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Abstract 

The problem of dynamic crack propagation is widely addressed in the literature. The few 

available analytical solutions are limited to simple and idealized geometries and loading 

conditions. On the other hand, major approximations and inconsistent assumptions exist 

in published numerical models. 

In this thesis, the problem of dynamic crack propagation is modeled using a fully coupled 

Arbitrary Lagrangian Eulerian (ALE) formulation. The A L E equilibrium equations are 

derived, discretized using isoparametric finite elements and implemented into an A L E 

dynamic fracture program (ALEFR), based on an implicit solution scheme. 

The advantage of the A L E formulation is that the computational grid (finite element 

mesh) may have an arbitrary motion with respect to the domain of the deformed body. 

Therefore, the complex nature of the developed boundary condition due to a propagating 

crack may now be modeled in a continuous and accurate manner. 

The process of creating new surfaces due to crack propagation is modeled by splitting 

material points. This allows for a more realistic representation of the actual physical 

process. The A L E boundary constraint is enforced on the free boundaries, including the 

continuously changing free crack surfaces, using a newly developed technique. The 
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dynamic energy release rate is evaluated through the integration of material properties of 

Lagrangian grid material points. 

The developed formulations and techniques are then discretized and implemented into a 

finite element code. The developed code is tested by modeling dynamic stationary and 

propagating fracture problems. 
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Chapter 1 

INTRODUCTION AND BACKGROUND 

1.1 M O T I V A T I O N 

Most structural materials and mechanical components contain or will develop cracks, 

either as natural imperfections or as a result of fabrication and assembly processes. A 

short crack may grow in a stable manner through mechanisms such as fatigue, corrosion 

cracking, and so on, and might under certain conditions, become unstable. An unstable 

crack propagates dynamically in a structure, at velocities in the order of the materials 

elastic shear wave speed. This rapid separation of material would seriously damage the 

integrity and function of the structure, and may eventually lead to total structural failure. 

Interest in dynamic fracture problems has been increasing. This is because structural 

designs, which preclude fracture instability under all conditions, can be far too costly, 

and, in addition, there are applications where large scale unstable crack propagation 

would have catastrophic consequences. With dynamic fracture analysis, fracture failures 

of structures, such as: pressurized containers, nuclear reactors pressure vessels, 

transmission pipelines, off-shore oil production platforms, aircrafts and spacecrafts, 

welded ships, railroad tracks, bridge girders, and so on, may be prevented, and 

propagating cracks can be arrested before losing the structural integrity of the unit. 

1 



Chapter 1. Introduction and Background 2 

Due to the complex nature of dynamic fracture problems, available analytical solutions 

have required the use of simplifying assumptions to render the problem more tractable. 

Since most realistic problems are much more complex, consistent numerical approaches 

are, therefore, required to model this class of problem. 

1.2 OBJECTIVE 

In general, the problem of dynamic fracture is complex, due not only to the interaction 

between the reflected boundary waves and the crack tip asymptotic fields, but also to the 

complex nature of the boundary condition of a propagating crack. The continuously 

changing material domain of a body and its prescribed tractions and displacement 

boundary conditions, due to crack propagation, are neither a material-related type of 

boundary condition, i.e., they may not be consistently described in a Lagrangian 

formulation, nor a fixed frame-related type of boundary condition, i.e., they may not be 

consistently described in an Eulerian formulation. 

The objective of this work is to model the process of crack propagation utilizing a 

dynamic Arbitrary Lagrangian Eulerian (ALE) formulation, which may consistently 

describe the complex nature of the boundary condition involved. The resultant 

formulation is then to be implemented into a finite element modular program (ALEFR) 

or amended to the existing Lagrangian-based commercial codes. 
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1.3 BACKGROUND 

1.3.1 Numerical Modeling of Dynamic Crack Propagation 

The problem of dynamic crack propagation has been widely addressed in literature. 

Analytical solutions are available for simple geometries and loading conditions, but they 

are generally of limited use in practical problems. 

Despite the fact that, fundamentally, the crack propagation problem is not a Lagrangian 

type of problem, Lagrangian models have been widely used in the numerical analysis of 

crack propagation. In particular, the node release method (Anderson, 1973) has enjoyed 

some popularity because it is very robust and easy to implement in commercial finite 

element codes. In this method, the crack remains stationary as a Lagrangian formulation 

is used to advance the solution over each time step. The crack is then advanced between 

time steps by splitting the old crack-tip node into two distinct nodes and advancing the 

crack-tip location by one element length at a time. In order to improve this discontinuous 

modeling, "gradual-node-release" techniques were proposed (Keegstra et al., 1978; 

Kobayashi, 1979; Hodulak et al., 1980; Caldis et al. 1979). In these models, the 

"holding-back" force was introduced to prevent discontinuous jumps of the crack-tip 

between two nodes. Mahanty and Maiti (1990) studied the stable crack growth using the 

node release method for mixed mode loading cases. This work involves the search for 

crack propagation direction prior to application of finite element analysis. However, the 

crack is then assumed to follow the same straight line along this direction. 
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The node release method often produces inaccurate results when explicit time integration 

is employed, since the prescribed nodal force is not generally in dynamic equilibrium 

with the state of stress in the adjoining finite elements. Additionally, the effect of 

impulse stress waves generated by the instantaneous application of the prescribed nodal 

force reduces the accuracy of the method. Further details are given in the critical study 

of Kanninen (1987). 

Bazant, et al. (1978) have proposed a special finite element procedure based on a moving 

coordinate system centered at the crack tip. The finite element mesh is translated as a 

rigid body to follow the crack tip motion. However, this procedure is restricted to semi-

infinite strips whose surfaces are parallel to the direction of crack propagation. 

Shephard et al. (1985) presented a method that requires an entire structure remeshing at 

each crack increment. Valliappan and Murti (1985) introduced a window that moves 

with the crack tip, such that only the elements within this window are candidates for 

remeshing, however, this approach is limited to crack propagation through a region with 

a very regular mesh. Similarly, Wawrzynek and Ingraffea (1989) presented a technique 

where only local remeshing takes place at each crack increment. This technique was 

implemented in the finite element program F R A N C (FRacture ANalysis Code). 

An alternative approach to modeling running cracks is the moving element approach. 

Nishioka and Atluri (1986) have employed this concept using a singular hybrid element. 
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In their method, a special singular element is formulated using analytical asymptotic 

solutions for the singularities near the crack tip together with the variational statement 

that accounts for the motion of the singular element. The crack propagation process is 

simulated by remeshing the conventional finite elements around the crack tip at each 

increment. The main problem with the hybrid approach in general, is the complexity of 

formulation and the difficulty in implementation. In addition, the convergence behavior 

of such formulation is unpredictable. 

Most of the finite element methods that employ local remeshing use a Lagrangian 

kinematic model, in which the geometric discretization is selected a priori for material 

configuration, and the finite element mesh is required to follow the material motion 

during a time step. This process requires local remeshing every time step, and frequent 

overall remeshing; therefore, it induces errors due to the interpolation of the 

displacement and velocity fields in each remeshing. In addition, the numerical 

techniques used in these procedures are not compatible with the general Lagrangian-

based finite element codes. 

1.3.2 The Arbitrary Lagrangian Eulerian (ALE) Formulation 

In the field of computational mechanics, there are two classical formulations used to 

model continuum problems. These are: the Lagrangian (referential) formulation and the 

Eulerian (spatial) formulation. In the Lagrangian formulation, an initial or updated 

configuration is used as a reference frame. In a finite element method, based on this 

formulation, the computational grid is fixed to the material points of the deformed body. 
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Accordingly, the Lagrangian-based finite element method may consistently handle 

material-associated boundary conditions. 

On the other hand, the reference frame (the computational grid) in the Eulerian 

formulation is fixed in space. Eulerian formulations are generally suitable for flow type 

problems and steady state conditions. 

Since the process of crack propagation physically involves the creation of new surfaces 

by splitting material points, at the instantaneous location of the crack tip, the one-to-one 

mapping requirement in the Lagrangian formulation does not exist; that is, a single 

material point in a configuration before crack propagation may split into two material 

points in a configuration after crack propagation. Therefore, from a theoretical point of 

view, this type for formulation may not truly model the process of crack propagation. On 

the other hand, the only approach to model the process of crack propagation using the 

Eulerian formulation is to regard the process as a constrained flow of material. This 

nonphysical assumption precludes the use of this type of formulation in accurate 

modeling of crack propagation problems. 

Although neither of the above classical formulation are capable of simulating the crack 

propagation process, we believe that a combination of the two may consistently represent 

this process. This combination, which is known as the Arbitrary Lagrangian Eulerian 

(ALE) formulation, has emerged in recent years to alleviate many of the drawbacks of 



Chapter 1. Introduction and Background 7 

the classical formulations. In the A L E formulation, it is not necessary for the reference 

frame (or the finite element mesh) to be adhered to the material or to be fixed in space, 

rather, it may move arbitrarily. Consequently, mesh distortion associated with large 

deformation, may be avoided by designing a proper mesh motion scheme. 

In this work, the merit of the Lagrangian formulation, in that it can easily describe the 

material-related boundary conditions, and the merit of the Eulerian formulation, in that it 

can easily model the process of the branching of a steady flow, are combined to 

consistently model the process of dynamic crack propagation. 

1.3.3 History of the A L E 

The A L E formulation was first proposed to model fluid mechanics applications using 

finite difference (Noh, 1964; Hirt et al., 1974) and later introduced to finite element 

analysis (Hughes et al., 1981). The A L E was first introduced to the analysis of solid 

mechanics application by Huetink (1982). He modeled a quasi-static metal forming 

problem employing a technique referred to as operator split. In this technique, material 

deformation and convective effects are treated separately although they are coupled in 

the same equations. Thus, each time step may be split into two steps; a pure Lagrangian 

step, at which the computational grid moves with the material; followed by an Eulerian 

step, at which the Lagrangian solution to the reference grid and stresses are updated 

using convective effects. Due to the fact that the operator split technique is 

computationally efficient and easily implemented into the common Lagrangian finite 

element codes, it has been adopted in the majority of A L E analyses. In his work, 
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Huetink used an approximation method to update integration point variables. This was 

carried out first, by calculating nodal variables utilizing integration points from all 

elements sharing that node. A continuous field for each variable is obtained by 

interpolating nodal point values using element shape functions. Similarly, gradients of 

variables are evaluated using shape function derivatives. 

Haber (1984) introduced a different type of A L E formulation, termed Eulerian 

Lagrangian Description (ELD). He divided the total deformation in each increment into 

separate Eulerian incremental displacements and Lagrangian incremental displacements. 

An Eulerian deformation gradient defines the mapping from the initial configuration to 

the reference configuration, while a Lagrangian deformation gradient describes the 

mapping from the reference configuration to the current configuration. The product of 

these two gradients gives the total deformation gradient from the initial to the current 

configuration. The E L D was then used to model crack propagation (Koh et al., 1988). 

However, the existence of two sets of unknown displacements makes it difficult to relate 

other formulations and preclude it from implementation into the existing Lagrangian 

codes. In addition, crack propagation was modeled artificially by merely advancing the 

crack tip node, without treatment of the separated material points and the nodal motion 

on the newly created surfaces. The method therefore, is applicable only to self-similar 

crack propagation cases, at which the errors due to this inconsistent modeling are 

minimal. 
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Liu et al. (1987, 1988) derived implicit quasi-static A L E formulation. In their work, the 

operator split approach was replaced by a fully coupled or, 'unsplit', approach. In the 

fully coupled approach, the governing A L E equations, in which the material deformation 

and convective effects are coupled, are implemented and solved without decoupling. 

This coupled approach is more accurate and theoretically represents a true kinematical 

description. In this work, Liu et al. (1987, 1988) used mixed explicit and implicit 

calculations to handle the convective effects. Therefore, the resulting A L E equations are 

difficult to relate to the incremental form of displacement used in the common 

Lagrangian codes. In another development, Huerta and Casadei (1994) presented a 

dynamic A L E formulation based on a fully explicit calculation. The convective terms 

are treated in a manner similar to the one developed by Liu et al. (1987, 1988). 

However, explicit solution schemes in dynamic analysis generally suffer from the lack of 

generality of application due to the stringent stability conditions, which necessitate the 

use of very small time steps. 

A fully coupled A L E quasi-static formulation was developed by Wang and Gadala 

(1997). The convective terms are treated using an approach similar to that of Liu et al. 

(1987, 1988). However, the implementation of the developed formulation does not 

represent a strictly coupled approach in the sense that convective terms are not 

determined within the iteration of each load increment. Rather, the material associated 

properties are updated after convergence. This approach, which was originally 
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formulated to model metal forming processes, has been extended by Movahhedy (2000) 

to include thermal and contact modules to model metal cutting process. 

Bayoumi (2000) developed a fully coupled quasi-static and dynamic A L E formulation 

for metal forming applications. The convective terms are treated using a new approach 

derived from continuum mechanics laws, instead of the approximate approaches, which 

involve unjustified assumptions. In their work, an implicit solution scheme was used and 

the only independent variables are the displacements, as opposed to velocities, which is 

common practice in the A L E literature. 

1.4 SCOPE OF WORK 

In this work, the dynamic fracture problem will be modeled by a fully coupled dynamic 

A L E formulation. The scope of work may therefore be summarized in the following: 

- the derivation of fully coupled A L E virtual work equations based on principles of 

continuum mechanics, through which, the crack propagation process may be 

consistently modeled; 

- the discretization of the A L E virtual work equations using isoparametric finite 

elements; 

- the modeling the process of crack propagation as a process of continuous 

separation of material points; 
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- the development of an efficient procedure to control the motion of the finite 

element nodes on free boundaries, including those that evolved due to crack 

propagation; 

- the development of a numerical procedure to continuously evaluate fracture 

parameters and control crack behavior; 

- the implementation of the discretized A L E equations and the above techniques 

into a modular 2-D finite element code; and 

- the testing of the developed code through the simulation of stationary and 

propagated dynamic fracture problems with known analytical solutions. 

1.5 ORGANIZATION OF THESIS 

The derivation of the A L E equations is given in Chapter 2. This includes the A L E quasi-

static equilibrium equation and the A L E dynamic equation of motion. 

The derivation of dynamic energy release rate integrals from the energy balance 

equations is shown in Chapter 3. The correlation between the dynamic stress intensity 

factors and the dynamic energy release rate is also discussed. 

The development of an ALE-based numerical techniques including: the Material Point 

Splitting (MPS), a technique for modeling the process of crack propagation; the True 

Boundary Tracking (TBT), a technique for imposing the A L E boundary constraint on the 

old and the developed free surfaces; and techniques to evaluate the dynamic energy 
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release rate integrals, are shown in Chapter 4. The implementation of these techniques 

into a finite element program is shown in Chapter 4. 

Testing of the developed code is covered in Chapter 5. Tests include static and dynamic 

Mode I crack propagation cases. A sample mixed mode case is also presented. 

Finally, the conclusions drawn from this numerical procedure, along with 

recommendations for future work, are presented in Chapter 6. 



Chapter 2 

FORMULATION AND DISCRETIZATION OF A L E EQUATIONS 

2.1 A L E GOVERNING EQUATIONS 

2.1.1 Preliminaries 

Linearized virtual work equations for quasi-static and dynamic applications are derived 

to be solved in an implicit time-stepping approach. Throughout the derivation in this 

section, notations of time and configuration adopted are similar to those used by Bathe 

(1996). Left superscripts indicate the configuration in which the quantity occurs, 

whereas left subscripts indicate the configuration to which the quantity is referred. 

Omitted left subscripts imply that the quantity occurs in the same configuration in which 

it is measured. For an incremental quantity from time t to t + At, the left superscripts 

and subscripts are omitted. As in the standard indicial notation, right subscripts refer to 

tensor or vector components, repeated indices imply summation over the admissible 

Q r j 
range and the notation [ ];, means . 

dxi 

In the A L E description, the motion of particles is referred to an arbitrarily assigned 

reference system which is neither adhered to the material, as in the Lagrangian system, 

nor fixed in space, as in the Eulerian system. This means that the material configuration 

at any time t refers to the set of material particles, whereas the reference configuration 

13 
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consists of a set of arbitrarily moving grid points (i.e. finite element nodes) sharing a 

common boundary with the set of material particles. The material configuration is 

identified by a set of material point coordinates ' X (

m while the reference, or grid, 

configuration is identified by an independent set of grid point coordinates 'Xf . Let 

'x™('XJ,t) and 'x , s ( 'XJ ,t) be the vector functions or the mappings that characterize the 

motion of the material point ' X J 1 and the grid point ' X J in space, respectively. The 

position of 'XJ at time t is given by 

.'*,.='x;('x;,o (2.i) 

The set of material particles is related to the set of grid points by requiring that the two 

configurations share the same space at all times. Any point within the common boundary 

is occupied by elements of the two sets. Thus, the position of the grid point ' X J that 

occupies the same point in space at time t as ' X J 1 is also given by 'xt as 

'x^x?CX«,i) (2.2) 

The A L E formulation requires that the inverse of Equations (2.1) and (2.2) exist to 

ensure a one-to-one mapping between the two configurations. The material velocity 'v,, 

and the grid point velocity 'vf, at time t are given by 
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The boundary constraint, which ensures that the material and grid configurations have 

the same boundary at all times, may be expressed as 

(V'v/)'n,.| =0 (2.5) 
Ion the boundary 

where ' n{ is the unit normal to the boundary surface. 

The governing A L E equations involve the material time derivative of several quantities. 

The material derivative of an arbitrary function ' / is denoted by a superposed dot and is 

defined to be the rate of change of the function holding the material particle 'Xf fixed 

df 
7 = 

a 
(2.6) 

<x? 

However, the grid configuration is the computational configuration that tracks the history 

of all quantities. Thus, it is convenient to define a grid time derivative, which is the time 

derivative of the function ' / holding the grid point 'Xf fixed, and denoting it by a 

superposed prime 

df 
f' = 

a 
(2.7) 

The relation between the two time derivatives is given by (Hughes, 1981) 

OX; 

The A L E formulation will be discretized using the isoparametric displacement based 

finite element method. The incremental material displacements and the corresponding 



Chapter 2. Formulation and Discretization of the A L E Equations 16 

incremental grid displacements from time t to time t + At are respectively denoted by 

ui and uf . The position of the grid point in the configuration at time t + At may be 

expressed as 

(2.9) 

The local form of the conservation of mass, i.e., continuity, at time t is given by 

'p=-'p-r- (2.10) 
d xt 

where 'p is the material density. Using Equation (2.8), the continuity equation with 

respect to an arbitrary moving grid point may be expressed as 

' P ' = - ' p ^ - ( \ - ' v ! > ^ (2.11) 
oxi oxi 

2.1.2 Quasi-static Analysis 

In processes like stable ductile crack growth or low-speed metal forming, the effects of 

inertia forces may be neglected. Since body configuration at time t + At is yet unknown, 

an approximate solution may be obtained by referring all variables to the grid 

configuration at time t and linearizing the terms of equilibrium equation. The solution is 

then refined by iterations within an implicit incremental approach. Stress and strain 

measures are chosen to accommodate large strain applications. 
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To express the equilibrium of the body at time t + At, the principle of virtual 

displacements is used. It may be expressed as 

j'^Vijd^ij '+A'dV = $'+Al p'+%BSUi

 ,+AtdV + j'+'f'Su, l+A,dS (2.12) 

where / + A ' c r is Cauchy stress tensor and ,+A(e,y is the conjugate strain tensor defined as 

The RHS of Equation (2.12) represents the external virtual work, S'+A'Wex', due to body 

force ,+A'ft

B , and the applied surface traction ' + A ' / ; 5 . 

Linearization of virtual work equation 

Linearization of the terms of the virtual work equation is carried out by adopting an 

incremental approach. Variables at time t + At are assumed to be composed of their 

respective values at time t, plus an increment given by the grid time derivative of the 

variable multiplied by the time increment Ar. 

The Cauchy stress tensor may, accordingly, be decomposed into 

<rv+'o'vto (2.14) 

Using Equation (2.8), we get 

where, 'dy is the material rate of Cauchy stress calculated from the material constitutive 



Chapter 2. Formulation and Discretization of the A L E Equations 18 

relation (Appendix A). 

The variation in the strain components is decomposed as 

S.^^S^+S^At (2.16) 

in which Sre'(i is the grid time derivative of df^ and is given by (Wang an Gadala, 1997) 

"J 2Kd\ d'Xj d'xk d'x, { } 

Substitution in Equation (2.16) yields 

The decomposition of material density, upon substituting in Equation (2. II), at time 

t + At, may take the form 

,+*P=!p-'p^-{uk-ul)^- (2.19) 

Finally, the elements of volume and surface area are decomposed into (Malvern, 1969) 

,+A'dV='dV+'dVAt = (l + ̂ -)'dV (2.20) 
d'xk 

A.S 1 A.g A.g 

,+A'dS='dSVdS'At = [l + ̂ - - ( ^ + -^-ynm

,nJdS (2.21) 

where 'n is the unit outward normal to the surface. 
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Upon substituting the above decomposed quantities into Equation (2.12) and ignoring the 

higher order terms, the linearized form of the virtual work equation may be written as 

\'aijSle'dV+ \'&ilAtSle'dV+ \ ^ - ! , e ' d V - \^L'a,^'dV 
J 'J i 'J J 'J i 'J J at 'J ' 'J J y at 

•V 'V 'V k 'V j k 

- \(uk-u*y^^'dV= \'p'+%BSUi'dV- l'p'+%\p--P-)&l'dV (2.22) 

>V k 'v 'V O Xk O Xk 

[ t + A t f B , t i SP c„ ( I T / , [t+At /-Sri , <^k , \t I l t I J O 

- I / , (uk — uk) — oui dV+ I / , + — _ ( _ _ + _ _ ) „ n]fa dS 
•i • dxk 's dxk 2 dxn 3xm 

The RHS of Equation (2.22) represents the external virtual work S'+A'WeM . 

Equation (2.22) has two convective terms that involve spatial derivatives of stresses and 

material density. These are the last term in the LHS and the third term in the RHS. 

Since, in finite element formulation, the stresses and material densities may not have the 

inter-element continuity, their gradients may not be reliably computed on the element 

level, when evaluating element matrices. Different convective term treatment approaches 

are available in the literature (Huetink, 1982; Wang, 1998; Liu et. A L , 1987). Most of 

these treatments are based on the simple interpolation of calculated quantities. Bayoumi 

and Gadala (2000) developed a consistent method to replace the convective terms by 

their equivalent non convective terms based on the fundamental continuum mechanics 

relations. This includes applying the divergence theorem to the integral containing the 

convective term and substituting the A L E boundary constraint, Equation (2.5) (Appendix 

B). After treatment of the convective terms, Equation (2.22) becomes 
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J ' < r ^ W + J ' a , ^ , ' d V + I-CT&.JLw-jffv„|^V 
•V 'V 'V UXk <VU i U k 

+ \{uk-ufY^-^'dV = l'p'+Atfi

BSu<dV+ \'p^-l^{uk-ut)8u<dV (2.23) 
'V ^Xk 'v , 'V k 

+ \'p-%\uk-u!)^L'dV+ [ ^ f ^ ^ - h ^ A n J n j S u ' d S 
>v

 d x k .\ dxk 2 8xn dxm 

Fully coupled A L E equilibrium equation 

By substituting the constitutive relations, Equation (B.l) to (B.3) in Appendix B, into 

Equation (2.23) the A L E equilibrium equation may be written as 

\'CijklleklSteij'dV+ l'<TvStrj0'dV 
'V 'v ' 

+ J K - u D ' A d V , J ( | L _ | L y f f ^ ^ (2.24) 
•i d x k i d x ; d*j d\ 

'V 

i ty~. • . • . • 1 9ut du. where C,,w is the material constitutive tensor, ,77 = - — and 
3 ' * 2 ffx, d'xj 

8 ' + ^ ' = \'Pr%B

+^-^(uk-u?)]5u-dV+ \<p'+%B(uk-ul)?P-'dV 
•i dxk >i sxk 

+ ^ f n i + ^ - ^ + ^ ' n J n J S u / d S 
•s dxk 2 dxn dxm 

(2.25) 

Since Equation (2.24) is expressed in terms of both material and grid incremental 

displacements and uf, respectively, the grid may therefore, move independently 

relative to the material. This characteristic is very desirable in problems that involve 

large material deformation and/or change in boundary conditions. 
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The A L E formulation, Equation (2.24) may be seen as a general form for an incremental 

virtual work equation. If, for instance, the grid is adhered to the material, i.e., uf =ui, 

the equation will be reduced to the updated Lagrangian formulation. On the other hand, 

if the grid is chosen to be fixed in space, i.e., uf = 0, the equation will then represent the 

Eulerian formulation. 

2.1.3 Dynamic Analysis 

In dynamic analyses, inertia forces are included as an extra term that should be added to 

the LHS of the virtual work equation, Equation (2.12). Using the relation between the 

grid time derivative and the material time derivative, Equation (2.8), the virtual work 

done by inertia forces at time t + At, may be written as 

The first term on the RHS of Equation (2.26) may be referred to as the referential inertia 

term, whereas the second term is referred to as the convective inertia term. 

Linearization of inertia terms 

The material point velocity ,+Atvi, the grid point velocity t+Atvf and the grid time 

derivative of the material point velocity l+Atai, at time t + At, may be related to their 

respective known values at time t as 

V V 

(2.26) 

t+At (2.27) 
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,+*v*='v°+vf (2.28) 

' + >='a.+a ; . (2.29) 

where the incremental quantities v(-, vf anda(. are controlled by the time integration 

method to be utilized. 

The incremental decomposition of the two inertia terms on the RHS of Equation (2.26) 

and the treatment of the convective terms, are handled in a manner similar to quasi-static 

analysis. The linearized referential and the convective inertia terms may be written as 

J ' + V + * « A ' + * < W = l'p'aiSui'dV+ j'pafa'dV 
f"*v 'v 'y 

(2.30) 

5% 

P)t+At p)t+AtM 
\ '^PC\-<+\*)^±Sur'dV= \p^v-^v))0—^-8u.;dV 

vmv o Xj ,v O Xj 

, d,+Atv- dt+A'vs d'+Atv 

•v dxb 8xk dxj 

d ,dt+A'Vi 

(2.31) 

d xk dx} 

Fully coupled A L E equation of motion 

The form of the A L E equation of motion, obtained by adding the inertia terms, Equations 

(2.30) and (2.31) to Equation (2.24), may be written as 
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\'paiSui'dV+ [cmtekl5fij'dV+ fas^'dV + \'pCv-'v^^Su.'dV 

'V 'V 'V 'V j 

+ { V ( v J - v ? ) f i * , W + l i U t - u ! y A d v + j A - ^ y ^ f t w 
,J

V Sxj ,J

V dxk ,J

V dxj dx. dxk 

= S»*vr* - faS^'dV - I'p'afa'dV - \'p(!vk-'vl)^^-At'dV (2.32) 

'V 'V 'V k 

•V U X i 'V k U Xk U X j 

'V O Xk O Xj 

The first three terms on both sides of Equation (2.30) represent the updated Lagrangian 

formulation. The first term on the LHS of the equation corresponds to the Lagrangian 

mass matrix. The second, third, sixth and seventh terms on the LHS and the first and 

second on the RHS were already defined for quasi-static analysis. The fourth and fifth 

terms are the convective velocity stiffness matrices due to material/grid relative motion. 

The third term on the RHS corresponds to the Lagrangian inertia force vector, whereas 

the last four terms on the RHS are convective inertia force vectors due to material/grid 

relative motion. 

2.2 FINITE ELEMENT EQUATIONS 

2.2.1 Isoparametric Finite Elements 

In finite element discretization, element coordinates 'xi, and incremental displacements 

ui and uf , are correlated to their respective nodal values, !xik, uik and ufk, through the 

element shape function hk, i.e. 
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k=\ 

N 

k = l 

N 

(2.33) 

(2.34) 

(2.35) 

where i corresponds to the degree of freedom, k is the nodal point number and N is the 

number of nodal points in the element. For a two dimensional space, Equation (2.31) 

may be expanded as 

or 

x=H'x 

where 'x is the element coordinate vector given by 

y 

H is the element shape function matrix in the form 

H K o ; 

K \ 2x2N 

and ' x is the nodal coordinate vector given by 

Similarly, Equations (2.32) and (2.35) may be written in the form 

u = Hu 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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u* = Hu 4 (2.42) 

where u, u8, u and us are the incremental element and nodal material and grid 

displacement vectors, respectively. 

2.2.2 Discretization of the Quasi-static ALE Equation 

The variables in the linearized A L E equilibrium equation, Equation (2.24), have to be 

discretized in order to develop the finite element equilibrium equation for quasi-static 

analysis. Considering the internal force term, the last term on the RHS of Equation 

(2.24), the stress may be arranged in a vector form as 

(2.43) 

Similarly, the incremental strain vector has the form 

dux 

d'x 
t exx duy 

teyy > — < 
d'y 

dux duy 

— - + — y -
dux duy 

— - + — y -
t^zz J d'y d'x 

. 'x 

(2.44) 

which upon using the element displacement expansion of Equation (2.32), gives 



Chapter 2. Formulation and Discretization of the A L E Equations 26 

,e = < 

, h&xU* 

h d'y yk 

ttKd'y xk d'x yk> 

N h 
Z J N Uxk 

7=1 

d'x 
0 

d'y 
K 

2>A 

0 

d\ 
d'y 

d'x 

0 

(2.45) 

or 

,e=B"u (2.46) 

where tBLX is the element shape function derivative matrix related to Lagrangian 

material stiffness and it may be written as 

,BLl = 

d'x 
0 

d'y 
K 

0 

dK 
d'y 
d\_ 

d'x 

0 

(2.47) 

4x2N 

The finite element form of the internal work term can be established by using Equations 

(2.43) and (2.46) as follows 

\'cjijSteij'dV = \(Sle)T 'o'dV 
'V 'V 

= $(lBLldu)T'<i'dV 
'V 

= (du)T \{tBu)T'v'dV 
'V 

= (<5u)T'f 

(2.48) 
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where ' f is the internal force vector given by 

'f = \(tBu)T'a'dV (2.49) 
•v 

The Lagrangian material stiffness virtual work term may be rewritten in matrix form as 

\cmtek]5fi;dV= l(Ste)T'C,e'dV 
'V 'V 

= \(tBudu)T'C(tBL1u)'dV 
•v (2.50) 

= (du)T \{tBn)TtC,BLUdVu 
'V 

where ' C is the material constitutive matrix and 'KLl is the Lagrangian material stiffness 

matrix given by (Bathe, 1982) 

'Ku = §(tBu)T'C,BLUdV (2.51) 
'v 

The Lagrangian geometric stiffness virtual work term may be rewritten as 

^ ' d V ^ ' v ^ f ^ ' d V (2.52) 
V -v dxj dxi 

[(TyS^'dV = (<5uf \{rBL2)TtSL2

tBL2tdVu 
•v -v (2.53) 

= (<Su)r'KL2u 

where 
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B L 2 =| 

d'x 
o% 
d'y 

0 8K 
d'x 

d'y 

0 

(2.54) 

<SL2 = 

<?xx 0 
<7 'a 0 

xy yy 
0 

0 0 'a 0 0 
XX 

0 0 'CJ 0 
xy 

0 0 0 

0 
0 

J5x2/V 

0 " 
0 
0 
0 

'<x„ 

(2.55) 

5x5 

and the nonlinear geometric stiffness matrix ' K " is given by (Bathe, 1996) 

, K L I = J ( ( B " ) r ' S " , B " ' d V 
'V 

The first convective stiffness virtual work term due to A L E may be discretized as 

d5£„ 

(2.56) 

\(uk-uD'cjy—^-'dv = (saf j(tBA1)TtsMn'dV(u -u«) 
ox, ,y 

= (Sa)T,KM{u-ug) 
'V (2.57) 

where 
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,B A] 

d\ 
d'x2 

d\ 
d'y2 

d\_ 

d'xd'y 

0 

0 

0 

0 

(7 

0 

0 

8% 
d'x2 

d% 
d'y2 

d'xd'y 
1 dK K ) 
x d'x ' x2 

'x d'y 

(2.58) 

J8x2W 

tSM = 

0 

0 

0 
yy 

yy 

xy 0 ' 
0 

CT . 
2x8 

and the first convective stiffness matrix due to A L E is given by 

, K A I = J ( ( B > Y ' S / U H ' d V 
•v 

(2.59) 

(2.60) 

The second convective stiffness virtual work term due to A L E may be discretized as 

r{a±_a£_ytj^k'dv = (saf [(tBA2)T'SL2BL2'dV(u-us) 
„J. dx, dx, A* J d'x, •v 

= ( < S u ) r ' K A 2 ( u - u s ) 

(2.61) 

where 
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d'x 
0 

0 
d'x 

d'y 
0 

(2.62) 

0 
dhk 

d'y 
K 0 N 

15x2 N 

and the second convective stiffness matrix due to A L E is given by 

'KA2= \(tBA2f'SL2BL2'dV (2.63) 

Substituting all of the above discretized terms in Equation (2.24) the final A L E finite 

element equilibrium equation for quasi-static analysis may then be written as 

where; 'KLl and 'KL1 are the Lagrangian material and geometric stiffness matrices, 

' K A 1 a n d 'KA2 are the A L E convective stiffness matrices and ,+AlVx' and ' f are the 

external and internal force vectors, respectively. 

2.2.3 Discretization of the Dynamic A L E Equation 

The A L E equation of motion for dynamic analysis, Equation (2.32) is discretized to 

develop the finite element equation for dynamic analysis in a manner similar to that used 

to drive the quasi-static finite element equation. Thus, for isoparametric finite element 

discretization, velocity and acceleration vectors may be written as 

('Ku+'KL2)u+('KM+'KA2)(u-ug)='+A'fex'-'f (2.64) 
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' v = H v , V ' = H'v« 
v = H v , v* = H v s (2.65) 

a = H a , a = Ha 

where 'v, 'vg and 'a represent the nodal material velocity, grid velocity and referential 

material acceleration at time t, whereas v, v4' and a are the nodal incremental 

quantities of the same variables from time t to t + At. 

Using Equation (2.60), the Lagrangian mass term may be discretized as follows 

l'paiSui'dV= l'p(HSu)T(H&)'dV 
'V 'V 

= (du)T \'pRTYl'dVa (2.66) 
•v 

= (<5u)r'Mz-a 

where '~ML is the Lagrangian mass matrix given by 

' M L = \'pHTH'dV (2.67) 
•v 

The inertia force virtual work term is discretized as 

j'p'aiSul'dV= J'p(H<5uj7'(H'a)'dV' 
'V 'V 

= (du)T j'pRTH'dV'a (2.68) 
•v 

= (<5u)r'ML'a 

The first inertia force virtual work term may be discretized as 

\'p(vk-'vg

k)d{'a;SUi) At'dV = (Sa)T'MA'a (2.69) 

where 'MA is given by 
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'MA = 'MA 'M~A 

1 Y 1 2i-l,2./-l I Y I 2i-\,2 j 

'MA 'MA 

2Nx2N 

in which i and j indicate node numbers from 1 to N, and 

>MA 

1 Y 1 2i-1,2y-1 J ox ox •v k=\ 

dh 7)h N 

dy dy $^ 

'MA ='MA =0 
m2i-l,2j 1VI2i,2j-\ U 

(2.70) 

(2.71) 

(2.72) 

The discretization of the convective terms in the equation of motion is shown in 

Appendix C. 

Upon substituting all of the discretized terms into Equation (2.35), the dynamic A L E 

finite element equation may then be written as 

' M ^ ' C V C ^ v - y ^ f K M ^ u + C K M ^ X u - u 8 ) 
= l + A , f e X , _ t f _(<ML+'MA)'a-( rCA 1+'CA 3+'CA 4)'v 

(2.73) 



Chapter 3 

DYNAMIC FRACTURE PARAMETERS 

3.1 I N T R O D U C T I O N 

According to linear electrodynamic fracture theory, the near-tip stress field is dominated 

by the singular term in the asymptotic expansion of the solution (Freund, 1990). For 

each fracture mode, determining this singular stress field may be reduced to determining 

the amplitude factors known as the dynamic stress intensity factors K,, Kn and Kw. 

These factors are crucial in assessing the subsequent crack behavior in terms whether or 

not the crack will propagate, in which direction and at what speed. 

This chapter introduces the dynamic fracture parameters for stationary and propagating 

cracks. The techniques and solutions in this work are primarily for stationary and 

propagating mode I (opening mode) crack problems. In addition, the in-plane mixed 

mode crack problem, that is, combined mode I and mode II (shearing mode), is briefly 

addressed. The dynamic stress intensity factors may be extracted from the energy release 

rate G defined in domain (area) and contour (line) integral forms. The energy release 

rate is derived from a mechanical energy balance in the area surrounding the crack tip. 

The procedure closely follows that of Freund (1990) and Moran and Shih (1987). 

33 
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3.2 GENERAL MECHANICAL ENERGY BALANCE 

In the absence of body forces, the Lagrangian form of equation of motion may be written 

as 

'atJJ = 'p 'v. (3.1) 

By taking the inner product of Equation (3.1) with the material point velocity v, , the 

result is 

\ = 'P 'Vj 'V ; (3-2) 

Since, {'<Jy'vj) t= aiUi 'v i + 'ay 'vy._; , then Equation (3.2) may be rewritten in the form 

^y'v.X^'cJy'v^'p'v./v, (3.3) 

Since the stress work density, 'U , and the kinetic energy density, 'T , at a material point 

are given by 

'U= J'CT.. ''v..dt' (3.4) 

f'=0 

'T = \'p'vi'vl (3.5) 

Equation (3.3) can be written as, 

('ay 'vjl^'U+'f (3.6) 

Equation (3.6) is referred to as the general balance equation and is valid for any material 

response. 
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Equation (3.6) may be integrated over a general three-dimensional body of volume 'V 

bounded by the surface 'S with a unit outward normal m. Let 'vf be the instantaneous 

velocity of the surface 'S. This yields 

| ( ' f f / v J / d V = K'U+'t)'dV (3.7) 
'V 'V 

Applying the divergence theorem to the LHS of Equation (3.7) and Reynolds transport 

theorem to the RHS, the mechanical energy balance may be written as 

J V,/v.m,. 'dS = — j('U+'T) 'dV-l('U+!T)'v?m, 'dS (3.8) 
•s  d t 'V 's 

3.3 E N E R G Y B A L A N C E F O R C R A C K TIP R E G I O N 

Consider an arbitrary two-dimensional body, Figure (3.1) containing a crack and bounded 

by a Lagrangian (material associated) curve ro. The crack is assumed to be propagating 

with an instantaneous velocity 'vc along x;-axis. The crack tip region is bounded by a 

small contour 'r that starts at one of the traction free crack faces and ends at the other. 

This contour is fixed in shape and it translates with the crack tip at the same velocity. 

Integrating Equation (3.8) over the area 'A, bounded by the contours r„ , 'r, lT+ and *r~ 

and applying the divergence theorem to the LHS of the equation and Reynolds transport 

theorem to the RHS yields (Moran and Shih, 1987) 
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Figure (3.1) Crack tip contours. 

j'a^Vjm, 'dC = — 1('U+'t) 'dA- |('C/+'r) \m{ 'dC (3.9) 

where 'C = F„ U 'F+ U 'r~\J 'r. By assuming that crack faces are traction free, i.e., the 

stress vector 'cr.m. = 0, Equation (3.9) may be expanded as 

J'cr..' y. m, 'dC = — J('U+'t) 'dA - ^('U+'t) V m,. ] 'dC 

r0 D T - A T+UT- (3.10) 

- j[('C/+'r) V/ra1+'o-1/v(mI.] 'dC 
'r 

The term on the LHS of Equation (3.10) is the rate of traction work being inputted into 

the body. The first term in the RHS represents the rate of increase of the internal energy, 

whereas the second term represents the rate of energy lost due to flux through crack 

faces. The last term on the RHS represents the rate of energy lost due to flux through 'T, 

which will be denoted by F. Since m = -n on 'F, F can be expressed as 
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F(T)= {[('[/+'r)'vcJ1,+'o-,/v.]n,. 'dC (3.11) 
•r 

3.4 T H E D Y N A M I C E N E R G Y R E L E A S E R A T E 

The dynamic energy release rate G is defined as the energy released from the body due to 

a unit crack growth. The dynamic energy release rate may be related to the contour 'F, 

as it is shrinking into the crack tip, as 

G= lim J ^ - ^ L lim j - ? - f f'cr, V . +(U+'T) 'vcSu]nt 'del (3.12) 

In order for G to be a fracture parameter of fundamental significance, its value must be 

independent of the shape of the contour 'F. 

To examine the path dependency of the above contour integral, consider a closed loop 

formed by two crack tip contour integrals. Upon application of the divergence theorem 

to the energy flux integral, Equation (3.11), yields 

F(ri)-F(T2)= { 
'An 

where 'AJ2 is the area within the closed path. In general, the above integrand is not 

necessarily zero and consequently the value of F will be path dependent. 

Consider, as a special case, a steady state crack growth ( V = v c = const.). In this case, 

any field quantity/^) depends on xj and t only through the combination %=xl-v°t. 

This causes the area integral of Equation (3.13) to vanish, which implies that the energy 

d'U 
dt •+ v 

d'U , d'u 
+ p 

dx. 

fd2!u: , r d2'u: 

dt dt2 dtdx. 
'dA (3.13) 
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release rate contour integral, Equation (3.12), is independent of the path f7"for steady 

state crack growth. 

The relation between material point velocity and crack tip velocity may be expressed as 

, a x _ v a y ( 3 1 4 ) 

dt fix. 

For steady state crack growth, the first term on the right hand side of Equation (3.14) 

vanishes. For the non-steady state conditions, this term is not necessarily zero; however, 

in areas close to the crack tip, where the displacement gradient is very large, the second 

term dominates and Equation (3.14) may be written as 

' v , - V ^ (3.15) 

Using Equations (3.14) and (3.15), the dynamic energy release rate may be expressed as, 

G = \[(!U+,T)5u-tCTij 'u^-'dC (3.16) 
'r 

where G is path-independent for steady crack growth and locally path-independent for 

non-steady crack growth. 

3.5 D O M A I N I N T E G R A L S F O R E N E R G Y R E L E A S E R A T E 

In finite element dynamic analysis, it is difficult to reliably evaluate energy functions 

defined in path forms even for steady state problems. Therefore, Equation (3.16) will not 

provide reliable results if it is implemented in a finite element modeling of dynamic crack 

problems. 
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To overcome this difficulty, Moran and Shih (1987) applied the divergence theorem to 

Equation (3.16), considering the configuration in Figure (3.1) for a crack with straight 

faces, and taking the limit as lr—> 0. This alternative expression for G is expressed as 

G = - {[( 'U+'T)Su - '<r„ ] q,j 'dA- \[p \ %-'p 'a,. \ x ] q 'dA (3.17) 
'A 'A 

where q is an arbitrary smooth function that is a unity on '/"and vanishes on r0. 

Organ (1996) added an extra term to Equation (3.17) to solve for general curved cracks, 

i.e., 

G= - J[( 'U+'T)SU - 'ay \ ] q j 'dA- \[p 'v, \ - ' p 'a,. \ ] q 'dA 

' A ,/ \ (3.18) 
+ jyU+'T)qm] 'dC 

T+\j'r-

Other expression for G for straight cracks derived from Equation (3.16) include 

(Nishioka and Atluri, 1983) 

G= \lu+'T)n-'crymj X j 'dC- \\p \ \ - ' p \ \ ] 'dA (3.19) 
'A 

and 

G = Hm | | 'p('v, c) 2«., uif] nx 'dC + J['t/n,-'cr.. m} 'uiX] 'dC + J|> 'a,. 'u{,] 'dA (3.20) 
' r r 0 '/t 

In Equation (3.17) to (3.20), 'A represents the area bounded by the contour i~o. The first 

integral in Equation (3.20) is evaluated at the crack tip. 
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3.6 M I X E D M O D E STRESS INTENSITY F A C T O R S 

The dynamic form of Irwin's relationships that relates the energy release rate to mode I 

and mode II stress intensity factors in plane strain condition is expressed as 

G(vc,t)=l-^-[A, (vc)Kf+A„ (vc)Kf,] (3.21) 

where, vc is the crack tip speed and Ai (yc) and An (yc) are universal functions of crack tip 

speed and are given by 

.2 .2 
A ( V ) = / X , A„(vc)= (3-22) 

(\-v)csD (l-v)csD 

where 

c-2 c2 
I 1 V 1 V 

2x2 

(3.23) 

D = 4ad as-(\ + as) 

and cs and c</ are the elastic shear and dilatational wave speeds respectively. Equation is 

obtained by substituting the asymptotic crack field solution into Equation (3.16). 

For mode I problems, determining the dynamic stress intensity factor, Kh from the 

dynamic energy release rate G, is straightforward, i.e., substituting Ku = 0 in Equation 

(3.21) . However, in mixed mode problems, Equation (3.21) does not provide Ki and Ku 

as separate quantities. This may be resolved by using extraction formulas based on 

known auxiliary field solutions (Shih and Asaro, 1988). Any field that satisfies the 

equation of motion, Equation (3.1), may be superimposed on the actual field. 
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Considering a field equal to the first term in the asymptotic solution for pure mode I case 

with unit stress intensity factor, i.e., K,aux = 1, and Kuaux = 0, the energy release rate in 

Equation (3.21) becomes 

• : 

l-v2 

E 
A {K,+KIUJ2+A„Kl, 

AD AU 

(3.24) 

where, G^al is the energy release rate of the total field (the actual field plus the auxiliary 

field), G ^ i s the energy release rate of the auxiliary field, and G-^ is termed as the 

interaction energy release rate. The superscript (1) implies that the auxiliary field is a pure 

mode I type. 

Using the interaction term of Equation (3.24), the mode I stress intensity factor may be 

expressed as 

l-v2 

G (0 

2A, 
(3.25) 

Similarly, by superimposing a pure mode case {Kiaux = 0, Kuaux = 1), the mode II stress 

intensity factor may evaluated as 

K, 
A2) 
rint 

Kl-v'JIA,, 
(3.26) 



Chapter 3. Dynamic Fracture Parameters 42 

The interaction energy release rate may be evaluated by superimposing the auxiliary 

field solutions corresponding to a unit mode I stress intensity factor in Equation (3.16). 

The contour integral may then be converted into a domain form following the procedure 

of Section 3.5. For small strain linear elasticity, Shih and Asaro (1988) showed that 

= J[-('<7F F '4'> + p Vv<»)9, H'*? '«,,+'*<, '"?!)q.j 
'A - (3.27) 

where y is linear strain and the superscript (1 ) refers to mode I auxiliary field quantity. 

The same expression can be obtained for G{

m 
'(2) 
'int ' 

3.7 D I R E C T I O N OF C R A C K P R O P A G A T I O N 

Different theories are available in the literature to predict the direction of crack 

propagation. Erdogan and Sih (1963) proposed that cracks propagate in a radial direction 

corresponding to the plane perpendicular to the direction of the greatest tangential stress. 

Alternatively, Sih (1974) introduced a theory based on the strain energy density. It states 

that the crack propagation starts in a radial direction along which the strain energy 

density is a minimum. In this work, both theories will be considered in the numerical 

implementation. 



Chapter 4 

NUMERICAL PROCEDURE 

This chapter discusses the implementation of the A L E and dynamic fracture 

formulations, described in Chapters 2 and 3, into the newly developed dynamic A L E 

finite element FRacture program (ALEFR). New procedures and their numerical 

implementation into the developed program are detailed in this chapter. 

4.1 M E S H M O T I O N 

As indicated in previous chapters, the finite element grid points in A L E formulation may 

be moved arbitrarily to maintain a homogeneous mesh and to properly represent 

boundary conditions throughout the deformation process. Grid displacements are first 

related to material displacements through a set of assigned arbitrary mesh motion 

parameters. This simplifies the specification of pure Lagrangian, pure Eulerian or any 

arbitrary degrees of freedom. The choice of the arbitrary mesh motion parameters for 

interior degrees of freedom is handled by a special mesh motion scheme. However, 

special treatment for mesh motion on free material boundaries is necessary to satisfy the 

A L E boundary constraint, Equation (3.5). 

43 
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4.1.1 Grid Displacement 

The grid displacement is related to the material displacement according to the following 

general form 

u s =a + Bu (4.1) 

where a and B are a vector and a matrix of mesh motion parameters, respectively. 

Vector a consists of appropriate grid displacements given by the mesh motion scheme, 

while matrix B consists of factors that allow the coupling of grid and material 

displacements. Setting a = 0 and B = I, produces a pure Lagrangian scheme, i.e., 

u* = u, whereas a pure Eulerian scheme, i.e., us = 0, may be obtained by setting a = 0 

and B = 0 . Depending on the scheme of mesh motion on free boundaries, matrix B may 

have non-zero off-diagonal terms, which means that grid and material displacements are 

coupled at the same node. 

4.1.2 Mesh Motion for Interior Nodes 

In this work, the transfinite mapping method (Haber et al., 1981) is used as the mesh 

motion scheme for the degrees of freedom interior to any mesh region bounded by any 

four specified boundary curves. This method provides a homogeneous mesh and matches 

the boundary of a given region at an infinite number of points. Another distinct 

advantage of the transfinite mapping method is that it allows the discrete representation 

of boundary curves; that is, the coordinates and displacements of boundary nodes may be 
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used to find the optimum position of the nodes internal to the region. It also allows for 

discontinuities in the slope of boundary curves. 

4.1.3 Mesh Motion on Free Material Boundaries 

To move nodes on free boundaries, three important aspects have to be considered. First, 

the true material boundary should be determined and tracked along the course of 

deformation. Second, the A L E boundary constraint, Equation (3.5), must always be 

consistently satisfied. Third, the boundary nodes should be properly spaced to ensure a 

good quality mesh within the region they bound. 

The description and analysis of two techniques for the treatment of boundary motion are 

given in this section. These are: the Displacement Coupling (DC) technique (Bayoumi 

and Gadala, 1999) and the True Boundary Tracking (TBT) technique (Abdelgalil and 

Gadala, 1999), developed in this work. 

The Displacement Coupling technique 

Bayoumi and Gadala (1999) controlled the A L E nodal motion on free boundaries, by 

using the general equation of grid motion, Equation (4.1). By considering point k on the 

free boundary, Figure (4.1), the application of Equation (4.1) yields 

Components of the vector a and the matrix B are determined such that the resultant 

coupling of degrees of freedom satisfies the A L E boundary constraint, Equation (3.5). 

(4.2) 
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The free boundary is defined by a cubic spline interpolation of nodal coordinates. A local 

set of axes, x' and y' is defined at node k, such that x' is tangent to the boundary. This 

local set of axes makes an angle 6 with the global x and y axes. 

Components of the vector a and the matrix B are determined such that the resultant 

coupling of degrees of freedom satisfies the A L E boundary constraint, Equation (3.5). 

The free boundary is defined by a cubic spline interpolation of nodal coordinates. A local 

set of axes, x' and / is defined at node k, such that x' is tangent to the boundary. This 

local set of axes makes an angle #with the global x and y axes. 

y 

free material 
boundary 

Figure (4.1) The Displacement Coupling (DC) technique. 
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An arbitrary displacement ax, is assigned to node k along the tangent axis x'. This 

displacement is set in order to control the nodal spacing on the boundary. Equation (4.1), 

may then be written as 

The above scheme satisfies the A L E boundary constraint requirements, but it does not 

truly track the location of the boundary node. This may be crucial, especially in the case 

of a moving crack with a curved or kinked propagation path. 

True Boundary Tracking (TBT) technique 

This technique is developed in this work, and it is based on the physical interpretation of 

the A L E boundary constraint. The objective is to accurately determine and track the true 

material boundaries, including the evolutional crack faces. Implementation of this 

technique into an A L E description is not straightforward, but it might be simplified, 

according to Figure (4.2), into the following steps: 

ax, cosd 
ax, sin 0 + 

sin 26 -sinr^cosf? \ux 

-sin6>cost9 cos2 0 [uy 

(4.3) 

The total nodal point displacement is resolved as; 

us =uL + uA (4.4) 

where u L is the Lagrangian component of the nodal displacement, that is, the 

displacement of a material point that instantaneously shares the location with 

the node, whereas uA is the arbitrary component of the nodal displacement. 
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Initially, before load application, a number of Material Points (MPs) are 

created on each free boundary. The possession of these MPs to their 

corresponding elements is then determined. Due to the nature of the A L E 

motion scheme, the possession of MPs may change form one element to 

another; therefore, the search for the owner element is repeated each time 

step. 

L*-i 
(was MP£j) 

Ml* : Material point k 
possessed by 
element i 
Element i 
Material point 

ei : 
+ : 

Material point k 
possessed by 
element i 
Element i 
Material point • : Finite element 
node 
Martial boundary 

Finite element 
node 
Martial boundary 

Finite element 
node 
Martial boundary 

Figure (4.2) The True Boundary Tracking (TBT) technique. 
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After the application of the loading increment, each nodal point k is moved 

according to its respective Lagrangian displacement, uL. Then, for a material 

point j, possessed by the element q, M P J , the deformation is determined by 

the extrapolation 

( n 

(4.5) 

where the subscripts i and k correspond to the degree of freedom and node 

number, respectively. The new locations of MP's constitute the new (true) 

material boundary. 

Nodal points may now be moved arbitrarily by a distance uA on the true 

material boundary in accordance with the A L E boundary constraint. 

The TBT motion scheme consistently satisfies the A L E boundary constraint in the sense 

that the arbitrary nodal motion occurs exactly on the true material boundary, whereas in 

the coupled displacement technique, this motion occurs in a virtual material boundary, 

created by curve fitting of the nodal point coordinates. 

The TBT scheme treats the material boundary and the finite element boundary as two 

separate entities. This gives it the advantage of moving boundary nodes on uneven or 

curved free boundary contours. Consider, as an example, the free body contour shown in 

Figure (4.3). For the sake of simplicity, assume that the body is unloaded, i.e., stress 
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free. An arbitrary mesh motion should not, in principle, induce any stress or deformation 

on the body and its free boundaries. However, moving the boundary nodes according to 

coupled displacement scheme (in which, nodes are moved in a direction tangent to the 

cubic spline curve connecting the nodes) distorted the unstressed boundary. On the other 

hand, the way the TBT defines and tracks the material boundary, kept this boundary free 

from any distortion throughout the process of arbitrary nodal motion. 

Figure (4.3) Nodal motion on free boundary: the TBT versus the DC techniques 

To implement the TBT approach, it is more convenient to rewrite the general equation of 

relative motion, Equation (4.1), as 

u g = a* where, a* = \ 
uL Lagrangian 
0 Eulerian 

Arbitrary value A L E 
(4.6) 



Chapter 4. Numerical Procedure 51 

where the arbitrary value, in A L E description, is assigned by the transfinite mapping 

method for internal nodes, whereas the arbitrary motion of the free boundary nodes are 

assigned according to the TBT approach. 

4.2 M A T E R I A L POINT SPLITTING (MPS) 

The most widely used technique in the modeling of crack propagation process in 

Lagrangian finite element codes, is the node release method (Anderson, 1973). In this 

method, the crack propagation is modeled by discontinuous jumps between fixed nodes 

in a straight line determined prior to the application of the finite element analysis. In 

each crack growth increment, the crack tip node is split into two nodes and the next node 

in line becomes the new crack tip node. Thus, the crack is forced to grow, in a self 

similar manner, a whole element length for each increment. These nonphysical 

assumptions introduce some errors, in the analysis of dynamic fracture in general and in 

modeling ductile material in particular, where the accuracy of determining the stress and 

strain histories affects the solution significantly. This drawback limited the application 

of node release approach to some particular classes of crack propagation problems. 

In this work, a new technique is developed to model the process of crack propagation in a 

continuous manner (Abdelgalil and Gadala, 1999). This method models the creation of 

new material surfaces (due to crack propagation) by splitting every material point that 

happens to lie on the crack propagation path into two material points, instead of splitting 

crack tip nodes. Therefore, this method is referred to as: Material Point Splitting (MPS). 
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The MPS technique is incorporated with the TBT to enable the modeling of crack 

propagation using the A L E finite elements in a continuous and consistent manner. This 

implementation is simplified in Figure (4.4) for a self-similar crack propagation. 

According to this new approach, the crack tip is associated to a single finite element node 

throughout the course of crack propagation. The Crack Tip Node (CTN) has a material-

point-generation function. If the crack is allowed to move, according to the propagation 

criteria, this function generates a new material point at the new crack tip location (MP C T ) . 

The old (MPCT) , directly behind the CTN, splits into two MPs. In the next time step, 

these split MPs are associated to the upper and lower crack faces. By splitting each MP, 

new upper and lower crack faces are created in each increment. The objective of the 

TBT technique is to control nodal motion on the upper and lower crack faces. This 

insures that the mesh is always kept uniform during crack growth, and it keeps the 

motion of boundary nodes consistent with the definition of the relative motion, with 

respect to the computational and material reference frames. 
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At the end of time step t 

Lagrangian deformations are applied to all 
the nodes and MPs according to TBT. 

+ M P Material surface 
11 Node Element surface 

Arbitrary motion may be applied to all 
nodes except CTN. (No crack propagation 
yet) 

The CTN is released from the M P C T and 
allowed to advance leaving M P C T behind. 
The M P C T is then split into two MPs. 

At the end of time step f+1 the split MPs 
will move to the upper and lower crack 
faces according to their Lagrangian 
deformations. New M P C T N is created. 

Figure (4.4) Material Point Split (MPS) technique. 
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4.3 NUMERICAL IMPLEMENTATIONS 

The implementation of the A L E formulations, Chapter 2, and dynamic fracture 

formulation and techniques, Chapters 3 and 4, into a dynamic A L E finite element 

fracture program (ALEFR) is outlined in this section. 

4.3.1 Solution of Equilibrium Equations 

In order to solve the finite element equilibrium equations, Equations (2.64) and (2.73), 

using a modified Newton-Raphson iterative scheme, the two equations may respectively 

be rewritten as 

'M l a l ' ) +'C A l v ( 0 + , C X 2 (v ( i ) -Y J , i ) )+('K l l + , K t 2 )u ( i ) +('KM+'KA2)(u(i) -u s ( 0 ) 

where u ( , ) , v ( , ) and a ( , ) are the corrections to the incremental material displacement, 

velocity and acceleration vectors in iteration i, respectively, and u s ( , ) and vA'0) are the 

corrections to the incremental grid displacement and velocity vectors, respectively. These 

correction vectors are then used to update their corresponding quantity as follows 

('K^'+'K 1 2)^ +('K>ll+'KAJ)(u(') - u'(,))='+Af rt-'f(w) (4.7) 

and 

t+At (i) _t+At + U (<•) 

+ V (/) 

a ( 0 = r + * a « - l ) + a ( 0 (4.9) 
t+At g(i) _t+At g(i-\) 

+ u 
t + At yg(0 _t + Atyg(i-]) + V 
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In dynamic analysis, time integration is carried out using Newmark implicit scheme 

(Bathe, 1996) in which 

' + A ' u ( 0 ='u + At' v + At2 (| - ft)'* + At2p,+Ata(i) (4.10) 

'+A< v ( 0 =' v + At(\ - y)' a + Aty' + A ' a ( i ) (4.11) 

where (3 and ̂  are parameters that control the accuracy and stability of integration. 

Using Equations (4.9), (4.10) and (4.11), v 0 ) , a< 0 and \ 8 ( , ) may be eliminated from 

Equation (4.8) by correlating them to u ( , ) and us(,) as follows 

v(o = _JLu<o 
Atfi 

• a ( 0 = — ^ - u ( 0 (4.12) 
At2fi 

Atfi 

Using Equation (4.12), Equation (4.8) may be rearranged as 

[-L-'ML + -^('CA]+'CA2)+('KL+'KA)]u(i)-[-^'CA2+'KA]u "' 
Atlfi Atfi Atfi (4.13) 

_t+At ^ext _t+Ai j(i-i) _(']yji'-)-']yj/'y+z1' â '"1' —(' c*' +'C'A^+'C'**)'+^1' v̂ '""1' 

Equations (4.7) and (4.13) may be simplified further by eliminating u i , ( , ) . This may be 

carried out by rewriting both of the equations in the following general form 

' K u ( 0 - ' K s u i , ( 0 =f ( ; ) (4.14) 
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where ' K and ' K x are equivalent stiffness matrices corresponding to u ( , ) and u s ( , ) , 

respectively, while f ( , ) is the incremental load vector for iteration i. Then, using the A L E 

correlation between grid and material point displacement according to TBT, Equation 

(4.6), the general form, Equation (4.14) becomes 

( ' K ) u ( / ) = f ( ' V K V (4.15) 

Equation (4.15) is used to eliminate the grid displacement on the element level. 

Conventional finite element assembly and elimination techniques may now be applied 

directly to solve for the unknown material displacements. 

4.3.2 Numerical Integration of the Energy Release Rate 

In order to numerically evaluate the energy release rate G, and subsequently the dynamic 

stress intensity factor, the integrals derived in Sections 3.5 and 3.6 are implemented in 

the developed finite element program. 

These G integrals employ the stress work density, 'U, which, according to its definition in 

Equation (3.4), requires the integration of the product of stress and the velocity gradient, 

from the beginning until the current time t. It is not possible to employ the Gauss 

quadrature integration scheme, used in the standard finite element, because when the 

finite element mesh moves arbitrarily, due to crack propagation, the location of the Gauss 

points change. Therefore, the material point stress and velocity gradient histories are 

unknown, and the integration, Equation (3.4), cannot be performed. 
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This problem is overcome by creating a Lagrangian grid of material points in the area 

around the crack tip where the G contours are applied. The grid should be created 

initially before load application. Each material point is possessed by an (owner) element, 

i.e., located within its boundaries. Due to the relative (ALE) motion between the finite 

element mesh and the Lagrangian grid in the event of crack propagation, the search for 

the owner element for each material point has to take place each time step. To accelerate 

the searching process, the search will first take place in the last owner element, then it is 

performed in the elements adjacent to it. A map of the neighboring elements for each 

element in the model, is determined by utilizing element connectivity at the beginning of 

the analysis. This map will not change throughout the course of crack propagation, 

because there is no remeshing or nodal release used in modeling of crack propagation. 

Once the owner element is located, material point properties are then updated. 

A square contour centered at the crack tip is constructed, as shown in the Figure (4.5), 

such that it starts at the lower crack face, passes through the MPs of the Lagrangian grid 

and ends at the upper crack face. The material points bounded by the contour, including 

the ones on the contour itself, are referred to as domain MPs, whereas the MPs on the 

contour are referred to as contour MPS. Each term of the contour and domain integrands 

of G integrals, is evaluated at each contour and domain MP, respectively. The one and 

two dimensional Trapezoidal rules are then applied to carry out the numerical 

integration. 
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Once the crack is allowed to propagate at a certain speed, V , the crack tip node will then 

displace a distance d = V'At, where At is the current time step. Accordingly, the TBT, 

MPS and the transfinite mapping scheme arrange the elements topography, Figure (4.5). 

Holding the square contour while the crack is propagating causes contour eccentricity, 

i.e., the crack tip is shifted from the center of the square. Excessive eccentricity leads to 

inaccurate results (Organ, 1996), and eventually, causes the domain to disintegrate into 

two separate parts. Therefore, continuous contour reconstruction is needed as long as the 

crack is propagating. Figure (4.5) shows, as an example, a self-similar crack 

propagation, in which the contour was reconstructed by eliminating the contour MPs on 

the left and incorporating new contour MPs on the right. This process of contour 

reconstruction involves the search for the best combination of MPs to make the contour 

as square and eccentric as possible. Practically, the energy release rate is evaluated using 

more than one contour, and in this work, a large number of square and rectangular 

contours are used in each example to determine the sensitivity of these contours to the 

size and shape of the path of integration. 
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Figure (4.5) Contour and domain integrals to determine G for dynamic 
crack propagation 
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4.4 T H E A L E D Y N A M I C F R A C T U R E P R O G R A M 

The techniques developed in this work to model dynamic fracture problems, are 

implemented in a program (ALEFR). These techniques include: the Material Point 

Splitting (MPS), True Boundary Tracking (TBT) and techniques to determine the 

fracture parameters for stationary and propagating cracks. 

4.4.1 Program Structure 

The developed program (ALEFR) is written in a modular scheme and it employs 

standard updated Lagrangian procedures, routines for general A L E analysis, and the A L E 

routines developed specifically to model fracture problems. 

The flowchart, Figure (4.6), shows the main routines of the developed program. 

Additional standard and developed subroutines are not listed here for brevity. The 

program starts by reading the variables needed for controlling the size of the arrays 

through the dynamic memory allocation. Next, all variables and arrays used in the 

program are initialized. The program then reads the standard finite element input data as 

well as fracture control data. Since the program is designed to handle the conditions of 

displacement controlled and load (stress) controlled fracture, the applied distributed loads 

are converted into their equivalent nodal values. A grid of material points is created 

within the domain of the body. A searching process is carried out within the whole 

domain, for the owner element of each MP. This grid is needed later in the computation 

of fracture parameters and in the TBT scheme. 
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In each Newton equilibrium iteration, the fracture parameters have to be evaluated. This 

is carried out first by searching for the current owner element for each M P in the grid 

created at the beginning. Once all the owner elements are located, the M P properties are 

updated accordingly. The integration contours and domains are built on the M P grid and 

the strain energy release rate and the stress intensity factors are determined. 

According to the crack propagation criterion used, if a decision is made to propagate the 

crack, propagation speed and direction are subsequently determined and the MPS 

technique is used to create the new crack surface. The TBT and motion routines are 

called to control the A L E mesh motion by determining the motion parameter in the 

vector a* . For the free boundary nodes, including crack faces, this parameter is 

computed using the TBT routines, whereas, for internal nodes, it is determined by calling 

the transfinite mapping subroutines. In the condition of a load controlled fracture, the 

A L E motion due to crack propagation may alter the position of the nodes included in the 

calculation of the consistent load vector. This vector is re-evaluated in each iteration 

while the crack is propagating. When the boundary conditions are set, the standard 

predictor phase of the time integration algorithm is then preformed, and the elements 

lumped mass and stiffness matrices, including the extra terms due to A L E , are calculated. 

The global effective load vector is assembled from all the elements load vectors as well 

as the out of balance internal forces from previous iterations. The solution for the 

unknown displacement is carried out through a frontal solution scheme. A line search 

algorithm is used to improve convergence. The corrector phase of the time integration 
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scheme is then performed to determine velocities and accelerations. Gauss point stresses 

are integrated and three convergence measures are determined. These measures are 

respectively based on: the iterative displacements, the residual (out of balance) forces 

and the residual energy. Convergence of iterations is then checked and the iterations are 

performed until convergence is achieved. At the end of each converged time step, nodal 

stresses are extrapolated from Gauss point stresses, and the results are written into output 

files. The program then moves to the next time step. 
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( START 7 ") 

Read control variables / CQNTRO / 

Initialize arrays and variables | INITIA | 

Input model and fracture data / INPUTD J 

Evaluate consistent nodal force vector 

Create grid of material points 

Determine grid point possession 

Update grid points properties 

Define contour and domain integrals 

Determine fracure parameters 

Determine propagation speed and direction 

Perform MPS 

Perform TBT for crack faces and free boundaries 

Set motion parameters 

Update consistent load vectors due to crack propagation 

Set boundary conditions 

Predictor phase 

Determine elements mass matrices including ALE terms 

Calculate elements stiffenss matrices including ALE terms 

Assemble elements effictive load vector including ALE terms 

Solve ALE equilibrim equations 

Line search algorithm 

Corrector phase 

Evaluate stresses at Gauss points 

Determine convergence parameters 

Extrapolate nodal stresses 

Write output data / OUTPUT / 

Figure (4.6) Flowchart of the developed program (ALEFR) 
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4.4.2 Characteristics of the Developed Program (ALEFR) 

The characteristics of the developed implementation, as discussed above are highlighted 

in the following points: 

- Due to the developed true boundary tracking (TBT) technique, the motion of the 

free boundary nodes is accurately tracked, and the A L E free boundary constraint 

equation is satisfied. 

- The modeling of the crack propagation process using the material point splitting 

(MPS) technique (as opposed to the Lagrangian nodal release method), provides a 

closer representation of the real physical process, which involves the evolution of 

new material surfaces in a continuous manner. In addition, the MPS technique 

eliminates the need for dense mesh in the path of the propagating crack tip, as 

traditionally required in the nodal release method. 

- Unlike the nodal release method, the developed program is capable of modeling 

in-plane mixed mode crack propagation without the need to determine the 

direction of crack propagation prior to the start of analysis. Further, the developed 

program may easily model non self-similar crack propagation, i.e., curved or 

kinked cracks. 

- In the developed program, the choice of the time step At is independent of the 

crack tip velocity and element size. Variable crack tip velocities may, therefore, 

be modeled more naturally. 
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- The strain energy release rate may be evaluated through integration over contours 

and domains of inhomogeneous materials, i.e., a single contour may pass though 

different materials. 

- The TBT and the MPS techniques are carried out within the iteration loop, i.e., 

before achieving convergence. This is due to the fact that the stresses calculated 

within the iterations already include convective effects. 

- A l l output data is written in formats, such that they can be readily read and 

animated by the data visualization software TECPLOT®. 



Chapter 5 

NUMERICAL EXAMPLES 

In this chapter, the developed program (ALEFR) is tested in a series of numerical 

experiments that include stationary and propagating cracks. Test results are then 

compared to the benchmark solutions available in the literature. Although the developed 

program is capable of modeling linear and nonlinear material behavior, in all cases 

considered here, only linear elastic material is assumed. 

In addition, a mixed mode dynamic crack propagation problem is modeled to test the 

ability of the developed code in solving these kinds of problems. 

5.1 STATIONARY MODE I CRACK SUBJECTED TO SINGLE STEP PULSE 

5.1.1 Problem Description 

In this example, a semi-infinite crack in an infinite body is loaded with a tensile stress 

wave traveling perpendicular to the crack surface. Freund (1990) presented an analytical 

solution for the dynamic stress intensity factor, which starts to develop as soon as the 

wave reaches the crack tip; according to 

(5.1) 

66 
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where, v' is the uniform crack propagation speed ( v c = 0 in this example), v is Poisson's 

ratio, cr0 is the applied tensile stress pulse and cd is the dilatational wave speed. In the 

above equation, the measurement of time t started as soon as the wave reached the crack 

tip. Equation (5.1) shows that the stress intensity factor is a function of the square root of 

time t, and is valid as long as the reflected boundary waves do not arrive at the crack tip. 

5.1.2 Numerical Procedure 

(TO 

H Y j ,-. 

T t 

Y 
Y ! 

A A A A -+X 

Figure (5.1) Horizontal edge crack on a thick plate used in mode I fracture cases. 

The plate shown in Figure (5.1), has a horizontal edge crack. The material properties are: 

£ = 211 GPa, and p = 7800 K g / m 3 . A step tensile stress plus a0 = 1000 N / m 2 , is applied 

on the upper surface of the plate creating a stress wave which arrives at the crack tip at 

time t = H/cd . Plate dimensions are H = 2 m and L = 10 m, and a horizontal edge crack 
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of length ao = 5 m are chosen such that the reflected boundary waves do not arrive at the 

crack tip within the time span reported in the analytical solution (about 1.0 ms). 

The plate is modeled by a coarse and fine model. In the coarse discretization, 1000 

identical 4-noded quadrilateral plane strain elements in (50 x 20) arrangement, are used, 

whereas in the fine discretization, 4000 of the above element type are used in (100 x 40) 

arrangement. Different time steps ranging from 0.3 Atc to 1.0 Atc, where Atc is the critical 

time step according to the Courant condition (Isaacson and Keller, 1966) given by Atc = 

l/cd, where / refers to element length. 

Three Lagrangian grids of different densities have been used to mesh a square area (4 m 

x 4 m) bounded by the largest energy contour integral and centered at the crack tip. In 

these grids, material points are arranged in (101 x 41), (401 x 161) and (801 x 321) 

uniform meshes. To study the path dependency of the energy release rate integrals, 200 

integration paths, centered at the crack tip, have been created, Figure (5.1). The shortest 

path is just 0.02 m away from the crack tip, while the longest path is 5 m away. These 

integration contours pass through material points of the Lagrangian grid. 

5.1.3 Numerical Results 

Figure (5.2) shows snap shots of the ay stress distribution in the model at different time 

steps. The step pulse is applied at time t = 0, at which stress waves start to emanate from 

the upper plate surface and move downward, such that they reach the crack tip at 
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t-H/cd . The solution is carried out until time t = 3H/cd, the time at which the 

reflected waves from the upper and lower surfaces reach the crack tip. The snap shots 

also captured the reflected waves from the right and left free ends. These waves do not 

arrive at the crack tip within the specified solution period. 

Different combinations of discretization schemes, time steps and Lagrangian grid 

densities are utilized in this example. The finer discretization, denser Lagrangian grid 

and smaller time steps always give slightly smoother results; however, all of the results 

obtained are in very good agreement with the theoretical solution (Freund, 1973; Freund, 

1990). 

The energy release rate is evaluated from the dynamic stress intensity factor using 

Equation (3.21). The change of the energy release rate (normalized byHa\ IE) with 

time (normalized by Hlcd) is shown in Figure (5.3). The above solution was obtained 

through the integration of Equation (3.19) over a path located 3 m away from the crack 

tip employing the finest model and the densest Lagrangian grid. A unit value of 

normalized time is equal to the time required for the wave emanating from the upper 

surface to reach the crack tip. Although the waves pass through all the Lagrangian grid 

points on the upper half before they reach the crack tip, all the terms of the domain and 

contours integrals of the energy release rate, Equations (3.19) and (3.20), vanish due to 

the instantaneous symmetry about the crack tip y axis during that period of time. 
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Figure (5.2) Snap shots of ay stress distribution due to the applied tensile stress pulse 
in the stationary crack model. 
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Time = 2 0 t = 0.663 ms 

500 

Figure (5.2) (continued) Snap shots of ay stress distribution due to the applied tensile 
stress pulse in the stationary crack model. 
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Figure (5.3) Variation of the normalized strain energy release rate with the normalized 
time using the fine model with (801 x 321) Lagrangian grid in the stationary 

crack model, subjected to a tensile stress pulse. 

After a unit normalized time t, the energy release rate starts to rise in an almost linear 

manner in very good agreement with the analytical solution until t < 2.6. After this time, 

oscillation of the results increases and it starts to deviate from the analytical solution. 

This may be attributed to the influence of the reflected boundary waves. Finally, the 
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dynamic stress intensity factor is extracted from the energy release rate using Equation 

(3.21), and its variation with the normalized time is shown in Figure (5.4). 
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Figure (5.4) variation of the dynamic stress intensity factor with the normalized 
time using the fine model with (801 x 321) Lagrangian grid. 

5.1.4 Analysis of Contour Path Dependency 

The integrals of Equations (3.18), (3.19) and (3.20) possess the fundamental 

characteristic that they should evaluate the energy release rate regardless of the size and 
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shape of the domain of integration used, i.e., they are path independent. To examine the 

path dependency of these integrals, as many as 200 paths of integration have been 

constructed. Each path starts from the lower crack face and ends at the upper one. 

Within 2 m of the crack tip, all the paths are square in shape, whereas larger contours are 

rectangular in shape. Domain and contour integration are carried out over the material 

points of the Lagrangian grid. 

Figure (5.5) shows the path dependency for each of the above integrals at different time 

steps starting at the normalized time t = 1.0, the time at which the stress wave arrives at 

the crack tip. Since, for straight cracks, Equation (3.18) contains domain integrals only, 

the variation of G values was very smooth and perfectly path independent for the 

contours further than 0.5 m from the crack tip. Equations (3.19) and (3.20) have two 

common interesting features: first, for all contour (and domain) integrals and at all the 

time steps, they both produce, up to the third decimal point, identical G values (therefore, 

the two equations appear as one curve in Figures (5.5)). Second, in each of these 

equations, after decomposing into contour and domain integrals, the domain integral is 

almost a mirror image of its contour integral, i.e., the contour and domain integrals 

complement each other to produce an almost path independent G. In both of these 

equations, the contour integral dominates in the area closer to the crack tip, while in 

Equation (3.19), the domain integral dominates afterwards. 
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Figure (5.5) Path dependency of the contour and domain integrals corresponding to 
the normalized energy release rate at different time steps using (401 x 161) 

Lagrangian grid. 
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Figure (5.5) (continued) Path dependency of the contour and domain integrals 
corresponding to the normalized energy release rate at different time steps 

using (401 x 161) Lagrangian grid. 
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Figure (5.5) (continued) Path dependency of the contour and domain integrals 
corresponding to the normalized energy release rate at different time steps using 

(401 x 161) Lagrangian grid. 

The variation of the normalized energy release rate, evaluated by integrating Equations 

(3.18), (3.19) and (3.20) over a contour located 3 m away from the crack tip, versus the 

normalized time, is shown in Figure (5.6). It may be noted that variations in domain 

integrals are generally smoother than those of contour integrals for the normalized time 

period t > 2.0. The increase in G, due to the domain integral part of Equation (3.19) for t 

> 2.2, was balanced by the fluctuating contour integral. The maximum error produced by 

all of the three equations is about % 11 at the later stages of modeling. 
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Figure (5.6) Variation of the contour and domain integrals corresponding 

to the normalized energy release rate with the normalized time, 
using (401 x 161) Lagrangian grid. 
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5.2 STATIONARY MODE I CRACK SUBJECTED TO SYMMETRIC STEP 
PULSE 

5.2.1 Problem Description 

The plate shown in Figure (5.1) is simultaneously loaded by a step tensile pulse ao at 

both the upper and lower surfaces. Equation (5.1) is still applicable to this problem, and 

by superposition, the dynamic stress intensity factor may be expressed as 

5.2.2 Numerical Procedure 

Since this problem possesses symmetry with respect to the crack plane only the lower 

half of the plate is considered for modeling. The model is discretized into 500 and 1000 

4-noded identical square elements. Displacement boundary conditions are prescribed at 

the corresponding nodes on the axis of symmetry. Uniform time steps ranging from At -

0.3 Atc to 1.0 Atc are used. Lagrangian grids of (41 x 21), (161 x 81) and (321 x 161) 

material point arrangement are employed. 

5.2.3 Numerical Results 

Snap shots of av (= 'cr22) distribution at different time steps are shown in Figure (5.7). 

Variation of the dynamic stress intensity factor, normalized by (CT0^H/(1-V2) ), with 

the normalized time, is shown in Figure (5.8). It may be seen that the numerical results 

are in very good agreement with the theoretical solution throughout the allotted time 

interval. 

(5.2) 
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Figure (5.7) Snap shots of oy stress distribution due to the applied symmetric tensile 
stress pulse, in the stationary crack model. 
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Figure (5.7) (continued) Snap shots of ay stress distribution due to the applied 
symmetric tensile stress pulse, in the stationary crack model. 
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5.3 PROPAGATING MODE I CRACK SUBJECTED TO SINGLE STEP 
PULSE 

5.3.1 Problem Description 

This problem is similar to that described in Section (5.1). However, in this problem the 

crack will , at a certain point in time, propagate at a prescribed velocity. Freund (1990) 
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obtained an analytical solution to determine the energy release rate for a horizontal edge 

crack in an infinite plate propagating in a self-similar fashion (mode I). 

For a propagating crack, Equation (5.1) may be written as (Freund, 1990) 

K,(ty) = k(vc)K,(t,0) = fc(v')gg°JC'(1 2 v ) t (5.3) 
l - v V n 

where, k(vc) is a universal function of crack tip speed, is equal to unity for stationary 

crack and decreases monotonically to zero when the crack speed approaches the Raleigh 

wave speed, cR, according to this approximation 

k(vc)= ) ~ v C ' C r (5.4) 

The energy release rate may then be related to the dynamic stress intensity factor using 

Equation (3.21). From Equations (3.21) and (5.1) to (5.4), it may be concluded that the 

energy release rate changes linearly with time at a slope of g{vc)<rl C, where C is a 

contact based on elastic material properties only and g(vc)is another universal function 

of crack tip velocity and is expressed as 

g(vc)=AI(vc)k2(vc) = l-vc/cR (5.5) 

Thus, the slope is a maximum for stationary cracks and it decreases with the increase of 

propagation speed v c . Equation (5.1) is applicable to mode I crack propagation provided 

that the reflected waves from boundaries do not reach the vicinity of crack tip. 
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5.3.2 Numerical Procedure 

The plate shown in Figure (5.1) is subjected to a single step pulse. The discretizations 

and time steps used in the stationary crack example (Section 5.1) is used to model this 

problem, that is., 1000 and 4000 elements and 0.3 Atc to 1.0 Atc time steps. Since the 

A L E motion due to crack propagation process causes a change to the dimensions of some 

elements of the model, the selection of time step size is made considering the shortest 

element length. Although the code is capable of changing the time step in an adaptive 

manner, only uniform time steps have been used. 

To capture the change in the energy release rate of the propagating crack, the whole 

model area is covered by the Lagrangian grid of the uniform densities of (101 x41), (401 

x 161) and (801 x 321) material point arrangements. Integration of the energy release 

rate is carried out using 200 square and rectangular contour (and domain) integrals. The 

largest contour covers the entire model domain. 

To simplify the comparison of the numerical results with the analytical solution, the 

onset of crack propagation and the propagation velocity are fed to the code as prescribed 

values instead of computing them through a propagation criterion. The crack is, 

therefore, assumed to remain stationary until the normalized time t = 1.5, at which it is 

allowed to propagate at a uniform velocity v = 0.4 c, (~ 1290 m/s). 
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5.3.3 Numerical Results 

Animation of stress distribution during the crack propagation process shows that the 

process has been modeled in a very smooth manner. Snap shots from the animation of ay 

stress distribution are shown in Figure (5.9). The instantaneous loading and unloading 

processes, which take place in the front of, and behind, the propagating crack tip node 

respectively, are consistent with the motion of the crack tip node. This might be 

attributed particularly to the success of the MPS technique, which models the evolution 

of new surfaces due to crack propagation. 

The nodes on the free boundaries, including the original and the new crack faces, moved 

naturally on the true material boundary tracked by the TBT technique. Once the motion 

of the boundary nodes has been decided, the transfinite mapping technique continuously 

keeps the internal nodes in a uniform mesh. 

The integration of the energy release rate is carried out over the 200 contour and domain 

integrals composed by the material points of the Lagrangian grid. As far as the crack 

remains stationary, the constituency of the contour and domain integrals is kept 

unchanged. As soon as the crack begins to propagate, the integrity and centricity of these 

contours are checked every time step and, when needed, reconstruction of the contours is 

performed. Material point properties were updated by mapping them from the specific 

finite element that instantaneously 'owns' the material point. Ownership of the material 

points of the Lagrangian grid is tracked throughout the process of crack propagation. 



Chapter 5. Numerical Examples 86 

The dynamic stress intensity factor, K, is extracted from the energy release rate in a way 

similar to that of the stationary crack shown in Section 5.1. The change of the dynamic 

stress intensity factor (normalized by CJ0^H/([-V2) ) with the normalized time is shown 

in Figure (5.10). For a normalized time t < 1.5, the period at which the crack remained 

stationary, the numerical and analytical solutions are in good agreement. The dotted 

curve in the figure represents the hypothetical value of the normalized K if the crack 

remained stationary throughout the solution period. The sudden drop of the normalized 

K at the normalized time t = 1.5, indicates that the start of the crack propagation process 

was captured by the numerical procedure. However, this drop is not as large as 

anticipated by the analytical solution. For the normalized time period 1.5 < t < 2.14, 

numerical results are smooth, however, they are about %32 higher than the analytically 

anticipated solution. For t > 2.14, numerical solutions show more fluctuation but the 

same average error is maintained. The solution very slowly converges to the analytical 

solution with increasing the density of the Lagrangian grid. Comparable results may not 

be reached without the use of an impractical, extremely dense Lagrangian grid. The 

reasons behind the inaccuracy of the numerical results are not known yet; however, they 

may be attributed to the accumulation of errors in the numerical techniques used to map 

material properties of the material points of the Lagrangian grid and the numerical 

techniques used to evaluate the energy domain and contour integrals. More investigation 

and future work is needed to clarify this point. 
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time = 1.5 t. ~ 0.497 ms 
Crack starts to propagate 

Figure (5.9) Snap shots of ay stress 
distribution in the dynamic 
stationary/ propagating crack 
model subjected to a tensile 
stress pulse. 
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Figure (5.10) Variation of the normalized dynamic stress intensity factor with 
the normalized time for the dynamic stationary/propagating crack model, 

subjected to a tensile stress pulse. 
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5.4 PROPAGATING MODE I CRACK SUBJECTED TO SYMMETRIC STEP 
PULSE 

5.4.1 Problem Description 

This problem is similar to problem (5.3), however, this time the pulse is simultaneously 

applied to both the upper and lower plate faces. By applying the superposition principle, 

Equation (5.3) may be written as 

5.4.2 Numerical Procedure 

Due to symmetry, only the lower part of the plate is modeled, and the necessary 

symmetric displacement boundary conditions are applied. Two models containing 500 

and 1000 elements with a time step varying from 0.3 Atc to 1.0 Atc, are used. Lagrangian 

grids with (101 x 21), (401 x 81) and (801 x 161) material point arrangements covering 

the entire domain of the model are employed. In this problem, the crack is assumed to 

remain stationary until the normalized time t = 1.5, at which it is allowed to propagate at 

a uniform prescribed velocity v = 0.4 cs (~ 1290 m/s). 

5.4.3 Numerical Results 

Snap shots of the animation of ay stress distribution are shown in Figure (5.11). In this 

example as well, the MPS technique produced a smooth crack propagation modeling. 

The free boundary nodes were moved continuously and consistently on the true material 

boundary during the crack propagation process. 

(5.6) 
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The integration of the energy release rate is carried out over the 200 domains and the 

dynamic stress intensity factor is subsequently extracted and plotted as a normalized 

value against the normalized time, Figure (5.12). The trend of the variation of the 

normalized K is similar to that of the previous example. The numerical results are in 

good agreement with the analytical solution as far as the crack remains stationary. The 

onset of crack propagation is evident by the sudden drop of K. Once the crack starts to 

propagate, the same deviation pattern as reported in Section (5.3) is shown. The same 

conclusion reached for the previous example is applied here as well. 

5.5 G E N E R A L C O M M E N T S A B O U T M O D E I F R A C T U R E P R O B L E M S 

In modeling of the above dynamic stationary and propagating mode I crack problems, the 

following conclusions may be drawn. The modeling process may be divided into two 

parts: the simulation part and the dynamic stress intensity factor devaluation part. 

The simulation part is successful for both the stationary and the propagating problems. 

Stress waves are generated, propagated and reflected in the expected smooth manner. 

Stress field loading and unloading in front of and behind the propagating crack tip, 

respectively, takes place smoothly without discontinuities. 

The K results obtained for dynamically loaded stationary crack problems are in a good 

agreement with the available analytical solutions. In addition, the onset of crack 

propagation is accurately defined by a sudden drop in K. However, values of K obtained 
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for dynamic crack propagation differ from those expected analytically for the two cases 

considered. Very slow convergence of the numerical solution towards the analytical one 

is achieved by increasing the Lagrangian grid density and decreasing element sizes and 

time step. Further investigation is recommended to improve the convergence. 

In testing the path dependency, results obtained by all of the three formulae employed, 

Equations (3.18), (3.19) and (3.20), are nearly path independent for both stationary and 

propagation fracture cases. Sine Equation (3.20) does not include domain integrals; it 

produces more stable results compared to the other two equations, for both stationary and 

propagating crack cases. However, in propagation fracture models, for a normalized 

time t > 2.5, K values become path dependent. This may be associated to the dispersion 

of waves reflected from the boundary and to the numerical errors associated with the 

techniques used to evaluate K. 

The results obtained by the above three Equations are generally very close. Particularly, 

Equation (3.19) and (3.20) are computationally identical up to the third digit (of the 

normalized value). By examining all the components of the above two equations, we 

find that the contribution of the first integral in Equation (3.20) is negligible. We also 

noted that, for Equation (3.19), the second term of the contour integral, which include the 

kinetic energy density 'T, and the first term in the domain integral, are typically 

comparable in magnitude but are of opposite signs. Therefore, their net contribution is 
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negligible, and the above two equations may be simplified by the flowing form 

G = J['/Jn, - 'cr y m. \ , ] 'dC + ftp 'a. 'w., ] 'JA (5.7) 
ra 'A 

5.6 M I X E D M O D E F R A C T U R E E X A M P L E S 

In order to explore the capabilities of the procedures and program in modeling the mixed 

mode crack propagation problem, we consider the modeling of a mixed mode problem in 

the following examples. 

5.6.1 Curved Crack Growth 

A plate made of a ductile material with a horizontal edge crack is subjected to vertical 

tensile static loading. Typically, the crack is expected to grow in a self-similar (straight) 

manner for a relatively short distance before unstable crack growth and fracture occurs. 

In this test, however, the crack is not allowed to take a self-similar path; rather, it is 

forced to take an arbitrary curved path, as shown by the red curves in Figure (5.13). The 

dots in the figure constitute the updated true material boundaries tracked by the TBT 

technique. With each crack tip advance, a couple of material points are created by the 

MPS technique and subsequently tracked by the TBT technique. 
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Figure (5.13) Snap shots of ay stress distribution in the curved crack propagation 
model. True crack faces are shown in red dots. 
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By examining the motion of the nodes on the upper and lower crack faces, it is clear that 

throughout the course of crack propagation, these nodes always move on the updated true 

material boundaries, despite the sharp edges, at the original location of the crack tip, and 

the tight curved path created due to crack propagation. Hence, the A L E boundary 

constraint is truly satisfied through the employment of the TBT technique. 

5.6.2 Dynamic Mixed Mode Crack Propagation: Problem Description 

Kalthoff and Winkler (1987) experimentally tested the problem of mixed mode crack 

propagation in a double notched plate subjected to side impact loading, Figure (5.14). 

Since the current code is capable of extracting only mode I stress intensity factor, Ki , 

from the energy release rate, G, modeling of the above problem is limited to the 

simulation of the crack propagation scenario. Due to the complexity of this type of 

problem, the available analytical solution, developed by Lee and Freund (1990), is only 

valid as long as the crack remains stationary. 

Figure (5.14) The double notched plate subjected to impact loading. 
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In the above experiment, a free plate is subjected to an impact loading between the two 

edge notches. The plate has the following dimensions: W = 4 m, H = 6 m, h = 3 m and 

the initial crack size a0 = 1 m. The plate material properties are: p = 7833 kg/m 3, E = 

200 GPa and v = 0.25. The prescribed impact velocity vo = 16.5 m/s. 

5.6.3 Numerical Results 

Due to symmetry, only the upper half of the plate is modeled. The model is discretized 

into 2400 identical linear quadrilateral elements, in (40 x 60) arrangement. The time step 

used is At = 0.56 Atc = 1.0 x 10 5 s, where Atc is the critical time step according to the 

Courant condition for finite elements. 

The snap shots, Figure (5.15), show the von Mises stress distribution at different time 

steps. The applied wave reached the crack tip at t = 0.18 ms and the crack is assumed to 

remain stationary until the time t = 0.25 ms, it then propagates at an angle of 70° with a 

velocity vc = 480 m/s (~ 0.15 c,). 

As may be noted from the figure, the crack propagation process took place in a smooth 

manner indicating that the TBT technique is working properly. The program did, 

however, terminate and stop at a time t = 2.5 ms due to element distortion. Careful 

investigation of the mesh at that time revealed severe distortion of elements and indicates 

the failure of the transfinite mesh to handle the case. Further investigation of the 

transfinite mesh motion technique and its shortcomings in solving the severe distortion 



Chapter 5. Numerical Examples 98 

problems has been recently reported by Gadala et al. (2002). It should be mentioned that 

at some point in time, the overlap between crack faces exceed; o experimental notch 
o 

width. Therefore, a contact algorithm should have been considered for more realistic 

modeling. 

Figure (5.15) Snap shots of von Mises stress distribution during a mixed mode 
dynamic crack propagation. 



Figure (5.15) (continued) Snap shots of von Mises stress distribution during a mixed 
mode dynamic crack propagation. 



Chapter 6 

CONCLUSIONS AND FUTURE WORK 

6.1 S U M M A R Y O F A C C O M P L I S H M E N T S 

The aim of this work is to model the dynamic fracture problem in an efficient and 

reliable manner. The work accomplished in this regard may be summarized in the 

following points: 

- The A L E equations are formulated and implemented into a new finite element 

program (ALEFR), specifically developed to model dynamic fracture problems. 

The program is written in a structure consistent with the Lagrangian-based finite 

element method to ease the implementation into commercial codes. 

- In the A L E F R program, the process of crack propagation is modeled by a newly 

developed material point splitting (MPS) technique, instead of the traditional 

node release techniques widely used in the Lagrangian-based finite element 

methods. 

- The A L E boundary constraint is consistently satisfied using the True Boundary 

Tracking (TBT) technique, which was developed to control the motion of nodes 

on free boundaries, including the evolutional crack surfaces. 

100 
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- The dynamic stress intensity factor and the energy release rate are computed from 

domain and contour integrals around the crack tip. The integration is carried out 

on a Lagrangian grid of material points. Properties of these material points are 

continuously updated. 

- The application of the developed techniques to problems of stationary cracks 

subjected to dynamic loading, demonstrates very good agreement with the 

analytical solution. 

- The process of mode I crack propagation has been successfully modeled. The 

propagating crack tip has been smoothly captured by a single node throughout the 

course of crack propagation. Therefore, the need for dense finite element mesh 

around the crack propagation path is eliminated and the choice of element size is 

independent of crack tip velocity or time step. 

- The onset of crack propagation was instantaneously captured by energy integrals 

and the trend of the solution afterwards is acceptable, however, the discrepancy 

relative to the analytical solutions is relatively large. The numerical results very 

slowly converge to the analytical solution with denser Lagrangian grids. 

6.2 F U T U R E W O R K 

Future development may be directed towards the improvement of the current code, and 

the implementation and simulation of more dynamic fracture problems, as summarized in 

these points: 

- Further investigation and improvements are needed to enhance the convergence of 

the solution for the energy release rate and the dynamic stress intensity factors in 

dynamic crack propagation cases. This may include the improvement of the 
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techniques used to update material properties and to evaluate the fracture 

measures. 

- The application to dynamic fracture models with nonlinear material behavior or 

inhomogeneous material may be investigated. Special treatment is needed when 

elements cross the boundary between materials, i.e., more than one material type 

exists in a single element. 

- Preliminary results obtained in modeling the in-plane mixed mode dynamic crack 

propagation are encouraging. Further work is, however, needed in the areas of 

extracting the dynamic stress intensity factors K] and Kn from the energy release 

rate integrals. This may include the use of modified forms of interaction integrals 

originally developed for static fracture cases. In order to maintain a more uniform 

mesh throughout the course of mixed mode crack propagation, the transfinite 

mapping scheme, which controls the motion of internal nodes, has to be improved 

or replaced by a more reliable mesh motion scheme, such as the isoparametric 

mapping. 

- A contact algorithm may be implemented in the current program. This will 

enhance the capability of the current program to include crack face closure cases, 

as has been seen in the mixed mode crack propagation example in Section 5.6.2, 

- Extension to 3-D analysis is possible since the developed A L E equations are 

general. This may include the use of 3-D brick and shell elements and the 

extension of the mesh motion scheme, the MPS and the TBT techniques and the 

procedures to evaluate the fracture measures to 3-D format. 
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Appendix A 

CALCULATION OF THE MATERIAL RATE OF CAUCHY STRESS 

The material rate of Cauchy stresses 'd\- is calculated from the material constitutive 

relation which is usually given in terms of an objective stress rate tensor such as the 

Truesdell stress rate tensor defined by (Bayoumi, 2000) 

w*<^-*Z«*-i%°> <A-1) 

The material constitutive relation in terms of the Truesdell stress rate is given by 

' * J = ' < y D H (A.2) 

where ' Dtj is the rate of deformation tensor given by 

1 d'v. d'y, 

D = — (——*- +—'-) (A.3) 

and 'Cijkl is the fourth order material constitutive tensor. 
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TREATMENT OF CONVECTIVE TERMS 

The convective terms are treated according to the method developed by Bayoumi and 

Gadala (1999) and Bayoumi (2000). This method is based on fundamental A L E relations 

and it sidestep the computation of the spatial gradients of stresses. It, therefore, offers an 

accurate treatment of convective terms while maintaining the convenience of using 

displacement based finite elements. This method involves a transformation from volume 

integrals to surface integrals as offered by the divergence theorem. Use is also made of 

the boundary constraint in Equation (2.5). The last integral on the LHS of (2.22) may be 

rewritten as 

Applying the divergence theorem to the first integral in the RHS of Equation (B.l) and 

using Equation (2.5), we get 

d\(uk-ul)'cri.8te^l t , ode,:, 
dV-\(uk-ul)'cJij--^-'dV 

(B . l ) 

dV = \(uk -u*k)'cjySfy'nk'dS = 0 (B.2) 
's 

Substituting in Equation (B.2) in Equation (B.l) yields 

'V k 'v 

(B.3) 
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Appendix C 

DISCRETIZATION OF THE CONVECTIVE TERMS OF THE ALE 
EQUATION OF MOTION 

The convective terms of the A L E equation of motion (2.32) is discretized according to 

Bayoumi and Gadala (2000). The first convective velocity-stiffness virtual work term 

may be discretized as 

(C.l) 

where 'CM is given by 

L ' 2 i - l , 2 j - l l"2i-\,2j 

* - 2 i , 2 ; - l ^2i,2j 

(C.l) 

- 2Nx2N 

in which / and j indicate node numbers from 1 to N, and 

. dh N dh N 

' C . 2 7 _ , = ' C £ 2 ; = J V ^ J ^ E ^ C ^ - ' ^ ) + ̂ S ^ ( ' v ^ - ' v ^ ) ] W (C.3) 
ly OX k = \ 0y k=l 

'rAl ='CM =0 (C4) 

The second convective velocity-stiffness virtual work term is discretized as 

(C.5) 

where 'CA2 is given by 
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ICA2 = 
1 ("'2i-l,2;-l 

t^A2 ; 

; i^A2 
1 ^2i,2j-\ C 2 « , 2 y ! 

2Nx2N 

in which z and j indicate node numbers from 1 to N, and 

'V 

N 

k=i d'x 

^dhktT7 , J tidy •v 

'c£2H = j'ph.hjt^'dv 
' V k=\ 

N 

d'x 

dhktT7 t. 
J T^dy 'V 

(C.6) 

(C.7) 

(C.8) 

(C9) 

( C I O ) 

The second convective inertia force virtual work term may then be expressed as 

Slp(vr'v*)^Su'dV = (mT'CAUv 
•v dXj 

(CU) 

The third convective inertia force virtual work term may be discretized as 

J' 
•v 

where ' C A 3 is given by 

, , , 3 ' v , . 3 ' v f d'v. , T, ii, 
'p(\-,v[)(^-2^)^SuiAt'dV = (dAi)T'CA3'v 

o xk o xk O Xj 

'CA3 = \ L'2i-\,2j-\ 
tt-iATi ; 
'-21-1,27 ; 

j ts-<A3 
• 1 l"2i,2H '-2/, 2j 1 

(C.12) 

(C.13) 

2Nx2N 
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in which i and j indicate node numbers from 1 to N, and 

'V 

dh N
 rlh  N  

dx k=i dy 

dh N dh N 

dyttdy M 

(C.14) 

L ' 2 / - l , 2 y — *-'2[,2 y - 1 (C.15) 

The fourth convective inertia force virtual work term may be discretized as 

f V ( ' v , - ' v f ) ( ' v , - ' v p - ^ - ( | ^ - ^ , . ) A ^ y = (du)T'CM' v 
J dxk oxj 'V 

where 'CM is given by 

, C A 4 = 

tsiA4 ts-,A4 
^2i-l 2 '-' 0 ,2H ^2i-\,2j 
t^A4 tpA4 

J 2 / V x 2 J V 

in which / and j indicate node numbers from 1 to N, and 

'cAi ='cAi
 = ['p\&^+h^)\t^H'v - » v « ) f 

,v d'x d'x ' d'x' M 

32 

^d'xd'y d'y d'x 1 d'xd'/h k xk V x k ) h k * yk 

dydy dy t f 

(C.16) 

(C.17) 

(C.18) 

* - '2 i - l ,2 j l-'2i,2y-1 "~ U 
(C19) 


