
Extracting X M L Data from H T M L Repositories
by

Ru th Yuee Zhang

M.Eng . , Beijing University of Aeronautics and Astronautics, 1997

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Science

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

(Department of Statistics)

We accept this thesis as conforming
to the required standard

The University of British Columbia

August 2004

© Ruth Yuee Zhang, 2004

THE UNIVERSITY OF BRITISH COLUMBIA FACULTY OF GRADUATE STUDIES

Library Authorization

In present ing this thesis in partial fulf i l lment of the requirements for an advanced degree at the University of British Columbia, I agree

that the Library shall make it freely avai lable for reference and study. I further agree that permission for extensive copying of this thesis

for scholar ly purposes may be granted by the head of my depar tment or by his or her representat ives. It is understood that copying or

publ icat ion of this thesis for f inancial gain shall not be al lowed without my writ ten permission.

Name of Author (please print) Date (dd/mm/yyyy)

Title of Thesis: Btrodiruj XlU D A -from HTML feptfoWe^

Degree: Master °f Science Year:

Depar tment of

The University of British Columbia

Vancouver , BC Canada

Statistics

grad.ubc.ca/forms/?formlD=THS page 1 of 1 last updated: 20-Jul-04

Abst rac t

There is a vast amount of valuable information in H T M L documents, widely dis­
tributed across the World Wide Web and across corporate intranets. Unfortunately,
H T M L is mainly presentation oriented and hard to query. Whi le X M L is becoming
a standard for online data representation and exchange, there is a huge amount of
legacy H T M L data containing potentially untapped information.

We develop a system to extract desired information (records) from thousands
of H T M L documents, starting from a small set of examples. Duplicates in the result
are automatically detected and eliminated. The result is automatically converted
to X M L . We propose a novel method to estimate the current coverage of results by
the system, based on capture-recapture models with unequal capture probabilities.
We also propose techniques for estimating the error rate of the extracted informa­
tion and an interactive technique for enhancing information quality. To evaluate
the method and ideas proposed in this paper, we conduct an extensive set of ex­
periments. The experimental results validate the effectiveness and util i ty of our
system, and demonstrate interesting tradeoffs between running time of information
extraction and coverage of results.

i i

C o n t e n t s

Abstract i i

Contents i i i

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Motivat ion 1

1.2 H T M L and X M L 2

1.3 Text Data Structure 6

1.4 Questions Adressed 7

1.5 Evaluation Metrics 9

1.6 Overview • • • 10

i i i

2 Records Extraction 14

2.1 Occurrences 15

2.2 Patterns 15

2.3 Finding Occurrences 16

2.4 Generating Patterns 18

2.5 Extract ing Records 20

2.6 El iminat ing Duplicates . 20

3 Implementation and Performance 23

3.1 Parsing H T M L Documents 24

3.1.1 HTML::TokeParser 24

3.1.2 Algor i thm Implementation 25

3.2 Regular Expression 28

3.2.1 Introduction 28

3.2.2 Algor i thm Implementation • • 31

3.3 Performance 33

4 Statistical Analysis 36

4.1 Coverage Est imation 36

4.1.1 Capture-Recapture Models 37

4.1.2 Post-stratification Method 39

iv

4.1.3 Generalized Jackknife Estimate 41

4.2 Quali ty Assessment 44

4.3 Quali ty Enhancement 46

5 Experimental Results 49

5.1 Searching for Books 49

5.2 Coverage Estimation 53

5.2.1 Post-stratification 53

5.2.2 Generalized Jackknife 55

5.3 Quali ty Assessment and Enhancement 56

6 Related Work 58

6.1 T S I M M I S 59

6.2 RoadRunner 61

6.3 E X A L G 64

6.4 L ix to 66

7 Future Work 70

Bibliography 71

v

L i s t o f T a b l e s

3.1 Computational Times 34

5.1 Seeds of Books 50

5.2 Result of the First Iteration 50

5.3 Searching Results by Choosing Seeds with Most Number of Occurrences 52

5.4 Results of 10 Extract ing Occasions 53

5.5 Post-Stratification Result for Two Sets of Books 54

5.6 Performance of the Three Methods. (C.I. is 95% confidence intervals

of the error rates) 57

6.1 One Simple Matching 63

v i

L i s t o f F i g u r e s

1.1 A n Example Web Page 3

1.2 Extracted X M L Data 3

1.3 A n Example X M L Fi le 5

1.4 The General Structure of D I P R E 13

2.1 Example of Finding Printers: H T M L Scripts from two H T M L files . 17

2.2 Example of Finding Printers: Occurrences 17

2.3 Example of Finding Printers: A Pattern 18

2.4 The Algor i thm for Generating Patterns 19

4.1 Algor i thm of Post-Stratification 40

4.2 Quali ty Assessment and Enhancement Algor i thm 44

4.3 The Algor i thm of Clean(B) 47

5.1 The Coverage Versus Running Time 52

5.2 Example of Part of X M L File 52

v i i

6.1 A Simple Example Specification Fi le 60

6.2 The Wrapper 62

6.3 Input Web Pages 67

• 6.4 The Wrapper 68

v i i i

A c k n o w l e d g e m e n t s

I would like to express my deep appreciations to my supervisors Professor Ruben
H . Zamar and Professor Laks V . S . Lakshmanan for their excellent guidance and
immense help. Without their support and encouragement, this thesis would not
have been completed. I also want to thank Dr . Lang W u for being my second
reader and for his invaluable advice on my thesis. I am grateful to the faculty
and staff in the department for providing such a friendly and motivating academic
environment. Many thanks go to my friends: Mike Danilov, Yinshan Zhao, Weiliang
Qiu , Kun l ing W u and Aihua P u and all of other graduate students for their great
help in difficult times. Last but not least I would like to thank my parents, my
husband and my son for their endless love.

R U T H Y U E E Z H A N G

The University of British Columbia
July 2004

ix

Chapter 1

I n t r o d u c t i o n

1.1 Mot ivat ion

There is a vast amount of valuable information widely distributed across the Wor ld

Wide Web and across corporate intranets. U n t i l now, the typical ways to get infor­

mation from the Web are hyperlink browsing and keyword searching, which return

web pages (H T M L documents) as results to the user. H T M L documents are mainly

presentation and human oriented. The user has to browse these documents man­

ually to get the desired information. A simple example is to get the authors who

have more than 10 books published. There is no way to get the answer by browsing

or keyword searching.

Compared to H T M L , X M L , the de facto standard for data exchange, is both

machine and human readable and can be easily queried and transformed. Thus,

extracting information from H T M L documents and translating the extracted in­

formation into X M L is valuable and attractive. A considerable research has been

dedicated to the information extraction from web pages. Some related works such

as T S I M M I S ([17], [18]), RoadRunner ([11]), E X A L G ([2]) and L ix to ([7]) wi l l be

1

discussed in Chapter 6.

For example, we could generate up-to-date X M L data about job postings

including t i t l e , company, q u a l i f i c a t i o n , l o c a t i o n and s a l a r y from a large

H T M L repository such as (any fraction of) the Wor ld Wide Web. Similarly, we

could generate a large up-to-date list of books, including the au thor , t i t l e ,

p u b l i s h e r , year and p r i c e . Or we could also generate structured catalogues

consisting of models, brands and p r i c e s of printers, computers, cameras and cars

available from a variety of online stores or dealerships. Then a variety of queries

and analyses could be performed on the data so extracted and represented. For

example, we could get a list of printers that are less than $100 by a simple query

on extracted X M L printer-data, and a list of authors who have more than 10 books

published by a simple query on extracted X M L book-data.

The vision behind our project is to develop a general purpose system for

methodically and systematically converting large H T M L collections into X M L , wi th

some assurances about coverage and quality. A n example web page is shown in

Figure 1.1. Our system extracts the desired information from the web page and

presents it in X M L (Figure 1.2).

1.2 H T M L and X M L

H T M L stands for Hyper Text Markup Language, which is used for creating hyper­

text documents on the W W W . A n H T M L file is a text file containing markup tags.

The markup tags tell the Web browser how to display the page.

Start tags are written as <tagname>, and end tags as </tagname>. Tagnames

are not case-sensitive, i.e. lower and upper case letters are treated as the same. For

example, tag is considered the same tag as <STR0NG>. Some tags have

start and end tags. For example, text can be emphasized by placing it between

2

HP PhotoSmart 7660 Inkjet Printer
$ 1 6 9 . 9 9 $ 1 5 7 . 9 9 - Hewlett Packard Office I
Quick Info Jl

See Also: HP PhotoSmart

HP PhotoSmart 245 Compact Photo
Printer
S24&99 $188.94 - Hewlett Packard I Quick

Info H

' See Also: Photo Printer > Hewlett Packard

Photo Printer

Brother HL-1435 Laser Printer
' $249^99 $179.99 - Brother I Quick Info f l

See Also: Brother HL-

Canon i560 Desktop Photo Printer
?-\ &9A99 $86.44 - Canon I Quick Info Jl

See Also: Photo Printer > Canon Photo Printer

Figure 1.1: A n Example Web Page

<printers>

<printer><model>HP PhotoSmart 7660 Inkjet Printer</model>
<brand>Hewlett Packard Office</brand>
<price>$157.99</prince>

</printer>
<printer><model>HP PhotoSmart 245 Compact Photo Printer</model>

<brand>Hewlett Packard</brand>
<price>$188.94</prince>

</printer>

</printers>

Figure 1.2: Extracted X M L Data

3

 and . Some tags only have start tags and no end tags, e.g.

, which is used

to include an image. Start tags may have attributes, which define some characteristic

of that tag. For example, in previous example SRC gives the source of the image and

ALT describes the content of the graphic.

There are some well-known problems with H T M L files. H T M L is designed

to display data using a browser and to focus on how data look. There is a fixed

collection of tags wi th a fixed semantics, i.e. fixed meanings of tags. Most H T M L

documents are invalid, i.e. not conforming to the specifications of H T M L coding,

which is a detail descriptions of H T M L language. This problem is usually caused

by incorrect nesting of elements, missing required attribute, non-standard attribute,

omitted end tag, etc. A l l of the above make H T M L documents presentation oriented

and difficult to query.

X M L stands for extensible Markup Language. Originally it was designed

to meet the challenges of large-scale electronic data publishing. X M L also plays

an increasingly important role in the data representation and exchange on the Web

and elsewhere. The main difference between X M L and H T M L is that X M L is

designed to describe data and to focus on what data are. The display of the data is

described in a separate style sheet. X M L documents are readable both by human

and by computer. It allows users to define their own tags and their own document

structure. As opposed to H T M L , al l X M L documents must have a root tag, all tags

in X M L must have an end tag and X M L tags are case-sensitive.

The tags created by the user can be documented in a Document Type Defini­

t ion (D T D) . The purpose of D T D is to define the structure, elements and attributes

that are available for use in a document that complies to the D T D . Figure 1.3 is an

example X M L document with a Document Type Definition. A l l the names of tags

are defined by the user. The D T D is interpreted as follows:

4

<?xml version="1.0"?>
<!DOCTYPE note [

<!ELEMENT note (to.from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

]>

<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

Figure 1.3: A n Example X M L Fi le

I E L E M E N T note: defines the element "note" as having four elements: "to, from,

heading, body".

I E L E M E N T to: defines the "to" element to be of the type " C D A T A " .

I E L E M E N T from: defines the "from" element to be of the type " C D A T A " .

There are numerous supporting technologies on X M L . X S L (extensible Stylesheet

Language) is a style sheet language of X M L . X S L can be used to define how an X M L

file should be displayed by transforming it into a format that is recognizable by a

browser. One such format is H T M L . Normally X S L does this by transforming each

X M L element into an H T M L element. XQuery is an X M L query language for re­

trieving and interpreting information from X M L information sources. It is is derived

from an X M L query language called Quil t , which in turn borrowed features from

several other languages, including X P a t h , X Q L , X M L - Q L , S Q L , and O Q L .

X M L is not a replacement for H T M L . In the future, it is most likely that

X M L wi l l be used to structure and describe the Web data, while H T M L wi l l be used

to format and display the same data.

5

There is enormous amount of information about H T M L and X M L on the

Web. For example, http://www.w3schools.com/ and http://www.xmlfiles.com/

are good sources for learning more about H T M L and X M L .

1.3 Text Data Structure

In a survey ([13]) by Line E i k v i l , the sources of data can be grouped into three

types: free, semistructured and structured text.

Free text This refers to the natural language texts without any specific descrip­

tion of the structure. A n enormous amount of information exists in natural

language form. For example, news and articles reported in newspapers may

contain information about the location of the headquarters of organizations, or

about terrorist event such as the type of attack, the date, location, targets and

effects on targets. Pharmaceutical research abstracts may contain information

about new products, their manufacturers, patent information etc.

Natural Language Processing (N L P) techniques are used for extraction of in­

formation from free text. N L P usually applies techniques such as filtering,

part-of-speech tagging and lexical semantic tagging to bui ld extraction rules,

which are based on syntactic and semantic constraints that help to identify

relevant information.

Structured text This refers to the text following a predefined and strict format,

such as textual information in a database or an X M L document. Information

in structured text can be easily and precisely extracted, given the format

description.

Semistructured text This type of text is in-between free and structured text.

The Web is a rich source containing semistructured text. It does not have a

6

http://www.w3schools.com/
http://www.xmlfiles.com/

regular and static structure, and can not be queried or processed automatically

like structured text. But there is some form of structure based on tokens and

delimiters like tags in H T M L documents. This is the type of source for our

extraction system. Pages in the Web are categorized into three classes by [3]:

multiple-instance, single-instance and loosely-structured sources.

The m u l t i p l e - i n s t a n c e sources refer to sources that provide information

on multiple pages with the same format. The information often comes from

a database. Unfortunately in most of the cases, we cannot access these un­

derlying databases freely. Bu t the information on the Web is freely accessible.

There are many sources on the Web falling in this category. A n example of

this k ind of sources is Amazon.com. It shows the author, title, price and other

items in the same format for all its book pages. Another example is the C I A

World Fact Book. It provides information of 268 countries in the world, on

a separate page for each country. A l l the pages are presented in exactly the

same format.

The s i n g l e - i n s t a n c e sources are single web pages which have some kind

of clear organization. A job postings page of a company can be an example of

this type of sources. The page usually has clearly identifiable sections such as

job title, job description, location, posted date, etc.

The l o o s e l y s t r u c t u r e d sources are pages that do not show a structure

or organization. Almost al l personal homepages are loosely structured, where

automatic information extraction becomes more difficult.

1.4 Questions Adressed

Some fundamental questions for our project are listed below.

1. From an H T M L repository, which essentially ignores the meaning of data, how

7

are we supposed to determine which piece of data corresponds to what we are

looking for? For instance, how do we know which piece of text in a page

corresponds to a book title?

2. Suppose we have a system that extracts data from the web. C a n we say any­

thing about how large a proportion of the actual data that it can successfully

extract? This question is important for two reasons. Firstly, being able to es­

timate the amount of results that could be reached by a system would give us

a means by which we could discriminate between competing systems. It allows

systems to be calibrated using some metric. Secondly, when a system involves

a loop (as in our case), where in each iteration it extracts some information,

the ability to predict coverage is critical. As we wi l l see, each iteration is an

expensive operation since it involves accessing a large collection of H T M L files,

looking for occurrences of records, and analyzing them. If at some point we

know that the coverage is close to what the user desires, we can terminate the

iteration.

3. A n equally important question is what can we say about the quality of the

information extracted. Firstly, if we can estimate the information quality of an

information extraction system, that gives us yet another metric for calibrating

systems. Secondly, it forms the basis for data cleaning. Specifically, if we can

estimate the error rate in the extracted information, this can facilitate the

subsequent user decision on how to cope wi th the quality of the information

obtained, as addressed by the next question.

4. Finally, if the estimated error rate is unacceptable to the user, how can we

clean the data to eliminate as many errors as possible.

These were the questions that motivated the current work.

8

1.5 Evaluation Metrics

We propose two metrics, coverage and error rate, to evaluate the result of an infor­

mation extraction system. The coverage and error rate of a set of extracted records

are defined as

number of records in the set ^ ^
coverage n u m b e r of records flndable by the system'

number of erroneous records in the set . .
error rate = . - . (1.2)

number of records in the set

It is worth mentioning other two evaluation metrics, recall and precision,

which are used by the Message Understanding Conferences (MUC) to evaluate in­

formation extraction systems.

^ „ number of correctly extracted records .„ „.
Recall = y — , 1.3

number ot records in answer key

_ number of correctly extracted records . .
Precision = : : . (1.4)

number or extracted records

Recall may be crudely interpreted as a measure of the fraction of the information

that has been correctly extracted, and precision as a measure of the fraction of

the extracted information that is correct. They are inversely related to each other,

meaning that by allowing for a lower recall you can achieve a higher precision and

vice versa.

The notion of coverage is different from recall. In the case of recall, the

denominator is the number of records in the given answer key, which is known in

advance. In the case of coverage, the denominator is the number of all records

that could be found by the system, which is unknown and must be estimated. The

numerator in recall is the number of correctly extracted records, while in coverage

it is the number of all extracted records.

9

The functions of recall and coverage are different. Recall is used to experi­

mentally evaluate various information extraction systems. The information sources

are restricted to a fixed range and all the useful records (i.e. answer key) are known,

usually gathered manually. Conversely, coverage is used to measure the proportion

of al l findable records have been extracted in the current iteration. Given the large

scale of the Web and other H T M L repositories, we cannot know exactly how many

records are included in these sources. For the same reason, the information ex­

traction system is computationally expensive and usually takes a huge amount of

time to reach convergence. Coverage can estimate how much information could be

extracted when convergence could be reached, and what proportion of al l findable

information has already been extracted.

Error rate is equivalent to (1-precision).

1.6 Overview

We present a system for extracting records from a repository of H T M L files and for

converting them to X M L . For example, a record can be a job posting that has five

attributes: t i t l e , company, q u a l i f i c a t i o n , l o c a t i o n and salary. Thousands

of job postings are scattered on the Web in unstructured or semi-structured form.

Our system can extract and store them in relational form or as X M L data.

The procedure consists of two phases.

• Phase I includes extraction of records and their translation to X M L . During

this phase, duplication of information is detected automatically and elimi­

nated. In addition, using statistical techniques, we are able to estimate the

coverage of the result set wi th respect to the source H T M L data set. A l l these

steps are done automatically.

10

• Phase II is aimed at assessing and enhancing the quality of the extracted

information. This phase is interactive. The system provides random samples

to users, from which users provide feedback by pointing out the erroneous

information. Based on the feedback, the system automatically "cleans" up

previously extracted information.

Records extraction in phase I is built on the framework of the method D I P R E

(Dual Iterative Pattern Relation Expansion) pioneered by B r i n ([8]). D I P R E focuses

on extracting a relation of pairs (two attributes such as author and title of a book).

Figure 1.4 shows the structure of this method. Starting from a small seed set of

example tuples (records), the program finds the occurrences of those seeds on a web

page repository. These occurrences are grouped, and patterns are recognized from

these groups of occurrences. Next, the program searches the repository to find all

occurrences that could be matched wi th at least one of the patterns. Records could

be extracted from these occurrences according to the content of the patterns. The

first iteration yields a set of records which usually have more records than those in

the seed set. We take this set as the seed set and find al l their occurrences, gener­

ate more patterns then get more records matching these patterns. This procedure

could be repeated unti l some termination criterion is met. This criterion may be

"convergence" (no new records are found) or that the scale of the results is large

enough.

One attractive feature of D I P R E is that records are extracted from thousands

of web pages which are usually structured very differently, as opposed to one web

page or even several similarly structured web pages. We implement this framework,

extend it to support multivariate records involving more than two attributes, and

improve it in several ways. Because the scale of the repository is usually very large,

it is not feasible to run the iterative procedure unti l convergence, i.e. unti l no more

new records are found. The user could set up a desired coverage. The program wi l l

11

estimate the coverage of the result of each iteration and continue until the desired

coverage is achieved.

Owing to the large scale of heterogeneous information resources, it is in­

evitable that there wi l l be erroneous records contained in the results. In phase II

we assess the quality of results by estimating the error rate. If the user decides to

carry out this step, our system wi l l present a random sample of extracted records.

The user then points out whether a record is a correct record or an error.

We make the following contributions in this project.

• Bui ld ing on the D I P R E method, we develop techniques for extracting records

from thousands of H T M L documents and presenting them in X M L format. Oc­

currences and patterns are defined in a more flexible way compared to D I P R E ,

without increasing the error rate in the results. A t the end of each iteration,

we select the most reliable records to start the next iteration. Experiments

show that these techniques can improve the efficiency, produce high coverage

and low error rates.

• We propose a methodology to evaluate the coverage achieved at the end of

each iteration. Statistical methods based on capture-recapture models with

unequal capture probabilities are applied to estimate the coverage rate of the

extracted results. This can be used to determine when to stop the iterations,

based on a user specified coverage threshold.

• We propose a method for estimating the error rate of the results extracted,

by having the user identify correct and erroneous records in a random sample.

The size of the sample is automatically determined based on the required level

of confidence in the estimated error rate.

• We propose an interactive method to enhance the quality of the results. Based

on the interactive feedback from the user, our method is able to track down

12

seed set

records

f i n d occur rences

occurrences

generate patterns

patterns

extract r ecords

t
result set

Figure 1.4: The General Structure of D I P R E

the patterns that led to errors, thus nagging problem patterns and problem

sets, which include all records that match problem patterns. Our system can

estimate the error rate for the problem set, and clean up erroneous records in

it.

The rest of the thesis is structured as follows. In Chapter 2, we define the

key concepts and describe the strategy for extracting records from H T M L files and

converting them to X M L . Chapter 3 describes two implementation methods. In

Chapter 4, we discuss the coverage estimation and data cleaning in details. Chap­

ter 5 gives some experimental results. In Chapter 6, we briefly describe some related

work. Finally, Chapter 7 discusses some future work.

13

Chapter 2

R e c o r d s E x t r a c t i o n

Our goal is to extract records from a large collection of web pages, starting from

several examples of target records. A record (for example, a book) usually has

several attributes (for example, author, title, publisher, year and price). In this

chapter we generalize two concepts — occurrences and patterns, which have been

introduced by [8].

We wi l l also describe the four steps in an iteration of the extracting procedure:

(i) finding occurrences, (ii) generating patterns, (iii) extracting records and (iv)

eliminating duplicates. The first and third steps are implemented using two different

methods, parsing H T M L and using regular expressions. The implementation of

these two steps wi l l be described in detail in Chapter 3. In this chapter, we briefly

introduce the general procedures for the first and third steps. The second and fourth

steps are the same for the two different implementation methods. We wi l l discuss

these two steps in detail in this chapter.

14

2.1 Occurrences

A n occurrence of a record is the context surrounding attributes of this record in a

web page (an H T M L file). It is defined as a tuple over url, order, prefix, separators,

suffix and values of attributes of the record, where:

url is the U R L of the web page that the record appears on.

order is a number indicating the order that the attributes show up in . For example,

there are six possible orders for records with three attributes.

prefix is the names of tags and contexts preceding the attribute appearing first.

separators are the names of tags and context between attributes.

suffix is the names of tags and contexts following the last attribute.

2.2 Patterns

A pattern is used to summarize a group of occurrences. The methods to summarize

those occurrences play a critical role in our program. Starting from the same init ial

examples, different methods to generate patterns produce results which are very

different in terms of extracted information quality and quantity.

We follow Brin 's ([8]) simple principle to generate patterns. It is defined as

a tuple over (urlprefix, order, prefix, separators, suffix). The occurrences are first

grouped by order and separators. Patterns are generated for each of these groups.

For each group, the order and separators of a pattern are the same as order and

separators of occurrences in the group. The urlprefix of a pattern is the longest

matching prefix of al l url's, the prefix of a pattern is the longest matching suffix of

all prefixes, and the suffix of a pattern is the longest matching prefix of all suffixes.

For example, two paragraphs in Figures 2.1 are part of H T M L scripts of

15

two web pages, which contain information of printers with three attributes: model,

manufacturer and price. The U R L s of web pages are shown in the first line of each

paragraph. For the following two records,

• Record 1

at t r ibutel : Canon i70 Color Bubble Jet Printer

attribute2: Canon

attribute3: $217.34

• Record 2

at t r ibutel : H P LaserJet 1012 Printer

attribute2: Hewlett Packard

attribute3: $149.99

two occurrences, which are shown in Figure 2.2, can be found from H T M L scripts

in Figures 2.1. According to the principle to generate patterns, a pattern can be

generated from these two occurrences. The generated pattern is shown in Figure 2.3.

New occurrences are found by matching the patterns. A n occurrence is said

to match a pattern if there is a piece of text that appears in a web page whose

url matches the urlprefix*, and the text matches * p r e f i x *separa to rs* s u f f i x *

where '*' represents any string. A new record can be extracted from an occurrence.

Values of attributes are extracted and assigned according to the order of the pattern.

Next we describe the four steps in an iteration of our extracting procedure.

16

www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html
. . .<tr><td align="center">. . .</tdxtd>

Canon i70 Color Bubble Jet Printer</bx/a>

Manufactured by
Canon</aXbr>Price: $217.34</ax/tdx/tr>. . .

www.1-electronics-store.com/product+HP-LaserJet-1012-B0000ClXHY.html
...<tr><td align="center">...</td><td>

HP LaserJet 1012 Printer</bx/axbr>
Manufactured by
Hewlett Packard
Price: $149.99</td></tr>...

Figure 2.1: Example of Finding Printers: HTML Scripts from two HTML files

url: www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html
attributel: Canon i70 Color Bubble Jet Printer
attribute2: Canon
attribute3: $217.34
order: 0
prefix: <td><a>
separatorl: </bx/aXbrXa>
separator2:
Price:
suffix: </tdx/tr>

url: www.1-electronics-store.com/product+HP-LaserJet-I012-B0000C1XHY.html
attributel: HP LaserJet 1012 Printer
attribute2: Hewlett Packard
attribute3: $149.99
order: 0
prefix: <tdXaXb>
separatorl: </bX/aXbrXa>
separator2:
Price:
suffix: </tdx/tr>

Figure 2.2: Example of Finding Printers: Occurrences

17

http://www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html
http://www.1-electronics-store.com/product+HP-LaserJet-1012-B0000ClXHY.html
http://www.1-electronics-store.com/product+Canon-i70-Color-B00008CMU9.html
http://www.1-electronics-store.com/product+HP-LaserJet-I012-B0000C1XHY.html

u r l p r e f i x : w w w . 1 - e l e c t r o n i c s - s t o r e . c o m
o r d e r : 0
p r e f i x : <td><a>
s e p a r a t o r l :
<a>
separator2:
Price:
s u f f i x : </td></tr>

Figure 2.3: Example of Finding Printers: A Pattern

2.3 Finding Occurrences

The goal of this step is to find occurrences of the records in the seed set. For

each web page, the program go through al l the records to find occurrences of the

records. A n occurrence is obtained by extracting the prefix, separators and suffix

as we described and set the proper order. We also record the ur l of the web page as

the ur l of the occurrence.

To define occurrences precisely, we need to set up some restrictions on the

prefix, separators and suffix. In the current system, the prefix and suffix could have

at most three tags. The length of the separators, i.e. the distance between two

adjacent attributes of a record can not exceed a certain given l imit . Otherwise we

assume these two attributes are too far from each other and may not belong to

the same record. We experimentally found that 300 characters is a good l imit for

the regular expression approach, and 15 tags is a good limit for the parsing H T M L

approach.

Details of our implementations can be found in Chapter 3.

2.4 Generating Patterns

The basic algorithm for generating patterns is shown in Figure 2.4.

18

http://www.1-electronics-store.com

1. (O i , . . . , Ok) = GroupOccurrences(O)

2. for i = 1 to k

if | O i j = = 1 then next;

else GenOnePattern(Oj)

(a) p.urlprefix = FindUrlprefix(all urls of Oi)

(b) p.prefix = FindLongestSuffix(all prefixes of Oi)

(c) p.suffix — FindLongestPrefix(all suffixes of Oi)

(d) if p.urlprefix==N\]IAj
SubGroupbyUrl(Oj) , goto step 2

elseif p.prefix==N\JLL
SubGroupbyPrefix(Oj), goto step 2

elseif p.suffix==~NULL
SubGroupbySuffix(Oj), goto step 2

else

p.basedoccur=\Oi\, push(P, p)

Figure 2.4: The Algor i thm for Generating Patterns

The input is the set of all occurrences, which is denoted by O, found in

the previous step. First , these occurrences are partitioned into groups O i , . . . , Ofc

according to the order and separators. The occurrences in each group have the

same order and separators. Then for each of those groups that have more than one

occurrence, GenOnePattern() is called to generate a pattern p.

GenOnePattern() works in the following way. The urlprefix of p is the longest

matching prefix of al l the urls in the group. The prefix of p is the longest matching

suffix of al l prefixes of the occurrences in the group. The suffix of p is the longest

matching prefix of al l suffixes of the occurrences. If the urlprefix is null, no pattern

is generated. This group of occurrences has to be subgrouped by prefixes of the

urls, that is, in each subgroup either occurrences have a common prefix of urls or

there is only one occurrence in that subgroup. GenOnePatternQ is called again for

these subgroups. If the prefix is null , this group is subgrouped by suffixes of the

19

prefixes, i.e. occurrences in each subgroup have a common suffix of prefixes. The

same action is taken if the suffix is null .

If none of them is null, a pattern p is generated. The number of occurrences

that support this pattern is assigned to p.basedoccur. The output is a set of patterns

P.

Here is an example of subgroup of occurrences by suffixes of prefixes. The

prefixes of occurrences in a group are < b x / b x i > , < a x / b x i > , < b x / b x b r > .

The first two occurrences have the common suffixes of prefixes, so they are going

to be in a subgroup after the SubGroupbyPrefix procedure applied. The third

occurrence in another subgroup.

2.5 Extract ing Records

In this step, the program searches through the H T M L repository for texts matching

any of the patterns obtained in previous step. Then records are extracted from

those texts. Searching is targeted at the patterns and the H T M L files, of which the

ur l of the H T M L file is matched with the urlprefix of the pattern.

The index of the pattern that a record matches is saved wi th this record. It

plays a key role in data quality assessment and enhancement.

Going over al l the H T M L files and patterns, the system produces a set of

records as well as indexes of patterns they match.

2.6 El iminat ing Duplicates

It happens very often that some records are found more than once. The most basic

method to eliminate duplicates is to compare the values of corresponding attributes

20

of two records. If al l of them are exactly the same, the two records are duplicates.

One of them is dropped from the result and the number of occurrences of this record

is incremented by 1.

Usually there are some duplicates that can not be identified by merely com­

paring the values of attributes directly. For example, the author of a book may

appear in a different format, such as "Isacc Asimov" and "Asimov, Isaac". The title

of a book may be

• "The Weapon Shops of Isher", "Weapon Shops of Isher" or "Weapon Shops

of Isher, the".

• "Guns, Germs and Steel" or "Guns, Germs, and Steel".

• "Tiger! Tiger!" or "Tiger, Tiger".

To detect those kinds of duplicates, we apply a fairly simple approximate

string matching method. Values of two attributes are compared in the following

way.

1. Spaces, punctuations and symbols other than English letters and numerals

([a -zA-ZO-9]) are removed.

2. Stopwords, i.e. words that are common in a full-text file but have little value in

searching, such as a , an , t h e , f o r , t o , i n , on , and, etc. are removed.

3. A l l letters are translated to capital case.

4. Each value is translated into an alphabetical ordered sequence only consisting

of capital letters (A-Z) and numerals (0-9).

The corresponding two sequences are compared to decide whether the two

values are the same.

21

After the four steps of an iteration, a set of records is obtained. To track the

relationships between occurrences and patterns, for each record, we store a list of

indices of patterns that this record matches.

Intuitively, the records that have more occurrences are more likely to be

correct. The records that have more than one occurrence can be selected as the

seed set of the next iteration. One of the advantages of this method is that, the

next iteration starts from more reliable records and less noise wi l l be added to the

pattern generation process. This wi l l also reduce the number of erroneous records

in the resulting database. Another advantage is that the next iteration starts from

a smaller number of records therefore saves running time. Because records with

more occurrences are selected, patterns are more likely to be generated from these

records. In our experiments, we noticed that when we use a set of records that have

more than one occurrence as seed into the next iteration, it runs faster and returns

almost the same number of new records as if we had used a l l records as seed.

Finally, the extracted records are converted to X M L .

22

Chapter 3

I m p l e m e n t a t i o n a n d

P e r f o r m a n c e

There are two computationally expensive procedures in our system, finding occur­

rences and extracting records. Bo th of them have to search through a large repos­

itory of H T M L documents. Two methods, parsing H T M L documents and regular

expressions can be applied to implement these two procedures.

A n H T M L parser is a processor that reads an H T M L document and breaks

it up into a set of different kinds of markup tags and plain text. The technique of

parsing H T M L is widely used to extract useful information from H T M L documents.

There are various H T M L parsers available on the Web. For example, Per l modules

H T M L - P a r s e r ([20]) and HTML::TokeParser ([21]), and Java library H T M L P a r s e r

([19])-

The second method used is regular expressions. A regular expression is a

string of characters which tells the searching program what kind of string (or strings)

you are looking for, e.g. all the words starting with letter A. Regular expressions

are an extremely powerful tool for manipulating text data. They are now standard

23

features in a wide range of languages and popular tools such as Perl , Java, P H P ,

Python, and Emacs. The complete overview of the syntax and semantics of regular

expressions can be found in many related books and web sites such as [9], [29]

and [12].

In this chapter, we wi l l discuss these two methods in some detail. Algorithms

for implementing these two procedures are also presented.

3.1 Parsing H T M L Documents

In this section, we first introduce parsing H T M L script by Perl module HTML::TokeParser .

Then the algorithms of finding occurrences and extracting records, which use the

technique of parsing H T M L , are described.

3.1.1 HTML::TokeParser

H T M L is widely regarded as the standard publishing language of the World Wide

Web. H T M L uses tags such as <hl> and </hl> to structure text into headings,

paragraphs, lists, hypertext links etc. The HTML::TokeParser module in Perl parses

an H T M L document into a set of tokens. Each token represents either a tag or plain

text between two tags. B y doing this, it separates the tags from the plain text and

recognizes different types of tags.

A s we mentioned in Section 1.2, start tags may have attributes. Attr ibute

names and values of a start tag usually relate to the specific records. To find common

patterns from context around similar records, we ignore attributes of start tags, and

only consider the type of the tokens, the name of a tag, and the content of the text.

For example, parsing the first part of the H T M L script in Figure 2.1 gives

the following tokens. The first token corresponds to the start tag wi th tag name

24

"tr". The 4th token corresponds to the end tag with tag name "td". The 8th token

corresponds to the text "Canon i70 Color Bubble Jet Printer".

1 S t r

2 S td

3 T

4 E , td

5 S td

6 S a

7 S b

8 T Canon i70 Color Bubble Jet Printer

9 E b

10 E a

11 S br

12 T Manufactured by

13 S a

14 T Canon

15 E a

16 S br

17 T Price: $217.34

18 E a

19 E td

20 E t r

3.1.2 Algorithm Implementation

• The algorithm of Finding Occurrences is implemented as follows.

The input is a set of records and H T M L files. The Output is a set of occur­

rences. Each occurrence has tuples: values of attributes of records, url, order,

25

prefix, separators, suffix.

For each H T M L file, parse the H T M L file into a set of Tokens. Each token has

three values: index (the position of this token), type (the type of this token)

and content.

For each record,

1. Set up a Flag to represent the current matching status. Flag=0 means

new occurrence, and Flag=i (i ^ 0) means that there are % attributes of

the record matched.

2. Set up an orderFlag to represent the order of the attributes of the record,

orderFlag=i means that the current matched attribute is the ith attribute

of the record.

3. Create an array Occur to store al l the occurrences. Each Occur has

attributes as: url, Order, Prefix, Separator, Suffix and the values of at­

tributes of the record.

4. Scan through the Tokens. For each token,

(a) If it is not a text-token, go to next token; Otherwise, i f the Content

of the token is matched with the value of the ith attribute of the

record, check the Flag.

(b) If the Flag is 0 which means this is a start of a new occurrence. Set

the Flag to 1. Record the Index for this token. Set Occur.prefix as

the names of three proceeding tags.

(c) Else, i.e. if the Flag is j (j ^ 0), which means there are already

j attributes of the record matched. We check the distance between

current matching and previous matching.

- If the difference of index between consecutive matching is large

than 15, then we treat this matching as a start of a new occur­

rence, do what we do in the previous item for new occurrence.

26

— Else treat this as a matching of an attributes. Set the Flag=j +

1. Set Occur.separator [j] as the names of the tags between two

consecutive matching. Set order Flag [Flag]=i

(d) If Flag is equal to the number of attributes of the record,

— Set Occur.suffix as the names of the three following tags.

— Set the Occur, order according to orderFlag.

— Push this occurrence into Occur.

A s we reach the end of the H T M L file, we got an array of occurrences: Occur.

Examples of occurrences are shown in Figure 2.2.

• The algorithm of E x t r a c t i n g Records is implemented as following.

The input is a set of patterns and H T M L files. The output is a set of extracted

records/results.

We restrict the matching only within the H T M L files of which U R L s match

the urlprefix of the pattern. For H T M L file, if there is a patten p such that

p.urlprefix could be matched with the U R L of H T M L file, the H T M L file is

parsed into a set of tokens.

For each token,

1. Matching the prefix of the pattern

- If the token is a tag,

* If the name of the tag matches with the i t h tag in p.pre fix, set

matchflag = i

* Else set matchflag = 0, goto next token.

- If the token is not a tag,

* If al l the tags of p.prefix have been matched, return the index

of this token indexl.

* Otherwise, set matchflag = 0, go to next token.

27

2. Matching the separators of the pattern. If it is success, return the in­

dexes of the tokens right after the last matched tags of the separators.

Otherwise go to next token.

3. Matching the suffix of the pattern. If it is not success, go to next token;

Otherwise,

4. Extract ing the record. Now the whole pattern is matched, the values of

attributes of a record can be extracted according to the indexes returned

from each matching step above. The order of the attributes is determined

by the order of the pattern. The index of the pattern is recorded with

the record.

5. The next iteration starts from the token next to the end of current match­

ing.

3.2 Regular Expression

3.2.1 Introduction

The other approach to implement the algorithms is to use regular expressions. A

regular expression is a string of characters for matching strings that follow some

pattern. Regular expressions are made up of normal characters and metacharacters.

Normal characters include upper and lower case letters and digits. The metachar­

acters have special meanings.

In the simplest form, a regular expression is just a word to search for. For

example, suppose we want to search for a string with the word "cat" in it. The

regular expression would simply be "cat". The words " cat", "catalog", or "sophisti­

cated" would match this regular expression. A simple example using metacharacters

is the regular expression ' a [0 - 9] + \ It matches ' a ' followed by one or more digits,

28

where ' [] ' is a metacharacter to look for one of a set of characters, ' + ' is a pattern

quantifier that matches one or more items.

There are two regular expression operators within Perl . The matching oper­

ator, m / / , is used to match a string to a regular expression, which returns a true or

false value. The substitution operator, s / / / , substitutes one expression for another.

For example, the following operations

$ s t r i n g = ' ' m y c a t ' ' ;

$ s t r i n g = ~ s / c a t / d o g / ;

substitutes "dog" for the "cat" of Sstring. As a result, the Sstring becomes "my

dog";

Next we briefly introduce some of the metacharacters of regular expressions

that are used in our program.

Matches the beginning of a string.

$ Matches the end of a string.

\ d Matches a digit character.

\s Matches a white-space character (space, tab).

Matches any character except the newline character.

[] Matches any one of the characters between the brackets. For example, the

regular expression r[aou]t matches rat, rot, and rut, but not ret. Ranges

of characters can be specified by using a hyphen. For example, the regular

expression [0-9] means match any digit.

To match any character except those in the range, the complement range, use

the caret as the first character after the opening bracket. For example, ["0-9]

wi l l match any character except digits.

29

* Matches 0 or more repetitions of the previous term,

-f- Matches 1 or more repetitions of the previous term,

{n} Matches exactly n times.

{n,m} Matches at least n times but no more than m times.

() Groups expressions together. Each group is recorded in the special variables

$1, $2, $3 and so on, in the sequence of parentheses. For example, suppose

$date="04,28,2004", the following substitution operation

$ d a t e=~s / (\ d +) , (\ d +) , (\ d +) / $ 3 $ l $ 2 / ;

changes the $date to "20040428", where variables $1, $2, $3 store strings that

match regular expressions in the first, second and third parentheses, i.e. "04",

"28" and "2004" separately.

g Modifier. Matches/replaces globally every occurrence within a string, not only

the first.

i Modifier. Matches are not case-sensitive.

s Modifier. Allows use of ' . ' also to match a newline character.

? Non-greedy Matching. B y default, Per l uses greedy matching. For example,

$ s t r = " H e l l o t h e r e , No th ing h e r e " ;

the substitution operation

$ s t r=~s / H . * h e r e / H e l l o / ;

substitutes "Hello" for the part matching "H.*here" in $ s t r . B y default, Per l

takes as much as it can into the match. So the part matching "H.*here" in

30

$str is "Hello there, Nothing here", and the $str becomes "Hello". If we use

non-greedy matching,

$str=~s/H.*?here/Hello/;

after 'H' is matched, '.*' matches the minimum length before the 'here' is

matched. So the part matching "H.*here" in $str is "Hello there", which is

then substituted by "Hello". Now $str becomes "Hello, Nothing here".

.2.2 Algorithm Implementation

[ere are some examples of part of the regular expressions we use.

• (<["<>]*?>["<>]*?) {3}

Matches three consecutive tags, which may or may not have attributes. Plain

text is allowed between tags.

• ~s#<(/?\w*)\s?[~o]*?>#<$l>#gi

Extracts the name of a tag. For example, after the substitution, <td align="center"

turns out to be <td>.

• \s*([~o]*?)\s*

Matches plain text (i.e. no tag is in-between), which may have some white-

spaces at the beginning or end.

• ~s#>#[~<>]*?>\\s*[~o]*?#g

Substitutes > by ["<>] *?>\s* ["<>] *? globally. For example, after the sub­

stitution, <a> turns out to be

<a["<>]*?>\s*["<>]*?<b["<>]*?>\s*["<>]*?

which could be matched by

31

Finding Occurrences

For each record, regular expressions are constructed by combining its at­

tributes in different orders. For example, a regular expression of a printer

for order 0 is

((<["<>]*?>["<>]*?){3})Canon i70 Color Bubble Jet Printer

(. {1,300}?)Canon(. {1,300}?)\$2i7.34((["<>] *?< ["<>] *?>H3})

Then the program searches through all H T M L files for texts that match these

regular expressions. A n occurrence is extracted from each of the matching

texts. The same occurrence shown in Figure refex:occur can be obtained by

this approach from the H T M L script in Figure 2.1.

Extracting records

For each H T M L file, each pattern,

1. If the U R L of current H T M L file matches the urlprefix of the current

pattern, perform the task described in point 2 below; otherwise move on

to the next pattern.

2. Ma tch the regular expression "prefix*separators*suffix".

For example, for the pattern shown in Figure 2.3, the following regular

expression is generated.

<td ["<>]*?>\s*["<>]*?<a[~<>]*?>\s*["<>]*?<b["<>]*?>\s*["<>]*?\s*

([-<>]*?)

\s*</b[~<>]*?>\s*["<>]*?</a[~<>]*?>\s*["<>]*?

<br["<>]*?>\s*["<>]*?\s*<a[~<>]*?>\s*["<>]*?\s*

(["<>]*?)

\s*</a[~<>]*?>\s*["<>]*?<br["<>]*?>\s*["<>]*?Price:\s*

(["<>]*?)
\s*</a["<>]*?>\s*["<>]*?</td["<>]*?>\s*["<>]*?</tr["<>]*?>\s*["<>]

32

For each of the matching texts, the texts between the prefix and the first

separator, between two adjacent separators, and between the last separa­

tor and the suffix, which correspond to the expressions in the brackets in

the regular expression, are extracted out and assigned to the attributes of

a record according to the order of the pattern. The index of the pattern

is also recorded with this record.

3.3 Performance

Both of the two approaches, parsing H T M L and regular expressions, have advan­

tages and disadvantages. Regular expressions are amazingly powerful and deeply

expressive. However, constructing the regular expressions is tedious and error-prone.

We have to worry about character level tr ivia, such as space, newline, single and

double quotes. From the examples in previous section, we can see that the regular

expressions that we use are very complicated. Moreover, there are some rare cases

that regular expressions may fail. For example, applying the regular expression

«[-<>]*?»

on the following H T M L script,

 B">

we get the wrong result

instead of the whole tag.

The H T M L TokeParser module in Per l takes care of the tedious character

level work. It extracts and distinguishes six types of tokens. Compared to regular

expression, the approach of parsing H T M L is more robust. Also, it is more reason-

33

Table 3.1: Computational Times

method attributes seeds files occurs (time) patts results(time)
Parser 2 3 242 161(48) 15 357(55)
Regex 2 3 242 97(27) 7 372(0.21)

able to control the distance between consecutive attributes by the number of tags

than by the number of characters.

Experiments are conducted to compare the computational times of different

approaches. The results are shown in Table 3.1. The columns are the method used,

the number of attributes of each record, the number of records in the seed set, the

number of H T M L files, the number of occurrences found and the time it costed in

seconds, the number of patterns, and the number of records extracted and the time

it costed in seconds. The first row corresponds to the parsing H T M L approach.

The second row corresponds to the regular expression approach for records with

two attributes.

The experiments are based on the same seeds and the same H T M L files.

The numbers of records in the results are very similar, and there is no fake records

in both of the two results, but the computational time costed by parsing H T M L

approach is much more than the computational time costed by regular expression

approach, especially in the step of extracting records. The reason for the poor t iming

performance of parsing approach is the huge number of tags in an H T M L document.

It often happens that some tags in the beginning of a pattern are matched before

the matching failed. The program have to keep track of each matching attempt,

and then to go back to the starting point when matching attempt has failed at some

point.

B o t h of the two steps, finding occurrences and extracting records, search

through a large repository of H T M L documents, therefore they are very time-

consuming. The computational time is a crit ical issue for our system. From this

34

point of view, regular expressions are preferred.

35

Chapter 4

S t a t i s t i c a l A n a l y s i s

One of our goals is to capture a high percentage of all the records available in

an H T M L repository. To that effect, we implemented an automatic procedure to

estimate, after each iteration, the percentage of al l the records available in the

repository that are already included in our result (result = set of recovered records).

Another goal is to minimize the number of errors in our result. To that effect, we

implemented an interactive (semi-automatic) procedure to estimate and reduce the

percentage of erroneous records.

In what follows, we give some details of the statistical procedures employed

in our system. '

4.1 Coverage Estimation

Given the large scale of the Web and other H T M L repositories, searching for records

is computationally expensive. Therefore we wish to minimize the number of itera­

tions, especially when using large seed sets. Instead of running our system until full

convergence (i.e. unti l no new record is found) we stop when a given coverage target

36

has been met.

We define the "population size" N as the number of records our system could

possibly find, i.e., the size of the result set after full convergence. In principle, our

searching procedure always converges because the number of records found in each

iteration cannot decreases, and there is a finite set of records in the repository.

Convergence could be reached either when all records have been found, or no new

record could be found in the last iteration.

Let Ni be the size of the result set after the ith iteration and the current

coverage is defined as

a = (4.D

Obviously, the denominator in (4.1) is unknown and must be estimated in order to

estimate C%.

In the next section, we discuss the adaptation of "capture-recapture" models

and techniques - widely used in Biology to estimate the size of wildlife populations

- to estimate the size of (the no less wild) population of "findable" records.

4.1.1 Capture-Recapture Models

The capture-recapture models were originally proposed by biologists to estimate the

size of wildlife populations. The basic idea is to set traps to capture some animals

and release them after they have been marked. A second trapping is conducted after

the animals have had enough time to return and mix back wi th their population.

The number of recaptured animals can then be used to estimate the size of the

population. Capture-recapture models and techniques have been used in other areas

such as estimating the size of the indexable Web and the coverage of search engines

([26]). In our case, instead of animals we "capture" records and each trapping

occasion corresponds to an extracting occasion, i.e. an iteration of our extraction

37

system. Starting from a randomly selected seed set of records (a trap), we run the

next iteration of the extraction program to get a larger set of records (captured

objects).

We now briefly introduce the basic ideas underlying capture-recapture pro­

cedures. In the first extracting occasion of the capture-recapture experiment, a

number n\ of individuals or records are captured, marked and released. A t a later

time, the second extracting occasion, a number ni of individuals or records are

captured, of which, say mi have been marked. The Petersen estimator for the pop­

ulation size is based on the observation that the proportion of marked individuals

in the second sample (recaptured sample) should be close to the same proportion of

marked individuals in the total population, i.e.

mi _ ni
~n~i ~ ~N

Thus the estimator for population size is

TV" = (4.2)
mi

The estimate variance of this estimator is

var(iV) = n i n 2 (n i ~ m 2 ,) (n 2 - m 2) . (4.3)

The general assumptions for this basic capture-recapture model are: (i) the pop­

ulation is closed; (ii) al l marks are correctly noted and recorded; (iii) marks are

not lost; (iv) each individual has a constant and equal capture probability on each

extracting occasion.

The first assumption means that the size of the population is constant over

the period of experiment. This is a strong assumption and usually not true in

biological populations. Nevertheless, this assumption is valid when we deal wi th a

static repository (e.g., a fragment of the web crawled and stored). Assumptions 2

and 3 are also always true in our setting. However, the last assumption is strongly

violated here. Different records usually have different probabilities of being found

(captured). We applied two methods to solve capture-recapture models wi th unequal

capture probabilities. We first introduce the post-stratification method, which is

transparent and easy to understand. A more complicated method, the generalized

jackknife, proposed by Burnham ([10]), is discussed later.

4.1.2 Post-stratification Method

When a web page contains a large number of records, it is more likely that records

from this page follow (a small number of) patterns, because the contexts of records

in the same web page are usually similar. Consequently the records in this page

are more likely to be found (by matching these patterns). Therefore, depending on

the patterns that a record matches, it becomes easier or harder to be found. For a

pattern, we define its score as the number of records matching this pattern. Patterns

with higher scores are associated with higher capture probabilities.

For each extracting occasion, we obtain a set of patterns and a set of records.

Together with each record, the program keeps a set of indexes of patterns which are

matched by this record. The score of a pattern can be obtained by scanning through

the set of records and counting how many times a pattern has been matched.

Based on the scores of patterns, we set up a score for each record. The score

of a record is the maximum of scores of a l l the patterns which are matched by this

record. The higher the score of a record, the larger the capture probabilities of this

record.

The post-stratification method is to stratify the captured records by their

scores into several strata. Capture probabilities of records in the same strata are

assumed to be the same. Thus the basic capture-recapture model can be applied in

each stratum to estimate the population size of this stratum. The total estimated

39

1. Calculate ScoresofPatterns(-Ri), ScoresofPatterns(P 2)

2. Calculate ScoresofRecords(.Ri), ScoresofRecords^)

3. R = Combine(i?i , R2), for each r in R

If r only in Ri, r.mark = 1
If r only in R2, r.mark = 2
If r in both R\ and R2

r.mark = 3

r.score = max(r.score in r.score in #2)

\ 4. (G i , G 2 , G 3) = StratifyByScore(i?)

5. For each G*, i = 1,2,3
Xij = the number of r that (r.mark = j), j = 1,2,3
« i = xn + x%3, mi = Xi2 + Xis, Xi =

Ni —rii x rrii/xi

6. N = Ni + N2 + N3

Figure 4.1: Algor i thm of Post-Stratification

population size then wi l l be the sum of the population sizes of the strata.

The analysis is based on two extracting occasions. We get two sets of patterns

P i and P2, and two sets of records R\ and Pi2- The algorithm for estimating the

population size based on two extracting occasions is shown in Figure 4.1.

From the discussion above, the score can be obtained for each pattern, as

well as for each record. Then the two sets of records are combined together by the

following strategy. For each record: (i) if it is in both sets, it is marked 3 and the

score of this record is the largest of its two scores; (ii) i f it is only in set 1, it is

marked 1 and its score is the same as in set 1; (iii) if it is only in set 2, it is marked

2 and its score is the same as in set 2.

Based on the compound set, the records are stratified by their overall scores.

For example, records can be stratified to three strata according to their scores,

greater than 10000, 1000-10000, and less than 1000. Parameters and variables

40

manipulated by the algorithm in Figure 4.1 are as follows:

• Xi\,Xi2,%iz denote the number of records in i t h (i — 1,2,3) stratum, which

are only in set 1, only in set 2, in both sets respectively.

• nt is the number of records in the i t h stratum captured in set 1.

• mi is the number of records in the i t h stratum captured in set 2.

• Xi is the number of recaptured records.

• Ni is the estimated population size of i t h stratum.

• N is the estimated population size.

4.1.3 Generalized Jackknife Estimate

There are detailed discussions on the capture-recapture models on closed animal

populations with unequal capture probabilities in [28]. Three types of models wi th

unequal capture probabilities for closed populations are based on the following as­

sumptions:

Mt- Every individual has the same capture probability for a given occasion, but

capture probabilities can vary at each sampling time.

M0: The ini t ia l capture probabilities for al l individuals are the same, adjust for a

change in capture probabilities caused by a response to trapping.

Mh'. Each individual has its own capture probability independent of all other indi­

viduals. This probability keeps the same at each trapping occasion.

The capture probabilities for different records are usually different. For each

record the capture probability is constant at each extracting occasion. So the model

Mh is suitable here.

41

Burnham and Overton introduced the model Mh and developed a nonpara­

metric estimator of population size based on the generalized jackknife in [10]. We

briefly describe the estimation procedure here.

Suppose we do the extracting t times, the basic data are the extracting histo­

ries of records, denoted by Xij, i = 1 , . . . , N, j = 1 , . . . , t, where N is the population

size,

1 if the i t h record is captured on the j t h extracting occasion,

0 otherwise.

The unknown parameters are population size N and the capture probabilities of

records p\,... ,pjv- The model assumes that pi,... ,PN are a random sample from

an arbitrary probability distribution and all Xij's are independent.

The capture frequencies are defined as /o, / i , /2 , • • •, /*> where for j = 1 , . . . , t,

fj is the number of records that have been caught exactly j times in all the t times

extracting, and /o is the number of records never captured. The capture frequencies

have multinomial distribution. The number of al l different records captured in the

t times extracting occasions is S = Y0j=i fj • It has been proved in [10] that the set

of capture frequencies fj is a sufficient statistic for the data .

The feth (k < t) order jackknife estimator, given by Burnham in [10], is

^ r f D " 1) * k \{n-i)kN(t-i) (4.4)

where the N^t_^ is an estimator of population size based on all combinations of

t — i extracting occasions. Let j i , . . . , ji be a combination of i integers from the set

(1 , . . . , £}, define Nt-i,jx,...,ji as the estimator based on the t — i extracting occasions

remaining after j\,..., ji extracting occasions are dropped, then

t^

- l

fyt-i) =1.1 E J> (4-5)

42

which can be calculated by

(t-r\
fr- (4-6)

From (4.4) and (4.6) we can see that the Nk is a linear combination of the capture

frequencies,
t

2=1

The coefficients can be obtained from (4.4) and (4.6).

The estimated variance of this estimator is

t

i=l

The variance of Nk increases as k increases. Therefore if two estimators are

not significantly different, we take the one with the smaller order. We test the

hypothesis that there is no significant difference between zth and (i + l) t h order

jackknife estimates, that is

Ho : E(Ni - Ni+1) = 0, H± : E{N{ - Ni+1) + 0

The test statistic is given in [10]. Under the null hypothesis the test statistics

has approximately a standard normal distribution. If we can not reject the null

hypothesis, we take Ni as the estimation of population size. If al l of these estimators

are significantly different, we take the (t — l) t h order jackknife estimator as the final

estimator.

43

1 system: Generate a random sample R of size n from the result W.

2 user: Identify true records T and erroneous records E, using user feedback.

3 system: Estimate the error rate of W.

4 user: If estimated error rate is acceptable, stop else continue.

5 system: PP = FindProblemPatterns(i?).
For each p in PP

(1) system: B = ProblemSet(p), m = \B\
(2) user: Determine to discard or keep B. If we decide to keep B,
(3) system: i?(p)=RandomSample(.B)
(4) user: Identify true records T(p) and erroneous records E(p).
(5) system: r(p)=ErrorRate(p)
(6) user: Determine to discard, keep as it is or clean B. If we decide to clean,

continue.

(7) system: Clean(B)

Figure 4.2: Quali ty Assessment and Enhancement Algor i thm

4.2 Quality Assessment

The error rate for a set of records is defined as the number of erroneous records over

the total number of records in the set,

of erroneous records
r — .

of records

Unfortunately, the occurrence of errors in the resulting database of records is un­

avoidable. O n the other hand, a high error rate can greatly diminish the usefulness

of the database. Therefore, it is important to consider steps to estimate and reduce

r.

The first step to control r is to obtain an estimate of its magnitude. We

call this step "Quality Assessment". If, as a result of this step, r is considered too

large, then measures are implemented to reduce it. We call this second step "Quality

Enhancement" and discuss it in the next section.

44

For interactive quality assessment and enhancement, the system initiates the

dialogue described in Figure 4.2. The first three steps are for the quality assessment

of the result. The following steps are to enhance the quality of the result. First

the system generates a sample it! of n records that are randomly selected from the

resulting database W of extracted records. The sample size is determined automat­

ically by the system, based on the required level of confidence in the estimated error

rate. Then the user examines R manually to identify erroneous records. The error

rate is estimated by the proportion of errors in W and reported together with a 95%

confidence interval for r. Based on the estimated error rate, the user decides whether

just to accept W as the final result or to do further quality enhancement steps. The

estimation of r is further discussed below. Quali ty enhancement is further discussed

in the next section.

The estimate of the error rate, r, can be obtained using simple random

sampling. A relatively small number of records, n , are randomly selected from the

database and submitted to the user for inspection. The user manually checks the

records and identifies erroneous ones. The number of erroneous records, denoted by

ne, has hypergeometric distribution with parameters N, n and r and an unbiased

estimate of r is
. _ rig

n

The estimated standard error of this estimator is given in [31],

N — nr(l — r)
se(r) = \ —— — .

w V N n ~ 1

A key issue is to choose the number of records needed to estimate the error

rate with a desired precision (upper bound on the estimate standard error). If we

want se(f) < 3, then we need

Nrjl - r) . .
n > (/ V - l) / 3 2 + r (l - r) ' 1 " '

where N is the total number of records in the database.

45

To get n , we need an "init ial estimate", f n , of r and the desired precision, 3.

When there is no information about r, f n = 50% can be used to obtain a conservative

sample size n. However, the actual error rate of the extracted result should be much

less than 50%. Otherwise we would need to reconsider the pattern generation rule.

In our implementation, f n = 20% ,8 = 2% are for default determination of n .

B y central l imit theory, the estimator f is approximately normally distributed

with mean r and variance v a r (f) . A 95% confidence interval for the error rate r is

f ± 1.96 x se (f) .

4.3 Quality Enhancement

The quality enhancement procedure first finds the problem patterns, that is, patterns

that are matched by erroneous records. Recall that each record in the result has a

set of indexes of patterns that it matches. For each problem pattern p, al l records

that match this pattern are called problem set B. The system wi l l report features of

B such as the number of records and the percentage significance of this set compared

to the resulting database W. Based on this report, the user either decides to accept

the result or to perform quality enhancement. For example, if there are only few

records in B, or the proportion of a problem set B is only 0.1%, the user may decide

to discard the entire problem set from the result. O n the other hand, if the size or

relative size of B is large, the user may instruct the system to improve the quality

of this problem set B.

The error rate for the problem set B can be obtained using the same random

sampling method described before. Again , the user must decide here the future

course of action. If the error rate is very high, this problem set should probably be

discarded. If the error rate is very low, we may keep this set as it is. Otherwise,

when the error rate of a problem set is moderate and the size of the set is not t r iv ia l

46

V=values of attribute k of (W — B).
For each r in B

1. Spellingcheck(r). If pass,

2. v = r.attribute[k]

3. if(v not in V) and (occ(r)==l)
r is an error
else r is true

Figure 4.3: The Algor i thm of Clean(B)

compared to the whole set, the user can ask the system move to the "cleaning" step.

Spell-checking is a simple but very powerful tool to filter out erroneous

records containing alphanumeric values. The user can specify the spelling con­

straints on attributes of records. For example, names of people or products usually,

start from capital letters. Prices usually begin wi th currency signs and then digits.

We propose another effective method of finding erroneous records in a prob­

lem set B. The basic algorithm is shown in Figure 4.3.

Based on the fact that the number of records in the result is substantial,

some attributes of records are very likely to have repeated values in the result. For

instance, an author usually appears more than once in a large set of books. A

manufacturer or brand usually appears more than once in a large set of printers.

Our method is to verify whether the value of such a specific attribute of a record is

valid, by checking whether this value has been repeated in some other records.

Taking searching for books as an example, V is the set of values of authors

from all records other than the current problem set. The value (v) of the author of

each record in the problem set is compared to the values in V. If we cannot find v

in V, this record is likely to be an error.

In addition, we check whether this record matching one pattern or more than

47

one pattern. If it matches only this problem pattern, we assume that it is an error.

Notice that it is possible that some correct records may be wrongly treated as

errors. The larger the number of records in the result W, the smaller this probability.

Experiment results in Section 5.3 show the effectiveness of this method.

48

Chapter 5

E x p e r i m e n t a l R e s u l t s

We successfully applied our prototype to several domains such as printers (model,

manufacturer, price), papers (author, year, title, journal) and books (author, title,

price). Comprehensive experiments were conducted for the simple case of two at­

tributes: authors and titles of books. The results of these experiments are presented

in this section.

5.1 Searching for Books

The experiments ran on a collection of 16128 H T M L files used as a testbed. These

files were obtained by searching the Web using Google. For each of 370 randomly

selected books, we run the Google search automatically, setting the author and title

of a book as the keywords. For each book the first 50 web pages of the searching

results were selected. We took the union of the 370 sets of urls and successfully

downloaded 16128 H T M L files.

We started the experiment wi th 3 popular books, shown in Table 5.1. The

first iteration produced 266 occurrences and 19 patterns. Matching these patterns

49

Table 5.1: Seeds of Books

Author Ti t le
Isaac Asimov

David B r i n
Charles Dickens

The Robots of Dawn
Startide Rising

Great Expectations

Table 5.2: Result of the First Iteration

related occurrences number of books
exactly 1 occurs 813

more than 1 occurs 454
more than 2 occurs 122
more than 3 occurs 74
more than 4 occurs 57
more than 5 occurs 43
more than 6 occurs 34
more than 7 occurs 26
more than 8 occurs 19
more than 9 occurs 15

more than 10 occurs 11

over al l the H T M L files produced 1267 books. For these 1267 books, the number of

occurrences related to the number of books are shown in Table 5.2.

The key issue is how to choose the seed sets for the following iterations.

Three methods of choosing seed sets were used in our experiments.

Blind: This method takes all of the results from the previous iteration as the

seed set for the next. Because the number of seeds is large, only the second iteration

was performed. Starting from the 1267 books, 16525 occurrences are found, 880

patterns are generated and 45034 books were extracted.

GoodSeed: This method chooses books with more than one occurrence from

the results of previous iteration as the seed set. For the same reason as above, only

the second iteration was performed. There were 454 books that have more than one

50

occurrence out of the 1267 books. Starting from these 454 books, we found 9200

occurrences, 588 patterns and 40715 books.

TopSeed: This method chooses some number of books that have the most

number of occurrences from the results of previous iteration. To show the relation­

ship between the running time and the coverage of the results, the numbers of seeds

are set to be 50 more than the number of seeds of previous iteration. That is, the

number of seeds for the second iteration is 53, for the third iteration is 103, four

more iterations were performed. The number of books obtained is 39412. These

results are shown in Table 5.3.

B y doing the above experiments, we can compare three quantities (the cov­

erage, error rate and running time) of these three methods. These results are shown

in Table 5.6. Columns represent names of seed sets, numbers of extracted results,

estimated coverges of those results, 95% confidence intervals of error rates and times

costed in hour. The B l i n d has a little higher coverage but its error rate is the largest

and the running time is much longer than the other two methods. The GoodSeed

has the shortest running time. What is very impressive is that, the estimated error

rate for TopSeed is very low (zero). Because in TopSeed method, the seeds for each

iteration are selected with high positive confidence, the results are highly reliable.

The running time of TopSeed is less than half of that of B l i n d . In general, the last

two methods are better than B l i n d . TopSeed took more than GoodSeed because we

ran more iterations, but it offers the least error (zero in this case). The coverage of

GoodSeed and TopSeed are about the same.

We plot the coverage versus running time for TopSeed in Figure 5.1. It shows

that once the coverage becomes large, it takes much more time to improve it.

A n example of part of an X M L document generated by our system is shown

in Figure 5.2.

51

T _ * Iteration 5

CM _

CO
O _

p Iteration 4

im
e,

CO -

a>
c CD -

)» Iteration 3

' c
c

cc -
C\J -

•-"Iteration 1

— • Iteration 2

I l

0.0 0.2

I
0.4

i i i

0.6 0.8 1.0

Coverage

Figure 5.1: The Coverage Versus Running Time

<book><author>A. Merritt</author>
<title>The Moon Pool</title>

</book>
<book><author>Isaac Asimov</author>

<author>Robert Silverberg</author>
<title>Nightfall</title>

</book>

Figure 5.2: Example of Part of X M L File

Table 5.3: Searching Results by Choosing Seeds wi th Most Number of Occurrences

iteration books run time(h) # of results
1 3 0.55 1267
2 53 3.62 29471
3 103 6.5 33167
4 153 9.08 36985
5 203 13.75 39412

52

Table 5.4: Results of 10 Extract ing Occasions

N O . occurs patterns # of results
1 388 39 31482
2 421 38 31053
3 368 39 31609
4 424 34 31199
5 449 44 32143
6 716 79 32736
7 1016 100 34694
8 458 48 32388
9 408 52 31704
10 499 53 31992

5.2 Coverage Estimation

The analyses in this section are based on the 10 extracting occasions. In this exper­

iment, 10 seed sets are randomly selected from the result of B l i n d which contains

45034 books. A l l seed sets have the same number of books n = 200. For each seed

set, we run one iteration of the extracting program to get a set of books. The num­

ber of occurrences, patterns and books in the results are shown in Table 5.4. The

total number of different books captured is 40933. As we described in Section 4.1,

these experiments are 10 extracting occasions of a capture-recapture study. The

coverage estimation wi l l be based on these results.

5.2.1 Post-stratification

The post-stratification method discussed in Section 4.1.2 is applied on each pair of

10 extracting occasions,

\ 2 i
45 pairs in total. The estimated population size

is the average of these 45 estimations.

For each stratum, the Equation 4.2 is used to estimate the stratum size A' ' .

53

Table 5.5: Post-Stratification Result for Two Sets of Books

only in set l only in set2 both total estimation
1st stratum 39 1128 27427 28594 28596
2nd stratum 2398 1676 945 5019 9272
3rd stratum 744 911 56 1711 13814

total 3181 3715 28428 35324 51682

We can see that, when the recapture rate is high, i.e. the number of the recapture

records mi is close to the number of records in the extracting occasion m and 77.2,

N is close to mi. When the recapture rate is low, i.e. the number of the recaptured

records m 2 is small compare to n\ and ri2, N tends to be large compared to n\ and

n 2 .

We find empirically that books with scores more than 600 are very likely to

be captured in each extracting occasion, therefore those books should belong to one

stratum. Books are stratified into three strata according to their scores, greater

than 600, between 300 and 600, and less than 300.

For the result sets of the first and second extracting occasion, for example,

the post-stratification results are shown in Table 5.5. The first row is the numbers

of records belong to the first stratum. In the first row, from left to right, the

numbers are numbers of records captured in the first extracting occasion but not

captured in the second occasion (x i i) , captured in the second extracting occation

but not captured in the first occasion (x^), captured in both occasions (x^), the

total number of records in the first stratum (xn + xn + xa), and the estimated size

of the first strata (Nu) respectively. The second and third rows are similar except

they are for the records belong to the second and third strata. For each stratum, the

basic capture-recapture model is applied. This gives the following estimated strata

size,

Nn = 28596, iVi2 = 9272, N13 = 13814

54

the estimated population size and the standard error of N\

Ni = 51682.

The final estimation of the population size is the average of estimates based

on 45 pairs of extracting occasions.

1 4 5 .
N = — Ni — 52448.

45 r-f

The jackknife variance estimator is applied to estimate the variance of JV. The

estimator is formed as follows:

var(JV J) = ^ ^ (J V (_ i) - J V) 2 (5.1)
1 i=i

where t — 10, N(-i) is the estimated population size without the Zth (I = 1, • • •, i)

trapping occasion, that is,

1 10 10

ti(-D = T - Y E E %). (5-2)
v 2 /

i=l,i^lj=i+l,jytl

The estimated standard error is se(JV) = 7627. The estimated coverage can be

calculated based on the JV. For example, the estimated coverage of the result of

B l i n d is 45034/52448 = 85.9%.

5.2.2 Generalized Jackknife

For these t = 10 extracting occasions, the capture frequencies / i , • • •, / i o a r e 3320,

2155, 2203, 1241, 921, 1152, 1421, 1393, 2081 and 25046.

The generalized jackknife estimates from 1st to 9th order can be calculated

by equation (4.4) and (4.6). They are 43921, 45045, 45904, 46891, 48027, 49184,

50202, 50950 and 51342.

55

The test statistics to test whether there is significant difference between two

consecutive order jackknife estimates are calculated. The results show that there are

significant differences between these estimates. We take the 9th jackknife estimates

as the estimation of the population size, N = 51342. The estimated standard error

se(N) = 634. The estimated coverage of the result of B l i n d is 45034/51342=87.7%.

The post-stratification method is simple to implement and understand. How­

ever, it assumes that records in each stratum have the same capture probabilities.

When this assumption is highly violated, the estimates may be baised. Also, the

standard error of the post-stratification estimator is much larger than the general­

ized jackknife estimator. In the current system, the generalized jackknife estimator

is used to estimate the coverage.

5.3 Quali ty Assessment and Enhancement

First we estimate the error rates of the results of the three methods: B l i n d , GoodSeed,

TopSeed and the book set obtained by Sergey B r i n , which is posted on the web. Be­

cause all of these sets have very good quality, the error rates are much less than 10%.

B y choosing r = 10% and 8 = 2% in Equation (4.8), we get the number of records

needed to estimate the error rates n = 225. A l l these samples are manually checked.

The results are shown in Table 5.6. A l l of the error rates are very low. In practical

situations these results may satisfy the user's requirement. However, to apply and

evaluate our quality enhancement methods, we look through the result of B l i n d

and find several erroneous books. From each of these errors, more erroneous books

are detected using the method described in Section 4.3. The quality enhancement

procedure is shown by the following examples.

There is an erroneous book wi th author " A B a d Spell in Yur t" and title

"May 2001". This record is obtained by matching the problem pattern wi th index

56

Table 5.6: Performance of the Three Methods. (C.I. is 95% confidence intervals of
the error rates)

sets # of results coverage C.I. time(h)
B l i n d 45034 87.7% [0, 0.02] 59.04

GoodSeed 40715 79.3% [0, 0.01] 17.25
TopSeed 39412 76.8% 0 33.5
Brin 's set 15257 N / A [0,0.03] N / A

428. The total number of records (problem set) from this pattern is 73. Because

the size of this problem set is relatively small (73/45034=0.16%), we investigate the

whole set instead of a sample. Only 14 of them are true books and the error rate is

81%. We can discard the whole problem set from the result. Actua l ly the errors in

this set are easy to identify by spell checking. A book with a date as title is likely

to be an erroneous book. B y spell-checking we can detect and delete al l errors in

this problem set.

Another erroneous book has author "Away Melody" and title " A Far". Fol­

lowing the quality enhancement procedure, the problem pattern for this error is the

pattern with index 151. The problem set B has 421 books in total, which is about

1% percent of the result of B l i n d . So we decide to keep this set and go to further

steps. Manual ly checking a sample of 100 randomly selected books, 28 of them are

errors. The reported confidence interval of the error rate is [0.2, 0.36]. The proce­

dure Clean(B) is applied and 190 out of 421 books (45%) are marked as erroneous

books. As we mentioned before, some of these 190 books are correct books and

discarded wrongly as an error. The other 231 books are al l correct books. So after

the quality enhancement procedure, the error rate of the problem set becomes 0.

57

Chapter 6

R e l a t e d W o r k

In general, an Information Extract ion (IE) system is to extract useful information

(records) from unstructured and semistructured text and transform the information

into structured text such as databases and X M L documents. In other words ([22]),

IE systems go through the following general procedures:

• take unstructured and semistructured text as input and generate something

like patterns or templates to locate the useful data.

• extract the useful data according to the patterns or templates.

• encode the extracted data in a structured form that is ready for further ma­

nipulation.

Informaiton Extract ion from unstructured text, i.e. plain text, is one of the

topics of Natural Language Processing (N L P) . The paper [1] presents a system for

information extraction from large collections of plain-text documents.

There has been much work on information extraction from semistructured

text, which usually are H T M L documents. The traditional approach for information

extraction from the Web is to write specialized programs, called wrappers, that

58

identify and extract data of interest. In the case of our system, patterns serve as

wrappers.

In early stage, wrappers are generated manually, e.g. T S I M M I S ([17], [18]).

The manually approach has many shortcomings, mainly due to the difficulty in writ­

ing and maintaining wrappers. Recently, many wrapper generation tools have been

proposed to generate wrappers automatically, e.g. RoadRunner ([11]) and E X A L G

([2]), or semi-automatically, e.g. L ix to ([7]). A common goal of wrapper generators

is to generate wrappers that are highly accurate and robust, while requiring as little

effort as possible from the users.

Laender et al. [25] is an excellent survey on recent web information extrac­

tion tools which compares them on several qualitative aspects such as degree of

automation, support for complex structure, etc. In this chapter, we wi l l introduce

and briefly describe several information extraction systems. A l l these systems have

the same goal, i.e. extracting data from a set of H T M L pages and presenting the

data into structured text. However the implementation methods are quite different.

6.1 TSIMMIS

A pioneer information extraction system T S I M M I S ([17], [18]) generates wrappers

manually. Wrappers are in the form of specification files, which are simple text files

written by users. The specification files describe the structure of H T M L pages and

identify the beginning and the end of the relevant data. The extractor executes the

commands i n a specification file to find and extract the interesting data into a set

of variables. F ina l ly the extracted data is converted into database objects. As a

running example, the system is used for extracting weather data from several web

sites.

Each specification file consists of a sequence of commands, which are writtern

59

1 ["root",
''get('http://www.intellicast.com/weather/europe/')'',
"#"] ,

2 [''temperatures'',
' 'root" ,

''*<TABLE*<TABLE*</TR>#</TABLE>*'']

Figure 6.1: A Simple Example Specification Fi le

by users according to the following specification rules. Each command defines one

extraction step, in the form of [variables, source, pattern], where variables are one or

more variables that hold the extracted results, source is the part of the H T M L script

to be considered, pattern specifies how to find the text of interest within the source.

The value of a variable can be used as input source for subsequent commands. B y

allowing this, T S I M M I S supports the hierarchical structure of web data.

A n example of the specification file is shown in Figure 6.1. The first command

defines the variable root as the entire source file whose U R L is given by the source

get('http://www.intellicast.com/weather/europe/'). The pattern "#" in the first

command means that everything in the source is to be extracted and stored in the

variable root. The extractor then executes the second command, which defines a

new variable called temperature nested in the variable root. The value of temperature

is specified by the result of applying the pattern

* <TABLE*<TABLE*</TR>#</TABLE>*

to the source variable root, i.e. entire H T M L source file. The second command can

be interpreted as, discarding everything until the first occurrence of </TR> in the

second table definition and saving the data between </TR> and </TABLE> as variable

temperature. The variable temperature wi l l store part of the H T M L file and could

be an input source for subsequent commands, which can specify patterns within this

part of H T M L source file.

60

http://www.intellicast.com/weather/europe/')''
http://www.intellicast.com/weather/europe/'

T S I M M I S is flexible, accurate and efficient. The specification files are straight

forward and easy to understand. The drawback is that the extraction mechanism

depends on users input of the specification file. When the structure of source files

changes, the specification file need to be updated by the user. This is a problem for

the Web sources, because different information sources (web sites) usually have very

different structure, new sources appear everyday and the format of existing sources

may change. Therefore, most of the recent research works are based on automatic

or semi-automatic wrapper generation. Anyway T S I M M I S is an important system

in the history of information extraction.

6.2 RoadRunner

Many web sites contain large sets of pages generated using a common template. For

example, al l book pages in Amazon present the author, title, price, etc. in the same

way. RoadRunner ([11]) generates wrappers automatically to extract data from such

template-generated web pages.

The input of the system is a number of sample pages taken from a class

of web pages, for which we want to generate a wrapper. The system starts from

any two pages. One is chosen as an ini t ia l version of the wrapper. The matching

algorithm works on these two pages, an ini t ia l wrapper and a sample, to find a

common wrapper for them. Then the matching algorithm is applied on this wrapper

and another sample page to find a common wrapper. This procedure continue unti l

a wrapper has been found for al l the sample pages. Then the wrapper is applied

on this class of web pages to extract the data. This system is applied on several

template-generated web site such as Amazon and R p m F i n d .

In the following, the wrapper generation procedure is briefly explained through

an example. Detai l information about this project can be found in [30].

61

<html>Books of:#PCDATA

(<i>Title:</i>#PCDATA)+
</ulx/html>

Figure 6.2: The Wrapper

Union-free regular expressions (U F R E) are used to describe a wrapper. A

union-free regular expression is defined over tokens and a special symbol #PCDATA.

If a and b are U F R E , a • b, (a)+ and (a)? are also U F R E , where + means one or

more occurrence and ? means zero or more occurrence. There is no union operators

in U F R E . A n example of a U F R E is shown in Figure 6.2.

A wrapper is generalized by solving mismatches between the wrapper and

the sample page. Bo th the wrapper and the sample page are parsed into a list of

tokens. A mismatch occurs when some token in the sample does not comply to

the corresponding token in the wrapper. There are two kinds of mismatches, string

mismatches and tag mismatches, which correspond to different methods to generalize

the wrapper respectively. A simple matching example is shown in Table 6.1.

• String Mismatches. It happens when different strings occur in the corre­

sponding positions of the wrapper and the sample. String mismatches are

used to discover data fields. For example, in Table 6.1, there is a string mis­

match in token 4, "John Smith" and "Paul Janes". In this case the wrapper

is generalized by replacing "John Smith" by #PCDATA.

• Tag Mismatches. It happens when different tags, or one tag and one string

occur in the corresponding positions of the wrapper and the sample. Tag

mismatches are usually caused by repeated patterns. For example, a tag mis­

match between token 19 in the wrapper and the sample comes from different

number of books in the book lists, i.e. different number of the repeated pattern

t =<i>Title: </i>#PCDATA. In this case the wrapper is generalized

62

Table 6.1: One Simple Matching

Wrapper Sample
01 <html> 01 <html>
02 Books of: 02: Books of :-
03 03
04 John Smith 04: Paul Jones
05 05:
06 06
07 07:
08-10: <i>Title</i> 08-10: <i>Title</i>
11 DB Primer 11 XML at Work
12 12
13 13
14-16: <i>Title</i> 14-16: <i>Title</i>
17 Comp. Sys. 17 HTML Scripts
18 18
19 19
20 </html> 20-22: <i>Title</i>

23 Javascript
24
25
26 </html>

63

by replacing t by (<)+.

Usually the tag mismatches are more complicated than those we just dis­

cussed. The matching algorithm is recursive since more mismatches can be found

and need to be solved when trying to solve one mismatch. The algorithm should

also be able to backtrack. Usually there are several possible alternatives to solve a

mismatch. When an alternative prove to be wrong, the program have to backtrack

and resume the matching from the next alternative.

The matching algorithm has exponential computational time complexity with

respect to the input length. Several pruning techniques are introduced to reduce the

complexity. For example, only the shortest k = 4 candidate patterns are evaluated

for each mismatching.

In some cases, the system fails to generate patterns. For web pages include

disjunction patterns, U F R E s can not represent union and the system might fails to

generate wrappers. One example is the music bestsellers on Amazon. Some of pages

have customer reviews and some do not. The corresponding templates are different.

The system can not generate a wrapper, and no information is extracted from this

class of web pages.

6.3 E X A L G

Recent work E X A L G ([2]) has proposed another approach for automatically gener­

ating wrappers to extract data from a class of template-generated web pages. The

overall procedure of this system is similar to RoadRunner discussed in previous sec­

tion. It takes a set of template-generated web pages as input, generates a wrapper

automatically, and extracts the data in those pages according to the wrapper.

E X A L G and RoadRunner are different in wrappers generation approaches.

64

In E X A L G , wrappers are derived from L F E Q s (Large and Frequent EQuivalence

class). The definition of L F E Q wi l l be discussed later in this section. E X A L G has

two stages. The first stage E C G M (Equivalence Class Generation Module) takes

a set of web pages as input, and a set of L F E Q s as output. The second stage

A N A L Y S I S takes the results of the first stage as input and output a wrapper. The

wrapper is then used to extract data from the web pages.

The system is applied on different input collections of web pages, e.g. A m a ­

zon, E-bay, Google etc. The detail of the experiments and results can be found in

U R L [15].

Two key concepts are used in E X A L G , differentiating roles and equivalence

class. E X A L G distinguishes tokens by their roles. The occurrence-vector of a token

• • ' , / «) is the numbers of occurrences of this token in each of n web pages.

A n occurrence-path of a token is the path from the root to the token in the parse

tree. The same tokens usually play different roles, if they have different occurrence-

vectors in a large number of pages or different occurrence-pathes. For example,

before Book and before Reviewer.of web pages in Figure 6.3 are tokens playing

different roles, which are called dtokens (differentiated tokens). A l l input web pages

are first represented as a set of dtokens.

A n equivalence class is a maximal set of dtokens having the same occurrence-

vectors. The support of a dtoken is the number of pages in which this dtoken occurs.

The support of an equivalence class is the common support of its dtokens. The size

of an equivalence class is the number of dtokens in this class.

A n equivalence class with large size and support is called a L F E Q (Large and

Frequent EQuivalence class). The basic intuition behind LFEQs is that it is very

unlikely for LFEQs to be formed by chance. Almost always, LFEQs are formed by

tokens associated with the unknown template used to create the input pages.

65

We show the procedure of E X A L G through an example. Figure 6.3 shows

four input web pages.

In the first stage E C G M , two L F E Q s of dtokens are found,

£1={<html>,<body>,,Book,Name,,,Reviews,,,,

</body>,</html>}

e 2 ={,,Reviewer,Name,,.Rating,,,Text ,,</l i>}

Notice that the dtoken in e\ is a different dtoken from the in £ 2 . The two

dtokens in e\ are also different dtokens from each other. For £ 1 , each dtoken

appears exactly once in each of the web pages, so the occurrence-vector is (1,1,1,1).

There are 13 dtokens in e i , so the size of e\ is 13. The L F E Q e\ occurs in all of

the four web pages, so the support is 4. For £ 2 , the occurrence-vector is (1,1,2,0),

the size is 12 and the support is 3. The tokens in the L F E Q s are ordered and £2 is

nested in £ 1 .

The second stage builds an output wrapper using the L F E Q s constructed in

the first stage. The wrapper is shown in Figure 6.4, where '* ' represents the location

of the data in these web pages.

The paper also describes several cases that the system failed to extract data

correctly. For example, pages contain a set of addresses encoded wi th the template

{<Name:*
,(Email :*
)?,(Organizat ion:*
)?,(Update:*
)?>}.

Because the type constructors associate wi th a very few tokens, this template can

not be discovered as a L F E Q by the system.

6.4 Lixto

A visual web information extraction tool Lixto is proposed in [7], [4], [6] and [5].

Lixto generates wrappers semi-automatically by providing the visual interface and

browser-displayed example pages that allow a user to specify the desired extraction

66

<html><body>
Book NameDatabases
Reviews

Reviewer NameJohn
Rating7
Text...

</body></html>
<html><body>

Book NameQuery Opt.
Reviews

Reviewer NameJohn
Rating8

Text...

</body></html>

<html><body>
Book NameData Mining
Reviews

Reviewer NameJeff
Rating2
Text...

Reviewer NameJane
Rating6
Text...

</body></html>

<html><body>
Book NameTransactions
Reviews

</bodyx/html>

Figure 6.3: Input Web Pages

<html><body>
Book Name*
Reviews

Reviewer Name*
Rating*
Text*

</body></html>

Figure 6.4: The Wrapper

patterns. Internally wrappers are these patterns which are represented by a declara­

tive extraction language called Elog. The extractor performs the actual information

extraction from one or several similar structured web pages by interpreting the Elog

program. The user then can use the XML Generator to map the extracted informa­

tion to X M L . To extract information in differently structured web pages, the user

needs to specify the patterns for each of them.

There have been numerous other works based on HTML-aware tools [27],

natural language processing [16], wrapper induction [23], object models [24], and

ontologies [14]. For a detailed discussion of these and other works, the reader is

referred to [25]. Suffice it to say that none of these provides an analysis of objective

metrics such as coverage or quality.

The most related work is what we introduced in the beginning, D I P R E pro­

posed by Sergey B r i n . Experiments are conducted based on a large repository of 24

mill ion web pages. He found 15257 books from 5 examples of books.

In comparison, our experiments gain 45034 books based on 16128 web pages.

Two main factors contribute to this large number of books. The first one is that,

screening via a search engine, we focus on the web pages only related to books.

The second one is the different definition of the occurrence and different pattern

68

generation strategy. In our method, the criteria for occurrences and patterns are

more relaxed without increasing false discoveries. Once again, to the best of our

knowledge, ours was the first to provide a detailed analysis of coverage of results

extracted and quality of extracted information as well as an interactive approach

for quality enhancement.

69

Chapter 7

F u t u r e W o r k

The current experiments are based on a local web page repository. In future work,

our system wi l l be based on a large scale and up-to-date web page repository. Con­

sequently, we need to improve the performance of our program. Our long-term goal

is to extract a large set of records automatically, based on several example records

given by the user. Users wi l l be allowed to specify the structure of the output X M L

documents. We also plan to allow extraction of data wi th more structure as opposed

to just flat records. Finally, it is interesting to ask whether we can scale up such

techniques to a level where information extracted is in response to questions posed

by the user. Our ongoing research addresses some of these questions.

70

B i b l i o g r a p h y

[1] Agichtein, E . , and Gravano, L . Snowball: Extract ing relations from large plain­
text collections. In Proceedings of the Fifth ACM International Conference on
Digital Libraries (2000).

[2] Arasu, A . , Garcia-Molina, H . , and University, S. Extract ing structured data
from web pages. In Proceedings of the 2003 ACM SIGMOD international con­
ference on on Management of data (2003), A C M Press, pp. 337-348.

[3] Ashish, N . , and Knoblock, C . A . Semi-automatic wrapper generation for in­
ternet information sources. In Conference on Cooperative Information Systems
(1997), pp. 160-169.

[4] Baumgartner, R. , Flesca, S., and Gott lob, G . Declarative information ex­
traction, Web crawling, and recursive wrapping wi th l ixto. Lecture Notes in
Computer Science 2113 (2001), 21.

[5] Baumgartner, R. , Flesca, S., and Gott lob, G . The elog web extraction language.
In LPAR (2001), vol. 2250 of Lecture Notes in Computer Science, Springer,
pp. 548-560.

[6] Baumgartner, R. , Flesca, S., and Gott lob, G . Supervised wrapper generation
wi th l ixto. In The VLDB Journal (2001), pp. 715-716.

[7] Baumgartner, R. , Flesca, S., and Gott lob, G . Visua l web information extraction
wi th l ixto. In The VLDB Journal (2001), pp. 119-128.

[8] B r i n , S. Extract ing patterns and relations from the world wide web. In Se­
lected papers from the International Workshop on The World Wide Web and
Databases (1999), Springer-Verlag, pp. 172-183.

[9] Brown, M . C . Perl: The Complete Reference. M c G r a w - H i l l Osborne Media,

Berkeley, 1999.

71

[10] Burnham, K . P., and Overton, W . S. Estimation of the size of a closed popu­
lation when capture probabilities vary among animals. Biometrika 65, 3 (De­
cember 1978), 625-633.

[11] Crescenzi, V . , Mecca, G . , and Merialdo, P. Roadrunner: Towards automatic
data extraction from large web sites. In Proceedings of 27th International Con­
ference on Very Large Data Bases (2001), pp. 109-118.

[12] Deitel, H . , Deitel, P., Nieto, T . , and McPhie , D . Perl How to Program. Prentice
Ha l l , 2001.

[13] E i k v i l , L . Information extraction from world wide web - a survey. Tech. Rep.
945, Norweigan Computing Center, 1999.

[14] Embley, D . W . , Campbell , D . M . , Jiang, Y . S., Liddle, S. W . , Ng , Y . - K . , Quass,
D . , and Smith, R . D . Conceptual-model-based data extraction from multiple-
record web pages. Data Knowledge Engineering 31, 3 (1999), 227-251.

[15] Ext rac t ing Structured D a t a from Web Pages: Experiments. http://www-
db.stanford.edu/ arvind/'extract/.

[16] Freitag, D . Machine learning for information extraction in informal domains.
Machine Learning 39 (2000), 169-202.

[17] Hammer, J . , Garcia-Molina, H . , Cho, J . , Crespo, A . , and Aranha, R . Extract ing
semistructured information from the web. In Proceedings of the Workshop on
Management of Semistructured Data (May 1997), pp. 18-25.

[18] Hammer, J . , McHugh , J . , and Garcia-Molina, H . Semistructured data: The
T S I M M I S experience. In Proceedings of the First East-European Symposium
on Advances in Databases and Information Systems (1997), pp. 1-8.

[19] HTML-Parser , http://htmlparser.sourceforge.net/.

[20] HTML: :Pa r se r . http://www.perldoc.eom/perl5.6/lib/HTML/Parser.html.

[21] HTML::TokeParser . http://www.perldoc.eom/perl5.6/lib/HTML/TokeParser.html

[22] Janevski, A . Universityie: Information extraction from university web pages.

[23] Kushmerick, N . Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence 118, 1-2 (2000), 15-68.

[24] Laender, A . H . F . , Ribeiro-Neto, B . , and da Silva, A . S. Debye - data extraction
by example. Data and Knowledge Engineering 40, 2 (2002), 121-154.

72

http://www-
http://db.stanford.edu/
http://htmlparser.sourceforge.net/
http://www.perldoc.eom/perl5.6/lib/HTML/Parser.html
http://www.perldoc.eom/perl5.6/lib/HTML/TokeParser.html

[25] Laender, A . H . F . , Ribeiro-Neto, B . A . , da Silva, A . S., and Teixeira, J . S. A
brief survey of web data extraction tools. SIGMOD Rec. 31, 2 (2002), 84-93.

[26] Lawrence, S., and Giles, C . L . Searching the world wide web. Science 280
(1998), 98-100.

[27] L i u , L . , P u , C . , and Han, W . Xwrap: A n xml-enable wrapper construction sys­
tem for web information sources. In Proceedings of the 16th IEEE International
Conference on Data Engineering (2000), pp. 611-621.

[28] Otis, D . L . , Burnham, K . P., White , G . C . , and Anderson, D . R. Statistical
inference from capture data on closed animal populations. No. 62 in Wildlife
Monographs. Wildlife Society, October 1978.

[29] Per l Documentation, http://www.perldoc.com/.

[30] The Road Runner Project. http://www.dia.uniroma3.it/db/roadRunner/.

[31] Scheaffer, R . L . , Mendenhall, W . , and Ott , L . Elementary Survey Sampling.
Duxbury Press, Boston, 1986.

73

http://www.perldoc.com/
http://www.dia.uniroma3.it/db/roadRunner/

