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" Abstract

Hrerarchlcal models are smtable and very natural to model many real hfe phenomena, where
data arise 1n nested fashlon The use of Bayesxan approach to hlerarchlcal models has numerous
advantages over the class1cal approach Estlmatmg a phenomcnon w1th hlerarchlcal model can
be viewed as a smoothlng problem and ‘hence while summarlzmg such a phenomenon via

hierarchical model we do not want to undersmooth the phenomenon That 1s in most of the

' - practical appllcat1ons undersmoothmg is more serrous type of error than oversmoothmg So,

" we need an estlmatlon approach Wthh can guard against undersmoothmg If we can control
the undersmoothmg reasonably, we may get a better cahbrated summary of the phenomenon .

we estlmate

In thls study, we have mcorporated the aspect of smoothmg in estlmatmg the parameters of
Bayesian hierarchical models In domg so we have proposed a conservatlve pI‘lOl‘ for the variance
component to achleve the adequate degree of smoothness whrle estlmatmg the phenomenon
under study We have conducted sxmulat1on studles to dec1de about the approprlate values to
Abe used for the hyperparameter whlle usmg the conservatlve prlOI‘ to ensure the adequate degree
of smoothness We have mvest1gated the performance of the proposed conservatlve prior in
'guardmg agalnst undersmoothlng in sxmple normal—normal hlerarchlcal models (random effects
models for normal response) and i in non—parametrrc regressmn curve est1mat10n problem via
51mulat10n studles We have also 1nvest1gated the performance of the proposed pI‘lOI‘ compared E
to those of the unlform shrlnkage prior and the Jeffreys pr1or w1th respect to both guarding
: agamst undersmoothmg and the MSE of the estlmated model parameters through simulation

studies.
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Chapter1
Hierarchical Models

1.1 ,Introduction o "

In many pract1ca1 ﬁeld of studles data may arlse m nested or 111erarch1cal fashlon Some common. _

scenarlos are:

(1) in the field of health e. g patlents nested w1thm a sample of hospltals may themselves be

nested w1th1n a gcographlc region etc.

(i) in meta—analy31s 1nformat10n from a number of studles on the same phenomenon are
"combined to produce more accurate inferences and predlctlons than those available from

any s1ngle study. In such case of combmmg 1nformat10n, sub _]ects are nested w1th1n studles'

. (iii) in longltudmal studles repeated observatlons on each md1v1dual study subJect are nested )

_ within the 1nd1v1dual

' In all the above cases if people model data as independent and identically distributed for
the sake of sm1phc1ty, e.g., pretend that the subjects in the samphng experlment are drawn
homogeneously from a srngle populatlon then the analysis applied to surnmarlze the data can
not be able to depict the real picture that prevalls in the data set 1tself because in thls case

the researcher w1ll fail to capture the s1m11ar1ty between groups

Furtherrnore, in any hierarchical sétup observatiOns are Obtained in clusters and the responses

from the same cluster can not be assumed independent. So, to incorporate this within cluster -




- correlatlon and to reflect the dependence of cluster spec1ﬁc random effects we must con51der i |

. some hlerarchlcal modehng techmques In hlerarchlcal models the observable outcomes are mod-

' eled cond1t10nally on the group level random effects and then the group level random effects are

' glven a pI‘Ol)ablllSth spec1ﬁcat10n in terms of the further parameters known as hyperparameters ' _‘ =

‘Why Hierarchical Models?

. For neSted :da_ta';hi‘erarchic_al_,mo’dels.“are' good choice for the follo'wing'_‘ reasons: o s

()

(r11)

hlerarchlcal models permlt the dlrect framlng of the theorles about the effect of structural'
change at each of the dlﬁerent levels of the hlerarchy L '

;.v

they prov1de the accurate adJustments to the uncertalnty assessment based orn ‘the srmple

' random samplmg when the data are gathered in hlerarchlcal fash1on 1n the presence of . .

strong mtra—cluster correlatlons

use of non—hlerarchlcal models is 1nappropr1ate for the hlerarchlcal data because w1th a

" few parameters they usually can not ﬁt the data accurately For example if we cons1der

v‘ “ kthe observed data yzJ (z =1,2,... ,m ] =1, 2 ,nl) from all clusters are homogeneously _’ '

'arlse from a common dlStrlbutIOIl w1th overall populatlon effect a, then such a model may L

: fail to account for cluster—to cluster varlablllty , whlch may ‘be an’ 1mportant source of

. varlablhty in the data. Agam w1th many parameters use of non—hrerarchrcal models tend o

- to overﬁt the data in the sense of producmg models that ﬁt the ex1st1ng data well but lead, L

‘to 1nfer10r pred1ct1ons for new data H1erarch1cal models can handle both of the problems

R s1nce they have enough parameters to fit the data well and they can avoid the problem

o of overﬁttlng by borrowmg the strength across clusters usmg a populatlon dlstrlbutlon to _

- ;1ncorporate the s1m11ar1ty among the cluster—specrﬁc eﬁects

. Again, _m causal analysrs 1t may be nccessary to mtroduce covarlates at multlple levels of '

T h1erarchy In such case the assumptlon of exchangeablhty of umts or subJects at the lowest level' o

_ breaks down even after condltlomng on covariate 1nformat1on because of 1nformat10n sharlng

' ‘among the unlts at. each level So, we need to 1ntroduce covanates relevant to each of thej ,

vhlgher level umts But mtroducmg covarlate at, each level of hlerarchy dramatlcally increases

'the number of parameters in the model and a sen51ble est:matlon 1s only posmble through’j_.




' further modehng in the form of populatlon d1str1but10n ie., we need to con81der a populatlon

: dlstrlbutlon for the effects at each level of luerarchy and thus gives use to hlerarchlcal models

In a nutshell hlerarchlcal models can 1mprove the cluster or area spec1ﬁc estlmates by com- )
bining the data across. ‘the unlts at each level of h1erarchy And in domg S0 they cons1der the_
probablhstlc mechanism that gives rise to the data at each level of hlerarchy Hlerarchlcal mod-
els offer an exphcrt framework Wthll can express slmllarlty Judgement comblne 1nformat10n

across umts and thus produce accurate and well—cahbrated predlctlons of observable outcomes
1.3 Bayesian Approach to Hierarchical Models

' Heur1stlcally, it can be sald that h1erarch1cal models force us s to be Bayes1an because to set up a
luerarchy we need to cons1der a populatlon dlstrlbutlon (pI‘lOI‘ dlstrlbutlon) for the parameters
at each level to 1ncorporate the uncertamty about the parameters at that level. There are both
methodologlcal and computat1onal arguments in favor of bemg Bayesxan while deallng w1th the '

. h1erarch1cal models Some of them are hsted below

( ) Bayesian methods have the ﬂex1b111ty to 1ncorporate the multlple levels of randomness
- that prevall in hlerarchlcal models and the resultant ablllty to combine mformat1on from
’ dlfferent sources, while 1ncorporat1ng all reasonable sources of uncertamty in inferential
summaries. They naturally lead. to smoothed estimates in complicated data structures

-‘ and consequently have the ablhty to obtain better real-wor ld answers.

(ii) The psychologlcal reason for adoptmg Bayesran methods is that m almost all practrcal '
cases the users of stat1st1c1ans work usually mterpret 1nterval estlmates prov1ded by statis-
ticians as Bayes1an mtervals that is, as probablllty statements about the likely values of

_unknown quantltles condltlonal on the evidence in the data. Such dlrect probablhty state-
ments requlre prlor probablhty spec1ﬁcat10ns for unknown quant1t1es and thus the kinds

. of answers the cllents assume are Baye51an

Thus from structural pomt of v1ew the strength of Baye81an hlelarchlcal approach hes in ( ) its’
ablhty to combme 1nformat1on from multlple sources, (b) its more encompassmg accountmg of
~ uncertainty about unknowns ina statlstlcal problem and (c) it is the essential tool for ach1ev1ng
" partial poolmg of estlmates and compromlslng in a sc1ent1ﬁc way between alternatlve sources

of 1nformat10n Actually, such partlal poolmg is more sophlstlcated and smentlﬁc than s1mple
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poohng of 1nd1v1dual cstlmates in the sense that such poohng cons1dels all sources of uncertalnty ,

rather than conmdermg only one source of random error w1th1n each un1t

'BeSIdes theoretlcal view pomts there are computatlonal view pomts also that lead us to be

Baye31an The computatlonal view pomts are summan/ed below. -

(i)

In the case of lnerarchlcal modehng the likelihood approach becomes very dlfﬁcult to

1mplement even w1th the normal response when the level of lnerarchy gets increased. In

‘ case of non~normal response the hkehhood approach becomes 1ntractable

In causal anal'ysis'when the response from the same cluster are COrrelated random or

- mixed eﬁ'ects models are used. In such cases 1f the response are not normal the hkehhood

approach becomes 1ntractable because it requlres evaluatlon of hlgh dnnens1onal 1ntegral

‘ .1‘-to calculate hkehhood functlon Though there are some. approxrmate ‘methods such as,

.the penahzed quasi- hkehhood (PQL) and the marglnal quas1—hkehhood (MQL) (Breslow'

and Clayton 1993) based on Laplace S method of mtegral evaluation they have serious -
limitation in estlmatmg the variance structure Both PQL and MQL methods can give
rise to a non-posmve definite variance structure, which is absurd. The possrblhty of
likelihood approach’s producmg negatlve estlrnate for the variance component can be :
well understood by cons1der1ng the case of proto type normal—normal hlerarchlcal model

Such a model can be wrxtten as

: Stage 1: yi |40- ~' (Oi,w), where w is known

‘Stage 2 6~ N0, )\)

(i)

vThe two stages of the prot0~type model can be collapsed t0 1 yz | )\ AN (0,w + ). The

s1mple llkehhood estnnate for )\ is obtalned as A = S2 — w, where S2 is the pooled sample ,
variance. Clearly, for w >.52% the hkellhood estlmate of variance component X will be‘
negatlve, ie., pr(d < 0) > 0. The Bayeslan formulation enjoys an advantage here because
of the information on the varlance components contrlbuted by the prlor specrﬁcatlon The

Bayesian method is 51mple to unplernent due to Markov Chaln Monte Carlo (MCMC)

. methods

Even in l1near mlxed effects models (ie., when the 1esponse are normal) closed form

: .solutlons for the maxnnum llkehhood (ML) and Restrlcted Max1mum erehhood (REML)

estlmators of the palametels are often unavallable In such cases. numerlcal optlmlzatlon

methods like Newton—Raphson and EM algorithm are used to calculate estlmates of the

model parameters Thesc algonthms are not guaranteed to locate the global max1murn.
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of the llkellhood functlon from an arbltla,ry startmg pomt But a hlerarchlcal Bayeslan _

- 'versmn of the mlxed model does not have such problem of convergence to dlfferent pomts

because 1t leads to 31mulatlon from the approprlate posterlor dlstrlbutlon ThlS glves N
a dlstrlbutlonal estlmate of the model parameters and thus can provrde more complete'

estlmates

- 1 4 Ch01ce of Prlor Spec1ﬁcat10n for Var1ance Component 1n.‘ |
| H1erarch1cal Models N ‘

',In thrs study our concern is to make a good ch01ce of pl‘lOI‘ spec1ﬁcatlon for varlance components"
.1n Bayeslan lnerarclucal models The choxce of pr1or dlstrlbutlon for varlance components isa .

, cnt1cal task because often adequate subJectlve pr1or 1nformat10n is lackmg For srtuatlon where

httle prior mformatlon is avallable, the usual ch01ce 1s to use a non—mformatwe type pI‘lOI‘ ‘But. .

- the problem of usmg non—mformatlve type puors is that most of them are 1mproper, and sof,' o

may lead to an improper JOIIlt posterlor dlstrlbutlon when applled to a varlance component

Improprlety of Jomt posterlor dlstubutlon nnplles that therc does not ex1st a Jomt dens1ty .

- to which an MCMC cham converges lie., MCMC algorlthm leads to mferences about a non- .

: ex1stent posterxor distribution (Hobert and Casella, 1996) So, before usmg an 1mproper prlor we
‘ must ensure that the resultmg Jomt posterlor dlstr 1but10n is a proper one Many authors workedl'
Con’ the 1ssue of choosmg non 1nformat1ve prior. for the vanance components in h1erarch1cal_.,v
: -_models The leadlng ones are Jeffreys (1961) Box & Tlao (1973), Berger & Deely (1988)
: Berger & Bernando (1992) Damels (1999) etc -

Danlels (1999) 1ntroduced a non—mformatwe pr101 known as the umform shrlnkage prlor wh1ch

‘ itself is proper and hence leads to proper posterlor dlstrlbutlon It also possesses many des1rable "

. frequentlst propertles However, none of the authors who worked on this i 1ssue prev1ously dld" o

cons1der any. exphcrt cr1ter1a to choose the prlors for the varlance component In thlS study we

. have con31dered the concept of smoothmg 1n choosmg the pI‘lOI‘ for the varrance components :

. It is true that any estlmatlon procedure is 1mperfect and we elther oversmooth or undersmooth,

'the phenomenon we est1mate But in many apphcatlon undersmoothmg is a worse error than

s oversmoothlng, as undersmootlnng 1nvolves postulatmg structure that is not really there 50,

"bm this study we have attempted to (hoose priors for the varlance components in such a way',_ “ N

‘ that we can guard agamst undersmoothlng For example, consnder the followmg normal—normal

. hlerarchlcal model




' Stage l: y | 6, A~ N (A9, vl) where A is a known n >< P matrlx 0 is a unknown P X 1 vector v1 is

ann xn matrrx (may or may not be known)
o ~ Stage 2: »(9 | )\ ~ N(0, )\vg), where /\ .1s unknown‘scal_ar, vy is a known pXp matrik; :

A " Stage 3: A ~ m()), where 7()) is a prior "dlstribution for A, the_variance component.
Such models ha\‘re numerous applications. Some of the scenarios Va're listed b‘elow. -

| o Scenamo A Random eﬂ'ects 1nodels For 1nstance data are collected on patlents at p hos-
‘ o o prtals It may - be 1easonable to thlnk that- the pat1ent outcomes are s1mllar but not
' 1dent1cal across hospltals Thus Yy consxsts of patlent outcomes, 9; can be taken to be the_ -

ith hospltal effect

Scenarlo B: Spatlal models. For 1nstance, data might descrlbe observed dlsease prevalence
A .‘ in a geographlc regions. It may be reasonable to th1nk that the underlylng prevalence
‘ - in adjacent regions is 31m11ar but not identical. Thus 8; is the . ith region effect and ’U2 o
is choscn so that component of 9 WlllCh are geographlcally closer have hlgher pos1t1ve ‘

: correlatlon

| o | 'Scenarlo C: Curve—ﬁttmg Say that Y f ( )+n01se and we w1sh to estrmate the functlon
f. The smoothlng sphne approaches to this problem can be v1ewed asa hlerarchlcal model
with 8 being the values of [ at some ﬁxed knot values. By approprlate ch01ce of vy we

end up penahzmg funchons f which are more w1ggly

All the three scenar ios can be thought as smoothmg problem In each case we estimate (rather'
than ﬁx) A s0 that the data dec1de on “how much smoothness is appropriate. “That is, how
similar should the hospltals or 1eg10ns bei in scenarios A and B and hterally, how smooth should
the function f* be m scenarlo C. And the ch01ce of prlor at Stage 3 of the hlerarch1cal model

has some lmpact on th1s data-duven smoothlng procedure

Again,. 1n smoothmg problem it is assumed that the undcrlymg phenomenon is smooth and

hence we want an estlmate of the phenomenon Wl’llCll is also smooth. For example, cons1der a

hospltal model about the effectlveness of a cardiac treatment, with patlents in the hospital _7 N
’ ' having the survwal probablhty 93, it mlght be reasonable to expect that estxmates of 6;s’, which

represent a sample of hospltals should be rela,ted to each other A natural way to 1ncorp01 ate

} ~ this similarity of 6;s’ is to use a prior ‘distribution in which 0;s’ are viewed as-a sample from a,




common populatlon dlStI‘lbuthIl In such case the observed data y”, with umts 1ndexed by 1 ‘
w1th1n groups indexed by j, can be used to estimate aspects of the populatlon dlstrrbutlon of the

s’ even though the values of 0;s’ are not observed It i is natural to model such a phenomenon' ‘

; .hlerarchlcally, vw1th observable outcomes modeled condltlonally on certaln parameters, whrch o

themselves are glven a probablllstlc spec1ﬁcatlon in terms of further parameters known as-

hyperparameters In such kind of hospital model it is nnportant to have estimates of 0;s’ which.

" are not more ‘variable than’ 9 s themselves. - Beeause, 1f 1t is known that the surv1va1 rates

among patients suffermg from cardlac ailment are hlgher in some hospitals than those in the :
other hosprtals people may rush to the hospltals w1th hrgher survival rates, whlch may cause
serious admlmstratlve problems In such a case tho 1dea is that we do’ not ‘want to declare
that some hospltals are better with respect to cardlac arlment care unless we are pretty much
sure, i.e., we want estlmates of §; s to be smooth So, in choosmg a prior for A in Stage 3 we
have emphasized on an estimate of /\ which does not undersmooth the phenomenon understudy.
Undersmoothlng is deﬁned to be )\ > A and oversmoothmg is deﬁned to be A < ), where A is |

the estrmate of \. Smce undersmoothrng is consrdered to be more serious type of error, in this

study we have focused on choosmg the Stage 3 pl‘lOI‘ in order to guard against undersmoothing.

In partrcular we consider choosmg the prlor in order to make the (frequentlst) probablhty that »
/\>)\1e pr()\>/\) small e : o S , .

In search for such a prlor we can start w1th the followmg proto-type normal normal h1erarch1cal

: model

Stage 1oy | 0 ~ (Hz,w) rvllere yi (i=1,2,...,n) is the observed summary outcome in the 4th

cluster; 6; is the true effect for the sth cluster and w is the known dlspers1on parameter

Stage2 0; |/\ N(O )\)

The above h.ierarchroal model _can._bev cOllapsed as‘:‘.

BN = BE@BIA
L= EOW
~and var(gi|)\)" = E[var y,|0)|)\]+var[E(yz|0)|)\]: o
R = E B(w|) + var (6 A |
= _w+)\



Therefore, i A ~ N (0,w+/\) ._'I_'hel_ikelih_o'od'function_ can_t_hen' be expresse'd_ as. '

o 1' % '%i);'lyi'
. ~ _— : - g
, '-_;?_L(’\);Q(_ <w+)\)"(’3 -

A prior density of the form 7r()\) x (w1 )("’.‘“)e-fv_fLX would be eonjugate,' where w+A ~ IG('a’b)
truncated tobew+ > w, ie,a prlon Als dlstrlbuted as Vi —w|Vi > w, where Vi~ IG(a b).
Now, we need to make reasonable ch01ces of a and b to guard agalnst undersmoothlng The
posterlor dlstrlbutlon of A, glven the data is obtalned as - . a

: 1')’%+A+'1e?—7 %‘Mb : IG +a Z +b |
w+./\‘“ . Yi ,

" That is, a poster10r1 )\ is dlstrlbuted as Vg - w|V2 > w where Vo ~ IG (a + b £1 Zyz)

L(,\._| Y) o (

E y, +2b '

Now, take‘ A ;poster_ior rno_de as the estimator’"of A So, A _=ma)\( ‘nerJrz ' c_u,O ; V.The. _
probabi‘lbitydof‘_ undersnloothing can then be c‘alculated,as‘ |
o Zy,+2b CE N (w+A)Z—=—+2b
,'pr(}f>)‘) =.pr L———w>z\ =pr| = >w+)\

n+2a+2 - -.n-+2a+2~-'

_ br((w+,\)v+2b _' +/\> <y'_n>f(a+1 wH))

o n+ 2a+ 2 _ Von T no o
= pr <z> ( \/ﬁ w+,\) N N | '- S (11) .

: N 3 DR ' L |
~In Equatlon (1 1) U= =~ X2 and z = \/— (0 1) n —00. Agaln from Equatlon ‘

(1 1) we observe that the chance of undersmoothmg 1ncreases as /\ decreases Hence, the worst
possible case of undersmoothlng takes place when A =0, and SO we can worry Just about the
case when A = 0, i.e., if we can ensure adequate guard against undersmoothlng in case of )\ =0
then we ¢an automatlcally ensure ‘the adequate guald agalnst undersmoothmg in all the other
cases. For A = 0 Equatlon(l 1) can be written as- ' S S )

For fixed n we can choose the values of a and b to make the probablhtles given by equatlon

(1.2) small, but there stlll has the questlons about what happens asn — oo, Theoretlcally,




n — 0o ﬁ(a:;z_ ) —-> 0 Wthh lmphes that the plobablhty of undersmoothlng approaches to ‘-

0.5. Figure 1.1 dlsplays the probablhty plots. agamst n correspondmg to the Equation (1.2). _
o Fo1m these plots it is obser ved that probablhty of undersmoothmg approaches to 0.5 as n.— 00. .
Agaln, form the Figure it i is also observed that blgger values of a help in keeplng the probablhty ‘

of undelsmoothlng small.

Fig“ure 1;1:.,Prob:ability of ur‘ldel"sthoothingz as a functlon of n L
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Now, since probablhty of undersmoothlng approaches to 0 5 as the sample size gets larger ,

, there _may be frequent upward Jumps in the values of /\ and we need to check how blg these - -

Jumps are. To check the magnltude of the Jumps in the values of /\ we have 31mu1ated data, and .




:calculated A for dlfl'erent values of n and plotted them agalnst n for a true A value of Zero in:
Figure 1.2. For tlus plot the values of the hyperparameters a and b have been taken to be’ 3
and 1, respectlvely From Flgure (1. 2) 1t is clear that though there are frequent Jumps in the
values of the jumps get smaller as n gets largcr So we need not to worry about ‘the Jumps

* in A when n is large

: .,Agaln from Equatron (1 l) we observe that the probablhty of undersmoothlng is an 1ncreasmgv _‘ :
function ‘of b So; settlng b =0 can ensure maximum possrble guard agalnst undersmoothmg
~ For b= O the probablhty of undersmoothlng is obtamed as ;o I
AN Betn)
S A>A) = > ——F . (1.3)
o0 » A)} pr(z. v » S .,(1 ) |
l“rom.Equation‘ (1.3) we"obser ve that for ﬁ)red n the probability of undersmoothing decreases as .
" a increases. Hence for fixed n we look for a b1gger values of a to guard agarnst undersmoothmg .
VAnother advantage of settlng b to zero is that the probablhty of undersmoothlng does not

depend on A and W, and we can express the maxrmum value of probablhty of undersmoothmg -

. as a functron of a only

Sometlmes 1t is desrred to express the probablhty of undersmoothmg as the probablhty that A

exceeds A plus a small 1ncrement obtamed as'a function of true A, e,
pr(unde'rsmoothing) = opr(A > A-i—e()\ +tw))

N9
Z?/i

= 'P’f o R (A+w)(i'.+e)'
"l;ﬂ J2@+nu¥d%%:h* BRI
= ,’_’T(”f V| ) L e

The probablhty of undersmoothmg glven by Equatron (1 4) w1ll be maximum 1f

2((1, + 1)(1 + €) + ne
' .\on

is minimum. The minimum: value of f( ) has been found to be

mn_m/a+11+e S (1.6)

=

-l@ae

‘Thus '

()\>)\+e()\+w prz>2\/ a+1 1+ (17)




From Equatlon (1 7) we observe that the maxnnum value for the probablhty of undersmoothlng
. will be smaller for blgger values of a. Table 1 1 constructed based on the max1mum probablhty.
of undersmoothmg given by the Equatlon (1.7), glves dlfferent values ofa required to keep the

maximum probablll_ty,of‘ undersmoothmg to a certain level o _(say), e.g. _5%. _From Table 1.1

ATable 1 1: Values of the hypelpalameter a requlred to keep the maximum probablhty of un- 3
dersmoothing to a certam level for dlﬁ'erent values of € ' ‘

-0.05 | 0.10 | 0.20
0.05|13.89 | 7.15 | 3.83
0.10 | 8.82 |4.73 | 2.71
020 | 437 | 261 |1.74

we see that'quite big values of ais req'uired if we want keep the maximum probabili'ty of
undersmoothmg at 5% level “For this level- we need a = 4 even if we allow A to exceed A by -
y 20% of the total varlablhty, w+ X From the Table it is also observed that even if we allow 20%

of the X exceed the true A 1tself by a magmtude of 20% of the data varlablhty we still need a

value of almost 2 for a (a = 1 74) So, it can be reasonably argued that the uniform shrmkage

’ prlor which c011s1ders a = 1 can not control undersmoothing adequately

So, ﬁnally by corlsldermg all the advantages and mathematical ease it can be concluded that-
" the desired conservatlve prlor for Bayesian hlerarchlcal model can be obtained from truncated
inverted gamma prior () & (=3~ P )(“+1)e w+* by- choosmg b=0anda bigger value for a. We
_term the proposed prior as “conservative prlor " because it is conservatlve agamst undersmooth—,
ing. Now takmg b =0 m the. 1nvcrted gamma pr101 leads toa class of prlors and is termed
' parametrlc power priors (Hobert & Casella -1996). The advantages of using such pl‘lOI‘S
are that they are obtained from the 1nve1ted -gamma prior and for a >0 they are proper and
hence lead to a proper joint posterlor d1str1but10n of unknown parameters which is essentlal for
“adopting MCMC to s1mulate the values of unknown parameters for vahd posterlor inferences
(Hobert and Casella, 1996) ‘Such priors give the ﬁex1b1hty to_choose the value of a to guard A
| against undersmoothmg Furthermore, these priors comprlse a class of non—comugate priors
within wlnch some of the most frequently used non—conjugate and relat1vely non—mformatlve
pI‘lOI‘S belong, €8y Jeffreys prlor and the umform shrmkage prlor For a=0 thlS class glves

- rise to Jeffreys pr1or and for a = 1 1t glves rise to the uniform shrmkage prlor
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1‘.5 Appl'i(':a_tion' of the _Proposed Pri_or: Simulation_Studvies

"To verlfy the performance of the proposed class of prlors we have conducted s1mulat10n studles

for the slmple normal~normal hlerarchlcal model dehned below

Stage 1: yn | Oz,w ~ N(Hz,w) =1, 2, M j o= 1,2;.;.,1_5

Stage2 9 | 1y A ~ N(,u,/\)

In stage 1, wis sometlmes cons1dered as 11u1sance parameter and assumed to be known But in -
" most of the pr actlcal s1tuat10ns wis. unknown and to be cstlmated form the data For estlmatmg
w under the Baycsxan set up. we need to assume a pI‘lOI‘ for w in stage 3. So the full Bayes1an

. verslon of the above hlerarchlcal rnodel can be wrltten as

Stage 1: Yij | 0,-v,wv~ N(G,,w) S
Stage 2: 01 ~N(/z,)\)
Stage 3: m(p) 1

m(A ] w) oc( Hw)““.., o

: .ﬂ_(w) x (w)C-{-l ‘~— ;‘

where, 7r(w), () and 7r()\ | w) are the priors for w, B and )\ respectlvely In stage 3 the
prlor for w has been taken to be unit lnformatlon mverted—gamma pI‘lOI‘ by settmg c= and
d= for our slmulatlon studles The reason of choosing unit information pI‘lOI‘ is that we are
. assumlng we have httle prior_ mformatmn worth of one data point, about the dlStI‘lbllthIl of w
and allowmg w to be estnnated mostly by the data. "The flat prior denslty for pin stage 3 is -
rcasonable for. hlerar(‘hlcal model because the comblned data from all n experlments (clusters)
are generally hlghly 1nformat1ve about 7 and hence we can aﬂ”ord to be vague about 1ts pl‘lOI‘

dlstrlbutlon Now the J01nt posterlor dlstrlbutlon of 0s , /1, w and A glven the data can be-




' obtamed as

(0, 110, A [ Y [an i |91,w) x {Hf(ei'l u,A)] X () x m(A | a)) xiﬂ(”‘) x ﬁ

2 7 ) ) .
' .n ke 3 %(vi.‘“'oi).z n ‘1 7 __l 9i‘l; 2. 1A a+1
' ‘z: i=1. s =1 S S ,

(i) e—ic(t)) | -('1;8)-

where, c(w) is the normalmng constant. This normalizing conqtant 1s requlred to make ‘the -
joint pI‘lOI‘ w(A, w) a proper probability dlstrlbutlon which i in turn make the joint posterlor dis-
~ tribution glven by the Equatlon (1. 8) proper posterior dlstnbutlon Propriety of Jomt posterlor

’ for the model parameters is essentlal for vahd posterlor 1nferences The normahzmg constant

dA =
/(w—}-)\) o aw®
0. v e

Now, ,fo'r pOStevr'ior' infer’ences‘ about the model parameters we need to similate draws for them

for tlns problem is obtalned as ‘

from the posterlor dlstrlbutlon To draw simulations for each of the unknowns through MCMC .
method we need to compute the conditional posterior densxty for each of the unknowns The

condltlonal posterlor for g is obtamed as

SRS : f . . S n_L[Z M.*_M
T2 T w : A
ca@pw Ay o [Je ST

A
Since y,...,0y are assumed exchangeable we can write 6; | y,w, A,y ~ N(0;,7%), where 6; =
R S

The conditional posterior dénsity for 1 is obtained as

v Therefore, p | '0,(;1, )\,y~ N(g %)
The conditional pOSteriqf d_evnsity for .w.is’_ob:tlained as

N - - . :1 "Tk-‘!—0+>1 ‘_;1_+%E'Z(yi‘—9‘i)2 1 a_bl' 1

v" : 13 )




Fmally, the condltlonal posterior den81ty for /\ is obtained as

B2t 21 z(a, (1 e
)\ 9 )
0100 ) oc( ) e (wH)

A

Since the condltlonal posterlors for 6;s’ and p have known parametrlc form we can use GlbbS
’ sampler to draw 81mulations for them But the cond1tional posterlors for w and A do not have
known distributlonal form, and so we need to use random walk Metropohs Hastings algorlthm'

to draw s1mulat10ns for theln

lt has been already mentioned Ithat the goal of this study is to choose the appropriate value of - - -
a in the prior for A which can sufliciently guard agalnst undersmoothmg Hence, to choose_ the
appropriate value(s) of a and to Judge the performance of the proposed pl‘lOI‘ in estlmating A,

the variance component we have performed sunulation studies. For the slmulation studles we.

~ have proceeded in the followmg way:

(i) ﬁxed some values for each of the unknown parameters s w and )\ as thelr true values ‘

(ii) for each combmation of true values of p and )\ we have generated ii.d. 91, 02, 0,, frorn
N, /\) - ‘ ' -
.(iii) for each of the 6;s’ an i.i. d sample yﬂ, Yiz - ylk ‘-has been generated frorn‘ N (9,, w) ‘.

(iv) given the generated data set, we have apphed MCMC technlques to estimate the unknown
v parameters for dlfferent values of a and tr1ed to 1dent1fy whxch value of a is reasonable to

suﬁic1ently guard against undersmoothmg

For our:simulation studies’: we have considered three different values of A, the variance compo-
‘nent. The ch_os_en A values are 0, 1 and_ 5. For all cases the chosen values of w is 1 and the value
of nl has been’ taken to be 5. The reason. for choosing different values of A for a ﬁi(edt'value of
w in our s1mulat1on study i is. to see how the proposed class of pllOI‘S pelform in estimating the
unknown parameters in dlfferent 31tuatlons when the ratios of the between and w1th1n cluster
variances are smaller than, equal to and larger than unity and thus make a more general choice
for a. The fixed choice of w=1Iis reasonable in the sense that we can rescale the w values
to l Wthh w1ll not affect the other things of our study. For each cornblnatlon of p, w and A
values we have generated ten 8 values 91, 02, 010 and from each of the generated 6 values we'
“have generated a sample of data values. For our 81mulat10ns studies we can conmder both the
small and large sample sizes. But here we have cons1dered only the small sample sme case ‘espe-

v'clally, to demonstrate the ablhty of hlerarchlcal model to give accurate estimates by borrowmg ;
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strength across clusters To 1dent1fy a reasonable chowe for the hyperparameter a, we have |
_ generated 100 data sets and estunated A by usmg each of the data sets for dlfferent cho1ces of

. a. Finally, we ‘have observed the number,of times, out of 100, that‘)\_ exceeds the.,true_ A value. .
~1.5.1 Monitoring the llconv_ergence and Mixing the MCMCRun for w and A

: While uslng random-walk Metropohs Hastlngs algorlthm to generate posterlor slmulatlons for -
~ both w and A we need to check the convergence and m1x1ng of MCMC run for them before
makmg any valid inferences about them ‘For better mlxmg and convergence we need to choose .,
appropriate jump size for the MCMC. algorlthm whlle updatlng the parameter estlmates ‘In
Metropohs Hastmgs algorlthm there are two problems~ (i) the slow movement of the cham’
toward the target distribution and (u) slow - m1x1ng of the MCMC chain. An MCMC chain
vmay move ﬁrst (h1gh acceptance rate) but may show slow m1x1ng, ie, the MCMC chain may ,
‘move around a speclﬁc reglon of the target’ distribution for many 1terat10ns on the other hand,
it may ‘exhibit good m1x1ng but slow convergence. ‘But in practlce, it is always desxrable to
have a chain wlnch mlxes and converges well at the same time to ensure the accurate 1nference .

about the target posterlor d1str1but10n To have such a chain we need to adJust the jump size

. of the chaln through momtormg the output There is no hard and fast rule to determine the

_approprlate jump size. Usually, trial and error method 1s adopted. A consrderable volume of
research work’ has been carrled out and suggestlons have been made to monitor the m1x1ng
~and convergence of an MCMC cham A nice refcrcncc in this regard is. Gilks, at.” el. -(1996).
‘Research ﬁndlngs suggest that for better m1x1ng and convergence a desuable acceptance 1ate
is around 50%. So, while 1rnple1nent1ng an MCMC simulation it is necessary to plot the run to
: momtor the m1x1ng and the convergence of the chain. Also we need to adJust the j _]ump s1ze so' "

 as to get an acceptance rate of around 50%

For updating u} and A using Metropolis ~Hastings algorithm we'have used e).(ponential scale,"
ie., let wy and /\0 are the lllltlal guesses for w and Ay respectlvely, then the cand1date states for
them are taken as A ' o L '

Weurr = wp X ezp(N(0,k7))

Aaurr = Ao x ezp(N(0,K3))
' where' kl and ks are the jump sizes for updating w and A 'rcspectively Each of the Flgures 1.3, :
1.4 and 1.5 d1splays four’ dlfferent MCMC chalns for the three different true A values respec-

tlvely, consrdered f01 the s1mulatlon studles In each case of the three true )\ values consxdered
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we have used dlﬂerent mltxal va,lue% Wthh are w1dely dlsperbed from each other, for the four:‘

dlﬁ'erent chalns The conve‘rgence plots for w are dlsplayed in Flgure 1. 6.
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T
4000

2000 3000

_ iteration
(b) initial vaiue=10 -

2000 . 3000

iteration -~
(c) initial value=1 . .




15 ° 20

10

3 5 --

11181}

01

20

10 .

3 5

o1

S 15

'vFig.ur'e 1.6: _ConVergence plot for w

20
|

(O]
\o_
i

3 5

| T |

01

T T

1000 2000 3000

iteration -
- (a)initial value=20

T T

4000 4500 -

111111

T T T p—
1000 2000 - 30000 4000 4500

iteration
(b) initial value=10

20
[

w
10
2

3:5 |

o1-

T I T
1000 - 2000 . 3000

- iteration

. (c)initial value=6 .-

T T
4000 4500

18

1000 2000 3000 4000 4500
, iteration
. (c) initial value=1




vFrorn Flgures 1.3, 1. 4 and l 5 we observe that all the chlns of each of the true A values exh1b1t
: good mixing since none of the chams in any of the three cases kept moving around slowly in any
partlcular reglon of the target dlstrlbutlon for many lteratlons It i is also observed that though
different chains for each of the true A values start at different 1mt1al values all of them have
. stabilized at the respectlve true A values, wluch 1nd1cates that the MCMC chains for all of the
A values have converged to the respective target posterior d1str1but10ns Furthermore, all the
cases the chains have stablhzed after very few iterations. So, we can draw posterlor 1nferences
about A by generating even a shorter cha1n because we do not need to throw away too many
1terat1ons as burn-1n Agaln if we have a look at the plots of the Flgure 1.6 we observe the - -
same feature about the convergence and mlxmg of the chains for w as we do 1n ‘the case of

convergence and mlxmg of the chams of )\
1.6 Analysis of Output

Since the goal of th1s study 1s to choose approprlate value/values of the hyperparameter a for-
' l the proposed conservatlve prlor we have estlmated A by using 100 different s1mulated data
~ sets for dlfferent values of a. In estlmatmg A we have used both the posterlor mean and.the
' ‘posterlor mode In each case we have constructed hlstogram of. 100 X and see how many of them
. exceeds the true A value For each of the rnodel parameters we have run MCMC 51mulat10ns
for-2500 1terat10ns among which first 500 iterations have been thrown away as burn—m of the
chain and used the remalnlng 2000 for 1nfe1ence purposes. Here, we have used 2500 iterations
_because from the convergence study of MCMC chains we have observed that for both w and A
| MCMC chalns converge “after very few iterations. The h1stog1ams of 100 estimates of A have
| been dlsplayed in Figures 1.7-1. 12 for different true A values In each case, we have con51dered'
6 different values of a as a=1, 2 3, 4 5 and 10
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Figure 17 ;Hi'stograms of vaor" di_ﬁ‘erenf choices of a in the case of posterior mean'when true
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" Figure 1.8: Histograms of 5\ for diffeijént choices of @ in the case of poStériQr mode when true
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B Figure ’_1.9:‘ Histo
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Figure“l.IO: Hisjtogr'éuné of
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A=5

Figure 1.11: Histo
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From the histograms of ;\, based on posterior meah, we observe that for a <*3 most of the

estimates of /\_..exc‘e_ede'the true value of X for all the cases e'onsjdeijed. But for a-.> 3 few '

~of the estimates exceeds the correspondirig true parameter value'except the cases when \ =

0. Furthermore, the ‘simulation studles reveal the fact that too big values of a ‘cause serious

underestimation. So the genelal ch01ce for a should be between 3-5. In the case when true

A = 0, though some of the estlmates exceed the true A values for values between 3-5 of a,

the magmtudes of overestlmatlon are quite small (Flgmes 1.7 and 1. 8)

Also, in prototype '

model, mathemat_lcally _we, ha_,ve shown t_hat the smalle_r the value of true A the bigger .the




v' ‘ chance of undersmoothmg and for A= 0 the probablhty of undersmoothlng is the hlghest So,
Flgures 1.7 and 1.8 conﬁrm that a value between 3-50fa performs qulte well even in the worst
“case of undersmoothmg So from the results of s1mulat10n studles we can conclude that use
of the proposed conservatlve pl‘lOI‘ with a value between 3 to 5 for the hyperparameter a can‘

: suﬂic1ently guard agamst undersmootlnng when posteuor mean 1s used as pomt estlmate of A

Regardmg the use of post01 ior mode as an estlmate of A the h1stograms of )\ (based on poster1or"
mode) reveal that any value between 2 to 4 of a can guard quite well agalnst undersmoothlng,
and i in the case of no heterogenelty (A = 0) posterior mode performs much better than posterior. ’:

~ mean in guardmg agalnst undersmootlnng Even with a = 1 under smoothlng seems to. be under

~_ control. In the case of posterlor mode all the )\ are very close to 0 (between 0 to 0. .00005), the

. true value of A. So as long as the pomt estlmate of ) is concerned posterior mode i is preferable
to posterlor mean. But the problem of usmg the posterior mode is that it depends on the bin
width used to calculate it. There is another problem probably the more serlous one in the -
context of smoothmg, of depending on posterlor mode as an estimate of A whlle estlmatrng

the mean vector 6 in Bayesran hlerarchlcal model by uslng MCMC techmque The use of
posterior mode as a point- estimate of \ ends up with suggestmg the use of smaller values for a
in conservatwe prlor compared to the case when posterior mean is used (2'to 4 versus 3 to 5).

Use of smaller a values, as suggested by the posterror mode, may lead to undersmoothlng of
the phenomenon i e smaller a values may produce 0 estimates which are more varrable than
: the true 0s. Because while estlmatlng the @s by MCMC techmque we generate Os condltlonal_
on the spec1ﬁc b\ generated at- each iteration of the MCMC run, i.e.; we do not condition on

~the point estlmate of A whlle generatmg Os, rather we gcnerate s for each generated A from

s condltlonal posterlor dlstrlbutlon So, use of smaller a values as suggested by the posterlor

mode, can generate a A blgger than the true )\ which in turn results in generated 0s that are
more var1able than: they truly are. Thlb problem seems to be more serious. when true A is 0.
In this case the use of posterior mode as a point estimate of A smlulatlon studles suggest that

even g = 1 performs greatly in guardmg agalnst undersmoothlng

. Again, from the lustograms of )\ based on the posterlor mean we observe that a=5 sometlmes

can cause to much oversmoothlng, especxally, when A is relatively larger than w. Also posterlor )
~ mean suggests a value between 3 to 5 and posterlor mode suggests a value between 2to4 for
_a to guard against undersmoothlng Since, both the point est1mates of A suggest a common

range of values for a, Wthh is ‘between 3 to 4, hence, in general 1rrespect1ve of thé choice of
- point estlmate for A we can conclude that any value between 3 to 4 for a in the conservatwe‘ '

- prlor can reasonably be used to ensure adequate guard agalnst undersmoothlng, whlle at the-_ .
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- same time not oversmoothmg the phcnornenon too much and thus obtammg better cahbrated

. estunates of the model parameters in normal—normal hlerarchlcal models.

17 . Cor'np'ariso'n of Results Obtained by Using»the Conseryative»
o Prior Wlth those Obtalned by Usmg the J eﬁ'reys PI‘lOI‘ and :
the Unlform Shrlnkage Prior |

For comparmg the performance of the proposed conservatlve pI‘lOI‘ w1th those of the umform
shrmkage prior and: Jeffreys, pI‘lOI‘S we have conducted mmulatlon studles We have est1mated
A from 100 dlfferent smlulated data sets by using all the three competltlve prlors We have

examined the comparatlve performance of the priors from two' different aspects— (1) ﬁrst Wlth ,

. respect to thelr ablhty to guard agamst undersmoothmg and (i) second since by 1ntroducmg o

the conservative prior we force the variance component A to be underestlmated (oversmoothed)
in a sense, we are 1ntroducmg some sort of bias in A. So, the obv1ous questlon here is that how

much we gam or. lose w1th respect to mean—squared error (MSE) of )\ by acceptmg some bias' .

while estlmatlng it. So to reﬂect this issue we have also compared ‘the MSE of A for the'

competitive prxors For our 81mulatlon studles we con81dered A=0,1, 5 and w = 1. In thls case
~ we have performed the mmulatron studies unde1 both the small (n = 10) and large (n = 100) »

sample sizes.

‘In this .'study yve'have considered the uniform shrinkage“prior and the iJeffreys’ prior "as" the
main competitors of the proposed conservatlve prior. The’ reason is that these two priors are
widely used non—lnformatlve prrors for Baye31an hxerarchmal models Damels (1999) showed
| that other pI‘lOI‘S are not good in estimating the random effects varlance component especrally
: in the 51tuat10n of no heterogenelty and in the cases when the random effect variance /\ is

» relatlvely smaller w1th compared to error varlance w.
1.7.1 Analysis of Output

For comparing the'performance of thc three'competitiv’e priors we have 'calculated theMSEs of |
)\ by using each of the three prlors In each case we have calculated the MSE by averagmg over :
100 simulated data sets In all the cases we have used a = = 5 for the conservative prlor MSEs, _
- are summarlzed 111 Tables 1 2 1 3 and 1 4 for dlfferent true A values cons1dered
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3 Table 1.2; MSE of ) bfor differeut priors when A=0

Prior o - | Sample size | - - MSE
_Conservatwe s A - 0.0001124
Uniform shrlnkage 10 | . 0.0001368
Jeffreys’ R o 0.0001871 -
Conservative . .| 3.1606e — 06
- |"Uniform shrinkage | -~ 100 ~ | 3.5682e — 06
Jeffreys’ = . . | 3.5337e — 06

~_ Table 1.3: MSE of A for different priors when A=1 _

‘ Prior R , 'Sample size MSE .

Conservative . | 01 0.032352
Uniform shrinkage 10 . |0.428368
Jeffreys’ . - ' . -1°0.838135
Conservative . -~ | . .~ -] 0.027283"
.| Uniform shrmkage 100 | 0.435985 | .
' 'Jeﬂ'reys o © [ 0.810519 |

Frorh 'l:‘al)les 1.2, 13 'aud 1.4 we see that,' irresp'ective‘of semple siz_'e, MSE of ;\, ls ‘the miuimum
for the. couservative priOr and the maximum for the Jeffreys’ prior when the true A Values are
smaller or of equal magnltude (A=0o0r A = 1) with compared to the within group variance w.
‘But when the true A is la,rger compa.red to the error varlance w the MSE for the conservative
- prlor 1s the ma.x1mum while that for umform shrmkage prior is the m1n1mun1 in the case of
- small sample size. In case of large sample size the MSE of A 1s the maxnnum for Jeﬂ'reys
prior and mmlmum for the umform shrmkage pr101 The 1nterest1ng pomt is that for large

sample the MSE 1ncreases for both uniform shrlnkage prior and Jeffreys prlor but decreases for,

.conserva.txve pI‘lOI‘ when true /\ value is relatlvely blgger (Table 1.4). This mlght be due the fact .

that, as it can be observed from Equatlon (1 1) and from Figure 1. 1 as sample size gets larger -
the probablllty of undersmoothmg increases toward a limit of 0.5, and so there is more chance of

getting bigger values in the posterior s1mulat10ns of A, which inflates the estlmated A and thus

L "contrlbutmg to hlgher MSE of X. But in case of. (,onservatlve prior the blgger a value suppresses

those upward jumps in the postcrlor s1mulatrons for A, and controls the undersmoothmg, which

in-turn does not let the MSE to go up even when sample size gets larger

- »A 28',




“Table 1.4: MSE of A for different pribrs when A =5 .. -,

Prior 3 . | Sample size MSE

Conservative | -] 1.995964
Uniform shrinkage | 10 1 0.436016
- | Jeffreys’ ' L 0.831997.
| Conservative .. | . ~ 1 1.808555

Lo 'Umform shrmkage 0100 | 0.666834 | ..
o Jeﬁreys - S 3.77446

'Before drawmg general conclusron a.bout the (,omparatlve performance of the three competltlve'
‘priors there is one pomt worth focusmg on. So fdr for ('alculatmg the MSE of X we have c0n51d-
ered a=5. Prevrously, from simulation studles we have observed that any. value between 3 to
5 of a is sufficient for guar dlng against undersmoothmg while we use the proposed conservatrve
, prror But if we have look at the lustogra,ms of \ in Flgures 1.11 and 1.12 we observe that using
a =5 for conservatlve prior gives a rather underestimation (oversmoothmg) for X when true A
is rela,t1vely larger, which mlght be the cause of blgger MSE of A in this case. Smce any. Value
- between 3 to 5 of a lS good enough to guard agalnst undersmootlung and smce for the case of
_ relatlvely larger between group varlance use of @ = 5 gives too much underestimation it may"
"be reasonable to use a = 3 and see how the conservative prior perform with respect to MSE of
M in all the cases we ha.ve cons1dered To check this we ‘have computed the MSE of A again for
a=3 Tables 1.5, 1 6 and 1. 7 summarlze these MSEs

_ ’_I‘able lv.5: MSEof ;\ for differe’nt priors, with:o = ‘3_for conservative prior, 'wheh‘ A= 0 -

Prior IR Sample size | = -MSE

Conservative - | ~ - 0.0001216
Uniform shrmkage 10 '0.0001368
| Jeffreys’ - - v 0.0001871 -
Conservative , 3.2738e — 06
| Uniform shrinkage 100 . | 3.5682¢ — 06
Jeffreys’ - - | 3.5337e — 06

Lookmg at the output in Tables 1. 5, 1 6 and 1 7 we observe that w1th a= 3 the conservatlve

prlor produces the best results in terms of both guardlng agamst undersmoothlng and MSE in




‘Table 1.6: MSE A for different priors, with a = 3 for consetvative prior, when A = 1

Prior | Samplesize | MSE

| Conservative . : : 0.117817
Uniform shrinkage | -~ 10 | 0.428368
Jeffreys’ = . .]0.838135
Conservative . coou ] 0.126487
Uniform shrmkage . 100 | 0.435985 | -
Jeffreys o 10.810519

‘Ta‘ble 1.7 MSE S\for different priors, with a‘_—_-3 for conservative pi‘ior',' when A=5

- [Prior [ Sample size | MSE

Conservative. - © 7 10.484169
Uniform shrinkage |~ 10 | 0.436016
Jeffreys . 10.831997
‘Conservative . |- 1 0.474004
| Uniform shrmkage 100 - | 0.666834
Jeffreys '_ S 3.77446

estimating A in all‘but one'of the cases considered. The .only cese where the unifofm shrinkage
prior marginally beats (an MSE of 0. 4842 for conservatlve pI‘lOI‘ versus an MSE of 0.4360 for

uniform shrlnkage pI‘IOI‘) conservative prior is when between group varlablhty is larger than

- the within group varlablllty and sample size is small.. So in general we can conclude that

though ‘the proposed conservatlve prlor has been 1ntroduced with the aim of guardmg aga.mst
undersmoothlng smmlatlon studles shows that for a reasondbly chosen value of hyperparameter
a it can also produce better cahbrated estunate for the 1andom effects varlance component and -

hence for the other parameters in hlerarchlcal models.

1.8 ,_.Coﬁelusion

In thls ehapter we have mtroduced a class of non—mformatlve priors for the random effects"
variance component in Bayesna,n hlerarchlcal models This class. of priors can give rlse to the

widely used prlors in Bayes1an hlerarchlca,l models such as, the Jeffreys pl‘lOI‘ and the umform
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shrinkage prror Fmally, for estlmatrng the variance component )\ by Bayesran approach we
have incorporated the 1dea of smoothing to choose the approprlate values of the hyperparam—
~ eter a for the consrdered class of prlors to get a prior which can sufficiently guard agamst'
‘ undersmoothmg ‘We named this prior as * ‘conservative prior”. Simulation studies reveal that
" we can achieve des1red guard agalnst undersmoothmg if we choose a value between 3 to 5 for '
the hyperparameter a. But guardmg agamst undersmoothmg may result i in some degree of -
bias in the parameter estlmates and hence an 1ncrease in the MSE of of the estlmated param—
eters. Keeplng this aspect in mmd we have compared the performance of conservatlve prior
in estimating the variance component A w1th those obtamed by usmg the Jeffreys prior and
the uniform shrmkage prlor ‘with the help of srmulatlon studles From s1mulat10n studles we
have found that use of a = 5 for conservatlve prior produces smaller MSE for A with compared
" to those produced by the use of other two- prlors when between group variability is relatlvely
smaller than the w1th1n group varlablhty, but produces lugher MSE compared to the other
two priors in the reverse sltuahon except the case that it produces smaller MSE than Jeffreys’
prlor does when sample size IS large From simulation studles it is also observed that relatxvely
hlgher MSE for A for conservatlve pI‘lOI‘ w1th a= 5 in the sltuatlon of relatlvely higher between
group variation is actually due to the, fact that usmg @ = 5 in this situation gives' to much
underestlmatlon of A (Flgures 1.11 and 1. 12) But using @ = 3 nicely controls undersmoothmg
as well as gives lower MSE by providing more precrse estlmate of A, whlch in turn_produces

' better calibrated estx_mates of the other model parameters.

'Finally, though we‘have. conducted our simulation studies for the situation‘s of vbetween and
within group varlance ratlos of 0, 1 and 5, it can be argued that for most of the practlcal“
situations it is very unhkely that the ratio of between group varlablhty to the within group
.varlablhty would be very hlgh e.g. as large as 5. For instance, if we thmk of a hospltal model.
of cardiac treatment it is very unhkely that the survival probablhty 9 will dlﬂ'er too much from
~ one hospital to another. In such cases undersmoothmg should be main concern ‘and there is
not too much to get worried in using any value between 3 to 5 for the hyperparameter a in
conservative prior to get- better cahbrated estimates of the model parameters and thus have a
better real life picture. In the case where it is really expected that the between group varlablhty
would be much larger than the within group varlablhty we can use a =3 for better cahbrated

estlmates of the model parameters
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~ Chapter 2
. Curve Fitting

2.1 In‘tro_d_uctionh‘f

In cheprer 1, we have s,tudied. _the ’perfor_rnance' Of the 'proposed conservative priof in B‘ayes‘ian‘*‘

normal-normal hierarch_icbal_v model, '_vvhich; is actually an application of Bayesian hierarchic‘all ‘

" model to random effects model for norma,l,response. Another potential area of using.the

Bayesian. hierarchiCal modelyis noanarametric curve—ﬁtting In this chapter we have briefly
~ described the idea of non—parametrlc curve~ ﬁttlng and the sphne -based roughness penalty ,
. _approa,ch to curve-ﬁttlng - ‘

Curve ﬁttmg or regressmn functlon estlmatron isa common and most useful tool in statrstlcs
It has two purposes—ﬁrstly, it provrdes a way of analyzmg and presenting the dependence of a
» response variable on the des1g11 varlables secondly, it allows predlctron of unobservable future
responses. Suppose we ha.ve n mea,surements on a response variable’ y, and a smgle predlctor

va,rlable z. In general the dependence of y on z can be expressed as

y = f@) e ey

where f is thc curve of some sort and €is the random n01sc The obJectlve of curve ﬁttlng is
to estlma,te the functlon fin (2. 1) from the observed data. There are two approaches to curve

ﬁtt1ng~ ( ) par a.metrlc dpproach and (11) non—parametrlc approach




2.2 Param_etric prproach

The parametrlc approach nnposes rigid parametrlc assumptxons about the dependence between
the 1esponse and the predlctor For 1nstance, in the case of hnear regression the regression
function f in (2 1) is assumed to be linear. In general in parametrlc approach response are -

assumed to follow a parametrlc dlstrlbutlon e g, a dlstrlbutlon from exponentlal family. Under, ‘

the exponentlal famlly the dependence of response can be summarlzed under the framework of

' generahzed hnear model (GLM)(McCullah and Nelder, 1989) The simplest versxon of GLM-
is the linear regressron model where the responses are assumed to follow normal dlstrlbutlon

thus maklng fa hnear functlon of z, i.e., y = a + Bz + €. That is, every parametrlc method
requires rigid assumptlon on the form of 7, which may not be true and hence the questlon of

a non—parametrlc approach comes through
2.3 Non-parametric Approach

Data for which none of the parametric method seems reasonable.'are Oftenj env-isaged. In&suchv
cases, it is wise:'_to let the data to show us the appropriate functional ‘form rather tha‘n im'pos-‘
‘ingv any. deﬁnite pararnetric forrrl Non-palametrlc methods are very ﬂex1ble in allowing the
data 1tself to declde on how the dependence pattern should be. The underlylng assumptlon -
here is that the dependence of the mean of y on x should not change much if z does not
change much ThlS assumptlon is very. often reasonable ThlS assumptlon can be 1nterpreted'
~‘as that- we want an estlmate of f , say f , Wthh is at most as variable as f itself, i.e., we don’t
want f to be more wrggly than f. So, the non—parametrlc approach involves the chorce of a’
smoothlng parameter whrch controls the balance between goodness of fit' and smoothness of
“the estimated regress1on function. There are different non—parametrlc methods for estimating

regression functlon Interested readers are referred to Slmonoﬂ' (1996) Since our work i is aimed

at developmg a conservatlve puor for Bayes1an approach to sphne—based roughness penalty o

‘ approach of curve estnnatlon descrlptlons of the sphne—based roughness penalty approach and .

assocrated techmques are glven 1n the next few sectlons

33




2.3.1 Spline-based Roughness Penalty:-Approach

" The basic idea of the spline—based roughness'penalty approach is to quantify'the’ notion of a
rapld ﬂuctuatlng curve w1th the help of a piece-wise polynomlal of certam degree (called sphne)-
over each sub1ntervals of the range of the predlctor consrdered and then pose the estlmatron
problem in such a way that makes the necessary compromlse between the two opposmg alms
“of curve estlmatlon The opposrng aims are~( ) goodness of fit, which measures the closeness _
of the estimated curve to the true underlymg curve and (11) roughness, which measures the
'w1gglyness (local varlablhty) of the estrmated curve, In general it is always: des1rable to have
an estimated curve which provrdes a good fit as well as not t0o wiggly. The roughness penalty
- approach makes a compromlse ‘between these two opposmg factors. In our discussion we will
focus on only cubrc splines because polynonuals of degree higher than three are t0o w1ggly, while -
lower degree polynomlals are not ﬁexrble enough to capture the local varratlon of the data. A
cubic sphne can capture the local varlat1on because it has two contlnuous derlvatlves and at
the same trme it is not t0o w1ggly It is also very amenable for mathematical manlpulatlon
' Eubank (1988) Wahba ( 1990) and Green & Sllverman (1994) are excellent reference books on
sphne ~based smoothlng techmques As our work will be based on cubic sphne/ natural cubic

spline, formal deﬁmtrons of cubrc splme ‘and natural cubic sphne have been given below

Cubic Splzne ( CS ) The functlon f is sa1d to be a cubic splme on the interval [a b], satis-
fylng a <t <t < ... < tn _< b if f is a cuble polynomlal on each of the mtervals

7 (a,ty), (tl, t2) -y (tn, D). and the polynomral preces fit together at the points ¢; in'such a
.way that f itself and its ﬁrst and second derlvahves are contlnuous at each t,, and hence‘_ )

on the whole 1nterval [a b}. The pomts tl s are called the knots

Natural Cubic Splme ( N cs ) A eublc sphne on an interval [a b] is sa1d to be natural cubrc
splme 1f its second and third 'derlvatlves are zero at the boundaries aland b. These
conditions are known as natural boundary conditions These imply that f is linear on the |

“two extreme interval [a t1] and [tn, b)- Natural cubic sphne has enormous mathematlcal
' eonvenlence because it can be exactly specrﬁed by finding a ﬁnrte number of constants
. (Green and Sllverman 1994) - ‘ '
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2.3.2 Mathematical Formulation of the Roughness Penalty Approach

For constructlng an est1mate of the curve of type 2 1 whose observcd values are subJect to
random error, suppose that fl,tz, ..,y are the pomts in {a, b} satlsfymg a< t1 < tg < <
by < b and that Y1,Y2s - - -, Yn are the observed values. Let Sz[a b] be the space of contmuous
twice differentiable functrons, then for any functlon f in .5'2 [a, b] the penahzed sum, of squares A
is deﬁned to be ' : |

S =Y - )P +a / {f@)"Yda B )

In the roughness penalty approach f is calculated S0 as to be the minimizer of S(f ) over the
class Sp [a, b] of all sufﬁcrently smooth curves on [a,b]. The second term in (2. 2) is the roughness
| penalty term. The addltlon of the term o T 2dz in (2. 2) ensures that the cost of S(f) of the
particular curve is determmed not only by its goodness—of —fit to the data quantlﬁed by the first
term but also by its roughness J(™ zdm ‘The smoothlng parameter o represents the strength
' of penalty to be paid. Large value of « represents stronger pcnalty, Wthll produces a smooth
curve. On the other hand if e is relatlvely small then the main_ contrlbutlon to S( f ) will be
the res1dual sum of squarcs and the curve estlmate f will tr ack the data closely, thus producmg
a wiggly curve. Thus rnmlmlzatlon of S(f ) can give a compromise between smoothness and
goodness-of-fit. In’ 1mplcment1ng roughness penalty approach the 0bv1ous chorce 1s ‘the natural
cubic spline because NCS produces the smoothest possible curve among all the polynomlals
with continuous second derivatives in Sg[a b] minimizing S( f ) (Green and Sllverman 1994).
Also know1ng that f is a natural cubic sphne has mauy advantages We can spec1fy f exactly
by ﬁndlng a ﬁnlte number of constants because we only need to’ mlmmlze S( ) over a finite
dimensional class of functlons the NCS’s with knots at’ tz, mstead of cons1der1ng the infinite
dimensional set of smooth functlons Syla, b). Also, with an NCS there is an elegant algorlthm'

of how the mlIlllelIlg splme curve can be found by solvmg a set of linear equatlons
_}2,3.3" ,Elegant:Way_of Representing NC_S'_.

' The most elegant way of representmg NCS is the value second derlvatlve representatlon (Green
and S‘11vern1an,v 1994). In tlns method an NCS can be spec1ﬁed by its value and the second_
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derivatives at each of the'knotsti Let the spline have n equally spaced knots satlsfylng’
< tz <.l < tn: Deﬁne fz = f(t,) and y; = f"(t ) for i =1,2,...,n. For an NCS we have .
Y=Y = 0. Let f be the vector of (fi,f2,.--,fn) and v be the vector of (72,73, “5Yn= 1) .
For specification of the NCS with the help of f and v one needs to deﬁne two matrlces Q and

R usmg the knot values

Let h; = t,.H - f for = 1 2,...,n— 1. The Q matux is an n X (n - 2) matrlx with entries

'q”,z—l 2,. R ]—2 ..,n—l deﬁnedas

. ' o _1 : )

G- c= kil S
g = h sy
S
QG+1,j = hjo

for j = 2 3 ,n—1, and q” = 0 for |t — ]| > 2. The symmetrlc matrlx R is an- (n 2) (n—'2)"
- matrix w1th entrles ’I‘U, 1 ] =2,3,...,n—1, deﬁned as . S

'Ti,i;.%(hi—_1+h)for 1_23 _11.'

Tiitl = Tl = ghz,fOI' t = 2a3a_' .. )n -2

and Tij = O for Iz — j| > 2 Usmg these facts two nnportant results are stated in Green and_ '.

S1lverman (1994) whlch are glven by the followmg theorem '

Theorem The vectors f and 0% speufy a natural cublc sphne if the condltlon QT f= Rfy 1sf
satlsﬁed If the above COlldlthIl is satlsﬁed then the roughness penalty w1ll satlsfy
N r/fll(t)th’ _ 'YTR'Y SR
| A = Ikf
with K = QROQT,

It can be verlﬁed that the value of the cublc sphne at. any poxnt t is g1ven by (Green and

Sllverman) o o , ol .
g0 - ‘H")f"**i‘-t"“."”f' ;a—m S0{(1r 5 e (47 }

for <t<tz+1, 1_12 z,,—1_" S e (23)
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In m_atr"rx hot_atjoh; '(2.3) earr be written as - » .
(flar) flea)y o flan) =AF . (24)
where A is a matrix'of_ order Nxn Whose (')th ;Sw' is obtained as '_ : R
o t—t) (-t ti 1=1) tht o =)
L (E-t) -t -t [ t—,'t- SR ¢ AN S
wj,i+r = ( e i) —Il(_..._ l’.)(ﬁwl .) {(1+ I vz) éi+1ﬁ,i+1 +. (1 + %) sz+1} ;
L (b=t (b — t bt o =t )
and wj ='—( _ 1)(6”1 ){<1+‘ 5 Z)Cz‘+1,i'+ (14—%) Ci,z"}' v

for z"_='1,2',)..,i”- Li+1,...,n

for any t between tz and fz+1, wherc cij is the (zg)th element of R 1QT and N is the number :

of knot points. for whrch f needs to be estlmated
2.4 Selection of Smoothing Parameter for Spline Smoothing

Though splme smoothmg is a very popular non-parametr1c techmque for estlmatmg a regressron
function the performance of it’ depends on the choice of smoothing parameter So, the chorce
" of smoothmg parameter is the most essential task of spline smoothing. - There are dlfferent
‘methods for an automated selection of smoothmg parameter. The most widely used ones in
{requentist approach mclude the cross- vahdatron (CV) and the generahzed Cross— vahdatlon
»(GCV) methods. .- ' .

A 2".4_.1. CroS_s,—vali_dat_ion Method : .

The basic idea behihd Cv method is in terms of prediction. It uses the prihciple of “leave-
one-out” predlctlon The idea 1s to leave the data points out.one at a time and to select
the smoothing parameter a in equatlon (2 2) under whlch the removed data pomts are best

pred_lcted by the remalnl_ng data

Let f (‘ (¢, a) be the curve eqtlmate from all the data except Yi usmg a smoothmg parameter :

‘ value a. Then the crosq-vahdatron chorce of o 1s the value of o that minimizes the CV crlterlon
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'"CV"(a),.:,,%Z"{yief”(-i?(t;,‘a)}?. R (25)

An easier computatlonal form of CV criterion deﬁned by equatlon (2. 5) has been glven by
- Craven and Wahba (1979) ‘

Rl () F

where f is the sphne smoother calculated from the full data set ( i,y,-) with the smoothing
. parameter e and B( ) = (I+aQR lQT) Lo

- 2',4‘;2 " Generalized “Crossﬁ-—valida'tion appro_ach' |

Generahzed Cross- vahdatron (Cravan and Wahba, 1979) method is‘ a modiﬁe’d form of CV
gmethod It i is obtamed by replacmg Bn( ) in equatlon (2 6) by 1ts average value, “ltr.B(a)
Z{yl t’l.’a }2 .‘

n {1 - n“ltrB( )}?

GCV() (zn
Asin ordmary cv method in GCV method the smoothlng parameter « is obtamed by minimiz-
mg GCV score glven by the equatron (2 7) Theoretlcal arguments show that GCV produces
asymptotrcally best possrble chorce for o in the sense of minimizing the average squared error
- .at the desrgn pomts Also, GCV method has some computatlonal advantages over CV method
(Sllverman 1984) L ’ A

2.5 ConCluSion,

In this chapter we have dlscussed the roughness penalty approach to curve—ﬁttmg The most '
' lmportant consrderatlon in the roughness penalty approach is choosmg the smoothmg param-
‘eter. Two w1dely used frequentlst methods in this regard are the CV and GCV Both the

methods have some llmltatlons ‘The most serlous one is that though in smoothmg problem it

is believed that the true underlymg regression curve isa smooth one the CV or GCV approach
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sometlmes glves a smoothmg paramcter that produces an estlmated curve Wthh is very under-‘ _
smooth (w1ggly) Secondly, the baslc idea of CV or GCV approach is to choose the value of -

the smoothmg parameter a which m1n1m17es the CV or GCV. score But in some cases CV or
GCV score may be a monotone function of o, and in those cases no obv1ous solution is avall-
able. Thlrdly, in cases when the functlon CV or GCV has not a umque mmlmum a 51mp1e grld'
search is usually used to locate the global mlnrmum In such cases it is. not easy to determme
that how small the grld length should be so that the global minimum can be located From
this v1ew point CV or GCV is not automated method in the strict sense. Agaln w1th CV or

GCV approach we can Just estlmate and predlct the response as a functlon of the predlctor ‘but

we can not. test the hypothesls that whether the response predlctor relatlonshlp is 51gn1ﬁcant -

Considering all the limitations of CV or GCV approach it is desirable to have a more automatedv
approach of selectmg the smoothlng paramcter to get an estlmated curve which is not more
wiggly than the true curve 1tself and Wthh can provrde means to’ draw conclusmn about the

51gn1ﬁcance of the response—predlctor relatlonshlp
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Bayes1an Representatmn of Roughness Penalty Approach of
Curve F1tt1ng Methodology and Slmulatlon Studles

‘3.1 Introduction

In seeklng an approach to regresslon curve estnnatlon wluch can guard agalnst undersmoothlng, v
* we can think of a Bayeslan formulatlon of roughness penalty approach Also, in the Baye31an
framework of 1oughness penalty approach we can think of maklng use of the proposed conser-
vatlve prior. Because s1mulat10n studies show that the proposed prior, with suitably. chosen
 hyperparameter, performs quite well in guardlng against undersmoothmg in the case of snnple
normal—normal hlerarchlcal model In this regard first of all we need to deﬁne the Baye81an
formulation of the roughness penalty approach to curve-fitting. The current sectlon glves the

details of the Baye81an formulatlon of the roughness penalty approach

- The roughness penalty approach has stralght forward Baye81an representatlon Let y be the‘

response vector and z be the vector of the values of the design variable. In smoothlng problemv -

an adequate summary of the relatlonshlp between a 1esponse varlable y and a pred1ctor varlable N

T is prov1ded by the smoothlng model ' . _ ,
‘ y'f()+e‘@_“_._r:.,"‘».'_'(31)‘
where, € is usually mult1var1ate normal w1th mean vector 0 and the variance matrlx 02I _
Define n knots i1, .. i over the values of the de31gn vanable z. Let fZ = f (t ), so that

f= (fl, ,fn) be the vector of the values of f( ) at the knots. With f( ) bemg a natural

CllblC ‘spline with knots at t = a",, the penahzed sum of squares can be expressed as.

S == gy (u f)+Afo e

40




where f K f is the measure of roughness (Green and Sllverman 1994 Hastie and T1bsh1ran1
' 1990) In the frequentlst roughness penalty approach the goal is to estlmate f such’ that
S(f) is minimum. In Bayesian paradlgm there is a nice straightforward representatlon for thlS
. roughness penalty approach In this chapter we elaborate on the Bayeslan representatlon of
roughness penalty approach of smoothlng problem. ‘In Bayesian representatlon the roughness
penalty approach to curve—ﬁttlng can be expressed as a multlvarlate normal-normal hrerarchr- '
cal rnodel where the smoothlng parameter can be taken as the functlon of the random effects ,

variance component Hence m order to guard agamst undersmoothlng we have used the con-
| servative prior for the variarice component We have conducted simulation studies to see how
the proposed conservative prior can perform to guard against undersmoothmgT Also, on the
basis of simulation studies we have compared the. performance' of conservative prior and'that o
of unlform shrmkage prior (Danlels 1999) and Jeffreys’ prior w1th respect to guardmg agalnst_
’ undersmoothmg as. well as with respect to MSE of the estimated curve. We have consrdered

‘umform shrlnkage pr101 as the main competltor of conservatlve prior with respect to guardlng :
| against undersmoothmg since it can p10v1de some degree of guard agamst undersmoothmg due

to its property of shrmkage toward the ‘situation of no global heterogenelty in the data set.

' _ Finally, on the basrs of srmulatlon studies, a companson of Baye31an approach usmg conserva- -

tive prior and Bayesian approaches usmg uniform shrmkage prior and Jeffreys’ prlor have been
made to see how' each of the competltlve prlors perform w1th respect to the mean squared error

of the estlmated curve.
3.2 Bayesian VLRepr‘:esentation of Roughness}Pena'l_tyijApprOaCh

. Suppose, we have the data (yl,a:,)' i o= _l,2,...,n an_d the model y; = f(:rz) + €. Assume
that Yi ~ N(f(z ) 2). Let f(z) be a natural cubic spline Deﬁne distinct knots at z =
to,z = tl,. .,x = tp,a: = tpj1 over ‘the values of the design variable z ‘with f(to) = 6o,
ft) =01, ..., f(ty) = 0,,, ftps1) = p+1: Here, 60,61, . 9p+1 are unknown parameters with |
f( ) =0;; j=01,...,p+1 By deﬁmng the vector of parameters 6 = (60,01, . 9,,+1) at
‘the selected knots only we represent the true funct1on f (z ) w1th a lower dlmensronal vector
6. The main ‘advantage of such a parametermatlon of the true function f (z) is that we are
able to estimate the entlre function f(z) by estlmatmg a fewer. number of parameters For
. example there may be the cases where the number of desrgn pomts is over ‘several hundred or
even' thousand. In such cases 1t is not computatronally reasonable to estrmate f(z) at all the

design points. In such situations even 10 or 20 knots ca_n give adequate approx1mat1on to the
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- true curve In other words as long as smoothlng is concerned fewer number of knots can glve ’

the same level of ﬁex1b111ty as the case of taklng knot at each des1gn pornt

For a natural cublc sphne 1t is assumed that f ( ) is linear outside the boun’dary knots. Under
~ this assumptlon we can consrder the model (3. 1) to be composed of a llnear part and a smoothed

'part The model can then be wutten as_ .
oy ——ﬁo+ﬁ1x+f( ) B T C &)
Now, for s1mp11c1ty, we can assume that hnear trend has been removed SO that f (to) =0 and

f(tp+1) = 0. In this case; § = (01, .0y ) Under the assurnptlon that l1near part has been

removed rnodel (3.3) can be wrrtten as 1/ ﬁg - ﬂlx = f(z) +¢, or eqlnvalently,
-ig=ﬂm+ej‘ m(f..; o ee'

where g = Y = Bo — ,81:r Removmg the llnear part from the. model (3. 3) helps in deﬁnmg a
proper’ prlor for the pararneter vector 0. The smoothed part f(zx) and the linear part can be,
. estimated srmultaneously by Bayesran back—ﬁttmg algorlthm (Haste and T1bsh1ran1 2000). In
this study we have concentrated on estlmatrng the smoothed part f ( ) only Under the model
(3.4) we have p-dimensional parameter vector 0= (01,...,6,) to represent the true function
. f(z). In this case, we have f’Kf =0'Ko = f[f” ]Zdt as the measure of roughness of f. Thef '

penahzed sum of squares can now be expressed as ' S a

SU)%(ﬂ+fﬂy f)+AeKe o .,“ - @5)

| Slnce we r‘epresent' f(z) w1th the parameter vector 0 we estnnate f (z) only at the selected knot .
' pomts as 0 So, to estlmate the entlre curve we can use the method of 1nterpolat1ng natural

~ cubic spline (Green and Srlverman 1994) to have f(z ) AB, where A i is an n x p design matrrx '

_The computatxon of the matux A has already been dlscussed in section 2 3.3.
Now, for Bayesian_represen_tatlon we can write
G~ N(48,0°I);
where gjzﬁ (gl, .. ,‘?g,;)’. is the nx 1 response vvectorv. ‘ S.o; we can write' f = AG, and_the penalized
surnofs'quares@s_. ‘ R Lo o I ’ o
'.'S(f) (y A9)(y A0)+>\0K0 . -'>(3.6)
‘ Con51der the prior d1str1butlon for the parameter vector 9 as 9|T ~ N (0 T2V) where, V= K !
is a known p X P matrrx (K has been deﬁned in sectlon 2 3. 3) The hlerarchlcal model for the
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smoothmg problem (3. 4) can be expressed as -

‘yIHUNN(AOU ) I .
Kis ~N(OTV):‘-”E_ S e

2

The posterlor dlstrlbutlon for 0 glven 72, 0% and the data, is obtamed asl_

a(axo ) 10l
SR . ef'i,(@,—‘A,@)’(;;-Aﬂ)@-;}fo'v—la

: e—rz;%{(g.fAe)'(ngo)+g;e'v-lo_}'
where, 7r(0|72) is, the prior‘for 0. .

It can be eas1ly verlﬁed that thc posterlor dlstr1but10n of 0 is normal The Bayes1an estlmate )
of 6 is given by the posterlor mean  (or mode) of 0, Wthh can be obtamed by m1mm1z1ng
the ‘quantity Q (g - A0)' (5 - Ab’) + —;H’V 19 If we let A= 7, then Q = S(f), the
penahzed sum of squares So, mlmmmng Q is the same as mlmmumg S(f ) meanmg that the
Bayesian ‘model (3.7) is the exact representation of the roughness penalty approach of curve

fittmg For our model the smoothmg parameter is A = ——,— Since 8 ~ N (0, 7'2V), 2 determlnes :

the varlablhty among Os Smaller 72 corresponds to a stronger penalty and hence attempts to .

produce a smoother curve, whereas larger 72 attempts to produce an wiggly curve. From model
(3. 7) it is observed that i in Bayeslan paradlgm we express the roughness penalty approach as
hlerarchlcal model and we take the srnoothmg parameter ‘A as a function of the random effects.
varlance component 72 Slnce, in Bayesian approach dchee of smoothmg in curve est1mat1on
is controlled by the random effects varlance component 72 we can use the conservative prior for.
72 so that the chance of having an estimated 72 greater than the true 72 is low. Thus we can

have an estimated curve Wthh is not more w1ggly than the truo underlymg curve

For the full Bayes1an treatment of the roughness penalty approach we need to spec1fy pnors for
_ o2 and 72. There are many pos31ble chomes for the pl‘lOI‘S of random effect varlance component
72, Barry ( 199o) con31dered Jeﬂ'reys prior _]omtly for 72 and o2. Daniels (1999) considered uni- :
_ form shrinkage prior for the covariance matrix of random effects in normal—normal hierarchical
- model Though in his study, Daniels focused on the s1mple normal—normal hlerarchlcal model
it is possible to construct an intuitive version of uniform shrmkage puor for smoothlng problem
represented by model (3. 7) In any of the above cases, there was no or little attempts to guard

against undersmoothlng while estimating the random effccts 6, though 1t is de31rable for most_
| of the apphcatlons In this study our goal i 1s to suggest a prior for the random effect variance '

component 72 which can guard against undersmoothmg. That is, we would like a prior for 72
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Wthl] encourages smaller 72 and thelefore smoother f(z ) In other words we do not want f ( )
to be more w1ggly than the real f (z). In this chapter we have conducted s1mulat1on studies to
estimate the functlon flz ) by Baye31an roughness penalty approach usmg the proposed con- -
servatlve prior for 7'2 Also, besides using the suggested conservative pI‘lOI‘ we have. used the
uniform shrlnkage prlor and the Jeffreys prlor for the random effects varlance component T2

and have compared the results

3. 2 1 The Conservatlve Prlor for the Random Effects Varlance Component'
72 in Roughness Penalty Approach ’ o '

The goal of thls study is to ensure the smoothness of the estlmated curve in non—parametrlc '
regression. In 51mple normal~normal hlerarchlcal model 81mulat10n studies suggest that the
proposed coriservative pI‘lOI' can achleve this goal. The conservatlve prior suggested for normal—
normal hierarchical model can be extended for the smoothmg problem In the case of smoothmg ‘
we need to deal w1th the multlvarlate problem 1nstead of umvarlate ‘one, and we have to make
adjustment for the dlIIlGIlSlOIl of the covarlance matrix 72V in deﬁnmg the conservatlve prior

for 72, In smoothlng problem we have c IR
| BT (VTR AN

. 0|T2 AN N, (0 TQV)

" The conservatlve prlor for 72 can then be deﬁned as .'

ro?) o (3.8)
S ez, +T2V|p,~ -

The denommator pin the exponent has been taken to adjust for the dimension of the parameter'

- vector 6 to make the pr101 comparable to the same one in the univariate case (simple normal—
normal lnerarchlcal model) So, the full Bayesxan model for the smoothlng problem (3.4) can
be written as ‘ o o ' ' '
716,0% ~ N(Ao 021 n) -

9|r2. ~. N(0, ’TZV)

T g —
S |03I +T2V|P L

where 7 (o ) is the prior for o? Wthh has been taken to be a un1t 1nformat1on inverse gamma ‘

distribution centered at one
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' 3 2.2 Posterlor Dlstrlbutlons for the Model Parameters Under Conservatlve
 Prior. - ' ‘ ' '

" . For the poéterior ihferenee 6f the model parameteré we. heed the coriditional or 'rharginal ~'p'oste-
- rior distributions of the model parameterb 0 a? and 72. The JOlIlt posterlor dlstrlbutlon of 6,

o2 and T 1s obtalned as L

w(e,va%ﬂw) c,xj_f('me; A)n(Blr (o) (r2lo?)

iz - A6) G-A0) 1 S - 1. o
o ' (02) o B l‘ L () oL, + 72V e - :
B o - ‘ S (3810
where, ¢(0?) is the normahzmg constant for n(r 2|02) whlch is needed to obtaln the _]omt prior

as 7T(7'2 02) =n(r 2[0 )m(a?) and hence to make the joint posterlor (3.10) a proper probablhty
dlstrlbutlon Propriety of the JOlIlt posterlor dlstrlbutlon of the model pa.ra,meters is essentlal _

for vahd inferences about them The normahzmg consta.nt c( ) is obtamed as

e T |02I + 7-2V| _ .

/ A rd 2. (3.11)
A ““II +%V| Coo e T

By makmg the substltutlon u= —g, we have 72 = oy = d’T = ozdu Substltutmg these facts

. 1n the right hand side of the expresmon (3 11) we have

, oo - : o :

N2y ‘ 24

- .c,(a ) = /('02)a+1' T ma,d,u
IR ’

[RVTE




Now, from equat10n(3 10) the condltlona,l poste1 ior dlStI'lbuthIl of 9 glven 02 72 and the data
. can be’ derlved as ' ‘

'._f"w_(bk|'q2,_+‘2y,gj om0 Aﬂ)e';j—go'v g
S - ¢ ﬁr{(y AQY (§-A8) +" ov 10}
- =‘A"'eA'27,1‘f{(y A0)’( +A0’ lo}
,\ _ el“;@,%Q L

where, A= g; and Q 'b ( A0) ( A0)+/\0’V’16 The quadratlc form Q can be decomposed ‘
Q= u[r H() ]y+[o G y] AA+AV )[9 G( y]
= W(,\)+U(a)

~ where, H()) '.'A(A'A+ )\V'l)‘lA" a.nd G( \) = (A"A+XV,._1)'_1A’. Therefofe, the conditiohai

2

posterior dlstrlbutlon of 6’ glven 0 , 72 and the. data, is

‘W(9|17) x e 2—7[0 G,\)y] (' A+ l)[0 c,\)y] L :.' .(3.12)

_~-;From equatlon (3 12) it can easlly be verlﬁed that the postenor dlstrlbutlon of 0 is normal w1th :
. mean vector 0= (A'A + )\V ) 1A’y and covariance matrlx (A'A+ /\V D12, ie.,

9|a T,yNN[G ) A'A+,\V )‘2]

The condltlonal posterlor dlstrlbutlon of a? glven 0 7' and the data is -

1

n(a2|,\,g) o 2 né—;ﬁ(ﬂ—m"(ﬂ—,«'o) (i)E ,e'-;z, 1 1
O e T 7). o PR A
R _1._ 2+ —#{(§~A0)'(§_—'A0)+1} : 1 3 S
= 5 ] e s . 5 Lo (3.13).
a Joo e ' |021 +72V| (a) : R

Finally, the conditionel posterior dist;ibu_tion of 72, given 0, o? and the da.ta., is

r(r20G) o gm0V . AT
_ ' L (7'2)2" v' |02I +7’2V| S
From equatlons (3. 12) (3 13) and (3 14) it is observed that the condltxonal posterlor dlstrlbutlonb
of 9 has closed form but those of o2 and 72 do not have closéd form. So, ‘we can use Gibbs
sampler for posterlor snnulatlon of 0, but for o? and 72 we need to use the Metropohs—Hastmgs

" algorithm to draw posterlor sxmulatlons




.3 3 Performance of Conservatlve PI‘lOI‘ 1n Smoothlng Problem

Slmulatlon Studles

As in the case of simple normal—normal 'hierarchical model simulation studies have been per’-
. formed in'smoothing problem also to demonstrate the performance of conservatwe prlor in th1s

‘area. For 51mulatlon studies we have conmdered the followmg situations:

i

| (1) s1mulat10n studles w1th large sample 81ze (n 111)

(i) sxmulatlon studles w1th small sample size ( =23) ..

For each of the above two cases we have cons1dered two d1fferent values of p (the d1mens1on of

mean vector 6) as:

(a) pzlll

By

| ~ For n = lllandp = 10'the.‘kde‘signv varlablehas }lb'een ta_l(en to bez = &: i = 0,'1,.'..,110‘

. 100 . :
and the equidistant knots have been takén at t =0,z =1,z =2, ..., z = 11. For n =111
and p = 5"the design variable z has been defined to be z = Q%%@l, 1=0,1,...,111 and the_

equidistant knots have been taken at z = l 833333 xky k=0,1,...,6.
- For each of the above 4 cases data have heen generated as:

(i) we have fixed the values of the unknown parameters o? and 7' (02 "———'.1 7'2:1)
(i) glven the value of 7' we have generated 100 dlfferent 0 vectors as 6 ~ N (0 T V) .; '

© (iii) for each of the generated ] vectors and g1ven o? value we have’ generated a data set (¢
A vector) as g ~ N(A0 azIn) ’ ' : '

From the gencrated data ‘the model parameters 0 o? and 72 have been est1mated by usmg
the Bayes1an technlque that makes the use of the proposed conservatlve pI‘lOI‘ with a cho1ce’
of a = 5. For paramete1 estimates we have run MCMC simulation technlques We have used
 Gibbs sampler for posterlor sxmulatlon of 0 and random—walk Metropohs Hastmgs algorlthm,

 for g2 and 72
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3.3.1

‘ Moni‘to‘rivn'g the’tCon'\_rerg‘_e'nce' of MCMC Simulati_on

For momtoung the convergence and m1x1ng of the MCMC chains for both o? and 72 ‘we have

plotted four dlfferent chains for each of them. For updatmg 0 and 72 we have used exponentral

scale. Flgures 3.1and 3 2 dlsplay four different MCMC chains for each of o2 and T2, respectlvely,

obtalned by usmg the same data set. For different chalns of each parameter widely dlspersed

initial values have been used. From Figures 3.1 and 3_.2 we observe that all the chins of each ‘

Figure 3.1{ Plots of MCMC chains for '72 with_differ'ent starting pointé' |

¢ Tt
o o
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< , i
4
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[0 O
T T T T T S P I T
0 500 1000 1500 " 2000 2500 . 0. 500 1000 -+ 1500 2000 2500
iteration iteration - o

© (0 slatingvaiue=102 * -

" (d)starting value=0.002

of the'I‘)araﬁmeters exhibit good mixing Since none of the chainq‘ of any of the‘parameters kept

moving slowly around any particular reglon of the, target dlstnbutlon for many iterations. It is

also observed that though dlﬂerent chains f01 each of the parameterb starts at dlﬁ'erent initial
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Figurev3.2: Ploté of MCMC cha._i»rk‘lsv_for o? w‘ith'"‘different 'starting points - -.
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) LI T ] T . 1 T ] L o T T T T o T
0 © 50 00 150 2000 %00 0 50 1000 1500 - 2000 - 2500 -
' . Rerion T . '  iteration
(@) staing value=3.002 . . . {b) starting value=2,002
LR v
0 - 0 - '

NOURER- IR S T I

iteraton - - ‘ o S " iteration
(¢) starting value=1.002 ’ R ' ) _* (d) starting value=0.002

- values all the chams for both 0 and 72 have stablllzed to very “close to the respectlve true

‘values after vcry few 1tera,t10ns In all the cases the acceptance rates are found to be betweeni‘
45% to 50%. B '

3.4 Output_Analysis L

_ Since the main goe,l of the proposed _conservative prior is to_ control the undersmoothing, Le.,

to control the over es__tir_nationﬂ.of. the random effects t;iriaﬁce_ component 72, in'this study



we have est1mated the same true T value by usmg 100 different data sets, Wthh have been
s1mulated from the distribution with the same true o? and 72 values (12 .— 1,0% = 1). Details
of data s1mulatlons had been elaborated earlier i in sectxon 3.3. For estlmatlon of parameters :
by Bayesran approach we have cons1dered the proposed conservative prlor - We have adopted
MCMC simulation to generate draws from the respectlve condlhonal posterior d1str1but1ons

By momtormg the output for: several 1ndependent cham for each of the model parameters we

~ have found that for both 72 and 0 the MCMC chains converge after very few 1terat1ons So,

for posterlor mferences about the model parameters each time we have run the MCMC cham '
for each of the parameters for 1500 1terat10ns Flnally, we have thrown away first 500 iterations -
. as burn—ln of the chaln and used the remalmng 1000 lteratlons for 1nferent1al purposes To"v
estimate o2 and 72 we have used both the posterior mean. and thevposterlor rnode.,, For 6

2 T 2 and

posterior mean and mode are the same because the posterior distribution of 0,given o
the data, is multlvarlate normal Flgures 3. 3 and 3.4 d1splay the hlstograms of 100 estimates of
the same 72 value (true 2 = 1) obtalned by usmg 100 dlfferent data sets for large sample size
(n = 111) and for 10 mterlor knots (p =10).. Estlmates in Figure 3. 3 are based on posterlor

 mean and those in Flgure 3.4 are based on postenor mode

_ Flom Flgures 3.3 and 3. 4 we observe that for both cases not too many estlmates of T2 exceed the
true 72 _value. However in the case of posterlor mean the number of 2 estrmates that exceed
the true r2 value is shghtly more than in the case of posterior mode (20 in case of mean versus -
9 in case of mode). This is teasonable because mode is insensitive to- any poss1ble outliers.

_ However, deciding about the value of the hyperparameter aon the basis of posterior mode may

2

not be sufficient for guarding agamst undersmoothmg, espec1ally when 7 is relatively smaller_

“than o2. The d1sadvantages of ‘using the posterlor mode in the context of undersmoothmg have

- already been dlscussed in sectlon 1 6 of chapter 1.

Regarding 02 it 1s obs'erved that estimates are very ‘close'to the true value'and the estimates'do .
not differ too much whether we, use the posterior mean or mode TlllS is because the posterlor
distribution of a? is not so pos1t1vely skewed as that of 72, This p1cture will be more clear if we
look at the Figures 3.1 and 3. 2 From each plot of Flgure 3. 1 it is observed that there are some '
~ big upward jumps in the posterlor s1mulat1ons of 7' mdlcatmg hlghly positive skewness of the
posterior dlstrlbutlon of 72 T whereas such blg upward jumps are absent in each plot of Flgure 3.2 .
»'of posterlor s1mulat10ns of 0'2 The hlstograms of the estlmates of 02 based on posterlor mean_ :

» 'and mode are dlsplayed in Flgures 3 5 and 3. 6 respectlvely
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Figure 3.5: Histog‘rarnvj of estir_nated a? based on posterior mean
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Figure 3.6: Histogram of estimated o based on posterior mode
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From Figures 3.5 and 3.6 it is observed that the spreads of the both hxstograms are almost'
same, but the hlstogram of the estlmates of o2 based on posterlor mean is centered around

1.05, whereas that ba.sed on posterlor mode is centered around 0. 95

Flnally, since the main purpose of smoothmg problem is to estrmate the curve f (z) ltself wluch
in our study is parameterlzed by 6 vector, we are mterested in drawmg 1nferences about 0 vector
also. By mtroducmg the proposed conservative prlor we attempt to estuna.te the 8 vector so
~ that the estlmates of the components of 6 vector are not more variable than the true values of .

the component_s of 8 vector, In our sun_u_latlon study we have generated 100 different 6 vectors
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. and. for 'each 0 vector we have 'generated a data set. Finally, we have used each generated data

: set to est1mate the respectlve 0. Now, for our estlmatlon problem we have parameterlzed the

"true curve f () wrth a lower dlmenslonal vector 6, but in practice it is desirable to estimate

. the entlre curve. The estlmatc of the entire curve can be obtalned by using the- method of
1nterpolat1ng natural cublc sphne given the curve estlmate at the selected knot pomts "This is
obtained as f(z) = A0 Flgure 3.7 dlsplays the plots of the true data the true curve as given

by f(z) = A0 and the entire estrmated curve for four randomly selected 6 vectors out of 100 of

them. ' ' ' ' '

‘Frorn the plots (v‘), (b) and (c) of Figuref’)? we observe that the'estim’ated curves are ('iuite :
smoothed and they track the respective underlymg true mean curves very closely On the other
hand, if we look at the panel (d) of Frgure 3.7 we observe that true curve is wiggly but estlmated_

’ curve is smoothed In this though the estlmated curve could not track the true underlymg mean

- curve very closely in some data ranges still it has captured the key features i _,m the data set it

represents Actually, if there are'. too rapid'fluctuation in thekdatathen the true curve may‘ ’
_become wrggly but the ‘goal of smoothlng problem is to estimate the data in such a-way that
‘the estlmated curve is a. smoothed one and can pick the key’ pattern in the data set. All the
plots of Flgure 3.7, espec1ally the last panel, conﬁrms the ability of conservatlve prlor to guard

agamst undersmoothmg in estlmatmg the true curve in the smoothmg problem P o

Agaln as 1t is already known in hlerarchlcal model and in smoothlng problem the key concernv
“on the part of an estlmatlon method is its ablhty to detect the situation of no heterogenelty

So to reﬂect the ablhty of the conservatlve pr10r to detect the srtuatlon of no heterogene1ty we

' have plotted the data va.lues, the true underlymg mean curve and the estlmated curve on the =

“same plane in Flgure 3.8 when 72 = 0.01. The S1mllar plots for the uniform shrmkage prior and .
for the J effreys pI'lOI‘ for the same data sets used in the case of conservatlve pr1or to constructv ,

' ~ the Flgure 3. 8 are dlsplayed n Flgures 3.9 and 3. 10 respect1vely
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Flgure 3.9: Plots of data values, true mean curves and the estlmated curve f ( ) obtained by -
'usmg umform shrlnkage pI‘lOI‘ when 72 = 0.01. - R ‘
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Flgure 3.10: Plots of data va.lues true mean curves a.nd the estlmated curves f (x) obtaihedby :

~ using Jeffreys prlor when 7% = 0 01

o . . o . . )

> >
— S .
) % © A
< © &
- T
v . . g ] °
- ° 0% -~ Tecuve | - . o ° T - Truecurve - : ] :
o —_— i . [ . ) o :
9 T Esimatedcuve . T . . —— Estimated curve ‘ o -
. ° . . . . . &
T T T T T T ) T T T T T T
] 2 4 6 8 10 - 0 2 4 6 8 10
3.10(a) ‘ 3.10(b)
. n
L N ° - o .
. ° .
. 0® o ©° o o °%
o
- L) : o o ©
° .o ?% 00 % o4 o, . ® °
> - ° ® » - o 000 o‘.° o
= S~ . o P At B it - o
= = e o L4 o‘_ueo—————ﬁ’(;:hvé
= ~ % . o @ o B
= = % o o° ‘o © 6" o . ,° o
. T o0 o o o9 o o %
: €0 - o’ o °°
' o . . . % - R E ) . ° % . o.
- -~ True curve - o o . ° - e T Eruecun:je, S0 B .
L Estimated curve o o : . stimated curve o ° )
i T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 '8 10
- 3.10(c) ' . ) Do o X 3.10(d) .

_.The plots of the Frgure 3. 8 show that- all the est1mated curves track the respectlve true under-

lymg curves very. closely, and none of them is more w1ggly than the correspondlng true’ curve. -

‘Also, plots of the orlgma.l da.ta valucs show that there is almost no global variation, as it should -

be for a true 72 value close to'0, in the data set and the estimated curves have plcked up thls '

feature of the data sets very well Now by comparlng the plots of Figures 3. 9 and 3. 10 ‘we see .

" that the conselvatlve prior and the unlform shrlnkage prior produce very similar results for 3.

out of the 4 selected data sets (panels (a), (b) and (d) of both the Figures). But for the data
set corresponding to the panel (c)'the cstunated curve 1n the case of uniform shrinkage prlor is
not so close to the true curve a,s it is in the case of conservatlve prior (plot 3.8(c) versus plot
3.9(c)). For this partxcula,r data set the estlmated curve seems to be more wrggly than the true
curve-in the case of unlform shrmkage prlor whereas the conservatrve pI‘lOI‘ has produced a -

smoothed estimated curve wlnch also ‘tracks the true curve very closely The ‘picture is worse '

_for 3 out of 4 da.ta sets when Jeﬁ'reys prior is used. Plots 3. 10(b) 3.10(c) and 3.10(d)- show

- that the estlmated curves are far more w1ggly than the correspondmg true curves. So, we can ‘
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- Figure 3.11: Plots of MCMC chains for 72 with different starting points when p=5
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: conclude that 1f undersmoothlng can not be reasonably controlled we may get too w1ggly and

less a.ccura,te estlrnated curves

N To check whether the use of conserva.tlve prior produces s1mlla.r results in dlfferent s1tuatlons
we have also analyzed the s1mulated data for large sample size by specrfylng fewer number of :
knots (5 instead of 10). Flgure 3.11 dlspla.ys the convergence plots of MCMC chains for 72 w1th

dlfferent startlng valucs S

| _leferent plots of Flgure 3. 11 reveal that though dlfferent chams stalted with dlﬂerent initial

- ~values all ‘the chains have stab1llzed at the same level after very few iterations. Also m1x1ng of

- MCMC chains looks vcry good. Sumlar conclusmns can be drawn about the convergence and

m1x1ng of the chalns for o2 (Flgure 3. 12)
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Regardmg the performance of conservatlve prior to control thc undersmoothmg in estlmatmg
9 vector m case of 5 knots we can conclude tha,t the proposed pI‘lOI‘ can perform equally well

as it does in ca.se of 10 knots Flgures 3 13 and 3.14 conﬁrm thlS fact

Fjgure 3:.13: : Histogram;of estimeted 72 based on ‘p,o'sterior mean while us_ing' fewerkn'otS'(p%S)

Frequency‘

Figure 3.14: Histogram of estimated 72 based on posterior_ mode while using fewer k‘nots (p=5) ,
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If we IOOk‘at the histOgram of ?2 based.on the :posterior mean (Figure 3‘13')7 and that based on
72 is centered around 0.5, which i is

poster1or mode (Flgure 3. 14) we observe that in both cases 7
very much s1m11ar to the case when we used 10 knots mstead of 5 knots About the estlmates
of o2 similar conclusmns can be drawn as in the ‘case of usmg 10 knots except that for’ both

: 'posterllor mean and poster_lorbmode the hlstograms of 62 are centered around 1.05 instead of

0




105 in case. of posterlor mean and 0 95 in case of posterlor mode when we used 10 knots :
(Flgures 3 15 and 3 16) o

Figure 3.15:_.Hist'o'gran1 of estimated o2 based on posterior mean_rrhen p=>5 |
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So, in general'uve can co'ncludelthst the'pr‘oposed; conservative prior performs quite well, irre-
~ spective of the number of knots used, in controlhng the undersmoothmg whlle estlmatlng the '

~true regressron curve by Bayesxa.n roughness penalty approach

Finally, to see how the proposed conser vatlve pI‘lOI‘ performs in estimating the true data in- the .
- case of uslng fewer knots we have plotted the true data values and the estlmated curves on .
the same plane for the same data. sets we have used in the case of 10 knots to construct the

: Flgure 3. 7 in Flgule 3 17
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- The plots in Flgure 3. 17 reveal that the estlmated curves are srnoother than those in Flgure 3. 7
- Especially, if we look at the plots ( ) and (d) of Flgure 3.17 we observe that the estlmated curves
:can not track the true curves as closely as they did in Flgure 3. 7 So, it can concluded that

using too few knots may produce too smooth curves which can not pick up the key data feature .

as well as the estlmated curves obtamed by usmg sufﬁclently large number of knots can do.

3. 4 1 Performance Analys1s of Conservatwe PI‘lOI‘ 1n Smoothmg in. case of
Small Sample size (n = 23) ' :

As mentioned earlier in Section 3.3, to give strong footing to our conclusion about the perfor-

- mance of the proposed conservative ’p'rior'in smoothing problem we have performed simulation

studles for small sample srze also. In small sample size case we have consrdered a sample s1ze

of n = 23 For n= 23 the two dlfferent cases are:

(1) p’;l(')‘,'i.e., we have_considerele in_terior knots - . -

+ (il) p=5, i.e., wehave considered S’interi‘or knots

- For case (1) the desrgn values have been taken to be =35 i=0, 1,...,22 and the eouidistant 7

i
knots are taken at z =0, :r =1,...,z = =11 For case. (ii) values of « are taken to be z =
%3—31, ) 0,1, ,21 and £ = 11, and the knots are taken at r = 0 x 1. 833333,z = -

1x1833333 T = 2><183333 .,93-—10><1833333~11

- For n = 23 'and p= 10 the COnvergence plOts of 4 indepcndent MCMC chains for 72 '.when true
72 value is 1; generated from the same data set w1th 4 dlfferent startmg values are dlsplayed in
‘ Flgure 3. 18 e - : ‘

- -Frgure 3.18 shows that all the chams for 72 converge to the same level after few 1teratrons and
all the chains exhibit good mlxmg Note that the j Jump srze in this case is 0.80 for 72 ; and for
this jump size the acceptance rates have been found to be between 48% to 50%.

For o? the convergence plots are displayed in Figure 319 Simllar conclusions can be drawn
about the convergence of the chains for 02 as was drawn about the convergence of the chains |
for 7’2 The jump 51ze for updatlng a 1s 0 60 and the acceptance rates have been found to be.
. between 48% to 50% j; Ce
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.Figufe 3.18: Plots of MCMC :chz-Lins for 72 with different starting points when n=23 and p=10
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Figure 3.19: Plots of MCMjCc:hai'n_s' f(v)r_a2 with dif'f}erent. starting pdiﬁts wheh n=23 and p=10
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) So ﬁnally for dra.wmg pObteI'lOI' 1nfe1ence about 'r and o? we ha.ve run ea.ch cham of both the «
parameters for 1500 iterations of whom ﬁrqt 500 1terat10ns have been dlscarded as burn—ln and
the remammg 1000 have been uqed for 1nference purposeq Figures 3 20 and 3.21 display the
histograms for the estxma.tes of 7'2 based on posterlor mean and mode respectlvely, when true '

72 value is 1 obtained by using 100 dxﬂ"erent simulated data sets.

- Figure '3.2'0: H/'istogran‘l, of e_stirnated 72 based on pOSterior rrrean for n=23 and piIO
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From Figures 3.20 -‘anvd ‘_32.21 we observe the simil‘arpicture as,.we did in ease of large sample
size. ‘ o

Again, for n = 23 and p 5 the correspondmg hlstogram% are dlsplayed 1n Flgures 3 22
and 3.23. o ‘ '
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: f Figure 3.22: Histogram of estimated 72 based on posterior mean for n=23 and p=5 o
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" From Figures 3. 22 and 3. 23 we see tha,t in th1s case also the conservative pI‘lOI‘S can perform'
very well in controllmg undersmoothmg while estlmatlng the true curve in smoothing problem.
So, i in general we can conclude that the proposed conservatlve prlor performs reasonably well '

in guardmg agamst undersmoothmg m non-para.metrlc regress1on curve estlmatlon problem

Fmally, to see how the proposed conservatlve pr1or performs in estunatmg the true underlymg'
curve and in (‘apturmg the key data feature in the case of small sample s1ze we have plotted
the true curve, the data values a.nd the estunated curves on the same plane for the 4 randomly‘ _

selected data set in Flgur(,s 3 24 and 3. 25 for p = 10 and p = 5 respectlvely
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Figure 3.25: Plpts of ‘tvhe true curves, Vdata"valﬂes.and the estimaited curves . f (z) when n=23
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' Plots in Figure 3.24 reveal that for the'selected data sets the Bayesian roughness penalty
‘approach with the proposed conservative pr1or seems to perform qulte well in estlmatmg the

~ true regression curve By havmg a comparatrve look at the Flgures 3.24 and 3. 25 we observe

the same picture’ ‘as we-did in the case of large sample 51ze ~So, in general we can conclude' -

that 1rrespect1ve of sample size usmg too few knots may produce too smooth estlmated curves
which may not be able to capture the underlymg feature of the respective data sets very well
. as they can do in the case of using sufﬁuent number of knots Actually, it 1s always reasonable

to use sufﬁcxently large number of knots in smoothmg problem

: 3. 5 Compamson of Results Obtalned by Usmg the Proposed'
o Conservatlve Prlor Wlth those Obtalned by Un1form Shrlnk- '

age Prlor and Jeffreys’ Prlor

As we mentloned earher that thls study has been almed at suggestmg a conservatlve prior

that can guard agamst undersrnoothmg since in many practlcal 81tuatlons undersmoothmg is

cons1de1ed to be a more serious error than oversmoothing. So, in this section we have studied -

-the comparatxve performance of conservatlve prior and that of umform shrmkage and Jeffreys ‘

pI‘lOI‘S with respect to the issue’ of guardmg agamst undersmoothmg

‘Another 1mp01tant 1ssue in smoothmg is that in case of usmg conservatlve leOI‘ we force the
 estimates of random effects ¢ to be close to each other. By forcing the estmlates to be closer
we can reduce the var1ab111ty among the estimated 8 values but thlS fact may increase the
bias in the estimated curve So, one obv1ous question is that how much we gain (or lose) inl”
terms of mean squared error (MSE) by usmg the conservatlve prior in comparlson with the
two competltlve priors— the umform shrmkage prior and the Jeffreys’ pI‘lOI‘ To check this fact
we have compared the estlmated MSE of § for conservatrve prior with those for the umform
shrmkage and the Jeﬂ'reys prlors usmg s1mulated data.. For smoothmg problem, whrch 1s a
multrvarlate normal—normal hlerarchlcal model the uniform shrmkage prior is the specral case :
~ of conservative prxor with a = 1, but the derlvatlon of Jeffreys’ prior is not S0 stralghtforward

However Barry (1995) derlved the Jeﬁ'reys pI‘lOI‘ for smoothlng problem
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. 351 | Jeﬁ'reys’ Prior;'for 'Smoothing Proble'm

A Ba.rry (1995) derlved chfreys prlor Jomtly for o? and 72'in smoothmg problem For deﬁnmg
the Jeffreys prior he cons1dered the smoothmg model to be '

y|9 ~ N(AHUI") -

”.(?IA,%' N(0, AV) e (31)
. where, A = = %; He found t_he Jeﬁ'reys’ prior for U_Q_and"r? jointly in smOOthing problem to be

- m(o 2 )\) o —§— R()\) where"m',('z' r(V) R(A\) = (n—Fm—'p)[tr{Hz()\)};ljmfp].—[tr{H(‘)\)}+ .
-m —p]? and H(\) = AAA+ VT }A' For sinoothing model '(3.4), r(V) = p and hence
'x_R(A —n[tr{HQ( }] [tr{H( )}]2 B B UL

Now, it can be ea.s11y shOwn that the condltioﬁal posterior distribution of 0, ‘given.az_, T2 and
~ the data, is normal w1th mean’ vector 9 = G(\)y and covariance matrix (A’A + AV-hH~le?, '
whereG( )= (A'A+)\V 1) 1A" o SR
The conditional posterior density vof a? given A is obtained as

, 7r(02|)\,y) o ‘(_0—2)—@61 %’N Inv — gamma (5 7)

- where, W=y'[1—H('é\)1y§(’. B

. -»Fmally, the margmal posterlor densrty for Alds

Noe

44+ AV-EWE

)

The conditional posterlor dens1t1es for 0 and 02 have closed forrn So, we can use Glbbs sampler
. to draw posterior 51mulat10ns for 9 and o? But, we have to use random walk: Metropolls—
- Hastings algorlthm to draw posterlor s1mulat10ns for A Once we have the estlmate of )\ we can

get the estimate of 72 as 7'2 —g—)‘—; .
3.5.2 Comparison of Results: Simulation Studies

_ Slmulatlon studles have been performed to compare the results obtalned by using the compet-
itive priors in smoothmg problem w1th respect to guardmg agalnst undersmoothmg To see

whether the proposed conservatlve pr101 can perform 1ea,sona.bly well in case of both large and.
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. Figure 3.26: 'Histoézir’ns of 72 for different priors when va2 =5and n =111
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small - T2 valuee, we have conducted our s1mulat10n studlee for 72 "5 and 2 = 0. 01 while
. keeping the true g2 value ﬁxed a.t 1. For the purpose ‘of comparison we have used a =35 for
the conservative prlor Hlstograms of 72 for conservatwe prior, umfoun shrmkage pI‘lOI‘ and

v Jeffreys pI‘lOI‘ based on 100 dlﬂ'erent data sets are plotted in Figures 3.26 and 3. 27, respectlvely

for 72 = 5 and 72 = 0. 01 when n = 111. The same for n = 23 are plotted in Flgures 3 28
' a.nd329 ' IR . : . .
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'_ -‘Fvigure 3._28:. Hi's't'og'rams‘of 72 for differentprior‘s when 72 : 5and n =23
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’ _Histogramsy in Figure 3. 26 reveal that the conservative -prior can guard against undersmoothing .
most eﬂ"ectrvely Jeffreys pI‘lOI‘ produces the worst result in this regard "A similar picture is
observed in the case of no heterogenelty (% = 0 01) (Flgure 3. 27). Tt is also observed that in -
the case of low T undersmoothlng is very severe for the uniform shrmkage and the Jeffreys
priors with more than 50 and 80 out of 100 estlmates of 72 larger than the true 72 value for the
: umform shrmkage prlor and the Jeﬁ"revs prlor, respectively. For small sample size the’ plcture .

.18 qlmllar as it is, observed in the case of lcuge sample 51ze (Flgures 3.28 and 3. 29)

Now, to see the performance of the three competltlve priors in terms of MSE of 6 we ha,ve also
used the 31mulated data to compute the dlfferences between MSEs obtamed by conselvatlve prlor
“and those obtalned by umform shrmkage prlor and Jeffreyb prior for 100 data sets. Fmally, o

we have counted the numberiof times that MSEs of 6 in the case of Jeffreys’ and unllfor_m
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- Figure 329 His_to'g"vfa'm'sr of 7:2__fqr differént pfioré when T2 = 0.01 and n= 23

" . Frequency .’
0. 20 40 60 80

. | | | I - I 1 !
000 008 020 030 040 050 060 070 080
C A . )

(a) Conservative prior. "

20 40 60 80

.Frequency .

T T T T T 1
_0.00 009 020 0.30 040 050 060 0.70 0.80
. . A

o

.- (b) Uniform shrinkage prior

20 40 ‘60 80

v Fr;equency g

o]

) B - Lo L . LI 1 | o T T
1 . o C - 000 009 020 030 040 050 060 070 080

(c) Jeffry’s prior - .

T4




, shrlnkage prlors exceed the MSES of 0 obtalned by conservatlve prlor It can be mentloned that
_in calculatmg the MSE of 6 we have averaged over the knots, not over the repeated data set,
ie., the MSE of 0 is ob‘ralned as ' ' '

s 111
MSE(G) 52 (0 - 67,

i=1 .
 where p is rhe, nurnber of _kn()ts used to estinra'pe the_regression curve.
Tables 3.1, 3.2 and 3.3 represent_.‘ those counts for 72 =5, 72 = 1 and _72'= 0.01, respectively.

Table 3.1:: Table summarrzlng' the number of trrnes that MSE(‘A) under Jeﬁreys prlor and
‘ unlform shrlnkage prior exceed those under conser vatlve prlor out of 100 occasions when 7' =35

#[msete #[mse(H

Sample Size )uisp >mse(0)con) )sers >mse(6) con)
AN S & B o 34 R .' 43 - :
123 o 19 33

'Table 3 2: Table ‘summarizing the number of times that MSE(H) under Jeffreys’ prlor and
unlform shrmkage prlor exceed those under conservatlve prior out of 100 occasions when =1

[Sample Size #[ms_e(O)usp' >mse(#) con) #[mse 0) Jeff >mse(0)con]
111 o 3T S PR Y
23 T3 | 48

. Table 3. 3: Table su1nmar1z1ng the nurnber of tlmes ‘that MSE( )under Jeﬁ”reys prior and uni-
' form shrmkage prlor exceed those under conservatrve prior out of 100 occasions when 72 = 0 01

Sample Size

#[m’ée(é)m ;rnse(B)con]

#[mse(6) jepy >mse(6)con]

111

47

63

96

23 97 .

Frem Table 3.1 we o_bsérve that for 2=5 unifprrn shrinkage p.rivor and Jeffreys’ priers perform
For both
“large and small sample sizes the count that MSEs of ] obtalned by unlform shrinkage prior

better than conservative prior in terms of MSE of 6 irrespective of sample size.

~and Jeffreys pI‘lOI‘S exceed ‘those obtamed by conservative pI‘lOI‘ are less than 50 out of 100

Qccasrons. But: the prcture is reverse for smaller 7 .(7' =0.01). In this case of no heterogeneity

N



T er?

the performance of the conservatlve prlor is far better than that of Jeffreys pI‘lOI‘ 1rrespect1ve

" of sample size. For large sample slze unlform shnnkage prlor and conservatlve prlor perform -

similarly, but for small sample size the conservative prior performs much better than uniform
shrinkage prior.. When 72 is of equal magmtude of o2, the error varlance, unlform shrmkage
prior still produces smaller MSE for more than 50 occas1ons out of 100 occa31ons but the chance
that the Jeffreys prior produces higher’ MSE than the conservatlve prior are 52 and and 48

respectlvely for la,rge and small sample size’ out of 100 0ccas1ons

vAgain, counting the nuinber of' timesthat.MSEs of 0 for'uni'form shrinkage'prior and Jeffreys’
_prior exceed those for conscrvetive prior can not give any idea about the magnitudes by Which
the MSEs of 6 for uniform shrinkage puor and Jeffreys’ priors exceed those for conservative. prior
' 'a,nd vice-versa. So, to reflect thls picture: we ha.ve constructed hlstograms of the differences of
MSEs of 6 for each pair of the competltlve prlors Flgures 3 30, 3 31, 3. 32 3 33, 3. 34 and 3 35
dlsplay these hlstograms

~F1gure 3. 30 Hlstograms of dlfferences of MSE(@) for pairs of diﬁerent priors when 72 = 5 and

=111 .
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Figure 3.31: Histograms of diffe;fenccs_ of MSE(@) for ‘pa,'irs_ﬂoxf dif_ferenf .prio'rrsv when T‘ =5 and

n =23 SR
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Figure 3.32: Histograms of d_i_ﬂ.”erén(;es‘of MSE(é) for pairs of differe.nt»vpr.iors when 72 = 1 and

n=111"
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Figure 3.33: Histogfémé of différenceé of MSE(8) for pairs of differéxit prib;s when 72 =1 and
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Flgure 3.35: Hlstograms of dlﬂ"erences of MSE( ) for pairs of different priQrs V.Wh_err 72 = 0.01
andn—23 o ERE : ,
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Frgures 3 30 and 3 31 dlsplay the hlstograms of MSE dlfferences for blgger 72 value ( :.—~ 5) for . |
large and small sample sizes, respectlvely For large sample s1ze the magmtudes of dlﬁerence are- ’
‘the same both ways around zero, which indicates that though the conser vatlve prior produces
.large MSE for 0 in more occaslons the ma,gmtudes by which the MSES of @ for conservative
prlor exceed those for umform shunkage prior and Jeffreys pl‘lOI‘ are the same as those in the
case of other way around (Flgure 3.30). For small sample size the magmtudes by which the
MSEs of § for conservatlve prior exceed those for the other two pI‘lOI‘S are b1gger in.very few
cases than those in the reverse case (Flgure 3.31). Hlstograms for MSE dlfferences in the ca,se
of 2 =1 reveal the s1mlla1 plcture as they do in the case of larger . 72 value Fmally, by looklng
at the hlstograms of Flgures 3.34 and 3.35 we observe that in the caseé of no hetcrogenelty the

: conserva,tlve pI‘lOI‘ beats the other two priors with big margm in all respect
3.5.3 Comparison of R‘esults_for’ a=3

In the prev1ous sectlon for conserva.tlve prior we cons1de1ed the value of the hyper parameter
a to be equal to 5. But for norma.1~normal hierarchical model, s1mulat10n studles showed that
any . value from 3 to 5 can guard agamst undersmoothmg well. Actually, the bigger the value

g 'of a the smoother the est1mated functlon w1ll be.. So usmg a= 5 ‘may oversmooth too much




and that is Why the performance of conservatlve pr101 in terms of MSE of 0 mlght be worse
than those of the other two pI‘lOl‘S for large 2 value Lowermg the value of a to 3 may improve
the perfounance of conservatlve prior in terms of MSE of 6, while keepmg undersmoothmg in
: control at the same tlme To check this fact we have estlmated the model parameters by using
conservative prior with a =3 and co_rnpared the results as we did i in the case of = 5 in the

previous section,

Figures 3. 36 and 3.37 (hqplay the hlstoglams of 72 for the thlee competltlve priors for large_

2=5 and 2 = 0.01, reqpectlvely The same for small sample size are

‘ ‘dlsplayed in Flgures 3 38 and 3 39

ample s1ze when 7

Figure 3.36: H;isfograms of 72 _fof different priors when 72 =35 a'ndAn =111
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- “Fi'gur(e' 3.37: 'Histqgrams of 72 for different p;iofs wh'en' 72 =5 and n= 23 e
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"':'EAigu‘re 3.38: Hisﬁograms ovf' 'r?" fo>1vr-‘ diffe'rént priors when 72 = 0.01 van.d n=111 :
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- Figure 3.39: Histogra',m’s'of 72 for different priors. when 72 = 0.01 and n= 23
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'All of the Flgures 3 36, 3 37 3.38 and 3 39 conﬁrm that conservatlve prior-. performed best

in controllmg undersmoothmg in all the s1tua,t10ns considered. To reflect the performance of

conservative prior with @ = 3 comparcd to the, other two pI‘lOI‘S conmdered w1th respect to MSE
~ of & we have summa.rlzed the number of tlmes that MSE of 6 in the ca,se of Jeffreys and uniform -

shrmkage prlors exceed the MSEs of obta.lned by conservatlve pnor in Tables 3. 4 3. 5 and 3.6.

"From the 'coﬁnts_ of feh_e Tabi_es 34, 3.5v_4a'nd 3.6 we observe that when 72 is relativeiy.flarger than
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Table 34 "Table summerizing the number of times -that MSE(6) under Jeffreys’. prior .and
unlform shrinkage prior exceed those under conservative prlor with a = 3 out of 100 occasions

when 72 =5

Sample Sine

‘#[mse(d)usp >mse(‘0)co'n]

37

Fise(0) 17 Stisc(B)am]
S 46

23.

©25

46

“Table 3.5: Table sumnlariying the number of times that MSE(G) under Jeffreys prlor and
“uniform shrmkage prior exceed those under conservatlve prior with a = 3 out of 100 occasions.

'When'r =1

Sample Size | #[mse(f)ysp >mse(B)con] | #[mse(6)sej7 >mse()con)
i | . . 3 | 52
23 . | . 3 52

the error variance or the umform shrmkage prlor performs better in terms of MSE of 0 in more:

occasions than the proposed conservatlve prior. In case thc when 72 is relatlvely lower tha,n'
the error varlance ‘the conservatlve prior w1th a=3 performs better in more. occasions. For the
situation when the global varlablhty is of equal magmtude of the local vauablhty, though the

performance of the conservatlve prior improves in the case of small sample sme the counts that

the MSEs of 6 for unlform shrmkage prlor exceed those for the conservatlve prior are still less

than 50 out of 100 occasions. Regardmg the COInpd.I'lSOIl of the performance of Conserva.tlve prior’

and Jeffreys prlor the output suggest that in case of lager 72 conservatlve prior and Jefireys’

prior performs almost slmllarly but in the reverse case conservatlve prlor always performs far

better than Jeﬁ”reys prror in terms of MSE of the estlmated curve..




Table 3.6: Table summarizfng the number of tines that MSE(é)under Jeffreys’ prior and uni-
form shrmkage prior exceed those under conservatlve prior with @ = 3 out of 100 occasions
‘when 72 = 0.01 ~ - S '

- | Sample Size | #{mse(0)ysp >mse(8)con) #[mse Jeff >mse(6) con)
R I 74 '
23 8 | T 83

3.6 COn_cliisifon -

In this chapter we studled the performance of the proposed conservatlve pI‘lOI‘ ‘with respect to
its ability to ('ontrolhng undersmoothmg through simulation studles We also studied the per-
~ formance of the proposed prior with compared to the ]effreys prior and the umform shrmkage
prior. The reason for. con51der1ng the unlform shrmkage prror and the Jeffreys pI‘lOI‘ as ‘the

competitor of the proposed prior was that these two priors are common choices in Bayesran

- hierarchical models Also, they perform better than other prlors used for Bayesuan hlerarchl- o

cal models (Damels, 1999). Furthermore, thc uniform shrmkage pI‘lOI‘ can do some degree of
' smoothmg due to its property of shrmkage toward zero. Like the umform shrmkage prior, in
. a Bayesian hrerarchlcal model the proposed conservatlve prior make possible to get a proper
posterior dlstrlbutlon of the model parameters whichi is essential for valid posterlor inferences
about the parameters From s1mulatlon studles we observed that the proposed conservative
prior performs better in controllmg undersmoothmg than the other two prlors considered in
 this study Also, in terms of MSE of the estimated curve the proposed pI‘lOI‘ exhibits better
performance for the data sets when the global variation 1s relatlvely smaller than the local
variation. In the other case also the proposed prlor with a = 3 showed better performance in
terms of MSE of the estlmated curves for many data sets. So, from the result of s1mulatlon
studles it can argued that usmg reasonably chosen value of the hyperparameter a, e.g. a =3,
~ for the conservatlve pI‘lOI‘ can nicely control the excessxve degree of undersmoothmg wh11e at
' the same time, not oversmoothmg too much and hence can give more accurate estimate of 72

‘ and consequently of the other model parameters Thus the Bayesian approach with conserva-
tive prior can grve a better prcture of the true underlymg relatlonshlp between response and

the covarlate in smoothmg problem. .

Again, if it is beﬁeved’ that th_e-true un_der_lying relationship between the responsé and the



covariate is smooth then it is desirable to have an estimated curve which is also smooth. In such

cases controlling undersmoothrng may be the main concern and hence the use-of conservatlve

pI‘lOI‘ with a value between 3 to 5 of the hyperparametor a, can ensure the smoothness of the

estimated curves. Frnally, from the results of the 31mulat10n studles we can summarlze that for :

.a response varlable ﬂuctuatlng rapldly as a functlon of the desrgn varlable 1t is better to use

the conservative prior while usmg the Baye31an roughness penalty approach in regression curve

estimation. Actually, tlns is the case of larger relative, error variability w1th compared to the’
: global varrabrhty, and in such case a smooth estlmated curve is really desnable Also, smce _
_ the Bayesian roughness penalty approach wrth the conservatlve prior for the random effects

'varlance component prov1des smooth estlmate of the true mean curve it 1s robust against any

" wild local observatlons
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~ Chapter 4 |
‘Discussion and Conclusion

The work of this dlssertatlon focuses on ﬁndmg an approprlate prior drstrrbutron for the varr—'

ance component in the Bayesran hlerarchlcal models In many real lrfe srtuat1ons data arise

“in hierarchical fashlon Some common situations where the hierarchical models arise are the

random effect models, spatial models and non—parametrlc curve—ﬁttrng All the above men—

tioned models can further be v1ewed as smoothrng problem and it is often desrrable to have
" an estrmated nean structure whrch is not more variable than the true underlymg structure
| or the estrmated regressmn curve’ Wthh is not ‘more wrggly than the true underlymg curve.
) That Is, we. do not want to undersmooth the phenomenon we estimate. The motlvatlon for this
~work comes from the thought that we should have an estimation techmque whrch can control

‘the undersmoothmg while estrmatmg a phenomenon by hrerarchlcal models. In searchmg ‘such

a technlque for hlerarchrcal models we have consrdered the Bayes1an approach because of its
flexibility to 1ncorporate the multrple level of randomness— the main feature of hlerarchlcal mod-

els. Bayesian approach to luerarclucal models have many other advantages over the classrcal

-approach which have already been dlscussed in Chapter 1.

' »F'inally, While adopting the Bayesvian approach for hierarchical models"w'e havethought ’of choos-

. inga pI‘lOI‘ for the random eﬁ'ects variance component which can guard against undersmoothmg :

We have conducted s1mulatlon studies to choose the appropr1ate values for the hyperparameter

for the proposed pnor S0 that it can prov1de adequate guard agamst undersmoothmg and at the

" same time do not oversmooth the phenomenon t00 much and thus can provrde better calibrated

: estrmates of the models parameters

In Chapter 1, vve have formulated the Bayesian versiOn of the normal-normal hierarchical model.




Snnulatlon studles reveal that the proposed conservatlve pI‘lOI‘ w1th values between 3 to 5 of
~the hyperparameter a; perform qulte well in guar d1ng agamst undersmoothlng With compared
to the two of its competltors— the unlform shrmkage prior and the Jeffreys’ prlor— the proposed'
~ prior perform much better 1n controlhng undersmoothmg in all the s1tuatlons considered for
the srmulatlon studles Also, in terms of the MSE of the estlmated varlance component ‘the
proposed prlor w1th a = 3, perform much better than its competltors in all the srtuatlons
consldered Even with ¢ = 5 the proposed prior performs better than the Jeffreys prror in all
. but one cases consldered and performs better than the uniform shrlnkage prlor in the case ‘when

. the between group varlablhty is relatlvely smaller than the w1thrn group varlablhty

In Chapter '3 we h'aVe formulated the 'Bayesi\an hierarchical modcl for"the roughness penalty
approach to curve—ﬁttmg Then we have suggested a modified version of the conservatlve prior
for that hierarchical model Flnally, we have conducted simulation studies to see how the i
conservatlve prior performs in smoothmg problem to guard agamst undersmoothmg Also we
have 1nvest1gated the performance of the conservatwe prlor w1th those of the uniform shrlnkage
prior and the Jeﬁ"reys pr1or v1a 81mulatlon studles The results are encouragrng in terms
of guarding agalnst undersmoothmg In terms of MSE of the estlmated curve thé proposed
’ conservatrve prlor performs better than its competltors in the case when global var1ab111ty 1s:
less than the local varlablhty Also in the other two cases the conservative prior performs
better in more than 50% of the data sets considered wrth compared to the Jeffreys prior.
With compared to the unlform shrmkage pl‘lOI‘ the conservatwe prior produces smaller MSE in
many occasmns (though less than 50%). Again, it is always believed that the true underlymg
curve in non—parametrlc regresslon is usually smoothed So, for most of the apphcatlons in
: non—parametrrc curve- ﬁttlng the smoothness of the estlmated curves is the main concern and ‘
hence the use of conser vative pr1or w1th the suggested values of the hyperparameter a can ensure.
. the desired degree of smoothness of the estimated culves If someone is concerned about the
' MSE of the estimated curves also he/ she may use the lowest value from the suggested range (3’
to 5) for the hyperparameter ' - '

" In a. nutshell on the ba51s of the results of 81mulatlon studres we can conclude that in the case
of simple normal—normal 111erarch1cal model the proposed conservatlve prlor with a = 3 can be
) used w1thout any reservatlon because wrth a =3 the conservatlve prlor beats the other two
| priors consrdered in thls study— both i m terms of guardmg agamst undersmoothmg as well as
1n terms of MSE of the estrmated varlance component Also, in many situations where the
: smoothness of the "e_stnnates is the only concern, Ae.g., in the case of hospltal mode_l of reco'ver'y.

" rates of a cardiovascular treatment 'i_n_different ho_s_pitals, even bigger values of a (not exceeding



5) can be used Again, in smoothmg problem researchers can choose between the unlform ‘
shrmkage prior and the conservative prior if they thmk that the global var1ab111ty is relatlvely
larger than the local varlablhty In the reverse case the use of conservatrve prior is always
better. Also, in the case when the researchers is concerned only about the smoothness of the

est1mated curve the use of the conservatlve may got preference over the umform shrmkage pI‘lOI‘

As in all other areas there isa huge scope for further research in tlns area. Flrstly, in the present
study we have proposed the conservative prlor and 1nvest1gated its performance in the context
of continuous response only Further work i is requlred to make the use of the conservatlve prior
to the response arise from any distribution’ belongs to the exponentlal famlly In this study,
in normal~normal hrerarchlcal model we did not conslder the 1ncorporat10n of predictors to_ A
‘predlct the mean response "The hlerarchlcal model that 1ncorporates the response—predlctor
.relat_lonshlp for the_ Gaussian response is the linear mixed effects model (LMM) In LMM, the
classical approach cons'rders random e'ffects variance component to be fixed and be _estimated_
' from the data. ’_In dov_in'gv 50, the clasSical approach ignores the uncertainty in _t_he random effects
“variance component. So, the reasonable alternati\)e is the Bayesian hierarchical models.. And
in the case of Bayeslan hlerarchlcal models we can conslder the use of the conservatlve pI‘lOI‘

for the random effects varlance component

Again, further work needs to be done to extend the use of the proposed conservatlve prror
" in.the broad areas of generalmed lmear mixed models (GLMM). In the case of GLMM ‘the
| exrstlng classxcal approaches lead to mcfﬁc1ent inference about the random effects In GLMM,
~ the estimate of random effects variance components becomes very dlfﬁcult when the number of
" random effects becomes large. The approx1mate method proposed by Breslow and Clayton may
produce estimate of the random effects covarrance matrix which is negative deﬁmte (Breslow
and Clayton, 1993) But the Bayesmn formulation enjoys an advantage here because of the
information on the varlance component prov1ded by the prior dlstrxbutlon Also, Bayesian pro-
cedures avoid the need for numerlcal 1ntegrat10n by takmg repeated samples form the posterlor
»dlstubutlon But the mam concern in the Baye81an approach is to choose an approprlate pI‘lOI‘
for the random effects varlance components, and the proposed conservatwe pI‘lOI‘ “if can be ex-
-tended for GLMM, may prov1de a good alternahve in thls area. Natara]an and Kass (Ranjini
Natarajan and Robert E. Kass, 2000) proposed the approxrmate uniform shrmkage prior and
the approxunate Jeffleys prior for the random effects covarrance matrix in GLMM But the
mam concern w1th the use of those pr1or is undersmoothmg So, we can think of extendmg the
‘use of proposed conservatlve prior for the random effects covariance matrrx 1n GLMM to check.

' undersmoothlng and to have better callbrated estnnates of the model parameters
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