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Abstract 

Two dimensional (2D) periodic texture in a thin GaAs semiconductor waveguide is used 

to dramatically enhance the second harmonic conversion efficiency of infrared laser radiation 

incident on the structure from above. A square lattice of through-holes was etched into a 140 nm 

thick layer of GaAs supported on a ~ 1 urn thick alumina cladding layer. The pitch of 770 nm, 

and hole diameter of 320 nm, were chosen so that fundamental light at a wavelength of - 2um 

could resonantly excite the lowest order band of leaky photonic eigenstates characteristic of the 

strongly textured membrane. The energy of the fundamental and second harmonic are both less 

than the band gap energy of the GaAs, thus avoiding any linear absorption. Used in this way, the 

structure acts effectively like a nonlinear cavity, where strong internal fields are generated in the 

GaAs waveguide core layer when the incident light excites a leaky photonic eigenstate. The 2 n d 

order polarization excited in the GaAs can also be resonant with photonic eigenstates at twice the 

fundamental frequency and in-plane wavevector. 

Both model calculations and experimental results (obtained by J. Mondia at the 

University of Toronto) clearly demonstrate that the second harmonic conversion efficiency is 

dramatically influenced when the fundamental and/or the second harmonic fields are resonant 

with photonic bands. Peak enhancements of over 1000 times are observed under the "double-

resonance" condition when both the fundamental and second harmonic fields excite photonic 

eigenstates, and the enhancement clearly tracks the in-coming and out-going dispersion of the 

photonic bands. 
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Chapter 1 

Introduction 
Photonic crystals are dielectric structures with a periodic refractive index. The spatial 

period of the refractive index modulation is called the lattice constant. In semiconductor 

materials, the lattice may introduce gaps into the energy band structure of the crystals, so that 

electrons are forbidden to propagate with certain frequencies in certain directions. If the lattice 

potential is strong enough, the gap might extend to all possible directions, resulting in a complete 

band gap. Photonic crystals do to photons what semiconductor crystals do to electrons. They 

create a situation in which photons are forbidden to propagate in certain directions. In general 

the periodicity of photonic crystals can be in one dimension (ID), two-dimensions (2D), or three 

dimensions (3D). 

In 1987, Yablonovitch [11] and John [12] independently suggested, from different 

respects, that structures with periodic variations in dielectric constant could influence the nature 

of the modes in a material. Yablonovitch suggested that a three dimensional periodic array of 

dielectric scatterers possessing a complete band gap may lead to the inhibition of spontaneous 

emission, while John suggested that carefully prepared three dimensional photonic crystals with 

moderate disorder may result in strong Anderson localization of photons. In 1991, by drilling a 

dielectric block full of holes on the order of centimeters in diameter to form a face-centered 

cubic (FCC) crystal structure, Yablonovitch fabricated the first 3D periodic photonic crystal, 

which was supposed to posses a complete bandgap in the microwave regime [13]. Since then, 

many other 3D photonic crystal designs and experiments have appeared that offer complete 

photonic bandgaps, such as in a diamond structure [14], in highly symmetric photonic quasi-
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crystals [15], in "layer-by-layer" photonic crystals [16,28], and in a 3D FCC polymer structure 

[29]. 

Compared with the difficulty of fabricating 3D photonic structures, 2D photonic crystal 

structures etched into semiconductor waveguides are relatively easy to fabricate and therefore 

are of substantial interest [17,23,24,25,26,27]. Although they cannot possess true optical band 

gaps, they do exhibit many of the attractive features of their 3D counterparts. Previous work in 

our lab has developed a linear model [1,2] for efficiently determining the specular reflectivity 

spectrum of two dimensionally textured slab waveguides. This model uses a Green's function 

technique to solve Maxwell equations. The results of this computer code have been validated by 

obtaining very good agreement between the simulation results and the experiment results 

obtained on square lattices and triangular lattices, with or without defects, etched, into the planar 

GaAs waveguides [3,17]. 

Although most of the effort in the field has focused on the search for a material that 

exhibits a full photonic band gap, it has been recognized that nonlinear optical effects may play 

an important role in the development of more efficient opto-electronic devices, such as an 

intensity-driven optical limiter or an optical switch [18]. Optical frequency conversion by second 

order nonlinear interactions (via the second order susceptibility j ( 2 ) ) offers a way to obtain 

coherent light in various spectral regions. Second Harmonic Generation (SHG) is a two-photon 

process in which two photons are converted to a single photon. If the propagation wavevectors at 

the two frequencies satisfy /?(2&>) = 2/3(a>) (this is called ideal phase-matching) quasi 

momentum is conserved and the interaction is allowed. In general, the linear dispersion of the 

crystal mismatches the phase between the different interacting optical waves. In a periodically 

modulated nonlinear material the conservation of momentum becomes the "generalized phase 
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matching condition" f3(2co) = 2B(co) + Gi, where Gi is one of the reciprocal-lattice vectors that 

describes the periodic modulation. The first example of a 2D periodic non-linear photonic crystal 

similar to that proposed by Berger [20] was experimentally realized by Broderick in bulk lithium 

niobate [21]. Internal conversion efficiencies of >80% were observed when the 2D reciprocal 

lattice vectors helped satisfy the G P M condition. 

In our case, however, the 2D square lattice is textured not in a bulk material, but on a thin 

slab waveguide of GaAs, which has a thickness of 140 nm (less than half of the wavelength of 

the incident fundamental light and that of the second harmonic). While the G P M concept would 

apply directly to the second harmonic conversion process involving bound modes propagating in 

the plane of these textured waveguides, this thesis focuses on a qualitatively different mechanism 

for enhancing second harmonic conversion in periodically textured nonlinear media. It is shown 

below that when light incident on the surface of the textured waveguide excites leaky photonic 

eigenstates of the structure, the 2D-textured planar photonic crystal acts like a non-linear cavity. 

When both fundamental and second-harmonic polarizations excite leaky photonic bands, the 

second harmonic generation mechanism is not one of conversion versus distance in the direction 

of propagation, but one of an engineered enhancement of what is effectively surface second 

harmonic generation [22]. Uniform illumination from above can resonantly excite large local 

fields in the vicinity of the textured membrane, which in turn can be efficiently coupled back out 

in the form of an outward propagating plane wave in vacuum. It turns out that the overall 

external efficiency of this reflective harmonic conversion process has nothing directly to do with 

in plane propagation effects. 

A nonlinear model was developed in our lab, to calculate the second harmonic [22,30] 

conversion efficiency for plane waves incident on 2D periodically textured nonlinear 
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waveguides. In this thesis, a 2D photonic crystal was designed by the author to achieve high 

second harmonic generation efficiency. A square lattice of though holes was etched into a 140 

nm thick layer of GaAs waveguide supported on a ~ 1pm thick alumina cladding layer. The 

pitch of 770 nm, and hole diameter of 320 nm, were chosen so that fundamental light at a 

wavelength of ~ 2 pm could resonantly excite the lowest order band of leaky photonic eigenstates 

characteristic of the strongly textured membrane. Used in this way, the structure acts effectively 

like a nonlinear cavity, where strong internal fields are generated in the GaAs waveguide core 

layer when the incident light excites a leaky photonic eigenstate. The 2 n d order polarization 

excited in the GaAs can also be resonant with photonic eigenstates at twice the fundamental 

frequency and in-plane wavevector. The energy of the second harmonic in this structure is less 

than the band gap energy of the GaAs in order to avoid complications due to absorption. Both 

model calculations done by the author, and experimental results obtained by J. Mondia at the 

University of Toronto, clearly demonstrate that the second harmonic conversion efficiency is 

dramatically influenced when the fundamental and/or the second harmonic fields are resonant 

with photonic bands. 

The remainder of the thesis is organized as follows. In chapter 2, the band structures of 

untextured and square-lattice-textured slab waveguides are described. The linear and the non­

linear models are briefly discussed, and the process by which the final sample was designed is 

described. Chapter 3 presents the procedure used to fabricate the designed sample. Chapter 4 

presents the results of linear and non-linear light spectroscopy experiments on the textured 

planar waveguide described in chapter 3. The experimental data are compared with linear and 

non-linear simulations based on the Green's function formalism described in Chapter 2. Chapter 

5 gives a discussion of the results, and the conclusions drawn from our work. 
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Chapter 2 

Theory and Sample Design 

This chapter briefly describes the electromagnetic properties of untextured and textured 

planar waveguides and summarizes the linear and nonlinear models developed by others in our 

group, but used extensively in this thesis to simulate the linear and second harmonic dispersion 

of GaAs waveguides textured with a 2D square lattice of through-holes. The latter part of the 

chapter describes how the structural parameters of the samples were designed to optimize the 

conditions for experimentally measuring second harmonic conversion via leaky modes in these 

structures. 

2.1 Textured Planar Waveguides 

The electromagnetic properties of untextured and textured waveguides are reviewed in 

sections 2.1.1 and section 2.1.2 respectively. 

2.1.1 Untextured Planar Waveguides 

The planar waveguides used in this work consist of a dielectric slab of high refractive 

index sandwiched by cladding layers with lower, and in general different refractive indices 

above and below. Light can be guided and confined in the high-index slab by total internal 

reflections at the core/cladding interfaces. In order to obtain a complete description of the modes 

of dielectric waveguides, Maxwell's equations must be solved separately for transverse electric 

(TE) and transverse magnetic (TM) polarized modes. TE (TM) polarized modes have their 
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electric (magnetic) field parallel to the layer interfaces (see section 2.3). A schematic dispersion 

diagram for an untextured, asymmetric slab waveguide (with air and a dielectric as the two 

different cladding layers) is shown in Fig. 2.1. The (3// symbol refers to the in-plane wavevector 

of the harmonic solutions of the Maxwell equations in this planar geometry. The three straight 

lines represent the dispersion of light in homogeneous regions of air, core material, and cladding 

materials. The bold lines between the core light line and the cladding light line are the perfectly 

bound modes or slab modes that propagate without attenuation in the plane of the waveguide. 

The modes in this region undergo total internal reflections at the air-core and the core-cladding 

interfaces. The dark (grey) shaded areas represent a continuum of radiation modes. The modes in 

these regions can be thought as the plane waves incident from the air (cladding), reflected back 

from the core and cladding (air) layers, while not passing into the cladding (air) from the core 

due to total internal reflection. In general, there is no resonant enhancement of the fields in the 

core region of the guide in these shaded, continuum portions of the dispersion diagram. The area 

below the light line of the core material is a forbidden area, in which there are no 

electromagnetic modes that can propagate. There are an infinite number of discrete bound 

modes. Only the lowest two are shown here. The lowest bound mode is always TE polarized. 

The planar waveguide used in the second harmonic experiments has an ~ 140nm thick 

core layer of GaAs (with n~ 3.3) supported on an ~1 um thick cladding layer of wet-oxidized 

Alo.98Gao.02As, which has a refractive index of ~ 1.6. 

http://Alo.98Gao.02As
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fit 

Figure 2.1: Schematic dispersion diagram for an untextured, asymmetric planar wave-guide (with air and a 
dielectric as the two different cladding layers). The bold lines are bound modes localized in the waveguide; the 
dark (grey) shaded areas represent the continuum of radiation modes. The three straight lines are the 
dispersion of light in air, in the core material, and in cladding materials. 

2.1.2 Textured Planar Waveguides 

A periodic structure textured on or in a planar waveguide presents a periodic scattering 

potential that modifies, or renormalizes, the slab-mode dispersion of photons described above 

[27] Bloch's theorem implies that all of the electromagnetic modes of the photonic crystal are of 

a Bloch form: that is they are the product of a periodic function having a period equal to that of 

the grating, times a phase factor e'p"'p, where fin is the in-plane wavevector of the mode, and 

p = {x, y). Just as in solid state physics, it is convenient to describe the excitation spectrum in 

terms of only the part of the reciprocal space spanned by the 1 s t Brillouin zone [33]. The 

dispersion diagram of a planar waveguide weakly textured with a ID grating-is shown 
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schematically in Fig. 2.2. In the diagram, p7 = In IA is the principal grating wavevector, and A 

is the lattice constant. The bands are zone-folded versions of the slab mode dispersion, 

renormalized by the scattering. Using this zone-folded scheme, some of the bound bands fall 

above the air light line, where they couple to radiation modes in the continuum. These remnants 

of the bound modes are referred to as resonant (leaky) modes, since they have Fourier 

components that radiate away from the core layer. Thus the "bound modes" in this type of 

structure are split into two distinct kinds. One set are truly bound (dotted and dashed curves) that 

exists below the light line of the cladding material, while the others are leaky modes (solid 

curves) that exists above the light line of the air (or more generally the cladding with the lowest 

refractive index). Band gaps open at the centre and edges of the 1st Brillouin zone because of the 

periodic potential. The higher the index-contrast is between the material of the grating layer and 

that of the cladding (air and alumina in our samples), the stronger the potential is, and therefore 

the bigger the band gaps are. The size of the gaps are also affected by the filling fraction of the 

grating. 

Experimentally, we measured the reflection spectrum of broadband light in the specular 

direction. The broadband light incident at fixed angle corresponds to an angular cut through this 

dispersion diagram, as indicated by the dash-dotted line in Fig. 2.2. From the specular 

reflectivity spectrum, the resonant (leaky) modes can be detected and used to map out the 

dispersion diagram for the leaky modes. 
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Figure 2.2: Schematic of the dispersion of electromagnetic modes in a ID textured slab waveguide. The 
dashed lines are the dispersion curves in the extended zone scheme. The shaded area represents the 
continuum of radiation modes. The solid and solid-dotted lines are the dispersion curves of the bound modes 
in the folded-zone scheme. The dotted lines are truly bound modes and the solid lines are the resonant (leaky) 

modes. The Bragg condition (S = Bg 12) is represented by the vertical dashed lines. The dash-dotted line 

represents the part of the bandstructure probed by a broadband source incident at a fixed angle. 

2 . 2 Physical Interpretation of the Photonic Eigenstates 

Figure 2.3 is a momentum space diagram that shows the nine dominant Fourier 

components of the dielectric scattering potential for a simple square lattice (solid dots). The 

corresponding 9 Fourier components of the induced electric field are included at 

P = Pmc +ifigx + jfigy for hj = 0,±1, where J3mc is the in-plane wavevector of the plane wave 

assumed to be incident on the structure from the top halfspace. Figures 2.3(a) and 2.3(b) 

correspond to the incident wavevector, /?m t., being aligned along the X symmetry direction and 
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the M symmetry direction of the square Bril louin zone respectively. The small gray vectors 

represent the in-plane wavevector of the 

Figure 2.3: Momentum space diagram for a square lattice. The gray square represents the first Brillouin zone 
of the square lattice. Figures (a) and (b) represent cases where the incident radiation is along the X symmetry 
direction and the M symmetry direction of the square reciprocal lattice respectively. The dots represent the 
Fourier components of the dielectric scattering potential. The small gray vectors represent the in-plane 
wavevector of the incident radiation. The large vectors represent the in-plane wave vectors of the field 
components that result from the scattering potential adding momentum to the incident field. The polarization 
of each field component is represented by small dashed vectors. In (a) the 1 s t order Fourier components are 
labeled by A , and the 2 n d order by B. The component at the center of the Brillouin zone is the 0 t h order or 
radiative component [ 1,3J. 

incident radiation. The large vectors represent the in-plane momenta of the scattered wave 

components that result from the scattering potential adding in-plane components to the incident 

field's momentum. The polarization of each field component is represented by small dashed 

vectors for the case of the s-polarized (TE-like) scattered field components. There are a 

duplicate set of p-polarized (TM-like) scattered field components (not shown). In F ig . 2.3 (a) 

the 1 s t order Fourier components are labeled by A , and the 2 n d order are labeled by B . The 

component at the center of the Bri l louin zone is the 0 t h order or radiative component that couples 

to radiation fields. 

The zone-folded dispersion for a weak 2D texture with square symmetry was well 

described in [3,1]. Generally, for a given incident wavevector (3jnc, the Fourier components of 
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the square lattice texture scatter the incident field into a discrete set of scattered states with in 

plane wave vectors f3inc+Gm , where Gm =i/3gx + jj3gy . When the incident frequency 

corresponds to one of the slab modes at these in-plane wave vectors, fi>(|/?/nc + G„, I), the 

amplitude of the corresponding fields will be resonantly enhanced. This resonant field affects the 

specular reflectivity over a range of frequencies in the vicinity of this phase-matched condition. 

The dispersion is a function of fiim, which is schematically illustrated for the lowest order 

resonant slab modes in Figure 2.4. The mode at &>(|/?//)Cx + increases monotonically 

oo/c 

Figure 2.4: Schematic dispersion diagram for a 2D square lattice texture in a thin slab waveguide. The s and 
p are the polarizations labels of the photonic modes. 

in energy as J3inc increases along the X direction. This mode corresponds to the highest upward 

dispersing band in Figure 2.4. The mode excited at «y(|/? f a cjc-/? gx|) decreases monotonically in 

energy as ]3in(. increases in the X direction, which corresponds to exciting the lowest, downward 
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dispersing band in Figure 2.4. The modes at «(/? / n cJc ± Pgy\) disperse upward in energy as Binc 

increases in the X direction, but at a moderate rate compared to the other two modes. 

The polarization labels on the bands shown in Figure 2.4 can be understood using the 

following symmetry argument. The polarization (s, p or elliptical) density of the radiation of the 

0 t h order component that determines the coupling to the radiative fields is given by (2.1) [1] 

• W , , , ) = Tz(Gm)milc-G,n) (2.1) 
m=l...N 

(here N=4 when only considering the first order Fourier components of the scattering potential). 

Under resonant excitation conditions, one or two Fourier components of the field corresponding 

to the resonantly excited TE slab modes will dominate the "scattered field everywhere except at 

P i n c = 0. The upward dispersing mode in Figure 2.4 becomes dominated by a single Fourier 

component as it moves away from the zone centre, the component in the x direction. This 

corresponds to a TE slab mode at (Bjnc + Bg)x, which is polarized in the y direction. From 

Equation 2.1 above, the polarization density at j3jnc is polarized in the j) direction, thus 

generating an s-polarized radiation field in the upper half space. The downward dispersing mode 

in Figure 2.4, becomes dominated by a single Fourier component, the component in the 

- x direction. This corresponds to a TE slab mode at (Bjnc - Bg)x, which is also polarized in the 

j> direction, so the polarization density at j3jnc is polarized in the y direction. This again 

generates an s-polarized radiation field in the upper half space. For the two moderately 

dispersing bands things are different and slightly complicated. From symmetry, the incident 

field must excite either symmetric or anti-symmetric combinations of these slab modes 

(degenerate in the absence of texture) at J3hlc ± B y. It is evident that the magnitude of the 
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wavevectors of each of these components become bigger slowly when f3mc increases in the X 

direction, so these modes experience relatively little dispersion. A symmetric superposition of 

these scattered slab modes will add as shown in Equation 2.1 to yield a polarization density at 

Pinc oriented along the y direction, corresponding to s-polarized radiation in the upper half 

space, while the anti-symmetric combination leads to a polarization density oriented parallel to 

Pmc' which can only lead to p-polarized radiation in the upper half space. Similarly when J3hw is 

oriented along the M direction, it follows that there are 2 s- and 2 p-polarized modes, one each 

dispersing up and down. That is how the polarizations are labeled in Figure 2.4. More generally, 

if j3jnc is away from these high symmetry lines in the Brillouin zone, the eigenmodes are no 

longer purely symmetric and anti-symmetric superpositions of the untextured modes. These 

modes are, in general, elliptically polarized, and cannot be labeled as pure s- or p-polarized. 

For the second harmonic generation, in addition to enhancements of the magnitude, it is 

important to understand the polarization conversion rules [22]. These conversions are sensitive 

to the symmetries and relative orientations of the photonic and electronic lattices. In this thesis, 

the nonlinear waveguide used is the semiconductor material GaAs, and the photonic crystal has 

square symmetry. The GaAs crystal is of cubic symmetry, and a member of the 43m point 

group. For some specific relative orientations, no s or p polarizations can be excited in the 

second harmonic [22]. But for arbitrary orientations of the two lattices, either s or p-polarized 

incident radiation will in general produce an elliptically polarized second harmonic field. 
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2.3 Theory Behind the Linear and Non-linear Reflectivity 

Models 

2.3.1 Linear Model 

Previous work in our lab has developed a Green's function based solution to Maxwel l 

Equations. The solutions yields a linear model [1,2] for efficiently determining the specular 

reflectivity spectrum o f two dimensionally textured slab waveguides. The results of this 

computer code have been validated by verifying model predictions with several experimental 

results [3]. The code can model the reflectivity spectrum of structures, like that in Figure 2.5, 

that contain any number of layers, including semi-infinite upper and lower layers. It can handle 

any angle o f incidence for plane waves (incident angle 9 and azimuthal angle cp) on the surface 

of the waveguide, for arbitrary 

Upper cladding layer (air) 

Core layer 

Lower cladding layer 

Substrate layer 

Figure 2.5: Schematic diagram of a planar waveguide textured with a 2 D square gratin 
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polarizations. An outline of the formalism used in this linear model is provided below, in order 

to familiarize the reader with concepts central to understanding the nonlinear results presented 

below. 

When a plane wave is incident on the surface of a textured planar waveguide with a well-

defined in-plane wavevector, /3, the incident field in the upper half space can be represented as 

[1,2] 

EilK0,z) = Eoe-'^erp'p (2.2) 

where co0 = ^5>2 - J32,5) = colc, and p = xx + yy . The incident plan wave is assumed to have 

unit amplitude, and it may have any transverse polarization. Because the grating has a well-

defined 2D periodic texture represented by reciprocal lattice vectors, {Gm }, the electric field in 

the grating can be expressed as [1,2] 

E(p, z) = X E(J + Gm; z ) e ^ * (2.3) 

For an abitrary a>,f3 , the non-specular field {G * 0} components in Equation 2.3 will be 

small. But, when co, /3 , coincide with one of the allowed leaky eigenstates of the 2D textured 

planar waveguide, one or more of the scattered field components in Equation 2.3 becomes large. 

Depending on the linewidth, or inverse lifetimes of these modes, the scattered field strength can 

become very large, much larger than the incident field amplitude. In this thesis the emphasis is 

on fairly low-energy bands that can be quite accurately described by retaining only a sub-set of 

the smallest Fourier components in Equation 2.3. The zeroth order component is the one 

responsible for coupling light into and out of the guided modes of the waveguide. 

For a slab waveguide, we need to solve the inhomogeneous Maxwell equations (2.4) [1] 
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V • D(f) = 0 

V x 75(F)+ — /3(F) = 0 
c 

V • B(r) = 0 

V x £ ( r ) - - 5 ( ? ) = 0 (2.4) 
c 

Here we are only concerned with the linear response of nonmagnetic materials, so u=l 

and H{r) = B(r). The displacement field is given by (2.5) and the total linear polarization is 

given by (2.6) 

/5(F) = E(r) + 4xP"" (r) (2.5) 

?""(?) = X(r)E{r) (2.6) 

The total linear susceptibility, %(/•) , is divided into two components , 

x(r) - Xs 0 ) + A Z g (P, *) (2.7) 

where X.X2) represents the linear response of the untextured slab waveguide, and 

Axg (p, z) describes the deviation from %s (z) in the textured region. Now the inhomogeneous 

Maxwell equation can be written in the form (2.8) 

V • (e„ (z)E(F)) = -4TTV • APg (F) 

V x B(f) + idjsx(z)E(r) = -4ma>APg (F) 

V • B(f) = 0 

V x E(f) - io)B(r) = 0 (2.8) 
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where ss{z) = l + 4n%x(z), and AP (f) = Ax s(r)E(r) [1]. A crucial aspect of this model is that 

the textured layers are always assumed to be much thinner than the wavelength of light, hence 

the z variation of the field components over the grating can be neglected. This means that when 

a plane wave with frequency co = colc and in-plane wave vector /3jnc is incident from the upper 

half-space, the self-consistent solution for a single Fourier component of the field in the grating 

is given by (2.9) 

= Ehom(8>JI) + g(cvJi)xYJz/l\-a,a)E(cvJJ) (2.9) 
j 

where g(<55,/J,) is the Green's function solution of equation (2.8) and E]wm (<5,/J,) is the 

corresponding homogeneous solution. There is no z-dependence left in Eqn. 2.9, /J, = P h w - Gi 

is the in-plane wave vector of the Fourier component being solved for, and the x.;\  a r e  m e  

coefficients of the Fourier expansion of the periodic susceptibility (jjr. = jdpA%(p)el~*0'~0j)'p]). 

Eqn. 2.9 is a self-consistent equation for the Fourier components of the field in the gratings. It 

can be solved by matrix inversion. Once the exact field in the grating is determined from Eqn. 

2.9, the field elsewhere can be easily obtained using another Green's function that independently 

propagates each Fourier component of the grating polarization into the surrounding (untextured) 

medium. This, in particular, is how the reflected field amplitude is obtained from the zeroth 

order component of the solution obtained from Eqn. 2.9. The number of Fourier components 

used in the simulations play an important role in determining the accuracy of the simulations, 

especially the higher energy bands. Generally, 4 nearest-neighbor rings (81 components) are 

sufficient to accurately converge for the lowest 8 bands. In order to obtain more accurate 
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simulation results for the high-lying bands relevant to the second harmonic out-coupling, 6 rings 

(169 Fourier components) were used in this work. 

2.3.2 Non-linear Model 

The linear model described above has subsequently been generalized by others in the 

group to treat a number of nonlinear optical processes involving textured, planar waveguides. 

[22,30]. In this section the model that treats second harmonic generation is briefly described. 

Using the Fourier field components of the field in the grating layer obtained from the 

linear model, the Fourier components of the second-order polarization in the same textured 

region are calculated as [22]. 

Pw(2co, fi„) = XZ,J 2 )(-2S,OJ,do): E(S, ~Binc -(G,„ -G,))E(3>, ~Bim -G,) (2.10) 

E(2S, fi„) = g(Pn ,2$) x x<n (2$,2bj)E(2c5, fim) + P w (2a, 0,,)) (2.11) 
in 

Where the in-plane wave vectors of the 2 n d order field components are f3n = 2/3illc -G„. 

Then both this nonlinear polarization and the linear polarization at [(2a>, J3n )] are used as driving 

terms to self-consistently calculate the Fourier components of the second-harmonic field in the 

grating using a similar Green's-function approach. The zeroth order component of the field at 2 

co is the one that generates the second harmonic field in the specular direction that is measured 

in the experiment (for the details, refer to [22]). The number of Fourier components of the 

second-harmonic used in the non-linear simulations is also very important in determining the 

accuracy of the second harmonic simulations. Since 6 rings (169 Fourier components of the 

fundamental) are used in the linear calculation, 3 rings (49 Fourier components of the second 
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harmonic) were used in the non-linear simulation for this work. A higher number of rings (7 

rings, and 8 rings for the linear solution, and 4 rings for the non-linear fields) were also tried in 

the simulations, but no significant change of the band energies was observed. 

2.4 Sample Design Procedure 

If the square lattice textured waveguide is irradiated from above with light at a certain 

frequency co and some arbitrary in-plane momentum j3jnc, the light will generally be transmitted 

without generating any enhancement of the fields in the textured core region of the guide (that is, 

the field strength in the core will be of the same order as the incident field). The second order 

polarization it excites in the waveguide, through a non-zero ;£(2)(--2ft>,ft>,ft>), would then be 

comparable to the second order field excited in the same but untextured waveguide. If the 

frequency 2ft> and in-plane wave vector 2/3hK of this nonlinear polarization do not coincide with 

one of resonant modes, then the polarization will also couple out of the guide in much the same 

way it would in the absence of texture. The overall second harmonic generation (SHG) 

conversion efficiency for this process in GaAs is small. If either or both of the fields at 

(&»,{3hw)and (2a),2/3hlc)coincide with the localized mode dispersion, the conversion efficiency 

can be significantly enhanced due to the excitation of strong local fields associated with 

excitation of resonant photonic modes of the textured waveguide at the fundamental frequency. 

The textured membrane can be thought of as a ID micro-cavity, with additional modification of 

the photonic density of states provided by the strong 2D texture. Cavity modes that lie within the 

vacuum light cone couple to plane waves that radiate in the surrounding half-spaces. This 

radiative coupling determines the lifetimes, or the Q's of these cavity modes. Weakly coupled 
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modes with high Q's will accumulate significant local field intensities when excited from the 

vacuum. The advantage of this grating coupling geometry is that the total internal reflection that 

confines the dominant (evanescent) field components of the resonant eigenstates does not require 

the fabrication of multi-layer Bragg reflectors above and below the cavity layer. This confining 

mechanism, characteristic O f these waveguide-based photonic crystals, is responsible for 

extremely large enhancements in the conversion efficiency [22]. 

The main purpose of this thesis is to design a two dimensional (2D) periodic texture on a 

thin GaAs semiconductor waveguide, on which we can get second harmonic enhacement while 

the energy of the second harmonic is less than the band gap energy of the GaAs. That ensures a 

truly virtual two photon process, uncomplicated by photo-electron processes. The band gap of 

GaAs is around 1.42 ev, or 11500 cm"1. We therefore designed the sample so that 2co should be 

near 10000 cm"1 (wavelength is around 1 um). That means the light source at co must be near 

5000 cm"1 (wavelength of ~ 2 um). It also means that the PC should have a band of leaky 

photonic eigenstates at around 5000 cm"1, and a corresponding band or bands at twice the in-

plane momentum, with an energy of -10000 cm"1. The second harmonic generation efficiency 

can be influenced either through the incoming resonance and/or the outgoing resonance. By 

properly designing the sample, the second harmonic conversion can be studied in a region where 

both the incoming and the outgoing resonance conditions occur together. The bands become 

densely spaced and complicated at higher energies. This can complicate the interpretation of the 

results, so we purposely chose the lowest s-polarized, downward dispersing leaky mode band in 

the sample as the in-coming resonance. This minimized the order of the higher energy bands that 

resonated with the second harmonic polarization. 
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The untextured planar GaAs waveguide consists nominally of a 140 nm thick core layer 

of GaAs supported on an ~1 pm thick cladding layer of Alo.98Gao.02As (A506). Based on the 

considarations stated above, and after running many linear dispersion simulations, a pitch of 

-760 nm - 800 nm, and a hole diameter of -300 nm - 360 nm, were chosen as the target 

parameters so that fundamental light at a wavelength of ~2 pm could resonantly excite the 

lowest order band of leaky photonic eigenstates characteristic of the strongly textured 

membrane. The linear simulations (see below) show that these parameters offer higher-energy 

bands that the 2 n d order polarization might also resonantly drive, all at energies less than the 

band gap of GaAs of 11500 cm"1. Figure 2.6 and Figure 2.7 show the linear simulation results (at 

10°, 15°, 20°, 25°, 30°, 35° ) for s and p polarizations for our experimental sample design. Shaded 

areas are the ranges of fundamental and second harmonic frequencies of interest. The incident 

light is chosen along the T-X direction of the photonic crystal. The parameters used in the 

simulation are listed in Table 2.1. 

Table 2.1: Simulation parameters for the square lattice textured planar waveguide used in the second 
harmonic experiments 

Parameter Value 
Pitch 770 nm 
Hole Radius 160 nm 
Core Thickness 140 nm 
Oxide Thickness 950 nm 
Hole Depth 140 nm 

Figure 2.6 shows the calculated reflectivity spectrum of the designed sample along the Y-

X direction of the Brillouin zone for different incident angles. From this, and with reference to 

the schematic bandstructure in Fig. 2.4, the lowest s-polarized, downward dispersing band can be 

seen from 5500 cm"1 to 5200 cm"1 in the range 25° to 35°. At double the frequency, from roughly 

http://Alo.98Gao.02As
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10,200 cm"1 to 10,800 cm" , and at the same incident angles, there are relatively flat s- and p-

polarized bands evident. This double frequency region is also less than the band gap of GaAs. 

These simulations suggest that the second harmonic generated by an s-polarized fundamental 

should exhibit an in-coming enhancement while the corresponding s- and p-polarized fields at 

the second harmonic have the opportunity to interact with relatively flat bands for incident 

angles between 25° to 35°. From Figure 2.7, the lowest p polarized band is higher than 6000 cm" 

The second harmonic generated by exciting this band with the fundamental field would be 

higher than 12000 cm"1, which is larger than the band gap of GaAs, so this sample is not 

compatible with trying to cleanly observe second harmonic enhancement when exciting with p-

polarized fundamental fields. 

In summary, based on the simulations results presented here, we attempted to fabricate a 

sample with a pattern having the parameters listed in table 2.1. This sample was expected to 

enhance the second harmonic generated when excited by s-polarization and detected either in s-

or p-polarizations. Additional influences on the conversion due to out-going resonant excitation 

of the higher lying s- and p-polarized bands were expected for incident angles between 25° to 

35°. 
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a506-12-a:Pitch:770nm, GaAs:140 nm, Radius: 160 nm, Oxidation layer.950 nm.S-polarization 

1 2 3 4 5 6 7 8 9 10 11 12x103 

Energy (cm-1) 

Figure 2.6. Simulated reflectivity results for s polarized light incident along the T-X direction of the photonic 
crystal described in Table 2.1. Shaded areas are the ranges of fundamental and second harmonic frequencies 
of interest. 

, | Q I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I _ 
a506-12-a:Pitch:770nm, GaAs:140 nm, Radius: 160 nm, Oxidation Iayer950 nm,P-polarization 

1 2 3 4 5 6 7 8 9 10 11 12x103 

Energy (cm-1) 

Figure 2.7. Simulated reflectivity results for p polarized light incident along the T-X direction of the photonic 
crystal described in Table 2.1. Shaded areas are the ranges of fundamental and second harmonic frequencies 
of interest. 
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The preceding discussion concerning the polarization of the in-coming and out-going 

fields only implies that the photonic eigenmode enhancements might be observed i f the 

fundamental can generate both s- and p-polarized polarization fields in the GaAs at the second 

harmonic. This is by no means guaranteed i f the photonic crystal axes are aligned with the 

principal axes of the underlying GaAs crystal. In equation (2.10), the nonlinear susceptibility, 

X{2) (-2a),a>,a>) , is a second order tensor. The GaAs has cubic symmetric and is characterized 

by the 43m point group. When the [001] axis of the GaAs crystal is aligned with the Xax i s of 

the square symmetric photonic lattice, it is not possible to excite p-polarized second-harmonic 

modes along the T-X direction of the square Brillouin zone. Likewise, for the same orientation of 

the two lattices, no s-polarized second harmonics are generated along the T-M direction. The 

sample was therefore fabricated so that the T-X direction of the photonic crystal is rotated by 20° 

with respect to [Oil] direction of the GaAs electronic crystal. By reducing the symmetry of the 

combined electronic-photonic system in this way, both s- and p- polarized second harmonic 

polarizations are allowed. [22]. A schematic diagram of the relative crystal orientations is shown 

in Figure 2.6. 
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[Oil] 

Figure 2.6: A schematic diagram of the photonic crystal with a square lattice (filled dots) rotated by 20° with 
respect to the [Oil] direction of the GaAs electronic crystal. 
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Chapter 3 

Sample Fabrication 

This chapter describes how the samples were fabricated by the author. The procedure 

consists of the following processing steps: cleavage, pre-cleaning and drying, spin coating the 

resist layer, e-beam lithography, developing, etching, and oxidation. The apparatus and nominal 

process parameters used to fabricate the samples were previously developed by others in the lab, 

with the exception of the electron beam lithography system. The author was responsible for 

transferring the electron beam lithography equipment from an Hitachi scanning electron 

microscope (SEM) with a field emission source, to a JEOL 840A system with a thermal emitter, 

and calibrating all of the settings on the new machine. 

Table 3.1 summarizes the physical parameters of the epitaxial wafer used to fabricate the 

photonic crystal samples schematically represented in Figure 2.3. It was grown using molecular 

beam epitaxy (MBE) by Dr. Shane R. Johnson from Arizona State University. The 1.0 pm thick 

Alo.98Gao.02As layer was grown on a 100 um thick GaAs (100) substrate; then the single core 

layer of GaAs -140 nm thick was grown on the Alo.9gGao.02As layer. 

Table 3.1 The nominal physical parameters of the epitaxial wafer used to fabricate the photonic crystal 
samples 

Crystal orientation (100) 
Core layer (GaAs) 155 nm 
Lower cladding layer (Alo. 9 8Gao.o2As) 1000 nm 
Substrate layer (GaAs) 100 um 

http://Alo.98Gao.02As
http://Alo.9gGao.02As
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In order to fully utilize the planar waveguide wafer, it is cleaved into smaller samples, ~ 

5 mm x 5 mm, before processing. The direction of cleavage surface is [Oil]. Before the samples 

are coated with resist, the surface of these slab waveguides must be carefully cleaned with 

acetone and methanol and totally dried by piping dry nitrogen on it. 

3.1 Spin coating 

P M M A , Poly(methyl-methacrylate), with a molecular weight of 950K was used for fine 

lithography because of its high resolution[4]. The 4% (by volume) P M M A is obtained by 

dissolving P M M A in a chlorobenzene solution. About 3 or 4 drops of 4% P M M A is applied to 

the sample. The samples were spun at 500 rpm for 10 seconds and then spun at 8,000 rpm for 40 

seconds, yielding a thickness of approximately 200 nm. Finally the samples are baked on a hot 

plate at 175°C for at least 2 hours. This process bakes off the solvents in the P M M A . After 

baking, several marks were made on the each of the corners of the sample using a hard carbon 

pencil, and then dry nitrogen was applied to blow away the larger carbon particles on the surface. 

Some small carbon particles are left on the edges to help obtain a good focus under the SEM. 

3.2 Electron Beam Lithography 

A JEOL JSM-840A computer-controlled thermal-emission S E M was used to perform the 

lithography on the GaAs samples. The computer control system had to be transferred from an 

Hitachi 4100 field-emission S E M that was previously used for lithography. The advantage of 

the JEOL-based system is that it is a dedicated lithography tool with relatively stable emission 

current, compared to the Hitachi, which is a general purpose S E M with a noisy cold-cathode 
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emitter. Because the pattern size and uniformity are determined by the exposed current dose, the 

stable emission current is very important, especially when a long time is needed for making a 

specific pattern. The author was responsible for transferring the electron beam lithography 

equipment from a Hitachi S E M to a JEOL 840A SEM. Calibrations of both the magnification 

and the aspect ratio were performed several times using a commercial Cu mesh to ensure the best 

precision [5]. This step was very important for implementing the exact design of our sample. 

The first step in the lithography process is the creation of a data file containing the 

exposure coordinates for the designed photonic crystal lattice. This Fortran-generated sq800.dat 

file (the file contains an array of x, y coordinates where the beam is to be directed) is then 

converted, using DCFILES.EXE, to a sq800.dc2 file (ASCII file) that can be recognized by the 

Lithography software (NPGS). This NPGS software controls the S E M beam to make a pattern in 

the P M M A by exposing it at pre-determined coordinates with a specified dose. Because P M M A 

is a positive resist, the electron beam breaks many of the bonds of the large P M M A molecular 

chains, so that they are more soluble in the developer than the unbroken (unexposed) chains. The 

longer the electron beam exposes a particular location during lithography, the more chains in a 

larger area will be broken, and this results in a larger hole once developed. Generally the desired 

pattern is written several times on different areas of the resist using a range of current doses in 

order to obtain at least one with the desired features for the experiment. The typical exposed area 

is a 90 um x 90 um square at the highest magnification used for lithography (1,000 times). In 

order to get the best results, it is necessary to do the initial focus adjustments of the S E M at very 

high magnification of 50,000 times, using the small carbon particles left by pencil marks on the 

very edges of the samples. In this process, the sample holder stage controls are adjusted to ensure 

that the sample piece is as level as possible, so many patterns can be made without re-focusing. 
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Then the magnification is set to 1000 times and the electron beam is moved to the sample to 

begin the writing processing. The final consideration is where to place the "beam dumps", where 

the beam is directed when not sequencing through the specified array of exposure points. If the 

beam dump is on the just-written pattern, it will overexpose and damage it. In order to solve this 

problem, the sq800.dc2 can be opened, viewed, and modified by D C . E X E . In this software, we 

can set the beam dump to be outside of the pattern, in order to not damage the written pattern 

[32]. The beam dump was usually set 5 um away from the edge of the patterned region of the 

sample. 

Table 3.2 lists the typical parameters of the S E M used in e-beam lithography to fabricate 

the samples used in this thesis. After 20 minutes of stabilization, the e-beam current directed on 

the pattern, which is monitored by an external electrometer, is set at 15 pA, or even lower. 

Although it requires a longer time to write a pattern at such a small current, the resolution is 

much better than that obtainable using larger e-beam currents. Higher e-beam current can be 

chosen to decrease the e-beam time, but at the expense of losing resolution. After each pattern is 

written, the x and y direction knobs, which control the movement of the translation stage of the 

S E M , are adjusted to move the sample to the next position to write a new pattern. After the 

sample is moved to a new selected position, the e-beam lithography is started immediately by 

pressing the "Enter" key. The time to write a typical pattern is ~20 minutes. 

The exposed P M M A can be removed using the developing recipe shown in Table 3.3. 

The M I B K in the table is Methyl Isobutyl Ketone diluted in Isopropyl Alchohol (IPA). The 

volume Ratio of M I B K T P A is 1:3. At this stage the P M M A resist has been transformed into an 

etching mask. The developed sample is checked under an optical microscope to make sure it is 
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properly and evenly exposed. At this point of the processing the exposed squares should look 

uniformly brighter than the unexposed regions of the surrounding resist. 

Table 3.2: Typical SEM parameters used in e-beam lithography 

Aperture 3 
Probe Current 6xlfJ-"A 
Working Distance 39 mm 
Accelerating 20.0 K V 
Voltage 
Electrometer 1.5xl0""A 
current 
Emission Current 50 uA 
Filament Current 225 uA 

Table 3.3: Developing recipe for PMMA 

Chemical Time 
M I B K 90 sec 
Propanol 30 sec 
DI Water 30 sec 
Oxyethylmethenol 15 sec 
Methanol 30 sec 

3.3 P lasma E t c h i n g 

A Plasma Quest electron-cyclotron resonance (ECR) plasma etcher is used to transfer the 

pattern in the P M M A into the underlying GaAs layer. By delivering microwave radiation 

resonant with the cyclotron frequency of electrons, the ECR creates a plasma in a low pressure 

gas (10"2 Torr). During etching, the sample sits on a liquid cooled chuck. The temperature of the 

chuck is kept at 5 0 C by cycling cooled liquid to prevent the sample from overheating when 

exposed to the plasma process. Under the presence of a strong, static magnetic field, the ions 
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from the plasma cloud, which are driven by a radio frequency (RF) bias on the sample chuck, are 

accelerated along the magnetic field to strike the sample normal to the surface, where they etch 

the exposed GaAs and P M M A kinematically and chemically. The specific etch recipe used is 

shown in Table 3.3 [6,3]. The etch rate in the GaAs is approximately 100 nm per minute. It is 

essential to etch all the way through the GaAs layer in order to oxidize the underlying AlGaAs 

layer, so the etch is made longer than nominally required to get just through the GaAs. The 

P M M A is also etched, but the etching time is so short that the P M M A can not be fully etched 

away. After the etching, the sample has some P M M A left on the top of the GaAs. The remaining 

P M M A can be washed away by stirring the sample first in acetone and then in methanol. If there 

is still P M M A left, the latter process is repeated. Finally, the cleaned sample is blown dry by 

directing a flow of dry Nitrogen on the surface. 

Table 3.4: E C R recipe for etching 

Cfeflow 2.0 seem 
BC1 3 flow 2.0 seem 
Ar flow 20.0 seem 
Microwave power 100 Watts 
RF Bias voltage 100 Volts 
RF Power 25 Watts 
Chuck Temp 5 °C 
Process Pressure 10 mTorr 
BacksideHe 5 Torr 
pressure 
Time 125 sec 

The etched patterns are then imaged using the SEM. Figure 3.1 lists typical hole sizes 

corresponding to various e-beam doses. In Figure 3.1, the patterns are square lattices with pitchs 

of -770 nm. The error bar for each measurement is ± 20 nm, which is the limit to which the 

diameters can be determined from the S E M images. The dotted line is a linear fit to the data. We 
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can see that basically the radius increases linearly with increased e-beam dose, but there is an 

offset. The fluctuation of the points is because of the drift of the e-beam current. 

400 - f 

100 -1 

100 200 
"i r 

300 400 

Dose (fc) 

500 600 

Figure 3.1 Hole radius corresponding to different e-beam doses. The ordinate is the hole size of the sample. 
The abscissa is the e-beam dose used to make such a hole size. 

3.4 Oxidation 

The final step of the sample fabrication is oxidation. This step converts the bottom 

cladding layer of Alo.98Gao.02As to alumina, so its refractive index can be reduced from -3.6 to 

around 1.6. The oxidation set up was designed and assembled by Vighen Pacradouni, a former 

Ph.D. student, and Francois Sfigakis, a former Masters student. [7]. The sample is sealed in a 

quartz tube situated in a furnace, then the quartz tube is purged with dry nitrogen for - 1 hour. 

Subsequently the temperature is increased from room temperature to 425 °C in a period of 30 

minutes, as controlled by a digital programmer on the furnace. The temperature is then held at 

425 °C for 5 minutes, during which time 100 seem of nitrogen is bubbled through 95 °C water 

http://Alo.98Gao.02
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and directed through the furnace tube. This water steam-oxidizes the aluminum-containing alloy 

layer through the etched holes. Several test samples were lithographed, etched and oxidized 

before determining that after the 5 minutes oxidation period, a large flow of dry nitrogen from 

the bypass must replace the moist flow to purge the moisture out of the furnace. If this procedure 

is not followed, the sample "overoxidizes", with the alumina layer delaminating from the GaAs 

substrate. After the flows are exchanged, the temperature is reduced at a rate of 30 °C per hour 

until reaching room temperature. 

3.5 Processing Summary 

Experience has shown that there are many subtle details of the fabrication process that 

must be appreciated in order to routinely obtain good samples. First, much care has to be taken 

ensuring that the sample is as level as possible on the sample stage. Typically one writes several 

identical patterns using a bracketed set of doses (nominal dose plus and minus ~ 10%), to 

optimize the chances of obtaining one with the desired properties. If the sample is not flat, 

different patterns will come in and out of focus as the translation stage is moved. Second, the 

astigmatism and focus adjustments must be close to perfect. If the astigmatism is not removed, 

the holes will not be circular. When the focus is not good, the hole size will also be irregular. If 

these issues are patiently addressed, then the holes are round and their size scales in proportional 

to the dose applied. 

Another key issue that should be noticed is the oxidation time. The best condition is to 

make the oxidized area slightly larger, ~ 2 um, than the patterned square . If properly oxidized, 

the whole oxidized pattern and the oxidized part of the surrounding area are very smooth and 
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even. Over-oxidization results in nonuniform strain relief between the GaAs and A 1 3 0 2 that 

causes the interface to deform. Figure 3.2 is an S E M picture of a "good-quality", completed 

sample. The hole size and depth are very even and close to circular. The pitch of this square 

lattice is -800 nm, the diameter of the air holes is -400 nm, and the depth of etched hole is -150 

Figure 3.2 An SEM picture of a complete sample made under close-to-ideal conditions. The pitch of this 
square lattice is -800 nm, the diameter of the air hole is -400 nm, and the depth of etched hole is -150 nm. 
The T-X direction of the pattern is rotated 20° relative to the cleavage face. A pattern like this was used for 
the optical experiments described in the next chapter. 
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nm. The T-X direction of the pattern is rotated 20° relative to the cleavage face. A pattern like 

this was used in the optical experiments described in the next chapter. Figure 3.3 is an S E M 

picture of the pattern with not very good focus, without astigmatism, good dose, without 

oxidation and imperfect leveling. The pitch of this square lattice is -800 nm, the diameter of the 

air hole is -300 nm, and the depth of etched hole is -150 nm. The hole shapes are not 

particularly circular and the surface is quite rough. 

• • • • • 
• • • 

0.5 pm 

Figure 3.3 An SEM picture of a completed sample of less than ideal quality. The pitch of this square lattice is 
-800 nm, the diameter of the air hole is -300 nm, and the depth of etched hole is -150 nm. 
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Figure 3.4 is an S E M picture of a sample that received too high a dose. The pitch of this 

square lattice is 800 nm, the diameter of the air hole is >800 nm, and the depth of etched hole is 

-150 nm. Figure 3.5 is an S E M picture of an unoxidized sample showing the results of poor 

focus and astigmatism. The pitch of this square lattice is 800 nm, and the depth of etched hole is 

-150 nm. 

Figure 3.6 is an S E M picture of several patterns from a reasonably good-quality sample, 

after oxidation. Each bright square is 90 pm on a side, and the darkest regions are those where 

the underlying alloy is oxidized. There are several randomly located dark regions where the 

sample has oxidized through defects in the GaAs layer of the wafer. These defects are formed 

when growing GaAs wafer using M B E . This degree of oxidation is close to the limit: any 

further oxidation would lead to delamination and a rough surface. 

0.5pm 

Figure 3.4 An S E M picture of an unoxidized pattern with good focus, without astigmatism, good leveling, but 
over dosed. The pitch of this square lattice is 800 nm, the diameter of the air hole is >800 nm, and the depth 
of etched hole is ~150 nm. 
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Figure 3.5 The S E M picture of the pattern wi th imperfect focus, w i th ast igmatism, good dose, and wi thout 
oxidat ion . The pi tch of this square lattice is 800 nm, and the depth of etched hole is - 1 5 0 nm. 

F igu re 3.6 A low magnif icat ion S E M micrograph of a set o f reasonably good-qual i ty patterns after oxidat ion. 
The d a r k square a round each pattern represents the oxidized part under each pat tern. O the r , r andomly 
located d a r k shapes represent oxidized areas under defects in the G a A s wafer. E a c h br ight square is 90 um 
on a side. 
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Chapter 4 

Results and Discussion 

This chapter presents the results of linear and non-linear light spectroscopy experiments 

on a sample fabricated very close to the specifications defined in chapter 2. The experimental 

data are compared with linear and non-linear simulations based on the models described in 

Chapter 2. Section 4.1 presents results of the linear measurements and simulations. These focus 

on the dispersion and polarization properties of the lowest order leaky bands. Starting with the 

nominal parameters of the sample as determined by S E M images and provided by the wafer 

supplier, the optimized parameters of the photonic crystals were obtained by fitting the 

experiment results and the simulation results. From the linear dispersion curves for the lowest 

band (fundamental frequency, ~ 2 um) and the higher order bands (second harmonic, ~1 um) the 

most probable condition for getting resonant to resonant second harmonic enhancement was 

predicted. The sample was then sent to the University of Toronto, where Jessica Mondia of 

Professor Henry van Driel's group measured the angular dependence of the second harmonic 

reflected from it when irradiated by a fundamental in the frequency range of 1.5 urn to 2.0 pm. 

Section 4.2 reports the results of this second harmonic experiment. Peak second harmonic 

enhancements of > 1200 times were experimentally measured. The non-linear simulation results, 

obtained using sample parameters extracted from fitting the linear scattering spectra, are in 

remarkably good agreement with the experimental results, as discussed in Section 4.3. The s-

polarized pump and p-polarized harmonic conversion results reveal the s-polarized incoming 

photonic mode dispersion and p-polarized outgoing photonic mode dispersion, with the greatest 
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enhancement in the second harmonic occurring where these two dispersion curves cross each 

other. Similar, but slightly more complicated effects are observed in the s-in, s-out polarization 

configuration. 

4.1 Linear results 

The linear reflectivity measurements were obtained using a Bomem DA8 Fourier 

Transform Interferometer (FTIR) in conjunction with a reflective-optic microscope in a 0-20 set 

up designed and implemented by W. J. Mandeville, a former PhD student [3]. A schematic 

diagram of the optical layout is shown in Figure 4.1. There are three ellipsoidal mirrors (EMI, 

EM2, and EM3 with focuses of 10cm, 15 cm, and 150 cm, respectively) in the optics path to 

reflect, transmit, and focus the light into the Bomem. The output optical fiber has a diameter of 

200 pm. A removable CCD camera is used to monitor and align the pattern at an intermediate 

image where a field stop is used to allow only the light reflected from the patterned part of the 

wafer to enter the spectrometer. A polarizer is positioned just in front of EM3 to control whether 

s or p polarized light is analyzed. The sample is fixed on the mount by vacuum grease and 

Teflon tape, and the rotation stages can be moved in concert to measure the specular reflection 

spectra for different normal (0) and azimuthal ((()) angles. The Bomem FTIR spectrometer 

consists of a Michelson interferometer with a quartz beam splitter and an InGaAs detector, 

which can measure the spectrum from approximately 6,000 cm"1 to 13,000 cm"1. 
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100 cm 

2 cm 

Figure 4.1: Schematic diagram of the optical layout used for linear reflectivity measurements. 

Both s and p polarized specular spectra obtained with the incident beam along the T - X 

direction of the photonic crystal were measured at incident angles of 10°, 15°, 20°, 25°, 30°, and 

35°. The measured and simulated spectra are shown in Figure 4.2.and Figure 4.3. The broad 

undulating features in all spectra are Fabry-Perot fringes, which are due to the interference of 

light reflecting on the top and bottom surfaces of the 950 nm oxide layer; they would be present 

in the absence of the 2D grating. The sharp Fano-like features indicate resonant coupling to a 

leaky slab mode attached to the textured waveguide. These resonances are narrower for modes 
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with long lifetimes and wider for modes with short lifetimes. The simulation parameters that 

provided the best fit for this square lattice textured planar waveguide sample are listed in Table 

4.1. Figure 4.2 and Figure 4.3 compare the experimental and simulation results using the 

parameters listed in Table 4.1 for s and p polarizations respectively. Virtually all of the Fano 

features with predicted widths greater than ~ 50 cm"1 are in reasonably good agreement for the p-

polarized data. Narrower features are never revealed in experiments on 90 um x 90 um patterns 

due to the fact that the simulations are for strict plane wave excitation, while specification of the 

in-plane momentum in the experiments is limited by the finite extent of the samples (and by the 

fact that the incident beam is not perfectly collimated). The agreement for the lowest lying s-

polarized bands is also quite good, with the quality of the fits falling off at higher energies. It is 

important to note that the lowest order, downward dispersing leaky band near 6000 cm"1 is not 

evident in any of these spectra, which are limited in range due to the InGaAs detector. 

Table 4.1: Simulation parameters for the linear code 

Parameter Value 
Pitch 770 nm 
Hole Radius 160 nm 
Core Thickness 140 nm 
Oxide Thickness 950 nm 
Hole Depth 140 nm 
Resolution 11 cm"' 
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Figure 4.2: P-Polarization of experimental and simulated spectra for the T-X direction of the square lattice 
sample. The spectra are for incident angles of 10°, 15°, 20°, 25°, 30°, and 35° from the bottom up. Solid lines 
represent experiment data; dashed lines represent simulation data. For clarity the curves have been offset 
vertically. The shaded region highlights where the out-going harmonic might be expected to resonant with 
leaky photonic eigenstates. 
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Figure 4.3: S-Polarization of experimental and simulated spectra for the T-X direction of the square lattice 
sample. The spectra are for incident angles of 10°, 15°, 20°, 25°, 30°, and 35° from the bottom up. Solid lines 
represent experiment data; dashed lines represent simulation data. For clarity the curves have been offset 
vertically. The shaded region is the same as in Figure 4.2. 
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From figures 4.2 and 4.3 it is possible to qualitatively assess the band structure of this 

square lattice photonic crystal. It is well established [1,2,3,24] that in the limit of thin core 

layers, the four lowest order bands near zone center disperse away from the T point of the 

Brillouin zone in a well-defined pattern, three of them s-polarized, and the fourth p-polarized 

(see discussion in Chapter 2). The p-polarized band and one of the s polarized bands exhibit 

very weak dispersion, while the two remaining s-polarized bands disperse relatively strongly, 

one up and the other down in energy. The two weakly dispersive bands occur between 6,000 

cm"1 and 6,400 cm"1 in Figures 4.2 and .4.3, and the upward dispersing s-polarized band appears 

in Fig. 4.3, starting at ~ 6,500 cm"1 at 10°, increasing to ~ 7,000 cm"1 at 25°. The lowest energy, 

downward dispersing s-polarized leaky band is not observed experimentally, as it occurs below 

the detector cutoff energy of ~ 6,000 cm"1. This lowest energy band is, however, crucial for the 

second harmonic experiments, because it is the band that can be resonantly excited at the 

fundamental frequency corresponding to a wavelength of ~ 2 pm. Thus we have to rely on the 

model alone to estimate the dispersion of the band designed to resonant with the fundamental 

(in-coming) excitation'laser in the second harmonic experiments. 

The shaded regions in Figure 4.2 and Figure 4.3 shows where the second harmonic might 

possibly excite one of the higher lying bands; the out-going resonant process. In the p-polarized 

case, there is a very obvious, relatively flat band near 10,500 cm"1 that appears in both the 

experiment and the simulations. The flatness of this band offers the advantage of being able to 

fix the fundamental excitation spectrum from the optical parametric oscillator and the bandpass 

of the detection system (both described below) to a well-defined, and relatively narrow range of 

energies, independent of the incident angle. For this to work, the downward dispersing s-

polarized band must exist at energies roughly half of this flat p-polarized band, or ~ 5,000 
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cm" . The situation for the s-polarized bands at high energy is slightly less clear. Close 

inspection indicates that there is in fact weak evidence of a low-energy, weakly dispersing mode 

in both the experiment and the simulations in this shaded region. There is also a more obvious 

upward dispersing s-polarized band in the experiment, at the high energy side of this shaded 

region. The experimental and simulated dispersion of the relevant bands, extracted from a 

detailed analysis of Figure 4.2 and Figure 4.3 for both s and p polarizations are shown in Figure 

4.4. Because the lowest s-polarized band can not be measured by the detector, only the 

simulation curve is shown here. The inset shows that in the simulation, two p-polarized bands 

actually repel each other in the frequency range of interest,. The experimentally observed flat 

band is actually composed of the 'flat' potions of these two distinct p-polarized bands. 

The solid curves and the dashed curves are the simulated and experimental results, 

respectively. Note that no obvious mode can be found in the experiment at 35° on the lowest of 

the high-energy set of dispersion curves, thus there are only four points on that particular curve. 
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Figure 4.4: Dispersion curves of exper imental and simulated results for s and p polar izat ions o f the photonic 

crystal used in the nonl inear measurements described below. Just the lowest band, and the three higher 

bands relevant to the second harmonic predicat ion are shown here. The lowest s dispersion curve can not be 

measured by the detector, so just the s imulat ion curve is shown here. The solid curves and the dashed curves 

are the simulated and exper imental results, respectively. Note here, no mode can be found in the exper iment 

at 35° on the lowest o f the high-energy set of bands. The inset shows that the f la t p band observed 

exper imental ly seems to be made up of the f lat parts of two simulat ion p bands that repel each other. 
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The solid curves and the dashed curves are the simulated and experimental results, 

respectively. Note that no obvious mode can be found in the experiment at 35° on the lowest of 

the high-energy set of dispersion curves, thus there are only four points on that particular curve. 

It is clear from this plot that this sample is ideal for studying the resonant second 

harmonic conversion process. The downward s-polarized band is predicted by the simulations to 

span the half-energy of the flat p-polarized band corresponding to incident angles of the 

fundamental between 20 and 35 degrees. To clarify the relationship of these curves to the second 

harmonic experiment, Figure 4.5 shows the fundamental band dispersion at full scale, 

superimposed on the higher order bands plotted at half their frequency and in-plane wave vector. 
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Figure 4.5: An enlarged depiction of the band structure over which the second-harmonic enhancement is 
expected to occur. The solid curve is the low frequency s-polarized band in Figure 4.3; the incoming 
resonance. The dotted curves are the experimentally measured high-frequency p- and s-polarized bands, 
which are plotted at half their frequency and in-plane momentum, respectively. The rectangles indicate the 
energy-incident angle windows where one might expect to see evidence of the double-resonant processes. 

For incident light oriented along the T-X axis of the photonic crystal, the solid curve in 

Figure 4.5 represents the lowest s polarized band with which the fundamental field can be 
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resonant. The dotted curves represents the (scaled) dispersion of bands that can be resonant with 

the second harmonic polarization driven by the fundamental field with frequency and in-plane 

wave vector given by the scale values on the axes. If the fundamental falls on the solid curve 

only, there should be a resonantly enhanced second order polarization excited via the leaky 

photonic crystal mode (enhanced in comparison to the case in which the fundamental is not 

coincident with any curve in the figure), but the out-coupling of this enhanced second order 

polarization would not be influenced by the photonic bandstructure. If the fundamental 

frequency and in-plane wave vector fall on a dotted curve in Figure 4.5 the strength of the 

second order polarization driven by the unenhanced fundamental field will be similar to that 

which would be excited in the absence of any texture, but the out-coupling of the second order 

radiation to the top half-space will be influenced by the (higher order) bandstructure of the 

crystal. The doubly resonant SHG process will occur when the excitation conditions coincide 

with the crossing of one of the dotted curves with the solid curve. This double resonant condition 

results in a fully mode-matched nonlinear conversion process, effectively allowed in this 

periodic geometry by Bloch's theorem. From the linear dispersion data in Figure 4.5, the doubly 

resonant s-in p-out second harmonic conversion should occur when the incident fundamental 

frequency is -5280 cm"1 (or a wavelength of -1893 nm) at an incident angle of -29° along the 

T-X direction. The corresponding second harmonic signal should occur near 10560 cm"1 (or a 

wavelength of 947 nm). Recall that these predictions are based on the simulated dispersion for 

the incoming resonance, which has not been directly measured using linear scattering 

spectroscopy. The precise positions of the double resonances are expected to differ slightly from 

those in Fig. 4.5, corresponding to a shift in the true incoming dispersion curve. 
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From this linear analysis we conclude that the fabricated sample achieved the design 

objectives outlined in chapter 2. In particular, the fundamental and second harmonic fields at the 

double resonant condition should both be well below the the GaAs band gap of 1.42 ev (11500 

cm"1), so there should be no complications introduced by linear absorption processes. 

4.2 Second harmonic results 

The experiment part of the second harmonic enhancement measurement was 

implemented by J. Mondia, at the University of Toronto. To observe these resonance 

enhancement effects, an optical parametric amplifier was used to produce -200 fs long 

fundamental pulses at a repetition rate of 250 kHz in the range 1.5-2.0 urn. These pulses were 

incident on the photonic crystal membrane along the T-X direction from above. The spot 

diameter on the crystal was -30 pm, and the incident angle was variable. The second harmonic 

signal was recorded using a liquid nitrogen cooled InGaAs detector. The second harmonic 

measurement was implemented according to the predication of the linear experiment and 

simulation. 

The measured second harmonic spectra for an s-polarized input beam and both s-

polarized and p-polarized second harmonic are shown for a range of incident angles in Figure 4.6 

and Figure 4.7, respectively. An obvious intensity peak in the p-polarization occurs near 27°: 

there is a 60 fold difference between the peak intensities at 27° and 35°. For the s-polarization, 

the peak intensities do not change as much as in the p-polarized case, and the maximum intensity 

of the SHG in s polarization is 4 times weaker than the highest intensity of SHG in p 

polarization. Figure 4.8 and Figure 4.9 show the corresponding SHG simulation results for s 

polarization and p polarization, respectively, obtained using the non-linear code described in 
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chapter 2. The parameters for the non-linear code used in our simulation are listed in table 4.2. 

From the simulation results, the obvious intensity peak in the p-polarization can be seen at ~31 ° 

at an energy of 10,500 cm"1. 

Table 4.2: Simulation parameters used in non-linear code simulation 

Parameter Value 
Pitch 770 nm 
Hole Radius 160 nm 
Core Thickness 140 nm 
Oxide Thickness 950-nm 
Hole Depth 140 nm 
Resolution 0.7 cm"1 

400 J | | \ I I | I I I I I 1 \ I I I \ f I | | | | I | I I I | I I I I I I I I t I I I I \ t 1 

a12a,SHG-Experiment, s-polarization, incident angle of 25,26,27,27.5,28,29, 
30,31,32,33,34,35 from the right to the left 

10.0 10.2 10.4 10.6 

Energy ( cm-1 ) 

10.8 11.0x10 

Figure 4.6: The experimentally measured S H G for s-in s-out polarization. From the right to the left, the 
measured incident angles range in single degree increments from 25 to 35 degrees. These spectra are 
normalized to the background second harmonic signal measured away from the patterned region of the 
sample. 
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Figure 4.7: The experimentally measured S H G for s-in p-out polarization. From the right to the left, the 
measured incident angles ranging in single degree increments from 25, to 35 degrees. The spectra are 
normalized to the background second harmonic signal measured away from the patterned region of the 
sample. 

Figure 4.8: The simulated S H G results for s-in s-out polarization. From the right to the left, the measured 
angles increase in single degree increments from 25 to 35 degrees. 
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Energy (cm-1) 

Figure 4.9: The simulated S H G results for s-in p-out polar izat ion. F r o m the r igh t to the left, the angles 

increase in single degree increments f r o m 25 to 35 degrees. 

Figures 4.10 and 4.11 show corresponding contour plots of the experimental s-in p-out 

and s-in s-out SHG signal strengths respectively. Overall, the similarity of the simulated and 

measured results is remarkable given that the calculation is done for plane waves with well-

defined in-plane wavevectors, and that the out-going resonant bands are of very high order (~ 

12 t h from the simulations). The dominant dispersive feature in both s and p polarized data sets is 

identical, and therefore it is assigned to the in-coming resonance. It also agrees with the 

simulated dispersion of the lowest s-polarized band to within < 1.3% (18meV) from 25 degrees 

to 35 degrees. Recall that this band is not directly detected in the linear dispersion 

measurements: the simulation that gives this level of agreement is based solely on the structural 

parameters of the crystal used to fit the higher lying bands. From this observation, we can take 

the dominant dispersion observed in the two second harmonic results as the dispersion of the 
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lowest s-polarized band in the sample. Figure 4.12 then shows all of the measured bands; the 

high-order, out-going bands obtained from the linear scattering data (at half their true energies), 

and the lowest s-polarized band from the SHG results (both s-in s-out and s-in p-out). 

From Figure 4.12 one would therefore expect to observe the double resonant condition 

occur at an energy of ~ 10,600 cm"1 and an incident angle of 26 degrees for the s-in p-out 

polarization case, in excellent agreement with the peak in the p-polarized SHG contour plot 

(Figure 10). The predicted coordinates of the s-in s-out double resonance from Figure 4.12 are 

10,400 cm"1 and 31 degrees. These coordinates actually correspond to the minimum in the 

corresponding SHG contour plot (Figure 11). This someone surprising result is discussed in 

more detail below. 
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Figure 4.10: Measured relat ive second harmonic enhancement (on a logar i thmic scale) as a funct ion of the 
incident angle for s-in and p-out polarized beams. The dist inct peak at a round 27 degrees is d i rect evidence of 
the "doub le resonance" condi t ion. 
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I N C I D E N T A N G L E ( d e g r e e ) 

Figure 4.11: Measured relative second harmonic enhancement (on a logarithmic scale) as a function of the 
incident angle for s-in and s-out polarized beams. 
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Figure 4.12: A depiction of the band structure over which the second-harmonic enhancement is to occur. It's 
a slightly revised version of Figure 4.5. The solid curve is the lowest s-polarized band from the experiment 
SHG results (both s-in s-out and s-in p-out). The dotted curves are the experimentally measured high-
frequency p- and s-polarized bands, which are plotted at half their frequency and in-plane momentum, 
respectively. The rectangles indicate the energy-incident angle windows where one expects to see evidence of 
the double-resonant processes. 
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From the simulations, the width of the peaks ranges from -20 cm"1 to -40 cm"1, while 

from the experiment, the width of the peaks ranges from -80 cm"1 to -100 cm"'. The 

experimental linewidths are thus 2 times to 5 times broader than those calculated. At least part 

of this is expected, because the finite size of the incident optical beam represents a field with a 

range of in-plane wavevectors, while the simulation assumes excitation at a well-defined in-

plane wavevector. In our second harmonic experiment, the spot size is approximately 30 um. 

Based on simulations over an associated range of incident wavevectors around the centre 

wavevector, the broadening due to the finite beam size is approximately 60 cm"1, consistent with 

the experimental results. The experiment therefore seems to effectively average the theoretical 

results over a range of incident angles. 

The magnitude of the conversion efficiency has not yet been measured in an absolute 

sense. The ratio of the peak s-in p-out to s-in s-out enhancement predicted from the simulations 

over this range of phase space is -1000. The measured ratio is 6. A lower limit on the resonant 

to off-resonant enhancement can be made by comparing the peak signal with that obtained at the 

same angle of incidence, but far off the resonant condition. For the p-out and s-out polarized 

data sets, the corresponding minimum enhancement factors are 1200 and 50 respectively. 

The out-going resonance dispersions predicted in the simulations are considerably 

weaker than the in-coming resonance. This, combined with the broadening of the experimental 

results, makes it very difficult to quantify the out-going resonance from the measured data. In 

order to extract some information about the out-going resonance, attempts were made to fit the 

experimental data using a superposition of two -Gaussian peaks. Attempts were also made to fit 

the simulated SHG spectra with a double Gaussian function. 
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Figure 4.13: The simulation results for s-in p-out second harmonic generation based on two-Gaussian fits to 
the simulated second harmonic spectra. The dashed ellipses are centered on the incoming resonance, and the 
solid ellipses are centered on the outgoing resonance. The ellipse area represents the relative intensity of the 
Gaussian peaks. The linear dimensions of the ellipses imply nothing about the Gaussian linewidths. 
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Figure 4.14: The experiment results for s-in p-out second harmonic generation based on two-Gaussian fits to 
the experimental second harmonic spectra. The dashed ellipses are centered on the incoming resonance, and 
the solid ellipses are centered on the outgoing resonance. The ellipse area represents the relative intensity of 
the Gaussian peaks. 
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Figure 4.15: The simulation results for s-in s-out second harmonic generation based on an attempted two-
Gaussian fits to the simulated second harmonic spectra. The solid ellipses are centered on the incoming 
resonance. There is no second harmonic from the outgoing resonance (only a single Gaussian could be fit to 
the data). The ellipse area represents the relative intensity of the peak 2nd harmonic signal. The linear 
dimensions of the ellipses imply nothing about the Gaussian linewidths. 
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Figure 4.16: The experiment results for s-in s-out second harmonic generation based on an attempted two-
Gaussian fits to the simulated second harmonic spectra. The solid ellipses are centered on the incoming 
resonance. There is no second harmonic from the outgoing resonance (only a single Gaussian could be fit to 
the data). The ellipse area represents the relative intensity of the peak 2nd harmonic signal. 

For both theory and experiment, the s- in p-out spectra were easily fit using two Gaussian peaks, 

but the s-in s-out spectra were better described by a single Gaussian. For s-in p-out fits of the 

experiment results, the width of the outgoing peaks are at least 5 times wider than the width of 

the incoming peaks. The fits of the s-in p-out simulation results yielded outgoing peaks that are 

generally less than 2 times wider than the width of the incoming peaks. The p- polarized second 

harmonic signals generated using an s- polarized fundamental are shown in Figure 4.13 
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(simulation) and Figure 4.14 (experiment) at a variety of incident angles. The dashed ellipses are 

centered on the incoming resonance, and the solid ellipses are centered on the outgoing 

resonance. The ellipse area represents the relative intensity of the 2nd harmonic signal associated 

with the fitted Gaussian peaks. These plots were used to get the experimental in-coming 

dispersion shown in Figure 4.12. 

The s-in s-out SHG for both simulation and experiment are shown in Figure 4.15 and 

Figure 4.16. In comparison to the s-in p-out polarized results, it was not possible to obtain good 

fits with a second Gaussian. Thus the s-in s-out results are unusual both with respect to the 

absence of a second peak (evidence of an outgoing enhancement), and in the double resonance 

condition occurring at a minimum in the SHG signal, as noted above. 

To interpret all of these "expected" and "unexpected" results, the simulated SHG spectra 

are shown in Figures 4.17 to 4.20 for a range of incident angles, all superimposed on the 

corresponding in-coming and out-going linear reflectivity simulations. Figure 4.17 shows the s-

in p-out SHG (solid) superimposed on the linear reflectivity simulations for s-polarized incident 

light at half the plotted frequencies (dash-dotted). The various curves correspond to incident 

angles from 25-35 degrees from the bottom to the top. A l l curves are shifted vertically to 

facilitate the comparison. The principal SHG peak in Figure 4.19 is therefore associated directly 

with the in-coming s-polarized band. There is no feature in the in-coming linear spectra 

associated with the secondary SHG peak on the shoulder of the main peak in the SHG spectra. 

However, Figure 4.18 shows the same SHG spectra superimposed on the p-polarized linear 

reflectivity spectra plotted on their natural frequency scale. The weaker peak in the SHG is 

clearly associated with this p-polarized out-going resonant mode, and the peak intensity in the 

SHG occurs when the in-coming and out-going resonances overlap. There are in fact several p-
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polarized bands contributing to out-going enhancements here, but there is only one dominant 

mode. This basic behaviour is what one might naively expect based on the theoretical models 

described in chapter 2, and Figures 4.17 and 4.18 are fully consistent with the double resonant 

interpretation for the s-in p-out case discussed above. 

Figure 4.19 and Figure 4.20 show the same comparison as in Figures 4.17 and 4.18, but 

for the s-in s-out polarization configuration. Again, from Figure 4.19 and Figure 4.20, the 

principal peak in the SHG is unambiguously associated with the incoming s-polarized mode. 

Interestingly though, the out-going s-polarized modes in almost all cases anti-resonate with the 

in-coming resonant process. In particular, the s-polarized out-going mode at ~ 10,400 cm"1 

introduces a clear reduction in the net SHG throughout the whole range of angles where it 

overlaps with the relatively broad in-coming resonance. This observation explains the two 

"surprises" identified above when analyzing the s-in s-out SHG data. In particular, it is clear 

why it is impossible to fit two Gaussian peaks to what is clearly a Fano-like anti-resonant effect 

on the principal Gaussian-like in-coming resonance lineshape in the s-in s-out configuration. It 

is also consistent with the double resonant condition for the s-in s-out polarization case occurring 

at a minimum in the in-coming resonance curve. 
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Figure 4.17: The relat ions between the second harmonic enhancement and the s- incoming polar izat ion at 2co. 
The curves correspond to incident angles ranging f rom 25 to 35 degrees f r o m the bot tom to the top. The solid 
curves represent the na tu ra l logar i thm o f the simulated S H G intensity. The dash-dotted curves show the 
simulated ref lect iv i ty o f s-polarized l ight at ha l f the indicated frequency (the incoming resonance). These 
curves are shifted to faci l i tate the comparison. The shaded region highl ights the in-coming and out-going 
resonant ly enhanced S H G peaks. On ly the main peak in the S H G is associated w i t h the in-coming s-
polar ized resonance, but this association is obvious. 
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9.75 10.00 10.25 10.50 10.75 11.00x10' 
Energy (cm-1) 

Figure 4.18: The relations between the second harmonic enhancement and the p-outgoing polar izat ion. The 
curves correspond to incident angles ranging f r o m 25 to 35 degrees f r o m the bot tom to the top. The solid 
curves represent the na tu ra l logar i thm of the simulated S H G intensity. The dash-dotted curves show the 
s imulated ref lect iv i ty o f p-polarized l ight at the indicated frequencies. These curves are shif ted to faci l i tate 
the compar ison. The shaded region highl ights the in-coming and out-going resonantly enhanced S H G peaks. 
Clear ly the secondary peak in the SHG is associated w i th features in the p-polar ized ref lect iv i ty spectrum, 
al though there appears to be more than a single p-polarized mode involved in these simulated results. 
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9.75 10.00 10.25 10.50 10.75 11.00x103 

Energy (cm-1) 

Figure 4.19: The relations between the second harmonic enhancement and the s-incoming polarization at 2co. 
The curves are corresponded to 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35 incident angles, respectively. The 
solid curves represent the natural logarithm of intensity of the S H G . The dash-dotted curves show the 
reflectivity of s(co)-in at 2 co. These curves are shifted to facilitate the comparison. The clear trend can be seen 
that the S H G peak (shaded region) is due to the incoming s mode. 
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9.75 10.00 10.25 10.50 10.75 11.00x10' 
Energy (cm-1) 

Figure 4.20: The relations between the second harmonic enhancement and the s-outgoing polarization. The 
curves are corresponded to 25, 26, 27, 28, 29, 30, 31,32, 33, 34, and 35 incident angles, respectively. The solid 
curves represent the natural logarithm of intensity of the SHG. The dash-dotted curves show the reflectivity 
of s(co)-in at 2 co. These curves are shifted to facilitate the comparison. No clear trend can be seen that SHG 
peak is due to the outgoing s mode. The shaded region highlights the flat antiresonant effect of one of the out­
going s-polarized resonances. 
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Chapter 5 

Conclusions 

A square lattice of through-holes etched into a 140 nm thick layer of GaAs supported on 

a ~ 1 pm thick alumina cladding layer was designed so that fundamental light at a wavelength of 

~ 2pm could resonantly excite the lowest order band of leaky photonic eigenstates characteristic 

of the strongly textured membrane waveguide. The designed pitch of the lattice was 770 nm, 

and the hole diameter was 320 nm, These parameters were chosen so that the energy of the 

second harmonic, near 10,000 cm"1 would be less than the band gap energy of the GaAs at 

11,400 cm"1 to avoid complications due to interband absorption. A sample was fabricated to 

these specifications using a series of processes that included, pre-cleaning and drying, spin 

coating ~ the sample with -200 nm of a plastic resistant layer, e-beam lithography, developing, 

etching, and oxidation. 

Linear specular reflectivity spectra of the sample were measured at a variety of incident 

angles using a white light source and a Bomem DA8 Fourier Transform Interferometer (FTIR) 

spectrometer. The physical parameters of the processed sample (GaAs layer thickness, hole size 

and pitch etc.) were determined to be close to the design specifications by curve-fitting the 

reflectivity spectra with simulation software. Based on these measured and simulated dispersion 

curves, it was predicted that strong second harmonic enhancement due to both in-coming and 

out-going resonances should be observable in this sample when the incident fundamental 

frequency is -5280 cm"1 (or wavelength of -1893 nm) at the incident light of 30° along the T-X 

direction of the photonic crystal. This puts the second harmonic near 10560 cm"1, safely below 

the GaAs band gap. 
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The second harmonic signal reflected from the sample surface in the specular direction 

was measured at the University of Toronto by Jessica Mondia, using an optical parametric 

amplifier as a strong light source at the fundamental frequency of ~ 5000 cm"1. The optical 

parametric amplifier generates 200 fs fundamental pulses at a repetition rate of 250 kHz in the 

range 1.5-2.0 um. These pulses were incident on the photonic crystal membrane along the T-X 

direction for different incident angles based on the above stated predication. Non-linear 

simulation results were also used to compare with the non-linear experiment results. 

Both model calculations and experimental results clearly demonstrate that the second 

harmonic conversion efficiency is dramatically enhanced when the fundamental field excites a 

low-energy s-polarized photonic band of the textured membrane waveguide structure. In the 

case of p-polarized second harmonic radiation, a peak enhancement of over -1200 times is 

observed at the energy of a flat, high-energy band that is clearly evident in the linear p-polarized 

reflectivity spectra. For the s-in, p-out polarization configuration the conversion efficiency is a 

maximum at the "double-resonance" condition, which occurs at -10,570 cm"1 nm at an incident 

angle of - 27°. This was what was expected based on nonlinear simulations and intuition. The 

unexpected result is that for the s-in s-out polarization configuration, the out-going resonance 

appears to add destructively to the in-coming resonance, resulting in a local minimum at the 

double resonance condition, rather than a local maximum. 

Overall, the simulated and experimental results are in excellent qualitative agreement. 

The incoming resonance and the out-going resonances are shifted by less than 1.3% and 0.5% in 

energy respectively. The main discrepancy is the linewidth of the linear and nonlinear spectra, 

which are consistently broader in the experimental results. Much of this broadening is due to the 
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small spot sized used in the experiment, as compared to the plane wave excitation assumed in the 

model. Additional broadening is expected due to sample imperfections. 

This work provides clear proof that 2D photonic crystals in GaAs membrane waveguides 

can be used to substantially enhance the nonlinear optical conversion of a fundamental field 

incident from the top half-space, to a field at twice the fundamental frequency propagating away 

in the specular direction. The enhancement occurs via a micro-cavity enhancement effect 

associated with the in-coming resonant excitation of leaky photonic eigenstates localized to the 

membrane. This generates large internal fields that drive a correspondingly enhanced nonlinear 

polarization at twice the fundamental frequency. When this second harmonic polarization is 

resonant with a high-lying photonic crystal band, the overall conversion can either be enhanced, 

or degraded, depending on the relative phase of the two resonant contributions. In the 

experiments reported here, the s-in, p-out polarization configuration led to an unambiguous 

overall enhancement. In the s-in, s-out polarization configuration there is also clear evidence of 

double-resonant effects, but the interpretation, at least based on the theoretical simulations, 

suggests that there is some anti-resonant coupling in this geometry. 

These results illustrate one example of how 2D planar photonic crystals etched into 

semiconductor membranes can be used to engineering nonlinear optical phenomena. Numerous 

other nonlinear optical phenomena are expected to be tailorable using similar approaches to 

achieve specific objectives. There are many opportunities to extend this work to develop 

nonlinear optical engineering concepts in these structures. Obvious avenues for future work 

include using purely bound states rather than leaky states, and extending the fundamental 

nonlinearity to include frequency difference and higher order nonlinear effects. 
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