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Abstract 

Logistic regression is commonly used in epidemiology to model the relationship between risk 

factors and presence/absence of a disease. Usually it is difficult to look for interaction structure 

(many possible pairwise interactions, for instance) to include in the model. So a model which 

is additive on the logit scale is fitted. If the number of risk factors is relatively large such an 

additive relationship may not make good sense. A new logistic regression model is proposed to 

incorporate non-additive interaction effects. In some scenarios this model might better reflect 

the relationship between the response variable and the risk factors. The Bayesian approach 

is followed to fit the model and a Markov chain Monte Carlo ( M C M C ) algorithm, known as 

the hybrid algorithm is used to simulate the parameters. We apply the new model to three 

examples and interpret the parameter estimates. We compare the predictive performance of 

the new model with that of the step-wise and the ordinary logistic regression models. 
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Chapter 1 

Introduction 

Regression methods are commonly used to describe the relationship between a response vari­

able and one or more explanatory variables. When the response variable is discrete, taking 

two (or more) possible values, logistic regression is the standard method of data analysis. In 

epidemiology we often have to model the relationship between the status (presence/absence) 

of a disease and one or more risk factors. Logistic regression models are commonly used for 

describing this type of relationship and determining if there is a significant effect of the risk 

factors on the disease outcome. Often we have to include interaction effects in the model along 

with the main effects to predict the response. Usually it is very difficult to look for interaction 

structure (many possible pairwise interactions, for instance) especially when there are many risk 

factors to include in the model. Linde and Osius [13] have commented, "within the setting of 

parametric logistic regression, interactions can be modeled only in a clumsy and limited way". 

So a model which is additive on the logit scale is fitted. For simplicity assume the risk factors 

are binary for now. When the number of risk factors are relatively large and if we want to 

include the pairwise interactions also such an additive relationship may not make good sense. 

Suppose we have ten risk factors. Further suppose that in fitting the additive model without 

interactions, each coefficient is estimated to be log(1.5), that is, each risk factor by itself has 

an odds-ratio of 1.5. The additive model says that someone with all ten risk factors has an 

odds-ratio of 1.510 « 58 relative to someone without any risk factors. In many applications this 

would be implausibly large. Thus instead of modeling an additive relationship and trying to 

pick out pairwise interactions terms, can we fit non-additive models? Are there any other kind 
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of interactions that better explain the relationship between the outcome of the response variable 

and the risk factors? The objective of our thesis is to address these questions by considering 

different functional forms for modeling the regression relationship. We also want to show that 

non-additive effects might have plausible and reasonable interpretations in real-life situations. 

In this chapter we will briefly describe the background materials to understand the 

logistic regression model, Bayesian approach to parameter estimation, MCMC methods, step­

wise logistic regression and cross-validation to find out the predictive performance of different 

models. 

1.1 Logistic Regression 

Let Y be a binary response variable indicating presence (V = 1) and absence (Y — 0) of a 

disease. Consider a collection of p explanatory variables or risk factors denoted by the vector 

X' — (Xi,X2, • •. ,Xp). In any regression problem the key quantity is the mean value of the 

response variable, given the value of the independent or explanatory variable. This quantity is 

called the conditional mean and will be expressed as UE(Y\X = x)". Let us denote this mean 

as n(x). For a binary response variable E(Y\X = x) = 1 x Pr(Y = 1\X) + 0 x Pr(Y = 0\X) = 

Pr(Y = 1\X = x). In linear regression we assume that this conditional mean may be expressed 

as a linear function of X. That is, 

E(Y\X = x) = ir(x) 

= Pr{Y = 1\X = x) 

= po + 0!Xi + ... + /3pxp, (1.1) 

which is called a linear probability model. Here /?o is the intercept and (3' = (/3i,^2,... ,@p) are 

regression coefficients to be estimated. When observations on Y are independent, this model 

is a generalized linear model (GLM) with identity link function. This linear model (1.1) has a 

major structural defect. With a dichotomous response variable ir takes values between 0 and 

1, whereas linear functions take values over the entire real line. Model (1.1) predicts ir < 0 

and 7r > 1 for sufficiently large or small x values. Therefore, there must in fact be a nonlinear 

relationship between ir(x) and x. 
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1.2 Logistic Regression Model 

Because of the structural problems with the linear probability model (1.1), a nonlinear or 

curvilinear relationship between x and ir(x) is more reasonable. When we expect a monotonic 

relationship, the S-shaped curve in Figure 1.1 is natural shape for explaining the relationship 

between a dichotomous response variable and risk factors. A function having this shape is 

^ _ exp(/30 + Bxxx + . . . + (3pXp) 
1 + exp(/30 + Bixi + . . . + 3pxp) 

exp(ft) + B'x) 

called the logistic regression function, where x denotes the vector of predictors. 

Figure 1.1: Logistic Function 

We now have to find the link function that will connect the mismatched quantities and 

for which the logistic regression model (1.2) is a G L M . For this model the odds of obtaining 

response Y = 1 are 

ir(x) 
1 — ir(x) 

= exp{80 + p'x) 



This formula provides a basic interpretation for the coefficients. The odds increase multiplica-

tively by for every unit increase in X = x. Suppose we are interested in the odds ratio ip. 

If we have a single risk factor, say x\, then ip for a specific x\ = a compared to x\ = b can be 

computed as: 

= exp(/?0 + Bia) 
exp(/?0 + /3i6) 

However, in multi-variable situation ip for a specific risk factor can be computed by keeping all 

other variables fixed at some arbitrary values, usually at their average values. This is called 

adjusted odds-ratio. 

The log odds has the linear relationship 

- * ( i ^ y = 

= Po + P'x (1.3) 

Thus, the appropriate link is the log odds transformation or the logit transformation. The 

logit, g{x;B) is linear in its parameters, may be continuous, and may range from —oo to +00, 

depending on the range of x. 

1.3 M o d e l F i t t i n g 

1.3.1 Log Likelihood for Binomial Data 

Suppose that we have total n number of cases in the study. The responses yi,y%, • • •,yn are 

assumed to be the observed values of independent random variables Y\,Y2, • • • ,Yn such that 

Yi,i = 1,2,... ,n has the binomial distribution with index mi, the number of observations in 

each group and parameter 7Tj. The yj's may be success counts or success proportions in each 

group. For simplicity, we assume mi = 1, i = 1, 2 , . . . , n so that each j/j now represents "success" 

or "failure" of the outcome. Let xi — (xio,xn,... ,Xip) denote the pth setting of values of p 

explanatory variable X's, where x^ = 1. The x^s may be binary or continuous. We express 
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the logistic regression model (1.3) as 

ir(xi) = 

exp j l Pjxij 

1 + exp PjXij 

Therefore, the likelihood function may be written in the form 

n 

i=i 

= { n a - ^ j j n e x p f i o g ^ 

= {"[[(I - K(Xi)) I exp 

(1.4) 

For model (1.3), the ith logit is Y_\- {3jX{j, so the exponential term in the last expression equals 

exp 
n I p 

i=i \j=o 
exp 

V I n 
J2 y&a & 
j=0 V i = l / 

Also, since [1 — 7r(ajj)] = [1 + exp(Y_) • PjXij)] 1 , the log likelihood equals 

v f n 

j=0 \ i = l / i = l 

1 + exp [ 

The maximum likelihood estimate j3 of /3 satisfies the likelihood equations 

= 0 

for j = 0 ,1 , . . . ,p. Since 

am 
d(33 

— ^ UiXij ^ a;. 
exp 

1 + exp 

(1.5) 
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the (p+1) likelihood equations are 

= o 
i 

a n d ^_(y% ~ ftijxij = 0 for .7 = 1,2,... ,P (1.6) 

where 
exp 

1 + exp 

denotes the M L estimate of n(xi). Since this system of equations is not linear in 8, iterative 

methods such as Newton-Raphson method are needed to evaluate parameter estimates. 

1.4 Bayesian A p p r o a c h to M o d e l F i t t i n g 

In the previous section we described the maximum likelihood estimation(MLE) procedure for 

estimating the parameters in which we do not incorporate any prior information about the 

parameters, but rather estimate them on the basis of the observed data. Let our parameters of 

interest be the vector 6, with a precise meaning in the problem under study. In Bayesian data 

analysis we assume that 6 has some probability distribution and we include these information 

along with the observed data in the estimation process (see, for example, Gelman et. al. [5]). 

It is likely that the researcher has some knowledge about 0. Inclusion of this body of 

knowledge in the analysis is possible and scientifically recommended. Bayesians and frequentists 

have divergent views in this respect. The latter does not admit this information because it has 

not been observed and is therefore not subject to empirical verification. The Bayesian approach 

incorporates this information to the analysis through a density p{9) even when this information 

is not precise. The process of Bayesian data analysis can be divided into the following three 

steps: 

1. Setting up a full probability model - a joint probability distribution for all observable and 

unobservable quantities in a problem. 

2. Conditioning on observed data: calculating and interpreting the appropriate posterior 

distribution - the conditional probability distribution of the unobserved quantities of 

ultimate interest, given the observed data. 
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3. Evaluating the fit of the model and the implications of the resulting posterior distribution. 

Bayesian Inference 

Bayesian statistical conclusions about a parameter vector 9, or unobserved data y, are 

made in terms of probability statements. These probability statements are conditional on the 

observed value of y, and we write them as p(0\y) or p{y\y). Conditioning also applies to the 

fixed values of any covariates, x. 

Bayes' rule 

As outlined in item (1), Bayesian inference contains two ingredients for calculating the 

posterior density: p{9), the prior distribution of 9, and p(y\9), the sampling distribution of the 

observed data y. The former distribution can also be specified by some constants/parameters 

just like the distribution of y. Sometimes it is useful to distinguish them from the parameter of 

interest of 9. These constants are then called hyperparameters, as they are the parameters of 

the distribution of the parameters. Initially, the hyperparameters are assumed to be known. We 

call p(9) the prior density as it contains the probability distribution of 9 before the observation of 

the value of y. The likelihood function of 9 is L(9) = p{y\9). The joint probability distribution 

of 9 and y can then be defined as 

p(0,y)=p(9)p(y\9). 

Simply conditioning on the known value of the data y, using the basic property of conditional 

probability known as Bayes' rule, yields the posterior density: 

p(o,y) 
P m = P(y) 

p(0)p(y\0) ( 1 ? ) 

p(y) 

wherep(y) = _]0p(0)p(y|̂ ), and the sum is over all possible values of ̂  (or p(y) = f p(9)p(y\9)d9 

in the case of continuous 0), is called the marginal distribution of y. Since p(y) does not depend 

on 9, an equivalent expression of (1.7) is the following unnormalized posterior density, 

p(9\y)cxp(9)p(y\9), (1.8) 

where the proportionality is as a function of 9 for fixed y and p(y) is the normalization constant 

which may not be evaluated easily. 
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The concepts of prior and posterior are always relative to the observation considered 

at a given moment. It is possible that after observing y and obtaining the posterior, a new 

observation y also related to 9 through an eventually different likelihood function becomes 

available. In this case, the posterior (relative to y) is the prior (relative to y) and a new 

posterior can be obtained by a new application of Bayes' theorem. 

A Bayes' estimator of 9 is the mean of the posterior distribution of 9, called the posterior 

expectation, i.e. 

Therefore, the obvious distinction between the M L E and Bayesian approach is that in the M L E 

procedure we estimate the parameters by maximizing the likelihood function whereas in the 

Bayesian approach we obtain estimates by computing posterior mean of the parameters. 

To make predictive inferences about unknown observable, y, the posterior predictive 

distribution of y is given by: 

From the second and third lines of the equation we see that the posterior predictive distribution 

is an average of conditional predictions over the posterior distribution of 9. 

1.5 M C M C methods for parameter estimation 

If 9 has high dimension and the model is complex so that we can not get any closed or nice 

mathematical form for conditional distributions for 9, then it's very difficult to estimate the 

9B = E(9\y) 

J 9p(9)p(y\9)d9 
Jp(9)p(y\9)d9 • (1.9) 

Prediction 

(1.10) 
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parameters. Markov Chain Monte Carlo ( M C M C ) techniques provide an answer to the diffi­

cult problem of simulation from the high- dimensional distribution of the unknown quantities 

that appears in complex models (ref. Gamerman [4], Gilks et. al. [7]). M C M C is essentially 

Monte Carlo integration using Markov Chains. We need to integrate over the posterior dis­

tribution of model parameters given the data. Monte Carlo integration draws samples from 

the required distribution until it approaches equilibrium, known as the limiting distribution, 

and then forms sample averages to approximate expectations. So our limiting distribution is 

usually the posterior distribution. Markov Chain Monte Carlo draws these samples by running 

a cleverly constructed Markov Chain for a long time. 

The integrations in (1.9) have until recently been the source of most of the practical 

difficulties in Bayesian inference, especially in high dimensions. In most applications, analytic 

evaluation of E(9\y) is impossible. The best alternative way of evaluation is the M C M C . 

.1.5.1 Monte Carlo Integration 

Let X be a vector of k random variables, with distribution 7r(.), where X consists of model 

parameters and missing data. Our task is to evaluate the expectation 

mttYV - ff(xMx)dx 

for some function of interest /( .) . Monte Carlo integration evaluates E[f(X)] by drawing 

samples {Xt, t = 1, 2 , . . . , n} from 7r(.) and then approximating 

n t=i 

So the population mean of f{X) is estimated by a sample mean. When the samples {Xt} are 

independent, the laws of large numbers ensure that the approximation can be made as accurate 

as desired by increasing the sample size n. 

In general, drawing samples {Xt} independently from 7r(.) is difficult. However, the 

{Xt} need not necessarily be independent. They can be generated by any process which draws 

samples throughout the support of in the correct proportions. One way of doing this is 

through a Markov Chain having 7r(.) as its stationary distribution. This is then Markov chain 

Monte Carlo. 
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1.5.2 Markov Chains 

A Markov chain is a special type of stochastic processes in which the future state of the process 

depends only on the present state and is independent of the previous states. Suppose we 

generate a sequence of random variables, {Xo ,Xi ,X2 , . . . } , such that at each time t > 0, the 

next state Xt+i is sampled from a distribution P(Xt+\\Xt) which depends only on the current 

state of the chain, X t . That is, given X t , the next state Xt+\ does not depend further on the 

history of the chain {Xo, X\,,..., Xt-i). This sequence is called a Markov chain, and P(.|.) is 

called the transition kernel of the chain, we will assume that the chain is time-homogeneous, 

i.e. P(.|.) does not depend on t. 

Let the distribution of Xt given Xo be denoted by P^(Xt\Xo). Subject to regularity 

conditions, the chain wil l gradually 'forget' its initial state Xo , and P^(.\Xo) will eventually 

converge to a unique stationary distribution, which does not depend on t or Xo- Thus as t 

increases, the sampled points {Xt} will look increasingly like dependent samples from 7r(.). We 

can now use the output from the Markov chain to estimate E[f(X)], where X has distribution 

7r(.). The estimator 

is called an ergodic average. If the chain is ergodic and EV[/ (X)] < oo for the unique limiting 

distribution TT then 

This result is a Markov chain equivalent of the law of large numbers. It states that the av­

erages of chain values also provide strongly consistent estimates of parameters of the limiting 

distribution n despite their dependence. 

1.5.3 The Metropolis-Hastings Algorithm 

Markov chains can be constructed in several ways. We will describe Markov chains under the 

class of Metropolis-Hastings algorithm. This name comes from papers by Metropolis et al. [15] 

and Hastings [11]. For the Metropolis-Hastings algorithm, at each time t, the next state Xt+i 

is chosen by first sampling a candidate point Y from a proposal transition q(.\Xt). The proposal 

(1.11) 
t=i 

tn —> ^ [ / ( X ) ] as n —> oo, with probability 1 
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distribution may depend on the current point Xt- The candidate point Y is then accepted with 

probability a(Xt,Y) where 

< ™ - - ( • • ; » ) • 

If the candidate point is accepted, the next state becomes Xt+\ = Y. If the candidate is 

rejected, the chain does not move, i.e. Xt+\ = Xt. 

Consider a distribution TC from which a sample must be drawn via Markov chains. This 

task will only make sense if the non-iterative generation of TC is very complicated or expensive. 

In this case, a transition kernel P(Xt+\\Xt) must be constructed in a way such that n is the 

equilibrium distribution of the chain. Consider reversible chains where the kernel P satisfies 

7t(Xt)P(Xt+1\Xt) = ir(Xt+1)P{Xt\Xt+1). 

The kernel P(Xt+i\Xt) consists of two elements: an arbitrary transition kernel q{Xt+\\Xt) and 

the probability a(Xt, Xt+i) such that 

P(Xt+1\Xt) = q(Xt+1\Xt)a{Xt,Xt+i), if Xt ? Xt+l. 

So the transition kernel defines a density P(.\Xt) for every possible value of the parameter 

different from Xt. Consequently, there is a positive probability left for the chain to remain at 

Xt given by 

P(Xt\Xt) = 1- Jq(Xt+l \Xt)a{Xt, Xt+i)dXt+i. 

These two forms can be grouped in the general expression 

P(Xt\Xt) = q(Xt+1\Xt)a(Xt,Xt+1) + I(Xt+1 = Xt)[l - jq{Xt+l\Xt)a{Xt+1\Xt)dXt+l\, 

where 7(.) denotes the indicator function (taking the value 1 when its argument is true, and 0 

otherwise). 

In practice, simulation of a draw from TC using the Metropolis-Hastings algorithm can 

be set up as follows: 

Initialize XQ; set t = 0. 

Repeat { 

Sample a point Y from q(.\Xt) 

11 



Sample a Uniform(0,l) random varaibale U 

If 17 < a{Xt,Y) set Xt+1 =Y 

otherwise set Xt+i = Xt 

Increment t 

R a n d o m walk chains and symmetric q(.\.) 

To implement the M-H algorithm, a suitable candidate-generating density should be 

specified. Typically, this density is selected from a family of distributions that require the spec­

ification of such tuning parameters as the location and scale. One family of candidate-generating 

densities, that appears in the work of Metropolis et al. (1953), is given by q(Xt, Xt+\) = 

qi(Xt+i — Xt), where gi(.|.) is a multivariate density. The candidate Xt+\ is thus drawn ac­

cording to the process Xt+i = Xt + z, where z is called the increment random variable and 

follows the distribution q\. Because the candidate is equal to the current value plus noise, 

this case is called a random walk chain. Possible choices for q\ include the multivariate nor­

mal density and the multivariate-̂ . Note that when q\ is symmetric, the usual circumstance, 

qi(z) = q\(—z); the probability of move then reduces to 

There are some other family of candidate-generating densities. We are not discussing them 

here. 

There is one critical issue of choosing the spread or scale of the candidate-generating 

density. This choice of scale certainly affects the efficiency of the algorithm and affects the 

behavior of the chain in at least two dimensions: one is the "acceptance rate" (the percentage 

of times a move to a new point is made), and the other is the region of the sample space that is 

covered by the chain. Consider the situation in which the chain has converged and the density is 

being sampled around the mode. Then, if the spread is extremely large, some of the generated 

candidates will be far from the current value, and will therefore have a low probability of being 

accepted. If the spread chosen is too small, the chain will take longer to traverse the support of 

the density, and stays in the low probability regions resulting in high acceptance rates. To get 

a(X, Y) = min 
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a reasonable acceptance rate of around 50% we have to compromise between the two situations 

above. 

1.5.4 Hybrid (HY) Algorithm 

Sometimes simple random walk M C M C algorithms for estimating parameters of the high-

dimensional target posterior density can not yield satisfactory estimates. To improve the 

algorithm the following two steps can be followed for a successful M C M C run: (a) incorpo­

rate derivative evaluations of the target log-posterior density, and (b) suppress the random 

walk behavior of the Markov chain. Incorporating derivative evaluations implies utilization of 

more information about the target distribution. By suppressing the random walk behavior we 

actually direct the chain to follow a definite path towards the target distribution for faster 

convergence and efficiency (see Neal [16],Gustafson et.al. [9]). 

In the usual M - H algorithm we update estimates one at a time and have to set the jump 

size for each of the components of the parameter vector. In the guided random walk hybrid 

algorithm we can update components of A;-dimensional parameter vector all at once and can 

set one jump size for the ^-dimension. Here is the brief description of the general algorithm. 

Let X ~ n be the target density having an unnormalized density function n(x) on 

a subset of Uk. The algorithm works by extending the state from X to (X,Y), and the 

unnormalized target density from n(x) to 
ir(x,y) = Tr(x)ir(y) 

= T r ^ e x p ^ - ^ y ^ (1.12) 

where Y has a N(0,lk) distribution independent of X. Thus we can sample from TX(X) by 

sampling (X, Y) from (1.12) and simply discarding the Y value. 

The following three steps should be followed to construct a Markov chain for (X, Y) 

having (1.12) as its stationary distribution. Also it is necessary to specify a step size e > 0, a 

function g : Rk —> and a constant 6 6 [0,1). 

1. Determine a candidate state (x*,y*) as 

x* <- x + e[y + {e/2)g{x)\, 

y* f - -y-(e/2){g(x)+g(x*)}, 
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and randomly assign 

(x*,y*) with probability p, 

(x, y) with probability 1 — p, 

where 

V = mm { ir(x,y) 

2. Unconditionally negate y, i.e. 

y <—V-

3. Perform an autoregressive update to y, i.e. 

y<r-N(6y,(l-^)1/2Ik). 

Thus we can improve our Monte Carlo sample estimates by using gradient evaluations 

g(x) = Alog7r(a;) of the parameters from the posterior distribution and should choose S close 

to one to suppress random walk behavior. 

1.6 Var iab le Selection 

The goal of much research is to select those variables that results in the "best" predictive model 

when we have several potential independent variables to be included in the model. In many 

situations we have to consider interaction effects (say, pairwise) along with the main effects. 

Epidemiologists often suggest including all clinically and intuitively relevant variables in the 

model, regardless of their "statistical significance". But if the number of variables is large, it 

will be very difficult to get the actual effect of some biologically important variables. Thus, the 

approach should be seeking most parsimonious model that explains the data best. In order to 

achieve this goal we must have: (1) a basic plan for selecting variables, and (2) a set of methods 

for assessing the adequacy of the model. 

There are several methods that one can follow to select variables for a logistic regression 

model. One method is "Univariate method" in which variables are assessed one by one via 

likelihood ratio test whether to include in the model. This method is time-consuming and 

tedious. Another approach is to use a "Stepwise method" in which variables are selected either 

14 



for inclusion or exclusion from the model in a sequential fashion based solely on statistical 

criteria. There are two main versions of the stepwise procedure: (a) forward selection with 

a test for backward elimination, and (b) backward elimination followed by a test for forward 

selection. In the next section we will describe briefly the first version and use it in our future 

variable-selection method. Hosmer and Lemeshow [12] describe the stepwise method and use 

likelihood ratio test to select a variable. We will use a different criterion, score test to select 

variables. 

1.6.1 Stepwise Logistic Regression 

In this method or algorithm a variable is selected on the basis of its "importance" in building 

up the model. The importance is defined in terms of a measure of the statistical significance 

of the coefficient for the variable and overall fit of the model. The statistic used is the score 

chi-square test. The specific procedure that we will use consists of the following few steps: 

Step 0: Suppose we have available a total of p possible independent variables, all of 

which are candidates to be included in the model and are judged to have plausible "biological" 

importance in studying the response. Step (0) begins with a fit of the "intercept only model" 

and evaluation of Score chi-squares with corresponding p-values of all of the p factors. The 

first most important variable to be entered in the model is that which has the highest Score 

chi-square value and, of course, a small p-value. 

A crucial aspect of implementing stepwise logistic regression is the choice of an reasonable 

"alpha(a)" level to judge the importance of variables. L e t p E be the choice where " E " stands for 

entry. The choice for pE determines how many variables eventually are included in the model. 

Many researchers have studied the choice of pE and their research has shown that pE = 0.05 

is too stringent, often excluding important variables. Choosing a value for pB in the range of 

0.15 and 0.20 is highly recommended. If the goal of the analysis is broader and we want to 

include more variables that provides better prediction, we can choose pE = 0.25 or even larger. 

Whatever the choice of p E , a variable is judged important enough to enter into the model if the 

p-value for Score chi-square is less than pE. 

Step 1: Step (1) begins with a fit of the logistic regression model containing the variable 

selected. The overall fit of the model is assessed via the likelihood ratio test and significance of 
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the coefficient of the maximum likelihood estimate is assessed. 

To ascertain whether an entered variable should be deleted from the model the program 

selects that variable which, when removed, yields a high p-value. To decide whether the variable 

should be removed, the program compares the estimated p-value to second pre-chosen "alpha" 

level, p R , which indicates some minimal level of continued contribution to the model where "R" 

stands for removal. Whatever value we choose for pR, it must exceed the value of pE to guard 

against the possibility of having the program enter and remove the same variable at successive 

steps. If we do not wish to exclude many variables once they have entered then we might use 

pK = 0.9. A more stringent value would be used if a continued "significant" contribution were 

required. For example, if we used pE = 0.20, then we might choose pR = 0.25. Thus if the 

p-value of the just entered variable exceeds pR then the variable is removed from the model, 

otherwise it will stay in the model. The program again calculates score chi-square values for 

all remaining variables not in the model in this step. 

Step 2: The procedure for step (2) is identical to that of step (1). The program selects 

the next variable to be entered into the model as the one having the highest score chi-square. 

Then it fits the model with the entered variables, assesses the overall fit of the model via the 

likelihood ratio test and assesses the significance of the maximum likelihood ratio estimates. 

Then it performs a check for the backward elimination. The process continues in this manner 

until the last variable selected according to pE value. In the end, the process produces a 

summary table of maximum likelihood estimates of the variables selected for the final model. 

The stepwise procedure that we will use in our model selection for different data sets 

will consist of the following two steps: 

(a) In the first step we will select main effects only for our model using the stepwise procedure. 

We want to make sure that we are selecting significant effects to be used in the second 

step. 

(b) In the second step we wil l ask the stepwise procedure to select different effects from among 

main effects (selected in the first step) and pairwise interactions of these main effects. 
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1.7 Cross -Va l ida t ion 

To compare the predictive power of Bayesian and classical models on some particular data sets, 

cross-validation is an effective method. The basic idea of cross-validation is to divide the whole 

data set randomly into a training sample and a validation or test sample. The results from this 

scheme may be sensitive to which particular subset of the data into training and test cases is 

utilized. For this reason, we use K-iold cross-validation in which we split the cases randomly 

into K roughly equal-sized segments. For example, when K = 5, the scenario looks like the 

following table: 

1 2 3 4 5 
Test Train Train Train Train 

For the kth part (first in the table), we fit the model to the other K — 1 parts of the 

data, and calculate the predictive performance of the fitted model when predicting the kth part 

of the data. We do this for k = 1,2,... , K and combine the K estimates of prediction. Each 

of the models to be compared is fit to the training sample first and then used to predict the 

test sample responses given the test sample covariates. Models which yield better predictions 

in this scheme are then preferred. 

1.8 Out l ine and Scope of the Thesis 

We begin Chapter 2 by discussing the pairwise interactions and how do these modify the 

effects. Then we introduce a different functional relationship between the response variable 

and the risk factors. We try to explain how to interpret the effects of particular risk factors 

under this new model. The Bayesian approach to parameter estimation and implementation of 

a specific M C M C method for the new model are discussed. In Chapter 3 we use some datasets 

from real epidemiological studies to fit the new model, interpret the parameter estimates, and 

compare the predictive power of the new model with that of the step-wise and ordinary logistic 

regression models. Chapter 4 discusses some limitations that we face in implementing the new 

model, and how we might overcome these restrictions in the future. 
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Chapter 2 

Model Specification and Estimation 

2.1 Interact ion and Effect Mod i f i ca t i on 

Generally, interaction is said to present between two risk factors when the effect of one risk factor 

upon disease is different at (at least some) different levels of the second risk factor. Consider 

a model containing a dichotomous risk factor (e.g. sex) and a continuous covariate (e.g. age). 

When interaction is present, the association between the risk factor and the outcome variable 

differs, or depends in some way on the level of the covariate. That is, the covariate modifies 

the effect of the risk factor. Epidemiologists often use the term effect modifier to describe a 

variable that interacts with a risk factor (see, for instance, Woodward [19])-

If the association between the covariate and the outcome variable is the same within 

each level of the risk factor, then there is no interaction between the covariate and the risk 

factor. Graphically, the absence of interaction yields a model with two parallel lines, one for 

each level of the risk factor (sex). In general, the absence of interaction is characterized by a 

model that contains no second or higher order terms involving two or more variables. In any 

epidemiologic study, we may have several risk factors that we decide to measure, and part of the 

study aims to decide which risk factors interact with others in regard to the disease outcome 

of interest. So then we can include in our model appropriate higher order terms to represent 

the effect of interaction. 

A n important step in the process of modeling a set of data is determining whether there 

is evidence of interaction in the data. If the number of risk factors in the data is relatively 
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Logit 

h 

Age 

Figure 2.1: Plot of the logits under three different models showing the presence and absence of 
interaction 

large, it's very difficult to identify which variables interact with each other. 

Figure 2.1 presents the graphs of three different logits. The graphs of these logits will be 

used to explain what is meant by interaction. Consider an example where the outcome variable 

is the presence or absence of C H D , the risk factor is sex and the covariate is age. Suppose that 

the line l\ corresponds to the logit for females as a function of age. Line li represents the logit 

for males. These two lines are parallel to each other, indicating that the relationship between 

age and C H D is the same for males and females. In this situation there is no interaction and 

the log odds for sex (male versus female), controlling for age, is given by the differences between 

the lines I2 and This difference is equal to the vertical distance between two lines, which is 

the same for all ages. 

Suppose instead that the logit for males is given by the line I3. This line is steeper than 

the line l\, for females, indicating that the relationship between age and C H D among males is 

different from that among females. When this occurs we say there is an interaction between 

age and sex. The estimate of log-odds ratio for sex (male versus female) controlling for age is 

still given by the vertical distance between the lines I3 — I1, but this difference now depends on 

the age at which the comparison is made. Thus, we can not estimate the odds ratio for sex 

without specifying the age. That is, age is an effect modifier. 

To consider the magnitude of "effect modification", say that C H D depends on two risk 
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factors, smoking status and systolic blood pressure. For simplicity, we assume that both risk 

factors are binary and can be defined as: 

{ 0 if no smoking, 

1 if smoking, 

and 

!

0 if blood pressure is normal, 

1 if blood pressure is high. 

Let Bi and p2 represent the coefficients of X i and X2, respectively. Then we can express 

the relationship between the probability of presence of C H D and the risk factors in the logit 

scale as (assuming interaction effect of smoking and blood pressure is present): 

logit Pr(Y = 1|X) = p0 + BXXX + p2X2 + pl2XxX2, (2.1) 

where p\2 is the magnitude of effect modification. Say that the effect of smoking is of interest. 

Comparing X i = 0 and X i = 1 we have 

Level of X 2 logit for Xx = 0 logit for X i = 1 logit difference 

X 2 = 0 Po P0 + P1 Pi 

X 2 = 1 Po +82 P0 + P1+P2 + Pu P1+P12 

giving a sense in which P12 describes how the smoking effect is modified by blood pressure. 

Similarly, it can be shown that the blood pressure effect is modified by smoking, by the amount 

Pu, if we quantify the blood pressure effect by comparing X 2 = 0 and X 2 = 1 for two levels of 

smoking. 

Suppose we have 10 risk factors to consider. If we want to include all of them in the 

model without considering their statistical significance, and also want to evaluate their pairwise 

interaction effects, we will have 10+45=55 terms to include in the model. The additive model 

will then look like: 

logit Pr(Y = l\X)=p0 + piXx + ...+ p\0X1Q + Pi,2XxX2 + ...+ p\,10X9X10. (2.2) 

In such a situation most of the parameter estimates will be insignificant and unreliable due to 

confounding or some other factors, and evaluation of interaction effects will be unreliable. This 
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is not a feasible way of evaluating effects. The most widely used procedure for selecting main 

effects and interaction effects is the stepwise logistic regression procedure discussed in Chapter 

1, Section 1.4. Nevertheless, one might raise several issues such as: 

1. W i l l a pairwise interaction model always be realistic ? 

2. Is an additive structure as in (2.1) always appropriate ? 

3. Could there be other kinds of interaction whereby the effect of a given predictor is different 

for a subject at generally low risk than for a subject at generally high risk ? 

In an attempt to discuss these issues, suppose we have several risk factors under study 

and one of them is smoking status. Say we want to consider the effect of smoking on C H D as 

a function of the remaining predictors. Even though there may be numerous other risk factors, 

hypothetically consider the X-axis in Figure 2.2 to summarize their combined effect. If it were 

possible to place these predictors on this X-axis of the two-dimensional plane, from low levels 

to high levels, and smoking effect on the Y-axis, then we can contemplate the following figure. 

This picture is trying to grasp the idea of issue 3 above. From this figure we see that the effect 

a 

— increasing 
— decreasing 

unchanged 

Low risk High risk 

Remaining predictors 

Figure 2.2: Hypothetical representation of relationship among risk factors. 
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of smoking on C H D , considering remaining predictors from their low risk level to high risk 

level, might be constant, increasing or decreasing. The ordinary interaction model (2.1) is not 

amenable to describing this situation. So we wish to consider alternate models. We wil l return 

to this issue in Section 2.2. 

To get some sense of other issues, let us rewrite equation (2.1) as: 

logit Pr{Y = l\X)=/30 + g{Xx + ...+X,), (2.3) 

where p components of X are the risk factors and g is the function of the risk factors. In 

equation (2.1) we assumed g as linear and assumed additive effect of the risk factors on the 

disease. It may not always be true. It might be possible that after reaching a certain level, 

the risk on the disease outcome will be almost constant and effects of additional risk factors 

will be low. This situation encourages us to think g as a non-linear function of the risk factors. 

The following figure illustrates plausible non-linearity of the logit as a function of the number 

of risk factors present: 

Figure 2.3: Logit as non-linear function of the number of risk factors 

Say risk of the disease is the function of the number of risk factors where all of them 

are binary, representing e.g. absence and presence of the risk factors. Thus risk of the disease 

in the logit scale might be non-linear as plotted in Figure 2.3 above. From this figure, it can 
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be said that as the number of risk factor increases, the increased risk of the disease on the logit 

scale will be getting smaller and smaller. Qualitatively, we can conclude that the effect of an 

additional risk factor will be small as the number of risk factor increases, even if the risk factor 

may be biologically important. More precisely, let Z denote the number of risk factors. Then 

unit increase in Z will have an insignificant effect on the logit if Z is large. For making the 

above comments we assume here that all of the risk factors are equally important. No single 

risk factor has greater inffuence on the risk than any other. A new model wil l be introduced in 

Section 2.2 to generalize this behavior beyond the special case of equally important risk factors. 

In conclusion, instead of trying to identify the possible pairwise interaction effects for 

fitting the linear model, we could try to find some tractable and interpretable functional form 

of g. What functional form g could take? Could g interpret the situations we discussed above? 

In the next section a specific functional form of g will be assumed and will be used to describe 

the relationship between the logit and the risk factors. 

2.2 Specific non-addit ive functional form of the logit 

Suppose we have Xi, i = 1,2,... ,p predictors where : 

{ 0 if the i-th risk factor is absent, 

1 if the i-th risk factor is present. 

The specific non-linear functional form of g that we are thinking of can be expressed in 

terms of logit and is given by: 

logit Pr(Y = l\X)=p0 + {p^X1 + ... + ftX^'* , (2.4) 

where A is an additional unknown parameter and X^s are binary as defined above. We call 

this model (2.4) as N A D (Non-ADditive) model throughout the entire thesis. The N A D model 

is not defined properly unless we restrict the signs of the coefficients Pi to be positive. This 

implies that Xi = 1 corresponds to higher risk than Xi — 0. The functional form may have 

some advantages over trying to pick out pairwise interaction terms. 

How do we interpret A? Consider a very simple case: Pi = P2 = • • • = Pp = P > 0. Then 
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equation (2.4) reduces to: 

logit Pr(Y = 1\X) = ft + { / ? A ( * i + • • • + ^ p ) } ^ , 

= P0 + /?(# of risk factors) 1 / A . (2.5) 

In this special setting, we see from Equation (2.5) that logit depends on how many risk 

factors a person has and obviously on the value of A. This special behavior of the logit where 

each of the risk factors is getting the same weight, is represented in Figure 2.3. 

To interpret j3 by the odds ratio let us compare the logit of somebody having no risk 

factors with the logit of a person with just one risk factor (the i-th one). Using Equation (2.5) 

we have: 

Risk factor 0 z-th one 

logit Po Po+Pi 

Thus the odds ratio is e^», just like the ordinary logistic regression model and bears the 

same interpretation. 

Now let p = 10 and P — 1. From Equation (2.5) we see that the functional form of logit 

depends on the value of A. For A = 1 we get the simple linear logistic function. For other values 

of A we can depict logit as a function of number of risk factors in this special example. This is 

shown in the first picture of Figure 2.4. 

What can be said about the effect of an additional risk factor on the risk for someone 

who has already p risk factors? For A = 1 it would be constant. For A > 1 and A < 1 the 

effect would be decreasing and increasing, respectively. This is depicted in the second picture 

of Figure 2.4. 

This simple example motivates us to think that logit might be a non-linear function of 

the risk factors with A different from one. But does a value of A different from one tend to 

explain the data better? How interpretable are such models? We will discuss these issues using 

some real life examples after estimating A and the coefficient /3's. 

However, in reality the usual picture is that /3's are not all equal. Let X = (Xi,X^), 

where X^ represent factors other than X{. Suppose the effect of Xi is of interest and could be 

quantified by: 

logit(X 2 = 1, X(l)) - logit(*i = 0, X{l)). (2.6) 
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Figure 2.4: Comparison of different A values. 

Using the N A D model effect of Xi can be assessed from equation (2.6) as follows: 

(i) If A > 1 then (2.6) is decreasing in each Xj, j ^ i. 

(ii) If A = 1 then (2.6) is unaffected by X^y 

(iii) If A < 1 then (2.6) is increasing in each Xj, j ^ i. 

Which value of A is best supported by data? How well does the N A D model describe the data? 

To find the answers we have to fit the model first and estimate the parameters. 

2.3 M o d e l F i t t i n g and Es t ima t ion 

We assumed that we have y\,y2, • •••, yn independent binary outcomes of a disease of n inde­

pendent observations in any study. For each of the y^s we have corresponding X\,X2,... ,XP 

predictors. More formally, we can define our observation as the pair {yi,Xi) for i = 1,2,... ,n 

where x{ = {xii,xi2, •. .,xip). 
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2.3.1 Log Likelihood Function 

Let us denote the N A D model by 

g(X; 3, A) = logit Pr(Y = 1\X) = 30 + + . . . + /? p

A X p } 

Then we express the logistic regression model (2.7) as 

l/A 
(2.7) 

Pr(Y = l\X = x) = 
e<K*;/3,A) 

1 + eg{X;p,\) ' 

or 

/3o+ 

Tv(Xi) = 

l/A 

/3o+ £ 
1 + e V=» 

l / A • (2.8) 

Therefore, the likelihood function can be written in the following form: 
n 

L(3,\) = H7r(xir>[l-Tt(xi)]1-y>. 
i=l 

Rearranging and following the procedure of Section 1.2.1, Chapter 1, it turns out that 

the likelihood function equals: 

L{fi,\) = { n 
2=1 

1/A> 

l + e x p ( / ? 0 + £ / 3 , - s 

> x exp 

l/A" 

EM&+ 1 E # 
2=1 

(2.9) 

which yields the log likelihood function given by: 

J G M ) = E 
2 = 1 

l/A" 

#> +1E^ 
.3=1 

log 1 + exp 

1/A\ 

J 
(2.10) 

When A = 1, equation (2.10) reduces to the log likelihood function of the ordinary 

logistic regression model. In the ordinary logistic regression case we use Maximum Likelihood 

Principle to estimate the parameters 3. To estimate the parameters of the N A D model we will 

follow the Bayesian approach. 
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2.3.2 Posterior density 

The parameter A is positive. We will reparameterize A by defining qS = log A for numerical 

simplicity. So A = exp(0) and L(B,X) becomes L(B,(b). 

We assume a normal prior for </>, i.e. 7r(</>) ~ iV(0, c 2 ), or 

^) = c^eXK~^2)-
To avoid some numerical complexities associated with large A values we assume c = log(2). 

By choosing a symmetric prior for </> to be centered at 0, A and j are equally likely a priori. 

Centering the prior for 4> at 0 corresponds to centering the prior for A at 1, thereby favouring 

the simple logistic regression model. 

For parameters B we assume a noninformative diffuse prior distribution, that is n(B) oc 1. 

In practice, we might use a uniform prior distribution if we really have no prior knowledge about 

the parameters. The joint posterior distribution of all the parameters given the data is then 

defined as: 

P{B^\y)c<L{B,ct>W)A<t>). 

Therefore we can get the log posterior density as follows: 

(2.11) 

where K is an unknown constant. 

In the next section we will discuss how to estimate the parameters from this density by 

Markov Chain Monte Carlo methods. 

2.3.3 Parameter estimation 

In the Bayesian perspective, we get estimates of the parameters from their posterior means as we 

discussed in Chapter 1, Section 1.2.2. If we want to estimate /?'s, e.g. B\, we have to evaluate 
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Equation (1.9) using the posterior density (2.11). One way to evaluate (1.9) is to compute 

conditional distributions of the parameters from the density (2.11) and then draw samples 

from their respective conditional distributions. This is known as the Gibbs sampler. But 

the conditional distributions of the parameters from density (2.11) do not have nice and simple 

mathematical closed form. Alternatively, we can draw samples from the posterior density (2.11) 

by the Random Walk Metropolis-Hastings (MH) algorithm discussed in Chapter 1, Section 1.3.3. 

Thus we can draw m samples of </>, for example, and get A = exp(<̂ >). We can then estimate 

A - A ( 1 ) + - m

+ A ( m ) to approximate / A log P(fi,\\y)d(3d\. 

To implement M H algorithm and simulate samples from Equation (2.11) using some 

data we need to specify: 

(i) A candidate generating density: We will use Normal density centered at the current 

parameter value with specific standard deviations or jump sizes. 

(ii) Initial values of (3 and <p. We will use estimates from the ordinary logistic regression fit 

of the data as initial values for (3, and (p° = 0. 

(iii) Jump sizes for each (3 and <p. 

A n important step in simulation is the setting up of jump sizes for each parameter, for 

proper mixing and a reasonable acceptance rate. We tried to draw samples from (2.11) using 

a data set (will be discussed in the next section) through RW M H algorithm. But due to high 

correlation between </> and (3 we were having trouble with the mixing of the sampler output, with 

a very low acceptance rate after several changes of the jump sizes. We then tried to rescale the 

/?'s by (3 = 

expO) w h i l e fixing the value of </>. Rescaling was implemented through multiplying 

jump sizes by exp((/>). The mixing was good and acceptance rate was satisfying, but we do 

not have estimates of (p. Besides, there's no established or specific rule to specify jump sizes. 

They are fixed by trial and error basis. A n alternative way to get simultaneous estimates of 

the parameters is to use Hybrid (HY) algorithm by using full information of the log posterior 

density which was discussed in Chapter 1, Section 1.3.4. Moreover, we can get rid of specifying 

several jump sizes by specifying only one jump size for all of the parameters. 
To implement the H Y algorithm we need to evaluate the derivatives of (2.11) with respect 
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to parameters P and (p. Rewrite Equation (2.11) as follows: 

log P((3,<j>\y) =K + Y. [Vi9i{fr & ~ l 0 ^ 1 + e9>{M))} - ^4>\ (2.12) 
2=1 

where 

(2.13) 

Differentiating (2.12) with respect to (3j,j = 0,1,2, . . . , p and <f> we get the following 

(p + 2) equations: 

o9i(P,4>) Q dlog P(/3,<p\y) = E 
2=1 L 

dPj 

= E 
i=i 

d\ogP{(3,<p\yl = £ 

K [ W3

9l[(iA)) ~ 1 + e*>(M X W3

m{M 

Vi- 1 
1 

30 i=i 

1 -j- e9i(P,<t>) 

1 
1 -|- e9i{P,4>) 

_d_ 
dp, 9i{P, <f>), (2.14) 

(2.15) 

To get (p + 1) equations of (2.14) we need to evaluate -gj^giiP, (p)- Differentiating (2.13) 

with respect to Pj for j = 0,1,2,... ,p we get the following (p + 1) equations: 

dPo 

dm(PA) 
dpi 

= 1, 

aft 
exp e^ log 

E ^ % 

E # % 

E # * 

E # % 

e ^ x 

[Erf*, 
i a_ E $ % -

e ^ - l 

e-<Pe9pe*-lX. il 

Pf-'Xn. 
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Similarly, 

dp2 
E $ % 

dgi(PA) 
dPP 

= E $ % 0p 1 -^ip-

Equation (2.14) can now be evaluated using the above equations. Further we need to 

evaluate ^gi(P, <t>) which is given by, 

dgj{PA) = d_ 
exp e^ log Ij^Pf Xa 

= ( E # % 

- I E 3 % 

= ( E # * 

= ( E # % 

30 e-*log j > | % -

d<t> 

iog[x;̂ %)(-e-*) 

e - * l o g [ X ; ^ 0 
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Now, since 

d_ 
34> d<f> exp (e 0log(/3,)) 

= ft (Vlog(/3,)) 

therefore, 

d<f> £ (pf Iog(/3,-)^-) 

e-*iog(x;̂  

Even though after using derivative information of the log posterior density in the H A 

we were not getting satisfactory sample estimates, that is, mixing of the sampler output was 

not good. We then redefine <f> = A; log A, where A; is a constant, then A = e*/fc. The prior 

distribution of <j> now depends on k. Since <j)/k ~ N(0, c 2 ) , <j> ~ N(0, c2k2). We assume k = 4 

and c = ^log(2). Still we have not got reasonable acceptance rate and proper mixing of the 

estimates due to correlation between <j> and /3's. We then reparameterized /3's as a3- = ^ for 

j = 1,2,... ,p so that 6j = \aj. In this reparameterization we have to redefine the N A D model 

as follows: 

logit Pr{Y = 1\X) = 80 + [(Aai)**! + • • • + (Aap)A V V * 

= Po + 

= a 0 + A 

where ao = BQ. Let 

A A ( a ^ ! + . . . + a ^ p ) 
l / A 

a AXx + ... + a AX p 

l / A 

Xn + ... + a: 

(2.16) 

(2.17) 
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Then the log posterior density is given by: 

n 1 

logP(a,(l>\y)=K + ^[yigi(a,<l>)-\og(l + e^a^)] - T^tf • (2-18) 

Differentiating (2.17) with respect to ay for j = 0,1,2,... ,p we get the following (p+ 1) 

equations: 

da0 

doti 

= 1, 

e - W / * ) _ l 

e W k ) ( E a f * 

9 a 2 

5 -(#/*)_l 

e W / f c ) - l v 

dgija, <j>) 
dan "p ^ zp • 

Equation (2.14) can now be evaluated using these equations in a parameterization. 

Further -§^gija,4>) can be obtained as follows: 

dgija A) 
d<t> 

"(0/*) 

1 + 

E ° r 4 ) * . 

^ U « f k ) ^gja3)Xl3 _ e . W k ) ] o g ( j - ^ / ^ . . 

( E £ = i o f / 4 % ) V=i 

Equation (2.15) can be evaluated using this equation where the last term would be 

Note that these above expressions of gradients do not cover the situation if all of the 

risk factors of a person have value zero. In this situations model (2.16) reduces to logit PrjY = 
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1|X) = ao and Equation (2.17) reduces to gi(a,4>) = atj. We then have the derivatives as: 

dgi(a, <p) 
= 1 

n:(rv ii>) f)nArv th\ 

= o, 

da0 

dgi(a,<t>) = dgi(a,<p) ^ _ dgj{a,<p) 
da\ dot2 dav 

and 

9gi{a,4>) n 

d<t> 

So we will not get any information about the coefficients and A except the intercept. We have 

to keep it in mind during the M C M C run. 

The next chapter will be devoted to estimate the parameters of the model (2.16) by 

using some real data sets, where we compare the performance of the N A D model with that of 

the step-wise and the ordinary logistic regression model. 
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Chapter 3 

Examples 

3.1 E x a m p l e 1 : South A f r i c a n Hear t S tudy ( S A H S ) 

This dataset contains a retrospective sample of 460 males in a heart-disease high-risk region of 

the Western Cape, South Africa. The response variable was Coronary Heart Disease (CHD) 

represented as presence and absence of the disease. There are roughly two controls per case 

of C H D . Many of the C H D positive men have undergone blood pressure reduction treatment 

and other programs to reduce their risk factors after their C H D event. In some cases the 

measurements were made after these treatments. Of the 460 males there were 160 people who 

had the C H D event. There were nine risk factors measured in this study; one of them is binary 

and the remaining eight are continuous. Complete descriptions for some of the predictors were 

not available. These data are taken from a larger dataset, described in Rousseauw et. al. [17]. 

In Table 3.1 the names, description and type of the risk factors are given. 

We convert the eight continuous risk factors into binary variables by thresholding in 

comparison to their means. 

For evaluating the Hybrid (HY) Algorithm and to get a reasonable acceptance rate while 

ensuring proper mixing of the sampler output, we assume k = 4, c = | log(2), e = 0.07, 6 = 0.90. 

As we have mentioned before the initial values for 0's were the estimates from the ordinary 

logistic regression fit and (fp = 0. After iterating the algorithm for 20,000 times the acceptance 

rate was 82% and the Markov Chain is stabilized as can be seen from Figure 3.1. Figure 3.1 and 

3.2 show the sample path of the M C M C output and the posterior distribution by histogram, 
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Table 3.1: Description of the risk factors for SAHS 

Variable Name Description Type 
SBP Systolic Blood Pressure Continuous 
Tobacco Cumulative tobacco consumption (kg) Continuous 
L D L Low density lipoprotein cholesterol Continuous 
Adiposity* Measured fatness Continuous 
Typea Type-A behavior Continuous 
Obesity* Measured fatness Continuous 
Alcohol Current alcohol consumption Continuous 
Age Age at onset Continuous 
FamHist Family history of heart disease (Present, Absent) Binary 
incomplete information. 

respectively. 

By looking at the plots in Figure 3.1 we see the almost instantaneous convergence of 

the sampler to the target posterior distribution. For this reason we do not throw away any 

'burn-in' iterations to compute the posterior means and standard deviations. As a summary of 

the posterior distribution given the data, the posterior means and the corresponding posterior 

standard deviations, computed using the 20,000 iterations, are given in Table 3.2. The 90% 

equal-tailed credible intervals are also computed from the sample quantiles of the M C M C out­

put, presented in Table 3.2. The predictors in Table 3.2 are listed in the order they were given 

in Table 3.1. 

The restriction imposed on the coefficients to be positive has some effect on some of the 

posterior distributions of the parameters as can be seen from the histograms in Figure 3.2 . 

We now fit the ordinary logistic regression model to the data to compare with the N A D 

model. The estimates, standard errors and the 95% confidence intervals are given in Table 3.3. 

Comparing the estimates from Table 3.3 with those M C M C output from the N A D model 

we see that the N A D model tends to provide larger estimated /3j's than does the ordinary logistic 

regression model and the posterior standard deviations are much bigger than the standard 

errors estimated by the ordinary logistic regression model. It is quite reasonable to have bigger 

posterior standard deviations since while sampling from the posterior density of the N A D model 

we incorporate more uncertainty through the additional parameter A and it is evident that data 
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Table 3.2: Summary results of the posterior distribution 

Variable 
Posterior 

Means Std Dev. 
90% CI 

Variable 
Posterior 

Means Std Dev. 5% 95% 
Intercept -3.91 0.83 -5.53 -2.76 

1.11 0.69 0.18 2.47 
x2 1.13 0.66 0.24 2.37 

0.92 0.60 0.11 2.07 
X4 1.18 0.74 0.18 2.53 
x5 

1.28 0.69 0.33 2.58 
0.94 0.68 0.09 2.28 

x7 0.51 0.44 0.02 1.36 
Xs 

1.75 0.71 0.81 3.06 
x9 

1.87 0.72 0.88 3.27 
X 1.52 0.34 1.06 2.19 

Table 3.3: Summary results from the ordinary logistic regression fit 

95% CI 
Coefficients Estimate Std Error Lower Upper 
Intercept -2:70 0.37 -3.44 -1.97 

0.38 0.23 -0.07 0.83 
x2 0.48 0.23 0.02 0.94 
Xz 0.38 0.23 0.07 0.84 
x4 

0.34 0.30 -0.26 0.93 
x5 0.52 0.22 0.08 0.95 
X6 

0.21 0.27 -0.32 0.74 
Xj 0.06 0.23 -0.40 0.51 
x8 . 0.87 0.26 0.36 1.39 
x9 0.93 0.22 0.50 1.36 
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Figure 3.1: Sample path of the M C M C output where the first panel is for the intercept, panels 
2-10 are of the coefficients and the last one is for A. 
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Figure 3.2: Posterior distribution of the parameters. The first panel is for the intercept, panels 
2-10 are of the coefficients and the last one is for A. 
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support value of A greater than one. The uncertainty is reflected by the larger posterior standard 

deviations. The reason that the estimated standard errors from the ordinary logistic regression 

fit are smaller is that these are obtained assuming A = 1. But the posterior standard deviations 

are averaged over all possible values of A. Moreover, correlation between /?'s and A may give 

rise to larger posterior standard deviations. Consequently, as A gets larger than one we end up 

with more spread-out posterior distributions of the parameters. 

Again, when we fit ordinary logistic regression we assume that the effect of a particular 

risk factor is the same for all persons in the study, so it measures average effect of that risk 

factor irrespective of the levels of other risk factors. Wi th the N A D model, on the other hand, 

when interpreting f3j as the effect of the j-th risk factor we consider a person for whom all other 

risk factors are absent. Moreover, for A > 1 the effect of a particular risk factor decreases as the 

number of risk factors increases. Hence the N A D model gives larger estimated /?'s than does 

the ordinary logistic regression fit. As for example, the posterior mean /3g = 1.8662 represents 

the risk in logit of having FamHist as a potential risk factor assuming that the remaining risk 

factors X\ to X% are absent. To get comparable estimates as the ordinary logistic regression 

model we compute the average effect of the risk factors by the following quantity using sample 

M C M C output of the parameters: 

1 n 

average effect of Xj = — ^ [logit(Xj = 1,-Xy) = a^j),/3, A) — 
n i=i 

logit(X, = 0, XU) = xi(j),P, A)] , (3.1) 

where j = 1,2,... ,9. 

Equation (3.1) gives the average effect of a particular risk factor with respect to the 

empirical distributions of other predictors, from the difference in logits when that risk factor 

is from its lower level to higher level in the presence of the remaining risk factors. Column 1 

in Table 3.4 gives the posterior mean of (3.1), denoted by AV\. Column 2 was obtained by 

inserting posterior means of the parameters into Equation 3.1, denoted by AV2-

From Table 3.4 we observe that AVi values are very close to those estimates obtained 

by fitting the ordinary logistic regression. The AV\ values are slightly larger than the ordinary 

logistic regression estimates. Therefore, it can be concluded that both models indicate similar 

average effects of the risk factors, as can be seen from Figure 3.3 in which AVi values are plotted 
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Table 3.4: Estimated average effects of the nine predictors using the N A D model 

Coefficients AVi AV2 

x1 0.46 0.45 
x2 

0.49 0.46 
Xz 0.38 0.35 
xA 0.51 0.50 
x5 0.58 0.57 
x6 0.39 0.38 
x7 0.17 0.14 
x8 0.91 0.90 
x9 0.98 0.98 

against logistic regression estimates. 

While estimating effects, ordinary logistic regression model assumes that the effect of a 

particular risk factor is the same for all persons. If the effects of Xj in (3.1) for person i varies 

slightly with i, the N A D model is very close to the ordinary logistic regression model. However, 

histograms of individual level effects which are plotted in Figure 3.4, show considerable variation 

of effects from person to person. We thus qualitatively conclude that the fitted N A D model is 

substantially different from the fitted ordinary logistic regression model. 

3.1.1 Mode l Comparison 

To compare the predictive power of the N A D model with that of the step-wise and ordinary 

logistic regression model (which is fit considering full model irrespective of the statistical sig­

nificance of the risk factors), we use the cross-validation procedure as described in Chapter 

1, Section 1.5. For purpose of cross-validation we randomly divide the whole data set into 

five approximately equal-sized segments to compute the predicted probabilities for these three 

models. 

The sample M C M C output via the N A D model was obtained after iterating the Hybrid 

(HY) algorithm 20,000 times using k = 4, e = 0.06, c = 0.5 * log(2) and S = 0.90. The step­

wise models have been selected by using the procedure described in Chapter 1, Section 1.4.1. 

For selecting variables we use the entry probability p E = 0.20 and the probability of removal is 

pR = 0.25. The predicted probabilities of the presence of the disease outcome are then computed 
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Figure 3.3: Scatterplot for comparing average effects with the logistic regression estimates 

by: 

Pr{Y = 1\X) = 
1 (3.2) 

l+exp(-g(X,9)) 

where g(X, 0) is the corresponding estimated logit function for whichever model is under con­

sideration. We compute Equation (3.2) for the NAD model by using the sample MCMC output 

and is based on the following relationship: 

Pr(new person has disease | data) = E {Pr(new person has disease | /3, A) | data} . 

The right hand side of the above relationship is approximated by: 

E[h(0,\) | data] « -=- £ ^ ( i )), (3.3) 
i=l 

where h is given by Equation (3.2). As an alternative, we also computed (3.2) by plugging 

in the posterior means of the parameters. The computed predicted probabilities for the three 

models are presented in Figure 3.5 by boxplots. 

We see from this figure that the NAD model predicts the presence of the disease outcome 

slightly better than the other two models. Its predictive performance about the absence of 
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Figure 3.4: Distribution of individual level effects for all risk factors 
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Figure 3.5: Boxplot for comparing performance of three logistic models 

disease is better than that of the step-wise but similar to that of the ordinary. Note that, step­

wise and the ordinary logistic regression models have the same abilities to predict the presence 

of disease outcome. 

To have an intuitive idea of how similar is the N A D model with the ordinary logistic 

regression model we compute the fitted probabilities using both models from Equation (3.2). 

We use sample M C M C output to compute fitted probabilities by the N A D model. These are 

plotted against the fitted probabilities from the ordinary model in Figure 3.6. 

From this figure we see that the fitted probabilities from both models are highly collinear 

and lie approximately on the straight line. Qualitatively, we can say that though both models 

indicate similar fitted probabilities, they bear different interpretations and getting a posterior 

mean of A > 1 with the N A D model indicates presence of different kind of interactions. 

The log-likelihoods of the predicted probabilities of the three models can be computed 
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Figure 3.6: Scatterplot of fitted probabilities 

by: 

Likelihood L = j j p i w [ l - p i ] { 1 _ w ) 

i=i 
n 

log L = ^2 [Vi logpi + (1 - yi) log(l - pi)} 
i=i 

n r 

= E 
i=l 

y^log Pi + log(l - Pi) 

Using Equation (3.4) we have, 

(3.4) 

log L (NAD) = -270.0520, 

logL(NAD) = -272.2717 (using posterior means), 

logL(siep) = -284.7087, 

log L (ordinary) = —271.1916. 

Thus, the N A D model gives better log likelihood than the other two. To find out how much 

better is the predictive performance of the N A D model than that of the step-wise model, we 
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compute: 

logL(NAD) - logL(step)] 

n J ( 3 " 5 ) 

/14.6567 \ 
= e X H^60 - J 
= 1.0324. 

Hence the N A D model is only 3.24% better in predicting disease outcome than that of the 

step-wise model for this example. 

In the next section we will investigate the second example to estimate the parameters and 

compare the performance of the three models following the same procedures as this example. 

exp average < log 
L(NAD) \ 

L(step) -- exp 
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3.2 Example 2 : Scot t ish Hear t H e a l t h S tudy ( S H H S ) 

The Cardiovascular Epidemiology Unit of the University of Dundee, Scotland undertook a range 

of epidemiological studies in the mid 80's in order to understand the factors associated with 

C H D prevalence across Scotland. The Scottish Heart Health Study (SHHS) was one of these 

epidemiological studies with the objective to establish the levels of C H D risk factors in a cross-

sectional sample of Scottish men and women aged 40-59 years drawn from different localities. 

This particular dataset contains a sample of 4049 males with six risk factors from the huge 

study. Of the 4049 subjects 196 had the C H D event. The response variable C H D is coded as 

{ 1 if the individual had a C H D event 

0 if not 

Description of the six risk factors are given in Table 3.5. 

Table 3.5: Code sheet for the Scottish Heart Health Study 

# Description Codes/Values Name 
1 Age years A G E 
2 Total Cholesterol mmol/1 T O T C H O L 
3 Body Mass Index k g / m 2 B M I 

(weight / height2) 
4 Systolic Blood Pressure mmHg S Y S T O L 
5 Smoking status 1 = never smoked, 2 = ex-smoker, S M K 

3 = current smoker 
6 Activity in leisure 1 = active, 2 = average, 3 = inactive A C T I V I T Y 

The first four quantitative risk factors are converted into binary variables by thresholding 

in comparison to their means. For converting smoking status we assume 'never smoked' category 

as low level and 'ex-smoker' & 'current smoker' categories combinedly as high level. For activity 

in leisure we assume 'active' & 'average' as low level and 'inactive'as high level. 

We now draw samples from (2.18) by implementing hybrid algorithm. We assume k = 

5, c = ^log(2), e = 0.035, and 8 = 0.90. The initial values for /3's are the estimates from 

the ordinary logistic regression fit, and (p° = 0. We iterate the algorithm for 20,000 times and 

the acceptance rate is 90%. The sample plots of the M C M C output are given in Figure 3.7. 

Figure 3.8 shows the histogram of the posterior distribution. From Figure 3.7 we see, though 
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Table 3.6: Summary results of the posterior d is t r ibut ion from S H H S 

Variable 
Posterior 

Means S td Dev. 
90% C I 

Variable 
Posterior 

Means S td Dev. 5% 95% 
Intercept -5.56 0.87 -7.23 -4.41 

0.87 0.61 0.11 1.95 
x2 1.81 0.76 0.86 3.21 
Xz 0.54 0.54 0.01 1.55 
x4 1.68 0.74 0.72 2.98 
x5 1.57 0.82 0.48 3.10 
x6 0.63 0.58 0.02 1.75 

A 1.75 0.47 1.13 2.58 

Table 3.7: Summary results from the ordinary logistic regression fit of the S H H S 

95% C I 
Coefficients Est imate S td Er ro r Lower Upper 

Intercept -4.37 0.26 -4.88 -3.85 
0.22 0.15 -0.08 0.51 

x2 
0.75 0.17 . 0.45 1.06 

X3 
0.09 0.15 -0.20 0.38 

xA 0.68 0.15 0.37 0.98 
x5 

0.54 0.21 0.12 0.95 
x6 0.08 0.19 -0.30 0.46 

the mix ing of the sampler output is slow for some of the parameters, the M C i n each case is 

stationary. The posterior means and standard deviations, computed using the 20,000 iterations 

are given i n Table 3.6. The 90% equal-tailed credible intervals (CI) are also presented i n 

Table 3.6, obtained from 5% and 95% sample quantiles. T h e risk factors are listed i n the same 

order as given i n Table 3.5. The summary results of the ordinary logistic regression fit is given 

i n Table 3.7. 

A s w i t h Example 1, the restrict ion imposed on the coefficients to be positive has some 

effect on some of the posterior distr ibutions of the parameters as can be seen from Figure 3.8. 

Compar ing the estimates from Table 3.7 wi th the posterior means and standard devi­

ations i n Table 3.6 we see the same features as before, that is, posterior means and standard 

deviations are larger than the estimates and standard errors of the ordinary logistic regression 
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fit as we expect. The comparable estimates that can be obtained by (3.1) from the sample 

M C M C output are given in Table 3.8. 
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Figure 3.7: Sample path of the M C M C output where the first panel is for the intercept, panels 
2-8 are of the coefficients and the last one is for A. 

AV\ values are the posterior means of (3.1) obtained by using every tenth sample of the 

M C M C output. AV~2 values are computed from (3.1) by inserting the posterior means of the 

parameters. Table 3.8 reflects the same fact that the AV2 values are very close to the estimates 

of the ordinary logistic regression fit. Moreover, AV\ and AV2 values are not very different. 
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Figure 3.8: Posterior distribution of the parameters. The first panel is for the intercept, panels 
2-8 are of the coefficients and the last one is for A. 

Therefore we can draw the same conclusion that both models indicate similar average effects 

of the risk factors as can be seen from Figure 3.9 in which AV2 values are plotted against the 

estimates from the ordinary logistic regression fit. 

Figure 3.10 shows the trace plots of the average effects of the six risk factors. Observing 

the trace plots and comparing with the sample paths of the parameters from Figure 3.7, we 

see that mixing of the sampler in these plots is better and looks good. Because of the high 

correlation between coefficients and A, sampling from the N A D model was very hard using the 

M C M C methods. As a consequence, mixing of the sampler in Figure 3.7 is slow. But while 
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Figure 3.9: Scatterplot for comparing average effects with the logistic regression estimates 

computing the average effects from the sample M C M C output, correlation has less effect and 

we get quite satisfactory mixing of the sample average effects. 

Table 3.8: Estimated average effects of the six predictors from SHHS 

Coefficients AVi AV2 

0.26 0.25 
x2 0.86 0.87 
X3 0.13 0.11 

0.75 0.75 
x5 0.79 0.79 
X6 

0.16 0.14 

3.2.1 Model Comparison 

The predictive power of the N A D model will be compared with that of the step-wise and ordi­

nary logistic regression model. As before we are using cross-validation procedure. The predicted 

probabilities were computed by (3.2). For the N A D model we follow the same procedure as 
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Figure 3.10: Trace plots of the average effects of the six predictors considering every tenth 
sample from the M C M C output of the parameters 

Example 1 to compute the posterior means of the predicted probabilities using sample M C M C 

output. We also compute predicted probabilities plugging in the posterior means of the pa­

rameters. The log likelihoods computed using both procedure were presented. The predicted 

probabilities are presented in Figure 3.11. From the boxplots we see that the N A D model 

predicts the presence of C H D slightly better than step-wise and the ordinary logistic regression 

models. It also predicts the absence of C H D slightly better than the step-wise but the same as 

the ordinary. 
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Figure 3.11: Boxplot for comparing performance of the three models 

The log likelihoods for three models computed using (3.4) are given below: 

log L(N AD) = -760.8353, 

logL(NAD) = —761.2751 (using posterior means), 

logL(step) = -765.9517, 

log L(or dinary) = -763.1630. 

The model with the largest log likelihood is the best. Comparing the above three log predictive 

likelihoods we see that the N A D model has the largest log likelihood, but the differences with 

the other two are very small in light of the large sample size. Although we have a large sample 

in this data set the number of events is relatively very small (only 5% of the total cases), which 

might limit the predictive performance of the N A D model. For this reason we could not see 

a huge improvement. Using Equation (3.5) we see that the N A D model is only 0.13% better 

than the step-wise model. Considering these issues we can say that the N A D model has slightly 

better predictive power than step-wise for this example. 
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3.3 Example 3: Mystery data 

The data for this example is from a real epidemiological study. The dataset contains 10,000 cases 

and twelve risk factors. Of the 10,000 subjects 1433 had the outcome event. The continuous risk 

factors are converted into binary variables. Due to reasons of data security and confidentiality, 

a description of the study and the risk factors is unavailable. The response variable y is defined 

as 
1 if the outcome event is present, 

0 if it is absent. 

The twelve predictors are denoted by Xi, X2, • • •, Xi2. Figure 3.12 shows the distribution of 

the number of risk factors. There are 109 people in this study who do not have any risk factors 

and nobody has all twelve predictors. By observing the histogram we see that very few people 

have ten or eleven risk factors. The majority of the subjects have three or four risk factors. 

n nn_ 
i 1 1 1 1 1 r 

0 2 4 6 8 10 12 

Number of risk factors 

Figure 3.12: Distribution of the number of risk factors 

To evaluate the Hybrid (HY) algorithm we assume k = 4, c = \ log(2), e = 0.016, 6 = 

0.90. The initial values for /3's are the estimates from the ordinary logistic regression fit and 

0° = 0. We iterate the algorithm 20,000 times and the acceptance rate is 88%. 

Figure 3.13 shows the sample path of the M C M C output. Figure 3.14 shows the his­

togram of the posterior distribution. From Figure 3.13 we see that it took some iterations for 
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Table 3.9: Summary results of the posterior distribution from Mystery data 

Variable 
Posterior 

Means Std Dev. 
90% CI 

Variable 
Posterior 

Means Std Dev. 5% 95% 
Intercept -4.11 0.28 -4.66 -3.75 

Xi 0.87 0.23 0.56 1.31 
x2 0.50 0.22 0.18 0.92 
Xz 1.19 0.23 0.85 1.61 

0.28 0.20 0.02 0.61 
x5 1.12 0.24 0.81 1.57 
x6 

0.72 0.26 0.32 1.18 
X7 1.47 0.25 1.11 1.94 
x8 

1.32 0.26 0.94 1.81 
x9 

0.34 0.20 0.04 0.69 
Xio 0.56 0.28 0.10 1.03 
Xu 0.26 0.19 0.02 0.64 
X\2 0.71 0.30 0.21 1.23 

A 1.59 0.17 1.33 1.90 

Table 3.10: Summary results from the ordinary logistic regression fit 

95% CI 
Coefficients Estimate Std Error Lower Upper 
Intercept -3.353 0.110 -3.568 -3.138 
xx 

0.365 0.084 0.201 0.528 
x2 0.101 0.061 -0.019 0.221 
x3 

0.494 0.061 0.374 0.614 
x4 0.029 0.081 -0.131 0.188 
x5 0.529 0.079 0.373 0.684 
xG 0.236 0.084 0.072 0.399 
X7 0.694 0.070 0.558 0.831 
x8 0.557 0.068 0.424 0.690 
x9 0.078 0.070 -0.058 0.214 
Xw 0.157 0.100 -0.039 0.353 
Xn 0.001 0.065 -0.125 0.128 
X\2 0.265 0.111 0.047 0.483 
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Table 3.11: Estimated average effects of the twelve predictors from Mystery data 

Variable AVi AV2 

Xx 0.37 0.37 
x2 0.15 0.15 
x3 0.56 0.56 
Xi 0.07 0.06 
x5 

0.54 0.54 
xe 0.26 0.25 
Xj 0.75 0.75 
x8 0.63 0.63 
x9 0.09 0.08 
Xio 0.18 0.17 
Xn 0.06 0.05 
Xl2 0.26 0.25 

the chains to be stabilized. So we throw away first 5000 iterations as burn-in and compute pos­

terior means from the remaining samples. The posterior means, standard deviations and 90% 

equal-tailed credible intervals, computed from 5% and 95% quantiles, are given in Table 3.9. 

From Figure 3.14 we see the effect of the restriction imposed on the coefficients to be 

positive on some of the posterior distributions of the parameters. 

Table 3.10 represents the summary results from the ordinary logistic regression fit. Com­

paring the estimates from Table 3.10 with those from Table 3.9, we again observe that the N A D 

model provides larger estimated B^s and larger posterior standard deviations. 

Comparable estimates, obtained by using (3.1), are given in Table 3.11. AV\ values are 

obtained considering every tenth sample from the 15,000 sample M C M C output. AV2 values 

are computed by plugging in the posterior means of the parameters into (3.1). Both AV\ and 

AV2 values are very close to the estimates from the ordinary logistic regression fit. Thus we can 

draw the same conclusion that both models indicate similar average effects of the risk factors, 

as can be seen from Figure 3.15 in which AV2 values are plotted against logistic regression 

estimates. 

Figure 3.16 shows the trace plots of the average effects of the twelve predictors. Com­

paring these plots with those from Figure 3.13 we observe that mixing is slow. Again, high 

correlation between A and coefficients makes it difficult to sample even after several tuning the 
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Figure 3.13: Sample path of the MCMC output where the first panel is for the intercept, panels 
2-13 are of the coefficients and the last one is for A 
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Figure 3.14: Posterior distribution of the parameters. The first panel is for the intercept, panels 
2-13 are of the coefficients and the last one is for A 
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Figure 3.15: Scatterplot for comparing average effects with the logistic regression estimates 

step size, and get proper mixing of the sampler output. As correlation has less effect on the 

average effects we are getting better mixing of the sample average effects. 

3.3.1 Model Comparison 

As with the Examples 1 and 2, we compare the predictive power of the N A D model with that 

of the step-wise and the ordinary logistic regression model. The cross-validation procedure is 

used. For selecting the step-wise model we use the probability for selecting a variable is 0.20 

and for removing a variable is 0.25. The predicted probabilities were computed by (3.2). For 

implementing the H Y algorithm with the N A D model we use k = 4, e = 0.018. The posterior 

means of the predicted probabilities were computed using sample M C M C output. Predicted 

probabilities by plugging in the posterior means of the parameters were also computed. The 

log predictive likelihoods were presented below. The predicted probabilities were plotted in 

Figure 3.17. 

From the boxplots we observe that the N A D model predicts the presence and absence 

of the outcome the same as that of the step-wise model for this dataset. In both of the cases 
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Figure 3.17: Boxplot for comparing performance of the three models 

ordinary logistic regression model is slightly worse. 

The log predictive likelihoods for three models computed by using (3.4) are as follows: 

log L{N AD) = -3767.815, 

logL(NAD) = —3768.121 (using posterior means), 

log L(step) = -3779.009, 

log L(ordinar-y) = —3772.059. 

Observing the above table we see that the N A D model has the largest log predictive likelihood, 

but the differences with the other two are very small. Though we have a large sample size and 

15% cases have the event in this dataset, due to high correlation between A and coefficients we 

could not improve the predicted probabilities. Nevertheless, using (3.5) we see that the N A D 

model has 0.11% better predictive power than the step-wise model. 
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Chapter 4 

Discussion and Future Work 

The most important finding to mention from the analysis of the data is that in each example we 

got a posterior mean of A which is greater than one. This supports our belief about existence of 

possible kind of interactions other than the pairwise and our interpretations about the effects of 

the risk factors on the logit (Chapter 2, Section 2.2). From our experience we agree with Linde 

et. al. [13] that in course of analyzing the data, selection and inclusion of pairwise interaction 

terms into the step-wise logistic regression model is time-consuming and clumsy. We showed 

that the N A D model is slightly better than the step-wise and the ordinary logistic regression 

models in predicting the outcome of the response variable. We estimated average effects of 

the risk factors via the N A D model which are similar to the estimates of the ordinary logistic 

regression model and bear the equivalent interpretation. It is also worth mentioning that the 

ordinary logistic regression model is almost as capable as the step-wise in prediction. 

For fitting the N A D model we assume binary covariates and restrict the sign of the 

coefficients to be positive. Due to the structural form of the N A D model we can not have 

negative covariates or negative values of the coefficients. Negative covariates can be included 

in the model by rescaling the minimum value to be zero. One useful technique that most 

epidemiologists apply when analyzing their data is to categorize the quantitative risk factors. 

However, if we have continuous risk factors scaled so that zero is the lowest risk and one is the 

highest risk, we can analyze them and interpret as usual conditional on > 0. The estimated 

(3 or the posterior mean of a parameter can be interpreted as representing the risk difference 

(in logit scale) of a highest risk subject compared to a lowest risk subject when assuming the 
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remaining risk factors are absent. In all of the three examples used to fit the N A D model 

we converted the quantitative risk factors into binary variables and we coded the risk factors 

to match our a priori beliefs about the direction of effects, as reflected by the restriction to 

nonnegative coefficients. Indeed, in practical epidemiological context the question might arise: 

could we make full use of the N A D model with these restrictions? Or should we think of 

a new functional form? In spite of these limitations the positive aspect is that we can still 

analyze quantitative risk factors using the N A D model as long as we consider positive values 

of the coefficients. In many epidemiological studies we could guess the direction of the effect 

of many of the risk factors in advance. By knowing this fact we could choose the appropriate 

coding and interpret the coefficient estimate accordingly. However, in reality some predictor's 

characteristics in an epidemiological study may not be guessed completely in advance and if we 

were asked to analyze that predictor what we will do? 

Suppose that all of the ft's are positive where i = 1,2, . . . , p . Let us introduce the 

new parameters 71,72, • • •, 7p- These parameters will govern the direction of the predictors and 

validate the structure of the N A D model by defining each of them as: 

{ 1 if Xi — 1 is the high risk level, 

0 if Xi = 0 is the high risk level. 

We have to estimate these parameters along with the other parameters already in the model. 

After introducing 7J'S the N A D model can be rewritten as: 

logit Pr(Y = 1\X) = ft + {p?X? (1 - X,)1^ + f%X? (1 - X2f~^ + 

. . . + / 3 A X p

7 p ( l - X p ) 1 - > } 1 / A , (4.1) 

where Xj 's are binary variables or if continuous, scaled to be zero or one. This functional form 

in the logit scale can overcome the restriction of presuming to know the direction of each effect 

in advance. 

Model (4.1) can be fit.by following the Bayesian approach to model fitting discussed in 

Chapter 2, Section 2.3. This model now contains some discrete and some continuous parameters. 

Two procedures can be followed to evaluate the parameters, either (i) by fixing 7 's and simulate 

fts and <p, or (ii) simulate all of them simultaneously. If 7 's are known in advance, we go back 

to the N A D model and can follow the same procedures. If not, a prior distribution for 7 , 
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say 7r(7), is need to be assumed along with 3 and cj). See George and McCulloch [6] for 

a discussion of assigning a prior distribution to 7 when there are mixtures of discrete and 

continuous parameters. We have the similar situation here. The joint posterior distribution is 

then written as: 

n"0M>7|y) ^ L{3,(b,i)TT{B)ir{(p)'K(i). 

Although analytical simplification of n(3,4>, j\y) is intractable, existing M C M C methods such 

as the Gibbs sampler or Metropolis-Hastings algorithms (see Smith and Roberts [18], Chib and 

Greenberg [2] for an overview) can be used to explore the posterior 7r(7|y). Applied to the 

complete posterior ir(3, </>,7|y), such methods simulate a Markov chain 

^ \ ^ \ ^ l \ 3 ^ \ 4 2 \ i { 2 \ . . . , 

which converges in distribution to 7r(/3, <f>, -y\y). The embedded subsequence 7^,7^, . . . , thus 

converges to 7 ~ 7r(7|y). Refer to George and McCulloch [6] again for additional comments on 

the simulation process. While we have not implemented this in the present thesis, it should be 

straightforward extension of the methods described. 
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