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Abstract

The force between two widely separated ‘t Hooft-Polyakov monopoles involves
an ordinary Coulomb force as well as an attractive force with the same magni-
tude mediated by a scalar field. Manton arrived at this fact using an ansatz he
discovered for a weakly accelerating monopole [1]. We study Manton’s method,
eliminate its ambiguities, interpret the ansatz as the external force law for a
monopole, and compare it with another approach that uses the stress-energy
tensor [2]. We find that the force between two monopoles in non-commutative
spacetime doe.s not alter from that in commutative spacetime to first order in
the non-commutative parameter, 6, both by extending Manton’s method and by
finding the total energy of the system. We investigate Manton’s method at O(6?)
but find it not very promising . We understand that.the non—comrﬁutativity starts

to affect dynamics only at O(6?).
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Chapter 1

Introduction

Magnetic monopoles are interesting because they are solutions to all grand unified
theories yet they have not been found Ain nature [3]. Non-commutative geometry
is interesting because it seems to always come up when we look for 'quantum
gravity solutions [4]. Non-commutative Yang-Mills theory, for instance, describes’
a limiting case of string theory [5] and is also the oﬁly gauge theory in which
gauge transformations include translations and therefore can serve as a toy model
for quantum gravity [6]. As well, it is the only known generalization of ordinary
Yang-Mills theory that preserves maximal supersymmetry [7]. In this project, we
were interested in magnetic monopoles in a non-commutative Yang-Mills theory.
In particular, we wanted to find the force between two monopoles separated widely
by a distance, s, in the U(2) perturbatively non-commutative gauge theory with
a scalar field in flat space-time. We noticed that Manton has found the force to
order s% between two monopoles in the SU(2) gauge theory in commutative space-
time. He first discovered how the solution near one monopole changes under a
weak acceleration, then uses the structure of the equations of motion to arrive at
a solution for the region in between the two monopoles, and finally determines
. the force by equating the local and global solution where both are valid [1]. We

were interested in extending this method for our problem.

We achieved the following:




Chapter 1 Introduction

A

1. We studied the Manton method in detail. We demonstrated the ambiguities
of the method , and proposed the principle with which to find the correct
solution. Using our understanding, we reinterpreted the method as the
application of a constant external force law on either monopole. We then
investigated the scope of the'métﬁod by carrying out the method at dipole
order and found that it works only for the lowest order férce. We then
studied Goldberg’s way [2] to find the force between two monopoles using
the stress-energy tensor on a static solution of the system. We found that
its statement about the contributions to the force agrees with the force law
above. We discussed the possibility of using Manton’s global solution as
the static solution to éonclude that thefe is no higher order forces between

two monopoles using Manton’s global solution as the static solution:

2. For the non-commutative U(2) theory, we derived the analogue of Man-
ton’s ansatz for a single accelerating monopole. We showed using both the
stress-energy tensor and the Manton method that the force between two
non-commutative monopbles remains the same as that between two com-
mutative monopoles to first order in the non-commutative paramter . We
started to investigate the Manton method at second order in §. We found
that we can calculate the local accelérating monopole solution without dif-
ficulty with the help of the symmetry of the theory [8] [9], and Showed a
sample calculation. We studied how the non-commutativity hinders us from

finding the global solutions in the same way Manton did.

This thesis was written in essentially the order described above. To make
the report easier to follow, we chose to explain the background theories at dif-
ferent parts rather than all in the beginning. We included all calculations in the
main text instead of appendices but made sure that before each long algebraic

calculation a summary was given.



Chapter 2

Background: Single Monopole in
Commutat_ive Accelerated

Yang-l\/[ills Theory

Magnetic monopoles are classical solutions to field theories whose magnetic field
far away from its center looks as though there is'a magnetic charge at the center,

‘that is,

A

ro., . .
B — 2 in the asymptotic region.

They have not been detected in nature yet, but is predicted by all theories in
which an internal symmetry group spontaneously breaks down to the U(1) group
of Maxwell Eleetromagnetism [3]. In these grand unified theories, monopoles typ-
ically have such big masses that they are not likely to be produced by supernovae
or current acceleraters, but rather would have been produced copiously shortly
after the Big Bang and would have hardly annihilated [10]. Their absence then

is quite puzzling and should inform us about the very early universe. This is one

of the main reasons why we study fnonopoles.
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2.1 Monopoles in Maxwell Electromagnetism

Maxwell electromagnetism is built without magnetic charges. The divergence of
the magnetic field being zero in this theory allows us to write it in the form of the
curl of a vector potential field and to build the field tensor F* = gt AY — 9" A*
(for the Lagrangian formalism. The only way to build a “monopole” solution is to
approximate a magnetic source by the end of a infinitely long and thin solenoid.

In this case, the vector po’gential would be undefined where the solenoid is.
Explicitly, if we choose coordinates such that the soleroid is placed at the negative
z-axis, then a vector potential (in spherical components) whose curl gives the

monopole magnetic field would be
A" =0, A’ =0, A =g (1 — cos?)

where g is the apparent magnetic charge. We can see that on the negative z-
axis, where 6 = «, the vector potential does not make sense since it points in
all directions curling about the z-axis. This half-line where the vector potential
is ill—deﬁned is known as the Dirae String'and is unavoidable however the vector
potential is chosen.
The half-line singularily is only a mathematical defect if it cannot be detected ,
by experiment. This is true classically but not quantum mechanically. If we per-
form a double slit diffraction experiment in which charged particles pass through
two slits on a screen and are to be detected on a second screen, we would find
that the interference pattern detected in the case where no solenoid is present
in between the two different paths of the particles is different from the inference
pattern when a solenoid is present [3]. This is because the probability density

which determines the interference pattern is the sqﬁare of the total wave function:

P = |U,+ 0,
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where ¥, and ¥, are the wave functions of particles passing through the two
different slits. The presence of a solenoid in between the two paths would con-
tribute to a phase difference between ¥; and ¥,, and the probability density

would become:
Psalenoia = |‘II1 + eie(41rg)\1,2’2

where e is the electric charge and 4rg is the magnetic flux through the solenoid.
Dirac’s statement is that the two interference patterns would be the same if
the phase difference contributed by the solenoid is 27nz, which translates to the

following relation between the electric and magnetic charge [11]:

N
g = 2—where N is an integer
e

Other arguments would show that with the above relation, the solenoid could
not be detected by any other conceivable experiments [3]. Therefore, the monopole
is a genuine monopole which is not distinguishable experimentally from a monopole

created by a single magnetic charge. The theory of monopole is thus started.

2.2 Monopoles in SU(2) Yang-Mills Theory

Monopoles takes a more elegant presence in Yang-Mills Theory, which is essen-
tially a generalization of the classical field theory of electromagnetism with U(1)
gauge symmetry to one with a larger- gauge group SU(2). We will now see how
U(1) electromagnetism can be embedded in this “bigger” theory, which can be
seen as a prototype for grand unified theories, specifically, an SU(2) Yang-Mills

theory with a scalar field in a Mexican-hat potential in four-dimenional Minkowski

space-time, and how monopoles exist as non-singular classical solutions to it.
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2.2.1 The Action and the Equations of Motion

The action of such theory looks like:

S = % / dz*Tr [—G“"(x)G,wix) + 2DF¢(z)D,yd(z) = A (¢(z)d(z) —c?)]
where G* = OHAY — 9 AF — 1e[A*, Av); (2.1)
DG = O'¢—ielA",¢]  foru=0,1,23 (2.2)

where the fields are in the adjoint representation of SU(2), ie., ¢ and A* are
2 x 2 Hermitian matrices and so can be written as linear combinations of the

three Pauli matices:

¢:¢a% ; A":Af;%ﬁ for a =1,2,3

Since the Pauli matrices satisfy the following identities:

Oa Obp 1 Oc¢

1 1 o
AT T ~€abc5 _5a_ ) Tr—= = 0
) pabey T 507

2

we can treat them as the basis of the vector space R® and represent the fields as

vectors:
¢ = (¢1, b2, 03) ; A'= (A} AL AL) where i is the spatial index-

with the vector cross product corresponding to the commutator of the matrices

and the dot product to the trace of products of matrices:

—i[A*, 4] | = A¥x¢
Tr(G"Gu) | = G* -Gy

The action in this vector notation becomes

S = i/ dz* [~G*(z) - Gy (2) + 2D*¢(z) - Dud(z) = A (¢(2) - () - )]

where G* = O0*AY — 0"A* +eAF x Ay;

Dty = 0'p+eA¥ x ¢
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Varying the action with respect to the scalar field ¢ gives the first equation

4/

of motion:
d | D*D,p = -\ (d-¢—c?)¢ - (2.3)
Varying with respect to the gauge ﬁeld A" gives the second:
D,G* = —eD¥¢ x ¢ (2.4)

In this vector notation, the infinitesimal gauge transformations of the gauge

field look like
S 0A* = e x A* + e

where € is the infinitesimal gauge parameter, but those for the the scalar field

and the field strength are simply infinitesimal rotations in R3

56 = ex¢
IGH = ex G¥

Gauge invariant quantities are then invariants of this rotation, length of the vector

fields which rotate in this internal R® space under a gauge transformation.

2.2.2 The Asymptotic Condition and the Factorized Equa-

tions of Motion

We are looking for a finite energy configuration of fields that would give rise to
some U(1) monopole magnetic field in some asymptotic region. Therefore, we
need to impose some conditions on the fields such that the total energy is finite,
define what it means to be in the asymptotic region, and also find a way to embed

the U(1) electric and magnetic fields in this SU(2) theory such that the U(1) fields

satisfy the Maxwell equations.
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The Conditions at r — oo

The energy of a classical solution is given by the Hamiltonian which is related to
the action in the usual way: |

1

Ho= / da* [G*(z) - G (x) +2D"$(x) - Dud(x) + A (d(c) - $(a) — )]

This is only finite if each term vanishes at infinity. Ignoring the first term for now,
the last two terms vanishing at infinity implies the following boundary conditions
for the scalar field and the gauge field:

|¢| — ¢ asr— o0

ID#¢| — 0 ast— o0
If we write ¢ as the product of its magﬁitude and a unit vector field (in SU(2)
gauge space):
¢ = h(z)$(z) where |¢(z)]” =1
- the conditions above become conditions on h(z) and ¢(z):
D"qs = 0asr— o0
| 0h = 0 asr— o0
"h — ¢ as r — 00

The first two follow from the fact that D#¢ can be separated into two perpen-

dicular components and each needs to vanish:

D¢(z) = (9"h)¢+ hD*¢(x)
= (8*R)+h (0"d + eA* x ¢)
but 8*(¢-¢) = 8“(1) =0 implies ¢- 8¢ =0

and (A*x¢)-¢ = 0

therefore D*¢ L ¢




Chapter 2 Background: Single Monopole in Commutative Accelerated Yang-Muills Theory

The Asymptotic Condition

We want to define an asymptotic region between infinity and the core of the
monopole where the ‘above conditions may not all be satisfied but where the
embedded U(l) magnetic field defined later on would satisfy the vacuum Maxwell
equations. If we treat the right hand side of the equation of motion (Eq 2.4) as

some “matter” current 2]
JH .= —DFo x ¢ ' (2.5)
then the matter current vanishes when
D¢ =0 (2.6)
This is ’the asymptotic condition that we will use in the next chapter [1]. Note
that unlike at » — oo, 0*h = 0» is not imposed in the asymptotic region.
Factorization of Equations of Motion

We will now see how this condition gives rise to the definition of the U(1) field
strength tensor that will define the magnetic field for the monopole.
The condition is true if the following relation between the gaugé field and ¢

is satisfied:
1.~ o« R
AF = —0") X §+ X'
becauée the second term of the covariant derivative of d;:
R 1 . . . ) o o )
A x§ = COBx 4N <= (0"8-8) 9 (9 H9"d = ~0"

would cancel with its first term.
With this relation, the field strength tensor G# can be factorized into a unit

vector field, ¢(z), and the magnitude of the field strength, a scalar in the gauge

9
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space, which also varies over space-time. Explicitly,
G = OPAY —"AF +eA* x A,
2_,4 - ' - - -
where O*AY — "A¥ = ;(‘9”4) X OHp+ (OHFA — " M) o + (WO g — A9"9)
1 .. o . R .
Af X A" = E(a"¢><¢) X (09 x @) + (8¢ x ¢) x (X"¢) + (N9) X (8¢ x ¢)
= [0"¢- (09 x 9)] 6 — (N0 — N8"4)]
1 ~ ~ al A ~ N
= —[(0"¢ x 9¢) - 4] ¢ — [N'0"¢ — X0 9]
But we already know that for any p and v
9" L ¢ and 8¢ L é such that 8¢ x 8¢ | ¢
which means
I T P
S x 0" = [(8"¢x0 ) ¢l ¢.
Therefore, the SU(2) field strengh points in the direction of
G = [0 % °8) 3] b+ 1omN - 0§
~ We define f#(x) to be the length of the SU(2) vector G** [1]:
. 1 . .
= GG = 2 (0 x 8°9)- G+ N — 0N

and note that it is a gauge invariant quantity.
Now, the equation of motion and the Bianchi Identity for G* imply the free

- Maxwell equations for f#":

- 1. Equation of motion:

D,G* = —eD'¢x ¢
= (0uf™) b+ D" = —¢((0"h) &+ hD*) x h “
— 9" = 0 2.7)

10
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2. Bianchi Identity:

D, Gas =0 = 8,6 fo5=0 (2.8)

We have embedded U(1) electromagnetism in this theory with f# being the
Maxwell field strength tensor. If ¢3 points in only one direction, for instance

~

¢ = (0,0, h), then the field strength takes the usual form: .
fH = PN =9I

Unlike ordinary electromagnetism, the field strené;th contains also the term in-
volving J), and this will allow the monopole solution to be non—singulai‘ by giving
rise to a topological charge. We will discuss this iﬁ section 2.2.4

Notice that the equations for f# are decoupled from h. It is the other equation
. of motion Eq 2.3 that factorizes in the asymptotic region to give the equation of

motion for h:

D,D*¢ = —A(¢* —)é
= D, ((a“h)qS + h(0"$ + A* x q“s))
= Du(0"h ¢+ hD,d)
= (8,0"h) ¢+ (9"h)D,¢

= (9.0"h)¢
= 0,0'h = —-A(K*—¢?) ' - (2.9)

Although h and f*” seem to be in.dependent of each other in the asymptotic
region, they are not at the core of a monopole where the equations of motion are
not decoupled. The relation they need to satisfy in the core is given through a
first order ansatz in section 3.1.1. |

Another important property of these asymptotic equations is their linearity

in the U(1) fields f# and h. In the next chapter (secﬁon 3.2.1), we will explain

11
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how Manton relies on this fact to -find the solutions for the region between two

monopoles.

2.2.3 Monopole Solution—both charges

Now that we have a U(1) field strength that satisfies the Maxwell equations, we

can define a U(1) magnetic field in the usual way:
i Loagk ik n 1y
B = e k(g )

Since f7* can be written in terms of only ¢ and )\ without involving A, re-
stricting B* to the monopole drop-off in the asymptotic region giveé a condition
for & énd Al decoupled from k. Since the monopole magnetic field satisfies the
free Maxwell equations which come from the equation of motion and the Bianchi
Identity, any q§ and A that produces the monopole field is automatically a solution
to the equations of motion.

Since the SU(2) scalar h is related to the magnetic field B* through the first
order ansatz mentioned above which can be evaluated in the asymptotic reion
also, the asymptotic profile of B® in fact gives a condition on the scalar h. We

will discuss this in section 3.1.1.

To solve for (;3, we first try to find a relationship between the direction $ is
pointing at and the magnetic field B*. It turns out that there is a solution for the
choice A' = 0 (which Manton referred to as a gauge choice but is incorrect). For

each gauge index (d=1,2 or 3), the gradient in real space of ¢4 is perpendicular to

12
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the magnetic field B*: (Below we write the gauge indices explicitly as subscripts.)
(00) B = e 0% (5 e’ 046, b
0 ford - b,b=corc=d, by antisymmetry of €/*
+ 5 - (av‘é x akq‘a) ford#b#c
and (8% X 3%‘) |6, 8¢ L ¢ imply 86 - (8% X 8'“(2)) =0
therefore <8i<;3d) B' =0 | (2.1Q)

but | ek 3i<}3d 37.(;51) 3’%2;6 =

This means that all the components of (Z& is constant along the field lines of B. For
a single monopole then, (;3 is constant along the radial direction and so depends
only on the spherical coordinate angles, 8 and yx, where 6 is the angle a vector
makes with the -z-axis and X is the azimuthal angle. The solution for a single
charge monopole can be very simple in some fixed gauge:

i

éa = :i:d; E"

r

and we can check that its magnetic field is indeed the monopole field:

B = —%eijkeabcaj (£2) o (=) (=)
e r
L, (é__) (o) (uo)
2e 2N r r3 T r3 r
1, . ,
= gt (£33)
7

Accordingly, the gauge field is:

. 1 . a o
A:z = geabcazﬁbbd)c

1 1 T, Tzt T,
= e (261 0) (25 - (£ i
e (01 2) (7 - 225 (+%9))
1 i xc bl ~
= 'e—(:'ac;'z" forgb::i:r

13
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Now, for the monopole with a single negative charge, there is another solution.
Instead of reflecting the solution for the positive charge monopole (¢g = —#)
about the origin in the SU(2) space (such that ¢g = +7), we can reflect ¢g about
only one plane to obtain (j;e; for instance,

¢ga1
po = —Q3e2
Pa3
Since q@e has only one component with a relative minus sign, B*, given by

Eq 5.1, would be negative. This is the solution that comes about when we

generalize the solution to multiple charges.

2.2.4 Topological Nature and Quantization of Charge

We now try to generalize the above solution to higher charge single monopoles.
First, the divergence of B does not depend on the term with A\*, and is actually

zero everywhere except at the origin:
i pi ijk 1 7 gkl 9l a7k
0B = € ~2—eeabc(9’¢b6 ¢e 09 +20'0a

- Eijk <_%€abcaj§£b akq’sc ai&)a)

= 0 by similar arguments as in Eq 2.10

By the divergence theorem, then, the magnetic flux through a surface enclosing
the monopole core depends also only on (ﬁ Now, for a monopole with a single
positive charge, quS maps the 2-sphere in physicai space, which is parametrized by 8
and x, to a 2-sphere in gauge space once. Since 423 depends only on the angles and
not on r, we can generalize to higher charges by choosing one angle, for instance
X, and defining é such that it has mapped a section of the 2-sphere in real space

(described by x = 0 to some XO)'to an entire 2-sphere in gauge space before x

‘14



- Chapter 2 Background: Single Monopole in Commutative Accelerated Yang-Mills Theory

‘ reaches 27, such that
¢ = (sin@cos Ny, sin6cos Ny, cos#).

| For x > 27/N, the mapping of g?) to the 2-sphere starts anew. Now, for q3 to be
single-valued, the values of é at x = 0 and x = 27 have to be the same, and so
N needs to be an integer, whether positive or negative. We can then check that

this g5 gives the magnetic flux for N integral magnetic charges:

o 4w N
/ Bida® = =
Sur face : €

X is recovered. N is called the

Here, the Dirac quantization condition, ¢
winding number or the topological charge of the solution.

Notice that the negatively charged monopoles are é with —N. This means
that looking from above the x-y plane, if the vector be (at all z values) rotates
counterclockwise as x increases, the vector ¢g (at all z values) would rotate
clockwise as x increaseé.

-An important point is that there is no smooth gauge transformation that
would take the solution from one N to another. Two solutions with different N’s
are said to be in different homotopy sectors. It is because the magnetic charge in
- this theory occurs as a topological charge that the situation of the Dirac string

in the Maxwell theory can be avoided.

2.2.5 Solution at the Core of the Monopole and the BPS
Limit
We have only looked at the solution in the asymptotic region so far, since it

already captures the most important aspects of the monopole solution and is

what will be discussed in the rest of this Teport.
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The explicit solution at the core of a single charge monopole was found by
Bogonolmy, Prasad énd Sommerfield [12] [13] in what is known as the BPS limit
following 't Hooft and Polyakov’s ansatz [14] [15]. The outline is as follow.

Instead of using an asymptotic condition such that the SU(2) field strength
tensor G** would factor under it, 't Hooft defined the U(1) electromagnetic field

strength everywhere as the gauge-invariant expression [16]:

Mo = —= (D4 x D) g + G g

e
While in the asymptotic region, the first term vanishes because D“(ﬁ = 0 and the
second term factors as before, in the core, after 'being expanded, this U(1) field

tensor still takes the form we had before in the asymptotic region:

v 1 2 v 2 v v
ft“Hooft = _E [(8“¢x8¢)¢+6l‘)\ -0 )\“}

~

with \* = A¥ . ¢.
Now, without the asymptotic condition, the Bianchi Identity of G*” does not
imply the Bianchi Identity for f/y,,, but rather
1 1 . - o
'2'6#1//108” tp}?ooft = €uvpo (—%Gabcal’(ﬁb 0° ¢ aaﬁba)
Fortunately, the right hand side is identically zero becapse of its form as argued in

Eq 2.10 and would integrate to a non-zero magnetic flux over a surface enclosing

the monopole. The other two Maxwell equations

H

pv —
6# ‘tHooft — 0

follow from the equation of motion of G*.
't Hooft and Polyakov proposed an ansatz such that f/ ., would give a

singlé charge fnonopole magnetic field far away from the monopole core:

¢a = — h(r) ~ o (2.11)
Al = eaj,,x?p W (r) | (2.12)
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where h(r) and W(r) satisfy the following boundary conditions:
1. h(r) — c as r — oo for the energy reason discussed before;

2. W(r) = X asr — oo such that A’ = (1/e) Odxdasr — oo, which is the

asymptotic relationship between the gauge field and <;3 derived before.

In the asymptotic region, the 't Hooft-Polyakov solution would reduce to the

solution discussed in the previous sections.

The BPS Limit For the equations of motion to be satisfied, h(r) and W(r)
need to satisfy a set of coupled “non-autonomous” differential equations [16]
a_ﬁd has been solved only in the limit where the amplitude of the Mexican-hat
potential [A(|@|2 — c2)] goes to zero, i.e., A — 0, while the value of |¢| at which
this potential is minimum is retained such that |$| still needs to approach c at
infinity. This is known as the BPS limit [12]. The full solution of the single charge
monopole in this limit is the ansatz in Eq 2.11 and Eq 2.12 with h and W,solved:

c 1
Alr) = tanh(cer) er

1 c
er sinh(cer)

Note that these. functions are smooth and do not diverge at the origin.
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Chapfer 3

Mant.o'n’s Method to Find Force
Between Two Commutative

"Monopoles

In electromagnetism, the force acting on an electrically charged particle by the

electric and magnetic field is given by the Lorentz force law
F = g(E+7xB)
which is the equation of motion derived from varying the particle action

Sparticle = / (..ifl“’fuy — JMAN> d.’134 —+ / \/ d:c/‘dx#

where Jﬁ is a conserveci current, i.e., 8MJ;‘ = 0, with its time component being
the electric charge density and the sp’a,tia,l components being the electric current
densities flowing in the three different spatial directions.

~ The magnetic monopole, on the other hand, is not a poiﬁt particle but field
configurations that extend over space, and there is no separate “particle” action
for its dynamics. How do we find the force acting on it then? How do we find the

force between two opposite charge monopoles and that between two same charge

monopoles?
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Canonically, we can find the force on an enclosed region, in which a monopole
can situate, by calculating the momentum flux through its boundary surface us-
-ing the stress-energy tensor. However, Manton arrived at the correct answers by

his own method, and we outline it below:

Suppose two monopoles with same or opposite charges separatedyby a large
distance, s, accelerate with a small acceleration, €2d@, from rest due to the force
each experiences. For this instant, Manton assumes the fields of the monopoles to
be rigidly écceler.ating in opposite directions, and using this assumptioﬁ simpli-
fies the time-dependent equations of motion to equations that involve only spatial
derivatives and terms with €2@. He then discovers a first order ansatz for each of
the different charge monopoles to solve the modified equations up to O(e?). Now,
in the asymptotic region defined by Eq 2.6, the ansatz and its derivative for each
monopole become equations for h, and ngS; recall that h, and (,23 determines the full
solution since ¢ = h¢ and A = 8¢ x ¢ after having chosen A* = 0. Manton
then cleverly chooses a gauge in which the ansatzes afe linear in terms one of the
components of qAﬁ, ¥, and in which.ngS for different charge monopoles have the same
dependence on ¥ sﬁch that a solution for ¥ in the region between two monopoles
would imply a solution for qAb in the same region as well. He solves for h and ¥ for
each monopole with its own charges and direction of acceleration for both O(€%)
and O(e?). Finally, he uses the linearity in h and ¥ of the ansatz and builds the
“global” solutions, hgopar, and ¥yepe, for the region between the monopoles by
adding the h and ¥ functions from the different monopoles, but with the freedom
of adding any hdmogeneous solutions. He requires that to O(e?), these global
functions reduce to the solutions for each aﬁsatz at eachvmon.opole, and deter-

mines the assumed acceleration €2@ in the matching process.

19
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In this chapter, we study Manton’s method in details, correct and clarify a
few of his statements. We interpret the method as the application of an external
force law on each monopole and find the limitations of this force law. We also
study the canonical method mentioned above and look at statements made in the

Manton method from that viewpoint. -

3.1 Manton’s Ansatz for a Single Accelerating

Monopole

3.1.1  Derivation of the Accelerated Equation of Motion
and Manton’s First Order Ansatz

Manton starts by deriving the modification to the static equations of motion

for the instant, ¢ = 0, when a monopole starts to -move. He assumes that the
monopole accelerates “a little bit” rigidly from rest such that the scalar field
and the gauge field only have time-dependence in terms of the Taylor-expanded
spatiayl coordinates:

o(s*) = & (xf - -;—(eza%?) . AI() = AT (m - %(e%i)t?)

where €2a? is the small acceleration. The time derivatives of these fields become

non-zero:
% — e2a’t 8¢ ; O0°AI = —e%a’t AT (3.1)

Manton also makes the other term in the covariant time derivative depend on
time in the same way. To accomplish that, he chooses a gauge in which A® =0
in the instantaneous rest frame of monopole such that at a small time ¢, A? in

the non-accelerated lab frame would be obtained by a Lorentz boost with the
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relative velocity v = —e?at:
A = —€2a'tA"
Combining the two terms, he writes the covariant time derivative of ¢ and of G7°

in terms of the covariant spatial derivatives:
D% = —e2a’t (0'¢ + eA' x ¢) = —d't D'
G0 = —&a't (A’ — AT +eAl x AY) = —éa't G

Then, using these, he manipulates the equations of motion. He applies another

covariant time derivative on these quantities, but keeps terms up to only O(e?):
DyD% = €a'(D'¢)+ (€a’tA?) x (—€’a’tD'¢) = ?a’(D'g) + O(*)(3.3)
DGY = —€a'G’ + (dltA7) x (=a’tGY) = —’’G" + O(*)(3.4)

and he substitutes these in the equations of motion. The ore equation of motion

involving only ¢, in terms of the acceleration ezdi, looks like
D,D*¢ = D,D'¢+D,D%
= D;(D’ +62ai)¢' = A(lg]* =) ' (3.5)
The time coﬁlponent of the other eduation of motion becomes

D,G" = —eD'¢x¢
= —d'tD;G" = -a'tDipx ¢ (3.6)
: e
Factoring out e2a’t, this equation reduces to simply one of the static equations of
motion and is to be satisfied by the O(e°) solution:
The spatial component of this second equation of motion can be written with

the covariant time derivative replaced with terms with the acceleration as well:

D;GY + DyGY = (D'+ a')GY = —eDi¢p x ¢ (3.7)

~ Note that
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1. to O(e%), all three equations, Eq 3.5, 3.7, and 3.6, reduce to the static
" equations of motion, so the O(e®) solution is also also the static monopole

solution;

N

2. there are no explicit time derivatives in all three equations, and since
the spatial derivatives of the fields with the accelerated coordinate de-
pendence equal those of the fields with the static coordinate dependence,
0 (¢(T + 1/2€%at?)) = 8'(4(%)), changing the argument of the fields from
the spatial coordinates to the accelerated coordinates is consistenf with
these equations. At t = 0, the accelerated and the non-aécelerated coordi-
nate are the same, (Z + 1/2¢2Gt?) = 7, so we can now look for the solutions

that have z as the argument.

The First Order Ansatz

Manton discovers a first order ansatz that solves the “perturbed” equations of

motion(Eq 3.5, 3.7) in the BPS limit (section 2.2.5):
GY = +e7*(D* + €a*)¢ ‘ (3.8)

where the different signs correspond to'the different charge of the monopoles, as
explained below.

We check that it indeed solves the perturbed equations of motion. First, we
substitute the ansatz in Eq. 3.5:

Di(Di¢) + 2a(Di¢) = Di(:t%eijij’“ — aig) + 2a(Dig)

|
= :I:Ee”’“D’G]kzo

and see that it is satisfied using the Bianchi Identity. Second, we substitute the
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ansatz in Eq. 3.7, and find that this second equation is also satisfied:

(D + 2a)) GY = Die(DF + 2ab)g] + 2ai (27 D4g) + O(e?)
= +*D'D*¢ + O(*)
= £e9%[0°0 ¢ + eA’ x F¢p + O (eA’c x ¢) + A’ x (A* x ¢)]

= 7 [e(6' A*¥) x ¢) + A*(A' - )]
Now %e”kG’k x¢ = H(OAF) x ¢+ S (AT x A¥) x ¢
= F[(PA*F) x ¢+ eAF(AT- ¢)]
so (D' +¢€%a)GY = :I:%eijkeG““ X ¢

= =+ [Fe(D’ + €%a’)¢ x ¢] = —eD ¢ x ¢

The First Order Ansatz in the Asymptotic Region

Recall from the last chapter that we write ¢ = hqg and that the asymptotic
condition D’“¢A> = 0 allows the gauge field to be determined bqug only if \f = .O,
so solving for h and é will give the complete solution in the asymptotic region.

Recall also that in this region, the U(1) magnetic field B is given in terms of
(ZAS through the asymptotic condition, and the monopole requirement that B -
7 /72 has sufficed to give ¢ to O(eY). Manton’s ansatz then provides the relation
between B and h up to O(e?), and so allows us to first solve for the O(€®) h which
is part of the static solution. It also allows us to solve for the O(e?) corrections
to both qAS and h for the accelerating monopole. |

Manton’s ansatz factorizes and reduces to the following relation between B

and h in the asymptotic region:

B = G = = [(0*h)f+ hD*G+ Pathd]

= B* = £ (6*h+€a*h) asymptotically (3.9)




Chapter 8 Manton’s Method to Find Force Between Two Commutative Monopoles

As expected, this ansatz is consistent with the original equation of motion (Eq 2.9):
Bua“h = (9k(6kh + e2a* h) 0kBk =0

Now, the ansatz needs different relative signs for the oppoéite charge monopoles.
This is because if oppositely charged monopoles are described by the same ansatz,
h will switch sign as the charge and therefore B* is switched; but we already know
that under the charge inversion, one of the components of <£ also switches sign;
this means that both @ and © monopoles \;vill have the same solution ¢ = hqg if
both satisfy the same ansatz.

To avoid this ambiguity, we need the different ansatzes for different charge
monopoles. We choose the sign convention that B* = +(0*h + e*a*h) for the @

monopole. Consequently, h for both @& and © monopoles are the same to O(°):

O = —1 +c

k
such that + 8*r® = :l:— = Bé(/(g and h® ¢ as r—

Secondly, we want to derive the equation for qB for the accelerating monopole
which preferably would not depend on the unknown €™, Expanding Eq 3.9.in

orders of e:
B*O(¢) + BH)(§) = = [0*(h© + p) )+€ akh(o]

we see that applymg the curl operator to both sides would get rid of the term
with A<

ik (Bk(o) + Bk(€2)> = 4k [3’8"’ (h + Rl )> + €%aF 3jh(0)] = +¢7F (ezak) .Bj(o)

" Substituting back the zeroth order magnetic field, we obtain an equation for (<)

decoupled from h(€"):

rxea (3.10) -

V x é@/e’(ﬁg) = =

J
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where €2d@ points in the direction towards which thé' monopole in question is
accelerating. We can see that when the acceleration is zero, the right hand side
of the eqﬁation vanishes and the equation turns back into the static equation.
When the acceleration is non-zero, the right hand side can be interpreted as the
time derivative of the electric field as in the Maxwell equation, just that it is very

small.

3.1.2 The Solution of a Single Accelerating Monopole
Solution of ¢ | |

In this section, we present the O(e®) ¢ solution in a different gauge and solve
| Eq 3.10 for O(e?) correction to ¢.

To simplify the problem, Manton chooses a gauge such that the solution would
preserve the symmetry about the axis of separation of the monopoles. In the last
chapter, we have defined ¢ for opposite charges according to which direction )
rotatés as the azimuthal angle x increases. For a system of two opposite éharge
monopoles on the z-axis, this choice of angle to define the monopole charge would
break the convenient axial symmetry of the solution, since q3 near each monopole
would be winding in different directlions about the z-axis. Recall that gauge

_ transfofmations of ¢ are simply its rotations in the internal R® space, so we can
choose another angle to define the‘.winding. Manton chooses 8 such that for a
single monopole, if we look down ona plane defined by a constanﬁ X, for instance
the x-z plane, the oppositely charged monpoles would respectively have g% rotating
clockwise and co.unterclockwise as @ increases. This way, axial symmetry for the
two-monopole system can be preserved provided that the corrections of ngS due to

the acceleration also exhibit axial symmetry. We will see in section 3.2.1 how this

gauge is crucial for solving for the two monopole system.
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Magnetic field in terms of ¥ and Y The next step is to write Eq 3.10 in
terms of the two degrees of freedom of $. Suppose due to the acceleration, é
depends on the angles x and ¢ differently than for a single static monopole, and

is written in the form

VI= T (x)
b = | VI-30PVI-T()? (311)
¥(6)

such that |@)| = 1 is still true. Note that for a single static monopole, ¥(f) =
Fcosf and T(x) = cosx.

To see what Eq 3.10 means for ¥(#) and Y(x), we first write the magnetic
field explicitly for each gauge index and apply th‘e real space gradient operator,

denoted Vg, in spherical coordinates:
=t 1 ‘ ~ ~ -~
B = —cans (Vids X0 Vide) (3.12)

where the explicit lower index is the gauge index and the gradient of the compo-
nents of ¢ are as follow:
- e A\ 1 —-¥ 097y - 1 Y
Vs = |—/—=——T| 7 T 0+ |V1 -T2 — —_—
2 [\/1—\112 or ] T+|:7“ V1 -2 96 } +{' 7 sin 6 (BX

- e A 4 : 1 -¥ 9¥ -
S il — 12| 4 S Y2
- | eI Lo VI T ¢

P ()| ¢

7 sin 0 \/1_T2a
N ovr 190V .
Vips = ET ;%9
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Figure 3.1: Two monopoles with different charges accelerating in opposite direc-
tions '

Then, we obtain B explicitly in terms of ¥(6) and Y(x):

B = —25 [(V ¢2 X s V ¢3) b + (Vsﬁgii X V;ﬁ) ‘<132 + (Vs<l31 X s Vs<]32> &3]
_ __<Waw[ - a’r} j_ VI-vov { 0 ar] f)(\/fi"w_zﬂ

rsin or

V1—T20x r2sinf 00 |/1— TZO0x
V1-929¥ 0T . V1-V29¥ 09T 5 —
( rsind or 8X( O~ Tame r2sinf 80 Oy (- )> <\/1_\I, \/1_T>

v O 1 - Jv -1 0Tl .
(o o] 0 i [ °) @
1oy -l oY, 1 e |
. rsinf or max r231n980 V1 =172 0x

We are now ready to solve Eq 3.10 for ¥ and Y. .

Solving for ¥ and T Suppose the © monopole is situated at —§ on the z-axis

and accelerating with (¢%a) 2 while the & monopole is situated at +3 on the

z-axis and accelerating with (—e a) %z, then the equations for them are exactly
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the same except in terms of coordinates with different origins:

S — ' D
de = €2a(fycos0; — 015inb;) | dg = —dg = €2a(—75 cosfy + O sin b,
o @ o
— 240 — 2 = ~
VxBg = + <32 V x By = — <=8xfz f%x”

The coordinates subscripted 1 has its origin at the center of the monopole on
the negative z-axis and the ones subscripted 2 at the center of the one on the
positive z-axis. Consequently, the equations for ¥(6) and Y(x) are the same for

both monopoles as well:

et - L2 (52) B ()] e
£ r| 9r \sind or 06 \ r2sinf 06 V1-—"T20x
: 1 0¥ 9 -1 o7 ‘

=)

+F s
- 72sin 6 Or Oy

gL 09¥9 < -1 9T
r3sin26 80 dx \ /1 — Y2 Ox
2 .
- 3 € as;n@ (3.13)
r

We will first show that Y(x) remains unchanged from the static solution even
when the monopole is accelera,ting. First, the inhomonogeneous term on the
RHS has only a ¥ component with coefficient that does not depend on the angle
x; therefore, the particular solution needs to give a x component on the LHS
that is also independent of x. Thus, for the particular sblution, the possible x

dependence needs to be removed:

-1 g
V1=720x

This is solved by T(x) = cos(Nx) but as explained above, N = 1 for both &

= constant

~ and © monopoles for the chosen gauge. This means the particular solution of T

has no O(e?) correction. Also, this solution renders the # and § components of

Eq 3.13 zero as needed, regardless of what the particular solution of the other

function, ¥(4), would be.
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For the homogeneous solution of Y(x), assuming that ¥(6) depends on 8 and

perhaps r, we deduce the following equation for Y(x) from the 6 and 7 components

of Eq 3.13: -

o (o ary
x \v1- 12 0x |

which implies that the term inside the bracket, say (I), is linear: (I) = Ax + B.
We already know that the O(e®) T(x) solution gives (I) = constant, and that
the magnetic field is proportional to (I} from Eq 3.13, which means (I) = Ay
would make B discontinuous at x = 0; therefore, the only admissible solution for
T(x) is still just the static solution Y(x) = cos x. We conclude that Y(x) is not
affected by the acceleration of the monopole.

We now simplify Eq 3.13 to an equation for ¥(6) only by putting in (I) = 1:

,0°¥ O*T  —cosf Y
—_—p— - _+_ _
- Or? 06? sind 06

) = ¢€%ar sinf (3.14)

and proceed to solve for ¥. This equation can also be written in the following
form which manifests its linearity in ¥(6):

-V x (x x V¥) = X e’ar sinf (3.15)

The equation’s linearity in ¥ is crucial for Manton to build the global two

monopole solution as will be discussed in section 3.2.1,

Particular solution of ¥ Since the first term in Eq 3.14 involves the second
derivative in 7 of ¥, if ¥ o r, then the first term vanishes. ‘Now, if the 6
dependence is @;—0, then '

d%(sin®0/2)  cos@ H(sin®6/2) ) .y
- 567 + sin 0 En = cos280+cos“8 = sin“é

Combining, the correction of ¥ due to the inhomogeneous term is

! 1 : '
\IIJ(D:,)t = §ezar sin® 6 (3.16)
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which gives the magnetic field correction

B _€acosf ée2a sin 6
t = -
par r 2r

Note that since Bpqrs is proportional to e2a/r, it would be of O(e3) when far away

from the monopole 1/r is comparable to €.

Homogeneous solution of ¥ We use separation of variables to find the ho-

mogeneous solution of ¥:

Let ¥) = R(r)0(6)
theﬁ reR = G—H cost99’ = A =. const
R 6 sinf © -
1. For the # dependence,
o~ %% _yo = o
sin 8

Propose that © ~ cos* 6 sin'6, then
(—2kl —1 — )) cos*@sin' @ + k(k — 1) cos* 28 sin'+% 9

+1(1 = 2) cos*20sin"29 = 0

Each term vanishing gi‘ves the conditions for k, 1, and A:
0 fork=0,1=0
k=01;1=0,2; A==2kl-1l=4¢ -2 fork=0,1=2
| 6 fork=11=2

2. For the radial function,
r’R"— AR = 0 where —A=0,2,6
Let R(r)=r", this means n(n —1) = =X

0,1 for =A=0
= n=4{ —1,2 for —A=2

—2,3 for — A =6
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Combining the angular and the radial parts:

Ar + B for —A=0
‘I’gfjr)n = R(r)©(0) ~ (Cr? + 2)sin* 6 for —A =2
(Er® + ) cosfsin®8 for — A =6
where A to F are constants of O(e?). |

Plugging these into the relation between B and ¥ (Eq 3.13), we obtain the

following magnetic field correction:

( —ér—s?ﬁ; ' for\Il&Ar—FB
C(fcos@—ésin&), .
B ~ +D (7252 1 Gt ) | for ¥ ~ (Cr? + 2) sin26

E [f(QT — 3rsin®6) — H3r sin 6 cos 9]
| +F [fr%(2 — 35in% ) + 0% sin 6 cos 9] ; for U ~ (Erd + %) cosfsin® 6 |

However, only of one these magnetic fields is admissible and relevant. The first -

of these terms diverges at 8 = 0, so it is not allowed. The term with coeflicient

2

E is proportional to e*ar which becomes of O(€') when 1/r is comparable to

€. This order was not mentioned by Manton and is trivial as will be shown in

section 3.2.2. The terms with coefficients D and F are of O(e?) for 1/r ~ ¢

2

and is irrelevant in the determination of the acceleration €@ as will be shown in

section 3.2.1. The only term left is B ~ C(7 cos — fsinf) = C%, which comes
(€%) .

hom*

from the following ¥

\Ifﬁ,ﬁl o= —%ezarf sin? 6; : \Ilg;zr)n e = %e%r% sin’ 6, (3.17)

where —o1€2a and o0,€%a are simply Manton’s names for the coefficient C for the

different monopoles.
(€%) .

We have found the homogeneus solution of the magnetic field from ¥,

however, if we were not interested in ¥, we could have noticed that the homoge-

nous solution of B in Eq 3.13 simply satisfies the vacuum Maxwell equations, and
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could have concluded that the solution in terms of a scalar potential U such that
B=vVU , is simply any linear combination of the multipole expansion terms with
cylindrical symmetry:

° B
U = Z <Ar’+m> P,(cos 6)

l

where A, B are constants and P;(cos 6) is the Legendre Polynomial of cos 8 of order
(¢%)

hom

. The homogenous magnetic field we obtained from ¥ simply corresponds to

the term with the lowest { which would give rise to a non-zero magnetic field and
has no 1/7‘ dependence: U = ArP, (cosb).

The complete solution for <13 for either monopole accelerating in its own direc-
tion is then
(¥0 + 9, + ) cosx
(20 + w5, + w2),) sinx
Vl ~ (20 + 9+ wE))

with the corresponding ¥ ) and ) Note that ¢ for both monopoles

part» hom*

-

" to depend on ¥ in the same way for the chosen gauge. In section 3.2.1, we will

see how Manton needs this to build the global two monopole solution.

Solution for h

Solving for (13 has given us both the particular and homogeneous solutions for the
magnetic field due to the acceleration. Using these and the first order ansatz
Eq 3.9, we can easily solve for h to O(e?).

For the © monopole,

Bg = —(Vihg + €°ah)
. - 7 R cosf ~ 1., sinf .
and from the last section Bg = ———12— + 71€%a L 6, —€%a L. o1€2d
ery er; 2 ery
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The equation for h is then
Ohg 1 Bhe

Vhe = f—2+6,—
© m 87‘1 t 7'1 891
= 5 —b—F———+ (01— c)e’a (fl cos 8, — 6 sin 01) (3.18) .

Solving for the #;component of the equation,

1
he = c— . + (o1 — c)e*ary cos B, + £(6y)
1

The 6, component of the equation then determines f(6;) such that

1 ‘ 1
he = c— =+ (o) —c)é®ar, cosb + §eza cos b, + k;
r
For the @ monopole, the O(®) magnetic field has a different sign from the &
case, and the magnetic field correction obtained from \I/( ., also has a different

sign because of the definition of the unknown coefficient os:

A

o cos@ .1, sinf
By = + + Foela 2 0,=¢c%a 2
2 T2 2 T9 .

+05€2d

The first order ansatz has a different relative sign between B and h and the

direction of the acceleration is reversed:
Bg = (Vhg — €Gh)

Thus, the equation and solution for hg are

A 1 né n
Vshg = —Z— %N 2 + (09—c)€ (73 cos 0 — Go sin )
T2 2 T2
1 2 1,
= hg = c— - + (oat+c)e’ary cos62—§e acos by + ko
2

We now have the full solution in the asymptotic region for a single © monopole

k accelerating in the +z direction and a & in the —z direction.
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Comparisoh with Fields of Accelerating Electric Charge

The magnetic field obtained above for an accelerating monopole is not analogous
to the. electric field for an accelerating point chafge in nérmal electromagnetism.
We will describe how and briefly why these fields are different, but show also that
far away from the monopole where r ~ s, the term in the magnetic field that
is relevant to how Manton obtains the acceleration, the O(e°) term, is actually
equal, up to O(1/s?), to the Coulomb term in the electric field of an accelerating
electric particle. |

The differences between the fields result from the different ways we solve the
two problems. For the magnetic monopole, we propose a time dependence for
“the solution, check that it is legitimate by evaluating the time derivatives of the
fields with such time dependence in the equations of motion, and then solve these
"half-static” equations, since they do not have time derivatives anymore, for the
magnetic field, both the 1/7% and 1/r terms. For the electric point charge, we
simply solve the time dependent equations and let the time dependence of the

fields come out of solving the equatiohs:

Eueeric(Z,t) = e n ‘ nx{(ﬁ—ﬁ);ﬁ}
A =T

Z(t) — Zo(t)
7 (t)

The main difference between the fields is that the 1/r radiation fields above for

where B(t) = Zo(t) , r(t) = |Z(t) — @(t)| and 7(t) =

the accelerating electric charge are in terms of quantities related to the path of

the charge that are to be evaluated at an.earlier time to defined by:
|T — Zo(to)] = c(t—1ty) where Ty(t) is the path of the electric charge

but the fields obtained by Manton for the accelerating monopole at t = 0 depends

on the motion of the monopole at the same instant. .
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The magnetic field for the accelerating rﬁonopole being not time-retarded
causes a violation of special relativity: even if the monopole starts to accele;rate
only at t = 0, the 1/r term of its magnetic field, which is the analog of the
radiation of the accelerating electric charge, takes no time to reach the other
monopole. This is consistent with the fact that the assumption of the fields to
be rigidly accelerating over all space also violates special relativity. However, the
~ 1/r magnetic field for the accelerating magnetic monopole does not partici-
pate in the determination of the force between the inonoboles (as described in
section 3.2.1) and so we can ighore this problem.

Note that even if we take away the time-retardation of the radiation of the
accelerating electric charge and chooses the charge to be constantly accelerating,
5 /c = €*at, the radiation terms of the magnetic monopole still has a different
functional form. This is because the E term in the equation, V xB = E, for
the magnetic monopole problem comes directly from Manton’s assumed time
dependeﬁce of the fields, while the B term in the equation, VxE= B, for the
electric charge problem both affects and is affected by the radiation term in the
~electric field. '

On the other hand, the static 1 / 72 term in the magnetic field of the acceler-
‘ating monopole, when compared to the analogous.electric field, lacks the factors
that depend on the velocity of the particle. However, since Manton’s fields de-
scribe the instant when the monopole has zero velocity, the factors become zero,
and so the 1 /r? fields for the electric charge and the monopoles are exactly analo-
gous and are simply the respective static Coulomb fields. The facts that only the
1/7? term of the magnetic monopole field is relevant in the determination of the
acceleration and that this term is the same as the static monopolé field are what
make Manton’s method gives the same result as the stress-energy tensor method

described in section 3.3.
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3.1.3 The First Order Ansatz as the Exfernal Foi'ce Law

We will now extract physical information from Manton’s first order ansatz for the
weakly accelerating monopole. Manton drgues that the first order ansatz implies
the Lorentz Force Law for a single monopole, but this is only half of the story:
the first order Lansatz informs us about the contribution of forces that can act on

the monopole. “

He argues that for a single accelerating monopole,since

r

o 1

B = &+ [Vh + €%d (c —'—)] to O(€?)
and Vh needs to vanish at infinity for the monopole to have finite energy,: B must
be e2ac at infinity. He claims that the Lorentz Force Law directly follows since ¢

is the ratio between the mass and the charge of a single charge monopole:

(3.19)

I do not agree with the reason for VA = 0 or that the Lorentz Force law ﬁecessarily
holds at infinity. Rather, for the monopole to have finite energy, both Vh and
the magnetic field B need to drop to zero at infinity. Therefore, what Manton -
really assumes when he allows B to be non-zero at infinity but not Vh is that
the uniform “external” field that is left over even at infinity is comprised of only
the magnetic field. If we choose the external field to include a gradient field of h,
then these two types of field both contribute to the forces acting on a monopole

and together satisfy the force law:

(-éea:t,:': Vhea:t) = :tm(e a)

For example, let us look at the solution to the first order ansatz in the asymptotic

region near a © monopole:

~

- 71 ) cosf#y .1, sinb; . . L1
B = ——+ F1€%a —6,=€é%a — 01684 = —Vhg — ®dc+ fd—.
- erf er 2 er; : T
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At infinity where all the terms with r, in the denominator vanish, the undeter-

2@, not e*d@c, and Vh reduces to

mined external magnetic field reduces to —o€
€’d(c — 01). Choosing the value of ¢; would determine if the Lorentz force law
is followed: if we force Vh to go to zero at infinity, such that o, = ¢, then the
Lorentz Force Law (Eq 3.19) is satisfied; otherwise, if o, # ¢ and Vh # 0 at
infinity, the Lorentz Force Law is incorrect.

The interpretation of the first order ansatz as an external force law is valid not
only at infinity, but also in the asymptotic region, since in this region, although

the terms with 1/7" has not dropped to zero, the ansatz still independently relates

the constant magnetic and Vh fields to the constant term e?dc.

3.2 Manton’s Method to Determine the Accel-
eration between Two Monopoles

We now consider a system with two widely separated monopoles accelerating in
opposite directions.

We know that at the core of each monopole, the first order ansatz needs to
be satisfied such that the unfactorized non-linear equations of motion there are
satisfied. In the asymptotic region close to the core of each monopolé then, the
solution is simply the asymptotic limit of the first order ansatz and we call this the
“local” solution. Now, for the region between the monopoles, Manton discovers
that he can easily obtain a global solution. by “alimost” superimposing the local
solutions. He finds the acceleration by requiring this globzﬂ solution to become
the local solutions in regions close to the cores of the monopoles. | »

However, although Manton’s result is correct, his method in fact does not
give an unique answer. We will show two exarﬁples of global solutions which are

built in the same manner that Manton’s is built but which conclude a different
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acceleration between the monopoles. We then propose a rule to build the global
solution such that it gives the right conclusion, and notice that under this rule
Manton’s procedure can be interpreted as the ap'plication of the external force
law Eq 3.20; and the undetermined terms in each local solution as perturbative
external fields produced by the opposite monopole. We then do an exerices to
find out if the method can be used to give a higher order (O(1/(separation)?)
or‘above) force between the monopoles, conclude that it cannot, and examine
the difference between the method at‘higher order and at the order for which it

works.

3.2.1 The Global Solutions and the Matching Procedure
Manton’s Way of Building the Global Solution

Manton discovers an easy way to build the global solution in between two monopoles.

First, recall from section 2.2.2 that in the region between two monopoles;
the magnetic field B satisfies the vacuum Maxwell equations and h satisfies the
Laplace equation. Both equations are linear differential equations.

Secondly, concentrate on the equation for B. Recall from section 3.1.2 that
B depends on ¢ (Eq 3.12) and ¢ is given in terms of the function ¥(6) and Y(x)
(Eq 3.11). In the gauge that Manton has chosen,. the solutions for Y(x) of the
ansatzes for both & and © monopoles are the same, T = cos ), and given this,
¢ depends on ¥(f) the same way for both monopoles and the magnetic field B

depends linearly on ¥(6) the same way for both monopoles. Thus, we can write

down the following function ¢ggzobaz which has T goa1 = T/ = cos x and depends
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on VYo as the gﬁ for either monopole depends on ¥:

1- ‘Ilglobal Cos X
&global = 1~ \Ilglobal sin X (320)

v global

- such that the global magnetic .ﬁeld Eglobal again depends linearly on ¥ g;04,; through
its dependence on églobal' Then, the Maxwell equation for Eglobal would translate
into a linear differential equation for W pq.

Now, if we solve for ¥ gopq, then églobal will be automatically determined by
Eq 3.20 and will satisfy the equations of motion, and the global gauge field will
in turn be determined in terms of d;global. Therefore, for the asymptotic region
between the two monopoles, solving for hgopa and W gepq Will give the full solution.

Finally, since the equations for hgiopat and W gepe in the region between the
monopoles are both linear, the solution of Agepa and ¥gope can simply be the
sum of the local hg, hg and local ¥, Vg functions, which satisfy the equations
~ of motion by satisfying the respective first order linear ansatzes. Here, the sum
of solutions means only the sum up to constants and homogeneous solutions of
the local ansatzes so there are choices to make for the global solutions. Manton

also requires the global solutions to
1. be symmetric under monopole exchange;
2. satisfy the appropriate boundary conditions at infinity; .
-. 3. reduce to the local solutions, hg, hg and Vg, ¥g, near each monopole.

Note that if the global function W ji0bat T€duces to the local ¥g and ¥g near the
different monopoles, then ¢A>gzobaz will also automatically reduce to the local q%s.
Manton claims that in the process of matching the global solutions that sat-

isfy the above requirements to the local solutions, the acceleration between the
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Figure 3.2: the two monopole system, the distances 71, o and the angles 8y, 65.

monopoles is determined. He obtains the correct acceleration, and we will recount
his choice of global functions in this section, but we will also see in next section
that the acceleration is actually not uniquely determined.

The global solutions would also need to satisfy boundary conditions at infin-
ity and be symmetric under monopole exchange. Finally, requiring the global
functions to reduce to the respective local solution near each monopole, Man-
ton claimed, would determine the acceleration of the monopoles uniquely. We
can already see, however, that we have freedom to add constants or homoge-
neous solutions of the ansafz to the global solutions, and will discuss this in the
section 3.2.2. Here, we recount Manton choices of global solutions and how he
determined the acceleration. The notation used is such that h%;) denotes the

Shom

homogeneous solution of h to the © ansatz which is also of O(e?).

Matching ¥

In choosing Wgope;, Manton must have noticed that when expanded near the
opposite monopole, the O(e°) solution of either local ¥ function would give rise

2
to a function which is proportional to the homogeneous solution \Ilﬁfm)n for the

opposite monopole.
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Explicitly, with r1, 7o, 61, 02 defined in figure 3.2, near the & monopole, 6; is
small, and
| 1 1
\I"(eo) —1= cos(91) -1 = ‘2‘(91)2 =~ 'é'Sil’l2 01.
Then using the sine law and that r; is approximately the separation distance, s,
in this region,
‘172sin%(fy) 1r2sin?6,

1
0
\I/(e) -1 =~ 5 = ~ 2 + (’)(8—3) x \If@ hom

[N}

Similarly, near the & monopole, (7 — ;) is small and 75 ~ s, so’

| 172sin’ 6
\Ifg))—1:—cos92—1:cos(7r—02)—1 ~ ——w+(’)(

1
9 52 _) 18 ‘I’e hom

§3
Therefore, if ¥ gopa + 1 is the sum of the local ¥ functions without the homo-

geneous part, i.e.,
' . 2 2
‘Ilglobal = \Il(eO) + ‘Ilg) -1+ \Il(ee Lart + \Ilg; )part

2

1 ) 1 .
= cosf) —cosfy — 1+ Eezarl sin® 0, + 5€ 0r sin? 6,

then ¥ giopa would reduce to the local ¥ near each monopole up to O(e?) provided

that the coefficient of the local ¥} is matched with the coefficient of the term _

hom

from the expansion of ¥(% of the opposite monopole. Thus, near the © monopole,

1 1
Woiobat —F costh — Ealezarf sin®6; + §ezar1 sin® 6, + (’)(63) = Vg
2 .
if o620 = =
S

Note that the radiation term from the opposite monopole, ¥g pors, is omitted
‘here because it is of an irrelevant order in this geometric limit:

2 il
Yo part = 56 ar, sin® @, = -2—6 g— ~¢€
' S

Using exactly analogous arguments, for ¥, to reduce to ¥g near the @

monopole
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Note that Wy, is also symmetric under monopole exchahge and remains less
than 1 to O(e°) due to the added constant —1 such that ¢ is a real unit vector;
thus, it satisfies all of Manton’s requirements for the global solutions.

We have now two equations involving the acceleration and two unknown co-
effients o7 and o,. One more equation of these quantities would determine the

acceleration.

Matching h

Manton chooses the following rather adhoc looking hgiosar, Which includes only
one of the local homogeneous solutions of & but with a term proportional to 1/s?

put in by hand:

79 COS 0 e &2 2y '
hglf)bal' = (h(eo) + hég) — C) — 2T22’ + (h(e Lart + th zoart) + th )hom + COTlSt
- 11 9 1 1
= {¢c——— — —EEEE—Z+ —€%acosl; — —eacosby |
ery  erp es? 2e 2e

. o )
+ea (—3 + c) T9 C0S B3 + const
e

such that near the @ monopole, the term 73 cos #3/s? cancels with the term from:

the expansion of hg’ ) near this monopole, which equals

1 1 rycosé 1\
- = —— + 2—22 + O <_3>
ery es es s
, , © ryco86y 1l _
since 7 = .s4/1+ ———+ = by the cosine law
s ¥

and the term €’acosf;/2e reduces to O(e?) to simply a constant near the @
monopole and can be absorbed by the constant in the global .fl‘mc'tion.

Thus, hgosa has been constructed to match hg near the & monopole:

1 1 9
hgiobat —r ¢ — — — —e?acosby + €%a (-— + c) r9 cos by + const = hg
ery e e

This hgopa satisfies all of Manton’s requirement for a global solution since the

added term is a homogeneous solution of the equation of motion and the terms
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(0 /e+c)ry cos b could also be written as (02/e+c)ry cos 0 + const so that hgiopa
is still symmetric under monopole exchange.

The acceleration is determined by the condition given when hgiopq is matched
with hg near the © monppole. Near the © monopole, the term that cancels the
expansion term of h(eo) near the @& monopole does not cancel but adds up with
the expansion from hY since

1 1 0 1
= - _nen Cozs Ly O(—E)because
ery es s s

and with ry cos 6 with r; cos6; — s, hgosa reduces to:

1 2ri cos &y 1 O
hglobal —C— —— = + —€%acos 01 + €2a (— -+ c) r1 cos 01 + const
er, es 2e e

This only equals hg if all the terms proportional to r; cosf; together form the

local homogeneous h, hg pom. This implies the condition:

o 2 o
e2a (—2+c> - = e2a (—l—c)
e es e

2

Then, substituting the values of o1€2a and os€?a from before, Manton obtains

twice the Coulomb attractive acceleration for a pair of opposite charge monopoles:

Force between two same charge monopoles

Manton finds the force between two same charge monopoles by the same proce-
dures.

Suppose we switch the monopole on the +z-axis in the previous case to a ©
monopole, so that both monopole 1 (on -z-axis) and monopole 2 (on +z-axis) are
©. Then all we need to change in the steps above are the local functions near the
new monopole 2, and the global functions accordingly.

Since monopole 2 has the same charge as mbnopole'l, but accelerates in the

opposite direction, the local functions, call them ¥4 5 and hg ;, are the same
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as the ones at monopole 1 except with the sign of 2a changed .and in its own

coordinates:

. 0 €? €?
‘I’e 2 = \Il(e)l - (\Il(e )1 hom+\IJ(9 )1 part>

2 2

1 ) 1, .
= cosfy + 50'26 arasin® @, — 56 ars sin? 6,

Notice that the term involving o, has the same sign as in ¥g in the previous

opposite charge monopole system. Similarly,
\

1 ' 1
hg 2 = c— — — (09 — c)elarycos By — =€*acos by + ko
€T 2

Now, as before, the requirement of the global function W i0bar to reduce to the
local functions near each monopole would give the unknown coeflients, o; and
04, and the acceleration, €2a, in terms of the monopole separation s. Again, the
particular solutions of ¥ do not participate in the matching. .

Therefore, we only ﬁeed to take note that in global function for the same

(0) (0)
@

charge system , ¥'o’, has a different sign from ¥’ in the opposite charge system,

and that the homogeneous terms, the ones with coefficients ¢, and o5, remain as
before, to conclude that the matching procedure would give the same expression
as before for oy¢?a, and one with opposite sign from before for oj€’a. More

explicitly,
—_ (62) . (52)
Uoobat oo = €080y +costy £1+Pg ) 1o + V59 pare

where the second term is now + cos 8, for the © ‘monopole 2 and after expansion

near the first monopole gives .

1 1
0'1620, = - N 0'262(1 = -3
S S
Now, when we construct the global h function in the same manner as before,

we find that the only change is the sign change of the term involving o»:

1 1 rocosf, 1 1 .
hglobal = = — = + —¢€%a cos 91 — —€®acos 92
er,  erp es 2e - 2e

o
+€2a <——3 + c) r9 cOS B9 + const
e
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where the O(€%) local h function for the new © monopole, (c—1/er;), is the same
as the one for the @ monopole in the previous case. The matching procedure is

exactly the same and gives

: 2
ea (_EZ+C> - = éa <5‘—1—c)
e es e
‘ 2 oy + 01)€%a
= 2c%ac = —3+———-—~—( 2 ) = 0
es e

Therefore, the force between two same charge monopoles vanishes.

3.2.2 Clarifications and Comments on Manton’s Method
Other Consistent Solutions that Give Different Acceleration

We will now look at how the flexibility in choosing the global solution even ac-
cording to Manton’s requirements allows for global solutions that lead to different
conclusions for the acceleration. We demonstrate this by the following two ex-

amples.

Example I The first example results in a zero acceleration between two monopoles
with different charges. We choose the global function ¥ q to include the ho-

3 €2 €2 .
mogenous solutions of the ansatzes, Vg, . and ¥g, -

1 1
Woiobat = cosby —cosby — 1+ é—ezarl sin? ; + 562ar2 sin? 6,

1 . -1 .
—501 ezarf sin? 6, + 50262(17‘% sin? 6,

This satisfies the equation of motion and are symmetric under monopole ex-
change. Recall that when expanded near the first monopole,

_1risin®6,

- G, —1 =~
cos b, 5 o

Now, from figure 3.2,
2

. . 1 ) .1 .
rosinfy = r;sinf; — 50'2620, (r% sin? 92) = —oq9€ela (rf sin? 91)
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Then near the © monopole, if this term with o, cancels the expansion term from
the @ monopole, ¥ 45 would reduce to the local function ¥, and the condition

on o, would be

2
O€°a = —
52

Similarly, near teh & monopole, the homogeneous solution \Ilgz)hom can cancel

with the term from expanding \If(eo) = cosby:

, 1r2sin®6, 1 ,
arf sin?6;, =~ —-2—_"2_ —ale2ar§ sin®6, =0
4 2 s? 2
1

- 0262a = ——.
52

1
cosf; —1— 50’162

What we have chosen here is that the homogeneous solution for each monopole
is used to cancel the effect of the O(€?) solution of the syame monopole near the
other monopole.

Now, we can again build the global function A to include the homogeneous
solutions of h:

1 1 1
Rgiobast = €— — — — + —€’acosb — —€*acosby
o To 2 2

+(oy — c)elar cos By + (03 + ¢)e®ary cos By + ky + ks
~ and use them along with the terms Fce?ar cosd to cancel with the terms from

the expansion of —1/r near both monopoles. That is, near the & monopole,

ricost;

(o3 + c)e*ar cos B — 2 =0

2

and since oy¢“a = 3% from before,

etac=0

In the same manner, the conditions near the @ monopole also result in a zero
acceleration:

9 190805

ary cos by + ~—— = 0 = €lac = 0
s

(o1 — c)e
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Example II Our second example does not yield information about the acceler-
ation. If we choose the global function ¥ 44 to include a term “put in by hand”

similar to the one in Manton’s hgopa:

: 1 . 1 .
Voiobat = c€OSBO; —cosfy + Eezarl sin?6; + 562ar2 sin® 6,

1, 5. 172sin% 60,
——giecarysin“fy — 14 —————
2! 1o 2 g2

~ then it is still symmetric under monopole exchangé because 72 sin® §;. = rZsin® 6,.
Near either monopole, the added term would cancel the @ (s%) contribution from
the expansion of the corresponding cos @, and therefore the only condition needed

for W gi0pe: to reduce to the local functions ¥g and ¥g is
01 = —03

Consequently, if we choose hgjopq to be Manton’s hyjeper, Which gives also only one

condition between oy, 02 and the acceleration, there is not enough constraints to

determine e2ac.

Thus, it is not true that coming up with symmetric solutions for A and ¥ in
the region between the monopoles and matching them to the corresponding local
functions in regions close to the rﬁonopoles would give a unique correct answer

for the acceleration.

Another Requirement for the Global Solutions and the Matching Prin-

ciple

Let me now propose that Manton’s method provides the correct aﬁswer only
when it obeys the following exchange principle, which is much like what we use in
electromagnetism to determine the fields for a system with two widely separated
sources.

What I called the exchange principle is the assumption that the ambiguity of

the local solution near one monopole is due to the presence of the other monopole.
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In other words, in the matching process, the local homogeneous solution of ¥
and h near one monopole should be “produced” by the expansion of the ¥ and h
solution of the other monopole, and accordingly, the global functions should not
" include any of the homogeneous solutions. Manton’s ¥, is the one prescribed
by this principle but his Agope is not. We now shoW how the matching of hgpai
would be done under this principle.

First, similar to how Manton build ¥4, We build hgope for two opposite
charge monopoles by adding the O(€%) solutions of h and the O(e?) particular

solutions of h:

1 1 1 1
;lobaz = ¢— — — —+ =€%acosf; — =€%acosb,
T Ty 2

—e%acry cos 01 + €2acry cos Oz + kgiopar
Now, unlike the situation for ¥, one term in the particular solution of h for
each monopole has the same functional form, ~ rcosf, as the term from the
expansion of the solution of the other monopole. This term in the particular
solution is of O(e?) and so cannot be neglected in the matching process. The
other term, ~ €2acosf, coes not participate in the matching as argued before.
Therefore, near the © monbpole,

1 1 rycosf 1 1
s hglobalv —r C— 7‘_1 - (; + %) + '2‘62G/COS 91 — §e2a(——1)

—e%acry cos by + e2ac(—s + 71 cos 01) + kgiobal
and for hgiopal to reduce to he:
—é + %62& + kgiobat = ki
<_si2 +e2ac) (ricosf) = oi€%a (ricosb;) = ‘e ac = =

Similarly, the limit near the @ monopole gives

‘ 1 1 rocosf 1 1 |
hgiobat —> € — . <; - %) - 562a cos 0y + Eeza(l)

+€2acry cos By — €2ac(s + 74 c08 02) + Kgiobal
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which gives the matching conditions:
1 1,
—3 + 3¢ a+kgobat = ko =k
1
(+—5 — 62ac> (rocosby) = o09€%a (rycosy) = ¢cfac = —
s \

For two same charge monopoles, the matching condition near monopole 1 does
not change except that the value of oy has been determined to be different by the

matching the ¥ functions:

1 1
—— 4+ €e%ac = o1€2a but oy€fa = —=
82 52

which implies €?ac = 0. The matching condition near monopole 2is simply the
negative of the one from the first monopole and so gives the same conclusion.

Notice for both systems, we obtain two conditions from matching h that agree

with each other while Manton obtains one only.

Why ea is trivial It is very clear under this matching principle why the Ofe)
acceleration vanishes. Since the O(e%) ¥ solutions, ~ cosf, do not expand to
give any order 1/s ’cefms, the terms with ¢y and o, cannot be not “produced,”
i.e., orea = ozea = 0. Then for Ay, the local particular solution for either
monopole, ~ eacr cos 8, which is to combine with the expansion from the‘(’)(eo) h
solution of the other monopole to produce the local homogeneous term, the term
with the corresponding o, has to be zero, because both the expansion term and

the o term are zero.

Interpretation of the Matching Process

With the exchange principle, we could have found the correct acceleration by
matching the magnetic and Vh fields instead of h and ¥. In this case, we would

only need to show that the global solution <;3 exists but not solve for it explicitly.
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Also, we can interpret this matching process as the application of the respective
external force laws (Eq 3.20) on the monopoles. | .
First, according to the exchange principle and due to the linear dependence
of the magnetic field Bon ¥, the global magnetlc field is the superposition of the
O(c®) Coulomb fields and the O(e?) partlcular solution to the first order ansatzes

and does not include the undeterfnined local homogeneous solutions:
Bglobal = __2 - + Bepart + BGBpart

Note that this global magnetic field has similar contributions from individual
monopoles as the electric field does for two separated electric charges except for
the differences discussed in section 3.1.2; however, unlike in the two electric charge
system, the superposition of fields here is only valid in the asymptotic region.
Similarly, the global Vh field is the superposition of the VA fields from the
different monopoles, which can be easily written in terms of the local magnetic

fields from the first order ansatzes:

T =2 . 1
thlobal = [_ <_“% + B(ept)lrt) - €2a <C - —>:|
T 1
fa = 1\]
+ [—3 + BE), + (c - —>] (3.21)

That the constant terms €2

dc contributed by the different monopoles cancel each
other will be .important for our interpretation of the matching process. This can-
cellation is due to the monopoles accelerating in opposite directions and happens
regardless of the charges of the monopoles. | |

Now, in the process of matching these global fields to the local fields near each
monopole, the matching of the constant vectors is what gives the information
about the acceleration. |

The local magnetic field at each monopole contains only one constant term,

the homogeneous solution to the ansatz, +o€?d, which is to be equated to the
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expansion of the field from the other monopole under the exchange principle. To |
O(e?), only the expansion of the static Coulomb field from the other monopole
contributes. For instance, near the & monopole, the undetermined constant,

—o1€%d, is matched to the following:
BY = +:—§ — —S%

On the other hand, the local Vh expressions contain the constant terms oe?dF
e2dc. For each monopole, this constant term, under the exchange principle, is to
be given rise only by the expansion (;f the Vh field from the other monopole
because the constants that appeared in the global expression (Eq 3.21) cancelled
cach other. Again, to O(¢?), only the expansion of the @(e) field of the other
monopole contributes, and this, depending on the charge of that other monopole,
is simply plus or minus the contribution of the magnetic field from that monopole.
For the © monopole, then, the constant terms (o16’@ — e?dc) in the local Vh is
equated to the far-field limit of Vh(eg) = +§$ ),

We can now see that matching the global fields to the local ones under the
exchange principle ifnplies that the constant part of the first order ansatz at each
monopole relates only the “external” fields produced by the other monopole to its
acceleration. Thus, matching with the exchange priﬁciple and using the different

first order ansatzes to determine the accelerations is like applying external force

laws to the monopoles:
24T 3
Two © monopoles: =+ (6°d)— = —Begt — Vhes
= _éext - ("Bemt) =0

©/@® monopoles: =+ 2l = FB.st — Vhest

—» —» - .2
= FBey — (iBezt) = :FzBea:t = 28_2
where the upper signs are for the monopole on the negative z-axis and the lower

signs for the other one.
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This way of finding the acceleration between two monopoles, then, has become
similar to the way of finding the lowest order force between two widely separated ‘
local and spherically-symmetric electric sources by the multipole expansion in

normal electromagnetism. There are a few differences:

1. the external force law (Eq 3.20) used for the monopole pair problem, unlike
the Lorentz Force Law used in the electric problem, involves an extra Vh

force which is attractive regardless of the charges of the monopoles;

2. while in the electric problem, the mass of each electric source is free to
vary with its total charge and so its acceleration under the external electric
field from the other source varies accordingly, the mass of the monopoles is
determined solely by the charge and the parameter ¢, and consequently, the

acceleration of the monopoles is fixed once the external fields are known;

3. in the electric problem, the Lorentz Force Law can be applied at each point
in either of the local charge distributions to give the induced multipole
moments, but the external force law (Eq 3.20) for the magnetic monopoles
is not to be applied pointwise (there is no poinflike magnetic sources to
be acted on either) and does not allow us to find the deformation of the

non-pointlike monopole under the influence of the external field.

3.2.3 Limitations of the Manton’s Method

Apart from not being applicable as a local force law, Manton’s ansatz also does
not help us determine the force between ‘two opposite charge monopoles above
the lowest order. We will first show that the ansatz can actually be extended
to the first order above lowest order in € but then the matching procedure that
works for the lowest order bfeaks down despite of the valid ansatz. Through

this process, We will understand better how the matching process works for the
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lowest order. Manton’s method, however, does work at all orders of € for the

same charge monopole pair. We will argue this at the end of this section.

Extension of First Order Ansatz to O(e®) Because the O(e') acceleration
is zero between two monopoles, Manton’s ansatz for the accelerating monopole
can easily be shown to work for an assumed acceleratioh of one higher order in
€, €3d'. |

We can simply replace €@ by (¢’ + ¢*@') in every step of the derivation (sec-
tion 3.1.1) for the O(e?) acceleration, find that each step remains valid because
any terms with explicit time dependence (Eq 3.3, Eq 3.4) that would ruin the
derivation are of the order of the square of the first non-trivial order, i.e., O((e?)?),

and arrive at the following extended ansatz:

B = +|Vh+(&d+€a) <c—1)]

r

This says that any O(e®) constant external B and Vh fields would contribute to

an O(e) constant force on the monopole, m(e3a’), on top of the O(e?) force.

Repeating Manton’s Method at O(e?) In electromagnetism, the first order
force above the Coulomb order on a local charge distribution with a constant
dipole density involves the gradient of the external electric field, ﬁl [s3 ~ D
VE. The ansatz derived above involves only uniform external fields to O(e?)
and already signals that.it may not work in a system where the gradient of the
external fields is not uniform. Here, we show explicitly how matching the local
and global solutions of the opposite charge monopole pair up to O(e?®) results in a
questionable conclusion for 3@’ as well as an inconsistency. We will then see that
Manton’s procedure works at O(e?) by “rescuing” the same inconsistent situation
had we used only the static ansatz to build the global solution.

First, the equations for the local ¥ functions near both monopoles in the ©/®
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system includes the new acceleration:

. 2 3, «inf -
v x BY) = )2(6 a+ €a’) sinf (3.22)

r2
Solving, the local ¥’s near both monopoles contain a particular solution for that

new term as well as the homogeneous solutions to this order:

1 1
Uy = [cos 6, + §ezar1 sin? 6, — §ale2arf sin? 91]

1 . 1 ) .
—+—§esa"r1 sin? 6, — 501 a'r?sin? 0, — pe3a’rd sin? 4; cos b,

1 1
T, = [— cosfy + iezarz sin? 6, + Eazezarg sin? 92}
Ly, .2 1/3:2-29‘ 34/73 sin? @
+§6 a'T98in” 6y + 50'26 a'rysin® by + pae’a’r; sin® By cos b,
We write the global solution without the undetermined terms as prescribed by

the exchange principle:

: 1 1
Woiobat = €OSH; —cosfy — 1+ 562ar1 sin’ 0, + ‘2—620//“2 sin? 6,
1 1
+§e3a'r1 sin? 6, + §e3a'r'2 sin? 6,
Again, to match the global solution with the local solution near each monopole,
we expand the terms “belonging” to the other monopole in the global solution to
O(e?) and equate the resulting terms with the ambiguities in the local solutions.

This time, the expansion of the O(e?) static parts of U g,pa,

172sin%6, 73 cosf,sin?f 1
2 2 4+ 2 2 24+ 0 —) near €6 monopole

coshy — 1-—--=
2§ s? st
172sin%6; 73 cosf; sin®6; 1 S
~cosfy — 1— = - O | — | near © monopole
2 s2 53 st

gives O(e) terms that can “produce” the terms with coefficients p; » in the op-

posite local solutions provided that

. 1 1 .
—p1€¥a’ = TS ; paelad = 337 (3.23)
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whereas the expansion of the O(e?) particular solutions are proportional to the

O(€®) terms with coefficient o7 ,:

1 , 1. r2sin%6, '

-2—62ar1 sin?§; — =ea—>——= near @ monopole
s

1 . 1., r2sin?6;

iezarg sin?8, —» ‘2—620,—-1—-—-—— near © monopole
S .

and therefore the matching conditions are

o 5, "1e%a oy 5, 1€%a
—— = —_—— s £ = —-—— .24
29 T 2 2t T 9 (3.24)

Howevér, we are matching terms analogous to the radiation terms from an ac-
celerating electric charge (section 3.1.2) to the local unknowns, and if, without
the‘ assumption that the fields of the monopole accelerate rigidly everywhere,
these terms were retarded in time as the radiation in electromagnetism, then at
the instant when the monopoles start to accelerate, their effect would not have
reached the opposite monopoles to produce the undetermined homogeneous so-
lutions there. Thus, the above condition seems to violate special relativity and
is questionable. We will discover yet a more blatant break-down at 0(63) of this
method in the following.

To solve for the local h, we first find the magnetic field with the additional

O(€?) terms near each monopole from the local ¥ functions:

- S cos#y -1, sinf; N cosf; -1 sin 6,
Bg = |- +#i€a ~0,=€%a — o €2a| + 7efa’ — 0= ——
! T1 2 ry ’ 1 2 T
—oje3d’ — p1e®a (f1(2r1 — 37y sin?6;) — 6,37, sin ) cos 01)
— To . cosfy -~ 1, sinb, . R cosf, -1 sin 6
By = |[+5+ Faeta —6,-¢€%a 40,628 | + Faeda — fy—€3a' —=
T3 T9 2 T T 2 T9

+0’;6307 + pze?’a' ('f‘2(2’/‘2 — 37‘2 SiIl2 92) — 923T2 sin 92 COS 92)

Note that as before (section 3.2.2), matching B instead of ¥ gives the same

equations for the unknown parameters but involves approximating the unit vector
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71 in terms of the unit vectors 75 and 6, near the second monopole and vice versa
near the first one. For example, near the © monopole, in cylindrical coordinates,

7 ‘ . r18in6; | 1 2ricos@ 1 _r1sInf _2rycosf |
2 _ <—z+1 1p><—5+%>:—2—2+p131—z 13 1
5 S s s3. S

while the undetermined terms with p; in the local © solution is proportional to

the O(s™3) vector in the above expansion:
prea’ (fl(Zrl — 3rysin?6;) — 6137, sin 6 cos 91) = pe®a’ (—p rysinb; + 227, cos b))

The matching of these then gives the same condition for p; as before (Eq 3.23).
As well, notice that the local O(e3) homogeneous B fields diverge at infinity,
but since they are to be evaluated only near the monopoles, they are admissible.
We proceed to solve for h neér both monopoles using the ansatz, which relates
h to B:
he = {c - 7"1—1 + (01 — c)é?ar; cos 8y + %eza cosf; + kl]
+(oy —c)e*a'ry cos by + %630/ cosf; + p1e°a(r3 — grf sin? 6;)

1 1
he = [c — = + (03 + ¢)e*ar;y cos 92—562a cosf, + kz]
T2

1 3
+(ay + c)ea'ry cos 92—§e3a' cos B, + pae’a’(r] — 57"% sin® 4,)

Again, we expand the static solutions to O(e?®) for the matching:

1 1  rycosf 2 3rZcos?f, 373cosfy Hricos®h 1)
—_ __2__2__2+_2 2_|__2 2__2 2+O R
71 s 52 283 2 83 2 st 2 s s®
1 . 1 | Ticos 0 _r_f_ §r% cos? 6, B §r{’ cos b, §ri‘ cos® 4, (9 1
T s s2 283 2 83 2 st 2 st s5

Predictably, this expansion does not give a O(s%) term proportional to rcosf,
which is what it gives at the lower order O(Z); hence the matching conditions

! ! 3
- for 0} and oy are simply

ojefa = éd'c ; ohfa = —édc
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and both imply the O(e®) acceleration is given in terms of the O(e?) one:

. ) 5
Sae = 22 ==
s sdc
This result, however, is based -on the questionable conditions, Eq 3.24.
On the other hand, the expansions of h above can give rise to the terms with

p near the monopoles provided that

1

p1€3a/ — p2€3a/ - =
. 83

This is in contradiction with the conditions obtained from matching ¥ (Eq 3.23).

~ The Scope of the External Force Law What this contradiction says is more
transparent when we look at it in terms of the gauge invariant fields, B and Vh.

First, we write down the first order ansatz accurate to O(e?) but this time
inclﬁde also the set of magnetic multipole moments, m B which are the hémoge—
neous solutioﬁs for the perturbed equation Eq 3.22, and the multipoie moments
of Vh, mynn, which are detérminéd by the ansatz in terms of the magnetic

moments:

— —

= <Bstatic + Vhstatic) + (Brad + Vhrad)
+ Z (’I’?Lgyn + TT’LVh’n)
n

Now, both the static part of the fields and the analog of the radiation fields,

(ezc_i + 63&’) c— (626 + 63&,") %

which are the particular solutions of Eq 3.22, are totally determined and do not
possibly lead to any contradiction. It is the fact that thé undetermined multipole
moments of both B and VA are to be matched under the exchange principle to
the respective external fields that causes the contradiction: since the LHS of the
ansatz contains no terms proportional to any moments above the lowest order
of the multipole expansion, if the higher multipole moments of the external B

and Vh fields when equated with M5  and miyy, respectively do not combine
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according to the RHS to vanish, then the ansatz has become false. For example,
in the two different charge monopole system, although the ansatz is derivable for
O(e?), the O(e?) external fields for each monopole in the ©/@ system add up

instead of cancel because of the difference in charge

0 = mz,tmyre near 8/@ monopole
B2 ,

|
]}

ezt:che:ct
= éexti (iéewt) = 2-§ezt # 0

This failure of the ansatz means that unless there exists a solution other than
Manton’s ansatz for weakly rigidly accelerating monopoles for which there is no
inconsistencies at O(e*) when the two non-uniform external fields do not combine
"to zero, the assumption that the fields up to (9(63)“ are rigidly accelerating under
non-zero non-uniform total external field is incorrect. This is reésonable if the
monopole were to behave similarly to a finite size ball of electric charge with
spherically symmetric charge density under a non-uniform field: the ball would
deform instead of accelerate rigidly.

The contradiction, however, does not imply any values for the O(s73) acceler-
ation; in particular, it does not imply that the O(s~3) force between two opposite
charge monopoles is non-zero.

We can now also see that for the static solution of two opposite charge
monopoles, for which neither monopole is acc‘elerating, the static ansatz, which
does not include the constant term e2d@c, would be satistfied near each fnonopole,
and the above contradiction for Ahigher multipole moments would appear even
for the lowest moment, the constant. The accelerated ansatz allows the ﬁw’o
monopole solution to be consistent to O(e?) by providing a “way out” for the
~lowest moment.

Finally, note that at O(e?), if the acceleration at O(¢?) is non-zero, the ansatz

is not satisfied even if there exists only uniform external fields at O(e).
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On the other hand, for the two same charge monopole system, the contradic-
tion above does not occur because near each monopole, the external B and Vh
moments arising from the fields of the other monopole already have the relation-

ship required by the ansatz:

T—fLB' = :Fﬁ"'Vh,n and gext = FVhey near'e/EB monopole

v

Also, since the O(¢?) has been determined to be zero, the O(e?) “radiation” terms
that could potentially give a non-zero result for the acceleration at O(e®) vanish,
and so 2@ = 0. Now, since €2@ = 0, the derivation of the ansatz is valid for O(e*),
and again, the matching at this order does not involve any inconsistencies and
the lower order “radiation” terms being zero would lead to the O(e*) acceleration
being zero. We can do this at all orders of e and conclude that the acceleration
of monopoles in a two same charge monopole system vanishes to all orders of ¢,
Ni.e., the vanishing force between two same charge monopoles in the BPS limit is

an exact result..

3.3 Finding the Force through Calculating the
Momentum Flux | |

We look at another way to find the force between two monopoles proposed by
Goldberg et al [2], which gives the result és Manton’s procedure, and reinforce our
. interpretation of the first order ansatz as the uniform external force law. We also
discuss the possibility of using Manton’s two-monopole global solution without
the O(e?) terms as the static solution in Goldberg’s method and the possibility
of concluding that the only force between two monopoles is the O(1/s?) force. In
the process, we understand better what is essential in Manton’s method.

Goldberg et al [2] find the force between two monopoles by calculating the
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rate of chénge of momentum of either monopole in a static two—mbnopole con-
figuration. The momentum of the monopole here means the momentum of the
fields within a ball that encloses all the “matter fields” J¥ (as defined before in
Eq 2.5) of the monopole; the surface of the ball, then, has to be in the asymptotic

region where J¥ = 0.

The momentum current is the spatial component of the stress-energy ten-

~sor, which is the Noether current obtained from translational symmetry, and is

conserved:
i __
2, T" = 0,

therefore, the rate of change of each space component of the momentum inside

the ball equals its current, 7, integrated over the surface of the ball:

, y .
Force’ = aidV = / vV .y dv
patt Ot ball 4

= # dA where p 7/ =T and Pj:TOj
Sball A

‘This integral is by definition the force on the enclosed monopole and what we

need to evaluate.

3.3.1 Stress-Energy Tensor and Reduction to the Electric

problems

First, since the boundary of the balls is in the asymptotic region , the magnetic

field on ‘it is given, without \¢ Being set to zero, by:
S 1 . A , . ~
B = etk = (070 x 0°4) - §) + & a* — &N (3.25)

Problem for U Now, we already know that f#* satisfies the vacuum Maxwell

equations, i.e., VxB= 0, in the asymptotic region; therefore, we can write B®
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as the gradient of a scalar potential U:
B = VU -

The divergence of B being zero implies that U satisfies the Laplace equation:

and the flux conditions on B fqr each monopole implies the flux conditions on U:
/B'-d_':il: VU - da = *1
Sball Sball
-Finally, along with the requirement that U approaches a constant at infinity
since the magnetic tends to zero there, the problem for U up to the ménopole order
is exactly.analogous to the problem for the electric potential, V, for two separated

local electric charge distributions with the same or opposite total charges.

Stress Energy Tensor in terms of scalar potentials We can write the
stress energy tensor in terms of U and h in the asymptotic region:

1 1, : :
T — Tr {ZQWFPAFM _ FupFUp + 59’“’D”¢Dp¢ _ D“¢DV¢:| .

= 39 (178 b4 1) + (%g“"af’héﬁ + Ophd— 3ho - 5”h¢3>
= (igwfijfij _ fm'fvi> + (%gwapha,,h - 8“ht9"h>

= (% g U — 6 U + a#uaw) + (.;_gwaphaph _ v h(?”h)

Notice that for a static configuration of electric charges for which the magnetic

field vanishes, the stress-energy tensor in terms of the electric potential, V, is:

. . | V |
Tel;:ctric = Zglwfozf()i - fl—tof 0 flﬂf"i

1
= S gVOVEY + VOV — 850V oV
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We can compare the first bracket in T# with T%. ... for different values of p
and v, and see that the dependence of the former on U is exactly the same as
the dependence of the latter on V. Since the equations for U are also the same
as those for V' in the analogous electric problem, the bracket involving U in T#
would give the same force law up to the monopole order for the two magnetic
monopole system as the force law for two ordinary Maxwell electric monopoles.
The higher moments are not determined because we have only the flux conditions
on U and not a charge distribution for the magnetic sources.

" On the other hand, the second bracket in T involving h depends on h just

as —T* depends on V except for the irrelevant case prv = 00. We will now show

that the problem for A can also be reduced to a static electric problem.

the problem for » We know that in the asymptotic region, the static first

order ansatz can be factorized:

-

B=+Vh for @ /© monopole; (3.26)
the equation of motion D’Dm? = 0 reduces to the Laplace equation for h:
Vlh=0

and unlike for U,the flux conditions for A at both monopole are the same, due to

the change of sign in Eq 3.26 when the monopole charge is changed:
/ 6h~d&=/ +B -da = ++1=1 (3.27)
dball Sball '

Therefore, the problem for A, for both same and opposite charge monopole pairs,
is analogous to the electric potential problem for two separate local electric sources
with the same total charges. |

The terms in the stress-energy tensor in{rolving h would then give the force
opposite to that between two same electric charges, i.e., Coulomb attraction, for

both the same charge and opposite charge monopole pairs.
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Adding the force contribution from both U and h, we obtain twice the Coulomb
attraction between two opposite charge monopoles, and zero force between two
same charge monopoles. This is the same statement as the one given by our inter-
pretation of Manton’s ansatz as 4the external force law, that for the two opposite
charge monopole system, the external forces on each monopoie add up while for

the same charge monopole pair, the external forces on each monopole cancel.

3.3.2 Manton’s O(¢’) Global Solution as the Static Solu-
tion |

In order for the above result to be valid, we need to show there exists a static
solution in terms of A, ngS and \!) that would give the required potential U. We_.
already know that h has a solution since it simply satisfies the Laplace equation
with boundary conditions; hence we need to show on.ly that there are cﬁ and
X fields that would give ‘a magnetic field B that satisfies Maxwell equations in
the region between the monopoles as well as the flux conditions (Eq 3.26) at
the monopoles, or equivalently, fields that give the potential 'U that satisfies the
Laplace equation and the proper flux conditions.

While Goldberg éhows the existence of the static solution by solving the second
order static equations from scratch, we already use Manton’s O(e”) global solution

as the static solution:

_ . 1 1 - :
Wotobat = €088 —cosbp —1 ; Ngigpal = €= — — — ; Aglopar = 0
1 T2
d = hglobal Dgtobal(¥ A = 0 bgtobal
and Pgiobal = Pgiobat Pgiovat(Ygiotal) 5 Agiobar = A Gglobal X Pglobal

In this solution, however, higher multipole fields of O(¢°) that may be needed
to solve the equations of motion to higher order in € are omitted through Manton’s
choice that B depends only on QAﬁ, i.e., X = 0. This means that this solution, as a

static solution for Goldberg’s method, also does not determine the higher order
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force. We will first show that with the presence of these fields in Manton’s global
solution, the discussion in this chapter remains valid, and then briefly look at

how these higher order fields could possibly be zero.

Effects of multipole terms in static solufion on Manton’s method .The
inclusion of any higher order fields in the O(€) global solution would not alter
Manton’s matching procedure or conclusion.

First, in terms of the gauge invariant B and Vh fields, even if there is a higher
order field in the global B and V' solutions, the external force law to O(e?) would
still use only the Coulomb terms in the global solution and the acceleration €2a
would still be determined to be the same. Now, in terms of the Q, h, and X
fields, the argument is more complicated. Having a higher order field from each
monopole means that X from each monopole is not zero, because X vanishing
implies that B depends only on the unit vector g{S,' but B being gauge invariant
means that however ¢ rotates in the SU(2) gauge space, provided that the change
is continuous, B remains invariant, and so changing <13 (continuously) cannot add
a higher order contribution to B. Thus, the curl of X term in Eq 3.25 needs to
be non-zero O(e%) to give rise to any higher multipole fields which, just as the
Coulomb fields, are of O(€’) in the global solution.

With X #‘O, the local ansatz for an accelerating monopole is modified to:
By(¥) + V x X = Vh + é’Gh (3.28)

~ where B is still linear in ¥ but now also linear in A. Since the terms with A
cannot contribute without singularities (the_ Dirac string) to the monopole term
of B, the Coulomb order fields in the global B field still depends only on ¥;
thus, the O(e?) homogeneous solutions of ¥ near each monopole, which is to be
determined by the lowest order term in the expansion of the ¥(9) solution from

the other monopole, is still matched as before without any influence from X. On
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the other hand, the matching of X is not described by Manton’s method because
near each monopole, the external fields to be matched, which corresponds to the
far field limit of the magnetic dipole or above fields from the other monopole, is
of O(1/s®) and above. As for‘h, the added magnetic multipole fields do imply
more terms for the O(€%) solution of A, but the matching of the local and global
h up to O(e?) does not involve these extra terms. In conclusion, the global O(e°)
magnetic field containing higher multipole fields from each monopole, does not
interfere with the procedure discussed in previous sections to obtain the O(1/s?)

- force between monopoles.

Possibilities for the generalized ansatz The higher order ﬁelds can be non-
zéro or zero depending on how Manton’s ansatz for a single accelerating monopole
generalizes to higher order in e.

For instance, at O(e?), Manton’s first order ansatz no longer holds true, and
it is possible that the correct relation between the O(e®) fields has a consistent
solution only in the presence of some extérnal dipole fields. Then, we would
need to include dipole contributions in the O(€°) global magnetic field, and there
would be an O(1/s®) force between the monopoles due fo the coupling between
the monopole charge and the added dipole field, just as the force equals ¢ -
[Emon (0) + Edip(O)] for an electric charge in the presence of an external electric
field having both Coulomb and dipole contributions. However, it is also possible
that extra degrees of freedom exist in the O(e) ansatz and no field needs to be
added to the global magnetic field, just as Manton’s O(e®) ansatz contains the
degree of freedom, €2@, which is determined by and does not impose any condition
on the already determined O(¢°) global solution. Thus, if we can argue that the
higher order local equations does not require higher order external fields, we can

use Manton’s global solution in Goldberg et al’s method to conclude that the

higher order forces are zero.
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3.4 Conclusion for the Commutative Problem

Manton’s first suocess is his idea of solving the time-dependent equations of mo-
tion for the instant when a monopole accelerates perturbatively from rest such
that the time dependence of the solution can be specified and the time-dependent
equations can be modified accordingly, and his discovery of the first order ansatz
for this scenario. We interpret his ansatz in its factorized form in the asymptotic
’ regioﬁ -as the lowest order external force law that says that both the magnetic
field and the field Vh contribute to the force on a monopole.

Manton’s second success is his choice of gauge and his discovery that in this
gauge the magnetic field é can be written as a linear function of one of the
components, ¥, of ¢, which is defined by ¢ = h, and the solutions of ¥ and h
determine the full solution, ¢ and A*. Then, because the first order accelerated
ansatzes as well as the equations of motion in the region between the monopoles
are linear in é (and so in ¥) and h, the solutions of both ¥ and A in the middle
region are simply the solutions to the sum of the accelerated ansatzes, and the
magnetic and Vh fields are in turn simply superpo‘sitions up to homogenous
solutions of the first order ansatz of those produced by both monopoles. Manton
claims that requiring the global solutions of h and ¥ to reduce to the local ones
near each monopole determines the acceleration between the monopoles.

On the other hand, we explore the ambiguities of the global solutions and find
that they lead to ambiguity of the conclusion for the acceleration. We propose
eliminating these ambiguities by a simple exchange priniple, which says that the
global solutions should not include any homogeneous solutions to the accelerated
ansatzes and that the homogeneous solutions at each monopole are to be deter-
mined by the far field limit of the solutions from the opposite monopole. This
again suggests the interpreta’cion of the Manton’s ansatz as an external uniform

force law at each monopole, with the external fields Eemt and Vhg,; being simply
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the lowest order term in the multipole expansion of the fields from the opposite
monopole.

We then discover that although Manton’s ansatz is derivable for the next order
in the small parameter € quantifying the-monopole acceleration, the ansatz cannot
be satisfied near the monopoles within the two opposite charge monopole system.
We speculate that this implies that the monopoles in such a system deform and
is not accelerating rigidly at this order. We show that the acceleration between
two same charge monopoles vanish to all orders of e.

Goldberg et al arrives at the same conclusion for the force on a monopole in a
two monopole system by calculating the momentum flux through a surface that
encloses that monopole in a static two monopole configuration. More explicitly,
they solve the static e(iuations of motion for the two monopole system, substitute
this static solution into the stress-energy tensor, and integrate the momentum
currents given by the tensor over surface enclosing. the monopole. Their success
is in noticing that in the asymptotic region, the stress-energy tensoris composed of
two pieces, each depends on a scalar potential as the U(1) electromagnetic stress-
energy tensor depends é)n the electric scalar potential when only static elecfric
fields are present; and in solving for the static two monopole configuration in
terms of these two scalar potentials, U (B = VU), and h (¢ = h¢).

Goldberg’s apprdach gives another perspective on the monopole force problem.
First, the stress-energy tensor written in terms of the scalar potentials shows
clearly the force contributions on a monopole in this theory and reinforces our
interpretation of Manton’s ansatz as the external force law.

Secondly, Goldberg et al’s assumption that the static solution needs to sat-
isfy only the flux condition, that the integral of the divergence of the magnetic
field over a volume enclosing the monopole be proportional to the charge of the

monopole, coincides with the ambiguity of the higher order multipole fields in
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Manton’s O(e?) global solution; such that both Goldberg et al’s and Manton's
methods yield the same undetermined result for the higher order (O(1/s%) and
above) force between two monopoles, although Manton’s method of ‘using an
ansatz seems to allow us to guess better at what happens at the next order of e.

We are interested in finding out if it is possible to argue without solving
completely for the higher order ansatz that the higher order forces between two
opposite monopoles vanish, or otherwise if we can find the force to the dipole order
by proposing a specific time dependence which accounts for the deformation of

the monopole to this order and then modifying and solving the time-dependent

equations of motion.




Chapter 4

Backgroimd: Non-Commutative

U(N) Gauge Theory

In order to reach our goal of applying Manton’s method on monopoles in non-
commutative flat space, we need to know the formalism and the classical equations
of motion of the non-commutative gauge theory. We do not cover the quantum

aspects in this introduction [17] [18].

4.1 Operator Formalism to Star product For-
malism |

Non-commutative geometry on flat space-time can be described by coordinates
that are not numbers but operators whose commutation relation is given by the

non-commutative parameter 6#:
[##,2"] = 0"

where 6*¥ is antisymmetric and constant under Lorentz transformation. The

(192}

imaginary “¢” is there because £ is Hermitian and the commutato of Hermitian

operator are anti-Hermitian.
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We will consider only spatial non-commutativity, not space-time non-commutativity,
which poses more complexities. We choose coordinates such that the first two

coordinates do not commute:

0 6 0
69 = 6 00 (4.1)
0 00

To write down an action for a field theory in non-commutative geometry,
we need to first define the derivative and the integral for the non-commutative
coordinates. We want these linear operators to retain the properties they have in

commutative geometry [7]:

a7 7

% (fa) = @:f)a+ f(8:9)
/Traif = O_forf760, f—> 0 at infinity

/Tr[f,@] =0 | (4.2)

The following choice of derivative for the non-commutative coordinates, i,j,=1,

or 2) satisfies all of the above

A

o.f = [df]= -0 ™), f

where 8 (671);; = 1; and the integral is uniquely determined by the rules above [7].

Mixing of gauge space and real space The integral is written as [ Tr
because in non-commutative U(N)’ gauge theories, the notions of integrating over
real space and tracing over the gauge indices cannot be separated. First, note that
functions of the non-commutative coordinates being operators does not prevent
the incorporation of gauge symmetries into theories, although it can affect what

gauge groups are allowed (this will be discussed in the next section). Secondly, in'
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a U(N) gauge theory in non-commutative spatial background, an operator field,
f , in the adjoint representation transforms formally as in the commutative theory

(this will be derived in the another formalism in section 4.2):

F 00 ; OO = i
except that the “unitary” matrices are now unitary operator matrices and the
multiplication is an operator matrix multiplication. Note that because f and
U are operators and do not commute even if f and U .are not matrices, the
" transformation above is not trivial even if the gauge group isiU(l).

Finally, a special property of the non-commutative gauge theory is that the set
of translations in the non-commutative directions are also gauge transformations.
With the above derivative, an infinitesimal translation ¢ f becomes a commutator:

# o +a - f@E) = f@)+ i (8:£(3Y))

= (&) —ila'(07")ud, £(&))]
the exponential form of which is
fE +al) = et f(g) (HOTDma'® (4.3)

It remains to show that U = e~#67")5¢'#’ ig ynitary in the operator sense:

UUf _ e—i(e_l)j,‘aif:j ei(e_l)(kak:i‘l — e%[(9_l)jiaiij,(e_l)lkakil]

— 30 huaiaRE]) _

This means that when we move in real space, we also move in the gauge space.
Therefore integrating over real space is not orthogonal to tracing over the gauge

indices: [ and Tr are to be used together. -

Basis for the non-commutative space Since the commutation relation be-

tween 2! and 22 is analogous to the commutator of 2*,§" in quantum mechanics,
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we can introduce creation and annihilation operators just as in quantum mechan-

ics then:

1 1
c=— (&' —it?) ; o = —=(2' +iz?)

20 V26

s.t. v[c,cT] =1 (4.4)

Since the derivative operator can be written in terms of the coordinate oper-
ators, they can also be written in terms of ¢ and c.

We can then describe functions of ! and £? in terms of matrix elements
< m|f(z',2%)|n > where |n > for n = 0 to oo is the basis of the standard

annihilation and creation operator Fock space:

dn>=vn+lln+1l> ; c=+vnjn—-1>

deln>=nn> ; <mn>= 0,

Integrating over the two non-commutative direction then amounts to Tracing over

these states.

Derivation of the Star Product There is a way to write down non-commutative
geometry without involving operators: Bayen et al [19] introduced a map between
the operator-valued functions f(&) and number-valued functions f(z) such that
the operator product f(2)§(#) would map to a product, called the star product,
f(z) * g(x), which reduces to the ordinary pointwise product f(z)g(z) when the
non-commutative'parameter 0 goes to zero. |

We will need two maps. The first map f(k)| f] is defined as a formal fourrier

transform of the operator function f(# to commutative momentum space:
; 1 —iki&t £ s
PRI = o [ e fa)

The second map f(#)[f] is the formal inverse fourrier transform back to coordinate
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operator space, whose definition needs a prescription for the ordering of the non-

commutative operators £, £2. We will the standard Weyl-order definition:
fonn = X [ k1w e
2n
An alternative formula may help to showb what Weyl ordering is:
A ~1\m 1 & m rA
WIEH™E) = 32 2 i - @™ @Y

Once we have mapped the operator function to momentum space, we can
inverse Fourrier transform it to ordinary coordinate space. Thus, an operator

O(&) would map to O(z) as follow:

0)[0] = (2;)2 / i ik’ / Tr ¢ O(3)

Now, the operator product, O(2) = f(2)3(&), can be written in terms of f(k')[f]
and g(k")[g]:

1 - ‘ | 10 A ‘~ 1 ik 33
= (— / &K (k) e > <_~27T / k" g(k") e““ﬂ)
_ 1 271 2.1 " k”) 2+ L[iklgd ik;29)
= 5 dk/dk F(k)g(k")el | )

- 51“/ / a2k f(k’)g(k">ei<k'+k~w—%0‘““4’“),

/d2k ezk:c/‘rlwr ——zk:cO( )

dzk/ dzk// (k' +k"); '92” k;k;’f(k/)g(k//)

and maps to

elle)

1913 ]

= e? 8yla’]f( ) (z])|y =z=z

This O(z) = f(z) * g(z) is the Moyal or star product of the functions f(z)
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Let us check that the commutator relation between the non-commutative
coordinates still holds:
[2°,87] = z'xal —al x 2t =07

and that the derivative operator in the operator formalism maps to ordinary

derivatives in the star product formalism:

0:.f = [=i(67)i#", (8)] = —i(67")si0mn OO0 f
= (071)ij0jnbnf = Oif
The properties of the derivative and integral in Eq 4.2 can also Be checked to

remain true.

The star product has the following prépertiés:

1. associative: (f*xg)*h = fx(g=*h)

2. non-commutative: f*g# g* f

3. non-local: it involves all order derivatives of both functions f and g

4. [Tr f*g = [Tr fg since the higher order terms of the star product
expansion can all be written as total derivatives. This implies that functions

can cycle inside the integral: [Tr fxg*xh= [Trh«* fx*g

The advantage of the star product formalism over the operator one is obvi-
ous in theories with perturbatively non-commutative background. In such the-
ories, expanding the star product to the leading orders in 6 will allow us to
capture the main features of thé theories and to distinguish effects due to thé

non-commutativity. We will use the star product formalism from now on.
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4.2 The Action of Non-commutive U(N) Gauge
Theory

We can build the action for a commutative U(N) gauge theory with a scalar field
with minimal coupling by simply requiring it to contain terms quadratic in the
first derivative of each of the scalar and gauge fields, and to be invariant under
Lorentz and gauge transformations. We will first outline this and then argue that
we can build the non-commutative action in the same way.

We first w'rite. all fields as Lorentz tensors, such that contracting the space-
time indices of these fields will easily yield a Lorentz scalar in the end. Secondly,
if the scalar field in the adjoint representation of the given U(N) gauge group and

transforms as
6o — UgU', UUt=1

we can build a first derivative of this scalar ﬁeld that transforms in the same
way, namely the covariant derivative D*¢ (as in Eq 2.2), such that the term
quadratic iﬁ this derivative would transform like the term quadratic in the field
itself, which is needed if the scalar field has a non-zero mass. The operation that
would make the mass term gauge invariant would then also make the kinetic term
gauge invafia;nt, the operation b_eing to take the Trace of the matrices in question.

Now, the covariént derivative calls for a gauge field (explicitly shown in the -

next seétion) that transforms like
AF — UARUY +iU(8#UY)

and we again want a first derivative of this gauge field such that it transforms also
like the scalar field, and such that the square of this derivative can be made gauge
invariant by the same operation that made the other terms gauge invariant. We

arrive at the normal expression for the field strength F#* (as in Eq 2.1). Finally,
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we assemble the integrand of the action by summing the Lorentz and gaﬁge
invariant “squares” of D*¢ and F w . '

We can build the action for a non-commutative U(N) gauge theory with a
scalar field in the adjoint representation by the same steps, except that the
Trace operator is to be used with integration over the hon—commutative directions
(Sec 4.1) to make the action gauge-invariaht. The step are the same because all
the manipulations above do not depend on what type of non-commuting product
acts between the matriceé, be it the ordinary matrix product or the star ma-
trix product, as long as it is still assodatiVe and satisfies the normal axios for a
product, such as 1 ® f — f. In particular, both the covariant derivative and the
field strength in a non-commutative gauge field come. about in the same way and
have the same form as those in the (non-Abelian) commutative theory. As an
examply, we will show explicitly the derivation of the non-commutative covariant

derivative.

Derivation of noncommutative covariant derivative Given that the scalar

field transforms in the adjoint representation as follow:

¢ — UxoxU', UxU'=1
the covariant derivative is built such that it transforms similarly,
Dty — UxDFoxU!, UxUl =1

and the following quadratic expression to be used in the action also transforms

similarly:
(D*9)! x (Dug) — U # (D"9)'  (Dyg) *U'

Now, the space-time partial derivative of the scalar field does not satisfy this
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requirement:

My — OHUx¢pxUY) = Ux(8"¢) xU!
+[(0"U) % ¢ Ut+Ux ¢ (8 xU)] (4.5)

but is to be included in the covariant derivative. The combination, (9*+T(A*))¢,
hbwever, will transform as required if its extra term, T'(A*), gauge transforms to
give both the term U * T * U' and terms to cancel the last two terms in the

‘transformation of 0*¢ in Eq 4.5, which can be rewritten as
[—U % (0"UY) x(Uxgx U+ (Ux ¢ U «U = (8"U")] (4.6)
using *-unitary of U as well as the product rule for the derivative of star products:
(O*U) xU'T = o#(U U =U % (aﬂrﬁ) = —U * (0*U")

If the extra term T'(A*) consists of the *-commutator of the scalar field and a

field that transforms as follow:
AP — U * A* = U +4U * (0*UT)

then the terms produced by the gauge transformation of T'(A*) will cancel with
the terms in line 4.6. The covariant derivative therefore looks exactly the same

as the familiar one in commutative gauge theories:
Dt =0"¢p —i[Ax ¢ — ¢ * Al

The Action Since the non-commutative action is built in the same way the
commutative action is built, it is simply the commutative action with ordinary

matrix products replaced with star products:

-

Swe = 3 / da*Tx [P#(2) x Fiu (z) + 2D*9(s) + Dud(a) = M@(z) # 9(a) — )’

7
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where  F¥ = G*AY — 9V A" —je(A¥ x AV — AY x AH),
Dixg = 0'¢—ie(AP+¢p—¢x AP) for pv=0,1,2,3

where the potential term is preseﬁt such that in the limit § — 0, this theory
reduces to the commutative theory we studied before. Aé before, we will only
consider the theory in the BPS limit— A — 0 but (¢(z) * ¢(z) — ) = 0 at
infinity-such that the last term in the action vanishes and does not contribute to

the derivation of the equations of motion.

SU(N) not allowed Although the form of the gauge transformation is the
same for non-commutative and (noh—AbeIian) commutative gauge theories, the
*-gauge transformation does not allow SU(N) to be the gauge group of a non-
commutative theory. The following decomposition of the infinitesimal U(2) *-
gauge transformation clearly demonstrates this and the argument can be easily
generalized for U(N) *-gauge transformations.

Let the infinitesimal *-unitary matrix be
U = 1-—i(apto+ asts); a=1,2,3

where ty is the identity generator, t, the generators for SU(2), and ayg, .o are
infinitesimal gauge parameters. Then, infinitesimally, the scalar field transforms

as follow:

¢ — | ¢ - i[(aoto + aata) * (¢0t0 -+ ¢ata) - (¢0t0 + ¢ata) * (Ototo +'aata)

= ¢ —i[(aoto + aata), (Goto + data)],

Before expanding this, note that the *-commutator of two SU(2) fields produce
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a term that is not proportional to any of the SU(2) generators: -

[Aa(z) ta, By(z) to], |
1 1 1 1
= Aa(]}) * Bb(:II) <§€abctc + §5abt0> — Bb(.’IJ) * Aa(x) <"€bactc + '2‘5abt0>

2
Ao * By + By x A, Ay, x By — By x A,
— ( - b 2 i )fabctc ( o 2 bt )6abt0

The *_gauge transformation above then expands to

Olb*(ﬁ +¢ * (Yp
d) — ¢0t0+¢ata+6abc< = 2 < )ta

» ([ao, al, ;‘ [, ¢>0]> b i ([0107 ¢, 42" [, ¢a]*>, to

An impobrtant difference between this gauge transformation and an ordinary
U(2) gauge transformation is that even when the infinitesimal form of the *-
unitary matrix U involves only the SU(2) generators, i.e., ap = 0, the transfor-
mation would still “create” a term that is proportional to the identity generator,
which is not in the SU(2) space. In other words, SU(2) is not a close group under
the *-gauge transformation and cannot be the gauge group for non-commutative

gauge theories. Qur problem will be set in a U(2) non-commutative theory.

4.2.1 Gauge Invariant Quantities

We already know that the gauge space and real physical space are not orthogonal
in non-commutative gauge theories; we now check that simply taking the Trace
of (without the integrating over space) any operator O(z) that transforms like

the adjoint scalar field indeed does not make it gauge invariant:
TrO(z) — Tr[U(z) *O(z) *Ul(z)] # TrO(z) sinceTr[A *B] # Tr [Bx* A

The integrand of the action, for instance, is not gauge invariant, unlike in the

commutative theory.
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This means that if we do not waﬁt to study only quantities integrated over
the non-commutativé directions, we need to find a way to construct semi-local
gauge-invariant operators. Gross et al [20] constructed gauge invairanf operators
in.momentum space by attaching open Wilson lines to adjoint operators and then
*_fourrier-transforming the combination.

First, the Wilson line is defined as the *-path-ordered éxponential of the

integral of the gauge field alohg a curve C starting at z:

I

1 .
W(z,C) = P.exp <ie/ d)\(ili/\ Aﬂ(x"+sl‘()\))>
0

With the same argument as in the comimutative theory, this Wilson line *-gauge

transforms as follow:
W(z,C) — U(z)*«W(z,C)*Ul(z+1)

Now, Uf(2 + 1) is simply U'(z) translated and can be written as the *-gauge

transformed U(z):
Uz +1) = e*«Ul(z) xe ™
where the non-zero components of the momentum k* is given by equat.ion 4.3:
ki = —(0 Nl = ' = k67 | (4.7)
The combiﬁation W (z,C) x e*® then transforms as the adjoint sclar:

W(z,C)*e*® — Ulz)* W(z,C)* [Ul(z +1) * "]
= Uz)* W(z,C) * [e** x Ul(z)]
Therefore, for each operator O(z) in the adjoint representation, we can define a

corresponding operator O(k) in momentum space by first attaching a Wilson line

to it and then *-Fourrier transforming:

Ok) = / dz* Tr O(x) * W(x, C) * e_g“””
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~and it will be gauge invariant:
Ok — / dot Tr U(z) x O(z) + W(z, C) x € x Ut@) = O(k)

provided that the open Wilson line extend a vector I*(k) (Eq 4.7) from its starting
point x. ‘

Note that for an operator at momentum k, the Wilson line extends in a
direction transverse to the momentum and to the commutative direction. Also,
in the commutative limit, I’ reduces to 0 and tﬂhe operator O(k) reduces to the
ordinary Fourier transform of the orginal operator O(a:) Finally, for operators
at large k, the Wilson line is long and dominates such that all operators at large

momentum would exhibit similar large k behaviour. [20]

4.2.2 Broken Lorentz and Rotational Invariaxice

Since the non-commutative tensor 8#” is the same in any inertial frame, i.e. does
not Lorentz Transform, the star products of two Lorentz tensors, and therefore
the action, are only invariant under boosts in the comfnutative direction. The
following simple example of the star product of two Lorentz scalars illustrates -

this:

o ) FAT2)g(A™ Y ) o=y

NE
{;\

frg TR (fxg) =

3
il
o

1 P uv -1y o 2 ]\
(2 i H n,[(A' ) §(@)9()ay

g onlyif A? 6" (A71),7 =6

v

% ||M8

where A is the 4 x 4 linear Lorentz transformation matrix. If 6#” is defined
such that its only non-zero coponents are §'* = [-6*' = 6, the last condition is
satisfied only if A (A # 1) has non-trivial entries only in the 0 or 3 (time- or z-)

components and therefore represents a boost in the commutative z-direction.
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4.3 The Equations of Motion

The equations of motion in the non-commutative theories can be obtained by the
normal variation procedure due to the properties‘ of the star product.\

We avoid varying the action twice, sepafa’cely with respect to the gauge field
and the scalar field, by rewriting the action. We write the scalar field as a extra
space-time component of the gauge field and name the new 5-dimensionsal gauge
field A'*, and require that all of its components are constant along the added

~spacial direction [21]:
At=¢ ; 9"A*=0

The covariant derivative of the scalar field can then be written as the fourth

spatial component of the new field strength, F'#, defined by A'#:

!

DFxg = OHA*—8'A* —ie [AF,AY], = F™

The action, with its potential term which does not affect the equations of motion

in the BPS limit omitted, simplifies to:
1
Sne = 1 /da:“Tr [F'™ (z) * Fl'w(a:)] for p,v=20,1,2,3,4
Now, we vary the action with respect to the new gauge field:

§S = / Tr [6F"™ % F,, + F"" x§F,,]
where §F'™ = OH(5A") 6”(5A“) + [(6A4H), A¥], + [A*, (6A7)],
We assume the field strength drop to zero sufficiently fast at infinity; therefore,

the factors inside the [Tr can be cycled (by property 4 of the star product -

section 4.1). Integrating by parts, the variation becomes

/Tr SF™ xFI] = — /Tr (647« (9#Fy, + [4,FL] )|
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Now, the star product between § A¥ and the other factor can be replaced by
the ordinary local product (again by property 4 of the star product). So, for

arbitrary 0 A”, the variation of the action vanishes only when
D, x F'™ =0 (4:8)
or equivalently in terms of the original scalar and gauge fields:

for v=4: D,x(D¥x*¢) = 0; (4.9)
for v=0,1,2,3: D,* F* =ie (D" *¢), ¢l, (4.10)

For the U(2) non-commutative theory, eaéh space-time component of the equation
of motion has four components, one for each generator of the non-commutative
U(2) gauge group. We will call the equation for tg, the identity generator, the
U(1) sector and the ones for t,, the Pauli matices, the SU(2) sector.

4.3.1 Expansion of the Equation of Motion

We will be studying the problem of the force between two non-commutative
monopoles in a perturbatively non-commutative theory. Therefore § << 1 and
we can expand each sector of the equation of motion in the small parameter 8

and study the equation order by order.

U(1) O(6°) First, we expand the U(1) component of Eq 4.8 to O(6%):
0,(0" AF — P AY) = -g [0, {4y, Ay} + o, {ar, 47} + ca {A;"A;“, 4}
2 [{ag, @ ap - o4} + {ar, @0 ar - 40}
(s g ar} )+ {ag {a Az ]
o [{a A+ ar {4z, ar})] - o)

where {f,g} = (01f)(02g) — (029)(01f)
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and terms with {f, g} originate from the (O(6) terms in the expansion of the *-
commutator of f and g and therefore are antisymmetric under exchange of f and
g .

To O(6°), the RHS of Eq 4.11 is irrelevant, and expanding the gauge field A'#

in orders of 8:

!

AP = A0 4 gmE) L g'HE?)

we find that the equation for A;“ ©) s totally decoupled from the SU(2) sector

and is simply a sourceless U(1) electromagnetism equation (in 5 dimensions):
a, <8I/A1)/‘(0) _ auA:)V(O)> — aVF(;V#(U) - 0

As in norfnal electromagnetism,. the gauge field A;,“ © obviously has some gauge
freedom, but here, we also have the freedom to choose the value of the gauge
invariant quantity F,"“®) without affecting the O(6°) SU(2) sector.

To show the gauge freedom at different orders of § of the gauge field and fields
that transform in the adjoint, we expand the infinitesimal *-gauge transformation
(Eq 4.7) of these fields to O(6?), writting the extra terms present only in the

transformation of the gauge field in square brackets:

for U = 1-: (a(()o) + a(()e) + af,ez)) to—1 (aa + afﬁ’ + a((f'z)) te; a=1,2,3
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ot (4O + a0 o]
+t0f(§0) - [toaﬂa(()o)]

(e 0 NOPOINNOPC

e (ol ) et vl
0 0 |
e 2er)) L)

(0) £(62) (6%) £(0) (8) £(8) 2 :
o (IO R0, g0} ) - [t

6
o 2 ({850} + {20} + {a0, 57} + {a?, £7})

+tog ({a f(‘) } + {10+ {of, 10} + {aé"), 1) - [te0nal™)]

'Now, the second line of this transformation shows that no *-gauge transforma-
tion can alter the U(1) zeroth order adoint fields, F"™ © and ¢\ whereas the
U(1) zeroth order gauge field has the gauge freedom, 8"(180 , where a((]o) is a free
infinitesimal parameter. We will refer back to this equation when we discuss the

gauge freedom of the higher order fields. For we non-commutative monopoles, we

choose F ) and ¢ % to vanish and the gauge in Wthh A“ vanishes.
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SU(2) O(#°) Next, we expand the SU(2) component of the equation of motion:

o, (A - aﬂAj;’) + ebabc [a,, (4 ar) + 4, (8"A’C” — o 4r)]
+ AL A AL — AL Ay A

_ g o, {az, ap} + {ay, ar}]
+g [{4e, (0247 —07a8) } + {4y, (0047 — 0042 }]
o [{ Ao, apar )+ 4, ({4, g} + {4y, 40 })]

v [{ {ap A = (i {4t} )]

e e} (o () )

[ (- A 1]

ol (o {{ar e} o {{ (o - oa) L))

| (4.12)
where {{f,g}} = (8f) (839) + (8]g) (B5f) — 2 (0102f) (81029)

is symmetric under exchange of f and g and terms with these double brackets
originate from the mathcalO(Gz) terms in expénsion of the *-anti-commutators.
At zeroth order in 8, this equation has an irrelevant RHS and is totally de-
coupled from the U(1) sector. In terms of the original fields, A* and ¢, the
equation is simply the SU(2) sector of the Eq 4.9 and Eq 4.10 with the *-product
replaced by the ordinary product, which are obviously the equations of motion
in the commutative SU(2) theory. Thus, the O(#°) SU(2) field, AX® s simply
the solution to the commutative theory. According to the first line of Eq 4.11, its

gauge freedom at this order is also exactly the same as in the commutative case.

U(1) O(8) We can use the choice for the U(1) O(8°) fields, A*® = 0, to
simplify the U(1) equation, Eq 4.11. In fact, since the terms on the RHS of this
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equation are quadratic in the U(1) fields A;“ , they will contain at least one factor
of the vanishing AJ“? at ©(6?) when the 6 expansion of A is put in. Thus, the

U(1) equation accurate up to O(6?) simplifies to:

8,,(8"142)“ _ B“AIOV) — g [8,, {A;", A;"} + €abe {A;VA;“) Alcv}]
+§ [{A’;, G a“A;")} ] (4.13)

Note that the first order U(1) field, AIO“ ®)is determined independently of the
first order SU(1) fields and depends solely on the zeroth order SU(2) fields, A¥;
and that the second order U(1) field, AIO” (02), is determined only by the zeroth and
first order SU(2) fields. In general, the U(1) component of the fields of any order
in 6 is determined independently of the SU(2) comporents at the same order, and
is determined only by the lower order U(1) and SU(2) fields, which would have
been determined already by lower order equations. This is because expanding
the equation of motion, Eq 4.8, to-an arbitrary order in 6 only adds more terms
with explicit § dependence to Eq 4.13 but does not change its property that the
terms that involve the highest order fields depend only on the .U(l) component
of the fields.

Another property of the U(1) equation is that to all orders of 8, it takes the
- form of the ordinary Maxwell equatioﬁs, AIO” (6") being the Maxwell gauge field,
with a non-localized source comprising of the terms .on the RHS, which involve
lower order (lower than nth) fields and spread out over space-time.

We now look at the gauge freedom of the U(1) fields at this order. According
to the fourth line of Eq 4.11, the transformation of the O(8) U(1) component of
the field strength, the scalar field and fields that transform like them is governed
only by the zeroth order gauge parameters aéo) and . This means that these
U(1) fields (F*® etc.) have no gauge freedom at O(6) if we have completely
fixed the gauge for the zeroth order fields. In general, at an arbitrary order n

of 6, the U(1) component of fields that transform like the field strength has no
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gauge freedom that is not already determined by the lower order fields. This
is because the infinitesimal transformation of these U(1) fields involve only *-
cofnmutators (Eq 4.7), the expansion of which already has an explicit factor of
6, and so no gauge parameter to O(6") can be involved. On the other hand, the
U(1) component of the gauge field, however, has a new gauge freedom at each
order of 6 parametrized by a(()en): it transforms with the extra term —E)a(()on). ,

In contrast, according to the third, fifth and sixfh line of Eq 4.11, the SU(2)
components of the field strength and the scalar field, and the SU(2) component
of the gauge field, do have a new gauge freedom that depends on a new gauge
parameter o) at each order n of 6. Also, the terms in these lines arising from the
star product expansion renders the gauge transformation of the SU(Z) component
of fields which transform like the field strength not simply a rotation in the SU(2)

space, and therefore the magnitude of such SU(2) vectors are not gauge invariant

unlike in the commutative theory.

SU(2) O(f) We use the choice that the zeroth order U(1) fields vanish again
to simplify the SU(2) equation (Eq 4.12). To O(#), since all the terms on the
RHS of this equation depend on the zeroth order U(1) fields A:,” (O), they vanish,
and the equation does not differ from the zeroth order SU(2) equation. This
implies that both 4#® and (A + A/®) solve the same equation, and so are
related by O(f) symmetry transformations of the theory. Now, the transformed
solution, (A + A#®), is physically different from the original solution, AZ®,
only if the symmetry transformation is not a symmetry of the solution. However,
- these symmetry transformations actually simply change some choices we have
had when solving for the zeroth order solution Al (o)’ and so the transformed
solution A + A#® ¢ould really have been the zeroth order solution we have
chosen. Therefore, we can choose A;” @ = 0 without any loss of information of

the solution. For instance, for a monopole solution A:{‘ (0), we have the freedom
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fo choose its initial 4-position on the coordinate system, a first order correction
A2 which is an O(e) translation would simply change that choice, but that
choice is arbitrary to begin with. ’ ' :
Also, as in the U(1) sector, the determination of the SU(2) fields, AL 4o
each order n-of 8 is decoupled from the determination of the U(1) field, A;,“ (67)

to the same order.

U(1) O(6%) Now, using the result from above that the first order SU(2) fields
can be set to zero, we can further simplify the O(6%) U(1) equation (Eq 4.13):

au (aVA:]N(az) _ 6#A:)V(92)) = 0 (414)

Interestingly, this has the same form as the zeroth order U(1) equation and is
again totally decoupled from the SU(2) sector. Note however that this simplifi-
cation is not a regular occurrence in even orders of § and happens here only due
to the triviality of the first order SU(2) solution. Both the fhird and fourth order
U(1) fields depend on both the lower order SU(1) and U(1) fields.

SU(2) O(6?) Finally, the O(6%) SU(2) fields needs to satify the non-trivial
Eq 4.12 and depend on both the lower order SU(2) and U(1) fields.




Chapter 5

First Order Force between Two

Non-commutative Monopoles

The force between two non-commutative monopoles-does not alter from the force
between two chmutative monopoles to first order in the non-commutative pa-
rameter §. In fact, the effect of the non-commutativity in the dynamics is not
seen to this order. We will show this both by the stress—energy-tenso.r as well as

by a slight extension of the Manton method.

5.1 Non-Commutative Monopoles

N

Magnetic monopoles in the commutative theory, as discussed in chapter 2 and 3,
are defined by the asymptotic behavior of the U(1) magnetic field embedded in
the SU(2) field strength tensor. In a non-commutative theory with small 6, the
field strength is dominated by the lowest order term, i.e. simply the field strength

of the commutative theory; therefore, the same embedded U(1) magnetic field can

be used to define the non-commutative monopole. To O(6?) , the magnetic ﬁe_ld
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is:
. 1 .., .
i~ _ijk ik
B = SelF
_ eijk (8JA§ — % ([A'Zz? Ag] + ieabcAZ * AICC)) ta
1€tk <ajAlg__ : [A(J;, Aﬂ) to

]
= 2 ”kFc]:mmutatwe + Ewk (8]‘4 9) + {A] A’;(O)}> to

+ %eijk( {
] (g;ea,,c{{AgwaAz«m}}) t 40 () -

. i 2
H0) = AHO) = Ao(o ) - 0 as discussed

1204 ey, [A{,'("z)A’g@) + A0 4 )D ta

where several terms have vanished because Ap
in section 4.3.
Note that whereas the zeroth order commutative field strength is in the SU(2)

sector and can be factorized, F7* = (f7*¢,) ta, to give an embedded U(1)

commutative
field strength which satisfies the Maxwell equations, the () correction to the
field strength is in the the U(1) sector, and the O(#?) correction (as in hte last two
lines of Eq 5.1), although in the SU(2) sector, cannot be factorized into a Maxwell
U(1) field strength and a unit vector field. Thus, the higher order corrections to
the field strength cannot be easily described by corrections to the embedded U(1)
field strength f#*” which we used to define the commutative monopole.

The definition of the non-commutative monopoles in terms of the O(e%) em-
bedded magnetic field and the fact that to O(#°) the equation of motions are the
same as those in the commutative SU(2) theory imply that any‘system of non-
commutative monopoles is simply the solution of the analogous commutative
SU(2) system (with trivial @(8()) U(1) fields) plus O() and above corrections
for both the U(1) and SU(2) fields, which satisfy the equations of motion ex-
panded to higher order. We will only need the trivial O(6) SU(2) correction in
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this chapter.

5.2 Force Correction from the Stress-Energy Ten-

sSor

N

We have established two facts: that to O(6°), a system of two non-commutative
monopoles equals the solution of two commutative monopoles, and that for any
classical solution to the non-commutative theory, the O(6) SU(2) sector can be
chosen to be zero as reasoned in section 4.3. These, along with the statement in
this section that the O(#) correction to the non-commutative stress-energy tensor
depends only on the O(f) SU(2) fields, and therefore vanishes, determines- the
O(0) correction to the force between two non-commutative monopoles to be zero.

We will also generalize that the forces within any system of non-commutative
solitons [22] are the same, to O(f), as those within the system of commutative

solitons to which the non-commutative ones reduce at zeroth order.

5.2.1 Non-Conservation of the Stress-Energy Tensor

There are more than one definitions of the stress-energy tensor in non-commutative
gauge theories. For example, Yukawa and Ooguri obtain one by computing disk
amplitudes in string theory in a large NS-NS two-form background field and tak-
ing the Seiberg-Witten limit '[23] [24] [5]. This tensor is locally kinematically
conserved, gauge invariant and vanisfles as 8 — 0.

To arrive at our statement about the () correction to the force between
monopoles, we will use the tensor obfained from the Noether procedure, because
it seems more intrinsic to the theory. We will find that this tensor, intezrestingly,

has very different properties than the one mentioned above: it is not locally

conserved, not gauge-invariant, and reduces to the tensor for the commutative
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theory at the lowest order.

We derive the energy and momenturh currents from translational invariance
using Noether’s theorem. The resulting current is neither locally conservative
nor locally covariantly conservative. To obtain covariant conservation for the
stress-energy tensor, D, * T*” = 0, we need to add a term which equalé zero to
the variation of the action, §Syc, and carry out the derivation which is slightly
different from the commutative case as in the usual way. We note that the final
tensor and its conservation equation is not gauge invariant.The detailed deriva-

tion follows.

Derivation of the Stress-Energy Tensor We then add a term which equals
zero to the “conservation” equation, (the algebra is a little dissimilar from'the
commutative case), to obtain a covariant conservation for the stress-energy ten-
sor, D, * T* = 0. We also note that the tensor is not gauge invariant and that
its conservation equation is also only gauge covariant. The detailed derivation

follows.

For simplicity, we switch back to the notation that the space-time indices go

from 0 to 4, with A* = ¢ and 9;4* = 0 such that
s = X [mFw« R, dat
= Z * pv T

The transformation of the gauge field due to the translation has an ordering
ambiguity and needs to be symmetrized so that in the operator formalism the

transformation would be Weyl-ordered:

z* — z* + e (z)

= §A* = % (0,A" x €# + € x 0,A")
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The variation in the action is then
1 v 4
6S = 3 Tr F*¥ % 0F,, dz
We substitute § A* in this expressibn:

dS = —;—/d:v‘*Tr F¥ 5 [(0,0pAs) * € + (8pAy) * (0u€”) + (8pAy % €°) x Ay + Ay % (0o Ay * €°)]

1
+ 2 /d:L‘4Tr F¥ 5 [¢8 % (0,0pA0) + (0u€”) % (0,40) + (€ % OpAu) * Ay + Ay % (¢ % 0,A,)]

and rearrange the terms:
1 - A N N
0SS = 5 /d:v‘lTr F* % {(8u8pAu + apA,u x A, + Au * ap_Au) * e + 6pAp, * [€p> Au]*}
1 ,
*3 / dz'Tr  {& % (0u0,As + 0pAu * Ay + Ay % 0pA,) + [Ay, €], % 0pA } + F™

+% / dz*Tr {(c’)pA,,) * B+ FH x (8,A,)} * O,€

1 : |
= %/d$4ﬁ Eap(F“”*Fuu)*eP — 0, (0,A, x F¥ + F* % 9,A,) * €

1 :
+§ / dz*Tr  (0,A, x F* + F* x 9,A,) x [A,, €]

*

We add 10, [0, (F* x A,) + 8, (A, » F*)] to the integrand, which vanishes
because of antisymmetry of the u,v indices in F#” and the symmetry in 8, 9,.

Upon expansion, the first term in the expression is

0,0,(F*™ x A)) = 8, (8,F™ » A, + F* x8,A,)
= 8, (= [A, F*™], x A, + F*™ x9,A,)

where the equation of motion D, * F* = 0 has been used in the last step.

These added terms combine with the terms in integrand (denoted as s/2 in the
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following) to form more combinations of F*:

s = %6,, (F¥ x F,,) % €
+0, [(8,,Ap — 0,4, + [Ay, Ap]*) * P — A, % F* x A, . A, * A,,] * €8
+0, [(F*™ % (0,4, — 0pAL) + [A, Ay),) — Ay x Apx F*™ + A, x F* x A,] x €
+ (8,4, x F*™ + F* x 8,A,) * [A,, €],
= <%8p (F’“’.* Fo)+ 0, (F* x FE,,+ F,, * F‘“’)) * €
+0, (—A, * F¥ x A, + A, « F* « A, + F* x A, % A, — A, x A, x F*) e

+ (0,4, * F* + F* % 9,A,) x [A,, €],

Finally, the last two lines of the integrand regroup into
[A,, F*¥ x F,, + F,, x F*] 4 (1/2) [A,, F* = F,,], in the following manner:
Inside the integral, the factor A* at the end of the last line can be “cycled”

to the front and so the last line can be rewritten as
[Ay, (—0,A,) x F* + ™ x (—9,4,)], € : (5.2)

For the second line, we expand the derivative. The derivative on the factor

A? in all four terms gives the following commutator bracket
[Auv (&/AP) * FH + FH % (8VAA)]* * € i (5.3)
the derivative on F'*¥ gives

(A * [Ay, F*), x Ay — AP % [A, F*),) x A, x € (5.4)
— ([Au, F™), % A, x Ay + A, % Ay ¢ [A,, F*],) % € (5.5) -

which, after the interchange of some of the u, v indices, equal the following:

[Au, (F* % [A,, Ay, + [Au, A, » F*)], x € (5.6)
(—F* x A, % Ay x Ay, — A, x A, x A, x FH*) x e, | (5.7)
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and the derivative on A, gives

[A,,0,A,0"A” — 0,A,0"A¥], * € (5.8)
+ (A, x[A¥ AY], x 0, A, — 0, A, x [A¥, AY], x A,) x €’ (5.9)
+ ([A*, AY], x A, % 0, A, — O, A, x A, x [AF, A”],) * €°. (5.10)

The terms 5.2, 5.3, and 5.6 combine to [A,, —F* x F,, — F,, « F*] x¢?. The
remaining terms, 5.4, 5.5, 5.7, 5.8, 5.9, and 5.10, combine to (1/2) [A,, FHo 4 F), *
e’. ‘

Therefore, since €” (z) is arbitrary, when we take away the star product be-
tween ¢’ (z) and the other factors in the.integrand, the covariant conservatioﬁ

law is obtained:

D, «T" = 0 | (5.11)

1 1 1
where TH = +g’“’ZF°‘ﬁ * Fop — _§F“P * FY, = SF x FY, (5.12)

The difference in this derivation from that in the commutative theory, in which

the tensor is gaugé invariant as well as locally conserved,

o.TH =0 © (5.13)

com

com

1.
where TH = Tr (ZguuFaﬂFaﬂ - F“pF:> y

is that in the commutative theory, the matrices in the integrand can cycled under
the trace operator without involving the translation non-matrix parameter' e? (z),
but in the non-commutative theory, because €’ (z) is a function of z and because
it is related to the other factor by the star product, any cycling involves all factors
inside the integral, including €’ (z) . . ’

Note that T#” and therefore Eq 5.13 is invariant under the commutative

gauge transformation whereas the non-commutative tensor 7#” and its equation

are not invariant under the non-commutative gauge transformation.
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5.2.2 (O (0) correction to the Force Between Two Non-

Commutative Solitons

Since the stress—enefgy tensor is not locally conserved and not gauge invariant, it
does not allow us to find the force between ‘two non-commutative monopoles by
calculating the momentum current flux through a surface enclosing a monopole as
in the commutative theory (Sec 3.3): we need to either solve the problem of non-
conservation or extract information from only the conserved and gauge invariant
total energy and momenta. Because of the form of the stress-energy tensbr, it
is easy to arrive at a statement about the force at O(f) between solitons, but
much more non-trivial to obtain one at O(#?%). Since our goal for this project is
to extend Manton’s method to the non-commutative theory, we have not pursued

this method furthur at the non-trivial second order.

Conservation of global energy and momentum To show the conservation
of global energy and momentum, we first integrate the covariant conservation

equation over all space:
/ Tr9,T*dz®* = - / Tr (A, * T*], dz®

and find that [ Trd,T*dz® = 0 because the star-commutator vanishes inside the

space integral. Rewriting in components,

T 0TV
/rﬁ, g =0

i

where the second term vanishes since 7% = ‘0 at infinity for finite energy-
momentum solitons, i.e., there is no current flowing in or out of the boundary
of space, the energy and momentum charges, T%, integrated over all space is

conserved in time:

2 / Tt T%dz® = 0
ot
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The force in térms of total energy The force between two non-commutative
solitons, or monopoles, is the rate of change of the total energy of the system with
respect to the separation distance s, 9E (s)/0s, where E(s) is the total energy for
the solitons at separation s, E(s) = [ Tr T%(s)dz®. Expanding E(s), we obtain
the O(0) correction to the force along the axis of separation of the monopoles in

“terms of T00.

Force = 8 (EO(s) + E®(s) + B®)(s))

_ as/Tr Too s) + T (s )+T°°(62)(s)] dz’

Ty TOO A TOO(G) dx3
= Forcecommutatwe + hm f [ (s L S) (S)] i
As—0 As :

T [T + ) - T0s)]
+ Aso ‘ As

= Fo%cecommutative + Force® + Force!®)

No O(6) correction to total energy To O(6), the argument is simple: The
force correction involves the difference of T%®)(s) and T%®) (s + As), which are
the time-component of the O(f) stress-energy tensor for two solitons at separa-
tions s and s + As respectively. For both separations, the O(6) stress-energy
tensor depends only on the O(6) correction to the SU(2) components of the field
strength, F**®) which in turn depends only on the O(6) correction to the SU(2)

~ components of the gauge field, which can be chosen to vanish as argued in sec-

tion 4.3. Thus, the O(f) force correction is zero.
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Explicitly, the stress-energy tensor to O(6?) is

1 1
T = Tr g’“’—F”’\*F,\—lF“P*F" — -F"’ x F*
4 g r2 ?
1

— +211_4gqup)\£0)FpAa( ) _ _F,up FV _Z_Fup((IO)pra(O)
L o oor) o (0) ) v (0 v
+§gu FAOF O — Fre@ Y ( ) _F p F” (
1 1 1
gy 25 OF A G _Fup(O)FV (6‘ F"p(o)F" (9)
+4g a pra 9 9
Lowp (@) p o _ peel@) g ve
+59" Fs F 0 - F PO — F ¢ )Fﬂp;(’)

1 .00 9
_F P((] )Fup()()

| T g 1 6) v (6
+_g“Fp(())FpAO()_—z—F#p(())FpO()_z

4
2

where all the O(6°) F*“® terms are omitted since the U(1) fields are all set to
zero to this order). The O(0) correction is on the second line. These terms do not
include derivative terms of the form {f, g}, which comes from commutators of

star products because of the symmetricness of the tensor, and they vanish when

F*®) vanish. (Note that any correction to the U(1) part of the field strength

begins to contribute only at O(6?%).)

Now, recall from Eq 5.1 that the first order correction to the field strength for
any system is only in the U(1) sector, i.e., F*® = 0, because the SU(2) O(6)
fields vanish by the equation of motion provided the zeroth order U(1) fields are
chosen to be zero. This means to.(’)(é), for any solution of a perturbative non-
commutative U(N) gauge theory, the stress—enefgy tensor is the same as that for
tHe ‘commutative SU(N) solution to which the non-commutative solution reduces
at zeroth order.

In particular then, for the cases in which two solitons [22][25] are at distances s
and s+ As apart, the O(6) corrections of the total energy, T%®(s) and T (s+

As), are zero; therefore, the force correction to this order vanishes.
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This fact does not depend on the geometry of the system; for instance, it
is true even if the solitons are separated by only a small distance or in the non-
commutative direction. It also does not capture any effect of the non-commutative

geometry.

the Problem in O(6%) To calculate the force between two non-commutative
monopoles to O(6?) by calculating T°®*)(s), we need the solution of the fields it
depends on: the O(#) U(1) and 0(92‘) SU(2) fields for a two monopole system.
We do not pursue this path.

5.3 Force correction Using the Manton Method

‘We now start investigating how the Manton method can be extended in the non-

commutative theory. We will derive the first order ansatz for a single accelerating
non-commutative monopole and check that the O(6) correction to the force be-

tween two non-commutative monopoles vanishes by this method.

5.3.1 First Order Ansatz for Single Accelerating'Ndn-

Commutative Monopole

In the non-commutative theory, Manton’s first order ansatz with the product re-

~ placed by the star product solves the equations of motion under the assumption

that the monopole is accelerated globally in the commutative direction. The ar-
gument also follows Manton’s but with the product replaced by the star product.

First, as in the commutative case, we describe a non-commutative monopole
accelerating rigidly from resf by a small amount by putting in the specific ac-
cording time dependence in the solution:

P(z”) = ¢(z* — %e2ait2) o Al(zY) = Azt — %e2ait2)
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where €%a’ is the small acceleration of the non-commutative monopole and is

in the commutative direction (discussed below). Again, we choose the gauge in
which the time component of the gauge field A® vanishes in the instantaneous rest
frame of the monopole such that a Lorentz boost along the direction of motion
back to the non-accelerating “lab” frame yields the following A° in the “lab”

frame:
A’ = —ElaltAl
Since only Lorentz boost in the commutative direction is a symmetry of the
action, and the derivation of the first order. ansatz relies on the above expression
for A%, this method only works for acceleration in the commutative direction.
Then, the partial time derivative of the fields and the form of the time com-
ponent of the gauge field allow the covariant time derivative of ¢ to be written

in terms of the covariant spatial deriviatve of ¢ and the time component of the
field strength tensor to in terms of its spatial components:
D%x ¢ = —e2a't (8¢ —ie [AY, ¢],) = e2a't D' x ¢
G = —€ait (VA -~ O'AT —de (AT AY),) = —€*a't G*

Replacing ordinary products by star products in each step in the same deriva-
tion in the commutative theory (section 3.1.1), the time dependent equations of
motion for the instant when the monopole starts accelerating from rest, as in the
commutative case, can be written to O(e?) with terms depending on the acceler-
ation in place of terms with any time derivatives or explicit time dependence:

D;x (D' + d)x¢p = 0 | (5.15)
(€%a;t) Dj * G = (a;t) ie [(Dz * @)% — px (D x (b)] ; (5.16)

[Di+ €a;] *GY = de [(DIx¢)x ¢ — ¢* (D’ % ¢)] (5.17)

where again the second equation does not give any information about the O(e?)

solution and is automatically satisfied by the static monopole solution.
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Since the star product does not involve time derivatives, these rewritten equa-
tions of motion do not involve time derivatives; thus, the form of time dependence
introduced in the argument of the fields are allowed as in the commutative tcase.

These equations of motions can be satisfied by an analogous ansatz to the one

proposed by Manton for the perturbed commutative monopole:
| GY = e (D*+fd)xg (5.18)
where besides the fields, the acceleration is also expanded in orders of 6:
6.2‘ak — 62ak(0) + 62ak(0) + €2ak(02)

Note that Eq ?? is *-gauge covariant, so the uniform acceleration a*, which does

not *-gauge transform, can be determined in any gauge chosen.

This ansatz satisfies the equation of motion Eq 5.15 because the non-commutative

Bianchi Identity:
¥DixG*F = 0

depends only on the symmetry of the indices and holds independently of what
kind of product acting on the factors. The ansatz also satisfies the equation of
motion Eq 5.17. The proofs are exactly analogous to the ones shown in sec-
tion 3.1.1 with -ordinary products replaced with star products and the internal

vector cross product replaced by the star commutator times (—):
Alxg | — —i [4 9],

We now examine the U(1) and SU(2) sector of the ansatz to 0(6?).

'U(1) component of the ansatz The component proportional to tg of 5.18 is

as follow:

7 (360 5 (0], + [40i).) )

FIOIAS e (A5 AF] 4[4, 4)) = fd'y (519)
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Interestingly, if we expand the RHS to an arbitrary order n of 8,
. n . n—1 . an
€2a1(0)¢(()9 ) + 62az(9)¢§0 ) + 62az(0 )¢(()0)

because the U(1) O(6°) fields are chosen to be zero, ¢f,0) = 0, the term that de-
pends on the O(A") correction to the acceleration, €2a'®™) vanishes. This means
_ that at any order n, no mattér what €2a*®") is, the corrections to the U(1) fields
are the same, i.e., the O(6™) U(1) fields takes no part in determining the O(6")
correction to the acceleration. In particular, the O(6') correction to the acceler-
ation does not depend on the U(1) sector at all and the O(6?) correction to the
acceleration depends on the U(1) fields only up to O(8"). These are the same as

the statements obtained in section 5.2 by inspecting the stress-energy tensor.

5.3.2 (O(0) Force Correction
We now know that only the SU(2) component of the first order ansatz (Eq 5.18),

“expanded as follow:

2
e AL — et (A1, AF], + (A4, AF], + 2icued] 5 4Y)

. (awa = ([, 8]+ [, do]. + iease [ AL % 6o+ G n Ai]))

S ) (5.20)

can contain information about the O(8) correction to the acceleration. To O(f),
since the O(6°) U(l) fields vanish, this equation is simply the ansatz for the

commutative theory with an extra O(6) modification to the assumed acceleration:

+ (Dzd))a + EG,Usz{k = :}:(62‘1z + ezal(e)) Pa

where the fields are expanded in orders of the different small parameters € and 6:
b = ¢+ 0L + 90 + ¢
i i i(e? i : i(0€?
A = Aa(O) + Aa( ) 4+ AG(G) + Aa((i )
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Without the acceleration, Eq 6.1, is a linear fluctuation equation for ¢, and
At | just like the second order equation of motion as discussed in section 4.3: it _

follows that 6 = AX® = 0, but ¢ and AX®") are still unknown.

~ Asymptotic condition to O(f) The asymptotic condition of the commutative
theory can be extended to first order in 6 as well. We can define the matter field
J# to be what the covariant derivative of the field strength D, x F'*” equals to in
Eq 4.10 such that at O(#°), J* reduces to the matter field (Eq 2.6) defined for

the commutative case:
J¢ = de [D*,4). (5.21)
= eta(easc D dc 66) — etof {D*6(), {7} + O(6?)
We see that to first order in 6, the SU(2) component of J* depends on the
SU(2) fields as the commutative matter field does. (We now switch to the vector

notation for the SU(2) components of the fields as in section 2.2.1.) Thus, if we

again write ¢ in terms of a magnitude field A times a unit vector field b
¢ = (hw Y CORpACE )) <q3(0) 4o 4 qgwez))

where g?) depends as before on a ¥(f) function that captures its dependence on

the angle it makes with the z-axis (the commutative direction):

V1= (OO + ¥(O)) + 1) cos(x)
V1= W) + 10 + ¥(0) Psin(x)
T(0)O + L (B) + ¥ ()

o
Il

such that ¢ remains of unit length even with the O(fe?) correction, we would
obtain, by the same reasons as in the commutative case, the same asymptotic

condition:

JF=0 = DM x¢ = 0 => DF = O0;
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the same relation between the gauge field and QAS:
1 ~ ~ ~
Al = -0 p x ¢+ Mo,
e

and the same factorization of the SU(2) field strength into its magnitude f* and
the unit vector field ¢:

P = g = —%[@“a@xa""&)wﬂ ¢+ ("X — 8”aru] ¢

as in the commutative case, except now all the fields include O(fe?) corrections
on top of the O(e®) corrections. Thus, the non-commutative first order ansatz

Eq 5.18) can also be factorized in the asym tofic region:
(Eq ymp g
B = 4 [8kh + (e2ak + ezak(e)) h]

The equation for ¥ (6) would be modified to

(2a® + €?al®)) sind

r2

VxB = —Vx(({xxV¥) = =+x

For a system of two opposite charge monopoles separated in the commutative
direction by a large distance s (fig 3.2) (s much bigger than the characteristic ra-
dius of the monopoles) accelerating from rest towards each other, we can solve the
above equation with the respective signs and accelerations for the local magnetic

; field B (or the local ¥) to O(fe?) near each monopole:

. — =(0 —( 2 = 2 =(0 2 =(0 2
: ' BQ = B(e)+B(ee Lart""B(ee Zwm"'B(eepzzrt_{'B(eeh)om
: ) ~ 1, sinf
— ~%— +F162acos ! —0,=€%a o — 01€%a
Ty el 2 0n
costh é1162a(0) sin 6,
71 2 71

~

el —oddd  (522)

Ba = B4 B bt B+ B+ B,

& part ® hom

r cos 6 ~ 1 in 6
= +T—§ + Foela 2 _ 02—62asm 2+02625L'
T3 79 -2 o
.o @C080r 51, gsinby oo o ' '
+7ae’a —0y—€¢“a + o9€’a (5.23)
To 2 To
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The ansatz for each monopole then gives Vh near each monopole:
=0 —(. 2 — 62 — 062 -
Vhe - - [Bé) + B(GE ;Zﬁart + B(e %om + B(G pZLrt - 0-’162(1(9)]
626:(0) _+_ 625:(0)

1

—(d%c + €d¥c¢) +
Vhe = +[BY + BS hurt + BY hom + BE e + 0he?a®|
e2a® + €2g®)

T2

+(2d0¢ + 2a%¢) —

Now, as in the commutative theory, since the solution of the system is in terms
of the functions ¥ and h, and the equations for these functions are linear, we can
write down the global solution fqr ¥ and A simply by adding the solutions near
the monopoles but also applying the exchange pri;lciple that the undetermined
homogeneous terms be.determined by the expansion of the fields of the opposite

monopole and not appear in the global solution:

Voobat = (Yo — Yo hom) + (Vg — \I/e_ hom) + const

hgovat = (he — hg hom) + (he — ho hom) + const

The construction of these global solutions implies that the global magnetic and
Vh fields are also the sum of the fields néar each monopole without the homoge-

neous terms:

g

Bgiobar = (Be - ge hom) + (E@ - Eea hom.)

Vhgosa = (Vhe— Vhg hom) + (Vhe — Vhg hom)

We now determine the O(6) constant homogeneous terms and the acceleration
by requiring these global fields to reduce to the ones near the monopoles (Eq 5.22, .
Eq 5.23). Asin the commutative case, this amounts to equating the undetermined

terms at one monopole to terms from the multipole expansion of the static B and

Vh fields of the other monopole.
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/

Speciﬁcally, near the © monopole, we need ito expand the terms in the global:
magnetic field that originates from the opposite & monopole and is of a higher
order than O(e?). Now, although the particular solutions, Bépzrt and Bg;;lt,
are of at least O(e®) when expanded, they should be time-retarded as argued in
section 3.1.2 and should not affect the © monopole at the initial instant. Also,
there is no relatioﬁship between the different small parameters 8 and € and we
cannot compare the order O(fe?) with O(e?). Therefore, at first order in 0; the
only term to expand would be the O(f) correction of the magnetic field from:
the @ monopole, which is zero. This, then, determines the unknown O(f¢?)
approximately uniform magnetic field near the & monopole, —ce2d®, to be
Zero.

For Vhgpa, because the monopoles are accelerating in opposite directions,
the terms (€2a@® + €2@®)c from both monopole cancel and the expansion of the
O(0€®) Vh term of the @ monopole, which is zero, is to give rise to o} 2d® (o} —c)

near the © monopole. Explicitly,

C . = o2
thlobal = _(B(O) + B(e part) (B BE(B Lart)
5 (6e? Oe
_B(e pert + BE(B p217‘t’
1 1
+(e23® + g (= - =)
1 T2

where the first line are the O(#°) terms, and the last line would be irrelevant
since it is of O(€®) when expanded near either monopole. Again, the radiative

terms B(e part and B¢ do not participate in the matching.

&3] part
Near © monopole then, to O(e?), the condition for the global VA field to

reduce to Vhg is

ol ed®)

—e2d%c = 0
We already know o}e2d® = 0, therefore €23 ¢ = 0.

107



Chapter 5 First Order Force between Two Non-commutative Monopoles

As in the commutative case, this matching procedure can be interpreted’ as
applying a force law, which is the constant part of the factorzied first order ansatz

(Eq 5.22), to the monopoles:

BY = —thi)t—ezd(o)c

ext

where the external fields near one monopole are the far field limit of the fields
produced by the other monopole (the exchange principle), except in this case,
the force law is accurate up to O(fe?). Since both monopoles produce no non-

vanishing O(6) fields, the O(6) external fields on both monopoles are zero, and

the force correction to this order is zero.




Chapter 6

Preliminary investigation of the

Manton Method to (9(92)

As shown before by the non-trivial O(6?) corrections to the stress-energy tensor
(Eq 5.14), the non-local property of the star product starts to affect the dynamics
of a non-commutative gauge theory at O(6?). In fact, these effects render most
of the simplifications in and the interpretation of the commutative calculation
(ch 3))not valid here. Our objective, then, is to employ only the general scheme
of finding the local solution near an accelerating monopole and the global solution
valid in between the two monopoles, and equating these solutions in a region both
decribe, in order to determine the force between two monopoles up to O(6?). This
chapter reports on our preliminary efforts towards this goal.

We will look at the non-commutative first order ansatz to show which local
fields need to be calculated, show a sample calculation of such field, and will

conclude by discussing the difficulties in finding the global solutions.
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6.1 The SU(2) Component of the First Order

Ansatz

Because the O(6?) U(1) sector of the first order ansatz for an accelerating non-

commutative monopole (Eq 5.19) has no dependence on the O(6?) correction to

the acceleration €2a(®"), the local O(6?) SU(2) fields are the ones to be matched

with the corrésponding global solution to determine this acceleration correction

and they satisfy the SU(2) component of the first order ansatz expanded to (’)(0‘2):

+ (8’¢a + eaneAbpe) + €7409 AE 4~k Al AR

= +(e2a¥? + ezak(az))gba
1

S (A0} + e {‘{Ai’A’Z}})

£2 ({4500} + {4}, 6a)) — 367 {4, AL} + O)

where the fields are expanded up to O(62%€%) with vanishing O(f) terms:

Ak — A Ak(e +Ak (8€?) +Ak (6?) +Ak (6%€?)

¢ = O 4+ ¢ 1 g0 4 4 +¢

022

b

Note that in this equation,

1. the O(#?%) and O(#%¢?) fields are on only the LHS;

(6.1)

2. the last two lines are non-zero only at O(6?) or above because the O(6°)

U(1) fields are chosen to vanish;

3. at‘0(02), there is no dependence on the O(fe?) fields, because the terms
with these fields also involve the SU(2) O(6) fields which vanish as explained

in section 4.3;

4. there is dependence on all the lower order-O(e?)), O(6)) and O(fe?)-U(1)

fields and on the O(6°) and O(6?) SU(2) fields.
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Therefore, before we look for the local O(#?) SU(2) solution, we need to first
solve for the local O(f) U(1) fields.

6.2 Calculation of the Local U(1) Solution

These local fields may also help in finding the O(6) global solution, ds the local
fields do in the commutative case, and this global solution may in turn be needed
| in the determination of the global O(6?) SU(2) solution, to which the local SU(2)
solution is to be matched. However, we have found no way in building the global
solution from the local ones and will discuss the problem of doing it in sec 6.3.
The local O(6) U(1) fields involves both the static solution and its O(8e?)
correction which is due to the O(6°) acceleration of the monopole. The static
solution has been solved [26] [8]. We follow method used by Hata et al [8] [9]

* and calculate the O(fe€*) correction.

6.2.1 U(1) static Monopole Solution

The U(1) component of the equation for a static ©/@ monopole is obtained by
expanding the ansatz (Eq 5.19) to O(6€%): }
PO 1 L (40 40} = 5 (990 + L {a0,00)) 62

(Note that the U(1) ansatz can see the acceleration indirectly fhrough its depen-
dence on the SU(2) fields.)

O(#) U(1) solution for the © monopole

We first look at the © case first and will argue that the solution for the &
monopole is the same.
The equation above is a first order linear differential equation with inhomonogenous

terms depending on the O(6°) SU(2) fields, whose exact solutions in terms of the
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W (r) and F(r) functions (Eq 2.11 and Eq 2.12) will be used following Hata et
al [8]. Also, we now generalize the non-commutativity parameter § back to the
* original form 6% such that symmetry in the choice of the commutative direction
can help in determining the form of the solution. The inhomogeneous terms are

explicitly

(A ¢} = 6,50, (ei (r)) 9 (%F(r))

Te Ty

£ 11,74 50, A Zq z T
= gef <€aw + 6cnc ‘W= — €aicTe 3 ) <_fF * _F,_f B _F_;c)
T T T r r T T

WF W'F WEF' WEF
= ewfeef -+ ewfxeﬁfc:cc — 3 — 3 + 2 A
WF 10 [ WF |
= ezefgef + Gzefxeefcxc E (- 3 > V (63)

and

€ijk {AJ Ak}
.

= eijkeefae(Gajc?W(";)) Oy <€akd%w(7))

' w T w 4. ., T T
= €u0es (eaje . + ea]c—W’ eajcxc—§W> <6akf7 + €akd7W’Tf - Gajdl'd;siw>

WW ww _WW

= Ciesles — 3 EiesTelsede - o,

‘ WW 10 ww

= Eiefe 7‘2 5 <_ 7’2 > . (64)

These respect two symmetries:

1. A generalized rotation that rotates both the coordinates z*¥ and the non-
commutative vector parameter 6%, which is defined as §* = 1¢#67* and

points in the commutative direction;
2. space inversion

The generalized rotation symmetry is intuitive. Suppose 6* points in the +z

. direction. If we rotate the coordinate system by an angle a about the +y axis,

112




Chapter 6 Preliminary investigation of the Manton Method to O(6?)

and at the same time we rotate the vector #* in the same way, 6% would still
point in the +z direction after the rotation. In fact, this is a symmetry of the
equations of motion, and so the solution to it should be tensors with respect to

this rotation. To O(#)), the only independent tensors are

rank 0: @zt
rank 1: 6% (6iz')z*, e*gigi
since others can be written as linear combinations of these using the following

identity:
ijk(src - 6cjk:(srb + €bc'lcfsjr + fbjcékr (65)

Since the inhomogeneous terms (Eq 6.4 and Eq 6.3) satisfy space inversion sym-
metry, the terms 8¢, and eijkaj‘A’; a,lsjo need to be unchanged under spatial
inversion. Now, the derivative operator changes sign when space is inversed, so
the fields also need to change sign, i.e., be odd under this discrete symmetry.

Then, for the O(8) U(1) static equation, expanded below:

4r2 272

rOr

o : WW FW 10 WW FW
Gz]ka]A§(0)+al¢(()0) = eiefOef (- — )*}‘Giefxeefcxc‘—_( - )

The particular solution is given in terms of the odd tensor structures:

AN = A(r)éTReizh = A(r)6Ya

¢((f) = B(r)20ixi = B(r)e7* g7z

l

such that their derivatives in Eq 6.2 are even tensor structures:

F0 = B(r)ée + it B/ (r) =

r

Ez]kajAg(G) — e”kﬁk’A(r)—+—e”k0kba:bA’(r)x—
r
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We rewrite the tensor structure €9%§7*z!z* in terms of the ones in the inho-

mogeneous terms:
ez]kxyekbxb — E(E]klejkxlxz _ ,,,2ez]k0]k)

to obtain the following ordinary differential equations in r for the coefficients of

- both tensor structures:

L 1F 1w
kgt . _A4+ B+rB + = W+— W=0
2 2 4 r2 .
1. . 1 /FW\' 1 /wwy
= i3k, gpnkb b ! L I =
Te ’6%z® : A"+ 2B 2<r2> 4<r2> 0

The particular solution of these equations are simple:

_1FW  1WW

B(r)=0 ; A(r)—§ = +Z o

We now show that the homogeneous solution is trivial. Assume Ap,, and

Biom to be polynomials in 1:

such that
ikgik i —An+B,+nB,=0 foralln

1 ... . )
—eiikgightet . A, + 2B, =0 ‘for all n#£0:
r

Combining these:

foralln%O: B,(2+14+n) = 0

Then By, is only non-zero for n = —3 or 0 and Aoy, is given in terms of it:
B_3; forn=-3 —2B_3 forn=-3
B,=4¢ By, forn=20 , A =14 By forn=20
0 otherwise | 0 otherwise
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But the homogeneous solution with these coefficients is not admissble: the terms
with B_3 is proportional toAr‘2 and blows up at the origin;'while those with By
‘become infinite as r — oo. | '

So the U(1) static © monopole is simply the particular solution:

W@ s (LFW  1WW
A7 = (5 72 4 72

8 =0

Aside Recall from section 4.3.1 that the O(8) U(1) field strength has no gauge
freedom apart from that for the O(6°) SU(2) fields. This implies the combination
89 AK® _ gk 47 3150 has no gauge freedom. We can then interpret the solution
as a Maxwell gauge field that defines a “magnetic” field B = epsilon'/*9 Ag(e)
and note that this magnetic field has a dipole term and a 1/r* term that does
not have the quadrupole angular dependence, which is due to the non-lc;calized

source for this “Maxwell” gauge field.

O(#) U(1) solutions for the & monopole

For the & monopole, we avoid solving the equation again by writing the inhomo-
geneous terms in terms of the ones for the © monopole. We already know how

é(o) and A*® in the asymptotic region change when the monopole changes sign:

( Pe1
bo = I
\ —es
[ (9e)(~os) — (~Fdoz)des AL,
AEB =0'de x Pp = (= 6%93)&’@ - (aiﬁgel)(*qgeﬁ = | - AL,
\ (0do1)doz — (0don)den Abs
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This leads to the sign change of one of the inhomogeneous terms: |

~AgY 661
{40,600} = oo | —aQ | - o' | 48 | = —{4&) 68}
A3 A\ e
A Ak
{ Aé(g)’ Ag(g)} — gfoe | Aje(g) YA A’;(;” _ +{ Agg)j Ag(g>}
| a2 4

In the asymptotic region then, the equation for the & monopole is the same
as for the © monopole except the term +8i¢((]9) has changed sign:

ry A9+ Lo [0 a0) = gl L {410 40}

However, d)(eo()) was zero, therefore the pgrticular solution for the @ monopole is just
the same as the © one in the asymptotic .region. Now, because of the simﬂarity of
the equations for the two different monopoles, we can deduce that the solutions
are also the same at the monopole core, i.e.:

i€ _ i (LFW 1WW
Ago = 0727 (5 T2 +Z 72

85 = 0

The hbmogeneous solution vanishes for the same reasons as before. Therefore,
although the oppositely charged monopoles have different O(6°) SU(2) fields, they
have the same O(6) U(1) corrections. |

6.2.2 U(1) perturbed monopole

We now calculate by the same procedure as above how the U(1) fields change

locally when a monopole is accelerating. As in the commutative case, we include
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the homogeneous solution with undetermined coefficients, for potentially absorb-
ing expanded terms from the global solution such that the global solution would
reduce to the local one near each monopole.

The equation to be solved now takes into account the accelerating O(6°) SU(2)

fields as well:
kg k0 Lk [ i@ @\ _ i 02 L[ ey o\ L[ Ai0) 4@
e a0 4 St {41, 4O = 5 (59 + S { AL, 60} + 5 {410, 60D}

where ¢§fz) and Afl(ez) are given in terms of the commutative solutions R and
¥ by Eq 6.8, Eq 6.9, and Eq 6.13.

The following section is the explicit calculation of the O(6€?) corrections, o)
and Ai(aez), to the U(1) fields for an accelerating non-commutative monopole. The

result is given in Eq 6.19 and Eq 6.20.

Calculation of the Inhomogeneous terms

As in the static case, we can use the invariance under the generalized rotation,
in which both the coordinates and the non-commutative vector §° is rotated, to
find the form of the solutions. We do this by writing both the inhomogeneous
terms and the solution in tensor structures built from 6% and «*. We will now
show the explicit calculation of the inhomogenous terms, which involves mostly
tensor multiplication, derivative and reWriting. The results are shown in Eq 6.11,

Eq 6.12, Eq 6.15, Eq 6.16, Eq 6.17, and Eq 6.18.

Notation We will use the following notation:

g° = %eajkejk T 6ajl'cea :.ejk

02 — 01’91’ — %gabeab

6z = 6°z* = %eajkBjkm“




Chapter 6 Preliminary investigation of the Manton Method to O(6?)

Calculation of {AZ(O), ((fz)} We will again first calculate this term for the ©
monopole and obtain the result for the @ monopole by sign change arguments.
This term is explicitly the contraction of the first derivatives of the commu-
tative SU(2) solution withe non-commutative paraméter: |
_;_ { 410 ¢g¥)} — %gef 9° AL pf 4
where 410 = em-c::—: ; o) = O g, + 6 PO
The field qS((fz) is still needs to be written the tensor structure form as follow.

For both © and & monopole,

VR
Vg €08 X
3 o= EL A
dp = — =gz sinx

0w

where W = cosf for the © one and according to Eq 3.16 and Eq 3.17,

ac  €%aoy
Wy = — — 2 2
© (2r 2r >($+y)

Then, §¢ can be written as the following using 6% /6:

—zz
- e2ac  €aoy o 1 1 /1 1
: — -7 _ = —¢, c9 — =2 T2
o6 < 2% . 9 > Yy 06 b bkkacr2 <26 ar 26 a017(76)7)
22 + o2
such that one of the terms in gb((fz) looks like this:
o 1 11 1 AN
hg 6bgs = geabcﬁbkmk:pcﬁ <—2—62ar - 562(10'7‘2> (c - ;) (6.8)

The other term involves dhg, which can be easily written in tensor form:

- 1 1 1
ohg $ea = »—Eabcebkxkxc-g (—-Gza - eza(a - c)r)
0 | r 2
1 1 /1, , 2 3 La
+ Z_GEabcebcr_z (56 ar® + ealoc —c)r° | + le (6.9)
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Next, we need to calculate the derivatives of both terms in qﬁ((fz) . For the first

term:

A 1, 1 /1 1 1
8f(h5¢a) = = (€apcbbsec + €avsborni) ps (Eezar — —2—e2aar2> (c - ;)

6

1 1 (1 1
+€avclorTrze | s€%a — €aor? Tife- =

¢ T2\ 2 7" r
+§€abc0bkxkxcv<§€2‘a7' - 562a0r2> < rixf + :;f)

We eliminate the tensor structures that are not linearly indépendent of the others

using the following identities, which are variations of the identity 6.5:

eabcebfxc = equepaxq‘ + 26fabebkxk
€Ok THTTf = —€sbclckThTHTq + €avfOpri’
such that
. 1 1 /1 1, 1
N (hég,) = 7 (gquepaa:q) ) <§ezar — g€ aor ) (c - ;)

1 2 (1 1 1
+§€fabebkl'kr—2 <§ezar - —2—e2a0r2> (c — ;)

1 2( leac  1€2ao 62a>
= Sy

Tgerafuti |~y T T
1

gffbcebkxkxcxa <+§ 3 +2 3 e

le2ac  1€%aoy e2a)

Similarly, we take the derivative of the other term in-gb,(f?) and use the abové

identities,

; 1 | le2a  €%alo; —c¢
af(5h¢a’) = g[ﬁquepal‘q + 2€fab9bkxk] <+§r—2 — (+).)
1 » : e2a  €*a(oy —c
+5[_€fbc0ck$k$bl'a + fabfebkxk'f‘z] (7‘_4 __L7%_2>

1e2a(o; — ¢
: +[€quepaxq + 2€fab9bk$k] (5—(—:——)>

+ky <5a—f — maxf)

T 73
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Finally, we add these two terms and obtain the following for the derivative of

2
L€ tpq0pay (—%62(1010 — 1daoy | Sefac 5722‘1) call the bracket A
1le @ g, (L€ _ lclac ’ call the bracket B
’ 6“fra”pq 2 r 2 r
o' (6¢) = + %€ fappgTq (—ezaalc + %62%1 + %Ezfc) call the bracket C
2

1 1 {__le“ao 3 efac
+5€1pgTplgrTrTa s < 5+ 5

dq TaZs
~+ky (—f' - ?L)

) call the bracket D

r

The derivative of the field that is present even when the monopole is not
accelerating is much more readily obtained:

A0 — o L 28T
a = fazerz €aic "

We can now combine the two derivatives to find the inhomogeneous term

- itself:

e i 62 2 A
Ocs O Aa(o) af‘b((z ) = %Hef €aie €fpglpaly TA2 - ggef (€aicTcTe) €fpgOpaTy vy
+19€f €aie €fpgbpgTa % — ~Ocf (€aicTeTe) €5pgBpgTa =7
7 0 i
‘ C
+%eef €aie €fapllpgTq 'r% - geef (€aicTeTe) €fapbpgTy Y

' 2 D

+30ef €qic €fpgTplyrTrTa r% — =0 (€qicTee) €fpgTplor®rTa —

6 0 r6

: 8, o 2 bo Tal
30 e (8 = ) = 200 (o) b 2 - )
' (6.10)

We will label the left column I and the right one II and refer to the terms by its |
coefficient and the column label (e.g. the very first term is AI).

This expression looks long but in fact many of its terms vanish identically:

1. BI and BII vanish since

Ocs €rpalpg = 2(ebesbfy) = 0
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2. CII vanishes since’

Oct (CaicTeTe) €faplpgTqy = OesTsTebigTq — OciTcebeqTy =0

3. DII vanishes sin_ce

Ocs (€aicTcTe)Tq €fpgTplgrTr =0

We can disregard the terms kI and kII which are proportional to 1/r® because it
is subleading to the other terms in the far field limit.

The non-vanishing tensor structures are not independent of each other, but
can be rewritten using identities derived from Eq 6.5 in terms of the three iﬁde—
pendent ones,(0z)0;, #%z;, and (6z)2z;. The details are as follow.

The terms in column one are proportional to €4, 0, s which satisfies the identity:
€aiclef = €aic€esply = Oapbi — 04iba

Using this, we rewrite AI, CI and DI respectively as

AI: %Gef Caie €fpadpals ;42_ = =20~ ei”qe’quea)%
= %(—20m0i — €ipg (€bpaby) quG)%
= %(;29:001- — (Bizob, — eqxqei))rilz
= —g 0z 6, %;

CI - %96 7 €aie € faplpgy 7% = %(eaapeigpqxq — €iaplabpgq) 2
- %(—Eiapea(qubeb)xq) 2
_ %(—eﬁaazi + 6a6:24) f—g
- %(exei — 0%z,) T—C;;

DI: %Qéf €aie €.qu$p9qr$r$a‘7‘24 - —;(r29$6i ~ (62)’z:) '%;
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Chapter 6 Preliminary investigation of the Manton Method to O(6?)

Similarly, we can rewrite AlL: | -

2 ' A 2
AIT : — geef €gicZcTe € fpgPpaly 4 = 5(7“20:10& — (Qx)zxi) g

The inhomogeneous terms for the © monopole is simply the sum of the above:

1 ., 2 1 e2aoc eac
Z 1 A0 gle )} = —0z6; | — 1% 19
2{ a9 2" T2 + r3
' 1 eacic  letao; 1é€ac
—(8)%z; -z —Z
+2(9( )’ ( 72 2 73 2 r )
1 , 1 [(€®aoic  3e€*ao; 9efac) -
il = ° _2 11
+29(9x) Tiy ( = + 5 3 5 73 (6.11)

For the & monopole, the O(0%?) SU(2) fields are different and all of the expre-
sions hg)dg%@, ((5h@)¢3$) and Agg cannot be written in terms of tensor structures
contructed using 6% and the coordinates. This is because these vectors have only
their the first two components different from those for the © monopole, which

are the tensors. To illustrate, since ¥g = —cos 8
j% cos X xz —zz

(5(}3@ = _j%sinx 0.6 Yz - while (SQBGOC —YZz

o z? + 3 z? + y?

and

Tz , —zz
(bhe)de o yz while (Shg)de o —yz
2+ ¢? 2?4 g2
Luckily, as in the static case, since the O(e%0°) gauge field, also has a relative

sign change from the © monopole field in the first two components, and the entire

term, that concerns the dot product of the (SU2) vectors 8(;55,62) and 9AY, and
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still be can be still be written in tensor form:

2 2

1 i(0) () 1 €“aoyC €“ac
§{Aa€9 ,‘Qsaea} = %95591 + 2 +2 3

1 e2aoyc ' 1€2a0,  1é€2ac
—(0)%z; | — Z i
+29()$< 2 38 2
1 [ €acsc  3€%aoy,  9eac
r2 2 73 2 r3

) (612

Calculation for {AZ(Ez), 1(10)}

The second inhomogeneous is calculated in the same way but involves the O(e?)

correction to the SU(2) gauge field:

_1_{ ) ¢<0)} = L ger ge g o140
2 a ) a 2 a a
where Afz(ez) : 6abcaiégzﬂsbq’gc + eabcai(ib(sé;c

qASgO) = La for & monopole
r

We first need to write Afz(ez) in terms of the independent tensor structures

Al 1 1,1 1 zo
A = Eeabc(eb”qepmq + €pilpgy) (56%; - §€2a01> r
1 1, 1)\ z
+§Eabc(ebpq9prxr$q)$i <_§62ar_3> -
1 (Sib Tpl; 1 1 1 :
- Eeabc <T RE ) (ﬁcpqep’“xrmq) (552(1; - —2—62.a01>

1 1 1 1 1
= E(ﬂfieab$b + 2ma9ibxb + T29ai) (—iezaﬁ + 562(10'1 ;) , (613)

We then take the derivatives of the this and the scalar field d)éo) and multiply
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these to obtain ¢f ¢ A af ¢(0

| 1 1 1
FAyey = €2a—+—62a01—>

1
(&eeabl'b + eaexz + 2(6aeeszb + maeze)) (._5 . 5 -

: 1 1 1
(xieabl'bl'e -+ 2$a9ibxbme) (62(],—';1 — 562&017@_3)

891)1(1) = 5af<;—r—2>+¢a$f(—r—3+ﬁ>

' 1 1 1 1 c 1
931’ aeAz(ez) 8f¢((10) = (ezfeebl'b + Befoemz + 20€f91emf) < 5620';3 + ‘2‘62a0'1;> (; _ r_2> |
1 1 1 c 1
HOeszi0 T, (6211;; - §e2aalr—3> - r_z)

1 1 c 1
+0, 50z, <562a01;> (; - r_2>
1 1 1 1

Finally, we use the identity:

gifoftet = (02)6° — 62

(6.14)
to obtain the result for the © in terms of the three independent tensors:

1 i(e2 e2aa c
2+ Al(f) (0)} — = 1

1 €2aoic  1€%ao;

—(6)2z; | — _Z

+20()x( 2 27~3>
1 1 e2aoic 3 €%ao
29(093) Tig <~ = t573 ) (§.15)

We use the sign change argument again to obtain the following expression for
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the @& monopole:

1 i) (0)} 1 €2ao,c

1 aoyc 1 ez:aaz
—(0)2z; Z
+29( )’z (+ r2 +2 r3

0%z, — ! +€2CLO'QC - §e2a01 ‘ 6.16
r2

20

It is important that the leading order terms (~ 1/s) in the expansion of

r2 2 73

this inhomogeneous term cancels with the leading order terms in {Af)(o), ((fz)}.
This causes the U(1) O(f) solution to not change its leading order assymptotic
behaviour, i.e., the dipole term in the U(1) static solution is not corrected when
the monopole starts accelerating.
Result for e/ {Ag(ez), A’g("’}
Similar calculation as above gives the final inh’omogeneous term for the © monopole:
1 2 1 e2a0
z]k A] ) Ak(o } — 0 9 1
¢ { ae 20 "\ T2 8
1 1 €%a0;
—(6Y?z. | -2
+29() < 2 7l )

2
20(9910) x;1-2— <36 aal) (6.17)

r3

For the © monopole, the expression is the same with o} replaced by o:
Loiik [ i) 4k(0) | 16 aoy

+(0)%z; (—16 aaz)

2 73

2
—i—('9a:)2xirl2 (36 a‘”)  (6.18)

r3
The particular solution

Adding up the inhomogeneous terms and substituting in the values o;€e?a = 1/,

ose?a = —1/s? and e2ac = 2/s?, we obtain the equations for the U(1) corrections

125




Chapter 6 Preliminary investigation of the Manton Method to O(6?)

near each monopole in the two monopole system in fig 3.2:

i (€0 ijk a5 Ak(ed 1 7 ! _5 3
:i:8 ¢(() )_l_e]kaJAg( ) — —+—59.’L'91 (q:m) +‘9‘(9)2.T1 <:t4827'3>

1,1 3
+—9-(9:1:) T2 <i252r3>

where the signs on top are for the solution near the © monopole, the one below

for the &

Now, the solution contains a factor €2a® such that it is of O(fe*), and since
e2a® is odd under'space inversions, the other factor of theisolution, the tensor
structure part, needs to be even such that the solution would be odd, as required

by the equation. The proposed form of solution is then:

AB(EO) = A(T) 62(1(0) ﬁ(ﬁm)%x]

P = qﬁ(r) e2a® %62 + (,232(’/')620,(0)%(9:17)2
and the eqﬁations for the coefficient of the different tensors are:
1(19:1:)91- . 2¢, —TA'—3A = QZL
6 v 45273
%923:,- : :t%gﬁ'l +A = 4537‘3
%(9:1:)2:@ oodrdhy +rA 2327*3

The particular solutions for the ©/@ monopole then has the following coeffi-

cients:

7 | 7 3
Fyor ¢2(7‘):—W , A(r) ==+

hilr) = - T 8s?r3
(where the top sign is for ©)

The O(#) U(1) fields without the undetermined hombgeneous terms near each .

monopole in a system of two non-commutative monopoles are then:

AO@/@ = Yz’ (57‘_3 -+ Z—’Iz + 5(01:)91]1:] :t&STT:; (619)
@) _'L l 2 7 V
Poole = O+0< 832_r> + 9(955) < 3527 (6.20)
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Notice that the U(1) ¢ field becomes non-zero when the monopole starts to
accelerate; it vanishes for the single static monopole.

Also, the particular solution does not change the asymptotic behaviour of
the U(1) fields. In the region near the axis of the commutative direction (such
that the vector from the monopole center to a pbint in this region makes a small
angle with the axis of the commutative direction), as r becomes comparable to .
s; the static term of the gauge field is of the order 573, but the particular term
contributes only at the next order, s™*. This means that the particular solution

may not be relevant in the deciding the acceleration, as in the commutative case.

The homogeneous solution

As in the commutative case, .the undeterrhined homogeneous term is included to
take into account the presence of the opposite monopole in the global solution.
We have not found the global solution and do not exactly know which of the
homogeneous solutions are relevant in the determination of the acceleration. But
all of these solutions are well-known, so we will list them below.

Removing the inhomogeneous terms from the O(6) U(1) component of the

first order ansatz (Eq 5.19) gives the Laplace equation for the U(1) component
of ¢:
+ 8i¢(()59) — eijk 8jA§(€9)
= £ 80y = = 0
With only the cylindrical symmetry, the solution is given by any linear com-

bination of some polynomial of r multiplied by a Legendre Polynomial of cos 6 of

some order [, P(cos§):

P B
l()9) = ¥ (A'rl —+ m) B(COS 0)
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For each order 1, the ¢(()eo) solution can be written in terms of the tensor
structures, with the vector 6* being the axis of the cylindrical symmetry. Then,
the homogeneous solution of the gaﬁge field Af)(eo) can be written in tensor form
interms of d)ffo). The important point is that _Af)(ee) and gbffo) are related differently
for different charge monopoles, and this may help in giving enough matching

conditions to determine the acceleration.

6.3 Problems to be Solved: the Global Soluf
tions |

(Notation: in this section, O(6™) represents both orders O(6™) and O(6"¢?))

To determine the acceleration between two monopoles using Manton’s idea,
we still need the 0(6?) local SU(2) solution (solution to Eq 6.1), and the global
. SU(2) solution, which depends on the global (’)(9) U(1) solution. The local SU(2)
solution can be obtained by a calculation similar to the one for the local U(1)
solution with no furthur difficulty. Instead of proceeding with the calculation, we
now discuss the predictable problems in finding both the global O(6) U(1) and
the global O(6?) SU(2) solutions.

U(1) sector We immediately notice that the O(8) U(1) equation is linear in
¢>(()Q) and A’g(o) and an equation for the linear combinations (d)(()oe) —¢§,‘g) and (Agg )+
Agg )) which involve the local fields at both monopoles can be obtained easily by

summing the local equations:
1

0 (48 + A + 0 (¢ - 1) = -7 {4, A} - e {4, 4D}
’ 1y i (o 1 i) o
_5 {Aa(e),ﬁbgeg} +§{Aa(®)1 516;}
However, these linear combinations cannot be the global U(1) solutions. While

- global U(1) soluttions need to satisfy the second order differential equations of
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motion (Eq 4.8) which depends on the O(6°) global SU(2) fields, the above linear
combinations depend on some combination which is dictated by the star product
of the local O(6°) SU(2) fields and cannot be easily rewritten in terms of the 06
global SU(2) fields. This non-ability to find the O(6°) U(1) global solution by
superimposing the local equations is due to the dependence of the U(1) equation
on the non-linear SU(2) fields.

We note as well that the tensor structure method used for finding the local
solutions cannot be used for any equation involving the O(8°) global SU(2) fields
simply because these fields cannot be put into the form of a tensor structure. For
example, the first two components of ¢£10)global contains a square root of the sum

of two terms both with coordinate dependence:

2
\/1— [ff—fg-—l+(’)(ez)] cos X

o R
¢((1 )global = hgiobaiPa global = hiiobal(T1,72) \/1 _ [a _z )4 @(62)]2 cos

r1 r2

4 -2_-140()

T
Unlike the local solutons, since the terms.inside the square root, % and %, are
both large and depehd on different coordinates, the square root cannot be ex-

panded as tensor structures involving polynomials of the coordinates.

SU(2) sector  Suppose we solved the U(1) componeﬁt of the second order dif-
ferential equation of motion for the global @(#) U(1) fields. Can we do anything
other than solving the SU(2) second order equation of motion (Eq 4.12) to find
the global @(#%) SU(2) solution? We have already shown that the SU(2) com-
‘ponent of the first order ansatz is non-linear, and so simply adding the SU(2)
components of the ansatzes for the two monopoles will not give an equation for
the global SU(2) fields. Can we extend Manton’s way of finding the global solu-
tion through factorizing the SU(2) field strength and isolating pafameters that

satisfy linear equations such that the global solution of these parameters can be
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found by superposition? The following crude investigation shows that factoriziﬁg
the SU(2) field strength to O(6?) does not give a linear eqﬁation for the O(6?)
correction to the parameter ¥ (Eq 3.11) and that as in the U(1) sector, combi-
nations of the ansatzes as candidates for the global equation most likely does not
involve the lower order global fields and so is most likely inconsistent with the
global second order equation of motion which does.

Firsf, in this sector, the .star prodiict modifies the SU(2) component of both
the field strength tensor and the asymptotic condition from the commutative case.
This rendors Manton’s way of finding the global solution not \}alid at O(6?). |

As shown in Eq 5.1, the SU(2) component of the field strength up to O(6?)
includes the “normal” commutative‘debendence on the “full” gauge field ( A* =
AHO A“(G) + A“(ez)),}but also extra terms originating from the expansion of
the star product that depend only on the lower order fields.

Furthurmore, the relation between the gauge field A* and the scalar field ¢
in the asymptotic region is also changed from the commutative case because the
asymptotic condition, that the matter field J* (Eq 5.21) vanishes, also has extra

terms due to the star product:
_ 4 ; 02
T = etaue (¢§02’(D“¢£°>) + o (Do) = = {4, (D"¢£°’)}}>
—etad ({ D260, 0} + { D4}, 6" })

where all fields have corrections due to the acceleration when the monopole is
accelerated, and terms with the O(9°) U(1) fields and the O(f) SU(2) fields
have been omitted. According to this expression, when we factorize the SU(2)

components (in vector forrﬁ) of ¢:
¢ = (hm) " h(fﬂ)) <(;,(0) n ¢3<eZ>) 130 £ @) .= 1

and write the zeroth order term of the SU(2) gauge field using the O(6°) asymp-
totic condition, A#® = 343 x $© the relation between the full SU(2) gauge
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field A} and the the full SU(2) scalar field ¢, on top of the terms which are just
the linear fluctuation of the relation J* = ¢ x D*¢ that is satisfied in the com-
mutative case (written in the first two lines of the next expression), involves an

extra combination of many different vectors given in terms of (i(o) and its partial
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spatial derivatives: |
Jﬂ(ez) = (h(0)2|$(0)|2> AHED) _ (h(0)2Au(02) . J)(O)) g5(0) + (h(o)z) d")(g) y (9“@3(02)
| <h<° RO — 2500 qg(oz)) 30 « 4O

——————— above is the linear fluctuation of (g?) X D"(;AS> —_———— - — =

+ 6% (20,3204 h® — 2021®5,0°h©) ) 5,60 x $O

162 [ — 0,h9,0,0°h + 8,0,hV5,°h®] 5, x O
1 6> (20,h0320"h® — 202h©3,6°h ) 3O x 8,4

+ 62 [ = 0:h0,8,8"h® + 8,0:h8,0*h "] 30 x 9,®)
4 62 (RO §20rRO) — azh(o-)auh(())) 826 x $(© ‘
+ 62 (=hO 328"h © 4 32 3uh(0)) 3%65(0) x QS(O)

+ 6% (4 + [1)31h0 5,0 — (4 + [1])8,h08,8*RO) 8,6 x 8,9

+ 62 (20, RV 3#R®) — 2h®) 3, 9#h° ) 86 x 92
+ 6 [0,0,R 0 0*R© — h(08,0,0"h ] 8,0, x ¢©

+ 6 D5h© + h©5,8*h®] 8O x 8,8,

(
(-
((
+ 6% (—20,h @K + 20 8,8"h") 579 x 5,4
(
[
o
+ 62 [+a1 hOo#R® — B©8,54h0] 5,0, x 8,91
+ 0 {0:0°h00,0" - 0,0*hV 014" | $©

10 {alaﬂqsg")am(") _ 828"¢§,9)61h(°)} 0
2 (1o [aus0) o 50 10} rol 4o
+ {50 {209 x 90,1060} a0} 5
2 dlg Laus0) o 50 1@ 50 ol o
9{282{8¢ x 3O BOF }(‘)31h é
+6{*h 08,40 - h00,00¢ | 0,4
e {132 {0940 x 30, n030) h(O)} 5,40
2 ()
0 {on00,0 - K006} 2,6

+g2{_1.31{3u¢3(0) < 40, K040 h(o>} 0,5
2 132 70
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Here, the dependence of the O(6?) fields are in the first two lines only.
Eliminating Ag("z) from the field strength with the above relation, we find that
the field strength is not simply the “original” O(6°) dependence on the entire é

(q3 = 0 4 ) plus corrections from the star product that are independent of
), ie.

FZW 7& | ginmutative(&) é + COTT*(QB(O)a h(O)’ ¢§)0)7 Ag(e))

but that even the terms with ¢ are not the @(6?) linear fluctuation of the

(6%)

original commutative form and has dependence on A'""/ unless we could use some

constraint to eliminate it as 8¢ - ¢ = 0 does in commutative case:

v v n i v (2 2 9 0 ~
+ Corr, (30, h©® ¢ 420 (6.21)

Flfl“”s change in the dependence on & renders the most important simplication

in the calculation in the commutative theory not valid here,the simplication being
the factorization of the SU(2) field strength and therefore of the first order ansatz
" into a magnitude and the unit vector &, such that the curl of the factorized ansatz
(Eq 3.13) gives a linear differential equation (Eq 3.14) for one component of é
and the factorized ansatz itself gives a linear differential equation (Eq 3.18) of
h, such that the global solutions could be obtained simply by solving the sum
of these linear equations for the two moﬁopoles. The global solution in the non-

commutative theory to O(#?) is not found in this “linear” way.

Factorization of the field strength to O(6%) We look at what would happen
if we still factorize the non—comrﬁutative SU(2) F# as an attempt to obtain the
global equations for the correction parameters; ¥(6)©*), T‘(X)(oz), the degrees of
freedom of ¢ (Eq 3.11), and R, Thére is’advantage if we succeed: the global

solution in the factorized form might allow us to use the SU(2) component of the
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factorized ansatz as a uniform external force law to determine the acceleration:

ext

o ", (2
,B,Ef;) = = (Dh(0)+e2d'(92)c>

where Dh is the magnitude of the SU(2) vector D¢ up to O(6?). Note, however,
that this force law is not *-gauge invariant since the length of the SU(2) com-
ponents of a field is not a *-gauge invariant quantity. We proceed to investigate
inspite of this problem. _ '

The SU(?) field strength would factorize as follow:

Y = A (2 mataine)? + [Corr (3@, hO) 2 4 [Cornaf2 (3 + 7))

commutative

and is not proportional to g13 anymore. The magnitude part has the following

problmes:

1. it depends on ¢(®") differently than f{ .iaive @nd so is most likely not

linear in U(®*); this ruins the property that the U(1) embedded field strength

is linear in ¥ as in commutative case;

2. it most likely involves more than one of the correction parameters (not just
¥ but maybe also h or T) unlike in the commutative case and so applying

the curl to it would not give a decoupled equation for any of the parameters

Therefore, the factorization of the field strength does not help in finding the
global SU(2) solutions in Manton’s way.
‘Finally, any global equations obtained from combining the factorized local

ansatz still involves only the local lower order fields, ég}e and A% which are

@/
hardly likely to combine into the lower order global fields ¢§7(l)())bal that appears in
the second order equation of motion, which is definitely a global equation.

In conclusion, we have not found any equation for the O(8) global U(1) and
- the O(6?) global SU(2) fields that is simpler than the second order equations of

motion, which is what the first order ansatz tries to simplify in the first place.
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6.4 Conclusion for the Non-Commutative Prob-
lem

We consider the perturbatively non-commutative U(2) gauge theory with a scalar
field in the adjoint representation, in which the space-time non-commutative pa-
rameter § defined by [z}, 2°] = 10 is small. We employ the star product formalism
such that the equations of motion can be,ex_panded in # and reduce to those in
the commutative theory in the limit § — 0. The U(2) gauge groupbmeans that
all fields have a component proportional to the identity matrix, called the U(1)
fields below, and three components proportional to the Pauli matrices, called the
SU(2) fields below.v The U(2) non-commutative monopole is defined to be the
SU(2) commutative monopole (with trivial O(#°) U(1) fields) with corrections
of O(f) and higher. Our original goal is to find the O(f) term in the force be-
“tween two noh-commutative monopoles, but finding that it is trivial, we start
investigating the problem at the O(6?).

We show that the O(8) force correction is zero in the following two ways.

1. We first derive the non-locally conserved stress-energy tensor for the theory
to show that at O(6), the tensor depends only on the SU(2) components ‘
of the O(0) corrections to the gauge field and scalar fields, both of which
can be set to zero because the time dependent equations of motion at this
order ére simply the linear fluctuation of the equations of the commutative
theory. This means that to this order, the total energy of any solutioﬁ of the
non-commutative theory does not change from the total energy of the O(6°)
solution to Whiph the non-commutaive solution reduce when # = 0. Since
the force between two non-commutative solitons separated by ény distance
s in any direction can be defined as the derivative of the total energy of |

the system with repect to the the separation distance, it is unchanged to
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this order from the force between two commutative solitons in the same
configuration. The force between two non-commutative monopoles is simply

‘a'particular case of this.

2. We derive the first order ansatz for a single non-commutative monopole
weakly and rigidly accelerating in the commutative direction by replacing
the ordinary product with the star product in Manton’s derivation fér the
commutative ansatz and by assuming an additional O(f¢?) correction to

the acceleration.

To O(6), only the SU(2) components of the non-commutative ansatz are
relevant to the determination of the force between the monopbles. We
expand both the fields and the star products in this SU(2) ansatz in 6rders
of 8, and find that to first order, it depends on the SU(2) components of
the gauge field and scalar field just as the commutative ansatz does on the
commutative SU(2) fields, but has a modified acceleration which includes

the extra O(#e?) correction.

Because of the definition of the star product, the SU(2) fields to O(6) (only)
can still be written as vectors in the SU(2) subspace of the U(2) gauge group
of the theory. When we factorize the SU(2) scalar field into its magnitude
and the unit vector ¢, we find that the asymptotic condition and the SU(2)
field strength have the same dependence on qAb as in the commutative case,
except that ¢ has @(6) corrections. Therefore the magnetic field obtained
from the SU(2) field strength still depends linearly on the third component
of ¢, ¥, which also has @(6) corrections. We can then factorize the SU(2)
ansatz and find that it remains linear in ¥, but is in terms of the modified

acceleration with the O(fe?) correction.

For the two monopole system, we can build the global SU(2) solutions again

by adding the solutions of the local ansatzes, and note that both the local
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@nd global solutions now include O(fe?) terms unlike in the commutative
case. Then, bsz the exchange principle, because there is no O(€°) B and Vh
fields from either monopole to expand near the other monopole, the external
fields near each monopole is zero , and the SU(2) ansaté as a uniform force

law gives zero for the O(fe®) acceleration.

We proceed to look for the O(#?) force between two non-commutative monopoles
by using Manton’s general idea of solving for the local and global solutions of the
system and equating them ﬁear each monopole.

We can easily solve the non-commutative first order ansatz for the local so-
lutions up to O(6?) by first assuming the solutions to be linear combinations of
tensor structures which are products of the coor&inates, z*, and a more general
non-commutative parameter, 67, defined by [¢*, 2’] = 96 [8] [9], and corresponds
to different angular dependence; and then reducing the ansatz to one ordinary
differential equation for each tensor structure and solving these. |

Knowing the O(6?) SU(2) solutions can be obtained similarly, we show ex-
plicitly only the calculation for the local O(#) and O(fe*) U(1) solutions. The

" results are as follow:

1. The O(6) U(1) solution [8] consists of a vanishing U(1) O(F) scalar field and
a U(1) O(6) gauge field that has a dipole potential as well a non-qradruple
but ~ 1/r® term. We find it intefesting that a “magnetic” field defined as
the curl of the U(1) O(6) gauge field has no gauge freedom inherited from

the star product gauge transformation once the gauge is fixed at the lower

order, O(#°).

2. For the accelerating monopole, the O(0) U(1) fields are independent of the
O(0e?) acceleration (although this has been determined tobe zero above) but

have O (6/(s?)) corrections due to the O(6°) acceleration that do not alter
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the asymptotic behavior of the U(1) gauge field. The O (/(sr)) correction

to the U(1) scalar field,however, is its only non-vanishing behavior at O(9).

We have not found a way to build the global solutions ;from the local solutions.
In particular, we show how the O(#?) expansion of the star product pfeven’cs us
from building the O(#%) SU(2) global solution using Manton’s simplications.

We first eﬁcpand the star product in the non-commutative field strength and
find that its SU(2) components have extra terms (compared to the commutative
field strength) that depend only on the O(6) and O(#°) fields. If we then use the
star-product extension of the asymptotic condition used in the commutative case
" to obtain a relation between the gauge field and the scalar field to O(62), we will -
find that the part of the SU(2) field strength that involves the O(6?) fields is no
longer a topological term in q3 as in the commutative case, and involves also the
O(6?) h field.

Then, if we define a magnetic field using the magnitude of the SU(2) field
strength such that it reduces at O(6°) to the magnetic field Manton uses in the
commutative case, we will find that it does not depend linearly on ¥ (the third
component of g%) as it does in the commutative case. Moreover, even without only
the O(6?) part of the asymptotic condition, we can see that to O(6?), this “mag-
netic field” is not gauge-invariant, and does not even satisfy a linear equation, not
to say the Maxwell's equations; thus, the superposition of magnetic field in the
region between the monopoles, and the determination of the external fields near
each monopole by multipole-expanding the fields from the opposite monopoles
(that work in the commutative theory) are no longer valid to ©O(6%). With the
asymptotic condition extended to ((6?), we can see also that there are no linear
deéoupled equations for ¥ and h, and so unlike in the commutative case, the
solution in the region between monopole is not easily found by superimposing

the local ¥ and h from the different monopoles.

138




Chapter 6 Preliminary investigation of the Manton Method to O(6?)

We conclude that Manton’s approach to find the commutative global solution
"~ does not work at O(62. We think of three routes to proceed to look for the O(6?

force:

1. We can use the second order differential equations of motion as the eqﬁations
for the global solution, and look for behaviours of the global solution that
would give rise adn can be matched to the homogeneous terms in the local
solutions near the monopoles. We can then use the matching conditions, if

there are enough, to determine the force.

2. We can try to find the difference in total energy of the monopole pairs
separated by distance s and s + ds to 0(92) using the stress-energy tensor.
This involves again the solution to the second order equations of motions,
but hopefully obtaining the difference between the total energies do not

require solving the equations of motion entirely.

3. We can look for a way to keep track of some sort of flow of the covariantly
conserved energy-momentum currents [27] and then find the flux of the

momentum currents into a region enclosing a monopole.

None of these routes seems more promising than the other two.
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