Forecasting Demand for Lodging Properties at a
Resort: A Comparison of Methods

by
Dylan Roth
B.Comm., Queen’s University, 1998

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE IN BUSINESS ADMINISTRATION
IN THE FACULTY OF GRADUATE STUDIES
FACULTY OF COMMERCE AND BUSINESS ADMINISTRATION

DEPARTMENT OF MARKETING

We accept this thesis-as conforming to the reguired standard

(Dy. Dapigl Putler)
(Dr,/Ghades Weinperg)
(br. Johp Claxton)
ADavid Jenkins)

THE UNIVERSITY OF BRITISH COLUMBIA

March 2003

© Dylan Roth, 2003




In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that pemmission for extensive
copying of this thesis for scholarly purposes may be granted vby the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Com/\ mey (€

The University of British Columbia
Vancouver, Canada

pate  Mar 7_f/ 2005

DE-6 (2/88)



Abstract

Demand forecasts are the most important piece of information used to make revenue
management decisions for lodging properties. High demand forecasts may lead to increases in
room rates and stay restrictions while low demand forecasts may result in price decreases and
easing of stay restrictions. A number of demand forecasting methods, both long-term (more than
90 days prior to a target date) and short-term (within 90 days of a target date) were modelled and
compared for the lodging properties at a major North American ski resort. Long-term forecasting
methods included random walk, multiplicative Holt-Winters, ARIMA (autoregressive integrated
moving average), linear regression, and nonlinear regression. Short-term models included the
five long-term forecasting methods as well as additive pickup and a regression-based booking
curve model. In terms of long-term forecasts, the nonlinear regression method was found to be
superior'while capacity was trending upward but after a capacity shock (unexpected loss in
capacity) the random walk method proved optimal. In terms of short-term forecasts, the
regression-based booking curve model was optimal in-sample and data was not tested out of
sample. Further, the Iohg-term nonlinear regression model and short-term regression-based
booking curve model explicitly defined seasonal periods. These statistically defined seasonal

periods should help management set seasonal rate targets as well as better understand typical

booking patterns among periods.
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1 INTRODUCTION

Forecasting demand is a critical component of revenue management for lodging operators (hotel
and rental properties). Lodging units are perishable inventory since revenue from a lodging unit
on a certain date is lost forever if the unit is not filled. Given that the majority of lodging costs are
fixed, lodging operators must take appropriate actions to maximize lodging revenue. The
demand forecast is the piece of information upon which revenue management deéisibns are
made. A demand forecast that is higher than expectation may lead to increases in price, stay
controls (i.e. minimum two night stay) and other restrictions. On the other hand, a demand
forecast lower than expectation may trigger promotions, price discounts, and a lifting of
restrictions. In this paper, demand is used synonymously with bookings and is defined as
occupied room nights. For example, a reservation for 2 units at 7 nights is equivalent to 2 room

nights per day for a total of 14 room nights.

Lodging demand estimatés were calculated for a major North American ski resort. Long-term
estimates were calculated more than 90 days prior to a target date, while short-term estimates
were calculated within 90 days of a target date. Standard forecasting models including linear
regression, multiplicative Holt-Winters, ARIMA (autoregressive integrated moving average), and
random-walk were used to create long-term forecasts. These were compared to a nonlinear
regression model built specifically to capture the resort’s yearly demand trend and seasonality
(e.g. regional school holidays). Within the four year sample period, the nonlinear regréssion
provided superior estimates to the other models. However, out of sample, the nonlinear
regression model only provided a marginal improvement over other models during the first'four
months of the out of sample period. At this 4-month point an underlying assumption of the
nonlinear model (linearly increasing yearly demand) was violated as the resort experienced a
large decrease in capacity when a major lodging property switched reservation management
providers. After this capacity shock, random walk provided the best estimates for the remainder
of the out of sample period (and had provided the second best estimates among long-term
forecasting methods prior to the assumption violation). As a result, a ‘customized’ nonlinear
regression model is a recommended long-term forecasting method for resorts which are
experiencing predictable yearly shifts in demand (increasing or decreasing) which can be
approximated by a functional form such as a linear trend or modified exponential curve. If
changes in yearly demand are sporadic or small the random walk method is recommended for

long-term estimates since it is simple and robust.

Short-term estimates (estimates within 90 days of a target date) typically come in two varieties.

The first variety includes the same models used for long-term forecasts but with a shorter

forecasting horizon. In other words, these models use past complete stay information to forecast




future complete stays. The second variety of short-term models includes models that incorporate
current bookings for future dates (bookings to date). Additive pickup (AP) models are similar to
random walk methods; they use current bookings and add last year’s pickup (number of
reservations made in the prior year from Y days out up until the target date) to come up with a
short-term forecast. The other tested model incorporating bookings to date is a ‘customized’
booking curve model. This model creates a baseline booking curve (pattern of bookings over
time for a particular target date) and then compares actual bookings to the baseline bookings in
order to project demand for the target date. This projected demand is then combined with a
long-term non-linear estimate; the weight between estimates determined by the number of days

(lead time) from the target date.

Within the four year sample period, the ‘custom’ booking curve model provided superior estimates
to all other models (AP and long-term models). Further, the booking curve model and long-term
nonlinear model explicitly define seasonal periods based on demand. These statistically
significant seasonal periods provide management with valuable information for setting room rate
targets since room rates are set to correspond to distinct demand levels. As well, the booking
curve model provides management with expected booking curves; the systematic build-up in
bookings for a particular target date. These expected booking curves quantify the relationship
between lead-time and demand for a certain period, helping management to identify the likely
extent of last minute bookings versus reservations in advance. However, while the nonlinear
model and booking curve model have many benefits and are likely to increase the accuracy of
forecasts, the benefit of this additional accuracy\is directly related to the amount of excess
capacity. A large amount of excess capacity, as is the case in the resort studied, leads to a low
cost of demand inaccuracy since all reservations can be accommodated regardless of final
demand. Constrained capacity environments, on the other hand, have a large opportunity cost of
demand forecast inaccuracy since high-value reservations (e.g. reservations with high daily room
rates and long length of stay) should be prioritized above low-value reservations. If the forecasts
for high-value reservations and low-value reservations are inaccurate in a situation of constrained

capacity, then reservation management will make sub-optimal decisions with respect to pricing,

stay controls, and appropriate mix of market segments.




2

FORECASTING APPROACH

Weatherford, Kimes, & Scott (2001) provide a useful framework for forecasting demand for hotel

properties. They contend there are seven decision factors that must be determined prior to a

lodging forecast and these are outlined in Table 1, as well as the approach taken in this paper.

Table 1: Forecasting choices made in resort lodging models

Weatherford et aI forecast choices

Forecast choice for resort estimates

1) What to forecast 1. b) Room nights
a) Arrivals
b) Room nights
2) Level of aggregation 2. The approach taken deviates slightly from
a) Fully aggregated the choices stated by Weatherford et. al.
b) Aggregated by rate category with length- | (2001). Booking data was aggregated by
of-stay probability distributions market segment (independent traveler,
c) Aggregated by length of stay with rate- group, and owner) as well as by bedroom
category probability distributions (one bedroom (including suites), two
d) Fully disaggregated (by rate category bedroom, and three plus bedrooms).
with length of stay) Forecasts were provided for the independent
traveller segment by bedroom type.
3) Unconstraining method 3. c) There is no unconstraining method for
a) None long-term models. For short-term models,
b) Denials data both pickup and booking curve methods are
c) Mathematical models used.
i) Pickup
i) Booking curve
i) Projection
4) Number of periods to include in forecast 4, a) All
a) Al
b) Selected number
5) Which data to use 5. b) All data; only complete stay-nights are
a) Only complete stay-nights used for long-term forecasts while short-term
b) All data (complete and incomplete stay- forecasts used all data.
nights)
6) Outliers 6. a) Outliers included
a) Included
b) Notincluded
7) Level of forecast accuracy 7. a) Aggregated forecasts...while models

a) Aggregated forecasts, errors reported as
average across all reading days

b) Aggregated forecasts, errors reported for
each individual reading day

c) Disaggregated forecasts, errors reported
as average across all reading days

d) Disaggregated forecasts, errors reported
for each individual reading day

are calculated at a disaggregate level by
reading day (as in d), decisions about the
model’s efficacy are reported at an aggregate
level.

An effective revenue management system uses estimates for both guest arrivals and room nights

in order to maximize revenue. Predicted arrival distributions are important so that the resort can

implement effective strategies for specific arrival days (i.e. price changes and stay controls).




However, if capacity is not expected to be surpassed then stay controls are never used. In
situations of capacity slack, predicted room nights alone, rather than predicted room nights by
arrival segment, are generally adequate for revenue management. Room nights for the
independent traveller segment were determined to be the most important estimates for the
studied resort since independent travellers pay higher room rates than group reservations, and
their bookings are made closer to the target date than owner or group reservations. Since the
resort rarely sold out (4 days in the most recent year), and therefore estimating the number of

rooms likely to be occupied was revenue management’s primary concern.

Weatherford et al. (2001) found that summing disaggregated hotel demand forecasts produced a
more accurate forecast than a single aggregate demand forecast. As a result, the resorts’
booking data was disaggregated as much as possible. Room night forecasts were only created
for the independent traveller segment as these were the most predictable bookings and did not
suffer from data inconsistency problems at the resort level. Group bookings were often excluded
from the reservation management system until shortly prior to a target date making it problematic
to determine when reservations/cancellations were actually made. The owner bookings were
generally flat (did not change much from 90 days out up until the target date) due to incentives for
owners to claim vacation dates far in advance. As a result, demand forecasts were not created
for group and owner segments. Furthermore, denials (requests for unavailable lodging units) and
turndowns (customers refusing a room type at a certain price or stay control) were not tracked by
reservation agents for historical data. As a result, it was deemed problematic to disaggregate by
rate class in forecasts since estimating appropriate probability distributions for different rate -
classes would be contrived. Furthermore, due to the tremendous seasonality of the resort (nearly
100% occupancy during Christmas period and often less than 10% during shoulder periods — e.g.
early November and early May) it was hypothesized that seasonality alone would explain most of

the demand variation.

The third decision factor cited by Weatherford et al. is unconstraining method. In other words,
what technique is used to separate demand from capacity? Quite simply, it is impossible to
occupy more than 100% of the resort’s lodging units, yet this does not limit demand to 100% of
capacity. For all the long-term forecasting models there is no unconstraining method. Complete
stay night information, by definition, is constrained by the resort’s capacity so these models do
not capture demand above capacity. However, as mentioned earlier, due to the infrequent nature
of sellouts at the resort, this was not seen as a major problem. The short-term forecasting
models do provide unconstrained forecasts. The additive pickup method may forecast demand
above capacity if last year’s pickup plus current bookings are above capacity. However, this

method may underestimate total unconstrained demand if either current bookings have been



limited by capacity or if last year’s pickup was limited by capacity. The short-term nonlinear
regression model uses booking curves (pattern of bookings observed in similar days past) as a
baseline to gauge future demand. However, similar to the additive pickup model, there is
potential to underestimate unconstrained demand if either the booking curve developed from prior
year data was constrained by capacity or if current bookings are constrained by capacity. Due to
the infrequent nature of resort-wide sellouts, both the additive pickup model and short-term
nonlinear regression model were expected to be very close approximations of unconstrained

demand.

In terms of data used for forecasting, the entire four year sample was utilized in the model
analysis and this includes bookings that never materialized due to cancellations and no-shows.
By including cancellations and no-shows, the models are better able to project future demand
given current bookings. As well, the data was not scrubbed to exclude outliers since large
variation in demand (due to weather, promotions, randomness, etc.) is typical in lodging
forecasting. Readers interested in a more detailed description of the data preparation and

transformation process used in the models are referred to Appendix A.

A reading day is defined by Weatherford et al. (2001) as the day when the number of reservations
on hand for a particular arrival day is updated. At the resort studied, reading days were generally
updated on a weekly basis within 90 days of a target date and updated daily in the week prior to a
target date. Since resort revenue management’s approach to forecasting was random walk (last
year's occupancy figure for long-term forecasts and additive pickup for short-term forecasts) it
was straightforward to compare model forecasts to likely management forecasts for any given
day of historical data. In order to provide maximum accuracy in forecast comparisons, each day

in the 90 day window was treated as a reading day.



3 LONG-TERM MODELS

3.1 Resort Overview

Revenue management at the resort studied manages roughly 50% of the bed base on-mountain.
The fraction of rooms under management has remained roughly constant in the past five years as
the development of on-mountain properties by the resort’s real estate division has largely
matched development by external hotel chains. For resort managed properties, the revenue
management division is responsible for managing reservations as well as setting prices and stay
restrictions. The following long-term and short-term models are demand forecasting methods for

FIT (free independent traveller) segments only.

The long-term models consist entirely of past demand information. The reader is referred to
Figure 1A and Figure 1B for a sample of room nights in the 01/02 season. As can be seen from
Figure 1A, there is tremendous seasonality throughout the year. The first shoulder period from
late April until mid June is very slow, as the ski hill is closed for downhill skiing and school is not
yet out for the summer. The summer period has very high occupancy, as the resort has many
summer travelers and on-hill activities, with demand peaking in the first weekend of August. In
the second shoulder season, demand gradually declines from early September until mid
November, until the hill opens for downhill skiing in late November. The bookings then ramp up
until the Christmas périod peaking at New Year’s. From January until late March the hill is again
very high occupancy with peaks for regional holidays such as school breaks, as well as the
weekends surrounding Martin Luther King Day and President’s Day. Figure 1B shows the daily
variation in demand, with Friday and Saturday nights commanding greater demand than
weekdays. However, the daily variation changes dramatically by seasonal period, with weekend
nights making up a greater proportion of room nights in shoulder seasons while daily variation is
more evenly distributed during high occupancy periods. Both weekly seasonality as well as daily
variation in demand are much greater at resort hotels than at business-oriented hotels. As a
result, the variation in pricing ié also much more cyclical at a resort hotel than at a business-hotel

which tends to have higher average occupancy levels.
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There are numerous approaches to long-term daily demand forecasting and final forecasts are
often a combination of statistical estimates and managerial judgement. This paper focuses on a
statistical approach to forecasting while readers interested in formal approaches to the integration
of managerial judgement and statistical forecasts are referred to Ghalia & Wang (1999). Before
the different long-term forecasting models are described and compared, however, appropriate

criteria for model efficacy must be chosen.

3.2 Model Efficacy Criteria

Traditionally, mean square error (MSE) is a standard error measure for statistical models.
Specifically, the objective of most parameter estimation algorithms is to minimize MSE (as is the
case of all models to be tested in this paper except for ARIMA models). However, MSE is found
by many researchers to be a poor measure of forecast validity. Armstrong and Collopy (1992) in
their oft cited work “Error Measures For Generalizing About Forecasting Methods” tested error
measures against a number of criteria including reliability, construct validity, sensitivity to small
changes, protection against outliers, and relationship to decision-making. They recommend
using deviants of two different error measures, the relative absolute error (RAE) and absolute
percentage error (APE), in order to choose among forecasting methods. The RAE (Equation 1)
for a single estimate is the ratio of the absolute error of a particular forecasting method (e.g. Holt-
Winters’ method) divided by the error of the random-walk method. The APE for a single estimate
(Equation 2) measures the absolute error as a percentage of the actual observation. For a single
horizon Armstrong & Collopy recommend using the median relative absolute error (MdRAE) when
a small number of time series are available and the median absolute percentage error (MdAPE)
when there are a large number of series (Equations 3-4). To compare series over a long horizon,
they recommend the cumulative relative absolute error (CumRAE) for a single series and median

cumulative relative absolute error (MdCumRAE) for multiple series (see Equations 5-6).
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where
m Forecasting method (e.g. Holt-Winters, ARIMA, etc.)
h Horizon (lead time) being forecast (h>90 for long-term forecasts)
s Forecast series
F,, Method m forecast for horizon h
o Random walk forecast for horizon h
4, Actual observation at horizon h
RAE, , Relative absolute error of method m at horizon h
APE, , Absolute percentage error of method m at horizon (lead time) h
MdRAE,, , Median relative absoluté error of method m, horizon h for all series s
MdAPE, , Median absolute percentage error of method m, horizon h for all series s
CumRAE Relative absolute error (RAE) of method m summarized across all h
horizons of a particular series
MdCumRAE, Median CumRAE of method m for all series s

Now that appropriate error metrics have been chosen the long-term mode! estimates can be
compared and evaluated. The five different long-term estimation methods include random walk
(RW), linear regression (LR), multiplicative Holt-Winters (HW), autoregressive integrated moving

average (ARIMA), and nonlinear regression (NL). The models were calibrated using the entire

four year sample period from May 15, 1998 to April 29, 2002 and forecasts compared in year four




(April 28, 2001 to April 27, 2002). I‘n other words, the entire four year sample was used to
determine the functional form of each model (number and type of parameters), but depending on
the model, the entire four years may not have been used to calculate the parameter estimates for
the in-sample period. Specifically, the LR and NL models used the entire four year sample to
calculate parameter estimates and the same parameter estimates were used in year four. In
contrast, the HW and ARIMA models used only sample data prior to the in-sample forecast to
calculate parameter estimates; so data from years one to three were used to calculate parameter

estimates for year four forecasts.

Using the ARIMA model as an example, it was determined using the entire four year sample that
an ARIMA(2,0,2)(1,0,0)7(1,1,0)se4 functional form for one bedrooms best fit the entire sample
dataset, yet the actual parameter values for the ARIMA(2,0,2)(1,0,0),(1,1,0)s¢4 were different for
year four. Further, since a long-term forecast is defined in this paper as any forecast made more
than 90 days prior to a target date, the HW and ARIMA models began to forecast from January
28, 2001 in order provide long-term estimates for the year four forecast period (April 28, 2001 to
April 27, 2002). The out of sample period was from July 29, 2002 to January 22, 2003. The out
of sample period did not begin until July 29, 2002 to allow for a 90 day period from the most
recent in-sample date (April 29, 2002) used to parameterize the models. -

3.3 Random Walk (RW)

Random walk simply means to make predictions of future demand using past demand directly
(without any modelling process). [n this paper, in order to obtain the same seasonal period and
day of week, the final demand from 364 days prior (52 weeks) is used as an estimate for future
demand. For example, the final long-term demand estimate for July 30, 2002 is taken from the
final demand for July 31, 2001.

3.4 Multiplicative Holt-Winters (HW)

A standard statistical demand forecast is a simple exponential moving average model. While a
simple exponential smoothing model is not an appropriate method for daily demand forecasting
when seasonality is present, it is a good base upon which to understand more complex
smoothing models such as HW and ARIMA. The basic form of an exponential smoothing model
is shown in Equation 7 (as derived from smoothing model presentations in SAS ETS User’s
Guide, 1999 and Chatfield, 1989). As can be seen, the weights decrease in a constant
proportion, thereby giving more weight to recent observations and less weight to past

observations. Exponential smoothing is the process by which the weights are calculated
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recursively in order to minimize the squared error. The error term in exponential smoothing is
shown in Equation 8, and so (7) can be restated in error-correction form as Equation 9 or
alternatively as Equation 10. ARIMA models, to be explained in the proceeding section, are a
large class of models expressed in error-correction form. The simple exponential moving

average model is expressed as an ARIMA(0,1,1) in Equation 11.

Y =a¥_ +a(-a)Y_, +a(l-a)*Y_, +.. )
e =Y,-1, ®)
)}t =ae,_, +Y, 9)
n T-1
Y,=ce_ +ae,_,+ae_,+..=a) e, , (10)
Jj=
(1- B)Y, =e¢,(1-6B) (11)
where
Y, Observation at time t
);t Estimated observation at time t
o Smoothing parameter for time-varying mean term
e, Error (disturbance) term at time t
B Backward shift operator (e.g. (1-B)y, =y, -y, )
T Total number of time periods for which observations exist

The multiplicative Holt-Winters model is based on an exponential smoothing model but includes
parameters to account for trend and seasonality. The multiplicative version was used since the
additive version can be expressed as an ARIMA(0,1,p+1)(0,1,0), model, and a multiplicative
model seemed more appropriate since variation in demand is likely to increase with an increase
in yearly demand. In the hotel industry, the multiplicative Holt-Winters three parameter
exponential smoothing method is an industry standard (Baker & Collier (1999)). The HW model
actually has more than three parameters, but it is referred to as a three parameter model as it has
three smoothing parameters; alpha smoothes the time varying mean-term, gamma smoothes the
time-varying slope, and delta smoothes the time-varying seasonal contribution. The estimate of
the HW model is shown in Equation 12, with the separate elements of (12) detailed in Equations
13-15. For comparison, the simple exponential smoothing model is described as an HW model in

Equation 16. It should be noted that HW is multiplicative since the time-varying mean and slope

terms are multiplied by the seasonal term. This results in seasonal variation increasing as the




trend or slope terms increase, whereas the additive HW model maintains constant seasonal

variation around the trend and slope terms.

Y,(h)= (L, +hT)S,.,., (12)
L=a,/S_)+1-a)L_ +T_) (13)

T=y(L - L )+A-T, (14)
S, =6(Y,/L)+(1-5)S,, (15)
V(b =1L, since 7, =0, §,_,,, =1 (16)
Y,(hy=L, +hT, +S,_,,, (17)

where:

Y, Observation at time t

Yt Estimated observation at time t

h Forecast horizon

(04 Smoothing parameter for time-varying mean term

14 Smoothing parameter for time-varying slope

) Smoothing parameter for time-varying seasonal contribution

L, Smoothed level that estimates the time-varying mean term

T, Smoothed trend that estimates the time-varying slope

S,_j Smoothed trend that estimates the time-varying seasonal contribution for one of

the p seasons (j=0,...,p-1)

The additive HW model (Equation 17) can be expressed as an ARIMA(0,1,p+1)(0,1 ,0); whereas
the multiplicative HW model cannot be expressed as an ARIMA model. Note that the
components of the multiplicative HW model (Equations 13-15) are not the same as the
components of the additive HW model. Further, in the additive HW model the sum of the
seasonal terms is zero while in the multiplicative HW model the average of the seasonal terms is
one. Models were created for one bedroom demand and two/three bedroom demand. Two and
three bedrooms were combined into a single model since the HW algorithms require non-zero

elements and there were many zero value days for the three bedroom time-series.

To determine starting values of the trend component, SAS software allows either a constant

estimate, linear trend estimate, or quadratic trend estimate of the starting value. At the resort

studied, the constant trend estimate provided the lowest MSE for one-step ahead forecasts.




Further, in the HW model estimated for the resort, the seasonal term is actually the product of two
terms. The first seasonal term is a weekly term, thus there are 52 seasonal week parameters.
The second seasonal term is a day of week term, thus there are seven day of week parameters.
As a result, there are 364 (52X7) unique seasonal factors derived from 59 (52+7) seasonal
parameters. The multiplicative HW parameter estimates for the entire four year sample (separate
models for one bedroom as well as two/three bedrooms) are shown in Appendix B while the
summary model results are shown below in Table 2. The HW parameter estimates can be
compared directly to the normalized room night values of the past season (Figure 1A and Figure
1B). The HW weekly parameters can be seen to be quite similar to the normalized weekly values
although not as extreme in high periods, while the HW daily parameters have more variation than

normalized daily demand values.

Table 2: Long-term Holt-Winters multiplicative model results (May 15, 1998 to April 29, 2002)

Model Type of #of Classes of R? # of
model parameters parameters observations
1 bedroom | Holt-Winters 62 e Smoothing b7 1,446
multiplicative parameters (3)

e Day of week
parameters (7)
o Weekly parameters

(52)
2/3 Holt-Winters 62 e Smoothing 57 1,446
bedroom | multiplicative parameters (3)

e Day of week
parameters (7)

o Weekly parameters
(52)

*The R? is calculated from 1 step-ahead forecasts for the entire sample period.

3.5  Autoregressive Integrated Moving Average (ARIMA)

A slightly more complex time-series approach than either RW or HW for modelling daily demand
is an ARIMA (autoregressive integrated moving average) model. ARIMA models, as discussed
previously, are models described in error-correction form. Generally, data is differenced (often by
year or by some other seasonal period) to induce stationarity, and then the pattern of movement
around the mean term is estimated. The pattern of movement about the mean is estimated using
polynomial based models. Polynomial based models are effective since they allow a large
amount of variation in the weighting of past observations by using a minimum number of

parameters. For example, a small number of parameters in the numerator and denominator of
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the error structure (right hand side of an ARIMA specification) can interact to form a complex

weighting pattern that can be applied to an infinite number of observations.

The process of estimating an ARIMA model can be described as analyzing the residuals (error
terms) of a time-series process and adding appropriate parameters until there is no longer a
systematic component in the residuals. Once the systematic component (or signal) has been
sufficiently modelled, the new residuals are said to have been reduced to white noise. White
noise means a stochastic process with mean zero. ARIMA models are not automatic
(independent of modeller judgement and specification) as they require the modeller to analyze
autocorrelation, inverse autocorrelation, and partial correlation plots of the error terms in order to
determine appropriate ARIMA parameters. As mentioned, parameters are deemed appropriate if
they are statistically significant (i.e. significant t-statistics at a 95% level of confidence) and
generally added until the residuals are deemed to be white noise (as tested by chi-square
statistics at a 95% level of confidence). Since the ARIMA process is so flexible, the same
weighting functions can be achieved by a variety of ARIMA specifications. Therefore, parsimony
is extremely valuable in ARIMA models, and the Akaike Information Criterion (AIC) is often used
to judge the appropriateness of different ARIMA specifications (and was the objective used in
modelling ARIMA models of daily demand for the resort studied).

The strength and weakness of ARIMA models is that they are often able to capture patterns not
immediately apparent to the researcher. In the best instances, they allow discovery of new data
patterns and hence provide better forecasts of future observations. In the worst instances, they
result in a model that cannot be interpreted or a model that has simply overfit the sample data.
Overfit models are overly complex and do not provide better forecasts than simpler more
interpretable models. In spite of ARIMA model reservations, these models have been used
extensively in financial analysis (e.g. prediction of stock market data) and are often combined with

econometric models to further specify the error terms generated by a regression-based analysis.

Two different ARIMA models (one, two/three bedrooms) were specified for the resort. Three
bedroom data was combined with two bedroom data as an ARIMA model built on three bedroom
data model alone did not provide good estimates due to many zero values. In fact, a two/three
bedroom model provided better estimates than the sum of an independent two bedroom model
and a three bedroom model. The results of the final ARIMA models were favourable in that few

parameters were required; the one bedroom model required only seven parameters (including

mean term) and the two/three bedroom model required six parameters. The two models can be
described as ARIMA(2,0,2)(1,0,0),(1,1,0)3s4 and ARIMA(3,0,1)(1,0,0)7(0,1,1)s64 respectively. The

parameter estimates of the one bedroom model are shown in Equations 18 and the parameter




estimates of the two bedroom model are shown in Equation 19. Parameter estimate detail and
model fit statistics shown in Appendix C. It should be noted that negative forecasts were

replaced with zero for all ARIMA forecasts.

(18)

1- 2098 +.116B"*
(1—B36“)Y,=28.939+( OB + )Je,

(1-.875B+.118B°)(1-.175B7)(1+.381B°*

(1-.921B)(1-.468B°*) ]
(1-1.868B +1.044B% —.169B°)(1-.094B7) ) '

(1-B*Yy, =( (19)

where:

Y Observation at time t

B Backward shift operator (e.g. (1-B%)y, =y, — V12 )
e, Random disturbance (error) at time ¢

3.6 Linear Regression {LR)

Linear regression is a common correlation-based statistical technique that has at least one input
variable, and calculates coefficients for each input variable so that the model estimate (response
variable) is a linear combination of the input variables. If a linear combination of data inputs is not
appropriate, often the variables can be transformed so that estimates are still possible within a
linear regression framework (e.g. taking logs of the data or taking z-scores of the data). For
univariate time series data, the modeller often creates separate binary input variables to specify
mutually exclusive seasonal periods. For example, if a modeller wanted to calculate regression
coefficients for 12 periods (months) within a dataset, she may create 11 new input variables (one
month being the default month to prevent perfect collinearity among input variables). In this
example, a specific monthly input variable (say February) would be one if the observation was
taken frbm this month, and zero otherwise. In this manner, each observation would have at most

one monthly variable that was non-zero.

To continue the example, assuming positive observations, if January was taken to be the default
month, the calculated regression coefficients for the other 11 months can be interpreted as the
difference between the specified month and January. If the coefficient for February was positive,
then the expected seasonal impact of February on observed data values would be higher than
that for January. Conversely, if the coefficient for February was negative, one would expect lower
observed values for February than that of January. In this manner, binary variables were created

to represent specific seasonal periods for the resort.
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The resort managers provided 13 different periods they viewed as distinct. Sample periods
included seven winter periods (winter is defined as all dates in which the ski hill is open for
downhill skiing) and six summer periods. A period could be defined both by hard dates (e.g.
December 20 to January 4 — Holiday Period) and soft dates (e.g. Friday prior to President’'s Day
to the following Saturday — President’s Week). Binary variables were included in the input
dataset to re‘preseni these periods (e.g. the binary variable for President’s Week is one if an
observation falls within that week and zero otherwise). The 13 periods were broken down further
by specifying weeks within periods and the regression was run to see if the additional parameters
were significant at a p=.05 level. In this way periods were further segmented or combined until

each parameter was significant.

The final one bedroom model contained 26 seasonal period parameters while the final two
bedroom model included 29 seasonal period parameters. The data was also partitioned by day
of week, with a separate parameter for each day of the week if significant at a p=.05 level. The
final one bedroom model contained one day of week parameter while the final two bedroom
model contained two day of week parameters. Next, partitions for day of week seasonal period
interactions were created. After some testing, only a weekend-seasonal period interaction
(weekend defined as a Friday or Saturday night) was found to be significant and for only some of
the seasonal periods. The final one bedroom model contained nine weekend period interaction
parameters while the final two bedroom model contained only one weekend period interaction

parameter. Finally, the model included a year term to capture broad-based yearly trend.

A linear regression was not appropriate to model three bedroom demand as it would lead to
heteroskedasticity since small count data violate the assumption of normality necessary for linear
regression. One and two bedrooms, on the other hand, have count data that are large enough to
adequately approximate a normal distribution. In order to overcome the heteroskedasticity
problem inherent in small count data a Poisson regression model was used to model three
bedroom demand. Poisson regression employs a quasi-maximum likelihood technique which
finds conditional probabilities based on values of the explanatory variable (see Woolridge, 1999
for a full discussion of Poisson regression analysis). Essentially, the benefit of using a Poisson
distribution is that it can be fully described by the mean term alone, and this is exploited to form a
log-likelihood function in order to calculate parameter estimates. Mathematically, the probability
that demand equals a specific value (conditional on input variables is shown in Equation 20).
Interpretation of the parameter estimates themselves is quite similar to linear regression.
However, rather than the x8 terms predicting y directly as in linear regression, exp(x3) predicts y

in a Poisson regression.
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P(y =k | x) = exp[~exp(xp)][exp(xB)] / k! ‘ (20)
where:

three bedroom demand

value for three bedroom demand (k = 0,1,...)

input data coefficients

data input values (i.e. seasonal binary variables)

% e

The input data for the Poisson regression was very similar to the input data for the linear
regression. The final model included 20 seasonal period parameters, 1 day of week parameter,
and 8 weekend period interaction parameters. Furthermore, no yearly trend in the number of
units booked was observed for the three bedroom mode! so no yearly trend component was
included in the model. The linear regression and Poisson regression results for the in-sample
period are shown in Table 3, with detailed parameter estimates and model fit statistics for the one
and two bedroom models shown in Appendix D, and the parameter estimates and model fit

statistics for the three bedroom model shown in Appendix E.

Table 3: Long-term linear regression model results (May 15, 1998 to April 29, 2002)

Model Type of # of Classes of parameters R? # of
model parameters observations
1 bedroom Linear 38 e General intercept (1) 77 1,446
regression e Period intercepts (26)

¢ Day of week
intercepts (1)

e Demand trend (1)

o Weekend period
interactions (9)

2 bedroom Linear 37 e General intercept (1) 72 1,446

regression ¢ Period intercepts (32)

e Day of week
intercepts (2)

e Demand trend (1)

e Weekend period
interactions (1)

3+ | Poisson 29 e Period intercepts (20) | .30* 1,446
bedroom regression e Day of week
intercepts (1)
o Weekend period
interactions (8)

*Minimizing SSE (sum of square errors) is not the objective function of a Poisson regression; however, a
linear regression was run with the same parameters to get an approximate R?,
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3.7 Non-Linear Regression (NL)

The most important decision to be made with respect to a customized long-term model was an
appropriate functional form that would specifically capture the resort's demand situation (rather
than say a more automatic model such as a HW model). Initially it had been thought that demand
as a percentage of capacity may be a good measure of demand. Over the four year period for
which data had been provided, the lodging capacity had increased each year in roughly a linear
trend. However, the observed occupancy rates for those periods were not constant. What was
happening was that the number of units occupied increased when capacity increased, but not in
the same proportion as the increase in capacity. For instance, the highest demand period of the
year, the New Year’s holiday, would generally be close to capacity regardless of the absolute
increase in capacity for the year. On the other hand, slow shoulder periods (e.g. early May and
early November) showed almost no increase in demand year over year regardless of newly
added capacity. Other periods, defined as mid to high season, showed an increase in demand
year over year, but not in the same proportion as the increase in capacity. As a result, in an
attempt to capture the idiosyncratic demand elements of the resort studied, a nonlinear

regression model was estimated with two components (Equation 21).

UNITS ,, eor = DEMAND,, ¥ SHARE,,, @1)-
DEMANDM, =, + B, YEAR (22)
SHARE,, = f(seasonal period, day of week, seasonal period day of week interaction) (23)
1
SHARE,,, = —————— (24)
1+ exp(—xp)

where:

o] input data coefficients

X data input values (i.e. seasonal binary variables) -

The first component is an estimate of the maximum potential daily demand in a given year
(Equation 22 and shown graphically for one bedroom units in Figure 2). The second component
is a logistic function that determines the share of maximum daily demand (up to 100%) based on
seasonal factors (Equation 23 and shown graphically for one bedroom units in Figure 3). A
logistic function is appropriate as a share of demand function since it is bounded between zero
and one (Equation 23 is expressed mathematically in Equation 24). The B coefficients are thus
estimated so that the linear x8 terms are extremely positive in high demand periods and

extremely negative in low demand periods.
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Estimating daily demand as a share of estimated maximum potential daily demand was expected
to provide a better estimate of demand than demand as a share of capacity. This hypothesis was
supported by analyzing data during the four year sample period; increases in yearly capacity
often did not lead to a proportionate increase in yearly demand. A logistic share of demand
component creates a multiplicative seasonal component rather than an additive seasonal
component as in linear regression. A multiplicative model is more intuitive since the variation in
demand among seasonal periods is likely to increase with overall yearly demand rather than
staying constant. Stated differently, an additive model is based on the assumption that the
difference in units occupied between high and low demand periods remains constant from year to
year. A multiplicative model, on the other hand, is based on the assumption that the difference in
units occupied between high and low demand periods is a proportion of overall maximum
demand. In a multiplicative model, as overall yearly demand increases, the difference in units

occupied between high and low demand periods increases.
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Figure 2: Estimated maximum daily demand for one bedroom units by year
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Figure 3: Predicted share of maximum daily demand for one bedroom units on selected dates in
02/03 (615 units = 100%)

Three bedroom demand, as mentioned earlier, had small count data (capacity less than 15 with
an average number of occupied units less than 3). Similar to linear regression, a nonlinear
regression would have had heteroskedasticity problems with such count data. As a result, the
same three bedroom Poisson regression estimates that were combined with linear regression

estimates were combined with nonlinear regression estimates for aggregate demand estimates.

The input variables for the nonlinear regression model belong to the same categories of input
variables included in the linear regression model: seasonal period parameters, day of week
parameters, seasonal period weekend interaction parameters, and a yearly trend parameter. The
difference is that all the inputs excluding the yearly trend input were included in a logistic function
(Equation 23) that was then combined with a yearly demand function based on year. The final
one bedroom logistic function contained 32 seasonal period parameters, 2 day of week
parameters, ;and 9 weekend period interaction parameters. The final two bedroom logistic
function included 33 seasonal period parameters, 5 day of week parameters, and 3 weekend

period interaction parameters. Nonlinear model results are shown in Table 4 while detailed
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parameter estimates and model fit statistics are shown in Appendix F. Results of the three

bedroom Poisson regression are shown in Appendix E.

Table 4: Long-term nonlinear regression model resuits (May 15, 1998 to April 29, 2002)

Model Type of # of Classes of R? # of
model parameters parameters observations
1 bedroom Nonlinear 45 ¢ Period intercepts .82 1,446
regression (32)

e Day of week
intercepts (2)

¢ Demand trend (2)

¢ Weekend period
interactions (9)

2 bedroom Nonlinear 43 e Period intercepts .78 1,446

regression (33)

e Day of week
intercepts (5)
Demand trend (2)
Weekend period
interactions (3)

3+ Poisson 29 ¢ Period intercepts .30% 1,446

bedroom regression (20)

e Day of week
intercepts (1)

¢ Weekend period
interactions (8)

*Minimizing SSE (sum of square errors) is not the objective function of a Poisson regression; however, a
linear regression was run with the same parameters to get an approximate R?.

3.8 Long-Term Model Comparison

The long-term models were created to forecast demand more than 90 days prior to a target date.
As a result, the five long-term models (RW, HW, LR, ARIMA, NL) were compared within an in-
sample period as well as within an out of sample period. Appropriate functional forms for all long-
term models were constructed using the entire four year sample. The model estimates were then
forecast out for year 4 within sample and the results compared. For the LR and NL model, the
entire sample was used to calculate parameter estimates (input coefficients) and these same
coefficients were used for the in-sample forecasts. The HW and ARIMA models also used the
entire four year sample to determine model structure (e.g. number and type of parameters for the
ARIMA models). However, parameter estimates for these models vary by day, so the estimates
for year 4 were based on data up to year 3 and then forecast out for year 4. RW is not based on
any model, and demand estimates were simply taken from 364 days prior.
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The results of the five models in the in-sample period are shown in Table 5. Three different error
measures are shown: MSE (mean square error), MdAPE (median absolute percentage error),
and CumRAE (cumulative relative absolute error). For the in-sample period, the NL model is
shown to be superior on all error measures although Armstrong & Collopy suggest CUmMRAE is
the most robust error metric for model comparison in this instance. A CUmRAE value of .738
indicates that the NL model contains 73.8% of the cumulative error of the RW method, thereby
indicating a 26.2% improvement over RW. A CumRAE value of 1.356 for the HW model indicates

estimates that are 35.6% more inaccurate than RW.

Table 5: In-sample long-term model comparisons (April 28, 2001 to April 27, 2002)

Model MSE CumRAE MdJAPE
Random walk (RW) 12,711 1.000 25.7%
Nonlinear regression (NL) 6,333 738 20.4%
ARIMA 10,431 .993 31.8%
Holt-Winters multiplicative (HW) 22,175 1.356 37.5%
Linear regression (LR) 9,113 .992 33.9%

The models were also compared out of sample. Since long-term estimates are forecasts more
than 90 days prior to a target date, the models forecast demand more than 90 days after the last
date of in-sample data (April 29, 2002). As a result the out of sample period was July 29, 2002 to
November 30, 2002 and the results are shown in Table 6. As can be seen in Table 6, the NL
model is still superior, but by a much narrower margin of improvement (3.3%) than in-sample
(26.2%). As at December 1, 2002 the resort unexpectedly lost 105 units of capacity due to a
hotel property switching reservation management provider. As a result, the assumption
underlying the NL and LR models was violated, and the quality of estimates significantly
deteriorated. The loss of capacity also increased the error in the other long-term forecasting
methods (see MAAPE measures) but since the other methods were not based on an increasing
yearly trend in demand they were not as adversely affected. The out of sample period post
December 1, 2002 is shown in Table 7. In this period, the RW method is far superior to other

long-term methods; providing a minimum 38% improvement over all other long-term models.

Table 6: Out of sample long-term model comparisons (July 29, 2002 to November 30, 2002)

Model MSE CumRAE MdJAPE
Random walk (RW) 10,987 1.000 23.1%
Nonlinear regression (NL) 7,187 .967 30.8%
ARIMA 9,932 1.098 32.0%
Holt-Winters multiplicative (HW) 24,273 1.610 35.6%
Linear regression (LR) 10,475 1.398 72.0%




Table 7: Out of sample long-term model comparisons (Decerhber 1, 2002 to January 22, 2003)

Model MSE CumRAE MdJAPE
Random walk (RW) 3,325 1.000 13.8%
Nonlinear regression (NL) 11,176 1.698 28.5%
ARIMA A 5,269 1.377 27.3%
Holt-Winters multiplicative (HW) 37,106 3.033 35.6%
Linear regression (LR) 8,580 1.667 26.0%




4 SHORT-TERM MODELS

Most papers on hote!l forecasting employ one of two approaches: a long-term forecast or a short-
term forecast. The long-term forecast uses past years’ data on daily occupancy to predict daily
occupancy in the future. Long-term forecasts ignore the buildup of bookings for dates in the
future (they are not adjusted for actual bookings to date). Short-term forecasts, on the other
hand, analyze the build-up of bookings for a single future date (target date), and then project final
demand for that target date based on actual bookings to date. Some short-term forecasts treat
target dates in isolation, ignoring the final occupancy figures of years past while others integrate
both actual bookings to date as well as final occupancy figures from years past. This paper
analyzes integrative short-term forecasts as they use all available information and will be shown
to provide better estimates than either models based entirely on past occupancy data or models
based entirely on bookings to date. The two short-term methods to be studied include additive
pickup (AP) and a customized booking curve (BC) model which is based on a non-linear model

nearly identical to the long-term NL model.

41  Additive Pickup (AP)

AP is a simple yet robust short-term forecasting method which automatically integrates prior year
occupancy data as well as actual bookings to date. 1t can be thought of as a detailed random
walk. The AP estimate for a target date is bookings to date plus expected pickup. AP is used
extensively in the airline industry for forecasting passenger pickup (short-term passenger
demand); for specific model specifications see Harris & Marucci, 1983 and L’'Heureux, 1986.
Often a deviant of a direct AP method is used where an exponential moving average of a subset
of flights’ pickup is used to predict pickup for a current flight. The subset of appropriate flights

may be based on day of week, seasonal period, or operating environment such as a fare sale.

For the resort studied, expected pickup was defined as the pickup that was experienced in the
year prior (364 days prior so that the pickup is from the same day of week and seasonal period).
As an example, suppose it is 15 days prior to a target date of December 20, 2003 and there are
500 bookings to date. To find the expected pickup one would look at last year’s bookings for the
target date December 21, 2002 in the 15 day period prior to the target date; let's say there were
300 bookings in that period. In this case, the AP estimate for December 20, 2003 is 800 (500
bookings to date + 300 expected pickup). The one complication that should be mentioned is that
some of the bookings to date will cancel. The method used in this paper was to include all
cancellations as part of the expected pickup. For example, suppose the bookings to date Y days
prior to a target date were 500. Further suppose that in the year prior, Y days before the target

date, 400 new bookings were made in the Y day interval and 100 cancellations were made in the
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Y day interval. Then there would be an expected pickup of 300 units (400 new bookings less 100

cancellations).

4.2 Booking Curve Estimate (BC)

In order to understand the BC estimate it is important to explore the concept of a booking curve.
The typical booking curve (pattern of bookings over time) for a specific date in the future (target
date) is generally a convex curve, with the most bookings occurring in the week immediately prior

to a target date (see Figure 4).
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Figure 4: Typical booking curve (booking curve for target date of July 5, 2001)

However, the booking curve changes in an absolute sense (overall number of bookings) and
relative sense (shape of booking curve) depending on the time of year. High demand periods
generally yield booking curves that are concave with high overall bookings while low demand
periods produce curves that are convex with low overall bookings (see Figure 5A and Figure 5B).
Resort hotels tend to display more seasonality than business-oriented hotels and as such the

“variation of booking curves for a resort hotel tend to be larger than that of a business hotel.
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Figure 5A: Low demand period — convex booking curve (booking curve for target date of
December 6, 2001)
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Figure 5B: High demand period — concave booking curve (booking curve for target date of
December 28, 2001)



This paper utilizes an approach similar to that used by Rajopadhye et al. (1999) in which long-
term estimates are used to predict future demand, and these estimates are continually adjusted
based on bookings to date. The process to achieve the resort’s short-term booking curve

estimate is outlined in Figure 6.

Actual
Bookings to
Date l
Prior Years' Booking Expected Booking Booking
Data Curve Bookings to Curve Curve
_> Baseline > Date P Adjustment > Projection
Model Estimate
Weighting Short-Term
Function Demand
Estimate
Prior Years' Long-Term ’ Long-Term
Data Model Demand
_> > Estimate

Figure 6: Flowchart of forecasting process for booking curve short-term estimate

The short-term demand estimate is a weighted average of the long-term demand estimate and
the booking curve projection estimate. The long-term estimate is derived from a model based on
final daily occupancy figures in years past. In this paper the NL model is used to produce a long-
term estimate (although theoretically any of the long-term models could be used). The booking
curve projection estimate, on the other hand, is composed of two steps. First, a baseline booking
curve model uses the pattern of bookings to date in year’s past to create expectations of current
bookings to date. Second, expected bookings to date and actual bookings to date are input into
an adjustment function that creates an estimate of final demand (booking curve projection
estimate). Finally, a weighting function (based on lead time) combines the long-term estimate
and booking curve projection estimate to come up with the short-term demand estimate. In this
way, the short-term demand estimate is continually updated as new bookings are made, existing

bookings are cancelled, and the target date approaches.
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4.2.1 Booking curve baseline model

The booking curve baseline model is similar to the long-term NL model in its structure (two
component nonlinear regression for one and two bedrooms and Poisson regression for three plus
bedrooms). However, rather than provide a single point estimate for a target date, the model
provides an estimate for each of the 90 days prior to a target date as well as the target date itself.
The major difference between the short-term BC model and the long-term NL model is the
inclusion of a lead time element. A lead time element enables the model to account for the
increase in bookings as the target date approaches. The lead time element is also interacted
with seasonal period binary variables so that the shape of the booking curve can vary by period
(i.e. concave for high demand days and convex for low demand days). The lead time parameters
as well as the lead time seasonal period interaction parameters are captured in the logistic
component of the model. The logistic function for share of demand was used since it is a good
representation of the booking curve (see Figure 7). An approaching target date is equivalent to

following the logistic curve from left to right for a specified interval.
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Figure 7: Generic logistic curve




The left hand side of the logistic function closely resembles the 90-day booking curve for most
days with a traditional convex build up (imagine Figure 5A superimposed on the left hand side of
Figure 7). The right hand side of the logistic function closely resembles a Qd-day booking curve
for a high demand day (imagine Figure 5B superimposed on the right hand side of Figure 7).
Therefore, choosing an appropriate intercept along the logistic function for a specific target date
(to mark the beginning of a specific time interval) as well as including lead time seasonal period
interactions provides a flexible functional form to approximate booking curves for a specific target
date and lead time. The large amount of variation explained by the booking curve baseline
regression models is evidence of the appropriateness of the logistic functional form within the
nonlinear regression model (Table 8). The baseline regression parameter estimates and model

fit statistics are shown in Appendix G.
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Table 8: Booking curve baseline regression model results (May 15, 1998 to April 29, 2002)

Model Type of # of Classes of parameters R? . #of
__model Parameters observations
1 Nonlinear 112 e Period intercepts (57) .84 131,586
bedroom | regression e Day of week intercepts

(5)

e Demand trend (2)

o Lead-time elements (2)

¢ Period lead-time
interactions (24)

» Weekend period
interactions (22)

2 Nonlinear 85 e Period intercepts (47) .82 131,586
bedroom | regression e Day of week intercepts
(5)
Demand trend (2)
Lead-time elements (2)
¢ Period lead-time
interactions (15)
* Weekend period
interactions (14)

3+ Poisson 80 e General intercept (1) 41 131,586
bedroom | regression » Period intercepts (50)
e Day of week intercepts

(5)

e lead-time elements (1)
¢ Period lead-time

interactions (12)

e Weekend period

interactions (11)

*Minimizing SSE (sum of square errors) is not the objective function of a Poisson regression; however, a
linear regression was run with the same parameters to get an approximate RZ. .

4.2.2 Booking curve adjustment

Expected bookings to date for a specific target date and lead time from the booking curve
baseline model is used as a baseline figure to be compared with actual bookings to date. A
booking curve projection of final demand (number of units demanded at the target date when lead
time equals zero) is thus the expected bookings for the target date adjusted by a function of the
actual bookings to date. Five different approaches for a booking curve projection were
attempted. The idea was to adjust the projection by an amount proportional to the deviation
(actual less expected bookings) at a certain lead time (see Appendix H for calculations and
notation for the first four approaches). The fifth approach was somewhat different in that it
employed an ARIMA model to estimate the pattern of booking curve errors to date, and then
projected that pattern to the target date. The results of the ARIMA model were mixed, and the
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approach was ultimately discarded due to additional complexity in computation and
implementation on resort (see Appendix | for results of the ARIMA approach). Of the five
approaches, the direct multiplicative approach was the most straightforward approach and led to
the greatest reduction in squared error although all of the first four methods provided very similar
improvements. In the direct multiplicative approach, the booking curve projection results from
multiplying the baseline estimate by the ratio of actual to expected bookings to date (see
Equation 25).

AB
(—L—T—i’—jEBLH =BCE,,., (25)
EB;_y
where:
AB,,_, Actual bookings to date Y days prior to the target date (lead time =7Y)
EB,,_, Expected bookings to date Y days prior to the target date (from baseline booking curve)
EB, ., Expected bookings on the target date (from baseline booking curve)
BCE,,_, Booking curve estimate of final demand at Y days prior to target date

4.2.3 Short-term weighting function

The short-term estimate is a weighted average of the booking curve projection and the long-term
estimate. Econometric literature provides many examples of situations where combined
forecasts provide superior results to single forecasts. In fact, combined forecasts will always be
optimal as long as forecasts are unbiased (Min & Zellner, 1993). However, Min & Zellner go on to
prove that combining biased forecasts does not necessarily provide superior forecasts. As a
result, a linear regression model (no intercept) was used to combine forecasts at each lead time
as this was a method that would minimize the squared error regardless of whether or not bias
was present. This model allowed one estimate to be weighted between 0% and 100% depending
on its contribution to MSE. In fact, bias was likely for the short-term model given the underlying
yearly trend in demand was likely to either overestimate or underestimate actual yearly demand,
which would then bias all daily estimates.

The short-term model weight changes at different lead times since the error of the booking curve
projection is not consistent across lead times. Instead, booking curve estimates at long lead
times (i.e. 90 days prior to a target date) have higher errors than booking curve estimates at short
lead-times. This is because booking curve proj'ections at long lead times have fewer bookings to
date in which to make a forecast and must forecast further out. Long-term estimates, on the

other hand, do not vary based on bookings to date as they are constructed entirely from prior
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years' data. Figure 8 compares the mean square error of long-term NL estimates and short-term
booking curve projection estimates at different lead times over a three year in-sample period
(May 14, 1999 to April 29, 2002).
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Figure 8: Mean square error of one bedroom long-term NL estimates and short-term booking
curve projections at different lead times

In order to integrate the time-dependent error of booking curve projections into better short-term
estimates, a weighting function is used to balance the contribution of long-term estimates and
booking curve projections. The weighting function between the long-term estimate and the
booking curve projection in this paper is similar to the approach taken to projected demand
estimates in Rajopadhye et al. (1999). Rajopadhye et al. update their weighting function based
on the mean square error (MSE) of a short-term ARIMA forecast and MSE of a long-term ARIMA
forecast. Since short-term forecasts typically have smaller MSE than do long-term forecasts as
the target date nears, the short-term forecasts are weighted more heavily closer to the target
date. Similar to the MSE ratio calculated in Rajopadhye et al., the weighting function in this paper
is based on a linear regression (no intercept) of the sample days (1,446 days) at each lead time
(from 90 days out to 1 day out) to determine the optimal weighting between long-term NL

estimate and booking curve projection (see Equation 26 and Equation 27).
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STELT:Y = &LT=YBCELT=Y +(1- dLT:Y )LTE (26)

AB -LTE
Gy = _— 27
BCE,,_, - LTE
where:
AB, Actual bookings on the target date (LT=0)
STE, .y Short-term estimate Y days prior to target date ‘
BCE,,_, Booking curve projection Y days prior to target date
LTE Long-term NL estimate (does not change across lead times)
Ay Regression weighting parameter Y days prior to target date

Once the weighting parameter, alpha, was determined for each lead time, alpha was estimated
as a general function of lead time (T) in order to remove any idiosyncratic effect that may have
occurred at a specific lead time. Alpha as a general function of lead time (T) explained over 99%
of the variation in the original alpha estimates and hence the general alpha function was used as
the weighting for all short-term estimates. See Equations 28-30 for the general alpha functions
and Figure 9A to 9C for a graphical representation of the weighting function. Figure 10 is
identical to the MSE reported in Figure 8 but with the addition of the short-term estimate. As can
be seen from Figure 10, the short-term estimate provides much-improved forecasts across all
lead times.
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a(l_bedroom) =.1805 +.6476T — 59007 +.7435T* (28)
a(2 _bedroom) =.2377 +.8530T —.50887 % +.39817" 29)
a(3_bedroom) =.3321+.7028T —.13207% +.1102T° (30)
where:

a Short-term estimate weighting parameter

T Lead time expressed between 0 and 1. Y days prior to a target date; T = (91-Y)/91.

Therefore, at Y=0; T=1, at Y=90; T=.011.
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Figure 9A: One bedroom weighting function for short-term estimate
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Figure 9B: Two bedroom weighting function for short-term estimate
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Figure 9C: Three plus bedroom weighting function for short-term estimate
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Figure 10: Mean square error of one bedroom long-term NL estimates, short-term booking curve
projections, and short-term booking curve estimates at different lead times

4.3  Comparing Short-Term Forecasts

Table 9 compares short-term forecasts for the two short-term forecasting methods as well as the
five long-term methods during a 2 year in-sample period. Each method was forecast out 90 days
and there were seven different 90 day forecast periods (630 days) in the sample period (August
6, 2000 to April 27, 2002). Therefore, mean error measures are the mean errors across 90 lead
times across seven different forecast periods. Conceptually one might think of the median error
measure as the error 45 days prior to a target date for a typical forecast period. Since each day
is considered a separate data series (due to the use of bookings to date), the MdAPE error
measure as recommended by Armstrong & Collopy (1992) is the most appropriate (see Equation
2 and Equation 4 for MJAPE calculation). As can be seen, the improvement of the BC method
over the AP method is significant (29.4%).
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Table 9: In-sample short-term model comparisons (August 6, 2000 to April 27, 2002)

Model | MSE |  MdCumRAE | MJdAPE
Models using complete stay information only:
Random walk (RW) 12,882 1.00 31.2%
Nonlinear regression (NL) 6,381 .69 21.1%
ARIMA 8,605 .84 27.0%
Holt-Winters multiplicative (HW) 24,397 1.41 37.3%
Linear regression (LR) 8,255 .78 29.6%
Models using both complete stay information and bookings to date:
Additive pickup (AP) 4,781 .57 17.7%
Booking curve (BC) 3,180 49 12.5%

The error of the seven forecasting methods also changes across lead times, with the two short-
term forecasting methods providing clearly superior forecasts closer to the target date (see Figure
11). Short-term forecasts were not compared out of sample due to the time effort required and

the minimal managerial benefit given a capacity-slack environment.
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Figure 11: In-sample median absolute percentage error (MdAPE) for forecasting methods across
lead times
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4.4 Booking Curve Decision Support System

A decision-support system (DSS) based on the BC model {(which was calibrated using SAS
statistical software) was built in Microsoft Excel so that the resort could calculate short-term
estimates in the current season on an ongoing basis. The DSS consists of an input worksheet
which is linked to the resort reservation management system that provides the number of room
nights booked to date {excluding group and owner bookings) for the next 90 days by bedroom
type. These booking figures are automatically used in BC model calculations (with appropriate
values based on target date: seasonal period, day of week, year) to forecast short-term demand
estimates expressed in the output worksheet (see Figure 12). The output page provides
forecasts by bedroom as well as in aggregate, and provides expected pickup between bookings
to date and final demand estimates so that managers can scrutinize and monitor actual versus
expected pickup. The DSS also has charts of final demand estimates and expected booking

curves that are automatically updated from the resort reservation system.

90-DAY SHORT-TERM ESTIMATES

Date of data extract 09-Dec-02
1 bedroom capacity 7836
2 bedroom capacity 14T
3 bedroom capacity s 27
Total capacity 1,010
. TOTAL UNITS
Day of Week | Lead [Long-Term - Expected
(1= Time |Estimate (before [Bookings’ |Short-Term |Pickup. " |Forecastas %
Target Date | MONDAY) | (Days) [booking data) to-Date Estimate (units) - Jof capacity

09-Dec-02 1 0]+ - 75 92 92 . 0 9%

10-Dec-02 2 1| 75 79 : 84 5 8%

11-Dec-02 3 2| 75 96| - 107 11 11%

12-Dec-02 4 3 77 121 139 - 18 14%

13-Dec-02 5 4] 230 339 403 64 40%

14-Dec-02 6 5 339 413 511 98 51%

15-Dec-02 7 6 138 430] 510 80 50%

16-Dec-02 1 7 118 168 214 T .46 21%

17-Dec-02 2 8las 118 128 .+ - 173) - - 145 17%

18-Dec-02 3 ] S 118 142 193} - 51 18%

Figure 12: Portion of decision-support system output page (data as at December 9, 2002)
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5 DISCUSSION

For a hotel with fixed capacity, Weatherford, Kimes & Scott (2001) found that four forecasting
methods for hotel demand (exponential smoothing, moving average, linear regression, and
additive pickup) performed equally well. In the case of the resort studied, with increasing yearly
capacity, this was certainly not the case. For long-term forecasts, assuming stable yearly trend,
the nonlinear regression was slightly superior to the random walk method, and clearly superior to
the ARIMA, linear regression, and multiplicative Holt-Winters models. Further, in a situation of a
downward capacity shock, as was experienced at the resort on December 1, 2001, random walk
was clearly superior to all other long-term models. To generalize to other resort lodging
properties, given a predictable yearly trend in demand, a nonlinear regression model is
recommended. The performance of an ARIMA model was also quite good in both capacity
situations (predictable and unpredictable capacity) while the performance of a linear regression
model and multiplicative Holt-Winters model were clearly inadequate in all capacity situations. In
terms of short-term demand forecasting, a booking curve model as developed in this paper
performed very well in-sample and can only be assumed to be the case in an out of sample

setting with predicable capacity.

In terms of managerial implications, this paper has basically given support to the resort
management's practice of random walk for long-term forecasts and additive pickup for short-term
forecasts. Nonlinear regression long-term models and short-term booking curve models provide
marginal improvements in the resort's demand forecasting given a predictable capacity
environment or an upwérd demand shock. However, given the resort has a large amount of
capacity slack, more accurate demand forecasts will likely have a small impact on lodging
operations. Rather, the resort should revisit these models if capacity becomes strained. If sell
outs become more frequent then demand forecasting accuracy becomes much more important.
Furthermore, the booking curve model can be adjusted slightly to provide unconstrained demand
estimates by arrival date. Unconstrained demand estimates by market segment, length of stay,
and arrival date are critical inputs into intelligent revenue management decisions during periods

of constrained capacity.

A comparison of the models based on forecast accuracy alone is probably insufficient for a
complete evaluation of model effectiveness. Given that the models are used in a business
context, the insight that the models may shed on the lodging environment is an important
management consideration. The ARIMA models, while providing decent forecasts (especially
short-term), are nearly uninterpretable. Even if the ARIMA equations (Equations 18-19) were
expressed as a weighting of past observations, the differencing of the data and long time-span
required make management insight from these models very unlikely. The RW models, on the
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other hand, are very straightforward to understand and have provided very good predictions.
Unfortunately, other than providing a good estimate of demand in the current period, it is difficult
to décipher how much of the RW estimate is due to a systematic seasonal component and how
much is due to random flux. The HW model is very good in this regard as it explicitly models the
systematic period component and interpretation of these periods is straightforward. For example,
one need only to multiply the appropriate week of the year parameter by day of week parameter
to see how that day compares to the average day (1.00) or any other day of the year.
Unfortunately, the HW model likely simplifies too much as the day of the week effect is not
constant throughout the year and grouping the year by chronological week misses important
events that span less than one week such as President’'s day, New Years, and weekend festivals.
The simplicity of the HW model, while readily interpretable, is likely responsible for its poor

forecasting performance (especially long-term forecasts).

LR, NL, and BC methods explicitly model all seasonal components (period, day of week, yearly
trend, interactions between period and day of week) and likely strike the best balance between a
straightforward interpretation and a level of sophistication that perideé good estimates. All three
of these models have statistically tested the significance of seasonal periods and thus provide a
reliable base from which management can view periods as being truly distinct. In the
development of these models, management claimed to view the lodging season as 13 distinct
periods (6 summer periods and 7 winter periods). These 13 periods were used as the starting
point for these models but the predictability of FIT demand has allowed further refinement of
these original 13 periods into as many as 57 distinct periods in the case of the BC one bedroom
model. Further refinement of demand periods should be very helpful for management as it sets

rate targets and manages expectations of seasonal demand.

Figure 13A and Figure 13B show the original 13 periods as defined by resort management, and a
further refinement of these periods as defined by the NL one bedroom model. Both figures show
the average daily demand (averaged by week or period, whichever was smaller) in the 01/02
season. The bold red dashed lines indicate the original 13 periods defined by resort
management and the black dashed lines represent sub-periods within the original 13 periods. As
evidenced by visual inspection, the additional periods do seem to discriminate truly different
demand levels within the original periods. As well, the weekend-period interaction parameters
and day of week parameters of the BC, NL, and LR models should further aid management in

setting rates by day of week within larger seasonal periods.
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Figure 13B: Average FIT daily demand in 01/02 winter season and corresponding seasonal
period classification by week

Beyond seasonal period classification, the BC model provides management with expected
booking curves for any target date. This should prove a useful complement to raw pickup
numbers taken from AP models. A chart of expected bookings (baseline booking curve) is a
compelling visualization of systematic demand build-up. For example, knowing that a certain day
of week within a period has consistently shown a large proportion of last-minute bookings should
reassure management of its current pricing if room bookings are short of budgeted room nights
close to the target date. At the very least, expected booking curves provide another reference
point for determining whether last year’s pickup (AP model) is representative of historical patterns
or whether it may have been an aberration. Figure 14A shows how day of week can have a very
large impact on the booking curve as it compares the expected buildup in bookings for a
Thursday night and Saturday night within the same week in July 2003. The curves are nearly
identical up to about 27 days out from the target date (indicated by a dashed line) at which point
the Saturday night is expected to get an acceleration of bookings above and beyond the
Thursday night.
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Figure 14A: Expected FIT one bedroom booking curves for a Saturday vs. Thursday in July 2003
(Thursday = July 17, 2003, Saturday = July 19, 2003)

Figure 14B shows an example of how different periods can also result in very different booking
curves. The winter season date (March 17, 2003) has an almost linear buildup in bookings while
the fall date (September 19, 2003) is expected to get a large proportion of last minute bookings.
At 31 days out (marked by a dashed line), there is a difference of 94 rooms booked while the final

demand is expected to differ between the two dates by only 6 rooms.
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Figure 14B: Expected FIT one bedroom booking curves for a Winter Date vs. Fall Date (Winter
Date = March 17, 2003, Fall Date = September 19, 2003)

Mention has thus far been made that identifying distinct seasonal periods may help in setting
rates. While the goal of this paper has been to compare methods for estimating demand, the
relationship between demand and rates is ultimately the most important issue for revenue
management. Figure 15 shows the average one bedroom daily room rate (by week) and average
daily demand (by week) with the average daily room rate and average daily demand both
normalized to be 1.00. The correlation between average daily rate and average daily demand is
-83. As can be seen from the chart, average room rates closely match demand over the winter
season while not matching high demand periods in the summer period. Further, the shoulder

periods do not see a subsequent decrease in room rates when demand troughs.
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Figure 15: Comparison of one bedroom normalized average daily room rates to normalized
average daily demand in the 01/02 season by week (average = 1.00)

Figure 15 does not necessarily imply that rates are inappropriate, as resort managers have stated
that the summer demand is comprised of regional guests who are more price sensitive, and as
such management has less flexibility to increase room rates when summer demand increases.
However, the relationship between demand and room rates should definitely be explored further,
and using the seasonal periods defined by the NL and BC models is a good starting point. Resort
managers have stated that much of the adjustment of room rates is done on an ongoing basis in
conjunction with the resort's call center (which books close to 60% of room bookings).
Specifically, the revenue managers monitor conversion rates (calls that end up in bookings) and
refusal rates (percent of calls where a specified room is turned down due to price). If conversion
rates drop too low (e.g. much below 30%) or refusal rates climb too high (e.g. above 13%) then
this is an indicator the current room rates are too high. Conversely, high conversion rates and
low refusals may indicate prices are too low. Further analysis of room rates, expected demand,
call volume, call classification, and actual demand is beyond the scope of this paper, but appears
to be a fruitful area for future analysis. The current season (02/03) is the first season that call
center information regarding room demand is being systematically recorded.
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51 Model Extensions in a Capacity Constrained Environment

In an environment of frequently constrained capacity, additional accuracy in demand forecasts is
valuable and worthy of modelling effort. Assuming this capacity constrained environment a
number of potential extensions in the short-term booking curve model are proposed. First, the
model can be improved by using a larger number of inputs and hence provide more accurate
lodging demand estimates. Second, the model can be adapted to integrate more closely with a
revenue management system or other optimization engine (although none currently exists at the
resort). Third, the model can be extended to include group and owner bookings. Fourth, the
model can be extended to include other on-mountain sources of revenue in order to achieve a

more global objective of resort revenue maximization.

It is well known (and confirmed by the resort’s in-house research) that besides day of week and
time of year, weather is the single most important factor in predicting demand at a ski resort.
Quite simply, good snow brings crowds. Inputs into the regression models could include snow
base (relative to a historical average), projected snowfall and past snowfall (e.g. in a week prior to
a target date) for winter seasons. In warmer seasons, while likely to have less of an effect,

temperature and rainfall forecasts may also improve lodging demand predictions.

Besides more accurate demand forecasts, forecasts that can be easily integrated with an
optimization engine would prove useful. For example, creating complementary models to predict
arrival distributions (rather than occupied room nights) and demand by rate class and length of
stay would further formalize the reveriue management process at the resort. Beginning this year
(02/03) the resort is tracking turndown and denial information. This information should prove
invaluable in building more disaggregated forecasts and probability distributions that would be
classified by room type, market segment, rate class, and length of stay. Only by providing
disaggregate estimates in terms of both length of stay, arrivals, and price probabilities can

algorithms be developed to optimize revenue.

Demand estimates for independent travelers should be integrated with demand estimates for
groups and owners. Owner estimates are important as far as they lower available capacity, while
group demand estimates are important in terms of price sensitivity, resort promotion, and analysis

of long-term contracts with wholesalers.
In the case of the resort studied, the resort receives revenue from resort operations (ski tickets,
rentals, food and beverage, retail) as well as lodging. Therefore, it makes sense to include these

sources of ancillary revenue when building revenue maximization models. In other words, since

lodging guests will be spending on hill, the objective should be to maximize resort profit rather
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than lodging profit alone. For example, it may be prudent to lower lodging rates in order to boost
lodging occupancy, with the assumption that lost lodging revenue (due to lower lodging prices)
would be more than offset by ancillary revenue on mountain. In many situations, the efficacy of
rental pool managers as judged by chalet owners is the occupancy rate achieved rather than
revenue received (in fact this was the primary factor that led to the loss of units under
management in the current season at the resort studied). While revenue received should be the
rational economic objective of chalet owners, a focus on occupancy rates may benefit resort
management in maximizing resort profit (assuming maximum resort profit comes at the cost of
lower lodging profit and higher lodging occupancy). It should be noted that the above hypotheses
should be analyzed further, and that other considerations/constraints to resort profit maximization
include ski hill capacity, desired clientele / snob appeal, and overall guest experience. As a
result, it may not make sense to offer rock bottom lodging rates to attract more skiers to the
mountain if it is at odds with the resort’s strategy in terms of appropriate target market and

atmosphere.
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APPENDIX A - DATA PREPARATION AND TRANSFORMATION

Data received from the resort covered the historical period May 15, 1998 to April 29, 2002. The
reservation data was received in a raw table format with separate tables for reservations, guest
information, and lodging unit information. This reservation data was converted to room night
information using SAS statistical software. Essentially, each reservation was classified by market
segment (group, independent traveler, owner) and bedroom (one, two, three plus). Once
classified, group and owner bookings were excluded. Room night information was then
processed using a looping algorithm by counting the number of distinct units to be rented for a
specific target date at each of 90 days prior to a target date. A reservation was included in the
room night tally for as long as it remained on the books up until the target date. This way,
bookings that eventually became cancellations would be included in the sample data for as long
as they were on the books. If a booking was cancelled, the reservation was removed from the

books upon the date of cancellation.

Consider a reservation for a two-bedroom unit with an arrival date of Feb. 2, 2002, a departure
date of Feb. 9, 2002, a reservation date of Jan. 3, 2002, and a cancellation date of Jan. 29,
2002. This reservation is applied to seven different target dates (nights of Feb. 2, 2002 to Feb. 8,
2002) for one two-bedroom unit. Further, the reservation is on the books for 26 days (Jan. 3,
2002 to Jan. 29, 2002) until the cancellation is made. For the target date of Feb. 2, 2002 the
booking is included for lead time days 30 to 4 (Feb. 2, 2002 less Jan. 3, 2002 equals lead time
day 30; Feb. 2, 2002 less Jan. 29, 2002 equals lead time day 4). The booking for the target date
of Feb. 8, 2002 is included for lead time days 36 to 10 (Feb. 8, 2002 less Jan. 3, 2002 equals
lead time day 36; Feb. 8, 2002 less Jan. 29, 2002 equals lead time day 10).
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APPENDIX B — MULTIPLICATIVE HOLT-WINTERS

Multiplicative Holt-Winters One Bedroom Model

Fit statistics:

Number of observations: 1,446 Degrees of freedom: 1,386

Sum of squares total: 27,695,441 Sum of squares error: 11,989,034
Mean square error: 8,584 Root mean square error: 92.7
Mean absolute percentage error: 39.3% Mean percent error: -18.5%

Mean absolute error: 54.1 Mean error: -6.5

R% 57 Sigma: 92.65

Smoothing parameters:

Alpha (mean-term): .20 Gamma (slope-term): .20 Delta (seasonal-term): .25

Day of week parameters:

Monday: .58 Tuesday: .68 Wednesday: .67 Thursday: .85
Friday: 1.58 Saturday: 1.94 Sunday: .70

Weekly parameters (approximate beginning date):

18-MAY: .34  25-MAY: .46  01-JUN: .44 08-JUN: .45 15-JUN: .51 22-JUN: .57
29-JUN: .81 06-JUL:1.12  13-JUL:1.24 20-JUL:1.73 27-JUL:2.09 03-AUG: 2.11
10-AUG: 1.94 17-AUG: 1.74 24-AUG: 145 31-AUG: .91 07-SEP:1.05 14-SEP: .89
21-SEP: .72 28-SEP:.73  05-OCT: .71 12-OCT: .96  19-OCT: 43  26-OCT: .33
02-NOV: .25 09-NOV: .20 16-NOV: .21  23-NOV: .49 30-NOV:.36 07-DEC: .52
14-DEC: .83  21-DEC:2.02 28-DEC:2.77 04-JAN:1.69 11-JAN: .85 18-JAN: .89
25-JAN: .86 01-FEB:1.02 08-FEB:1.48 15-FEB:1.66 22-FEB:1.87 29-FEB: 1.58
07-MAR: 1.31 14-MAR:2.12 21-MAR:1.45 28-MAR: 1,13 04-APR:.90 11-APR: .62
18-APR: .49  25-APR: .28 02-MAY: .19  09-MAY: .20
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Multiplicative Holt-Winters Two/Three Bedroom Model

Fit statistics:

Number of observations: 1,446 Degrees of freedom: 1,386

Sum of squares total: 819,838 Sum of squares error: 349,034
Mean square error: 252 Root mean square error: 15.9
Mean absolute percentage error: 51.4% Mean percent error: -28.6%

Mean absolute error: 9.7 Mean error: -1.2

R% .57 ’ Sigma: 15.87

Smoothing parameters:

Alpha (mean-term): .20 Gamma (slope-term): .20 Delta (seasonal-term): .25

Day of week parameters:

Monday: .77 Tuesday: .78 Wednesday: .68 Thursday: .79
Friday: 1.53 Saturday: 1.77 Sunday: .68

Weekly parameters (approximate beginning date):

18-MAY: 30  25-MAY: .54  01-JUN: .50 08-JUN: .40 15-JUN: .50 22-JUN: .50
29-JUN: .70 06-JUL:1.36 13-JUL:1.34 20-JUL:1.90 27-JUL:1.95 03-AUG: 1.85
10-AUG: 1.68 17-AUG: 1.52 24-AUG: 1.54 31-AUG: 1.12 07-SEP: .94 14-SEP: .72
21-SEP: .70 28-SEP:.72  05-OCT:.83 12-OCT:.88 19-OCT: .41 26-OCT: .33
02-NOV: .39  09-NOV: .34 16-NOV:.36 23-NOV:.78 30-NOV: .37 07-DEC: 48
14-DEC: .89 21-DEC:1.98 28-DEC:2.44 04-JAN:1.65 11-JAN: .87 18-JAN: .85
25-JAN: .98 01-FEB:1.23 08-FEB:1.50 15-FEB: 1.43 22-FEB:1.72 29-FEB: 1.64
07-MAR: 1.27 14-MAR: 1.81 21-MAR: 1.60 28-MAR:1.30 04-APR: .97 11-APR: .76
18-APR: .60  25-APR: .27  02-MAY:.15 09-MAY: .13
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APPENDIX C - ARIMA

ARIMA One Bedroom Model

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t value Pr > |t] Lag
Mean Term
MU 28.93936 5.06860 5.71 <.0001 0
Moving Average Terms
MAl,1 0.20889 0.04011 5.21 <.0001 2
MAL, 2 -0.11588 0.03713 -3.12 0.0018 4
Autoregressive Terms
AR1,1 0.87504 0.03003 29.14 <.0001 1
AR1,2 -0.11799 0.02957 -3.99 <.0001 3
Weekly Autoregressive Term
AR2,1 0.17547 0.03131 5.60 <.0001 7
Yearly Autoregressive Term
AR3,1 -0.38091 0.03654 -10.42 <.0001 364
Constant Estimate 8.005583
Variance Estimate 2204.724
Std Error Estimate 46.95449
AIC 11407.18
SBC 11442 .09
Number of Residuals 1082
* AIC and SBC do not include log determinant.
Correlations of Parameter Estimates
Parameter MU MAL,1l MAl1, 2 AR1l,1 AR1, 2 AR2,1 AR3,1
MU 1.000 0.002 -0.002 0.001 -0.004 -0.002 -0.015
MAL,1 0.002 1.000 -0.223 0.655 -0.444 0.052 -0.023
MA1, 2 -0.002 -0.223 1.000 -0.144 0.518 -0.145 0.003
AR1,1 0.001 0.655 -0.144 1.000 -0.651 0.092 -0.031
AR1,2 -0.004 -0.444 0.518 -0.651 1.000 -0.261 0.032
AR2,1 -0.002 0.052 -0.145 0.092 -0.261 1.000 -0.037
AR3,1 -0.015 -0.023 0.003 -0.031 0.032 -0.037 , 1.000
Autocorrelation Check of Residuals
To Chi- Pr >
Lag Square DF ChiSq ----------c---- Autocorrelations---------------
6 0.00 0 <.0001 -0.004 0.001 0.015 0.001 -0.029 0
12 6.24 6 0.3965 -0.014 0.032 -0.016 0.015 0.013 0
18 14.61 12 0.2632 -0.039 0.067 -0.015 0.018 -0.030 -0
24 23.82 18 0.1610 -0.022 0.052 0.064 0.013 0.029 -0
30 32.67 24 0.1112 0.006 0.026 -0.039 0.061 -0.026 -0
36 39.31 30 0.1190 0.004 0.035 -0.057 -0.006 0.033 0
42 42.14 36 0.2224 -0.008 0.030 -0.024 -0.008 0.003 0
48 54.12 42 0.0996 0.010 -0.089 -0.035 0.014 -0.024 -0
Model for variable FIT 1
Estimated Mean 28.93936
Period(s) of Differencing 364
Autoregressive Factors
Factor 1: 1 - 0.87504 B** (1) + 0.11799 B**(3)
Factor 2: 1 - 0.17547 B**(7)
Factor 3: 1 + 0.38091 B**(364)
Moving Average Factors
Factor 1: 1 - 0.20889 B**(2) + 0.11588 B**(4)
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ARIMA Two/Three Bedroom Model

Conditional Least Squares Estimation

Standard Approx
Parameter Estimate Error t value Pr > [t] Lag
Moving Average Term
MAL1, 1 0.92053 0.03577 25.73 <.0001 1
Yearly Moving Average Term
MA2,1 0.46835 0.03620 12.94 <.0001 364
Autoregressive Terms
AR1,1 1.86845 0.04501 41.51 <.0001 1
AR1,2 -1.04364 0.06061 -17.22 <.0001 2
AR1,3 0.16905 0.03101 5.45 <.0001 3
Weekly Autoregressive Term
AR2,1 0.09361 0.03248 2.88 0.0040 7
Variance Estimate 62.67246
Std Error Estimate 7.916594
AIC 7553.798
SBC 7583.717
Number of Residuals 1082
* AIC and SBC do not include log determinant.
Correlations of Parameter Estimates
Parameter MAl,1 MA2,1 AR1,1 AR1, 2 AR1,3 AR2,1
MALl,1 1.000 -0.003 0.742 -0.372 -0.231 0.296
MA2,1 -0.003 1.000 0.059 -0.089 0.089 0.010
AR1,1 0.742 0.059 1.000 -0.858 0.319 0.205
AR1, 2 -0.372 -0.089 -0.858 1.000 -0.759 -0.107
AR1,3 -0.231 0.089 0.319 -0.759 1.000 -0.064
AR2,1 0.296 0.010 0.205 -0.107 -0.064 1.000
Autocorrelation Check of Residuals
To Chi- Pr >
Lag Square DF ChiSq --------------- Autocorrelations---------------
6 0.00 0 <.0001 0.004 -0.021 0.022 0.009 -0.026 0.043
12 11.37 6 0.0776 -0.004 0.004 -0.078 0.012 -0.025 -0.004
18 17.58 12 0.1291 0.023 0.034 0.016 -0.011 -0.053 -0.027
24 23.02 18 0.1897 0.013 0.015 0.045 -0.015 0.046 0.014
30 24.91 24 0.4106 ©0.003 -0.000 0.036 0.018 -0.001 0.010
36 32.42 30 0.3481 -0.033 -0.007 0.023 -0.033 0.061 0.012
42 34.53 36 0.5387 -0.015 -0.019 -0.011 -0.009 -0.010 - 0.032
48 44.65 42 0.3612 -0.043 -0.076 0.004 0.009 -0.035 0.010

Model for variable FIT_ 23
Period(s) of Differencing 364
No mean term in this model.

Autoregressive Factors
Factor 1: 1l - 1.86845 B** (1) + 1.04364 B**(2) - 0.16905 B**(3)
Factor 2: 1 - 0.09361 B**(7)

Moving Average Factors
Factor 1: 1 - 0.92053 B** (1)
Factor 2: 1 - 0.46835 B**(364)
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APPENDIX D - LINEAR REGRESSION

Linear Regression One Bedroom Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 37 21268760 574831 125.94 <.0001
Error 1408 6426681 4564 .40381
Corrected Total 1445 27695441

Root MSE 67.56037 R-Square 0.7680

Dependent Mean 174.41286 Adj R-Sqg 0.76189

Coeff Var 38.73589

Parameter Estimates
Dependent Variable: FIT_ 1

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t]
General Intercept
Intercept Intercept 1 $3.20633 6.03273 15.45 <.0001
Yearly Trend Parameter
SN 1 29.67332 1.61654 18.36 <.0001
Seasonal Period Parameters (Summer)
S1 S1 1 -182.87644 9.57005 -19.11 <.0001
S1 DG 1 60.75948 11.36755 5.34 <.0001
S2 S2 1 -109.12375 8.96432 -12.17 <.0001
S2_D 1 33.89286 14.74288 2.30 0.0217
S2_EF 1 109.59592 11.71884 9.35 <.0001
S2_G 1 163.57477 31.24706 5.23 <.0001
S4 S4 1 105.84829 9.19576 11.51 <.0001
S4_BC 1 40.20238 11.65527 3.45 0.0006
S4_F 1 -58.54762 14.74288 -3.97 <.0001
S4 G 1 -114.27018 16.88808 -6.77 <.0001
S5 BE 1 ~71.35990 7.98835 -8.93 <.0001
S5_G 1 -103.52768 24.34367 -4.25 <.0001
S6 S6 1 -153.78780 7.55306 -20.36 <.0001
Seasonal Period Parameters (Winter)
WL Wl 1 -121.68495 9.39803 -12.95 <.0001
Wl D 1 39.26190 14.74288 2.66 0.0078
W1l _E 1 115.62976 18.65431 6.20 <.0001
W2 W2 1 211.12617 13.56494 15.56 <.0001
W2_B 1 53.75000 18.05627 2.98 0.0030
W2_C 1 -79.89079 27.10031 -2.95 0.0033
W3_FG 1 72.83232 14.15107 5.15 <.0001
W4 w4 1 229.36735 15.08652 15.20 <.0001
W5 W5 1 101.50453 10.75644 9.44 <.0001
wWs_C 1 -122.18418 31.83587 -3.84 0.0001
W6 W6 1 240.56038 15.75840 15.27 <.0001
W7_D 1 -81.75047 13.66522 -5.98 <.0001
W7_EF 1 -127.13583 13.79685 -9.21 <.0001

Day of Week Parameter
SAT SAT 1 51.88946 6.49948 7.98 <.0001




Linear Regression One Bedroom Model (contd.)

Parameter
Variable DF Estimate
Weekend Period Interaction Parameters
S_12_WD 1 53.37471
S3_WD 1 178.04065
S4 WD 1 59.01425
S 56 WD 1 100.60750
W1_WD 1 63.54727
W3_WD 1 55.18529
W4_WD 1 -120.82670
W6_WD 1 -134.58223
W7_WD 1 76.31825
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Linear Regression Two Bedroom Model

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 36 504306 14009 97.42 <.0001
Error 1409 202603 143.79194
Corrected Total 1445 7069009

Root MSE 11.99133 R-Square 0.7134

Dependent Mean 27.12379 Adj R-Sq 0.7061

Coeff Var ) 44.20963

Parameter Estimates
Dependent Variable: FIT 2

Parameter Standard

Variable Label DF Estimate Error t Value Pr > |t]
General Intercept Parameter

Intercept Intercept 1 -7.18376 1.13703 -6.32 <.0001
General Intercept Parameter

SN 1 3.85587 0.28504 13.53 <.0001
Seasonal Period Parameters (Summer)

S1_DE . 1 4.79338 1.85556 2.58 0.009%99
S1_FG 1 6.94904 2.74099 2.54 0.0113
S2 S2 1 7.91945 1.38184 5.73 <.0001
S2_E 1 16.59821 2.53363 6.55 <.0001
S2_F 1 20.40404 2.57096 7.94 <.0001
S2 G 1 24.86609 5.49774 4.52 <.0001
S3 S3 1 41.35331 3.56366 11.60 <.0001
S4 S4 1 41.86588 1.38184 30.30 <.0001
S4_EF 1 -4.86607 1.96254 -2.48 0.0133
S4_G 1 -12.80107 2.91469 -4.39 <.0001
S5 S5 1 11.89670 1.64566 7.23 <.0001
S5_BD 1 -4.64286 1.85030 -2.51 0.0122
S5 G 1 -8.79774 4.43843 -1.98 0.0477
Seasonal Period Parameters (Winter)

W1l _BC . 1 '4.48195 1.78699 2.51 0.0122
W1 D 1 11.30338 2.40022 4.71 <.0001
Wl E 1 26.81794 3.10680 8.63 <.0001
W2 W2 1 53.52199 1.69482 31.58 <.0001
W3 W3 1 19.18433 1.52886 12.55 <.0001
W3_D 1 5.76190 2.61672 2.20 0.0278
W3_E 1 13.15476 2.61672 5.03 <.0001
W3_FG 1 13.80060 2.73335 5.05 <.0001
W4 W4 1 53.16052 2.40022 22.15 <.0001
W4 B 1 -13.53906 4.43765 -3.05 0.0023
W5 W5 1 42.87725 1.90484 22.51 <.0001
W5_C 1 -20.57188 5.65149 -3.64 0.0003
Wé Wé6 1 49.20994 2.15325 22.85 <.0001
W7 W7 1 44.03552 1.78699 24 .64 <.0001
W7_C 1 -15.62500 2.77545 -5.63 <.0001
W7_D 1 -28.51786 2.77545 -10.28 <.0001
W7_E 1 ~-35.81509 3.01970 -11.86 <.0001
W7_F 1 -45.71576 5.61428 -8.14 <.0001
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Linear Regression Two Bedroom Model (contd.)

Variable Label DF
Weekend Period Interaction
S5_WD 1
Day of Week Parameters

FRI FRI 1
SAT SAT 1
SUN SUN 1

Parameter
Estimate
Parameter

18.

50671

.82153
.50077
.11260
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Standard

o

Error

.14253

.97760
.97770
.93696

t Value

.64

.95
.76
.25

Pr > |t

N

.0001

.0001
.0001
.0243



APPENDIX E - POISSON REGRESSION

Poisson Regression Three Bedroom Model

Model Information

Data Set MONTH.ALL_TR_3
Distribution Poisson
Link Function Log
Dependent Variable FIT_3
Observations Used 1446

Criteria For Assessing Goodness Of Fit

Criterion DF vValue Value/DF
Deviance 1417 2105.3556 1.4858
Scaled Deviance 1417 2105.3556 1.4858
Pearson Chi-Square 1417 2165.7431 1.5284
Scaled Pearson X2 1417 2165.7431 1.5284
Log Likelihood 1641.2989

The GENMOD Procedure
Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square
Seasonal Period Parameters (Summer)
51_BC 1 0.2380 0.1331 -0.0230 0.4989 3.19
S1_DF 1 0.6223 0.0541 0.4379 0.8067 43.77
S2 1 0.7532 0.0754 0.6054 0.9009 99.81
S2_B 1 -0.3886 0.1591 -0.7004 -0.0767 5.96
S2_EF 1 0.5260 0.0934 0.3429 0.7091 31.71
S_34 1 1.4741 0.0367 1.4021 1.5460 1611.04
S4_E 1 0.1866 0.0890 0.0122 0.3610 4.40
S5 1 0.9180 0.0694 0.7820 1.0540 175.08
S5_BD 1 -0.2357 0.0860 -0.4042 -0.0671 7.51
S6 1 0.7819 0.0687 0.6473 0.9165 129.60
Seasonal Period Parametersg (Winter)
Wl 1 0.3747 0.0884 0.2015 0.5479 17.97
w2 1 1.5032 0.0626 1.3804 1.6260 575.79
W2_C 1 0.3294 0.1547 0.0262 0.6325 4.53
W3 1 1.0786 0.0558 0.9692 1.1879 373.82
W3_E 1 0.4361 0.0960 0.2479 0.6243 20.63
W4 1 1.9394 0.0808 1.7809 2.0978 575.47
W5 1 1.5509 0.0629 1.4275 1.6742 607.60
we 1 2.0281 0.0811 1.8692 2.1871 625.23
w7 1 1.6372 0.0586 1.5223 1.7521 779.61
W7_CF 1 -0.7557 0.0%909 -0.9339 -0.5775 69.07
Day of Week Parameter
SAT 1 0.1595 0.0425 0.0762 0.2429 14.07
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Poisson Regression Three Bedroom Model (contd.)

Standard Wald 95% Confidence

Parameter DF Estimate Error

Weekend Period Interaction Parameters
WKD_P1 1 0.4396 0.1247 0
WKD_P2 1 0.4280 0.0938 0
WKD_P5 1 0.7953 0.0880 0
WKD_P6 1 0.5263 0.1112 0
WKD_P7 1 0.7438 0.1259 0
WKD_P9 1 0.2750 0.0892 0
WKD_ P10 1 -0.4642 0.1422 -0
WKD_P12 1 -0.5932 0.1442 -0
Scale 0 1.0000 0.0000 1

NOTE: The scale parameter was held fixed.

Limits
.1951 0.6840
L2442 0.6117
.6229 0.9678
.3084 0.7443
.4970 0.9906
.1002 0.4498
.7429 -0.1855
.8758 -0.3105
.0000 1.0000

Lagrange Multiplier Statistics

Parameter

Chi-Square

Intercept - 1.7128
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Pr > ChiSq
0.1906

Chi-
Square

12
20

22
34

16

.42
.84
81.
.40
.89

9.
10.
.92

74

51
66

Pr > ChiSqg
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.0004
.0001
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.0011
.0001



APPENDIX F — NONLINEAR REGRESSION

Nonlinear Regression One Bedroom Model

Dependent Variable A TERM
Method: Gauss-Newton
OTE: Convergence criterion met.

Estimation Summary

Method Gauss-Newton
; Iterations 7
R 5.287E-6
PPC(D7) 0.000042
RPC (D7) 0.000121
Object 2.68E-10
Objective 4971593
Observations Read 1446
Observations Used 1446
Observations Missing 0

NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Regression 44 66710946 1516158 427 .56 <.0001
Residual 1402 4971593 3546.1
Uncorrected Total 1446 71682539
Corrected Total 1445 27695441
f Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Yearly Trend Parameters
TREND1 235.0 9.2855 216.8 253.2
TREND2 75.9307 3.2913 69.4741 82.3872
Seasonal Period Parameters (Summer)
Pl -3.2618 0.2502 ~-3.7527 -2.7709
Pl DG 1.1976 0.2663 0.6752 1.7199
P2 -1.8741 0.1180 -2.1056 -1.6427
P2 D 0.4532 0.1711 0.1176 0.7888
P2 EF 1.3201 0.1320 1.0612 1.5789
P2 G 2.0503 0.3356 1.3920 2.7086
P4 0.5275 0.0983 0.3346 0.7204
P4 _BC 0.4574 0.1318 0.1987 0.7160
P4 F -0.6225 0.1358 -0.8889 -0.3560
P4_G -1.1311 0.1505 -1.4265 -0.8358
P5 -0.7504 0.0979. -0.9426 -0.5583
P5_BE -0.6508 0.1129 -0.8723 -0.4293
P5 G -1.0100 0.3068 -1.6119 -0.4081
P6 -2.2529 0.1976 -2.6405 -1.8652
P6_BE -0.7657 0.2328 -1.2223 -0.3091
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Nonlinear Regression One Bedroom Model (contd.)

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Seasonal Period Parameters (Winter)
P7 -2.1008 0.1465 -2.3883 -1.8134
P7_D 0.5077 0.1852 0.1444 0.8711
P7_E 1.3932 0.1811 1.0379 1.7485
P8 1.9622 0.3228 1.3290 2.5954
P8 B 176.9 . . .
Pg_C -1.0090 0.3714 -1.7377 -0.2804
PO -0.7077 0.0746 -0.8541 ~0.5612
P9 E 0.3210 0.1238 0.0782 0.5638
P9_FG 0.9432 0.1334 0.6815 1.2050
P10 2.9136 0.7672 1.4087 4.4185
P11 0.5959 0.1120 0.3762 0.8156
P11 C -1.3452 0.4011 -2.1320 -0.5585
P12 3.1819 1.0118 1.1970 5.1667
P13 0.1974 0.0996 0.00199 0.3927
P13 C -0.7718 0.1385 -1.0434 ~0.5001
P13_D -1.4838 0.1623 -1.8021 -1.1654
P13 _EF -2.1677 0.2090 -2.5777 -1.7577
Day of Week Parameters (I=Monday)
D6 0.6524 0.0736 0.5081 0.7968
D7 0.1638 0.0618 0.0426 0.2849
Weekend Period Interaction Parameters
WDS1S2 0.8070 0.1131 0.5851 1.0289
WDS3 1.8641 0.5462 0.7927 2.9355
WDS4 0.9408 0.1629 0.6213 1.2603
WDS586 1.3709 0.1111 1.1530 1.5888
WDW1 0.8586 0.1573 0.5500 1.1673
WDW3 0.6771 0.1120 0.4575 0.8967
WDW4 -2.1914 0.7458 -3.6544 -0.7284
WDWeé -2.5790 0.9879 -4.5169 -0.6410
WDW7 0.5690 0.1322 0.3096 0.8284




Nonlinear Regression Two Bedroom Model

Dependent Variable FIT_2
Method: Gauss-Newton
NOTE: Convergence criterion met.

Estimation Summary

Method Gauss-Newton
Iterations 7
R 2.647E-6
PPC(D7) 0.000012
RPC(WB13) 0.000044
Object 1.27E-10
Objective 152506 .8
Observations Read 1446
Observations Used 1446
Observations Missing 0

The NLIN Procedure
NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Regression 40 1618224 40455.6 0 372.97 <.0001
Residual 1406 152507 108.5
Uncorrected Total 1446 1770731
Corrected Total 1445 706909
Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Yearly Trend Parameters
TREND1 31.5383 1.2706 29.0458 34.0307
TREND2 10.4943 0.4590 9.5940 11.3946
Seasonal Period Parameters (Summer)

P1_DE 1.0387 0.2442 0.5598 1.5177

Pl _FG 1.2220 0.3468 0.5418 1.9023

P2 1.3089 0.2102 0.8966 1.7212

P2_E 1.4409 0.1780 1.0918 1.7901

P2_F 1.6528 0.1840 1.2919 2.0137

P2 G 2.4922 0.4711 1.5680 3.4164

P3 3.7753 0.4029 2.9850 4 .5655

P4 4.1942 0.2335 3.7362 4.6521

P4_EF -0.5138 0.1635 -0.8345 -0.1931

P4 G -1.1505 0.1959 -1.5349 -0.7662

P5 1.8613 0.2241 1.4217 2.3009

P5_BD -0.4661 0.1516 -0.7635 -0.1687

P5_G -0.7547 0.4000 -1.5394 0.0301

P6_CD -0.3947 0.3349 -1 0.2623

.0517
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Nonlinear Regression Two Bedroom Model (contd.)

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits-
Seasonal Period Parameters (Winter)
P7_BC 0.7919 0.2568 0.2882 1.2957
P7 D 1.4522 0.2632 0.9358 1.9686
P7_E 2.6357 0.2626 2.1206 3.1508
P8 6.4129 1.2468 3.9671 8.8588
P8 _B 812.0 . . .
PO 2.2680 0.2078 1.8604 2.6757
P9 _D 0.5027 0.1679 0.1734 0.8320
P9 E 0.9797 0.1751 0.6362 1.3233
P9 _FG 1.1693 0.1834 0.8096 1.5291
P10 61.7079 0.5122 60.7031 62.7128
P10_B -57.7100 . . .
P11 4.6024 0.2989 4.0161 5.1887
P11_C -1.7863 0.4989 -2.7649 ~-0.8077
P12 368.8 . . .
P13 4.9684 0.3442 4.2932 5.6435
P13 _C -1.8392 0.3021 -2.4317 -1.2466
P13 D -2.7805 0.3142 -3.3968 -2.1642
P13_E -3.4934 0.3516 -4.1832 -2.8037
P13_F -5.0951 1.6321 -8.2969 -1.8934
Day of Week Parameters (l=Monday)
D1 -3.0880 0.1958 -3.4722 -2.7038
D4 0.2193 0.0912 0.0404 0.3982
D5 1.0322 0.1034 0.8294 1.2350
D6 1.6507 0.1115 1.4320 1.8694
D7 0.3696 0.0891 0.1949 0.5443
Weekend Period Interaction Parameters
WB5 0.7393 0.1716 0.4026 1.0760
WB6 0.6485 0.2787 0.1019 1.1951
WB13 -0.5984 0.2116 -1.0135 -0.1833
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APPENDIX G - BASELINE REGRESSION

Baseline Regression (nonlinear) One Bedroom Model

Dependent Variable FIT_1
Method: Gauss-Newton
NOTE: Convergence criterion met.

Estimation Summary

Method Gauss-Newton
Iterations 20
Subiterations 2
Average Subiterations 0.1
R 5.78E-6
PPC(WC5) 0.000467
RPC(WC7) 0.049505
Object 9.346E-9
Objective 1.5702E8
Observations Read 131586
Observations Used 131586
Observations Missing 0

NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F
Regression 112 1.4115E9 12602761 10552.5 <.0001
Residual 131474 1.5702E8 1194.3
Uncorrected Total 131586 1.5685E9
Corrected Total 131585 9.8471E8
Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Yearly Trend Parameters
TREND1 299.6 4.6484 290.5 308.7
TREND2 118.6 1.8370 115.0 122.2
Seasonal Period Parameters (Swnmer)

P1 B 0.4745 0.1527 0.1752 0.7738

P1_C 0.3188 0.1699° -0.0143 0.6519

P1 D 1.4219 0.1129 1.2006 "1.6433

P1_E 1.8412 0.1077 1.6302 2.0523

P1_F 1.4939 0.1185 1.2616 1.7262

P1 G 2.1718 0.1583 1.8616 2.4821

P2 -0.0652 0.1552 -0.3693 0.2390. "

P2 B 0.1250 0.0347 0.0570 0.1930

P2 C 0.1460 0.0344 0.0785 0.2135

P2 D 0.3472 0.0323 0.2838 0.4105

P2_E 1.0071 0.0287 0.9509 1.0632

P2_F 1.1594 0.0284 1.1038 1.2151

P2_G 1.4427 0.0414 1.3615 1.5239

P4 2.1906 0.1058 1.9833 2.3979

P4 B 0.1718 0.0100 0.1521 0.1915

P4 C 0.0943 0.0102 0.0742 0.1144

P4_E -0.0805 0.0109 -0.1017 -0.0592

P4 _F -0.3306 0.0121 -0.3543 -0.3069

P4 G -0.7391 0.0166 -0.7717 -0.7065
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Baseline Regression (nonlinear) One Bedroom Model (contd.)

| Approx Approximate 95% Confidence
| : Parameter Estimate Std Error Limits
Seasonal Period Parameters (Summer) contd.
PS5 0.9046 0.1368 0.6364 1.1729
P5_B -0.4706 0.0198 -0.5054 -0.4319
pP5_C -0.4202 0.0193 -0.4580 -0.3825
P5 D -0.3880 0.0190 -0.4251 -0.3508
P5_E -0.1042 0.01l66 ~-0.1368 -0.0716
P5_G -0.7148 0.0412 -0.7956 -0.6340
P6 -0.5575 0.4620 ~1.4630 0.3479
P6_B -0.5323 0.0549 -0.6399 ~0.4247
| pe_C -0.9356 0.0710 -1.0749 -0.7964
P6_D -0.9741 0.0730 -1.1172 -0.8310
P6_E -0.9276 0.1244 -1.1714 -0.6838
Seasonal Period Parameters (Winter)
P7_B 0.1739 0.0373 0.1007 0.2470
P7_C -0.0360 0.0405 -0.1154 0.0435
P7_D 0.6539 0.0329 0.5895 0.7183
P7_E 1.45913 0.0308 1.4310 1.5516°
P8 2.6874 0.1124 2.4671 2.9077
P8 B 0.4065 0.00919 0.3884 0.4245
pPg8_C -0.7174 0.0157 -0.7482 -0.6866
P9 2.1928 0.1084 1.9804 2.4053
P9 B -0.0492 0.0133 -0.0753 -0.0231
P9 C -0.3038 0.0146 -0.3325 -0.2751
P9 D ~-0.2197 0.0141 -0.2474 -0.1920
P9_E 0.1691 0.0125 0.1446 0.1936
P9 F 0.6026 0.0121 0.5789% 0.6263
P9 G 0.9630 0.0275 0.9091 1.0169
P10 4.9812 0.1052 4.7749 5.1875
P10_B -0.8181 0.0151 -0.8476 -0.7886
P11 2.7607 0.1087 2.5477 2.9738
P11 B 0.0435 0.0118 0.0203 0.0667
P11 C -0.7283 0.0386 -0.8039 -0.6527
P12 3.9043 0.1057 3.6971 4.1116
P12 B 0.0700 0.0201 0.0306 0.1093
P13 2.5969 0.1107 2.3799 2.8140
P13 B ~0.1867 0.0105 -0.2074 -0.1661
P13_C -0.7043 0.0131 -0.7300 -0.6786
P13 D -1.5075 0.02098 -1.5485 ~-1.4665
P13 E -2.1900 0.0368 -2.2621 -2.1180
P13_F -3.3720 0.2521 -3.8661 -2.8778
Day of Week Parameters (1 = Monday)
D1 -5.2222 0.1042 -5.4264 -5.0180
D4 0.0493 0.00458 0.0403 0.0583
DS 0.1632 0.0154 0.1331 0.1934
D6 0.2966 0.0154 0.2665 0.3268
D7 0.0176 0.00465 0.00850 0.0267
Seasonal Period Lead Time Interaction Parameters
B 0.3563 0.0126 0.3316 0.3810
B2 2.7764 0.1108 2.5593 2.9936
B3 4.0208 0.1074 3.8102 4.2313
B4 2.3603 0.0241 2.3130 2.4075
BS 2.4883 0.0922 2.3076 2.6690
Bé6 2.5387 0.4687 1.6200 3.4573
B7 2.3528 0.1037 2.1495 2.5562
B8 2.8170 0.0422 2.7343 2.8997
B9 1.6793 0.0324 1.6158 1.7427
B10 0.8467 0.0232 0.8012 0.8922
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Baseline Regression (nonlinear) One Bedroom Model (contd.)

Approx Approximate 95% Confidence
Parameter Estimate std Error Limits
Seagonal Period Lead Time Interaction Parameters (contd.)
B11l 1.9923 0.0329 1.9279 2.0567
B12 1.6666 0.0277 1.6123 1.7208
B13 2.0104 0.0403 1.9314 2.0895
Weekend Period Lead Time Interaction Parameters
WB 0.5295 0.0175 0.4952 0.5638
WB3 0.7336 0.0289 0.6769 0.7902
WB4 -0.3546 0.0157 -0.3854 -0.3237
WB5 0.7073 0.0172 0.6737 0.7409
WB6 1.0736 0.0779 0.9209 1.2263
WB7 0.2568 0.0237 0.2105 0.3032
WBS8 -0.4050 0.0170 -0.4383 -0.3717
WB10 -1.1678 0.0186 -1.2043 -1.1313
WB11l -0.359%9¢6 0.0187 ~-0.3963 -0.3230
WB12 -1.4620 0.0234 -1.5078 ~1.4162
WB13 -0.2831 0.0157 -0.3139 -0.2523

Exponent Parameters for Seasonal Period Lead Time Interactions
(e.g. B2*T? where T=lead time between 0 and 1)

C 16.0914 0.8948 14.3376 17.8452
c2 0.8596 0.0560 0.7498 0.9693
C3 0.3351 0.0153 0.3051 0.3650
C4 1.4256 0.0308 1.3653 1.4860
C5 1.2074 0.0642 1.0816 1.3332
ce 1.5767 0.3297 0.9305 2.2228
Cc7 0.7442 0.0524 0.6416 0.8468
Cs8 0.6351 0.0199 0.5960 0.6742
(o°] 0.8465 0.0342 0.7794 0.9135
Cl0 2.2505 0.1032 2.0483 2.4528
C11 1.2605 0.0459 1.1706 1.3504
Ciz2 1.3545 0.0454 1.2655 1.4435
C13 0.9487 0.0368 0.8766 1.0209

Exponent Parameters for Weekend Seasonal Period Lead Time Interactions
(e.g. WB3*WEEKEND*T™ where T=lead time between 0 and 1, WEEKEND=1 if a Friday
or Saturday night)

WC 2.7774 0.1658 2.4525 3.1023
WC3 -0.2562 0.0167 -0.2890 -0.2234
WC4 1.0027 0.1612 0.6868 1.3186
WC5 -0.0232 0.0468 -0.1149 0.0685
WCe6 0.1010 0.2468 -0.3829 0.5848
WC7 0.1942 0.2051 -0.2078 0.5963
WC8 0.3478 0.0695 0.2116 0.4841
WC10 -0.1091 0.0103 -0.1292 -0.0889
WC1l1 -0.1494 0.0583 -0.2637 -0.0351
WC12 -0.0289 0.0143 -0.0568 -0.00094
WC13 0.1968 0.1010 -0.00116 0.3949
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Baseline Regression (nonlinear) Two Bedroom Model

Dependent Variable FIT_2
Method: Gauss-Newton
NOTE: Convergence criterion met.

Estimation Summary

Method Gauss-Newton
Iterations 45
R 8.307E-6
PPC(C_1011) 0.000196
RPC(C_1011) 0.000254
Object 1.88E-10
Objective 7532086
Observations Read 131586
Observations Used 131586

Observations Missing

0

NOTE: An intercept was not specified for this model.

Sum of
Source DF Squares
Regression 85 69107115
Residual 131501 7532086
Uncorrected Total 131586 76639201
Corrected Total 131585 41937547

AppProx

Parameter Estimate Std Error

Yearly Trend Parameters
TREND1 35.7075 0.3258
TREND2 14.4171 0.1286
Seasonal Period Parameters (Summer)

P1_DE 1.9699 0.1060

P1_FG 2.2014 0.1100

P2 1.4666 0.1485

P2_B -0.3220 0.0322

P2 D -0.1274 0.0290

P2 E 0.9098 0.0208

P2_F 1.0240 0.0207

P2 G 1.6122 0.0375

P3 3.8499 0.1075

P4 3.6717 0.1059

P4 _B 0.0416 0.0121

P4 _C 0.1129 0.0120

P4 E -0.2848 0.0130

P4 _F -0.1618 0.0126

P4 G -0.5726 0.0155

PS5 1.9732 0.1230

P5 B -0.3236 0.0231

P5 C -0.5789 0.0261

P5_D -0.3272 0.0232

P5_G -1.0436 0.0640

P6 -1.1979 0.2356

P6_C -0.5374 0.0928

P6 D -0.7844 0.1114
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Baseline Regression (nonlinear) Two Bedroom Model (contd.)

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Seasonal Period Parameters (Winter)
P7_B 0.2209 0.0415 0.1396 0.3022
P7_C -0.1911 0.0485 -0.2862 -0.0960
P7_D 0.4585 0.0390 0.3821 0.5348
P7_E 1.7226 0.0351 1.6539% 1.7914
P8 5.2560 0.1057 5.0488 5.4632
P8_B 0.4398 0.0154 0.40098 0.4699
pg8_C -0.5051 0.0196 -0.5434 -0.4668
P9 3.4555 0.1041 3.2515 3.6594
p9_C -0.1193 0.0149 -0.1485 -0.0900
PS_ D 0.1611 0.0137 0.1342 0.1880
P9 _E 0.6330 0.0127 0.6080 0.6579
P9 FG 0.8219 0.0130 0.7965 0.8474
P10 6.3793 0.1105 6.1627 6.5958
P10_B -0.4505 0.0209 -0.4915. ~0.4094
Pl1l 4.6634 0.1049 4.4578 4.8691
P11 B 0.0391 0.0143 0.0111 0.0670
P11 _C -0.7306 0.0367 -0.8025 -0.6588
Pl2 5.8774 0.1075 5.6667 6.0882
P13 4.4725 0.3508 3.7850 5.1600
P13_B -0.3237 0.0126 -0.3485 -0.2990
P13_C -1.1948 0.0159 -1.2261 -1.1636
P13 D -2.0204 0.0210 -2.0615" -1.9793
P13_E -2.9338 0.0346 -3.0015 -2.8660
P13 _F -4.2937 0.2173 -4.7195 -3.8679
Day of Week Parameters {1 = Monday)
D1 =5.5321 0.1047 -5.7373 -5.3269
D4 0.1060 0.00608 0.0%40 0.1179
D5 0.5753 0.0101 0.5556 0.5950
D6 0.6332 0.0100 0.6136 0.6529
D7 0.0605 0.00614 0.0485 0.0726
Period Lead Time Interactions
B 1.1450 0.0173 1.1111 1.1790
B2 1.2430 0.1010 1.0451 1.4409
B4 0.9535 0.0213 0.9118 0.9951
B5 0.8846 0.0714 0.7446 1.0246
B6 2.2000 0.2192 1.7703 2.6297
B7 2.0859 0.1086 1.8730 2.2989
B8 0.4572 0.0370 0.384¢6 0.5298
B_1011 0.3312 0.0279 0.2766 0.3858
B12 0.2207 0.0374 0.1474 0.2941
B13 0.8927 0.3290 0.2479 1.5374
Weekend Period Lead Time Interactions
WB 0.3940 0.0159 0.3628 0.4252
WB3 0.5351 0.0331 0.4703 0.5999
WB4 -0.5179 0.0117 ~0.5408 -0.4949
WBS 0.8392 0.0270 0.7863 0.8921
WB6 1.0675 0.1054 0.8609 1.2741
WB7 0.1479 0.0288 0.0915 0.2043
WBS8 -0.9414 0.0260 -0.9922 -0.8805
WB10O -2.3222 0.0348 -2.3903 -2.2541
WB1l1 -0.4434 0.0193 -0.4814 -0.4055
WB12 ~-1.9353 0.0274 -1.9890 -1.8817
WB13 -0.7828 0.0138 -0.8097 -0.7558
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Baseline Regression (nonlinear) Two Bedroom Model (contd.)

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits
Exponent Parameters for Seasonal Period Lead Time Interactions
(e.g. B2*T* where T=lead time between 0 and 1)

C 0.9418 0.0258 0.8912 0.9923
c2 0.6642 0.0926 0.4826 0.8458
C4 1.4767 0.0718 1.3360 1.6174
Cs 1.4063 0.1725 1.0681 1.7444
c7 0.2152 0.0197 0.1767 0.2538
C 1011 4.1863 0.6267 2.9580 5.4145
C13 0.1883 0.0928 0.00636 0.3703

Exponent Parameters for Weekend Seasonal Period Lead Time Interactions
(e.g. WBS*WEEKEND*T"™” where T=lead time between 0 and 1, WEEKEND=1 if a Friday
or Saturday night, 0 otherwise)

WC 6.2312 0.4447 5.3596 7.1028
WC5 0.3805 0.0744 0.2347 0.5263
WC8 0.1220 0.0207 0.0815 0.1625
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Baseline Regression (Poisson) Three Bedroom Model

Model Information

Data Set MONTH.ALL TR 3
Distribution Poisson
Link Function Log
Dependent Variable FIT 3
Observations Used 131586

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 13E4 154544 .8740 1.1752
Scaled Deviance 13E4 154544.8740 1.1752
Pearson Chi-Square 13E4 147757.0998 1.1236
Scaled Pearson X2 13E4 147757.0998 1.1236
Log Likelihood 14550.0430

The GENMOD Procedure
Algorithm converged.

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSqg
General Intercept Parameter

Intercept 1 ~-1.2267 0.0309 -1.2873 -1.1662 1577.68 <.0001
Seasonal Period Parameters (Summer)

S1_B 1 0.2301 0.0350 0.1616 0.2987 43.27 <.0001
s1_C 1 0.6894 0.0317 0.6273 0.7516 472.35 <.0001
S1_D 1 0.9263 0.0298 0.8679 0.9846 968.54 <.0001
S1_E 1 0.6613 0.0302 0.6022 0.7205 480.27 <.0001
S1_F 1 0.7138 0.0324 0.6502 0.7774 484 .16 <.0001
S2 1 0.6046 0.0373 0.5315 0.6776 263.08 <.0001
S2_B 1 -1.2675 0.0330 -1.3322 -1.2028 1473.06 <.0001
s2_CD 1 -0.3522 0.0197 -0.3909 -0.3136 318.44 <.0001
S2_E 1 0.3997 0.0195 0.3615 0.4379 420.80 <.0001
S2_F 1 0.6024 0.0188 0.5656 0.6393 1024.93 <.0001
S3 1 1.7301 0.0540 1.6243 1.8359 1026.51 <.0001
S4 1 1.4885 0.0331 1.4237 1.5534 2025.74 <.0001
S4_B 1 0.2730 0.0132 0.2472 0.2989 428.48 <.0001
54_D 1 0.0585 0.0142 0.0316 0.0873 17.52 <.0001
S4_E 1 0.2020 0.0135 0.1756 0.2285 223.57 <.0001
S4_F 1 0.0926 0.0140 0.0651 0.1201 43.50 <.0001
S5 1 1.3418 0.0340 1.2753 1.4085 1558.97 <.0001
S5_B 1 -0.3028 0.0168 -0.3358 -0.2698 324.18 <.0001
S5_C 1 -0.2754 0.0166 -0.3080 ~-0.2428 273.77 <.0001
S5 D 1 -0.4254 0.0176 -0.4599 -0.3908 582.41 <.0001
S5_E 1 -0.1264 0.0158 ~-0.1573 -0.0955 64 .35 <.0001
Sé 1 1.0702 0.0352 1.0012 1.1392 924 .57 <.0001
S6_C 1 -0.1081 0.0178 -0.1430 -0.0732 36.86 <.0001
Seasonal Period Parameters (Winter)

Wl 1 0.3386 0.0404 0.2595 0.4178 70.25 <.0001
W1_B 1 -0.1563 0.0255 -0.2063 ~0.1063 37.52 <.0001
Wi_C 1 -0.2723 0.0264 -0.3239 -0.2206 106.77 <.0001
W1 D 1 0.0777 0.0240 0.0305 0.1248 10.43 0.0012
W1_E 1 0.3322 0.0253 0.2826 0.3818 172.49 <.0001
W2 1 2.3765 0.0337 2.3105 2.4425 4979.85 <.0001
w2_C 1 0.1324 0.0187 0.0957 0.1691 50.04 <.0001
W3 1 1.6435 0.0347 1.5755 1.7115 2245.51 <.0001
W3_B 1 -0.3153 0.0186 -0.3518 -0.2787 286.07 <.0001
W3_C 1 -0.2188 0.0181 -0.2544 -0.1833 145.56 <.0001
W3_D 1 -0.1544 0.0178 -0.1893 -0.1194 75.03 <.0001
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W3_E 1 0.3329 0.0159
W3_F 1 0.0382 0.0179
W3_G 1 -0.3396 0.0564
W4 1 2.8293 0.0349
W4_B i -0.1838 0.0212
W5 1 2.2089 0.0357
W5_B 1 0.0583 0.0159
W5_C 1 -0.3978 0.0323
We 1 2.9556 0.0347
W6_B 1 -0.0808 0.0275
W7 1 2.5086 0.0334
W7_B 1 -0.1997 0.0132
W7_C 1 -0.4802 0.0144
W7_D 1 -1.5010 0.0208
W7_E 1 -1.3569 0.0216
W7_F 1 -1.8073 0.0524
Day of Week Paraneters

TUE 1 0.0254 0.0067
WED 1 0.0499 0.0066
THR 1 0.0996 0.0066
SAT 1 0.0635 0.0059
SUN 1 0.1013 0.0066
Lead Time Element Parameters

T2 1 1.1060 0.0299
T2_P2 1 0.4936 0.0380
T2_P3 1 -0.1624 0.0633
T2_P4 1 -0.0914 0.0340
T2 PS5 1 -0.1722 0.0355
T2_P6 1 -0.1601 0.0390
T2 P7 1 0.4128 0.0420
T2_P8 1 -0.7417 0.0374
T2_P9 1 -0.2746 0.0348
T2_P10 1 -0.7608 0.0396
T2 P11 1 -0.6391 0.0394
T2_P12 1 -0.8468 0.0396
T2_P13 1 -0.5886 0.0350
Weekend Seasonal Period Parameters
WKD_P1 1 0.3230 0.0183
WKD_P2 1 0.3852 0.0141
WKD_P3 1 0.3355 0.0359
WKD_P4 1 0.2380 0.0109
WKD_PS 1 0.6723 0.0120
WKD_P6 1 0.4085 0.0156
WKD_P7 1 0.6866 0.0171
WKD_P9 1 0.2296 0.0120
WKD_P10 1 -0.4249 0.0188
WKD_P11 1 0.3183 0.0186
WKD_P12 1 -0.5634 0.0216
Scale 0 1.0000 0.0000
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APPENDIX H — APPROACHES TO BOOKING CURVE ADJUSTMENT

Table 10: Booking curve estimate calculation approaches

Method Booking Curve Adjustment Reduction in Squared
. Calculation Error from Baseline
- e - o
Direct Multiplicative [DLH + 1]EBLT=0 | 44.98%
Mean Absolute Percentage | [ MAPE .. 44.96%
Error (MAPE) _DLH WPES—;—;—J \EB,7,
| IC:eomettric MEean /(\g?\;l)’lal\geE ) —D GMAPE ,,_, 1les 44 .95%
| ercentage Error e -
g I LT=y GMAPE,,., LT=0
Median Absolute i MAAPE 44.91%
Percentage Error (MdAPE) | | D, ,| ————*=> |+1|EB;_,
L MdAPE ,,_,
Autoregressive integrated See Appendix | -
moving average (ARIMA)
where: )
LT Lead time; number of days prior to a target date. Target
date occurs when LT=0.
AB,,_, Actual bookings (room nights reserved to be occupied on
) , the target date) Y days prior to the target date. ,
EB,,_, Expected bookings (room nights reserved to be occupied
B on the target date) Y days prior to the target date.
Expécted bookings taken from booking curve baseline
model for a specific target date and lead time.
D, Booking deviation Y days prior to target date
where:
D - [ABLT=Y — EBLT:YJ
LT=Y
EBLT:Y ]
APE ., Absolute percentage error Y days prior to a target date.
where: ) Note: APE is generally calculated as a percentage of
) actual value (AB), whereas in this case it is calculated as
APE .. . — |EB,y_y = AB ;| a percentage of expected value (EB) so that it may be
L= | EB,,_, l used as a multiplier.
MAPE,,_, Mean absolute percentage error Y days prior to a target
where: date. n is the number of days in the sample (n=1,446).
1 n
MAPE,,._, = (;)Z APE,,_, .
i=1
GMAPE ,_, ' Geometric mean absolute percentage error Y days prior to
where: a target date. n is the number of days in the sample
) (1) (n=1,4406).
GMAPE ,,_, = (H APELT:Y’I.] '
i=1
MdA PE,,_, Median absolute percentage error Y days prior to a target
where: date. N is the sample set of days Y days prior to a target
MAAPE ,; , = Median(APE ;. )vi e N | 98t (N=1,446).
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APPENDIX | — ARIMA MODELLING OF BOOKING CURVE ADJUSTMENT

The short-term booking curve model was developed to provide immediate estimates of demand
at the resort using an Excel spreadsheet without any technical assistance. In order to investigate
whether a more thorough procedure could provide better estimates (although requiring a more
sophisticated statistical application than MS Excel) an ARIMA approach was tested for the
booking curve adjustment. Booking curve baseline error is defined as the difference between the
booking curve baseline estimate of bookings to date and actual bookings to date for a specific
target date and lead time. The test was to see whether an ARIMA adjusted projection would
provide more accurate results than the direct multiplicative approach. The major difference
between an ARIMA approach and the direct multiplicative (DM) approach is the number of actual
booking to date terms used in the booking curve projection. The DM estimate uses a single
booking to date term at the most recent lead time and multiplies that by a baseline derived
multiple. The ARIMA approach estimates the pattern of baseline error terms (all error terms to
date for a specific target date) and projects that pattern out to the target date. The projected
ARIMA error estimate is then added to the original baseline demand estimate in order to achieve

the booking curve projection estimate.

The procedure was to apply seven different ARIMA specifications to booking curve baseline
errors prior to a target date, and then use the best fitting ARIMA specification based on Akaike
Information Criterion (AIC) to forecast booking curve errors out to the target date. In order to
have an adequate amount of data upon which to create an ARIMA forecast for each target date, a
minimum of 40 data points (lead time days 90 to 50) was used to calibrate the ARIMA error
forecast. As the target date approached, more data was used to calibrate the ARIMA forecast
(for example, 10 days prior to a target date, 80 data points would be used to calibrate the ARIMA
model; lead time days 90 to 10). In order to determine which ARIMA specifications were
appropriate, a stratified sample of 45 data sets was modelled using standard ARIMA procedures
(see Box & Jenkins (1976)) in SAS ETS (Econometric and Time Series) statistical software. The
data sets represented an equal mix of occupancy (high, medium, and low days), bedrooms (one,
two, three plus), and lead times (randomly chosen between lead time days 50 and 1). 30 of the
45 sample data sets were completely described (white noise achieved in model residuals) by 7
different ARIMA specifications, while the remaining 15 sample data sets while having more
parameters could be approximated quite well by the 7 basic specifications (see Table 11 for 7
ARIMA specifications).
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Table 11: ARIMA specifications for booking curve error forecasts

Label ARIMA Deterministic Notation
: description drift
AR(1) ARIMA(1,1,0) No v a,
e = 1_¢1B
AR(1) with drift ARIMA(1,1,0) Yes a,
Vy, =pu+
1-¢,B
MA(1) ARIMA(0,1,1) No Vy, =a,(1-6,B)
MA(1) with drift ARIMA(0,1,1) Yes Vy, = u+a,(1-6,B)
White noise ARIMA(0,1,0) No Vy, =a,
Linear trend ARIMA(0,1,0) Yes Vy, = u+a,
Quadratic trend ARIMA(0,2,0) Yes sz, = u+a,
Where:
Y, Booking curve error estimate at time ¢
a, Random component at time ¢

Deterministic drift

Backward shift operator (e.g. Ba, = a,_,)

< W

Backward difference operator = 1~ B (e.g.Vy, =(1-B)y, =y, - y,,)

The algorithm written in SAS ETS modelled all 7 ARIMA specifications for a specific lead time
and target date. The specification with the lowest AIC was then used to forecast ahead h periods
(h = lead time) to provide an error estimate for the target date. This estimated error term was
then added to the original booking curve baseline for a final booking curve projection estimate.
Final ARIMA projections were then compared to DM booking curve projections. A sample of 101

days (with 50 lead time estimates for each day) spanning a sample period from May 15, 1999 to

Jan. 20, 2002 was used to compare estimates. The results of the ARIMA methods were mixed.
Based on the traditional MSE metric, the ARIMA estimates were 60% worse than the DM
estimates. However, based on the more robust median absolute percentage error (MdAPE)
metric (see Equation 2 and Equation 4), the ARIMA results provided a 14% improvement over the
DM method. Due to the added computational cost (in both computer time and model
configuration) and inability to implement ARIMA methods at the resort, the DM method was used

for the booking curve adjustment in the booking curve short-term estimate.
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