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A b s t r a c t 

M o d e l - b a s e d l i n k a g e m e t h o d s h a v e h a d l i m i t e d success i n l o c a t i n g q u a n t i t a t i v e t r a i t l o c i ( Q T L s ) 

i n c o m p l e x t r a i t s s i n c e t h e u n d e r l y i n g g e n e t i c m e c h a n i s m s are n o t w e l l k n o w n . A s a r e s u l t , r o ­

b u s t o r m o d e l - f r e e a p p r o a c h e s for d e t e c t i n g l i n k a g e h a v e g r o w n i n p o p u l a r i t y . W e d i s c u s s a 

m i x e d effects m o d e l , w h i c h i n v o l v e s t h e e s t i m a t i o n o f g e n e t i c a n d n o n - g e n e t i c v a r i a n c e c o m p o ­

n e n t s , as w e l l as r e c o m b i n a t i o n f r a c t i o n s . U s i n g t h e G e n o m e t r i c A n a l y s i s S i m u l a t i o n P r o g r a m 

( G A S P ) , w e f i rs t a t t e m p t t o i n v e s t i g a t e t h e p r o p e r t i e s o f t h i s m e t h o d o n s i m p l e t r a i t s , w h i c h 

di f fer i n t e r m s o f t h e i r v a r i a n c e c o m p o n e n t s . T o f u r t h e r u n d e r s t a n d i t s p e r f o r m a n c e i n a c o m ­

p l e x s e t t i n g , w e a p p l y t h i s m e t h o d t o s i m u l a t e d , f a m i l i a l d a t a for a n o l i g o g e n i c d isease w i t h 

q u a n t i t a t i v e r i s k f a c t o r s f r o m t h e 10th G e n e t i c A n a l y s i s W o r k s h o p (GAW10). W e see t h a t t h e 

a b i l i t y o f t h e v a r i a n c e - c o m p o n e n t s a p p r o a c h t o m a p Q T L s d e p e n d s o n t h e a m o u n t o f v a r i a b i l i t y 

i t c o n t r i b u t e s t o t h e q u a n t i t a t i v e t r a i t . A s w e l l , w e f i n d t h a t t h e p r e s e n c e o f t h e r e c o m b i n a ­

t i o n f r a c t i o n i n t h e m o d e l r e s u l t s i n c o n s i s t e n t e s t i m a t e s o f t h e v a r i a n c e c o m p o n e n t s a c r o s s t h e 

c h r o m o s o m e ; h o w e v e r , i t d o e s n o t s e e m t o i m p r o v e t h e m a p p i n g a b i l i t y o f t h e m o d e l . 
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Chapter 1 

Introduction 

With the growth of technology and wealth of genetic information, the role that statistics plays 

in quantitative genetics has flourished. Quantitative genetics involves studying genetic expres­

sion through continuous phenotypes (physical characteristics), which are known as quantitative 

traits. These traits may be influenced by multiple genes, and even environmental effects. In 

contrast to quantitative traits, phenotypes which fall into distinct classes and follow Mendelian 

laws of inheritance are known as Mendelian traits. For example, whether one has the ability 

to curl his or her tongue is a Mendelian trait. In general, Mendel's laws of inheritance describe 

how characteristics are passed down from parent to offspring. While statistical methods have 

helped us to thoroughly understand simple Mendelian traits, the challenge to reveal the genetic 

mechanisms underlying complex traits, especially those exhibited in humans, still remains. A 

complex trait is a "genetic condition whose mode of inheritance does not follow any of the 

known Mendelian laws" (Ott [22]); therefore, existing methods for the analysis of Mendelian 

traits have serious limitations in a more complex setting. As with all quantitative traits, an 

element of difficulty which arises when studying complex traits is that they may be controlled 

by more than one major gene, some polygenes, as well as interactions with the environment, 

just to name a few. Note that polygenes are genes that collectively have an effect on a trait. 

Some examples of complex diseases are schizophrenia, bipolar disease, and diabetes. Although 

we have some understanding of complex diseases, we would like to deepen this understanding 

by learning about the genetic mechanisms, if any, that are involved, or as Ott [22] states, in 

the context of schizophrenia: "the question is whether this diagnosis is genetically relevant or 
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w h e t h e r t h e h y p o t h e s i z e d u n d e r l y i n g genes act o n a w i d e r o r m o r e n a r r o w l y d e f i n e d p h e n o ­

t y p e . " T o a n s w e r t h i s q u e s t i o n , a v a r i e t y o f t e c h n i q u e s h a s b e e n p r o p o s e d a n d s t u d i e d , o n e o f 

w h i c h is A m o s ' [3] r o b u s t v a r i a n c e - c o m p o n e n t s a p p r o a c h t o l i n k a g e a n a l y s i s . 

V a r i a n c e - c o m p o n e n t s m e t h o d s a t t e m p t t o p a r t i t i o n t h e t o t a l v a r i a t i o n o f a q u a n t i t a t i v e 

t r a i t i n t o i t s g e n e t i c a n d n o n - g e n e t i c c o m p o n e n t s . T h e o r i g i n o f v a r i a n c e - c o m p o n e n t s m e t h o d s 

c o m e s f r o m t h e w o r k o f R. A . F i s h e r . I n o n e o f h i s c l a s s i c p a p e r s , F i s h e r [10] p r o p o s e d d e c o m ­

p o s i n g g e n o t y p i c v a l u e s i n t o i t s c o m p o n e n t s . F i s h e r [10] a l so r e a l i z e d t h a t u n d e r t h e a s s u m p t i o n 

t h a t g e n e t i c a n d n o n - g e n e t i c f a c t o r s are u n c o r r e l a t e d w i t h e a c h o t h e r , t h e a n a l y s i s o f v a r i a n c e , 

A N O V A , p a r t i t i o n s t h e t o t a l p h e n o t y p i c v a r i a n c e i n t o t h e s u m o f i t s c o m p o n e n t s . A m a j o r 

a d v a n t a g e o f A N O V A is t h a t i t does n o t r e l y o n t h e a s s u m p t i o n o f n o r m a l i t y for e s t i m a t i o n 

p u r p o s e s . H o w e v e r , i n t h e A N O V A s e t t i n g b a l a n c e d d a t a are p r e f e r r e d , so i t is d i f f i c u l t t o 

j o i n t l y a n a l y z e f a m i l i e s w i t h d i f ferent t y p e s o f r e l a t i o n s h i p s , s u c h as s i b l i n g s a n d c o u s i n s . A s 

v a r i a n c e - c o m p o n e n t s a p p r o a c h e s e v o l v e d , l i k e l i h o o d - b a s e d m e t h o d s c a m e t o b e f a v o u r e d s i n c e 

t h e y d o n o t r e q u i r e b a l a n c e a n d are a b l e t o h a n d l e a r b i t r a r y p e d i g r e e s ; h o w e v e r , these m e t h o d s 

u s u a l l y a s s u m e t h a t a f a m i l y ' s t r a i t s f o l l o w a m u l t i v a r i a t e n o r m a l d i s t r i b u t i o n , w h i c h m a y b e a 

s t r o n g a s s u m p t i o n . B y m o d e l l i n g t h e f a m i l i a l c o r r e l a t i o n i n d u c e d b y a n y m a j o r genes u n d e r l y ­

i n g t h e p h e n o t y p e o f i n t e r e s t , m o d e r n v a r i a n c e - c o m p o n e n t s m e t h o d s h a v e t h e a d v a n t a g e o f n o t 

r e q u i r i n g t h e s p e c i f i c a t i o n o f a d e t a i l e d g e n e t i c m o d e l i n v o l v i n g a l l e l e f r e q u e n c i e s o r p e n e t r a n c e s . 

N o t e t h a t a l le les are t h e v a r i o u s f o r m s o f a gene w h i c h m a y a r i s e , a n d p e n e t r a n c e spec i f ies t h e 

p r o p o r t i o n o f i n d i v i d u a l s w i t h a c e r t a i n g e n o t y p e ( g e n e t i c c h a r a c t e r i s t i c ) w h o a c t u a l l y e x h i b i t 

t h e c h a r a c t e r i s t i c s o f t h a t g e n o t y p e . 

V a r i a n c e - c o m p o n e n t s t e c h n i q u e s are c u r r e n t l y u s e d i n t h e l i n k a g e a n a l y s i s o f q u a n t i t a t i v e 

t r a i t s . L i n k a g e a n a l y s i s is u s e d t o i n f e r l o c a t i o n s o n c h r o m o s o m e s w h e r e m a j o r genes, w h i c h 

c o n t r o l a t r a i t , r e s i d e r e l a t i v e t o g e n e t i c m a r k e r s . G e n e t i c m a r k e r s are genes w i t h a k n o w n 

l o c a t i o n a l o n g t h e c h r o m o s o m e so t h a t we c a n o b s e r v e t h e t y p e s o f a l le les t h a t a r e p r e s e n t . N o t e 

t h a t w e d o n o t k n o w w h e r e m a j o r genes t h a t c o n t r o l a q u a n t i t a t i v e t r a i t r e s i d e , so we d o n o t 

d i r e c t l y o b s e r v e t h e t y p e s o f a l le les p r e s e n t at t h i s l o c a t i o n . T h e m a i n i d e a u n d e r l y i n g l i n k a g e 

a n a l y s i s i s t h a t r e l a t i v e s , w h o h a v e s i m i l a r p h e n o t y p e s , w i l l h a v e i d e n t i c a l genes at t h e g e n e t i c 

m a r k e r o n l y i f t h e m a j o r gene c o n t r o l l i n g t h a t p h e n o t y p e is l i n k e d t o t h e m a r k e r . T h e r e f o r e , w e 

are i n t e r e s t e d i n m a r k e r s w h i c h are t i g h t l y l i n k e d t o a m a j o r gene. H o w t i g h t l y l i n k e d a m a r k e r 
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is to a major gene underlying the trait of interest is determined by the recombination fraction. 

Recombination is a phenomenon where genetic material is rearranged so that the materials 

inherited from parent to offspring at locations on a chromosome are not exactly identical. One 

of the earliest forms of linkage analysis involves simply counting the number of recombinants 

and non-recombinants. When there is no linkage recombination occurs about half of the time. 

Testing whether the estimated recombination fraction is less than 1/2 gives an indication of 

linkage, since a recombination fraction close to 0 implies tight linkage. However, this primitive 

approach does not always suffice because of counting problems due to complications. For 

example, sometimes we do not know if a recombination occurred because the recombinant 

and non-recombinant genetic material looks the same. Current linkage analysis techniques 

involve maximum likelihood estimation and likelihood ratios. Likelihood techniques do not 

break down in the presence of incomplete information, so exact counts of recombinants and 

non-recombinants are not required. 

Segregation analysis is performed before linkage analysis when using linkage methods 

that require one to specify a model for the genetic mechanism underlying the trait of interest. 

Segregation describes the separation and inheritance of alleles during reproduction. In partic­

ular, segregation analysis is used to determine the mode of inheritance and allele frequencies. 

Various methods have been devised to determine whether the mode of inheritance is dominant 

or recessive, for instance. This segregation phenomenon was first discovered by Mendel, the 

father of genetics, who formulated the law of segregation, which states that each of the two 

genes from a parent is equally likely to be passed on to an offspring (see Edl in [7], for example). 

Through his experiments with peas, Mendel observed the proportions of different discrete phe­

notypic characteristics, called segregation ratios, and was able to deduce modes of inheritance 

for simple traits. Segregation analysis is usually performed prior to using linkage methods 

that require the specification of a detailed genetic model; however, variance-components based 

linkage methods have alleviated the need for segregation analysis. 

Association analysis is also jointly used with linkage analysis. Allelic association is the 

"excessive co-occurrence of certain combinations of alleles" which may be due to tight linkage 

(Sham [26]). If there exists tight linkage, then segments of chromosomes may be inherited 

from generation to generation unchanged. By detecting excessively frequent segments of chro-
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mosomes in the population, association analysis also helps to map major genes. Risen and 

Merikangas [24] argue that major genes which do not have a large effect on the trait of interest 

are difficult to detect via linkage analysis, and advocate that association analysis is more pow­

erful for fine mapping loci. While association analysis may be better at detecting major genes 

with small effects, it has the disadvantage of requiring one to identify a candidate gene before 

carrying out the analysis. 

In the case of complex traits, it is nearly impossible to correctly specify the genetic model 

which governs the trait of interest; therefore, linkage methods which are not model dependent 

have grown in popularity. Modern linkage analysis methods alleviate the need for segregation 

analysis, which may prove to be a burden if incorrect genetic models are estimated. A n approach 

to linkage analysis that does not require the specification of a detailed genetic model is said to 

be robust. In his paper, Amos [3] developed a robust variance-components approach to linkage 

analysis. Through his method, he uses a mixed effects model to decompose the total phenotypic 

variance into its genetic and non-genetic components without any major limiting assumptions 

on the underlying genetic mechanism. By modelling the correlation between relatives, Amos' 

approach also has the ability to handle arbitrary pedigrees. 

The objective of this thesis is to investigate the ability of Amos' model to detect major 

genes which control a quantitative trait. We also determine the accuracy of the variance-

components estimates from his model. These properties are compared with those of a sub­

model, the so-called two-point model (Blangero et al. [5]), which puts a constraint on one of 

the parameters, namely the recombination fraction. In Chapter 2, we define some genetic terms 

and illustrate some concepts which are important to linkage analysis. Haseman and Elston [15] 

made a significant contribution to the linkage analysis of quantitative traits, so their method 

is presented in Chapter 3. In Chapter 4, we provide some theoretical details on the variance-

components approach to linkage analysis and introduce Amos' model. Next, we evaluate the 

performance of the variance-components methods through some simulations, which involve a 

quantitative trait with one major gene, in Chapter 5. In Chapter 6, we use Amos' method 

to assess a simulated oligogenic disease with complex quantitative risk factors from the 10th 

Genetic Analysis Workshop. We are interested in analyzing this oligogenic disease since the 

quantitative traits which influence this disease are controlled by more than one major gene, as 
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well as interactions between them. Finally, in Chapter 7, we provide a summary and discussion 

of Amos' robust approach to linkage analysis in the context of complex traits. 
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Chapter 2 

G e n e t i c s B a c k g r o u n d 

This chapter is intended to introduce some terminology and concepts which pertain to genetics 

in the linkage analysis setting. We begin by reinforcing some basic genetics terminology, such 

as allele and locus. Next, we introduce some concepts which play key roles in understanding 

linkage analysis. Once the basic idea of linkage analysis is introduced, we elaborate on this topic 

to describe linkage analysis in the context of quantitative traits, as opposed to the well-studied 

Mendelian traits. 

2.1 Terminology 

To be able to understand the reasoning behind linkage analysis, it is important to know certain 

terms and be familiar with some genetic details of inheritance. It is well-known that chro­

mosomes carry genetic information. A chromosome is composed of numerous genes which are 

the basic units of heredity. Humans have 23 pairs of chromosomes, one pair consists of the 

sex chromosomes, and the remaining 22 pairs are called autosomes. During reproduction, one 

chromosome from each pair is inherited from the mother and the other chromosome is inher­

ited from the father. These pairs of chromosomes are called homologous pairs because, with 

the exception of the sex chromosomes, they have the shape shape. Since each cell contains 46 

chromosomes, cell division must occur to ensure that the number of chromosomes from gener­

ation to generation remains constant. Due to a process called meiosis, chromosomes undergo a 

series of stages which result in the production of gametes. Gametes contain one chromosome 
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from each homologous pair. During meiosis, the chromosomes duplicate themselves and remain 

attached at a location called the centromere. Next, the homologous chromosomes pair up and 

may crossover. Division then occurs twice, once to divide the pairs of homologous chromosomes, 

and once to divide the chromosomes at their centromeres. So, meiosis results in four gametes 

with once copy of each chromosome, which may have different combinations of genes from the 

original chromosomes due to crossing-over. Note that an offspring receives one gamete from 

each parent to obtain a full set of chromosomes. We refer to the gamete from the mother and 

the father as a maternal and paternal gamete, respectively. When these two gametes are fused 

together it is referred to as a zygote. 

Linkage analysis revolves around the characteristics of genes on a chromosome, so we 

introduce some related terminology. Firstly, the specific position of a gene along a chromosome 

is called the locus. Note that the locus for a certain gene is the same on two homologous 

chromosomes. Secondly, genes on a chromosome have various forms and these alternative 

forms are called alleles. At a given locus, every person receives one allele from each parent; 

therefore, each locus has two alleles. A genetic characteristic, such as allele type, is referred to 

as a genotype; whereas, a physical characteristic, such as height, is referred to as a phenotype. 

Thirdly, genetic markers are genes along the chromosome where we observe the types of alleles 

that are present. Of particular interest, in the context of quantitative traits, are major genes 

because they govern a portion of the variation in a trait. Markers provide valuable information 

when trying to detect major genes because of linkage of nearby markers to major genes in 

transmission from parent to offspring. Lastly, we will see that linkage analysis relies heavily 

on familial data or pedigrees, so it is necessary to distinguish between types of pedigrees. A 

nuclear pedigree consists of two generations of relatives, namely a father, a mother, and their 

offspring. On the other hand, a pedigree which has two sets of grandparents, one set of parents, 

and their offspring is called a ceph pedigree. Finally, we refer to any pedigree which has a more 

complex family structure than a ceph pedigree as an extended pedigree. 
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2.2 Basics of Linkage Analysis 

Mendel's law of assortment states that the segregation of genes from one trait is independent 

from the segregation of genes from other traits (for example, see Edl in [7]). However, it is now 

known that this law mainly applies to loci on separate chromosomes. For loci on the same 

chromosome, the simultaneous transmission of genes may not be independent, so we say that 

these loci exhibit the phenomenon of linkage. In general, genes on the same chromosome tend 

to be inherited together, and this tendency decreases with the distance between loci. The goal 

of linkage analysis is to "infer relative positions of two or more loci by examining transmission 

from parent to offspring or allele sharing patterns of relatives" (Sham [26]). Linkage analysis 

has been built from essential genetics concepts, such as identical-by-descent and recombination. 

In this section, we will describe some important concepts which recur throughout the remaining 

chapters. 

2.2.1 Identical-by-Descent 

Firstly, two relatives are said to share alleles identical-by-descent (ibd) at a locus if they have 

the same form of the gene and that allele is descended from a common ancestor. Note that 

sharing alleles identical-by-descent differs from sharing alleles identical-by-state, which only 

requires two relatives to share the same form of a gene at a locus. At each locus, relative pairs 

may share 0, 1, or 2 alleles identical-by-descent. For example, consider the pedigree in Figure 

2.1, which shows the genotype for each family member at a locus for a gene with two alleles, 

B and b. The nuclear family consists of a father and mother, who both have genotype Bb, as 

well as three offspring with genotypes BB, Bb, and Bb. Because each offspring inherits one 

gene from each parent, each parent-offspring pair shares exactly one allele ibd. The first and 

second siblings with genotypes J5J5 and Bb share exactly one allele ibd. This is apparent since 

the first sibling inherited the unique B allele from both parents, and the second sibling must 

have inherited her only B allele from either the mother or the father. In the case of the second 

and third siblings, the number of alleles shared ibd is ambiguous. This sib-pair either shares 0 

or 2 alleles ibd. 

As opposed to examining actual counts, it is customary to study the proportion of alleles 
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Figure 2.1: Nuclear Pedigree with Genotypes at a Locus with Two Alleles 

shared ibd between relative pairs. If we have incomplete information, as we do in the case of 

the second and third siblings, then the conditional expectation of sharing 0, 1, or 2 alleles ibd 

between the jth. relative pair given the locus information is denoted by TTJ and may be estimated 

as 7Tj = fi/2 + /2, where fi is the probability that the relative pair shares exactly % allele(s) 

ibd at a locus given the genotypes. In our example, the second and third siblings share 0 of 

their alleles ibd with probability 1/2, or share 2 of their alleles ibd with probability 1/2. So, 

they are estimated to share 1/2 of their alleles ibd. Various algorithms have been developed to 

rapidly compute the proportion of alleles ibd. Haseman and Elston [15] proposed an algorithm 

for computing the proportion of alleles shared ibd if some genotypes are unknown. 

2.2.2 Coefficient of Relationship 

Measures of relation play an important role in linkage analysis. In particular, the coefficient 

oj relationship surfaces in the familial covariance structure. The coefficient of relationship is 

defined to be the expected proportion of genes that two relatives share ibd at a locus. To 

compute the coefficient of relationship, we must first determine the probability mass function 

for the number of genes shared ibd. Under the assumption of no inbreeding, a relative pair 

may share 0, 1, or 2 genes ibd at a locus. Let 5 be a discrete random variable for the number 

of genes shared ibd between two relatives at a locus and let /* be the probability that two 
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relatives share i genes ibd. Then for any relative pair, the probability mass function for the 

number of genes shared ibd is shown in Table 2.1. From Table 2.1, we see that the coefficient 

of relationship, 2<f> is 

E(5) = Ox/ 0 * + l x / * + 2 x / 2 * 

= / ? + 2 / 2 * 

= 2(f) 

For illustrative purposes, we compute the coefficient of relationship for a sib-sib pair. 

Suppose the genotype of the mother and father are M\M2 and F\F2, respectively. Each off­

spring's genotype will consist of one maternal gene and one paternal gene; furthermore, each 

maternal gene is equally likely to be passed to the offspring, and likewise for the paternal genes. 

From these parents, offspring must have one of four possible genotypes: M\F\, M\F2, M2F\, 

M2F2. Therefore, there are 16 possible sib-sib pairs. Through a simple counting process, it can 

be seen that of the 16 possible sib-sib pairs, four pairs have 0 genes ibd, eight pairs have 1 gene 

ibd, and four pairs have 2 genes ibd; hence, /Q = 1/4, /* = 1/2, and ft = 1/4 for sib-sib pairs. 

So, we see that the coefficient of relationship is 1/2. The probabilities of sharing genes ibd at 

a locus and the coefficient of relationship for sib-sib pairs and other relative pairs are given in 

Table 2.2. Note that the coefficient of relationship decreases by a factor of 1/2 as the degree of 

relationship between two family members increases. 

We also mention another measure of relation, which should not be confused with the 

coefficient of relationship, namely the coefficient of kinship. The coefficient of kinship is the 

probability that a randomly selected gene from one individual is ibd to a randomly selected 

gene from another individual. In non-inbred populations, the coefficient of relationship is twice 

the coefficient of kinship. This is the reasoning behind denoting the coefficient of kinship by cfi 

and the coefficient of relationship by 2<j>. 

Table 2.1: Probability Mass Function for Number of Genes Shared Ibd at a Locus 

S = s 0 1 2 
Pr(5 = s) fo ft ft 
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Table 2.2: Probability of Sharing Genes Ibd and Coefficient of Relationships for Different 
Relative Pairs 

Relationship fo fl fl 2(f> 
Sibs 1/4 1/2 1/4 1/2 
Half-Sib 1/2 1/2 0 1/4 
Grandparental 1/2 1/2 0 1/4 
Avuncular 1/2 1/2 0 1/4 
First Cousin 3/4 1/4 0 1/8 

2.2.3 Recombination Fraction 

Another fundamental concept in linkage analysis is recombination, since it is partially responsi­

ble for the genetic variation in phenotypes that we observe between generations. During meiosis, 

chromosomes may exchange genetic information due to physically crossing-over. Therefore, the 

produced gametes may have new gene combinations and are referred to as recombinants. To 

illustrate the phenomenon of recombination, consider the pedigree in Figure 2.2, which shows 

the genotype for each family member at two loci. The first locus has two alleles, B and b, 

and the second locus has two alleles, C and c. From Figure 2.2, we can see that the mother 

has genotype Bb at the first locus, and genotype cC at the second locus. Furthermore, the 

mother's paternal gamete is Be and the maternal gamete is bC. Each offspring receives one 

gamete from each parent. If an offspring receives a Be or bC gamete from the mother, then 

he or she has received a non-recombinant gamete. Alternatively, if an offspring receives a BC 

or be gamete from the mother then he or she has received a recombinant gamete, and the two 

loci are said to have undergone recombination. In Figure 2.2, we see that the first and third 

offspring received non-recombinant gametes from their mother, but the second sibling received 

a recombinant gamete. We also note that we cannot easily determine whether each offspring 

received a non-recombinant or recombinant gamete from their father. 

We quantify the phenomenon of recombination by the recombination fraction. The 

recombination fraction between two loci, 6, is the probability that a gamete is recombinant, 

or equivalently the probability that there are an odd number of crossovers occurring between 

the two loci. If two loci are on different chromosomes then we expect them to segregate 

independently, so the expected recombination fraction is 1/2. In the case where two loci are 

on the same chromosome, the physical distance between them is directly related to the chance 
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Figure 2.2: Nuclear Pedigree with Genotypes at Two Loci with Two Alleles Each 

of recombination. So recombination is less likely to occur if the loci are close together. We 

say that a recombination fraction which is less than 1/2 implies that the two loci are linked. 

Furthermore, the smaller the recombination fraction is between two loci, the more tightly linked 

they are thought to be. Although the recombination fraction provides us with a sense of how 

close two loci reside on a chromosome, this does not directly translate into a measure of distance. 

Recombination fractions cannot be used as a measure of distance since they are not additive. 

Genetic map distance, which is measured in centiMorgans (cM), is defined to be the 

expected number of crossovers occurring between two loci. A variety of mapping functions 

have been proposed to estimate the number of crossovers between two loci given the observed 

recombination fraction. Note that recombination between two loci occurs if there are an odd 

number of crossovers between them. Haldane [13] proposed a mapping function based on the 

Poisson distribution. He assumes that the number of crossovers occurs independently and 

randomly across the entire chromosome. Let VF be a Poisson random variable, with mean A, 

for the number of crossovers between two loci which are A Morgans apart. Then the fraction 
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of recombinant gametes, 9, is estimated to be 

oo 
e = ^ P r ( W = 2w + 1| A) 

w=0 

w=0 K 

\ /e A - e~A\ 
= 6 ( — 2 — ) 

2 

Therefore, the estimated map distance is 

A = 
log(l ~ 26) 

2 (2.1) 

We can see from equation 2.1 that as linkage between two loci becomes tighter (ie. 6 —> 0), 

then the genetic distance between them decreases (ie. A —>• 0). As well, as linkage becomes 

looser (ie. 9 —> then the genetic distance between the loci increases (ie. A —>• oo). Using 

this map function, the genetic map distance may be estimated. We note that this is just one 

of many proposed mapping functions. 

2.2.4 L O D Scores 

For likelihood-based methods, it is customary to use LOD, likelihood of odds, scores as evidence 

for linkage when mapping major genes (see Lynch and Walsh [17], for example). When using 

linkage methods to detect major genes, the usual null hypothesis is that there is no evidence of 

linkage between the marker locus and a major gene (ie. 9 = 1/2), and therefore, the alternative 

hypothesis states that there is evidence of linkage (ie. 9 < 1/2). Let L(6\x) be the likelihood 

function, where 9 is the parameter and x is the sampled data. Then the likelihood ratio statistic, 

A(x), for testing for evidence of linkage is 

A(x) = 
m a x L l f l x 
ee&o •(2.2) 

leeeA 

m a x L(#|x) 
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where 0o and &A represent the parameter space under the null and alternative hypothesis, 

respectively. Note that —2 log A(x) has a x 2 distribution under the null model with the degrees 

of freedom equal to the difference in the number of parameters under the two hypotheses. 

The L O D score is the base 10 logarithm of the likelihood ratio statistic: 

LOD(x) = log 1 0A(x) 

= log 1 0 

max L(#|x) 
max L(#|x) 
6€0A 

Notice that the L O D score is equivalent to scaling —2 log A by a factor of —1/(2 log 10). 

Throughout the remainder of this thesis, we define the L O D score to be the base 10 logarithm 

of the likelihood ratio statistic. 

2.3 Linkage Analysis Summary 

Linkage analysis is motivated by the phenomenon of recombination, since we know that genes 

which are inherited together tend to not undergo recombination. If we were to examine two 

loci which are close together, we would expect the number of recombinations between them 

to be close to 0. On the other hand, if we were to examine two loci which are far apart, on 

a chromosome, then we would expect to observe recombination about half of the time. So, 

in its simplest form, linkage analysis tests for linkage between two loci by determining if the 

estimated recombination fraction differs significantly from 1/2. 

In the context of quantitative traits, linkage analysis involves detecting major genes 

which contribute to the variability of the trait. These major genes are called quantitative 

trait loci (QTLs). When analyzing quantitative traits, we try to map any potential QTLs 

relative to marker loci across the chromosome. Linkage analysis is partly based on examining 

allele sharing patterns between relatives; therefore, the data consists of a sample of families 

or pedigrees. Within each pedigree the relationships between the family members are known. 

When mapping a Q T L on a chromosome, we require data from a series of markers along 

the chromosome. For each family member the pair of alleles present at each marker locus is 

observed. Therefore, the proportion of alleles shared ibd at each marker locus may be computed 

between all relative pairs. Also, when dealing with quantitative traits, the quantitative trait of 
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interest and any covariates are measured for each family member. Intuitively, we would expect 

relatives who share more alleles ibd at the Q T L to have more similar quantitative trait values. 

In practice, we evaluate the evidence of linkage between a potential Q T L and each marker 

separately. Markers which are tightly linked to a Q T L should be able to explain the variability 

in the quantitative trait, whereas markers loosely linked to the Q T L should show no association 

with the trait. Lander and Botstein [16] proposed a technique to summarize the results from 

these separate analyses. They introduced the idea of graphically displaying whether evidence 

for a Q T L exists by plotting L O D scores versus marker position on the chromosome. A peak in 

the L O D scores suggests that a Q T L may exist near the marker locus where the maximum is 

obtained. Furthermore, the L O D score curves visually help to not only detect QTLs , but also 

estimate their position along the chromosome. 

One of the goals of linkage analysis is to map the location of any QTLs relative to the 

markers along a chromosome. A secondary goal of linkage analysis is to estimate the amount 

of variability in the quantitative trait due to genetic and non-genetic factors. Further details 

on linkage analyses involving quantitative traits will be presented in subsequent chapters. 
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Chapter 3 

H a s e m a n - E l s t o n A p p r o a c h t o 
L i n k a g e A n a l y s i s 

In this chapter, we give an overview of Haseman and Elston's classic regression approach to link­

age analysis, whose results also aided in the development of the variance-components approach. 

Through their work, Haseman and Elston [15] created the basic framework for utilizing marker 

information to map QTLs . The basic idea underlying their approach is that sib-pairs with a 

greater number of alleles identical-by-descent at a locus should have more similar quantitative 

trait values. This idea led Haseman and Elston to regress the squared sib-pair differences in the 

phenotype on the proportion of alleles identical-by-descent at a marker. So, a large negative 

slope estimate indicates that the marker is linked to a Q T L . 

We begin this chapter by describing the details of Haseman and Elston's method. In 

particular, we wil l mention results which arise in the variance-components context. Although 

Haseman and Elston conceived this idea in the early 1970's, their method continues to receive 

much attention. Therefore, we provide a summary of some of the modifications and extensions 

that have been made to this method. Finally, we conclude this chapter with a description of 

some of the advantages and disadvantages of the Haseman-Elston approach. 
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3.1 Haseman-Elston Model 

The Haseman-Elston approach is appealing since it involves a simple linear regression model 

which may be easily fit using least squares methods. Before describing the regression model, 

we state the assumptions on the genetic mechanism underlying the quantitative trait. 

Let Y\j and Y2j be the quantitative trait value for the 1st and 2nd sib of the j t h sib 

pair. Then the proposed model for the quantitative trait is as follows: 

Yij = u + 9ij . (3.1) 

where u is the overall mean, gij is the genetic effect, and ê - is the random deviation from 

the mean. We assume that and eij are uncorrelated. In model 3.1, the random deviation 

term has mean 0 and variance cr2. The genetic effect has variance cr2, which may be further 

decomposed into an additive component, u 2 , and a dominant component, cr2,. We assume that 

the dominant component is negligible for simplicity, so a 2 = er2. The genetic effect is assumed 

to be from a single Q T L with two alleles, B and b, having frequencies of p and r. Furthermore, 

the genetic effect may be quantified as follows: 

{ a + d, for genotype BB 

d, for genotype Bb (3.2) 

—a + d, for genotype bb 

Notice that a is one-half of the distance between the two homozygous genotypic means. Wi th 

only an additive genetic component, the genetic effect of the heterozygous genotypic mean is 

halfway between the genetic effect of the two homozygous genotypic means. See Falconer [9] 

for further details on the dominant component. The simple, but elegant idea that Haseman 

and Elston proposed was to regress the squared sib-pair trait differences on the proportion of 

genes shared ibd. The proportion of genes shared ibd at the Q T L would be ideal to regress 

on, however, in reality this information is not available because the locus position is initially 

unknown. Because we do not know the proportion of genes shared ibd between sib-pairs at 

the Q T L , data at different markers are used, including markers that are thought to be near 

the Q T L . Let TTJ be the estimated proportion of genes shared ibd between the j t h sib pair at a 

particular marker locus. A brief discussion on how to estimate the proportion of genes ibd at 
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a marker is given in section 2.2.1 in chapter 2. Then the regression calculation yields: 

(Ylj-Y2j)2 = & + faj, (3.3) 

where a is the intercept and (3 is the regression coefficient. Note that (Yij - Y2j)2 is expected 

to be smaller as the proportion of alleles ibd at a marker, which is tightly linked to a Q T L , 

increases. 

Conditional on the marker data, Haseman and Elston [15] showed that the expectation 

of J3 is -2(1 - 20)2a2; therefore, the regression coefficient depends on the genetic variance 

component and the recombination fraction. Although not of direct importance to the Haseman-

Elston approach, the conditional expectation of a is 2[1 - 2(1 — 6)9]a2 + a2 (Haseman and 

Elston [15]), assuming no dominance. Note that the conditional expectations of the regression 

parameters are derived in the following section. Since 0 < 6 < 1/2 with 0 = 0 implying 

tight linkage, a negative regression coefficient would be a strong indication of the presence of 

a Q T L linked to the marker (ie. the marker is close to the Q T L ) . As well, when 0 = 0, —J3/2 

provides an estimate of the additive genetic component of variance. Estimating the regression 

coefficients from data at a series of markers allows one to detect the presence of a Q T L . The 

conditional expected values for the regression parameters have been computed for other relative 

pairs (Amos and Elston [2]). As we wil l see in Chapter 4, these conditional expectations of the 

regression parameters play a key role in the development of the covariance structure in Amos' 

[3] variance components approach. 

We note that the genetic effect shown in expression 3.2 may be extended to the case of 

a major locus with k alleles. Let a i , . . . , a& be the expected values for the alleles B\,..., Bk, 

respectively. Then under the assumption of no dominance, the expected mean for genotype 

BiBj is ai + aj. Expression 3.2 is a special case where the allelic effect of B and 6 are (a + d)/2 

and (—a + d)/2, respectively. Furthermore, if there is no dominance, then the expected values 

of the regression parameters for a biallelic marker locus are still valid for a multiallele marker 

locus (Haseman [14]). 
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3.2 Expected Values of the Regression Parameters 

The expected values of the regression coefficients in Haseman and Elston's [15] least squares 

approach to linkage analysis play an important role in the development of the covariance struc­

ture of Amos' [3] variance-components approach. In this section, we present some of the details 

for the derivation of the expected values of the regression coefficients. 

Firstly, we introduce some additional notation. Let irqj and irmj be the proportion of 

alleles shared ibd between the j t h sib-pair at the Q T L and marker, respectively. Recall that 

we define TTJ to be the estimated proportion of alleles shared ibd at the marker between the j t h 

sib-pair. Also let the squared sib-pair difference for the j t h pair be Dj, so Dj = (Y\j — Y2j)2 • 

Secondly, we express the conditional expectation of the squared sib-pair differences on the 

estimated proportion of alleles shared ibd at the marker in terms of the true proportion of 

alleles shared ibd at the marker locus and Q T L : 

2 
E(^-kj) = £ E ( 0 > M - = i )P r (7r w - = i | 7 T ^ 

2 2 

= E ( j D j l 7 r 9 i = i ) P r K i = ll^mj = | ) P r ( 7 r m j = f 1^). 
i=0 fc=0 

Thirdly, conditional on the proportion of alleles shared ibd at the Q T L and assuming no dom­

inance, the expectations of Dj are as follows: 

E(Dj\irq:j = 0) = o2 + 2o2

q, (3.4) 

E{Dj\-Kqj = \) = a2

e+a2

q, (3.5) 

E(Dj\irqj = l)=a2. (3.6) 

In the presence of dominance, the expressions for the conditional expectations may be found in 

Haseman and Elston's paper [15]. 

To compute the conditional expectation of the squared sib-pair differences, we need the 

joint distribution of nmj and nqj, as well as the joint distribution of TTJ and irmj. These joint 

distributions from Haseman and Elston [15] are reproduced in Tables 3.1 and 3.2. Further 

details are given in the Appendix. We let * = 62 + (1 - 6»)2. 

Using equations 3.4, 3.5, 3.6, and Tables 3.1 and 3.2, we can compute the conditional 

expectation of the squared sib-pair differences given the estimated proportion of alleles shared 
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Table 3.1: Joint Distribution of irmj and irqj 

^13 0 i 1 Total 
0 
1 
2 
1 

tf2/4 * ( l - * ) / 2 ( l - * ) a / 4 
tf(l-tf)/2 ( l - 2 t f + 2tf 2)/2 tf(l-tf)/2 
( l - * ) 2 / 4 * ( l - * ) / 2 tf2/4 

l 
4 
1 
2 
1 
4 

Total i i l 
4 2 4 

1 

Table 3.2: Joint Distribution of 7r m j and TTJ 

0 i 1 Total 
0 
1 

I 
4 
1 

±p 2r 2 0 0 
p3r + pr3 p3r + pr3 0 

i(p4 + 4p2r2 + r4) ±(p4 + 6 p V + r4) ± (p4 + 4p2r2 + r4) 
0 p3r + pr3 p3r + pr3 

0 0 i p V 

1 2 2 

p r r z 

2(p3r + pr3) 
(p4 + 5 p V + r4) 

2(p3r + pr3) 
1 2 2 

^p zr z Total i l l 
4 2 4 

1 

ibd at the marker locus. For example, if the estimated proportion of alleles ibd at the marker 

locus is 0, then 

E(Dj\iTj = 0) = K 2 + 2a g

2][* 2(l) + * ( l - $ ) ( 0 ) + ( l - * 2 ) ( 0 ) ] 

+ + ^ 2][2*(1 - *)(1) + (1 - 2 * + 2tf2)(0) + 2*(1 - )(0)] 

+ a 2 [ ( l - t f ) 2 ( l ) + tf(l-tf)(0) + tf2(0)] 

= <7£

2 + 2*ffJ. 

Similarly, it can be shown that 

E(Dj\„j = I) 

^ + + 
2 i 2 

= a e

2 + ( | - * ) a 2 

E(Dj-|7rj = 1) = CT2 + 2(1 - tf)a 
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Therefore, 

E(Dj\lTj) = Cr 2 + 2*CT 2 + 2(1 - 2 * ) c r 2 7 T i 

= a2

e + 2[02 + (1 - 9)2}a2 + 2[1 - 2(0 2 + (1 - 6)2)]afa 

= a2

e + 2(1 -26 + 282)a2 - 2(4#2 - 40 + l)a2

qTTj 

= CT2 + 2(1 - 29 + 282)a2 - 2(1 - 29)2TTJ 

= a 2 + 2[1 - 2(1 - 8)0]a2 - 2(1 - 2 0 ) V 2 7 r i . 

Finally, we can see that conditional on the marker data, the expected values of the regression 

parameters in Haseman and Elston's approach are 

3.3 Extensions of the Haseman-Els ton A p p r o a c h 

The Haseman-Elston approach is the foundation of linkage analysis for quantitative traits. This 

approach has been improved and enhanced over the years, and therefore is still an extremely 

popular tool for detecting QTLs. The power of this approach has been increased through 

insightful modifications to the dependent variable in the regression procedure. As well, attempts 

to incorporate relative pairs, in addition to sib-pairs, have been proposed. 

In the late 1990s, questions regarding the use of the squared sib-pair differences as the 

dependent variable in the regression procedure arose. Wright [29] argued that only looking 

at squared sib-pair differences discards linkage information. He used a likelihood argument to 

allude to the consequences of only using sib-pair differences to test for linkage, and proposed also 

using the sib-pair sums. Noting that the sib-pair differences and sib-pair sums are independent, 

he argued that not all of the information from the sib-pair data is being used to its full potential. 

Drigalenko [6] expanded upon Wright's argument and proposed an extension of the Haseman-

Elston approach which incorporated the sib-pair sum into the regression procedure. Using 

both the sib-pair differences and sib-pair sums in the regression procedure, Drigalenko showed 

that the variance for the estimated regression coefficient is smaller than when using only sib-

pair differences or sib-pair sums. Furthermore, he showed that under certain assumptions, the 

EOSITT,-) = -2(1 - 29fa\ 

E(a |7T j ) = al + 2[1 - 2(1 - 6)9\a\. 

(3.7) 

(3.8) 
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use of both sib-pair differences and sib-pair sums is equivalent to using the sib-pair products. 

Because the covariance gives the same information as the sib-pair differences and sums, he 

concluded that the success of the variance-components method must be due to the incorporation 

of the covariance structure. Finally, Elston et al [8] showed that the power to detect linkage 

will increase even further by regressing the mean-corrected product of the trait values on the 

proportion of alleles shared ibd at a marker locus. 

The power of the Haseman-Elston approach has been improved by incorporating all 

relative pairs, in addition to sib-pairs, into a single regression model. Amos and Elston [2] 

developed an algorithm to compute the proportion of genes shared ibd between any relative 

pair. They also found the expectations of the regression parameters for relative pairs other than 

sibs. Olson and Wijsman [21] extended the Haseman-Elston approach by combining information 

from all types of relative pairs. 

3.4 Haseman-Elston Discussion 

In the literature, there are numerous discussions which compare and contrast Haseman-Elston's 

approach to the variance-components approach to linkage analysis. While both methods have 

their advantages and disadvantages, in this section we focus on some of the notable aspects of 

the Haseman-Elston approach. 

One of the most appealing aspects of Haseman and Elston's approach is that it only 

involves least squares estimation for the regression parameters, which results in rapid compu­

tations. Therefore, if we have a vast amount of marker information to process and our main 

concern is to detect QTLs, this method is a prime candidate for an initial analysis. Another 

benefit of the Haseman-Elston approach is that it is robust from both a genetics viewpoint 

and a statistics viewpoint. In a genetics setting, this model is robust because we do not have 

to know genetic details such as the mode of inheritance or the frequency of the alleles at the 

QTL. In a statistics setting, this model is robust because the test statistic, for determining 

whether the regression coefficient is significantly less than zero, is not sensitive to departures 

from normality in the distribution of the quantitative trait. 

Although the Haseman-Elston approach is useful for initially detecting QTLs, we can-
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not obtain estimates of the genetic variance since it is confounded with the recombination 

fraction. If estimating the genetic variance in a quantitative trait is of primary interest, then 

this method may not be ideal. It is also not an easy task to apply this approach to extended 

pedigrees. Because extended pedigrees are known to provide more linkage information than 

nuclear pedigrees, Haseman-Elston's approach may not be efficient to use on some familial 

datasets. These concerns motivate the need for other approaches to linkage analysis, such as 

the variance-components method. 
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Chapter 4 

V a r i a n c e - C o m p o n e n t s A p p r o a c h t o 
L i n k a g e A n a l y s i s 

Variance-components based methods have flourished in the area of linkage analysis by giving 

rise to more robust techniques and alleviating the need for segregation analysis. In the linkage 

analysis context, we say that a method is "robust" if it does not require one to determine the 

mode of inheritance or how the alleles at the Q T L segregate. Moreover, variance-components 

approaches require the estimation of fewer parameters than a penetrance-based approach. A 

variance-components approach attempts to decompose the variability of the phenotype into the 

variability due to the Q T L , polygenes, and environment. In this chapter, we describe a series 

of models in increasing complexity and build up to the mixed effects models currently being 

exploited for linkage analysis. 

4.1 Sporadic Model 

Firstly, we describe the sporadic model (Blangero et al. [5]). The sporadic model attempts to 

explain the variation in the quantitative trait via only covariates, such as age. At this stage, 

the quantitative trait is not thought to be influenced by genetic factors. One of the goals at 

this step of the modelling procedure is to determine any covariates which may have an effect 

on the quantitative trait. Once any significant covariates have been found, the fitted sporadic 

model wil l serve as a basis of comparison for the detection of any genetic factors which may 
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further explain any remaining trends in the data. 

Let Yi be the quantitative trait value of the ith relative and Xik be the value of the A;th 

covariate for the i th relative. Then, the sporadic model is 

K 

Yi = u + ^BkXik + ei, (4.1) 

fc=i 

where \x is the overall mean, Bk is the effect of the /cth covariate, and ei is the random deviation 

from the mean. We assume that ej ~ N(0,a2). It is obvious that this model assumes that the 

total phenotypic variation, o\, is due to only a random deviation component, cr 2. 

For comparison with the subsequent models in this chapter, it is helpful to look more 

closely at the covariance structure stipulated by each model. The covariance structure of the 

sporadic model is 

{ cr2 if i = j 
(4.2) 

0, if i + j . 

We note that the sporadic model does not account for any familial correlation. In fact, the 

sporadic model is a simple linear regression model. 

4.2 P o l y g e n i c M o d e l 

To expand upon the sporadic model, the next step is to account for information on familial 

relationships, which results in the so-called polygenic model (Blangero et al. [5]). Because we 

are dealing with familial data, the quantitative trait values are correlated. Unlike the sporadic 

model, the polygenic model does not ignore the covariance structure within families. While 

for instance an exchangeable covariance structure could be used, the covariance structure is 

actually based on the type of relationship between any two individuals, and so is more complex. 

Furthermore, the covariance structure in the polygenic model accounts for the fact that siblings' 

trait values are likely to be more correlated than trait values between cousins, for example. 

The polygenic model decomposes the total phenotypic variance, cr2-,, into two components: the 

polygenic component of variance, Og, and the random deviation component of variance, cr 2. 

Recall that polygenes are a group of genes that collectively have a small effect on a quantitative 

trait. Using the expected proportion of genes ibd between relative pairs, this model essentially 
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attempts to divide the total phenotypic variance into a genetic component and non-genetic 

component. 

Let Yi be the quantitative trait value of the zth relative and be the value of the /cth 

covariate for the HW relative. Then, the polygenic model is 

where u is the overall mean, Pk is the effect of the fcth covariate, Gi is the random polygenic 

effect, and is the random deviation. We assume that Gi has variance OQ, and has variance 

CT2. As well, without loss of generality, we assume that E(Gj) = E(ej) = 0, since the overall mean 

component may absorb any residual mean structure from these components. The polygenic and 

random deviation components, Gi and €j, are assumed to be independent for each individual. 

Furthermore, the vector of Gi in a family forms a random vector with dependent components, 

and the vector of e» in a family forms an random vector with independent components. As well, 

these two random vectors are independent of each other. The vectorized form of the model in 

where Y is a vector of quantitative traits, fx is the mean vector, X is the matrix of covariates, 8 

is a vector of covariate effects, G is the random vector of polygenic effects and e is the random 

vector of deviation effects. The covariance structure of the polygenic model is 

Here, <t>ij is known as the coefficient of kinship for relatives i and j and 2<pij is called the 

coefficient of relationship for relatives i and j (see section 2.2.2 in chapter 2). For example, 

(f>ij = 1 if i = j, and faj = 1/2 if relative % and j are siblings. Notice that the total phenotypic 

variance is in terms of a genetic component and a non-genetic component. As well, the strength 

of correlation between relatives depends on the degree of their relationship. 

Finally, we note that the sporadic model is nested within the polygenic model; therefore, 

by comparing the likelihoods of each model we can obtain an idea of how large of a role genetics 

plays in specifying the quantitative trait. 

K 

Yi = u + ^2 PkXik + Gi + e, (4.3) 

4.3 is 

Y = /i + X/3 + G + e, (4.4) 

(4.5) 
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4.3 Two-Point Model 

The sporadic model and polygenic model help to determine the degree to which genetics in­

fluence the quantitative trait; however, it is the two-point model (Blangero et al. [5]), which 

attempts to locate where the source of the variation underlying the phenotype lies via linkage 

analysis. In addition to familial relationships, the two-point model utilizes marker information 

in an attempt to map QTLs along a chromosome. The concept of recombination plays an 

important role in the development of this model. Recall that alleles at loci which are near one 

another tend to be passed from parent to offspring together. Therefore, one would think that 

markers which are closer to the Q T L will be able to explain the variability in the quantitative 

trait better than those markers which are far from the Q T L . The two-point model extracts 

information from the marker data by using the proportion of alleles shared ibd in its covariance 

structure. Furthermore, the two-point model decomposes the genetic variance into a component 

due to the Q T L and a component due to the polygenes. 

Let Yi be the quantitative trait value of the i th relative and Xik be the value of the A;th 

covariate for the ith. relative. Then, the two-point model is 

K 

Yi = u + Y PkXik + Qi + Gi + ej, (4.6) 

where \i is the overall mean, 3k is the effect of the A;th covariate, qi is the effect due to the 

Q T L , Gi is the polygenic effect, and ej is the random deviation. We assume that qi has variance 

<Tq, Gi has variance UQ, and has variance a1. Without loss of generality, we assume that 

E(c/j) = E(Gi) = E(e;) = 0. Finally, the Q T L , polygenic, and random deviation components 

are assumed to be independent. Note that model 4.6 assumes that there is only one Q T L 

underlying the trait of interest. The major gene effect is assumed to be from a single Q T L with 

two alleles, B and b. Furthermore, the Q T L effect may be quantified as follows: 

{ a + d, for genotype BB 

d, for genotype Bb (4.7) 

—a + d, for genotype bb 

If we assume that the Q T L effects are additive, we can easily extend this model to account for 

multiple QTLs . 
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Under the assumption of no dominance, the covariance structure of the two-point model 

is 

Here, ir^ is the estimated proportion of genes shared ibd between relative i and relative j at 

the marker, and 2</>jj is the coefficient of relationship for relative i and relative j. 

This mixed effects model partitions the total phenotypic variance into three variance 

components: the variance due to Q T L , the variance due to polygenes, and the variance due 

to random deviation. We note that this two-point model implicitly assumes that there is no 

dominance, as well, the recombination fraction is assumed to be 0. The latter assumption wil l 

become more apparent after we define the Amos' model which relaxes the constraint on the 

recombination fraction. The former assumption can be seen from Amos [3] and his model which 

includes a dominance component. Because the two-point model assumes that the recombination 

fraction is 0 between the marker and the Q T L , it is assuming that the marker is close to and 

tightly linked with the Q T L . A comparison of the log-likelihoods from the two-point model and 

polygenic model at each marker will help us to map any underlying QTLs . Recall that a L O D 

score is the difference between the base 10 logarithm of the likelihoods. In practice, one would 

plot L O D scores versus the marker location. Ideally, such a plot would result in a peak in the 

L O D score curve over the region of the chromosome where the Q T L is located. 

4.4 Amos' Model 

The robust variance-components model proposed by Amos [3] is a generalization of all of the 

models mentioned thus far. Based on familial relationships and the proportion of genes ibd 

at various markers, this model attempts to estimate not only the Q T L variance component, 

polygenic variance component, and random deviation variance component, but also the recom­

bination fraction. By allowing the recombination fraction to vary, Amos' model requires the 

estimation of an additional parameter but no longer assumes that the marker is tightly linked 

to the Q T L , which is more realistic. 

(4.8) 
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The genetic model for the QTL is the same as the two-point model: 

{ a + d, for genotype BB 

d, for genotype Bb (4.9) 

—a + d, for genotype 66 

Here, the single QTL has two alleles, B and 6. 

The model for the quantitative trait is also similar to the two-point model with the 

exception of the covariance structure. Let Yi be the quantitative trait value of the ith relative 

and Xik be the value of the A;th covariate for the ith relative. Then, Amos' model is 
K 

Yi = u + PkXik + qi + Gi + eu (4.10) 
fc=i 

where u is the overall mean, is the effect of the fcth covariate, qi is the effect due to the QTL, 

Gi is a random polygenic effect, and 6j is the random deviation. We assume that qi has variance 

a2,, Gi has variance OQ, and has variance a2. Without loss of generality, we assume that 

E(qi) = E(Gj) = E(ej) = 0. Finally the QTL, polygenic, and random deviation components are 

assumed to be independent for each individual. 

Under the assumption of no dominance, the covariance structure of Amos' model is 

{ er2 + G2

r + cr2, if i = j 

(4.11) 
f(6, TTij)a2 + 2(f)ij<j2

G, if % ^ j , 
where itij is the estimated proportion of genes ibd between relative i and relative j at the 

marker, and 2<j>ij is the coefficient of relationship for relative i and relative j. Values of f(6, ixij) 

are given in Amos [3], and reproduced in Table 4.1. Note when 9 = 0 which means that the 

marker is tightly linked to the QTL, the covariance structure of Amos' model reduces to the 

covariance structure of the two-point model. Also, when 9 = 1/2, meaning that the marker 

is unlinked to the QTL, the covariance structure of Amos' model reduces to the covariance 

structure of the polygenic model. In equation 4.9, we are assuming that dominance effects are 

negligible, and that the QTL effect is additive. A more general form of this mixed effects model, 

which includes dominance effects, is given by Amos [3]. 
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Table 4.1: Fraction of Variance from Additive QTL Component 

Relative Pair Fraction of QTL Variance Component, f(9, n^) 
Sibs 
Half-sibs 
Avuncular 
Grandparental 
First cousin 

A+ ( 1 - 2 0 ) ^ - ^ ) 
| + (1 - 20)2(^ - |) 

i + (i _ 20)2(i -e){nj- \) 
\ + (l-20){irij-\) 

i + ( l - 2 0 ) 2 ( l - | 0 + | 0 2 ) ( ^ - i ) 

4.4 .1 Covariance Structure 

The utilization of marker information to map QTLs is one of the fundamental keys to linkage 

analysis. Haseman and Elston's [15] method of linkage analysis not only played a large role 

in developing the theory for a least squares approach, but also contributed to deriving the 

covariance structure used in the variance-components approach. In this section, we illustrate 

the contribution made by Haseman and Elston to Amos' covariance structure by deriving the 

component of variance due to the QTL effect, f(9, irij)o2, for a sib-sib pair (as shown in Table 

4.1). 

Let Yi and Yj be the quantitative trait values for siblings i and j, whose estimated 

proportion of genes shared ibd at a marker locus is 7 T J J . We can compute the covariance 

between Yi and Yj by noting that 

E[(Y - Yjffrij] = E(Y2) + E(Y2) - 2E(YiYj\irij) 

= E(Y2) - [E(Y)}2 + E(Y/) - [E(Yj)}2 - 2E{YiYj\Klj) + 2E(Yi)E(Yi) 

= 2Var(y i)-2Cov(Y i,Y i|7r0-). 

Here, we assume that E(Yj2) = E(Y2). Therefore, the covariance is 

Cov(Yi,Yj\nj) = Var(Y i)-iE[(Y i-Y J-) 2 |7r^]. (4.12) 

Recall that Haseman and Elston [15] regressed the squared sib-pair differences on the proportion 

of genes shared ibd at a marker locus. Through their work, they found that 

E[{Yi-Yj)2\nj] = 2[1- 2(1 -9)9}a2+a2

e- 2(1 - 20)2a27r i j. (4.13) 

Using equation 4.12 and the result from equation 4.13, we can extract the coefficients of a2 to 
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find f(6,nij) for sib-pairs: 

/ ( M y ) = 1 - [1 - 2(1 - 8)9 - (1 - 29)\ij] 

= 2(1 - 9)9 + (1 - 20)2inj 

= 29 - 292 - \ + | + (1 - 26)2irij 

= -\{l-A0 + ±92) + \ + {l-2O)2iHj 

= -?I(l-20)2 + l + (l-20)27rij 

= I + ( l - 2 f l ) 2 ( 7 r y - | ) -

We can see that as the distance between the marker and Q T L becomes smaller (ie. as 9 —> 0), 

the fraction of variance due to the Q T L tends towards the proportion of alleles shared ibd 

between the sibs. As well, as the distance between the marker and Q T L increases (ie. as 

0 —l 1/2), the fraction of variance due to the Q T L tends towards the expected proportion of 

alleles shared ibd between the sibs. The remainder of Table 4.1 may be derived in a similar 

manner. 

4.4.2 Likelihood Function 

If we assume that the quantitative traits within a pedigree follow a multivariate normal distri­

bution, then it is relatively easy to derive the likelihood function. We introduce some matrix 

notation so that the likelihood may be written in a compact form. 

Let there be m pedigrees with n/ family members in the /th pedigree. Also, let Y ; be a 

n/ x 1 vector of traits and X ; be a n/ x K matrix of K covariates for the Zth pedigree. Then 

the vectorized form of Amos' model in 4.10 is 

Y , = ii{ + Xt8 + q, + Gt + e/, (4.14) 

where fx is a n/ x 1 mean vector, 3 is a K x 1 vector of covariate effects, q/ is a n/ x 1 dependent 

random vector of Q T L effects, G; is a n\ x 1 independent random vector of polygenic effects, 

and e; is a T I / x 1 independent random vector of the deviation from the mean effects. The vectors 

q/, Gi, and e\ are assumed to be independent. Suppose 11/ is a n/ x n/ matrix of the estimated 

proportion of genes shared ibd at a marker for the /th pedigree, 2$/ is a n/ x n/ matrix of the 
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coefficients of relationship for the Ith pedigree. Then, the covariance matrix, fit, is 

Oj = n,aj + 2* ,4 + I,a£

2, (4.15) 

where 1/ is an identity matrix of dimension n;. Hence, q; ~ MVN(0,11/cr 2), G; ~ M V N ( 0 , 2$;CT2

;), 

and ei ~ M V N ( 0 , Ita2). 

The log-likelihood is 
m 

/(/i,/3,aj,a2j,a2|y.,x) = ^ { - f log(27r) - Ilog|n,| - | ( y , - ji, - x ^ ) 1 ^ " 1 ^ - / i , -x , /3)} 

(4.16) 

Note that by assuming the quantitative traits in a family follow a multivariate normal distri­

bution, the log-likelihood functions for the sporadic, polygenic, and two-point models may be 

constructed in a similar manner. 

We can maximize the log-likelihood in equation 4.16 to obtain the maximum likelihood 

estimates of the parameters. The covariate effects may be estimated simultaneously; although, 

in practice they are sometimes estimated prior to fitting a variance-components model. Note 

that from matrix theory (Searle [25]), if M is a square matrix and z is a scalar variable, then 

and 

where tr is the trace of a square matrix, which is the sum of the diagonal elements. Using these 

properties, the partial derivatives of the log-likelihood in equation 4.16 with respect to each 

parameter are as follows: 

f)l m 

£ = ^ l ^ ^ - ^ - x ^ ) (4.19) 

f)l m 

— = J ^ n r ^ y , - / * , - * , / * ) (4.20) 
p 1=1 dl 

dl 

m 

]T [ - i t r ( n f + ! ( y , - fit - ^(Sfn^Utn-Hyi *iPJ\ (4.21) 

nr = E [ - I M n r ^ * , ) + | ( y , - /*, - ^Bfn^^Hyi - m - x,/3)l (4.22) 
9"G l = l 
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di 
do2 

m 
= £ [-Mnr/1) + I(y« - vn - x//3)Tn-1fir1(y ; - / i , - x,/3) (4.23) 

l=i 
Setting these partial derivatives equal to 0, we may solve these equations for the maximum 

likelihood estimates. Note that the estimates for the fixed effects depend on the estimates 

of the random effects. Since there is no closed form for the maximum likelihood estimators, 

numerical methods must be used to maximize the likelihood. In Chapters 5 and 6, we use a 

quasi-Newton approach to compute the maximum likelihood estimates. 

4 . 5 Summary 

In this chapter, we have described several nested mixed effect models used in variance compo­

nents analysis. To make this nesting structure more apparent, we now re-express these models 

in terms of heritabilities and constraints. Recall that o\, o2, aG, and a2 are the total pheno­

typic, Q T L , polygenic, and random deviation components of variance. We define h2 = a2

qja\, 

h2

G = a2

Gjo\, h2 = o2jo\ to be the Q T L heritability, polygenic heritability, and random 

deviation heritability, respectively. In matrix form, Amos' model is 

Y = Ai + X/3 + q + G + e 

I e ~ M V N ( 0 , f t ) (4.24) 

n = o^{f{6, n)h2

q + 2$h2

G + ih2}. 

Under certain constraints, this model reduces to the sporadic, polygenic, and two-point model. 

The nesting structure of these models is shown in Table 4.2. From this nesting structure 

the relationship between the models is apparent. For example, we can see by comparing the 

likelihoods of the polygenic and two-point models, we can test whether the Q T L heritability 

differs from 0. 

Table 4.2: Nesting Structure of Variance-Components Models 

Model Constraint 
Sporadic h'j = 1, h2 = hG = 0; 
Polygenic h2 + h2

G = 1, h2 = 0; 
Two-Point h2 + h% + h2j = V, 
Amos h2 + hi + h2

G = 1 
6 = 0 
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Chapter 5 

Simulations 

In order to understand the performance and properties of the variance-components approach 

to linkage analysis, we conduct some simulations. We use G A S P to simulate a quantitative 

trait which is influenced by one major locus and some polygenes. In our simulations, the 

heritabilities due to the major locus and polygenes are varied, while the random deviation 

effect is held constant. Through these simulations we would like to understand how well the 

variance-components method is able to map major loci, in addition to evaluate the accuracy of 

the estimated variance components. 

In this chapter, we begin by describing the program used to simulate the data and 

the programs used to fit the models of interest. Next, we assess the pattern of L O D scores 

across the simulated chromosomes in their ability to map the major locus. Then, we compare 

and contrast the estimated variance components from the two-point model and Amos' model. 

Finally, following a discussion of the estimated recombination fractions from Amos' model, we 

give a brief summary of our findings. 

5 .1 Software 

5.1.1 G A S P 

The Genometric Analysis Simulation Program (GASP) [11] is a freely available program which 

is supported on the Unix operating system and provided by the National Human Genome 

Research Institute at http://research.nhgri.nih.gov/gasp/. The main purpose of G A S P is to 

34 

http://research.nhgri.nih.gov/gasp/


provide researchers with a means of creating familial data from a user-specified genetic model 

so that they may study the properties of statistical methods, such as power and error rates. 

G A S P has the ability to generate pedigree data from nuclear families to extended families. 

As well, it can simulate quantitative traits which involve major loci effects, polygenic effects, 

random deviation effects, and covariate effects. 

G A S P (Wilson et al. [28]) provides the basis of a genetic model which is partly dictated 

by the user. In G A S P , the quantitative trait is a linear combination of the Q T L , polygenic, and 

random deviation components with weights equal to the proportion of the variance due to each 

component. For a Q T L with two alleles, say B and b, the genotypic specific relative means for 

an individual with genotypes BB, Bb, bb are —1, 0, 1, respectively; therefore, G A S P assumes 

that there is no dominance. The polygenic component and random deviation component are 

each assumed to have a standard normal distribution. G A S P allows the user to explicitly 

state the proportion of the variance in the quantitative trait due to the QTL(s) , polygenes, 

and random deviation. G A S P also allows the user to specify the distance between successive 

markers, successive QTLs, or an adjacent marker and Q T L via a recombination fraction. As 

well, the user must specify the allele frequencies for all QTLs and markers. For further details 

on G A S P , please refer to the G A S P website [11]. 

We use G A S P to simulate a chromosome with twenty-five equally spaced markers and one 

major gene. This major gene is a quantitative trait locus with two equally frequent alleles. Each 

marker locus also has alleles occurring at equal frequencies. In our simulations, the percentage of 

the variation attributed to the Q T L ranges from 0% to 80%. As well, the polygenic component 

varies in accordance with the Q T L variance component from 10% to 90%. The random deviation 

variance component is held fixed at 10% throughout all of the simulations. Note that the only 

sources of variation in the quantitative trait are the Q T L , the polygenic component, and the 

random deviation component; therefore, the percentage of variation due to all three components 

should total 100%. The twenty-five markers and single Q T L were simulated to be equally 

spaced. Also, the Q T L was simulated to lie between markers 14 and 15. In one case, we 

specified the recombination fraction to be 0.02 between each pair of adjacent loci. For instance, 

the recombination fraction between markers 1 and 2 was 0.02. As well, the recombination 

fraction between marker 14 and the Q T L was 0.02, and the recombination fraction between 
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the Q T L and marker 15 was 0.02. Since we are also interested in the effect of the density of 

the markers, we also conducted a second set of. simulations where the recombination fraction 

was set to be 0.04 between each pair of adjacent loci. In this chapter, we denote the simulated 

recombination fraction between two successive loci to be 9S. To be consistent with the notation 

in Chapter 4, we denote the parameter for the recombination fraction between a marker and 

a Q T L to be 9. One hundred ceph families of size 10 were simulated in each replicate. Recall 

that a ceph family consists of three generations, and always includes two sets of grandparents 

and one set of parents. Finally, for each genetic model that we specified, we generated 100 

replicates. 

5.1.2 S O L A R 

S O L A R (Blangero et al. [5]), which stands for Sequential Oligogenic Linkage Analysis Rou­

tines, is a well developed package for the variance components approach to linkage analy­

sis. Amongst its many capabilities in version 1.7.3, this package is able to rapidly compute 

the proportion of genes shared ibd between relative pairs in a pedigree of arbitrary size and 

complexity. The sporadic, polygenic, and two-point models for linkage analysis involving a 

quantitative trait may be fit using S O L A R . As well, it is able to screen for covariates which 

may influence the quantitative trait of interest, and carry out a multipoint linkage analysis. 

Mainly written by Blangero, Lange, Almasy, Williams, Dyer, and Peterson, S O L A R is sup­

ported by the Southwest Foundation for Biomedical Research in San Antonio Texas. It may be 

downloaded for use on operating systems such as Unix and Linux from the public domain at 

http: / / www.sfbr.org/sfbr/public/software / solar. 

We use S O L A R ' s capabilities to compute the proportion of genes ibd at each marker 

location along a chromosome via its "ibd" routine. The coefficients of relationship are also 

extracted from an intermediate file created by S O L A R . Finally, the "mibd" routine is used to 

classify the types of relationships within a pedigree. Further details on these routines may be 

found in the documentation located at the S O L A R website [5]. 
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5.1.3 C Program 

Although S O L A R is capable of fitting the sporadic model, polygenic model, and two-point 

model, it is not yet able to fit Amos' model. S O L A R ' s source code is not available in the public 

domain, so we wrote a C program to fit all models of interest. We parameterized the models 

in terms of heritabilities; therefore, the estimated variance components wil l be expressed as a 

fraction of the total phenotypic variance in this chapter and the following chapter. 

When estimating Amos' model and the two-point model there are two stages. The first 

stage involves estimating the proportion of alleles shared ibd for all relative pairs at each marker 

locus using S O L A R ' s "ibd" routine. In the second stage, the estimated proportion of alleles 

are treated as known for the maximum likelihood estimation of the regression, heritability, and 

recombination parameters. Our program is able to simultaneously estimate the fixed effects and 

random effects. For each model, the negative log-likelihood is minimized using a quasi-Newton 

routine [19]. The running time of the program increases with the complexity of the pedigree. 

5.2 Detection of Quantitative Trait Loci via L O D Scores 

One of the major goals of linkage analysis is to map major loci relative to the markers on a 

chromosome. Once the region of the chromosome where any major loci may lie is estimated, 

association analysis techniques may be used to fine map these loci. By assessing the extent 

to which marker information helps to explain the variability in the quantitative trait, we are 

able to see how strongly linked these markers are to any QTLs in this vicinity. Currently, 

patterns of L O D scores across chromosomes are used to detect regions where major loci may 

reside. Comparing the likelihood of the polygenic model to the likelihood of the two-point model 

results in L O D scores which give an indication of whether a Q T L is present. Therefore, when 

examining L O D scores across a chromosome, we would expect to see a rise in L O D scores as we 

approach regions with a Q T L . In addition, a comparison of the likelihood of the two-point model 

to the likelihood of Amos' model wil l give us an idea of the role that the recombination fraction 

plays in explaining the quantitative trait. In this section, we will focus on the simulations where 

the recombination between successive loci is 0.02 (ie. 6S = 0.02). 
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5.2.1 Two-Point Model 

To determine how well the variance-components approach to linkage analysis detects regions 

where QTLs reside, we look at the L O D scores between the polygenic model and two-point 

model. We begin by plotting the average of 100 L O D scores at each of 25 marker locations. 

Figure 5.1 shows how the pattern of L O D scores across a chromosome changes as the heritability 

due to the Q T L increases from 0.0 to 0.8. 

From the plots of the polygenic model and two-point model L O D scores versus the 

marker location, we see a distinct peak in L O D scores around markers 14 and 15. This peak 

becomes visible when the Q T L component is around 40 to 60%, and is more apparent as the 

proportion of variance due to the Q T L increases. When the Q T L component ranges from 0% 

to 20% the L O D scores reach a maximum of about 1.1 and it is difficult to tell if a Q T L is 

actually present on the chromosome. In contrast, when the Q T L component is 80%, the L O D 

scores reach a maximum of around 12.9, and one can more readily map the Q T L region. 

The fact that the L O D scores rise with h2, coincides with our intuition, since one would 

expect that if the majority of the variability in a quantitative trait is due to the Q T L , then it 

should be easier to detect. A high L O D score implies that the two-point model explains the data 

better than the more simplistic polygenic model. Moreover, the data imply that the variability 

in the trait can be partly explained by the information given from the markers since they must 

be linked to a Q T L . From the analyses of our simple quantitative trait, we can foresee the 

difficulties which may arise in detecting QTLs underlying a complex trait. Since many major 

loci contribute to the variability in a complex trait, we can appreciate that it is difficult to 

map all of these loci, especially if the majority of them account for less than 20% of the total 

variation each. In addition, the proportion of the genes ibd at each marker gives a stronger 

indication of the presence of a Q T L as the distance between the Q T L and marker decreases or 

equivalently as the recombination fraction tends to zero. From Figure 5.1, we can also see that, 

on average, the peakedness of the L O D score curves increases as the heritability due to the Q T L 

increases. We believe that the non-additive and non-linear nature of the recombination fraction 

is being reflected through the steep ascents in the L O D score curves. Recall that although the 

recombination is constant between adjacent markers, it is not a measure of genetic distance. In 

fact, as we discussed in Chapter 2, the genetic distance between the Q T L and farther markers 
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grows exponentially according to Haldane [13]. So we see that both the magnitude of the L O D 

scores and the peakedness of the L O D score curve give an indication of not only the presence 

of a Q T L , but also its influence on the quantitative trait. 

5.2.2 A m o s ' M o d e l 

The magnitude of a recombination fraction gives us an indication of how close a Q T L is to 

a marker. Unlike the two-point model, Amos' model attempts to estimate the recombination 

fraction. We investigate whether Amos' model is able to map QTLs better than the two-point 

model. Recall that the two-point model assumes that the recombination fraction between the 

Q T L and any marker is zero. 

We construct L O D score curves from the average of 100 replicates of L O D scores which 

compare the two-point model to Amos' model. Figure 5.2 shows the L O D score curves com­

paring the two-point model to Amos' model under a constant recombination fraction of 0.02 

between markers, but varying proportions of heritability due to the Q T L . From Figure 5.2, we 

see that the L O D scores are quite small since they are less than 0.5, regardless of the magni­

tude of h?q\ therefore, the recombination fraction does not seem to significantly contribute to 

the model. For mapping purposes, it appears that assuming all markers are tightly linked to 

any QTLs suffices to effectively map them. 

We also note that for large values of h2, the L O D scores decline as the distance between 

the Q T L and marker decreases. Since the two-point model assumes that 9 = 0, we expect that 

Amos' model would not improve upon the two-point model significantly at markers close to the 

Q T L , hence the small L O D scores. Recall that the recombination fraction between a marker 

and the Q T L tends to zero as the distance between them decreases. Furthermore, the rise in 

L O D scores at markers far from the Q T L indicates that the two-point model can be improved 

by allowing the recombination fraction to differ from zero. 
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5.3 Estimation of Variance Components 

A secondary goal of linkage analysis is to estimate the variance components. Both the two-point 

model and Amos' model allow us to estimate the Q T L variance component, polygenic variance 

component, and random deviation variance component. As opposed to directly estimating the 

variance components, we estimate the variance components as fractions of the total phenotypic 

variability, also known as heritabilities. We denote the Q T L and polygenic heritabilities to 

be h2 and h2^, respectively. Note that heritabilities are bounded between 0 and 1. In this 

section, we compare the estimated heritabilities from the two-point model and Amos' model. 

As in the previous section, we focus on the simulations where the Q T L and polygenic variance 

components vary, and the recombination fraction between successive loci is fixed at 0.02. 

5.3.1 Two-Point Model 

Firstly, we examine the estimated heritabilities from the two-point model. We are particularly 

interested in the heritability due to the Q T L and the heritability due to the polygenes. At each 

marker we averaged the 100 estimated Q T L heritabilities. The average Q T L heritabilities were 

then plotted versus marker location, as shown in Figure 5.3. From Figure 5.3, it is apparent 

that, on average, in the presence of a Q T L , h2, is always underestimated. The degree of 

underestimation becomes more severe as we move towards the extremities of the chromosome, 

and as the true Q T L heritability increases. We suspect that the restricting assumption on 

the recombination fraction is the culprit for the poor estimation at the extremities of the 

chromosome. By assuming that the recombination fraction between the Q T L and any marker 

is 0, we are inevitably fitting incorrect models at marker locations which are far from the Q T L ; 

hence, it is not unexpected to obtain poor estimates of the Q T L heritability at these locations. 

Although the estimated Q T L heritability tends to be underestimated on average, it 

seems that we can obtain a fairly accurate estimate of h2. Figure 5.3 shows that the maximum 

value of the estimated h2 curve lies extremely close to the true value. Table 5.1 shows the 

average maximum value of the Q T L heritability components, h2^^, over 100 replicates, along 

with 95% empirical probability intervals. From Table 5.1, we can see that, on average, the Q T L 

heritability is overestimated, but the estimates improve as h2 increases. As well, we can see 

42 



that the width of the empirical probability intervals decrease from about 0.30 to 0.20 as the 

Q T L component increases. 

Next we look at the estimation of the other genetic component, namely the polygenic 

heritability. The average estimated polygenic heritabilities are plotted against marker location 

in Figure 5.4. From these curves, we see that the true contribution of the polygenes tends to 

be overestimated. Although h2, tends to be underestimated and and h?G tends to be overesti­

mated the accuracy of the estimates seem to be affected by the same factors. The problem of 

overestimation grows worse as the distance between the Q T L and marker increases. As well, 

as hG decreases, the bias increases. Such poor estimates may be due to the fact that model 

misspecification becomes worse as the distance between the Q T L and markers increases. 

Because the problem of model misspecification weakens at markers close to the Q T L , 

the estimates of the polygenic heritabilities at these markers seem to be quite accurate. From 

Figure 5.4, we see that the minimum value of the polygenic heritability curve gives a reason­

able estimate of h?G. Table 5.2 shows the average minimum value of the estimated polygenic 

heritability, h G m i n , over 100 replicates, along with 95% empirical probability intervals. From 

Table 5.2, we see that, on average, the polygenic heritability is underestimated. The widths of 

the 95% empirical probability intervals for the polygenic heritabilities are also larger than those 

for the Q T L heritabilities. It seems that the polygenic component is more difficult to estimate 

than the Q T L component. 

5.3.2 A m o s ' M o d e l 

Next, we study the performance of Amos' model in estimating the heritabilities. Amos' model 

relaxes the assumption on the recombination fraction which is used in the two-point model. By 

not constraining the recombination fraction to be 0, model misspecification at the ends of the 

chromosome is no longer inevitable, but we add the burden of estimating another parameter. 

The average of 100 estimated Q T L heritabilities from Amos' model across the chromo­

some is shown in Figure 5.5. In contrast to the estimated Q T L heritability curves from the 

two-point model, Amos' method appears to give a constant estimate of the Q T L heritability 

regardless of the marker location. By not constraining the recombination fraction parameter, 

the model space becomes larger and Amos' model becomes less prone to model misspecification. 
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From Figure 5.5, we see that when h2 is less than or equal to 0.60, it tends to be consistently 

overestimated on average; however, when h2 is 0.80, it tends to be generally underestimated. 

Although the direction of bias is not apparent, the magnitude of the bias seems to increase as 

the Q T L heritability decreases. 

Recall that for the two-point method, it seemed obvious to use the maximum value 

of the Q T L heritability curve as an estimate for h2. In Amos' method, it is not apparent 

how to estimate h2. One possible estimate may be to average the estimates of h2 across the 

chromosome For comparison purposes, Table 5.3 shows the average estimated mean value of 

the Q T L heritability estimates, h2

q^,g, across the chromosome over 100 replicates. In general, 

the two-point model seems to provide more accurate estimates of the Q T L heritability since 

the widths of the probability intervals are usually smaller. 

We also look at how accurately Amos' model estimates the heritability due to polygenes. 

Figure 5.6 shows the average of the 100 estimates of h2

G from Amos' model at each marker. 

Like the two-point model, Amos' model seems to give biased estimates of h2

G and the direction 

of bias is opposite to the direction of bias for the estimates of h2. Again the severity of the bias 

depends upon the magnitude of h2^. Although the estimates are biased, the bias appears to be 

relatively constant across the entire chromosome. 

The question of how to estimate the polygenic component from Amos' model arises, as 

it did for the estimation of the Q T L component. We again look at the average estimated mean 

value of the polygenic heritability, h2

G a v g , over the entire chromosome (see Table 5.4). Note that 

Amos' model again results in wider probability intervals for the polygenic heritability. Using 

the minimum value of the estimated polygenic heritability across the chromosome from the 

two-point model appears to be a more reliable estimate than the average value of the estimated 

polygenic heritabilities across the entire chromosome from Amos' model. 

44 



h2

q = 0, h2

G = 0.9, h2

e = 0.1 h2„ = 0.2, h2

E = 0.7, h2

e = 0.1 

o o 

a CO cr CO 
- C o sz o 

"D 
<D 

"D 

tim
al <£> 

© tim
al to 

o 

UJ 
CO 

H I 
CD 
CD o CD 

O) 
CO 

© 

CM 
d 

CD 
CM 
d d 

o o o o O o o o o o o o o o o o o o o ° o o o o o o o 
o d 

10 15 

Marker 

, o o ° 
" " v ; ; . o ° o » ^ * o 0 - o 
o 0 ° ° ° ° o o 0 o < 

10 15 

Marker 

25 

h2

q = 0.4, h2

G = 0.5, h2

e = 0.1 h2

q = 0.6, h2

G = 0.3, h2

e = 0.1 

Marker 

h2

q = 0.8, h2

G = 0.1,h2

e = 0.1 

Figure 5.3: Average Estimated QTL Heritability from Two-Point Model, 6S = 0.02 

45 



Table 5.1: Average Estimated Maximum Value of Q T L Heritability from Two-Point Model 

h2 

"'q. max 
95% Emp. Prob. Interval 

0.0 0.168 (0.062,0.304) 
0.2 0.328 (0.168,0.501) 
0.4 0.512 (0.351,0.646) 
0.6 0.672 (0.537,0.835) 
0.8 0.817 (0.706,0.900) 

Table 5.2: Average Estimated Minimum Value of Polygenic Heritability from Two-Point Model 

hi nG.mm 95% Emp. Prob. Interval 
0.9 0.733 (0.596, 0.865) 
0.7 0.565 (0.380, 0.743) 
0.5 0.385 (0.217, 0.593) 
0.3 0.223 (0.006, 0.397) 
0.1 0.076 (0.000, 0.203) 

Table 5.3: Average Estimated Mean Value of Q T L Heritability from Amos' Model 

h2 h2 95% Emp. Prob. Interval 
0.0 0.183 (0.006,0.453) . 
0.2 0.381 (0.157,0.661) 
0.4 0.514 (0.328,0.755) 
0.6 0.664 (0.507,0.841) 
0.8 0.756 (0.629,0.857) 

Table 5.4: Average Estimated Mean Value of Polygenic Heritability from Amos' Model 

VI 95% Emp. Prob. Interval 
0.9 0.716 (0.464,0.913) 
0.7 0.513 (0.250,0.734) 
0.5 0.386 (0.124,0.588) 
0.3 0.233 (0.066,0.404) 
0.1 0.139 (0.032,0.272) 
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5.4 Estimation and Effect of the Recombination Fraction 

Recombination fractions may not be used as a distance measure, but they may still give us an 

idea of the distance between a Q T L and a marker; whereas, a L O D score curve can only tell us 

what regions of the chromosome are likely to contain the Q T L . We investigate how well Amos' 

model is able to estimate the recombination fraction. As well, in this section, we discuss the 

effect that recombination has on predicting regions housing QTLs via L O D score curves and 

estimating variance components. 

5.4.1 Amos' Model 

Firstly, we assess the estimates of the recombination fractions from Amos' model. Figure 5.7 

shows the average of 100 estimated recombination fractions at each marker on the chromosome. 

We can see that as the Q T L heritability component increases a trough in the curve slowly 

emerges. This trend in the estimated recombination fractions is expected. Although the true 

recombination fraction is 0.02 between all adjacent markers and loci, the recombination frac­

tion between the Q T L and successively farther markers increase non-linearly. Recall that the 

estimated variance components from the two-point model were non-constant across the chromo­

some, whereas the variance components estimates from Amos' model were constant. It appears 

that Amos' model is able to unconfound the trends seen in the estimates of the two-point model 

by the inclusion of a recombination fraction parameter. 

Because the mapping function from the recombination fraction to the genetic map dis­

tance is unknown, it is difficult to assess the accuracy of the estimated recombination fractions. 

From our simulations we know that the recombination fraction between the Q T L and marker 

14 and the recombination fraction between the Q T L and marker 15 is 0.02; however, we cannot 

be certain of the true recombination fraction between the Q T L and any other markers. 

5.4.2 Varying Recombination Fraction 

We also investigated the effect that varying the recombination fraction would have on the ability 

to detect QTLs . Equivalently, this would be examining how the distance between markers affects 

the ability to map QTLs . Recall that a recombination fraction close to 0 implies tight linkage 
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and a recombination fraction close to 1/2 implies loose linkage. 

In our simulations, we allowed the true value of the recombination fraction between 

successive loci to vary between 0.02 and 0.04. By increasing the true value of the recombination 

fraction, we are increasing the genetic distance between markers. Firstly, we assess how looser 

linkage affects the L O D scores. Figure 5.8 shows the average L O D scores of 100 replicates from 

comparing the likelihoods of the polygenic model to the two-point model. By comparing Figures 

5.1 and 5.8, we see that the L O D scores are higher when 6S = 0.02, or when the markers are 

more tightly linked to the Q T L . This observation is expected since the more tightly linked the 

markers are to the Q T L , the greater the likelihood that the marker information wil l be able to 

explain the variability in the phenotype. As well, we see that the L O D score curves have more 

narrow peaks above the Q T L location when 6S = 0.04. This observation also concurs with our 

intuition. When 9S = 0.04, the genetic distance between the Q T L and more distant markers 

grows more rapidly than when 9S — 0.02; therefore, we would expect a sharper decline in the 

L O D scores when the recombination fraction increases. The L O D scores which compare the 

two-point model to Amos' model share similar properties to those L O D scores discussed above. 

From Figure 5.9, the dips toward 0 over the Q T L location are more narrow when 6S = 0.04. 

As mentioned before, because the two-point model assumes that 6 = 0, model misspecification 

becomes more severe as the true recombination fraction increases. 

Secondly, we determine how the spacing between markers affects the estimates of the 

variance components. Figure 5.10 and Figure 5.11 show the average estimated Q T L heritabil­

ities and polygenic heritabilities from the two-point model. In comparison with Figures 5.3 

and 5.4, the observation of a narrower peak or dip again emerges. We also note that at markers 

which are farther from the Q T L , the estimates of the heritabilities are worse when 9S = 0.04. 

The average estimated Q T L and polygenic heritabilities from Amos' model are shown in Figures 

5.12 and 5.13, respectively. Increasing the recombination fraction by a factor of 2 causes the 

estimates to no longer be constant across the entire chromosome, which is what we observed 

when 8S = 0.02 in Figures 5.5 and 5.6. Instead, the estimated heritabilities become significantly 

worse as we move farther from the Q T L . Again, the estimated Q T L heritabilities and estimated 

polygenic heritabilities seem to be more severely biased for small values of h2 or equivalently 

large values of hG. 
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Finally, we plot the average estimated recombination fractions in Figure 5.14. As ex­

pected, the estimated recombination fractions decrease more rapidly as the distance between 

the Q T L and markers decreases. 

5.5 Summary 

From our simulation study, we evaluated the properties of the two-point model and Amos' 

model in terms of their ability to detect regions where QTLs reside and their ability to accurately 

estimate the variance components. We saw that although the two-point model is prone to model 

misspecification at markers which are far from the Q T L , it is still able to detect Q T L regions. 

Furthermore, Amos' model does not appear to significantly improve upon its sub-model's ability 

to detect QTLs . 

When estimating variance components, the two-point model inevitably gives poor esti­

mates at marker locations far from the Q T L ; however, if the Q T L heritability is large, then 

there is a distinct rise or fall in the estimates across the chromosome and the optimal value 

seems to give a reasonable estimate of the heritability component. On the other hand, Amos' 

approach is not prone to model misspecification, but it seems to be quite challenging to simul­

taneously estimate the variance components, as well as the recombination fraction. Because 

these parameters seem to be confounded, the estimated heritabilities, although fairly consistent 

across the chromosome, seem to be quite poor. 

Lastly, by varying the distance between markers, we see that the two-point model's 

estimates of the variance components improves as we increase the concentration of markers 

along the chromosome. However, if detection of the Q T L region is the primary goal, the 

spacing between successive markers does not need to be extremely dense. 
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Figure 5.13: Average Estimated Polygenic Heritability from Amos' Model, 6S = 0.04 
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Chapter 6 

Application to a Complex Trait 

6.1 Genetic Analysis Workshops 

The Southwest Foundation for Biomedical Research encourages collaboration amongst researchers 

who are using statistical genetics, through biennial Genetic Analysis Workshops (GAWs) [12]. 

The focus of each workshop revolves around a current analytical problem in genetic epidemi­

ology. These workshops provide researchers with the opportunity to discuss, compare, and 

assess the performance of competing statistical methods. As a basis for comparison, the partic­

ipants are given a common problem consisting of real or simulated data. Through the partici­

pants' independent analyses, it is not only interesting to see the various approaches to tackling 

a problem, but also enlightening to realize the diverse results that can be obtained from a 

common dataset. Further information on the Genetic Analysis Workshops may be found at 

http://www.sfbr.org/external/gaw/. We utilize the simulated data from the tenth Genetic 

Analysis Workshop (GAW10) to assess the performance of the variance-components method of 

linkage analysis on a complex trait. 

6.1.1 Tenth Genetic Analysis Workshop Data 

GAW10 focussed on comparing statistical methods in terms of power in detecting major genes 

and accuracy of parameter estimates when studying an oligogenic disease with quantitative risk 

factors, or complex traits. Recall that a complex trait is a phenotype which is determined by 

multiple genes and environmental factors, and does not follow Mendelian laws of inheritance. 
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Disease 

The mechanisms underlying such traits are challenging to uncover since the variability of a 

complex trait arises from many factors which may interact in an intricate manner. The sim­

ulated oligogenic disease in GAW10 is directly or indirectly influenced by various interactions 

amongst six major genes (MG1, M G 2 , M G 3 , MG4, MG5, and MG6), five quantitative risk 

factors ( Q l , Q2, Q3, Q4, and Q5), as well as environmental (EF) and polygenic (PG) factors. 

A n individual is declared to be affected if the first quantitative trait, Q l , exceeds a threshold of 

40. The model which generated this common oligogenic disease is reproduced from MacCluer 

et al [18] in Figure 6.1. In Figure 6.1, single-headed solid arrows indicate the influence of the 

major genes or quantitative traits on one of the five quantitative traits. Also, double-headed 

solid arrows represent residual genetic correlation, and double-headed dashed arrows indicate 

residual environmental correlations. 

In addition to the general structure of the disease, we are also know other specific genetic 

details regarding gene location and the magnitude of each variance component. Each major 

gene has two alleles with differing frequencies. As well, some traits were influenced by gender, 

age, and environmental effects. The percentage of variability in each trait attributable to each 

major gene and the random components range from less than 1% to 63%. The simulated 

variance components table from GAW10 is reproduced in Table 6.1. Q 1 M and Q 1 F denote the 

first quantitative trait for males and females, respectively. Similarly, Q3M and Q3p represent 
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Table 6.1: GAW10 Simulated Variance Components (in %) 

Source Q I M QIF Q2 Q3M Q3F Q4 Q5 
M G 1 21.67 20.65 0.00 0.00 0.00 0.00 0.00 
M G 2 0.47 0.45 18.48 0.00 0.00 0.00 0.00 
M G 1 H M G 2 12.99 12.38 0.00 0.00 0.00 0.00 0.00 
M G 3 1.45 6.06 0.00 5.82 21.35 0.00 0.00 
M G 4 0.00 0.00 0.00 0.00 0.00 28.00 14.00 
M G 5 0.00 0.00 0.00 0.00 0.00 16.00 23.00 
M G 6 0.00 0.00 0.00 0.00 0.00 11.00 0.00 
P G 6.26 5.97 14.78 25.15 21.00 0.00 0.00 
Age 7.98 7.61 0.00 0.00 0.00 0.00 0.00 
E F 5.56 5.30 13.04 22.33 18.65 0.00 0.00 
Random 43.62 41.58 53.70 46.70 39.00 45.00 63.00 
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Table 6.2: GAW10 Major Gene Locations 

Major Gene Chromosome Location (distance in centiMorgans) 
MG1 5 D5G14 <- 0.8 --»• M G 1 «• - 1.6 -> D5G15 
MG2 8 D8G26 <- 0.3 --> M G 2 «• - 0.6 -> M G 4 <-0.6 -> D8G27 
M G 3 4 D4G14 <- 0.8 --»• M G 3 <• - 1.9 -> D4G15 
M G 4 8 D8G26 *- 0.3 --> M G 2 «-- 0.6 -» MG4 <-0.6 -> D8G27 
M G 5 9 D9G8 «- 1.0 -• M G 5 <- 0.3 ->• D9G9 
MG6 10 D10G7 <- 0.5 -> M G 6 <• - 2.6 ->• D10G8 

the third quantitative trait for males and females, respectively. Note that there is epistasis or 

masking, between MG1 and M G 2 . The six major genes were located on five often chromosomes 

with 24 to 50 unequally spaced markers. The location of each major gene as given by MacCluer 

et al [18] is shown in Table 6.2. Adhering to the GAW10 notation of marker locations, we 

note that D5G14 refers to marker 14 on chromosome 5. A more detailed description of the 

simulation procedure may be found in MacCluer et al [18]. 

The participants of GAW10 were given two types of data. The first type consisted of 

200 replicates of 239 nuclear families with a total of 1164 individuals. Each nuclear family was 

simulated to have at least two offspring. The second type of data consisted of 200 replicates of 

23 extended pedigrees with 1497 individuals. Each extended family included two parents and 

all first, second, and third degree relatives. 

In our linkage analyses, we concentrated on estimating some of the variance components 
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for quantitative trait Q l . From Table 6.1, we see that Q l is influenced by three covariates: age, 

sex, environment. As well, approximately 21% of the variation in Q l is directly due to the M G 1 

and about 0.46% is directly from MG2. The influence of sex can be seen through the effect 

of MG3 on Q l . M G 3 indirectly contributes about 1.5% or 6.1% of the variance through Q3 

depending on sex. The polygenic variance component is simulated to be approximately 6.12%. 

When fitting the sporadic, polygenic, two-point, and Amos' models, age, sex, and environmental 

covariates are fit as a^'s in the model since each covariate was found to be significant in 

the sporadic model. Furthermore, we simultaneously estimated the variance components and 

covariate effects. Because we know that extended families are more powerful in being able to 

detect linkage than nuclear families, we also focussed on analyzing the data from the extended 

pedigrees. A summary of the GAW10 participants' analyses is given by Wijsman and Amos 

[27]. 

Our objective is to determine how well the variance-components approach to linkage 

analysis is able to detect MG1 and MG3, which are located on chromosome 5 and 4 respectively, 

and estimate the variance attributable to them. Note that chromosome 5 has 25 markers and 

chromosome 4 has 29 markers. We apply the variance-components methods on the first 60 of 

the extended pedigree replicates simulated for GAW10. 

6.2 D e t e c t i o n o f Q u a n t i t a t i v e T r a i t L o c i v i a L O D Scores 

To estimate the regions of the chromosomes with major loci affecting the complex trait Q l , we 

determine if any markers are linked to the Q T L by looking at L O D score curves. Figure 6.2 

shows the average of 60 replicates of L O D scores across chromosomes 5 and 4. The two left 

panels display L O D scores for chromosome 5 and the two right panels show L O D scores from 

chromosome 4. Firstly, we comment on the top two panels, which correspond to the L O D scores 

based on comparing the likelihood of the polygenic model to the likelihood of the two-point 

model. Along chromosome 5, there is a distinct peak in the L O D scores around markers 14 

and 15; however, along chromosome 4, there is no indication of the presence of a major gene. 

Because M G 3 accounts for less than 10% of the total variation in Q l , the variance component 

approach fails to locate this locus. On the other hand, MG1 accounts for approximately 20% 
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of the total variation in QI , so the L O D scores reach a maximum of about 4.2 at marker 15. 

Secondly, we comment on the bottom two panels of Figure 6.2, which show the L O D 

score curves for chromosome 5 and 4 which compare the likelihood of the two-point model to 

the likelihood of Amos' model. The inclusion of a parameter for the recombination fraction 

does not seem to significantly improve the model since all of the L O D scores fall below 0.2. 

As we saw in section 5.2.2, the L O D scores seem to be approximately 0 near any region of a 

major gene which contributes to at least 20% of the total phenotypic variation. Although it is 

not distinct, we see that there are two dips in the plot of the L O D scores from chromosome 5, 

which gives a subtle indication of the presence of a Q T L . Because the markers which are close 

to the Q T L have recombination fractions close to 0, Amos' model does not improve upon the 

two-point model as greatly as it does for markers which are far from the Q T L . 

6.3 E s t i m a t i o n o f V a r i a n c e C o m p o n e n t s 

Estimating the variance components of a complex trait can be quite challenging, especially if 

the components are small. In this section, we compare the estimates of the variance-components 

from the two-point model and Amos' model. We denote the Q T L heritability and polygenic 

heritability to be / i 2 , and hG, respectively. Figure 6.3 shows the average estimated Q T L and 

polygenic heritabilities from the marker data on chromosome 5. Note that the two reference 

lines in the three left panels correspond to the heritability due to MG1 and the heritability 

due to M G 1 and M G 1 H M G 2 , as given in Table 6.1. These reference lines correspond to the 

heritability due to MG1 alone and the total heritability due to M G 1 . The reference line in 

the three right panels correspond to the polygenic heritability. Also, we averaged the female 

and male heritability components since there is a gender effect. In general, we see that the 

Q T L heritability component is underestimated and the polygenic heritability component is 

overestimated. The top two panels in Figure 6.3 show the estimated Q T L heritabilities and 

estimated polygenic heritabilities from the two-point model. The bottom four panels show 

the estimated Q T L and polygenic heritabilities from Amos' model. Recall that Amos' model 

expresses part of the covariance as a fraction of the additive genetic component, and that 

this fraction is a function of not only the proportion of genes ibd at the marker, but also the 
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recombination fraction. Furthermore, the form of this fraction, /(#, 7 T J J ) , is dependent on the 

relationship between family members. Because we are dealing with extended pedigrees, the 

types of relative pairs in the GAW10 data exceed those in Table 4.1. Table 6.3 presents the 

frequencies of the types of relative pairs in one replicate of the GAW10 data. From this table, 

we can see that the number of higher degree relative pairs is not insignificant. To handle the 

higher degree relative pairs, we make one of two assumptions. One possibility is to assume that 

they provide no linkage information, so 9 = 1/2. This conservative assumption causes f(9,TTij) 

to have no dependence on the recombination fraction, which reduces to the expected proportion 

of genes shared ibd. Under this assumption, the two-point model is no longer nested within 

Amos' model. Alternatively, we also fit Amos' model under the assumption that high degree 

relatives exhibit tight linkage, so 9 = 0. In this case, f(9,irij) = 7 T J J . In Figure 6.3, the middle 

two panels show the estimates of the heritability components when tight linkage information 

is assumed from higher degree relatives, and so the bottom two panels assume loose linkage. 

When loose linkage is assumed, the Q T L heritability estimates seem to be slightly larger and 

the polygenic heritability estimates seem to be slightly smaller than the estimates under the 

assumption of tight linkage. 

In comparison with chromosome 5, Figure 6.4 shows the average estimated heritability 

components from chromosome 4. MG3 is located on chromosome 4 between markers 14 and 

15, and only accounts for less than 10% of the total phenotypic variance. Because M G 3 has 

a distinctly different effect on Q l , which depends on gender, we plot reference lines for the 

heritability component for males and females separately (as shown in Table 6.1). Whether we 

use the two-point model or Amos' model, the estimated heritability components are relatively 

similar. The average estimated Q T L heritability seems to be less than 0.07 and the average 

estimated polygenic heritability seems to be about 0.40. It is interesting to note that the 

polygenic component is severely overestimated. However, roughly flat curves indicate that there 

is no major gene on this chromosome with a large effect. Because we do not simultaneously 

account for multiple QTLs , the variation due to other major loci seems to be absorbed by the 

polygenic component. Therefore, it is apparent that if we would like to accurately estimate 

the polygenic component in a complex trait, it is necessary to account for multiple QTLs via 

multipoint linkage analysis (Almasy et al. [1]). If the Q T L components are assumed to be 
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Table 6.3: Frequencies of Relative Pairs in GAW10 Data 

Relative Pair Type Frequency 
Unrelated 34954 
Self 1497 
Parent-offspring 2076 
Siblings 1096 
Grandparent-grandchild 2038 
Avuncular 2723 
Half-siblings 30 
Great grandparent-grandchild 1394 
Grand avuncular 1496 
Half avuncular 68 
1st cousins 2969 
Great great grandparent-grandchild 266 
Great grand avuncular 241 
Half grand avuncular 13 
1st cousins, 1 rem 3086 
Half 1st cousins 27 
1st cousins, 2 rem 423 
2nd cousins 169 

additive, then Amos' model can be easily extended. 

6.4 Estimation of Recombination Fraction 

Although we do not know the mapping function from genetic distances to recombination frac­

tions, we can visually assess the ability of Amos' model to estimate recombination fractions. 

Figure 6.5 shows the average estimated recombination fractions along chromosomes 5 and 4. 

The top two panels correspond to chromosome 5 and the bottom two panels correspond to 

chromosome 4. Because we are dealing with extended families, for higher degree relative pairs, 

we either assumed that they exhibited tight linkage or loose linkage. In Figure 6.5, the left pan­

els are the estimated recombination fractions when tight linkage was assumed for high degree 

relatives, and the right panels are the estimated recombination fractions when loose linkage was 

assumed. The two different assumptions made on the higher degree relatives does not seem to 

have a substantial impact on the estimation of the recombination fraction. It is apparent that 

marker information from both chromosome 5 and 4 are exhibiting signs of linkage to a Q T L 
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since all estimated recombination fractions lie well below 1/2. Because chromosome 5 houses 

the major gene which accounts for about 20% of the variation in Ql, we see that the estimated 

recombinations become smaller at those marker locations closer to MG1. The estimated recom­

bination fractions from chromosome 4 gives us a sense that a major gene is present, but since 

there is no distinct minimum value so we cannot tell where MG3 resides. 

6 . 5 Summary 

In this chapter, we evaluated the performance of Amos' robust approach to linkage analysis to 

detect major loci and estimate the variance components of a complex trait, which was simulated 

for GAW10. We see that QTLs which account for less than 10% of the total phenotypic 

variation are not detected; however, QTLs which account for at least one-fifth of the total 

variation are readily detected via LOD score curves. As well, QTL variance-components tend 

to be underestimated and polygenic variance-components tend to be overestimated on average. 

Furthermore, the polygenic variance component seems to absorb the variance components due 

to QTLs which are not accounted for in the model. So, multipoint linkage analysis (Almasy et 

al. [1]) should be used to obtain a reasonable estimate of the polygenic component. 
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Chapter 7 

Discussion 

We investigated the performance of Amos' [3] variance-components model in its ability to detect 

major genes and partition the total variation of a complex trait into its genetic and non-genetic 

components. The consequences of neglecting the varying distances between the markers along a 

chromosome and a potential QTL by assuming tight linkage were also investigated by assessing 

a sub-model of Amos' model, which we referred to as the two-point model. In this chapter, 

we highlight some of the observations from our investigation, and discuss some potential future 

work. 

Firstly, in Chapters 5 and 6, we saw that the estimated variance-components from 

the two-point model tended to be biased. On average, the QTL heritability tended to be 

underestimated and the polygenic heritability tended to be overestimated. We also saw that 

the magnitude of the error in the estimates increased as the distance between the marker and 

QTL increased. Because the two-point model incorrectly assumes tight linkage at markers which 

are far from the QTL, we suspect that the degree of model misspecification is associated with 

the severity of the error in the estimated heritabilities. Although Amos' full-model accounts for 

the varying distances between markers and a QTL, the estimated heritabilities still appeared 

to be biased, and in most cases overestimated. In mixed effects models, it is known that 

maximum likelihood estimators result in biased estimates of variance components. Therefore, 

we may want to use other forms of estimation, like those based on estimating equations (Amos 

et al. [4], Prentice et al. [23], Nelder et al. [20]), to determine whether the accuracy of the 

estimated heritabilities improves. 
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Secondly, it is apparent that there is confounding between the recombination fraction 

and the variance components. In Chapter 5, we saw that if we assume tight linkage, the es­

timated heritabilities from the two-point model at different markers exhibit a distinct trend 

across the chromosome. However, when we simultaneously estimate the recombination fraction 

and the heritability components of the quantitative trait, we see that the trend in the esti­

mated heritabilities is removed. It seems that less accurate recombination fraction estimates 

correspond to less accurate estimated heritabilities. When dealing with extended pedigrees, 

we either assumed that higher degree relative pairs exhibited tight linkage or loose linkage. It 

would be interesting to see how the estimated recombination fractions and heritabilities are 

affected if we eliminate these assumptions. This would require determining the exact form of 

the fraction of additive variance due to the Q T L for higher relative pairs as a function of the 

recombination fraction and proportion of alleles shared ibd. 

Thirdly, in Chapter 6 we saw that modelling only one Q T L effect for a complex trait does 

not provide accurate estimates for all variance components. Because a complex trait may have 

more than one Q T L , by only accounting for one major gene, the variance attributable to the 

remaining major genes becomes absorbed into the polygenic variance component. To decrease 

the amount of over-estimation in the polygenic heritability, we may want to investigate whether 

multipoint linkage analysis (Almasy et al. [1], and Amos et al. [4]) improves the accuracy of 

the estimated variance components. 

Finally, the ability of the variance-components approach to detect QTLs strongly de­

pends on the proportion of variation it contributes to the trait of interest. Through our simu­

lations in Chapter 5, we saw that the two-point model can readily map QTLs which contribute 

more than 40% of the total phenotypic variation. When analyzing a complex trait in Chapter 

6, we were able to detect a Q T L accounting for approximately 20% of the variation in one of 

the quantitative risk factors. However, the two-point model was unable to locate a Q T L which 

contributed less than 10% of the variation. In addition, Amos' full model did not appear to 

improve upon the two-point model's detection ability. We point out that whether the trait 

was simple or complex, this model-free variance-components approach was able to detect QTLs 

contributing at least 20% of the total variation without specifying genetic details, such as the 

mode of inheritance, allele frequencies, and penetrances. Because the success of the variance-
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components approach to linkage analysis does not seem to depend on all of the intricate genetic 

details underlying a quantitative trait, it does indeed appear to be robust and alleviate the 

need for segregation analysis. On the other hand, because the variance-components approach 

fails to detect QTLs with a modest effect on a quantitative trait, linkage analysis should still 

be used together with association analysis techniques (see Sham [26], for example). 
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Appendix A 

A . l J o i n t D i s t r i b u t i o n o f 7rmj a n d 7rqj 

Haseman and Elston [15] derived the joint distribution of the proportion of alleles shared ibd 

at a marker locus, irmj, and the proportion of alleles shared ibd at a Q T L , irqj, for the j t h 

sib-pair. Their derivation of this distribution is illustrated below. 

Let the genotype at the marker locus for the mother and father be B\B2 and B3B4, 

respectively. Also, let the genotype at the Q T L for the mother and father be C1C2 and C3C4, 

respectively. We let the alleles with odd subscripts be parents' maternal alleles and alleles with 

even subscripts be parents' paternal alleles. Therefore, mating between these two parents may 

be expressed as follows: 

B\C\ -B3C3 

B2C2 B4C4 

Let 9 be the recombination fraction between the marker locus and the Q T L . Then the 

possible gametes, along with their frequencies, from each parent are shown in Table A . l . A 

recombination occurs with probability 9, and therefore no recombination occurs with probability 

1 — 9. As well, the frequencies of the two possible non-recombinant gametes are equal for each 

parent, and likewise for the frequencies of the two possible recombinant gametes. Note that if 

the two loci are not linked (ie. 9 = 1/2), then the frequencies of the gametes from each parent 

are 1/4. In this case, all gametes are equally likely to occur since recombination between two 

unlinked loci occurs about one half of the time. Alternatively, if two loci are tightly linked (ie. 

9 = 0), then recombination does not occur between the two loci. Furthermore, recombinant 

gametes are not formed, and so they have a frequency of 0. Because an offspring independently 
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Table A . l : Possible Gametes from Two Loci and their Frequencies 

Parent Gamete Frequency 
Mother Bid {l-9)/2 

B2C2 ( l - 0 ) / 2 
B1C2 e/2 
B2C1 6/2 

Father B3C3 {1-9)12 
B4C4 {1-0)12 

e/2 
B4C3 9/2 

receives one gamete from each parent, there are 16 possible combinations of gametes, which are 

called zygotes. 

To compute the probability that a sib-pair shares all of the alleles ibd at the marker and 

Q T L , we simply sum the probabilities over all such instances. For example, the proportion of 

alleles shared ibd at a marker and a Q T L will be 1 if both siblings have genotypes B1C1B3C3. 

The probability that this occurs is [(1 - 6>)/2]2[(l - 9)/2]2 = (1 - 6>)4/16. The summation over 

all 16 cases where the sib have identical genotypes gives the probability that a sib-pair shares 

all of their alleles ibd at both the marker and Q T L : 

P r ( 7 r m j = 1, irqj = 1) = 4[04/16] + 8[02(1 - 0)2/16] + 4[(1 - 6>)4/16] 

= [04 + 2 0 2 ( l - 0 ) 2 + ( l - 0 ) 4 ] / 4 

= [92 + (1 - 0) 2 ] 2 /4 

= * 2 / 4 

where tf2 = 92 + (1 - 6>)2. 

The remaining joint probabilities in Table 3.1 may be computed in a similar manner. 

We may also exploit symmetry and knowledge of the marginal distributions to derive these 

probabilities. For further details please see Haseman and Elston [15]. 

A.2 Joint Distribution of irmj and TTJ 

In their paper, Haseman and Elston [15] derive the joint distribution of the proportion of alleles 

shared ibd at a marker, irmj, and the estimated proportion of alleles shared ibd at a marker, 
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Table A.2: Mating Types and Sib-Pair Types at a Locus with Two Alleles 

Mating Type Sib-Pair Type Probability /o / l / 2 

BB-BB BB-BB 1 
4 

1 
2 

1 
4 

1 
2 

BB-bb Bb-Bb 1 
4 

1 
2 

1 
4 

1 
2 

BB-Bb BB-BB p r 0 1 
2 

1 
2 

3 
4 

BB-Bb 2p 3r 1 
2 

1 
2 0 1 

4 
Bb-Bb p r 0 1 

2 
1 
2 

3 
4 

Bb-Bb BB-BB p2r2/4 0 0 1 1 
bb-bb p 2 r 2 / 4 0 0 1 1 

BB-bb p2r2/2 1 0 0 0 
BB-Bb 2 2 0 1 0 1 

2 
bb-Bb 2 2 

pLr 0 1 0 1 
2 

Bb-Bb 2 2 
p r 

1 
2 0 1 

2 
1 
2 

bb - bB bb-bb $ 

r p 0 1 
2 

1 
2 

3 
4 

bb-Bb 2r 3 p 1 
2 

1 
2 0 1 

4 
Bb-Bb •3 

r°p 0 1 
2 

1 
2 

3 
4 

bb-bb bb-bb r 4 1 
4 

1 
2 

1 
4 

1 
2 

7 T j , for the j t h sib-pair. In particular, they consider the case where there are two alleles at 

the marker locus. As well, it is assumed that we have complete parental information and no 

dominance. 

We illustrate some of the details in the derivation of this joint distribution. Let the 

marker locus have two alleles, B and b, with allele frequencies p and r, respectively. Then the 

possible mating types and sib-pairs are shown in Table A.2. Table A.2 also shows the probability 

of the occurrence of each mating type and sib-pair type. Conditional on the parental and sibling 

marker data, the probability of sharing i alleles ibd at the marker is given by fi. Therefore, 

TTJ = / i / 2 + /2 is the estimated proportion of alleles shared ibd at the marker. Note that the 

results in this table may be generalized to a multiallele marker. Please see Haseman and Elston 

[15] for further details. 

Using Table A.2, we can derive the joint distribution of TTJ and irmj. For example, TTJ = 0 

if and only if the mating type Bb—Bb results in a sib-pair oi BB — bb. Note that it is not possible 

for this sib-pair to share any alleles ibd. Therefore, P r ^ - = 0,irmj = 1/2) = P r(-7Tj = 0, irmj = 

1) = 0 and P r ( 7 T j = 0, irmj = 0) = p2r2/2. Similarly, TTJ = 1/4 if the mating type BB — Bb (or 

bb-bB) results in a sib-pair of BB - Bb (or bb-bB). Note that these sib-pairs cannot share two 

alleles ibd, so P r ( 7 T j = 1/4, -irmj = 1) = 0. However, they can share 0 or 1 alleles ibd and each 
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case is equally likely to occur, so P r(7Tj = 1/4, irmj = 0) = P r(7Tj = 1/4, irmj = 1/2) = p 3r+pr 3. 

The remainder of Table 3.2 may be derived in a similar manner. 
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