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Abstract 

Research investigating the contribution of information technology (IT) to firm 

productivity is moving beyond the question of whether IT has an impact, to how that 

impact is created. Traditional measures of firm output, such as value added, profit and 

market value, may be less useful in this context. However, the use of intangible outputs 

holds some promise in assessing how IT creates value within the firm. An important and 

information-intensive intangible output is innovation, which can be supported through the 

application of information technology. A patent production function is specified using 

R&D capital and IT capital as inputs, and citation-weighted patent output as an index of 

the overall inventive output of the firm. A panel of 262 large U.S. firms, from the years 

1987 to 1996, is analyzed using OLS regression. Results indicate that, at the margin, the 

effect of IT capital on patent output is negative. This implies that increasing the general 

level of IT investment in a firm cannot be assumed to automatically improve the 

productivity of formal R&D. Recent IT productivity research suggests this may be due to 

the role of unmeasured complimentary investments in making IT effective. 
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1. Introduction 

Until the widespread adoption of personal computers in the late 1980's, 

information technology was generally seen by economists and managers simply as capital 

equipment. Computer systems were employed only by large companies to create 

transaction processing systems that shared several attributes of manufacturing assembly 

lines: standardized inputs and a narrow range of outputs; carefully defined operating 

procedures; and a large capital investment for hardware, data centres, and specialized 

training. Yet with the advent of the PC, the local area network (LAN), and improved 

software, IT has become a general-purpose technology. These breakthrough technologies, 

such as the steam engine or the electric motor, have the power to transform business 

models, operations and whole economies in radical ways, for three key reasons: they have 

a wide variety of uses; price declines facilitate the discovery of even more applications; 

and network externalities create increasing value as more of the technology is adopted 

(Bresnahan and Trajtenberg, 1995). The data-gathering and communications-enabling 

powers of IT infrastructure make possible new organizational capabilities and 

management structures at the micro level, while promising productivity improvements 

and even mitigation of the business cycle at the macro level (DeLong and Summers, 

2001). The prominent and growing levels of IT investment attracted considerable 

attention from researchers and the popular press, who were surprised by initial 

calculations that showed IT had a disproportionately small impact on productivity. This 

"productivity paradox" spawned a significant body of research, which is summarized in 

several review articles (Brynjolfsson, 1993; Brynjolfsson and Hitt, 1996, 2003; Kohli and 

Devaraj, 2003). 
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Although there are a few exceptions, most of the recent research concurs that IT 

has a positive impact upon firm productivity. However, this may be viewed as only the 

first stage of research into the subject, because most studies call for further investigation 

into the specific ways in which IT is used to create value. New studies have asked the 

questions "when, where and how" IT creates value, rather than "whether" value is created 

at a higher level (Thatcher and Oliver, 2001). An interesting addition to this line of 

inquiry is the work of Mittal and Nault (2004), which showed that IT can have both direct 

and indirect effects. While the direct impact of IT may manifest in its substitution for 

other factors of production, the indirect impact occurs by making the other factors more 

efficient than they would be in the absence of IT. 

The overwhelming proportion of IT productivity research at the firm level has 

investigated the impact of IT capital investment upon traditional "post-production" 

measures of firm outputs; value added, profit, and market value are the most common. IT 

capital is typically defined as a tangible asset: it has a physical embodiment that can be 

counted. Recently, researchers have considered the intangible aspects of IT, such as the 

role played by complementary organizational capital in the effectiveness of IT 

investments (Brynjolfsson et al., 2002). However, the question of whether IT capital has 

an impact on intangible output—defined here as the production or accumulation of non-

physical, non-financial assets—has been neglected. Both innovation and new product 

development are key examples of intangible outputs with a close relationship to IT. 

Innovation has long been the subject of economic research, much of which uses patents 

as an index of the overall inventive output of the firm. Given the importance of 

innovation to firms and economies alike, this is a crucial area of research. 
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Innovative activity can be supported through the application of information 

technologies. Knowledge management systems, intranets, and group support systems, for 

example, can be used explicitly in the new product development process (Nambisan, 

2003). At a lower level of analysis, IT supports innovation by reducing the costs of 

information collection, management, and dissemination. This stimulates the knowledge 

creation process by enabling more efficient collaboration within firms, within research 

communities, and between business partners (Malone and Crowston, 1994; Gurbaxani 

and Whang, 1991). Thus, it is reasonable to expect a relationship exists between 

information technology and the knowledge creation process (Lee and Choi, 2003). 

This research will investigate the contribution of IT to the productivity of formal 

R&D-based innovation in large U.S. firms, using citation-weighted patents as an output 

indicator. Although this places restrictions on the types and sources of innovation being 

investigated, it represents a substantial portion1 of quantifiable innovation in the U.S. 

between 1987 and 1996. A modified form of the Knowledge Production Function, 

incorporating IT capital, is presented, and operationalized using the Cobb-Douglas and 

translog functional forms. Data obtained from the Computer Intelligence database, 

Standard and Poor's Compustat, and the NBER patent citations data file (Hall et al., 

2001) are analyzed using ordinary least squares regression. The results indicate that, for a 

given level of R&D capital, increasing IT capital has a negative effect on the expected 

output of citation-weighted patents. Although somewhat surprising amid the recent IT 

productivity research, this finding contributes to our understanding of how IT impacts 

1 Hall et al. (2001) note that between 72% and 77% of U.S. patents are granted to corporations during the 

sample period of their data (1963-1999). Of these, between 40% and 50% were matched to publicly-traded 

U.S. corporations for the period 1987-1999. 
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business value. There are a number of possible explanations and opportunities for future 

research. 

2. Literature Review 

IT Productivity 

IT productivity research often considers IT capital as an economic input to 

production. This approach is especially prevalent in macroeconomic studies, which view 

IT as a form of capital that fits into a conventional production function. It is also true of 

many firm-level studies that investigate the nature of this new kind of capital investment 

in the context of production. A s such, IT capital is almost universally treated as an 

independent variable, while the dependent variable may take the form o f tangible outputs 

such as value added or sales growth. 

Researchers typically define IT capital to include numerous forms of computer 

hardware, such as PCs , mainframes, and networks for data communication. Hardware is a 

preferred measure since in most situations it is included in a firm's assets on the balance 

sheet. Software, on the other hand, tends to be expensed and in many firms may even be 

developed internally, making it difficult to produce estimates of its worth. 

Rapid advances in hardware technology, in terms of speed, capability and 

availability, coupled with steady or declining nominal prices, are a well-known 

phenomenon (DeLong and Summers, 2001). This trend has fulfilled a decades-old 

prediction that has come to be known as Moore's law, which posits that the circuit 

density on a semiconductor memory wafer can be doubled every 18 months (Moore, 

1965). The popular interpretation of this "law" is that the power of microprocessors w i l l 
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follow this trend. Empirical research has found this to be generally true, and in some 

cases somewhat conservative. Yet there is a disadvantage to the temptation to measure 

the economic potential of IT through purely technical metrics such as clock speed or chip 

density. Although this approach has intuitive and even historical appeal, the complexities 

of implementing IT frustrate simplistic analyses. Doubling the speed with which a CPU 

processes instructions does not necessarily translate into a doubling of the overall speed 

of that computer system, nor of the productivity of work performed on that computer. 

The efficiency of the CPU is bound by the other subsystems with which it integrates 

(memory, storage, and networking), and the ability of the user (via software) to continue 

feeding it instructions (Chwelos, 2003). 

The same may be said for considering conventional economic input measures 

exclusively, such as IT capital. As Brynjolfsson et al. (2002) so aptly put it, "A computer 

that is integrated with complementary organizational assets should be significantly more 

valuable to a business than a computer in a box on the loading dock." The authors argue 

that the effective use of IT requires complementary organizational assets such as 

decentralized decision making, IT and management skills and procedures to capture and 

use data in a more profitable way. As such, the true cost of a successful IT 

implementation may cost as much as ten times the initial technology investment. 

Therefore, they argue, a firm's stock market valuation is superior to output as a measure 

of the productive value of the combination of tangible IT capital and the associated 

intangible assets that determine its effectiveness. 

Three key findings have emerged from the IT productivity literature. First, IT 

capital investments on the whole have generally positive returns (Brynjolfsson and Yang, 
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1996). In several cases where negative returns were found, other researchers have 

subsequently argued that errors in measurement and price index assumptions have the 

potential to cause significant distortion in the results (Dewan and Min, 1997; Barua and 

Lee, 1997). Repeated studies of the same data but with different deflators for IT prices 

have shown positive results for IT productivity. Second, IT productivity results are more 

pronounced over the long term, rather than in short-term time frames (Brynjolfsson and 

Hitt, 2003). This result is thought to be due to the lags required to implement the 

necessary complementary investments and business operations restructuring needed to 

take advantage of IT capital investments. Third, individual firms can vary significantly in 

their ability to create value from IT capital investments (Brynjolfsson et al., 2002). 

A common characteristic of the extant research in this area is the use of traditional 

measures of firm outputs to gauge productivity. The most common are profit, sales, ROI, 

value added and market value (Kohli and Devaraj, 2003). This works well in the 

production function methodology, where optimum levels of inputs can be determined in 

order to maximize an output objective.. However, as some researchers have pointed out, 

the impact of IT capital investment upon production may not be immediate (Brynjolfsson, 

1993; Thatcher and Oliver, 2001). Firms may invest in IT to facilitate organizational 

changes, over the medium term, to gain strategic advantage over competitors. This in turn 

may lead to supranormal profits over the long term (Porter, 2001). IT can facilitate a 

differentiation strategy, such as mass customization or service quality improvements. 

Alternatively, a firm may use IT to vertically restructure, using IT to reduce 

communication and co-ordination costs among market-based "electronic hierarchies" 

(Malone et al., 1987). Furthermore, even when the objective is to maximize profits, some 
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firms may take a longer-term approach to this goal. There is evidence that productivity 

gains arising from IT investments may require years of complimentary investments and 

organization learning to effect significant changes in traditional measures of output 

(Brynjolfsson and Hitt, 2003). Intangible outputs, such as new product development and 

patents, may have a more direct relationship with the firm's chosen levels of inputs. Since 

IT plays a large role in these pursuits, this new area of productivity research is potentially 

fertile. 

Innovation, R&D, and Patents 

The contribution of innovation to long-term economic growth has been the subject 

of economic research for almost 50 years (Abramowitz, 1956; Solow, 1956). A multitude 

of studies have demonstrated this link at both the economy and firm levels (see Jones, 

1995 for a useful review). Yet the investigation into how innovation is accomplished, and 

how to measure it, remains far from complete. Both of these issues have been 

complicated by the widespread use of IT. The process of innovation has been changed by 

IT as much as accounting or logistics, while the outputs of innovation are in many cases 

less quantifiable than in the past. 

It is important to distinguish between the concepts of innovation, R&D, and 

patenting. Innovation, the process of developing new products and services, takes place in 

both formal and informal contexts, and often goes unrecorded by official agencies. The 

research and development laboratory is but one source of innovation. Dosi (1998) adds 

three others: the ability of the firm to "learn by doing"; informal knowledge gathering, 

such as publications, technical associations and personnel transfers; and embodied 

innovation adopted through the use of new types of capital inputs. Patents are commonly 

7 



associated with innovation and R&D processes, but are only one outcome of innovation, 

and are not guaranteed at that. As Griliches (1990) summarized, "not all inventions are 

patentable, not all inventions are patented, and the inventions that are patented differ 

greatly in ... the magnitude of inventive output associated with them." 

Information technology has contributed to all types of innovation. Advances in 

computer modelling and simulation have improved formal research productivity in fields 

such as pharmaceuticals, automotives and chemicals. The Internet has hastened the flow 

of, and access to, scientific information such as electronic versions of scholarly journals 

and public research databases, both of which were cited by R&D managers as being used 

in their R&D processes in a recent survey of French firms (Kremp and Mairesse, 2004). 

"Learning by doing" can be supported by computerized engineering analysis of 

production processes, leading to adjustments and improvements with significant results 

(Hatch and Mowery, 1998). Small-scale innovation and experimentation occurs 

frequently in the service sector due to the existence of customizable tools for knowledge 

workers, improving business processes through the use of macros, programming 

languages, and interoperable systems and data formats. 

It is difficult to estimate even the relative share of informal and formal modes of 

innovation within firms or industries. Denison (1985) estimated that R&D accounted for 

only 20 per cent of all technical progress, although other researchers (Rosenberg, 1985; 

Nelson, 1986) concluded that R&D was the dominant organizational form for 

technological search. So-called "learning by doing" or "learning by using" innovation has 

been researched extensively (Rosenberg, 1982) and can be more difficult to measure 

empirically. In general, the phenomenon refers to the role of experience in improving the 
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productivity of the manufacturing process over time (in contrast to pre-production 

innovations produced inside the R&D laboratory). Often no budget exists for this sort of 

innovation, so it can appear as a mysterious source of productivity improvement, such as 

in the case of the "Horndal effect," where a Swedish steel factory experienced an annual 

2% increase in output without any capital investment for 15 years (Arrow, 1962). 

Learning by doing is also cited as a source of first-mover advantage in research-intensive 

industries such as computers and semiconductors (Hatch and Mowery, 1998; Grabowski, 

2002). 

There is also a great deal of variation among industries in the propensity to do 

research and the modes in which it is pursued (Bound et al., 1984). This diversity is 

explained by the extent of opportunities for innovation under the technological paradigms 

for each field at any given time (Dosi, 1998). Scherer (1986) found 42.5 percent of the 

variance in patenting rates could be attributed to differences across industries. R&D 

productivity research typically accounts for this by using industry dummy variables. 

Researchers who study innovation have spent considerable effort finding a 

suitable way to measure both inputs and outputs of innovation. Formal innovation is more 

commonly studied, since a specific R&D program has quantifiable inputs (labour and 

capital) being utilized to produce, it is hoped, quantifiable innovations (patents or 

products). However, there are numerous difficulties with these measures. For inputs, it 

can be difficult to obtain data from companies wishing to protect the size and nature of 

their R&D program. Even if the input shares and prices are known, it is difficult to assess 

the contribution of one year's research toward the innovation outputs from that year. 

Knowledge, the main conceptual input to the innovation process, accumulates (and 
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depreciates) over time, just as some innovations may take many years to produce 

(Griliches, 1979). Output measurement also presents a host of challenges, some of which 

are discussed below. 

A major contribution to the understanding of innovation in an economic context is 

the Knowledge Production Function (KPF), credited to Pakes and Griliches (1984). The 

authors proposed a model based on a Cobb-Douglas production function, 

5 

K =ai+rt + zZ^RD^ » 
r=0 

where k\,, the output of knowledge generation activity for firm i at time t, is determined 

by the firm's current and past five years of research investment RDjt_T. Both klt and 

RDt (_r are expressed in log terms. The level of investment is assumed to be determined 

exogenously. Firm-specific differences in research productivity are captured by the at 

term, while uiit represents the stochastic component. 

Since a firm's knowledge stock is inherently unobservable, Pakes and Griliches 

operationalized the model using patents as a proxy for kt, (sometimes called the Patent 

Production Function or PPF). A patent represents the formal disclosure of an idea or 

process that has passed some standard of novelty and possesses an expected economic 

value to its owner (Griliches, 1990). Similarly, research and development expense 

represents the formal commitment of a firm's resources (such as scientists and engineers, 

labs and prototypes) to knowledge-generating activities. Using patents as an output 

indicator, and lagged R&D expenditures as the investment input, Pakes and Griliches 

found a statistically significant relationship between R&D expenditures and patent output 

at both the firm and industry levels. For cross-sectional estimates, the median R-squared 
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is about 0.9, while for time-series estimates it is not as strong (about 0.3), but 

nevertheless positive and significant. 

Other researchers have commonly employed patents as a proxy for additions to 

the knowledge stock or knowledge output (see Griliches, 1990, for a thorough review of 

the literature). Bound et al. (1984) investigate the nature of the relationship between 

patents and R&D, and are especially interested in the question of returns to scale. 

Depending on the estimation method being used, returns can be increasing (ordinary least 

squares, negative binomial) or decreasing (Poisson, nonlinear least squares) with scale. 

Hall et al. (1986) investigate the question of whether lagged R&D influences patent 

outcomes. They conclude that lag effects are difficult to estimate because R&D 

expenditure patterns are highly autocorrelated within the firm. As such, there is little 

difference between the sum of estimated coefficients of a series of lagged R&D and the 

coefficient where only contemporaneous R&D is estimated (Hall and Ziedonis, 2001). 

An interesting addition to this research is the work of Kortum and Lerner (1998), 

who use the PPF framework to investigate the efficacy of venture capital in procuring 

patents. By adding a new kind of capital input to the model, it is possible to consider the 

relative effectiveness of R&D and venture capital. They found that the impact of venture 

capital on patent output is 6 times greater than R&D, and that this type of capital, in 

general is responsible for a significant portion of innovation in the U.S. 

The use of patents as a measure of innovation presents both positive and negative 

aspects to the researcher, which must be considered in the context of one's investigation 

to determine suitability. For many researchers, the appeal of patents as an output measure 

stems from their availability as the quantitative representation of an idea that has been 
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sufficiently developed to pass the scrutiny of a patent agency, and which is evidence of 

some expectation of positive utility for the patent-holder. Patent data for the U.S. are 

readily available in computerized format as far back as 1963, and are richly endowed 

with information about the innovation itself, the patent owner ("assignee"), citations of 

relevant prior patents, and the field into which the patent has been classified. The data are 

also plentiful: the U.S. Patents and Trademark Office (USPTO) granted over 3 million 

patents between 1963 and 1999, and the number of patent applications per year has 

doubled between 1992 and 2003 (USPTO, 2003). Patents are assigned a field among over 

120,000 technological classifications, as determined by the USPTO. 

Unfortunately there are numerous caveats to the use and interpretation of patents 

as a measure of innovation output. The first issue is, with respect to R&D expenditures, 

whether or not a patent represents an input or an output. There is some debate as to the 

direction of causality between these two concepts. In order to be patentable, an 

innovation requires both basic research and some amount of development to prove that it 

can be a commercially-viable product. Yet once a patent is granted, further development 

is often required to determine whether the product would be economically viable for its 

owner. In this context, obtaining a patent usually requires future R&D spending by the 

assignee. 

When comparing patent output across firms and years, Griliches (1990) identified 

two key issues: quality and classification. Clearly, the value of patents is subject to 

tremendous variation, even in a controlled group such as within a single year's patents for 

a given company. This variance makes it difficult to compare the sum of patent output 

across firms, industries or years. Classification becomes a problem when attempting to 
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determine characteristics of particular fields or groups. One difficulty arises because of 

the tendency for the USPTO to reorganize its classification system periodically, and the 

constant addition of new categories to deal with new types of innovations. It is important 

to be able to group like categories of patents together for analysis because the divergence 

of patenting rates across fields, and their respective trends over time, must be recognized 

when using patent statistics. 

Finally, there are two additional issues to consider when interpreting patent 

outputs: patents do not represent all of a firm's innovative output, and among the 

innovations that are patentable, there are a number of mitigating factors in the decision to 

apply for a patent. Factors affecting patent-seeking include: economic conditions; 

changes to rules about what can be patented; and the patent-infringement litigation 

climate (Griliches, 1990; Hall and Ziedonis, 2001). Competitive factors also play a role, 

such as the relative advantage of patenting versus other forms of intellectual property 

protection for the firm's products and markets. For example, if time-to-market constraints 

are present, it may be more prudent to develop and market the new product quickly, 

rather than spend several months preparing a patent application. 

Some researchers have attempted to address the difficulties with raw patent counts 

as the dependent variable. The causality problem may be addressed by testing for 

endogeneity in the model. The variability in the quality or value of patents has been 

addressed to a large extent by using citations received by other patents as a proxy for 

economic value (Hall et al., 2001). Existing patents are cited by both the patent applicant 

and the patent examiner, so determining each patent's accumulated (forward) citations 

from subsequent patents yields a reasonably objective measure of its relative importance. 
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The authors also propose a classification system and a method for removing unwanted 

year and year-field interaction effects, while leaving field effects intact. This is elaborated 

in §4. The extent to which patents capture all innovation is addressed, first, by noting that 

patents are used as an indicator of the level of innovative activity among firms, rather 

than measuring the entire innovative output. Second, changes in patenting trends due to 

economic, legal and competitive conditions are captured by using year indicator 

variables. 

Integrating the Two Areas of Research 

Although IT productivity and innovation research have several themes in 

common, researchers have brought them together on only a few occasions. Greenan et al. 

(2001) examined the relationship between specialized skills utilized in IT and R&D and 

the productivity outputs of firms. They found positive productivity returns to skill-related 

investments in these areas, although only in the cross-sectional dimension. Kremp and 

Mairesse (2004) found that knowledge management policies (associated with the use of 

IT and the Internet) had a significant impact on firms' innovation and patenting 

performance. Given the knowledge-intensive nature of innovation, it is logical to further 

investigate the relationship between IT and innovation. 

3. Model 

A production function is simply an analytical framework for characterizing the 

nature of one or more inputs in relation to a measure of output. One very common 

framework is the Cobb-Douglas production function, which typically sets the dependent 
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variable as some measure of output (y), such as sales or profit, while the independent 

variables consist of two inputs, such as labour (L) and physical capital (X): 

y = A(LaKfi). 

The output elasticity of each input is simply the exponent associated with the input. 

Additional input variables, such as materials, may be added. The Cobb-Douglas form has 

interesting properties: it is a constant elasticity model, and the elasticity of substitution 

between capital and labour is equal to 1. An attractive property of this production 

function is that it is linear in (natural) logs: 

Iny = lnA+a\nL + /3lnK . 

To test the impact of IT upon the productivity of innovation requires an empirical 

model that addresses the nature of innovation itself. The development of such a model is 

fraught with difficulty, due to the variety of modes of innovation (formal; informal; 

embedded), and its manifestations (intermediate outputs such as process innovations; 

traditional post-production outputs; increased consumer surplus). 

This research will focus on formal innovation activities as embodied in the R&D 

spending reported in firms' financial statements. Accounting rules allow firms to expense 

research, defined as the "planned search or critical investigation aimed at discovery of 

new knowledge" which is specifically directed at a new or improved output (Oliver, 

2003, pg. 46). Development is defined as transforming "research findings or other 

knowledge into a plan or design," which can include prototyping and building and 

operating pilot plants. Declared R&D expense also accounts for in-process research 

assets and intangibles purchased from other companies. 

Formal innovation depends upon the generation of new knowledge, in both the 

research and development phases. As such, we require some way of relating the inputs of 

15 



this process (of which R&D is a formal component) to its outputs (which could be 

represented by any number of indicators). 

Knowledge Production Function 

Pakes and Griliches (1984) characterize innovation as the production of new 

knowledge. The statistical model they propose uses patents as an index of the output of 

"inventive activity," and R&D expenditures as an input. This is operationalized as a 

Cobb-Douglas production function, which lends itself to econometric analysis. Simply 

put, innovation is a form of production, with an input (R&D) and an output (patents). 

Other researchers (Pardey, 1989; Trajtenberg, 1990; Hall & Mairesse, 1995) have used 

this model to explore the differences in research productivity between firms in different 

industries and countries. 

Existing research in innovation economics does not specify a role for firm IT 

spending in the KPF. However, as introduced earlier, it is reasonable to expect 

information technology to have an influence on firm innovation efforts. The innovation 

process relies heavily on knowledge generation, acquisition, organization, and application 

(Dosi, 1998). Information technologies can assist these activities, both directly and 

indirectly. Direct assistance occurs through IT capital investments targeted at firms' R&D 

programs, for example, high-powered workstations, servers, and connectivity to other 

labs and resources. Information technology infrastructure investments assist research 

indirectly by providing the firm as a whole the potential to collect and analyze 

information that impacts the innovation process, for example by analyzing product 

returns and warranty service records to determine ways to enhance the product. 

Knowledge Management Systems can contribute to the organization's ability to absorb 
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and utilize new (external) information, and transform internal knowledge into new 

products and processes (Adams and Lamont, 2003). Klein, Gee and Jones (1998) note 

that effective IT support for firm-wide knowledge gathering is necessary for the proper 

application of certain modes of R&D managerial decision-making. 

To incorporate IT capital into the KPF, the method of Kortum and Lerner (1998) 

is adopted, whereby a new form of capital augments the Pakes and Griliches (1984) 

model. In this case, the introduction of the IT capital variable, IT, will allow the impact of 

IT capital on the effectiveness of R&D in the patent-generating process to be estimated: 

PATCITtl =a + PxRDSTOCKit + p2ITtl + p,EMPSit + foEMPS?, 

where PATCITiit represents the logarithm of the number of patent citations received for 

firm i at time t, RDSTOCKu is the logarithm of R&D expressed as a stock variable (i.e., 

R&D capital rather than yearly expenditure), and employees and employees squared 

(EMPSiit and EMPSf,) control for firm size (discussed in the next section). The y, term 

captures unobservable time effects (operationalized as year dummy variables), rj, captures 

firm fixed effects, and e,;, is the stochastic component for firm i at time t. 

The use of stock measures for both R&D and IT eliminates the need for lagged 

terms as this information is inherently included in the model, and is consistent with much 

of the literature investigating the productivity of R&D with respect to firm output (Hall 

andMairesse, 1995). 

In addition to the somewhat restrictive Cobb-Douglas model (2), a more general 

model is specified in the translog form: 
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PATCITit = a + /?,RDSTOCK11 + B2RDSTOCKf, + /33ITlt + /34IT*, 

+ f35 RDSTOCK, /?;, + /36 EMPS,., + /?7 EMPSJ (2) 

+ r,+ Vi + Si,, • 

As the Cobb-Douglas model in (1) is a special case of the translog specification in (2), 

testing the validity of the former is straightforward. 

Control Variables 

Prior research has established a number of controls that should be employed when 

using patent (or patent citation) data. First, one must control for year effects. The number 

of patents applied for in any year can be influenced by notable patent litigation events or 

changes to patent regulations. Further, the number of patents granted or cited in a given 

year is influenced by the productivity of the USPTO, which fluctuates according to 

available manpower and the investigation requirements of each cohort of patents. 

Second, there is the issue of firm size, or scale effects in R&D. Two arguments 

come to bear on this matter. On one hand, large firms possess a scale advantage because 

their internal legal departments allow for more efficient preparation of patent applications 

(Scherer, 1965; Lerner, 1995). On the other, Griliches (1990) found smaller firms (having 

less than 1,000 employees or spending less than two million dollars per year on R&D) in 

his sample of publicly-traded companies obtained more patents in proportion to their size 

than larger ones. He offered three possible explanations: stock markets are highly 

selective in allowing entry to small public companies, and as a result such firms may 

possess a number of patents upon entry; perhaps smaller firms needed a patent to enter 

the market; and the likely practice of doing more informal R&D than larger companies, 

thus increasing the patents-to-R&D expenditure ratio. To accommodate these competing 
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ideas, firm size in this research is controlled by using two variables to measure the 

number of employees in the firm: employees, and the square of employee. This allows for 

nonlinear or quadratic effects. 

The third factor to control for is industry. Patent statistics show clear differences 

across industries in their propensity to patent (see Griliches, 1990). This variation arises 

from the different stages in technological evolution, general industry maturity, level of 

competition and the degree to which patents are seen as effective methods for securing 

intellectual property rights. The pharmaceutical industry, for example, places higher 

importance on patenting than other methods such as time to market and trade secrets 

(Grabowski, 2002). However, since equations (1) and (2) already contain terms that 

control for firm effects, industry controls cannot be added. Instead, the data is split into 

industry sub-samples (see Table 3), and the results are reported separately. 

4. Data 

This empirical investigation employs three sources of data. First, the "Computer 

Intelligence" (CI) database provides data on the IT capital stock in large American firms 

from 1987 to 19992. This data becomes the basis for the observations in this research, 

since the IT capital figures can be linked to the other two data sets using standard 

Compustat identifiers. Second, individual firm data (R&D, employees, assets) are 

obtained from Standard and Poor's Compustat Industrial Annual. Third, patent citation 

data are obtained from an extensive and detailed data set of U.S. patents granted from 

2 Originally collected by Computer Intelligence, this database became known as Z D Market Intelligence, 

and ultimately, Harte Hanks CI Technology Database. 
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1975 to 1999, which accompanies the paper "The NBER Patent Citation Data File: 

Lessons, Insights and Methodological Tools" (Hall et al., 2001). 

IT Capital 

The CI database consists of twelve years of annual IT data for large U.S. 

companies from 1987 to 1999. Overall, 1,818 companies are included in the database but 

only about 450 of these appear in all years. Through a combination of surveys and 

physical site visits, an appraisal of the quantity of systems is recorded for approximately 

850 companies per year. The data include the number of mainframes, minicomputers, 

PCs, network nodes, CPU power and hard disk storage capacity. Upon aggregating these 

quantities, the purchase value for the firm's total IT capital stock, CPURCH, is computed. 

The database requires three modifications to be useful in this context. The first is 

to address the change in methodology for the calculation of CPURCH, beginning in 1995. 

Until 1994, CPURCH included the value of all IT systems in the firm; after that, the 

variable represents only the processor value (i.e., networks, storage, and PCs are 

excluded). Chwelos et al. (2004) propose a modification which estimates a constant 

version of CPURCH by decomposing the original measure into the values assigned to 

mainframes, minicomputers and PCs over the sample years. Since there was no change in 

the methodology for computing these prices, the resulting estimate of CPURCHE is not 

subject to the shift in 1995. The authors demonstrate the validity of this method by noting 

the comparable results produced by alternative approaches. 

Second, in order to obtain accurate estimates of the productivity of IT capital, the 

dollar amounts must be expressed in real, rather than nominal, terms. Chwelos et al. 

propose a two-pronged approach: one price index is calculated for PCs, while another is 
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calculated for all other IT hardware. This addresses the issue of the more rapid decline in 

the quality-adjusted price of personal computers, calculated by Berndt and Rappaport 

(2001) to average -28.1% in the years of the CI database. Other IT hardware is deflated 

by the BEA price index for computers and peripherals, which averaged -14.7% per year 

over the period. 

Finally, some attention must be paid to the categorization of each firm into 

industry groups for the purposes of analyzing innovation productivity by industry. 

Industry classification is obtained from the Compustat database, using the Standard 

Industrial Classification (SIC) code. In order to keep the number of industries 

manageable, 7 industry classifications were produced using the two-digit level in most 

cases (see Table 3). The industries are further classified as either "manufacturing" or 

"services" for the purpose of broader comparisons. The vast majority of patents are 

granted to manufacturing firms, which are segregated in my results. However, since some 

companies' classifications changed over the time period, adjustments were made to place 

them in a single industry so as not to confound the impact of a particular firm on multiple 

industries. 

R&D and Firm Financial Data 

Publicly-traded firms in the U.S. are required to disclose research and 

development expense in their annual income statements (Lev and Sougiannis, 1996). The 

reported R&D expense is governed almost entirely by SFAS 2 and 86 (Oliver, 2003). 

This figure includes the cost of labour and capital used in discovering new product or 

process innovations and developing these into viable commercial products (excluding 

government-sponsored research). Thus, there is an issue with double-counting of IT 
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capital employed in R&D, since that capital will be counted twice: once in the CI data, 

and again in the R&D stock data. The implications of this issue are discussed in the 

Conclusion (§6). Standard and Poor's Compustat database provides historical company 

financial statement information for all the years in this study. 

Using financial statements as a source for R&D expenditure data presents a 

number of challenges. Principally, one must consider that the number found in a firm's 

annual report is offered in the context of financial reporting regulations. This means that 

recognizable R&D expense, at best, includes no less and no more than that which meets 

the definitions used by accounting professionals. Many firms have no formal R&D 

program, yet some of these have one or more patents. Like most accounting regulations, 

SFAS 2 stipulates that costs be expensed or capitalized and depreciated if they are 

substantially devoted to the R&D function. There are many instances in which one could 

imagine this test to be subjective, the most obvious of which are large systems such as 

mainframes or networks which serve numerous company functions. As a result, there 

may be some potential for managerial manipulation in recognizing expenses as being 

R&D-related. Another challenge is the frequently spotty nature of the R&D expense 

history for a given firm, resulting from a discontinued or divested research program, a 

shift in strategic focus, or the acquisition of other companies which themselves have no 

work-in-process R&D. Any of these situations may correspond, in a given year, with 

successful patent applications due to applications previously submitted that year. This 

could produce outliers in the data. 

In order to make the R&D measures comparable to the IT capital measures, the 

R&D values need to be adjusted to constant dollar amounts and then aggregated into a 
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stock figure. Although a more finely-tuned price index that accounted for labour and 

capital inputs to R&D would be desirable, the National Science Foundation uses gross 

domestic product (GDP) implicit price deflators to convert R&D expenditures to constant 

(1992) dollars (National Science Foundation, 2003). In this research, the GDP deflator 

was then used to rescale the amounts to constant 1993 dollars to facilitate matching to IT 

spending data. 

Annual R&D expense amounts constitute an input expressed as a "flow," rather 

than a stock. The stock measure for R&D is calculated with the perpetual inventory 

model employed by Hall (1990): 

K, =(1 

where Kt is the R&D capital stock at the end of period t, and Rt is the R&D expenditure 

during the year, in real dollars. Griliches and Mairesse (1984) found the choice of 8, the 

depreciation rate, makes little difference to production function estimates. In this case, the 

Hall method is used with a S of 15 percent. The first year of R&D capital is obtained by 

using an initial "seed" value of R&D expenditure in the first year and dividing it by the 

sum of the depreciation rate d and a pre-sample growth rate of 8 percent per year, as per 

Hall. The figure used for this purpose and for the yearly additions to the R&D capital 

stock is found by taking the average of the R&D expenditures in that year and the prior 

year. This is done to approximate the level of R&D that the firm was using throughout 

the year, rather than its state at year-end as reported in the financial statements. 

One disadvantage of this method is that any missing observations for yearly R&D 

require interpolation. In the data used in this research, there are 25 companies for which 

this is the case. It may also be possible to increase the number of observations by 
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including firms that do not report R&D for any of the years in the sample, despite having 

IT and patent data available. These observations are dropped from the main sample, 

although an additional regression is run where they are included. Some researchers have 

addressed the problem of having no R&D statistics for a large number of companies, in 

which case they substituted zeroes (Ziedonis and Hall, 2001; Brynjolfsson et al., 2002) 

and marked these observations with dummy variables. In the current dataset, doing this 

would add only 98 observations, which interestingly account for 1703 patents, although 

522 of these were the result of single observation (North American Philips Corporation in 

1992). 

Patents and Patent Citations 

Patents have been used as indicators of knowledge output in empirical studies 

since the 1960's (Schmookler, 1966). However, the shortcomings of simple patent counts 

have affected researchers' abilities to draw conclusions, since patents vary significantly 

in value. Recent investigations in patent statistics have shown promise in addressing this 

challenge by considering the citations (of other patents) made by each patent, and by 

inverting this data, determining the number of citations each patent has received (subject 

to temporal limitations). 

Previous work by Trajtenberg (1990) shows that the number of citations received 

by a patent is correlated with its economic value. Hall, Jaffe and Trajtenberg's research 

applies this finding to the available (post-1975) computerized data at the USPTO, 

generating a large database of patents, citations made and received, and where possible, 

links to the Compustat identifiers for the patent-holder. 
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Another key piece of data provided is the field to which each patent belongs. This 

is to be distinguished from the industry groups to which firms belong. The field to which 

a patent belongs is derived from the USPTO classification of patents into similar groups, 

for example chemical process patents or steam engine patents. Since the USPTO has over 

120,000 classifications, the authors created two simpler schemes: one of six fields and 

another more granular one of 36 fields. A company in any SIC industry might hold 

patents in any or all of the fields; there is no automatic relationship or connection 

between a company's industry and the fields in which it holds patents. 

While the number of citations received by a particular patent may serve as a 

measure of its quality, the authors caution that patent citations cannot reasonably be 

compared across years or fields due to differences in both propensity to patent and 

propensity to cite. As Hall et al. (2001) point out (p. 27): 

1. the average number of citations received by patents in their first 5 years has been 

rising over time; 

2. the average number of citations made per patent has been rising over time; and 

3. the observed citation-lag distributions for older cohorts have fatter "tails" than 

those of more recent cohorts. 

In addition, since the citation lag distributions tend to be quite long (20-50 years), 

there is a serious truncation problem as one approaches 1999, the last year in the data. 

This leads the authors to recommend a three-year "safety lag" so as not to use biased data 

where not enough time has passed to allow the application process to complete and 

citations to begin. This imposes a limit upon the data available for analysis in this 

research: 1996 becomes the last valid year for which citation data may be used. 

25 



As mentioned earlier, when patents are grouped according to field classifications, 

it becomes clear that there are different propensities to patent and propensities to cite 

across the patent-producing fields, and across years. There are two methods proposed by 

Hall et al. (2001) to adjust patent citations to remove these effects. The first ("fixed-

effects approach") is relatively simple to explain and calculate because it involves only 

the aggregate year and field strata. The second ("quasi-structural approach") has a better 

ability to extract signal from noise, but is more complex (and computationally expensive) 

since it requires the individual adjustment of each patent based on all of its particular 

citations. 

The fixed-effects approach removes these trends by determining the average 

number of citations received for all patents in each year and each field. By dividing the 

citations received by any given patent by its year/field cohort average, the trends are 

removed and the patent's quantity of citations received may be compared to that of other 

patents. This method removes all year, field, and year-field effects. Hall et al. (2001) 

caution that it may not be reasonable to remove field effects, since there are 

systematically different rates in propensity to cite across fields. On the other hand, they 

also point out that one could construe these differences as artefacts (due to administrative 

differences over the years at the patent office) and should therefore be removed. Due to 

this confusion, they also present a method to remove the year and year-field effects but 

leave the field effects intact. This is achieved by dividing the year-field means by the 

overall means for each field. The disadvantage to this approach is that it may remove 

variance components that may be real. 
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In order to make patent data useful in the corporate context, each patent must be 

linked, if possible, to the company that owns it. Although the USPTO records this 

information ("assignee" and "assignee code"), it is not available in a format that 

facilitates automated linking to conventional sources of financial data, such as 

Compustat. Only 55-65% of patents between 1987 and 1996 were matched by Hall et al. 

(2001). This is due to two factors. First, the proportion of patents held by U.S. firms (and 

therefore eligible to match to Compustat) is roughly 70-80% (Hall et al. (2001), Table 3). 

Second, the authors used the list of Compustat companies as of 1989. As a result, there is 

some potential for measurement error relating to the matching of patents obtained by 

companies which did not yet exist in 1989, or existing companies later acquired by other 

companies. 

Another factor to consider is the year used to link the patent to its inputs in the 

PPF. The USPTO records both the application year and the granting year. Often these can 

be 2-3 years apart, although some patents are granted in the application year. Hall et al. 

(2001) point out that using application year makes more sense for production functions, 

since this is when the resources devoted to preparing the patent application are known to 

be utilized. The granting year would be more useful to models that view patents as an 

input to some other variable, such as firm value. This research will therefore adopt the 

application year convention. 

Linking the Data 

To form a single body of data, the Compustat, NBER patent citation and CI data 

sets must be linked by both year and company identifier. The temporal scope of the data 

is limited by the years for which all three datasets were available or valid. The first year 
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constraint is imposed by the CI data (1987), while the last year cutoff is imposed by the 

patent data's forward citation lag constraint (1996). The three datasets were linked using 

the U.S. standard CUSIP identifier. The CI data is used as the base set, to which the other 

two are linked. Out of 8,327 possible observations in the CI data, a total of 3,068 links are 

possible with the R&D data, while 2,491 links are possible from the CI data to the patent 

citation data. The intersection of the three data sets yields 1,809 observations in an 

unbalanced panel. 

However, this number of observations imposes the assumption that, should a 

company receive no patents or citations in a given year, the R&D and IT capital stocks in 

that year somehow do not count, and are discarded. This is a problem which should be 

addressed. Unfortunately there is no way (short of examining several hundred thousand 

patent records and attempting to match their assignees) to determine from the patent data 

whether a firm, for a given year, had no successful patent applications, or rather that the 

patents it was awarded were not linked to the company name. Since Hall et al. (2001) use 

a 1989 listing of companies, it is conceivable that any new or restructured company in 

any of the other years in this sample could fail to link to the patent data. A prudent 

method of generating valid zero-patent years is to fill in any gaps that exist between other 

valid years. For example, if a match is produced from a company to patents awarded in 

1990 and 1992, but not in 1991, it is reasonable to assume that the company had no 

successful patent applications in 1991. This technique adds another 110 observations. 

Some manual adjustments to CUSIPs that failed to match due to notational differences 

3 The largest balanced panel that could be constructed, with full rank, would consist of 1320 observations 
for 132 firms. 
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add another 59 observations, bringing the total to 1,978. Unfortunately, employees data is 

missing for 16 observations so the final total is 1,962 (261 firms). 

5. Analysis and Results 

Summary Statistics 

The available data consist of 262 firms with a total of 1,962 observations (Table 

1). The firms are large, with a median of 14,492 employees and assets of nearly 2 billion 

dollars. Firms obtain 18 patents per year at the median, with 62 citations per year. This 

sample includes 53.4% of the patents matched to Compustat company identifiers by Hall 

et al. (2001) for the years 1987 to 1996, but only 18.46% of patents issued to corporations 

during this sample period. 

As one would expect, there is significant variance in the amounts these firms 

spend on IT and R&D. The median IT capital amount, across all firms and years (in 

constant 1993 dollars), is approximately $14 million, with a standard deviation of $79 

million. The mean R&D capital amount is approximately $276 million, with a standard 

deviation of $3.7 billion. The skew found in these variables is addressed largely by taking 

the natural log, as discussed in the model. Some of the variables have a minimum of zero. 

To avoid losing observations when the natural log is taken, a small arbitrary quantity is 

added to these variables. 

The panel, as mentioned earlier, is unbalanced, with approximately half (132) of 

the firms reporting data in all 10 years (see Table 2). The remaining 130 firms have from 

1 to 9 observations, with a median of 5 observations. The data is heavily concentrated in 

the manufacturing sector (250 of 262 firms), for the reason that firms in the service sector 
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tend to engage in R&D and patenting less frequently, if at all. Although beyond the time 

frame of this sample, the 1998 change to patent law, allowing for the granting of business 

process patents (Surowiecki, 2003), may begin to increase the service sector's share. 

Initial Regressions 

The Cobb-Douglas and translog specifications are estimated, as given in (1) and 

(2), using OLS regression. Table 4 reports the results of these regressions. The dependent 

variable in all cases is (log) patent citations received, adjusted to remove year and year-

field effects. The coefficient estimates in bold text are significant at the 5% level, with p-

values shown in parentheses below the parameter estimates. The controls used in each 

regression consist of two variables representing the number of employees, as reported in 

the CI database: employees (EMPS) and employees squared (EMPS2). 

In column 1, a base specification is used to test whether the data supports the 

relationship established in the PPF literature. As expected, the parameter estimate for 

R&D is positive and significant at the 1% level. Columns 2 through 4 present the results 

of a fixed-effects panel data estimation. Column 2 shows the results for the Cobb-

Douglas specification, which reports a change in the sign of the R&D estimate and a 

positive but statistically insignificant estimate for IT. Column 3 presents the Cobb-

Douglas, augmented by the interaction term RD STOCK* IT. The interaction term was 

found to be significant, but the main effects were not. The translog specification in 

column 4 finds the IT estimates to be negative, while the R&D and interaction terms are 

positive. 

To determine whether the PPF is of the Cobb-Douglas or translog form, two tests 

are performed to establish whether the squared and interaction term estimates are jointly 
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equal to 0. In the first test, under the null, the PPF is Cobb-Douglas, while under the 

alternative it is translog. The result from this test suggests that it is the translog form that 

best fits the production function (p=0.001). A second test is conducted to verify the joint 

significance of the squared terms. The result indicates that, jointly, RDSTOCK 2 and IT2 

do contribute to the explanatory power of the model once R&D, IT and RDSTOCK*IT 

are included in the model (p=0.001). This confirms that the PPF is best characterized as a 

translog production function. The Cobb-Douglas form, augmented by the interaction 

term, is presented for comparison purposes in column 3. 

Subsequent to regression analysis, it is prudent to test whether the data meets 

assumptions of normality, homoskedasticity and uncorrelated errors. A histogram plot of 

residuals appears bell-shaped, conditioning on a number of firms reporting 0 patents. 

Further, an examination of the distribution of standardized residuals for outliers suggests 

their bias to be inconsequential. A total of 92 observations were found outside 2 standard 

deviations of the mean standardized residual. However, if the distribution is normal, one 

would expect 5% of observations (in this case, 98 data points) to be outside these bounds. 

Therefore, the data appear to be normally distributed. To detect heteroskedasticity, a test 

was conducted to determine if the variance of the error terms was linearly related to the 

expected value of the dependent variable. Under the null, the error terms are 

homoskedastic. Using an auxiliary regression, the product of the number of observations 

and the regression R-squared fails to reject the null at the 1% level using a chi-square 

distribution (with one degree of freedom). Finally, to test if autocorrelation influences the 

result of the panel regression, an AR1 panel regression was compared. Autocorrelation is 

marginally present, but the results from the regression are not sensitive to the correction. 
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Output Elasticities 

In order to interpret the results of a translog estimation, the partial output 

elasticities are evaluated at the median, since they do not have a constant effect on 

expected patent citations. In Table 4, the partial output elasticities are reported below the 

regression results (p-values are reported in parentheses). For the translog model, a 1% 

increase in R&D stock (for a given level of IT capital) would yield a 0.9854% 

(p=0.0001)4 increase in patent citations. A 1% increase in IT capital (for a given level of 

R&D stock) would yield a 2.2356%) (p=0.0001) decrease in patent citations. Thus, while 

the effect of R&D capital upon patents is reasonably consistent with the extant literature, 

the impact of increasing the IT stock appears to be negative. The analysis also identifies 

decreasing returns to scale in the patent production function because the sum of the 

output elasticities is less than one. 

Endogeneity 

This research thus far assumes patents, as mentioned earlier, are the output of the 

innovation process as measured by R&D inputs. There is, however, general agreement 

among researchers that the relationship between R&D and patents is at least mildly 

reciprocal, since successful patents require additional development funds to become 

successful products. For the same reasons, IT may also be endogenous since innovation 

may come from and stimulate further spending on the firm's IT infrastructure. This leads 

one to suspect that endogeneity may be a problem in the proposed models. 

4 The standard error used to compute the p-value is computed analytically. 
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It is possible to test for endogeneity using the Durbin-Wu-Hausman (DWH) test. 

The test determines if the OLS estimator is biased when compared to a two-stage least 

squares (2SLS) estimation using an instrumental variable. The criteria for a good 

instrument are that it is highly correlated with the endogenous regressor and that it is 

uncorrected with the model error term. A common source of instrumental variables tends 

to be lagged versions of the regressor. In this case, the lagged R&D stock is suitable: the 

correlation coefficient between current and lagged R&D stock is 0.9016. Interestingly, 

the DWH test fails to reject that R&D is exogenous (p=0.5978). 

While it is possible that there is a reciprocal and contemporaneous relationship 

between patents and IT, there are several reasons to expect is not likely to be a 

measurable effect. First, the measure of IT capital is firm-wide in nature, so increases in 

R&D-related IT would be relative to all other activities of the firm. Second, IT capital 

responds slowly to changes in annual IT spending due to the accumulated capital stock of 

previous years. Nevertheless, the DWH test found that IT capital, instrumented with 

lagged IT capital (which share a correlation of 0.9658), failed to reject exogeneity 

(p=0.5071). As such, further specifications using instrumental variables are unnecessary. 

Further Investigation 

In order to test for bias due to short-term membership in the panel, 
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Table 5 presents the results from the three model specifications (translog, Cobb-Douglas 

and Cobb-Douglas with interaction) for a balanced panel of 132 firms. The results are 

very similar to those produced by the full sample. Again, the squared and interaction 

terms of the translog model are found to contribute jointly to the model, and the partial 

output elasticities are similar in sign and magnitude. 

Although firm effects were included in the model specification, it is prudent to 

determine if their presence affects the results in a meaningful way. The model was 

estimated leaving out firm effects, but using the Huber/White/Sandwich estimator of 

variance. Results are provided in Table 6. Post-estimation tests of significance fail to 

reject the translog model. The partial output elasticities again show a positive effect for 

R&D and a negative one for IT, although both are smaller in magnitude than the 

specification that includes firm fixed effects. This indicates that the firm fixed effects 

have some overall impact, which is consistent with the literature that contends the 

successful implementation of IT is dependent upon other organizational factors. 

One concern raised by the omission of firms with missing R&D expenditure data, 

in some or all sample years, is that this may bias the results. To address this concern, a 

larger sample was created by including these observations. The results are presented in 

Table 7. Although the sample is larger (7V=2,648; 413 firms), the results are qualitatively 

similar. The partial output elasticity of IT is negative (-0.3950) and statistically 

significant (p=0.0020). This indicates that the results are not sensitive to missing R&D 

data. 

Restricting the sample by industry is a natural avenue for further investigation. 

With firm fixed effects included in the model specification, industry fixed effects cannot 
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be employed simultaneously. Instead, the sample may be restricted to industry groups if 

there are sufficient observations in these new panels to produce satisfactory results. Since 

250 firms belong to the four manufacturing industry classifications, only these four 

groups were isolated. Table 8 presents the partial output elasticities. Post-estimation 

testing rejected both Translog and interaction models for non-durable manufacturing 

(column 1) and process manufacturing (column 4). The partial output elasticity estimates 

for non-durable manufacturing found both R&D and IT have negative and statistically 

significant impact on expected patent citation. Process manufacturing estimates were not 

statistically significant at the 5% level, but exhibit a positive sign on R&D and a negative 

one on IT. Durable manufacturing and high-technology manufacturing tested for the 

Cobb-Douglas with interaction form. For the former, the effect of increasing either of 

R&D and IT had a negative impact on expected patent citation, while for the high-

technology manufacturing industry, the signs and magnitude of the estimates were similar 

to those in the unrestricted sample. 

6. Conclusion 

The results from the model presented here report that there is a negative marginal 

impact of overall IT investment upon the productivity of R&D, as measured by citation-

weighted patent output. The results are robust to panel characteristics (balanced or 

unbalanced), the presence of firm effects, and industry classification at the 2-digit SIC 

level. In no case does IT exhibit a positive partial output elasticity. At best, it is slightly 

less negative for durable and non-durable manufacturing, although for these industries, 

R&D yields a negative partial output elasticity as well. 

35 



In the wake of recent IT productivity literature, these results are surprising, given 

the information-intensive nature of innovation. One interpretation of the results is that 

firms choose IT investment levels not to maximize patent output levels, but to maximize 

profits or facilitate a new business strategy, as discussed earlier. This idea can be seen by 

examining the estimated production function more carefully: 

PATCIT = 0.2967RDSTOCK + 0.0059RDSTOCK2 -1.5118/7/ + 0.0526IT2 

-0.0231RDSTOCK x IT +... . 

The marginal product of R&D capital with respect to patents is evaluated at the median 

level of IT (expressed in logs): 

flPATCIT 
— — = 0.2967 + 2(0.0059)(5.6235) - 0.0231(16.4441) = 0.3608 

dRDSTOCK 

For firms in competitive markets, the price of an input is equal to its marginal product 

multiplied by marginal revenue. Therefore, firms are implicitly expecting marginal 

revenue for each patent citation, in terms of R&D stock, to be $2,771,618 (R&D is 

expressed in millions of dollars). The marginal product of IT capital with respect to 

patents is evaluated at the median level of R&D: 

flPATCTT 
= -1.5118 + 2(0.0526)(16.4441) -0.0231(5.6235) = -1.3001 

dIT 

Thus, in terms of IT capital, the implicit marginal revenue of a patent citation is $-769. 

First-order conditions for maximization of the production function require ratio of these 

two derivatives to be equal to the ratio of their prices. Since the ratios are not equal, it 

appears that the first-order conditions for maximizing output are not being met. Because 

the marginal product for IT is negative, for a given level of R&D, the median firm is 

over-invested in IT capital. 
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The primary implication of this result is that increasing the general level of IT 

investment in a firm cannot be assumed to automatically improve the productivity of 

formal R&D. What seems likely is that the measure of IT investment used here is 

inadequate to capture the nuances of how IT assists innovation. Two firms may have the 

same levels of R&D and IT capital, yet may choose very different implementations. 

Because the data do not reveal the extent of IT capital devoted to R&D, it is difficult to 

characterize this investment. Further, given the role of complementary investments in 

making effective use of IT, there can be significant latitude in the innovation efficiencies 

of intangible outputs, even among firms with ostensibly comparable levels of IT and 

R&D capital. 

Returning to one of the major caveats of using patents as indicators of innovative 

output, one must exercise caution in assuming that the results reject the contribution of IT 

to innovation as a whole. Patent statistics may be useful as an index of output, but do not 

tell the entire story of a firm's innovative capacity. Another consideration in this regard is 

that IT capital may be more helpful for creating innovations that are not patentable (or 

were not, during the period under investigation). Dosi (1998) notes that patents tend to be 

more effective protection for product patents, while lead times and learning curves are 

more effective for process innovations. 

Two changes in the structure of corporate R&D over the past number of years 

may further help to explain the lack of positive IT impact in the patent production 

function specified. One phenomenon is the departure of firms from doing in-house 

research, substituting the purchase of R&D embedded in products or licensing 

arrangements from other firms. For example, pharmaceutical companies often license 
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new molecules from biotech firms (the latter do not appear in this sample); other 

manufacturing industries exhibit similar patterns of R&D outsourcing (Love and Roper, 

2001). Another confounding phenomenon may be the strategy of some high-technology 

firms to grow through continuous acquisition of smaller, innovating companies. In such 

cases, the IT capital and in-process R&D of the acquired firms would appear on the 

parent firm's financial statements, while the accumulated R&D knowledge stock would 

not. As a result, the IT capital of the parent company would be large relative to its R&D 

capital. Further, if the acquired company held patents arising from its R&D investment, 

the patent data used in this research would not have been updated to indicate the patents' 

new owner, thus reducing the estimated patent productivity of R&D and IT for the 

acquiring firm. 

Limitations and Future Research 

The principal limitation to this research is the inability to discern the proportion of 

IT capital invested in formal innovation. Although the emphasis is on detecting the 

impact of overall IT investment upon patent output, the fact that some of this investment 

is also being counted in the R&D expenditure means that determining the impact upon 

patent production is bound to be confused among the inputs. The double-counting 

problem was encountered by Kortum and Lerner (1998), who acknowledged that some 

venture capital would also be counted in firms' R&D expenditures. They noted early in 

their paper that this made it less likely an impact of venture capital would be found on 

R&D productivity, although their findings were nevertheless significant. Hall and 

Mairesse (1995) also noted the large impact of double-counting on R&D productivity 

measurement due to R&D-related labour being included in their overall firm labour 
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variable. However, since their data was derived from a government survey and therefore 

much more detailed, they were able to employ a correction to their data by estimating the 

proportion of firm labour devoted to R&D. This remedy is not available for the data used 

in the present research. 

Future research in this topic area depends chiefly upon the availability of new and 

more detailed data. Although Hall and Mairesse (1995) note that the choice of R&D 

deflator matters little when applied across all industries, it may be that shifts in demand 

for research skills in certain industries may have an impact if the deflator is constructed in 

a more comprehensive fashion (taking into account shifting prices in R&D labour and 

capital). The double-counting issue identified above presents a challenge which could be 

overcome if the proportion of IT spent in R&D endeavours was known. A limitation also 

exists in patenting data in the pre-1998 period, when business process patents were not 

yet approved. This structural break may be a fruitful area for study once sufficient time 

has passed for patents and citations to have accrued in volumes adequate for econometric 

analysis. Finally, it would be worth investigating other methods of measuring innovation, 

such as new product introductions, in order to capture more of the total innovation of the 

firm. 
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Tables 

Table 1: Desc r ip t i ve S ta t i s t i cs 

Variable Units Median Std. Dev. Min Max 

IT thousands 13,854.23 79,367.60 9.18 1,160,282.00 

RDSTOCK millions 276.86 3,694.68 0.00 39,612.78 

EMP units 14,492.50 73,608.05 1,500.00 876,000.00 

Patents Received units 18.00 177.70 0.00 2,405.00 

Citations Received units 62.00 1,026.81 0.00 12,795.00 

Citations Received 
(adjusted) 

units 59.38 918.65 0.00 14,919.47 

Assets thousands 1,958,550.00 21,700,000.00 0.00 252,000,000.00 

Table 2: Panel C h a r a c t e r i s t i c s 

Years Observat ions Firms 

10 1320 132 

9 189 21 

8 192 24 

7 49 7 

6 54 9 

5 45 9 

4 32 8 

3 33 11 

2 46 23 

1 18 18 

Table 3: I n d u s t r y C l a s s i f i c a t i o n s 

Industry Sector SIC Firms 

Agriculture, Forestry, Fishing [none] 01xx-09xx 5 

Non-Durable Manufacturing Manufacturing 20xx-23xx, 27xx 19 

Durable Manufacturing Manufacturing 
24xx-25xx, 30xx-35xx, 
39xx 

77 

Process Manufacturing Manufacturing 26xx, 28xx-29xx 73 

High-tech Manufacturing Manufacturing 36xx-38xx, 3571 81 

Wholesale Trade Services 50xx-51xx 3 

Services Services 70xx-89xx 4 
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Table 4: R e g r e s s i o n R e s u l t s 

Base Cobb-Douglas Cobb-Douglas 
with Interaction Translog 

Column (D (2) (3) (4) 

In RDSTOCK 
0.0001 

(0.0001) 
-0.0438 
(0.0250) 

0.0816 
(0.2137) 

0.2967 
(0.2177) 

In RDSTOCK 2 
0.0059 

(0.0031) 

In IT 
0.0728 

(0.1630) 
0.1121 

(0.0847) 
-1.5118 
(0.3348) 

In IT2 
0.0526 

(0.0105) 

In RDSTOCK* IT 
-0.0076 
(0.0129) 

-0.0231 
(0.0132) 

N 1962 

Firms 261 

Controls EMPS, EMPS 2 , year 

R-squared (overall) 0.1806 0.2034 0.1802 0.2346 

HPatCitRDSTOCK 
-0.0438 
(0.0250) 

-0.0436 
(0.0251) 

0.9854 
(0.0001) 

nPatCit,IT 
0.0728 

(0.1630) 
0.0692 

(0.1871) 
-2.2356 
(0.0001) 

Notes for all results tables: 
1. The column containing the translog model is shaded, corresponding to tests 

indicating it best fits the data. 
2. Coefficients in bold are significant at the 5% level. 
3. p-values appear in parentheses below the coefficient. 
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Table 5: B a l a n c e d Panel Resu l t s 

Cobb-Douglas 
Cobb-Douglas 

with Interaction 
Translog 

Column (1) (2) (3) 

In RDSTOCK 
-0.0272 
(0.3410) 

0.1084 
(0.2859) 

0.2756 
(0.3068) 

In RDSTOCK 2 
0.0222 
(0.0129) 

In IT 
-0.0065 
(0.9280) 

0.0383 
(0.1187) 

-1.5831 
(0.4803) 

In IT2 
0.0536 
(0.015) 

In RDSTOCK* IT 
-0.0082 
(0.0172) 

-0.0333 
(0.0183) 

N 1320 

Firms 132 

Controls EMPS, EMPS 2, year 

R-squared (overall) 0.0087 0.0196 0.0682 

HPatCit.RDSTOCK 
-0.0272 
(0.3410) 

-0.0293 
(0.3092) 

1.2855 
(0.0001) 

HPatCit.lT 
-0.0065 
(0.9280) 

-0.0104 
(0.8869) 

-2.5712 
(0.0001) 
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Table 6: Resu l t s w i t h o u t f i r m f i xed e f fec ts 

Cobb-Douglas Cobb-Douglas 
with Interaction Translog 

Column (1) (2) (3) 

In RDSTOCK -0.0354 
(0.5560) 

-0.8259 
(0.5759) 

-0.5949 
(0.5389) 

In RDSTOCK 2 -0.0045 
(0.0114) 

In IT 0.9393 
(0.0001) 

0.6840 
(0.1877) 

-1.3948 
(0.8137) 

In IT2 0.0660 
(0.0261) 

In RDSTOCK* IT 0.0477 
(0.0340) 

0.0357 
(0.0334) 

N 1962 
Firms 261 
Controls EMPS, EMPS 2, year 
R-squared (overall) 0.3718 0.3742 0.3803 

HPatCit.RDSTOCK 
-0.0354 
(0.5560) 

-0.0419 
(0.5195) 

0.0748 
(0.2128) 

HPatCit.lT 
0.9393 

(0.0001) 
0.9524 

(0) 
-0.2489 
(0.0147) 



Table 7: Resu l t s i n c l u d i n g m i s s i n g R & D o b s e r v a t i o n s 

Cobb-Douglas C-D+i Translog 

Column (1) (2) (3) 

R&D 
0.1206 
0.0420 

-0.7060 
(0.2147) 

-0.1788 
(0.296) 

R&D * R&D 
0.0407 

(0.0269) 

IT 
-0.1161 
0.3270 

-0.2943 
(0.1261) 

-1.5509 
(0.8298) 

IT * IT 
0.0286 

(0.0162) 

RD * IT 
0.0526 

(0.0131) 
0.0447 

(0.0206) 

N 2648 

Firms 413 

Controls EMPS, EMPS% year 

R-squared (overall) 0.2795 0.2726 0.3758 

hpatCit.RD 
-0.0438 
(0.025) 

0.1586 
(0.008) 

0.9572 
(0.0022) 

hpatCit.IT 
0.0728 
(0.163) 

0.0016 
(0.9894) 

-0.3950 
(0.0020) 

Table 8: O u t p u t e las t i c i t i es o f m a n u f a c t u r i n g i n d u s t r i e s 

Non-durable 
Manufacturing 

Durable 
Manufacturing 

High-Tech 
Manufacturing 

Process 
Manufacturing 

Column (D (2) (3) (4) 

Model form Cobb-Douglas 
Cobb-Douglas 
with Interaction 

Translog Cobb-Douglas 

HPATCIT.RD 
-.3361 
(0.008) 

-.0753 
(0.013) 

0.5191 
(0.001) 

.0627 
(0.086) 

HPATCIUT 
-.8311 
(0.013) 

-.2760 
(0.018) 

-1.5807 
(0.001) 

-.1410 
(0.096) 

N 145 575 620 536 

Firms 19 77 80 73 

R-sq 0.0003 0.0801 0.2471 0.2277 
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