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Abstract

Randomized controlled clinical trials (RCTs) are generally considered to be the best experi-
mental setting for assessing new medical therapies. In medical research, the evaluation of RCTs

is often based on two approaches: the commonly recommended intent-to-treat (ITT) analysis,
and the more controversial per-protocol (PP) approach, which respectively attempﬁ to assess
the clinical effectiveness and the efficacy of a therapy. In thé' presence of a variable lag time
in treatment stabilization following randomization, the two a,pproaches may differ not only in
their patient inclusion and exclusion criteria, but also in their definitions of the baseline time,
from which follow-up is to be measured.‘ In this work, I'TT and PP analyses are applied to the
evaluation of an eye pressure lowering therapy, in data from the Collaborative Normal Tension
Glaucoma Study. In this study, the thérapeutic intervention consisted of achieving a 30% re-
duction in intra-ocular pressure, and necessitated a lag time before the lowered pressure level
became stable. This thesis includes longitudinal ahd survival analyses, based on measurements
taken on some of the main variables in this study. In this case, the PP approach defines baseline
time in the treated group as the time at which treatment stabilization has been achieved. It
thus loses somé of the advantages of randomization, and may suffer pbtential bias in parameter
estimation as well as diminishing statistical power in tésting the treatment effect. We inves-
tigate these potential problems through some simulation wdrk. ‘While the ITT and the PP
approaches fail to account for the delay in tréatmehf stabilization, we also develop a multistate
model for survival analysis and a piecewise linear mixed effects (LME) model for longitudinal
analysis, both of which address the lag time broblem in assessing the effectiveness of the ther-
apy. Finally, we consider a baseline-adjustment approach to match the control group to the
delayed treatment group for an efficacy assessment of the therapy. These methods that account
for the lag time are compared to the ITT and the PP approaches, é,nd .reconimendations based

on their performance in our study and their general applicability are given.
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Chapter 1

Introduction

Randomized controlled clinical trials (RCTs)_are generally recognized as the best experi-
mental setting for assessing new medical therapies. Randomization of patients to different
treatments promotes compérability of the treatment groups and minimizes potential se-
lection biases with respect to unmeasured charaéteristics of the patients. Differences
in the response between the control and the treatment groups may then be attributed
to the treatment itself rather than to some confounding factors. When there is a lag
time in the stabilization of treatment following randomization, the definition of baseline
from which patients are to be followed is particularly crucial in the clinical comparisons
‘between treatment groups. Randomization alone may not be sufficient to validate the
results of treatment comparisons if the baseline is defined inappropriately. In general,
when a method of comparison is‘inappropriaté, or when the assumptions underlying a
correct approach are not satisfied, the results will be erroneous and may lead one to vtype

I or type II errors.

Finding an appropriate method of comparison in the presence of a lag time in the
stabilization of treatment following randomization is often difficult. The possibility of
a lag time in full treatment effect was first noted by Halperin et al. [1]. Such a lag
time arises, for example, when the treatment vun.der study‘ does not take immediate effect
upon its administration to treated patients at the time of randomization. There is a delay
before the intended treatment éﬁ"ect is achieved, and this makes comparisons between the

control and the treatment groups difficult. Although randomization of patients guards

1
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‘against bias in the treatment assignment and in subsequent data analyses, this lag time
is likely to affect the results of comparisons but often cannot be specified precisely before

the trials are ,conducted.

* The effect of such a lag time on statistical chparisen procedures has been receiving
great attention by the medical and statistical cornrnunities _inthe past few decades. The
presence of a lag time in the treatment is'mostly‘see’n in long-:te_rm treatrne‘nts.'. Well-
known examples include the Lipid Research Clinics Coronary Primary Prevention Trial
" (CPPT) [2], the Women s Health Trial [3] and the Physrcrans Health Study [4]. In the
fCPPT the treatment was a cholesterol lowerlng therapy The therapy was expected to
gradually reduce the amount of plaque in blood vessels and hence the risk of coronary
disease. In the Women'’s Health Trial, a randornized centrolled trial was initiated to
deter'mine‘if a low ‘fat diet effectively reduced;‘_the incidence }df'breast‘cancer among
~ high-risk group of Women’.y. The cholesterdl: ldwerlng therapy and'the diet intervention
-introduced some sort of linear lag phase,where the eﬁ‘_éCt of the treatment gradually
increased with time. On the other hand, a different model for the lag time was used in
the Physicians’ Health Study where the effect, of beta-carotene on cancer incidence was
investigated. The experimenters helieved that the drug did not affect pre-existing tumors
and time was needed for new tumors to develop ‘and become detectable Hence a threshold
lag time was assumed the effect of the drug was not ass001ated W1th tumors detected
within the ﬁrst two years s1nce adm1mstrat1on at the time of pat1ent randomization.
In all the above’ cases, the treatment effect was not. 1mmed1ate and thus introduced a
lag time from the time of r’andomization before the ,treatment reache‘d':its full effect.
Several authots propesed new statistical procedures to take into account the lag time in
analyzing surv1va1 data. Zucker and Lakatos [5] COnsidered a linear and a threshold lag
model and presented two We1ghted log rank type stat1st1cs for comparlng surv1val curves
~ in a non- parametnc settrng Luo [6] extended therr ideas'to the Cox proportional hazards

regression model to 1nclude lagged effects of some of the covarlates Nevertheless little

discussion in the hterature has been devoted to the consequences of applymg ordlnary '
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comparison procedures without a careful adjustment for the delay. The lag time present
in non-survival type data has not been widely addressed either. It is important to make
clinical practitioners and designers of clinical studies aware of the problem and this

motivated this study of the statistical issues related to treatm.ent' lag times.

For this wofk, I'h'a\“f'e focused on‘irvlvestigating and discussing the effect posed by a
delay in treatment stabilization on the results of treatment édmparisons. The comparison
| procedures are based on the intent-to-treat and the per—protocol prmc1ples which are
commonly adopted in the evaluatlon of clinical trials. Longltudlnal and survival data
collected from the Collaborative Normal Tension Glaucoma Study [7] - [10] are used for
analyses throughout this work. Approaches that take into account the lag time present
in our data have been considered, in addition to some classical methods of comparison
for longitudinal and survival analyses. ‘Furthermbre, a demonstration of the potential
problems including bias and diminishing statistical power iAn applying the per-protocol»

approach will be given through some simulation work.

The remainder of this thesis is orgahized as follows. The details of the Collaborative .
Normal Tension Glaucoma Study and an introduction to normal tension glaucoma are
first provided in Chaptef 2. Chapter 3 gives a full description of the intent-to-treat
and per-protocol pr1nc1ples and an application to the evaluation of the glaucoma study.
Methodologies of modelling the longitudinal and survival data from the glaucoma study
are detailed in Chapters 4 and 5, and the results of analyses are presented in Chapter 6.
Simulation of longitudinal data for demonstrating the performance of the intent-to-treat
and per-protocol approaches follows in Chapter 7. A general discussion and conclusions

are given in Chapters 8 and 9. The thesis ends with recommendations and suggestions

for future work in Chapter 10.




Chapter 2
The Collabdrative Normal Tension Glaucoma Study

The Collaborative Normal Tension Glaucoma Study (CNTGS) [7]-[10] is a prospective
multi-center study for irivestigating the effects of intra-ocular pressure (IOP) reduction
on disease progression in normal tension glaucoma (NTG). Before giving the details of
the design of the study in Section 2.2 and a description of the data in Section 2.3, we
familiarize the readers with some basic informatibn on the nature of the disease, its
diagnosis and management to enhance their uhderstanding of the pﬁrpose of the trial

and subsequently, the methodologies and analyses' which are presented in this thesis.

2.1 Normal Tension Glaucoma

2.1.1 Introduction

Glaucoma has been one of the leading causes of blindness among adults and the elderly
in particular. Its definition varies across the ophthalmic community, but the disease
can be referred to as a chronic ophthalmic condition characterized by optic nerve head
damagé, a characteristic loss of visual field and an elevated IOP. In 1857, Von Graefe
[11] described a group of patients havi'n.g cupping of the optic nerve head and visual field
defects but with IOP levels that remained within the statistfcally normal range. The

term “normal tension glaucoma” was then coined to describe this particular group of

glaucomatous conditions.
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2.1.2 Epidemiology

" The prevalence of normal tension glaucoma was estimated in a number of studies.. The
estimates range from 0.3 to 4% among patients in their mid-60s [12]. The wide range is
the result of the many different definitions of NTG being employed. Similar to Open-
Angle Glaucoma, which comprises the largest group of patients suffering from glaucoma
with elevated IOP, normal tension glaucoma is mostly asymptomatic at the early stage.
There is no associated visual field loss and therefore most patients are unaware of the
disease. When untreated, NTG patients will gradually lose their peripheral vision and
eventually may suffer total blindness. The Glaucoma Research Foundation [13] reported
a rate of blindness from glaucoma between 93 and 126 per 100,000 people over the age
of 40. In particular, Open-Angle Glaucoma accounts for 19% of all blindness among

African-Americans compared to 6% in Caucasians.

As has been ‘discussed by Sassani [14], results from previous research on the risk
factors for normal tension glaucoma showed that age, gender, race, diseases including
migraﬁne and diabetes, and genetic factors are assdciated with the development of the
disease. More specifically, the prevalence increases with age; females, Asians and African
Americans, and people with migraine, diabetes or famﬂy history of glaucoma are fnore
susceptible to developing normal tension glaucoma. The most recent study of the natural
history of the disease, as conducted by the Collaborative Normal Tension Glaucoma
_ Study Group, investigated the risk factors for the progression of visual field abnormalities
in NTG [10]. It was found that the female gender, the presence of migraine and. disk
hemorrhage contribute separately to a higher risk of progression. Asian patients have a
slower rate of progression despite a high preva,le‘nce of NTG within the race, while black
patients show a faster rate‘ Qf progfession.' Moreovei, dge, the untreated level of IOP and

self-declared family history of glaucoma were found to have no effect on the progression

rate in this study.
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2.1.3 Diagnosis and Managemént

The diagnosis of normal tension glaucoma is often made by a diagnosis of exclusion. The
determination of the nature of the disease is based upon the elimination of other diseases
that share similar symptoms and characteristics. All other causés leading to damage
of the optic nerve and visualb field 'lbss, for example, cardiovascular abnormalities, must
be eliminated, and the IOP level has to be shown repeatejdl‘y not to exceed the normal

statistical upper bound (21 mm Hg) before normal tension glaucoma can be diagnbsed
[12]. ‘

~ To measure intra-ocular pressure, tonometry is used, but it has rathér poor sensitivity
and specificity in detecting glaucoma if used alone [15]. Therefore in practice, it is used
in combination with ophthalmoscopy, which examines the appearance of the optic nerve,
for early detection of the disease. Moreover, gonioscopy helps to examine the structure of
the anterior chamber angle for determining whether a patient suffers from Open-Angle or
Angle-Closure Glaucoma. Normal tension glaucoma shares many clinical features with
Open-Angle Glaucoma, but we do not plan to discuss their similarities here. Readers can
refer to the literature on glaucoma for more details. Sassani [14] provides a comprehensive

reference on the subject.

Despitej the fact that an IOP oﬁtside the normallrange has not been documented,
patients with normal tension glaucoma tend to have a wider diurnal IOP fluctuation,
which might aécount for the gl}aﬁucomatous features in the absence of a consistent ele-
vated IOP level [12].- Furthermore, studies have shown that asymmetric normal tension
glaucoma is associated with an asymmetric IOP [16]-[18], so IOP is believed to play a
role in the underlying mechanism causing the disease. And with this belief, treatments
for normal tension glaucoma aim at reducing IOP levels. Patients diagnosed to have
an early stage of the disease are usually treated with medications. When patients show

progression on medication or experience considerable visual field loss, they are. treated
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with laser surgery. Filtering or incisional surgery is applied upon failure of the previouslyb
mentioned treatments or upon persistence of the progression. The medical and surgical

treatments all attempt to lower IOP in hope of preventing further progressive damage.

2;1.4 Visual Field Measurements

To monitor disease progres_sion, both the optic nerve head and the visual field need to
be assessed regularly. Nowadays, automated static perimetry is USed to quantify visual
field loss, based on the ‘linear relationship between visual perception and the change in
stimulus intensity which is measured in the logarithm scale of decibels (¢B) [15]. The
Humphrey Field Analyzer (HFA), which was used in the CNTGS, is one of the most
commonly used automatic perimeters. In essence, perimetry based on the HFA entails
estimating threshold values at each test location in the central 30 degrees of the visual
field, where a threshold can be described as the minimum brightness of a stimulus a
patient perceives at a particular test location. To estimate the threshoid value at each
location tested, stimuli are presented at that location and the intensities are decreased
in 4dB steps until reversal, i.e., from ‘pe'rceived to not perceived or vice versa. The test
process then reverses and the intensities increasés in 2dB Steps until the second reversal
occurs, at which time the threshold determination is stopped. The last seen stimulus
intensity willvbe used as the threshold estimate. Detailed description of the HFA and the

threshold estimation procedure can be found in [19].

From these threshold values at different locations summarize the four global 'i-ndices
that quantify visual field loss: the mean deviation or mean defect (MD), the pattern
standard deviation (PSD), the short-term fluctuation (SF) and the corrected pattern
standard deviation (CPSD). The mean defect, which is an important outcome variable
in our data, is a variance weighted average departure of each test location from the age-

corrected value, where a threshold of stimulus intensity is observed at every test location

in the visual field:
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where

y; is the observed threshold
r; is the normal age-corrected reference threshold

s2 is the between-patient variance of normal field measurements

at the ith of the n test locations.

The MD measures the ov_eral_l sensitivityvof thé reﬁina to light. A large negative MD |
is suggestive of a serious overall abnormality of thé visual field. On the other hand, PSD
and CPSD‘ are more effective indices for quantifying localized visual field defects. In
the presence of a catéract, MD tends to have reduced specificity because cataracts are
characterized by a genefalized depression of thresholds over the entire field, thus leading

to a decreased MD level.

Monitoring the rate of decay of MD is useful for assessing the rate of progression of

normal tension glaucoma, as MD is reflective of the overall degree of visual field defects.

2.2 Motivation and Design of the Study'

For all forms of glaucoma that are associated with an elevated intra-ocular pressure
(IOP), treatments always involve the lowering of the IOP, and a reduced IOP has known
beneficial effect on the natural history of the disease. However, for NTG patients whose

IOP stays inside the statistically normal range, the usefulness of having an IOP reduction

is unknown. Clinical findings suggest asymrﬁetric NTG is often associated with asym-

metric IOP levels '[16]-[18]. One of the main objectives of the CNTGS was to ascertain
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" the role IOP reduction plays in normal tension glaucorha. The CNTGS Group compared
the time-to-progression ekperieﬁce of an lintrea;ted group of NTG’patients to a treated
group in which patienté received medical, laser and/or surgical treatment(s) to achieve
a 30% reduction from the mean of the last three prerandomization pressure readings.
The effectiveness and the efficacy of the IOP lowering strategy were assessed by using
an intent-to-treat approach and a per-protocol approach, respectively. The principles

underlying the two approachés are discussed in Chapter 3.

Two hundred and thirty patients from twenty-four centers were enrolled in the study.
"To be eligible for the study, the patients all had unilateral or bilateral normal tension
glaucoma and other ophthalmic characteristics which met the criteria as described in [7).
Upon entry into the study, patients remained unrandomized until a ﬁxation threat or
progression of the study eye(s) occurred. A fixation threat can be described as having
visual field defects at the point of fixation, which is the area of maximum visual -acuity
in human visual ﬁeld. The eligible eye of each patient was then randomized to either |
the control group, in which the eye remained untreated, jor the treatment group, in
which a 30% reduction in IOP was achieved by means of medical»; laser and/or surgical
interventions. Most treated patients were first placed on topical medication or laser
treatment. When either or both failed to reduce the IOP to the desired level, patients
underwent filtering surgery. There were also cases Where treated patients were given the

surgical treatment immediately after randomization.

Once stabilization of the treatment effect was achieved, the patiénts were followed
regularly until their study eyes reached the progression end point (which is defined in
Section 2.3.1) or until their lifetime in the study was censored. Meanwhile, patients
had their mean defect (MD) measuréd repeatedly and regularly, at each of theh“ clinical
visits. The time to IOP stabilization after a 30% reduction for the tréa.ted patients,
the time to the progression end point and the mean defect values comprised the three

main outcomes of the study. Covariate information on demographics, medical history
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and baseline ophthalmic characteristics was also collected.

2.3 Descriptioh of the Data

Due to confidentiality concerns, a subset of the data analyzed by the CNTGS Group
was used for this thesis. Hereafter, I will refer to this subset as the data unless stated
otherwise. The data were obtained by sampling at random 97 patients from the 145 who
enrolled in the study and whose study eyes met the criteria for randomization. Among
the selected 97 patients, 44 were in the treated grbup and 53 were in the control gfoup.
Longitudinal data of the mean defect measurements (in decibels) and survival data of the
time to IOP stabilization (in days) and the time to prbgression (in years) were available
for analyses. Besides the group variable, the effects of gender, type of therapy that
treated patients received, as well as age, IOP and MD levels at baseline were studied in

rﬁy thesis.

2.3.1 Definition of the Progression End Point

The Collaborative Normal Tension Glaucoma Study adopted two definitions of the pro-
gression end point: the protocol definition and a definition based on the so-called four-
of-five criteria. The former ensured identification of minimal visual field alterations to
minimize any risk to eyes;‘of untreated patients in the study, and the details of this
definition can be found in [7]. The latter was used for the purpose of analyzing study
outcomes. A coﬁiputer algqrithm was developed_for the identification of the p'rogres‘sion
end point. In essence, progression was considered conﬁrmed when four of five consecutive
follow-up fields showed progression in a cluster of test locations rela’ine to baseline 4visua1
ﬁelds, with at least one non-peribheral progression point (test location) common to all

four fields. A progression relative to baseline fields was defined as having two or more

adjacent points (they could not all be peripheral) whose MD values decreased by at least
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10dB, relative to the average of baseline values at each of these points taken at the time

of randomization. A complete description of the four-of-five criteria can be found in [7].




Chapter 3

Evaluation of Randomized Clinical Trials

3.1 Intent-to-Treat vervsus Per-Protocol Principles

In conducting clinical trials, treatment assignment is ideally done through randomization

‘because randomization tends to give an unbiased comparison of the different treatment

groups. In practice, however, clinicians often encounter problems of patient drop-outs,
non-compliance and missing,'obs\erva.jtions. Some patieﬁts do not ultimater receive the
treatments to which they are preassigned. This_ then leads to concern about how one
should analyze clinical trials in order to have a proper comparison between the treatment
groups. There have been two principl'es that are adopted in the evaluation of clinical
trials: the intent-to-treat (ITT) principle and the per-protocol (PP) principle. The
former is based on the idea that all patients who are randomized should be included in
the final analysis of the trial irrespective of the présence of drdp-outs, cross-overs and
non-compliance. Patients are assumed to remain in the‘treatment groups to which they
have been randomized even if they switch to another treatment during the period they
are followed. According to Lachin [20], the intent-to-treat principle refers to a set of
criteria for the eva,ludtion of the benefits and risks of a new therapy that essentially calls

for the complete inclusion of all data from all patients randomized in the final analyses.

" The intent-to-treat principle is contrasted with the per-protocol principle in which the
main purpose of the analysis lies in the assessment of the efﬁcacy of a treatment. With
this principle, the evaluation of a clinical trial is based only on patients who actually

12
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adhere to the treatment preassigned. Observations on dropped-out and non-compliant
patients are excluded from the analySis. Lachin [20] described the principle as a stratégy
to select and to examine the experience of a subset of patients that meet the desired

efficacy criteria for inclusion in the analysis.

It is important to distinguish between efficacy énd effectiveness because their assess-
ment entails different strategies and élinical implications. Efficacy refers to the effects of
an intervention, such as a medication under ideal conditions, while effectiveness refers to
how successful an intervention is in clinical practice whose conditions often deviate from
the controlled conditions in efficacy studies. As described by Indrayan and Sarmukaddam
[21], efficacy is evaluated under controlled conditions, whereas effectiveness is determined

not only by efficacy but also by coverage, compliance, provider performance, etc.

There has been intense controversy over which of the two principles should be em-
ployed in makihg treatment comparisons. Advocates for the inteﬁt-to-treat approach
argue that it not only provides a means of treatment comparison in an unbiased fashion,
but also realistiéally assesses the usefulness of a treatment in clinical practice where it
is infeasible to track how patients are receiving their prescribed treatments. The other
group advocating the per-protocol approach argue that an intent-to-treat analysis ié less
powerful in detecting the presence of a treatment effect because a treatment effect is pos-
sibly diluted by the inclusion of patients who do not adhere to their treatments. Those
who follow the per-protocol principle believe that by studying the subset of patients who
do receive the treatments exactly as described in the protocol, the treatment effect can
be truly assessed and estimated. But they have overlooked some potential problems of

this approach.

Lachin [20] described some of the statistical considerations in the intent-to-treat de-
sign and in the analyses of clinical trials. He also discussed potential bias and statistical
power issues related to the per-protocol analysis which he referred to as the efficacy sub-

set analysis. The dropped-out and non-compliant patients possibly comprise a group
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with demographic characteristics and health oonditions substéntially differenf from the
rest of the patients who are included in the per-protocol analysis. This subset of patients
being included is not identified at the time of randomization, and hence randomization
of patienté does not help ensure an unbiased compafison. The validity of the results from
the per-protocol analysis becomes questionable; even if the results are valid, they may

not be applicable to the study population in general.

In many recent studies, clinical trials are eyahiatod 'using both approaches.‘ Results
from both are rép‘orted and compared. There seems to be a belief that when a per-
protocol analysis identifies a significant treatment effect, the same result obtained in the
intent-to-treat analysis further demonstrates the usefulness of the treatment. And for this
reason, the intent-to-treat aﬁalyéis tends to serve as a confirmation tool of a treatment
assessment, rather than a means of unbiased treatment assessment. It is unclear how the
results obtained from the two approaches are ‘rela,ted and can be compared as they involve
essentially two different sets of patients (one set is the subset of the other). Regardless,
one should be aware of the potential problems of the per-protocol approach. Moreover,
because of its difference in clinical interpretation and implication from the intent-to-treat

approach, one needs to be cautious when drawing conclusions from either approach.

3.2 Intent-to-Treat and Per-Protocol Analyses of the Normal Tension Glau-

coma Data

In the evaluation of the Collaborative Normal Tension Glaucoma study, both the intent-
to-treat and the per-protocol approaches Weré,used for treatment comparisons. In par-
ticular, the survival experience of the treated patients who had their IOP levels reduced
by 30% from the prerandomization values was compared to that of the patients in the

control group who remained untreated until they reached the progression end point or

their follow-up times in the trial were censored. In the intent-to-treat analysis, all the




Chapter 3. Evaluation of Randomized Clinical Trials ' 15

patients who were randomized were included for treatment comparison, regardless of the
fact that there were problems such as inability to achieve the desired reduced level of
IOP, progression prior to IOP stabilization, treatment complioations that affected visual
acuity of the treated patients, and non-compliance. In contrast, patients having any of

the above problems were excluded from the per—protocol analysis.

As the two approaches differ in the inclusion of patients for analyses, a substantial
difference in sample size is expected when the degree of drop-outs and non-compliance
is high. However, among the 145 patients who were randomized in the Collaborative
Normal Tension Glaucoma Study, only five treated patients withdrew from the study
before the stabilization of IOPs took place and did not meet the efficacy requirement to

be included in the per-protocol analysis.

In defining the intent-to-treat and the per-protocol approaches that were adopted by
the CNTGS group, not only th»e original criteria of inclusion of patients were used, but
also two different baselines were defined. In the intent-to-treat analysis, the baseline was
taken to be the time of randomizatlon for all the patients. Even though a 30% reduction
in IOP was not immediately achieved upon medical, laser or surgical intervention for the
treated patients, measuring the patients starting from the time of randomization gave a.
reasonable assessment of an overall clinical effectlveness of the treatment as the treated
patients began w1th the IOP-lowering therapy at randomizatlon On the other. hand,
in the per-protocol analy51s, treated patients had their follow-u_p times measured from
the baséline time at which their IOPs stabilized after a 30% reduction. Equivalently,
the baseline for the control group remained at the time of randomization while that for
the treatment group was shifted to the patients’ individual times of IOP stabilization.
This new baseline was chosen for the treatment group because having a 30% reduction
in IOP was the desired treatment criterion. The treatment with the IOP reduction was

supposed to have taken its full effect at the time of IOP stabilization.

Due to the small number of patients who withdrew from the study, the ITT and PP
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approaches did not differ much in terms of sample size. Rather; the baseline definition
was the distinguishing factor between the two approaches. ‘Throughout this thesis, we will
follow the same principles defining the intent-to-treat and the per-protocol approaches
as were adoptéd in thé evaluation of the Collaborative Normal Tension Glaucoma Study.

The results of our analyses based on the two approaches will be presented in Chapter 6,

and the reliability of the results from the two approaches will be discussed in Chapter 8.




| Ch'aptér- 4

Linear Mixed Effects Models for the Longitudinal Mean Defect
Data

To model repeated measurements collected over time, the multi{rariate normal distribu-
tion (MVN), generalized estimating equations (GEE) and the linear mixed effects (LME)
model are amongst the popular choices. The MVN approach may not be applicable to
our case because it generally works best only wheh» the subjects have observations taken
at a common set of times. Moreover, its application puts quite a strong distributional
assumption on the data. In order to have more relaxed assumptions to work with, and to
incorporate irregular follow-up fheasurements for patients enrolled in the Collaborative
Normal Tension Glaucoma Study, the GEE [22] and the LME model were considered.
Fitting the mean defect data using the two methods gave similar results marginally, but
the LME model was chosen for furth‘(;r analysis of the data because it allows for random
effects for covariates which vary substantially between subjects. Also, the LME model
automatically takes care of problems of missing response and haslbthe flexibility of fitting
a wide variety of correlation structures for the within-patient errors and for the random
effects. In particular, fhe data show a large between-patient variation in the baseline
mean defect (MD) and in the decay pattern of MD over time. | Using the LME model,

we can better model the MD data by allowing different intercepts and decay rates for

different patients.
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4.1 The Linear Mixed Effects Model

The linear mixed effects model that was fitted to the data was described in Laird ’and

Ware [23]. For individual 4, the model has the form

{ - P ° (4.1)

b ~ N(0,D),e; ~ N(O,R;), b; L e;

where
Y; is the vector of responses,
B is the vector of fixed effects, which are constant across subjects,
b; is the vector of random effects, and is independent of b; for ¢ # 7,
X; and Z; are the design matrices for the fixed and random effects, respectively,

e; is the vector of within-subject errors, and is independent of e; for ¢ # j.

The model in Equation (41) has two major compbnents: the mean structure X;3
and the covariance structure defined in terms of the distribution of the random effects
and the within-subject errors. The vectors of random effects, b;’s, are each assumed
to be normally distributed with mean 0 and covariance matrix D, ahd are mutually

independent of the e;’s. The vector of within—subject errors, e;, also follows the normal
| distribution with mean 0 and covariance matrix R,; of dimension nZ X n;, where n; is the
number of observations for individual 5. The unknéwn parameters in R; do not depend

upon ¢.

It can be shown that marginally, Y; is independently normally distributed with mean
X;B and covariance matrix V(Y;) = R; + Z;DZ]. The random effects introduce an
extra component of variation ZiDZ,T to the response variable. Furthermore, in the

simplest case where R; = 21, i.e., the within-subject errors are mutually independent, the
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individual response components within the same subject, (Y;1, Yio, ..., Yin,) are correlated

in the presence of random effects.

Estimation of the fixed and random effects, and parameters of the covariance struc-
tures can be based on least squares and maximum likelihood methods, or an empiri-
cal Bayes methodology. Details on the estimation pfocedure. were discussed in Laird
and Ware [23]. The maximum likelihood (ML) and the restricted maximum likelihood
(REML) methods are by far the most popular choices of estimation procedures. REML
estimates are often more efficient as REML estimation adjusts for the degrees of freedom
used in the estimation of the parameters. However, when the total numbér of observa-
tions >_7v, n; (m is the number of subjects) is much larger than the number of unknown
parameters which are to be estimated, the ML and the REML methods give very close

parameter estimates.

4.2 Application to the Mean Defect Data

One of the major study questions which will be addressed in this thesis is whether a 30%
reduction of IOP from the baseline value successfully slows down the rate of generalized
 visual field loss as measured by the rate of decay of the mean defect. Moreover, the mean
defect level of the control and the treated groups would also be our study interest because

a more negative level is indicative of a higher severity of normal tension glaucoma.

Preliminary plots of the individual patients’ ‘.mean defect trajeétories for the control
and treated groups separately (see Figures 4.1 and 4.2) suggest a general trend of de-
pression of the MD over tirﬁe.’ Although the MD level withih each patient tends to show
moderate fluctuation, it does not seem too unreasonable to assume a linear model for the
MD data of each of the individuals. Furthermore, we observed a large betWeen—patient

variation in the baseline MD readings at randomization and in the rate of change of MD

over time. To take into account the highly variant information across patients, we fitted
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Figure 4.1: The observed MD trajectories over time from

the 53 control patients in the data set.
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Figure 4.2: The observed MD trajectories over time from randomization (in days) for
the 44 treated patients in the data set.
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the Laird and Ware linear mixed effects (LME) model given in Equation (4.1) to the
mean defect data and included as random effects the intercept and the time-slope covari-
ate. The response variable was the MD measured over time. Covariates that comprised

the fixed effects were

the times of repeated MD measurements

gender

group membership

age at baseline

baseline MD

baseline IOP

In both the intent-to-treat and the per-protocol analyses, the interaction between
time and group was also included in order to assess any difference in the decay rate of
- the MD between the two treatment groups. A significant timeXxgroup interaction effect -
would imply a signiﬁca’ntly different rate of change in MD and héhée a different rate of

disease progression between the control and the treated groups.

Various covariance structures including the indepén_dence model, the first-order con-
tinuous autoregressive model (CAR1, which is equivalent tb thé exponential model) and
the Gaussian model were fitted to the wit.hin-patient érrofs in the preliminary analysis
of the data. The first-order continuous autoregressive model was found to give the best

fit. For the random effects, an unstructured covariance matrix was assumed.

Moreover, there is a lower level below which the MD seldom z@ttains in normal tension

glaucoma. Patients whose MD levels at baseline are close to the lower limit might show

a different trend of depression and in particular a slower decay rate than those who have
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less negative MD at baseline, because the closer the MD is to the lower limit, the less
room is left for depression of the generalized visual field. This phenomenon is referred to
as the “foor effect”. In the case where the treated patients and the control patients in
our study began with rather different initial MD levels, a difference between the mean
‘MD decay rates of the two groups of pa,tien.ts might be the result of a potential floor effect
rather thanvof. a significant treatment effect. We checked for the presence bf such a floor
effect in our data by including an additional covariate into the LME mbdel in both the
ITT and the PP analyses. The covariate was an indicator variable for whether a baseline
MD level was above or bélow -12dB. This particular. value was’chosen because a. p;atient
with an MD less than -12de is generally regarded as having an advanced stage of normal
tension glaucom'a. The interaction between time and this indicator variable can be tested
to investigate whether the decay pattern of the MD depends on the baseline MD level.
If such an interaction exists, it would imply patients who have advanced normal tension
gla‘ucoma have a different MD decay rate frorh patients with an early or a moderate étage

of the disease, regardless of whether they are treated or not. .

Results from fitting the LME model under the int_ent%o-treat.and the per-protocol

approaches are given in Chapter 6, and the appropriateness of the two approaches to

anélyzing the MD data are discussed in Chapter 8.




Chapter 5
Multistate Models for the Time to Event Data

Classical methods of survival é,nalysis such as the Kaplan-Meier survivor function [24]
estimation, Cox regression [25] and parametric modelling have been exténsively used for
analyzing time to event data. While these methods can easily be applied to our study of
the time to progressibn, ‘we have not ta‘kenv into account the possible linkage between the
two events: IOP stabilization and progressiori in the intent-to-treat and the per-protocol
analyses of the time to progression data. If we are to focus on the treated group only,
the time to IOP stabilization may provide valuable information to our understanding
of the hazard of progression. By including the time to IOP stabilization as a covariate,
Wwe can assess its effect on the time to progression within the treated group. However,
since the time to IOP stabilization was irrelev.dnt and thus unobserved in patients in
the control group, taking into account this time information is not directly feasible when
comparing the survival experience to progression between the two treatment groups. Here
we consider a multistate modelling approach. By means of a multistate model, we can
model the events of IOP stabilization and progression simultaneously, and flexibly deal

with the partially-observed times to IOP stabilization.

5.1 Stochastic Multistate Models for Survival Time Data

In ordinary survival analysis, time to failure is the only outcome of interest. Individuals

are followed until they reach the failure end point or until their lifetime is censored.

24
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Within the framework of stochastic processés, the occurrence of failure can be thought
of as a transition from an “alive” state to an absorbing state of failure, and the force of
transition is equivalent to the hazard function for the survival time. A multistate model
is an extension of the simple two-state Markov model in ordinary survival analysis. It can
flexibly accommodate intermediate events that happen before failure and whose effects
on the risk of failure are of study interest. It can also be used to model multiple failure
events in situations where there is more than one cause of failure and the risks of failure

due to different causes are to be compared.

By definition, a multistate model is a model for a stochastic process which occupies
one of a set of jdiscrete states at any timebpoint. A transition is defined as a éhahge in
state. The state structure speci‘ﬁe‘s the states and {)vhich transitions are possible. In order
to define the full statistical model, one must specify the state structure as well as the
form taken by the hazard functions for each possible transition. There are many different
types of multistate models and we will focus on the disability model which is described
in the following section. Readers are referred to Hougaard [26] for more information on

the types of multistate models and their applications.

5.1.1 The Disability Model

Before failure occurs, one might observe other events which possibly affect the risk of
failure. For example, in a clinical trial stlidying Whéther a heart transplantation is
beneficial to patients suffering from heart diseases, patients who are randomized to the
treatment group may receive heart transplantation surgery during their follow-up periods,
and some may dié before a suitable heart is available for transplantation. Moreover, the
time of transplantation from randomization is variable across the treated patients. In
order to assesé whether having a transplanted heért reduces the risk of death caused by

heart attacks, it would be useful to model receiving a transplantation as a separate event.

Another motivating example is the development of non-fatal complications during the
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Figure 5.3: The Disability Model

- h01 (t) :
0: Alive — | 1: Disabled

TORN ()

2: Failure

course of a disease. Patients infected with a certain disease may die with or without a
complication. - However, the complication which only occurs in some but not all of the
patients at a variable time may be assumed to éltér the risk of death. In the above two
examples, the events of receiving a transplantation and the development of a complication
are likely to influence the risk of failure which is to be assessed. In such cases, it is useful
to model the two events: transplantation/complication aﬁd' failure simultaneously. A
special type of multistate model thét fits in with the context similar to the examples is

the disability model.

As shown in Figure 5.3‘, the disability model' chsi.sts of three states: state 0 usually
refers to the “alive” state without the “disability” which can be the heart transplan-
tation or a disease complicétion; state 1 is the “disabled” state in which individuals
are “disabled” but have not yet failed, and state 2 always refers to the state of failure.
The hazard function for a transition from state i to state j at time ¢ is represented- by
h;;(t). Transitions that are possible are indicated by the arrows. The disability model
depicted in Figure 5.3 describes a situé,tion where a patient can fail with and without
going through the “disabled” state and all the transitions are irreversible. For instance,
a patient who has made a" transition frdm state 0 to state 1 cannot return to state 0. In
other words, once a patient becomes "‘disabled”, he/she will remain “disabled” for the
rest of his/her lifetime. Also, state 2 is an absorbing state: one cannot leave state 2 once

the person enters the state.
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A common approach to analyzing the disability model involves separate analyses of
the times to differeht ’states. The individual hazards for transitions from state 7 to state j,
hi;(t) (4,5 = 0,1,2,i < j), can be modelled separately by meaﬁs of semi—pdrametric and
parametric models. The inodelling of an overall hazard function for the disability model
has also been discussed in the literature. Andersen [27] proposed the use of transition
probabilities between states to define an overall hazard function as a linear combination
of the individual hazard functions. The author gave an illustration of the approach
using the Steno Memorial Hospital Diabetes survival data. Hougaard [26] discussed the
possibility of applying a single Cox p.roportvional hazardé model with time-dependent
covariates in analyzing the disability model and exemplified an application using the

well-known Stanford heart transplant data [28).

5.1.2 Application to the Normal Tension Glaucoma Data

In the Collaborétivé Normal Tension Glaucoma Study, patienté who were randomized
were followed until they reached the progression end point or their lifetimes in the trial
- were censored. The treatment of lowering the IOP by 30% of the pre-randomization
levels for the treated éroup did not take immediate effect. In particular, a variable time
elapsed after raﬁdomization before the desired reduction of the IOP was achieved. Upon
a successful reduction, we can regard the tre_atéd patients as making a transition to
the state where their IOPs remained stable but the prOgréssion end point had not yet
been reached. They remained in this state until a transition to the progression state
occurred. A few treated patients who were randomized in the study but not included in
our data indeed failed to achieve the desired level of reduced IOP. They made transitions"
directly to the progression end point as in the case of the control patients. Furthermore,
a 30% reduction of IOP was permanent upon IOP stabilization and the transition to

the progression state was irreversible. Thus, we see that the disability model provides a

reasonable description of the sequence of events observed in the study. We could define
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Figure 5.4: The Disability Model for the Glaucoma Data
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the three states in the disability model, as shown; in Figure 5.4 as follows:

e State 0: Alive, in which state a patient did not have a stable 30% reduction of IOP

and had not yet reached the progfess'ibn end point.

e State 1: IOP stabilization, in which state a patient achieved a stable IOP after an

* intended reduction but had not yet reached the. progression end point.

e State 2: Progression, in which state a patient reached the progression end point.

There was a need to include the state of IOP stabilizationin the model because a
30% IOP reduction was fully achieved upon transition to this state and the effect of the

stabilization of the treatment on the risk of progression was to be assessed.

Using the same notation in defining the individual hazards in the disabiiity model,
let ho;(t) represent the hazard function for the time taken to achieve a stable 30% re-
duction in IOP as a result of medical or surgical intervention, hys(t) and hgy(t) represent
the hazard functions for the time to progression with and without IOP stabilization,

respectively.

When we model the transition hazards separately, we éa_n incorporate different co-
variates that are relevant to the different transitions. For example, when modelling ho, (t)

within the treated group, we can include the type of ‘IOP loWeri'ng therapy as a covariate
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and study if the hazard of reaching IOP _stabilization differed betwéen patients who re-
ceived surgical and non-surgical treatments. When modelling hj3(t) among the treated
patients, the effect of the length of the time period awaited for IOP stabilization on the
progression hazard after establishing a stable 30% IOP reduction might be of interest. In
addition to the waiting time for IOP stabilization, the IOP and MD levels at stabiliza-
tion can provide valuable information to be inqluded as covariates in the model. Since by
definition all patients in the control group feached the progression directly without going
through the state of IOP stabilization, the mod.elling of the piogression hazard without a
stable IOP reduction, hgy(t), involves initially all the treated and control patients. More-
over, we can add the treatment group covariate to the hazard model and assess whether
the untreated and treated group had a différent risk of progression without a stable IOP
reduction.‘ Treated patients who had their IOPs ‘success.fully reduced before progression
will have their lifetirﬁescensored at the time Qf IOP stabilization for the estimation of
hoa(t).

Within the family of Cox models [29]-[30], if ﬁhe ‘lentgth of the waiting period to
achieve IOP stabilization does not have an effect on the risk of progression with a stable
IOP reduction, and if we have proportionality between the two progression hazards at all
times t: h1a(t) = ¢ X hoz(i), for some unknown c, then the three states in the disability
model can be analyzed simultaneously using a single Cox model [26]. More specifically,
we can fit a single Cox model A(t) with a time-dependent covariate I(t) as an indicator
function, where I(t) = 0 during the period when no stabilization has been achieved, and
I(t) =1 during the'period after the stabilization is established. We can also include other

covariates such as MD and IOP at randomization, age, group membership and gender.

The Cox model with the vtimefdependent ;CoVariate I(t) is given as follows:

’ hz(t) = ho(t)exp{alz(t) *.xgr(;up,i + ﬂTXZ} | ) (52)

where for the ith individuél, hi(t) is the hazard function, hg(t) is the baseline hazard

function and I;(t) is the time-dependent indicator variable for IOP stabilization. The
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time ¢ is measured from the time of randomization. The vector of covariates including the
group covariate v:cgmu,,,i is represented by x;, and S is the vector of_ regression coefficients
representing the log relative hazard ratiols.' Since I;(t) is relevant tb the treated patients
only, we make use of an intéraction term between /;(t) and the group variable (Z4roup,; =
0 for the control group, 1 for the treated group) so that I;(t) only enters the above Cox
model if patient 7 is treafce'dT The signiﬁéance of the coefficient for the interaction term,
d, can be tested to assess the effegt of IOP stabilization on the progression hazard within
the treated pafients. Also note that by using an indicator functioh for IOP stabilization,
we are assuming a threshold treatment eﬁ’ecvt,l ie., at times when a treated patient had
not yet shownva desired stable IOP reduction and IZ (t) = 0, we will assume the treatment

has not taken any effect.

As mentioned earlier, some treated patients in the Collaborative Normal Tension
Glaucoma Study reached the progression end point before IOP stabilization was achieved
(they made direct transition from state 0 to state 2 in Figure 5.4) though they constituted
only a small proportion of the treated patients. However, t‘heidbata, we analyzed in this
thesis did not include any of these patients. ConSeQuently, -When we model the transition
hazard hgy(2), all the treated pétients had censored times to progression without a stable
IOP reduction. We therefore have difficulty in comparing the hazards of progression
without a stable IOP 'reduction between the control and the treated groups. Adjusting
for the group covariate in modelling the hazard hge(t), which could have been done
if the data from tfeated patients who reached the progression end point prior to IOP
stabilization were available, may hot provide uséful information to our understanding of
the time-to-brogression experience without IOP stabilization in our case. We might also
encounter computational problems in the estimation of the grou'p covariate coefficient.

In seeing these potential problems, we will focus on the control patients only and leave

out the group covariate in modelling hgy(t) in this thesis.
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Besides adopting the_multistate modelling approach by means of a disability model,
other non-parametric, semi-parametric and fully parametric methods will be used in each
of the intent-to-treat and the per-protocol approaches to analyze the time to progression

data in our studyi

5.2 Baseline-Adjustment Analysis of the Time to Progression Data

While the disability model accounts for the lag time in the stabilization of the treatment
by including the IOP stabilization as an intermediate event before progression occurs
and by modelling the lag time as the time to IOP stabilization from randomization, this
multistate modelling approach does not deliberately adjust the baseline for the control
group to correspond to the delay in the treatment stabilizaition in the treated group. One
possible method of correspondenée is the use of “contrdls_ matched by covariates”. In
essence, the method involves matching each cbntrol with a treated patient with similar
covariate such as age, gender or other baseline information. Each control will have

a baseline shifted from randomizatiqn to the time of IOP stabilization of the treated
| patient being matched. However, in our data set, the numbers of treated and control
patients are different. There are not enough treated patients to perform a one-on-one
matching with the control patients and thus the method riiay not be appliCable. Another
way of adjusting the baseline can be based on the distribution which the time to IOP
stabilization tends to follow. The best fitted distribution can be found in the parametric
modelling of the time td IOP stabilization data. We can then shift the baseline for each
control patient from the time of randomization by a time randbmly generated from the
best fitted parametric distribution. The lifetime of the control patients will be measured
from the new baseline and that of the treated patients will be measured from their
individual times of IOP stabilization. Ordinary survival analysis of the adjusted data

can be performed to compare the time—to-piogression experience of the two groups of

patients after the stabilization of the treatment is established.
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Results of analyses using the classical methods, the multistate modelling approach

and the baseline adjustment approach are presented in Chapter 6. A full discussion of

the performance of the different approaches can be found in Chapter 8.
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Results :

. E 6.1 Anelysis‘of ytlile’ Mean Defeet Daik:ab |

The rationale for using the linear mixed effects (LME) model toﬂﬁt the mean defect data

| was given in Chapter 4. A full model with all fhe covariates listed in Section 4.2 and a
time x group interactien‘ as fixed effects was initi'ally fitted to the MD data using both the
-interit-to—treet (ITT) and the per-protocol (PP) appfoaches ‘A random intercept term
and a random tlme slope were fitted to account for the apparently dlfferent baseline MD
levels and decay pattern of MD over time across patients. When we sw1tched from the
ITT to the PP analyms the times of repeated MD measurements and the values of the

| baseline covariates Were adJusted accordlng to the new basehne tlme The group and

1 - ~ gender variables were parametnzed in the following way:
e group: O for control éroﬂp, 1 for freated group
e gender: 0 for female, 1 for male

Furthermore, we assumed the ﬁrst'-order‘ continuous autoregressiife (CARI) model for the
Within-patient errors and an arbitrary covariance matxix' for the random effects. The pa-

rameter estimation was based on the Restricted Maximum Likelihood (REML) method.

33
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Table 6.1: REML coefficient estimates of the ﬁxed effects in the LME model for the ITT

and PP approaches

ITT PP
Fixed Effects Estimate | P-value | Estimate | P-value
[y - time -0.00160 | <0.0001 || -0.00157 | <0.0001
B2 - group -0.993 0.005 -0.002 0.995
B3 - baseline MD 0.834° | <0.0001 0.913 <0.0001
B4 - timexgroup | 0.0005 | 0.059 0.0007 0.021°

The MD data for all _thé 9? patients were included in thé ITT ahalysié, while the data
~ from one patient who dropped out of the study were excludéd from the PP analysis. We
tested the significance of each covariate in the full model, and both analyses showed an
insignificant effect of gender, age at baseline and IOP at baseline at a 5% level. We then
fitted the following reduced model: A | '

Y;j = Boi + Pui(time) + Bz(group) + B3(baseline MD) + S4(time X group) + e;;
' (6.3)

In Equation (6.3), 7 is the patienf index énd j is the index of repeated measurements on
the same individual. YZJ is the jth MD measurement of the ith patient. Note that the
intercept and the slope coefficients are different for different patients; We can write fq;
= Bo + bo; and By

effects.

= [ + by, where (;’s are the fixed effects and b;’s are the random

For both the ITT and the PP analyses, mbdel diagnostics were performed and showed
that the reduced model gave a reasonable fit to the data. The normality of the random
éffects and the within-patient errors, and the CAR1 model for the latter seemed to be
a valid assumption. The ITT and the PP estimated aufocorreiation coefficients were

respectively 0.21 and 0.16. This implies the correlation between the errors present in two

MD observations measured one day apart was 0.21 and 0.16 on average.
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With the same model being fitted, the two approaches gave- rather different results,
which are presented in Table 6.1. After adjusting for the baseline MD value, the ITT
analysis gave a slightly more negative overall rate of change of MD than the PP analyéis. .
At a 5% level, the group coefficient was found to be signiﬁcantly less than zero in the
ITT analysis, indicating that the mean MD level was lower in the treatment arm than in
‘the control arm after adjusting‘ for the baséline levels. However, the PP analysis showed
no evidence of a difference between -the méan MD levels of the two groups after the
baseline levels were adjusted, at the same significance level. Moreover, we obtained a
_ positive coefficient estimate for the group and time interaction term in both the ITT
and PP analyses. The positive estimate suggested a slower decay rate of MD for the
treated patients on average than the patients in the control group. In particular, the
PP analysis showed a significant and stronger interaction (a more positive coefficient);
the I'TT analysis gave a marginally significant result (p=0.059). At a 5% level, the ITT
analysis did not show a significantly slower dépfessiori rate of MD for the treated group,
while the PP analysis demonstrated a superior treatment effect in slowing down the

deterioration of the visual field.

In order to test for the presence of a floor effect, we included in the model in Equation

(6.3) an extra covariate as a fixed effect:

X ftoor = I(baseline MD < —12dB)

and an interaction term between time and Xy, in both the ITT and the PP analyses.
The interaction between the indicator variable and time was tested and was found to
be insignificant (p=0.4885 for ITT and p=0.6420 for PP). The decay pattern of the
MD appeared to be independent of the baseline MD level regardless of the approach of

analysis.




- Chapter 6. Results ~ . - o - | 36
6.1.1 Piecewise Linear Modelling Approach

To understand what aétually led to the difference in the results of the ITT and the PP
analyses and consequently, the conclusions made on the usefulness of an IOP reduction
strategy, we looked closely at the data in hope to reveal any hidden pattern which was
not observed in the individual MD fraje‘ctories. Upon examination of the average MD
level over time across patients in the control and the treatment groups separately, we
suspected that the MD of the treated group had rather different décay patterns before
and after IOP stabilizatioﬁ. In Figure 6.5 where the average MD level for the two groups

were plotted, we observed the following:

e Over the period (0 days, 1750 days), the average MD level for the control group

appears to decrease linearly with time in spite of its mild fluctuation.

e The treated group shows a sharp monotonic decline in the average MD over the
period (0 days, 170 days), which is followed by a considerably sloWer decay rate until
about 1750 days. Notice that the median time to IOP stabilization among treated
patients is 189 days. The rapid decay of MD in the beginning might possibly be
the result of the IOP lowering therapy, which could have caused further depression
of the generalized visual field in addition to the natural depression as observed
within the untreated patients. Nevertheless, upon the stabilization of the IOP, the
treated group seems to ‘have a slower decay rate than the control group, and the
average MD level curves of the two groups merge at about 1750 days. It appears
that the average MD level curve for the treated group can be well approximated
by a segmented linear model with a change point close to the median time of IOP
stabilization. Such an observation is not apparent at the individual level, but it
does suggest a potential need for fitting a piecewise linear model to the individual

treated patients and a pure linear model to the individual control patients.

e There is substantial overlapping of the two average MD level curves beyond 1750



C’hapter6. Results - - I 37

days. Moreov’er,‘ the cur\’/esv have a much wider ﬂuctuation than was the case 'be‘fore-
1750 days. A possible explanation for the large ﬂuctuation is the loss of patients who
had reached the progression end vpoint' "Th.e mean (median)' times to progression
observed in our data are 1190.4 days (1122 days) and 1714.0 days (1889.5 days)
for the control and the treated groups, respectlvely With the i 1ncreasmg number of
patients who left the study either because of drop outs or reachlng the progress1on
end point as time elapses the average MD levels of the remamlng patients are
subject to a larger variation and hence a rrghtward funnel shape is seen m the

plot.

o The average MD le'vel curve for the treated group does not show any consistent
superiority over that of the control group over the entire follow-up period. The
treated group has an average MD level below the control“group most of the time,
and the treatment does not seem to result in a l.ess.negative MD level. In particular,
the treated patients were at a disadvantage hecause of a dramatic decrease in MD
during the period awaited ‘for._ IOP reduction and stabilization even though the

mean time to progression was about 500 days longer among the’ treated patients.

‘We have 1ndeed looked to see 1f the p1ecew1se linear model was necessary for the
control group. Analyses of the MD data performed separately on the two groups showed
that a linear model adequately described the MD trend over time for the control group

while a segmented traJectory was needed for the treated group

As the ITT approach assumed a hnear MD traJectory for each treated patlent and

. the PP approach modelled the post-IOP-stabilization data, the two approaches did not
explicitly take into account the rapid decay of the MD during the perlod awaited for
IOP stabilization within the treated group. To account for the difference in the average
decay rate of MD before and after IOP stabilization among the treated patlents here we

considered a linear mixed effects model which allows for a p1ecew1se linear trajectory for

the treated group but a linear traJectory for the control group.
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Figure 6.5: The average MD level observed over time from randomization for the control
and the treated groups.
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The model we fitted for this piecewise lmear (PCLIN) approach was parameterlzed

to have a mean structure

5oi_ + bz +- -+ rgpipi + Bp+1Tp+1,i o (6.4)

for the ith patient. The component (By; + B1z1; + - - - + Bpzyi) is the same mean structure
of the linear model under the ITT and the PP approaches The extra covariate Tpt1,i

added to the structure is defined as
Tpi1,: = (time — Ts;)I(time > T;) x I(treatment)

where Tg; is the time taken to IOP stabilization if patient ¢ was treated, and time is
measured from the time of randomization. The covariate represented by z,; ; only enters
the quel for the tr_eated group and when the time of MD measurement happens after
patient i had the IOP reduced and etabilized. The LME model with a mean structure
given in Equation (6.4) thus fits a two-segment linear trajectory to the treated group with
a change point located at fhe treated individuals’ times of ‘IOP stabilization. However,

a linear model is fitted for the control group. |

Gender, age at baseline and baseline IOP included as fixed effects, were again found
to be insignificant at a 5% level in the PCLIN modelling approach, and the final model -

with same covariates as in Equatlon (6.3) was fitted to the data:

Yi; = Boi + BriTij + Bay; + Pazai + BsTaij + BsiTsij + 6in | (6.5)

where for patient 1,

T1;; is the time of the jth MD measurement from the time of randomization,
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Zo; is the group membership indicator (0 for control and >1 for treatment),
x3; is the MD level at randomization,

T4 = Trij X To; defines the time by group interaction,

Tsij is defined as (2145 — Toi) [ (z155 > Tsi) X Ty,

ei; is the random error for the jth MD measurement.

Also note that the intercept, the time of répeated measurements and the extra covariate
Zs;; were included as both fixed and random effects. We were allowing a different post-
IOP-stabilization MD decay rate for each treated patient. And for the within-patient
errors and the random effects, the continuous ﬁrst-drder autoregressive model and an
arbitrary covariance matrix were assumed, respéctively. Again, the REML methéd was

used for parameter estimation.

The results from 4this final model (Table 6.2) confirmed the need for two separate
mean time slopes for the treated group. Model diagnostics also showed including the
covariate rs;; as random effect significantly imprpved thé modelling of the individuals’
MD data. The control group had a more negative estimated mean decay rate of the MD as
compared to the results obtained from the ITT and the PP analyses. Before stabilization |
of the IOP, a treated patient was. expected to have a bfasté_r decay rate than a control
patient, as indicated by the negative estimate of the time by group interaction term. After
stabilization, however, the decay rate slowed down considerably.‘ The coefficient estimate
for the time from IOP stabilization was not only positive, but also its magnitude was
larger than the coefficient for the time by group interactioﬁ. Asa r_esult, there appeared
to be a slower decline of the MD upon IOP stabilization among the treated patients, at

a rate slower than the control group.

| To compare statistically the rate of change of the MD level between the controls (f¢)

and that of the treated patients after IOP stabilization (Br2), we tested the hypotheses:
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Table 6.2: REML coefﬁcient estimates of the fixed effects in the LME .model for the
Three Different Approaches (ITT, PP, PCLIN).:

PP

ITT ~ PCLIN
Fixed Effects Estimate | P-value | Estimate | P-value || Estimate | P-value
b1 - time -0.00160 | <0.0001 | -0.00157 | <0.0001 || -0.00172 | <0.0001
B2 - group -0.993 0.005 -0.002 0.995 -0.564 0.136
B3 - baseline MD 0.834 <0.0001 0.913 <0.0001 0.831 <0.0001
B4 - timexgroup 0.0005 . 0.059 0.0007 0.021 -0.0022 0.025
Bs - post IOP - - - - 0.00307 0.002
stabilization
H, : Bc=pr2 OR pB4+pB=0 (6.6)
vs. Hy : Bc#PBra OR By+Bs#0
The cofresponding test statistics is
T= By 4:55 — R N(0,1) under H,
Var(ﬂ4 + ,35) '
Var([i; + 55) can be estimated by VZIT(B4 + ﬁs) which is givén by -
VAaT(,B:; + Bs) : VACIT(,B:;) + VACLT(Bg,) +2 X C;)’U(B‘;, B{,) |
= 9.85x 1077 +9.86 x 1077 +2 x (9.4 x 107) = 9.1 x 1078
—0.0022 + 0.00307 '
v9.1 x 1078 :
p-value = 2x (1-®(|T|))

2 x (1 — 3(2.83)) = 0.0046

¢ is the standard normal cumulative distribution function.

The small p-value (0.0046) showed that B4 + B was significantly different from 0. In

particular, while the treated group had a significantly faster decay rate of MD during the
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period awaited for IOP stabilization (85 < 0, p=0.025 in Table 6.2), the deterioration

slowed down to a rate significantly slower than the control rate afterwards.

The individual MD trajectories observed in the data and the mean fitted trajectory
from the PCLIN approach for the control and treated groups were plotted, respectiyely,'
on the same scale in Figures 6.6 and 6.7. Each thin solid path corresponds to the observed
MD level of a patient over the time period he or she was folleed, and the thick so'lid line
corresponds to the mean fitted trajectory. In Figure 6.7, the ehange point of the mean
fitted trajectory was chosen to be the mean time to IOP stabilization. From these two
plots, we saw a large between-patient variation in the MD readings at fandomization as
well as in the temporal trend of the MD levels. Although it is not apparent from the
individual paths that the treated patients had a different MD slope before and after the
IOP stabilization, the mean fitted trajectories for both groups captured the overall trend

that was observed in the average MD level curves in Figure 6.5.

We also plotted in .Figu're 6.8 the individual fitted MD trajecteries from the PCLIN
approach for a random sample of 24.‘ patients in the data. The plots with a linear tra-
Jectory correspond to control patients and those with a broken trajectory correspond to
treated patients. The change point of each segrnented line i_.s the time of IOP stabilization
4 specific to a treated patient. And the scattered points are the observed MD values. The

individual fitted trajectories seem to give a reasonable fit to the data.

In order to assess the performance of the three approaches used to model the MD
data, we compared the AIC BIC indices and the log hkehhood values (presented in Table
6.3) from fitting the model given in Equation (6 3) for the ITT and the PP analyses and
the one given in Equatlon (6. 5) for the PCLIN analy31s :

Indeed, there is no direct method to compare the PP approach with the other two

approaches based on the indices and the log likelihood because they essentially involved

two different sets of patients. However, we were able to compare the ITT and the PCLIN
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Figure 6.6: Individual observed MD trajectories and the mean fitted trajectory from the
- PCLIN approach from time of randomization for the control group.
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Figure 6.7: Individual observed MD trajectories and the mean fitted trajectory from the

PCLIN approach from time of randomization for the treatment group.
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Figure 6.8: A random sample of 24 individual fitted MD traJectorles
approach from time of randomization.
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Table 6.3: Table of AICs, BICs observed log likelihoods and within-patient mean square
€errors (02) from fitting the LME models for the three different approaches.

Approach | Number of Number of MD | AIC BIC Log o?

Patients Observations ' _ Likelihood
ITT 97 1493 5883.6 5936.7 -2931.8 2.57
PP 96 : 1351 5290.4 5342.1 -2635.0 2.38
PCLIN 97 1493 5876.6 5950.9  -2924.3 2.52

models because the former is nested within the latter, and both models were fitted to
the same set of MD data. The log likelihood ratio test gave a x? statistic of 14.99 (=
—2 x {~2931.8 — (—2924.3)}) with 4 degrees of freedom, and a corresponding p-value of
0.0047 which suggested PCLIN modelling approach outperformed the ITT approach in
terms of goodness of fit. Besides, the PCLIN approach resulted in a s1ghtly smaller mean
square error than the ITT approach

6.2 Analysis of the Time to Event Data

In Chapter 5, we have described the disability fnultistate model and its pbtential applica-
tion in modelling the survival data for the two events: IOP stabilization and progression
simultaneously. In this section, we will preseht results from the separate analyses of the
time to IOP stabilization data and the time to progression data uSing some classical
methods of survival analysis. Later in Section 6.2.3, we will show the results from mod-
elling the individual transition hazards (hi2(t) and hgy(t) in Figure 5.4) and from the
Cox analysis with time-dependent covariates under the multistate modelling approach. ‘
Among the 44 treated patients in our data, the time to progression information was
missing for one patient and was therefore excluded from the progression survival analy-

sis. The same patient was excluded from the analysis of the time to IOP stabilization

data in order to have the same set of treated patients'_ in both analyses.
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6.2.1 Analysis of the Time to IOP Stabilization Data

In managing normal tensi(in glaucoma, patients are placed on non-sﬁi’gical therapy or
surgical therapy to lower the IOP level depending on the severity of the disease. It would
" be useful to have some knowledge about the expected _Waiting times for the different
therapies to effect IOP reduction. This motivated our interest to study the time to IOP
stabilization among the treated patients. Note that modelling the hazard for the time to
IOP stabilization is essentially the same aé modelling the transition hazard hoi(t) in the
disability model (seé Figure 5.4) which was discussed earlier in Chapter 5. We analyzed
the time to IOP stabilization data using non-parametric, semi-parametric and parametric
methods. The key covariate in the analyses was the type of treatment received. In
the Collaborative Normal Tension Glaucoma,"S_tudy, most patients who underwent the
surgicalrtreatment experienced failure of achieving the IOP. reduction by means of an
initial non-surgical treatment. Only two out of the 43 patients received only the surgical
therapy. We thus cafegorized the treated patients into two groups according to whether
they had ever undergone a filtering surgéry, and we did not consider having a separate
group for those two patients. Among the 43 treated patients included for analysis, 24
received non-surgical treatment only and 19 had undergone a filtering surgery. In regard
to the gender composition, the female gi‘oup had 27 patients and the male group had 16

patients.

Notation

The end point of interest here is the stabilization of the IOP, and for all the treated
patients included in our analysis, the time to this event was observed, so there were no
censored observations and the analysis was free of concerns about the censoring pattern

of the data. For individual i,-we defined TS{ to be the time taken to IOP stabilization

(measured in days) and X; to be the vector of covariates. We parameterized the two
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categorical variables: gender and the type of treatment received variables in the following

way:

e Gender (X;): 0 for female, 1 for male

e Type of treatment received (X5): 0 for receiving a non-surgical treatment only, 1

for ever receiving a surgical treatment

Kaplan-Meier Survival Analysis (Non-parametric)

The Kaplan-Meier survivor functions were estimated for and compared between the
four different gehdef by treatment groups ((Xl’.Xz)‘ = (0,0),(0,1),(1,0),(1,1)). The log
rank test showed that the four groups had .signiﬁcantly‘d:ifferent survival experiences
(p=0.00813). ‘However, we observed in Figure 6.9(a) substantial overlapping of the es-
timated survival curves for the two genders within each of the two treatment groups,
which is suggestive of the absence of a gender effect. Individual analyses were carried out
to compare the two treatment gfoups and the two gender‘ groups separately. The results
did not show a significant differénce in survival experience between the opposite genders
(p=0.273). The patients undergoing the filtering surgery had a significantly longer wait-
ing period for IOP reduction and stabilization than those who just received medical or

laser treatment (p=0.0054), as can be seen in Figure 6.9(b).

Cox Regression Analysis ‘(Semi-parametric)

Despite the advantage of the Kaplan-Meier analysis which makes no assumption on the
distribution of the time to ’IOP stabilization, the associated log rank test can only assess

the effects of categorical covariates. To incorporate other continuous covariates into the

modelling of the hazard of IOP stabilization, we made use of the Cox proportional hazards
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Figure 6.9: (a) Estimated Kaplan-Meier survivor functions for the time to JOP stabi-
lization of the four gender by treatment groups. (b) Estimated Kaplan-Meier survivor
functions for the time to IOP stabilization of the surgical and non-surgical groups.
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Table 6.4: Estimates of the log relative hazards ratio ([3) and relative hazards ratio
(exp(B)) for the gender and treatment type covarlates from the Cox regression analysis
of the time to IOP stablhzatlon data.

_Covarlate | B |exp(B) | SE(B) | P-value |
- Gender (X)) 0.253 | 1.288 | 0.167 | 0.1300
Treatment type (X3) | -0.984 | 0.374 | 0.343 | 0.0041

model:

hi(t) = ho(t)ezp{BTxi} (6.7)

where h;(t) is the hazard function for the ith individual at time ¢, x; is the vector
of covariates, ho(t) is the baseline hazard function, and B is the vector of parameters

representing the log relative hazard ratios.:

The Cox regression analysis was initially performed to adjust for all the cbvariates
including gender, type of treatment, baseline IOP, MD and,agé at randomization. The |
baseline covariates did not have a significant contributi_oh to modelling the hazard at a
5% level. The group and gender covariates were found to be significant, but there was

no suggestion of an interaction effect between the two covariates.

We then fitted a reduced model excluding the insignificant covariates, and the results
are presented in Table 6.4. Interestingly, the gender effect in the reduced model was
deemed insignificant as opposed to the case when fitting the full hazard model at the
same significance level.” Nevertheless, the positiv.e‘ gendef coeflicient indicated a higher
hazard of IOP stabilization for the male patients, i.e., a female patient who belonged to
the same treatment group as another male patient will be expected to wait longér for
her IOP level to redl‘lceA and étabilize. And again, the Surgical group was shown to have
a significantly smaller hazard of IOP stabilization. According to the results based on

the model with only the type of treatment covariate, the relative hazard of two patients

who received and did not Teceive the surgical therapy vs)ds estimated to be 0.406. The
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surgical therapy appeafed to incur a longer waiting period before IOP stabilized after
being reduced by 30%. We also investigated the presence of a possible gender-treatment

interaction, which was found to be insignificant at a 5% level.

To check the validity of using the Cox model in Equation (6.7), we tested for any
time dependence’of the coefficient 3 for the covariates (individually and globally) in both
the full and the reduced models, and we found no evidence of such a dependence. This
implies the assumption of proportional hazards was valid for.all the covariates used to

model the hazard of IOP stabilization.

Parametric Modelling

As one of the classical approaches, parametric inodel_s vx;ere fitted to complete a full
analysis of the time to I_OP stabilization data. In seeing that only the type of treatment
" received and possif)l'y genderplayed a significant role ih'_determining the length of period
taken to reach IOP réduction and stabilization, we included only these two covariates
in the parametric models. Among the many distributions commoﬁly used for modelling
survival data, we found that the log-normal, Weibull and log-logistic distributions gave
satisfactory fits (the probability plots for the three distributions resembled a straight
liné). Because of the simplicity of the Weibull distribution over the other two, we chose
to report the results based on the Weibull hazard model, which can be parameterized as

follows:
'. h(t) = Aryt’r-i | o (6.8)
= {eap(@pet (6.9)

where h(t) is the hazard function at time t, A = exp(8Tx) depends on the vector of

covariates x through an exponential function and linear coefficients in B. The scale

parameter A and the shape parameter v uniquely define a Weibull distribution.
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The gender effect was again shown to be insignificant (p=0.24). Refitting the same
model by excluding the gender component yielded an estimated relative hazard between
a surgically treated'patient over a non-surgically freated patient of exp(-0.581)=0.56
(SE=0.157, p=2.2x107*). o | |

Regardless of the method used to compare the sufvival experience of the surgical and
the non-surgical groups, patients who ever underwent the filtering surgery to achieve
a 30% reduction of IOP had a sigﬁiﬁcantly longer waiting time to IOP stabilization.
The presence of a gender effect is ambiguous, although all the three methods of analysis
suggested the IOP of the male patients tend to reduce and stabilize faster than the female

patients.

6.2.2 Analysis of the Time to Prbgression Data

Similar to the analysis performed in the previous section, non-parametric, semi-parametric
and parametric methods were used to analyze the data for the time to progression. To
investigate the effect of the lag time (brought by the delay awaited for IOP reduction
and stabilization within the treated group) on the results based on the two different def-
initions of baseline time, the three methods were applied in both the intent-to-treat and

the per-protocol analyses.

In regard to the number of patients to be included in the ITT and the PP analyses,
the patient whose time to progression was missing was dropped out of the study. As a

result, both analyses excluded this single patient and had a sample size of 96 patients

among which 53 belonged to the control group and 43 belonged to the treated group.
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Notation -

Suppose we deﬁne.Yi(l) and Yi(z) to be the actual times to progression for the ith pa-
tient according to definitions of time zero under the intent-to-treat and the per-protocol
approaches, respectively. Also let Ci(l)v and C’Z-(Q) be, respectively, the censoring times to
progression for the two approaches. The control group will have Yi(l)zYim and CP’:CF’.
_The treated group will have }’;(2)=Y;(1) _ T g,-. and CZ-(2)=CZ-(1) — Ts;, where Tg; is the time
to IOP stabilization for the ith patient. The time to progression ié either observed or
censored, and we will define it by Ti(j)zmin(Yi(j ), Ci(j)) fbr j=1,2. Again, the following
relationships hold: | ' |

° Ti(l):Ti(z) for the control group and

o TO=T" _ Ty, for the treated group.

All the time data including Y;(j),C’i(j) and C’i(j) (i:1,2,...,96, j=1,2) were measured in

years. The time to IOP stabilization T; was similarly scaled.

We also denote the vector of covariates by X;. In particular, we define the two
categorical variables, gender and the group membership by X; (0 for female, 1 for male)
and X, (0 for control, 1 for treatment), respécfively. The other covariates which might
have an effect‘ on the timé‘to prqgressibn and will be studied includg the MD level, the

IOP level and the age at baseline.

Kaplan-Meier Survival Analysis (Non-parametric)

For each of the ITT and PP approaches, the Kaplan-Meier survivor functions were es-

timated for and compared between the four groups of patients of different genders and
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group membership ((X;, X>2) = (0,0),(0,1),(1,0),(1,1)). The log rank test found a signifi-
cant difference in the Survival experience to progrqssion among the four groups (p=0.0006
for ITT and 0.005 for PP). The plots of the estimated survivdr functions (Figure 6.10)
showed substantial overlabping of the :’cwo gender curves within the same treatment or
control group. The gender effect did not seem to exblain thé difference in the survivalr
experience of the four groups. When we compared only the two treatment groups, both
the ITT and the PP approaches resulted in a significant group eﬁect. The plots of the

estimated Kaplan-Meier survival curves (Figure 6.11) showed a supe.rior survival expe-

rience of the treated group, and the two curves did not intersect over the whole course
when the patients were followed. Upon comparison of the results of the ITT and the
PP approaches, the log rank test demonstrated a slightly more significant difference in
survival between the two treatment groups in the ITT analysié (p=0.0001 for ITT versus
p=0.0009 for PP). This can also be seen from the larger separation between the two
estimated Kaplan-Meier survivor functions in Figure 6.11(a) as compared to the two
functions in Figure 6.11(b). In fact, the estimated Kaplan-Meier survivor function for
the control group was the same under the two approaches because the baseline defined
for the controls was always the time of randomization. The baseline for the treated group ‘
was shifted from the tirﬁe of .r'andomiz‘atibh to the individuals’ times of IOP stabilization
when we took the PP épproach. The time to progression as defined in the PP approach
was shorter than its I'TT countefpart within.the treated group, and hence a diminished
difference between the two groups was demonstrated in the PP analysis . Although the.
treatment effect was found to be significant in both analyses, the PP analysis gave a
slightly weaker evidence agéinst the null hypothesis of no treatment difference. Unlike
the case for the control group, thé difference in the baseline definition adopted by the two
approaches led to different Kaplan-Meier estimates for the treated group. The Kla'plan—
Meier estimate of the survivor function for the treated group did not simply undergo a
rank invariant transformation when switching between the I'TT and the PP approaches,

because a different time awaited for IOP stabilization, T'Si,'vlvas subtracted from Ti(l) to

obtain Ti(2). The ranks of the set of Ti(l)’s are not preserved under the transformation
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7 =1V - Ty

As mentioned earlier, the oveﬂapping of the estimated survivor functions for the two
gender groups within the same treatment or control group (Figuré 6.10) suggested that
there was no gender effect. Nevertheless, we carried out separate analyses to test for the
treatment effect within each gender group and to see if they gave different results for the
two genders. We compared the treated female group to the control female group ((X;, X»)
= (0,0) and (0,1)), and the treated male grdup to the control male group (X1, Xs) =
(1,0) and (1,1)), using both the ITT and the PP approaches. Interestingly, the ITT
analysis revealed a difference in the treatment effect on the two genders. The log rank
test demonstrated a significant difference in the time-to-progression experience between
the treated female and control female patients (p:0.00064), but there was no evidence
of a treatment effect within the male patients (p=0;137). On the other hand, the PP
~analysis showed no treatment effect in either gender grdup‘ at a 5% level (p=0.471 for
males and p=0.0583 for females) although the treatment effect for the female group was
marginally sighiﬁéant. .This contradicts with the results obtained from the PP analysis

when we did the treatment comparison on all patients together.

Cox Regression Analysis (Semi-parametric)

Besides obtaining the non;parametric Kaplan-Meier estimates of the survivor funétions,
we modelled directly the hazard of progression using the Cox proportional hazards model
(Equation (6.7)). Later, we repeated the Cox regression analysis within each of the two
gender groups separately. We also éonsidered the stratified Cox model with gender being

the strata variable to model the progression hazard.

When we first modelled the progr.ession hazard for all the 96 pétients using the Cox
proportional hazards model (Equation (6.7)), the patients’ age, MD level and IOP level

at baseline, gender and group membership were included as covariates. In this full ‘model,
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Figure 6.10: (a) Estimated Kaplan-Meier survivor functions for the time to progres-
sion of the four treatment-gender groups based on the intent-to-treat (ITT) approach.
(b) Estimated Kaplan-Meier survivor functions for the time to progression.of the four
treatment-gender groups based on the per-protocol (PP) approach
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Figure 6.11: (a) Estimated Kaplan-Meier survivor functions for the time to progression
of the two treatment groups based on the intent-to-treat (ITT) approach. (b) Estimated
Kaplan-Meier survivor functions for the time to progression of the two treatment groups
based on the per-protocol (PP) approach.

(a)

Time to progression (years)

<
~—
o] -
o o
£ AL
=
e « i
. S i
» © oot
g 41 it
-— v s LLE. ]
g o Control NC = # controls surviving —t ' : }
Q | | Treatment : - :
[e) NT = # treated surviving -
o :
Q- -~
NC=53 NC=37. : NC=14 NC=5 NC=1
© | nNTeas ' NT=39 NT=20 © NT=12 . NT=0
o T - T - T - T
0 2 4 6 ' 8
Time to progression (years)
Q
-—
o :
2 A
=
g @
a o
g H i + -------- + .
=] < v H—i
g S Control NC = # controls surviving : ': 4 } }
Q | e Treatment .
(e} NT = # treated surviving
8 o
o .
NC=53 ' NC=37 ‘NC=14 NC=5 NC=1
(=] - NT=43 NT=38 NT=22 | NT=7 NT=0
o T T T T
2 4 , 6 8




Chapter 6. Results : - 58

Table 6.5: Estimates of the log relative hazards ratio (B) and relative hazards ratio
(exp(B)) for the group covariate from the gender-specific Cox regression analysis of the
time to progression data (M for males, F for females).

: - - B exp(B) SE(B) . P-value
Covariate | M F M F M  F M F
~Group ITT |[-1.12 -1.83[10.33 0.16 || 0.70 0.56 || 0.11 0.0011

PP |-098 -1.43 10.38 0.24 || 0.69 0.51 | 0.16 0.0049

the baseline values of age, MD level and IOP level were adjusted according to the ITT
or the PP approach we used to analyze the data. Upon fitting the full model, we found
that the group covariate satisfied the proportional hazards assumption in the PP analysis
but not in the ITT analysis'. It can be that \th’e two treatment groups had- proportional
hazards within each gender group while the two genders had different baseline hazards.
We explored this poésibility by analyzing the time to progression data separately for the
two genders. If indeed the assumption for the group covariate is valid within each gender

group, it is also legitimate to fit a Cox model stratified by gender.

For each of the ITT. and the PP 'appro‘aches, we fitted the full model separately
to the time to progression data specific to the two gen'ders. In all the resulting four |
analyses, the propdrtional hazards assump'tio_n held for all of the covariates individually
és well as globally. Similar to the case in the gender-specific Kaplan-Meier survival
analyses'presented earlier,'we obtained different results for the two gender groups. Both
the ITT and the PP apﬁroaches revealed a difference in the treatment effect on the
two geﬁders. More specifically, there did not seem to be a difference in the hazard 6f
progression between the male control patients and the male treated patients. However,
in the female group, the treated patients hadv a signiﬁcanfcly smaller risk of progression
than the control patienfs. The age covariate, IOP level and MD ievel at baseline were

not associated with the hazard of progression for either gendef group. We repeated the

gender-specific analyses, fitted a reduced model inirolving ohly the group covariate and
obtained the results in Table 6.5. | '
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Again, the assumption of proportional hazards between the control and the treated
groups was satisfied Withih each gender gronp under both the I'T'T and the PP approaches.
Neither the ITT nof the PP analyses showed enough e\}idehce against the null hypothesis
of no treatment effect among the male patients. In contrast, the female patients who
received the treatment had a significantly smaller risk of progression than those who
remained untreated, as shown in.both the ITT and the PP analys’és. The ITT analysis
gave a relative hazard of 0.16 for a treated female patient versus an untreated female
patient, while the PP analysis gave a relative hazard of 0.24. In other words, within the
female group, receiving an IOP reduction treatment is associated with about a 6-fold
decrease in the risk of progression, as suggested by the ITT analysis, and roughly a 4-
fold decrease in the PP analysis. Furtherrnorei, the ITT approaéh gave a more significant
result for the treatment effect on the female patients than the PP approach did. The same
argumeht given in the Kaplan-Meier survaal analysis (p.54) in this section accounted for
this difference in significance. - However, it is not clear how the shift_ in baseline within
the treated group affects the assessment of a treatment éfféct When‘ indeed such an effect

does not exist.

As the proportional hazards assumption for the | group covariate Was valid within
patients of the same gender, modelling the hazard of progression using the Cox model
stratified by gender was justified. In essence, we were assuming two different baseline
hazards for the two genders while the two genders share the same coefficient for each of

the other covariates. The stratified Cox model has the form
his(t) = he;(tezp{BTx:}, i=1,2 (6.10)

* where h;(t) is ‘thevhazbard at time t for the ith individuai, of gender group j, hy;(t) is
the baseline hazard of the jth gender group, x; is the vector of covariates at time ¢ not
including gender, and B is the vector of parameters representing the log relative hazards

ratios.

In fitting the stratified Cox model, we included the group covariate and its interaction
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Table 6.6: Estimates of the log relative hazards ratio (B) and relative hazards ratio
(exp(B)) from the stratified (by gender) Cox regression analysis of the time to progression
data.

Covariate B | exp(B) | SE(B) | P-value
Group ITT | -1.472 | 0.229 | 0.448 | 0.001
L PP |-1.203 | 0.300 | 0.43 | 0.005
GroupxStrata(gender) ITT | 0.356 | 1.428 | 0.448 | 0.43
' ' - PP | 0.227 | 1.255 | 0.43 0.60

with the strata covariate, i.e., gender, and the results are presented in Table 6.6. It can be
shown that by adding the groﬁp by strata interaction term to the'h.azard model, theli‘esult
is identical to perfofming separate fits with bnly the groﬁp covariate for each Strétum.
For instance, the ITT log relative hazards ratic estimate (B) for the group covariate
within the male patients, which is -1.12 (Table 6.5), can be obtained by summing the
ITT estimates of the log relative hazards ratios of the group covariate and the interaction
term (-1.472+0.356) presented iﬁ Table 6.6. For the female patients, taking the difference
| of the group covariate estimate and the interaction estimate obtained by the stratified

Cox regression would give the log relative hazards ratio estimate for the group covariate

in the analysis focusing on only the female patients.

Despite the fact that the gender-specific ITT and PP analyses showed a significant
treatment effect in the female grdup but not in the mal>e group, both the I'TT and the
PP stratified Cox regréssion analyses did not suggest the presence of an interaction effect
between gender and the treatment group membership (see Table 6.6). We then refitted
the stratified Cox model leavihg out the interaction term. The ITT approach gave a
group coefficient estiihate of -1.58 (p=0.0003) whilé the PP approach gave an estimate
of -1.28 (p=0.0017). ‘The négatiVé coeflicient implied a smaller risk of progressioh fdr the
treated group and hence a favourable treatment effect. Based on the ITT analysis, the

relative hazard of progression of a treated patient versus an untreated of the same gender

was estimated to be exp(-1.58) = 0.206. Similarly, the PP analysié gave a relative hazard
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of exp(-1.58) = 0.278.

While the stratified Cox model has the flexibility of incorporating into the hazard
covariates which only satfsfy the proportional hazards assumption within certain strata,
the approach has certain limitations in our application. First, we cannot assess the gen-
der effect with the stfatiﬁed model because no direct estimate of the gender coefficient
is available. In fact, because a different baseline hazard function is used for each gen-
der, the relative hazard between the two genders will be time;‘(iependent and cannot be
determined unless the exact form of the baselline.hazards is known. Comparison of the
survival experience between two patients of opposite gendefs thus cannot bé easily made.
Second, the same coefﬁcient for group, Byroup, is assumed for both genders. The value of
exp(Bgroup) gi{/es an “overall” méaéure of the relative risk of a treated patient versus an
untreated patient of the same gender. As a result, the estimated relative risk of a treated
patient versus an untreated patieht within the female‘group is the same as that within
the male group. Assuming the same relative risk for the two genders might be unrealistic

in our situation where the two genders have essentially different baseline hazards.

Parametric Modelling

Various distributions common for modelling survival times were fitted to the data. The
Weibull, log normal and log-logistic distributions seeméd to fit the data satisfactorily and
gave small and comparable deviance values. Here, we present the results from the Weibull
fit because it is simpler to interpret than the other two ﬁtbs. In botjh the ITT and fhe PP
approaches, only the group covariate was fitted in the hazard model given by Equétion '
(6.9), and the two corresponding group coefficients were both shown to be significantly
different from zero. A coefficient estimate of -0.878 from the ITT analysis implied that
the treated group and the_cbntrol group had a relative hazard of exp(-0.878) = 0.416 and

thus a favourable treatment effect. Similarly, the PP analysis showed a superior effect

for the treated group whose hazard was estimated to be exp(-0.754) = 0.47 times of the
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hazard for the control group. The results were highly significant in both the ITT and
PP analyses although the former analysis gave slightly smaller p-value (p=4.96x10"* for
ITT and p=2.87x107? for PP).

All three methods of analysis showed the treatment significantly prolonged the time
to progression, regardless of which definition of the baseline was uséd. Other covariates

did not contribute to the modelling of the survival time or the hazard.

6.2.3 Analysis Using the Disability Model

In Section 6.2.1, we have presented the results of modelling the tfansition hazard ho:(t)
in the disabilify model (see Figure 5.4), i.e., the hazard of IOP stabilization among the
treated patients. For the transition hazard hlz(t) in the model, we could think of it as
the post-IOP-stabilization hazard of progression within the treated patients. Treated
patients were at risk for the transition from state 1 to state 2 stafting from the time of
IOP stabilization until they reached the progreséién end point. Thus, the time ¢ in hia(t)
was measured from thé time of IOP stabilization. And for hg,(t), we could interpret it
as the pfogression hazard arﬁong patients in the control group and patients who were
treated but progressed before a stabble IOP redﬁction was achieved. Because data from
the latter group were unavailable for oﬁr analysis, we focused on the control patients only
in modelling h02 (t). Control patients were at risk for the transition from state 0 to state
2 starting from the time of randomization until they reached the progression end point.

The time ¢ in hgy(t) was measured from the time of randomization.

For both the modelling of the transition hazards his(t) and hea(t), we have applied
non-parametric, semi-parametric and fully parametric methods, and similar results were
obtairied from the different approaches. In the following two sections, we will focus on

the results from fitting the Cox proportidn’al hazards model given in Equation (6.7). We

checked that the proportional hazards assumptioh was satisﬁed, and therefore modelling
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hy2(t) and hoz2(t) using ‘the Cox model séemed"a,ppfopriate. ‘

Modelling of h»(¢) within the Treated Group

An initial full Cox model with covariates including gender, age, MD and IOP levels at IOP
‘stabilization, the type of IOP lowering therapy and the time awaited for IOP stabiiization
from the time of randomization was fitted to the 43 treatéd patients. Although the data
did not show a significant effect of any of the covariates at a 5% level, we obtained a
negative coefficient for both the time taken to reach IOP stabilization (B:-0.26, p=0.85)
and the type of IOP lowering therapy (B=-1.46, p=0.24). The coefficient estimates °
suggested that a treated patient who took a longer time to achieve a stable IOP reduction
had a smaller risk of _progression, and the same applied to a patient who received the
surgical treatment (type.of therapy was parameterizevd as 0 for receiving only non-surgical
treatment and 1 for ever receiving a surgical treatment). The effect of IOP at stabilization
(p=0.11) may have been diluted by the other insignificant covariates included in the
model, so we fitted a reduced model with only ‘phe IOP at stabilization covariate. The fit
gave a coefficient estimate of 0‘.3:7 (p=0.074) and a relative hazard ratio of exp(O‘.37)=1.44.
Though only marginally significant, thescoefficient with a positive estimated value implied
a higher IOP at stabilization was associated with a higher.risk of progression among the
treated patients. We also tested for the pfesen_ce of an interaction between various pairs

of covariates, but no signiﬁcant results were obtained.

Modelling of hgy(t) within the Control Group

A full Cox model with covariates including gender, age, MD and IOP levels at random-

ization was fitted to the 53 control patients, and no significant covariates were identified

at a 5% level. Unlike in the analysis of the pdét—IOP—stabilization survival experience
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within the treated patients where IOP at stabilization had a marginally significant ef-
fect on the post-stabilization progression hazard, IOP at randomization did not seem to
affect the hazard of progression within the control group (p=0.25). There was also no

evidence of a significant interaction effect between any pairs of covariates included in the
full model.

Cox analysis with time-dependent IOP-stabilization indicator variable

We explored the possibility of fitting a single Cox model with time-dependent covariates
for the analysis of the disability model as ‘de'.sc.ribe'd in Chapter v5. Recall that if the
length of the waiting period' to achieve IOP stabilization does not have an effect on the
risk of progression with a stable IOP reduction, and if we have proportionality between
the two progression hazards hi2(t) and hoa(t) at all timés, it would be legitimate to model
an overall hazard by means of a Cox model with a time-dependent indicator variable for
IOP stabilization [26]. The above analysis of the post-stabilization times to progression
within the treated patients showed that the length of the timé period awaited for IOP
stabilization had no significant effect on thé‘ poét-stabilization time to progression at a
5% level (p=0.85) and thus validated the first condition required for.ﬁtting a single Cox
model. This first condition also held within each gender group (p=0.18 for male patients
and p=0.69 for female patients). Since our data did not include any treated patients who
reached the progression end point before IQP stabilization was established, we did not,
have a proper modellirig of fhe transition hazard hogA(At) which, in pfinciple, should involve -
complete uncensored time to progression without IOP stabilization from some patients
in both the unﬁreated and treated groups. We were therefore unable to check the second
condition (proportionality of the progression hﬁzards hi2(t) and hge(t)). We proceeded
by assuming the second condition held in our case and fitted the Cox model (in Equation

(5.2)) with covariates including gender, age, MD and IOP at randomization, as well as the

interaction term between the group covariate Z g0y, (0 for control group and 1 for treated
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group) and the time—depehdent indicator for IOP stabilization I;(t). As all the treated
-patients included in our data underwent IOP éta.bilization before reaching the progression
end point, they had zgroup= 1 by deﬁmtlon and I;(t) = 1 during their observed post-
_stabilization periods. The two variables 2 4,up,; and I;(2) becarhé linearly dependent, and
can lead to computational problems in the estimation of the regression coefficients for the
two variables. To avoid the problem, the group main effect was excluded from the model,
and consequently, we could only assess the effect of IOP stabilization on the progression
hazard within the treated patients, and we were unable to assess whether the treated

and untreated groups had different risks of progression.

At a 5% significance level, gender, age, MD and IOP at randomization were found
to have no effect on the hazard of progression. ~ Among the treated patients, the IOP-
stabilization covariate was found to 'be significant (p=7.6x10"*), and the relative risk
of having versus not having a stable 30% IOP reduction was estimated to be exp(-
1.41)=0.24. This implied about a four-fold decrease in risk of progression when a stable
IOP reduction was achieved. Moreover, the prop_ortidndl hazards assumption held for
all the time—independenf covariates, so the appropriateness of using a Cox model was
justified. Checking for the assumption for the IOP-stabilization indicator variable I;(?)
was unnecessary because the hazard ratio involving the I;(t) term changes with time.
Indeed, the property of proportlonal hazards is not requlred for time-dependent covariates

for the validity of applying the Cox model in Equatlon (5.2).

We also fitted the same Cox model for the two genders sepérately. The analyses
showed no evidence of a significant effect of anyv of the baseline covariates at a 5% level
within each gender group. We then fitted a reduced model with only the IOP-stabilization
covariate and the results are presented in Table 6.7. Among the male treated patients,
the effect of hav.ing a stable IOP reduction on the progression hazard was insignificant

although a negative estimate of B(IOP stabilization) suggested that a stabilized 30%

reduction of the IOP was associated with a smaller risk of progréééion. On the other hand,
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Table 6.7: Estimates of the log relative hazards ratio (8) and relative hazards ratio
(exp(B)) for the time-dependent IOP stabilization covariate within the treated patients
from the gender-specific time-dependent Cox regression analysis (M for males, F for
females).

' - B exp(B) SE(B) P-value
Covariate - M F M F M F M F
IOP Stabilization | -1.06 -1.79 ][ 0.35 0.17 [| 0.70° 0.56 || 0.13 0.0014

a stable reduction of the IOP had a significant effect on the progression hazard among
the female treated patients. Within the treated group, female patients who attained IOP

stabilization had a hazard of about 6 'times smaller than those Who did not.

A Cox model stratified by gender was also fitted, and we again found that the baseline
covariates were all insigniﬁcanf at a 5% level. Refitting the stratified Cox model with
only the IOP-stabilization indicator variable gave an estim@te of B(IOP stabilization) of
-1.54 (p=0.0004) which indicated a fa,voufa,ble effect of achieving a stable 30% reduction
of the IOP from the prerandomization readings within the treated group. Based on this
vestimate, the relative risk of pfogréssion of two treated patients (of the same génder)
with and without IOP stabilization was exp(-1.54) = 0.215, which in turn implied an

almost five-fold decrease in the risk of progression after treatment stabilization.

6.2.4 The Baseline-Adjustment Analysis

In Section 6:2.1, the Weibull distribution wds found to model the time to IOP stabilization
(Ts;) within the treated group satisfactorily. To correspond to the lag time in treatment
stabilization in the treated group, an adjustmenf was made to the baseline for the control
group. Our baseline-adjustment analyéis introduced a random Weibull time shift from

the time of randomization for each of the control patients in the data. Let Tg; represent

the random time shift for the ith patient if he or she happened to be untreated. The
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variable Tg; follows the Wéibullldistribution. (see parameterization in Equation (6.9))
with estimated parameters A=0.572 and ﬁ/:lLBS for the time ¢ measured in years. The
Weibull parameters were estimated from fitfing the Weibull distribution to the times to
IOP stabilization observed within the treated patients in oui‘ data without adjusting for
any covariate information. The therapy type was 't.he only significant covariate identified
in the analysis of the time to IOP stabilizaﬁon data; but was not adjusted in our baseline-
adjustment approach because the therapy type was irrelevant for the control patients.
The Weibull distribution with no covariate adjustment was shown to also provide a
reasonable fit to the time to IOP sté,bilization data. For each éontrol patient, a random
T¢i was generated and was subtracted from the patient’s original time to progressibn to
obtain the adjusted time to progression. The values of the baseline covariates including
MD, IOP and age were changed accordingly to maLtch the shifted baseline. The time to
progression for each treated patient will be the same as defined under the PP approach,
i.e., the treated patients were followed from itheir individual time of IOP stabilization.
We then carried out classical survival analysis on the new set of data with the adjustment

made to the control group.

Kaplan-Meier Survival Analysis (Non—parametric) :

Kaplan-Meier estimates of the survivor functions were obtained for and the time-to-
progression experience was compared between the four treatment-gender groups. The
log rank test showed a significant difference between the survivor functions of the four
groups, but the difference did not seem to be explained by the gender effect because
the estimated Kaplan-Meier suh%iva.l curves for the two gehders (Figure 6.12(a)) crossed
within each of the two treatment groups. Especially within the treated group, the curves
of the opposite genders overlapped considerably. 'The log rank test comparing the survivor

functions for the two genders only did not find a gender effect (p=0.335). We then focused

on just the two treatment groups and plotted the estimated Kaplan-Meier survivor curves
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Table 6.8: Estimates of the log relative hazards ratio (B) and relative hazards ratio
(exp(B)) for the group covariate from the gender-specific Cox regression analysis under
the baseline-adjustment approach (M for males, F for females). - '

B - exp(B) SE(B) P-value
Covariate | M F M  F M F M F
Group -1.2 -1.811 03 016 0.70 0.56 || 0.087 0.0012

in Figure 6.12(b). From the plot, we observed a prolonged time to progression for the
treated group, and such a favourable treatment effect was confirmed by the log rank test
(p=9.4x107%). | | '

Cox Regression Analysis (Semi-paraimetric)

A full Cox proportionai hazards model (given in Equation (6.7)) with all the covariates
including gender, treatment group membership and baseline IOP, MD and age was first
fitted to the adjusted data. All the cbvariates_except the group variable were. found
to be insignificant at a 5% level. There was also no evidence of a grbup by gender
interaction effect. Refitting the Cox model with only the group covariate again showed
a significant treatment effect, but the assumptioh of the control and the treated groups
having proportional hazards was invalid. We proceeded with performing separate Cox
regression analyses for the two genders, and the proportional hazards assumption for
every covariate that was considered in the full and the reduced models, as described
below, was satisfied. A full model with all the relevant covariates including treatment
group membership, baseline IOP, MD and. age was fitted to the data from each gender
group, and all the baseline covariates remained insignificant at a 5% level. The results
from fitting the reducedAmodel with only the gfoup covériaté for each gender are presented
in Table 6.8.° ' |

Similar to the results obtained in the gender-specific analyses under the ITT and
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Figure 6.12: (a) Estimated Kaplan-Meier survivor functions for the time to progression
of the four gender by treatment groups based on the baseline-adjustment approach. (b)
Estimated Kaplan-Meier survivor functions for the time to progression of the treated and
“the control groups based on the baseline-adjustment approach.
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the PP approaches, the adjusted data showed a signiﬁcant favourable effect of a 30%
IOP reduction within the female group. The male gender seemed to benefit from the
treatment but the evidence was not strong enough to be deemed s1gn1ficant at a 5%
level. Based on the results presented the relative hazard of a treated female patient
versus an untreated was estimated to be O 163, which implied an appr0x1mately six-fold
decrease in the risk of progression for having a 30% IOP reduction. We also carried out
a stratified Cox regression analysis with gender as the strata variable. The stratified
Cox model (in Equation (6.10)) did not identify a significant effect of any of the baseline
covariates and the strata by group interaction. The group covariate remained significant
(p=2.2x107%), and the reiative hazard of a treated patient versus an untreated patient
was estimated to be exp(-1.6) =0.202. '

Parametric Modelling

Different parametric models were fitted to the adjusted data, and the Weibull, log-normal
- and the log-logistic distributions provided ‘satisfactoryr fits. We again chose to report the
results based on the Weibull fit. After adjusting for the group membership covariate, the
Weibull hazard model (given in Equation (6.9)) fitted had an estimated group coefficient
of -1.13 and hence a relative hazard of exp(-1.13) = 0.32 for a treated patient versus an
untreated patient. The group coefficient was significant (p=6.35x10~*) and in particular,
the risk of progression was reduced by two thirds for having a 30% IOP reduction as

compared to the case when untreated.

The different methods of analysis of the mean defect data and the time to event data

will be compared, and the results from each will be further d1scussed in Chapter 8.




Chaptér 7
Simulation

7.1 The Objectives

In Chapter 6, we have seen that the intent-to-treat (ITT) and the per-protocol (PP)
“analyses of the mean defect (MD))data led to quite different results. Such differences can
possibly be explained by the rapid decay of MD upon receiving the treatments by the
treated patients, which had notv_been _accoﬁnted for in both the ITT and the PP analyses.

An immediate concern would be how much of an impact this first phase of change
within the treated group prior to IOP stabilization has on the estimates of the decay
rates, the overall level of the MD and the significance of the time by group interaction
effect in the ITT analysis. Consequently, the ITT and the PP analyses might lead to
different results. One of the objectives of carrying out a simulation experiment here is to
investigate how the results from an ITT analysis and those from a PP analysis compare
in the presence of an initial phase of deterior'a,tion. Another objective is to study how
the PP and the PCLIN modelling approaches perfdrm in cbmparing the post-treatment-
stabilization rates of progression between the treated and the untreated groups. We
simulated MD data for ninety-seven patients to compfise our sample which was the same
size as in the driginal data. The data were simulated based on the linear mixed effecfs
(LME) model fitted under the piecewise linear (PCLIN) modelling approach, as given
in Equation (6.5), using different sets of values for the decay rates of the MD for the

control and the treated groups. We chose this particular LME model to be the base
. o o
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model for the simulation because it gave the best fit to the original MD data among the

three different approaches that were presented in Chapter 6.

7.2 Generating Mean Defect Data

The data generation involved two major steps: the generation of the mean structure
of MD specified by the fixed effects, and the generation of‘ the random effects and the
within-patient errors. The model for simulating the data has been given by Eqﬁatioﬁ
(6.5): »

Yij = Boi + 511371;']' + Boa; + Paxs; + ﬂ4$4ij + Bsitsij +eij (7.11)

Here, 4 is the patient index and j is the index for the repeated measurements within
each patient. The response Y;; represents the MD measured at time z;;;. Besides the
time covariate, the other four covariates are the group membership (29;), the MD at
randomization (z3;); the time by group interaction (T4ij = T1ij X ;) and the piecewise
component (z5;;) which enables the fitting of a segmented MD trajectory with a change |
point at the treated patients’ individual times of IOP stabilization for the treated group
and a linear trajectory for the control group. The piecewise component has been defined
as ' | ‘

$5m = (T4 — TSi)I(ﬂfuj > Ti) X T
where Ty; denotes the time taken to IOP stabilization if the ith patient belongs to the
treated group; ofherwise', Ts; is unobserved. And for k = 0,1,5, Bx; can be expressed
‘as the sum of the fixed effect term Br and the random effecﬁ term by;. For patient i (i
=1, 2,...,97), the random effects follow the normal distribution with a zero mean and a

covariance matrix D common to all of the patients. The within-patient errors, e;;’s are

also normally distributed with a zero mean and a covariance structure R;. Hereafter, we
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will refer to the fit to the original data based on the model in Equation (7.11) as “the

best fit” unless stated otherwise.

7.2.1 Generation of the Mean Structure Specified by the Fixed Effects

For the si_mulatidn of the mean structure of the MD data for the ith patient, we specified
the part of the model (in Equation (7.11)) involving only the fixed effects, i.e., X;3 whose

jth component is:

Bo + Brz1ij + Poai + Basi + Bataij + PsTsij

The same design matrix X; and the time to IOP stabilization Ts; as observed in the
original data were used in the simulation. The times of repeated MD measurements, the
group membership, the initial MD reading at randomization in the simulated data were
thus exactly the same as in t‘he original data, and the total number of MD observations
from all the patients was also the same. Moreover, the estimated values of the parameters
including Sy, B2 and B3 obtained from the best fit to the original data were used for the
simulation. The set of paraméters (B1,84,05) sp’ecifying‘ the decay rates of the MD for
the treated and control groups had values altered in a systematic way for different sets
of simulations to reflect different deterioration schemes. Further discussion on the choice

of parameter values is given in Section 7.2.3. _

7.2.2 Generation of the» Random Effects and the Within-Patient Errors

For patient i, we generated a random effects vector b; = (bo;, by, bs;) from the multivariate
normal distribution with mean 0 and a covariance matrix D. The matrix D was the

estimated covariance structure of the individual patients’ random effects from the best

fit and it was given by
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203 957x107* —9.60 x 10~
D= 957x10™* 1.43x107% —898x 1077
| —9.69x 10 —898x10~7 6.8 x 1077
Because the Laird and Ware LME modél in Equation (‘4.1) assumes no correlation be-
tween the random effects of any_two different ,pati_ents, and that the same covariance
structure D is used for all the patie’hts, the covariance matrix for the vector of random

effects for all of the patients,

(bdli bll) b51a b02a b12) b52a R b0,977 b1,97a b5,97) )
will be block diag,onal. with the matrix D.

For the within-patient error vector for thé ith patient, e;, we assumed the indépen-
dence covariance structure, i.e., R; = I, where 6° was estimated from the best fit to
the original data. Although the results from ﬁtﬁng the original data showed that the
Within—patient errors tend to follow the continuous ﬁrs‘p-ordér autoregressive model, the
correlation between the errors present in two MD observations of the same patient mea-
sured one day apart was found to be about 0.2 oh average. As the times of successive

measurements as observed in the original data were at least a week aparﬁ and in the
general case, several months apart, the correlation between the errors present in two
consecutive MD levels WOuld be close to 0. It was therefore reasonable to assume inde-
pendence of the within-patient errors. We consequently simulated within-patient errors
as independent observations from the normal distribution with mean 0 and a variance of

62,

The random comi)onent in" the 4th patient’s MD value would then be defined as

Z;b;+e;, where Z;, the désign'matrix for the random effects to be used for our simulation,

was the same design matrix used to fit the original data.
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7.2.3 Different Combinations of the Decay Rates of the Mean Defect

In studying the effect of the first phase of rapid decline of the MD within the treated pa-
tients on the results of the ITT and the PP analyses of the MD data, one can imagine not
only the absolute decay rate but also the rate relative to both the post-IOP-stabilization
rate and the rate of the control group will be a determining factof that helps to explain
the differenée in the results of the two types of analyses. This motivated us to experi-
ment with different combinations of the parametefs (B1,B84,B5) in order to study the effect
under different schemes of generalized visual field loss which was measured by the MD.

These parameter combinations gave rise to the sets of (8¢,871,8r2) in Table 7.9 where

- ® B¢ = (3, represents the mean decay rate of the MD for the control group

e Br1 = P1 + Ba represents the mean decay rate of the MD for the treated group
before IOP stabilization

° BTQ = f1 + B4 + Bs represents the mean decay rate of MD for the treated group
after IOP stabilization '

The rationale behind the chosen values of the three parameters is given as follows.
The natural history of normal tension glaucoma showed a gradual decay in the MD level,
as was observed within the control group in our original data. We therefore assumed a
negative mean time slope for the control group, i.e, ¢ < 0 in ouf simulation. In par-
ticular, here we considered two different mean depression rates: 0.001721 and 0.003442.
The former was the estimate of B¢ from the best fit to the original data, and the latter
was double the former. The time by group intéraction coefficient, as represented by £, in. -
Equation (6.5), must be noh—positivle 50 as to give a fr steeper than Bc. We saw from
the original data that the treatment caused an initial decay in addition to the nzﬁ:ural

depression of the MD prior to IOP stabilization. The.‘simulated data must also reflect

such a trend, and therefore for each of the two B¢ values, we tried four different Sr;’s:
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Table 7.9: The differen'g'decay rates of the MD for the confrol and treated groups used

in the simulation.

Bo (Intercépt) =

-1.1149, f, (Group) = -0.5642,

" fB3 (MD at randomization) = 0.8309

-0.00245

B = -0.00I721 | Bo = -0.003442
~0.001 ~0.002
. -0.0014 -0.0025
Pr1 = b Pra= goo17a1 |P2= 0003
o - -0.003442
70,001 0.0025
| | ©0.00125 -0.003 -
Bri= o —0001256 | Bro= o0roo |Bre= 0s
| -0.002 -
-0.00225
~0.0005 0002
| -0.001 -0.0025
Pri = fc — 2 x0.001256 | fr, = 0001921 | B2 = 0008442
0.002 -0.004
-0.0025
~0.0007 —0.002
- -0.00105 -0.0025
Bri = flo =4 0001256 | frs = 01701 | B2 = 003449
S | © o L0.0021 -0.004
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® Br1 = B¢

e Br1 = PBec — kA, fork =1,2,4

- The increment A was chosen to be 0.001256 which was about half size of the estimated
value of 84 fromlthe best fit to the original daté,. »S(; we always_had Bc > Bri. The first
case assumed no harm was d(A)nevby fhe treatment during the time the treated patients
were waiting for their IOPs to reduce and .stabilize, and that their MD declined at the
same rate as the control patients did. The other three cases showed a steéper decay in the
treated group as compared to the control group before the stabilization of the treatment.
Finally, for every (8¢,Br1) combination, various BTQ values were used to simulate the MD
data. The size of increments in Sy varied depending on the valu_es of B¢ and Br1. The

Brs values were chosen to reflect the following three scenaribs:

1. Br2 > Bc = Br:
the treatment results in a slower mean decay rate of the MD than the rate of the
control group after the stabilization of the IOP is achieved. Situations where the
mean MD traject_ories of the control and the treated groups intersect after IOP
stabilization will be considered. The intersé(.:tio‘nl can occur within or outside the

" time range thé‘patient‘s were followed in the study.

2. Bra = Bc:
the treated patients share the same mean decay rate of the MD as the control

patients after IOP stabilization.

3. Bc > Pr2 > Bri: S . |
the mean post-IOP-stabilization decay rate of the MD is slower than before IOP

stabilization, but is still faster than the rate of the control group. This implies a

definite unfavourable effect of the treatment.
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7.3 Simulation Procedures
We followed the steps“t’)elow in our simulation experiment:l

1. Specify the values of (31,54,05) to be used in simulation.

2. Generate the mean structure for 97 patients as described in Section 7.2.1, using the
specified values of (81,84,55).

3. Generate the random effects and the within-patient errors for 97 patients to obtain

the random component of the MD values, as described in Section 7.2.2.

4. Sum the mean structure and the random component to obtain the MD values for
the 97 patients. The vector Y of all the MD values from the 97 patients comprises

one sample of the simulated mean defect data.

5. Repeat steps 3 and 4 to obtain a total of 500 samples. Denote the [th sample by
YO, 1=12,..,500. | '

6. For each of the 500 samples, fit the simulated data Y® using all three approaches:
intent-to-treat, per-protocol and piecewise linear modelling approaches. Specifi-
cally, the first two approaches fit the model given in Equation (6.3). The ITT
analysis models the data simulated for all 97 patients, while the PP analysis mod-
els the same set of data with the exclusion of one patient who did not meet the
criterion for the PP analysis of the original data. The‘PC‘LIN modelling approach,
on the other hand, fits the modvel in Equation (6.5) to the simulated data for all 97 |
patients. The change points of the segmented MD trajectories to be fitted for the
treated patients remain the same as observed in the original data, i.e., the originally

observed times of IOP stabilization.

7. For each of the 500 samples, obtain parameter estimates of the fixed effects and

their standard errors from ﬁtfing the simulated data through each of the three
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approaches.

7.4 Results
7.4.1 Comparison of the ITT and the PP approaches

Because the ITT and the PP approaches ﬁt a linear traJectory to both the control and the
~ treated groups, questlons of interest might 1nc1ude “Is the decay rate of the MD the same
for the two treatment groups?” and “How does the overall MD level compare between
‘the two treatment groups”” To answer the first questlon we can test the parallehsm of
the two linear traJectorles correspondmg to the two treatment groups by testing for the
presence of a time by,group interaction effect.- Let ,Bﬁmex group b€ the regression coefﬁc1ent

for the interaction. We would be testing the following hypotheses:
. ‘ H,: IBIC :BT OR 5time$<group =0
VS. H : ﬁ,C 7é ﬁT OR ﬂtzmexgroup 7é 0

where 8 and Sr are the tlme-slopes of the MD for the control and the treated groups,

| (7;12)

respectlvely The null hypothesis H, states: that there i$ no 1nteract10n effect and the

alternative hypothesis H, states the presence of an 1nteract10n effect.

For each combination of (Bc,,BTl,ﬂTg) used for s1mulat1ng the MD data, we computed
the p-value for the above hypothesis test for each of the 500 samples and obtained the
. proportion of reJectmg the null hypothes1s at a 5% 31gn1ﬁcance level under the ITT and
v‘the PP approaches which is presented in Tables 7. 10 and 7.11. We also used the paired

t-test to compare the proportlons of rejecting H from the ITT and the PP analyses
for each combination of (Bec, ﬁTl, Brs2). The proportlon of reJectlon can be treated as
the mean of 500 Bernoulh random variables, each of which takes on a value of 1 if H, is

rejected and a value of 0 if H, is not rejected, By the result of the Central Limit Theorem,

the normality of the proportions of rejection can be approximated as the sample size of
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Table 7.10: Proportions of rejecting the null hypothesis of no time by group interaction
effect in the ITT and the PP analyses, for an MD decay rate of the control group =
-0.001721 and different sets of MD decay rates of the treated group.

Bo = -0.001721
Parameter values used for simulation || Proportion of rejecting H,
T1 T2 - ITT PP -
—-0.001 . 0.706 0.732
-0.001721 . -0.0014 - | 0.210 0254
- 0001721 0.072 0.076
20,001 —0.644 0.737
| -0.00125 0.302 - 0.426
© 00015 0.074 0.112
0002977 g'oo1721 - | 0070 0.064
-0.002 | 0.236 0.138
-0.00225 10.600 0.426
00005 . | 007 0.090
| -0.001 0.588 0.768
-0.0015 0.104 0.162
-0.004232 5001721 0.108 0.078
-0.002 0.296 0.134
-0.0025 - 0.874 0.728
-0.0007 0.756 0.950
-0.00105 0.314 0.688
-0.0014 0.064 0.246
0006743 goo1721 0154 0.050
-0.0021 0.640 0.279
-0.00245 0.914 0.690

500 is reasonably large. The use of the paired t-test is thus validated. The values of
the time-slope paraineter for the control group estimated in either the ITT or the PP
analysis, ﬁL, were very close to B¢ used for simulating the data. This suggested E(ﬁg)

= B¢, where E(.) represents the expected value, and that ﬂA’C is an unbiased estimator

or fB¢.
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Table 7.11: Pfoportidns of rejecting the null hypothesis of no time by group interaction
effect in the I'TT and the PP analyses, for an MD decay rate of the control group =
-0.003442 and different sets of MD decay rates of the treated group.

, Ao = -0.003442
Parameter values used for simulation || Proportion of rejecting H,
 Bn B ITT PP

-0.002 0.998 0.998
-0.0025 0.918 0.924
-0.003442 5003 0.336 0.356
-0.003442 : 0.056 . 0.050
‘ -0.0025 o 0.862 0.918
-0.003 0.274 0.360
-0.004698 5 003442 0.080 0.058
-0.004 . 0.598 0.496

-0.002 , 1.000 © 1.000
-0.0025 0.818 0.914
-0.005953 -0.003 ‘ 0.218 - 0.376
S - -0.003442 0.100 0.078
- -0.004 ' 0.622 0.466
-0.002 |l 0.986 0.998
: - -0.0025 0.700 0.936
-0.008464 -0.003 , 0.110 0.360
-0.003442 © |1 0.152 . 0.048

-0.004 ' 0.818 0.490
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Certain trends were noted in the rejection rates of the null hypothesis:

e For each ﬁxed vpa‘ir of (Bc, BTl) used for the simulation, the paired t-test comparing
the proportions of rejection showed that the ITT analysis always gave a significantly
larger proportion of rejecting H, than the VPP analysis for cases where S, < B¢
(i.e., B2 being r'nore‘negative than Bc¢). Whereas for Bra > Be (i.e., Brs being less
steep than f¢), the opposite trend occurred, and for most cases, the difference in

the rejection proportions was significant.

When Sy > B¢, the slope of the treated group prior to IOP stabilization, Bz,
which was always more negative than fry, averaged out with Sry to give a fr
that satisfied fr1 < Br < fre under the ITT approach, and the two slopes S
and fSr became quite comparable. However, the PP approach compared the post-
IOP-stabilization slope of the treated groi;p With the slo'pe of the control group.
The difference ,b:etween B¢ and Br under the PP approach will be more distinct and

easier to detect, thus resﬁlting in a larger propbrtidn of rejecting the null hypothesis.

On the other hand, when By < Bc, the fr1 which was more negaﬁve than Bro
gave a slope fr that differed more from S u‘ndér the ITT approach. In fact, one
had fr < Brs < Bc. The PP approach, however,vignored the first portion of data
for the treated group before IOP stabilization, sb the slope S under this appfoach
was comparable to S used for simulating the data. Consequently, a more distinct |
difference between S and (i was observed in the ITT analysis than was the case
in the PP analysis, and a higher propbrtion of rejecting the null hypothesis was

obtained.

e For each fixed - and all cases where 19 = B¢, the data simulated can be treated
as if they were geﬁerated under the null hypothesis of no time by group interaction
under the PP approach because this approach compared the slopes of the control

and the treated groups after IOP stabilization was achieved. Indeed, our assump-

tion seemed reasonable as for a 5% test, a rejection rate close to 0.05 was obtained
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regardless of the values of 8¢ and Br;.

However, from the ITT analysis; we did not obtain a proporfion close to 0.05 When
Bra = Be and Bro ;é' Br1. For each fixed B¢ and Bro = fc, the rejection rate
increased with the magnitude of ﬂTi. This agreed with our intuition: the more
negative the Bry, i.e, the sharper the decline of the MD during the period awaited
for IOP stabilization, the greater the extent to Which Br1 will pull down the overall
slope Sr for the treated group in the ITT analysis. The difference between Br and
B¢ increased and thus 'led to a stronéer evidence against the null hypothesis of no
time by group interaction and a greater rejectidn rate than in the case of the PP

analysis.

e For all the special cases where 8¢ = fr1 = Br9, the ITT and the PP apprdaches
resulted in similar rejection rates of the null hypothesis. The paired t-test for each
of these 'speci_al calses did not show a significant difference in the two rejection rates.
With Bc = B = Bra, thé.data simulated would be under the null hypothesis of no
time by group interaction in both the ITT and the PP analysis, and this explained

for having rejection rates close to 0.05 for our test at a 5% level.

e For each fixed ¢, the discrepancy in the proportions of rejecting the null hypothesis

under the ITT and the PP approaches increased in size as 87, increased.

Summary

The simulation experimen't helped to explain why different r'esulfs were obtained from
analyzing the mean defect data using the ITT and the PP approaches. It also gave
insights into the two apprdaches to the évaluation of general clinical trials that study
treatments entailing a lag time for their stabilization and treating diseases whose progress

is monitored by following the change of a certain prognostic characteristic over time.

In situations where the treatment speeds up the progression rate of a disease before its
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stabilization while later inducing é favourable effect such as slowing down the progression
rate, the PP analysis fails to account for the initial phase of rapid progression among
the treated patients. Moreover, the approach tends to exaggerate the difference between
the progression rates of the treated and the control groups. On the other hand, when
the treatment causes a rapid progression not only before but also after the full efféct is
achieved upon »stabilization, the PP analysis tends to diminish the‘time-group interaction
effect and makes it more difficult to detect a difference between the progression rates of
the treated and the control groups. Nevertheless, this alone does not necessarily mean
that an ITT ainalysis is preferable to a PP analysis for the ,evaluation of a clinical trial.
It is important to make it clear that an ITT analysis aims to assess the effectiveness of
a therapy while a PP analysis attempts to assess the efficacy of the therapy. The PP
approach adopted throughout this thesis has a number of.'pitfalls, which will be further
discussed in Chaptef 8. However, from the statistical point of view, the most appropriate
approach to assessing the tre.atment-eﬁect would be one that accounts for the different

patterns of progression before and after the full treatment effect is reached.

7.4.2 Comparison of the PP and the PCLIN approaches

Suppose we are interested iu knowing how tho‘rate of progression of a disease compares
between the treated group'an'd the untreated group a‘fter’the stabilization of treatment
is achieved. We will be testing the followmg two sets of hypotheses for the PP and the
| PCLIN a,nalyses respectlvely

Ho : /B’C = ;BT ‘ OR ﬁtimexgroup =0

- (7.13)
Vs. Ha : IBIC 7é ,BT OR Aﬂtimexgroup 7é 0
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where 8¢ and SBr are the time-slopes of the MD for the control and for the treated groups,

respectively under the PP approach.

| Hoiﬁq':ﬁTz OR /34.+ﬂ5=0
vs. Hy:Bc#Pra OR PBy+B#0

where ¢ and B9 are the time-slopes of the MD’ for the control groﬁp and for the treated

(7.14)

group after IOP stabilization, respectively under the PCLIN approach. The 'paraimeters
Btimexgroup represehts the time by group interaction under the PP approach, and 4+ S5
represents the true difference between the MD decay rates of the control and the treated
groups under the PCLIN approach based on which the data were simulated. The test

statistics for the above hypothesis tests will be

5time Xgroup

PP analysis : Tpp = - (7.15)
) v SE(Btimevggroup) :
: ‘ Bu + s
PCLIN analysw : TPCLIN = ——— = (716)
: ‘ SE(Bs + Bs)

The p-value for.testin‘g the hypotheées under the PCLIN approach can be obtained in
the same way as presented in Section 6.1 (p.41).v Again, for every set of (8¢,B71,0r2) used
for the simulation, the proportions of rejecting the null hypotheses in Equations (7.13)
and (7.14) at a 5% significance level were computed and are summarized in Tables 7.12
and 7.13. We also used the paired t-test to cbmpare the proportions of rejecting H, from
the PP and the PCLIN analyses for each combinatioﬁ of (B¢, Br1, Brz2). The proportion
of rejection can be treated as the mean of 500 Bernoulli random variables, each of which

takes on a value of 1 if H, is rejected and a value of 0 if H, is not rejected.

Observe that for all cases where Sr, = ¢, the PP and the PCLIN approaches gave
very close rejection rates in the respective tests. Especialiy, the PP and the PCLIN rates
were close to 0.05 for a signiﬁcance level of 5%. Also, the paired t-test for all these cases

did not show a signiﬁcant difference in the two rejection rates. It is therefore reasonable

to assume the two hypothesis tests were at the same significance level, and it is legitimate
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Table 7.12: Proportions of rejecting the null hypothesis of no difference in the MD decay
rates between the two treatment groups after IOP stabilization in the PP and the PCLIN
analyses, for an MD decay rate of the control group = -0.001721 and different sets of MD
decay rates of the treated group. ‘

Bc = -0.001721

Parameter values used for simulation || Proportion of rejecting H,
Br1 Bre | PP PCLIN
| 20,001 0.732 0.732
-0.001721  -0.0014 |l 0.254 0.226
-0.001721 |l 0.076 0.078
0001 [[0.737 0.734
-0.00125 0.426 - 0.418
- -0.0015 0.112 0.110
0002977 001721 0.064 0070
-0.002 0138 - 0.204
-0.00225 0.426 0.538
20.0005 0.990 0.998
20.001 | 0768 © 0.766
00015 0.162 0.180
0004232 5001721 0.078 0.072
0002 0.134 0.194
-0.0025 0.728 0.790
20,0007 0.950 0.956
.0.00105 0.688 0.714
-0.0014 o246 = 0.248
-0.006743 001721 0.050 0.058
-0.0021 0279 0.328
-0.00245 0.690 0.744
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Table 7.13: Proportions of rejecting the null hypothesis of no difference in the MD decay
rates between the two treatment groups after IOP stabilization in the PP and the PCLIN
analyses, for an MD decay rate of the control group = -0. 003442 and different sets of MD
decay rates of the treated group

Be = -0.003442
Parameter values used for simulation Proportlon of reJectlng H,

Bri Bra PP PCLIN

' -0.002 - 0.998 1.000
-0.0025 ~ - 0.924 0.922

-0.003442 5 003 0.356 0.358
- -0.003442 0.050 0.052

-0.0025 0.918 0.928

-0.003 0.360 0.364

-0.004698 4 003442 0.058 0.064
-0.004 : 0.496 © 0.564

-0.002 1.000 1.000

_ + -0.0025 0.914 10.928
-0.005953 - -0.003 -~ - - {0376 0.392
‘ -0.003442 - 0.078 -~ 0.082
-0.004 0.466 0.502

-0.002 A 0.998 0.998

‘ - -0.0025 0.936 0.948
-0.008464 -0.003 0.360 0.380
- -0.003442 0.048 0.042

-0.004 0.490 0.538
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to compare their statistical power. Intuitively, the comparison of the slopes ¢ and fr
under the PP approach and the comparison of the slopes 8¢ and fre under the PCLIN
approach should yield very similar results as both are comparing the slopes of the controls
and of the treated patients after treatment stabilization is established but the results
from the simulation experiment tell a shghtly different story From the rejection rates |

presented in Tables 7. 12 and 7. 13, we noted the following: .

e For the difference sets of ‘:slopes (ﬂc,ﬂTl;ﬂﬁ) used for simulating the data, when
Br2 > Bc, the PP and the PCLIN approaches rejected the null hypothesis in their
respective tests at about the same rate, regardless of the values of B¢ and Br;.
In all but two cases where Bre > B¢, the paired t-test did not show a significant
difference in the two rejection rates. This implies that the two hypothesis tests are’
relatively equally powerful in detecting a difference between the slopes describing
the post-IOP-stabilization decay of the MD for the treated and the control groups
at a 5% level. '

e For all cases where By < ﬁc, the PCLIN approach gave a higher rejection rate
than the PP approach. The paired t-test also showed a significant difference in the
two rejection rates for all such cases. The hypothesis test in the PCLIN analysis
appears to be more powe_rful in detecting a difference between the decay rates of

the MD after IOP stabilization for the treated and the control groups at a 5% level.

In order to explain the above trends, we examined the parameter estimates obtained
from the two approaches. The estimated values of the time-slope coefficient, or equiva-
. lently, the slope coefficient for the control group (B¢ from the PP analysis and ¢ from
the PCLIN anaIysis)', were very close and they will not be presented here. There was
also no systematic discrepancy between the coefﬁcient estimates ﬁ}; and 30 across the

different sets of (ﬁc,ﬁTl,ﬂTg) there did not seem to be a bias in ﬂc as an estimator of .

(ﬂc is an unbiased estimator of Sc.) We also looked at the following two parameters:
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Table 7.14: Sample mean of the 500 estimated regression coefficients and standard errors
- in the PP and the PCLIN analyses, for an MD decay rate of the control group = -0.001721
and different sets of MD decay rates of the treated group.

Bo = -0.001721

| — PP PCLIN
Parameter values used for simulation || Bimexgroup (SE) | Ba+ Bs . (SE)
Bri Bra (values in 10™*) | (values in 107%)
. 0,001 77T 293 | 738 278
-0.001721  -0.0014 356 284 | 321  2.73.
-0.001721 045 282 | 007 270
0.001 ‘ 740 383 | 712 2.0
-0.00125 | 496 2.8 | 468 273
-0.0015 239 287 | 215 272
-0.002977 5501721 ' 022 277 | -0.08. 2.64
-0.002 241 277 | 270 264
-0.00225 | 499 275 | 531 263
~0.0005 95 200 | 123  2.76
0001 750 279 | 7.21 267
- -0.0015 953  2.88 | 230 275
-0.004232 - y'001791 023 279 | 0001  2.65
-0.002 ‘ 261 288 | -2.83  2.73
-0.0025 - 749 284 | 771 270
00007 — 103 287 102 2.7
-0.00105 688 285 | 667 271
20.0014. 356  2.82 | 321 273
-0.006743 5501791 0.13 279 | -0.02 265
-0.0021 372 277 | 380  2.62
©.0.00245 709 285 | -7.24 270

® Brimexgroup from ‘phe PP analysis

e (34 + Bs from the PCLIN analysis

For each set of (8¢,B71,0r2) used for simulation, the sample mean of the estimates of the
above two parameters and their standard errors across the 500 samples were computed
and are tabulated in Tables 7.14 and 7.15.

The histograms of Btimex group and [3’4 + 35 for fqur randomly selected combinations
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Table 7.15: Sample mean of the 500 estimated regression coefficients and standard errors
in the PP and the PCLIN analyses, for an MD decay rate of the control group = -0.003442
and different sets of MD decay rates of the treated group.

B = -0.003442

PD v PCLIN
Parameter values used for simulation || Biimex growp (SE) | Pa+Ps (SE)
Br1 Bra ' (values in 10™*) | (values in 107%)
-0.002 , 147 276 | 145 2.64
-0.0025 | 98  289.| 9356 275
-0.003442 4003 454 2383 | 430 270
0.003442 019 278 | -0.06 2.66
-0.0025 056 281 | 9.37 268
-0.003 467 276 | 443  2.61
-0.004698 003442 030 281 | 006 267
-0.004 | -543 280 | -5690 267
75,002 v 145 275 | 143 261
-0.0025 953 290 | 936 274
-0.005953 . -0.003 445 272 | 430 258
©-0.003442 ol o025 278 | 005 266
-0.004 526  2.83 | -544 270
0.002 145 280 | 144 265
-0.0025 957 278 | 948  2.63
-0.008464  -0.003 448 279 | 437 264
-0.003442 0.05 285 | -010 271
-0.004 547 287 | -554 272
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of (Bc,Br1,Pr2) were also plotted in Figure 7.13, where in each histogram plotted the
500 parameter estimates obtained from the 500 samples. From the plots, we saw that
the histograms of Bt,-mexémup had slightly hea\_rier tails (gréater dispersion) than the his-
tograms of B4 + 35; This agreed with what we observed from the standard errors of the
estimates ﬁtimexgmup' and By + ﬁsz‘ SE (Btimex gm-u;,) > SE(B4 + 55) for all cases. The mean
SE(Btimexgmup) and SE(B4 + 35) were compared using the t-test, and the difference was

shown to be significant for every combination of (8¢, Br1, fre) used in simulation.

From Tables 7.14 and 7.15, we also noticed that the Btime‘xgr,m'p’s always had a larger
sample mean than the 8+ Bs’s regardless of the val'ues of Bcy Br1 and Bro, although such
a trend was not apparent in the histograms. Moreover, all the histograms resembled the
normal distribution, indicaﬁng that the normality assumption of Brimexgroup and By + fBs
used in constructing the test-statistics Tpp and Tpcpry for the hypothesis tests was

reasonably approximated.

Since B4+ fBs is an unbiased estimator of ﬂ4.+ Bs, i.é.,.E(5A4 + Bs) = Bs+ Bs, a property
of the LME model which gives unbiased estimates of the fixed effects, the systemati-
cally larger sample means of the Btimexgmup’s than those of the 34 + ,35’s suggested that
E(Bt,-mexgmup) > E(/3’4 + ﬂs) = B4+ Bs. To ascertain such a difference in the expected
values, we used the paired t-test to compare the meain values of Btimexgmup and 34 + B5
for each combination of (8¢, Br1fr2), and a significant difference in the two mean values
was demonstrated for all combinations of (8¢, Br18r2). In other words, based on our as-
sumption that the MD data followed the piecewise LME model, Btimexgmu,, under the PP
approach seemed to be a biaééd estimator of the true difference between the post-IOP-
stabilization decay rates of the MD of the control and the treated groups. Such a bias
may be explained by the difference in the baseline adopted by the PP and the PCLIN
approaches. The times of .repeated MD measurements that entered the LME model un-

der the two approaches were measured from two different baseline times. However, it

was not clear what actually led to the discrépanéy in the mean values of the Btimexgmu,,’s
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Figure 7.13: Histograms of estimated coefficients Bumexgmup (from the PP analysis) and

Bs+ Bs (from the PCLIN analysis) for randomly selected sets of (8¢,0r1,08r2) used in the
simulation. (a) S¢ = —0.001721, Br; = —0.004232, By = —0.0015 (b) Bc = —0.001721,
Br1 = —0.002977, Brp = =0.005953 (c) Bc = -—0.003442, Br; = —0.005953,
Bra = —0.0025 (d) Bc = —0.003442, Bry = —0.004698, frs = —0.003442

(a:PP ®):PP
g E
8 ]
&
gz £ 21
g 8 § 8 -
e -
8 <
g T T e - r T T T 1
-0.0005 0.0 0.0005 .0‘0p10 -0.0005 0.0 0.0005 0.0010 0.0015
estimated value of beta(time*group) value of 'group)
(a):PCLIN (b):PCLIN
8
8
g 8 .z
g8
g g 81
T e 8
8 &
(=] R T
-0.0005 0.0 0.0005 ) 0.0010 -0.0005 0.0 0.0005 0.0010 0.0015
estimated value of estimated value of
beta_4+beta_5 beta_4+beta_5 )
(c):PP (0):PP
g 8
g s F 8
2 3
é 8 g 2
T e -
8 &
o o
0.0 0.0005 0.0010 0.0015 0.0020 -0.0005 0.0 0.0005
estimated value of beta(time*group) estimated valuae of beta(time*group)
(c):PCLIN (d):PCLIN
g .
8
, 8- .
g 8
£ £ 2
® )
8
o 4 ot =3 . Y
0.0 0.0005 0.0010 ' 0.0015 -0.0005 - 0.0 ’ 0.0005

estimated value of
beta_4+beta_5

estimated value of beta_4+beta_5



Chapter 7. Simulation : | ' ' 93

- and the 54 + 35’5. The greater standard error of the Btimexgmup’s as compared tovthat :
of the B, + ,35’5 is possibly the result of a smaller number of MD observations used for

parameter estimation in the PP analysis.

We have seen that in the estimation of the true difference between the slopes of the
control and the tr_eated'group after IOP stabiiization, the estimator Bt,-mexgmu,; under the
" PP approach seemed to be biased and less efficient (i.e., having a larger standard error)
than the estimator 34 + B5 under the PCLIN approach. With this knowledgé, the reasons
behind the trends observed in the rejection rates of the null hypotheses in Equations
(7.13) and (7.14) become appafent and are given as follows. Suppose Biumexgroup = C1
and B4 + Bs = C, for some real constants C; and C,. As Btimexgmup and 54 + 55 are
unbiased estimators of Bymex group and Bs+ Fs, we have E(Biimex group) = C1 and E(,34—|—B5)
= Cj. Also notice that the standard errors for the Btimexgmup’s and the 34 + 35’8 stayed
relatively constant irrespective of the estimated values of the parameters. Hence, it
was reasonable to assume the standard errors were independent of the values of the
parameter estimates. When 84+ 85 > 0, or Brs > fc, i.é., in the presence of a favourable
treatment effect in slowing down the MD decay rate after dchieving IOP stabilization,
earlier results from comparing.the mean values of Bti,'nexgmup’s and 34 + ,35’3 suggested
that C; = E(Bti'_mexgmup)'> E(B4'+ Bs) = C,. And since C, = By + Bs-> 0, we have
C; > Cy > 0. However, SE(Btime'xgroup) > SE(fs + Bs) Upon comparison of the relative

size of the parameter estimates and their SE’s, we found that

,Btimexgroup ~ SE(/Btimexgroup)

Ba+Bs ~ SE(Bs+Bs)

VOI‘ .
— Btimexg%oup ' ~ 84 + 35
. SE(ﬁtimexgrqﬁp) SE(/B4 + ﬁ5)

Tep =TpcLIN

(See Equations (7.15) and (7.16)). We thus expect to have'
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- ’ ' 101 . 02 ’
E(Tpp) = = ~ - — = E(T,
( PP) SE(:Btimexgroup) SE(B4 + ,65) . ( PCLIN)

It follows that on average, the p-values fdr the two. hypothesis .te.s‘ts" in the PP and the

PCLIN analyses will be very similar and about the same rejection rates will be obtained,

as observed in our simulation results.

When B4 + 85 < 0, or B < Bc, i.e., in the presence of an unfavourable treatment
effect (the treatment speeds up the MD decay rate after achieving IOP stabilization), we
again expect to have Co = E(B4 + [3’5) < E(Btimexgmup) = Cy. Because C; < 0, C; <
" implies C; is closer to or above 0. And with SE(B;im;Xgroup) > SE(Bs + Bs), the following
is likely to hold: B

Cl CZ
SE(ﬂtimexgroup) SE(/B‘I + :35)

It follows that on average, the p-value obtained from thé PP analysis will be larger

E(|TPH) :. = E(|Tpcrinl)

‘<.’

than that from the PCLIN analysis for the two-sided hypothesis tests. This explains the

smaller rejection rates for the PP analysis.

Summary

We have seen from the simulation results that when the data were generated from the
LME model under the PCLIN modelling approach, the PP analysis slightly overestimated
and produced less efficient estimates of fhe difference between the slopes of the treated
and the control groups after IOP stabilizatioﬁ. In particular, for cases where the post-
IOP-stabilization MD within the treated patients’ decayed at a slower rate than the
untreated patients (B, > B¢), although the PP' and the PCLIN approach gave very

" similar réjection Tates of the null hypotheses stating no difference between the post-IOP-

stabilization slopes of the two groups, the hypothesis tests corresponding to the two
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approaches seeming equally powerful was simply a coincidence resulted from the biased
and the less efficient estimates of the difference. When the mean MD decay rate for the
treated group after IOP stabilizatfon was faétef than that of the control group (82 < Bc),
which was not the situation present in our original data, the simulation results suggested
that the hypothesis test under the PCLIN approach was statistically more powerful than
the counterpart under the PP approach. In summary, the results from the comparison
between the PP and the PCLIN approaéhes implied that the negligence of the lag time in

the PP analysis may give rise to biased‘parar'neter estimates and a decreased statistical

power of hypothesis tests for treatment comparisons.




Chapter 8
Diséussion

In this thesis, we investigated two-different approaches to evaluate a clinical trial: the
intent-to-treat (ITT) approaéh and the per-protocol (PP) approach. The former calls
for inclusion of all the patients who are randomized in the final analysis of the trial
irrespective of problems of missing data, cross-overs, drop-outs and non-compliance, while
the latter analyzes a subset of patients 'who meet the treatment efficacy criteria. We
applied the two approaches tolt.he data from the Collabdrative Normal Tension Glaucoma
Study in whiéh a delay in treatment stabilization was observed in the treated group.
Besides the difference in the inclusion of patients, the two approaches we adopted differed
in the definition of the baseline time. The ITT approach assumed all the patients were
followed starting at the time of randdmization, whereas the baseline for the treated
- group was shifted to the iﬁdividﬁals’ times of IOl-D stabilization under the PP approach.
Upon IOP stabilization, the effect of having a 30% IOP reduction was regarded as fully
achieved. The two baseline definitions were chosen in" accordance with the principles of
assessing the treatment effectiveness and the treatment efficacy in the ITT and the PP

analyses, respectively.

In modelling the mean defect (MD) data, a linear mixed effects (LME) model was
fitted in both the ITT and fhe PP analysés. In particular, the MD was assumed to decay
linearly with time in each of the treated and the control groups. A random intercept
and time-slope were included in the model to allow for diﬂ"e_rent initial MD levels at

baseline and different MD decay rates across patients. At a 5% level, gender and baseline

96
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information including age and IOP did not explain the MD trend over time in either the
ITT or the PP analyseé. A signiﬁcantlyl slower average MD decay rate for the treated
group than the control group as a result of lowering the IOP was demonstrated in the
PP analysis but not.in the I'T'T analysis. Furthermore, the ITT analysis showed that the
treated group had a more negative overall MD level than the control group, while the
PP analysis did not pick out such a difference. Based .on these results, quite different
conclusions were reached on the usefulness of an IOP reduction strategy in treating
normal tension glaucoma. The PP analysis suggested a beneficial treatment effect, but
the ITT analysis concluded an ineffective or even a harmful treatment because the IOP
lowering therapy not only failed to slow down the natural décay of the MD but also
depressed the overall MD 4level. ‘ '

An additional approach to analyzing the MD data, the piecewisel linear (PCLIN) mod- |
elling approach, revealed that during the period awaiting the IOP to reduce and stabilize,
the treated patients had on average a faster MD decay rate than both the rate after IOP
stabilization and the rate of the control group. In light of this finding, the difference in
the results of the ITT and the PP analyses can possibly be explainéd by the fact that
the MD data prior to IOP stabilization of the treated patients were excluded from the
PP analysis. The ﬁrst"phase of sharp declinelof the MD pulled down the mean MD level
for the treated group, which also happened to be more negative at randomization than
the mean level for the control group in the ITT analysis. Besides, the slower decay rate
of the MD within the treated group that followed after iOP étabilization averaged out
with the initial rapid decay and resulted in an overall rate that was comparable with
that of the controls in the ITT analysis. Therefore, there was weaker evidence to declare
a significant time by group interaction than. in the case of .a PP analysis. . The one pa-
tient who was included in the I'TT analysis but not in the the PP analysis only had five

MD observations measured from the time of randomization. The excluded patient, who

belonged to the treated group, had a similar early MD trend as observed in the other
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treated patients: there appeared to be a larger rate of decrease in MD before IOP sta-
bilization than the rate afterwards. It was unlikely that the exclusion of this particular

patient had led to the difference in the results from the two approaches.

Because the time to IOP stabilization was relatively short compared to the treated-
patients’ follow-up periods.,and the MD trend over time was highly variable across pa-
tients, any difference between the MD trend before and after IOP stabilizatien within
each of the treated individuals was not .easily noticeable. A linear model appeared to
provide an adequate fit to the data of the treated group. However, upon ﬁtting a seg-
mented linear trajectory for the treated group in the PCLIN quelling approach, the
modelling of the MD data was signiﬁcantly improved marginal.ly.' The individual fitted
trajectories of the treated patients also seemed to provide a reasonably good description
of the MD observations, especially for patients whose MD vpatterns differed greatly be-
fore and after IOP stabilization. Although the PCLIN approach was data-driven, it was
shown to outperform the I'TT and the PP approaches we have used in modelling the MD

data in our study.

The difference in the conclusions drawn from the ITT and the PP analyses" motivated
our simulation experiment which airned te stndy how a different.decay pattern of the
MD before and after IOP stabilization within the treated group affected the results of
the two approaches. We generated MD data using the best fitted LME model found from
the PCLIN modelhng approach. The analysis of the simulated data showed that the PP
analysis tends to magnify the difference between the decay rates of the MD between the
control and the treated groups in the case where the treated silolpe'became less steep
than the control slope 'after IOP stabilization, but the difference was diminished when
the treated slope after IQP_ stabilization, while not as steep as it had been before the
stabilization, remained steeper than the control elope The poor performance of the PP

analysis can be attrlbuted to its exclusion of the data from the treated patients prior to

I0P stablhzatlon And in any case where the treatment effect drffered before and after
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the 30% IOP reduction was attained, the PP analysis failed to account for the trend
in the first phase. Besides, we simulated MD data to compare the performance of the
PP and the PCLIN approaches in terms of parameter estimation and statistical power
of detecting a difference between the post-IOP-stabiliZation decay rates of the MD of

the treated and the untreated groups. Summar_ieslof the simulation results were already

given in Chapter 7.

In applying the ITTAa,nd the PP\approachés to model the MD data in our study,
we also looked into the floor effect issue by including in the li.near mixed effects model
an indicator variable classifying patients as having or not having advancgd normal ten-
sion glaucoma at baseline (An MD level béldw -12dB is generally regarded as having an
advanced stage of the disease). The. interaction between the indicator variable and the
time-slope covariate was tested and was found to be insignificant at a 5% level in both
the ITT and the PP analyses. The decay pattern of the MD appeared to be indepen-
dent of the baseline MD level, as analyzed using either approach.v We also compared
the mean baseline MD of the treated énd the control groups under the ITT and the PP
approaches. When the baseline was taken to be the time of randomization for all the
patients in the ITT analysis, the two-sample ¢-test did not suggest a significant difference
between the mean MD levels at randomization of the two .groups (the observed means
were -7.39dB for the treated group and -6.72dB for the control group, p=0.49). However,
in the PP analysis, the twp-sa.mple t-test showed that the two groups had significantly
different baseline MD le‘vels' (the observed means for the treated and the control groups
were -8.93dB and -6.72dB; respectively, p#0.014). Recall that the PP analysis demon-
strated a significantly slower linear decay rate of the MD for the treated group than the
control group, and it also showed no evidence of a dependencé between the MD decay
rate and the initial MD level. However, we cannot rule Oﬁt the possibility that the sig-
nificant treatment effect was an artifact of the floor effect because as time elapsed since

randomization, more and more patients reached the progression end point and the two

groups of untreated and treated patients who remained in the study may have become
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more and more unbalanced in terms of sample size, mean MD level and variation of the
MD measurements. The floor effect may eventually be inﬂuential and result in a fallacy
of a beneficial treatment effect. Moreover, the PCLIN analysis showed that the treated
patients on average ekperienced'a sharp decline in MD 'phat was followed by a decay at .
an even slower rate than the control group. It remained uncertain if the slower decay
_ rate was the result of a beneficial effect of having a 30% reduction Qf the IOP or, perhaps
in part, of the floor effect after the large drop of the MD caused by the IOP lowering
therapy. We did not analyze the floor effect in the PCLIN analysis because of the com-
plexity of the LME model which involved many time felated terms (1,5, Z4;; and zs;; in
Equation (6.5)). We could take the same approach as in the ITT and the PP analyses,
i.e., we tested for an interaction effect between each of the above time related terms and
the classification variable based on the initial MD level. The signiﬁcémce of these inter-
action effects may help us study Whether the time sidpes (61, Br+ Bs and By + By + Bs)
are affected by the baseline MD level, but such an approach does not seem to provide an
adequate and effective assessment of the floor effect. Besides, the interpretation of these

interaction effects can be difficult because x4;; and z5;; are already interaction terms.

Apart from the floor effecf, a statistical phenoménon called “regression to the mean”,
‘also known as the regression effect, might account for the slower MD depressioﬁ rate
observed among patients whose baseline MD levéls were highly negative as compared to
those who started with less negative MD levels even in the absence of a real treatment
‘effect. The regression effect is ﬁsually present between any two variables which are
correlated. As an ex‘ample,l suppose we randomly select two patients from the population
of normal tension glaucoma patients and whose MD levels at baseline are both less than
or greater than the baseline mean. The patient with a baseline MD level farther from
the baseline mean will on average have an MD level, relative to the other patient, less far
from the mean MD level at a later time, where the initial and the subsequent MD levels

are likely to be correlated. This illustrates a property of the regression effect: the more

extreme the starting value of the MD, the greater the regression to the mean. Patients
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with more extreme negative MD levels initialiy will on average decrease to a lesser extent
than patients with initial MD levels closer to the mean. Therefore, at any fixed time since
randomization, patients with highly negative MD at baseline will be expected to show a
- slower MD depression than those with less negative baseline 4M_D levels, irrespective of
the existence of a treatment effect. Moreover, the degree of the fegression effect depends
on the strength of correlation between the two variables. A weaker correlation will lead
to a stronger regression effect. When the time between two MD measurements becomes
longer, the measurements will be less correlated, resulting'in a greater regression to the
mean. The decay rate of the MD whichvmeasure_s the decrease in MD relative to time will
be more influenced by the regression effect as a longer time elapses from randomization.
So far our discussion of the “regression to the mean” has been focused on the MD levels
at baseline and at a later time. This stétisticai‘_phenomenon can also be observed between
the two populations of time slopes before and after IOP stabilization within the treated _
group. Intuitivély, the two time slopes are correlated because they measure the rate
of change in MD on the same patient over 'phe pre-stabilization and post-stabilization
periods. - A regression effect b(_étween the two time slopes Within the treated groups is
likely to be present, rand, this helps to explain why a 'sfeep initial MD decay rate might
have been followed by a ﬂattér post-stabilization rate than that preceded by a less steep

~ initial time slope.

In the analysis of the time to IOP stabilization data .withivn the treated group, we
applied classiéal methods including the non-parametric Kaplan-Meier method, the semi-
parametric Cox regression and parametric modelling. All three methods did not show a
significant effect of the age, IOP and MD level at randomization at a 5% level. There
was also no st.rong evidence of a gendef effect, although male patients appearéd to take
a shorter time to achieve IOP reduction and stabilization on average. Nevertheless, it is
important to use caution when interpreting the results basedvon any of the classical meth-

ods. The three types of therapy (medical, laser and surgical) were not randomly assigned

to the treated patients; the investigators decided the typé of treatment the patients were
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to receive. The study. design was therefore observational and not randomized, and the
comparison between the surgical and non-surgical groups might be subject to selection
bias. Patients who had a ﬁltéring surgery likely differed from patients who received only
non-surgical treatments with respect to some u‘ncontrolled factors which affect the ease
to achieve IOP reduction and stabilization. We looked to see if the MD and the IOP
levels at baseline differed sig‘niﬁcant'ly between the two‘gr’oups of treated patients as this
baseline information might account for the investigators’ decision, and for.the failure of
the non-surgical treatments in reducing the IOP to the desired_level. The surgical group
had an average baseline MD level of -8.84dB (SD=4.88dB) and IOP level of 17.05mmHg
(SD=1.55mmH g). The corresﬁonding figures for the non-surgical group were -6.42dB
(SD=5.49dB) and 16.83mmH g (SD=2.53mmHg). The non-surgical group appeared to
have a less negative. MD and a lower IOP at the time of randomization, but the evi-
dence was not strong.enough to demonstrate a significant difference in the mean level
of either variable using the two-sample t-test at a 5% level (p=0.14 for MD and p=0.74
for IOP). However, we did not have information on other demographics and ophthalmic
conditions which were the basis of the choice of treatment, and thus we cannot identify
any source of selection bias. Moreover, some pla'utients who were originally assigned the
medical or laser therapy switched to the surgical treatment due to failure to reduce the
IOP level using the.non-su_rgic'al treatment. Among the 43 treated patients, only two
were initially given thé surgical therapy. By counting patients who had the medical or '
laser treatment in the first place and switched to surgical treatment ldter in the surgical
group, the extra waiting time before the change of treatment was included as part of
the time to IOP stabilizatidn, thus lengfhening the obéérvéd time to IOP stabilization
within the surgically 't'reated group. Our results which showed a longer waiting period
for IOP stabilization for the surgical group might be attributable solely to the additional
time prior to the change of treatment rafher than a true difference between the effects
of the hon-surgical (medical or laser) treatmehts and the filtering surgery. But because

the time at which the_i patients switched to the surgical treatment was not available, we

were unable to make appropriate adjustments to the observed time to IOP stabilization
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when comparing the IOP-stabilization experiences from ‘receiving the different types of

therapy.

In analyzing the time to progression data, both the ITT and the PP analyses were
carried out. They both showed no evidence of a signiﬁcaﬁt effect of the age at baseline,
IOP and MD at baseline, using any of the three standard methods When analyzing the
data from all the patients using the Kaplan-Meler and the parametnc modelling meth-
ods, the treated group was found to have a significantly prolonged time to progression
- relative to the untreated group under both the ITT‘ahd the PP approaches. In the Cox
- regression analysis under either the ITT or the PP approach, the treatment of having a

30% reduction in the IOP seemed to have no effect on the male patients, while female
patients benefited from the treatment which mgmﬁcantly reduced the risk of progression.
Despite the difference in the treatment effect observed between genders, the treatment by
gender interaction was found to be insignificant in the Cox regression. It is worth noting
. that among the 96 patients included in both the ITT énd the PP émalyses, 34 were male
and 62 were female. The number of patients who reached the progression end point was
10 and 23 within the male and the female groups, réspectively. With the small numbef
of male patients and a smaller proportion of uncensored times to progression (29.4% for
males versus 37.1% for_fem'a;les), the test for the presence of a treatment effect within
the male group will be less powerful than the Sayme test within the female gfoup. “The
treatment might indeed reduce the progréssion risk for the male patients, but there was
not enough power to dete’ct a treatment effeét. In the case where the treatment main
effect is deemed insigniﬁcant,. an interaction effect between treatment group and gender

will be even harder to.detec't'. -

When we applied the non-parametric method to analyze the time to IOP stabiliza-
tion data and the time to progression data, the log rank test was used to compare the

survival experiences of two or more populations. An alternative to the log rank test is

the Wilcoxon test [31]. Readers are referred to Collett [31] for details on the statistical
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properties of and the diﬁ"erenee between the two tests. In general application, the choice
of test depends on the alternative hypothesis that is to be tested. Colllett discussed that
when the alternative to the null hypothesis of no difference between the survival time dis-
“tributions of two groups is that the hazard for an individual in 'one' group is proportional
to the hazard of a similar individual in the other gfoup at any giv.en time, the log rank
test is more abpropriate. For other types of departure from the equality of survival time
distributions between two groups, the Wilcoxon test will be more suitable. »Our analyses
showed that the propertional hazards model fitted reasohably well to the time-te-event
‘data. As the proportional hazards assumption held in our case, to test for a difference
between the survival experierices of two different groups in our data, which can be de-
scribed by an alternative hypothesis of a non-unity proportional hazards between the two

groups, a log rank test seemed appropriate.

Cemparing the results from the ITT and the PP analyses, we noticed that for all of
the log rank test and the hypothesis tests used in the Cox regression analysis and the
parametric method, the PP approach demenstrated a smaller reduced risk of progression
for the treated group than the ITT approach did. The baseline set at the time of IOP
stabilization for the treated group under the PP approach shortened the time to pro-
gression as compared to its ITT counterpart. Therefore, when the 30% reduction of IOP -
successfully slowed down the hazard to progression as suggested by the significant treat-
ment effect, the shorter time to progression for the treated group in the PP analysis led
to a smaller dlfference in the hazards or time to progression between the two treatment
groups, thus explaining the less prominent reduction in the risk of progression for the
treated group. Indeed, the group coeflicient in the Cox model as estimated by the ITT
and the PP approach had very close standard errors. Therefore, with a group coefficient

estimate farther from the 0 value in the ITT analysis, a smaller p-value and hence a more

significant result were obtained. The same was observed in the results from ﬁttihg the
Weibull hazard models. ' '
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We have seen in our study that both the ITT and the PP analyses showed a beneficial
treatment effect in reducing the risk of progressioh. However, in general applications of
the two approaches to clinical trials inAvo'lving_'a delay in treatment stabilization, two

other possible scenarios may arise:

e When the treatment effect does exist but is not very strong, the ITT approach
might show a significant result for the treatment effect while the PP approach does
not. The time to progression within the treated group, which is measured starting
from the time at which‘ the treatment stabilization is established, is shorter than its
ITT counterpart, and henc‘e shows a weaker .evid_ence againét the null hypothesis
stating no treatment effect. The argument of a PP approaéh being able to detect a
treatment effect better than an ITT approach is not justifiable. Moreover, delaying
the baseline time to the time of achieving treatment stabilization for the treated
patients often results in a smaller sample size due to potential drop-outs during the
pre-stabilization period. As a result, statistical tests performed in the PP analysis

are prone to have a lower power. -

e When the treatment effect does not exist, i.e., the 30% lowering of the eye pressure
does not alter the risk of progression before or after the tréatment stabiliz’éti_on, the
ITT analysis‘should not reject the null hypothesis of no treatment effect, subject to
a type I error of size equal to the significance level of the hypothesis test. However,
the time to progression for the treated pétients analyzed in the PP analysis is its
ITT counterpért shortened by an amount equivalent to the wéiting time for treat-
ment stabilization. If such a waiting time is sufficiently long, the data might show
a significant difference in the time-to-progression experience between the treated
and the cohtrol groups, and subseqliently resﬁlt in a type II error. Even worse, one
might conclude an unfavourable treatment effect based on the results from the PP

analysis when indeed the treatment is neither beneficial nor harmful.

- While the ITT and the PP approaches can lead to different results and conclusions on
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the usefulness of a treatment due to the diffefence in their baseline definitions, analyzing
data with a delay in treatment stabilization by means of a multistate model avoids
the problem of defining a reasonable baseline for the control group fo correspond to
the lag time observed in the treatment groupﬁ A multistate model describes treatment
stabilization as a separate event which occurs between the time of randomization and the
time of reaching an end point of interest. For our study, we applied the disability model
and performed separate analyses of the times of transition to the two states: the state of
IOP stabilization and the state of disease progression. An advantage of modelling hazards
for the times to different states{Separa,tely is the flexibility of iﬁcorporating different
covariates that are rélevan_t td'thé various transitions between states. In addition to
modelling the individual transition hazards, we fitted Cox and stratified Cox models
with a time-dependent indicator variable for treatment stabilization. If the data from
treated patients who reached the progression end point before IOP stabilization were
_available, fitting the Cox model (Equatidn (52)) with the group covariate and the time-
dependent IOP-stabilization indicator variable would allow us to assess both the effect
of a stable IOP reduction on the progression hazard within the treated patients, and
the difference between the time-to-progression experiences of the treated and the control -
groups. However, such data were unavailable for our analysis, and to avoid computational
problems (p.65), we did not _incllude' the group covariate in the Cox model and thus could
not assess whether the treated and untreated groups had different risks of progression.
When we analyzed the data from patients of both genders, we obtained a highly significant
favourable result for the effect of a stable IOP reduction on the progression hazard within
the treated group (p=7.6x10"%). The result showed about a four-fold decrease in risk
of progression after a stable IOP reduction was achieved. The gender-specific analyses,
on the other hand, gave rather different results for the opposite genders. The effect
of having a stable ryedu.ced‘I'OP was found to bevinsigniﬁcant among the male treated
patients, while within the female treated patients, a sﬂable reduced IOP had a favourable

effect of reducing the risk of progression to about one-sixth of the same risk in the case

of not having a stabilized IOP reduction.
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As discussed earlier, the presence of a minimum MD level that can be attained in
the course of normal tension glaucoma poses a potential floor effect which complicates
the comparison of the MD decay rates between the control and the treated groups and
may lead one to a false impressibn of the existence of a treatment effect. Such a floor
effect might also affect the comparison of the 'time-to-.progression experiences between
- treatment groups. As the progression end point in:our_ study was defined as having
a decrease of at least 10dB in MD relative to the level at the time of randomization,
patients who began with an MD level close to the loWer bound had limited room to
achieve the required decrease and hence took a lo‘nger time to reach ‘the progréssion
end point. These patients tend to show 'a_ smaller risk of pfogression not as a result of
a treatment effect but rather a floor effect. Indeed, when the treated and the control
groups have significantly different mean MD levekls at baseline or at a later time point
'during thé course of the disease, the floor effect may come into play and affect treatment
.comparisons. In the presence of both a floor eﬂ'ect»and a beneficial treatment effect which
prolongs the survival time to progression, if the treated group happens to have a more
negative mean MD level than the untreated group on average, the treatment effect will
be biased in favour of the treatment (an overestimation of a beneficial treatment effect).
On the contrary, if the control group had a mean MD level closer to the lower limit, the
beneficial treatment effect will be masked by the floor effect. _Thé bseudo—reduction in
the risk of progression' causéd by the floor effect within the control group may be about
the same extent as the true reduction caused. by the tréatment i‘tself within the treated
group. Although we did not explicitly address the floor effect iésue in the analysis of
ouf time-to-event data, it is important to be aware of this common phenomenon and its

potential impact on the results of treatment group comparisons.

The PP approach adopted throughout this thesis compared a control group from the
~ time of randomization to a treated group from the time at which the stabilization of the

treatment was established. It attempted to assess the efficacy of a 30% IOP reduction

in slowing down the progression of normal tension glaucoma, but the approach was
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unsatisfactory because of its two major pitfalls: firstly, the baseline was defined at the
time of randomization for the control group and at the time of individuals’ times of IOP
stabilization for the ‘treated group. The two-sample t-test showed that the mean baseline
MD level was significantly lower within the treated group (p=0.014). .Indeed, during
the period awaited for IOP reduétion and st_abilization, the MD of the treated patients
dropped considerably. The paired t-test comparing the mean MD levels at randomization
and at the time Qf JOP stabilization within the treated group. gave a significant result
(p=2.0x10"*). By comparing the two groups from two different baselines without taking
into consideration the treatment lag time, the desirable properties of randomization of
treatment assignment will be lost. The difference between the mean baseline MD levels
of the two groups in the PP analysis illustrates the lack of homogeneity of different
treatment groups. Unlike the experimental approach of an ITT analysis, a PP analysis is
essentially observational because it analyzes only a subset of patients who are originally
randomized and meet the efficacy criteria. Among patients who qualify for inclusion
for the PP analysis, the control group will mos_t"likely differ from the treated group
with respect to other baseline and demographic characteristics besides the treatment
assignment. Problems of confounding and bias in results may then arise: any difference
between the two groups friay then be attributed to some uncontrolled factors other than
the treatment effect. An earlier discussion of the ﬂoor_ effect already pointed ouf that
~ with different baseline mean .MD levels of the two groups, the assessment of the treatment
effect can be confounded by the floor effect. Here we see that randomization alone does
not guard against bias in treatment group comparison if an inappropriate approach such

as the PP approdch is used.

Secondly, the PP approach seemed to give biased estimates of the time by group inter-
action effect in the analysis of the longitudinal MD data, as suggested by the simulation
results. The simulation study also found that the PP approach was less powerful than the

PCLIN approach in detecting a difference between the decay rates of the treated and the

control groups under some circumstances. Although in our study the number of patients
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who were originally randomized but were excluded from the PP analysis was small, one
can imagine in cases where a large number of patients' does not ’m'eet' the efficacy criteria,
especially whén the treaﬁrrient lag time is lotng compared to the patiénts’.follow-up period,
the sample size in the PP analysis will be reduced greatly. Thé number of patients or
observations included in the PP'anélysis is usually smaller than the planned sample size
at the design stage, but how much of a loss in sample size due to the exclusion of patients
from analysis is often difficult to predict before a clinical trial is conducted. As a result,
- the desired power of statistical tests can never be achieved. Recruiting more patients
to compensate for the loss in sample size is not ohly uheclononvlicvali but also infeasible in

most of the cases.

In seeing the potential problems of bias and diminishing power of the PP approach
in the analysis of the glaucoma data and in the simulation experiment, in order to have
a valid efficacy assessment in the presence of a'lag time in treatment stabilization, we
must make appropriate adjustments to thev control group to correspond to the delayed
treated group. We exploited our findings about- the distribution that the time to IOP
stébilizatioh'data followed in our baSeliné—adjus’cment approach. vThe approach adjusted
the baseline for the control group to correspond to the lag time in treatment stabilization
in the treated group. We simply shifted the baseline for each control patient from the time
of randomization by a time randomly generated from the Weibull distribution originally
fitted to the times to IOP stabilization for the treated patients in our data. By adjusting
the baseline in this way, we were assuming that in the absence of a treatment effect, the
time taken to reach IOP stébilization followed the Weibull distribution. In comparison
to the ITT and the PP approaches, our baseline-adjustment épproach demonstrated
a stronger treatment effect, i.e., the treated group showedra larger reduction in the
risk of progression relative to the control group than in the ITT and the PP analyses.
Such a trend was not readily observed in the plot of Kaplan-Meier estimates of survivor

functions (Figure 6.12(b)). The gender-specific Cox regression analyses gave an estimate

_'of the relative hazard of a treated versus an untreated patient of 0.3 for the male génder
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‘and an estimate of 0.16 for the female gendér. Correspondingly, 'the ITT and the PP
estimates Wer.e.respec‘tively 0.33 and 0.38 for the male gender, and 0.16 and 0.24 for
the female gender. In the parametric analysis, a Weibull fit adjusted for the group
membership covariate gave a coefficient estimate of -1.13 whereas the ITT and the PP
analyses estimated the group coefficient to be -0.878 and 40.754, respectively. A stronger
treatment effect shown by the baseline-adjustment approach as compared to the PP
approach was indeed expected because thé' se.emilrilgly'short'er time to progression among
. the untreated patients demonstrated in the PP analysis was truncated as a result of the
baseline shift, and the difference bétweén the time-to-progression. experience between the

treated and the untreated groups became even more evident.

While the adjustment made to the baseline of the conﬁrol group helped to reduce
the imbalance of the two treatment groUps at their respective baselines induced by the
lag time in treatment Stabilization; any approaches involving baseline matchiﬁg between
treatment groups do not guarantee comparable groups at t.he adjusted baselines. Further-
more, these approacheé often fail to make _use'of all the available obSérx)ations originally
recorded. For example, repeated measﬁrements taken at times before the adjusted ba,sé-
line may have to be discarded because they do not have meaningful contribution to a

longitudinal or a time-series analysis.

In summary, the piecewise linear model .'gave the most reasonable fit to the MD data
as it accounted for the sharf) MD decline before the stabilization of the IOP within the
treated group, while the ITT and the PP approach fitted a linear model and the lag
time was ignored. For the survival data, the multistate model provided an appropriate
means of assessing the effect of IOP stabilization on the time-to-progression experience in

normal tension glaucoma. It was particularly useful because it can flexibly accommodate

the event of IOP stabilization whose time varied across the treated patients.
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' Conc‘lu's'iohs

For the analysis of clini(:ai trials in the presénce of a lag time in thé stabilization of treat-
ment, an efficacy-assessment approach entails comparisons between treatment groups af--
ter the establishment of treatment stabilization. In evaluating the efﬁca_cy» of a 30% IOP
lowering theraby for normal tension glaucoma in our study, we adopted a per-protocol
(PP) approach that compared a control group from the time of randomization and a
treated group from the patients’ individual times of treatment stabilization (IOP stabi-
lization), and all the data from the treated patients collected prior to IOP stabilization
were excluded from the analysis. As tréated patients generally experience changes in dis-.
ease state during the period awaited for treatment stabiliZation, neglecting the lag time
led to the invalidity of our PP approach for efﬁéacy assessment. Based on the results
from our simulation study of the MD daté, we saw that failure to appropriately account
for the lag time in the PP analysis can result in bias in parameter estimation and dimin-
ishing power Qf statistical tests. Therefore, a plausiblé method for assessing treatment
effects after the stabilization of treatment shbuld take the lag time into consideration
and make proper baseline time matching .betwveen the treatlhent groups. In any case,
it is important to be aware of the fact that an adjustmerit made to the baseline times
may .produce heterogeneous treatment groubs that 'differ with respect to certain base-
line characteristics. Our proposed PCLIN approach in the longitudinal analysis and the .
multistate modelling approach with the use of a single Cox model with time-dependent

treatement stabilization covariate in the time-to-progression survival analysis not only

incorporated information on IOP stabilization into the modelling of the daﬁa, but also
11
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followed the intent-to-treat (ITT) principle. By inchiding all patieﬁts who were random-
ized in the final analysis of the trial as in. the case of an ITT analysis, both approaches
tend to presefve homogeneity of the treatment groups and hence provide an unbiased
means of treatment group corﬁparisons. On the contrary, in using the PP approach,
which analyze_d a subset of patients/data which fulfilled the treatment efficacy criteria,
randomization of the patients was lost and a reduéed sample size resulted. Subse(juent

analyses of this subset of data was prone to selection bias and loss in statistical power.

In conclusion, when thereﬂis a delay invtreat'ment stabilization, an ITT analysis that
takes into account the lag time remains an ideal approaéh to the evaluation of a clinical
trial. In analyzing the time-to-progression data, the multistate modelling approach is
preferred to the baseline-adjustment épproach because the former evaluates the overall
clinical effectiveness of the IOP reduction therapy in an unbiased fashion. Although the
latter seemed to provide a reasonable baseline fime correspondence between the treated

and the control groups, and showed a better efficacy assessment than our PP approach,

the assessment was likely to be biased.




Chapter 10
Future Research

The main focus of this thesis has been on interpreting the difference in the results and
comparing the performance of the intent-to-treat and the per-protocol analyses in eval-
uating clinical trials in the presence of a delay in treatment stabilization. The intent-
to-treat (ITT)' approach included all the patiénts who were randomized into the final
analysis and patients were followed starting from the time of randomization. While the
criteria according to the ITT principle as previously described compose the only defini-
tion of the I'TT approach, there can be different ways of defining a PP approach because
the treatment efficacy criteria which a PP approach 1s based on vary according to how
experimenters view a therapy as efficacious. In the context of our study, a PP analy-
sis aims to assess a treatment effect after the stabilization of treatment is established.
We could have defined a different set of efficacy criteria for our PP analysis which as-
sumes a different baseline other than the time of randomization for the control patients
or includes a different subset of patients for analysis. QOur baseline-adjustment approach
used in analyzing the time-to-progression data adjusted the baseline times for the control
patients by making use of the distribution which the time tO:IOP stabilization within
the treated group followed. Exploring other pdssible methods of baseiine adjustment for
better time correspondence between treatment groups remains a future research topic on

efficacy assessment.

In the simulation experimeént, the mean defect data were generated based on the

piecewise linear mixed effects model, and no missing data problem due to drop-outs was
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addressed. In light of the presence 6f a possible floor effect irﬁpoSed by the lower limit
of the MD level that.ca,n be attained, a11 the simulated MD values that fall below the
lower bound should be excluded from the analysis. We can treat patients as if they drop
out of the study at the time when their MD reaches the lower limit, and consequently,
in the simulation experiment, we could régard the.MD data that fall outside the realistic
range as non-ignorable missing data. In particular, a more negative decay rate will result
in a higher proportion of missing data, and the impact the missing observations have
on the results of thve'IT T and the PP analysis requires further research. In\}estigating
such an impact through simulations can lead to a bett‘e‘r. ‘understanding' of the floor effect.
Moreover, patients whose MD levels at baseline are:c_lose’to the lower limit probably show
a different trend of depression and especially a slower MD decay rate than those who
have less negative MD at baseline. We might simulafe different MD slopes for patients

with a wide rangé of different initial MD levels and study the floor effect on the outcome.

To account for the delay in the treatment leffect'present in our data, we fitted a
piecewise linear mixed effects model to the mean defect data Withih the treated group,
~and fitted the multistate disability model to the time-to-progression data by means of

a time-dependent Cox model with an indicator Varidble'for IOP stabilization. In both
the longitudinal and the survival analyses, we assumed a threshold treatment effect.
Different decay rates of the MD before and after IOP stabilization were assumed for the
treated patients. The decay rate did not change gradually in the vicinity of the time
of IOP stabilization; the treated patients followed a different decay pattern after IOP .
‘stabilization. Similarly, by using a time-depe.ﬁdent indiéator variable for IOP stabilization
in the Cox model, the treat_rhént of having a 30% IOP reductién will be treated as
not having taken any effect before the stabilization and as having reached its full effect
afterwards. The abrupt change from no treatment effect to a full effect at the time of IOP
stabilization might not be realistic and ‘does not seem to describe acéurately the effect of

the IOP lowering treatment. We can consider a linear lag model or other non-threshold

types of lag models for the treatment effect to better capture a gradual achievement of
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a full effect over time.‘ T‘hei use of lagged models was mostly discussed in the context
of survival analysis. Implementing the same idea in longitndinal analysis is worthy of
future work, and success in the implementation will enhance our underspanding of the
effect a treatment has on the course of a disease in the presence of a lag time in treatment
stabilization . On the other hand, when analyzing the multistate disability model, we can
apply a different approach proposed by Andersen [27], who used transition probabilities
in the parameter estirnaltion procedure. This approach involves fewer eissumptibns than
the time-dependent Cox régression analysis that Was applied in this thesis. It is also more
applicable in general cases where the treatment groups do not have proportional hazards.
However, the parameter estimation procedure is f'armore complex and computationally

intensive.

Throughont this thesis, the MD data and the time—to-éveni data were analyzed sep-
arately. The MD level was correlated with the time to progression because the MD is a
measure of the generalized visual field loss and the progression end point was determined
by a persistent presence of a cluster of depression pbints in the visual field based on
the four-of-five criteria adopted by the Collaborative Normal Tension Glaucoma Study.
Being able to incorporate the information on t_lle degree of generalizéd visual field loss
into the analysis of the time-to-progression data will most likely improve the modelling
of the hazard of progressicin and therefore provide insights into the prediction of the sur-
vival rates (without teaching the progression end point) for patients with normal tension
glaucoma. In particular, as repeated measurenlents of the MD are available in our data,.
one can consider _mo'delli.ngj the lbngitudinal data and the survival data simultaneously.
Waulfsohn and Tsiatis [32]. proposed a joint modelling approach which made use of a joint
likelihood of the covariate repeatedly measured zind the survival procéss for parameter
estimation. They considered the linear mixed effects model for the covariate process

and the Cox proportional hazards model for the survival process. The two models were

used for the 'separaté analyses of the'MD data and the time to event data in our study

and they were found to provide reasonably good fits to the data. Therefore, the joint
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modelling approach seems ‘to be readily applicable to our case.

All of the above recommendations for future research deal with the issue of a lag
time in treatment stabilization in the evaluation of clinical trla.ls Some of the suggested
analytical approaches such as adjusting baseline times for the control group are ad-hoc
and do not have a general apphcatlon in practlce If clinical researchers foresee a lag time
for the achievement of a full treatment effect, 1twou1d be useful to come up with remedial
actions at the design stage of a clinical trial. For example, problems of patient drop-outs
before treatment stabilization and inability to achieve full treatment effect are associated
with reduced sample sizes. Measures that correct for patient loss in the design of clinical
trials will free researchers from future problems regarding insufficient statistical power of
treatment comparison procedures. The corrective measures are especially adrfantageous
as problems brought about by the treatment delay are often difficult to rectify after the

‘trial is carried out. In any case, it is equally important to address the treatment lag issue

at the design stage and in the analysis of a clinical trial.
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