
INFRASTRUCTURE FOR SOLVING GENERIC
MULTIPHYSICS PROBLEMS

by

CHARLES BOIVIN
B.Eng. (Mechanical), McGi l l University, 1998

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
(Department of Mechanical Engineering)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
February 2003

© Charles Boivin, 2003

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

Numerical simulations of partial differential equations problems are used in a variety of domains.
Such simulation tools allow the scientific community to solve problems of increasing complexity.
This allows complete testing and simulation of a product or process even before it is created.
The numerical simulation process can be separated into two main steps: domain preparation and
numerical computation. The first step requires the scientist to define the domain on which the
problem will be solved; it is then decomposed into a group of smaller regions. This domain
division is called a mesh. The mesh is subsequently used by the solver to perform the numerical
computations specific to the physical problem being solved. The accuracy of the solution obtained
depends on the quality of the mesh and the physical description of the problem.

As powerful and useful as they are, these numerical tools could be improved on two fronts. First,
the time spent preparing a problem with a complex geometry for a simulation is sometimes very
large and could be minimized by automation of the pre-processing steps. Second, numerical
solvers are not used in all the problem domains where partial differential equation problems are
encountered because of the difficulty in acquiring the numerical expertise needed to develop spe­
cialized solvers.

The objective of this research was to make the numerical simulation process easier and more
accessible to scientists by addressing these two problems. Specifically, a mesh generator capable
of generating guaranteed-quality meshes for complex geometries with curved boundaries has been
written. This program completely automates the meshing process, which results in a huge gain
in domain preparation efficiency. Additionally, an existing numerical toolkit has been modified
to allow multiphysics problems to be solved in a generic fashion. With this solver, scientists
can simply describe the physics of a problem — as well as the interactions between the different
physical phenomena — and a numerical solution can be obtained within days. High-quality meshes
and results from multiphysics problems are included to demonstrate the effectiveness of the current
research. Finally, future improvements to the efficiency and accuracy of the solver are discussed.

ii

Contents

Abstract ii

Table of Contents iii

List of Figures vi

List of Tables ix

Acknowledgements x

1 Introduction 1

1.1 Unstructured mesh generation 2

1.2 Generic multiphysics solver 4

2 Guaranteed-Quality Unstructured Triangular Meshing of Domains with Curved Bound­
aries 8

2.1 Introduction 8

2.2 Background information 9

2.3 Outline of Ruppert's Delaunay refinement algorithm 11

2.4 Generic boundary interface 15

2.5 Implementation details 27

2.6 Results 30

2.7 Conclusions 36

iii

CONTENTS iv

3 Generic Finite-Volume Solver 37

3.1 General finite-volume formulation 38

3.2 Reconstruction of the control-volume averaged data 39

3.3 Boundary conditions 40

3.4 Time-advance 41

3.5 Implementation of a finite-volume solver 44

3.6 Modifications needed by a generic solver 45

3.7 Sample problems 49

4 Generic Multiphysics Solver 62

4.1 Field coupling 62

4.2 Interface coupling 62

4.3 Numerical simulation 63

4.4 Data exchange 63

4.5 The R e g i o n class 71

4.6 Field coupling results 74

4.7 The D o m a i n class 79

4.8 Interface coupling results 82

5 Additional Features 89

5.1 Source term exchange 89

5.2 P h y s i c s class definition syntax 91

6 Discussion and future work 102

6.1 Accuracy 102

6.2 Efficiency 106

CONTENTS v

7 Summary 110

7.1 Mesh generation 110

7.2 Numerical simulation of generic multiphysics problems I l l

7.3 Conclusion 112

A Proof of Mesh Quality in Two Dimensions 118

A. l Angle bounds 118

A. 2 Termination and Size Optimality 125

B Physics classes definitions 127

B. l Heat conduction XML file '.127

B.2 Heat conduction C++file 131

B.3 Solver file for heat conduction simulation 144

B.4 Solid mechanics XML file 147

B.5 Incompressible Navier-Stokes XML file 157

B.6 Energy equation XML file 169

List of Figures

2.1 Domain to be triangulated 9

2.2 Initial bounding box and boundary vertices 10

2.3 Triangle with a vertex in its circumcircle 10

2.4 The Delaunay triangulation 11

2.5 The triangulated domain ' 12

2.6 Comparison between a diametral circle (dashed) and diametral lenses. Diametral
lenses allow points to be inserted closer to boundary edges 13

2.7 Problem caused by small angles in the domain and how it can be avoided. 15

2.8 Framework used for the implementation of generic boundaries 16

2.9 Arbitrary original discretization of a spline. No vertex should be inserted in the
shaded areas 18

2.10 Diametral lens of edge ab intersects the edge at an angle of 60° 18

2.11 A curve with uniform curvature intersects the edge with angles of 30° 19

2.12 A curve with non-uniform curvature might yield a diametral lens outside the di­
ametral circle 20

2.13 Example of an invalid initial discretization 21

2.14 Vertex a should not generate a small feature on edge be 22

2.15 Initial discretization of a domain that had overlapping initial boundary edges 22

2.16 Example of a feature of the mesh (the small square) that is located in the wrong
region due to the discretization of the curved boundary patch 23

vi

LIST OF FIGURES vii

2.17 Procedure to follow to recover boundary edges 24

2.18 The top arc's discretization crosses over the bottom arc, but does not cross the
bottom arc's discretization 25

2.19 Problem associated with curves, small angles, and the use of concentric circular
shells 26

2.20 Critical points for a Bezier curve 29

2.21 Drawings a, b, and c show the steps required to obtain meshes d, e, and f 32

2.22 Mesh including lines, circles, and arcs as boundary patches. All angles in the mesh

are above 30° 32

2.23 Mesh with a boundary made up of Bezier curves, lines, and a circle 33

2.24 4-element airfoil mesh 34

2.25 Magnified sections of the 4-element airfoil 35

3.1 Difference between averaged and reconstructed solution. The height of the cells
represents their value 40

3.2 Overview of the process involved in solving a numerical problem using the finite-
volume method 44

3.3 Detail of the physical information needed in the finite-volume method 45

3.4 Solver making calls to external Physics class 48

3.5 Schematic of the various standard interfaces for the physics, the mesh, and the
reconstruction interacting with the generic solver 50

3.6 Mesh used for the sample problems presented in this chapter 50

3.7 Temperature profile along y = H(l — j) 53

3.8 Displacements along x — L 57

3.9 Velocity profile at x = L 60

4.1 Dependency tree for the interior flux computation of the solid mechanics package . 69

4.2 Optimized dependency tree for the solid mechanics package with constants removed 70

4.3 Schematic of the generic multiphysics framework for field coupling 73

LIST OF FIGURES viii

4.4 Sample solid mechanics with thermal strains problem 75

4.5 Mesh used for the heat conduction and solid mechanics simulation 76

4.6 Displacement in x along x = L 77

4.7 Displacement in y along x = L 77

4.8 Mesh used for the Navier-Stokes and energy equation simulation 78

4.9 Temperature profile along x = 9 for the Navier-Stokes and energy equation simu­
lation 79

4.10 Schematic of a problem with both field and interface coupling 80

4.11 Domain for the interface coupling problem 83

4.12 Temperature profiles at x = 4.7 for the interface coupling problem for various
refinement levels 85

4.13 Temperature field for the interface coupling problem 86

4.14 Temperature along the interface at y — 0.2 87

4.15 Normal heat flux along the interface at y = 0.2 ,87

4.16 Displaced geometry in region IV for the interface coupling problem 88

6.1 Reconstruction along boundary faces 103

A. l Lemma 1, Statement 2: p added as circumcenter of large triangle T 121

A.2 Lemma 1, Statement 3: p added as circumcenter of badly shaped triangle T 121

A.3 Lemma 1, Statement 4: p added to split an encroached boundary edge 126

List of Tables

2.1 Quality measures 33

4.1 Number of cells used in the meshes 85

ix

Acknowledgements

This thesis benefited from the help of many, some of which I would like to thank here.

First of all, thank you to the faculty members in Mechanical Engineering, with a special mention to
the faculty from the thermo-fluids group. I learned a lot from your teaching and feedback. Thank
you as well to my research committee for the helpful suggestions. Special thanks go to my research
supervisor, Dr. Carl Ollivier-Gooch. Carl, thank you for your time, your patience, and your advice.
I have learned so much from you and yet I know I could still learn much more. I have nothing but
praise for you as a research supervisor and I know many more students will benefit from your
experience.

Thank you to friends I made during my stay at UBC: you all made this whole experience more
enjoyable. It was fun to snowboard, party, play poker, eat pizza, and yes, even go curling with all
of you. To my guitar buddies: thanks for showing me yet another thing I can do rather than work
on my research. Hopefully, we will get together again soon to play.

I would also like to thank my family who have always supported me in everything I do: my sisters,
and my parents, Pauline et Jean-Marc: merci beaucoup pour tout le support. Vous me manquez
beaucoup et j'ai hate de vous voir. And finally, a huge thank you to Roxanne, the woman who
became my wife during this journey. I could not have accomplished this without you. Thank you
for all the support and understanding, for letting me use the computer to run tests even though I said
I would not need to do it, and for listening to me complain about boundary conditions whenever
the code would not converge. Thank you, most importantly, for believing in me. Je t'aime.

Charles

x

Chapter 1

Introduction

Numerical simulations of partial differential equations problems are used in a variety of domains
such as aerospace research, combustion simulation, and medical research to name a few. These
simulation tools allow the scientific community to solve problems of increasing complexity. This
leads to an increase in the efficiency of the design and engineering processes by allowing complete
testing and simulation of a product or process even before it is created.

The numerical simulation process can be separated into two main steps: domain preparation and
numerical computation. The first step requires the scientist to define the domain on which the
problem will be solved. Once the boundaries of the domain have been defined, the domain must
be decomposed into smaller, simpler regions called cells. This domain division is called a mesh.
The mesh is then used by the solver for the second part of the process in which the numerical
computations specific to the physical problem being solved are carried out. The accuracy of the
solution obtained depends on the quality of the mesh and the physical description of the problem.

As powerful and useful as they are, the numerical tools available to scientists could be improved.
The time spent preparing a problem with a complex geometry for a numerical simulation is some­
times very large and could be minimized by proper automation of some of the pre-processing steps.
A particularly complex example given by Mavriplis [31] showed the mesh preparation time to be
45 times that required to compute the solution. This is unacceptable, especially considering the fact
that the mesh is an artifact of the numerical simulation and is of no intrinsic physical significance.
There are huge potential gains to be made by fully automating the meshing process.

On the other hand, numerical solvers are not used in all the problem domains where partial differ­
ential equation problems are encountered. In some areas, scientists know a large amount about the
important physical processes they study, but are unable to perform numerical simulations due to

1

CHAPTER 1. INTRODUCTION 2

the lack of available solvers or knowledge of numerical methods. Problem-domain experts must
therefore either acquire (or hire) the numerical expertise needed to write a solver specialized to
their problem, or wait for a commercial package to be available. This is even more complicated
when multiphysics problems — problems where multiple physical phenomena interact with each
other — are being investigated. A better alternative for these scientists would be to write a small
portion of code describing each of the physics of their problems — something they understand
very well — and use a generic numerical toolkit to tackle the coupling and the numerical aspect
of the simulation. Solutions to new and complex physical problems could then be obtained within
days rather than months.

The objective of this research was to make the whole numerical simulation process easier and
more accessible to scientists by addressing these two problems. Specifically, I have written a fully-
automatic mesh generator that can generate guaranteed-quality meshes for complex geometries.
More details and background information on the mesh generator are given in Section 1.1. I have
also modified an existing high-order generic numerical toolkit to allow complex, multiphysics
problems to be solved. Further information about this research and other related work is presented
in Section 1.2.

1.1 Unstructured mesh generation

A fully-automatic mesh generator for complex geometries must understand curved boundaries
to prevent geometric errors at the boundaries and to correctly resolve boundaries based on their
extent and curvature. This is especially critical given that most problems in computational sci­
ence are boundary value problems and require accurate boundary information to yield an accurate
solution. Equally important is mesh quality, which affects the convergence rate and solution accu­
racy [25,3,24]; an automatic meshing process therefore requires some guarantees on mesh quality.
Furthermore, automatic mesh generation also requires guarantees on termination and final mesh
size. These guarantees ensure that a guaranteed-quality mesh can be obtained, and that its size will
be within a certain factor of the ideal mesh size for that problem, respectively. The long-term goal
for developers of meshing tools is the generation of appropriately sized quality meshes directly
from CAD models, without user interaction. This research is an important step in that direction.

CHAPTER 1. INTRODUCTION 3

1.1.1 Mesh generation from curved boundaries

A fully-automatic mesh generator must handle curved surfaces as readily as planar ones, which
requires the use of the exact representation of the boundaries during the meshing process [39].
Otherwise, time is wasted discretizing these curves into sets of linear segments, a process which
can also lead to an invalid representation of the boundary. For example, more cells may be neces­
sary to properly discretize a curved boundary than the user anticipated. Because the mesh genera­
tion package at this point only relies on the linear segments, it has no knowledge of the real shape
of the boundary. It can only place new vertices on a line joining two of the original discretized
vertices, as was done by Mavriplis [30]. The newly inserted vertices are usually only moved back
to the boundary as a post-processing step; while this is not usually extremely time-consuming, it
can potentially degrade mesh quality near the boundary or even make the mesh invalid. On the
other hand, if the user (or the software) over-estimates the number of vertices necessary along a
curved boundary, more cells than required will be present in the mesh, which will affect simulation
performance.

A better approach is to insert points directly on the boundary curves in the first place, using the
underlying representation of the boundary. Tools capable of generating meshes for domains with
curved boundaries are now relatively common, although each seems to handle curves differently.
The advancing front Delaunay schemes [29, 23] initially discretize the boundaries and the few
layers of cells surrounding them using advancing front techniques, and mesh the interior of the
domain with a Delaunay approach. Another example is the 2D scheme described by Laug et
al. [27], which relies on a mesh to extrapolate a curved boundary using interpolation splines. These
splines are approximated next with a very large number of linear segments. Points on the boundary
are then chosen on these segments whenever needed in the meshing process. Conversely, the 3D
algorithm by Dey et al. [15] uses the curved representation of the boundary directly to generate
extra boundary vertices and to detect possible problems, such as intersection problems. However,
there are no guarantees regarding the quality of the mesh, or even the termination of any of these
algorithms.

1.1.2 Guaranteed-quality mesh generation

Users of guaranteed-quality meshing tools only need to define the domain properly, and perhaps
indicate a preference on the resolution required. A good mesh can then be obtained without any
further user interaction. The user never needs to fix areas containing an invalid triangulation or

CHAPTER 1. INTRODUCTION 4

poor quality elements.

Several guaranteed-quality algorithms have been introduced in recent years. Chew [13] intro­
duced the first two-dimensional Delaunay insertion algorithm with a quality bound, although it
only generated uniform meshes. Ruppert [38] then introduced the first Delaunay insertion scheme
to guarantee high-quality two-dimensional graded meshes. Shewchuk [40] improved the angle
bound of Ruppert's scheme shortly after and proved that such a modification made the algorithm
equivalent to another by Chew [14]. All of these schemes insert points at the circumcenters of
triangles; other authors have proposed variations on the circumcenter as the location of point in­
sertion. Rivara [37] suggested inserting a vertex at the midpoint of the common edge of the two
terminal triangles of a set of triangles called the longest-edge propagation path. More recently,
Edelsbrunner and Guoy [17] proposed inserting points at sinks, circumcenters located inside their
own triangles. Shewchuk also introduced a generalization of Ruppert's algorithm to three dimen­
sions which showed significantly better quality bounds than a previous 3D algorithm by Mitchell
and Vavasis [32]. In previous research [35], Ollivier-Gooch and Boivin extended Ruppert's and
Shewchuk's work to have better control over cell grading and size, in both 2D and 3D. The com­
mon downfall of these guaranteed-quality schemes is that they all require the domain to have linear
(or planar) boundaries.

1.1.3 Objective

The objective for this part of my research was to develop a guaranteed-quality unstructured mesh
generator with generic support for curved boundaries; this is a major step towards guaranteed-
quality mesh generation from CAD data. In Chapter 2, a generic boundary data interface that
allows the use of potentially any boundary type, in both 2D and 3D is introduced. As a proof of
concept, this interface has been implemented in a 2D meshing code; examples are also given in
Chapter 2. Ruppert's proof has been extended to account for curved boundaries. Details of the
proof are given in Appendix A. Most of Chapter 2 has already appeared as a journal article [9].

1.2 Generic multiphysics solver

The second part of this research focuses on writing a generic, high-order, multiphysics solver. A

few other research groups have developed generic numerical toolkits in the hope of easing the

CHAPTER 1. INTRODUCTION 5

solution of new physical problems numerically. A summary of these efforts is presented in Sec­
tion 1.2.1. Most of the work from these research groups focuses on the finite-element method;
the numerical toolkit used in this research is based on the finite-volume method, and Section 1.2.2
justifies this choice.

1.2.1 Generic solvers

The main idea behind generic solvers is to separate the numerical and the physical aspects of a
simulation. By modularizing the solver, it becomes easier to solve different physical phenomena
with the same numerical code. Very often, this modularity comes from using object-oriented pro­
gramming techniques in the numerical toolkit, as described by Dubois-Pelerin and Pegon [16]. A
discussion on the impact of using object-oriented languages in scientific applications is given by
Arge et al. [2]; some optimization guidelines are also suggested. Most of the generic numerical
toolkits described in this section use some form of object-oriented language; the toolkit used in
this research follows this trend and is coded in C++.

One application of modularity is the research of Eyheramendy and Zimmerman [44, 18, 19] who
have developed a toolkit for semi-automatic symbolic derivation of linear finite-element models
of initial-boundary-value problems. In more recent work [20], non-linear problems are also sup­
ported. The software, developed in SmallTalk, guides the user through the various steps necessary
to formulate the finite-element problem. Smalltalk or C++ simulation code can then be automat­
ically generated, although the authors admit that efficiency problems within the generated code
still remain. This research is of great help for users interested in deriving discretization techniques
for new physical problems, but users must still be fluent with the finite-element method: concepts
such as the variational principle, weighting functions and other finite-element intricacies are used
throughout the derivation. There is however no mention of multiphysics problems, where multiple
element types would be used in the same simulation.

One of the most sophisticated C++ libraries for the numerical solution of partial differential equa­
tions is Diffpack [12, 26, 11]. This library allows the user the flexibility to interact with the finite-
element solution process at different levels. At the highest level, users specify the physics of a
problem through the integrand of the weak form of the PDE and boundary conditions. At lower
levels, users can interface with the numerical techniques by defining new element types, shape
functions, or by setting the options for the numerous iterative solvers supported. Again, significant
finite-element knowledge is necessary when creating custom simulation in Diffpack. In partic­
ular, the boundary conditions must be explicitly coded by the user themselves. However, users

CHAPTER 1. INTRODUCTION 6

familiar with the lower levels of the library could probably combine several element types into a
multiphysics simulation.

Even though research on generic numerical solvers is growing, the number of solvers dedicated
specifically to supporting the solution of multiphysics problems in a generic fashion is still lim­
ited. One such commercially available solver is FEMLab [1]. As its name implies, FEMLab is also
based on the finite-element method. The solver uses Matlab for the numerical aspects of the sim­
ulation. Multiple element types and physical phenomena can be combined in one simulation. The
generic nature of FEMLab comes from its "PDE mode", where the user can enter the parameters
of partial differential equations in a generic fashion. The solver can then use the equations in any
simulation. Unfortunately, there is no control on element types used for this mode; it is impossible
to know if the pre-defined element type will be adequate for the physics defined by the user.

While being valuable tools for many researchers, these approaches are likely too complicated for
most scientists lacking a good finite-element background, especially when trying to develop simu­
lations for physical phenomena that are uncommon.

PHYSICA [4] is a multiphysics solver based on the finite-volume method. It also uses object-
oriented programming techniques to provide abstraction of the numerics and the physics of a prob­
lem; it is programmed in FORTRAN. The solver provides several levels of abstraction available
to the user. Most users only interact with the highest level, the model level, to implement new
physical problems, but it is possible to implement new algorithms due to the modular nature of
the software. This solver provides most of the functionality scientists would look for in a mul­
tiphysics solver. However, only second-order accurate methods are available, and given the fact
that only about 75% of the code is available when purchasing a developer's license, implementing
high-order methods could be quite challenging.

1.2.2 The finite-volume method

The main drawback with using the finite-element method in generic solvers is that the method does
not lend itself well to a complete separation of the physical and numerical aspects of a problem.
This is highlighted by the fact that all the finite-element packages described above require good
knowledge of the finite-element method from the user to develop new applications with them effec­
tively. The finite-volume method, however, lends itself very well to a decoupling of the numerics
and the physics. This is explained by the fact that the physics of the problem mainly come in
play in the calculation of fluxes. These fluxes are straightforward to identify and can be computed

CHAPTER 1. INTRODUCTION 7

easily. More details on the derivation of a new problem for the finite-volume method are given in

Section 3.1.

The generic numerical toolkit used in this research uses the finite-volume method for this very
reason. Users with a good knowledge of the physics of a problem will be able to easily imple­
ment short functions to describe the fluxes, source terms and boundary conditions that accurately
describe the physical phenomena. The numerical method does not affect the description of the
problem. In contrast, generic solvers using the finite-element method require the user to get in­
volved in the numerical details of the simulation.

1.2.3 Objective

The objective for this part of my research is to develop a high-order accurate generic multiphysics
solver. The solver is based on a high-order generic numerical toolkit introduced in Chapter 3. High-
order accurate methods are critical for better solutions of a variety of problems. The toolkit was
then heavily modified to support multiphysics problems; the multiphysics framework is covered in
Chapter 4. Chapter 5 introduces topics that are related to the multiphysics solver but did not play
a large role in the design of the framework and Chapter 6 discusses the accuracy and efficiency of
the solver, and the steps that could be taken to further improve both.

Chapter 2

Guaranteed-Quality Unstructured
Triangular Meshing of Domains with
Curved Boundaries

2.1 Introduction

In this chapter, a major step towards guaranteed-quality mesh generation from CAD data is de­
scribed. A generic boundary data interface that allows the use of potentially any boundary type,
in both 2D and 3D is introduced, and is implemented in 2D. First, some basic unstructured mesh­
ing concepts are introduced in Section 2.2. The 2D scheme presented in this research is based on
Ruppert's Delaunay refinement algorithm, which is summarized in Section 2.3 in order to better
highlight the changes made to it in Section 2.4. In the latter section, the generic interface between
the meshing code and arbitrary boundary data is described, and some of the pitfalls associated
with curved boundaries are noted. Boundary representations for line segments, circles and circular
arcs, cubic parametric curves (which include Bezier cuves and B-splines), and interpolated splines
have been implemented. Details of their implementation are given in Section 2.5. Examples are
presented in Section 2.6 to demonstrate the capabilities of the algorithm. Conclusions about this
work and insight on future implementation in 3D are discussed in Section 2.7. Finally, it has been
possible to show that the modified scheme produces meshes of same quality as Ruppert's original
scheme, including improved control over length scale and grading, as described in [35]; a proof of
this result appears in the Appendix.

8

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 9

2.2 Background information

The methodology used to start a triangulation in this research will be covered in this section. Along
the way, concepts critical to this research, such as the Delaunay criterion, will be explained.

2.2.1 Initial vertex insertion

As an example, the domain shown in Figure 2.1 is to be triangulated. This is accomplished by
first creating a large bounding box in which all the boundary vertices of the domain can fit. These
vertices are then inserted in the bounding box. Vertex insertion is covered in more detail in Sec­
tion 2.3.3.

Figure 2.1: Domain to be triangulated

The initial bounding box, and the resulting triangulation after the boundary vertices have been
inserted are shown in Figure 2.2.

2.2.2 The Delaunay criterion

Next, edges in the triangulation are swapped to ensure the triangulation is Delaunay. The Delaunay
criterion states that no vertices can be located within a triangle circumcircle.1 It is always possible
to make a triangulation Delaunay by swapping. An example of a triangle with a vertex in its
circumcircle is shown in Figure 2.3.

'A circumcircle is the circle that passes through each of the triangle's vertices.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES

Figure 2.3: Triangle with a vertex in its circumcircle

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 11

This triangle cannot exist in a Delaunay triangulation. Figure 2.4 shows the Delaunay triangulation
for this domain.

Figure 2.4: The Delaunay triangulation

2.2.3 Edge recovery

The next step consists in recovering all the boundary edges of the initial domain. In some cases,
it is possible for the Delaunay triangulation not to include the boundary edges. However, these
edges can always be recovered through swapping. The boundary edges are already all present in
Figure 2.4.

With all the boundary edges present in the triangulation, the surrounding cells of the bounding box
can be safely removed. The resulting triangulated domain is shown in Figure 2.5. This triangula­
tion can then be used with Ruppert's Delaunay refinement algorithm.

2.3 Outline of Ruppert's Delaunay refinement algorithm

Ruppert's scheme [38] begins with either a constrained or unconstrained Delaunay triangulation.2

The mesh quality is improved through point insertion. Points are inserted at the circumcenter of
badly-shaped cells — cells that have an angle less than #mjn — unless they encroach on a boundary

2 A constrained Delaunay triangulation is a triangulation in which the Delaunay criterion is only applied to vertices
that are visible to a triangle. A vertex is visible to a triangle if there are no boundary patches between them.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 12

Figure 2.5: The triangulated domain

edge.3 Ruppert states that a vertex encroaches on an edge when that vertex is located inside the
circle with the edge as its diameter; this circle is called the diametral circle. If a proposed new point
encroaches on any boundary edge, that vertex is not inserted. Instead, the encroached boundary
edge(s) is(are) bisected. This process is repeated until all cells are well-shaped. Ruppert was
able to show that this algorithm always terminates, and results in a mesh with minimum angle

^min ~ 20.7°.

Shewchuk [40] showed that a value of 0mjn of 25.7° is possible if diametral lenses rather than
diametral circles are used to determine if there is encroachment. The difference between the di­
ametral circle and diametral lens is shown in Figure 2.6. In this variant of the algorithm, interior
vertices lying inside the diametral circle of a boundary edge are deleted when that edge is split. The
bound on 0m i n is not tight; in practice, #mj„ can be set to 30° and the algorithm will still terminate.

2.3.1 Initial discretization

Ruppert's algorithm can be started either with a Delaunay triangulation or a constrained Delaunay
triangulation. The latter does not pose a problem because Ruppert's original encroachment rule
guarantees that no vertex will be inserted outside a boundary edge.4 A Delaunay triangulation
containing all the boundary points inside a larger bounding box is first created. Boundary edges

3Note that in this document, a boundary edge is what makes up the discretized version of the boundary. When
referring to the boundary geometry, the term boundary patch will be used. Each boundary patch has at least one
boundary edge associated with it.

4The use of diametral lenses allows boundary triangles with a circumcenter outside the boundary edge to be present
in the mesh. However, no vertex will ever be inserted at this location since it encroaches on the boundary edge.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 13

Figure 2.6: Comparison between a diametral circle (dashed) and diametral lenses. Diametral lenses
allow points to be inserted closer to boundary edges.

are recovered next using the technique described in Section 2.3.2. The triangles lying outside the
domain are then removed, leaving a constrained Delaunay triangulation.

The algorithm cannot be started with just any constrained Delaunay triangulation, however. No
boundary edges in the initial triangulation should be encroached on. Encroached boundary edges
are therefore split until they are not encroached upon anymore, as an initialization step. This is done
by evaluating the angle opposite the boundary edge. If the angle is obtuse, the vertex at that corner
encroaches on the boundary edge and the edge should be split. This way, only the encroachment
caused by vertices visible to the boundary edge will be corrected, preventing unnecessary splitting
of boundary edges and introduction of artificial small features. When no more vertices encroach
on boundary edges, Ruppert's algorithm can be started.

2.3.2 Edge recovery

The boundary edges needed for the initial discretization of the boundary are recovered through
swapping. It is always possible to recover all the edges without having to insert new points in the
domain. Once all the boundary edges have been recovered, the boundary representation is exact.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 14

2.3.3 Point insertion

Points are inserted into the mesh by using the Delaunay insertion method of Watson [42]. A list
of all cells that contain the new vertex in their circumcircle is first created. These cells are then
removed from the mesh, and the faces of the resulting hull are connected with the newly inserted
point. This insertion method preserves the Delaunay nature of the mesh; no swapping is needed
after the insertion. If a boundary edge is part of the hull, a check is made to ensure that the new
vertex will not encroach on it. If it does, the point is not inserted. Vertices lying inside the diametral
circle of the edge are removed, and the boundary edge is split at its geometric midpoint. Watson
insertion is used for this split as well.

2.3.4 Length scale modifications

In previous work [35], Ollivier-Gooch and Boivin modified Ruppert's scheme to control cell size
and grading. The modification defines a geometric length scale based on the local feature size.
The local feature size was used by Ruppert to prove termination of the original algorithm, and is
defined as the radius of the smallest circle centered at a point that touches two disjoint parts of the
domain boundary. The length scale LS is defined in terms of the local feature size Ifs as:

where both R and G are constants > 1, and points ^ are neighbors to point p. The first constant,
R, controls the ratio of input feature size to final mesh boundary edge length, with finer boundary
discretization for larger values of R. The other constant, G, is used to control how rapidly the
cell size can change with distance. This is an explicit imitation and generalization of the grading
properties of the local feature size. A larger value of G results in slower increase in cell size over
the same distance. The value of LS is stored at every vertex location.

Ruppert's scheme was modified to also split cells that are too large according to the definition of
length scale in Equation 2.1. A cell is considered too large whenever the ratio of its circumradius
to the average LS of its vertices is greater than

Implementation details, such as how the Ifs is computed, as well as a proof that the modified
algorithm terminates with quality bounds comparable to Ruppert's are provided in [35].

LS (p) = min , min LS{qi) + ^ \q{ - p\)
neighbors q; Kj 1

(2.1)

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 15

2.3.5 Small angles in the domain

Small angles in the domain definition are problematic because they can lead to infinite recursion
when trying to fix the encroachment of a boundary edge. Ruppert [38] identified this pitfall and
suggested the use of concentric circular shells around small angles to prevent it. Figure 2.7 illus­
trates this. Boundary edges that are connected to a small angle vertex are split at the intersection
with circular shells centered at the vertex — not at the midpoint of the edge. This has the effect of
creating protective layers around the small angle boundary vertex, preventing encroachment. This
technique was also used in the present research.

Figure 2.7: Problem caused by small angles in the domain and how it can be avoided.

2.4 Generic boundary interface

To enable meshing from general curved boundaries, a framework in which the mesh generation
code makes no assumptions about the underlying geometry of boundary patches is needed [39].
This implies a generic interface between mesher and geometry, in which the mesher only needs
the results of several geometric queries. This is illustrated in Figure 2.8.

Whenever the mesh generation algorithm needs information about the boundary, a "question" is
passed on to the proper type of boundary patch. Each boundary patch type knows how to answer
all of these questions, and the answer is then passed back to the algorithm. This provides a trans­
parent access to potentially any type of boundary patch. Using object-oriented programming, this
generic interface can be implemented by using a common base class for all boundary data, with
implementation of specific geometric queries in derived boundary data classes.

(a) Small angle causes infinite insertion (b) Concentric circular shells prevent infinite in­
sertion

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 16

Information Needed Boundary Patches

Mesh
Generation
Algorithm

Midpoint of two verts

Normal at location

Distance from boundary

Initial discretization

Curvature at location

Others..

Lines

Splines

Circular Arcs

Others..

Figure 2.8: Framework used for the implementation of generic boundaries

The information required for the successful implementation of Ruppert's algorithm — curve mid­
point, curvature, and original discretization information — is described in Sections 3.2 to 3.6. The
other questions are needed to determine the appropriate mesh length scale LS; they will not be
discussed any further in this text. See [35] for more information.

So far, classes for lines, circles, arcs, cubic parametric curves, and interpolated splines have been
written. New types of boundary patches can be added by providing the proper "answers" for the
given boundary patch.

2.4.1 Total variation of the tangent angle

Since the meshing code must be able to work with curved as well as linear patches, a new way of
determining where splits happen along a boundary patch is necessary. One can first observe that
patches with little orientation change need few, long edges for accurate geometric representation.
Linear patches have no orientation change; they can be represented accurately with just one edge.
In contrast, regions of a curve with a large change in orientation require a greater number of shorter
edges. One must also make sure that small amplitude sine-like curves are discretized appropriately.
This suggests the use of the total variation of the tangent angle of a curve to determine where to
split a boundary patch.

The total variation TV(9) is defined in the following way:

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 17

TV (6) = J \d6

By using the following definition of curvature:

(2.2)

K(S)
de_
ds

it is possible to obtain another form for Equation 2.2:

TV(9) = J \d6\ = J \K(S)\ ds

The total variation can therefore also be expressed as the integral of the absolute value of curvature
along the arclength. Note that there is no need to compute the integral; one simply needs to
compare the orientation of the curve's tangent vector at carefully chosen points along the boundary
patches to get the exact value of TV (8). More details are given for each type of boundary patches
in Section 2.5.

2.4.2 Initial discretization

To obtain the initial Delaunay triangulation, each boundary patch must be initially discretized in
some way. Since the exact shape of the boundary is only known by the boundary patches, the
initial discretization of the corresponding curve must be computed by the patches themselves. At
this point in the meshing process, curves are represented with as few edges as possible in order
not to introduce artificial small features in the mesh. However, one must make sure that a valid
and exact representation of the domain will be obtained and that the rules regarding the location of
points inside the diametral lenses are also followed.

An arbitrary discretization of a spline curve is shown in Figure 2.9. The outside (above) of the
curve is to be triangulated. Ruppert's scheme guarantees that no vertex will be inserted inside
(below) the boundary edges. One must also make sure that no vertex will be inserted in the regions
inside the curve but outside of the boundary edges (the shaded area in Figure 2.9). This is to prevent
an invalid discretization, as the vertex inserted in the shaded area would ultimately lie outside the
domain once the boundary is well-resolved.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 18

Figure 2.9: Arbitrary original discretization of a spline. No vertex should be inserted in the shaded
areas.

The protection of this area can be achieved by making sure that the diametral lenses of the boundary
edges completely include the curve boundary. Since points are never inserted inside the diametral
lenses, this will protect the shaded region from point insertion. It is easy to calculate the total
variation in orientation a curve can have to remain inside the diametral lens of a corresponding
discretized edge.

Figure 2.10: Diametral lens of edge ab intersects the edge at an angle of 60°.

The diametral lens, as seen in Figure 2.10 makes a 60° angle with edge ab. A curve passing
through both points a and b can make an angle of 60° — e with the horizontal at point a and an
angle of —e with the horizontal at point b and still be completely inside the diametral lens. This
results in a TV(9) of 7r/3. This is the maximum total variation in orientation a curve can have
in order to pass through both points a and b, and still remain inside the diametral lens. A bigger
change can potentially put the curve outside of the lens. A valid initial discretization scheme must
therefore limit the length of edges so that the TV(9) of the curve over them does not exceed 7r/3,
i.e. TV(9)max = 7r/3. The diametral lenses of all the boundary edges will then entirely contain
their corresponding boundary patch, therefore not allowing any vertices to be inserted in the shaded
areas of Figure 2.9.

In addition, whenever a new boundary point is inserted, one must make sure that the two newly

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 19

created boundary edges will have diametral lenses that are point-free to prevent insertion outside
the domain. In Shewchuk's modification to Ruppert's scheme, all points in a boundary edge's
diametral circle are deleted before the edge is split; the same is done in this scheme.

Figure 2.11: A curve with uniform curvature intersects the edge with angles of 30°.

As can be seen from Figure 2.11, a curve with uniform curvature will intersect the edge with angles
of 30° at each endpoint. Knowing that the diametral circle of the original boundary edge is always
point-free, it is easy to see that the diametral lenses of new boundary edges coming from this
curve will also be point-free. The diametral lenses will always be contained within the diametral
circle. Such a statement is not true, however, for non-uniform curvature patches. For such curves,
the incident angle with the boundary edge can be arbitrarily close to 60°. This could result in a
diametral lens that is not entirely contained within the diametral circle whenever that curve needs
to be further split, as illustrated in Figure 2.12. The area with a white background is point-free
whereas the area with a shaded background might contain points. It can be seen that part of the
new diametral lens lies in the shaded area.

This pitfall is avoided by limiting TV(9)m&x along a boundary edge to 7r/6 for boundary patches
with non-uniform curvature. While this leads to twice as many boundary edges needed for curves
with non-uniform curvature compared to uniform-curvature patches, this representation is still
coarse enough not to introduce any artificial small feature in the mesh. More details are given in
Section 2.4.5.

The general scheme for the original discretization of the boundary patches is therefore to first
calculate the orientation change over the complete patch. The number of edges is then found by
ensuring that each edge, when split at equal intervals of TV (9), will cover less than the maximum
allowed for a given type of boundary patch (i.e 7r/3 for patches with uniform curvature, 7r/6 for
patches with non-uniform curvature). The following formula can be used for the number of edges:

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 20

Diametral lens outside
the diametral circle

Figure 2.12: A curve with non-uniform curvature might yield a diametral lens outside the diametral
circle.

NP =
TV{9)

TV(9)m&

The new vertices will be located where the orientation change from the previous vertex is:

(2.3)

TV(9)t

TV{9)

2.4.3 Edge recovery

Due to the very coarse representation of the boundary patches during edge recovery, some pre­
cautions must be taken in order to get a valid initial constrained Delaunay triangulation. The edge
recovery process must be modified since simple recovery through swapping will fail in some cases.
Two categories of such cases have been found. A description of these and an overview of the edge
recovery strategy used to obtain valid initial triangulations follow.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 21

Crossing of initial discretization edges

The initial discretization suggested by the boundary patches may result in an invalid overall dis­
cretization, because the edges that need to be recovered cross each other. Such a case is shown in
Figure 2.13, which presents a square inside a circle, including the initial discretization of the circle.
The top and bottom edges of the circle's discretization cross the edges of the square. Clearly, not
all edges in this initial discretization can be recovered simultaneously.

Detecting such cases in advance can be computationally expensive. Instead, it is possible to take
advantage of the fact that edges can be recovered through vertex insertion, a process known as
stitching. If an edge is not present in the mesh, a vertex is inserted at the midpoint of its corre­
sponding patch. If any of the two resulting edges is still absent from the mesh, then it is once
again split. This method is guaranteed to recover all the edges since a vertex is always connected
to its nearest neighbors in a Delaunay triangulation [40]. The spacing between the vertices of a
boundary patch will eventually be small enough that the corresponding boundary edges will have
to be present in the triangulation.

However, when forming a constrained Delaunay triangulation, blindly inserting vertices for a miss­
ing edge can lead to a very large number of unnecessary vertices. Consider for example the domain
presented in Figure 2.14. Since vertex a is so close to edge be, many vertices would need to be
inserted on edge be in order to recover the edge. This would lead to an artifical small feature in the
triangulation. Obviously, this is to be avoided.

Figure 2.13: Example of an invalid initial discretization

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES

Figure 2.14: Vertex a should not generate a small feature on edge be

Figure 2.15: Initial discretization of a domain that had overlapping initial boundary edgi

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 23

These competing requirements are balanced by inserting vertices only when swapping has failed.
The mesh generator first goes through the list of edges and recovers them through swapping. Since
the edges are not locked once they are recovered, it is possible that the recovery of one edge makes
a previously recovered edge disappear. Any edge associated with a curved patch that is still miss­
ing after this step will have a vertex inserted at its corresponding midpoint. Recovery of edges
associated with linear patches is always done through swapping. By following this method, only
the necessary vertices are inserted and no artifical small feature is introduced in the constrained tri­
angulation. The initial discretization for the case described in Figure 2.13 is shown in Figure 2.15.

Boundary edges located in wrong region

It is also possible that, due to the rather coarse discretization of curved boundary patches, entire
boundary edges will be located in the wrong region. This problem has the same source as the
previous one, except that in this case, the boundary edges do not overlap. In such a case, all
boundary edges can be recovered, but the initial discretization is still invalid.

b

Figure 2.16: Example of a feature of the mesh (the small square) that is located in the wrong region
due to the discretization of the curved boundary patch

Figure 2.16 illustrates this. The small square is located to the right of the boundary edge ab.
However, it is located to the left of boundary patch ab. In this case, the small square would be
located outside the triangulation, which can not be allowed.

The easy way to detect this case is to make sure that a vertex connected to edge ab on the left side
is also on the left side of the corresponding curved boundary patch. If the two sides are different,

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 24

then edge ab is split. This check must be done for both vertices located opposite each edge in the
mesh associated with non-linear boundary patches.

As a summary, Figure 2.17 shows a diagram of the procedure to follow for edges to be recovered.
The process is over once all the edges are recovered in one pass.

Get next edge to be
recovered

Yes Is the edge present? No

No Is there a vertex on the
wrong side?

Associated with a
linear patch?

Yes

Yes

No

Tried swapping for
this edge already?

No

Split edge

Yes

Swap to recover

Figure 2.17: Procedure to follow to recover boundary edges

2.4.4 Point insertion

Point insertion in the mesh, as well as on the boundary, is still done using Watson's method.
However, curved boundaries modify the way that boundary edges are split. Instead of splitting at
the average location of the edge's vertices, the location of the new boundary vertex is determined
by the boundary patch itself. The "midpoint" between two vertices is now found using the total
variation of the tangent angle. The general technique is to first find the total variation of the tangent
angle between the boundary edge's vertices a and b. The midpoint c will be located at the point on
the curve where TV(8) between a and c and between c and b is equal. This ensures that the new

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 25

point is always located on the boundary and that regions of the curve with higher curvature will be
discretized with more edges.

If the curvature over a given boundary edge is (almost) zero, the orientation change is negligible.
In these cases, the split is made according to arclength. This ensures linear patches are split in the
same fashion as before, and it also handles curves that have particularly flat regions.

The fact that the midpoints are no longer always located on the boundary edge being split can lead
to problems. In some cases, boundary edges may cross nearby boundary patches. An example of
such a case is shown in Figure 2.18. If the first edge of the bottom arc AB happens to be split
before the first edge of the top arc CD, point E will be inserted outside the domain, which can not
be allowed.

Figure 2.18: The top arc's discretization crosses over the bottom arc, but does not cross the bottom
arc's discretization

The strategy to fix this problem uses the fact that the boundary vertex E inserted to split the bottom
arc AB will not only lie behind edge CD but will also encroach on CD since arc CD is completely
included in the diametral lens of edge CD. This fact ensures that the edge CD can always be found
to test whether the new vertex E lies behind it. When the new vertex lies outside the domain and
some edge CD separates the vertex from the edge AB that it is supposed to split, then CD is split
first. In other situations, AB is split first; this prevents infinite recursion.

Even with this change in point placement when splitting boundary edges, it was still posible to
construct a proof showing that the modified algorithm will terminate with bounds on mesh quality
similar to Ruppert's original scheme. See Appendix A for the complete details of the proof.

D

B

A

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 26

2.4.5 Length scale modifications

Whenever a boundary edge is split, the length scale LS(p) for the new boundary vertex needs to
be computed using Equation 2.1. For this, the local feature size lfs(p) at the new point p must take
into account the curvature of the boundary. The local feature size for curved boundaries, lfsc is
defined as:

lfsc(p) = mm(p(p),lfs(p)) (2.4)

where p (p) = is the radius of curvature at point p. The radius of curvature therefore provides
a ceiling on the value of the local feature size on the boundary. By using the radius of curvature,
there will be an equal number of points per radian on the curve as per gap between objects. For
curves with uniform curvature, the edge length from initial discretization and the radius of curva­
ture are equal. For non-uniform curves, with a TV(0) m a x of 7r/6, the edge lengths will be twice as
small. This will lead to more points on the curved boundary, as needed. This factor of two will not
lead to artificial small features since the LS at that point might be determined by neighbor vertices,
not by lfsc(p). Furthermore, edge lengths can only be proven to be within a factor (Cs + 1/G) of
their ideal length. See the Appendix for details on the proof.

2.4.6 Small angles in the domain

Figure 2.19: Problem associated with curves, small angles, and the use of concentric circular shells.

The concentric circular shells method described in Section 2.3.5 can also be used to prevent infinite
insertion around small angles created between two curved boundaries. However, one must make

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 27

sure that the split points are located using geometric distance from the small angle vertex. If total
variation of the orientation is used instead of geometric distance, infinite encroachment is still
possible, as illustrated in Figure 2.19a. Vertices a and b were first created, perhaps as part of the
initial discretization. Since Zcba is obtuse, vertex d was inserted to fix encroachment on edge ca.
However, d encroaches on cb, so it too must be split, using point e. However, Zced is still obtuse,
so edge cd should be split, and so should ce, etc. Such a problem does not appear when geometric
distance from vertex c is used instead of orientation change, as can be seen from Figure 2.19b.

2.5 Implementation details

The evaluation of the total variation of orientation over any type of boundary patch is the cor­
nerstone of both the initial discretization and the midpoint routines. As was mentioned in Sec­
tion 2.4.1, there is no need to actually compute the integral; one only needs to take the difference
in orientation between two points over which the change in orientation of the curve is monotone,
i.e. it is either non-varying, or is strictly increasing or decreasing. The details on how to find these
particular points are given in the following sections.

2.5.1 Linear patches

The implementation of this type of patch is straightforward. The orientation change over any linear

patch is simply zero. Consequently, edges are split at the geometric midpoint of the edge.

Likewise, the initial discretization of a linear patch is trivial: only one edge is needed. The two
endpoints of the edge are inserted in the mesh, and the edge between these endpoints is marked for
recovery. No other vertices need to be inserted.

2.5.2 Circles and circular arc patches

The total variation of orientation for these patches is easy to obtain since the curvature of a circular
arc (or circle) is a constant 1/R. In order to exactly evaluate Equation 2.2, one only needs to use
the second form of the orientation change integral and find the total arclength of the arc, a trivial
computation given that the endpoints of the arc are known.

The midpoint between two vertices is calculated using the total variation of the orientation. How­
ever, since the curvature is constant, this is equivalent to splitting on arclength alone, and is simple

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 28

to implement. The original discretization demands a bit more caution. First, the number of edges
needed to discretize the arc is found using Equation 2.3. The value of TV(9)max for patches with
uniform curvature is 7r/3. The endpoints, as well as the extra vertices needed to define the proper
number of edges are inserted in the mesh and the Ne edges are marked for recovery. Note that for
full circles, there are no endpoints, and iVe is always six.

2.5.3 Cubic parametric curves

Cubic parametric curves are internally defined by two cubic parametric equations x(t) and y(t),
with t varying between 0 and 1. Such definition allows the representation of cubic Bezier curves,
cubic B-splines and cubic interpolated splines (see section 2.5.4 for details on splines). In order to
compute TV (9), "critical" values of t between which the orientation of the curve must be mono­
tone are first found. This way, it is possible to simply take the difference in the orientation of the
curve at these points to find the total orientation change for the curve. Furthermore, if one is careful
to take points on the curve that only allow a maximum change of 7r/2 between them, the need to
determine if the curve changed orientation by a value of j3 or a value of 2n — /3 is eliminated.

To achieve this, the minima and the maxima of both x(t) and y(t) are selected as critical points.
This limits TV(9) between two critical points to be smaller than n/2. There are as many as two
such points for each cubic equation. The inflexion point for each cubic equation is also chosen
as a critical point. Finally, the orientation of a cubic parametric curve might reach a maximum
or a minimum at the locations where the curvature is zero. These locations are found using the
following definition of curvature:

I v x a I
K = 3 —

where v= (x',y'), a= (x",y"), and v =| v |. Clearly, the curvature will go to zero whenever
| v x a | does. From this, as many as two more critical points on the curve are obtained, since
v x a = 0 simplifies to a quadratic equation for cubic parametric curves. In summary, there
potentially are eight critical values of t for a 2-D cubic parametric curve: four maxima/minima,
two inflexion points, and two zero-curvature points. By ordering these and the endpoints, and then
taking the difference in the orientation of the curve between consecutive values, the exact answer
to Equation ?? is obtained. An example of a Bezier curve with eight critical points in shown in
Figure 2.20. Two critical points are very close to each other on the left part of the curve.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 29

Figure 2.20: Critical points for a Bezier curve

These critical points are stored, and are used to quickly find the location of a midpoint. The location
is isolated between two of these critical values (or one of them and an endpoint). Since the curve
is monotone between two of these points, it is then possible to use interpolation techniques to find
the exact location of the midpoint.

The initial discretization of a parametric curve follows the generic procedure outlined earlier. In
this case, TV(9)max = TT/6. The endpoints, as well as the new discretization vertices, are inserted
in the mesh, and the Ne edges are marked for recovery.

Tangent vector may be null

It is possible for a cubic parametric curve to have zero values for both components of the tangent
vector. This prevents the use of the tangent vector (or the normal vector, which depends on the
same data) to determine the orientation of the curve at that particular point. The orientation is
usually found using:

The signs of x'(t) and y'(t) are used to determine the quadrant of 6{t). The tangent vector is
null whenever both x'{t) and y'(t) are zero for some t = t0. This makes the ratio of the two
indeterminate:

y'(t) _ o
t^t0 x'(t) 0

By using L'Hospital's rule, the limit becomes:

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 30

11111 , N

t->t„ x"(t)

L'Hospital's rule is used repeatedly until a finite value for the ratio is found. This finite value can
then be used to determine the orientation at t = t0, i.e.

However, in order to determine the right quadrant for 9(t0), one must still use the signs of x'(t)
and y'(t) as they approach t0. This can be done by evaluating them with a value of t close to ta and
still within 0 and 1.

2.5.4 Cubic interpolated splines

An interpolated spline is a collection of np — 1 cubic parametric curves, where np is the number
of points to be interpolated. As such, its total variation of the tangent angle is just the sum of the
total variations of its cubic curves. In the present research, the interpolated splines are created with
"no-moment" boundary conditions, i.e. both x"(t) and y"(t) are set to zero at the endpoints. Note
that the interpolation points are not necessarily inserted in the mesh - they only define the shape
of the curve. The list of critical points for an interpolated spline includes all the critical points
of its cubic curves as well as their endpoints. The midpoint is found using the same technique as
described in Section 2.5.3, i.e. interpolation techniques are used once the two surrounding critical
points are known.

Initial discretization of an interpolated spline is a bit more complicated, as boundary edges will
now more than likely span more than one parametric cubic curve. However, the overall process is
the same as for cubic parametric curves, with TV(#)m a x also IT/6.

2.6 Results

Figure 2.21 details the different steps involved in generating a mesh with the generic boundary
interface. The domain to be discretized, shown in Figure 2.21a, consists of four linear patches,

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 31

one Bezier curve (in the lower-right quadrant), and one circle. The interior of the circle is consid­
ered hollow in this case and will not be triangulated. Figure 2.21b shows the result of the initial
discretization. The domain, defined by the cells, was shaded in order to provide a better idea of
its shape. The circle was discretized using 6 edges. The Bezier curve, spanning 90°, was dis-
cretized with three edges. This is in accordance with the procedure described in Section 2.5. The
non-uniform distribution of the extra vertices due to splitting according to orientation change can
be clearly observed. It can also be seen that a boundary edge in the lower right quadrant crosses
another boundary patch, a problem that was discussed in Section 2.4.4.

Even though the mesh in Figure 2.21b is a valid constrained Delaunay triangulation, encroached
boundary edges must be split before Ruppert's algorithm can be started, as described in Sec­
tion 2.3.1. Figure 2.21c is the result of the encroachment fix step, and this is the triangulation
that Ruppert's algorithm is started with. Note that the circle is now discretized much more pre­
cisely in its lower-right quadrant than elsewhere because of its proximity to the Bezier curve.

The final result of Ruppert's algorithm is shown in Figure 2.21d. All of the angles in this mesh,
and the following ones, are equal to or larger than 30°. To demonstrate how the generic boundaries
adapt to a change in required resolution, meshes with two and four times the resolution of the mesh
in Figure 2.2Id have been generated. These are shown in Figures 2.2le and 2.2If, respectively.

Figures 2.22 and 2.23 show that the algorithm can easily handle complex geometries with generic
boundaries. They were both created using R = G = 4. In order to demonstrate more practical
uses, the mesh of the region surrounding a 4-element airfoil, shown in Figure 2.24, has also been
included. The boundary geometry is defined by a circle and four interpolated splines. This rela­
tively coarse mesh was created using R = G = 1 for clarity. The immediate surroundings of the
airfoil are shown magnified in Figure 2.25, with 2.25a detailing the state of the mesh after initial
discretization, and 2.25b the final result from Figure 2.24.

Table 2.1 summarizes the quality of the three previous meshes. The size and grading parameters
used, the minimum and maximum angle in the mesh, as well as the ratio of the actual edge length
to the "theoretical" edge length (from the average of the LS at its vertices) are listed. These meshes
were all generated with an imposed minimum angle bound of 30°. With higher values of R and G,
the major constraint is the cell size, not its shape. This explains why the angle bounds as well as
the edge length ratios are better for these cases. For case with lower values of R and G, the angle
bound is harder to reach than the size constraint. This results in smaller cells in some regions,
which affects the edge length ratios.

The use of the generic boundary interface did have a small impact on the time required to insert

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 32

(a) Domain definition (b) Initial discretization (c) Encroachment fixed

(d) Final mesh (R=G=1) (e) R=G=2 (f) R=G=4

Figure 2.21: Drawings a, b, and c show the steps required to obtain meshes d, e, and f.

Figure 2.22: Mesh including lines, circles, and arcs as boundary patches. All angles in the mesh
are above 30°.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES

Figure 2.23: Mesh with a boundary made up of Bezier curves, lines, and a circle.

Parameters Angles (in degrees) Edge length ratios
Figure number R G Min Max Min Avg Max

2.21 1 1 30.01 104.08 0.2500 0.8819 1.8598
2 2 35.11 104.42 0.4362 0.8937 2.001
4 4 32.56 114.88 0.4547 0.9173 1.8015

2.22 4 4 33.85 108.15 0.3811 0.9223 1.7552
2.23 4 4 33.31 110.06 0.1257 0.9003 1.9664
2.24 1 1 30.89 111.21 0.0669 0.3686 3.4170

Table 2.1: Quality measures

Figure 2.24: 4-element airfoil mesh.

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES

(b) Final mesh, R=G=1

Figure 2.25: Magnified sections of the 4-element airfoil

CHAPTER 2. MESHING OF DOMAINS WITH CURVED BOUNDARIES 36

points on the boundary. The boundary point insertion routines, which include the calls to deter­
mine the location of the new midpoint, take about 5% longer than before, on average. However,
considering that, on a typical mesh, the time spent on boundary insertion accounts for less than 1%
of the total time, the overall impact on performance is negligible.

2.7 Conclusions

A new framework allowing the use of curved boundaries with a guaranteed-quality Delaunay re­
finement algorithm has been presented. The boundary data has been separated from the meshing
algorithm, removing all assumptions about the shape of the boundary from the meshing code.

The use of curved boundaries demanded a new way of splitting boundary edges, to ensure regions
with higher curvature were discretized with a greater number of edges. The midpoints are now
computed using the total variation of the tangent angle, TV{9). Whenever TV{9) is negligible
over a given boundary edge, the arclength is used to compute the midpoint.

The introduction of curved boundaries also demanded a new initial discretization strategy. Curved
patches are first discretized with as few segments as possible. The minimum number of segments
required is determined by the total variation of the tangent angle of the patch. One must also make
sure that the curved patch is always protected by the diametral lenses of its boundary edges. Some
recovery problems associated with this rather coarse initial representation of the boundary were
found. A new strategy for edge recovery was developed and presented in this document.

Several patch types have been implemented and tested successfully. New boundary types can be
added to the generic boundary interface by implementing responses for all the generic queries used
by the meshing algorithm.

Finally, examples demonstrating the successful use of curved boundary patches were shown. These
meshes all showed excellent quality, with a minimum angle exceeding 30° in all of them. Their
resolution and grading were easily controlled using parameters R and G. It was also observed that
the generic boundary interface had a negligible impact on the time required to mesh a domain.

Chapter 3

Generic Finite-Volume Solver

In this chapter, the details of transforming a finite-volume solver into a generic solver will be ex­
plained. A finite-volume solver requires the domain be decomposed into a finite number of control
volumes. The more control volumes in the solution, the more accurate the numerical solution. In
this project, the original solver used an unstructured domain decomposition into triangular control
volumes, or cells. The discretized equations for the problem, introduced in Section 3.1, are then
solved for each of the control volumes. The finite-volume method solves for the control-volume
averaged value of the unknowns, so in order to get a smooth solution (for accuracy purposes), the
solver used in this research performs a reconstruction of the solution. Reconstruction is detailed
in Section 3.2. Boundary conditions can be enforced in two ways: with a constraint on the re­
construction, or using a boundary flux. Both methods are covered in Section 3.3. The task of
advancing the solution in time (or towards a steady-state) is presented in Section 3.4. Section 3.5
summarizes the steps required to solve a finite-volume problem.

The concept of a generic solver and the modifications it requires are introduced in Section 3.6.
A standard interface in the form of a class was created to access the physics of the problem in a
generic fashion; this interface, the Physics class, is described in Section 3.6.1. The interface for
boundary conditions is detailed in Section 3.6.2. Classes were also used to generalize the types of
meshes that can be used with the solver; the Mesh class is briefly covered in Section 3.6.3. Finally,
a generic interface was created to access the data at the control volume boundaries in a transparent
manner regardless of the type of mesh used, and this interface is known as the Recon class. Details
are given in Section 3.6.4.

37

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 38

3.1 General finite-volume formulation

To derive the finite-volume formulation of physical problems, it is useful to start with the generic
form of partial differential equations. In two dimensions, these equations are:

dU dFx dFv n

ot ox ay

In this equation, U is a vector containing the unknowns of the problem. U will be referred to as
the solution vector, or flux variables vector. Fx is the x-component of the flux vector, and Fy its
y-component. The source term vector is represented by S. Integrating over the control volume
area1, we obtain:

f ^ d A + f ^ d A + r ^ d A = f S d A

J A ot JA dx JA dy JA

By letting F = Fxi + Fyj, Equation 3.2 can be rewritten as:

f ^dA+ [V-FdA = f SdA (3.3)
J A dt JA JA

Applying Gauss's theorem to the second term of Equation 3.3 results in:

f ^dA+ I F-nds= f SdA (3.4)
J A dt JdA JA

The contour integral is evaluated along the boundaries of the control volume. In this case, F is the

flux vector across control volume boundaries.

So far, the equations have only been rewritten in a different way; they remain mathematically
the same. The finite-volume approximation is now introduced in the equations. The finite-volume
method only solves for the control-volume average of the variables in vector U. The control-volume
average of variable X over control volume i is defined as:

'in two dimensions. For three-dimensional problems, the equations are integrated over the volume.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 39

Xi = -j- f XdAi (3.5)
Ai JAi

Applying the averaging equations to the solution vector and the source term, and re-arranging
terms, we obtain the finite-volume approximation of the original PDE:

^- = ~ i F-nds+^- f SdA = FIi (3.6)
dt Ai JdA. A{ JA.

We define Fli as the flux integral for control volume % (even though it also includes the source term
integral). Equation 3.6 is solved on each of the control volumes. The integration is carried out using
Gauss quadrature. This method does not introduce any arbitrary elements to the equations, such as
basis or test functions. Since the average over each control volume is preserved, the variables in the
vector of unknowns U are automatically conserved on the domain.2 This makes the finite-volume
method particularly attractive for computational fluid mechanics problems, where the conservation
of quantities such as mass, momentum, and energy is critical.

3.2 Reconstruction of the control-volume averaged data

As mentioned previously, a finite-volume solver only computes cell-averaged data, meaning that
only a constant average value for the flux variables is available for a given cell. When evaluating the
fluxes at the boundaries, or faces, of the control volume, using these averaged values is inadequate
as it leads to a first-order accurate solution only. This is explained by the fact that the difference in
control-volume averages between two neighbor control volumes is first-order with respect to the
mesh spacing.

The solution is therefore reconstructed over each control volume for improved accuracy [6]. This
reconstruction generates a smooth polynomial valid over the entire control volume. This polyno­
mial can be linear, quadratic or cubic, depending on the order of the reconstruction. The polyno­
mial function is chosen to preserve the control-volume average, and attempts to predict the average
values of neighbor control volumes as well as possible. The function is obtained by solving a con­
strained least-squares problem, where the main constraint is the average value of the function over
the cell.

2This is dependent on the proper accumulation of fluxes in control volumes neighbor to a given face; basically, one
must ensure that flux leaving a given control volume at a face is the same as the flux that enters the control volume on
the other side of that face.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 40

Once such a function has been computed, it can be used to obtain the flux variables values at the
control volume boundary. Figure 3.1 displays the difference between the averaged solution (where
the solution is constant over a given cell) and a second-order reconstruction of the same solution on
an unstructured mesh (where the solution varies linearly over the cell). It is clear from this figure
that the reconstructed solution will yield a much more accurate value of the flux variables at the
control volume boundaries.

Figure 3.1: Difference between averaged and reconstructed solution. The height of the cells repre­
sents their value.

This extrapolation is only valid over a given control volume. The extrapolations from two neighbor
control volumes will yield different values at the common boundary. Both of these values are
available for flux computation, and it is up to the user to decide whether one, the other, or a
combination of both values is to be used. In some cases, the physics of the problem will dictate
that choice, as in problems requiring upwind formulation of the fluxes.

3.3 Boundary conditions

Some of the control volume boundaries will also be domain boundaries. The fluxes evaluated at
these locations are used to implement the boundary conditions of the problem.

Boundary conditions can be enforced in two different forms. The first form, known as the weak
form of the boundary condition, imposes a specific flux at the boundary. When such a boundary

(a) Control-volume averaged solution (b) Reconstructed solution

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 41

—* —*

condition is encountered, the solver does not use the flux F but rather the flux Fb specified by the
user for that boundary.
The strong form of the boundary condition imposes a specific value of the flux variables (or any
of their derivatives) at the boundary control volume. This is done by adding constraints on the
reconstruction of the solution over the boundary cell [36, 41]. The polynomial computed by the
reconstruction will match the value of the flux variables specified at the boundary. The flux F can
then often be used for the boundary flux; since it will be evaluated with the values obtained by the
reconstruction, it will account for the constraints of the boundary condition.

One can then distinguish between two fluxes in the solver: the interior flux, used on interior faces,
—*

is always the flux F as described in Section 3.1. The boundary flux is used on faces adjacent to
—* —*

the domain boundaries, and can be the flux F or a specific boundary flux Fb specified by the user,
depending on the form of the boundary condition used. It is also possible to use a constraint on the
reconstruction as well as a specific boundary flux for a given boundary condition, if needed.

3.4 Time-advance

The solver in this research advances the solution in time (or towards steady-state) using an explicit
multistage scheme. This family of schemes uses intermediate solutions and evaluates the flux
integral at each of these intermediate steps in order to obtain the solution at the next timestep.
These methods are self-starting, i.e. they do not require data at any previous timestep, and can be
made to be high-order accurate simply with an appropriate choice of coefficients. Schemes up to
fourth-order accurate were used in this research, and are presented below.

3.4.1 Evaluating the timestep

The value of the timestep At used to advance the solution in time can either be determined by the
user or evaluated by the solver. A value for a stable timestep is computed for each control volume
in the domain. These values can then be used to perform global timestepping, where the smallest
timestep in the whole domain is used to advance the solution in time, or local timestepping, where
solution is advanced using the local value of the timestep over each control volume. The latter
method can only be used to obtain steady-state solutions.

The value of the timestep for a given control volume is determined using integration of wavespeeds
around the control volume, an approach suggested by Barth [5]:

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 42

At (3.7)

where Vi is the volume of the control volume and Cmax is the fastest wave entering the control
volume. This wavespeed is determined by the flux function, and sent to the solver in parallel to the
flux computations.

For diffusive types of problems, a "pseudo" wavespeed needs to be computed so that the solver
can estimate the value of the timestep. This pseudo wavespeed was determined using the one-
dimensional heat conduction problem as an example. With explicit time-advance on a structured
grid, this type of problem requires Atmax oc Ax2. A "wavespeed" of c = 1 /Ax is therefore
required. Such a value is easily computed on structured meshes, but for unstructured meshes, an
equivalent inverse distance measure is required. In ANSLib, 1 /Ax is replaced by:

where Xj Xi IS the vector from the control volume reference location in control volume i to that
in control volume j and is the unit normal vector to the interface between control volumes i
and j, pointing into control volume j. This inverse distance measure is always available to the flux
functions.

Furthermore, the user can also provide a value of the CFL number, which will be used to modify

how the timestep that was computed is used:

CFL =
At

(3.8)
A t "max

3A.2 First-order

The first-order scheme used is known as the Explicit Euler scheme:

Un + hFl, •n (3.9)

where FI„ is the value of the flux integral for cell i at timestep n, and h is the value of the timestep
taken multiplied by the CFL number, i.e. h = CFL x At. Note that the cell subscripts i are omitted
here for clarity.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 43

3.4.3 Second-order

The second-order scheme used is the second-order Runge-Kutta scheme:

U n + i = Un + \ h F l n
n + 2 2 (3.10)

U n + i = Un + h ¥ l n + ±

3.4.4 Third-order

First- and second-order accurate schemes only require the solution and flux integral from the pre­
vious (intermediate) time step to get an updated solution. This is not the case for higher order
schemes, as they need the flux integrals for up to 4 previous intermediate timesteps to be avail­
able. These schemes therefore require extra storage space compared to the first- and second-order
schemes. The third-order scheme used is a third-order Runge-Kutta scheme3:

U n + , = Un + \ h F l n

= t/n + ^ (9 F I „ - 4 F I n + i) (3.11)

U n + l = C / n - f (8 F I n - 1 6 F I n + i + 5 F I n + i)

3.4.5 Fourth-order

A fourth-order Runge-Kutta scheme can be found using the same methodology as the third-order
scheme:

Un+l

= Un + \ h F l n

= un + \ h f i n H

= Un + h F l n H _

= Un + \h [Fin + 2 (FVi + F I n + i) + F W i

(3.12)

Details on how the coefficients for these schemes were determined can be found in [28].
3The equations governing the value of the different coefficients for a given Runge-Kutta scheme are underdeter-

mined; there is therefore a certain freedom in the choice of coefficients, leading to a variety of Runge-Kutta schemes
of the same order.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 44

3.5 Implementation of a finite-volume solver

In summary, a reconstruction-based finite-volume solver repeatedly performs the following steps
to get a numerical solution:

1. Setup boundary constraints on the reconstruction, if necessary

2. Perform reconstruction over all control volumes

3. Evaluate the fluxes along all control volume boundaries

4. Accumulate the fluxes in the proper control volumes

5. Evaluate the source term integral over each control volume

6. Perform next time-advance step

Set-up BCs

Reconstruction

Flux evaluation

Flux accumulation

Source term

Time-advance

Figure 3.2: Overview of the process involved in solving a numerical problem using the finite-
volume method

A schematic of the steps above is shown in Figure 3.2.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 45

3.6 Modifications needed by a generic solver

The concept behind a generic finite-volume solver is quite simple. Of all the steps outlined in
Section 3.5, the physics of the problem to solve only appear in steps 1,3, and 5. Boundary con­
straints (step 1) are related to the boundary conditions, which are highly physics-dependent. The
fluxes of the problem (step 3) depend on the physics of the problem being solved, and finally, the
source term (step 5) is also related to the physics of the problem. Steps 2, 4, and 6 are all strictly
numerical methods, and no knowledge of the type of problem being solved is necessary to perform
these steps properly. Figure 3.3 illustrates the physical information required for each step in the
process.

Set-up BCs Bdry Constraints

Reconstruction

Flux evaluation

Flux accumulation

Interior flux

Bdry Flux

Source term Source term

Time-advance

Figure 3.3: Detail of the physical information needed in the finite-volume method

The essential idea for a generic solver is to have all the numerical parts of the problem handled by
a finite-volume toolkit. This toolkit then makes calls to external physical packages to receive the
information relevant to the physics of the problem being solved. By making all physical packages
look the same to the numerical toolkit, any physical problem can be solved using the generic solver.

This section describes how the separation of the numerical and physical aspects of the solver was
accomplished. The technique considered takes full advantage of the object-oriented approach to
programming. Object-oriented programming allows the creation of standard interfaces to parts of
code. These interfaces are known as classes. The generic solver interacts mainly with the Physics
class.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 46

3.6.1 The physics class

The Physics class has to provide all the information regarding the physical aspects of the simu­
lation to the solver. In particular, it must provide the data for the following items:

Number of flux variables

The first information the Physics class provides to the solver is the number of flux variables in
the problem. The number of variables will determine the size of the storage arrays needed later in
the simulation. It also sets the number of items in the flux vector.

Interior flux

Perhaps the most important physical aspect of a problem, the interior flux is the flux that crosses
the control volume boundaries located in the interior of the domain. This corresponds to the flux
F = Fxi + Fyj introduced in Section 3.1. The solver will call the interior flux function at every
location it needs to be evaluated, i.e. at every Gauss point on each cell boundary.

—*

The interior flux function returns the result of F • n. Information about the location of the Gauss
point, as well as the normal vector are available to this function. Furthermore, the values of flux
variables (as well as their derivatives) from each side of the boundary are available. These values
are known as the left and right values.

Source term

The source term of the equation, S (from Equation 3.4), must also be provided to the solver. In
some cases, a Physics class may not have a source term. However, if one is defined, the solver
will compute the value of the source term at each of the Gauss points in the control volume. The
number of Gauss points varies with the order of accuracy used for the simulation.

The source term function returns the value of S. Once again, the values of the flux variables and
their derivatives are available to the function, as well as the location of the Gauss point. No normal
vector is provided since the source term is not a vector quantity. Since the source term is evaluated
in the interior of the cell, there is only one value for each variable (no left and right values).

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 47

Related quantities

The Physics class is able to provide quantities related to the physics of the problem on demand.
For example, a heat conduction Physics class is able to compute the wall heat flux qn anywhere
on the boundary of the domain. These quantities can then be used for post-processing purposes.

Initial solution

Finally, a Physics class must be able to provide a generic initial solution that the solver can use
in case the user does not specify one.

3.6.2 Boundary condition types

The boundary conditions are also defined in the Physics class. Each boundary face in a mesh
has a boundary condition number associated with it. This number will then be associated with a
boundary condition type, specific to the Physics class. This boundary condition type can be used
for any problem where a particular physical phenomenon occurs, so it must not rely on a specific
boundary condition number, or mesh.

The boundary condition types can be defined using either a specific boundary flux, or by specifying
constraints on the boundary reconstruction. It is possible to assign several boundary types to a
boundary condition number. The only requirement is that only one boundary flux be specified
for a given boundary condition number. The code places no limits on the number of constraints
assigned to a given boundary condition number.

The boundary flux function returns the value of the flux in a way similar to the interior flux function.
The location, the normal vector, as well as the values for the flux variables are available. The only
difference from the interior flux function is that the data only comes from one side, since the
boundary face only has one neighbor cell; the left and right values are therefore identical.

Boundary constraints also have the location, as well as the normal vector available. Additionally,
the value of the constraint itself, typically set by the user, is also available.

Figure 3.4 shows schematically how the solver has been modified to make calls to an external
Physics class whenever physical information is needed. The Physics class is shown with two
boundary condition types for illustration purposes.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 48

Figure 3.4: Solver making calls to external Physics class

3.6.3 Separate Mesh classes

Another exciting feature made possible by the use of classes is to make the solver use a generic
mesh structure. This allows the solver to be used with any type of mesh. Not only can the solver
potentially use both structured and unstructured meshes, it can also use both two-dimensional and
three-dimensional meshes, all within the same solver. This done by having the solver interact
with the mesh through a standard interface called a Mesh class. The base Mesh class defines the
interface that allows access to information such as the number of control volumes, the dimension
of the mesh, as well as the interface for flux integration on the mesh. Each specialized mesh class
then implements these functions.

Two main branches of the Mesh class have been written already. The first one, the Unstructured-
Mesh class, implements the various containers necessary for unstructured mesh representation, as
well as the functions needed to access them. This class is then further specialized into 2-D (triangu­
lar) and 3-D (tetrahedral) classes, and both of these classes also have implementations for both cell-
and vertex-centered meshes.4 The other main branch for the Mesh class is the StructuredMesh
class. This class is also divided in both 2-D and 3-D classes, although only the 2-D class has been
implemented so far. The 2-D structured mesh class uses quadrilateral-shaped control volumes.

4Unless specified, the unstructured meshes used in this research are always of the cell-centered type, where the
control volume exactly matches the cell in the mesh.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 49

3.6.4 The Recon class

The Recon interface has been created to facilitate access to reconstructed solution data at Gauss
points. The interface for the functions that compute the value of the flux variables and their deriva­
tives is defined here. The class also implements how the constraints on the reconstruction can be
denned.

The reconstruction method introduced in Section 3.2 is used with unstructured meshes. The code
for this method was moved into a specialized version of the reconstruction class for unstructured
meshes. Reconstruction could be used along with structured meshes as well, but the code would
have to be modified in order to take into account the difference in mesh topology. It would be
possible to write a structured version of the Recon class that would implement this modification.

However, with structured meshes, it is possible to take advantage of the predictable topology and
compute the values and gradients much more efficiently using Taylor series expansions. These
expansions eliminate the costly step of solving a least-squares problem for every control volume
in the mesh. This step in simply ignored when using the structured specialization of the Recon
class. For the solver, however, there is no difference, since the interface for the unstructured and
the structured Recon classes are exactly the same.

The unstructured reconstruction method implements first-, second-, third-, and fourth-order ac­
curate schemes. The structured version only implements a second-order scheme at the time of
writing.

Figure 3.5 is a schematic of how the solver and the various classes highlighted in this section
interact. The solver needs access to the Recon class whenever it needs access to reconstructed
data: when computing interior fluxes, source terms, and boundary conditions. In turn, the Recon
class needs access to the topology of the mesh in order to perform the reconstruction (unstructured)
or compute the Taylor series (structured). Furthermore, the solver needs to know the location of
the Gauss points for flux computation, so it also interacts with the Mesh object.

3.7 Sample problems

To demonstrate the effectiveness of the generic solver, three different physical problems were
solved. The physical phenomena investigated were: heat conduction, solid mechanics, and in­
compressible fluid flow. The mesh remained the same for the three problems, and is illustrated in

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 50

Mesh class Solver

Size Info

Topology Info

Recon class

Var evaluation

Grad evaluation

Physjcs class _

Interior flux

Bdry condition TYPE

Bdry Constraints

Bdry Flux

Bdry'condition TYPE

[Bdry Constraints

[Bdry Flux

Source term

Figure 3.5: Schematic of the various standard interfaces for the physics, the mesh, and the recon­
struction interacting with the generic solver

Figure 3.6.5 The domain has a length L = 1.0 and a height H — 0.2. All the simulations were
performed using a cell-centered scheme.

Figure 3.6: Mesh used for the sample problems presented in this chapter

The following problems can easily be solved analytically; they are used to demonstrate the flex­
ibility and the accuracy of the generic solver. The numerical solutions were compared to their
analytical counterpart.

5Keeping the same mesh is, of course, not necessary. In fact, some of these problems could be solved more
efficiently on a different mesh. However, for illustration purposes, the same mesh is used for all three problems.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 51

3.7.1 Heat conduction

Physical description

Heat conduction is governed by the following differential equation:

k dt dx2 dy2 k

Where T is the temperature, q is the energy generated per unit volume, k is the thermal conductiv­
ity, p is the density and c p the specific heat of the material. Letting Equation 3.13 take the form of
Equation 3.1 results in:

?L _ A (a?L\ _ JL (aK\ = J_ (3 H)
dt dx \ dx J dy \ dy J pcp

where a = is the heat diffusivity of the material. Comparing Equation 3.14 to Equation 3.1, it
can be seen that:

This translates into the following fluxes:

and the following source term:

U = T (3.15)

dT
Fx = - a — (3.16)

dx

dT
Fv - - a — (3.17) dy

S=— (3.18)
pcp

Boundary condition type: Imposed temperature

There are two boundary condition types for the heat conduction problem. The first one imposes a
temperature at the wall. This is done by setting a constraint for the temperature value at the wall.

—*

The value of the constraint is set by the user. The boundary flux is simply Fb = Fx • nx + Fy • ny.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 52

Boundary condition type: Imposed heat flux

The second boundary condition type imposes a specific heat flux at the wall. This boundary con­
dition is defined by specifying a boundary flux. The normal heat flux at the wall qn = is
specified by the user. The boundary flux then becomes:

Fb = - ^
pcp

This boundary condition type can be used to specify an insulated wall by setting the normal heat
flux to zero.

Problem definition

The domain was subjected to a temperature boundary conditions on all boundaries. The left bound­
ary had an imposed temperature of TL = the right boundary had a similar temperature bound­
ary condition, but with a decreasing temperature in y: TR = 10 — The top and bottom surfaces
have imposed temperatures varying with x, with TB = f̂f and TT = 10 — .

The analytical steady-state solution for this problem is a bilinear temperature distribution:

Tlx v) ~ 1 0 X I 1 0 V 2 0 X V

Looking along the diagonal joining the top-left corner to the bottom-right corner of the domain,
the temperature profile is:

r W U (l _ j) = 2of (f - i) + i o

This is the temperature profile that will be used for comparisons.

Since they do not affect the steady-state solution, k, p, and cp were set to 1. A second-order
accurate scheme was used.

Results

A second-order accurate reconstruction scheme recovers the gradients of the interior flux exactly,
so it is no surprise to see in Figure 3.7 that the numerical solution matches the analytical solution

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 53

well.

Temperature profile along y=H(1-x/L)

1 1

£ 8
3
(3
CD Q.
E
|2 7

5 h

Analytical Solution
Numerical Solution +

0.2 0.4 0.6
x

0.8

Figure 3.7: Temperature profile along y = H (1 — f)

3.7.2 Solid mechanics: plane stress

The second test problem is most often solved using the Finite Element Method. However, it is
possible to solve plane-stress problems with ANSLib; one only has to provide the necessary de­
scription of the physics.

Physical description

The differential equations of motion of a deformable solid are (from [10]):

da.
dx

(3.19)

where Bi are the body forces in the i direction. Using small-displacement theory, the strains for an
isotropic material can be expressed using the following relationship:

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 54

1 / dui duj
%3 2 \dxj dxi

(3.20)

In this equation, Ui is the displacement of the material. The plane stress assumption dictates that:

/ CTxx \

'yy

E
1 - V2

tyy + UC

yy

XX (3.21)

where E is the modulus of elasticity and v is Poisson's ratio. Combining Equations 3.19,3.20, and 3.21

yields:

9 I i_„2 (exx + ueyy)

"dx\ E -

E

2(\+u)^y

Using displacements u and v, the following are obtained

d J 2(1+1/")
Qy V iS (*yy + ^ e -)

—Bx

—B„
(3.22)

v
(3.23)

9u i ydv

dx dy l-I/2 ^

(du I &u
9y 3x

£
4(1+,

E

4(1+1/) (9u I dv

dy dx .

E f§21 , ydu

1—v2 ydy dx

(3.24)

(3.25)

S = -
Bx

B„
(3.26)

Boundary condition type: Imposed ̂ -displacement

This boundary condition type imposes a value for displacement u at the boundary. This boundary
condition type is imposed using a boundary constraint. The boundary flux used is the same as the
interior flux F.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 55

Boundary condition type: Imposed (/-displacement

This boundary condition type imposes a value for displacement v at the boundary. The boundary
condition is enforced in the same way as the ̂ -displacement boundary condition. Since any number
of boundary constraints can be used, a displacement in both the x- and the y-direction can be
imposed at a boundary by using a combination of the x- and y-displacement boundary conditions.

Boundary condition type: Imposed stresses

The normal (ab) and shear (rb) stresses at the boundary can be enforced using a boundary flux. The
flux then becomes:

The signs were chosen to agree with the sign convention for stresses (tensile stress is positive,
compressive stress is negative).

Boundary condition type: Symmetry

This boundary condition type is used whenever there is a symmetry in the problem. Taking advan­
tage of symmetries in the geometry improves the performance of the simulation by reducing the
number of computational nodes needed. The symmetry boundary condition imposes two things:
zero displacement in the direction normal to the boundary, and also imposes a value of 0 to the
normal derivative of the displacement tangent to the boundary. Both of these restrictions are im­
posed using boundary constraints. For example, for a vertical boundary face, the two constraints
would be u = 0 and |g = 0.

Problem definition

We are solving the problem of a beam under tension in the ̂ -direction. Only a quarter of the beam
is modeled, because of symmetry in both axes. Symmetry boundary conditions are imposed on the
left and bottom boundary faces. The top boundary is free to move, and the right boundary face has
a normal stress of ab = 1 imposed to it.The modulus of elasticity E was set to 7000 and Poisson's
ratio v to 0.2.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 56

The displacements at the right boundary are used to assess the accuracy of the simulation. The
theory of elasticity states that the displacments in the direction of the applied stress are:

u(y)\x=L = ^ L

The displacements in the other axis are governed by Poisson's ratio:

v(y)\x=L = - ^ L v

A third-order accurate scheme was used.

Results

The numerical results matched the analytical solution accurately, as can be seen in Figure 3.8.

3.7.3 Laminar incompressible Navier-Stokes

Physical description

The incompressible Navier-Stokes equations can be put in the form of Equation 3.6 by adding
a time-dependent pressure term in the continuity equation, as described in [22]. The continuity
equation now looks like this:

dt "*~ P dxi ^ (3.27)

where ft is an artificial compressibility parameter. The smaller the value of /3, the more "incom­
pressible" the equations, although very small values of /? make the equations stiff numerically. Of
course, the addition of this time dependent term to the continuity equations means that the real
incompressible equations are no longer being solved. However, when the solution reaches steady-
state, the time derivative is zero and Equation 3.27 becomes the continuity equation. This method
therefore can only be used to obtain steady-state solutions.

The Navier-Stokes momentum equations remain the same:

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER

0.0002

0.00015

0.0001

5e-05

Displacement in x along x=L

Analytical solution
Numerical solution

0.05 0.1 0.15 0.2

(a) x-displacement

Displacement in y along x=L
1e-06

-6e-06

Analytical solution
Numerical solution

(b) y-displacement

Figure 3.8: Displacements along x = L

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 58

dui duiUj
dt dxj

OP 1
+

d2Ui
(3.28)

dxi Re dxkdxk

where U{ are fluid velocities and Re is the Reynolds number of the flow (from [43]).

If one converts these equation to the form given by Equation 3.6, the following relationships are
obtained for a two-dimensional problem:

U
f P \

u

\ « /

FT = u
1 du

Re dx

\v2 + P
Re dy

\

J

s = 0

(3.29)

(3.30)

(3.31)

(3.32)

In this case, it is practical to use the flux vector F — Fx • nx + Fy • ny since some simplification is
possible. The flux vector is:

v

F = (3.33)

where V = u • hx + v • ny is the flow velocity normal to a control volume boundary.

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 59

Boundary condition type: Inflow

This boundary condition type imposes a fully-developed normal velocity profile at the boundary.
The fully-developed condition imposes that ^ = 0. The tangential velocity is set to zero. The
pressure boundary condition is determined using the normal momentum equation and the fully-
developed condition, and results in:

2£ = (3.34)
dn Re dc2

where c represents the cross-stream direction. Since Vb is a known value, the condition on pressure
can be computed. The user must specify both the normal velocity profile and the pressure gradient
at the boundary. All conditions are imposed using constraints on the reconstruction.

Boundary condition type: Stationary wall

At the wall, velocities u and v are zero, due to the no-slip condition. Furthermore, | £ is also set to
zero, from Equation 3.34. These three conditions are enforced using boundary constraints, and the
interior flux is used on that boundary face.

Boundary condition type: Outflow

For this boundary condition, the pressure is enforced to a value of zero. The boundary condi­
tions also enforces fully-developed flow by constraining the tangential velocity and the normal
gradient of the normal velocity to zero. These three conditions are imposed as constraints on the
reconstruction.

Problem definition

We are solving a simple channel flow problem. An inflow boundary condition is imposed at the
left boundary of the domain, an outflow at the right face, and both the top and bottom surfaces are
considered stationary walls. The constants used were Re = 50 and /3 = 5. The velocity profile at
the inflow is constant:

Vb = l

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 60

The profile at the outlet will be used to verify the accuracy of the simulation. The exit profile
should be the laminar fully-developed parabolic profile:

i ATT y f-i y \
U\x=L = 4Umax — (l - —)

Using conservation of mass, this profile should have a maximum velocity of Umax = 1.5. A
third-order accurate scheme was used.

Results

The velocity profile obtained matches the fully-developed profile, as can be seen in Figure 3.9.
The error on the maximum velocity was of the order of 3 x 10~4, or about 0.02%. This error is
due to the fact that the flow rate entering the system is not exactly VbH. This discrepancy is caused
by the conflicting boundary conditions for the control volumes located in the left corners of the
domain. Reconstruction tries to set u = 0 at the top and bottom walls, but is also trying to satisfy
the inlet boundary condition, where u ^ 0. In fact, the velocity profile at the outlet matches the
fully-developed profile for the real flow rate entering the domain.

Velocity profile at x=L

0 0.2 0.4 0.6 0.8 1
y/H

Figure 3.9: Velocity profile at x = L

CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 61

Summary

In this chapter, the details of the generic numerical toolkit used in this research have been presented.
The finite-volume method has been described in Section 3.1. Section 3.2 covered reconstruction,
the method used by the toolkit to achieve high-order accuracy on unstructured meshes. Boundary
conditions and time-advance methods were then covered next in Sections 3.3 and 3.4.

The generic solver concept was introduced in Section 3.6; the different classes needed by a generic
solver are presented in this section. Finally, in Section 3.7, three different physical problems were
solved on the same mesh to demonstrate the effectiveness of the generic nature of the solver.

Chapter 4

Generic Multiphysics Solver

Multiphysics problems are problems where several physical phenomena interact to produce a cou­
pled solution. Each combination of physical phenomena have a different way of interacting with
each other, but some similarities can be seen. In particular, it is possible to categorize the interac­
tions using the location of the coupling, and these two categories are: field coupling and interface
coupling [21].

4.1 Field coupling

In field coupling, the physical phenomena interact over the interior of a domain. One physical
phenomenon requires information from the other phenomenon over the entire domain, and vice-
versa. The interaction between the Reynolds-averaged Navier-Stokes (RANS) equations and an
accompanying turbulence model is an example of field coupling. At every location in the domain,
the turbulence model equations require information about the mean flow from the RANS equations,
and the RANS equations need the eddy viscosity to compute Reynolds stresses.

4.2 Interface coupling

In interface coupling, multiple physical processes in two neighboring regions interact through a
common interface. In this case, the information exchange only happens at the boundary between
the two regions. Fluid-structure or conjugate heat transfer problems are examples of interface

62

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 63

coupling. In a conjugate heat transfer problem, the coupling is relatively simple, as both the tem­
perature and the normal heat flux from the neighbor regions must match at the boundary. The
coupling for fluid-structure problem is far more complex. The fluid region dictates the stresses
in the solid region at the boundary: the normal stress must be equal to the pressure in the fluid,
and the shear stress must be equal to the wall shear stress in the fluid. The solid region, in turn,
influences the fluid region by way of deformation of the interface: the fluid domain changes over
time, and the velocity of the interface is used to impose the no-slip condition in the fluid region (if
a transient solution is required).

4.3 Numerical simulation

Writing a generic multiphysics solver poses a number of challenges. Even though the work done
for this research was based on an already proven generic solver, much of the interface with the
Physics class for this solver had to be re-written [7, 8]. In fact, single-physics problems are now
treated as special cases of multiphysics problems.

One of the obvious changes needed was that the solver must now interact with multiple Physics
classes. Another change was to allow multiple regions, or subdomains, in a problem, each with
their own set of Physics classes. But perhaps the most crucial modification was allowing the
exchange of information between different Physics classes, whether on the same domain, or
across an interface. This requirement had a serious impact on how the interface for the physics of
a problem was modified, and is therefore introduced first in Section 4.4. The following sections,
Section 4.5 and Section 4.7, then introduce new classes that were created to simplify the task
of managing multiple physical phenomena, and multiple subdomains in a problem, respectively.
Results are presented in Sections 4.6 and 4.8.

4.4 Data exchange

The first requirement for data exchange is that the solver must know what information each phys­
ical package can exchange with another. This is accomplished by the use of another class, the
PhysVar class. Every piece of data the Physics class needs or can provide to other class has an
accompanying variable. The Physics class keeps a list of PhysVars. 1 There are different types

'It should be noted that this class is only used to describe the data each Physics class needs or provides, and that
the actual value of the data is not stored in the PhysVar class.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 64

of variables needed by the Physics class, and the types are outlined in Section 4.4.1.

Once all the Physics classes have listed their variable requirements, it is then possible to couple
the classes together. The coupling is accomplished through variable association, and this process
is covered in Section 4.4.2.

Additionally, some computations can only take place when the values for all dependent variables
are available. This requirement is fulfilled by the use of dependency trees. Details are presented in
Sections 4.4.3 and 4.4.4. Finally, a summary of all the modifications made to the Physics class
to make use of PhysVars is given in Section 4.4.5

4.4.1 Variable types

The items in the list of variables for a given Physics class are created at the same time the class
is created. Each PhysVar contains all the information the solver needs to know about a variable;
each is given an identification number, a name, a symbol, units, and a variable type. Variables
can be accessed from within the Physics class using the vecValues array, a Physics class
member variable. For example, the variable with identification number eDensity is located in
vecValues [eDensity] . The different variable types are listed below.

Flux variables

This variable type is used to let the solver know about the conserved variables of the problem. The
user defines as many of this type of variable as there are items in the solution vector. The solver
will size the different arrays needed in the simulation using the information given by the number of
flux variables in a Physics class. Furthermore, the identification number assigned to each of the
flux variable is used in the Physics class itself by the reconstruction variables and the boundary
constraints. However, the value of the flux variable is never stored using this identification number,
so this variable type is used only for information purposes. Reconstruction variables (see below)
are used to access the values of the flux variables. As an example, the heat conduction package
only has one flux variable: the temperature T.

Required variables

Variables of this type are used to indicate information that is needed by the Physics class to
compute such things as the fluxes or the source terms. The heat conduction package used in our

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 65

example has three required variables: the conductivity k, the density p and the specific heat cp.

Boundary condition variables

The boundary condition variables are a special type of required variables used by the boundary flux
or the boundary constraint functions for data specific to a boundary condition type. This variable
requires an extra parameter that tells the solver which boundary condition type it is associated
with. For example, in the heat conduction package, one of the boundary condition types imposes
a specific temperature on the boundary. This is done using a boundary constraint. A boundary
condition variable Tb is then created to contain the value of the temperature at the boundary, and
the constraint is set to that value.

Reconstruction variables

This type of variable is used by the Physics class to access reconstruction data computed by the
Recon object. The reconstruction variables require some extra parameters. The first one is the type
of reconstruction data that is needed. The choices are the following: Location, Normal, Solution,
or Gradient.

The location type tells the solver that some information about the location of the Gauss points
is needed. The normal type is used to indicate that information about the normal of the control
volume face is required. Both of these types require one extra parameter which tells the solver
which item in the location or the normal vector is required (i.e. x, y, or z).

The solution type is used whenever the value of one the flux variables is needed. It requires two
extra parameters: the first one is the side of the data to be returned (i.e. left or right of the control
volume boundary), and the second one tells which flux variable should be used. This last parameter
uses the identification number of one of the flux variables.

The gradient type tells the solver that the gradient of one of the flux variables is needed. This
type requires three extra parameters. Similar to the solution type, the side and the flux variable
identification number are needed. The gradient direction is also needed (x, y, or z).

In the heat conduction package, the interior flux needs access to the temperature gradients. Four
reconstruction variables of type gradient are needed to compute the flux: two for dT/dx (left and
right), the other two for dT/dy (left and right).

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 66

Computed variables

All of the previous variable types have been for data that was required by the Physics class. The
next two types are for data that can be provided by the Physics class to the solver, the user, or to
other Physics packages.

A computed variable is another quantity that the Physics class can compute, besides fluxes and
source terms. This type of variable is particularly useful for boundary conditions in multiphysics
problems. For a quantity to be exported from the Physics class, a computed variable must be
defined for it.

As an example, when solving a conjugate heat transfer problem, the heat fluxes from both sides
must match at the boundary, so the normal heat flux qn = k^ from the heat conduction package
is exported using a computed variable. This information can then be used by other packages.

Computed variables can also be used to avoid repetitive computations. For example, in the heat
conduction package, the heat diffusivity a is required for flux computations. As diffusivity can be
computed from k, p, and cp, a computed variable is created for it. This avoids having to compute the
diffusivity twice during the flux calculations. The same principle can also apply to reconstruction
variables. In the heat conduction package, using the average of the left and right reconstruction
data is adequate. Computed variables are created for the average of temperature gradients, and
simplify the flux definition. Similarly, it is possible to export the value of temperature at some face
by creating a computed variable returning the average of the left and right values of the temperature
on that face.

Computed variables get their own function, just like the interior flux function for example, where
the value of the variable is actually computed by the Physics class. This function uses the iden­
tification number of the variable to know which quantity to compute, and returns the value to the
solver.

Constant variables

Constant variables are also values that can be exported from a Physics class. They are a special
case of computed variables, and allow the solver to fetch data in a more efficient way. Using a
large number of constant variables, it is possible to create a "database" Physics class, whose
only function is to provide constants to other Physics classes.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 67

4.4.2 Variable association

Now that the Physics class can inform the solver on all the variables it needs and provides,
coupling the different physical packages is straightforward conceptually. For this task, variable
association between a required and a provided variable is used. The association is done by having
the solver link the two variables together using a pointer. This way, whenever the solver needs
the value of a given required variable, it automatically uses the value of the provided variable
associated with it.

4.4.3 Variable dependencies

In certain cases, the value for some variables can not be fetched until the value of other variables
are available. For example, computed variables typically need a list of other variables values to
be available before they can be computed and used by the solver. These other variables are called
dependencies of the original variable. Here is a list of the dependencies for each type of variable.

Flux variables: Flux variables are only used for information purposes (see Section 4.4.1). They
have no dependency.

Required variables: Required variables have only one dependency: their associated variable.

Boundary condition variables: Since boundary condition variables are a special case of required

variables, they too only have their associated variable as a dependency.

Reconstruction variables: The values for reconstruction variables can always be obtained by the

solver. This variable type therefore does not have any dependency.

Computed variables: Computed variables can have any number of dependencies. The depen­
dencies are always variables that are local to the Physics class. The Physics class must
inform the solver of the dependencies of each of its computed variables.

Constant variables: Constant variables provide values to other Physics classes. They do not

have any dependency.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 68

4.4.4 Dependency trees

It was mentioned above that the solver uses the value of an associated provided variable whenever
the value of a required variable is needed. Using this approach blindly can have some serious flaws.
First, there is no guarantee that the value of the associated variable will be available at the time
it is needed. The only way a variable value is available is if the value for all of its dependencies
was also available. Second, several variables can be associated to the same required variable. The
solver would then fetch (or compute) the value of the associated variable several times, with a
serious impact on efficiency.

This problem was solved by using dependency trees. A separate dependency tree is created for
each of the following tasks: computing the interior flux, computing the boundary flux, setting
the boundary constraints, and computing the source term. Dependency trees determine the order in
which variable values are fetched, and help avoid availability issues and unnecessary computations.

Take for example the interior flux dependency tree for the solid mechanics package, shown in
Figure 4.1. The interior fluxes for this package are the stresses in the problem. The tree is built
by inserting all the variables needed for the interior flux. In these trees, the shaded items have
dependencies; the items with a white background do not. Whenever an item is inserted in the tree,
it is checked for dependencies. If the variable inserted in the tree depends on other variables, then
these variables are recursively inserted in the tree as well, below that original node. Figures 4.1a
shows how this applies for oxx. The stress first depends on the strain exx. This, in turn, depends on
the average value of du/dx, which is computed from both the left and right values obtained from
reconstruction. The dependencies for eyy are then introduced in Figure 4.1b. Figure 4.1c shows the
rest of the axx dependencies being added to the tree; constants E and v are needed to compute the
stress. The values for these constants is set by the user, as indicated by the dashed arrows to the
constant variables. As can be seen, the chain ends whenever a reconstruction or a constant variable
is inserted, neither of which have dependencies. If an item is already present in the tree, a link to
that node is made instead of inserting a second copy. Figure 4.Id demonstrates this: inserting ayy

as a dependency does not add any nodes to the tree, but new links are created. The dependencies
for axy are inserted in Figure 4.1e. Finally, Figure 4. If shows the complete tree, with the addition
of the components of the normal vector, also needed for the interior flux computation.

Whenever interior fluxes need to be computed, the solver goes through the dependency tree, start­
ing at the lowest level. Each variable is fetched, and stored in the appropriate location. Since
dependencies are always stored at a lower level, variables needed by nodes at a higher level will be
available when the time comes to compute them. This method also ensures that each variable will

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER

(a) (b)

(c) (d)

(e) (0

Figure 4.1: Dependency tree for the interior flux computation of the solid mechanics packagi

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 70

only be fetched or computed once. In our example, variables such as E and v are each needed by
multiple variables; using a dependency tree prevents fetching these constants three times.

This dependency tree will be used to compute the interior flux at all the Gauss points on the
control volume boundaries. As stated above, using the dependency tree prevents multiple variable
lookups at a given Gauss point. However, there is still a possibility that constant variables will
be fetched several times during the course of a simulation, even though their value do not change
from location to location. For this reason, the constant values are fetched and stored only once,
before the simulation starts. The constant variables are then removed from the dependency tree.
Since constant variables are always located at the end of a branch, removing that node does not
affect the rest of the tree. The updated dependency tree for the solid mechanics package is shown
in Figure 4.2.

Interior
flux

Figure 4.2: Optimized dependency tree for the solid mechanics package with constants removed

4.4.5 Modifications to the P h y s i c s class

The following is a summary of all the modifications made to the Physics class to make use of

PhysVars.

Vectors of variables and variable values

The Physics class now owns a vector which contains all the PhysVars it is using. The variables
are stored according to their identification number. In parallel, the Physics class also has a vector

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 71

of equal length (the vecValues [] array) that is used to store the values of each of the PhysVars.

Dependency information functions

The Physics class already had four functions that handled all the physical aspects of a numerical
simulation: the interior flux, the boundary flux, the boundary constraints and the source term func­
tions. These functions are called the computing functions. Each of these now has an associated
dependency information function. This is the function that the solver calls to find out what vari­
ables are needed to compute the interior flux, for example. The dependency information functions
require one parameter, a vector of boolean variables all initially set to false. The vector has the
same size as the variable vector. The function sets the boolean variable to true for the variables
needed to compute the flux.

Modifications to the computing functions

The computing functions now use the values stored in the vecValues [] vector to perform their
computation. The proper values are always available when needed, thanks to the dependency
information function.

Support for computed variables

The Physics class now contains functions that allow variables related to the physical equations it
describes to be computed. Two functions are needed: one to compute the variables (the computing
function), and the other to inform the solver about the dependencies of the computed variables
(the dependency information function). The computing function requires only one parameter: the
identification number of the computed variable. It returns the value of the computation. The de­
pendency information function requires two parameters: the identification number, and the vector
of boolean variables indicating dependencies.

4.5 The R e g i o n class

Multiphysics problems invariably require multiple Physics classes interacting with each other.
For field coupling problems, these Physics packages interact over the same region. In fact, it

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 72

would be possible to write a super-Physics class that combines the effects of multiple physical
phenomena, and solve it as a single-physics problems. There are several reasons to avoid this
approach.

One of the reasons is that it would require creating a highly-specialized Physics class. This class
could then only be used when all of the physical phenomena are to be solved together; it would be
impossible to use some of the separate physical aspects in a different simulation.

The main reason to shy away from this approach, however, is the amount of work it would take
to create a truly useable package that would combine all these physical phenomena together. In
particular, the number of boundary conditions types needed would fast become unmanageable.
Imagine combining just two Physics classes in a single super-Physics class. Each of the orig­
inal Physics classes have a number of boundary condition types. Suppose that one has four
boundary condition types, the other five. A proper super-Physics class would cover all possi­
ble combinations of boundary condition types, which, in this case, could result in having to write
twenty different boundary condition types!

A better approach is to use the same separate Physics packages that can be used in a single-
physics problem, and solve them all at the same time. The Region class was created as a managing
layer between the solver and the multiple Physics classes. The solver does not interact with
the Physics classes directly. The Region class acts as a subordinate solver over a particular
subdomain, and calls each Physics class in turn. The Region class also handles all the details of
field coupling between the different physical packages on that subdomain. This new framework is
represented schematically in Figure 4.3.

The main tasks of the Region class are to provide interaction with the mesh, to manage a list of
Physics classes and to support the evaluation of the fluxes on all these Physics classes. These
tasks are described in more details in the sections below.

4.5.1 Mesh interaction

The Region class owns the Mesh object over which its Physics classes are being used. The
Mesh object is passed to the Region at initialization. The Region class then extracts information
from the mesh: it obtains the order of accuracy of the simulation from the mesh (as a mesh object
is initialized with a particular order of accuracy), and automatically creates the proper Recon
object. The Region class also obtains the boundary condition information from the mesh. The
Region class then knows the number of boundary conditions in the mesh, and can ensure that the

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 73

Physics 1

Solver Region Physics 2

/ \
Recon Mesh

Physics 3

Figure 4.3: Schematic of the generic multiphysics framework for field coupling

association of boundary condition number to boundary condition type in the Physics classes is
correct.

4.5.2 Multiple P h y s i c s classes

The Region class owns a list of Physics classes. There is no limit on the number of Physics
classes that can be stored. The class also has functions to add, remove, and access Physics
classes. The boundary condition types from the various Physics classes are associated to the
boundary condition numbers in the mesh using functions in the Region class.

The Region class also handles the manipulation of flux variables. The flux variables from all
the Physics classes are combined into a single vector and sent to the appropriate Recon object
(which the Region class also owns). This way, all of the flux variables are reconstructed at once,
just as they would be if a single Physics class was used. This minimizes the impact on efficiency
caused by having multiple Physics classes.

Variables are also managed by the Region class. Once all the Physics classes have been assigned
to the Region, the variable list from each Physics class is combined into a master list. The master
list contains some additional information, such as the origin of the variable. Variable association
between different Physics classes can then take place, by storing pointers from one variable to
the other in the master list.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 74

The Region class also stores the dependency trees needed for interior flux, boundary flux, bound­
ary constraint and source term evaluation. The trees are built by recursively adding the dependen­
cies from all the Physics classes. The trees are then optimized to remove constant items from
them. The constant values are stored at their corresponding index in the variable value vector of
their Physics class of origin.

4.5.3 Flux evaluations

The most used functions in the Region class are the functions that read the dependency tree and
store the variable values in the Physics classes. There are four such functions, corresponding to
the four dependency trees stored for interior flux, boundary flux, boundary constraints and source
term evaluation. Each of these functions is called once at each iteration, before the fluxes (or the
source term) are computed in each of the Physics classes.

The functions go through the dependency tree, starting at the lowest level. At every node they
encounter, the functions fetch the variable value (either by using data from the Re con object, or
by asking a particular Physics class to compute it). The value is then stored in the variable value
vector of the appropriate Physics class.

Now that the Physics classes have the right values stored in their variable value vector, the flux
functions in each Physics class are called in turn. The Physics classes are not aware of other
Physics classes being used. Therefore, the flux vectors they return are sized according to their
own number of flux variables. These fluxes are then stored at the right location in the global flux
vector, which is sized according to the total number of flux variables in the Region.

4.6 Field coupling results

The field coupling infrastructure introduced in this section allowed the solution of the problems
presented in this section. These problems both use two Physics classes that were introduced in
the previous chapter.

4.6.1 Solid mechanics and heat conduction

The problem being solved is that of a bar subjected to a vertical temperature gradient. The solid
mechanics package was modified to also account for thermal strains. The mechanical strains for

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 75

the problem are now:

where OCT is the coefficient of thermal expansion, Trej is the zero-strain temperature, and T is the
temperature of the solid. The fluxes were modified accordingly. The temperature distribution is
computed by the heat conduction package. The schematic of the problem is shown in Figure 4.4.

H

T=T, \

T=T0

—

• X

Figure 4.4: Sample solid mechanics with thermal strains problem

A temperature T 0 is imposed on the bottom surface, and a temperature 7\ is imposed on the top
surface. The left and right surfaces are considered insulated. The problem is symmetric, so only
the right half of the bar is used in the simulation. A symmetry constraint is imposed on the left
surface, i.e. u = 0 and | j = 0. The top and right surfaces are free to move. The bar is considered
fixed at (0,0).

The temperature distribution will be linear:

T(x,y) = T0 + jj(T1-T0)

From this temperature distribution, the bar will deform according to the following values:

u(x,y) =
aT(Ti -T0)xy

H

v(x,y) = ^ {y -xl)

where ar is the coefficient of thermal expansion, and v is Poisson's ratio. The value for v(x, 0)

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 76

is imposed as a mechanical displacement on the bottom surface. This should have the effect of
relieving all stresses in the bar.

For the simulation, values of L = 3, H = 0.5, E = 7000, v = 0.2, aT = 2 x 10 - 5, T 0 = 0 and
Ti = 10 were used. A third-order accurate scheme was used. The mesh used for this problem is
shown in Figure 4.5.

Figure 4.5: Mesh used for the heat conduction and solid mechanics simulation

Results

The displacements in the beam matched the exact solution well, as can be seen in Figures 4.6 and 4.7
This indicates that the temperature results were also accurate, since the displacements are caused
by the temperature field. This was expected, since a third-order accurate scheme recovers the
fluxes, and the quadratic nature of the solution exactly.

The error on the displacements only depends on the convergence level of the solution. In this case,
the residuals of the problems were converged below 1 x 10 - 1 3. The largest errors in the magnitude
of the stresses were 2.75 x 10 - 1 0 for axx, 4.15 x 10 - 1 1 for ayy, and 1.46 x 10 _ u for axy.

4.6.2 Incompressible Navier-Stokes and the energy equation

The incompressible energy equation will be solved in conjunction with the Navier-Stokes package
introduced in the previous chapter. The energy equation will have its own Physics package. The
partial differential equation is:

dt dx dy Re - Pr \ dx2 dy2 J Re

where $ is the two-dimensional dissipation term, a source term in the equation:

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 11

Displacement in x along x=L

0.0007

0.0006

0.0005

0.0004

8 0.0003
Q.

0.0002

0.0001

-0.0001

Analytical
Numerical +

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y

Figure 4.6: Displacement in x along x = L

Displacement in y along x=L

-0.00174

-0.00175 h

-0.00176

| -0.00177 h

=6 -0.00178

-0.00179

-0.0018

-0.00181

— i 1
Analytical
Numerical +

i i i i i i i i

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

y

Figure 4.7: Displacement in y along x = L

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 78

\dx) \dy) \dy dxJ

For low-speed flows, the dissipation term can usually be neglected. However, for this example, it
will be included in the simulation.

In a channel flow of height H and length L with a fully-developed profile of u = 6-̂ (1 — jj)
and wall temperatures of T\y_0 = T0 and T\ H = TH, the fully-developed solution for the
temperature profile is:

T = T - (I) + T « 0 -1) + 6 P r •E c ((I) - 3 (I) 2 + 4 (̂)3 - 2 (I)4) <-)

For this problem, values of L = 10, H = 1, T0 = 0, and 7\ = 1 were used. The temperature
profile is then:

T = y + 6Pr • Ec (y - 3y2 + 4y3 - 2y4)

The Prandtl number Pr was set to 0.5 and the Eckert number Ec was set to 0.4324. Note that this is
several orders of magnitude larger than typical Ec values. This was done to verify the accuracy of
the source term. The input temperature profile was set to T = y -j- 5.5Pr • Ec(y — 3y2 + 4y3 — 2y4)
to ensure the temperature reached its fully-developed profile within the length of the channel. A
fourth-order accurate reconstruction scheme was used to better approximate the quartic nature of
the temperature profile. The mesh used in this simulation is shown in Figure 4.8.

Figure 4.8: Mesh used for the Navier-Stokes and energy equation simulation

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 79

Results

The results shown in Figure 4.9 were taken along x = 9, where the temperature had reached its

fully-developed profile.

Temperature profile along x=9

0 0.2 0.4 0.6 0.8 1

y

Figure 4.9: Temperature profile along x = 9 for the Navier-Stokes and energy equation simulation

The numerical solution obtained matches the analytical solution very well; this indicates that the
strains computed from the Navier-Stokes solution (i.e. du/dx, dv/dy, du/dy, and dv/dx) were
also computed accurately, and that the field coupling in the problem worked as expected. The
maximum error on the temperature profile was less than 0.1% of the maximum temperature. This
error is caused by the fact that the reconstruction scheme cannot recover the quartic temperature
profile exactly.

4.7 The D o m a i n class

The Domain class is used to handle the additional requirements of interface coupling. One of
these requirements is the ability to handle multiple subdomains, on which field coupling might
still occur. Another requirement, and perhaps the most important, is to allow coupling between
Physics classes located on different subdomains, through a common interface.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 80

The Domain class is an example of the high leverage possible with the object-oriented approach.
It was mentioned above that the Region class is in fact a subordinate solver that manages its own
mesh, reconstruction data, and set of Physics classes. By simply creating as many instances of the
Region class as there are subdomains, and assigning each Region its own set of Physics classes,
Mesh and Recon object, the generic solver can now solve problems on various subdomains. The
only additional code needed handles the interactions between different subdomains. The Domain
class simply asks each Region class it owns to solve the problem on their respective subdomains
in turn, as is schematically depicted in Figure 4.10. The interface coupling is handled through
boundary conditions. More details are given in the section below.

Physics 1

Region 1 Region 2

/ \ / \
Recon 1 Mesh 1 _

Physics 3

Mesh 2

Physics 4

Figure 4.10: Schematic of a problem with both field and interface coupling

4.7.1 Multiple R e g i o n classes

The Domain class is initialized with a list of Mesh classes. Each of these meshes represents a
subdomain. It should be noted that the meshes need not be of the same type, or order. Nothing
prevents the user from selecting a third-order accurate unstructured mesh in one subdomain, and
coupling it with a second-order accurate structured mesh in another subdomain. In fact, it might
be the most efficient way of solving some problems.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 81

The Domain class goes through the list of meshes, and creates a Region object for each mesh.
These Region classes are kept in an internal list. The Domain class also provides functions
allowing direct access to the different Region objects.

4.7.2 Interface coupling

The coupling between different subdomains is done through boundary conditions. The difference
from regular boundary conditions here is that the boundary condition values at the interface will be
changing throughout the simulation. For example, when solving a heat conduction problem with
two subdomains with different conductivities, both the temperature and the heat flux should match
at the interface. This is accomplished by using a temperature boundary condition on say, the left
side, and assign it the value of the temperature at that location from the right side. Meanwhile, on
the right side, a heat flux boundary condition is used at the interface, and it is assigned the value of
the heat flux computed on the left side.

As with field coupling, interface coupling is accomplished using variable association. In this case,
the association will always be between a boundary condition variable, and some other provided
variable. Since the Domain class has access to all the Region objects, it can access the master list
of variables for each, and assign pointers to a required variable in a Region class to a provided
variable in another subdomain. Since we are using pointers to variables to do the association,
a Region class can access the proper variable, even if it is stored in a different Region class.
The Region classes remain independent of each other, except for the values of their boundary
condition at the common interface, which is determined by another Region class.

4.7.3 Coupling techniques

The proper choice of boundary conditions for interface coupling is critical for problem conver­
gence. The boundary conditions must enforce all the physical couplings taking place at the bound­
ary. For heat transfer between different media, for example, the temperature T and the normal
heat flux qn from both sides of the interface must match. Multiple coupling conditions, such as
these, cannot be enforced simultaneously on both sides of the interface.2 The approach used in
this research is to enforce one physical coupling from each side. In the heat transfer case, one side

imposing a temperature, based on the value of temperature at the interface from the other side, on both sides at the
same time would result in a constant temperature at the interface throughout the simulation. The value at the interface
would be determined by the initial condition.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 82

of the interface enforces matching temperatures (by using a temperature boundary condition with
the value determined by the temperature from the other side), and the other side enforces matching
heat fluxes (using a heat flux boundary condition, with the value of the heat flux computed on the
other side as well). The converged solution will satisfy both boundary conditions at the interface.

Careful selection of which physical coupling to place on each side is also necessary. This is to
ensure that the problem on each subdomain remains well-posed. One should avoid, for example,
cases were Neumann boundary conditions are imposed on all boundary faces of a subdomain. This
can usually be avoided by exchanging the side on which the couplings are enforced.

The way the boundary conditions at the interface are enforced also demands some attention.
Boundary conditions can either be enforced with a constraint on the construction, or through the
use of a specific boundary flux. It was observed on several occasions that using constraints on
the same variable (such as on the temperature T and its gradient dT/dn, through the normal heat
flux) on both sides of a common interface resulted in unstable behavior at the boundary. The sim­
ulation would then diverge rather quickly. Invariably, enforcing one of the boundary conditions
using a boundary flux (which can easily be done for the heat flux boundary condition, for example)
removed the instability and resulted in a converged solution.

Lastly, the interface coupling between two subdomains where the same physical equations using
the same physical constants are being solved (such as in multi-block problems) can be treated in
a special way. These interfaces are arbitrary, in that they only define a boundary in the mesh, not
in the problem itself. These interfaces can then use the interior flux as their "boundary" flux. The
only difference will be the origin of the reconstruction data. The interior flux is computed at a
control volume boundary using reconstruction data from the left and right control volumes. The
boundary flux will be computed the the same way, except that the data from one side is coming
from a different subdomain. Meshes need not match at the interface for this to work, as the Recon
object can return the value of reconstruction data anywhere on the mesh. This technique is used in
the problem presented in Section 4.8.

4.8 Interface coupling results

The problem solved in this section will make use of the same Physics classes introduced in
previous chapters. The problem is a conjugate heat transfer problem. The domain, along with
the Physics classes being used in each subdomain, is represented in Figure 4.11. Regions are
identified using roman numerals.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 83

Incompressible Navier-Stokes
+

Energy Equation

— 1

n \ \
i

«- 1

\
•1

< L -* *- L

1
h

Heaf Conduction
+

Solid Mechanics w/ Thermal Strains

Figure 4.11: Domain for the interface coupling problem

Regions / and II both solve the incompressible Navier-Stokes equations along with the energy
equations, as in the problem solved in Section 4.6.2. Region / uses a cell-centered scheme,
whereas region II uses a vertex-centered scheme; both are solved using a third-order reconstruc­
tion scheme. Both regions III and IV use a structured mesh and a second-order scheme, and solve
the heat conduction equation combined with the solid mechanics equations with thermal strains,
as the problem described in Section 4.6.1.

The fluid domain

The fluid domain is a multi-block domain, and is made up of regions / and II. The problem solved
in the fluid domain is that of a developing channel flow. The left boundary face of region / imposes
a uniform inflow boundary condition, with u = 1, v = 0,|^ = 0 and T = 0. The top and bottom
boundary faces are considered stationary walls, and impose a no-slip boundary condition. The
top wall has an imposed temperature of Tb — 0. The bottom wall also imposes a temperature on
the flow. The value of that temperature, however, is determined from the solid domain. The right
boundary face for region i7 imposes the fully-developed condition, i.e. £ = 0 and v = 0 as well
as P = 0. There are no constraints on the temperature at the outlet. Interface I-II is an arbitrary
internal boundary face. The interior flux is used at this interface for the Navier-Stokes equations,
as described in Section 4.7.3. For the energy equation, a heat flux boundary condition is used in

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 84

region / and a temperature boundary condition is used in region II.

The simulation uses values of L = 2.5, H = l,Re= 50, Pr= 0.5, Ec= 0.4324, k = 145, and
P — 5 for the fluid domain.

The solid domain

The solid domain also is a multi-block domain made up of regions III and IV. The heat equation
is solved in the domain, and is used to determined the thermal strains in the solid region. The left
boundary face of region III is considered insulated, and also imposes a null -̂displacement. The
bottom boundary faces of regions III and IV have an imposed temperature of Tb = 1 and are free
to move. The top boundary faces have an imposed heat flux determined by the heat flux in the fluid
region, and impose a null displacement in the vertical direction. The right boundary face of region
IV is considered insulated and free to move. Interface III-IV is an arbitrary internal boundary
face. Matching temperature are imposed in region III and matching heat fluxes are imposed in
region IV; the interior flux is used at this interface for the solid mechanics equations.

The simulation uses values of h = 0.2, k = 204, p = 2707, cp = 0.896, E = 7000, v = 0.2,
aT = 2 x 10 - 4 and Tref = 0 in the solid domain.

Results

The flow in this problem is not affected by the presence of a solid region (since displacements along
the interface are constrained), so the velocity profile at the exit is the parabolic fully-developed
profile, as presented in Section 3.7.3. For this reason, the flow velocity results will not be repeated
here.

The temperature profile at x = 4.7 is used to determined convergence of the temperature field.
Since the analytical solution for this problem is unknown, a mesh refinement study was done. The
mesh in region / was kept constant, and the meshes in region II, III, and IV were progressively
refined. The decision to keep the meh in region I constant was taken in order to keep the effects of
the singularities at the left corners constant. For these two corners, conflicting boundary conditions
from the vertical and horizontal boundaries cause the flow to be disturbed. A refinement of the
mesh in this region would have changed the effects of these singularities, and would have affected
the rest of the developing flow. Table 4.1 lists the number of cells in all the meshes used.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 85

Refinement level Mesh / Mesh II Mesh III Mesh IV
1 507 235 25 25
2 507 348 100 100
3 507 1117 225 225
4 507 1374 400 400

Table 4.1: Number of cells used in the meshes

The temperature profiles at x = 4.7 for the different refinement levels are shown in Figure 4.12. It
can be seen that the temperature profile from all refinement levels is quite similar. Some discrep­
ancies appear in the lower refinement levels, but have disappeared from the more refined tests. The
meshes used in refinement level 4 were used to obtain the remainder of the results in this section.

Temperature profile at x=4.7
1.1

1

0.9

0.8

0.7
a>
1 0.6
a> a.
E 0.5
I-

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6

y

0.8

- 1
Level 1 +
Level 2 x
Level 3 *
Level 4 •

1.2

Figure 4.12: Temperature profiles at x = 4.7 for the interface coupling problem for various refine­
ment levels

The temperature field is plotted in Figure 4.13. It can be seen that the temperature is continuous
across the fluid-solid interface, and that the dissipation term in the energy equation causes the
temperature gradient to be non-uniform across the fluid channel.

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 86

Figure 4.13: Temperature field for the interface coupling problem

Interface coupling

The temperature field had to satisfy two conditions at the interface between the solid and the fluid:
the temperatures, and the normal heat transfer from both regions had to match. Figure 4.14 displays
the temperature along y = 0.2 at the interface between regions II and IV, and Figure 4.15 shows
the normal heat transfer along the same interface.

Figure 4.14 shows that the temperature profiles from both regions match well at the interface. The
results for the heat flux, from Figure 4.15, also show that the trend from both regions is the same.
However, the heat flux is not matched as well as the temperature is. The second-order accurate
structured region II can only yield constant values of heat flux for each control volume; this limits
the accuracy of the computation of the heat flux in region II. However, it was observed that the
discrepancies in the heat flux decreased as the mesh was refined. It should also be noted that the
energy in the problem is conserved even with these discrepancies: the heat flux in the solid region
is determined by the heat flux computed in the fluid region. Therefore, the fluxes that are used
for the energy term are the same in both regions at the interface. However, the heat flux that is
computed in the solid region is different (as can be seen in Figure 4.15), but this is not the flux
used to update the solution in the boundary control volumes; it has no effect on the conservation
of energy in the problem.

Thermal strains in the solid region

The displaced geometry in the solid region are shown in Figure 4.16; only the displacements from
region IV are shown here for clarity. The displacements are magnified by a factor of 1000 in x

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER

Figure 4.14: Temperature along the interface at y = 0.2

... . ! 1 1 1
Region II +

Region IV x
d

+

>Kfix
J -

-

1
Region II +

Region IV x
d

+

>Kfix
J -

+

)

-

2.5 3.5 4.5

Figure 4.15: Normal heat flux along the interface at y = 0.2

CHAPTER 4. GENERIC MULTIPHYSICS SOLVER 88

and a factor of 10000 in y. The maximum displacements observed were u = 9.17 x 10 - 4 and
v = -3.93 x 10-5.

8=11
j r
~ 17

..! L 1 !

i F
J irrHi ET73 =

i—i u:_j era r

j FTZs 3=3 Ei53

r^n rT~n F^n E ŝji

Figure 4.16: Displaced geometry in region / V for the interface coupling problem

The maximum displacements observed are reasonable, considering that a solid region with a uni­
form temperature of 1 would have observed a maximum displacement of u = 1 x 10~3 and
v = — 4 x 10~5. The displacements for the interface coupling problem were expected to fall
below these.

Summary

In this chapter, the features that were added to the generic numerical toolkit to solve generic mul­
tiphysics problems were presented. A discussion of the different types of coupling present in
multiphysics problems was given in Sections 4.1 and 4.2. Data exchange between the different
physical phenomena was the most crucial part of this research; Section 4.4 presented how this was
implemented in the solver.

Section 4.5 introduced the Region class, which was added to the toolkit as a way to manage multi­
ple Physics classes. Field coupling problems could then be solved, and results of such problems
were shown in Section 4.6. The Domain class was also created to allow multiple subdomains to
communicate with each other; details were presented in Section 4.7. Interface coupling problems
were then solved in Section 4.8.

Chapter 5

Additional Features

The features presented in this chapter were not covered previously, because they did not play a large
role in the design of the multiphysics framework. Nonetheless, they are worth mentioning since
they address specific problems encountered when trying to solve generic multiphysics problems.

Section 5.1 introduces the concept of source term exchange, which can be useful for solving com­
bustion problems. Additionally, a parsing tool written to help the creation of new Physics classes
is presented in Section 5.2.

5.1 Source term exchange

Source term exchange refers to the possibility of a Physics class computing source terms for
flux variables in other Physics classes. This feature was added for future use with combustion
problems in mind, but can also be useful for other types of problems.

5.1.1 Overview

In field coupling problems, some Physics packages have source terms that affect flux variables
from other Physics classes. A chemistry package for combustion is an example of such package.
This Physics class contains the equations that keep track of chemical interactions needed for the
simulation of combustion. It would typically be used in conjuction with the Navier-Stokes and
energy equation packages. The chemical interactions, among other things, generate or absorb heat
in the system; this can be represented as source terms in the energy equation. The energy equation

89

CHAPTER 5. ADDITIONAL FEATURES 90

package would have to be modified in order to account for such source terms. However, a change
in the type of chemistry being used would also require a change in the energy equation package;
an undesirable effect, at best.

To keep Physics classes independent from each other as much as possible, the source term func­
tion from the chemistry Physics class would need access to the fluxes from the energy equation
package. This is impossible to do using the framework defined so far; Physics class functions
(such as interior and boundary flux, or source term functions) only have access to the fluxes for
their own flux variables.

5.1.2 Changes made to the source term framework

An exception was made for the source term function to allow packages such as combustion pack­
ages to be used efficiently with other Physics classes without any modification. The solution is
rather simple: the source term function is given access to the flux vector for all flux variables in the
Region, not just its own flux variables. It is now the responsibility of the user to assign a source
term to the proper flux variable in the Region, as the Physics class does not know which other
flux variables are present in the simulation.

Each source term is given a description to help the user map the source terms to flux variables.
The Physics class can have any number of source terms, and each of them must be assigned to a
flux variable. When computing source terms, the Region class asks each Physics class in turn to
compute its own source terms. The vector being passed to a Physics class is sized according to
the total number of flux variables in the Region. Each source term is stored in the proper location
by the Physics class, according to the mapping determined by the user. The values in the vector
are then added to the residuals for each control volume before the Region asks the next Physics
class to compute its source terms.

The only inconvience to this method is that source terms must always be mapped to flux variables
by the user, even in cases where the source terms only affect the flux variables computed by the
same Physics class. However, this inconvenience is outweighed by the ability to solve problems
with complex interactions, such as those present in combustion problems.

CHAPTER 5. ADDITIONAL FEATURES 91

5.2 P h y s i c s class definition syntax

A simple syntax, based on XML (extensible Markup Language), has been created to simplify
the task of writing new Physics classes. The XML format describes the class using human-
readable keywords. The XML file is automatically converted to C++ by a parsing program written
specifically for that purpose. The governing principles of XML syntax, as well as the specific
keywords used to define a Physics class, are described in this section.

5.2.1 X M L principles

XML is an extensible markup language used to describe an object using a tree model. XML is
extensible because any keyword can be used. The XML document forms a tree, and each node in
the tree has a value. Each node can also have multiple child nodes below it.

XML nodes are defined using tags. A node, and its associated value, are defined in the follow­
ing way: <NodeName>NodeValue</NodeName>. Every XML document begins with a spe­
cial tag that identifies the XML version used. For our use, this tag is the following: <?xml
version="1.0" ?>.

The Physics definition file uses a single main node, with a tag name of <Physics>. All other
nodes in the document are child nodes of the <Physics> node. An overview of a Physics class
definition file looks like this:

<?xml version="1.0" ?>
<Physics>

c h i l d nodes are defined here
</Physics>

5.2.2 Class description

These tags are used to identify the Physics class. Two tags are used. The first one is the
<ClassiD> tag, and its value will be used by the solver to call the Physics class. This value
must be a single word and unique, i.e. no other Physics class can use the same value.

The other tag is used to provide the user with a human-readable description of the Physics class.

The tag used is <ClassDesc>. Here is an example of these two tags from the heat conduction

package:

CHAPTER 5. ADDITIONAL FEATURES 92

<ClassID>Heat2D</ClassID>
<ClassDesc>2D Heat conduction package</ClassDesc>

5.2.3 Variables

The variables used in the Physics class must be defined in the file, each as a child node of the
<Physics> node. It is recommended to define these variable immediately following the class
description tags (although the order of child nodes in the document is irrelevant), as they are used
in flux definitions later on.

Only flux, required, computed and constant variables are defined in the XML file. The definitions
for the reconstruction variables needed by the Physics class are created automatically by the
parsing program. The special keywords for reconstruction variables are described below.

All variables must be given an unique identifier string, using the <ID> tag.1 This ID string is used
to refer to the variable in the definition file. The <Name> tag is used to describe the variable to the
user, and the <Symbol> tag is used for short form representation. Finally, the <units> tag is used
to describe the units of the variable, by providing the power of each dimension (length, mass, time
or temperature). The <Units> node contains child nodes <M> for mass, <L> for length, <T> for
time and <K> for temperature.

As a reminder, here is a system of partial differential equations, with the notation used in the solver:

d_
dt

t ux \

U2 d_
dx

(\

1x2

V fxn J

+ d_
dy

(/* \
fy2

\fvn J

S2

\sn J

(5.1)

In this equation, U = (ui,u2, ...un)T is the vector of flux variables, also referred to as the un­
knowns of the problem, Fx = (/Xl, /X2, -fXn)T is the flux vector in the s-direction, Fy =
(fvnfv2i •••fx„)T is the flux vector in the y-direction, and S = (si, s2, •••sn)T is the source term
vector.

'The ID string only needs to be unique within the Physics class.

CHAPTER 5. ADDITIONAL FEATURES 93

Flux variables

Flux variables, i.e. each variable in vector U, are defined using the <FluxVar> tag. For the heat

conduction package, there is only one flux variable: temperature. It is defined as:

<FluxVar>
<ID>eFlux_T</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<Units>
<L>0</L>
<M>0</M>
<T>0</T>
<K>1</K>

</Units>
</FluxVar>

Required variables

Required variables are variables needed by the Physics class, such as material properties, etc.

They are defined using the <RequiredVar> tag. The heat conduction package requires k, p, and

cp. The conductivity variable is defined as follows:

<RequiredVar>
<ID>eConduct</ID>
<Name>Conductivity</Name>
<Symbol>k</Symbol>
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units>

</RequiredVar>

Computed variables

Computed variables are variables that the Physics class can provide to other classes. They can be

used for boundary conditions, post-processing, or to simplify the definition of fluxes. For the heat

conduction package, the heat diffusivity is required to compute the interior flux. Heat diffusivity

is defined as a = -^r. Computed variables have an extra tag, <Formula>, to specify how they are

CHAPTER 5. ADDITIONAL FEATURES 94

computed. The formula must be given using known variable identifiers and standard C language

mathematical rules.

< Comput edVar >
<ID>eHeatDiff</ID>
<Name>Heat Diffusivity</Name>
<Symbol>a</Symbol>
<Units> <L>2</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>eConduct / (eDens * eSpecHeat)</Formula>

</ComputedVar>

The known identifiers in the <Formula> tag will be expanded in the C++ file. In this example,

eConduct, eDens and eSpecHeat are the identifier strings for the k, p and cp variables, respec­

tively. The C++ output for the formula looks like this:

dValue = vecValues[eConduct] / (vecValues[eDens] * vecValues[eSpecHeat])

Constant variables

Constant variables are also provided variables, but their values never change. The extra tag

<value> is used to specify the value of the constant. The heat conduction package does not

have any constant variables, but here is an example of a constant variable defined in a "database"

Physics class.

<ConstantVar>
<ID>eTempB</ID>
<Name>Steady Temp B</Name>
<Symbol>TbB</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>
<Value>10.0</Value>

</ConstantVar>

CHAPTER 5. ADDITIONAL FEATURES 95

Reconstruction variables

Reconstruction variables provide access to the data computed by the solver. This data includes the
value of the flux variables and their gradients, as well as the location and the normal vectors. These
variables do not have to be defined using tags as other variables. Instead, they all have specific
identifiers. All these identifiers require a parameter given between { and }. The reconstruction
variables identifiers are:

• Loc{}: Provides a value of the location vector. Accepted parameters are: x, Y, and z.
Example: Loc{x}.

• NormO: Provides a value of the normal vector. Accepted parameters are: x, Y, and z.
Example: Norm{X} .

• LSolnO: Provides the left value of a flux variable. Accepted parameters are identifiers of
flux variables defined using <FluxVar> tags. Example: LSoln{eFlux_T} .

• RSoln{}: Same as above, except it provides the right value of a flux variable.

• Soln{}: Provides the average of the left and right values of a flux variable. Accepted
parameters are identifiers of flux variables defined using <FluxVar> tags. A computed
variable returning the average of the left and right values of flux variable will automatically
be created in the C++ file. Example: Soln{eFlux_T} .

• LGradxO, LGradYO, LGradZ{}: Provides the left value of ^ , or ^ of a flux vari­
able. Accepted parameters are identifiers of flux variables defined using <FluxVar> tags.
Example: LGradY{eFlux_T} .

• RGradxU, RGradYO, RGradz{}: Same as above, except it provides the right value of a

flux variable.

• GradXO, GradY{}, Gradz{}: Provides the average of the left and right values of the
gradient of a flux variable. See Soln{}.

5.2.4 Interior flux

The interior flux is defined within the <interiorFlux> tag. The flux for each flux variable must
be specified using a <FluxData> tag. For our partial differential equations, one should define

CHAPTER 5. ADDITIONAL FEATURES 96

—# —*

F\ = fXlnx + fyxny, F2 = fX2nx + e t c - The <FluxData> tag requires two child nodes: a
<var> node that specifies for which flux variable this interior flux is to be used, and a <Formula>
node that gives the value of the interior flux itself. As in computed variables, known identifiers in
the <Formula> tag will be expanded.
The interior flux for the heat conduction equation is the following:

= ~ ^ n x + - n y)

This is defined in the XML file as:

<InteriorFlux>
<FluxData>

<Var>eFlux_T</Var>
<Formula>- eHeatDiff * (GradX{eFlux_T}*Norm{X} +

GradY{eFlux_T}*Norm{Y}) </Formula>
</FluxData>

</InteriorFlux>

In this example, the average value of the temperature gradients are used. Other Physics classes
would have as many <FluxData> tags as there are flux variables.

5.2.5 Wave Speeds

ANSLib can solve steady-state problems using local time-stepping techniques. This maximizes
the timestep locally, which has the advantage of speeding up convergence. However, since the
timestep is not the same everywhere in the domain, this technique is not time-accurate and hence
should only be used for steady-state solutions.

The local time-stepping approach uses minimum and maximum "wavespeeds" information from
the Physics classes to determine the maximum timestep possible. For problems with convective
terms, the wavespeeds can be computed from the Jacobian of the problem. For other problems,
like heat conduction, the reciprocal of a distance measure between the reference points of adjacent
control volumes can be used instead. This provides a "fake" wavespeed that can be used by the
solver. This value is available using the specialized keyword einvDist.

CHAPTER 5. ADDITIONAL FEATURES 97

The wavespeeds are defined within the <WaveSpeeds> tag. Two nodes, a <Minimum> and a
<Maximum> value, are expected. Keywords inside the minimum and maximum values are ex­
panded similarly to <Formula> nodes. Following is the example from the heat conduction pack­
age.

<WaveSpeeds>
<Minimum>-eInvDist * 0.3</Minimum>
<Maximum> e l n v D i s t * 0.3</Maximum>

</WaveSpeeds >

5.2.6 Source term

The source term vector is defined within the <SourceTerm> tag. It contains as many <SourceData>
tags as there are source terms defined in the Physics class. The <SourceData> tags are similar
to the <FluxData> tags. The difference is that, as seen in Section 5.1, the source terms can act
on any variable defined on the same Region. Therefore, the <Var> tag is not needed anymore.
Instead, the <SourceData> node is treated in a similar way to computed variables: it is given an
identifier <ID>, a description <Desc> as well as <Units>, so the user can assign the source terms
to the proper flux variables. However, it keeps its <Formula> tag that specifies how the source
term should be computed.

There are no source terms defined in the heat conduction package. The following is therefore an
example of the source term definition for the energy equation package introduced in Section 4.6.2.

<SourceTerm>
<SourceData>

<ID>eDissFunc</ID>
<Desc>Adds d i s s i p a t i o n e f f e c t s t o th e energy equation*:/Desc>
<UnitS> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units>
<Formula> (-eEckert/eReynolds)*

(2 . 0 * e S t r a i n X X * e S t r a i n X X + 2 . 0 * e S t r a i n Y Y * e S t r a i n Y Y +
4 . 0*eStrainXY*eStrainXY)</Formula>

</SourceData>
</SourceTerm>

CHAPTER 5. ADDITIONAL FEATURES 98

5.2.7 Boundary condition types

The Physics file must also define boundary condition types. Boundary condition types are de­
fined within the <BCType> tag. There is no limit on the number of <BCType> tags in a Physics
definition file.

Boundary conditions often require values to be passed to them. These values are either set by the
user, or used for coupling purposes. The boundary condition values are stored using variables.
A special variable type, the Boundary Condition variable, is used for that purpose. Boundary
condition variables are defined within the <BCVar> tag, and use the same syntax as other variables,
as described in Section 5.2.3, i.e. they require <ID>, <Name>, <Symbol> and <Units> tags.

—*

Boundary conditions can be defined using either a specific boundary flux Fb, by using constraints
on the reconstruction, or by using a combination of both. If constraints are used, they are specified
within the <Constraint> tag, and there is no limit to the number of constraints that can be
specified for a given boundary condition type. The <Constraint> tag expects three child nodes: a
<Type> node, a <var> node, and a <Formula> node. The <Type> nodes indicates what type of
constraint is needed. The possible values are:

• Solution: The constraint is on a flux variable itself.

• XGradient, YGradient, ZGradient: The constraint is on the x-, y-, or ̂ -derivative of a
flux variable.

• NGradient, TGradient, CGradient: The constraint is on the normal, tangential, or cross-

flow derivative of a flux variable.

The value of the <var> node determines on which flux variable the constraint acts. Finally,
the <Formula> value determines the value of the constraint itself. This value is expanded for
known identifiers, including the identifiers for boundary condition variables defined within the
same <BCType>.

Boundary fluxes must be specified for all boundary condition types, even if the flux is the same
as the interior flux. The flux is defined within the <BdryFlux> tag using <FluxData> tags. The
<FluxData> tags work exactly the same way as for the interior flux definition; see Section 5.2.4.

As an example, the definition of a temperature boundary condition for heat conduction is following.

CHAPTER 5. ADDITIONAL FEATURES 99

<BCType>
<Desc>This BC imposes a temperature at the wall</Desc>
<ID>eBC_Temp</ID>
<BCVar>
<ID>eTempBCVar</ID>
<Name>Boundary temperature</Name>
<Symbol>Tb</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>

</BCVar>
<Constraint>

<Type>Solution</Type>
<Var>eFlux_T</Var>
<Formula>eTempBCVar</Formula>

</Constraint>
<BdryFlux>

<FluxData>
<Var>eFlux_T</Var>
<Formula>- eHeatDiff * (RGradX{eFlux_T> * Norm{X}

+ RGradY{eFlux_T} * Norm{Y})</Formula>
</FluxData>

</BdryFlux>
</BCType>

This boundary condition type requires one boundary condition variable, eTempBCVar, which will
store the value of the temperature imposed on the boundary. The boundary condition is imposed
using a constraint on the reconstruction. Finally, the boundary flux is the same as the interior flux
shown in Section 5.2.4. The only difference here is that the right-sided values are used for the
flux computation. Since a boundary face only has one neighbor control volume, both the left- and
right-sided values point to the values from the same control volume. It is a waste of computational
resources to compute the average of the two on the boundary.

5.2.8 Complex flux functions

In some situations, the flux (and wavespeeds) computations are more complex than the <FluxData>
constructs could handle. For these cases, it is possible to use the <UserCode> tag instead of the

CHAPTER 5. ADDITIONAL FEATURES 100

<FluxData> tag. The <UserCode> tag must be used in conjunction with the <UserFunction>
tag.

The <UserFunction> tag

This tag allows the user to define a complete C++ function inside the Physics class. No identifier
expansion is performed in this section, so the code written must only rely on data passed to it
through its parameters. This technique can be used to write flux functions that can compute both
the interior and boundary fluxes by using different parameters.

For example, the interior flux for the solid mechanics package can be written as:

p _ i T=v* (txx + vtvv> | =t _ (2(i-t/) e*v i -

A <UserFunction> definition for this flux would look like this:

<UserFunction>
void vGenericFlux(const double ddudx, const double ddudy,

const double ddvdx, const double ddvdy,
const double dnu, const double dE,
const double dnx, const double dny,
double adFlux[2]) const {

// Generic flu x for CSM problem
double adFluxX[2];
double adFluxY[2];
double dConstl = dE / (1.0 - dnu*dnu);
double dConst2 = dE / (2.0 * (1.0 - dnu));
adFluxX[0] = dConstl * (ddudx + dnu*ddvdy);
adFluxX[l] = 0.5*dConst2 * (ddudy + ddvdx);
adFluxY[0] = adFluxX[l];
adFluxY[l] = dConstl * (ddvdy + dnu*ddudx);

adFlux[0] = -adFluxX[0]*dnx - adFluxY[0]*dny;
adFlux[l] = -adFluxX[l]*dnx - adFluxY[1]*dny;

}
</UserFunction>

CHAPTER 5. ADDITIONAL FEATURES 101

The function returns the flux in the array of doubles adFlux. This function can then be called
from within code defined in the <UserCode> tag.

The <UserCode>tag

This tag allows the user to input C++ code within the flux definition function. It is used in place of
the <FluxData> tag. The user can assume that an array of doubles adFlux with the proper size
is available to the piece of code. The code expects the flux values to be in this variable once the
<UserCode> snippet is complete. Furthermore, known identifiers found in this section of the code
will be expanded to access the proper variables. The interior flux definition for the solid mechanics
package from the previous example now looks like this:

<InteriorFlux>
<UserCode>

vGenericFlux(GradX{eFlux_U}, GradY{eFlux_U},
GradX{eFlux_V}, GradY{eFlux_V},
ePoisson, eElastMod, Norm{X}, Norm{Y),
adFlux);

</UserCode>
</InteriorFlux>

5.2.9 Complete file descriptions

The complete file descriptions for all the Physics classes used in this research can be found
in Appendix B. The C++ code generated by the parser for the heat conduction package is also
included, for reference purposes. Note how the XML file for heat conduction is easier to read, and
about 35% the size of the corresponding C++ file.

Summary

Section 5.1 described how the solver was modified to allow the source terms from one physical
package to affect the flux variables from another physical package. This is particularly helpful for
combustion problems. Additionally, Section 5.2 described the XML syntax for the definition of
Physics classes. This syntax was created to further simplify the task of developing new Physics
classes.

Chapter 6

Discussion and future work

This chapter is separated in two main sections. Section 6.1 discusses the accuracy of the solver,
and possible ways to further improve it in the future. In particular, improved reconstruction along
boundary faces, deformable geometries, periodic boundary conditions, and time-accurate simula­
tions are covered. Section 6.2 discusses several ways the efficiency of ANSLib could be improved,
such as implicit and multigrid methods, parallel computing and adaptive mesh refinement.

6.1 Accuracy

The accuracy of the original generic solver has already been demonstrated in [34, 33]. The same
level of accuracy was expected, and observed, for the multiphysics solver developed in this re­
search, as it uses the same numerical toolkit.

The ability to use third- or fourth-order reconstruction schemes certainly was useful in achieving
these excellent results. A third-order reconstruction scheme uses a quadratic polynomial to ap­
proximate the solution over a given control volume. This scheme therefore recovers the quadratic
velocity profile of problems like channel flow exactly, requiring few control volumes for a good
level of accuracy. A second-order scheme, with its linear approximation over each control volume,
would require a greater number of cells to reach the same results.

102

CHAPTER 6. DISCUSSION AND FUTURE WORK 103

6.1.1 Reconstruction along boundary faces

The reconstruction scheme must take into account the boundary constraints when computing the
reconstruction polynomial for control volumes located next to the boundary faces. These con­
straints are enforced at the Gauss points on the control volume faces. For boundary constraints,
only control volumes with faces adjacent to the boundary are affected. In a cell-centered mesh,
this has the effect that the reconstruction for cells with only one vertex on the boundary (the light-
shaded cells in Figure 6.1) is not constrained.

For corner control volumes (the dark-shaded cells in Figure 6.1), two scenarios are possible. If
multiple cells share the same corner, as cells a and b in Figure 6.1a, each cell will lack the con­
straints from the boundary face it does not touch. For corners with only one cell (cell c), the
constraints from both boundary faces will be enforced; the reconstruction will be accurate for that
corner.

The rest of the shaded cells will have a reconstruction polynomial that does not account for all
boundary constraints. This can lead to some errors in the solution. For example, in a simulation
with the Navier-Stokes and the energy equation packages, the outflow boundary condition simply
lets the flux at that boundary face exit the domain; no constraint is imposed. Having this boundary
condition type with a mesh similar to the one shown in Figure 6.1a would result in cell b left
completely unconstrained. This can result in a large discrepancy with the expected results, and
is the reason the temperature profile shown for this simulation in Chapter 4 was taken slightly
upstream from the edge of the domain.

(a) (b)

Figure 6.1: Reconstruction along boundary faces.

CHAPTER 6. DISCUSSION AND FUTURE WORK 104

Fixing this problem requires adding reconstruction constraints at the vertices of control volumes
adjacent to a boundary face. A simple way to achieve this would be to create additional Gauss
points at the boundary vertices; these Gauss points would ensure that the constraints at the bound­
ary are enforced. By setting the weight of these vertex Gauss points to zero, they would not affect
the flux integral of the control volume. The vertex Gauss points could also be used in situations
where a boundary condition at a given point, rather than a boundary condition imposed on a face,
is needed. This would be particularly useful in solid mechanics problems, were displacements in
both directions must be fixed at some point in order for a problem to be well-posed.

6.1.2 Deformable geometries and moving meshes

Even though physical packages for both fluid and solid mechanics have been written and tested
successfully, realistic fluid-structure simulations cannot be performed with the multiphysics solver
currently. Fluid-structure simulations require that the geometry of the problem changes throughout
the simulation: the solid domain changes shape due to the forces applied to it, and this deformation
in turn affects the flow field.

The possibility of the domain changing shape requires numerous changes in the way the solver
operates. First, there is the problem of the mesh itself: if the domain is deformed, the mesh must
also be deformed. Several approaches to perform this deformation exist in the literature, but at
the moment, none have been implemented in ANSLib. Specific problems include preserving the
integrity of the mesh (i.e. ensuring the cells retain a positive area), and possibly even the re-
meshing of part of the domain when the mesh gets too distorted. A way to determine if the domain
needs re-meshing is also needed.

The deformable meshes also have an impact on the way the problem is solved. Fluxes are computed
on the faces of the control volumes, i.e. the mesh. In this research, the meshes used were always
static, so the absolute values of the flux variables and derivatives were used for flux computation.
With deformable meshes, the control volume faces are moving at different rates throughout the
domain, so this must be accounted for in the formulation of the fluxes; relative values of the flux
variables have to be used. The information on the rate of movement of the mesh must be available
to the solver and the Physics classes, so that the fluxes can be computed appropriately. Support
for deformable geometries is a feature that is definitely needed for multiphysics simulations, but
was not implemented in the present research due to time constraints.

CHAPTER 6. DISCUSSION AND FUTURE WORK 105

6.1.3 Periodic boundary conditions

ANSLib currently does not support periodic boundary conditions. Using the concept of variable
association, it would be straightforward to assign the inflow of a domain to the values at the outflow.
However, currently, it is impossible to associate variables from different locations, which a periodic
boundary condition would require. The solver fetches the values for associated variables as it is
going through dependency trees. The solver goes through the tree at every Gauss point, and the
only location stored is that of the Gauss point itself; all variables in the tree are computed at that
location.

To allow periodic boundary conditions, a location vector would have be tagged to every variable
in the dependency tree. This would cause further complications such as recognizing that the same
variable needed at different locations will require a separate node in the dependency tree, and that
it will also require a separate storage location, to ensure that variable value from one location does
not get overwritten by the same variable from another location. Another way would be to have
a special mapping function that would map the location vector to a different location, only for
boundary faces that have been tagged as having periodic boundary conditions.

6.1.4 Time-accurate interface coupling

All problems solved so far in this document have been steady-state problems. As mentioned before,
ANSLib can also solve problems in a time-accurate fashion by using constant timesteps, and this
extends to the multiphysics solver as well. However, there is one potential problem for time-
accurate simulations of problems with interface coupling.

For interface coupling, multiple subdomains are coupled together through the use of boundary
conditions. One subdomain is solved using boundary conditions determined by the neighbor sub-
domain, and then that subdomain is solved using boundary condition values from the first sub-
domain. With this approach, the boundary condition values are set using data from the previous
timestep. For steady-state simulations, this is not a problem, but it definitely prevents the resolution
of time-accurate simulations.

A solution to this problem has been found, and implementation is currently underway. Results
were no yet available at the time of writing, but the approach is presented here. The solution is to
accurately predict the value of the boundary conditions at the interface between two subdomains
using Taylor series. Since the timestep is constant, it is possible to use finite-difference approxi-

CHAPTER 6. DISCUSSION AND FUTURE WORK 106

mations to the boundary condition values. All that is needed is to keep track of previous boundary
condition values. This is accomplished by having the Region class keep the Recon objects it uses.

Finite-difference approximations

These expressions are all one-sided finite-difference relations. They yield the value of boundary
condition value Tb at time tn+i. The number of Recon object from previous timesteps needed
depend on the order of accuracy of the simulation.

First-order

The first-order approximation simply uses the value from the previous timestep.

Tbn+1=Tbn (6.1)

Second-order

Tbn+1 = 2Tbn - Tbn_x (6.2)

Third-order

T f t n + 1 = 3 T 6 r i - 3 T f c n _ 1 + T 6 „ _ 2 (6.3)

Fourth-order

Tbn+l = 4T6 n - QTbn_x + 4Tbn_2 - Tbn_3 (6.4)

6.2 Efficiency

The efficiency of the solver is the area that needs the most work to bring it up to a satisfactory level.
Most of the future work planned on the solver, and its numerical toolkit, focus on improving the
efficiency. The generic nature of the solver makes it slower by nature than a dedicated solver. This

CHAPTER 6. DISCUSSION AND FUTURE WORK 107

shortcoming is more then compensated by the ability to solve new phenomena simply by writing
a short description of the physical equations of the problem.

Adding multiphysics capacities further slowed the solver down, as managing the multiple Region
and Physics classes requires a certain overhead. The main computational hit, however, comes
from the use of variables and their necessary dependency trees. The functions responsible for
going through the dependency trees and fetching/computing variables sometimes take up to 40%
of the total simulation time. This is not to say that the multiphysics solver is 40% slower than the
single-physics solver it is based on however: some of these computations were taking place in other
portions of the code in the original solver, they have simply been centralized in the multiphysics
solver. The "data fetching" functions of the multiphysics solver are unfortunately a necessary evil;
much has been done to optimize them, with only limited success. There is also relatively small
hope that the situation would improve without a complete overhaul of the multiphysics framework.

There are however several other ways that the overall efficiency of the solver can be improved,
with a few of them listed below.

6.2.1 Implicit methods

ANSLib uses explicit time-advance methods. These methods were chosen for the initial devel­
opment of the toolkit because of the ease with which they can be implemented. The emphasis at
this development stage was accuracy. Now that the framework has been proven to solve problems
accurately, different methods can be used to solve them more efficiently. With explicit methods,
convergence for either steady-state problems (using local timestepping) or time-accurate problems
(using global timestepping) is slow. A doctoral project already underway looks at implementing
generic implicit time-advance methods in ANSLib. Implicit methods result in having to solve very
large linear systems. Since solving these large systems directly is too costly computationally, iter­
ative solvers based on Krylov spaces are being investigated. These iterative solvers also have the
benefit that they could solve for the steady-state solution of linear problems directly rather than
through timestepping methods. This would be a huge efficiency gain for problems such as linear
solid mechanics and heat conduction.

6.2.2 Multigrid methods

Multigrid methods use several meshes of different densities of the same domain to damp out dif­
ferent frequencies of the error of the solution. The high-frequency errors are first smoothed on

CHAPTER 6. DISCUSSION AND FUTURE WORK 108

the finest grid, and the problem is transferred to a next-coarser mesh. This process repeats until it
reaches the coarsest mesh, at which point a solution correction is transferred back to the next-finer
mesh, and the error is smoothed once more, until it reaches the finest grid to complete an iteration.

Even though each iteration now takes longer, the dramatic reduction in the overall number of
iterations needed to reach a given convergence level makes this method very attractive. Both
multigrid and implicit methods are being investigated in the same project; further efficiency gains
could possibly be made by combining the two together.

6.2.3 Parallel computing

Another way to make the solver run faster is to make good use of the advantages parallel computing
provides. By solving a problem on n processors, the solution can theoretically be obtained n
times faster. The practical efficiency gains are somewhat lower due to the latency caused by the
communication between different processors. Proper implementation of parallel techniques helps
reduce these delays to a minimum. A graduate student is already working on turning ANSLib into
a parallel solver.

For multiphysics problems, Region classes already solve problems on their mesh independently
from each other. Spreading each Region class on a separate processor seems like a natural divi­
sion. However, since the size of each mesh, the number of unknowns, and the complexity of the
flux functions in each Region are different, this separation probably will not yield the optimal effi­
ciency. Each Region will likely need to be further divided into separate subdomains to ensure the
load among processors is properly balanced. Even in this case, the techniques used for interface
coupling might be a great solution for the information exchange between different processors.

6.2.4 Adaptive mesh refinement

Adaptive mesh refinement aims to minimize the number of computational nodes needed for a given
accuracy of the solution. This is accomplished by refining the mesh in areas where the error in the
solution is large, and coarsening the mesh in areas where the error is small. This is known as h-
refinement. Since the number of computational nodes is minimized, the time required to perform
each iteration of the simulation is much smaller.

The most critical aspect of an adaptive mesh refinement technique is the error estimator. If the error
is deemed too large, nodes must be added; too small, and some nodes are removed. For the finite-

CHAPTER 6. DISCUSSION AND FUTURE WORK 109

volume method, literature documenting second-order accurate estimators for specific problems is
readily available. However, for third- or fourth-order methods, very little is known; the second-
order error estimators most likely cannot be used for high-order methods.

The high-order reconstruction schemes also open the door to using automatic p-refinement tech­
niques: this consists in solving different regions of the domain using different orders of accuracy.
Again, error estimators that can determine when it is advantageous to switch to a higher order of
accuracy would have to be created. Since the reconstruction code is already working, asking the
solver to change the order of reconstruction over different control volumes would be straightfor­
ward.

Chapter 7

Summary

Numerical simulation tools allow scientists to solve problems of increasing complexity, leading
to increased efficiency of the design and engineering processes. These tools can however be im­
proved, and this research focused on improving two aspects of the numerical simulation process:
mesh generation and numerical computation of multiphysics problems.

7.1 Mesh generation

First, a fully-automatic mesh generator capable of generating guaranteed-quality meshes for com­
plex geometries with curved boundary has been written. A framework allowing two-dimensional
curved boundary segments was combined with a guaranteed-quality Delaunay refinement algo­
rithm; details were presented in Chapter 2. The use of curved boundaries demanded that boundary
edges be split differently to ensure regions with higher curvature were discretized with a greater
number of edges. The midpoints are now computed using the total variation of the tangent angle.
The initial discretization of the domain also needed some modifications; the new strategy first dis-
cretizes the curved boundaries with as few segments as possible, avoiding the creation of artificial
small features in the mesh. Some recovery problems due to the very coarse nature of the initial
discretization of curved boundaries were encountered, but solutions to these were incorporated
into the new initial discretization strategy. Several boundary patch types were implemented and
tested. Furthermore, it is possible to add new boundary types to the generic boundary easily. Ex­
amples demonstrating the successful use of curved boundary patches were also presented. These
two-dimensional meshes all showed excellent quality, and had a minimum angle exceeding 30°.

110

CHAPTER 7. SUMMARY 111

Finally, a mathematical proof that guarantees the quality of the final mesh has been extended to
include meshes from a domain with curved boundaries. This research was an important step in
allowing the generation of guaranteed-quality meshes directly from CAD models, which would
considerably cut down on the amount of time necessary for domain preparation.

7.2 Numerical simulation of generic multiphysics problems

The second part of this research addressed the problems domain experts face when trying to per­
form numerical simulations related to their field of expertise. A generic numerical toolkit was
modified, allowing generic multiphysics simulations to be performed. With this new solver, sci­
entists can simply describe each of the physics of their problems — something they understand
very well — and obtain solutions to new and complex physical problems within days. There is no
need to write a specialized solver tailored to their specific problems, or to wait for a commercial
package to be available.

The multiphysics solver is based on a generic numerical toolkit which was described in Chapter 3.
The toolkit uses the finite-volume method, which allow the decoupling of the numerical and phys­
ical aspects of a simulation easily. By decoupling the two, all physical problems look the same to
the numerical toolkit. The physics of a problem are described in a Physics class. To demonstrate
the effectiveness of this generic approach to numerical simulations, results from three different
physical problems solved using the same mesh and solver were presented.

Multiphysics problems presented a number of challenges, as described in Chapter 4. For one, the
solver must interact with multiple Physics classes at the same time. A layer of code was added
to manage these multiple physical packages: the Region class. Furthermore, in some cases, mul­
tiphysics problems are defined over several subdomains; the Domain class was created to handle
this. However, the most crucial modification made to the numerical toolkit was allowing the ex­
change of information between multiple Physics classes, whether on the same subdomain or not.
This exchange can only take place if the solver knows what information the different Physics
objects can exchange with each other; the PhysVar class ensures this information exchange hap­
pens. The coupling between the different physical packages is done using variable association. The
association is accomplished by having the solver link a required variable to a provided variable.
Variable association can however lead to some dependency problems: dependency trees were im­
plemented to avoid these problems. Results for several multiphysics problems where two or more
physical packages were coupled together were presented. The results matched analytical solutions

CHAPTER 7. SUMMARY 112

well, when such solutions were available.

In Chapter 5, a way for the source term from one physical package to affect the flux variables from
another physical package was described. This is particularly useful for combustion problems.
In addition, a simple Physics class definition syntax based on XML was created. This file uses
human-readable keywords and is automatically converted to C++ by a parsing program specifically
written for that purpose. This syntax will make it even easier to write new Physics classes for the
multiphysics solver. Finally, in Chapter 6, several ways the solver could be further improved were
discussed, both in terms of efficiency and accuracy.

7.3 Conclusion

This research helped make the numerical simulation process easier and more accessible to scien­
tists and engineers by improving tools used in both domain preparation and numerical computation.
The automatic generation of guaranteed-quality meshes for complex geometries is a huge gain in
efficiency for the users of numerical tools. Furthermore, the ability to quickly and easily define and
solve new multiphysics problems will surely lead to numerical solvers being used in a wider variety
of fields by a greater number of scientists; this can only benefit the whole scientific community.

Bibliography

[1] FEMLAB: An Introductory Course. Available from the FEMLAB website,
http://www.femlab.com, 2002.

[2] E. Arge, A. M. Bruaset, P. B. Calvin, J. F. Kanney, H. P. Langtangen, and C. T. Miller.
On the numerical efficiency of C++ in scientific computing. In M. Daehlen and A. Tveito,
editors, Numerical Methods and Software Tools in Industrial Mathematics, pages 93-119.
Birkhauser, 1997.

[3] I. Babuska and A. Aziz. On the angle condition in the finite element method. 13:214-226,

1976.

[4] C. Bailey, G. Taylor, S. M. Bounds, G. Moran, and M. Cross. PHYSICA: A multiphysics
computational framework and its application to casting simulations. In Computational Fluid
Dynamics in Mineral & Metal Processing and Power Generation, pages 419-425. CSIRO
Division of Minerals, 1997.

[5] T. J. Barth. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-
Stokes equations. In Unstructured Grid Methods for Advection-Dominated Flows, pages
6-1-6-61. AGARD, 1992.

[6] T. J. Barth and P. O. Frederickson. Higher order solution of the Euler equations on unstruc­
tured grids using quadratic reconstruction. AIAA paper 90-0013, Jan. 1990.

[7] C. Boivin and C. F. Ollivier-Gooch. A generic finite-volume solver for multiphysics problems
I: Field coupling. In Proceedings of the Tenth Annual Conference of the Computational Fluid
Dynamics Society of Canada, pages 49-54, June 2002.

[8] C. Boivin and C. F. Ollivier-Gooch. A generic finite-volume solver for multiphysics problems
II: Interface coupling. In Proceedings of the Tenth Annual Conference of the Computational
Fluid Dynamics Society of Canada, pages 55-60, June 2002.

113

http://www.femlab.com

BIBLIOGRAPHY 114

[9] C. Boivin and C. F. Ollivier-Gooch. Guaranteed-quality triangular mesh generation for do­
mains with curved boundaries. International Journal for Numerical Methods in Engineering,
55:1185-1213,2002.

[10] A. P. Boresi, R. J. Schmidt, and O. Sidebottom. Advanced Mechanics of Materials. John

Wiley and Sons, 5th edition, 1993.

[11] A. M. Bruaset, E. J. Holm, and H. P. Langtangen. Increasing the efficiency and reliability of
software development for systems of PDEs. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
editors, Modern Software Tools for Scientific Computing, pages 247-268. Birkhauser, 1997.

[12] A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solving partial dif­
ferential equations: Diffpack. In M. Daehlen and A. Tveito, editors, Numerical Methods and
Software Tools in Industrial Mathematics, pages 63-92. Birkhauser, 1997.

[13] L. P. Chew. Guaranteed-quality triangular meshes. Technical Report TR-89-983, Dept. of
Computer Science, Cornell University, 1989.

[14] L. P. Chew. Guaranteed-quality mesh generation for curved surfaces. In Proceedings of
the Ninth Annual Symposium on Computational Geometry, pages 274-280. Association for
Computing Machinery, May 1993.

[15] S. Dey, R. M. O'Bara, and M. S. Shepard. Curvilinear mesh generation in 3D. In Proceedings

of the Eighth International Meshing Roundtable, pages 407^417, Oct. 1999.

[16] Y. Dubois-Pelerin and P. Pegon. Improving modularity in object-oriented finite element pro­
gramming. Communications in Numerical Methods in Engineering, 13:193-198, 1997.

[17] H. Edelsbrunner and D. Guoy. Sink-insertion for mesh improvement. In Proceedings of the
17th ACM Symposium on Computational Geometry, pages 115-123, June 2001.

[18] D. Eyheramendy and T. Zimmermann. Object-oriented finite elements: II. A symbolic en­
vironment for automatic programming. Computational Methods in Applied Mechanics and
Engineering, 132:277-304, 1996.

[19] D. Eyheramendy and T. Zimmermann. Object-oriented finite elements: III. Theory and ap­
plication of automatic programming. Computational Methods in Applied Mechanics and
Engineering, 154:41-68, 1998.

BIBLIOGRAPHY 115

[20] D. Eyheramendy and T. Zimmermann. Object-oriented finite elements: IV. Symbolic deriva­
tions and automatic programming of nonlinear formulations. Computational Methods in
Applied Mechanics and Engineering, 190:2729-2751, 2001.

[21] C. A. Felippa, K. Park, and C. Farhat. Partitioned analysis of coupled mechanical systems.
Computer Methods in Applied Mechanics and Engineering, 190:3247-3270, 2001.

[22] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer-Verlag,
2nd edition, 1999.

[23] P. Fleischmann and S. Selberherr. Three-dimensional Delaunay mesh generation using a
modified advancing front approach. In Proceedings of the Sixth International Meshing
Roundtable, pages 267-278, October 1997.

[24] L. A. Freitag and C. F. Ollivier-Gooch. A cost/benefit analysis of simplicial mesh improve­
ment techniques as measured by solution efficiency. International Journal for Computational
Geometry, Aug. 2000.

[25] I. Fried. Condition of finite element matrices generated from nonuniform meshes. AIAA
Journal, 10:219-221,1972.

[26] H. P. Langtangen. Computational Partial Differential Equations — Numerical Methods and
Diffpack Programming. Lecture Notes in Computational Science and Engineering. Springer-
Verlag, 1999.

[27] P. Laug, H. Borouchaki, and P.-L. George. Maillage de courbes gouverne par une carte de

metriques. Technical Report RR-2818, INRIA, 1996.

[28] H. Lomax, T. Pulliam, and D. Zingg. Fundamentals of Computational Fluid Dynamics.

Springer, 2001.

[29] D. L. Marcum and N. P. Weatherill. Unstructured grid generation using iterative point inser­
tion and local reconstruction. AIAA Journal, 33(9): 1619-1625,1995.

[30] D. Mavriplis and S. Pirzadeh. Large-scale parallel unstructured mesh computations for 3D

high-lift analysis. Journal of Aircraft, 36(6), 1999.

[31] F. Mavriplis. CFD in aerospace in the new millenium. Canadian Aeronautics and Space

Journal, 46(4): 167-176, Dec. 2000.

BIBLIOGRAPHY 116

[32] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. In Proceed­
ings of the ACM Computational Geometry Conference, pages 212-221, 1992. Also appeared
as Cornell C.S. TR 92-1267.

[33] C. F. Ollivier-Gooch. ANSLib: A scientific computing toolkit supporting rapid numerical
solution of practically any PDE. In Proceedings of the Eighth Annual Conference of the
Computational Fluid Dynamics Society of Canada, pages 21—28, June 2000.

[34] C. F. Ollivier-Gooch. A toolkit for numerical simulation of PDEs I: Fundamentals of
generic finite-volume simulation. Computer Methods in Applied Mechanics and Engineering,
192:1147-1175,2003.

[35] C. F. Ollivier-Gooch and C. Boivin. Guaranteed-quality simplicial mesh generation with cell
size and grading control. Engineering with Computers, 17:269-286, 2001.

[36] C. F. Ollivier-Gooch and M. Van Altena. A high-order accurate unstructured mesh finite-
volume scheme for the advection-diffusion equation. Journal of Computational Physics,
181(2):729-752, 2002.

[37] M.-C. Rivara. New longest-edge algorithms for the refinement and/or improvement of un­
structured triangulations. International Journal for Numerical Methods in Engineering,
40:3313-3324,1997.

[38] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation.

Journal of Algorithms, 18:548-585,1995.

[39] A. Sheffer and A. Ungor. Efficient adaptive meshing of parametric models. In Proceedings
of the 6th ACM Symposium on Solid Modeling and Applications, pages 59-70, June 2001.

[40] J. R. Shewchuk. Delaunay Refinement Mesh Generation. PhD thesis, School of Computer

Science, Carnegie Mellon University, May 1997.

[41] M. Van Altena. High-order finite-volume discretisations for solving a modified advection-
diffusion problem on unstructured triangular meshes. Master's thesis, Dept. of Mechanical
Engineering, University of British Columbia, Oct. 1999.

[42] D. F. Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronoi poly topes. Computer Journal, 24(2): 167-172, 1981.

[43] F.M.White. Viscous Fluid Flow. McGraw-Hill, 2nd edition, 1991.

BIBLIOGRAPHY 117

[44] T. Zimmermann and D. Eyheramendy. Object-oriented finite elements: I. Principles of sym­
bolic derivations and automatic programming. Computational Methods in Applied Mechanics
and Engineering, 132:259-276, 1996.

Appendix A

Proof of Mesh Quality in Two Dimensions

A.l Angle bounds

The proof presented in this appendix follows the same approach used in previous research [35].
Boundary edges are assumed to be protected by diametral lenses and that input angles are greater
than 60°, to prevent adjacent edges from encroaching on each other. It is possible show the same
bounds for curved boundaries that were previously demonstrated for straight boundaries.

The following lemma will now be proven, which will, among other results, establish an angle
bound for finite cell size and hence for algorithm termination. This lemma is deliberately stated
in language as similar as possible to Ruppert's Lemma 2, even to exact quotation of much of the
phrasing, although details of the proof and the derived constants differ.

Lemma 1. (After Ruppert [38]) For fixed constants CL,CT and Cs, determined below, the fol­
lowing statements hold:

1. At initialization, for each input vertex p, the distance to its nearest neighbor vertex is at least

lfsc(p) = R-LS(p).

2. When a point p is chosen as the circumcenter of an overly-large triangle, the distance to the
nearest vertex is at least LS (p) /CL- (p may be added to the triangulation, or may be rejected
because it encroaches upon some segment.)

3. When a point p is chosen as the circumcenter of a skinny triangle, the distance to the nearest
vertex is at least LS (p) /CT- (Again, p may be added to the triangulation, or may be rejected
because it encroaches upon some segment.)

118

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 119

4. When a vertex p is added as the midpoint of a split segment, the distance to its nearest

neighbor vertex is at least LS (p) /Cs-

Proof.

Case 1. Statement 1 of Lemma 1 is true by the definition of the length scale LS from the local
feature size lfsc, provided only that the constant R in Equation 2.1 is > 1.

Having established the truth of Lemma 1 for the initial mesh, it is now possible to proceed by
induction to prove that it must be true for all meshes generated by the algorithm. As such, it is
assumed that Lemma 1 holds for all points in the mesh and determine the bounds on Cs, CT, CL,
and G that are required for Lemma 1 to hold for newly inserted points.

Case 2. The case of insertion to split a large triangle, as shown in Figure A. l , is first considered.
By definition, the circumradius of Aabc is larger than ^ times the average of the length scales at
its vertices. The distance from p to the nearest point is the circumradius of Aabc, or

V2LS(a) + LS(b) + LS(c)
~ 2 3

The length scale at p can be bound in terms of this same average using Equation 2.1:

LS(p) < LS (a) + L
LS(p) < LS (b) + L
LS(p) < LS (c) + T-

LS(p) < LS (a) + LS (b) + LS (c)
3

LS (a) + LS (b) + LS (c)
3

> LS (p) - £

+ 5 <A'2)

Combining inequalities A. l and A.2 results in:

V2LS (p) rV2
> 2 2G < >- m

This inequality places a lower bound on point spacing for points inserted to split large triangles,

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 120

and confirms Statement 2 of Lemma 1, for any

CL>V2 + ^ (A.4)

The lower bound on CL becomes smaller for large values of G, corresponding to slow change in
cell size.

Case 3. The case of insertion to split a badly shaped triangle, as illustrated in Figure A.2, is
considered next. Without loss of generality, vertices can be labelled so that a and b are connected
by the shortest edge (of length Z m i n) , and a was inserted in the mesh after b (or both were input
vertices). The radius of the vertex-free circle around a is r'. Four subcases for relating r' to LS (p)
arise, depending on why a was inserted in the mesh.

Subcase 3a. a was an input vertex. Then so was b, Statement 1 of Lemma 1 applies, and the
distance Z m j n > R • LS (a).

Subcase 3b. a was inserted to split a large triangle. The circumradius r' of that triangle is no larger
than lm[a, because vertex b was not inside the circumcircle. Then Statement 2 of Lemma 1
applies, and Z m j n > r' > LS (a) /CL-

Subcase 3c. a was inserted to split a badly shaped triangle. By a similar argument and using
Statement 3 of Lemma 1, and Z m i n > r' > LS (a) /CT-

Subcase 3d. a was inserted to split an encroached boundary edge. It is known that b does not
lie inside the diametral lens of the edge a split, because otherwise b would encroach on that
edge. Statement 4 of Lemma 1 applies, and / m ; n > r' > LS (a) /Cs-

If Cs > CT = CL > 1 is satisfied (which will be shown is possible), then the inequality
^min > LS (a) /Cs (subcase 3d) causes the most difficulty in satisfying Statement 3 of Lemma
1 by making the length scale at p larger than that for any other subcase.

The radius r of the circumcircle of Aabc is related to its smallest angle. The angle /.apb = 29 by
geometry, and trigonometry gives Z m ; n = 2r sin 9. The definition of length scale gives

LS(p)<LS(a) + ^ < Cslmin + ^

= 2rCssin9 + ^ (A.5)

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 122

This triangle is being split because 9 is less than the required angle bound a. Inequality A.5 can
be strengthened by replacing 9 with a, and obtain

r >

 LS(P)
~ 1 +2C ssina: G

Lemma 1 states that, for this case, r > LS (p) /CT, SO it is required that

CT > T; + 2 C 5 sin a (A.6)

Case 4. The case in which vertex p is added to the mesh to split a segment s, because some vertex
or triangle circumcenter lies inside the diametral lens of s, is covered next. Vertex p is inserted
on the patch between b and c, not necessarily at the midpoint of edge frcThis case is illustrated in
Figure A.3. There are four subcases.

Subcase 4a. a lies on a segment t, which can not share a vertex with s, because it was assumed
that input edges are separated by 60°. Therefore, p and a lie on non-adjacent segments, and
the length scale atp is LS (p) < ^ \a — p\. To satisfy Lemma 1 in this subcase, it is therefore
required that Cs > ^. Because R>1, this inequality is always satisfied for Cs > 1.

Subcase 4b. a is a point at the circumcenter of a large triangle T. a has of course been rejected
for insertion since it is located inside the diametral lens. The definition of the length scale
then gives:

LS(p) <LS(a) + ±\a-p\

The circumradius r' of T is smaller than the shorter of a — b and \a — c|, because T's
circumcircle must be point-free. The largest value of r' is obtained when a is at the apex of
the diametral lens, so r' < -^d. Also, it is known from this lemma that LS (a) /CL < r'.
Furthermore, the largest value of |a — p| places a and p at opposite ends of edge be, so
|a — p\ < 2d. The length scale at p now becomes:

LS(p) < r'CL + %
^ 2d / ^ f , 2d

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 123

This inequality satisfies Lemma 1 provided that

C s > - 1 + TZCL <A'7)

Subcase 4c. a is a point at the circumcenter of a skinny triangle. The same reasoning can be
applied as in the previous subcase, with the result that

Cs > | + ^fT (A.8)

Subcase 4d. The radius of curvature at p is smaller than the local feature size. In this case, the
radius of curvature will define the length scale, and it does not matter whether a comes from
a large or a skinny triangle. The definition of length scale will yield:

LS{p) <<f
This length scale is valid whenever it is smaller than the length scale found in cases 4a, 46,
or 4c. Using the results from case Ab, for example, this is equivalent to saying that:

It will be shown that this inequality only holds for a few splits at the boundary, and therefore
does not affect the provable angle bound nor the termination of the algorithm. Using P = ĵ y
and re-arranging terms in the previous inequality results in:

1 ^ (2R 2R„ \ . .

Integrating both sides with respect to arclength over be:

\SC

bds < (f + f3CL)fb

c\.(s)\ds
< {f + f3CL)TV(8)

(A.9)

The left-hand side integral is the arclength of the patch between b and c, s6c, and the right-
hand side integral is TV (8) between b and c. As the boundary patch gets split, Sf, c, d, and
TV(8) \l all decrease. The ratio on the left-hand side is bounded as the curve looks more and
more linear, i.e. ^ > 2. The right-hand side term decreases by a factor of two after every

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 124

split. After enough splits, the inequality invariably no longer holds, and the length scale is
not defined by the radius of curvature at point p anymore.

To establish the truth of Lemma 1, one must find values of Cs, CT, and CL that simultaneously
satisfy Inequalities A.4, A.6, A.7, and A.8. Tight bounds are established on each constant by
requiring equality in each case. Using only A.6, A.7, and A.8 results in:

CS =

CT = CL =

1 2\/3 + 2
G — 4 sin a
1 v/3 + 4v/3sino;
G y/2> — 4 sin a

These values are bounded for any angle bound a < arcsin , just as for Shewchuk's modifica­
tion to Ruppert's scheme. The constants are nearly identical to those found previously for straight
boundaries, with only a slight difference in the numerators.

Equation A.4 can be treated as establishing a lower bound on the grading rate G > ^3^75 • So
long as G is finite, the mesh will be non-uniform. Relating G to the angle bound a:

2 ^ 8 ^ a (1 + \/3)
G < v/3-4si s u m

The minimum theoretical grading rate G remains finite up to the previously established angle
bound. If the higher bound for G is used, the following constants are found:

CS =

CT — CL —

1
\/2sin a

\/3 (1 + 4 sin a)
2^2 sin a (l + \/3)

In summary, it has been established that, for R > 1, meshes can be generated with the same angle
bounds as Shewchuk's modification to Ruppert's scheme. In the process, bounds have been placed
on the grading rate G and on the length of the shortest edge in the mesh relative to the local length
scale (the constants Cs, CT, and CL give this information).

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS 125

A.2 Termination and Size Optimality

The quality lemmas can be used to prove the following theorem about finite mesh size and mesh
size optimality.

Theorem 1. Given a vertex p in the output triangular mesh, its nearest neighbor vertex q is at a
distance at least LS (p) / (Cs + 1/G). This implies mesh size optimality.

Proof.

Lemma 1 handles the case where p is inserted after q. If q is inserted last, then the lemma is applied

to q:

\q-p\>

But LS (p) >LS(q)+11^, so

Q-P\ >

Cs

LS(p) G
Cs

and the theorem follows, with only minor algebra.

Because the shortest edge in the mesh must be longer than ^ s""j;, each cell has finite size and only
a finite number of them will be required.

Futhermore, because the shortest possible edge is within a constant factor of the length scale lo­
cally, the smallest possible triangle is within the square of that same factor of the size of a triangle
whose edges all match the length scale. This implies that the size of the mesh must be within a
constant factor of the size of the smallest possible mesh whose cells meet the quality bound and
whose edges have length within a constant factor of the length scale locally.

APPENDIX A. PROOF OF MESH QUALITY IN TWO DIMENSIONS

Figure A.3: Lemma 1, Statement 4: p added to split an encroached boundary edge.

Appendix B

Physics classes definitions

B.l Heat conduction XML file
<?xml version="1.0" ?>
<Physics>
<ClassID>Heat2D</ClassID>
<ClassDesc>2D Heat conduction package</ClassDesc>
<FluxVar>
<ID>eFlux_T</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>

</FluxVar>
<RequiredVar>
<ID>eConduc t</ID>
<Name>Conductivity</Name>
<Symbol>k</Symbol>
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eDens</ID>
<Name>Density</Name>
<Symbol>rho</Symbol>
<UnitS> <L>-3</L> <M>K/M> <T>0</T> <K>0</K> </UnitS>

</RequiredVar>
<RequiredVar>
<ID>eSpecHeat</ID>
<Name>Specific Heat</Name>

127

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Symbo1>cp</Symbo1>
<Units> <L>2</L> <M>0</M> <T>-2</T> <K>-K/K> </Units>

</RequiredVar>
<ComputedVar>
<ID>eHeatDiff</ID>
<Name>Heat Diffusivity</Name>
<Symbol>a</Symbol>
<Units> <L>2</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>eConduct / (eDens * eSpecHeat)</Formula>

</ComputedVar>
<ComputedVar>
<ID>eHeatFlux</ID>
<Name>Heat Flux</Name>
<Symbol>q</Symbol>
<Units> <L>0</L> <M>K/M> <T>-3</T> <K>0</K> </Units>
<Formula>eConduct * (GradX{eFlux_T}*Norm{X} +

GradY{eFlux_T}*Norm{Y})</Formula>
</ComputedVar>
<ComputedVar>
<ID>eAveTemp</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>
<Formula>0.5 * (LSoln{eFlux_T} + RSoln{eFlux_T})</Formula>

</ComputedVar>
<ComputedVar>
<ID> eBdryDTDX</ID>
<Name>Bdry dT/dx</Name>
<Symbol>Tx</Symbol>
<Units> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </Units>
<Formula>RGradX{eFlux_T}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryDTDY</ID>
<Name>Bdry dT/dy</Name>
<Symbol>Ty</Symbol>
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>
<Formula>RGradY{eFlux_T}</Formula>

</ComputedVar>
<InteriorFlux>

<FluxData>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Var>eFlux_T</Var>
<Formula>- eHeatDiff * (GradX{eFlux_T}*Norm{X} +

GradY{eFlux_T}*Norm{Y})</Formula>
</FluxData>

</InteriorFlux>
<WaveSpeeds >
<Minimum>-eInvDist * 0.3</Minimum>
<Maximum> elnvDist * 0 . 3 </Maximum>

</WaveSpeeds>
<SourceTerm>
</SourceTerm>
<BCType>
<Desc>This BC imposes an insulated wall</Desc>
<ID>eBC_Ins</ID>
<BdryFlux>

<FluxData>
<Var>eFlux_T</Var>
<Formula>0</Formula>

</FluxData>
</BdryFlux>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_T</Var>
<Formula> 0 </Formula>

</Constraint>
</BCType>
<BCType>
<Desc>This BC imposes a temperature at the wall</Desc>
<ID>eBC_Temp</ID>
<BCVar>
<ID>eTempBCVar</ID>
<Name>Boundary temperature</Name>
<Symbol>Tb</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>

</BCVar>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_T</Var>
<Formula>eTempBCVar</Formula>

</Constraint>
<BdryFlux>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<FluxData>
<Var>eFlux_T</Var>
<Formula>- eHeatDiff * (RGradX{eFlux_T} * Norm{X} +

RGradY{eFlux_T} * Norm{Y})</Formula>
</FluxData>

</BdryFlux>
</BCType>
<BCType>
<Desc>This BC imposes a heat flux at the wall</Desc>
<ID>eBC_Flux</ID>
<BCVar>
<ID>eHeatBCVar</ID>
<Name>Boundary heat flux</Name>
<Symbo1>qb</Symbo1>
<Units> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </Units>

</BCVar>
<BdryFlux>
<FluxData>
<Var>eFlux_T</Var>
<Formula>- eHeatBCVar / (eDens * eSpecHeat)</Formula>

</FluxData>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes an internal (block) boundary:/Deso
<ID>eBC_IntBdry</ID>
<BCVar>
<ID>eIntBdryDTDX</ID>
<Name>Boundary dT/dx</Name>
<Symbol>Txb</Symbol>
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>

</BCVar>
<BCVar>
<ID>eIntBdryDTDY</ID>
<Name>Boundary dT/dy</Name>
<Symbol>Tyb</Symbol>
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </Units>

</BCVar>
<BdryFlux>
<FluxData>
<Var>eFlux_T</Var>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 131

<Formula>- 0.5 * eHeatDiff *
((RGradX{eFlux_T} + elntBdryDTDX)*Norm{X)
+ (RGradY{eFlux_T} + elntBdryDTDY)*Norm{Y})</Formula>

</FluxData>
</BdryFlux>

</BCType>
</Physics>

B.2 Heat conduction C++ file

As an example, here is the C++ file generated by the parser from the XML file above. Notice how
reconstruction and various computed variables were created automatically.
#include <math.h>

ttdefine VAR_U_NORM -1
#define VAR_U_TANG -2
ttdefine VAR_U_CROSS -3

#ifndef VAR_VEC_X
#define VAR_VEC_X -100
#endif
ttifndef VAR_VEC_Y
#define VAR_VEC_Y -100
#endif
#ifndef VAR_VEC_Z
#define VAR_VEC_Z -100
#endif

#include "ANS.NewPhysics.h"
#include "ANS.PhysVar.h"
#include "ANS.Taylor.h"

class Heat2D_Physics : public NewPhysics {

public:

enum eVars {
eFlux_T, eConduct, eDens, eSpecHeat, eRGradX_eFlux_T,
eLGradX_eFlux_T, eAGradX_eFlux_T, eNormX, eRGradY_eFlux_T,
eLGradY_eFlux_T, eAGradY_eFlux_T, eNormY, eLSoln_eFlux_T,

/* Deliberately illegal value */

/* Deliberately illegal value */

/* Deliberately illegal value */

APPENDIX B. PHYSICS CLASSES DEFINITIONS 132

eRSoln_eFlux_T, eHeatDiff, eHeatFlux, eAveTemp, eLastVar
};

enum eBCTypes {
eBC_Ins, eBC_Temp, eBC_Flux, eLastBCType

};

enum e_eBC_Temp_Vars {
eTempBCVar, eBC_Temp_LastVar

};

enum e_eBC_Flux_Vars {
eHeatBCVar, eBC_Flux_LastVar

};

Heat2D_Physics() : NewPhysics() {
// Class description
sWordDescription = "2D Heat conduction package" ;
// variable number
vSetNumberOfVariables(eLastVar);

// Now define variables

// eFlux_T
vAddPhysVariable(eFlux_T, eStateProvided, eTypeFlux, eWhereField,

0, 0, 0, 1, "T", "Temperature");

// eConduct
vAddPhysVariable(eConduct, eStateRequired, eTypeVariable, eWhereField,

1, 1, -3, -1, "k", "Conductivity");

// eDens
vAddPhysVariable(eDens, eStateRequired, eTypeVariable, eWhereField,

-3, 1, 0, 0, "rho", "Density");

// eSpecHeat
vAddPhysVariable(eSpecHeat, eStateRequired, eTypeVariable, eWhereField,

2, 0, -2, -1, "cp", "Specific Heat") ;
// eAGradX_eFlux_T
vAddPhysVariable(eAGradX_eFlux_T, eStateProvided, eTypeComputed,

eWhereField, 0, 0, 0, 0, "",
"Average eTypeGrad eFlux_T") ;

// eAGradY_eFlux_T
vAddPhysVariable(eAGradY_eFlux_T, eStateProvided, eTypeComputed,

APPENDIX B. PHYSICS CLASSES DEFINITIONS

eWhereField, 0, 0, 0, 0, "",
"Average eTypeGrad eFlux_T") ;

// eHeatDiff
vAddPhysVariable(eHeatDiff, eStateProvided, eTypeComputed, eWhereField,

2, 0, -1, 0, "a", "Heat Diffusivity") ;

// eHeatFlux
vAddPhysVariable(eHeatFlux, eStateProvided, eTypeComputed, eWhereField,

0, 1, -3, 0, "q", "Heat Flux") ;
// eAveTemp
vAddPhysVariable(eAveTemp, eStateProvided, eTypeComputed, eWhereField,

0, 0, 0, 1, "T", "Temperature");
// eRGradX_eFlux_T
vAddReconVariable(eRGradX_eFlux_T, eTypeGrad, eWhereRight, XDIR, eFlux_T)
// eLGradX_eFlux_T
vAddReconVariable(eLGradX_eFlux_T, eTypeGrad, eWhereLeft, XDIR, eFlux_T);
// eNormX
vAddReconVariable(eNormX, eTypeNorm, eWhereField, XDIR, -1);
// eRGradY_eFlux_T
vAddReconVariable(eRGradY_eFlux_T, eTypeGrad, eWhereRight, YDIR, eFlux_T)
// eLGradY_eFlux_T
vAddReconVariable(eLGradY_eFlux_T, eTypeGrad, eWhereLeft, YDIR, eFlux_T);
// eNormY
vAddReconVariable(eNormY, eTypeNorm, eWhereField, YDIR, -1);
// eLSoln_eFlux_T
vAddReconVariable(eLSoln_eFlux_T, eTypeSoln, eWhereLeft, -1, eFlux_T);
// eRSoln_eFlux_T

vAddReconVariable(eRSoln_eFlux_T, eTypeSoln, eWhereRight, -1, eFlux_T) ,-

// Now define BCs

// number of BCs

vSetNumberOfBCTypes(eLastBCType);

// BC Types

vAddBCType (eBC_Ins, "This BC imposes an insulated wall") ;
vAddBCType (eBC_Temp, "This BC imposes a temperature at the wall") ;
vAddBCType (eBC_Flux, "This BC imposes a heat flux at the wall") ;
// Variables for eBC_Temp
vSetNumberOfBCVariables(eBC_Temp, 1);

APPENDIX B. PHYSICS CLASSES DEFINITIONS 134

vAddBCVariable(eTempBCVar, eBC_Temp, 0, 0, 0, 1, "Tb", "Boundary temperature") ;

// Variables for eBC_Flux
vSetNumberOfBCVariables(eBC_Flux, 1);
vAddBCVariable(eHeatBCVar, eBC_Flux, 0, 1, -3, 0, "qb", "Boundary heat flux") ;

//
};

// Destructor
virtual ~Heat2D_Physics() {

// Typically no need to have anything here, but it's available in any case

};

// Interior Flux dependencies
virtual void vGetlnteriorFluxDependencies(std::vector<bool> * vecAllVars) {

// Set the appropriate flags to true

(*vecAllVars)[eAGradX_eFlux_T] = true;
(*vecAllVars)[eNormX] = true;
(•vecAllVars)[eAGradY_eFlux_T] = true;
(•vecAllVars)[eNormY] = true;
(•vecAllVars)[eHeatDiff] = true;

/ /

};

// Interior Flux function
virtual void vlnteriorFlux(FluxOutput& FO) const {

// Define the interior flux here

double adFlux[l];

adFlux[eFlux_T] =
- vecValues[eHeatDiff] * (vecValues[eAGradX_eFlux_T]*vecValues[eNormX]

+ vecValues[eAGradY_eFlux_T]*vecValues[eNormY]);
//
FO.vSetFlux(adFlux);
/ /

i f (FO.qWantWaveSpeeds()) {
// Set min speed

APPENDIX B. PHYSICS CLASSES DEFINITIONS 135

double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3;
// Set max speed
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3;
// store them..
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed);

//
}

};

// Computed variables dependencies
virtual void vGetComputedVarDependencies(

const int iWhich,
std: : vector<bool> * vecAHVars) {
// Set the appropriate variables to true

switch(iWhich) {
case eAGradX_eFlux_T: {

(*vecAllVars)[eRGradX_eFlux_T] = true;
(•vecAllVars) [eLGradX_eFlux_T]. = true;

}

break;
case eAGradY_eFlux_T: {

(*vecAllVars)[eRGradY_eFlux_T] = true;
(*vecAHVars) [eLGradY_eFlux_T] = true;

}

break;
case eHeatDiff: {

(*vecAHVars) [eConduct] = true;
(*vecAllVars)[eDens] = true;
(*vecAHVars) [eSpecHeat] = true;

}

break;
case eHeatFlux: {

(*vecAllVars)[eConduct] = true;
(*vecAllVars)[eAGradX_eFlux_T] = true;
(*vecAHVars) [eNormX] = true;
(*vecAllVars)[eAGradY_eFlux_T] = true;
(*vecAllVars)[eNormY] = true;

}
break;
case eAveTemp: { •

APPENDIX B. PHYSICS CLASSES DEFINITIONS 136

) ;

(•vecAllVars)[eLSoln_eFlux_T] = true;
(•vecAllVars)[eRSoln_eFlux_T] = true;

}
break;

} // end of switch on computed variable
//

};

// Computed variables are... well... computed... here
virtual double dComputeVarValue(const int iWhich) {

// Compute the requested variable...

double dValue;

switch(iWhich) {
case eAGradX_eFlux_T: {

dValue =
0.5 * (vecValues[eRGradX_eFlux_T] + vecValues[eLGradX_eFlux_T]);

}
break;
case eAGradY_eFlux_T: {

dValue =
0.5 * (vecValues[eRGradY_eFlux_T] + vecValues[eLGradY_eFlux_T]);

}
break;
case eHeatDiff: {

dValue =
vecValues[eConduct] / (vecValues[eDens] * vecValues[eSpecHeat]);

}
break;
case eHeatFlux: {

dValue =
vecValues[eConduct] * (vecValues[eAGradX_eFlux_T]*vecValues[eNormX]

+ vecValues[eAGradY_eFlux_T]*vecValues[eNormY]

}
break;
case eAveTemp: {

dValue =
0.5 * (vecValues[eLSoln_eFlux_T] + vecValues[eRSoln_eFlux_T]);

}

APPENDIX B. PHYSICS CLASSES DEFINITIONS 137

break;
} // end of switch on computed variable
// Return the value
return dValue;

/ /

};

// Source term dependencies
virtual void vGetSourceTermDependencies(std::vector<bool> * vecAHVars) {

// Set the appropriate flags to true

//

};

// Source term mapping variables

// Speeds up the mapping..
virtual void vSetSourceTermMapping() {
/ /

};

// Source term function itself..
virtual void vSourceTerm(FluxOutput& FO) const {

// Source term is defined here

//

};

// Boundary flux dependencies
virtual void vGetBoundaryTypeFluxDependencies(

const int iBCType,
std::vector<bool> * vecAllVars) {
// Set the appropriate variables to true... BC variables are automatically

added

switch(iBCType) {
case eBC_Ins: {
}
break;

APPENDIX B. PHYSICS CLASSES DEFINITIONS 138

case eBC_Temp: {
(•vecAllVars)[eRGradX_eFlux_T] = true;
(•vecAllVars)[eNormX] = true;
(•vecAllVars)[eRGradY_eFlux_T] = true;
(•vecAllVars)[eNormY] = true;
(•vecAllVars)[eHeatDiff] = true;

}
break;
case eBC_Flux: {

(•vecAllVars)[eDens] = true;
(•vecAllVars)[eSpecHeat] = true;

}
break;

}; // end of switch on bdry flux variables
//

};

// Boundary flux...
virtual void vBoundaryTypeFlux(

const int iBCType,
const int iBCVarBaselndex,
FluxOutput& FO) const {
// Compute the boundary flux...

double adFlux[1];

switch(iBCType) {
case eBC_Ins: {

adFlux[eFlux_T] =
0;

/ /

i f (FO.qWantWaveSpeeds()) {
// Set min speed
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] • 0.3;
// Set max speed
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] • 0.3;
// store them..
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed);

//
}

}

APPENDIX B. PHYSICS CLASSES DEFINITIONS 139

break;
case eBC_Temp: {

adFlux[eFlux_T] =
- vecValues[eHeatDiff] *

(vecValues[eRGradX_eFlux_T] * vecValues[eNormX] +
vecValues[eRGradY_eFlux_T] * vecValues[eNormY]) ;

/ /

i f (FO.qWantWaveSpeeds()) {
// Set min speed
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3;
// Set max speed
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3;
// store them..
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed);

//
}

}
break;
case eBC_Flux: {

adFlux[eFlux_T] =
- vecValues[iBCVarBaselndex + eHeatBCVar] /

(vecValues[eDens] * vecValues[eSpecHeat]);
/ /

i f (FO.qWantWaveSpeeds()) {
// Set min speed
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3;
// Set max speed
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3;
// store them..
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed);

//
}

}
break;

} // end of switch on computed variable
// Return the flux values
FO.vSetFlux(adFlux);

//
};

// Boundary constraints dependencies

APPENDIX B. PHYSICS CLASSES DEFINITIONS 140

virtual void vGetBoundaryTypeConstraintDependencies(
const int iBCType,
std::vector<bool> * vecAllVars) {
// Set the appropriate variables to true... BC variables are automatically-

added

switch(i BCType) {
case eBC_Ins: {
}
break ,-
case eBC_Temp: {
} '
break ,-
case eBC_Flux: {
}
break;

}; // end of switch on bdry cons variables
//

};

// Boundary constraints
virtual void vSetupTypeConstraints(

const int iBCType, const int iBCVarBaselndex, const int iRegionVarIndex,
const int iNumUnknowns, double *a2dReconArray[], double *a2dReconRHS[1],
int &iRow, const int iDim, const double adLoc[],
const double adRelLoc[], const double adNorm[], const int iBC) const {
switch(iBCType) {
case eBC_Ins: {

((Taylor(iRegionVarIndex + eFlux_T, iDim, adNorm,
iNumUnknowns)).TNDerivO).vTranscribeRow(a2dReconArray[iRow],
adRelLoc);

a2dReconRHS[iRow][0] = 0;
iRow++;

}
break ,-
case eBC_Temp: {

((Taylor(iRegionVarlndex + eFlux_T, iDim, adNorm, iNumUnknowns))).
vTranscribeRow(a2dReconArray[iRow], adRelLoc);

a2dReconRHS[iRow][0] = vecValues[iBCVarBaselndex + eTempBCVar];
iRow++;

APPENDIX B. PHYSICS CLASSES DEFINITIONS 141

}

break;
}; // end of switch on bdry type

//

};

// Boundary constraints
virtual void vComputeBdryTypeData(

const int iBCType, const int iBCVarBaselndex, const int iRegionVarIndex,
const FieldQuant& FQSoln, const int i , const int j ,
const enum eCVFace eWhichFace, const double adLoc[],
const double adNorm[], double *a2dBCl[], double *a2dBC2[],
double adRHS[]) const {

bool qUseCartesian = false;
bool qUseRotated = false;
const int ilnvalidVar = -200;
int iVar, iVarlnUse = ilnvalidVar;
switch(iBCType) {
case eBC_Ins: {

iVar = iRegionVarIndex + eFlux_T;
// // Check for a clash between Cartesian and boundary coordinates
i f (iVar == VAR_U_N0RM ||

iVar == VAR_U_TANG ||
iVar == VAR_U_CROSS) {

assert(!qUseCartesian);
qUseRotated = true;

}

else i f (iVar == iRegionVarlndex + VAR_VEC_X ||
iVar -- iRegionVarlndex + VAR_VEC_Y ||
iVar == iRegionVarlndex + VAR_VEC_Z) {

assert(!qUseRotated);
qUseCartesian = true;

}

// //MapVariable
switch (iVar) {
case VAR_U_N0RM: iVar = iRegionVarlndex + VAR_VEC_X; break;
case VAR_U_TANG: iVar = iRegionVarlndex + VAR_VEC_Y; break;
case VAR_U_CROSS: iVar = iRegionVarlndex + VAR_VEC_Z; break;
default: iVar = iVar; break;

APPENDIX B. PHYSICS CLASSES DEFINITIONS 142

i f (iVarlnUse == ilnvalidVar) {
iVarlnUse = iVar;
i f (qUseRotated) {
double dTempl = adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[XDIR] +

adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[YDIR];
double dTemp2 = adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[XDIR] -

adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[YDIR];
adRHS[iRegionVarlndex + VAR_VEC_X] = dTempl;
adRHS[iRegionVarlndex + VAR_VEC_Y] = dTemp2;

}
// // Zero this constraint to avoid contamination
a2dBCl[iVar][iVar] = 0;
a2dBC2[iVar][iVar] = 0;
adRHS[iVar] = 0;

}

else {
assert(iVarlnUse == iVar);

}
a2dBCl[iVarlnUse][iVarlnUse] = 1;
adRHS[iVarlnUse] = 0;
iVarlnUse = ilnvalidVar;

break;
case eBC_Temp: {

iVar = iRegionVarlndex + eFlux_T;
// // Check for a clash between Cartesian and boundary coordinates
i f (iVar == VAR_U_N0RM ||

iVar == VAR_U_TANG ||
iVar == VAR_U_CROSS) {

assert(!qUseCartesian);
qUseRotated = true;

}

else i f (iVar =- iRegionVarlndex + VAR_VEC_X ||
iVar == iRegionVarlndex + VAR_VEC_Y ||
iVar == iRegionVarlndex + VAR_VEC_Z) {

assert(!qUseRotated);
qUseCartesian = true;

}
// //MapVariable

APPENDIX B. PHYSICS CLASSES DEFINITIONS

switch (iVar) {
case VAR_U_NORM: iVar = iRegionVarlndex + VAR_VEC_X; break;
case VAR_U_TANG: iVar = iRegionVarlndex + VAR_VEC_Y; break;
case VAR_U_CROSS: iVar = iRegionVarlndex + VAR_VEC_Z; break;
default: iVar = iVar; break;

}
i f (iVarlnUse == ilnvalidVar) {

iVarlnUse = iVar;
i f (qUseRotated) {
double dTempl = adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[XDIR]

adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[YDIR];
double dTemp2 - adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[XDIR]

adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[YDIR];
adRHS[iRegionVarlndex + VAR_VEC_X] = dTempl;
adRHS[iRegionVarlndex + VAR_VEC_Y] = dTemp2;

}

// // Zero this constraint to avoid contamination
a2dBCl[iVar][iVar] = 0;
a2dBC2[iVar][iVar] = 0;
adRHS[iVar] = 0;

}
else {

assert(iVarlnUse == iVar);
}
a2dBC2[iVarlnUse][iVarlnUse] = 1;
adRHS[iVarlnUse] = vecValues[iBCVarBaselndex + eTempBCVar];
iVarlnUse = ilnvalidVar;

}

break;
}; // end of switch on bdry type

//

};

// This needs to be static since it will be called as a function variable
static void vlnitialSolution(const double adLoc[3], double adResult[]) {

adResult[eFlux_T] = 0.;
};

virtual void v l n i t i a l i z e S o l u t i o n (
const ANS_Mesh* const pM, FieldQuant& FQSoln,

APPENDIX B. PHYSICS CLASSES DEFINITIONS

const bool qDoTranslation = true) const {
// Simple call here
vComputeCVAverages(pM,

(void (*) (const double *, double *)) (v l n i t i a l S o l u t i o n) ,
6, FQSoln, 1);

B.3 Solver file for heat conduction simulation

Here is the C++ file for the main program that performs a heat conduction simulation.
#include <math.h>
ttinclude <unistd.h>

#include "Heat2D.Physics.cxx"

#include "FP_Physics.cxx"

#include "ANS.Domain.h"
Mnclude "ANS_MeshCell2D.h"
#include "ANS_MeshVertex2D.h"
#include "ANS.Multistage.h"
#include "ANS.Region.h"
#include "ANS.PhysVar.h"
#include <sstream>
#include <fstream>

int main() {
char strMeshFile[128];
int iOrder = 2;

// Initialize ANSLib
vANSLiblnit();

// Create mesh
sprintf (strMeshFile, "../../meshes/channel-CSM-r8g4") ;

ANS_Mesh *pUM2Dl = new MeshCell2D(strMeshFile, iOrder);

http://Heat2D.Physics.cxx

APPENDIX B. PHYSICS CLASSES DEFINITIONS

std::vector< ANS_Mesh* > vecUM2D;

vecUM2D.clear();
vecUM2D.push_back(pUM2Dl);

// Create domain
Domain *pDomain = new Domain(vecUM2D);
Region *pR0 = pDomain->pRegion(0);

NewPhysics *pnpFPl, *pnpHl;

// Function provider
pnpFPl = new FP_Physics();
// Heat conduction class
pnpHl = new Heat2D_Physics();

pRO->vAddNewPhysics(pnpHl);
pRO->vAddNewPhysics(pnpFPl);

// Assign boundary conditions

// For the Heat conduction
pnpHl->vSetBC(1, Heat2D_Physics::eBC_Temp)
pnpHl->vSetBC(2, Heat2D_Physics::eBC_Temp)
pnpHl->vSetBC(3, Heat2D_Physics::eBC_Temp)
pnpHl->vSetBC(4, Heat2D_Physics::eBC_Temp)

pDomain->vCopyVariables();

ttdefine PHYS_H 0

APPENDIX B. PHYSICS CLASSES DEFINITIONS 146

#define PHYS_FP 1

// Variable association

// k

pDomain->vAssociateVariables(0, PHYS_H,
0, PHYS_FP, FP_Physics::eOne);

// rho
pDomain->vAssociateVariables(0, PHYS_H,

0, PHYS_FP, FP_Physics::eOne);
// cp
pDomain->vAssociateVariables(0, PHYS_H,

0, PHYS_FP, FP_PhysicS::eOne);

// Boundary condition variables

// Inlet temp
pDomain->vAssociateVariables(0, PHYS_H, 2, 0,

0, PHYS_FP, FP_Physics::eTempIncY);
// Outlet temp
pDomain->vAssociateVariables(0, PHYS_H, 3, 0,

0, PHYS_FP, FP_Physics::eTempDecY);
// Bottom temp
pDomain->vAssociateVariables(0, PHYS_H, 1, 0,

0, PHYS_FP, FP_Physics::eTempIncX);
// Top temp
pDomain->vAssociateVariables(0, PHYS_H, 4, 0,

0, PHYS_FP, FP_Physics::eTempDecX);

pDomain->vSetupVariables();

Multistage MS;

pDomain->vInitializeSolution();

double dObjective = le-13;

MS.vSetCFL(0.3);
MS.vSetOverrelaxationParam(3.95);
// Start computing
MS.vRelaxAbsolute(pDomain, iOrder, dObjective);

Heat2D_Physics:reconduct,

Heat2D_Physics::eDens,

Heat2D_Physics::eSpecHeat,

APPENDIX B. PHYSICS CLASSES DEFINITIONS 147

// Write solution
pDomain->vSetupSolutionFile();
// Add the vars you want to see in the solution file
pDomain->vAddSolutionFileVariable(0, PHYS_H, Heat2D_Physics::eFlux_T);

s F i l e = "HeatConduction.solution.pie" ;
pDomain->vWriteSolutionFile(sFile, iOrder);

// Clean up before exit
delete pDomain;

return 0;
}

B.4 Solid mechanics XML file
<?xml version="1.0" ?>
<Physics>
<ClassID>CSM2D</ClassID>
<ClassDesc>2D Computational s o l i d mechanics package</ClassDesc>
<FluxVar>
<ID>eFlux_U</ID>
<Name>Displacement i n x</Name>
<Symbol>u</Symbol>
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</FluxVar>
<FluxVar>
<ID>eFlux_V</ID>
<Name>Displacement i n y</Name>
< Symbol>v</Symbol>
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</FluxVar>
<ComputedVar>
<ID>eAveDispX</ID>
<Name>Displacement i n X</Name>
<Symbol>uave</Symbol>
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>Soln{eFlux_U}</Formula>

</ComputedVar>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<ComputedVar>
<ID>eAveDispY</ID>
<Name>Displacement i n Y</Name>
<Symbol>vave</Symbol>
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>Soln{eFlux_U}</Formula>

</ComputedVar>
<RequiredVar>
<ID>ePoisson</ID>
<Name>Poisson's ratio</Name>
<Symbo1>nu</Symbo1>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eElastMod</ID>
<Name>ElasticModulus</Name>
<Symbol>E</Symbol>
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eExpCoeff</ID>
<Name>Expansion coefficient</Name>
<Symbol>at</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>-1</K> </UnitS>

</RequiredVar>
<RequiredVar>
<ID>eRefTemp</ID>
<Name>Reference Temperature</Name>
<Symbol>Tref</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eTemp</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>

</RequiredVar>
<ComputedVar>
<ID>eStrainXX</ID>
<Name>Strain i n x</Name>
<Symbol> exx</Symbol>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>GradX{eFlux_U} - eExpCoeff*(eTemp - eRefTemp)</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStrainYY</ID>
<Name>Strain i n y</Name>
< Symbol> eyy</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>GradY{eFlux_V} - eExpCoeff*(eTemp - eRefTemp)</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStrainXY</ID>
<Name>Shear Strain (x-y)</Name>
< Symbol> exy</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>0.5 * (GradX{eFlux_V} + GradY{eFlux_U})</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStressXX</ID>
<Name>Stress i n x</Name>
< Symbol>sxx</Symbol>
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>
<Formula>(eElastMod/(1.0 - ePoisson*ePoisson))*

(eStrainXX + ePoisson*eStrainYY)</Formula>
</ComputedVar>
<ComputedVar>
<ID>eStressYY</ID>
<Name>Stress i n y</Name>
< Symbol> syy</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>
<Formula>(eElastMod/(1.0 - ePoisson*ePoisson))*

(eStrainYY + ePoisson*eStrainXX)</Formula>
</ComputedVar>
<ComputedVar>
<ID>eStressXY</ID>
<Name>Shear stress (x-y)</Name>
<Symbo1>sxy</Symbo1>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS>
<Formula>(eElastMod * eStrainXY)/(1.0 + ePoisson)</Formula>

</ComputedVar>
<ComputedVar>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 150

<ID>eBdryDUDX</ID>
<Name>Bdry du/dx</Name>
<Symbol>uxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>RGradX{eFlux_U}</Formula>

</ComputedVar>
<ComputedVar>
<ID> eBdryDUDY</ID>
<Name>Bdry du/dy</Name>
<Symbol>uyb</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>RGradY{eFlux_U}</Formula>

</ComputedVar>
<ComputedVar>
<ID> eBdryDVDX</ID>
<Name>Bdry du/dx</Name>
< Symbol>vxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>
<Formula>RGradX {eFlux_V}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryDVDY</ID>
<Name>Bdry du/dy</Name>
<Symbo1>vyb</Symbo1>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS>
<Formula>RGradY{eFlux_V}</Formula>

</ComputedVar>
<UserFunction>

void vGenericFlux(const double ddudx, const double ddudy,
const double ddvdx, const double ddvdy,
const double dE, const double dnu,
const double dTref, const double dTemp, const double dat,
const double dnx, const double dny,
double adFlux[2]) const {

// Generic flux for CSM problem
double adFluxX[2];
double adFluxY[2];
const double dMulConst = dE / (1.0 - dnu*dnu);
const double dTempAdd = (1.0 + dnu)*dat*(dTemp - dTref);

adFluxX[0] = ddudx + dnu*ddvdy - dTempAdd;

APPENDIX B. PHYSICS CLASSES DEFINITIONS

adFluxX[l] = 0.25* (1.0 + dnu)*(ddudy + ddvdx);
adFluxY[0] = adFluxX[l];
adFluxY[1] = ddvdy + dnu*ddudx - dTempAdd;

adFlux[0] = dMulConst*(-adFluxX[0]*dnx - adFluxY[0]*dny)
adFlux[l] = dMulConst*(-adFluxX[l]*dnx - adFluxY[1]*dny)

}

</UserFunction>
<InteriorFlux>
<UserCode>

vGenericFlux(GradX{eFlux_U}, GradY{eFlux_U},
GradX{eFlux_V}, GradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</InteriorFlux>
<WaveSpeeds>
<Minimum>-eInvDist * 0.3 * eElastMod</Minimum>
<Maximum> elnvDist * 0.3 * eElastMod</Maximum>

</Wavespeeds >
<SourceTerm>
</SourceTerm>
<BCType>
<Desc>This BC imposes a free boundary*:/Deso
<ID>eBC_Free</ID>
<BdryFlux>
<FluxData>
<Var>eFlux_U</Var>
<Formula>0</Formula>

</FluxData>
<FluxData>
<Var>eFlux_U</Var>
<Formula> 0 </Formula>

</FluxData>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a x-displacement at the wall</Desc>
<ID>eBC_DispX</ID>
<BCVar>
<ID>eBCDispXVar</ID>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Name>Wall x-displacement</Name>
<Symbol>xb</Symbo1>
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</BCVar>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_U</Var>
<Formula>eBCDispXVar</Formula>

</Constraint>
<BdryFlux>
<UserCode>

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},
RGradX{eFlux_V}, RGradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a y-displacement at the wall</Desc>
<ID>eBC_DispY</ID>
<BCVar>
<ID>eBCDispYVar</ID>
<Name>Wall y-displacement</Name>
<Symbol>yb</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </UnitS>

</BCVar>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_V</Var>
<Formula>eBCDispYVar</Formula>

</Constraint>
<BdryFlux>
<UserCode>

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},
RGradX{eFlux_V}, RGradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y), adFlux);

</UserCode>
</BdryFlux>

</BCType>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 153

<BCType>
<Desc>This BC imposes a normal stress at the wall</Desc>
<ID>eBC_NormStress</ID>
<BCVar>
<ID>eBCNormStressVar</ID>
<Name>Wall normal stress</Name>
<Symbol> snb</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BdryFlux>
<UserCode>

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},
RGradX{eFlux_V}, RGradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

// THis w i l l only work i f the boundaries are aligned with the coords
i f (Norm{X} != 0.0) {

// v e r t i c a l wall
// normal stress i s sxx
adFlux[eFlux_U] = (eBCNormStressVar *

(1 - ePoisson*ePoisson))/eElastMod;
}

else {
// horizontal wall -- syy = 0
adFlux[eFlux_V] = (eBCNormStressVar *

(1 - ePoisson*ePoisson))/eElastMod;
}

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a shear stress at the wall</Desc>
<ID>eBC_ShearStress</ID>
<BCVar>
<ID>eBCShearStressVar</ID>
<Name>Wall shear stress</Name>
<Symbol>ssb</Symbol>
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS>

</BCVar>
<BdryFlux>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 154

<UserCode>
vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},

RGradX{eFlux_V}, RGradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y), adFlux);

// THis w i l l only work i f the boundaries are aligned with the coords
i f (Norm{X) != 0.0) {

// v e r t i c a l wall
// shear stress i s sxy
adFlux[eFlux_V] = (eBCShearStressVar *

(1 - ePoisson*ePoisson))/eElastMod;
}
else {

// horizontal wall -- syy = 0
adFlux[eFlux_U] = (eBCShearStressVar *

(1 - ePoisson*ePoisson))/eElastMod;
}

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes both shear and normal stresses at the wall</Desc>
<ID>eBC_Stresses</ID>
<BCVar>
<ID>eBCStressesVarXX</ID>
<Name>Wall xx-stress</Name>
<Symbol> sxxb</Symbol>
<Uxiits> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCStressesVarYY</ID>
<Name>Wall yy-stress</Name>
<Symbol>syyb</Symbol>
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCStressesVarXY</ID>
<Name>Wall shear stress</Name>
<Symbol>s sb</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 155

</BCVar>
<BdryFlux>
<UserCode>

adFlux[eFlux_U] = eBCStressesVarXX * Norm{X} + eBCStressesVarXY * Norm{Y}
adFlux[eFlux_V] =' eBCStressesVarXY * Norm{X} + eBCStressesVarYY * Norm{Y}

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes both shear and normal stresses at the wall</Desc>
<ID> eBC_IntBdry</ID>
<BCVar>
<ID>eIntDUDX</ID>
< Name > du / dx </Name >
< Symbol>uxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eIntDUDY</ID>
< Name > du / dy </Name >
<Symbol>uyb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eIntDVDX</ID>
<Name > dv / dx< / Name >
<Symbol>vxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eIntDVDY</ID>
< Name>dv/dy</Name>
<Symbol>vyb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </UnitS>

</BCVar>
<BCVar>
<ID>eIntTemp</ID>
<Name>Tb</Name>
<Symbo1>vyb</Symbo1>
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units>

</BCVar>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<BdryFlux>
<UserCode>

double dudx = 0.5
double dudy = 0.5
double dvdx = 0.5
double dvdy = 0.5
double dTemp = 0.1

(RGradX{eFlux_U} + elntDUDX)
(RGradY{eFlux_U) + elntDUDY)
(RGradX{eFlux_V) + elntDVDX)
(RGradY{eFlux_V) + elntDVDY)
(eTemp + elntTemp);

vGenericFlux(dudx, dudy, dvdx, dvdy,
eElastMod, ePoisson, eRefTemp, dTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a symmetry BC along a horizontal wall</Desc>
<ID>eBC_HorSymm</ID>
<BdryFlux>
<UserCode>

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},
RGradX{eFlux_V}, RGradY{eFlux_V},
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_V</Var>
<Formula> 0 </Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_U</Var>
<Formula>0 </Formula>

</Constraint>
</BCType>
<BCType>
<Desc>This BC imposes a symmetry BC along a v e r t i c a l wall</Desc>
<ID>eBC_VerSymm</ID>
<BdryFlux>
<UserCode>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U},
RGradX{eFlux_V}, RGradY{eFlux_V),
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff,
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_U</Var>
<Formula> 0 </Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_V</Var>
<Formula>0</Formula>

</Constraint>
</BCType>

</Physics>

B.5 Incompressible Navier-Stokes XML file
<?xml versions"1.0" ?>
<Physics>
<ClassID>INS2D</ClassID>
<ClassDesc>2D Incompressible Navier-Stokes package</ClassDesc>
<FluxVar>
<ID>eFlux_P</ID>
<Name>Pressure</Name>
<Symbol>P</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</FluxVar>
<FluxVar>
<ID>eFlux_U</ID>
<Name>Velocity i n x</Name>
<Symbol>u</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</FluxVar>
<FluxVar>
<ID>eF1ux_V</ID>
<Name>Velocity i n y</Name>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Symbol>v</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>

</FluxVar>
<RequiredVar>
<ID>eReynolds</ID>
<Name>Reynolds Number</Name>
<Symbo1>Re</Symbo1>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eBeta</ID>
<Name>Artificial Compressibility</Name>
<Symbol>B</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</RequiredVar>
<ComputedVar>
<ID>eBdryP</ID>
<Name>Bdry Pressure</Name>
<Symbol>Pb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LSo1n{eF1ux_P}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryU</ID>
<Name>Bdry U Velocity</Name>
<Symbol>Ub</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LSoln{eFlux_U}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryV</ID>
<Name>Bdry V Velocity</Name>
<Symbol>Vb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LSoln{eFlux_V}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryDUDX</ID>
<Name>Bdry du/dx</Name>
<Symbol>Uxb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Formula>LGradX {eFlux_U)</Formula>
</ComputedVar>
<ComputedVar>
<ID> eBdryDUDY</ID>
<Name>Bdry du/dy</Name>
<Symbol>Uyb</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LGradY{eFlux_U}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryDVDX</ID>
<Name>Bdry dv/dx</Name>
<Symbol>Vxb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LGradX{eFlux_V}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eBdryDVDY</ID>
<Name>Bdry dv/dy</Name>
< Symbol>Vyb</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LGradY{eFlux_V}</Formula>

</ComputedVar>
<ComputedVar>
<ID> eNormVe1</ID>
<Name>Normal Velocity</Name>
<Symbol>U</Symbol>
<Units> <L>K/L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>Soln{eFlux_U}*Norm{X} + Soln{eFlux_V}*Norm{Y}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eNormPGrad</ID>
<Name>dP/dn</Name>
< Symbol> Pn</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>GradX{eFlux_P)*Norm{X) + GradY{eFlux_P)*Norm{Y}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eNormUGrad</ID>
<Name>du/dn</Name>
<Symbol>Un</Symbol>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 160

<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>GradX{eFlux_U}*Norm{X} + GradY{eFlux_u}*Norm{Y}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eNormVGrad</ID>
<Name>Normal Velocity</Name>
<Symbol>dv/dn</Symbo1>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>GradX{eFlux_V}*Norm{X} + GradY{eFlux_V}*Norm{Y}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eUpWind_U</ID>
<Name>Upwind x-velocity</Name>
<Symbo1>u_up</Symbo1>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>
<Formula>((eNormVel > 0) ? LSoln{eFlux_U} : RSoln{eFlux_U})</Formula>

</ComputedVar>
<ComputedVar>
<ID>eUpWind_V</ID>
<Name>Upwind y-velocity</Name>
< Symbol>v_up</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>((eNormVel > 0) ? LSoln{eFlux_V} : RSoln{eFlux_V})</Formula>

</ComputedVar>
<ComputedVar>
<ID> eUpNormVe1</ID>
<Name>Upwind Normal Velocity</Name>
<Symbol>U_up</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>
<Formula>eUpWind_U * Norm{X} + eUpWind_V * Norm{Y}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStrainXX</ID>
<Name>Strain i n x</Name>
<Symbol>txx</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>
<Formula>LGradX{eFlux_U}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStrainYY</ID>
<Name>Strain i n y</Name>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 161

<Symbol>tyy</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
<Formula>LGradY{eFlux_V}</Formula>

</ComputedVar>
<ComputedVar>
<ID>eStrainXY</ID>
<Name>Shear s t r a i n (x-y)</Name>
<Symbol> txy</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>
<Formula>0.5 * (LGradY{eFlux_U) + LGradX{eFlux_V})</Formula>

</ComputedVar>
<UserFunction>

void vGenericFlux(const double dRe, const double dBeta,
const double dNormVel, const double dP, const double du,
const double dv, const double ddudx, const double ddudy,
const double ddvdx, const double ddvdy, const double dnx,
const double dny, double adFlux[3]) const {

// Generic flux for INS problem
const double dlnvRe = 1.0/dRe;

adFluxfO] = dNormVel/dBeta;
adFlux[1] = dNormVel*du + (dP - dInvRe*ddudx)*dnx +

(- dInvRe*ddudy)*dny;
adFlux[2] = dNormVel*dv + (- dlnvRe*ddvdx)*dnx +

(dP - dlnvRe*ddvdy)*dny;
}

</UserFunction>
<UserFunction>

double dLambda(const double dUNorm, const double dBeta) const {
// Returns a value needed for wavespeed..
return sqrt(dUNorm*dUNorm + 1./dBeta);

}

</UserFunction>
<WaveSpeeds>
<Minimum>dUNorm - dLambda(dUNorm, eBeta) - eInvDist/eReynolds</Minimum>
<Maximum>dUNorm + dLambda(dUNorm, eBeta) + eInvDist/eReynolds</Maximum>

</WaveSpeeds >
<InteriorFlux>
<UserCode>

double du = eUpWind_U;
double dv = eUpWind_V;

APPENDIX B. PHYSICS CLASSES DEFINITIONS

double dUNorm = eUpNormVel;

vGenericFlux(eReynolds, eBeta, dUNorm, Soln{eFlux_P}, du, dv,
GradX{eFlux_U}, GradY{eFlux_U), GradX{eFlux_V}, GradY{eFlux_V},
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</InteriorFlux>
<SourceTerm>
</SourceTerm>
<BCType>
<Desc>This BC imposes a stationary wall</Desc>
<ID>eBC_StatWall</ID>
<BdryFlux>
<UserCode>

double dUNorm = 0.;
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P}, 0, 0,

LGradX{eFlux_U}, LGradY{eFlux_U}, LGradX{eFlux_V},
LGradY{eFlux_V}, Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_U</Var>
<Formula>0</Formula>

</Constraint>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_V</Var>
<Formula> 0 </Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_P</Var>
<Formula>0</Formula>

</Constraint>
</BCType>
<BCType>

<Desc>This BC imposes an inflow BC</Desc>
<ID>eBC_Inflow</ID>
<BCVar>
<ID>eBCInflowNormVel</ID>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Name>Normal inflow velocity</Name>
< Symbol>Vnb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>

</BCVar>
<BCVar>
<ID>eBCInflowTangVel</ID>
<Name>Tangential inflow velocity</Name>
< Symbol>Vtb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-K/T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCInflowNormPressGrad</ID>
<Name>Normal inflow pressure gradient</Name>
< Symbol> Pnb</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_P</Var>
<Formula>eBCInflowNormPressGrad</Formula>

</Constraint>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_U</Var>
<Formula>eBCInflowNormVel</Formula>

</Constraint>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_V</Var>
<Formula>eBCInflowTangVel</Formula>

</Constraint>
<BdryFlux>
<UserCode>
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y}
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P},

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U},
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V),
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<BCType>
<Desc>This BC imposes an outflow BC</Desc>
<ID>eBC_Outflow</ID>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_P</Var>
<Formula>0</Formula>

</Constraint>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_V</Var>
<Formula> 0 </Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_U</Var>
<Formula>0 </Formula>

</Constraint>
<BdryFlux>
<UserCode>
double dUNorm = LSoln{eFlux_U}*Norm{X) + LSoln{eFlux_V)*Norm{Y)
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P},

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U},
LGradY{eFlux_U), LGradX{eFlux_V}, LGradY{eFlux_V},
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes an internal boundary</Desc>
<ID>eBC_IntBdry</ID>
<BCVar>
<ID>eBCIntBdryP</ID>
<Name>Bdry Pressure</Name>
<Symbol>Pb</Symbol>
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntBdryU</ID>
<Name>Bdry U velocity</Name>
<Symbol>Ub</Symbol>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 165

<UnitS> <L>1</Ii> <M>0</M> <T>-1</T> <K>0</K> </Units>
</BCVar>
<BCVar>
<ID>eBCIntBdryV</ID>
<Name>Bdry V velocity</Name>
<Symbol>Vb</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntBdryDUDX</ID>
<Name>Bdry dudx</Name>
< Symbol>Uxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntBdryDUDY</ID>
<Name>Bdry dudy</Name>
<Symbol>Uyb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntBdryDVDX</ID>
<Name>Bdry dvdx</Name>
<Symbol>Vxb</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntBdryDVDY</ID>
<Name>Bdry dvdy</Name>
<Symbol>Vyb</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>

</BCVar>
<BdryFlux>

<UserCode>
// Ve l o c i t i e s are upwind -- might be from other side
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y};
double du, dv, dP, dudx, dudy, dvdx, dvdy;

i f (dUNorm > 0) {
// Get l e f t data from other side
du = eBCIntBdryU;

APPENDIX B. PHYSICS CLASSES DEFINITIONS

dv = eBCIntBdryV;
}
else {

du = LSoln{eFlux_U},-
dv = LSoln{eFlux_V};

}

dUNorm = du*Norm{X} + dv*Norm{Y};

// Pressure and ve l o c i t y gradients are the average
dP = 0.5 * (LSoln{eFlux_P> + eBCIntBdryP);
dudx = 0.5 * (LGradX{eFlux_U> + eBCIntBdryDUDX);
dudy = 0.5 * (LGradY{eFlux_U) + eBCIntBdryDUDY);
dvdx = 0.5 * (LGradX{eFlux_V) + eBCIntBdryDVDX);
dvdy = 0.5 * (LGradY{eFlux_V) + eBCIntBdryDVDY);

vGenericFlux(eReynolds, eBeta, dUNorm, dP, du, dv,
dudx, dudy, dvdx, dvdy, Norm{X}, Norm{Y},
adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes an outflow BC</Desc>
<ID> eBC_Out f1ow2 </ID>
<BdryFlux>
<UserCode>
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y};
vGenericFlux(eReynolds, eBeta, dUNorm, 0., LSoln{eFlux_U}, 0.,

0., LGradY{eFlux_U}, 0., LGradY{eFlux_V}, Norm{X}, Norm{Y},
adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a horizontal symmetry BC</Desc>
<ID>eBC_SymmHor</ID>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_P</Var>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Formula>0</Formula>
</Constraint>
<Constraint>
<Type>So1ution</Type>
<Var>eFlux_V</Var>
<Formula>0</Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_U</Var>
<Formula> 0 </Formula>

</Constraint>
<BdryFlux>
<UserCode>
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y};
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P),

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U},
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V},
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes an internal outflow BC</Desc>
<ID>eBC_IntOutflow</ID>
<BCVar>

<ID>eBCIntOutflowPress</ID>
<Name>Outflow pressure</Name>
<Symbol>Pb</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntOutflowUn</ID>
<Name>Outflow du/dn</Name>
< Symbol>Unb</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBCIntOutflowVn</ID>
<Name>Outflow dv/dn</Name>
<Symbol>Vnb</Symbol>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>
</BCVar>
<Constraint>
<Type>Solution</Type>
<Var>eFlux_P</Var>
<Formula>eBCIntOutflowPress</Formuia>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_U</Var>
<Formula>eBCIntOutflowUn</Formula>

</Constraint>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_V</Var>
<Formula>eBCIntOutf1owVn</Formula>

</Constraint>
<BdryFlux>
<TJserCode>
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y}
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P},

LSoln{eFlux_U}, LSoln{eFlux_V), LGradX{eFlux_U},
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V},
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes an internal outflow BC</Desc>
<ID>eBC_IntOutflow2</ID>
<BCVar>

<ID>eBC2Int0utflowPress</ID>
<Name>Outflow pressure</Name>
< Symbol> Pb</Symbol>
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units>

</BCVar>
<BCVar>
<ID>eBC2Int0utflowUn</ID>
<Name>Outflow du/dn</Name>
<Symbol>Unb</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

</BCVar>
<BCVar>
<ID>eBC2IntOutflowVn</ID>
<Name>Outflow dv/dn</Name>
< Symbol >Vnb< / Symbol >
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</BCVar>
<BdryFlux>
<UserCode>
double dUNorm = LSoln{eFlux_U)*Norm{X} + LSoln{eFlux_V}*Norm{Y);
vGenericFlux(eReynolds, eBeta, dUNorm, eBC2Int0utflowPress,

LSoln{eFlux_U}, LSoln{eFlux_V}, eBC2Int0utflowUn,
LGradY{eFlux_U}, eBC2Int0utflowVn, LGradY{eFlux_V},
Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
</Physics>

B.6 Energy equation XML file
<?xml versions"1.0" ?>
<Physics>
<ClassID>Energy2D</ClassID>
<ClassDesc>2D Energy equation package</ClassDesc>
<FluxVar>
<ID>eFlux_T</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>

</FluxVar>
<RequiredVar>
<ID>eReynolds</ID>
<Name>Reynolds Number</Name>
<Symbol>Re</Symbo1>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS>

</RequiredVar>
<RequiredVar>
<ID>ePrandtl</ID>
<Name>Prandtl Number</Name>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Symbol>Pr</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eEckert</ID>
<Name>Eckert Number</Name>
<Symbol>Ec</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eConduct</ID>
<Name>Conductivity</Name>
<Symbol>k</Symbol>
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units>

</RequiredVar>
<RequiredVar>
<ID> eNormVe1</ID>
<Name>Normal velocity</Name>
<Symbol>U</Symbol>
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS>

</RequiredVar>
<RequiredVar>
<!D>eStrainXX</ID>
<Name>Normal s t r a i n i n x</Name>
<Symbol> txx</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<ID>eStrainYY</ID>
<Name>Normal s t r a i n i n y</Name>
< Symbol> tyy</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</RequiredVar>
<RequiredVar>
<!D>eStrainXY</ID>
<Name>Shear s t r a i n (x-y)</Name>
<Symbol>txy</Symbol>
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units>

</RequiredVar>
<ComputedVar>
<!D>eHeatFlux</ID>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 111

<Name>Heat Flux</Name>
<Symbol>q</Symbol>
<UnitS> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </UnitS>
<Formula>eConduct * (GradX{eFlux_T}*Norm{X} +

GradY{eFlux_T}*Norm{Y})</Formula>
</ComputedVar>
<ComputedVar>
<ID>eAveTemp</ID>
<Name>Temperature</Name>
<Symbol>T</Symbol>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS>
<Formula>0.5 * (LSoln{eFlux_T) + RSoln{eFlux_T})</Formula>

</ComputedVar>
<UserFunction>

void vCompWaveSpeeds(const double dUNorm, const double dRe,
const double dPr, const double dlnvDist,
double *dMnS, double *dMxS) const {

double dFakeSpeed = (10.0/(dRe * dPr)) * dlnvDist;
i f (dUNorm >= 0) {
*dMnS = -dFakeSpeed;
*dMxS = dUNorm + dFakeSpeed;

}

else {
*dMnS = dUNorm - dFakeSpeed;
*dMxS = dFakeSpeed;

}

}
</UserFunction>
<UserFunction>

void vGenericFlux(const double dUNorm, const double dRe, const double dPr,
const double dEc, const double dTempL, const double dTempR,
const double dTdx, const double dTdy, const double dnx,
const double dny, double adFlux[1]) const {

// Returns a value for the flu x
double dRePr = 1.0 / (dRe * dPr);
// Return the flux
i f (dUNorm >= 0) {

adFlux[0] = dUNorm * dTempL;
}

else {
adFlux[0] = dUNorm * dTempR;

APPENDIX B. PHYSICS CLASSES DEFINITIONS 172

}

adFluxtO] -= dRePr * (dTdx * dnx + dTdy * dny);
}

</UserFunction>
<UserFunction>

void vGenericFluxBdry(const double dUNorm, const double dRe,
const double dPr, const double dEc, const double dTempL,
const double dTempR, const double dTdn,
double adFlux[l]) const {

// Returns a value for the flux
double dRePr = 1.0 / (dRe * dPr);
// Return the flux
i f (dUNorm >= 0) {

adFlux[0] = dUNorm * dTempL;
}
else {

adFlux[0] = dUNorm * dTempR;
}

adFlux[0] -= dRePr * dTdn;
}

</UserFunction>
<InteriorFlux>
<UserCode>
// Compute normal ve l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert,
LSoln{eFlux_T}, RSoln{eFlux_T}, GradX{eFlux_T},
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux);

</UserCode>
</InteriorFlux>
<WaveSpeeds >
<Minimum>dMinS</Minimum>
<Maximum>dMaxS</Maximum>

</WaveSpeeds>
< SourceTerm>

APPENDIX B. PHYSICS CLASSES DEFINITIONS 173

<SourceData>
<ID>eDissFunc</ID>
<Desc>Adds dissipation effects to the energy equation</Desc>
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS>
<Formula>(-eEckert/eReynolds)*(2.0*eStrainXX*eStrainXX +

2.0*eStrainYY*eStrainYY + 4.0*eStrainXY*eStrainXY)</Formula>
</SourceData>

</SourceTerm>
<BCType>
<Desc>This BC imposes an insulated surface</Desc>
<ID>eBC_Ins</ID>
<BdryFlux>
<UserCode>
// Compute normal ve l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert,
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux_T},
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_T</Var>
<Formula> 0 </Formula>

</Constraint >
</BCType>
<BCType>
<Desc>This BC imposes a temperature at the wall</Desc>
<ID>eBC_Temp</ID>
<BCVar>
<ID>eTempBCVar</ID>
<Name>Boundary temperature</Name>
<Symbol>Tb</Symbol>
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units>

</BCVar>
<Constraint>
<Type>Solution</Type>

APPENDIX B. PHYSICS CLASSES DEFINITIONS

<Var>eFlux_T</Var>
<Formula>eTempBCVar</Formula>

</Constraint>
<BdryFlux>
<UserCode>

// Compute normal v e l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert,
eTempBCVar, eTempBCVar, GradX{eFlux_T},
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC imposes a heat flux at the wall</Desc>
<ID>eBC_Flux</ID>
<BCVar>
<ID>eHeatBCVar</ID>
<Name>Boundary heat flux</Name>
<Symbol>qb</Symbol>
<UnitS> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </UnitS>

</BCVar>
<Constraint>
<Type>NGradient</Type>
<Var>eFlux_T</Var>
<Formula>eHeatBCVar/eConduct</Formula>

</Constraint>
<BdryFlux>
<UserCode>

// Compute normal v e l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert,
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux_T},

APPENDIX B. PHYSICS CLASSES DEFINITIONS

GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux);
</UserCode>

</BdryFlux>
</BCType>
<BCType>
<Desc>This BC imposes a heat flux at the wall</Desc>
<ID> eBC_BdryFlux</ID>
<BCVar>
<ID>eBdryHeatBCVar</ID>
<Name>Boundary heat flux</Name>
< Symbol>gb</Symbol>
<Units> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </Units>

</BCVar>
<BdryFlux>
<UserCode>
// Compute normal v e l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);
double dHF = -eBdryHeatBCVar / eConduct;

vGenericFluxBdry(dUNorm, eReynolds, ePrandtl, eEckert,
LSoln{eFlux_T}, LSoln{eFlux_T}, dHF,
adFlux);

</UserCode>
</BdryFlux>

</BCType>
<BCType>
<Desc>This BC i s used at the outflow</Desc>
<ID> eBC_Out f1ow</ID>
<BdryFlux>
<UserCode>

// Compute normal v e l o c i t y f i r s t using average values
double dUNorm = eNormVel;
double dMinS, dMaxS;
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist,

&dMinS, &dMaxS);

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert,
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux

APPENDIX B. PHYSICS CLASSES DEFINITIONS 176

GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux);
</UserCode>

</BdryFlux>
</BCType>

</Physics>

