
MORM: A FACT-ORIENTED CONCEPTUAL MODELING APPROACH
TO DESIGNING

DATA WAREHOUSES AND OLAP APPLICATIONS

by

ROBERT R. PAYNE

B.Comm. (Co-op), Memorial University of Newfoundland, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Faculty of Commerce and Business Administration)

We accept this thesis as conforming
to the required, standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 2003

© Robert R. Payne, 2003

Library Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the

head of my department or by his or her representatives. It is understood that

copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

Robert Payne 10/12/03
Name of Author (please print) Date

Title of Thesis: MORM: A Fact-Oriented Conceptual Modeling Approach

to Designing Data Warehouses and OLAP Applications

Degree: MSCB Year: 2004

A B S T R A C T

The interest in data warehouses and OLAP applications in recent years is largely

due to the promise of improved decision-making made possible by integrating data from

numerous different sources. The underlying data structures required to support the

analytical requirements of these systems clearly justifies the need for a distinct data

modeling approach, particularly at the conceptual level. As a direct response to the

inability of conventional data modeling methods to represent multidimensional

semantics, multidimensional modeling has emerged and brought with it a variety of new

multidimensional concepts. Several models have been proposed to represent these

concepts, but a complete and natural approach does not exist that adequately

conceptualizes and communicates multidimensional designs to business and technical

users alike. To address the fundamental deficiencies and shortcomings of existing

models, we propose a fact-oriented approach to conceptual multidimensional modeling.

Our approach is a specialization of Object Role Modeling in which we define additional

constructs and guidelines to consider multidimensional properties at the conceptual level.

We believe our utilization of the fact-oriented paradigm provides us with a conceptual

multidimensional model that is more natural and simpler than existing models. To

demonstrate its practicality, we apply our approach to a case study and demonstrate how

our model can be implemented using existing technologies.

ii

T A B L E O F C O N T E N T S

A B S T R A C T i i

T A B L E OF CONTENTS ii i

LIST OF T A B L E S vi

LIST OF FIGURES vii

A C K N O W L E D G E M E N T S ix

1. INTRODUCTION . 1
1.1. M O T I V A T I O N 2

1.2. O B J E C T I V E S 3

1.3. O U T L I N E 4

2. INTRODUCTION TO D A T A WAREHOUSING 5
2.1. I N T R O D U C T I O N 5

2.2. D A T A W A R E H O U S I N G O V E R V I E W 5

2.3. L O G I C A L A R C H I T E C T U R E 6

2.3.1. Data Source Layer 6
2.3.2. Data Storage Layer 7
2.3.3. Application Layer 7
2.3.4. Presentation Layer 8

2.4. P H Y S I C A L A R C H I T E C T U R E 8

2.4.1. Relational OLAP Architecture 8
2.4.2. Multidimensional OLAP Architecture 9

2.5. F U N D A M E N T A L D A T A W A R E H O U S E P R O C E S S E S 10

2.5.1. Data Staging Services 11
2.5.2. Query Services 12

2.6. S U M M A R Y 13

3. MODELING THE D A T A WAREHOUSE 14
3.1. I N T R O D U C T I O N 14

3.2. I N F O R M A T I O N L E V E L S 14

3.2.1. Conceptual Model 16
3.2.2. Logical Model 17
3.2.3. Physical Model 18

3.3. C O N V E N T I O N A L D A T A M O D E L I N G A P P R O A C H E S 19

3.3.1. Entity-Relationship Modeling 19
3.3.1.1. Barker Notation 20
3.3.1.2. Information Engineering (IE) Notation 21
3.3.1.3. Integrated Definition (IDEF1X) Notation 21

3.3.2. Object-Oriented Modeling 22
3.3.3. Fact-Oriented Modeling 23
3.3.4. Conventional Data Modeling and Data Warehouses 25

3.4. M U L T I D I M E N S I O N A L D A T A M O D E L I N G 28

3.4.1. Multidimensional Concepts Through an Example 30

i i i

3.4.2. Business Processes 31
3.4.3. Events 31
3.4.3.1. Derived Measures 31
3.4.3.2. Additivity 32

3.4.4. Dimensions ; 33
3.4.4.1. Classification Hierarchies 33
3.4.4.2. Strictness & Completeness 35
3.4.4.3. Categorization of Dimensions 36
3.4.4.4. Many-to-Many Relationships Between Events and Dimensions 36
3.4.4.5. Degenerate Dimensions 37

3.5. R E L A T E D M U L T I D I M E N S I O N A L D A T A M O D E L I N G W O R K 37

3.5.1. Conceptual Level 38
3.5.1.1. Multidimensional Entity Relationship Model (M/ER) 38
3.5.1.2. Star Entity Relationship Model (starER) 39
3.5.1.3. Dimensional Fact Model (DFM) 40
3.5.1.4. GOLD Model 41

3.5.2. Logical Level 42
3.5.3. Physical Level 43
3.5.4. Formal Level 43
3.5.5. Shortcomings of Existing Models 44

3.6. S U M M A R Y 46

4. F A C T - O R I E N T E D M U L T I D I M E N S I O N A L M O D E L I N G 47

4.1. I N T R O D U C T I O N 47

4.2. K E Y D E S I G N C O N S I D E R A T I O N S 47

4.3. W H Y U S E O B J E C T R O L E M O D E L I N G ? 48

4.3.1. Advantages of Using ORM. 48
4.3.1.1. Conceptual Modeling Evaluation Criteria 49

4.3.2. Disadvantages of Using ORM 50
4.4. MULTIDIMENSIONAL OBJECT ROLE MODELING (MORM) 51

4.4.1. Business Processes 54
4.4.1.1. Event & Dimension Constructs 56
4.4.1.2. Families of Business Processes 58

4.4.2. Events 59
4.4.2.1. Atomic Measures 60
4.4.2.2. Derived Measures 61
4.4.2.3. Additivity 62

4.4.3. Dimensions 62
4.4.3.1. Classification Hierarchies 63
4.4.3.2. Strictness 67
4.4.3.3. Completeness 68
4.4.3.4. Categorization of Dimensions 69
4.4.3.5. Many-to-Many Relationships Between Events and Dimensions 70
4.4.3.6. Degenerate Dimensions 71

4.5. M O R M D E S I G N G U I D E L I N E S 72

4.5.1. MORM Level 0: Preliminary Segmentation 72
4.5.2. MORM Level 1: Business Process Family Definition 73
4.5.3. MORM Level 2: Business Process Definition 75
4.5.4. MORM Level 3: Event Definition 76

iv

4.5.5. MORM Level 4: Dimension Definition 7 7
4.5.6. Design Guideline Summary 78

4 . 6 . A N E V A L U A T I O N O F M O R M 7 9

4 . 7 . S U M M A R Y . 8 1

5 . A P P L Y I N G M O R M : A C A S E S T U D Y 8 2

5 . 1 . I N T R O D U C T I O N 8 2

5 . 2 . D E V E L O P M E N T T O O L S 8 2

5.2.1. Conceptual & Logical Modeling Tool: VisioModeler™ 83
5.2.2. Relational Database: Microsoft® SQL Server™ 2000 84
5.2.3. OLAP Tool: Microsoft® SQL Server™ Analysis Services 85

5 . 3 . S T E P 1: C R E A T I N G T H E C O N C E P T U A L M O R M S C H E M A 8 5

5.3.1. VisioModeler Diagram Workspace 86
5.3.2. Creating a MORM Project 88
5.3.3. Creating MORM Schemas 90

5 . 4 . S T E P 2 : M A P P I N G T H E L O G I C A L S C H E M A 9 1

5.4.1. Building the Data Dictionary 92
5.4.2. Relational Mapping (Rmap) Procedure 93
5.4.3. Editing the Logical Model 95

5 . 5 . S T E P 3 : G E N E R A T I N G A P H Y S I C A L S C H E M A . 9 5

5.5.7. Schema Generation Options 96
5.5.2. Generating Directly Through ODBC. 96
5.5.3. Generating a DDL Script 99

5 . 6 . S T E P 4 : B U I L D I N G A N O L A P C U B E 9 9

5.6.1. Setting up the Database & Data Source 100
5.6.2. Building the Cube 101
5.6.3. Designing Storage and Processing the Cube 102
5.6.4. Browsing Cube Data 103

5 . 7 . A N E V A L U A T I O N O F O U R C A S E S T U D Y 1 0 4

5 . 7 . 7 . Hierarchies: Multiple, Alternative Path, and Shared 105
5.7.2. Non-Strictness 106
5.7.3. Many-to-Many Relationships Between Events and Dimensions 107

5 . 8 . S U M M A R Y 1 0 9

6 . C O N C L U S I O N S & F U T U R E R E S E A R C H 1 1 0

6 . 1 . T H E S I S S U M M A R Y 1 1 0

6 . 2 . C O N T R I B U T I O N S 1 1 2

6 . 3 . L I M I T A T I O N S A N D F U T U R E R E S E A R C H 1 1 4

B I B L I O G R A P H Y 1 1 6

A P P E N D I X A : O R M C O N S T R U C T S 1 2 0

A P P E N D I X B : M O R M S C H E M A F O R R E T A I L C A S E S T U D Y 1 2 2

A P P E N D I X C : M O R M I M P L E M E N T A T I O N R E S U L T S 1 2 7

v

L I S T O F T A B L E S

T A B L E 3 - 1 : O P E R A T I O N A L D A T A B A S E A N D D A T A W A R E H O U S E D I F F E R E N C E S 2 6

T A B L E 3 - 2 : C O M P A R I S O N O F E X I S T I N G C O N C E P T U A L M U L T I D I M E N S I O N A L M O D E L S 4 5

T A B L E 4 - 1 : M O R M C O N S T R U C T S A N D A S S O C I A T E D D E S C R I P T I O N S 5 3

T A B L E 4 - 2 : C O N C E P T U A L S C H E M A D E S I G N P R O C E D U R E (C S D P) 5 3

T A B L E 4 - 3 : R E T A I L P O I N T O F S A L E F A C T S 5 4

T A B L E 4 - 4 : F A C T S W I T H R E F E R E N C E M O D E S O M I T T E D 5 5

T A B L E 4 - 5 : F A C T T Y P E S W I T H V A L U E S O M I T T E D 5 5

T A B L E 4 - 6 : S A L E S T R A N S A C T I O N E V E N T F A C T T Y P E S 6 0

T A B L E 4 - 7 : P R O D U C T D I M E N S I O N F A C T T Y P E S 6 3

T A B L E 4 - 8 : M O R M L E V E L 0 D E S I G N G U I D E L I N E S 7 3

T A B L E 4 - 9 : F O U R L E V E L S O F A M O R M S C H E M A 7 3

T A B L E 4 - 1 0 : M O R M L E V E L 1 D E S I G N G U I D E L I N E S 7 3

T A B L E 4 - 1 1 : M O R M L E V E L 2 D E S I G N G U I D E L I N E S 7 5

T A B L E 4 - 1 2 : M O R M L E V E L 3 D E S I G N G U I D E L I N E S 7 6

T A B L E 4 - 1 3 : M O R M L E V E L 4 D E S I G N G U I D E L I N E S 7 7

T A B L E 4 - 1 4 : M O R M D E S I G N G U I D E L I N E S U M M A R Y 7 9

T A B L E 5 - 1 : M U L T I D I M E N S I O N A L M O D E L I N G I M P L E M E N T A T I O N L I F E C Y C L E 8 2

T A B L E 5 - 2 : M O R M D E S I G N G U I D E L I N E # 0 B 9 0

T A B L E A - l : O R M C O N S T R U C T S A N D A S S O C I A T E D D E S C R I P T I O N S 1 2 1

T A B L E C - l : D E T A I L S O F M O R M I M P L E M E N T A T I O N R E S U L T S 1 2 9

vi

L I S T O F F I G U R E S

F I G U R E 2 - 1 : L O G I C A L D A T A W A R E H O U S E A R C H I T E C T U R E 6

F I G U R E 2 - 2 : R E L A T I O N A L O L A P A R C H I T E C T U R E L A Y E R S 9

F I G U R E 2 - 3 : M U L T I D I M E N S I O N A L O L A P A R C H I T E C T U R E L A Y E R S 1 0

F I G U R E 2 - 4 : B A S I C D A T A W A R E H O U S E P R O C E S S E S 1 1

F I G U R E 3 - 1 : S A M P L E C O N C E P T U A L D A T A M O D E L 1 7

F I G U R E 3 - 2 : S A M P L E L O G I C A L D A T A M O D E L 1 8

F I G U R E 3 - 3 : S A M P L E P H Y S I C A L D A T A M O D E L 1 9

F I G U R E 3 - 4 : C L A S S I C N O T A T I O N F O R E R M O D E L I N G 2 0

F I G U R E 3 - 5 : B A R K E R N O T A T I O N F O R E R M O D E L I N G 2 1

F I G U R E 3 - 6 : I N F O R M A T I O N E N G I N E E R I N G (I E) N O T A T I O N F O R E R M O D E L I N G 2 1

F I G U R E 3 - 7 : I D E F 1 X N O T A T I O N F O R E R M O D E L I N G 2 2

F I G U R E 3 - 8 : U N I F I E D M O D E L I N G L N A G U A G E C L A S S D I A G R A M 2 3

F I G U R E 3 - 9 : O B J E C T R O L E M O D E L I N G S C H E M A 2 5

F I G U R E 3 - 1 0 : R E P R E S E N T A T I O N O F T H E C U B E M E T A P H O R 2 9

F I G U R E 3 - 1 1 : E X A M P L E S O F C L A S S I F I C A T I O N H I E R A R C H I E S 3 4

F I G U R E 3 - 1 2 : S A M P L E M / E R M O D E L F O R V E H I C L E R E P A I R 3 9

F I G U R E 3 - 1 3 : S A M P L E S T A R E R M O D E L F O R M O R T G A G E R E P A Y M E N T 3 9

F I G U R E 3 - 1 4 : S A M P L E D I M E N S I O N A L F A C T M O D E L F O R I N V E N T O R Y M A N A G E M E N T 4 0

F I G U R E 3 - 1 5 : S A M P L E G O L D M O D E L F O R R E T A I L S A L E S 4 1

F I G U R E 3 - 1 6 : L O G I C A L S T A R S C H E M A F O R R E L A T I O N A L D A T A B A S E S 4 2

F I G U R E 4 - 1 : G R A P H I C A L N O T A T I O N F O R N E W M O R M C O N S T R U C T S 5 2

F I G U R E 4 - 2 : S C H E M A F O R P O S R E T A I L S A L E S B U S I N E S S P R O C E S S 5 6

F I G U R E 4 - 3 : S C H E M A F O R R E T A I L B U S I N E S S P R O C E S S F A M I L Y 5 9

F I G U R E 4 - 4 : S C H E M A F O R S A L E S T R A N S A C T I O N E V E N T 6 0

F I G U R E 4 - 5 : D E R I V A T I O N R U L E F O R T H E P R O F I T M E A S U R E 6 1

F I G U R E 4 - 6 : M U L T I P L E C L A S S I F I C A T I O N H I E R A R C H I E S I N M O R M 6 4

F I G U R E 4 - 7 : A L T E R N A T I V E P A T H H I E R A R C H I E S I N M O R M 6 5

F I G U R E 4 - 8 : S H A R E D H I E R A R C H I E S I N M O R M 6 6

F I G U R E 4 - 9 : S T R I C T N E S S & N O N - S T R I C T N E S S I N M O R M 6 7

F I G U R E 4 - 1 0 : C O M P L E T E N E S S I N M O R M 6 8

F I G U R E 4 - 1 1 : C A T E G O R I Z A T I O N O F D I M E N S I O N S I N M O R M 6 9

F I G U R E 4 - 1 2 : M A N Y - T O - M A N Y R E L A T I O N S H I P B E T W E E N E V E N T & D I M E N S I O N 7 1

F I G U R E 4 - 1 3 : M O R M L E V E L 1 - R E T A I L B U S I N E S S P R O C E S S F A M I L Y 7 4

F I G U R E 4 - 1 4 : M O R M L E V E L 2 - P O S R E T A I L S A L E S B U S I N E S S P R O C E S S 7 5

F I G U R E 4 - 1 5 : M O R M L E V E L 3 - S A L E S T R A N S A C T I O N E V E N T 7 6

F I G U R E 4 - 1 6 : M O R M L E V E L 4 - S T O R E D I M E N S I O N 7 8

F I G U R E 5 - 1 : M O R M M O D E L A N D A S S O C I A T E D D I C T I O N A R Y D O C U M E N T 8 7

F I G U R E 5 - 2 : V I S I O M O D E L E R T O O L A N D C O N S T R A I N T P A L E T T E S 8 7

F I G U R E 5 - 3 : V I S I O M O D E L E R F A C T E D I T O R W I N D O W 8 8

F I G U R E 5 - 4 : F A C T E D I T O R C O N S T R A I N T S A N D A S S O C I A T E D D A T A E X A M P L E S 8 8

F I G U R E 5 - 5 : V I S I O M O D E L E R ' s P R O J E C T W I N D O W 8 9

F I G U R E 5 - 6 : O U T P U T W I N D O W S H O W I N G B U I L D R E S U L T S 9 2

F I G U R E 5 - 7 : L O G I C A L M O D E L M A P P E D F R O M O R M S C H E M A 9 4

F I G U R E 5 - 8 : O P T I O N S W I T H I N V I S I O M O D E L E R ' S G E N E R A T E W I Z A R D 9 6

vii

F I G U R E 5 - 9 : A S S O C I A T I N G A N O D B C D R I V E R W I T H A V I S I O M O D E L E R D R I V E R 9 7

F I G U R E 5 - 1 0 : O D B C D A T A S O U R C E D E F I N I T I O N 9 8

F I G U R E 5 - 1 1 : T A B L E P R E V I E W I N V I S I O M O D E L E R G E N E R A T E W I Z A R D 9 8

F I G U R E 5 - 1 2 : D D L S C R I P T G E N E R A T E D B Y V I S I O M O D E L E R 9 9

F I G U R E 5 - 1 3 : A N A L Y S I S S E R V I C E S D A T A B A S E O B J E C T 1 0 0

F I G U R E 5 - 1 4 : A N A L Y S I S S E R V I C E S C U B E E D I T O R 1 0 1

F I G U R E 5 - 1 5 : C U B E P R O C E S S I N G U S I N G T H E D E S I G N W I Z A R D 1 0 2

F I G U R E 5 - 1 6 : F I N A L C U B E P R O C E S S I N G R E S U L T S 1 0 2

F I G U R E 5 - 1 7 : F I L T E R I N G E X A M P L E W I T H I N T H E C U B E B R O W S E R 1 0 3

F I G U R E 5 - 1 8 : D R I L L D O W N E X A M P L E W I T H I N T H E C U B E B R O W S E R 1 0 3

F I G U R E 5 - 1 9 : M O D E L I N G M A N Y - T O - M A N Y R E L A T I O N S H I P S 1 0 8

F I G U R E A - l : G R A P H I C A L N O T A T I O N O F O R M C O N S T R U C T S 1 2 0

F I G U R E B - l : M O R M L E V E L 1 - R E T A I L B U S I N E S S P R O C E S S F A M I L Y 1 2 2

F I G U R E B - 2 : M O R M L E V E L 2 - P O S R E T A I L S A L E S B U S I N E S S P R O C E S S 1 2 2

F I G U R E B - 3 : M O R M L E V E L 2 - I N V E N T O R Y B U S I N E S S P R O C E S S 1 2 3

F I G U R E B - 4 : M O R M L E V E L 3 - S A L E S T R A N S A C T I O N E V E N T 1 2 3

F I G U R E B - 5 : M O R M L E V E L 3 - I N V E N T O R Y E V E N T 1 2 4

F I G U R E B - 6 : M O R M L E V E L 4 - S T O R E D I M E N S I O N 1 2 4

F I G U R E B - 7 : M O R M L E V E L 4 - C U S T O M E R D I M E N S I O N 1 2 5

F I G U R E B - 8 : M O R M L E V E L 4 - P R O D U C T D I M E N S I O N 1 2 5

F I G U R E B - 9 : M O R M L E V E L 4 - T I M E D I M E N S I O N 1 2 6

A C K N O W L E D G E M E N T S

I owe thanks for contributions to this thesis to a great many people. First of all, I

would like to thank my thesis Supervisor, Dr. Carson Woo, for his commitment, support,

and invaluable guidance throughout this project. I am also indebted to my other

committee members, Dr. Yair Wand and Dr. Jacob Steif, for their insightful advice in

revising this work and their thought-provoking questions during my thesis defense.

I am also grateful to Angus Livingstone at UBC's University Industry Liaison

Agency (UILO) for sponsoring the early data analysis work that introduced me to data

warehousing and eventually led to this thesis. My research was also advanced by

spending several wonderful months in Chicago, Illinois as part of an exceptional

consulting group, Fathom Solutions. Specifically, I thank Brad at Fathom for being a

source of great discussion and always reminding me of the value of practical work.

Last, but certainly not least, I would like to thank my family for their never-

ending support. I would especially like to thank Jill for knowing how and when to steer

my mind both towards and away from research. A source of constant inspiration and

encouragement, Jill has been incredibly supportive and tolerant of my obsession to

achieve this goal.

ix

1. I N T R O D U C T I O N

Recent years have witnessed the dramatic evolution and acceptance of a new type

of management information system known as the data warehouse. The interest in this

decision support technology is largely due to the promise of improved decision-making

and planning made possible by gaining efficient access to data from numerous different

information sources. As originally defined by Inmon (1996), a data warehouse is "a

subject-oriented, integrated, non-volatile, time variant collection of data in support of

management's decisions" (p. 33).

The data warehouse is often the underlying database that supports an integrated

data architecture to deliver decision oriented data structures to on-line analytical

processing (OLAP) applications. In this role, data warehouses contrast operational

databases that support daily operations and on-line transaction processing (OLTP).

Wu and Buchmann (1997) present significant differences between data warehouse

and operational systems to justify the need for separate underlying databases. Chaudhuri

and Dayal (1997), also suggest differences in functionality and performance requirements

as valid reasons for differentiating the design and development of data warehouses from

that of conventional operational systems. These viewpoints suggest that the decision-

support focus of data warehouses demands data model design aligned with user

perspectives and the analytical processing to be performed rather than application

specific business needs. The point has also been argued by Boehnlein and Ulbriche-vom

Ende (1999) that both the static and dynamic influences of analytical requirements and

their underlying data sources clearly illustrate the need for a distinct comprehensive data

warehouse modeling approach.

1

1.1 . M o t i v a t i o n

While conventional modeling techniques are well proven for transaction

processing systems, their deficiencies in modeling data warehouses have been well

documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). The main

reason for the deficiency in these arguments is the underlying normalization premise

which provides an efficient means to store data but does not satisfy analytical and

decision support requirements. As argued by Kimball, Reeves, Ross and Thornthwaite

(1998), these models should not be used as the basis for data warehouses because the

atomic detail of normalized models often confuses users and cannot be easily navigated

by analysis tools.

As a direct response to the inability of conventional conceptual modeling methods

to represent multidimensional semantics, the multidimensional view of data (cube or

hypercube) arose (Chaudhuri & Dayal, 1997). This view introduced a variety of new

modeling concepts, including facts and dimensions, additivity, derived measures,

classification hierarchies, and the categorization of dimensions.

Despite the growth of data warehousing and OLAP applications, existing

multidimensional modeling methods do not adequately capture the inherent semantics

and a commonly accepted standard does not exist to indicate what should be represented

in a multidimensional scheme (Abello, Samos, & Saltor, 2001). While it is widely

recognized that data warehouses are based on the logical star schema, there is no standard

conceptual data modeling technique for data warehousing and OLAP applications.

Consequently, user analysis via a common framework is difficult and there is no

consistent basis for solving conceptual multidimensional modeling problems with an

intuitive and complete conceptual model.

2

Several works have been proposed that provide significant support for

multidimensional constructs, but these approaches are far removed from natural language

and difficult to populate with example information, making it challenging to

conceptualize and validate multidimensional designs. As a result, a complete and natural

design technique does not exist that adequately conceptualizes and communicates

multidimensional data designs to both business and technical users.

1.2. O b j e c t i v e s

To address the fundamental deficiencies and shortcomings of existing

multidimensional models, we propose a fact-oriented approach to multidimensional

modeling. We define our approach as a specialization of Object Role Modeling (ORM)

by defining additional graphical constructs and guidelines that consider key

multidimensional properties at the conceptual level. We use ORM as a basis for our fact-

oriented approach because we believe it considers an information system's structural

properties at the conceptual level more naturally than existing multidimensional models

of other conventional approaches.

The practical goals of our fact-oriented modeling approach are to help designers

capture and satisfy complex modeling requirements, help end users better understand the

structure and navigation paths of the data warehouse, and facilitate communication

between business users and data modelers. In support of our goals, the main objectives

of this thesis are summarized as follows:

1. to provide a natural, simple, and expressive approach to modeling

multidimensional data at the conceptual level;

3

2. to present a set of design guidelines that provide data modelers with a

systematic approach to building conceptual multidimensional models

using our method; and

3. to test our approach by attempting to solve a practical data analysis

problem through a case study implemented using existing

technologies.

1.3. O u t l i n e

To accomplish our objectives, we have organized the remainder of the thesis as

follows. Chapter 2 provides an overview of data warehousing and OLAP applications.

Various architectural components are discussed, including logical layers, physical layers,

and basic warehouse processes. Chapter 3 examines data modeling, highlighting the

differences between traditional applications and data warehouses. Multidimensional

concepts are presented through an example and existing multidimensional modeling

works are reviewed. Chapter 4 introduces our conceptual multidimensional modeling

approach by providing constructs and design guidelines for its use. Chapter 5 presents a

case study demonstrating how our model can be implemented using existing

technologies. Details are presented for conceptual model development, logical and

physical schema mapping, and O L A P cube generation. We also report on our

experiences gained in using the model. Finally, chapter 6 summarizes findings and

contributions of the thesis and proposes future research directions.

4

2 . I N T R O D U C T I O N T O D A T A W A R E H O U S I N G

2.1. I n t r o d u c t i o n

This chapter provides an overview of Data Warehousing and OLAP Applications.

We discuss the logical architecture of a data warehouse through a presentation of its basic

information service and communication layers. These include data source, data storage,

application, and presentation layers. After presenting the logical view we outline

physical architectures that may be mapped onto the logical architecture. Categorized by

the approaches taken by desktop tools to implement data access, these physical

architectures include Multidimensional OLAP (MOLAP) and Relational OLAP

(ROLAP). We conclude the chapter with a discussion of the basic procedures within a

data warehouse as grouped into two categories - data staging services and query services.

2.2. D a t a W a r e h o u s i n g O v e r v i e w

According to the Data Warehousing Institute (2000), the data warehousing

industry encompasses a host of disciplines and technologies used to analyze information,

including data modeling, data migration and transformation, data quality, business

intelligence, data marts, on-line analytical processing, database management, data

mining, and knowledge discovery. All of these terms can be classified into a broad

category of information analysis known as decision support, which is one of the primary

uses of data warehouses.

The importance of data warehousing in the commercial segment appears to be due

to a need for enterprises to gather information from transaction processing systems into a

single place for in-depth analysis (Widom, 1995). To gather this information in a typical

data warehouse, information from a variety of sources is extracted, transformed, and

5

cleansed, and business rules are enforced to help clarify and standardize the data to

ensure consistency. The following sections present the logical architecture required to

support these and other warehouse processes and outline the physical architectures that

may be mapped onto the logical architecture.

2 . 3 . L o g i c a l A r c h i t e c t u r e

Figure 2-1 presents a typical logical data warehouse architecture that extends that

of Wu and Buchmann (1997) and Kimball et al. (1998). This architecture contains the

basic information service and communication layers of the data warehouse. These layers

are discussed in the sections that follow.

Data Source
Layer

Data Storage
Layer

Application
Layer

Presentation
Layer

Data Mart #1:
dimensional

subject oriented
locally implemented
user group driven

frequently refreshed

Data Mart #2

Data Mart #3

Application Interfaces:
conceptual view of data

data access facilities

Ad Hoc Query Tools

Report Writers

End User Applications

Models

Figure 2-1: Logical Data Warehouse Architecture

2.3.1. Data Source Layer

Source systems capture business transactions and include operational systems and

databases. These operational systems are often referred to as online transaction

processing systems and are optimized for storing and updating large volumes of data

gathered one record at a time. The purpose of these systems is known in advance

6

whereas it is not known for data warehouses. Examples of such systems are order entry,

invoicing, inventory, and general ledger systems. Source systems should be thought of as

outside the warehouse and may also include data from sources external to a company

(e.g. marketing research data). The net result of these OLTP systems is the production of

large volumes of data but the data gathered and stored is not always easily accessible to

end users. This highlights the fact that the intent of these systems is not analytical

processing.

2.3.2. Data Storage Layer

The data storage layer provides services for the efficient storage, retrieval, and

management of large amounts of data. It usually refers to the data warehouse database,

which is frequently updated on a controlled basis using extract, transform, and load

(ETL) routines on source system data and is the union of all its constituent data marts. In

this context, Kimball et al. (1998) refer to a data mart as "the subset of all the data or a

restriction of the data warehouse relevant to a specific business process or group" (p. 18)

while a data warehouse usually serves the entire enterprise.

2.3.3. Application Layer

The application layer provides services to conceptually arrange data in the format

requested by end user applications. It provides data access facilities suitable for specific

applications, including data model transformation between conceptual and logical

schemas. This layer may also contain utilities to generate extracts frequently offloaded to

desktop resident OLAP tools. Services for the arrangement of this data are application

dependant. As Wu and Buchmann (1997) state, this is advantageous because if the

requirements of the applications change, only the application layer needs to change.

7

2.3.4. Presentation Layer

To complete the logical architecture and deliver data from transactional systems

to end users who make strategic and tactical decisions, a presentation layer is needed.

The decision support systems that comprise this layer range from simple query tools to

sophisticated data mining and modeling applications that find trends in the data.

Most often the presentation layer consists of an OLAP application. These

graphical presentation and reporting systems allow users to intuitively, quickly, and

flexibly manipulate operational data using familiar business terms in order to provide

analytical insight. Many of these tools provide value added information through

techniques such as exception highlighting, trend analysis, and statistics development.

2 .4 . P h y s i c a l A r c h i t e c t u r e

The following sections present physical architectures that may be mapped onto

the logical architecture. These architectures are categorized by desktop tool approaches

to implementing data access functionality and include multidimensional OLAP

(MOLAP) and relational OLAP (ROLAP). The main premise of M O L A P is that data

must be stored multidimensionally to be viewed multidimensionally while the R O L A P

premise is that OLAP capabilities are best provided directly against a relational database.

2.4.1. Relational OLAP Architecture

As illustrated in Figure 2-2, the three-tier ROLAP architecture leverages

relational databases to provide multidimensional analysis. The database layer typically

utilizes relational databases for data storage, access, and retrieval processes. The

application logic layer is the ROLAP engine, which executes multidimensional reports

8

from multiple end users. The ROLAP engine integrates with a variety of presentation

layers, through which users perform OLAP analysis.

ROLAP servers sit between a relational database server and a client front-end

tool. These servers extend traditional database servers with special middleware to

efficiently support OLAP queries and analysis. These queries are then evaluated in terms

of views that are identified beforehand and used to generate SQL.

As suggested by Microstrategy (1995), the main strength of ROLAP tools is that

they exploit the scalability and transactional features of relational databases while the

major drawback is the performance bottleneck that can result from performing OLAP

style querying and generating SQL.

Source
Systems

Data
Warehouse

Relational
O L A P Engine

O L A P Interface

ma

Data Source
Layer

Data Storage
Layer

Application
Layer

Presentation
Layer

Figure 2-2: Relational OLAP Architecture Layers

2.4.2. Multidimensional OLAP Architecture

Illustrated in Figure 2-3, MOLAP is a two-tier, client/server architecture in which

a proprietary multidimensional database (MDB) serves as both the storage layer and the

application layer. In the storage layer, the MDB system handles data storage, access, and

retrieval functions. These databases contain n-dimensional arrays where each dimension

has an associated hierarchy of levels of consolidated data. Data is loaded into an MDB

via batch routines and calculations are performed to aggregate along dimensions and fill

the MDB's array structures. The application layer executes OLAP requests and

integrates with the presentation layer to provide an interface through which end users

view and request OLAP analysis.

Source
Systems

Multidimensional
Database O L A P Interface

Data Source
Layer

Data Storage
Layer

Application
Layer

Presentation
Layer

Figure 2-3: Mult idimensional O L A P Architecture Layers

The significant advantage of the MOLAP approach is faster performance resulting

from the indexing properties of the proprietary multidimensional storage structures while

the major drawback is poor storage utilization, especially when the data set is sparse

(Microstrategy, 1995).

2 . 5 . F u n d a m e n t a l D a t a W a r e h o u s e P r o c e s s e s

Figure 2-4 depicts the basic processes of a data warehouse as described by

Kimball et al. (1998). They group these processes into two broad service categories -

data staging services and query services.

10

Source
Systems

Data

Staging Presentation Servers ,
O G r V I C e S . , — ^ — — — — — WarehouseBrowsing!

Query
Services

Data Staging
Area

Extract .-. /
> -Transformation

-Load
V - - Job Control k- |

I
(Dimensional Data Marts w ^ > " Access and Security j

only aggregated dat

3 The Data
Warehouse

BUS f
irts with \
lata j

' 'Reporting Tools -

Desktop Data.
AccessTcob •

Conformed
Dimensions &.
Conformed •
Facts

-Query Management j J—
- Standard Reporting y
- Activity Monitor [\ j (

Dimensiona I Data Marts
including atomic data

Application Models.;
[e.g. data miring) .!

i

Downstream/ j
•operational • '—J

Figure 2-4: Basic Data Warehouse Processes

Adapted from The Data Warehouse Lifecycle Toolkit (p. 329), by R. Kimball, L. Reeves, M. Ross, & W.

Thornthwaite, 1998, New York: John Wiley & Sons.

2.5.1. Data Staging Services

One of the most significant tasks in building the data warehouse is moving data

from numerous legacy systems into the data warehouse. At a high level, data moves

from the source systems to a staging area using data staging services. These services are

driven by metadata that describe data sources, targets, dependencies, etc. Often termed

ETL services, they extract data from the data sources, transform and integrate the data,

then load it into the warehouse. The timing of ETL processes is dependant on the

characteristics of the source data, and may vary in frequency to be executed daily,

weekly, monthly, etc. Common tools used for these processes include products such as

Ascential DataStage, SAS ETL, and Microsoft DTS.

To effectively use ETL services, the entire data staging process is managed

through job control services. These services define a series of steps, specify relations and

dependencies among these steps, and capture metadata regarding their progress and

statistics. These services can be implemented as SQL stored procedures or in an advanced

tool designed to help manage the processes. Exception and error handling processes are

11

usually implemented as well to catch referential integrity violations and handle other

unrecoverable errors.

2.5.2. Query Services

Query services allow a user to formulate a query, execute it against the database,

and respond to the request with a result set. Only presentation servers provide query

services as they store and present data in a multidimensional format. As shown in Figure

2-4, the flow of data from the presentation server to the end user is supported by metadata

from the metadata catalog.

OLAP browsing services help users navigate the warehouse by using some form

of browsing tool. This tool is usually linked to a catalog containing business definitions

and data elements for particular subject areas. Popular services and operations supported

by O L A P tools include pivoting, roll-up, drill-down, and slice-and-dice. These services

refer to the various manipulations that can be performed on query result sets.

Although complex analysis techniques have gained considerable attention with

the advent of OLAP systems, managed query environments still exist that use standard

reporting tools. These queries can come in the form of ad-hoc report requests or

standard, fixed format reports. Oftentimes, queries that begin as ad-hoc requests become

standard reports.

Other services found in the warehouse include activity monitoring and security

services. Activity monitoring captures information about system performance and usage

statistics to help with marketing and capacity planning. Security services facilitate

database connections and rely on authentication and authorization processes to identify

users and determine access rights.

12

2 .6 . S u m m a r y

This chapter has provided an overview of data warehousing and OLAP

applications. We introduced the logical architecture, which consists of data source, data

storage, application, and presentation layers. These layers include operational systems

and databases that capture business transactions, components for storing, retrieving, and

managing data, components to conceptually arrange data in end user applications, and

finally services to deliver data to the user. We also illustrated how the physical

architecture of a data warehouse can be mapped on its logical layers in several ways. In a

MOLAP solution analytical data is extracted and stored in a multidimensional database,

while the ROLAP approach provides analytical capabilities directly against a relational

database. The chapter concluded with a discussion of the basic processes within a data

warehouse as presented in two broad categories. Data staging services are focused on

getting data into the data warehouse and include ETL services, job control, exception and

error handling processes. The second category, query services, focuses on getting data

out of the warehouse and includes browsing, reporting and query management.

13

3 . M O D E L I N G T H E D A T A W A R E H O U S E

3 . 1 . I n t r o d u c t i o n

In this chapter we provide an overview of the theoretical and practical aspects of

modeling data for traditional OLTP systems, data warehouses, and OLAP applications.

We first examine the basic concepts of data modeling by distinguishing conceptual,

logical, and physical design phases. We will look at conventional data modeling methods

and present an overview of several approaches, including Entity Relationship Modeling,

Object-Oriented Modeling, and Fact-Oriented Modeling. After presenting conventional

approaches, we will highlight differences in the data structures of traditional OLTP

applications and decision support applications to distinguish multidimensional and

conventional data modeling. To gain a better understanding of the structural properties of

multidimensional data, we provide an overview of multidimensional concepts through an

example. We conclude the chapter with a review of existing multidimensional models as

discussed in the literature. A brief look is taken at physical and logical models but the

emphasis is on several of the most popular conceptual models attempting to address

multidimensional requirements.

3 .2 . I n f o r m a t i o n L e v e l s

Databases are major productivity tools for information-oriented businesses,

however, for a database to be used effectively its data should be well-designed, correct,

and easy to access. Designing a database involves analyzing and representing data in a

formal model of the application area an organization must understand for a particular

system. The application area being modeled is typically part of the real world the

modeler is interested in and has been referred to by Halpin (1995) as the universe of

14

discourse. A data modeling method allows business users and data architects to describe

the universe of discourse clearly and precisely to achieve consensus on the definition of

its contents. According to Halpin (1995), such a modeling method comprises both a

language and a procedure to guide modelers in using the language to construct models. A

language has associated syntax, semantics, and pragmatics and may be graphical and/or

textual.

Data models make extensive use of graphical representations and natural language

to visualize information needs of an application and gauge how completely and

accurately data structures reflect an application domain. Several direct benefits of this

visualization include improved communication between modeler and user, more

understandable solutions, and early detection of missed requirements and modeling

errors. Design improvements stemming from data modeling generally translate to fewer

construction errors and less expense as inaccuracies do not filter through to later stages of

software development and result in costly code changes. Once complete, data models

serve as architectural blueprints for database and application development.

Most literature distinguishes between conceptual, logical, and physical database

development phases when it comes to the subject of database design and development

(Elmasri & Navathe, 1994; Batani, Ceri, & Navathe, 1992; Halpin 2001). The common

theme in these works is that the terms conceptual, logical, and physical differentiate

levels of abstraction in data models. These various layers are not defined by an accepted

authority but are generally understood by data architects and modelers. The models may

appear in different manners, some approaches dealing with only the physical and logical

models, while others offer elements of all three. Combined, the conceptual, logical, and

15

physical models comprise a complete data model representing the highest level of design

abstraction to the lowest level of implementation detail of a particular application.

Adopting this view of data modeling, we distinguish three different kinds of data

models based on the constructs they provide and the database design phase they are

associated with - Conceptual, Logical and Physical. Conceptual models are close to the

way users perceive the data and are independent of any implementation. Secondly,

logical models are understandable by end users but consider the underlying Database

Management System (DBMS) used in the implementation. Finally, those at the physical

level depend on the specific database used and describe the details of how data is actually

stored in the computer. These levels are further described in the following sections.

3.2.1. Conceptual Model

The first step of database design is usually developing the conceptual data model

of an application. Considered the highest level of database abstraction, conceptual design

portrays the application domain using terms and concepts understandable to the user

while ignoring logical and physical level aspects. The conceptual model is concerned

with depicting data from the business users point of view, and thus, is said to represent an

abstraction of the real world view and understanding of data (Batra, Hoffer, & Bostrom,

1990). The conceptual model suppresses non-critical details in order to emphasize

business rules and user objects using concepts people are used to working with. As

illustrated in the sample in Figure 3-1, conceptual models typically include only

significant entities that have business meaning, along with their relationships and

possibly a few significant attributes.

16

Project Management CDM

User 12/16/2002 Version 6.1

Division
belongs to belongs to

—1 ' ~ HS

Is m ember of

/is ,
Employee

Is manager of_

O
participates in

I
l
I
9

Project

is comprised of

1 ^ '

Figure 3-1: Sample Conceptual Data Model

According to Batra et al., (1990) the process of deriving and analyzing data

inherent to a business situation and mapping the objects of this understanding of reality

constitutes a discovery phase. This discovery phase consists of two parts - the first

involves elicitation of the information requirements from users and the second involves

conceptual representation of information requirements into a conceptual model.

3.2.2. Logical Model

The logical database design phase typically follows conceptual design and

converts the model into a lower-level structure for implementation purposes. To do this,

an appropriate class of logical data model (e.g. relational, hierarchic, network) is chosen

and a logical design is expressed in terms of the abstract database structures for that

model. As shown in the relational model sample in Figure 3-2, information is stored in

tables and constraints are expressed using primary and foreign key declarations.

17

Team nirrber
Speciality

Is member of

Division
Division nurrber , betongs lo ,

Division name
Division address

A 1_
Employee

Errployae nurrber
Fir st name
Last name
Employee functicn
Emplojee salary

Participate
Start date
End Cbte

Project Management LDM
User 12/16/2002 Version 6.1 J

Project
Project nuTber
Project name
Project iabel

1
I

1
Task

1 T a * name
Tadccost

Activity
Start date
End aate

Figure 3-2: Sample Logical Data Model

While various logical model classes exist, the predominance of relational

databases has meant the majority of today's logical models are schemas conforming to

relational theory. As introduced by Codd (1970), relational theory involves normalized

relations where each data entry is atomic and stored in tables treated as mathematical

relations. Relational schemas are most often in first normal form and do not include

specific details for each relational DBMS implementation.

3.2.3. Physical Model

The physical model specifies how the logical model will be instantiated in a

particular DBMS product (e.g. Oracle, Sybase, etc.). As illustrated in the example in

Figure 3-3, physical models include detailed table information specific to a particular

product or version, as well as configuration choices for the database instance. Other

details include physical storage options for index construction, key constraints, views and

referential integrity maintenance.

18

TEANUM <pK> nungJCtai net rail
TEASPE cha-(eO) ndl
& TEAM_PK

' Project Management PDM
User 12/16/2002 Version 6.1

DTVNUM <D»» nunertc<5) rd null
DTVNAME cra(30) nd rufl
DtVADDR char(80) mil

BELCNGS_TO

MEMBER
TEANUM <pKfr> nungic(5) net mil
EMPNUM. <[*fr nu-naic(51 net rail

ft MEMBER̂ PK & MEMBER[FK
& E_MEMBER_OF_FK

i_MEMBE R_OF

EMPLOYEE
EMPNUM nuneric(5t net null
EMP_EMPNUM <fk> nunaic(5) nJI
DtVNUM <fk> nunaic(5) net null
EMPFNAM <ak> char (30) nJI
EMPLNAM <aK> ehar(30) nd null
EMPFUNC <a)o ch*(30) nJI
EMPSAL nunaic(8.3 nJI
ft EMPLOYEE_PK
& CHIEF FK
ft BELONGS_TO_FK2

PROJECT
PRONUM <df ni/naic(5> nctnJI
EMPNUM <k> nunaic(5) rail
ACTBEG Smestarp rail
ACTEND limestarp rail
PRONAME cha(30) nd mil
PROLABL cher (80) rail
& PROJECTPK
ft) IS_RESPONSIBLE_FOR_FK

i

BE
I

ONGS_ I O

PARTICIPATE
PRONUM <pkltf> nuwc(5) net nuB
TSKNAME <pklk> cter{3P)
EMPNUM <pkfk> num€rk:f5) net nufl
PARBEG bmsstaTp rail
PAREND timsstarp rail
• PAR Tl Cl PATE_PK
ft VAORKSON FK
ft IS DONE BY FK

TASK
PRONUM <DkH< £ nungjc(5) net null
TSKNAME <pk> charOO) nqpuii
ACTBEG Brrestarp rail
ACTEND brrestarp rail
TSKCOST nunaic(8.3 ndmJI
& TASK PK
ft BELONGS_T 0_F K

Figure 3-3: Sample Physical Data Model

3.3. C o n v e n t i o n a l D a t a M o d e l i n g A p p r o a c h e s

Many forms of symbolic notation have been developed to enable data models to

represent various levels of abstraction. Some of these notations are lexical, others

graphical, and others a combination of both. The following sections outline three of the

most popular conventional notations for information modeling at the conceptual level.

3.3.1. Entity-Relationship Modeling

The most common technique for conceptually modeling data in operational

systems is the Entity Relationship (ER) model defined by Chen (1976). Shown in Figure

3-4, Chen's classic ER notation models entities that participate in relationships. For

example, to model an employee working for a department, a relationship is assigned

between the Employee and Department entities.

19

CEPT
DEPT

N

Figure 3-4: Classic Notation for ER Modeling

Introduced in the 1970s, Chen's model has evolved over time to incorporate

extensions, variations, and improvements including the Extended Entity Relational

Model (Teorey, Yang, & Fry, 1986) that captures detailed features of an information

model. These different versions support different concepts and often use different

symbols for the same concepts. A number of the extensions and variations have been

incorporated in Computer Assisted Software Engineering (CASE) products employing

the ER methodology. While there is no single standard ER notation, the most popular

versions of ER are the Barker and Information Engineering (IE) notations. Although not

a true ER representation, another popular notation is IDEF1X, which is a mixture of ER

and relational approaches. We provide a brief overview of these three ER notations in

the following sections.

3.3.1.1. Barker Notation

Originally proposed by Barker (1990), Oracle later adopted this notation in its

CASE tools. Shown in Figure 3-5, the Barker notation represents entities as named, soft

rectangles with a list of attributes. A hash (#) indicates the primary identifier of an entity.

An asterisk (*) or heavy dot (•) indicates an attribute is mandatory, while a superscript

"O" (°) indicates it is optional. Al l relationships are binary and are shown as named lines.

A solid half-line denotes a mandatory role and a dotted half-line denotes an optional role.

A crow's foot indicates the cardinality "many" and its absence indicates "one".

20

E M P L O Y E E

* empNr
* empName

0 faxNr

works for

employs

DEPARTMENT

* deptNr
* deptName

0 size

Figure 3-5: Barker Notation for ER Modeling

3.3.1.2. Information Engineering (IE) Notation

Information Engineering was originated by Finkelstein (1989) and later adopted

by Martin (1990). Today, different versions of IE exist and the style has become the

basis for a number of CASE products, including Sybase's PowerDesigner. As Figure 3-6

illustrates, IE displays entity types as named rectangles with a list of attributes.

Relationships are binary and denoted by named lines. A crow's foot indicates "many", a

stroke indicates "one", two strokes indicate exactly one and a circle indicates optional.

E M P L O Y E E
works for

D E P A R T M E N T
works for

empNr X3 H- deptNr
empName deptName

empBirthDate

Figure 3-6: Information Engineering (IE) Notation for ER Modeling

3.3.1.3. Integrated Definition (IDEF1X) Notation

IDEF1X was developed in the late 1970's and later extended into a standard

adopted by the U.S. Air Force as part of a required methodology for government projects.

Originally, IDEF1X was a member of a family of Integrated Definition (IDEF) languages

developed by the Air Force for Integrated Computer Aided Manufacturing (ICAM). Of

the different languages defined for different tasks, IDEF1 was initially developed for

conceptual data modeling and later "extended" as IDEF IX for logical data modeling.

The current version (NIST, 1993) continues to be widely used for database design and

has been adopted by many CASE tool vendors, including Computer Associates' ERwin.

21

IDEF1X is a hybrid modeling language, combining conceptual constructs (e.g.

entity, relationship) with relational database constructs (e.g. foreign keys). IDEF1X

models may be viewed at three levels - an ER view, a key-based view, and a fully

attributed view. The ER view is used early in the design process and simply includes

entity types and relationships with no attributes or identification schemes. The key based

view includes at least all the key-based attributes and classifies relationships as

identifying or non-identifying. Shown in Figure 3-7, the fully attributed view, as its title

indicates, includes all attributes.

E M P L O Y E E DEPARTMENT

deptNr

deptName (AK1)
size

Figure 3-7: IDEF1X Notation for ER Modeling

Here, entity types are shown as named rectangles. Attributes are listed inside the

rectangles with the primary key in the top compartment. Alternate keys are denoted with

"(AKn)" and foreign keys with "(FK)". Connection relationships are foreign key

references from the child to parent and are shown with a dot "•" at the child end.

3.3.2. Object-Oriented Modeling

Object-oriented modeling is an approach that encapsulates both data and behavior

within objects. The most influential object-oriented approach that exists is the Unified

Modeling Language (Booch, Rumbaugh, & Jacobson, 1999), which has been adopted by

the OMG as a method for object oriented analysis and design. Though mainly focused on

the design of object oriented programming code, UML can be used for modeling database

empNr

empName
empBirthDate

deptCode (FK)

employs /
works for

22

applications. UML is supported in various CASE tools, including Rational Rose, one of

the most well known visual modeling tools for object-oriented modeling.

Of its nine diagrams, UML's Class diagram is used to specify static data

structures by supplementing its predefined notations with user-specific notations. When

stripped of implementation detail, Class diagrams are similar to an extended version of

ER diagrams. Shown in Figure 3-8 is a UML class diagram for Employment.

E M P L O Y E E

* Employs 1
D E P A R T M E N T

empNr {P}
empName

empBirthDate

* Employs 1
deptNr {P}
deptName

size

empNr {P}
empName

empBirthDate

deptNr {P}
deptName

size

Figure 3-8: Unified Modeling Language Class Diagram

Classes are shown as named rectangles with the class name in the top

compartment and attributes listed inside the rectangles. Entity instances in UML are

identified by internal object identifiers, thus no conceptual identification schemes are

required for its classes. In the above example, a user-defined constraint "P" has been

added in braces to denote primary uniqueness. The uniqueness constraints on the

Employee/Department association are captured by the multiplicity constraints * (0 or

more) and 1 (exactly one).

3.3.3. Fact-Oriented Modeling

At the heart of fact-oriented modeling is the verbalization of facts and rules,

which facilitates the validation of business rules. Typically, a modeler develops a data

model by gathering requirements from domain experts and communicating data

structures at a conceptual level in terms that non-technical users can understand. To

simplify things, the modeler usually breaks the information into manageable parts and

23

works with sample data populations. Fact-oriented modeling improves the analysis and

communication required by verbalizing relevant data as elementary facts that cannot be

split into smaller facts without losing information.

Our treatment of fact-orientation focuses on Object Role Modeling (Halpin, 2001)

since this is the only fact-oriented method with significant support in the industry. ORM

began in the early 1970s as a semantic approach that represents the application world as a

set of objects (entities or values) that play roles (parts in relationships). ORM has

appeared in many forms including Natural-Language Information Analysis Method

(NIAM) from which it derives many of its features. The version we discuss is based on

an extended version of NIAM called Formal ORM (FORM) and is supported by several

industry tools including Microsoft's VisioModeler, Visio Enterprise, and Visual

Studio.Net for Enterprise Architects.

ORM is used to create a conceptual schema where the schema specifies the

information structure of the application: the types of facts that are of interest; constraints

on these facts; and the derivation rules required for deriving some facts from others.

Figure 3-9 shows a simple ORM schema. The ovals in the diagram represent object types.

These are connected by predicates, shown as sequences of boxes. Each box corresponds

to a role in the relationship. If we include the object types with the predicate, we have a

fact type - for example, Employee works for Department. In this model, each predicate

has two roles. For example, the fact type Employee works for Department has one role

played by Employee (works for) and one role played by Department (employs).

24

{ empName i { deptName)

Figure 3-9: Object Role Modeling Schema

The schema in Figure 3-9 also includes business rules, otherwise known as

constraints or derivation rules. For example, an arrow-tipped bar over a role is a

uniqueness constraint, indicating that each object playing that role does so only once (for

example, each Employee has at most one empName). A dot on a role connector indicates

the role is mandatory (each Employee must have an empName).

O R M simplifies the design process by using natural language, diagrams and

examples, and by examining information in terms of elementary facts. Facts and rules

can be easily verbalized as sentences and all data structures can be easily populated with

multiple instances. Unlike ER or U M L , no use is made of attributes so there is no need to

determine whether a feature is to be modeled an attribute or not. This results in more

stable models and queries that are more immune to attribute changes (Halpin, 2001).

3.3.4. Conventional Data Modeling and Data Warehouses

Having described conventional data modeling approaches, we now highlight the

data structure differences of traditional OLTP systems and decision support systems in

order to distinguish conventional data modeling from multidimensional data modeling.

25

Data warehouses and OLAP applications contrast operational databases that

support daily operations and on-line transaction processing. As proposed by Wu and

Buchmann (1997), the major differences between operational databases and data

warehouses include users, functionality, contents, and requirements. These differences

are summarized in Table 3-1.

Aspect Operational Databases Data Warehouses
User System Designer, System

Administrator, Data Entry Clerk
Decision Maker, Knowledge
Worker, Executives

Function Daily Operations, (On-Line)
Transaction Processing

Decision Support, (On-Line)
Analytical Processing

DB Design Application Oriented Subject Oriented
Data Current, Up-to-date, Atomic,

Relational, Isolated
Historical, Summarized,
Multidimensional, Integrated

Usage Repetitive, Routine Ad Hoc
Access Read/Write, Simple Transaction

(usually 1-3 tables)
Mostly Read, Complex Query
(usually more than 3 tables)

System
Requirements

Transaction Throughput, Data
Consistency, Data Accuracy

Query Throughput, Data
Accuracy

Table 3-1: Operational Database and Data Warehouse Differences
Adapted from "Research Issues in Data Warehousing," by. M. Wu and A. Buchmann, 1997, Proceedings of
the 7th German Conference on Datenbanksysteme in Bum, Technik und Wissenschaft (BTW'97), p. 62.

OLTP systems impose different requirements than data warehousing and OLAP

systems, and therefore, different data models and implementation methods are required

for each type of system. Conventional approaches like ER, UML, and ORM are

commonly used to represent an OLTP application at the conceptual level, however, they

are not capable of sufficiently representing multidimensional semantics using existing

constructs. While the ER model is well proven as a powerful modeling technique for

transaction processing systems, its deficiencies in modeling data warehouses have been

well documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). As

Kimball et al. suggest (1998), conventional data modeling cannot be used as the basis for

enterprise data warehouses as it does not model the business, rather it models the micro

relationships among data elements.

26

The main reason for the deficiency in conventional approaches is their underlying

normalization premise. This premise provides for an efficient means to store data but

does not satisfy retrieval requirements for analytical and decision support applications.

As argued by Kimball et al. (1998), conventional models should not be used as the basis

for data warehouses because the atomic detail of normalized models often confuses users

and cannot be easily navigated by analysis tools. End users cannot understand, remember,

or navigate conventional models and, unlike OLAP applications, there are few graphical

user interfaces that can make conventional models usable by end users. Additionally,

analysis software cannot usefully query general conventional models since optimizers

that attempt to do this often make the wrong choices and result in poor performance.

Conventional models are constituted to remove redundancy in the data model and

optimize OLTP performance by facilitating retrieval of individual records having certain

critical identifiers. While these approaches are popular with OLTP systems, databases

created using conventional modeling techniques cannot be efficiently queried. These

techniques defeat the basic attraction of data warehousing, which is intuitive and high-

performance retrieval of data, and should not be used for this purpose. As discussed in

Bulos (1996), conventional models like the ER provide no easy way of modeling

multidimensional data.

As a direct response to the inability of conventional models to service decision

support processing, the multidimensional view of data arose as a popular alternative to

conceptualize decision support data. Consequently, multidimensional modeling has

emerged as the dominant technique for data warehouse design. Using the denormalized

27

data structures that result from multidimensional modeling, decision support applications

run faster and employ a high level of data redundancy.

In addition to understanding the business rules within operational data,

multidimensional modeling requires a good understanding of the analysis scenarios of an

organization. To facilitate such an understanding, multidimensional modeling has

introduced a variety of new modeling concepts, including facts and dimensions,

classification hierarchies, derived measures, additivity, and categorizing dimensions. The

following section provides an overview of these multidimensional concepts and

discusses, through an example, a set of multidimensional modeling requirements needed

to efficiently design data warehouses.

3.4. Mu l t id imens iona l Data Model ing

The multidimensional view of data is a popular conceptual view that influences

front end tools, database design, and query engines (Chaudhuri & Dayal, 1997). As

suggested by Boehnlein & Ulbriche-vom Ende (1999), the basic idea of the

multidimensional view is the separation of quantitative and qualitative data. The

quantitative measurable data, called measures, are analyzed from various viewpoints

based on the qualitative content of the data, referred to as dimensions. These dimensions

have been defined as the "combination of some qualitative aspects to a common

structure" (Boehnlein & Ulbriche-vom Ende, 1999, p. 16). Together these lead to an n-

dimensional structure, often visualized using the cube metaphor as shown in Figure 3-10.

28

Figure 3-10: Representation of the Cube Metaphor

A multidimensional cube corresponds to a subject of analysis commonly referred

to in data warehousing terminology as a fact (e.g. a sales transaction). We do not

consider the use of the term "fact" semantically correct in this context since all objects

playing roles are essentially facts about the application domain. To avoid confusion,

throughout the remainder of this paper we will use the more semantically correct term

"event" to represent the subject of analysis instead of the more popular term "fact".

While this is a significant departure from the generally accepted use of the term, in light

of our fact-oriented approach we feel it is necessary to reflect semantics accurately.

In the multidimensional model, every dimension has a set of elements called

attributes. Shown on the axes of the cube in Figure 3-10, dimension attributes represent

different ways of analyzing the data (e.g. store and time of purchase). The intersection of

a dimension attribute for every dimension in the cube forms a cell containing a

quantitative measure that describes the event (e.g. sales quantity). In most applications

different measures describing an event are common, which means that a cell of the cube

contains more than one numeric value. Multidimensional models are usually organized in

terms of dimensions of the data, which are the terms of reference by which measures are

29

retrieved based on specific values of the dimensions. Dimension attributes can be

arranged hierarchically and measures can be summarized along these hierarchies based

on mathematical rules ranging from simple summarizations to complex averaging.

3.4.1. Multidimensional Concepts Through an Example

In the following sections we discuss a set of multidimensional modeling

requirements to understand the multidimensional concepts our fact-oriented model must

accommodate to efficiently design data warehouses. Ranging from fundamental to

advanced, these concepts represent the analytical processing requirements of end users.

To best understand multidimensional modeling and the structural properties of

multidimensional data we draw from a well-known Grocery example (Kimball, 1997).

We modify this example and reference it throughout the remainder of the paper to help

describe our approach. A summary of our example is presented below.

A large grocery chain with 100 stores is spread over a five-state

area. Each of the stores has a full complement of departments, including

grocery, frozen foods, dairy, meat, produce, bakery, floral and

health/beauty aids. Each store has roughly 60,000 individual products on

the shelves, each with bar codes referred to as stock keeping units (SKUs).

As customers purchase products at the cash register, sales data is

gathered by scanning bar codes into a point of sales (POS) system.

Management is interested in understanding customer purchases as

captured by the POS system and they have decided to analyze the POS

Retail Sales process. They hope to understand which products are selling

to which customers at which stores during which times.

30

3.4.2. Business Processes

As described by Kimball and Ross (2002), a business process is a major

operational activity supported by a source system (e.g. invoicing) from which data can be

collected for the analytic purposes of the data warehouse. Using that definition, the

business process we wish to model for our Grocery example is POS Retail Sales since we

are interested in customer purchases as captured by our POS transaction system.

3.4.3. Events

We define an event as an item of interest (e.g. a sales transaction) in a decision

making process. Central to data warehouses, events are described through attributes

called measures. Either atomic or derived, measures are numerical, continuously valued

attributes that describe the event from different points of view. In our example, Sales

Transaction is the event signifying the sale of an item and it is represented by the most

granular data accessible to us - an individual line item on a POS transaction.

Sales measures include price (i.e. amount charged), cost (i.e. amount an item

cost), and profit (i.e. the difference between the sale price and cost of the item).

3.4.3.1. Derived Measures

While the majority of measures are atomic, we must also be able to model derived

measures. A derived measure is one that is defined in terms of other measures, either

atomic or derived. In our example, profit is derived as the difference between price and

cost. When measures are arithmetically computed from others in this fashion we must

also be able to include the appropriate mathematical calculations.

31

3.4.3.2. Additivitv

Measures are usually summarized in various ways in order to analyze

information. Commonly known as additivity, this summarization refers to the ability to

aggregate measure values along all hierarchies defined on a dimension. In our example,

the quantity is additive as it can be summarized as the number of units sold for a product.

For other non-additive and semi-additive measures, aggregation is inherently

impossible or limited in the context of one or more dimensions for conceptual reasons.

The aggregation of some measures might not be semantically meaningful for these

measures along all dimensions. An inventory level measure for example is non-additive

on all the dimensions, since adding up levels does not make sense. However, we can still

aggregate this non-additive measure using operators such as average, maximum,

minimum.

Using our Grocery example, the number of customers is calculated for a given

product, day and store by counting the number of tickets for a certain product printed on

a certain day in a certain store. Since the same ticket may include other products, adding

or averaging the number of customers for two or more products would be inaccurate.

Thus, the number of customers is semi-additive as it cannot be consistently aggregated on

the Product dimension, but is additive on the Time and the Store dimensions.

Our multidimensional data model should correctly summarize and produce results

that are meaningful to the user when aggregating data. Specifically, it should avoid

double-counting data and provide a foundation for specifying which summarizations are

meaningful for different kinds of data. This concept of applying additivity to measures

along dimensions is crucial to multidimensional data modeling.

32

3.4.4. Dimensions

Our measures are based on a set of dimensions that present the context for

analyzing events. Dimensions contain discrete dimension attributes that characterize the

dimensions and determine the minimum granularity chosen to represent events. In our

example the dimensions for the Sales Transaction event are Product, Customer, Store and

Time. Focusing on the Customer dimension, a customer may have dimension attributes

including customer id, name, and income level.

3.4.4.1. Classification Hierarchies

Our multidimensional model must enable classification hierarchies. Hierarchies

are made up of discrete dimension attributes and determine how measures may be

aggregated and selected for the decision-making process. The dimension in which a

hierarchy is rooted defines its finest aggregation granularity; other dimension attributes

define progressively coarser granularities. Defining the classification hierarchies of

certain dimension attributes is crucial because these classification hierarchies provide the

basis for the subsequent data analysis.

A hierarchy level contains a distinct set of members and should be captured

explicitly by our model so users can determine the relation between different levels in the

hierarchy. Different levels correspond to different data granularities and ways of

classification. Level A rolls up to level B if a classification of the elements of A

according to the elements of B is semantically meaningful to the application. In our

example, the Time dimension can be decomposed into year, quarter, month and day

levels, showing that the day level rolls up to the month level, which rolls up to quarters,

33

which rolls up to years. In this way, product sales can be summarized on numerous

levels for each year.

Since a level can roll up to any number of levels, our model must allow a single

dimension to contain multiple hierarchies. This case occurs i f different criteria of

classification are possible for dimension members. Our model must not limit the number

of hierarchies in a single dimension and it must support hierarchies with any different

number of levels. Hierarchies may also share one or more common levels or attributes

but otherwise have no correlation. Figure 3-11 shows the different classification

hierarchies defined for the Product, Time, and Store dimensions. On the Product

dimension, we have defined a multiple classification hierarchy so we can aggregate data

values along two independent hierarchies: product-type-family-group and product-

brand. In our Time example, we define multiple the hierarchies time-month-quarter-

year and time-season.

PRODUCT TIME

Type

Family

Group

Brand Month

Quarter

Year

Season

STORE

City Sales Region

State

Country

Figure 3-11: Examples of Classification Hierarchies

As there can be more than one path along which to aggregate data in a single

dimension, our model must also support alternative path hierarchies. This type of

hierarchy occurs when several roll-up paths exist between two levels of a dimension. For

34

our Store dimension in Figure 3-11, we have defined an alternative path classification

hierarchy with two different paths that converge into the same state hierarchy level:

store-city-state-country and store-sales region-state.

3.4.4.2. Strictness & Completeness

While we have presented several basic characteristics of dimension hierarchies,

the concepts of strictness and completeness are also important for conceptual purposes.

Strictness is used to mean that an object at a hierarchy's lower level belongs to only one

higher level object. In our Store dimension example, Store and City have a strict

relationship because a Store can exist in only one City. Similar strict relationships exist

between City and State, with a City existing in only one State, and between State and

Country, with a State existing in only one Country.

Non-strictness means an object belongs to more than one higher-level object. In

a non-strict dimension hierarchy, many-to-many relationships may exist between the

different levels in the dimension. The Sales Region and State objects, for example, form

a non-strict relationship because a Sales Region can be comprised of more than one State.

Completeness means all hierarchy levels belong to one higher-class level and that

level consists of those members only. In our example, we have a complete classification

hierarchy between the State and Country levels since only the recorded States can form a

Country. By this we mean, all the recorded States form the Country, and all the States

that form the Country have been recorded. As another example, we may also define

completeness for the Quarter and Year hierarchy levels because all the recorded Quarters

form a Year, and all the Quarters that form the Year have been recorded.

35

3.4.4.3. Categorization of Dimensions

While classification hierarchies provide a degree of distinction between hierarchy

levels, as the number of dimensions increases certain attributes are valid for all hierarchy

levels within a dimension while others are only valid for a subset of levels.

Distinguishing this subset of attributes is referred to as the categorization of dimensions

and must be supported in our model to situations like heterogeneous products.

In our Grocery example, we need to track a number of different products together

with a common set of attributes and measures, but at the same time need to describe

additional details about individual products. For example, our Product dimension

attributes alcohol percentage and volume are valid for Drink products but are not

applicable for Food products. Our multidimensional data model should consider these

attributes and reflect the categorization semantics of the Product dimension.

3.4.4.4. Manv-to-Many Relationships Between Events and Dimensions

We usually consider events as many-to-many relationships between all

dimensions and as many-to-one relationships between the event and every particular

dimension. In our example, a sales transaction is related to a single product sold in one

store to one customer at one time (e.g. a ticket line item). In some cases, however,

events can represent many-to-many relationships between particular dimensions.

As seen in section 3.4.3.2, the reason for the non-additivity of number of

customers on the Product dimension is that the relationship between purchase tickets and

products is many-to-many instead of many-to-one. The sales and tickets form a many-to-

many relationship to the Product dimension because one ticket can consist of more than

one product, although every ticket is still purchased in only one store by one customer at

36

one time. Our modeling approach should semantically support the relationship between

an event and a dimension as not always being the classical many-to-one mapping via

constructs that are not traditional events or dimensions.

3.4.4.5. Degenerate Dimensions

In our Grocery example, the grain of our sales event is a Sales Transaction as

represented by a line item on a sales ticket. While the ticket is an identifying attribute for

the Sales Transaction event, it has no other attributes that would make it an actual

dimension and hence it is not treated as one. As Kimball and Ross (2002) indicate, this

situation often arises when the grain of an event is represented on an actual working

document such as an order or invoice. In these cases, order and invoice numbers often

become degenerate dimensions.

3.5. R e l a t e d M u l t i d i m e n s i o n a l D a t a M o d e l i n g W o r k

Numerous multidimensional surveys exist that define specific requirements for

multidimensional modeling and proceed to evaluate a series of models. Blaschka, Sapia,

Hofling, and Dinter (1998) list requirements for a formal OLAP application model to

analyze various models containing some kind of formalism. In a similar fashion,

Pedersen and Jensen (1999) present requirements found in clinical data warehousing for

multidimensional data models and evaluate several data models against them. While

different models are compared, the models are relevant to different modeling phases and

thus it is inappropriate to directly compare them.

In the remainder of this section we separate and discuss multidimensional

modeling works based on the three information levels discussed earlier in the chapter.

Our review is primarily concerned with translating an understanding of analytical

37

business requirements into a conceptual data warehouse design. As such, we focus the

majority of our review on works at the conceptual level while briefly discussing other

logical and physical design works for additional background. In addition to the three

traditional information levels presented, we briefly mention a fourth group of models to

complete our review. Categorized as Formal by Abello et al. (2001), these models are

not specific to a particular database design phase; instead they provide a theoretical

framework and multidimensional algebra or calculus.

3.5.1. Conceptual Level

The following sections provide a general overview of existing models that attempt

to capture multidimensional semantics at the conceptual level. While numerous models

exist, we mention only the most relevant conceptual models found in the literature.

3.5.1.1. Mult id imensional Entity Relat ionship Model (M / E R)

Sapia, Blaschka, Hofling, and Dinter (1998) propose the Multidimensional Entity

Relationship Model (M/ER) as a specialization of the ER model. Illustrated in Figure

3-12, the M/ER model includes a special dimension level entity set (e.g. vehicle) and two

special relationship sets connecting dimension levels - a fact relationship set (e.g. vehicle

repair) and a rolls-up-to relationship set (e.g. vehicle-vehicle model). A rolls-up-to

relationship set relates two dimension levels where the second one represents a higher

level of abstraction. Multiple hierarchies, alternative paths, and shared hierarchy levels

for different dimensions are supported and a fact relates different dimension level

entities. While many constructs are supported, the M/ER model does not depict derived

measures and their derivation rules, many-to-many relationships, strictness and

completeness.

38

type of
garage

A . . .

garage p »j geogr. region p~ »| country

Figure 3-12: Sample M/ER Model for Vehicle Repair
Adapted from "Extending the ER Model for the Multidimensional Paradigm," by Sapia et al., 1998,
Proceedings of the 1st International Workshop on Data Warehouse and Data Mining (DWDM'98), p. 112.

3.5.1.2. Star Entity Relationship Model (starER)

Tryfona, Busborg, and Christiansen (1999) propose the Star Entity Relationship

Model, basing their work on the ER model and the star schema. Shown in Figure 3-13,

the starER includes fact sets, entity sets, relationship sets, and attributes. A fact set (e.g.

repayment) represents a set of real-world facts sharing the same properties. An entity set

(e.g. loan) represents real-world objects with similar properties, and a relationship set

(e.g. at) represents a set of associations among entity sets and fact sets. Attributes (e.g.

loan id) represent static properties of entity sets, relationship sets, and facts sets.

repayment
payback

week 4 day m o n t h n i l ' i l t week day w
m o n t h

W

t l l lL ' d l lUOllMOIl

Figure 3-13: Sample starER Model for Mortgage Repayment
Adapted from "starER: A Conceptual Model for Data Warehouse Design," by Tryfona et al., 1999,
Proceedings of the 2nd International Workshop on Data Warehousing and OLAP (DOLAP'99), p. 6.

39

The starER's deficiency concerns the particular models used as its basis.

Although the ER model is the most popular for transaction processing, its inadequacy in

analytical processing is well documented as discussed earlier in this chapter. Although

the star schema provides abstraction understandable to the user, it is still logical, not

conceptual, and critical multidimensional semantics (e.g. derived measures) are lost.

3.5.1.3. Dimensional Fact Model (DFM)

Golfarelli et al. (1998b) propose a graphical conceptual model for data

warehouses called the Dimensional Fact Model (DFM). Shown in Figure 3-14, the main

components of the D F M are facts, measures, dimensions and hierarchies - together

forming a fact scheme with the fact as root. A fact (e.g. inventory) is central to the D F M

and its attributes are called measures (e.g. qty). Dimensions (e.g. product) are discrete

attributes that determine the minimum level of granularity chosen to represent the fact. A

hierarchy is a set of dimension attributes (e.g. type-category) linked by 1:1 or n:l

relationships and it may also contain additional descriptive information not used for

aggregation. Additivity is expressed by relationships between a measure and a

dimension, as tagged by the allowed aggregation functions.

./•^category
weight e

package size \ Y " Q brand
package typeN^ ^/^«nits per pallet

producT1

season

O O o =
vear month week "

A V G

address

I N V E N T O R Y

qty
-O O

warehouse city state

Figure 3-14: Sample Dimensional Fact Model for Inventory Management
Adapted from "The Dimensional Fact Model: A Conceptual Model for Data Warehouses," by Golfarelli et al.
1998, International Journal of Cooperative Information Systems, 7(2-3), p. 226.

40

While the D F M accommodates the basic elements of multidimensional analysis

and provides fundamental multidimensional constructs, is not well suited to express the

complex properties of multidimensional data. Only many-to-one relationships between

dimensions and facts are supported, objects not in the form of a dimension (i.e., not

connected directly to a fact) cannot be modeled, and finally, there is no way to depict

specialized relationships (e.g. specialization/generalization, membership).

The D F M also assumes a well-conceived relational model of source systems

exists. As discussed by Boehnlein and Ulbriche-vom Ende (1999), a major disadvantage

of this approach is having to first find a point of reference for the derivation of an ER

diagram. This is especially true i f the underlying models are very complex.

3.5.1.4. GOLD Model

Trujillo, Palomar, and Gomez (2000) describe the GOLD model as an object-

oriented conceptual model based on a subset of U M L . A fact (e.g. sales) is represented

as a basic class and is described through a set of fact attributes representing its measures

(e.g. qty, price). Through shared aggregation, a fact is related to a set of dimensions (e.g.

customer, time) that show the granularity adopted for representing facts.

SALES

ticketNr{OD,
lineNr
qty
price

/totalRxe

1 Y 1 1
STORE CUSTOTVB* TfcE

storekt piD} custorrerld PD}1 timeld{OID}
name name day

address address week
telephone telephone month

Figure 3-15: Sample GOLD Model for Retail Sales

41

The GOLD model is one of the most complete graphical conceptual modeling

techniques found in the literature. It takes into account many of the fundamental

elements of multidimensional analysis, including multiple classification hierarchies,

strictness and completeness, additivity, and derived measures. However, the model is

based on the graphic representation of UML, which is not well suited to conceptual data

modeling (Halpin, 2001). Hay (1999) makes a similar argument in suggesting UML is

not suitable for analyzing business requirements in cooperation with users.

3.5.2. Logical Level

Golfarelli et al. (1998a) discuss how the multidimensional model may be mapped

to the logical level differently depending on the underlying data store. If the store

supports multidimensionality, the model may be represented in a multidimensional

database in an n-dimension array. Alternatively, in relational databases the model is

usually mapped through a star schema as shown in Figure 3-16.

dimension 1

primary key 1
attribute 1
attribute 2
attribute n

dimension 2

primary key 2
attribute 1
attribute 2
attribute n

fact

primary key 1
primary key 2
primary key 3
primary key 4

measure 1
measure 2
measure n

dimension 3

attribute 1
attribute 2
attribute n

Figure 3-16: Logical Star Schema for Relational Databases

Undoubtedly the most well known logical model, the star schema is a result of the

dimensional modeling technique made popular by Kimball (1996). Illustrated in, the star

schema is a logical representation of multidimensional data structures in relational

42

database system. The two basic constructs that provide for multidimensionality in the

star schema are fact and dimension tables. The primary key of the fact table is composed

of a set of foreign keys to each one of the primary keys of the dimension tables.

As defined by Kimball (1996), dimensional modeling is a logical design

technique prominent in data warehousing that is different from, and contrasts with, ER

modeling. The technique seeks to present data in a standard, intuitive framework that

allows for high performance access. As argued by Kimball, significant advantages of this

model are it is highly recognizable to end users, it is a predictable framework that

withstands unexpected changes in user behavior, it is gracefully extensible, and it handles

common modeling situations. Unfortunately, although widely used, the technique is still

logical in nature and multidimensional semantics (e.g. hierarchies) are not supported.

3.5.3. Physical Level

Much of the concentration at the physical level is on specific storage techniques

for particular D B M S implementations. Dyreson (1996) explains how a sparse cube could

be implemented in a M O L A P database by means of cubettes but few constructs are

provided. Theodoratos and Sellis (1999) investigate the problem of designing a data

warehouse based on view materialization modeled as a search space problem. Other

Physical works deal with indexing (Chan & Ioannidis, 1998), query evaluation (Cabibbo

& Torlone, 1999), and query languages (Gingras & Lakshmanan, 1998).

3.5.4. Formal Level

The focus of formal models is not on conceptualizing user ideas so they do not

pay much attention to capturing specific user concepts. Instead, they are mainly devoted

to the definition of a multidimensional algebra or calculus and do not offer as many

43

constructs as other models. Since our focus is on modeling constructs, formal models are

not considered as conceptual, however, if we were to take into account the expressiveness

of the algebras, they could certainly be as semantically expressive as conceptual models.

Agrawal, Gupta, and Sarawagi (1997) presented one of the first formal multidimensional

models. With a focus on presenting an algebra this model does not offer many

conceptual elements to model a multidimensional scheme. In addition to Agrawal,

another notable formal model is the Extended Multidimensional Data Model (EMDM) as

proposed by Pedersen and Jensen (1999). The EMDM includes a multidimensional

formalism and procedures are described for implementing the model using relational

databases. Although these models support many complex multidimensional properties,

information is not graphically represented in a conceptual schema.

3.5.5. Shortcomings of Existing Models

To the best of our knowledge we have reviewed all of the proposed conceptual

multidimensional models and the most relevant logical, physical, and formal models. We

have found that conceptual models represent more semantics than models at other levels

and there seems to be a trend to semantically enrich multidimensional models to

overcome the limitations of conventional data models. However, while recent models are

providing more functionality, they are still not ideal for formulating, transforming, and

evolving a conceptual multidimensional model.

Table 3-2 presents the results of our conceptual multidimensional modeling

review. In short, a complete and natural conceptual design technique was not found that

adequately conceptualizes and clearly communicates multidimensional designs to

business and technical users alike. While several models (e.g. GOLD, starER) were able

44

to represent fundamental event and dimension properties, all models lacked several

desirable features. Specifically, we found existing approaches far removed from natural

language and difficult to populate with sample, making it challenging for users and

domain experts to conceptualize and validate designs. In addition, there is a general lack

of design guidelines to ensure modeling approaches are properly and easily applied.

Conceptual Multidimensional Models
Multidimensional Modeling Criteria MT.R '• starER l)K t ; o i i)

Events:
Atomic Measures Yes Yes Yes Yes
Derived Measures No No No Yes
Additivity No Yes Yes Yes

Dimensions:
Classification Hierarchies Yes Yes Yes Yes
Strictness No Yes No Yes
Completeness No Yes No Yes
Categorization of Dimensions Yes Yes No Yes
Degenerate Dimensions Yes Yes Yes Yes
Many-to-Many Relationships No Yes No Yes

Business Processes:
Business Process Families No No No No
Business Processes Yes Yes Yes Yes

Other:
Natural (Fact) Basis No No No No
Population & Validation Mechanisms No No No No
Design Guidelines No No Yes No
Implementation Using Existing Modeling Tools No No No Yes
Generation into an OLAP Tool Yes No No Yes

Table 3-2: Comparison of Existing Conceptual Multidimensional Models

Despite the growth of data warehousing, a standard does not exist to indicate what

should be represented in a multidimensional scheme. While it is widely recognized that

data warehouses are based on the logical star schema, there is no standard conceptual

data model commonly accepted for data warehousing and OLAP applications. Most of

the models reviewed use their own terminology and define a specific set of design

elements. Consequently, user analysis via a common framework is difficult and there is

no consistent basis for solving conceptual multidimensional modeling problems with an

intuitive and complete conceptual model.

45

3.6. S u m m a r y

This chapter presented an overview of data modeling for OLTP systems, data

warehouses and OLAP applications. We first examined basic data modeling concepts by

looking at the conceptual, logical, and physical levels of data. We then presented an

overview of several conventional data modeling approaches with a specific focus on ER

Modeling, U M L and O R M . Our review highlighted the differences between data

warehouses and traditional OLTP applications and we concluded different conceptual

modeling techniques are required for data warehouses due to the multidimensional nature

of analytical data. To better understand multidimensional data requirements we

presented various multidimensional concepts through an example.

Using the analysis requirements demonstrated with a sample Grocery chain, we

covered events and dimensions, measures, additivity, derived measures, classification

hierarchies, strictness, completeness and categorizing dimensions. The chapter

concluded with a review of the current state of multidimensional modeling works with a

focus on those attempting to express semantics at the conceptual level - the M/ER,

starER, D F M and GOLD models. The fundamental deficiencies and shortcomings of

these approaches in formulating, transforming and evolving a conceptual model provides

motivation for our model presented in the next chapter. Inspired by O R M , our proposed

approach considers an information system's structural properties at the conceptual level

more naturally than existing multidimensional models or conventional modeling

approaches.

4 6

4 . FACT-ORIENTED MULTIDIMENSIONAL M O D E L I N G

4 . 1 . I n t r o d u c t i o n

This chapter introduces Multidimensional Object Role Modeling (MORM), our

fact-oriented approach to conceptually modeling multidimensional data. We will first

present several key design considerations in specializing O R M and discuss the

advantages and disadvantages of using O R M in our approach. We will also demonstrate

how M O R M easily represents the main structural properties of multidimensional data at

the conceptual level. Our approach is presented in sections, each one outlining how our

model addresses a multidimensional modeling concept as presented in the previous

chapter. Our approach is a specialization of O R M in which we introduce several

multidimensional constructs and provide semantics, syntax, and rules for each. We will

also present design guidelines for our model in order to provide data modelers with a

systematic approach to building a conceptual multidimensional model using our

approach. The chapter concludes with an evaluation of our model and a discussion of its

benefits with respect to multidimensional and conceptual criteria.

4 . 2 . K e y D e s i g n C o n s i d e r a t i o n s

In order to allow the natural representation of semantics inherent in

multidimensional data, we specialize O R M . We do not propose a set of new concepts

and terminology, rather we attempt to pull multidimensional concepts together under the

O R M framework to try and understand their semantics while keeping core O R M

constructs the same. In doing so, our approach is driven by the following key design

considerations:

47

1. Specialization of ORM: All newly introduced elements should be special
cases of native ORM constructs. Thus, we maintain the flexibility and
expressiveness of ORM.

2. Minimal extension of ORM: The number of additional elements needed
should be as small as possible to ensure we can easily transfer scientific
results from ORM to our model. Minimal extension also ensures an
experienced modelers can easily learn and use our specialized model.

3. Representation multidimensional semantics: Our specialization should be
powerful enough to express advanced multidimensional semantics, namely
events and dimensions, additivity, derived measures, classification
hierarchies, strictness, completeness and the categorization of dimensions.

4 . 3 . W h y U s e O b j e c t R o l e M o d e l i n g ?

Prior to presenting our conceptual multidimensional modeling approach, we

discuss several primary reasons for our use of ORM. Simply put, we contend that

building a good data model requires capturing and expressing as much information as

possible at the conceptual level and we believe ORM is the best way to do this. Building

such a model requires an ability to first design a conceptual schema that accurately and

completely defines business rules in a way business users understand. To do this we

must effectively communicate with these users since we rely on them to define the rules

that dictate and validate the data. The following sections further elaborate on our use of

ORM, providing several arguments for and against its use as a modeling method.

4.3.1. Advantages of Using ORM

Designing a database requires a complete understanding of the subject area of

interest and O R M allows us to specify this in a clear and unambiguous way. ORM uses

natural language (e.g. English) and easily understood diagrams that are populated with

sample data to accomplish this goal. Since ORM is based on natural language, it can be

completely expressed in either graphical or textual format. This natural language is much

48

easier for users to understand, express, and verify than technical terminology and allows

for communications with business experts in their own language.

Another significant advantage of ORM is that it makes no initial assumptions

about an object's importance until performing conceptual to logical schema mapping.

The foundation of ORM is the elementary fact through which the universe of discourse is

expressed in terms of objects playing roles. Using simple, easy to understand facts like

"Person works for Department" requires no distinction as to whether an object is an

attribute or an entity and delays any commitment on the relative importance of each.

Delaying the decision to model an element as an attribute or an entity allows us to be

concerned only with the data and business rules and alleviates costly data integrity and

schema change problems in the future.

The fact-based approach of ORM is a simple, accurate approach that makes it

easy to apply a population check with real data that makes it easier to get one individual

fact correct than many facts simultaneously. It is also easy to determine constraints while

looking at sample data sets through ORM modeling. Semantic domains (e.g. units or

ranges such as "name", "SSN", etc.) are automatically included in these data sets,

meaning there is less chance for error in the final model.

4 .3 .1.1. Conceptual Modeling Evaluation Criteria

Our reasons for using ORM are evidenced in ORM's evaluation results against a

well-defined set of criteria for conceptual models - expressibility, clarity, semantic

stability, semantic relevance, validation mechanisms, abstraction mechanisms and formal

foundation (Halpin & Bloesch, 1999). Halpin & Bloesch suggest these criteria are

49

desirable characteristics for any language to be used for conceptual modeling. In support

of our use of ORM, we summarize the results of their evaluation below:

• Expressibility of a language is a measure of what it can be used to say about
a domain. For conceptual data modeling, ORM's rich constraint notation
makes it expressive both graphically and through the use of textual
languages. It has many constructs inherent to the language, and is therefore
more expressive of the actual universe of discourse. Its role-based notation
makes it easy to specify a wide variety of constraints, and its object types
reveal the semantic domains that bind a schema together.

• Clarity of a language is a measure of how easy it is to understand and use.
With respect to clarity, ORM structures may be directly verbalized as
sentences and its notations and textual expressions are easily learned and
remembered.

• Semantic stability is a measure of how well models retain their original
intent in the face of changes to the domain. Attribute-free, ORM is more
stable for modeling and not impacted by changes that would otherwise
cause attributes to be remodeled as relationships or vice versa.

• Semantic relevance means only relevant conceptual details need be
modeled. Using purely conceptual constructs ORM avoids modeling logical
or physical aspects such as implementation details.

• Validation mechanisms are ways in which domain experts can check
whether the model matches the application. ORM uses "data use cases" to
initiate data modeling through the verbalization and population of facts and
rules. Using simple sentences, this approach facilitates communication
between data modelers and users so the domain is understood and the
application model is validated.

• Abstraction mechanisms allow unwanted details to be removed from
immediate consideration. ORM models may be modularized into various
scopes or views based on perspective (e.g. a page of a data model). Other
mechanisms like attribute abstraction can be used to hide or show only a
portion of the model.

• Formal foundation of a language is needed to ensure it is executable and not
ambiguous. ORM has a sound theoretical basis and a mature formal
foundation that refines its semantics.

4.3.2. Disadvantages of Using ORM

While we have presented our case for the use of ORM, there are many arguments

against its use. As described by Becker (2000), these arguments and their rebuttals are

summarized as follows:

50

1. Standard industry CASE tools (e.g. ERwin, Data Architect) do not support
ORM and ORM's CASE tools (e.g. Visio) are not enterprise level tools:
While this is true, the importance should be on ensuring requirements are
correctly, precisely, and accurately gathered and that the resulting design
meets those requirements. It should not matter what tool is used to do this.
If a project fails because the underlying data model is not correct, the tool,
no matter how standard, is worthless. In cases where a model must
absolutely go in a company standard deliverable tool, it can simply be
entered once it has been developed in O R M and deemed to be correct.

2. ORM models are too verbose and take up too much space: O R M models
are indeed verbose, mainly because they capture many constraints that
other techniques are unable to express (e.g. attribute level constraints and
set comparison constraints like subsets and exclusionary rules). As such,
it is more important that the model completely specify the problem
regardless of how much space it utilizes. In either case, compact versions
of O R M models can be easily generated using O R M C A S E tools.

3. Virtually perfect models can be created in ER and/or UME. This is true
but using ORM's CSDP can make the process easier and lead to fewer
mistakes. Like O R M modelers, ER and U M L modelers basically think
about objects and the roles they play in order to implement them correctly
in terms of their methods (e.g. deciding what is an entity vs. what is an
attribute). O R M just makes this process more formal. It is also important
to note that ER models can be derived from O R M models relatively easily.

4. The world is going UML and we do not need yet another data-centric
technique: O R M and U M L are not mutually exclusive, rather they can be
used together and the overall results are usually better. O R M is a natural
fit into the U M L process flow, particularly at the analysis stage where
O R M can document the data and static constraints while U M L can
document processes and dynamic rules. Using these together can result in
analysis deliverables that are be better formed, more consistent, more
accurate, and more concise.

5. Users won't understand yet another diagram type: In ORM's case users
do not even need to see the notation i f they do not want to. Since O R M is
based on natural language, users can be shown sentences in English or
whatever language they understand. While users often pick up on
notations relatively quickly, they are often immediately comfortable with
ORM's sentences and its narrative style of data use cases.

4.4. M u l t i d i m e n s i o n a l O b j e c t R o l e M o d e l i n g (M O R M)

Having provided an overview of Object Role Modeling and multidimensional

modeling concepts in the previous chapter, we now bring these two topics together with

our fact-oriented multidimensional modeling approach. Based on our observation of the

51

limitations of existing conceptual techniques for multidimensional modeling, we propose

M O R M which introduces multidimensional constructs to ORM's grammar to support

multidimensional semantics. We do not propose an entirely new set of constructs and

terminology to represent these concepts, rather we utilize the O R M framework and

specialize it as required to represent multidimensional modeling semantics.

Our design goal is to provide a simple yet powerful approach that represents

multidimensional properties at the conceptual level. To achieve this we combine

multidimensional constructs with the semantically rich constructs of the well-known

O R M model as summarized in Appendix A . Our starting point is that O R M has been

used productively for years and has tested powerful enough conceptually, that when new

modeling techniques are needed to capture new demands, we should look to O R M .

To represent multidimensional properties at the conceptual level we introduce

three specialized object types - the Event Object Type, Dimension Object Type, and

Hierarchy Object Type. To distinguish these multidimensional constructs from native

O R M and ensure they are emphasized in our models, a special graphical notation is

defined for each as shown in Figure 4-1. These constructs are briefly defined in Table

4-1 and further described using examples in the sections that follow.

Event Object Type Dimension Object Type Hierarchy Object Type

Figure 4-1: Graphical Notation For New MORM Constructs

52

Construct Description
Event
Object
Type

Depicts an event (e.g. sales transaction) that is described with quantitative
measurable data and analyzed in terms of dimensions. Depicted as a black
fdled inverted ellipse with the event name in white upper case lettering. It is
larger than other constructs, signifying it is the focal point of analysis.

Dimension
Object
Type

Depicts a dimension (e.g. store) representing an analysis viewpoint based on
the qualitative content of the data. Forms the root of a dimension tree, where
each node is an object type and each edge is a functional (n:l or 1:1)
predicate. Depicted as a gray shaded inverted ellipse with black upper case
naming. Its size and shading signifies its importance as an analysis viewpoint
on an event and separates it from native O R M .

Hierarchy
Object
Type

Represents each classification hierarchy level (e.g. month) within a dimension
(e.g. time). A role between two hierarchy objects specifies a relationship
between two levels of a hierarchy (e.g. month is in quarter). Depicted as a
gray slash-filled ellipse with mixed case naming, its fill signifies its
importance in data analysis (e.g. aggregation) and separates it from native
O R M .

Table 4-1: MORM Constructs and Associated Descriptions

Since our model is a specialization of O R M , regular O R M constructs as outlined

in Appendix A are used in our M O R M diagrams. The extended diagram that results from

the combination of both techniques allows us to efficiently model both conventional

concepts (e.g. value types, roles, etc.) and multidimensional properties (e.g. dimensions,

hierarchies, etc.) at the conceptual level.

Our approach builds on ORM's conceptual schema design procedure (CSDP), a

formal method for designing a conceptual schema from a universe of discourse (Halpin,

2001). Shown in Table 4-2, the CSDP focuses on data analysis and design through seven

primary steps.

Step- Description
1 Transform familiar information examples into elementary facts, and apply quality checks
2 Draw the fact types, and apply a population check
3 Check for entity types that should be combined, and note any arithmetic derivations
4 Add uniqueness constraints, and check arity of fact types
5 Add mandatory role constraints, and check for logical derivations
6 Add value, set comparison and subtyping constraints
7 Add other constraints and perform final checks

Table 4-2: Conceptual Schema Design Procedure (CSDP)

53

Since we use O R M as the basis for our model, the fundamental CSDP steps still apply.

However, we need to consider additional guidelines to incorporate multidimensional

concepts as presented in the previous chapter. The following sections summarize how

M O R M represents these main structural aspects of multidimensional data.

4.4.1. Business Processes

Consistent with Step 1 of ORM's CSDP, familiar examples of business process

information from the application domain are initially gathered from reports, forms, the

domain expert or other application documentation. Our approach then translates the

information regarding the high-level relationship between business process events and

dimensions into elementary facts.

Following our Grocery example presented in the previous chapter, we begin to

gather information from our POS Retail Sales business process and verbalize it as facts f l

through f4 as shown in Table 4-3.

Fact - , _

f l The Sales Transaction with ticketNr 715 occurred in the Store named U B C Foodmart

£2 The Sales Transaction with ticketNr 715 occurred at the Time indicated 12:00

B The Sales Transaction with ticketNr 715 included the Product with product id 123456

f4 The Sales Transaction with ticketNr 715 was completed by the Customer with customer id 99

Table 4-3: Retail Point of Sale Facts

Facts 1 through 4 specify relationships between the Sales Transaction event and

the dimensions Product, Store, Customer, and Time. As in O R M , each fact expresses a

fundamental step in our M O R M approach - "an object plays a role with another object".

Facts assert that the objects participate in a relationship (play roles), where that

relationship cannot be expressed as a conjunction of simpler facts. As with O R M fact

assertions, object types begin with a capital letter and are displayed here in italics. The

54

relationship type, or logical predicate, is shown in bold between the noun phrases that

identify the objects. For our purposes, only the normal predicate is included in the

declarations. If the inverse was included it would be preceded by a slash "/". For

example, in f4 the "/" would indicate that the Sales Transaction plays the role of being

completed by, and the Customer plays the role of completing.

In the above case, the fact description indicates the entity type (e.g. Product), a

value (e.g. 123456) and a reference mode (e.g. Product Id) indicating the manner in

which the value refers to the entity. Removing the reference modes, the facts may also be

stated as shown in Table 4-4.

Fa'cf
fl Sales Transaction 715 occurred in Store U B C Foodmart

£2 Sales Transaction 715 occurred at Time 12:00

fi Sales Transaction 715 included Product 123456
f4 Sales Transaction 715 was completed by Customer 99

Table 4 -4 : Facts with Reference Modes Omitted

Stated even more briefly by removing the values, the above facts are instances of the fact

types shown in Table 4-5.

tt Fact Type .
f l Sales Transaction occurred in Store

f2 Sales Transaction occurred at Time

£3 Sales Transaction included Product

f4 Sales Transaction was completed by Customer

Table 4-5: Fact Types with Values Omitted

55

4.4.1.1. Event & Dimension Constructs

Once business process information examples are translated into elementary facts a

conceptual schema is drawn showing all the fact types. To support the

multidimensionality inherent in information at the business process level, we introduce

two M O R M constructs - the Event Object Type and the Dimension Object Type. These

constructs represent the events and dimensions we are interested in analyzing.

Figure 4-2 depicts the high-level M O R M model for the POS Retail Sales business

process. Our approach clearly divides business process data into events and dimensions,

as is evident from the Sales Transaction event object and its relationship to the dimension

objects Product, Store, Customer, and Time.

Figure 4-2: Schema for POS Retail Sales Business Process

The event object type is depicted as a black filled inverted ellipse. Its name is

capitalized and it is larger than other constructs, signifying it is the focal point of

analysis. Dimension object types are smaller inverted ellipses but are also shaded gray

56

and capitalized to distinguish them from other object types that will be added as the

model progresses. Reference modes are intentionally omitted from the diagram at the

business process level and are more appropriately included when event and dimension

details are modeled. Lines connect dimension object types to the roles they play and

predicates are shown as named sequences of two role boxes. Predicate names are read

left-to-right, however, there is only one role name to read in this figure as inverse

predicate names have been intentionally omitted.

Mandatory roles are explicitly shown by means of a mandatory role dot where the

role connects with its object type. In our example, all roles for a Sales Transaction are

mandatory, meaning all Sales must be associated with a certain Product, Store, Customer,

and Time. Roles without a mandatory dot are optional, as seen by the inverse roles as

read from the each of the dimensions. Although not included, an inverse role for our

example could read Product is included in Sales Transaction. The optional inverse role

indicates a dimension object can be part of zero, one, or more event object instances. In

short, our example dimensions may exist without playing a role in a Sales Transaction.

ORM's internal uniqueness constraints are used on the binary fact types to

capture cardinality by asserting entries in roles occur there at most once. For example,

the internal uniqueness constraints (tipped arrows) on our binary fact types assert that

each Sales Transaction occurred in at most one Store. This depicts a many to one

relationship with the first role mandatory. The absence of a uniqueness constraint on

dimension role indicates each Product can be part of many Sales Transactions. This

absence may be expressed explicitly by the default verbalization "it is possible that the

same Store sells more than one Sales Transaction.

57

The external uniqueness (circled "u") constraint spanning roles of the different

predicates to all dimensions specifies that in the natural join of the predicates, the

combination of connected roles is unique. This stipulates that for each Sales Transaction,

the combination of Product, Store, Customer and Time is unique. Stated another way,

given any combination of the four dimensions there is at most one Sales Transaction.

4.4.1.2. Families of Business Processes

Most organizations have an underlying value chain that represents the natural

flow of key business processes. Operational source systems produce transactions or

snapshots at each step of the value chain and generate interesting performance metrics

along the way. Each key process produces distinct metrics with unique granularity, time

intervals and dimensionality so each is typically modeled separately. As put forth by

Kimball and Ross (2002), an Enterprise Data Warehouse (EDW) often integrates this set

of related business processes based on common, shared dimensions. A n integrated data

warehouse combines measures from different processes to provide insight into

performance across the value chain.

Our approach to multidimensional modeling ensures we accurately represent

these "families " of business processes when modeling large, complex data warehouses.

To illustrate this concept, we now widen our Retail example to include store inventory:

Optimized inventory levels in our grocery stores can have a major

impact on chain profitability. Making sure the right product is in the right

store at the right time minimizes out-of-stock situations and reduces

overall inventory carrying costs. To better understand the inventory-sales

relationship, management would also like the ability to analyze daily

quantity on hand inventory levels by product and store.

58

In Figure 4-3 we illustrate the business process family concept using two business

processes - Retail Sales and Inventory. The Sales Transaction and Inventory event

objects represent metrics captured by these processes and share three common

dimensions - Product, Time, and Store.

Figure 4-3: Schema for Retail Business Process Family

4.4.2. Events

The following sections outline our approach to representing events in our M O R M

model. Following the concepts presented in chapter 3, major considerations for events

include atomic measures, additivity, derived measures and many-to-many relationships

between events and dimensions.

As the initial step in our approach, familiar examples of event information are

gathered from the application domain, verbalized into natural language, and subsequently

translated into elementary facts. Following our Retail example, information gathered for

the Sales Transaction event is verbalized into the fact types included in Table 4-6.

59

Fact Type
f l Sales Transaction cost Money Amount

f2 Sales Transaction was priced at Money Amount

B Sales Transaction had profit of MoneyAmount

f4 Sales Transaction sold Quantity

Table 4-6: Sales Transaction Event Fact Types

Once event information examples are translated into elementary facts we have a

set of fact types that can now be refined for business rules (e.g. constraints and

derivations) and added to the conceptual schema. A conceptual schema for our Sales

Transaction event is shown in Figure 4 -4 . Our MORM approach illustrates relevant

object types, predicates and reference schemes for the event.

Figure 4-4: Schema for Sales Transaction Event

4.4.2.1. Atomic Measures

Atomic measures are those that are primitive, or not defined in terms of others.

The atomic measures indicated in our Sales Transaction event are price, cost and

quantity. Our approach uses the common object type MoneyAmt for the three monetary

measures because we wish to make the domain explicit. This makes it clear that we can

compare monetary values (e.g. price vs. cost). The broken ellipse for Quantity indicates

this is a value type, in this case a number, and hence needs no reference scheme.

60

4.4.2.2. Derived Measures

In our approach, derived measures are marked with an asterisk "*" to indicate

their derivability and distinguish them from atomic measures. When measures are

arithmetically derived from others an appropriate mathematical calculation (referred to as

a derivation rule) must be provided. This derivation rule references other fact types in

the model. Similar to O R M , our approach uses a double asterisk "**" to indicate that the

derivation rule is to be added to the conceptual model and the associated measure is to be

stored in the physical database. In this derived and stored case, a derived measure is

stored as soon as its defining measures are entered in the database and it is updated

whenever they are updated. Our approach includes both the derived fact type indicator

(**) and the rule for clarity. As shown in Figure 4 - 5 , our example includes the derived

measure profit and its derivation rule is written as text in the schema.

|s ** { profit = price • cost}

1
define Sales Transaction has profit of MoneyAmt as

Sales Transaction was priced at MoneyAmtl, an
Sales Transaction cost MoneyAmt2, and
MoneyAmt = MoneyAmtl - MoneyAmt2

(Quantity* y.

^customerCount+ ^
^Sf

{customerCount is not aggregated along product dimension}

has i

Figure 4-5: Derivation Rule for the Profit Measure

Different styles may be used in O R M but we use a relational style in which fact

types are set out fully as relationship types. In this relational style predicates declare the

rule. An informal version of the rule is written as a comment in braces, while a formal

61

version specifies a derivation rule in which the derived fact type is defined in terms of the

others. In this definition, the derived fact type is said to be the definiendum, meaning

what is required to be defined (Halpin, 2001).

Various textual languages have been defined to express constraints, derivation

rules and queries in O R M schemas. We chose ConQuer, an O R M query language for

embedding constraints in our conceptual model. ConQuer is essentially classical logic

with set theory, and since an O R M fact table is a set of tuples, derivation rules can be

expressed in ConQuer using set comprehension (Halpin, 2001).

4.4.2.3. Additivity

Consistent with O R M , our approach uses a plus sign "+" to represent measures

referenced by a number, thereby indicating they can participate in numeric operations.

A l l measures with a "+" following their reference scheme are considered additive. For

example, the "+" on Quantity in Figure 4-5 indicates that the values which refer to

Quantity are actual numbers and hence may be added. Non-additive measures are not

depicted with the "+" symbol.

For semi-additive measures we include an informal rule as a comment in braces.

Shown in Figure 4-5, we include a rule for customerCount because it is additive on Time

and Store dimensions but cannot be aggregated along Product since the same ticket may

include other products.

4.4.3. Dimensions

As with our previous business process and event domains, the initial step of our

approach to modeling dimensions is to translate familiar information examples from the

application domain into elementary facts. If these examples are verbalized for the

62

Product dimension we translate them into a base set of fact types that include the

following examples in Table 4-7.

Fact Type
fl Product is identified by Product Key
f2 Product is known by Product Name
f3 Product is of Product Type
f4 Product belongs to Product Group

Table 4-7: Product Dimension Fact Types

As in our earlier examples, each sentence fact is expressed in plain language using

a meaningful predicate and non-technical object names that can be mapped to technical

database names later. Note that the addition of the "Product Key" provides a reference

concept to the dimension to make each Product unique. Each dimension in our

multidimensional model can be expressed using this same approach.

4.4.3.1. Classification Hierarchies

Introduced earlier in this chapter, the Dimension object type forms the root of a

dimension tree, where each node is an object type and each edge is a functional (n:l or

1 : 1) predicate. To support semantics inherent in the dimension tree, we introduce a third

M O R M construct - the Hierarchy Object Type. Hierarchy object types represent each

classification hierarchy level within a dimension and are depicted as named ellipses with

lightly shaded slash-fill notation.

Figure 4-6 shows the classification hierarchies defined for the Time dimension.

This schema illustrates how multiple classification hierarchies are possible using our

Hierarchy object types, allowing us to aggregate event measures along two different

hierarchy paths: time-month-quarter-year and time-season.

63

Figure 4-6: Multiple Classification Hierarchies in MORM

In our approach, a predicate between two hierarchy objects specifies a

relationship between two levels of a classification hierarchy (e.g. Month is in Quarter).

Other entity types and value types may play roles with hierarchy object types to provide

additional information (e.g. Month has monthOfYearNr) but may not be used for

aggregation purposes as a classification level hierarchy.

Our approach also uses hierarchy object types to model alternative path

hierarchies with two different paths that converge into the same hierarchy level. In

Figure 4-7 we depict the following alternative path hierarchies for the Store dimension:

store-city-state-country and store-sales region-state.

64

Figure 4-7: Alternative Path Hierarchies in MORM

In our example, from the Store dimension object type (the root of the dimension

tree) we run through the various functional chains (branches) until we finally reach the

last object types (leaves). Along the way we gather all the fact types to eventually group

them into a single table based on the identifier for Store (the Store Key). Modeling in

this manner will result in denormalized tables containing embedded functional

dependencies but we argue there is no need to enforce these since they have been

enforced in the operational systems from which the multidimensional data is extracted.

Since only the operational tables are used for updating, we believe it is advantageous to

model in this way to leverage the performance and comprehension benefits of

denormalization.

In our approach, every classification hierarchy level must have a label (e.g. City

Name) that identifies each level instance. To do this we include the constraint {L} next

to the identifying value type for each hierarchy level to explicitly indicate it is the

65

identifying label for that level. When our model is eventually generated into an OLAP

cube, the cube will store this value as the default label in its metadata to unambiguously

identify the hierarchy level. As shown in Figure 4-7, we have annotated the schema to

indicate cityName as the label for City. Applying a roll-up operation to aggregate

measures into the City level of the Store dimension will display the City Name label as

we analyze the Cities in which our products are sold.

In addition to multiple and alternative path hierarchies, our approach allows for

shared hierarchies between dimensions. As illustrated in Figure 4-8, Customer shares

the levels city, state, and country as defined in the Store dimension. Using ORM's

double-border notation, we depict these objects types and their predicates as external to

indicate they are imported from another schema in which they are fully defined.

Figure 4-8: Shared Hierarchies in MORM

66

4.4.3.2. Strictness

As defined in chapter 3, strictness means an object at a hierarchy's lower level

belongs to only one higher-level object (the target). Non-strictness means an object may

belong to more than one higher-level object. Our approach uses a combination of

cardinality (frequency) and optionality to model the concepts of strictness and non-

strictness, as illustrated in the schema in Figure 4-9.

Figure 4-9: Strictness & Non-Strictness in MORM

In this Store example, Store and City have a strict relationship because a Store can

exist in only one City. To model this strictness, a mandatory constraint on the Store role

indicates each store is located in at least one city. A many-to-one (n:l) constraint on the

first predicate role then indicates each store is located in at most one city. Similar strict

relationships exist between City and State, with a City existing in only one State.

67

The Sales Region and State object types form a non-strict relationship because a

Sales Region can be in more than one State. To model non-strictness, our approach

includes mandatory constraints on both roles to indicate that each Sales Region is located

in at least one State and a State is comprised of at least one Sales Region. A many-to-

many (m:n) uniqueness constraint on the roles then indicates that each Sales Region can

relate to more than one state. A verbalization of this non-strict relation is:

• it is possible that a Sales Region is comprised of more than one State and at
the same time a State is included in more than one Sales Region

4.4.3.3. Completeness

As described in chapter 3, completeness within a classification hierarchy means

that all members belong to one higher-class (target) hierarchy level and that level consists

of those members only. To model completeness, we define the {completeness}

constraint on the role of the target hierarchy level. We illustrate completeness in Figure

4-10 using the Time dimension from our POS Retail example.

Figure 4-10: Completeness in MORM

In Figure 4-10, we have added the constraint {completeness} on the target Year

object associated with Quarter. In this "complete" classification hierarchy between Year

and Quarter hierarchy levels, all the recorded Quarters form the Year, and all the Quarters

that form the Year have been recorded. As for non-completeness, our approach assumes

all classification hierarchies are non-complete by default.

68

4.4.3.4. Categorization of Dimensions

Our approach has shown how to model classification hierarchies within

dimensions but a multidimensional conceptual model should also consider the

categorization of dimensions to model additional features of subtypes. To do this we use

a generalization-specialization relationship to categorize entities that contain subtypes.

Like O R M , our approach displays subtyping using directed acyclic graphs - a

graph of nodes with directed connections, acyclic meaning there are no cycles. An

example of categorization using our POS Retail Sales example is shown in Figure 4-11.

(proaisey) / '

is of

PRODUCT

(prodKey)

I—,
{ ' C \ ' J ' >

(typeName \

{ 'A \ 'R' }

has i

, has ;
1

each Food is a Product that is of Group 'F"
each Drink is a Product that is of Group 'D"
each Refreshment is a Drink that is of Family 'R'
each Alcohol is a Drink that is of Family 'A'
each Juice is a Refreshment that is of Type 'J'
each Carbonated is a Refreshment that is of Type 'C

l . ' — - \ l—i flavour \

Figure 4-11: Categorization of Dimensions in MORM

The Product dimension contains six subtypes: Food, Drink, Alcohol,

Refreshment, Juice and Carbonated. Subtype links are shown as directed line segments

from subtypes to supertypes. Subtype nodes are introduced when we have specific roles

69

for them to play (e.g. Drink has volume). As with O R M , our approach requires formal

subtype definitions to be declared for all subtypes and written in the diagram. These rules

indicate the basis for categorization and must be defined in terms of at least one role

played by a subtype's supertype(s). By default, subtypes inherit the identification scheme

and all the roles of their supertypes so there is no need to repeat this information.

4.4.3.5. Many-to-Many Relationships Between Events and Dimensions

As described in section 3.4.4.4, we generally consider events to have many-to-one

relationships with each dimension. Thus far in our example, we have considered the

grain of our sales event to be the individual line item on a sales ticket (e.g. a single

product). To illustrate how we represent many-to-many relationships between events and

particular dimensions we now assume the grain of interest to be the sales ticket itself.

Since there are many line items (e.g. products) per ticket, this means we now have a

many-to-many relationship between the product dimension and the sales event. A ticket

can consist of more than one product, although each ticket is still purchased in only one

store by one customer at one time.

To represent this relationship at the conceptual level our approach includes

mandatory constraints on both roles played by the sales event and the product dimension

to indicate that each Product is included in at least one Sale and a Sale is comprised of at

least one Product. As shown in Figure 4-12, a many-to-many (m:n) uniqueness

constraint on both roles then indicates that each Sale can relate to more than one Product.

A textual rule can be written for this relationship as:

• it is possible that the same sale (ticket) contains more than one product and at
the same time product was part of more than one sale

70

Figure 4-12: Many-to-Many Relationship Between Event & Dimension

4.4.3.6. Degenerate Dimensions

Our approach defines other identifying features of an event, referred to as

degenerate dimensions, by placing the constraint {DD} next to the identifying object

type. In Figure 4-12, we have annotated Ticket, allowing the ticket number to be

analyzed in addition to the atomic and derived measures of the sale. This identifying

constraint groups individual line items at the ticket level and will prove useful during the

generation of our schema into a commercial OLAP tool.

71

4.5. M O R M Design Gu ide l ines

The previous section presented M O R M , which reflects our fact-oriented approach

to conceptually modeling multidimensional data. We now supplement our approach with

several key design guidelines for the development of a multidimensional data model.

Since we specialize O R M , the CSDP still applies to the overall design process, however,

we consider additional guidelines to incorporate multidimensional concepts.

Based on our experiences developing and utilizing these guidelines in several

large scale data warehouse implementations, we believe our guidelines reflect the natural

way data modelers and business users understand and view multidimensional modeling.

As evidenced by our modeling experiences, this approach is particularly useful for large,

complex data warehouses with many events and dimensions. Following our guidelines,

modelers are able to systematically develop domain sub-schemas that, together, create the

conceptual model for the entire enterprise. The response from business users in our

implementations indicates the models created using our guidelines are easily understood.

4.5.1. MORM Level 0: Preliminary Segmentation

The initial phase of our approach "Level 0" involves dividing the universe of

discourse into manageable subsections. This allows schema design activities to be

divided, where multiple modelers work on models relevant to their domain of expertise.

Segmenting the schema in this way creates different levels of abstraction and simplifies

the final model. We use ORM's subschema (submodel) concept to represent the different

levels of our M O R M models. Using subschemas, our approach is not restricted to using

flat diagrams to model large, complex data warehouses.

72

Level "0" is indicated as such since it is a preliminary step required to complete

initial segmentation prior to designing the different levels of the schema. Associated with

Level 0 are Guidelines #0a and #0b (shown in Table 4-8), which summarize our overall

approach and provide a foundation for the remainder of our guidelines.

Guideline •
0a Upon completion of the MORM design process, the multidimensional

model will be divided into four levels: business process family definition,
business process definition, dimension definition, and event definition.

Ob Before beginning the model, define events and dimensions and indicate
shared dimensions and dimensions that share some hierarchy levels.

Table 4-8: MORM Level 0 Design Guidelines

Based on Guideline #0a, the multidimensional schema is designed in a top-down

fashion by decomposing the model into different levels as outlined in Table 4-9. These

levels are discussed further in the sections that follow.

Level Name Description
1 Business Process Fami ly

Definit ion
A subschema representing an integrated set o f related
business processes based on common, shared dimensions.

2 Business Process
Definit ion

A subschema representing a business process and its
associated events and dimensions.

3 Event Definit ion A subschema representing an event and its associated
measures.

4 Dimension Definit ion A subschema representing a dimension and its associated
hierarchy levels.

Table 4-9: Four Levels of a MORM Schema

4.5.2. MORM Level 1: Business Process Family Definition

Level 1 of our method models a Business Process Family through the use of

Event and Dimension object types. This leads us to Guideline #1 as shown in Table 4-10.

Guideline
1 Using only Event and Dimension Object Types, draw a subschema

representing al! business processes considered.
2 Define instances of all fact types (objects and their predicates) as

external to indicate that definitions of event and dimension objects
and their roles exist in subsequent levels.

Table 4-10: MORM Level 1 Design Guidelines

73

Figure 4-13 shows the first level of a model representing the family of business

processes from our case study.

Figure 4-13: MORM Level 1 - Retail Business Process Family

Event object types represent the Sales Transaction and Inventory events while

Dimension object types represent the Time, Store, Customer, and Product dimensions.

Dimension objects with roles spanning two event objects at this level indicates the

business processes share that dimension. At this level, the predicates and objects of all

fact types are annotated with double-border ellipses to indicate they are external. This

leads us to Guideline #2 of our approach shown above in Table 4-10.

Using the external property in this way allows us to reference the event and

dimension objects that will be defined in another schema level in subsequent phases of

the design process. Once we define the dimensions, all events can use them without

having to define them again. This ensures the integrity of our data model by allowing us

to define object types and their roles, and then refer to these definitions throughout other

subschemas within the entire data model.

74

4.5.3. MORM Level 2: Business Process Definition

Level 2 of our approach involves drawing a subschema for each business process

considered. Shown in Table 4-11, Guidelines #3 and #4 guide the design at this level.

mm Sideline »
3 Draw a subschema representing a single business process using a

single event object and its associated dimension objects and
predicates.

4 Annotate instances of all event and dimension object types as
external, however, fully define roles (predicates) between each
object.

Table 4-11: MORM Level 2 Design Guidelines

Figure 4-14 shows the POS Retail Sales business process modeled using our

approach. As in Level 1, object types are annotated as external to indicate they are

defined elsewhere in the model. However, detail is introduced at this level for the roles

between the event and its associated dimensions.

Figure 4-14: MORM Level 2 - POS Retail Sales Business Process

In our example, all roles played by the event object are mandatory (e.g. Sale must

have at least one Store), thus are explicitly shown by a mandatory role dot where a role

connects with the object type. Internal uniqueness constraints over the roles indicate each

75

object playing that role does so only once (e.g. each Sales Transaction occurs in at most

one Store). The external uniqueness constraint across the four roles indicates each Sale

occurs for at most one Store, Customer, Product, and Time combination.

4.5.4. MORM Level 3: Event Definition
Level 3 of our M O R M method creates a subschema for all the measures of

interest in a business process. Shown in Table 4-12, Guidelines #5, #6, and #7 of our

approach guide subschema development throughout this level.

5 Draw a subschema defining an event and all relevant measures of
the business process.

6 Fully define the event object and other objects for each of the
measures considered; define derivation rules for any derived
measures.

7 Define roles between the event object and each of its associated
measure objects.

Table 4-12: MORM Level 3 Design Guidelines

Figure 4-15 shows a Level 3 schema representing event measures from our case study.

** { profit = price • cost}

define Sales Transaction has profit of MoneyAmt as
Sales Transaction was priced at MoneyAmtl, an
Sales Transaction cost MoneyAmt2, and
MoneyAmt = MoneyAmtl • MoneyAmQ

Figure 4-15: MORM Level 3 - Sales Transaction Event

76

Since the Level 3 subschema is the original source of the event object definition,

the object is drawn with a single border. Measure objects are defined and rules are

developed to reflect additivity and indicate derived and stored measures. Rules are

defined for all objects by indicating mandatory roles and uniqueness constraints for each

of the measures.

4.5.5. MORM Level 4: Dimension Definition

Level 4 of our approach models dimension content using dimension objects as the

root of dimension trees and hierarchy object types to represent the hierarchy levels within

the dimension. This leads to Guidelines #8, #9, #10 and #11 of our approach shown in

Table 4-13.

Giiiik-liiu-
8 Draw a subschema representing each dimension of the business

process.
9 Draw a dimension object for the dimension and hierarchy objects for

each of its hierarchy levels, define roles played by each.
10 If a dimension or hierarchy level has been previously defined, draw

its objects and predicates and annotate them as external (i.e. do not
define a dimension or hierarchy level twice).

11 Define objects and roles for each of the remaining dimension
attributes.

Table 4-13: MORM Level 4 Design Guidelines

Figure 4-16 shows a Level 4 model representing the Customer dimension, its

different hierarchy levels (e.g. City, State, and Country) and other dimension information.

At this level, a dimension object forms the root of a dimension tree, where each node is

an object type and each edge is a functional (n:l or 1:1) predicate.

77

Figure 4-16: MORM Level 4 - Store Dimension

Hierarchy levels are indicated with hierarchy object types, while external

hierarchy objects and predicates represent hierarchy levels defined in another source

subschema and shared by this dimension. For example, the external fact types for City,

State, and Country are defined elsewhere (e.g. the Store dimension) and annotated here as

external to indicate they are shared with that dimension.

It is important to note dimensions that share hierarchy levels do not need to share

the whole hierarchy. For example, the address hierarchy of the Store dimension could

just include the City and State levels i f required.

4.5.6. Design Guideline Summary

Having described each of the design levels and guidelines separately throughout

the previous sections, we now summarize the entire M O R M design process in Table

4-14.

78

" Level Guideline
Oa 0 £7po« completion of the MORM design process, the multidimensional model will be

divided into four levels: business process family definition, business process definition,
dimension definition, and event definition.

Ob 0 Before beginning the model, define events and dimensions and indicate shared dimensions
and dimensions that share some hierarchy levels.

1 1 Using only Event and Dimension Object Types, draw a subschema representing all the
business processes considered

2 1 Define instances of all fact types (objects and their predicates) as external to indicate that
definitions of event and dimension objects and their roles exist in subsequent levels.

3 2 Draw a subschema representing a single business process using a single event object and
its associated dimension objects and predicates.

4 2 Annotate instances of all event and dimension object types as external, however, fully
define roles (predicates) between each object.

5 3 Draw a subschema defining an event and all relevant measures of the business process.
6 3 Fully define the event object and measure objects for each of the measures considered;

define derivation rules for any derived measures.
7 3 Define roles between the event object and each of its associated measure objects.
8 4 Draw a subschema representing each dimension of the business process.
9 4 Draw a dimension object for the dimension and hierarchy objects for each of its hierarchy

levels, define roles played by each.
10 4 If a dimension or hierarchy level has been previously defined, draw its objects and

predicates and annotate them as external (i.e. do not define a dimension or hierarchy level
twice)

11 4 Define objects and roles for each of the remaining dimension attributes.

Table 4-14: MORM Design Guideline Summary

4 . 6 . A n E v a l u a t i o n o f M O R M

Through a specialization of Object Role Modeling, we have proposed a natural

and expressive model that represents the structural properties of multidimensional data at

the conceptual level. We believe our fact-oriented approach, as exemplified by M O R M ,

provides many benefits over other related multidimensional models.

To the best of our knowledge, we have presented the first fact-oriented approach

to conceptual multidimensional modeling. In doing so, we leverage the fact-oriented

paradigm and introduce several new multidimensional constructs to O R M - the Event

Object Type, Dimension Object Type, and Hierarchy Object Type. We take the concepts

and basic ideas of the multidimensional view of data and propose an approach based on

the fact-oriented paradigm to model multidimensional data at the conceptual level. We

79

believe this utilization of the fact-oriented paradigm provides us with a conceptual

multidimensional model that is more natural and simpler than existing models. As such,

M O R M provides a solid basis for solving conceptual multidimensional modeling

problems with a more intuitive and natural conceptual model than existing approaches.

We propose M O R M as a specialization of O R M model by defining additional

graphical constructs and guidelines to consider the characteristics of multidimensional

modeling. Our technique allows us to consider key multidimensional properties at the

conceptual level, providing semantics that distinguish qualifying (dimension) and

quantifying (event) data. Other key multidimensional properties supported by our

approach include multiple and alternative path classification hierarchies, strictness and

completeness, many-to-many relationships between events and dimensions, additivity,

derived and atomic measures, and the categorization of dimensions.

Based on our practical experience, we have also provided design guidelines to

properly and easily apply M O R M . We believe these guidelines reflect the natural way

users and data modelers think about multidimensional data and lead us to a very simple

yet powerful multidimensional model. Through our guidelines, we have shown how

M O R M subschemas can be successfully used for multidimensional modeling at four

levels of complexity - business process family, business process, event and dimension.

Our multilevel subschemas group different levels of abstraction to simplify conceptual

design when modeling large and complex data warehouses.

A significant advantage of our approach is that it uses a widely accepted fact-

oriented modeling language. By basing our approach on the established O R M model we

80

enable the transfer of research results published in the context of O R M . As such, we can

apply previously discussed evaluation results (Halpin & Bloesch, 1999) to our approach.

By specializing O R M , we also minimize the effort required of data modelers to

learn new modeling notations and methodologies for data warehouses and O L A P

applications. This way, we ensure a shallow learning curve since data modelers can

combine M O R M elements with classical O R M elements and, although the approaches

will be different, conceptual data models for OLTP and OLAP applications may be

specified using a uniform notation.

4.7. S u m m a r y

In this chapter we introduced M O R M , our fact-oriented multidimensional

modeling approach which introduces multidimensional constructs to O R M . We have

demonstrated how our approach handles basic and advanced multidimensional concepts

and have shown how our M O R M guidelines are used for successful multidimensional

modeling at various levels of complexity. Based on our experience, our guidelines

provide various levels of abstraction and simplify conceptual design when modeling large

data warehouses. Finally, we evaluated our model and discussed its strengths with

respect to multidimensional concepts conceptual modeling language criteria. Among

other benefits, we have shown that our approach provides a natural, yet powerful way to

model multidimensional data and allows domain experts to validate the model in terms of

sentences and sample data populations. As we will demonstrate in the next chapter,

another significant benefit of our model is that can be automatically mapped to logical

and physical schemas and implemented using existing technologies.

81

5 . A P P L Y I N G M O R M : A C A S E S T U D Y

5 .1 . I n t r o d u c t i o n

This chapter describes the application of our fact-oriented modeling approach

throughout the multidimensional modeling implementation lifecycle, which we define to

include the four phases outlined in Table 5-1.

Phase Description , - '
1 Creating a conceptual schema in a graphical modeling tool.
2 Mapping a logical schema from the conceptual schema.
3 Generating a physical schema from the logical schema.
4 Building an OLAP cube from the physical schema.

Table 5-1: Multidimensional Modeling Implementation Lifecycle

To test the practicality and usability of our approach we demonstrate how our

model can be implemented throughout this lifecycle using existing technologies. In

doing so, we first provide an overview and rationale for our selected development

environment tools, then present the implementation details for each phase. Following the

implementation we evaluate our results and identify the experiences we have learned

from our case study.

5 .2 . D e v e l o p m e n t T o o l s

Before describing the implementation details of our approach, we first introduce

our chosen development tools. These tools are required to achieve various tasks

associated with the four lifecycle phases of our implementation. The following sections

review our selections for tools to facilitate conceptual and logical modeling, relational

database storage, and O L A P cube generation.

82

5.2.1. Conceptual & Logical Modeling Tool: VisioModeler™

O R M is supported by a variety of modeling tools, including Microsoft®

VisioModeler, Microsoft® Visio 2000 Enterprise, and Microsoft® Visual Studio.NET.

Formerly known as InfoModeler, VisioModeler was renamed when Visio Corporation

acquired InfoModeler in 1997. Visio then rewrote the VisioModeler tool to use the Visio

drawing engine and released the first version of the Visio Modeling Engine add-in with

Visio 2000 Enterprise. With the subsequent acquisition of Visio in 2000, Microsoft

released VisioModeler as unsupported product.

The Visio 2000 Enterprise tool supports updated drivers and diagramming for

most of the O R M constructs, however, relational mapping is not supported. Microsoft's

second, more advanced version of the Visio Modeling Engine is found in Visual Studio

Enterprise Architect (VSEA), released in April 2002 as part of Visual Studio.NET.

V S E A provides the most current support for O R M modeling with many improvements to

diagramming and relational database mapping, however, it is quite expensive and

unavailable on trial basis.

Although VisioModeler is a discontinued product with outdated database driver

support, we chose it as our modeling tool because of its functionality and availability. It

may be unsupported, but VisioModeler remains a feature rich, mature modeling tool that

allows the creation of O R M models and subsequent mapping to a wide range of database

systems. VisioModeler is easily accessible as a free download from Microsoft®

Corporation (www.microsoft.com), whereas other O R M modeling tools are cost

prohibitive.

We use VisioModeler to formalize our database design by working at the

conceptual level using natural-language facts, verifying our design using real-world

83

http://Studio.NET
http://Studio.NET
http://www.microsoft.com

example data, validating and mapping a logical model, and finally producing a physical

schema using 32-bit ODBC drivers. VisioModeler models can be automatically mapped

to database schemas for implementation on most popular relational databases. To do this,

VisioModeler automatically generates table diagrams (i.e. a logical model) that can be

automatically translated into SQL code and applied to the database system of choice.

5.2.2. Relational Database: Microsoft® SQL Server™ 2000

We chose Microsoft® SQL Server™ 2000 (SQL Server) as our relational

database management system (RDBMS) because of its market share and availability.

SQL Server is a family of database products appropriate for a broad range of solutions,

including small and large business applications, e-commerce, and data warehousing.

Marketed by Microsoft as a "complete database and analysis product"

(www.microsoft.com), SQL Server meets the storage requirements of large businesses

yet provides easy-to-use data storage services to individuals and small businesses.

Of the eight versions available, we chose Microsoft® SQL Server™ 2000

Enterprise Evaluation Edition. This edition is a full-featured version available as a

download from Microsoft (shop.microsoft.com/devtools) for a minimal shipping and

handling fee. Intended only for feature evaluation, this is a 120-day time-limited version

of SQL Server 2000 Enterprise Edition licensed for demonstration, testing, examination,

and evaluation. SQL Server is attractive not only because we can evaluate the complete

set of data management and analysis features without purchasing the full version, we can

also install it on the desktop without running a server based operating system.

84

http://www.microsoft.com
http://shop.microsoft.com/devtools

5.2.3. OLAP Tool: Microsoft® SQL Server™ Analysis Services

Bundled as a component of SQL Server 2000, Analysis Services is a

multidimensional analysis tool with OLAP and data mining capabilities. A logical choice

for us because of its integration with SQL Server, Analysis Services can also extract data

from the data warehouses and data marts of many other data sources. Its data can be

stored multidimensionally within relational databases (ROLAP), as separate, high-

performance multidimensional data structures (MOLAP), or hybrid combinations of both

(HOLAP). Through its multidimensional cubes, Analysis Services allows us to turn

Grocery data stored in the star schema event and dimension tables of our SQL Server

database into meaningful, easy-to-navigate business information.

5.3. S T E P 1: C r e a t i n g t h e C o n c e p t u a l M O R M S c h e m a

Having described our example case study and the development tools we'll use for

our implementation, we now begin the conceptual design of our multidimensional model.

We use VisioModeler as our modeling tool to examine and describe the application

domain in a way that is clear and easy to understand. A multidimensional model

representing the M O R M constructs described in the previous chapter should be easily

designed in the VisioModeler tool. Our output at this step is a conceptual model

consisting of natural language facts and intuitive diagrams that serves as a key

communication tool between the end user and designer.

We demonstrate the practicality and feasibility of our M O R M model through our

Retail POS example presented in the previous chapter. Since we have revised this

example in several places, we restate it here to avoid confusion.

85

A large grocery chain with 100 stores is spread over a five-state

area. Each of the stores has a full complement of departments, including

grocery, frozen foods, dairy, meat, produce, bakery, floral and

health/beauty aids. Each store has roughly 60,000 individual products on

the shelves, each with bar codes referred to as stock keeping units (SKUs).

As customers purchase products at the cash register, sales data is

gathered by scanning bar codes into a point of sales (POS) system.

Management is interested in understanding customer purchases as

captured by the POS system and they have decided to analyze the POS

Retail Sales process. They hope to understand which products are selling

to which customers at which stores during which times.

Optimized inventory levels in our grocery stores can have a major

impact on chain profitability. Making sure the right product is in the right

store at the right time minimizes out-of-stock situations and reduces

overall inventory carrying costs. To better understand the inventory-sales

relationship, management would also like the ability to analyze daily

quantity on hand inventory levels by product and store.

5.3.1. VisioModeler Diagram Workspace

Before we discuss the design of our conceptual models, we provide a brief

overview of the VisioModeler Diagram Workspace used to create and manage basic data

modeling tasks. Using toolbars and editors in the main VisioModeler window we create

the conceptual models of our multidimensional database in an object-role modeling

document using our MORM modeling approach. Each conceptual model is specified in

an ORM Modeling Diagram (.IMO file), with a set of graphic symbols and specialized

tools used to design our data model.

For all of our submodels, we first begin conceptual design of our application

domain in an ORM modeling diagram, then build and refine the mapped logical model in

a dictionary document. A modeling document (.IMO file) is saved as a file that can be

86

opened and closed like any other file, however, a dictionary document (.IMD file) is

associated with a particular modeling document or project and can only be opened when

its associated modeling document or project is open. As illustrated in Figure 5-1, a

model and its associated dictionary comprise the specification of the model.

Figure 5-1: MORM Model and Associated Dictionary Document

VisioModeler provides several ways to create and edit the symbolic components

of fact types in our modeling diagram. Primarily, the Tools palette is used to draw and

connect object types and predicates one by one and the Constraints palette is then used to

- -Visin-tuilflei -[Ll-BPr-RL'ldllVdlutChdlPl.IMU]

! f_J] F V Fi I 1 P - L I).! .O j'.c R i iM 1 * 1 'ci''1". A T . I I i u Pyjr '£.iri<iw M -*!

RT zbJ 11 i ! ± J AJ j ^ j . r i i © CB I

add constraints to the diagram. Both Palettes are shown in Figure 5-2.

Figure 5-2: VisioModeler Tool and Constraint Palettes

87

The Fact Editor is also used to create and edit a fact type in our M O R M model.

Shown in Figure 5-3, the Fact Editor greatly simplifies the entry of facts by automatically

converting the entered text to the appropriate symbols in the M O R M diagram. The

Editor checks the syntax of a fact type and as shown in Figure 5-4, verifies the

correctness of a fact type's constraints using example data.

I <icL Lihtot — I iJit r ' H i s l m g TdLl

Fat! | u^cct | Exripfe: | Lon-lLiri] <H,-Tr-ci]

Enter heeforrrTtect

|ii.ALL<^ I IIAN'.AI I ION'."I ILU'JIUMLII I 'I

Inpu ih i'»

{• Freefoim |[T T ?] '

3

—— — 1
Close- New F a d , L Preferences C Help£

Figure 5-3: VisioModeler Fact Editor Window

TactEd-tm Mil i"*m,nij I art

i]ZetooiOne ;»j

^ jzeio a Moie |

Uroquenew.

SAIESIRAWSACTIO'I

IIIIIIIIIIII

IIJMZZIIZ zzzn
£et UC Consbajnts

1!
I

i i

Figure 5-4: Fact Editor Constraints and Associated Data Examples

5.3.2. Creating a MORM Project

We use VisioModeler's project-based development feature to support our multi­

level design approach to multidimensional modeling. A Project is created as a set of

model documents containing various M O R M subschemas that make up the specification

of our entire multidimensional data model. Within a Project, we subdivide a complex

multidimensional model into smaller, manageable submodels associated with the design

88

levels outlined in our approach. These submodels use multiple modeling documents and

can be developed by different modelers with different domain expertise and subsequently

re-used across the data warehouse.

Shown in Figure 5-5, our VisioModeler Project shows how we have defined and

organized our multidimensional model using multiple source documents. Our submodels

are organized using a tree diagram and are categorized by type of model document. With

the creation of our Project, VisioModeler has generated a Project file (.IPJ) and a

directory to store all the models associated with our Project. Our files are named to

indicate design level (e.g. L I , L2) and Type (e.g. E V for Event, D M for Dimension).

• • Si Hi ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ w 1
E 3 €S| Object Role Modeling Diagrams

g| L1-BPF-RetailBusinessProcessFamilii.lM0
; 3 L2-BP1-POSRelailSales.imo ;
! g| L3-EV1-SalesTransaction.imo ,i
: 3 L2-BP2-lnventory.lM0 v
\ 3 L3-EV2-lnventory.lM0
\ 3 CADataV.AL4-DM1-Store.IM0
1 jj3 CADataV.AL4-DM2-Product.IM0
! 3 CADataV.AL4-DM3-Time.IMO
: gj L4-DM4-Customer.lMO '|

ft Logical Model Diagrams m

Figure 5-5: VisioModeler's Project Window

When building its dictionary, VisioModeler combines the contents of the model

documents listed in our Project window to form an integrated model and saves this

information in a dictionary document. In building the dictionary, VisioModeler merges

our Project files to form a complete, mapped model of our multidimensional application

domain and saves this information in a dictionary (.IMD) file. The build process checks

89

http://CADataV.AL4-DM1-Store.IM0
http://CADataV.AL4-DM2-Product.IM0
http://CADataV.AL4-DM3-Time.IMO

and validates overlapping model components to ensure model integrity. Defining a

project in this fashion supports M O R M Guideline #0a, which states that upon completion

of the M O R M design process, our model should be divided into four levels.

5.3.3. Creating MORM Schemas

Having described our Project and the fundamentals of the VisioModeler

workspace, we next discuss the process of creating individual submodels. Consistent

with our approach and the design guidelines presented in chapter 4, we use the

VisioModeler workspace to create subschemas for each of our design levels. As a

prerequisite step to schema development we follow Guideline #0b and define events,

dimensions, hierarchies and hierarchy levels for each of our business processes. The

resulting segmentation for the Retail Sales business process is shown in Table 5-2.

Business Dimension Hierarchies
Process E\cnt \leasurc Dimension Level Shared

POS Retail Sales Price Store City Y
Sales Transaction Cost State Y

Profit Country Y
Ticket # Product Group N
Quantity Family N

Type N
Band N

Customer City Y (Store)
State Y(Store)
Country Y(Store)

Time Month N
Quarter N
Year N

Table 5-2: MORM Design Guideline #0b

With the preliminary segmentation activities of Level 0 addressed in Table 5-2,

we now complete schemas for Levels 1 through 4, for our business process family,

business processes, events, and dimensions. Since we have demonstrated all

multidimensional modeling aspects of our approach through examples in the previous

90

file:///leasurc

chapter, we will not reiterate development details of our case study schemas in the body

of this chapter. Instead, we include complete VisioModeler subschemas for each level of

our case study in Appendix B for the reader's reference.

Throughout the development of each of our schemas, we followed our M O R M

design guidelines to ensure multidimensional concepts were accurately represented, while

adhering to ORM's CSDP for general O R M design principles and steps. Consistent with

our approach, familiar information examples were first developed for our case study.

Those examples were then translated into elementary facts and conceptual schemas

showing all the fact types were drawn for each submodel. To support the

multidimensionality inherent in our Retail Sales data, our schemas make extensive use of

our proposed M O R M constructs - Event, Dimension, and Hierarchy Level Object types.

Upon completion of the M O R M design process, our resultant multidimensional

model is divided into four levels. Before the final integration of these levels, we validate

our subschemas using VisioModeler's CheckDocument option from the main toolbar. This

function checks to see i f our subschema is valid (e.g. no contradictory constraints) and

helps us refine our model and correct any errors prior to logical mapping.

5.4. STEP 2: Mapping the Logical Schema

Having checked and validated our integrated source model documents, we now

build the data dictionary and map the conceptual model to the logical model. To do this

we use the BuildDictionary option from the main toolbar. VisioModeler builds a data

dictionary using the specifications designed in our source model documents, then

validates and maps the conceptual schema in the dictionary to a logical schema. This

91

section briefly explains the process of building the dictionary file, validating the

conceptual model, correcting errors/warnings and mapping the logical model.

5.4.1. Building the Data Dictionary

VisioModeler builds a data dictionary based on the contents of our project and

saves the dictionary document as a .IMD file that acts as a central repository for essential

information about our integrated model. The data dictionary contains complete

information about the components of our model, including a factbase (the facts that

describe our application domain), the conceptual schema, mapping paths, and the mapped

logical schema. When building the dictionary, VisioModeler gathers information in our

source model documents, consolidates the models associated with our project into one

dictionary, forms a conceptual model in the dictionary, validates this model, and then

maps the validated model to a logical model.

VisioModeler's Output window identifies and locates any modeling errors in our

model and dictionary documents. The Output window displays information, progress

notes, warnings,- and error messages found during many VisioModeler operations,

including building the dictionary and validating a model. Our generation results are

shown in the Output window in Figure 5-6.

i S t a r t i n g B u i l d . .
C : \ D a t a \ P e r s o n a l \ E d u c a t i o n \ T h e s i s - I I \ W I P \ G r a p h i c s \ F i n a l \ R E T A I L . I H D : Updating e x i s t i n g d i c t i
L l - B P F - R e t a i l B u s i n e s s P r o c e s s F a m i l y . I H O : Merging Source Model.
L 2 - B P l - P O S R e t a i l S a l e s . i m o : Merging Source Model.
L 3 - E V l - S a l e s T r a n s a c t i o n . i m o : Merging Source Model.
L2-BP2-Inventory.IMO : Merging Source Model.
L3-EV2-Inventory.IMO : Merging Source Model.
C:\Data\...\L4-DMl-Store.IMO : Merging Source Model.
C:\Data\...\L4-DM2-Product.IMO : Merging Source Model.
C:\Data\..-\L4-DH3-Time.IMO : Merging Source Model.
L4-DH4-Customer.IHO : Merging Source Model.
C:\DATA\PERSONAL\EDUCATION\THESIS-II\WIP\GRAPHICS\FINAL\RETAIL.IMD : S t a r t i n g Happing ...
C:\DATA\PERSONAL\EDUCATION\THESIS-II\UIP\GRAPHICS\FINAL\RETAIL.IMD : Tables(6) Columns (59) Ijj
B u i l d complete - 0 e r r o r (s) 0 warning (s)

•iiy\ Into \ BuHd ,(< ANy/Gwierate^/ . Import^- - J

Figure 5-6: Output Window Showing Build Results

92

file://C:/Data/Personal/Education/Thesis-II/WIP/Graphics/Final/RETAIL.IHD
file:///L4-DM2-Product
file://C:/Data/..-/L4-DH3-Time.IMO
file://C:/DATA/PERSONAL/EDUCATION/THESIS-II/WIP/GRAPHICS/FINAL/RETAIL.IMD
file://C:/DATA/PERSONAL/EDUCATION/THESIS-II/UIP/GRAPHICS/FINAL/RETAIL.IMD

5.4.2. Relational Mapping (Rmap) Procedure

As part of the dictionary generation process, VisioModeler uses Rmap, an

algorithm used to group our fact types into tables. The complete version of Rmap

includes details for completely mapping all graphical constraints, however, an exhaustive

treatment of the full procedure is beyond the scope of this thesis. We introduce the

procedure here to provide context for our mapping step and refer the reader to Ritson and

Halpin (1993) for detailed coverage of the procedure.

Rmap guarantees a redundancy-free relational design and restricts the number of

tables, ensuring each fact type maps to only one table in such a way that its instances

appear only once. If the conceptual fact types are elementary, then the mapping is

guaranteed to be free of redundancy since each fact type is grouped into only one table,

and fact types which map to the same table all have uniqueness constraints based on the

same attribute(s). To achieve this Rmap uses two basic rules:

1. Fact types with compound uniqueness constraints map to separate tables.

2. Fact types with functional roles attached to the same object type are
grouped into the-same table, keyed on the object type's identifier.

While O R M describes facts in terms of simple sentences, relational schemas

describe the world in terms of tables with attributes. Through Rmap, the fact types in our

M O R M model map to the tables in Figure 5-7, which depicts the logical database

diagram generated from our model.

93

STORE
PK storeKey

storeType
storeName
streetAddress
cityName
stateld
postalCode
countryName
size
salesStateld
salesRegionName
salesCountry

TIME
PK timeKey

date
day
month
year
dayOfMonth
monthOfYear
quarter
season

SALESTRANSACTION
PK.FK.U1 ptoductKey
PK.FK timeKey
PK.FK customerKey
PK.FK storeKey
U1 ticketNr

price
cost
profit
qty

INVENTORY
PK.FK I storeKey

prod Key p—
timeKey
onHand
ordered
shipped

CUSTOMER
customerKey
lastName
firstName
streetAddress
cityName
stateld
countryName
maritalStatus
gender

1RODUCT
PK productKey

brandName
productName
sku
srp
productType
productFamily
productGroup
flavour
sugarFree
sparkling
percentage
prepTime
volume

Figure 5-7: Logical Model Mapped From ORM Schema

Using our M O R M modeling approach, the resulting logical model essentially

consists of two denormalized star schemas for our POS Retail Sales and Inventory

business processes. The Sales schema is composed of a central Sales Transaction table

linked by foreign key connections to the Store, Product, Time, and Customer dimension

tables. At the center of the Inventory schema is a central Inventory table linked to Store,

Product and Time. Uniqueness constraints are mapped to primary key (PK) or unique

constraints (U) and primary keys are underlined. A mandatory role constraint is

indicated with a bold attribute and its rules are enforced in the Data Definition Language

(DDL) script generated for the physical database in the next step of our lifecycle process.

94

5.4.3. Editing the Logical Model

After we build the data dictionary, VisioModeler allows us to edit and refine our

logical tables, which are part of the logical model contained in our dictionary. Since

some automatically generated names may not be ideal, we modify the resulting tables and

map technical column and table names to more meaningful names.

We edit our mapped logical schema using VisioModeler's EditDictionary function.

This executes a build that opens the dictionary window as a workspace for viewing and

refining the mapped logical schema. The Logical Tools palette and the Table/Entity

Selector are then used to create, edit, and manage schema.

An attractive feature of VisioModeler throughout this step is its Window option,

which allows us to switch viewing windows between the O R M window (.IMO file), our

dictionary/logical window (.IMD file), and the Output window containing our generation

messages.

5.5. S T E P 3: G e n e r a t i n g a P h y s i c a l S c h e m a

Once we have edited and validated our logical model in the dictionary, we

generate our physical schema in SQL Server 2000, our selected D B M S . This schema

will serve as the underlying data warehouse for storing our relational star schema data.

The remainder of this section briefly explains how we use VisioModeler drivers in

conjunction with 32-bit ODBC drivers to generate a new physical database schema by

connecting to and exchanging information with our SQL Server relational database. We

include information about generation options, database connections, and target databases.

95

5.5.1. Schema Generation Options

Through VisioModeler's GenerateDatabase function, we run the Generate Wizard

(shown in Figure 5-8) to lead us through the physical schema generation process.

?! xj
This wizard will take youthrougKthe steps necessary to
cieate a new database •

File Name JC \Data\PersonaKEducalion\Th ̂

fV ^Geneiate New Database

fy Remember the generated database state

You have specified to create a • he D D L script
necessary to generate a database schema, You have also
specified in -j»-r j"u -j i:.j\.Ur.-' v.f I M - .<.j H : \\\ i- M-<-
gei ti jttd ddtjtra.y sri jwru e1': the suu-ce '/-^.urrirr.1:

Help ĵ 9̂RBBrfH| - NeVt*>

Figure 5-8: Options Within VisioModeler's Generate Wizard

Based on the logical model in the dictionary, VisioModeler provides two ways for

us to generate our physical database schema: (1) using a D D L script or (2) directly

through a 32-bit ODBC connection. We create our physical database by connecting

directly to SQL Server through an ODBC connection, but we also generate a D D L script

for reference purposes.

5.5.2. Generating Directly Through ODBC

Before we generate our physical schema we must complete several prerequisite

system configuration tasks to ensure we have properly installed and configured SQL

Server 2000. These tasks ensure we have the necessary client software and adequate

access rights. Upon successful completion, we proceed with the SQL Server connection

as shown in Figure 5-9.

96

file:///Data/PersonaKEducalion/Th

71 X I

In Ihrs step! you Will specify the VisioModeler driver to use for
creating the new database as well as the name of the new ,
database to be generated - - / ',

CEcK the "New1 button'to add a new data source to the f epistiy
You need to do this m'oldei to connect to the database server.
where you <*jant the physical schema to be created as well as
extract from this database later **" ^ <̂ -'•>,

Installed VisioModeler Drivers 't *

Microsoft SQL Server 11 Setup .

Cieate Database '

Data Source Name JRetailGrocery

Database Name iRetailGioceiy

I? Cancel < Back"
llllta

finish

Figure 5-9: Associating an ODBC driver with a VisioModeler Driver

In choosing driver and database options we first select the SQL Server driver we

wish to use from the list of available drivers and choose the generate options for our SQL

database. The SQL Server driver tells VisioModeler what kind of script to generate, how

to map constraints, and how to specify advanced features for our database application.

VisioModeler uses this information to extract a physical catalog, synchronize a logical

schema, generate a physical schema, and alter a physical schema.

After configuring our driver we create a data source for our Retail Grocery

database using Windows ODBC Administrator. This data source references our SQL

Server Grocery database and includes the data we will access as well as the information

essential to access that data, such as the name of the database, the server on which it

resides, and the network information. We associate the SQL VisioModeler driver with a

32-bit ODBC driver to communicate with SQL Server then select the chosen data source.

Upon providing a username and password in the connect dialogue box we successfully

establish a connection to our data source, as shown in Figure 5-10.

97

A new ODBC data source will be created with the following
configuration; •

Microsoft SQLServer ODBC Driver Version 03 .81 .9031 ' . _ * J :

Data Source.Name: grocery -.'.fi-'i-- •. „ * j ^ <•";'. - / '*.
Data Sour'ce'Description - >'&/ • ; i.
Se.ve^RPAYNER \ ' " < ^ > ,>%
Database 'grocery '. •*"** •, „%fc • , -t,, *<i<'

L^guage':(Defjji'l
Translate Character Data Yes " * \ " * ' •">•
Log Long Running Queries No • " \ '
Log Driver Statistics: No • -
Use.lntegrated Security: Yes . ., ;
Use Regional Settings: No
Prepared Statements Option: Drop temporary procedures on ;

UseANSI'QuotedIdentifiers: Yes .. ;1*>i- .
Use ANSI Null. Paddmgs and Warnings Yes, * • ' * '
DataEric'ryption'No • J i j f i - j i '•" 4 ,

!.- -j-is/[est Data'source... il- ''••}&'.'[•. OK •[••• Cancel I'

Figure 5-10: ODBC Data Source Definition

After successfully connecting to our SQL Server data source, our final task before

schema generation is previewing the tables VisioModeler will add to our physical

database (see Figure 5-11). After reviewing these for accuracy, we proceed with the

generation process and create our physical Grocery tables in SQL Server.

Figure 5-11: Table Preview in VisioModeler Generate Wizard

98

5.5.3. Generating a DDL Script

For reference purposes, we also instruct VisioModeler to generate a data

definition language script based on the logical model in its dictionary file. This script can

be used to create, modify, and delete our database and its tables, columns, rules, and

indexes. We can save the D D L script as a text file to review, modify, and run from our

SQL Server DBMS i f desired. A snapshot of the generated D D L file is shown in Figure

5-12.

| He Ed* Format Help

- inl xj

/ - T h i s SQL DDL s c r i p t w a s g e n e r a t e d by V i s i o M o d e l e r 3 .1 (R e l e a s e Date

/<• D r i v e r Used : V i s i o M o d e l e r 3 .1 - M i c r o s o f t SQL S e r v e r D r i v e r .
' / * Document : c : \ D a t a \ P e r s o n a l \ E d u c a t i o n \ T h e s i s - l l \ w i P \ G r a p h i c s \ F i n a
/« • T ime c r e a t e d : J u l y 27 , 2003 1 0 : 0 3 PM. ,.
\ /« u s e r A c t i o n : From V i s i o M o d e l e r G e n e r a t e w i z a r d .
] / " c o n n e c t e d Data s o u r c e : g r o c e r y
I/* c o n n e c t e d s e r v e r : RPAYNER
/ " c o n n e c t e d D a t a b a s e : g r o c e r y •:

! / * c r e a t e g r o c e r y d a t a b a s e ,
use mas te r

go :

c r e a t e d a t a b a s e g r o c e r y

go

Figure 5-12: DDL Script Generated by VisioModeler

5.6. S T E P 4: B u i l d i n g a n O L A P C u b e

Having created relational tables to house our multidimensional data in SQL

Server, we now complete the last step of our multidimensional lifecycle. In this step we

build an OLAP cube from the physical schema to store our data in Decision Support

System (DSS) format. Our O L A P cube will allow us to analyze the data as originally

described using the modeling constructs of our M O R M conceptual model.

The remainder of this section guides us through the process of creating and using

the cube to analyze data from our Grocery example. We briefly outline operations

99

file://c:/Data/Personal/Education/Thesis-ll/wiP/Graphics/Fina

necessary for setting up data connections, designing cube structure, processing cubes and

finally analyzing cube data with SQL Server Analysis Manager.

5.6.1. Setting up the Database & Data Source

Before building the cube, our initial steps include setting connections to the

source of our data in ODBC Data Source Administrator. Using Analysis Manager, an

Analysis Services program that manages OLAP objects and data, we then create a new

Retail Grocery database object (shown in Figure 5-13) to hold data sources, cubes, and

shared dimensions together.

" " ~ ~ ' ' -ism 7- Consule Kuol .Analysis Sei vers' KPATMF" I • l<nl I

Tree

lr.I Console Root
E £D Analysis Servers

H"f£) RPAYNER
m-M FoodMart 2000
B-0 Ret*! Grocery;

•••{111 Data Sources
! -̂ p Retail Grocery

! • £) Cubes j—ft Shared Dimensions
P-1-(ill Mining Models
S H S Database Roles

•mm

Database: Retail Grocery
Descr ipt ion:

Disk s p a c e :

Figure 5-13: Analysis Services Database Object

With the database object defined we establish a data source in Analysis Manager

that connects our Grocery database to the system data source name previously created.

This allows us to access all data from this source as we build our cube.

100

5.6.2. Building the Cube

Analysis Manager's Cube Wizard is used to build our cube by defining its

measures and dimensions. We fist define the source of our measures through the Wizard

by selecting our Sales Transaction event table from our data source. Measures are then

defined for our cube by selecting the price, cost, profit, and quantity numeric columns.

We begin building dimensions by first creating the Time dimension. To do this

we create a new dimension in the wizard and define hierarchy levels by selecting year,

quarter, and month. We then designate this dimension as shared so we may access it in

other cubes in our implementation. Product, Customer, and Store dimensions are then

created in a similar fashion. Upon creating event measures and related dimensions, we

confirm the design of the cube through the Cube Editor (shown in Figure 5-14), which

contains our POS Retail Sales cube structure.

Q t y I J Jnce
; g Calculated Members I . | ^

® J Calculated Cels \ | fflS??] j yy

store
stree
cltyr\
stat!
post*.
countryName

-j customerKey
lastName
f'rstName
1 streetAddress

prcduttKey
brandName
productName
sfai
srp
productType
productFamily
productGroup
flavour
sugarFree
sparkling
percentage
perpTime
'volume

- i

~ < cityName
(stateld

; countryName
mantafStatus

T gender

Figure 5-14: Analysis Services Cube Editor

101

5.6.3. Designing Storage and Processing the Cube

With the structure of our Retail Sales cube designed, our next steps are to design

storage options for the data and aggregations of our cube, then populate it with data.

Shown in Figure 5-15, we use the Design Storage Wizard to designate M O L A P for our

storage mode, create the aggregation design for the Sales cube, and then process the cube.

Storage JJMign̂ Wiz

• i* r~, • T r i o - - " i '

J f l »

1 .-a,t

Aggregations ar* pr̂ ralttibterf summaries of rfara that
make qtierytag 3 cube faster,

< *• Aggregation options * ,

'< ' ^ Estimated storage readies j 10 |r*i ~ •

< C< Performance gam reacris j '

UntJI rick Stop I t t < t!/'t * 12 16 20

215 aggregations desgred(16 3Mfl, 100%)

Figure 5-15: Cube Processing Using the Design Wizard

Processing the cube loads our Grocery data and calculates summary values.

These pre-calculated summaries of data will greatly improve the efficiency and response

time of queries. The results of our cube processing are shown in Figure 5-16.

^-ftjjij Dimension 'Store' Execute : SELECT DISTINCT 'STOREVcountryName-, "STORE", "stateld , "^jj
i i E3 Processing Dimension Time" completed successfully.

j Start time: 10:26:28 PM End time: 10:26:28 PM Duration: 0:00:00 Rows processed: 24 &
• Process information for Dimension'Time': A full dimension process is performed

Initializing Dimension Time' t

-•-•ffit) Dimension Time' Execute : SELECT DISTINCT "time"."year", "time"."year", "time"."cfuarter', "tt <
E-t?5) Processing Dimension Ticket' completed successfully.

Start time: 10:26:28 PM End time: 10:26:28 PM Duration: 0:00:00 Rows processed: 1 *
\ ;' i < Process information for Dimension 'Ticket': A full dimension process is performed

""'-h *n*'a'' z'n9 Dimension Ticket'
; • -|j§J Dimension Ticket" Execute : SELECT DISTINCT "SALESTRAIMS ACT ION" ."ttcketNr" FROM "SALE!|

-- *#) Inliafizing Cube "POS Retail Sates"
r-*^| Initializing Partition 'POS Retail Sales'

; t-j&iy Partition "POS Retail Sales' Execute : SELECT "CUSTOMER"."countryName", "CUSTOMER"."stateld", "(|
y Writing data of Partition 'POS Retail Sales' (segment 1)

. Wntng aggregations and indexes of Partition "POS Retail Sales' (segment 1) s-
-(2) Committing transaction in Database 'Retail Grocery' **

t f„„ 1 1 sii-d ^ »* , ^ s u 1 m

P i U ' rsbinij (.uiiMilr*' i l M i l i f *il illy

Figure 5-16: Final Cube Processing Results

102

5.6.4. Browsing Cube Data

With our cube processed, we can analyze data in many different ways. Using the

Cube Browser we can perform various OLAP operations, including filtering the amount

of dimension data, drilling down to see greater detail, and drilling up to see less. Figure

5-17 illustrates filtering by Time where data is filtered to for a particular quarter. Figure

5-18 depicts drill-down in which we expand the Drink group to include its families.

4- Country Name

+^Can6da

MeasufesLevel

565,175 91 i

@ All Time;
B A 1997

4-M Q3

IS W. '998

0 -

BB1111

Figure 5-17: Filtering Example Within the Cube Browser

I™ CUIJU lli'iwser - C U S NrLiil

st*-- • • . tv-sfsy-sLeYe! ~"
MmmmmmiMfflMtwifflMM

fna
'1 i i » - 565,175.91 225,601.87

- Ti. a

Drink Total _ ^ ^
1 A'-oiic : p.--.f'nrrs

48,816.79 19,468.62

- Ti. a

Drink Total _ ^ ^
1 A'-oiic : p.--.f'nrrs 1^029.08 5,576.79

- Ti. a

+ Beverages 27,729.11 11,060.91

- Ti. a
t - C r f v . . -
Food Total > t

7,058.60 2,830.92
- Ti. a

t - C r f v . . -
Food Total > t 409,002.77 163,258.37

+"rJrjH-Cafsumable < '^s NorvConsumabte Total j' T 107,356.35 42,874 88!

Figure 5-18: Drill Down Example Within the Cube Browser

103

5.7. A n E v a l u a t i o n o f O u r C a s e S t u d y

Through a case study implementation, we have illustrated how our conceptual

fact-oriented approach simplifies conceptual design when modeling data warehouses. The

implementation of our model allowed us to put into practice the ideas proposed by our

conceptual modeling approach. Appendix C summarizes the implementation results from

our case study. Included in the Appendix are details per multidimensional requirement

for the four stages of our implementation - conceptual, logical, physical, and OLAP.

While we were able to implement our three newly introduced M O R M constructs

with relative ease, we conclude the generation process from a conceptual model to an

OLAP tool is not immediate for all multidimensional concepts. This is mainly because

certain multidimensional constructs in our conceptual model are implemented differently,

or not at all, in our O L A P tool. As Hahn, Sapia, and Blaschka have found (2000), there

are several mismatches between the data models of commercial O L A P tools and

conceptual graphical modeling notations. Specifically, tools do not often provide

sufficient native constructs to represent each element of a graphical notation. This

implies that the generation process must perform a mapping between the semantics of the

graphical notation and the tool configuration, most often with a loss of semantics.

Commercial O L A P products provide their own methods of assessing

multidimensional semantics and concepts. In addition to database structures, OLAP tools

implement underlying metadata that provide key multidimensional semantics (e.g.

measures and dimensions). For proprietary reasons, each tool may implement these

semantics and properties differently. Ideally, proper multidimensional design uses a

conceptual approach totally independent of implementation concerns, allowing the direct

generation into commercial OLAP tools.

104

Several expressiveness differences between our conceptual model and our

Analysis Services OLAP tool proved to be our greatest implementation challenge.

Specifically, several concepts used in our conceptual design lacked a corresponding

Analysis Services representation. In most cases, however, we managed to find

transformations that preserve a large part of the original model semantics and our results

show that a generation process is generally feasible and useful. We note the following

three areas where our OLAP tool did not have a corresponding multidimensional

representation and a transformation was required during our implementation.

5.7.1. Hierarchies: Multiple, Alternative Path, and Shared

Multiple, alternative path, and shared hierarchies are not directly supported in

Analysis Services but we are able to indirectly implement them and address our

multidimensional requirements while preserving as much of the original semantics as

possible.

For all three hierarchy types, the logical and physical models implement them as

table columns and the hierarchy levels are implicit in the flat table design. In the OLAP

tool, multiple path hierarchies are defined as two or more dimensions with names that

share the same dimension prefix but have different suffixes (e.g. Time.Calendar and

Time.Season). Two hierarchies must also be defined for alternative path hierarchies

since our tool can only handle dimensions with a tree structure (i.e. different hierarchies

cannot merge in an endpoint). In this case we have to duplicate the dimension beginning

at the merging point. As for shared hierarchies, two or more separate dimensions are also

implemented starting at the dimension level where the merging occurs. The underlying

dimension tables as well as any aggregations are shared in all cases.

105

5.7.2. Non-Strictness

Non-strictness is not supported in our case study. While we have proposed an

approach to model this property at the conceptual level using a many-to-many uniqueness

constraint (see section 4.4.3.2), our chosen OLAP tool does not provide adequate

aggregation support for such hierarchies. Considering the lack of OLAP support and our

adherence to a simple star schema design, we require all hierarchies to be strict in our

implementation. As such, non-strict hierarchies must be converted to strict hierarchies i f

aggregations are applicable. Given the lack of support for non-strictness in the OLAP

market, we provide additional background supporting this aspect of our case study.

In a non-strict hierarchy there are many-to-many relationships between the

different levels in a dimension where a lower-level item can be a member of several

items at a higher-level (e.g. a sales region may cross several states and a state may be in

several sales regions). Traditionally, OLAP tools only permit strict hierarchies where

every lower-level item belongs to a single higher-level item. Such is the case with

Analysis Services, which explicitly requires strict hierarchies and does not address the

issue of correct aggregation for non-strict hierarchies.

As such, we only permit strict hierarchies in our implementation. Our underlying

assumption is that adherence to the simple star schema design requires dimension

hierarchies to be strict. Our argument is consistent with that of Lenz and Shoshani (1997)

who argue that the premise underlying the applicability of aggregation is

summarizability, which essentially means lower-level results can be directly combined

into higher-level results. For this to be true, one lower-level dimension value must map

to exactly one higher-level value. Having irregular, many-to-many dimension levels

violates this characteristic of OLAP data.

106

In reviewing the literature, only one technique was found that addresses the issue

of summarizability in non-strict hierarchies. Pedersen, Jensen, and Dyreson (1999)

present a technique and associated algorithm for achieving summarizability by adding

dummy values and "fusing" sets of parents together. The basic idea of this technique is

to combine a set of parent values into one "fused" value, link the child value to this new

value, then insert the fused values into a new category between the child and parent

categories. These transformations require major restructuring of the hierarchy and violate

our pure star schema design principle. The complexity of this technique defeats the

benefits of our approach, possibly leading to incorrect results during aggregation through

double counting. If summarizability is relevant, users should be able to analyze the data

and obtain correct results without having to worry about such double counting.

5.7.3. Many-to-Many Relationships Between Events and Dimensions

We give this topic considerable attention since having many-to-many

relationships between a dimension and an event causes several difficult issues during

multidimensional implementation. These issues include losing the standard star schema

structure, increasing the complexity of query formation and degrading query performance

by adding joins (Song, Rowan, Medsker, & Ewen, 2001). Therefore, it is desirable to

handle these many-to-many relationships while keeping the structure of the star schema.

Song et al. (2001) investigate several methods of handling many-to-many

relationships and discuss the relative advantages and disadvantages of each. A key

argument of theirs is that to maintain the star schema structure, relationships between

events and dimensions should be made many-to-one and events should be mapped to the

107

lowest categories in the dimensions. We follow this solution approach in which we lower

the grain of the Sales event to the lowest dimension grain level (i.e. product).

To illustrate, while it is possible for our Sales event to be at the ticket grain (i.e.

have multiple products per sale), we lower the grain of the event to the line item level so

there are multiple records (i.e. multiple line items) relating to that specific event. This

ensures we now have a many-to-one relationship between Sale and Product. Figure 5-19

illustrates how we have achieved this at the conceptual level.

Figure 5-19: Modeling Many-to-Many Relationships

The external uniqueness constraint (circled "p") on the Store, Customer, Product,

and Time dimensions indicates each transaction occurs for at most one Store, Customer,

Product, Time. Thus, the combination of Product, Store, Customer and Time is unique

for each Sales Transaction. The "p" indicates this combination is the primary indicator

for each event. As indicated by the additional uniqueness constraint (circled "u") on

108

Ticket and Product, the combination of ticket number and Product is also unique. This

means one ticket can relate to more than one Product and indicates the many-to-many

relationship between ticket and product.

We also include the constraint {DD} to identify ticket as a degenerate dimension

of the event. We do this to ultimately generate an OLAP ticket dimension so we can

group line items and determine the ticket total. In the OLAP tool the ticket becomes a

dimension with only one hierarchy level, allowing us to group multiple measures per

ticket. Using this approach the conventional star schema is retained, providing a clear

logical view of the business process and allowing implementation in our OLAP tool.

5.8. S u m m a r y

In this chapter we tested the practicality and usability of our work by applying our

conceptual multidimensional modeling approach to a case study to solve a data analysis

problem. Using our M O R M guidelines, we developed a conceptual model and mapped it

to a logical schema in VisioModeler. From the VisioModeler models we generated a

physical star schema in Microsoft SQL Server 2000 and subsequently built an OLAP

cube in SQL Server 2000 Analysis Services. Largely due to maturity, functionality, and

availability, we chose VisioModeler for conceptual and logical modeling, while

Microsoft SQL Server and Analysis Services were our choices for physical and OLAP

implementation. In spite of some cube generation limitations with our chosen OLAP

tool, the implementation demonstrated that our approach naturally and expressively

models the main structural properties of multidimensional data at the conceptual level

and serves as the basis for subsequent design phases.

109

6 . C O N C L U S I O N S & F U T U R E R E S E A R C H

6.1. Thesis Summary

The primary focus of this thesis has been the development of a fact-oriented

approach to modeling the structural properties of multidimensional data at the conceptual

level. Our main objective was to provide a natural, simple, and expressive modeling

approach to address the fundamental deficiencies of existing multidimensional models.

We have accomplished our objective through an exploration of multidimensional

concepts and the development of a modeling approach that simplifies multidimensional

design by using natural language, intuitive diagrams and example data populations.

To better understand the functionality of data warehouses and OLAP applications

we have provided an overview of their logical and physical architectures and the main

processes associated with their use. Our overview described data source, data storage,

application, and presentation layers and discussed how physical OLAP architectures map

onto these layers in several ways. We also discussed data staging services that get data

into the data warehouse and query services which focus on getting data out. Our

overview highlighted the differences between data warehouses and traditional OLTP

applications and, due to the significant differences in underlying data structures, we

concluded different conceptual modeling techniques are required for data warehouses.

Our attention then turned to understanding data modeling techniques and we

examined basic data modeling concepts by looking at conceptual, logical, and physical

information levels. We emphasized the importance of data modeling at the conceptual

level and provided an overview of several conventional data modeling approaches with a

specific focus on ER, U M L and O R M . To better understand multidimensional data and

110

its semantic differences we presented the properties of multidimensional data through an

example. Using the analysis requirements demonstrated with a sample Grocery chain we

revealed a set of multidimensional concepts that included events, dimensions, measures,

additivity, derived measures, classification hierarchies, strictness, completeness and the

categorization of dimensions. To understand how existing models address

multidimensional concepts we reviewed the current state of multidimensional modeling

literature. We briefly reviewed logical, physical, and formal works, but our main focus

was on models attempting to express semantics at the conceptual level. Based on our

review we concluded that a natural and complete conceptual design technique does not

exist that adequately conceptualizes and clearly communicates multidimensional designs

to both business and technical users. In addition, existing works presented few design

guidelines to ensure their approaches are properly and easily applied.

The fundamental deficiencies and shortcomings of existing techniques in

formulating, transforming and evolving a conceptual model provides motivation for our

work. Inspired by O R M , we introduced our fact-oriented M O R M approach as a

specialization of O R M by defining additional graphical constructs and guidelines to

consider the unique characteristics of multidimensional data. To support the semantics

inherent in multidimensional data we introduced three M O R M constructs - the Event

Object Type, the Dimension Entity Type, and the Hierarchy Object Type. These

constructs represent the events, dimensions, and classification hierarchies we are

interested in analyzing. Using our Grocery example, we demonstrated how our approach

models each of the multidimensional requirements previously revealed. We have

supplemented our M O R M model with several key design guidelines to guide data

111

modelers in using our method to develop multidimensional models. Our guidelines

provide various levels of abstraction and simplify conceptual design by distinguishing

five design levels; preliminary segmentation, business process family definition, business

process definition, event definition, and dimension definition.

We have tested the practicality and usability of our approach by applying it to a

case study to solve a data analysis problem. Using our Grocery example, we have

demonstrated that our approach can be easily implemented using existing technologies.

We chose VisioModeler for conceptual and logical modeling, while Microsoft SQL

Server and its OLAP component Analysis Services were our choices for physical and

OLAP cube implementation. Using our M O R M guidelines, we have developed a

conceptual model and mapped it to a logical schema in VisioModeler. From the mapped

logical model we generated a physical star schema in Microsoft SQL Server 2000, and

subsequently built an OLAP cube in Analysis Services that allowed us to analyze

Grocery data as described in our original M O R M model. In spite of some cube

generation limitations with our chosen O L A P tool, the implementation demonstrated the

practicality of our approach as the basis for subsequent.data design phases.

6 .2 . C o n t r i b u t i o n s

To the best of our knowledge, we have presented the first fact-oriented approach

to conceptual multidimensional modeling. We believe leveraging the fact-oriented

paradigm provides us with a conceptual multidimensional model that is more natural and

expressive than existing multidimensional models. As such, M O R M provides a solid

basis for solving conceptual multidimensional modeling problems with a more natural

and expressive conceptual model than existing approaches. Examining multidimensional

112

data in terms of elementary facts provides a truly conceptual approach and simplifies the

analysis and design process by using natural language, intuitive diagrams, and real-world

data examples. We believe our fact-oriented approach will help designers capture and

satisfy complex modeling requirements, help business users better understand the

structure and navigation paths of the data warehouse, and facilitate communication

between business users and data modelers.

Another major contribution of our work stems from our use of a widely accepted

modeling technique. By specializing O R M , we minimize the effort required of data

modelers to learn a new modeling notation for multidimensional data. Our approach

requires a shallow learning curve since data modelers can combine M O R M elements with

classical O R M elements and, although the approaches will be different, data models for

OLTP and OLAP applications can be specified using a uniform notation.

Another of our contributions is the provision of design guidelines to construct

multidimensional models using our approach. We believe these guidelines reflect the

natural way users and data modelers think about multidimensional data and lead to a

simple yet powerful multidimensional model. Whereas other approaches use flat design,

our guidelines produce multilevel subschemas that group different levels of abstraction

and ultimately simplify the conceptual design of large data warehouses.

Finally, we have successfully demonstrated that our approach can be implemented

using existing data modeling tools and database technologies. Through a case study, we

have developed a conceptual model and mapped it to a logical schema in VisioModeler, a

well-known data modeling tool. We have generated a physical star schema in Microsoft

SQL Server 2000 and subsequently built an O L A P cube in SQL Server 2000 Analysis

113

Services. By putting all ideas developed throughout this thesis into practice, we have

proven that our approach suggests a new way of modeling multidimensional data.

6.3. L i m i t a t i o n s a n d F u t u r e R e s e a r c h

While we were able to easily implement conceptual, logical and physical schemas

using our approach, the OLAP cube generation process was not immediate and further

work in this area is encouraged. In future it would be beneficial to investigate a

generation process that automatically transforms semantics at the conceptual into a

generic OLAP model compatible with the majority of commercial O L A P tools. The

challenges in this area are due to the fact that complex multidimensional constructs in

conceptual models are not supported or are implemented inconsistently in O L A P tools.

While our approach was successfully tested using a case study and several real

world implementations, the limited number of examples limits our work. To further

examine the practicality of our approach and demonstrate its benefits, other case studies

should be carried out using data from different industries. As part of this investigation, it

would be particularly useful to examine complex data in which there are no natural

numeric measurements associated with events and non-numeric measures must be used.

It would also be beneficial to investigate an extension of our model to represent

the dynamic properties of data warehouses and OLAP applications. These dynamic

aspects could include the definition of initial user requirements and subsequent O L A P

operations (e.g. roll-up, drill-down, slice-dice, pivoting) for further analyzing data.

While we have provided high-level design guidelines, future work can also build

on these guidelines to develop a complete multidimensional design methodology. Based

on the M O R M model introduced, a methodology could include a complete process that

114

explicitly considers all the underlying design guidelines hidden in our approach. As part

of this methodology, specific rules could be developed for first identifying business

process families and business processes, then subsequently deriving dimensions and

events from them.

115

B I B L I O G R A P H Y

Abello, A. , Samos, J., & Saltor, F. (2001). A framework for the classification and
description of multidimensional data models. Proceedings of the 12th

International Conference on Database and Expert Systems Applications (DEXA),
668-677.

Agrawal, A. , Gupta, A. , & Sarawagi, S. (1997). Modeling multidimensional databases.
Proceedings of the 13th International Conference on Data Engineering (ICDE),
232-243.

Barker, R. (1990). CASE*Method: Tasks and deliverables. Wokingham, England:
Addison Wesley.

Batani, C , Ceri, S., & Navathe, S. (1992). Conceptual database design: An entity
relationship approach. Redwood City, C A : Benjamin Cummings.

Batra, D., Hoffer, J. & Bostrom, R. (1990). Comparing representations with relational
and EER models. Communications of the ACM, 33(2), 126-139.

Becker, Scot A . (2000). Arguments against the use of O R M (and their rebuttals). Journal
of Conceptual Modeling. http://www.inconcept.com/JCM/June2000/becker.html

Bemus, P., Mertins, K. , & Schmidt, G. (Eds.). (1998). Handbook on architectures of
information systems. Berlin: Springer-Verlag

Blaschka, M . , Sapia, C , Hofling, G., & Dinter, B. (1998). Finding your way through
multidimensional data models. Proceedings of the 9th International Conference
on Database and Expert Systems Applications (DEXA '98), 198-203.

Boehnlein, M . , & Ulbriche-vom Ende, A . (1999). Deriving initial data warehouse
structures from the conceptual data models of the underlying operational
information systems. Proceedings of the 2nd International Workshop on Data
Warehousing and OLAP (DOLAP '99), 15-21.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The unified modeling language user
guide. Reading, M A : Addison-Wesley.

Bulos, D. (1996). OLAP database design: A new dimension. Database Programming and
Design, 9(6), 32-37.

Cabibbo, L., & Torlone, R. (1999). A framework for the investigation of aggregate
functions in database queries. Proceedings of the 7th International Conference on
Database Theory (ICDT-99), 383-397.

116

http://www.inconcept.com/JCM/June2000/becker.html

Chan, C , & Ioannidis, Y . (1998). Bitmap index design and evaluation. Proceedings of
ACM SIGMOD International Conference on Management of Data (SIGMOD
•98), 355-366.

Chaudhuri, S., & Dayal, U . (1997). An overview of data warehousing and OLAP
technology." ACM SIGMOD Record, 26(1), 65-1A.

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

Codd, E., (1970). A relational model of data for large shared data banks. Communications
of the ACM, 13(6), 377-387.

Data Warehousing Institute. (2000). Data warehousing: what works? (9). The Data
Warehousing Institute.

Dyreson, C. (1996). Information retrieval from an incomplete data cube. Proceedings of
the 22nd International Conference On Very Large Databases (VLDB'96), 532-
543.

Elmasri, R., & Navathe, S. (1994). Fundamentals of database systems (2nd ed.). Menlo
Park, C A : Benjamin Cummings.

Finkelstein, C. (1989). Introduction to information engineering. Reading, M A : Wesley

Gingras, F., & Lakshmanan, L. (1998). nD-SQL: A multi-dimensional language for
interoperability and OLAP. Proceedings of the 24th International Conference On
Very Large Databases (VLDB'98), 134-145.

Golfarelli, M . , Maio, D., & Rizzi, S. (1998a). Conceptual design of data warehouses from
E/R schemes. Proceedings of the 31st Hawaii International Conference on System
Sciences, 334-343.

Golfarelli, M . , Maio, D., & Rizzi, S. (1998b). The dimensional fact model: A conceptual
model for data warehouses. International Journal of Cooperative Information
Systems, 7(2-3), 215-247.

Hahn, K. , Sapia, C , & Blaschka, M . (2000). Automatically generating OLAP schemata
from conceptual graphical models. Proceedings of the 3rd ACM International
Workshop on Data Warehousing and OLAP, 9-16.

Halpin, T. (1995). Conceptual schema and relational database design (2nd ed.). Sydney:
Prentice Hall.

Halpin, T., & Bloesch, A . (1999). Data modeling in U M L and O R M : A comparison.
Journal of Database Management, 10(4), 4-13.

117

Halpin, T. (2001). Information modeling and relational databases: From conceptual
analysis to logical design. San Francisco: Morgan Kaufmann.

Hay, D. (1999). Object orientation and information engineering: U M L . The Data
Administration Newsletter, (9). http://www.tdan.com

Inmon, W. (1996). Building the data warehouse. New York: John Wiley & Sons.

Kimball, R. (1996). The data warehouse toolkit: Practical techniques for building
dimensional data warehouses. New York: John Wiley & Sons

Kimball, R. (1997). A dimensional modeling manifesto. DBMS and Internet Systems,
http://www.dbmsmag.com.

Kimball, R., Reeves, L., Ross, M . , & Thornthwaite, W. (1998). The data warehouse
lifecycle toolkit. New York: John Wiley & Sons

Kimball, R., & Ross, M . (2002). The data warehouse toolkit: The complete guide to
dimensional modeling (2nd ed.). New York: John Wiley & Sons

Lenz, H. , & Shoshani, A. , (1997). Summarizability in OLAP and statistical databases.
Proceedings of the 9th International Conference on Scientific and Statistical
Databases, 39-48.

Microstrategy, Inc. (1995). The case for relational OLAP. http://www.strategy.com

Martin, J. (1990). Information engineering. Englewood Cliffs: Prentice Hall.

NIST. (1993). Integration definition for information modeling (IDEF1X). FIPS
Publication 184. National Institute of Standards and Technology.

Pedersen, T., & Jensen, C. (1999). Multidimensional data modeling for complex data.
Proceedings of the 15th IEEE International Conference on Data Engineering
(ICDE'99), 336-345.

Pedersen, T., Jensen, C , & Dyreson, C. (1999). Extending practical pre-aggregation for
on-line analytical processing. Proceedings of the 25th International Conference on
Very Large Databases (VLDB'99), 663-674.

Raden, N . (1995). Modeling a data warehouse, http://www.archerdecision.com/artic3.htm.

Ritson, P., & Halpin, T. (1993). Mapping integrity constraints to a relational schema.
Proceedings of the 4th Australian Conference on Information Systems (ACIS'93),
381-400.

Sapia, C , Blaschka, M . , Hofling, G., & Dinter, B. (1998). Extending the ER model for
the multidimensional paradigm, Proceedings of the Is' International Workshop on
Data Warehouse and Data Mining (DWDM'98), 105-116.

118

http://www.tdan.com
http://www.dbmsmag.com
http://www.strategy.com
http://www.archerdecision.com/artic3.htm

Song, I., Rowan, W., Medsker, C , & Ewen, E. (2001). An analysis of many-to-many
relationships between fact and dimension tables in dimensional modeling.
Proceedings of the 3rd International Workshop on Design and Management of
Data Warehouses (DMDW'01), 6.1-6.13.

Teorey, T., Yang, D., & Fry, J. (1986). A logical design methodology for relational
databases using the extended entity-relationship model. Computing Surveys,
18(2), 197-222.

Theodoratos, D., & Sellis, T. (1999). Dynamic data warehouse design. Proceedings of
the 1st International Conference on Data Warehousing and Knowledge Discovery,
(DaWaK'99), 1-10.

Trujillo, J., Palomar, M . , & Gomez, J. (2000). Applying object-oriented conceptual
modeling techniques to the design of multidimensional databases and O L A P
applications. Proceedings of the 1st International Conference on Web-Age
Information Management (WAIM 00), 83-94.

Tryfona, N . , Busborg, F., & Christiansen, J. (1999). starER: A conceptual model for data
warehouse design. Proceedings of the 2nd International Workshop on Data
Warehousing and OLAP (DOLAP'99), 3-8.

Widom, J. (1995). Research problems in data warehousing. Proceedings of the 4th

International Conference in Information and Knowledge Management
(CIKM'95), 25-30.

Wu, M . , & Buchmann, A . (1997). Research issues in data warehousing. Proceedings of
the 7th German Conference on Datenbanksysteme in Buro, Technik und
Wissenschaft (BTW'97), 61-82.

119

A P P E N D I X A : O R M C O N S T R U C T S

This appendix summarizes ORM's main constructs as described in chapter 4 of

Bernus, Mertins, & Schmidt (1998). Shown in Figure A - l , constructs are labeled with a

number and further described in Table A - l .

© O © © © ©

R ©
9

I
10

I
11

"A"

6 <ft -H
12

14 15 16

17 18 19

t
20

n n - m

21

°/r °it °ac
°as °ms °sym

22 23

Figure A-1: Graphical Notation of ORM Constructs

Construct Description
I Entity Type Tangible or abstract object that is identified by a definite description (e.g.

the student with studentID 25899). Descriptions typically indicate the
entity (e.g. student), a value (e.g. 25899) and a reference mode (e.g.
studentID).

2 Value Type Denotes a lexical object type (e.g. a character string or number) that is
identified by constants (e.g. David R. Williams, 25899). Another notation
for value types encloses the value type name in parentheses.

3 Duplicate Object
Type

Object types that appear more than once in the schema may be tagged with
an arrow tip that "points" to the existence of another occurrence.

4 Reference Mode Each entity type must have at least one reference scheme that indicates how
each instance of the entity type may be mapped via predicates to a

120

, Construct Description , »
combination of one or more values. Reference schemes are abbreviated by
displaying the reference mode in parentheses beside the name of the entity
type. The reference mode indicates how values relate to the entities.

5 Numeric Value A plus sign "+" may be added i f values are numeric
6 Independent Entity

Type
Means instances of that type may exist without participating in any facts.

7 Predicate Depicts a ternary predicate comprised of three roles. Each role is depicted
as a box, and must be played by exactly one object type. Roles are
connected to their players by a line segment.

8 Internal Uniqueness
Constraints

Arrow tipped bars placed over one or more roles in a predicate declare that
instances for that role (combination) in the relationship type population
must be unique.

9 Primary Uniqueness
Constraints

A predicate may have one or more uniqueness constraints, at most one of
which may be declared primary by adding a "P".

10 External Uniqueness
Constraint

A circled "u" may be applied to two or more roles from different predicates
by connecting to them with dotted lines. Instances of the combination of
those roles in the join of those predicates are unique.

11 Primary External
Uniqueness
Constraint

To declare an external uniqueness constraint primary, use "P" instead of
"u".

12 Objectified
Predicates

If we wish to talk about a relationship type we may objectify it (i.e. make
an object out of it) so that it can play roles. Graphically, the objectified
predicate is enclosed in a rounded rectangle.

13 Mandatory Role
Constraint

Declares that every instance in the population of the role's object type must
play that role.

14 Disjunctive
Mandatory
Constraint

Applied to two or more roles to indicate that all instances of the object type
population must play at least one of those roles. This may often be shown
by connecting the roles to a black dot on the object type

15 Disjunctive
Mandatory
Constraint

Another way to indicate all instances of the object type population must
play at least one of those roles, here by connecting the roles by dotted lines
to a circled black dot.

16 Value Constraints To restrict an object type's population to a given list, the relevant values
may be listed in braces. If the values are ordered, a range may be declared
separating the first and last values by

17 Subset Constraint A dotted arrow from one role sequence to another is a subset constraint,
restricting the population of the first sequence to be a subset of the second.

18 Equality Constraint A double-tipped arrow is an equality constraint, indicating the populations
must be equal.

19 Exclusion
Constraint

A circled " X " is an exclusion constraint, indicating the populations are
mutually exclusive. Exclusion constraints may be applied between two or
more sequences.

20 Subtype A solid arrow from one object type to another indicates that the first object
type is a (proper) subtype of the other.

21 Frequency
Constraint

Applied to a sequence of one or more roles, these indicate that instances
that play those roles must do so exactly n times, between n and m times, or
at least n times.

22 Ring Constraint May be applied to a pair of roles played by the same host type. These
indicate that the binary relation formed by the role population must be
irreflexive (ir), intransitive (it), acyclic (ac), asymmetric (as),
antisymmetric (ans) or symmetric (sym).

23 Derivable Fact Type A n asterisk "*", placed beside a fact type indicates it is derivable from
other fact types.

Table A-1: ORM Constructs and Associated Descriptions

121

A P P E N D I X B : M O R M S C H E M A FOR R E T A I L C A S E S T U D Y

Figure B-3: MORM Level 2 - Inventory Business Process

y Quantity+ J r

was priced at

cost

< >
L

has profit of •

SALES

TRANSACTION

sold

** {profit = price - cost}

define Sales Transaction has profit of MoneyAmt as
Sales Transaction was priced at MoneyAmtl, an
Sales Transaction cost MoneyAmt2, and
MoneyAmt = MoneyAmtl - MoneyAmt2

Figure B-4: MORM Level 3 - Sales Transaction Event

123

Figure B-5: MORM Level 3 - Inventory Event

Figure B-6: MORM Level 4 - Store Dimension

124

125

Figure B-9: MORM Level 4 - Time Dimension

(0

(0
111

B
z
III
111
-I
Q.

O

• •

o
><

Q
Z
111
0.
a.
<

43
O

0)

c2

Ci
o

c
s

E ,
6

=3

1)
1/3
cd
O

3
o

T 3

c u
e

E H
6
D
S-i
ccj

1/1
S3
O

o

Pi o

o
43

<L>
N
•c
ccj
a
6
GO

u

C O

<
<
o

S3
ccj

ca o
co >,

43

CCj
O '5b o

ccj
-*-»
& ,
tD
O
c o o
S3 o

CD

E ,

3 o
o
GO
CD
bO
ccj

3
cS

43

a> -a
3

73

CD

S3
<D

a-a>
ccj
S3
O
GO
S3
a>
a

s

& H
03

43
O

<D
-,—»
S3
CD
co
<D

3
O

?>
CD

to

S3
ccj

<H-H

a>
OH
<
i—l

o
S3
ccj

CH-C
CD

CCJ
O

"oo

>>
43
P ,
c
cu

s
s o

•§
<3
R
•2
O

ea

s
•«8 • a o •o
w

'S
01

C

s
'3

to

2s tD
&C O

r „

«> o B
fQ Pi [JL,

c

s1

.§
'3
c o o

"53
o
tD
•§

&1 o

a

"3
3

ce
p

ic
al

S3
O O

u

to
_ X>
CL a
tS -SJ
M T3

.2 «
8 50

t-> "S

,1) ^

2̂ &l

.S £

o o
ts .52

fe s
S i
3 1
•C .2
•a c

s *
.2 ^
13 .22
es 1-1

* —
S ^3

•« o
•C Q
"So c
CO Q

e —
CO JXS

-S "3
^ "3

«-• to
O H-*

ct) _,
UL, .a

C3
3
o a
o

U

o

&
3
o o
CU

'•I
C S

43
C3

H-*

Q

to o

43
PL,

g

ii

c
o s

o

o

. *>
IO

u
s
"S a

"a o
'•C ss ••̂ c

o

o c
"3 c
o

o a
P .
3
VD
O

e

o

o c
3 c
o

CO

o
S3

ft
CO
l-i

OB '

.g
S3 •
B '
3 •
"o
o

i-S

>

po
CO

•o
u

M|
S3
CO

s
'•s
S-H

O

CO

CO
H

o

c
o

o

e g

t3
o

' VD c
u

•§
o
a

„ ^3
ft CO
co
u co

M -a

<D CO

a >
co
i - _
<D J 3
3 Jo
J 3 W
o

2 «
c >
VD '—•

ft
^ cd
cn l_i

°
o <u 5

CO

£C VD VD
a> • § o

<D X
C v-c U

o a fi
VD VD —
u IB v

.§ '3 ts
^ ft 3
d w
~ ' ' (3

O
O O X)

>- O

•5 O .-J3

£ o

o 53
l U <D

IF *
e - D

O

§ .a
C T3
3 <L>

5 a

^ S3

8 " o

X)

oo | -o

3
X5
X

u.
ft
(3

_o

e

0 OJ

s §

IS CO
u

VD CO
CO x)
r3 co

p I
•s ^
1 *
ft ft
3 u
v> ^
>>U3 O VJ

"ft c
(11 u

o <tt

Z =3

x>
CO

c
VD

c
u l «

>

> c
o

Is

Ofll-O

C
'S g
'Sb|
u

X3

O
Ui
CO

CO

o

CO

J3

•o
t:
o
ft
S

•o
(D

•O "

•o e
VD *0
ft S3

O S

3
S3
o

ftj'K

S3 D
•o
•O CO

o
u.
CO
u

2 | a
"O
•o

a

•o

CO
M
S3

co

S3
O

e ^3

B «
^3 VD

CO co
co cn
^ S H) o
VD • -
tO C O .

o

CO

a> o

M S3
• . u •o a
(D 3

t:
S.
VD -

«
"Z3 'O
• ~ S3

ft .
X VD
D ^
o w •2 o Z o

oo
C N

CO

B ft
a>
o
S3
o U

CO
o

CO

3
ft!
5T
o
S3
o

CO

o
S3
O

o

CO o
o

'5b >.
o J3
i—1 PL,

CO

3 ft
<u
o c
o O

3 o.
<u
o
S3
o O

CU

u '3 a
•o ro

S3
O

S3

S3 oo
o u '35 3

Q <

S3
o e

s

3 43
o o
rS ar

VD VD

C
la

H

i 3 a
2 -S "5

S ^ 53

VD
<D

IB
e p
CO
J3 . .
00 <D

CO

CN

c
E
Q.
E

