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Abst rac t 

There is a vast amount of valuable information in H T M L documents, widely dis­
tributed across the World Wide Web and across corporate intranets. Unfortunately, 
H T M L is mainly presentation oriented and hard to query. Whi le X M L is becoming 
a standard for online data representation and exchange, there is a huge amount of 
legacy H T M L data containing potentially untapped information. 

We develop a system to extract desired information (records) from thousands 
of H T M L documents, starting from a small set of examples. Duplicates in the result 
are automatically detected and eliminated. The result is automatically converted 
to X M L . We propose a novel method to estimate the current coverage of results by 
the system, based on capture-recapture models with unequal capture probabilities. 
We also propose techniques for estimating the error rate of the extracted informa­
tion and an interactive technique for enhancing information quality. To evaluate 
the method and ideas proposed in this paper, we conduct an extensive set of ex­
periments. The experimental results validate the effectiveness and util i ty of our 
system, and demonstrate interesting tradeoffs between running time of information 
extraction and coverage of results. 
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Chapter 1 

I n t r o d u c t i o n 

1.1 Mot ivat ion 

There is a vast amount of valuable information widely distributed across the Wor ld 

Wide Web and across corporate intranets. U n t i l now, the typical ways to get infor­

mation from the Web are hyperlink browsing and keyword searching, which return 

web pages ( H T M L documents) as results to the user. H T M L documents are mainly 

presentation and human oriented. The user has to browse these documents man­

ually to get the desired information. A simple example is to get the authors who 

have more than 10 books published. There is no way to get the answer by browsing 

or keyword searching. 

Compared to H T M L , X M L , the de facto standard for data exchange, is both 

machine and human readable and can be easily queried and transformed. Thus, 

extracting information from H T M L documents and translating the extracted in­

formation into X M L is valuable and attractive. A considerable research has been 

dedicated to the information extraction from web pages. Some related works such 

as T S I M M I S ([17], [18]), RoadRunner ([11]), E X A L G ([2]) and L ix to ([7]) wi l l be 
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discussed in Chapter 6. 

For example, we could generate up-to-date X M L data about job postings 

including t i t l e , company, q u a l i f i c a t i o n , l o c a t i o n and s a l a r y from a large 

H T M L repository such as (any fraction of) the Wor ld Wide Web. Similarly, we 

could generate a large up-to-date list of books, including the au thor , t i t l e , 

p u b l i s h e r , year and p r i c e . Or we could also generate structured catalogues 

consisting of models, brands and p r i c e s of printers, computers, cameras and cars 

available from a variety of online stores or dealerships. Then a variety of queries 

and analyses could be performed on the data so extracted and represented. For 

example, we could get a list of printers that are less than $100 by a simple query 

on extracted X M L printer-data, and a list of authors who have more than 10 books 

published by a simple query on extracted X M L book-data. 

The vision behind our project is to develop a general purpose system for 

methodically and systematically converting large H T M L collections into X M L , wi th 

some assurances about coverage and quality. A n example web page is shown in 

Figure 1.1. Our system extracts the desired information from the web page and 

presents it in X M L (Figure 1.2). 

1.2 H T M L and X M L 

H T M L stands for Hyper Text Markup Language, which is used for creating hyper­

text documents on the W W W . A n H T M L file is a text file containing markup tags. 

The markup tags tell the Web browser how to display the page. 

Start tags are written as <tagname>, and end tags as </tagname>. Tagnames 

are not case-sensitive, i.e. lower and upper case letters are treated as the same. For 

example, tag <strong> is considered the same tag as <STR0NG>. Some tags have 

start and end tags. For example, text can be emphasized by placing it between 
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HP PhotoSmart 7660 Inkjet Printer 
$ 1 6 9 . 9 9 $ 1 5 7 . 9 9 - Hewlett Packard Office I 
Quick Info Jl 

See Also: HP PhotoSmart 

HP PhotoSmart 245 Compact Photo 
Printer 
S24&99 $188.94 - Hewlett Packard I Quick 

Info H 

' See Also: Photo Printer > Hewlett Packard 

Photo Printer 

Brother HL-1435 Laser Printer 
' $249^99 $179.99 - Brother I Quick Info f l 

See Also: Brother HL-

Canon i560 Desktop Photo Printer 
?-\ &9A99 $86.44 - Canon I Quick Info Jl 

See Also: Photo Printer > Canon Photo Printer 

Figure 1.1: A n Example Web Page 

<printers> 

<printer><model>HP PhotoSmart 7660 Inkjet Printer</model> 
<brand>Hewlett Packard Office</brand> 
<price>$157.99</prince> 

</printer> 
<printer><model>HP PhotoSmart 245 Compact Photo Printer</model> 

<brand>Hewlett Packard</brand> 
<price>$188.94</prince> 

</printer> 

</printers> 

Figure 1.2: Extracted X M L Data 
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<strong> and </strong>. Some tags only have start tags and no end tags, e.g. 

<img SRC=" images /k reml in .g i f " ALT="The K r e m l i n at dusk">, which is used 

to include an image. Start tags may have attributes, which define some characteristic 

of that tag. For example, in previous example SRC gives the source of the image and 

ALT describes the content of the graphic. 

There are some well-known problems with H T M L files. H T M L is designed 

to display data using a browser and to focus on how data look. There is a fixed 

collection of tags wi th a fixed semantics, i.e. fixed meanings of tags. Most H T M L 

documents are invalid, i.e. not conforming to the specifications of H T M L coding, 

which is a detail descriptions of H T M L language. This problem is usually caused 

by incorrect nesting of elements, missing required attribute, non-standard attribute, 

omitted end tag, etc. A l l of the above make H T M L documents presentation oriented 

and difficult to query. 

X M L stands for extensible Markup Language. Originally it was designed 

to meet the challenges of large-scale electronic data publishing. X M L also plays 

an increasingly important role in the data representation and exchange on the Web 

and elsewhere. The main difference between X M L and H T M L is that X M L is 

designed to describe data and to focus on what data are. The display of the data is 

described in a separate style sheet. X M L documents are readable both by human 

and by computer. It allows users to define their own tags and their own document 

structure. As opposed to H T M L , al l X M L documents must have a root tag, all tags 

in X M L must have an end tag and X M L tags are case-sensitive. 

The tags created by the user can be documented in a Document Type Defini­

t ion ( D T D ) . The purpose of D T D is to define the structure, elements and attributes 

that are available for use in a document that complies to the D T D . Figure 1.3 is an 

example X M L document with a Document Type Definition. A l l the names of tags 

are defined by the user. The D T D is interpreted as follows: 
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<?xml version="1.0"?> 
<!DOCTYPE note [ 

<!ELEMENT note (to.from,heading,body)> 
<!ELEMENT to (#PCDATA)> 
<!ELEMENT from (#PCDATA)> 
<!ELEMENT heading (#PCDATA)> 
<!ELEMENT body (#PCDATA)> 

]> 

<note> 
<to>Tove</to> 
<from>Jani</from> 
<heading>Reminder</heading> 
<body>Don't forget me this weekend!</body> 
</note> 

Figure 1.3: A n Example X M L Fi le 

I E L E M E N T note: defines the element "note" as having four elements: "to, from, 

heading, body". 

I E L E M E N T to: defines the "to" element to be of the type " C D A T A " . 

I E L E M E N T from: defines the "from" element to be of the type " C D A T A " . 

There are numerous supporting technologies on X M L . X S L (extensible Stylesheet 

Language) is a style sheet language of X M L . X S L can be used to define how an X M L 

file should be displayed by transforming it into a format that is recognizable by a 

browser. One such format is H T M L . Normally X S L does this by transforming each 

X M L element into an H T M L element. XQuery is an X M L query language for re­

trieving and interpreting information from X M L information sources. It is is derived 

from an X M L query language called Quil t , which in turn borrowed features from 

several other languages, including X P a t h , X Q L , X M L - Q L , S Q L , and O Q L . 

X M L is not a replacement for H T M L . In the future, it is most likely that 

X M L wi l l be used to structure and describe the Web data, while H T M L wi l l be used 

to format and display the same data. 
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There is enormous amount of information about H T M L and X M L on the 

Web. For example, http://www.w3schools.com/ and http://www.xmlfiles.com/ 

are good sources for learning more about H T M L and X M L . 

1.3 Text Data Structure 

In a survey ([13]) by Line E i k v i l , the sources of data can be grouped into three 

types: free, semistructured and structured text. 

Free text This refers to the natural language texts without any specific descrip­

tion of the structure. A n enormous amount of information exists in natural 

language form. For example, news and articles reported in newspapers may 

contain information about the location of the headquarters of organizations, or 

about terrorist event such as the type of attack, the date, location, targets and 

effects on targets. Pharmaceutical research abstracts may contain information 

about new products, their manufacturers, patent information etc. 

Natural Language Processing ( N L P ) techniques are used for extraction of in­

formation from free text. N L P usually applies techniques such as filtering, 

part-of-speech tagging and lexical semantic tagging to bui ld extraction rules, 

which are based on syntactic and semantic constraints that help to identify 

relevant information. 

Structured text This refers to the text following a predefined and strict format, 

such as textual information in a database or an X M L document. Information 

in structured text can be easily and precisely extracted, given the format 

description. 

Semistructured text This type of text is in-between free and structured text. 

The Web is a rich source containing semistructured text. It does not have a 
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regular and static structure, and can not be queried or processed automatically 

like structured text. But there is some form of structure based on tokens and 

delimiters like tags in H T M L documents. This is the type of source for our 

extraction system. Pages in the Web are categorized into three classes by [3]: 

multiple-instance, single-instance and loosely-structured sources. 

The m u l t i p l e - i n s t a n c e sources refer to sources that provide information 

on multiple pages with the same format. The information often comes from 

a database. Unfortunately in most of the cases, we cannot access these un­

derlying databases freely. Bu t the information on the Web is freely accessible. 

There are many sources on the Web falling in this category. A n example of 

this k ind of sources is Amazon.com. It shows the author, title, price and other 

items in the same format for all its book pages. Another example is the C I A 

World Fact Book. It provides information of 268 countries in the world, on 

a separate page for each country. A l l the pages are presented in exactly the 

same format. 

The s i n g l e - i n s t a n c e sources are single web pages which have some kind 

of clear organization. A job postings page of a company can be an example of 

this type of sources. The page usually has clearly identifiable sections such as 

job title, job description, location, posted date, etc. 

The l o o s e l y s t r u c t u r e d sources are pages that do not show a structure 

or organization. Almost al l personal homepages are loosely structured, where 

automatic information extraction becomes more difficult. 

1.4 Questions Adressed 

Some fundamental questions for our project are listed below. 

1. From an H T M L repository, which essentially ignores the meaning of data, how 
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are we supposed to determine which piece of data corresponds to what we are 

looking for? For instance, how do we know which piece of text in a page 

corresponds to a book title? 

2. Suppose we have a system that extracts data from the web. C a n we say any­

thing about how large a proportion of the actual data that it can successfully 

extract? This question is important for two reasons. Firstly, being able to es­

timate the amount of results that could be reached by a system would give us 

a means by which we could discriminate between competing systems. It allows 

systems to be calibrated using some metric. Secondly, when a system involves 

a loop (as in our case), where in each iteration it extracts some information, 

the ability to predict coverage is critical. As we wi l l see, each iteration is an 

expensive operation since it involves accessing a large collection of H T M L files, 

looking for occurrences of records, and analyzing them. If at some point we 

know that the coverage is close to what the user desires, we can terminate the 

iteration. 

3. A n equally important question is what can we say about the quality of the 

information extracted. Firstly, if we can estimate the information quality of an 

information extraction system, that gives us yet another metric for calibrating 

systems. Secondly, it forms the basis for data cleaning. Specifically, if we can 

estimate the error rate in the extracted information, this can facilitate the 

subsequent user decision on how to cope wi th the quality of the information 

obtained, as addressed by the next question. 

4. Finally, if the estimated error rate is unacceptable to the user, how can we 

clean the data to eliminate as many errors as possible. 

These were the questions that motivated the current work. 
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1.5 Evaluation Metrics 

We propose two metrics, coverage and error rate, to evaluate the result of an infor­

mation extraction system. The coverage and error rate of a set of extracted records 

are defined as 

number of records in the set ^ ^ 
coverage n u m b e r of records flndable by the system' 

number of erroneous records in the set . . 
error rate = . - . (1.2) 

number of records in the set 

It is worth mentioning other two evaluation metrics, recall and precision, 

which are used by the Message Understanding Conferences (MUC) to evaluate in­

formation extraction systems. 

^ „ number of correctly extracted records .„ „. 
Recall = y — , 1.3 

number ot records in answer key 

_ number of correctly extracted records . . 
Precision = : : . (1.4) 

number or extracted records 

Recall may be crudely interpreted as a measure of the fraction of the information 

that has been correctly extracted, and precision as a measure of the fraction of 

the extracted information that is correct. They are inversely related to each other, 

meaning that by allowing for a lower recall you can achieve a higher precision and 

vice versa. 

The notion of coverage is different from recall. In the case of recall, the 

denominator is the number of records in the given answer key, which is known in 

advance. In the case of coverage, the denominator is the number of all records 

that could be found by the system, which is unknown and must be estimated. The 

numerator in recall is the number of correctly extracted records, while in coverage 

it is the number of all extracted records. 
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The functions of recall and coverage are different. Recall is used to experi­

mentally evaluate various information extraction systems. The information sources 

are restricted to a fixed range and all the useful records (i.e. answer key) are known, 

usually gathered manually. Conversely, coverage is used to measure the proportion 

of al l findable records have been extracted in the current iteration. Given the large 

scale of the Web and other H T M L repositories, we cannot know exactly how many 

records are included in these sources. For the same reason, the information ex­

traction system is computationally expensive and usually takes a huge amount of 

time to reach convergence. Coverage can estimate how much information could be 

extracted when convergence could be reached, and what proportion of al l findable 

information has already been extracted. 

Error rate is equivalent to (1-precision). 

1.6 Overview 

We present a system for extracting records from a repository of H T M L files and for 

converting them to X M L . For example, a record can be a job posting that has five 

attributes: t i t l e , company, q u a l i f i c a t i o n , l o c a t i o n and salary. Thousands 

of job postings are scattered on the Web in unstructured or semi-structured form. 

Our system can extract and store them in relational form or as X M L data. 

The procedure consists of two phases. 

• Phase I includes extraction of records and their translation to X M L . During 

this phase, duplication of information is detected automatically and elimi­

nated. In addition, using statistical techniques, we are able to estimate the 

coverage of the result set wi th respect to the source H T M L data set. A l l these 

steps are done automatically. 

10 



• Phase II is aimed at assessing and enhancing the quality of the extracted 

information. This phase is interactive. The system provides random samples 

to users, from which users provide feedback by pointing out the erroneous 

information. Based on the feedback, the system automatically "cleans" up 

previously extracted information. 

Records extraction in phase I is built on the framework of the method D I P R E 

(Dual Iterative Pattern Relation Expansion) pioneered by B r i n ([8]). D I P R E focuses 

on extracting a relation of pairs (two attributes such as author and title of a book). 

Figure 1.4 shows the structure of this method. Starting from a small seed set of 

example tuples (records), the program finds the occurrences of those seeds on a web 

page repository. These occurrences are grouped, and patterns are recognized from 

these groups of occurrences. Next, the program searches the repository to find all 

occurrences that could be matched wi th at least one of the patterns. Records could 

be extracted from these occurrences according to the content of the patterns. The 

first iteration yields a set of records which usually have more records than those in 

the seed set. We take this set as the seed set and find al l their occurrences, gener­

ate more patterns then get more records matching these patterns. This procedure 

could be repeated unti l some termination criterion is met. This criterion may be 

"convergence" (no new records are found) or that the scale of the results is large 

enough. 

One attractive feature of D I P R E is that records are extracted from thousands 

of web pages which are usually structured very differently, as opposed to one web 

page or even several similarly structured web pages. We implement this framework, 

extend it to support multivariate records involving more than two attributes, and 

improve it in several ways. Because the scale of the repository is usually very large, 

it is not feasible to run the iterative procedure unti l convergence, i.e. unti l no more 

new records are found. The user could set up a desired coverage. The program wi l l 
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estimate the coverage of the result of each iteration and continue until the desired 

coverage is achieved. 

Owing to the large scale of heterogeneous information resources, it is in­

evitable that there wi l l be erroneous records contained in the results. In phase II 

we assess the quality of results by estimating the error rate. If the user decides to 

carry out this step, our system wi l l present a random sample of extracted records. 

The user then points out whether a record is a correct record or an error. 

We make the following contributions in this project. 

• Bui ld ing on the D I P R E method, we develop techniques for extracting records 

from thousands of H T M L documents and presenting them in X M L format. Oc­

currences and patterns are defined in a more flexible way compared to D I P R E , 

without increasing the error rate in the results. A t the end of each iteration, 

we select the most reliable records to start the next iteration. Experiments 

show that these techniques can improve the efficiency, produce high coverage 

and low error rates. 

• We propose a methodology to evaluate the coverage achieved at the end of 

each iteration. Statistical methods based on capture-recapture models with 

unequal capture probabilities are applied to estimate the coverage rate of the 

extracted results. This can be used to determine when to stop the iterations, 

based on a user specified coverage threshold. 

• We propose a method for estimating the error rate of the results extracted, 

by having the user identify correct and erroneous records in a random sample. 

The size of the sample is automatically determined based on the required level 

of confidence in the estimated error rate. 

• We propose an interactive method to enhance the quality of the results. Based 

on the interactive feedback from the user, our method is able to track down 
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seed set 

records 

f i n d occur rences 

occurrences 

generate patterns 

patterns 

extract r ecords 

t 
result set 

Figure 1.4: The General Structure of D I P R E 

the patterns that led to errors, thus nagging problem patterns and problem 

sets, which include all records that match problem patterns. Our system can 

estimate the error rate for the problem set, and clean up erroneous records in 

it. 

The rest of the thesis is structured as follows. In Chapter 2, we define the 

key concepts and describe the strategy for extracting records from H T M L files and 

converting them to X M L . Chapter 3 describes two implementation methods. In 

Chapter 4, we discuss the coverage estimation and data cleaning in details. Chap­

ter 5 gives some experimental results. In Chapter 6, we briefly describe some related 

work. Finally, Chapter 7 discusses some future work. 
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Chapter 2 

R e c o r d s E x t r a c t i o n 

Our goal is to extract records from a large collection of web pages, starting from 

several examples of target records. A record (for example, a book) usually has 

several attributes (for example, author, title, publisher, year and price). In this 

chapter we generalize two concepts — occurrences and patterns, which have been 

introduced by [8]. 

We wi l l also describe the four steps in an iteration of the extracting procedure: 

(i) finding occurrences, (ii) generating patterns, (iii) extracting records and (iv) 

eliminating duplicates. The first and third steps are implemented using two different 

methods, parsing H T M L and using regular expressions. The implementation of 

these two steps wi l l be described in detail in Chapter 3. In this chapter, we briefly 

introduce the general procedures for the first and third steps. The second and fourth 

steps are the same for the two different implementation methods. We wi l l discuss 

these two steps in detail in this chapter. 
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2.1 Occurrences 

A n occurrence of a record is the context surrounding attributes of this record in a 

web page (an H T M L file). It is defined as a tuple over url, order, prefix, separators, 

suffix and values of attributes of the record, where: 

url is the U R L of the web page that the record appears on. 

order is a number indicating the order that the attributes show up in . For example, 

there are six possible orders for records with three attributes. 

prefix is the names of tags and contexts preceding the attribute appearing first. 

separators are the names of tags and context between attributes. 

suffix is the names of tags and contexts following the last attribute. 

2.2 Patterns 

A pattern is used to summarize a group of occurrences. The methods to summarize 

those occurrences play a critical role in our program. Starting from the same init ial 

examples, different methods to generate patterns produce results which are very 

different in terms of extracted information quality and quantity. 

We follow Brin 's ([8]) simple principle to generate patterns. It is defined as 

a tuple over (urlprefix, order, prefix, separators, suffix). The occurrences are first 

grouped by order and separators. Patterns are generated for each of these groups. 

For each group, the order and separators of a pattern are the same as order and 

separators of occurrences in the group. The urlprefix of a pattern is the longest 

matching prefix of al l url's, the prefix of a pattern is the longest matching suffix of 

all prefixes, and the suffix of a pattern is the longest matching prefix of all suffixes. 

For example, two paragraphs in Figures 2.1 are part of H T M L scripts of 
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two web pages, which contain information of printers with three attributes: model, 

manufacturer and price. The U R L s of web pages are shown in the first line of each 

paragraph. For the following two records, 

• Record 1 

at t r ibutel : Canon i70 Color Bubble Jet Printer 

attribute2: Canon 

attribute3: $217.34 

• Record 2 

at t r ibutel : H P LaserJet 1012 Printer 

attribute2: Hewlett Packard 

attribute3: $149.99 

two occurrences, which are shown in Figure 2.2, can be found from H T M L scripts 

in Figures 2.1. According to the principle to generate patterns, a pattern can be 

generated from these two occurrences. The generated pattern is shown in Figure 2.3. 

New occurrences are found by matching the patterns. A n occurrence is said 

to match a pattern if there is a piece of text that appears in a web page whose 

url matches the urlprefix*, and the text matches * p r e f i x *separa to rs* s u f f i x * 

where '*' represents any string. A new record can be extracted from an occurrence. 

Values of attributes are extracted and assigned according to the order of the pattern. 

Next we describe the four steps in an iteration of our extracting procedure. 
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www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html 
. . .<tr><td align="center">. . .</tdxtd> 
<a href="/product+Canon-i70-Color-B00008CMU9.html"><b> 
Canon i70 Color Bubble Jet Printer</bx/a><br> 
Manufactured by <a href="/man+Canon.html"> 
Canon</aXbr>Price: $217.34</ax/tdx/tr>. . . 

www.1-electronics-store.com/product+HP-LaserJet-1012-B0000ClXHY.html 
...<tr><td align="center">...</td><td> 
<a href="/product+HP-LaserJet-1012-B0000ClXHY.html"Xb> 
HP LaserJet 1012 Printer</bx/axbr> 
Manufactured by <a href="/man+Hewlett-Packard.html"> 
Hewlett Packard</a><br>Price: $149.99</a></td></tr>... 

Figure 2.1: Example of Finding Printers: HTML Scripts from two HTML files 

url: www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html 
attributel: Canon i70 Color Bubble Jet Printer 
attribute2: Canon 
attribute3: $217.34 
order: 0 
prefix: <td><a><b> 
separatorl: </bx/aXbrXa> 
separator2: </a><br>Price: 
suffix: </a></tdx/tr> 

url: www.1-electronics-store.com/product+HP-LaserJet-I012-B0000C1XHY.html 
attributel: HP LaserJet 1012 Printer 
attribute2: Hewlett Packard 
attribute3: $149.99 
order: 0 
prefix: <tdXaXb> 
separatorl: </bX/aXbrXa> 
separator2: </a><br>Price: 
suffix: </a></tdx/tr> 

Figure 2.2: Example of Finding Printers: Occurrences 
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u r l p r e f i x : w w w . 1 - e l e c t r o n i c s - s t o r e . c o m 
o r d e r : 0 
p r e f i x : <td><a><b> 
s e p a r a t o r l : </b></a><br><a> 
separator2: </a><br>Price: 
s u f f i x : </a></td></tr> 

Figure 2.3: Example of Finding Printers: A Pattern 

2.3 Finding Occurrences 

The goal of this step is to find occurrences of the records in the seed set. For 

each web page, the program go through al l the records to find occurrences of the 

records. A n occurrence is obtained by extracting the prefix, separators and suffix 

as we described and set the proper order. We also record the ur l of the web page as 

the ur l of the occurrence. 

To define occurrences precisely, we need to set up some restrictions on the 

prefix, separators and suffix. In the current system, the prefix and suffix could have 

at most three tags. The length of the separators, i.e. the distance between two 

adjacent attributes of a record can not exceed a certain given l imit . Otherwise we 

assume these two attributes are too far from each other and may not belong to 

the same record. We experimentally found that 300 characters is a good l imit for 

the regular expression approach, and 15 tags is a good limit for the parsing H T M L 

approach. 

Details of our implementations can be found in Chapter 3. 

2.4 Generating Patterns 

The basic algorithm for generating patterns is shown in Figure 2.4. 
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1. ( O i , . . . , Ok) = GroupOccurrences(O) 

2. for i = 1 to k 

if | O i j = = 1 then next; 

else GenOnePattern(Oj) 

(a) p.urlprefix = FindUrlprefix(all urls of Oi) 

(b) p.prefix = FindLongestSuffix(all prefixes of Oi) 

(c) p.suffix — FindLongestPrefix(all suffixes of Oi) 

(d) if p.urlprefix==N\]IAj 
SubGroupbyUrl(Oj) , goto step 2 

elseif p.prefix==N\JLL 
SubGroupbyPrefix(Oj), goto step 2 

elseif p.suffix==~NULL 
SubGroupbySuffix(Oj), goto step 2 

else 

p.basedoccur=\Oi\, push(P, p) 

Figure 2.4: The Algor i thm for Generating Patterns 

The input is the set of all occurrences, which is denoted by O, found in 

the previous step. First , these occurrences are partitioned into groups O i , . . . , Ofc 

according to the order and separators. The occurrences in each group have the 

same order and separators. Then for each of those groups that have more than one 

occurrence, GenOnePattern() is called to generate a pattern p. 

GenOnePattern() works in the following way. The urlprefix of p is the longest 

matching prefix of al l the urls in the group. The prefix of p is the longest matching 

suffix of al l prefixes of the occurrences in the group. The suffix of p is the longest 

matching prefix of al l suffixes of the occurrences. If the urlprefix is null, no pattern 

is generated. This group of occurrences has to be subgrouped by prefixes of the 

urls, that is, in each subgroup either occurrences have a common prefix of urls or 

there is only one occurrence in that subgroup. GenOnePatternQ is called again for 

these subgroups. If the prefix is null , this group is subgrouped by suffixes of the 
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prefixes, i.e. occurrences in each subgroup have a common suffix of prefixes. The 

same action is taken if the suffix is null . 

If none of them is null, a pattern p is generated. The number of occurrences 

that support this pattern is assigned to p.basedoccur. The output is a set of patterns 

P. 

Here is an example of subgroup of occurrences by suffixes of prefixes. The 

prefixes of occurrences in a group are < b x / b x i > , < a x / b x i > , < b x / b x b r > . 

The first two occurrences have the common suffixes of prefixes, so they are going 

to be in a subgroup after the SubGroupbyPrefix procedure applied. The third 

occurrence in another subgroup. 

2.5 Extract ing Records 

In this step, the program searches through the H T M L repository for texts matching 

any of the patterns obtained in previous step. Then records are extracted from 

those texts. Searching is targeted at the patterns and the H T M L files, of which the 

ur l of the H T M L file is matched with the urlprefix of the pattern. 

The index of the pattern that a record matches is saved wi th this record. It 

plays a key role in data quality assessment and enhancement. 

Going over al l the H T M L files and patterns, the system produces a set of 

records as well as indexes of patterns they match. 

2.6 El iminat ing Duplicates 

It happens very often that some records are found more than once. The most basic 

method to eliminate duplicates is to compare the values of corresponding attributes 
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of two records. If al l of them are exactly the same, the two records are duplicates. 

One of them is dropped from the result and the number of occurrences of this record 

is incremented by 1. 

Usually there are some duplicates that can not be identified by merely com­

paring the values of attributes directly. For example, the author of a book may 

appear in a different format, such as "Isacc Asimov" and "Asimov, Isaac". The title 

of a book may be 

• "The Weapon Shops of Isher", "Weapon Shops of Isher" or "Weapon Shops 

of Isher, the". 

• "Guns, Germs and Steel" or "Guns, Germs, and Steel". 

• "Tiger! Tiger!" or "Tiger, Tiger". 

To detect those kinds of duplicates, we apply a fairly simple approximate 

string matching method. Values of two attributes are compared in the following 

way. 

1. Spaces, punctuations and symbols other than English letters and numerals 

( [a -zA-ZO-9] ) are removed. 

2. Stopwords, i.e. words that are common in a full-text file but have little value in 

searching, such as a , an , t h e , f o r , t o , i n , on , and, etc. are removed. 

3. A l l letters are translated to capital case. 

4. Each value is translated into an alphabetical ordered sequence only consisting 

of capital letters (A-Z) and numerals (0-9). 

The corresponding two sequences are compared to decide whether the two 

values are the same. 
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After the four steps of an iteration, a set of records is obtained. To track the 

relationships between occurrences and patterns, for each record, we store a list of 

indices of patterns that this record matches. 

Intuitively, the records that have more occurrences are more likely to be 

correct. The records that have more than one occurrence can be selected as the 

seed set of the next iteration. One of the advantages of this method is that, the 

next iteration starts from more reliable records and less noise wi l l be added to the 

pattern generation process. This wi l l also reduce the number of erroneous records 

in the resulting database. Another advantage is that the next iteration starts from 

a smaller number of records therefore saves running time. Because records with 

more occurrences are selected, patterns are more likely to be generated from these 

records. In our experiments, we noticed that when we use a set of records that have 

more than one occurrence as seed into the next iteration, it runs faster and returns 

almost the same number of new records as if we had used a l l records as seed. 

Finally, the extracted records are converted to X M L . 
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Chapter 3 

I m p l e m e n t a t i o n a n d 

P e r f o r m a n c e 

There are two computationally expensive procedures in our system, finding occur­

rences and extracting records. Bo th of them have to search through a large repos­

itory of H T M L documents. Two methods, parsing H T M L documents and regular 

expressions can be applied to implement these two procedures. 

A n H T M L parser is a processor that reads an H T M L document and breaks 

it up into a set of different kinds of markup tags and plain text. The technique of 

parsing H T M L is widely used to extract useful information from H T M L documents. 

There are various H T M L parsers available on the Web. For example, Per l modules 

H T M L - P a r s e r ([20]) and HTML::TokeParser ([21]), and Java library H T M L P a r s e r 

([19])-

The second method used is regular expressions. A regular expression is a 

string of characters which tells the searching program what kind of string (or strings) 

you are looking for, e.g. all the words starting with letter A. Regular expressions 

are an extremely powerful tool for manipulating text data. They are now standard 
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features in a wide range of languages and popular tools such as Perl , Java, P H P , 

Python, and Emacs. The complete overview of the syntax and semantics of regular 

expressions can be found in many related books and web sites such as [9], [29] 

and [12]. 

In this chapter, we wi l l discuss these two methods in some detail. Algorithms 

for implementing these two procedures are also presented. 

3.1 Parsing H T M L Documents 

In this section, we first introduce parsing H T M L script by Perl module HTML::TokeParser . 

Then the algorithms of finding occurrences and extracting records, which use the 

technique of parsing H T M L , are described. 

3.1.1 HTML::TokeParser 

H T M L is widely regarded as the standard publishing language of the World Wide 

Web. H T M L uses tags such as <hl> and </hl> to structure text into headings, 

paragraphs, lists, hypertext links etc. The HTML::TokeParser module in Perl parses 

an H T M L document into a set of tokens. Each token represents either a tag or plain 

text between two tags. B y doing this, it separates the tags from the plain text and 

recognizes different types of tags. 

A s we mentioned in Section 1.2, start tags may have attributes. Attr ibute 

names and values of a start tag usually relate to the specific records. To find common 

patterns from context around similar records, we ignore attributes of start tags, and 

only consider the type of the tokens, the name of a tag, and the content of the text. 

For example, parsing the first part of the H T M L script in Figure 2.1 gives 

the following tokens. The first token corresponds to the start tag wi th tag name 
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"tr". The 4th token corresponds to the end tag with tag name "td". The 8th token 

corresponds to the text "Canon i70 Color Bubble Jet Printer". 

1 S t r 

2 S td 

3 T 

4 E , td 

5 S td 

6 S a 

7 S b 

8 T Canon i70 Color Bubble Jet Printer 

9 E b 

10 E a 

11 S br 

12 T Manufactured by 

13 S a 

14 T Canon 

15 E a 

16 S br 

17 T Price: $217.34 

18 E a 

19 E td 

20 E t r 

3.1.2 Algorithm Implementation 

• The algorithm of Finding Occurrences is implemented as follows. 

The input is a set of records and H T M L files. The Output is a set of occur­

rences. Each occurrence has tuples: values of attributes of records, url, order, 
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prefix, separators, suffix. 

For each H T M L file, parse the H T M L file into a set of Tokens. Each token has 

three values: index (the position of this token), type (the type of this token) 

and content. 

For each record, 

1. Set up a Flag to represent the current matching status. Flag=0 means 

new occurrence, and Flag=i (i ^ 0) means that there are % attributes of 

the record matched. 

2. Set up an orderFlag to represent the order of the attributes of the record, 

orderFlag=i means that the current matched attribute is the ith attribute 

of the record. 

3. Create an array Occur to store al l the occurrences. Each Occur has 

attributes as: url, Order, Prefix, Separator, Suffix and the values of at­

tributes of the record. 

4. Scan through the Tokens. For each token, 

(a) If it is not a text-token, go to next token; Otherwise, i f the Content 

of the token is matched with the value of the ith attribute of the 

record, check the Flag. 

(b) If the Flag is 0 which means this is a start of a new occurrence. Set 

the Flag to 1. Record the Index for this token. Set Occur.prefix as 

the names of three proceeding tags. 

(c) Else, i.e. if the Flag is j (j ^ 0), which means there are already 

j attributes of the record matched. We check the distance between 

current matching and previous matching. 

- If the difference of index between consecutive matching is large 

than 15, then we treat this matching as a start of a new occur­

rence, do what we do in the previous item for new occurrence. 
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— Else treat this as a matching of an attributes. Set the Flag=j + 

1. Set Occur.separator [j] as the names of the tags between two 

consecutive matching. Set order Flag [Flag]=i 

(d) If Flag is equal to the number of attributes of the record, 

— Set Occur.suffix as the names of the three following tags. 

— Set the Occur, order according to orderFlag. 

— Push this occurrence into Occur. 

A s we reach the end of the H T M L file, we got an array of occurrences: Occur. 

Examples of occurrences are shown in Figure 2.2. 

• The algorithm of E x t r a c t i n g Records is implemented as following. 

The input is a set of patterns and H T M L files. The output is a set of extracted 

records/results. 

We restrict the matching only within the H T M L files of which U R L s match 

the urlprefix of the pattern. For H T M L file, if there is a patten p such that 

p.urlprefix could be matched with the U R L of H T M L file, the H T M L file is 

parsed into a set of tokens. 

For each token, 

1. Matching the prefix of the pattern 

- If the token is a tag, 

* If the name of the tag matches with the i t h tag in p.pre fix, set 

matchflag = i 

* Else set matchflag = 0, goto next token. 

- If the token is not a tag, 

* If al l the tags of p.prefix have been matched, return the index 

of this token indexl. 

* Otherwise, set matchflag = 0, go to next token. 
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2. Matching the separators of the pattern. If it is success, return the in­

dexes of the tokens right after the last matched tags of the separators. 

Otherwise go to next token. 

3. Matching the suffix of the pattern. If it is not success, go to next token; 

Otherwise, 

4. Extract ing the record. Now the whole pattern is matched, the values of 

attributes of a record can be extracted according to the indexes returned 

from each matching step above. The order of the attributes is determined 

by the order of the pattern. The index of the pattern is recorded with 

the record. 

5. The next iteration starts from the token next to the end of current match­

ing. 

3.2 Regular Expression 

3.2.1 Introduction 

The other approach to implement the algorithms is to use regular expressions. A 

regular expression is a string of characters for matching strings that follow some 

pattern. Regular expressions are made up of normal characters and metacharacters. 

Normal characters include upper and lower case letters and digits. The metachar­

acters have special meanings. 

In the simplest form, a regular expression is just a word to search for. For 

example, suppose we want to search for a string with the word "cat" in it. The 

regular expression would simply be "cat". The words " cat", "catalog", or "sophisti­

cated" would match this regular expression. A simple example using metacharacters 

is the regular expression ' a [ 0 - 9 ] + \ It matches ' a ' followed by one or more digits, 
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where ' [] ' is a metacharacter to look for one of a set of characters, ' + ' is a pattern 

quantifier that matches one or more items. 

There are two regular expression operators within Perl . The matching oper­

ator, m / / , is used to match a string to a regular expression, which returns a true or 

false value. The substitution operator, s / / / , substitutes one expression for another. 

For example, the following operations 

$ s t r i n g = ' ' m y c a t ' ' ; 

$ s t r i n g = ~ s / c a t / d o g / ; 

substitutes "dog" for the "cat" of Sstring. As a result, the Sstring becomes "my 

dog"; 

Next we briefly introduce some of the metacharacters of regular expressions 

that are used in our program. 

Matches the beginning of a string. 

$ Matches the end of a string. 

\ d Matches a digit character. 

\s Matches a white-space character (space, tab). 

Matches any character except the newline character. 

[] Matches any one of the characters between the brackets. For example, the 

regular expression r[aou]t matches rat, rot, and rut, but not ret. Ranges 

of characters can be specified by using a hyphen. For example, the regular 

expression [0-9] means match any digit. 

To match any character except those in the range, the complement range, use 

the caret as the first character after the opening bracket. For example, ["0-9] 

wi l l match any character except digits. 
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* Matches 0 or more repetitions of the previous term, 

-f- Matches 1 or more repetitions of the previous term, 

{n} Matches exactly n times. 

{n,m} Matches at least n times but no more than m times. 

() Groups expressions together. Each group is recorded in the special variables 

$1, $2, $3 and so on, in the sequence of parentheses. For example, suppose 

$date="04,28,2004", the following substitution operation 

$ d a t e=~s / ( \ d + ) , ( \ d + ) , ( \ d + ) / $ 3 $ l $ 2 / ; 

changes the $date to "20040428", where variables $1, $2, $3 store strings that 

match regular expressions in the first, second and third parentheses, i.e. "04", 

"28" and "2004" separately. 

g Modifier. Matches/replaces globally every occurrence within a string, not only 

the first. 

i Modifier. Matches are not case-sensitive. 

s Modifier. Allows use of ' . ' also to match a newline character. 

? Non-greedy Matching. B y default, Per l uses greedy matching. For example, 

$ s t r = " H e l l o t h e r e , No th ing h e r e " ; 

the substitution operation 

$ s t r=~s / H . * h e r e / H e l l o / ; 

substitutes "Hello" for the part matching "H.*here" in $ s t r . B y default, Per l 

takes as much as it can into the match. So the part matching "H.*here" in 
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$str is "Hello there, Nothing here", and the $str becomes "Hello". If we use 

non-greedy matching, 

$str=~s/H.*?here/Hello/; 

after 'H' is matched, '.*' matches the minimum length before the 'here' is 

matched. So the part matching "H.*here" in $str is "Hello there", which is 

then substituted by "Hello". Now $str becomes "Hello, Nothing here". 

.2.2 Algorithm Implementation 

[ere are some examples of part of the regular expressions we use. 

• (<["<>]*?>["<>]*?) {3} 

Matches three consecutive tags, which may or may not have attributes. Plain 

text is allowed between tags. 

• ~s#<(/?\w*)\s?[~o]*?>#<$l>#gi 

Extracts the name of a tag. For example, after the substitution, <td align="center" 

turns out to be <td>. 

• \s*([~o]*?)\s* 

Matches plain text (i.e. no tag is in-between), which may have some white-

spaces at the beginning or end. 

• ~s#>#[~<>]*?>\\s*[~o]*?#g 

Substitutes > by ["<>] *?>\s* ["<>] *? globally. For example, after the sub­

stitution, <a><b> turns out to be 

<a["<>]*?>\s*["<>]*?<b["<>]*?>\s*["<>]*? 

which could be matched by 

<a href="Canon-i80-Color-B0001DBGSQ.html"><b> 
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Finding Occurrences 

For each record, regular expressions are constructed by combining its at­

tributes in different orders. For example, a regular expression of a printer 

for order 0 is 

((<["<>]*?>["<>]*?){3})Canon i70 Color Bubble Jet Printer 

(. {1,300}?)Canon(. {1,300}?)\$2i7.34( (["<>] *?< ["<>] *?>H3}) 

Then the program searches through all H T M L files for texts that match these 

regular expressions. A n occurrence is extracted from each of the matching 

texts. The same occurrence shown in Figure refex:occur can be obtained by 

this approach from the H T M L script in Figure 2.1. 

Extracting records 

For each H T M L file, each pattern, 

1. If the U R L of current H T M L file matches the urlprefix of the current 

pattern, perform the task described in point 2 below; otherwise move on 

to the next pattern. 

2. Ma tch the regular expression "prefix*separators*suffix". 

For example, for the pattern shown in Figure 2.3, the following regular 

expression is generated. 

<td ["<>]*?>\s*["<>]*?<a[~<>]*?>\s*["<>]*?<b["<>]*?>\s*["<>]*?\s* 

([-<>]*?) 

\s*</b[~<>]*?>\s*["<>]*?</a[~<>]*?>\s*["<>]*? 

<br["<>]*?>\s*["<>]*?\s*<a[~<>]*?>\s*["<>]*?\s* 

(["<>]*?) 

\s*</a[~<>]*?>\s*["<>]*?<br["<>]*?>\s*["<>]*?Price:\s* 

(["<>]*?) 
\s*</a["<>]*?>\s*["<>]*?</td["<>]*?>\s*["<>]*?</tr["<>]*?>\s*["<>] 
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For each of the matching texts, the texts between the prefix and the first 

separator, between two adjacent separators, and between the last separa­

tor and the suffix, which correspond to the expressions in the brackets in 

the regular expression, are extracted out and assigned to the attributes of 

a record according to the order of the pattern. The index of the pattern 

is also recorded with this record. 

3.3 Performance 

Both of the two approaches, parsing H T M L and regular expressions, have advan­

tages and disadvantages. Regular expressions are amazingly powerful and deeply 

expressive. However, constructing the regular expressions is tedious and error-prone. 

We have to worry about character level tr ivia, such as space, newline, single and 

double quotes. From the examples in previous section, we can see that the regular 

expressions that we use are very complicated. Moreover, there are some rare cases 

that regular expressions may fail. For example, applying the regular expression 

«[-<>]*?» 

on the following H T M L script, 

<IMG SRC = " f o o . g i f " ALT = "A > B"> 

we get the wrong result 

<IMG SRC = " f o o . g i f " ALT = "A > 

instead of the whole tag. 

The H T M L TokeParser module in Per l takes care of the tedious character 

level work. It extracts and distinguishes six types of tokens. Compared to regular 

expression, the approach of parsing H T M L is more robust. Also, it is more reason-
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Table 3.1: Computational Times 

method attributes seeds files occurs (time) patts results(time) 
Parser 2 3 242 161(48) 15 357(55) 
Regex 2 3 242 97(27) 7 372(0.21) 

able to control the distance between consecutive attributes by the number of tags 

than by the number of characters. 

Experiments are conducted to compare the computational times of different 

approaches. The results are shown in Table 3.1. The columns are the method used, 

the number of attributes of each record, the number of records in the seed set, the 

number of H T M L files, the number of occurrences found and the time it costed in 

seconds, the number of patterns, and the number of records extracted and the time 

it costed in seconds. The first row corresponds to the parsing H T M L approach. 

The second row corresponds to the regular expression approach for records with 

two attributes. 

The experiments are based on the same seeds and the same H T M L files. 

The numbers of records in the results are very similar, and there is no fake records 

in both of the two results, but the computational time costed by parsing H T M L 

approach is much more than the computational time costed by regular expression 

approach, especially in the step of extracting records. The reason for the poor t iming 

performance of parsing approach is the huge number of tags in an H T M L document. 

It often happens that some tags in the beginning of a pattern are matched before 

the matching failed. The program have to keep track of each matching attempt, 

and then to go back to the starting point when matching attempt has failed at some 

point. 

B o t h of the two steps, finding occurrences and extracting records, search 

through a large repository of H T M L documents, therefore they are very time-

consuming. The computational time is a crit ical issue for our system. From this 
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point of view, regular expressions are preferred. 
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Chapter 4 

S t a t i s t i c a l A n a l y s i s 

One of our goals is to capture a high percentage of all the records available in 

an H T M L repository. To that effect, we implemented an automatic procedure to 

estimate, after each iteration, the percentage of al l the records available in the 

repository that are already included in our result (result = set of recovered records). 

Another goal is to minimize the number of errors in our result. To that effect, we 

implemented an interactive (semi-automatic) procedure to estimate and reduce the 

percentage of erroneous records. 

In what follows, we give some details of the statistical procedures employed 

in our system. ' 

4.1 Coverage Estimation 

Given the large scale of the Web and other H T M L repositories, searching for records 

is computationally expensive. Therefore we wish to minimize the number of itera­

tions, especially when using large seed sets. Instead of running our system until full 

convergence (i.e. unti l no new record is found) we stop when a given coverage target 
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has been met. 

We define the "population size" N as the number of records our system could 

possibly find, i.e., the size of the result set after full convergence. In principle, our 

searching procedure always converges because the number of records found in each 

iteration cannot decreases, and there is a finite set of records in the repository. 

Convergence could be reached either when all records have been found, or no new 

record could be found in the last iteration. 

Let Ni be the size of the result set after the ith iteration and the current 

coverage is defined as 

a = (4.D 

Obviously, the denominator in (4.1) is unknown and must be estimated in order to 

estimate C%. 

In the next section, we discuss the adaptation of "capture-recapture" models 

and techniques - widely used in Biology to estimate the size of wildlife populations 

- to estimate the size of (the no less wild) population of "findable" records. 

4.1.1 Capture-Recapture Models 

The capture-recapture models were originally proposed by biologists to estimate the 

size of wildlife populations. The basic idea is to set traps to capture some animals 

and release them after they have been marked. A second trapping is conducted after 

the animals have had enough time to return and mix back wi th their population. 

The number of recaptured animals can then be used to estimate the size of the 

population. Capture-recapture models and techniques have been used in other areas 

such as estimating the size of the indexable Web and the coverage of search engines 

([26]). In our case, instead of animals we "capture" records and each trapping 

occasion corresponds to an extracting occasion, i.e. an iteration of our extraction 
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system. Starting from a randomly selected seed set of records (a trap), we run the 

next iteration of the extraction program to get a larger set of records (captured 

objects). 

We now briefly introduce the basic ideas underlying capture-recapture pro­

cedures. In the first extracting occasion of the capture-recapture experiment, a 

number n\ of individuals or records are captured, marked and released. A t a later 

time, the second extracting occasion, a number ni of individuals or records are 

captured, of which, say mi have been marked. The Petersen estimator for the pop­

ulation size is based on the observation that the proportion of marked individuals 

in the second sample (recaptured sample) should be close to the same proportion of 

marked individuals in the total population, i.e. 

mi _ ni 
~n~i ~ ~N 

Thus the estimator for population size is 

TV" = (4.2) 
mi 

The estimate variance of this estimator is 

var(iV) = n i n 2 ( n i ~ m 2 , ) ( n 2 - m 2 ) . (4.3) 

The general assumptions for this basic capture-recapture model are: (i) the pop­

ulation is closed; (ii) al l marks are correctly noted and recorded; (iii) marks are 

not lost; (iv) each individual has a constant and equal capture probability on each 

extracting occasion. 

The first assumption means that the size of the population is constant over 

the period of experiment. This is a strong assumption and usually not true in 

biological populations. Nevertheless, this assumption is valid when we deal wi th a 

static repository (e.g., a fragment of the web crawled and stored). Assumptions 2 

and 3 are also always true in our setting. However, the last assumption is strongly 



violated here. Different records usually have different probabilities of being found 

(captured). We applied two methods to solve capture-recapture models wi th unequal 

capture probabilities. We first introduce the post-stratification method, which is 

transparent and easy to understand. A more complicated method, the generalized 

jackknife, proposed by Burnham ([10]), is discussed later. 

4.1.2 Post-stratification Method 

When a web page contains a large number of records, it is more likely that records 

from this page follow (a small number of) patterns, because the contexts of records 

in the same web page are usually similar. Consequently the records in this page 

are more likely to be found (by matching these patterns). Therefore, depending on 

the patterns that a record matches, it becomes easier or harder to be found. For a 

pattern, we define its score as the number of records matching this pattern. Patterns 

with higher scores are associated with higher capture probabilities. 

For each extracting occasion, we obtain a set of patterns and a set of records. 

Together with each record, the program keeps a set of indexes of patterns which are 

matched by this record. The score of a pattern can be obtained by scanning through 

the set of records and counting how many times a pattern has been matched. 

Based on the scores of patterns, we set up a score for each record. The score 

of a record is the maximum of scores of a l l the patterns which are matched by this 

record. The higher the score of a record, the larger the capture probabilities of this 

record. 

The post-stratification method is to stratify the captured records by their 

scores into several strata. Capture probabilities of records in the same strata are 

assumed to be the same. Thus the basic capture-recapture model can be applied in 

each stratum to estimate the population size of this stratum. The total estimated 
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1. Calculate ScoresofPatterns(-Ri), ScoresofPatterns(P 2) 

2. Calculate ScoresofRecords(.Ri), ScoresofRecords^) 

3. R = Combine(i?i , R2), for each r in R 

If r only in Ri, r.mark = 1 
If r only in R2, r.mark = 2 
If r in both R\ and R2 

r.mark = 3 

r.score = max(r.score in r.score in #2) 

\ 4. ( G i , G 2 , G 3 ) = StratifyByScore(i?) 

5. For each G*, i = 1,2,3 
Xij = the number of r that (r.mark = j), j = 1,2,3 
« i = xn + x%3, mi = Xi2 + Xis, Xi = 

Ni —rii x rrii/xi 

6. N = Ni + N2 + N3 

Figure 4.1: Algor i thm of Post-Stratification 

population size then wi l l be the sum of the population sizes of the strata. 

The analysis is based on two extracting occasions. We get two sets of patterns 

P i and P2, and two sets of records R\ and Pi2- The algorithm for estimating the 

population size based on two extracting occasions is shown in Figure 4.1. 

From the discussion above, the score can be obtained for each pattern, as 

well as for each record. Then the two sets of records are combined together by the 

following strategy. For each record: (i) if it is in both sets, it is marked 3 and the 

score of this record is the largest of its two scores; (ii) i f it is only in set 1, it is 

marked 1 and its score is the same as in set 1; (iii) if it is only in set 2, it is marked 

2 and its score is the same as in set 2. 

Based on the compound set, the records are stratified by their overall scores. 

For example, records can be stratified to three strata according to their scores, 

greater than 10000, 1000-10000, and less than 1000. Parameters and variables 
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manipulated by the algorithm in Figure 4.1 are as follows: 

• Xi\,Xi2,%iz denote the number of records in i t h (i — 1,2,3) stratum, which 

are only in set 1, only in set 2, in both sets respectively. 

• nt is the number of records in the i t h stratum captured in set 1. 

• mi is the number of records in the i t h stratum captured in set 2. 

• Xi is the number of recaptured records. 

• Ni is the estimated population size of i t h stratum. 

• N is the estimated population size. 

4.1.3 Generalized Jackknife Estimate 

There are detailed discussions on the capture-recapture models on closed animal 

populations with unequal capture probabilities in [28]. Three types of models wi th 

unequal capture probabilities for closed populations are based on the following as­

sumptions: 

Mt- Every individual has the same capture probability for a given occasion, but 

capture probabilities can vary at each sampling time. 

M0: The ini t ia l capture probabilities for al l individuals are the same, adjust for a 

change in capture probabilities caused by a response to trapping. 

Mh'. Each individual has its own capture probability independent of all other indi­

viduals. This probability keeps the same at each trapping occasion. 

The capture probabilities for different records are usually different. For each 

record the capture probability is constant at each extracting occasion. So the model 

Mh is suitable here. 
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Burnham and Overton introduced the model Mh and developed a nonpara­

metric estimator of population size based on the generalized jackknife in [10]. We 

briefly describe the estimation procedure here. 

Suppose we do the extracting t times, the basic data are the extracting histo­

ries of records, denoted by Xij, i = 1 , . . . , N, j = 1 , . . . , t, where N is the population 

size, 

1 if the i t h record is captured on the j t h extracting occasion, 

0 otherwise. 

The unknown parameters are population size N and the capture probabilities of 

records p\,... ,pjv- The model assumes that pi,... ,PN are a random sample from 

an arbitrary probability distribution and all Xij's are independent. 

The capture frequencies are defined as /o, / i , /2 , • • •, /*> where for j = 1 , . . . , t, 

fj is the number of records that have been caught exactly j times in all the t times 

extracting, and /o is the number of records never captured. The capture frequencies 

have multinomial distribution. The number of al l different records captured in the 

t times extracting occasions is S = Y0j=i fj • It has been proved in [10] that the set 

of capture frequencies fj is a sufficient statistic for the data . 

The feth (k < t) order jackknife estimator, given by Burnham in [10], is 

^ r f D " 1 ) * k \{n-i)kN(t-i) (4.4) 

where the N^t_^ is an estimator of population size based on all combinations of 

t — i extracting occasions. Let j i , . . . , ji be a combination of i integers from the set 

( 1 , . . . , £}, define Nt-i,jx,...,ji as the estimator based on the t — i extracting occasions 

remaining after j\,..., ji extracting occasions are dropped, then 

t^ 

- l 

fyt-i) =1.1 E J> (4-5) 
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which can be calculated by 

(t-r\ 
fr- (4-6) 

From (4.4) and (4.6) we can see that the Nk is a linear combination of the capture 

frequencies, 
t 

2=1 

The coefficients can be obtained from (4.4) and (4.6). 

The estimated variance of this estimator is 

t 

i=l 

The variance of Nk increases as k increases. Therefore if two estimators are 

not significantly different, we take the one with the smaller order. We test the 

hypothesis that there is no significant difference between zth and (i + l ) t h order 

jackknife estimates, that is 

Ho : E(Ni - Ni+1) = 0, H± : E{N{ - Ni+1) + 0 

The test statistic is given in [10]. Under the null hypothesis the test statistics 

has approximately a standard normal distribution. If we can not reject the null 

hypothesis, we take Ni as the estimation of population size. If al l of these estimators 

are significantly different, we take the (t — l ) t h order jackknife estimator as the final 

estimator. 
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1 system: Generate a random sample R of size n from the result W. 

2 user: Identify true records T and erroneous records E, using user feedback. 

3 system: Estimate the error rate of W. 

4 user: If estimated error rate is acceptable, stop else continue. 

5 system: PP = FindProblemPatterns(i?). 
For each p in PP 

(1) system: B = ProblemSet(p), m = \B\ 
(2) user: Determine to discard or keep B. If we decide to keep B, 
(3) system: i?(p)=RandomSample(.B) 
(4) user: Identify true records T(p) and erroneous records E(p). 
(5) system: r(p)=ErrorRate(p) 
(6) user: Determine to discard, keep as it is or clean B. If we decide to clean, 

continue. 

(7) system: Clean(B) 

Figure 4.2: Quali ty Assessment and Enhancement Algor i thm 

4.2 Quality Assessment 

The error rate for a set of records is defined as the number of erroneous records over 

the total number of records in the set, 

# of erroneous records 
r — . 

# of records 

Unfortunately, the occurrence of errors in the resulting database of records is un­

avoidable. O n the other hand, a high error rate can greatly diminish the usefulness 

of the database. Therefore, it is important to consider steps to estimate and reduce 

r. 

The first step to control r is to obtain an estimate of its magnitude. We 

call this step "Quality Assessment". If, as a result of this step, r is considered too 

large, then measures are implemented to reduce it. We call this second step "Quality 

Enhancement" and discuss it in the next section. 
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For interactive quality assessment and enhancement, the system initiates the 

dialogue described in Figure 4.2. The first three steps are for the quality assessment 

of the result. The following steps are to enhance the quality of the result. First 

the system generates a sample it! of n records that are randomly selected from the 

resulting database W of extracted records. The sample size is determined automat­

ically by the system, based on the required level of confidence in the estimated error 

rate. Then the user examines R manually to identify erroneous records. The error 

rate is estimated by the proportion of errors in W and reported together with a 95% 

confidence interval for r. Based on the estimated error rate, the user decides whether 

just to accept W as the final result or to do further quality enhancement steps. The 

estimation of r is further discussed below. Quali ty enhancement is further discussed 

in the next section. 

The estimate of the error rate, r, can be obtained using simple random 

sampling. A relatively small number of records, n , are randomly selected from the 

database and submitted to the user for inspection. The user manually checks the 

records and identifies erroneous ones. The number of erroneous records, denoted by 

ne, has hypergeometric distribution with parameters N, n and r and an unbiased 

estimate of r is 
. _ rig 

n 

The estimated standard error of this estimator is given in [31], 

N — nr(l — r) 
se(r) = \ —— — . 

w V N n ~ 1 

A key issue is to choose the number of records needed to estimate the error 

rate with a desired precision (upper bound on the estimate standard error). If we 

want se(f) < 3, then we need 

Nrjl - r) . . 
n > ( / V - l ) / 3 2 + r ( l - r ) ' 1 " ' 

where N is the total number of records in the database. 
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To get n , we need an "init ial estimate", f n , of r and the desired precision, 3. 

When there is no information about r, f n = 50% can be used to obtain a conservative 

sample size n. However, the actual error rate of the extracted result should be much 

less than 50%. Otherwise we would need to reconsider the pattern generation rule. 

In our implementation, f n = 20% ,8 = 2% are for default determination of n . 

B y central l imit theory, the estimator f is approximately normally distributed 

with mean r and variance v a r ( f ) . A 95% confidence interval for the error rate r is 

f ± 1.96 x se ( f ) . 

4.3 Quality Enhancement 

The quality enhancement procedure first finds the problem patterns, that is, patterns 

that are matched by erroneous records. Recall that each record in the result has a 

set of indexes of patterns that it matches. For each problem pattern p, al l records 

that match this pattern are called problem set B. The system wi l l report features of 

B such as the number of records and the percentage significance of this set compared 

to the resulting database W. Based on this report, the user either decides to accept 

the result or to perform quality enhancement. For example, if there are only few 

records in B, or the proportion of a problem set B is only 0.1%, the user may decide 

to discard the entire problem set from the result. O n the other hand, if the size or 

relative size of B is large, the user may instruct the system to improve the quality 

of this problem set B. 

The error rate for the problem set B can be obtained using the same random 

sampling method described before. Again , the user must decide here the future 

course of action. If the error rate is very high, this problem set should probably be 

discarded. If the error rate is very low, we may keep this set as it is. Otherwise, 

when the error rate of a problem set is moderate and the size of the set is not t r iv ia l 
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V=values of attribute k of (W — B). 
For each r in B 

1. Spellingcheck(r). If pass, 

2. v = r.attribute[k] 

3. if(v not in V ) and (occ(r)==l) 
r is an error 
else r is true 

Figure 4.3: The Algor i thm of Clean(B) 

compared to the whole set, the user can ask the system move to the "cleaning" step. 

Spell-checking is a simple but very powerful tool to filter out erroneous 

records containing alphanumeric values. The user can specify the spelling con­

straints on attributes of records. For example, names of people or products usually, 

start from capital letters. Prices usually begin wi th currency signs and then digits. 

We propose another effective method of finding erroneous records in a prob­

lem set B. The basic algorithm is shown in Figure 4.3. 

Based on the fact that the number of records in the result is substantial, 

some attributes of records are very likely to have repeated values in the result. For 

instance, an author usually appears more than once in a large set of books. A 

manufacturer or brand usually appears more than once in a large set of printers. 

Our method is to verify whether the value of such a specific attribute of a record is 

valid, by checking whether this value has been repeated in some other records. 

Taking searching for books as an example, V is the set of values of authors 

from all records other than the current problem set. The value (v) of the author of 

each record in the problem set is compared to the values in V. If we cannot find v 

in V, this record is likely to be an error. 

In addition, we check whether this record matching one pattern or more than 
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one pattern. If it matches only this problem pattern, we assume that it is an error. 

Notice that it is possible that some correct records may be wrongly treated as 

errors. The larger the number of records in the result W, the smaller this probability. 

Experiment results in Section 5.3 show the effectiveness of this method. 
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Chapter 5 

E x p e r i m e n t a l R e s u l t s 

We successfully applied our prototype to several domains such as printers (model, 

manufacturer, price), papers (author, year, title, journal) and books (author, title, 

price). Comprehensive experiments were conducted for the simple case of two at­

tributes: authors and titles of books. The results of these experiments are presented 

in this section. 

5.1 Searching for Books 

The experiments ran on a collection of 16128 H T M L files used as a testbed. These 

files were obtained by searching the Web using Google. For each of 370 randomly 

selected books, we run the Google search automatically, setting the author and title 

of a book as the keywords. For each book the first 50 web pages of the searching 

results were selected. We took the union of the 370 sets of urls and successfully 

downloaded 16128 H T M L files. 

We started the experiment wi th 3 popular books, shown in Table 5.1. The 

first iteration produced 266 occurrences and 19 patterns. Matching these patterns 
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Table 5.1: Seeds of Books 

Author Ti t le 
Isaac Asimov 

David B r i n 
Charles Dickens 

The Robots of Dawn 
Startide Rising 

Great Expectations 

Table 5.2: Result of the First Iteration 

related occurrences number of books 
exactly 1 occurs 813 

more than 1 occurs 454 
more than 2 occurs 122 
more than 3 occurs 74 
more than 4 occurs 57 
more than 5 occurs 43 
more than 6 occurs 34 
more than 7 occurs 26 
more than 8 occurs 19 
more than 9 occurs 15 

more than 10 occurs 11 

over al l the H T M L files produced 1267 books. For these 1267 books, the number of 

occurrences related to the number of books are shown in Table 5.2. 

The key issue is how to choose the seed sets for the following iterations. 

Three methods of choosing seed sets were used in our experiments. 

Blind: This method takes all of the results from the previous iteration as the 

seed set for the next. Because the number of seeds is large, only the second iteration 

was performed. Starting from the 1267 books, 16525 occurrences are found, 880 

patterns are generated and 45034 books were extracted. 

GoodSeed: This method chooses books with more than one occurrence from 

the results of previous iteration as the seed set. For the same reason as above, only 

the second iteration was performed. There were 454 books that have more than one 
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occurrence out of the 1267 books. Starting from these 454 books, we found 9200 

occurrences, 588 patterns and 40715 books. 

TopSeed: This method chooses some number of books that have the most 

number of occurrences from the results of previous iteration. To show the relation­

ship between the running time and the coverage of the results, the numbers of seeds 

are set to be 50 more than the number of seeds of previous iteration. That is, the 

number of seeds for the second iteration is 53, for the third iteration is 103, four 

more iterations were performed. The number of books obtained is 39412. These 

results are shown in Table 5.3. 

B y doing the above experiments, we can compare three quantities (the cov­

erage, error rate and running time) of these three methods. These results are shown 

in Table 5.6. Columns represent names of seed sets, numbers of extracted results, 

estimated coverges of those results, 95% confidence intervals of error rates and times 

costed in hour. The B l i n d has a little higher coverage but its error rate is the largest 

and the running time is much longer than the other two methods. The GoodSeed 

has the shortest running time. What is very impressive is that, the estimated error 

rate for TopSeed is very low (zero). Because in TopSeed method, the seeds for each 

iteration are selected with high positive confidence, the results are highly reliable. 

The running time of TopSeed is less than half of that of B l i n d . In general, the last 

two methods are better than B l i n d . TopSeed took more than GoodSeed because we 

ran more iterations, but it offers the least error (zero in this case). The coverage of 

GoodSeed and TopSeed are about the same. 

We plot the coverage versus running time for TopSeed in Figure 5.1. It shows 

that once the coverage becomes large, it takes much more time to improve it. 

A n example of part of an X M L document generated by our system is shown 

in Figure 5.2. 
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Figure 5.1: The Coverage Versus Running Time 

<book><author>A. Merritt</author> 
<title>The Moon Pool</title> 

</book> 
<book><author>Isaac Asimov</author> 

<author>Robert Silverberg</author> 
<title>Nightfall</title> 

</book> 

Figure 5.2: Example of Part of X M L File 

Table 5.3: Searching Results by Choosing Seeds wi th Most Number of Occurrences 

iteration books run time(h) # of results 
1 3 0.55 1267 
2 53 3.62 29471 
3 103 6.5 33167 
4 153 9.08 36985 
5 203 13.75 39412 

52 



Table 5.4: Results of 10 Extract ing Occasions 

N O . occurs patterns # of results 
1 388 39 31482 
2 421 38 31053 
3 368 39 31609 
4 424 34 31199 
5 449 44 32143 
6 716 79 32736 
7 1016 100 34694 
8 458 48 32388 
9 408 52 31704 
10 499 53 31992 

5.2 Coverage Estimation 

The analyses in this section are based on the 10 extracting occasions. In this exper­

iment, 10 seed sets are randomly selected from the result of B l i n d which contains 

45034 books. A l l seed sets have the same number of books n = 200. For each seed 

set, we run one iteration of the extracting program to get a set of books. The num­

ber of occurrences, patterns and books in the results are shown in Table 5.4. The 

total number of different books captured is 40933. As we described in Section 4.1, 

these experiments are 10 extracting occasions of a capture-recapture study. The 

coverage estimation wi l l be based on these results. 

5.2.1 Post-stratification 

The post-stratification method discussed in Section 4.1.2 is applied on each pair of 

10 extracting occasions, 

\ 2 i 
45 pairs in total. The estimated population size 

is the average of these 45 estimations. 

For each stratum, the Equation 4.2 is used to estimate the stratum size A' ' . 
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Table 5.5: Post-Stratification Result for Two Sets of Books 

only in set l only in set2 both total estimation 
1st stratum 39 1128 27427 28594 28596 
2nd stratum 2398 1676 945 5019 9272 
3rd stratum 744 911 56 1711 13814 

total 3181 3715 28428 35324 51682 

We can see that, when the recapture rate is high, i.e. the number of the recapture 

records mi is close to the number of records in the extracting occasion m and 77.2, 

N is close to mi. When the recapture rate is low, i.e. the number of the recaptured 

records m 2 is small compare to n\ and ri2, N tends to be large compared to n\ and 

n 2 . 

We find empirically that books with scores more than 600 are very likely to 

be captured in each extracting occasion, therefore those books should belong to one 

stratum. Books are stratified into three strata according to their scores, greater 

than 600, between 300 and 600, and less than 300. 

For the result sets of the first and second extracting occasion, for example, 

the post-stratification results are shown in Table 5.5. The first row is the numbers 

of records belong to the first stratum. In the first row, from left to right, the 

numbers are numbers of records captured in the first extracting occasion but not 

captured in the second occasion (x i i ) , captured in the second extracting occation 

but not captured in the first occasion (x^), captured in both occasions (x^), the 

total number of records in the first stratum (xn + xn + xa), and the estimated size 

of the first strata (Nu) respectively. The second and third rows are similar except 

they are for the records belong to the second and third strata. For each stratum, the 

basic capture-recapture model is applied. This gives the following estimated strata 

size, 

Nn = 28596, iVi2 = 9272, N13 = 13814 
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the estimated population size and the standard error of N\ 

Ni = 51682. 

The final estimation of the population size is the average of estimates based 

on 45 pairs of extracting occasions. 

1 4 5 . 
N = — Ni — 52448. 

45 r-f 

The jackknife variance estimator is applied to estimate the variance of JV. The 

estimator is formed as follows: 

var(JV J) = ^ ^ ( J V ( _ i ) - J V ) 2 (5.1) 
1 i=i 

where t — 10, N(-i) is the estimated population size without the Zth (I = 1, • • •, i) 

trapping occasion, that is, 

1 10 10 

ti(-D = T - Y E E %). (5-2) 
v 2 / 

i=l,i^lj=i+l,jytl 

The estimated standard error is se(JV) = 7627. The estimated coverage can be 

calculated based on the JV. For example, the estimated coverage of the result of 

B l i n d is 45034/52448 = 85.9%. 

5.2.2 Generalized Jackknife 

For these t = 10 extracting occasions, the capture frequencies / i , • • •, / i o a r e 3320, 

2155, 2203, 1241, 921, 1152, 1421, 1393, 2081 and 25046. 

The generalized jackknife estimates from 1st to 9th order can be calculated 

by equation (4.4) and (4.6). They are 43921, 45045, 45904, 46891, 48027, 49184, 

50202, 50950 and 51342. 
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The test statistics to test whether there is significant difference between two 

consecutive order jackknife estimates are calculated. The results show that there are 

significant differences between these estimates. We take the 9th jackknife estimates 

as the estimation of the population size, N = 51342. The estimated standard error 

se(N) = 634. The estimated coverage of the result of B l i n d is 45034/51342=87.7%. 

The post-stratification method is simple to implement and understand. How­

ever, it assumes that records in each stratum have the same capture probabilities. 

When this assumption is highly violated, the estimates may be baised. Also, the 

standard error of the post-stratification estimator is much larger than the general­

ized jackknife estimator. In the current system, the generalized jackknife estimator 

is used to estimate the coverage. 

5.3 Quali ty Assessment and Enhancement 

First we estimate the error rates of the results of the three methods: B l i n d , GoodSeed, 

TopSeed and the book set obtained by Sergey B r i n , which is posted on the web. Be­

cause all of these sets have very good quality, the error rates are much less than 10%. 

B y choosing r = 10% and 8 = 2% in Equation (4.8), we get the number of records 

needed to estimate the error rates n = 225. A l l these samples are manually checked. 

The results are shown in Table 5.6. A l l of the error rates are very low. In practical 

situations these results may satisfy the user's requirement. However, to apply and 

evaluate our quality enhancement methods, we look through the result of B l i n d 

and find several erroneous books. From each of these errors, more erroneous books 

are detected using the method described in Section 4.3. The quality enhancement 

procedure is shown by the following examples. 

There is an erroneous book wi th author " A B a d Spell in Yur t" and title 

"May 2001". This record is obtained by matching the problem pattern wi th index 
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Table 5.6: Performance of the Three Methods. (C.I. is 95% confidence intervals of 
the error rates) 

sets # of results coverage C.I. time(h) 
B l i n d 45034 87.7% [0, 0.02] 59.04 

GoodSeed 40715 79.3% [0, 0.01] 17.25 
TopSeed 39412 76.8% 0 33.5 
Brin 's set 15257 N / A [0,0.03] N / A 

428. The total number of records (problem set) from this pattern is 73. Because 

the size of this problem set is relatively small (73/45034=0.16%), we investigate the 

whole set instead of a sample. Only 14 of them are true books and the error rate is 

81%. We can discard the whole problem set from the result. Actua l ly the errors in 

this set are easy to identify by spell checking. A book with a date as title is likely 

to be an erroneous book. B y spell-checking we can detect and delete al l errors in 

this problem set. 

Another erroneous book has author "Away Melody" and title " A Far". Fol­

lowing the quality enhancement procedure, the problem pattern for this error is the 

pattern with index 151. The problem set B has 421 books in total, which is about 

1% percent of the result of B l i n d . So we decide to keep this set and go to further 

steps. Manual ly checking a sample of 100 randomly selected books, 28 of them are 

errors. The reported confidence interval of the error rate is [0.2, 0.36]. The proce­

dure Clean(B) is applied and 190 out of 421 books (45%) are marked as erroneous 

books. As we mentioned before, some of these 190 books are correct books and 

discarded wrongly as an error. The other 231 books are al l correct books. So after 

the quality enhancement procedure, the error rate of the problem set becomes 0. 
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Chapter 6 

R e l a t e d W o r k 

In general, an Information Extract ion (IE) system is to extract useful information 

(records) from unstructured and semistructured text and transform the information 

into structured text such as databases and X M L documents. In other words ([22]), 

IE systems go through the following general procedures: 

• take unstructured and semistructured text as input and generate something 

like patterns or templates to locate the useful data. 

• extract the useful data according to the patterns or templates. 

• encode the extracted data in a structured form that is ready for further ma­

nipulation. 

Informaiton Extract ion from unstructured text, i.e. plain text, is one of the 

topics of Natural Language Processing ( N L P ) . The paper [1] presents a system for 

information extraction from large collections of plain-text documents. 

There has been much work on information extraction from semistructured 

text, which usually are H T M L documents. The traditional approach for information 

extraction from the Web is to write specialized programs, called wrappers, that 
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identify and extract data of interest. In the case of our system, patterns serve as 

wrappers. 

In early stage, wrappers are generated manually, e.g. T S I M M I S ([17], [18]). 

The manually approach has many shortcomings, mainly due to the difficulty in writ­

ing and maintaining wrappers. Recently, many wrapper generation tools have been 

proposed to generate wrappers automatically, e.g. RoadRunner ([11]) and E X A L G 

([2]), or semi-automatically, e.g. L ix to ([7]). A common goal of wrapper generators 

is to generate wrappers that are highly accurate and robust, while requiring as little 

effort as possible from the users. 

Laender et al. [25] is an excellent survey on recent web information extrac­

tion tools which compares them on several qualitative aspects such as degree of 

automation, support for complex structure, etc. In this chapter, we wi l l introduce 

and briefly describe several information extraction systems. A l l these systems have 

the same goal, i.e. extracting data from a set of H T M L pages and presenting the 

data into structured text. However the implementation methods are quite different. 

6.1 TSIMMIS 

A pioneer information extraction system T S I M M I S ([17], [18]) generates wrappers 

manually. Wrappers are in the form of specification files, which are simple text files 

written by users. The specification files describe the structure of H T M L pages and 

identify the beginning and the end of the relevant data. The extractor executes the 

commands i n a specification file to find and extract the interesting data into a set 

of variables. F ina l ly the extracted data is converted into database objects. As a 

running example, the system is used for extracting weather data from several web 

sites. 

Each specification file consists of a sequence of commands, which are writtern 
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1 ["root", 
''get('http://www.intellicast.com/weather/europe/')'', 
"#"] , 

2 [''temperatures'', 
' 'root" , 

''*<TABLE*<TABLE*</TR>#</TABLE>*''] 

Figure 6.1: A Simple Example Specification Fi le 

by users according to the following specification rules. Each command defines one 

extraction step, in the form of [variables, source, pattern], where variables are one or 

more variables that hold the extracted results, source is the part of the H T M L script 

to be considered, pattern specifies how to find the text of interest within the source. 

The value of a variable can be used as input source for subsequent commands. B y 

allowing this, T S I M M I S supports the hierarchical structure of web data. 

A n example of the specification file is shown in Figure 6.1. The first command 

defines the variable root as the entire source file whose U R L is given by the source 

get('http://www.intellicast.com/weather/europe/'). The pattern "#" in the first 

command means that everything in the source is to be extracted and stored in the 

variable root. The extractor then executes the second command, which defines a 

new variable called temperature nested in the variable root. The value of temperature 

is specified by the result of applying the pattern 

* <TABLE*<TABLE*</TR>#</TABLE>* 

to the source variable root, i.e. entire H T M L source file. The second command can 

be interpreted as, discarding everything until the first occurrence of </TR> in the 

second table definition and saving the data between </TR> and </TABLE> as variable 

temperature. The variable temperature wi l l store part of the H T M L file and could 

be an input source for subsequent commands, which can specify patterns within this 

part of H T M L source file. 
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T S I M M I S is flexible, accurate and efficient. The specification files are straight 

forward and easy to understand. The drawback is that the extraction mechanism 

depends on users input of the specification file. When the structure of source files 

changes, the specification file need to be updated by the user. This is a problem for 

the Web sources, because different information sources (web sites) usually have very 

different structure, new sources appear everyday and the format of existing sources 

may change. Therefore, most of the recent research works are based on automatic 

or semi-automatic wrapper generation. Anyway T S I M M I S is an important system 

in the history of information extraction. 

6.2 RoadRunner 

Many web sites contain large sets of pages generated using a common template. For 

example, al l book pages in Amazon present the author, title, price, etc. in the same 

way. RoadRunner ([11]) generates wrappers automatically to extract data from such 

template-generated web pages. 

The input of the system is a number of sample pages taken from a class 

of web pages, for which we want to generate a wrapper. The system starts from 

any two pages. One is chosen as an ini t ia l version of the wrapper. The matching 

algorithm works on these two pages, an ini t ia l wrapper and a sample, to find a 

common wrapper for them. Then the matching algorithm is applied on this wrapper 

and another sample page to find a common wrapper. This procedure continue unti l 

a wrapper has been found for al l the sample pages. Then the wrapper is applied 

on this class of web pages to extract the data. This system is applied on several 

template-generated web site such as Amazon and R p m F i n d . 

In the following, the wrapper generation procedure is briefly explained through 

an example. Detai l information about this project can be found in [30]. 
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<html>Books of:<b>#PCDATA</b> 
<ul> 

(<li><i>Title:</i>#PCDATA</li>)+ 
</ulx/html> 

Figure 6.2: The Wrapper 

Union-free regular expressions ( U F R E ) are used to describe a wrapper. A 

union-free regular expression is defined over tokens and a special symbol #PCDATA. 

If a and b are U F R E , a • b, (a)+ and (a)? are also U F R E , where + means one or 

more occurrence and ? means zero or more occurrence. There is no union operators 

in U F R E . A n example of a U F R E is shown in Figure 6.2. 

A wrapper is generalized by solving mismatches between the wrapper and 

the sample page. Bo th the wrapper and the sample page are parsed into a list of 

tokens. A mismatch occurs when some token in the sample does not comply to 

the corresponding token in the wrapper. There are two kinds of mismatches, string 

mismatches and tag mismatches, which correspond to different methods to generalize 

the wrapper respectively. A simple matching example is shown in Table 6.1. 

• String Mismatches. It happens when different strings occur in the corre­

sponding positions of the wrapper and the sample. String mismatches are 

used to discover data fields. For example, in Table 6.1, there is a string mis­

match in token 4, "John Smith" and "Paul Janes". In this case the wrapper 

is generalized by replacing "John Smith" by #PCDATA. 

• Tag Mismatches. It happens when different tags, or one tag and one string 

occur in the corresponding positions of the wrapper and the sample. Tag 

mismatches are usually caused by repeated patterns. For example, a tag mis­

match between token 19 in the wrapper and the sample comes from different 

number of books in the book lists, i.e. different number of the repeated pattern 

t =<li><i>Title: </i>#PCDATA</li>. In this case the wrapper is generalized 
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Table 6.1: One Simple Matching 

Wrapper Sample 
01 <html> 01 <html> 
02 Books of: 02: Books of :-
03 <b> 03 <b> 
04 John Smith 04: Paul Jones 
05 </b> 05: </b> 
06 <ul> 06 <ul> 
07 <li> 07: <li> 
08-10: <i>Title</i> 08-10: <i>Title</i> 
11 DB Primer 11 XML at Work 
12 </li> 12 </li> 
13 <li> 13 <li> 
14-16: <i>Title</i> 14-16: <i>Title</i> 
17 Comp. Sys. 17 HTML Scripts 
18 </li> 18 </li> 
19 </ul> 19 <li> 
20 </html> 20-22: <i>Title</i> 

23 Javascript 
24 </li> 
25 </ul> 
26 </html> 
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by replacing t by (<)+. 

Usually the tag mismatches are more complicated than those we just dis­

cussed. The matching algorithm is recursive since more mismatches can be found 

and need to be solved when trying to solve one mismatch. The algorithm should 

also be able to backtrack. Usually there are several possible alternatives to solve a 

mismatch. When an alternative prove to be wrong, the program have to backtrack 

and resume the matching from the next alternative. 

The matching algorithm has exponential computational time complexity with 

respect to the input length. Several pruning techniques are introduced to reduce the 

complexity. For example, only the shortest k = 4 candidate patterns are evaluated 

for each mismatching. 

In some cases, the system fails to generate patterns. For web pages include 

disjunction patterns, U F R E s can not represent union and the system might fails to 

generate wrappers. One example is the music bestsellers on Amazon. Some of pages 

have customer reviews and some do not. The corresponding templates are different. 

The system can not generate a wrapper, and no information is extracted from this 

class of web pages. 

6.3 E X A L G 

Recent work E X A L G ([2]) has proposed another approach for automatically gener­

ating wrappers to extract data from a class of template-generated web pages. The 

overall procedure of this system is similar to RoadRunner discussed in previous sec­

tion. It takes a set of template-generated web pages as input, generates a wrapper 

automatically, and extracts the data in those pages according to the wrapper. 

E X A L G and RoadRunner are different in wrappers generation approaches. 
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In E X A L G , wrappers are derived from L F E Q s (Large and Frequent EQuivalence 

class). The definition of L F E Q wi l l be discussed later in this section. E X A L G has 

two stages. The first stage E C G M (Equivalence Class Generation Module) takes 

a set of web pages as input, and a set of L F E Q s as output. The second stage 

A N A L Y S I S takes the results of the first stage as input and output a wrapper. The 

wrapper is then used to extract data from the web pages. 

The system is applied on different input collections of web pages, e.g. A m a ­

zon, E-bay, Google etc. The detail of the experiments and results can be found in 

U R L [15]. 

Two key concepts are used in E X A L G , differentiating roles and equivalence 

class. E X A L G distinguishes tokens by their roles. The occurrence-vector of a token 

• • ' , / « ) is the numbers of occurrences of this token in each of n web pages. 

A n occurrence-path of a token is the path from the root to the token in the parse 

tree. The same tokens usually play different roles, if they have different occurrence-

vectors in a large number of pages or different occurrence-pathes. For example, <b> 

before Book and <b> before Reviewer.of web pages in Figure 6.3 are tokens playing 

different roles, which are called dtokens (differentiated tokens). A l l input web pages 

are first represented as a set of dtokens. 

A n equivalence class is a maximal set of dtokens having the same occurrence-

vectors. The support of a dtoken is the number of pages in which this dtoken occurs. 

The support of an equivalence class is the common support of its dtokens. The size 

of an equivalence class is the number of dtokens in this class. 

A n equivalence class with large size and support is called a L F E Q (Large and 

Frequent EQuivalence class). The basic intuition behind LFEQs is that it is very 

unlikely for LFEQs to be formed by chance. Almost always, LFEQs are formed by 

tokens associated with the unknown template used to create the input pages. 
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We show the procedure of E X A L G through an example. Figure 6.3 shows 

four input web pages. 

In the first stage E C G M , two L F E Q s of dtokens are found, 

£1={<html>,<body>,<b>,Book,Name,</b>,<b>,Reviews,</b>,<ol>,</ol>, 

</body>,</html>} 

e 2 ={<li>,<b>,Reviewer,Name,</b>,<b>.Rating,</b>,<b>,Text ,</b>,</l i>} 

Notice that the dtoken <b> in e\ is a different dtoken from the <b> in £ 2 . The two 

dtokens <b> in e\ are also different dtokens from each other. For £ 1 , each dtoken 

appears exactly once in each of the web pages, so the occurrence-vector is (1,1,1,1). 

There are 13 dtokens in e i , so the size of e\ is 13. The L F E Q e\ occurs in all of 

the four web pages, so the support is 4. For £ 2 , the occurrence-vector is (1,1,2,0), 

the size is 12 and the support is 3. The tokens in the L F E Q s are ordered and £2 is 

nested in £ 1 . 

The second stage builds an output wrapper using the L F E Q s constructed in 

the first stage. The wrapper is shown in Figure 6.4, where '* ' represents the location 

of the data in these web pages. 

The paper also describes several cases that the system failed to extract data 

correctly. For example, pages contain a set of addresses encoded wi th the template 

{<Name:*<br>,(Email :*<br>)?,(Organizat ion:*<br>)?,(Update:*<br>)?>}. 

Because the type constructors associate wi th a very few tokens, this template can 

not be discovered as a L F E Q by the system. 

6.4 Lixto 

A visual web information extraction tool Lixto is proposed in [7], [4], [6] and [5]. 

Lixto generates wrappers semi-automatically by providing the visual interface and 

browser-displayed example pages that allow a user to specify the desired extraction 
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<html><body> 
<b>Book Name</b>Databases 
<b>Reviews</b> 
<ol> 

<li> 
<b>Reviewer Name</b>John 
<b>Rating</b>7 
<b>Text</b>... 

</li> 
</ol> 

</body></html> 
<html><body> 

<b>Book Name</b>Query Opt. 
<b>Reviews</b> 
<ol> 

<li> 
<b>Reviewer Name</b>John 
<b>Rating</b>8 

<b>Text</b>... 
</li> 

</ol> 
</body></html> 

<html><body> 
<b>Book Name</b>Data Mining 
<b>Reviews</b> 
<ol> 

<li> 
<b>Reviewer Name</b>Jeff 
<b>Rating</b>2 
<b>Text</b>... 

</li> 
<li> 

<b>Reviewer Name</b>Jane 
<b>Rating</b>6 
<b>Text</b>... 

</li> 
</ol> 

</body></html> 

<html><body> 
<b>Book Name</b>Transactions 
<b>Reviews</b> 
<ol> 
</ol> 

</bodyx/html> 

Figure 6.3: Input Web Pages 



<html><body> 
<b>Book Name</b>* 
<b>Reviews</b> 
<ol> 

<li> 
<b>Reviewer Name</b>* 
<b>Rating</b>* 
<b>Text</b>* 

</li> 
</ol> 

</body></html> 

Figure 6.4: The Wrapper 

patterns. Internally wrappers are these patterns which are represented by a declara­

tive extraction language called Elog. The extractor performs the actual information 

extraction from one or several similar structured web pages by interpreting the Elog 

program. The user then can use the XML Generator to map the extracted informa­

tion to X M L . To extract information in differently structured web pages, the user 

needs to specify the patterns for each of them. 

There have been numerous other works based on HTML-aware tools [27], 

natural language processing [16], wrapper induction [23], object models [24], and 

ontologies [14]. For a detailed discussion of these and other works, the reader is 

referred to [25]. Suffice it to say that none of these provides an analysis of objective 

metrics such as coverage or quality. 

The most related work is what we introduced in the beginning, D I P R E pro­

posed by Sergey B r i n . Experiments are conducted based on a large repository of 24 

mill ion web pages. He found 15257 books from 5 examples of books. 

In comparison, our experiments gain 45034 books based on 16128 web pages. 

Two main factors contribute to this large number of books. The first one is that, 

screening via a search engine, we focus on the web pages only related to books. 

The second one is the different definition of the occurrence and different pattern 
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generation strategy. In our method, the criteria for occurrences and patterns are 

more relaxed without increasing false discoveries. Once again, to the best of our 

knowledge, ours was the first to provide a detailed analysis of coverage of results 

extracted and quality of extracted information as well as an interactive approach 

for quality enhancement. 
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Chapter 7 

F u t u r e W o r k 

The current experiments are based on a local web page repository. In future work, 

our system wi l l be based on a large scale and up-to-date web page repository. Con­

sequently, we need to improve the performance of our program. Our long-term goal 

is to extract a large set of records automatically, based on several example records 

given by the user. Users wi l l be allowed to specify the structure of the output X M L 

documents. We also plan to allow extraction of data wi th more structure as opposed 

to just flat records. Finally, it is interesting to ask whether we can scale up such 

techniques to a level where information extracted is in response to questions posed 

by the user. Our ongoing research addresses some of these questions. 
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