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ABSTRACT 

The research presented in this thesis is directed towards the development of models for 

the calculation of cutting forces in bandsaws. The motivation for this work is the search 

for a solution to the washboarding problem in sawing. Washboarding is a cutting 

accuracy problem that is often found in sawmills which causes losses in material and 

labor. 

The first chapter of this thesis presents a literature review of previous research 

conducted both in cutting mechanics and the washboarding problem. The references 

consulted indicate that the presence of lateral cutting forces is caused by unbalanced chip 

loads on the saw teeth during vibration. A survey in the literature in wood cutting reveals 

that no previous research is available which can be directly applied for the estimation of 

these lateral cutting forces in bandsawing. Therefore a series of models from metal 

cutting are studied and their application to wood cutting considered. 

The body of the work divides the cutting process in two major, independent 

components. The first part is the static process that would occur under unbalanced chip 

loads but no tool vibration. The second part is the portion of the process that creates 

components of force which depend upon the kinematics of the cutting process. 

A series of cutting models to estimate the forces under static conditions in bandsawing 

are proposed in the second chapter of the thesis. The third part of the work shows the 

development of a series of fundamental models that cover the analysis of the dynamics of 

the simple orthogonal cutting process. The theories proposed in that section are 

compared to the findings of other researchers and it is concluded that the model improves 

the understanding of the cutting process during tool vibrations. The fourth section of the 

work provides a series of experimental results that support the developments achieved for 

the static portion of the cutting force model for bandsawing. Finally, the last chapter of 

the thesis presents a series of conclusions and suggestions for reducing the washboarding 

problem by decreasing the magnitude of the lateral forces exerted in a vibrating bandsaw 

tooth. 
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CHAPTER I 

"If a fool persists in his folly, he would become wise." 

- William Blake 

1. INTRODUCTION AND OVERVIEW 

1.1. Background 

The invention of the bandsaw was first claimed by William Newbury in 1808. Early bandsaw 

machines and their blades were plagued with every problem imaginable, and many which could 

not be imagined. Changes were continuously implemented during the several years that it took 

to develop the knowledge to make the wide bandsaw practical. In spite of the difficulties 

encountered, bandsaws have many advantages such as their continuous cutting action. Bandsaws 

are used extensively in the wood cutting industry from primary log break down to various 

resawing operations in sawmills. This extensive use of wide bandsaws results from their ability 

to cut a wide range of primary log sizes, to operate at high cutting speeds, and to remove a 

minimum amount of material during cutting. Due to the relatively thin saw-blades used, 

bandsaws are also more suitable for making deeper cuts than are circular saws since less wood is 

lost. 

Even though many of the difficulties associated with sawblades have been overcome, some 

key problems still remain. Most of the problems encountered today are related to the dynamic 

characteristics of the sawblade as well as the cutting process itself. One such problem commonly 

known as "washboarding" is particularly problematic in the wood sawing industry, and has been 

a topic of ongoing research for several years [1]. This problem is characterized by a washboard

like pattern in the finished sawn surfaces, and is caused by resonant vibration of the sawblade at 
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high frequencies. This pattern can be easily seen in the sawn boards and it requires planning in 

order to be removed. This is of course undesirable because of the associated wood loss and 

additional secondary operations required. 

The major problems involved in the study of the washboarding phenomenon are: 

1) To develop a better understanding of the dynamics of the sawblade and bandmill systems 

2 ) To understand the forces acting upon the blade which are responsible for the deviation 

from its intended path 

3) To identify potential improvements that can be implemented in sawblade design in order 

to eliminate the washboarding problem ^ 

This thesis deals with the last two points above. The discussion concentrates on an 

experimental and analytical study of the factors that influence the cutting forces in sawing 

including saw tooth geometry, dynamics of the cutting process and geometry of the chip loads 

applied upon vibrating saw teeth. 

1.1.1. Bandsawing Process 

A schematic representation of the bandsawing process is shown in Figure 1-1. The blade 

moves downward into the log with cutting velocity C, the log is fed horizontally into the blade 

with a feed velocity Vj. The solid wood in the path of the teeth is severed into tiny chips. The 

bottom wheel is driven by an electric or hydraulic motor through a belt drive. The top wheel is 

lifted by a hydraulic system which tightens or 'strains' the blade. This blade 'straining' process 

is performed before operating the mill and its purpose is to stiffen the blade. 

Two pressure guides made of reinforced rubber are supported on two guide arms connected 

with the vertical column of the mill frame. The purpose of these guides is to stabilize the blade 

in the cutting region. During cutting the wood is supported by the carriage and passes through 

this span of blade. 

2 
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Top wheel 

Bottom Wheel 

Figure 1-1. Schematic representation of the bandsawing process 

1.1.2. Washboarding Problem 

As mentioned in Section 1.1, washboarding is a sinusoidal pattern that can be often found on 

the surface of sawn wood like the one shown in Figure 1-2. Lumber with washboarding is not 

acceptable since this pattern increases the deviation of the board thickness from the target size, 

which is a parameter of sawing quality in the lumber industry. As a result, boards have to be cut 

thicker than the target size and then planed, which transforms into material losses, additional 

labor and the need for more machining equipment. 

Figure 1-2. Washboarding pattern 

3 



Chapter I Introduction 

Washboarding is a problem that sawmills have always dealt with but one for which a solution 

has still to be found. Most sawmills experience at least some degree of washboarding, and 

although in practice different measures are taken to decrease the problem, such as changing the 

feed speed, the blade speed or even the blade itself, these modifications are often time 

consuming and limited in effectiveness. The main reason for the lack of success in finding a 

practical solution to the problem is that the washboarding phenomenon is still poorly understood. 

1.1.3. Bandsaw Blade Geometry 

A bandsaw blade is a toothed strip of steel welded to form a continuous loop with teeth along 

one or both edges. The toothed region of a saw blade is shown in Figure 1-3. The open space in 

front of a tooth is called the gullet. This space holds sawdust when the tooth is cutting. The 

sawdust produced will be stored in the gullet and released at the bottom of the log. If more 

sawdust is produced than the gullet can accommodate it will be spilled between the sawn 

surfaces and the blade. Bandsaw blades with deep gullets are used for cutting soft wood and can 

be run at higher feed speeds than blades with smaller gullets, which are used for hard wood and 

can only handle low feed speeds. Deeper tooth gullets are used when high feed speeds are 

required but increasing the depth of the gullet has also been found to increase washboarding. 

tip 

Figure 1-3. Wide bandsaw blade geometry [1] 

4 



Chapter 1 Introduction 

Pitch is the distance between two consecutive teeth. It ranges from 44 to 76 mm. In practice, 

small pitches are found to produce smoother surface finish but only allow for low feed speeds as 

mentioned above [2]. Hook is the angle of the tooth face with respect to the feed direction as 

shown in Figure 1-3. A generally accepted rule is that softwoods require a greater hook angle 

than hardwoods. Typical values are 25 to 30 degrees for softwood, 20 degrees for medium 

density wood and 15 degrees for hard wood [2]. 

In order to prevent the back of the tooth tip from rubbing the wood during cutting there must 

be a certain amount of clearance. This is provided by the clearance angle, measured between the 

line made by the tooth tips and the back of the tooth. 

In practice, the type of blade used has been found to have great impact in the presence of 

washboarding. Thicker blades are known to produce less washboarding. However, they produce 

wider kerf, which leads to material waste and therefore are not desired. 

1.1.4. Saw Tooth Tip Geometry 

Only a small part of the blade shown will come in contact with the wood during the cutting 

process. This part corresponds to the encircled region labeled "Tooth tip" in Figure 1-3. This 

portion of the tooth contains a number of geometrical parameters that affect the cutting forces 

during bandsawing. This geometry is shown in detail in Figure 1 -4 with some typical values for 

the variables. 

Figure 1 -4 shows the thickness of the chip being removed from the workpiece, called bite in 

the lumber industry; the gauge or thickness of the sawblade; the kerf, which corresponds to the 

width of the main cutting edge; a, the back clearance angle and y, the hook angle of the tooth. 

Three orthogonal components of force act on the saw tooth, the main force Fm, also called 

tangential force, the feed force Fj in the plane of the blade, and the lateral force perpendicular to 

this plane. The direction of the forces acting on the tooth is shown with respect to a local 

coordinate system placed in the middle of the main edge of one tooth. 

5 
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Region ABCDEF in Figure 1-4 is the portion of the tooth that is in contact with the wood 

during cutting. Points ABCD and ABF define two regions of importance. The plane ABCD is 

located on the face of the tooth and contains all three cutting edges. The geometry and 

orientation of these edges influences the cutting forces applied to the tooth. The plane ABF 

corresponds to the lateral face of the tooth, which is the one being pushed sideways towards and 

from the wood while the tooth vibrates. 

Figure 1-4. Three-dimensional view of a saw tooth and typical values of variables 

When examining the saw tooth, three clearance angles are found. The clearance angle a, has 

already been defined above. Two other angles cannot be clearly seen in Figure 1 -4 and therefore 

two more views are required to thoroughly describe the geometry. 

As shown in Figure 1.5, the plane of the face of the tooth, ABCD, differs from a rectangle by 

virtue of a clearance angle called the radial angle, which will be noted as CCR in this thesis. 

Typical values for this variable range between 5 and 7 degrees in wood bandsaws. Another 

6 



Chapter 1 Introduction 

important variable that can be seen on this plane is the distance between the side of the tooth tip 

and the side of the blade, which is called side clearance. This distance helps avoid rubbing 

between the saw tooth and the sides of the kerf. 

Kerf 

Figure 1-5. View of the plane that lies on the face of the tooth 

The plane that crosses points ADEF, parallel to plane XZ, contains the tangential angle, which 

provides clearance with respect to the flank conducted by edges AB and CD. This angle is 

shown in Figure 1-6 and will be noted as otj in this work. 

Gauge 
Y—H 

Side 
Clearance 

F E 

\ A D 

Figure 1-6. Cut-away view of the tooth through the plane ADEF 
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Chapter 1 Introduction 

1.1.5. Saw Tooth Defects 
In the process of saw manufacturing and preparation, a large amount of effort is devoted to 

swaging and setting of the teeth and also to the leveling, tensioning and straightening of the 

blade. One of the goals of this process is to make all the teeth in a sawblade identical and follow 

each other in a straight line in order to avoid unbalanced chip loads. However, it is evident that 

this goal is quite ambitious and is not fully achieved in practice. Saw tooth defects have been 

identified to cause unbalanced lateral forces acting on saw teeth [12]. Also, sawblades are often 

subjected to extreme operating conditions during use, which can distort their original geometry. 

There is a need to understand how these defects affect cutting accuracy in order to improve the 

sawing process. The following table presents a summary of common tooth and preparation 

defects. 

Table 1 -1. Saw Tooth Defects 

Defect Possible Causes Figure 

Tooth face 
obliquity 

Under ideal conditions, the face of the 

grinding wheel should be perpendicular to 

the centerline of the sawblade during 

sharpening. If the wheel is swiveled by an 

amount 6Q, the face of all teeth will become 

oblique with respect to the direction of the 

cut. This defect will cause a consistent lateral 

force applied to all teeth on the blade. 

Sawblade 

Bent tooth 

Improper punching of the teeth in a new 

sawblade can produce localized tooth 

bending. This defect is not corrected 

automatically during leveling, tensioning or 

straightening and therefore it must be 

corrected manually and it might not be 

detected before the blade is put in operation. 

Centerline of the 
sawblade 
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Chapter I Introduction 

A bent tooth will cut an unsymmetrical chip 

load that yields lateral forces. 

The presence of bent teeth can be tracked on 

the cut wood boards since a visible mark will 

be left behind by the bent tooth for every 

revolution of the band. 

Broken corners 

In practice, after a sawblade is put in 

operation, it is found that some saw teeth 

present damaged corners. This defect is 

produced when the teeth impact knots or 

could also be caused by imperfections in the 

manufacturing of the blade. 

/ Face of 
/ Toot* 

the \ 

Broken 
corner 

Tooth 
misalignment 

One of the steps in sawblade preparation is 

the straightening of the saw teeth. A 

misalignment error as small as a fraction of a 

millimeter is likely to produce unbalanced 

chip loads on the saw teeth that will produce 

lateral forces. 
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Tooth face 
asymmetry 

The radial angle in sawblades is set during 

swaging. The shaping dies that produce 

these angles must have the same setting and 

angle during the process. However 

misalignment and wear on the swage can 

cause the face of the tooth to be 

asymmetrical. 
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Chapter 1 Introduction 

1.2. Previous Research 

The dynamics and stability of a sawblade during washboarding have been investigated quite 

thoroughly by a number of authors [1,3, and 7]. This work has provided some understanding of 

the mechanisms that produce washboarding. However, the problem also presents the challenge 

of modeling the forces applied to the blade during cutting, which has not yet been addressed. 

These forces need to be included in the models for the stability analysis of the sawing process as 

the forcing function component of the equation of motion of the blade. The development of such 

a force model for bandsawing requires a high degree of understanding of the wood cutting 

process, which is not available at this time. Due to this fact, the review provided here considers 

in detail previous developments in the area of metal cutting, which have been applied to the 

analysis of the stability of the turning and milling processes. These models can provide some 

understanding of the physics of the cutting force functions in washboarding but need to be 

expanded in order to be applicable to wood machining processes such as sawing. 

1.2.1. Washboarding 

Tian [3] studied the washboarding phenomenon in unguided circular saws. He investigated 

the instability of the saws subjected to multiple regenerative and follower cutting forces. In his 

work, Tian conducted a series of tests, which showed that the maximum amplitude of vibration 

of the saw blade during washboarding decreased as the feed speed of the wood increased. This 

finding ruled out the tangential and feed forces as being the cause for the washboarding pattern 

that was produced since these forces will most likely increase with the feed rate. The conclusion 

for his experiments was that lateral regenerative cutting forces were the cause of the problem. A 

regenerative force is one that depends upon the displacement of the tooth currently in the cut 

compared to the displacement of the previous tooth. Regenerative forces have been found before 

to be the cause of instabilities in the chatter problem in machine tools [4, 5 and 6]. 

In order to illustrate this idea, two consecutive teeth are shown in Figure 1 -7. Case (b) shows 

a larger bite than case (a) but the same lateral displacement for two consecutive teeth. It can be 

seen how the extra lateral cutting area is smaller when the bite is larger and therefore the lateral 

force should also be smaller. 
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Chapter 1 Introduction 

Figure 1-7. Effect of the bite on the lateral cutting forces 

Luo [1] studied the washboarding problem in bandsaws. He determined the stability regions 

of the saw blade subjected to the regenerative lateral cutting forces and the system damping. 

The regenerative forces in Luo's work were defined as: 

FL=-KL[w(t)-4t-T)\ (1-1) 

Where K L is the regenerative cutting force coefficient, w(t) is the lateral displacement of the 

current tooth, T the period between teeth and w{t - T) is the lateral displacement of the previous 

tooth. The difference w(t) - w(t - T) corresponds to the lateral chip thickness at time t as shown 

in Figure 1-7. 

In Luo's study, the regenerative cutting force coefficient was not determined. Also, the 

influence of the lateral velocity of the blade on the flank cutting force was not taken into account. 

It will be seen later in this chapter that researchers in metal cutting have found that the surface 

slopes have an important impact on the characteristics of the dynamic cutting forces. 

Consequently, an experimental investigation into bandsaw lateral cutting forces will be 

conducted in order to gain thorough understanding of the mechanism of washboarding. 
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Chapter 1 Introduction 

1.2.2. Wood Cutting 

Franz [8] conducted one of the first pieces of fundamental research in wood cutting 

mechanics. He concentrated his study on the forces produced in cutting along the grain. His 

main finding was that in this direction, one of three different types of chips would be formed 

depending upon the cutting conditions. He called these chips types I, II and III. Chip type I is 

formed when positive rake angles over 20 degrees and large bites (more than 0.5 mm) are used. 

The wood splits ahead of the tool by cleavage until failure in bending as a cantilever beam 

occurs. Chip type II is a continuous type chip that is produced when the wood fails along a 

single plane that extends from the tool edge to the workpiece surface. This type of cutting 

mechanism is similar to the one in metal cutting and is desirable in wood machining because it 

produces excellent surface finish. Chip type III occurs when the tool forces cause compression 

and shear failure of the material ahead of the cutting edge. These conditions arise when negative 

or small rake angles are used in combination with small bites. 

Franz also found that when chips type I and III are formed, the cutting forces are cyclic in 

nature. In contrast, he observed that continuous type chips produced constant forces, which 

reflect the homogeneity of this type of cutting process. Under these conditions, the chip 

typically assumes the form of a smooth spiral with a radius that depends upon the uncut chip 

thickness. 

A model for the prediction of the chip type formation was proposed in [8] based upon an 

evaluation pf the applicability of metal cutting theories to wood cutting. Franz questioned the 

assumption made in metal cutting that the resultant force system applied to the face of the tool is 

collinear with the one applied on the fracture plane in the workpiece. If this assumption is not 

valid in wood, then the force moment acting in the cutting region could determine the failure 

mechanism by which the chip is created. Franz validated this theory against his experimental 

data and found that the chip type to be produced in planning of wood can be predicted. The only 

information necessary for this prediction is the rake angle of the tool, the coefficient of friction 

between the tool face and the chip and the intended chip thickness. 

McKenzie [9] studied the effect of cutting velocity on the wood cutting forces. He found that 

in the range of practical wood machining the effect of speed on the cutting forces is negligible. 
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This researcher also conducted experimental and analytical studies of the cutting process in 

the direction perpendicular to the grain. This type of operation is usually called ripsawing in the 

wood working industry. The experiments showed that a series of different chip formation 

mechanisms take place when cutting perpendicular to the grain. Depending upon the rake angle 

of the tool, the wood species and the moisture content of the wood sample, failure was found to 

take place either below or above the plane of cutting. When the wood below the cutting edge has 

been damaged, the next pass of a tool on that surface will create forces that are much lower than 

the ones found for the first pass since the workpiece has partially failed already. This 

phenomenon is produced by the fact that the wood fibers separate and bend under the cutting 

plane, causing localized failure regions. A series of analytical models to predict the cutting 

forces for ripsawing given the material properties and the cutting parameters were presented and 

validated in this work. 

A shortcoming for the applicability of the work reported in [9] is that the models presented 

were validated in a series of orthogonal cutting tests in which there is no material surrounding 

the cutting region (i.e. the cutting edge is wider than the workpiece). However, in most 

ripsawing processes, the material around the cut provides resistance to the fibers below the 

cutting plane against bending. This in effect means that the cutting forces for a constrained 

workpiece will be most likely lower than those estimated by McKenzie since a portion of the 

work is wasted on the bending of the fibers in the non-constrained case. 

St. Laurent [12] studied the effects of sawtooth edge defects on the cutting forces in 

bandsawing. He conducted a series of experiments using damaged saw teeth attached to a force 

transducer. A wood specimen was placed on a guided holder and pushed onto the saw tooth 

traveling in a linear slow motion and the cutting forces were measured. The results showed that 

small defects on the corners of teeth resulted in lateral forces values of up to 27% of the main 

cutting force when the size of the defect was about one bite. It was also found that the departure 

of the main edge of the tooth from perfect orthogonal cutting conditions produced consistent 

lateral forces. These forces became about 20% of the main cutting force when the angle of 

deviation reached about 10 degrees. 
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1.2.3. Metal Cutting 

Extensive research has been conducted in metal cutting since the 19 th century. One of the 

most important contributions in this area is the analysis of the orthogonal cutting process 

conducted by Merchant [14]. Orthogonal cutting occurs when a tool wider than the workpiece 

removes material with its main edge perpendicular to the cutting velocity. Even though this is 

the simplest cutting case possible, it provides an important understanding of the physics involved 

in the cutting process. 

When the tool vibrates during orthogonal cutting, a more complex situation than that of 

orthogonal cutting arises. This process is known as dynamic cutting and it has received great 

attention for being of fundamental importance for the understanding of the self-induced vibration 

problem in machine tools, called "Chatter". In this case, the forces produced on the tool are not 

only dependant upon the chip thickness but also on the instantaneous cutting velocity of the tool 

and other factors such as the instantaneous tool velocity. 

Even though the orthogonal and dynamic cutting analyses provide force models for the most 

simple chatter cases, the situation in bandsawing involves a tool that has multiple cutting edges. 

The static forces produced in cutting with a multi-edged tool have been studied in the past 

usually with the aim of developing models for the chip flow in turning. 

In order to develop an understanding of the cutting forces produced during washboarding, a 

thorough analysis of the three-dimensional dynamic cutting process is needed. No previous 

attempts to solve this complex problem have been found at this point by the author. 

1.2.3.1. Orthogonal Cutting 

Although the most common cutting operations are three dimensional and geometrically 

complex, the simple case of two-dimensional orthogonal cutting is used to explain the general 

mechanics of metal removal. Merchant [14] developed an analysis of the orthogonal static 

metal cutting process based on the assumption that all the deformation in the process occurs in a 

thin layer zone called shear plane. This process is shown in Figure 1-8. 
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A metal chip with a width of cut b (normal to the paper) and chip thickness h is being sheared 

away from the workpiece. In the orthogonal case, cutting is assumed to be uniform along the 

cutting edge; therefore the process can be considered to be a two-dimensional plane strain 

deformation process without side spreading of material. R is the resultant force applied to the 

chip by the tool and it can be resolved in main and feed force components as shown in Figure 1-

8. These forces are given by the following expressions: 

Fm=hbT co<P-y) 
sin(c^)cos(e^ + P - y) 

(1.2) 

sin(^)cos(^ + P - y) 
(1.3) 

Where r is the shear stress assumed to be uniform over the shear plane A B , (f) is the shear 

angle, y is the hook angle and B is the apparent friction angle on the face of the tool. From the 

above expressions the cutting forces may be determined, provided that the shear stress, friction 

angle and shear angle are all known. Initially, Merchant considered that x would have the same 

value as the yield stress for the work material and that B would have the usual value for dry 

sliding friction. Later he identified that r would have to be measured from cutting tests because 

the high strain rates in metal cutting invalidate the static test data found in material handbooks. 

Also, B has to be measured from cutting tests since the friction condition on the tool face is a 

combination of plastic and elastic friction. Therefore just a sliding friction model does not yield 

good results. 

Figure 1-8. Orthogonal cutting process 
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The shear angle is a metal cutting characteristic that defines the geometry of the deformation 

within the metal being cut. Merchant applied the principle of minimum energy, which implies 

that̂  adjusts itself so that the power consumed in the process is a minimum. He derived the 

following equation for^: 

<j) = 7L-\B^-y (1.4) 
4 2 2 

This theory has been criticized in the metal cutting research community because there is no 

physical evidence for it even though the concept is intuitively appealing [15]. 

Lee and Schaffer [16] applied the theory of plasticity for an ideal rigid-plastic material, and 

assumed, like Merchant, that the deformation occurred within a constantly stressed zone. They 

considered that there must be a stress field within the chip to transmit the cutting forces from the 

shear plane to the tool face. This was represented as a slip-line field in which no deformation 

occurs although it was stressed up to the yield point. They proposed the following shear angle 

relationship: 

t = ^r-P + r (1.5) 

None of the equations proposed above yields quantitatively accurate predictions for the shear 

angle due to the oversimplified assumptions embedded in them. However, they provide some 

understanding of the factors that influence the forces in the static cutting process. 

Researchers in the metal cutting area concluded that since the number of unknown factors in 

the cutting process is large, a unique value of the shear angle might not exist [15]. Thus it has 

been suggested that any analysis should not be directed at establishing a single relationship, but 

instead should locate the possible bounds within which the shear angle must lie. 

16 



Chapter I Introduction 

1.2.3.2. Dynamic Cutting 

The effect of tool vibrations on the cutting forces has been studied extensively in metal 

cutting in a search for the solution of the machine tool chatter problem. The research efforts by 

Tobias [19], Albrecht [20], Tlusty [21], W u [22, 23] and Wallace and Andrew [24, 25] towards 

the understanding and modeling of this dynamic cutting process showed that the forces depend 

on the instantaneous chip thickness and the slope of the inner and outer surfaces. The dynamic 

cutting process is illustrated in Figure 1-9 and w i l l be considered in this section. 

The trajectory of the tool shown is defined by functiony(t), which corresponds to the inner 

surface of the cut as shown in Figure 1.9. The outer surface of the cut is defined by>>(/ - T), 

which is the path of a previous tool pass. The instantaneous chip thickness is 

dh(t) = y(t) - y(t - T) and the rate of change of the chip thickness is dh = y(t)- y(t -T). 

Assuming the vibration amplitude of the tool for the previous pass is A0, the length of that wave 

X0 and the slope of the surface created measured at the end of the shear plane, 80. A t the instant 

shown, the tool also vibrates with amplitude Aj-, the length of the corresponding wave left on the 

surface is A, and the slope of the inner surface is 5,. Fm corresponds to the main cutting force and 

Ff to the feed force, s is the phase shift between the inner and the outer wave, tj> the 

instantaneous shear angle, y the rake angle of the tool and Vo the tangential speed of the cut. 

The oscillating component of the cutting force was considered by Tobias [19] to be a function 

of two independent factors F(h, h) for the case in which the tool only vibrates in the vertical 

direction Y shown and cuts at constant tangential speed VQ. 

Where dF(t) is the oscillation of the cutting force, dh(t) the instantaneous chip thickness, k; 

(1.6) 

the chip thickness coefficient, dh the rate of chip thickness change and the chip thickness rate 

of change coefficient. 
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Figure 1-9. Dynamic cutting process 

The dynamic cutting problem has been subdivided, by the researchers in the area, as the 

superposition of two different mechanisms called "Wave removing" and "Wave cutting" in order 

to separate the different factors that affect the cutting forces for each situation. 

In wave removing, a rigid tool cuts a wavy surface. Albrecht [20] explained that the force in 

this case would be proportional to the chip thickness and the slope of the outer surface. Previous 

investigations into the dynamic metal cutting process by employing high-speed cameras have 

confirmed that the shear angle oscillates during cutting [26]. The process studied by Albrecht is 

shown in Figure 1-10. 
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Figure 1-10. Wave removing process 

Consider the case in which a tool is removing a chip from a surface, which has a slope d at the 

free end of the shear plane with respect to the direction of the tangential cutting speed as shown 

in Figures 1-1 lb and 1-1 lc. The cutting force has been found to be different with respect to the 

case in which the tool is cutting a flat outer surface for the same instantaneous chip thickness. 

This change in the forces has been found by the researches in metal cutting to be caused by a 

variation of the position of the shear plane. 

Figure 1-11. Oscillation of the shear angle during wave removing 

A formula was given by Albrecht [20] for the instantaneous position of the shear plane as a 

function of the slope of the outer surface, 

0 = 0m+CsS (1.7) 
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Where Cs depends on the ratio between the chip thickness and the wavelength. The value of 

this constant has been found experimentally to be between 0.5 and 1.0. (/>m is the shear angle in 

the absence of the surface slope. 

In Figures 1-1 lb and 1-1 lc the dashed line represents the original position of the shear plane, 

i.e. when cutting with no outer slope. The solid line shows the new position assumed by the 

plane under cutting with the surface slope. Point A is the position of the cut for the case in 

which a flat cutting surface is cut. Point B is the free end of the shear plane that is actually 

observed in dynamic cutting. This effect is considered by Tlusty [21] to introduce instability in 

the cutting process. 

Wave cutting is the process of cutting with a tool vibrating in the direction normal to the 

tangential cutting speed while considering a non-undulated original surface. 

Figure 1-12. Wave cutting 

The oscillating inner surface affects the instantaneous effective clearance angle as shown in 

Figure 1-12. Under these circumstances, the nose of the tool plays a role that has been 

considered to be very important for the process damping in dynamic cutting. However, this 

factor has proved difficult to model and an understanding of the localized process that occurs at 

this point still needs to be developed. It has been demonstrated experimentally [21] that if the 
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clearance angle is decreased, the normal force is increased and therefore damping will be 

introduced. This factor will play a stabilizing role in the cutting process. 

1.2.3.3. Three Dimensional Cutting 

In the cutting models presented in the previous sections, only tools with one cutting edge are 

considered. As discussed before, during sawing three edges are involved in the cut. This makes 

bandsawing a three-dimensional cutting process. Figure 1-13 shows the same tooth as Figure 1.4 

but in this case, the lateral vibrations present in the process are shown. The lateral velocity of the 

tooth is w and is collinear with the main edge of the tooth. The path left by a previous tooth is 

shown as well. The shape defined by points A B C D E F G and contained on the face of the tool, is 

being swept through the workpiece and its projection on the plane Y Z defines the uncut chip 

geometry. 

Figure 1-13. Geometry of cut in sawing 
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Usui, Hirota and Masuko [28] studied a three-dimensional cutting process similar to the one 

shown in Figure 1.13. The authors proposed a model in which the cutting of side and main 

cutting edges was taken into account for the prediction of the three components of cutting force 

and chip flow for turning operations in metal. Yellowley and Seethaler [29] developed an upper-

bound model for the prediction of cutting forces and chip flow angles for turning tools of general 

geometry. This model included a prediction of rake face contact based upon force balance. Both 

of these models consider a geometry that is closer to the sawing case than the orthogonal cutting 

models but are developed for static operations and therefore need to be expanded in order to be 

applied in this work. 

The following points summarize the findings of the literature review presented in this section: 

1) The literature available in the area of cutting forces in wood cutting provides fundamental 

understanding of the chip formation mechanisms in different fundamental types of machining 

processes. However, no analytical development or experimental work has been found at this 

point which can be directly applied to the estimation of the cutting forces in a saw tooth under 

the conditions encountered in washboarding. 

2) A number of research efforts in metal cutting are available, which are relevant for the 

analysis conducted in this thesis. These references cover conditions more similar to those in 

bandsawing than the literature found in wood cutting. However, it is identified that the direct 

applicability of this metal cutting knowledge might be limited and therefore a careful 

experimental investigation must be conducted in parallel with the analytical developments in 

order to provide evidence of the validity of the work presented. 

1.3. Thesis Objectives a n d Scope 

The main objective of the research reported in this thesis is to conduct an investigation into 

the lateral cutting forces generated in bandsawing. The motivation is the development of an 

overall model of the washboarding phenomena. 
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The scope of the work presented in the remainder of this thesis is: 

• To develop models for cutting force calculation in̂ bandsawing 

• To design and conduct a series of experiments for the evaluation of the models 

presented 

• To analyze the experimental data obtained 

• To provide recommendations for improvement in saw tooth geometry in order to help 

minimize the washboarding problem 
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CHAPTER II 

"I think and think for months and years, ninety-nine times, 

the conclusion is false. The hundredth time I am right." 

- Albert Einstein 

2. ANALYTICAL DEVELOPMENT OF A STATIC CUTTING 
FORCE MODEL FOR BANDSAWING 

The first chapter of this thesis discussed that the sawing process is poorly understood and 

force models for the specific conditions in bandsawing need to be developed. The work reported 

in this chapter aims to create relations between sawtooth parameters and cutting forces for wood 

machining processes under static cutting conditions. 

As a starting point for this study, the specific cutting conditions for a sawtooth during 

washboarding are discussed in the Section 2.1. The maximum lateral displacements of the saw 

tooth and the maximum surface slopes present in a typical washboarding pattern are also 

examined. 

From the literature review presented in chapter one, it was seen that the dynamic cutting 

process can be divided primarily into static and dynamic force component analysis. The static 

component depends on the material and tool properties and the uncut chip geometry and is the 

object of study in this section. A series of models that allow the calculation of the cutting forces 

for multiple-edged tools such as a bandsaw tooth are presented. The force calculations require a 

combination of orthogonal cutting data obtained from tests and analytical estimates of the chip 

flow direction. This analytical portion of the models has been conducted using the upper-bound 

approach which has proven useful previously in the analysis of similar processes [28, 29]. 
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The following models are presented: 

1) Two-edge cutting process for a tool with zero hook angle and no obliquity 

2) Three-edge cutting process with zero hook and no obliquity 

3) Two-edge cutting process with side edge obliquity 

These three cases cover most of the issues that require understanding in order to obtain a valid 

model for the static lateral cutting forces in bandsawing. 

2.1. Analysis of the Cutting Conditions during Washboarding 

Figure 2-1 shows the face of a bandsaw tooth during cutting. The convention used is 

consistent with the one established in Figure 1.4 in chapter one. The workpiece is represented by 

the shaded region in the figure. The boundary F E G H corresponds to a cut taken by a previous 

tooth. The representation has been simplified by only considering two consecutive teeth. The 

deviation A shows that there has been a relative lateral displacement between the teeth due to the 

vibrations of the sawblade. 

The main edge of the tooth is BC and the side cutting edges are A B and CD. The region 

A B C D E F corresponds to the current uncut chip geometry. The chip load applied to the tooth 

determines the magnitude and direction of the instantaneous cutting forces. F/is the force on the 

plane of the face of the tooth and is due to the friction produced by the chip sliding off the 

workpiece. This force is applied at angle J// with respect to the main edge of the tool and is 

assumed collinear with the direction of chip flow. 

Consider the top view of the bandsawing process presented in Figure 2-2., The convention 

again follows that of Figure 1.4 for the orientation of the axes. The two consecutive teeth shown 

are moving down towards the workpiece and cutting in the way shown in the process diagram in 

Figure 1.1. At the same time, a chip load like the one presented in fig. 2-1 is being removed by 

each tooth. The tooth represented in solid line is also vibrating sideways with speed w in the Z 

direction. The shaded regions presented correspond to the lateral chip loads that are exerted on 
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the tooth and removed by the side flanks. A t point O, the tooth leaves one side of the kerf to 

engage the other and the lateral chip load becomes zero. 

Iv 

Figure 2-1. Unbalanced chip load in the bandsawing process 

The trajectories of the sawteeth shown are assumed to be sinusoidal with length a being the 

distance between the maximum lateral displacements of adjacent teeth. The lateral chip 

thickness is variable, making this a dynamic cutting process similar to that encountered in the 

chatter problem in mill ing, turning and other machining operations [4]. However, a major 

difference between washboarding and other chatter cases previously studied by researchers is 

that the direction of the vibration of the tool is perpendicular to the feed velocity. 

Both points A and D correspond to the projection of the lateral cutting edges of the saw tooth 

in this view. A t the position presented, edge A E corresponds to the side clearance face of the 

tooth. The effective hook for the lateral cut is the angle between the face A D of the tooth and the 

Y axis ( 0 ° in the case shown). 
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It is important to establish the range of chip lateral thicknesses hi, phases a and surface slopes 

that yield washboarding. The amplitude of the washboarding pattern and the phase between 

teeth can be used to determine the lateral chip thickness range that is applied to the sawteeth 

during the cut. Tlusty's classical analysis of the stability in the orthogonal chatter problem [5] 

assumes that regeneration will occur when the phase between waves is 180 degrees. It is 

considered in that reference that such a phase yields maximum force oscillation since maximums 

of the outer wave are aligned with minimums of the inner wave, creating maximum chip load 

variation. However, it will be seen later in this section that this is not the case in washboarding. 

E F 

Figure 2-2. Top view of the dynamic cutting in bandsawing as the sawtooth 

Luo [1] conducted several cutting experiments in bandsaws. He described the washboarding 

pattern in terms of two pitches, one along the feed direction, Px and the other in the cutting 

direction, Py. Two types of washboarding pattern were studied in this reference. The first of 

them, called "washboarding type I" is shown in Figure 2-3 with typical values and following the 

convention for the axes established in the first chapter of this work. The main characteristic of 

this type I pattern is that the pitch is similar in both the feed and cutting direction. 
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Figure 2-3. Washboarding pattern type I [1] 

Another type of washboarding is shown in Figure 2-4. This pattern shows a shorter pitch in 

the feed direction when compared to the type I seen above. This is known as "washboarding 

type II". 

zt 
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Figure 2-4. Washboarding pattern type II [1] 
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Consider the coordinate system shown in Figure 2-2. Assume that the trajectory of the 

current tooth is due to a single vibration mode and corresponds to a sinusoid with wave length Px 

and that its position in the Y direction is given by, 

yi = Asm (2.1) 

Now, if the same amplitude is also considered for the previous tooth and the phase between 

the teeth is assumed to be a then the trajectory of that tooth can be expressed as, 

y0 =Asm\—x + a (2.2) 

The instantaneous lateral chip thickness will be the absolute value of the difference between 

the previous and current positions of the teeth, 

(2.3) 2n 2n 
sin —x + a -sin -—X U J p 

Using trigonometric identities, equation 2.3 can be expressed as, 

hL = 2 A cos (in a 
—X + — sin — u 2j 

(2.4) 

For variable x, the maximum possible value of hi in equation 2.4 above is hL = 2A and 

71 

occurs when a = —. For a constant value of a, the maximum lateral chip load h L m ax will occur 

when the argument of the cosine function in equation 2.4 is equal to nn, where n = 0, 2, 4... 

The equation for the position at which the maximum lateral chip thickness occurs is, 

P„ ( 
nn 

2 2n v 

(2.5) 
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The value for the maximum lateral chip thickness can be found by evaluating equation 2.4 at 

any value Xmax found from 2.5 for a given value of a. 

Table 2-1 presents some experimental results reported by Luo [1]. The phase s, in degrees, 

and the maximum chip thickness have been calculated from the information found on the pattern 

in the wood. The typical amplitude of washboarding varies from 0.13 mm to 0.5 mm and can be 

as large as 1.2 mm [1] therefore in Table 2.1 a typical value of 1.0 mm has been considered for 

illustration purposes. 

Table 2-1. Phase e, and Maximum Slope and Lateral Chip Thickness for Washboarding Type I. 

Washboarding Type I 
Amplitude 

[mm] 
Bite [mm] Pitch X 

[mm] 
s[deg] Maximum side chip 

thickness [mm] 
Maximum surface 

slope in the X 
direction [deg] 

1.00 0.64 71.00 3.22 0.0562 2.53 
1.00 0.64 66.00 3.46 0.0604 2.72 
1.00 0.61 40.00 5.51 0.0961 4.46 
1.00 0.61 38.00 5.78 0.1008 4.69 
1.00 0.61 36.00 6.10 0.1063 4.95 

Table 2-2. Phase 8, and Maximum Slope and Lateral Chip Thickness for Washboarding Type II 

Washboarding Type II 
Amplitude 

[mm] 
Bite [mm] Pitch X 

[mm] 
s[deg] Maximum side chip 

thickness [mm] 
Maximum surface 

slope in the X 
direction [deg] 

1.00 0.40 11.00 12.99 0.4381 14.86 
1.00 0.30 7.30 15.03 0.2616 20.36 
1.00 0.28 5.70 17.65 0.3068 23.90 
1.00 0.40 7.00 20.42 0.3545 20.95 

The table above shows that washboarding occurs when the phase is either between 3 ~ 6 

degrees for type I and 12-21 for type II. This is much different than the value of 180 degrees 

that is assumed in the classical analysis of the chatter problem. It can also be seen that the 

maximum lateral chip thickness involved in washboarding type II are at least twice that of that 

for type I. 
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2.2. Static Two-Edge Cutting Analysis for Bandsawing 

In order to study the cutting process presented in Figure 2-1, the analysis of a simplified two-

edge model has been conducted. The study aims to improve the understanding of the coupling of 

the cutting forces in multi-edged tools. The model requires the direction of chip flow of the 

cutting process to be predicted and it applies to a tool with zero hook. The final goal of this 

development is to achieve the prediction of lateral and feed cutting forces based upon a simple 

set of orthogonal cutting data for a given material. 

2.2.1. Considerations Involved in an Upper-bound Analysis 

It was discussed in Section 1.2.3.3 that previous research has been conducted in the prediction 

of the forces in three dimensional cutting using upper-bounds. This approach has been used 

extensively in the analysis of machining processes due to its simplicity [15]. The estimates using 

upper-bounds are often within 10% of the experimental values found by researchers in cutting 

[28, 29]. Based on these reasons, the models presented in the remainder of this chapter will be 

developed using this analysis technique. 

Upper-bounds are based upon a limit theorem, which states that "any estimate of the collapse 

of a structure made by equating the internal rate of energy dissipation to the rate at which 

external forces do work in some assumed pattern of deformation will be greater than or equal to 

the correct load" [37]. This theorem implies that any proposed plastic deformation field that 

satisfies the external constraints imposed on the process can be used to estimate a force that is 

slightly higher or equal to the actual solution. Furthermore, no knowledge of the stress condition 

inside the material is required. 

The first step in the development of an upper-bound is finding a deformation pattern that 

meets the kinematical constraints of the process. As an example of this procedure, consider the 

orthogonal cutting process shown in Figure 2.5. The magnitude and direction of the incoming 

velocity Vo are known. The face of the tool constrains the outgoing flow and therefore the 

direction of the final velocity of the material is known as well. A velocity diagram is proposed 

in the figure which satisfies the kinematics of the problem. This diagram is known as a 

hodograph. 
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The hodograph represented is only one out of an infinite number of possible solutions for the 

plastic flow in this process. In the case presented, the deformation field chosen contains a single 

plane in which all the material collapses, reaching the final geometry. This deformation plane 

also known as a shear plane is an idealization of the real process, which might involve a larger 

deformation region. The material to the right and left of the shear plane shown in Figure 2.5 is 

considered to be two independent volumes. 

The location of the shear plane in the cutting process shown is determined by the shear 

angle, <f> which is initially an unknown in the problem. The first goal of the analysis is to find an 

estimate for the geometry of the process by finding a value of the shear angle which minimizes 

the power expenditure. In order to achieve this, the energy spent in the process needs to be 

expressed in terms of <j> considering all other parameters in the process constant. 

The magnitude of the shear stress is considered to be constant over the entire shear plane. The 

value for this stress is assumed to be k, which is the yield shear stress for a continuous plastic 

deformation process. This value differs from x obtained from static tests because it is dependent 

upon the strain rates and temperatures present in the process. In reality, the material might 

present certain work-hardening characteristics, which will be dependent upon these two factors. 

Y 

Figure 2-5. Front view of a two-edge cutting process 
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The upper-bound approach does not consider these effects and therefore applies k as a simple 

constant. 

Upper-bounds assume that the properties of the material in the process are non-directional and 

therefore they are mainly applicable to isotropic materials. The approach can also be used as a 

first approximation for the analysis of anisotropic materials if an appropriate value for the shear 

stress k is obtained experimentally. 

2.2.2. Two-edge model geometry 

Figure 2.6 presents the face of a two-edged tool removing material from a workpiece. The 

tool moves towards the workpiece in the direction out of the page with velocity C. The main 

edge, BC has length rc,„ and the side edge AB has length b. 

Y 

FY 

Side edge 

\ A 

7 

/Vc 

Tool Face 
AM 

/- \ ) 

b 
\ / 

© c / 

\ ) 

A s ' 

Fz Main edge c z 
A s ' 

Workpiece 

c z 

Figure 2-6. Front view of a two-edge cutting process 
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The chip flows away from the cutting region with chip velocity VQ and angle ^/on the plane 

of the face as shown. Force FF shown is collinear with the direction of chip flow. The proposed 

deformation fields for this process are shown in Figure 2.7. 

2.2.3. Forces Acting on the Tool in Two-edge Cutting 

If quasi-static equilibrium of the chip is assumed, the cutting forces acting on the plane of the 

face of the tool shown in Figure 2-6 are the friction force from the chip, Ff and the edge forces 

Fex and Fez. These edge forces are assumed independent of the shear process occurring in the 

material and are due to secondary process of ploughing occurring on the cutting edge [15]. The 

total force in the Y and Z directions can be expressed as: 

F: =Ffsm(y/)+Fe: (2.6) 

Fy=FfcosM+Fey (2.7) 

The forces Ff, Fex and Fey can be estimated from orthogonal cutting data as follows: 

Ff=KfcAc=Kfcbkw (2.8) 

Where Kfc is the specific cutting pressure for the given material and cutting tool, Ac is the 

uncut chip area, b is the depth of cut and kw the width of cut as shown in Figure 2-6. 

The edge forces can be obtained from: 

FB = Kfeb (2.9) 

Ky=Kfek (2-10) 

Where Kfe is the edge constant for the given tool/workpiece combination 

The constants Kfc and Kfe can be obtained from linear regression of the orthogonal cutting 

data, which will be presented in the third chapter of this thesis. Examining equations 2.6 through 

2.10, it can be seen that the only missing parameter for the estimation of the lateral cutting forces 

is the chip flow angle y/. It is possible to obtain a theoretical estimate of this angle by 

formulating an upper-bound solution for the 2-edge cutting process. 
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2.2.4. Upper Bound Solution for the Chip Flow Angle in Two-edge Cutting 

The chip-flow angle y/ in the two edge cutting case shown in Figure 2-6 can be estimated by 

minimizing the power expression for a kinematically admissible model of the cutting process. It 

is assumed here that two shear angles are developed. The total power in the process is the result 

of the power spent on the shear planes and the friction on the face of the tool. The projection of 

the two shear planes present in the process on the face of the tool is shown in Figure 2.6. The 

total power is given by the following equation: 

Where k is the cutting shear stress, Vm and Vs are the magnitudes of the respective velocities 

on the shear planes and As, AM the areas of these planes. Friction has been introduced by 

assuming an area of plastic contact between the chip and the face of the tool; therefore V/ is the 

The set of views shown in Figure 2-7 helps the visualization of this three-dimensional cutting 

process. The hodographs shown correspond to a solution for the flow of the material, which is 

admissible kinematically. That is, given that the incoming velocity and direction of the material 

is known as well as the direction of the outgoing flow, the hodograph represents a solution that 

does not violate any flow rules. These hodographs are shown for the main and side edges. The 

incoming velocity Vo is constant and therefore irrelevant to the minimization of the power spent 

in the process. Considering this, the velocity of the chip on the X and Y directions is found from 

the hodographs as: 

W = kVmAm+kVsAs+kVfA (2.11) 

chip velocity and Af is this assumed friction area. 

Vcz = ^ o t a n ^ m 
(2.12) 

Vcx =VotanA (2.13) 

The chip flow angle is given by: 

tan 0S 

y/ = arctan 
tan ,̂ 

(2.14) 
V 
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(Face of the Tool) 

Top view 
A 

Ve 

Side View 
(Face of the Tool) 
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V0 

Hodograph 1 

Figure 2-7. Geometry of the two-edge cutting process 

The main and side edge contributions to the shear velocity are: 

cos^„ 
(2.15) 

c o s ^ 
(2.16) 

The friction velocity is the resultant of the components X and Y of the chip velocity as 

follows: 

Vf = ylvcr +Vcz =*Wtan^ +tan^,2 (2.17) 

The resultant velocities on the shear planes are: 

v = Jv2 +v2 =v 
y sml \ ' sm CZ K 01 + (tan(02 (2.18) 
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And, 

Vxsl=^V2+V2

Y =V0, 
< 1 V 

cos v̂ 

+ (tan^,)2 (2.19) 

The shear areas can be found from inspection and their expressions are, 

d2 tan^v 

2tan^ 

A. =• 
b2 

2 tan <j)m cos <f>s 

(2.20) 

(2.21) 

The area of plastic friction contact on the face of the tool is difficult to estimate. However, a 

reasonable assumption often made in metal cutting analysis is that the areas of sticking friction 

on the face of the tool is proportional to the uncut chip thickness, that is, 

Af =Cfbkw (2.22) 

Where Cf is a constant that can be found from force equilibrium and usually lies between 1 

and 4. The power spent on the process becomes, 

W=kV0, 
< 1 ^ 

v c o s 4 y 
+(tan<4)2 

b V 2 tan# ( i \ 

K 2tan^ i 
+ (tan4)2 

U^2 

—— - + kCf — ^tan^ + tan^2 

2 tan <j>m cos <f>s kw 

(2.23) 

The upper bound formulation requires finding a minimum for 2.23 with respect to </>m and 0S 

as a function of—. This solution will yield the chip flow angle. A numerical solution has been 
k,„ 

obtained and is shown in the Figure 2.8. 
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60: 

K 

Figure 2-8. Solution for if/ as a function of the ratio between the 

depth and width of cut in two edge cutting 

The solution presented in Figure 2-8 provides the value of i// required for estimating the 

cutting force in the two-edge process from equations 2.1 and 2.2. A ratio — = 0 corresponds to 
K 

orthogonal cutting. The model predicts that the chip will slide straight up on the face of the tool 

for that case, which is an expected result. As the ratio between the lengths of the edges increases, 

the chip deviates from the upward direction and starts flowing sideways. This sideways flow 

creates the lateral component of force on the tool. 

A comparison with the simple chip flow rule is also shown in Figure 2-8. The chip flow rule 

is an empirical estimate of the flow direction. This rule states that the direction of the chip flow 

will be normal to an imaginary line that joins the two end points of the cutting edge. In this case, 

the direction would be normal to a line joining points A and C as shown in Figure 2.9. 
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Figure 2-9. Simple flow rule applied to two-edge cutting 

The chip flow rule lies between the upper bound estimate for the frictionless case and the case 

with friction for C/= 4. These two bounds can be used in order to estimate the cutting forces in 

the two-edge cutting process. 

2.3. An Upper-Bound Analysis of the Bandsawing Static Components of Force 

In Section 2.2, a simplified two-edge cutting model was developed aiming to develop a basic 

understanding for the coupling between the cutting forces in multi-edged tools. This section 

presents a more comprehensive model that includes the effects of all the edges present in 

unbalanced cutting during bandsawing. In particular, the influence of the third cutting edge in 

bandsawing is studied. This edge is represented by line CD in Figure 2.1. Two simplifications 

have been made for the analysis: the hook angle on the blade is zero and the radial angle is also 

zero. The idealized geometry for this situation is presented in Figure 2-10, and is similar to that 

presented in Figure 2.1. 
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2.3.1. Geometry of the Three-Edge Cutting Model 

The width of the cut is Kw. The tooth is removing a depth equivalent to one bite with its main 

edge. The length of the side load applied to the tooth is represented by the distance shown 

between points A and B and the lateral displacement is A. The material flows onto the tool (or 

vice-versa) with velocity Vo and is sheared along edges A C , CD and DF. Hodograph 1 

represents the shear process along edge CD, at the main shear plane which location in space is 

given by angle fa. The material flows along the main shear plane and then reaches the vertical 

component of velocity of the chip, VQY- A similar situation occurs on the side edge A C where 

the incoming material must shear and reach an outgoing velocity Vex- The final chip velocity 

will lie on the face of the tool with direction^/. 

Y Y 

A 
Front Side 

Hodograph 1 

Vcz 
Hodograph 2 

Figure 2-10. Geometry of the three-edge cutting process in bandsawing for tan^/ < — 
A 
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The areas for this geometry need to be calculated for two different cases. First, as shown 

Figure 2-10, when the tangent of the chip flow angle is less than ^ £ . } the total shear can 
A 

calculated by adding sub-areas A i through Aiv, and it can be easily shown that, 

b2 coty/ 
2 sin <f>s 

(2.24) 

A - A - K * B 

sin^w 

(2.25) 

A-m — ABCG — 
b2 coiy/ 
2 sin 0S 

(2.26) 

A —A 
AIV ' A UGH 

hA 
sin 0S 

(2.27) 

The second case occurs when tan y/ > as it is shown in Figure 2-11 below, 
A 

Figure 2-11. Geometry of the three-edge cutting process in bandsawing for tany > 
bite 

For this case, the areas are given by the following expressions, 
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A(2b - A tan yi) 
sin (/>s 

(2.28) 

A tan^ 
2 sin </)s 

(2.29) 

A tan (// 
2 s in^ M 

(2.30) 

(2.31) 

b2 coty/ 
2 sin (f>s 

(2.32) 

The change of velocity in all the planes must be equal since the material enters the cutting 

region with uniform velocity and leaves as a rigid body. The velocities can be estimated in a 

similar way to that presented in Section 2.2. The shear velocity can be estimated from the 

following expression, 

\Vs\ = V0 ̂ /sec2 <j>s +tan 2 </)M = V0^]sec2 <j>M +tan 2 $ s (2.33) 

The geometry proposed for the first case presented yields, 

W I 2 2 

Case a: = ysec ^ M +tan 0S V0k 
b2 coty/ Kwb b2 coty/ hA 
2sin^ s. s in^ M 2s in^ 5 sin^ s. 

(2.34) 

Case b: w A(2b - A tan y/) A2 tan y/ A2 tan y/ 
s in^ s 2sin^ s, 2s in^ M 

^cc2<f>M +tan2^ s. 

(Kw-b)b + ^ V ^ 

sin <j)M 2 sin fis 

(2.35) 
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In order to implement a numerical solution, the minimum of equations 2.34 and 2.35 was found 

for every step and the lowest of power from both of them taken as the local solution. This solution is 

presented in Section 2.3.3 with respect to and <|>M. 

2.3.2. Friction Considerations in Three-edge Cutting 

In Section 2.2, the friction in the cutting process was added by considering an area of 

friction contact proportional to the uncut chip thickness area. This is only one of the approaches 

that can be used in order to account for the power spent in the friction process in cutting. A more 

general assumption that can be used is that the area of plastic contact on the face of the tool is 

proportional to the total shear plane area as follows, 

Ff=CfA,,kfc (2.36) 

The constant can be found empirically from orthogonal cutting data. The model can be 

calibrated to yield a more accurate prediction of the cutting force. The experiments to find the 

value of this constant are presented in the third chapter of this thesis. This consideration for the 

friction yields the following additional term that must be added to the power expression 2.34 and 

2.35, 

wf = CfATkVc (2.37) 

Where w/is the power spent on friction in the cutting process, Cf is an empirical constant, AT 

the total area in all the shear planes and Vcthe velocity of the chip. 

2.3.3. Cutting Force Calculation in Three-edge Cutting 

It was discussed in Section 2.2 that the cutting force on the face of a tool with zero hook 

angle has two has two components. One first term is due to the friction of the chip sliding on the 

face of the tool. The second term is due to the edge forces and is proportional to the length of the 

cutting edge. Therefore it can be stated that, 
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F = F + F 
1 Y Y eY 

(2.38) 

And, 

Fz = FcZ + FeZ (2.39) 

Where, the subscript c stands for cutting force and e for edge force. The cutting force terms 

in each direction depend on the friction force and its orientation as shown in Figure 2.10, which 

can be obtained from the upper-bound formulation presented in Sections 2.3.1 through 2.3.2. 

F, = Ff sin if/ + Fel (2.40) 

And, 

FY = Fj cos if/ + FeY (2.41) 

Equation 2.36 could be used in order to estimate the friction force. However, the total area of 

shear is a parameter that can only be conveniently estimated inside the upper-bound formulation. 

It is more practical to reformulate the friction force in terms of the uncut chip area in order to 

allow for simple formulas to be used. Therefore, equation 2.36 will be used for power estimation 

and the following formula will be used to force calculations, 

Ff=kfcAc (2.42) 

Where Ac is the uncut chip area given by, 

Ac=hA + bkw (2.43) 

It is convenient to express the force in a non-dimensional form in order to arrive at a general 

solution. The cutting component of the lateral force in the X direction will be finally calculated 

from the following equation, 
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kJ>k, 
F, CL 

w 

(2.44) 

Equation 2.44 allows the estimation of the lateral cutting force in a bandsawing process with 

0 hook angle once the bite, the kerf width and the orthogonal cutting constants are known. From 

this point, the result obtained from this equation will be referred to as non-dimensional lateral 

cutting force. 

2.3.4. Simulation Results for the Three-Edge Cutting Process 

In order to summarize the results obtained by the model in this section, the geometry of the 

process has been described in terms of three independent non-dimensional parameters. The first is 

, which represents the depth of the cut is with respect to the width of the tooth. The second 

h 
parameter, —, determines the relation between the size of the balanced cut region to the lateral 

b 

unbalanced cut taken. Finally, , relates the total width of the tooth to the lateral displacement 

experienced by the sawblade. Figure 2-12 presents the simulation results obtained for the chip flow 

angle. 

The results for the chip flow angle show great sensitivity for the initial side engagement of the 

saw tooth. The range of between 0 and 0.025 shows how the chip flow angle increases 
Kw 

suddenly from zero to 10 -20 degrees for all the simulation cases studied. In a bandsaw, with a 

typical width of kerf of 0.100 - 0.250 inches, this range corresponds to a maximum lateral 

displacement of 0.0025 - 0.00625 inches, which is typically found in washboarding patterns as seen 

in Section 2.1. After = 0.050, the sensitivity of the chip direction to the lateral deflection of the 
Kw 

blade seems to decrease. 
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Figure 2.12 (b). Chip flow angle solution for the three-edge cutting, a) — = 0.75, b) — = 1.00 
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The right hand side term of equation 2.44 has been evaluated as well and the results are 

presented in Figure 2.13. It can be seen that in a similar fashion to the solution for the chip flow 

angle, the non-dimensional cutting force presents two regions that are approximately linear. The 

influence of the bite with respect to the width of the kerf seems to be small compared to other 

effects. The length of the extra side-cutting edge increases the stiffness of the process in a non

linear manner. 

Non-dimensional lateral cutting force v s _A_ for _ Q 25 

Figure 2-13 (a). Non-dimensional lateral cutting force for three-edge cutting for = 0.25 
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Figure 2-13 (c). Non-dimensional lateral cutting force for three-edge cutting for — = 1.00 

This concludes the analysis for the three-edge cutting case presented. The following section will 

focus on the issue of the influence of the hook angle on the lateral cutting forces. 

2.4. Analysis of the Two-edge Cutting Process for a General Hook Angle 

Sections 2.2 and 2.3, present a series of upper-bound models that yield a basic understanding 

of the simple case of unbalanced multi-edge cutting when the hook angle is zero. However, 

those models do not address the effect of induced obliquity that the hook angle has over the side 

edges of the bandsaw. Obliquity will most likely have an effect on the lateral stiffness of the 

process which is not understood at this point. In order to model this change in the lateral forces 

introduced by variations on the hook angle it is important to understand the chip creation process 

under the constraints induced by this three-dimensional geometry. The model proposed for this 

analysis is presented in Figure 2-14. 
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2.4.1. Geometry of the Two-edge Cutting Process for a General Hook Angle 

The hook angle in a bandsaw introduces obliquity in the lateral cutting process. Obliquity 

This occurs when the velocity vector and a cutting edge are not normal. This is likely to have an 

influence in the magnitude of the lateral cutting forces produced in sawing. The model presented 

in Section 2.2 of this chapter does not address this issue and therefore needs to be extended in 

order to gain understanding of this effect. The object of this section is to conduct an analysis of 

the influence that varying the hook angle has on the stiffness of the lateral cutting process in 

bandsawing. 

Bite tan if/ Bite cot 0, 

Figure 2-14. Three-dimensional cutting geometry for a saw tooth for a non-zero hook angle 

Figure 2-14 is a general representation of the specific case presented in Figure 2-7. The face 

of the tool lies on a plane that contains the X axis as shown, where the main edge is located. The 

hook angle y, is measured with respect to the Y axis shown and defines the orientation of the face 

in space. The lateral cutting edge corresponds to line OA. The width of the tooth is Kw, and the 
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depth of the cut is one bite. OAGE is the projection of the uncut chip thickness geometry on the 

face of the tool. 

Two shear planes are assumed in the process, the lateral one is ABO and the main BOEF. 

The lateral shear angle is measured on the plane XZ from the Z axis. The main shear angle is 

referenced from the Z axis on plane YZ to line OC. The lateral shear angle is referenced from 

line AC, which is parallel to the Z axis. The chip slides on the face of the tool with direction y/ 

and velocity Vc measured on that same plane with respect to the side edge AO. 

2.4.2. Shear Areas in the Two-edge Cutting Process for a General Hook Angle 

The shear planes on this case become more complex than the ones in the models presented 

previously. In order to simplify the analysis, vector algebra can be used to calculate the shear 

areas. Plane ABO can be described by vectors OA and OB which are defined as follows, 

OA = (-btany,b,0) (2.45) 

And, 

OB = (b cot (j>M, b, hc tan fa) (2.46) 

Hence area of ABO can be calculated as half the norm of the cross product of vectors AO 

and BO, 

AABO = = \ Jb2(cotju + tan yf + h2 tan2 fa (tan2y + lf (2.47) 

The area of the main shear plane can be calculated from the difference between the areas of 

plane OCFE and OCB, where this latter area is defined by vectors OC and OB. Using cross 

products it can be easily shown that, 

s in^ 2 sm</>M 

Finally, the total area is, 
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bKw b (tan y + cot <j>u ) tan0S + -^b2(cot<f>M + tan y)2 + h2. tan2 </>s (tan2 y +1) 
sm(/>M 2 s i n^ w 

Where, 

/?C =6 ( tan^ + cot^ M ) (2.49) 

2.4.3. Velocity Hodographs in the Two-edge Cutting Process for a General 
Hook Angle 

Given that the chip is constrained to leave as a rigid body, the incoming material, with 

velocity Vo, must shear on the lateral and main shear plains in the way presented by the 

hodographs in Figure 2-14. The final velocity of all the material must be VQ and therefore the 

shear velocities induced on each of the shear planes must be VSM and V$s as shown. 

Figure 2-15. Process hodograph for the general two-edge cutting process shown in Figure 2-14 

The magnitude of the total shear velocity in plane A B O is the norm of the resultant vector 

from the addition of Vc cos y/ and Vss and can be expressed as, 

Vc sin if/ 

V 0 

Main hodograph 
(on plane YZ) Side hodograph 

(on plane XZ) 

(2.50) 

Similarly, the velocity on shear plane BFEO can be expressed as, 
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0 i COS sin 2 <j>M 1 
2(0M-r) cos20s 

(2.51) 

2.4.4. Forces in the Two-edge Cutting Process for a General Hook Angle 

In Section 2.3 a series of assumptions for the friction force in the cutting process were 

introduced and used in order to estimate the cutting forces. It will be considered here again that 

the friction force is proportional to the total area of shear and therefore, 

Ff = C fkAT 

The main cutting force can be readily calculated from the upper bound solution presented 

given that, 

A convenient way to conduct the force balance for this case is to take the projection of the 

forces in a plane that contains the main force and the friction force vectors and treat the forces as 

a 2D system. This geometry is illustrated in Figure 2.14 and the corresponding force diagram 

shown in Figure 2.16 below. The angle 0 mf shown is measured between Ff and the Z axis on the 

plane of force projection. 

w (2.52) 

F, 

Figure 2-16. Force balance for process presented in Figure 2-14 
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Given that the magnitude and direction of Fm and iyare known, the system can be solved 

and therefore the thrust force, Ft found since that direction of all the forces has already been 

defined in Figure 2-14. Given that the systems of force Fm- F, and Fj -F„ are equivalent, the 

following expression can be obtained for OR. 

cos 

tan 0,> = 

CfAT 

w 
V~k 

sin 6, 
(2.53) 

mf 

Where the angle 0 mf can be found using the definition of dot product between a unit vector 

along the Z axis and OD. If the unit vector is defined as k = (0,0,l), then we have, 

cos 0^ = 
OD.k 

OD\\k\ 
(2.54) 

Where OD = (hc tan</>s,b,b\mvy) (2.55) 

And finally, 

cos0mf = tan^ 

^/(tan y + cot </>Jf + tan y +1 
(2.56) 

2.4.5. Simulation Results for Two-edge Cutting Process for a General Hook 
Angle 

Figure 2.17 shows the solution for the chip flow angle obtained from the upper-bound 

formulated in this section. The independent variable taken was the ratio of the bite to the kerf 

width. This is a measure of the amount of side edge in the cut with respect to the main edge 
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Bite 

Figure 2-17. Simulation results for the chip flow angle in two-edge cutting 
for various values for the hook angle 

The solid line represents a tool with zero hook angle, which is the case studied in Section 2.1. 

The solution corresponds to the one obtained in that previous section closely, when the friction 

constant Q = 2, which is a reasonable value. The other lines in Figure 2.17 correspond to the 

solutions for tools with different amounts of hook. It can be seen that as the hook angle 

increases, y/ becomes less sensitive to the influence of the lateral cutting edge. The influence of 

this effect in the cutting forces has been simulated as well and it can be seen in Figures 2-18 

through 2-20. 

Figure 2-18 shows the increase in the non-dimensional main cutting force as the lateral cut is 

introduced. The force has been formulated in the form, 

F_ 

~kA 
= f (2.57) 
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Where / is the function presented in Figures 2-18 through 2-20. This formulation 

allows the study of the effect of the departure of the cutting process from orthogonallity without 

accounting the increase in the uncut chip area. This is to say the solution presented actually 

corresponds to the increments in process stiffness. 

E 

4.4 

4.2! 

3.8. 

3.6: 

3.4! 

3.2: 

2.8; 

Jrl. Jt.. : ! i .•;> I i i ! 
Hook = 0 
Hook= 10 
Hook = 20 
Hook = 30 

0.1 0.2 0.3 0.4 0.5 

Bite 
0.6 0.7 0.8 0.9 

Figure 2-18. Simulation results for the non-dimensional main cutting force coefficient in two-
edge cutting for various values for the hook angle 

It can be seen that the main cutting force is lower for the tool with the highest hook angle 

when the cut is orthogonal. However, at the same time, this tool will develop the highest main 

cutting force when the size of the main and side cutting edge is equal. 

The feed force seems to have little sensitivity to the addition of the side cutting edge as can 

be seen in Figure 2-19. Therefore it is expected that in bandsawing the lateral cut will create 

only a small amount of coupling between the feed cutting force and the lateral force. 
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Figure 2-19. Simulation results for the non-dimensional feed cutting force coefficient in two-
edge cutting for various values for the hook angle 

Figure 2-20 shows the result for the lateral cutting force. It can be seen that 0 hook tool 

presents higher lateral stiffness than the 30 degree hook tool. It can be concluded that the 

increasing the hook angle in a sawblade most likely decreases the lateral cutting stiffness of the 

sawing process. 
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Bite / K, 

Figure 2-20. Simulation results for the non-dimensional lateral cutting force coefficient in two-
edge cutting for various values for the hook angle 

2.5. Summary 

The following points summarize the most important findings o f the study conducted in this 

chapter: 

• The lateral cutting forces in the bandsawing process depend not only on the extra side 

cutting area but also on the length of the extra lateral cutting edge 

• The cutting forces in bandsawing can be predicted i f the influence of the lateral cut on the 

chip flow is known and a series of orthogonal cutting experiments are conducted in order 

to evaluate the stiffness of the process 
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• A series of upper-bound models have been developed in order to predict the chip flow 

angle on the face of the tool and therefore the cutting forces 

• The lateral cutting force is non-linear with respect to the lateral cutting area 

• The stiffness of the lateral cutting process decreases as the hook angle increases 
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C H A P T E R I I I 

" A n expert is a man who has made all the mistakes which 
can be made in a very narrow field." 

- Niels Bohr 

3. ANALYTICAL DEVELOPMENT OF A DYNAMIC CUTTING 
FORCE MODEL FOR BANDSAWING 

The second chapter of this thesis presented an analysis which addressed the modeling of the 

cutting forces created by saw teeth under static cutting conditions (constant chip load). It is to be 

expected that the velocities of the tool also have an effect on the cutting forces. This chapter 

presents a study of these effects through the development of an upper-bound model of the 

dynamic cutting process. The formulation includes the development of a simple model for the 

effects o f a non-zero cutting edge radius. The final goal o f the development presented here is to 

establish a methodology that can be used for the modeling of the dynamic sawing process. The 

dynamics of sawing are unique because of the fact that the vibrations of the tool occur in a 

direction that is perpendicular to the feed velocity. 

3.1. A n Upper-Bound Analysis of the Ploughing Process 

The portion of the cutting forces which is related to the influence of the cutting edge is usually 

termed "the ploughing component". This edge-related process plays an important role in chatter 

vibrations. When the speeds of cut are low as in, steel machining; the surface slopes left behind 

by the vibrating tool are significant when compared to the clearance angle of the tool. Under this 

condition, process damping is created by the interaction between the clearance face and the 

workpiece surface. Chatter vibrations are less likely to occur in this case. O n the other hand, 

when the cutting speeds are higher as in machining of aluminum or wood, the slopes present in 
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the dynamic cutting process are small compared to the clearance. In this case, the damping 

induced by the flank of the tool is low and chatter vibrations are likely to arise. 

It is worthwhile to conduct a detailed examination of the application of the upper-bound 

method to the modeling of the edge forces in orthogonal cutting before examining the more 

complex issue of dynamic cutting. Therefore this section presents an analysis of the ploughing 

process. The model assumes an edge radius on the cutting tool. The presence of this hone 

introduces some deformation under the edge of the tool. Force equilibrium is used in order to 

estimate the length of plastic contact on the rake face. 

3.1.1. Geometry Model Proposed for the modeling of the Ploughing Forces 

Manjunathaiah and Endres [33] presented a model for orthogonal cutting in which the 

influence of an edge-radius on the tool is explicitly accounted for in the force expressions. The 

proposed geometry is shown in Figure 3.1. The material enters the cutting region with velocity 

Vo and shears along plane AB. After that, the material flows as a whole inside ABP. Angle 6 

defines the separation point P, which determines the penetration depth 5 for a given tool radius. 

All material above this point will flow up and become chip. All material below P will be 

deformed further through shear along BP and BC and will finally become part of the freshly cut 

surface. 

Manjunathaiah and Endres obtained a solution for the value of <f> as a function of S. However 

no analytical expression is available for the calculation of the depth of penetration that allows a 

direct solution for the forces. It is proposed here that the model presented in [33] be extended 

including an estimate of the depth of penetration using the upper-bound approach. 
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Figure 3-1. Manjunathaiah and Endres' model 

The geometry shown in Figure 3-2 illustrates the idealization proposed for the analysis. A 

tool with some wear on the edge is removing material with constant chip thickness, ho. The 

workpiece moves towards the tool with speed of cut Vo. The wear on the tool has been 

approximated to a straight line between points C and D as shown. The clearance angle is a and 

the hook angle y. The plastic deformation zone extends below the cutting edge by amount 8, 

which will be referred to as penetration depth. The arrows in Figure 3.2 illustrate the material 

flow in the cutting model. 

The following are the considerations made for this model: 

1. All assumptions made for the model presented in section 2.2. 

2. The edge nose of the tool is approximated to a straight line between points C and D 

3. Shear plane BC is collinear with the face of the tool 
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Initially, all the incoming material yields on plane AB entering triangle ABC. Inside this 

region all the material flows with velocity VABC- Point C is a stagnation point, which divides the 

flow in two different directions. Any material above C will become chip after shearing on plane 

AC. Any material below C will shear again on plane BC entering region BCD, where it will 

have velocity VBCD- Finally this portion of the flow will become part of the workpiece again by 

shearing on plane BD. 

In Figure 3.2 only tf> and L are independent variables. The solution proposed requires the 

minimization of the power with respect to these two variables. 

After defining all the magnitudes for the deformation geometry, the penetration depth can be 

now written in terms of the hook angle and the nose radius of the tool as, 

S = Lcosy-r(l + sinv) (3.1) 

Figure 3-2. Geometric model proposed for the upper-bound solution of the ploughing forces 

in cutting with an edge-radiused tool 
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In the first part of the analysis, the specific case of a frictionless tool will be considered. In 

this case the power on the process will be the sum of the power expenditure in each of the shear 

planes considered. In order to find these quantities, the area of shear for all the planes must be 

calculated as well as the velocity across them. 

The shear areas can be found using simple geometry by considering the triangles defined by 

points A, B, C, D and F in Figure 3.2. The width of cut is considered to be unity. 

It can be seen by considering triangle ABE that the length of the shear plane AB is, 

L „ = ^ (3.2) 

Angle 6 can be found as a function of <j> and L considering triangle ABC, 

hr.+8 - L cos/ 

tan# = ̂  — (3.3) 
Lsiny + LAB cos^ 

From ABC, the length of AC can be obtained as, 

cos(̂  -y) 
LAC = LAB 77 \ (3-4) 

cos[0 -y) 

The angle K is assumed to be an effective negative hook angle at the nose of the tool. This 

parameter is only affected by the main hook angle and it can be expressed as, 

K - tan 1 
1 + sin y (3.5) 

^ cos y ) 

The assumed length of the nose of the tool is then, 

i , „ = ^ (3.6) 
C O S K 

Angle a defines the orientation of line BD and is given by, 
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cr - tan" 
S cot <j> + L sin y / 

(3.7) 

Length B D can be found using triangle B C D , 

3 . 1 . 2 . V e l o c i t y H o d o g r a p h f o r t h e P l o u g h i n g P r o c e s s 

Lines A B , B C , A C and B D all define velocity discontinuities where the material is assumed 

to shear instantaneously. A hodograph, showing the proposed kinematics of the solution for the 

cutting process is presented in Figure 3 - 3 . 

Figure 3 - 3 . Velocity hodograph for the ploughing model 

In order to comply with volume continuity the incoming flow to the cutting region must be 

the same as the outgoing flow. In order to meet this constraint, the value for angle n, must be, 

t] = arctan 
r( l + sin;r) 

8coi<j) + Lsmy 
( 3 . 9 ) 
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The velocity on the shear plane AB is, 

V =V S M T } (3.10) 
Y SAB y0 • 1 , , \ v ' 

sin(/7 + <p) 

The velocity for all the material inside region ABC is, 

sin^ 
V -=y • 1 1 1 ^ (3.11) 

sinl 

And on shear plane AC it is seen that, 

cosfr + i;) ( 3 ] 2 ) 

SAC ABC / n\ \J-LZ-J 
cos{y-&) 

The velocity of the chip can be easily found from volume continuity and is given by, 

sinfo + fl) 

C SABC (N \ 
cos^t? - y) 

The velocity of the material inside region BCD is, 

v =y s m a (3.14) 
sinl BCD ~ ' 0 . / , \ 

>in (cr + K) 

Since BG is a line of velocity discontinuity, the shear velocity on shear plane BC must be in 

the same direction as the chip velocity and therefore the following relation can be established, 

VSBC = VABC sin(?7 ~r)+ VBCO sin(«- -y) (3.15) 

Finally, the velocity on shear plane BD is found to be, 

v =y s m K (3.16) 
Y SBD *0 . / , \ v J 

sm{<j + K) 
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The shear work rate is the product of the shear force and the shear velocity. The overall 

work rate is the sum of the shear work in planes A B , A C , BC and BD. For the frictionless case 

the expression for the power is, 

W = WSAB + WSAC + WSBC + WSBD (3-17) 

Where each of the power expressions is given by, 

_ w (fh + P) sin/7 i a . 

*>AB = LABVSAB = . • / rxkwV, (3.18) 
sin^ sin(/7 + ^ ; 

fa + P) cos(^ - y) cos(/ + rj) 
cos(6> - y) sin(/7 + (f) cos(y - 0) 

™ - T V - v'o'rr> v r ; ' V n HvY H 19S) *>AC ~ LACVSAC - ZZZ77, 77\~1717irriXZZj7. n\ 0 ^A^} 

wHC = Lkw[VAHC sinfo -y)+ VBCD sin(^ - y)] (3.20) 

S sin/r 
w f l D = - T7 x ^ ^ o (3-21) 

sin a smyj + K) 

The upper-bound solution requires that the work rate is minimized. This minimum leads to 

the specification of unique values for the penetration depth 5 and the shear angle <j). Because this 

work is aimed at examining more complex problems, from the start the system has been modeled 

using a numerical analysis package to allow rapid determination of minimum values. 

3.1.3. Frict ion Considerations in the Analysis of the Ploughing Process 

In order to include the effect of friction in this process, it is assumed that the boundary ACF 

on the chip meets force equilibrium. F is a separation point, which defines the end of the friction 

contact on the face of the tool. A free-body diagram of the chip is shown in Figure 3-4. 

The shear force for a unit width of cut is equal to the product of the shear yield stress and the 

shear area assuming unit width is, 

Fs=kLAC (3.22) 
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Figure 3-4. Force balance on the chip for the ploughing model with edge penetration 

To maintain force equilibrium, the normal force on the shear plane must be related to the 

shear force by the angle a as follows, 

F,, = Fs tan a 

Where, 

Seethaler and Yellowley [29] considered the friction coefficient to be the ratio of two plastic 

stresses by assuming an ideal rigid-plastic material and sticking friction on the hook face of the 

tool. The following expression was presented for the friction angle, 

a = (/> + P - y (3.23) 

tan/? = (3.24) 
1 + 

The resultant force can also be expressed in terms of the shear force and a, 

R = (3.25) 
cosa cos(̂  + B - y) 
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The friction on the face of the tool will be a combination of elastic and a plastic component. 

However it will be assumed that all the friction is plastic and therefore the force can be expressed 

as the product of the shear yield stress, k, and the plastic contact area, 

Ff=kLf ( 3 . 2 6 ) 

The friction can also be expressed in terms of the resultant force as follows, 

Ff=Rsm0 = F

(f\P , ( 3 . 2 7 ) 
cos\(/> + 3-/) 

Hence, substituting equations ( 3 . 2 2 ) and ( 3 . 2 6 ) in equation ( 3 . 2 7 ) yields an expression for the 

plastic contact length, 

Lf=LACcos(0m!^~r) ( 3 2 8 ) 

Finally, replacing the value for L A C from equation 3.4 it is seen that, 

h0 cos(g-^) sin/7 (329) 
f sin (/> cos(# - s) cos(6> + B-y) 

The friction work done along boundary CF can be calculated as the product of the velocity of 

the chip and the friction force on the face of the tool. The final expression for this quantity is, 

w = snJ* V h ( 3 . 3 0 ) 

f J a c e cos(e-r)cos(0 + /3-r) 0 0 

The expression presented above has been added to the power calculated in section 3.1.2 and a 

numerical solution for the shear angle, ploughing angle and non-dimensional cutting force is 

presented in the following section. 
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3.1.4. Results for the Ploughing Geometry 
Figure 3-5 shows the resulting shear angle, (j) for four different hook angle configurations as a 

function of the radius of the nose of the tool. It can be seen from the figure that the ploughing 

process does affect the main shear process by changing the orientation of the main shear plane. 

For the tool with 30° hook angle, it can be observed that over the range of tool radius shown, 

the shear angle changes 12 degrees. In contrast, for the 0° tool, the shear angle only changes by 

5° over the same range. It can therefore be concluded from this model that tools with a large 

positive hook angles are more sensitive to ploughing those with a smaller hook. 

0 0.02 a 0 4 0T06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Ratio of tool radius to chip thickness (r/hQ) 

Figure 3-5. Solution for the shear angle, ho = 1.0 

Figure 3-6 shows the penetration depth below the edge of the tool as a function of the nose 

radius. Surprisingly this model predicts that no penetration will occur. This also implies no flow 

and therefore no relative motion of the portion CBD with respect to the tool. This is known as 

built-up edge and it is known to occur in the cutting of metals and wood. 
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The finding that the material in front of the tool will only stick to the edge and not flow under 

the tool to create a new surface eliminates the need to assume the direction of BC to be collinear 

with the face of the tool. The model in the following section assumes zero penetration as a 

starting point, and allows the upper-bound to find the direction of the stress field in front of the 

face of the tool. 

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 

Tool radius, [mm] 

Figure 3 -6 . Penetration depth 8 (below the edge of the tool) 

3.2. A Built-up Edge Analysis of the Ploughing Process 

The model developed so far predicts the existence of a built-up edge on the tool. Based on 

this a new, more simple ploughing analysis can be proposed. Assumption number three in 

section 3.1.1 can be eliminated and the geometry of the cutting region can be studied with 

respect to a new variable that will be called Ploughing Angle in this section. It is assumed again 

that the presence of the nose radius on the tool distorts the cutting field from the orthogonal 

cutting situation. The stress below the surface of the tool creates a feed component that adds to 

the cutting force in the feed and main directions. 
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3.2.1. Proposed Geometry for the Built-up Edge Analysis of the Ploughing Process 

The geometry proposed is shown in Figure 3-7. The tool is cutting material with an intended 

chip thickness ho- The edge of the tool presents a honed region that has a built-up edge in front. 

As the tool moves along, the incoming material shears along the first shear plane A B and its 

velocity changes to VABc- This velocity is parallel to line B C , which defines the boundary of the 

ploughing region CBG. Shear occurs again when the material reaches plane A C . Finally the 

material leaves the primary cutting region and travels along the face as chip with velocity Vc. 

In order to calculate the power spent on the cutting process, the lengths of the shear planes 

need to be derived in terms of the proposed geometry. The independent variables in this model 

are the shear angle (j> and the ploughing angle E and therefore all the magnitudes will be derived 

as a function of them. 

Figure 3-7. Built-up edge model geometry 

Length L, can be expressed as a function of the ploughing angle s, the hook angle y and the 

radius of the nose of the tool r. From triangle BCE in Figure 3-7 it can be shown that, 
73 



L = r±^mr) ( 3 3 1 ) 

COSf 

The length of the main shear plane AB is can be calculated in terms of the shear angle and 

the uncut chip thickness as follows, 
< 

LA»=—A (3-32) 
sin^ 

The length of the secondary shear plane AC can obtained considering triangle ABC, 

L„=L„COS)'i_-r{ (3-33) 
cost 

JAC ~ ^AH , (N \ 
~OS(# - £ ) 

The chip thickness can be found in terms of the uncut chip thickness as, 

n

 h ° cos(g-^)cos(^-y) ( 3 3 4 ) 

c sin^ cos(0-s) 

Angle 9 is a function of e, § and the ratio Lat,/L and it is given by, 

sin </> - cos s 
tanr? = ̂  (3.35) 

sing + ^^-cos^ 

The distance along the bottom boundary of the ploughing regions, LBG is given by, 

LBG =r(\ + smy)tane + rcosy (3.36) 

Equations 3.31 through 3.34 provide all the lengths needed in order to calculate the power in 

the cutting process. The next step requires proposing an admissible velocity field for the 

problem. 

3.2.2. Velocity Hodograph for the Built-up Edge Analysis of the Ploughing Process 

The incoming velocity is Vo and the shear velocities are VSAB and VSAC- The addition of the 

incoming and shear velocities vectors must equal the outgoing chip velocity Vc as represented in 

the following figure. 
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Vo 

Figure 3-8. Velocity hodograph for the ploughing model in Figure 3-7 

Given that <(> and s are considered independent variables, the velocity in region A B C can be 

calculated as, 

sin^ 
cos(f - <f) 

v = s m ? V n (3.37) 
R ABC t ,\Y0 V ' 

The shear velocities can also be easily found from the hodograph as follows, 

VSAB= 7£AV° ( 3 - 3 8 ) 

cosye - <f>) 

v s i n ^ s i n ( g - r ) 
VSAC - ( ±\ la \ 0 \3-jy) 

cos(g - (p )cos\G -y) 

Where #can be obtained from equation 3.35 
The chip velocity can be found from volume continuity along boundary A B C D and is given by, 

s i ^ c o s ( ^ ) ( 3 4 0 ) 

cos{e-<p)cos{0-y) 
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3.2.3. Power Spent in the Frictionless Ploughing Process 

Shear power in this process is spent in shear planes AB and AC and also along the built-up 

edge boundary on BC and BG. The expressions for the power spent can be obtained by taking 

the product between the force and the velocity along the planes considered. If it is assumed that 

the boundaries of the cutting region are stressed to the yield point, then it is possible to obtain the 

following expressions for the power, 

wSAIi = kwLAli VSAH = . C ° S f -T kwh0 V0 (3.41) 
sin <p cos(£ - <p) 

wSAC =kwLACVSAC = * i n ( * ~ l ,kwh0VQ (3.42) 
cos(0 - e jcos(# -y) 

s'wSyE - y) 
cos(# - s)cos{9 - y) 

wHG - kwLBG VQ = kw V0 [r(l + sin y)tan s + r cos y] (3.44) 

The total power spent in the frictionless process will be the sum of equations 3.41 through 

3.44. The value of k, w and Vo is irrelevant to the solution since they are constants present in all 

the terms and therefore will not affect the minimization of the work function. 

Further considerations will be made in section 3.2.5 in order to find a reasonable estimate of 

the friction in the cutting process. This needs to be done to include a friction term in the final 

solution to the model. For now, the frictionless case will be studied in section 3.2.4. 

3.2.4. Frictionless results for the Built-up Edge Analysis of the Ploughing Process 

Given that the goal of this analysis is to obtain a simple ploughing model that can be used to 

estimate actual cutting conditions in dynamic cutting, a numerical approach has been used from 

the beginning to obtain the values for the ploughing and shear angles. Figure 3-9 shows the 

solution for the shear angle as a function of the tool radius for four different values of hook 

angle. 
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Figure 3-9. Main shear angle, cp for frictionless process, h0=1.0 

It can be seen in Figure 3-9 that the model predicts the same value as merchant model 

(equation 1.4) for the frictionless case, which serves as a simple way to verify that the solution 

obtained is correct. 

The model shows great sensitivity of the main shear angle with respect to the nose radius of 

the tool. For the zero hook tool the shear angle seem to increase slightly up to r = 0.2 and then 

decrease. For all the other cases, the nose radius decreases the shear angle which is a similar 

effect to that of introducing friction in the process. 

When compared to Figure 3-5, the figure above seems to show that the solution obtained for 

this model varies significantly to that found in section 3.2. This is due to the assumption on the 

extension of the hook of the tool below the cutting edge made in the previous model, which is 

not employed in this case. 

77 



Tool Radius, r 

Figure 3-10. Ploughing angle, 8 for frictionless process, ho=T.O 

Figure 3-10 shows the results obtained for the ploughing angle versus the radius of the nose 

of the tool. Significant sensitivity can be observed. For the case y = 30° it can be seen that for 

zero nose radius on the tool, planes BC and the face of the tool are collinear. However, as the 

radius increases the slope of line BC seems to be smaller than that of the hook face going down 

to even negative values for the ploughing angle. This is evidence that the assumption made for 

the previous model might not be correct. It is also found in the result above that a tool with a 

larger positive hook angle is more sensitive to the influence of the nose radius over the cutting 

forces. 

Figure 3-11 shows the non-dimensional main cutting force plotted versus the tool nose 

radius. For all cases the force increases with the radius of tool. However, the effect on the 30 

degree hook tool seems to be less linear than that of the other three tools. 
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Figure 3-11. Non-dimensional cutting force for frictionless process, h0=l .0 

3.2.5. Adding Friction to the Analysis of the Ploughing Process 

The formulation presented for the process friction in section 3.1.3 will be followed once 

more in order to add an estimate of the friction force in the cutting process, 

Ff =Rsin/3 = 
Fs sin B 

cos(̂  + B - y) 
(3.27, repeated) 

Therefore, the following term must be added to the internal power spent in the process, 

Fs sin B sin </> cos(# - s) 

cos(̂  + B-y) cos{e - )̂cos(# - y) ° 

(3.45) 
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3.2.6. Results for the Built-up Edge Analysis of the Ploughing Process Considering 
Friction Effects 

Figure 3-12 shows the main shear angle <p plotted as a function of the tool nose radius for 

four values of the hook angle. 

Figure 3-12. Main shear angle, q>, for the case with friction, ho=1.0 

Figure 3-13 shows the ploughing angle E plotted as a function of the tool nose radius for four 

values of the hook angle. It can be seen that the shear angle increases with the increment of the 

tool radius initially and then decreases. 

The ploughing angle decreases consistently with the increase in tool radius for all values of 

hook angles. It can be seen that as the hook is increased, the ploughing angle becomes more 

sensitive to the size of the nose of the tool. 
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Figure 3-13. Ploughing angle, e, for the case with friction, ho=T.O 

Figure 3-14 shows the non-dimensional cutting force plotted as a function of the tool nose 

radius for four values of the hook angle. In a similar way to that seen in Figure 3.11, the specific 

energy required to remove the material increases consistently with the increment in the nose 

radius, which confirms that the solution obtained is correct. 

This section and the previous have provided an analysis of the ploughing process in cutting. 

The goal of this work is to obtain a model that can be applied to the analysis of the dynamic 

cutting process by using the upper-bound approach. 
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Figure 3-14. Non-dimensional cutting force for the case with friction, ho=l .0 

3.3. An Analysis of the Cutting Region Geometry in Wave Cutting 

The analysis presented in this section aims to develop a basic understanding of the effect of 

the inner surface modulation in wave cutting. This is of importance for the interpretation of the 

results that will be obtained later in this chapter. The case shown in Figure 3-15 is similar to the 

one shown in Figure 3-7 only differing by the fact that the bottom surface presents a slope due to 

a vertical velocity component on the tool. 
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Figure 3-15. Orthogonal cutting with tool having a vibration velocity in the feed direction 

Line CG, which is assumed to be the nose of the tool, which makes angle K with the 

horizontal and given by, 

cosf5 + sinx 
tan/f = — (3.46) 

sinS + cosy 

The length of the nose of the tool is LCG and can be found from, 

LCG = rj2(l + sm{y + S)) (3.47) 

The lengths of the shear planes can be found using a similar procedure to that shown in 

section 3.2. Equations 3-47 through 3-50 are used to calculate these magnitudes, 

L-^^F^  ( 1 4 8> 
cos(g + 0 ) 
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L/SG — LCG 
COS' 

cos 

L = "» 
sin^ 

cosi 
cos 

(3.49) 

(3.50) 

(3.51) 

Knowing the area of the shear planes, it is now required to find the shear velocities in 

order to obtain the power expressions for the process. 

3.3.1. Velocity Hodograph for the Wave Removing Process with a Bottom Surface 
Slope 

The velocity hodograph for the process is presented in Figure 3-15. It can be seen that a vertical 

component of velocity, V 0 y , has been added in order to account for the tool vibration. 

Figure 3-16. Velocity hodograph for the process shown in Figure 3-15 

The following velocity equations can be derived from the hodograph in Figure 3-16, 
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v 
' Ox (3.52) 

(3.53) 

(3.54) 

V =V 
AC r 0 

sin(̂  -S) s in(£-^) 
cos(e - </>) cosiy - 6) 

(3.55) 

V -V 
y c v

 o 

sin(̂  -S) cos(& - s) 
cos(f - <f) cos(y - 0) 

(3.56) 

The final power expression is given by the following equation in terms of the shear plane lengths 

and shear velocities, 

The length of plastic contact Z/can be obtained from equation 3.29 in page 63. 

3.3.2. Simulation results for the Wave Cutting Process with a Bottom Surface Slope 

A numerical solution has been implemented to find the minimum energy solution. These 

results are presented in Figure 3.17 below for tool hook angles of 0, 10, 20 and 30 degrees. Also 

various ratios of the radius of the tool nose to the uncut chip thickness are considered. This non-

dimensional parameter is used in order to quantify size of the wear or imperfection on the nose 

of the tool. 

It can be seen that for all the tools studied, the bottom surface slope has no effect on the 

position of the shear angle. As the nose radius of the tool increases, the effect of ploughing in 

the wave cutting process becomes evident. Also, the effect of the slope in the ploughing angle is 

smaller when the nose radius is zero than when it is larger. 

W = V0LBC + VAHCLCH + y$ABLAB + VSACLAC + VcLf (3.57) 
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This provides evidence that that previous models that did not consider the nose of the tool did 

not account for all the energy expenditure in dynamic cutting given that a portion of this energy 

is being consumed in the localized effects within the ploughing region. 
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Figure 3-17 (a). Simulation results for the ploughing process with a bottom surface slope for a 

tool with 0° hook angle. 
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Figure 3-17 (b). Simulation results for the ploughing process with a bottom surface 
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Figure 3-17 (c). Simulation results for the ploughing process with a bottom surface 

slope for at tool with 20° hook angle. 
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Figure 3-17 (d). Simulation results for the ploughing process with a bottom surface 

slope for at tool with 30° hook angle. , 
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This model of the wave cutting process that considers the defects of the size of the nose of 

the tool provides a solid foundation for the next section of thesis. This section will deal with the 

more complex issue of analyzing the full dynamic cutting process in depth and the modeling of 

the effect of different tool parameters in the dynamic cutting forces obtained from the process. 

3.4. An Upper-bound Model of the Dynamic Cutting Process Considering 
Ploughing Effects 

The prediction of cutting forces under dynamic cutting conditions is a very important 

component of the study of machine tool chatter. This study has classically been divided in two 

parts in order to simplify its understanding. These parts are: 1) wave cutting, the process in 

which a vibrating tool removes material from a workpiece with a flat surface and, 2) wave 

removing, where an undulated surface is removed with a rigid tool. More attention has been 

given in the past to the wave removing process since it has been considered to contain some of 

the fundamental mechanisms for dynamic instabilities. The wave cutting process has proven 

very difficult to analyze both analytically and experimentally. Nevertheless, it is of fundamental 

importance to improve the understanding of wave cutting in order to provide solutions for 

stopping dynamic instabilities in machine tools. 

Sections 3.2 and 3.3 presented the development of an upper-bound study of the ploughing 

process. It was concluded that a simple built-up edge model can be used for the analysis of the 

edge forces in orthogonal cutting. This model can also be used in an upper-bound to study the 

effect of tool vibration during cutting. The development of such model is the object of this 

section. 

3.4.1. Background on the Study of the Dynamic Cutting Process 

Das and Tobias [34] formulated a model for dynamic cutting based on static cutting data. The 

formulation proposed that the oscillating cutting force magnitude and phase could be estimated 

from a simple orthogonal cutting database. The results presented were compared to experimental 

data obtained by Shumsheruddin [35]. The model proved reasonably applicable for the case of 

wave removing, showing in most cases accurate predictions for both magnitude and phase as a 
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function of the vibration frequency of the tool. However, the estimations for the case of wave 

cutting were not accurate in either magnitude or trend. 

Nigm, Sadek and Tobias [36] presented an analysis that overcomes the problems of the 

previous model proposed by Das. The model predicts the force magnitude and phase by making 

use of an extensive database of orthogonal cutting data that includes information about the 

influence of cutting temperature and work hardening effects on the specific material. Results 

from Shumsheruddin [35] were also used in order to validate this model. The agreement with 

the experimental data shown by this development was very good in both magnitude and phase. 

However, the applicability of the model is limited given the large amount of data required for the 

force predictions and the fact that a new set of experiments is needed for each type of material, 

tool and lubricant. 

Wu [23] considered the effect of ploughing on dynamic cutting by assuming that there is a 

separation point on the nose of an edge-radiused tool. Below this point, all the material is 

elastically deformed, flowing under the clearance face of the tool and back into the workpiece. 

Wu assumed that the force produced is proportional to the total volume of work material 

displaced below the separation point. The main shortcoming of this work is that that the primary 

shear process ahead of the tool will most likely be affected by the ploughing. This will introduce 

additional dynamic effects on the main shear plane, which need to be considered. 

In order to improve the understating of this complex process, and propose a simple model that 

allows the prediction of the cutting forces under dynamic conditions, the plastic deformation 

effect at the nose of the tool must be included. Therefore the study conducted here focuses on 

finding a solution for force estimation based on simple orthogonal cutting data and that includes 

the ploughing effect produced by the nose of the tool. 

3.4.2. Geometry of the Model Proposed for the Analysis of the Wave-on-Wave 
Cutting Process 

Figure 3.18 shows the geometry for the analysis presented in this section. The tool shown 

removes material from a workpiece in a way similar to that presented in previous sections. 

However in this case, the tool is vibrating and therefore producing a wavy surface. At the same 
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time a previous sinusoidal surface is been removed. A primary shear plane is assumed along A B 

and a secondary shear plane along A C . Region B C G is the built-up edge in front of the edge 

similar to that described in sections 3.3. 

The equations for the outer and inner surfaces are presented in the figure. The phase between 

the waves is a. It is assumed that the slopes of the surfaces are small. This consideration allows 

for line B G to be approximated as a straight line with slope equal to that of the point on the inner 

surface sinusoid at point G. This set of assumptions allows solving for the areas of shear planes 

A B , A C , CB and B G . 

Considering the geometry of the nose of the tool it can be seen that, 

cos S, + sin y ,„ 
tan*: = '- - (3.58) 

sin Si + cos y 

The effective length of the nose of the tool C G is a function of the inner surface slope and the 

hook angle of the tool, 

Z C G =rV2 ( l + sin( r + £,)) (3.59) 

The length of plane CB is, 

L = L CG 
sin(/r - Si) 

cos 
(3.60) 

The length of plane B G can be obtained from, 

cos( g - K) 
HG *-CG 1 £. \ 

COS{£ - Oi) 

Coordinate x is measured with respect to point P shown. Y is measured with respect to the 

mean chip thickness of the bottom surface. It is possible to calculate the coordinates of points G 

and B from the lengths already found as follows, 
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r sin 8t, At sin — (x + r sin St) (3.62) 

[XB>yB]= r cos y + LCH sin e, A} sin — (x + r sin Si) + LRG sin£, (3.63) 

The equation of line A B is known from the coordinates of point B and its slope. 

yAB = tonfa + yB - t a n ^ (3.64) 

At point A , line A B meets the outer sine wave and therefore the following equation can be 

solved numerically to find its coordinates, 

tan <fix - A0 sin 
In 
T •x + a + yB - tan 0xH - h0 = 0 

J 

(3.65) 

LAB and L A c become, 

_xA xB 

AB ~ ' C O S ^ 

(3.66) 

L-AC ~ ^AB cosie 
cos (e-s) 

(3.67) 

Where, 

„ LJflsmd>-L,rcose 
tan 6 = — - ^ 

LAB cos <j) + L sin s 
(3.68) 

The equations above provide a way to calculate all the necessary lengths for the solution of 

the upper-bound. It is now required to propose an admissible velocity field in order to find the 

power spent in the process. 
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3.4.3. Velocity Hodograph for the Wave-on-Wave Cutting Process 

The hodograph for the wave-on-wave cutting process is presented below. The cutting 

velocity is Vox- However, the vibrations of the tool add an extra velocity component V O Y and the 

resultant incoming velocity is therefore V Q . 

Figure 3-19. Process hodograph for wave-on-wave Cutting 

The magnitude of the incoming velocity is, 

v 
Vn=-ox 

cos 8; 
(3.69) 

It can be seen from Figure 3-19 that the velocity on shear planes AB and AC is, 

V = V 
v AB y 0 

COSlf 

COS\£ 
(3.70) 

V =v 
y ABC Y 0 

sim 
cos 

(3.71) 
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VAC ~ VABC 
sinlg (£-r) 
cos (9-y) 

(3.72) 

Finally, the velocity of the chip is 

V =V

 co<0-£) (3 73) 
v C y ABC / ~\ y~>. COSI iy-o) 

3.4.4. Friction Considerations in Dynamic Cutting 

Following an analysis similar to that of section 3.1.3, the friction force can be estimated. For 

this case, force a balance of the chip is used to calculate the friction force. The resultant force 

expression is, 

sin/? 
cos(t9 + P-y) Ff=LAckw ,TllJ„ x (3.74) 

Where, 

tan/? = (3.75) 
1 + ^ - 2 / 

2 

Equations 3.73 and 3.74 allow the estimation of the power spent on friction on the face of the 

tool, which affects the solution for the shear geometry. 

Finally, the power spent in the dynamic cutting process can be calculated using the equations 

obtained above, 

w 
~bk 

L-AB VAB + ^AC VAC 
+ LVAB(: + Lh^V0 + FfVc 

(3.76) 
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The minimization of equation 3.75 with respect to s and <f> allows a solution for the cutting 

geometry which is necessary in order to estimate the cutting forces in the process presented in 

Figure 3-18. 

3.4.5. Forces in the Wave-on-Wave Cutting Process 

The forces applied to the tool can be evaluated considering force balance on the chip if quasi-

static equilibrium is assumed. Boundary ABCGEF can be considered for this analysis. The tool 

exerts forces F m and F t along line CE. Shear planes GB and AB experience compressive and 

shear forces which are shown in Figure 3-20. 

The main force, F m shown in Figure 3-20 can be estimated from the power expression used to 

solve the upper-bound problem (equation 3.75) since this force can be expressed as the total 

power spent divided by the instantaneous magnitude of the cutting velocity, 

m 

E 

Figure 3-20. Force balance for the dynamic cutting process 

(3.77) 
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The shear forces on AB and BG can be considered to be the product of the yield stress times 

the area of the plane, 

FSAB = kbLAB (3.78) 

And, 

FSBG = kbLHG (3.79) 

This leaves Ft, FPAB and FPBG as unknowns in the process. The equilibrium conditions on the 

chip will provide two equations and therefore one more assumption will be needed in order to 

find the forces. Boundary ABG is a slip-line where the material is stressed up to the yield point. 

Since flow occurs on both sides of the line, Hencky's equations must provide a reasonable 

estimate of the ratio of plastic stresses along this boundary. Since only one more equation needs 

to be established, the assumption will be only applied to line BG yielding the following 

expression for the force perpendicular to the shear plane as a function of the inner surface slope, 

Fl>BG=(l + ^-2SI+2Sr,)FSBG (3.80) 

Taking summation of force along the JC direction it is possible to obtain the following 

expression for the normal force on shear plane AB, 

F =

 F- ~ FSAB c o s ^ ~ Fsnc cosSi ~ F>BG si" 8, ( 3 8 1 ) 

The feed force, Ff can be obtained now by taking summation of forces along the y direction, 

( n \ 
FPAB = LBG s m 8, - LAB sin <f> + 1 + — - 2S, + 28„ LBG cos S, + FRAB cos <j) (3.82) 

V 1 ) 

Equations 3.76 through 3.81 allow the computation for the cutting forces for the dynamic 

cutting case shown in Figure 3-18. A computer simulation can be used in order to study the 
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effect that the different variables involved in the process have on the cutting forces. This 

analysis permits the evaluation of the performance of the cutting process in terms of the 

geometry, cutting conditions and material the shear stress of the material. 

3.5. Simulation Results for the Dynamic Cutting Model 

Nigm and Sadek [27] reported a thorough experimental study of the dynamic cutting process. 

The cutting tests were conducted on a lathe with the tool cutting orthogonally on the end of a 

tubular workpiece. The tool was forced to vibrate in a controlled manner normal to the cut 

surface by means of an electrohydraulic actuator, the useful frequency range of which it was 0 to 

300 Hz. The tool was mounted on a two-component dynamometer which measured the force 

components parallel and normal to the cutting direction. Wave cutting and wave removing tests 

were carried out in the same run by forcing the tool to vibrate during one revolution of the 

workpiece and holding it still during the next revolution to remove the wave previously 

generated. 

The work material used was hot finished mild steel. The material was in tube form, with an 

outside diameter of 194 mm and a thickness of 3.5 mm. The shear stress for this material is 

provided by Tobias in [34] as k = 4133 bar. The cutting tools used were throwaway carbide tips 

ISO P30. 

Table 3-1. Cutting Conditions Studied by Nigm and Sadek in [27] 

Series Variable studied Range Value for other variables 

A Frequency 60 to 300 Hz on four 
steps 

Average chip thickness : 0.19 mm 
Cutting speed : 140 m/min 
Hook angle : 5 degrees 
Chip thickness modulation : 0.05 mm 

B Amplitude of chip 
thickness modulation 

0.05 to 0.18 mm 
peak on four steps 

Average chip thickness : 0.19 mm 
Cutting speed : 140 m/min 
Hook angle : 5 degrees 
Frequency : 120 Hz 

C Average chip thickness 0.095 to 0.245 mm 
on four steps 

Frequency : 120 Hz 
Cutting speed : 140 m/min 
Hook angle : 5 degrees 
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Chip thickness modulation : 0.05 mm 

D Hook angle 0 to 10 on three 
steps 

Frequency : 120 Hz 
Cutting speed : 140 m/min 
Average chip thickness : 0.19 mm 
Chip thickness modulation : 0.05 mm 

3.5.1. Effect of Frequency of Chip Thickness Modulation in Dynamic Cutting 

The effect of frequency on the cutting forces is of special interest in the study of the dynamics 

of the cutting process. The following set of figures shows the results from the computer 

simulation obtained from the model proposed in this section when the frequency is varied 

between 50 and 300 Hz. The magnitude of the dynamic cutting force component as well as its 

static component and phase are shown in Figure 3-21. A series of nose radiuses for the tool 

have been used in the simulation and they have been plotted in different line types in order to 

observe the effect of this variable on the process as well. 
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Figure 3-21 (a). Effect of frequency on wave cutting 
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Nigm and Sadek did not control the nose radius as a parameter in their experimental study and 

therefore this value was not given. However an edge radius of 20 pm is typical for turning tools. 

Therefore it is to be expected that the dashed lines representing this radius value in Figure 3.21 

would be the most approximate case of all the ones plotted. 

It can be seen that for a perfectly sharp tool, the magnitude of the cutting force is constant 

throughout the frequency range studied for both wave cutting and removing. The experimental 

results appear to be in agreement with the model estimation for the main cutting force in this 

respect. However, the simulation predicts that for the feed force, an increase approximately 

linear will occur when a nose radius is introduced on the tool. The experimental data supports 

the model since the data points show an increasing trend for the magnitude of the feed force as 

well. 

It can be concluded that even though an increasing trend exists, the effect of frequency on the 

amplitude of the forces is more likely small. On the other hand, the phase in the cutting forces 

leads with respect to the position of the tool and seems more sensitive to frequency, increasing 
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linearly for both cases studied. Good agreement is found again in this sense between the model 

and the experimental data for the wave cutting case. It can be seen in Figure 3-21 that for wave 

removing the simulation results are close to the experimental data for the main cutting force but 

the phase for the feed force seems to have been slightly underestimated. 

3.5.2. Effect of Hook Angle in Dynamic Cutting 

The simulations and experimental results shown in Figure 3-22 suggest that the dynamic 

cutting forces decrease with the increase of the hook angle. It can therefore be seen that 

increasing the hook angle of the tool, the dynamic stiffness can be decreased. This concept can 

be used in tool design, when a reduction in the dynamic forces coefficients needs to be achieved. 

With respect to the phase, it can be concluded that the hook angle has a very small effect in 

the phase of the main cutting force in wave cutting but it plays a more important role for the feed 

force phase, which increases in an almost linear fashion with the increase of the hook angle. In 

the case of wave removing, the effect of the hook angle proves small for both the feed and main 

forces. 
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Figure 3-24 (b). Effect of hook angle on wave removing 

It can be concluded from the discussion and results above that the upper bound approach 

proposed can also be used to estimate the effect of the hook angle in the phase and amplitude of 

the dynamic cutting forces for isotropic materials. 

3.5.3. Effect of Feed Rate iii Dynamic Cutting 

The effect of the feed rate in dynamic cutting was studied using the simulation developed and 

the results are presented in Figure 3-25. It can be seen that experimental result shows a decrease 

in the magnitude of the feed force which cannot be explained using the model developed. The 

model also predicts a small increase in the magnitude of the main cutting force in wave cutting 

and wave removing. The experimental result is close to the model prediction but it is not 

possible to tell i f an increasing trend exists or not due to the limited amount of data. 

As for the phases it can be said that the prediction and experiments show a lead of the force 

with respect to the tool for both wave cutting and wave removing. The trend shows that the 

phase of the feed force is more sensitive to changes in the feed rate than the phase of the main 

force. 
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It can be concluded that the upper bound developed is a good predictor for the effects of the 

feed rate in the dynamic cutting process but that the effect on the magnitude of the feed force 

need further investigation. 
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Figure 3-25 (a). Effect of the feed on wave cutting 
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Figure 3-25 (b). Effect of the feed on wave cutting 
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3.5.4. Effect of Vibration Amplitude in Dynamic Cutting 

It can be seen from the experimental results shown in Figure 3.24 that the effect of the 

amplitude of vibration in the dynamic cutting coefficients is similar to that of the feed. However, 

in this case the upper-bound model developed predicts the decreasing trend of the amplitude of 

the feed force more closely then for the case of the feed effect. The phase of the forces with 

respect to the tool increases in all the cases shown, being more sensitive in wave removing than 

in wave cutting. 
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Figure 3-27 (a). Effect of vibration amplitude on wave cutting 
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Figure 3-27 (b). Effect of vibration amplitude on wave cutting 
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Figure 3-28 (b). Effect of vibration amplitude on wave removing 

3.6. Summary 

• A model for estimation of influence of the ploughing process on the mechanics of cutting 

has been presented. 

• A model of the dynamic orthogonal cutting process has been developed. The results have 

been compared to the experimental results presented in the literature and it is found that 

the new theory predicts the magnitude and phase of the dynamic cutting forces. 

• The influence of various tool and process parameters in the dynamic cutting process has 

been studied using the model developed and it was found that the prediction of the main 

trends in the process can be predicted using the new theory 
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CHAPTER IV 

"Engineering is the art of modeling materials we do 
not wholly understand, into shapes we cannot 
precisely analyze so as to withstand forces we 
cannot properly assess, in such a way that the 
public has no reason to suspect the extent of our 
ignorance." 

- Dr A.R. Dykes, British Institution of Structural 
Engineers, 1976 

4. EXPERIMENTAL INVESTIGATION INTO THE 
LATERAL CUTTING FORCES IN BANDSAWING 

The objective of the experimental work reported here is to develop an understanding 

of the mechanisms that contribute to lateral cutting forces in the bandsawing process. 

These forces have been identified as one of the causes for the washboarding problem. An 

experimental rig available at the C A D / C A M laboratory in the University of British 

Columbia has been instrumented arid used to conduct several cutting tests in wood 

samples with the purpose of validating the static portion of the cutting model developed 

in the second chapter of this thesis work. 

Douglas fir in saturated and dry condition was used for the work conducted. A series 

of cutting tools were made of high-speed-steel for the cuts with three hook angles, 0, 20 

and 40 degrees. The experiments conducted are summarized as follows: 

1) Orthogonal cutting forces in saturated and dry Douglas fir with various hook angles 

2) Two-edge cutting forces in saturated and dry Douglas fir with various hook angles 

3) Simulated sawing cuts with a bandsaw tooth in saturated and dry Douglas-fir 
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4.1. Experimental Setup for Static Cutting Experiments 

The objective of this section is to provide a description of the experimental apparatus 

and procedures used for the static cutting experiments reported in this thesis. The 

instrumentation used is described along with the settings used, as well as the frequency 

characteristics of the cutting-rig structure, the calibration of the cutting force 

dynamometer and the wood samples. 

The high frequency nature of washboarding makes it difficult to directly study the 

excitation forces from the bandsawing process. The setup required for measuring these 

forces would need a flat transfer function up to at least 1000 Hz. Previous research in the 

Wood Sawing Laboratory attempted to measure the high frequency components of the 

lateral forces in circular sawing but it was found that the dynamometer-workpiece-wood 

carriage system being used had a flat transfer function only up to 150 Hz making any 

measurements above this frequency not reliable. This work was reported by 

Montgomery in [30]. 

A setup available at the CAD/CAM laboratory at UBC was adapted to conduct a series 

of static cutting force experiments that simulate the cuts taken by a bandsaw during 

regular operation. The apparatus consists of a metallic frame made of 2-inch square 

tubular section and a pendulum arm that is suspended from a couple of bearings located 

on the top of this frame. The whole system resembles the machine used for the Charpy 

impact test. Figure 4-1 shows this structure, indicating all of its main parts. A coordinate 

system is shown to define the directions of the cutting forces measured by the 

dynamometer. 

The procedure followed for the experiments was as following: 

1) A tool was mounted at the end of the pendulum arm on a tool holder 

2) A wood workpiece of known width was mounted on top of the dynamometer 

3) The workpiece was machined with the tool until a flat top surface was obtained to 

be used as a zero reference for the chip thickness measurements. 
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4) The desired chip thickness was set by moving the tool forward in a tool-holder 

equipped with a dial gauge. This device has an accuracy of 25 microns. 

5) The arm was lifted to a set height and then released. 

6) The forces produced during the cut are measured using the 3D dynamometer 

installed at point 4 shown. 

7) The forces were recorded using a Tektronix TDS 420A oscilloscope that 

computes the average force during the cut. 

8) The forces were recorded manually in a log-book 

The cutting speed was kept constant for all the tests at 2 m/s by controlling the height 

to which the arm was lifted. 

The dynamic characteristics of this structure are of importance in the experimental 

work reported here. The chip thickness must remain constant during the cut to at least 1 

thousand of an inch and therefore any vibrations of the tool with respect to the workpiece 

holder are undesirable if they exceed this value. 

Figure 4-1. Pendulum cutting apparatus. 1: Frame, 
2: Pendulum arm, 3: Tool, 4: Dynamometer 
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4.1.1. Sample Cutting Force Results Obtained with the Pendulum setup 
A series of orthogonal cutting tests were conducted on saturated Douglas fir in order 

to adjust the settings of the instrumentation used. The main and feed cutting forces were 

measured. Figure 4-2 is a schematic representation of the orthogonal cutting process and 

shows the conventions used for the measurements. 

Figure 4-2. Schematic diagram of the orthogonal cutting experiment 
\ 

Figure 4.3 shows a sample cut measured using the pendulum setup. This data has been 

low-pass filtered at 200 Hz in order to eliminate any noise and dynamic effects from the 

structure in the signal. 

It can be seen that the duration of the cut is approximately 25 milliseconds. Therefore, 

the effect of filtering at 200 Hz will only have a slight effect on the mean force value 

recorded from the oscilloscope. 

For each cut in the main direction an average value from the beginning to the end of 

the cut was taken as an actual estimate of the cutting force in the process. In the feed 

direction, the value of the force in the middle of the cut was used. This procedure was 

used for all the results presented in the cutting force plots in this thesis. 

118 



3.5 

3 1 Feed Force 

Main Force 
2.5 -

£ 2 
o 
> - 1.5 
re 
c O) 1 -
CO 

0.5 

-0.5 0.02 0.03 05 

Time [sec] 

Figure 4-3. Sample orthogonal cut along the grain. Rake angle: 0 degrees, 
no lubrication, material: Douglas fir 

4.1.2. Transfer function of the pendulum structure 

The experiments reported in this chapter aim at measuring the average forces in a typical 

wood machining process under various conditions. In order to guarantee that the forces 

measured are accurate, the stiffness and frequency response characteristics of all the 

components in the experimental apparatus must be within acceptable ranges. It is known that 

the excitation forces to the structure during cutting range from 0 to 200 Newtons in the X and 

Y directions. 

Appendix A shows the displacement transfer function of the experimental rig used. The 

structure was reinforced in order to minimize its vibrations and free the frequency range of 

interest from any structural resonancies. It can be seen that the structure is free from resonant 

modes up to 250 Hz in the feed and main directions. The signal in these two directions has 

therefore been low-pass filtered at 200 Hz using a 4th order Butterworth filter. The lateral 

direction in the structure seems to be more flexible, showing modes at 30 and 48 Hz. 

Therefore some interference in the signal is expected at these frequencies and therefore the 

lateral force signal was notch-filtered to eliminate these modes. 
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4.1.3. Three-dimensional force dynamometer 

A three-dimensional cutting force dynamometer was used for the measurement of the 

cutting forces. The frequency response of the device was verified and it was found that it 

presents a flat response up to 500 Hz, which is more than the specification required for 

the measuring the forces in the pendulum rig. 

The dynamometer was set on a flat table for calibration and then loaded in its three 

orthogonal directions by using pulleys and weights. The output voltages were registered 

with an oscilloscope. The device was calibrated between 0 and 160 Newton's, which is 

the range of forces measured during the experiments conducted. The output of the device 

in this range seems to be highly linear, as expected. Figures 4-2 shows the calibration 

curves for the dynamometer. 

a) Static calibration X axis 

0 0.5 1 1.5 2 2.5 3 3.5 

Volts 

b) Static calibration Y axis 

0 0.5 1 1.5 2 2.5 3 3.5 

Volts 

Figure 4-4 (a). Static Calibration of the three-dimensional dynamometer used for the 
experimental work, a) X axis, b) Y axis 
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c) Static Calibration Zaxis 

0 0.5 1 1.5 2 2.5 3 3.5 

Volts 

Figure 4-4 (b). Static Calibration of the three-dimensional dynamometer used for the 
experimental work, c) Z axis 

4.1.4. Data Acquisition and Signal Conditioning 

Charge amplifiers are a required part of the dynamometer system. Since the force 

transducers in the dynamometer are piezoelectric, the charge amps must be used to 

convert the static charge to an analog output, which can be read as a signal in volts. 

Long-range charge settings are used with the following sensitivities for each component 

of force. 

Table 4-1 Charge Amplifier Settings Used for the Cutting Experiments 

Axis Mechanical Units per V Sensitivity (pC/V) 
X 100 3.05 
Y 100 3.00 
Z 100 1.65 

A Krohn-Hite 3905B multi-channel low-pass filter was used to eliminate noise on all 

the channels coming from the dynamometer. This is an analog sixth order Butterwoth 

filter. The cut-off frequency was set at 200 Hz for the experiments. This value for the 

cut-off frequency has been chosen so that it is above any frequency components of 

interest. 
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Figure 4-5. Charge amplifiers and analog filter used for the 

cutting Experiments 

All data acquisition on the experiments conducted was done with a Tektronix TDS 

420A. This is a 200 MHz 4-channel digitizing oscilloscope with floppy disk facilities. 

4.1.5. Wood Samples 

A number of wood samples were made to be used in the experiments. All the samples 

were 75 mm long, 38 mm high and had 7.6 mm width (± 0.5 mm). The material used for 

the samples was Canadian Douglas fir. These specimens were obtained from a batch that 

was used to conduct washboarding experiments at Forintek. Two moisture content levels 

were used on this experimental work. A set of samples was left uncovered for about 

three week indoors in the CAD/CAM laboratory and its equilibrium moisture content was 

measured to be 7%, these samples are the material referred to as "dry Douglas fir" in the 

experimental results shown. Another batch of samples was kept in containers with 

enough water to keep them just above the saturation point; these will be called "saturated 

Douglas fir" here. All these samples were planed to obtain uniform thickness. The knots 

were removed and the direction of the fiber has been set to be straight along the length of 

the sample for uniformity of the results. 
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76 mm 

Figure 4-6. Typical Douglas fir sample used in the cutting 

experiments conducted 

Density is an in important variable when cutting forces are studied. More dense wood 

pieces require higher cutting forces in all directions than lighter ones. While the 

influence of the density in the cutting forces was not studied in this work, the workpieces 

were chosen to have similar density in order to minimize the variability in the 

experimental results. The density of a population of 40 samples for each batch, dry and 

saturated was measured and the average is presented in the following table: 

Table 4.2 Average Density for the Wood Samples Used 

Material Density [gm/cmJ] 

7% Moisture Content 0.5365 

Saturated 0.6412 

4.2. Orthogonal Cutting Experiments 
The second chapter of this thesis presents a series of analytical developments for 

improving the current understanding and allowing the prediction of the static and 

dynamic components of force in bandsawing. These models require sets of orthogonal 

cutting data that need to be obtained experimentally. The results presented in this section 

will be used to validate the cutting models presented throughout this thesis. 
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The study covers three different directions of cutting defined by the orientation of the 

wood fibers with respect to the tool. The convention here followed was originally 

defined by Koch in [10] and is summarized in the following table: 

Table 4-3. Name convention for the cutting direction with respect to the wood grain 

90-90 

Cutting across the fibers with the main cutting velocity 

perpendicular to them. This cutting process is also known as 

ripsawing 

0-90 
Cutting parallel to the fibers with the main velocity of the tool 

perpendicular to them. This process is also called veneer cutting. 

90-0 

Cutting along the fibers. The main cutting velocity vector is 

parallel to the fibers but the tool edge is perpendicular to them. 

This process is also known as planing. 

The following cases were studied: 

1) Saturated and dry Douglas fir 

2) 90-0 cutting or planing and 90-90 cutting or ripsawing 

3) Hook angle of 0, 20 and 40 degrees 

All the tools used had a clearance angle of 15°. The width of the cuts was 7.6 mm (± 

0.5 mm). 

A typical plot of the orthogonal cutting forces as a function of the chip thickness is 

shown in Figure 4.7. It can be seen that the trend for both, the main and feed force is 

approximately linear over the range shown. Linear regression of this experimental data 

was performed in order to obtain a series of orthogonal cutting constants, whose 

definition and physical significance have been summarized in table 4-3. 
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Figure 4-7. Orthogonal cutting forces, a typical experimental result (along the grain) 

Appendix B presents all the data obtained from the orthogonal experiments conducted. 

A compilation of these results is can be seen in table 4-5. These results will be used 

throughout this chapter for the validation of the static models presented for bandsawing. 

It can be seen from the results that the stiffness of the cutting process is lower for 

saturated wood than for dry wood. In the case of a tool with a zero degree hook, the main 

cutting force doubles with respect to the dry state and the feed force increases by 37%. It 

is believed that the saturated state is a closer approximation to the bandsawing conditions 

in primary manufacturing since the logs are sawn in fresh state, meaning that the wood 

will still have most of its original moisture. 
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Table 4-4. Definitions for the orthogonal cutting constants used 

Constant Definition 

Kmc 
Main specific cutting pressure: Pressure required for the cutting process in 
the direction of the main force. 

K-me 
Main edge constant: Stiffness of the edge localized process in the main 
direction. This term has units of [N/mm] 

Kfc 
Feed specific cutting pressure: Pressure required for cutting in the 
direction of the feed force. 

Kfe 
Feed edge constant: Stiffness of the edge localized process in the feed 
direction. This term has units of [N/mm] 

rc 

——, ratio between the cutting force required in the feed and main 
kmc 
directions 

re 

k 
——, ratio between the edge force required in the feed and main directions 

Increasing the hook angle greatly decreases the specific cutting pressure in the main 

and feed directions. It can be seen that in cutting along the grain, that a change in the 

hook from 0 to 40 degrees, causes the pressure to decrease 75%. The edge cutting 

constants decrease with this change as well. In planing, varying the hook angle from 0 to 

20 degrees decreases the main cutting pressure by 55% and in ripsawing, the change is 

50%, which suggests that changes in this variable has similar impact in different 

directions of cut. 

It is also to be noted from the results that the feed specific cutting pressure changes 

from a positive value into a negative when the hook angle is 20 degrees or more. It can 

be concluded that at some point between 0 and 20 the stiffness of the process must be 

zero. 
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Table 4-5. Orthogonal Cutting Constants Obtained from the Cutting Tests 

Material 
Rake angle 

[deg] 
Direction 

of cut 
Kmc 

[Mpa] [N/mm] 
K f c [Mpa] K f e [N/mm] rc 

Saturated 
Douglas Fir 0 90-0 30.884 7.518 12.464 3.947 0.40 0.52 

7% Moisture 
Content 

Douglas Fir 
0 90-0 58.858 8.429 18.236 3.268 0.31 0.39 

Saturated 
Douglas Fir 20 90-0 27.417 2.882 -3.321 1.066 -0.12 0.37 

Saturated 
Douglas Fir 40 90-0 

12.352 1.761 -6.294 0.450 -0.51 0.26 

Saturated 
Douglas Fir 20 90-90 52.039 5.009 -1.720 1.482 -0.03 0.30 

Saturated 
Douglas Fir 40 90-90 26.199 4.250 -2.373 1.641 -0.09 0.39 

No experiments were conducted in the 0-90 direction due to unavailability of cutting 

samples with this fiber geometry. Also, attempts to obtain experimental results for the 

90-90 cutting direction with a zero degree rake tool showed that under these conditions 

cutting was not feasible, showing only fiber ripping and extremely high, unsteady cutting 

forces. Therefore no results are reported here for either of these cases. 

4.3. Two-Edge Cutting Experiments 

A three-dimensional cutting model was presented in section 2.1 of this thesis. The 

model proposes, that based on a set of orthogonal constants for the wood cutting process, 

the chip flow and cutting forces can be predicted for a 0 degree rake tool. The purpose of 

the experiment presented here is to validate the model proposed. The geometry of the cut 

was the same as that shown in Figure 2-1. The cutting conditions used are listed in table 

4-6. 
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Table 4-6. Cutting Conditions for the Two-edge Cutting Experiments 

Tool Material High Speed Steel 

Rake angle 0 degrees 

Clearance angles 7° on both cutting edges 

Speed of cut 2 m/sec 

Lubrication None 

The specific procedure followed was as described in section 4-1 of this chapter. The 

following Figure illustrates the experiment conducted. The goal is to reproduce the 

process represented in Figure 2-6. To achieve this, a corner of the tool is used to perform 

the cut and the dimensions of both edges are controlled in order to achieve the desired 

chip geometry. 

Figure 4-8. Illustration of the two-edge experiment conducted 

Figure 4-9 shows the prediction for the lateral cutting force in two-edge cutting as a 

solid line which was obtained from the model proposed in formula 2.6. The triangles 

represent experimental data points. It can be seen that there is good agreement between 

the model proposed and the experimental result. Some scatter is present in the data 
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which is typical in experimental results for wood cutting. However, the trends are 

conclusive in favor of the applicability of the cutting force model developed. 

Lateral Forces For Saturated Douglas Fir, 0 Rake HSS tool, 90-0 cut t ing 

direction (Width = 2.5 m m ) 

60 7 - - - - — 

0.000 0.500 1.000 1.500 2.000 

Depth of Cut [mm] 

Figure 4-9. Measured and predicted lateral forces for saturated Douglas fir in planing 

Feed Forces For Saturated Douglas Fir, 0 Rake HSS tool, 

90-0 cutt ing direction (Width = 2.5 mm) 

80 -, : 

0.000 0.500 1.000 1.500 2.000 

Depth of Cut [mm] 

Figure 4-10. Measured and predicted feed Forces for saturated Douglas fir in planing 
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Figure 4-10 shows the prediction for the feed cutting force in two-edge cutting as a 

solid line which was achieved by using the model proposed in formula 2.7. It is again 

seen that the model is able to predict the correct trend for the cutting forces and that the 

actual magnitude of the force is also comparable to the experimental result. 

Figure 4-11 below shows the predictions for the lateral cutting force and the experimental 

results obtained for dry Douglas fir. Saturated material tends to create a more 

homogeneous chip and this is usually reflected in the consistency of the cutting force 

measurements during experimentation. However, even when the experimental results 

seem somewhat scattered, the model seems to predict the force trend in an average sense 

throughout the range studied. 
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Figure 4-11. Measured and predicted lateral forces for dry Douglas fir in planing 

The same that was stated for Figure 4-11 is applicable to Figure 4-12. The 

mathematical model can be considered a good average predictor of the feed cutting force. 
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Feed Forces For Dry Douglas Fir, 0 Rake HSS tool, 

90-0 cutting direction (Width = 2.0 mm) 

0.500 1.000 1.500 2.000 

Depth of cut [mm] 

Figure 4-12. Measured and predicted feed forces for dry Douglas fir in planing 

It can be concluded from the experimental data obtained that the assumptions made for 

the model proposed are reasonable for cutting of saturated wood in the 90-0 direction. In 

the case of dry wood, the variability of the data obtained increases but the model also 

seems to be a good predictor of the average value for the data obtained. 

Figure 4-13. Helical chip obtained from a two-edge cut in saturated Douglas fir 

0.000 
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Also, it is noteworthy that the chip obtained from the experiments in saturated and dry 

Douglas fir had a spiral like geometry, which is shown in Figure 4-13. This is similar to 

the chip formation that can be observed in turning of metals for a tool with a nose radius 

and suggests that there is lateral shear occurring in the cutting process. 

4.4. Cutting Forces on a Saw Tooth 

The experiments reported here have the object of identifying the cutting forces in the 

bandsawing process under "perfect" cutting conditions. This is, the tool used has been 

properly ground, the alignment of successive teeth is perfect and the workpiece is free of 

defects. The value registered for the lateral force corresponds to the average value during 

each cut. 

Figure 4-14. Saw tooth used for the experiments showing the three directions 

of force measured and convention for the force sign 

For this experiment, a saw tooth in good condition was cut from a bandsaw, sharpened 

and installed on the arm of the pendulum setup in order to measure the cutting forces 

acting upon it. Figure 4-14 shows the tooth used, the direction of the three orthogonal 
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components of force measured on the experiment and the directions taken as positive for 

convention. The following table presents all the information about the saw tooth used. 

Table 4-7. Specifications for the saw tooth used in the experiments 

Parameter Value 

Hook angle 30° 

Clearance angle 16° 

Sharpness angle 44° 

Tangential angle 6° 

Radial Angle 7° 

Kerf 0.110 in 

Thickness blade 0.050 in 

Side Clearance 0.030 in 

Wear condition Moderate 

Cuts were conducted in the three major directions identified in wood machining, 90-

90, 0-90 and 90-0. The material used was Douglas fir, in the saturated and dry 

conditions. 

(A) (B\ (C) 

Figure 4-15. Samples cut in three different directions with 

respect to the Fibers. A) 90-90 direction, B) 0-90, C) 90-0 
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Figure 4-15 shows the slots cut from the samples after the experiment was conducted. 

The workpiece shown on (A) was cut against the grain, or 90-90 direction, which is the 

usual direction of cut in bandsawing. (B) was cut on the 0-90 direction and (C) was cut 

along the grain or 90-0 direction. 

A typical set of results is presented in Figures 4-16 through 4-18. The results follow a 

linear trend for the feed and main force in a similar fashion to the orthogonal cutting case. 

It can be seen in Figure 4-18 that the lateral cutting force is non-zero, even though the 

load presented to the tooth is balanced. There is no obvious trend to be specified for the 

lateral cutting forces in this case. However, the force can be statically described in a 

simple way by calculating the envelope of the maximum force expected in relation with a 

given chip thickness. This will give an equation for the lateral forces that defines a 

maximum limit for them. The sign, as seen from the experiments can be either positive 

or negative. 

0.00 0.20 0.40 0.60 0.80 1.00 

Bite [mm] 

Figure 4-16. Typical main cutting force plot obtained in single tooth sawing 
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Figure 4-17. Typical feed cutting force plot obtained in single tooth sawing 
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Figure 4-18. Typical lateral cutting force plot obtained in single tooth sawing 

All the results obtained are shown in appendix C and summarized in table 4.8. The 

lateral force is described as negative or positive due to the behavior shown in Figure 4-

18. The sub index V added to a direction of force corresponds to the edge component 

of that force. 
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Table 4-8. Cutting constants obtained from the single-tooth sawing experiment 

Material 
Direction 

of cut 
F m [ N / m m ] F m e [ N ] F f [ N / m m ] F f e [ N ] F L [ N / m m ] 

Saturated 
Douglas Fir 90-90 89.72xbite 26.58 -26.35xbite 12.36 ±14xbite 

7% Moisture 
Content 

Douglas Fir 
90-90 110.27xbite 24.61 -19.79xbite 7.13 N/A* 

Saturated 
Douglas Fir 90-0 66.47xbite 5.60 -18.88xbite 5.90 +17xbite 

7% Moisture 
Content 

Douglas Fir 
90-0 94.37xbite 0.1195 -25.22xbite 6.08 ±17xbite 

Saturated 
Douglas Fir 0-90 159.63xbite -8.28 -49.68xbite 12.46 ±30xbite 

7% Moisture 
Content 

Douglas Fir 
0-90 135.39xbite 2.29 -38.26xbite 11.00 ±19xbite 

* In this case, the experimental data yielded no correlation between the lateral force and 

the bite used. This result can be seen in Appendix C, plot D-2. 

The Experimental results show that under "perfect" cutting conditions the maximum peak 

of the lateral cutting forces reaches 30 Newton's (Appendix C). One explanation for the 

existence of these lateral forces is density gradients within the piece of wood used. These 

gradients are the result of the difference in properties between early-wood and late-wood. 

For each hard ring in Douglas fir there is a soft ring. This creates a field in which the 

lateral forces in the sawtooth will never be balanced. However, as seen from the 

experiment it is possible to define limits for the possible lateral forces in a saw tooth as a 

unction of the bite used. 

As for the mains and feed cutting forces, it can be seen that they follow a fairly linear 

trend with respect to the bite as mentioned before. The spread of the data is 

approximately 20%, which seems reasonable in wood cutting. One possible explanation 

for this variability is the fact that successive cuts are taken in positions of the workpiece 

separated by a bite distance. The material in these two positions will most likely have a 
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different ring configuration or average density and this will impact the forces in the same 

way that was explained in the discussion for the lateral forces. 

According to the experimental results presented, the stiffest direction of cut is 0-90. 

This is an expected result since two edges of the saw-tooth are cutting across the fibers in 

this direction. The softest direction of cut is, as expected, along the grain. One 

interesting finding is that even when this direction presents the lowest stiffness, the edge 

forces are the highest compared to the other two directions. 

The feed force results show that for the tool geometry that was used on the 

experiments, the tooth is pulled onto the wood during cutting in the feed direction. 

4.5. Summary 

The following points summarize the findings of this chapter: 

• A series of experiments was conducted in order to validate the static portion of the 

cutting model proposed for bandsawing in this thesis work 

• The experimental procedures and instruments used for the research conducted 

were described 

• A set of orthogonal cutting data was obtained. This data can be used in the 
v 

cutting models developed in order to predict the cutting forces in complex cutting 

processes such as bandsawing 

• A model to predict the cutting forces in two-edge cutting was validated. It was 

found that the theory developed is a good predictor for the cutting forces in this 

process 

• A series of experiments that simulate cuts taken by a bandsaw were conducted. 

The results show the trends followed by the feed, main and lateral cutting forces 

with respect to the size of the bite 

• A model was proposed to find the bounds for the lateral cutting force for a 

sawtooth 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The forces applied to a saw tooth subjected to unbalanced chip loads during 

bandsawing have been investigated theoretically using an upper-bound approach. A 

detailed examination of the process in the presence of tool vibration has been carried out 

again, using the upper bound approach. Finally, the static model proposed was validated 

experimentally using a simple cutting rig available at the CAD/CAM laboratory at the 

University of British Columbia. 

The following points summarize the main findings of this research: 

I. Analytical Development of a Static Cutting Force Model for Bandsawing 

• The cutting forces in bandsawing can be predicted if the influence of the lateral 

cut on the chip flow is known and a series of orthogonal cutting experiments are 

conducted in order to obtain the orthogonal cutting constants for the material used 

• The lateral cutting forces in the bandsawing process depend not only on the extra 

side cutting area between consecutive teeth but also on the length of the extra 

lateral cutting edge and the radius of the cutting edge. This extra component of 

force is known as a parasitic or edge force. 

• A series of upper-bound models have been developed in order to predict the chip 

flow angle on the face of the tool and therefore the cutting forces 

• The stiffness of the lateral cutting process decreases as the hook angle increases 
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II. Analytical Development of a Dynamic Cutting Force Model for Bandsawing 

• A model for estimation of the influence of the ploughing process has been 

presented. This development is based upon the findings of previous researchers 

in the area of tool wear and has been formulated in order to model the effects of 

the nose of the tool during washboarding. 

• A model for the orthogonal dynamic cutting process has been developed. The 

results have been compared to the experimental results presented in the literature. 

It is found that the new theory predicts the magnitude and phase of the dynamic 

cutting forces reasonably well. 

• The influence of various tool and process parameters in the dynamic cutting 

process has been studied using the model developed and it was found that the 

prediction of the main trends in the process can be achieved using the new theory 

III. Experimental Investigation into the Lateral Cutting Forces in Bandsawing 

• A series of experiments was conducted in order to support the theory presented 

for the static portion of the cutting model proposed for bandsawing in this thesis 

work 

• A set of orthogonal cutting data was obtained. This data can be used in the 

cutting models developed in order to predict the cutting forces in complex cutting 

processes such as bandsawing 

• A model to predict the cutting forces in two-edge cutting was validated. It was 

found that the theory developed is a good predictor for the cutting forces in this 

process 

• A series of experiments that simulate cuts taken by a bandsaw were conducted. 

The results show the trends followed by the feed, main and lateral cutting forces 

with respect to the size of the bite 
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• A simple model was proposed to estimate the bounds for the lateral cutting forces 

in sawing for balanced ship loads 

IV. Recommendations 

The analysis conducted on the geometry of a bandsaw tooth and its cutting 

interactions yields a series of recommendations that can be used in order to help stop the 

washboarding problem. Figure 5.1 shows a modification that can simply be made to a 

sawtooth. The dashed lines correspond to the profile of a tooth with the geometry 

currently used in saw mills. This shape is reached by either swaging to blade or using 

stellite inserts which are purchased and welded onto the blades made locally. The new 

geometry is shown in solid lines superimposed in the drawing. The idea proposed is to 

reduce the flank interaction of a saw tooth by decreasing the size of the inserts used. In 

the old geometry, the excess side flank BC is readily available to produce undesirable 

interactions with the workpiece. In contrast, the flank for the new geometry has been 

moved to the position shown by line BD. 

A A' 

Figure 5-1. Short-faced saw tooth geometry 
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Ideally, if the new face length shown in the figure is as small as one bite, most of the 

side interaction between the saw tooth and the workpiece in subsequent cuts will be 

avoided. 

Another idea that will be proposed here is related to the finding in the dynamic cutting 

model developed that changes in the rake angle of the tool can decrease the dynamic 

cutting coefficients. A saw tooth with hollow face is shown in Figure 5-2. This 

geometry is similar to the one found in a freshly swaged saw-tooth with the difference 

that in this case, the lateral edges have been sharpened as well as the main edge. The 

main cutting edge has been preserved on the tooth in order to avoid an increase in the 

main cutting force by conducting this modification. The side hook angle for this tool is 

YL shown in the top view of the saw tooth. If the value of this angle is as high as 30 

degrees, the lateral stiffness coefficient will decrease significantly. 

Front view 

Top view 

Figure 5-2. Hollow face geometry for a bandsaw tooth 
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V. Recommended Further Research 

The theory presented in the body of this work can be used as the foundation for further 

developments in the knowledge about the mechanics of cutting in bandsawing and the 

eventual solution of the washboarding problem. The following points correspond to 

further work that could be conducted to extend the theories and developments contained 

in this thesis: 

• Experimental validation of the three-edge cutting model presented in section 

2.3 of the second chapter of this thesis. 

• Experimental validation of the static model for two-edge cutting with variable 

hook angle. 

• Analytical development of a three-edge cutting model with variable hook 

angle. 

• Analytical development of a dynamic cutting model for two and three edge 

cutting based on the developments presented in sections 2.2, 2.3, 3.2 and 3.5 

of this thesis. 

• Experimental validation of the dynamic cutting model proposed for wood 

machining processes and the extended model of multiple-edge dynamic 

cutting 

• Implementation of the new saw tooth geometries proposed above and testing 

in a bandsaw blade for washboarding resistance 
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Appendix A 

Transfer Function of the Experimental Setup 

This appendix shows the dynamic characteristics of the setup used for the experimental 

work reported in chapter 4. Figure A-l shows the convention for the coordinate system 

used for the measurements. The transfer function was measured by setting an 

accelerometer at point 3 and impacting with a test hammer at that same location. 

Figure A- l . Pendulum Cutting Apparatus. 1: Frame, 
2: Pendulum arm, 3: Tool, 4: Dynamometer 
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Figure A-2. Transfer function of the pendulum setup in the lateral force direction 
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Appendix B 

Orthogonal Cutting Results 

The cutting models developed in this thesis require orthogonal cutting data. The 

experimental results presented here provide all the information needed in order to validate 

the models proposed. The convention used for the direction of cutting with respect to the 

fibers is the one presented in Table 4-3. High-speed steel tools were used for all the tests. 

The width of cut was 8.4 mm in all cases. The wood species used was Canadian Douglas fir. 

B.l. 90-0 Cutting Direction Results 
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0 I i i i I i 
0.00 0.10 0.20 0.30 0.40 0.50 

Chip thickness [mm] 

Figure B - l . Forces in orthogonal cutting along the grain. 
Saturated Douglas fir. Hook angle = 0 degrees. Width = 8.4 mm. 
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Appendix C 

Single-tooth Experimental Cutting Force Results 
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Figure C-1 (a). Cutting forces in a bandsaw tooth. Saturated Douglas fir 
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C.2. 90-0 Cutting Direction 
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C.3. 0-90 Cutting Direction 
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Appendix D 

Two-Edge Cutting Force Measurements for a Non-zero Hook 
angle 

The results presented in this appendix were obtained using the procedure and apparatus 

described in chapter 4. This data is provided as reference for future research. 

Lateral Force for Saturated Douglas Fir and 20 degree 
rake angle, 90-0 cutting Direction 
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Figure D - l . Two-edge lateral cutting force for cutting in the 90-0 direction. 
Tool hook angle = 20 degrees 
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Feed Force for Saturated Douglas Fir and 40 degree rake 
angle, 90-0 cutting Direction 
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Figure D-4. Two-edge feed cutting force for cutting in the 90-0 direction. 

Tool hook angle = 40 degrees 
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Feed Force for Saturated Douglas Fir and 20 degree rake 
angle, 90-90 cutting Direction 
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Figure D-6. Two-edge feed cutting force for cutting in the 90-90 direction. 
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Tool hook angle = 40 degrees 
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Feed Force for Saturated Douglas Fir and 40 degree rake angle, 
90-90 direction 

10 

5 

0 

-§•' 

-10 

-15 

-20 

• Measured Feed Force [Lb] 

d00 0.200 0.400 0.600 800 1. 

Bite [mm] 

1.200 
El 

Figure D-8. Two-edge feed cutting force for cutting in the 90-90 direction. 
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Appendix E 

Influence of growth rings and knots in the cutting forces 

E.I. Cutting Forces in Growth Rings 

One observation made during the cutting experiments is that there is a strong 

oscillating force component at the ring passing frequency. This finding was made when 

setting up experiments on a milling machine at low speeds of cut (50 mm/sec). It was 

noticed that during the cutting, the main force peaks every time the tool cuts one of the 

dark rings on a sample as shown in the following figure. These two types of ring are 

known as "early wood" and "late wood". The former presents a lighter color than the 

latter one. 

The ring passing frequency in the bandsawing process is usually of higher order than 

the tooth passing frequency. There are usually between 3 and 20 rings between two 

consecutive teeth in a bandsaw (one pitch). 

Figure E-1. Position of the growth rings on a wood sample 
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The orthogonal cutting forces measured on a sample with four growth rings are shown 

in the following two plots. Two different tools were used in the cuts, a 20-degree 

positive rake angle tool and a 40-degree rake tool. 

It can be seen that the main force on the tool has a harmonic component at the ring 

passing frequency with amplitude of 150 Newton. Also, it can be seen that the lateral 

force has the same frequency content of the main force but presents small amplitude of 

about 10 Newton. The feed force presents a different behavior than the main and lateral 

forces. Its frequency content seems to be about three times that of the ring passing 

frequency. There is no explanation available at this point for this difference. 

Effect of tree growth rings on the cutting forces. 
40 degree rake tool. 
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Figure E-2. Orthogonal cutting forces for 0.010" chip thickness, Dry Douglas fir, 90-90 

cutting direction, four growth rings, 40° rake HSS tool 

There is no experimental evidence that the washboarding problem is dependent on the 

characteristics of the rings on the workpiece being cut. Nevertheless, this experiment 

shows that the excitation forces in wood machining processes are dependent on issues 
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such as the growth process of the tree originally cut and that the magnitude of these 

oscillations is large compared to the peak values of the forces. 

Effect of tree growth rings on the cutting forces. 
20 degree rake tool. 

300.0 -

250.0 

200.0 -

150.0 

£ 
Q 

100.0 -
w LL. 

50.0 -
o.o -

-50.0° 

Lateral Force Main Force Feed Force 

-A-
\ 

/ 
V 

\J. 

0 1.0 2.0 3.0 4.0 5.0 6.0 

Time [sec] 

Figure E-3. Orthogonal cutting forces for 0.010" chip thickness, Dry Douglas fir, 90-90 

cutting direction, four growth rings, 20° rake HSS tool 

E.2. Cutting forces in Knots 

St. Laurent [30] examined the effect of knots on the cutting forces. In his 

experiments, a single tooth was mounted on a 3D force dynamometer. The three forces 

were recorded while a block of wood was pushed onto the wood cutting near or through a 

knot. For softwoods the average lateral force was about 20-30% of the tangential force in 

the surrounding clear wood, which corresponds to a value of force between 15 and 40 

Newton. Also, in previous research in washboarding, evidence has been found that the 

lateral vibration response of the blade increases when a knot is cut. 

The objective of the experiment presented here is to measure the process stiffness 

during cutting of a knot under simulated bandsawing conditions. For this purpose, two 

samples with knots were cut with the same saw tooth described on section 3.2 of this 

chapter. The bite was increased between cuts and the forces measured to obtain a series 
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of plots similar to those in section 3.2. It was checked that the tooth was cutting through 

the knot for all the points where the forces were recorded. 

The following figure shows a sample containing a knot that was used in the experiment. 

Knot 

Figure E-4. Wood Sample containing a Knot used for experiments 
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Figure E-5. Main and Feed cutting forces in knot #1, 90-90 direction, dry Douglas fir 
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Figure E-7. Main and Feed cutting forces in knot #2, 90-90 direction, dry Douglas fir 
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Cutting Forces in Knot 90-90 Cutting direction 
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Figure E-8. Lateral cutting forces in knot #2, 90-90 direction, dry Douglas fir 

Figures 3.19 and 3.20 were obtained under the same conditions as figure 3.11 in 

section 3.2 except for the presence of the knot in the sample. It can be seen that the 

process stiffness for the main force is 85% higher in Figure 3.21 than in the same 

experiment without the knot. The feed force increased 235%. For the second knot cut, 

the main force increased 57% and the feed force 292%. 

This experiment does not provide evidence that cutting a knot increases the lateral 

forces. This is probably due to the fact that the chip load on both sides of the tooth was 

still balanced so even if the material being cut is harder, the net lateral force is still small. 

It is expected that the lateral forces would be much higher when cutting a knot if the 

tooth has any defects or if the alignment of consecutive teeth is not perfect. 
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