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ABSTRACT 

The objective of the current research is to develop an inventory algorithm that determines 

the ordering periods and the corresponding order quantities for nonstationary demand. 

The inventory system is a periodic review with lost sales. We propose a heuristic, 

Wagner Whiting Plus Forecast (WWPF), in which the forecasts are revised and the 

parameters for inventory control policy parameters are updated periodically. The demand 

process is non-stationary with a linear trend. The cost function is constituted by a fixed 

setup cost and a proportional holding cost. In each period, safety stocks are added to the 

forecast and the dynamic lot sizing is done as per the Wagner-Whitin algorithm. The 

proposed heuristic is compared with an adaptive (s, S) policy proposed by Axsater 

(2000). Both WWPF algorithm and Axsater's heuristic determine inventory parameters 

for demand data with trend, in a reasonable way. WWPF algorithm exhibits a marginal 

improvement over Axsater's heuristic and can be recommended for inventory control in 

practical settings. WWPF algorithm can address seasonality, by using seasonal forecast 

models, such as Holt-Winters. Moreover, WWPF algorithm is independent of the 

forecasting method and it can be modeled with other forecasting methods, too. 
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C H A P T E R 1: I N T R O D U C T I O N & L I T E R A T U R E R E V I E W 

1.1 Introduction: 

In January 2001, Cisco had to write-off inventory worth $ 1.2 billion. It was a result 

of a harsh slowdown for a company that had been forecasting 30% to 50% annual revenue 

growth pace. Samsung estimated it will take Cisco five months to work off the excess 

D R A M it has built up, said Ygongho Kang, associate director of D R A M at Samsung. 

Cisco acknowledged that it overestimated demand. "Our inventory level had gotten higher 

than we had wanted it and it will be a couple of quarters before it reaches a more 

acceptable level," a Cisco spokesman said. During the Christmas season of year 2000, 

D R A M stockpiles at PC manufacturers had clogged the channels with parts due to overly 

optimistic forecasts from some of the biggest names in the industry. The tumultuous 

events following the economic slowdown of the year 2000 present a new area of research 

for combining sales forecasts and inventory control. Due to the modeling challenges of 

combining forecasts and inventory control, limited research has been pursued in this area. 

The Demand Planning and Inventory Control modules available in the standard supply 

chain solutions offered by companies such as i2 and Manugistics strive to embed 

algorithms and approximations in their solutions, so as to incorporate a dynamic updating 

of inventory parameters with respect to demand forecasts. The area of combining forecasts 

and inventory control has great potential for industry applications and the savings would 

add to the financial bottomlines. 

One major challenge for manufacturing and retail industry practitioners is to obtain 

effective inventory control policies for non-stationary demand. In practical settings, the 

demand for an item may follow a trend and / or seasonality patterns. Under such 

conditions the problem is two fold, first to forecast the demand in future periods and 

second to decide the optimal inventory control parameters. The research project was 

motivated by follow-up questions during an Executive M B A module, in which sales 

forecasting and inventory control techniques were covered. The module participants 

highlighted the need for a combined decision making framework for optimal forecasting 

and inventory decisions. The industry practitioners wanted a tool that not only handled the 
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demand uncertainty but also captured the essence of decision-making in practical settings. 

Later on, we came across a heuristic, proposed by Axsater, for updating forecasts and 

inventory control parameters. This further motivated us to investigate the efficacy of the 

heuristic proposed by Axsater and i f required, propose a better algorithm. Thus the 

journey towards design of the new algorithm was begun. 

Approximate solutions that are easy to understand are usually implemented in 

practice. The current research proposes a heuristic, we refer to as Wagner Whitin Plus 

Forecast (hereafter termed as WWPF), which incorporates the above-mentioned attributes 

for a desired approximate solution. In WWPF, forecasts are revised, and the inventory 

control parameters are dynamically updated each period. We consider a class of non-

stationary demand models exhibiting linear trend. The heuristic integrates sales 

forecasting and inventory control leading to minimal supply chain costs. In our heuristic, 

exponential smoothing with trend is used to forecast the demand for future periods. Safety 

stocks are added to the forecast estimates based on the MAD (Mean Absolute Deviation). 

The safety stock is directly proportional to the forecast inaccuracy. 

In every period of the planning horizon, the net requirements for future periods, 

derived from the forecast estimates, are adjusted for planned order arrivals and stock 

carried over from previous periods. The net requirements are treated as deterministic 

demand. Using the Wagner-Whitin algorithm (Wagner and Whitin, 1958), i.e., dynamic 

lot sizing (called " W W " henceforth), order quantities are computed. The order quantity is 

determined for each period in the planning horizon, including the current period. Based 

on the actual demand realized for the previous period, the sales forecast model updates the 

MAD (Mean Absolute Deviation) and safety stocks are added to the order quantities. The 

order quantity for a period is equal to prescribed WW order quantity plus a safety stock. In 

the next period, the smoothing parameters are re-optimized and new forecast estimates are 

computed for the future periods. 

Axsater (2000) proposes an adaptive (s, S) policy and the EOQ (Economic Order 

Quantity) model is used to compute the optimal order quantity and the re-order level 1. The 

1 The following transformation is used: .s=Reorder point, and 5-*=Order quantity 
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adaptive policy is applicable for periodic review systems and backorder / lost sales 

environment. To account for the trend component in demand, the average demand rate in 

each period is updated using exponential smoothing with trend forecast model. Using the 

updated demand rate in a particular period, the current parameters of order quantity and 

reorder level are computed using the EOQ model. The reorder level incorporates a safety 

stock based on the MAD values and whenever the inventory position falls below the re­

order level, the optimal order quantity is ordered. 

In the current research, a numerical study is conducted to compare the performance 

of the two algorithms. The choice of input parameters for the numerical study is motivated 

by Porteus (1985). A planning horizon of 24 periods is selected and the horizon is 

partitioned into three zones; Initialisation, Stabilisation and Comparison. The performance 

metrics used for comparison are total cost, service level and average stock out level. The 

algorithms are compared to each other, and to a perfect information solution. 
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1.2 Scope Of Research Project: 

This section outlines the scope of the current research project. The objective is to 
• • 2 

compute near optimal values of periodic review , inventory control parameters for a 

single-product, independent, nonstationary demand following a linear trend. The demand 

data are obtained through simulated values, and no effort has been made to collect real 

demand data. 

The research project proposes a heuristic, WWPF, as an inventory control 

algorithm for nonstationary demand. The WWPF algorithm is compared to an adaptive (s, 

S) inventory control policy proposed in Axsater (2000), and exponential smoothing with 

trend is used as a forecasting model in both algorithms. Both algorithms are also compared 

to a perfect information solution, termed as Baseline algorithm. The perfect information 

solution is computed by assuming that the decision-maker exactly knows the simulated 

demand data, in advance. 

The research excludes an optimal solution to the inventory problem for the 

nonstationary demand problem using dynamic programming. Moreover, there is no effort 

towards improving the method for updating forecasts. 

The WWPF, Axsater and Baseline algorithms have been modeled in MS Excel 

using V B A modules. The MS Excel plus V B A tool incorporates a graphical user interface 

and it may serve as a classroom example to illustrate the concepts of integrating sales 

forecasting and inventory control. This tool can be used during executive M B A courses, 

where managers with operational insight can appreciate the concepts embedded in the 

tool. 

2 Using short periods, continuous review aspects can be modeled too. 
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1.3 Literature Review: 

Graves (1999) proposes an inventory control policy for a demand model following 

the I M A (Integrated Moving Average) process of order (0,1,1) in which, the demand 

model behaves like a "random-walk". A first order exponential weighted moving average, 

which results in the minimum M S E (Mean Square Error), is used as the forecast updating 

method. The inventory control follows an adaptive base stock control policy and any 

unsatisfied demand is backordered. In each period t, a demand, dt, is observed and fulfilled 

from the stock-on-hand. A n order quantity, qt, is placed using an adaptive base stock 

policy and follows the relation: 

qt=dt+L(Fl+l-F,). 

This is the myopic policy (Veniott, 1965) for a Z-period lead-time, assuming stationary 

parameters and it minimizes the expected one-period cost a lead-time into the future. The 

order quantity has two components. The first part replenishes demand for the immediate 

period and the second part adjusts the base stock level to accommodate any changes in the 

forecast. The demand over the lead-time is considered to be L*Ft+] rather than L*F,, as F, 

is the forecast from period t as seen from period t-1. Using the critical fractile policy, the 

order quantity can be set to a level so that specified stock out probability is satisfied. The 

inventory control policy is not optimal but a reasonable extension of base stock policy to 

the case of non-stationary demand. 

Bollapragada and Morton (1999) present a myopic heuristic to compute (s, S) parameters 

for nonstationary demand. The heuristic is based on stationary approximation to the 

portions of the nonstationary problem. It involves precomputing (s, S) policy values for 

several stationary problems with different values of mean demand and tabulating the 

results. The non-stationary problem is approximated to a stationary problem by averaging 

the demand parameters over an estimate of time between two orders. The corresponding 

(s, S) values are then read from the pre-computed stationary table. The length of time over 

which demand parameters are averaged is equal to the "optimal expected replenishment 

time period for the equivalent stationary problem". A numerical study is conducted to 

evaluate the effectiveness of the heuristic under geometric trend and seasonal demand 
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models. The heuristic is compared to Askin's heuristic (Askin, 1981). Askin's heuristic is 

an extension of the Silver-Meal (1973) heuristic to the case of stochastic demand and the 

order quantities are computed for minimising the average total cost of inventory per 

period. The heuristic is also compared to an optimal solution, obtained using dynamic 

programming, which needs the demand data for the entire time horizon. 

Porteus (1985) presents a number of shortcuts and approximations for computing 

periodic review (s, S) parameters for stationary demand. Some of the shortcuts are based 

on the EOQ approximations and consider a penalty cost for backorders. The goal is to 

obtain approximately optimal policies with little computational effort. The shortcuts and 

approximations are compared to the optimal solution in terms of the error percentage and 

the computation time associated with each method. A numerical study is conducted for 

1200 combinations of input parameters3. For every unique combination of input 

parameters, total costs and computation times associated with each shortcut method are 

compiled. The methods are compared on the averages for error percentages in cost and 

computing times. Based on error percentages and saving in computing times, the efficacy 

of shortcuts is highlighted. The numerical study in Porteus (1985) motivates the numerical 

study discussed later in the thesis. 

As compared to the above-mentioned literature, WWPF deals with a single 

product, nonstationary demand, under a finite horizon, periodic review and a "lost-sales" 

inventory control model. The nonstationary demand model follows a linear trend, and 

exponential smoothing with trend is used as the method for updating forecasts. In each 

period t, net requirements for the future periods are computed from the forecast values 

adjusted for inventory position, and the order quantity is computed using the W W 

algorithm. The order quantities are augmented by adding safety stocks to account for 

forecast inaccuracies. The order quantities and the safety stocks are dynamically updated 

every period. A numerical study is designed to test the performance of WWPF and it is 

compared to Axsater's adaptive (s, S) policy and a perfect information solution. 

3 Mean demand, variance, lead-time, holding cost, setup cost, and backorder penalty. 
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C H A P T E R 2: A L G O R I T H M S F O R N O N - S T A T I O N A R Y D E M A N D 

This chapter describes the demand model, the modeling assumptions and the 

algorithms for nonstationary demand. In section 2.1, the nonstationary demand model is 

explained. The same demand model is used for all three algorithms. In section 2.2, the 

use of exponential smoothing with trend forecasting is described. In section 2.3, the 

assumptions associated with modeling are explained. The rationale of the modeling 

assumptions would be dealt later in the thesis. In remaining sections 2.4, 2.5, and 2.6, 

WWPF, Axsater and Baseline algorithms are described, respectively. Finally, in section 

2.7, the design of an optimal solution using dynamic programming is discussed. 

2.1 Demand model: 

A single-product, independent, stochastic demand with nonstationary parameters 

is treated as the demand model for the inventory control algorithms. The stochastic 

demand follows a normal distribution and the mean of the random variable follows a 

linear trend. 

The demand, Dt, can be mathematically expressed as the following. 

Dt ~ N(fj,t,cr2), and 

jut=mt + ju0, 

where, Dt is the demand at time period t, jut is the mean of the normal demand generating 

process at time t and cr is the standard deviation of the demand. The mean of the demand 

process, jut, follows a linear trend and its definition is pictorially represented in Figure 1. 

By choosing different values for the slope and the intercept, a wide range of values for 

the mean can be obtained. 
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Mt 

Slope: m 

Intercept: 
Mo 

Time periods: t 

Figure 1: Mean of the stochastic demand with linear trend 

2.2 Modeling assumptions: 

In order to make the inventory system model mathematically manageable, the 

following simplifying assumptions are made. 

• The demand values in successive periods are independent random variables. 

• Whenever the actual demand exceeds stock-on-hand it results in loss of sales, and 

there is no penalty associated with unsatisfied demand. A stock out condition may 

lead to the loss of goodwill and it can affect the demand in the future periods but 

due to the difficulties associated with modeling these losses, the simplifying 

assumption has been made. 

• A review period is the length of time between successive moments at which the 

inventory position is reviewed and the ordering decisions are taken. The duration 

of the review period is fixed and integer valued. For the purpose of this research 

the review period has been fixed as unity, i.e., inventory position is reviewed 

every period. A frequent review of inventory would be beneficial towards the 

dynamic updating of the inventory parameters. Though a frequent review leads to 
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cost increases, the cost savings from the dynamic updating would more than 

compensate the cost increases. 

• The inventory is reviewed at the start of the period and the opening stock is equal 

to the closing stock of the previous period. 

• The holding cost incurred during the current period is proportional to the excess 

inventory4 carried from the immediate previous period. The units held during the 

current period are not charged for holding cost. 

• A setup cost of $K is incurred for every order release. 

• The lead times are deterministic and integer valued. 

• A l l shipments scheduled from the previous orders arrive at the beginning of a 

review period. These shipments are available for use in the current period. When 

the lead-time is zero, an order is placed and received at the same instant. The 

order arrival adds to the opening stock. 

• The capacity of the source of supply is considered as infinite. This ensures that 

any order placed by the retailer or the manufacturer can be fulfilled. 

2.3 Forecasting model: 

Exponential smoothing with trend is used to forecast the demand for future 

periods. This forecasting model is also known as Holt's linear method. Exponential 

smoothing methods behave like control processes, where the gap between the forecast 

value and the actual value is corrected with the use of smoothing parameters. The method 

allocates exponentially decreasing weights, as the observations get older. There are two 

smoothing parameters, one for level smoothing and the other for trend smoothing. The 

forecast at any point in time is made of a level and a trend component. The forecasting 

method updates the level and the trend using two smoothing parameters. 

4Positive opening stock at the start of current period 
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The following notation is used to describe the forecasting model. 

at = Level component of time series at time t 

bt = Trend component of time series at time t 

a = Level smoothing parameter 

B = Trend smoothing parameter 

n = time periods in integers 

Ft+„= Forecast for demand at time t+n, i.e., n periods in future, computed at time t 

The exponential smoothing with trend model consists of the following equations. 

at = ccDt + (1 - a)(a,_, + bt_x) 

bt = B(at- a,_x ) + (\-P)bt_l 

Fl+X =at+b, 

Ft+n=a,+btn (1) 

Table 1 illustrates the forecasting model as setup in MS Excel. 

Table l:Forecasting model setup in M S Excel using exponential smoothing with trend. 

Period Demand Level Trend forecast AbsError Alpha Beta 

t Dt a, b, F, et a P MAD (t) 
1 61.00 61.00 6.00 

P 
1 61.00 61.00 6.00 

2 67.00 67.00 6.00 67.00 0.00 0.85 0.50 0.00 
3 64.00 65.31 2.17 73.00 9.00 0.85 0.50 4.50 
4 54.00 55.97 -3.56 68.00 14.00 0.85 0.50 7.67 
5 68.00 65.73 3.07 53.00 15.00 0.85 0.50 9.50 
6 60.00 61.28 -0.67 69.00 9.00 0.85 0.50 9.40 
7 70.00 68.63 3.32 61.00 9.00 0.85 0.50 9.33 
8 64.00 65.16 -0.06 72.00 8.00 0.85 0.50 9.14 

9 71.00 70.14 2.45 66.00 5.00 0.85 0.50 8.63 

10 76.00 75.50 3.90 73.00 3.00 0.85 0.50 8.00 
11 88.00 86.75 7.56 80.00 8.00 0.85 0.50 8.00 
12 69.00 72.69 -3.20 95.00 26.00 0.85 0.50 9.64 

c P e 

The absolute error in time period t, e,, is defined as 

et =K ~D '\ 
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The mean absolute deviation in time period t, MAD (t), is defined as 

MAD (t) = Average { e , + e2 + et_x} 

The mean squared error in time period t, MSE (t), is defined as 

MSE(t) = Average^1 + e2

2 + e,_,2) 

The smoothing parameters for the level and the trend, a and /? respectively, are computed 

using a non-linear optimization for minimizing the M S E . The selection of optimal 

smoothing parameters and the selection criteria is addressed in section 3.3.1. 

In order to set the forecasting model, the following initializing conditions are 

applied. The initialization has been quoted from Makridakis (1998, pp-159). 

• The level in the first period, a,, is set equal to the demand in the same period, i.e., 

ai = Di 

• The trend in the first period, bx, is set equal to the difference in the demand in the 

first and second periods, i.e., bx = D2-Dx 

Gardner (1985) remarks the use of the above initialization approach in practice, and the 

popularity is attributable to its simplicity. An alternative, proposed by Makridakis (1998, 

pp-161), is to use least squares regression on the first few values of the series for finding 

ax and bx. The details for using least squares regression have not been discussed. Another 

alternative, with a limited number of data, is to use Bayesian methods to combine a prior 

estimate of the level with an average of the available data-see Cohen (1966), Johnson and 

Montgomery (1974) and Taylor (1981). In case historical data is available, Brown (1959) 

recommends using the mean of the data for an initializing value of the level. 

Using the above-mentioned forecasting model, it is possible to have negative 

values for demand forecasts, due to the negative trend values. As a modification to the 

exponential smoothing with trend model, a negative value of demand forecast is 

substituted with zero for modeling convenience. 
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2.4 Wagner Whitin Plus Forecasting (WWPF): 

In this section the Wagner Whitin Plus Forecasting algorithm is described. A 

short outline of the algorithm along with a pictorial representation is presented first, 

followed by the details. 

2.4.1 Inventory Control algorithm: 

The inventory control algorithm of WWPF has been pictorially summarised in 

Figure 2. The following notation is used for describing the WWPF algorithm. 

T = planning horizon, i.e., i f T= 24, there are 24 periods in the horizon for 

which the inventory control policy is being formulated 

t = current period 

R(t) = Net requirements for period t (explained in the next sub-section) 

(9(0 = Order released in period t, to be received in period t + L 

OS(t)= Opening Stock for period t 

W-W: Wagner-Whitin algorithm, also known as, dynamic lot-sizing 

L Lead-time in periods 

D, Actual demand realised in period t 

i) O p e n i n g Stock 

= C l o s i n g Inventory 

o f last per iod 

i i ) Order based o n 

N e t Requirements 

R(t) us ing W W 

iv) F u l f i l actual demand 

Dt f r o m Stock-on hand 

and possible "lost sales" 

t v i ) C l o s i n g stock o f p e r i o d / 

= O p e n i n g stock o f t+1 

t: i i i ) Order arrivals f rom 

period t-L, L>=0 

t + 1 

v) Cal ibrate / update forecasting 

m o d e l w i t h the new observation 

o f actual demand D4 

Figure 2: P i c t o r i a l presentation of W W P F a lgor i thm 
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2.4.2 Outline of WWPF algorithm: 

Based on the sequential steps described in Figure 2, an outline of WWPF 

algorithm is presented. At any time t, WWPF algorithm can be summarised by the 

following sequential steps. 

i . Carry forward the closing inventory of the previous period: 

The closing inventory of the last period, t-1, is carried over to the current period, t, 

and treated as opening stock. In case the demand in t-1 exceeds the stock-on-hand, the 

opening stock for the period t is zero. 

i i . Compute net requirements and order quantities using WW algorithm: 

The net requirements, R(t), are computed for periods t, t+1, t+2, ...,T. The net 

requirements for the future periods are computed by subtracting planned order 

arrivals5 and opening stock from the forecast values of the future periods. 

Mathematically, this can be expressed as: 

R(t) = Ft - 0(t-L) - OS(t) 

The net requirements R (t) are computed for all values up to T including the current 

period t, and then W-W is used to determine the ordering quantities for all the periods 

up to T, including the current period. The WW order quantity for the current period is 

considered for order release and the order quantities for the other periods are ignored. 

The order quantity in the current period is augmented by adding a safety stock to the 

order quantity. The augmented amount is ordered as order release 0(t) in the current 

period t. 

i i i . Receive 0(t-L): 

The order quantity placed in t-L, 0(t-L), is received as planned order arrival in period 

t and this increases the stock-on-hand. 

5 Due to orders in earlier periods i.e. O (t-L) 
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iv. Fulfill Z) r with Stock-on-hand: 
The actual demand, Dt, is satisfied from stock-on-hand. The demand is fulfilled as 

and when the demand6 arises and there are possible "lost-sales" when the actual 

demand exceeds the stock-on-hand. 

v. Update forecasting model: 
At the end of the current period, t, the actual demand for the period is known and the 

smoothing parameters for the forecast model are updated based on a measure of 

forecast accuracy. 

vi. Closing stock of current period: 
The closing stock equals the stock-on-hand, after receipt of the planned orders, minus 

the actual demand. For practical purposes, the closing stock is zero when the actual 

demand exceeds the stock-on-hand. However, during the numerical study, explained 

in Chapter 3, the number of units that were not satisfied from stock-on-hand is 

recorded. 

6 We do not go into the details of how the demand appears during the period. The demand can be realised at 
an instant or with a uniform distribution. 
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2.4.3 Details of WWPF algorithm: 

Now we discuss some of the steps in details. Several steps have been sufficiently 

dealt in the outlines and are skipped in the detailed discussion. 

2.4.3.1 Net Requirements: 

The net requirements R(t) are computed for periods t, t+1, t+2, ,T by 

adjusting the forecast values with the planned order arrivals and the opening stock. Table 

2 illustrates an example where we have the actual demand data points for periods 1 to 11, 

and the net requirements have been computed for the periods 12,13.. ..,24. 

The notations and computations referred in Table 2 are explained as follows. At 

Table 2:Sample computations for Net Requirements in Excel sheet 

Period Demand Order Release 

t O ( t ) 
r 61 Notation: 

2 67 D 1 = F, - 0(t-L) 

3 64 D 2 = D 1 - O S ( f ) 

4 54 D 3 = M a x { D 2 , 0} = R{t) 
5 68 L = 3 periods 

6 60 OS{12)= 54 units 

7 70 185 

8 64 0 

9 71 126 

10 76 0 

11 88 134 D i D 2 D 3 

12 f 70 -56 -110 0 

13 67 67 -43 0 

14 64 -70 -113 0 

15 60 60 -53 0 

16 57 57 4 4 

17 54 54 54 54 

18 M 51 51 51 51 

19 48 48 48 48 

20 44 44 44 44 

21 41 41 41 41 

22 38 38 38 38 

23 35 35 35 35 

24 V 32 32 32 32 
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the start of period 12, the actual demand figures of periods 1 to 11 have been observed. 

Now based on the forecast model as described in the section 2.3, the level at and trend bt 

at t = 12, are computed. Using exponential smoothing with trend forecasting model, we 

forecast the demand figures for all future periods. Using the equation (1) discussed in 

section 2.3, the equivalent equation for forecasts in periods 12,13...24 becomes the 

following. 

FU+n = ( l U + ( » + l ) * ^ 2 

The demand forecast value, adjusted with planned order arrivals, referred as Dl in 

Table 2, is computed using the expression 

Ft - 0(t-L). 

The demand forecast value is further adjusted for the opening stock and is referred as D2 

in Table 2. The value of D2 is computed using the expression: 

Dl- OS(t). 

The negative values in D2 imply excess stock and so the net requirements are zero, until 

this excess stock is consumed. Therefore, the column of D3 follows the transformation 

Max (D2, 0) and these values are used as the net requirements for the future periods. 

2.4.3.2 Wagner-Whitin algorithm: 

The Wagner-Whitin (WW) 7 algorithm was proposed in Wagner and Whitin 

(1958) as dynamic version of the EOQ model. The WW algorithm computes the periods 

in which orders are placed and the corresponding order quantities, so as to incur the least 

total cost. W W assumes a deterministic demand and the demand is realised at the start of 

the corresponding period. It is also assumed that replenishments always cover the 

demand for an integer number of consecutive periods. The cost function for the algorithm 

is a fixed cost of %K per order, and a proportional holding cost of $h per unit per period of 

holding8. 

7 Wagner-Whitin algorithm is also known as dynamic lot-sizing 
8 The demand in various periods is assumed to occur at the beginning of the period, so that the holding 
costs are charged only for inventory held for future periods and not for the current period i.e. no holding 
charge for D, 
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To apply W W in WWPF algorithm, the net requirements, shown as D3 in Table 

2, are called adjusted demand. Now for the current period, we consider these adjusted 

demand figures as deterministic and the ordering policy is computed using a backward 

induction method. The algorithm is explained in the following paragraphs. 

The WW algorithm is explained by means of an example. The details of the 

algorithm can be found in Wagner and Whitin (1958). Suppose we have a certain demand 

to be fulfilled in the various periods as shown in Table 3, and using WW algorithm we 

need to compute how much to order and when to order. A setup cost, K, is $5000 per 

order, and a holding cost, h , of $ 1 per unit per period of holding constitute the cost 

function. The objective is to incur the least total cost and satisfy all demand. 

Table 3: Demands for periods 1 to 10 

Period t: 1 2 3 4 5 6 7 8 9 10 
Demand: D, 600 698 726 770 820 874 866 916 930 981 

The following definitions are used to derive the W W solution to the demand 

shown in Table 3. The notation and equations for WW algorithm have been cited from 

Axsater (2000, pp 43). 

Let, 

Dt - adjusted demand in period t 

fk — Minimum cost over periods 1,2,..., k ,i.e., when periods k+l,k+2, ....Tare 

disregarded. 

fkt = Minimum cost of satisfying demand in periods t, t+1,k, given that the last 

delivery was in period t(\<t <k) 

Now fk = min fk. 
J * \<t<kJ *•' 

The boundary condition values are: 

/ o = 0 

_[K,Dl>0 
/ , = / U = | O , A = O 

(2) 
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Let us assume that we know ft_x for some t >0; then we can obtain fkit for k > t by 

the following expression. 

/*,/ = /,-> +K + h(Dl+x + 2Dl+2 + + (k- \)Dk) (3) 

The demands are assumed to take place at the beginning of the periods. This implies that 

the demand in any period (£>,) wil l not cause any holding costs, and the holding costs 

would be charged only when an inventory is stocked to meet the demand in future 

periods. 

The term/* , in equation (3) represents the total cost of ordering in t to satisfy the 

demand in periods t, t+1, t+2...k. In that case the order quantity covering demand in t+1 

is held for one period, order quantity for covering demand in t+2 is held for two periods, 

and so on. Therefore the demand Dt+j incurs a holding cost of h Dl+i, the demand Dt+2 

incurs 2hD,+2, and the equation (3) holds. 

For k = t, equation (3) becomes 

At any given time t, assume that/,_, is known and then the values for fktare 

computed for all the values of A; until the following condition is achieved. 

h(k-t)Dk>K. (4) 

The idea is that i f we order for the demand in a future period and the cost of holding for 

that future period equals or exceeds the setup cost, then we would order for that period 

later on. 
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A cost matrix is prepared from these considerations and is shown in Table 4. In 

this matrix, we have the periods, the corresponding demands, and the values for fi, t-

Table 4: Cost matrix and backward induction using W W 

Period f: 1 2 3 4 5 6 7 8 9 10 
Demand: 

A 600 698 726 770 820 874 866 916 930 981 
C O S T M A T R I X 

k=t 5000 10000 10698 12150 14460 17740 19718 22066 24814 27494 
k=t+l 5698 10726 11468 12970 15334 18606 20634 22996 25795 0 
k=t+2 7150 12266 13108 14718 17066 20438 22494 24958 0 0 
k=t+3 9460 14726 15730 17316 19814 23228 25437 0 0 0 
k=t+4 12740 18222 19194 20980 23534 27152 0 0 0 0 
k=t+5 17110 22552 23774 25630 28439 0 0 0 0 0 

B A C K W A R D I N D U C T I O N & O P T I M A L S O L U T I O N 
Min 
Values 9460 17066 24958 

Order 
Quantity 2794 2560 2827 

In Table 4, the cost matrix begins from the column for period l(i.e., t=l) and fi,t values 

are computed as per equations (2) , (3) and (4). In period 1, the fu value of 5000 

represents the cost when an order is placed in period 1 to cover the demand of period 1 

only. The second value in the first column, 5698 (f2,i), represents the cost of ordering in 

period 1 when the order quantity covers the demand for periods 1 and 2. Similarly, the 

third value in column 1, 7150 (/},;), represents the cost of ordering in period 1 when the 

order quantity covers the demand in periods 1, 2, and 3. These fi,t values are computed in 

column t until the holding costs for future periods demand is less than the setup cost (See 

equation (4)). The values offi,t in cost matrix, where the condition expressed in equation 

(4) is attained, are replaced by zero. 

After generating fkt values for period 1, we go to period 2 (i.e. t=2) column. The 

first entry in this column, 10000 (f2j) represents the cost of ordering in period 2 to cover 

demand in period 2, given that the minimum cost of ordering for period 1 is known. 

Using equation (7), the value for f2,2 can be computed as: 

f2,2=fi+K 
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where ft is known from the boundary condition values. The second entry in this column, 

10726 (f3,2), represents the cost of ordering in period 2, given that the optimal order was 

placed in period 1, and the order quantity covers the demand in periods 2 and 3. 

Similarly, the rest of the entries in column 2 are computed till the condition expressed in 

equation (4) is reached. 

In the column for period 3, the first entry 10698 (f3j) represents the cost of 

ordering in period 2, given that the minimum cost of ordering for periods land 2 is 

known. Using equation (3), the value for f3j can be computed as: 

The minimum cost for periods upto 2 is given by corresponding substitution in equation 

(2) as 

f2 = m i n ( / 2 1 , / 2 2 ) , 

i.e., the minimum of values 10000 (/},2) and 5698 (/S,/). Similarly the cost matrix is 

completed for all the periods upto 10. 

Once the cost matrix is ready, the optimal solution is computed using backward 

induction. The backward induction begins from the last period of the planning horizon. 

For k=Tmd t=T, find the minimum of fk,t, fk,t-i ,fk,t-2, ••• fk,t-r-i • The (H-l) t hterm has a 

value that achieves the condition expressed in equation (4) and r can take any value as 

1,2 t. 

In our example, for k=10, we compare the following values: 

• 27494 {fio, io- cost of satisfying the demand in period 10 by ordering in periodlO) 

• 25795 {fw,9= cost of satisfying the demands of periods 9 and 10 by ordering in 9) 

• 24958 {fio,8=cos\ of satisfying the demand of periods 8,9,10 by ordering in 8) 

• 25437 (fioj =cost of satisfying the demand of periods 7,8,9,10 by ordering in 7) 

• 27152 {fio,6. =cost of satisfying the demand of periods 6,7,8,9,10 by ordering in 6) 
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• 28439 (/"/0,5=cost of satisfying the demand of periods 5,6,7,8,9,10 by ordering in 

period 5) 

The iteration stops after the value 28439 as the next value is zero, corresponding to the 

condition expressed in equation (4), and therefore not shown in the table. Out of the 

above values, the minimum value is 24958, corresponding to an order in period 8 

covering the demands in periods 8,9 and 10. The ordering quantity is the sum of demand 

in periods 8,9 and 10, i.e., 2827 units. 

As we have a solution for periods 8, 9, and 10 so we next consider k=7 and t=7, 

and compare values of / 7 7 ,fj,6,fi,5 until the condition in equation (4) is reached. We 

compare the values 19718, 18606, 17066, 17316, 19194, and 22552. In this case the 

minimum value is 17066, corresponding to an order of 2560 units in period 5, covering 

the demand in periods 5, 6 and 7. Similarly, we continue our backward induction process 

till we reach the current period. Thus the optimal ordering periods and the corresponding 

order quantities for the entire planning horizon are computed. 

The solution for the dynamic lot-sizing problem using the Wagner-Whitin 

algorithm is shown in Table 5. 

Table 5: Least tota l cost solut ion using backward induct ion as appl ied i n W W a lgor i thm 

Period t: 1 2 3 4 5 6 7 8 9 10 

Demand: D, 600 698 726 770 820 874 866 916 930 981 
B A C K W A R D I N D U C T I O N & O P T I M A L S O L U T I O N 

O r d e r 

Quant i t y 2794 2560 2827 

The W W algorithm assumes that there is no lead-time, but in our model we do 

consider lead times. In order to model lead times in WWPF, the ordering decisions are 

computed for the future periods beyond the lead-time. Say, in our 10-period example the 

lead-time is 2 periods, then the ordering decisions, starting at the current period, would be 

computed for periods 3,4.. ..,10. The first two periods, 1 and 2, corresponding to the lead-
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time are just ignored. Due to the 2-period lead-time constraint, we cannot fulfill the 

demand of periods 1 and 2 from ordering at the start of period 1. On the other hand, for a 

lead-time of 2 periods, we can order in period 1 and satisfy the demand for periods 3 and 

onwards. 

In our modified version of Wagner-Whitin algorithm, termed as WWPF, the 

demand in future periods are computed from the net requirements as discussed in the 

previous section. Once the order quantities are determined using the Wagner-Whitin 

algorithm, a safety stock is added to account for the forecast inaccuracy. In order to 

determine a suitable safety stock, the decision maker needs to know how uncertain the 

forecast is, i.e., how large forecast errors tend to be. The variations are usually described 

using standard deviation. For forecast errors, it is traditional to estimate the M A D instead 

of directly estimating the standard deviation of forecast errors. Using the common 

assumption that the forecast errors are normally distributed, the standard deviation of 

demand during one period, cr,, can be estimated from M A D using the following relation. 

' V2 

where, MADt is the mean absolute deviation for the forecast model at time t. M A D 

computations have been discussed in section 2.3. 

Usually, safety stocks are added to account for variations in the "vulnerable 

periods", i.e., periods in which no contingent shipment can arrive. This period of risk is 

defined as the time interval between inventory position reaching the re-order level and 

the arrival of the resulting replenishment order. The demand during this period of risk has 

two components - the dropping of inventory position below the re-order level and the 

demand during the lead-time. The difficulty with modeling the first component in a 

periodic review, lost sales environment would be addressed in the section 5.2.3. 

However, safety stocks should be added to cover the demand in the lead-time, i.e., the 

second component of demand in the period of risk. On the contrary, WWPF has been 

modeled in a way that ordering decisions are based on order receipts in future periods. 

Consequently, in case of any unanticipated variation in demand during the lead-time, a 
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contingent replenishment can be ordered during the next review. In WWPF, safety stocks 

are added to account for variations during the number of periods covered by the order 

quantity. Say, at any time t, the order quantity obtained using WW algorithm covers the 

demand for n periods, inclusive of the current period. In that case, the standard deviation 

of demand during the periods covered by the order quantity is given by the following 

expression. 

where, cr„ is the standard deviation of the total demand during the n periods that are 

covered by the order quantity in t. The forecast errors in the n periods are assumed to be 

independent. 

The safety stocks can then be computed as per the following formula: 

where, 

k = Safety Factor corresponding to service level constraints 

SS= Safety stock 

MAD = Mean absolute deviation of forecast model 

n = number of periods covered by the order quantity. 

MAD value in period t is computed at the start of each period, is the average of the 

absolute deviation for the previous t-1 periods (Refer forecasting in section 2.3). 

If we use lead time instead of n for computing the safety stock values, then we 

might incur increased ordering and holding costs. In case the lead time is greater than n, 

excess safety stock would be added to the order quantities leading to increased holding 

costs. On the contrary, for lead time values less than n, the safety stocks would be 

insufficient and a premature order would be warranted leading to greater ordering costs. 

Therefore, it is optimal to use n for computing safety stocks in WWPF algorithm. 

(5) 
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Given that the demand is normally distributed and the standard deviation of the 

demand during the n periods is known, a standard z-value, corresponding to the 

probability of no stock out in the vulnerable period, can be used as the safety factor k. For 

example, i f the decision maker wants to achieve 95 % rate of no stock-out and the M A D 

is exactly known, then using the standard normal distribution, 95% of all demand 

observations, during the n periods, would be under 1.645 times of the standard deviation. 

This explains the use of the safety factor k in equation (5). 

For a given MAD, say 100, and a safety factor of 1.645, the actual order quantities 

for the same example (see Table 3), are computed in Table 6. The safety factor of 1.645 

approximately corresponds to 95% probability of no stock out in the vulnerable period, as 

the M A D is an estimate. The values of Dt represent the deterministic demand for a 

planning horizon of ten periods. 

Table 6: O r d e r i n g quanti t ies using W W P F w i t h safety stocks 

Period t: 1 2 3 4 5 6 7 8 9 10 
Demand: 
A 600 698 726 770 820 874 866 916 930 981 

B A C K W A R D I N D U C T I O N & O P T I M A L S O L U T I O N 

Order 
Quantity 2794 2560 2827 

Safety 

Stocks 
SSj = 

412 

SS5 = 

357 

ss8 = 
357 

Actua l 
O r d e r 
Quan t i t y 3206 2917 3184 

Using equation (5), we have the following safety stock quantities. 

SSj = 1.645 * 1.25 * 10 * sqrt (4) = 411.25 

SSS = SS8 = 1.645 * 1.25 * 10 * sqrt (3) = 356.14 
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Therefore, the safety stock added to the order quantity in period 1 (SSi) is 412 units, and 

357 units9 in period 8. Similarly, the safety stock values are computed for all ordering 

periods depending on the number of periods covered by the order quantity. 

The MAD values for determining safety stock values in various future periods are the 

same, i.e., 100 as assumed in the example. 

The dynamic lot-sizing algorithm described in Wagner and Whitin (1958) does 

not allow any backordering. In case backorders are allowed, a backorder penalty is 

charged. Silver and Peterson (1985, pp-263) present three variants for backorder penalty 

costs depending on the way the penalty is charged, i.e., per stock out occasion, per unit 

short, and per unit short per unit time. The choice of backorder cost definition should 

reflect the real costs incurred by backorders. However, there are difficulties associated 

with assessing backorder costs. Axsater (2000, pp-58) highlights the problems associated 

with shortage costs as: 

"One problem with shortage costs is that practitioners usually find it difficult to 
determine how high they should be." 

Therefore, backorder penalty has not been considered in the current research. 

WW algorithm provides 100% service level and it cannot be modeled for a target 

service level other than 100%. However, a network flow integer program for modeling a 

deterministic lot sizing with service level constraints is described in section 2.6.3. 

Safety stock values are rounded up to the next integer values to obtain integral order quantities. 
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2.4.3.3 Ordering for the current period: 

After order quantity computations, only the order for the current period is placed. The 

order quantities for other periods are ignored. Referring to Table 6, we order 3206 units 

in the current period and ignore the actual orders in periods 5 and 8. This is done, as the 

objective is to dynamically update the order quantities in line with the changing demand. 

2.4.3.4 Update the forecasting model: 

At the end of the current period t, the actual demand for the period is realised. It is at 

this point that we realise the deviation of the forecast estimate from the actual demand. 

The forecasting model is then updated in the following steps. 

i . Compute a new value of MADI+J (mean absolute deviation) including the Dt 

value, the most recent demand. This value of MAD is used to compute the safety 

stock for determining the order quantities at the start of the next period t+1. 

i i . The smoothing parameters for the exponential smoothing with trend model can 

be recalculated as we have a new data point from the recent demand10. The new 

forecasting model would be used in the next period for computing the forecast 

values for the future periods. 

Refer to the forecasting model section 
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2.5 Axsater's Heuristic: 

Axsater (2000) proposed a heuristic that updates the inventory control parameters 

with changes in forecast model. The heuristic is proposed for demand data with trends 

and utilises a modified EOQ lot-sizing algorithm. The forecast model is exponential 

smoothing with trend and the forecast components of the demand are used to dynamically 

update the average demand rate of the EOQ model. The proposed inventory model is 

applicable in both continuous and periodic review inventory control models. The demand 

and forecasting model for Axsater's heuristic is the same as that for WWPF algorithm. 

The modeling assumptions discussed in the section 2.2 hold good for Axsater's heuristic, 

too. 

2.5.1 Inventory control for Axsater's heuristic: 

In this section, we present the inventory control steps for Axsater's heuristic. The 

following notation and terms are used for describing the algorithm. 

t = current time period 

R = Re-order level 

Q = Order placed in any period and received L periods later. 

LP. = Inventory Position (Stock-on-hand + Outstanding orders11) 

EOQ = Economic order quantity 

Dt = Actual demand for period t 

Ft = Demand forecast for period t 

ii) Update average iv) Fulfil actual demand 
demand rate, and order Dt from Stock-on hand 
based on Axsater's policy 

v) Closing stock of period t 
= Opening stock of t+1 

i) Opening Stock I 
=Closing Inventory 
of last period t: iii) Order arrivals from 

period t-L, L> =0 

t + 1 

Figure 3:Inventory Control Policy using Axsater's Heuristic 

ii Orders released but yet to be received. 
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Figure 3 summarises a pictorial representation of the inventory control policy followed 

by Axsater's heuristic. Using the sequential steps shown in Figure 3, an outline of 

Axsater's heuristic is presented in this section. Some of the steps would be dealt in details 

in the subsequent section. 

At any current time period t, the following steps are performed in sequence. 

i) Carry forward the Closing Inventory of the previous period: The closing 

stock of last period t-l is received as the opening stock for the current period 

t. 

ii) Update the average demand rate and order for t: The average demand rate 

is updated and this updated demand rate is used in the Economic Order 

Quantity (EOQ) formula for determining the order quantity, Q. Whenever the 

inventory position falls below the re-order level, a shipment of Q units is 

ordered in period t for receipt in period t+L. 

According to the formula for EOQ, the order quantity, Q, is computed using 

the expression: 

A=Setup cost ($ per order), 

/z=per unit holding cost ($ per unit per period), and 

// =average demand rate. 

The updating of the demand rate and computations of the inventory position is 

explained in the next section. 

iii) Planned order arrival: The order quantity, Q, placed in t-L, is received as 

planned order arrival in period t. 

where, 
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iv) Fulfill Dt with the Stock-on-hand: The actual demand Dt in period t, is 

satisfied from the stock-on-hand, as and when the demand arises12. 

v) Closing stock of current period: The closing stock of the current period t is 

computed, and this closing stock appears as the opening stock for the next 

period t+1. The closing stock in t is equal to the Stock-on-hand (t) minus the 

actual demand D,. If the actual demand exceeds the stock-on-hand, the 

opening stock for the next period is zero. 

2.5.2 Details of Axsater's heuristic: 

This section describes the details of Axsater's heuristic. The details of the 

heuristic can be found in Axsater (2000,pp-82). The computations of inventory 

parameters, i.e., order quantity and re-order level, and the inventory control policy are 

addressed in the subsections. Both continuous and periodic review versions of Axsater's 

heuristic are discussed. Finally, the inventory control policy is explained. 

2.5.2.1 Continuous Review Inventory model: 

The following notation is used for describing Axsater's adaptive inventory model 

and the sections are have been quoted from Axsater (2000). 

tf = forecast period (periodicity of updating forecasts) 

a, = average forecast demand at the end of forecast period t (Level at time period i) 

bt = average forecast trend at the forecast period t 

Ht = — is the average demand rate per unit time at time t 

1 2 We do not go into the details of how the demand appears during the period. The demand can be realised 
at an instant or with uniform distribution. No holding costs charged for D,. 
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The average demand rate at time t, just after forecast update, is / / ,=—, and r time units 
lf 

later, the average demand rate is modeled as: 

if if 

The standard deviation of the demand per unit time is given by: 

a, =-*—\—MAD„ 
' (tfyu 

where the parameter c equals 0.5, i f we assume that forecast errors in different time 

periods are independent. 

The average demand during time interval (t,t + r) can be estimated as 

E{D(t, t + T)} = J— (a , + b,u)du = —(dtr + b, — ) (6) 

o tf tf 2 

and by setting equation (6) equal to a certain quantity d, the expected time r(d) in which 

this amount d is generated can be computed by solving a second-order differential 

equation. Upon solving the differential equation, we get the following result for r(d). 

b, 

2dtf 

+ ( 7 ) 

Assume that reorder point and order quantity before average demand rate update 

are R' and Q \ respectively. Axsater's heuristic requires an initialisation for the values of 

R' and Q'. If we order when the inventory position reaches R', we will start to consume 

the batch around time T(R'), and the whole batch will be consumed around time 

T(R'+Q') . Considering equation (7), a reasonable estimate of the average demand rate 

during the time when the batch is consumed can be expressed as 

at r(R') + T(R'+Q')bt 

H = — + v — , (8) 
tf 2 h 
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and this value of the average demand per unit time is used in the EOQ formula for 

computation of the order quantity Q. The EOQ formula performs a lot sizing to minimise 

the sum of ordering and holding costs. The EOQ formula is expressed as: 

where, 

K = fixed ordering cost ($ per order), 

h = per unit holding cost ($ per unit per period). 

2.5.2.2 Distribution of lead-time demand and safety-stock: 

In section 2.5.2.1, the average demand rate is updated but we still need to 

determine the lead-time demand parameters to account for safety stock. Axsater (2000) 

defines the following mean and standard deviation for characterizing the lead-time 

demand distribution. 

where, ju' is the mean demand during lead-time, andcr' is the standard deviation of the 

lead-time demand. 

Following our modeling assumptions, we update the forecasts every period (i.e., 

tf=\). The forecast errors in different periods are assumed to be independent, therefore the 

value of c is 0.5. The expressions for lead time parameters can then be written as: 

(9) 

ju'=(a,+bt^)(L) (10) 

(11) 
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The reorder level equals the average demand and safety stock during lead-time. 

The average demand during lead-time is given by equation (10) and the standard 

deviation of lead-time demand is given by equation (11). Assuming that the lead time 

demand is normally distributed, the re-order point can be expressed as, 

R = ju' + ka' (12) 

where, A: is the safety factor13. 

2.5.2.3 Periodic review transformation: 

Axsater (2000) proposed the dynamic inventory updating heuristic in a continuous 

review setting, but the heuristic is also applicable using a periodic review (s, S) inventory 

control policy. The periodic review (s, S) policy is derived from a continuous review 

(R, Q) model by the following transformation: 

s = R, and 

S-s = Q 

The safety stock computations for periodic review setting use different levels as 

compared to that of continuous review. In a periodic review setting, the safety stocks are 

planned for Z+ i periods instead of L periods, as in a continuous review. This can be 

explained by the fact that orders can be placed only once every period. Consider a 

situation, where an order is placed in current period t and received in period t+L. If the 

demand during the lead time is more than expected then a new order to account for this 

unanticipated demand can be placed only in the next period. ,This contingent shipment 

would be received L periods later. Therefore, at any given time safety stock should be 

enough to cover uncertainties in L +1 vulnerable periods, i.e., the shortest possible time 

period for the receipt of a contingent shipment. 

k value of 1.645 corresponds to 95% of service level (probability of no stock out in the vulnerable 

period) 
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Accordingly, the lead-time demand parameters for periodic review control policy can be 

expressed as: 

- L + \ 
pC= {a, + b, —^~)(L +1) , and 

2.5.2.4 Inventory Control policy: 

Using a periodic review inventory control model, the ordering decision for 

Axsater's heuristic is based on the inventory position. The inventory position at any given 

time is defined as the sum of stock-on-hand and all outstanding orders. Whenever the 

inventory position falls below re-order level, computed using equation (12), a batch 

quantity of Q units, computed using equation (9), is ordered and received L time periods 

later. The ordering decision can be expressed as: 

If IP<R, then order Q. 

The reorder level computation is different for continuous and periodic review control 

systems as discussed in earlier sections. 

2.5.2.5 Approximations in Axsater's heuristic for current research: 

The frequency of updating the forecast and the inventory control parameters 

updating is the same, so r/can be taken as 1. On substituting the values for r{R}) and 

T(R'+Q') , derived from using equation (7), in equation (8), the average demand per unit 

time at time t is updated as per the following expression: 

p =\Mf + 2 R ' b t +y(at)2+2(R' + Q')b, (13) 

where, R and Q are the re-order level and the order quantity for the previous period. 
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Using equation (13), it is possible that some mathematical complexities arise. 

This is possible in the following situation, where bt < 0 and 

(a,) 2 +2R'bt<Q,ox (a,)2 +2(R' + Q')bf <0. (14) 

This would make equation (14) a complex expression due to negative terms under the 

square root sign and thus it would be computationally infeasible to use equation (11). 

Therefore, under circumstances expressed in equation (14) no demand rate updating is 

performed, and the average demand per unit time is expressed as: 

p =at. 

By doing so, we pretend that the Axsater's heuristic is ordering for a deterministic 

demand. Another alternative would be to modify the heuristic for positive and negative 

values of trend, which was intentionally avoided in the current research. 

Similarly it is possible to get negative values for the mean demand during the 

lead-time as expressed in equation (10). A negative value for the lead-time mean demand 

can result in negative reorder levels, and to avoid such situations zero replaces the 

negative mean demand during the lead-time. However, we believe that these 

approximations do not affect the efficacy of the heuristic modeling. 
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2.5.3 Limitations of Safety Stock in periodic review systems with lost sales: 

Hadley and Whitin (1963) highlight the difficulty of calculating the average annual cost 

expressions for lost sales case vis-a-vis backorders. For continuous review systems, 

Hadley and Whitin (1963) develop exact equations to calculate the average annual cost 

expressions for lost sales environment, provided that there is a single order outstanding 

(pp.197), but in case of periodic review it is stated that an exact formulation is not 

possible even with a single order outstanding. The difficulty in exact modeling of lost 

sales is described in Hadley and Whitin (1963, pp.197) as: 

"In a lost sales environment, when the system is out of stock, the amount on hand plus on 
order does not change when a demand occurs. Unlike the inventory position in 
backorders case, it is not possible to treat the changes in the amount on hand plus on 
order independent of the amount on hand. It is necessary to take explicit account of the 
number of orders outstanding and the times at which they were placed." 

Periodic Review with Backorders 

>Backorder Time 

+\ Vulnerable period K 

Figure 4: Periodic review system w i t h Backorders 

35 



Figure 4 shows the inventory position for a periodic review system where backorders 

have been allowed. The vulnerable period for a periodic review system is the sum of 

lead-time and review interval. The inventory position is defined as: 

Inventory Position = Stock-on-hand + Outstanding orders - Backorders. 

For a backorder environment, all backorders during these two phases are accumulated 

and covered in the next replenishment decision. Therefore, in a backorder environment, a 

safety stock can be specified using equation (14), i.e., safety factor times the standard 

deviation of the lead-time demand. But equation (14) is not exact for the lost sales model. 

Periodic Review with Lost Sales 

o 

to 
O 

o 

S 
g I \ Lost Sales 

"H Vulnerable period H — Time 

Figure 5: Periodic review w i t h Lost Sales 

Figure 5 shows the inventory position with respect to time it can be observed that the 

inventory position remains unchanged when a demand occurs during stock-out. 

Therefore, as highlighted by Hadley and Whitin (1963), the decision maker needs to 

know explicitly the number of outstanding orders and the timings of the stock-out. 

Johansen and Hi l l (2000) explore {r, Q) policies for periodic review systems with lost 

sales and fixed lead times. The results of an asymptotic renewal theory are used to 

estimate the "undershoot" of the re-order level, r. The way safety stock is accounted in 

Axsater's heuristic does not correspond to optimality under lost sales conditions, but it is 

a good approximation for minimising any stock out during the vulnerable period. This is 
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a limitation of the current research that the exact safety stock equations have not been 

developed for the lost sales model; however, the adopted methodology for safety stock 

derives its merit from computational simplicity. 

In the current research, we have assumed lead times to be deterministic but it is 

possible to encounter variability in lead times. Nowadays, there is an increased awareness 

towards reducing the lead-time variability, and Availability-To-Promise (ATP) is one 

measure that is an integral part of service level agreements in supply contracts. Silver and 

Peterson (1985) recommend the use of an approximate mathematical model to ascertain 

the standard deviation of total demand in a lead time. This model assumes that the lead 

time (L) and the demand rate (D) are independent random variables, which is a 

reasonable approximation to reality, and it is shown that 

E(X)=E(L)E(D) ,and 

crx = ylE(L)var(D)+ [E(D)]2 var(z) 

where x, with mean £'(x)and standard deviation cr^is the total demand in a 

replenishment lead time, in units; L , with mean E{L) and variance var(z), is the length 

of a lead time, in unit time periods; and D, with mean E(D) and variance var(/J>), is the 

demand rate, in units per unit time period. Therefore the parameters //'and cr'in 

equation (14) are substituted with E(x) and cr^, for incorporating variability in lead 

time. 
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2.6 Baseline: 

The Baseline (B/L) is the perfect information solution for the inventory problem. In order 

to compute this solution we assume that the exact demand information for the future 

periods is known in advance, and this solution will be used for simulation. The ordering 

policy 1 4 is then decided using the Wagner-Whitin algorithm. The Service level for B / L is 

100%, i.e., no stock-out as this method has the perfect demand information. The B / L 

solution is the least cost solution and given the demand information and cost parameters, 

the B/L achieves the least cost and 100% service level. 

As the perfect information solution is computed using the actual demand 

information, there is no need for forecasting future periods demand. The backward 

induction routine and the lead-time incorporation is the same for WWPF and the B / L 

algorithms (Refer to the section 2.4). The demand model and inventory control policy for 

B / L are the same as that of WWPF algorithm. 

The differences between B / L and WWPF can be summarised as: 

• The demand is perfectly known for the B / L solution 

• The ordering quantities are never revised during the planning horizon and no 

safety stock is needed. 

2.6.1 Steps of B/L: 

The following steps outline the algorithm for computing the B/L solution. 

i . Take the actual demand for all periods in the planning horizon 

i i . Compute the ordering policy at the start of the planning horizon using W W (Refer 

section 2.4) for the entire planning horizon and calculate the total inventory cost. 

i i i . For incorporating a lead-time L, we disregard the first L periods and then compute 

the ordering policy using the WW method. 

Determines the ordering periods and the respective order quantities for the entire horizon 
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2.6.2 Example for illustrating B/L: 

Consider an eighteen period problem, where the setup cost K is $1000 per order, 

and the proportional holding cost h is $1 per unit per period. The lead-time L is 3 periods 

and the review period is unity. The planning horizon is of 18 periods and the demand for 

each period is accurately known in advance. Based on these considerations, the problem 

is setup using the Wagner-Whitin algorithm and the backward induction principle yields 

the least total cost for 100% service level. 

The B / L solution is shown in Table 7. 

Table 7: Baseline solution for an eighteen period inventory problem 
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
D, 153 87 157 240 178 242 182 214 297 245 255 322 299 294 309 320 320 387 

k=t 1000 2000 2178 2662 3208 3788 4470 4995 5543 6317 6842 7430 8151 8750 9390 
k=t+l 1178 2242 2360 2876 3505 4033 4725 5317 5842 6611 7151 7750 8471 9137 0 
k=t+2 1662 2726 2788 3470 3995 4543 5369 5915 6430 7229 7791 8390 9245 0 0 
k=t+3 2208 3272 3679 4205 4760 5509 6266 6797 7357 8189 8751 0 0 0 0 
k-t+4 3064 4128 4659 0 0 0 0 0 0 0 0 0 0 0 0 
k=t+5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
D, 240 178 242 182 214 297 245 255 322 299 294 309 320 320 387 
Min 
Value 1178 2788 4543 6430 7750 9137 
Order 
Periods 4 6 9 12 15 17 
Order 
Receipt 418 638 797 915 629 707 
Order 
Release 418 638 797 915 629 707 

The demand figures in the Table 7 represent the actual figures and this information is 

assumed to be known, in advance. Based on the actual demand figures, W W algorithm is 

run and the ordering quantities and the corresponding periods are determined. The cost 

matrix preparation, backward induction and lead-time incorporation are the same as that 

of WWPF and the details have been discussed earlier in section 2.4. 
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2.6.3 Limitations of the Baseline: 

The Baseline has certain limitations and it may not be a perfect benchmark for 

comparing the WWPF algorithm and Axsater's heuristic. The Baseline computes an 

ordering policy for satisfying the entire demand and thereby provides 100% service level. 

On the contrary, the WWPF algorithm and Axsater's heuristic cannot achieve 100% 

service level, due to the extended tail encountered in a normal distribution. This tail 

comprises values with very low probabilities, and the tail extends to infinity in an 

asymptotic manner. Therefore, it would be unrealistic to expect both these algorithms to 

yield 100% service level for a normally distributed demand. A target service level of 95% 

no stock out is incorporated in WWPF and Axsater's heuristic, so that a majority of the 

normally distributed demand values are captured. 

To ensure a fair comparison, the Baseline would have to be modeled in a way that 

a target service level can be specified. But such a solution, where the least total cost is 

incurred subject to service level constraints, cannot be modeled using the W W algorithm. 

An alternate Baseline, subject to service level constraints, can be formulated using integer 

programming. 

Figure 3 gives the pictorial representation of the integer programming formulation for an 

alternate Baseline. 

Figure 6: Alternate Baseline solution for target service level using Integer Programming 

The following notation is used for the integer programming formulation: 

yt = Opening stock in period t. 

xt = Order receipt in period t 

zt = Actual units delivered in period t 
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dt = Actual demand in period t 

K = Ordering cost ($ per order) 

h = holding cost ($ per unit per period) 

F = Fill-rate target for service level, i.e., proportion of demand satisfied from stock-on-

hand. 

The integer formulation can be expressed as: 

t=T 

Min. Z ^ o + ^ - i 
t=l 

where, IXi>0 -
0, x, = 0 

1, *. > 0 

s.t. yt + xt = yM + z, (Inventory balance equation) 

z, <d, 

t=T (t=T \ 

t=l V r=l J 

yT=0 

x,y,z>0 

(Delivery is always less or equal to actual demand) 

(Actual delivery is fill rate times the actual demand) 

(No stock left at the end of the planning horizon) 

The above integer program would give a solution for the values of x,, i.e., order receipt. 

In order to compute the order releases for the corresponding periods, the order receipt 

values would be accounted for the lead-time. The above integer program can be reduced 

to 0-1 Knapsack problem. 

Thus the integer programming formulation computes the Baseline with service 

level constraints. However, we chose a Baseline to satisfy 100% demand by using W W 

algorithm to take advantage of the modeling ease. Moreover, one would expect the 

Baseline solution with a 95% service level constraint to cost less than the Baseline for 

satisfying 100% demand. In this way, we are penalizing the Baseline and incurring more 

cost by constraining it to 100% service level. However, we expect the inflated Baseline to 

serve as a good benchmark for comparing the two algorithms. 
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Chapter 3: Numerical Study 

This chapter presents the design of a numerical study to compare WWPF 

algorithm, Axsater's heuristic, and the B/L solution. The performance metrics, selection 

of the factor levels for input parameters, and the partitioning of planning horizon are 

discussed in the following sections. 

3.1 Performance metrics for comparison of algorithms: 

The following performance metrics are used to judge the performance of the three 

algorithms. 

i . Total Cost: Sum of all setup costs and holding costs in the planning horizon. 

i i . Service Level: Proportion of periods in the planning horizon, where the entire actual 

demand is fulfilled from stock-on-hand. 

i i i . Stock out level as compared to the average demand: Sum of stock out quantities 

divided by the average demand in the test periods. This can be considered 

equivalent to 

1-Fill Rate 

where, "fi l l rate"15 is the fraction of demand that can be satisfied immediately from 

stock-on-hand. 

The measures of Total Cost and Service level are the traditional measures used to 

evaluate performance of inventory control algorithms and policies. The measure of stock 

out level is inspired from Song (2001) where the author claims that service level (i.e. fill 

rate or no stock out probability) is the not a sufficient measure to evaluate service 

performance. The paper establishes the magnitude of backorder as an alternate measure 

to be used in conjunction with fill rate for monitoring vendor performance. In our lost-

sales inventory model, there is no backordering but the magnitude of stock-out is 

1 5 Denoted as S2 in service level terminology. 
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measured. The average stock out measure would be explained in details later in the 

chapter. 

3.2 Factor levels for input parameters: 

The factor levels for input parameters have been motivated by a similar numerical 

study conducted in Porteus (1985). The relevant factor levels in our numerical study have 

been chosen to be the same as in Porteus (1985). 

The following factor levels are chosen for the input parameters in our numerical 

study. 

• Holding cost h (1) $ per unit per period 

• Setup cost per period K (1,10,100,1000,10000) $ per order 

• Lead time L (0,1,3,5) periods 

• Non-stationary demand16 process: Dt ~ N{pt,o~2) where pt =mt + p0 

o Intercept of non-stationary mean p0 (2,6,20,60) 

m 
o Slope of non-stationary mean normalized by p0, —, 

Mo 

(0,0.02,0.05,0.1,0.25), 

o Variance / mean, cr2 / p0, (0.3,0.75,1.5,10) 

The higher values of setup cost, in the range of 100, 1000 and 10000 times the 

holding cost, capture typical cost functions in a manufacturing setting. For example, a die 

shop has a high setup cost compared to the holding cost. The high setup cost can be 

attributed to opportunity cost attributed to production loss 1 7, cost of changeover, material 

handling, and initial quality failures after a die changeover. The holding costs are low as 

compared to setup cost and comprise opportunity cost on blocked capital and interest 

payments, material handling, labour, and pilferage costs. 

1 6 Demand data by using Norminv function in MS Excel, and the probabilities for Norrninv are modeled 
using Rnd function of V B A . 
1 7 Die changeover times may vary from 8 to 36 hours in some automotive applications such as forgings 
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The low values of setup cost, i.e., 1 and 10 times the holding cost, might be 

applicable to the retail settings. With recent advances in communication technologies 

especially EDI (Electronic Data Interchange), B2B (Business To Business) exchanges 

and applications, X M L (Extensible Markup Language), some retail companies have 

invested in such modern tools. The management of retail corporations consider it as a 

"sunk cost" that needs to be borne in order to do business and survive in the competitive 

world. Consequently, a large setup cost is no longer valid for such retail situations. 

During discussions with executives at Canadian Tire and Future Shop, managers 

expressed their inclination for more frequent orders. A n executive at Future Shop said 

that he encouraged the buyers / planners to place 52 purchase orders instead of one. On 

the other hand, the lot sizing approach is applicable to the shipment coming from Asia. 

There are two aspects regarding the shipment from the Far East that introduces high setup 

costs. Firstly, more frequent shipment means processing time and processing cost for 

customs and related freight clearances. So it would be beneficial for the retail firms to 

order items in bulk. Secondly, the shipments from Asia are primarily transported in full 

container loads, which may contain different items in containers. The holding costs are 

low as compared to setup cost and comprise opportunity cost on blocked capital and 

interest payments, markdowns and obsolescence costs, material handling, labour, and 

pilferage costs. 

The slope of the mean with linear trend, m, is varied as 0, 0.02, 0.05, 0.1, and 0.25 

corresponding to 0%, 2%, 5%, 10%, and 25% growth w.r.t. the values of/u0. The value 

of zero in terms of slope captures the case of stationary demand. The lower values of 2% 

and 5% might be more realistic in terms of growth. The value of 10% growth is a 

significant increase in 24 periods, and can be used to model successful electronic goods 

like MP3 players, where the demand increases rapidly upon introduction. In real life 

these parameters of non-stationary demand would not be known and the objective would 

be to estimate these parameters from the actual demand pattern. However, by choosing a 

wide range of slopes we hope to cover a broad spectrum of scenarios in "real-world". The 

slope of 25% is extremely high and the demand for the item could be as high as eight 

times in 24 periods. The selection of this slope is to explore the robustness of the 
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algorithms at high values of non-stationarity. In practice, greater revenue potential exists 

in the growth phase of a product introduction. Therefore, inventory control has greater 

relevance for positive values of m and the objective of inventory managers is to minimise 

stock outs during the growth phase. However, we believe that in order to conduct an 

exhaustive numerical study, negative values of m should be included. 

The values for mean-intercept, / / 0 , and variance/mean, cr2 / ju0, for the random 

normal variate, are motivated by the values chosen in Porteus (1985). The intercept 

varies as 2, 6, 20, and 60. These intercept values generate demand values in low and 

intermediate ranges. The demand could be as low as 0 and as high as 500 in a single 

period. If we need to address even higher values of demand, a proportionate18 change in 

the setup cost values would be needed. 

By choosing 24 periods as the planning horizon, we can plan for 2 years, 1 year, 6 

months, 1 month; with corresponding review periods as 1 month, 2 weeks, 1 week, and 

lday. Both WWPF and Axsater plan for safety stocks and the safety factor value 

corresponds to the probability of no stock out in the vulnerable period. For the sake of 

numerical study, we add safety stock to achieve 95% probability of no stock out during 

the vulnerable period. This corresponds to a safety factor value k value of 1.645. 

Reasonable setup and holding cost values for the demand level 
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3.3 Partitioning of Planning Horizon: 

The planning horizon of 24 periods has been partitioned into three zones viz. 

Initialisation, Stabilization, and Comparison zones. 

Partitioning of Horizon 

12 

13 

24 

Initialization: Find optimal smoothing 
parameters for Expo-smooth 

Stabilization: Allow a reasonable Opening 
Stock for all 3 algorithms & 
start ORDERING. 

Comparison: Generate Statistics for comparison of 
algorithms 

1: Measure T O T A L COST: Stabilization and Comparison zone/ 
2: Measure S E R V I C E L E V E L : Comparison zone 

Figure 7 :Par t i t ion ing of p lann ing hor izon periods d u r i n g numer ica l study to compare a lgor i thms 

A pictorial presentation of the planning horizon is presented in Figure 7. The planning 

horizon of 24 periods is partitioned into initialisation, Stabilization and comparison 

zones. 
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3.3.1 Initialisation: 

Using the demand data for periods 1 to 6, the exponential smoothing with trend 

forecasting model is formulated. The forecasting starts at period 2, as at least two data 

points are required for formulating the exponential smoothing with trend model. The 

level and trend values are initialized as discussed in the forecasting model in section 2.3. 

The forecast formulation for periods 1 to 6 is shown in Table 8. 

I n i t i a l i s a t i o n : Optimal smoothing parameters from periods 1-6 

Period Demand Level Trend Forecast Abs Error Sq Error 

t Dt a, bt Ft *t 
2 

1 18.00 18.00 4.00 
2 22.00 22.00 4.00 26.00 4.00 16.00 
3 28.00 27.46 4.97 32.42 4.42 19.56 
4 19.00 22.65 -1.52 21.13 2.13 4.55 
5 33.00 29.77 4.21 33.99 0.99 0.97 
6 37.00 36.18 5.67 41.85 4.85 23.53 

Smoothing Parameters 

a 0.727986 MSE= 

J3 
0.663565 

Table 8: Setup of forecasting model in Initialisation zone of planning horizon 

a and /? represent the smoothing parameter for level and trend components of the 

forecast, respectively. The optimal smoothing parameters for the forecasting model can 

be chosen by testing different combination of a and fi to obtain the combination with the 

least error for some criterion. The criterion can be chosen as M A D , MSE, or M A P E 

(Mean Absolute Percent Error). Makridakis (1998) mentions that it is customary to use 

M S E as a criterion, as M S E is a smooth function of the smoothing parameters. M A D 

used a criterion would be less susceptible to outliers vis-a-vis MSE, as the errors are 

squared in the latter criterion. To obtain the optimal values of smoothing parameters, the 

M S E or the error value using some other criterion can be evaluated over a grid of values 

of a and /? (e.g., each combination ofcr = 0.1,0.2, ,0.9, and /? = 0.1,0.2, ,0.9), and 
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then the optimal combination that yield the minimum value can be selected. Gardner 

(1985) mentions that smoothing parameters are usually chosen by a grid search to 

minimize the ex post M S E . 

Alternatively, a non-linear optimization could be used for computing the optimal 

smoothing parameters. Segura and Vercher (2001) describe the spreadsheet modeling of 

the Holt-Winters optimal forecasting using MS Excel Solver. The Holt-Winters method 

introduces demand data with trend and seasonality, and the spreadsheet modeling can be 

used for the current research by ignoring the seasonal factors and the corresponding 

modeling constructs. The non-linear problem, modified from original problem discussed 

in Segura and Vercher (2001), can be expressed as: 

Min. i g [D,-{al+bt}f 

s.t. (a,/?)e(0,l) 

where, Dt is the actual demand, at and bt are level and trend components (Refer 

Forecasting model, section 2.3), a and B are the smoothing parameters. Segura and 

Vercher (2001) highlight the limitation of using a non-linear optimization that it is 

possible to get a local minimum. However, a multi-start strategy, which resolves the non­

linear problem, could give a collection of local minima for the objective function. 

Moreover, since functional managers when using exponential smoothing can interpret the 

selection of parameters, the solutions computed by the non-linear optimization can be 

used with discretion. Segura and Vercher (2001) claim that Microsoft® Excel is capable 

of solving non-linear optimization problems and has generalized reduced gradient 

algorithm GRG2 implemented in the S O L V E R module. 

In the initialisation zone, optimal smoothing parameters are computed by 

minimising the M S E (Mean Square Error) for the periods of 1-6 and the non-linear 

optimization is solved using MS Excel Solver. The solver parameters are setup as shown 

in Figure 8. The solver has a target cell equal to the MSE, the objective function is set to 

minimise the MSE. The smoothing parameters for level and trend, modeled as changing 

cells in the solver dialog, are constrained for: 

• Non-negative values for smoothing parameters 
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• Smoothing parameter values less or equal to 1. 

Solver Parameters 

hSybject to the Constraints: 

Set Target Cell: ( I I S S S O L I 
EqualTo: C jjax Min C value of: fo 
By Changing Cells: — _ _ 

$K*3:$L$3 " 31 guess I • 

$K$3:$l$3 <- 1 
$K$3:$L$3>-0 

Change 

Options 

Reset M 

1 
Figure 8:Solver parameters f o r comput ing opt imal smoothing parameters i n forecast ing model 

Other options like maximum time, maximum # of iterations, tolerance are set in the 

solver options dialog, as shown in Figure 9. 

Solver Options 

Max Time: 

Iterations: 

Precision: 

Tolerance: 

Ii seconds OK 

1000 

|0.01 

Cancel 

% 

Load Model... 

Save Model... 

Convergence: jo.0001 Help 

r Assume Linear Model T Use Automatic Scaling 

W Assume Non-Negative T Show Iteration Results 
Estimates r rDerivatives r rSearch 

(• Tangent 

C Quadratic 

<• Forward 

C Central 

(• Newton 

Conjugate 

Figure 9: Solver options fo r comput ing opt imal smoothing parameters 
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The optimal values for smoothing parameters from data points of the Initialisation 

zone are used in the entire forecasting model. Ideally, new optimal values for the level 

and trend smoothing parameters should be computed at the start of every period; but such 

a step would have increased the computing time significantly, as we run 48 000 

iterations. Moreover, the optimization for smoothing parameters at the start of every new 

period, for the given planning horizon, did not show significant improvements to the 

algorithms. This was manually verified by running different input parameters on the MS 

Excel plus V B A code. 
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3.3.2 Stabilization: 

The periods 7-12 of the planning horizon constitute the Stabilization zone. From 

period 7, the algorithms, i.e., WWPF, Axsater and B/ L start ordering and incur setup and 

/ or holding costs. When ordering is allowed for both WWPF and Axsater, the algorithms 

tend to place high order quantities in the initial periods. The six period Stabilization zone 

mitigates this initial ordering spree by allowing both algorithms to stabilize. The selection 

of a six period Stabilization zone is based on the fact that lead-time values for the 

numerical study vary from zero to five periods, and by the end of the Stabilization zone, 

both the algorithms have received at least one order and accumulated some stock-on-

hand. The ordering pattern for the algorithms, especially Axsater's heuristic, stabilizes 

once an appreciable stock-on-hand has accumulated. 

Apart from allowing six periods of ordering, without measuring the service level, 

a reasonable amount of opening stock is allocated to all algorithms. An equal amount of 

opening stock is allocated to all three algorithms at the start of the Stabilization zone, i.e., 

7 t h period of the planning horizon. 

The opening stock, OS, is expressed as: 

where, 

F7 = Demand forecast for the 7 t h period, and 

F7+L = Demand forecast for the (Z+7)th period 

The value of 1.645 is the safety factor, k, corresponding to 95% probability of no stock 

out during the lead time. 

The opening stock OS is the sum of average demand and safety stock during lead-time, 

where, 

is an estimate of demand during the time interval (7, 7+L), and 
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1.645^|(M4D),=6vT 

is an estimate of safety stock during the time interval (7,1+L). 

OS is added to the algorithms because even i f the algorithms place an order at the 

start of the 7 t h period, it is not going to be available till the lapse of subsequent L periods. 

Moreover, we assume that the inventory decisions are being taken on a rolling horizon 

basis and at the start of the 7 t h period, there is enough stock-on-hand to fulfil demand till 

the arrival of the planned orders. 

The setup costs and / or holding costs are measured from the start of the 

Stabilization zone, i.e., 7 t h period. We do not start measuring the service level in this 

zone. The rationale is that the service level of the first L periods could be poor even 

though OS is added at start of 7 t h period. The maximum value of L considered in our 

study is 5 periods, so we do not measure service level in periods 7-12, i.e., Stabilization 

zone. 
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3.3.3 Comparison: 

The periods 13 to 24 of planning horizon are termed as Comparison zone, where 

we start collecting the service level measures along with total cost figures. The following 

cost and service level measures are collected in the Comparison zone. 

i . Service Level: Service level is defined in terms of probability of no stock out 

and any period in which the actual demand exceeds the stock-on-hand, the 

service level is considered zero. The comparison zone consists of 12 periods and 

the service level is collected as a performance metric only in this zone. After the 

running the algorithm upto 24 periods, service level is computed as: 

o Service Level = 100* {(# of periods where Dt < Stock-on-hand) /12} 

i i . Average Stock out level: Average stock out is the measure of the magnitude of 

stock out, i.e., what demand went unfilled. Moreover, this measure would make 

sense when the stock out level is defined w.r.t. the demand figures. To illustrate 

the point: stocking out by 50 units in 12 periods when the average demand was 

100 per period is significant compared to a stock out of 50 units in 12 periods 

when the average demand was 500 units per period. The average SO per period 

is defined as: 

12£<^24 

12<t<24 

12 

s.t. Dt > S, 

where, St is the stock-on-hand in period t, and Dt is the actual demand in t. 

53 



The performance measure of total cost is collected in the Stabilization and the 

Comparison zones. The total cost is the sum of ordering and holding costs. The total cost 

can be expressed as: 

1=24 r=24 

(=7 (=7 

where, ot = 1 for OR(t)>0, and o, = 0 for OR(t)=0, and 

OR{i) = Order quantity received in period t (due to the order placed L periods earlier) 

OS(t) = Opening Stock in period t 

h = Holding cost per unit per period ($ per unit per period) 

K = Ordering cost per order ($ per order). 

The ordering cost is usually incurred when an order is placed, but we charge ordering 

cost of $K per order, at the time of receipt. This is done to ensure a fair comparison 

between WWPF and Axsater's heuristic. It is possible that Axsater's heuristic would 

place a certain order during the last periods of the Comparison zone and due to the lead 

times, these shipments would not be received by the end of the 24 t h period. Such a 

problem would not be encountered in WWPF, as the algorithm determines the ordering 

policy, i.e., the ordering periods and the corresponding order quantities, for a given 

number of periods. Therefore, by charging ordering cost at the receipt of an order instead 

of an order release, we avoid any disadvantages for Axsater's heuristic. 
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3.4 Computational Complexity: 

The WWPF algorithm, Axsater's heuristic and the Baseline solution have been coded in 

MS Excel and V B A. For a planning horizon of 24 periods, there are 18 periods in which 

the three algorithms are run and the performance metrics are collected. For conducting an 

exhaustive numerical study, the planning horizon needs to be long enough to overcome 

the effects of initialisation, stabilization, and end of horizon. But the computation times 

of the algorithms would increase rapidly with increase in the length of the planning 

horizon. Let us analyse the increase in computation times of each algorithm with increase 

in periods in the planning horizons. 

The basic operations in WWPF algorithm are cost matrix generation, backward 

induction, and order quantity determination. For an 18-period problem, as required in the 

planning horizon of 24 periods, there are: 

18x18 + 17x17 + 16x16 + + 1x1 operations for determining the cost matrix in all 

the 18 periods. Similarly there are, 

18x18 + 17x17 + 16x16 + + 1x1 

operations each for the backward induction and order quantity determination during the 

18 periods. By substituting 18, the original number of periods, with n periods in the 

planning horizon, the operations performed for each step in WWPF algorithm would 

equal, 

n x n + (n -1) x (n -1) + (n - 2) x (n - 2) + + 1x1 ^ ^ 

By increasing the number of periods in the planning horizon ten folds, i.e., lOn, the 

number of operations performed by in each step of WWPF algorithm would equal, 

lOw x 10» + (10/1 -1) x (10/! -1) + (1 On - 2) x (10/1 - 2) + + 1x1 ^ 

By increasing the number of periods ten fold, the increase in number of operations for 

each step of WWPF equals the difference between equation (16) and equation (15). For a 

planning horizon of n periods, the total number of operations for WWPF algorithm is on 

the order of n2. Similarly, for a planning horizon of lOn, the total number of operations 

is on the order of (lO/z)2. 
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If a simplifying assumption is made that each operation takes unit time for execution, 

then it can be estimated that the computation times would increase in a quadratic manner 

with increase in the number of periods in the planning horizon. This was one of the 

reasons why a longer planning horizon was not chosen for conducting the numerical 

study. 

Axsater's heuristic involves computation for ju, R, Q, and with increase in the 

number of periods, a linear increase in computation times is expected. The Baseline 

computes the cost matrix, backward induction, and order quantity determination, only at 

the start of the planning horizon. Therefore, the increase in computational operations is 

expected to be exponential. For an w-period planning horizon, Baseline involves, 

3x(nxn) computations. 

If the planning horizon were increased ten fold, the Baseline would involve, 

3 x ( l 0 « x l 0 n ) computations. 

It can be observed that the increase is quadratic. 
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CHAPTER 4: RESULTS 

This chapter presents the results of the numerical study described in Chapter 3. 

The performance of the three algorithms is summarized over all factors and the 

performance of algorithms is analyzed for each individual factor. 

There are 1600 possible combinations of the input parameters and 30 replications 

are run for each combination. Each algorithm yields output values for total cost, service 

level and average stock out level for a unique combination of the input parameters. So we 

generate 1600*30 data points for each algorithm. These data points were recorded in a 

MS Excel database and then by means of database query functions in Excel, averages 

were computed. 

4.1 Grand Summary: 

Table 9 lists the average for total cost, service level and average stock out level 

computed for the WWPF, Axsater and B / L algorithms, over all replications and all factor 

levels. 

Table 9: Grand Summary of performance measures for algorithms over all factors and replications 

Total Cost Service Level Avg. Stock out Level 

WWPF 6213.512 94.2401 0.230217 

AXSATER 5973.037 73.16059 1.994076 

Baseline (B/L) 4382.691 100 0 

WWPF achieves a service level of 94% at a cost of $ 6213. Axsater's heuristic achieves a 

service level of 74% at a cost of $ 5974. The Baseline solution represents the perfect 

information solution. The B/L costs $ 4383 and gives an absolute 100% service level. It 

can be read from Table 9 that upon averaging over all replications and all factor levels, 

WWPF gives a cost of 42% higher than the B/L and Axsater's heuristic gives a cost of 

36%, higher than the B / L cost. From the cost perspective, Axsater's heuristic seems to 

perform better than WWPF, but we also need to look at the service level figures for a fair 
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comparison. WWPF achieves a 94% service level whereas Axsater gives a 74% service 

level. The B / L is always 100%. Going back to the cost figures, we can say that WWPF 

performs better than Axsater's heuristic. With an increase of 6% in the total cost, WWPF 

yields an increase of 21% in service level. The stock out figures for WWPF and Axsater 

algorithms are 0.23 and 1.99, respectively. 

The figure of 0.23 implies that in a test period of 12 periods, regardless of the demand 

level and other input parameters, by using WWPF a quantity equal to 23% of the average 

demand would not be satisfied from stock-on-hand. By this measure, the stock-out level 

of 1.99 implies that Axsater's heuristic would not fulfill the demand for approximately 2 

periods out of 12 periods test horizon. The stock-out level is significant in case of 

Axsater. In practice, the effort of inventory managers is aimed towards minimising stock-

out levels and in order to achieve this a reasonable increase in cost is not alarming. This 

is so because in most of the industries the loss of a prospective customer is significant in 

terms of monetary as well as other aspects of business. 

4.2 Effect of Setup cost on performance of algorithms: 

Figure 10 graphs the dollar value costs of the WWPF, Axsater and B / L algorithms 

for different setup cost values. 

Total Cost Comparison 

K = 1 K = 1 0 K = 1 0 0 K = 1 0 0 0 K = 1 0 0 0 0 
Varying SETUP COSTS (K) 

• WWPF 

• AXSATER 

• B/L 

Figure 10: Total cost comparisons for WWPF, Axsater, and B/L for varying setup costs 
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Figure 11 gives the total cost figures for WWPF and Axsater's heuristic w.r.t. B / L 
cost. 

To ta l C o s t C o m p a r i s o n w.r.t. B/L c o s t 
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Figure 11: Total Cost comparison of W W P F and Axsater w.r.t to Baseline 

The graphs showing total cost for varying setup costs need to be viewed along 

with the service levels. 
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Figure 12: Service levels for W W P F and Axsater algorithms for varying setup costs 
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Figure 12 presents the service level figures for WWPF and Axsater algorithms for 

varying setup costs. The service level for B/L is always 100%. The total cost figures of 

WWPF for K= land 10 are higher than that of Axsater. But the service level of Axsater's 

heuristic is significantly lagging as compared to that of WWPF. For K value equal to 1, 

the service level achieved by Axsater is as low as 20%, and for K equal to 10, the service 

level improves upto 55%. 

Apart from poor service level, the stock-out levels of Axsater's heuristic need to 
be explored. 

Avg SO/pd Comparison 

• WWPF 

• AXSATER 

K=1 K=10 K=100 K=1000 

V a r y i n g SETUP COSTS (K) 

K=10000 

Figure 13: Average stock out levels for WWPF and Axsater algorithms for varying setup costs 

Figure 13 presents the average stock out levels for WWPF and Axsater's heuristic for 

varying setup costs. Using Axsater's heuristic, the average demand in 7 periods is not 

satisfied for K= l , and for K=10 average demand for about 3 periods is not fulfilled, 

during the 12 period Comparison zone. The reason for the poor service level in case of 

Axsater's heuristic is the use of the EOQ formula for computing order quantities. 

60 



According to the formula for Economic Order Quantity, the order quantity is 

computed using the expression: 

A=Setup cost i.e. $ per order, 

h=per unit holding cost i.e. $ per unit per period, and 

ju =average demand rate. 

For a setup cost in the lower range, i.e., K =1 and 10, the order quantity Q is low. The 

EOQ model prescribes order quantities by minimising the sum of ordering costs and the 

holding costs. Using Axsater's heuristic, for a low K value, even a high value for average 

demand rate// cannot result in reasonable values of order quantities. Consider an 

example to illustrate this point, where the values of K, h, and //are 1,1, and 50, 

respectively. With these values, the order quantity using the EOQ formula would be 

It can be seen that even for an average demand value of 50, the EOQ model would place 

an order for 10 units. With higher K values, the order quantities prescribed by the EOQ 

formula would match the average demand rate. Moreover, the EOQ model is used in 

context of continuous reviews so that whenever the stock-on-hand drops below the re­

order level, the batch of Q units is ordered. But in our case a periodic review is 

considered and the algorithm needs to wait for one complete review period to order the 

next batch, and even then the order size is not sufficient. Therefore, in our further 

analysis of the individual factors of the numerical study, we do not consider the data 

points that correspond to K =1,10, as Axsater's heuristic would not be able to perform 

adequately due to the EOQ formula. 

Porteus (1985) describes a number of shortcuts and approximations for computing 

periodic review (s, S) parameters for stochastic, stationary demand model. Some of the 

shortcuts are based on EOQ model approximations and the setup cost is assumed to be 

relatively larger than the holding cost. But in the numerical study, the factor levels chosen 

for holding cost and setup cost violate this assumption. In Porteus (1985), the holding 

where, 
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cost h is fixed as $ 1 per unit per period, and the setup cost K is varied as $ 0.1, 1, 10, 

100, and 1000 per order. The value of setup cost AT as $ 0.1, is one-tenth of holding cost h 

,fixed at $1. Based on this fact the approximations termed as EOQROP and the 

N E W S B O Y (Refer Porteus, 1985) methods, where setup cost should be relatively large 

than holding cost, do not hold good. The observation of poor service level in Axsater as 

seen in Figure 12 and Figure 13, might have been observed in Porteus (1985) but it has 

not been reported in the paper. 

From Figure 12 it can be observed that the service level of Axsater's heuristic 

improves with increase in K value. For A M 00, the service level is 94%. Though 

Axsater's heuristic achieves a service level same as WWPF, the cost is 20% more than 

that of WWPF, relative to the Baseline cost. For A M 00, in absolute terms, Axsater costs 

15% more than WWPF. 

For K=T000, the service level of both algorithms are almost the same and above 95%. 

But Axsater's heuristic incurs 6% more in total cost than WWPF, relative to the Baseline 

cost. For A M 000, in absolute terms, Axsater costs 5% more than WWPF. The value of AT 

is fairly high and the Axsater's heuristic is able to order sufficient quantities and performs 

equally good. 

For K=10000, Axsater's heuristic outperforms WWPF. WWPF costs 7% more 

than Axsater and both of them achieve 99% service level (Refer Figures 10 and 12). In 

absolute terms, for A M 0000, WWPF costs 5% more than Axsater. In general, WWPF 

algorithm is reactive, i.e., lot sizing is done but the orders are released when the demand 

in the future periods appears to be firm. This reactive feature of WWPF algorithm allows 

delaying of the order quantities for the future periods without jeopardizing the lot sizing 

for minimization of the total cost. Due to this reactive feature, WWPF yields a good 

service level for ATM00,1000 at a lower cost vis-a-vis Axsater's heuristic. However, for 

ATM 0000, this reactive feature of WWPF prescribes orders in the later periods of the 

Comparison zone, and with more frequent ordering the algorithm ends up with higher 

ordering costs. The upside of the reactive feature of WWPF is that it leads to lower 

holding costs as the ordering is done very near to the realisation of the demand. But for 
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setup values as high as K= 10000, the effect of ordering costs on the total cost is 

significant and regardless of the saving on account of the holding cost, WWPF incurs a 

higher total cost. On the contrary, Axsater's heuristic releases less orders as compared to 

WWPF algorithm, and though higher holding costs are incurred, the total cost is lower 

than that of WWPF algorithm. 

The value of K= 10000 is very high for most industrial settings and for A>1,10 is 

not applicable to Axsater's heuristic. Therefore, it would be reasonable to analyse the 

effect of individual factors after eliminating the data points that correspond to AT=1,10, 

and 10000. Upon doing so, the grand summary of Table 9 would look like Table 10. 

Table 10: Grand Summary of performance measures after eliminating A'=l, 10,1000. 

Total Cost Service Level Avg. Stock out Level 

WWPF 
3522.07 96.68 0.12 

AXSATER 
3760.78 97.07 0.09 

Baseline (B/L) 
2584.20 100 0 

The performance of both WWPF algorithm and Axsater's heuristic is comparable and 

they provide service level above the 95% mark. WWPF algorithm costs 6% less than 

Axsater's heuristic, and about 36% higher than the Baseline. Axsater's heuristic costs 

about 46 % higher than the Baseline. 
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Figure 14: Total cost figures for W W P F and Axsater for setup cost values of 100, and 1000 
times of holding cost 
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At higher setup cost (A=100,1000), lot sizing performed by WWPF and B / L are 

very similar. The frequency of ordering prescribed by WWPF and B / L is almost the 

same. As WWPF orders based on net requirements, in turn derived from forecasts, the 

order quantity is more than that of the Baseline to account for safety stocks. Therefore, 

WWPF incurs greater cost for holding the extra units. Figure 14 shows the total cost 

figures for the three algorithms for setup cost values of 100 and 1000. The cost figures 

for WWPF and Axsater algorithms are comparable. From figure 15, it can be seen that, 

for higher setup values, WWPF algorithm and Axsater's heuristic the service level attains 

the 95% figure. 

Service Level Comparison 

W W P F 

A X S A T E R 

K=100 K=1000 

V a r y i n g SETUP COSTS (K) 

Figure 15: Service level figures for W W P F and Axsater for setup cost values of 100, and 1000 
times of holding cost 
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4.3 Effect of varying degrees of nonstationary demand on algorithm performance: 

Figure 16 summarises the effect of varying slopes of nonstationary demand on the 

total cost measures for WWPF, Axsater and B/L. 

Total Cost Comparison 
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m = 0 m=0 .02 m=0.05 m=0.1 m = 0 . 2 5 

V a r y i n g d e m a n d NON-STATIONARITY ( m ) 

Figure 16: Total cost measures for W W P F , Axsater, and Baseline for varying slopes of 
nonstationary demand 

The costs for all three algorithms increase with increase in non-stationarity. The gap 

between WWPF cost and B / L cost decreases slightly from 55% to 24% over-cost19 with 

increasing slopes, proportional to mean-intercept, of 0 to 0.25, respectively. The cost gap 

between Axsater's heuristic and B / L decreases slightly from 63% to 32% over-cost with 

increasing slopes, proportional to mean-intercept, of 0 to 0.25, respectively. The cost 

incurred by Axsater's heuristic is slightly more than that of WWPF algorithm, in the 

range of 3-7%. At the same time, the service level attained by Axsater's heuristic is 

greater than that of WWPF algorithm, in the range of 2-3% (Refer Figure 17). 

Cost figures are referenced to B /L , so 55% means 1.55 times the B /L cost. 
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Figure 17 shows that with increasing slopes of nonstationary demand, the service level 

for both WWPF algorithm and Axsater's heuristic remains stable. The slope value 

corresponding to m=0.25 is a very high figure and at this high level of nonstationarity, 

WWPF yields a service level of 94% and the service level for Axsater's heuristic falls to 

88%. This fall in service level may not be alarming in practical situations, as such high 

values of slope may not be experienced regularly. However, the stability in terms of 

service level indicates that WWPF is a robust algorithm. Based on the robustness of 

WWPF, in terms of service level at varying levels of non-stationary demand, the 

algorithm can be recommended for use in practice. 

Service Level Comparison 

m=0 m=0.02 m=0.05 m=0.1 m=0.25 

V a r y i n g d e m a n d NON-STATIONARITY (m) 

Figure 17: Service level measures for WWPF, Axsater, and Baseline for varying slopes of 
nonstationary demand 
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4.4 Effect of varying lead times on algorithm performance: 

The effect of lead-time on averaging over the other parameters viz. setup cost, 

mean, slope, intercept, and variance can be summarised by the following two graphs. 

Total Cost Comparison 

4500.0 , 

L=0 L=1 L=3 L=5 

V a r y i n g LEAD T IME (L) 

Figure 18: Total cost measures for WWPF, Axsater, and B/L for varying lead times 

Figure 18 presents the total cost measures for WWPF, Axsater, and B / L algorithms for 

varying lead times. WWPF cost increases with increase in lead time, the cost difference is 

10% as the L varies from 0 to 5 periods. Axsater's heuristic seems incur similar increase 

in cost values, and the cost difference is 7% as the L varies from 0 to 5 periods. This can 

be explained by the fact that both algorithms have to incur greater holding costs with 

increase in lead times. The Baseline exhibits a slight decrease in cost as lead time varies 

from 0 to 3 periods, and then the cost increases moderately for a lead time of 5 periods. It 

seems that greater holding costs increase the Baseline cost at high lead times. 
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Figure 19 gives the service level measures for WWPF and Axsater algorithms for 

varying lead times. The service level for both algorithms is above the 95% level. 

Therefore, both WWPF algorithm and Axsater's heuristic are performing well in terms of 

both total cost and service level for varying lead times. 
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Figure 19: Service level measures for WWPF, Axsater, and B/L for varying lead times 
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4.5 Effect of varying mean demand level on algorithm performance: 

The mean demand level is varied by varying the intercept of the nonstationary 

mean. Figure 20 shows the total cost measures for the three algorithms with varying 

mean demand levels. The total cost for WWPF is more than that of Axsater's heuristic, at 

lower demand levels. With increase in demand level WWPF gains some cost 

improvements w.r.t. Axsater's heuristic. WWPF cost decreases from 71% to 27% over 

B / L cost, with increase in mean from 2 to 60, respectively. 

Total Cost Comparison 
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Figure 20: Total cost measures for W W P F , Axsater, and B/L algorithms for varying mean 
demand levels 
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Figure 21: Service level measures for W W P F , Axsater, and B/L algorithms for varying 
mean demand levels 
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Figure 21 shows the service levels for WWPF and Axsater algorithms. Both 

algorithms have comparable service levels, above 95% range. Axsater's heuristic adds 

safety stock to account for the forecast inaccuracy and the amount is added to the re-order 

level, while the order quantity is based on the updated demand rate. On the contrary, for 

WWPF safety stock is added to the order quantity. As the actual demand is being 

generated using a simulation, it is possible to generate zero demand values at low mean-

intercept values (Mean=2). At higher mean-intercept values, though the actual demand 

figures vary depending on the non-stationary parameters, the demand in a single period 

does not drop to zero. In these cases where the demand is zero, WWPF orders are more 

than required and incur greater holding costs. On the contrary, Axsater's heuristic takes 

care of trend, but an order is not placed until the Inventory position falls below the re­

order level. This feature in Axsater's heuristic results in lower cost as compared to that of 

WWPF, at low demand values. However, the trend changes as the mean-intercept level 

increases, and Axsater's heuristic incurs more cost than WWPF algorithm. 
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4.6 Effect of varying demand variances on algorithm performance: 

Figure 22 summarises the effect of varying variances on the total cost measures of 

WWPF, Axsater and B / L algorithms. The variance in demand has a significant effect at 

lower slope values, but when all factors are combined and averages are computed, 

variance does not affect the performance of the algorithms significantly. For higher slope 

values, even with high variance parameters, an upward trend is the dominating effect. 

Total Cost Comparison 

5000.0 , 

Var=0.3 Var=0.75 Var=1.5 Var=10 

V a r y i n g DEMAND VARIANCE (Var) 

F igure 22: Tota l cost measures fo r W W P F , Axsater, and B/L a lgor i thms fo r v a r y i n g 
demand variance levels 

As seen from figure 22, the total cost for both algorithms increases with increase in 

variance. The increase in cost of both WWPF and Axsater is significant when the 

variance parameter increases from 1.5 to 10. The gap between the WWPF and B/L, and 

Axsater and B/L widen with increase in variance. Both WWPF and Axsater have to plan 

for sufficient safety stock to account for the high volatility in demand figures, attributable 

to the high variance parameter. However, B /L does not suffer from these rapid changes. 

Both algorithms display stability in terms of cost and service level, and therefore are 

suitable for volatile demand environment. 
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Figure 23 summarises the effect of varying demand variances on the service 

levels of WWPF and Axsater algorithms. The service levels for both algorithms do not 

show any significant drop at higher variance levels, and the algorithms are above the 95% 

service level. 

Service Level Comparison 
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F igure 23: Service level measures fo r W W P F , Axsater, and B/L a lgor i thms fo r va ry ing 
demand variance levels 
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C H A P T E R 5: C O N C L U S I O N S & F U R T H E R R E S E A R C H 

Based on the results of the numerical study discussed in Chapter 4, this chapter 

presents the highlights of comparison between WWPF algorithm and Axsater's heuristic. 

The scope for future research is discussed in the later section. 

5.1 Comparison between WWPF and Axsater algorithms'. 

The salient points of comparison between WWPF algorithm and Axsater's 

heuristic have been summarised in Table 11. 

Table 11: Highlights of comparison between W W P F algorithm and Axsater's heuristic 

W W P F A L G O R I T H M A X S A T E R ' S H E U R I S T I C 

Total cost is slightly less than Axsater for 
reasonable values of setup costs 
(A=100,1000). Gap between WWPF and 
B / L decreases at high setup costs. 

Low service level (SL) for low setup costs 
i.e. AT =1,10. Ordering based on EOQ 
formula not applicable for low setup costs. 

Performs equally good as Axsater's 
heuristic. 

Robust algorithm at high levels of 
nonstationarity. 

Gap between B / L and WWPF cost 
decreases with increase in non-stationarity 

Cost is slightly more than that of WWPF 
algorithm. 

Service falls at exceptionally high levels of 
nonstationarity. 

Gap between B / L and WWPF cost 
decreases with increase in non-stationarity 

Average over all combinations: 

Cost 42 % higher than B / L 
SL 94.2 % 

Average over all combinations: 

Cost 3 6% higher than B / L 
SL 74% 

Worst case performance: 

Cost 160% higher than B / L 
SL 85 % 

Worst case performance: 

Cost 64% higher than B / L 
SL 18% 

WWPF applicable to Seasonal demand by 
using Holt-Winters plus WW 

Axsater's heuristic, in its present form, 
handles only trend but it can be modified 
for seasonality 
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Moreover, WWPF uses exponential smoothing with trend as the forecasting 

model but in essence the algorithm is independent of the forecasting method. Other 

forecasting models such as Moving average, A P J M A , regression model, etc. can be 

incorporated in WWPF for improved modeling of the demand characteristics. In its 

present form, Axsater's heuristic uses an algorithm for updating the average demand rate 

based on the exponential smoothing with trend model. If any other forecasting model 

needs to be incorporated, then an alternate method of updating average demand rate 

would be required for Axsater's heuristic. 

For reasonable values of K, i.e., 100 and 1000, both algorithms provide good 

service level at reasonable costs. Both WWP and Axsater algorithms replicate "real-

world" inventory practice and can be recommended as inventory control heuristics for 

production planning and purchasing functions in manufacturing and retail industries. 

5.2 Limitations of the current research: 

The results of the current research are based on certain approximations. Firstly, 

adding safety stock for a periodic review system with lost sales is a key issue. The way 

safety stock is added to both algorithms resembles the formula for a backorder 

environment and the approach is not optimal for a lost sales environment. The 

computation of safety stock for both algorithms may have a significant effect on the 

results; hence it would be desirable to obtain optimal safety stock values. However, the 

approximation was followed, as it was simple to understand. Moreover, in practice, it is a 

challenge to model the shortage costs. Therefore, it is the objective of most practitioners 

to aim for higher fill rate and reduce the backlogging of sales. 

Secondly, Axsater's heuristic has been primarily proposed for continuous review 

inventory systems and we selected the adaptive (s, S) transformation of Axsater's 

heuristic for comparison with WWPF algorithm. The use of the EOQ formula in 

Axsater's heuristic is not reasonable for low setup costs. If at all the EOQ formula is used 
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for making ordering decisions, the Axsater's heuristic would need a modification to 

amplify the order quantities. The EOQ model minimises the total cost, sum of ordering 

and holding costs, and assumes a constant demand rate. However, Axsater's heuristic 

uses this EOQ model for an increasing demand, which may lead to higher than expected 

holding costs. This could partly explain the higher costs incurred by Axsater's heuristic 

as compared to WWPF algorithm. To test the efficacy of WWPF algorithm, we wil l have 

to compare it with other methods such as, the myopic heuristic proposed by Bollapragada 

and Morton (1999), and Askin's heuristic (1981). 

Finally, the results obtained from the numerical study may be sensitive to the 

length of the planning horizon. Ideally, the planning horizon, for conducting an 

exhaustive numerical study the partitioned zones must be long enough. Bollapragada and 

Morton (1999) consider a 70-period horizon, which mitigates the end-of-horizon effects. 

Similarly, the numerical study should have been done for a longer planning horizon, but 

because of the computational complexity and the limited programming capabilities with 

MS Excel and V B A , we could not conduct an extended numerical study. A longer 

planning horizon would be possible using efficient coding languages such as C++, but the 

objective in the current research was to build a tool on MS Excel, a widely used 

application. 
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5.2 Further Research: 

The scope of future work related to WWPF and Axsater algorithms is discussed in 

this section. Some of the following extensions could have been included in the current 

research to provide a holistic view, but they were not addressed due to time constraints. 

5.2.1 Incorporation of seasonality: 

The current work evaluates the effectiveness of WWPF and Axsater for nonstationary 

demand data with trends. However, a next logical extension of this work would be to 

incorporate trend and / or seasonality in the nonstationary demand parameters and then 

evaluate the effectiveness of WWPF. WWPF can handle trend and / or seasonality by 

incorporating exponential smoothing with trend and seasonality20 and rest of the 

algorithm would be unaltered. Axsater's heuristic in its present form cannot handle 

seasonality but with modification, adaptive (s, S) parameters can be computed for 

seasonal demand. 

5.2.2 Design of Forecasting methods for better inventory control: 

Forecasting methods have usually been considered as statistical tools to fit data 

and then predict the future based on events in the past. However, fitting data accurately 

does not necessarily imply that the inventory parameters have been decided optimally. 

Traditionally, sales forecasting models have been judged based on the accuracy of fitting 

data. However, the efficacy of the process does not lie in just predicting the right 

numbers. On the contrary, for enhanced supply chain efficiency we need to design and 

integrate forecasting and inventory models so that the total cost of inventory is 

minimised. 

The smoothing parameters in exponential smoothing models are chosen so as to 

minimise the M S E (mean square error) or M A P E (mean absolute percent error). But how 

about optimizing the smoothing parameters so that the total cost of inventory is 

minimised! 

2 0 Also known as Holt-Winters forecasting method 
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