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Abstract 

Numerical simulations of partial differential equations problems are used in a variety of domains. 
Such simulation tools allow the scientific community to solve problems of increasing complexity. 
This allows complete testing and simulation of a product or process even before it is created. 
The numerical simulation process can be separated into two main steps: domain preparation and 
numerical computation. The first step requires the scientist to define the domain on which the 
problem will be solved; it is then decomposed into a group of smaller regions. This domain 
division is called a mesh. The mesh is subsequently used by the solver to perform the numerical 
computations specific to the physical problem being solved. The accuracy of the solution obtained 
depends on the quality of the mesh and the physical description of the problem. 

As powerful and useful as they are, these numerical tools could be improved on two fronts. First, 
the time spent preparing a problem with a complex geometry for a simulation is sometimes very 
large and could be minimized by automation of the pre-processing steps. Second, numerical 
solvers are not used in all the problem domains where partial differential equation problems are 
encountered because of the difficulty in acquiring the numerical expertise needed to develop spe­
cialized solvers. 

The objective of this research was to make the numerical simulation process easier and more 
accessible to scientists by addressing these two problems. Specifically, a mesh generator capable 
of generating guaranteed-quality meshes for complex geometries with curved boundaries has been 
written. This program completely automates the meshing process, which results in a huge gain 
in domain preparation efficiency. Additionally, an existing numerical toolkit has been modified 
to allow multiphysics problems to be solved in a generic fashion. With this solver, scientists 
can simply describe the physics of a problem — as well as the interactions between the different 
physical phenomena — and a numerical solution can be obtained within days. High-quality meshes 
and results from multiphysics problems are included to demonstrate the effectiveness of the current 
research. Finally, future improvements to the efficiency and accuracy of the solver are discussed. 
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Chapter 1 

Introduction 

Numerical simulations of partial differential equations problems are used in a variety of domains 
such as aerospace research, combustion simulation, and medical research to name a few. These 
simulation tools allow the scientific community to solve problems of increasing complexity. This 
leads to an increase in the efficiency of the design and engineering processes by allowing complete 
testing and simulation of a product or process even before it is created. 

The numerical simulation process can be separated into two main steps: domain preparation and 
numerical computation. The first step requires the scientist to define the domain on which the 
problem will be solved. Once the boundaries of the domain have been defined, the domain must 
be decomposed into smaller, simpler regions called cells. This domain division is called a mesh. 
The mesh is then used by the solver for the second part of the process in which the numerical 
computations specific to the physical problem being solved are carried out. The accuracy of the 
solution obtained depends on the quality of the mesh and the physical description of the problem. 

As powerful and useful as they are, the numerical tools available to scientists could be improved. 
The time spent preparing a problem with a complex geometry for a numerical simulation is some­
times very large and could be minimized by proper automation of some of the pre-processing steps. 
A particularly complex example given by Mavriplis [31] showed the mesh preparation time to be 
45 times that required to compute the solution. This is unacceptable, especially considering the fact 
that the mesh is an artifact of the numerical simulation and is of no intrinsic physical significance. 
There are huge potential gains to be made by fully automating the meshing process. 

On the other hand, numerical solvers are not used in all the problem domains where partial differ­
ential equation problems are encountered. In some areas, scientists know a large amount about the 
important physical processes they study, but are unable to perform numerical simulations due to 
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CHAPTER 1. INTRODUCTION 2 

the lack of available solvers or knowledge of numerical methods. Problem-domain experts must 
therefore either acquire (or hire) the numerical expertise needed to write a solver specialized to 
their problem, or wait for a commercial package to be available. This is even more complicated 
when multiphysics problems — problems where multiple physical phenomena interact with each 
other — are being investigated. A better alternative for these scientists would be to write a small 
portion of code describing each of the physics of their problems — something they understand 
very well — and use a generic numerical toolkit to tackle the coupling and the numerical aspect 
of the simulation. Solutions to new and complex physical problems could then be obtained within 
days rather than months. 

The objective of this research was to make the whole numerical simulation process easier and 
more accessible to scientists by addressing these two problems. Specifically, I have written a fully-
automatic mesh generator that can generate guaranteed-quality meshes for complex geometries. 
More details and background information on the mesh generator are given in Section 1.1. I have 
also modified an existing high-order generic numerical toolkit to allow complex, multiphysics 
problems to be solved. Further information about this research and other related work is presented 
in Section 1.2. 

1.1 Unstructured mesh generation 

A fully-automatic mesh generator for complex geometries must understand curved boundaries 
to prevent geometric errors at the boundaries and to correctly resolve boundaries based on their 
extent and curvature. This is especially critical given that most problems in computational sci­
ence are boundary value problems and require accurate boundary information to yield an accurate 
solution. Equally important is mesh quality, which affects the convergence rate and solution accu­
racy [25,3,24]; an automatic meshing process therefore requires some guarantees on mesh quality. 
Furthermore, automatic mesh generation also requires guarantees on termination and final mesh 
size. These guarantees ensure that a guaranteed-quality mesh can be obtained, and that its size will 
be within a certain factor of the ideal mesh size for that problem, respectively. The long-term goal 
for developers of meshing tools is the generation of appropriately sized quality meshes directly 
from CAD models, without user interaction. This research is an important step in that direction. 
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1.1.1 Mesh generation from curved boundaries 

A fully-automatic mesh generator must handle curved surfaces as readily as planar ones, which 
requires the use of the exact representation of the boundaries during the meshing process [39]. 
Otherwise, time is wasted discretizing these curves into sets of linear segments, a process which 
can also lead to an invalid representation of the boundary. For example, more cells may be neces­
sary to properly discretize a curved boundary than the user anticipated. Because the mesh genera­
tion package at this point only relies on the linear segments, it has no knowledge of the real shape 
of the boundary. It can only place new vertices on a line joining two of the original discretized 
vertices, as was done by Mavriplis [30]. The newly inserted vertices are usually only moved back 
to the boundary as a post-processing step; while this is not usually extremely time-consuming, it 
can potentially degrade mesh quality near the boundary or even make the mesh invalid. On the 
other hand, if the user (or the software) over-estimates the number of vertices necessary along a 
curved boundary, more cells than required will be present in the mesh, which will affect simulation 
performance. 

A better approach is to insert points directly on the boundary curves in the first place, using the 
underlying representation of the boundary. Tools capable of generating meshes for domains with 
curved boundaries are now relatively common, although each seems to handle curves differently. 
The advancing front Delaunay schemes [29, 23] initially discretize the boundaries and the few 
layers of cells surrounding them using advancing front techniques, and mesh the interior of the 
domain with a Delaunay approach. Another example is the 2D scheme described by Laug et 
al. [27], which relies on a mesh to extrapolate a curved boundary using interpolation splines. These 
splines are approximated next with a very large number of linear segments. Points on the boundary 
are then chosen on these segments whenever needed in the meshing process. Conversely, the 3D 
algorithm by Dey et al. [15] uses the curved representation of the boundary directly to generate 
extra boundary vertices and to detect possible problems, such as intersection problems. However, 
there are no guarantees regarding the quality of the mesh, or even the termination of any of these 
algorithms. 

1.1.2 Guaranteed-quality mesh generation 

Users of guaranteed-quality meshing tools only need to define the domain properly, and perhaps 
indicate a preference on the resolution required. A good mesh can then be obtained without any 
further user interaction. The user never needs to fix areas containing an invalid triangulation or 
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poor quality elements. 

Several guaranteed-quality algorithms have been introduced in recent years. Chew [13] intro­
duced the first two-dimensional Delaunay insertion algorithm with a quality bound, although it 
only generated uniform meshes. Ruppert [38] then introduced the first Delaunay insertion scheme 
to guarantee high-quality two-dimensional graded meshes. Shewchuk [40] improved the angle 
bound of Ruppert's scheme shortly after and proved that such a modification made the algorithm 
equivalent to another by Chew [14]. All of these schemes insert points at the circumcenters of 
triangles; other authors have proposed variations on the circumcenter as the location of point in­
sertion. Rivara [37] suggested inserting a vertex at the midpoint of the common edge of the two 
terminal triangles of a set of triangles called the longest-edge propagation path. More recently, 
Edelsbrunner and Guoy [17] proposed inserting points at sinks, circumcenters located inside their 
own triangles. Shewchuk also introduced a generalization of Ruppert's algorithm to three dimen­
sions which showed significantly better quality bounds than a previous 3D algorithm by Mitchell 
and Vavasis [32]. In previous research [35], Ollivier-Gooch and Boivin extended Ruppert's and 
Shewchuk's work to have better control over cell grading and size, in both 2D and 3D. The com­
mon downfall of these guaranteed-quality schemes is that they all require the domain to have linear 
(or planar) boundaries. 

1.1.3 Objective 

The objective for this part of my research was to develop a guaranteed-quality unstructured mesh 
generator with generic support for curved boundaries; this is a major step towards guaranteed-
quality mesh generation from CAD data. In Chapter 2, a generic boundary data interface that 
allows the use of potentially any boundary type, in both 2D and 3D is introduced. As a proof of 
concept, this interface has been implemented in a 2D meshing code; examples are also given in 
Chapter 2. Ruppert's proof has been extended to account for curved boundaries. Details of the 
proof are given in Appendix A. Most of Chapter 2 has already appeared as a journal article [9]. 

1.2 Generic multiphysics solver 

The second part of this research focuses on writing a generic, high-order, multiphysics solver. A 

few other research groups have developed generic numerical toolkits in the hope of easing the 
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solution of new physical problems numerically. A summary of these efforts is presented in Sec­
tion 1.2.1. Most of the work from these research groups focuses on the finite-element method; 
the numerical toolkit used in this research is based on the finite-volume method, and Section 1.2.2 
justifies this choice. 

1.2.1 Generic solvers 

The main idea behind generic solvers is to separate the numerical and the physical aspects of a 
simulation. By modularizing the solver, it becomes easier to solve different physical phenomena 
with the same numerical code. Very often, this modularity comes from using object-oriented pro­
gramming techniques in the numerical toolkit, as described by Dubois-Pelerin and Pegon [16]. A 
discussion on the impact of using object-oriented languages in scientific applications is given by 
Arge et al. [2]; some optimization guidelines are also suggested. Most of the generic numerical 
toolkits described in this section use some form of object-oriented language; the toolkit used in 
this research follows this trend and is coded in C++. 

One application of modularity is the research of Eyheramendy and Zimmerman [44, 18, 19] who 
have developed a toolkit for semi-automatic symbolic derivation of linear finite-element models 
of initial-boundary-value problems. In more recent work [20], non-linear problems are also sup­
ported. The software, developed in SmallTalk, guides the user through the various steps necessary 
to formulate the finite-element problem. Smalltalk or C++ simulation code can then be automat­
ically generated, although the authors admit that efficiency problems within the generated code 
still remain. This research is of great help for users interested in deriving discretization techniques 
for new physical problems, but users must still be fluent with the finite-element method: concepts 
such as the variational principle, weighting functions and other finite-element intricacies are used 
throughout the derivation. There is however no mention of multiphysics problems, where multiple 
element types would be used in the same simulation. 

One of the most sophisticated C++ libraries for the numerical solution of partial differential equa­
tions is Diffpack [12, 26, 11]. This library allows the user the flexibility to interact with the finite-
element solution process at different levels. At the highest level, users specify the physics of a 
problem through the integrand of the weak form of the PDE and boundary conditions. At lower 
levels, users can interface with the numerical techniques by defining new element types, shape 
functions, or by setting the options for the numerous iterative solvers supported. Again, significant 
finite-element knowledge is necessary when creating custom simulation in Diffpack. In partic­
ular, the boundary conditions must be explicitly coded by the user themselves. However, users 
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familiar with the lower levels of the library could probably combine several element types into a 
multiphysics simulation. 

Even though research on generic numerical solvers is growing, the number of solvers dedicated 
specifically to supporting the solution of multiphysics problems in a generic fashion is still lim­
ited. One such commercially available solver is FEMLab [1]. As its name implies, FEMLab is also 
based on the finite-element method. The solver uses Matlab for the numerical aspects of the sim­
ulation. Multiple element types and physical phenomena can be combined in one simulation. The 
generic nature of FEMLab comes from its "PDE mode", where the user can enter the parameters 
of partial differential equations in a generic fashion. The solver can then use the equations in any 
simulation. Unfortunately, there is no control on element types used for this mode; it is impossible 
to know if the pre-defined element type will be adequate for the physics defined by the user. 

While being valuable tools for many researchers, these approaches are likely too complicated for 
most scientists lacking a good finite-element background, especially when trying to develop simu­
lations for physical phenomena that are uncommon. 

PHYSICA [4] is a multiphysics solver based on the finite-volume method. It also uses object-
oriented programming techniques to provide abstraction of the numerics and the physics of a prob­
lem; it is programmed in FORTRAN. The solver provides several levels of abstraction available 
to the user. Most users only interact with the highest level, the model level, to implement new 
physical problems, but it is possible to implement new algorithms due to the modular nature of 
the software. This solver provides most of the functionality scientists would look for in a mul­
tiphysics solver. However, only second-order accurate methods are available, and given the fact 
that only about 75% of the code is available when purchasing a developer's license, implementing 
high-order methods could be quite challenging. 

1.2.2 The finite-volume method 

The main drawback with using the finite-element method in generic solvers is that the method does 
not lend itself well to a complete separation of the physical and numerical aspects of a problem. 
This is highlighted by the fact that all the finite-element packages described above require good 
knowledge of the finite-element method from the user to develop new applications with them effec­
tively. The finite-volume method, however, lends itself very well to a decoupling of the numerics 
and the physics. This is explained by the fact that the physics of the problem mainly come in 
play in the calculation of fluxes. These fluxes are straightforward to identify and can be computed 
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easily. More details on the derivation of a new problem for the finite-volume method are given in 

Section 3.1. 

The generic numerical toolkit used in this research uses the finite-volume method for this very 
reason. Users with a good knowledge of the physics of a problem will be able to easily imple­
ment short functions to describe the fluxes, source terms and boundary conditions that accurately 
describe the physical phenomena. The numerical method does not affect the description of the 
problem. In contrast, generic solvers using the finite-element method require the user to get in­
volved in the numerical details of the simulation. 

1.2.3 Objective 

The objective for this part of my research is to develop a high-order accurate generic multiphysics 
solver. The solver is based on a high-order generic numerical toolkit introduced in Chapter 3. High-
order accurate methods are critical for better solutions of a variety of problems. The toolkit was 
then heavily modified to support multiphysics problems; the multiphysics framework is covered in 
Chapter 4. Chapter 5 introduces topics that are related to the multiphysics solver but did not play 
a large role in the design of the framework and Chapter 6 discusses the accuracy and efficiency of 
the solver, and the steps that could be taken to further improve both. 



Chapter 2 

Guaranteed-Quality Unstructured 
Triangular Meshing of Domains with 
Curved Boundaries 

2.1 Introduction 

In this chapter, a major step towards guaranteed-quality mesh generation from CAD data is de­
scribed. A generic boundary data interface that allows the use of potentially any boundary type, 
in both 2D and 3D is introduced, and is implemented in 2D. First, some basic unstructured mesh­
ing concepts are introduced in Section 2.2. The 2D scheme presented in this research is based on 
Ruppert's Delaunay refinement algorithm, which is summarized in Section 2.3 in order to better 
highlight the changes made to it in Section 2.4. In the latter section, the generic interface between 
the meshing code and arbitrary boundary data is described, and some of the pitfalls associated 
with curved boundaries are noted. Boundary representations for line segments, circles and circular 
arcs, cubic parametric curves (which include Bezier cuves and B-splines), and interpolated splines 
have been implemented. Details of their implementation are given in Section 2.5. Examples are 
presented in Section 2.6 to demonstrate the capabilities of the algorithm. Conclusions about this 
work and insight on future implementation in 3D are discussed in Section 2.7. Finally, it has been 
possible to show that the modified scheme produces meshes of same quality as Ruppert's original 
scheme, including improved control over length scale and grading, as described in [35]; a proof of 
this result appears in the Appendix. 

8 
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2.2 Background information 

The methodology used to start a triangulation in this research will be covered in this section. Along 
the way, concepts critical to this research, such as the Delaunay criterion, will be explained. 

2.2.1 Initial vertex insertion 

As an example, the domain shown in Figure 2.1 is to be triangulated. This is accomplished by 
first creating a large bounding box in which all the boundary vertices of the domain can fit. These 
vertices are then inserted in the bounding box. Vertex insertion is covered in more detail in Sec­
tion 2.3.3. 

Figure 2.1: Domain to be triangulated 

The initial bounding box, and the resulting triangulation after the boundary vertices have been 
inserted are shown in Figure 2.2. 

2.2.2 The Delaunay criterion 

Next, edges in the triangulation are swapped to ensure the triangulation is Delaunay. The Delaunay 
criterion states that no vertices can be located within a triangle circumcircle.1 It is always possible 
to make a triangulation Delaunay by swapping. An example of a triangle with a vertex in its 
circumcircle is shown in Figure 2.3. 

'A circumcircle is the circle that passes through each of the triangle's vertices. 
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Figure 2.3: Triangle with a vertex in its circumcircle 
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This triangle cannot exist in a Delaunay triangulation. Figure 2.4 shows the Delaunay triangulation 
for this domain. 

Figure 2.4: The Delaunay triangulation 

2.2.3 Edge recovery 

The next step consists in recovering all the boundary edges of the initial domain. In some cases, 
it is possible for the Delaunay triangulation not to include the boundary edges. However, these 
edges can always be recovered through swapping. The boundary edges are already all present in 
Figure 2.4. 

With all the boundary edges present in the triangulation, the surrounding cells of the bounding box 
can be safely removed. The resulting triangulated domain is shown in Figure 2.5. This triangula­
tion can then be used with Ruppert's Delaunay refinement algorithm. 

2.3 Outline of Ruppert's Delaunay refinement algorithm 

Ruppert's scheme [38] begins with either a constrained or unconstrained Delaunay triangulation.2 

The mesh quality is improved through point insertion. Points are inserted at the circumcenter of 
badly-shaped cells — cells that have an angle less than #mjn — unless they encroach on a boundary 

2 A constrained Delaunay triangulation is a triangulation in which the Delaunay criterion is only applied to vertices 
that are visible to a triangle. A vertex is visible to a triangle if there are no boundary patches between them. 
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Figure 2.5: The triangulated domain 

edge.3 Ruppert states that a vertex encroaches on an edge when that vertex is located inside the 
circle with the edge as its diameter; this circle is called the diametral circle. If a proposed new point 
encroaches on any boundary edge, that vertex is not inserted. Instead, the encroached boundary 
edge(s) is(are) bisected. This process is repeated until all cells are well-shaped. Ruppert was 
able to show that this algorithm always terminates, and results in a mesh with minimum angle 

^min ~ 20.7°. 

Shewchuk [40] showed that a value of 0mjn of 25.7° is possible if diametral lenses rather than 
diametral circles are used to determine if there is encroachment. The difference between the di­
ametral circle and diametral lens is shown in Figure 2.6. In this variant of the algorithm, interior 
vertices lying inside the diametral circle of a boundary edge are deleted when that edge is split. The 
bound on 0m i n is not tight; in practice, #mj„ can be set to 30° and the algorithm will still terminate. 

2.3.1 Initial discretization 

Ruppert's algorithm can be started either with a Delaunay triangulation or a constrained Delaunay 
triangulation. The latter does not pose a problem because Ruppert's original encroachment rule 
guarantees that no vertex will be inserted outside a boundary edge.4 A Delaunay triangulation 
containing all the boundary points inside a larger bounding box is first created. Boundary edges 

3Note that in this document, a boundary edge is what makes up the discretized version of the boundary. When 
referring to the boundary geometry, the term boundary patch will be used. Each boundary patch has at least one 
boundary edge associated with it. 

4The use of diametral lenses allows boundary triangles with a circumcenter outside the boundary edge to be present 
in the mesh. However, no vertex will ever be inserted at this location since it encroaches on the boundary edge. 
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Figure 2.6: Comparison between a diametral circle (dashed) and diametral lenses. Diametral lenses 
allow points to be inserted closer to boundary edges. 

are recovered next using the technique described in Section 2.3.2. The triangles lying outside the 
domain are then removed, leaving a constrained Delaunay triangulation. 

The algorithm cannot be started with just any constrained Delaunay triangulation, however. No 
boundary edges in the initial triangulation should be encroached on. Encroached boundary edges 
are therefore split until they are not encroached upon anymore, as an initialization step. This is done 
by evaluating the angle opposite the boundary edge. If the angle is obtuse, the vertex at that corner 
encroaches on the boundary edge and the edge should be split. This way, only the encroachment 
caused by vertices visible to the boundary edge will be corrected, preventing unnecessary splitting 
of boundary edges and introduction of artificial small features. When no more vertices encroach 
on boundary edges, Ruppert's algorithm can be started. 

2.3.2 Edge recovery 

The boundary edges needed for the initial discretization of the boundary are recovered through 
swapping. It is always possible to recover all the edges without having to insert new points in the 
domain. Once all the boundary edges have been recovered, the boundary representation is exact. 
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2.3.3 Point insertion 

Points are inserted into the mesh by using the Delaunay insertion method of Watson [42]. A list 
of all cells that contain the new vertex in their circumcircle is first created. These cells are then 
removed from the mesh, and the faces of the resulting hull are connected with the newly inserted 
point. This insertion method preserves the Delaunay nature of the mesh; no swapping is needed 
after the insertion. If a boundary edge is part of the hull, a check is made to ensure that the new 
vertex will not encroach on it. If it does, the point is not inserted. Vertices lying inside the diametral 
circle of the edge are removed, and the boundary edge is split at its geometric midpoint. Watson 
insertion is used for this split as well. 

2.3.4 Length scale modifications 

In previous work [35], Ollivier-Gooch and Boivin modified Ruppert's scheme to control cell size 
and grading. The modification defines a geometric length scale based on the local feature size. 
The local feature size was used by Ruppert to prove termination of the original algorithm, and is 
defined as the radius of the smallest circle centered at a point that touches two disjoint parts of the 
domain boundary. The length scale LS is defined in terms of the local feature size Ifs as: 

where both R and G are constants > 1, and points ^ are neighbors to point p. The first constant, 
R, controls the ratio of input feature size to final mesh boundary edge length, with finer boundary 
discretization for larger values of R. The other constant, G, is used to control how rapidly the 
cell size can change with distance. This is an explicit imitation and generalization of the grading 
properties of the local feature size. A larger value of G results in slower increase in cell size over 
the same distance. The value of LS is stored at every vertex location. 

Ruppert's scheme was modified to also split cells that are too large according to the definition of 
length scale in Equation 2.1. A cell is considered too large whenever the ratio of its circumradius 
to the average LS of its vertices is greater than 

Implementation details, such as how the Ifs is computed, as well as a proof that the modified 
algorithm terminates with quality bounds comparable to Ruppert's are provided in [35]. 

LS (p) = min , min LS{qi) + ^ \q{ - p\ ) 
neighbors q; Kj 1 

(2.1) 
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2.3.5 Small angles in the domain 

Small angles in the domain definition are problematic because they can lead to infinite recursion 
when trying to fix the encroachment of a boundary edge. Ruppert [38] identified this pitfall and 
suggested the use of concentric circular shells around small angles to prevent it. Figure 2.7 illus­
trates this. Boundary edges that are connected to a small angle vertex are split at the intersection 
with circular shells centered at the vertex — not at the midpoint of the edge. This has the effect of 
creating protective layers around the small angle boundary vertex, preventing encroachment. This 
technique was also used in the present research. 

Figure 2.7: Problem caused by small angles in the domain and how it can be avoided. 

2.4 Generic boundary interface 

To enable meshing from general curved boundaries, a framework in which the mesh generation 
code makes no assumptions about the underlying geometry of boundary patches is needed [39]. 
This implies a generic interface between mesher and geometry, in which the mesher only needs 
the results of several geometric queries. This is illustrated in Figure 2.8. 

Whenever the mesh generation algorithm needs information about the boundary, a "question" is 
passed on to the proper type of boundary patch. Each boundary patch type knows how to answer 
all of these questions, and the answer is then passed back to the algorithm. This provides a trans­
parent access to potentially any type of boundary patch. Using object-oriented programming, this 
generic interface can be implemented by using a common base class for all boundary data, with 
implementation of specific geometric queries in derived boundary data classes. 

(a) Small angle causes infinite insertion (b) Concentric circular shells prevent infinite in­
sertion 
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Information Needed Boundary Patches 

Mesh 
Generation 
Algorithm 

Midpoint of two verts 

Normal at location 

Distance from boundary 

Initial discretization 

Curvature at location 

Others.. 

Lines 

Splines 

Circular Arcs 

Others.. 

Figure 2.8: Framework used for the implementation of generic boundaries 

The information required for the successful implementation of Ruppert's algorithm — curve mid­
point, curvature, and original discretization information — is described in Sections 3.2 to 3.6. The 
other questions are needed to determine the appropriate mesh length scale LS; they will not be 
discussed any further in this text. See [35] for more information. 

So far, classes for lines, circles, arcs, cubic parametric curves, and interpolated splines have been 
written. New types of boundary patches can be added by providing the proper "answers" for the 
given boundary patch. 

2.4.1 Total variation of the tangent angle 

Since the meshing code must be able to work with curved as well as linear patches, a new way of 
determining where splits happen along a boundary patch is necessary. One can first observe that 
patches with little orientation change need few, long edges for accurate geometric representation. 
Linear patches have no orientation change; they can be represented accurately with just one edge. 
In contrast, regions of a curve with a large change in orientation require a greater number of shorter 
edges. One must also make sure that small amplitude sine-like curves are discretized appropriately. 
This suggests the use of the total variation of the tangent angle of a curve to determine where to 
split a boundary patch. 

The total variation TV(9) is defined in the following way: 
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TV (6) = J \d6 

By using the following definition of curvature: 

(2.2) 

K(S) 
de_ 
ds 

it is possible to obtain another form for Equation 2.2: 

TV(9) = J \d6\ = J \K(S)\ ds 

The total variation can therefore also be expressed as the integral of the absolute value of curvature 
along the arclength. Note that there is no need to compute the integral; one simply needs to 
compare the orientation of the curve's tangent vector at carefully chosen points along the boundary 
patches to get the exact value of TV (8). More details are given for each type of boundary patches 
in Section 2.5. 

2.4.2 Initial discretization 

To obtain the initial Delaunay triangulation, each boundary patch must be initially discretized in 
some way. Since the exact shape of the boundary is only known by the boundary patches, the 
initial discretization of the corresponding curve must be computed by the patches themselves. At 
this point in the meshing process, curves are represented with as few edges as possible in order 
not to introduce artificial small features in the mesh. However, one must make sure that a valid 
and exact representation of the domain will be obtained and that the rules regarding the location of 
points inside the diametral lenses are also followed. 

An arbitrary discretization of a spline curve is shown in Figure 2.9. The outside (above) of the 
curve is to be triangulated. Ruppert's scheme guarantees that no vertex will be inserted inside 
(below) the boundary edges. One must also make sure that no vertex will be inserted in the regions 
inside the curve but outside of the boundary edges (the shaded area in Figure 2.9). This is to prevent 
an invalid discretization, as the vertex inserted in the shaded area would ultimately lie outside the 
domain once the boundary is well-resolved. 
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Figure 2.9: Arbitrary original discretization of a spline. No vertex should be inserted in the shaded 
areas. 

The protection of this area can be achieved by making sure that the diametral lenses of the boundary 
edges completely include the curve boundary. Since points are never inserted inside the diametral 
lenses, this will protect the shaded region from point insertion. It is easy to calculate the total 
variation in orientation a curve can have to remain inside the diametral lens of a corresponding 
discretized edge. 

Figure 2.10: Diametral lens of edge ab intersects the edge at an angle of 60°. 

The diametral lens, as seen in Figure 2.10 makes a 60° angle with edge ab. A curve passing 
through both points a and b can make an angle of 60° — e with the horizontal at point a and an 
angle of —e with the horizontal at point b and still be completely inside the diametral lens. This 
results in a TV(9) of 7r/3. This is the maximum total variation in orientation a curve can have 
in order to pass through both points a and b, and still remain inside the diametral lens. A bigger 
change can potentially put the curve outside of the lens. A valid initial discretization scheme must 
therefore limit the length of edges so that the TV(9) of the curve over them does not exceed 7r/3, 
i.e. TV(9)max = 7r/3. The diametral lenses of all the boundary edges will then entirely contain 
their corresponding boundary patch, therefore not allowing any vertices to be inserted in the shaded 
areas of Figure 2.9. 

In addition, whenever a new boundary point is inserted, one must make sure that the two newly 
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created boundary edges will have diametral lenses that are point-free to prevent insertion outside 
the domain. In Shewchuk's modification to Ruppert's scheme, all points in a boundary edge's 
diametral circle are deleted before the edge is split; the same is done in this scheme. 

Figure 2.11: A curve with uniform curvature intersects the edge with angles of 30°. 

As can be seen from Figure 2.11, a curve with uniform curvature will intersect the edge with angles 
of 30° at each endpoint. Knowing that the diametral circle of the original boundary edge is always 
point-free, it is easy to see that the diametral lenses of new boundary edges coming from this 
curve will also be point-free. The diametral lenses will always be contained within the diametral 
circle. Such a statement is not true, however, for non-uniform curvature patches. For such curves, 
the incident angle with the boundary edge can be arbitrarily close to 60°. This could result in a 
diametral lens that is not entirely contained within the diametral circle whenever that curve needs 
to be further split, as illustrated in Figure 2.12. The area with a white background is point-free 
whereas the area with a shaded background might contain points. It can be seen that part of the 
new diametral lens lies in the shaded area. 

This pitfall is avoided by limiting TV(9)m&x along a boundary edge to 7r/6 for boundary patches 
with non-uniform curvature. While this leads to twice as many boundary edges needed for curves 
with non-uniform curvature compared to uniform-curvature patches, this representation is still 
coarse enough not to introduce any artificial small feature in the mesh. More details are given in 
Section 2.4.5. 

The general scheme for the original discretization of the boundary patches is therefore to first 
calculate the orientation change over the complete patch. The number of edges is then found by 
ensuring that each edge, when split at equal intervals of TV (9), will cover less than the maximum 
allowed for a given type of boundary patch (i.e 7r/3 for patches with uniform curvature, 7r/6 for 
patches with non-uniform curvature). The following formula can be used for the number of edges: 
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Diametral lens outside 
the diametral circle 

Figure 2.12: A curve with non-uniform curvature might yield a diametral lens outside the diametral 
circle. 

NP = 
TV{9) 

TV(9)m& 

The new vertices will be located where the orientation change from the previous vertex is: 

(2.3) 

TV(9)t 

TV{9) 

2.4.3 Edge recovery 

Due to the very coarse representation of the boundary patches during edge recovery, some pre­
cautions must be taken in order to get a valid initial constrained Delaunay triangulation. The edge 
recovery process must be modified since simple recovery through swapping will fail in some cases. 
Two categories of such cases have been found. A description of these and an overview of the edge 
recovery strategy used to obtain valid initial triangulations follow. 
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Crossing of initial discretization edges 

The initial discretization suggested by the boundary patches may result in an invalid overall dis­
cretization, because the edges that need to be recovered cross each other. Such a case is shown in 
Figure 2.13, which presents a square inside a circle, including the initial discretization of the circle. 
The top and bottom edges of the circle's discretization cross the edges of the square. Clearly, not 
all edges in this initial discretization can be recovered simultaneously. 

Detecting such cases in advance can be computationally expensive. Instead, it is possible to take 
advantage of the fact that edges can be recovered through vertex insertion, a process known as 
stitching. If an edge is not present in the mesh, a vertex is inserted at the midpoint of its corre­
sponding patch. If any of the two resulting edges is still absent from the mesh, then it is once 
again split. This method is guaranteed to recover all the edges since a vertex is always connected 
to its nearest neighbors in a Delaunay triangulation [40]. The spacing between the vertices of a 
boundary patch will eventually be small enough that the corresponding boundary edges will have 
to be present in the triangulation. 

However, when forming a constrained Delaunay triangulation, blindly inserting vertices for a miss­
ing edge can lead to a very large number of unnecessary vertices. Consider for example the domain 
presented in Figure 2.14. Since vertex a is so close to edge be, many vertices would need to be 
inserted on edge be in order to recover the edge. This would lead to an artifical small feature in the 
triangulation. Obviously, this is to be avoided. 

Figure 2.13: Example of an invalid initial discretization 
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Figure 2.14: Vertex a should not generate a small feature on edge be 

Figure 2.15: Initial discretization of a domain that had overlapping initial boundary edgi 
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These competing requirements are balanced by inserting vertices only when swapping has failed. 
The mesh generator first goes through the list of edges and recovers them through swapping. Since 
the edges are not locked once they are recovered, it is possible that the recovery of one edge makes 
a previously recovered edge disappear. Any edge associated with a curved patch that is still miss­
ing after this step will have a vertex inserted at its corresponding midpoint. Recovery of edges 
associated with linear patches is always done through swapping. By following this method, only 
the necessary vertices are inserted and no artifical small feature is introduced in the constrained tri­
angulation. The initial discretization for the case described in Figure 2.13 is shown in Figure 2.15. 

Boundary edges located in wrong region 

It is also possible that, due to the rather coarse discretization of curved boundary patches, entire 
boundary edges will be located in the wrong region. This problem has the same source as the 
previous one, except that in this case, the boundary edges do not overlap. In such a case, all 
boundary edges can be recovered, but the initial discretization is still invalid. 

b 

Figure 2.16: Example of a feature of the mesh (the small square) that is located in the wrong region 
due to the discretization of the curved boundary patch 

Figure 2.16 illustrates this. The small square is located to the right of the boundary edge ab. 
However, it is located to the left of boundary patch ab. In this case, the small square would be 
located outside the triangulation, which can not be allowed. 

The easy way to detect this case is to make sure that a vertex connected to edge ab on the left side 
is also on the left side of the corresponding curved boundary patch. If the two sides are different, 
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then edge ab is split. This check must be done for both vertices located opposite each edge in the 
mesh associated with non-linear boundary patches. 

As a summary, Figure 2.17 shows a diagram of the procedure to follow for edges to be recovered. 
The process is over once all the edges are recovered in one pass. 

Get next edge to be 
recovered 

Yes Is the edge present? No 

No Is there a vertex on the 
wrong side? 

Associated with a 
linear patch? 

Yes 

Yes 

No 

Tried swapping for 
this edge already? 

No 

Split edge 

Yes 

Swap to recover 

Figure 2.17: Procedure to follow to recover boundary edges 

2.4.4 Point insertion 

Point insertion in the mesh, as well as on the boundary, is still done using Watson's method. 
However, curved boundaries modify the way that boundary edges are split. Instead of splitting at 
the average location of the edge's vertices, the location of the new boundary vertex is determined 
by the boundary patch itself. The "midpoint" between two vertices is now found using the total 
variation of the tangent angle. The general technique is to first find the total variation of the tangent 
angle between the boundary edge's vertices a and b. The midpoint c will be located at the point on 
the curve where TV(8) between a and c and between c and b is equal. This ensures that the new 
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point is always located on the boundary and that regions of the curve with higher curvature will be 
discretized with more edges. 

If the curvature over a given boundary edge is (almost) zero, the orientation change is negligible. 
In these cases, the split is made according to arclength. This ensures linear patches are split in the 
same fashion as before, and it also handles curves that have particularly flat regions. 

The fact that the midpoints are no longer always located on the boundary edge being split can lead 
to problems. In some cases, boundary edges may cross nearby boundary patches. An example of 
such a case is shown in Figure 2.18. If the first edge of the bottom arc AB happens to be split 
before the first edge of the top arc CD, point E will be inserted outside the domain, which can not 
be allowed. 

Figure 2.18: The top arc's discretization crosses over the bottom arc, but does not cross the bottom 
arc's discretization 

The strategy to fix this problem uses the fact that the boundary vertex E inserted to split the bottom 
arc AB will not only lie behind edge CD but will also encroach on CD since arc CD is completely 
included in the diametral lens of edge CD. This fact ensures that the edge CD can always be found 
to test whether the new vertex E lies behind it. When the new vertex lies outside the domain and 
some edge CD separates the vertex from the edge AB that it is supposed to split, then CD is split 
first. In other situations, AB is split first; this prevents infinite recursion. 

Even with this change in point placement when splitting boundary edges, it was still posible to 
construct a proof showing that the modified algorithm will terminate with bounds on mesh quality 
similar to Ruppert's original scheme. See Appendix A for the complete details of the proof. 

D 

B 

A 
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2.4.5 Length scale modifications 

Whenever a boundary edge is split, the length scale LS(p) for the new boundary vertex needs to 
be computed using Equation 2.1. For this, the local feature size lfs(p) at the new point p must take 
into account the curvature of the boundary. The local feature size for curved boundaries, lfsc is 
defined as: 

lfsc(p) = mm(p(p),lfs(p)) (2.4) 

where p (p) = is the radius of curvature at point p. The radius of curvature therefore provides 
a ceiling on the value of the local feature size on the boundary. By using the radius of curvature, 
there will be an equal number of points per radian on the curve as per gap between objects. For 
curves with uniform curvature, the edge length from initial discretization and the radius of curva­
ture are equal. For non-uniform curves, with a TV(0) m a x of 7r/6, the edge lengths will be twice as 
small. This will lead to more points on the curved boundary, as needed. This factor of two will not 
lead to artificial small features since the LS at that point might be determined by neighbor vertices, 
not by lfsc(p). Furthermore, edge lengths can only be proven to be within a factor (Cs + 1/G) of 
their ideal length. See the Appendix for details on the proof. 

2.4.6 Small angles in the domain 

Figure 2.19: Problem associated with curves, small angles, and the use of concentric circular shells. 

The concentric circular shells method described in Section 2.3.5 can also be used to prevent infinite 
insertion around small angles created between two curved boundaries. However, one must make 
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sure that the split points are located using geometric distance from the small angle vertex. If total 
variation of the orientation is used instead of geometric distance, infinite encroachment is still 
possible, as illustrated in Figure 2.19a. Vertices a and b were first created, perhaps as part of the 
initial discretization. Since Zcba is obtuse, vertex d was inserted to fix encroachment on edge ca. 
However, d encroaches on cb, so it too must be split, using point e. However, Zced is still obtuse, 
so edge cd should be split, and so should ce, etc. Such a problem does not appear when geometric 
distance from vertex c is used instead of orientation change, as can be seen from Figure 2.19b. 

2.5 Implementation details 

The evaluation of the total variation of orientation over any type of boundary patch is the cor­
nerstone of both the initial discretization and the midpoint routines. As was mentioned in Sec­
tion 2.4.1, there is no need to actually compute the integral; one only needs to take the difference 
in orientation between two points over which the change in orientation of the curve is monotone, 
i.e. it is either non-varying, or is strictly increasing or decreasing. The details on how to find these 
particular points are given in the following sections. 

2.5.1 Linear patches 

The implementation of this type of patch is straightforward. The orientation change over any linear 

patch is simply zero. Consequently, edges are split at the geometric midpoint of the edge. 

Likewise, the initial discretization of a linear patch is trivial: only one edge is needed. The two 
endpoints of the edge are inserted in the mesh, and the edge between these endpoints is marked for 
recovery. No other vertices need to be inserted. 

2.5.2 Circles and circular arc patches 

The total variation of orientation for these patches is easy to obtain since the curvature of a circular 
arc (or circle) is a constant 1/R. In order to exactly evaluate Equation 2.2, one only needs to use 
the second form of the orientation change integral and find the total arclength of the arc, a trivial 
computation given that the endpoints of the arc are known. 

The midpoint between two vertices is calculated using the total variation of the orientation. How­
ever, since the curvature is constant, this is equivalent to splitting on arclength alone, and is simple 
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to implement. The original discretization demands a bit more caution. First, the number of edges 
needed to discretize the arc is found using Equation 2.3. The value of TV(9)max for patches with 
uniform curvature is 7r/3. The endpoints, as well as the extra vertices needed to define the proper 
number of edges are inserted in the mesh and the Ne edges are marked for recovery. Note that for 
full circles, there are no endpoints, and iVe is always six. 

2.5.3 Cubic parametric curves 

Cubic parametric curves are internally defined by two cubic parametric equations x(t) and y(t), 
with t varying between 0 and 1. Such definition allows the representation of cubic Bezier curves, 
cubic B-splines and cubic interpolated splines (see section 2.5.4 for details on splines). In order to 
compute TV (9), "critical" values of t between which the orientation of the curve must be mono­
tone are first found. This way, it is possible to simply take the difference in the orientation of the 
curve at these points to find the total orientation change for the curve. Furthermore, if one is careful 
to take points on the curve that only allow a maximum change of 7r/2 between them, the need to 
determine if the curve changed orientation by a value of j3 or a value of 2n — /3 is eliminated. 

To achieve this, the minima and the maxima of both x(t) and y(t) are selected as critical points. 
This limits TV(9) between two critical points to be smaller than n/2. There are as many as two 
such points for each cubic equation. The inflexion point for each cubic equation is also chosen 
as a critical point. Finally, the orientation of a cubic parametric curve might reach a maximum 
or a minimum at the locations where the curvature is zero. These locations are found using the 
following definition of curvature: 

I v x a I 
K = 3 — 

where v= (x',y'), a= (x",y"), and v =| v |. Clearly, the curvature will go to zero whenever 
| v x a | does. From this, as many as two more critical points on the curve are obtained, since 
v x a = 0 simplifies to a quadratic equation for cubic parametric curves. In summary, there 
potentially are eight critical values of t for a 2-D cubic parametric curve: four maxima/minima, 
two inflexion points, and two zero-curvature points. By ordering these and the endpoints, and then 
taking the difference in the orientation of the curve between consecutive values, the exact answer 
to Equation ?? is obtained. An example of a Bezier curve with eight critical points in shown in 
Figure 2.20. Two critical points are very close to each other on the left part of the curve. 
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Figure 2.20: Critical points for a Bezier curve 

These critical points are stored, and are used to quickly find the location of a midpoint. The location 
is isolated between two of these critical values (or one of them and an endpoint). Since the curve 
is monotone between two of these points, it is then possible to use interpolation techniques to find 
the exact location of the midpoint. 

The initial discretization of a parametric curve follows the generic procedure outlined earlier. In 
this case, TV(9)max = TT/6. The endpoints, as well as the new discretization vertices, are inserted 
in the mesh, and the Ne edges are marked for recovery. 

Tangent vector may be null 

It is possible for a cubic parametric curve to have zero values for both components of the tangent 
vector. This prevents the use of the tangent vector (or the normal vector, which depends on the 
same data) to determine the orientation of the curve at that particular point. The orientation is 
usually found using: 

The signs of x'(t) and y'(t) are used to determine the quadrant of 6{t). The tangent vector is 
null whenever both x'{t) and y'(t) are zero for some t = t0. This makes the ratio of the two 
indeterminate: 

y'(t) _ o 
t^t0 x'(t) 0 

By using L'Hospital's rule, the limit becomes: 
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11111 , N 

t->t„ x"(t) 

L'Hospital's rule is used repeatedly until a finite value for the ratio is found. This finite value can 
then be used to determine the orientation at t = t0, i.e. 

However, in order to determine the right quadrant for 9(t0), one must still use the signs of x'(t) 
and y'(t) as they approach t0. This can be done by evaluating them with a value of t close to ta and 
still within 0 and 1. 

2.5.4 Cubic interpolated splines 

An interpolated spline is a collection of np — 1 cubic parametric curves, where np is the number 
of points to be interpolated. As such, its total variation of the tangent angle is just the sum of the 
total variations of its cubic curves. In the present research, the interpolated splines are created with 
"no-moment" boundary conditions, i.e. both x"(t) and y"(t) are set to zero at the endpoints. Note 
that the interpolation points are not necessarily inserted in the mesh - they only define the shape 
of the curve. The list of critical points for an interpolated spline includes all the critical points 
of its cubic curves as well as their endpoints. The midpoint is found using the same technique as 
described in Section 2.5.3, i.e. interpolation techniques are used once the two surrounding critical 
points are known. 

Initial discretization of an interpolated spline is a bit more complicated, as boundary edges will 
now more than likely span more than one parametric cubic curve. However, the overall process is 
the same as for cubic parametric curves, with TV(#)m a x also IT/6. 

2.6 Results 

Figure 2.21 details the different steps involved in generating a mesh with the generic boundary 
interface. The domain to be discretized, shown in Figure 2.21a, consists of four linear patches, 
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one Bezier curve (in the lower-right quadrant), and one circle. The interior of the circle is consid­
ered hollow in this case and will not be triangulated. Figure 2.21b shows the result of the initial 
discretization. The domain, defined by the cells, was shaded in order to provide a better idea of 
its shape. The circle was discretized using 6 edges. The Bezier curve, spanning 90°, was dis-
cretized with three edges. This is in accordance with the procedure described in Section 2.5. The 
non-uniform distribution of the extra vertices due to splitting according to orientation change can 
be clearly observed. It can also be seen that a boundary edge in the lower right quadrant crosses 
another boundary patch, a problem that was discussed in Section 2.4.4. 

Even though the mesh in Figure 2.21b is a valid constrained Delaunay triangulation, encroached 
boundary edges must be split before Ruppert's algorithm can be started, as described in Sec­
tion 2.3.1. Figure 2.21c is the result of the encroachment fix step, and this is the triangulation 
that Ruppert's algorithm is started with. Note that the circle is now discretized much more pre­
cisely in its lower-right quadrant than elsewhere because of its proximity to the Bezier curve. 

The final result of Ruppert's algorithm is shown in Figure 2.21d. All of the angles in this mesh, 
and the following ones, are equal to or larger than 30°. To demonstrate how the generic boundaries 
adapt to a change in required resolution, meshes with two and four times the resolution of the mesh 
in Figure 2.2Id have been generated. These are shown in Figures 2.2le and 2.2If, respectively. 

Figures 2.22 and 2.23 show that the algorithm can easily handle complex geometries with generic 
boundaries. They were both created using R = G = 4. In order to demonstrate more practical 
uses, the mesh of the region surrounding a 4-element airfoil, shown in Figure 2.24, has also been 
included. The boundary geometry is defined by a circle and four interpolated splines. This rela­
tively coarse mesh was created using R = G = 1 for clarity. The immediate surroundings of the 
airfoil are shown magnified in Figure 2.25, with 2.25a detailing the state of the mesh after initial 
discretization, and 2.25b the final result from Figure 2.24. 

Table 2.1 summarizes the quality of the three previous meshes. The size and grading parameters 
used, the minimum and maximum angle in the mesh, as well as the ratio of the actual edge length 
to the "theoretical" edge length (from the average of the LS at its vertices) are listed. These meshes 
were all generated with an imposed minimum angle bound of 30°. With higher values of R and G, 
the major constraint is the cell size, not its shape. This explains why the angle bounds as well as 
the edge length ratios are better for these cases. For case with lower values of R and G, the angle 
bound is harder to reach than the size constraint. This results in smaller cells in some regions, 
which affects the edge length ratios. 

The use of the generic boundary interface did have a small impact on the time required to insert 
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(a) Domain definition (b) Initial discretization (c) Encroachment fixed 

(d) Final mesh (R=G=1) (e) R=G=2 (f) R=G=4 

Figure 2.21: Drawings a, b, and c show the steps required to obtain meshes d, e, and f. 

Figure 2.22: Mesh including lines, circles, and arcs as boundary patches. All angles in the mesh 
are above 30°. 
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Figure 2.23: Mesh with a boundary made up of Bezier curves, lines, and a circle. 

Parameters Angles (in degrees) Edge length ratios 
Figure number R G Min Max Min Avg Max 

2.21 1 1 30.01 104.08 0.2500 0.8819 1.8598 
2 2 35.11 104.42 0.4362 0.8937 2.001 
4 4 32.56 114.88 0.4547 0.9173 1.8015 

2.22 4 4 33.85 108.15 0.3811 0.9223 1.7552 
2.23 4 4 33.31 110.06 0.1257 0.9003 1.9664 
2.24 1 1 30.89 111.21 0.0669 0.3686 3.4170 

Table 2.1: Quality measures 



Figure 2.24: 4-element airfoil mesh. 
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(b) Final mesh, R=G=1 

Figure 2.25: Magnified sections of the 4-element airfoil 
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points on the boundary. The boundary point insertion routines, which include the calls to deter­
mine the location of the new midpoint, take about 5% longer than before, on average. However, 
considering that, on a typical mesh, the time spent on boundary insertion accounts for less than 1% 
of the total time, the overall impact on performance is negligible. 

2.7 Conclusions 

A new framework allowing the use of curved boundaries with a guaranteed-quality Delaunay re­
finement algorithm has been presented. The boundary data has been separated from the meshing 
algorithm, removing all assumptions about the shape of the boundary from the meshing code. 

The use of curved boundaries demanded a new way of splitting boundary edges, to ensure regions 
with higher curvature were discretized with a greater number of edges. The midpoints are now 
computed using the total variation of the tangent angle, TV{9). Whenever TV{9) is negligible 
over a given boundary edge, the arclength is used to compute the midpoint. 

The introduction of curved boundaries also demanded a new initial discretization strategy. Curved 
patches are first discretized with as few segments as possible. The minimum number of segments 
required is determined by the total variation of the tangent angle of the patch. One must also make 
sure that the curved patch is always protected by the diametral lenses of its boundary edges. Some 
recovery problems associated with this rather coarse initial representation of the boundary were 
found. A new strategy for edge recovery was developed and presented in this document. 

Several patch types have been implemented and tested successfully. New boundary types can be 
added to the generic boundary interface by implementing responses for all the generic queries used 
by the meshing algorithm. 

Finally, examples demonstrating the successful use of curved boundary patches were shown. These 
meshes all showed excellent quality, with a minimum angle exceeding 30° in all of them. Their 
resolution and grading were easily controlled using parameters R and G. It was also observed that 
the generic boundary interface had a negligible impact on the time required to mesh a domain. 



Chapter 3 

Generic Finite-Volume Solver 

In this chapter, the details of transforming a finite-volume solver into a generic solver will be ex­
plained. A finite-volume solver requires the domain be decomposed into a finite number of control 
volumes. The more control volumes in the solution, the more accurate the numerical solution. In 
this project, the original solver used an unstructured domain decomposition into triangular control 
volumes, or cells. The discretized equations for the problem, introduced in Section 3.1, are then 
solved for each of the control volumes. The finite-volume method solves for the control-volume 
averaged value of the unknowns, so in order to get a smooth solution (for accuracy purposes), the 
solver used in this research performs a reconstruction of the solution. Reconstruction is detailed 
in Section 3.2. Boundary conditions can be enforced in two ways: with a constraint on the re­
construction, or using a boundary flux. Both methods are covered in Section 3.3. The task of 
advancing the solution in time (or towards a steady-state) is presented in Section 3.4. Section 3.5 
summarizes the steps required to solve a finite-volume problem. 

The concept of a generic solver and the modifications it requires are introduced in Section 3.6. 
A standard interface in the form of a class was created to access the physics of the problem in a 
generic fashion; this interface, the Physics class, is described in Section 3.6.1. The interface for 
boundary conditions is detailed in Section 3.6.2. Classes were also used to generalize the types of 
meshes that can be used with the solver; the Mesh class is briefly covered in Section 3.6.3. Finally, 
a generic interface was created to access the data at the control volume boundaries in a transparent 
manner regardless of the type of mesh used, and this interface is known as the Recon class. Details 
are given in Section 3.6.4. 

37 
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3.1 General finite-volume formulation 

To derive the finite-volume formulation of physical problems, it is useful to start with the generic 
form of partial differential equations. In two dimensions, these equations are: 

dU dFx dFv n 

ot ox ay 

In this equation, U is a vector containing the unknowns of the problem. U will be referred to as 
the solution vector, or flux variables vector. Fx is the x-component of the flux vector, and Fy its 
y-component. The source term vector is represented by S. Integrating over the control volume 
area1, we obtain: 

f ^ d A + f ^ d A + r ^ d A = f S d A 

J A ot JA dx JA dy JA 

By letting F = Fxi + Fyj, Equation 3.2 can be rewritten as: 

f ^dA+ [ V-FdA = f SdA (3.3) 
J A dt JA JA 

Applying Gauss's theorem to the second term of Equation 3.3 results in: 

f ^dA+ I F-nds= f SdA (3.4) 
J A dt JdA JA 

The contour integral is evaluated along the boundaries of the control volume. In this case, F is the 

flux vector across control volume boundaries. 

So far, the equations have only been rewritten in a different way; they remain mathematically 
the same. The finite-volume approximation is now introduced in the equations. The finite-volume 
method only solves for the control-volume average of the variables in vector U. The control-volume 
average of variable X over control volume i is defined as: 

'in two dimensions. For three-dimensional problems, the equations are integrated over the volume. 
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Xi = -j- f XdAi (3.5) 
Ai JAi 

Applying the averaging equations to the solution vector and the source term, and re-arranging 
terms, we obtain the finite-volume approximation of the original PDE: 

^- = ~ i F-nds+^- f SdA = FIi (3.6) 
dt Ai JdA. A{ JA. 

We define Fli as the flux integral for control volume % (even though it also includes the source term 
integral). Equation 3.6 is solved on each of the control volumes. The integration is carried out using 
Gauss quadrature. This method does not introduce any arbitrary elements to the equations, such as 
basis or test functions. Since the average over each control volume is preserved, the variables in the 
vector of unknowns U are automatically conserved on the domain.2 This makes the finite-volume 
method particularly attractive for computational fluid mechanics problems, where the conservation 
of quantities such as mass, momentum, and energy is critical. 

3.2 Reconstruction of the control-volume averaged data 

As mentioned previously, a finite-volume solver only computes cell-averaged data, meaning that 
only a constant average value for the flux variables is available for a given cell. When evaluating the 
fluxes at the boundaries, or faces, of the control volume, using these averaged values is inadequate 
as it leads to a first-order accurate solution only. This is explained by the fact that the difference in 
control-volume averages between two neighbor control volumes is first-order with respect to the 
mesh spacing. 

The solution is therefore reconstructed over each control volume for improved accuracy [6]. This 
reconstruction generates a smooth polynomial valid over the entire control volume. This polyno­
mial can be linear, quadratic or cubic, depending on the order of the reconstruction. The polyno­
mial function is chosen to preserve the control-volume average, and attempts to predict the average 
values of neighbor control volumes as well as possible. The function is obtained by solving a con­
strained least-squares problem, where the main constraint is the average value of the function over 
the cell. 

2This is dependent on the proper accumulation of fluxes in control volumes neighbor to a given face; basically, one 
must ensure that flux leaving a given control volume at a face is the same as the flux that enters the control volume on 
the other side of that face. 
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Once such a function has been computed, it can be used to obtain the flux variables values at the 
control volume boundary. Figure 3.1 displays the difference between the averaged solution (where 
the solution is constant over a given cell) and a second-order reconstruction of the same solution on 
an unstructured mesh (where the solution varies linearly over the cell). It is clear from this figure 
that the reconstructed solution will yield a much more accurate value of the flux variables at the 
control volume boundaries. 

Figure 3.1: Difference between averaged and reconstructed solution. The height of the cells repre­
sents their value. 

This extrapolation is only valid over a given control volume. The extrapolations from two neighbor 
control volumes will yield different values at the common boundary. Both of these values are 
available for flux computation, and it is up to the user to decide whether one, the other, or a 
combination of both values is to be used. In some cases, the physics of the problem will dictate 
that choice, as in problems requiring upwind formulation of the fluxes. 

3.3 Boundary conditions 

Some of the control volume boundaries will also be domain boundaries. The fluxes evaluated at 
these locations are used to implement the boundary conditions of the problem. 

Boundary conditions can be enforced in two different forms. The first form, known as the weak 
form of the boundary condition, imposes a specific flux at the boundary. When such a boundary 

(a) Control-volume averaged solution (b) Reconstructed solution 
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—* —* 

condition is encountered, the solver does not use the flux F but rather the flux Fb specified by the 
user for that boundary. 
The strong form of the boundary condition imposes a specific value of the flux variables (or any 
of their derivatives) at the boundary control volume. This is done by adding constraints on the 
reconstruction of the solution over the boundary cell [36, 41]. The polynomial computed by the 
reconstruction will match the value of the flux variables specified at the boundary. The flux F can 
then often be used for the boundary flux; since it will be evaluated with the values obtained by the 
reconstruction, it will account for the constraints of the boundary condition. 

One can then distinguish between two fluxes in the solver: the interior flux, used on interior faces, 
—* 

is always the flux F as described in Section 3.1. The boundary flux is used on faces adjacent to 
—* —* 

the domain boundaries, and can be the flux F or a specific boundary flux Fb specified by the user, 
depending on the form of the boundary condition used. It is also possible to use a constraint on the 
reconstruction as well as a specific boundary flux for a given boundary condition, if needed. 

3.4 Time-advance 

The solver in this research advances the solution in time (or towards steady-state) using an explicit 
multistage scheme. This family of schemes uses intermediate solutions and evaluates the flux 
integral at each of these intermediate steps in order to obtain the solution at the next timestep. 
These methods are self-starting, i.e. they do not require data at any previous timestep, and can be 
made to be high-order accurate simply with an appropriate choice of coefficients. Schemes up to 
fourth-order accurate were used in this research, and are presented below. 

3.4.1 Evaluating the timestep 

The value of the timestep At used to advance the solution in time can either be determined by the 
user or evaluated by the solver. A value for a stable timestep is computed for each control volume 
in the domain. These values can then be used to perform global timestepping, where the smallest 
timestep in the whole domain is used to advance the solution in time, or local timestepping, where 
solution is advanced using the local value of the timestep over each control volume. The latter 
method can only be used to obtain steady-state solutions. 

The value of the timestep for a given control volume is determined using integration of wavespeeds 
around the control volume, an approach suggested by Barth [5]: 
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At (3.7) 

where Vi is the volume of the control volume and Cmax is the fastest wave entering the control 
volume. This wavespeed is determined by the flux function, and sent to the solver in parallel to the 
flux computations. 

For diffusive types of problems, a "pseudo" wavespeed needs to be computed so that the solver 
can estimate the value of the timestep. This pseudo wavespeed was determined using the one-
dimensional heat conduction problem as an example. With explicit time-advance on a structured 
grid, this type of problem requires Atmax oc Ax2. A "wavespeed" of c = 1 /Ax is therefore 
required. Such a value is easily computed on structured meshes, but for unstructured meshes, an 
equivalent inverse distance measure is required. In ANSLib, 1 /Ax is replaced by: 

where Xj Xi IS the vector from the control volume reference location in control volume i to that 
in control volume j and is the unit normal vector to the interface between control volumes i 
and j, pointing into control volume j. This inverse distance measure is always available to the flux 
functions. 

Furthermore, the user can also provide a value of the CFL number, which will be used to modify 

how the timestep that was computed is used: 

CFL = 
At 

(3.8) 
A t "max 

3A.2 First-order 

The first-order scheme used is known as the Explicit Euler scheme: 

Un + hFl, •n (3.9) 

where FI„ is the value of the flux integral for cell i at timestep n, and h is the value of the timestep 
taken multiplied by the CFL number, i.e. h = CFL x At. Note that the cell subscripts i are omitted 
here for clarity. 
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3.4.3 Second-order 

The second-order scheme used is the second-order Runge-Kutta scheme: 

U n + i = Un + \ h F l n 
n + 2 2 (3.10) 

U n + i = Un + h ¥ l n + ± 

3.4.4 Third-order 

First- and second-order accurate schemes only require the solution and flux integral from the pre­
vious (intermediate) time step to get an updated solution. This is not the case for higher order 
schemes, as they need the flux integrals for up to 4 previous intermediate timesteps to be avail­
able. These schemes therefore require extra storage space compared to the first- and second-order 
schemes. The third-order scheme used is a third-order Runge-Kutta scheme3: 

U n + , = Un + \ h F l n 

= t/n + ^ ( 9 F I „ - 4 F I n + i ) (3.11) 

U n + l = C / n - f ( 8 F I n - 1 6 F I n + i + 5 F I n + i ) 

3.4.5 Fourth-order 

A fourth-order Runge-Kutta scheme can be found using the same methodology as the third-order 
scheme: 

Un+l 

= Un + \ h F l n 

= un + \ h f i n H 

= Un + h F l n H _ 

= Un + \h [Fin + 2 (FVi + F I n + i ) + F W i 

(3.12) 

Details on how the coefficients for these schemes were determined can be found in [28]. 
3The equations governing the value of the different coefficients for a given Runge-Kutta scheme are underdeter-

mined; there is therefore a certain freedom in the choice of coefficients, leading to a variety of Runge-Kutta schemes 
of the same order. 
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3.5 Implementation of a finite-volume solver 

In summary, a reconstruction-based finite-volume solver repeatedly performs the following steps 
to get a numerical solution: 

1. Setup boundary constraints on the reconstruction, if necessary 

2. Perform reconstruction over all control volumes 

3. Evaluate the fluxes along all control volume boundaries 

4. Accumulate the fluxes in the proper control volumes 

5. Evaluate the source term integral over each control volume 

6. Perform next time-advance step 

Set-up BCs 

Reconstruction 

Flux evaluation 

Flux accumulation 

Source term 

Time-advance 

Figure 3.2: Overview of the process involved in solving a numerical problem using the finite-
volume method 

A schematic of the steps above is shown in Figure 3.2. 
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3.6 Modifications needed by a generic solver 

The concept behind a generic finite-volume solver is quite simple. Of all the steps outlined in 
Section 3.5, the physics of the problem to solve only appear in steps 1,3, and 5. Boundary con­
straints (step 1) are related to the boundary conditions, which are highly physics-dependent. The 
fluxes of the problem (step 3) depend on the physics of the problem being solved, and finally, the 
source term (step 5) is also related to the physics of the problem. Steps 2, 4, and 6 are all strictly 
numerical methods, and no knowledge of the type of problem being solved is necessary to perform 
these steps properly. Figure 3.3 illustrates the physical information required for each step in the 
process. 

Set-up BCs Bdry Constraints 

Reconstruction 

Flux evaluation 

Flux accumulation 

Interior flux 

Bdry Flux 

Source term Source term 

Time-advance 

Figure 3.3: Detail of the physical information needed in the finite-volume method 

The essential idea for a generic solver is to have all the numerical parts of the problem handled by 
a finite-volume toolkit. This toolkit then makes calls to external physical packages to receive the 
information relevant to the physics of the problem being solved. By making all physical packages 
look the same to the numerical toolkit, any physical problem can be solved using the generic solver. 

This section describes how the separation of the numerical and physical aspects of the solver was 
accomplished. The technique considered takes full advantage of the object-oriented approach to 
programming. Object-oriented programming allows the creation of standard interfaces to parts of 
code. These interfaces are known as classes. The generic solver interacts mainly with the Physics 
class. 
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3.6.1 The physics class 

The Physics class has to provide all the information regarding the physical aspects of the simu­
lation to the solver. In particular, it must provide the data for the following items: 

Number of flux variables 

The first information the Physics class provides to the solver is the number of flux variables in 
the problem. The number of variables will determine the size of the storage arrays needed later in 
the simulation. It also sets the number of items in the flux vector. 

Interior flux 

Perhaps the most important physical aspect of a problem, the interior flux is the flux that crosses 
the control volume boundaries located in the interior of the domain. This corresponds to the flux 
F = Fxi + Fyj introduced in Section 3.1. The solver will call the interior flux function at every 
location it needs to be evaluated, i.e. at every Gauss point on each cell boundary. 

—* 

The interior flux function returns the result of F • n. Information about the location of the Gauss 
point, as well as the normal vector are available to this function. Furthermore, the values of flux 
variables (as well as their derivatives) from each side of the boundary are available. These values 
are known as the left and right values. 

Source term 

The source term of the equation, S (from Equation 3.4), must also be provided to the solver. In 
some cases, a Physics class may not have a source term. However, if one is defined, the solver 
will compute the value of the source term at each of the Gauss points in the control volume. The 
number of Gauss points varies with the order of accuracy used for the simulation. 

The source term function returns the value of S. Once again, the values of the flux variables and 
their derivatives are available to the function, as well as the location of the Gauss point. No normal 
vector is provided since the source term is not a vector quantity. Since the source term is evaluated 
in the interior of the cell, there is only one value for each variable (no left and right values). 
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Related quantities 

The Physics class is able to provide quantities related to the physics of the problem on demand. 
For example, a heat conduction Physics class is able to compute the wall heat flux qn anywhere 
on the boundary of the domain. These quantities can then be used for post-processing purposes. 

Initial solution 

Finally, a Physics class must be able to provide a generic initial solution that the solver can use 
in case the user does not specify one. 

3.6.2 Boundary condition types 

The boundary conditions are also defined in the Physics class. Each boundary face in a mesh 
has a boundary condition number associated with it. This number will then be associated with a 
boundary condition type, specific to the Physics class. This boundary condition type can be used 
for any problem where a particular physical phenomenon occurs, so it must not rely on a specific 
boundary condition number, or mesh. 

The boundary condition types can be defined using either a specific boundary flux, or by specifying 
constraints on the boundary reconstruction. It is possible to assign several boundary types to a 
boundary condition number. The only requirement is that only one boundary flux be specified 
for a given boundary condition number. The code places no limits on the number of constraints 
assigned to a given boundary condition number. 

The boundary flux function returns the value of the flux in a way similar to the interior flux function. 
The location, the normal vector, as well as the values for the flux variables are available. The only 
difference from the interior flux function is that the data only comes from one side, since the 
boundary face only has one neighbor cell; the left and right values are therefore identical. 

Boundary constraints also have the location, as well as the normal vector available. Additionally, 
the value of the constraint itself, typically set by the user, is also available. 

Figure 3.4 shows schematically how the solver has been modified to make calls to an external 
Physics class whenever physical information is needed. The Physics class is shown with two 
boundary condition types for illustration purposes. 
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Figure 3.4: Solver making calls to external Physics class 

3.6.3 Separate Mesh classes 

Another exciting feature made possible by the use of classes is to make the solver use a generic 
mesh structure. This allows the solver to be used with any type of mesh. Not only can the solver 
potentially use both structured and unstructured meshes, it can also use both two-dimensional and 
three-dimensional meshes, all within the same solver. This done by having the solver interact 
with the mesh through a standard interface called a Mesh class. The base Mesh class defines the 
interface that allows access to information such as the number of control volumes, the dimension 
of the mesh, as well as the interface for flux integration on the mesh. Each specialized mesh class 
then implements these functions. 

Two main branches of the Mesh class have been written already. The first one, the Unstructured-
Mesh class, implements the various containers necessary for unstructured mesh representation, as 
well as the functions needed to access them. This class is then further specialized into 2-D (triangu­
lar) and 3-D (tetrahedral) classes, and both of these classes also have implementations for both cell-
and vertex-centered meshes.4 The other main branch for the Mesh class is the StructuredMesh 
class. This class is also divided in both 2-D and 3-D classes, although only the 2-D class has been 
implemented so far. The 2-D structured mesh class uses quadrilateral-shaped control volumes. 

4Unless specified, the unstructured meshes used in this research are always of the cell-centered type, where the 
control volume exactly matches the cell in the mesh. 
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3.6.4 The Recon class 

The Recon interface has been created to facilitate access to reconstructed solution data at Gauss 
points. The interface for the functions that compute the value of the flux variables and their deriva­
tives is defined here. The class also implements how the constraints on the reconstruction can be 
denned. 

The reconstruction method introduced in Section 3.2 is used with unstructured meshes. The code 
for this method was moved into a specialized version of the reconstruction class for unstructured 
meshes. Reconstruction could be used along with structured meshes as well, but the code would 
have to be modified in order to take into account the difference in mesh topology. It would be 
possible to write a structured version of the Recon class that would implement this modification. 

However, with structured meshes, it is possible to take advantage of the predictable topology and 
compute the values and gradients much more efficiently using Taylor series expansions. These 
expansions eliminate the costly step of solving a least-squares problem for every control volume 
in the mesh. This step in simply ignored when using the structured specialization of the Recon 
class. For the solver, however, there is no difference, since the interface for the unstructured and 
the structured Recon classes are exactly the same. 

The unstructured reconstruction method implements first-, second-, third-, and fourth-order ac­
curate schemes. The structured version only implements a second-order scheme at the time of 
writing. 

Figure 3.5 is a schematic of how the solver and the various classes highlighted in this section 
interact. The solver needs access to the Recon class whenever it needs access to reconstructed 
data: when computing interior fluxes, source terms, and boundary conditions. In turn, the Recon 
class needs access to the topology of the mesh in order to perform the reconstruction (unstructured) 
or compute the Taylor series (structured). Furthermore, the solver needs to know the location of 
the Gauss points for flux computation, so it also interacts with the Mesh object. 

3.7 Sample problems 

To demonstrate the effectiveness of the generic solver, three different physical problems were 
solved. The physical phenomena investigated were: heat conduction, solid mechanics, and in­
compressible fluid flow. The mesh remained the same for the three problems, and is illustrated in 
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Mesh class Solver 

Size Info 

Topology Info 

Recon class 

Var evaluation 

Grad evaluation 

Physjcs class _ 

Interior flux 

Bdry condition TYPE 

Bdry Constraints 

Bdry Flux 

Bdry'condition TYPE 

[ Bdry Constraints 

[ Bdry Flux 

Source term 

Figure 3.5: Schematic of the various standard interfaces for the physics, the mesh, and the recon­
struction interacting with the generic solver 

Figure 3.6.5 The domain has a length L = 1.0 and a height H — 0.2. All the simulations were 
performed using a cell-centered scheme. 

Figure 3.6: Mesh used for the sample problems presented in this chapter 

The following problems can easily be solved analytically; they are used to demonstrate the flex­
ibility and the accuracy of the generic solver. The numerical solutions were compared to their 
analytical counterpart. 

5Keeping the same mesh is, of course, not necessary. In fact, some of these problems could be solved more 
efficiently on a different mesh. However, for illustration purposes, the same mesh is used for all three problems. 
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3.7.1 Heat conduction 

Physical description 

Heat conduction is governed by the following differential equation: 

k dt dx2 dy2 k 

Where T is the temperature, q is the energy generated per unit volume, k is the thermal conductiv­
ity, p is the density and c p the specific heat of the material. Letting Equation 3.13 take the form of 
Equation 3.1 results in: 

?L _ A (a?L\ _ JL (aK\ = J_ ( 3 H) 
dt dx \ dx J dy \ dy J pcp 

where a = is the heat diffusivity of the material. Comparing Equation 3.14 to Equation 3.1, it 
can be seen that: 

This translates into the following fluxes: 

and the following source term: 

U = T (3.15) 

dT 
Fx = - a — (3.16) 

dx 

dT 
Fv - - a — (3.17) dy 

S=— (3.18) 
pcp 

Boundary condition type: Imposed temperature 

There are two boundary condition types for the heat conduction problem. The first one imposes a 
temperature at the wall. This is done by setting a constraint for the temperature value at the wall. 

—* 

The value of the constraint is set by the user. The boundary flux is simply Fb = Fx • nx + Fy • ny. 
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Boundary condition type: Imposed heat flux 

The second boundary condition type imposes a specific heat flux at the wall. This boundary con­
dition is defined by specifying a boundary flux. The normal heat flux at the wall qn = is 
specified by the user. The boundary flux then becomes: 

Fb = - ^ 
pcp 

This boundary condition type can be used to specify an insulated wall by setting the normal heat 
flux to zero. 

Problem definition 

The domain was subjected to a temperature boundary conditions on all boundaries. The left bound­
ary had an imposed temperature of TL = the right boundary had a similar temperature bound­
ary condition, but with a decreasing temperature in y: TR = 10 — The top and bottom surfaces 
have imposed temperatures varying with x, with TB = f̂f and TT = 10 — . 

The analytical steady-state solution for this problem is a bilinear temperature distribution: 

Tlx v) ~ 1 0 X I 1 0 V 2 0 X V 

Looking along the diagonal joining the top-left corner to the bottom-right corner of the domain, 
the temperature profile is: 

r W U ( l _ j ) = 2of ( f - i ) + i o 

This is the temperature profile that will be used for comparisons. 

Since they do not affect the steady-state solution, k, p, and cp were set to 1. A second-order 
accurate scheme was used. 

Results 

A second-order accurate reconstruction scheme recovers the gradients of the interior flux exactly, 
so it is no surprise to see in Figure 3.7 that the numerical solution matches the analytical solution 
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well. 

Temperature profile along y=H(1-x/L) 
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Figure 3.7: Temperature profile along y = H (1 — f) 

3.7.2 Solid mechanics: plane stress 

The second test problem is most often solved using the Finite Element Method. However, it is 
possible to solve plane-stress problems with ANSLib; one only has to provide the necessary de­
scription of the physics. 

Physical description 

The differential equations of motion of a deformable solid are (from [10]): 

da. 
dx 

(3.19) 

where Bi are the body forces in the i direction. Using small-displacement theory, the strains for an 
isotropic material can be expressed using the following relationship: 



CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 54 

1 / dui duj 
%3 2 \dxj dxi 

(3.20) 

In this equation, Ui is the displacement of the material. The plane stress assumption dictates that: 

/ CTxx \ 

'yy 

E 
1 - V2 

tyy + UC 

yy 

XX (3.21) 

where E is the modulus of elasticity and v is Poisson's ratio. Combining Equations 3.19,3.20, and 3.21 

yields: 

9 I i_„2 (exx + ueyy) 

"dx\ E -

E 

2(\+u)^y 

Using displacements u and v, the following are obtained 
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(3.24) 

(3.25) 

S = -
Bx 

B„ 
(3.26) 

Boundary condition type: Imposed ̂ -displacement 

This boundary condition type imposes a value for displacement u at the boundary. This boundary 
condition type is imposed using a boundary constraint. The boundary flux used is the same as the 
interior flux F. 
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Boundary condition type: Imposed (/-displacement 

This boundary condition type imposes a value for displacement v at the boundary. The boundary 
condition is enforced in the same way as the ̂ -displacement boundary condition. Since any number 
of boundary constraints can be used, a displacement in both the x- and the y-direction can be 
imposed at a boundary by using a combination of the x- and y-displacement boundary conditions. 

Boundary condition type: Imposed stresses 

The normal (ab) and shear (rb) stresses at the boundary can be enforced using a boundary flux. The 
flux then becomes: 

The signs were chosen to agree with the sign convention for stresses (tensile stress is positive, 
compressive stress is negative). 

Boundary condition type: Symmetry 

This boundary condition type is used whenever there is a symmetry in the problem. Taking advan­
tage of symmetries in the geometry improves the performance of the simulation by reducing the 
number of computational nodes needed. The symmetry boundary condition imposes two things: 
zero displacement in the direction normal to the boundary, and also imposes a value of 0 to the 
normal derivative of the displacement tangent to the boundary. Both of these restrictions are im­
posed using boundary constraints. For example, for a vertical boundary face, the two constraints 
would be u = 0 and |g = 0. 

Problem definition 

We are solving the problem of a beam under tension in the ̂ -direction. Only a quarter of the beam 
is modeled, because of symmetry in both axes. Symmetry boundary conditions are imposed on the 
left and bottom boundary faces. The top boundary is free to move, and the right boundary face has 
a normal stress of ab = 1 imposed to it.The modulus of elasticity E was set to 7000 and Poisson's 
ratio v to 0.2. 
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The displacements at the right boundary are used to assess the accuracy of the simulation. The 
theory of elasticity states that the displacments in the direction of the applied stress are: 

u(y)\x=L = ^ L 

The displacements in the other axis are governed by Poisson's ratio: 

v(y)\x=L = - ^ L v 

A third-order accurate scheme was used. 

Results 

The numerical results matched the analytical solution accurately, as can be seen in Figure 3.8. 

3.7.3 Laminar incompressible Navier-Stokes 

Physical description 

The incompressible Navier-Stokes equations can be put in the form of Equation 3.6 by adding 
a time-dependent pressure term in the continuity equation, as described in [22]. The continuity 
equation now looks like this: 

dt "*~ P dxi ^ (3.27) 

where ft is an artificial compressibility parameter. The smaller the value of /3, the more "incom­
pressible" the equations, although very small values of /? make the equations stiff numerically. Of 
course, the addition of this time dependent term to the continuity equations means that the real 
incompressible equations are no longer being solved. However, when the solution reaches steady-
state, the time derivative is zero and Equation 3.27 becomes the continuity equation. This method 
therefore can only be used to obtain steady-state solutions. 

The Navier-Stokes momentum equations remain the same: 
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Figure 3.8: Displacements along x = L 
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dui duiUj 
dt dxj 

OP 1 
+ 

d2Ui 
(3.28) 

dxi Re dxkdxk 

where U{ are fluid velocities and Re is the Reynolds number of the flow (from [43]). 

If one converts these equation to the form given by Equation 3.6, the following relationships are 
obtained for a two-dimensional problem: 

U 
f P \ 

u 

\ « / 

FT = u 
1 du 

Re dx 

\v2 + P 
Re dy 

\ 

J 

s = 0 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

In this case, it is practical to use the flux vector F — Fx • nx + Fy • ny since some simplification is 
possible. The flux vector is: 

v 

F = (3.33) 

where V = u • hx + v • ny is the flow velocity normal to a control volume boundary. 
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Boundary condition type: Inflow 

This boundary condition type imposes a fully-developed normal velocity profile at the boundary. 
The fully-developed condition imposes that ^ = 0. The tangential velocity is set to zero. The 
pressure boundary condition is determined using the normal momentum equation and the fully-
developed condition, and results in: 

2£ = (3.34) 
dn Re dc2 

where c represents the cross-stream direction. Since Vb is a known value, the condition on pressure 
can be computed. The user must specify both the normal velocity profile and the pressure gradient 
at the boundary. All conditions are imposed using constraints on the reconstruction. 

Boundary condition type: Stationary wall 

At the wall, velocities u and v are zero, due to the no-slip condition. Furthermore, | £ is also set to 
zero, from Equation 3.34. These three conditions are enforced using boundary constraints, and the 
interior flux is used on that boundary face. 

Boundary condition type: Outflow 

For this boundary condition, the pressure is enforced to a value of zero. The boundary condi­
tions also enforces fully-developed flow by constraining the tangential velocity and the normal 
gradient of the normal velocity to zero. These three conditions are imposed as constraints on the 
reconstruction. 

Problem definition 

We are solving a simple channel flow problem. An inflow boundary condition is imposed at the 
left boundary of the domain, an outflow at the right face, and both the top and bottom surfaces are 
considered stationary walls. The constants used were Re = 50 and /3 = 5. The velocity profile at 
the inflow is constant: 

Vb = l 
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The profile at the outlet will be used to verify the accuracy of the simulation. The exit profile 
should be the laminar fully-developed parabolic profile: 

i ATT y f-i y \ 
U\x=L = 4Umax — (l - —) 

Using conservation of mass, this profile should have a maximum velocity of Umax = 1.5. A 
third-order accurate scheme was used. 

Results 

The velocity profile obtained matches the fully-developed profile, as can be seen in Figure 3.9. 
The error on the maximum velocity was of the order of 3 x 10~4, or about 0.02%. This error is 
due to the fact that the flow rate entering the system is not exactly VbH. This discrepancy is caused 
by the conflicting boundary conditions for the control volumes located in the left corners of the 
domain. Reconstruction tries to set u = 0 at the top and bottom walls, but is also trying to satisfy 
the inlet boundary condition, where u ^ 0. In fact, the velocity profile at the outlet matches the 
fully-developed profile for the real flow rate entering the domain. 

Velocity profile at x=L 

0 0.2 0.4 0.6 0.8 1 
y/H 

Figure 3.9: Velocity profile at x = L 



CHAPTER 3. GENERIC FINITE-VOLUME SOLVER 61 

Summary 

In this chapter, the details of the generic numerical toolkit used in this research have been presented. 
The finite-volume method has been described in Section 3.1. Section 3.2 covered reconstruction, 
the method used by the toolkit to achieve high-order accuracy on unstructured meshes. Boundary 
conditions and time-advance methods were then covered next in Sections 3.3 and 3.4. 

The generic solver concept was introduced in Section 3.6; the different classes needed by a generic 
solver are presented in this section. Finally, in Section 3.7, three different physical problems were 
solved on the same mesh to demonstrate the effectiveness of the generic nature of the solver. 



Chapter 4 

Generic Multiphysics Solver 

Multiphysics problems are problems where several physical phenomena interact to produce a cou­
pled solution. Each combination of physical phenomena have a different way of interacting with 
each other, but some similarities can be seen. In particular, it is possible to categorize the interac­
tions using the location of the coupling, and these two categories are: field coupling and interface 
coupling [21]. 

4.1 Field coupling 

In field coupling, the physical phenomena interact over the interior of a domain. One physical 
phenomenon requires information from the other phenomenon over the entire domain, and vice-
versa. The interaction between the Reynolds-averaged Navier-Stokes (RANS) equations and an 
accompanying turbulence model is an example of field coupling. At every location in the domain, 
the turbulence model equations require information about the mean flow from the RANS equations, 
and the RANS equations need the eddy viscosity to compute Reynolds stresses. 

4.2 Interface coupling 

In interface coupling, multiple physical processes in two neighboring regions interact through a 
common interface. In this case, the information exchange only happens at the boundary between 
the two regions. Fluid-structure or conjugate heat transfer problems are examples of interface 

62 
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coupling. In a conjugate heat transfer problem, the coupling is relatively simple, as both the tem­
perature and the normal heat flux from the neighbor regions must match at the boundary. The 
coupling for fluid-structure problem is far more complex. The fluid region dictates the stresses 
in the solid region at the boundary: the normal stress must be equal to the pressure in the fluid, 
and the shear stress must be equal to the wall shear stress in the fluid. The solid region, in turn, 
influences the fluid region by way of deformation of the interface: the fluid domain changes over 
time, and the velocity of the interface is used to impose the no-slip condition in the fluid region (if 
a transient solution is required). 

4.3 Numerical simulation 

Writing a generic multiphysics solver poses a number of challenges. Even though the work done 
for this research was based on an already proven generic solver, much of the interface with the 
Physics class for this solver had to be re-written [7, 8]. In fact, single-physics problems are now 
treated as special cases of multiphysics problems. 

One of the obvious changes needed was that the solver must now interact with multiple Physics 
classes. Another change was to allow multiple regions, or subdomains, in a problem, each with 
their own set of Physics classes. But perhaps the most crucial modification was allowing the 
exchange of information between different Physics classes, whether on the same domain, or 
across an interface. This requirement had a serious impact on how the interface for the physics of 
a problem was modified, and is therefore introduced first in Section 4.4. The following sections, 
Section 4.5 and Section 4.7, then introduce new classes that were created to simplify the task 
of managing multiple physical phenomena, and multiple subdomains in a problem, respectively. 
Results are presented in Sections 4.6 and 4.8. 

4.4 Data exchange 

The first requirement for data exchange is that the solver must know what information each phys­
ical package can exchange with another. This is accomplished by the use of another class, the 
PhysVar class. Every piece of data the Physics class needs or can provide to other class has an 
accompanying variable. The Physics class keeps a list of PhysVars. 1 There are different types 

'It should be noted that this class is only used to describe the data each Physics class needs or provides, and that 
the actual value of the data is not stored in the PhysVar class. 
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of variables needed by the Physics class, and the types are outlined in Section 4.4.1. 

Once all the Physics classes have listed their variable requirements, it is then possible to couple 
the classes together. The coupling is accomplished through variable association, and this process 
is covered in Section 4.4.2. 

Additionally, some computations can only take place when the values for all dependent variables 
are available. This requirement is fulfilled by the use of dependency trees. Details are presented in 
Sections 4.4.3 and 4.4.4. Finally, a summary of all the modifications made to the Physics class 
to make use of PhysVars is given in Section 4.4.5 

4.4.1 Variable types 

The items in the list of variables for a given Physics class are created at the same time the class 
is created. Each PhysVar contains all the information the solver needs to know about a variable; 
each is given an identification number, a name, a symbol, units, and a variable type. Variables 
can be accessed from within the Physics class using the vecValues array, a Physics class 
member variable. For example, the variable with identification number eDensity is located in 
vecValues [eDensity] . The different variable types are listed below. 

Flux variables 

This variable type is used to let the solver know about the conserved variables of the problem. The 
user defines as many of this type of variable as there are items in the solution vector. The solver 
will size the different arrays needed in the simulation using the information given by the number of 
flux variables in a Physics class. Furthermore, the identification number assigned to each of the 
flux variable is used in the Physics class itself by the reconstruction variables and the boundary 
constraints. However, the value of the flux variable is never stored using this identification number, 
so this variable type is used only for information purposes. Reconstruction variables (see below) 
are used to access the values of the flux variables. As an example, the heat conduction package 
only has one flux variable: the temperature T. 

Required variables 

Variables of this type are used to indicate information that is needed by the Physics class to 
compute such things as the fluxes or the source terms. The heat conduction package used in our 
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example has three required variables: the conductivity k, the density p and the specific heat cp. 

Boundary condition variables 

The boundary condition variables are a special type of required variables used by the boundary flux 
or the boundary constraint functions for data specific to a boundary condition type. This variable 
requires an extra parameter that tells the solver which boundary condition type it is associated 
with. For example, in the heat conduction package, one of the boundary condition types imposes 
a specific temperature on the boundary. This is done using a boundary constraint. A boundary 
condition variable Tb is then created to contain the value of the temperature at the boundary, and 
the constraint is set to that value. 

Reconstruction variables 

This type of variable is used by the Physics class to access reconstruction data computed by the 
Recon object. The reconstruction variables require some extra parameters. The first one is the type 
of reconstruction data that is needed. The choices are the following: Location, Normal, Solution, 
or Gradient. 

The location type tells the solver that some information about the location of the Gauss points 
is needed. The normal type is used to indicate that information about the normal of the control 
volume face is required. Both of these types require one extra parameter which tells the solver 
which item in the location or the normal vector is required (i.e. x, y, or z). 

The solution type is used whenever the value of one the flux variables is needed. It requires two 
extra parameters: the first one is the side of the data to be returned (i.e. left or right of the control 
volume boundary), and the second one tells which flux variable should be used. This last parameter 
uses the identification number of one of the flux variables. 

The gradient type tells the solver that the gradient of one of the flux variables is needed. This 
type requires three extra parameters. Similar to the solution type, the side and the flux variable 
identification number are needed. The gradient direction is also needed (x, y, or z). 

In the heat conduction package, the interior flux needs access to the temperature gradients. Four 
reconstruction variables of type gradient are needed to compute the flux: two for dT/dx (left and 
right), the other two for dT/dy (left and right). 
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Computed variables 

All of the previous variable types have been for data that was required by the Physics class. The 
next two types are for data that can be provided by the Physics class to the solver, the user, or to 
other Physics packages. 

A computed variable is another quantity that the Physics class can compute, besides fluxes and 
source terms. This type of variable is particularly useful for boundary conditions in multiphysics 
problems. For a quantity to be exported from the Physics class, a computed variable must be 
defined for it. 

As an example, when solving a conjugate heat transfer problem, the heat fluxes from both sides 
must match at the boundary, so the normal heat flux qn = k^ from the heat conduction package 
is exported using a computed variable. This information can then be used by other packages. 

Computed variables can also be used to avoid repetitive computations. For example, in the heat 
conduction package, the heat diffusivity a is required for flux computations. As diffusivity can be 
computed from k, p, and cp, a computed variable is created for it. This avoids having to compute the 
diffusivity twice during the flux calculations. The same principle can also apply to reconstruction 
variables. In the heat conduction package, using the average of the left and right reconstruction 
data is adequate. Computed variables are created for the average of temperature gradients, and 
simplify the flux definition. Similarly, it is possible to export the value of temperature at some face 
by creating a computed variable returning the average of the left and right values of the temperature 
on that face. 

Computed variables get their own function, just like the interior flux function for example, where 
the value of the variable is actually computed by the Physics class. This function uses the iden­
tification number of the variable to know which quantity to compute, and returns the value to the 
solver. 

Constant variables 

Constant variables are also values that can be exported from a Physics class. They are a special 
case of computed variables, and allow the solver to fetch data in a more efficient way. Using a 
large number of constant variables, it is possible to create a "database" Physics class, whose 
only function is to provide constants to other Physics classes. 
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4.4.2 Variable association 

Now that the Physics class can inform the solver on all the variables it needs and provides, 
coupling the different physical packages is straightforward conceptually. For this task, variable 
association between a required and a provided variable is used. The association is done by having 
the solver link the two variables together using a pointer. This way, whenever the solver needs 
the value of a given required variable, it automatically uses the value of the provided variable 
associated with it. 

4.4.3 Variable dependencies 

In certain cases, the value for some variables can not be fetched until the value of other variables 
are available. For example, computed variables typically need a list of other variables values to 
be available before they can be computed and used by the solver. These other variables are called 
dependencies of the original variable. Here is a list of the dependencies for each type of variable. 

Flux variables: Flux variables are only used for information purposes (see Section 4.4.1). They 
have no dependency. 

Required variables: Required variables have only one dependency: their associated variable. 

Boundary condition variables: Since boundary condition variables are a special case of required 

variables, they too only have their associated variable as a dependency. 

Reconstruction variables: The values for reconstruction variables can always be obtained by the 

solver. This variable type therefore does not have any dependency. 

Computed variables: Computed variables can have any number of dependencies. The depen­
dencies are always variables that are local to the Physics class. The Physics class must 
inform the solver of the dependencies of each of its computed variables. 

Constant variables: Constant variables provide values to other Physics classes. They do not 

have any dependency. 
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4.4.4 Dependency trees 

It was mentioned above that the solver uses the value of an associated provided variable whenever 
the value of a required variable is needed. Using this approach blindly can have some serious flaws. 
First, there is no guarantee that the value of the associated variable will be available at the time 
it is needed. The only way a variable value is available is if the value for all of its dependencies 
was also available. Second, several variables can be associated to the same required variable. The 
solver would then fetch (or compute) the value of the associated variable several times, with a 
serious impact on efficiency. 

This problem was solved by using dependency trees. A separate dependency tree is created for 
each of the following tasks: computing the interior flux, computing the boundary flux, setting 
the boundary constraints, and computing the source term. Dependency trees determine the order in 
which variable values are fetched, and help avoid availability issues and unnecessary computations. 

Take for example the interior flux dependency tree for the solid mechanics package, shown in 
Figure 4.1. The interior fluxes for this package are the stresses in the problem. The tree is built 
by inserting all the variables needed for the interior flux. In these trees, the shaded items have 
dependencies; the items with a white background do not. Whenever an item is inserted in the tree, 
it is checked for dependencies. If the variable inserted in the tree depends on other variables, then 
these variables are recursively inserted in the tree as well, below that original node. Figures 4.1a 
shows how this applies for oxx. The stress first depends on the strain exx. This, in turn, depends on 
the average value of du/dx, which is computed from both the left and right values obtained from 
reconstruction. The dependencies for eyy are then introduced in Figure 4.1b. Figure 4.1c shows the 
rest of the axx dependencies being added to the tree; constants E and v are needed to compute the 
stress. The values for these constants is set by the user, as indicated by the dashed arrows to the 
constant variables. As can be seen, the chain ends whenever a reconstruction or a constant variable 
is inserted, neither of which have dependencies. If an item is already present in the tree, a link to 
that node is made instead of inserting a second copy. Figure 4.Id demonstrates this: inserting ayy 

as a dependency does not add any nodes to the tree, but new links are created. The dependencies 
for axy are inserted in Figure 4.1e. Finally, Figure 4. If shows the complete tree, with the addition 
of the components of the normal vector, also needed for the interior flux computation. 

Whenever interior fluxes need to be computed, the solver goes through the dependency tree, start­
ing at the lowest level. Each variable is fetched, and stored in the appropriate location. Since 
dependencies are always stored at a lower level, variables needed by nodes at a higher level will be 
available when the time comes to compute them. This method also ensures that each variable will 
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Figure 4.1: Dependency tree for the interior flux computation of the solid mechanics packagi 
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only be fetched or computed once. In our example, variables such as E and v are each needed by 
multiple variables; using a dependency tree prevents fetching these constants three times. 

This dependency tree will be used to compute the interior flux at all the Gauss points on the 
control volume boundaries. As stated above, using the dependency tree prevents multiple variable 
lookups at a given Gauss point. However, there is still a possibility that constant variables will 
be fetched several times during the course of a simulation, even though their value do not change 
from location to location. For this reason, the constant values are fetched and stored only once, 
before the simulation starts. The constant variables are then removed from the dependency tree. 
Since constant variables are always located at the end of a branch, removing that node does not 
affect the rest of the tree. The updated dependency tree for the solid mechanics package is shown 
in Figure 4.2. 

Interior 
flux 

Figure 4.2: Optimized dependency tree for the solid mechanics package with constants removed 

4.4.5 Modifications to the P h y s i c s class 

The following is a summary of all the modifications made to the Physics class to make use of 

PhysVars. 

Vectors of variables and variable values 

The Physics class now owns a vector which contains all the PhysVars it is using. The variables 
are stored according to their identification number. In parallel, the Physics class also has a vector 
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of equal length (the vecValues [ ] array) that is used to store the values of each of the PhysVars. 

Dependency information functions 

The Physics class already had four functions that handled all the physical aspects of a numerical 
simulation: the interior flux, the boundary flux, the boundary constraints and the source term func­
tions. These functions are called the computing functions. Each of these now has an associated 
dependency information function. This is the function that the solver calls to find out what vari­
ables are needed to compute the interior flux, for example. The dependency information functions 
require one parameter, a vector of boolean variables all initially set to false. The vector has the 
same size as the variable vector. The function sets the boolean variable to true for the variables 
needed to compute the flux. 

Modifications to the computing functions 

The computing functions now use the values stored in the vecValues [ ] vector to perform their 
computation. The proper values are always available when needed, thanks to the dependency 
information function. 

Support for computed variables 

The Physics class now contains functions that allow variables related to the physical equations it 
describes to be computed. Two functions are needed: one to compute the variables (the computing 
function), and the other to inform the solver about the dependencies of the computed variables 
(the dependency information function). The computing function requires only one parameter: the 
identification number of the computed variable. It returns the value of the computation. The de­
pendency information function requires two parameters: the identification number, and the vector 
of boolean variables indicating dependencies. 

4.5 The R e g i o n class 

Multiphysics problems invariably require multiple Physics classes interacting with each other. 
For field coupling problems, these Physics packages interact over the same region. In fact, it 
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would be possible to write a super-Physics class that combines the effects of multiple physical 
phenomena, and solve it as a single-physics problems. There are several reasons to avoid this 
approach. 

One of the reasons is that it would require creating a highly-specialized Physics class. This class 
could then only be used when all of the physical phenomena are to be solved together; it would be 
impossible to use some of the separate physical aspects in a different simulation. 

The main reason to shy away from this approach, however, is the amount of work it would take 
to create a truly useable package that would combine all these physical phenomena together. In 
particular, the number of boundary conditions types needed would fast become unmanageable. 
Imagine combining just two Physics classes in a single super-Physics class. Each of the orig­
inal Physics classes have a number of boundary condition types. Suppose that one has four 
boundary condition types, the other five. A proper super-Physics class would cover all possi­
ble combinations of boundary condition types, which, in this case, could result in having to write 
twenty different boundary condition types! 

A better approach is to use the same separate Physics packages that can be used in a single-
physics problem, and solve them all at the same time. The Region class was created as a managing 
layer between the solver and the multiple Physics classes. The solver does not interact with 
the Physics classes directly. The Region class acts as a subordinate solver over a particular 
subdomain, and calls each Physics class in turn. The Region class also handles all the details of 
field coupling between the different physical packages on that subdomain. This new framework is 
represented schematically in Figure 4.3. 

The main tasks of the Region class are to provide interaction with the mesh, to manage a list of 
Physics classes and to support the evaluation of the fluxes on all these Physics classes. These 
tasks are described in more details in the sections below. 

4.5.1 Mesh interaction 

The Region class owns the Mesh object over which its Physics classes are being used. The 
Mesh object is passed to the Region at initialization. The Region class then extracts information 
from the mesh: it obtains the order of accuracy of the simulation from the mesh (as a mesh object 
is initialized with a particular order of accuracy), and automatically creates the proper Recon 
object. The Region class also obtains the boundary condition information from the mesh. The 
Region class then knows the number of boundary conditions in the mesh, and can ensure that the 
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Figure 4.3: Schematic of the generic multiphysics framework for field coupling 

association of boundary condition number to boundary condition type in the Physics classes is 
correct. 

4.5.2 Multiple P h y s i c s classes 

The Region class owns a list of Physics classes. There is no limit on the number of Physics 
classes that can be stored. The class also has functions to add, remove, and access Physics 
classes. The boundary condition types from the various Physics classes are associated to the 
boundary condition numbers in the mesh using functions in the Region class. 

The Region class also handles the manipulation of flux variables. The flux variables from all 
the Physics classes are combined into a single vector and sent to the appropriate Recon object 
(which the Region class also owns). This way, all of the flux variables are reconstructed at once, 
just as they would be if a single Physics class was used. This minimizes the impact on efficiency 
caused by having multiple Physics classes. 

Variables are also managed by the Region class. Once all the Physics classes have been assigned 
to the Region, the variable list from each Physics class is combined into a master list. The master 
list contains some additional information, such as the origin of the variable. Variable association 
between different Physics classes can then take place, by storing pointers from one variable to 
the other in the master list. 
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The Region class also stores the dependency trees needed for interior flux, boundary flux, bound­
ary constraint and source term evaluation. The trees are built by recursively adding the dependen­
cies from all the Physics classes. The trees are then optimized to remove constant items from 
them. The constant values are stored at their corresponding index in the variable value vector of 
their Physics class of origin. 

4.5.3 Flux evaluations 

The most used functions in the Region class are the functions that read the dependency tree and 
store the variable values in the Physics classes. There are four such functions, corresponding to 
the four dependency trees stored for interior flux, boundary flux, boundary constraints and source 
term evaluation. Each of these functions is called once at each iteration, before the fluxes (or the 
source term) are computed in each of the Physics classes. 

The functions go through the dependency tree, starting at the lowest level. At every node they 
encounter, the functions fetch the variable value (either by using data from the Re con object, or 
by asking a particular Physics class to compute it). The value is then stored in the variable value 
vector of the appropriate Physics class. 

Now that the Physics classes have the right values stored in their variable value vector, the flux 
functions in each Physics class are called in turn. The Physics classes are not aware of other 
Physics classes being used. Therefore, the flux vectors they return are sized according to their 
own number of flux variables. These fluxes are then stored at the right location in the global flux 
vector, which is sized according to the total number of flux variables in the Region. 

4.6 Field coupling results 

The field coupling infrastructure introduced in this section allowed the solution of the problems 
presented in this section. These problems both use two Physics classes that were introduced in 
the previous chapter. 

4.6.1 Solid mechanics and heat conduction 

The problem being solved is that of a bar subjected to a vertical temperature gradient. The solid 
mechanics package was modified to also account for thermal strains. The mechanical strains for 
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the problem are now: 

where OCT is the coefficient of thermal expansion, Trej is the zero-strain temperature, and T is the 
temperature of the solid. The fluxes were modified accordingly. The temperature distribution is 
computed by the heat conduction package. The schematic of the problem is shown in Figure 4.4. 

H 

T=T, \ 

T=T0 

— 

• X 

Figure 4.4: Sample solid mechanics with thermal strains problem 

A temperature T 0 is imposed on the bottom surface, and a temperature 7\ is imposed on the top 
surface. The left and right surfaces are considered insulated. The problem is symmetric, so only 
the right half of the bar is used in the simulation. A symmetry constraint is imposed on the left 
surface, i.e. u = 0 and | j = 0. The top and right surfaces are free to move. The bar is considered 
fixed at (0,0). 

The temperature distribution will be linear: 

T(x,y) = T0 + jj(T1-T0) 

From this temperature distribution, the bar will deform according to the following values: 

u(x,y) = 
aT(Ti -T0)xy 

H 

v(x,y) = ^ {y -xl) 

where ar is the coefficient of thermal expansion, and v is Poisson's ratio. The value for v(x, 0) 
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is imposed as a mechanical displacement on the bottom surface. This should have the effect of 
relieving all stresses in the bar. 

For the simulation, values of L = 3, H = 0.5, E = 7000, v = 0.2, aT = 2 x 10 - 5, T 0 = 0 and 
Ti = 10 were used. A third-order accurate scheme was used. The mesh used for this problem is 
shown in Figure 4.5. 

Figure 4.5: Mesh used for the heat conduction and solid mechanics simulation 

Results 

The displacements in the beam matched the exact solution well, as can be seen in Figures 4.6 and 4.7 
This indicates that the temperature results were also accurate, since the displacements are caused 
by the temperature field. This was expected, since a third-order accurate scheme recovers the 
fluxes, and the quadratic nature of the solution exactly. 

The error on the displacements only depends on the convergence level of the solution. In this case, 
the residuals of the problems were converged below 1 x 10 - 1 3. The largest errors in the magnitude 
of the stresses were 2.75 x 10 - 1 0 for axx, 4.15 x 10 - 1 1 for ayy, and 1.46 x 10 _ u for axy. 

4.6.2 Incompressible Navier-Stokes and the energy equation 

The incompressible energy equation will be solved in conjunction with the Navier-Stokes package 
introduced in the previous chapter. The energy equation will have its own Physics package. The 
partial differential equation is: 

dt dx dy Re - Pr \ dx2 dy2 J Re 

where $ is the two-dimensional dissipation term, a source term in the equation: 
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Figure 4.6: Displacement in x along x = L 
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Figure 4.7: Displacement in y along x = L 
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\dx) \dy) \dy dxJ 

For low-speed flows, the dissipation term can usually be neglected. However, for this example, it 
will be included in the simulation. 

In a channel flow of height H and length L with a fully-developed profile of u = 6-̂ (1 — jj) 
and wall temperatures of T\y_0 = T0 and T\ H = TH, the fully-developed solution for the 
temperature profile is: 

T = T - (I) + T « 0 -1) + 6 P r •E c ((I) - 3 (I) 2 + 4 (̂ )3 - 2 (I)4) <-) 

For this problem, values of L = 10, H = 1, T0 = 0, and 7\ = 1 were used. The temperature 
profile is then: 

T = y + 6Pr • Ec (y - 3y2 + 4y3 - 2y4) 

The Prandtl number Pr was set to 0.5 and the Eckert number Ec was set to 0.4324. Note that this is 
several orders of magnitude larger than typical Ec values. This was done to verify the accuracy of 
the source term. The input temperature profile was set to T = y -j- 5.5Pr • Ec(y — 3y2 + 4y3 — 2y4) 
to ensure the temperature reached its fully-developed profile within the length of the channel. A 
fourth-order accurate reconstruction scheme was used to better approximate the quartic nature of 
the temperature profile. The mesh used in this simulation is shown in Figure 4.8. 

Figure 4.8: Mesh used for the Navier-Stokes and energy equation simulation 
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Results 

The results shown in Figure 4.9 were taken along x = 9, where the temperature had reached its 

fully-developed profile. 

Temperature profile along x=9 

0 0.2 0.4 0.6 0.8 1 

y 

Figure 4.9: Temperature profile along x = 9 for the Navier-Stokes and energy equation simulation 

The numerical solution obtained matches the analytical solution very well; this indicates that the 
strains computed from the Navier-Stokes solution (i.e. du/dx, dv/dy, du/dy, and dv/dx) were 
also computed accurately, and that the field coupling in the problem worked as expected. The 
maximum error on the temperature profile was less than 0.1% of the maximum temperature. This 
error is caused by the fact that the reconstruction scheme cannot recover the quartic temperature 
profile exactly. 

4.7 The D o m a i n class 

The Domain class is used to handle the additional requirements of interface coupling. One of 
these requirements is the ability to handle multiple subdomains, on which field coupling might 
still occur. Another requirement, and perhaps the most important, is to allow coupling between 
Physics classes located on different subdomains, through a common interface. 
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The Domain class is an example of the high leverage possible with the object-oriented approach. 
It was mentioned above that the Region class is in fact a subordinate solver that manages its own 
mesh, reconstruction data, and set of Physics classes. By simply creating as many instances of the 
Region class as there are subdomains, and assigning each Region its own set of Physics classes, 
Mesh and Recon object, the generic solver can now solve problems on various subdomains. The 
only additional code needed handles the interactions between different subdomains. The Domain 
class simply asks each Region class it owns to solve the problem on their respective subdomains 
in turn, as is schematically depicted in Figure 4.10. The interface coupling is handled through 
boundary conditions. More details are given in the section below. 

Physics 1 

Region 1 Region 2 

/ \ / \ 
Recon 1 Mesh 1 _ 

Physics 3 

Mesh 2 

Physics 4 

Figure 4.10: Schematic of a problem with both field and interface coupling 

4.7.1 Multiple R e g i o n classes 

The Domain class is initialized with a list of Mesh classes. Each of these meshes represents a 
subdomain. It should be noted that the meshes need not be of the same type, or order. Nothing 
prevents the user from selecting a third-order accurate unstructured mesh in one subdomain, and 
coupling it with a second-order accurate structured mesh in another subdomain. In fact, it might 
be the most efficient way of solving some problems. 
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The Domain class goes through the list of meshes, and creates a Region object for each mesh. 
These Region classes are kept in an internal list. The Domain class also provides functions 
allowing direct access to the different Region objects. 

4.7.2 Interface coupling 

The coupling between different subdomains is done through boundary conditions. The difference 
from regular boundary conditions here is that the boundary condition values at the interface will be 
changing throughout the simulation. For example, when solving a heat conduction problem with 
two subdomains with different conductivities, both the temperature and the heat flux should match 
at the interface. This is accomplished by using a temperature boundary condition on say, the left 
side, and assign it the value of the temperature at that location from the right side. Meanwhile, on 
the right side, a heat flux boundary condition is used at the interface, and it is assigned the value of 
the heat flux computed on the left side. 

As with field coupling, interface coupling is accomplished using variable association. In this case, 
the association will always be between a boundary condition variable, and some other provided 
variable. Since the Domain class has access to all the Region objects, it can access the master list 
of variables for each, and assign pointers to a required variable in a Region class to a provided 
variable in another subdomain. Since we are using pointers to variables to do the association, 
a Region class can access the proper variable, even if it is stored in a different Region class. 
The Region classes remain independent of each other, except for the values of their boundary 
condition at the common interface, which is determined by another Region class. 

4.7.3 Coupling techniques 

The proper choice of boundary conditions for interface coupling is critical for problem conver­
gence. The boundary conditions must enforce all the physical couplings taking place at the bound­
ary. For heat transfer between different media, for example, the temperature T and the normal 
heat flux qn from both sides of the interface must match. Multiple coupling conditions, such as 
these, cannot be enforced simultaneously on both sides of the interface.2 The approach used in 
this research is to enforce one physical coupling from each side. In the heat transfer case, one side 

imposing a temperature, based on the value of temperature at the interface from the other side, on both sides at the 
same time would result in a constant temperature at the interface throughout the simulation. The value at the interface 
would be determined by the initial condition. 
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of the interface enforces matching temperatures (by using a temperature boundary condition with 
the value determined by the temperature from the other side), and the other side enforces matching 
heat fluxes (using a heat flux boundary condition, with the value of the heat flux computed on the 
other side as well). The converged solution will satisfy both boundary conditions at the interface. 

Careful selection of which physical coupling to place on each side is also necessary. This is to 
ensure that the problem on each subdomain remains well-posed. One should avoid, for example, 
cases were Neumann boundary conditions are imposed on all boundary faces of a subdomain. This 
can usually be avoided by exchanging the side on which the couplings are enforced. 

The way the boundary conditions at the interface are enforced also demands some attention. 
Boundary conditions can either be enforced with a constraint on the construction, or through the 
use of a specific boundary flux. It was observed on several occasions that using constraints on 
the same variable (such as on the temperature T and its gradient dT/dn, through the normal heat 
flux) on both sides of a common interface resulted in unstable behavior at the boundary. The sim­
ulation would then diverge rather quickly. Invariably, enforcing one of the boundary conditions 
using a boundary flux (which can easily be done for the heat flux boundary condition, for example) 
removed the instability and resulted in a converged solution. 

Lastly, the interface coupling between two subdomains where the same physical equations using 
the same physical constants are being solved (such as in multi-block problems) can be treated in 
a special way. These interfaces are arbitrary, in that they only define a boundary in the mesh, not 
in the problem itself. These interfaces can then use the interior flux as their "boundary" flux. The 
only difference will be the origin of the reconstruction data. The interior flux is computed at a 
control volume boundary using reconstruction data from the left and right control volumes. The 
boundary flux will be computed the the same way, except that the data from one side is coming 
from a different subdomain. Meshes need not match at the interface for this to work, as the Recon 
object can return the value of reconstruction data anywhere on the mesh. This technique is used in 
the problem presented in Section 4.8. 

4.8 Interface coupling results 

The problem solved in this section will make use of the same Physics classes introduced in 
previous chapters. The problem is a conjugate heat transfer problem. The domain, along with 
the Physics classes being used in each subdomain, is represented in Figure 4.11. Regions are 
identified using roman numerals. 
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Figure 4.11: Domain for the interface coupling problem 

Regions / and II both solve the incompressible Navier-Stokes equations along with the energy 
equations, as in the problem solved in Section 4.6.2. Region / uses a cell-centered scheme, 
whereas region II uses a vertex-centered scheme; both are solved using a third-order reconstruc­
tion scheme. Both regions III and IV use a structured mesh and a second-order scheme, and solve 
the heat conduction equation combined with the solid mechanics equations with thermal strains, 
as the problem described in Section 4.6.1. 

The fluid domain 

The fluid domain is a multi-block domain, and is made up of regions / and II. The problem solved 
in the fluid domain is that of a developing channel flow. The left boundary face of region / imposes 
a uniform inflow boundary condition, with u = 1, v = 0,|^ = 0 and T = 0. The top and bottom 
boundary faces are considered stationary walls, and impose a no-slip boundary condition. The 
top wall has an imposed temperature of Tb — 0. The bottom wall also imposes a temperature on 
the flow. The value of that temperature, however, is determined from the solid domain. The right 
boundary face for region i7 imposes the fully-developed condition, i.e. £ = 0 and v = 0 as well 
as P = 0. There are no constraints on the temperature at the outlet. Interface I-II is an arbitrary 
internal boundary face. The interior flux is used at this interface for the Navier-Stokes equations, 
as described in Section 4.7.3. For the energy equation, a heat flux boundary condition is used in 
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region / and a temperature boundary condition is used in region II. 

The simulation uses values of L = 2.5, H = l,Re= 50, Pr= 0.5, Ec= 0.4324, k = 145, and 
P — 5 for the fluid domain. 

The solid domain 

The solid domain also is a multi-block domain made up of regions III and IV. The heat equation 
is solved in the domain, and is used to determined the thermal strains in the solid region. The left 
boundary face of region III is considered insulated, and also imposes a null -̂displacement. The 
bottom boundary faces of regions III and IV have an imposed temperature of Tb = 1 and are free 
to move. The top boundary faces have an imposed heat flux determined by the heat flux in the fluid 
region, and impose a null displacement in the vertical direction. The right boundary face of region 
IV is considered insulated and free to move. Interface III-IV is an arbitrary internal boundary 
face. Matching temperature are imposed in region III and matching heat fluxes are imposed in 
region IV; the interior flux is used at this interface for the solid mechanics equations. 

The simulation uses values of h = 0.2, k = 204, p = 2707, cp = 0.896, E = 7000, v = 0.2, 
aT = 2 x 10 - 4 and Tref = 0 in the solid domain. 

Results 

The flow in this problem is not affected by the presence of a solid region (since displacements along 
the interface are constrained), so the velocity profile at the exit is the parabolic fully-developed 
profile, as presented in Section 3.7.3. For this reason, the flow velocity results will not be repeated 
here. 

The temperature profile at x = 4.7 is used to determined convergence of the temperature field. 
Since the analytical solution for this problem is unknown, a mesh refinement study was done. The 
mesh in region / was kept constant, and the meshes in region II, III, and IV were progressively 
refined. The decision to keep the meh in region I constant was taken in order to keep the effects of 
the singularities at the left corners constant. For these two corners, conflicting boundary conditions 
from the vertical and horizontal boundaries cause the flow to be disturbed. A refinement of the 
mesh in this region would have changed the effects of these singularities, and would have affected 
the rest of the developing flow. Table 4.1 lists the number of cells in all the meshes used. 
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Refinement level Mesh / Mesh II Mesh III Mesh IV 
1 507 235 25 25 
2 507 348 100 100 
3 507 1117 225 225 
4 507 1374 400 400 

Table 4.1: Number of cells used in the meshes 

The temperature profiles at x = 4.7 for the different refinement levels are shown in Figure 4.12. It 
can be seen that the temperature profile from all refinement levels is quite similar. Some discrep­
ancies appear in the lower refinement levels, but have disappeared from the more refined tests. The 
meshes used in refinement level 4 were used to obtain the remainder of the results in this section. 
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Figure 4.12: Temperature profiles at x = 4.7 for the interface coupling problem for various refine­
ment levels 

The temperature field is plotted in Figure 4.13. It can be seen that the temperature is continuous 
across the fluid-solid interface, and that the dissipation term in the energy equation causes the 
temperature gradient to be non-uniform across the fluid channel. 
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Figure 4.13: Temperature field for the interface coupling problem 

Interface coupling 

The temperature field had to satisfy two conditions at the interface between the solid and the fluid: 
the temperatures, and the normal heat transfer from both regions had to match. Figure 4.14 displays 
the temperature along y = 0.2 at the interface between regions II and IV, and Figure 4.15 shows 
the normal heat transfer along the same interface. 

Figure 4.14 shows that the temperature profiles from both regions match well at the interface. The 
results for the heat flux, from Figure 4.15, also show that the trend from both regions is the same. 
However, the heat flux is not matched as well as the temperature is. The second-order accurate 
structured region II can only yield constant values of heat flux for each control volume; this limits 
the accuracy of the computation of the heat flux in region II. However, it was observed that the 
discrepancies in the heat flux decreased as the mesh was refined. It should also be noted that the 
energy in the problem is conserved even with these discrepancies: the heat flux in the solid region 
is determined by the heat flux computed in the fluid region. Therefore, the fluxes that are used 
for the energy term are the same in both regions at the interface. However, the heat flux that is 
computed in the solid region is different (as can be seen in Figure 4.15), but this is not the flux 
used to update the solution in the boundary control volumes; it has no effect on the conservation 
of energy in the problem. 

Thermal strains in the solid region 

The displaced geometry in the solid region are shown in Figure 4.16; only the displacements from 
region IV are shown here for clarity. The displacements are magnified by a factor of 1000 in x 
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Figure 4.14: Temperature along the interface at y = 0.2 

... . ! 1 1 1 
Region II + 

Region IV x 
d 

+ 

>Kfix 
J -

-

1 
Region II + 

Region IV x 
d 

+ 

>Kfix 
J -

+ 

) 

-

2.5 3.5 4.5 

Figure 4.15: Normal heat flux along the interface at y = 0.2 
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and a factor of 10000 in y. The maximum displacements observed were u = 9.17 x 10 - 4 and 
v = -3.93 x 10-5. 
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Figure 4.16: Displaced geometry in region / V for the interface coupling problem 

The maximum displacements observed are reasonable, considering that a solid region with a uni­
form temperature of 1 would have observed a maximum displacement of u = 1 x 10~3 and 
v = — 4 x 10~5. The displacements for the interface coupling problem were expected to fall 
below these. 

Summary 

In this chapter, the features that were added to the generic numerical toolkit to solve generic mul­
tiphysics problems were presented. A discussion of the different types of coupling present in 
multiphysics problems was given in Sections 4.1 and 4.2. Data exchange between the different 
physical phenomena was the most crucial part of this research; Section 4.4 presented how this was 
implemented in the solver. 

Section 4.5 introduced the Region class, which was added to the toolkit as a way to manage multi­
ple Physics classes. Field coupling problems could then be solved, and results of such problems 
were shown in Section 4.6. The Domain class was also created to allow multiple subdomains to 
communicate with each other; details were presented in Section 4.7. Interface coupling problems 
were then solved in Section 4.8. 



Chapter 5 

Additional Features 

The features presented in this chapter were not covered previously, because they did not play a large 
role in the design of the multiphysics framework. Nonetheless, they are worth mentioning since 
they address specific problems encountered when trying to solve generic multiphysics problems. 

Section 5.1 introduces the concept of source term exchange, which can be useful for solving com­
bustion problems. Additionally, a parsing tool written to help the creation of new Physics classes 
is presented in Section 5.2. 

5.1 Source term exchange 

Source term exchange refers to the possibility of a Physics class computing source terms for 
flux variables in other Physics classes. This feature was added for future use with combustion 
problems in mind, but can also be useful for other types of problems. 

5.1.1 Overview 

In field coupling problems, some Physics packages have source terms that affect flux variables 
from other Physics classes. A chemistry package for combustion is an example of such package. 
This Physics class contains the equations that keep track of chemical interactions needed for the 
simulation of combustion. It would typically be used in conjuction with the Navier-Stokes and 
energy equation packages. The chemical interactions, among other things, generate or absorb heat 
in the system; this can be represented as source terms in the energy equation. The energy equation 

89 
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package would have to be modified in order to account for such source terms. However, a change 
in the type of chemistry being used would also require a change in the energy equation package; 
an undesirable effect, at best. 

To keep Physics classes independent from each other as much as possible, the source term func­
tion from the chemistry Physics class would need access to the fluxes from the energy equation 
package. This is impossible to do using the framework defined so far; Physics class functions 
(such as interior and boundary flux, or source term functions) only have access to the fluxes for 
their own flux variables. 

5.1.2 Changes made to the source term framework 

An exception was made for the source term function to allow packages such as combustion pack­
ages to be used efficiently with other Physics classes without any modification. The solution is 
rather simple: the source term function is given access to the flux vector for all flux variables in the 
Region, not just its own flux variables. It is now the responsibility of the user to assign a source 
term to the proper flux variable in the Region, as the Physics class does not know which other 
flux variables are present in the simulation. 

Each source term is given a description to help the user map the source terms to flux variables. 
The Physics class can have any number of source terms, and each of them must be assigned to a 
flux variable. When computing source terms, the Region class asks each Physics class in turn to 
compute its own source terms. The vector being passed to a Physics class is sized according to 
the total number of flux variables in the Region. Each source term is stored in the proper location 
by the Physics class, according to the mapping determined by the user. The values in the vector 
are then added to the residuals for each control volume before the Region asks the next Physics 
class to compute its source terms. 

The only inconvience to this method is that source terms must always be mapped to flux variables 
by the user, even in cases where the source terms only affect the flux variables computed by the 
same Physics class. However, this inconvenience is outweighed by the ability to solve problems 
with complex interactions, such as those present in combustion problems. 
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5.2 P h y s i c s class definition syntax 

A simple syntax, based on XML (extensible Markup Language), has been created to simplify 
the task of writing new Physics classes. The XML format describes the class using human-
readable keywords. The XML file is automatically converted to C++ by a parsing program written 
specifically for that purpose. The governing principles of XML syntax, as well as the specific 
keywords used to define a Physics class, are described in this section. 

5.2.1 X M L principles 

XML is an extensible markup language used to describe an object using a tree model. XML is 
extensible because any keyword can be used. The XML document forms a tree, and each node in 
the tree has a value. Each node can also have multiple child nodes below it. 

XML nodes are defined using tags. A node, and its associated value, are defined in the follow­
ing way: <NodeName>NodeValue</NodeName>. Every XML document begins with a spe­
cial tag that identifies the XML version used. For our use, this tag is the following: <?xml 
version="1.0" ?>. 

The Physics definition file uses a single main node, with a tag name of <Physics>. All other 
nodes in the document are child nodes of the <Physics> node. An overview of a Physics class 
definition file looks like this: 

<?xml version="1.0" ?> 
<Physics> 

c h i l d nodes are defined here 
</Physics> 

5.2.2 Class description 

These tags are used to identify the Physics class. Two tags are used. The first one is the 
<ClassiD> tag, and its value will be used by the solver to call the Physics class. This value 
must be a single word and unique, i.e. no other Physics class can use the same value. 

The other tag is used to provide the user with a human-readable description of the Physics class. 

The tag used is <ClassDesc>. Here is an example of these two tags from the heat conduction 

package: 
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<ClassID>Heat2D</ClassID> 
<ClassDesc>2D Heat conduction package</ClassDesc> 

5.2.3 Variables 

The variables used in the Physics class must be defined in the file, each as a child node of the 
<Physics> node. It is recommended to define these variable immediately following the class 
description tags (although the order of child nodes in the document is irrelevant), as they are used 
in flux definitions later on. 

Only flux, required, computed and constant variables are defined in the XML file. The definitions 
for the reconstruction variables needed by the Physics class are created automatically by the 
parsing program. The special keywords for reconstruction variables are described below. 

All variables must be given an unique identifier string, using the <ID> tag.1 This ID string is used 
to refer to the variable in the definition file. The <Name> tag is used to describe the variable to the 
user, and the <Symbol> tag is used for short form representation. Finally, the <units> tag is used 
to describe the units of the variable, by providing the power of each dimension (length, mass, time 
or temperature). The <Units> node contains child nodes <M> for mass, <L> for length, <T> for 
time and <K> for temperature. 

As a reminder, here is a system of partial differential equations, with the notation used in the solver: 

d_ 
dt 

t ux \ 

U2 d_ 
dx 

( \ 

1x2 

V fxn J 

+ d_ 
dy 

( /* \ 
fy2 

\fvn J 

S2 

\sn J 

(5.1) 

In this equation, U = (ui,u2, ...un)T is the vector of flux variables, also referred to as the un­
knowns of the problem, Fx = (/Xl, /X2, -fXn)T is the flux vector in the s-direction, Fy = 
(fvnfv2i •••fx„)T is the flux vector in the y-direction, and S = (si, s2, •••sn)T is the source term 
vector. 

'The ID string only needs to be unique within the Physics class. 
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Flux variables 

Flux variables, i.e. each variable in vector U, are defined using the <FluxVar> tag. For the heat 

conduction package, there is only one flux variable: temperature. It is defined as: 

<FluxVar> 
<ID>eFlux_T</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<Units> 
<L>0</L> 
<M>0</M> 
<T>0</T> 
<K>1</K> 

</Units> 
</FluxVar> 

Required variables 

Required variables are variables needed by the Physics class, such as material properties, etc. 

They are defined using the <RequiredVar> tag. The heat conduction package requires k, p, and 

cp. The conductivity variable is defined as follows: 

<RequiredVar> 
<ID>eConduct</ID> 
<Name>Conductivity</Name> 
<Symbol>k</Symbol> 
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units> 

</RequiredVar> 

Computed variables 

Computed variables are variables that the Physics class can provide to other classes. They can be 

used for boundary conditions, post-processing, or to simplify the definition of fluxes. For the heat 

conduction package, the heat diffusivity is required to compute the interior flux. Heat diffusivity 

is defined as a = -^r. Computed variables have an extra tag, <Formula>, to specify how they are 
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computed. The formula must be given using known variable identifiers and standard C language 

mathematical rules. 

< Comput edVar > 
<ID>eHeatDiff</ID> 
<Name>Heat Diffusivity</Name> 
<Symbol>a</Symbol> 
<Units> <L>2</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>eConduct / (eDens * eSpecHeat)</Formula> 

</ComputedVar> 

The known identifiers in the <Formula> tag will be expanded in the C++ file. In this example, 

eConduct, eDens and eSpecHeat are the identifier strings for the k, p and cp variables, respec­

tively. The C++ output for the formula looks like this: 

dValue = vecValues[eConduct] / (vecValues[eDens] * vecValues[eSpecHeat]) 

Constant variables 

Constant variables are also provided variables, but their values never change. The extra tag 

<value> is used to specify the value of the constant. The heat conduction package does not 

have any constant variables, but here is an example of a constant variable defined in a "database" 

Physics class. 

<ConstantVar> 
<ID>eTempB</ID> 
<Name>Steady Temp B</Name> 
<Symbol>TbB</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 
<Value>10.0</Value> 

</ConstantVar> 
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Reconstruction variables 

Reconstruction variables provide access to the data computed by the solver. This data includes the 
value of the flux variables and their gradients, as well as the location and the normal vectors. These 
variables do not have to be defined using tags as other variables. Instead, they all have specific 
identifiers. All these identifiers require a parameter given between { and }. The reconstruction 
variables identifiers are: 

• Loc{}: Provides a value of the location vector. Accepted parameters are: x, Y, and z. 
Example: Loc{x}. 

• NormO: Provides a value of the normal vector. Accepted parameters are: x, Y, and z. 
Example: Norm{X} . 

• LSolnO: Provides the left value of a flux variable. Accepted parameters are identifiers of 
flux variables defined using <FluxVar> tags. Example: LSoln{eFlux_T} . 

• RSoln{}: Same as above, except it provides the right value of a flux variable. 

• Soln{}: Provides the average of the left and right values of a flux variable. Accepted 
parameters are identifiers of flux variables defined using <FluxVar> tags. A computed 
variable returning the average of the left and right values of flux variable will automatically 
be created in the C++ file. Example: Soln{eFlux_T} . 

• LGradxO, LGradYO, LGradZ{}: Provides the left value of ^ , or ^ of a flux vari­
able. Accepted parameters are identifiers of flux variables defined using <FluxVar> tags. 
Example: LGradY{eFlux_T} . 

• RGradxU, RGradYO, RGradz{}: Same as above, except it provides the right value of a 

flux variable. 

• GradXO, GradY{}, Gradz{}: Provides the average of the left and right values of the 
gradient of a flux variable. See Soln{}. 

5.2.4 Interior flux 

The interior flux is defined within the <interiorFlux> tag. The flux for each flux variable must 
be specified using a <FluxData> tag. For our partial differential equations, one should define 
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—# —* 

F\ = fXlnx + fyxny, F2 = fX2nx + e t c - The <FluxData> tag requires two child nodes: a 
<var> node that specifies for which flux variable this interior flux is to be used, and a <Formula> 
node that gives the value of the interior flux itself. As in computed variables, known identifiers in 
the <Formula> tag will be expanded. 
The interior flux for the heat conduction equation is the following: 

= ~ ^ n x + - n y ) 

This is defined in the XML file as: 

<InteriorFlux> 
<FluxData> 

<Var>eFlux_T</Var> 
<Formula>- eHeatDiff * (GradX{eFlux_T}*Norm{X} + 

GradY{eFlux_T}*Norm{Y}) </Formula> 
</FluxData> 

</InteriorFlux> 

In this example, the average value of the temperature gradients are used. Other Physics classes 
would have as many <FluxData> tags as there are flux variables. 

5.2.5 Wave Speeds 

ANSLib can solve steady-state problems using local time-stepping techniques. This maximizes 
the timestep locally, which has the advantage of speeding up convergence. However, since the 
timestep is not the same everywhere in the domain, this technique is not time-accurate and hence 
should only be used for steady-state solutions. 

The local time-stepping approach uses minimum and maximum "wavespeeds" information from 
the Physics classes to determine the maximum timestep possible. For problems with convective 
terms, the wavespeeds can be computed from the Jacobian of the problem. For other problems, 
like heat conduction, the reciprocal of a distance measure between the reference points of adjacent 
control volumes can be used instead. This provides a "fake" wavespeed that can be used by the 
solver. This value is available using the specialized keyword einvDist. 
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The wavespeeds are defined within the <WaveSpeeds> tag. Two nodes, a <Minimum> and a 
<Maximum> value, are expected. Keywords inside the minimum and maximum values are ex­
panded similarly to <Formula> nodes. Following is the example from the heat conduction pack­
age. 

<WaveSpeeds> 
<Minimum>-eInvDist * 0.3</Minimum> 
<Maximum> e l n v D i s t * 0.3</Maximum> 

</WaveSpeeds > 

5.2.6 Source term 

The source term vector is defined within the <SourceTerm> tag. It contains as many <SourceData> 
tags as there are source terms defined in the Physics class. The <SourceData> tags are similar 
to the <FluxData> tags. The difference is that, as seen in Section 5.1, the source terms can act 
on any variable defined on the same Region. Therefore, the <Var> tag is not needed anymore. 
Instead, the <SourceData> node is treated in a similar way to computed variables: it is given an 
identifier <ID>, a description <Desc> as well as <Units>, so the user can assign the source terms 
to the proper flux variables. However, it keeps its <Formula> tag that specifies how the source 
term should be computed. 

There are no source terms defined in the heat conduction package. The following is therefore an 
example of the source term definition for the energy equation package introduced in Section 4.6.2. 

<SourceTerm> 
<SourceData> 

<ID>eDissFunc</ID> 
<Desc>Adds d i s s i p a t i o n e f f e c t s t o th e energy equation*:/Desc> 
<UnitS> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units> 
<Formula> (-eEckert/eReynolds)* 

( 2 . 0 * e S t r a i n X X * e S t r a i n X X + 2 . 0 * e S t r a i n Y Y * e S t r a i n Y Y + 
4 . 0*eStrainXY*eStrainXY)</Formula> 

</SourceData> 
</SourceTerm> 
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5.2.7 Boundary condition types 

The Physics file must also define boundary condition types. Boundary condition types are de­
fined within the <BCType> tag. There is no limit on the number of <BCType> tags in a Physics 
definition file. 

Boundary conditions often require values to be passed to them. These values are either set by the 
user, or used for coupling purposes. The boundary condition values are stored using variables. 
A special variable type, the Boundary Condition variable, is used for that purpose. Boundary 
condition variables are defined within the <BCVar> tag, and use the same syntax as other variables, 
as described in Section 5.2.3, i.e. they require <ID>, <Name>, <Symbol> and <Units> tags. 

—* 

Boundary conditions can be defined using either a specific boundary flux Fb, by using constraints 
on the reconstruction, or by using a combination of both. If constraints are used, they are specified 
within the <Constraint> tag, and there is no limit to the number of constraints that can be 
specified for a given boundary condition type. The <Constraint> tag expects three child nodes: a 
<Type> node, a <var> node, and a <Formula> node. The <Type> nodes indicates what type of 
constraint is needed. The possible values are: 

• Solution: The constraint is on a flux variable itself. 

• XGradient, YGradient, ZGradient: The constraint is on the x-, y-, or ̂ -derivative of a 
flux variable. 

• NGradient, TGradient, CGradient: The constraint is on the normal, tangential, or cross-

flow derivative of a flux variable. 

The value of the <var> node determines on which flux variable the constraint acts. Finally, 
the <Formula> value determines the value of the constraint itself. This value is expanded for 
known identifiers, including the identifiers for boundary condition variables defined within the 
same <BCType>. 

Boundary fluxes must be specified for all boundary condition types, even if the flux is the same 
as the interior flux. The flux is defined within the <BdryFlux> tag using <FluxData> tags. The 
<FluxData> tags work exactly the same way as for the interior flux definition; see Section 5.2.4. 

As an example, the definition of a temperature boundary condition for heat conduction is following. 
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<BCType> 
<Desc>This BC imposes a temperature at the wall</Desc> 
<ID>eBC_Temp</ID> 
<BCVar> 
<ID>eTempBCVar</ID> 
<Name>Boundary temperature</Name> 
<Symbol>Tb</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 

</BCVar> 
<Constraint> 

<Type>Solution</Type> 
<Var>eFlux_T</Var> 
<Formula>eTempBCVar</Formula> 

</Constraint> 
<BdryFlux> 

<FluxData> 
<Var>eFlux_T</Var> 
<Formula>- eHeatDiff * (RGradX{eFlux_T> * Norm{X} 

+ RGradY{eFlux_T} * Norm{Y})</Formula> 
</FluxData> 

</BdryFlux> 
</BCType> 

This boundary condition type requires one boundary condition variable, eTempBCVar, which will 
store the value of the temperature imposed on the boundary. The boundary condition is imposed 
using a constraint on the reconstruction. Finally, the boundary flux is the same as the interior flux 
shown in Section 5.2.4. The only difference here is that the right-sided values are used for the 
flux computation. Since a boundary face only has one neighbor control volume, both the left- and 
right-sided values point to the values from the same control volume. It is a waste of computational 
resources to compute the average of the two on the boundary. 

5.2.8 Complex flux functions 

In some situations, the flux (and wavespeeds) computations are more complex than the <FluxData> 
constructs could handle. For these cases, it is possible to use the <UserCode> tag instead of the 
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<FluxData> tag. The <UserCode> tag must be used in conjunction with the <UserFunction> 
tag. 

The <UserFunction> tag 

This tag allows the user to define a complete C++ function inside the Physics class. No identifier 
expansion is performed in this section, so the code written must only rely on data passed to it 
through its parameters. This technique can be used to write flux functions that can compute both 
the interior and boundary fluxes by using different parameters. 

For example, the interior flux for the solid mechanics package can be written as: 

p _ i T=v* (txx + vtvv> | =t _ ( 2(i-t/) e*v i -

A <UserFunction> definition for this flux would look like this: 

<UserFunction> 
void vGenericFlux(const double ddudx, const double ddudy, 

const double ddvdx, const double ddvdy, 
const double dnu, const double dE, 
const double dnx, const double dny, 
double adFlux[2]) const { 

// Generic flu x for CSM problem 
double adFluxX[2]; 
double adFluxY[2]; 
double dConstl = dE / (1.0 - dnu*dnu); 
double dConst2 = dE / (2.0 * (1.0 - dnu)); 
adFluxX[0] = dConstl * (ddudx + dnu*ddvdy); 
adFluxX[l] = 0.5*dConst2 * (ddudy + ddvdx); 
adFluxY[0] = adFluxX[l]; 
adFluxY[l] = dConstl * (ddvdy + dnu*ddudx); 

adFlux[0] = -adFluxX[0]*dnx - adFluxY[0]*dny; 
adFlux[l] = -adFluxX[l]*dnx - adFluxY[1]*dny; 

} 
</UserFunction> 
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The function returns the flux in the array of doubles adFlux. This function can then be called 
from within code defined in the <UserCode> tag. 

The <UserCode>tag 

This tag allows the user to input C++ code within the flux definition function. It is used in place of 
the <FluxData> tag. The user can assume that an array of doubles adFlux with the proper size 
is available to the piece of code. The code expects the flux values to be in this variable once the 
<UserCode> snippet is complete. Furthermore, known identifiers found in this section of the code 
will be expanded to access the proper variables. The interior flux definition for the solid mechanics 
package from the previous example now looks like this: 

<InteriorFlux> 
<UserCode> 

vGenericFlux(GradX{eFlux_U}, GradY{eFlux_U}, 
GradX{eFlux_V}, GradY{eFlux_V}, 
ePoisson, eElastMod, Norm{X}, Norm{Y), 
adFlux); 

</UserCode> 
</InteriorFlux> 

5.2.9 Complete file descriptions 

The complete file descriptions for all the Physics classes used in this research can be found 
in Appendix B. The C++ code generated by the parser for the heat conduction package is also 
included, for reference purposes. Note how the XML file for heat conduction is easier to read, and 
about 35% the size of the corresponding C++ file. 

Summary 

Section 5.1 described how the solver was modified to allow the source terms from one physical 
package to affect the flux variables from another physical package. This is particularly helpful for 
combustion problems. Additionally, Section 5.2 described the XML syntax for the definition of 
Physics classes. This syntax was created to further simplify the task of developing new Physics 
classes. 



Chapter 6 

Discussion and future work 

This chapter is separated in two main sections. Section 6.1 discusses the accuracy of the solver, 
and possible ways to further improve it in the future. In particular, improved reconstruction along 
boundary faces, deformable geometries, periodic boundary conditions, and time-accurate simula­
tions are covered. Section 6.2 discusses several ways the efficiency of ANSLib could be improved, 
such as implicit and multigrid methods, parallel computing and adaptive mesh refinement. 

6.1 Accuracy 

The accuracy of the original generic solver has already been demonstrated in [34, 33]. The same 
level of accuracy was expected, and observed, for the multiphysics solver developed in this re­
search, as it uses the same numerical toolkit. 

The ability to use third- or fourth-order reconstruction schemes certainly was useful in achieving 
these excellent results. A third-order reconstruction scheme uses a quadratic polynomial to ap­
proximate the solution over a given control volume. This scheme therefore recovers the quadratic 
velocity profile of problems like channel flow exactly, requiring few control volumes for a good 
level of accuracy. A second-order scheme, with its linear approximation over each control volume, 
would require a greater number of cells to reach the same results. 

102 
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6.1.1 Reconstruction along boundary faces 

The reconstruction scheme must take into account the boundary constraints when computing the 
reconstruction polynomial for control volumes located next to the boundary faces. These con­
straints are enforced at the Gauss points on the control volume faces. For boundary constraints, 
only control volumes with faces adjacent to the boundary are affected. In a cell-centered mesh, 
this has the effect that the reconstruction for cells with only one vertex on the boundary (the light-
shaded cells in Figure 6.1) is not constrained. 

For corner control volumes (the dark-shaded cells in Figure 6.1), two scenarios are possible. If 
multiple cells share the same corner, as cells a and b in Figure 6.1a, each cell will lack the con­
straints from the boundary face it does not touch. For corners with only one cell (cell c), the 
constraints from both boundary faces will be enforced; the reconstruction will be accurate for that 
corner. 

The rest of the shaded cells will have a reconstruction polynomial that does not account for all 
boundary constraints. This can lead to some errors in the solution. For example, in a simulation 
with the Navier-Stokes and the energy equation packages, the outflow boundary condition simply 
lets the flux at that boundary face exit the domain; no constraint is imposed. Having this boundary 
condition type with a mesh similar to the one shown in Figure 6.1a would result in cell b left 
completely unconstrained. This can result in a large discrepancy with the expected results, and 
is the reason the temperature profile shown for this simulation in Chapter 4 was taken slightly 
upstream from the edge of the domain. 

(a) (b) 

Figure 6.1: Reconstruction along boundary faces. 
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Fixing this problem requires adding reconstruction constraints at the vertices of control volumes 
adjacent to a boundary face. A simple way to achieve this would be to create additional Gauss 
points at the boundary vertices; these Gauss points would ensure that the constraints at the bound­
ary are enforced. By setting the weight of these vertex Gauss points to zero, they would not affect 
the flux integral of the control volume. The vertex Gauss points could also be used in situations 
where a boundary condition at a given point, rather than a boundary condition imposed on a face, 
is needed. This would be particularly useful in solid mechanics problems, were displacements in 
both directions must be fixed at some point in order for a problem to be well-posed. 

6.1.2 Deformable geometries and moving meshes 

Even though physical packages for both fluid and solid mechanics have been written and tested 
successfully, realistic fluid-structure simulations cannot be performed with the multiphysics solver 
currently. Fluid-structure simulations require that the geometry of the problem changes throughout 
the simulation: the solid domain changes shape due to the forces applied to it, and this deformation 
in turn affects the flow field. 

The possibility of the domain changing shape requires numerous changes in the way the solver 
operates. First, there is the problem of the mesh itself: if the domain is deformed, the mesh must 
also be deformed. Several approaches to perform this deformation exist in the literature, but at 
the moment, none have been implemented in ANSLib. Specific problems include preserving the 
integrity of the mesh (i.e. ensuring the cells retain a positive area), and possibly even the re-
meshing of part of the domain when the mesh gets too distorted. A way to determine if the domain 
needs re-meshing is also needed. 

The deformable meshes also have an impact on the way the problem is solved. Fluxes are computed 
on the faces of the control volumes, i.e. the mesh. In this research, the meshes used were always 
static, so the absolute values of the flux variables and derivatives were used for flux computation. 
With deformable meshes, the control volume faces are moving at different rates throughout the 
domain, so this must be accounted for in the formulation of the fluxes; relative values of the flux 
variables have to be used. The information on the rate of movement of the mesh must be available 
to the solver and the Physics classes, so that the fluxes can be computed appropriately. Support 
for deformable geometries is a feature that is definitely needed for multiphysics simulations, but 
was not implemented in the present research due to time constraints. 
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6.1.3 Periodic boundary conditions 

ANSLib currently does not support periodic boundary conditions. Using the concept of variable 
association, it would be straightforward to assign the inflow of a domain to the values at the outflow. 
However, currently, it is impossible to associate variables from different locations, which a periodic 
boundary condition would require. The solver fetches the values for associated variables as it is 
going through dependency trees. The solver goes through the tree at every Gauss point, and the 
only location stored is that of the Gauss point itself; all variables in the tree are computed at that 
location. 

To allow periodic boundary conditions, a location vector would have be tagged to every variable 
in the dependency tree. This would cause further complications such as recognizing that the same 
variable needed at different locations will require a separate node in the dependency tree, and that 
it will also require a separate storage location, to ensure that variable value from one location does 
not get overwritten by the same variable from another location. Another way would be to have 
a special mapping function that would map the location vector to a different location, only for 
boundary faces that have been tagged as having periodic boundary conditions. 

6.1.4 Time-accurate interface coupling 

All problems solved so far in this document have been steady-state problems. As mentioned before, 
ANSLib can also solve problems in a time-accurate fashion by using constant timesteps, and this 
extends to the multiphysics solver as well. However, there is one potential problem for time-
accurate simulations of problems with interface coupling. 

For interface coupling, multiple subdomains are coupled together through the use of boundary 
conditions. One subdomain is solved using boundary conditions determined by the neighbor sub-
domain, and then that subdomain is solved using boundary condition values from the first sub-
domain. With this approach, the boundary condition values are set using data from the previous 
timestep. For steady-state simulations, this is not a problem, but it definitely prevents the resolution 
of time-accurate simulations. 

A solution to this problem has been found, and implementation is currently underway. Results 
were no yet available at the time of writing, but the approach is presented here. The solution is to 
accurately predict the value of the boundary conditions at the interface between two subdomains 
using Taylor series. Since the timestep is constant, it is possible to use finite-difference approxi-
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mations to the boundary condition values. All that is needed is to keep track of previous boundary 
condition values. This is accomplished by having the Region class keep the Recon objects it uses. 

Finite-difference approximations 

These expressions are all one-sided finite-difference relations. They yield the value of boundary 
condition value Tb at time tn+i. The number of Recon object from previous timesteps needed 
depend on the order of accuracy of the simulation. 

First-order 

The first-order approximation simply uses the value from the previous timestep. 

Tbn+1=Tbn (6.1) 

Second-order 

Tbn+1 = 2Tbn - Tbn_x (6.2) 

Third-order 

T f t n + 1 = 3 T 6 r i - 3 T f c n _ 1 + T 6 „ _ 2 (6.3) 

Fourth-order 

Tbn+l = 4T6 n - QTbn_x + 4Tbn_2 - Tbn_3 (6.4) 

6.2 Efficiency 

The efficiency of the solver is the area that needs the most work to bring it up to a satisfactory level. 
Most of the future work planned on the solver, and its numerical toolkit, focus on improving the 
efficiency. The generic nature of the solver makes it slower by nature than a dedicated solver. This 
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shortcoming is more then compensated by the ability to solve new phenomena simply by writing 
a short description of the physical equations of the problem. 

Adding multiphysics capacities further slowed the solver down, as managing the multiple Region 
and Physics classes requires a certain overhead. The main computational hit, however, comes 
from the use of variables and their necessary dependency trees. The functions responsible for 
going through the dependency trees and fetching/computing variables sometimes take up to 40% 
of the total simulation time. This is not to say that the multiphysics solver is 40% slower than the 
single-physics solver it is based on however: some of these computations were taking place in other 
portions of the code in the original solver, they have simply been centralized in the multiphysics 
solver. The "data fetching" functions of the multiphysics solver are unfortunately a necessary evil; 
much has been done to optimize them, with only limited success. There is also relatively small 
hope that the situation would improve without a complete overhaul of the multiphysics framework. 

There are however several other ways that the overall efficiency of the solver can be improved, 
with a few of them listed below. 

6.2.1 Implicit methods 

ANSLib uses explicit time-advance methods. These methods were chosen for the initial devel­
opment of the toolkit because of the ease with which they can be implemented. The emphasis at 
this development stage was accuracy. Now that the framework has been proven to solve problems 
accurately, different methods can be used to solve them more efficiently. With explicit methods, 
convergence for either steady-state problems (using local timestepping) or time-accurate problems 
(using global timestepping) is slow. A doctoral project already underway looks at implementing 
generic implicit time-advance methods in ANSLib. Implicit methods result in having to solve very 
large linear systems. Since solving these large systems directly is too costly computationally, iter­
ative solvers based on Krylov spaces are being investigated. These iterative solvers also have the 
benefit that they could solve for the steady-state solution of linear problems directly rather than 
through timestepping methods. This would be a huge efficiency gain for problems such as linear 
solid mechanics and heat conduction. 

6.2.2 Multigrid methods 

Multigrid methods use several meshes of different densities of the same domain to damp out dif­
ferent frequencies of the error of the solution. The high-frequency errors are first smoothed on 
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the finest grid, and the problem is transferred to a next-coarser mesh. This process repeats until it 
reaches the coarsest mesh, at which point a solution correction is transferred back to the next-finer 
mesh, and the error is smoothed once more, until it reaches the finest grid to complete an iteration. 

Even though each iteration now takes longer, the dramatic reduction in the overall number of 
iterations needed to reach a given convergence level makes this method very attractive. Both 
multigrid and implicit methods are being investigated in the same project; further efficiency gains 
could possibly be made by combining the two together. 

6.2.3 Parallel computing 

Another way to make the solver run faster is to make good use of the advantages parallel computing 
provides. By solving a problem on n processors, the solution can theoretically be obtained n 
times faster. The practical efficiency gains are somewhat lower due to the latency caused by the 
communication between different processors. Proper implementation of parallel techniques helps 
reduce these delays to a minimum. A graduate student is already working on turning ANSLib into 
a parallel solver. 

For multiphysics problems, Region classes already solve problems on their mesh independently 
from each other. Spreading each Region class on a separate processor seems like a natural divi­
sion. However, since the size of each mesh, the number of unknowns, and the complexity of the 
flux functions in each Region are different, this separation probably will not yield the optimal effi­
ciency. Each Region will likely need to be further divided into separate subdomains to ensure the 
load among processors is properly balanced. Even in this case, the techniques used for interface 
coupling might be a great solution for the information exchange between different processors. 

6.2.4 Adaptive mesh refinement 

Adaptive mesh refinement aims to minimize the number of computational nodes needed for a given 
accuracy of the solution. This is accomplished by refining the mesh in areas where the error in the 
solution is large, and coarsening the mesh in areas where the error is small. This is known as h-
refinement. Since the number of computational nodes is minimized, the time required to perform 
each iteration of the simulation is much smaller. 

The most critical aspect of an adaptive mesh refinement technique is the error estimator. If the error 
is deemed too large, nodes must be added; too small, and some nodes are removed. For the finite-
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volume method, literature documenting second-order accurate estimators for specific problems is 
readily available. However, for third- or fourth-order methods, very little is known; the second-
order error estimators most likely cannot be used for high-order methods. 

The high-order reconstruction schemes also open the door to using automatic p-refinement tech­
niques: this consists in solving different regions of the domain using different orders of accuracy. 
Again, error estimators that can determine when it is advantageous to switch to a higher order of 
accuracy would have to be created. Since the reconstruction code is already working, asking the 
solver to change the order of reconstruction over different control volumes would be straightfor­
ward. 



Chapter 7 

Summary 

Numerical simulation tools allow scientists to solve problems of increasing complexity, leading 
to increased efficiency of the design and engineering processes. These tools can however be im­
proved, and this research focused on improving two aspects of the numerical simulation process: 
mesh generation and numerical computation of multiphysics problems. 

7.1 Mesh generation 

First, a fully-automatic mesh generator capable of generating guaranteed-quality meshes for com­
plex geometries with curved boundary has been written. A framework allowing two-dimensional 
curved boundary segments was combined with a guaranteed-quality Delaunay refinement algo­
rithm; details were presented in Chapter 2. The use of curved boundaries demanded that boundary 
edges be split differently to ensure regions with higher curvature were discretized with a greater 
number of edges. The midpoints are now computed using the total variation of the tangent angle. 
The initial discretization of the domain also needed some modifications; the new strategy first dis-
cretizes the curved boundaries with as few segments as possible, avoiding the creation of artificial 
small features in the mesh. Some recovery problems due to the very coarse nature of the initial 
discretization of curved boundaries were encountered, but solutions to these were incorporated 
into the new initial discretization strategy. Several boundary patch types were implemented and 
tested. Furthermore, it is possible to add new boundary types to the generic boundary easily. Ex­
amples demonstrating the successful use of curved boundary patches were also presented. These 
two-dimensional meshes all showed excellent quality, and had a minimum angle exceeding 30°. 
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Finally, a mathematical proof that guarantees the quality of the final mesh has been extended to 
include meshes from a domain with curved boundaries. This research was an important step in 
allowing the generation of guaranteed-quality meshes directly from CAD models, which would 
considerably cut down on the amount of time necessary for domain preparation. 

7.2 Numerical simulation of generic multiphysics problems 

The second part of this research addressed the problems domain experts face when trying to per­
form numerical simulations related to their field of expertise. A generic numerical toolkit was 
modified, allowing generic multiphysics simulations to be performed. With this new solver, sci­
entists can simply describe each of the physics of their problems — something they understand 
very well — and obtain solutions to new and complex physical problems within days. There is no 
need to write a specialized solver tailored to their specific problems, or to wait for a commercial 
package to be available. 

The multiphysics solver is based on a generic numerical toolkit which was described in Chapter 3. 
The toolkit uses the finite-volume method, which allow the decoupling of the numerical and phys­
ical aspects of a simulation easily. By decoupling the two, all physical problems look the same to 
the numerical toolkit. The physics of a problem are described in a Physics class. To demonstrate 
the effectiveness of this generic approach to numerical simulations, results from three different 
physical problems solved using the same mesh and solver were presented. 

Multiphysics problems presented a number of challenges, as described in Chapter 4. For one, the 
solver must interact with multiple Physics classes at the same time. A layer of code was added 
to manage these multiple physical packages: the Region class. Furthermore, in some cases, mul­
tiphysics problems are defined over several subdomains; the Domain class was created to handle 
this. However, the most crucial modification made to the numerical toolkit was allowing the ex­
change of information between multiple Physics classes, whether on the same subdomain or not. 
This exchange can only take place if the solver knows what information the different Physics 
objects can exchange with each other; the PhysVar class ensures this information exchange hap­
pens. The coupling between the different physical packages is done using variable association. The 
association is accomplished by having the solver link a required variable to a provided variable. 
Variable association can however lead to some dependency problems: dependency trees were im­
plemented to avoid these problems. Results for several multiphysics problems where two or more 
physical packages were coupled together were presented. The results matched analytical solutions 
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well, when such solutions were available. 

In Chapter 5, a way for the source term from one physical package to affect the flux variables from 
another physical package was described. This is particularly useful for combustion problems. 
In addition, a simple Physics class definition syntax based on XML was created. This file uses 
human-readable keywords and is automatically converted to C++ by a parsing program specifically 
written for that purpose. This syntax will make it even easier to write new Physics classes for the 
multiphysics solver. Finally, in Chapter 6, several ways the solver could be further improved were 
discussed, both in terms of efficiency and accuracy. 

7.3 Conclusion 

This research helped make the numerical simulation process easier and more accessible to scien­
tists and engineers by improving tools used in both domain preparation and numerical computation. 
The automatic generation of guaranteed-quality meshes for complex geometries is a huge gain in 
efficiency for the users of numerical tools. Furthermore, the ability to quickly and easily define and 
solve new multiphysics problems will surely lead to numerical solvers being used in a wider variety 
of fields by a greater number of scientists; this can only benefit the whole scientific community. 
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Appendix A 

Proof of Mesh Quality in Two Dimensions 

A.l Angle bounds 

The proof presented in this appendix follows the same approach used in previous research [35]. 
Boundary edges are assumed to be protected by diametral lenses and that input angles are greater 
than 60°, to prevent adjacent edges from encroaching on each other. It is possible show the same 
bounds for curved boundaries that were previously demonstrated for straight boundaries. 

The following lemma will now be proven, which will, among other results, establish an angle 
bound for finite cell size and hence for algorithm termination. This lemma is deliberately stated 
in language as similar as possible to Ruppert's Lemma 2, even to exact quotation of much of the 
phrasing, although details of the proof and the derived constants differ. 

Lemma 1. (After Ruppert [38]) For fixed constants CL,CT and Cs, determined below, the fol­
lowing statements hold: 

1. At initialization, for each input vertex p, the distance to its nearest neighbor vertex is at least 

lfsc(p) = R-LS(p). 

2. When a point p is chosen as the circumcenter of an overly-large triangle, the distance to the 
nearest vertex is at least LS (p) /CL- (p may be added to the triangulation, or may be rejected 
because it encroaches upon some segment.) 

3. When a point p is chosen as the circumcenter of a skinny triangle, the distance to the nearest 
vertex is at least LS (p) /CT- (Again, p may be added to the triangulation, or may be rejected 
because it encroaches upon some segment.) 
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4. When a vertex p is added as the midpoint of a split segment, the distance to its nearest 

neighbor vertex is at least LS (p) /Cs-

Proof. 

Case 1. Statement 1 of Lemma 1 is true by the definition of the length scale LS from the local 
feature size lfsc, provided only that the constant R in Equation 2.1 is > 1. 

Having established the truth of Lemma 1 for the initial mesh, it is now possible to proceed by 
induction to prove that it must be true for all meshes generated by the algorithm. As such, it is 
assumed that Lemma 1 holds for all points in the mesh and determine the bounds on Cs, CT, CL, 
and G that are required for Lemma 1 to hold for newly inserted points. 

Case 2. The case of insertion to split a large triangle, as shown in Figure A. l , is first considered. 
By definition, the circumradius of Aabc is larger than ^ times the average of the length scales at 
its vertices. The distance from p to the nearest point is the circumradius of Aabc, or 

V2LS(a) + LS(b) + LS(c) 
~ 2 3 

The length scale at p can be bound in terms of this same average using Equation 2.1: 

LS(p) < LS (a) + L 
LS(p) < LS (b) + L 
LS(p) < LS (c) + T-

LS(p) < LS (a) + LS (b) + LS (c) 
3 

LS (a) + LS (b) + LS (c) 
3 

> LS (p) - £ 

+ 5 <A'2) 

Combining inequalities A. l and A.2 results in: 

V2LS (p) rV2 
> 2 2G < >- m 

This inequality places a lower bound on point spacing for points inserted to split large triangles, 
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and confirms Statement 2 of Lemma 1, for any 

CL>V2 + ^ (A.4) 

The lower bound on CL becomes smaller for large values of G, corresponding to slow change in 
cell size. 

Case 3. The case of insertion to split a badly shaped triangle, as illustrated in Figure A.2, is 
considered next. Without loss of generality, vertices can be labelled so that a and b are connected 
by the shortest edge (of length Z m i n ) , and a was inserted in the mesh after b (or both were input 
vertices). The radius of the vertex-free circle around a is r'. Four subcases for relating r' to LS (p) 
arise, depending on why a was inserted in the mesh. 

Subcase 3a. a was an input vertex. Then so was b, Statement 1 of Lemma 1 applies, and the 
distance Z m j n > R • LS (a). 

Subcase 3b. a was inserted to split a large triangle. The circumradius r' of that triangle is no larger 
than lm[a, because vertex b was not inside the circumcircle. Then Statement 2 of Lemma 1 
applies, and Z m j n > r' > LS (a) /CL-

Subcase 3c. a was inserted to split a badly shaped triangle. By a similar argument and using 
Statement 3 of Lemma 1, and Z m i n > r' > LS (a) /CT-

Subcase 3d. a was inserted to split an encroached boundary edge. It is known that b does not 
lie inside the diametral lens of the edge a split, because otherwise b would encroach on that 
edge. Statement 4 of Lemma 1 applies, and / m ; n > r' > LS (a) /Cs-

If Cs > CT = CL > 1 is satisfied (which will be shown is possible), then the inequality 
^min > LS (a) /Cs (subcase 3d) causes the most difficulty in satisfying Statement 3 of Lemma 
1 by making the length scale at p larger than that for any other subcase. 

The radius r of the circumcircle of Aabc is related to its smallest angle. The angle /.apb = 29 by 
geometry, and trigonometry gives Z m ; n = 2r sin 9. The definition of length scale gives 

LS(p)<LS(a) + ^ < Cslmin + ^ 

= 2rCssin9 + ^ (A.5) 
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This triangle is being split because 9 is less than the required angle bound a. Inequality A.5 can 
be strengthened by replacing 9 with a, and obtain 

r >

 LS(P) 
~ 1 +2C ssina: G 

Lemma 1 states that, for this case, r > LS (p) /CT, SO it is required that 

CT > T; + 2 C 5 sin a (A.6) 

Case 4. The case in which vertex p is added to the mesh to split a segment s, because some vertex 
or triangle circumcenter lies inside the diametral lens of s, is covered next. Vertex p is inserted 
on the patch between b and c, not necessarily at the midpoint of edge frcThis case is illustrated in 
Figure A.3. There are four subcases. 

Subcase 4a. a lies on a segment t, which can not share a vertex with s, because it was assumed 
that input edges are separated by 60°. Therefore, p and a lie on non-adjacent segments, and 
the length scale atp is LS (p) < ^ \a — p\. To satisfy Lemma 1 in this subcase, it is therefore 
required that Cs > ^. Because R>1, this inequality is always satisfied for Cs > 1. 

Subcase 4b. a is a point at the circumcenter of a large triangle T. a has of course been rejected 
for insertion since it is located inside the diametral lens. The definition of the length scale 
then gives: 

LS(p) <LS(a) + ±\a-p\ 

The circumradius r' of T is smaller than the shorter of a — b and \a — c|, because T's 
circumcircle must be point-free. The largest value of r' is obtained when a is at the apex of 
the diametral lens, so r' < -^d. Also, it is known from this lemma that LS (a) /CL < r'. 
Furthermore, the largest value of |a — p| places a and p at opposite ends of edge be, so 
|a — p\ < 2d. The length scale at p now becomes: 

LS(p) < r'CL + % 
^ 2d / ^ f , 2d 
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This inequality satisfies Lemma 1 provided that 

C s > - 1 + TZCL <A'7) 

Subcase 4c. a is a point at the circumcenter of a skinny triangle. The same reasoning can be 
applied as in the previous subcase, with the result that 

Cs > | + ^fT (A.8) 

Subcase 4d. The radius of curvature at p is smaller than the local feature size. In this case, the 
radius of curvature will define the length scale, and it does not matter whether a comes from 
a large or a skinny triangle. The definition of length scale will yield: 

LS{p) <<f 
This length scale is valid whenever it is smaller than the length scale found in cases 4a, 46, 
or 4c. Using the results from case Ab, for example, this is equivalent to saying that: 

It will be shown that this inequality only holds for a few splits at the boundary, and therefore 
does not affect the provable angle bound nor the termination of the algorithm. Using P = ĵ y 
and re-arranging terms in the previous inequality results in: 

1 ^ (2R 2R„ \ . . 

Integrating both sides with respect to arclength over be: 

\SC

bds < (f + f3CL)fb

c\.(s)\ds 
< {f + f3CL)TV(8) 

(A.9) 

The left-hand side integral is the arclength of the patch between b and c, s6c, and the right-
hand side integral is TV (8) between b and c. As the boundary patch gets split, Sf, c, d, and 
TV(8) \l all decrease. The ratio on the left-hand side is bounded as the curve looks more and 
more linear, i.e. ^ > 2. The right-hand side term decreases by a factor of two after every 
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split. After enough splits, the inequality invariably no longer holds, and the length scale is 
not defined by the radius of curvature at point p anymore. 

To establish the truth of Lemma 1, one must find values of Cs, CT, and CL that simultaneously 
satisfy Inequalities A.4, A.6, A.7, and A.8. Tight bounds are established on each constant by 
requiring equality in each case. Using only A.6, A.7, and A.8 results in: 

CS = 

CT = CL = 

1 2\/3 + 2 
G — 4 sin a 
1 v/3 + 4v/3sino; 
G y/2> — 4 sin a 

These values are bounded for any angle bound a < arcsin , just as for Shewchuk's modifica­
tion to Ruppert's scheme. The constants are nearly identical to those found previously for straight 
boundaries, with only a slight difference in the numerators. 

Equation A.4 can be treated as establishing a lower bound on the grading rate G > ^3^75 • So 
long as G is finite, the mesh will be non-uniform. Relating G to the angle bound a: 

2 ^ 8 ^ a (1 + \/3) 
G < v/3-4si s u m 

The minimum theoretical grading rate G remains finite up to the previously established angle 
bound. If the higher bound for G is used, the following constants are found: 

CS = 

CT — CL — 

1 
\/2sin a 

\/3 (1 + 4 sin a) 
2^2 sin a (l + \/3) 

In summary, it has been established that, for R > 1, meshes can be generated with the same angle 
bounds as Shewchuk's modification to Ruppert's scheme. In the process, bounds have been placed 
on the grading rate G and on the length of the shortest edge in the mesh relative to the local length 
scale (the constants Cs, CT, and CL give this information). 
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A.2 Termination and Size Optimality 

The quality lemmas can be used to prove the following theorem about finite mesh size and mesh 
size optimality. 

Theorem 1. Given a vertex p in the output triangular mesh, its nearest neighbor vertex q is at a 
distance at least LS (p) / (Cs + 1/G). This implies mesh size optimality. 

Proof. 

Lemma 1 handles the case where p is inserted after q. If q is inserted last, then the lemma is applied 

to q: 

\q-p\> 

But LS (p) >LS(q)+11^, so 

Q-P\ > 

Cs 

LS(p) G 
Cs 

and the theorem follows, with only minor algebra. 

Because the shortest edge in the mesh must be longer than ^ s""j;, each cell has finite size and only 
a finite number of them will be required. 

Futhermore, because the shortest possible edge is within a constant factor of the length scale lo­
cally, the smallest possible triangle is within the square of that same factor of the size of a triangle 
whose edges all match the length scale. This implies that the size of the mesh must be within a 
constant factor of the size of the smallest possible mesh whose cells meet the quality bound and 
whose edges have length within a constant factor of the length scale locally. 
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Figure A.3: Lemma 1, Statement 4: p added to split an encroached boundary edge. 



Appendix B 

Physics classes definitions 

B.l Heat conduction XML file 
<?xml version="1.0" ?> 
<Physics> 
<ClassID>Heat2D</ClassID> 
<ClassDesc>2D Heat conduction package</ClassDesc> 
<FluxVar> 
<ID>eFlux_T</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 

</FluxVar> 
<RequiredVar> 
<ID>eConduc t</ID> 
<Name>Conductivity</Name> 
<Symbol>k</Symbol> 
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eDens</ID> 
<Name>Density</Name> 
<Symbol>rho</Symbol> 
<UnitS> <L>-3</L> <M>K/M> <T>0</T> <K>0</K> </UnitS> 

</RequiredVar> 
<RequiredVar> 
<ID>eSpecHeat</ID> 
<Name>Specific Heat</Name> 
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<Symbo1>cp</Symbo1> 
<Units> <L>2</L> <M>0</M> <T>-2</T> <K>-K/K> </Units> 

</RequiredVar> 
<ComputedVar> 
<ID>eHeatDiff</ID> 
<Name>Heat Diffusivity</Name> 
<Symbol>a</Symbol> 
<Units> <L>2</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>eConduct / (eDens * eSpecHeat)</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eHeatFlux</ID> 
<Name>Heat Flux</Name> 
<Symbol>q</Symbol> 
<Units> <L>0</L> <M>K/M> <T>-3</T> <K>0</K> </Units> 
<Formula>eConduct * ( GradX{eFlux_T}*Norm{X} + 

GradY{eFlux_T}*Norm{Y} )</Formula> 
</ComputedVar> 
<ComputedVar> 
<ID>eAveTemp</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 
<Formula>0.5 * (LSoln{eFlux_T} + RSoln{eFlux_T})</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID> eBdryDTDX</ID> 
<Name>Bdry dT/dx</Name> 
<Symbol>Tx</Symbol> 
<Units> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </Units> 
<Formula>RGradX{eFlux_T}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryDTDY</ID> 
<Name>Bdry dT/dy</Name> 
<Symbol>Ty</Symbol> 
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 
<Formula>RGradY{eFlux_T}</Formula> 

</ComputedVar> 
<InteriorFlux> 

<FluxData> 
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<Var>eFlux_T</Var> 
<Formula>- eHeatDiff * (GradX{eFlux_T}*Norm{X} + 

GradY{eFlux_T}*Norm{Y})</Formula> 
</FluxData> 

</InteriorFlux> 
<WaveSpeeds > 
<Minimum>-eInvDist * 0.3</Minimum> 
<Maximum> elnvDist * 0 . 3 </Maximum> 

</WaveSpeeds> 
<SourceTerm> 
</SourceTerm> 
<BCType> 
<Desc>This BC imposes an insulated wall</Desc> 
<ID>eBC_Ins</ID> 
<BdryFlux> 

<FluxData> 
<Var>eFlux_T</Var> 
<Formula>0</Formula> 

</FluxData> 
</BdryFlux> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_T</Var> 
<Formula> 0 </Formula> 

</Constraint> 
</BCType> 
<BCType> 
<Desc>This BC imposes a temperature at the wall</Desc> 
<ID>eBC_Temp</ID> 
<BCVar> 
<ID>eTempBCVar</ID> 
<Name>Boundary temperature</Name> 
<Symbol>Tb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 

</BCVar> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_T</Var> 
<Formula>eTempBCVar</Formula> 

</Constraint> 
<BdryFlux> 
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<FluxData> 
<Var>eFlux_T</Var> 
<Formula>- eHeatDiff * (RGradX{eFlux_T} * Norm{X} + 

RGradY{eFlux_T} * Norm{Y})</Formula> 
</FluxData> 

</BdryFlux> 
</BCType> 
<BCType> 
<Desc>This BC imposes a heat flux at the wall</Desc> 
<ID>eBC_Flux</ID> 
<BCVar> 
<ID>eHeatBCVar</ID> 
<Name>Boundary heat flux</Name> 
<Symbo1>qb</Symbo1> 
<Units> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </Units> 

</BCVar> 
<BdryFlux> 
<FluxData> 
<Var>eFlux_T</Var> 
<Formula>- eHeatBCVar / (eDens * eSpecHeat)</Formula> 

</FluxData> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes an internal (block) boundary:/Deso 
<ID>eBC_IntBdry</ID> 
<BCVar> 
<ID>eIntBdryDTDX</ID> 
<Name>Boundary dT/dx</Name> 
<Symbol>Txb</Symbol> 
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 

</BCVar> 
<BCVar> 
<ID>eIntBdryDTDY</ID> 
<Name>Boundary dT/dy</Name> 
<Symbol>Tyb</Symbol> 
<UnitS> <L>-1</L> <M>0</M> <T>0</T> <K>1</K> </Units> 

</BCVar> 
<BdryFlux> 
<FluxData> 
<Var>eFlux_T</Var> 
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<Formula>- 0.5 * eHeatDiff * 
( (RGradX{eFlux_T} + elntBdryDTDX)*Norm{X) 
+ (RGradY{eFlux_T} + elntBdryDTDY)*Norm{Y} )</Formula> 

</FluxData> 
</BdryFlux> 

</BCType> 
</Physics> 

B.2 Heat conduction C++ file 

As an example, here is the C++ file generated by the parser from the XML file above. Notice how 
reconstruction and various computed variables were created automatically. 
#include <math.h> 

ttdefine VAR_U_NORM -1 
#define VAR_U_TANG -2 
ttdefine VAR_U_CROSS -3 

#ifndef VAR_VEC_X 
#define VAR_VEC_X -100 
#endif 
ttifndef VAR_VEC_Y 
#define VAR_VEC_Y -100 
#endif 
#ifndef VAR_VEC_Z 
#define VAR_VEC_Z -100 
#endif 

#include "ANS.NewPhysics.h" 
#include "ANS.PhysVar.h" 
#include "ANS.Taylor.h" 

class Heat2D_Physics : public NewPhysics { 

public: 

enum eVars { 
eFlux_T, eConduct, eDens, eSpecHeat, eRGradX_eFlux_T, 
eLGradX_eFlux_T, eAGradX_eFlux_T, eNormX, eRGradY_eFlux_T, 
eLGradY_eFlux_T, eAGradY_eFlux_T, eNormY, eLSoln_eFlux_T, 

/* Deliberately illegal value */ 

/* Deliberately illegal value */ 

/* Deliberately illegal value */ 
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eRSoln_eFlux_T, eHeatDiff, eHeatFlux, eAveTemp, eLastVar 
}; 

enum eBCTypes { 
eBC_Ins, eBC_Temp, eBC_Flux, eLastBCType 

}; 

enum e_eBC_Temp_Vars { 
eTempBCVar, eBC_Temp_LastVar 

}; 

enum e_eBC_Flux_Vars { 
eHeatBCVar, eBC_Flux_LastVar 

}; 

Heat2D_Physics() : NewPhysics() { 
// Class description 
sWordDescription = "2D Heat conduction package" ; 
// variable number 
vSetNumberOfVariables(eLastVar); 

// Now define variables 

// eFlux_T 
vAddPhysVariable(eFlux_T, eStateProvided, eTypeFlux, eWhereField, 

0, 0, 0, 1, "T", "Temperature"); 

// eConduct 
vAddPhysVariable(eConduct, eStateRequired, eTypeVariable, eWhereField, 

1, 1, -3, -1, "k", "Conductivity"); 

// eDens 
vAddPhysVariable(eDens, eStateRequired, eTypeVariable, eWhereField, 

-3, 1, 0, 0, "rho", "Density"); 

// eSpecHeat 
vAddPhysVariable(eSpecHeat, eStateRequired, eTypeVariable, eWhereField, 

2, 0, -2, -1, "cp", "Specific Heat") ; 
// eAGradX_eFlux_T 
vAddPhysVariable(eAGradX_eFlux_T, eStateProvided, eTypeComputed, 

eWhereField, 0, 0, 0, 0, "", 
"Average eTypeGrad eFlux_T" ) ; 

// eAGradY_eFlux_T 
vAddPhysVariable(eAGradY_eFlux_T, eStateProvided, eTypeComputed, 
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eWhereField, 0, 0, 0, 0, "", 
"Average eTypeGrad eFlux_T" ) ; 

// eHeatDiff 
vAddPhysVariable(eHeatDiff, eStateProvided, eTypeComputed, eWhereField, 

2, 0, -1, 0, "a", "Heat Diffusivity") ; 

// eHeatFlux 
vAddPhysVariable(eHeatFlux, eStateProvided, eTypeComputed, eWhereField, 

0, 1, -3, 0, "q", "Heat Flux") ; 
// eAveTemp 
vAddPhysVariable(eAveTemp, eStateProvided, eTypeComputed, eWhereField, 

0, 0, 0, 1, "T", "Temperature"); 
// eRGradX_eFlux_T 
vAddReconVariable(eRGradX_eFlux_T, eTypeGrad, eWhereRight, XDIR, eFlux_T) 
// eLGradX_eFlux_T 
vAddReconVariable(eLGradX_eFlux_T, eTypeGrad, eWhereLeft, XDIR, eFlux_T); 
// eNormX 
vAddReconVariable(eNormX, eTypeNorm, eWhereField, XDIR, -1); 
// eRGradY_eFlux_T 
vAddReconVariable(eRGradY_eFlux_T, eTypeGrad, eWhereRight, YDIR, eFlux_T) 
// eLGradY_eFlux_T 
vAddReconVariable(eLGradY_eFlux_T, eTypeGrad, eWhereLeft, YDIR, eFlux_T); 
// eNormY 
vAddReconVariable(eNormY, eTypeNorm, eWhereField, YDIR, -1); 
// eLSoln_eFlux_T 
vAddReconVariable(eLSoln_eFlux_T, eTypeSoln, eWhereLeft, -1, eFlux_T); 
// eRSoln_eFlux_T 

vAddReconVariable(eRSoln_eFlux_T, eTypeSoln, eWhereRight, -1, eFlux_T) ,-

// Now define BCs 

// number of BCs 

vSetNumberOfBCTypes(eLastBCType); 

// BC Types 

vAddBCType (eBC_Ins, "This BC imposes an insulated wall" ) ; 
vAddBCType (eBC_Temp, "This BC imposes a temperature at the wall" ) ; 
vAddBCType (eBC_Flux, "This BC imposes a heat flux at the wall" ) ; 
// Variables for eBC_Temp 
vSetNumberOfBCVariables(eBC_Temp, 1); 
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vAddBCVariable(eTempBCVar, eBC_Temp, 0, 0, 0, 1, "Tb", "Boundary temperature") ; 

// Variables for eBC_Flux 
vSetNumberOfBCVariables(eBC_Flux, 1); 
vAddBCVariable(eHeatBCVar, eBC_Flux, 0, 1, -3, 0, "qb", "Boundary heat flux" ) ; 

// 
}; 

// Destructor 
virtual ~Heat2D_Physics() { 

// Typically no need to have anything here, but it's available in any case 

}; 

// Interior Flux dependencies 
virtual void vGetlnteriorFluxDependencies(std::vector<bool> * vecAllVars) { 

// Set the appropriate flags to true 

(*vecAllVars)[eAGradX_eFlux_T] = true; 
(*vecAllVars)[eNormX] = true; 
(•vecAllVars)[eAGradY_eFlux_T] = true; 
(•vecAllVars)[eNormY] = true; 
(•vecAllVars)[eHeatDiff] = true; 

/ / 

}; 

// Interior Flux function 
virtual void vlnteriorFlux(FluxOutput& FO) const { 

// Define the interior flux here 

double adFlux[l]; 

adFlux[eFlux_T] = 
- vecValues[eHeatDiff] * (vecValues[eAGradX_eFlux_T]*vecValues[eNormX] 

+ vecValues[eAGradY_eFlux_T]*vecValues[eNormY]); 
// 
FO.vSetFlux(adFlux); 
/ / 

i f (FO.qWantWaveSpeeds()) { 
// Set min speed 
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double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3; 
// Set max speed 
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3; 
// store them.. 
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed); 

// 
} 

}; 

// Computed variables dependencies 
virtual void vGetComputedVarDependencies( 

const int iWhich, 
std: : vector<bool> * vecAHVars) { 
// Set the appropriate variables to true 

switch(iWhich) { 
case eAGradX_eFlux_T: { 

(*vecAllVars)[eRGradX_eFlux_T] = true; 
(•vecAllVars) [eLGradX_eFlux_T]. = true; 

} 

break; 
case eAGradY_eFlux_T: { 

(*vecAllVars)[eRGradY_eFlux_T] = true; 
(*vecAHVars) [eLGradY_eFlux_T] = true; 

} 

break; 
case eHeatDiff: { 

(*vecAHVars) [eConduct] = true; 
(*vecAllVars)[eDens] = true; 
(*vecAHVars) [eSpecHeat] = true; 

} 

break; 
case eHeatFlux: { 

(*vecAllVars)[eConduct] = true; 
(*vecAllVars)[eAGradX_eFlux_T] = true; 
(*vecAHVars) [eNormX] = true; 
(*vecAllVars)[eAGradY_eFlux_T] = true; 
(*vecAllVars)[eNormY] = true; 

} 
break; 
case eAveTemp: { • 
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) ; 

(•vecAllVars)[eLSoln_eFlux_T] = true; 
(•vecAllVars)[eRSoln_eFlux_T] = true; 

} 
break; 

} // end of switch on computed variable 
// 

}; 

// Computed variables are... well... computed... here 
virtual double dComputeVarValue(const int iWhich) { 

// Compute the requested variable... 

double dValue; 

switch(iWhich) { 
case eAGradX_eFlux_T: { 

dValue = 
0.5 * (vecValues[eRGradX_eFlux_T] + vecValues[eLGradX_eFlux_T]); 

} 
break; 
case eAGradY_eFlux_T: { 

dValue = 
0.5 * (vecValues[eRGradY_eFlux_T] + vecValues[eLGradY_eFlux_T]); 

} 
break; 
case eHeatDiff: { 

dValue = 
vecValues[eConduct] / (vecValues[eDens] * vecValues[eSpecHeat]); 

} 
break; 
case eHeatFlux: { 

dValue = 
vecValues[eConduct] * ( vecValues[eAGradX_eFlux_T]*vecValues[eNormX] 

+ vecValues[eAGradY_eFlux_T]*vecValues[eNormY] 

} 
break; 
case eAveTemp: { 

dValue = 
0.5 * (vecValues[eLSoln_eFlux_T] + vecValues[eRSoln_eFlux_T]); 

} 



APPENDIX B. PHYSICS CLASSES DEFINITIONS 137 

break; 
} // end of switch on computed variable 
// Return the value 
return dValue; 

/ / 

}; 

// Source term dependencies 
virtual void vGetSourceTermDependencies(std::vector<bool> * vecAHVars) { 

// Set the appropriate flags to true 

// 

}; 

// Source term mapping variables 

// Speeds up the mapping.. 
virtual void vSetSourceTermMapping() { 
/ / 

}; 

// Source term function itself.. 
virtual void vSourceTerm(FluxOutput& FO) const { 

// Source term is defined here 

// 

}; 

// Boundary flux dependencies 
virtual void vGetBoundaryTypeFluxDependencies( 

const int iBCType, 
std::vector<bool> * vecAllVars) { 
// Set the appropriate variables to true... BC variables are automatically 

added 

switch(iBCType) { 
case eBC_Ins: { 
} 
break; 
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case eBC_Temp: { 
(•vecAllVars)[eRGradX_eFlux_T] = true; 
(•vecAllVars)[eNormX] = true; 
(•vecAllVars)[eRGradY_eFlux_T] = true; 
(•vecAllVars)[eNormY] = true; 
(•vecAllVars)[eHeatDiff] = true; 

} 
break; 
case eBC_Flux: { 

(•vecAllVars)[eDens] = true; 
(•vecAllVars)[eSpecHeat] = true; 

} 
break; 

}; // end of switch on bdry flux variables 
// 

}; 

// Boundary flux... 
virtual void vBoundaryTypeFlux( 

const int iBCType, 
const int iBCVarBaselndex, 
FluxOutput& FO) const { 
// Compute the boundary flux... 

double adFlux[1]; 

switch(iBCType) { 
case eBC_Ins: { 

adFlux[eFlux_T] = 
0; 

/ / 

i f (FO.qWantWaveSpeeds()) { 
// Set min speed 
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] • 0.3; 
// Set max speed 
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] • 0.3; 
// store them.. 
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed); 

// 
} 

} 
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break; 
case eBC_Temp: { 

adFlux[eFlux_T] = 
- vecValues[eHeatDiff] * 

(vecValues[eRGradX_eFlux_T] * vecValues[eNormX] + 
vecValues[eRGradY_eFlux_T] * vecValues[eNormY]) ; 

/ / 

i f (FO.qWantWaveSpeeds()) { 
// Set min speed 
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3; 
// Set max speed 
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3; 
// store them.. 
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed); 

// 
} 

} 
break; 
case eBC_Flux: { 

adFlux[eFlux_T] = 
- vecValues[iBCVarBaselndex + eHeatBCVar] / 

(vecValues[eDens] * vecValues[eSpecHeat]); 
/ / 

i f (FO.qWantWaveSpeeds()) { 
// Set min speed 
double dMinWaveSpeed = -vecValues[iTotalNumberVariables-1] * 0.3; 
// Set max speed 
double dMaxWaveSpeed = vecValues[iTotalNumberVariables-1] * 0.3; 
// store them.. 
FO.vSetWaveSpeeds(dMinWaveSpeed, dMaxWaveSpeed); 

// 
} 

} 
break; 

} // end of switch on computed variable 
// Return the flux values 
FO.vSetFlux(adFlux); 

// 
}; 

// Boundary constraints dependencies 
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virtual void vGetBoundaryTypeConstraintDependencies( 
const int iBCType, 
std::vector<bool> * vecAllVars) { 
// Set the appropriate variables to true... BC variables are automatically-

added 

switch(i BCType) { 
case eBC_Ins: { 
} 
break ,-
case eBC_Temp: { 
} ' 
break ,-
case eBC_Flux: { 
} 
break; 

}; // end of switch on bdry cons variables 
// 

}; 

// Boundary constraints 
virtual void vSetupTypeConstraints( 

const int iBCType, const int iBCVarBaselndex, const int iRegionVarIndex, 
const int iNumUnknowns, double *a2dReconArray[], double *a2dReconRHS[1], 
int &iRow, const int iDim, const double adLoc[], 
const double adRelLoc[], const double adNorm[], const int iBC) const { 
switch(iBCType) { 
case eBC_Ins: { 

((Taylor(iRegionVarIndex + eFlux_T, iDim, adNorm, 
iNumUnknowns)).TNDerivO).vTranscribeRow(a2dReconArray[iRow], 
adRelLoc); 

a2dReconRHS[iRow][0] = 0; 
iRow++; 

} 
break ,-
case eBC_Temp: { 

((Taylor(iRegionVarlndex + eFlux_T, iDim, adNorm, iNumUnknowns))). 
vTranscribeRow(a2dReconArray[iRow], adRelLoc); 

a2dReconRHS[iRow][0] = vecValues[iBCVarBaselndex + eTempBCVar]; 
iRow++; 
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} 

break; 
}; // end of switch on bdry type 

// 

}; 

// Boundary constraints 
virtual void vComputeBdryTypeData( 

const int iBCType, const int iBCVarBaselndex, const int iRegionVarIndex, 
const FieldQuant& FQSoln, const int i , const int j , 
const enum eCVFace eWhichFace, const double adLoc[], 
const double adNorm[], double *a2dBCl[], double *a2dBC2[], 
double adRHS[]) const { 

bool qUseCartesian = false; 
bool qUseRotated = false; 
const int ilnvalidVar = -200; 
int iVar, iVarlnUse = ilnvalidVar; 
switch(iBCType) { 
case eBC_Ins: { 

iVar = iRegionVarIndex + eFlux_T; 
// // Check for a clash between Cartesian and boundary coordinates 
i f (iVar == VAR_U_N0RM || 

iVar == VAR_U_TANG || 
iVar == VAR_U_CROSS) { 

assert(!qUseCartesian); 
qUseRotated = true; 

} 

else i f (iVar == iRegionVarlndex + VAR_VEC_X || 
iVar -- iRegionVarlndex + VAR_VEC_Y || 
iVar == iRegionVarlndex + VAR_VEC_Z) { 

assert(!qUseRotated); 
qUseCartesian = true; 

} 

// //MapVariable 
switch (iVar) { 
case VAR_U_N0RM: iVar = iRegionVarlndex + VAR_VEC_X; break; 
case VAR_U_TANG: iVar = iRegionVarlndex + VAR_VEC_Y; break; 
case VAR_U_CROSS: iVar = iRegionVarlndex + VAR_VEC_Z; break; 
default: iVar = iVar; break; 
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i f (iVarlnUse == ilnvalidVar) { 
iVarlnUse = iVar; 
i f (qUseRotated) { 
double dTempl = adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[XDIR] + 

adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[YDIR]; 
double dTemp2 = adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[XDIR] -

adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[YDIR]; 
adRHS[iRegionVarlndex + VAR_VEC_X] = dTempl; 
adRHS[iRegionVarlndex + VAR_VEC_Y] = dTemp2; 

} 
// // Zero this constraint to avoid contamination 
a2dBCl[iVar][iVar] = 0; 
a2dBC2[iVar][iVar] = 0; 
adRHS[iVar] = 0; 

} 

else { 
assert(iVarlnUse == iVar); 

} 
a2dBCl[iVarlnUse][iVarlnUse] = 1; 
adRHS[iVarlnUse] = 0; 
iVarlnUse = ilnvalidVar; 

break; 
case eBC_Temp: { 

iVar = iRegionVarlndex + eFlux_T; 
// // Check for a clash between Cartesian and boundary coordinates 
i f (iVar == VAR_U_N0RM || 

iVar == VAR_U_TANG || 
iVar == VAR_U_CROSS) { 

assert(!qUseCartesian); 
qUseRotated = true; 

} 

else i f (iVar =- iRegionVarlndex + VAR_VEC_X || 
iVar == iRegionVarlndex + VAR_VEC_Y || 
iVar == iRegionVarlndex + VAR_VEC_Z) { 

assert(!qUseRotated); 
qUseCartesian = true; 

} 
// //MapVariable 
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switch (iVar) { 
case VAR_U_NORM: iVar = iRegionVarlndex + VAR_VEC_X; break; 
case VAR_U_TANG: iVar = iRegionVarlndex + VAR_VEC_Y; break; 
case VAR_U_CROSS: iVar = iRegionVarlndex + VAR_VEC_Z; break; 
default: iVar = iVar; break; 

} 
i f (iVarlnUse == ilnvalidVar) { 

iVarlnUse = iVar; 
i f (qUseRotated) { 
double dTempl = adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[XDIR] 

adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[YDIR]; 
double dTemp2 - adRHS[iRegionVarlndex + VAR_VEC_Y]*adNorm[XDIR] 

adRHS[iRegionVarlndex + VAR_VEC_X]*adNorm[YDIR]; 
adRHS[iRegionVarlndex + VAR_VEC_X] = dTempl; 
adRHS[iRegionVarlndex + VAR_VEC_Y] = dTemp2; 

} 

// // Zero this constraint to avoid contamination 
a2dBCl[iVar][iVar] = 0; 
a2dBC2[iVar][iVar] = 0; 
adRHS[iVar] = 0; 

} 
else { 

assert(iVarlnUse == iVar); 
} 
a2dBC2[iVarlnUse][iVarlnUse] = 1; 
adRHS[iVarlnUse] = vecValues[iBCVarBaselndex + eTempBCVar]; 
iVarlnUse = ilnvalidVar; 

} 

break; 
}; // end of switch on bdry type 

// 

}; 

// This needs to be static since it will be called as a function variable 
static void vlnitialSolution(const double adLoc[3], double adResult[]) { 

adResult[eFlux_T] = 0.; 
}; 

virtual void v l n i t i a l i z e S o l u t i o n ( 
const ANS_Mesh* const pM, FieldQuant& FQSoln, 
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const bool qDoTranslation = true) const { 
// Simple call here 
vComputeCVAverages(pM, 

(void (*) (const double *, double * ) ) ( v l n i t i a l S o l u t i o n ) , 
6, FQSoln, 1); 

B.3 Solver file for heat conduction simulation 

Here is the C++ file for the main program that performs a heat conduction simulation. 
#include <math.h> 
ttinclude <unistd.h> 

#include "Heat2D.Physics.cxx" 

#include "FP_Physics.cxx" 

#include "ANS.Domain.h" 
Mnclude "ANS_MeshCell2D.h" 
#include "ANS_MeshVertex2D.h" 
#include "ANS.Multistage.h" 
#include "ANS.Region.h" 
#include "ANS.PhysVar.h" 
#include <sstream> 
#include <fstream> 

int main() { 
char strMeshFile[128]; 
int iOrder = 2; 

// Initialize ANSLib 
vANSLiblnit(); 

// Create mesh 
sprintf (strMeshFile, "../../meshes/channel-CSM-r8g4" ) ; 

ANS_Mesh *pUM2Dl = new MeshCell2D(strMeshFile, iOrder); 

http://Heat2D.Physics.cxx
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std::vector< ANS_Mesh* > vecUM2D; 

vecUM2D.clear(); 
vecUM2D.push_back(pUM2Dl); 

// Create domain 
Domain *pDomain = new Domain(vecUM2D); 
Region *pR0 = pDomain->pRegion(0); 

NewPhysics *pnpFPl, *pnpHl; 

// Function provider 
pnpFPl = new FP_Physics(); 
// Heat conduction class 
pnpHl = new Heat2D_Physics(); 

pRO->vAddNewPhysics(pnpHl); 
pRO->vAddNewPhysics(pnpFPl); 

// Assign boundary conditions 

// For the Heat conduction 
pnpHl->vSetBC(1, Heat2D_Physics::eBC_Temp) 
pnpHl->vSetBC(2, Heat2D_Physics::eBC_Temp) 
pnpHl->vSetBC(3, Heat2D_Physics::eBC_Temp) 
pnpHl->vSetBC(4, Heat2D_Physics::eBC_Temp) 

pDomain->vCopyVariables(); 

ttdefine PHYS_H 0 
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#define PHYS_FP 1 

// Variable association 

// k 

pDomain->vAssociateVariables(0, PHYS_H, 
0, PHYS_FP, FP_Physics::eOne); 

// rho 
pDomain->vAssociateVariables(0, PHYS_H, 

0, PHYS_FP, FP_Physics::eOne); 
// cp 
pDomain->vAssociateVariables(0, PHYS_H, 

0, PHYS_FP, FP_PhysicS::eOne); 

// Boundary condition variables 

// Inlet temp 
pDomain->vAssociateVariables(0, PHYS_H, 2, 0, 

0, PHYS_FP, FP_Physics::eTempIncY); 
// Outlet temp 
pDomain->vAssociateVariables(0, PHYS_H, 3, 0, 

0, PHYS_FP, FP_Physics::eTempDecY); 
// Bottom temp 
pDomain->vAssociateVariables(0, PHYS_H, 1, 0, 

0, PHYS_FP, FP_Physics::eTempIncX); 
// Top temp 
pDomain->vAssociateVariables(0, PHYS_H, 4, 0, 

0, PHYS_FP, FP_Physics::eTempDecX); 

pDomain->vSetupVariables(); 

Multistage MS; 

pDomain->vInitializeSolution(); 

double dObjective = le-13; 

MS.vSetCFL(0.3); 
MS.vSetOverrelaxationParam(3.95); 
// Start computing 
MS.vRelaxAbsolute(pDomain, iOrder, dObjective); 

Heat2D_Physics:reconduct, 

Heat2D_Physics::eDens, 

Heat2D_Physics::eSpecHeat, 
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// Write solution 
pDomain->vSetupSolutionFile(); 
// Add the vars you want to see in the solution file 
pDomain->vAddSolutionFileVariable(0, PHYS_H, Heat2D_Physics::eFlux_T); 

s F i l e = "HeatConduction.solution.pie" ; 
pDomain->vWriteSolutionFile(sFile, iOrder); 

// Clean up before exit 
delete pDomain; 

return 0; 
} 

B.4 Solid mechanics XML file 
<?xml version="1.0" ?> 
<Physics> 
<ClassID>CSM2D</ClassID> 
<ClassDesc>2D Computational s o l i d mechanics package</ClassDesc> 
<FluxVar> 
<ID>eFlux_U</ID> 
<Name>Displacement i n x</Name> 
<Symbol>u</Symbol> 
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</FluxVar> 
<FluxVar> 
<ID>eFlux_V</ID> 
<Name>Displacement i n y</Name> 
< Symbol>v</Symbol> 
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</FluxVar> 
<ComputedVar> 
<ID>eAveDispX</ID> 
<Name>Displacement i n X</Name> 
<Symbol>uave</Symbol> 
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>Soln{eFlux_U}</Formula> 

</ComputedVar> 
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<ComputedVar> 
<ID>eAveDispY</ID> 
<Name>Displacement i n Y</Name> 
<Symbol>vave</Symbol> 
<Units> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>Soln{eFlux_U}</Formula> 

</ComputedVar> 
<RequiredVar> 
<ID>ePoisson</ID> 
<Name>Poisson's ratio</Name> 
<Symbo1>nu</Symbo1> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eElastMod</ID> 
<Name>ElasticModulus</Name> 
<Symbol>E</Symbol> 
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eExpCoeff</ID> 
<Name>Expansion coefficient</Name> 
<Symbol>at</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>-1</K> </UnitS> 

</RequiredVar> 
<RequiredVar> 
<ID>eRefTemp</ID> 
<Name>Reference Temperature</Name> 
<Symbol>Tref</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eTemp</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 

</RequiredVar> 
<ComputedVar> 
<ID>eStrainXX</ID> 
<Name>Strain i n x</Name> 
<Symbol> exx</Symbol> 
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<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>GradX{eFlux_U} - eExpCoeff*(eTemp - eRefTemp)</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStrainYY</ID> 
<Name>Strain i n y</Name> 
< Symbol> eyy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>GradY{eFlux_V} - eExpCoeff*(eTemp - eRefTemp)</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStrainXY</ID> 
<Name>Shear Strain (x-y)</Name> 
< Symbol> exy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>0.5 * (GradX{eFlux_V} + GradY{eFlux_U})</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStressXX</ID> 
<Name>Stress i n x</Name> 
< Symbol>sxx</Symbol> 
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 
<Formula>(eElastMod/(1.0 - ePoisson*ePoisson))* 

( eStrainXX + ePoisson*eStrainYY )</Formula> 
</ComputedVar> 
<ComputedVar> 
<ID>eStressYY</ID> 
<Name>Stress i n y</Name> 
< Symbol> syy</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 
<Formula>(eElastMod/(1.0 - ePoisson*ePoisson))* 

( eStrainYY + ePoisson*eStrainXX )</Formula> 
</ComputedVar> 
<ComputedVar> 
<ID>eStressXY</ID> 
<Name>Shear stress (x-y)</Name> 
<Symbo1>sxy</Symbo1> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS> 
<Formula>(eElastMod * eStrainXY)/(1.0 + ePoisson)</Formula> 

</ComputedVar> 
<ComputedVar> 
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<ID>eBdryDUDX</ID> 
<Name>Bdry du/dx</Name> 
<Symbol>uxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>RGradX{eFlux_U}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID> eBdryDUDY</ID> 
<Name>Bdry du/dy</Name> 
<Symbol>uyb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>RGradY{eFlux_U}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID> eBdryDVDX</ID> 
<Name>Bdry du/dx</Name> 
< Symbol>vxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 
<Formula>RGradX {eFlux_V}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryDVDY</ID> 
<Name>Bdry du/dy</Name> 
<Symbo1>vyb</Symbo1> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS> 
<Formula>RGradY{eFlux_V}</Formula> 

</ComputedVar> 
<UserFunction> 

void vGenericFlux(const double ddudx, const double ddudy, 
const double ddvdx, const double ddvdy, 
const double dE, const double dnu, 
const double dTref, const double dTemp, const double dat, 
const double dnx, const double dny, 
double adFlux[2]) const { 

// Generic flux for CSM problem 
double adFluxX[2]; 
double adFluxY[2]; 
const double dMulConst = dE / (1.0 - dnu*dnu); 
const double dTempAdd = (1.0 + dnu)*dat*(dTemp - dTref); 

adFluxX[0] = ddudx + dnu*ddvdy - dTempAdd; 
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adFluxX[l] = 0.25* (1.0 + dnu)*(ddudy + ddvdx); 
adFluxY[0] = adFluxX[l]; 
adFluxY[1] = ddvdy + dnu*ddudx - dTempAdd; 

adFlux[0] = dMulConst*(-adFluxX[0]*dnx - adFluxY[0]*dny) 
adFlux[l] = dMulConst*(-adFluxX[l]*dnx - adFluxY[1]*dny) 

} 

</UserFunction> 
<InteriorFlux> 
<UserCode> 

vGenericFlux(GradX{eFlux_U}, GradY{eFlux_U}, 
GradX{eFlux_V}, GradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</InteriorFlux> 
<WaveSpeeds> 
<Minimum>-eInvDist * 0.3 * eElastMod</Minimum> 
<Maximum> elnvDist * 0.3 * eElastMod</Maximum> 

</Wavespeeds > 
<SourceTerm> 
</SourceTerm> 
<BCType> 
<Desc>This BC imposes a free boundary*:/Deso 
<ID>eBC_Free</ID> 
<BdryFlux> 
<FluxData> 
<Var>eFlux_U</Var> 
<Formula>0</Formula> 

</FluxData> 
<FluxData> 
<Var>eFlux_U</Var> 
<Formula> 0 </Formula> 

</FluxData> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a x-displacement at the wall</Desc> 
<ID>eBC_DispX</ID> 
<BCVar> 
<ID>eBCDispXVar</ID> 
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<Name>Wall x-displacement</Name> 
<Symbol>xb</Symbo1> 
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</BCVar> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_U</Var> 
<Formula>eBCDispXVar</Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 
RGradX{eFlux_V}, RGradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a y-displacement at the wall</Desc> 
<ID>eBC_DispY</ID> 
<BCVar> 
<ID>eBCDispYVar</ID> 
<Name>Wall y-displacement</Name> 
<Symbol>yb</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>0</T> <K>0</K> </UnitS> 

</BCVar> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_V</Var> 
<Formula>eBCDispYVar</Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 
RGradX{eFlux_V}, RGradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y), adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
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<BCType> 
<Desc>This BC imposes a normal stress at the wall</Desc> 
<ID>eBC_NormStress</ID> 
<BCVar> 
<ID>eBCNormStressVar</ID> 
<Name>Wall normal stress</Name> 
<Symbol> snb</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BdryFlux> 
<UserCode> 

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 
RGradX{eFlux_V}, RGradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

// THis w i l l only work i f the boundaries are aligned with the coords 
i f (Norm{X} != 0.0) { 

// v e r t i c a l wall 
// normal stress i s sxx 
adFlux[eFlux_U] = (eBCNormStressVar * 

(1 - ePoisson*ePoisson))/eElastMod; 
} 

else { 
// horizontal wall -- syy = 0 
adFlux[eFlux_V] = (eBCNormStressVar * 

(1 - ePoisson*ePoisson))/eElastMod; 
} 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a shear stress at the wall</Desc> 
<ID>eBC_ShearStress</ID> 
<BCVar> 
<ID>eBCShearStressVar</ID> 
<Name>Wall shear stress</Name> 
<Symbol>ssb</Symbol> 
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS> 

</BCVar> 
<BdryFlux> 
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<UserCode> 
vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 

RGradX{eFlux_V}, RGradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y), adFlux); 

// THis w i l l only work i f the boundaries are aligned with the coords 
i f (Norm{X) != 0.0) { 

// v e r t i c a l wall 
// shear stress i s sxy 
adFlux[eFlux_V] = (eBCShearStressVar * 

(1 - ePoisson*ePoisson))/eElastMod; 
} 
else { 

// horizontal wall -- syy = 0 
adFlux[eFlux_U] = (eBCShearStressVar * 

(1 - ePoisson*ePoisson))/eElastMod; 
} 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes both shear and normal stresses at the wall</Desc> 
<ID>eBC_Stresses</ID> 
<BCVar> 
<ID>eBCStressesVarXX</ID> 
<Name>Wall xx-stress</Name> 
<Symbol> sxxb</Symbol> 
<Uxiits> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCStressesVarYY</ID> 
<Name>Wall yy-stress</Name> 
<Symbol>syyb</Symbol> 
<UnitS> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCStressesVarXY</ID> 
<Name>Wall shear stress</Name> 
<Symbol>s sb</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </UnitS> 
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</BCVar> 
<BdryFlux> 
<UserCode> 

adFlux[eFlux_U] = eBCStressesVarXX * Norm{X} + eBCStressesVarXY * Norm{Y} 
adFlux[eFlux_V] =' eBCStressesVarXY * Norm{X} + eBCStressesVarYY * Norm{Y} 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes both shear and normal stresses at the wall</Desc> 
<ID> eBC_IntBdry</ID> 
<BCVar> 
<ID>eIntDUDX</ID> 
< Name > du / dx </Name > 
< Symbol>uxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eIntDUDY</ID> 
< Name > du / dy </Name > 
<Symbol>uyb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eIntDVDX</ID> 
<Name > dv / dx< / Name > 
<Symbol>vxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eIntDVDY</ID> 
< Name>dv/dy</Name> 
<Symbol>vyb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </UnitS> 

</BCVar> 
<BCVar> 
<ID>eIntTemp</ID> 
<Name>Tb</Name> 
<Symbo1>vyb</Symbo1> 
<Units> <L>0</L> <M>0</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
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<BdryFlux> 
<UserCode> 

double dudx = 0.5 
double dudy = 0.5 
double dvdx = 0.5 
double dvdy = 0.5 
double dTemp = 0.1 

(RGradX{eFlux_U} + elntDUDX) 
(RGradY{eFlux_U) + elntDUDY) 
(RGradX{eFlux_V) + elntDVDX) 
(RGradY{eFlux_V) + elntDVDY) 
(eTemp + elntTemp); 

vGenericFlux(dudx, dudy, dvdx, dvdy, 
eElastMod, ePoisson, eRefTemp, dTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a symmetry BC along a horizontal wall</Desc> 
<ID>eBC_HorSymm</ID> 
<BdryFlux> 
<UserCode> 

vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 
RGradX{eFlux_V}, RGradY{eFlux_V}, 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_V</Var> 
<Formula> 0 </Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_U</Var> 
<Formula>0 </Formula> 

</Constraint> 
</BCType> 
<BCType> 
<Desc>This BC imposes a symmetry BC along a v e r t i c a l wall</Desc> 
<ID>eBC_VerSymm</ID> 
<BdryFlux> 
<UserCode> 
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vGenericFlux(RGradX{eFlux_U}, RGradY{eFlux_U}, 
RGradX{eFlux_V}, RGradY{eFlux_V), 
eElastMod, ePoisson, eRefTemp, eTemp, eExpCoeff, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_U</Var> 
<Formula> 0 </Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_V</Var> 
<Formula>0</Formula> 

</Constraint> 
</BCType> 

</Physics> 

B.5 Incompressible Navier-Stokes XML file 
<?xml versions"1.0" ?> 
<Physics> 
<ClassID>INS2D</ClassID> 
<ClassDesc>2D Incompressible Navier-Stokes package</ClassDesc> 
<FluxVar> 
<ID>eFlux_P</ID> 
<Name>Pressure</Name> 
<Symbol>P</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</FluxVar> 
<FluxVar> 
<ID>eFlux_U</ID> 
<Name>Velocity i n x</Name> 
<Symbol>u</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</FluxVar> 
<FluxVar> 
<ID>eF1ux_V</ID> 
<Name>Velocity i n y</Name> 
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<Symbol>v</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 

</FluxVar> 
<RequiredVar> 
<ID>eReynolds</ID> 
<Name>Reynolds Number</Name> 
<Symbo1>Re</Symbo1> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eBeta</ID> 
<Name>Artificial Compressibility</Name> 
<Symbol>B</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</RequiredVar> 
<ComputedVar> 
<ID>eBdryP</ID> 
<Name>Bdry Pressure</Name> 
<Symbol>Pb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LSo1n{eF1ux_P}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryU</ID> 
<Name>Bdry U Velocity</Name> 
<Symbol>Ub</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LSoln{eFlux_U}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryV</ID> 
<Name>Bdry V Velocity</Name> 
<Symbol>Vb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LSoln{eFlux_V}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryDUDX</ID> 
<Name>Bdry du/dx</Name> 
<Symbol>Uxb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
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<Formula>LGradX {eFlux_U)</Formula> 
</ComputedVar> 
<ComputedVar> 
<ID> eBdryDUDY</ID> 
<Name>Bdry du/dy</Name> 
<Symbol>Uyb</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LGradY{eFlux_U}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryDVDX</ID> 
<Name>Bdry dv/dx</Name> 
<Symbol>Vxb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LGradX{eFlux_V}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eBdryDVDY</ID> 
<Name>Bdry dv/dy</Name> 
< Symbol>Vyb</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LGradY{eFlux_V}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID> eNormVe1</ID> 
<Name>Normal Velocity</Name> 
<Symbol>U</Symbol> 
<Units> <L>K/L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>Soln{eFlux_U}*Norm{X} + Soln{eFlux_V}*Norm{Y}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eNormPGrad</ID> 
<Name>dP/dn</Name> 
< Symbol> Pn</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>GradX{eFlux_P)*Norm{X) + GradY{eFlux_P)*Norm{Y}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eNormUGrad</ID> 
<Name>du/dn</Name> 
<Symbol>Un</Symbol> 
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<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>GradX{eFlux_U}*Norm{X} + GradY{eFlux_u}*Norm{Y}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eNormVGrad</ID> 
<Name>Normal Velocity</Name> 
<Symbol>dv/dn</Symbo1> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>GradX{eFlux_V}*Norm{X} + GradY{eFlux_V}*Norm{Y}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eUpWind_U</ID> 
<Name>Upwind x-velocity</Name> 
<Symbo1>u_up</Symbo1> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 
<Formula>((eNormVel > 0) ? LSoln{eFlux_U} : RSoln{eFlux_U})</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eUpWind_V</ID> 
<Name>Upwind y-velocity</Name> 
< Symbol>v_up</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>((eNormVel > 0) ? LSoln{eFlux_V} : RSoln{eFlux_V})</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID> eUpNormVe1</ID> 
<Name>Upwind Normal Velocity</Name> 
<Symbol>U_up</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 
<Formula>eUpWind_U * Norm{X} + eUpWind_V * Norm{Y}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStrainXX</ID> 
<Name>Strain i n x</Name> 
<Symbol>txx</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 
<Formula>LGradX{eFlux_U}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStrainYY</ID> 
<Name>Strain i n y</Name> 
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<Symbol>tyy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
<Formula>LGradY{eFlux_V}</Formula> 

</ComputedVar> 
<ComputedVar> 
<ID>eStrainXY</ID> 
<Name>Shear s t r a i n (x-y)</Name> 
<Symbol> txy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 
<Formula>0.5 * (LGradY{eFlux_U) + LGradX{eFlux_V})</Formula> 

</ComputedVar> 
<UserFunction> 

void vGenericFlux(const double dRe, const double dBeta, 
const double dNormVel, const double dP, const double du, 
const double dv, const double ddudx, const double ddudy, 
const double ddvdx, const double ddvdy, const double dnx, 
const double dny, double adFlux[3]) const { 

// Generic flux for INS problem 
const double dlnvRe = 1.0/dRe; 

adFluxfO] = dNormVel/dBeta; 
adFlux[1] = dNormVel*du + (dP - dInvRe*ddudx)*dnx + 

( - dInvRe*ddudy)*dny; 
adFlux[2] = dNormVel*dv + ( - dlnvRe*ddvdx)*dnx + 

(dP - dlnvRe*ddvdy)*dny; 
} 

</UserFunction> 
<UserFunction> 

double dLambda(const double dUNorm, const double dBeta) const { 
// Returns a value needed for wavespeed.. 
return sqrt(dUNorm*dUNorm + 1./dBeta); 

} 

</UserFunction> 
<WaveSpeeds> 
<Minimum>dUNorm - dLambda(dUNorm, eBeta) - eInvDist/eReynolds</Minimum> 
<Maximum>dUNorm + dLambda(dUNorm, eBeta) + eInvDist/eReynolds</Maximum> 

</WaveSpeeds > 
<InteriorFlux> 
<UserCode> 

double du = eUpWind_U; 
double dv = eUpWind_V; 
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double dUNorm = eUpNormVel; 

vGenericFlux(eReynolds, eBeta, dUNorm, Soln{eFlux_P}, du, dv, 
GradX{eFlux_U}, GradY{eFlux_U), GradX{eFlux_V}, GradY{eFlux_V}, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</InteriorFlux> 
<SourceTerm> 
</SourceTerm> 
<BCType> 
<Desc>This BC imposes a stationary wall</Desc> 
<ID>eBC_StatWall</ID> 
<BdryFlux> 
<UserCode> 

double dUNorm = 0.; 
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P}, 0, 0, 

LGradX{eFlux_U}, LGradY{eFlux_U}, LGradX{eFlux_V}, 
LGradY{eFlux_V}, Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_U</Var> 
<Formula>0</Formula> 

</Constraint> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_V</Var> 
<Formula> 0 </Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_P</Var> 
<Formula>0</Formula> 

</Constraint> 
</BCType> 
<BCType> 

<Desc>This BC imposes an inflow BC</Desc> 
<ID>eBC_Inflow</ID> 
<BCVar> 
<ID>eBCInflowNormVel</ID> 
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<Name>Normal inflow velocity</Name> 
< Symbol>Vnb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 

</BCVar> 
<BCVar> 
<ID>eBCInflowTangVel</ID> 
<Name>Tangential inflow velocity</Name> 
< Symbol>Vtb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-K/T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCInflowNormPressGrad</ID> 
<Name>Normal inflow pressure gradient</Name> 
< Symbol> Pnb</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_P</Var> 
<Formula>eBCInflowNormPressGrad</Formula> 

</Constraint> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_U</Var> 
<Formula>eBCInflowNormVel</Formula> 

</Constraint> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_V</Var> 
<Formula>eBCInflowTangVel</Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y} 
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P}, 

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U}, 
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V), 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
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<BCType> 
<Desc>This BC imposes an outflow BC</Desc> 
<ID>eBC_Outflow</ID> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_P</Var> 
<Formula>0</Formula> 

</Constraint> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_V</Var> 
<Formula> 0 </Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_U</Var> 
<Formula>0 </Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 
double dUNorm = LSoln{eFlux_U}*Norm{X) + LSoln{eFlux_V)*Norm{Y) 
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P}, 

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U}, 
LGradY{eFlux_U), LGradX{eFlux_V}, LGradY{eFlux_V}, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes an internal boundary</Desc> 
<ID>eBC_IntBdry</ID> 
<BCVar> 
<ID>eBCIntBdryP</ID> 
<Name>Bdry Pressure</Name> 
<Symbol>Pb</Symbol> 
<Units> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntBdryU</ID> 
<Name>Bdry U velocity</Name> 
<Symbol>Ub</Symbol> 
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<UnitS> <L>1</Ii> <M>0</M> <T>-1</T> <K>0</K> </Units> 
</BCVar> 
<BCVar> 
<ID>eBCIntBdryV</ID> 
<Name>Bdry V velocity</Name> 
<Symbol>Vb</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntBdryDUDX</ID> 
<Name>Bdry dudx</Name> 
< Symbol>Uxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntBdryDUDY</ID> 
<Name>Bdry dudy</Name> 
<Symbol>Uyb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntBdryDVDX</ID> 
<Name>Bdry dvdx</Name> 
<Symbol>Vxb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntBdryDVDY</ID> 
<Name>Bdry dvdy</Name> 
<Symbol>Vyb</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 

</BCVar> 
<BdryFlux> 

<UserCode> 
// Ve l o c i t i e s are upwind -- might be from other side 
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y}; 
double du, dv, dP, dudx, dudy, dvdx, dvdy; 

i f (dUNorm > 0) { 
// Get l e f t data from other side 
du = eBCIntBdryU; 
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dv = eBCIntBdryV; 
} 
else { 

du = LSoln{eFlux_U},-
dv = LSoln{eFlux_V}; 

} 

dUNorm = du*Norm{X} + dv*Norm{Y}; 

// Pressure and ve l o c i t y gradients are the average 
dP = 0.5 * (LSoln{eFlux_P> + eBCIntBdryP); 
dudx = 0.5 * (LGradX{eFlux_U> + eBCIntBdryDUDX); 
dudy = 0.5 * (LGradY{eFlux_U) + eBCIntBdryDUDY); 
dvdx = 0.5 * (LGradX{eFlux_V) + eBCIntBdryDVDX); 
dvdy = 0.5 * (LGradY{eFlux_V) + eBCIntBdryDVDY); 

vGenericFlux(eReynolds, eBeta, dUNorm, dP, du, dv, 
dudx, dudy, dvdx, dvdy, Norm{X}, Norm{Y}, 
adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes an outflow BC</Desc> 
<ID> eBC_Out f1ow2 </ID> 
<BdryFlux> 
<UserCode> 
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y}; 
vGenericFlux(eReynolds, eBeta, dUNorm, 0., LSoln{eFlux_U}, 0., 

0., LGradY{eFlux_U}, 0., LGradY{eFlux_V}, Norm{X}, Norm{Y}, 
adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a horizontal symmetry BC</Desc> 
<ID>eBC_SymmHor</ID> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_P</Var> 
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<Formula>0</Formula> 
</Constraint> 
<Constraint> 
<Type>So1ution</Type> 
<Var>eFlux_V</Var> 
<Formula>0</Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_U</Var> 
<Formula> 0 </Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y}; 
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P), 

LSoln{eFlux_U}, LSoln{eFlux_V}, LGradX{eFlux_U}, 
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V}, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes an internal outflow BC</Desc> 
<ID>eBC_IntOutflow</ID> 
<BCVar> 

<ID>eBCIntOutflowPress</ID> 
<Name>Outflow pressure</Name> 
<Symbol>Pb</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntOutflowUn</ID> 
<Name>Outflow du/dn</Name> 
< Symbol>Unb</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBCIntOutflowVn</ID> 
<Name>Outflow dv/dn</Name> 
<Symbol>Vnb</Symbol> 
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<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 
</BCVar> 
<Constraint> 
<Type>Solution</Type> 
<Var>eFlux_P</Var> 
<Formula>eBCIntOutflowPress</Formuia> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_U</Var> 
<Formula>eBCIntOutflowUn</Formula> 

</Constraint> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_V</Var> 
<Formula>eBCIntOutf1owVn</Formula> 

</Constraint> 
<BdryFlux> 
<TJserCode> 
double dUNorm = LSoln{eFlux_U}*Norm{X} + LSoln{eFlux_V}*Norm{Y} 
vGenericFlux(eReynolds, eBeta, dUNorm, LSoln{eFlux_P}, 

LSoln{eFlux_U}, LSoln{eFlux_V), LGradX{eFlux_U}, 
LGradY{eFlux_U}, LGradX{eFlux_V}, LGradY{eFlux_V}, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes an internal outflow BC</Desc> 
<ID>eBC_IntOutflow2</ID> 
<BCVar> 

<ID>eBC2Int0utflowPress</ID> 
<Name>Outflow pressure</Name> 
< Symbol> Pb</Symbol> 
<Units> <L>-1</L> <M>1</M> <T>-2</T> <K>0</K> </Units> 

</BCVar> 
<BCVar> 
<ID>eBC2Int0utflowUn</ID> 
<Name>Outflow du/dn</Name> 
<Symbol>Unb</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 
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</BCVar> 
<BCVar> 
<ID>eBC2IntOutflowVn</ID> 
<Name>Outflow dv/dn</Name> 
< Symbol >Vnb< / Symbol > 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</BCVar> 
<BdryFlux> 
<UserCode> 
double dUNorm = LSoln{eFlux_U)*Norm{X} + LSoln{eFlux_V}*Norm{Y); 
vGenericFlux(eReynolds, eBeta, dUNorm, eBC2Int0utflowPress, 

LSoln{eFlux_U}, LSoln{eFlux_V}, eBC2Int0utflowUn, 
LGradY{eFlux_U}, eBC2Int0utflowVn, LGradY{eFlux_V}, 
Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
</Physics> 

B.6 Energy equation XML file 
<?xml versions"1.0" ?> 
<Physics> 
<ClassID>Energy2D</ClassID> 
<ClassDesc>2D Energy equation package</ClassDesc> 
<FluxVar> 
<ID>eFlux_T</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 

</FluxVar> 
<RequiredVar> 
<ID>eReynolds</ID> 
<Name>Reynolds Number</Name> 
<Symbol>Re</Symbo1> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS> 

</RequiredVar> 
<RequiredVar> 
<ID>ePrandtl</ID> 
<Name>Prandtl Number</Name> 
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<Symbol>Pr</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eEckert</ID> 
<Name>Eckert Number</Name> 
<Symbol>Ec</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eConduct</ID> 
<Name>Conductivity</Name> 
<Symbol>k</Symbol> 
<Units> <L>1</L> <M>1</M> <T>-3</T> <K>-1</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID> eNormVe1</ID> 
<Name>Normal velocity</Name> 
<Symbol>U</Symbol> 
<UnitS> <L>1</L> <M>0</M> <T>-1</T> <K>0</K> </UnitS> 

</RequiredVar> 
<RequiredVar> 
<!D>eStrainXX</ID> 
<Name>Normal s t r a i n i n x</Name> 
<Symbol> txx</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<ID>eStrainYY</ID> 
<Name>Normal s t r a i n i n y</Name> 
< Symbol> tyy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</RequiredVar> 
<RequiredVar> 
<!D>eStrainXY</ID> 
<Name>Shear s t r a i n (x-y)</Name> 
<Symbol>txy</Symbol> 
<Units> <L>0</L> <M>0</M> <T>-1</T> <K>0</K> </Units> 

</RequiredVar> 
<ComputedVar> 
<!D>eHeatFlux</ID> 
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<Name>Heat Flux</Name> 
<Symbol>q</Symbol> 
<UnitS> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </UnitS> 
<Formula>eConduct * ( GradX{eFlux_T}*Norm{X} + 

GradY{eFlux_T}*Norm{Y} )</Formula> 
</ComputedVar> 
<ComputedVar> 
<ID>eAveTemp</ID> 
<Name>Temperature</Name> 
<Symbol>T</Symbol> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </UnitS> 
<Formula>0.5 * (LSoln{eFlux_T) + RSoln{eFlux_T})</Formula> 

</ComputedVar> 
<UserFunction> 

void vCompWaveSpeeds(const double dUNorm, const double dRe, 
const double dPr, const double dlnvDist, 
double *dMnS, double *dMxS) const { 

double dFakeSpeed = (10.0/(dRe * dPr)) * dlnvDist; 
i f (dUNorm >= 0) { 
*dMnS = -dFakeSpeed; 
*dMxS = dUNorm + dFakeSpeed; 

} 

else { 
*dMnS = dUNorm - dFakeSpeed; 
*dMxS = dFakeSpeed; 

} 

} 
</UserFunction> 
<UserFunction> 

void vGenericFlux(const double dUNorm, const double dRe, const double dPr, 
const double dEc, const double dTempL, const double dTempR, 
const double dTdx, const double dTdy, const double dnx, 
const double dny, double adFlux[1]) const { 

// Returns a value for the flu x 
double dRePr = 1.0 / (dRe * dPr); 
// Return the flux 
i f (dUNorm >= 0) { 

adFlux[0] = dUNorm * dTempL; 
} 

else { 
adFlux[0] = dUNorm * dTempR; 



APPENDIX B. PHYSICS CLASSES DEFINITIONS 172 

} 

adFluxtO] -= dRePr * (dTdx * dnx + dTdy * dny); 
} 

</UserFunction> 
<UserFunction> 

void vGenericFluxBdry(const double dUNorm, const double dRe, 
const double dPr, const double dEc, const double dTempL, 
const double dTempR, const double dTdn, 
double adFlux[l]) const { 

// Returns a value for the flux 
double dRePr = 1.0 / (dRe * dPr); 
// Return the flux 
i f (dUNorm >= 0) { 

adFlux[0] = dUNorm * dTempL; 
} 
else { 

adFlux[0] = dUNorm * dTempR; 
} 

adFlux[0] -= dRePr * dTdn; 
} 

</UserFunction> 
<InteriorFlux> 
<UserCode> 
// Compute normal ve l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert, 
LSoln{eFlux_T}, RSoln{eFlux_T}, GradX{eFlux_T}, 
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</InteriorFlux> 
<WaveSpeeds > 
<Minimum>dMinS</Minimum> 
<Maximum>dMaxS</Maximum> 

</WaveSpeeds> 
< SourceTerm> 
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<SourceData> 
<ID>eDissFunc</ID> 
<Desc>Adds dissipation effects to the energy equation</Desc> 
<UnitS> <L>0</L> <M>0</M> <T>0</T> <K>0</K> </UnitS> 
<Formula>(-eEckert/eReynolds)*( 2.0*eStrainXX*eStrainXX + 

2.0*eStrainYY*eStrainYY + 4.0*eStrainXY*eStrainXY)</Formula> 
</SourceData> 

</SourceTerm> 
<BCType> 
<Desc>This BC imposes an insulated surface</Desc> 
<ID>eBC_Ins</ID> 
<BdryFlux> 
<UserCode> 
// Compute normal ve l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert, 
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux_T}, 
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_T</Var> 
<Formula> 0 </Formula> 

</Constraint > 
</BCType> 
<BCType> 
<Desc>This BC imposes a temperature at the wall</Desc> 
<ID>eBC_Temp</ID> 
<BCVar> 
<ID>eTempBCVar</ID> 
<Name>Boundary temperature</Name> 
<Symbol>Tb</Symbol> 
<Units> <L>0</L> <M>0</M> <T>0</T> <K>1</K> </Units> 

</BCVar> 
<Constraint> 
<Type>Solution</Type> 
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<Var>eFlux_T</Var> 
<Formula>eTempBCVar</Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 

// Compute normal v e l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert, 
eTempBCVar, eTempBCVar, GradX{eFlux_T}, 
GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC imposes a heat flux at the wall</Desc> 
<ID>eBC_Flux</ID> 
<BCVar> 
<ID>eHeatBCVar</ID> 
<Name>Boundary heat flux</Name> 
<Symbol>qb</Symbol> 
<UnitS> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </UnitS> 

</BCVar> 
<Constraint> 
<Type>NGradient</Type> 
<Var>eFlux_T</Var> 
<Formula>eHeatBCVar/eConduct</Formula> 

</Constraint> 
<BdryFlux> 
<UserCode> 

// Compute normal v e l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert, 
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux_T}, 
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GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux); 
</UserCode> 

</BdryFlux> 
</BCType> 
<BCType> 
<Desc>This BC imposes a heat flux at the wall</Desc> 
<ID> eBC_BdryFlux</ID> 
<BCVar> 
<ID>eBdryHeatBCVar</ID> 
<Name>Boundary heat flux</Name> 
< Symbol>gb</Symbol> 
<Units> <L>0</L> <M>1</M> <T>-3</T> <K>0</K> </Units> 

</BCVar> 
<BdryFlux> 
<UserCode> 
// Compute normal v e l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 
double dHF = -eBdryHeatBCVar / eConduct; 

vGenericFluxBdry(dUNorm, eReynolds, ePrandtl, eEckert, 
LSoln{eFlux_T}, LSoln{eFlux_T}, dHF, 
adFlux); 

</UserCode> 
</BdryFlux> 

</BCType> 
<BCType> 
<Desc>This BC i s used at the outflow</Desc> 
<ID> eBC_Out f1ow</ID> 
<BdryFlux> 
<UserCode> 

// Compute normal v e l o c i t y f i r s t using average values 
double dUNorm = eNormVel; 
double dMinS, dMaxS; 
vCompWaveSpeeds(dUNorm, eReynolds, ePrandtl, elnvDist, 

&amp;dMinS, &amp;dMaxS); 

vGenericFlux(dUNorm, eReynolds, ePrandtl, eEckert, 
LSoln{eFlux_T}, LSoln{eFlux_T}, GradX{eFlux 
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GradY{eFlux_T}, Norm{X}, Norm{Y}, adFlux); 
</UserCode> 

</BdryFlux> 
</BCType> 

</Physics> 


