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Abstract 

Exact closed-form expressions are derived for the bit error rate of Simple Transmit 

Diversity (STD) with 2 transmit and M receive antennas in time-selective, spatially independent 

Rayleigh fading with imperfect channel estimation and in non time-selective, spatially correlated 

Rayleigh fading with imperfect channel estimation. The performance analysis is also presented. 

For spatially independent fading, it is found that for the same values of the channel gain time 

correlation coefficient pt and the channel gain estimation error correlation coefficient p e , the 

error performance in non time-selective fading with imperfect channel estimation is worse than in 

time-selective fading with perfect channel estimation. 

The BER floor resulting from channel estimation errors and time-selective fading is 

determined. For the same values of pt and p e , say p, the error floor limits are approached at 

lower signal to noise ratio (SNR) values for (pt = 1, p e = p) than for (pt = p, p e = 1 ) . 

The effects of channel estimation errors on error performance of STD and Maximum Ratio 

Combining (MRC) were compared and it was shown that for large values of signal to noise and 

estimation error to noise ratios, STD suffers a 3 dB loss compared to MRC in non-time selective, 

spatially independent fading. 
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1 

Chapter 1 Introduction 

The primary objective of this thesis is to study the effectiveness of space diversity 

techniques in improving the performance of wireless communication systems such as cellular 

systems. Currently cellular systems enjoy widespread use around the world since the introduction 

of the Advanced Mobile Phone Service (AMPS) in the United States in 1983 [1]. Currently the 

number of cellular phone subscribers worldwide is 1.3 billion [2]. With the introduction of new 

applications in 3G systems and beyond, it is anticipated that much research and development 

activity will be needed. 

Mobile radio or indoor wireless communication channels commonly suffer from signal 

fading which can cause severe performance degradation [3], [4]. The adverse effects of fading can 

be mitigated by employing diversity techniques which exploit the randomness in signal propaga

tion to establish independent (or at least highly uncorrelated) signal paths for communication so 

as to reduce the probability that all the signal paths will fade simultaneously. There are a number 

of diversity techniques which can provide significant link improvement. Depending on the 

propagation mechanisms, these may include [3]: space diversity, frequency diversity and time 

diversity. 

1.1 Space Diversity 

Space diversity, also known as antenna diversity, is one of the most popular forms of 

diversity used in wireless communications. It is conceptually simple and relatively easy to 

implement. The method is based upon the principle of using two or more antennas at the base 

station or at the mobile terminal to provide diversity. Conventional cellular communication 
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systems consist of an elevated base station antenna and an antenna at the mobile unit which is 

close to the ground. The existence of a direct path between the transmitter and the receiver is not 

guaranteed and the possibility of a number of scatters in the vicinity of the mobile unit suggests 

Rayleigh fading in the wireless channel. If there are more than one antenna at the base station or 

the mobile unit, to achieve decorrelation among the received signals, separation between antennas 

on the order of several tens of wavelengths is required at the base station and at least one half 

wavelength at the mobile unit [1]. Space diversity techniques include Selection Diversity (SD), 

Maxima] Ratio Combining (MRC) and Equal Gain Combining (EGC) [5]. 

Among these three diversity techniques, MRC is theoretically the optimum diversity combin

ing method for branch signals [6]. It provides the highest average output signal-to-noise (SNR) 

and the lowest probability of occurrence of deep fades. All the branch information is used to 

improve the overall receiver performance by cophasing the signals from different branches, 

weighting them according to their individual SNR's, and then summing the cophased and 

weighted signals. It is well-known that the output SNR is equal to the sum of the individual SNRs 

[3]. 

1.2 Simple Transmit Diversity 

The classical MRC technique uses multiple antennas at the receiver to obtain the optimum 

performance. However, in cellular communications systems, this approach is not desirable for the 

mobile handsets because of cost, size and power considerations. Recently, a technique known as 

simple transmit diversity (STD) was proposed by Alamouti [7]. This technique employs two 

transmit antennas and one receive antenna to achieve the same diversity order as MRC. Two 

signals are simultaneously transmitted from the two antennas during a given symbol period and a 
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transformed version of the signal pair is transmitted during the next symbol period. The technique 

can also be used for space-frequency coding. The proposed scheme was shown to have the same 

error performance in non time-selective channels as MRC when perfect channel estimation is 

available at the receiver. STD can be easily generalized to two transmit antennas and M receive 

antennas to provide a diversity order of 2M. It does not require any feedback from the receiver to 

the transmitter and involves small computation complexity. As a result, STD has now been 

incorporated in third generation cellular communication systems [8], [9]. It is thus important to 

understand its performance under non-ideal conditions. 

With imperfect channel estimation, STD was shown in [10] to have a poorer performance 

than MRC. Bit error rate (BER) curves for STD in Rayleigh fading with imperfect channel 

estimation were obtained by computer simulation. In [11], the performance of STD in time-

selective Rayleigh fading channels was investigated with perfect channel estimation and an 

approximate BER expression was obtained. 

In this thesis, closed-form expressions are derived for the BER of STD in time-selective, 

spatially independent Rayleigh fading with imperfect channel estimation and in non time-

selective, spatially correlated Rayleigh fading with imperfect channel estimation. This not only 

obviates the need for time-consuming simulations but also provides greater insight into the effects 

of channel estimation errors, time-selectivity and spatially correlated fading. 

1.3 Thesis Overview 

In Chapter 2, some background and previous related studies are reviewed. The MRC 

combining technique is described. The STD and MRT scheme [12] are also discussed. 
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In Chapter 3, exact, closed form expressions are derived for the BER of 2 transmit and M 

receive antennas STD with time-selective spatially independent Rayleigh fading with imperfect 

channel estimation and with non time-selective spatially correlated Rayleigh fading with 

imperfect channel estimation. BER expressions for time-selective spatially independent fading 

channels with perfect channel estimation or non time-selective spatially independent fading 

channels with imperfect channel estimation are obtained as special cases. Both binary phase shift 

keying (BPSK) and quadrature phase shift keying (QPSK) modulation methods are considered. 

In Chapter 4, numerical results are provided to illustrate the performance of STD in variety 

of channel model. In particular, the BER performances of STD and MRC are compared in the 

presence of imperfect channel estimation and non time-selective fading. In Chapter 5, the main 

contributions and conclusions of this thesis are summarized and some suggestions for future work 

are given. 
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Chapter 2 Background and Related Works 

The classical maximal ratio combining (MRC) technique has been shown to be optimum if 

the channel state is know perfectly [13]. This technique gives the best statistical reduction of 

fading for any known linear diversity combiner [1]. 

However, mobile station (MS) receiver diversity may not be desirable for wireless systems 

because of cost, size and power considerations. Recently, a simple but effective technique, the 

simple transmit diversity (STD) was proposed in [7]. For the same level of radiated power per 

transmit antenna, it was shown in [7] that STD in non time-selective Rayleigh faded channels has 

the same error performance as MRC when perfect channel estimation is available at the receiver. 

The STD technique can be generalized to two transmit antennas and M receive antennas to 

provide a diversity order of TM. 

Maximum ratio transmission (MRT) was proposed in [12] to allow a generalization to an 

arbitrary number of transmit antennas. However, it requires feedback from the receiver to the 

transmitter so that the latter can estimate the channel. 

In a slow fading channel where the fading channel is treated constant over the symbol 

duration, assume that the phase shift can be estimated from the received signal without error, 

coherent detection can be used [13]. Coherent combining systems do not suffer degradation from 

phase transients [14], therefore, coherent detection is considered more desirable when a large 

number of diversity branches are employed and it is used for the diversity schemes in this study. 

In this chapter, we describe the fading channel model to be used and briefly review MRC, 

STD and MRT schemes. 
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2.1 Statistical Models for Fading Channels 

When there are a large number of scatterers in the channel that contribute to the signal at the 

receiver, the central limit theorem suggests that the channel gain can be modeled as a complex 

Gaussian random process. If the process has zero-mean, the envelope of the channel response at 

any time instant has a Rayleigh distribution and the phase is uniformly distributed in the interval 

(0,27t) [13]. 

The complex channel gain corresponding to the kth branch is denoted by 

2 

gk = akexp(jdk), k = 1,2, . . . M , where is Rayleigh distributed with variance 2oK and 

0£ is uniformly distributed in (0, 2rc). We can express the channel gain as gk - xk + jyk, 

where xk = â cosB .̂ and yk = a ŝinO,,., are samples of independent zero-mean Gaussian 
2 2 2 

random variables (r.v.'s) with variance ax = oy = cK. 

2.2 Maximal Ratio Combining (MRC) 

Figure 2.1 shows the baseband representation for MRC with diversity order of M. The 

received signal form each of the M diversity branches are co-phased and weighted to maximized 

the received SNR. The received signal on the /th branch corresponding to the transmission of 

signal s0 can be written as 

rk,MRC = Sks0 + nk, k = 1...M, (2.1) 

where gk is the independent channel gain and nk is an independent complex Gaussian r.v. 

representing the noise and interference at the receiver. For clarity, we will use uppercase letters to 
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Noise 

-e-

Channel 
estimator 

Noise 
Channel 
estimator 

5 0 , MRC 

8M=aMe 

Transmitter Noise 

-e-

Channel 
estimator 

Figure 2.1 MRC with M receive antennas 

denote r.v.'s and corresponding lowercase letters to denote their sample values. The receiver 

combining rule for M branch MRC is as follows: 

M 

~SQ,MRC = X 8k rk, MRC 
k = 1 

M 

= X 8k(8kso + nk) (2-2) 
k = 1 

M M 

S a ^ o + S 8k* nk • 
Jfc =1 k=\ 

where s0 M R C is the combined signal at the output and * denotes the complex conjugate. The 

theoretical analysis of the error performance for MRC was discussed in [6] and it was shown that 

the instantaneous received SNR y, at the output of the diversity combiner, is the sum of the SNR's 

on the individual branches, i.e. 
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M 

= 

k = 1 

k=\zaN 
M f. 

* = 1 2(7^ 

(2.3) 

t 2 
where we define the received SNR on the individual branches as yk = — - . cj is the energy of 5, 

2a N 
and aN is the variance of the real or imaginary component of Nk. It is assumed that the average 

2 2 

received energy gain for each diversity channel is equal, i.e. aK = a . The average SNR per 

branch is then 

% 2 
To = 2 a 

>N 

The probability density function (pdf) of y is given by [13] 

(2.4) 

M -
p(y) = 

lo(M-\)\ 
e~y/y\y>0, (2.5) 

The BER is obtained by averaging over the fading channel statistics (2.5), i.e. 

re,MRC ~ 
\P{y)Q(JTy)dy 

(l-u) 

(2.6) 
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where u = 

2.3 Simple Transmit Diversity (STD) 

The STD scheme with one receive antenna is first reviewed, followed by M receive antennas 

case. 

2.3.1 STD with Two Transmit and One Receive Antenna 

Figure 2.2 shows the baseband representation of the STD scheme with one receive antenna. 

transmit antenna 2 

Figure 2.2 STD scheme with one receive antenna 

In this scheme, independent and equiprobable data bits are transmitted from each transmit 

antenna at symbol rate 1/T. In the first symbol period, sQ and s] are sent from antenna 1 and 

antenna 2 respectively. In the second symbol period, -s* is transmitted from antenna 1 and SQ 

from antenna 2, where * denotes the complex conjugate operation. The delay spreads are small 

compared to T and the coherence times are much larger than T, so that the channels are treated as 
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frequency flat and non time-selective, i.e. the received signal in the first and second bit period can 

be expressed as 

r \ = S\so + 82s\ +ni 
(2.7) 

r2 = S \ s i + 82

s0+n2 

where n, and n2 are samples of independent Gaussian r.v.'s representing noise and interference at 

the receiver at successive intervals. 

The decoding of s0 and sl is based on s 0 s t d and s l s l d respectively where 

The resulting signals, s0 s t d and s t d , are then sent to the maximal likelihood detector. The 

combined signals in (2.8) are equivalent to those obtained from two-branch MRC except for the 

phase rotations on the noise component which do not degrade the effective SNR. Thus assuming 

perfect channel estimation in non time-selective fading, STD scheme provides the same error 

performance as 2-branch MRC for a fixed value of the radiated power per transmit antenna. 

2.3.2 STD with Two Transmit and M Receive Antennas 

Figure 2.3 shows the baseband representation of the STD scheme with two transmit and M 

receive antennas. 

s, 0,std 

\,std 

8 * r 0 + 8 2 r \ 

(a 2 + a2

2)s0 + gfnQ + g2n* 

8*r0 - g2r\ 

(a]+a2)sl + gfn0-g2n* 

(2.8) 
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tx antenna 2 

Figure 2.3 The STD scheme with M receivers 

The encoding and transmission sequence of the information symbols is identical to the case 

of a single receiver. The channel gains from transmit antenna j to receive antenna k is denoted by 

gjk,j = \,2,k= 1,2, ...M. 

The received signals at the /th receive antenna are: 

rk = 8\ksQ + g2ks\+nk 
(2.9) 

rk,T = -8iksf +82kso+nk,T k = 1,2, . . . M 

where rk is the signal received in the first symbol period and rk T is the signal received in the 

second symbol period. The output signals are expressed as 
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M M 

~so,std = X rk+ X 82kr%: 
k = 1 k = 1 

, std 

M M M 

X ( a i * +

 04)*o+ X Stk nk+ X # 2 * 4 , r 
fe= 1 *= 1 k=\ 

M M 
X # * 2 * rk - X S l t ' l . r 
= 1 * = 1 

X (a l f t + + x ^ * 2 ^ - X ^ u n l r 
k = 1 Jt= 1 k = 1 

(2.10) 

• Equation (2.10) shows that the error performance of STD with two transmit and M receive 

antennas is equal to that of 2M branch MRC. 

2.4 Maximum Ratio Transmission (MRT) 

The MRT scheme [12] was proposed to make use of an arbitrary number of transmit 

antennas. The channel gain matrix can be represented by 

#11 ••• S\M 

! \ ! 

SNI • • • 8NM 

(2.11) 

where gjk,j = \,2...,N,k = 1,2..., M represents the channel gain from transmit antennay to 

receive antenna k. 

As shown in Figure 2.4, the symbol to be transmitted, s, is weighted by a transmit weighting 

vector V = [v l s v2...vA,] with 

V = 1-{GW)H (2.12) 
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> S MRT 

Figure 2.4 MRT with N transmit and M receive antennas 

where f i s a M x l receive weighting vector and a = \GW\. [. ] denotes the Hermitian 

operation, i.e. complex conjugate transpose. 

The received signal vector is given by 

1 = S-{GW)HG + n (2.13) 

T T 

where n = [nx...nM] and [. ] denotes the transpose operation, n-is an independent Gaussian 

r.v representing noise and interference. The estimate of the signal is given by 

W = S-(GW)HGW + nTW 

= as + n W 

(2.14) 

The overall output SNR can be written as 
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7 MRT ~ 
a t\ a % 

2WWHc>2

N 

M 
2 I K 2 2 

(2.15) 

In [12], it is assumed that w, = w2 = ...= w w , and 

(wpw*) = *\* - i- 1 

N 

J = 

7 .g * > pi°qi 

(2.16) 

where p and q take on values in the set {1,2, N}. 

For (TV x 1) MRT, i.e. N transmit and one receive antennas, the weighting function at the 

receiver, w,, is set to unity for convenience. From (2.15), the resulting output SNR can be written 

as 

yN x 1, MRT ~ 

2 e 
aNx\C> 

2a 
(2.17) 

N 

where aNx , = \G\ = 
f N 2 v 

V/ = i J 

. Equation (2.17) is the same as (2.3), the output from MRC 

combiner. Since the pdf of the output SNR for both N x 1 MRT and 1 x N MRC are the same, 

they have the same error performance. 

For (1 x M) MRT with one transmit and M receive antennas, the output SNR can be written 

as 
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£ f M "\2 

Y - _1_ 
' 1 x M, MRT ~ 

2Mr>NKk=l j 

(2.18) 

which is the same as the output SNR from equal gain combiner (EGC) [3]. 

However, the constraint that = |w2| = •••= |wM| in [12] results in degraded perfor

mance and a new scheme, maximum ratio transmission and combining (MRTC) was proposed 

recently in [15]. It is shown that MRTC can offer significant gains over MRT by using optimum 

transmit and receive weights. (N x 1) MRTC has the same error performance as MRC with same 

diversity order. 
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Chapter 3 Performance Analysis of STD with Correlated 
Fading and Channel Estimation 

STD was shown to have the same error performance in non time-selective Rayleigh fading as 

MRC when perfect channel knowledge is available at the receiver. However, with imperfect 

channel estimation, STD has a poorer performance [10]. BER curves for STD in Rayleigh fading 

with imperfect channel estimation were obtained using computer simulation in [10]. The perfor

mance of STD in time-selective Rayleigh fading was investigated in [11] assuming perfect 

channel knowledge. An approximate expression for the BER was obtained. 

In this chapter, exact closed-form expressions are derived for the BER of STD with two 

transmit and M receive antennas in time-selective, spatially independent Rayleigh fading with 

imperfect channel estimation and in non time-selective, spatially correlated Rayleigh fading with 

imperfect channel estimation. BER expressions for time-selective spatially independent Rayleigh 

fading with perfect channel estimation or non time-selective spatially independent Rayleigh 

fading with imperfect channel estimation are obtained as special cases. BPSK and quadrature 

phase shift keying (QPSK) modulation methods are considered. 

3.1 2M-Branch STD in Time-selective, Spatially Independent Fading with 
Imperfect Channel Estimation 

In this section, we present the performance analysis of STD with two transmit and M receive 

antennas in time-selective, spatially independent Rayleigh fading with imperfect channel estima

tion using BPSK modulation. 
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3.1.1 System Model 

Figure 3.1 shows the baseband representation of the STD scheme with M receive antennas in 

tx antenna 2 

Figure 3.1 The STD scheme with M receivers in time-selective, spatially independent 
fading with imperfect channel estimation. 

time-selective, spatially independent fading with imperfect channel estimation. Independent and 

equiprobable data bits, each of duration T, are transmitted. With BPSK modulation, the transmit

ted signals sQ and from the two transmit antennas are either +1 or -1. It is assumed that the 

bandwidth of the signal is narrow compared to the channel coherence bandwidth so that the 

channel can be considered as non frequency-selective [1]. We use the time-selective fading model 

in [11] in which the channel gain is constant over a symbol duration but can change in successive 

symbol periods. The channel gains from transmit antennas 1 and 2 to receive antennas i, 

i = 1 M at time 0 and time T are denoted by r.v.'s GU 0, G2I Q, GU T, G2I T . In STD, the 

received signals at time 0 and time T at receive antenna / can be written as: 
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ri = Su,0s0 + 82i,0sl+ni,0 

(3.1) 
ri,T = -Su,Ts\+S2i,TsQ + ni,T 1 = h---,M 

where gu t , g2i ?2> ni t » h> ̂  e T} a r e outcomes of independent complex Gaussian 

distributed r.v.'s with zero means, i.e. the channel gains are spatially independent. The variances 

2 2 
of the corresponding r.v.'s G^ t and Ni t are denoted by oG and o~N respectively. In this thesis, 

we define the variance of a complex r.v. as the variance of either its real or imaginary component. 

G 7 o and G ; i T , j = 1, 2, are correlated with correlation coefficient p, which is defined by [3] 

as 

E[GJit0GJi>T*] 
P, = 

jE[\GjJ2]E[\GJitl\2] ( 3 2 ) 

E[Re(Gj- 0)Re(Gjitr)] + E[Im(GjU0)/m(Gy,- T)] 
2 ' 2rj, 
G 

where E[. ] denotes the expected value, Re(G- t) and Im(G - t) are the real and imaginary 

components of Gji t . In STD, the decoding of sQ and is based on 

M M 

~s0,s,d = Z ^ ' > 0 rt + Y.h2i,Tr*T 
, = 1 ' ' = 1 (3.3) 

M M v ' 

~Sl,std = ^Zh%Ori - Y*h\i.Tr*T 
i = l i=1 

where h-{ t is the estimate for g •• ,. If the real part, Re(sk STD), of ~sk S T D , k = 0, 1 , is greater 

than 0, sk = + 1 is chosen; otherwise sk =-1 is chosen. Following [10], we write 
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hjt t = g • • t + Zji t where the channel estimation error, Zjt t , is a sample of a zero mean, variance 

2 
a z complex Gaussian r.v which is independent of G-,- t . H •• f is thus a zero mean complex 

Gaussian r.v. with variance <5H = <JG + a z . It is shown in Appendix A that the correlation coeffi

cient of Gj^, and H}i , is p e = oG/cH. 

3.1.2 B E R Analysis 

Due to the symmetry in the STD scheme, the BER for the two transmitted signals are equal and 

we need only consider one of the signals, say s0. We will make use of the following result for 

joint Gaussian r.v.'s [16]. 

For the two jointly Gaussian r.v.'s X and Y with zero means, i.e. E(X) = E(Y) - 0, assuming 

X = x' , then 

E{Y\X = x'} = -^x' 
°* , (3.4) 

°Y\X = X' =
 a y V ]

 - P 2 

2 2 

where <5X, aY are the variances of X and Y respectively and p is the correlation coefficient of X 

and Y. 

Since G ; - t and / / •• t are jointly Gaussian, hence the channel fading gain G ; 7 t conditioned on 

2 . 
Hji { = hji t is a complex Gaussian r.v. with mean pe nhjt t where p e n = — = p e and vari-

2 2 
ance (1 - pe)oc . Thus, we can write g •• f as 
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8\i,0 = P e , n h

U 0

 + dU 
u ' A ( 3 - 5 ) 

S2i,T = Pe,nh2i,T + d2i 

2 2 2 

where du and d2i are samples of zero mean, variance aD = (1 - p e ) a c , complex Gaussian 

r.v.'s, Dj- is independent of Hu 0 and D2i is independent of H2i T. Similarly, given gu 0 and 

g2i T , we can express gu T and g2i Q as 
S\i,T = Pr«l«,o + V l«-
82i,o = P / % r

 + v2/ ( 3 - 6 ) 

2 2 2 

where v h and v2i are samples of zero mean, variance ov = (1 - p , ) o G , complex Gaussian 

r.v.'s, Vu is independent of G 1 ;- 0 and V2i is independent of G2i T . Using (3.1) - (3.6), sQ s t d 

can be written as 
M M 

~sQ,std = X Pe,n(| / lh-,o|2 + |^2 ( )7-| 2) 50+ I W i,0 <*1« + >*2«. 7" <*2*«^0 
i=l (=1 

M 

+ X 0 V2i ~ h2i, T v\1 + h^i, 0 Pt

d2i ~ h2i, T Pt dTJs\ (3-7) 
i = 1 

M M + X hU 0 n i , 0 + X A 2 i , T n t T • 

i=\ i = l -

Since S ^ J Q and s} = -s0, each with probability ^, we can calculate the BER for STD as 

Pe,std 2^e's]-so+ ^e'si = -s() ' 

For the case = s0, from (3.7) we can write the decision variable for s0 S T D as 
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M M 
ReCsQ,std)= ^Pe,n(\h\i,o\2 + \ h2i,T\ 2)S0  +  R e \ I [ f c f i , 0 (m\i +  v 2 ^ \ s 0 

/= 1 
M 

+ Re\ £ ih2itT(m2i-vu)*) \sQ + Re 
M X ^ ' . 0 ni,0 

U= 1 

+ Re 
M 

X̂., Tn*,T 

(3.8) 

where m 1 ( = dli + ptd2i and m2i = (d2i - ptdu). It is shown in Appendix B that 

Re{hfl0Mu), Re(h2-TM*), Re(h^0 V2i) , Re(h2-TV*), Re(hfltQNl0) and 

2 2 i . 2 
Re(h2i T N*T ) are independent, zero mean Gaussian r.v.'s with variances (1 + pt )oD\hu 0 , 

2 2 2 2 2 2 2 2 2 2 2 
(1+p,)rjD|/i 2 l- r| , oK|/?1 ;-0| , ov\h2iT\ , CF^|^if,0| a n d  aN\ h2i,T\ respectively. Thus, 

M 
2 2 

7?e(50 ^) is the sum of ^ p e 0[|^h o| + 1̂2/ r| a n o - a n independent, zero mean Gaussian 
i = 1 

r.v. with variance [(1 + p2)o2

D + a2/ + o^Kj/zj^ 0 [ z + \h2i T\A) • The BER is given by 
i= 1 

r M "I 2 \ 

Xp*,«(h«-.o|2 + N , H 2 ) 
•J = 1 

1 X [ ( ] + P?)°? ) + 4 + 0w](|;ih-,o|2 + | / ? 2 i ,r | 2 ) 

(3.9) 

V 1 i = l 

where 

M 

a = X^IVo|. + N,;r| )» (3.10) 
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with 

K = p] / { 2 [ ( l + p 2 ) a 2 + G 2 + c 2 ] } . (3.11) 

Similarly, it can been shown that the BER for s] = -s0 is also given by (3.9). For non time-

selective fading with imperfect channel estimation, (3.10) reduces to 

2 M 
Pe,n 

nts 2 2 — 

2[2aD + o>],-= 1 

Since Hu 0 and H2i T are independent and identically distributed zero-mean complex 

M 
2 2 

Gaussian r.v.'s, A - ^ K(]HU 0| + \H2i r | ) has a chi-square distribution with AM degrees of 
i = 1 

freedom and its pdf is given by [13] 

2M 2 M - 1 
f . . (2M) fl -{2Ma)/\lA 

fA(a) = 1-JIi e ,a>0, (3.13) 
U / M ( 2 M - 1 ) ! 

where 

\La = 4MKo2

H =2Mp2

eo2

G/[(\ +pf)(l -p])<5c + {\ -p2)G2

G + o2

N] 

2 2 2 2 2 2 2 2 2 ( 3 J 4 ) 

= 2 M a J / [ ( l + p 2 ) a z a G + a 2

7 (a 2

/ + a N ) - i - a z ( a 2

/ + aA,)] . 

The overall BER for STD with BPSK modulation on a Rayleigh fading channel can then be 

obtained by averaging over the fading channel statistics (3.13), i.e. 
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Pf, STD = J / A ( f l ) 2 ( ^ ) ^ a (3.15) 

The integral of (3.15) can be simplified as [13] 

Pf, STD (l-u) 
2M2M-UaM-\+i 

i = 0 
V i 

"1 "" 
2<1 + ") (3.16) 

where u = . For the special case of STD with two transmit and one receive 
A/2M + ^ 

antenna, the overall BER is given by (3.16) with M = 1 , i.e. 

Pf.STD- 4 

-\2f 

2 + u, 
2 + 

2 + ut 

(3.17) 

2 2 For given values of M, pe, pt and aN, \iA increases monotonically with a c . The limiting 

value of \iA as a c —> °° is \iA 

2Mp e

2 

The BER thus has an error floor expression 
2 - P , 2 - P 2 P 2 

given by replacing ]XA by [iAi/nax in (3.16), i.e. u = 
P 2 

f2-p2p2' 

For a non time-selective Rayleigh fading channel, p;= \,cv = 0 and (3.14) reduces to 

V>A,n,s = 2 M a J / [ 2 o 2 r j G + a 2 a ^ + a 2 a ^ ] (3.18) 

2 2 2 
With perfect channel estimation, pe = 1, aD= 0, aH= aG and (3.14) reduces to 
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VA,Pce =2Mc52
c/(a2

v + a2
N) 

24 

(3.19) 

With both non time-selective Rayleigh fading and perfect channel estimation, (3.14) reduces to 

the result in [7], i.e. 

V-A.nts/pcs =2M02
G/a2

N . (3.20) 

The corresponding BER is given by replacing \iA by \xAillts, \iAi p c s and \iAiltts/pcs in 

(3.16). 

For comparison purposes, we note that the BER of MRC with M receive antennas and 

imperfect channel estimation is given by [17] 

Pe, MRC (3.21) 

where hi is the estimated channel gain for the i th receive antenna. A comparison of (3.12) for the 

non time-selective fading case and (3.21) shows that, for the same diversity order, MRC has a 

2 2 
smaller BER and for aD » aN, STD is 3 dB worse than MRC. 

3.2 2M-Branch STD with QPSK Modulation 

The performance of 2M-branch STD with QPSK modulation is now considered. To calculate 

the symbol error rate (SER), we note that coherent demodulation ideally results in the two 

demodulated signals being separated at the outputs of the quadrature mixers at the receiver [18]. 
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Thus a coherent QPSK system can be considered equivalent to two parallel independent coherent 

BPSK systems [13]. 

Hence using (3.16), the SER is given by [13] 

2 

Pe, QPSK = 1 - ( 1 - Pf, STD) 

= ^Pf^sTD~Pf,STD • 

3.3 2M-Branch STD in Non Time-selective, Spatially Correlated Fading with 
Imperfect Channel Estimation 

In this section, we investigate the performance of 2M-branch STD with BPSK modulation in 

non time-selective, spatially correlated Rayleigh fading with imperfect channel estimation. 

3.3.1 System Model 

Figure 3.2 shows the complex baseband representation of the STD scheme with M receive anten

nas in non time-selective, spatially correlated fading with imperfect channel estimation. Indepen

dent and equiprobable data bits, each of duration T, are transmitted. With BPSK modulation, the 

transmitted signals sQ and s, from the two transmit antennas are either +1 or -1 . It is assumed 

that the bandwidth of the signal is narrow compared to the channel coherence bandwidth and the 

channel coherence time is much larger than T so that the channel can be considered as non fre

quency-selective and non time selective [1]. The gains of the 2M diversity paths, denoted by 

2 

G J J , G 1 2 , G 1 M , G 2 1 , G2M are zero mean, variance oc correlated complex Gaussian r.v.'s. 

The 2M x 2M covariance matrix, C , of these r.v.'s is assumed to be of the form [19]: 
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tx antenna 2 

Figure 3.2 The STD scheme with M receivers in non time-selective, spatially 
correlated fading with imperfect channel estimation. 

2 
° C <4P, 0 0 

o"cP* 
2 

° G 1 

0 
2 * 

° G P * 
2 ' 0 

0 o <4P* 
2 

In STD, the received signals at time 0 and time T at receive antenna i can be written as [7] [10]: 

ri = Slis0 + 82isl+ni,0 

ri,T = -8usi+82iso + ni,T 1 = U~-,M 

where gu and g2i are path gain samples and «• t , te {0, T} is a sample of a zero mean, 
2 

variance aN independent complex Gaussian r.v. which represents the channel noise. In STD, the 

decoding of s0 and is based on 
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M M 

~s0,std = I>f; ri + Y.h2ir*T 
i=\ (=1 

M M 

~s\,std = ri~ H,h\ir*,T 

(3.25) 

i = 1 i = 1 

where h-t is the estimate for g ••. If the real part, ^ (̂5^ STD), of 5̂  k = 0, 1, is greater than 

0, sk = + 1 is chosen; otherwise sk = -1 is chosen. Following [10], we write hj{ =gjj + Zjt where 

2 

the channel estimation error, z , is a sample of a zero mean, variance a z complex Gaussian r.v. 

which is independent of G-t-. //•,• is thus a zero mean complex Gaussian r.v. with variance 
2 2 2 

<5H = a G + o z . It is shown in Appendix C that the correlation coefficient of Hu and H2i is 

ph = — ps. The 2Mx 2M covariance matrix, Ch, of Hn, Hn, H]M, H2], / / 2 M can be 

expressed as 

Ch = 

°ff <*HPh 0 

0 C7 G p | 

0 

0 

°HPh 

0 acp*, oH 

(3.26) 

It is shown in Appendix A that G-(- and / / •• are correlated with correlation coefficient 

p g = <5g/GH . Using (3.4), we can write g-• as 
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S\i = Pe,nhU + d\i 

Sli = Pe,nh2i + d2i 
(3.27) 

2 2 2 2 2 2 

where p e n=pe = <5Q./<5h , du and d2i are samples of zero mean, variance <sD = (1 - p e ) o c , 

complex Gaussian r.v.'s, Du is independent of Hx • and D2i is independent of H2i. It is shown in 
2 

Appendix D that Du and D2i are correlated with correlation coefficient p^ = (1 - p e)p . Using 

(3.24), (3.25) and (3.27), sQ s t d can be written as 

M M 

~S0,std =
 yLPe,n(\hu\2 + \h2l\2)s0+ £ W« dU + h2id2i)s0 
i = 1 

M M M 
(3.28) 

+ £.(/!*,• d2i-h2i du)sx + Y,hu n , 0 + Y,h2in%T 
i = 1 

Since s^ = s0

 o r si = ~s0' e a c n w i t n probability - , we can calculate the BER for STD as 

Pe,std ^Pe,s} = sQ^~Pe,= -Sf) ' 

For the case st = s0, we can write the decision variable for s0 s t d as 

M r M 
ReCs0,std> ^Pe.n(\hu\2 + \h2i\2)s0 + Re\llWi (du + d2i)]\sQ 

M 

+ Re\Yi[h2i(d2i-dur}\s0 + Re 

+ Re 

i = 

• M 

M 

X h2in* i, T 

(3.29) 

It is shown in Appendix D that Re(h*u (Du + D2i)), Re(h2i(D2i-D, •)*), Re(h*u Nii0) and 
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2 . .2 
Re(h2iN*iT ) are independent, zero mean Gaussian r.v.'s with variances [2(1 + pd)oD] ftjJ , 

2 i 12 2 i 12 2 i 12 

[[2( 1 + prf)rj£)]]\h2i\ , cyJ/iJ and oN\h2i\ respectively. Thus, Re(sQ std) is the sum of 

M 

X P e + |̂ 2rj an^ a n independent, zero mean Gaussian r.v. with variance 
i = i 

M 

X [[2( 1 + p^)a2 ] + a2

v](|/z1;|2 + \h2\2). The BER is given by 
i = 1 

f r M -i 

IP..n(|fclJ2 + N 2 ) 
2 N 

S= Q 
s0 

-«' = 1 
S= Q 
s0 

A X[[2(l+p,)a 2

3] + a2,](|/z1(|2 +N 2) 
(3.30) 

U i = l ) 

= 2(7^) , 

where 

M 

Zp2n(M2 + NI2) 
2{[2(l+p^)a2] + â } (3.31) 

M 

i = 1 

with 

2 
K = — . (3.32) 

2{[2(\+pd)oZ

D) + CJ2

N} 

Similarly, it can be shown that the BER for 5 , = -sQ is also given by (3.30). 
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Since Hu and H2i are correlated and identically distributed zero-mean complex Gaussian 

M 

r.v.'s, if the pdf of A = ^ £(|//h|2 + |#2(|2) 1S f A ^ ' t n e n LLS Laplace transform, P(s), can be 
i = 1 

written as [3] 

2M 
1 

a A i + sr, 
k=\ 1 

where Tl = 2KXl and Xl are the eigenvalues of (3.26) and are given by [19] 

(3.33) 

- 2 2p;icos 
2M+ 1 

, / = 1,2, . . . ,2M (3.34) 

Then f A(a) is given by [19] 

2 M 

/ A O ) = ^d

pexp(s

p

a)> (3-35) 
P= 1 

where .y are the poles of P(s) and dp are the corresponding residues of P(s). The overall BER 

is given by 

P/.STD = \f A(a)Q42ada (3.36) 

By using [20], [21], (3.36) reduces to 

2 M ^ , 
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For the special case of STD with two transmit and one receive antennas, the overall BER is 

given by (3.36) with M = 1, i.e. 

where 

Pf.sTD- 2 ( r 1 - r 2 ) I -
l +r i +r n 

(3.38) 

T, = 2tfoJ(l+pA) = 

r 2 = 2 * o £ ( i - p A ) = 

[2(1 +pd)a2

D] + a2

N 

[2(1 + pd)o2

D] + o2

N 

(3.39) 
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Chapter 4 Numerical Results 

Numerical results based on the analytic results derived in Chapter 3 are presented in this 

chapter. For convenience, we define the signal-to-noise ratio (SNR) as the ratio of the variance, 

2 2 2 2 

OG , of the channel gain, to the variance, oN, of the additive Gaussian noise, i.e. aG/aN and the 

2 2 2 

estimation error-to-signal ratio (ESR) as <3z/o~G, where G z is the variance of the channel 

estimation error. A fixed value of ESR corresponds to a fixed value of pe since 
p] =1/(1 +ESR). 

The theoretical BER of two branch STD in non time-selective Rayleigh fading with imperfect 

channel estimation is given by substituting (3.18) into (3.17). The corresponding curves are 

plotted in Figure 4.1 as a function of SNR for different correlation coefficient values, pe , between 

the estimated channel gain and actual channel gain. It can be seen that the error performance 

degrades rapidly as pe decreases from 1. The performance difference with perfect channel 

estimation increases with SNR. For a target BER of 10 , there is about 3.5 dB degradation for 

p e = 0.99 relative to perfect channel estimation, i.e. p e = 1 . For p e < 1 , the BER curve 

exhibits an error floor with a value obtained by substituting uA m a x = -—e—^ in (3.17). It can be 

seen that the error floor limit is approached for lower SNR values as pe decreases. When pe = 0, 

the estimated channel phase is completely random and hence the BER is 0.5. 

The BER of two branch STD in time-selective Rayleigh fading with perfect channel estima-



Chapter 4 Numerical Results 3 3 

10 

6 6 $ 

10" 

CD H r i - 3 

QC 

o 

LU 

S 10"4 

10 

10" 

10 

— Pe = 1 
- X - Pe = 0.99 

- 3 - Pe = 0.9 

Pe = 0.5 

-e- Pe = 0.2 

-*- Pe = 0 

> £ fc> &> E> > £ E> > fc> E> > j> 

10 15 
SNR, dB 

20 25 30 

Figure 4.1 BER of two-branch STD as a function of SNR for different values of pe 

when pt = 1. 

tion as given by substituting (3.19) into (3.17) is plotted in Figure 4.2 as a function of SNR for 

different correlation coefficient, p ;, between the channel gains at time 0 and time T. The error 

performance degrades rapidly as pt decreases from 1. The performance difference with non time-

selective fading increases with SNR. For a target BER of 10 , there is about 4dB degradation for 

pt = 0.9 relative to pt = 0.99 and there is only about 0.4 dB degradation for pt = 0.99 relative 
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Figure 4.2 BER of two-branch STD as a function of SNR for different values of p ; 

when pe = 1 . 

to non time-selective fading case, i.e. pt = 1. For small values of pt, 0<pt< 0.2 , the perfor

mance is almost identical. 

The BER of two branch STD in time-selective Rayleigh fading with imperfect channel 
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Figure 4.3 BER of two-branch STD as a function of SNR for different values of pt 

andp e. 

estimation as given by substituting (3.14) into (3.17) is plotted as a function of SNR for several pt 

and pe values in Figure 4.3. For the same pt and pe values, the performance in non time-

selective fading with imperfect channel estimation (p, = 1, 0 < pe < 1) is worse than in time-

selective fading with perfect channel estimation (0 < pt < 1, p = 1). For a target BER of 10 , 
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there is about 1 dB degradation for (pt = 0.99, pe = 1), about 3 dB degradation for 

(pt = 1, p = 0.99) and about 7 dB degradation for (p; = 0.99, pg = 0.99) relative to non time-

selective fading with perfect channel estimation i.e. (p, = \, pe = 1). For pt < 1 or pe < 1 , the 

2 p 2 
BER curve exhibits an error floor with a value obtained by substituting \iA 2-p2-pe

2p2 

in (3.17). 

Figure 4.4 shows the BER curves for STD and MRC in non time-selective Rayleigh fading 

with diversity order of two as a function of SNR for four different values of ESR. It can be seen 

that the BER for STD or MRC degrades quiet rapidly with increase in ESR. STD is more sensitive 

_4 

to channel estimation error than MRC. For a target BER of 10 , an ESR of -20 dB results in an 

SNR loss of about 2 dB for MRC and about 6 dB for STD relative to the perfect channel estima

tion case. For ESR > 0, the BER curve exhibits an error floor with a value given by substituting 

UA,MAX =
 i n(3- 1 7)-

Figure 4.5 shows the BER curves for STD and MRC in non time-selective Rayleigh fading 

with a diversity order of two as a function of ESR for three different SNR values. The BER differ-

2 2 

ence between STD and MRC increases with SNR and ESR. For aD » cN, or equivalently 

SNR » 1 + I/ESR, STD is 3 dB worse than MRC as expected from (3.12) and (3.21). 

The theoretical BER performance of STD and MRC with diversity order of 4 in time-

selective Rayleigh fading with imperfect channel estimation, as given by (3.16) and (3.21), is 

plotted in Figure 4.6 as a function of SNR for different values of p and p.. As in the case of a 
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15 

S N R , d B 

Figure 4.4 BER for MRC and STD in non time-selective Rayleigh fading with 
diversity order of two as a function of SNR for ESR = -5 dB, -10 dB, 
-20 dB and - o o dB. 

diversity order of two, the error performance of STD degrades rapidly as pt and pe decrease from 

1 and the error performance of MRC degrades only as pe decrease from 1. For values of p ; or pe 

less than 1, each curve exhibits an error floor. As expected, STD is more sensitive to channel 

_4 

estimation error than MRC. For a target BER of 10 , the error performance of MRC with 
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Figure 4.5 BER for MRC and STD in non time-selective, spatially independent 
Rayleigh fading with diversity order of two as a function of ESR for SNR = 
4 dB, 10 dB and 15 dB. 

p e = 0.99 and STD with (pf = 0.99, p = 1) are almost identical with about 0.6 dB degradation 

relative to the curve for non time-selective fading with perfect channel estimation i.e. 

(p, = 1, pe = 1). However, there is about 0.6 dB degradation for STD with (pf = 1, p = 0.99) 

and about 1.2 dB degradation for STD (p, = 0.99, p = 0.99) relative to MRC with p e = 0.99 . 



Chapter 4 Numerical Results 39 

10" 

10" 

* * * * *- • 

10 
- 4 

£ 1 0 

CO 
CC o 
i— 

U J 

m 10" 

-6 

10 
•10 

10 

10 

- 1 2 

•14 

•* * * - - • * - * *• 

-0- -o- - -e-
•4- -

-o- - e • 
- > • -
- 4 - - < -

• - * • - • - * • 

-o- - e - -o- - $ 
-p- - ->- -

"X— -
-x - - X- - - * X -

3 — f r -

•4. 
•4 -.. 

STD:p e=1,p=1 

+ MRC:p =1 

X • STD:p e=1,p=0.99 

- B - MRC, p =0.99 

• < • 
STD:p e=0.99, p=1 

- • » • 
STD: p6=0.99, p =0.99 

—X- STD:p e=1,p=0.9 

-0- MRC:p =0.9 

<- STD:p e=0.9, p=1 

->-
STD:p e=0.9, p=0.9 

-o- S T D : p ° = 1 , p = 0 

S T D : p ° = 0 , p = 1 

* MRC: p =0 

4 -
• 4 -

-0-

•4-

- o — e -
* X * 

• 4 -

> t> 

•<•• ••<• 

10 15 
SNR, dB 

20 25 30 

Figure 4.6 BER for STD and MRC with diversity order of four as a function of SNR 
for different values of p, and pe . 

The theoretical BER performance of two branch STD in spatially correlated Rayleigh fading 

with imperfect channel estimation, as given by (3.38), is plotted in Figure 4.7 as a function of 

SNR for different values of ps and pe . It can be seen that the error performance degrades as ps 

increases from 0 and as p decreases from 1. For p = 1 and a target BER of 10 , there is 
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15 
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Figure 4.7 BER of two-branch STD as a function of SNR for different values of 

and pe. 

about 1 dB degradation for ps = 0.5 and about 2 dB degradation for p̂  = 0.8 relative to the 

spatially independent case, i.e. ps = 0. For pe = 0.99, there is about 4.6 dB degradation for 

ps - 0.5 and about 10 dB degradation for ps = 0.8 relative to spatially independent fading with 

perfect channel estimation. It can also be seen that, in spatially correlated fading with imperfect 

channel estimation, the error floor limit is approached because of the estimation error while there 
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is no error floor for STD in spatially correlated fading with perfect channel estimation. 

Figure 4.8 shows the BER curves for STD and MRC in spatially correlated Rayleigh fading 

with diversity order of two as a function of SNR for three different values of pe. It can be seen 

that the BER for STD or MRC degrades quiet rapidly with decrease in pe and increase in ps. 

Figure 4.8 BER of two-branch STD and MRC as a function of SNR for different 
values of ps and pe. 
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With perfect channel estimation, i.e. pe = 1, the error performance of STD and MRC in 

spatially correlated fading is identical; with pe = 0, the estimated channel phase is completely 

random and the BER is 0.5 regardless of the value of . With channel estimation error, the error 

performance of STD is worse than that of MRC in both spatially independent and correlated 

fading. For pe = 0.8 and a target BER of 10"1, there is 2.3 dB degradation in independent fading 

(ps - 0) and 3.2 dB degradation in correlated fading with p̂  = 0.6 for STD relative to MRC. 

Figure 4.9 shows the BER curves for STD and MRC in spatially correlated Rayleigh fading 

with a diversity order of two as a function of ESR for two different SNR values. The BER differ

ence between STD and MRC increases with SNR and ESR. 
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Figure 4.9 BER of two-branch STD as a function of ESR for two different values of 
p̂  and two different SNR values 
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Chapter 5 Conclusion 

5.1 Main Thesis Contributions 

• In this thesis, exact closed-form expressions for the bit error rate of the simple transmit 

diversity scheme (STD) [7] in time-selective, spatially independent Rayleigh fading with 

imperfect channel estimation and in non time-selective, spatially correlated Rayleigh 

fading with imperfect channel estimation are derived. For spatially independent fading, it 

is found that for the same values of the channel gain time correlation coefficient p, and the 

channel gain estimation error correlation coefficient pe, the error performance in non 

time-selective fading with imperfect channel estimation is worse than in time-selective 

_3 

fading with perfect channel estimation. For a target BER of 10 , there is about 1 dB 

degradation for (pf = 0.99, p e = 1) and about 3 dB degradation for (pt =1, pg = 0.99) 
relative to non time-selective fading with perfect channel estimation i.e. (p, = 1, pe = 1). 

• An expression for the BER floor resulting from channel estimation errors and time-

selective fading is determined. For the same values of pt and pe, say p , the error floor 

limits are approached at lower SNR values for (pt= 1, pe = p) than for (p, = p, pe = 1). 

• The effects of channel estimation errors on error performance of STD and MRC were 

compared and it was shown that for large values of signal to noise and estimation error to 

noise ratios, STD suffers a 3 dB loss compared to MRC in non-time selective, spatially 

independent fading. 
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5.2 Topics for Future Study 

• This thesis investigated STD in a frequency flat Rayleigh fading channel. It would be 

useful to analyze the error performance of STD in frequency selective channels with Rican 

fading. 

• The BER result for time selective fading is based on the assumption that the channel gains 

are spatially independent. It would be interesting to study the effects of spatial correlation 

on performance in time selective fading. 
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BPSK Binary Phase Shift Keying 

dB decibel 
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Ps 

Ph 
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Transmit weighting vector for MRT 

Receive weighting vector for MRT 
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Noise vector for MRT 

Signal output from MRT combiner 

A normalization factor 

Estimated channel gain for G t 
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BER for STD 

The overall BER for STD 

SER for QPSK 

The covariance matrix of the channel gains 

Spatially correlation coefficient of the channel gains 

Spatially correlation coefficient of the estimated channel gains 
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Appendix A . Derivation of the Correlation Coefficient Between the Esti
mated Channel Gain and the Actual Channel Gain 

Here we derive the correlation coefficient, pe, between the channel gain, G t and the 

estimated channel gain Hji r In the following, we will leave out the index t and / for brevity. 

Following [10], we can express the estimated channel gain H} and H2 as 

(A.l) 
h2 = 82 + z2 

where g • and z • are samples of independent zero mean complex Gaussian r.v.'s. We express Gj 

as 

81 = x \ + jy\ 
(A.2) 

82 = x2 + n 2 

where xx, yx, x2, y2

 a r e samples of independent zero mean Gaussian r.v.'s. The variances of 

Xj, Y], X 2 , Y2 can be expressed as 

We express Z • as 

E(X\) = E(Y\) = <J2

G 

(A.3) 
E{X2

2) = E(Y2

2) = a2

G 

Z = u +jW 

(A.4) 
z2 = u2 + jw2 

where ux, wv u2, w2 are samples of independent zero mean Gaussian r.v.'s. The variances of 
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Up Wv U2, W2 can be expressed as 

E{U\) = E(w\) = a z 

E(U\) = E(W2

2) = a z 

(A.5) 

Thus 

hx = xl + ul + j(yl + wl) 

h2 = x2 + u2 + j(y2 + w2) 
(A.6) 

(A.7) 

The correlation coefficient pe is given by [3] 

E[GjHn 
P = 

=

 E^Xj + JYj^Xj + Uj) ~ KYj + Wj™ 

JE(X2 + Y2)E[{Xj + Uj)2 + •( T • + Wjf] 

_ E[X2 + XjUj + Y2 + YJWJ + jjUjYj - WJXJ)] 

JE(X) + f^EiX2 + r j 2 + 2x ; . r j 7 . + y 2 + W 2 + 2YjWj] 

Since XJ,YJ,UJ,WJ are independent zero mean Gaussian r.v.'s, 

E(XJYJ) = E(XjWj) = E(XjUj) = E(YjWj) = E(UjYj) = E(WJXJ) = 0 . From 3.1.1, we 

have 

c2

Hj = a2

Gj + G2

z. (A.8) 

Using (A.5), (A.7) and (A.8), pe can be expressed as 

Pe = °c/aHr (A-9) 
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Appendix B . Derivation of the Means and Variances of the Random Vari
ables in Equation (3.8) 

Here we derive the means and variances of Re(hfiQ Mu), Re(h2iTM2*), 

Re(hUo V2i) , Re(h2iTV*), Re(hfit0 Nii0) and Re{h2i< T /V* T ) as given in (3.8). 

Hjit,je (1,2), z = 1...M, te (0, T) can be denoted by h j i t = a..(e = u j i t + jw j i t 

where u„ = a.. cos6„- , and w-- = a.. ,sin0„- ,. First of all, we prove that Du, D7i, Vu 

Jl,t ji,t Jht Jl,t jitt ]l,t r I I ' Z l ' II 

and V2i are independent with each other. 

From (3.1) and (3.2), we have 

8li,0 = Pe,nh

]i0 + dU 
(B.l) 

8li,T = Pe,nh2i,T  + d2i 

8\i,T = P/Sw,o + vw 
82i,0 = Pt82iT + v2l

 ( B - 2 ) 

2 

where g u t and g 2 i t , tx, t2e (0, T), each with variance a G , are samples of zero mean 

complex Gaussian r.v.'s which are independent with each other; du and d2i, each with variance 
2 2 2 

oD = (1 - p e )o G , are samples of zero mean complex Gaussian r.v.'s which are independent of 
2 2 2 

hu 0 and h2i T , vu and v2i, each with variances ov = (1 - p;)<3G, are samples of zero mean 

complex Gaussian r.v.'s which are independent of gu 0 and g2i T . t =gji t + t where 
2 

Zji t is a sample of a zero mean, variance a z , complex Gaussian r.v which is independent of 
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Gp t . Zjt o is independent of Zjt Tl_ Using (B.l), the covariance of Gu 0 and H2i j can be 

expressed as [3] 

E ( G \ i , o H % T ) = E ( G U 0 G % T + GXUQZ\IT ) 

= E(penHuoH%T +DUH%T) 

Since GU T is independent of GU ^; Zjt t i is independent of G;-- ̂  and Zjt 0 is independent of 

Zjit T , we have 

E { G I U Q G % T ) = E ( G X U Q Z % T ) = E(HU0H%T) = 0, (B.4) 

thus using (B.3) and (3.3), we have 

E(DUH%T) = 0. (B.5) 

Similarly, it can been shown that 

E(D$iHUt0) = 0. (B.6) 

Using (B.l) and (B.2), the covariance of GU 0 and G2i T can be expressed as 

E(GU>0G%T) = E(plnHU0H%T +pe>nH*2iT Du + pe> „ D%, Hx,. 0 + DUD^ ) (B.l) 

Using (B.4), (B.5) and (B.6), thus we have 

E(DuD*2i) = 0 (B.8) 

Since Du and D2i are zero mean complex Gaussian r.v.'s, they are uncorrelated and statistically 
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independent [23]. Similarly we can show Du and Vki, Vu and Vki, l,ke (\,2),l^k, are 

independent with each other. 

In the following, we will show that Dji is independent of V ••. Using (B.2), the covariance of 

HXi 0 and GXi T can be expressed as 

E{HUQG^T) = E(ptHuoG^i>0 +HuoV]i) (B.9) 

Since 

E(H]1,0G*U,T) = E(G\i,0G*U,T + Zli,0G*i,T ) 

= E(GUi0G^itT) (B.10) 

= 2P,°G 

E(HUQG%0 ) = 2oG (B.ll) 

thus using (B.9) and (B.10), we have 

E ( f f h . 0 V T i ) = 0 (B.12) 

Since DXi is independent of HXi 0 , using (B.l), the covariance of Gu 0 and DXi can be 

expressed as 

E{GUQD*U) = E(PenHUQD*u +DUD*U) 
(B.13) 

= 2 c 2 , 
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Using (B.l) and (B.2), the covariance of GXi 0 and GXi T can be expressed as 

E(GU0G% T) = E(penPtHuoG*Ut0 + p ^ t f , . > Q +ppuG*Ui0 + D,,. V*u ) (B.14) 

Using (B.10) - (B.13), we have 

E{DuVXi) = 0 (B.15) 

Du and Vu are uncorrelated and statistically independent. Similarly we can show D2j and V2j 

are also independent with each other. Thus Du, D2i, Vu and V2i are independent with each 

other. 

In the following, we derive the means and variances for i?e(/zf(>0 Mu), Re(h2i T M2*) , 

ReWi,0 V2i) - Re(h2i,T VJ) , Re(hfitQ N-Q) and Re(h2iiTN%T) in (3.8). 

From (3.8), we have 

*nu = *u + 9r*» ( B 1 6 ) 

m2i = d2i-PtdM 

Since Du and D2i are independent, zero mean complex Gaussian r.v.'s, we assume 

D » = X » + J Y " CB.,7) 
dn = x2« + tin 

where ;c1(-, t-» JC2/»3'2* a r e s a m p l e s of independent, zero mean Gaussian r.v.'s. Thus 
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mu = xu + ptx2i + j(yu + p,y2i) 

m2i = X2i-Ptx]i + J(y2i-P,y\i) 
(B.18) 

and 

Re(h1[ii0 Mu) = uUiQ(xu + p,x2i) + w U t 0 ( y u + pty2i) 

Re{h2iTM*) = u 2 i T { x 2 i - p t x u ) + w 2 i T { y 2 i - p t y u ) 
(b.19) 

Since the means of Xu, Yu,X2i,Y2i , E(XU) = E(X2i) = E(YU) = E{Y2i) = 0, the 

means of Mu, M2i, Re(lr\i 0 Mx •) and Re(h2i T M2*) are also equal to zero. 

From (3.5), The variances of Xu, Yu,X2i,Y2i can be expressed as 

E(X2

U) = E(Y2

U) = cj2

D = ( l - p e

2 ) G 2 

E(X2

2) = E(Y2

2i) = a 2 = ( l - p 2 ) o G 

(B.20) 

and the variances of Re(hfi Q Mxi) and Re(h2iTM2*) can be expressed as 

E{Re[(hfito Mu)]2} =E[u2

Ut0(x2

u + p)x2

2i + 2ptxux2i) +w2- 0(y 2

(. + p)y2

2i + 2ptyuy2i) 

+ 2 Mii,o wii,o( J cii + P^2i)(3 ' i I - + P,y2(-)] 
(B.21) 

£{Re[( / i 2 - TM2*{)] } = E[u2iT(x2i + ptxu-2ptxux2A + w 2 i T ( y 2 i + ptyu-2ptyuy2i) 

+ 2u2it Tw2i> T(x2i - ptxu){y2i - p,yu) ] 

Since XXi, Yu,X2i,Y2i are independent zero mean Gaussian r.v.'s, E{XjjYu) = 0, 

le {1, 2}, l^j. using (B.20), the variances of Re(/if / 0 M 1 ( ) and Re(/z2(- -pMfi) can be 

expressed as 
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E{Re[(hf10 Mu))2} = a2

U0(a2

D + p2a2

D) 

E{Re[(h2i jMfi)}2} = a2

2i T(a2

D + p2o2

D) 
(B.22) 

and the covariance of Re(hUt 0 MXi) and Re(h2iTM2*i) can be expressed as 

E[(Rohfit0Mu )Ro(h2- TM*)] = 0 (B.23) 

It indicates that Re(hfi)0Mu ) and Re(h2j T M2*() are uncorrected and statistically indepen-

2 
dent.The variance of M, G M , where M - Re(/zf,- 0 Mu) + Re(h2i T M 2 *), can be derived as 

o2
M = E{{Re[h0*(0)M0]}2] + E{{Re[hl(T)Mf]}2} 

(B.24) 

Since Du, D2i, Vu, V2i, Nt 0 and Nt T are zero mean independent Gaussian r.v.'s with 

2 2 2 

variances aD, av and aN, M, Re(/ifI ;0 V2i) , Re(h2i T V,*) , Re(/rf ( ;0 /V- 0) and 

Re(^2; r ^ t r ) a r e a l s o z e r o mean independent Gaussian r.v.'s. The corresponding variances 

are [a 2,- 0 +a2,-r](l + p 2 ) ^ , a 2 a]iQ , a 2 a 2

( . r , o2
N a2

u 0 and a^a 2 , .^ . 
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Appendix C. Derivation of the Correlation Coefficient between the 
Estimated Channel Gains 

From 3.3.1, we assume that Gu and G2i are correlated with correlation coefficient . The 

estimated channel gain, HXi and H2i are zero mean complex Gaussian r.v.'s with variances 

2 2 2 
csH = <5G + G z where the channel estimation error, Zu and Z2i, are independent zero means 

2 
complex Gaussian r.v's with variances az . 

The correlation coefficient, ph, of Hu and H2i, is given by [3] 

Since E[GU G2*] = p^c^, also Zu and Z2i are independent Gaussian r.v.'s, 

E[GuZ2i*] = E[G2iZ2i*] = E[G2i*Zu] = E[GU*ZU] = E[ZuZ2i*] = 0, and hence the 

Ph = 
E[HuH*2i] 

jE[\Hu\2]E[\H2l\2] 

E[(Gu + Zu)(G2i + Z2i)*) 

2oi 

(Cl) 

correlation coefficient ph can be expressed as 

2 

Ph = (C.2) 
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Appendix D. Derivation of Means and Variances of Random Variables in 
Equation (3.29) 

Here we derive the variances of Re(h*U(DU + D2i)), Re(h2i(D2i- Du)*), 7?e(fr*i,-iV- 0) 

and Re{h2iN*iT) as given in (3.29). h^, j = 1, 2, i = 1, M can be denoted by 

hi; - a.e J' = ui;+ jw,-,: where = a. .cos0„ and w •• - a . . s in0„. First of all, we prove 
J' Jl J' J J< Jl Jl Jl Jl Jl Jl

 ' r 

2 

that Du, D2i are correlated with correlation coefficient pd - (1 - pe)ps. 

From (3.27), we have 

Su = P2ehu + d\i 

Sli = P2eh2i + d2i 

(D.l) 

2 2 2 2 2 2 

where pe - <3Q/OH , du and d2i are samples of zero mean, variance aD =(1 - pe)oG complex 

Gaussian r.v.'s which are independent of Hu and H2i. The complex Gaussian r.v.'s Gu and G2i 

are correlated with the correlation coefficient p , i.e. 

E(GuG%i ) 
P, = 2 • ( D - 2 ) 

2a G 

Using (D.l), the covariance of Gu and H2i can be expressed as 

E(GuHli) = E(GU G% +GuZli) 

= E(p2

eHuH^ +DuH*2i) 
(D.3) 

since 
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E(GuZ%i) = 0, (DA) 

E(GUH%1 ) = E(HuH\i ) = 2pso2

G, (D.5) 

Thus using (D.2) - (D.5), we have 

E(DuH%i) = 2 ( l - p 2 ) P j a c . (D.6) 

Similarly, the covariance of HXi and D2i can be expressed as 

E(HuD%i) = 2(\-p2

e)psa2

G. (D.7) 

Using (D.l), the covariance of GXi and G2i can be expressed as 

E{GuG\i) = E(p4

eHuH^ +p2

eDuH*2i +p2HuD*2i +DuD*2i) (D.8) 

Using (D.2), (D.5) - (D.7), we have 

E(DuD*2i) = 2(\-p2

e)2psa2

G (D.9) 

The correlation coefficient of DXi and D2l, pd, can be expressed as 

EWUD2*] 
Pd = 

jE[\Du\2]E[\D2i\2) 

= 2 ( l - P e
2 ) V G (D-1Q) 

20-p e V c 

= ( l - P e

2 ) P , • 
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In the following, we derive the variances of Re(h^t (Du + D2i)), Re(h2i(D2i -Du)*) and 

prove that i?e(/zf(- (Dx• + D2i)) and Re'h2i(D2i -DXi)*) are independent. Since D u and D2i 

are correlated, zero mean complex Gaussian r.v.'s, we can express the samples of Du and D2i, 

du and d2i as 

d\i = Xu + Jy\i 
(D . l l ) 

d2i = x2i + jy2i 

2 

where xu, yx i,x2i,y2i are samples of zero mean correlated Gaussian r.v.'s with variances aD, i.e. 

Then we have 

EiX^] = £ [ T 2 . ] = oj, (D.12) 

E[XuYki] = 0 / = 1,2; k = 1,2 (D.13) 

E[XuX2i] = E[YuY2i] = pda2

D (D.H) 

d u +  d2i = x u +  x2i
 + J(y\i + y2i) 

d2i~du =  x 2 i - x \ i + j(y2i-yn) 
(D.15) 

and 

Re(h^ (du + d2i)) = uu(xli + x2i) + wu(y]i + y2i) 

Re(h2i(d2i-du)*) = u 2 i ( x 2 i - x u ) + w 2 l ( y 2 i - y u ) 

The covariance of Re(hfi (DXi + D2i)), Re(h2i(D2i - Du)*) can be expressed as 

(D.16) 
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E[Re(hu (Du + D2[))Re(h2i(D2i-Du)*)] = 

E[uu(Xu + X2i) + wu(Yu + Y2i)][u2i(X2i-Xu) + w2i(Y2[-Yu)] . 

Using (D.12), (D.l3) and (D.14), (D.l7) can be reduced to 

E[Re(hfi (Du + D2i))Re(h2i(D2i-Du)*)] = 0 (D.18) 

This shows that Re{h^ (Du + D2i)) and Re(h2i(D2i - D, •)*) are uncorrelated and statistically 

independent with each other. The variances of Re(hfi (Du + D2i)), Re(h2i{D2i - D} •)*) can be 

written as 

E{Re[hti (Du + D2i)f} = E[u2

u(X2

u + X2

2i + 2XuX2i) + W

2

u(Y2

u + Y2

2[ + 2YuY2i) 

+ 2uuwu(Xu + X2i)(Yu+Y2i)] 

E{Re[h2l(D2i-Du)*]2} = E[u2

2i(X2

2i + X2

r2XuX2l) + w2

2i(Y2

2[ + Y2

r2YuY2l) 

+ 2u2lw2i(X2l-Xu)(Y2l-Yu)] 

Using (D. 12), (D. 13) and (D. 14), (D. 19) can be reduced to 

E{Re[hu (Du + D2i))2} = 2(\+pd)aua2

D 

(D.20) 
E{Re[h2i(D2i-Du)*]2} = 2(\+pd)a2

2ic2

D 
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