

method SE 0.898 0.065 0.152 0.193 
p- value 0.079 0.033 0.704 0.216 

:" SE refers to the standard error. 

6:3.3 Analysis and Results 

We consider the following methods to estimate the parameters in models (6.4)-(6.6). 

(i) the exact method using the Monte Carlo E M algorithm, 

(ii) the approximate method using the Monte Carlo E M algorithm. 

Estimates of (3, along with their standard errors and p-values, are shown in Table 6.6. 

Compared with the exact method, the approximate method resulted in smaller absolute 

values of estimates and smaller standard errors. Especially for the estimate of fa, the 

exact and approximate methods gave opposite results. As discussed in previous chapters, 

the approximate method should have a faster convergence rate, since it avoids sampling 

the random effect in each E M iteration. However, for this example, the number of 

iterations to convergence for the approximate method is 24, larger than the number of 

iterations to convergence for the exact method, which is 13. The P X - E M algorithm 

improved the convergence speed a bit in this example. The number of iterations to 

convergence for the exact method based on P X - E M is 9, smaller than 13. 

Table 6.6 shows that education is significant based on the exact method and the 

approximate method. The estimate for education fa based on the exact method is 0.182, 
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Table 6.7: Sensitivity analysis for covariate models 

Covariate Parameters 
Models Po Pi P2 Ps 
Original Estimate -1.882 0.182 0.083 0.345 
model SE 0.966 0.070 0.165 0.258 
(6.5) p- value 0.051 0.010 0.612 0.181 

Estimate -1.969 0.189 0.107 0.312 
CM1 SE 1.043 0.076 0.175 0.255 

p- value 0.059 0.013 0.542 0.222 
*SE refers to the standard error. 

which suggests that the estimated odds of having a lower distress than the baseline value 

is exp(0.182) = 1.2 times higher, when parents increase their education level by one unit. 

Based on both the exact method and the approximate method, income and time do not 

have significant effects on change of parents' mental distress. 

6.3.4 Sensitivity Analysis 

To check the sensitivity of the above results to the covariate models, we consider the 

following alternative covariate model 

(i) Alternative Covariate Model 1 (CM1): Model (6.5) with a2 = 0. That is, x i 2 \ x n ~ 

N(ai,az), i.e., xi2 is independent of Xu. 

Table 6.7 shows that results based on the original covariate model and the alternative 

covariate model are quite similar. This suggests that the results may be robust to the 

covariate models. 

We also check the sensitivity of our results to the dropout models. We consider 

the following alternative dropout models. 
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Table 6.8: Sensitivity analysis for dropout models 

Dropout • Parameters 
Model ft ft ft ft 

Original Estimate -1.882 0.182 0.083 0.345 
model SE 0.966 0.070 0.165 0.258 
(6.6) p- value 0.051 0.010 0.612 0.181 

Estimate -1.592 0.161 0.063 0.545 
D M I SE 0.808 0.059 0.136 0.273 

p- value 0.049 0.006 0.644 0.046 
Estimate -1.958 0.193 0.087 0.239 

DM2 SE 1.019 0.074 0.169 0.254 
p- value 0.055 0.010 0.604 0.347 

Estimate -1.460 0.167 0.094 0.939 
DM3 SE 1.006 0.073 0.172 0.282 

p- value 0.146 0.022 0.585 < 0.001 
* SE refers to the standard error. 

(i) Alternative Dropout Model 1 (DMI): 

logit {Pr(ry = l\<p)} = 0o + <P\Va + foxn + hUj] 

(ii) Alternative Dropout Model 2 (DM2): 

logit {Pr(ry = 1|0)} = 0O + (piVij-i + foVij] 

(iii) Alternative Dropout Model 3 (DM3): 

logit {Pr(ry = l\cp)} = 0o + faxn + faUj. 

Note that DM3 suggests that the missing responses may be M A R . The comparison of 

estimates based on the original dropout model and the above alternative dropout models 

is given in Table 6.8. As we can see from Table 6.8, whether yi3- and yij-i are included 

in the dropout model affects our inference on the coefficient of the time covariate (i.e., 

fa). For the dropout model DM3, which excludes yi3- and y%j-\ as covariates, we obtain a 



highly significant p-value (< 0.001) for fa. For the dropout model D M I , which excludes 

Vij-i, we get a marginally significant fa. Other dropout models lead to insignificant 

fa. That is, the conclusion about fa is sensitive to the choices of the dropout models. 

However, estimates of other parameters and their standard errors are quite robust to the 

different dropout models. 

6.3.5 Conclusion 

Our analyses suggest that parents with a higher education level are more likely to have a 

lower level of mental distress, i.e., they may have a good adjustment to their children's 

death. Possibly due to the low dimension of random effects and the small number of 

intra-parent measurements, the approximate method in this example did not improve the 

convergence rate. Unlike in Example 1, the approximate method in this example gave 

smaller standard errors than the exact method. For this example, sensitivity analyses 

suggest that our conclusions about the time covariate may not be reliable, i.e., they may 

depend on the choices of dropout models, but our conclusions about other covariates are 

reliable. 

6.4 Computation Issues 

Starting values. For the E M algorithms in our examples, the starting values for j3 

were obtained based on the logistic regressions using the completely observed cases, the 

starting values for a were obtained based on linear regression models using the completely 

observed cases, and the starting values for <p were obtained based on logistic regressions 

using the last-value-carried-forward method. 

Convergence of the Gibbs sampler. We checked the convergence of the Gibbs 
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sampler used in each Monte-Carlo E M by examining the time series and autocorrelation 

function plots. For example, Figure 6.3 shows the time series and autocorrelation function 

plots for generating missing CH50 in the first example. From Figure 6.3, we notice 

that the Gibbs sampler converged quickly and the autocorrelations between successive 

generated samples are negligible. We also drew the time series plot and autocorrelation 

function for the random effect 646 associated with patient 46 in the first example, shown 

in Figure 6.4. It shows that the Markov chain converged quickly, but the autocorrelations 

are negligible after lag 6. Time series and autocorrelation function plots for other random 

effects and other missing covariates show similar behaviors. Therefore, for each E M 

iteration, we discarded the first 200 samples as the burn-in, and then we took one sample 

from every 10 simulated samples until 500 samples were obtained. 

S t o p p i n g r u l e . The stopping rule for the E M and P X - E M algorithms in our examples 

is that the relative change in the parameter values from successive iterations is smaller 

than a given tolerance level (e.g. 0.01). However, due to Monte Carlo errors induced 

by the Gibbs sampler, it is difficult to converge for a extremely small tolerance level, 

otherwise it may converge very slowly. 
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Figure 6.1: Viral loads (log 1 0 scale) for six randomly selected patients. The open dots 
are the observed values and the dashed line indicates the detection limit of viral loads. 
The viral loads below the detection limit are substituted with log 1 0 (50). 
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Figure 6.2: GSI scores for six randomly selected parents. The open dots are the observed 
values and the GSI scores at time 0 are the baseline values. 
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Figure 6.3: (a) Time series and (b) autocorrelation function plots for CH50. 
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Figure 6.4: (a) Time series and (b) autocorrelation function plots for 6 4 6 associated with 
patient 46. 
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Chapter 7 

Simulation Study 

7.1 Introduction 

To evaluate the performance of the two proposed methods: the exact method (EX) and 

the approximate method (AP), we conduct a simulation study in this chapter. In our 

simulations, we compare E X and A P in terms of biases and mean-squared errors of their 

estimates. Section 7.2 gives a description of data generation models in our simulations. 

In Section 7.3, we compare two methods of estimation in four different situations, and 

examine the effects of missing rates, variance of random effects, sample size, and number 

of intra-individual measurements. We conclude this chapter in Section 7.4. 

71 



7.2 Description of the Simulation Study 

7.2.1 Models 

We generate the response variable from the following G L M M 

logit{Pr(yy = 11/3,6; j)} =Po + AaJii + fax%i + /33ijj + h 
(7.1) 

i = l , - - - , i V , j = ! , - • • , 

where /3 = (Po,Pi, fa, fa), the random effects fcj's are assumed to be i.i.d with a normal 

distribution iV(0, a 2). The true values of /3 and a 2 are /3 = (-3,0.5, -0.3,4) and a2 = 0.3. 

The number of individuals (sample size) is N = 50, and the number of intra-individual 

measurements is = 10. The n* time points for each individual are 2, 7, 9, 14, 20, 28, 

40, 56, 70, and 84. 

The covariates Xu and xi2 are continuous variables. Covariate variable Xu is 

generated from iV( 1,0.1) and covariate xi2 is generated from the following model 

where a = (ai,a2,a3) and the true value of at. is a = (—1.5,1,0.2). In our simulation 

study, the missing covariate mechanism is assumed to be MAR. For each generated data 

set, we keep xu completely observed and delete those values of xa with probability 0.8 

which correspond to the largest values of x^. 

To evaluate the proposed methods, we also generate some missing values of re­

sponses j/jj's as follows. The model for the missingness of the response is 

where <j> = (<J)Q, 4>I) and the missing response indicator is a binary variable. The above 

model suggests that the missingness of the response depends on the missing values, and 

xi2\Xii ~ N(cti + a2xn, a3) (7.2) 

logit {Pr(ry = 1|<£)} = (j)Q + fayy (7.3) 
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thus the response is non-ignorably missing (NIM). We generate missing responses based 

on the model (7.3). That is, if ri3 = 1, then yi3 is deleted; if ri3 = 0, yi3 is retained. Note 

that different values of d) will lead to different missing rates of responses. We will discuss 

E X and A P in two different values of <f> in Section 7.3.1. 

7.2.2 Bias and Mean-Squared Error 

We examine the convergence of Monte Carlo Markov Chains by their time series plots 

and autocorrelations function plots. Time series plots and autocorrelation function plots 

have shown that Markov Chains converged very fast, usually in 100 or 200 iterations, and 

autocorrelations are negligible after lag 2. Figure 7.1 and Figure 7.2 show typical time 

series plots and typical autocorrelation plots for the missing covariates and random effects 

from our simulated data sets. Thus, to ensure the convergence, we conservatively discard 

the first 500 samples, and then take one sample every 10 samples until we obtained the 

desired number of samples. We run B = 100 replicates in each simulation, and compare 

E X and A P in terms of biases and mean square errors (MSEs). Here, bias and MSE are 

reported in terms of percent relative bias and percent relative root mean-squared error. 

The bias for P3, the j th component of /3, is defined as 

bias.,- = J3j — Pj, 

where Pj is the estimate of Pj. The mean-squared error for @3 is defined as 

MSEj = bias2 + s2, 

where s3 is the simulated standard error of P3. Then, the percent relative bias of J33 

(%bias) is 

biasj/Pj x 100%, 
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and the percent relative VMSE ( % V

/ M S E ) is 

y/MSEj/lPj] x 1 0 0 % . 

In our simulations, we consider (i) two missing rates: 2 0 % and 4 0 % , (ii) two 

different variances of bp. a2 = 0 . 3 and a2 = 1, (iii) two different sample sizes: N = 5 0 

and N = 1 0 0 , (iv) three different numbers of intra-individual measurements: n, = 5 , 

n, = 1 0 and rij = 2 0 . In the above situations, we compare estimates based on E X and 

AP, and investigate how the missing rate, the variance of bi, the sample size, and the 

number of intra-individual measurements affect estimation of the parameters. 

7.3 Simulation Results 

7.3.1 Comparison of Methods with Varying Missing Rates 

To see the impact of the missing rates on estimation by E X and AP, we estimate the 

parameters based on two missing rates respectively. A 2 0 % missing rate and a 4 0 % 

missing rate are considered. In our case, if the true values of <f> are (p = ( — 1 . 8 , 1 ) , 

the missing response mechanism ( 7 . 3 ) leads to an average of 2 0 % missing rate for the 

response; if <f> = ( — 0 . 8 , 1 ) , the missing response mechanism ( 7 . 3 ) leads to an average 

of 4 0 % missing rate. Regarding the covariate x2 with missing values, we take the same 

missing rate as the response. 

Table 7 . 1 shows average simulation results from 1 0 0 simulated data sets based on 

methods E X and AP. E X and AP yield comparable results for the two missing rates. 

In the 2 0 % missing rate case, compared with AP, E X gives smaller biases, but slightly 

larger mean-squared errors. In the 4 0 % missing rate case, E X produces slightly larger 

biases and mean-squared errors than AP. As we can see from Table 7 . 1 , the missing rate 
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Table 7.1: Simulation results with varying missing rates 

Missingness 
rate (%) 

Parameter 
(true values) 

%bias % V M S E 

E X A P E X A P 
20 A> = - 3 6 1 29 28 

P\ = 0.5 -6 -8 115 112 
& = -0.3 -3 -5 144 141 
ft = 4 2 -2 12 11 

40 A) = - 3 22 14 46 40 
A = 0.5 44 39 164 148 

ft = -0.3 50 48 153 148 
& = 4 3 -4 17 15 

greatly affects biases and mean-squared errors of estimates from two methods, especially 

estimates from E X , that is, the absolute values of biases and the mean-squared errors 

increase with the missing rate. 

7.3.2 Comparison of Methods with Different Variances 

To investigate how the variability of 6* affects the estimates from two methods, we con­

sider two sets of values of cr2: a small variance a1 = 0.3 and a moderate variance a2 = 1 

at the same missing rate 20%. 

We summarize the simulation results of estimation from E X and A P in Table 

7.2. E X produces slightly lager mean-squared errors of estimates than A P in both cases. 

However, the performance of E X is still quite close to AP. We also note that the mean-

squared errors of estimates based on E X and A P increase as a2 increases. That is, the 

variability of random effects affects estimation of E X and AP. 
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Table 7.2: Simulation results with varying variances 

Variance Parameter 
(true values) 

%bias % V M S E 

E X A P E X A P 
Small ft = - 3 6 1 29 28 

Variance ft = 0.5 -6 -8 115 112 
a2 = 0.3 ft = -0.3 -3 -5 144 141 

ft = 4 2 -2 12 11 
Moderate ft = - 3 4 -5 36 36 
Variance ft = 0.5 -3 -7 156 150 

a2 = 1 ft = -0.3 9 7 176 169 
ft = 4 2 -6 12 12 

7.3.3 Comparison of Methods with Different Sample sizes 

To examine the effect of the sample size on estimation, we estimate the parameters based 

on E X and A P with two different sample sizes: N = 50 and iV = 100, with a 20% missing 

rate. 

The average simulation results from E X and A P are shown in Table 7.3. We 

note that, as the sample size increases from 50 to 100, A P becomes more reliable in 

the sense that A P provides somewhat smaller biases and mean-squared errors than E X . 

However, A P does not outperform E X much. Moreover, both A P and E X yield smaller 

mean-squared errors for larger sample sizes. 

7.3.4 Comparison of Methods with Varying Intra-individual Mea­

surements 

To see how the number of intra-individual measurements affects our estimates, we con­

sider the two methods of estimation under three different numbers of intra-individual 

measurements : n^ = 5, n, = 10 and nj = 20. If n* = 5, the time points for each individ-
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Table 7.3: Simulation results with varying sample sizes 

Number of Parameter %bias %VMSE 
individuals (true values) 

E X A P E X A P 
N=50 ft = - 3 6 1 29 28 

ft = 0.5 -6 -8 115 112 
ft = -0.3 -3 -5 144 141 
ft = 4 2 -2 12 11 

N=100 ft = - 3 9 4 21 20 
ft = 0.5 8 4 82 79 
ft - -0.3 11 9 101 98 
ft = 4 2 -2 9 8 

ual are 2, 9, 20, 40, 70; if = 10, the time points for each individual are 2, 7, 9, 14, 20, 

28, 40, 56, 70 and 84; if = 20, the time points for each individual are 2, 4, 7, 9, 12, 14, 

17, 20, 24, 28, 33, 40, 46, 53, 56, 60, 66, 70, 76 and 84. 

The simulation results are indicated in Table 7.4. Both E X and A P produce 

smaller mean-squared errors as the number of intra-individual measurements increases 

(i.e., as rii increases). Compared with E X , A P provides slightly smaller mean-squared 

errors in the three cases. But, the results from E X and A P are still quite close and 

become closer as n, gets larger. 

7.3.5 Conclusion 

Based on the simulation results in the preceding sections, we may draw conclusions as 

follows. 

• Estimates based on E X and A P get worse in terms of biases and mean square errors 

as the missing rate gets larger. 

• The mean-squared errors of estimates from both E X and A P increase as the vari-
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Table 7.4: Simulation results with varying intra-individual measurements 

Number of intra-individual Parameter %bias % V M S E 
measurements (true values) 

E X A P E X A P 
rii = 5 Po = - 3 11 4 40 37 

Pi = 0.5 9 1 150 148 
Pi = -0.3 -0.1 -7 200 193 
03 = 4 7 2 19 16 

Hi = 10 A) = - 3 6 1 29 28 
ft = 0.5 -6 -8 115 112 
P2 = T 0.3 -3 -5 144 141 
03=4 2 -2 12 11 

rii = 20 0o = - 3 5 1 22 21 
0i = 0.5 -4 -4 91 90 
02 = -0.3 2 4 117 118 
03=4 1 -3 8 8 

ability of random effects a2 increases. 

• Increasing the sample size reduces the mean-squared errors of estimates for both 

E X and AP. 

• Increasing the number of intra-individual measurements reduces biases and mean-

squared errors of estimates for both E X and AP. 

• A P yields somewhat smaller mean-squared errors than E X and thus provides more 

stable results. This is probably because sampling the random effect in the E X , may 

lead to unstable Gibbs samplers and thus induce more Monte Carlo errors. 

Note that the convergence rate of E X is approximately as fast as that of A P in our 

simulations probably due to the fact that only one random effect is included in our 

GLMMs. 
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Figure 7.1: (a) Time series and (b) autocorrelation function plots for z2. 

79 



Time series plot 

Figure 7.2: (a) Time series and (b) autocorrelation function plots for 6 1 8 associated with 
individual 18. 
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Chapter 8 

Conclusion and Discussion 

In this thesis, we have proposed two methods to estimate the parameters for GLMMs 

with informative dropouts and missing covariates. These include an exact method and 

an approximate method, which are implemented by the Monte Carlo E M algorithm. For 

the exact method, the conditional expectation in the E-step of the Monte-Carlo E M 

is evaluated by Monte Carlo approximations (Wei and Tanner, 1990), which generate 

random samples for the unobservable random effects, missing covariates, and missing 

responses. However, sampling the random effects may offer potential computational 

difficulties such as very slow or non-convergence, especially when the dimension of the 

random effects is not small. To overcome this difficulty, in the more efficient approximate 

method, we integrate out the random effect in the E-step and thus avoid sampling the 

random effects in the Monte Carlo E M . Pinheiro and Wu (2001) have shown that the 

convergence rate of the E M algorithm can be greatly improved by integrating out the 

random effects. 

To further speed up the Monte Carlo E M , we also applied a P X - E M algorithm, 

which accelerates the E M algorithm by introducing additional working parameters to 

the model. Based on our two examples, the P X - E M algorithm is much faster than the 
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standard E M algorithm. 

We conducted a simulation study to compare the performance of the exact method 

and the approximate method. In our simulations, in general, the approximate method 

gives somewhat more stable results than the exact method in the sense that it provides 

smaller mean-squared errors. As the number of intra-individual measurements or the 

sample size increases, the performance of the approximate method and the exact method 

becomes similar. Our simulations also suggest that the proportion of missing values, the 

variance of random effects, the sample size, the number of intra-individual measurements, 

may affect the performance of the exact method and the approximate method. 

The proposed methods were applied to an AIDS dataset to evaluate an antiviral 

treatment. The results of our analyses based on the exact and approximate methods 

suggest that the viral loads of HIV patients tend to decrease with time, and that patients 

with higher CD4 cell counts are more likely to have their viral loads suppressed below the 

detection limit. We also applied our methods to a data set from a parent bereavement 

project to investigate the change of parents' mental distress after their children's death 

and to determine which factors influence parents' mental distress. We conclude that 

parents with a higher education level are more likely to have a better adjustment to their 

children's death. 

Note that we have assumed parametric models for the missing covariates and 

missing response indicators. So it is important to conduct sensitivity analyses of our 

results to these parametric models. Based on our sensitivity analyses, except for /33 in 

the second example, the results of the two examples are quite robust to the choices of the 

covariate model and the dropout model. Thus these results except for f33 in the second 

example may be reliable. 

Finally, we give an outline for possible future work. 
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(i) For simplicity, in our examples and simulations, we include only one random ef­

fect in the GLMMs to demonstrate our methods. In the future, we will study 

models with more random effects and further investigate the computational advan­

tages/disadvantages of the proposed methods, via,simulations. 

(ii) In our examples and simulations, we only consider mixed effect logistic regression 

models with informative dropouts and missing covariates. Generally, our proposed 

methods can be applied to other GLMMs, such as mixed-effect Poisson models, and 

nonlinear mixed effect models with informative dropouts and missing covariates. 

(iii) In the thesis, we assume that covariates with missing values are time-independent. 

When some covariates with missing values are time-dependent, similar methods 

can be proposed. 

(iv) We have assumed that the missing responses depend on the values being miss­

ing. We could also apply our methods to shared-parameter models, in which the 

missingness of responses is assumed to depend on the unobservable random effects. 
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