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Abstract 

Mean-variance analysis has been broadly used in the theory and practice of portfolio 

management. However, the continuous analogy is not fully studied either academ­

ically or in practice. This thesis provides a similar efficient frontier to Markowitz 

(1952) and a general solution using martingale method employed in Cox and Huang 

(1989). Comparisons between the expected utility approach and the mean-variance 

analysis have been made. 

Traditional utility maximization cannot be used for explicit risk control of down­

side losses. An adjusted investment objective function by the worst case outcome is 

incorporated in the investment model. The problem can be divided into two sub-

problems as in Cox and Huang (1989). Closed form solution is derived for geometric 

Brownian motion and H A R A utility setting. An interesting result is that the in­

vestor's decision is governed by a single "security" - a call option on a dynamic 

mutual fund. 

A similar strategy, Risk Neutral Excess Return(RNER), to Portfolio Insurance 

is discussed. With geometric Brownian motion, the R N E R strategy has a payoff 

structure similar to a straddle option strategy. Compare to the strategic asset allo­

cation methods, such as Buy and Hold, Fixed Mix, and Portfolio Insurance , the new 

approach appears to be superior under a popular risk measure, Value at Risk(VaR). 

A new objective function is defined for applying stochastic programming to finan­

cial investment under uncertainty. Incomplete market conditions are considered in 

implementing this model. The risk neutral probability is fully studied using stochastic 

programming techniques. 
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Introduction 

Dynamic investment is a decision process for dividing the total investment fund among 
the major asset classes such as equities, bonds, cash, options, etc. Generally, these 
decisions can be classified in two paradigms, "static" and "dynamic", each with trade­
off between risk and return. The mean-variance analysis, as developed notably by 
Markowitz (1952, 1959) and Tobin (1958, 1965) is a typical static model. With the 
securities modeled by the means, variances, and covariances of their rates of return, 
the rational investor focuses on the efficient frontier (that is the subset of portfolios 
that achieve a maximum mean for a given variance), and then he makes a final choice 
that depends on his preferences toward risk. This approach is widely utilized because 
it is straightforward to implement. Although this model leads to some important 
consequences such as the separation or mutual fund theorem and the capital asset 
pricing model (Sharpe 1964), the model's simplicity is its major shortcoming (such as, 
one number represents the risk, both upward and downward deviations are considered 
to be risk, etc.) The second main approach in the portfolio management literature is 
to model the securities as Markovian processes and then solve the problem of max­
imizing the expected utility of the outcomes. The technology employed is dynamic 
programming. Merton (1969, 1971) used diffusion process models. The stochastic 
control methodology often reduces the problem to an intractable partial differential 
equation of which explicit solutions are obtained only for the simplest cases. For 
example, Merton's (1971) simplest case involves a formidable equation that is one of 
the few examples in Fleming and Rishel (1975). As a result of the difficulty in solving 
the stochastic control problem, there has recently been considerable interest in the 
application of stochastic calculus to developing investment models, especially in the 
context of option pricing. This interest was generated by the argument in Harrison 
and Kreps (1979) that if the model eliminates arbitrage opportunities, then there 
exists a probability measure under which the discounted securities price process is a 
martingale. Not only is this new methodology useful for pricing contingent claims, but 
also it provides a new approach to solving the optimal portfolio problem. Karatzas et 
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INTRODUCTION 2 

al (1986, 1987), Harrison and Pliska (1981), Pliska (1986), Karatzas (1989), Cox and 
Huang (1989), Basak (1995), and Grossman and Zhou (1996), are examples of using 
this tool in forming continuous time investment portfolios by separating the whole 
problem into two subproblems. First one identifies the subspace of the attainable 
wealth and chooses the one that is the best among those which satisfy a martingale 
constraint, and then one determines the trading strategies by replicating the optimal 
wealth. The first part is a variation problem which is equivalent to a huge nonlinear 
optimization problem in discrete models (wealth is discretized as a random variable). 
In the version of the continuous model, the replication model can be reduced to a 
parabolic differential equation with the assumption that wealth is a function of the 
state variables. 

Stochastic programming can be efficiently used to deal with models of investment 
under uncertainty when there are constraints, scenarios and a general objective func­
tion. In developing investment model using stochastic calculus, if the first step of 
identifying the "best" portfolio seems to be not straightforward, then the replica­
tion of this optimal portfolio will be much more difficult. The partial differential 
equation approach relies on the assumption that securities and portfolio value fol­
low Markov decision processes. The stochastic programming provides a useful tool 
for approximating the problem to a discrete case which can take many constraints 
in forming investment strategies. Multiperiod stochastic programming is a useful 
tool for implementing investment models and it has made major improvements to 
the practice of investment management. Bradley and Crane (1972) and Kusy and 
Ziemba (1986) describe stochastic linear programs for bank asset/liability manage­
ment. Carifio et al. (1994), Carifio et al. (1998a) and Carifio and Ziemba (1998b) 
discuss the Russell-Yausuda Kasai asset/liability management model. Mulvey and 
Vladimirou (1991) discuss a multiperiod stochastic network model for asset alloca­
tion, and Zenios (1993) describes stochastic programming models for fixed-income 
asset/liability management. Edirisinghe, Naik and Uppal (1993) applied a stochastic 
programming model for option replication with transaction costs and trading con­
straints by minimizing the initial costs of an European call option. See also Ziemba 
and Mulvey (1998) for a survey of additional applications. A major advantage of 
stochastic programming is its versatility of implementing replication model, i.e., the 
derivation of the hedging portfolio of a contingent claim. Making use of martingale 
analysis, a utility maximization in discrete time can be solved through a solution of 
nonsmooth problem that identifies the optimal portfolio and a stochastic program­
ming that yields the optimal portfolio policies. 

This thesis will focus on (1) developing the theory and application of investment 
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models with downside control in continuous time with the assumption of Markov 
diffusion processes for asset prices, (2) a heuristic method combining a nonlinear 
optimization and a stochastic linear programming for solving dynamic investment 
models with downside control. 

Part I focuses on the incorporation of downside risk control in the investment 
model in the continuous time framework. With the assumptions that the market 
is complete and that the market asset prices are modeled by Markov diffusion pro­
cesses, the martingale analysis and the partial differential equation are two major 
mathematical tool used for deriving the optimal strategies. 

Chapter 2 extends Markowitz's static mean-variance analysis to its analog of the 
continuous time version. The mean-variance analysis as an important criterion has 
not been properly incorporated in the continuous time models. The lack of this 
analysis in continuous time finance has downgraded its practicality in developing 
dynamic investment models. Applying martingale analysis, the efficient frontier and 
the optimal portfolio are derived assuming the absence of arbitrage and the existence 
of a riskless asset. If the price processes jointly have a Markovian structure, the 
optimal policies are obtained by solving a partial differential equation with boundary 
conditions. Furthermore, a close form solution is derived if asset prices jointly follow 
a multidimensional geometric Brownian motion. 

Chapter 3 defines a new risk measure such that a utility maximizer will trade off 
the overall expected utility with the worst case outcome. Although the standard the­
ory has been much developed on the utility maximization, adding the downside risk 
control to the problem is a new idea which has just recently started; see Basak (1995), 
Grossman and Zhou (1996). In addition to the characterization of risk aversion via 
utilities, investors are also concerned about the actual potential dollar loss in their 
portfolio. For example, they may ask what is the probability that wealth will fall 
below some amount, and what is the worst case payoff of the portfolio. Adding these 
requirements will eventually change investor's optimal policies of a standard utility 
maximization. Portfolio Insurance, which was a quite popular investment strategy 
in 1980's, provided a tool for investors to actively manage their portfolio. In the 
literature, the related topics have been studied extensively. Black and Jones (1987) 
discuss a simple, flexible approach to portfolio insurance for pension plans. Browne 
(1997) discusses an investment model for survival and growth with a liability stream 
and relates the problem to portfolio insurance. Browne (1999) studies an investment 
problem that maximizes the probability of reaching a given wealth level by a finite 
horizon and relates the problem to pricing of a digital option. Basak (1995) and 
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Grossman and Zhou (1996) analyzed the equilibrium security prices with the pres­
ence of portfolio insurance. Considering the downside risk control which is captured 
by the additional amount of reward besides the utility received from the actual wealth 
realization, investors set the objective function to be concave increasing functions of 
two variables: the realized wealth and the worst case outcome wealth. The investor 
wants to improve on the levels of both variables, but these two variables are in con­
flict with each other. For a given economic situation, one can not improve the overall 
wealth without having to reduce the worst case outcome. This approach provides 
an explicit control of the downside losses. Investors will adjust the optimal wealth 
and the worst possible outcome wealth according to the markets' situation. Hence, 
the investor's optimal strategy related to these two variables is sensitive to market 
conditions. The optimal strategy is equivalent to an option strategy on a dynamic 
mutual fund. The economic interpretation is that the marginal utilities of the two 
variable trade off each other. The result shows the optimal investment strategy is 
the hedging portfolio of the option on the optimal portfolio without the downside 
risk control. Finally, a closed form solution is given when asset prices jointly follow a 
geometric Brownian motion and the utility function is H A R A (Hyperbolic Absolutely 
Risk Aversion). The Black and Scholes formula is employed for the solution of this 
specific case. This research result shows that if there exists such an financial inter­
mediary, an investor will only need to invest an option and the investment strategy 
can be fully characterized by the price of this option. Unlike the results in Merton's 
pioneering paper, portfolio weights are no longer proportional to the wealth even in 
the standard market setting. 

Chapter 4 defines and solves an investment model that is similar to Constant Pro­
portional Portfolio Insurance. The Risk Neutral Excess Return strategy is a portfolio 
policy such that the discounted portfolio weight to the initial wealth is proportional to 
the changing risk neutral excess rate in the same asset. As a comparison to the CPPI 
strategy, this strategy focuses on the ratio of the changing discounted dollar amount 
in the risky assets to the initial portfolio value and sets it equal to the multiple of 
the risk neutral excess return plus some constant level. As CPPI does, the RNER 
strategy yields a portfolio return that protects against downside losses. Furthermore, 
the return of this strategy is a convex function of the market return, which shows that 
RNER strategy performs very well when the market ends on both tails, compared to 
typical asset allocation strategies, Buy and Hold, Fixed Mix, and Portfolio Insurance. 

In Part II, discrete time models with market trading friction are studied. The 
continuous time model was easy to deal with because of the assumed nice structure 
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on the asset prices. The key role played by risk neutral probabilities1 can be easily 
identified and then the static first step which identifies the optimal wealth can be 
easily implemented for an unconstrained market. However, market is constrained 
and market friction exists everywhere. Trading continuously and costlessly are not 
realistic assumptions. Perfect hedging is not possible. How do we solve a model 
subject to those constraints? 

Chapter 5 discusses the optimal solution in a constrained market setting. Using 
martingale analysis, the optimal terminal wealth can be identified by solving a static 
nonlinear optimization. However, investors are really interested in how to find the 
optimal portfolio policy over time. A suggestion for the investor is to approximate 
an "dominant" portfolio which might not be replicable under the current market sit­
uation by minimizing the downside deviation. We know that, if there is no arbitrage 
opportunity, there always exists a risk neutral probability by which the "dominant" 
portfolio can be identified. With this assumption, we suggest that investors follow 
a two-step strategy. At first, one solves the static problem as if market were uncon­
strained (In this case the optimal solutions for martingale analysis and the stochastic 
control approach coincide to each other). Secondly, one replicates the identified port­
folio with all types of constraints, such as trading constraints, liquidity constraints, 
shorting costs, and transaction costs. As a side result, this method will provide the 
exact optimal solution when market is unconstrained. One important input for the 
stochastic programming is a scenario set which usually describes how the asset returns 
evolve. Farka's Lemma in linear programming can easily check for arbitrage oppor­
tunities of the chosen scenario set, but generating an arbitrage free scenario set is 
not an easy task for large scale computation. In this model, we assume the market is 
arbitrage free to get the risk neutral probability by solving a specific stochastic linear 
programming model. This will be a further investigation as a practical application to 
the theoretic model. 

Chapter 6 presents a multiperiod stochastic linear programming model for asset 
liability management. In this model, we consider an incomplete market where trading 
constraints exist, such as transaction cost, holding constraints, etc. The investor's 
risk aversion is reflected by balancing the objective weights between the expected 
growth and the worst case payoff, which introduces a new objective function for the 
stochastic programming models. The IBM OSL package is used for solving this model. 
The sensitivity of the optimal portfolio with respect to the risk aversion is carefully 
studied. 

1A risk neutral probability is a probability measure under which security prices discounted at the 
riskless rate are martingales 
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Chapter 1 

Financial Market and Portfolio 
Dynamics 

In this chapter, some concepts, definitions, and assumptions, are introduced which will 
be used throughout the discussion. The basic framework of models will be established 
in this chapter unless specified elsewhere. 

1.1 Financial Market and Asset Price Model 

A financial market is defined as n + 1 traded assets denoted by their price processes. 
Among these assets, one is a (locally) riskless asset earning prevailing interest rate 
r(rj) and the others follow a multidimensional diffusion process, i.e., 

dB{t) = r{t)B{t)dt, B(0) = 1, 
n fl 1 1) 

dSi(t) = bi(t)dt + ^o-i:j(t)dzj(t), Vi = 1,2,-•• ,n. v ' ' ; 

i=i 
where z(t) = (zi(t),- •• ,zn(t))T is an n-dimensional Brownian motion defined on a 
probability space (O,^ 7, P). The prices of these assets are positive and real-valued, 
S(t) — (Si(t),--- ,Sn(t))T e 5R+" and there are no dividends paid for all assets. 
b(t) = (bi(t), • • • , bn(t))T is called the instantaneous mean vector and a(t) = (cr i : 7) n x n , 
the volatility matrix. F = {Ft C T\ t e [0, T]} is a filtration generated by (B(t), S(t)). 
The requirement that the coefficients r(t), b(t),a(t) be adapted to F, essentially makes 
them functions of the asset prices path{J5(u), S(u), 0 < u < t} up to time t to preclude 
anticipations of the future and allow for dependence on the past of the driving asset 
prices. 

To apply the stochastic dynamic programming technique in a continuous-time 

7 



CHAPTER 1. FINANCIAL MARKET AND PORTFOLIO DYNAMICS 8 

model, the process of state variables must be chosen to be Markovian which is defined 
as 

Definition 1.1.1. An Tt adapted stochastic process Mt is called a Markov process 
if for Vt, s > 0 and a Borel measurable set Y 

Pv[Mt+s G T\Ft] = Pv[Mt+s G T\Mt}. 

For example, an n- dimensional Brownian motion is Markovian. For Markov 
process Mt, the following lemma (see Karatzas and Shreve (1990)) is needed 

Lemma 1.1.1. For Markov process Mt, if the Markov property 

Pr[Mt+s G T\Tt] = Pr[M s G T] 

is satisfied, then 

E[f(Mt+s)\Ft]=g(Mt) (1.1.2) 

where f(-),g(-) are Borel measurable functions. 

A particular class of continuous-time Markovian processes called the ltd processes 
are defined as the solution to the stochastic differential equations 

dM = b(t, M)dt + a(t, M)dz. 

To make Model (1.1.1) an ltd type, (r(t), b(t), a(t)) are allowed to be functions (non-
random) of B(t) and S(t). Throughout the discussion, assume that b(t) and a{t) are 
Borel measurable and satisfy the Ito conditions and a{t) is a non-singular matrix. 

A portfolio is a combination of assets, denoted by a(t) and 6{t) — (9i(t), • • • , ^n(t))7 

(a(t),6(i)) is the vector of total number of shares held of each asset that forms the 
portfolio which satisfies the condition 

\\6(t)a(t)\\2dt+ [ \6{t)T(b(t)-r(t)S(t))\dt<oo, (1.1.3) 
Jo 

where || • || is the Euclidean Un norm. Assume a(t) and 9(t) are Tt measurable. If 
(a(t),9(t)) satisfies the above conditions, then it is called an admissible strategy. The 
portfolio value generated by the strategy (a(t),9(t)) is 

W(t) = a(t)B(t) + 9(t)TS(t), (1.1.4) 

which is called a portfolio process. A trading strategy is a dynamic portfolio of assets 
to be held until "expiration date". A trading strategy is called "self-financed" if 

W(t2) = W{tx) + ( 2 a{u)dB{u) + 9(u)TdS(u), a.s.Vti <t2<T. 
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Assume all trading strategies are self-financed.1 

A market is called arbitrage free if there does not exist a trading strategy such 
that, for a non-positive initial wealth, a non-negative final cash flow is positive with 
positive probability, i.e., 

W(T) > 0 and Pv[W{T) > 0] > 0 => W(0) > 0. 

The no arbitrage principle is assumed throughout the investment horizon. 

1.2 Martingale Measure and Portfolio Dynamics 

Martingale is a useful mathematical concept that is suitable for describing security 
prices and portfolio value process. The risk neutral probability measure derived upon 
this concept has been used in pricing derivative securities. The form mathematical 
definition is 

Definition 1.2.1. An n- dimensional stochastic process is called a martingale with 
respect to a filtration Tt if 

i) Mt is Tt measurable for all t, 

ii) £7[|Af t|] < oo for all t, and 

iii) E[Mt+s\Tt] = Mt for all s > 0. 

For example, a Brownian motion is a martingale. 

It follows that the dynamics of the value W(t) of the given portfolio (a, 9) at time 
t follows the stochastic differential equation 

dW(t) = a(t)dB(t) + e{t)TdS{t). 

Harrison and Kreps (1979) have shown that the existence of an arbitrage-free market is 
equivalent to the existence of a probability measure under which all prices of securities 
discounted at the riskless rate are martingales. This probability measure is called the 
martingale measure (or risk neutral probability measure). A characterization of the 
risk neutral probability is as follows: 

1For the present time we have assumed that the buying and selling prices are the same, but in 
practice there is a bid-ask spread. We will model this as transaction costs in Part II. 
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Definition 1.2.2. An equivalent martingale measure Q is a probability measure on 
(fi, F) equivalent to P such that all prices in units of the riskless asset are martingales 
with respect to the a - fields !Ft, i.e. 

EQ Sj(s) 
[B(s) 

Ft 
Sj(t) 
B(ty 

Vz = 1, 2, • • • , s > t, n, (1.2.1) 

where EQ[-] is the expectation operator taken under the probability measure Q. 

For the setting of the market as in (1.1.1), arbitrage free is equivalent to the 
solvability of the equation 

=b(t)-r(t)S{t). 

and the condition 

Jo 
\K(t)\\2dt < +oo. 

With a complete market setting-no transaction cost, no liquidity constraints, buying 
and selling assets at the same prices, and unlimited borrowing, we can derive 

e x p { 5 / o r H « ( s ) l l 2 d s } ] ) Theorem 1.2.1. Assume K satisfies the Novikov condition, E 

< oo. For a complete market, an adapted stochastic process X(t) is a portfolio process 
if and only if it is a discounted Q-martingale. 

Proof. With the setting of Model (1.1.1), there exists a unique equivalent martingale 
measure which has the explicit form (see Karatzas and Shreve 1990) 

dQ 
dP 

e x p j - ^ K(s)rdz(s) jT || K(s) | | 2 ds j , 

where AC(/J) = cr(i)_1(6(t) — r(t)S(t)), called the market price of risk. By the Novikov 

condition, £ ' < 3 [ ln ] = 1, which implies that there is no arbitrage and Q is a probability 

measure. The exponential P - martingale generated by n(t) is 

r](t) = exp j — j K(s)Tdz(s) — ^ j || K(S) | | 2 d s | . 

Utilizing Levy's characterization for Brownian motion yields that 

zQ(t) = z(t) + f K(s)ds 
Jo 

is a standard Brownian motion under the probability measure Q. This result is usually 

referred to as Girsanov's theorem. 
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Under the Brownian motion zQ(t), the asset prices and the portfolio value can be 
rewritten as 

dS{t) = r(t)S(t)dt + a{t)dzQ(t) 

dW(t) = r(t)W(t)dt + 6To(t)dzQ(t) ^'2'2^ 

which implies that all self-financed portfolio processes (including the primary assets) 
have the same drift rate r(t) under the Q - Brownian motion, therefore the discounted 
portfolio process is a martingale. 

Conversely, by the martingale representation theorem, ^(t), Ft measurable, and 

de-tir^dsW{t) = 1{t)TdzQ{t). 

Hence, 

and 

dW(t) = r(t)W{t)dt + etirWdsj(t)TdzQ{t). 

(1.2.3) 
0(t) = e / o ^ s ( ( 7 T ) - 1

7 ( i ) , 

a(t) = W(t) - 9{t)TS(t), 

is a trading strategy that replicates the portfolio W(t). • 

1.3 I t o ' s f o r m u l a 

The fundamental tool for formal manipulation and solution of stochastic processes of 

the Ito type is Ito's formula: 

Lemma 1.3.1. Let F(t,Si,-- - ,Sn) be a C2 function defined on [0,T] x Un and take 
the stochastic integral 

S(t) = 5(0) + [ b(u, S(u))du + [ a{u, S(u))dz(u), Vi = 1, • • • , n; 
Jo Jo 

then the time-independent random variable Y(t) = F(t,Si,--- ,Sn) is a stochastic 
integral and its stochastic differential equation is 

OF dF 1 d2F 
d Y V = m d t + a s d S + 2 t r { W d S ) - ( 1 ' 3 ' 1 ) 

Armed with Ito's formula, we are now able to formally differentiate most smooth 

functions of Brownian motions, and hence, integrate stochastic differential equations 

of Ito type. For example, if b(t) = b-S(t) and a(t) = a- S(t), applying (1.3.1) obtains 

S(t) = 5 (0 )e c r z W + ( 6 -^ 2 ) t . 
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1.4 Partial Differential Equation 
Although utility maximization can be dealt with using stochastic control methodolo­

gies as in Merton (1969, 1971), an elegant way of solving the utility maximization 

over time is the martingale analysis. For complete market, the investor's wealth pro­

cess is a discounted Q- martingale. Since a martingale is uniquely determined by 

its terminal term, the problem can be solved by decomposing the problem into two 

different problems: the first problem identifies the optimal terminal wealth and the 

second problem determines the optimal policy that perfectly replicates the identified 

optimal wealth. So, the problem reduces to how to find the terminal wealth and how 

to find the optimal strategy over time. A static variational problem with the budget 

constraint can be set up for obtaining the optimal wealth, while the optimal strategy 

over time can be determined by solving a parabolic partial differential equation. 

Let W(t) be the investor's wealth process. An important step for setting up this 

model is how to choose a set of state variables which jointly form a vector Markovian 

process such that the wealth process is a deterministic function of these state variable 

at any moment. For example, for the case of geometric Brownian motion model, 

the state variable can be chosen to be the time and another mutual fund (fictitious, 

depending on the investor's utility function, see Merton 1990). Let W(t) = F(t, X(t)) 

where X(t) is a vector of state variables and it is a Markovian process of Ito diffusion 

type 

dX(t) = <f>(t, X(t))dt + ib(t, X{t))dZQ(t). 

By Ito's formula, 

OF dF 1 d2F 
d W U = m d t + a x d x + 2 ^ 8 x ^ , 1 4 1 . 

.dF dF 2 1 ,SfF,,T,,, d F , , 0 , . 1 ; 

Comparing (1.4.1) with (1.1.4), we obtain 

Proposition 1.4.1. The wealth process is determined by the stochastic differential 
equation 

^ dF dF 1 1 ,d2F , ( T . n 

- r F + a + w * + 2 * a F W T ) = o, 
and the optimal strategy is 

I 
a(t) = W(t) - e(t)TS(t) 

*(*) = ( " V • i ? ( 1 A 2 ) 
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1.4.1 The Black-Scholes Formula for European Call Options 

In chapter 3, the B-S formula for European options is applied when solving for op­
timal investment strategy. As a review, this formula is presented as follows. The 
partial differential equation with associated boundary (Black-Scholes partial differen­
tial equation) that is satisfied by the price of the option F(t, s) with strike price K 
and expiry date T is 

-rF + Ft + rsFs + \a2s2Fss = 0 
(1.4.3) 

F(T,s) = [s - K]+, and F(* , s )~s , as s ->• oo. 

The price of the option is 

F(t,s) = sNidi) - Ke-r{T-t)N{d2) 

where N(x) is the cumulative function of the standard normal random variable 

N(x) = 4 = f e^dy, 
y lis J-oo 

and 

, _ \n(S/K)+(r+k<r2)(T-t) 

d2 = d1- ay/T - t. 

Ut = T, then 

+oo if s > K 
dx= ; 

—oo if s < K. 

1.5 The Investor's Objective Function 

Traditionally, the investor's objective is maximizing the expected utility where the 
utility function is a non-decreasing concave function of wealth and/or consumption. 
Since the investor faces uncertainty while having to make his decision now, an appro­
priate downside risk control incorporated in his investment objective might be more 
convincing if he is a type who worries about the downside losses. 
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1.5.1 The Definition 
While maximizing the expected utility, the investor may consider the worst possible 
outcome. An investment objective can be chosen to be 

max E[U(W, i n f w g n W(co))}, 
where £/(•,•) is jointly concave and increasing in both variables. The investor has 
to balance the two competing variables: the overall wealth and the worst possible 
outcome. For example, with the log utility function, an investor with initial wealth 
$100 is to decide whether to play a gamble that pays $1 with probability 0.8 and 
—$2 with probability 0.2. Without the downside control variable, the investor will 
simply accept this gamble. But if he were to consider the downside losses and set the 
objective function to be the convex weight of the two "utilities": 

U(x,y) = p\nx + (1 - p) lay, 

the situation will change. Obviously, p = 1 reduces to the traditional utility maxi­
mization problem and p = 0 represents the problem where the investor will not make 
any investment under uncertainty (put the money in the bank). As to the gamble 
above, the investor will take the gamble only if p > 0.8375. So, the choice of p 
represents the investor's control intensity of downside losses. 

1.5.2 Risk Adjusted Perception 
Usually, investors are maximizing the expected utility with the same probability as 

the one for characterizing the economic uncertainty. Considering the downside losses, 

an investor might adjust the probability measure to put more probability mass on the 

downside outcomes. Let V{w) be the utility of wealth and let the objective function 

be 

U(x,y) = pV(x) + (l-p)V(y). 

The investor will reduce the probabilities of all possible outcomes by a ratio of p and 
add the total reduced probability mass to the worst possible outcome. Figure 1.1 
depicts the relation between the original and adjusted probability measure used for 
the utility maximization problem. 

In Figure 1.1, the total reduction of the probability mass from A to B are added 
to the worst point A to accommodate the control of the downside losses for making 
investment decisions. 
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Adjusted 

Outcome 
• 

A B 

Figure 1.1: Shifting of Probability Mass 

1.5.3 The Geometry of Economic Interpretation 
In general, a downside-control investor will not maximize the expected utility with 
the objective probability measure but with an adjusted one. To achieve this purpose, 
one needs only to shift a portion of the probability mass at higher outcomes to that 
at lower outcomes. Consider a simple situation where there are only two possible 
outcomes of wealth, "good" and "bad", denoted by Wg and W&. Let W be the set of 
possible outcomes which is assumed to be convex . The occurrence of outcome one is 
at probability p. The problem for an ordinary investor with utility function of wealth 

But a downside risk control type investor will maximize the expected utility with a 
shifted probability measure Q. If the investor weighs the "good" state with probability 
q < p, his investment problem is 

Since the marginal rate of substitution between this two approaches are changed, 

the optimal strategy is changed correspondingly. Figure 1.2 depicts the change of the 

optimal portfolio policy from Point A to Point B if downside risk control is considered. 

U(W) is 

max 
(Wg,Wb)£W 

pU(Wg) + (l-p)U(Wb). 

max 
(wg,wb)ew 

qU(Wg) + (l-q)U{Wb). 
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Chapter 2 

Continuous Time Mean-Variance 
Analysis 

Markowitz (1952) mean-variance analysis blends elegance and simplicity. Compared 
to the expected utility models, it offers an intuitive explanation for diversification and 
a relatively simple computational procedure. However, most discussions of mean-
variance analysis are restricted to static models. Hence, investors can only make 
decisions at the beginning and must wait for the results at the end of the horizon 
without adjusting the portfolio weights. This is awkward for mean-variance analysis 
compared to versatile dynamic (multiperiod or continuous time) models that maxi­
mize expected utility. Tobin (1958) showed that the mean-variance model is consis­
tent with the von Neumann-Morgenstern postulates of rational behavior if the utility 
of wealth is quadratic. Since the quadratic utility function is increasing only up to 
some upper bound, it introduces a stochastic control problem with a constraint on the 
wealth level which is difficult to solve using standard stochastic control methodologies 
as used in Merton (1969, 1971). This chapter investigates and develops a dynamic 
version of mean-variance efficient frontier using martingale analysis and derives the 
optimal portfolio policies by solving the associated partial differential equations. 

Mean-variance analysis, despite its importance as a practical investment criterion, 
see e.g. Grinold and Kahn (1995) and Ziemba and Mulvey (1998), has not been prop­
erly incorporated into continuous time models. The unavailability of this analysis in 
continuous time or multiperiod models has downgraded its practicality in developing 
dynamic investment models. This chapter considers continuous time models with 
a mean-variance criterion. Applying the martingale analysis as developed by Cox 
and Huang (1989), the efficient frontier and the optimal portfolio policies are derived 
assuming the absence of arbitrage and the existence of a riskless asset. If the price pro­
cesses jointly have a Markovian structure, the optimal policies are obtained by solving 

17 
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a partial differential equation with associated boundary conditions. Furthermore, a 
closed form solution is derived if the asset prices jointly follow a multidimensional 
geometric Brownian motion. 

One can ask how good is mean-variance analysis compared to the expected utility 
approach. The comparison provided in this chapter shows that the latter achieves a 
better performance if the outcome of the market state price is near its mean value. 
The expected utility approach has superior performance when the outcomes are in 
the tails of the state price which accommodates the investor's risk aversion. Hakans-
son (1971), Grauer (1981), and Kroll, Levy and Markowitz (1984) discussed and 
compared the optimal strategies obtained by the two criteria. Grauer and Hakasson 
(1993) compared the mean-variance and the quadratic utility approximation schemes 
for calculating optimal portfolios in the discrete time dynamic investment model. 
We investigate from another angle the possible advantages of mean-variance analysis 
over the expected utility approach. We calculate the probability that a mean-variance 
model outperforms an expected utility model in terms of the market state price. The 
investor determines the optimal target mean level for applying mean-variance anal­
ysis to maximize this probability. We provide a general method for calculating this 
probability and a closed form solution in the case of lognormal prices and logarithmic 
utility. A numerical example compares the two approaches. 

2.1 T h e E f f i c i e n t F r o n t i e r 

2.1.1 The Mean-Variance Model and Its Variant Versions 

The static mean-variance model may be formulated in two ways: minimizing variance 
subject to an expected wealth target or maximizing the expected wealth subject to 
a given level of risk, the variance. Both ways can trace out the efficient frontier 
by varying the corresponding parameters. Let E[-], V[-], and V2[-) stand for the 
operators of expected value, standard deviation, and the variance of a random variable 
in question. The dynamic mean-variance model is 

where p is the expected wealth target. The stochastic control problem above with 
an irregular objective function and a constraint on the target level of expected 
wealth present a significant obstacle for obtaining solutions through stochastic control 

s.t. E[W(T)] > 

dW(t) = r{t)W(t)dt + 6(t)Ta{t)dzQ(t), 0 < t < T, 

( 2 . 1 . 1 ) 
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methodology. However, the martingale approach can greatly reduce the complexity 
of the problem. The problem can be divided to two submodels: a static model for 
identifying the optimal attainable wealth and a replication model for obtaining the 
optimal portfolio policies. Consider the static problem 

min V2\W] 

s.t. E[W] > ii (2.1.2) 

EQ[B-1(T)W] = W0, 

where W0 is the initial wealth and E®[-} is the expectation operator under the risk 
neutral probability. The optimal portfolio values for models (2.1.1) and (2.1.2) coin­
cide to each other using a replication argument. 

Since the operator V2[-] is in the objective function of Model (2.1.2), a Kuhn-
Tucker solution procedure does not directly apply. However, a simpler version of 
Model (2.1.2) is given in Corollary 2.1.1. 

Corollary 2.1.1. Assuming the existence of a riskless asset, Model (2.1.2) is equiv­
alent to the model 

min E[W2) - [i2 

w 
s.t. E[W] = fi (2.1.3) 

EQ[B-\T)W] = W0. 

Proof. One needs only to show that, if W* is optimal for (2.1.2), then = fi. 
In fact, if E[W*] > fi, let 

E[W] °{ E[W*Y { ' 

W** is feasible to Model (2.1.2) since 

A* 7 T i Q r D / ' T A - I T J / - * ! I T T / rt A* \ 

and 

EQ[B(T)~1W**] = -~—rEQ[B(T)~1W*} + W0(l -
E[W*} L V ' J V E[W*\ 
EW^ + W«{1~W^ 
Wo 

E[W**] = EW]E[W*] + WOIL~ EW])E[B{T)] 

= » + W ^ - E W ] ^ r i t ) d t 

>fi. 
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However, W** has a smaller variance than W*, which contradicts the optimality of 
W*. • 

2.1.2 The Optimal Terminal Wealth 

Denote £ = .B(T) -1?7(T) as the contingent state price. The Lagrangian of Model (2.1.3) 
is 

C(W, A, p) = E[W2} -p2- \{E[W] - //) - p{E[£W] - W0), 

where A and p are the multipliers on the target expected wealth constraint and the 
martingale constraint, respectively. Here a normal representation of Lagarange form 
is used, but for the proof of a general case see Zhao, Haussmann and Ziemba (2000). 
The extended Kuhn-Tucker criteria are necessary and sufficient conditions due to the 
convexity of the objective function and the convexity of the feasible region. Theo­
rem 2.1.2 characterizes the optimal value. 

Theorem 2.1.2. The optimal portfolio value is a linear function of the state price £ 
with a negative slope if the target return is greater than the riskless rate. Furthermore, 
the optimal value is 

W=1-X + \pt (2.1.4) 

where the multipliers are given by 

2pE\e] - 2W0E[Z] 
A 

v*[t] 
2W0 - 2pE[C] 

(2.1.5) 

Proof. Applying the Kuhn-Tucker criteria yields 

2W - A - p£ = 0 

E[W] -fi = 0 

E[£W] - W0 = 0 

which implies (2.1.4). Applying the operators E[-] and EQ[-] to both sides of (2.1.4) 
yields 

A + pE[£\ = 2p, 

\E[t} + pE[e} = 2W0 

2i — (2-1-6) 



CHAPTER 2. CONTINUOUS TIME MEAN-VARIANCE ANALYSIS 21 

Solving (2.1.6) yields (2.1.5), which completes the proof of Theorem 2.1.2. • 

The optimal portfolio is a linear function of the contingent state price, £, with 

non-positive slop. Hence, one can identify the optimal portfolio by obtaining the 

probability distribution of the contingent state price. 

2.1.3 The Efficient Frontier 
Let \& be the standard deviation of the optimal portfolio of Model (2.1.3). Substituting 
the optimal multipliers A and p in the optimal wealth expression in (2.1.4) proves 
Theorem 2.1.3 as shown below. 

Theorem 2.1.3. The standard deviation of the optimal portfolio value is 

- worn}))-1) nn< wom})-1- [ " } 

Proof. By Theorem 2.1.2 and the two constraints in Model (2.1.3), 

r2l 1 - ^r T T „ 1 
E[W2} = -XE[W] + -IME[€W] 

(2.1.8) 

Substituting A and p of (2.1.4) into (2.1.8) yields 

2 (tiEjei - W0E[£])ii (Wp - fiE[Z])W0 

1 v^} + V^} 

Hence 

E[W2} = y^-fr - W0E[C}-1)2 (2.1.9) 

which completes the proof of Theorem 2.1.3. 

Figure 2.1 depicts the feasible region of portfolio policies as shaded between the 

two lines in the mean-standard deviation space. 

The upward linear segment is the efficient frontier and the downward linear seg­

ment the inefficient frontier; see Tobin (1958) and Ziemba et al (1974). The dynamic 

mean-variance model has a similar shape but with a different slope than the static 

mean-variance efficient frontier. The dynamic mean-variance efficient frontier is above 

that of the static mean-variance strategy since the set of self-financing strategy con­

tains the set of static strategies as a subset. Furthermore, the mean and the standard 

deviation of the contingent state price uniquely determine the mean-variance efficient 

frontier. 
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Figure 2.1: The Dynamic Mean-Variance Efficient Frontier 

2.2 A Comparison with the Expected Utility Ap­
proach 

2.2.1 The relation between the Terminal Portfolios 
Much research in the literature has been focused on determining which of the ex­
pected utility approach and the mean-variance analysis is preferable in making sound 
investment decisions. The optimal portfolio generated from a utility maximization is 
not on the mean-variance efficient frontier except in a few special instances: either 
a "carefully" chosen quadratic utility function is used or the asset returns are joint 
normally distributed; see Samuelson (1970), and Ziemba and Vickson (1975) for other 
exceptions. However, investors and academic researchers do not accept these assump­
tions for practical use. For users of mean-variance analysis, the following question 
may be asked: what is the best choice of the target wealth such that the terminal 
portfolio value has the maximum probability of being higher than the portfolio value 
obtained from a utility maximization approach? 

Let Wm and Wu be the terminal portfolio value for mean-variance analysis and 
an expected utility approach, respectively. Wm is given by (2.1.4) and (2.1.5). Using 
a martingale argument the optimal value for the growth optimal strategy is 

Wu = U~\XuO, (2.2.1) 

where Xu is the Lagrangian multiplier on the wealth constraint for given utility func­

tion U(x) and C/~1(-) stands for the inverse function of the marginal utility of wealth; 
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see Cox and Huang (1989). Figure 2.2 depicts the relation of the two optimal portfolio 
values in terms of the state price £. 

Wealth 
i 

V-

w 

Wealth for Expected Utility 

Wealth for Mean Variance 
\ Any 

H = W / E © 

W/E(£ 

E © £ 
w 

State Price 

Figure 2.2: The Optimal Terminal Portfolio Values 

Assume U(x) is increasing and a Hara function, Wu is a convex function of £. On 
the other hand Wm is a straight line with negative slope. Therefore, there are two 
intersection points £i and £ 2 . Mean-variance analysis will be superior if the outcome of 
the state price £ occurs around the mean value E[£\ of the state price, as represented 
by the bold dotted line segments, and be inferior if the outcome is beyond one of 
the tails, £i or £ 2- Also, p changes as a function of //. As p, increases, Wm shifts up, 
and at the same time becomes steeper. Hence, the effect of an increase of p on the 
"probability of outperforming the expected utility of wealth is non-monotonic. 

2.2.2 Opportunities Superior to the Expected Utility Ap­
proach 

By varying p, investors can find the maximum probability that the mean-variance 
optimal portfolio will outperform the expected utility maximization portfolio. The 
maximum probability is given by solving 

max Pr{6 W0/E[$} (2.2.2) 
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where £ x

 a n d fi < £2, are the two intersection points of Wu and Wm which satisfy 
the following transcendental equation, 

-2U-l(XuO + X + P^ = 0. (2.2.3) 

Since Wu is a convex function of the contingent state price £ and Wm is linear in 
£, W u and Wm intersect at exactly two points for a given p < 00. Since A and p 
are functions of p, so are £1 and £2- Both the mean-variance analysis and expected 
utility approaches are considered as standard approaches for constructing optimal 
investment strategies. For mean-variance optimizers, an interesting question is how to 
set the target wealth level such that the mean-variance criterion will be superior to the 
expected utility approach with maximum probability. With appropriate conditions, 
we can calculate the optimal value p and, therefore, the maximum probability. Let 
4>(x) be the density function of £. Assuming that there is a solution to (2.2.2) and 
that both £i(/x) and £2^) are differentiable with respect to p, then problem (2.2.2) 
becomes 

max / cf>(x)dx. 

By the first order conditions, the optimal p is given by 

- m(vmM = a, (2.2.4) 

where "/ " stands for the derivative. 

2.2.3 A Numerical Example 

Consider an investor having one dollar to invest between a riskless asset and a risky 
asset. The riskless interest rate for the period of August 2, 1999 to August 1, 2000 
was about r = 0.05 per annum, i.e., the riskless asset price B(t) = ert. The S&P 500 
is the risky asset. After scaling the initial index level to a dollar, Figure 2.3 depicts 
the price dynamics of the S&P 500 for this period (dividends are not considered for 
the calculation of the index return). 

Assuming that the price S(t) of the S&P 500 follows the geometric Brownian 
motion 

dS(t) = bS(t)dt + aS(t)dz(t) 

with estimated b = 0.101 and a — 0.212. Let the investment horizon be one year, so 
T = 1. The market price of risk K = (b — r)/a = 0.24 and, by definition, the state 
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1.2 n 

0.8 
7/1/99 10/9/99 1/17/00 4/26/00 8/4/00 

Time 

Figure 2.3: Scaled Index Level of S&P 500. 

price £ is 

£ = B(T)~lr](T) = e -0.24z-0.08 

where z is a standard normal random variable. Hence, £?[£] = 0.95 and V 2 [£] = 0.96. 
By Equation (2.1.5), 

I A = 35.69/z - 35.42 

\p = -35.42// + 37.24. 

The mean-variance optimal portfolio value is, by Equation (2.1.4), 

Wm = (17.85// - 17.76) + (-17.76// + 18.62)£. 

For the logarithmic utility, the optimal terminal wealth is (without loss of generality 
let W0 = 1) 

See Cox and Huang (1989) for a derivation of this. The intersection points, £i and 
£2, are given by the quadratic equation 

wu = Woe1 - e -1 

(-17.76// + 18.62)£ 2 + (17.85// - 17.76)£* - 1 = 0, 

whose solutions are 

(2.2.5) 

http://-0.24z-0.08
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For given p, the probability that the mean-variance model outperforms the growth 
optimal strategy is 

/ i 2 1 , (lnx + r + \ K 2 ) 2 ^ 1 
exp{- } • —dx. 

Using the first order condition indicates that the numerical solution of the optimal [i 
is 

(j, « 1.139, 

which means that, for this specific investment environment, investors should set the 
target wealth to be about 13% higher than the initial wealth to maximize the prob­
ability of surpassing the growth optimal strategy (logarithmic utility). Then, the 
probability that the mean-variance model will beat the growth optimal strategy un­
der the assumption of lognormal asset prices exceeds 70%. Figure 2.4 depicts the 
probabilities corresponding to different choices of \x. 
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Figure 2.4: The Probability of Mean-Variance Superior to the Growth Optimal Strat­
egy 

Remark. Since the logarithmic utility has an expected portfolio return -E 1^ - 1] = 

e ( r + « 2 ) T w h } c n j s dominant in the long run (as T —> oo), the logarithmic utility will 
have a higher chance of beating the mean-variance analysis for the long investment 
horizon. This leads to the assertion that the logarithmic utility may have a high prob­
ability of beating a mean-variance model when the market investment environments 
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are changed to a long investment horizon and/or a moderately high market price for 
risk (a high K). See discussion on this in Hakansson and Ziemba (1995). 

2.3 The Optimal Value Process and The Optimal 
Policy 

The partial differential equation approach has been extensively used for the valuation 
of contingent claims based on the assumption of a Markovian structure for the under­
lying assets. Usually, a parabolic equation with boundary conditions has to be solved. 
We adopt this approach to calculate the optimal portfolio value for each time t which 
will derive the optimal portfolio policies by comparing the corresponding coefficients 
of the stochastic differential equations in wealth. 

2.3.1 The Optimal Value Process 
The assumption of completeness as in discussed in Chapter 1 reflects that the Brow­
nian motion generates the filtration. Hence, any discounted martingale can be repli­
cated with the market's primitive assets by the martingale representation theorem. 
Since a martingale is almost surely determined by the ending term of the martingale 
process, the optimal wealth W(t) at time t must be 

w{t) = B(t)EQ [B(T)-lw\Ft] 

= BitUty'E [B{T)~xri(T)W\Ft] (2.3.1) 

= Z{t)-1E[t(T)w\rt]. 

The vector process (B(t), S(t), £(£)) is a Markovian process by the definition of 77(f) 
and the asset price model setting in (1.1.1), but £(t) is not a discounted martingale, 
therefore, it is not replicable. However ((t) — £ ( £ ) - 1 is a discounted martingale, 
usually called an inflator process, since 

d((t) = ({t)[r(t)dt + K{t)TdzQ{t)}. (2.3.2) 

Since r(t) and K,(t) are deterministic functions of B(t) and S(t), (B(t),S(t),C,(t)) 
are jointly a Markovian process with the same filtration generated by the Brownian 
Motion. 

Corollary 2.3.1. With the setting of the underlying asset prices in (1.1.1), the op­
timal wealth at time t is a function of (B(t), S(t)X(t)). 
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2.3.2 The Optimal Portfolio Policy 
Since W(t) is a function of (B(t), S(t), ((t)) at time t by Corollary 2.3.1, one needs 
only look for a function F(t,B,S,() such that W(t) = F(t, B(t), S(t),((t)) satisfies 
the boundary condition. Assuming F is continuously differentiate in t and B and 
twice continuously differentiate in S and £, Ito's formula and the comparison of the 
differential equation with (1.2.2) yield 

<* 
Ft + r(t)B(t)FB + b(t)Fs + r{t)((t)Fc + ltr(Fssa(t)a(t)r) 

+ i C W 2 « W T « ( i ) F c c + a(t)K(t)FS( = r(t)F(t) 

aTFs + FC(K = oT9, 

where tr() is the trace function of a square matrix and F. and F. stand for par­
tial derivatives. The r(t),b(t),a(t),K(t),9, and F(t) are the stochastic processes and 
are deterministic function of asset prices as discussed in Chapter 1. Since the ter­
minal value of the optimal portfolio W = \ \ + \pC,(T)~l is implicitly a function of 
r(T), b{T), a{T) and C(T), the function F(t, B, S, () is given by the partial differential 
equation stated in Theorem 2.3.2. 

Theorem 2.3.2. The optimal wealth F(t, B, S, £) is given by the solution to the 
following partial differential equation and the associated boundary condition. 

Ft + r{t, B, S)BFB + b{t, B, S)TFS + r(t, B, S)(F( 

+ \tr{FSS(r{t, B, S)a(t, B, S)T) + ±(2KTKFcc + Fjca{t, B, 5)/c(t, B, S) = rF 

F(T, B,S,() = \X+IPC1. 

(2.3.3) 

Therefore, the optimal portfolio policy is 

(9(t) = Fs+Fcat)(o(tvr^(t) 

\a(t) = B(t)-'(Wt-9(t)T.S(t)) {--> 

where r, b, and o are functions of (t, B, S). 

To understand the optimal portfolio policy better, we provide an intuitive inter­
pretation. Since ((t) is a discounted Q-martingale, let 9^(t) be the hedging portfolio 
of £(£) in the risky assets, i.e. 

d({t) = r(t)({t)dt + 9<(t)To(t)dzQ(t). (2.3.5) 
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Comparing (2.3.5) with (2.3.2) yields 

eHt) = ((t)(e-(t)T)-lK(t). (2.3.6) 

The optimal policy in (2.3.4) becomes 

'e(t) = Fs + Ft-ec{t) 
^ (2.3.7) 

a(t) = B(t)-1(W(t)-9(t)T-S{t))1 

which can be interpreted as follows. If C,(t) is considered to be a dynamic mutual 

fund, the optimal portfolio policy can be constructed by investing Fs units in the 

assets S and Ft units in the dynamic mutual fund £. To implement this strategy, 

one needs only to synthesize the dynamic mutual fund £(£) and combine the two 

hedging portfolios (i.e., the A strategies) to obtain the optimal investment portfolio. 

This interpretation will become more intuitive and clearer in light of the special case 

discussed in the next section. 

2.4 A Special Case 
In this section we consider a special case of the model in which the asset prices jointly 

follow a multivariate Brownian motion and the riskless rate is a constant throughout 

the investment horizon. This assumption implies that 

( Sx(t) ^ A i S i ( * A 

r{t) = r, a{t) = a, b{t) 
b2S2(t) 

\ Sn(t)J \bnSn(t)J 

where r, a, b are constant matrices. With these conditions, K,(t) becomes a constant 

vector and 

E[B{T)-lT){T)} = £ [ e - " T * ( T ) - ( r + i i c - r « ) T ] 

-rT 
— e 

V2[B{T)-lr}{T)} = E[e-^Tz(T)-(2r+KTK)T] _ & -2rT 
(2.4.1) 

Therefore, 

A 

P 

0-2rT^KT_1y 

2 j U e * T * r _ 2W0erT 

EKTK,T _ 1 

2W0e2rT - 2fierT 
(2.4.2) 

?KTKT _ I 
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2.4.1 The Closed Form Solution 
Since A and p are constants throughout the investment horizon, W = W(T) is only 
a function of C(T)- Then we try to look for a function F(t, £) of t and £ such that 
it derives the optimal wealth process and the optimal portfolio policies. The partial 
differential equation (2.3.3) becomes 

'Ft + rCFc + l C ^ T ^ = rF 

F(T,C) = |A + ipC- 1 -

Solving this equation yields 

Theorem 2.4.1. The partial differential equation (2.4-3) has a closed form solution 

F(t,C) = \ (Ae-̂ -*) + p C - y « T * - 2 r ) ( r - ^ _ ( 2 4 4 ) 

The optimal portfolio policy at time t is 

'0(t) = (lAe-^-O - Wit))^1^)-1* 

a(t) = B(t)-\W(t)-6(tyS(t)), 

where Is is the diagonal matrix with asset prices, S(t), as the entries. 

Proof. The first and second order derivatives of F(t, C), 

Zi LJ 

= _l£-2pe(«T«-2r)(T-t) 

(2.4.5) 

satisfy Equation (2.4.3) and the boundary condition. So, F(t, C) is the solution to 
the partial differential equation. By Ito's formula, 

dF(t, C(t)) = rF(t, ((t))dt - lpC-1e^TK-2r^T-t^KTdzQ(t), 
Zi 

which derives the optimal strategy (2.3.7) by comparing with the wealth dynam­
ics (1.2.2) and using (2.4.4). • 
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2.4.2 Implementation of the Mean-Variance Optimal Strat­
egy 

In the static mean-variance model, the investor needs only to choose an appropriate 
target mean level to find the optimal portfolio strategy by minimizing the standard 
deviation. This process can be completed with the calculation of the first and the 
second moments and a quadratic optimizer. However, in dynamic investment analy­
sis, the portfolio weights are changed according to the observed market asset prices. 
To illustrate the dynamic mean-variance analysis, we use the data of the previous 
example to compare the performances of the mean-variance analysis and the growth 
optimal portfolio. The target mean return level for the mean-variance analysis is cho­
sen as 13.9% which maximizes the probability of outperforming the growth optimal 
strategy. Figure 2.5 describes the performances of the two strategies over time. 

1.6 

0.8 

0.6 
0 

- A - S & P 500 

— Mean-Varaince 

--—Growth Optimal 

100 200 300 

Time 

Figure 2.5: Performances over Time 

While the growth optimal portfolio has a similar performance to the index for 
this specific data, the mean-variance analysis has a superior performance if we set the 
target mean level to be about 2% more than the mean return of S&P 500. 



Chapter 3 

A Model Using the Worst Possible 
Outcome 

This chapter defines and solves the investment problem in a continuous time setting. 
The result is compared to the traditional expected utility maximization through an 
example. 

3.1 Formulation and Solution 

In standard utility maximization models, portfolio values are allowed to take zero or 
even negative values if the utility function on wealth is defined on the whole real line. 
This is not acceptable for some investors who have a liability stream to pay. 

How do we efficiently control downside losses? Two possible ways are considered: 
Choosing a better risk averse utility function or changing the probability weights in 
forming the objective function. The first approach presents to us the traditional ex­
pected utility maximization with the objective probability measure, while the second 
approach is also an expected utility maximization problem but with different proba­
bility measure. The reassignment of probability to each possible outcomes draws the 
investor's attention to the bad-state outcomes. 

Our focus is on the worst possible outcome of terminal wealth. By assumption, the 
wealth W at the end of the horizon is a random variable under probability measure 
P and it has a probability support E which might be bounded or unbounded. Let 

We call W the worst outcome of wealth with respect to a given strategy. Investors 

if E is bounded 

if H is unbounded. 
(3.1.1) 

32 
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develop optimal strategies to measure the overall performance (expected utility) while 
controlling the level of WL. Increasing the level of WL will automatically decrease 
the expected wealth, see Zhao and Ziemba (1999b). There is a trade-off between 
the overall wealth and the worst outcome. A natural way is to balance these two 
competing aspects is to maximize a convex combination of utilities received from 
both the actual outcome and the worst outcome of wealth. Hence, the investor's 
objective function for the optimization model, as defined in Section 5 of Chapter 1, 
is 

V{x,y) = pU(x) + (l-p)U(y) (3.1.2) 

where x is the actual outcome of the wealth, y is the worst possible outcome, and 
U(-) is investor's utility function. This is equivalent to maximizing expected utility 
with a different probability measure, i.e. reducing the probabilities (density) of all 
states by the ratio p and adding the total reduced probability weights to that of the 
worst case outcome. The control intensity of downside losses increases as p decreases. 

Let A be the set of all admissible strategies defined by condition (1.1.3). Let 
{W(t)} denote a possible wealth process generated by an admissible strategy and 

W = {{W{t)}\(a{t),0(t))eA}. 

The investor's dynamic optimization problem is 

< X A
 E l P U ( W W + - p)U{WL{T))] 

(a(t),8(t))eA (3.1.3) 

s.t. dW(t) = (a(t)r(t)B(t) + 6{t)Tb{t))dt + 9{t)Ta{t)dz(t). 

If [/(•) is an increasing function, an equivalent representation of Model (3.1.3) is 

sup E [pU(W(T)) + (1 - p)U(K)} 
K,(a(t),6(t)) 

s.t. dW(t) = (a(t)r(t)B(t) + 9(t)Tb(t))dt + 9(t)Ta(t)dz(t), (3-1-4) 

W(T) >K, P- a.s. 
where K is constant through time and (a(t),9(t)) £ A is an admissible strategy. By 

Theorem 1.2.1, Model (3.1.4) can be divided into two problems, the martingale for­

mulation identifying the optimal terminal wealth and a replication problem deriving 

the optimal portfolio strategy. The martingale formulation is 
sup E[pU(W) + (l-p)U{K)] 
W,K 

W 
s.t. EQ 

B(T) 
W>K, P-a.s 

= Wo (3-1-5) 
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where W is TT measurable. 

To solve Model (3.1.5), we provide the following Extended Kuhn-Tucker Criterion. 

For a general result see Zhao, Haussmann and Ziemba (2000). 

Theorem 3.1.1. (Extended Kuhn-Tucker Criterion). (W, K) is a pair of optimal 
solution to Model (3.1.5) if and only if the following conditions hold 

(i) . pUx(W)-Xo^ + X 

(ii) . (1 - p)Ux(K) - E[X]--

{iii). E Wr)(T) 
B(T) 

(iv) . X(W-K) =0, 

(v) . W>K,X>0, 

W0 = 0, 

P 

P 

= 0, 

: 0 , 

- a.s., 

• a.s. 

P - a.s., 

where Ux(-) is the first order derivative, A 0 is the Lagrange multiplier on the mar­
tingale constraint, and X, a random variable, is the multiplier on the wealth level 
constraints. 

. Conditions (i), (iv) and (v) yield 

" V T J T ) 

_B(T) 
X = pUx(K) (3.1.6) 

If W > K, then A = 0 and W = Ux

l Here U~l(-) is the inverse of the 

marginal utility Ux(-). Hence, the investor's optimal terminal portfolio value is 

W = K + 
U* \pB(T)) _ 

+ 
(3.1.7) 

Since the portfolio value at any time t € [0, T] is the cost for hedging the terminal 

portfolio, by Theorem 1.2.1 its value at time t must be 

W(t) = B(t)EQ 

= B(t)EQ 

W 
B(T) Tt 

x \PB(T)J 

i + 
+ K\B(T)-1 Tt 

(3.1.8) 

which establishes Proposition 3.1.2. 
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Proposition 3.1.2. The investor's optimal wealth is 

W{t) =B{t)EQ[K B(T)-l\Tt] + 

K 
+ 

B{T) - l Tt 
U. - I 

B(T) J 
(3.1.9) 

Proof. Since the optimal terminal wealth is 

W = K + 
x \PB(T)J 

i + 

and EQ w 
B{T) Tt 

But and EQ 

is a Q- martingale. By Theorem 1.2.1, is also a Q- martingale. 

w 
B(T) T have identical terminal value and right-ended martingale 

is uniquely determined by the right-end term. So 

W 
W(t) = B(t)EQ 

B(T) Tt 

which proves Proposition 3.1.2. • 
The portfolio value may not be an explicit function of (i, B(t), S(t)) for general 

market parameters. W(t) depends on r](t) which is adapted to Tt. Since rj(t) may 
depend on the past observations of asset prices B(t) and S(t) by its definition, the 
portfolio value W(t) may not be expressible as a function of (t, B(t), S(t)) only. To 
make W(t) a function of the state variables, we must enlarge the state space to 
accommodate past information when we apply the differential equation approach to 
derive the optimal trading strategies. 

The proof of Proposition 3.1.2 implies that to calculate the portfolio value process 
one needs only to find the optimal target K and the multiplier A 0 . These quantities 
can be obtained from the Extended Kuhn-Tucker Criterion if U(x) is strictly in­
creasing and concave and has continuous derivatives. The following equations, which 
are used for calculating the optimal A 0 and K, can be derived from the Extended 
Kuhn-Tucker Criterion. 

(l-p)Ux(K)-PE 

E® [KB(TYl] + EQ 

Ao>?(T) 
PB(T) UX{K) 

1 + 
= 0 

Ux I PB{T) ) 

+ 
B(T) - l w0. 

(3.1.10) 

For given utility function U(x), the value of the portfolio can be calculated di­
rectly through the calculation of a conditional expectation (3.1.8), after solving Equa­
tion (3.1.10) for Ao and K. The expectation term is similar to a standard expression 
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for the valuation of contingent claims. If there is a way of transforming a stochas­
tic process to a martingale, then methods for valuation of contingent claims can be 
applied to solve this problem. The second expression in Equation (3.1.10) can be in­
terpreted to mean that investors allocate wealth to only two assets: the riskless asset 
and a call option on a mutual fund. For an optimal Ao and K, taking U~l(x°g^) as 
the terminal value of a mutual fund which can be generated by the primary assets, 
the investor "invests" some amount in the option on the mutual fund with strike price 
K and the balance in the riskless asset that will guarantee the amount K needed for 
exercising these options. Interestingly, Equation (3.1.10) can be rewritten as 

i + 

B(TY rr-l (^{T)\ Q 
x \PB(T)J 

= 0 

which represents a standard utility maximizing portfolio plus a put option. This is ex­
actly the portfolio insurance strategy. We discuss this issue in the next section. Since 
M l = Ux (u~l ( 7 ^ ) ) and 17-1 (^g 1) is the terminal wealth when there is no 
requirement on the worst possible outcome wealth, the first equation in (3.1.10) im­
plies that, at optimality, the expected marginal utility on K is equal to the decrement 
of the marginal utility induced by increasing wealth to the level K. Mathematically, 
this relation can be expressed as 

Ux{K) = pE[Ux(L)] (3.1.11) 

where L = min ̂ U~l
 (X

P°B(T) ) ' ^ \ ^ m s relation represents a trade-off between the 
expected wealth and the worst possible outcome of wealth. The economic interpreta­
tion is that investors can only increase the expected value of wealth by reducing the 
worst possible outcome wealth, which characterize the potential losses. The optimal 
K is the wealth cutoff at which the marginal utility is equal to the average marginal 
utility below that point multiplied by the risk control intensity p. 

Having established the diffusion process for the wealth, we next derive the optimal 
trading strategy which is equivalent to calculating the conditional expectation (3.1.9) 
for any t. This is usually a difficult task if parameters for asset prices are state-
dependent, because in this case it is generally impossible to analytically compute the 
conditional density function under the risk neutral probability. However, the problem 
can be transformed to the solution of a partial differential equation with boundary 
conditions to which numerical methods might apply. 

If we can construct a stochastic process v(t) that is a discounted martingale 

and has a terminal value equal to U~l ( X°B(T) ) > then a P a r t ial differential equa­

tion can be derived. We can apply Theorem 1.2.1 with Y = U~l and 
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EQ[B(T)-lY] = Wa<oo. Let v(t) = B(t)EQ\U~l (^0^) B(T)~l]\Ft). Then 
v(t) is a discounted martingale. By Theorem 1.2.1, the replicating portfolio value is 

given by the differential equation 

dv(t) = r(t)v(t)dt + 9(t)To(t)dzQ(t), 

where 9(t) is the solution of the utility maximization without the constraint W > 
K. 9 may not only depend on the current asset prices, but also depend on past 
observations. If 9(t) is a function of (t,B(t),S(t),v(t)) which means the optimal 
strategy is Markovian, then (B(t), S(i),v(i)) are jointly Markovian as assumed. The 
portfolio value can be represented as a function of (t, B(i), S(t),v(t)) as argued in 
Chapter 1. 

Denote = a n d = ^ ^ T ^ ^ i s a n ^ n + 1 ) " v e c t o r a n d 

a(t) is an (n + 1) x n matrix. 

r 5^) =r(t)t(t)dt + *(t)dz<>(t). 
\dv(t)J 

Let W(t) = F(t, B(t),£(t)) be the portfolio value at time t, where F(t,x,y) is a 
real-valued function on K + x 3{ x K n + 1 . By Ito's formula, the optimal strategy is 
characterized as in Proposition 3.1.3. 

Proposition 3.1.3. Assume that the optimal portfolio value W(t) = F(t, B(t),£(t)) 
where F has continuous partial derivatives. Then F satisfies the following partial 
differential equation with associated boundary conditions: 

'-r(t)F + Ft + r(t)Fxx + r(t)Fjy + \tr{Fyyd{t)a{t)T) = 0 
F(0,l,y) = WQ (3.1.12) 
F(T,x,y) = K + [v-K}+ 

where tr() stands for the trace function of a matrix and y = (S,v)T. The optimal 
strategy is 

e(t) = Fs + Fj{t) 

a(t) = (W(t)-e(t)TS(t))/B(t). 
(3.1.13) 

The boundary condition for the above partial differential equation follows from (3.1.8). 

Finding the optimal strategy for the original problem has been divided into two 

steps: (i) calculate the optimal strategy 9 when there is no wealth level constraints; 
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and (ii) find the optimal wealth as a solution to a partial differential equation and 
derive the optimal strategy thereafter. This approach is similar to the method used 
in Cox and Huang (1989) where an auxiliary process is used for deriving the optimal 
strategy. Since directly observable processes are the primary assets and the portfolio 
value process, all other processes that are related to the derivation of the optimal 
trading strategies must be replicable using primary assets. To implement the dynamic 
optimal strategy one has to synthesize these processes on the side as if they were 
market-derived assets. This is especially important when we interpret the option 
investment strategy. Since the underlying asset of a call option is replicable using 
primary assets, we have to choose a suitable auxiliary process such that we can easily 
derive the optimal strategy. 

3.2 Option Strategy Interpretation 
One approach to deal with downside risk is the option strategy. An option strategy 
for investment is usually used for the purpose of hedging. Before making decisions, 
investors have to think about how much to invest in different projects while simulta­
neously achieving the risk control. Exchange traded options might not be suitable for 
specific investors. Not only might the strike price (the target) but also the investment 
horizon be different from the investor's concern. A more dynamic way is needed for 
creating such strategies. For an application of this idea, see Zhao and Ziemba (1999a), 
which considers how to create synthetic option strategies with transaction cost in a 
discrete time and discrete state space model. 

An alternative, possibly more insightful, interpretation of the optimal solution 
to the problem matches the view stated above. Using a martingale approach, the 
portfolio value at each time is a discounted Q - martingale given by (3.1.9), which 
can be interpreted as a strategy of investing in the call option on the mutual fund. In 
light of the option pricing methods, we may be able to construct an optimal strategy 
by the following four steps: 

(i) . Find the optimal A 0 and K. 

(ii) . Create the dynamic mutual fund using the n + 1 available primary assets. 

(iii) . Calculate the hedging portfolio for a call option with strike price K on the 
mutual fund. 

(iv) . Transform the hedging portfolio into the portfolio of the primary assets. 
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Remark 1. The first step can be obtained by solving (3.1.10). The second step 
is difficult to solve because finding the mutual fund 

v(t) = B{t)EQ Tt 

is an intractable problem if market's parameters and the investor's utility function are 
arbitrarily chosen. The third step is to apply option pricing methodologies and the 
derivation of the hedging strategies. The last step is to combine the two decomposed 
methods together to obtain the optimal portfolio of the primary assets. 

Two ways of obtaining the mutual fund v(t) are calculating directly the conditional 
expectation and solving a boundary problem. These are general approaches which 
are valid for broad settings of market parameters and the utility function. Since a 
martingale is uniquely determined by the terminal value of the martingale and the 
filtration, we might want to look for a process that has the same terminal value as 
U~l ( X<B(X) ) • Instead of going through a general approach, we might want to examine 

how the process m(t) = U^i^^ ) will move with respect to the uncertainty and to 
derive the process that we need. Applying Ito's formula yields 

1 jXpy(t)\ Uxxx fjXoV(t)\\2 

dm^-i^x

d{^)-WAd{^)) 2 

- 1 (-UMt)Tdz(t) - Uxr(t)dt) - U^U}}}<t)\\2

dt (3.2.1) 
XX 

_ Ux(-2r(t)U2

x -\\K(t)\\2UxUxxx) , -Ux r 

7̂73 d t + TT K w dzw-
LUxx uxx 

From (3.2.1), one can observe that the mutual fund chosen by investors depends only 
on the risk aversion and the skewness but not the specific form of the utility function. 
This implies that all investors with the same risk aversion and skewness of the utility 
function will choose the same mutual fund to invest, but this does not necessarily 
show that all investors with such a utility function will adopt the same investment 
strategy. 

If the drift term in (3.2.1) is rm(t), then m(t) is a discounted martingale and 
option valuation models can be used. However, m(t) is not a martingale in general, 
but if we can transform m(i) to a martingale process which has the same terminal 
value as v(T), then the problem has been reduced to a valuation problem of an option. 
The following proposition deals with this issue. 

Proposition 3.2.1. (drift killing) If a stochastic process X(t) follows the diffusion 

dX(t) = n(t)X(t)dt + 7(t)TdzQ(t) 
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then exp{— p(s)ds}X(t) will be a (local) Q - martingale. Furthermore, if p(t) is 

deterministic, then exp{ p(s)ds}X(t) is a (local) Q - martingale that has the same 
terminal value as X(T) almost surely. 

Proof. Since p(t) is adapted, exp{— fQ' p(s)ds} is also Tt adapted and 

dexp{- / p(s)ds}X(t) = exp{ p(s)ds}j(t)dzQ(s). 
Jo Jo 

Hence, exp{— J* p,(s)ds}X(t) is a (local) Q - martingale. 
If p(t) is deterministic, then exp{— f* p(s)ds} is also Tt adapted and 

de\p{J^ p(s)ds}X(t) = exp{^" p(s)ds}j{t)dzQ{s). 

So, exp{ p(s)ds}X(t) is a (local) Q- martingale with terminal value X(T). • 
It would be convenient if the drift rate in (3.2.1), u4- 2 rmix-Mt)\\2uxuxxx) ^ w e r e a 

deterministic function of t, as in this case we can apply Proposition 3.2.1 to transform 
m(t) to a martingale. For some types of utility functions, e.g., the H A R A family, with 
the assumption of geometric Brownian motion, we can verify that the drift rate of 
v(t) is a deterministic function of t. However, in more general settings, this will not 
be the case and other approaches must be found. 

We have discussed how to generate a mutual fund in any setting using market's 
primary assets. The partial differential equation approach and the direct calculation 
of the conditional expectation are considered as general approaches. Another way 
which is sometimes more effective in some settings is using Proposition 3.2.1. The 
mutual fund has the same terminal value as U~x ( ]?B(T) ) ' a n ( ^ ^ n e ° P t i ° n valuation 
method can be used to generate the investment optimal portfolio. Having established 
the mutual fund, we now find the generating portfolio using primary assets. The 
existence and computation of this generating portfolio is given by Theorem 1.2.1. For 
future use, we state this result as 

Proposition 3.2.2. If the stochastic process is a Q - martingale, i.e. 

dX{t) = r(t)X(t)dt + -y(t)TdzQ(t), 

then the self-financing strategy (a(t),6(t)) generates X(t), where 

'a(t)B(t) + 6(t)TS(t)=X(t) 

6{t)Mt) = 7(*) T { } 
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The next step is to compute the hedging portfolio of the call option on the auxiliary 
mutual fund. Probably this is the most difficult task in the whole process if market 
parameters are specified in a broad sense. The call option can be hedged by the 
mutual fund v(t) and market's primary assets. Let C(t, B(t), S(t),v(t)) be the value 
of the option at time t. By Ito's formula 

dC(t, B(t),£{t)) = (Ct + r(t)B(t)CB + r(t)Cg(t) + ^tr(C^o(t)o(t)T)dt + Cja{t)dzQ 

(3.2.3) 

Since C(t) should be also replicable by using (B(t), S(t),v(t)), let (av{t), 9s(t), 6v(t)) 
be the hedging portfolio of the call option, then 

d(C(t, B(t), S(t),v(t)) = r(t)C(t, B(t),v(t))dt + (6s(t)T + ev(t)e(t)T)a(t)dzQ{t). 

(3.2.4) 

Equating (3.2.3) and (3.2.4) yields 

Proposition 3.2.3. Let dv(t) = r(t)v(t)dt + 9(t)Ta(t)dzQ(t), where 6(t) is a non-
random function of (t, B(t), S(t),v(t)). The value of the call option is the solution to 
the boundary problem 

Ct + r(t)B{t)CB + r(t)C£(t) + \tr(C((&{t)&(t)T) - r(t)C = 0 
C(T, B(T), S(T), v(T)) = [v(T) - K}+. 1 ' ' } 

The number of shares of the mutual fund 6V (t) and the number of units of risky assets 
0s (t) needed for the hedging portfolio are given by the following linear relation 

6s(t)r + 6v{t)6(t) = C] + Cj{t)T. 

For a broad setting of parameters and the utility function, we have to apply 
numerical methods to solve the partial differential equation. However, in some cases, 
a closed form solution can be obtained. We discuss this in the next section. The 
following theorem, which is implied by Propositions (3.2.2) and (3.2.3), summarizes 
how to convert an option hedging portfolio to the optimal investment portfolio of the 
primary assets. 

Theorem 3.2.4. Let the mutual fund prices v(t) follow the stochastic process 

dv(t) = r(t)v{t)dt + e{t)To(t)dzQ{t) 
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and (av (t), 9s (t), 9V (t)) is the hedging portfolio for the call option on v(t) with strike 
price K, then the optimal investment portfolio (a(t),9(t)) is given by 

'9(t)=9s(t) + 9v(t)9(t) 

a(t) = (W(t)-6(t)TS(t))B(t)-\ 

where W(t) is the wealth at time t. 

Remark 2. Along with Propositions 3.2.1 and 3.2.2, Theorem 3.2.4 implies that 
an investment problem of utility maximization is equivalent to a problem of valuing an 
option whose underlying asset is the auxiliary mutual fund and whose strike price is 
the worst possible outcome wealth. One issue which will not be discussed here is how 
to compute the conditional expectation ^ j - = E® Ux-1 B(T)- This V PB(T) J 

problem amounts to solving a differential equation that satisfies. Fortunately, as 
shown in the next section, we can apply Proposition 3.2.1 to the case where utility 
function is H A R A and the asset prices follow a multi-dimensional geometric Brownian 
motion. 

As to the evaluation of the other expression, E X°B^ — UX(K) , in equation (3.1.10), 
we can reduce it to an option pricing problem as well. By the definition of Q with 
A 0 > 0,Ux(K) > 0, 

E 
Ao?7(T) 

UX(K) 
.PB(T) 

Since dr)(t) = -K,(t)n(t)dz(t), 

P 

1 PB(T) 
UX(K) X0rj(T)\ 

B(T) - l 

"(S)=S(rW*+,[W,b(')+ii"w||',s) 

which proves that j^jffi is a discounted Q- martingale. The expression A ° B ^ ) 1 S ^ e 

marginal utility at U~l (j^^j which is the optimal wealth when the requirement 
of the worst possible outcome wealth is removed from the model. Let 

A07?(r) 

Ao?7(T) 
(p{t) = B(t)EQ 

then cp(t) is a discounted martingale. Hence, 

1 pB{T)1 + 

Tt 

EQ 
UX(K) X0rj(T) 

B(T) - l 
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is the price of a put option whose underlying process is <p(t) and whose strike price is 

U x \ K ) > the reciprocal of the minimum marginal utility at the worst possible outcome 

wealth. At optimality, E 
PB{T) UX(K) is A 0 times the value of a put option 

times the marginal utility at the worst possible outcome wealth divided by the control 
intensity p, i.e. the value of this put option is positively proportional to the expected 
rate of gaining marginal utility from the absence of the requirement of the worst 
outcome wealth K in the model. 

3.3 H A R A U t i l i t y a n d G B M P r i c e s 

In this section, we consider a specialization of the model in which investors have 
the H A R A utility function U(x) = ^xs, 0 < 8 < 1. The assumption of geometric 
Brownian motion for prices implies that 

( S^t) \ (biSi(t)\ 

r(t) = r, a{t) = 
S2(t) 

a, b(t) = 
b2S2(t) r(t) = r, a{t) = 

S2(t) 
a, b(t) = 

b2S2(t) 

\ Sn(t)j \bnSn{t)J 

where r, a, b are constant matrices. By (3.2.1), 

dm(t) = 2SLz3l0^^\lm{t)dt + -L-m{t)KT dz{t) 

= + 2(1 - f lO m { t ) d t + YZTsMtWdzQ(t). 

Letv(t) = m{t) • exp {j^(r + ^ZSJ\\K\\2){T - t)}. By Proposition 3.2.1, | j | is a Q 
- martingale, and 

dv(t) = rv(t)dt+ Y^v(t)KrdzQ(t). (3.3.1) 

So, EQ [[v(T) — K]+B(T) :] is the price of the call option on v(t) with strike price 
K. Hence, by the Black - Scholes formula 

A0 

EQ[[v{T) - K]+B{T)-1} = { - £ - ) e ^ ( r + ^ l | K | | 2 ) T • - Ke~rT • $(e2) 

(3.3.2) 
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where 

d — = ^ 

e2 = e 1 - I ^ | | « | | v

/ T 

and $(rc) is the standard normal cumulative distribution function. 

Similarly, EQ K \ - & _ pB(T) B(T)~l can be evaluated as the price of the put 

option on the "asset", ^{t)•> w * t n strike price Kl 6 . Since, 

By the Black-Scholes formula, 

E Q 

where 

B(T) - l K 1-8 „-rT $ ( - 6 ' 2 ) 
A 0 

$(-e;) (3.3.3) 

In 
-1 

4 

+(r+i||«||2)r 
INir 

|«||vT. 

We are now able to calculate the optimal A 0 and K. Equation (3.1.10) becomes 

i + 
(1 - p) - \0EQ K 1-6 PB(T) 

Aoi?(T) B(T) -1 0 

K • e~rT + [[v{T) - K]+ B(T)" 1] = W0. 
(3.3.4) 

Substituting (3.3.2) and (3.3.3) into the above equation yields the optimal A 0 and K. 
The investor's wealth at time t is 

W(t) = B(t)EQ[WTB{T)-1 | Ft] 

= B(t) • K • EQ[B{T)~1 I Ft] + 5(t) • EQ[[v(T) - K]+B{T)~l \ Ft] 

= K-er^+C{t,B(t),v(t)), 

which is equivalent to holding a call option on the mutual fund and investing the 
balance in the riskless asset ( two fund separation theory applies ). Hence, the 
investors optimal strategy is to replicate this call option. 
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Theorem 3.3.1. Let 9(t) = (#i (£) , • • • ,9n(t))T be the replicating portfolio of the 
mutual fund, where 0™{t) is the number of shares of the ith risky asset. Then 

where Is is the diagonal matrix with risky asset prices as the entries, and the optimal 
investment portfolio of the primary assets is 

9(t) = $(e(t))-9(t), (3.3.5) 

where 

e(t) 
\ n ^ + { r + ^ ( b - riy(aaT)-\b - r l ) ) (T - t) 

yj{b - rl)T{aaT)-i{b - r l ) (T - t) 

Furthermore, the optimal terminal wealth is 

whereXo and K is given by (3.3.4)-

Proof. Since 9(t) is the replicating portfolio, then 

dv(t) = rv(t)dt + 9{t)TIsadzQ(t). 

By Theorem 2, 

which yields 

9(t)TIso- = 

^ I - \ a a ^ ) - \ b - r l ) . 
(3.3.7) 

The number of units of the mutual fund needed to hedge this call option is equal to 
$(e(t)) by the Black - Scholes formula. If (a(t),9(t)) denotes the optimal strategy 
(in units of primary assets), then (3.3.5) is proved. • 

Theorem 3.3.1 indicates that an investor will implement the optimal portfolio by 
first synthesizing the optimal portfolio in which the worst possible outcome wealth 
is not included (creating a mutual fund or an index), then calculating the hedging 
portfolio for a call option on this mutual fund. This two step procedure constructs 
the optimal investment strategy. 

The following two results are implied by the previous discussion. 
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Corollary 3.3.2. For an investor with a HARA utility function, there exists a mutual 
fund such that the optimal investment strategy is equivalent to buying a call option 
on this mutual fund. 

Corollary 3.3.3. For an investor with a HARA utility function, the optimal strategy 
is to invest in a mutual fund and the riskless asset. Furthermore, if all risky assets 
jointly follow a multi-dimensional geometric Brownian motion, then this mutual fund 
must have used a fixed mix strategy when it is created. 

By Equation (3.2.1), we observe that, if investors have same risk aversion and 
same risk skewness, their investment strategy should be identical. 

An illustrating Example. We now examine the sensitivity of the investment 
strategy as the downside risk control intensity changes. Consider a two-asset market, 
one riskless and one risky asset. The riskless asset evolves with an annual continuous 
compound rate r = 0.05, and the risky asset has an instantaneous mean rate b — 0.10 
and instantaneous volatility a = 0.3. With this data, the market price for risk 

^ _ e-0.167Z(t)-0.014t_ 

Suppose the investment horizon T = 1. For computational simplification, we use 
logarithmetic utility function as investor's objective function, though the theory and 
the computational method apply to broad utility functions. Then, the investor's 
objective function for the optimization model is 

p\nW(T) + (1 -p) \xvK. 

Hence the process m(t) — is a discounted Q-martingale as proved in (3.2.1). 
The optimal A 0 and K satisfy [cf. (3.3.2)-(3.3.4)]. 

1 - p - A o [Ke-rT$(-e2) -

K e - r T + £ $ ( C l ) _ Ke-rT$(e2) = W0 

which implies that 

= o 

and K satisfies that 

1 - $ ( e 2 ) J ' 

Note that ex and e[ are identical when 8—^0 and are dependent on K. 

K = W o e ^ ( l - p ^ Y 
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An investor may be interested in examining the expected return for the choice of 
different downside control intensities. So, a problem arises as how to choose an opti­
mal p that will maximize one's performance under some risk measure accommodate 
the control of downside losses. 

Value at Risk, a popular measure that has been used in practice, will be discussed 
in Chapter 4 in detail. It is the maximum loss with respect to market expected return 
for a small tolerance a in probability, a is usually chosen between 0.05 or 0.01. Hence, 
the VaR of W is 

VaR'W) := E[W] - Kw 

where Kw is the maximum such that 

Pr[W < Kw] < OL. 

Table 3;3 describes the performances with varying downside control intensities and 
the tolerance in probability is chosen to be 0.05. 

The Sharpe ratio, as a measure of performance, is the ratio of excess expected 
return over the standard deviation. However, this measure considers both outper-
formance and underperformance as risk. Here we define a new performance measure 
that uses VaR and quantifies only the downside losses as risk. 

E[W(T)] - W0erT 

T ''~ VaR{W(T)) 

Figure 3.1 depicts the performance with varying control intensity. By observation, 
the optimal p which maximizes r is about 0.83. 
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Table 3.1: The Optimal K, E[W(T)} and VaR 
p K E[W(T)] VaR 
0.8 1.0441492 1.054342 0.010193 
0.81 1.0427573 1.054833 0.012075 
0.82 1.0411401 1.055292 0.014152 
0.83 1.0392648 1.057022 0.017757 
0.84 1.0370947 1.056448 0.019353 
0.85 1.0345873 1.056281 0.021694 
0.86 1.0316926 1.059291 0.027598 
0.87 1.028351 1.058207 0.029856 
0.88 1.024491 1.061408 0.036917 
0.89 1.0200249 1.060135 0.04011 
0.9 1.014843 1.063291 0.048448 
0.91 1.0088053 1.063271 0.054466 
0.92 1.0017281 1.064663 0.062935 
0.93 0.9933616 1.064165 0.070803 
0.94 0.983353 1.068967 0.085614 
0.95 0.9711765 1.06948 0.098303 
0.96 0.9559845 1.070905 0.114921 
0.97 0.9362649 1.073707 0.137442 
0.98 0.9088308 1.074417 0.165587 
0.99 0.8643086 1.076517 0.212208 
1 0.4884128 1.08264 0.270748 
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Figure 3.1: The Performance with Varying Control Intensity 



Chapter 4 

Risk Neutral Excess Return 

Merton (1969, 1971) and Karatzas and Shreve (1986), among others, analyze this 
problem using complete market assumptions and a dynamic programming approach. 
A more elegant way of dealing with this type of problem is the use of martingale repre­
sentation and non-smooth analysis for incorporating constraints on the state variables, 
for example, Harrison and Pliska (1981), and Cox and Huang (1989), Grossman and 
Zhou (1996) and Basak (1995). Using simple utility function assumptions and asset 
price processes, closed form solutions are available for fairly standard security mar­
kets. However, for investors with liability streams, explicit risk control approaches, 
such as the worst possible outcome, or VaR, etc., seem more appropriate. MacLean 
and Ziemba (1992, 1999) discuss the tradeoff between growth and security using the 
log utility capital growth model. Zhao and Ziemba (2000) introduce a reward func­
tion on the portfolio worst payoff that represents investors' risk attitude to downside 
losses in a discrete time model. The portfolio target is an endogenous choice variable 
determined by the risk aversion and investment opportunities. A problem is how to 
introduce liabilities for asset allocation. Mean-variance models are unable to model 
them in a natural way. However, portfolio insurance strategies provide natural ways 
for protecting downside losses. One may buy a put option on a reference portfolio 
with strike price K that matches one's liability, plus holding the portfolio. These 
strategies are called option based portfolio insurance. Another way is synthesizing a 
put option by creating a portfolio that has a "floor" using existing market securities. 
A representative of these strategies is Constant Proportional Portfolio Insurance; see 
Black and Perold. Black and Jones (1987) discuss a simple, flexible approach to 
portfolio insurance for pension plans. In this chapter, we devise a set of dynamic 
strategies, which will provide a similar payoff as a portfolio insurance strategy does. 
A reward function from achieving such a "floor" will be introduced to characterizes 

50 
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the investor's risk attitude. The investor may wish to maximize K as well as an 

overall potential payoff for all scenarios at the end of planning horizon. 

4.1 Constant Proportional Portfolio Insurance 

In asset allocation, if the risky assets increase in value, the proportions of the port­

folio they comprise are also likely to increase. One must decide how to rebalance 

the portfolio in response to such changes. Dynamic strategies are explicit rules for 

doing so. A portfolio strategy for downside protection is portfolio insurance. Dyb-

vig (1999) discusses asset allocation strategies linking to the spending rules in a way 

that preserves spending power in down markets but participates significantly in up 

markets. Black and Perold (1992) provide a theory of constant proportional portfolio 

insurance (CPPI), which maintains the portfolio's risk exposures to constant multiple 

of the excess of wealth over a floor. For expositional convenience, some of their results 

are reviewed here and all discussions in the remainder of this section are restricted to 

the two-asset case. At time £, the portfolio weight in dollar amount is 

ir(t) = m(W{t) - F(t)), (4.1.1) 

where m is a fixed multiplier and F(t) is a deterministic function of t. To implement 

a CPPI strategy, the investor selects m and a quantity F(t) below which the investor 

does not want the portfolio to fall. Assume F(t) = Fert grows at the riskless rate 

and is initially less than the total assets. From (4.1.1), one observes that a CPPI 

strategy sells stocks as they fall and buys stocks as they rise to maintain a constant 

proportion between the asset holdings and the "cushion" W(t) — F(t). Let Wpj{t) 

denote the portfolio value at time t, then, by Equation (1.1.4), 

ir(t) = n ( o ) e ^ d z Q ( t ) + ( r - ^ ^ ) t ( 4 L 2 ) 

and, therefore, 

WPI(t) = -7T(t) + F(t) 
m 
F(t) + (W{0) - F(0))e(l-™)(r+±ma*)t ^ ± 

(4.1.3) 

A Buy and Hold (BH) strategy allocates wealth at the beginning of the planning 

horizon and holds the portfolio to the end with no transactions between periods except 

dividends are reinvested as received in the same asset at the then prevailing market 

price. A Fixed Mix (FM) strategy allocates wealth according to a preset investment 



CHAPTER 4. RISK NEUTRAL EXCESS RETURN 52 

policy such that each asset represents an identical proportion of the wealth at the 
beginning of each period. These two most simple strategies for asset allocation are 
special cases of portfolio insurance. A BH is CPPI with the multiplier equal to one 
and a floor equal to the value invested in the riskless asset, while an F M is CPPI with 
a zero floor. Let WBH(t) and WFM(^) represent the portfolio values for BH and F M 

strategies, then 

WBH(t) = F0ert + (W(0) - F0) (4.1.4) 

and 

WFM(t) = W ( 0 ) e ^ r + ^ (||y)U
 , (4-1.5) 

where F0 is the initial amount invested in the riskless asset for the Buy and Hold 
strategy, and u is the initial proportional weight in the risky asset for the Fixed Mix 
strategy. 

4.2 The Risk Neutral Excess Return Strategy 
While a CPPI strategy is characterized by the cushion between the total assets and 
the floor, are there any relations between the portfolio return and asset weights? We 
are looking for a strategy that relates portfolio weights to the change of the asset 
returns in a similar way. The rate of return of the risky asset can be viewed as a sum 
of riskless return and a risk neutral return 

which implies that 

d-^=rdt + odzHt) 

a z Q { t ) = l n { § ^ ) + 12aH-rt (4'2-1} 

The quantity ln (^Y^ + | c r 2 ^ is t n e risk compensated return of the risky asset at time 
t. The expected value of the risk compensated return is equal to the instantaneous 
rate of return for each asset under a risk neutral probability (see Harrison and Kreps 
(1979) for a definition of risk neutral probability). The difference between the risk 
compensated rate of return and the riskless return is called the risk neutral excess 
return, since its expected value under the risk neutral probability is 0. The term 
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\o2t can be interpreted as the risk premium for transferring a gamble. To control 
downside losses, we require that the discounted relative changes of the portfolio weight 
to the initial wealth be proportional to the changing risk neutral excess rate in the 
same asset. Our portfolio strategy n(t) is chosen to satisfy the following differential 
equation 

dn{t) = rit{t)dt + aW(0)ert adzQ(t) a>0 (4.2.2) 

which has the general solution 

e-^^=a(azQ(t)+P). (4.2.3) 

As a comparison to the CPPI strategy, this strategy focuses on the ratio of the 
changing discounted dollar amount in the risky assets to the initial portfolio value 
and sets it equal to multiple of the risk neutral excess return plus some constant level. 
The multiple a and the constant level ft is determined by the investor's risk aversion. 
We call such an approach a Risk Neutral Excess Return (RNER) strategy. The initial 
proportion of the portfolio in the risky asset equals a/3. This strategy is a portfolio 
insurance strategy as it is characterized by (4.2.3) as an approach of buying high and 
selling low to achieve a deterministic floor. 

Substituting (4.2.3) in the portfolio dynamics, Equation (1.1.4), yields the port­
folio value 

e-rtW(t) = W(0) + W(0) [ (zQ(s)a + f3)aodzQ(s) 
Jo 

= W(0) + W(0) [ (zQ(s)aa2 + a/3a)dzQ{s) (4.2.4) 
Jo 

= W{0) (l + ^aa2zQ{t)2 - 1-OLOH + . 

Hence, the portfolio value is a quadratic function of az®(t), the risk neutral excess 
return at time t. We will compare the performances of these four strategies under the 
Sharpe ratio and a measurement using VaR later in this chapter. 

This strategy is applicable for any asset price models as long as the volatility 
matrix a of the asset prices are known. In that case, investors can choose the a and 
P which may not be "optimal" in any sense. 

4.3 The Optimization Model 
In asset/liability management models in discrete time, the investment objective can 
be chosen to maximize the expected portfolio value less penalties for targets not met; 
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see Carifio, Ziemba et al (1994, 1998ab). This model is equivalent to a piecewise 
linear concave utility risk averse maximization problem if the penalty is a piecewise 
linear convex function of the shortfall. The continuous time versions of these models 
have not been well developed in the literature so far. Browne (1997) discusses an 
investment model for survival and growth with a liability stream and relates the 
problem to portfolio insurance. Also Browne (1999) studies problems that maximize 
the probability of reaching a giving wealth level by a finite horizon and relates the 
problem to the pricing of a digital option. We look for an alternative approach 
to achieve risk aversion without using a penalty function. In most asset allocation 
models, maximizing expected asset value is a primary objective, but the dispersion 
among scenarios brings large potential losses to the portfolio. 

How do we control this risk? One way as in a mean-variance model is to adjust the 
expected value by a measure of dispersion. Technically, it is easy to handle, especially 
for the static model, but this lacks control power, because the measures chosen are 
usually based on the first two moments and the potential large losses still exist. The 
VaR approach has been implemented to address this issue. We utilize a new approach 
to measure risk - reward on minimum subsistence. 

Definition 4.3.1. For an Tt measurable random variable Y, the worst payoff of Y 
is defined to be 

YL = sup{k G 3?; P r i T > k} = 1}, (4.3.1) 

that is, YL is the essential lower bound of Y. If Y is unbounded below, then YL is 
—oo. 

As an extension of utility based models, investors are also concerned about the 
minimum subsistence WL(T) of investment at the end of horizon. Assigning a reward 
to WL(T), characterized by a concave increasing function / , defined on 9? U {oo}, 
determines the preference or risk preference between the expected return and the 
minimum subsistence in all scenarios. Investors are trying to push up the k as much 
as possible until they are satisfied with the level of the expected end of horizon wealth. 
Achieving a bigger k is at the cost of reducing the expected portfolio return. The 
dynamics of the portfolio value is derived as (1.1.4). The stochastic control model is 

max E[W(T)] + f(WL(T)) 

.t. e~rtW{T) = W{0) + f e-rsTr{s)'odzQ(s),Vt e [0,T], 

Jo 

(4.3.2) 

where Ui is the set of preset admissible controls (strategies). Before discussing the 
solvability of the model, we discuss some of its properties. 
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Definition 4.3.2. A function f(x) is called superior to g(x), denoted by f(x) y g(x), 
if f(x) > g(x) and f'(x) > g'(x), where primes denote the first order derivatives. 

Theorem 4.3.1. Let f(x) and g(x) be concave increasing functions, andWj(T),Wf 
and Wg(T), Wg be the corresponding optimal solutions to (4-3.2). 

(i) Iff(x) h g{x), then Wf(T) > Wg

L(T), E[Wf(T)} < E[Wg(T)} and 
E[Wf(T)) + f{Wf{T)) > E[Wg(T)} + g(Wg

L(T)). 

(ii) If h(x) = r]f(x) + (1 - T])g(x),0 < rj < 1, then 

E[Wh(T)} + h(Wh(T)) < r)(E[Wf(T)] + f{Wf{T))) 

Hl-v)(E[Wg(T)]+g(Wg

L(T))). 

Proof. We suppress the time "T" in the proof. By optimality, 

E[Wf] + g{Wf) < E[Wg] + g(Wg

L) ^ 

E[W9] + f(Wg

L) < E[Wf] + f{Wf). 

Hence, 

f(Wg

L) - f{Wf) < E[Wf] - E[Wg] < g(Wg

L) - g{Wf). 

Since f'(x) > g'(x),\/x G !R, i.e. f(x) — g(x) is an increasing function, so 

Wf > Wg1. 

Using (4.3.3) and the fact that g(x) is an increasing function yields 

E[Wf] < E[Wg]. 

If /(z) > g(x) and f'(x) > 0, then 

E[Wg] + g(Wg

L) < E[Wg) + f(Wg

L) < E[Wf] + f{Wf). 

(ii). Let h(x) — r]f(x) + (1 - rf)g{x), then 

Kwt) = Vf(w£) + ( i - v)g(w£). 

By optimality, 

E[Wf] + f{Wf) > E[Wh] + f{W£) 

E[Wg] + g(Wg

L) > E[Wh] + g(W£). 
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So, 

V(E[Wf] + f{Wf)) + (1 - v)(E[Wg] + g(Wg

L)) > E[Wh] + h(W^). 

• 
Theorem 4.3.1 indicates how the two objectives, expected terminal wealth and the 

reward from the initial minimum subsistence are related when the function / changes. 
The optimal expected terminal value £'[VF(T)], optimal certainty payoff WL(T), and 
the optimal value function £ , [W / (T)] + f(WL(T)) are decreasing, increasing and in­
creasing, respectively, as the function /'s superiority increases. The optimal value 
function E[W(T)] + f(WL(T)) is convex in / in the sense that the optimal value 
function is defined over the set of concave increasing functions. 

Solving (4.3.2) is not as easy, in general, as solving a stochastic control problem 
in which we can choose the utility function form. However, exogenously specifying 
the control level of the downside losses, Basak (1995) and Grossman and Zhou (1996) 
apply the martingale method along with the theory of nonsmooth analysis to study 
the equilibrium asset prices. Also, Zhao and Ziemba (2000) apply this method in 
discrete time to characterize the optimal investment portfolio in the context of utility 
maximization with the control for the downside losses. The problem presented here 
has an irregular objective function E[W(T)] + f(WL(T)). WL(T) is the infimum of 
the probability support of W(T). However, if we are primarily concerned about how 
to find a "good" strategy that meets our objective, then we can reduce the difficulty 
of the problem by restricting our control space. We shall choose the control set Ui to 
be the set of all RNER strategies as defined in last section. 

Theorem 4.3.2. For the standard complete market (1.1.1), there exists an optimal 
control 7r(-) e Ui that solves ( 4.3.2). Let a = (a^, • • • ,an) and (3 = (ft, • • • , f t ) be 
the optimal solutions, then 

A = ~ r)2T* + 4 a 2 r - (b{ - r)T, z = l , 2 , - - - , n (4.3.4) 

and a is given by 

(b - rl)T - fx(W(0)erT(l - ±tr(oo'Ia)T - ±plap)) -0 = 0 , (4.3.5) 

where tr() is the trace function, Ia is the diagonal matrix with OLI as entries, and fx(-) 
is the first order derivative of function f. Moreover, the optimal wealth and the worst 
possible outcome wealth are 

W{t) = W(0)ert (l + \zQ(t)'o'IaozQ{t) - \tr{o'Iao)t + p'IaazQ(t) 
\ Zi ZI 

WL(T) = W(0)e'T (l - l-tr{o'Iaa)T - U'IaB 

f A o r> \ 
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Equation (4.2.2) implies that there exist a constant vector B = (ft, • • • , ft)' and 
a diagonal matrix Ia = Diag(a\, • • • , an), oti > 0 such that 

e-rtn(t) = W(0)Ia(aB(t) + (4.3.7) 

The wealth equation becomes 

e'rtW{t) = W(0) + W(0) [\B(S)W + P')IavdB(s) 
Jo 

= W(0) + W{0) [ (B{s)'o'Iaa + (3'Iao)dB(s) (4.3.8) 

= W{0) (l + ^B{t)'o'IaoB{t) - l-tr{a'Iaa)t + B'IaaB{t)^ 

where tr() is the trace function. WL(T) can be determined from 

e-rTWL(T) = i n f s e s » { W(0)(1 + \y'o'Iaoy - l-tr(o'Iao)T + p'Iaoy)} 

= My^n jW(0)(1 - ^tr(a'Iaa)T) + ^(ay + /3)'Ia(ay + 0) -

= W(0)(1 - \tr(a'Iaa)T - ±pla0). 

The expected value J5[W(T)] can be calculated as 

e-rTE[W{T)} = W(0) + W(0)E [ (B(t)W + P')Iaaddt 

= W{Q) + W{0) [ {o9)'t + 8')Iaa9dt 
Jo 

= W{0){1 + \{o9)'Ia{a9)T2 + pIa(aO)T) 

= W(0) (l + l-{b - rl)'Ia(b - rl)T2 + (3'Ia(b - rl)TJ . 

For a continuously differentiable function / , Model (4.3.2) becomes 

sup/^R -x*.^*.\w (0 )e r T ( l + \{b - rl)'Ia(b - rl)T2 + (3'Ia(b - r l )T) 
L (4.3.9) 
+f(W(0)erT(l - \tr{a'Iaa)T - \(3'IaB))^ 
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The first order conditions are 

(bi-r)T-fx{A)-0i = O, 

(6. _ r ) 2 T 2 + 2 / 5 ( ^ - r)T - / , (A)(ofoT + Pt) = 0, 

where i = 1, • • • ,n, jx{-) is the first order derivative, and A = W(0)erT(l-^tr(aa'Ia)T-
\P'IaP)- Solving (4.3.10) for a and P proves Theorem 4.3.2. • 

It is observed from (4.3.4) that the optimal /3;'s are independent of investors' risk 
aversion represented by the function / and are proportional to the risk premium 
of each risky asset, while the optimal aj's determined by (4.3.5) are the discounted 
changes of the portfolio weight to the risk neutral excess return. Assuming lognormal-
ity, the asset prices can be represented as a function of the underlying Q - Brownian 
motion, therefore, the portfolio value and the worst possible outcome wealth given 
in Equation (4.3.6), are analytically written in the same way. One can calculate the 
corresponding means and standard deviations and other moments. 

Theorem 4.3.2 provides a direct way of implementing this strategy. By assump­
tion, a is invertible, hence, there is a one to one corresponding relation between the 
realized asset prices, therefore the realized wealth, and the underlying state of the 
world. The strategy given in Theorem 4.3.2 can be dynamically implemented by ob­
serving current market prices. We can use any available asset price model to value 
and predict future asset returns, namely, appropriate probability distribution for asset 
future movements. In a lognormal world, this amounts to "calculating " the instan­
taneous mean rate vector b and the volatility matrix a for a given riskless interest 
rate. Then we can implement this model by specifying the "continuous" rebalance 
points through the investment horizon. 

Example. An investor has an endowment of $1 and a certainty reward function 
f(x) = xs, 0 < 5 < 1. There are two assets, one riskless (T-Bills) and one risky (the 
S&P 500). Market parameter estimates are b = 0.12, and a = 0.30. Assume that 
these parameters are fixed and stationary through the planning horizon T — 1 (a 
year). The riskless rate for this period is r = 0.06. Setting 5 — 0.18 and by (4.3.4) 
and (4.3.5), the optimal a and P are 

a = 2.578 and p = 0.271. 

Hence, the investor has about aP — 70% of the wealth invested in the risky asset, 
and the balance in the riskless asset. After the initial investment, the portfolio has 
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to be "continuously" adjusted by observing the stock price. Since the analytical 
solutions (Equation (4.3.6)) are available under the lognormal assumption, the mean 
and the volatility of the terminal wealth can be directly calculated. To provide a 
general methodology, we use Monte Carlo simulation instead. For this example, the 
actual portfolio mean is 11.14% with a standard deviation 32.32%. Assume there are 
1000 rebalance points. Using (4.2.1) computes azQ(t) and the portfolio holdings 7r(t) 
at time t. A sample distribution of 2000 paths is used for calculating the terminal 
portfolio value. The expected portfolio return is 11.65% with a standard deviation 
of 33.48%, while the stock market has an expected return of 12.93% with standard 
deviation 35.62%. The differences among the statistics are due to the sampling error 
and rebalances of the portfolio weights. The downside control ability is represented 
by a market realization as in Figure 4.1. 

Figure 4.1: A Sample Path of the Portfolio Value Over Time 

Based on a measure of performance defined in the next section using a popular risk 
measure, VaR, this downside risk control strategy, compared to standard strategies 
such as BH, F M , and CPPI, performs well. This analysis is presented in the next 
section. 
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4.4 Comparisons under VaR and the Sharpe Ra­
tio Measures 

Using a reward function for risk aversion makes it easy to calculate the optimal 
policy, but an appropriate function is difficult to find. We focus now on constructing 
return/risk efficient frontiers under the risk measures, Value at Risk (VaR) and the 
Sharpe ratio, for the four investment strategies discussed in section 2 of this chapter. 
Without loss of generality, our discussions are confined to the two-asset case. 

The BH and F M strategies are two representative strategic asset allocation mod­
els. In these models, risk is defined to be the volatility (standard deviation) of the 
portfolio at the planning horizon. The optimal asset allocation is determined un­
der a framework of the risk/return tradeoff that is to maximize the expected return 
given a certain level of risk. Performance is measured by the Sharpe ratio which is 
valid assuming that the portfolio return from these two strategies are normally dis­
tributed 1 . For a typical example, we show under the Sharpe ratio that both BH and 
F M outperform CPPI and RNER, but the results reverse if VaR is used as perfor­
mance measurement. Leland (1999) shows that the ft measure is not suitable when 
investors have a dynamic model with skewed investment portfolios, then a related 
measure must be used. The VaR has been popularly implemented as a measure of 
risk for investment management. A simple version of VaR is the market loss that is 
not exceeded at a given confidence interval. If W is the portfolio payoff at the end of 
planning horizon, then the VaR of W at confidence level I — a is 

VaR(W) = E[W] - sup{K e ft; Pr[W < K] < a). (4.4.1) 

This measure provides a new approach to deal with downside risk. The probability 
that the portfolio will lose more than the VaR is a. Methods of calculating VaR 
based on the mean-variance approximation are not suitable when the asset prices 
follow a multivariate geometric Brownian motion, because the returns (arithmetic 
or geometric) of dynamic portfolios are generally neither normally nor lognormally 
distributed. Furthermore, for a positively skewed curve (the density function), the 
variance is mainly the over-performance in the right tail which should not be con­
sidered as "risk" at all. See Jorion (1996), Hull and White (1998), and Koedijk et 
al (1998) for discussions of VaR estimation. We analytically derive the VaRs for the 
four asset allocation strategies: BH, F M / C P P I and RNER. R N E R is an alternative 

1 Hodges (1998) shows how to utilize a measure called the generalized Sharpe ratio for non-
normally distributed assets. But in that theory an exponential utility function assumption is required 
for it to reduce to the Sharpe ratio in the normal distribution case - another suspect assumption. 
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strategy to CPPI with a similar mean but lower standard deviation. Under VaR, the 
RNER strategy outperforms both BH and F M strategies but is slightly inferior to 
CPPI. 

4.4.1 Implementing VaR for Optimization Models 

Let U be the utility function (strictly increasing and concave) and W = g(x,u>) be 
the terminal wealth with decision x and scenario (or state) u>. The investors' problem 
with VaR as an additional constraint can be formulated as 

max E[U(W)) 
X 

s.t. W = g(x,cu) (4-4.2) 

Pr(W > W0) > a 

where Wo > 0 is the target wealth and a is the security level. Although VaR has 
been a popular risk measure in measuring how the investor's portfolio incurs to the 
market uncertainty, research on implementing this risk measure is not popular due 
to difficulty of solution to a nonconvex problem by introducing this constraints. 

Let y(ui) be a random variable, 0 < y(uj) < 1. The revised problem can be written 
as 

max E[U(W • Z(UJ))] 
x,y(u) 

s.t. W = g{x,uj) 

y{u)(W-W0) > 0 (4-4.3) 

E[y(u)] > a 

0 < y{u) < 1 V w e O 

where 

(y(u) iiy(uj)>0 
z(u) = < (4.4.4) 

[ l ifj/(w) = 0 

Let x* and y(u))* be the optimal solution to model (4.4.3) and W* be the wealth at 
optimal. 

Lemma 4.4 .1 . ForVui E if y{u)* > 0, then y{u)* — 1. 
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Proof. If y(uj)* < 1 and y(u)* > 0 for some w e f t , then W* > W0 > 0, therefore 
W* > W* • z(u)\ Define 

fl ify(u;)*>0 
y(u,r = { (4-4.5) 

I 0 otherwise 

Then (x*,y(u>)**) is a feasible solution to Model (4.4.3). In this case z(co)** = 1, and 
therefore 

E[U(W*-Z(UJ)**)} = E[U(W*)}> E[U{W*-z(u)*} (4.4.6) 

which contradicts the optimality of (x*,y(co)*). 

Lemma 4.4.2. 

P{W* > W0) > E[y{u)*] (4.4.7) 

Proof. By Lemma 4.4.1 and the fact that 

(y{u))* > 0) (W > Wo) (4.4.8) 

we have 

E[y{uY\ = Pr(y(u,)* = 1) 

< Pr(W > Wo) 

However, the inverse direction is not necessarily true. 

Lemma 4.4.3. At optimal, z(u) = 1, for Vw e ft. 

Proof. Definition of z(co) and Lemma 4.4.1. 

(4.4.9) 

Theorem AAA. If (x*,y(co)*) is an optimal solution to model (4-4-3), then x* is 
an optimal solution to Model (4-4-2). Conversely, if x* is an optimal solution to 
Model (4-4-3), then there exists a y(oj)* (may depend on x* )such that (x*,y(u)*) is 
an optimal solution to Model (5.1.1). 

Proof. If (x*,y(u)*) is an optimal solution to Model (4.4.3), then by Lemma 4.4.2, 

Pv(W* > Wo) > a, and therefore x* is a feasible solution to Model (4.4.2). Now 
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that x is any feasible solution to Model (4.4.2), then (x, In) is a feasible solution to 
Model (4.4.3). This implies that 

E[U(W)} = E[U{W • z{u>))] < E[U{W* • z{u)*)} (4.4.10) 

By Lemma 4.4.3, z(co)* = 1 at optimal. Therefore, x* is an optimal solution to 
Model (4.4.2). 

Conversely, if a;* is the optimal solution to Model (4.4.2), then, we need only to 
show that (x*, In) is an optimal solution to Model (4.4.3). By the above argument, 
(x*,ln) is feasible. Now that (x**,y(u)*) is any optimal solution, x** is an optimal 
solution to Model (4.4.2) by the first part of the theorem. Also we have, 

E[U(W** • Z{OJ)*)} < E[U{W**)} = E[U{W*)} (4.4.11) 

The first inequality is due to 0 < z(u)* < 1 and the second is due to the optimality of 
Model (4.4.2). It is implied that (x*, l n ) is optimal for Model (4.4.3). This completes 
the proof of Theorem 4.4.4. • 

4.4.2 Calculation of the Mean and Volatility-
Expected return and volatility are directly related to the calculation of the VaR and 

the Sharpe ratio, so we need to know how to compute them for a specific policy. 

Buy and Ho ld 

Buy and Hold is static in the sense that assets are allocated at the beginning 
period and held until the end of the horizon without transactions except dividend 
reinvestments. Let WBn{t) be the value of the portfolio at time t and u be the 
proportion of the total wealth allocated to the risky asset at the beginning, then the 
terminal portfolio value WBH is 

WBH = W m i - u ) e ^ + W ( 0 ) u . ^ ( 4 4 i 2 ) 

= W(0)((l - u) erT + u e - O W - ^ T ) . 

The expected final value FfV^BT/] and the volatility V(WBH) are 

E[WBH] = W(0)erT(l + u ( e ( 6 - r ) T - 1)) 

V[WBH] = uW(0)ebT^/(e°2T -1). 
(4.4.13) 

The Fixed M i x 
The Fixed Mix strategy requires one to rebalance the portfolio "continuously". 

Investors preset an appropriate portfolio mix u among the asset categories. Then, 
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portfolio weights are balanced by selling assets with high past returns to buy assets 
with low past returns; the opposite of portfolio insurance. Let v be the proportion of 
wealth placed in the risky asset and WFs(t) the portfolio value at time t. The wealth 
Equation (1.1.4) becomes 

dWFM{t) = r WFM(t)dt + vWFM(t)adzQ(t). 

The terminal payoff WFM is 

WFM = T y ( 0 ) e w 2 C ( T ) + ( r - i ^ ) T : 

= W(0)e 

The expected value E[WFM] and the volatility V^W -^M ] of the terminal portfolio are 

E[WFM] = W(0)^vb+^-v^T 

vaz{T)+v(b-r)T+{r-\v2a2)T (4.4.14) 

V[WFM] = W(0)evbT+^rT^/(e^2T - 1). 
(4.4.15) 

The CPPI 
Let 7r(£) be the wealth in dollar amount placed in the risky asset. The floor is 

given by Fert at each time, i.e., the wealth in the risky asset is 

IT{t) = m{W(t) - Fert) 

where m is a constant greater that 1. The portfolio WPi(t) is given by the differential 
equation 

dWPI(t) = rWPI(t)dt + Tr(t)adzQ(t) 

= rWPI(t)dt + m(W(t) - Fert)adzQ(t) (4.4.16) 

which implies that the terminal portfolio is 

WPI = FerT + (W(0) - F)emaz(T)+m(b~r)T+(r~^m2a2)T. (4.4.17) 

The expected value and the volatility of the terminal portfolio are, respectively, 

E[WPI] = FerT + (W(0) - F)e^mb+^-m^T, and 

V[WPI] = (W(0) - F ) e H + ( i - m ) r ) r ^ m 2 , 2 T _ L ( 4 - 4 - 1 8 ) 

The R N E R 

From Equation (4.3.8), the terminal wealth W^R for the two asset case is, 

WNR(T) = erTW(0)(l + l-a{{azQ{T)f - a2T + 2(3ozQ(T))). (4.4.19) 
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Using the stochastic isometry for Ito's integral yields the expected terminal value and 
its volatility 

E[WNR] = erTW(0){l + \a(b - r ) 2 T 2 + a(3(b - r)T). 
Zi 

V[WNR] = erTW{0)a]jQa4T2 + a2((6 - r)T + B)*Tj. 

(4.4.20) 

All terminal portfolio values of the four strategies are expressed in terms of normal 

random variables. Using (4.2.1) and (4.4.19) yields the portfolio return in terms of 

the gross asset returns 

RBH = (1 - u)erT + uRx 

RFM = e^-")^ W ) r (Rxy 

Rpj = -^—erT +(l —\ e^-rn)(r+^ma2)(R ) m 

n p i W(0f +

 V W(0)J6 [ K X ) (4.4.21) 

RNR = erT(l + ^a((\n Rxf + (28 - 2rT + a2T) ln RX 

+ -AaAT2 - ra2T2 - a2T + a2B + r2T2 - 2BrT)). 

We take the parameter data given in the previous example to analyze the performance 

of these strategies. Starting with the same initial portfolio, for example, the portfolio 

with 70% in the risky asset, the structure of the portfolio returns is given in Figure 4.2. 

Both CPPI and RNER are designated to protect against downside losses while 

keeping the upward potential. Furthermore, an investor can sacrifice the gains in a 

flat market to achieve profits from a deeply down market by using a RNER strategy. 

Neither of the other three strategies can fulfill this task. Hence, a R N E R strategy 

performs well in both directions but not for a flat market. One of interesting questions 

is how this strategy is compared to portfolio insurance. With this data, neither the 

CPPI nor the RNER dominate each other. RNER outperforms CPPI in a deeply 

downward market, while CPPI outperforms RNER in a highly upward market. The 

result is just the opposite when market is calm. A RNER strategy benefits from a 

slightly up market, while a CPPI benefits from a slightly down market. One could 

possibly think that a better strategy is composed of the four strategies taking use of 

their complementary properties. The following proposition about the curvature of the 

portfolio return with respect to the return of stock market is implied from (4.4.21). 

Proposition 4.4.5. For BH, FM, CPPI and RNER strategies, the returns of the 
terminal portfolios are linear, concave, convex and convex in terms of the return of 
the stock market, respectively. 
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Portfolio Payoff Structure 

o -\ , , 1 
0 1 2 3 

Return of Stock Market 

Figure 4.2: The Structure of the Portfolio Returns 

The shape of the return function for a RNER strategy as in Figure 4.2 shows that 
portfolio performs better when the market has high and low tails returns. Compared 
to the CPPI portfolio insurance strategy, the RNER strategy will not only guarantee 
a floor but will also provide an upward return if the market falls even further. Hence, 
the payoff of this strategy is similar to that of a straddle option strategy. 

4 . 4 . 3 Calculation of the VaR 
While VaR is accepted by many practitioners, the calculation of an exact VaR has 
posed a formidable task for a given investment policy; see e.g. Hull and White (1998). 
Unlike mean-variance, there does not exist a uniform and analytic way of calculating 
the VaR, even for typical distributions, such as, the normal and lognormal. Monte 
Carlo simulation provides a statistical approximation. With the assumed distribution 
of the "uncertainty" (the simplest being normality), a large sample of the portfolio 
value is generated which then gives the VaR by finding the left tail cutoff value for the 
1—a confidence interval. A reduction of the calculating complexity can be approached 
as follows. 
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Proposition 4.4.6. Let VaR(X) denote the value at risk of a random variable X. 
If f(x) is monotonic on !R, then 

VaR(f(X)) = E[f(X)] - f(E[X] - VaR(X)). (4.4.22) 

Proposition 4.4.6 can be verified by (4.4.23). 

VaR(f(X)) = E[f(X)] - sup{K e U;Pv[f(X) < K] < a} 

= E[f(X)} - sup{f(f-l(K)); Pr[X < f-\K)} < a, K e 

= E[f(X)} - / ( s u p f / - 1 ^ ) ; PT[X < f~l(K)] < a, K e »}) 

= E[f(X)]~f(E[X}-VaR(X)). 

Proposition 4.4.6 reduces the computation of VaR of f(X) given the distribution of 

X. This is equivalent to a portfolio mapping which maps a complicated portfolio to a 

simplest form such as a normal distribution. One can directly apply Proposition 4.4.6 

to calculate the exact VaRs for BH, F M , and CPPI strategies. 

If we have to resort to a numerical solution of VaR(X), what would be the impact 

on the calculation of VaR(f(X)) caused by the approximation error? This introduces 

an interesting topic for numerical analysis. The ratio of the estimation errors between 

the portfolio value f(X) and its building element X can be approximated using 

numerical analysis techniques. However, Proposition 4.4.6 does not always apply. 

For example, it does not for the strategy we developed here because the R N E R is not 

monotonic. The new strategy results in a random payoff which is a quadratic function 

of a normal distribution. To calculate the "exact" VaR, we start from the definition 

to calculate the density function. Proposition 4.4.7 yields the exact formula for the 

density function of W^R-

Proposition 4.4.7. Let f(x) — ax2 + bx + c, a > 0, and X a random variable with 
density function (p(x). Then, the density function (j)f(x) of f(X) is 

,/-6+9(X ) N ,,-6-q(xh 
= ^ 2a ) + n 2a ) ( 4 A 2 4 ) 

q(x) 

where q(x) = yjAa(x - c) + b2,x > 4ac
4~b2 • 



CHAPTER 4. RISK NEUTRAL EXCESS RETURN 68 

(4.4.25) 

By definition, the cumulative function of f(X) is 

$f(x) = Pr[/(X) < x] = Pr[aX2 + bX + c < x] 

Pr[(^ + i)2<1f] i f * > ^ , 

0 if x < ̂ f=̂  
— 4a 

P r [ ^ i < X < ^ M ] i f x > ^ , 

0 ifx<^j=^. 
— 4a 

Hence, the density function of f(X) can be found by taking the derivative on $f(x) 

with respect to x which verifies (4.4.24). Figure 4.3 shows the relations of the density 

functions of the portfolio returns determined by the four strategies. 

Value of the Portfolio 

Figure 4.3: The Density Functions 

Calculation of VaR "exactly" involves finding the left tail cutoff at the confidence 

level 1 — a. This amounts to solving Equation (4.4.26) for K if X is a continuous 

random variable 

/_ 
K 

(j)f(x)dx = a. (4.4.26) 
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Cumulative Distributions 
1 i 

Return 

Figure 4.4: The Cumulative Distribution of the Four Strategies 

Using a computer package, such as Maple or Matlab, which can manipulate the 
symbolic operations and provides efficient numerical solutions, the "exact" VaR can 
be obtained. The value at risk of X is 

VaR{X) = E[X) - K. (4.4.27) 

To quantify the VaRs for these four strategies, it will be worthwhile to know about 
the tail movements of their return distributions. Figure 4.4 depicts the cumulative 
distributions of the four strategies. 

From Figure 4.4, a 5% left tail cutoff is much higher for the R N E R but slightly 
below that of the CPPI strategy. 

4.4.4 The Efficient Portfolio for a Given VaR 
Since the calculation of a given portfolio VaR proposes a major challenge for investors, 
the inverse problem of developing an optimal strategy given a VaR, v, is even more 
difficult. This problem requires the solution of the following constrained stochastic 
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control model 

max E[W{T)} 
T(-)6«I 

s.t. e-rTW{T) = W0+ [T e-rtTr(t)adzQ(t) (4.4.28) 
Jo 

VaR = v. 

The constraint VaR = v is equivalent to the following probability constraint by the 
definition of VaR, 

Pv[E[W{T)} - W(T) >v]=p. 

Using equations (4.2.2), (4.4.26) and (4.4.28), we can obtain the portfolio VaR as 
a function of a and B for the downside control strategy. Then, solving the optimiza­
tion Model (4.4.28) yields the optimal policy. This approach requires considerable 
computation. Basak (1999) discusses the investor's utility maximization problem in­
corporated with a risk management type constraint such as, VaR or limited expected 
losses (tail VaR) for a standard market. The objective of this model is to maximize 
the expected value which does not have the required differentiable smoothness as a 
general utility function. Furthermore, to solve the Model (4.4.28), we need to write 
the VaR in terms of a and B. Although we have developed Propositions 1 and 2 
for analytically calculating the VaR, it would be very difficult to corporate the VaR 
through a and B in the optimization Model (4.4.28). Considering the difficulties, we 
provide a heuristic method instead: 

• Simulate a large number (10000) of sample paths of the Brownian motion z(t); 

• Calculate the VaR as the p-quantile of the portfolio for each strategy; 

• Solve the optimization model to obtain the optimal a and B. 

Table 4.1 describes the efficient portfolios for given VaR. 
This simulation strategy can be easily applied in practice. For example, one can 

use each time window of historical data as an outcome of the stock prices and apply 
the procedure introduced above. Eventually, one can obtain the optimal strategy 
using simulation with many sample paths. 

4.4.5 Measures of Performance 
It is very important to find a good performance measurement for evaluating different 
investment returns. Mathematically, this problem is equivalent to ranking the set of 
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Table 4.1: The Efficient Portfolio for Given VaR. 
5% Lower Portfolio Initial Risky Standard 
Cutoff Return Asset Weight Deviation 
1 0.0758 0.1939 0.0924 
0.95 0.0871 0.3507 0.1671 
0.9 0.0984 0.5089 0.2399 
0.85 0.1096 0.6676 0.3101 
0.8 0.1210 0.8218 0.3905 
0.75 0.1322 0.9805 0.4624 
0.7 0.1435 1.1359 0.5394 
0.65 0.1548 1.2935 0.6130 
0.6 0.1661 1.4506 0.6874 
0.55 0.1769 1.6176 0.7325 
0.5 0.1887 1.7661 0.8342 

all possible random variables defined on a probability space. There are some statis­
tical measures, such as, mean, standard deviation, and upper and lower percentiles. 
However, the tradeoff between the risk and return has to be reflected in choosing 
any measure of performance. The Sharpe ratio is a measure that trades off volatility 
and expected payoffs. Here we define a measurement that deals with the control of 
downside losses as 

_ E[W(T)} - Woe'* 
M v a R ~ V a R ( W ( T ) ) ' ( 4 A 2 9 ) 

which is the ratio of the excess return of the portfolio over the riskless asset to its 
VaR. This measure characterizes an investor's risk attitude towards the level of losses 
for trading an upward potential return, as compared to the Sharpe ratio which use 
standard deviation for characterizing the risk and return tradeoff. Using this measure, 
Table 4.2 describes the performances of these four strategies that start with the same 
initial portfolio (70% in the risky asset). 

The statistics in Table 4.2 show that the RNER strategy has a high expected 
return only slightly below that for CPPI. For both the 5% lower tail cutoff and the 
VaR, the ranking order is CPPI, RNER, BH, and F M while a 95% upper tail cutoff 
yields RNER, CPPI, BH, and F M . For the Sharpe ratio, the ranking is F M , BH, 
RNER, and CPPI, while the ranking is CPPI, RNER, BH, and F M for the measure 
using VaR defined in Equation (4.4.29). In conclusion, both R N E R and CPPI will 
receive higher standard deviations to achieve smaller losses than the B H and F M 
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Table 4.2: Performances of BH, F M , CPPI and R N E R Strategies. 
Statistics Market RNER F M BH CPPI 
Mean 0.1293 0.1165 0.1081 0.1090 0.1185 
Standard Devia­ 0.3562 0.3348 0.2415 0.2493 0.3935 
tion 
5% Lower Cutoff 0.6539 0.8399 0.7638 0.7763 0.8756 
95% Upper Cut­ 0.7978 0.8082 0.5498 0.5771 0.7534 
off 
VaR 0.4753 0.2766 0.3443 0.3328 0.2429 
Sharpe Ratio 0.1893 0.1633 0.1915 0.1893 0.1439 
Performance 0.1419 0.1976 0.1343 0.1419 0.2332 
ratio using VaR 

strategies. An investor can tailor a portfolio using these four strategies that matches 
his risk attitudes. 

4.5 A Summary of RNER 

We have investigated the control of downside risk using a simple asset allocation 
strategy which requires portfolio dynamic shifts proportional to the change of the 
risk neutral excess return. Within a continuous time framework and the assumption 
of lognormality for stock prices, the RNER strategy can be used very efficiently. 
Investors can successfully achieve returns above some floor that meet their liability 
requirements and, at the same time, upward potentials can be achieved. 

The performance measure using VaR trades off the volatility for downside losses. 
Both B H and F M have smaller volatility and larger downside losses than CPPI and 
RNER. Comparisons to BH, F M and CPPI with a typical example show that the 
RNER strategy is superior to those strategies in different ways, when the asset prices 
follow a multi-dimensional geometric Brownian motion. The R N E R strategy has 
a better control of downside risk than BH and F M at the same time higher return. 
Compared to CPPI, RNER has more downside risk with slightly smaller mean return. 
However, the return structure of the RNER strategy shows that upward return favors 
the RNER strategy so that neither dominates the other. 

The RNER strategy is related to Portfolio Insurance in the sense that both strate­
gies "guarantee" a floor of return. However, this strategy requires a more intensive 
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portfolio dynamic change which is reflected by the choice of large a, not like the A -
strategy in traditional portfolio insurance. This strategy can be superior to a portfolio 
insurance strategy in the sense that it can actually benefit from both large declining 
and rising market movements. By examining the portfolio payoff function in terms 
of the stock prices, we found that the RNER strategy payoff structure is similar to a 
straddle option strategy. 



Part II: Discrete Time Models 

74 



Chapter 5 

Approximation for Incomplete 
Markets 

This chapter considers a discrete time investment environment with general asset 
return processes characterized by scenarios. The scenarios of the asset returns are 
modeled as general discrete random variables which may or may not be serially cor­
related. The investor is assumed to be trading periodically to maximize the expected 
utility of terminal wealth with downside risk control characterized by the worst possi­
ble outcome wealth among all possible scenarios at the end of horizon. This discrete 
time stochastic control model is analytically intractable for arbitrary asset returns. 
Even with suitable assumptions on the asset return processes such as assuming nor­
mal distributions, the discrete time model is still not easy to solve because of its 
feature of a nonlinear multiperiod stochastic optimization model. We must look for 
other strategies to reduce the complexity of solution methods. Cox and Huang (1989) 
provided a martingale method for solving continuous time model in an unconstrained 
market. Pliska (1998) discussed how to solve multiperiod stochastic models using 
martingale method in a discrete time version of its continuous time analog. This 
chapter develops the approach along this line. The first task for martingale method 
is to identify a scenario set which excludes arbitrage opportunities, because martin­
gale measures are derived on the assumption of arbitrage free market. In this chapter, 
a multiperiod stochastic linear programming model is developed for testing for the 
existence of arbitrage opportunities. The risk neutral probability is given by the dual 
solution of the stochastic linear programming model. Specifically, the risk neutral 
probability is equal to the optimal dual solutions times the risk free interest rate. 
Finding a risk neutral probability is the second task which is needed as input for 
the static model of identifying the optimal terminal wealth. An alternative method 
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is provided for calculating the risk neutral probability knowing that the period-by-
period conditional risk neutral probability at each decision node of a scenario can be 
characterized by a linear programming model. Upon obtaining the conditional risk 
neutral probability, the risk neutral probability for each scenario can be calculated 
by multiplying together the conditional risk neutral probabilities along the scenario. 
However, these two tasks are not easy to accomplish in actual investment practice. 
For an unconstrained market, the relation between the assumption of arbitrage free 
and the existence of risk neutral probabilities or equivalent martingale measures is 
characterized via a standard stochastic linear programming model with simple re­
course. The risk neutral probability or equivalent martingale measure is a probability 
under which all asset returns have the same periodic conditional expectation equal 
to the riskless rate. Therefore, all portfolio value processes discounted at the riskless 
rate are martingales. This determines the set of attainable terminal wealth without 
downside control for an unconstrained market. The optimal portfolio value can be 
identified by solving a static large-scale nonlinear maximization problem subject to a 
martingale constraint on wealth. 

After identifying the optimal terminal wealth the implementation of this model 
must be used to derive the one-period and scenario-wise optimal investment strategy. 
The theory is well developed but the computations need procedures as developed 
here. Based on the assumption that the wealth at each time is a function of the state 
variables in continuous time models, partial differential equations can be derived to 
solve for the optimal portfolio strategies. However, this method tends to obscure 
the role of the optimization methodology. Multi-period stochastic linear program­
ming is a useful tool for implementing planning models under uncertainty and it has 
made major improvements to the practice of investment management. Edirisinghe, 
Naik and Uppal (1993) applied a stochastic programming model for option replication 
with transaction costs and trading constraints by minimizing the initial costs of an 
European call option. Carino, Ziemba et al. (1994, 1998ab) successfully developed 
a planning model for a Japanese insurance company; see also Ziemba and Mulvey 
(1998) for a survey of additional applications. In this chapter, multiperiod stochastic 
programming is used for identifying the existence of market arbitrage opportunities 
as well as the implementation of the replication model. Trading periodically, we can 
obtain the optimal investment portfolio weights by replicating the terminal portfolio 
value scenario by scenario and minimizing the expected downside replicating error. 
It is proved that the replicating portfolio is exactly the optimal portfolio identified 
in the first step if the market is unconstrained. With trading constraints, liquidity 
constraints, shorting costs and transaction costs, etc., this optimal portfolio value is 
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generally not perfectly replicable. Hence, the replicating portfolio is not exactly the 
optimal solution to the original problem in the presence of market frictions. Since 
the identified portfolio is no worse than any optimal portfolio value with policy con­
straints, we call this portfolio the "dominant" portfolio. The investor's goal is to 
find a portfolio which is the closest to the dominant portfolio in the sense of mini­
mizing the expected downside deviation from the ideal portfolio and which satisfies 
market indispensable constraints. This ideal portfolio is perfectly replicable in an 
unconstrained market, but it is not in a constrained one. The discrepancy is charac­
terized by the replicating downside error. Unlike standard utility maximization, we 
will incorporate the downside risk control into the investor's utility function as an 
additional endogenous decision variable as defined in Chapter 3. This variable is the 
worst possible outcome wealth among all possible scenarios. Because the investor is 
also concerned about the worst return while expecting an overall terminal wealth, one 
might want to integrate these two variables in the utility maximization. This specifi­
cation represents sensitivity of the investor's risk aversion to market conditions. For 
a discussion of this idea, see Zhao, Haussmann and Ziemba (2000). 

5.1 Utility Maximization for Unconstrained Mar­
kets 

The Scenario Tree of Asset Returns. The asset returns are modeled as a 
vector stochastic process, vt = (rto,rti, • • • ,rtn),t = 1, • • • , T , which may be serially 
and cross assets correlated. The filtration generated by r t consists of the cr-fields, 
Tt = cr(ri, • • • ,rt),t = 1, • • • , T . The market uncertainty is described as a scenario 
tree which specifies the information structure concerning the security returns revealed 
to the investor through time; see Figure 5.1. 

Control of Downside Risk. Assume the investor has initial wealth Wo. Without 
injection and withdrawal of funds, the investor is assumed to trade periodically so 
as to maximize the utility of terminal wealth while controlling the downside risk. 
To incorporate the control of the downside risk, the investor utilizes a utility func­
tion U(x,y) where x is the terminal wealth and y the worst possible outcome wealth 
among all possible scenarios. It is assumed that U{x, y) is jointly concave and strictly 
increasing in both x and y. The worst possible outcome wealth is determined endoge-
nously by the model, since the investor is allowed to have different wealth floors for 
different market conditions. 
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Stage 0 Stage 1 Stage 2 Stage T- l Stage T 

Figure 5.1: The Scenario Tree Over Time 

The Portfolio Weights. Unlike some continuous time models where the port­
folio is characterized as either the number of units of assets or proportional amount 
of the total wealth in each period, here the portfolio weights are defined to be the 
amount of wealth allocated in each asset. In this way, the replication model can be 
formulated as a problem of stochastic linear programming with simple recourse; for 
related definitions see Birge and Louveaux (1997). Let x4 = (xt0, • • • ,xtn)r be the 
amount of wealth held in the riskless asset (xto) and other risky assets. Assume that 
xt are ^-measurable for t = 1,2 • • • , T — 1, so that x f is non-anticipative. Each sce­
nario is determined by a single path ui = (w0, • • • ,ur), where ut represents a single 
path of the information up to time t. 

The Dominant Portfolio. Assume there are no trading constraints, no liquid­
ity constraints, no shorting costs, and no transaction costs. An investor maximizes the 
utility of the terminal wealth and the downside risk control. The utility maximization 
problem is 

max E[pU(W) + (l-p)K] 

s.t. x T • 1 = W0 

(l + r f ) T x t _ i - l T - x t = 0, W = 1 ,2 , - - - ,T 

(1 + r r ) T • xT_! -W = 0 

W - K > 0, V w e O . 

x t is Tt measurable. 

Harrison and Kreps (1979) have shown that an arbitrage-free market implies the 
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existence of a probability measure such that all prices of securities discounted at the 
risk free rate are martingales. The above statement can be rephrased as that an 
arbitrage-free market allows for the existence of a probability measure Q under which 
all asset returns have the same conditional expected value as the riskless asset rate 
for 1 < t < T , i.e., E® [1 + rt\!Ft-]] = (1 4- r i 0) • 1. If we assume the scenario tree 
shown in Figure 5.1 does not imply any arbitrage opportunities, then there exists 
such a risk neutral probability measure. Recalling the formal definition of arbitrage 
free in Chapter 1, Lemma 5.1.1 characterizes market exclusion of arbitrage. 

L e m m a 5.1.1. Assume the existence of a riskless asset. A market is arbitrage free 
if and only if the following stochastic linear programming problem 

> 0 
l T X i >0 

(1 + r T ) T x T _! > 0 
(5.1.2) 

has an optimal value Z* equal to zero and all constraints are binding at optimality. 

Proof. A portfolio W is represented by a sequence of n + 1-dimensional vectors, 
x0, • • • ,x r_!. If a portfolio W satisfies W > 0 with Pr[W > 0] > 0, then W is a 
feasible solution to Model (5.1.2), but not an optimal solution because Pv[W > 0] > 0 
implies that the constraints are not binding for all scenarios. Therefore the portfolio 
initial cost (the objective function of Model (5.1.2)) W 0 is greater than 0, which 
implies that the market is arbitrage free. 

Conversely, we need to first show that the initial cost WQ > 0 assuming no ar­
bitrage if W is a feasible portfolio to Model (5.1.2). If W0 < 0, then an arbitrage 
portfolio can be constructed by increasing the amount W0 to W's riskless asset hold­
ing. Thus, W0 > 0. Since the portfolio x t = (0, • • • , 0) T is a feasible portfolio, Z* 
must be equal to 0. Hence, the optimal value of Model (5.1.2) is 0 and all constraints 
must be binding by the definition of arbitrage. • 

Model (5.1.2) can be interpreted as the optimal strategy for the portfolio of payoff 
0 in any scenario. It is implied that such a portfolio in the market will exactly have 
a zero initial cost in an unconstrained market. 

Modeling the Risk Neutral Probability. Consider the dual of the Model (5.1.2). 
Let qt(cot) be the multipliers for a scenario u = (co0, • • • ,U>T)T given the information 

Z* = min W0 

W0,xt 

s.t. W0 - l T x 0 

( l + r i ) T x o -
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up to t. Then 

QM) • (1 + rt(cjt\Tt-i)) = ft-i(wt-i) -1, 1 < t < T (5.1.3) 

where Qt is the set of possible scenarios up to time t for a given ut-i and qo(oj0) = 1. 

Lemma 5.1.2. The dual solutions of Model (5.1.2) determine the set of all risk 
neutral probabilities. 

Proof. Define Q as 

Q : (UQ,--- ,ur)—> YI (1 + rto(ut\Ft-i)) • « r ( W ) , 
l < i < T 

where r00(oo0) = 0 and ^(wtl^i-i) is constant for V tot e Qt given information Ft-i, 
i.e., rto is predictable. Then Q is a probability measure defined on the set of scenarios 
Q, and Q is a risk neutral probability on Q. The absence of arbitrage implies the 
existence of a risk neutral probability. The uniqueness is guaranteed if and only if the 
market is complete, i.e., all contingent claims are replicable. Model (5.1.2) not only 
checks for the existence of arbitrage, but also calculates the risk neutral probability 
by solving its dual. Primal-dual algorithms can provide feasible primal and dual 
solutions simultaneously through the iterative process. • 

The dual of Model (5.1.2) is a large scale linear system, but a decomposition 
method can be applied. Equation (5.1.3) can be rewritten as 

pM\Tt-i){l + r(w t|Ji_i)) = (1 + rtQ) • 1, 

where ptiuj^Tt-i) = (1 + r i 0 ) • ^ [ ^ ^ is the conditional risk neutral probability if 
J2utent Pt{^t\Tt — 1) = 1 for any node in the scenario tree at time t. Hence, the 
risk neutral probability can be calculated by multiplying together the conditional 
risk neutral probabilities along each scenario path. The task has been reduced to the 
following problem for each node in the scenario tree 

YJ Pt{wt\Tt-])x{ut\Tt-x) =rtQ-l 

< £ ptM^i) = 1 (5-1.4) 

kPt(w t|^_i) > 0,t = 1,--- , T - 1 . 

Hence, the large scale linear system amounts to solving a sequence of linear pro­
gramming models. Therefore, the risk neutral probability can be characterized as 
in 
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Theorem 5.1.3. The existence of a risk neutral probability is equivalent to the opti­
mal objective value of the following linear programming model 

min Zt 

s.t. P ( w t l ^ i - i ) r t ( w t | ^ i - i ) = Ttal 

^ (5.1.5) 
P(wtl^-i) + Z = 1 

p(wt\Ft-i)>0,Zt>0, Vw, e a 

having value 0 for any 1 < t < T — 1. The risk neutral probability is given by 

• Q(co) = J] p*(ut\Ft-i), V w e Q 
l < t < T 

where p*(u}t\Ft-i) is the optimal solution of Model (5.1.5). 

Proof. If Model (5.1.5) has an optimal solution p*(Wt\Jr

t-i) and the optimal value 
Zj = 0, then 

XLeen, P*^t\Tt-i)Tt(ut\Tt-i) = rtol 

Eu, (en fP*M-^-i) = !• 
Let 

Q(u)= H p > f | ^ _ i ) , 

i < t < r - i 

then 

=n E 
= I7.i = i 

wen 
Since r j = r i i ^ K T ^ ^ I ^ - i ) ' f ° r a s s e t *> 

5 ^Q ( w ) r i ( w ) = JE 11 / ° * ( w t l ^ t - i ) r « ( w t | 7 i _ i ) 

w e n w e f i w t e n t 

=n i - i . 
w e n 
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So, Q is a risk neutral probability by definition. The converse of the theorem can be 

proved in the same way. Let Q denote the set of all risk neutral probabilities. • 

The Martingale Method. Let Wt = (1 + r t) Tx t_x be the wealth at time t. 

Denote E®[-] as the operator of expectation under the risk neutral probability Q 

generated by the optimal dual solution. The conditional expectation of discounted 

wealth is 

EQ YI {l + riQ)-lWt 

Ki<t 
= E* J] (l + rl0)-l-(l + rt)TXt-i 

A<i<t 

= n ( i + n o ) - i - i T x t _ i 
l < t < i - l 

( l + r a , ) - 1 - ^ - ! . 

Tt-

\<%<t-\ 
(5.1.6) 

Theorem 5.1.4. The discounted wealth process Yli<i<t(l + ri0)~l • Wt under the 
risk neutral probability is a martingale. The optimal terminal portfolio value can be 
obtained by solving the following static concave programming problem 

max E[U(W,K)] 
K,W 

s.t. EQ 

W 

L l < K T 

K > 0 , P-a.s. 

= WQ, V Q e Q , (5.1.7) 

where K is constant for V u G ft. 

Proof. Since the probability sample space ft is finite, Equation (5.1.6) proves that 

the discounted wealth process is a martingale under any risk neutral probability. If 

(W, K) is an optimal solution to Model (5.1.7), then there exist a sequence of trading 

strategies (x 0,--- , x r _ i ) such that Model (5.1.1) is solved. Consider the follow­

ing stochastic linear programming problem that minimizes the expected discounted 

downside deviation 

mm 
Z,xt 

s.t . 

EQ[ i l (1 + no)-1-^] 
i<t<r 

- l T x 0 

(l + r!) Tx 0 

> -W0 

l T x i > 0 

(1 + r r ) T x r _ ! + Z > W 

Z > 0. 

(5.1.8) 
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The dual of Model (5.1.8) is feasible and bounded, since q0 = l,gi(wi), • • • ,qr(^T) 
is a feasible solution of the dual. Since the optimal (W, K) of Model (5.1.7) satisfies 
the martingale constraints, the optimal value of the dual model of Model (5.1.8) 
is 0. Hence, by strong duality, EQ[ YI (I + rm)~lZ] — 0 and therefore, Z = 

l < t < T 

0, V [UIQ, • • • , LOT) G fl, which proves that (W, K, XQ, • • • , x^_i) is the optimal solu­
tion to Model (5.1.1). • 

Computation of the Optimal Terminal Wealth. Assume that the utility 
function is twice continuously differentiate, then the optimal (W, K) can be obtained 
directly using Lagrange Multiplier Rules. Let 

where Pt(ojt) is the physical probability for scenario ui up to time t information. r\t is 
usually called the state price density or the Arrow-Debreu price per unit probability 
Px of one dollar in state w at time t. 

Let A 0 and A = X(u>) be the Lagrange multipliers on the constraints of Model (5.1.7), 
then its Lagrangian is 

C(W, K, A 0 , A) = E[U(W, K)\ - X0(E[r]TW} - W0) + E[X(W - K)). 

The extended Kuhn-Tucker conditions (for proof, see Zhao, Haussmann and Ziemba 
(2000)) are 

(i). UX(W, K) - XoVT + A = 0, P - a.s., 

Oi). E[Uy(W,K)]-E[X] = 0, 

(iii). E [ryrW] - WQ = 0, 

fiv). X(W - K) = 0, P - a.s, 

(y). W>K,X>0, P - a.s. 

where Ux(-, •) and Uy(-, •) are partial derivatives with respect to the first and second 
variables, respectively. The optimal W and K are related through 

(5.1.9) 

W = K+[U;1 (X0r,T,K)-K] (5.1.10) 

where AQ and K are determined by 

EUY(K + [U-1 (XoriT,K) -K]+,K)-E[A0?7r - UX(K,K)}+ = 0 

E [KTJT] + E W [U-1 (A0r*r, K) - K}+] = W0, 
(5.1.11) 
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where U'1^,-) is the inverse function of Ux(-,-) with respect to x. The relation 
between the optimal wealth and the state price density is depicted as in Figure 5.2 
where rf is the state price if W attains the minimum wealth K in which case A 0 • rf — 
K. 

Without downside control 
With downside control 

K 

Figure 5.2: The Relation of Terminal Wealth and State Prices 

This relation implies that the investor will become extremely risk averse if the 
state price exceeds 77* and therefore, the investor's wealth reaches the worst possible 
outcome wealth K. If the state price is below 77*, the investor will follow a traditional 
utility maximization as if there were no downside risk control. In that case, the 
downside risk control constraint is not binding. We state the above discussion as 
Theorem 5.1.5 

Theorem 5.1.5. The optimal value of Model (5.1.1) is given by Equation (5.1.10) 
and the optimal solution to Model (5.1.1) is given by the optimal solutions xo, • • • , x^_i 
to Model (5.1.8). 

Theorem 5.1.5 presents a method for solving the general investment model by de­
composing the original problem to two subproblems: a static model and a replication 
model. The static (but usually large scale) nonlinear optimization model identifies 
the terminal wealth which satisfies the downside risk constraint, while the replication 
model is a multiperiod stochastic linear programming which requires powerful com­
putational techniques. The IBM Optimization Routine Library is a useful package 
for solving such a large scale stochastic linear programming model. 
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The Option Interpretation. The second equation in (5.1.11) can be interpreted 
to mean that the investor allocates wealth to only two assets: the riskless asset and 
a call option with strike price K on a dynamic mutual fund with terminal value 
U~l(X0riT, K). For an optimal A 0 and K, the mutual fund is uniquely determined 
through the state price density rjT, which can be replicated using the market's n+1 
primitive assets. The value of this option is the amount that the investor will "invest" 
in this option and the rest of the balance is invested in the riskless asset that will 
guarantee the amount K needed for exercising this option. The investor can complete 
his investment by following this synthetic strategy. For further results including a 
closed form solution, see Zhao, Haussmann and Ziemba (2000). 

The Economic Interpretation of Utility Shifting. Also in (5.1.11), the 
first equation implies that, at optimality, the expected marginal utility on K is equal 
to the decrement of the marginal utility induced by increasing wealth to the level K. 
Mathematically, this relation can be expressed as 

E[UyQV,K)] = E[UX(L,K)] - UX(K,K) 

where L — minfL^^Ao^r, K), K}. This relation represents a trade-off between the 
expected wealth and the worst possible outcome wealth. The economic interpretation 
is that, as a usual case, investors can only increase the expected value of wealth by 
reducing the worst possible outcome wealth, which characterizes the potential losses. 

5.2 The Utility Maximization for Constrained Mar­
kets 

Section 2 analyzed how to solve an investment problem with downside risk control 
in an unconstrained market. The static nonlinear optimization model is easy to 
solve after obtaining the risk neutral probability. This risk neutral probability is 
given by the dual solution of the stochastic linear programming Model (5.1.2) which 
checks for the existence of arbitrage opportunities. There are algorithms that can 
provide the primal and dual solution simultaneously. However, real markets have 
many constraints such as those related to trading, liquidity, transactions costs, etc. 
With these constraints added to the investor's problem (Model (5.1.1)), the new 
optimization model can not be easily decomposed into such two subproblems, because 
investor's wealth process is no longer a martingale process. The replication of such a 
terminal wealth is generally impossible. However, knowing that the optimal terminal 
wealth for an unconstrained market is superior to a terminal wealth subject to the 
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market constraints, one can start to replicate such a portfolio while all constraints are 
satisfied and the downside replicating error is minimized. The error may not be zero 
as it is for an unconstrained market, but this is the best portfolio that is closest to the 
optimal portfolio with no constraints and, at the same time, satisfying the necessary 
constraints of the original problem. 

Types of Constraints Considered. Trading constraints frequently require 
that a maximum amount is required when trades occur. These constraints are imposd 
to prevent arbitrage opportunities due to transactions. Let = (yti, • • • ,ytn)T and 
Zt = (za, • • • , ztn)T represent the amounts bought and sold of the risky assets. The 
trading constraints are 

0 < y t < cxt 

(5.2.1) 
0 < z t < 3t, 

where at = {otti,--- ,atn)T,3t = (Par" ,Ptn)T represent the buying and selling 
upper bounds of the amount for each asset traded in each period, respectively. 

Usually, liquidity is defined as the ability to transact immediately and with neg­
ligibly small impact on the price of a security regardless the size of the transaction. 
•One of the distinguishing features inherent in illiquid markets is a frequent inability to 
buy or sell an asset at its temporary equilibrium price. The reason is that not all the 
information available about the asset is fully reflected in its current return and hence 
the asset behavior becomes locally predictable, i.e., an excess demand will result in 
the increase of the stock return over the next time-step and likewise an excess supply 
will result in a decrease of the return. As a result, if a stock return is exceeding 
or going to exceed the riskless interest rate, the stock is unlikely to be available for 
purchase at its intrinsic price. Similarly, a falling market leads to an inability to sell 
the stock at its current intrinsic price. To accommodate these liquidity constraints, 
we specify a periodic holding constraint for each asset as 

7 t -x t

T l<x t <r t -x t

T l , (5.2.2) 

where ~ft = (7 t l, • • • , 7t n ) T and Tt = (Tti, • • • , r t n ) T represent the limit percentages 
of the portfolio wealth held in each asset for period t. 

The transaction costs are imposed for two purposes. The first is to pay brokerage 
fees and the second is to prevent frequent trades that might affect the equilibrium 
stock prices. For simplicity, we model these costs as proportional amounts to the 
transaction volume from asset to asset. Let 0t — (6ti, • • • , 0tn)T be the proportional 
transaction costs for the risky assets. Buying and selling the same asset in each period 
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(5.2.5) 

is not optimal. At time t, the riskless asset has the amount 

xto - (1 + noK-i.o + (1 + et)ryt - (1 - 9t)rzt = 0. (5.2.3) 

The amount xti in the risky assets at time t is given by 

x t i - ( l + rti)xt-iti-yti + zH = Q, V i = 1,2, • • • , n. (5.2.4) 

The Constrained Utility Maximization. The initial loading constraints are 

x00 + (1 + 0 o ) T y o - (1 - 0o)TzO = W0, 

xoi - Voi + z0i = 0. 

The terminal wealth in unit of riskless asset is 

(1 + rro) • ZT-I .O + (1 - eTi){\ + rTi) • xT-lti - W = 0. (5.2.6) 
l < i < n 

The constrained utility maximization model is 

max E[U(W,K)} 
xt,yt,zt,W,K 

s.t. (5.2.1) - -(5.2.6) (5-2.7) 

W-K>0. 

The solution to Model (5.2.7), a multiperiod stochastic nonlinear programming model, 
is generally intractable. This is so large a model that even sophisticated software pack­
ages are not able to handle the solution of this model. Our aim is to decompose the 
problem into two problems as we did for the unconstrained market. The static model 
characterizes an dominant portfolio which is the same as that for the unconstrained 
market because it maximizes the expected utility when the market is unconstrained. 
The first model can be written as 

max E[U(W,K)} 
W,K 

EQ[B(T)-lW) = W0, (5-2-8) 

W-K > 0, 

where K is nonrandom and W is TT measurable. This problem can be solved as done 
in last section. 
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The second problem is the replication model for deriving the optimal strategy. 
This replication is not a perfect replication of the dominant portfolio identified in 
Model (5.2.8). It is not guaranteed that perfect replication can be achieved at the 
presence of market constraints. The replicating portfolio minimizes the expected 
downside deviation from the dominant portfolio which satisfies the downside risk 
control constraint. Let W\ be the optimal solution to (5.2.8), then, the stochastic 
linear programming model is 

min EQ[ TT {l + r^Z} 
X t ' V t ' Z t ' Z l<t<T 

s.t. (5.2.1) - -(5.2.5) 
(5.2.9) 

(1 + r T 0 ) • XT-ito + ^ (1 - 0Ti)(l + rTi) • xT-i,i + Z = Wl 

l<i<n 

Z > 0 

Model (5.2.9) can be implemented by the IBM Optimization Solution Library. 

The Deviation of Replication. One question about the approximate approach 
is how accurate the procedure can achieve. This leads to the comparison of the 
performances for both constrained and unconstrained approaches. 

Let (W,K) be the optimal solution for the constrained market, (Wi,K\) be the 
optimal solution for the unconstrained market and (W*, K*) be the solution obtained 
by the optimal replicating portfolio. Then 

ElUiWiK^KEUiWuKi), 

Wi-W* <Z, P - a.s. (5.2.10) 

K* > max{W^(w) - Z(u) : V UJ e ft}. 

The difference of the optimal expected utilities between Model (5.2.7) and the con­
strained replication satisfies 

E U(W, K)-E U(W*, K*) < E U{WX,KX) - E[U(W*, K*)] 

< M • E[WX - W*}+ + N-(KX- K*) (5.2.11) 

<M-E[Z\ + N-(K^-K*), 

where M = Ux(Ki, Kx) and N = E[Uy(W*, K*)], since U(x, y) is jointly concave and 
strictly increasing in both x and y. Equation (5.2.11) indicates that the difference 
between the optimal solution and the replicating portfolio is bounded by a positive 
linear function of the expected downside deviation of the replication. 
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5.3 An Illustration 
Suppose the investment opportunity set consists of the following five assets: a cash 
account earning a monthly risk free interest rate of 0.4%(for calculation simplicity, 
we assume a constant interest rate across time horizon) and four other risky assets, 
namely, the following major indices for stocks and bonds: the Dow Jones Industrial 
Average (DJIA), the Lehman Government Bond index (LEHM), the Nasdaq Com­
posite (NSDQ), and the Standard & Poors 500 (S&P500). Denote the asset returns 
by r t = (Dt, Lt, Nt, St)T. Assume the conditional one-period returns of these four 
assets follow an identical and independent multivariate normal distribution, though 
it is not necessary for the method discussed here to assume this. Figure 5.3 depicts 
the monthly data from 12/07/1997 to 02/07/2000 of these assets. 

Monthly Index Returns 
0.3 i 

0.2 -
(fl 
c 0.1 -
S 
CD 

CC 0 -
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•DUA 
•LEHM 
NADQ 
S&P500 

12/1/96 6/19/97 1/5/98 7/24/98 2/9/99 8/28/99 3/15/00 
Date 

Figure 5.3: Monthly Index Returns (03/07/1997 - 02/07/2000) 

It is estimated that 

(Dt\ ( ( 0.0142 \ 

-> N 

\S t / V 

-0.0006 

0.0376 

0.01777 

( 0.0029 -0.0002 0.0028 0.0025 N \ 

-0.0002 0.0001 -0.0003 -0.0001 

0.0028 -0.0003 0.0062 0.0033 

0.0025 -0.0001 0.0033 0.0026 

(5.3.1) 

Using a Cholesky matrix decomposition, we can write the joint distribution of these 
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assets as 

(Dt) 
( 0.0142 ̂  0.0536 0 0 0 \ 

u -0.0006 
+ -0.0028 0.0117 0 0 CM 

Nt 0.0376 
+ 

0.0522 -0.0098 0.0579 0 

\St) ^0.01777, 0.0473 0.0040 0.0150 0.0126y \€4tJ 

(5.3.2) 

where et — (eit,^2t,^3t,^4t)T are independent random variables with standard normal 
distributions. 

Scenario Generation. One of the important issues in applied stochastic pro­
gramming is how to generate an arbitrage free scenario set for model inputs. Gen­
erating an arbitrage free scenario is even more crucial in the model developed here 
because both the existence and the calculation of the risk neutral probability rely on 
the assumption of arbitrage free. For large-scale models, this becomes a very tedious 
task though the test procedure for the existence of arbitrage opportunities can be 
implemented by solving a large-scale stochastic linear programming problem. For 
simplicity, we implement the model with a four period investment horizon. At each 
node, we take a sample of size five as the possible scenarios for the next period. In this 
way, we can generate all possible 625 scenarios by random samples using a standard 
normal distribution. Now, we apply Model (5.1.1) to test for the existence of arbi­
trage opportunities. If the existence of arbitrage opportunities is tested positively, 
then we have to repeat the whole process. 

The Calculation of the Risk Neutral Probability. Although the risk neutral 
probability can be obtained by solving the dual of Model (5.1.2), the problem can 
also be divided into a sequence of subproblems because of its separability to reduce 
the computational complexity. Thus, if we can calculate the periodic conditional 
risk neutral probability at each node, the risk neutral probability can be obtained by 
multiplying the periodic conditional probabilities along each scenario path. For this 
example, we need only to solve 1 + 5 + 25-1- 125 = 156 linear systems of size 5 x 5 . 

Although an identical return distribution of each asset across time is assumed, 
we choose different sample scenarios for different decision nodes of the same stage 
to accommodate the non-anticipativity which means that a decision is made based 
on the history of the information (realization) but not the future possible outcomes. 
By definition, the state price is given by the risk neutral probability, the physical 
probability, and the riskless interest rate. Therefore, the optimal wealth for a given 
utility function can be determined by the state prices upon obtaining the risk neutral 
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probability. Let the investor's utility function have the form 

u(x, y) = Inx + Jlny 

where 8 > 0 is the goal weight between the terminal wealth and the worst possible 
outcome wealth. Assume W0 = $100, Figure 5.4 depicts the relation between the 
terminal wealth and the state price by varying the goal weight 5. 

Wealth vs State Pr ice 

Figure 5.4: Relation between Wealth and State Prices for Varying 5 

As 8 increases, the investor becomes more risk averse by acquiring a larger worst 
possible outcome wealth K, and the overall wealth decreases simultaneously. 

Replication for Constrained Market. Examining the sample distribution of 
the optimal terminal portfolio value, we found that both long and short positions 
are very large. For example, the following initial portfolio, short selling $2394.37 of 
L E H M , buying $2494.37 of S&P500, and 0 in the other three assets, is required for 
5 = 1. The positions in succeeding periods are even larger. This position is so large 
that it is unlikely to be taken by any risk averse investor in practice. Although the 
optimal portfolio value is achievable in an unconstrained market, this huge position 
in risky assets implies that what may be realistic is such a market environment does 
not exist, therefore, the market should be constrained. Here, we provide a reasonable 
strategy by imposing constraints on constructing feasible policies. First, short sales 
and borrowing are not allowed. Secondly, asset holdings are constrained within 60% 
of the total wealth in each period for the riskier equity indices, DJIA, NSDQ and 
S&P500. Another type of constraint is the transaction cost which is modeled as a 
proportional amount (0.1%) of the transaction. By imposing these three types of con­
straints, we obtain a portfolio with expected quarterly return 5.14% with standard 
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Unconstrained and Constrained wealth 
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Figure 5.5: Wealth for Constrained and Unconstrained Market 

deviation 9.92% as opposed to the expected return 3259.02% with standard devia­
tion 13503.2% for the unconstrained market. Figure 5.5 depicts the wealth for both 
constrained and unconstrained market conditions. 

If the results seem to be puzzling, the statistics for the performances under both 
constrained and unconstrained market conditions clarify this. The portfolio returns 
for both conditions have similar floors (worst possible outcome wealth), $78.2279 for 
unconstrained and $76.4991 for constrained. However, the 95% percentile returns are 
$89.10 for the unconstrained market and $91.35 for the constrained market, respec­
tively. In the measure of Value at Risk with a 95% confidence interval, the losses are 
$10.90 for the unconstrained condition and $8.65 for the constrained condition. This 
statistical result indicates that the large portfolio returns in high state prices occur 
with tiny probabilities. Considering portfolio constraints, investors are interested in 
achieving a wealth return corresponding to a middle range of state prices. 

5.4 Summary of the Approximation Method 

The connections drawn in this chapter among arbitrage opportunities, risk neutral 

probability and stochastic linear program arise from analysis of duality relationships. 

A very efficient test for market arbitrage opportunity is characterized using a special 

instance of stochastic linear programming model. Also, the calculation of the risk 

neutral probability is reduced to the calculation of the periodic conditional risk neutral 

probabilities. Multiplying together the conditional risk neutral probabilities along a 

scenario is equal to the risk neutral probability of the scenario. 
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The investor's problem is formulated as a multiperiod stochastic nonlinear pro­
gramming model. This model is intractable because of the non-linearity of the objec­
tive function and a multiperiod horizon. Utilizing martingale analysis, the problem 
is divided into two models. The first model is a static problem for identifying the 
scenario-wise optimal portfolio value for a given utility function. The second model is 
to replicate the identified portfolio by minimizing the downside expected replicating 
deviation. It is proved that the replicating portfolio is the optimal portfolio iden­
tified in the first model for the unconstrained market condition. However, with a 
constrained market, this replication might not be perfect. A numerical example is 
examined to investigate how a reasonable portfolio strategy can be obtained. We 
found that the replicating portfolio is greatly out of shape (both long and short posi­
tions are extremely large) for unconstrained markets. On the contrary, the replicating 
portfolio for the constrained market makes more sense in terms of portfolio return 
and the reality of its position in assets. It is evident that a 95% percentile is in favor 
of constrained market condition with this practical numerical example. 

This chapter also shows the strong applicability of stochastic programming method­
ology for developing dynamic investment models. The method of replication is ex­
tremely useful in pricing contingent claims. We employed this idea to solve a complex 
investment model via two simpler models. Considering the identified portfolio as a 
"contingent claim", one can implement a replicating strategy by using finite resources 
subject to constraints. With a constrained market (this is always the case as we an­
alyzed by data), the replicating error possibly exists for a constrained market which 
characterizes the upper bound of the investor's expected utility losses. The investor's 
expected utility loss can be characterized by the replicating deviation. With the 
analysis and statistical results of the numerical example, it is evident that includ­
ing constraints can increase portfolio performance under the downside risk measure, 
Value at Risk. Due to its versatility of decomposing a complex problem into two sim­
pler models that can be easily implemented, this method should be considered to be 
a very efficient way of solving practical models, both constrained and unconstrained. 



Chapter 6 

An Asset/Liability Model 

Dynamic asset allocation concerns the selection of asset categories and the propor­
tion of wealth placed in them over time. A problem is the potential decline of the 
investment portfolio below some critical.limit. Therefore, instead of focusing only on 
expected return or mean-variance analysis, investors may wish to control the risk of 
downside losses. This can be done using option strategies in a multiperiod stochastic 
linear programming model that considers the distributions of the random returns and 
transaction costs. Synthetic option strategies provide an approach to managing an 
investment portfolio with downside risk control; see e.g. Arnott (1998), Boyle and 
Vorst (1992), Leland (1985), Leland and Rubinstein (1995), and Tilley and Latainer 
(1985). This strategy characterizes a payoff structure similar to a European call op­
tion on the initial portfolio. Suppose the investor's portfolio value is W0 at time 0. 
After T periods, it is desired that the portfolio value WT is worth at least some level 
K in any possible scenario. What can be done to achieve this goal? A simple answer 
is to buy or create a put option on the investment portfolio with a strike price equal 
to the target K. A shortcoming of the synthetic option strategy is that the investors' 
choice of target (the strike price) is exogenous to asset movements and adjustment 
of strategies. This K has to be "reasonably" chosen, since for a specific investor, 
different economic situations may influence the choice of the worst payoff K of the 
portfolio. For example, Value at Risk (VaR) which characterizes the downside losses 
within some level of confidence interval is a measure of potential change in value of 
a portfolio of financial instruments over a pre-set investment horizon. Using VaR, 
investors maximize the expected return given their exogenously set VaR at some risk 
level. It is preferable to determine K endogenously by the model, because investors 
then can have a larger feasible regions among all possible risk/return tradeoff given 

94 
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the level of the risk aversion. The investor may maximize K as an overall poten­
tial payoff for all scenarios at the end of planning horizon, i.e. what is the amount 
that should be insured for the whole planning horizon. In standard synthetic option 
strategies, the objective of maximizing the expected return is triggered purely by the 
ex ante choice of the target, no matter whether this choice is consistent with asset 
movements. Increasing K reduces the expected return, hence, the investor's objective 
should include K as a model variable. While a diversified portfolio is easy to con­
struct, an option market may not be available to the options on this portfolio. Also, 
investors may buy index futures for hedging purposes and index options for downside 
risk control. Many traders adopt this strategy and try to manage the downside losses 
against a benchmark using optimal portfolio replication; see Dembo (1991). 

Options and option-like strategies are very effective and versatile means for money 
managers to control risk. However, exchange-traded options have several major draw­
backs for large institutional and corporate investors. Options with sufficient liquidity 
are limited to maturities of about three months. This makes the cost of long term 
protection extremely expensive, because it requires the purchase of a series of high 
priced short-term options. Hence, other strategies should be considered. An efficient 
way of doing this is to synthesize such a payoff structure using the current resources 
and considering the possible costs in the process of implementation. 

In the finance literature, intertemporal decision making is frequently modeled as 
dynamic stochastic control problems over discrete or continuous time. The approach 
lies in finding the implementable optimal policies for each period as a function of 
the current or past states (observations) in order to meet the investment objective. 
Multiperiod stochastic programming can also provide a methodology for planning 
under uncertainty with respect to given constraints. Bradley and Crane (1972) and 
Kusy and Ziemba (1986) describe stochastic linear programs for bank asset/liability 
management. Carifio, Ziemba et al. (1994, 1998ab) discuss the Russell-Yasuda Kasai 
asset/liability management model. Mulvey and Vladimirou (1991) discuss a mul­
tiperiod stochastic network model for asset allocation, and Zenios (1993) describes 
stochastic programming models for fixed-income asset/liability management. Ziemba 
and Mulvey (1998) survey this field. One of the advantages of using a stochastic 
programming approach for financial planning is that it can handle "irregular" ob­
jective functions and complex constraints as well as general scenarios. Stochastic 
control models are much more difficult to solve and to include complex constraints, 
scenarios and objective functions. Now that more versatile computer packages for 
solving mathematical programming models are available, a stochastic programming 
model can be easily solved. The model developed here considers transaction costs, 
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does not allow short sales in executing its trading strategy, and is subject to hold­

ing constraints in each risky asset. The objective function depends on all possible 

states at the horizon given the strategies used in each period with the planning target 

determined endogenously by the model. This modeling technique facilitates a new 

approach of allocating asset among cash, bonds and stocks with downside risk control. 

6.1 The Stochastic Programming Model 
6.1.1 Dynamic Replication with Portfolio Constraints 
Buying put options has many drawbacks. In an orderly market, this is an executable 

strategy. However, if the market is not perfect, holding a put option and the stock 

portfolio has to bear the default risk as well as the risk from biased prices. Exchange-

traded options may not be suitable for investors because their strike prices may deviate 

from their objective. Also, market options may not be written on the securities chosen, 

and purchasing a put option to protect a stock portfolio requires paying the market 

price of the option up-front, which may not reflect the true value of the options 

because a biased pricing formula might have been used. 

Assume that the number of states of the world is finite, and that time evolves 

discretely taking the values {0, l , - - - , T} and there is a filtration of information 

(Tt)o<t<T- Let UJ = (OJQ, • • • ,LUT) denote a path of the information revealed through 

time, where ut is the information of the path w revealed until time t. Since the 

investment in options does not require a further injection of funds we assume a self-

financing strategy, so the opening value of the portfolio at time t + 1 is the closing 

value at time t less transaction costs. The investor can move funds from asset to asset 

at each period incurring transaction costs. The presence of financial market frictions 

qualitatively changes the nature of the optimization faced by an investor. It requires 

one to either act or do nothing, an issue that does not arise in frictionless situations. 

Transaction costs changes decisions made under "perfect" conditions. See Davis and 

Norman (1990), Boyle and Vorst (1992), and Edirisinghe et al. (1993) for studies of 

replication with transaction costs. 

Suppose the investment opportunities consist of n risky assets and a riskless asset. 

Consider the following notation. 
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W0 : investor's initial wealth, 

T : planning horizon, 

p : continuously compound riskless rate of return equal in 

all periods, 

r\ : continuously compound rate of return for risky asset 

i at time t, i = 1, • • • , n and t = 0,1, • • • , T — 1, 

at : amount allocated in the riskless asset at time t, 

x\ : amount allocated to asset i at time t, 

A\ : additional amount bought of asset % at time t, 

D\ : additional amount sold of asset i at time t, and 

Q\ : proportional transaction costs for purchases and sales 

of asset i at time t. 

The initial portfolio satisfies 

a0 + xl + \-x% = W0. (6.1.1) 

At time t + 1, investment in the riskless asset is at+i, where 

n n 

ate» - a t + l - £ ( 1 + + E^1 " dUi)DUx = 0- (6-1-2) 
i=i i=i 

Buying and selling the same risky asset at the same time is not optimal in the presence 
of transaction costs. Hence, the following equations must hold for each risky asset at 
any time t G (0, T) 

^ + 1 - 4 K + < I - ^ + I = 0 . (6.1.3) 

Divide the terminal portfolio payoff into two parts, a target K and the surplus z over 

the target. Then the terminal value of the replicating portfolio is characterized by 

n 

epaT-i + E(X ~ PTV^XT-I - Z - K = 0. (6.1.4) 
i=i 

Here K is deterministic and z is an TT measurable variable. The portfolio x t + 1 
not only depends on x t but also A t and Dt. To improve the implementation ability 
of the model recommendations, we impose the portfolio turnover constraints to the 
stochastic program. Including constraints will also improve the management of the 
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liquidity risk in practice. We illustrate this effect in a numerical example later in this 
chapter. Let m t = (m], • • • , m") be a vector of the upper bound of the proportion of 
the total value held in all risky assets at time t, i.e. 

For simplicity assume that m t is deterministic through the horizon. 
Although the randomness of the returns at each period are not explicitly expressed, 

we must keep in mind that constraints (6.1.2)-(6.1.5) represent statements for all 
scenarios that describe the market uncertainty. 

6.1.2 A New Objective Function 
In decision making, one must define the objective. For the option strategy, this is a 
minimum payoff in all scenarios via the put option. In asset/liability management, a 
penalty may be subtracted for targets not met as in the Russell-Yasuda model; see 
Carino and Ziemba et al. (1994, 1998ab). Interdependence of the asset movement and 
the prescribed target is not considered in these models. In asset allocation models, 
maximizing expected asset value is a primary objective, but the dispersion among 
scenarios may yield large portfolio losses. 

How can this risk be controlled? In mean-variance models, one adjusts the ex­
pected value by the variance measure of dispersion. The VaR approach addresses 
this issue. However this is typically based on a normal distribution assumption which 
is inconsistent with the evidence of fat tails in real asset markets. Hence, investors 
should choose their objective function so that the downside risk is considered. We 
utilize a new approach to measure risk, namely, the reward for the worst payoff. 

Definition 6.1.1. Let Y > 0 be a random variable representing the terminal portfolio 
value. The worst payoff of Y is 

The investors' payoff is characterized by the pair (z,YL), where z, the surplus, is 
defined by (6.1.4). The portfolio (at,xt) is called self financing with transaction cost 
if Equations (6.1.1)-(6.1.5) are satisfied. 

In Definition 6.1.1, we require a non-stochastic interest rate to assume that the 
probability of exceeding the worst YL is 1 . However, in some cases, such as models 
with uncertain short term interest rates and geometric Brownian motion, it may not 
have the perfect certainty of the worst case. One can then either relax the problem to 

0 < x4 < m t(X; • l + at). (6.1.5) 

Y L su\o{K e 9fJ;Pr{y > K} = 1}. 
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a chance constraint or normalize all asset and portfolio values in unit of the riskless 
asset. 

Assume that the investors' preference between the worst payoff WL and the ex­
pected surplus over WL is given by 

E[z]+pWL, (6.1.6) 

where the coefficient // reflects risk aversion between a target and the expected surplus 
over this target. Investors are more likely to put wealth in the riskless asset to 
guarantee a minimum payoff with a large JJL. The choice of the target and the expected 
surplus are discussed in the next section. 

6.1.3 Formulation as a Recourse Problem 
A stochastic programming with recourse formulation is a decision problem that max­
imizes the expected utility gained from the immediate decision at the current stage 
plus the expected utility that will be realized with constraints satisfied in the second 
stage. For our problem, the utility received at the first stage is \xK and the second 
stage utility is measured by the expected surplus over the target K. The constraints 
that need to be satisfied are the allocation of wealth with the front load transaction 
costs at the first stage and the liability constraints at the second stage. Let r be the 
return vector of the risky assets, x the vector of the wealth portions invested in the 
risky assets, and 0 the transaction cost vector of risky assets. The dynamic recourse 
problem is to 

max \xK + Qo(K, a 0 , x0) 
K,a,xo 

s.t. cx0 + x 0'(l + 9) = W0 (6-1.7) 

a 0 ,x 0 > 0 
where 

Qt(K,at,xt,ut) = max £ [Q t + i( if , a m , x m , cj m ) | jF t ] 

xt+i>0 

s.t. (6.1.2) - (6.1.5) 

and 
QT-I = max E [ziuT^Fr-i] 

s.t. Z(UT) = aT-iep + (1 - 0)x T _i / e r T ( W T ) - K (6.1.8) 

z(uir) > 0, Va; = (uii, • • • ,U>T) £ ^-
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It can be proved that the optimal solution K is equal to the worst payoff WL of the 

terminal portfolio value. Since the risk aversion p in this problem is a constant, the 

two-period recourse problem has the following simple solution. 

Proposition 6.1.1. If there are only two assets, one riskless and one risky, and one 
investment period, then there exists a po such that all investors with a p < po will 
invest fully in the risky asset, and investors with p > po will invest fully in the risk 
free asset. Investors with p = p0 will be indifferent between the riskless and risky 
assets and any combination of them. 

If r follows a normal distribution, then p0 = er+^a2~p, where F + \o2 — p is the 

risk compensated rate of return. For a more general discussion of this concept see 

Zhao and Ziemba (2000a). However, if the number of assets is greater than 2 and the 

number of periods is greater than 1, then the result is not trivial. 

6.1.4 The Multiperiod Stochastic Linear Programming Model 
A multiperiod stochastic programming model considers the interdependency of un­

certainty across the periods of the planning horizon in making decisions. A single 

period model with rollover cannot replace multiperiod models, because the uncer­

tainties across periods are correlated and the future transaction costs may affect the 

initial decisions on portfolio construction, see Carifio, Myers, and Ziemba (1998) for 

calculation comparisons. The model objective is characterized by the immediate re­

wards after actions have been taken in each period. The first period reward is given 

by the selected target K and the risk aversion coefficient p. The intermediate period 

rewards are zeros in this model, and the last period reward z is the excess return or 

surplus over the target K. The investor can control the portfolio by readjusting the 

weights subject to proportional transaction costs, assuming no injection and withdraw 

of funds. The downside risk control problem can be formulated as the multiperiod 

stochastic programming model 

max E[fiK+ maxJ9(0+ m a x £ ( 0 + ••• max E(z)))} 
XQ>0,K xi>0 X2>0 xr_i,z>0 

s.t. a0 + x'Q{l + e) =WQ 

ate p - A, • t+ i = 0 

z!er'+1 - I t t + i = 0 

= 0. 

—r* 
1 7 

= 0 

K -aT-\e 9- (1 - 0)eTT'xT-i+ z =0. 
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where 

A t + i = ott+i - (1 + 0t+i)'At+1 + (1 - 0 f + 1 ) ' D m , and 
(6.1.9) 

Tt+i — x t + i + A t + i — D t + i . 

A t is equal to the amount of wealth invested in the riskless asset at the start of 
period t after transaction costs, and Tt = (T], • • • , T") are the amounts of the wealth 
invested in the risky assets. The first stage decision variables are the portfolio weights, 
a0 and x0 = (xJ, • • • ,XQ)', and the target K. Nonanticipativity is satisfied if xt is 
^"t-measurable. The optimal K depends upon the choice of u, the risk aversion 
parameter. The second and third sets of constraints formulate the self-financing 
strategy. The last constraint represents that the terminal wealth is no less than the 
target K which is determined at stage 1. 

6.2 Model Implications 

We now discuss how the initial wealth W0 and investor's risk aversion coefficient u af­
fect the optimal solution. Denote the optimal solution financed by (at(W0, p),xt(Wo, p)) 
by (Z(WQ,U),K(WO, a)) and the optimal objective by J(WQ,U) 

Proposition 6.2.1. For given u>l, 

(a) K(Wo,u) is nonnegative and bounded above by pTWo if there are no arbitrage 
opportunities. 

(b) K(Wo,p) is increasing in p, and E[Z(WQ, p)] is decreasing in p. 

Proof, (a) Assume for some p > 1, K(W0, p) < 0. Then, (z(W0, p)+K(WQ, p), 0) 
is also a feasible solution and can be financed by the same optimal portfolio, but 
the value E[z(W0,p) +,K(W0,p)] > E{z(W0,p)] + pK(W0,p) since p > 1. Hence, 
(z(W0, p), K(W0, p)) cannot be an optimal pair with K(W0,p) < 0, and K(W0,p) > 
0. Given the presence of a riskless asset, K(Wo, p) < pTWo if there is no arbitrage 
opportunity, 

(b) Let (zi,Ki) and (22,-^2) be the optimal solutions for pi and p2, respectively. 
By optimality 

E[zi] + p2Kx < E[z2] + p2K2 (6.2.1) 
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E[z2] + pxK2 < E[Zl] + /ixKx. (6.2.2) 

Combining (6.2.1) and (6.2.2), yields 

(p2-pi)(K2-Kx)>0. 

So, K(W0,n) is increasing in JJL. Similarly, it can be proved that E[z(W0, //)] is 
decreasing with fx. 

Proposition 6.2.1 shows that, for a risk averse investor, the target K is always 
positive and is bounded above by the total return if all the fortune is invested in 
the cash instrument in an arbitrage free market. As the risk aversion coefficient \x 
increases, the investor is more risk averse and increases the target, therefore, decreases 
the expected surplus over the target. 

Proposition 6.2.2. The optimal value function J(WQ, y) is linearly increasing in WQ 
and convex increasing in p. 

Proof. For VA > 0, if (at, xt) finances the optimal solution pair (z(W0, p), K(W0, £t)) 
then (Xat,Xxt) finances (Xz(W0, p), XK(W0>(J,)), therefore, J(XWQ,fj.) > XJ(W0,(J,). 

Since this inequality is also true for any (W 0, A), it follows that J(XW0, p) = XJ(W0, //). 
From (6.2.1) and (6.2.2), if fxx < (i2, then 

J{W0, iix) < E[Zl] + p2Kx < J(W0, p2) (6.2.3) 

which proves that J(W0, p) is increasing in \i. 
Given Ai, A2 > 0, Ai + A2 = 1, we want to prove that 

J(W0, Xipi + A2/X2) < A:J{W0, m) + X2J{W0, p2). (6.2.4) 

Let (z*, K*) be the optimal solution for Ai + A2, then 

E[zi] + piKx > E[z*] + [iXK\ (6.2.5) 

and 

E[z2] + fx2K2 > E[z*} + fi2K*. (6.2.6) 

Combining (6.2.5) and (6.2.6) proves (6.2.4). 
For given initial wealth W0, if (x0, • • • , X T - X , Z,K) is an optimal solution to model 

(6.1.9), then A(iy 0 ,x 0 , • • • , xT_!, z, K) will be a feasible solution to Model (6.1.9) for 
initial wealth equal to XWQ. Furthermore, it can be proved using Proposition 3 that 
A(W0) Xo,''' ' XT-I, z, K) is also an optimal solution. This proves 

Proposition 6.2.3. The optimal strategy for the initial period in terms of the port­
folio weights (proportions of the initial wealth) is independent of the initial wealth 
level. 
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6.3 Asset Liability and Synthetic Put Option 
Institutional investors are often obligated to future promised cash outflow as liabilities. 
For the model discussed here, we use the constant p to represent investors' risk 
attitude between a target and its expected surplus. We can extend this to an arbitrary 
concave function that represents an investor's risk aversion. The liability constraint is 
not included in this model. What if the liability constraint is included? For problems 
when the liability constraint is binding, there is an intuitive way to interpret the 
optimal solution. Investors place part of their wealth in the risky and/or risk free 
asset and use the rest of their wealth to buy insurance on the initial portfolio that 
pays their liability. This can be done using a synthetic approach through option 
replication or by buying put options. The latter method can be implemented only 
if these options are market traded. The former method is more plausible if market 
factors are carefully manipulated. We now discuss the relation between the liability 
constrained and unconstrained model solutions. 

How does an investor with risk aversion //, endowment M, and a horizon liability 
L design his investment plan? The investor can find the optimal solution by solving 
the stochastic programming formulated in (8) with an additional liability constraint 
K > L. Derivatives can be used for the control of the downside losses (cf. Carifio 
and Turner 1998), but how much should be spent on the derivative asset to optimize 
the portfolio value with the liability being met? The following theorem illustrates 
the relation between these two solutions. We call the model without the liability 
constraint the unconstrained problem; and the one with a liability constraint the 
constrained problem. 

Theorem 6.3.1. Let (z(Wo, fj), K(Wo, p)) be the optimal solution to the uncon­
strained problem with a starting wealth Wo and the optimal self-financing portfolio 
is (at,xt). If 

T. M 
77T--=P (>1) (6-3.1) 

KWo W0 

then ((3Z(WQ, /J),L) is the optimal solution to the constrained problem with starting 
wealth M and the optimal self-financing portfolio is (/5a t,/3xt). 

Proof. If {z(W0, n), K(Wo, fJ,),at{W0, (j),xt(W0, //)) is an optimal solution to model 
(6.1.9) with initial wealth Wo, the unconstrained problem, then 

0 • (z(M, /i), K(M, (i), at(M, /x), x t ( M , /z)) 
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is a feasible solution to the constrained problem with the liability L and the starting 
wealth M. By Proposition 3, it is actually an optimal solution. The converse of the 
above argument is also true. This proves Theorem 6.3.1. • 

Investors can make their required insurance plan by solving the unconstrained 
problem to obtain the optimal target KWo = K(W0, p) and by solving (6.3.1) for W0 

which is then invested in the risk free and/or risky assets. Thus, the rest of the fund 
M — Wo is used to buy insurance (put option) on his investment portfolio. In this 
way investors' liabilities at the horizon are guaranteed to be met. This also provides 
an approach for practitioners to implement derivative strategies. 

The multiperiod stochastic programming model with an objective function given 
in this chapter recommends that the optimal investment strategy will allocate wealth 
to assets of superior performance through time to meet an optimal worst payoff K. 
Because a partial model objective is to increase K while expecting an overall good 
performance, investors will reallocate wealth in each intermediate period according 
to the suggested optimal solution as time goes along. This strategy is equivalent to 
synthesizing an option-like payoff with the worst payoff as the strike price and the 
optimal portfolio as the underlying asset. 

Actual liabilities depend upon a number of factors, including interest rates at the 
horizon dates, cumulative inflation over the planning period, etc. Previous discussions 
in this section will not directly apply since L is a random variable in this case. A 
direct way of imposing constraints on K is required for the original formulation of 
the problem, which can be done by adding penalty constraints on targets missed. 
However, previous discussions can also apply if the return of the riskless asset reflects 
the randomness of the interest rate and inflation (The return of the riskless asset can 
be random through horizon but has no risk, i.e. the return is certain at the time of 
making investment decisions). One then needs to normalize all risky asset returns in 
terms of the returns of the riskless asset in order to apply the method discussed in 
this section. 

6.4 Asset Returns and Scenario Generation 

Generally, there are two ways of modeling future asset returns. The adaptive ex­
pectations approach depends only on past observations of the explanatory variables. 
Alternatively, a rational expectations model can be used using forecasts produced by 
conceptual macroeconomic models where expectations are used. The former approach 
is easy to deal with using standard assumptions and past data. The latter becomes 



CHAPTER 6. AN ASSET/LIABILITY MODEL 105 

a benchmark for the estimation of unobserved expectations, but it assumes that in­
vestors have "common" knowledge of the structure of the future events (e.g. coupons 
and yields for bonds, dividends and earnings for equities). This chapter does not focus 
on the evaluation of these strategies. We adopt the adaptive expectations approach, 
because modeling future events is as hard as choosing a data generating process that 
fits historical observations. To model the price interactions between assets, we use 
the Vector Auto Regression model for future asset returns: 

r t = C + Dxrt-x + D 2 r t _ 2 + • • • + D p r t _ i + et. (6.4.1) 

Then, 

E[r t | = C + D ^ t - i + D 2 r t _ 2 + • • • + D p r t _ p 

where r t is the vector of logarithmic rates of return of the risky assets. et is the 
vector of random disturbances with mean zero which is identically and independently 
distributed across time periods, p is the number of lags used in the regression and 
D i , - - - , D P are time independent constant matrices which are estimated through 
statistical methods, such as maximum likelihood. While D i , • • • , D p characterize the 
persistence of future returns to the nearest past p realized returns, C is the vector of 
intercepts from auto regression. 

The proper number of lags to use is not known ex ante. There are three criteria 
for determining how many to use. The first is to have enough so that r t _ p _ i is 
insignificant in the regression. The second is to have enough so that the assumption 
that et is independently and identically distributed is satisfied. The third is not to 
include unnecessary lags that would reduce the precision of the estimates. 

We assume a second order stationary process for asset returns, where the first two 
moments of the process are independent of time t 

E M = E M ( 6 . 4 . 2 ) 

£ [ r t + h ' r s + h ] = E[rt'ra] 

for Vs, t, 0 < s, t < T. 

Proposition 6.4.1. Equation (6.4-1) is second-order stationary ifVA, such that 

M ' - D x A ' - 1 D p | =0 

implies ||A|| < 1. 
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Proof. See Hamilton (1994). 

The stationary process is based on the assumption that the returns and the volatil­
ity should be stationary in time. That is the effect that seasonal anomaly returns are 
negligible; for evidence on this see Fama (1998) and Keim and Ziemba (2000). 

Generating good scenarios is an important aspect of any stochastic programming 
application. Mulvey (1996) describe a global scenario system, developed by Tow­
ers Perrin, based on a set of differential equations consistent with the underlying 
economic factors, such as, price and wage information, interest rates, growth rates, 
stock dividend yields, etc, for pension plans and insurance companies throughout 
the world. In the example below we utilize a vector auto-regression model where the 
current return structure is forecast by past returns. The residual of the past data will 
be used to model the disturbances of return in each period. 

6.5 An Integrated Application 
Developing financial planning models under uncertainty consists of modeling the 
investment asset returns and developing a good strategy within the framework of 
risk/return tradeoff. Suppose the investment opportunities consist of three assets: 
Cash, Bonds and Stocks. Assume a one-year horizon with quarterly portfolio reviews 
subject to transaction costs, i.e., a four period model. The cash return is p — 0.0095 
identical for each quarter. The Salomon Brothers bond and S&P 500 indices are 
used as proxies for the bond and stock benchmarks, respectively. Figure 6.1 depicts 
quarterly returns of these two risky assets from January 1985 to December 1998. 

The expected logarithmic rates of return are ms = 0.04 for Stocks and mb — 0.019 
for Bonds which we take as the estimates of the unconditional expected rates of return. 
An appropriate vector auto regression model of order two is estimated as 

st = 0.037 - 0.193st_x + 0.4186t-i - 0.172st_2 + 0.5175t_2 + et 

(6.5.1) 
bt = 0.007 + 0.140st_i + 0.1756t_i + 0.023st_2 + 0.1226t_2 + nt. 

The first lag coefficients of st-i and bt-\ are statistically significant at the 10% 
level. The model assumption of identical disturbances are checked by testing the 
auto correlation of residuals. The conditions of Proposition 5 are satisfied, therefore, 
Model (6.5.1) is second-order stationary as required. Uncertainty is characterized by 
the pair (et,r)t). A random sampling approach is used to estimate the joint distribu­
tion of (etlr)t), which eventually forms the total number of scenarios for solving the 
model. Since (et, 774) are identically and independently distributed, a large sample of 
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Figure 6.1: Historical Stock Returns 

this pair can be generated for characterizing the disturbances in each period. We ran­
domly selected 20 pairs of (et, r)t) to estimate the empirical distribution of one period 
uncertainty. Model (6.5.1) is applied for generating the scenarios of the next period 
rate of return using the last two observations and the period disturbances re-sampled 
from the large sample. In this way, we have generated a large scenario tree with 
160,000 paths describing the possible outcomes of asset returns. 

Transaction cost is imposed to prevent investors from buying and selling whenever 
the gain from transaction is less than the cost. At the same time, imposing transaction 
costs will restrict the portfolio weights from large asset turnovers from period to 
period. This dominant together with holding constraints will help construct and 
implement a more practical portfolio. The proportional transaction cost of 9S = 
0.5% for Stocks and 9b = 0.1% for Bonds are the same for all investment periods. 
The investment environment assumes no short selling and the holding proportions 
of wealth in Stocks and Bonds are bounded by 70%. So, a four-period model (one 
year planning horizon) with transaction costs and limited asset holding constraints is 
established. The results with varying risk aversion fi, such as initial portfolio weights, 
the optimal planning target, the expected portfolio terminal payoff, etc., are shown 
in Table 1 using the IBM OSL stochastic programming package. 

As fi increases, i.e. risk aversion increases, investors move funds from stocks 
to bonds and/ or to cash. This results in a large K and achieves the purpose of 
downside risk control. Since the objective function is E[z] + fiK, the expected value 
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Table 1: Risk Aversion, Portfolio Weights, 
Expected Payoff, Standard Deviation and Sharpe Ratio 

Risk Aversion Cash Stock Bond Target Expected Standard Sharpe 
(H) (a) (X') (x!) (K) Payoff Deviation Ratio 
1.00 0.000 0.700 0.300 91.5 127.4 0.152 1.54 
1.25 0.000 0.700 0.300 97.5 122.8 0.118 1.60 
1.50 0.000 0.669 0.331 98.0 122.6 0.116 1.61 
1.75 0.000 0.561 0.439 99.4 121.7 0.109 1.64 
2.00 0.000 0.322 0.678 102.7 118.8 0.088 1.69 
2.25 0.000 0.300 0.700 103.0 118.5 0.086 1.69 
2.50 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
2.75 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
3.00 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
3.25 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
3.50 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
3.75 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
4.00 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
4.25 0.119 0.181 0.700 104.6 116.3 0.072 1.73 
4.50 0.135 0.180 0.684 104.6 116.3 0.072 1.73 
4.75 0.135 0.180 0.684 104.6 116.3 0.072 1.73 
5.00 0.135 0.180 0.684 104.6 116.3 0.072 1.73 
5.25 0.217 0.176 0.607 104.6 116.2 0.071 1.73 
5.50 0.342 0.169 0.489 104.7 116.1 0.071 1.72 
5.75 0.522 0.159 0.319 104.7 115.8 0.070 1.72 
6.00 0.860 0.140 0.000 104.8 115.3 0.068 1.70 

of the terminal portfolio can be calculated as 

E[z + K] = J{W0,u)-(u-l)K, 

where J(W0,p:) is the optimal objective value and K is the optimal worst payoff for 
a given pair (W0, p). The changing weights are strongly dependent on the correlation 
of the risky assets. Even an extremely risk averse investor should have been willing 
to invest certain amount in the risky assets, Stocks and/or Bonds. Figure 6.2 depicts 
the initial portfolio weights by varying the investor's risk aversion. 

Kallberg and Ziemba (1983) examine the optimal composition of a static risky 
investment portfolio using alternative utility functions and parameter values, and 
derive similar results. In particular, assuming normally distributed returns, they 
show that investors with similar average risk aversion indices but different concave 
utility functions have similar optimal portfolio weights and expected utilities. 

How does this compare to a static mean-variance model? The mean-variance ef­
ficient frontier is a ray through the market portfolio starting at the riskless asset, if 
the market is complete. With transaction costs and portfolio holding constraints, the 
efficient frontier is no longer a line but a convex curve. The results derived from this 
model are used to analyze the performance using the Sharpe ratio, and the compar­
ison is made to the mean variance model. Using this scenario data which estimate 
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Figure 6.2: Optimal Weights vs Risk Aversion. 

the expected annual rate of return as 36.8% for Stocks and 4.7% for Bonds, the cor­
responding standard deviations as 20.9% and 1.3%, and the correlation as —1.4% 
between Stocks and Bonds. To locate the global mean-variance efficient portfolio, 
one needs to solve a model that maximizes a Sharpe ratio subject to the trading con­
straints including transaction costs, holding constraints and the balance constraints 
for each period. For this scenario data, the global mean-variance efficient portfolio 
weights are 14.4% and 85.6% with the Sharpe ratio of 1.638. The low stock weight of 
14.4% occurred because the bond was performing extremely well. In order to make 
comparisons between this model and the mean-variance analysis, we need to find the 
optimal expected portfolio return for the same standard deviation (same risk) when 
mean-variance analysis is used. As shown in Figure 6.3, the downside risk control 
model are dominant for most of the cases. This is because of the functioning of dy­
namic control utilizing the dynamic forecasts which are correlated across investment 
periods. 

The effect of this downside risk control model is investigated under the perfor­

mance measurement of the Sharpe ratio. Not only are the results preferable but also 

the optimal worst payoff makes the model more practical. The target K is the mini­

mum terminal payoff. How is that convincing? Figure 6.4 gives a typical distribution 
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Figure 6.3: Comparisons under Sharpe Ratio for Varying /x 

for / i = 2.5 which is highly skewed to the right because of the effect of dynamic 
downside risk control. The floor of the terminal portfolio is about 4.6% more than 
the initial portfolio wealth with an expected rate of return 16.33% and a standard 
deviation 7.2%. If mean variance analysis is used, the expected return is 15.4% with 
the same standard deviation, but a floor above some desired level is no longer guar­
anteed. For the mean-variance model, the worst possible outcome wealth is about 
5% below the initial wealth. These results reflect that investors periodically adjust 
the portfolio weights subject to any indispensable costs to acquire a bigger expected 
return and a desired wealth floor by utilizing the serial correlation among assets and 
cross correlation between assets. 

Figure 6.5 shows the change of weights through the horizon for a typical scenario 
(Scenario 300 in the calculation). Initially, 11.9%, 18.1% and 70% are invested in 
Cash, Stocks and Bonds, respectively. In the second period, Stocks and Bonds hold 
41.4% and 58.6% of the total wealth, and Cash has a zero weighting. In the third 
period, the optimal weighting is Stocks 70% and Bonds 30%. In the fourth period, 
all assets will be in Cash and Bonds. This stream of operations on allocating assets 
reflects how investment strategies capture the investment environment according to 
the forecast of the asset returns. The forecast model plays a very crucial role in 
multiperiod stochastic programming. If the forecast model were not able to anticipate 
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Figure 6.4: The Distribution of Terminal Portfolio Value 

market swings, the optimal strategy would "optimize" error. The stream of wealth 
for this typical scenario is 99.8 -> 103.3 ->• 106.7 -» 112.3 ->• 113.9. 

A problem that we do not explore here is how to test the performance of the 
model in reality, but see Kusy and Ziemba (1986) for such an example. Since the 
real-world realization may not be one of the scenarios that we have specified for the 
computational procedure, we must specify a policy that decides the adaptation of 
the real-world outcomes to the set of specified scenarios to implement a multiperiod 
stochastic programming model. Our focus here is to find the optimal strategy for a 
given set of scenarios. Modeling uncertainty through scenarios is the first major step 
for developing stochastic programming models. 

1 0 -

o 4 I-I i i i n 
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Figure 6.5: The Change of Weights for A Typical Scenario 
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