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A B S T R A C T 

The interest in data warehouses and OLAP applications in recent years is largely 

due to the promise of improved decision-making made possible by integrating data from 

numerous different sources. The underlying data structures required to support the 

analytical requirements of these systems clearly justifies the need for a distinct data 

modeling approach, particularly at the conceptual level. As a direct response to the 

inability of conventional data modeling methods to represent multidimensional 

semantics, multidimensional modeling has emerged and brought with it a variety of new 

multidimensional concepts. Several models have been proposed to represent these 

concepts, but a complete and natural approach does not exist that adequately 

conceptualizes and communicates multidimensional designs to business and technical 

users alike. To address the fundamental deficiencies and shortcomings of existing 

models, we propose a fact-oriented approach to conceptual multidimensional modeling. 

Our approach is a specialization of Object Role Modeling in which we define additional 

constructs and guidelines to consider multidimensional properties at the conceptual level. 

We believe our utilization of the fact-oriented paradigm provides us with a conceptual 

multidimensional model that is more natural and simpler than existing models. To 

demonstrate its practicality, we apply our approach to a case study and demonstrate how 

our model can be implemented using existing technologies. 
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1. I N T R O D U C T I O N 

Recent years have witnessed the dramatic evolution and acceptance of a new type 

of management information system known as the data warehouse. The interest in this 

decision support technology is largely due to the promise of improved decision-making 

and planning made possible by gaining efficient access to data from numerous different 

information sources. As originally defined by Inmon (1996), a data warehouse is "a 

subject-oriented, integrated, non-volatile, time variant collection of data in support of 

management's decisions" (p. 33). 

The data warehouse is often the underlying database that supports an integrated 

data architecture to deliver decision oriented data structures to on-line analytical 

processing (OLAP) applications. In this role, data warehouses contrast operational 

databases that support daily operations and on-line transaction processing (OLTP). 

Wu and Buchmann (1997) present significant differences between data warehouse 

and operational systems to justify the need for separate underlying databases. Chaudhuri 

and Dayal (1997), also suggest differences in functionality and performance requirements 

as valid reasons for differentiating the design and development of data warehouses from 

that of conventional operational systems. These viewpoints suggest that the decision-

support focus of data warehouses demands data model design aligned with user 

perspectives and the analytical processing to be performed rather than application 

specific business needs. The point has also been argued by Boehnlein and Ulbriche-vom 

Ende (1999) that both the static and dynamic influences of analytical requirements and 

their underlying data sources clearly illustrate the need for a distinct comprehensive data 

warehouse modeling approach. 

1 



1.1 . M o t i v a t i o n 

While conventional modeling techniques are well proven for transaction 

processing systems, their deficiencies in modeling data warehouses have been well 

documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). The main 

reason for the deficiency in these arguments is the underlying normalization premise 

which provides an efficient means to store data but does not satisfy analytical and 

decision support requirements. As argued by Kimball, Reeves, Ross and Thornthwaite 

(1998), these models should not be used as the basis for data warehouses because the 

atomic detail of normalized models often confuses users and cannot be easily navigated 

by analysis tools. 

As a direct response to the inability of conventional conceptual modeling methods 

to represent multidimensional semantics, the multidimensional view of data (cube or 

hypercube) arose (Chaudhuri & Dayal, 1997). This view introduced a variety of new 

modeling concepts, including facts and dimensions, additivity, derived measures, 

classification hierarchies, and the categorization of dimensions. 

Despite the growth of data warehousing and OLAP applications, existing 

multidimensional modeling methods do not adequately capture the inherent semantics 

and a commonly accepted standard does not exist to indicate what should be represented 

in a multidimensional scheme (Abello, Samos, & Saltor, 2001). While it is widely 

recognized that data warehouses are based on the logical star schema, there is no standard 

conceptual data modeling technique for data warehousing and OLAP applications. 

Consequently, user analysis via a common framework is difficult and there is no 

consistent basis for solving conceptual multidimensional modeling problems with an 

intuitive and complete conceptual model. 
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Several works have been proposed that provide significant support for 

multidimensional constructs, but these approaches are far removed from natural language 

and difficult to populate with example information, making it challenging to 

conceptualize and validate multidimensional designs. As a result, a complete and natural 

design technique does not exist that adequately conceptualizes and communicates 

multidimensional data designs to both business and technical users. 

1.2. O b j e c t i v e s 

To address the fundamental deficiencies and shortcomings of existing 

multidimensional models, we propose a fact-oriented approach to multidimensional 

modeling. We define our approach as a specialization of Object Role Modeling (ORM) 

by defining additional graphical constructs and guidelines that consider key 

multidimensional properties at the conceptual level. We use ORM as a basis for our fact-

oriented approach because we believe it considers an information system's structural 

properties at the conceptual level more naturally than existing multidimensional models 

of other conventional approaches. 

The practical goals of our fact-oriented modeling approach are to help designers 

capture and satisfy complex modeling requirements, help end users better understand the 

structure and navigation paths of the data warehouse, and facilitate communication 

between business users and data modelers. In support of our goals, the main objectives 

of this thesis are summarized as follows: 

1. to provide a natural, simple, and expressive approach to modeling 

multidimensional data at the conceptual level; 
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2. to present a set of design guidelines that provide data modelers with a 

systematic approach to building conceptual multidimensional models 

using our method; and 

3. to test our approach by attempting to solve a practical data analysis 

problem through a case study implemented using existing 

technologies. 

1.3. O u t l i n e 

To accomplish our objectives, we have organized the remainder of the thesis as 

follows. Chapter 2 provides an overview of data warehousing and OLAP applications. 

Various architectural components are discussed, including logical layers, physical layers, 

and basic warehouse processes. Chapter 3 examines data modeling, highlighting the 

differences between traditional applications and data warehouses. Multidimensional 

concepts are presented through an example and existing multidimensional modeling 

works are reviewed. Chapter 4 introduces our conceptual multidimensional modeling 

approach by providing constructs and design guidelines for its use. Chapter 5 presents a 

case study demonstrating how our model can be implemented using existing 

technologies. Details are presented for conceptual model development, logical and 

physical schema mapping, and O L A P cube generation. We also report on our 

experiences gained in using the model. Finally, chapter 6 summarizes findings and 

contributions of the thesis and proposes future research directions. 

4 



2 . I N T R O D U C T I O N T O D A T A W A R E H O U S I N G 

2.1. I n t r o d u c t i o n 

This chapter provides an overview of Data Warehousing and OLAP Applications. 

We discuss the logical architecture of a data warehouse through a presentation of its basic 

information service and communication layers. These include data source, data storage, 

application, and presentation layers. After presenting the logical view we outline 

physical architectures that may be mapped onto the logical architecture. Categorized by 

the approaches taken by desktop tools to implement data access, these physical 

architectures include Multidimensional OLAP (MOLAP) and Relational OLAP 

(ROLAP). We conclude the chapter with a discussion of the basic procedures within a 

data warehouse as grouped into two categories - data staging services and query services. 

2.2. D a t a W a r e h o u s i n g O v e r v i e w 

According to the Data Warehousing Institute (2000), the data warehousing 

industry encompasses a host of disciplines and technologies used to analyze information, 

including data modeling, data migration and transformation, data quality, business 

intelligence, data marts, on-line analytical processing, database management, data 

mining, and knowledge discovery. All of these terms can be classified into a broad 

category of information analysis known as decision support, which is one of the primary 

uses of data warehouses. 

The importance of data warehousing in the commercial segment appears to be due 

to a need for enterprises to gather information from transaction processing systems into a 

single place for in-depth analysis (Widom, 1995). To gather this information in a typical 

data warehouse, information from a variety of sources is extracted, transformed, and 
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cleansed, and business rules are enforced to help clarify and standardize the data to 

ensure consistency. The following sections present the logical architecture required to 

support these and other warehouse processes and outline the physical architectures that 

may be mapped onto the logical architecture. 

2 . 3 . L o g i c a l A r c h i t e c t u r e 

Figure 2-1 presents a typical logical data warehouse architecture that extends that 

of Wu and Buchmann (1997) and Kimball et al. (1998). This architecture contains the 

basic information service and communication layers of the data warehouse. These layers 

are discussed in the sections that follow. 

Data Source 
Layer 

Data Storage 
Layer 

Application 
Layer 

Presentation 
Layer 

Data Mart #1: 
dimensional 

subject oriented 
locally implemented 
user group driven 

frequently refreshed 

Data Mart #2 

Data Mart #3 

Application Interfaces: 
conceptual view of data 

data access facilities 

Ad Hoc Query Tools 

Report Writers 

End User Applications 

Models 

Figure 2-1: Logical Data Warehouse Architecture 

2.3.1. Data Source Layer 

Source systems capture business transactions and include operational systems and 

databases. These operational systems are often referred to as online transaction 

processing systems and are optimized for storing and updating large volumes of data 

gathered one record at a time. The purpose of these systems is known in advance 
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whereas it is not known for data warehouses. Examples of such systems are order entry, 

invoicing, inventory, and general ledger systems. Source systems should be thought of as 

outside the warehouse and may also include data from sources external to a company 

(e.g. marketing research data). The net result of these OLTP systems is the production of 

large volumes of data but the data gathered and stored is not always easily accessible to 

end users. This highlights the fact that the intent of these systems is not analytical 

processing. 

2.3.2. Data Storage Layer 

The data storage layer provides services for the efficient storage, retrieval, and 

management of large amounts of data. It usually refers to the data warehouse database, 

which is frequently updated on a controlled basis using extract, transform, and load 

(ETL) routines on source system data and is the union of all its constituent data marts. In 

this context, Kimball et al. (1998) refer to a data mart as "the subset of all the data or a 

restriction of the data warehouse relevant to a specific business process or group" (p. 18) 

while a data warehouse usually serves the entire enterprise. 

2.3.3. Application Layer 

The application layer provides services to conceptually arrange data in the format 

requested by end user applications. It provides data access facilities suitable for specific 

applications, including data model transformation between conceptual and logical 

schemas. This layer may also contain utilities to generate extracts frequently offloaded to 

desktop resident OLAP tools. Services for the arrangement of this data are application 

dependant. As Wu and Buchmann (1997) state, this is advantageous because if the 

requirements of the applications change, only the application layer needs to change. 
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2.3.4. Presentation Layer 

To complete the logical architecture and deliver data from transactional systems 

to end users who make strategic and tactical decisions, a presentation layer is needed. 

The decision support systems that comprise this layer range from simple query tools to 

sophisticated data mining and modeling applications that find trends in the data. 

Most often the presentation layer consists of an OLAP application. These 

graphical presentation and reporting systems allow users to intuitively, quickly, and 

flexibly manipulate operational data using familiar business terms in order to provide 

analytical insight. Many of these tools provide value added information through 

techniques such as exception highlighting, trend analysis, and statistics development. 

2 .4 . P h y s i c a l A r c h i t e c t u r e 

The following sections present physical architectures that may be mapped onto 

the logical architecture. These architectures are categorized by desktop tool approaches 

to implementing data access functionality and include multidimensional OLAP 

(MOLAP) and relational OLAP (ROLAP). The main premise of M O L A P is that data 

must be stored multidimensionally to be viewed multidimensionally while the R O L A P 

premise is that OLAP capabilities are best provided directly against a relational database. 

2.4.1. Relational OLAP Architecture 

As illustrated in Figure 2-2, the three-tier ROLAP architecture leverages 

relational databases to provide multidimensional analysis. The database layer typically 

utilizes relational databases for data storage, access, and retrieval processes. The 

application logic layer is the ROLAP engine, which executes multidimensional reports 
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from multiple end users. The ROLAP engine integrates with a variety of presentation 

layers, through which users perform OLAP analysis. 

ROLAP servers sit between a relational database server and a client front-end 

tool. These servers extend traditional database servers with special middleware to 

efficiently support OLAP queries and analysis. These queries are then evaluated in terms 

of views that are identified beforehand and used to generate SQL. 

As suggested by Microstrategy (1995), the main strength of ROLAP tools is that 

they exploit the scalability and transactional features of relational databases while the 

major drawback is the performance bottleneck that can result from performing OLAP 

style querying and generating SQL. 

Source 
Systems 

Data 
Warehouse 

Relational 
O L A P Engine 

O L A P Interface 

ma 

Data Source 
Layer 

Data Storage 
Layer 

Application 
Layer 

Presentation 
Layer 

Figure 2-2: Relational OLAP Architecture Layers 

2.4.2. Multidimensional OLAP Architecture 

Illustrated in Figure 2-3, MOLAP is a two-tier, client/server architecture in which 

a proprietary multidimensional database (MDB) serves as both the storage layer and the 

application layer. In the storage layer, the MDB system handles data storage, access, and 

retrieval functions. These databases contain n-dimensional arrays where each dimension 

has an associated hierarchy of levels of consolidated data. Data is loaded into an MDB 



via batch routines and calculations are performed to aggregate along dimensions and fill 

the MDB's array structures. The application layer executes OLAP requests and 

integrates with the presentation layer to provide an interface through which end users 

view and request OLAP analysis. 

Source 
Systems 

Multidimensional 
Database O L A P Interface 

Data Source 
Layer 

Data Storage 
Layer 

Application 
Layer 

Presentation 
Layer 

Figure 2-3: Mult idimensional O L A P Architecture Layers 

The significant advantage of the MOLAP approach is faster performance resulting 

from the indexing properties of the proprietary multidimensional storage structures while 

the major drawback is poor storage utilization, especially when the data set is sparse 

(Microstrategy, 1995). 

2 . 5 . F u n d a m e n t a l D a t a W a r e h o u s e P r o c e s s e s 

Figure 2-4 depicts the basic processes of a data warehouse as described by 

Kimball et al. (1998). They group these processes into two broad service categories -

data staging services and query services. 
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Figure 2-4: Basic Data Warehouse Processes 

Adapted from The Data Warehouse Lifecycle Toolkit (p. 329), by R. Kimball, L. Reeves, M. Ross, & W. 

Thornthwaite, 1998, New York: John Wiley & Sons. 

2.5.1. Data Staging Services 

One of the most significant tasks in building the data warehouse is moving data 

from numerous legacy systems into the data warehouse. At a high level, data moves 

from the source systems to a staging area using data staging services. These services are 

driven by metadata that describe data sources, targets, dependencies, etc. Often termed 

ETL services, they extract data from the data sources, transform and integrate the data, 

then load it into the warehouse. The timing of ETL processes is dependant on the 

characteristics of the source data, and may vary in frequency to be executed daily, 

weekly, monthly, etc. Common tools used for these processes include products such as 

Ascential DataStage, SAS ETL, and Microsoft DTS. 

To effectively use ETL services, the entire data staging process is managed 

through job control services. These services define a series of steps, specify relations and 

dependencies among these steps, and capture metadata regarding their progress and 

statistics. These services can be implemented as SQL stored procedures or in an advanced 

tool designed to help manage the processes. Exception and error handling processes are 
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usually implemented as well to catch referential integrity violations and handle other 

unrecoverable errors. 

2.5.2. Query Services 

Query services allow a user to formulate a query, execute it against the database, 

and respond to the request with a result set. Only presentation servers provide query 

services as they store and present data in a multidimensional format. As shown in Figure 

2-4, the flow of data from the presentation server to the end user is supported by metadata 

from the metadata catalog. 

OLAP browsing services help users navigate the warehouse by using some form 

of browsing tool. This tool is usually linked to a catalog containing business definitions 

and data elements for particular subject areas. Popular services and operations supported 

by O L A P tools include pivoting, roll-up, drill-down, and slice-and-dice. These services 

refer to the various manipulations that can be performed on query result sets. 

Although complex analysis techniques have gained considerable attention with 

the advent of OLAP systems, managed query environments still exist that use standard 

reporting tools. These queries can come in the form of ad-hoc report requests or 

standard, fixed format reports. Oftentimes, queries that begin as ad-hoc requests become 

standard reports. 

Other services found in the warehouse include activity monitoring and security 

services. Activity monitoring captures information about system performance and usage 

statistics to help with marketing and capacity planning. Security services facilitate 

database connections and rely on authentication and authorization processes to identify 

users and determine access rights. 
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2 .6 . S u m m a r y 

This chapter has provided an overview of data warehousing and OLAP 

applications. We introduced the logical architecture, which consists of data source, data 

storage, application, and presentation layers. These layers include operational systems 

and databases that capture business transactions, components for storing, retrieving, and 

managing data, components to conceptually arrange data in end user applications, and 

finally services to deliver data to the user. We also illustrated how the physical 

architecture of a data warehouse can be mapped on its logical layers in several ways. In a 

MOLAP solution analytical data is extracted and stored in a multidimensional database, 

while the ROLAP approach provides analytical capabilities directly against a relational 

database. The chapter concluded with a discussion of the basic processes within a data 

warehouse as presented in two broad categories. Data staging services are focused on 

getting data into the data warehouse and include ETL services, job control, exception and 

error handling processes. The second category, query services, focuses on getting data 

out of the warehouse and includes browsing, reporting and query management. 
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3 . M O D E L I N G T H E D A T A W A R E H O U S E 

3 . 1 . I n t r o d u c t i o n 

In this chapter we provide an overview of the theoretical and practical aspects of 

modeling data for traditional OLTP systems, data warehouses, and OLAP applications. 

We first examine the basic concepts of data modeling by distinguishing conceptual, 

logical, and physical design phases. We will look at conventional data modeling methods 

and present an overview of several approaches, including Entity Relationship Modeling, 

Object-Oriented Modeling, and Fact-Oriented Modeling. After presenting conventional 

approaches, we will highlight differences in the data structures of traditional OLTP 

applications and decision support applications to distinguish multidimensional and 

conventional data modeling. To gain a better understanding of the structural properties of 

multidimensional data, we provide an overview of multidimensional concepts through an 

example. We conclude the chapter with a review of existing multidimensional models as 

discussed in the literature. A brief look is taken at physical and logical models but the 

emphasis is on several of the most popular conceptual models attempting to address 

multidimensional requirements. 

3 .2 . I n f o r m a t i o n L e v e l s 

Databases are major productivity tools for information-oriented businesses, 

however, for a database to be used effectively its data should be well-designed, correct, 

and easy to access. Designing a database involves analyzing and representing data in a 

formal model of the application area an organization must understand for a particular 

system. The application area being modeled is typically part of the real world the 

modeler is interested in and has been referred to by Halpin (1995) as the universe of 
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discourse. A data modeling method allows business users and data architects to describe 

the universe of discourse clearly and precisely to achieve consensus on the definition of 

its contents. According to Halpin (1995), such a modeling method comprises both a 

language and a procedure to guide modelers in using the language to construct models. A 

language has associated syntax, semantics, and pragmatics and may be graphical and/or 

textual. 

Data models make extensive use of graphical representations and natural language 

to visualize information needs of an application and gauge how completely and 

accurately data structures reflect an application domain. Several direct benefits of this 

visualization include improved communication between modeler and user, more 

understandable solutions, and early detection of missed requirements and modeling 

errors. Design improvements stemming from data modeling generally translate to fewer 

construction errors and less expense as inaccuracies do not filter through to later stages of 

software development and result in costly code changes. Once complete, data models 

serve as architectural blueprints for database and application development. 

Most literature distinguishes between conceptual, logical, and physical database 

development phases when it comes to the subject of database design and development 

(Elmasri & Navathe, 1994; Batani, Ceri, & Navathe, 1992; Halpin 2001). The common 

theme in these works is that the terms conceptual, logical, and physical differentiate 

levels of abstraction in data models. These various layers are not defined by an accepted 

authority but are generally understood by data architects and modelers. The models may 

appear in different manners, some approaches dealing with only the physical and logical 

models, while others offer elements of all three. Combined, the conceptual, logical, and 
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physical models comprise a complete data model representing the highest level of design 

abstraction to the lowest level of implementation detail of a particular application. 

Adopting this view of data modeling, we distinguish three different kinds of data 

models based on the constructs they provide and the database design phase they are 

associated with - Conceptual, Logical and Physical. Conceptual models are close to the 

way users perceive the data and are independent of any implementation. Secondly, 

logical models are understandable by end users but consider the underlying Database 

Management System (DBMS) used in the implementation. Finally, those at the physical 

level depend on the specific database used and describe the details of how data is actually 

stored in the computer. These levels are further described in the following sections. 

3.2.1. Conceptual Model 

The first step of database design is usually developing the conceptual data model 

of an application. Considered the highest level of database abstraction, conceptual design 

portrays the application domain using terms and concepts understandable to the user 

while ignoring logical and physical level aspects. The conceptual model is concerned 

with depicting data from the business users point of view, and thus, is said to represent an 

abstraction of the real world view and understanding of data (Batra, Hoffer, & Bostrom, 

1990). The conceptual model suppresses non-critical details in order to emphasize 

business rules and user objects using concepts people are used to working with. As 

illustrated in the sample in Figure 3-1, conceptual models typically include only 

significant entities that have business meaning, along with their relationships and 

possibly a few significant attributes. 
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Figure 3-1: Sample Conceptual Data Model 

According to Batra et al., (1990) the process of deriving and analyzing data 

inherent to a business situation and mapping the objects of this understanding of reality 

constitutes a discovery phase. This discovery phase consists of two parts - the first 

involves elicitation of the information requirements from users and the second involves 

conceptual representation of information requirements into a conceptual model. 

3.2.2. Logical Model 

The logical database design phase typically follows conceptual design and 

converts the model into a lower-level structure for implementation purposes. To do this, 

an appropriate class of logical data model (e.g. relational, hierarchic, network) is chosen 

and a logical design is expressed in terms of the abstract database structures for that 

model. As shown in the relational model sample in Figure 3-2, information is stored in 

tables and constraints are expressed using primary and foreign key declarations. 

17 



Team nirrber 
Speciality 

Is member of 

Division 
Division nurrber , betongs lo , 

Division name 
Division address 

A 1_ 
Employee 

Errployae nurrber 
Fir st name 
Last name 
Employee functicn 
Emplojee salary 

Participate 
Start date 
End Cbte 

Project Management LDM 
User 12/16/2002 Version 6.1 J 

Project 
Project nuTber 
Project name 
Project iabel 

1 
I 

1 
Task 

1 T a * name 
Tadccost 

Activity 
Start date 
End aate 

Figure 3-2: Sample Logical Data Model 

While various logical model classes exist, the predominance of relational 

databases has meant the majority of today's logical models are schemas conforming to 

relational theory. As introduced by Codd (1970), relational theory involves normalized 

relations where each data entry is atomic and stored in tables treated as mathematical 

relations. Relational schemas are most often in first normal form and do not include 

specific details for each relational DBMS implementation. 

3.2.3. Physical Model 

The physical model specifies how the logical model will be instantiated in a 

particular DBMS product (e.g. Oracle, Sybase, etc.). As illustrated in the example in 

Figure 3-3, physical models include detailed table information specific to a particular 

product or version, as well as configuration choices for the database instance. Other 

details include physical storage options for index construction, key constraints, views and 

referential integrity maintenance. 
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Figure 3-3: Sample Physical Data Model 

3.3. C o n v e n t i o n a l D a t a M o d e l i n g A p p r o a c h e s 

Many forms of symbolic notation have been developed to enable data models to 

represent various levels of abstraction. Some of these notations are lexical, others 

graphical, and others a combination of both. The following sections outline three of the 

most popular conventional notations for information modeling at the conceptual level. 

3.3.1. Entity-Relationship Modeling 

The most common technique for conceptually modeling data in operational 

systems is the Entity Relationship (ER) model defined by Chen (1976). Shown in Figure 

3-4, Chen's classic ER notation models entities that participate in relationships. For 

example, to model an employee working for a department, a relationship is assigned 

between the Employee and Department entities. 
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Figure 3-4: Classic Notation for ER Modeling 

Introduced in the 1970s, Chen's model has evolved over time to incorporate 

extensions, variations, and improvements including the Extended Entity Relational 

Model (Teorey, Yang, & Fry, 1986) that captures detailed features of an information 

model. These different versions support different concepts and often use different 

symbols for the same concepts. A number of the extensions and variations have been 

incorporated in Computer Assisted Software Engineering (CASE) products employing 

the ER methodology. While there is no single standard ER notation, the most popular 

versions of ER are the Barker and Information Engineering (IE) notations. Although not 

a true ER representation, another popular notation is IDEF1X, which is a mixture of ER 

and relational approaches. We provide a brief overview of these three ER notations in 

the following sections. 

3.3.1.1. Barker Notation 

Originally proposed by Barker (1990), Oracle later adopted this notation in its 

CASE tools. Shown in Figure 3-5, the Barker notation represents entities as named, soft 

rectangles with a list of attributes. A hash (#) indicates the primary identifier of an entity. 

An asterisk (*) or heavy dot (•) indicates an attribute is mandatory, while a superscript 

"O" (°) indicates it is optional. Al l relationships are binary and are shown as named lines. 

A solid half-line denotes a mandatory role and a dotted half-line denotes an optional role. 

A crow's foot indicates the cardinality "many" and its absence indicates "one". 
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Figure 3-5: Barker Notation for ER Modeling 

3.3.1.2. Information Engineering (IE) Notation 

Information Engineering was originated by Finkelstein (1989) and later adopted 

by Martin (1990). Today, different versions of IE exist and the style has become the 

basis for a number of CASE products, including Sybase's PowerDesigner. As Figure 3-6 

illustrates, IE displays entity types as named rectangles with a list of attributes. 

Relationships are binary and denoted by named lines. A crow's foot indicates "many", a 

stroke indicates "one", two strokes indicate exactly one and a circle indicates optional. 
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Figure 3-6: Information Engineering (IE) Notation for ER Modeling 

3.3.1.3. Integrated Definition (IDEF1X) Notation 

IDEF1X was developed in the late 1970's and later extended into a standard 

adopted by the U.S. Air Force as part of a required methodology for government projects. 

Originally, IDEF1X was a member of a family of Integrated Definition (IDEF) languages 

developed by the Air Force for Integrated Computer Aided Manufacturing (ICAM). Of 

the different languages defined for different tasks, IDEF1 was initially developed for 

conceptual data modeling and later "extended" as IDEF IX for logical data modeling. 

The current version (NIST, 1993) continues to be widely used for database design and 

has been adopted by many CASE tool vendors, including Computer Associates' ERwin. 
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IDEF1X is a hybrid modeling language, combining conceptual constructs (e.g. 

entity, relationship) with relational database constructs (e.g. foreign keys). IDEF1X 

models may be viewed at three levels - an ER view, a key-based view, and a fully 

attributed view. The ER view is used early in the design process and simply includes 

entity types and relationships with no attributes or identification schemes. The key based 

view includes at least all the key-based attributes and classifies relationships as 

identifying or non-identifying. Shown in Figure 3-7, the fully attributed view, as its title 

indicates, includes all attributes. 
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Figure 3-7: IDEF1X Notation for ER Modeling 

Here, entity types are shown as named rectangles. Attributes are listed inside the 

rectangles with the primary key in the top compartment. Alternate keys are denoted with 

"(AKn)" and foreign keys with "(FK)". Connection relationships are foreign key 

references from the child to parent and are shown with a dot "•" at the child end. 

3.3.2. Object-Oriented Modeling 

Object-oriented modeling is an approach that encapsulates both data and behavior 

within objects. The most influential object-oriented approach that exists is the Unified 

Modeling Language (Booch, Rumbaugh, & Jacobson, 1999), which has been adopted by 

the OMG as a method for object oriented analysis and design. Though mainly focused on 

the design of object oriented programming code, UML can be used for modeling database 

empNr 

empName 
empBirthDate 

deptCode (FK) 

employs / 
works for 
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applications. UML is supported in various CASE tools, including Rational Rose, one of 

the most well known visual modeling tools for object-oriented modeling. 

Of its nine diagrams, UML's Class diagram is used to specify static data 

structures by supplementing its predefined notations with user-specific notations. When 

stripped of implementation detail, Class diagrams are similar to an extended version of 

ER diagrams. Shown in Figure 3-8 is a UML class diagram for Employment. 

E M P L O Y E E 

* Employs 1 
D E P A R T M E N T 

empNr {P} 
empName 

empBirthDate 

* Employs 1 
deptNr {P} 
deptName 

size 

empNr {P} 
empName 

empBirthDate 

deptNr {P} 
deptName 

size 

Figure 3-8: Unified Modeling Language Class Diagram 

Classes are shown as named rectangles with the class name in the top 

compartment and attributes listed inside the rectangles. Entity instances in UML are 

identified by internal object identifiers, thus no conceptual identification schemes are 

required for its classes. In the above example, a user-defined constraint "P" has been 

added in braces to denote primary uniqueness. The uniqueness constraints on the 

Employee/Department association are captured by the multiplicity constraints * (0 or 

more) and 1 (exactly one). 

3.3.3. Fact-Oriented Modeling 

At the heart of fact-oriented modeling is the verbalization of facts and rules, 

which facilitates the validation of business rules. Typically, a modeler develops a data 

model by gathering requirements from domain experts and communicating data 

structures at a conceptual level in terms that non-technical users can understand. To 

simplify things, the modeler usually breaks the information into manageable parts and 
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works with sample data populations. Fact-oriented modeling improves the analysis and 

communication required by verbalizing relevant data as elementary facts that cannot be 

split into smaller facts without losing information. 

Our treatment of fact-orientation focuses on Object Role Modeling (Halpin, 2001) 

since this is the only fact-oriented method with significant support in the industry. ORM 

began in the early 1970s as a semantic approach that represents the application world as a 

set of objects (entities or values) that play roles (parts in relationships). ORM has 

appeared in many forms including Natural-Language Information Analysis Method 

(NIAM) from which it derives many of its features. The version we discuss is based on 

an extended version of NIAM called Formal ORM (FORM) and is supported by several 

industry tools including Microsoft's VisioModeler, Visio Enterprise, and Visual 

Studio.Net for Enterprise Architects. 

ORM is used to create a conceptual schema where the schema specifies the 

information structure of the application: the types of facts that are of interest; constraints 

on these facts; and the derivation rules required for deriving some facts from others. 

Figure 3-9 shows a simple ORM schema. The ovals in the diagram represent object types. 

These are connected by predicates, shown as sequences of boxes. Each box corresponds 

to a role in the relationship. If we include the object types with the predicate, we have a 

fact type - for example, Employee works for Department. In this model, each predicate 

has two roles. For example, the fact type Employee works for Department has one role 

played by Employee (works for) and one role played by Department (employs). 
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{ empName i { deptName ) 

Figure 3-9: Object Role Modeling Schema 

The schema in Figure 3-9 also includes business rules, otherwise known as 

constraints or derivation rules. For example, an arrow-tipped bar over a role is a 

uniqueness constraint, indicating that each object playing that role does so only once (for 

example, each Employee has at most one empName). A dot on a role connector indicates 

the role is mandatory (each Employee must have an empName). 

O R M simplifies the design process by using natural language, diagrams and 

examples, and by examining information in terms of elementary facts. Facts and rules 

can be easily verbalized as sentences and all data structures can be easily populated with 

multiple instances. Unlike ER or U M L , no use is made of attributes so there is no need to 

determine whether a feature is to be modeled an attribute or not. This results in more 

stable models and queries that are more immune to attribute changes (Halpin, 2001). 

3.3.4. Conventional Data Modeling and Data Warehouses 

Having described conventional data modeling approaches, we now highlight the 

data structure differences of traditional OLTP systems and decision support systems in 

order to distinguish conventional data modeling from multidimensional data modeling. 
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Data warehouses and OLAP applications contrast operational databases that 

support daily operations and on-line transaction processing. As proposed by Wu and 

Buchmann (1997), the major differences between operational databases and data 

warehouses include users, functionality, contents, and requirements. These differences 

are summarized in Table 3-1. 

Aspect Operational Databases Data Warehouses 
User System Designer, System 

Administrator, Data Entry Clerk 
Decision Maker, Knowledge 
Worker, Executives 

Function Daily Operations, (On-Line) 
Transaction Processing 

Decision Support, (On-Line) 
Analytical Processing 

DB Design Application Oriented Subject Oriented 
Data Current, Up-to-date, Atomic, 

Relational, Isolated 
Historical, Summarized, 
Multidimensional, Integrated 

Usage Repetitive, Routine Ad Hoc 
Access Read/Write, Simple Transaction 

(usually 1-3 tables) 
Mostly Read, Complex Query 
(usually more than 3 tables) 

System 
Requirements 

Transaction Throughput, Data 
Consistency, Data Accuracy 

Query Throughput, Data 
Accuracy 

Table 3-1: Operational Database and Data Warehouse Differences 
Adapted from "Research Issues in Data Warehousing," by. M. Wu and A. Buchmann, 1997, Proceedings of 
the 7th German Conference on Datenbanksysteme in Bum, Technik und Wissenschaft (BTW'97), p. 62. 

OLTP systems impose different requirements than data warehousing and OLAP 

systems, and therefore, different data models and implementation methods are required 

for each type of system. Conventional approaches like ER, UML, and ORM are 

commonly used to represent an OLTP application at the conceptual level, however, they 

are not capable of sufficiently representing multidimensional semantics using existing 

constructs. While the ER model is well proven as a powerful modeling technique for 

transaction processing systems, its deficiencies in modeling data warehouses have been 

well documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). As 

Kimball et al. suggest (1998), conventional data modeling cannot be used as the basis for 

enterprise data warehouses as it does not model the business, rather it models the micro 

relationships among data elements. 
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The main reason for the deficiency in conventional approaches is their underlying 

normalization premise. This premise provides for an efficient means to store data but 

does not satisfy retrieval requirements for analytical and decision support applications. 

As argued by Kimball et al. (1998), conventional models should not be used as the basis 

for data warehouses because the atomic detail of normalized models often confuses users 

and cannot be easily navigated by analysis tools. End users cannot understand, remember, 

or navigate conventional models and, unlike OLAP applications, there are few graphical 

user interfaces that can make conventional models usable by end users. Additionally, 

analysis software cannot usefully query general conventional models since optimizers 

that attempt to do this often make the wrong choices and result in poor performance. 

Conventional models are constituted to remove redundancy in the data model and 

optimize OLTP performance by facilitating retrieval of individual records having certain 

critical identifiers. While these approaches are popular with OLTP systems, databases 

created using conventional modeling techniques cannot be efficiently queried. These 

techniques defeat the basic attraction of data warehousing, which is intuitive and high-

performance retrieval of data, and should not be used for this purpose. As discussed in 

Bulos (1996), conventional models like the ER provide no easy way of modeling 

multidimensional data. 

As a direct response to the inability of conventional models to service decision 

support processing, the multidimensional view of data arose as a popular alternative to 

conceptualize decision support data. Consequently, multidimensional modeling has 

emerged as the dominant technique for data warehouse design. Using the denormalized 
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data structures that result from multidimensional modeling, decision support applications 

run faster and employ a high level of data redundancy. 

In addition to understanding the business rules within operational data, 

multidimensional modeling requires a good understanding of the analysis scenarios of an 

organization. To facilitate such an understanding, multidimensional modeling has 

introduced a variety of new modeling concepts, including facts and dimensions, 

classification hierarchies, derived measures, additivity, and categorizing dimensions. The 

following section provides an overview of these multidimensional concepts and 

discusses, through an example, a set of multidimensional modeling requirements needed 

to efficiently design data warehouses. 

3.4. Mu l t id imens iona l Data Model ing 

The multidimensional view of data is a popular conceptual view that influences 

front end tools, database design, and query engines (Chaudhuri & Dayal, 1997). As 

suggested by Boehnlein & Ulbriche-vom Ende (1999), the basic idea of the 

multidimensional view is the separation of quantitative and qualitative data. The 

quantitative measurable data, called measures, are analyzed from various viewpoints 

based on the qualitative content of the data, referred to as dimensions. These dimensions 

have been defined as the "combination of some qualitative aspects to a common 

structure" (Boehnlein & Ulbriche-vom Ende, 1999, p. 16). Together these lead to an n-

dimensional structure, often visualized using the cube metaphor as shown in Figure 3-10. 
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Figure 3-10: Representation of the Cube Metaphor 

A multidimensional cube corresponds to a subject of analysis commonly referred 

to in data warehousing terminology as a fact (e.g. a sales transaction). We do not 

consider the use of the term "fact" semantically correct in this context since all objects 

playing roles are essentially facts about the application domain. To avoid confusion, 

throughout the remainder of this paper we will use the more semantically correct term 

"event" to represent the subject of analysis instead of the more popular term "fact". 

While this is a significant departure from the generally accepted use of the term, in light 

of our fact-oriented approach we feel it is necessary to reflect semantics accurately. 

In the multidimensional model, every dimension has a set of elements called 

attributes. Shown on the axes of the cube in Figure 3-10, dimension attributes represent 

different ways of analyzing the data (e.g. store and time of purchase). The intersection of 

a dimension attribute for every dimension in the cube forms a cell containing a 

quantitative measure that describes the event (e.g. sales quantity). In most applications 

different measures describing an event are common, which means that a cell of the cube 

contains more than one numeric value. Multidimensional models are usually organized in 

terms of dimensions of the data, which are the terms of reference by which measures are 
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retrieved based on specific values of the dimensions. Dimension attributes can be 

arranged hierarchically and measures can be summarized along these hierarchies based 

on mathematical rules ranging from simple summarizations to complex averaging. 

3.4.1. Multidimensional Concepts Through an Example 

In the following sections we discuss a set of multidimensional modeling 

requirements to understand the multidimensional concepts our fact-oriented model must 

accommodate to efficiently design data warehouses. Ranging from fundamental to 

advanced, these concepts represent the analytical processing requirements of end users. 

To best understand multidimensional modeling and the structural properties of 

multidimensional data we draw from a well-known Grocery example (Kimball, 1997). 

We modify this example and reference it throughout the remainder of the paper to help 

describe our approach. A summary of our example is presented below. 

A large grocery chain with 100 stores is spread over a five-state 

area. Each of the stores has a full complement of departments, including 

grocery, frozen foods, dairy, meat, produce, bakery, floral and 

health/beauty aids. Each store has roughly 60,000 individual products on 

the shelves, each with bar codes referred to as stock keeping units (SKUs). 

As customers purchase products at the cash register, sales data is 

gathered by scanning bar codes into a point of sales (POS) system. 

Management is interested in understanding customer purchases as 

captured by the POS system and they have decided to analyze the POS 

Retail Sales process. They hope to understand which products are selling 

to which customers at which stores during which times. 
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3.4.2. Business Processes 

As described by Kimball and Ross (2002), a business process is a major 

operational activity supported by a source system (e.g. invoicing) from which data can be 

collected for the analytic purposes of the data warehouse. Using that definition, the 

business process we wish to model for our Grocery example is POS Retail Sales since we 

are interested in customer purchases as captured by our POS transaction system. 

3.4.3. Events 

We define an event as an item of interest (e.g. a sales transaction) in a decision 

making process. Central to data warehouses, events are described through attributes 

called measures. Either atomic or derived, measures are numerical, continuously valued 

attributes that describe the event from different points of view. In our example, Sales 

Transaction is the event signifying the sale of an item and it is represented by the most 

granular data accessible to us - an individual line item on a POS transaction. 

Sales measures include price (i.e. amount charged), cost (i.e. amount an item 

cost), and profit (i.e. the difference between the sale price and cost of the item). 

3.4.3.1. Derived Measures 

While the majority of measures are atomic, we must also be able to model derived 

measures. A derived measure is one that is defined in terms of other measures, either 

atomic or derived. In our example, profit is derived as the difference between price and 

cost. When measures are arithmetically computed from others in this fashion we must 

also be able to include the appropriate mathematical calculations. 
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3.4.3.2. Additivitv 

Measures are usually summarized in various ways in order to analyze 

information. Commonly known as additivity, this summarization refers to the ability to 

aggregate measure values along all hierarchies defined on a dimension. In our example, 

the quantity is additive as it can be summarized as the number of units sold for a product. 

For other non-additive and semi-additive measures, aggregation is inherently 

impossible or limited in the context of one or more dimensions for conceptual reasons. 

The aggregation of some measures might not be semantically meaningful for these 

measures along all dimensions. An inventory level measure for example is non-additive 

on all the dimensions, since adding up levels does not make sense. However, we can still 

aggregate this non-additive measure using operators such as average, maximum, 

minimum. 

Using our Grocery example, the number of customers is calculated for a given 

product, day and store by counting the number of tickets for a certain product printed on 

a certain day in a certain store. Since the same ticket may include other products, adding 

or averaging the number of customers for two or more products would be inaccurate. 

Thus, the number of customers is semi-additive as it cannot be consistently aggregated on 

the Product dimension, but is additive on the Time and the Store dimensions. 

Our multidimensional data model should correctly summarize and produce results 

that are meaningful to the user when aggregating data. Specifically, it should avoid 

double-counting data and provide a foundation for specifying which summarizations are 

meaningful for different kinds of data. This concept of applying additivity to measures 

along dimensions is crucial to multidimensional data modeling. 
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3.4.4. Dimensions 

Our measures are based on a set of dimensions that present the context for 

analyzing events. Dimensions contain discrete dimension attributes that characterize the 

dimensions and determine the minimum granularity chosen to represent events. In our 

example the dimensions for the Sales Transaction event are Product, Customer, Store and 

Time. Focusing on the Customer dimension, a customer may have dimension attributes 

including customer id, name, and income level. 

3.4.4.1. Classification Hierarchies 

Our multidimensional model must enable classification hierarchies. Hierarchies 

are made up of discrete dimension attributes and determine how measures may be 

aggregated and selected for the decision-making process. The dimension in which a 

hierarchy is rooted defines its finest aggregation granularity; other dimension attributes 

define progressively coarser granularities. Defining the classification hierarchies of 

certain dimension attributes is crucial because these classification hierarchies provide the 

basis for the subsequent data analysis. 

A hierarchy level contains a distinct set of members and should be captured 

explicitly by our model so users can determine the relation between different levels in the 

hierarchy. Different levels correspond to different data granularities and ways of 

classification. Level A rolls up to level B if a classification of the elements of A 

according to the elements of B is semantically meaningful to the application. In our 

example, the Time dimension can be decomposed into year, quarter, month and day 

levels, showing that the day level rolls up to the month level, which rolls up to quarters, 
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which rolls up to years. In this way, product sales can be summarized on numerous 

levels for each year. 

Since a level can roll up to any number of levels, our model must allow a single 

dimension to contain multiple hierarchies. This case occurs i f different criteria of 

classification are possible for dimension members. Our model must not limit the number 

of hierarchies in a single dimension and it must support hierarchies with any different 

number of levels. Hierarchies may also share one or more common levels or attributes 

but otherwise have no correlation. Figure 3-11 shows the different classification 

hierarchies defined for the Product, Time, and Store dimensions. On the Product 

dimension, we have defined a multiple classification hierarchy so we can aggregate data 

values along two independent hierarchies: product-type-family-group and product-

brand. In our Time example, we define multiple the hierarchies time-month-quarter-

year and time-season. 

PRODUCT TIME 

Type 

Family 

Group 

Brand Month 

Quarter 

Year 

Season 

STORE 

City Sales Region 

State 

Country 

Figure 3-11: Examples of Classification Hierarchies 

As there can be more than one path along which to aggregate data in a single 

dimension, our model must also support alternative path hierarchies. This type of 

hierarchy occurs when several roll-up paths exist between two levels of a dimension. For 
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our Store dimension in Figure 3-11, we have defined an alternative path classification 

hierarchy with two different paths that converge into the same state hierarchy level: 

store-city-state-country and store-sales region-state. 

3.4.4.2. Strictness & Completeness 

While we have presented several basic characteristics of dimension hierarchies, 

the concepts of strictness and completeness are also important for conceptual purposes. 

Strictness is used to mean that an object at a hierarchy's lower level belongs to only one 

higher level object. In our Store dimension example, Store and City have a strict 

relationship because a Store can exist in only one City. Similar strict relationships exist 

between City and State, with a City existing in only one State, and between State and 

Country, with a State existing in only one Country. 

Non-strictness means an object belongs to more than one higher-level object. In 

a non-strict dimension hierarchy, many-to-many relationships may exist between the 

different levels in the dimension. The Sales Region and State objects, for example, form 

a non-strict relationship because a Sales Region can be comprised of more than one State. 

Completeness means all hierarchy levels belong to one higher-class level and that 

level consists of those members only. In our example, we have a complete classification 

hierarchy between the State and Country levels since only the recorded States can form a 

Country. By this we mean, all the recorded States form the Country, and all the States 

that form the Country have been recorded. As another example, we may also define 

completeness for the Quarter and Year hierarchy levels because all the recorded Quarters 

form a Year, and all the Quarters that form the Year have been recorded. 
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3.4.4.3. Categorization of Dimensions 

While classification hierarchies provide a degree of distinction between hierarchy 

levels, as the number of dimensions increases certain attributes are valid for all hierarchy 

levels within a dimension while others are only valid for a subset of levels. 

Distinguishing this subset of attributes is referred to as the categorization of dimensions 

and must be supported in our model to situations like heterogeneous products. 

In our Grocery example, we need to track a number of different products together 

with a common set of attributes and measures, but at the same time need to describe 

additional details about individual products. For example, our Product dimension 

attributes alcohol percentage and volume are valid for Drink products but are not 

applicable for Food products. Our multidimensional data model should consider these 

attributes and reflect the categorization semantics of the Product dimension. 

3.4.4.4. Manv-to-Many Relationships Between Events and Dimensions 

We usually consider events as many-to-many relationships between all 

dimensions and as many-to-one relationships between the event and every particular 

dimension. In our example, a sales transaction is related to a single product sold in one 

store to one customer at one time (e.g. a ticket line item). In some cases, however, 

events can represent many-to-many relationships between particular dimensions. 

As seen in section 3.4.3.2, the reason for the non-additivity of number of 

customers on the Product dimension is that the relationship between purchase tickets and 

products is many-to-many instead of many-to-one. The sales and tickets form a many-to-

many relationship to the Product dimension because one ticket can consist of more than 

one product, although every ticket is still purchased in only one store by one customer at 

36 



one time. Our modeling approach should semantically support the relationship between 

an event and a dimension as not always being the classical many-to-one mapping via 

constructs that are not traditional events or dimensions. 

3.4.4.5. Degenerate Dimensions 

In our Grocery example, the grain of our sales event is a Sales Transaction as 

represented by a line item on a sales ticket. While the ticket is an identifying attribute for 

the Sales Transaction event, it has no other attributes that would make it an actual 

dimension and hence it is not treated as one. As Kimball and Ross (2002) indicate, this 

situation often arises when the grain of an event is represented on an actual working 

document such as an order or invoice. In these cases, order and invoice numbers often 

become degenerate dimensions. 

3.5. R e l a t e d M u l t i d i m e n s i o n a l D a t a M o d e l i n g W o r k 

Numerous multidimensional surveys exist that define specific requirements for 

multidimensional modeling and proceed to evaluate a series of models. Blaschka, Sapia, 

Hofling, and Dinter (1998) list requirements for a formal OLAP application model to 

analyze various models containing some kind of formalism. In a similar fashion, 

Pedersen and Jensen (1999) present requirements found in clinical data warehousing for 

multidimensional data models and evaluate several data models against them. While 

different models are compared, the models are relevant to different modeling phases and 

thus it is inappropriate to directly compare them. 

In the remainder of this section we separate and discuss multidimensional 

modeling works based on the three information levels discussed earlier in the chapter. 

Our review is primarily concerned with translating an understanding of analytical 
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business requirements into a conceptual data warehouse design. As such, we focus the 

majority of our review on works at the conceptual level while briefly discussing other 

logical and physical design works for additional background. In addition to the three 

traditional information levels presented, we briefly mention a fourth group of models to 

complete our review. Categorized as Formal by Abello et al. (2001), these models are 

not specific to a particular database design phase; instead they provide a theoretical 

framework and multidimensional algebra or calculus. 

3.5.1. Conceptual Level 

The following sections provide a general overview of existing models that attempt 

to capture multidimensional semantics at the conceptual level. While numerous models 

exist, we mention only the most relevant conceptual models found in the literature. 

3.5.1.1. Mult id imensional Entity Relat ionship Model ( M / E R ) 

Sapia, Blaschka, Hofling, and Dinter (1998) propose the Multidimensional Entity 

Relationship Model (M/ER) as a specialization of the ER model. Illustrated in Figure 

3-12, the M/ER model includes a special dimension level entity set (e.g. vehicle) and two 

special relationship sets connecting dimension levels - a fact relationship set (e.g. vehicle 

repair) and a rolls-up-to relationship set (e.g. vehicle-vehicle model). A rolls-up-to 

relationship set relates two dimension levels where the second one represents a higher 

level of abstraction. Multiple hierarchies, alternative paths, and shared hierarchy levels 

for different dimensions are supported and a fact relates different dimension level 

entities. While many constructs are supported, the M/ER model does not depict derived 

measures and their derivation rules, many-to-many relationships, strictness and 

completeness. 
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Figure 3-12: Sample M/ER Model for Vehicle Repair 
Adapted from "Extending the ER Model for the Multidimensional Paradigm," by Sapia et al., 1998, 
Proceedings of the 1st International Workshop on Data Warehouse and Data Mining (DWDM'98), p. 112. 

3.5.1.2. Star Entity Relationship Model (starER) 

Tryfona, Busborg, and Christiansen (1999) propose the Star Entity Relationship 

Model, basing their work on the ER model and the star schema. Shown in Figure 3-13, 

the starER includes fact sets, entity sets, relationship sets, and attributes. A fact set (e.g. 

repayment) represents a set of real-world facts sharing the same properties. An entity set 

(e.g. loan) represents real-world objects with similar properties, and a relationship set 

(e.g. at) represents a set of associations among entity sets and fact sets. Attributes (e.g. 

loan id) represent static properties of entity sets, relationship sets, and facts sets. 

repayment 
payback 

week 4 day m o n t h n i l ' i l t week day w 
m o n t h 

W 

t l l lL ' d l lUOllMOIl 

Figure 3-13: Sample starER Model for Mortgage Repayment 
Adapted from "starER: A Conceptual Model for Data Warehouse Design," by Tryfona et al., 1999, 
Proceedings of the 2nd International Workshop on Data Warehousing and OLAP (DOLAP'99), p. 6. 
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The starER's deficiency concerns the particular models used as its basis. 

Although the ER model is the most popular for transaction processing, its inadequacy in 

analytical processing is well documented as discussed earlier in this chapter. Although 

the star schema provides abstraction understandable to the user, it is still logical, not 

conceptual, and critical multidimensional semantics (e.g. derived measures) are lost. 

3.5.1.3. Dimensional Fact Model (DFM) 

Golfarelli et al. (1998b) propose a graphical conceptual model for data 

warehouses called the Dimensional Fact Model (DFM). Shown in Figure 3-14, the main 

components of the D F M are facts, measures, dimensions and hierarchies - together 

forming a fact scheme with the fact as root. A fact (e.g. inventory) is central to the D F M 

and its attributes are called measures (e.g. qty). Dimensions (e.g. product) are discrete 

attributes that determine the minimum level of granularity chosen to represent the fact. A 

hierarchy is a set of dimension attributes (e.g. type-category) linked by 1:1 or n:l 

relationships and it may also contain additional descriptive information not used for 

aggregation. Additivity is expressed by relationships between a measure and a 

dimension, as tagged by the allowed aggregation functions. 

./•^category 
weight e 

package size \ Y " Q brand 
package typeN^ ^/^«nits per pallet 

producT1 

season 

O O o = 
vear month week " 

A V G 

address 

I N V E N T O R Y 

qty 
-O O 

warehouse city state 

Figure 3-14: Sample Dimensional Fact Model for Inventory Management 
Adapted from "The Dimensional Fact Model: A Conceptual Model for Data Warehouses," by Golfarelli et al. 
1998, International Journal of Cooperative Information Systems, 7(2-3), p. 226. 
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While the D F M accommodates the basic elements of multidimensional analysis 

and provides fundamental multidimensional constructs, is not well suited to express the 

complex properties of multidimensional data. Only many-to-one relationships between 

dimensions and facts are supported, objects not in the form of a dimension (i.e., not 

connected directly to a fact) cannot be modeled, and finally, there is no way to depict 

specialized relationships (e.g. specialization/generalization, membership). 

The D F M also assumes a well-conceived relational model of source systems 

exists. As discussed by Boehnlein and Ulbriche-vom Ende (1999), a major disadvantage 

of this approach is having to first find a point of reference for the derivation of an ER 

diagram. This is especially true i f the underlying models are very complex. 

3.5.1.4. GOLD Model 

Trujillo, Palomar, and Gomez (2000) describe the GOLD model as an object-

oriented conceptual model based on a subset of U M L . A fact (e.g. sales) is represented 

as a basic class and is described through a set of fact attributes representing its measures 

(e.g. qty, price). Through shared aggregation, a fact is related to a set of dimensions (e.g. 

customer, time) that show the granularity adopted for representing facts. 

SALES 

ticketNr{OD, 
lineNr 
qty 
price 

/totalRxe 

1 Y 1 1 
STORE CUSTOTVB* TfcE 

storekt piD} custorrerld PD}1 timeld{OID} 
name name day 

address address week 
telephone telephone month 

Figure 3-15: Sample GOLD Model for Retail Sales 
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The GOLD model is one of the most complete graphical conceptual modeling 

techniques found in the literature. It takes into account many of the fundamental 

elements of multidimensional analysis, including multiple classification hierarchies, 

strictness and completeness, additivity, and derived measures. However, the model is 

based on the graphic representation of UML, which is not well suited to conceptual data 

modeling (Halpin, 2001). Hay (1999) makes a similar argument in suggesting UML is 

not suitable for analyzing business requirements in cooperation with users. 

3.5.2. Logical Level 

Golfarelli et al. (1998a) discuss how the multidimensional model may be mapped 

to the logical level differently depending on the underlying data store. If the store 

supports multidimensionality, the model may be represented in a multidimensional 

database in an n-dimension array. Alternatively, in relational databases the model is 

usually mapped through a star schema as shown in Figure 3-16. 

dimension 1 

primary key 1 
attribute 1 
attribute 2 
attribute n 

dimension 2 

primary key 2 
attribute 1 
attribute 2 
attribute n 

fact 

primary key 1 
primary key 2 
primary key 3 
primary key 4 

measure 1 
measure 2 
measure n 

dimension 3 

attribute 1 
attribute 2 
attribute n 

Figure 3-16: Logical Star Schema for Relational Databases 

Undoubtedly the most well known logical model, the star schema is a result of the 

dimensional modeling technique made popular by Kimball (1996). Illustrated in, the star 

schema is a logical representation of multidimensional data structures in relational 
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database system. The two basic constructs that provide for multidimensionality in the 

star schema are fact and dimension tables. The primary key of the fact table is composed 

of a set of foreign keys to each one of the primary keys of the dimension tables. 

As defined by Kimball (1996), dimensional modeling is a logical design 

technique prominent in data warehousing that is different from, and contrasts with, ER 

modeling. The technique seeks to present data in a standard, intuitive framework that 

allows for high performance access. As argued by Kimball, significant advantages of this 

model are it is highly recognizable to end users, it is a predictable framework that 

withstands unexpected changes in user behavior, it is gracefully extensible, and it handles 

common modeling situations. Unfortunately, although widely used, the technique is still 

logical in nature and multidimensional semantics (e.g. hierarchies) are not supported. 

3.5.3. Physical Level 

Much of the concentration at the physical level is on specific storage techniques 

for particular D B M S implementations. Dyreson (1996) explains how a sparse cube could 

be implemented in a M O L A P database by means of cubettes but few constructs are 

provided. Theodoratos and Sellis (1999) investigate the problem of designing a data 

warehouse based on view materialization modeled as a search space problem. Other 

Physical works deal with indexing (Chan & Ioannidis, 1998), query evaluation (Cabibbo 

& Torlone, 1999), and query languages (Gingras & Lakshmanan, 1998). 

3.5.4. Formal Level 

The focus of formal models is not on conceptualizing user ideas so they do not 

pay much attention to capturing specific user concepts. Instead, they are mainly devoted 

to the definition of a multidimensional algebra or calculus and do not offer as many 
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constructs as other models. Since our focus is on modeling constructs, formal models are 

not considered as conceptual, however, if we were to take into account the expressiveness 

of the algebras, they could certainly be as semantically expressive as conceptual models. 

Agrawal, Gupta, and Sarawagi (1997) presented one of the first formal multidimensional 

models. With a focus on presenting an algebra this model does not offer many 

conceptual elements to model a multidimensional scheme. In addition to Agrawal, 

another notable formal model is the Extended Multidimensional Data Model (EMDM) as 

proposed by Pedersen and Jensen (1999). The EMDM includes a multidimensional 

formalism and procedures are described for implementing the model using relational 

databases. Although these models support many complex multidimensional properties, 

information is not graphically represented in a conceptual schema. 

3.5.5. Shortcomings of Existing Models 

To the best of our knowledge we have reviewed all of the proposed conceptual 

multidimensional models and the most relevant logical, physical, and formal models. We 

have found that conceptual models represent more semantics than models at other levels 

and there seems to be a trend to semantically enrich multidimensional models to 

overcome the limitations of conventional data models. However, while recent models are 

providing more functionality, they are still not ideal for formulating, transforming, and 

evolving a conceptual multidimensional model. 

Table 3-2 presents the results of our conceptual multidimensional modeling 

review. In short, a complete and natural conceptual design technique was not found that 

adequately conceptualizes and clearly communicates multidimensional designs to 

business and technical users alike. While several models (e.g. GOLD, starER) were able 

44 



to represent fundamental event and dimension properties, all models lacked several 

desirable features. Specifically, we found existing approaches far removed from natural 

language and difficult to populate with sample, making it challenging for users and 

domain experts to conceptualize and validate designs. In addition, there is a general lack 

of design guidelines to ensure modeling approaches are properly and easily applied. 

Conceptual Multidimensional Models 
Multidimensional Modeling Criteria MT.R '• starER l)K t ; o i i) 

Events: 
Atomic Measures Yes Yes Yes Yes 
Derived Measures No No No Yes 
Additivity No Yes Yes Yes 

Dimensions: 
Classification Hierarchies Yes Yes Yes Yes 
Strictness No Yes No Yes 
Completeness No Yes No Yes 
Categorization of Dimensions Yes Yes No Yes 
Degenerate Dimensions Yes Yes Yes Yes 
Many-to-Many Relationships No Yes No Yes 

Business Processes: 
Business Process Families No No No No 
Business Processes Yes Yes Yes Yes 

Other: 
Natural (Fact) Basis No No No No 
Population & Validation Mechanisms No No No No 
Design Guidelines No No Yes No 
Implementation Using Existing Modeling Tools No No No Yes 
Generation into an OLAP Tool Yes No No Yes 

Table 3-2: Comparison of Existing Conceptual Multidimensional Models 

Despite the growth of data warehousing, a standard does not exist to indicate what 

should be represented in a multidimensional scheme. While it is widely recognized that 

data warehouses are based on the logical star schema, there is no standard conceptual 

data model commonly accepted for data warehousing and OLAP applications. Most of 

the models reviewed use their own terminology and define a specific set of design 

elements. Consequently, user analysis via a common framework is difficult and there is 

no consistent basis for solving conceptual multidimensional modeling problems with an 

intuitive and complete conceptual model. 
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3.6. S u m m a r y 

This chapter presented an overview of data modeling for OLTP systems, data 

warehouses and OLAP applications. We first examined basic data modeling concepts by 

looking at the conceptual, logical, and physical levels of data. We then presented an 

overview of several conventional data modeling approaches with a specific focus on ER 

Modeling, U M L and O R M . Our review highlighted the differences between data 

warehouses and traditional OLTP applications and we concluded different conceptual 

modeling techniques are required for data warehouses due to the multidimensional nature 

of analytical data. To better understand multidimensional data requirements we 

presented various multidimensional concepts through an example. 

Using the analysis requirements demonstrated with a sample Grocery chain, we 

covered events and dimensions, measures, additivity, derived measures, classification 

hierarchies, strictness, completeness and categorizing dimensions. The chapter 

concluded with a review of the current state of multidimensional modeling works with a 

focus on those attempting to express semantics at the conceptual level - the M/ER, 

starER, D F M and GOLD models. The fundamental deficiencies and shortcomings of 

these approaches in formulating, transforming and evolving a conceptual model provides 

motivation for our model presented in the next chapter. Inspired by O R M , our proposed 

approach considers an information system's structural properties at the conceptual level 

more naturally than existing multidimensional models or conventional modeling 

approaches. 
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4 . FACT-ORIENTED MULTIDIMENSIONAL M O D E L I N G 

4 . 1 . I n t r o d u c t i o n 

This chapter introduces Multidimensional Object Role Modeling (MORM), our 

fact-oriented approach to conceptually modeling multidimensional data. We will first 

present several key design considerations in specializing O R M and discuss the 

advantages and disadvantages of using O R M in our approach. We will also demonstrate 

how M O R M easily represents the main structural properties of multidimensional data at 

the conceptual level. Our approach is presented in sections, each one outlining how our 

model addresses a multidimensional modeling concept as presented in the previous 

chapter. Our approach is a specialization of O R M in which we introduce several 

multidimensional constructs and provide semantics, syntax, and rules for each. We will 

also present design guidelines for our model in order to provide data modelers with a 

systematic approach to building a conceptual multidimensional model using our 

approach. The chapter concludes with an evaluation of our model and a discussion of its 

benefits with respect to multidimensional and conceptual criteria. 

4 . 2 . K e y D e s i g n C o n s i d e r a t i o n s 

In order to allow the natural representation of semantics inherent in 

multidimensional data, we specialize O R M . We do not propose a set of new concepts 

and terminology, rather we attempt to pull multidimensional concepts together under the 

O R M framework to try and understand their semantics while keeping core O R M 

constructs the same. In doing so, our approach is driven by the following key design 

considerations: 

47 



1. Specialization of ORM: All newly introduced elements should be special 
cases of native ORM constructs. Thus, we maintain the flexibility and 
expressiveness of ORM. 

2. Minimal extension of ORM: The number of additional elements needed 
should be as small as possible to ensure we can easily transfer scientific 
results from ORM to our model. Minimal extension also ensures an 
experienced modelers can easily learn and use our specialized model. 

3. Representation multidimensional semantics: Our specialization should be 
powerful enough to express advanced multidimensional semantics, namely 
events and dimensions, additivity, derived measures, classification 
hierarchies, strictness, completeness and the categorization of dimensions. 

4 . 3 . W h y U s e O b j e c t R o l e M o d e l i n g ? 

Prior to presenting our conceptual multidimensional modeling approach, we 

discuss several primary reasons for our use of ORM. Simply put, we contend that 

building a good data model requires capturing and expressing as much information as 

possible at the conceptual level and we believe ORM is the best way to do this. Building 

such a model requires an ability to first design a conceptual schema that accurately and 

completely defines business rules in a way business users understand. To do this we 

must effectively communicate with these users since we rely on them to define the rules 

that dictate and validate the data. The following sections further elaborate on our use of 

ORM, providing several arguments for and against its use as a modeling method. 

4.3.1. Advantages of Using ORM 

Designing a database requires a complete understanding of the subject area of 

interest and O R M allows us to specify this in a clear and unambiguous way. ORM uses 

natural language (e.g. English) and easily understood diagrams that are populated with 

sample data to accomplish this goal. Since ORM is based on natural language, it can be 

completely expressed in either graphical or textual format. This natural language is much 
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easier for users to understand, express, and verify than technical terminology and allows 

for communications with business experts in their own language. 

Another significant advantage of ORM is that it makes no initial assumptions 

about an object's importance until performing conceptual to logical schema mapping. 

The foundation of ORM is the elementary fact through which the universe of discourse is 

expressed in terms of objects playing roles. Using simple, easy to understand facts like 

"Person works for Department" requires no distinction as to whether an object is an 

attribute or an entity and delays any commitment on the relative importance of each. 

Delaying the decision to model an element as an attribute or an entity allows us to be 

concerned only with the data and business rules and alleviates costly data integrity and 

schema change problems in the future. 

The fact-based approach of ORM is a simple, accurate approach that makes it 

easy to apply a population check with real data that makes it easier to get one individual 

fact correct than many facts simultaneously. It is also easy to determine constraints while 

looking at sample data sets through ORM modeling. Semantic domains (e.g. units or 

ranges such as "name", "SSN", etc.) are automatically included in these data sets, 

meaning there is less chance for error in the final model. 

4 .3 .1.1. Conceptual Modeling Evaluation Criteria 

Our reasons for using ORM are evidenced in ORM's evaluation results against a 

well-defined set of criteria for conceptual models - expressibility, clarity, semantic 

stability, semantic relevance, validation mechanisms, abstraction mechanisms and formal 

foundation (Halpin & Bloesch, 1999). Halpin & Bloesch suggest these criteria are 
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desirable characteristics for any language to be used for conceptual modeling. In support 

of our use of ORM, we summarize the results of their evaluation below: 

• Expressibility of a language is a measure of what it can be used to say about 
a domain. For conceptual data modeling, ORM's rich constraint notation 
makes it expressive both graphically and through the use of textual 
languages. It has many constructs inherent to the language, and is therefore 
more expressive of the actual universe of discourse. Its role-based notation 
makes it easy to specify a wide variety of constraints, and its object types 
reveal the semantic domains that bind a schema together. 

• Clarity of a language is a measure of how easy it is to understand and use. 
With respect to clarity, ORM structures may be directly verbalized as 
sentences and its notations and textual expressions are easily learned and 
remembered. 

• Semantic stability is a measure of how well models retain their original 
intent in the face of changes to the domain. Attribute-free, ORM is more 
stable for modeling and not impacted by changes that would otherwise 
cause attributes to be remodeled as relationships or vice versa. 

• Semantic relevance means only relevant conceptual details need be 
modeled. Using purely conceptual constructs ORM avoids modeling logical 
or physical aspects such as implementation details. 

• Validation mechanisms are ways in which domain experts can check 
whether the model matches the application. ORM uses "data use cases" to 
initiate data modeling through the verbalization and population of facts and 
rules. Using simple sentences, this approach facilitates communication 
between data modelers and users so the domain is understood and the 
application model is validated. 

• Abstraction mechanisms allow unwanted details to be removed from 
immediate consideration. ORM models may be modularized into various 
scopes or views based on perspective (e.g. a page of a data model). Other 
mechanisms like attribute abstraction can be used to hide or show only a 
portion of the model. 

• Formal foundation of a language is needed to ensure it is executable and not 
ambiguous. ORM has a sound theoretical basis and a mature formal 
foundation that refines its semantics. 

4.3.2. Disadvantages of Using ORM 

While we have presented our case for the use of ORM, there are many arguments 

against its use. As described by Becker (2000), these arguments and their rebuttals are 

summarized as follows: 
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1. Standard industry CASE tools (e.g. ERwin, Data Architect) do not support 
ORM and ORM's CASE tools (e.g. Visio) are not enterprise level tools: 
While this is true, the importance should be on ensuring requirements are 
correctly, precisely, and accurately gathered and that the resulting design 
meets those requirements. It should not matter what tool is used to do this. 
If a project fails because the underlying data model is not correct, the tool, 
no matter how standard, is worthless. In cases where a model must 
absolutely go in a company standard deliverable tool, it can simply be 
entered once it has been developed in O R M and deemed to be correct. 

2. ORM models are too verbose and take up too much space: O R M models 
are indeed verbose, mainly because they capture many constraints that 
other techniques are unable to express (e.g. attribute level constraints and 
set comparison constraints like subsets and exclusionary rules). As such, 
it is more important that the model completely specify the problem 
regardless of how much space it utilizes. In either case, compact versions 
of O R M models can be easily generated using O R M C A S E tools. 

3. Virtually perfect models can be created in ER and/or UME. This is true 
but using ORM's CSDP can make the process easier and lead to fewer 
mistakes. Like O R M modelers, ER and U M L modelers basically think 
about objects and the roles they play in order to implement them correctly 
in terms of their methods (e.g. deciding what is an entity vs. what is an 
attribute). O R M just makes this process more formal. It is also important 
to note that ER models can be derived from O R M models relatively easily. 

4. The world is going UML and we do not need yet another data-centric 
technique: O R M and U M L are not mutually exclusive, rather they can be 
used together and the overall results are usually better. O R M is a natural 
fit into the U M L process flow, particularly at the analysis stage where 
O R M can document the data and static constraints while U M L can 
document processes and dynamic rules. Using these together can result in 
analysis deliverables that are be better formed, more consistent, more 
accurate, and more concise. 

5. Users won't understand yet another diagram type: In ORM's case users 
do not even need to see the notation i f they do not want to. Since O R M is 
based on natural language, users can be shown sentences in English or 
whatever language they understand. While users often pick up on 
notations relatively quickly, they are often immediately comfortable with 
ORM's sentences and its narrative style of data use cases. 

4.4. M u l t i d i m e n s i o n a l O b j e c t R o l e M o d e l i n g ( M O R M ) 

Having provided an overview of Object Role Modeling and multidimensional 

modeling concepts in the previous chapter, we now bring these two topics together with 

our fact-oriented multidimensional modeling approach. Based on our observation of the 

51 



limitations of existing conceptual techniques for multidimensional modeling, we propose 

M O R M which introduces multidimensional constructs to ORM's grammar to support 

multidimensional semantics. We do not propose an entirely new set of constructs and 

terminology to represent these concepts, rather we utilize the O R M framework and 

specialize it as required to represent multidimensional modeling semantics. 

Our design goal is to provide a simple yet powerful approach that represents 

multidimensional properties at the conceptual level. To achieve this we combine 

multidimensional constructs with the semantically rich constructs of the well-known 

O R M model as summarized in Appendix A . Our starting point is that O R M has been 

used productively for years and has tested powerful enough conceptually, that when new 

modeling techniques are needed to capture new demands, we should look to O R M . 

To represent multidimensional properties at the conceptual level we introduce 

three specialized object types - the Event Object Type, Dimension Object Type, and 

Hierarchy Object Type. To distinguish these multidimensional constructs from native 

O R M and ensure they are emphasized in our models, a special graphical notation is 

defined for each as shown in Figure 4-1. These constructs are briefly defined in Table 

4-1 and further described using examples in the sections that follow. 

Event Object Type Dimension Object Type Hierarchy Object Type 

Figure 4-1: Graphical Notation For New MORM Constructs 
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Construct Description 
Event 
Object 
Type 

Depicts an event (e.g. sales transaction) that is described with quantitative 
measurable data and analyzed in terms of dimensions. Depicted as a black 
fdled inverted ellipse with the event name in white upper case lettering. It is 
larger than other constructs, signifying it is the focal point of analysis. 

Dimension 
Object 
Type 

Depicts a dimension (e.g. store) representing an analysis viewpoint based on 
the qualitative content of the data. Forms the root of a dimension tree, where 
each node is an object type and each edge is a functional (n:l or 1:1) 
predicate. Depicted as a gray shaded inverted ellipse with black upper case 
naming. Its size and shading signifies its importance as an analysis viewpoint 
on an event and separates it from native O R M . 

Hierarchy 
Object 
Type 

Represents each classification hierarchy level (e.g. month) within a dimension 
(e.g. time). A role between two hierarchy objects specifies a relationship 
between two levels of a hierarchy (e.g. month is in quarter). Depicted as a 
gray slash-filled ellipse with mixed case naming, its fill signifies its 
importance in data analysis (e.g. aggregation) and separates it from native 
O R M . 

Table 4-1: MORM Constructs and Associated Descriptions 

Since our model is a specialization of O R M , regular O R M constructs as outlined 

in Appendix A are used in our M O R M diagrams. The extended diagram that results from 

the combination of both techniques allows us to efficiently model both conventional 

concepts (e.g. value types, roles, etc.) and multidimensional properties (e.g. dimensions, 

hierarchies, etc.) at the conceptual level. 

Our approach builds on ORM's conceptual schema design procedure (CSDP), a 

formal method for designing a conceptual schema from a universe of discourse (Halpin, 

2001). Shown in Table 4-2, the CSDP focuses on data analysis and design through seven 

primary steps. 

Step- Description 
1 Transform familiar information examples into elementary facts, and apply quality checks 
2 Draw the fact types, and apply a population check 
3 Check for entity types that should be combined, and note any arithmetic derivations 
4 Add uniqueness constraints, and check arity of fact types 
5 Add mandatory role constraints, and check for logical derivations 
6 Add value, set comparison and subtyping constraints 
7 Add other constraints and perform final checks 

Table 4-2: Conceptual Schema Design Procedure (CSDP) 
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Since we use O R M as the basis for our model, the fundamental CSDP steps still apply. 

However, we need to consider additional guidelines to incorporate multidimensional 

concepts as presented in the previous chapter. The following sections summarize how 

M O R M represents these main structural aspects of multidimensional data. 

4.4.1. Business Processes 

Consistent with Step 1 of ORM's CSDP, familiar examples of business process 

information from the application domain are initially gathered from reports, forms, the 

domain expert or other application documentation. Our approach then translates the 

information regarding the high-level relationship between business process events and 

dimensions into elementary facts. 

Following our Grocery example presented in the previous chapter, we begin to 

gather information from our POS Retail Sales business process and verbalize it as facts f l 

through f4 as shown in Table 4-3. 

Fact - , _ 

f l The Sales Transaction with ticketNr 715 occurred in the Store named U B C Foodmart 

£2 The Sales Transaction with ticketNr 715 occurred at the Time indicated 12:00 

B The Sales Transaction with ticketNr 715 included the Product with product id 123456 

f4 The Sales Transaction with ticketNr 715 was completed by the Customer with customer id 99 

Table 4-3: Retail Point of Sale Facts 

Facts 1 through 4 specify relationships between the Sales Transaction event and 

the dimensions Product, Store, Customer, and Time. As in O R M , each fact expresses a 

fundamental step in our M O R M approach - "an object plays a role with another object". 

Facts assert that the objects participate in a relationship (play roles), where that 

relationship cannot be expressed as a conjunction of simpler facts. As with O R M fact 

assertions, object types begin with a capital letter and are displayed here in italics. The 
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relationship type, or logical predicate, is shown in bold between the noun phrases that 

identify the objects. For our purposes, only the normal predicate is included in the 

declarations. If the inverse was included it would be preceded by a slash "/". For 

example, in f4 the "/" would indicate that the Sales Transaction plays the role of being 

completed by, and the Customer plays the role of completing. 

In the above case, the fact description indicates the entity type (e.g. Product), a 

value (e.g. 123456) and a reference mode (e.g. Product Id) indicating the manner in 

which the value refers to the entity. Removing the reference modes, the facts may also be 

stated as shown in Table 4-4. 

Fa'cf 
fl Sales Transaction 715 occurred in Store U B C Foodmart 

£2 Sales Transaction 715 occurred at Time 12:00 

fi Sales Transaction 715 included Product 123456 
f4 Sales Transaction 715 was completed by Customer 99 

Table 4 -4 : Facts with Reference Modes Omitted 

Stated even more briefly by removing the values, the above facts are instances of the fact 

types shown in Table 4-5. 

tt Fact Type . 
f l Sales Transaction occurred in Store 

f2 Sales Transaction occurred at Time 

£3 Sales Transaction included Product 

f4 Sales Transaction was completed by Customer 

Table 4-5: Fact Types with Values Omitted 
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4.4.1.1. Event & Dimension Constructs 

Once business process information examples are translated into elementary facts a 

conceptual schema is drawn showing all the fact types. To support the 

multidimensionality inherent in information at the business process level, we introduce 

two M O R M constructs - the Event Object Type and the Dimension Object Type. These 

constructs represent the events and dimensions we are interested in analyzing. 

Figure 4-2 depicts the high-level M O R M model for the POS Retail Sales business 

process. Our approach clearly divides business process data into events and dimensions, 

as is evident from the Sales Transaction event object and its relationship to the dimension 

objects Product, Store, Customer, and Time. 

Figure 4-2: Schema for POS Retail Sales Business Process 

The event object type is depicted as a black filled inverted ellipse. Its name is 

capitalized and it is larger than other constructs, signifying it is the focal point of 

analysis. Dimension object types are smaller inverted ellipses but are also shaded gray 
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and capitalized to distinguish them from other object types that will be added as the 

model progresses. Reference modes are intentionally omitted from the diagram at the 

business process level and are more appropriately included when event and dimension 

details are modeled. Lines connect dimension object types to the roles they play and 

predicates are shown as named sequences of two role boxes. Predicate names are read 

left-to-right, however, there is only one role name to read in this figure as inverse 

predicate names have been intentionally omitted. 

Mandatory roles are explicitly shown by means of a mandatory role dot where the 

role connects with its object type. In our example, all roles for a Sales Transaction are 

mandatory, meaning all Sales must be associated with a certain Product, Store, Customer, 

and Time. Roles without a mandatory dot are optional, as seen by the inverse roles as 

read from the each of the dimensions. Although not included, an inverse role for our 

example could read Product is included in Sales Transaction. The optional inverse role 

indicates a dimension object can be part of zero, one, or more event object instances. In 

short, our example dimensions may exist without playing a role in a Sales Transaction. 

ORM's internal uniqueness constraints are used on the binary fact types to 

capture cardinality by asserting entries in roles occur there at most once. For example, 

the internal uniqueness constraints (tipped arrows) on our binary fact types assert that 

each Sales Transaction occurred in at most one Store. This depicts a many to one 

relationship with the first role mandatory. The absence of a uniqueness constraint on 

dimension role indicates each Product can be part of many Sales Transactions. This 

absence may be expressed explicitly by the default verbalization "it is possible that the 

same Store sells more than one Sales Transaction. 
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The external uniqueness (circled "u") constraint spanning roles of the different 

predicates to all dimensions specifies that in the natural join of the predicates, the 

combination of connected roles is unique. This stipulates that for each Sales Transaction, 

the combination of Product, Store, Customer and Time is unique. Stated another way, 

given any combination of the four dimensions there is at most one Sales Transaction. 

4.4.1.2. Families of Business Processes 

Most organizations have an underlying value chain that represents the natural 

flow of key business processes. Operational source systems produce transactions or 

snapshots at each step of the value chain and generate interesting performance metrics 

along the way. Each key process produces distinct metrics with unique granularity, time 

intervals and dimensionality so each is typically modeled separately. As put forth by 

Kimball and Ross (2002), an Enterprise Data Warehouse (EDW) often integrates this set 

of related business processes based on common, shared dimensions. A n integrated data 

warehouse combines measures from different processes to provide insight into 

performance across the value chain. 

Our approach to multidimensional modeling ensures we accurately represent 

these "families " of business processes when modeling large, complex data warehouses. 

To illustrate this concept, we now widen our Retail example to include store inventory: 

Optimized inventory levels in our grocery stores can have a major 

impact on chain profitability. Making sure the right product is in the right 

store at the right time minimizes out-of-stock situations and reduces 

overall inventory carrying costs. To better understand the inventory-sales 

relationship, management would also like the ability to analyze daily 

quantity on hand inventory levels by product and store. 
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In Figure 4-3 we illustrate the business process family concept using two business 

processes - Retail Sales and Inventory. The Sales Transaction and Inventory event 

objects represent metrics captured by these processes and share three common 

dimensions - Product, Time, and Store. 

Figure 4-3: Schema for Retail Business Process Family 

4.4.2. Events 

The following sections outline our approach to representing events in our M O R M 

model. Following the concepts presented in chapter 3, major considerations for events 

include atomic measures, additivity, derived measures and many-to-many relationships 

between events and dimensions. 

As the initial step in our approach, familiar examples of event information are 

gathered from the application domain, verbalized into natural language, and subsequently 

translated into elementary facts. Following our Retail example, information gathered for 

the Sales Transaction event is verbalized into the fact types included in Table 4-6. 
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Fact Type 
f l Sales Transaction cost Money Amount 

f2 Sales Transaction was priced at Money Amount 

B Sales Transaction had profit of MoneyAmount 

f4 Sales Transaction sold Quantity 

Table 4-6: Sales Transaction Event Fact Types 

Once event information examples are translated into elementary facts we have a 

set of fact types that can now be refined for business rules (e.g. constraints and 

derivations) and added to the conceptual schema. A conceptual schema for our Sales 

Transaction event is shown in Figure 4 -4 . Our MORM approach illustrates relevant 

object types, predicates and reference schemes for the event. 

Figure 4-4: Schema for Sales Transaction Event 

4.4.2.1. Atomic Measures 

Atomic measures are those that are primitive, or not defined in terms of others. 

The atomic measures indicated in our Sales Transaction event are price, cost and 

quantity. Our approach uses the common object type MoneyAmt for the three monetary 

measures because we wish to make the domain explicit. This makes it clear that we can 

compare monetary values (e.g. price vs. cost). The broken ellipse for Quantity indicates 

this is a value type, in this case a number, and hence needs no reference scheme. 
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4.4.2.2. Derived Measures 

In our approach, derived measures are marked with an asterisk "*" to indicate 

their derivability and distinguish them from atomic measures. When measures are 

arithmetically derived from others an appropriate mathematical calculation (referred to as 

a derivation rule) must be provided. This derivation rule references other fact types in 

the model. Similar to O R M , our approach uses a double asterisk "**" to indicate that the 

derivation rule is to be added to the conceptual model and the associated measure is to be 

stored in the physical database. In this derived and stored case, a derived measure is 

stored as soon as its defining measures are entered in the database and it is updated 

whenever they are updated. Our approach includes both the derived fact type indicator 

(**) and the rule for clarity. As shown in Figure 4 - 5 , our example includes the derived 

measure profit and its derivation rule is written as text in the schema. 

|s ** { profit = price • cost} 

1 
define Sales Transaction has profit of MoneyAmt as 

Sales Transaction was priced at MoneyAmtl, an 
Sales Transaction cost MoneyAmt2, and 
MoneyAmt = MoneyAmtl - MoneyAmt2 

( Quantity* y. 

^customerCount+ ^ 
^Sf 

{customerCount is not aggregated along product dimension} 

has i 

Figure 4-5: Derivation Rule for the Profit Measure 

Different styles may be used in O R M but we use a relational style in which fact 

types are set out fully as relationship types. In this relational style predicates declare the 

rule. An informal version of the rule is written as a comment in braces, while a formal 
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version specifies a derivation rule in which the derived fact type is defined in terms of the 

others. In this definition, the derived fact type is said to be the definiendum, meaning 

what is required to be defined (Halpin, 2001). 

Various textual languages have been defined to express constraints, derivation 

rules and queries in O R M schemas. We chose ConQuer, an O R M query language for 

embedding constraints in our conceptual model. ConQuer is essentially classical logic 

with set theory, and since an O R M fact table is a set of tuples, derivation rules can be 

expressed in ConQuer using set comprehension (Halpin, 2001). 

4.4.2.3. Additivity 

Consistent with O R M , our approach uses a plus sign "+" to represent measures 

referenced by a number, thereby indicating they can participate in numeric operations. 

A l l measures with a "+" following their reference scheme are considered additive. For 

example, the "+" on Quantity in Figure 4-5 indicates that the values which refer to 

Quantity are actual numbers and hence may be added. Non-additive measures are not 

depicted with the "+" symbol. 

For semi-additive measures we include an informal rule as a comment in braces. 

Shown in Figure 4-5, we include a rule for customerCount because it is additive on Time 

and Store dimensions but cannot be aggregated along Product since the same ticket may 

include other products. 

4.4.3. Dimensions 

As with our previous business process and event domains, the initial step of our 

approach to modeling dimensions is to translate familiar information examples from the 

application domain into elementary facts. If these examples are verbalized for the 
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Product dimension we translate them into a base set of fact types that include the 

following examples in Table 4-7. 

# Fact Type 
fl Product is identified by Product Key 
f2 Product is known by Product Name 
f3 Product is of Product Type 
f4 Product belongs to Product Group 

Table 4-7: Product Dimension Fact Types 

As in our earlier examples, each sentence fact is expressed in plain language using 

a meaningful predicate and non-technical object names that can be mapped to technical 

database names later. Note that the addition of the "Product Key" provides a reference 

concept to the dimension to make each Product unique. Each dimension in our 

multidimensional model can be expressed using this same approach. 

4.4.3.1. Classification Hierarchies 

Introduced earlier in this chapter, the Dimension object type forms the root of a 

dimension tree, where each node is an object type and each edge is a functional (n:l or 

1 : 1 ) predicate. To support semantics inherent in the dimension tree, we introduce a third 

M O R M construct - the Hierarchy Object Type. Hierarchy object types represent each 

classification hierarchy level within a dimension and are depicted as named ellipses with 

lightly shaded slash-fill notation. 

Figure 4-6 shows the classification hierarchies defined for the Time dimension. 

This schema illustrates how multiple classification hierarchies are possible using our 

Hierarchy object types, allowing us to aggregate event measures along two different 

hierarchy paths: time-month-quarter-year and time-season. 
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Figure 4-6: Multiple Classification Hierarchies in MORM 

In our approach, a predicate between two hierarchy objects specifies a 

relationship between two levels of a classification hierarchy (e.g. Month is in Quarter). 

Other entity types and value types may play roles with hierarchy object types to provide 

additional information (e.g. Month has monthOfYearNr) but may not be used for 

aggregation purposes as a classification level hierarchy. 

Our approach also uses hierarchy object types to model alternative path 

hierarchies with two different paths that converge into the same hierarchy level. In 

Figure 4-7 we depict the following alternative path hierarchies for the Store dimension: 

store-city-state-country and store-sales region-state. 
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Figure 4-7: Alternative Path Hierarchies in MORM 

In our example, from the Store dimension object type (the root of the dimension 

tree) we run through the various functional chains (branches) until we finally reach the 

last object types (leaves). Along the way we gather all the fact types to eventually group 

them into a single table based on the identifier for Store (the Store Key). Modeling in 

this manner will result in denormalized tables containing embedded functional 

dependencies but we argue there is no need to enforce these since they have been 

enforced in the operational systems from which the multidimensional data is extracted. 

Since only the operational tables are used for updating, we believe it is advantageous to 

model in this way to leverage the performance and comprehension benefits of 

denormalization. 

In our approach, every classification hierarchy level must have a label (e.g. City 

Name) that identifies each level instance. To do this we include the constraint {L} next 

to the identifying value type for each hierarchy level to explicitly indicate it is the 
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identifying label for that level. When our model is eventually generated into an OLAP 

cube, the cube will store this value as the default label in its metadata to unambiguously 

identify the hierarchy level. As shown in Figure 4-7, we have annotated the schema to 

indicate cityName as the label for City. Applying a roll-up operation to aggregate 

measures into the City level of the Store dimension will display the City Name label as 

we analyze the Cities in which our products are sold. 

In addition to multiple and alternative path hierarchies, our approach allows for 

shared hierarchies between dimensions. As illustrated in Figure 4-8, Customer shares 

the levels city, state, and country as defined in the Store dimension. Using ORM's 

double-border notation, we depict these objects types and their predicates as external to 

indicate they are imported from another schema in which they are fully defined. 

Figure 4-8: Shared Hierarchies in MORM 
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4.4.3.2. Strictness 

As defined in chapter 3, strictness means an object at a hierarchy's lower level 

belongs to only one higher-level object (the target). Non-strictness means an object may 

belong to more than one higher-level object. Our approach uses a combination of 

cardinality (frequency) and optionality to model the concepts of strictness and non-

strictness, as illustrated in the schema in Figure 4-9. 

Figure 4-9: Strictness & Non-Strictness in MORM 

In this Store example, Store and City have a strict relationship because a Store can 

exist in only one City. To model this strictness, a mandatory constraint on the Store role 

indicates each store is located in at least one city. A many-to-one (n:l) constraint on the 

first predicate role then indicates each store is located in at most one city. Similar strict 

relationships exist between City and State, with a City existing in only one State. 
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The Sales Region and State object types form a non-strict relationship because a 

Sales Region can be in more than one State. To model non-strictness, our approach 

includes mandatory constraints on both roles to indicate that each Sales Region is located 

in at least one State and a State is comprised of at least one Sales Region. A many-to-

many (m:n) uniqueness constraint on the roles then indicates that each Sales Region can 

relate to more than one state. A verbalization of this non-strict relation is: 

• it is possible that a Sales Region is comprised of more than one State and at 
the same time a State is included in more than one Sales Region 

4.4.3.3. Completeness 

As described in chapter 3, completeness within a classification hierarchy means 

that all members belong to one higher-class (target) hierarchy level and that level consists 

of those members only. To model completeness, we define the {completeness} 

constraint on the role of the target hierarchy level. We illustrate completeness in Figure 

4-10 using the Time dimension from our POS Retail example. 

Figure 4-10: Completeness in MORM 

In Figure 4-10, we have added the constraint {completeness} on the target Year 

object associated with Quarter. In this "complete" classification hierarchy between Year 

and Quarter hierarchy levels, all the recorded Quarters form the Year, and all the Quarters 

that form the Year have been recorded. As for non-completeness, our approach assumes 

all classification hierarchies are non-complete by default. 
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4.4.3.4. Categorization of Dimensions 

Our approach has shown how to model classification hierarchies within 

dimensions but a multidimensional conceptual model should also consider the 

categorization of dimensions to model additional features of subtypes. To do this we use 

a generalization-specialization relationship to categorize entities that contain subtypes. 

Like O R M , our approach displays subtyping using directed acyclic graphs - a 

graph of nodes with directed connections, acyclic meaning there are no cycles. An 

example of categorization using our POS Retail Sales example is shown in Figure 4-11. 

(proaisey) / ' 

is of 

PRODUCT 

(prodKey) 

I—, 
{ ' C \ ' J ' > 

(typeName \ 

{ 'A \ 'R' } 

has i 

, has ; 
1 

each Food is a Product that is of Group 'F" 
each Drink is a Product that is of Group 'D" 
each Refreshment is a Drink that is of Family 'R' 
each Alcohol is a Drink that is of Family 'A' 
each Juice is a Refreshment that is of Type 'J' 
each Carbonated is a Refreshment that is of Type 'C 

l . ' — - \ l—i flavour \ 

Figure 4-11: Categorization of Dimensions in MORM 

The Product dimension contains six subtypes: Food, Drink, Alcohol, 

Refreshment, Juice and Carbonated. Subtype links are shown as directed line segments 

from subtypes to supertypes. Subtype nodes are introduced when we have specific roles 
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for them to play (e.g. Drink has volume). As with O R M , our approach requires formal 

subtype definitions to be declared for all subtypes and written in the diagram. These rules 

indicate the basis for categorization and must be defined in terms of at least one role 

played by a subtype's supertype(s). By default, subtypes inherit the identification scheme 

and all the roles of their supertypes so there is no need to repeat this information. 

4.4.3.5. Many-to-Many Relationships Between Events and Dimensions 

As described in section 3.4.4.4, we generally consider events to have many-to-one 

relationships with each dimension. Thus far in our example, we have considered the 

grain of our sales event to be the individual line item on a sales ticket (e.g. a single 

product). To illustrate how we represent many-to-many relationships between events and 

particular dimensions we now assume the grain of interest to be the sales ticket itself. 

Since there are many line items (e.g. products) per ticket, this means we now have a 

many-to-many relationship between the product dimension and the sales event. A ticket 

can consist of more than one product, although each ticket is still purchased in only one 

store by one customer at one time. 

To represent this relationship at the conceptual level our approach includes 

mandatory constraints on both roles played by the sales event and the product dimension 

to indicate that each Product is included in at least one Sale and a Sale is comprised of at 

least one Product. As shown in Figure 4-12, a many-to-many (m:n) uniqueness 

constraint on both roles then indicates that each Sale can relate to more than one Product. 

A textual rule can be written for this relationship as: 

• it is possible that the same sale (ticket) contains more than one product and at 
the same time product was part of more than one sale 
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Figure 4-12: Many-to-Many Relationship Between Event & Dimension 

4.4.3.6. Degenerate Dimensions 

Our approach defines other identifying features of an event, referred to as 

degenerate dimensions, by placing the constraint {DD} next to the identifying object 

type. In Figure 4-12, we have annotated Ticket, allowing the ticket number to be 

analyzed in addition to the atomic and derived measures of the sale. This identifying 

constraint groups individual line items at the ticket level and will prove useful during the 

generation of our schema into a commercial OLAP tool. 
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4.5. M O R M Design Gu ide l ines 

The previous section presented M O R M , which reflects our fact-oriented approach 

to conceptually modeling multidimensional data. We now supplement our approach with 

several key design guidelines for the development of a multidimensional data model. 

Since we specialize O R M , the CSDP still applies to the overall design process, however, 

we consider additional guidelines to incorporate multidimensional concepts. 

Based on our experiences developing and utilizing these guidelines in several 

large scale data warehouse implementations, we believe our guidelines reflect the natural 

way data modelers and business users understand and view multidimensional modeling. 

As evidenced by our modeling experiences, this approach is particularly useful for large, 

complex data warehouses with many events and dimensions. Following our guidelines, 

modelers are able to systematically develop domain sub-schemas that, together, create the 

conceptual model for the entire enterprise. The response from business users in our 

implementations indicates the models created using our guidelines are easily understood. 

4.5.1. MORM Level 0: Preliminary Segmentation 

The initial phase of our approach "Level 0" involves dividing the universe of 

discourse into manageable subsections. This allows schema design activities to be 

divided, where multiple modelers work on models relevant to their domain of expertise. 

Segmenting the schema in this way creates different levels of abstraction and simplifies 

the final model. We use ORM's subschema (submodel) concept to represent the different 

levels of our M O R M models. Using subschemas, our approach is not restricted to using 

flat diagrams to model large, complex data warehouses. 
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Level "0" is indicated as such since it is a preliminary step required to complete 

initial segmentation prior to designing the different levels of the schema. Associated with 

Level 0 are Guidelines #0a and #0b (shown in Table 4-8), which summarize our overall 

approach and provide a foundation for the remainder of our guidelines. 

Guideline • 
0a Upon completion of the MORM design process, the multidimensional 

model will be divided into four levels: business process family definition, 
business process definition, dimension definition, and event definition. 

Ob Before beginning the model, define events and dimensions and indicate 
shared dimensions and dimensions that share some hierarchy levels. 

Table 4-8: MORM Level 0 Design Guidelines 

Based on Guideline #0a, the multidimensional schema is designed in a top-down 

fashion by decomposing the model into different levels as outlined in Table 4-9. These 

levels are discussed further in the sections that follow. 

Level Name Description 
1 Business Process Fami ly 

Definit ion 
A subschema representing an integrated set o f related 
business processes based on common, shared dimensions. 

2 Business Process 
Definit ion 

A subschema representing a business process and its 
associated events and dimensions. 

3 Event Definit ion A subschema representing an event and its associated 
measures. 

4 Dimension Definit ion A subschema representing a dimension and its associated 
hierarchy levels. 

Table 4-9: Four Levels of a MORM Schema 

4.5.2. MORM Level 1: Business Process Family Definition 

Level 1 of our method models a Business Process Family through the use of 

Event and Dimension object types. This leads us to Guideline #1 as shown in Table 4-10. 

Guideline 
1 Using only Event and Dimension Object Types, draw a subschema 

representing al! business processes considered. 
2 Define instances of all fact types (objects and their predicates) as 

external to indicate that definitions of event and dimension objects 
and their roles exist in subsequent levels. 

Table 4-10: MORM Level 1 Design Guidelines 
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Figure 4-13 shows the first level of a model representing the family of business 

processes from our case study. 

Figure 4-13: MORM Level 1 - Retail Business Process Family 

Event object types represent the Sales Transaction and Inventory events while 

Dimension object types represent the Time, Store, Customer, and Product dimensions. 

Dimension objects with roles spanning two event objects at this level indicates the 

business processes share that dimension. At this level, the predicates and objects of all 

fact types are annotated with double-border ellipses to indicate they are external. This 

leads us to Guideline #2 of our approach shown above in Table 4-10. 

Using the external property in this way allows us to reference the event and 

dimension objects that will be defined in another schema level in subsequent phases of 

the design process. Once we define the dimensions, all events can use them without 

having to define them again. This ensures the integrity of our data model by allowing us 

to define object types and their roles, and then refer to these definitions throughout other 

subschemas within the entire data model. 
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4.5.3. MORM Level 2: Business Process Definition 

Level 2 of our approach involves drawing a subschema for each business process 

considered. Shown in Table 4-11, Guidelines #3 and #4 guide the design at this level. 

mm Sideline » 
3 Draw a subschema representing a single business process using a 

single event object and its associated dimension objects and 
predicates. 

4 Annotate instances of all event and dimension object types as 
external, however, fully define roles (predicates) between each 
object. 

Table 4-11: MORM Level 2 Design Guidelines 

Figure 4-14 shows the POS Retail Sales business process modeled using our 

approach. As in Level 1, object types are annotated as external to indicate they are 

defined elsewhere in the model. However, detail is introduced at this level for the roles 

between the event and its associated dimensions. 

Figure 4-14: MORM Level 2 - POS Retail Sales Business Process 

In our example, all roles played by the event object are mandatory (e.g. Sale must 

have at least one Store), thus are explicitly shown by a mandatory role dot where a role 

connects with the object type. Internal uniqueness constraints over the roles indicate each 
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object playing that role does so only once (e.g. each Sales Transaction occurs in at most 

one Store). The external uniqueness constraint across the four roles indicates each Sale 

occurs for at most one Store, Customer, Product, and Time combination. 

4.5.4. MORM Level 3: Event Definition 
Level 3 of our M O R M method creates a subschema for all the measures of 

interest in a business process. Shown in Table 4-12, Guidelines #5, #6, and #7 of our 

approach guide subschema development throughout this level. 

5 Draw a subschema defining an event and all relevant measures of 
the business process. 

6 Fully define the event object and other objects for each of the 
measures considered; define derivation rules for any derived 
measures. 

7 Define roles between the event object and each of its associated 
measure objects. 

Table 4-12: MORM Level 3 Design Guidelines 

Figure 4-15 shows a Level 3 schema representing event measures from our case study. 

** { profit = price • cost} 

define Sales Transaction has profit of MoneyAmt as 
Sales Transaction was priced at MoneyAmtl, an 
Sales Transaction cost MoneyAmt2, and 
MoneyAmt = MoneyAmtl • MoneyAmQ 

Figure 4-15: MORM Level 3 - Sales Transaction Event 
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Since the Level 3 subschema is the original source of the event object definition, 

the object is drawn with a single border. Measure objects are defined and rules are 

developed to reflect additivity and indicate derived and stored measures. Rules are 

defined for all objects by indicating mandatory roles and uniqueness constraints for each 

of the measures. 

4.5.5. MORM Level 4: Dimension Definition 

Level 4 of our approach models dimension content using dimension objects as the 

root of dimension trees and hierarchy object types to represent the hierarchy levels within 

the dimension. This leads to Guidelines #8, #9, #10 and #11 of our approach shown in 

Table 4-13. 

Giiiik-liiu-
8 Draw a subschema representing each dimension of the business 

process. 
9 Draw a dimension object for the dimension and hierarchy objects for 

each of its hierarchy levels, define roles played by each. 
10 If a dimension or hierarchy level has been previously defined, draw 

its objects and predicates and annotate them as external (i.e. do not 
define a dimension or hierarchy level twice). 

11 Define objects and roles for each of the remaining dimension 
attributes. 

Table 4-13: MORM Level 4 Design Guidelines 

Figure 4-16 shows a Level 4 model representing the Customer dimension, its 

different hierarchy levels (e.g. City, State, and Country) and other dimension information. 

At this level, a dimension object forms the root of a dimension tree, where each node is 

an object type and each edge is a functional (n:l or 1:1) predicate. 
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Figure 4-16: MORM Level 4 - Store Dimension 

Hierarchy levels are indicated with hierarchy object types, while external 

hierarchy objects and predicates represent hierarchy levels defined in another source 

subschema and shared by this dimension. For example, the external fact types for City, 

State, and Country are defined elsewhere (e.g. the Store dimension) and annotated here as 

external to indicate they are shared with that dimension. 

It is important to note dimensions that share hierarchy levels do not need to share 

the whole hierarchy. For example, the address hierarchy of the Store dimension could 

just include the City and State levels i f required. 

4.5.6. Design Guideline Summary 

Having described each of the design levels and guidelines separately throughout 

the previous sections, we now summarize the entire M O R M design process in Table 

4-14. 
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# " Level Guideline 
Oa 0 £7po« completion of the MORM design process, the multidimensional model will be 

divided into four levels: business process family definition, business process definition, 
dimension definition, and event definition. 

Ob 0 Before beginning the model, define events and dimensions and indicate shared dimensions 
and dimensions that share some hierarchy levels. 

1 1 Using only Event and Dimension Object Types, draw a subschema representing all the 
business processes considered 

2 1 Define instances of all fact types (objects and their predicates) as external to indicate that 
definitions of event and dimension objects and their roles exist in subsequent levels. 

3 2 Draw a subschema representing a single business process using a single event object and 
its associated dimension objects and predicates. 

4 2 Annotate instances of all event and dimension object types as external, however, fully 
define roles (predicates) between each object. 

5 3 Draw a subschema defining an event and all relevant measures of the business process. 
6 3 Fully define the event object and measure objects for each of the measures considered; 

define derivation rules for any derived measures. 
7 3 Define roles between the event object and each of its associated measure objects. 
8 4 Draw a subschema representing each dimension of the business process. 
9 4 Draw a dimension object for the dimension and hierarchy objects for each of its hierarchy 

levels, define roles played by each. 
10 4 If a dimension or hierarchy level has been previously defined, draw its objects and 

predicates and annotate them as external (i.e. do not define a dimension or hierarchy level 
twice) 

11 4 Define objects and roles for each of the remaining dimension attributes. 

Table 4-14: MORM Design Guideline Summary 

4 . 6 . A n E v a l u a t i o n o f M O R M 

Through a specialization of Object Role Modeling, we have proposed a natural 

and expressive model that represents the structural properties of multidimensional data at 

the conceptual level. We believe our fact-oriented approach, as exemplified by M O R M , 

provides many benefits over other related multidimensional models. 

To the best of our knowledge, we have presented the first fact-oriented approach 

to conceptual multidimensional modeling. In doing so, we leverage the fact-oriented 

paradigm and introduce several new multidimensional constructs to O R M - the Event 

Object Type, Dimension Object Type, and Hierarchy Object Type. We take the concepts 

and basic ideas of the multidimensional view of data and propose an approach based on 

the fact-oriented paradigm to model multidimensional data at the conceptual level. We 
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believe this utilization of the fact-oriented paradigm provides us with a conceptual 

multidimensional model that is more natural and simpler than existing models. As such, 

M O R M provides a solid basis for solving conceptual multidimensional modeling 

problems with a more intuitive and natural conceptual model than existing approaches. 

We propose M O R M as a specialization of O R M model by defining additional 

graphical constructs and guidelines to consider the characteristics of multidimensional 

modeling. Our technique allows us to consider key multidimensional properties at the 

conceptual level, providing semantics that distinguish qualifying (dimension) and 

quantifying (event) data. Other key multidimensional properties supported by our 

approach include multiple and alternative path classification hierarchies, strictness and 

completeness, many-to-many relationships between events and dimensions, additivity, 

derived and atomic measures, and the categorization of dimensions. 

Based on our practical experience, we have also provided design guidelines to 

properly and easily apply M O R M . We believe these guidelines reflect the natural way 

users and data modelers think about multidimensional data and lead us to a very simple 

yet powerful multidimensional model. Through our guidelines, we have shown how 

M O R M subschemas can be successfully used for multidimensional modeling at four 

levels of complexity - business process family, business process, event and dimension. 

Our multilevel subschemas group different levels of abstraction to simplify conceptual 

design when modeling large and complex data warehouses. 

A significant advantage of our approach is that it uses a widely accepted fact-

oriented modeling language. By basing our approach on the established O R M model we 
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enable the transfer of research results published in the context of O R M . As such, we can 

apply previously discussed evaluation results (Halpin & Bloesch, 1999) to our approach. 

By specializing O R M , we also minimize the effort required of data modelers to 

learn new modeling notations and methodologies for data warehouses and O L A P 

applications. This way, we ensure a shallow learning curve since data modelers can 

combine M O R M elements with classical O R M elements and, although the approaches 

will be different, conceptual data models for OLTP and OLAP applications may be 

specified using a uniform notation. 

4.7. S u m m a r y 

In this chapter we introduced M O R M , our fact-oriented multidimensional 

modeling approach which introduces multidimensional constructs to O R M . We have 

demonstrated how our approach handles basic and advanced multidimensional concepts 

and have shown how our M O R M guidelines are used for successful multidimensional 

modeling at various levels of complexity. Based on our experience, our guidelines 

provide various levels of abstraction and simplify conceptual design when modeling large 

data warehouses. Finally, we evaluated our model and discussed its strengths with 

respect to multidimensional concepts conceptual modeling language criteria. Among 

other benefits, we have shown that our approach provides a natural, yet powerful way to 

model multidimensional data and allows domain experts to validate the model in terms of 

sentences and sample data populations. As we will demonstrate in the next chapter, 

another significant benefit of our model is that can be automatically mapped to logical 

and physical schemas and implemented using existing technologies. 
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5 . A P P L Y I N G M O R M : A C A S E S T U D Y 

5 .1 . I n t r o d u c t i o n 

This chapter describes the application of our fact-oriented modeling approach 

throughout the multidimensional modeling implementation lifecycle, which we define to 

include the four phases outlined in Table 5-1. 

Phase Description , - ' 
1 Creating a conceptual schema in a graphical modeling tool. 
2 Mapping a logical schema from the conceptual schema. 
3 Generating a physical schema from the logical schema. 
4 Building an OLAP cube from the physical schema. 

Table 5-1: Multidimensional Modeling Implementation Lifecycle 

To test the practicality and usability of our approach we demonstrate how our 

model can be implemented throughout this lifecycle using existing technologies. In 

doing so, we first provide an overview and rationale for our selected development 

environment tools, then present the implementation details for each phase. Following the 

implementation we evaluate our results and identify the experiences we have learned 

from our case study. 

5 .2 . D e v e l o p m e n t T o o l s 

Before describing the implementation details of our approach, we first introduce 

our chosen development tools. These tools are required to achieve various tasks 

associated with the four lifecycle phases of our implementation. The following sections 

review our selections for tools to facilitate conceptual and logical modeling, relational 

database storage, and O L A P cube generation. 

82 



5.2.1. Conceptual & Logical Modeling Tool: VisioModeler™ 

O R M is supported by a variety of modeling tools, including Microsoft® 

VisioModeler, Microsoft® Visio 2000 Enterprise, and Microsoft® Visual Studio.NET. 

Formerly known as InfoModeler, VisioModeler was renamed when Visio Corporation 

acquired InfoModeler in 1997. Visio then rewrote the VisioModeler tool to use the Visio 

drawing engine and released the first version of the Visio Modeling Engine add-in with 

Visio 2000 Enterprise. With the subsequent acquisition of Visio in 2000, Microsoft 

released VisioModeler as unsupported product. 

The Visio 2000 Enterprise tool supports updated drivers and diagramming for 

most of the O R M constructs, however, relational mapping is not supported. Microsoft's 

second, more advanced version of the Visio Modeling Engine is found in Visual Studio 

Enterprise Architect (VSEA), released in April 2002 as part of Visual Studio.NET. 

V S E A provides the most current support for O R M modeling with many improvements to 

diagramming and relational database mapping, however, it is quite expensive and 

unavailable on trial basis. 

Although VisioModeler is a discontinued product with outdated database driver 

support, we chose it as our modeling tool because of its functionality and availability. It 

may be unsupported, but VisioModeler remains a feature rich, mature modeling tool that 

allows the creation of O R M models and subsequent mapping to a wide range of database 

systems. VisioModeler is easily accessible as a free download from Microsoft® 

Corporation (www.microsoft.com), whereas other O R M modeling tools are cost 

prohibitive. 

We use VisioModeler to formalize our database design by working at the 

conceptual level using natural-language facts, verifying our design using real-world 
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example data, validating and mapping a logical model, and finally producing a physical 

schema using 32-bit ODBC drivers. VisioModeler models can be automatically mapped 

to database schemas for implementation on most popular relational databases. To do this, 

VisioModeler automatically generates table diagrams (i.e. a logical model) that can be 

automatically translated into SQL code and applied to the database system of choice. 

5.2.2. Relational Database: Microsoft® SQL Server™ 2000 

We chose Microsoft® SQL Server™ 2000 (SQL Server) as our relational 

database management system (RDBMS) because of its market share and availability. 

SQL Server is a family of database products appropriate for a broad range of solutions, 

including small and large business applications, e-commerce, and data warehousing. 

Marketed by Microsoft as a "complete database and analysis product" 

(www.microsoft.com), SQL Server meets the storage requirements of large businesses 

yet provides easy-to-use data storage services to individuals and small businesses. 

Of the eight versions available, we chose Microsoft® SQL Server™ 2000 

Enterprise Evaluation Edition. This edition is a full-featured version available as a 

download from Microsoft (shop.microsoft.com/devtools) for a minimal shipping and 

handling fee. Intended only for feature evaluation, this is a 120-day time-limited version 

of SQL Server 2000 Enterprise Edition licensed for demonstration, testing, examination, 

and evaluation. SQL Server is attractive not only because we can evaluate the complete 

set of data management and analysis features without purchasing the full version, we can 

also install it on the desktop without running a server based operating system. 
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5.2.3. OLAP Tool: Microsoft® SQL Server™ Analysis Services 

Bundled as a component of SQL Server 2000, Analysis Services is a 

multidimensional analysis tool with OLAP and data mining capabilities. A logical choice 

for us because of its integration with SQL Server, Analysis Services can also extract data 

from the data warehouses and data marts of many other data sources. Its data can be 

stored multidimensionally within relational databases (ROLAP), as separate, high-

performance multidimensional data structures (MOLAP), or hybrid combinations of both 

(HOLAP). Through its multidimensional cubes, Analysis Services allows us to turn 

Grocery data stored in the star schema event and dimension tables of our SQL Server 

database into meaningful, easy-to-navigate business information. 

5.3. S T E P 1: C r e a t i n g t h e C o n c e p t u a l M O R M S c h e m a 

Having described our example case study and the development tools we'll use for 

our implementation, we now begin the conceptual design of our multidimensional model. 

We use VisioModeler as our modeling tool to examine and describe the application 

domain in a way that is clear and easy to understand. A multidimensional model 

representing the M O R M constructs described in the previous chapter should be easily 

designed in the VisioModeler tool. Our output at this step is a conceptual model 

consisting of natural language facts and intuitive diagrams that serves as a key 

communication tool between the end user and designer. 

We demonstrate the practicality and feasibility of our M O R M model through our 

Retail POS example presented in the previous chapter. Since we have revised this 

example in several places, we restate it here to avoid confusion. 
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A large grocery chain with 100 stores is spread over a five-state 

area. Each of the stores has a full complement of departments, including 

grocery, frozen foods, dairy, meat, produce, bakery, floral and 

health/beauty aids. Each store has roughly 60,000 individual products on 

the shelves, each with bar codes referred to as stock keeping units (SKUs). 

As customers purchase products at the cash register, sales data is 

gathered by scanning bar codes into a point of sales (POS) system. 

Management is interested in understanding customer purchases as 

captured by the POS system and they have decided to analyze the POS 

Retail Sales process. They hope to understand which products are selling 

to which customers at which stores during which times. 

Optimized inventory levels in our grocery stores can have a major 

impact on chain profitability. Making sure the right product is in the right 

store at the right time minimizes out-of-stock situations and reduces 

overall inventory carrying costs. To better understand the inventory-sales 

relationship, management would also like the ability to analyze daily 

quantity on hand inventory levels by product and store. 

5.3.1. VisioModeler Diagram Workspace 

Before we discuss the design of our conceptual models, we provide a brief 

overview of the VisioModeler Diagram Workspace used to create and manage basic data 

modeling tasks. Using toolbars and editors in the main VisioModeler window we create 

the conceptual models of our multidimensional database in an object-role modeling 

document using our MORM modeling approach. Each conceptual model is specified in 

an ORM Modeling Diagram (.IMO file), with a set of graphic symbols and specialized 

tools used to design our data model. 

For all of our submodels, we first begin conceptual design of our application 

domain in an ORM modeling diagram, then build and refine the mapped logical model in 

a dictionary document. A modeling document (.IMO file) is saved as a file that can be 
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opened and closed like any other file, however, a dictionary document (.IMD file) is 

associated with a particular modeling document or project and can only be opened when 

its associated modeling document or project is open. As illustrated in Figure 5-1, a 

model and its associated dictionary comprise the specification of the model. 

Figure 5-1: MORM Model and Associated Dictionary Document 

VisioModeler provides several ways to create and edit the symbolic components 

of fact types in our modeling diagram. Primarily, the Tools palette is used to draw and 

connect object types and predicates one by one and the Constraints palette is then used to 

- -Visin-tuilflei -[Ll-BPr-RL'ldllVdlutChdlPl.IMU] 
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add constraints to the diagram. Both Palettes are shown in Figure 5-2. 

Figure 5-2: VisioModeler Tool and Constraint Palettes 
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The Fact Editor is also used to create and edit a fact type in our M O R M model. 

Shown in Figure 5-3, the Fact Editor greatly simplifies the entry of facts by automatically 

converting the entered text to the appropriate symbols in the M O R M diagram. The 

Editor checks the syntax of a fact type and as shown in Figure 5-4, verifies the 

correctness of a fact type's constraints using example data. 

I <icL Lihtot — I iJit r ' H i s l m g TdLl 
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Figure 5-3: VisioModeler Fact Editor Window 

TactEd-tm Mil i"*m,nij I art 

i ]ZetooiOne ;»j 

^ jzeio a Moie | 

Uroquenew. 

SAIESIRAWSACTIO'I 

IIIIIIIIIIII 

IIJMZZIIZ zzzn 
£et UC Consbajnts 

1! 
I 

i i 

Figure 5-4: Fact Editor Constraints and Associated Data Examples 

5.3.2. Creating a MORM Project 

We use VisioModeler's project-based development feature to support our multi­

level design approach to multidimensional modeling. A Project is created as a set of 

model documents containing various M O R M subschemas that make up the specification 

of our entire multidimensional data model. Within a Project, we subdivide a complex 

multidimensional model into smaller, manageable submodels associated with the design 
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levels outlined in our approach. These submodels use multiple modeling documents and 

can be developed by different modelers with different domain expertise and subsequently 

re-used across the data warehouse. 

Shown in Figure 5-5, our VisioModeler Project shows how we have defined and 

organized our multidimensional model using multiple source documents. Our submodels 

are organized using a tree diagram and are categorized by type of model document. With 

the creation of our Project, VisioModeler has generated a Project file (.IPJ) and a 

directory to store all the models associated with our Project. Our files are named to 

indicate design level (e.g. L I , L2) and Type (e.g. E V for Event, D M for Dimension). 

• • Si Hi ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ w 1 
E 3 €S| Object Role Modeling Diagrams 

g| L1-BPF-RetailBusinessProcessFamilii.lM0 
; 3 L2-BP1-POSRelailSales.imo ; 
! g| L3-EV1-SalesTransaction.imo ,i 
: 3 L2-BP2-lnventory.lM0 v 
\ 3 L3-EV2-lnventory.lM0 
\ 3 CADataV.AL4-DM1-Store.IM0 
1 jj3 CADataV.AL4-DM2-Product.IM0 
! 3 CADataV.AL4-DM3-Time.IMO 
: gj L4-DM4-Customer.lMO '| 

ft Logical Model Diagrams m 

Figure 5-5: VisioModeler's Project Window 

When building its dictionary, VisioModeler combines the contents of the model 

documents listed in our Project window to form an integrated model and saves this 

information in a dictionary document. In building the dictionary, VisioModeler merges 

our Project files to form a complete, mapped model of our multidimensional application 

domain and saves this information in a dictionary (.IMD) file. The build process checks 
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and validates overlapping model components to ensure model integrity. Defining a 

project in this fashion supports M O R M Guideline #0a, which states that upon completion 

of the M O R M design process, our model should be divided into four levels. 

5.3.3. Creating MORM Schemas 

Having described our Project and the fundamentals of the VisioModeler 

workspace, we next discuss the process of creating individual submodels. Consistent 

with our approach and the design guidelines presented in chapter 4, we use the 

VisioModeler workspace to create subschemas for each of our design levels. As a 

prerequisite step to schema development we follow Guideline #0b and define events, 

dimensions, hierarchies and hierarchy levels for each of our business processes. The 

resulting segmentation for the Retail Sales business process is shown in Table 5-2. 

Business Dimension Hierarchies 
Process E\cnt \leasurc Dimension Level Shared 

POS Retail Sales Price Store City Y 
Sales Transaction Cost State Y 

Profit Country Y 
Ticket # Product Group N 
Quantity Family N 

Type N 
Band N 

Customer City Y (Store) 
State Y(Store) 
Country Y(Store) 

Time Month N 
Quarter N 
Year N 

Table 5-2: MORM Design Guideline #0b 

With the preliminary segmentation activities of Level 0 addressed in Table 5-2, 

we now complete schemas for Levels 1 through 4, for our business process family, 

business processes, events, and dimensions. Since we have demonstrated all 

multidimensional modeling aspects of our approach through examples in the previous 
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chapter, we will not reiterate development details of our case study schemas in the body 

of this chapter. Instead, we include complete VisioModeler subschemas for each level of 

our case study in Appendix B for the reader's reference. 

Throughout the development of each of our schemas, we followed our M O R M 

design guidelines to ensure multidimensional concepts were accurately represented, while 

adhering to ORM's CSDP for general O R M design principles and steps. Consistent with 

our approach, familiar information examples were first developed for our case study. 

Those examples were then translated into elementary facts and conceptual schemas 

showing all the fact types were drawn for each submodel. To support the 

multidimensionality inherent in our Retail Sales data, our schemas make extensive use of 

our proposed M O R M constructs - Event, Dimension, and Hierarchy Level Object types. 

Upon completion of the M O R M design process, our resultant multidimensional 

model is divided into four levels. Before the final integration of these levels, we validate 

our subschemas using VisioModeler's CheckDocument option from the main toolbar. This 

function checks to see i f our subschema is valid (e.g. no contradictory constraints) and 

helps us refine our model and correct any errors prior to logical mapping. 

5.4. STEP 2: Mapping the Logical Schema 

Having checked and validated our integrated source model documents, we now 

build the data dictionary and map the conceptual model to the logical model. To do this 

we use the BuildDictionary option from the main toolbar. VisioModeler builds a data 

dictionary using the specifications designed in our source model documents, then 

validates and maps the conceptual schema in the dictionary to a logical schema. This 
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section briefly explains the process of building the dictionary file, validating the 

conceptual model, correcting errors/warnings and mapping the logical model. 

5.4.1. Building the Data Dictionary 

VisioModeler builds a data dictionary based on the contents of our project and 

saves the dictionary document as a .IMD file that acts as a central repository for essential 

information about our integrated model. The data dictionary contains complete 

information about the components of our model, including a factbase (the facts that 

describe our application domain), the conceptual schema, mapping paths, and the mapped 

logical schema. When building the dictionary, VisioModeler gathers information in our 

source model documents, consolidates the models associated with our project into one 

dictionary, forms a conceptual model in the dictionary, validates this model, and then 

maps the validated model to a logical model. 

VisioModeler's Output window identifies and locates any modeling errors in our 

model and dictionary documents. The Output window displays information, progress 

notes, warnings,- and error messages found during many VisioModeler operations, 

including building the dictionary and validating a model. Our generation results are 

shown in the Output window in Figure 5-6. 

i S t a r t i n g B u i l d . . 
C : \ D a t a \ P e r s o n a l \ E d u c a t i o n \ T h e s i s - I I \ W I P \ G r a p h i c s \ F i n a l \ R E T A I L . I H D : Updating e x i s t i n g d i c t i 
L l - B P F - R e t a i l B u s i n e s s P r o c e s s F a m i l y . I H O : Merging Source Model. 
L 2 - B P l - P O S R e t a i l S a l e s . i m o : Merging Source Model. 
L 3 - E V l - S a l e s T r a n s a c t i o n . i m o : Merging Source Model. 
L2-BP2-Inventory.IMO : Merging Source Model. 
L3-EV2-Inventory.IMO : Merging Source Model. 
C:\Data\...\L4-DMl-Store.IMO : Merging Source Model. 
C:\Data\...\L4-DM2-Product.IMO : Merging Source Model. 
C:\Data\..-\L4-DH3-Time.IMO : Merging Source Model. 
L4-DH4-Customer.IHO : Merging Source Model. 
C:\DATA\PERSONAL\EDUCATION\THESIS-II\WIP\GRAPHICS\FINAL\RETAIL.IMD : S t a r t i n g Happing ... 
C:\DATA\PERSONAL\EDUCATION\THESIS-II\UIP\GRAPHICS\FINAL\RETAIL.IMD : Tables(6) Columns (59) Ijj 
B u i l d complete - 0 e r r o r (s) 0 warning ( s ) 

•iiy\ Into \ BuHd ,(< ANy/Gwierate^/ . Import^- - J 

Figure 5-6: Output Window Showing Build Results 
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5.4.2. Relational Mapping (Rmap) Procedure 

As part of the dictionary generation process, VisioModeler uses Rmap, an 

algorithm used to group our fact types into tables. The complete version of Rmap 

includes details for completely mapping all graphical constraints, however, an exhaustive 

treatment of the full procedure is beyond the scope of this thesis. We introduce the 

procedure here to provide context for our mapping step and refer the reader to Ritson and 

Halpin (1993) for detailed coverage of the procedure. 

Rmap guarantees a redundancy-free relational design and restricts the number of 

tables, ensuring each fact type maps to only one table in such a way that its instances 

appear only once. If the conceptual fact types are elementary, then the mapping is 

guaranteed to be free of redundancy since each fact type is grouped into only one table, 

and fact types which map to the same table all have uniqueness constraints based on the 

same attribute(s). To achieve this Rmap uses two basic rules: 

1. Fact types with compound uniqueness constraints map to separate tables. 

2. Fact types with functional roles attached to the same object type are 
grouped into the-same table, keyed on the object type's identifier. 

While O R M describes facts in terms of simple sentences, relational schemas 

describe the world in terms of tables with attributes. Through Rmap, the fact types in our 

M O R M model map to the tables in Figure 5-7, which depicts the logical database 

diagram generated from our model. 
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STORE 
PK storeKey 

storeType 
storeName 
streetAddress 
cityName 
stateld 
postalCode 
countryName 
size 
salesStateld 
salesRegionName 
salesCountry 

TIME 
PK timeKey 

date 
day 
month 
year 
dayOfMonth 
monthOfYear 
quarter 
season 

SALESTRANSACTION 
PK.FK.U1 ptoductKey 
PK.FK timeKey 
PK.FK customerKey 
PK.FK storeKey 
U1 ticketNr 

price 
cost 
profit 
qty 

INVENTORY 
PK.FK I storeKey 

prod Key p— 
timeKey 
onHand 
ordered 
shipped 

CUSTOMER 
customerKey 
lastName 
firstName 
streetAddress 
cityName 
stateld 
countryName 
maritalStatus 
gender 

1RODUCT 
PK productKey 

brandName 
productName 
sku 
srp 
productType 
productFamily 
productGroup 
flavour 
sugarFree 
sparkling 
percentage 
prepTime 
volume 

Figure 5-7: Logical Model Mapped From ORM Schema 

Using our M O R M modeling approach, the resulting logical model essentially 

consists of two denormalized star schemas for our POS Retail Sales and Inventory 

business processes. The Sales schema is composed of a central Sales Transaction table 

linked by foreign key connections to the Store, Product, Time, and Customer dimension 

tables. At the center of the Inventory schema is a central Inventory table linked to Store, 

Product and Time. Uniqueness constraints are mapped to primary key (PK) or unique 

constraints (U) and primary keys are underlined. A mandatory role constraint is 

indicated with a bold attribute and its rules are enforced in the Data Definition Language 

(DDL) script generated for the physical database in the next step of our lifecycle process. 

94 



5.4.3. Editing the Logical Model 

After we build the data dictionary, VisioModeler allows us to edit and refine our 

logical tables, which are part of the logical model contained in our dictionary. Since 

some automatically generated names may not be ideal, we modify the resulting tables and 

map technical column and table names to more meaningful names. 

We edit our mapped logical schema using VisioModeler's EditDictionary function. 

This executes a build that opens the dictionary window as a workspace for viewing and 

refining the mapped logical schema. The Logical Tools palette and the Table/Entity 

Selector are then used to create, edit, and manage schema. 

An attractive feature of VisioModeler throughout this step is its Window option, 

which allows us to switch viewing windows between the O R M window (.IMO file), our 

dictionary/logical window (.IMD file), and the Output window containing our generation 

messages. 

5.5. S T E P 3: G e n e r a t i n g a P h y s i c a l S c h e m a 

Once we have edited and validated our logical model in the dictionary, we 

generate our physical schema in SQL Server 2000, our selected D B M S . This schema 

will serve as the underlying data warehouse for storing our relational star schema data. 

The remainder of this section briefly explains how we use VisioModeler drivers in 

conjunction with 32-bit ODBC drivers to generate a new physical database schema by 

connecting to and exchanging information with our SQL Server relational database. We 

include information about generation options, database connections, and target databases. 
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5.5.1. Schema Generation Options 

Through VisioModeler's GenerateDatabase function, we run the Generate Wizard 

(shown in Figure 5-8) to lead us through the physical schema generation process. 

?! xj 
This wizard will take youthrougKthe steps necessary to 
cieate a new database • 

File Name JC \Data\PersonaKEducalion\Th ̂  

fV ^Geneiate New Database 

fy Remember the generated database state 

You have specified to create a • he D D L script 
necessary to generate a database schema, You have also 
specified in -j»-r j"u -j i:.j\.Ur.-' v.f I M - .<.j H : \\\ i- M-<-
gei ti jttd ddtjtra.y sri jwru e1': the suu-ce '/-^.urrirr.1: 

Help ĵ 9̂RBBrfH| - NeVt*> 

Figure 5-8: Options Within VisioModeler's Generate Wizard 

Based on the logical model in the dictionary, VisioModeler provides two ways for 

us to generate our physical database schema: (1) using a D D L script or (2) directly 

through a 32-bit ODBC connection. We create our physical database by connecting 

directly to SQL Server through an ODBC connection, but we also generate a D D L script 

for reference purposes. 

5.5.2. Generating Directly Through ODBC 

Before we generate our physical schema we must complete several prerequisite 

system configuration tasks to ensure we have properly installed and configured SQL 

Server 2000. These tasks ensure we have the necessary client software and adequate 

access rights. Upon successful completion, we proceed with the SQL Server connection 

as shown in Figure 5-9. 
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71 X I 

In Ihrs step! you Will specify the VisioModeler driver to use for 
creating the new database as well as the name of the new , 
database to be generated - - / ', 

CEcK the "New1 button'to add a new data source to the f epistiy 
You need to do this m'oldei to connect to the database server. 
where you <*jant the physical schema to be created as well as 
extract from this database later **" ^ <̂  -'•>, 

Installed VisioModeler Drivers 't * 

Microsoft SQL Server 11 Setup . 

Cieate Database ' 

Data Source Name JRetailGrocery 

Database Name iRetailGioceiy 

I? Cancel < Back" 
llllta 

finish 

Figure 5-9: Associating an ODBC driver with a VisioModeler Driver 

In choosing driver and database options we first select the SQL Server driver we 

wish to use from the list of available drivers and choose the generate options for our SQL 

database. The SQL Server driver tells VisioModeler what kind of script to generate, how 

to map constraints, and how to specify advanced features for our database application. 

VisioModeler uses this information to extract a physical catalog, synchronize a logical 

schema, generate a physical schema, and alter a physical schema. 

After configuring our driver we create a data source for our Retail Grocery 

database using Windows ODBC Administrator. This data source references our SQL 

Server Grocery database and includes the data we will access as well as the information 

essential to access that data, such as the name of the database, the server on which it 

resides, and the network information. We associate the SQL VisioModeler driver with a 

32-bit ODBC driver to communicate with SQL Server then select the chosen data source. 

Upon providing a username and password in the connect dialogue box we successfully 

establish a connection to our data source, as shown in Figure 5-10. 
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A new ODBC data source will be created with the following 
configuration; • 

Microsoft SQLServer ODBC Driver Version 03 .81 .9031 ' . _ * J : 

Data Source.Name: grocery -.'.fi-'i-- •. „ * j ^ <•";'. - / '*. 
Data Sour'ce'Description - >'&/ • ; i. 
Se.ve^RPAYNER \ ' " < ^ > ,>% 
Database 'grocery '. •*"** •, „%fc • , -t,, *<i<' 

L^guage':(Defjji'l 
Translate Character Data Yes " * \ " * ' •">• 
Log Long Running Queries No • " \ ' 
Log Driver Statistics: No • -
Use.lntegrated Security: Yes . ., ; 
Use Regional Settings: No 
Prepared Statements Option: Drop temporary procedures on ; 

UseANSI'QuotedIdentifiers: Yes .. ;1*>i- . 
Use ANSI Null. Paddmgs and Warnings Yes, * • ' * ' 
DataEric'ryption'No • J i j f i - j i '•" 4 , 

!.- -j-is/[est Data'source... il- ''••}&'.'[•. OK •[••• Cancel I' 

Figure 5-10: ODBC Data Source Definition 

After successfully connecting to our SQL Server data source, our final task before 

schema generation is previewing the tables VisioModeler will add to our physical 

database (see Figure 5-11). After reviewing these for accuracy, we proceed with the 

generation process and create our physical Grocery tables in SQL Server. 

Figure 5-11: Table Preview in VisioModeler Generate Wizard 
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5.5.3. Generating a DDL Script 

For reference purposes, we also instruct VisioModeler to generate a data 

definition language script based on the logical model in its dictionary file. This script can 

be used to create, modify, and delete our database and its tables, columns, rules, and 

indexes. We can save the D D L script as a text file to review, modify, and run from our 

SQL Server DBMS i f desired. A snapshot of the generated D D L file is shown in Figure 

5-12. 

| He Ed* Format Help 

- inl xj 

/ - T h i s SQL DDL s c r i p t w a s g e n e r a t e d by V i s i o M o d e l e r 3 .1 ( R e l e a s e Date 

/<• D r i v e r Used : V i s i o M o d e l e r 3 .1 - M i c r o s o f t SQL S e r v e r D r i v e r . 
' / * Document : c : \ D a t a \ P e r s o n a l \ E d u c a t i o n \ T h e s i s - l l \ w i P \ G r a p h i c s \ F i n a 
/« • T ime c r e a t e d : J u l y 27 , 2003 1 0 : 0 3 PM. ,. 
\ /« u s e r A c t i o n : From V i s i o M o d e l e r G e n e r a t e w i z a r d . 
] / " c o n n e c t e d Data s o u r c e : g r o c e r y 
I/* c o n n e c t e d s e r v e r : RPAYNER 
/ " c o n n e c t e d D a t a b a s e : g r o c e r y •: 

! / * c r e a t e g r o c e r y d a t a b a s e , 
use mas te r 

go : 

c r e a t e d a t a b a s e g r o c e r y 

go 

Figure 5-12: DDL Script Generated by VisioModeler 

5.6. S T E P 4: B u i l d i n g a n O L A P C u b e 

Having created relational tables to house our multidimensional data in SQL 

Server, we now complete the last step of our multidimensional lifecycle. In this step we 

build an OLAP cube from the physical schema to store our data in Decision Support 

System (DSS) format. Our O L A P cube will allow us to analyze the data as originally 

described using the modeling constructs of our M O R M conceptual model. 

The remainder of this section guides us through the process of creating and using 

the cube to analyze data from our Grocery example. We briefly outline operations 
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necessary for setting up data connections, designing cube structure, processing cubes and 

finally analyzing cube data with SQL Server Analysis Manager. 

5.6.1. Setting up the Database & Data Source 

Before building the cube, our initial steps include setting connections to the 

source of our data in ODBC Data Source Administrator. Using Analysis Manager, an 

Analysis Services program that manages OLAP objects and data, we then create a new 

Retail Grocery database object (shown in Figure 5-13) to hold data sources, cubes, and 

shared dimensions together. 

" " ~ ~ ' ' -ism 7- Consule Kuol .Analysis Sei vers' KPATMF" I • l<nl I 

Tree 

lr.I Console Root 
E £D Analysis Servers 

H"f£) RPAYNER 
m-M FoodMart 2000 
B-0 Ret*! Grocery; 

•••{111 Data Sources 
! -̂ p Retail Grocery 

! • £ ) Cubes j—ft Shared Dimensions 
P-1-(ill Mining Models 
S H S Database Roles 

•mm 

Database: Retail Grocery 
Descr ipt ion: 

Disk s p a c e : 

Figure 5-13: Analysis Services Database Object 

With the database object defined we establish a data source in Analysis Manager 

that connects our Grocery database to the system data source name previously created. 

This allows us to access all data from this source as we build our cube. 
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5.6.2. Building the Cube 

Analysis Manager's Cube Wizard is used to build our cube by defining its 

measures and dimensions. We fist define the source of our measures through the Wizard 

by selecting our Sales Transaction event table from our data source. Measures are then 

defined for our cube by selecting the price, cost, profit, and quantity numeric columns. 

We begin building dimensions by first creating the Time dimension. To do this 

we create a new dimension in the wizard and define hierarchy levels by selecting year, 

quarter, and month. We then designate this dimension as shared so we may access it in 

other cubes in our implementation. Product, Customer, and Store dimensions are then 

created in a similar fashion. Upon creating event measures and related dimensions, we 

confirm the design of the cube through the Cube Editor (shown in Figure 5-14), which 

contains our POS Retail Sales cube structure. 

Q t y I J Jnce 
; g Calculated Members I . | ^ 

® J Calculated Cels \ | fflS?? ] j yy 

store 
stree 
cltyr\ 
stat! 
post*. 
countryName 

-j customerKey 
lastName 
f'rstName 
1 streetAddress 

prcduttKey 
brandName 
productName 
sfai 
srp 
productType 
productFamily 
productGroup 
flavour 
sugarFree 
sparkling 
percentage 
perpTime 
'volume 

- i 

~ < cityName 
( stateld 

; countryName 
mantafStatus 

T gender 

Figure 5-14: Analysis Services Cube Editor 
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5.6.3. Designing Storage and Processing the Cube 

With the structure of our Retail Sales cube designed, our next steps are to design 

storage options for the data and aggregations of our cube, then populate it with data. 

Shown in Figure 5-15, we use the Design Storage Wizard to designate M O L A P for our 

storage mode, create the aggregation design for the Sales cube, and then process the cube. 

Storage JJMign̂ Wiz 

• i* r~, • T r i o - - " i ' 

J f l » 

1 .-a,t 

Aggregations ar* pr̂ ralttibterf summaries of rfara that 
make qtierytag 3 cube faster, 

< *• Aggregation options * , 

'< ' ^ Estimated storage readies j 10 |r*i ~ • 

< C< Performance gam reacris j ' 

UntJI rick Stop I t t < t!/'t * 12 16 20 

215 aggregations desgred(16 3Mfl, 100%) 

Figure 5-15: Cube Processing Using the Design Wizard 

Processing the cube loads our Grocery data and calculates summary values. 

These pre-calculated summaries of data will greatly improve the efficiency and response 

time of queries. The results of our cube processing are shown in Figure 5-16. 
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Figure 5-16: Final Cube Processing Results 
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5.6.4. Browsing Cube Data 

With our cube processed, we can analyze data in many different ways. Using the 

Cube Browser we can perform various OLAP operations, including filtering the amount 

of dimension data, drilling down to see greater detail, and drilling up to see less. Figure 

5-17 illustrates filtering by Time where data is filtered to for a particular quarter. Figure 

5-18 depicts drill-down in which we expand the Drink group to include its families. 
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Figure 5-17: Filtering Example Within the Cube Browser 
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Figure 5-18: Drill Down Example Within the Cube Browser 
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5.7. A n E v a l u a t i o n o f O u r C a s e S t u d y 

Through a case study implementation, we have illustrated how our conceptual 

fact-oriented approach simplifies conceptual design when modeling data warehouses. The 

implementation of our model allowed us to put into practice the ideas proposed by our 

conceptual modeling approach. Appendix C summarizes the implementation results from 

our case study. Included in the Appendix are details per multidimensional requirement 

for the four stages of our implementation - conceptual, logical, physical, and OLAP. 

While we were able to implement our three newly introduced M O R M constructs 

with relative ease, we conclude the generation process from a conceptual model to an 

OLAP tool is not immediate for all multidimensional concepts. This is mainly because 

certain multidimensional constructs in our conceptual model are implemented differently, 

or not at all, in our O L A P tool. As Hahn, Sapia, and Blaschka have found (2000), there 

are several mismatches between the data models of commercial O L A P tools and 

conceptual graphical modeling notations. Specifically, tools do not often provide 

sufficient native constructs to represent each element of a graphical notation. This 

implies that the generation process must perform a mapping between the semantics of the 

graphical notation and the tool configuration, most often with a loss of semantics. 

Commercial O L A P products provide their own methods of assessing 

multidimensional semantics and concepts. In addition to database structures, OLAP tools 

implement underlying metadata that provide key multidimensional semantics (e.g. 

measures and dimensions). For proprietary reasons, each tool may implement these 

semantics and properties differently. Ideally, proper multidimensional design uses a 

conceptual approach totally independent of implementation concerns, allowing the direct 

generation into commercial OLAP tools. 
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Several expressiveness differences between our conceptual model and our 

Analysis Services OLAP tool proved to be our greatest implementation challenge. 

Specifically, several concepts used in our conceptual design lacked a corresponding 

Analysis Services representation. In most cases, however, we managed to find 

transformations that preserve a large part of the original model semantics and our results 

show that a generation process is generally feasible and useful. We note the following 

three areas where our OLAP tool did not have a corresponding multidimensional 

representation and a transformation was required during our implementation. 

5.7.1. Hierarchies: Multiple, Alternative Path, and Shared 

Multiple, alternative path, and shared hierarchies are not directly supported in 

Analysis Services but we are able to indirectly implement them and address our 

multidimensional requirements while preserving as much of the original semantics as 

possible. 

For all three hierarchy types, the logical and physical models implement them as 

table columns and the hierarchy levels are implicit in the flat table design. In the OLAP 

tool, multiple path hierarchies are defined as two or more dimensions with names that 

share the same dimension prefix but have different suffixes (e.g. Time.Calendar and 

Time.Season). Two hierarchies must also be defined for alternative path hierarchies 

since our tool can only handle dimensions with a tree structure (i.e. different hierarchies 

cannot merge in an endpoint). In this case we have to duplicate the dimension beginning 

at the merging point. As for shared hierarchies, two or more separate dimensions are also 

implemented starting at the dimension level where the merging occurs. The underlying 

dimension tables as well as any aggregations are shared in all cases. 
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5.7.2. Non-Strictness 

Non-strictness is not supported in our case study. While we have proposed an 

approach to model this property at the conceptual level using a many-to-many uniqueness 

constraint (see section 4.4.3.2), our chosen OLAP tool does not provide adequate 

aggregation support for such hierarchies. Considering the lack of OLAP support and our 

adherence to a simple star schema design, we require all hierarchies to be strict in our 

implementation. As such, non-strict hierarchies must be converted to strict hierarchies i f 

aggregations are applicable. Given the lack of support for non-strictness in the OLAP 

market, we provide additional background supporting this aspect of our case study. 

In a non-strict hierarchy there are many-to-many relationships between the 

different levels in a dimension where a lower-level item can be a member of several 

items at a higher-level (e.g. a sales region may cross several states and a state may be in 

several sales regions). Traditionally, OLAP tools only permit strict hierarchies where 

every lower-level item belongs to a single higher-level item. Such is the case with 

Analysis Services, which explicitly requires strict hierarchies and does not address the 

issue of correct aggregation for non-strict hierarchies. 

As such, we only permit strict hierarchies in our implementation. Our underlying 

assumption is that adherence to the simple star schema design requires dimension 

hierarchies to be strict. Our argument is consistent with that of Lenz and Shoshani (1997) 

who argue that the premise underlying the applicability of aggregation is 

summarizability, which essentially means lower-level results can be directly combined 

into higher-level results. For this to be true, one lower-level dimension value must map 

to exactly one higher-level value. Having irregular, many-to-many dimension levels 

violates this characteristic of OLAP data. 
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In reviewing the literature, only one technique was found that addresses the issue 

of summarizability in non-strict hierarchies. Pedersen, Jensen, and Dyreson (1999) 

present a technique and associated algorithm for achieving summarizability by adding 

dummy values and "fusing" sets of parents together. The basic idea of this technique is 

to combine a set of parent values into one "fused" value, link the child value to this new 

value, then insert the fused values into a new category between the child and parent 

categories. These transformations require major restructuring of the hierarchy and violate 

our pure star schema design principle. The complexity of this technique defeats the 

benefits of our approach, possibly leading to incorrect results during aggregation through 

double counting. If summarizability is relevant, users should be able to analyze the data 

and obtain correct results without having to worry about such double counting. 

5.7.3. Many-to-Many Relationships Between Events and Dimensions 

We give this topic considerable attention since having many-to-many 

relationships between a dimension and an event causes several difficult issues during 

multidimensional implementation. These issues include losing the standard star schema 

structure, increasing the complexity of query formation and degrading query performance 

by adding joins (Song, Rowan, Medsker, & Ewen, 2001). Therefore, it is desirable to 

handle these many-to-many relationships while keeping the structure of the star schema. 

Song et al. (2001) investigate several methods of handling many-to-many 

relationships and discuss the relative advantages and disadvantages of each. A key 

argument of theirs is that to maintain the star schema structure, relationships between 

events and dimensions should be made many-to-one and events should be mapped to the 
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lowest categories in the dimensions. We follow this solution approach in which we lower 

the grain of the Sales event to the lowest dimension grain level (i.e. product). 

To illustrate, while it is possible for our Sales event to be at the ticket grain (i.e. 

have multiple products per sale), we lower the grain of the event to the line item level so 

there are multiple records (i.e. multiple line items) relating to that specific event. This 

ensures we now have a many-to-one relationship between Sale and Product. Figure 5-19 

illustrates how we have achieved this at the conceptual level. 

Figure 5-19: Modeling Many-to-Many Relationships 

The external uniqueness constraint (circled "p") on the Store, Customer, Product, 

and Time dimensions indicates each transaction occurs for at most one Store, Customer, 

Product, Time. Thus, the combination of Product, Store, Customer and Time is unique 

for each Sales Transaction. The "p" indicates this combination is the primary indicator 

for each event. As indicated by the additional uniqueness constraint (circled "u") on 
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Ticket and Product, the combination of ticket number and Product is also unique. This 

means one ticket can relate to more than one Product and indicates the many-to-many 

relationship between ticket and product. 

We also include the constraint {DD} to identify ticket as a degenerate dimension 

of the event. We do this to ultimately generate an OLAP ticket dimension so we can 

group line items and determine the ticket total. In the OLAP tool the ticket becomes a 

dimension with only one hierarchy level, allowing us to group multiple measures per 

ticket. Using this approach the conventional star schema is retained, providing a clear 

logical view of the business process and allowing implementation in our OLAP tool. 

5.8. S u m m a r y 

In this chapter we tested the practicality and usability of our work by applying our 

conceptual multidimensional modeling approach to a case study to solve a data analysis 

problem. Using our M O R M guidelines, we developed a conceptual model and mapped it 

to a logical schema in VisioModeler. From the VisioModeler models we generated a 

physical star schema in Microsoft SQL Server 2000 and subsequently built an OLAP 

cube in SQL Server 2000 Analysis Services. Largely due to maturity, functionality, and 

availability, we chose VisioModeler for conceptual and logical modeling, while 

Microsoft SQL Server and Analysis Services were our choices for physical and OLAP 

implementation. In spite of some cube generation limitations with our chosen OLAP 

tool, the implementation demonstrated that our approach naturally and expressively 

models the main structural properties of multidimensional data at the conceptual level 

and serves as the basis for subsequent design phases. 
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6 . C O N C L U S I O N S & F U T U R E R E S E A R C H 

6.1. Thesis Summary 

The primary focus of this thesis has been the development of a fact-oriented 

approach to modeling the structural properties of multidimensional data at the conceptual 

level. Our main objective was to provide a natural, simple, and expressive modeling 

approach to address the fundamental deficiencies of existing multidimensional models. 

We have accomplished our objective through an exploration of multidimensional 

concepts and the development of a modeling approach that simplifies multidimensional 

design by using natural language, intuitive diagrams and example data populations. 

To better understand the functionality of data warehouses and OLAP applications 

we have provided an overview of their logical and physical architectures and the main 

processes associated with their use. Our overview described data source, data storage, 

application, and presentation layers and discussed how physical OLAP architectures map 

onto these layers in several ways. We also discussed data staging services that get data 

into the data warehouse and query services which focus on getting data out. Our 

overview highlighted the differences between data warehouses and traditional OLTP 

applications and, due to the significant differences in underlying data structures, we 

concluded different conceptual modeling techniques are required for data warehouses. 

Our attention then turned to understanding data modeling techniques and we 

examined basic data modeling concepts by looking at conceptual, logical, and physical 

information levels. We emphasized the importance of data modeling at the conceptual 

level and provided an overview of several conventional data modeling approaches with a 

specific focus on ER, U M L and O R M . To better understand multidimensional data and 
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its semantic differences we presented the properties of multidimensional data through an 

example. Using the analysis requirements demonstrated with a sample Grocery chain we 

revealed a set of multidimensional concepts that included events, dimensions, measures, 

additivity, derived measures, classification hierarchies, strictness, completeness and the 

categorization of dimensions. To understand how existing models address 

multidimensional concepts we reviewed the current state of multidimensional modeling 

literature. We briefly reviewed logical, physical, and formal works, but our main focus 

was on models attempting to express semantics at the conceptual level. Based on our 

review we concluded that a natural and complete conceptual design technique does not 

exist that adequately conceptualizes and clearly communicates multidimensional designs 

to both business and technical users. In addition, existing works presented few design 

guidelines to ensure their approaches are properly and easily applied. 

The fundamental deficiencies and shortcomings of existing techniques in 

formulating, transforming and evolving a conceptual model provides motivation for our 

work. Inspired by O R M , we introduced our fact-oriented M O R M approach as a 

specialization of O R M by defining additional graphical constructs and guidelines to 

consider the unique characteristics of multidimensional data. To support the semantics 

inherent in multidimensional data we introduced three M O R M constructs - the Event 

Object Type, the Dimension Entity Type, and the Hierarchy Object Type. These 

constructs represent the events, dimensions, and classification hierarchies we are 

interested in analyzing. Using our Grocery example, we demonstrated how our approach 

models each of the multidimensional requirements previously revealed. We have 

supplemented our M O R M model with several key design guidelines to guide data 
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modelers in using our method to develop multidimensional models. Our guidelines 

provide various levels of abstraction and simplify conceptual design by distinguishing 

five design levels; preliminary segmentation, business process family definition, business 

process definition, event definition, and dimension definition. 

We have tested the practicality and usability of our approach by applying it to a 

case study to solve a data analysis problem. Using our Grocery example, we have 

demonstrated that our approach can be easily implemented using existing technologies. 

We chose VisioModeler for conceptual and logical modeling, while Microsoft SQL 

Server and its OLAP component Analysis Services were our choices for physical and 

OLAP cube implementation. Using our M O R M guidelines, we have developed a 

conceptual model and mapped it to a logical schema in VisioModeler. From the mapped 

logical model we generated a physical star schema in Microsoft SQL Server 2000, and 

subsequently built an OLAP cube in Analysis Services that allowed us to analyze 

Grocery data as described in our original M O R M model. In spite of some cube 

generation limitations with our chosen O L A P tool, the implementation demonstrated the 

practicality of our approach as the basis for subsequent.data design phases. 

6 .2 . C o n t r i b u t i o n s 

To the best of our knowledge, we have presented the first fact-oriented approach 

to conceptual multidimensional modeling. We believe leveraging the fact-oriented 

paradigm provides us with a conceptual multidimensional model that is more natural and 

expressive than existing multidimensional models. As such, M O R M provides a solid 

basis for solving conceptual multidimensional modeling problems with a more natural 

and expressive conceptual model than existing approaches. Examining multidimensional 
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data in terms of elementary facts provides a truly conceptual approach and simplifies the 

analysis and design process by using natural language, intuitive diagrams, and real-world 

data examples. We believe our fact-oriented approach will help designers capture and 

satisfy complex modeling requirements, help business users better understand the 

structure and navigation paths of the data warehouse, and facilitate communication 

between business users and data modelers. 

Another major contribution of our work stems from our use of a widely accepted 

modeling technique. By specializing O R M , we minimize the effort required of data 

modelers to learn a new modeling notation for multidimensional data. Our approach 

requires a shallow learning curve since data modelers can combine M O R M elements with 

classical O R M elements and, although the approaches will be different, data models for 

OLTP and OLAP applications can be specified using a uniform notation. 

Another of our contributions is the provision of design guidelines to construct 

multidimensional models using our approach. We believe these guidelines reflect the 

natural way users and data modelers think about multidimensional data and lead to a 

simple yet powerful multidimensional model. Whereas other approaches use flat design, 

our guidelines produce multilevel subschemas that group different levels of abstraction 

and ultimately simplify the conceptual design of large data warehouses. 

Finally, we have successfully demonstrated that our approach can be implemented 

using existing data modeling tools and database technologies. Through a case study, we 

have developed a conceptual model and mapped it to a logical schema in VisioModeler, a 

well-known data modeling tool. We have generated a physical star schema in Microsoft 

SQL Server 2000 and subsequently built an O L A P cube in SQL Server 2000 Analysis 
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Services. By putting all ideas developed throughout this thesis into practice, we have 

proven that our approach suggests a new way of modeling multidimensional data. 

6.3. L i m i t a t i o n s a n d F u t u r e R e s e a r c h 

While we were able to easily implement conceptual, logical and physical schemas 

using our approach, the OLAP cube generation process was not immediate and further 

work in this area is encouraged. In future it would be beneficial to investigate a 

generation process that automatically transforms semantics at the conceptual into a 

generic OLAP model compatible with the majority of commercial O L A P tools. The 

challenges in this area are due to the fact that complex multidimensional constructs in 

conceptual models are not supported or are implemented inconsistently in O L A P tools. 

While our approach was successfully tested using a case study and several real 

world implementations, the limited number of examples limits our work. To further 

examine the practicality of our approach and demonstrate its benefits, other case studies 

should be carried out using data from different industries. As part of this investigation, it 

would be particularly useful to examine complex data in which there are no natural 

numeric measurements associated with events and non-numeric measures must be used. 

It would also be beneficial to investigate an extension of our model to represent 

the dynamic properties of data warehouses and OLAP applications. These dynamic 

aspects could include the definition of initial user requirements and subsequent O L A P 

operations (e.g. roll-up, drill-down, slice-dice, pivoting) for further analyzing data. 

While we have provided high-level design guidelines, future work can also build 

on these guidelines to develop a complete multidimensional design methodology. Based 

on the M O R M model introduced, a methodology could include a complete process that 
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explicitly considers all the underlying design guidelines hidden in our approach. As part 

of this methodology, specific rules could be developed for first identifying business 

process families and business processes, then subsequently deriving dimensions and 

events from them. 

115 



B I B L I O G R A P H Y 

Abello, A. , Samos, J., & Saltor, F. (2001). A framework for the classification and 
description of multidimensional data models. Proceedings of the 12th 

International Conference on Database and Expert Systems Applications (DEXA), 
668-677. 

Agrawal, A. , Gupta, A. , & Sarawagi, S. (1997). Modeling multidimensional databases. 
Proceedings of the 13th International Conference on Data Engineering (ICDE), 
232-243. 

Barker, R. (1990). CASE*Method: Tasks and deliverables. Wokingham, England: 
Addison Wesley. 

Batani, C , Ceri, S., & Navathe, S. (1992). Conceptual database design: An entity 
relationship approach. Redwood City, C A : Benjamin Cummings. 

Batra, D., Hoffer, J. & Bostrom, R. (1990). Comparing representations with relational 
and EER models. Communications of the ACM, 33(2), 126-139. 

Becker, Scot A . (2000). Arguments against the use of O R M (and their rebuttals). Journal 
of Conceptual Modeling. http://www.inconcept.com/JCM/June2000/becker.html 

Bemus, P., Mertins, K. , & Schmidt, G. (Eds.). (1998). Handbook on architectures of 
information systems. Berlin: Springer-Verlag 

Blaschka, M . , Sapia, C , Hofling, G., & Dinter, B. (1998). Finding your way through 
multidimensional data models. Proceedings of the 9th International Conference 
on Database and Expert Systems Applications (DEXA '98), 198-203. 

Boehnlein, M . , & Ulbriche-vom Ende, A . (1999). Deriving initial data warehouse 
structures from the conceptual data models of the underlying operational 
information systems. Proceedings of the 2nd International Workshop on Data 
Warehousing and OLAP (DOLAP '99), 15-21. 

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user 
guide. Reading, M A : Addison-Wesley. 

Bulos, D. (1996). OLAP database design: A new dimension. Database Programming and 
Design, 9(6), 32-37. 

Cabibbo, L., & Torlone, R. (1999). A framework for the investigation of aggregate 
functions in database queries. Proceedings of the 7th International Conference on 
Database Theory (ICDT-99), 383-397. 

116 

http://www.inconcept.com/JCM/June2000/becker.html


Chan, C , & Ioannidis, Y . (1998). Bitmap index design and evaluation. Proceedings of 
ACM SIGMOD International Conference on Management of Data (SIGMOD 
•98), 355-366. 

Chaudhuri, S., & Dayal, U . (1997). An overview of data warehousing and OLAP 
technology." ACM SIGMOD Record, 26(1), 65-1A. 

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM 
Transactions on Database Systems, 1(1), 9-36. 

Codd, E., (1970). A relational model of data for large shared data banks. Communications 
of the ACM, 13(6), 377-387. 

Data Warehousing Institute. (2000). Data warehousing: what works? (9). The Data 
Warehousing Institute. 

Dyreson, C. (1996). Information retrieval from an incomplete data cube. Proceedings of 
the 22nd International Conference On Very Large Databases (VLDB'96), 532-
543. 

Elmasri, R., & Navathe, S. (1994). Fundamentals of database systems (2nd ed.). Menlo 
Park, C A : Benjamin Cummings. 

Finkelstein, C. (1989). Introduction to information engineering. Reading, M A : Wesley 

Gingras, F., & Lakshmanan, L. (1998). nD-SQL: A multi-dimensional language for 
interoperability and OLAP. Proceedings of the 24th International Conference On 
Very Large Databases (VLDB'98), 134-145. 

Golfarelli, M . , Maio, D., & Rizzi, S. (1998a). Conceptual design of data warehouses from 
E/R schemes. Proceedings of the 31st Hawaii International Conference on System 
Sciences, 334-343. 

Golfarelli, M . , Maio, D., & Rizzi, S. (1998b). The dimensional fact model: A conceptual 
model for data warehouses. International Journal of Cooperative Information 
Systems, 7(2-3), 215-247. 

Hahn, K. , Sapia, C , & Blaschka, M . (2000). Automatically generating OLAP schemata 
from conceptual graphical models. Proceedings of the 3rd ACM International 
Workshop on Data Warehousing and OLAP, 9-16. 

Halpin, T. (1995). Conceptual schema and relational database design (2nd ed.). Sydney: 
Prentice Hall. 

Halpin, T., & Bloesch, A . (1999). Data modeling in U M L and O R M : A comparison. 
Journal of Database Management, 10(4), 4-13. 

117 



Halpin, T. (2001). Information modeling and relational databases: From conceptual 
analysis to logical design. San Francisco: Morgan Kaufmann. 

Hay, D. (1999). Object orientation and information engineering: U M L . The Data 
Administration Newsletter, (9). http://www.tdan.com 

Inmon, W. (1996). Building the data warehouse. New York: John Wiley & Sons. 

Kimball, R. (1996). The data warehouse toolkit: Practical techniques for building 
dimensional data warehouses. New York: John Wiley & Sons 

Kimball, R. (1997). A dimensional modeling manifesto. DBMS and Internet Systems, 
http://www.dbmsmag.com. 

Kimball, R., Reeves, L., Ross, M . , & Thornthwaite, W. (1998). The data warehouse 
lifecycle toolkit. New York: John Wiley & Sons 

Kimball, R., & Ross, M . (2002). The data warehouse toolkit: The complete guide to 
dimensional modeling (2nd ed.). New York: John Wiley & Sons 

Lenz, H. , & Shoshani, A. , (1997). Summarizability in OLAP and statistical databases. 
Proceedings of the 9th International Conference on Scientific and Statistical 
Databases, 39-48. 

Microstrategy, Inc. (1995). The case for relational OLAP. http://www.strategy.com 

Martin, J. (1990). Information engineering. Englewood Cliffs: Prentice Hall. 

NIST. (1993). Integration definition for information modeling (IDEF1X). FIPS 
Publication 184. National Institute of Standards and Technology. 

Pedersen, T., & Jensen, C. (1999). Multidimensional data modeling for complex data. 
Proceedings of the 15th IEEE International Conference on Data Engineering 
(ICDE'99), 336-345. 

Pedersen, T., Jensen, C , & Dyreson, C. (1999). Extending practical pre-aggregation for 
on-line analytical processing. Proceedings of the 25th International Conference on 
Very Large Databases (VLDB'99), 663-674. 

Raden, N . (1995). Modeling a data warehouse, http://www.archerdecision.com/artic3.htm. 

Ritson, P., & Halpin, T. (1993). Mapping integrity constraints to a relational schema. 
Proceedings of the 4th Australian Conference on Information Systems (ACIS'93), 
381-400. 

Sapia, C , Blaschka, M . , Hofling, G., & Dinter, B. (1998). Extending the ER model for 
the multidimensional paradigm, Proceedings of the Is' International Workshop on 
Data Warehouse and Data Mining (DWDM'98), 105-116. 

118 

http://www.tdan.com
http://www.dbmsmag.com
http://www.strategy.com
http://www.archerdecision.com/artic3.htm


Song, I., Rowan, W., Medsker, C , & Ewen, E. (2001). An analysis of many-to-many 
relationships between fact and dimension tables in dimensional modeling. 
Proceedings of the 3rd International Workshop on Design and Management of 
Data Warehouses (DMDW'01), 6.1-6.13. 

Teorey, T., Yang, D., & Fry, J. (1986). A logical design methodology for relational 
databases using the extended entity-relationship model. Computing Surveys, 
18(2), 197-222. 

Theodoratos, D., & Sellis, T. (1999). Dynamic data warehouse design. Proceedings of 
the 1st International Conference on Data Warehousing and Knowledge Discovery, 
(DaWaK'99), 1-10. 

Trujillo, J., Palomar, M . , & Gomez, J. (2000). Applying object-oriented conceptual 
modeling techniques to the design of multidimensional databases and O L A P 
applications. Proceedings of the 1st International Conference on Web-Age 
Information Management (WAIM 00), 83-94. 

Tryfona, N . , Busborg, F., & Christiansen, J. (1999). starER: A conceptual model for data 
warehouse design. Proceedings of the 2nd International Workshop on Data 
Warehousing and OLAP (DOLAP'99), 3-8. 

Widom, J. (1995). Research problems in data warehousing. Proceedings of the 4th 

International Conference in Information and Knowledge Management 
(CIKM'95), 25-30. 

Wu, M . , & Buchmann, A . (1997). Research issues in data warehousing. Proceedings of 
the 7th German Conference on Datenbanksysteme in Buro, Technik und 
Wissenschaft (BTW'97), 61-82. 

119 



A P P E N D I X A : O R M C O N S T R U C T S 

This appendix summarizes ORM's main constructs as described in chapter 4 of 

Bernus, Mertins, & Schmidt (1998). Shown in Figure A - l , constructs are labeled with a 

number and further described in Table A - l . 
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°/r °it °ac 
°as °ms °sym 

22 23 

Figure A-1: Graphical Notation of ORM Constructs 

Construct Description 
I Entity Type Tangible or abstract object that is identified by a definite description (e.g. 

the student with studentID 25899). Descriptions typically indicate the 
entity (e.g. student), a value (e.g. 25899) and a reference mode (e.g. 
studentID). 

2 Value Type Denotes a lexical object type (e.g. a character string or number) that is 
identified by constants (e.g. David R. Williams, 25899). Another notation 
for value types encloses the value type name in parentheses. 

3 Duplicate Object 
Type 

Object types that appear more than once in the schema may be tagged with 
an arrow tip that "points" to the existence of another occurrence. 

4 Reference Mode Each entity type must have at least one reference scheme that indicates how 
each instance of the entity type may be mapped via predicates to a 
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# , Construct Description , » 
combination of one or more values. Reference schemes are abbreviated by 
displaying the reference mode in parentheses beside the name of the entity 
type. The reference mode indicates how values relate to the entities. 

5 Numeric Value A plus sign "+" may be added i f values are numeric 
6 Independent Entity 

Type 
Means instances of that type may exist without participating in any facts. 

7 Predicate Depicts a ternary predicate comprised of three roles. Each role is depicted 
as a box, and must be played by exactly one object type. Roles are 
connected to their players by a line segment. 

8 Internal Uniqueness 
Constraints 

Arrow tipped bars placed over one or more roles in a predicate declare that 
instances for that role (combination) in the relationship type population 
must be unique. 

9 Primary Uniqueness 
Constraints 

A predicate may have one or more uniqueness constraints, at most one of 
which may be declared primary by adding a "P". 

10 External Uniqueness 
Constraint 

A circled "u" may be applied to two or more roles from different predicates 
by connecting to them with dotted lines. Instances of the combination of 
those roles in the join of those predicates are unique. 

11 Primary External 
Uniqueness 
Constraint 

To declare an external uniqueness constraint primary, use "P" instead of 
"u". 

12 Objectified 
Predicates 

If we wish to talk about a relationship type we may objectify it (i.e. make 
an object out of it) so that it can play roles. Graphically, the objectified 
predicate is enclosed in a rounded rectangle. 

13 Mandatory Role 
Constraint 

Declares that every instance in the population of the role's object type must 
play that role. 

14 Disjunctive 
Mandatory 
Constraint 

Applied to two or more roles to indicate that all instances of the object type 
population must play at least one of those roles. This may often be shown 
by connecting the roles to a black dot on the object type 

15 Disjunctive 
Mandatory 
Constraint 

Another way to indicate all instances of the object type population must 
play at least one of those roles, here by connecting the roles by dotted lines 
to a circled black dot. 

16 Value Constraints To restrict an object type's population to a given list, the relevant values 
may be listed in braces. If the values are ordered, a range may be declared 
separating the first and last values by 

17 Subset Constraint A dotted arrow from one role sequence to another is a subset constraint, 
restricting the population of the first sequence to be a subset of the second. 

18 Equality Constraint A double-tipped arrow is an equality constraint, indicating the populations 
must be equal. 

19 Exclusion 
Constraint 

A circled " X " is an exclusion constraint, indicating the populations are 
mutually exclusive. Exclusion constraints may be applied between two or 
more sequences. 

20 Subtype A solid arrow from one object type to another indicates that the first object 
type is a (proper) subtype of the other. 

21 Frequency 
Constraint 

Applied to a sequence of one or more roles, these indicate that instances 
that play those roles must do so exactly n times, between n and m times, or 
at least n times. 

22 Ring Constraint May be applied to a pair of roles played by the same host type. These 
indicate that the binary relation formed by the role population must be 
irreflexive (ir), intransitive (it), acyclic (ac), asymmetric (as), 
antisymmetric (ans) or symmetric (sym). 

23 Derivable Fact Type A n asterisk "*", placed beside a fact type indicates it is derivable from 
other fact types. 

Table A-1: ORM Constructs and Associated Descriptions 
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Figure B-3: MORM Level 2 - Inventory Business Process 

y Quantity+ J r 

was priced at 

cost 

< > 
L 

has profit of • 

SALES 

TRANSACTION 

sold 

** {profit = price - cost} 

define Sales Transaction has profit of MoneyAmt as 
Sales Transaction was priced at MoneyAmtl, an 
Sales Transaction cost MoneyAmt2, and 
MoneyAmt = MoneyAmtl - MoneyAmt2 

Figure B-4: MORM Level 3 - Sales Transaction Event 

123 



Figure B-5: MORM Level 3 - Inventory Event 

Figure B-6: MORM Level 4 - Store Dimension 
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Figure B-9: MORM Level 4 - Time Dimension 
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