MORM: A FACT-ORIENTED CONCEPTUAL MODELING APPROACH
TO DESIGNING
DATA WAREHOUSES AND OLAP APPLICATIONS
by
ROBERT R. PAYNE

B.Comm. (Co-op), Memorial University of Newfoundland, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES
(Faculty of Commerce and Business Administration)

We accept this thesis as conforming
to the required. standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 2003

© Robert R. Payne, 2003

Library Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for
extensive copying of this thesis for scholarly purposes may be granted by the
head of my department or by his or her representafives. It is understood that
copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

Robert Payne - 10/12/03

Name of Author (please print) Date

Title of Thesis: MORM: A Fact-Oriented Conceptual Modeling Approach
~ to Designing Data Warehouses and OLAP Applications

Degree: MSCB Year: 2004

ABSTRACT

The interest in data warehouses and OLAP applications in recent years is largely
due to the promise of improved decision-making made pdssible by integrating data from
numerous different sources. The underlying data structures required to support the
analytical requirements of these systems clearly justifies the need for a distinct data
modeling approach, particularly at the conceptual level. As a direcf response to the
inability of conventional data modeling methods to represent multidimensional
semantics', multidimensional modeling has emerged and brought with it a variety of new
multidimensional concepts. Several models have been proposed to represent these
concepts, but a complete and natural approach does not exist that adequately
conceptualizes and communicates multidimensional designs to business and technical
users alike. To address the fundamental deficiencies and shortcomings of existing
models, we propose a fact-oriented approach to conceptual multidimensional modeling.
Our approach is a specialization of Object Role Modeling in which we define additional
constructs and guidelines to consider multidimensional properties at the conceptual level.
We believe our utilization of the fact-oriented paradigm provvides us With a conceptual
multidimensional model that is more natural and simpler than existing models. To
demonstrate its practicality, we apply our approach to a case study and demonstrate how

our model can be implemented using existing technologies.

il

TABLE OF CONTENTS

ABSTRACT ...ttt e e et e et e et e e treeetee e asaeebeeerreesesseeeans 11
TABLE OF CONTENTS ...ttt et e et e e e eaane s i1
LIST OF TABLES ..ottt ettt e et ne e e e e e eaee e enraeeeeees vi
LIST OF FIGURES ...ttt ettt eeba e eetaeeeeeesneeenne vii
ACKNOWLEDGEMENTS ..ottt ettt ettt e enaeeeeennenens X
L. INTRODUCGTION Lottt ettt e e e ee s e arne e e e e e eeasnsaeeas 1
1.1, MOTIVATION ...ttt et et r e site e aesanbe s sreeessnaesssaesssaesnneasnsenan 2
1.2 OBIECTIVES ..ottt ettt ettt sttt e e et e et e e e e embe e st e e smaeeenseans 3
T30 OUTLINE ..ttt ettt e st e et e st e e ase et eesataessnaennseensseessneean 4

2. INTRODUCTION TO DATA WAREHOUSING.......coviiiieieieieteeeeeeee e, 5
2.1. INTRODUCTIONcvevrerirerenrenrnnnn. ettt ettt r et bttt aeer e eaeatete et eaeenas 5
2.2. DATA WAREHOUSING OVERVIEWeioiiiiiiiiiiiniiieiteniee et et et et et e aseteabaeeneas 5
2.3. LOGICAL ARCHITECTUREciitiiiiii et e e e 6
2.3.1. Data SOUFCe LAYEFc..oceeviiiiiiiieeiieeeeeeeee e 6
2.3.2. Data Storage LAYer..............ccccccoivoiiiiiiiiiiieiii oo 7
2.3.3. APPLicAtiON LAYEF.............c..ccooooeeeeeeeeeeeeeee e 7
2.3.4. Presentation Layer.................... e e et et e e e e e ee e rtbeeennraeas 8

2.4, PHYSICAL ARCHITECTUREooiiiiiiiee oottt e e e e e 8
2.4.1. Relational OLAP Architecture....................ccoooeeceeieeeeeeeieieeeeeee e 8
2.4.2. Multidimensional OLAP Architecturecc..ccccoooeiiiieeiiiieveieieiineeenn. 9

2.5. FUNDAMENTAL DATA WAREHOUSE PROCESSES...c.ccuvtteeiirinriieeeeiiieeenereeseeeressanes 10
2.5.1. Data StAQing SErVICESccccoviieiiiieeiiiieeiee et 11
2.5.2. QUETY SEFVICESc.eeieeeee ettt 12

2.0, SUMMARY ..ottt ettt ettt et et e e ae et e st e e b teebbeessaeeseeesseaesseeesseeesseeensseesses 13
3. MODELING THE DATA WAREHOUSEooooiiiiieeeeeeeeeeeeeee e 14
3. 1. INTRODUCTIONoeoiirieriterienteniteeiteeitesitesttenteseteeesse e seasseesseesseessaessessssanseessesassenns 14
3.2, INFORMATION LEVELS ..ottt ettt e 14
3.2.1. Conceptual Model.................c..cccoooiiiiiiiiiiiieeese et 16
3.2.2. Logical Model...............cccccocooviiiiiiiiiiiiiiiecteeeeeeeeee e 17
3.2.3. Physical Model...............ccccoccooviiiiiiiiceieeeee et 18

3.3. CONVENTIONAL DATA MODELING APPROACHESccetemrieriririeerrenrreerreeneeereeeseenes 19
3.3.1. Entity-Relationship Modelingcc..ocooeooeioeieiiieieeieeeeieeeee e 19
3.3.1.1. Barker NOtAtiON......ccceiviireieiieceieiieeir et ettt e ereeenee e aeseneeesreeeraeeenaeanns 20
3.3.1.2. Information Engineering (IE) NOtation.............ccoovvvimimiiiniiiieicicceceee 21
3.3.1.3. Integrated Definition (IDEF1X) NOtation........ccceeieeveriirieriireeieere e eveeene e 21

3.3.2. Object-Oriented Modeling................ccccccooiiieiiieiieiieeieeeeeeeeeeeeeeee e 22
3.3.3. Fact-Oriented Modelingcc.ccoocuiiviiimiiiiiiiee e 23
3.3.4. Conventional Data Modeling and Data Warehousesc............. 25

3.4. MULTIDIMENSIONAL DATA MODELING ..coveeereeeeeieesieeeeeserenmsesesseseesasessesssnsaessssses 28

3.4. 2. BUSINESS P rOCESSES. ... ettt 31

Bi4.3. EVORES ..ot 31

| 3.4.3.1. Derived MEASUIESocooviiiiemiiiiiiiiie e 31
| 3.4.3.2. Additivity oo et eaeeereeeteeteeatieeeseeseiebeeheeaseentese e seeseantesteeseenseenes 32
| 3.4.4. DIMEASIONS..........oco.eeoveeeeeeeeeeeeeeebeeee et 33
| 3.4.4.1. Classification Hierarchiescocoveveirieriii et ev e snee e 33
| 3.4.4.2. Strictness & COmMPIELENESS....c..eviiririiiieieeec ettt e 35
3.4.4.3. Categorization 0f DIMENSIONS.ccoceoieiiie ettt et sreesaa e sve s e 36

3.4.4.4. Many-to-Many Relationships Between Events and Dimensions..........c.ccoccoeeeeee.. 36

3.4.4.5. Degenerate DIMENSIONS ..oc..evviiiiiiiiriieeeiiiiieeeeeerireeirese s ee s enrae s enbeee s e e nnreeeeas 37
3.5. RELATED MULTIDIMENSIONAL DATA MODELING WORKccceevureieeiieiieiesreenenees 37

| 3.5.1. Conceptual Levelccoccccoiiiiiiiiiiiiiiiieeeeee et 38
3.5.1.1. Multidimensional Entity Relationship Model (M/ER)c.ccoooeiimnienieeniiinn, 38
3.5.1.2. Star Entity Relationship Model (StarER)c.ccooiiiiiiiiii e 39

| 3.5.1.3. Dimensional Fact Model (DEM)........cc.cooviiiiiiiiiiceeeeee e 40
‘ 3.5.1.4. GOLD MOGELooooooooeeereeeeeeeeeseeeee e eeoeeeeeeeeseeseeee e 41
| 3.5.2. Logical Level..........c.ccccooiiiiiiiiiiiiieee ettt 42
3.5.3. PRySiCAl LeVelcccoueieeeieeiiee e 43

3.5.4. FOrmal Level.............c..occooviiiiiiiiiieeee e 43

3.5.5. Shortcomings of Existing Models..................ccccccceoiiiiiiiioiiiiiiiiiiiiiie e 44

3.6, SUMMARY ...ttt ettt sttt et e st et e s ae e saeeeebaeea ... 46

4. FACT-ORIENTED MULTIDIMENSIONAL MODELINGcootiiiiiiiieiiiieeeee, 47

4.1, INTRODUCTIONoeiiiiimiierreeiieniee oo siee st e et et s eueesatessseesaaeesaneesanesabeneaneenanneenene 47

4.2. KEY DESIGN CONSIDERATIONS.....cocuitiiieeiieereenreeniteniteesineessntesseeenenesneesaneesnmneenane 47

4.3. WHY USE OBJECT ROLE MODELING?cccciitiitiniiiitennennieesinteseeesenesaneeneieessene e 48

4.3.1. Advantages of USING ORM................ccccoovvviiiiiiiieiiieeeee e 48

4.3.1.1. Conceptual Modeling Evaluation Criteriaccooceeeoieriiiiiniiiiee e 49

4.3.2. Disadvantages of Using ORMccccoccooooeeeeieeeeeeeeeeeeeeeeaeeean 50

4.4. MULTIDIMENSIONAL OBJECT ROLE MODELING (MORM)......coccccoinniiniiiiiiinnnns 51

4. 4. 1. BUSINESS PFOCESSES.oooeeeeieeeeieeeee e 54

4.4.1.1. Event & Dimension COnSIIUCES.ccocvereiirerrerrieerrreeerteeeesreresreesseeesssassnssssenss 56

4.4.1.2. Families of Business Processes...........coocooiiiiiiiiiiiiiicceceeecccc 58

G4 2. EVEIES ...ttt e e et aeeeeenans 59

4.4.2.1. AtOMIC MEASUIESeevvieriiiiiririreeiieeeirteeeetteessseesseeessaesassesesvesessseesssesesssesassssesans 60

4.4.2.2. DEIIVEA MEASUIESeecveeieeirrerrerrierneseteesseaseesessseessnessseessssarssesseessssssessssessnesss 61

T TN T 1130 1 ST 62

4.4.3. DIMEHISIONS.ococvieeiieeeeiee ettt eie e et e e e e e sibe e e ssbee e ssaaeessasaaeenns 62

4.4.3.1. Classification HI€TarChi€sccocviriveiiieeiiieerie e e e ereeseeeeeesseesreeesseeseveessneons 63

4.4.3.2. SHTICHNIESS .e..evveeeeireeiieeiteeerereeesrteeebeeesssteeessbaeseseaassssassresssssassrssassssasesasessossenenns v 67

4.4.3.3, COMPLELEINIESSeeeivirerreeeerieerereeeerieesrtaeesireesteessveesssreassssaessesessssaeessseeesssseeesssneens 68

4.4.3.4. Categorization Of DIMENSIONS.c.ccviervierieieireereeeieeteeeeeesieeeseesseesssesssaessneeesseens 69

4.4.3.5. Many-to-Many Relationships Between Events and Dimensions..............ccoeeune.. 70

4.4.3.6. Degenerate DIMENSIONS ...c..c.eeeiiiiiiieriieiie ettt sttt 71

4.5. MORM DESIGN GUIDELINES ..cc.uuutteiiiiiairteeirieiteenrteeesreeesseressseneseseeeessineesssene 72

4.5.1. MORM Level 0: Preliminary Segmentationcccccceeveveeveeeneeeniueenunann. 72

4.5.2. MORM Level 1: Business Process Family Definition [T 73

4.5.3. MORM Level 2: Business Process Definition................ccc.ccouveuvemvueesvueeannnn. 75

4.5.4. MORM Level 3: Event Definitionc.ccccceueeeieeieceieicieeeeeieeeeeee e, 76

1\

4.5.5. MORM Level 4: Dimension Definition..............c.cccocvveeeiieiceiciaiieiieaieninn. 77

4.5.6. Design Guideling SUMMQAFYcccccoooviiiiieiieiniieeeeee e 78

4.6. ANEVALUATION OF MORM ..o 79
4.7, SUMMARY ..ottt ettt e st et e 81
5. APPLYING MORM: A CASE STUDY ..ottt 82
5.1, INTRODUCTION ..cotiiiiiieiiiiiiiiienieeiee ettt et s 82
5.2. DEVELOPMENT TOOLScooiiiiiiiiiieieitie ettt 82
5.2.1. Conceptual & Logical Modeling Tool: VisioModeler™.................cc.cceou. 83
5.2.2. Relational Database: Microsoft® SQL Server™ 2000ccc.cccuve..... 84
5.2.3. OLAP Tool: Microsoft® SQL Server™ Analysis Services...........cc...cc......... 85

5.3. STEP 1: CREATING THE CONCEPTUAL MORM SCHEMAcccccoriiriiiiiiinieene. 85
5.3.1. VisioModeler Diagram WorkSpace.................ccc.ccovveeveveienieeecieieeeeiveeeseenn, 86
5.3.2. Creating @ MORM ProOject.............ccoocuveieiiiiieeeeiiiiiieee e evrea e 88
5.3.3. Creating MORM SCREMAScccooueviiiiiiiiiiiiiiee et 90

5.4. STEP 2: MAPPING THE LOGICAL SCHEMAcccuiimiiiiiiiiieeieiee e 91
5.4.1. Building the Data DiCtiOnary..............ccocccouveiiiiiiieiiieiee e, 92
5.4.2. Relational Mapping (Rmap) Procedure...............cc...ccccveeviiiieciiieiiieeeeeen. 93
5.4.3. Editing the Logical Modelcc.cccooovmviiiiciiieiiieeieiinieeciee e 95

5.5. STEP 3: GENERATING A PHYSICAL SCHEMA i....cccccoiviiiiiiiiiiiiiiiinne e 95
5.5.1. Schema Generation OPIIONScccocceiiiiieieii e 96
5.5.2. Generating Directly Through ODBC............cccccooiiiiiiiiiiiiiiiiieeieeeee e 96
5.5.3. Generating @ DDL SCFIP!..........ccccocoiiiiiiiiiiiiiniieeit et 99

5.6. STEP 4: BUILDING AN OLAP CUBE......ccoeiuiuririiniereeiieeeieiseeseesseeiese e S 99
5.6.1. Setting up the Database & Data SOUrce...............ccccoeveeerievieiecieniienacreene. 100
5.6.2. BUilding the CUDecoooveeiiveeiiieiiieeieeieeeie e 101
5.6.3. Designing Storage and Processing the Cube.........................c.cccccoeeiie. 102
5.6.4. Browsing CUBDE DAlQ..................cccceeeeiieiiiiieeece e 103

5.7. AN EVALUATION OF OUR CASE STUDY ...otiiiiiiiierieeeenirenre e e s esneesaeesenees 104
5.7.1. Hierarchies: Multiple, Alternative Path, and Shared...................cc.cc........ 105
5.7.2. NON-SIVICIROSS ...ttt ettt e e e aeeenneeeeans 106
5.7.3. Many-to-Many Relationships Between Events and Dimensions................... 107

5.8, SUMMARY ..ottt ettt e e e e 109

6. CONCLUSIONS & FUTURE RESEARCHccoiiiiiiiieteteteeeee e 110
6.1. THESIS SUMMARYoiiiiiiiiiiiiecee ettt ere ettt 110
6.2. CONTRIBUTIONScviiemiiiiiiermeeeererteesetnesnresaae e meesneeeteemesenesene e e nnesaeesne s mnesane 112
6.3. LIMITATIONS AND FUTURE RESEARCH ..c..coiriiiiiiiiiiiniiiiicnicciiecirccie e 114
BIBLIOGRAPHY ..ttt ettt et s seens 116
APPENDIX A: ORM CONSTRUCTS.ottt eeree et eia e ae e 120
APPENDIX B: MORM SCHEMA FOR RETAIL CASE STUDY ...cocoeiiiiiiieieee 122
APPENDIX C: MORM IMPLEMENTATION RESULTS ..ot 127

LIST OF TABLES

TABLE 3-1: OPERATIONAL DATABASE AND DATA WAREHOUSE DIFFERENCES................ 26
TABLE 3-2: COMPARISON OF EXISTING CONCEPTUAL MULTIDIMENSIONAL MODELS 45
TABLE 4-1: MORM CONSTRUCTS AND ASSOCIATED DESCRIPTIONScooovvenririreeeeeeeenne 53
TABLE 4-2: CONCEPTUAL SCHEMA DESIGN PROCEDURE (CSDP)....coccvvieiiiriiiieieee 53
TABLE 4-3: RETAIL POINT OF SALE FACTS ..o 54
TABLE 4-4: FACTS WITH REFERENCE MODES OMITTEDcoooviuvrvieiiieee e eeeeeirieeeee e 55
TABLE 4-5: FACT TYPES WITH VALUES OMITTED ..ottt eeetiie e e ee s e eaees 55
TABLE 4-6: SALES TRANSACTION EVENT FACT TYPES.....coiiviiiioie e 60
TABLE 4-7: PRODUCT DIMENSION FACT TYPES ..coviviiieeieeeteeerreceeeee e ee e e aeeeeeeeaeaeans 63
TABLE 4-8: MORM LEVEL O DESIGN GUIDELINESevvviiiiiiiiiieiiieeirieeeeeeeeesesesnaneieseseeaes 73
TABLE 4-9: FOUR LEVELS OF A MORM SCHEMA.....ouvviiiiiiiiiieeeiireeeieeeee e sereneneseen s 73
TABLE 4-10: MORM LEVEL 1 DESIGN GUIDELINEScoiitiiiiiiieeieeeiieeeinieeeeereneininnseeeaseens 73
TABLE 4-11: MORM LEVEL 2 DESIGN GUIDELINEScouvtriritiririrerieeeransnnnesnsssnsnnnsnnnns 75
TABLE 4-12: MORM LEVEL 3 DESIGN GUIDELINES ...vvcvviiieiiiiiiiriineiriereereeeonininnrneeeesseens 76
TABLE 4-13: MORM LEVEL 4 DESIGN GUIDELINES ..vvvtvviiieiieiiinirreeeeeeeeeeeeeesenenneeeneeees 77
TABLE 4-14: MORM DESIGN GUIDELINE SUMMARYcocovviiiiiieieeiieienieieeeeieeneineseeeennens 79
TABLE 5-1: MULTIDIMENSIONAL MODELING IMPLEMENTATION LIFECYCLE.......c............ 82
TABLE 5-2: MORM DESIGN GUIDELINE HOBceoviitiiiirerireieierereieieieeeeeseseeeenseneseseenens 90
TABLE A-1: ORM CONSTRUCTS AND ASSOCIATED DESCRIPTIONScccoeeeveriirrinrinns 121
TABLE C-1: DETAILS OF MORM IMPLEMENTATION RESULTS ..ovvvviiieeeieeeeeeeeee e 129

vi

FIGURE 2-1:
FIGURE 2-2:
FIGURE 2-3:
FIGURE 2-4:
FIGURE 3-1:
FIGURE 3-2:
FIGURE 3-3:
FIGURE 3-4:
FIGURE 3-5:
FIGURE 3-6:
FIGURE 3-7:
FIGURE 3-8:
FIGURE 3-9:
FIGURE 3-10:
FIGURE 3-11:
FIGURE 3-12:
FIGURE 3-13:
FIGURE 3-14:
FIGURE 3-15:
FIGURE 3-16:
FIGURE 4-1:
FIGURE 4-2:
FIGURE 4-3:
FIGURE 4-4:
FIGURE 4-5:
FIGURE 4-6:
FIGURE 4-7:
FIGURE 4-8:
FIGURE 4-9:
FIGURE 4-10:
FIGURE 4-11:
FIGURE 4-12:
FIGURE 4-13:
FIGURE 4-14;
FIGURE 4-15:
FIGURE 4-16:
FIGURE 5-1:
FIGURE 5-2:
FIGURE 5-3:
FIGURE 5-4:
FIGURE 5-5:
FIGURE 5-6:
FIGURE 5-7:
FIGURE 5-8:

LIST OF FIGURES

LOGICAL DATA WAREHOUSE ARCHITECTUREcocovvvrnrrrevernenennen, rverereaaeaeas 6
RELATIONAL OLAP ARCHITECTURE LAYERS ..cocooiiviviiiiiiiiirenreeeeeeeeeeeeeeenenns 9
MULTIDIMENSIONAL OLAP ARCHITECTURE LAYERS ...uuvviiiiiiiieereee e, 10
BASIC DATA WAREHOUSE PROCESSES ...evveueiiiieeeeeeeeeeeeeeeeeeeeeeeeeeerenennes 11
SAMPLE CONCEPTUAL DATA MODELcooooviiiitiiniieiiieeeeeeeeeierecrirrveereeeeseseens 17
SAMPLE LOGICAL DATA MODEL ...vvveiviveiieieeeiiieiiririrereereeeeeeesesereresseseeeeeeaaens 18
SAMPLE PHYSICAL DATA MODEL ... 19
CLASSIC NOTATION FOR ER MODELING....cvvvviiiiiiiitiieevirerereeeneeeeneeeseesnnnnnnens 20
BARKER NOTATION FOR ER MODELING......cooiiiiiiiieee e eeeeee 21
INFORMATION ENGINEERING (IE) NOTATION FOR ER MODELING................ 21
IDEF1X NOTATION FOR ER MODELINGccovviiiiiniiiiieieneeeeeeee e eseeeeineinens 22
UNIFIED MODELING LNAGUAGE CLASS DIAGRAMouvvieeeeeiiiieieiiieeeeeeeeeeee 23
OBJECT ROLE MODELING SCHEMAccovvvtiirtrirrrenrreneirineisieeesesessesesessssenns 25

SAMPLE STARER MODEL FOR MORTGAGE REPAYMENTocovvvvvevvnennrnnnnns 39
SAMPLE DIMENSIONAL FACT MODEL FOR INVENTORY MANAGEMENT 40
SAMPLE GOLD MODEL FOR RETAIL SALES ...uuniiiieieiieee e 41
LOGICAL STAR SCHEMA FOR RELATIONAL DATABASES.......ccceveveeieieireeenes 42
GRAPHICAL NOTATION FOR NEW MORM CONSTRUCTS vevvvneeeieeeeeeereeeenenn. 52
SCHEMA FOR POS RETAIL SALES BUSINESS PROCESS.....ooovvvveeveveveerennnnnnn. 56
SCHEMA FOR RETAIL BUSINESS PROCESS FAMILYc.oovevvviivnrnnrirreneeeeeenns 59
SCHEMA FOR SALES TRANSACTION EVENTcccvvviirirreirrerrereeeeeereeieneesreneeens 60
DERIVATION RULE FOR THE PROFIT MEASUREviveieieiieerieeereieeeeeeeeererenenens 61
MULTIPLE CLASSIFICATION HIERARCHIESINMORMooeeviiiiininns 64
ALTERNATIVE PATH HIERARCHIES INMORM ..., 65
SHARED HIERARCHIES IN MORMciiiiiiiiiiiiiiiiiiiiieeeeeeeeeerererevv e 66
STRICTNESS & NON-STRICTNESS INMORM ..., 67
COMPLETENESS INMORM......oooiiiiiiireeeeeees ettt e e eee e 68
CATEGORIZATION OF DIMENSIONS INMORM......covvvrririciiieicienenee e, 69
MANY-TO-MANY RELATIONSHIP BETWEEN EVENT & DIMENSION 71
MORM LEVEL 1 - RETAIL BUSINESS PROCESS FAMILY..........eeovvvvvvrvrenenn. 74
MORM LEVEL 2 - POS RETAIL SALES BUSINESS PROCESS.........cccevvvveveen 75
MORM LEVEL 3 - SALES TRANSACTION EVENT.....ooviiiiiiiieiiiiiiiieeeeeeeeeee, 76
MORM LEVEL 4 - STORE DIMENSIONcoovenrrireieereeeerseesenrnrrrerereeresseseenns 78
MORM MODEL AND ASSOCIATED DICTIONARY DOCUMENT.........cccocveveneee. 87
VISIOMODELER TOOL AND CONSTRAINT PALETTES......cooovevcrrerrereirereeeeneenns 87
VISIOMODELER FACT EDITOR WINDOW.......uuuiutiiireieeeeeeeeereneerereereeneeeeens 88
FACT EDITOR CONSTRAINTS AND ASSOCIATED DATA EXAMPLES................. 88
VISIOMODELER’S PROJECT WINDOWoouvumitimiiiierniiieieeneseeeeeeeeeeeeemnereesenesens 89
OUTPUT WINDOW SHOWING BUILD RESULTS....ccoviiriiinrirrrreeeeeeeeeeeenrernnnns 92
LOGICAL MODEL MAPPED FROM ORM SCHEMAcoovvmvveieeeeeeeeeeeeeen. 94

OPTIONS WITHIN VISIOMODELER’S GENERATE WIZARD ..ccvveeeeeneeeenaaanannn. 96

vii

FIGURE 5-9: ASSOCIATING AN ODBC DRIVER WITH A VISIOMODELER DRIVER 97

FIGURE 5-10:
FIGURE 5-11:
FIGURE 5-12:
FIGURE 5-13:
FIGURE 5-14:
FIGURE 5-15:
FIGURE 5-16:
FIGURE 5-17:
FIGURE 5-18:
FIGURE 5-19:

FIGURE A-1:
FIGURE B-1:
FIGURE B-2:
FIGURE B-3:
FIGURE B-4:
FIGURE B-5:
FIGURE B-6:
FIGURE B-7:
FIGURE B-8:
FIGURE B-9:

ODBC DATA SOURCE DEFINITIONcooiiiiiiiieeeieeeeerrereeeveeee e 98
TABLE PREVIEW IN VISIOMODELER GENERATE WIZARDcccooevvevvervrnnnen. 98
DDL SCRIPT GENERATED BY VISIOMODELERcooovvvuvvrnireeeereiereeinernnnnees 99
ANALYSIS SERVICES DATABASE OBIECTcocvvvvereretnrnereineeeeeeieeesneesesens 100

ANALYSIS SERVICES CUBE EDITOR ...ccooviviiiiitittceeee e ee e ee e e 101
CUBE PROCESSING USING THE DESIGN WIZARD..........ocuue.... e 102
FINAL CUBE PROCESSING RESULTS ...ccovoiitivririeeiereeeeeeerirrrerieeeeeeseeeseeennnens 102
FILTERING EXAMPLE WITHIN THE CUBE BROWSER.......cvvvevveierieieieciinnnne 103
DRILL DOWN EXAMPLE WITHIN THE CUBE BROWSERcovviiiiiiriiiiinn. 103
MODELING MANY-TO-MANY RELATIONSHIPScccvvvvvererrvveererenersnsnsnnnnes 108
GRAPHICAL NOTATION OF ORM CONSTRUCTS ..euverceeieeeeeeeeeeereeeeeeeenens 120
MORM LEVEL 1 - RETAIL BUSINESS PROCESS FAMILY ..ovvveiveeieieieieeeen. 122
MORM LEVEL 2 - POS RETAIL SALES BUSINESS PROCESS. ... 122
MORM LEVEL 2 - INVENTORY BUSINESS PROCESS ...uvuveiiieeieeeeeeiiieeeeennn. 123
MORM LEVEL 3 - SALES TRANSACTION EVENT ..ovvviceeeeeeee e 123
MORM LEVEL 3 - INVENTORY EVENT ...ooviiiiiiiiieeee e 124
MORM LEVEL 4 - STORE DIMENSIONouvtitiiritirerieeeiee e eeeeeeeeeeeeenns 124
MORM LEVEL 4 - CUSTOMER DIMENSIONouutuiiiieirieeeeeeeeeenerenenenenns 125
MORM LEVEL 4 - PRODUCT DIMENSIONciiiiiiiiieieieeieiiiieee e 125
MORM LEVEL 4 - TIME DIMENSIONccvvvirirerrineiieieieeeeeeeeeeaesaeseseseseses 126

viii

ACKNOWLEDGEMENTS

. T owe thanks for contributions to this thesis to a great many people. First of all,
would like to thank my thesis Supervisor, Dr. Carson Woo, for his commitment, support,
and invaluable guidance throughout this project. 1 am also indebted to my other
committee members, Dr. Yair Wand and Dr. Jacob Steif, for their insightful advice in
revising this work and their thought-provoking questions during my thesis defense.

I am also grateful to Angus Livingstone at UBC’s University Industry Liaison
Agency (UILO) for sponsoring the early data analysis work that -introducéd me to data
warchousing and eventually led to this thesis. My research was also advanced by
spending several wonderful months in Chicago, Illinois as part of an exceptional
consulting group, Fathom Solutions. Specifically, I thank Brad at Fathom for being a
source of great discussion and always reminding me of the value of practical work.

Last, but certainly not least, I would like to thank my family for their never-
ending support. 1 would especially like to thank Jill for knowing how and when to steer
my mind both towards and away from research. A source of constant inspiration and
encouragement, Jill has been incredibly supportive and tolerant of my obsession to

achieve this goal.

X

1. INTRODUCTION

Recent years have witnessed the dramatic evolution and acceptance of a new type
of management information system known as.the data warehouse. The interest in this
decision support technology is largely due to the promise of improved decision-making
and planning made possible by gaining efficient access to data from numerous different
information sources. As originally defined by Inmon (1996), a data warehouse is “a
subject-oriented, integrated, non-volatile, time variant collection of data in support of
management’s decisions” (p. 33).

The data warehouse is often the underlying database that supports an integrated
data architecture to deliver decision oriented data structures to on-line analytical
processing (OLAP) applications. In this role, data warehouses contrast operational
databases that support daily operations and on-line transaction processing (OLTP).

Wu and Buchmann (1997) present significant differences between data warehouse
and operational systems to justify the need for separate underlying databases. Chaudhuri
and Dayal (1997), also suggest differences in functionality and performance requirements
as valid reasons for differentiating the design and development of data warehouses from
that of conventional operational systems. These viewpoints suggest that the decision-
support focus of data warchouses demands data model design aligned with user
perspectives and the analytical processing to be performed rather than application
specific business needs. The point has also been argued by Boehnlein and Ulbriche-vom
Ende (1999) that both the static and dynamic influences of analytical requiremenfs and
their underlying data sources clearly illustrate the need for a distinct comprehensive data

warehouse modeling approach.

1.1. Motivation

While conventional modeling techniques are well proven for transaction
processing systems, their deficiencies in modeling data warehouses have been well
documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). The main
reason for the deficiency in these arguments is the underlying normalization premise
which provides an efficient means to store data but does not satisfy analytical and
decision support requirements. As argued by Kimball, Reeves, Ross and Thornthwaite
(1998), these models should not be used as the basis for data warehouses because the
atomic detail of normalized models often confuses users and cannot be easily navigated
by analysis tools.

As a direct response to the inability of conventional conceptual modeling methods
to represent multidimensional semantics, the multidimensional view of data (cube or
hypercube) arose (Chaudhuri & Dayal, 1997). This view introduced a variety of new
modeling concepts, including facts and dimensions, additivity, derived measures,
classification hierarchies, and the categorization of dimensions.

Despite the growth of data warehousing and OLAP applications, existing
multidimensional modeling methods do not adequately capture the inherent semantics
and a commonly accepted standard does not exist to indicate what should be represented
in a multidimensional scheme (Abello, Samos, & Saltor, 2001). While it is widely
recognized that data warehouses are based on the logical star schema, there is no standard
conceptual data modeling technique for data warehousing and OLAP applications.
Consequently, user analysis via a common framework is difficult and there is no
consistent basis for solving conceptual multidimensional modeling problems with an

intuitive and complete conceptual model.

Several Vworks have been proposed that provide significant support for
multidimensional constructs, but these approaches are far removed from natural language
and difficult to populate with example information, making it challenging to
conceptualize and validate multidimensional designs. As a result, a complete and natural
design technique does not exist that adequately conceptualizes and communicates

multidimensional data designs to both business and technical users.

1.2. Objectives

To address the fundamental deficiencies and shortcomings of existing
multidimensional models, we propose a fact-oriented approach to multidimensional
modeling. We define our approach as a specialization of Object Role Modeling (ORM)
by defining additional graphical constructs and guidelines that consider key
multidimensional properties at the conceptual level. We use ORM as a basis for our fact-
oriented approach because we believe it considers an information system’s structural
properties at the conceptual level more naturally than existing multidimensional models
or other conventional approaches.

The practical goals of our fact-oriented modeling approach are to help designers
capture and satisfy complex modeling requirements, help end users better understand the
structure and navigation paths of the data warehouse, and facilitate communication
between business users and data modelers. In support of our goals, the main objectives
of this thesis are summarized as follows:

1. to provide a natural, simple, and expressive approach to modeling

multidimensional data at the conceptual level;

2. to present a set of design guidelines that provide data modelers with a
systematic approach to building conceptual multidimensional models

using our method,; and

3. to test our approach by attempting to solve a practical data analysis
problem through a case study implemented using existing

technologies.

1.3. Outline

To accomplish our objectives, we have organized the remainder of the thesis as
follows. Chapter 2 provides an overview of data warehousing and OLAP applications.
Various architectural components are discussed, including logical layers, physical layers,
and basic warehouse processes. Chapter 3 examines data modeling, highlighting the
differences between traditional applications and data warehouses. Multidimensional
concepts are presented through an example and existing multidimensional modeling
works are reviewed. Chapter 4 introduces our conceptual multidimensional modeling
-approach by providing constructs and design guidelines for its use. Chapter 5 presents a
case study demonstrating how our model can be implemented using existing
technologies. Details are presented for conceptual model development, logical and
physical schema mapping, and OLAP cube generation. We also report on our
experiences gained in using the model. Finally, chapter 6 summarizes findings and

contributions of the thesis and proposes future research directions.

2. INTRODUCTION TO DATA WAREHOUSING

2.1. Introduction

This chapter provides én overview of Data Warehousing and OLAP Applications.
We discuss the logical architecture of a data warehouse through a presentation of its basic
information service and communication layers. These include data source, data storage,
application, and presentation layers. After presenting the logical view we outline
physical architectures that may be mapped onto the logical architecture. Categorized by
the approaches taken by desktop tools to implement data access, these physical
architectures include Multidimensional OLAP (MOLAP) and Relational OLAP
(ROLAP). We conclude the chapter with a discussion of the basic procedurés within a

data warehouse as grouped into two categories - data staging services and query services.

2.2. Data Warehousing Overview

According to the Data Warehousing Institute (2000), the data warehousing
industry encompasses a host of disciplines and technologies used to analyze information,
including data modeling; data migration and transformation, data quality, business
intelligence, data marts, on-line analytical processing, database management, data
mining, and knowledge discovery. All of these terms can be classified into a broad
category of information analysis known as decision support, which is one of the primary
uses of data warehouses.

The importance of data warehousing in the commercial segment appears to be due
to a need for enterprises to gather information from transaction processing systems into a
single place for in-depth analysis (Widom, 1995). To gather this information in a typical

data warehouse, information from a variety of sources is extracted, transformed, and

cleansed, and business rules are enforced to help clarify and standardize the data to
ensure consistency. The following sections present the logical architecture required to
support these and other warehouse processes and outline the physical architectures that

may be mapped onto the logical architecture.

2.3. Logical Architecture

Figure 2-1 presents a typical logical data warehouse architecture that extends that
of Wu and Buchmann (1997) and Kimball et al. (1998). This architecture contains the
basic information service and communication layers of the data warehouse. These layers

are discussed in the sections that follow.

Data Source Data Storage Application Presentation
Layer Layer Layer Layer
Q D;:]aeh::ignt}: Ad Hoc Query Tools

subject oriented
locally implemented

user group driven
frequently refreshed

© Report Writers

Application Interfaces:
conceptual view of data
data access facilities

. Data Mart #2 End User Applications
Data Mart #3 Models
N

Figure 2-1: Logical Data Warehouse Architecture

2.3.1. Data Source Layer

Source systems capture business transactions and include operational systems and
databases. These operational systems are often referred to as online transaction

processing systems and are optimized for storing and updating large volumes of data

gathéred one record at a time. The purpose of these systems is known in advance

whereas it is not known for data warehouses. Examples of suchA systems are order entry,
mvoicing, inventory, and general ledger systems. Source systems should be thought of as
outside the warehouse and may also include data from sources external to a company
(e.g. marketing research data). The net result of these OLTP systems is the production of
large volumes of data but the déta gathered and stored is not always easily accessible to
end users. This highlights t-he fact that the intent of these systems is not analytical

processing.

2.3.2. Data Storage Layer

The data storage layer provides services for the efficient storage, retrieval, and
management of large amounts of data. It usually refers to the data warehouse database,
which is frequently updated on a controlled basis using extract, transform, and load
(ETL) routines on source system data and is the union of all its constituent data marts. In
this context, Kimball et al. (1998) refer to a data mart as “the subset of all the data or a
restriction of the data warehouse relevant to a specific business process or group” (p. 18)

while a data warehouse usually serves the entire enterprise.

2.3.3. Application Layer

The application layer provides services to conceptually arrange data in the format
requested by end user applications. ‘It provides data access facilities suitable for specific
applications, including data model transformation between conceptual and logical
schemas. This layer may also contain utilities to generate extracts frequently offloaded to
desktop residént OLAP tools. Services for the arrangement of this data are application

dependant. As Wu and Buchmann (1997) state, this is advantageous because if the

requirements of the applications change, only the application layer needs to change.

2.3.4. Presentation Layer

To complete the logical architecture and deliver data from transactional systems
to end users who make strategic and tactical decisions, a presentation layer is needed.
The decision support systems that comprise this layer range from simple query tools to
sophisticated data mining and modeling applications that find trends in the data.

Most often the presentation layer consists of an OLAP application. These
graphical presentation and reporting systems allow users to intuitively, quickly, and
flexibly manipulate operational data using familiar business terms in order to provide
analytical insight. Many ‘of these tools provide value added information through

techniques such as exception highlighting, trend analysis, and statistics development.

2.4. Physical Architecture

The following sections present physical architectures that may be mapped onto
the logical architecture. These architectures are categorized by desktop tool approaches
to implementing data access functionality and include multidimensional OLAP
(MOLAP) and relational OLAP (ROLAP). The main premise of MOLAP is that data
must be stored multidimensionally to be Viewed multidimensionally while the ROLAP

premise is that OLAP capabilities are best provided directly against a relational database.

2.4.1. Relational OLAP Architecture
As illustrated in Figure 2-2, the three-tier ROLAP architecture leverages

relational databases to provide multidimensional analysis. The database layer typically
utilizes relational databases for data storage, access, and retrieval processes. The

application logic layer is the ROLAP engine, which executes multidimensional reports

from multiple end users. The ROLAP engine integrates with a variety of presentatibn
layers, through which users perform OLAP analysis.

ROLAP servers sit between a relational database server and a client front-end
tool. These servers extend traditional database servers with special middleware to
efficiently support OLAP queries and analysis. These queries are then evaluated in terms
of views that are identified beforehand and used to generate SQL.

As suggested by Microstrategy (1995), the main strength of ROLAP tools is that
they exploit the scalability and transactional features of relational databases while the
major drawback is the performance bottleneck that can result from performing OLAP

style querying and generating SQL.

Source Data Relational
Systems Warehouse OLAP Engine OLAP Interface
i
=
% R —
= U
000000
Tower box
Data Source Data Storage Application Presentation
Layer Layer Layer Layer

Figure 2-2: Relational OLAP Architecture Layers
2.4.2. Multidimensional OLAP Architecture

Ilustrated in Figure 2-3, MOLAP is a two-tier, client/server architecture in which
a proprietary multidimensional database (MDB) serves as both the storage layer and the
application layer. In the storage layer, the MDB system handles data storage, access, and
retrieval functions. These databases contain n-dimensional arrays where each dimension

has an associated hierarchy of levels of consolidated data. Data is loaded into an MDB

9

via batch routines and calculations are performed to aggregate along dimensions and fill
the MDB’s array structures. The application layer executes OLAP requests and

integrates with the presentation layer to provide an interface through which end users

view and request OLAP analysis.

Source Multidimensional
Systems Database OLAP Interface

(I

= >
=
Data Source Data Storage Application Presentation
Layer Layer Layer Layer

Figure 2-3: Multidimensional OLAP Architecture Layers

The significant advantage of the MOLAP approach is faster performance resulting
from the indexing properties of the proprietary multidimensional storage structures while
the major drawback is poor storage utilization, especially when the data set is sparse

(Microstrategy, 1995).

2.5. Fundamental Data Warehouse Processes

Figure 2-4 depicts the basic processes of a data warechouse as described by
Kimball et al. (1998). They group these processes into two broad service categories —

data staging services and query services.

e (Dlmensmnal Data Marts wi

—/) . ! s L . §
v Staglng Presentation Servers - Serv:ces - s eta
| : Servrces i e e o — - Wareholise Brcmsmg,/’ L/ 'AccesospTools

- Access and Security |

" : >
ony agaregated aata) | Query Management - } mppﬁi:;}:'rinﬁ' -

E : i - Stenda'd Repomng b 3 j A mifng)

Job Cmtrol N - I /| __/ ee dtamifing

i X y I Corformed Activity: Monitor i : : e

| -The Daa =B,

| Data Steglng ; - Dirmersiors & .’]_—) : i

Wa'ehouse 3§ ¢ | I N Dowrstream /.

t Area — BUS ; Cc,rfonngd T N (opermtioral -
‘__/ . Fadts - I L ¥) :sy‘steffy)

1 Dimensionat Data Marts

| K including atomic data
N T T

E e e

Figure 2-4: Basic Data Warehouse Processes
Adapted from The Data Warehouse Lifecycle Toolkit (p. 329), by R. Kimball, L. Reeves, M. Ross, & W.
Thornthwaite, 1998, New York: John Wiley & Sons.

2.5.1. Data Staging Services

One of the most significant tasks in building the data warehouse is moving data
from numerous legacy systems into the data warehouse. At a high level, data moves
from the source systems to a staging area using data staging services. These services are
driven by metadata that describe data sources, targets, dependencies, etc. Often termed
ETL services, they extract data from the data sources, transform and integrate the data,
then load it into the warehouse. The timing of ETL processes is dependant on the
characteristics of the source data, and may Qary in frequency to be executed daily,
weekly, monthly, etc. Common tools used for these processes include products such as
Ascential DataStage, SAS ETL, and Microsoft DTS.

To effectively use ETL services, the entire data staging process is managed
through job control services. These services define a series of steps, specify relations and

dependencies among these steps, and capture metadata regarding their progress and

statistics. These services can be implemented as SQL stored procedures or in an advanced

tool designed to help manage the processes. Exception and error handling processes are

usually implemented as well to catch referential integrity violations and handle other

unrecoverable errors.

2.5.2. Query Services

Query services allow a user to formulate a query, execute it against the database,
and respond to the request with a result set. Only presentation servers provide query
services as they store and present data in a multidimensional format. As shown in Figure
2-4, the flow of data from the presentation server to the end user is supported by metadata
from the metadata catalog.

OLAP browsing services help users navigate the warehouse by using some form
of browsing tool. This tool is usually linked to a catalog containing business definitions
and data elements for particular subject areas. Popular services and operations supported
by OLAP tools include pivoting, roll-up, drill-down, and slice-and-dice. These services
refer to the various manipulations that can be performed on query result sets.

Although complex analysis techniques have gained considerable attention with
the advent of OLAP systems, managed query environments still exist that use standard
reporting tools. These queries can come in ‘the form of ad-hoc report requests or
standard, fixed format reports. Oftentimes, queries that begin as ad-hoc requests become
standard reports.

Other services found in the warehouse include activity monitoring and security
services. Activity monitoring captures information about system performance and usage
statistics to help with marketing and capacity planning. Security services facilitate
database connections and rely on authenticatién and authorization processes to identify

users and determine access rights.

12

2.6. Summary

This chapter has provided an overview of data warehousing and OLAP
applications. We introduced the logical architecture, Which consists of data source, data
storage, application, and presentation layers. These layers include operational systems
and databases that capture business transactions, components for storing, retrieving, and
managing data, components to conceptually arrange data in end user applications, and
finally services to deliver data to the user. We also illustrated how the physical
architecture of a data warehouse can be mapped on its logical layers in several ways. In a
MOLAP solution analytical data is extracted and stored in a multidimensional database,
while the ROLAP approach provides analytical capabilities directly against a relational
database. The chapter concluded with a discussion of the basic processes within a data
warehouse as presented in two broad categories. Data staging services are focused on
getting data into the data warehouse and include ETL services, job control, exception and
error handling processes. The second category, query services, focuses on getting data

out of the warehouse and includes browsing, reporting and query management.

13

3. MODELING THE DATA WAREHOUSE

3.1. Introduction

In this chapter we provide an overview of the theoretical and practical aspects of
modeling data for traditional OLTP systems, data warehouses, and OLAP applications.
We first examine the basic concepts of data modeling by distinguishing conceptual,
logical, and physical design phases. We will look at conventional data modeling methods
and present an overview of several approaches, including Entity Relationship Modeling,
Object-Oriented Modeling, and Fact-Oriented Modeling. After presenting conventional
approaches, we will highlight differences in the data structures of traditional OLTP
applications and decision support applications to distinguish multidimensional and
conventional data modeling. To gain a better understanding of the structural properties of
multidimensional data, we provide an overview of multidimensional concepts through an
example. We conclude the chapter with a review of existing multidimensional models as
discussed in the literature. A brief look is taken at physical and logical models but the
emphasis is on several of the most popular conceptual models attempting to address

multidimensional requirements.

3.2. Information Levels

Databases are major productivity tools for information-oriented businesses,
however, for a database to be used effectively its data should be well-designed, correct,
and easy to access. Designing a database involves analyzing and representing data in a
formal model of the application areaAan organization must understand for a particular
system. The application area being modeled is typically part of the real world the

modeler is interested in and has been referred fo by Halpin (1995) as the universe of

14

discourse. A data modeling method allows business users and data architects to describe
the universe of discourse clearly and precisely to achieve consensus on the definition of
its contents. According to Halpin (1995), such a modeling method comprises both a
language and a procedure to guide modelers in using the language to construct models. A
language has associated syntax, semantics, and pragmatics and may be graphical and/or
textual.

Data models make extensive use of graphical representations and natural language
to visualize information needs of an application and gauge how completely and
accurately data structures reflect an application domain. Several direct benefits of this
visualization include improved communication between modeler and user, more
understandable solutions, and early detection of missed requirements and modeling
errors. Design improvements stemming from data modeling generally translate to fewer
construction errors and less expense as inaccuracies do not filter through to later stages of
software development and result in costly code changes. Once complete, data models
serve as architectural blueprints for datébase and application development.

Most literature distinguishes between conceptual, logical, and physical database
development phases when it comes to the subject of database deéign and development
(Elmasri & Navathe, 1994; Batani, Ceri, & Navathe, 1992; Halpin 2001). The common
theme in these works is that the terms conceptual, logical, and physical differentiate
levels of abstraction in data models. These vaﬁous layers are not defined by an accepted
authority but are generally understood by data architects and modelers. The models may
appear in different manners, some approaches dealing with only the physical and logical

models, while others offer elements of all three. Combined, the conceptual, logical, and

15

physical models comprise a complete data model representing the highest level of design
abstraction to the lowest level of implementation detail of a particular application.
Adopting this view of data rhodeling, we distinguish three different kinds of data
models based on the constructs they provide and the database design phase they are
associated with - Conceptual, Logical and Physical. Conceptual models are close to the
way users perceive the data and are independent of any implementation. Secondly,
logical models are understandable by end users but consider the underlying Database
Management System (DBMS) used in the implementation. Finally, those at the physical
level depend on the specific database used and describe the details of how data is actually

stored in the computer. These levels are further described in the following sections.

3.2.1. Conceptual Model
The first step of database design is usually developing the conceptual data model

of an application. Considered the highest level of database abstraction, conceptual design
portrays the application domain using terms and concepts understandable to the user
while ignoring logical and physical level aspects. The conceptual model is concemed
with depicting data from the business users point of view, and thus, is said to represent an
abstraction of the real world view and understanding of data (Batra, Hoffer, & Bostrom,
1990). The conceptual model suppresses non-critical details in order to emphasize
business rules and user objects using concepts people are used to working with. As
illustrated in the sample in Figure 3-1, conceptual models typically include only
significant entities that have business meaning, along with their relationships and

possibly a few significant attributes.

16

(Project Management CDM \

Team (user [1211612002 | version 6.1)

‘é/
S
J

s member of
w

Division i

i bdorgsto, | EPlope
! ~ Project
T“Is manager 0'\———04

&
partici eates in

\
is comprised of

|

t

|

¥

A
Task 7*«

Figure 3-1: Sample Conceptual Data Model

According to Batra et al., (1990) the process of deriving and analyzing data
inherent to a business situation and mapping the objects of this understanding of reality
constitutes a discovery phase. This discovery phase consists of two parts - the first
involves elicitation of the information requirements from users and the second involves

conceptual representation of information requirements into a conceptual model.

3.2.2. Logical Model '
The logical database design phase typically follows conceptual design and

converts the model into a lower-level structure for implementation purposes. To do this,
an appropriate class of logical data model (e.g. relational, hierarchic, network) is chosen
and a logical design is expressed in terms of the abstract database structures for that

model. As shown in the relational model sample in Figure 3-2, information is stored in

tables and constraints are expressed using primary and foreign key declarations.

(Project Management LDM \
(_ user [1211612002 version 6.1)
Tean
Team nurber
Speciality
Y/
©
Is memberof T
|- sweyises
; 1
Division Enployee
Division nunber i belongs to, | Errployee nurvber
Division name ' ™ Firstname o Project
Division address Last name - Project nurber
Employee functon s anager of Pro;:ect name
Employee salary Project tabd
4 _/[\
Vo
| [
o] \
A 4 \? Activity
Participate Task »| Srtdate
Startdate =>tis done by —1 Taskname End date
End date Task cost

Figure 3-2: Sample Logical Data Model

While various logical model classes exist, the predominance of relational
databases has meant the majority of today’s logical models are schemas conforming to
relational theory. As introduced by Codd (1970), relational theory involves normalized
relations where each data entry is atomic and stored in tables treated as mathematical
relations. Relational schemas are most often in first normal form and de not include

specific details for each relational DBMS implementation.

3.2.3. Physical Model

The physical model specifies how the logical model will be instantiated in a
particular DBMS product (e.g. Oracle, Sybase, etc.). As illustrated in the example in
Figure 3-3, physical models include detailed table information specific to a particular
product or version, as well as configuration choices for the database instance. Other
details include physical storage options for index construction, key constraints, views and

referential integrity maintenance.

18

TEAM -
TEAY e mmoisd mod (Project Management PDM \
TEASPE Fer (B0) W N
" {user [121612002 [version 6.1)
DMSION A
- MEMBER
DVNUM <ple punerie(S) ndpult 1
DIVNAME cher(30) rdmd MEMBER
DVADDR cher (80) nit JEANUM <pkie pungicS) odmil
B DMSION_PK EMPNUM <pkfe nungic(S) ndodl PROJECT
E) MEMBER_PK PRONUM <pe puneic(5) pdndl
B3 MEMBER_FK EMPNUM <k> mumaic(s) ot
By 18 MEMBER OF FK ACTBEG tmestatp ndt
BELNeRTO n ACTEND imestamp
s MEME:ER of PRONAME char (30) nat nult
B PROLABL cher (80) nl
2 e By PROUECT PK
EMPLOYEE Py 1S_RESPONSIBLE_FOR FK
EMPNUM ple mmaicS) o 5_RESPONSIBLE_FOR
EMP_EMPNUM <fic mmeic(s) ut i
DIVNUM <> umaic(S) ot null i
EMPFNAM <ae cher(30) l I
EMPLNAM <l char(30) na ot BELONGS_10
EMPFUNC <ak> cler(30) adi /‘
EMPSAL mmaic(82 ndl /
By EMPLOYEE PK TASK
By CHIEF_FK PRONUM <pkfe mmewl) odou
B _BELONGS TO FK2 ISKNAME <l char(30) ot
1 ACTBEG imestarp)
" ACTEND tmestarp ndl
wonxxs_ou TSKCOST mmanic(8.3 ndnull
PARTICIPATE B TASK PK
ERONUM ~ <ikfe ouna(s) odmd | s oone gy |23 BELONGS_TO_FK
ISKNAME <pkf chor(30) ntnd
EMPNUM <pkfle pumeic) ndtnu
PARBEG tmestarp ndl
PAREND tmestarp i
51 PARTICIPATE PK
B WORKS_ON_FK
£ IS DONE_BY_FK

Figure 3-3: Sample Physical Data Model

3.3. Conventional Data Modeling Approaches

Many forms of symbolic notation have been developed to enable data models to
represent various levels of abstraction. Some of these notations are lexical, others
graphical, and others a combination of both. The following sections outline three of the

most popular conventional notations for information modeling at the conceptual level.

3.3.1. Entity-Relationship Modeling

The most common technique for conceptually modeling data in_ operational
systems is the Entity Relationship (ER) model defined by Chen (1976). Shown in Figure
3-4, Chen’s classic ER notation models entities that participate in relationships. For
example, to model an employee working for a department, a relationship is assigned

between the Employee and Department entities.

19

EMPLOYEE

Figure 3-4: Classic Notation for ER Modeling

Introduced in the 1970s, Chen’s model has evolved over time to incorporate
extensions, variations, and improvements including the Extended Entity Relational
Model (Teorey, Yang, & Fry, 1986) that captures detailed features of an information
model. These different versions support different concepts and often use different
symbols for the same concepts. A number of the extensions and variations have been
incorporated in Computer Assisted Software Engineering (CASE) products employing
the ER methodology. While there is no single standard ER notation, the most popular
versions of ER are the Barker and Information Engineering (IE) notations. Although not
a true ER representation, another popular notation is IDEF1X, which is a mixture of ER
and relational approaches. We provide a brief overview of these three ER notations in

the following sections.

3.3.1.1. Barker Notation

Originally proposed by Barker (1990), Oracle later adopted this notation in its
CASE tools. Shown in Figure 3-5, the Barker notation represents entities as named, soft
rectangles with a list of attributes. A hash (#) indicates the primary identifier of an entity.
An asterisk (*) or heavy dot () indicates an attribute is mandatory, while a superscript
“0” (°) indicates it is optional. All relationships are binary and are shown as named lines.
A solid half-line denotes a mandatory role and a dotted half-line denotes an optional role.

A crow’s foot indicates the cardinality “many” and its absence indicates “one”.

20

EMPLOYEE DEPARTMENT

works for
#* empNr > oo #* deptNr
* empName | * deptName
° faxNr employs ° size

Figure 3-5: Barker Notation for ER Modeling

3.3.1.2. Information Engineering (IE) Notation

Information Engineering was originated by Finkelstein (1989) and later adopted
by Martin (1990). Today, different versions of IE exist and the style has become the
basis for a number of CASE products, including Sybase’s PowerDesigner. As Figure 3-6
illustrates, IE displays entity types as named rectangles with a list of attributes.
Relationships are binary and denoted by named lines. A crow’s foot indicates “many”, a

stroke indicates “one”, two strokes indicate exactly one and a circle indicates optional.

EMPLOYEE DEPARTMENT
works for
empNr >O I } deptNr
empName deptName
empBirthDate

Figure 3-6: Information Engineering (IE) Notation for ER Modeling

3.3.1.3. Integrated Definition (IDEF1X) Notation

IDEF1X was developed in the late 1970's and later extended into a standard
adopted by the U.S. Air Force as part of a required methodology for government projects.
Originally, IDEF1X was a member of a family of Integrated Definition (IDEF) languages
developed by the Air Force for Integrated Computer Aided Manufacturing (ICAM). Of
the different languages defined for different tasks, IDEF1 was initially developed for
conceptual data modeling and later “extended” as IDEF1X for logical data fnodeling.
The current version (NIST, 1993) continues to be widely used for database design and

has been adopted by many CASE tool vendors, including Computer Associates’ ERwin.

21

IDEF1X is a hybrid modeliﬁg language, combining conceptual constructs (e.g.
entity, relationship) with relational database constructs (e.g. foreign keys). IDEFI1X
models may be viewed at three levels — an ER view, a key-based view, and a fully -
attributed view. The ER view is used early in th¢ design process and simply includes
entity types and relationships with no attributes or identification schemes. The key based
view includes at least all the key-based attributes and classifies relationships as
identifying or non-identifying. Shown in Figure 3-7, the fully attributed view, as its title

indicates, includes all attributes.

EMPLOYEE DEPARTMENT
empNr deptNr
employs /
empName
empBirthDate works for deptNZ?;: (AK1)
deptCode (FK)

Figure 3-7: IDEF1X Notation for ER Modeling

Here, entity types are shown as named rectangles. Attributes are listed inside the
rectangles with the primary key in the top compartment. Alternate keys are denoted with
“(AKn)” and foreign -keys with “(FK)”. Connection relationships are foreign key

references from the child to parent and are shown with a dot “e” at the child end.

3.3.2. Object-Oriented Modeling

Object-oriented modeling is an approach that encapsulates both data and behavior
within objects. The most influential object-oriented approach that exists is the Unified
Modeling Language (Booch, Rumbaugh, & Jacobson, 1999), which has been adopted by
the OMG as a method for object oriented analysis and design. Though mainly focused on

the design of object oriented programming code, UML can be used for modeling database

22

applications. UML is supported in various CASE tools, including Rational Rose, one of
the most well known visual modeling tools for object-oriented modeling.

Of its nine diagrams, UML’s Class diagram is used to specify static data
structures by supplementing its predefined notations with user-specific notations. When
stripped of implementation detail, Class diagrams are similar to an extended version of

ER diagrams. Shown in Figure 3-8 is a UML class diagram for Employment.

EMPLOYEE DEPARTMENT
= < Employs 1
empNr {P} deptNr {P}
empName deptName
empBirthDate size

Figure 3-8: Unified Modeling Language Class Diagram

Classes are shown as named rectangles with the class name in the top
compartment and attributes listed inside the rectangles. Entity instances in UML are
identified by internal object identifiers, thus no conceptual identification schemes are
required for its classes. In the above example, a user-defined constraint “P” has been
added in bracgs to denote primary uniqueness. The uniqueness constraints on the
Employee/Department association are captured by the multiplicity constraints * (0 or

more) and 1 (exactly one).

3.3.3. Fact-Oriented Modeling

At the heart of fact-oriented modeling is the verbalization of facts and rules,
which facilitates the validation of business rules. Typically, a modeler develops a data
model by gathering 'requirements from domain experts and communicating data
structures at a conceptual level in terms that non-technical users can understand. To

simplify things, the modeler usually breaks the information into manégeable parts and

23

works with sample data populations. Fact-oriented modeiing improves the analysis and
communication required by verbalizing relevant data as elementary facts that cannot be
split into smaller facts without losing information.

Our treatment of fact-orientation focuses on Object Role Modeling (Halpin, 2001)
since this is the only fact-oriented method with significant support in the industry. ORM
began in the early 19705 as a semantic approach that represents the application world as a-
set of objects (entities or values) that play roles (parts in rélationships). ORM has
appeared in many forms including Natural-Language Information Analysis Method
(NIAM) from which it derives many of its features. The version we discuss is based on
an extended version of NIAM called Formal ORM (FORM) and is supported by several
industry tools including Microsoft’s VisioModeler, Visio Enterprise, and Visual
Studio.Net for Enterprise Architects.

ORM is used to create a conceptual schema where the schema specifies the
information structure of the application: the types of facts that are of interest; constraints
on these facts; and the derivation rules required for deriving some facts from others.
Figure 3-9 shows a simple ORM schema. The ovals in the diagram represent object types.
These are connected by predicates, shown as sequences of boxes. Each box corresponds
to a role in the relationship. If we include the object types with the predicate, we have a
Jact type - for example, Employee works for Department. In this model, each predicate
has two roles. For exémple, the fact type Employee works for Department has one role

played by Employee (works for) and one role played by Department (employs).

24

Department
(deptNr)

Employee
(empNr)

P
has
“—»
has/ has

{ empName - } { deptName

Figure 3-9: Object Role Modeling Schema

The schema in Figure 3-9 also includes business rules, otherwise known as
constraints or derivation rules. For example, an arrow-tipped bar over a role is a
uniqueness constraint, indicating that each object playing that role does so only once (for
example, each Employee has at most one empName). A dot on a role connector indicates
the role is mandatory (each Employee must have an empName).

ORM simplifies the design process by using natural language, diagrams and
examples, and by examining information in terms of elementary facts. Facts and rules
can be easily verbalized as sentences and all data structures can be easily populated with
multiple instances. Unlike ER or UML, no use is made of attributes so there is no need to
determine whether a feature is to be modeled an attribute or not. This results in more

stable models and queries that are more immune to attribute changes (Halpin, 2001).

3.3.4. Conventional Data Modeling and Data Warehouses

Having described conventional data modeling approaches, we now highlight the
data structure differences of traditional OLTP systems and decision support systems in

order to distinguish conventional data modeling from multidimensional data modeling.

25

Data warehouses and OLAP applications contrast operational databaées that
support daily operations and on-line transaction processing. As proposed by Wu and
Buchmann (1997), the major differences between operational databaseé and data
warehouses include users, functionality, contents, and requirements. These differences

are summarized in Table 3-1.

|7 Operational Databases:

ta:Warehou
User System Designer, System Decision Maker, Knowledge
Administrator, Data Entry Clerk | Worker, Executives
Function Daily Operations, (On-Line) Decision Support, (On-Line)
Transaction Processing Analytical Processing
DB Design Application Oriented Subject Oriented
Data Current, Up-to-date, Atomic, Historical, Summarized,
Relational, Isolated Multidimensional, Integrated
Usage Repetitive, Routine Ad Hoc
Access Read/Write, Simple Transaction | Mostly Read, Complex Query
(usually 1-3 tables) (usually more than 3 tables)
System Transaction Throughput, Data Query Throughput, Data
Requirements | Consistency, Data Accuracy Accuracy

Table 3-1: Operational Database and Data Warehouse Differences
Adapted from “Research Issues in Data Warehousing,” by. M. Wu and A. Buchmann, 1997, Proceedings of
the 7th German Conference on Datenbanksysteme in Buro, Technik und Wissenschaft (BTW'97), p. 62.

OLTP systems impose different requirements than data warehousing and OLAP
systems, and therefore, different data models and implementation methods are required
for each type of system. Conventional approaches like ER, UML, and ORM are
commonly used to represent an OLTP application at the conceptual level, however, they
are not capable of sufficiently representing multidimensional semantics using existing
constructs. While the ER model is well proven as a powerful modeling technique for
transaction processing systems, its deficiencies in modeling data warehouses have been
well documented (Golfarelli, Maio, & Rizzi, 1998a; Kimball, 1997; Raden, 1995). As
Kimball et al. suggest (1998), conventional data modeling cannot be used as the basis for
enterprise data warehouses as it does not model the business, rather it models the micro

relationships among data elements.

26

The main reason for the deficiency in conventional approaches is their underlying-
normalization premise. This premise provides for an efficient means to store data but
does not satisfy retrieval requirements for analytical and decision support applications.
As argued by Kimball et al. (1998), conventional models should not be used as the basis
for data warehouses because the atomic detail of normalized models often confuses users
and cannot be easily navigated by analysis tools. End ﬁsers cannot understand, remember,
or navigate conventional models and, unlike OLAP applications, there are few graphical
user interfaces that can make conventional models usable by end users. Additionally,
analysis software cannot usefully query general conventional models since optimizers
that attempt to do this often make the wrong choices and result in poor performance.

Conventional models are constituted to remove redundancy in the data model and
optimize OLTP performance by facilitating retrieval of individual records having certain
critical identifiers. While these approaches are popular with OLTP systems, databases
created using conventional modeling techniques cannot be efficiently queried. These
techniques defeat the basic attraction of data warehousing, which is intuitive and high-
performance retrieval of data, and should not be used for this purpose. As discussed in
Bulos (1996), conventional models like the ER provide no easy way of modeling
multidimensional data.

As a direct response to the inability of conventional models to service decision
support processing, the multidimensional view of dafa arose as a popular alternative to

conceptualize decision support data. Consequently, multidimensional modeling has

emerged as the dominant technique for data warehouse design. Using the denormalized

data structures that result from multidimensional modeling, decision support applications
run faster and employ a high level of data redundancy.

In addition to understanding the business rules within operational data,
multidimensional modeling requires a good understanding of the analysis scenarios of an
organization. To facilitate such an understanding, multidimensional modeling has
introduced a variety of new modeling concepts, including facts and dimensions,
classification hierarchies, derived measures, additivity, and categorizing dimensions. The
following section provides an overview of these multidimensional concepts and
discusses, tﬁrough an example, a set of multidimensional modeling requirements needed

to efficiently design data warehouses.

3.4. Multidimensional Data Modeling

The multidimensional view of data is a popular conceptual view that influences
front end tools, database design, and query engines (Chaudhuri & Dayal, 1997). As
suggested by Boechnlein & Ulbriche-vom Ende (1999), the basic idea of the
multidimensional view is the separation of quantitative and qualitative data. The
quantitative measurable data, called measures, are analyzed from various viewpoints
based on the qualitative content of fhe data, referred to as dimensions. These dimensions
have been defined as the “combination of some qualitative aspects to a common
structure” (Boehnlein & Ulbriche-vom Ende, 1‘999, p. 16). Together these lead to an n-

dimensional structure, often visualized using the cube metaphor as shown in Figure 3-10.

28

element 4

element 3

element 2

dimension 3

Qi 2
Nsj g
On 7 d\“\e\'\

Figure 3-10: Representation of the Cube Metaphor

A multidimensional cube corresponds to a subject of analysis commonly referred
to in data warehousing terminology as a fact (e.g. a sales transaction). We do not
consider the use of the term “fact” semantically correct in this context since all objects
playing roles are essentially facts about the application domain. To avoid confusion,
throughout the remainder of this paper we will use the more semantically correct term
“event” to represent the subject of analysis instead of the more popular term “fact”.
While this is a significant departure from the generally accepted use of the term, in light
of our fact-oriented approach we feel it is necessary to reflect semantics accurately.

In the multidimensional model, every dimension has a set of elements called
attributes. Shown on the axes of the cube in Figure 3-10, dimension attributes represent
different ways of analyzing the data (e.g. store and time of purchase). The intersection of
a dimension attribute for every dimension in the cube forms a cell containing a
quantitative measure that describes the event (e.g. sales quaﬁtity). In most applications
different measures describing an event are common, which means that a cell of the cube
contains more than one numeric value. Multidimensional models are usually organized in

terms of dimensions of the data, which are the terms of reference by which measures are

29

retrieved based on specific values of the dimensions. Dimension attributes can be
arranged hierarchically and measures can be summarized along these hierarchies based

on mathematical rules ranging from simple summarizations to complex averaging.

3.4.1. Multidimensional Concepts Through an Example

In the following sections we discuss a set of multidimensional modeling
requirements to understand the multidimensional concepts our fact-oriented model must
accommodate to efficiently design data warehouses. Ranging from fundamental to
advanced, these concepts represent the analytical processing requirements of end users.

To best understand multidimensional modeling and the structural properties of
multidimensional data we draw from a well-known Grocery example (Kimball, 1997).
We modify this example and reference it throughout the remainder of the paper to help
describe our approach. A summary of our example is presented below.

A large grocery chain with 100 stores is spread over a five-state

area. FEach of the stores has a full complement of departments, including

grocery, frozen foods, dairy, meat, produce, bakery, floral and

health/beauty aids. Each store has roughly 60,000 individual products on

the shelves, each with bar codes referred to as stock keeping units (SKUs).

As customers purchase products at the cash register, sales data is

gathered by scanning bar codes into a point of sales (POS) system.

Management is interested in understanding customer purchases as
captured by the POS system and they have decided to analyze the POS

Retail Sales process. They hope to understand which products are selling

to which customers at which stores during which times.

30

3.4.2. Business Processes

As described by Kimball and Ross (2002), a business process' 1S a major
operational activity supported by a source system (e. g.. invoicing) from which data can be
collected for the analytic purposes of the data warehouse. Using that definition, the
business process we wish to model for our Grocery example is POS Retail Sales since we

are interested in customer purchases as captured by our POS transaction system.

3.4.3. Events

We define an event as an item of interest (e.g. a sales transaction) in a decision
making process. Central to data warehouses, events are described through attributes
called measures. Either atomic or derived, measures are numerical, continuously valued
attributes that describe the event from different points of view. In our example, Sales
Transaction is the event signifying the sale of an item and it is represented by the most
granular data accessible to us - an individual line item on a POS transaction.

Sales measures include price (i.e. amount charged), cost (i.e. amount an item

cost), and profit (i.e. the difference between the sale price and cost of the item).

3.4.3.1. Derived Measures

While the majority of measures are atomic, we must also be able to model derived
measures. A derived measure 1s one that is defined in terms of other measures, either
atomic or derived. In our example, profit is derived as the difference between price and
cost. When measures are arithmetically computed from others in this fashion we must

also be able to include the appropriate mathematical calculations.

31

3.4.3.2. Additivity

Measures are usually summarized in various ways in order to analyze
information. Commonly known as additivity, this summarizatioﬁ refers to the ability to
aggregate measure values along all hierarchies defined on a dimension. In our example,
the quantity 1s additive as it can be summarized as the number of units sold for a product.

For other non-additive and semi-additive measures, aggregation is inherently
impossible or limited in the context of one or more dimensions for conceptual reasons.
The aggregation of some measures might not be semantically meaningful for these
measures along all dimensions. An inventory level measure for example is non-additive
on all the dimensions, since adding up levels does not make sense. However, we can still
aggregate this non-additive measure using operators such as average, maximum,
minimum.

Using our Grocery example, the number of customers is calculated for a given
product, day and store by counting the number of tickets for a certain product printed on
a certain day in a certain store. Since the same ticket may include other products, adding
or averaging the number of customers for two or more products would be inaccurate.
Thﬁs, the number of customers is semi-additive as it cannot be consistently aggregated on
the Product dimension, but is additive on the Time and the Store dimensions.

Our multidimensional data model should correctly summarize and produce results
that are meaningful to the user when aggregating data. Specifically, it should avoid
double-counting data and provide a foundation for specifying which summarizations are
meaningful for different kinds of data. This concept of applying additivity to measures

along dimensions is crucial to multidimensional data modeling.

32

3.4.4. Dimensions

Our measures are based on a set of dimensions that present the context for
analyzing events. Dimensions contain discrete dimension attributes that characterize the
dimensions and determine the minimum granularity chosen to represent events. In our
example the dimensions for the Sales Transaction event are Product, Customer, Store and
Time. Focusing on the Customer dimension, a customer may have dimension attributes

including customer id, name, and income level.

3.4.4.1. Classification Hierarchies

Our multidimensional model must enable classification hierarchies. Hierarchies
are made up of discrete dimension attributes and determine how measures may be
aggregated and selected for the decision-making process. The dimension in which a
hierarchy is rooted defines its finest aggregation granularity; other dimension attributes
define progressjvely coarser granularities. Defining the classification hierarchies of
certain dimension attributes is crucial because these classification hierarchies provide the
basis for the subsequent data analysis.

A hierarchy level contains a distinct set of members and should be captured
explicitly by our model so users can determine the relation between different levels in the
hierarchy. Different levels correspond to different data granularities and ways of
classification. Level A rolls up to level B if a classification of the elements of A
according to the elements of B is semantically meaningful to the application. In our

example, the Time dimension can be decomposed into year, quarter, month and day

levels, showing that the day level rolls up to the month level, which rolls up to quarters,

which rolls up to years. In this way, product sales can be summarized on numerous
levels for each year.

Since a level can roll up to any number of levels, our model must allow a single
dimension to contain multiple hierarchies. This case occurs if different criteria of
classification are possible for dimension members. Our model must not limit the number
of hierarchies in a single dimension and it must bsupport hierarchies with any different
number of levels. Hierarchies may also share one or more common levels or attributes
but otherwise have no correlation. Figure 3-11 shows the different classification
hierarchies defined for the Product, Time, and Store dimensions. On the Product
dimension, we have defined a multiple classification hierarchy so we can aggregate data
values along two independent hierarchies: product—type—family—group and product—
brand. In our Time example, we define multiple the hierarchies time-month—quarter—

year and time—season.

PRODUCT TIME STORE
Type Brand Month Season City Sales Region

2, 2. L
l 1 |

Group Year Country

Figure 3-11: Examples of Classification Hierarchies

As there can be more than one path along which to aggregate data in a single
dimension, our model must also support alternative path hierarchies. This type of

hierarchy occurs when several roll-up paths exist between two levels of a' dimension. For

34

our Store dimension in Figure 3-11, we have defined an alternative path classification
hierarchy with two different paths that converge into the same state hierarchy level:

store-city-state-country and store-sales region-state.

3.4.4.2. Strictness & Completeness

While we have presented several basic characteristics of dimension hierarchies,
the concepts of strictness and completeness are also important for conceptual purposes.
Strictness is used to mean that an object at a hierarchy’s lower level belongs to only one
higher level object. In our Store dimension example, Store and City have a strict
relationship because a Store can exist in only one City. Similar strict relationships exist
between City and State, with a City existing in only one State, and between State and
Country, with a State existing in only one Country.

Non-strictness means an object belongs to more than one higher-level object. In
a non-strict dimension hierarchy, many-to-many relationships may exist between the
different levels in the dimension. The Sales Region and State objects, for example, form
a non-strict relationship because a Sales Region can be comprised of more than one State.

Completeness means all hierarchy levels belong to one higher-class level and that
level consists of those members only. In our example, we have a complete classification
hierarchy between the State and Country levels since only the recorded States can form a
Country. By this we mean, all the recorded States form the Country, and all the States
that form the Country have been recorded. As another example, we may also define
completeness for the Quarter and Year hierarchy levels because all the recorded Quarters

form a Year, and all the Quarters that form the Year have been recorded.

35

3.4.4.3. Cateqgorization of Dimensions

While classification hierarchies provide a degree of distinction between hierarchy
levels, as the number of dimensions increases certain attributes are valid for all hierarchy
levels within a dimension while others are only valid for a subset of levels.
Distinguishing this subset of attributes is referred to as the categorization of dimensions
and must be supported in our model to situations like heterogeneous products.

In our Grocery example, we need to track a number of different products together
with a common set of attributes and measures, but at the same time need to describe
additional details about individual products. For example, our Product dimension
attributes alcohol percentage and volume are valid for Drink products but are not
applicable for Food products. Our multidimensional data model should consider these

attributes and reflect the categorization semantics of the Product dimension.

3.4.4.4. Many-to-Many Relationships Between Events and Dimensions

We usually consider events as many-to-many relationships between all
dimensions and as many-to-one relationships between the event and every particular
dimension. In our example, a sales transaction is related to a single product sold in one
store to one customer at one time (e.g. a ticket line item). In some cases, however,
events can represent many-to-many relationships between particular dimensions.

As seen in section 3.4.3.2, the reason for the non-additivity of number of
customers on the Product dimension is that the relationship between purchase tickets and
products is many-to-many instead of many-to-one. The sales and tickets form a many-to-

many relationship to the Product dimension because one ticket can consist of more than

one product, although every ticket is still purchased in only one store by one customer at

one time. Our modeling approach should semantically support the relationship between
an event and a dimension as not always being the classical many-to-one mapping via

constructs that are not traditional events or dimensions.

3.4.4.5. Degenerate Dimensions

In our Grocery example, the grain of our sales event is a Sales Transaction as
represented by a line item on a sales ticket. While the ticket is an identifying attribute for
the Sales Transaction event, it has no other attributes that would make it an actual
dimension and hence it is not treated as one. As Kimball and Ross (2002) indicate, this
situation often arises when the grain of an event is represented on an actual working
document such as an order or invoice. In these cases, order and invoice numbers often

become degenerate dimensions.

3.5. Related Multidimensional Data Modeling Work

Numerous multidimensional surveys exist that define specific requirements for
multidimensional modeling and proceed to evaluate a series of models. Blaschka, Sapia,
Hofling, and Dinter (1998) list requirements for a formal OLAP application model to
analyze various models containing some kind of formalism. In a similar fashion,
Pedersen and Jensen (1999) present requirements found in clinical data warehousing for
multidimensional data models and evaluate several data models against them. While
different models are compared, the models are relevant to different modeling phases and
thus it is inappropriate to directly compare them.

In the remainder of this section we separate and discuss multidimensional
modeling works based on the three information levels discussed earlier in the chapter.

Our review is primarily concerned with translating an understanding of analytical

37

business réquirements into a conceptual data wareﬁouse design. As such, we focus the
majority of our review on works at the conceptual level while briefly discussing other
logical and physical design works for additional background. - In addition to the three
traditional information levels presented, we briefly mention a fourth group of models to
complete our review. Categorized as Formal by Abello et al. (2001), these models are
not specific to a particular database design phase; instead they provide a theoretical

framework and multidimensional algebra or calculus.

3.5.1. Conceptual Level

The following sections provide a general overview of existing models that attempt
to capture multidimensional semantics at the conceptual level. While numerous models

exist, we mention only the most relevant conceptual models found in the literature.

3.5.1.1. Multidimensional Entity Relationship Model (M/ER)

Sapia, Blaschka, Hofling, and Dinter (1998) propose the Multidimensional Entity
Relationship Model (M/ER) as a specialization of the ER model. Illustrated in Figure
3-12, the M/ER model includes a special dimension level entity set (e.g. vehicle) and two
special relationship sets connecting dimension levels - a fact relationship set (e.g. vehicle
repair) and a rolls-up-to relationship set (e.g. vehicle-vehicle model). A rolls-up-to
relationship set relates two dimension levels where the second one represents a higher
level of abstraction. Multiple hierarchies, alternative paths, and shared hierarchy lavels
for different dimensions are supported and a fact relates different dimension level
entities. While many constructs are supported, the M/ER model does not depict derived
measures and their derivation rules, many-to-many relationships, strictness and

completeness.

38

type of
garage

o e

customer

Figure 3-12: Sample M/ER Model for Vehicle Repair
Adapted from “Extending the ER Model for the Multidimensional Paradigm,” by Sapia et al., 1998,
Proceedings of the 1st International Workshop on Data Warehouse and Data Mining (DWDM’98), p. 112.

3.5.1.2. Star Entity Relationship Model (starER)

Tryfona, Busborg, and Christiansen (1999) propose the Star Entity Relationship
Model, basing their work on the ER model and the star schema. Shown in Figure 3-13,
the starER includes fact sets, entity sets, relationship sets, and attributes. A fact set (e.g.
repayment) represents a set of real-world facts sharing the same properties. An entity set
(e.g. loan) represents real-world objects with similar properties, and a relationship set
(e.g. at) represents a set of associations among entity sets and fact sets. Attributes (e.g.

loan id) represent static properties of entity sets, relationship sets, and facts sets.

payback

repayment

Figure 3-13: Sample starER Model for Mortgage Repayment
Adapted from “starER: A Conceptual Model for Data Warehouse Design,” by Tryfona et al., 1999,
Proceedings of the 2nd International Workshop on Data Warehousing and OLAP (DOLAP’99), p. 6.

The starER’s deﬁcienéy concerns the particular models used as its basis.
Although the ER model is the most popular for transaction processing, its inadequacy in
analytical processing is well documented as discussed earlier in this chapter. Although
the star schema provides abstraction understandable to the user, it is still logical, not

conceptual, and critical multidimensional semantics (e.g. derived measures) are lost.

3.5.1.3. Dimensional Fact Model (DFM)

Golfarelli et al. (1998b) propose a graphical conceptual model for data
warehouses called the Dimensional Fact Model (DFM). Shown in Figure 3-14, the main
components of the DFM are facts, measures, dimensions and hierarchies — together
forming a fact scheme with the fact as root. A fact (e.g. inventory) is central to the DFM
and its attributes are called measures (e.g. qty). Dimensions (e.g. product) are discrete
attributes that determine the minimum level of granularity chosen to represent the fact. A
hierarchy is a set of dimension attributes (e.g. type-category) linked by 1:1 or n:l
relationships and it may also contain additional descriptive information not used for
.aggregation. Additivity is expressed by relationships between a measure and a

dimension, as tagged by the allowed aggregation functions.

category

weight

package size brand
package type units per pallet
product
- address
season :
\ INVENTORY /
year month week "= = 4 qty warehouse city state

Figure 3-14: Sample Dimensional Fact Model for Inventory Management
Adapted from “The Dimensional Fact Model: A Conceptual Model for Data Warehouses,” by Golfarelli et al.,
1998, International Journal of Cooperative Information Systems, 7(2-3), p. 226.

40

While the DFM accommodates fhe basic elements of multidimensional analysis
and provides fundameﬁtal multidimensional constructs, is not well suited to express the
complex properties of multidimensional data. Only many-to-one relationships between
dimensions and facts are supported, objects not in the form of a dimension (i.e., not
connected directly to a fact) cannot be modeled, and finally, there is no way to depict
specialized relationships (e.g. specialization/generalization, membership).

The DFM also assumes a well-conceived relational model of source systems
exists. As discussed by Boehnlein and Ulbriche-vom Ende (1999), a major disadvantage
of this approach is having to first find a point of reference for the derivation of an ER

diagram. This is especially true if the underlying models are very complex.

3.5.1.4. GOLD Model

Trujillo, Palomar, and Gomez (2000) describe the GOLD model as an object-
oriented conceptual model based on a subset of UML. A fact (e.g. sales) is represented
as a basic class and is described through a set of fact attributes representing its measures
(e.g. qty, price). Through shared aggregation, a fact is related to a set of dimensions (e.g.

customer, time) that show the granularity adopted for representing facts.

SALES

ticketNr{OD}
lineNr
aty
price
NtotalPrice

A
1 Y1 1

STORE CUSTOMER TIVE
storeld OID} customrerid IO} timeld {OID}
name name day
address address week
telephone telephone month

Figure 3-15: Sample GOLD Model for Retail Sales

41

The GOLD model is one of the most comblete graphical conceptual modeling
techniques found in the literature. It takes into account many of the fundamental
elements of multidimensional analysis, including multiple classification hierarchies,
strictness and completeness, additivity, and derived measures. However, the model is
based on the graphic representation of UML, which is not well suited to conceptual data
modeling (Halpin, 2001). Hay (1999) makes a similar argument in suggesting UML is

not suitable for analyzing business requirements in cooperation with users.

3.5.2. Logical Level

Golfarelli et al. (1998a) discuss how the multidimensional model may be mapped
to the logical level differently depending on the underlying data store. If the store
supports multidimensionality, the model may be represented in a multidimensional
database in an n-dimension array. Alternatively, in relational databases the model is

usually mapped through a star schema as shown in Figure 3-16.

dimension 1 dimension 3
primary key 3
attribute 1 attribute 1
attribute 2 fact attribute 2
attribute n primary key 1 attribute n
primary key 2
primary key 3
primary key 4
dimension 2 measure 1 dimension 4
- measure 2 -
primary key 2 measure n primary key 4
attribute 1 © attribute 1
attribute 2 attribute 2
attribute n attribute n

Figure 3-16: Logical Star Schema for Relational Databases

Undoubtedly the most well known logical model, the star schema is a result of the
dimensional modeling technique made popular by Kimball (1996). Illustrated in, the star

schema is a logical representation of multidimensional data structures in relational

42

database system. The two basic constructs that provide for -multidimensionality in the
star schema are fact and dimension tables. The primary key of the fact table is composed
of a set of foreign keys to each one of the primary keys of the dimension tables.

As defined by Kimball (1996), dimensional modeling is a logical design
technique prominent in data warehousing that is different from, and contrasts with, ER
modeling. The technique. seeks to present data in a standard, intuitive framework that
allows for high performance access. As argued by Kimball, significant advantages of this
model are it is highly recognizable to end users, it is a predictable framework that
withstands unexpected changes in user behavior, it is gracefully extensible, and it handles
common modeling situations. Unfortunately, although widely used, the technique is still

logical in nature and multidimensional semantics (e.g. hierarchies) are not supported.

3.5.3. Physical Level

Much of the concentration at the physical level is on specific storage techniques
for particular DBMS implementations. Dyreson (1996) explains how a sparse cube could
be implemented in a MOLAP database by means of cubettes but few constructs are
provided. Theodoratos and Sellis (1999) investigate the problem of designing a data
warehouse based on view materialization modeled as a search space problem. Other
Physical works deal with indexing (Chan & loannidis, 1998), query evaluation (Cabibbo

& Torlone, 1999), and query languages (Gingras & Lakshmanan, 1998).

3.5.4. Formal Level

The focus of formal models is not on conceptualizing user ideas so they do not
pay much attention to capturing specific user concepts. Instead, they are mainly devoted

to the definition of a multidimensional algebra or calculus and do not offer as many

43

constructs as other models. Since our focus is on modeling constructs, fofmal models are
not considered as conceptual, however, if we were to take into account the expressiveness
of the algebras, they could certainly be as semantically expressive as conceptual models.
Agrawal, Gupta, and Sarawagi (1997) presented one of the first formal multidimensional
models. With a focus on presenting an algebra this model does not offer many
conceptual elements to model a mﬁltidimensional scheme. In addition to Agrawal,
another notable formal model is the Extended Multidimensional Data Model (EMDM) as
proposed by Pedersen and Jensen (1999). The EMDM includes a multidimensional
formalism and procedures are described for implementing the model using relational
databases. Although these models support many complex multidimensional properties,

information is not graphically represented in a conceptual schema.

3.5.5. Shortcomings of Existing Models

To the best of our knowledge we have reviewed all of the proposed conceptual
multidimensional models and the most relevant logical, physical, and formal models. We
have found that conceptual models represent more semantics than models at other levels
and there seems to be a trend to selﬁantically enrich multidimensional models to
overcome the himitations of conventional data models. However, while recent models are
providing more functionality, they are still not ideal for formulating, transforming, and
evolving a conceptual multidimensional model.

Table 3-2 presents the results of our conceptual multidimensional modeling
review. In short, a complete and natural conceptual design technique was not found that
adequately conceptualizes and clearly communicates multidimensional designs to

business and technical users alike. While several models (e.g. GOLD, starER) were able

44

to represent fundamental event and dimension properties, all models lacked se?eral
desirable features. Specifically, we found existing approaches far removed from natural
language and difficult to populate with sample, making it challenging for users and
domain experts to conceptualize and validate designs. In addition, there is a general lack

of design guidelines to ensure modeling approaches are properly and easily applied.

Events:

Atomic Measures Yes Yes Yes Yes
Derived Measures No No No Yes
Additivity No Yes Yes Yes
Dimensions: : ' :
Classification Hierarchies Yes Yes Yes Yes
Strictness No Yes No Yes
Completeness No Yes No Yes
Categorization of Dimensions Yes Yes No Yes
Degenerate Dimensions Yes Yes Yes Yes
Many-to-Many Relationships No Yes No Yes
Business Processes: ' ' :
Business Process Families No No No No
Business Processes Yes Yes Yes Yes
Other:)
Natural (Fact) Basis No No No No
Population & Validation Mechanisms No No No No
Design Guidelines No No Yes No
Implementation Using Existing Modeling Tools No No No Yes
Generation into an OLAP Tool Yes No . No Yes

Table 3-2: Comparison of Existing Conceptual Multidimensional Models

Despite the growth of data warehousing, a standard does not exist to indicate what
should be represented in a multidimensional scheme. While it is widely recognized that
data warehouses are based on the logical star schema, there is no standard conceptual
data model commonly accepted for data warehousing and OLAP applications. Most of
the models reviewed use their own terminology and define a specific set of design
elements. Consequently, vuser analysis via a common framework is difficult and there is
no consistent basis for solving conceptual multidimensional mode]ing problems with an

intuitive and complete conceptual model.

45

3.6. Summary

This chapter presented an overview of data modeling for OLTP systems, data
warehouses and.OLAP applications. We first examined basic data modeling concepts by
looking at the conceptual, logical, and physical levels of data. We then presented an
overview of several conventional data modeling approaches with a specific focus on ER
Modeling, UML and ORM. Our review highlighted the differences between data
warehouses and traditional OLTP applications and we concluded different conceptual
modeling techniques are required for data warehouses due to the multidimensional nature
of analytical data. To better understand multidimensional data requirements we
presented various multidimensional concepts through an example.

Using the analysis requirements demonstrated with a sample Grocery chain, we
covered events and dimensions, measures, additivity, derived measures, classification
hierarchies, strictness, completeness and categorizing dimensions. The chapter
concluded with a review of the current state of multidimensional modeling works with a
focus on those attempting to express semantics at the conceptual level — the_ MJ/ER,
starER, DFM and GOLD models. The fundamental deficiencies and shortcomings of
these épproaches in formulating, transforming and evolving a conceptual model provides
motivation for our model presented in the next chapter. Inspired by ORM, our proposed
approach considers an information system’s structural properties at the conceptual level
more naturally than existing multidimensional models or conventional modeling

approaches.

46

4. FACT-ORIENTED MULTIDIMENSIONAL MODELING

4.1. Introduction

This chapter introduces Multidimensional Object Role Modeling (MORM), our
fact-oriented approach to conceptually modeling multidimensional data. We will first
present several key design considerations in specializing ORM and discuss the
advantages and disadvantages of using ORM in our approach. We will also demonstrate
how MORM easily represents the main structural properties of multidimensional data at
the conceptual level. Our approach is presented in sections, each one outlining how our
model addresses a multidimensional modeling concept as presented in the previous
chapter. Our approach- is a specialization of ORM in which we introduce several
multidimensional constructs and provide semantics, syntax, and rules for each. We will
also present design guidelines for our model in order to provide data modelers with a
systematic approach to building a conceptual multidimensional model using our
approach. The chapter concludes with an evaluation of our model and a discussion of its

benefits with respect to multidimensional and conceptual criteria.

4.2. Key Design Considerations

In order to allow the natural representation of semantics inherent in
multidimensional data, we specialize ORM. We do not propose a set of new concepts
and terminology, rather we attempt to pull multidimensional concepts together under the
ORM framework to try and understand their semantics while keeping core ORM
constructs the same. In doing so, our approach is driven by the following key design

considerations:

47

1. Specialization of ORM: All newly introduced elements should be special
cases of native ORM constructs. Thus, we maintain the flexibility and
expressiveness of ORM.

2. Minimal extension of ORM: The number of additional elements needed
should be as small as possible to ensure we can easily transfer scientific
results from ORM to our model. Minimal extension also ensures an
experienced modelers can easily learn and use our specialized model.

3. Representation multidimensional semantics: Our specialization should be
powerful enough to express advanced multidimensional semantics, namely
events and dimensions, additivity, derived measures, classification
hierarchies, strictness, completeness and the categorization of dimensions.

4.3. Why Use Object Role Modeling?

Prior to presenting our conceptual multidimensional modeling approach, we.
discuss several primary reasons for our use of ORM. Simply put, we contend that
building a good data model requires capturing and expressing as much information as
possible at the conceptual level and we believe ORM is the best way to do this. Building
such a model requires an ability to first design a conceptual schema that accurately and
completely defines business rules in a way business users understand. To do this we
must effectively communicate with these users since we rely on them to define the rules
that dictate and validate the data. The following sections further elaborate on our use of

ORM, providing several arguments for and against its use as a modeling method.

4.3.1. Advantages of Using ORM

Designing a database requires a complete understanding of the subject area of
interest and ORM allows us to specify this in a clear and unambiguous way. ORM uses
natural language (e.g. Englisil) and easily understood diagrams that are populated with
sample data to accomplish this goal. Since ORM is based on natural language, it can be

completely expressed in either graphical or textual format. This natural language is much

48

easier for users to understand, express, and verify than technical terminology and allows
for communications with business experts in their own language.

Another significant advantage of ORM is that it makes no initial assumptions
about an object's importance until performing conceptual to logical schema mapping.
The foundation of ORM is the elementary fact through which the universe of discourse is
expressed in terms of objects playing roles. Using simple, eésy to understand facts like
"Person works for Department” requires no distinction as to whether an object is an
attribute or an entity and delays any commitment on the relative importance of each.
Delaying the decision to model an element as an attribute or an entity allows us to be
concerned only with the data and business rules and alleviates costly data integrity and
schema change problems in the future.

The fact-based approach of ORM is a simple, accurate approach that makes it
easy to apply a population check with real data that makes it easier to get one individual
fact correct than many facts simultaneously. It is also easy to determine constraints while
looking at sample data sets through ORM modeling. Semantic domains (e.g. units or
ranges such as "name", "SSN", etc.) are automatically included in these data sets,

meaning there is less chance for error in the final model.

4.3.1.1. Conceptual Modeling Evaluation Criteria

Our reasons for using ORM are evidenced in ORM’s evaluation results against a
well-defined set of criteria for conceptual models - expressibility, clarity, semantic

stability, semantic relevance, validation mechanisms, abstraction mechanisms and formal

foundation (Halpin & Bloesch, 1999). Halpin & Bloesch suggest these criteria are

desirable characteristics for any language to be used for conceptual modeling. In support
of our use of ORM, we summarize the results of their evaluation below:

= Expressibility of a language is a measure of what it can be used to say about
a domain. For conceptual data modeling, ORM’s rich constraint notation
makes it expressive both graphically and through the use of textual
languages. It has many constructs inherent to the language, and is therefore
more expressive of the actual universe of discourse. Its role-based notation
makes it easy to specify a wide variety of constraints, and its object types
reveal the semantic domains that bind a schema together.

= Clarity of a language is a measure of how easy it is to understand and use.
With respect to clarity, ORM structures may be directly verbalized as
sentences and its notations and textual expressions are easily learned and
remembered.

* Semantic_stability is a measure of how well models retain their original
intent in the face of changes to the domain. Attribute-free, ORM is more
stable for modeling and not impacted by changes that would otherwise
cause attributes to be remodeled as relationships or vice versa.

* Semantic_relevance means only relevant conceptual details need be
modeled. Using purely conceptual constructs ORM avoids modeling logical
or physical aspects such as implementation details.

» Validation mechanisms are ways in which domain experts can check
whether the model matches the application. ORM uses "data use cases" to
initiate data modeling through the verbalization and population of facts and
rules. Using simple sentences, this approach facilitates communication
between data modelers and users so the domain is understood and the
application model is validated.

» Abstraction mechanisms allow unwanted details to be removed from
immediate consideration. ORM models may be modularized into various
scopes or views based on perspective (e.g. a page of a data model). Other
mechanisms like attribute abstraction can be used to hide or show only a
portion of the model.

» Formal foundation of a language is needed to ensure it is executable and not
ambiguous. ORM has a sound theoretical basis and a mature formal
foundation that refines its semantics.

4.3.2. Disadvantages of Using ORM

While we have presented our case for the use of ORM, there are many arguments

against its use. As described by Becker (2000), these arguments and their rebuttals are

summarized as follows:

1. Standard industry CASE tools (e.g. ERwin, Data Architect) do not support
ORM and ORM’s CASE tools (e.g. Visio) are not enterprise level tools:
While this is true, the importance should be on ensuring requirements are
correctly, precisely, and accurately gathered and that the resulting design
meets those requirements. It should not matter what tool is used to do this.
If a project fails because the underlying data model is not correct, the tool,
no matter how standard, is worthless. In cases where a model must
absolutely go in a company standard deliverable tool, it can simply be
entered once it has been developed in ORM and deemed to be correct.

2. ORM models are too verbose and take up too much space: ORM models
are indeed verbose, mainly because they capture many constraints that
other techniques are unable to express (e.g. attribute level constraints and
set comparison constraints like subsets and exclusionary rules). As such,
it is more important that the model completely specify the problem
regardless of how much space it utilizes. In either case, compact versions
of ORM models can be easily generated using ORM CASE tools.

3. Virtually perfect models can be created in ER and/or UML: This is true
but using ORM’s CSDP can make the process easier and lead to fewer
mistakes. Like ORM modelers, ER and UML modelers basically think
about objects and the roles they play in order to implement them correctly
in terms of their methods (e.g. deciding what is an entity vs. what is an
attribute). ORM just makes this process more formal. It is also important
to note that ER models can be derived from ORM models relatively easily.

4. The world is going UML and we do not need yet another data-centric
technigue: ORM and UML are not mutually exclusive, rather they can be
used together and the overall results are usually better. ORM is a natural
fit into the UML process flow, particularly at the analysis stage where
ORM can document the data and static constraints while UML can
document processes and dynamic rules. Using these together can result in
analysis deliverables that are be better formed, more consistent, more
accurate, and more concise. '

5. Users won't understand yet another diagram type: In ORM’s case users
do not even need to see the notation if they do not want to. Since ORM is
based on natural language, users can be shown sentences in English or
whatever language they understand. While users often pick up on
notations relatively quickly, they are often immediately comfortable with
ORM'’s sentences and its narrative style of data use cases.

4.4. Multidimensional Object Role Modeling (MORM)

Having provided an overview of Object Role Modeling and multidimensional
modeling concepts in the previous chapter, we now bring these two topics together with

our fact-oriented multidimensional modeling approach. Based on our observation of the

51

limitations of existing conceptual techniques for multidimensional modeling, we propose
MORM which introduces multidimensional constructs to ORM’s grammar to support
multidimensional semantics. We do not propose an entirely new set of constructs and
terminology to represent these concepts, rather we utilize the ORM framework and
specialize it as required to represent multidimensional modeling semantics.

Our design goal is to provide a simple yet powerful approach that represents
multidimensional properties at the conceptual level. To achieve this we combine
multidimensional constructs with the semantically rich constructs of the well-known
ORM model as summarized in Appendix A. Our starting point is that ORM has been
used productively for years and has tested powerful enough conceptually, that when new
modeling techniques are needed to capture new demands, we should look to ORM.

To represent multidimensional properties at the conceptual level we introduce
three specialized object types — the Event Object Type, Dimension Object Type, and
Hierarchy Object Type. To distinguish these multidimensional constructs from native
ORM and ensure they are emphasized in our models, a special graphical notation is
defined for each as shown in Figure 4-1. These constructs are briefly defined in Table

4-1 and further described using examples in the sections that follow.

Figure 4-1: Graphical Notation For New MORM Constructs

52

ptio

Event Depicts an event (e.g. sales transaction) that is described with quantitative
Object measurable data and analyzed in terms of dimensions. Depicted as a black
Type filled inverted ellipse with the event name in white upper case lettering. It is

larger than other constructs, signifying it is the focal point of analysis.
Dimension | Depicts a dimension (e.g. store) representing an analysis viewpoint based on
Object the qualitative content of the data. Forms the root of a dimension tree, where
Type each node is an object type and each edge is a functional (n:1 or 1:1)
predicate. Depicted as a gray shaded inverted ellipse with black upper case
naming. Its size and shading signifies its importance as an analysis viewpoint
on an event and separates it from native ORM.)
Hierarchy | Represents each classification hierarchy level (e.g. month) within a dimension
Object (e.g. time). A role between two hierarchy objects specifies a relationship
Type between two levels of a hierarchy (e.g. month is in quarter). Depicted as a
gray slash-filled ellipse with mixed case naming, its fill signifies its

importance in data analysis (e.g. aggregation) and separates it from native
ORM.

Table 4-1: MORM Constructs and Associated Descriptions

Since our model is a specialization of ORM, regular ORM constructs as outlined
in Appendix A are used in our MORM diagrams. The extended diagram that results from
the combination of both techniques allows us to efficiently model both conventional
concepts (e.g. value types, roles, etc.) and multidimensional properties (e.g. dimensions,
hierarchies, etc.) at the conceptual level.

Our approach builds on ORM's conceptual schema design procedure (CSDP), a
formal method for designing a conceptual schema from a universe of discourse (Halpin,
2001). Shown in Table 4-2, the CSDP focuses on data analysis and design through seven

primary steps.

Description

Transform familiar information examples into elementary facts, and apply quality checks |

1
2 | Draw the fact types, and apply a population check

3 Check for entity types that should be combined, and note any arithmetic derivations
4 | Add uniqueness constraints, and check arity of fact types
5

6

7

Add mandatory role constraints, and check for logical derivations
Add value, set comparison and subtyping constraints
Add other constraints and perform final checks

Table 4-2: Conceptual Schema Design Procedure (CSDP)

53

Since we use ORM as the basis for our model, the fundamental CSDP steps still apply.
However, we need to consider additional guidelines to incorporate multidimensional
concepts as presented in the previous chapter. The following sections summarize how

MORM represents these main structural aspects of multidimensional data.

4.4.1. Business Processes

Consistent with Step 1 of ORM’s CSDP, familiar examples of business process
information from the application domain are initially gathered from reports, forms, the
domain expert or other application documentation. Our approach then translates the
information regarding the high-level relationship between business process events and
dimensions into elementary facts.

Following our Grocéry example presented in the previous chapter, we begin to
gather information from our POS Retail Sales business process and verbalize it as facts f1

through f4 as shown in Table 4-3.

The Sales Transaction with ticketNr 715 occurred in the Store named UBC Foodmart

fl

f2 | The Sales Transaction with ticketNr 715 occurred at the Time indicated 12:00

f3 | The Sales Transaction with ticketNr 715 included the Product with product id 123456

f4 | The Sales Transaction with ticketNr 715 was completed by the Customer with customer id 99

Table 4-3: Retail Point of Sale Facts

Facts 1 through 4 specify relationships between the Sales Transaction event and
the dimensions Product, Store, Customer, and Time. As in ORM, each fact expresses a
fundamental step in our MORM approach - "an object plays a role with another object”.
Facts assert that the objects participéte in a relationship (play roles), where that

relationship cannot be expressed as a conjunction of simpler facts. As with ORM fact

assertions, object types begin with a capital letter and are displayed here in italics. The

relationship type, or logical predicate, is shown in bold between the noun phrases that
identify the objects. For our purposes, only the normal predicate is included in the
declarations. If the inverse was included it would be preceded by a slash "/". For
example, in f4 the *“/” would indicate that the Sales Transaction plays the role of being
completed by, and the Customer plays the role of completing.

In the above case, the fact description indicates the entity type (e.g. Product), a
value (e.g. 123456) and a reference mode (e.g. Product Id) indicating the manner in
which the value refers to the entity. Removing the reference modes, the facts may also be

stated as shown in Table 4-4.

Sales Transaction 715 occurred in Store UBC Foodmart

f2 | Sales Transaction 715 occurred at Time 12:00
f3 | Sales Transaction 715 included Product 123456
f4 | Sales Transaction 715 was completed by Customer 99

Table 4-4: Facts with Reference Modes Omitted

Stated even more briefly by removing the values, the above facts are instances of the fact

types shown in Table 4-5.

fl | Sales Transaction occurred in Store

f2 | Sales Transaction occurred at Time

f3 | Sales Transaction included Product

f4 | Sales Transaction was completed by Customer

Table 4-5: Fact Types with Values Omitted

55

4.4.1.1. Event & Dimension Constructs

Once business process information examples are translated into elementary facts a
conceptual schema is drawn showing all _the fact types. To support the
multidimensionality inherent in information at the business process level, we introduce
two MORM constructs - the Event Object Type and the Dimension Object Type. These
constructs represent the events and dimensions we are interested in analyzing.

Figure 4-2 depicts the high-level MORM model for the POS Retail Sales business
process. Our approach clearly divides business process data into events and dimensions,
as is evident from the Sales Transaction event object and its relationship to the dimension

objects Product, Store, Customer, and Time.

_—

occurred at

Figure 4-2: Schema for POS Retail Sales Business Process
The event object type is depicted as a black filled inverted ellipse. Its name is
capitalized and it is larger than other constructs, signifying it is the focal point of

analysis. Dimension object types are smaller inverted ellipses but are also shaded gray

and capitalized-to distinguish them from other object types that will be added as the
model progresses. Reference modes are intentionally omitted from the diagram at the
business process level and are more appropriately included when event and dimension
details are modeled. Lines connect dimension object types to the roles they play and
predicates are shown as named sequences of two role boxes. Predicate names are read
left-to-right, however, there is only one role name to read in this figure as inverse
predicate names have been intentionally omitted.

Mandatory roles are explicitly shown by means of a mandatory role dot where the
role connects with its object type. In our example, all roles for a Sales Transaction are
mandatory, meaning all Sales must be associated with a certain Product, Store, Customer,
and Time. Roles without a mandatory dot are optional, as seen by the inverse roles as
read from the each of the dimensions. Although not included, an inverse role for our
example could read Product is included in Sales Transaction. The optional inverse role
indicates a dimension object can be part of zero, one, or more event object instances. In
short, our example dimensions may exist without playing a role in a Sales Transaction.

ORM’s internal uniqueness constraints are used on the binary fact types to
capture cardinality by asserting entries in roles occur there at most once. For example,
the internal uniqueness constraints (tipped arrows) on our binary fact types assert that
each Sales Transaction occurred in at most one Store. This depicts a many to one .
relationship with the first role mandatory. The absence of a uniqueness constraint on
dimension role indicates each Product can be part of many Sales Transactions. This
absence may be expressed explicitly by the default verbalization “it is possible that the

same Store-sells more than one Sales Transaction.

57

The external uniqueﬁess (circled “u”) constraint spanning roles of the different
predicates to all dimensions specifies that in the natural join of the predicates, the
combination of connected roles is unique. This stipulates that for each Sales Transaction,
the combination of Product, Store, Customer and Time is unique. Stated another way,

given any combination of the four dimensions there is at most one Sales Transaction.

4.4 .1.2. Families of Business Processes

Most organizations have an underlying value chain that represents the natural
flow of key business processes. Operational source systems produce transactions or
snapshots at each step of the value chain and generate interesting performance metrics
along the way. Each key process produces distinct metrics with unique granularity, time
intervals and dimensionality so each is typically modeled separately. As put forth by
Kimball and Ross (2002), an Enterprise Data Warechouse (EDW) often integrates this set
of related business processes based on common, shared dimensions. An integrated data
warehouse combines measures from different processes to provide insight into
performance across the value chain.

Our approach to multidimensional modeling ensures we accurately represent
these “families” of business processes when modeling large, complex data warchouses.
To illustrate this concept, we now widen our Retail exafnple to include store inventory:

Optimized inventory levels in our grocery stores can have a major
impact on chain profitability. Making sure the right product is in the right
store at the right time minimizes out-of-stock situations and reduces
overall inventory carrying costs. To better understand the inventory-sales
relationship, management would also like the ability to analyze daily

quantity on hand inventory levels by product and store.

58

In Figure 4-3 we illustrate the business process family concept using two business
processes — Retail Sales and Inventory. The Sales Transaction and Inventory event
objects represent metrics captured by these processes and share three common

dimensions - Product, Time, and Store.

SALES

TRANSACTION

. INVENTORY

TR s
occurred at ia taken at

Figure 4-3: Schema for Retail Business Process Family
4.4.2. Events

The following sections outline our approach to representing events in our MORM
model. Following the concepts presented in chapter 3, major considerations for events
include atomic measures, additivity, derived measures and many-to-many relationships
between events and dimensions.

As the initial step in our approach, familiar examples of event informatiqn are
gathered from the application domain, verbalized into natural language, and subsequently
translated into elementary facts. Following our Retail example, information gathered for

the Sales Transaction event is verbalized into the fact types included in Table 4-6.

59

¢ tb’l:"yp .
f1 | Sales Transaction cost MoneyAmount

f2 | Sales Transaction was priced at MoneyAmount

f3 | Sales Transaction had profit of MoneyAmount

f4 | Sales Transaction sold Quantity

Table 4-6: Sales Transaction Event Fact Types

Once event information examples are translated into elementary facts we have a
set of fact types that can now be refined for business rules (e.g. constraints and
derivations) and added to the conceptual schema. A conceptual schema for our Sales |
Transaction event is shown in Figure 4-4. Our MORM approach illustrates relevant

object types, predicates and reference schemes for the event.

SALES

). TRANSACTION

Figure 4-4: Schema for Sales Transaction Event

4.4.2.1. Atomic Measures

Atomic measures are those that are primitive, or not defined in terms of others.
The atomic measures indicated in our Sales Transaction event are price, cost and
quantity. Our approach uses the common object type MoneyAmt for the three monetary
measures because we wish to make the domain explicit. This makes it clear that we can
compare monetary values (e.g. price vs. cost). The broken ellipse for Quantity indicates

this 1s a value type, in this case a number, and hence needs no reference scheme.

60

4.4.2.2. Derived Measures

1533

In our approach, derived measures are marked with an asterisk to indicate
their derivability and distinguish them from atomic measures. When measures are
arithmetically derived from others an appropriate mathematical calculation (referred to as
a derivation rule) must be provided. This derivation rule references other fact types in
the model. Similar to ORM, 6ur approach uses a double asterisk “**” to indicate that the
derivation rule is to be added to the conceptual model and the associated measure is to be
stored in the physical database. In this derived and stored case, a derived measure is
stored as soon as its defining measures are entered in the database and it is updated
whenever they are updated. Our approach includes both the derived fact type indicator

(**) and the rule for clarity. As shown in Figure 4-5, our example includes the derived

measure profit and its derivation rule is written as text in the schema.

\g ** { profit = price - cost}
S SALES v
. TRANSACTION 4 define Sales Transaction has profit of MoneyAmt as
Sales Transaction was priced at MoneyAmt1, an
Sales Transaction cost MoneyAmt2, and

MoneyAmt = MoneyAmt1 - MoneyAmt2

RN
(Quantity+)
-, s

L~

14 \
\customerCount+ 3

{customerCount is not aggregated along product dimension}

Figure 4-5: Derivation Rule for the Profit Measure
Different styles may be used in ORM but we use a relational style in which fact
types are set out fully as relationship types. In this relational style predicates declare the

rule. An informal version of the rule is written as a comment in braces, while a formal

61

version specifies a derivation rule in which the derived fact type is defined iﬁ terms of the
others. In this definition, the derived fact type is said to be the definiendum, meaning
what is required to be defined (Halpin, 2001).

Various textual languages have been defined to express constraints, derivation
rules and queries in ORM schemas. We chose ConQuer, an ORM query language for
erﬁbedding constraints in our conce’ptuai model. ConQuer is essentially classical logic
with set theory, and since an ORM fact table is a set of tuples, derivation rules can be

expressed in ConQuer using set comprehension (Halpin, 2001).

4.4.2.3. Additivity

Consistent with ORM, our approach uses a plus sign "+" to represent measures
referenced by a number, thereby indicating they can participate in numeric operations.
All measures with a “+” following their reference scheme are considered additive. For
example, the “+” on Quantity in Figure 4-5 indicates that the values which refer to
Quantity are actual numbers and hence may be added. Non-additive measures are not
depicted with the “+” symbol.

For semi-additive measures we include an informal rule as a comment in braces.
Shown in Figure 4-5, we include a rule for customerCount because it is additive on Time
and Store dimensions but cannot be aggregated along Product since the same ticket may

include other products.

4.4.3. Dimensions

As with our previous business process and event domains, the initial step of our
approach to modeling dimensions is to translate familiar information examples from the

application domain into elementary facts. If these examples are verbalized for the

62

Product dimension we translate them into a base set of fact types that include the

following examples in Table 4-7.

e | AR B
| Kact'Typ
Product is identified by Product Key

#
fl
f2 | Product is known by Product Name
f3 | Product is of Product Type

4 | Product belongs to Product Group

Table 4-7: Product Dimension Fact Types

As in our earlier examples, each sentence fact is expressed in plain language using
a meaningful predicate and non-technical object names that can be mapped to technical
database names later. Note that the addition of the "Product Key" provides a reference
concept to the dimension to make each Product unique. Each dimension in our

multidimensional model can be expressed using this same approach.

4.4.3.1. Classification Hierarchies

Introduced earlier in this chapter, the Dimension object type forms the root of a
dimension tree, where each node is an object type and each edge is a functional (n:1 or
1:1) predicate. To support semantics inherent in the dimension tree, we introduce a third
MORM construct - the Hierarchy Object Type. Hierarchy object types represent each
classification hierarchy level within a dimension and are depicted as named ellipses with
lightly shaded slash-fill notation.
Figure 4-6 shows the classification hierarchibes defined for the Time dirﬁension.
This schema illustrates how multiple classification hierarchies ére possible using our
Hierarchy object types, allowing us to aggregate event measures along two different

hierarchy paths: time-month-quarter-year and time-season.

63

: date \.
(mdy) ,@;

———
. Ve
: { dayOfMont
i .

~

';)25

= Py o ——

~
/ \
\monthOerarNr+)

iy e

— ~
!/ X
\monthName)
N g

Figure 4-6: Multiple Classification Hierarchies in MORM

In our approach, a predicate between two hierarchy objects specifies ‘a
relationship between two levels of a classification hierarchy (e.g. Month is in Quarter).
Other entity types and value types may play roles with hierarchy object types to provide
additional information (e.g. Month has monthOfYearNr) but may not be used for
aggregation purposes as a classification level hierarchy.

Our approach also uses hierarchy object types to model alternative }.)ath
hierarchies with two different paths that converge into the same hierarchy level. In
Figure 4-7 we depict the following alternative path hierarchies for the Store dimension:

Store-city-state-country and store-sales region-state.

64

]
/{ has ' L-\/‘, -
CityName);

S ——
~N
(v, {L} 7 statets), {1}

AN {\«szé

-

> Y
has ‘ ?,(\Aiiress%)é
>

-

- L o

N - =
z———(regionName)’
2 . P o

- N\
o

Figure 4-7: Alternative Path Hierarchies in MORM

In our example, from the Store dimension object type (the root of the dimension
tree) we run through the various functional chains (branches) until we finally reach the
last object types (leaves). Along the way we gather all the fact types to eventually group
them into a single table based on the identifier for Store (the Store Key). Modeling in
this manner will result in denormalized tables containing embedded functional
dependencies but we‘argue there is no need to enforce these since they have been
enforced in the operational systems from which the multidimensional data is extracted.
Since only the operational tables are used for updating, we believe it is advantageous to
model in this way to leverage the performance and comprehension benefits of
denormalization.

In our approach, every classification hierarchy level must have a label (e.g. City
Name) that identifies each level instance. To do this we include the constraint {L} next

to the identifying value type for each hierarchy level to explicitly indicate it is the

65

identifying label for that level. When our model is eventually generated into an OLAP
cube, the cube will store this value as the default label in its metadata to unambiguously
identify the hierarchy level. As shown in Figure 4-7, we have annotated the schema to
indicate cityName as the label for City. Applying a roll-up operation to aggregate
measures into the City level of the Store dimension will display the City Name label as
we analyze the Cities in which our products are sold. |

In addition to multiple and alternative path hierarchies, our approach allows for
shared hierarchies between dimensions. As illustrated in Figure 4-8, Customer shares
the levels city, state, and country as defined in the Store dimension. Using ORM’s
double-border notation, we depict these objects types and their predicates as external to

indicate they are imported from another schema in which they are fully defined.

. -
i‘—/ ﬁrstName\/'é
E \“,,_ 4

E-—'/ IastName\,
b W‘»‘;}

e

e

ti—\ streetAddress)§
e

—

L]

—F\/ ™~
: { gender)
>, e

i

g T
l;‘ / maritaIStatus\f
\. .

L WG -

Figure 4-8: Shared Hierarchies in MORM

66

4.4.3.2. Strictness

As defined in chapter 3, strictness means an object at a hierarchy's lower level
belongs to only one higher-level object (the target). Non-strictness means an object may
belong to more than one higher-level object. Our approach uses a combination of
cardinality (frequency) and optionality to model the concepts of strictness and non-

strictness, as illustrated in the schema in Figure 4-9.

TN
CityName)
e

L g el \)\ L
S P

[S

—

g—/P c \)
ostal Code);
M

~

-
has { storeNam;gg -

., 7

L —
-
§—<regionNa
Yy
S

~
me)
{L

}

- ~

% \
—storeType)
! \\mwfvg; /

Figure 4-9: Strictness & Non-Strictness in MORM

In this Store example, Store and City have a strict relationship because a Store can
exist in only one City. To model this strictness, a mandatory constraint on the Store role
indicates each store; is located in at least one city. A many-to-one (n:1) constraint on the
first predicate role then indicates each store is located in at most one city. Similar strict

relationships exist between City and State, with a City existing in only one State.

67

The Sales Region and State object types form a non-strict relationship because a
Sales Region can be in more than one State. To model non-strictness, our approach
includes mandatory constraints on both roles to indicate that each Sales Region is located
in at least one State and a State is comprised of at least one Sales Region. A many-to-
many (m.n) uniqueness constraint on the roles then indicates that each Sales Region can

relate to more than one state. A verbalization of this non-strict relation is:

= it is possible that a Sales Region is comprised of more than one State and at
the same time a State is included in more than one Sales Region

4.4.3.3. Completeness

As described in chapter 3, completeness within a claséiﬁcation hierarchy means
that all members belong to one higher-class (target) hierarchy level and that level consists
of those members only. To model completeness, we define the {completeness}
constraint on the role of the target hierarchy level. We illustrate completeness in Figure

4-10 using the Time dimension from our POS Retail example.

i // = AN
i_ \quanerName))
N iz
/
)
/

{completeness}

Figure 4-10: Completeness in MORM

In Figure 4-10, we have added the constraint {completeness} on the target Year
object associated with Quarter. In this “complete” classification hierarchy between Year
and Quarter hierarchy levels, all the recqrded Quarters form the Year, and all the Quarters

that form the Year have been recorded. As for non-completeness, our approach assumes

all classification hierarchies are non-complete by default.

4.4.3.4. Categorization of Dimensions

Our approach has shown how to model classification hierarchies within
dimensions but a multidimensional conceptual model should also consider the
categorization of dimensions to model additional features of subtypes. To do this we use
a generalization-specialization relationship to categorize entities that contain subtypes.

Like ORM, our approach displays subtyping using directed acyclic graphs - a
graph of nodes with directed connections, acyclic meaning there are no cycles. An

example of categorization using our POS Retail Sales example is shown in Figure 4-11.

t,J\ volume J

ol

=~

/ Sparkling\‘\
Status 4

TG g

each Food is a Product that is of Group 'F"
each Drink is a Product that is of Group 'D"
each Refreshment is a Drink that is of Family 'R’
each Alcohol is a Drink that is of Family 'A’
each Juice is a Refreshment that is of Type 'J’

7N each Carbonated is a Refreshment that is of Type 'C’
\percenlage }}
\WWT/'W{//Y
i ﬂavour\/
............... oo
Figure 4-11: Categorization of Dimensions in MORM
The Product dimension contains six subtypes: Food, Drink, Alcohol,

Refreshment, Juice and Carbonated. Subtype links are shown as directed line segments

from subtypes to supertypes. Subtype nodes are introduced when we have specific roles

69

for them to play (e.g. Drink has volume). As with ORM, our approach requires formal
subtype definitions to be declared for all subtypes and written in the diagram. These rules
indicate the basis for categorization and must be defined in terms of at least one role
played by a subtype’s supertype(s). By default, subtypes inherit the identification scheme

and all the roles of their supertypes so there is no need to repeat this information.

4.4.3.5. Many-to-Many Relationships Between Events and Dimensions

As described in section 3.4.4.4, we generally consider events to have many-to-one
relationships with each dimension. Thus far in our example, we have considered the
grain of our sales event to be the individual line item on a sales ticket (e.g. a single
product). To illustrate how we represent many-to-many relationships between events and
particular dimensions we now assume the grain of interest to be the sales ticket itself.
Since there are many line items (e.g. products) per ticket, this means we now have a
many-to-many relationship between the product dimension and the sales event. A ticket
can consist of more than one product, although each ticket is still purchased in only one
store by one customer at one time.

To represent this relationship at the conceptual level our approach includes
mandatory constraints on both roles played by the sales event and the product dimension
to indicate that each Product is included in at least one Sale and a Sale is comprised of at
least one Product. As shown in Figure 4-12, a many-to-many (m:n) uniqueness
constraint on both roles then indicates that each Sale can relate to more than one Product.
A textual rule can be written for this relationship as:

= it is possible that the same sale (ticket) contains more than one product and at
the same time product was part of more than one sale

70

SALES \
l\TRANSACTION I

occurred at

included

(ticketNr }?

Figure 4-12: Many-to-Many Relationship Between Event & Dimension

4.4.3.6. Degenerate Dimensions

Our approach defines other identifying features of an event, referred to as
degenerate dimensions, by placing the constraint {DD} next to the identifying object
type. In Figure 4-12, we have annotated Ticket, allowing the ticket number to be
analyzed in addition to the atomic and derived measures of the sale. This identifying
constraiﬁt groups individual line items at the ticket level and will prove useful during‘ the

generation of our schema into a commercial OLAP tool.

71

4.5. MORM Design Guidelines

The previous section presented MORM, which reflects our fact-oriented approach
to conceptually modeling multidimensioﬁal data. We now supplement our approach with
several key design guidelines for the development of a multidimensional data model.
Since we specialize ORM, the CSDP still applies to the overall design process, however,
we consider additional guidelines to incorporate multidimensional concepts.

Based on our experiences developing and utilizing these guidelines in several
large scale data warehouse implementations, we believe our guidelines reflect the natural
way data modelers and business users understand and view multidimensional modeling.
As evidenced by our modeling experiences, this approach is particularly useful for large,
complex data warehouses with many events and dimensions. Following our guidelines,
modelers are able to systematically develop domain sub-schemas that, together, create the
conceptual model for the entire enterprise. The response from business users in our

implementations indicates the models created using our guidelines are easily understood.

4.5.1. MORM Level 0: Preliminary Segmentation

The initial phase of our approach “Level 0” involves dividing the universe of
discourse into manageable subsections. This allows schema design activities to be
divided, where multiple modelers work on models relevant to their domain of expertise.
Segmenting the schema in this way creates different levels of abstraction and simplifies
the final model. We use ORM’s subschema (submodel) concept to represent the different
levels of our MORM models. Using subschemas, our approach is not restricted to using

flat diagrams to model large, complex data warehouses.

72

Level “0” is indicated as such since it is a preliminary step required to complete
initial segmentation prior to designing the different levels of the schema. Associated with
Level 0 are Guidelines #0a and #0b (shown in Table 4-8), which summarize our overall

approach and provide a foundation for the remainder of our guidelines.

; ideline. . ¢ C
O0a | Upon completion of the MORM design process, the multidimensional

model will be divided into four levels: business process family definition,

business process definition, dimension definition, and event definition.

0b | Before beginning the model, define events and dimensions and indicate

shared dimensions and dimensions that share some hierarchy levels.

Table 4-8: MORM Level 0 Design Guidelines
Based on Guideline #0a, the multidimensional schema is designed in a top-down
fashion by decomposing the model into different levels as outlined in Table 4-9. These

levels are discussed further in the sections that follow.

.| Name | Description
Business Process Family | A subschema representing an integrated set of related
Definition business processes based on common, shared dimensions.
2 Business Process A subschema representing a business process and its
Definition associated events and dimensions.
3 Event Definition A subschema representing an event and its associated
measures.
4 Dimension Definition A subschema representing a dimension and its associated
hierarchy levels.

Table 4-9: Four Levels of a MORM Schema

4.5.2. MORM Level 1: Business Process Family Definition

Level 1 of our method models a Business Process Family through the use of

Event and Dimension object types. This leads us to Guideline #1 as shown in Table 4-10.

FGuideline 5 e
1 Using only Event and Dimension Object Types, draw a subschema
representing all business processes considered.

2 | Define instances of all fact types (objects and their predicates) as
external to indicate that definitions of event and dimension objects
and their roles exist in subsequent levels.

Table 4-10: MORM Level 1 Design Guidelines

73

Figure 4-13 shows the first level of a model representing the family of business

processes from our case study.

SALES
|\TRANSACTION

T e e R 7 gz FTRTAI T
occurred at § ia taken at

Figure 4-13: MORM Level 1 - Retail Business Process Family

Event object types represent the Sales Transaction and Inventory events while
Dimension object types represeﬁt the Time, Store, Customer, and Product dimensions.
Dimension objects with roles spanning two event objects at this level indicates the
business processes share that dimension. At this level, the predicates and objects of all
fact types are annotated with double-border ellipses to indicate they are external. This
leads us to Guideline #2 of our approach shown above in Table 4-10.

Using the external property in this way allows us to reference the event and
dimension objects that will be defined in another schema level in subsequent phases of
the design process. Once we define the dimensions, all events can use them without
having to define them again. This ensures the integrity of our data model by allowing us
to define object types and their roles, and then refer to these definitions throughout other

subschemas within the entire data model.

74

4.5.3. MORM Level 2: Business Process Definition

Level 2 of our approach involves drawing a subschema for each business process

considered. Shown in Table 4-11, Guidelines #3 and #4 guide the design at this level.

L {Guideline e
3 | Draw a subschema representing a single business process using a
single event object and its associated dimension objects and
predicates.

4 | Annotate instances of all event and dimension object types as
external, however, fully define roles (predicates) between each

object.

Table 4-11: MORM Level 2 Design Guidelines

' Figure 4-14 shows the POS Retail Sales business process modeled using our
approach. As in Level 1, object types are annotated as external to indicate they are
defined elsewhere in the model. However, detail is introduced at this level for the roles

between the event and its associated dimensions.

SALES
\TRANSACTION 1

Figure 4-14: MORM Level 2 - POS Retail Sales Business Process

In our example, all roles played by the event object are mandatory (e.g. Sale must
have ar least one Store), thus are explicitly shown by a mandatory role dot where a role

connects with the object type. Internal uniqueness constraints over the roles indicate each

75

object playing that role does so only once (e.g. each Sales Transaction occurs in at most
one Store). The external uniqueness constraint across the four roles indicates each Sale

occurs for at most one Store, Customer, Product, and Time combination.

4.5.4. MORM Level 3: Event Definition

Level 3 of our MORM method creates a subschema for all the measures of

interest in a business process. Shown in Table 4-12, Guidelines #5, #6, and #7 of our

approach guide subschema development throughout this level.

GUiaeline«mf o i & . i
5 | Draw a subschema defining an event and all relevant measures of
the business process.

6 | Fully define the event object and other objects for each of the

measures considered; define derivation rules for any derived

measures.

7 | Define roles between the event object and each of its associated

measure objects.

Table 4-12: MORM Level 3 Design Guidelines

Figure 4-15 shows a Level 3 schema representing event measures from our case study.

* { profit = price - cost}

SALES
), TRANSACTION define Sales Transaction has profit of MoneyAmt as
Sales Transaction was priced at MoneyAmt1, an
Sales Transaction cost MoneyAmt2, and
MoneyAmt = MoneyAmt1 - MoneyAmt2

V: ~
Quantity+ }————‘
' :-»{J; :

S

Figure 4-15: MORM Level 3 - Sales Transaction Event

76

Since the Level 3 subschema is the original .source of the event object definition,
the object is drawn with a single border. Measure objects are defined and rules are
developed to reflect additivity and indicate derived and stored measures. Rules are
defined for all objects by indicating mandatory roles and uniqueness constraints for each

of the measures.

4.5.5. MORM Level 4: Dimension Definition

Level 4 of our approach models dimension content using dimension objects as the
root of dimension trees and hierarchy object types to represent the hierarchy levels within
the dimension. This leads to Guidelines #8, #9, #10 and #11 of our approach shown in

Table 4-13.

~Guideline',. T B

8 | Draw a subschema representing each dimension of
process. '

9 | Draw a dimension object for the dimension and hierarchy objects for

each of its hierarchy levels, define roles played by each.

10 | If a dimension or hierarchy level has been previously defined, draw

its objects and predicates and annotate them as external (i.e. do not

define a dimension or hierarchy level twice).

11 | Define objects and roles for each of the remaining dimension

attributes.

e business

Table 4-13: MORM Level 4 Design Guidelines

Figure 4-16 shows a Level 4 model representing the Customer dimension, its
different hierarchy levels (e.g. City, State, and Country) and other dimension information.
At this level, a dimension object forms the root of a dimension tree, where each node is

an object type and each edge is a functional (n:1 or 1:1) predicate.

71

———

[L/ ﬁrstName)

o

" -
I:,?_——-/ lastN
T g \‘\

=N
ame /§

e 4

—_—

-
L—(streetAddress)

==

R
(stateld)
)

R e

R - T~
is of ‘ —E‘/ marilaIStatus\i}
Ny P/

fa ety

Figure 4-16: MORM Level 4 - Store Dimension

Hierarchy levels are indicated with hierarchy object types, while external
hierarchy objects and predicates represent hierarchy levels defined in another source
subschema and shared by this dimension. For example, the external fact types for City,
State, and Country are defined elsewhere (e.g. the Store dimension) and annotated here as
external to indicate they are shared with that dimension.

It is important to note dimensions that share hierarchy levels do not need to share
the whole hierarchy. For example, the address hierarchy of the Store dimension could

just include the City and State levels if réquired.

4.5.6. Design Guideline Summary
Having described each of the design levels and guidelines separately throughout

the previous sections, we now summarize the entire MORM design process in Table

4-14.

78

Upon completion of the MORM design process, the multidimensional model will be
divided into four levels: business process family definition, business process definition,
dimension definition, and event definition.

0b 0 Before beginning the model, define events and dimensions and indicate shared dimensions
and dimensions that share some hierarchy levels.

1 1 Using only Event and Dimension Object Types, draw a subschema representing all the
business processes considered

2 1 Define instances of all fact types (objects and their predicates) as external to indicate that
definitions of event and dimension objects and their roles exist in subsequent levels.

3 2 Draw a subschema representing a single business process using a single event object and
its associated dimension objects and predicates.

4 2 Annotate instances of all event and dimension object types as external, however, fully

define roles (predicates) between each object.

Draw a subschema defining an event and all relevant measures of the business process.

6 3 Fully define the event object and measure objects for each of the measures considered,
define derivation rules for any derived measures.

wn
W

7 3 Define roles between the event object and each of its associated measure objects.

8 4 Draw a subschema representing each dimension of the business process.

9 4 Draw a dimension object for the dimension and hierarchy objects for each of its hierarchy
levels, define roles played by each.

10 4 If a dimension or hierarchy level has been previously defined, draw its objects and
predicates and annotate them as external (i.e. do not define a dimension or hierarchy level
twice)

11 4 Define objects and roles for each of the remaining dimension attributes.

Table 4-14: MORM Design Guideline Summary

4.6. An Evaluation of MORM

Through a specialization of Object Role Modeling, we have proposed a natural
and expressive model that represents the structural properties of multidimensional data at
the conceptual level. We believe our fact-oriented approach, as exemplified by MORM,
provides many benefits over other related multidimensional models.

To the best of our knowledge, we have presented the first fact-oriented approach
to conceptual multidimensional modeling. In doing so, we leverage the fact-oriented
paradigm and introduce several new multidimensional constructs to ORM - the Event
Object Type, Dimension Object Type, and Hierarchy Object Type. We take the concepts
and basic ideas of the multidimensional view of data and propose an approach Based on

the fact-oriented paradigm to model multidimensional data at the conceptual level. We

79

believe this utilization of the fact-oriented paradigm provides us with a conceptﬁal
multidimensional model that is more natural and simpler than existing models. As such,
MORM provides a solid basis for solving conceptual multidimensional modeling
problems with a more intuitive and natural conceptual model than existing approaches.

We propose MORM as a spectalization of ORM model by defining additional
graphical constructs and guidelines to consider the characteristics of multidimensional
modeling. Our technique allows us to consider key multidimensional properties at the
conceptual level, providing semantics that distinguish' qualifying (dimension) and
quantifying (event) data. Other key multidimensional properties supported by our
approach include multiple and alternative path classification hierarchies, strictness and
completeness, many-to-many relationships between events and dimensions, additivity,
derived and atomic measures, and the categorization of dimensions.

Based on our practical experience, we have also provided design guidelines to
properly and easily apply MORM. We believe these guidelines reflect the natura] way
users and data modelers think about multidimensional data and lead us to a very simple
yet powerful multidimensional model. Through our guidelines, we have shown how
MORM subschemas can be successfully used for multidimensional modeling at four
levels of complexity — business process family, business process, event and dimension.
Our multilevel subschemas group different levels of abstraction to simplify conceptual
design when modeling large and complex data warehouses.

A significant advantage of our approach is that it uses a widely accepted fact-

oriented modeling language. By basing our approach on the established ORM model we

80

enable the transfer of research results published in the context of ORM. As such, we can
apply previously discussed evaluation results (Halpin & Bloesch, 1999) to our approach.
By specializing ORM, we also minimize the effort required of data modelers to
learn new modeling notations and methodologies for data warehouses and OLAP
applications. This way, we ensure a shallow learning curve since data modelers can
combine MORM elements with classical ORM elements and, aithough the approaches
will be different, conceptual data models for OLTP and OLAP applications may be

specified using a uniform notation.

4.7. Summary

In this chapter we introduced MORM, our faqt-oriented multidimensional
modeling approach which introduces multidimensional constructs to ORM. We have
demonstrated how our approach handles basic and advanced multidimensional concepts
and have shown how our MORM guidelines are used for successful multidimensional
modeling at various levels of complexity. Based on our experience, our guidelines
provide various levels of abstraction and simplify conceptual design when modeling large
data warehouses. Finally, we evaluated our model and discussed its strengths with
respect to multidimensional concepts conceptual modeling language criteria. Among
other benefits, we have shown that our approach provides a natural, yet powerful way to
model multidimensional data and allows domain experts to validate the model in terms of
sentences and sample data populations. As we will demonstrate in the next chapter,

another significant benefit of our model is that can be automatically mapped to logical

and physical schemas and implemented using existing technologies.

5. APPLYING MORM: A CASE STUDY

5.1. Introduction

This chapter describes the application of our fact-oriented modeling approach
throughout the multidimensional modeling implementation lifecycle, which we define to

include the four phases outlined in Table 5-1.

“Phase | Description &
1 Creating a conceptual schema in a graphical modeling tool.
2 Mapping a logical schema from the conceptual schema.
3 Generating a physical schema from the logical schema.
4 Building an OLAP cube from the physical schema.

Table 5-1: Multidimensional Modeling Implementation Lifecycle

To test the practicality and usability of our approach we demonstrate how our
model can be implemented throughout this lifecycle using existing technologies. In
doing so, we first provide an overview and rationale for our selected development
environment tools, then present the implementation details for each phase. Following the
implementation we evaluate our results and identify the experiences we have learned

from our case study.

5.2. Development'Tools

Before describing the implementation details of our approach, we first introduce
our chosen development tools. These tools are required to achieve various tasks
associated with the four lifecycle phases of our implementation. The following sections
review our selections for tools to facilitate conceptual and logical modeling, relational

database storage, and OLAP cube generation.

82

5.2.1. Conceptual & Logical Modeling Tool: VisioModeler™
ORM is supported by a variety of modeling tools, including Microsoft®

VisioModeler, Microsofit® Visio 2000 Entefprise, and Microsoft® Visual Studio.NET.
Formerly known as InfoModeler, VisioModeler was renamed when Visio Corporation
acquired InfoModeler in 1997. Visio then rewrote the VisioModeler tool to use the Visio
drawing engine and released the first version of the Visio Modeling Engine add-in . with
Vis‘io 2000 Enterprise. With the subsequent acquisition of Visio in 2000, Microsoft
released VisioModeler as unsupported product. |

The Visio 2000 Enterprise tool supports updated drivers and diagramming for
most of the ORM constructs, however, relational mapping is not supported. Microsoft’s
second, more advanced version of the Visio Modeling Engine is found in Visual Studio
Enterprise Architect (VSEA), released in April 2002. as part of Visual Studio.NET.
VSEA providés the most current support for ORM modeling with many improvements to
diagramming and relational database mapping, however, it is quite expensive and
unavailable on trial basis.

Although VisioModeler is a discontinued product with outdated database driver
support, we chose it as our modelirig tool because of its functionality and availability. It
may be unsupported, but VisioModeler remains a feature rich, mature modeling tool that
allows the creation of ORM models and subsequent mapping to a wide range of database
systems. ~ VisioModeler is easily accessible as a free download from Microsoft®
Corporation (www.microsoft.com), whereas other ORM modeling tools are cost
prohibitive.

We use VisioModeler to formalize our database design by quking at the

conceptual level using natural-language facts, verifying our design using real-world

83

http://Studio.NET
http://Studio.NET
http://www.microsoft.com

example data, validating and mapping a logical model, and finally producing a physical
schema using 32-bit ODBC drivers. VisioModeler models can be automatically mapped
to database schemas for implementation on most popular relational databases. To do this,
VisioModeler automatically generates table diagrams (i.e. a logical model) that can be

automatically translated into SQL code and applied to the database system of choice.

5.2.2. Relational Database: Microsoft® SQL Server™ 2000
We chose Microsoft® SQL Server™ 2000 (SQL Server) as our relational

database management system (RDBMS) because of its market share and availability.
SQL Server is a family of database products appropriate for a broad range of solutions,
including small and large business applications, e-commerce, and data warehousing.
Marketed by Microsoft as a ‘“complete database and analysis product”
(www.microsoft.com), SQL Server meets the storage requirements of large businesses
yet provides easy-to-use data storage services to individuals and small businesses.

Of the eight versions available, we chose Microsoft® SQL Server™ 2000
Enterprise Evaluation Edition. This edition is a full-featured version available as a
download from Microsoft (shop.microsoft.com/devtools) for a minimal shipping and
handling fee. Intended only for feature evaluation, this is a 120-day time-limited version
of SQL Server 2000 Enterprise Edition licensed for demonstration, testing, examination,
and evaluation. SQL Server is attractive not only because we can evaluate the complete
set of data management and analysis features without purchasing the full version, we can

also install it on the desktop without running a server based operating system.

84

http://www.microsoft.com
http://shop.microsoft.com/devtools

5.2.3. OLAP Tool: Microsoft® SQL Server™ Analysis Services

Bundled as a component of SQL Server 2000, Analysis Services is a
multidimensional analysis tool with OLAP and data mining capabiliﬁes. A logical choice
for us because of its integration with SQL Server, Analysis Services can also extract data
from the data warehouses and data marts of many other data sources. Its data can be
stored multidimensionally within relational databases (ROLAP), as separate, high-
performance multidimensi_onal data structures (MOLAP), or hybrid combinations of both
(HOLAP). Through its multidimensional cubes, Analysis Services allows us to turn
Grocery data stored in the star schema event and dimension tables of our SQL Server

database into meaningful, easy-to-navigate business information.

5.3. STEP 1: Creating the Conceptual MORM Schema

Having described our example case study and the development tools we’ll use for
our implementation, we now begin the conceptual design of our multidimensional model.
We use VisioModeler as our modeling tool to examine and describe the application
domain in a way that is clear and easy to understand. A multidimensional model
representing the MORM constructs described in the preyious chapter should be easily
designed in the VisioModeler tool. Our output at this step is a conceptual model
consisting of natural language facts and intuitive diagrams that serves as a key
communication tool between the end user and designer.

We demonstrate the practicality and feasibility of our MORM model through our
Retail POS example presented in the previous chapter. Since we have revised this

example in several places, we restate it here to avoid confusion.

85

A large grocery chain with 100 stores is spread over a five-state
area. Each of the stores has a full complement of departments, including
grocery, frozen foods, dairy, meat, produce, bakery, floral and
health/beauty aids. Each store has roughly 60,000 individual products on
the shelves, each with bar codes referred to as stock keeping units (SKUs).
As customers purchase products at the cash register, sales data is
gathered by scanning bar codes into a point of sales (POS) system.

Management is interested in understanding customer purchases as
captured by the POS system and they have decided to»analyze the POS
Retail Sales process. They hope to understand which products are selling
to which customers at which stores during which times.

Optimized inventory levels in our grocery stores can have a major
impact on chain profitability. Making sure the right product is in the right
store at the right time minimizes out-of-stock situations and reduces
overall inventory carrying costs. To better understand the inventory-sales
relationship, management would also like the ability to analyze daily

quantity on hand inventory levels by product and store.

5.3.1. VisioModeler Diagram Workspace

Before we discuss the design of our conceptual models, we provide a brief
overview of the VisioModeler Diagram Workspace used to create and manage basic data
modeling tasks. Using toolbars and editors in the main VisioModeler wiﬁdow we create
the conceptual models of our multidimensional database in an object-role modeling
document using our MORM modeling approach. Each conceptual model is specified in
an ORM Modeling Diagram (.IMO file), with a set of graphic symbols and specialized
tools used to design our data model.

For all of our submodels, we first begin conceptual design of our application
domain in an ORM modeling diagram, then build and refine the mapped logical model in

a dictionary document. A modeling document (.IMO file) is saved as a file that can be

86

opened and closed like any other file, however, a dictionary document (.IMD file) is
associated with a particular modeling document or project and can only be opened when
its associated modeling document or project is open. As illustrated in Figure 5-1, a

model and its associated dictionary comprise the specification of the model.

Figure 5-1: MORM Model and Associated Dictionary Document
VisioModeler provides several ways to create and edit the symbolic components
of fact types in our modeling diagram. Primarily, the Tools palette is used to draw and

connect object types and predicates one by one and the Constraints palette is then used to

add constraints to the diagram. Both Palettes are shown in Figure 5-2.

Figure 5-2: VisioModeler Tool and Constraint Palettes

The Fact Editor is also used to create and edit a fact type in our MORM model.
Shown in Figure 5-3, the Fact Editor greatly simplifies the entry of facts by automatically
converting the entered text to the appropriate symbols in the MORM diagram. The
Editor checks the syntax of a fact type and as shown in Figure 5-4, verifies the_

correctness of a fact type’s constraints using example data.

chased by [CUSTOMER(?))

Figure 5-4: Fact Editor Constraints and Associated Data Examples
5.3.2. Creating a MORM Project

We use VisioModeler’s project-based development feature to support our multi-
level design approach to multidimensional modeling. A Project is created as a set of
model documents containing various MORM subschemas that make up the specification
of our entire multidimensional data model. Within a Project, we subdivide a complex

multidimensional model into smaller, manageable submodels associated with the design

88

levels outlined in our approach. These submodels use multiple modeling documents and
can be developed by different modelers with different domain expertise and subsequently
re-used across the data warehouse.

Shown in Figure 5-5, our VisioModeler Project shows how we have defined and
organized our multidimensional model using multiple source documents. Our submodels
are organized using a tree diagram and are categorized by type of model document. With
the creation of our Project, VisioModeler has generated a Project file (.IPJ) and a
directory to store all the models associated with our Project. Our files are named to

indicate design level (e.g. L1, L2) and Type (e.g. EV for Event, DM for Dimension).

= @ Dh|ect Role Modeling Diagrams
@ L1-BPF-RetailBusinessProcessFamily. MO
k2] L2-BP1-POSRetails ales.imo

= L3-EV1-SalesTransaction.imo

-tgd L2-BP2-Inventory. IMO

bed L3-EV2Inventory. IMD
k=] CADatah.. \L4-DM1-Store.IMO
kg C:A\Data\.. \L4-DM2-Product. MO
b} CADatah.. \L4-DM3-Time.IMO

e L4-DM4-Customer.IMO

Logical Model Diagrams

Figure 5-5: VisioModeler’s Project Window

When building its dictionary, VisioModeler combines the contents of the model
documents listed in our Project window to form an integrated model and saves this
information in a dictionary document. In building the dictionary, VisioModeler merges
our Project files to form a complete, mapped model of our multidimensional application

domain and saves this information in a dictionary (.IMD) file. The build process checks

89

http://CADataV.AL4-DM1-Store.IM0
http://CADataV.AL4-DM2-Product.IM0
http://CADataV.AL4-DM3-Time.IMO

and validates overlapping model components to ensure model integrity. Defining a
project in this fashion supports MORM Guideline #0a, which states that upon completion

of the MORM design process, our model should be divided into four levels.

5.3.3. Creating MORM Schemas

Having described our Project and the fundamentals of the VisioModeler
workspace, we next discuss the process of creating individual submodels. Consistent
with our approach and the design guidelines presented in chapter 4, we use the
VisioModeler workspace to create subschemas for each of our design levels. As a
prerequisite step to schema development we follow Guideline #0b and define events,
dimensions, hierarchies and hierarchy levels for each of our business processes. The

resulting segmentation for the Retail Sales business process is shown in Table 5-2.

POS Retail Sales Price Store City Y
Sales Transaction Cost State Y
Profit Country Y
Ticket # Product Group N
Quantity Family N
Type N
Band N
Customer City Y (Store)
State Y (Store)
Country Y (Store)
Time Month N
Quarter N
Year N

Table 5-2: MORM Design Guideline #0b
With the preliminary segmentation activities of Level 0 addressed in Table 5-2,
we now complete schemas for Levels 1 through 4, for our business process family,

business processes, events, and dimensions. Since we have demonstrated all

multidimensional modeling aspects of our approach through examples in the previous

file:///leasurc

chapter, we will not .reiterate development details of our case study schemas in the body
of this chapter. Instead, we include complete VisioModeler subschemas for each level of
our case study in Appendix B for the reader’s reference.

Throughout the development of each of our schemas, we followed our MORM
design guidelines to ensure multidimensional concepts were accurately represented, while
adhering to ORM’s CSDP for general ORM design prin‘ciples and steps. Consistent with
our approach, familiar information examples were ﬁrst developed for our case study.
Those examples were then translated into elementary facts and conceptual schemas
showing all the fact types were drawn for each submodel. To support the
multidimensionality inherent in our Retail Sales data, our schemas make extensive use of
our proposed MORM constructs - Event, Dimension, and Hierarchy Level Object types.

Upon completion of the MORM design process, our resultant multidimensional
model is divided into four levels. Before the final integration of these levels, we validate
our subschemas using VisioModeler’s CheckDocument option from the main toolbar. This
function checks to see if our subschema is valid (e.g. no contradictory constraints) and

helps us refine our model and correct any errors prior to logical mapping.

5.4. STEP 2: Mapping the Logical Schema

Having checked and validated our integrated source model documents, we now
build the data dictionary and map the conceptual model to the logical model. To do this
we use the BuildDictionary option from the main toolbar. VisioModeler builds a data
dictionary using the specifications designed in our source model documents, then

validates and maps the conceptual schema in the dictionary to a logical schema. This

91

section briefly explains the process of building the dictionary file, validating the

conceptual model, correcting errors/warnings and mapping the logical model.

5.4.1. Building the Data Dictionary

VisioModeler builds a data dictionary based on the contents of our project and
saves the dictionary document as a .IMD file that acts as a central repository for essential
information about our integrated model. The data dictionary contains complete‘
information about the components of our model, including a factbase (the facts that
describe our application domain), the conceptual schema, mapping paths, and the mapped
logical schema. When building the dictionary, VisioModeler gathers information in our
source model documents, consolidates the models associated with our project into one
dictionary, forms a conceptual model in the dictionary, validates this model, and then
maps the validated model to a logical model.

VisioModeler’s Output window identifies and locates any modeling errors in our
model and dictionary documents. The Output window displays information, progress
notes, warnings; and error messages found during many VisioModeler operations,
'including building the dictionary and validating a model. Our generation results are

shown in the Output window in Figure 5-6.

&P Outp

tarting Build...

C:\Data\Personal\Education\ Thesis-II\WIP\Graphics\Final\RETAIL.IND : Updating existing dicti
L1-BPF-RetailBusinessProcessFamily.INO : Merging Source Model.

LZ2-BP1-POSRetailSales.imo : Merging Source Hodel.

L3-EVi-SalesTransaction.imo : Merging Source HModel.

L.2-BP2-Inventory.IHO : Merging Source Model.

L3-EV2-Inventory.INC : Merging Source Nodel.

C:\Data\l...\L4-DH1-Store.INO : Herging Source Model.

C:\Data\...\L4-DMZ-Product.INO : Merging Source Model.

C:\Data\...\L4-DH3-Time.INO : Herging Source Hodel.

L4-DH4-Customer.IHO : Merging Source Model.

C:\DATA\PERSONAL\EDUCATION) THESIS-II\WIP\GRAPHICS\FINAL\RETAIL,IMD : Starting Mapping ...
C:\DATAN\PERSONALVEDUCATION\ THESIS~-II\WIP\GRAPHICS\FINAL\RETAIL.IND : Tables(6) Columns{59) I
Build complete - 0O error(s) O warning(s)

Figure 5-6: Output Window Showing Build Results

92

file://C:/Data/Personal/Education/Thesis-II/WIP/Graphics/Final/RETAIL.IHD
file:///L4-DM2-Product
file://C:/Data/..-/L4-DH3-Time.IMO
file://C:/DATA/PERSONAL/EDUCATION/THESIS-II/WIP/GRAPHICS/FINAL/RETAIL.IMD
file://C:/DATA/PERSONAL/EDUCATION/THESIS-II/UIP/GRAPHICS/FINAL/RETAIL.IMD

5.4.2. Relational Mapping (Rmap) Procedure

As part of the dictionary generation process, VisioModeler uses Rmap, an
algorithm used to group our fact types into tables. The complete version of Rmap
includes details for completely mapping all graphical constraints, however, an exhaustive
treatment of the full procedure is beyond the scope of this thesis. We introduce the
procedure here to provide context for our mapping step and refer the reader to Ritson and
Halpin (1993) for detailed coverage of the procedure.

Rmap guarantees a redundancy-free relational design and restricts the number of
tables, ensuring each fact type maps to only one table in such a way that its instances
appear only once. If the conceptual fact types are elementary, then the mapping is
guaranteed to be free of redundancy since each fact type is grouped into only one table,
and fact types which map to the same table all have uniqueness constraints based on the
same attribute(s). To achieve this Rmap uses two basic rules:

1. Fact types with compound uniqueness constraints map to separate tables.

2. Fact types with functional roles attached to the same object type are
grouped into the same table, keyed on the object type’s identifier.

While ORM describes facts in terms of simple sentences, relational schemas
describe the world in terms of tables with attributes. Through Rmap, the fact types in our

MORM model map to the tables in Figure 5-7, which depicts the logical database

diagram generated from our model.

storeType
storeName
streetAddress
cityName
stateld
postaiCode
countryName
size
salesStateld

lastName
firstName
streetAddress j
cityName |
stateld /
countryName |4
maritalStatus {}

gender
SRRYNTRCT I T st R ts

salesRegionName| ticketNr
salesCountry price
R cost

» PK |productKey
i N brandName .
timeKey productName |-
date sku (
day Srp
month productType
year productFamily |
dayOfMonth productGroup
monthOfYear flavour
quarter sugarFree
L ;g_f_e{l_ sparkling
percentage
prepTime
volume

N Gl SRR i S5

Figure 5-7: Logical Model Mapped From ORM Schema

Using our MORM modeling approach, the resulting logical model essentially
consists of two denormalized star schemas for our POS Retail Sales and Inventory
business processes. The Sales schema is composed of a central Sales Transaction table
linked by foreign key connections to the Store, Product, Time, and Customer dimension
tables. At the center of the Inventory schema is a central Inventory table linked to Store,
Product and Time. Uniqueness constraints are mapped to primary key (PK) or unique
constraints (U) and primary keys are underlined. A mandatory role constraint is
indicated with a bold attribute and its rules are enforced in the Data Definition Language

(DDL) script generated for the physical database in the next step of our lifecycle process.

94

5.4.3. Editing the Logical Model

After we build the data dictionary, VisioModeler allows us to edit and refine our
logical tables, which are part of the logical model contained in our dictionary. Since
some automatically generated names may not be ideal, we modify the resulting tables and
map technical column and table names to more meaningful names.

We edit our mapped logical schema using VisioModeler’s EditDictionary function.
This executes a build that opens the dictionary window as a workspace for viewing and
refining the mapped logical schema. The Logical Tools palette and the Table/Entity
Selector are then used to create, edit, and manage schema.

An attractive feature of VisioModeler throughout this step is its Window option,
which allows us to switch viewing windows between the ORM window (.IMO file), our
dictionary/logical window (.IMD file), and the Output window containing our generation

messages.

5.5. STEP 3: Generating a Physical Schema

Once we have edited and validated our logical model in the dictionary, we
generate our physical schema in SQL Server 2000, our selected DBMS. This schema
will serve as the underlying data warehouse for storing our relational star schema data.
The remainder of this section briefly explains how we use VisioModeler drivers in
conjunction with 32-bit ODBC drivers to generate a new physical database schema by
connecting to and exchanging information with our SQL Server relational database. We

include information about generation options, database connections, and target databases.

95

5.5.1. Schema Generation Options

Through VisioModeler’s GenerateDatabase function, we run the Generate Wizard

(shown in Figure 5-8) to lead us through the physical schema generation process.

C:ADala\Personal\E ducaliom\Th

Figure 5-8: Options Within VisioModeler’s Generate Wizard

Based on the logical model in the dictionary, VisioModeler provides two ways for
us to generate our physical database schema: (1) using a DDL script or (2) directly
through a 32-bit ODBC connection. We create our physical database by connecting
directly to SQL Server through an ODBC connection, but we aIS(; generate a DDL script

for reference purposes.

5.5.2. Generating Directly Through ODBC

Before we generate our physical schema we must complete several prerequisite
system configuration tasks to ensure we have properly installed and configured SQL
Server 2000. These tasks ensure we have the necessary client software and adequate

access rights. Upon successful completion, we proceed with the SQL Server connection

as shown in Figure 5-9.

file:///Data/PersonaKEducalion/Th

Figure 5-9: Associating an ODBC driver with a VisioModeler Driver

In choosing driver and database options we first select the SQL Server driver we
wish to use from the list of available drivers and choose the generate options for our SQL
database. The SQL Server driver tells VisioModeler what kind of script to generate, how
to map constraints, and how to specify advanced features for our database application.
VisioModeler uses this information to extract a physical catalog, synchronize a logical
schema, generate a physical schema, and alter a physical schema.

After configuring our driver we create a data source for our Retélil Grocery
database using Windows ODBC Administrator. This data source references our SQL
Server Grocery database and includes the data we will access as well as the information
essential to access that data, such as the name of the database, the server on which it
resides, and the network information. We associate the SQL VisioModeler driver with a
32-bit ODBC driver to communicate with SQL Server then select the chosen data source.
Upon providing a username and password in the connect dialogue box we successfully

establish a connection to our data source, as shown in Figure 5-10.

97

Figure 5-10: ODBC Data Source Definition

After successfully connecting to our SQL Server data source, our final task before
schema generation is previewing the tables VisioModeler will add to our physical
database (see Figure 5-11). After reviewing these for accuracy, we proceed with the

generation process and create our physical Grocery tables in SQL Server.

The following tables will be mealed
INVENTORY
TIME
STORE
SALESTRANSACTION
PRODUCT

Figure 5-11: Table Preview in VisioModeler Generate Wizard

98

5.5.3. Generating a DDL Script

For reference purposes, we also instruct VisioModeler to generate a data
definition language script based on the logical model in its dictionary file. This script can
be used to create, modify, and delete our database and its tables, columns, rules, and
indexes. We can save the DDL script as a text file to review, modify, and run from our
SQL Server DBMS if desired. A snapshot of the generated DDL file is.shown in Figure

5-12.

This sqQL DDL script was generated by visioModeler 3.1 (Release Date

Vil oriver Used : visioModeler 3.1 - Microsoft sSQL Server Driver.
T pocument : C:\Data\Personal\Education\Thesis-II\WIP\Graphics\Fin
Vi Time Created: July 27, 2003 10:03 PM.
Yad user action : From visioModeler Generatewizard.
A connected Data source : grocery
hd Cconnected Serwver : RPAYNER
a Connected Database : grocery

/% Create grocery database.
use master

go

create database grocery

go

Figure 5-12: DDL Script Generated by VisioModeler

5.6. STEP 4: Building an OLAP Cube

Having created relational tables to house our multidimensional data in SQL
Server, we now complete the last step of our multidimensional lifecycle. In this step we
build an OLAP cube from the physical schema to store our data in Decision Support
System (DSS) format. Our OLAP cube will allow us to analyze the data as originally
described using the modeling constructs of our MORM conceptual model.

The remainder of this section guides us through the process of creating and using

the cube to analyze data from our Grocery example. We briefly outline operations

99

file://c:/Data/Personal/Education/Thesis-ll/wiP/Graphics/Fina

necessary for setting up data connections, designing cube structure, processing cubes and

finally analyzing cube data with SQL Server Analysis Manager.

5.6.1. Setting up the Database & Data Source

Before building the cube, our initial steps include setting connections to the
source of our data in ODBC Data Source Administrator. Using Analysis Manager, an
Analysis Services program that manages OLAP objects andi data, we then create a new
Retail Grocery database object (shown in Figure 5-13) to hold data sources, cubes, and

shared dimensions together.

Meta Data

Database: Retail Grocery

j Description:

b‘] Mining Models ©
-¢88 Database Roles

Disk space:

Figure 5-13: Analysis Services Database Object
With the database object defined we establish a data source in Analysis Manager
that connects our Grocery database to the system data source name previously created.

This allows us to access all data from this source as we build our cube.

100

5.6.2. Building the Cube
Analysis Manager’s Cube Wizard is used to build our cube by defining its

measures and dimensions. We fist define the source of our measures through the Wizard
by selecting our Sales Transaction event table from our data source. Measures are then
defined for our cube by selecting the price, cost, profit, and quantity numeric columns.
We begin building dimensions by first creating the Time dimension. To do this
we create a new dimension in the wizard and define hierarchy levels by selecting year,
quarter, and month. We then designate this dimension as shared so we may access it in
other cubes in our implementation. Product, Customer, and Store dimensions are then
created in a similar fashion. Upon creating event measures and related dimensions, we
confirm the design of the cube through the Cube Editor (shown in Figure 5-14), which

contains our POS Retail Sales cube structure.

AL TRANSAL HTON

itimeKey
g customerKey
storeKey
ticketNr
¥ aty
Calculated Members
28 Calculated Cells
; Actions
1R Named Sets

Figure 5-14: Analysis Services Cube Editor

5.6.3. Designing Storage and Processing the Cube

With the structure of our Retail Sales cube designed, our next steps are to design
storage options for the data and aggregations of our cube, then populate it with data.
Shown in Figure 5-15, we use the Design Storage Wizard to designate MOLAP for our

storage mode, create the aggregation design for the Sales cube, and then process the cube.

Performance vs. Size

|

Figure 5-15: Cube Processing Using the Design Wizard
Processing the cube loads our Grocery data and calculates summary values.
These pre-calculated summaries of data will greatly improve the efficiency and response

time of queries. The results of our cube processing are shown in Figure 5-16.

?ﬁ Dimension 'Store’ Execute : SELECT DISTINCT "STORE","countryName”, "STORE"."stateld", "¢&i

»‘Dé) Processing Dimension ‘Time' completed successfully. ‘,ﬁ
Start time: 10:26:28 PM End time: 10:26:28 PM Ouration: 0:00:00 Rows processed: 24
Process information For Dimension ‘Time': A full dimension process is performed

77 Inkializing Dimension Time'

B E Dimension Time' Execute : SELECT DISTINCT "time"."year", “time"."year", "time", "quarter”, “ti

--T(_}) Processing Dimension Ticket' completed successfully.

% Start time: 10:26:28 PM End time: 10:26:28 PM Duration: 0:00:00 Rows processed: 1

Process information For Dimension Ticket': A full dimension process is performed
) Initiafizing Dimension 'Ticket'
: Dimension ‘Ticket' Execute : SELECT DISTINCT "SALESTRANSACTION".icketNr" FROM "SALES;
ﬂé Intiatizing Cube 'POS Retail Sales’
) Initializing Partition 'POS Retail Sales'
E!_;} Partition 'POS Retail Sales' Execute : SELECT "CUSTOMER". “countryName”, "CUSTOMER","stateld", "¢
Writing data of Partition ‘POS Retall Safes’ (segment 1)
H i Writing aggregations and indexes of Partition 'POS Retall Sales’ (segment 1)
i--{¥) Committing transaction in Database Retail Grocery’

YEEE - S

Figure 5-16: Final Cube Processing Results

102

5.6.4. Browsing Cube Data

With our cube processed, we can analyze data in many different ways. Using the

Cube Browser we can perform various OLAP operations, including filtering the amount

of dimension data, drilling down to see greater detail, and drilling up to see less. Figure

5-17 illustrates filtering by Time where data is filtered to for a particular quarter. Figure

5-18 depicts drill-down in which we expand the Drink group to include its families.

225,601.87

48,816.79

19,468.62

14,029.08

5,576.79

27,729.11

11,060.91

7,058.60

2,830.92

409,002.77

163,258.37

107,356.35

Figure 5-18: Drill Down Example Within the Cube Browser

103

5.7. An Evaluation of Our Case Study

Through a case study implementation, we have illustrated how our conceptual
fact-oriented approach simplifies conceptual design when modeling data warehouses. The
implementation of our model allowed us to put into practice the ideas proposed by our
conceptual modeling approach. Appendix C summarizes the implementation results from
our case study. Included in the Appendix are details per multidimensional requirement
for the four stages of our implementation - conceptual, logical, physical, and OLAP.

While we were able to implement our three newly introduced MORM constructs
with relative ease, we conclude the generation process from a concepfual model to an
OLAP tool is not immediate for all multidimensional concepts. This is mainly because
certain multidimensional constructs in our conceptual model are implemented differently,
or not at all, in our OLAP tool. As Hahn, Sapia, and Blaschka have found (2000), there
are several mismatches between the data models of commercial OLAP tools and
conceptual graphical modeling notations. Specifically, tools do not often provide
sufficient native constructs to represent each element of a graphical notation. This
implies that the generation process must perform a mapping between the semantics of the
graphical notation and the tool configuration, most often with a loss of semantics.

Commercial OLAP products provide their own methods of assessing
multidimensional semantics and concepts. In addition to database structures, OLAP tools
implement underlying metadata that provide key multidimensional semantics (e.g.
measures and dimensions). For proprietary reasons, each tool may implement these
semantics and properties differently. Ideally, proper multidimensional design uses a
conceptual approach totally independent of implementation concerns, allowing the direct

generation into commercial OLAP tools.

104

Several expressiveness differences between our conceptual model and our
Analysis Services OLAP tool proved to be our greatest implementation challenge.
Specifically, several concepts used in our conceptual design lacked a corresponding
Analysis Services representation. In most cases, however, we managed to find
transformations that preserve a large part of the original model semantics and our results
show that a generation process is generally feasible and useful. We note the following
three areas where our OLAP tool did not have a corresponding multidimensional

representation and a transformation was required during our implementation.

5.7.1. Hierarchies: Multiple, Alternative Path, and Shared

Multiple, alternative path, and shared hierarchies are not directly supported in
Analysis Services but we are able to indirectly implement them and address our
multidimensional requirements while preserving as much of the original semantics as
possible.

For all three hierarchy types, the logical and physical models implement them as
table columns and the hierarchy levels are implicit in the flat table design. In the OLAP
tool, multiple path hierarchies are defined as two or more dimensions with names that
share the same dimension prefix but have different suffixes (e.g. Time.Calendar and
Time.Season). Two hierarchies must also be defined for alternative path hierarchies
since our tool can only handle dimensions with a tree structure (i.e. different hierarchies
cannot merge in an endpoint). In this case we have to duplicate the dimension beginning
at the merging point. As for shared hierarchies, two or more separate dimensions are also
implemented starting at the dimension level where the merging occurs. The underlying

dimension tables as well as any aggregations are shared in all cases.

105

5.7.2. Non-Strictness

Non-strictness is not supported in our case study. While we have proposed an
approach to model this property at the conceptual level using a many-to-many uniqueness
constraint (see section 4.4.3.2), our chosen OLAP tool does not provide adequate
aggregation support for such hierarchies. Considering the lack of OLAP support and our
adherence to a simple star schema design, we require all hierarchies to be strict in our
implementation. As such, non-strict hierarchies must be converted to strict hierarchies if
aggregations are applicable. Given the lack of support for non-strictness in the OLAP
market, we provide additional background supporting this aspect of our case study.

In a non-strict hierarchy there are many-to-many relationships between the
different levels in a dimension where a lower-level item can be a member of several
items at a higher-level (e.g. a sales region may cross several states and a state may be in
several sales regions). Traditionally, OLAP tools only permit strict hierarchies where
every lower-level item belongs to a single higher-level item. Such is the case with
Analysis Services, which explicitly requires strict hierarchies and does not address the
issue of correct aggregation for non-strict hierarchies.

As such, we only permit strict hierarchies in our implementation. Our underlying
assumption is that adherence to the simple star schema design requires dimension
hierarchies to be strict. Our argument is consistent with that of Lenz and Shoshani (1997)
who argue that the premise underlying the applicability of aggregation is
summarizability, which essentially means lower-level results can be directly combined
into higher-level results. For this to be true, one lower-level dimension value must map
to exactly one higher-level value. Having irregular, many-to-many dimension levels

violates this characteristic of OLAP data.

106

In feviewing the literature, only one technique was found that addresses the issue
of summarizability in non-strict hierarchies. Pedersen, Jensen, and Dyreson (1999)
present a technique and associated algorithm for achieving summarizability by adding
dummy values and “fusing” sets of parents together. The basic idea of this technique is
to combine a set of parent values into one “fused” value, link the child value to this new
value, then insert the fused values into a new catégory betv-veen the child and parent
categories. These transformations require major restructuring of the hierarchy and violate
our pure star schema design principle. The complexity of this technique defeats the
benefits of our approach, possibly leading to incorrect results during aggregation through
double counting. If summarizability is relevant, users should be able to analyze the data

and obtain correct results without having to worry about such double counting.

5.7.3. Many-to-Many Relationships Between Events and Dimensions

We give this topic considerable attention since having many-to-many
relationships between a dim.ension and an event causes several difficult issues during
multidimensional implementation. These issues include losing the standard star schema
structure, increasing the complexity of query formation and degrading query performance
by adding joins (Song, Rowan, Medsker, & Ewen, 2001). Therefore, it is desirable to
handle these many-to-many relationships while keeping the structure of the star schema.

Song et al. (2001) investigate several methods of handling many-to-many
relationships and discuss the relative advantages and disadvahtages of each. A key
argument of theirs is that to maintain the star schema structure, relationships between

events and dimensions should be made many-to-one and events should be mapped to the

107

lowest categories in thé dimensions. We follow this solution approach in which we lower
the grain of the Sales event to the lowest dimension grain level (i.é. product).

To illustrate, while it is possible for our Sales event to be at the ticket grain (i.e.
have multiple products per sale), we lower the grain of the event to the line item level so
there are multiple records (i.e. multiple line items) relating to that specific event. This
ensures we now have a many-to-one relationship between Sale and Product. Figure 5-19

illustrates how we have achieved this at the conceptual level.

SALES
| TRANSACTION

e — —

~
(Quanﬁty+ ;

-~ ~

/ customerCount+ Jr—
N J}
TR

{customerCount is not aggregated along product dimension}

-

{DD} Ticket Y\,

Figure 5-19: Modeling Many-to-Many Relationships

The external uniqueness constraint (circled “p”’) on the Store, Customer, Product,
and Time dimensions indicates each transaction occurs for at most one Store, Customer,
Product, Time. Thus, the combination of Product, Store, Customer and Time is unique
for each Sales Transaction. The “p” indicates this combination is the primary indicator

for each event. As indicated by the additional uniqueness constraint (circled “u”) on

108

Ticket and Product, the combinationAof ticket number and Product is also unique. This
means one ticket can relate to more than one Product and indicates the many-to-many
relationship between ticket and product.

We also include the constraint {DD} to identify ticket as a degenerate dimension
of the event. We do this to ultimately generate an OLAP ticket dimension so we can
éoup line items and determine the ticket total. In the OLAP tool the ticket becomes a
dimension with only one hierarchy level, allowing us to group multiple measures per
ticket. Using this approach the conventional star schema is retained, providing a clear

logical view of the business process and allowing implementation in our OLAP tool.

5.8. Summary

In this chapter we tested the practicality and usability of our work by applying our
conceptual multidimensional modeling approach to a case study to solve a data analysis
problem. Using our MORM guidelines, we developed a conceptual model and mapped it
to a logical schema in VisioModeler. From the VisioModeler models we generated a
physical star schema in Microsoft SQL Server 2000 and subsequently built an OLAP
cube in SQL Server 2000 Analysis Services. Largely due to maturity, functionality, and
availability, we chose VisioModeler for conceptual and logical modeling, while
Microsoft SQL Server and Analysis Services were our choices for physical and OLAP
implementation. In spite of some cube‘ generation limitations with our chosen OLAP
tool, the implementation demonstrated that our approach naturally and expressively

models the main structural properties of multidimensional data at the conceptual level

and serves as the basis for subsequent design phases.

6. CONCLUSIONS & FUTURE RESEARCH

6.1. Thesis Summary

The primary focus of this thesis has been the development of a fact-oriented
approach to modeling the structural properties of multidimensional data at the conceptual
level. Our main objective was to provide a natural, simple, and expressive modeling
approach té address the fundamental deficiencies of existing multidimensional models.
We have accomplished our objective through an exploration of multidimensional
concepts and the develépment of a modeling approach that simplifies multidimensional
design by using natural language, intuitive diagrams and example data populations.

To better understand the functionality of data warehouses and OLAP applications
we have provided an overview of their logical and physical architectures and the main
processes associated with their use. Our overview described data source, data storage,
application, and presentation layers and discussed how physical OLAP architectures map
onto these layers in several ways. We also discussed data staging services that get data
into the data Warehouse and query services which focus on getting data out. Our
overview highlighted the differences between data warehouses and traditional OLTP
applications and, due to the significant differences in underlying data structures, we
concluded different conceptual modeling techniques are required for data warehouses.

Our attention then turned to understanding data modeling techniques and we
examined basic data modeling concepts by looking at conceptual, logical, and physical
information levels. We emphasized the importance of data modeling at the conceptual
level and provided an overview of several conventional data modeling approaches with a

spéciﬁc focus on ER, UML and ORM. To better understand multidimensional data and

110

its semantic differences we presented the properties of multidimeﬁsional data through an
example. Using the analysis requirements demonstrated with a sample Grocery chain we
revealed a set of multidimensional concepts that included events, dimensions, measures,
additivity, derived measures, classification hierarchies, strictness, completeness and the
categorization of dimensions. To understand how existing models address
multidimensional concepts We>reviewed the current state of multidimensional modeling
literature. We briefly reviewed logical, physical, and formal works, but our main focus
was on models attempting to express semantics at the conceptual level. Based on our
review we concluded that a natural and complete conceptual design technique does not
exist that adequately conceptualizes and clearly communicates multidimensional designs
to both business and technical users. In addition, existing works presented few design
guidelines to ensure their approaches are properly and easily applied.

The fundamental deficiencies and shortcomings of existing techniques in
formulating, transforming and evolving a conceptual model provides motivation for our
work. Inspired by ORM, we introduced our fact-oriented MORM approach as a
specialization of ORM by deﬁniﬁg additional graphical constructs and guidelines to
consider the unique characteristics of multidimensional data. To support the semantics
inherent in multidimensional data we introduced three MORM constructs - the Event
Object Type, the Dimension Entity Type, and the Hierarchy Object Type. These
constructs represent the events, dimensions, and classification hierarchies we are
interested in analyzing. Using our Grocery example, we demonstrated how our approach
models each of the multidimensional requirements previously revealed. We have

supplemented our MORM model with several key design guidelines to guide data

111

modelers in using our method to develop multidimensional models. Our gﬁidelines
provide various levels of abstraction and simplify conceptual design by distinguishing
five design levels; preliminary segmentation, business process family definition, business
process definition, event definition, and dimension definition.

We have tested the pra;:ticality and usability of our approach by applying it to a
case study to solve a data analysis pr'oble¥n. Using our Grocery example, we have
demonstrated that our approach can be easily implemented using existing technologies.
We chose VisioModeler for conceptual and logical modeling, while Microsoft SQL
Server and its OLAP component Analysis Services were our choices for physical and
OLAP cube implementation. Using our MORM guidelines, we have developed a
conceptual model and mapped it to a logical schema in VisioModeler. From the mapped
logical model we generated a physical star schema in Microsoft SQL Server 2000, and
subsequently built an OLAP cube in Analysis Services that allowed us to analyze
Grocery data as described in our original MORM mddel. In spite of some cube
generation limitations with our chosen OLAP tool, the implementation demonstrated the

practicality of our approach as the basis for subsequent.data design phases.

6.2. Contributions

To the best of our knowledge, we have presented the first fact-oriented approach
to conceptual multidimensional modeling. We believe leveraging the fact-oriented
paradigm provides us with a conceptual multidimensional model that is more natural and
expressive than existing multidimensional models. As such, MORM provides a solid
basis for solving conceptual multidimensional modeling problems with a more natural

and expressive conceptual model than existing approaches. Examining multidimensional

112

data in terms of elementary facts provides a truly conceptual approach and simplifies the
analysis and design process by using natural language, intuitive diagrams, and real-world
data examples. We believe our fact-oriented approach will help designers capture and
satisfy complex modeling requirements, help business users better understand the
structure and navigation paths of the data warehouse, and facilitate communication
between business users and data modelers. |

Another major contribution of our work stems from our use of a widely accepted
modeling technique. By specializing ORM, we minimize the effort required of data
modelers to learn a new modeling notation for multidimensional data. Our approach
requires a shallow learning curve since data modelers can combine MORM elements with
classical ORM elements and, although the approaches will be different, data models for
OLTP and OLAP applications can be specified using a uniform notation.

Another of our contributions is the provision of design guidelines to construct
multidimensional models using our approach. We believe these guidelines reflect the
natural way users and data modelers think about multidimensional data and lead to a
simple yet powerful multidimensional model. Whereas other approaches use flat design,
our guidelines produce multilevel subschemas that group different levels of abstraction
and ultimately simplify the conceptual design of large data warehouses.

Finally, we have successfully demonstrated that our approach can be implemented
using existing data modeling tools and database technologies. Through a case smdy, we
have developed a conceptual model and mapped it to a logical schema in VisioModeler, a
well-known data modeling tool. We have generated a physical star schema in Microsoft

SQL Server 2000 and subsequently built an OLAP cube in SQL Server 2000 Analysis

113

Services. By putting all ideas developed throughout this thesis into practice, we have

proven that our approach suggests a new way of modeling multidimensional data.

6.3. Limitations and Future Research

While we were able to easily implement conceptual, logical and physical schemas
using our approach, the OLAP cube generation process was not immediate and further
work in this area is encouraged. In future it would be beneﬁcialn to investigate a
generation process that automatically transforms semantics at the conceptual into a
generic OLAP model compatible with the majority of commercial OLAP tools. | The
challenges in this area are due to the fact that complex multidimensional constructs in
conceptual models are not supported or are implemented inconsistently in OLAP tools.

While our approach was successfully tested using a case study and several real
world implementations, the limited number of examples limits our work. To further
examine the practicality of our approach and demonstrate its benefits, other case studies
should be carried out using data from different industries. As part of this investigation, it
would be particularly useful to examine complex data in which there are no natural
numeric measurements associated with events and non-numeric measures must be used.

It would also be beneficial to investigate an extension of our model to represent
the dynamic properties of data warehouses and OLAP applications. These dynamic
aspect-s could include the definition of initial user requirements and subsequent OLAP
operations (e.g. roll-up, drill-down, slice-dice, pivoting) for further analyzing data.

While we have provided high-level design guidelines, future work can also build
on these guidelines to develop a complete multidimensional design methodology. Based

on the MORM medel introduced, a methodology could include a complete process that

114

explicitly considers all the underlying design guidelines hidden in our approach. As part
of this methodology, specific rules could be developed for first identifying business
process families and business processes, then subsequently deriving dimensions and

events from them.

115

BIBLIOGRAPHY

Abello, A., Samos, J., & Saltor, F. (2001). A framework for the classification and
description of multidimensional data models. Proceedings of the 12"

International Conference on Database and Expert Systems Applications (DEXA),
668-677.

Agrawal, A., Gupta, A., & Sarawagi, S. (1997). Modeling multidimensional databases.
Proceedings of the 1 3" International Conference on Data Engineering (ICDE),
232-243.

Barker, R. (1990). CASE*Method: Tasks and deliverables. Wokingham, England:
Addison Wesley.

Batani, C., Cer, S., & Navathe, S. (1992). Conceptual database design: An entity
relationship approach. Redwood City, CA: Benjamin Cummings.

Batra, D., Hoffer, J. & Bostrom, R. (1990). Comparing representations with relational
and EER models. Communications of the ACM, 33(2), 126-139.

Becker, Scot A. (2000). Arguments against the use of ORM (and their rebuttals). Journal
of Conceptual Modeling. http://www.inconcept.com/JCM/June2000/becker.html

Bernus, P., Mertins, K., & Schmidt, G. (Eds.). (1998). Handbook on architectures of
information systems. Berlin: Springer-Verlag

Blaschka, M., Sapia, C., Hofling, G., & Dinter, B. (1998). Finding your way through
multidimensional data models. Proceedings of the 9" International Conference
on Database and Expert Systems Applications (DEXA°98), 198-203.

Boehnlein, M., & Ulbriche-vom Ende, A. (1999). Deriving initial data warehouse
structures from the conceptual data models of the underlying operational

information systems. Proceedings of the 2" International Workshop on Data
Warehousing and OLAP (DOLAP’99), 15-21.

Booch, G., Rumbaugh, J., & Jacobson, L. (1999). The unified modelmg language user
guzde Reading, MA Addison-Wesley.

Bulos, D. (1996). OLAP database design: A new dimension. Database Programming and
Design, 9(6), 32-37.

Cabibbo, L., & Torlone, R. (1999). A framework for the investigation of aggregate
functions in database queries. Proceedings of the 7™ International Conference on
Database Theory (ICDT-99), 383-397.

116

http://www.inconcept.com/JCM/June2000/becker.html

Chan, C., & loannidis, Y. (1998). Bitmap index design and evaluation. Proceedings of
ACM SIGMOD International Conference on Management of Data (SIGMOD
'98), 355-366.

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP
technology.” ACM SIGMOD Record, 26(1), 65-74.

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

Codd, E., (1970). A relational model of data for large shared data banks. Communications
of the ACM, 13(6), 377-387.

Data Warehousing Institute. (2000). Data warehousing: what works? (9). The Data
Warehousing Institute.

Dyreson, C. (1996). Information retrieval from an incomplete data cube. Proceedings of
the 22" International Conference On Very Large Databases (VLDB’96), 532-
543.

Elmasri, R., & Navathe, S. (1994). Fundamentals of database systems (2nd ed.). Menlo
Park, CA: Benjamin Cummings.

Finkelstein, C. (1989). Introduction to information engineering. Reading, MA: Wesley

Gingras, F., & Lakshmanan, L. (1998). nD-SQL: A multi-dimensional language for
interoperability and OLAP. Proceedings of the 24" International Conference On
Very Large Databases (VLDB'98), 134-145.

Golfarelli, M., Maio, D., & Rizzi, S. (1998a). Conceptual design of data warehouses from
E/R schemes. Proceedings of the 31°* Hawaii International Conference on System
Sciences, 334-343.

Golfarelli, M., Maio, D., & Rizzi, S. (1998b). The dimensional fact fnodel: A conceptual
model for data warehouses. International Journal of Cooperative Information
Systems, 7(2-3), 215-247.

Hahn, K., Sapia, C., & Blaschka, M. (2000). Automatically generating OLAP schemata
from conceptual graphical models. Proceedings of the 3" ACM International
Workshop on Data Warehousing and OLAP, 9-16.

Halpin, T. (1995). Conceptual schema and relational database design (2nd ed.). Sydney:
Prentice Hall.

Halpin, T., & Bloesch, A. (1999). Data modeling in UML and ORM: A comparison.
Journal of Database Management, 10(4), 4-13.

Halpin, T. (2001). Information modeling and relational databases: From conceptual
analysis to logical design. San Francisco: Morgan Kaufmann.

Hay, D. (1999). Object orientation and information engineering: UML. The Data
Administration Newsletter, (9). http://www.tdan.com

Inmon, W. (1996). Building the data warehouse. New York: John Wiley & Sons.

Kimball, R. (1996). The data warehouse toolkit: Practical techniques for building
dimensional data warehouses. New York: John Wiley & Sons

Kimball, R. (1997). A dimensional modeling manifesto. DBMS and Internet Systems,
http://www.dbmsmag.com.

Kimball, R., Reeves, L., Ross, M., & Thornthwaite, W. (1998) The data warehouse
lzfecycle toolkit. New York: John Wiley & Sons

Kimball, R., & Ross, M. (2002). The data warehouse toolkit: The complete guide to
dimensional modeling (2nd ed.). New York: John Wiley & Sons

Lenz, H., & Shoshani, A., (1997). Summarizability in OLAP and statistical databases.
Proceedings of the 9th International Conference on Scientific and Statistical
Databases, 39-48.

Microstrategy, Inc. (1995). The case for relational OLAP. http://www.strategy.com
Martin, J. (1990). Information engineering. Englewood Cliffs: Prentice Hall.

NIST. (1993). Integration definition for information modeling (IDEF1X). FIPS
Publication 184. National Institute of Standards and Technology.

Pedersen, T., & Jensen, C. (1999). Multidimensional data modeling for complex data.
Proceedings of the 15" IEEE International Conference on Data Engineering
(ICDE’99), 336-345.

Pedersen, T., Jensen, C., & Dyreson, C. (1999). Extending practical pre-aggregation for
on-line analytical processing. Proceedings of the 25" International Conference on
Very Large Databases (VLDB’99), 663—-674.

Raden, N. (1995). Modeling a data warehouse. http://www.archerdecision.com/artic3.htm.

Ritson, P., & Halpin, T. (1993). Mapping integrity constraints to a relational schema.
Proceedings of the 4" Australian Conference on Information Systems (ACIS’93),
381-400.

Sapia, C., Blaschka, M., Hofling, G., & Dinter, B. (1998). Extending the ER model for
the multldlmenswnal paradlgm, Proceedings of the I’ International Workshop on
Data Warehouse and Data Mining (DWDM’98), 105-116.

118

http://www.tdan.com
http://www.dbmsmag.com
http://www.strategy.com
http://www.archerdecision.com/artic3.htm

Song, 1., Rowan, W., Medsker, C., & Ewen, E. (2001). An analysis of many-to-many

relationships between fact and dimension tables in dimensional modeling.

- Proceedings of the 3" International Workshop on Design and Management of
Data Warehouses (DMDW'01), 6.1-6.13.

Teorey, T., Yang, D., & Fry, J. (1986). A logical design methodology for relational
databases using the extended entity-relationship model. Computing Surveys,
18(2), 197-222.

Theodoratos, D., & Sellis, T. (1999). Dynamic data warehouse design. Proceedings of

the I*' International Conference on Data Warehousing and Knowledge Discovery,
(DaWaK'99), 1-10.

Trujillo, J., Palomar, M., & Gémez, J. (2000). Applying object-oriented conceptual
modeling techniques to the design of multidimensional databases and OLAP
applications. Proceedings of the Ist International Conference on Web-Age
Information Management (WAIM 00), 83-94.

Tryfona, N., Busborg, F., & Christiansen, J. (1999). starER: A conceptual model for data
warehouse design. Proceedings of the 2™ International Workshop on Data
Warehousing and OLAP (DOLAP’99), 3-8.

Widom, J. (1995). Research problems in data warehousing. Proceedings of the 4"

International Conference in Information and Knowledge Management
(CIKM’95), 25-30.

Wu, M., & Buchmann, A. (1997). Research issues in data warehousing. Proceedings of

the 7" German Conference on Datenbanksysteme in Buro, Technik und
Wissenschaft (BTW’97), 61-82.

119

APPENDIX A: ORM CONSTRUCTS

This appendix summarizes ORM’s main constructs as described in chapter 4 of
Bernus, Mertins, & Schmidt (1998). Shown in Figure A-1, constructs are labeled with a

number and further described in Table A-1.

"-—""ﬁss
(A)
\\‘-‘—"I
1 3 4 5 6

2
na
i |
T —e ¢ ¢ T}
7 8 9 10 11 12
é) {a,. a, a,}
H {a,..a}
13 14 15 16
',‘ 1‘ %r ©Ojt Cac
| ,;, nooAemeen Cas Pans Osym *
J
17 18 19 20 21 22 z

Figure A-1: Graphical Notation of ORM Constructs

the student with studentID 25899). Descriptions typically indicate the
entity (e.g. student), a value (e.g. 25899) and a reference mode (e.g.
studentID).

2 | Value Type Denotes a lexical object type (e.g. a character string or number) that is
identified by constants (e.g. David R. Williams, 25899). Another notation
for value types encloses the value type name in parentheses.

3 | Duplicate Object Object types that appear more than once in the schema may be tagged with
Type an arrow tip that “points” to the existence of another occurrence.
4 | Reference Mode Each entity type must have at least one reference scheme that indicates how

each instance of the entity type may be mapped via predicates to a

120

combmatlon of one or more values Reference schemes are abbrev1ated by
displaying the reference mode in parentheses beside the name of the entity
type. The reference mode indicates how values relate to the entities.

5 | Numeric Value A plus sign “+” may be added if values are numeric

6 | Independent Entity Means instances of that type may exist without participating in any facts.
Type

7 | Predicate Depicts a ternary predicate comprised of three roles. Each role is depicted
as a box, and must be played by exactly one object type. Roles are
connected to their players by a line segment.

8 | Internal Uniqueness | Arrow tipped bars placed over one or more roles in a predicate declare that

Constraints instances for that role (combination) in the relationship type population
must be unique.

9 | Primary Uniqueness | A predicate may have one or more uniqueness constraints, at most one of
Constraints which may be declared primary by adding a “P”.

10 | External Uniqueness | A circled “u” may be applied to two or more roles from different predicates
Constraint by connecting to them with dotted lines. Instances of the combination of

those roles in the join of those predicates are unique.

11 | Primary External To declare an external uniqueness constraint primary, use “P” instead of
Uniqueness “u”.

Constraint

12 | Objectified If we wish to talk about a relationship type we may objectify it (i.e. make
Predicates an object out of it) so that it can play roles. Graphically, the objectified

predicate is enclosed in a rounded rectangle.

13 | Mandatory Role Declares that every instance in the population of the role’s object type must
Constraint play that role.

14 | Disjunctive Applied to two or more roles to indicate that all instances of the object type
Mandatory population must play at least one of those roles. This may often be shown
Constraint by connecting the roles to a black dot on the object type

15 | Disjunctive Another way to indicate all instances of the object type population must
Mandatory play at least one of those roles, here by connecting the roles by dotted lines
Constraint to a circled black dot.

16 | Value Constraints To restrict an object type’s population to a given list, the relevant values
may be listed in braces. If the values are ordered, a range may be declared
separating the first and last values by “..”

17 | Subset Constraint A dotted arrow from one role sequence to another is a subset constraint,
restricting the population of the first sequence to be a subset of the second.

18 | Equality Constraint | A double-tipped arrow is an equality constraint, indicating the populations
must be equal.

19 | Exclusion A circled “X” is an exclusion constraint, indicating the populations are

Constraint mutually exclusive. Exclusion constraints may be applied between two or
more sequences.

20 | Subtype A solid arrow from one object type to another indicates that the first object
type is a (proper) subtype of the other,

21 | Frequency Applied to a sequence of one or more roles, these indicate that instances

Constraint that play those roles must do so exactly # times, between n and m times, or
at least n times.

22 | Ring Constraint May be applied to a pair of roles played by the same host type. These
indicate that the binary relation formed by the role population must be
irreflexive (ir), intransitive (it), acyclic (ac), asymmetric (as),
antisymmetric (ans) or symmetric (sym).

23 | Derivable Fact Type | An asterisk “*”, placed beside a fact type indicates it is derivable from

other fact types.

Table A-1: ORM Constructs and Associated Descriptions

121

APPENDIX B: MORM SCHEMA FOR RETAIL CASE STUDY

C L _—

e =
records amount of

SALES
|\TRANSACTION

Figure B-2: MORM Level 2 - POS Retail Sales Business Process

122

g

is taken in

is taken at

Figure B-3: MORM Level 2 - Inventory Business Process

TRANSACTION

has profitof % %

t+—p

T T

(Quantity:&; H

ey,

T T sold
** { profit = price - cost}

define Sales Transaction has profit of MoneyAmt as
Sales Transaction was priced at MoneyAmt1, an
Sales Transaction cost MoneyAmt2, and
MoneyAmt = MoneyAmt1 - MoneyAmt2

Figure B-4: MORM Level 3 - Sales Transaction Event

123

<

- g

has on hand

< >

ordered INVENTORY
< >

shipped

Figure B-5: MORM Level 3 - Inventory Event

i adaress
E { Address
lé AN /‘)*}

P ~

T
}c; \Tstal Code Zé

R

" —_— N
k:—\/ storeName Js

S

-~ ~
E—‘ regionName)
\ A2
, ey

L

Figure B-6: MORM Level 4 - Store Dimension

124

—
Fi-——-/ ﬁrstName\/
i \
’%»——/ lastName \)
i \\-‘ —‘wﬁ‘j

’i—(/itr/eer;j;a;)
— -

o —

e
Rt

Q -

— ~.
E ~(maritalStatus)
\» %

Figure B-7: MORM Level 4 - Customer Dimension

——— >
/od ctN o '
{ productName },
P °);—’ has]
foa

——
I has ¢ R i
M e
(AR
———
\{amilyNami}} ©
Mo

<—p T~

N\ T ey 0
/5 N {D.F}

Y

Pr P /// L}

PERTS
Uostas 400 &
\“mﬁ}

/p:mem:ge\) each Food is a Product that is of Group 'F”
\\%?_ o each Drink is a Product that is of Group 'D"
each Refreshment is a Drink that is of Family 'R'
each Alcohol is a Drink that is of Family A’
each Juice is a Refreshment that is of Type 'J'
- each Carbonated is a Refreshment that is of Type 'C’
“Sugar Free ™,

P

Figure B-8: MORM Level 4 - Product Dimension

125

Ihas L date '\,
[A (mdy) /)
e

s
——{ dayOfMonth+);
N e

————

~

-~
£ monthOfYearNr+ },
AN P
~, o

> o
TR A

-~ ~

/ 2,
\monthName)

L

- N
/ quarterName L
AN b

B e -T SRR

.
.

Figure B-9: MORM Level 4 - Time Dimension

126

LTI

“UWN[O0 9[qe) dseqere(] [eo1sAy g
‘uonejou [euone[al [eoryderd ur twn[od 9[qe], [eor3o
-aseqejep [eo1sAyd oy} Ul paiols oq O} SI INSEIW SAIBDIPUI _ 4, YSLISISE 9[qNO(] "UOHE[NO[ED PAIBIOOSSE A1} Ul QInseoN
sad4} 10B] JSI0 SIOUSISJAI YOIYM PIPNIOUI O[T UOHEBALIOP ‘ANI[IQRALIOD SII 9)BOIPUI O} . 4,, MSLIGISE UB [jIm pasrew ad4) 108, [emdasuo) paAne(d
*aqnO UTYIIA QINSBIA] dv10
‘9seqe)ep Ul UWN[0d J[qe) JUSA eo1sAy g
‘uorejou [euone[al [eoryderd ur uwn[od o[qe) JUSAg [eo180] 2INseaN
‘a1e01paid eia 9d4) 109[qo Jusag 03 paroouuos 2dA) anjea 1o Anug [erudasuo) OTO0}Y
"JUSAS 29U} 9qLIOSSp 1Y) S2INSEIW sAneInuenb o[dnjnw ururejuods [[90 aqny) dv 10
‘aSeqeIEp Ul BWISYOS IBIS JO 9[qe) [BNU) [CRISE
‘uorjelou [euone[al [eorydeld Ul BWSYDS Je)S JO 9[qe) [BNUI) [eo130]
*2dA) 192[qo JjueAg [emdasuo) JuaAg
"SUOISUSUIIP PAILYS IIam S3qno S[dn[nA dv 10
‘SUOT}O9UUO0Y A9 UZIS10] AQ SUCISUIWIP 0) PAMUI[SI[L} JULAS [BIIUSD “DSBQRIED UI SI[qR] BWIAYDS Je)s o[dnn [eo1sAyd
"SUOTIOdUUO0D sorue
Koy uSB1210] Aq SUOISUSWIP O} PaUI[SO[qL) JUSAS [BJIUSD ‘UOnEjoU [euone[as [eorydeId ur sewoyos Jeys odnnp [eo130 $800014
"sod£} 100[qo uoIsULWI(PaIEYS,, UOUIIOD 0} PA)0sUU0d $adAl 309[qo jusar o[dnn reradasuo) ssauisng
°qny dv10
‘9seqejep Ul S9[qe) ewayods Ivlg [ed1sAy
‘uone)ou jeuone|ar [eo1yders ur ewayos Jeig 80130 §50001g
moﬁoaokm e1A sad4) 199(go uorsuawi(q ajdnniu 03 paroeuuod adAl 193[qo Jusag 1erydaouo) ssaursng
: = sty suidde 7 toneymsu dw] =

"aqno 2014425 S1SAIU Ue 0) SI9JOI JV IO PUR 2]qD} 424435 TOS © 03 S19)ax [eo1sAyd uawnsop divuooip
A2]2pOJNO1S14 © O} SI9JA1 [e0130] ‘WnL3DIp WY 42]2pOJ OIS © O} S19J2I [enydoduod ‘uwnjod Bwayos,, a3 ul ‘g 1oydeyo ur pejuasaid
SV "dV710 pue ‘eosAyd ‘feorSoy ‘jenydoouoo - uonejuswadwir ano jo safels Inoj oY) 10j papn[oul aie juswaiinbal [euoIsuswWIp N

yoea 10} s[reiop uonejuowd[dw -Apnis osed Ino ul pajuowRdwil oIe sPNNSU0d NYON MOY Sdzuewwns [-) d[qeL

SLINS3yY NOILVLNINITdIN] NMOIN O XIGN3ddY

8¢C1

‘PaIeys oIk SUONEII3Fe pue SO[qe) UOISUSWIP SUIA[IOPU[) ‘SINOI0

Fuidowr o) 219YM [9AS] UOISUSWIP 21} & Jurre)s suoisuawp o)eredos alowr 10 om] se paure(] pamoddns Aprotdxs 10N dvV10
"9[qe} uorsuawip Je[j ur (o1jdwr) usppIy S1e SIMYIIBIDNY [[B “9SeqEIRp Ul SUWIN]0D 9]qE) UOISUSWI(] [eo1sAyd
*9[qe} uorsuawIp e[} ur (J1o17dwr) USppIY 2J1e SAYDIBIDNY [[B ‘Uoneou [eucne[dl [eorydeld U1 SUWN[O9 9[qe} UOISUSWI(] [eo130]
‘pauysp Ajny SQIYOIRISIY
a1e A1) YOIy UI BWISYDS Jdyjoue wolj pauodunn a1e A9y} 91eoIpul 0) jpulaxas se parew sojeorpald 11oyy pue sad£) 103fq0 [eradaouo) paIeys
"utod SUISIoW oY) 18 SUILUIZaq AYOIBISI] o) SUned[dnp SUOISUSWIIP 210U 10 0M] SE paulja(] -paHoddns A[3Io1dXa JON dv10
-9[qe} uorsuswIp Jefj ul (yo1pdwur) uapp1y ale $9IYOIBISN] [[B “2SBqEBIEP Ul SUIUN]OD 9[qR] UOISUSWI] [edotsAyd | semyorerory
"9]qe) uorsuawip je ur (ro1dwir) usppIy 21e s2IYdIRIALY [[B “UOLB}OU [euone[dl [eorydeld ul suwnjoo ojqe) UoISuUswWI(] [eo130] yed
ToAS] AYDILIaly GUIES S1) OIUT 3315AU0D 18y Syied AUoIeIaly JUSId]JIp 218310 0} pasn sadA} 103[q0 AYoIeIar ren3dosuo) SANIRWIAN Y
A ‘(uoseag aWI] pUE Jepua[e))'auwl], ‘3'9) SaXIJJus JUAIJJIp
9AeY Inq x13o1d UOISUSWIP JWEs S} AIBYS JBY) SOWEU [}IM SUOISUSWIP 9IOUI JO 0M) Sk pauljo(q "pouoddns Aprorjdxa joN dv10
“9]qey uorsuawIp JefJ ur (3o1dw) uappIy SJe SAIYSIBIAN [[B ‘OSEQE)EP Ul SUUN[0O 8]qB) UOISUSWII(] [eo1sAyd
*9[qe} uolsuawip jefj ur (yrorjduur) uappIy a2Je SAIYdIRIAIY [[B ‘UOIH)eIou [euone[al [eorydels ul suwnjod 9]qe) UOISUSWI(] [e2130T | soryolIeIaTH
"uoISUSWIp © JO 1001 oY1 woyy syjed Ayoelany JuUaISJIp 9Jea1d 01 pasn sadX) 109[qo Ayd1eIalq remydaouo) srdnmp
“9qno UMM PIULJIP S[9AJ] AYOIBIATH dv10 .
*9]qe) uorsuawIp Je[J ur (JIorjduir) usppIy 21e SAIYOIRIAIY [[B “9SeqEIep Ul SUWUN|OD S[qE) UOISUSWI(] [eo1sAyd
-9[qe) uolsuawIp jefJ ut (Jrorjdwir) USppIy e SAIYDJIRISIY [[B ‘UoneIou [euone[al [eorydeId ur suwnjod s[qe) uoIsusui(] eo130]
‘100[qo odA1 anfea FUIAJIIUSPI PAIBIDOSSE ST O] 3XaU {} JUIRIISUOD 3} 1M PIJBOIPUI [2qe] SUIAJIuUapl
ue SeY [0AS] YoBY ‘S[OAQ AYOIRISN] 0M) U2M]9q diysuonielal e sa1j1oads $109{qo AYoIeIaly om) uaamlaq 9yedrpaid SOIYOIRISIH
Vv TeA9] Ayoierany yoea judsaidar sadAy 10a[qo AYOIRISIH 991} UOISUSWIP B JO JOOI 3y} suro} 9dA) 310alqo uorsuswig [emdaouo)) | uoneOyISSe[D
"2qnd B UMM UOISUSWIP © Jo Ayadord 1oquiajy dv10
‘9SeqEJRP UI UWIN]OD 2[qE) UOISUSWI(] [eoIsAyd
"uoneIOU [eUOnEdI [eo1ydeId Ul uwnjod 2[qe} UOISUdWI(] [eo130] soINquUNY
-91eo1paid e1a ad4&y 199[qo uoisuawi(] 03 pA1oauu0d odA] anjea 10 AUy [emdaouo) UOISUdWI(]
"2qNO UMM UOISUSWI(] dv’10
"9SeqeIRp UI BLUSYDS JBIS JO 98} UOISUIWI(] [eo1sAyd
‘uonejou [euornie]al [edrydeId ur ewayos Ie}s JO d[qe} UOISUWI(] [es130]
-2d4} 193[qo uorsuawiq remdasuo) UOTSUDWI(]
"AYIADIppe-1as 10J 1oddns ou ‘[nejap Aq SANIPPE POWINSSE SOINSBIA dv10
‘uwnjod 3[qe) aseqere [eo1sAyd
-uonejou [euonelal feoydess ur uwn[oo s[qe], 180130
'$90BIq UI JUSUWITLIOD B S 91Ul [eULIOJUl Ue AqQ po)eoIpul
ANATIpPPE TWas ‘ANATIPPE-UOU SIBOIPUL 4, JO 90UISqER ‘ANAIIIPPE SI)ROIPUI SWIRU 2Inseaws JUIMO[[0] , +,, USIS sn[remdoouo) KNANIPPY
"aqNO UIYIIM QINSESN
[nelad ,m.m_mna uuwImnba

6C1

synsay uopejuawaldw| WHOW JO Siteled :1-0 dlqeL

“(uor3a1 sa[es U0 UL} 2IOW Ul PIPN]OUL ST 23838 ‘2Je)S QUO UEBY) 210wl JO pasudwod st uoi5al sajes ‘3'9) $3]0I [9A] AYOIRISIY
108ae) pue SuneurSiio ay) uo JUIRIISUOS ssauanbrun (u:w) Auew-03-AUBW © AQ PAIROIPUI SS2UIILIS-UON [SAI] J2518)
aU0 Jsowl 3p U1 Pajeso] st [9A9] SuneuiLIo Yoes sejeoIpul 9101 o)eorpaid 1s11] U} UO JUIRIISUOD ssausnbiun ([:u) auo-0)-Aury

“(ores J1od syonpoid o[di[nur ‘3'9) JUaAS S[SUIS I0] saInseaws 2[dn[nw dnoid o} pauljap (19301 "3'9) UOISUSWIP)eISUIIJ dv10
"spJ02a1 JusAd odnnw dnoi3 03 (aseqeiep ul) 9[qe) JUSAS UIYIIM PIUIJIP UWIN[0d A3 onbrup eo1sAyd

"$pIooal JuaAs o[dnnw dnosd o3 (uonelou [euonelal [eoydeld ur) 9[qe} JUSAD UIYIIM PAULSp Uwnjod A3y anbiupy [e01307] | uorsuow(y pue

“JUSAS 9[es o[3uis e 0} une[a1 spiooal dnoid 0} pasn uosuSWIp Ajerdusap Ajnuapt o) {gd} apnjou] ‘enbrun JUAAT usamleg

s1 uoneuIqUod Jioy Sunesipur ‘Jonpold pue 19301 J0] JUTRNSUOD ssouanbrun [euonIppe suya(q (S[es ‘3'2) 1UsAS 9[3uIs digysuoneoy

e 10y (swonr aurf ‘§-0) spiooar ojdnnw ur Sunnsax ‘(Gonpoid ‘3-9) uresd uOISUSWIP 1S2MO] S} 0} UTRIF JUIAS Y} IomMO'] Teudoouo)) | AuBAj-01-AURIA
*(393o13 *3°9) JQIJIUSPI Y3 J0] PAUIJOP ST [2AS] AYOIRISIY J[FUIS B “0qND UNJIIM UCISUSWIp J)eIedas 0) PaLIdAUO)) dv10
‘9seqe)ep Ul UWN[OD d[qe) JUSAT Teo1sAyd

"uone)ou [euolie[al [eoiydels ur uwnjod s[qe) JusAq [eardo UOISUSWII(]
JuaAg 2y} im pajeroosse adAy 103lqo SuiAjnuspl oy} 03 1xou paserd s1 {(Jq} UIRNSUOD YT [emdasuo) ojersuadoqg
"9qTO UM PIULJOP S[RAQ] AYOIRISIH dv10
*a]qe) uoisuatp Je[y ur (3d17dwr) USppIY d1e SIM[OIRISIY [[B ‘OSeqelep Ul SUWN|od J1qe) UOISUSWI(] [eo1sAyd
*3[qe) uotsuswp Jeyd ut (rorjdiur) UappIy 2. SAIYOIRIDNY [[B “UOTIRIOU [eUONe[Sl [eolydeid ul suwnjod 9[qe} uoisuawi(q [eo1507
“trel3eIp o) Ul uaLm pue sadAiqns [je 10} paIe[oap

suonufop addaqns reurro “Keyd 0) woy) 103 safoI oyIvads uaym padsnponut sapou adAigns ‘sydeid o1jokor pajosiip Suisn suorsuawi(J Jo

pakedsip Suid4iqng -sadAiqns urejuos jey ssnnus ozuoJaies 0y drysuonejal uonezijeroads-uonezijeiousd e Aq pejesipuy [emadoouo)) | uonezuodae)
"AyoIeIaTy 1010 Sk pajuswa[dun ‘oddns j1o1pdxe oN dvio
*a1qe} uorsuawlp [edrsAyd ur uappry uonewLIoyul AyoJerary (e ‘Moddns Jo1pdxe oN [eo1sAud
*9[q€) UOISUSWIp [B130] Ul USPPIY uoneuLojur Ayorerary (e ‘uoddns 31017dxs ON [ea180]

[Nejop Aq 210]dUI05-UOU POWNSSE JJ SANOILIAN] UONEOHISSE]d [[& JUIBNISUOD) JO S0UISqE Aq PajesIpul

‘ssoua1a|duioo-uoN ‘19A9] Aysielany 1o81e) Jo 9101 oy uo {ssaus)eduios} Jurensuod oy} Suruljep Aq pajedlput ssaus1a]duo)) [emdasuo)) | sssusje[dwo)
“10L1IS 0} POLISAUOD die J0LIS-Uou ‘peptoddns 2dA) ATUO 9t ST SIY) SB 3[NBJP AqG IILIS IR SIIYOIRIAN] [V dv'10
*2[qe} uorsuawIp [eo1sAyd ur usppry uoneuLIoJur Aysieory [je ‘uoddns ydndxe oN 1eo1sAyq
*2[q®) UOISUSWIP [80150] Ul USPPIY uoneuniojur Ayosieiary [je oddns jrorjdxs oN [eo1801

SSOUIOLNG

