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ABSTRACT

Huntington Disease (HD) is a progressive, neurodegenerative disorder caused by a
CAG repeat expansion. The disease presents with motor disturbances, psychiatric
symptoms, and cognitive decline. At the sta‘rt of this thesis, there was no reliable
method for predicting the age-specific likelihood of onset of HD. | hypothesized that
being able to predict age of onset would be useful for both patients at risk for HD
(patients) and clinical studies. For patients it would provide knowledge about their future
age of onset, and clinically it would aid creation of clinical risk groups for stratifying
patients in clinical trials and in the design of treatment regimes (in the case of a

potentially hazardous therapy for HD).

| first used data from the University of British Columbia HD clinic to demonstrate the
utility of CAG-specific survival analysis. | then assembled what is believed to be the
largest cohort of HD patients analyzed to date (3452 individuals from 40 centers
worldwide) and developed a novel parametric survival model to estimate the age-
specific likelihood of onset. The probability estimates of the model proved to be very
accurate with a mean 95% confidence interval of 2%. | also developed a nonparametric
survival model to predict the age-specific likelihood of death from HD. | used the
parametric model to estimate the age and CAG specific penetrance of HD and
démonstrated how my analyses might be used to aid in the design of presymptomatic
clinical trials. Specifically | investigated how using the model can reduce sample size,
cost and time necessary to conduct a trial. Further my analyses indicated a larger
variance in age of onset for lower CAG repeat lengths, which could be of importance in

future studies for factors that modify onset of HD.
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CHAPTER 1

INTRODUCTION




1.1 Clinical and molecular aspects of Huntington Disease

Huntington Disease (HD) has been reported in practically all countries. HD occurs
equally in both sexes with an overall prevalence of about 10 per 100,000 in Caucasian
populations, with lower frequencies reported in non-Caucasians'?, HD presents in
adults with motor disturbances, memory deficits, psychiatric symptoms, and cognitive
decline' (Figure 1). The most striking feature is chorea, which occurs in approximately
90% of all affected individuals. However, the initial signs of the disease can be subtle
with individuals in the very early stages of the disease being unable to perform complex
facial movements such as blowing, whistling and frowning. Oculomotor dysfunction,
especially of rapid, tracking movements, occurs in 60-80% of patients, who demonstrate
increased latency and diminished speed of eye movements>>. As the disease
progresses there is increased writhing, jerking and twisting of different body parts,
although the face, hands and head are particularly affected. Other motor disturbances
include dysarthria and gait disorders®. Rigidity and dysphagia occur in the advanced
stages of the disease. Mental disturbances including dementia, depression and
personality changes (increased irritability, impulsiveness and aggression) may precede
movement dysfunction by a decade or more®, but cannot be considered diagnostic for
HD’. Recent memory is significantly affected®®. Severe weight loss is also a striking
characteristic'®. The disease is inexorably progressive, leading to profound functional
disability and death over a period of ten to thirty years after onset of the first
symptoms”'"'3_ Five to ten percent of cases occur before age 20, with patients showing
bradykinesia, rigidity, severe dementia and a more rapidly progressing disease. Even
before the availability of predictive testing (first by linkage, then by mutation

identification) the family history left little doubt as to diagnosis and the hereditary nature



of HD™. There is no cure for HD, although symptomatic treatments available to lessen
chorea and depression.

Clinical Symptoms

Initial Symptoms Early Middle Late
Oculomotor ;
dysfunction
Mood
changes ;
Involuntary | Depression
movements Difficult
to get

along with
Clumsiness
Dysarthria Unsteady gait
Intellectual decline
Memory loss
Weight loss
Hypertonicity :
Loss of speech ;
Rigidity ‘
Bowel control |
Bladder control
Timeline tyears 2-5years "~ 6-10years >10 years

{adapted from: Kirkwood, Su, Conneally, Foroud. Progression of symptoms in the early and middle
stages of Huntington Disease, Archives of Neurology, 58, 273-278 (2001))

Figure 1 Symptoms of HD

The HD gene is located within 4p16.3 and encodes a 3136 residue (350;kDa) protein,
huntingtin (htt)'°. Although the exact function of htt is unknown, normal htf expression
has an anti-apoptotic effect®, is required for normal development'’"'® and
hematopoiesis'®, and has been implicated in vesicle transport, endocytosis, and as a
part of the cytoskelton'>%. The mutation responsible for the clinical manifestation of
disease is an expansion of a CAG trinucleotide region in exon 1 of the gene, encoding a

lengthened polyglutamine tract'

. The general population has between 6 and 35 CAG




repeats, with 99% having less than 30 repeats. Persons affected with HD have a CAG

repeat size (CAG) between 36 and 250%'%.

The deletion of one htt allele does not result in HD, indicating that the disease does not
result from solely a loss of function®*?*. HD has previously been considered to be a true
dominant disorder. However there are problems with this conclusion as it is based on
the observation that patients homozygous for expanded CAG repeats have a disease
similar in severity and rate of progression to their heterozygote siblings?®?’?%. The
difficulty lies in the fact that the subjects of one study were only assessed by linkage?®
and the complexity in comparing age of onset between repeats makes the conclusions

suspect®®.

Successive generations within HD families tend to have a younger age of onset
(anticipation)?®. The polymorphic CAG allele of normal chromosomes is transmitted from
generation to generation in a mendelian fashion. However mutant HD alleles are
unstable, and upon transmission offspring tend to acquire larger (1-4 units) repeats,
although decreases of 1-2 repeats also occur®. The observation of mosaicism in sperm,
that instability is more frequent during paternal transmission, and the knowledge that
monozygotic twins have an identical CAG all point to gametogenesis as the primary
source of instability*®, which is thought to occur through Msh2 dependant gap repair®’.
There is evidence that instability also occurs in a non-replication based manner in
neurons of the affected regions of the human brain where changes of up to 13

trinuceotides are seen®**. Ten-fold greater changes (up to 160 repeat increase) have

been observed in the post-mitotic striata of older mice®.




1.2 Neuropathology of Motor Dysfunction

The hallmark of disease pathology in HD is diffuse brain atrophy, with severe neuronal
loss occurring in the basal ganglia. In the corpus striatum, the caudate nucleus and

putamen (collectively the neostriatum, or simply the striatum) are particularly affected’
with significant loss also seen in the neocortex'>*°. In these regions, it is the medium-

sized spiny neurons, containing the neurotransmitters y -aminobutyric acid (GABA) and

enkephalin that are most vulnerable while GABA/Substance P neurons are less
affected. Nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) positive

neurons are relatively spared>®.

Motor dysfunction in HD can be related to the pattern of neuronal loss in different
components of the basal ganglia-thalamo-cortical circuit. The striatum collects and
processes input from the entire cerebral cortex and substantia nigra and output through
other parts of the basal ganglia to areas of the frontal cortex that have been implicated
in motor planning and execution®’. While the subthalamic nucleus does not experience
a loss of neurons in HD, its dysfunction is thought to be the crucial event that produces
chorea®®*®. Degeneration of the GABA-enkephalin medium spiny neurons projecting
from the striatum releases the normal suppression of neurons in the external globus
pallidus, resulting in thier becoming hyperactive. GABA/Substance P neurons normally
suppress the subthalamic nucleus, resulting in increased depression of the activity of
glutamatergic neurons in the subthalamic nucleus. The subthalamic nucleus normally
outputs an excitatory effect on the internal globus pallidus. Therefore, a hypofunctional

subthalamic nucleus causes a reduction of the normal inhibitory action of the internal



globus pallidus upon the thalamus. It is this disinhibition of the thalamus that ultimately
leads to involuntary choreic movements*. The rigid state in late-stage HD.is thought to
result from the later loss of striatal GABA-Substance P containing neurons projecting to

the internal segment of the globus pallidus®.

Early oculomotor dysfunction in HD likely comes from the loss of striatal GABA-
Substance P neurons*'. These degenerate earlier than the GABA Substance P neurons
projecting to the globus pallidus and normally act to inhibit the inhibitory effect of
neurons projecting from the substantia nigra on neurons of the tectum mesencephali.
The loss of striatal GABA-Substance P containing projections therefore results in over-

inhibition of saccade initiation and other oculomoter abnormalities®2.

1.3 Localization

Wild type htt is ubiquitously expressed in many different peripheral tissues, not only the

direct targets of HD***4. While mutant and wild type htt co-localize in all regions, some*®
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but not all™ studies have found reduced expression of mutant htt in the cortex and

striatum.

Hit, associated with microtubules in dendrites and with synaptic vesicles in axon
terminals, is thought to serve in synaptic function or intracellular trafficking as well as

transport along the cytoskeleton*’°.

Microscopic ubiquinated aggregates containing N-terminal fragments of htt (including

the polyglutamine expansion) are found in (a) the cytoplasm and nucleus of neurons of.




HD patients, (b) some transgenic models®'*?

, and (c) neuronal and non-neuronal cell
models®*5°. However, the distribution of nuclear aggregates does not always
correspond to the selective pathology of the disease®®. Furthermore, it has been shown
that nuclear localization but not aggregation is required to induce toxicity in transfected
neuronal cell culture systems®’. There is however some controversy about this matter®®.
Inclusions can be degraded naturally by the body, and degradation may be
accompanied by reversal of neurological signs®®. While aggregates may act in a
protective manner by sequestering toxic polyglutamine-expanded protein, they may still

have an indirect role in pathogenesis. For example, increased resistance of inclusions

to proteosomes may make cells sensitive to stress®’.

Several mechanisms have been proposed for the way the extended polyglutamine tract
could self-associate. One possibility is through a transglutaminase-mediated cross-
linking via isopeptide bonds between the glutamine tract of htt and lysine residues in
neighboring proteins®. An alternative mechanism could be through polar-zipper
interactions where an expanded glutamine tract can form stable hairpins consisting of

anti-parallel polyglutamine containing strands held together by hydrogen bonds®'*®2. In-

vitro evidence has been in support of both these hypotheses®®.

1.4 Interacting Proteins

Several proteins have been found to interact with htt. As htt is ubiquitously expressed
but shows a brain-specific effect, an understanding of the interaction(s) of brain-specific

proteins with hit could give insight into the possible normal and pathogenic roles of the

protein.




Several lines of evidence point to htt having a role in the cytoskeleton. Its interaction
with Huntingtin-associated protein (HAP 1) is modulated through the polyglutamine
tract. While HAP1’s precise role is unknown, itis a l;rain-specific protein that interacts
with cytoskeletal components (the p150 subunit of dynactin, the pericentriolaf protein
PCM-1 and microtubules)®®*®°_ The lowest levels of HAP1 mRNA expression
correspond with the areas of greatest pathological cell loss HD (i.e. the caudate
putamen, globus pallidus and neocortex)®®. The interaction of htt and the huntingtin
interacting protein 1 (HIP1) is inversely correlated to polyglutamine chain length®”. HIP1,
a proapoptotic protein, is the human homologue of the yeast protein Sla2p, which is
essential for proper function of the cytoskeleton®. This has lead to the hypothesis that
modulation of the interaction between htt and HIP1 leads to altered membrane-
cytoskeleton interaction. Furthermore, mHip1R, a protein closely related to HIP1
associates with both actin filaments and clathrin-coated pits and vesicles®. This
therefore suggests a role in endocytosis, perhaps by linking the actin cytoskeleton to
coated pits, facilitating vesicle budding®. Finally, the association of htt with
microtubules, likely through polymerized tubulin, suggests that hft may have a role in

intracellular transport or axonal transport®®.

Htt has also been found to interact with an Ubiquitin-conjugating enzyme in a manner
independent of polyglutamine length. This suggests a possible role for htt in the
catabolic pathway, based on the role of ubiquitination to direct the target protein to the
proteosome for degradation’®. Detection of ubiquitinated forms of mutant disease

proteins within neuronal intracellular inclusions suggests that polyglutamine expansion



leads to an unusually stable conformation of the protein that is resistant to proteolysis,

sequestering the toxic polyglutamine-expanded protein in a protective manner®”"".

Hitt has also been found to interact with several other proteins including Calmodulin,
CREB-binding protein and mSin3a, Cysthathionin B-synthase, Grb2 and RasGAP, HYB-
A,-B,-C, MLK2, N-CoR, p53, SH3GL3, Shc and EGF receptor’?. However the

relationships of these to normal or mutant function of htt is not as well understood.

1.5 ApoptoSis

Programmed cell death through apoptosis is a necessary part of natural development to
remove excess cells (including neurons) and to maintain homeostasis. Caspases are
proteases that have been directly implicated in the execution of apoptosis’. Aberrant
activation of the apoptotic pathway leads to a premature loss of cells. Cleavage of htt
occurs at two caspase-3 sites downstream of the polyglutamine region of htt. The length
of the polyglutamine track appears to determine the susceptibility of hif to caspase-3
cleavage’*"®. The amino-terminal fragment generated by caspase-3 cleavage can also
induce apoptosis, leading to an accelerating cascade’. Expression of a dominant-
negative caspase-1 mutant delays onset of symptoms and extends survival’®. Caspase
inhibitors diminish the toxicity of htt and reduce aggregate formation’’. Neurons from
mice transgeneic for expanded (48 or 89 repeats), but not normal length htt (16 repeats)
show increased TUNEL staining, indicitive of apoptotic death’®. Perhaps most

interesting is the finding that the overall incidence of cancer (the antithesis of apoptosis)

is significantly lower among HD patients, but not among their healthy relatives™ -




Huntingtin itself may play a role in regulating the balance between cell proliferation and
cell death. Studies suggest that wild-type huntingtin has an anti-apoptotic effect'®%°.
Cells expressing wild type htt are protected from cell death induced by death receptors
by the pro-apoptotic BCI-2 family members, as well as by caspase-9. This likely occurs
through the effect of wild type htt on mitochondrial or post-mitochondrial apoptotic
effects’®. The full-length protein also modulates the toxicity of the polyglutamine
expansion'®. Furthermore, htt is required for normal hematopoiesis'®. Wild type htt may
also sequester HIP-1 and prevent it from inducing the apoptotic pathway®. Additional
evidence in support for the role of wild type hit in cell survival is that it up-regulates
transcription of brain derived neurotrophic factor (BDNF)®! and that reduced (up to 82%)
BDNF expression has been found in the caudate and putamen of HD patients
compared to age matched controls®2. Together, this evidence leads to the conclusion
that disruption of normal hit function in the brains of HD patients causes insufficient

neurotrophic support for striatal neurons.

1.6 Age of Onset

For patients who are given information that they have inherited a CAG in the HD range
(greater than 35 repeats) the question often changes from whether they will develop
HD to when will the disease manifest. However, it can be difficult to pinpoint a precise
age of onset of HD. Gradual changes in behavior and movement can occur over a
period of many years with no clear threshold. Nevertheless, a Iong-terh‘l study of the
cohort used to identify the HD gene found that individuals with totally normal
assessment have only a 3% chance of developing definite HD within the next 3 years®®.

The difficulty in precisely estimating age of onset on an individual basis does not
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however preclude analysis of this endpoint as the average HD population shows a clear

and consistent pattern'®.

Numérous studies have described a significant inverse relationship between CAG and

age of onset for HD3+*°

, with CAG accounting for approximately 60% of the variation in
age of onset. The mean age of onset of HD is 40 years'®, although individuals with
more than 60 repeats almost invariably present with juvenile-onset HD®*¥%°. There is
conflicting data as to whether there is a significant correlation between CAG and the
rate of progression of the disease after onset®¥%>°61%! Using this relationship to obtain
a mean age of onset for a particula.r CAG is not clinically applicable as the range of
predicted onset for a particular CAG is very broad. Therefore, most authors have

recommended against using this method to predict the age of onset for an individual

patient586-88,

Studies prior to this thesis investigating the relationship between CAG and age of onset
have not included presymptomatic individuals with a CAG in the affected range in the
analyses. This prevents a complete understanding of the relationship between CAG and
age of onset of HD. Survival analysis provides the statistical means to incorporate
information about individuals who carry an expanded htt allele, but are clinically
asymptomatic at the time of assesment. While there have been two analyses of age of
onset including presymptomatic individuals based on life-table or survival analysis,

these were performed before the HD gene was identified, and included heterozygotes of

102,103

unknown geneotype




One model to prédict onset was developed by Aylward subsequent to the discovery of
the HD gene'®. However this model (age at onset = [-0.81 x repeat length] + [0.51 x
parental onset age] + 54.87) was derived from a stepwise multiple regression analysis
based on only 50 parent-child pairs from one HD clinic. Furthermore, the importance of
parental age of onset in predicting an individual’s age of onset has been disputed in a
more recent, and comprehensive, analysis'®. Finally, the Aylward model was derived
using only symptomatic individuals, excluding information from those individuals who

have an expanded htt allele, but lived disease free for many years.

1.7 Similarities to Other CAG Repeat Disorders

At present, eight other neurological diseases are known to result from a CAG repeat
expansion (Dentatorubral pallidoluysian atrophy (DRPLA); spinobulbar muscular
atrophy (SBMA/AR); and spinocerebellar ataxia types 1,2,3,6,7 and 12 (SCA1, SCA2,
~ SCA3 (or Machado-Joseph MJD) SCA6, SCA7 (or CACNA1A) and SCA12)'%%1%8,
However, the mutant proteins show no similarity to each other (outside of the CAG
repeat region), and only a certain, disease-specific subset of neurons are affected in
each disease. The inverse relationship between the increased CAG repeat length and
age of onset for all diseases associated with CAG expansion is well documented’®®""".
They all have a progressive neuronal dysfunction beginning in mid-life with neuronal
loss and death 10-20 years after onset; dominant inheritance (with the exception of

SBMA which is X-linked) and somatic and germline repeat instability leading to

anticipation.

Polyglutamine inclusions in HD, DRPLA SCA 1,3 and 7 are primarily found in the

nucleus or perinuclear region and are ubiquitin positive''®. Except for SCA-12, where

12




the expansion occurs in the promoter, the wild type non-pathogenic proteins contain
around 20 consecutive polyglutamines, while the disease forms have a polyglutamihe ‘
tract of greater than about 35 glutamine residues. Seven of the diseases are predicted
to contain caspase cleavage sites by amino acid sequence and htt, atrophin-1, the
androgen receptor and ataxins-2,3,6 and 7 and are all specific substrates for one or

more caspases’’.

1.8 Survival Analysis

The focus of this thesis is to further the understanding of age of HD onset using survival
analysis. Survival analysis is a method for the analysis of events that occur over time.
This technique has been applied to many fields of health research''®. One unique
feature of survival analysis is the modeling of the “time-to-event” in the presence of
“censored” cases. Censoring occurs where the time of the critical event has not been
recorded, but is known to occur after some point'?°. For example, disease onset for
individuals with 43 repeats who move out of contact with the clinic after the genetic test
is done. While there are d.ifferent types of censoring, this thesis is concerned with right
censoring, i.e. where the time of }HD onset for some patients is only known to have
occurred after the last clinic assessment or “at risk” individuals died before onset. Two

general types of survival models are non/semi-parametric and parametric.

1.8.1 Nonparametric survival analysis

Nonparametric survival analysis, often called Kaplan-Meier analysis provides an

unbiased estimate of the survival function. It is more efficient and more widely used than

parametric survival models when no suitable theoretical distributions are known'?",




Kaplan-Meier analysis is based on estimating conditional probabilities at each time point
when an event occurs and taking the product limit of those probabilities to estimate the
survival rate at each time point. To summarize this procedure, let n be the total number
of individuals whose survival times, censored or not, are available. Relabel the n
survival times in order of increasing magnitude such that t1) < t2) < ... <t Then the
observed survival time for a particular year is given by Equation 1, where r runs through

those positive integers for which ty) < t and ty) are uncensored'’.

S=1 2=~

—— Equation 1
WSt —r + 1

The resulting survival curves are then used to predict the probability of an event

occurring before a given time point. For example, the estimated median survival time is

the 50" percentile, or the value of t at §(t) =0.50. Cox’s proportional hazards model
allows for analysis that is slightly more complex and assumes that the hazard for
patients belonging to one risk group is a constant times that of patients in another risk
group (i.e. that they are proportional)'’®. The Cox model is not a fully parametric model,
as it does not specify the form of the underlying hazard. The hazard function can be
viewed as the approximate probability of an individual experiencing onset in the next

instant.

1.8.2 Parametric

Parametric survival models are more efficient when survival times follow a probability
distribution (e.g. exponential, logistic). These lead to smaller standard errors, easier
interpretation of the results and more precise statistical inferences compared to
nonparametric models'?2. However, the use of an inappropriate parametric model can

lead to very poor predictions. Therefore, the underlying assumptions of the model being
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used must be carefully examined. The Kaplan-Meier estimator provides an excellent
tool for initial ‘exploration of the data and for suggesting and verifying possible

parametric models as it involves no underlying assumptions.
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1.9 Thesis Objectives

This thesis is primarily concerned with the survival analysis ofiHD patients. In this
regard I:
(1) First used nonparametric analysis to predict onset using a UBC HD patient
cohort
(2) Developed a large, international collaboration of HD clinics
(3) Used increasingly more complex parametric survival analysis to refine estimates
of the likelihood of onset
(4) Used these estimates to calculate the size a clinical trial would need to be in
order to detect a delay of onset among presymptomatic individuals and
(5) Estimated the age and CAG-specific penetrance of HD

(6) Predicted the age of death for HD patients

1.9.1 Nonparametric Prediction of Onset Using a UBC Cohort

At the start of this thesis, there was no reliable method for predicting the age-specific
likelihood of onset of HD. | hypothesized that being able to predict the likelihood of
onset of HD would not only be useful for patients and their families desiring knowledge
about their future risk of onset, but also clinically, both in creating clinical risk groups for
stratifying patients in clinical trials, and in the design of treatment regimes (in the case of
a potentially hazardous therapy for HD). | hypothesized that inclusion of CAG repeat
size into a survival analysis would increase the accuracy of the prediction of the
likelihood of onsét of HD by a certain age. | therefore used survival analysis to predict

the age-specific probability of onset using a cohort of individuals recruited from the
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University of British Columbia (UBC) HD clinic, who were either at-risk for HD (i.e.
asymptomatic but with a CAG greater than 35) or affected, using nonparametric survival

analysis.

1.9.2 Nonparametric Prediction of Onset Using a Worldwide Cohort

Once | had established that CAG-specific survival analysis was a viable method to
estimate the age-specific likelihood of HD onset, there was a need to replicate the
analyses on another set of the patients to verify and extend my findings. | hypothesized
this would demonstrate the clinical utility of this analysis by providing clinicians with
confirmation of the applicability of the analysis on a larger set of HD patients and by the

agreement in the results.

1.9.3 Parametric Prediction of Onset Using a Worldwide Cohort

The S-shaped distribution of the nonparametric survival curves for both the UBC and
worldwide cohorts led me to hypothesize that it would be possible to fit a parametric
model to the survival curves of the larger, worldwide cohort. | hypothesized that this
would allow predictions of onset with'smaller confidence intervals, thus increasing the

usefullness of the predictive model.

1.9.4 Parsimonious Model for Predicting Onset Using a Worldwide Cohort

There appeared to be a relationship between the parameters specifying the individual
survival curves obtained using the best fitting parametric distribution. | then
hypothesized that it would be possible to use this relationship to extend the parametric
model into a unified (parsimonious) model incorporating information from a wide variety

of repeats. Compared to my earlier method of individually fitting survival curves to each
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CAG repeat | hypothesized that the parsimonious model would be more efficient,

leading to smaller confidence intervals.

1.9.5 Determining the Accuracy of the Predictive Model

Once the parsimonious model had been developed, it was important to validate the
clinical utility of the predictions. | hypothesized that it would be possible to validate the
model by splitting the worldwide cohort into modeling and tesﬁng samples, and that
there would be little difference between the predictions provided by the parsimonious
model developed using the modeling cohort and the nonparametric estimates obtained

using the remaining “hold out” sample.

1.9.6 Prediction of Age at Death Using a UBC Cohort

The success at developing nonparametric survival models to predict onset, lead me to
hypothesize that it would also be possible to use survival analysis to predict the age-

specific likelihood of death for HD patients, an endpoint of obvious clinical interest.

1.9.7 Penetrance

While there had been case reports of reduced penetrance for HD before the start of this
thesis, | hypothesized that accurate numerical estimates of penetrance could be based

on the parsimonious model of likelihood of onset

1.9.8 Using the Predictive Model for the Design of Clinical Trials

A method for implementation of clinical trials to detect a delay of onset of
presymptomatic individuals had not been reported before this thesis. | hypothesized that

the generation of survival curves, and especially the parsimonious model, would aid in
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the design of clinical trials in presymptomatic gene carriers, by targeting for recruitment

those individuals who will likely have onset during the course of a clinical trial.
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CHAPTER 2

Materials and Methods




2.1 Subjects

2.1.1 UBC cohort

I* created one database with clinical and demographic information derived from two
independent databases. A clinical resource from the UBC Huntington Disease Medical
Clinic, Department of Medical Genetics, UBC Hospital (HD Clinic) contained information
on individuals from throughout British Columbia, though most were from the greater
Vancouver area. The second database contained information from the DNA diagnostic
testing service provided by the Hayden Laboratory as part of its ongoing research
activities on HD. This component contained information on individuals seen at the local
clinic as well as information from patients whose DNA was sent to the laboratory for

DNA diagnostic testing, including patients from Canada and around the world.

| combined patients’ records from the two databases together, amalgamating fields and
removing duplicate entries (based on name, date of birth and family relationships) as
appropriate. | consulted patient’s charts at the HD clinic both to resolve inconsistencies,
and to collect further information, primarily date of birth, disease onset and last clinic
visit and | updated the database as the new data becafne available. Data was
continuously updated throughout the course of my graduate program by DNA
technicians, summer students, genetic counselors, research associates and myself,
creating a “living” database. The total size of the database now comprises 5089 patients

and family members and includes a wealth of patient and DNA sample information.

* | have used “I” throughout this thesis to distinguish my contributions to this thesis from those of other
individuals, who are specifically acknowledged as appropriate
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1593 individuals in the amalgamated database are affected with HD and 2244 are

presymptomatic but at-risk (first or second degree relatives of an affected individual).

As an initial study demonstrating proof of concept, | performed survival analysis on a
cohort of 728 affected and 321 asymptomatic at-risk individuals. Of these, there were
only 32 individuals with 36 to 38 repeats, and 65 individuals with a CAG greater than 50
in the initial UBC cohort. Therefore, patients with these repeats were excluded from the
survival analysis since there were too few of individuals with this CAG to undertake
rigorous statistical analysis. The remaining 661 affected and 205 presymptomatic
patients comprised the UBC cohort and represented 90% of individuals in the Hayden

laboratory HD database having a CAG in the range of 36 or above.

2.1.2 Worldwide cohort

Based on the success of the initial survival analysis, | established a collaborative group
(Appendix V) of HD centers whose names were provided by the Canadian HD society,
the Huntington Study Group and the Genetic Counselor Group to verify and extend my

analyses.

Forty centers (Appendix IV) contributed data anonymously to this study, including
centers in Europe (7), Asia (1), Africa (2) and North America (30). The UBC cohort was
also included, plus an approximately 500 additional individuals who | identified as
previously only having their CAG repeat length measured through less accurate
methods, or as lacking CAG repeat length information altogether. All data was

examined for outliers and suspect data was confirmed with contributing centers. One
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individual was removed from the dataset because their age of onset, which could not be
confirmed on further checking, was three standard deviations from the mean and 15

years later than the next oldest individual with that CAG.

| obtained ethical approval for the study from the University of British Columbia. Centers

supplying the data also obtained such approval from their local governing bodies.

Since no affected persons were observed for a CAG of 35 or less, individuals with a
CAG greater than this were initially considered the cohort at risk. The outcome variable

was age of onset or last known age unaffected.

The worldwide cohort comprised 2298 affected and 615 asymptomatic at risk individuals
with a CAG between 36 and 56. For repeat lengths greater than 56, there was not

enough data to assure stable estimates of the CAG-specific curves.

2.2 CAG Determination
2.2.1 UBC cohort

For the initial study on the UBC cohort, the CAG repeat was assessed for all samples
by excluding the CCG repeat using PCR analysis with primers that flanked only the
CAG repeat? or by using primers that flanked both the CAG repeat and the CCG
repeat'? followed by analysis with primers that flank only the CCG repeat'?. Phasing
of the CCG repeat was performed by pedigree studies when necessary. The CAG

repeat size was assessed by comparison to sequenced clones of known CAG size.
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2.2.2 Worldwide cohort

To minimize differences in CAG determination, the initial study included only those
individuals who had their CAG determined exclusive of the adjacent polymorphic CCGn

stretch, using cloned standards for accurate sizing®%'?>'?7,

2.3 Age of onset determination

2.3.1 UBC cohort

Strict criteria were used to determine the age of onset by incorporating careful
verification of clinical information by a neurologist (Dr. Michelle Mezei), and a clinical
geneticist (Dr. Elisabeth Aimqvist), both from the Hayden laboratory, as well as myself
to resolve any possible discrepancies in key individuals who were indicated to be
unaffected at avery old age. | performed an assessment of age of onset through both a
retrospective review of patient charts and DNA data. The two clinicians conducted
telephone interviews with patients, family members, genetic counsellors and physicians.
Age of onset was defined as the first time a patient had either neurological or psychiatric
symptoms that represented a permanent change from the normal state. As an additional
analysis, | compared the difference in age of neurological and psychiatric onset.

The age used for analysis of all asymptomatic individuals was the oldest age when
their clinical status was last directly confirmed at the Genetics clinic in Vancouver or by
the local, attending physician. Particular attention was paid to confirmation of current
age and clinical status of all asymptomatic, at-risk individuals in the HD database aged

greater than 65 years of age.
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2.3.2 Worldwide cohort

' Age at onset was defined as the first time when neurological signs that represented a

permanent change from the normal state we're identified in a patient. The age used in
the analysis of presymptomatic individuals was the oldest age when a physician last
directly confirmed their clinical status. Note that definition age of onset excluded
psychiatric onset, which was included in the inifial analysis. This was due to concerns

about the possibility that psychiatric symptoms are not solely due to HD.

2.4 Survival Analysis

2.4.1 Assumptions

Several assumptions about the nature of censoring were made throughout this thesis.
As at-risk individuals were either still presymptomatic at the end of the study or were
lost to follow-up, the information from presymptomatic individuals was right censored'%.
| assumed that being presymptomatic at a certain time was only indicative that the time
of onset exceeded that time, and carried no prdgnostic information about subsequent
survival times, for either that individual or other individuals (i.e. censoring was
noninformative and individuals were not lost to follow up because of impending
onset)'?®. This assumption is supported if patients’ examination scheme is
noninformative for the disease process'?. This is true if the full likelihood of onset is
proportional to the likelihood obtained, which is true under any examination scheme that
is stochastically independent of likelihood of onset. This occurs if:

1. Patients were examined either at regular intervals (usually, but not

necessarily yearly)
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2. Patients were examined in a more or less random fashion but that
examination times were indepen‘dent of the subjects’ disease history
3. Clinicians chose the next examination time dependent on the patient’s
state at the current examination'?
As most clinic visits for patients under physician’s care for HD fall under one of the three .
above cases (and not, for example, where a patient whose symptoms suggest HD is
advancing may self-select to be (or not to be) examined by a doctor), my hypothesis
that censoring was non-informative and independent of the disease process is valid'?®.
Based on these assumptions, survival analysis could utilize information from both

presymptomatic and affected individuals 2%,

2.4.2 Predicting the age and CAG-specific likelihood of onset

2.4.2.1 Nonparametric survival analysis
Kaplan-Meier survival analysis was used to calculate the cumulative probability of
having onset of HD by a certain age for a particular CAG. Nonparametric (Kaplan-
Meier) survival curves were constructed using S-PLUS 2000™'. As there were no

\
affected persons with CAG less than 36, unaffected individuals with a CAG greater than

35 were considered at-risk, from birth to either neurological or psychiatric (specifically

for the UBC cohort) onset or until death or last contact.

2.4.2.2 Parametric survival analysis

The first step in building the parametric model was finding a probability distribution that
gave a close fit to the observed survival distributions from individual repeats. | fit 12
CAG-specific parametric models (weibull, extreme, lognormal, loggaussian, gaussian,
logistic, loglogistic, logexponential, exponential, lograyleigh, rayleigh and normal)’®'to

the nonparametric survival curves. These “fits” were examined by visual inspection of
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quantile-quantile plots, to identify the distribution that was most linear'*? and the
maximum likelihoods of each of the parametric models for each CAG were compared to
assess the best fit. The plausibility of a Cox proportional hazards model'*® was also

tested.

2.4.2.3 Parsimonious model

As discussed previously, | explored mathematical functions that gave a géod least-
squares fit to the nonparametric survival curve for each CAG repeat'®*. Of the 12
probability distributions tested, the logistic distribution gave the best fit. Equation 2
gives the cumulative distribution function (CDF) of a logistic function.

CDF, pistic = 1 Equation 2

—(Age —location
1+exp( ( gscale )j

The location parameter is the value of the distribution at the 50" percentile, and the
scale parameter can be related to variance of the distribution by Equation 3 and
therefore to standard deviation by Equation 4.

2
_ [zscale]
Variance, 57 = 3 Equation3

[7scale]
S.D.;peistic 2—75__ Equation 4

The individual survival curves for each CAG, as specified by the logistic distribution,
seemed to be related in that they were somewhat evenly distributed, though the longer

repeats seemed to cluster together, and had more steep survival curves (see Results). |
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explored simple mathematical functions that gave a good least-squares fit to the
relationship between CAG and both the location and scale parameters of the individual
survival curves (in other words exploring mathematical relations‘hips that described the
relationship between the survival curves for the different repeats)'**. Exponential
functions of the form shown by Equation 5 (where exp signifies exponent) provided
excellent fits to both the relationship of CAG to the location parameter of the various
CAG-specific logistic survival curves and the fit between CAG and the scale parameter

and its transformations (variance and standard deviation).

[—CAG} Equation 5
a+bexp

c

This prompted me to hypothesize that it would be possible to generate a mathematic
model (the parsimonious model) of the like age-specific likelihood of onset based on the
logistic survival distribution ( Equation 2), but relating the survival diétributions for each
CAG through the exponential relationship of both the location and scale parameter
(Equation 5). | further hypothesized that it would be possible to use the data from the
worldwide cohort to estimate the parameters for this model. The complexity of the
derivation of the formula and values for the parameters lead me to eventually seek the
support of two statisticians. Drs. Doug Langbehn (from Departments of Psychiatry, and
Biostatistics, University of lowa College of Medicine) and Daniel Falush (Max-Planck
Institut fur Infektionsbiologie) provided assistance in the obtaining the mathematical

solution of the parsimonious model as indicated below.

The first step in building the parsimonious model was to ensure that all the CAG repeats

could be combined together through the exponential relationship of the location and

scale parameters of the logistic distribution.




Previous research'® had shown that there was likely underascertainment of individuals
with lower CAG repeats. This underascertainment was supported by the fit of the
exponential distribution to the location (mean age of onset) parameter, which predicted
that the average age of onset for individual with 36 repeats was 95 (Section 6.2, Table
13). This indicated that it was likely that many individuals would live symptom free their
entire life and thus never come to the attention of a center for HD research or a HD
clinic, except if they were identified through an affected family member. Inclusion of the
data that was provided for lower repeats would therefore likely bias the parsimonious
model. To estimate at what repeat qnderascertainment no longer had a significant
effect, the overall censoring distribution in the sample was calculated. Centers were
then grouped after adjusting for the CAG repeat length and age distribution within each
center. The concordance between the CAG-specific mean age of onset estimates for
the different clinics was then determined. Based on the ascertainment analysis, |
concluded that only répeats between 41 and 56 should be included into the design of

the parsimonious model.

Using the Mathematica symbolic algebra program136 and incorporating custom-built
programs, Dr. Langbehn derived the parsimonious model, likelihood, score, and
observed statistical information equations'’. The parameter values were estimated by
applying the general theory of parametric censored survival regression, maximum
likelihood estimation’*®. Due to the almost complete redundancy (technically colinearity)
between certain parameters in the model traditional optimization techniques were not
sufficient to find the solutions to the likelihood equations. Therefore, the likelihood

equations were numerically solved using empirical line search methods implemented in
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the Optimization Toolbox of Matlab'®®. Solutions were forced to converge to
approximately 1 partin 10". To check convergence to a consistent maximum, the
solution was verified several times, starting with different initial parameter estimates.
The analytically derived score equations were used to verify the solution’s
correspondence to a critical point on the likelihood surface. The estimated covariance
matrix of the parameters was obtained by inverting the observed information matrix. The
statistical significance and goodness-of-fit of the parametric model were assessed by
the chi-square approximations provided by twice the negative log likelihood of the

relevant model estimates.

The delta method was applied to the estimated parameter covariance matrix to obtain
approximate confidence intervals for all survival or failure probabilities (including
conditional probabilities) and CAG-specific means and standard deviations'*. In the
case of probabilities, a symmetric normal-distribution approximation to the confidence
interval of the logit of the probability was first derived. These were then transformed into
nonsymmetrical intervals on the probability scale. Similarly, symmetrical confidence
intervals for the natural logarithms of mean ages of onset and their standard deviations

were derived and then transformed to the original scale of years of age.

Given that an individual is presymptomatic at time x, | calculated the conditional
probability of onset at some point (x+t) for individuals with a CAG between 36 and 56,
aged between 0 and 90 years of age (by year), where t was between 5 and 35 (in 5
year increments) using Equation 6.

S (x+1)

S, ()= ,t >0 Equation 6

X
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The variance of the conditional probability was estimated via the delta method in a -

similar manner to that described above.
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2.4 .3 Predicting the age and CAG-specifid likelihood of death

In addition to predicting age of onset, | used survival analysis to determine the
probability of death by a particular age for an individual with a specific CAG size. As an
initial investigation, individuals with a CAG greater than 36 were selected from the UBC
cohort. Data was analyzed using Kaplan-Meier survival analysis and included 542
individuals with repeats between 41 and 45. 75 had died and the majdrity (60%) of
persons in i/he database with greater than 36 repeats have a CAG in this range. Other
repeats were excluded from the analysis as the small numbers of individuals for these

particular repeats precluded rigorous statistical analyses.

| subsequently used those individuals from the extended UBC cohort, who had either
age of onset or age of death information available, in a parametric analysis.
Nonparametric survival analysis was performed using the same methods as previously
described. Quantile-quantile plots were constructed for 6 distribution families. The fit of
each distribution was judged by eye (as previously described). As the logiétic
distribution appeared to have the best fit, it was chosen for further characterization.

Logistic models were fit to the data for each repeat with sufficient numbers. These were

compared to the nonparametric models as a further test of the goodness-of-fit.

2.5 Determining the Accuracy of the Predictive Model

Given the large sample size, | anticipated little overfitting in the model, whereby a model

is fit to such an extent that it includes small, random fluctuations. To validate the model,
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Dr. Langbehn refit a parsimonious model using a random subsample of 80% of the
data. The other 20%, held out for cross validation, was divided into 4 parts: CAG 41-42,

CAG 43-44, CAG 45-47, and CAG 48-56. The parametric estimates of the cumulative

" onset distributions for each of the four hold-out strata were calculated using the CAG

length prevalences in those strata.

The resultant estimated survival curves were compared to the empirical Kaplan-Meier
estimates for the strata. | also calculated the accuracy of the model in predicting the

outcome for the hold-out sample for each of the 4 groups using the Brier Score

(Equation 7)™,

Brier Score= li{(()—fr(z* | XN T <%,6, =)/ GT) +(A-21*| X)) I(T, > )1/ G(*);  Equation7
naio
For each individual

0, =1 is the censoring code indicating if the patient was observed to have onset

and (7 =1) or if the patient was lost to follow-up (7 =0);

t* is the time for which the estimation is being made;

T is the age of onset or censoring;

7(t*)is the prediction of the probability of onset from the model;

G(*)is the Kaplan-Meier estimate of the censoring distribution for the age at |
which the prognosis is being made and

G(f}) is the Kaplan-Meier estimate of the censoring distribution when the patient

was last observed (lost to follow-up or had onset).




Patients were classified into three categories. Brier Scores were assigned weights using
computer programs | developed in Perl (http://www.perl.com) according to methods

described by Graf'*'(Appendex II).

2.6 Penetrance

I initially examined penetrance based on the UBC cohort, and then | extended the
analysis to the worldwide cohort. Initial investigation into penetrance was based on the
number of individuals who lived to an old age. Old age was defined using the Statistics
Canada data for expected lifetime of 75 years for males and 80 years for females'*2.
Drs. M. Mezei and E. Almqvist obtained confirmation of current age and clinical status
for éll presymptomatic, at-risk individuals in the UBC cohort aged greater than 65 years
of age. The analyéis was extended by actual numerical estimate of penetrance based

on the parsimonious model.

2.7 Using the Predictive Model for the Design of Clinical Trials

The distribution of presymptomatic individuals by CAG and age from the 40 clinics of
the worldwide cohort was used as an estimate of the distribution of individuals who
would comprise the target cohort for a clinical trial designed to detect a delay of onset.
To develop such a model | first determined the age and repeat range for whic‘h the
greatest number of untreated presymptomatic individuals would show symptoms of the
disease within a four-year period. This was based ovn the CAG and age distribution of
presymptomatic individuals and their conditional probability of onset as predicted by the
parsimonious model. | assumed a balanced randomization of treatment and placebo
with regard to both age and CAG. | also assumed no dropouts and follow-up

determinations of clinical status would be performed every 6 months for 4 years. |
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assumed that the treatment effect would follow an accelerated life model (more
accurately, a decelerated life model in this case) with the progression towards disease
onset from the point of treatment initiation decreased to either 80%, 50% or 20% of the
original rate. Sample size calculations were based on the log rank survival test'®®,
Conditional on the assumed age and CAG distribution and the conditional model of
onset probability, Dr. Langbehn then calculated the mean contribution per subject to the
log rank statistic. The sample size was given when the appropriate critical point of the
one degree of freedom (d.f.) non-central chi square distribution was divided by the
mean likelihood contribution. The non-centrality parameter was determined by the
assumed percent slowing of disease onset. The theory justifying this approach in
slightly different contexts has been described by both Agresti'** and O’Brien***. Given
the assumptions, the log-rank test proved slightly more powerful than other candidate

tests from the Harrington and Fleming class'3% 14,
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CHAPTER 3

NONPARAMETRIC PREDICTION OF ONSET USING THE

UBC COHORT

The work presented in this chapter has contributed to one publication:

Brinkman, R.R., Mezei, M.M., Theilmann, J., Almqvist, E., and Hayden, M.R. (1997) The
likelihood of being affected with Huntington disease by a particular age, for a specific

CAG size. American Journal of Human Genetibs 60, 1202-10.
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3.1 Introduction

| hypothesized that CAG-specific survival curves would enable the estimation of the
probability of onset of HD by a certain age in a patient with a particular" repeat.‘ |
therefore used nonparametric (Kaplan-Meier) survival analysis to estimate the age-
specific probability of onset using individuals in the UBC cohort who were either at-risk
(i.e. presymptomatic but with a CAG repeat length greater than 35) or affected for HD

using nonparametric (Kaplan-Meier) survival analysis.

3.2 Results

The distribution of affected and presymptomatic at-risk individuals in the UBC cohort
with a CAG greater than 28 is shown in Table 1. There were no affected individuals with
less than 36 CAG repeats. The ages of presymptomatic persons with a repeat between
30 and 35 are shown in Table 2. Nine hundred and sixty three individuals (728 affected)
had repeats greater than 35. Of these, 866 individuals (90%) from 445 families had a
repeat between 39 to 50 repeafs. Ninety seven percent of affec_:ted individuals had a
neurological age of onset, with the remainder (n=23) having psychiatric. The linear

association between log age of onset and log CAG size was significant (P <0.001) with

an r* value of 0.73.

The cumulative probability of onset for a CAG of 40 increased in a S-shaped manner
(Figure 2). Similar results were seen for repeats from 39 to 50, the range for which there
was enough data to construct curves (see Appendix |, Figure 18 to Figure 29). The

cumulative probability of onset at five year intervals for a given CAG repeat is shown in
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Table 3, with the complete age distribution for each CAG shown in Figure 3. The mean
95% confidence interval (95% CI) for the age-specific likelihood of age of onset with a

given CAG was 20%, with a standard deviation of 10%. The largest 95% Cl was 55.

As CAG increases from 39 to 50 there is a significant increase in the probability of onset
(P <0.0005) by a given age. For example, while an individual with 40 repeats has only a
13% probability of having onset by age 45, this increases to 32% for someone with 42

repeats, 73% for 44 repeats and 100% for a person with 46 repeats (Table 3,Figure 3).

Differences of a single CAG had a significant effect on the expected age of onset for an
individual. There was a significant linear trend between CAG and median age of onset
(P <0.001; r2=0.96) with the median age of onset decreasing by 3.4 years (+ 0.2) for
each CAG increase betwéen 39 and 50 (Table 4). For example, while only 50% of
persons with 40 repeats will be affected by age 59, this decreases to age 37 for 45

repeats, and to age 27 for 50 repeats.

To assess the effect of any possible bias introduced by the inclusion of multiple
individuals from 445 families, | randomly selected two individuals from each family and
repeated the analysis. There was no significant difference in the results obtained for 39
to 49 repeats, suggesting that | did not introduce any obvious bias into the cohort by

including two or more individuals from any one family for this repeat range.

~ While the mean difference between the age of neurological and psychiatric onset was

small (0.8 years), there was a large standard deviation (+/- 4.7 years) and some




patients had much earlier psychiatric symptoms. This result is based on the analysis of

‘ the 164 individuals having both types of onset.
|
|
\
\
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Table 2 Age distribution of presymptomatic individuals in the UBC cohort. Data
shown for individuals with a CAG between 30 and 35.

Number of individuals with a CAG of

AGE (years) 30 31 32 33 34 35 TOTAL
0-19 1 0 1 2 1 3 8
20-29 1 1 2 5 2 4 15
30-39 3 0o 1 2 1 4 11
40-49 1 4 6 1 0 5 17
50-59 0 2 1 5 2 7 17
60-64 0 0 0 1 2 1 4
65-69 0 0 0 0 0 0 0
71-74 1 0 0 0 0 2 3
75-79 1 0 0 1 1 1 4
80-84 0 1 0 1 0 1 3
85-89 0 0 0 0 0 2 2
90-95 0 0 0 0 0 1 1
Total 8 8 11 18 9 31 85




Table 3 Cumulative probability of onset at different ages based on nonparametric
analysis of the UBC cohort. Data shown for individuals with a CAG repeat
between 39 and 50

CUMULATIVE PROBABILITY (95% CI) FOR CAG MEAT SIZE OF

AGE OF SUBJECT 39 40 41 42
(years) (n = 21) (n = 111) (n = 98) (n = 129)
30 .02 (.05-.00)
35 .02 {.05-.00) .02 (.05-.00) .05* (.09-.01)*
40 .07* (.20-.00)* .08 (.13-.02) .12 (.18-.05) .14 (.20-.07)
45 .13 (.19-.05) 21 (.30-.12) .32 (41-.23)
50 .16 (.33-.00) 21 (.30-.12) .38 (.48-.26) 58 (.66-.47)
S5 .36 (.46-.25) .55 (.64-.42) .81 (.87-.71)
60 v .61 (.70-47) .77 (.85-.65) .99 (1.00-.91)
65 .36 (.59-.00) .80 (.88-.67) .88* (.94-.78)" 1.00 (NA)
70 .68 (.87-.20) .90 (.96-.77) .94 (.98-.85)
75 ,79% (.94-.28)° .95 (.99-.82) .98 (1.00-.88)
80
85 1.00* (NA)*
43 ‘ 44 45 46
(n = 116) (n = 123) (n = 76) {n = 63)
20 . .03 (.07-.00)
25 .01 (.02-.00) .05 (.10-.00). .06 (.12-.00)
30 .05 (.10-.01) .04 (.08-.01) .17 (.25-.08) .10 (.17-.02)
35 .18 (.26-.11) .22 (.30-.14) 37 (47-.24) 41 (.52-.27)
40 .39 (.48-.29) 49 (.58-.39) 72 (.81-.59) .86 (.93-.73)
45 .56 (.65-.45) .73 (.80-.62) .91 (.96-.80) 1.00 (NA)
50 .87 (.93-.78) .89 (.94-.80) 1.00* (NA)* '
55 .93 (.97-.85) .96 (.99-.88)
60 .99* (1.00-.91)* 1.00* (NA)*
65 1.00 (NA)
47 ) 48 49 50
(n = 48) (n = 35) (n = 30) (n = 16)
15 .07 (.15-.00)
20 .04 {.10-.00) .06 (.13-.00) .30 (45-.12) .19* (.36-.00)*
25 .16 (.25-.04) .15 (.26-.02) 41 (.57-.20) .39 (.59-.09)
30 .36 (.49-.20) 46 (.61~.26) .53 (.68-.30) .73 (.89-.32)
35 .64 (.76-.45) \78 (.88-.57) .77 (.89-.53) 1.00 (NA)
40 .89 (.95-.72) .89 (.96-.69) .95* (.99-.70)*
45 1.00 (NA) 1.00 (NA) 1.00 (NA)

* Values are for 1 year greater (CAG repeat sizes 42, 43, and 49), 1 year less (CAG repeat sizes 39~41
and 50), or 2 years less (CAG repeat sizes 44 and 45) than the stated interval.
b Value is for an individual 71 years of age.

43



Table 4 Median age at onset based on nonparametric survival analysis of the
UBC cohort. Data shown for individuals with a CAG between 39 and 50

(years)

Median Onset® (95% Cl)

66(59-72)
59(56-61)
54(52-56)
49(48-50)
44(42-45)
42(40-43)
37(36-39)
36(35-37)
33(31-35)
32(30-34)
28(25-32)
27(24-30)
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3.3 Conclusion

My initial study clearly showed that by incorporating CAG as a parémeter in a survival
analysis-based estimate of age of onset, it was possible to predict the likelihood of
being affected by a particular age with a mean 95% CI of 20%. This represented the
first survival analysis of onset of HD subsequent to the discovery of the HD gene and (at
the time) the most accurate statistical analysis of age of onset. | also confirmed the prior
- assessments of ranges of repeats in affected persons as greater than 35. The degree of
association between CAG and age of onset was significant (P <0.001) with a r* of 0.73,
which is higher than prior estimates of around 0.6%”. This?>®° probably is due to
definitive determination of CAG and confirmation of clinical status. Incorporation of
censored individuals (individual who are presymptomatic and at-risk) into the analysis of
age 6f onset of HD was more efficient than only using age of onset as it allowed the
inclusion of 44% more data than if these individuals were ignored. Furthermore it

addresses the estimation bias introduced by only including individuals with onset.

Survival curves were based on individuals with a CAG between 39 and 50, which
represented 90% of individuals in the UBC cohort having a CAG greater than 35. The
results of this preliminary study, must however, be interpreted with caution. Although
highly accurate methodologies were used to calculate repéat iength, and individuals’
last age being unaffected was rigorously ascertained, this analysis could not
immediately be extrapolated to other laboratories due to possible inter-laboratory
variability in the methods of CAG and age of onset assessment. Nevertheless, it was
somewhat reassuring that comparison of CAG determined on the same samples

between laboratories with significant experience in assessment of CAG revealed few
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" differences in assessment of CAG'*®. Furthermore, many centers use a standardized
assessment of age of onset, the Unified Huntington’s Disease Rating Scale (UHDRS)

as a tool in the standardized diagnosis and follow-up of HD'74°,

Another cautionary note is that these analyses were dependent on data from affected
and unaffected persons from families with HD. Therefore, these data may not apply
equally to presymptomatic individuals in the general population who have an expanded
CAG. However, it is indeed extremely rare to find such individuals in the general
population. In addition, it should be recognized that a potential bias in the database is
under-representation of presymptomatic persons at increaseq risk for developing HD.
This would result in over-estimation of the age of onset in this study. However, this
analysis did include 661 affected and 205 presymptomatic individuals at-risk and while
this does not represent a complete assessment of CAG in a defined populétion of
affected and at-risk individuals, there was no systematic bias in the ascertainment of

data.

While my analysis indicated that on average there is not a large difference between
neurological and psychiatric onset, the latter is not always solely due to HD, and can be
confounding. To avoid this possible bias, use of psychiatric onset was avoided in the

analyses presented in the forthcoming chapters.

The probability curves derived in the initial study could not be used to predict the
particular age of onset for an individual, due to the large (20%) confidence interval of
the predictive model, the lack of a complete range of age-specific estimates (a result of

the nonparametric analysis), and the fact that it was based only on the results of one
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center. However, this analysis suggested the clinical utility of the methodology in
providing estimates of symptom free survival to an individual seeking additional
information as part of a predictive testing program. This prompted my further study of
survival analysis-based methods for the estimation the age-specific probability of onset,

as discussed in the following chapters.
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CHAPTER 4

NONPARAMETRIC PREDICTION OF ONSET OF HD USING A

WORLDWIDE COHORT.

The work presented in the following chapters relating to the development of the
predictive model, and its use in predicting penetrancé of HD and in the design of clinical

trials have contributed to one submitted publication:

Brinkman, R.R., Langbehn, D., Falush, D., Paulsen, J. and Hayden, M.R. on behalf of an international
Huntington Disease collaborative group Predicting age of onset and penetrance and designing clinical

trials for Huntington Disease. Submitted to Nature Medicine (July 25, 2001).
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4.1 Introduction

A predictive model fails to provide useful clinical information if it has broad confidence

limits. My initial analysis'*® was based on a nonparametric survival analysis of
individuals with a CAG between 39 and 50 using data from one center. However, the
average size of the 95% confidence intervals was 20%, which is too inaccurate for use
in presymptomatic counseling'®. Further analyses were therefore warranted on a larger
cohoq, to both verify and extend the preliminary findings. To do this | recruited 40 clinics

from nine countries on four continents.

4.2 Results

Individuals were from a cohort ascertained through 40 centers (Appendix [V). Thev
distribution of affected and presymptomatic at-risk individuals with repeats greater than
35 is shown in Table 5. Three thousand four hundered and fifty two individuals (2634
affected, 818 presymptomatic) met this CAG criterion. There were no affected
individuals with less than 36 repeats. The nonparahetric survival curves are shown in
Figure 7. The results were nearly identical to those obtained for the UBC cohort, but the
mean confidence limit was reduced to 13% compared to the previous 20% Table 6. The
curves failed the assumption of a proportional hazard relationship (p<0.0001) - a

prerequisite for applying the familiar Cox model of survival analysis.
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Table 6 Mean, maximum and standard deviation of the 95% CI of the prediction of age
of onset made using nonparametric survival analysis of the UBC and worldwide cohorts

95% Cl size
Cohort Mean Standard deviation Maximum
UBC cohort 0.20 0.10 0.55
Worldwide cohort 0.13

0.10 0.45
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4.3 Conclusion

The nonparametric survival analysis of the worldwide cohort confirmed the utility of this

method to provide estimates of the age-specific likelihood of onset.

The estimates based on the worldwide coﬁort were more accurate than those obtained
using the smaller UBC cohort (Table 6). This analysis also provided indirect evidence
that there was little difference in the way clinics worldwide determine both repeat size
and age of onset, a result that has been found in direct comparisons between centers

previously'*®.

However, this increase in accuracy may not have solely been due to the increased
cohort size. This analysis also used only those patients with a more accurate measure
of CAG than in my initial study (CAG was determined exclusive of the adjacent CCG

repeat for all patients)'?’.
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CHAPTER 5

PARAMETRIC PREDICTION OF ONSET USING A

WORLDWIDE COHORT
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5.1 Introduction

Compared to nonparametric methods, parametric survival curves have smaller standard
errors, more precise statistical inferences, and easier interpretation'®’. The similar S-
shape of all the CAG-specific survival curves lead me to hypothesize that a parametric

probability distribution'®? could be fit to each.

5.2 Results

The logistic distribution had the best average fit to the nonparametric survival curves for
all repeats as shown by the goodness-of-fit of the quantile-quantile plots. For example,
Figure 5 shows the fit of 6 distribution families to a survival analysis of 41 repeats. The
logistic distribution gave a fit closest to a straight line. Similar results were obtained for
all CAG repeats (Appendix |, Figure 30 to Figure 49). The maximum likelihood is the
value of the likelihood function when the parameters are replaced by their maximum
likelihood estimates and measures the extent to which the data are fitted by a particular
model. The larger the value, the better the fit between the model and the observed
data'?. The log-likelihood analysis also indicated that the logistic fit was consistently
best (i.e. largest) for each CAG length, suggesting a common shape of the survival
distributions (Table 7). The normal distribution had a fit that was almost as good as the
logistic. A comparison between a logistic and normal distribution is shown in Figure 6.
Note that while the logistic distribution has a notably higher peak at its median Figure
6(a), it has a longer tail Figure 6(b). Despite these differences, there is usually little

divergence between models fit to a normal or a logistic distribution*®*. | chose the
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logistic as it had a slightly better overall fit compared to the normal distribution, and has

a closed cumulative density formula, allowing for easier derivations'*.

The mean, maximum and standard deviation of the 95% ClI of the prediction of age-
specific likelihood of onset were all smaller for the parametric model compared to the
nonparametric estimates (Table 8). For example, the mean size of the 95% Cl was 13%

for the nonparametric model and only 3% for the parametric model.
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Figure 6 Comparison of the logistic and normal distributions. The thin gray line is a

logistic distribution with mean 0 and scale = Bix (therefore variance =1). The thick
black line is a standard normal distribution with a mean 0 and variance 1.
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Table 8 Mean, maximum and standard deviation of 95% ClI of the prediction of the age-

specific likelihood of onset made using nonparametric and parametric models with the
UBC and worldwide cohorts.

95% Cl size
Cohort Model Mean Standard deviation Maximum
UBC cohort
Nonparametric 0.20 0.10 0.55
Worldwide cohort
Nonparametric 0.13 0.10 0.45
Parametric 0.03 0.06 0.37
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5.3 Conclusion

| used a combination of methods to compare alternative distribution models fitted to the
observed set of survivél data obtained from the worldwide cohort. The logistic survival
curves showed an extremely good fit to the nonparametric survival curves for all the
repeats for which there was enough data to perform the test (Table 7, Figure 5, Figure
30 to Figure 49). While one other study of parametric distribution of age of onset for HD
found that a logarithmic normal model showed a good fit, this study was conducted

before the genetic defect was known'®®

. As expected, using the parametric model
resulted in a significantly (10-fold) smaller average size of the 95% CI, compared to the

results using a nonparametric model (Table 8).

The parametric survival curves accentuated the relationship between the CAG-specific
survival curves. Each survival curve seemed to be separated from its neighbors by a
consistent amount, though higher repeats seemed to be clustered more closely

together. Furthermore, survival curves for lower CAG repeats seemed to increase less

' steeply than higher CAG repeats, with a stepwise increase in the steepness between

repeats. This observation was what led me to hypothesize that it would be possible to
develop a parsimonious model exploiting this interrelatedness between different

repeats.
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CHAPTER 6

PARSIMONIOUS MODEL FOR PREDICTING ONSET USING

A WORLDWIDE COHORT




6.1 Introduction

Based on my observations of the interrelatedness of the parametric survival curves, |
hypothesized that it would be possible to use this relationship to extend the parametric
model into a unified (parsimonious) model. | hypothesized that it would be possible to
incorporate information from a wide variety of repeats into one model, compared to my
earlier method of individually fitting survival curves to éach CAG repeat. This would
allow the use of all the patients in estimating the parameters of the distribution, leading

to smaller confidence intervals.

6.2 Results

The location and scale parameters for each CAG-specific survival curve estimated by
the logistic model followed a regular curvilinear pattern (Figure 8 and Figure 9). | found
that exponential functions of the form shown in Equation 8 provided excellent fits to
both the mean and variance of the age of onset.

y =a+ b exp[-(CAG)/c Equation 8
The non-linear square of the correlations (r2) for these fits were .99 and .96 for the
location and scale respectively. However, the fit of the exponential curve to the location
and scale parameter estimate for less than 41 repeats (Figure 8) and the estimate of the
scale parameter for greater than 56 repeats (Figure 9) was not as good as between 41
and 56. The exponential relationship for both the parameters indicated that it might be

possible to derive a mathematical model relating the individual CAG-specific survival
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curves together. However it was important to first understand the lack of fit at the

extreme repeats.

The lower CAG repeats corresponded to an increased proportion of censoring (Table
5). Only 16% of individuals with 36 repeats were observed to have onset. The average
age of onset (66 years) indicated that many individuals would not have onset of HD
within their lifetime. When the centers were split according to their censoring ratio, the
different censoring groups gave increasingly different estimates for the mean age of
onset for repeat lengths less than 41, but similar estimates for larger repeat lengths
(Table 9 and Table 10). The low, middle and high censoring groups had 467, 2538 and
275 subjects respectively. The low censoring group had notably more pessimistic
estimates for the lowest and highest CAG repeat ranges. However, the high censoring
group provided little data for the high CAG repeat ranges, so estimates in this range
(high censoring/high CAG repeat length) should be considered with caution. The high
censoring group also provides higher age of onset estimates than the mid-range censor
group, though this is not as severe. These differences are only statistically significant
(p< .05) from CAG repeat from 42 to 51. These results imply that the survival curves are
reliable for a CAG 41 or greater, but are increasingly biased by incomplete
ascertainment for shorter repeats. Furthermore, there were only sufficient patients (at
| least 20 per repeat, provided that the censoring ratio is less than 0.5) up to 56 repeats
to derive accurate estimates of the parameters'®. For example, there were on average
12 individuals per CAG between 57 and 60, while there were at least 20 for each CAG
between 37 and 56. Therefore, only the 2913 individuals (84% of the sample) who had
a CAG between 41 and 56 (Table 2) were used for the development of the

parsimonious model.
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Table 9 Censoring rates for worldwide cohort

Residual Expected Observed Mean Center Number Censoring
Censoring rate Censoring rate Censoringrate  age of Individuals  Group
-0.23 0.23 0 41.48 39 42 low
-0.16 0.17 0.01 41.11 3 145 low
-0.15 0.15 0 51.00 37 36 low
-0.14 0.19 0.06 40.77 10 193 low
-0.12 0.12 0 48.84 8 51 low
-0.08 0.16 0.07 45.67 34 27 medium
-0.08 0.10 0.02 45.05 16 82 medium
-0.08 0.21 0.13 41.84 2 237 medium
-0.07 0.07 0 58.5 31 2 medium
-0.06 0.21 0.15 41.22 13 60 medium
-0.06 0.20 0.15 42.82 21 205 medium
-0.05 0.27 0.22 39.78 7 59 medium
-0.05 0.24 0.19 44.07 9 216 medium
-0.03 0.19 0.16 45.95 27 44 medium
-0.02 0.23 0.21 47.41 20 34 medium
0 0.19 0.19 41.59 18 167 medium
0.01 0.11 0.13 48.75 5 8 medium
0.01 0.07 0.09 42.38 1 47 medium
0.02 0.23 0.25 39.19 14 36 medium
0.03 0.27 0.30 40.90 0 923 medium
0.04 0.31 0.35 39.65 29 34 medium
0.05 0.3 0.36 40.27 32 11 medium
0.06 0.19 0.24 48.48 35 99 medium
0.06 0.41 0.47 40.5 12 62 medium
0.07 0.28 0.35 40.65 4 147 medium
0.08 0.32 0.40 38.16 19 25 medium
0.12 0.27 0.38 47.69 40 13 medium
0.20 0.23 0.43 44.43 26 7 high
0.22 0.35 0.57 47.14 25 7 high
0.23 0.38 0.61 37.20 38 80 high
0.24 0.22 0.46 50.77 11 13 high
0.24 0.42 0.67 38.67 30 6 high
0.27 0.30 0.57 40.54 23 28 high
0.28 0.22 0.50 48.77 22 48 high
0.30 0.36 0.67 36.29 36 21 high
0.38 0.32 0.7 38.81 17 27 high
0.38 0.43 0.82 38.55 6 11 high
0.40 0.31 0.71 45.14 28 7 high
0.50 0.35 0.85 33.25 33 20 high
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Table 10 Mean age of onset estimates for censoring groups based on an
adjusted grouping of censor rates.

CAG overall high medium low
38 72.81 79.34 78.11 67.43
39 66.51 71.47 69.84 62.86
40 60.94 64.73 62.80 58.67
41 56.03 58.96 56.80 54.82
42 51.70 54.02 51.69 51.29
43 47.88 49.79 47.35 48.05
44 44.51 46.17 43.64 45.08
45 41.53 43.07 40.49 42.34
46 38.90 40.41 37.81 39.84
47 36.59 38.14 35.53 37.54
48 34.54 36.19 33.58 35.43
49 32.74 34.52 31.93 33.49
50 31.15 33.09 30.52 31.71
51 29.74 31.87 29.32 30.08
52 28.50 30.82 28.30 28.58
53 27.41 29.92 27.43 27.20
54 26.44 29.16 26.69 25.94

55 25.59 28.50 26.06 24.78
56 24.84 27.93 25.52 23.72
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Based on my finding of the ability to fit (1) a logistic distribution to each of the CAG-
specific survival curves ( Equation 2) (2) an exponential relationship between CAG and
the location parameter of each of the CAG-specific logistic survival curves, especially
over the repeat range of 41 to 56 ( Equatioh 8), and (3) an exponential relationship
between CAG and the scale parameter of each of the CAG-specific logistic survival
curves, especially over the repeat range of 41 to 56 ( Equation 8), | hypothesized that it
would be possible to relate all the CAG repeat-specific survival curves together into one
parsimonious model, based on the data for 41 to 56 repeats. This assumption was
based on the fact that taken.together, these three relationships specify all the
information required to obtain a likelihood of onset for any combination of CAG and age.
| also hypothesized that it would be possible to use the data from the entire worldwide
cohort to estimate the parameters of this model, versus my previous methods of fitting a
separate survival curve to data from each CAG. Based on these hypotheses, Dr.

Langbehn estimated parsimonious survival model! for HD onset as:

1

Equation 9
71(-21.55-exp[9.56-0.146(CAG)] + Age)

V3, exp[17.72- 327(CAG)| +35.55

1+exp

This equation is of the same form as a logistic function upon which it is based (Equation
2) with the incorporation of terms to account for the exponential functions (Equation 5)
of both the scale and location parameters. Parameter values were estimated as

described in the Methods section (2.4.2.3).
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The evaluation of Equation 9 for a repeat between 39 and 56 and ages between 0 and
100 is shown in Figure 10, illustrating the smooth transition between repeats of the both
the steepness of the survival curves and the median age of onset predicted by the

parsimonious model.

The good fit between the nonparametric and parsimonious models of disease onset for
abs3 repeats is shown in Figure 13. Results for 41, 45 and 49, repeats are shown in,
Figure 50 to Figure 52(Appendix 1). Similar agreement was observed for the entire range

of repeats.

The approximate p-values of each of the six terms estimated within the model were -
highly significant (minimum chi square = 13.819, 1 d.f., p = .0002). Finally, the
goodness-of-fit of our model was satisfactdry when compared to a saturated logistic
model, in which a separate 2-parameter model was fit for each CAG (chi square =

35.165, 26 d.f., p = .108).

The estimates of the mean and standard deviation of age of onset given by the
parsimonious model are shown in Figure 11 and Figure 12 respectively. The lines in
Figure 11 and Figure 12, while similar to the initial least squares fits (Figure 8 and
Figure 9), are actually derived from the maximum likelihood model discussed below.
The sample size decreased markedly for repeats greater than 53 (Table 2), contributing
to the decreased apparent fit of the exponential model in that region. The confidence
intervals displayed in Figure 11 and Figure 12 are for the estimated true population

values and are not directly applicable to the estimates derived from the data of one
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repeat at a time (points in the figure). These points contain additional sampling error

that contributes to their dispersion around the true population values.

Figure 14 shows the goodness-of-fit of CAG and age-specific estimates of the likelihood
of onset made by the parsimonious model compared to nonparametric estimates for the
same repeat. Numerical values for predictions of the cumulative probability of onset

based on the parsimonious model are shown in Table 11,

A comparison of the mean size of the 95% confidence limits of the age-specific
likelihood of onset of the nonparametric model for the UBC and worldwide cohort and
the parametric and parsimonious model is shown in Table 12 and graphically for a
selection of repeats in Figure 14. The average size of the 95% ClI for individuals less
than 91 years of age over the CAG range of 41 to 56 for the parsimonious model was

2% of the estimated age-specific probability of onset.

Under the best-fit parametric model, the variance in agé of onset is larger for shorter
repeats, as illustrated by the greater spread in the distribution of age of onset (Figure
15). For high repeat lengths, most individuals are predicted to have onset within a very

narrow range, with a smooth transition along the range of repeats.
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Figure 11 Population estimates of mean age of onset for CAG repeat lengths 36 to 60.
The « symbols and solid line indicate the range of data that was used to fit the
exponential curves. The o symbols and long dashed lines indicate CAG lengths for
which the model’'s predictions were extended. Small dashed lines indicate 95% ClI,
larger spaces between dashes indicates repeats for which the model’s predictions were
extended.
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lengths 36 to 60. The e symbols and solid line indicate the range of data that was used
to fit the exponential curves. The O symbols and long dashed lines indicate CAG
lengths for which the model’s predictions were extended. Small dashed lines indicate
95% Cl, larger spaces between dashes indicates repeats for which the model’s
predictions were extended.
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Table 11 Cumulative probability of onset at different ages based on parsimonious

model.
Cumulative probability (85% Ct) for a repeat of
Age of subject
{years) 36 37 38 38

15 0.00 {0.00-0.02) 0.00 (0.00-0.01) 0.00 (0.00-0.01) 0.00 (0.00-0.00)
20 0.00 {0.00-0.02) 0.00 (0.00-0,01) 0.00(0.00-0.01) 0.00 (0.00-0.01)
25 0.00 {0.00-0.03) 0.00(0.00-0.02) 0.00 (0.00-0.01) 0.00 (0.00-0.01)
30 0.00 (0.00-0.04) .00 (0.00-0.03) 0.00 (0.00-0.02) 0.01 (0.00-0.01)
35 0.00 {0.00-0.05) 0.01 (0.00-0.04) 0.01-(0.00-0.03) 0.01 (0.00-0.03)
40 0.01 (0.00-0.06) 0.01 (0.00-0.05) 0.01 (0.00-0.04) 0.02 (0.01-0.04)
45 0.01 (0.00-0.08) 0.02 (0.00-0.07) 0.02 (0.01-0.07) 0.04 (0.02-0.07)
50 0.02 (0.00-0.10) 0.03 (0.01-0.10} 0.04 (0.02-0.10) 0.07 (0.04-0.12)
55 0.03 {0.01-0.13) 0.04 (0.01-0.13) 0.07 (0.03-0.15) 0.13 (0.08-0.19)
80 0.04 (0.01-0.16) 0.07 (0.03-0.17) 0.12 (0.07-0.21) 0.23 (0.17-0.30}
65 0.06 {0.02-0.20) 0.11 (0.05-0.23) 0.20 (0:13-0.30) 0.37 (0.29-0.44)
70 0.10 (0.03-0.25) 0.17 (0.09-0.30) 0.32 (0.23-0.42) 0.53 (0.45-0.61)
75 0.14 {0.06-0.30) 0.26 (0.16-0.39) 0.45 (0.36-0.55) 0.69 (0.61-0.76)
80 0.21{0.10-0.37) 0.37 (0.26-0.50) 0.60 (0,50-0.69) 0.81.(0.74-0.87)
85 0.29 (0.17-0.45) 0.49 (0.38-0.61) 0.73 (0.62-0.82) 0.90 (0.83-0.94)

40 41 42 43
15 0.00 {0.00-0.00) 0.00 {0.00-0.00) 0.00 (0.00-0.00) 0.00 {0.00-0.00)
20 0.00 (0.00-0.00) 0.00 (0.00-0.00) 0.00 {0.00-0.00) 0.00 {0.00-0.00)
25 0.00 {0:00-0.01) 0.00 (0.00-0.01) 0.01 (0.00-0.01) 0.01 (0.01-0.01)
30 0.01 (0.00-0.01) 0.01 (0.01-0.01) 0.01 (0.01-0.02) 0.02 (0.02-0.03)
35 0.01 (0.01-0.03) 0.02 (0.02-0.03) 0.04 (0.03-0.04) 0.08 (0.05-0.07)
40 0.03 {0.02-0.05) 0.05 (0.04-0.07) 0.09 (0.08-0.10}) 0.16 (0.14-0.17)
45 0.06 (0.04-0.09) 0.11 (0.09-0.14) 0.20 (0.18-0.22) 0.35 (0.33-0.36)
50 0.13 (0.09-0.17) 0.23 (0.20-0.26) 0.40 {0.37-0.42) 0.60 (0.68-0.82)
55 0.24 (0.18-0.29) 0.41 (0.38-0.45) 0.63 {0.60-0.86) 0.81 (0.79-0.83)
60 0.40 {0.35-0.46) 0.62 (0.59-0.66) 0.82 {0.80-0.83) 0.92 (0.81-0.93)
65 0.59 (0.53-0.64) 0.80 (0.76-0.83) 0.92 (0.91-0.83) 0.97 (0.97-0.98)
70 0.76 (0.70-0.80) 0.90 (0.88-0.92) 0.97 {0.96-0.97) 0.99 (0.89-0.99)
75 0.87 (0.83-0,90) 0.96 (0.94-0.97) 0.99 (0.98-0.99) 1.00 (1.00-1.00)
80 0.93 {0.90-0.96) 0.98 (0.97-0.99) 1.00 (0.99-1.00)
85 0.97 {0.95-0.98) 0.99 (0.99-0.99)

44 45 46 47
15 0.00 (0.00-0.00) 0.00.(0.00-0.00) 0.00 (0.00-0.00) 0.00 (0.00-0.00)
20 0.00 (0.00-0.01) 0.01 (0.00-0.01) 0.01 (0.01-0.01) 0.01 (0.01-0.02)
25 (.01 {0.01-0.01) 0.02 (0.02-0.02) 0.03 (0.02-0.04) 0.05 (0.04-0.05)
30 0.04 {0.03-0.04) 0.06.(0.05-0.07) 0.10 (0.08-0.11) 0.16 (0.14-0.17)
35 0.10 {0.08-0.12) 0.18 (0.16-0.19) 0.28 (0.26-0.30) 0.41 (0:39-0.44)
40 0.27 {0.25-0.29) 0.42 (0.40-0.44) 0.59 (0.56-0.61) 0.73 (0.70-0.75)
45 0.53 (0.51-0.55) 0.71 (0.69-0.73) 0.84 (0.82-0.85) 0.91 (0.90-0.92)
50 (.78 {0.76-0.80) 0.89 (0.88-0.90) 0.95 (0.94-0.96) 0.97 (0.97-0.98)
55 0.92 {0.90-0.93) 0.96 (0.96-0.87) 0.99 (0.98-0.89) 0.98 (0.99-0.99)
60 0.97 (0.97-0.98) 0.88 (0.99-0.99) 1.00 (0.99-1.00) 1.00 (1.00-1.00)
65 0.99 {0.99-0,99) 1.00 (1.00-1.00) 1.00 (1.00-1.00}
70 1.00 {1.00-1.00)

48 49 50 51
15 0.00 {0.00-0.01) 0.01 (0.01-0.01) 0.01 {0.01-0.01) 0.01 (0.01-0.02)
20 0.02 {0.02-0.02) 0.03 (0.02-0.03) 0.04 (0.03-0.05) 0.05 (0.04-0.07)
25 0.07 {0.06-0.08) 0.10 (0.09-0.12) 0.15 {0.13-0.17) 0.20 (0.17-0.23)
30 (.23 {0.21-0.26) 0.32 (0.30-0.35) 0.42(0.39-0.45) 0.52 (0.48-0.55)
35 0.85 {0.52-0.57) 0.66 (0.64-0.69) 0.76 (0.73-0.78) 0.82 (0.79-0.85)
40 0.83 (0.81-0.85) 0.89 (0.87-0.91) 0.93 (0.91-0.94) 0.95 (0.94-0.96)
45 0.95 {0.94-0.96) 0.97 (0.96-0.98) 0.98 (0.98-0.99) 0.99 (0.98-0.99)
50 (.99 {0.98-0.98) 0.99.(0.99-0.99) 1.00 {0.99-1.00) 1.00 (1.00-1.00)
55 1.00 {1.00-1.00) 1.00 (1.00-1.00)
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Table 12 Mean, maximum and standard deviation of 95% CI of the prediction of age of

.onset made using nonparametric, parametric and parsimonious model with the UBC
and worldwide cohorts.

95% Cl size

Cohort Model Mean Standard deviation Maximum
UBC cohort

Nonparametric  0.20 0.10 0.55
Worldwide cohort

Nonparametric 0.13 0.10 0.45

Parametric 0.03 0.06 0.37

Parsimonious 0.02 0.03 0.06
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Figure 15 Distribution of age of onset for individuals with 36 to 56 CAG repeats based

on the parsimonious model.




6.2.1 Conditional probability tables

Prediction of onset

Equation 9 gives the age-specific probability of onset, predicted at birth. An estimate
that is typically of greater practical relevance is the conditional probability of onset,
which takes into account an individual’'s current age, which can be derived from
- Equation 6. For example, a 40-year-old individual with 42 repeats could be tbld that on
average (50% chance) they are likely to have onset by age 54 (Table 13). However, the
average age of onset for presymptomatic individuals aged 50 with 42 repeats is 58. The

median age of onset is presented in Table 14.

Conditional predictions, as well as mean and median ages of onset for individuals aged

less than 91 years with a CAG between 36 and 56 are presented in Appendix Iil.
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Table 13 Mean age of onset of HD based on the parsimonious model, conditional on

CAG and current age

Mean age of onset for a CAG of

Current age 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(years)

At birth 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
5 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
10 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
15 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 27 26
20 95 85 77 69 63 57 52 48 45 42 39 37 35 33 32 31 30 29 28 28 27
25 95 85 77 69 63 57 52 48 45 42 39 37 35 34 33 32 31 31 30 30 30
30 96 85 77 69 63 57 53 49 45 42 40 38 37 36 35 35 34 34 34 34 34
35 96 86 77 70 63 58 53 49 46 44 42 41 40 39 39 39 39 39 39 38 38
40 96 86 77 70 64 58 54 51 48 46 45 44 44 44 44 44 43 43 43 43 43
45 96 86 78 70 64 59 56 53 51 50 49 49 49 49 49 48 48 48 48 48 48
50 96 86 78 71 65 61 58 56 55 54 54 54 54 54 54 53 53 53 53 53 53
55 97 87 79 72 67 64 62 60 60 59 59 59 59 59 59 58 58 58 58 58 58
60 97 88 80 74 70 67 66 65 65 64 64 64 64 64 64 63 63 63 63 63 63
65 98 89 82 77 73 72 70 70 69 69 69 69 69 69 69 68 68 68 68 68 68
70 99 91 84807876 75757474 74747474 74737373737373
75 101 93 87 84 8281 80807979797979797978787878787
80 103 95 91 88 87 86 85 85 84 84 84 84 84 84 84 83 83 83 83 83 8
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Table 14 Median age of onset of HD based on the parsimonious model, conditional on
CAG and current age

Median age of onset for a CAG of
Age 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

(years)

Atbirth 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
5 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
10 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
15 95 85 77 69 63 57 52 48 45 41 39 36 34 33 31 30 29 28 27 26 26
20 95 85 77 69 63 57 52 48 45 41 39 36 35 33 31 30 29 28 28 27 27
25 95 85 77 69 63 57 52 48 45 42 39 37 35 33 32 31 30 30 29 29 29
30 95 85 77 69 63 57 52 48 45 42 39 38 36 35 34 34 33 33 33 33 33
35 95 85 77 69 63 57 53 49 45 43 41 40 39 38 38 38 38 38 38 37 37
40 95 85 77 69 63 58 53 50 47 45 44 43 43 43 43 43 42 42 42 42 42
45 96 86 77 70 63 58 54 52 50 49 48 48 48 48 47 47 47 47 47 47 47
50 96 86 77 70 64 60 57 55 54 53 63 63 53 53 52 52 52 52 52 52 52
55 96 86 78 71 66 62 60 59 58 58 58 58 58 58 57 57 57 57 57 57 57
60 96 87 79 73 68 66 64 64 63 63 63 63 63 62 62 62 62 62 62 62 62
65 97 87 80 75 72 70 69 68 68 68 68 68 68 67 67 67 67 67 67 67 67
70 97 89 82 78 76 74 74 73 73 73 73 73 73 72 72 72 72 72 72 72 77
75 99 90 858280797978 787878787877 7777777777777

80 100 93 88 86 85 84 84 83 83 83 83 83 83 82 82 82 82 82 82 82 8.




6.3 Conclusion

The parsimonious model | developed was based on the largest collection of HD patients
reported to date, drawn from a worldwide collaboration of 40 HD centers. This study
indicated that it is possible to derive a clinically useful model (i.e. with small confidence
limits) that expresses the relationship between having a certain repeat size and the
probability that disease onset will occur by a certain age. By incorporating both affected
and at-risk individuals, more powerful statistical techniques have been applied, allowing
the development of a parametric survival model that predicts the age-specific probability

of onset with narrow (2%) 95% confidence limits.

The parsimonious model has six parameters and was made using all the data from the
cohort. This resulted in a more precise model compared to the case when scale and
location are estimated independently for each CAG between 41 and 56, requiring 32
parameters. The likelihood ratio test showed that despite having many more
parameters, individually fit survival curves contain little more information. The remaining
evidence in the data provided no statistically significant improvement in the fit of a
logistic survival model to the data. The large sample size also helped avoid over fitting

the model to random, potentially aberrant features of the data.

There is some risk of bias in the worldwide cohort sémple resulting from the clinical-
based sampling of affected patients. My previous attempt to detect an effect of pedigree
size on estimates did not find any significant correlation, suggesting that probands do
not contribute a measurable bias. However, previous studies have suggested there is

underascertainment of individuals with lower repeats. (e.g. as few as one out of 20
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individuals with 38 repeats are ascertained)'®. This is consistent with the data
presented in Table 13 which predicts that the mean age of onset for individuals with 36
repeats is 77 years, approaching the limit of a normal lifespan. Finally, given that only 9-
20% of individuals approached by testing centers take part in predictive testing, there is
also the possibility that people who chose to be tested are not representative of the HD
population as a whole':'%. Therefore, a direct survival analysis of individuals with a
CAG between 36 and 41 likely overestimates their probability of onset.
Underascertainment of individuals with smaller repeats is also supported by the different
estimates of mean age of onset of the different centers, dependent on their censoring
ratios. The low, medium and high censoring groups gave increasingly different
estimates for the mean and variance in age at onset for repeat lengths less than 41, but
gave similar estimates for larger repeat lengths (Tables 9 and 10) attempted to avoid
this bias as the parameters for the parsimonious mode! were estimated using only
individuals with a CAG between 41 and 56. Extrapolating the model provided estimates
for individuals with less than 41 repeats. One alternative solution would have been to
exclude those centers with abnormally low censoring rates. However, this would have
decreased the sample size and have introduced possible bias through the pre-selection

of eligible patients for the parametric models.

The confidence limits were calculated as if, conditional on repeat length, all of the
observations were statistically independent. However, there may have been some
residual dependencies since many of the subjects came from common pedigrees. While
this normally increases the width of confidence intervals, there was not suitable
information available to correct for this from most of the contributing centers. The main

source of pedigree-based dependence is almost certainly repeat length. Having




accounted for this as the main predictor under study, | am confident that | have
accounted for as much of the pedigree-based dependence as possible. It is quite

possible that the remaining within-pedigree effects are negligible.

By exploiting the multifactorial relationship of the survival curves | was able to develop a
model for which the average 95% confidence limit for a CAG repeat range between 39
and 50 was 2%, compared to the nonparametric (20% and 13% for the UBC and
worldwide cohorts respectively) and parametric models (03%)(Table 12). This was due
largely to the efficiency of the parsimonious model in using all the available data instead
of fitting individual survival curves to each CAG. The mean size of the 95% CI obtained
using parametric model was not improved on dramatically by moving to the
parsimonious model (Table 12). However there was a six-fold decrease in the maximum

size of the 95% CI.

The approximate interpretation of the parsimonious confidence interval is that, given
hypothetical replications of the entire experiment under identical conditions, this interval
would cover the true parameters 95% of the time. (If the parsimonious model was
correct, as assumed, the true parameters would also perfectly follow some function of
the general exponential form that we are using). A confidence interval directly applicable
to the estimates obtained from the individual CAG length estimates would also take the
expected variance of these intervals into account. This is a likely explanation of why the

"coverage", especially for the standard deviations, appears poor.
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.While there was a clear skew in the mean age of onset dependent on the censoring rate

of the clinics for short repeats, no such skew is observed for larger repeat lengths. This
difference is likely due to ascertainment. This method of dividing the data may
exaggerate real differences. However, the sampling clearly is not uniform across
centers and therefore it cannot be consistently representative of the same population,
violating one of the assumptions required for unbiased survival analysis. It is also
impossible, in any formal way, to say which centers have taken more or less
representative samples from the underlying HD population. However, it is likely that the
centers with especially low censoring (i.e., almost everyone they've studied already had
onset) are probably the least representative. A bias due to underascertainment was
likely minimized by restricting the model development to only those individuéls with a

repeat between 41 and 56, as the censoring groups all had similar estimates of mean

onset over this range, compared to lower repeats.




CHAPTER 7

ASSESSING THE ACCURACY AND CLINICAL UTILITY OF

THE PREDICTIVE MODEL
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7.1 Introduction

Any predictive model’s value should not be determined by how many zeros are in the
associated P-values, but also in its ability to sensibly predict outcomes with some
success'®. It is important to validate any predictive model both statistically and clinically
to provide evidence that the model is adequate for clinical use. | therefore assessed the
degree of overfit of the model through the ability of a model (based on 80% of the
cohort) to predict the probability of onset of the remaining 20% of the cohort (the hold
out-sample). This included the development of Brier Scores to estimate the accuracy of

the predictions.

| 7.1.1 Brier Scores

In developing a prediction model, it is important to provide an estimate of its accuracy. A
common method is a comparison of observed and predicted event rates for
individuals'®®. The Brier Score was originally developed for judging the inaccuracy of
probabilistic weather forecasts but is finding greater acceptance as a measure of
accuracy for survival models as it provides an unbiased estimate of the predictive
values of model using all the available data'*""'%*'%3_ The Brier Score measures the
average discrepancies between a predicted probability of an event occurring (e.g. the

probability of precipitation) and the observed outcome (did it rain or not)'*'

. A perfect
predictive model has a Brier Score of “0”. A completely inaccurate model which, for
example, predicts 100% of patients will have onset by a certain age, when 0% actually

to do so will have a Brier Score of “1” for that age. A method has been recently been

developed™' that allows the calculation of Brier Scores for survival curves with

90



censoring. The Brier Score as a measure of accuracy is preferable to alternative
methods of evaluating model accuracy (e.g. calibration curves) which are only
evaluated at a singular time point. Should other predictive models be developed, it is

possible to compare them using their Brier Scores.

7.2 Results

When the model was re-estimated using only 80% of the data, there was no significant
overfitting evident when the predictions were compared to the observed onsets in the
other 20% “holdout” sample for the 41 to 42 repeat data (Figure 16). Similar results

were observed for the other 3 CAG groups (Appehdix I, Figure 63 to Figure 65).

Assuming that the there was enough data in the hold-out sample to generate a model
that specifies the underlying probability model accurately, the Brier Score of that model
(when tested against the data used to generate the model) can provide a benchmark for
comparing the performance of a model built and tested on a separate sample. | found
that the Brier Scores obtained using the parsimonious model to predict the age of onset
for individuals in the hold out sample (red line in Figure 16) were nearly as good as
those obtained when Kaplan-Meier analysis of the hold out sample itself was used to
generate the predicted age of onset distribution (blue line in Figure 16). The average
Brier Scores of the parsimonious model for ages 0 to 90 years for the 48 to 56, 45 to 47,
34 to 44 and 41 to 42 CAG repeat groups were small (0.04, 0.05, 0.06 and 0.07
respectively), indicating the parsimonious model provides accurate predictions of age of

onset.
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Figure 16 Cumulative probability of onset predicted by a parsimonious model developed
with 80% of the data, compared to the observed onset for the hold-out sample for 41-42
CAG repeats. Staircase line represents the nonparametric (Kaplan-Meier) analysis.
Smooth curve with solid line represents a parametric model based on 80% of the data.
.Short dashed line represents the Brier Scores of the nonparametric prediction, based on
the holdout sample, and the long dashed line represents the Brier Scores of the
parametric model predictions, based on the modeling sample.

92




7.3 Conclusion

The good fit of the parsimonious model developed with 80% of the data td the
nonparametric results obtained from the 20% holdout sample is indicative of the clinical

utility of the model.

The maximal Brier score observed at the 50" percentile is indicative of the inherent
difficulty of correctly choosing between two events that occur with equal frequency (e.g.
the probability of onset by age 57, predicted at birth, for an individual with 41 repeats;
Table 13). The rapid improvement in Brier Score at each side of the 50" percentile

indicates the overall performance of the model makes it a useful tool in clinical practice.

Several criteria have been proposed to aid in the critical appraisal of probability
models'®* "% | have endeavored to adhere to these principles during the course of my

analysis as follows.

1. The cohort used in developing the predictive model is well defined, followed for a
sufficient period of time, and is comparable to the patients for whom the model will be

used to provide predictions for.
The model | developed is based on thousands of patients, many followed at yearly

clinic visits since 1984. Furthermore, the cohort was comprised of patients drawn

from 40 clinics from nine countries on four continents. It is therefore reasonable to
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conclude that the model is generally applicable to presymptomatic HD patients.
2. The clinical state predicted by the model should be relevant to the patient.

Age of onset, defined as initial signs of neurological dysfunction, is a well-

established clinical state of obvious interest. Furthermore, an accurate, quantitative
estimate of the age-specific probability of onset can give the patient, the family, and
the physician ‘important information that can be used in making treatment decisions

and may help in other aspects of life planning.

3. All variables required by the model should make clinical sense and be available at

minimal expense when the prediction is to be made.

As a CAG determination is routinely and reliably determined for patients at risk
for HD, physicians have timely access to all the patient data required to make
predictions using the model'?®. The importance of repeat size in determining age
of onset is undisputed, versus the possibility that some parameters could have
been incorrectly chosen if logistic regression had been used to select parameters

from a list"%%1%7

4. A model should be accurate in that the degree of uncertainty in the probability
estimate should be small enough that estimates are meaningful when making
predictions.

By exploiting the multifactorial relationship of the individual survival curves | was

able to develop a model which estimated the age-specific likelihood of onset for
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which the mean 95% CI for a CAG repeat range of 41 to 56 was 2%, clearly

within any reasonable bounds.

5. It is important that the model performs well and can be applied to clinics other than

those used to develop the model.

| tested the degree of overfit of the parsimonious model by splitting the cohort
into a model development and a test cohort component. The model was
developed using the same model building steps as were used in the
development of the parsimonious model, but'using only 80% of the data, and
then tested on the remaining 20%. There was excellent agreement of between
the predictions of the two estimates, indicating the model passed an essential
test of credibility'®®. There does not appear to be a great deal of dissimilarity
between patients from different centers as they generally have the same
expectancy of onset regardlessvof origin, an observation that has been made by

others?.

6. The model should have advantages over traditional methods of prediction and be

easy to implement.

There were no reliable predictions of age of onset available for HD patients
before the start of this thesis. This work represents the first useful predictive
model for HD. In an a'ttempt to make the model as “user-friendly’as possible to

use, | calculated detailed conditional probability tables for individuals of any age,
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rather than single cut-points of 5 or 10 years (Appendix Ill), as suggested by

established guidelines for the reporting of statistics'®®.
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CHAPTER 8

PENETRANCE
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8.1 Introduction

A diséase is only partially penetrant if not all individuals manifest symptoms within a
normal lifetime. HD has previously been considered to be 100% penetrant with all
carriers of the HD expansion manifesting the disease'2. However, recent case reports
have suggestéd21 that on rare occasions HD may not be fully penetrant. For instance,
one study found four of seven individuals over the age of 70 with a 36 repeats had no
signs or symptoms of HD. One individual with a 39 repeats died at age 95 with no

definite clinical or pathological evidence of HD?".

| used both the UBC and worldwide cohorts to investigate the number of cases of
nonpenetrance that occurred and the parsimonious model to provide numerical

estimates of the age and CAG-specific penetrance of HD.

8.2 Results

No individuals in the UBC cohort with a CAG repeat length greater than 41 remained
presymptomatic older than age 56 (Table 15). This result indicated that clinical
manifestation of the disease was fully benetrant within a normal lifespan for this CAG
repeat range. There were, however, several individuals with a CAG repeat length
between 36 and 41 who did not manifeste with symptoms of HD within a normal
expected lifespan (Table 15). For example, there were two males aged 78 and 85 with
36 CAG repeats and one male aged 75 with 39 CAG repeats who were

presymptomatic. There was also one female with 38 CAG repeats and a male with 40
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repeats who were not affected until age 84 and a male with 41 repeats who was not

affected until age 75 (Table 15).

By defining onset greater than or equal to 75 years for males and greater than or equal
to 81 years for females as beyond the normal lifespan'?, the data showed complete
penetrance with a CAG repeat length of 42 or above. Reduced penetrance may
however occur within the range of 36 to 41 CAG repeats. These data require validation
in other independently ascertained large groups of patients as the numbers in my study
were too small to allow for meaningful penetrance estimates for each specific repeat
size. However, it was obvious that there is a trend to increasing penetrance, with
increasing repeat length in the 36 to 41 rep_eat range, up to 90% for 39 CAG repeats

and 99% for 41 CAG repeats (Table 15)

The analysis of penetrance was aided by the development of the parsimonious model
which predicts that there is a substantial probability that individuals with less than 40
CAG repeats will not have onset within their lifespan. For example, based on the model,
| predict only a 21% chance for an individual with 36 repeats to have onset before age
80 years (Table 15). Thirteen of the 410 (three percent) individuals with a CAG less
than 41 were older than 74 and still presymptomatic. The oldest presymptomatic
individual was a 90 year old with 37 repeats (Table 5). The oldest presymptomatic
individual with a CAG of 41 was 71, and the model predicts a 56% chance of onset by
age 75, and an 80% chance by age 80 (Table 20 to Table 40, supplementary tables).
There were no presymptomatic individuals older than 70 with a CAG greater than 41

(Table 5).
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Table 15 Data used to estimate penetrance of CAG expansion in HD Gene, by
CAG in the UBC cohort

Number of Individuals
CAG Affected Unaffected Individuals Total

< 29-35 0 9 9
36 1 2 3
37 4 0 4
38 2 1 3**
39 8 1 9**
40 64 1 65
41 74 1 75
> 41 575 0 575

* Age greater than 75 years (males) or greater than 80 years (females)

** Including individuals reported by Rubinsztein?'.
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8.3 Conclusion

My initial results'®®

supported the case reports of Rubinsztein?' who investigated
individuals with 30 to 40 repeats. | confirmed that the lower limit of CAG in individuals
who manifest with HD is 36. This lower limit is supported by the fact that there were 31
presymptomatic individuals with a CAG of 35 including one man who was 93 years old.
A larger proportion of affected patients with 36 to 39 repeats presented with late-onset
disease. However, this analysis and previous studies are limited by their small sample
sizes, precluding accurate numerical estimation of the degree of non-penetrance. This
prompted further survey the penetrance of HD at different repeats using the
parsimonious model as the age-specific probability of onset can be used to provide an
estimate of penetrance. The model-based extrapolations suggest that many individuals
with a CAG less than 41 will not show symptoms of HD within their lifetime, including up

to 79% of those with 36 repeats (Table 16). This analysis provides the first numeric

estimate of penetrance of HD by age and CAG.
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CHAPTER 9

USING THE PREDICTIVE MODEL FOR THE DESIGN OF

CLINICAL TRIALS
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9.1 Introduction

The ultimate aim of HD research is to provide insights that will slow or stop the
progression of HD in affected persons and delay or prevent onset in at risk persons, i.e.
those with greater than 35 repeats. Although therapeutics have been identified to
decrease the rate of progression in some neurological diseases, no agents have been
identified to delay the course of any triplet repeat disease. Should an intervention prove
effective in slowing the rate of HD in diagnosed individuals, there will be an immediate,
compelling need to test these treatment strategies on individuals who are considered

presymptomatic but are gene carriers for the disease.

Without the ability to accurately estimate the probability of onset, clinical trials to detect
a delay of onset among presymptomatic individuals are difficult to design. Before this
thesis, there was no well-established methodology for predicting age of onset in HD.
Consequently, there was no adequate method to design a clinical trial to detect a delay
in age of onset induced by an experimental therapeutic. The development of the
parsimonious model allows the investigation of alternative trial designs so that when
one does become available, it can be implemented as quickly and cost effectively as’
possible. The challenges for présymptomatic trials for HD include the inclusion of
enough individuals who would be expected to have onset during the trial, while ensuring
the trial design is practical in that it can be completed in a timely manner with a

reasonable balance between power and cost.
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9.2 Results

The clinical trial design was based on assﬁmptions realistic for many clinical trials
including an 80% power to detect a 20%, 50% or 80% slowing of the progression
towards onset within four years (p = 0.05). A 50% delay of progression indicates that the
rate of approaching onset is reduced by half, such that a patient's risk of onset at four
years is reduced to the risk normally expected at two years. A four-year trial provides a
balance between ensuring é potential treatment would have time to have an observable
effect while keeping the trial duration within reasonable limits to control cost.'The

parametric model can be used in a similar manner to explore alternative scenarios.

In designing a clinical trial for persons at-risk for HD, one would ideally test a compound
on a cohort of individuals who would be expected to have onset of symptoms within a
short period. A double-blind placebo control approa.ch would necessitate seeing a
difference in onset between treated and control groups. The issue is how to enroll those
pérsons most likely to have onset in the near future to more rapidly reach statistical
vsignificance between the treated and untreated groups. My results indicate that it is
necessary to take into account both CAG and age. Individuals with a larger CAG are
more likely to have earlier onset (Table 5 and Table 13). Keeping CAG constant, as oné
chooses older at-risk individuals, the Iikelihood that they will have onset in a shorter
period also increases (Table 13), although the number of eligible individuals in that
category decreases (Table 17). Conversely, if one recruits younger patients, to ensure
th‘at enough individuals could be enrolled in a trial, more individuals would be enrolled
who are far from onset, and who therefore édd little power to the trial. The challenge

therefore is to strike a balance between age and the number of patients needed to
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detect an effect. For example, unrestricted enrollment of the presymptomatic cohort
described in Table 17 (a summary of the worldwide cohort) in a clinical trial designed to
detect a 50% delay of onset within four years, would require 592 individuals (Table 18).
However, individuals with less than 38 repeats would contribute almost no information
(Table 13). Table 13 indicates a clinical trial using only individuals aged greater than 40
-would be preferable. Th_e likelihood of finding over 350 presymptomatic individuals of
this advanced age (based on the data proved by the 40 centers for HD research, and
the parsimonious model) is low, precluding this as a viable design. In contrast, a clinical
trial based on restricting enrollment to those individuals older than 36 with 40 or 41
repeats, older than 31 with 42 repeats, and older than 26 for individuals with a CAG
between 43 and 56, provided a good compromise between the statistical power
contributed by each patient and the proportion of the available cohort that could be
included. Such a study would require 416 at-risk individuals to detect a 50% delay in the
age-specific probability of onset (Table 13). This is feasible based on the number of
asymptomatic patients who have already participated in predictive testing and are

known to have a CAG expansion.
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9.3 Conclusion

The challenges in designing a feasible presymptomatic clinical trial include recruitment
of enough individuals with a reasonable risk of onset during a trial that can be

completed in a timely manner with a reasonable balance between power and cost. My

~ results show that careful consideration of the enrollment criteria can result in a 28%

reduction in the number of patients required (e.g. from 592 patients for a trial to detéct a
50% increase in age of onset using unrestricted enrollment, to 416 using the restricted
enrollment criteria). Restricted enrollment would both reduce patient exposure to
experimental treatments that may have significant side effects and decrease both the

overall time and cost of the trial.

For pharmaceutical companies, time is an important barrier to implementation of trials
for late onset neurodegenerative diseases, since a patent is issued long before a clinical
trial begins, not when the drUg is marketed. At a typical cost of $10,000 per patient per
year for a four-year HD clinical trial, using a restricted enrollment design could result in
a total savings of $7,040,000 over four years if a trial were designed to have a 80%
power to detect a 50% delay of onset (p = 0.05), compared to a similar trial designed
with unrestricted enroliment (Table 18). Even for a clinical trial to detect a dramatic
(80%) decrease in the age-specific probability of onset, using the restricted enroliment
criteria can result in considerable ($2,160,000) éavings over a four-year trial. Estimates
based on the criteria that we have proposed suggest that the number and type (age and
repeat size) of patients required to detect at least a 50% decrease in the age-specific

probability of onset will be attainable for a muiti-center trial. However, as a clinical trial to
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detect a 20% delay of onset would require approximately 3000 patients, this likely

precludes a trial attempting to detect this level of effect.
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CHAPTER 10

PREDICTING AGE OF DEATH USING THE UBC COHORT

Part of the work presented in this chapter has contributed to one publication:

Wellington, C. L.; Brinkman, R. R.; O'Kusky, J. R., and Hayden, M. R. Toward
understanding the molecular pathology of Huntington's disease. Brain Pathol. 1997 Jul;

7(3):979-1002.
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10.1 Introduction

In addition to predicting age of onset, | used survival analysis to determine the

probability of death by a particular age for an individual with a specific CAG size'™®.

10.2 Results

Individuals from the UBC cohort with a CAG repeat length greater than 36 repeats were
initially selected. The data were analyzed using Kaplan-Meier survival analysis. |
included 542 individuals with CAG lengths of 41-45, of whom 75 had died. The maijority
(60%) of persons in the database with a CAG greater than 36 had a CAG repeat length
in this range. Other repeats were excluded from the analysis as the small numbers of
individuals for these particular CAG sizes precluded rigorous statistical analyses. The
analysis predicted that while only 4% of persons with 41 CAG repeats (n=74) would die
by 60 years of age, this increases to 30% for 43 CAG repeats (n=93) and 83% for 45

CAG repeats (n=66).

After the development of the parametric model for predicting the agejspeciﬁc likelihood
of onset, the UBC cohort was used to investigate the possibility that a parametric model
could be fit to the individual CAG survival curves in a similar manner as was done for
the age of onset analysis. Six hundred and sixty eight individuals who had shown
symptoms of HD were selected from the UBC cohort based on having available
information. Of these age at death information was known for 115 (Table 19). As was
observed for the probability of onset analysis, the logistic distribution gave a good fit to

- the nonparametric survival analysis estimating the probability of death. The cumulative
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probability of death for a CAG of 45 is shown in Figure 17. Additional CAG repeats for
which there was sufficient information (CAG 41 to 44) are shown in Appendix |, Figure

59 to Figure 62.
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10.3 Conclusion

Kaplan-Meier curves for age of death were similar in shape to those based on age of
onset data. Extending the analysis to a parametric model indicated that logistic
distributions gave an accurate age-specific likelihood of age of death for all the CAG
repeats tested, coinciding with the model used for the prediction of age of onset.
Unfortunately as sufficient data on age of death was only available for enough
individuals to construct survival curves for a repeat between 41 and 45, it was not
possible to resolve the controversy surrounding the hypothesis that the duration of HD
is associated with repeat size®*®%'%". While a recent analysis of almost 3000 patients
has shown that duration of disease is influenced by the age of onset, with juvenile and
late onset patients having the shortest duration, repeat size was not taken into

account'’".

My analysis provides insight not only into progression of the disease, but may also be

used in concert with age of onset prediction to aid those affected with HD to plan for

their future.




CHAPTER 11

DISCUSSION




11.1 Summary of Results

During the course of my thesis, | developed a series of survival-based analyses to
accurately predict the age-specific probability of onset of HD and the age specific
probability of death subsequent to onset of disease. | propose that these predictions will
be useful for genetic counseling, clinical management and clinical trial design and are
useful for patients at risk, their family members. The analysis also provides additional

insights into the penetrance of the disease and underascertainment of disease onset.

11.1.1 Prediction of onset

Properly developed and validated predictions can influence clinical practice'®. My
research should help clinicians provide‘accurate predictions of onset to patients.
However, caution should be used while discussing this information with patients.
Individuals at-risk for HD can use the information presented in this thesis in planning for
their futurbs, should they decide to undergo testing. However, while it is possible to use
the model | have presented to estimate probability of onset very accurately, with narrow
confidence intervals, we still cannot necessarily predict the future with a high degree of
accuracy for all repeat lengths. Furthermore, even a perfect predictive model does not
provide any certainty és to whether a patient will expérience onset before the timb of
prediction®®. For example the model may estimate that there is a 60% likelihood of

onset by age 50, but this includes a chance that onset will occur as early as 20.

The parsimonious model | have developed does give the most accurate predictions of
onset of HD currently available. While predictive uncertainty in late onset diseases such

as HD will probably always be a reality, physicians can with some confidence use
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predictions based on our model to provide counseling for individuals and families who

are at-risk for HD and desire age of onset information.

11.1.2 Clinical trials

Statistical techniques alone cannot replace a thoughtful approach to the design of any
clinical trial. However, hastening assessment of a potential therapeutic option as quickly
as practical is an ethical imperative, so that successful treatments can be made
available to all persons at risk for HD. The predictive model should be of assistance in
future clinical trial designs involving presymptomatic individuals by aiding investigators
in designing a clinical trial for HD that has a higher chance of detecting a delay of onset
of symptoms, using fewer individuals. It represents an excellent practical example of
how pharmacogenetics can immediately improve trial design and reduce costs for drug

development.

11.1.3 Penetrance

My results should give new hope to those individuals who have a CAG less than 41 and
provides the first numeric estimate of penetrance of HD by age and CAG. | have shown
for the first time that penetrance for HD can be accurately estimated, and is in fact quite

low for individuals with lower (i.e. less than 41) repeats.

11.1.4 CAG-specific influence of factors modifying age of onset

The significant association between the variance of tvhe probability of onset and CAG
indicates that the contribution of modifiers (both genetic and environmental) is less
obvious in individuals with higher repeats sizes (e.g. greater than 44) which | assume is

due to the overwhelming effect of polyglutamine length. Similarly, the larger variance in
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the probability of onset for lower repeats could be indicative of modifiers playing a
greater role when the CAG size is less (Figure 15). Differences in the CAG distribution
of the cohorts used to investigate the influence of modifiers such as apolipoprotein on
age of onset of HD could be responsible for differing findings of significance of the effect
of different alleles on age of onset'’%'73, In the future, it might be helpful to compare the
effects of potential modifiers on individuals with lower (e.g. greater than 35 but less than

42) versus higher repeat size.
11.2 Future Investigations

11.2.1 ldentification of individuals with extreme phenotypes using the

parsimonious model

The parsimonious model can be used to assign a likelihood of observing an individual
with a very early or a late onset, including identifying those individuals who lived disease
free longer than would have been expected. Individuals who had onset in the lower or
upper fifth percentile, or who are still disease free at the 95" percentile have extreme
phenotypes, given their genotype. Families whose members clustér at extremes of their
CAG-specific survival curves, or alternatively, at opposite ends of the spectrum would
be very interesting for further in-depth research. The identification of these individuals
through the application of the parsimonious model would provide a valuable resource
for use in genotyping, or other studies investigating factors that modify bnset, and could
provide a lead to targets that may prove effective in délaying onset. For example,
individuals in a family with early onset for their repeat size may have shared genetic
factors that contribute to this extreme phenotype. Pharmaceuticals to block a gene

effect are easier to design, so this family would be of particular interest if it were large
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enough, or if enough other families with the same sub-phenotype could be collected. By
blocking the effect of a modifying gene that causes earlier age of onset, onset may be

delayed for other HD patients.

11.2.2 Models for other triplet diseases

The relationship between repeat size and age of onset is well documented for many of
the CAG repeat disorders'”. Itis poésible that the methods | used for the development
of the mathematical model of onset can be applied to these disorders with equal

success, providing more accurate prediction of onset for these other disorders as well.

11.2.3 Stochastic model of disease progression

The prognostic model | have developed could be extended into a stochastic process
model to describe the progression of an individual with HD through different disease
states. There are several recognized stages of HD'"*. It is unclear if time between these
stages is dependent on repeat size. The answer to this question would help in the
design of clinical trials, and in the treatmelnt of individuals. The_ parsimonious model
along with the logistic model for age of death could be used as the foundation for the

development of a more comprehensive model incorporating multiple endpoints.

11.2.4 Extenéive clinical trial design

A breakthrough in any neurological disorder such as Parkinson’s, Lou Gehrig’s and
Alzheimer’s disease may be used in the development of a treatment for HD as these
diseases have similar neurodegenerative basis (i.e. plague formation could be

analogous to inclusion formation) and may respond to similar compounds.
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Once a compound has been identified that has the potential for delaying onset of HD,
more in-depth designs for clinical trials can be prepared including such factors as
recruitment and drop out rates based on information about side effects and frequency of

treatment.

11.2.5 Conclusion

Genetic tests are rightly celebrated as the first clinical fruits of the revolution in
molecular biology. | have used a large sample and specialized statistical methods to
accurately predict clinical outcome based on a familiar genetic test. My results are
important today because they allow the clinician to confidently inform patients about
what their positive test result actually means. My results will likely be more important
tomorrow, since they also provide a basis for targeting medical interventions and

designing clinical trials.
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Figure 63 Cumulative probability of onset predicted by a parametric model developed
with 80% of the data, compared to the observed onset for the hold-out sample for 43-44
CAG repeats. Staircase line represents the nonparametric (Kaplan-Meier) analysis.
Smooth curve with solid line represents a parametric model based on 80% of the data.
Short dashed line represents the Brier Scores of the nonparametric prediction, based on
the holdout sample, and the long dashed line represents the Brier Scores of the
parametric model predictions, based on the modeling sample.
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Figure 64 Cumulative probability of onset predicted by a parametric model developed
with 80% of the data, compared to the observed onset for the hold-out sample for 45-47
CAG repeats. Staircase line represents the nonparametric (Kaplan-Meier) analysis.
Smooth curve with solid line represents a parametric model based on 80% of the data.
Short dashed line represents the Brier Scores of the nonparametric prediction, based on
the holdout sample, and the long dashed line represents the Brier Scores of the
parametric model predictions, based on the modeling sample.
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Figure 65 Cumulative probability of onset predicted by a parametric model developed
with 80% of the data, compared to the observed onset for the hold-out sample for 48-56
CAG repeats. Staircase line represents the nonparametric (Kaplan-Meier) analysis.
Smooth curve with solid line represents a parametric model based on 80% of the data.
Short dashed line represents the Brier Scores of the nhonparametric prediction, based on
the holdout sample, and the long dashed line represents the Brier Scores of the
parametric model predictions, based on the modeling sample.
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PROGRAMS FOR DETERMINING THE BRIER SCORE
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12.1 Program to calculate Brier Score based on predictive model

The following program is written in Perl and calculates Brier Scores and
weights for a test dataset, based on predictions generated by a model.
Prediction§ are to be provided in a text file (predict.txt). Pfedict.txt
should have the format of a column of numbers with 2 fields: (1) Age of
prediction and (2) Prediction {(Sprdctage and $prdct respectively). Censoring
distributions are to be provided in a file called “censor.txt”. The format of
censor.txt is currently setup to accept censor distribtion information as
provided by SPLUS-2000. The second field in SPLUS output is the age ($age)
and the fifth field is the probability of a patient being censored (0
individual has onset and 1 individual is censored). Note that in order to
calculate the censoring distribution censoring codes must be reversed from
their usual meaning (0 and 1 codes must be reversed before censoring
distribution is calculated) Data to be tested is to be provided in a file
called data.txt having 3 fields: (1) Patient Identifier, (2) Patient Risk
Status (0 for censored, 1 for onset) and (3) Age ($id, $risk, Sage
respectively) separated by whitespace. Gtot should add up to the number of
individual in the test sample, give or take a decimal place or two due to

rounding.
#!/usr/bin/perl

open (PREDICT, "predict.txt") |} die "Can't open predict: $!\n";

#predict.txt has first column INTEGER age field and second column decimal
prediction of onset decreasing 1 to 0

while (<PREDICT>) {
chomp;
($prdctage, $prdct) =split (/\s+/,$ ) ;
#print "Sprdctage Sprdct\n";
Sguess=$prdct;
$predict{$prdctage}=3Sguess;
#print ("Adding at >$prdctage< >$predict{$prdctage}<>Sguess<\n");
}
for ($i=0;%$i<90;%i++){
if (spredict{si} > 0) {

}
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open (CENSOR, "censor.txt") || die "Can't open censor: $!\n";

while (<CENSOR>) {
(sfieldl, sage, $field2, $field3, Sprob)=split /\s+/;
$censor{$age}=Sprob;
}

SGhat=1.00;
for ($glookup = 0;$glockup <= 120;$gloockup++) {

if ($censor{$glookup}>0){
$Ghat=$censor{$gloockup};

$G{$gloockup}=%$Chat;

#foreach $key (keys (3G)) {
# print ("at $key Ghat >$G{$key}<\n");
#)

open (DATA,"data.txt") || die "Can't open data: $!\n";
while (<DATA>){
($id, $risk, Sage) =split /\s+/;

$idrisk{$id}=$risk;
$idage{$id}=%age;
$npatients=3%npatients+l;

}

for ($i=0;%$i<100;%i++){
if ($predict{si} > 0) {
$prognosisforage=3predict{$i};
$pihatt=$prognosisforage;
$progage=3i;

#print ("\n\n\n making prognosis for age $progage guessed
>$prognosisforage< \n\n\n");

foreach $key (keys(%idrisk)){
$patrisk= $idrisk{skey};
$patage= $idage{$key};
$GhatT=$G{$patage};
$Ghatt=$G{$progage};
if (Spatage <= Sprogage && S$patrisk == 1)({
Scategory=1;

if ($patage > $progage)

Scategory=2;
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file:///n/n/n"),-

if ($patage <= $progage && $patrisk == 0){

Scategory=3;
if ($category ==1)

Sweight=1/$GhatT;
Sterm=0-$pihatt;
Stermsquared=Sterm*$term;
Scontrib=Stermsquared*S$weight;

#print ("weight is >$weight< term >S$Sterm< termsquared
>$termsqguared< contribs>$contrib<\n") ;

}
if ($category ==2){
Sweight=1/3$Ghatt;
Sterm=1-$pihatt;
Stermsquared=Sterm*S$term;
$contrib=$Stermsquared*S$weight;

#print ("weight is >Sweight< term >$term< termsquared
>$termsquared< contribs>$Scontrib< xx\n");

}
if ($category ==3){
Scontrib=0;
Sweight=0;
. #iprint ("weight is >$weight< term >Sterm< termsquared
>$termsquared< contribs>$contrib<\n");

}

$Gtot=3$Gtot+Sweight;

#print ("$progage $key S$Spatrisk Spatage $Scategory GhatT >$GhatT<
pihat >$pihatt< Ghatt >$Ghatt< S$term S$termsquared contrib >Scontrib< weight
>$weight<\n") ;

$BS=$BS+S$contrib;

#print ("Gtot >S$Gtot<\n");

}
$BS=$BS/S$npatients;
print "S$progage $BS $Gtot\n";
$progage=Sprogage+l;
$Gtot=0;
}
}
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12.2 Program to calculate best possible Brier Score based on perfect

model and dataset

The following program is written in Perl and calculates Brier Scores and
weights for a test dataset, based on predictions generated by a model.
Predictions are to be provided in a text file (predict.txt). Predict.txt
should have the fo?mat of a column of numbers with 2 fields: (1) Age of
prediction and (2) Prediction ($prdctage and $prdct respectively). Censoring
distributions are to be provided in a file called “censor.txt”. The format of
censor.txt 1is curfently setup to accept censor distribtion information as
provided by SPLUS-2000. The second field in SPLUS ouﬁput is the age ($Sage)
and the fifth field is the probability of a patient being censored (0
individual has onset and 1 individual is censored). Note tﬂat in order to
calculate the censoring distribution censoring codes must be reversed from
their usual meaning (0 and 1 codes must be reversed before censoring
distribution is calculated) Data to be tested is to be provided in a file
called data.txt having 3 fields: (1) Patient Identifier, (2) Patient Risk
Status (0 for censored, 1 for onset) and (3) Age ($id, Srisk, Sage
respectively) separated by whitespace. Unlike The program calculates Brier
Scores for a range of ages from 0 to 90. Gtot should add up to the number of
individual in the test sample, give or take a decimal place or two due to

rounding.

#!/usr/bin/perl
$progage=0;

open (PREDICT, "predict.txt") || die "Can't open predict: $!\n";

while (<PREDICT>) {
chomp;
($goop0, $prdct) =split (/\s+/,$_);
#print "prdct S$prdct\n";
Sguess=$prdct;
push(epredict, Sguess) ;
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#print (">@predict<\n");

open (CENSOR, "censor.txt") || die "Can't open censor: $!\n";

while (<CENSOR>) {
($fieldl, Sage, $field2,$field3, Sprob)=split /\s+/;
$censor{$age}=$prob;

$Ghat=1.00;
for ($glookup = 0;$glookup <= 120;$glookup++) {

if ($censor{sglookup}>0) {
$Ghat=$censor{$glookup};

$G{$glookup}=$Ghat ;

#foreach $key (keys(%G))
# print ("at $key Ghat >$G{$key}<\n");
#}

open (DATA,"data.txt") || die "Can't open data: S$!\n";
while (<DATA>){
(sid, Srisk, Sage)=split /\s+/;
#print ("id >$id< risk >S$Srisk< age >$age<\n");
$idrisk{$id}=3risk;
$idage{$id}=%age;
$npatients=$npatients+l;

}

#print ("npatients >Snpatients<\n");
foreach $prognosisforage (@predict)

$pihatt=$prognosisforage;

#Spihatt=1;
#print "\n\n";
#print ("\n\n\n making prognosis for age S$progage guessed

>$prognosisforage< \n\n\n");
foreach $key (keys(%idrisk)) {

$patrisk= $idrisk{$key};
$patage= $idage{$key};
$GhatT=%G{$patage};
$Ghatt=4$G{$progage};
#print ("patage >S$patage< progage >$progage<\n");

#print ("1 at Skey we have risk >$patrisk< and age >$patage<
and patient is in category >S$category< GhatT >$GhatT< pihat >$pihatt< Ghatt
>8Ghatt< contribs>$contrib< \n");

if (Spatage <= $progage && $patrisk == 1){
Scategory=1;
}

if ($patage > $progage) {
$category=2;
}
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if ($patage <= $progage && $patrisk == 0)({
. $category=3;
}

if ($category ==1){

$weight=1/$GhatT;
Sterm=0-S$pihatt;
Stermsquared=Sterm*$term;
Scontrib=Stermsquared*sweight;

#print ("weight is >$weight< term >S$term< termsquared
>$termsquared< contribs>S$contrib< xx\n");

}

if ($category ==2){

$weight=1/$Ghatt;
Sterm=1-$pihatt;
Stermsquared=Sterm*Sterm;
$contrib=Stermsquared*sSweight;

#print ("weight is >$weight< term >S$Sterm< termsquared
>$termsquared< contribs>$contrib< xx\n") ;

}

if ($category ==3){

Scontrib=0;

Sweight=0;

#print ("weight is >$weight< term >$term< termsquared
>$Stermsquared< contribs>Scontrib< xx\n");

}

SGtot=3SGtot+Sweight;

#print ("progage >$progage< Kkey>Skey< risk>Spatrisk<
age>$patage< cag>$category< GhatT >$GhatT< pihat >$pihatt< Ghatt >$Ghatt<
Sterm Stermsquared contrib >$contrib< weight >$weight<\n");

$BS=$BS+$contrib;

- #print ("Gtot >$Gtot<\n");

$BS=$BS/$npatients;

print "Sprogage $BS $Gtot\n";
Sprogage=Sprogage+l;

SGtot=0;

}
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APPENDIX III

CONDITIONAL PROBABILITY TABLES
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APPENDIX 1V

CONTRIBUTING CENTERS (WORLDWIDE COHORT)
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Participating Centers and Number of Patients (number of presymptomatic at-risk,

number of affected patients tested)
Austria

Aschauer Harald, Department of General Psychiatry, University Hospital for Psychiatry,

Vienna (1,8)
Belgium
Eric Legius, Center for Human Genetics, Leuven (2,81)

Verellen Lannoy, Centre de Genetique Humaine et Unite de Genetique Medicale,

Bruxelles (24,80)
Canada
Tillie Chiu, Children’s Hospital of Eastern Ontario, Ottawa (14,7)
Cathy Gillies, Janice Schween, Thunder Bay} District Health Unit, Thunder Bay (5,2)

Heather Hogg, Jill Beis, Christie Riddel, Medical Genetics, IWK Grace Health Centre,

Halifax (0,36)

Odell Loubser, Ryan Brinkman, Elisabeth Almqvist, Susan Creighton, Michael Hayden

Department of Medical Genetics, University of British Columbia, Vancouver (294,668)

Wendy Meschino, Department of Genetics, North York General Hospital, North York

(50,31)




David Rosenblatt, Maria Galvez, Division of Medical Genetics, Department of Medicine,

McGill University, Montreal (25,26)
Anaar Sajoo, Sandra Farrell, The Credit Valley Hospital, Mississauga (3,4)

Germany
Elke Holinski-Feder, Martin Daumer, Michael Scholz, Department of Medical Genetics,

University of Munich, Munich (0,52)
italy

Paola Mandich, Emilio Di Maria, Department of Neurological Sciences and Vision,
University of Genova, Genova and Andrea Novelletto, Department of Cell Biology,

University of Calabria, Rende (40,184)
Japan

Ichiro Kanazawa, Jun Goto, Department of Neurology, University of Tokyo Hospital,

Tokyo (35,182)
South Africa

Jacquie Greenberg, Alison September, Department of Human Genetics, University of

Cape Town Medical School, Cape Town (3, 46)

Amanda Krause, Department of Human Genetics, South African Institute for Medical

Research and University of the Witwatersrand, Johannesburg (3,5)
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Sweden
Gabrielle Ahlberg, Center of Molecular Medicine, Karolinska Hospital, Stockholm (7,27)

Ingela Landberg, UIf Kristoffersson, Department of Clinical Genetics University Hospital,

Lund (2,25)
United States of America

Bonnie Baty, Department of Pediatrics, University of Utah Health Sciences Center, Salt

{

Lake City (4,3)

Robin Bennett, Thomas Bird, Department of Medical Genetics, University of

Washington, Seattle (32,143)

Laurie Carr, Susan Perlma, Department of Neurology, University of California, Los

Angeles (0,42)
Kimberly Quaid, Indiana University/Purdue University, Indianapolis (22,8)
Kathleen Delp, Spectrum Health Genetics, Grand Rapids (4,3)

Mahala Earnhart, Brad Hiner, Movement Disorder Center, Marshfield Clinic, Marshfield

(4,7)

Carolyn Gray, Richard M. Dubinsky, Department of Neurology, University of Kansas

Medical Center, Kansas City (6,9)

Madaline Harrison, Department of Neurology, University of Virginia Health System,

Charlottesville (7,39)
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Don Higgins, Departments of Neurology and Neuroscience, Ohio State University,

Columbus (13,49)
Danna Jennings, Yale, New Haven (18,14)

John Johnson, Linda Beischel, Shodair Hospital, Helena (10,15)

‘Karen Kovak, Oregon Health Sciences University, Portland (0,2)

Katie Léonard, Baylor College of Medicine, Houston (17,4)

Richard H. Myers, Nat Couropmitree, Beth Knowlton, Boston University School of

Medicine, Boston (32,226)
Martha Nance, Park Nicollet Clinic, St. Louis Park (12,198)

Mark E. Nunes, United States Air Force Medical Genetics Center, Keesler Air Force

Base, Mississippi (6,8)

Jane Paulsen, Beth Turner, Departments of Psychiatry and Neurology University of

lowa, lowa City (9,2)

Guerry Peavy, Jody Corey-Bloom, Mark Jacobson, University of California, San Diego

(9,54)

Adam Rosenblatt, Christopher Ross, Johns Hopkins University School of Medicine,

Baltimore (2,158)

Kathleen Shannon, Rush Presb/St. Lukes Medical Center, Chicago (9,29)
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Elaine Spector, University of Colorado Health Sciences Center DNA Diagnostic
Laboratory, Maureen Leehey, University of Colorado School of Medicine, Lauren

Seeberger, Colorado Neurologic Institute, Denver, (14,23)

" Carrie Stoltzfus, David R. Witt, Elaine Louie, Genetics Department, Kaiser Permanente,

Northern California, San Jose (29,38)

Andrea Zanko, Division of Medical Genetics, University of California, San Francisco

(51,96)
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