
On continuous-time generalized AR(1) processes: 
models, statistical inference, and applications to 

non-normal time series. 
by 

Rong Zhu 

B.Sc, USTC 1986 

M.Sc, USTC 1988 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

Doc tor of Phi losophy 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Statistics) 

we accept this thesis as conforming 
to the required standard 

The University of British Columbia 
March 2002 

© Rong Zhu, 2002 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of 

The University of British Columbia 
Vancouver, Canada 

Date 

DE-6 (2/88) 



Abstract 

This thesis develops the theory of continuous-time generalized AR(1) processes and presents 

their use for non-normal time series models. The theory is of dual interest in probability and statis

tics. From the probabilistic viewpoint, this study generalizes a type of Markov process which has 

a similar representation structure to the Ornstein-Uhlenbeck process (or continuous-time Gaussian 

AR(1) process). However, the stationary distributions can now have support on non-negative in

tegers, or positive reals, or reals; the dependence structures are no longer restricted to be linear. 

From the statistical viewpoint, this study is dedicated to modelling unequally-spaced or equally-

spaced non-normal time series with non-negative integer, or positive, or real-valued observations. 

The research on both the probabilistic and statistical sides contribute to a complete modelling 

procedure which consists of model construction, choice and diagnosis. 

The main contributions in this thesis include the following new concepts: self-generalized 

distributions, extended-thinning operators, generalized Ornstein-Uhlenbeck stochastic differential 

equations, continuous-time generalized AR(1) processes, generalized self-decomposability, general

ized discrete self-decomposability, P-P plots and diagonal P-P plots. These concepts play crucial 

roles in the newly developed theory. 

We take a dynamic view to construct the continuous-time stochastic processes. Part II is de

voted to the construction of the continuous-time generalized AR(1) process, which is obtained from 

the generalized Ornstein-Uhlenbeck stochastic differential equation, and the proposed stochastic in

tegral. The resulting continuous-time generalized AR(1) process consists of a dependent term and 

an innovation term. The dependent term involves an extended-thinning stochastic operation which 
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generalizes the commonly used operation of constant multiplier. Such a Markov process can have 

a simple interpretation in modelling non-normal time series. In addition, the family of continuous-

time generalized AR(1) processes is surprisingly rich. Both stationary and non-stationary situations 

of the process are considered. 

In Part III, we answer the question of what kind of stationary distributions are obtained 

from the family of continuous-time generalized AR(1) processes, as well as the converse question of 

whether a specific distribution can be the stationary distribution of a continuous-time generalized 

AR(1) process. This leads to the characterization of distributions according to the extended-

thinning operations. The characterization results are meaningful in statistical modelling, because 

under steady state, the marginal distributions of a Markov process are the same as the stationary 

distribution. They will guide us to choose appropriate processes to model a non-normal time series. 

The probabilistic study also shows that the autocorrelation function is of exponential form in the 

time difference, like that of the Ornstein-Uhlenbeck or Ornstein-Uhlenbeck-type process. 

Part IV deals with statistical inference and modelling. We have studied parameter esti

mation for various situations such as equally-spaced time, unequally-spaced time, finite marginal 

mean, infinite marginal mean, and so on. The graphical tools, the P-P plot and diagonal P-P plot, 

are proposed for use in identifying the marginal distribution and serial dependence, and diagnosing 

the fitted model. Three data examples are given to illustrate the new modelling procedure, and 

the application capacity of this theory of continuous-time generalized AR(1) processes. These time 

series are non-negative integer or positive-valued, with equally-spaced or unequally-spaced time 

observations. 
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Part I 

Introduction 



Chapter 1 

Overview 

This thesis is devoted to the development of a theory to construct models for non-normal equally-

spaced or unequally-spaced time series. The time series models are based on continuous-time 

stochastic processes in a class called generalized AR(1) processes, and these are constructed based 

on classes of random operators or stochastic differential equations. 

Section 1.1 briefly explains the motivation of this study, and reviews the relevant literature. 

In Section 1.2, we summarize the key ideas that led to our direction of theoretical development, 

and highlight the new concepts and main results in subsequent chapters; these may help readers to 

navigate through the details and obtain an integrated understanding of the theory of continuous-

time generalized AR(1) process. 

1.1 Motivation and literature review 

Dynamic phenomena exist in diverse disciplines like chemistry, physics, economics, actuarial science, 

epidemiology, biology, management science, and so on. It means an event evolving over time. 

People have been developing various stochastic process models to try to describe or approximate 

these phenomena. A series of observations of a dynamic process lead to a time series. 
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Traditionally, for a real-valued time series, we use the Gaussian or normal time series model, 

which has a Gaussian or normal marginal distribution. However, in reality, there are many situa

tions where the observed series are discrete or positive-valued. Such issues arise especially in the 

longitudinal studies or clinical trials. The marginal distributions are often skewed and have large 

variations. Hence, the normal marginal distribution is no longer directly suitable for such situa

tions. This has motivated the development of non-normal time series models, where the marginal 

distributions could be like the Poisson or Gamma distribution, to handle discrete or positive-valued 

data. 

Such a transition is similar to the transition from the linear model to the generalized linear 

model where the response variables are discrete or positive-valued. However, unlike the G L M 

where distributions for modelling discrete or positive-valued responses are well developed, there 

has been little past research for stochastic processes for discrete or positive-valued time series. For 

example, suppose we find the marginal distribution for a count data time series is well modelled by 

the generalized Poisson distribution, what kind of stochastic processes should we use? Or in other 

words, is there any simple stochastic process which has the generalized Poisson margin? We believe 

most people will face a difficulty when encountering such a problem. Therefore, it is important to 

construct probabilistic models which haven't been considered previously. 

In addition, the sampling scheme is another serious question. Usually, we take the equally-

spaced sampling scheme when we design an experiment study. However, for practical reasons, we 

may obtain unequally-spaced observations. Many reasons could lead to such phenomena: 

• subjects can't be observed on the original schedule plan, say the patients can't visit the clinic 

for the scheduled appointments due to personal matters; 

• there exist missing values; 

• or even more extreme, the schedule can't be made equally-spaced, it is random. 

For a stationary process, an equally-spaced sampling scheme can guarantee the dependence struc

ture between two adjacent margins is always the same. However, this is not true when the sampling 

scheme is unequally-spaced. Unequally-spaced time series are sometimes called irregular time series. 
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Many methods have been developed toward this issue. One reasonable approach is to construct 

continuous-time stochastic process models as pointed out by Jones [1993], p. 56, because only the 

continuous-time underlying process can allow the observations taken at arbitrary time points. 

In this study, we focus on unequally-spaced count or positive-valued time series. We try 

to develop the continuous-time stochastic processes for them in a systematic approach. Before we 

proceed, we take a literature review for both discrete-time and continuous-time stochastic processes 

with marginal distributions whose support is the non-negative integers or the positive reals. 

For positive-valued margins, an incomplete list is Gaver and Lewis [1980] Lawrance and 

Lewis [1980], Wolfe [1982], Sato and Yamazato [1983], Lewis, McKenzie and Hugus [1989], Andel 

[1988, 1989a, 1989b], Rao and Johnson [1988], Hutton [1990], Sim [1990, 1993, 1994], Adke and 

Balakrishna [1992], Jayakumar and Pillai [1993], J0rgensen and Song [1998], Barndorff-Nielsen 

[1998b], etc. These marginal distributions include gamma, exponential, and so on. Most of them 

are discrete-time processes which can not be extended to continuous-time. 

For non-negative integer-valued margins, there are: Phatarfod and Mardia [1973], van Harn, 

Steutel and Vervaat [1981], McKenzie [1985, 1986, 1988], Al-Osh and Alzaid [1987], Al-Osh and 

Aly [1992], Alzaid and Al-Osh [1993], Aly and Bouzar [1994]. These marginal distributions include 

Poisson, negative binomial, generalized Poisson, etc. Some of the processes come from the birth-

death processes, especially for the linear birth-death processes; one can even trace them to Kendall 

[1948, 1949]. 

Joe [1996] proposed a class of discrete-time stochastic processes with infinite divisible mar

gins, which include both count and positive-valued margins. 

These processes are first-order Markov processes. Some of them can be generalized to higher 

order Markov processes. Although the constructions of these processes differ from one another, 

there are three major approaches: constructing the birth-death process by the generating function 

method, constructing the process by specifying multivariate distributions for adjacent margins, and 

constructing the process by solving stochastic differential equations. Next we give a brief comments 

on these three approaches. 
The approach of constructing the birth-death process by the generating function method 
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was established by Kendall [1948, 1949]. It will yield a continuous-time stochastic process with state 

space being non-negative integers. This approach is still active in finding models for population 

processes in biological and cancer research. By sampling on equally-spaced time points, we can 

obtain the discrete-time processes. Two examples from the resulting linear birth-death processes 

with Poisson and negative binomial margins respectively, are often cited in the literature to model 

count data time series. However, the birth-death process approach can not yield the processes with 

state space being the real numbers. 

In the area of multivariate non-normal statistics, researchers (see Joe [1997]; Kotz, Bal-

akrishnan and Johnson [2000]) have used copulas and other approaches to construct multivariate 

distributions with given univariate margins and desirable dependence structures. The theory ex

tends to construct discrete-time Markov processes with given non-normal margins by specifying 

appropriate multivariate distributions for adjacent margins. One famous example is the one de

fined by binomial thinning when the marginal distribution is discrete self-decomposable. However, 

some of these models, for example, random coefficient models, are quite isolated without a sys

tematic method. We can't extend most of them from discrete-time case to continuous-time case 

because of the consistency requirement for stochastic processes. Moving from the discrete-time to 

the continuous-time situation, we will experience the change from finite or countably infinite dimen

sions to uncountably infinite dimensions. This makes it harder to develop theory for continuous-time 

stochastic processes with given margins. 

The third approach is to define a type of stochastic differential equation, and find the so

lution which yields a continuous-time stochastic process. The obvious benefit is that it could 

provide a large family of Markov processes with desired margins. For example, Ornstein-Uhlenbeck 

and Ornstein-Uhlenbeck-type processes obtained from their corresponding SDE's lead to self-

decomposable margins (see Section 7.1), known as the class L in Feller [1966b]. Since the theory 

of stochastic differential equations is dominated by the Ito integral which is involved in Brownian 

motion, the stochastic differential equations defined for processes with positive-valued margins was 

not developed until the early 1980s when the Ornstein-Uhlenbeck-type process evolved. Probably 

this is the first one appearing in that area. To our knowledge, we have not seen any stochastic 
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differential equation denned for processes with non-negative integer-valued margins. The reason 

could be that we don't know how to define such kind of stochastic differential equations and how 

to define their solutions. However, the counterpart of self-decomposable distribution was proposed 

a little bit earlier than the Ornstein-Uhlenbeck-type process, and it leads to the concept of discrete 

self-decomposable distribution (see definition in Section 7.1). This discrete self-decomposability 

property leads to continuous-time Markov processes with a special stochastic representation, which 

involves the binomial thinning operation. The linear birth-death process with Poisson margins 

discovered by Kendall [1948] is fortunately a concrete example in this family. 

1.2 Highlights of our new research 

Our study is dedicated to developing continuous-time stochastic processes with count or positive-

valued margins which can be used to model equally-spaced or unequally-spaced count or positive-

valued time series. To achieve this, for reasons of simplicity, we focus on first-order Markov pro

cesses, rather than on more general classes. 

We take the dynamic view of building the continuous-time stochastic process with desired 

margins. Based on the infinitesimal analysis for the stochastic representations of the two linear 

birth-death processes with Poisson and negative binomial margins, we propose the stochastic dif

ferential equation for a continuous-time process with non-negative integer-valued margins. We 

introduce the concepts of a self-generalized distribution and the extended-thinning operation to 

define the stochastic differential equation: 

dX(t) = [K{l-ndt)®X(t)-X(t)]+de(t) 

= [{l-ndt)K®X(t)-X{t)]+de(t), (1.2.1) 

which we call the generalized Ornstein-Uhlenbeck equation. Here K(a) is a self-generalized rv with 

respect to parameter a, and "©" denotes the extended-thinning operation. The new stochastic 

integral in our theory is defined by convergence in distribution, rather than in L2 or probability. 
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The solution of the generalized Ornstein-Uhlenbeck equation has a simple stochastic representation, 

X{t2)= (e-^-'A ®X(h}+ t tl
 (e""*)K®de(t), (1.2.2) 

^ ' K Jo 

with a dependent term (e -7^*2-*1))^. ®X(ti) and an innovation term / g 2 - * 1 (etit) K ®de(t), quite 

similar to the structure of first-order auto-regressive process. Hence, we call it the continuous-

time generalized AR(1) process. One special case of extended-thinning operations is binomial 

thinning. In Section 1.1, we mentioned that the binomial thinning operation can lead to continuous-

time processes with non-negative integer-valued margins. Such a class is included in the class of 

continuous-time generalized AR(1) processes. In this way, we can obtain the two linear birth-death 

processes with Poisson and negative binomial margins again. 

By the hint of a correspondence between self-decomposability and discrete self-decomposabi-

lity, we obtain the positive real counterpart of the discrete self-generalized distribution. This 

leads to the positive real counterpart of the extended-thinning operation and stochastic differential 

equation, as well as the solution. Finally, we generalize the extended-thinning operation to the 

real case; the only known operator is the constant multiplier, and consequently the common AR(1) 

process obtains. 

In summary, we unite the cases of non-negative integer, positive-valued and real-valued 

state space by the self-generalized distribution and extended-thinning. The corresponding general

ized Ornstein-Uhlenbeck equation (1.2.1) leads to the continuous-time generalized AR(1) process 

(1.2.2). This type of Markov process has a simple stochastic representation, which provides an easy 

explanation when modelling, and a wide range of stationary infinitely divisible distributions such 

as Poisson, negative binomial, generalized Poisson, Gamma, exponential, inverse Gaussian etc, to 

cover diverse problems arising in various disciplines. 

In addition, the generalized Ornstein-Uhlenbeck equation can allow us to obtain continuous-

time process which is not only stationary, but also non-stationary with time-varying parameters. 

For example, replacing only the constant parameter \x by a time-varying parameter /i(i) in (1.2.1), 

we obtain the stochastic differential equation 

X(t + h) = (l-u.{t)h)K®X(t) + Ae{t), (1.2.3) 
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which leads to non-stationary continuous-time generalized AR(1) process 

X(t2)= (e-ft*®*) ®X(h)+ f2 (e~ & ®de(t). (1.2.4) 

Such flexibility is very meaningful in developing models for non-negative integer, or positive, or 

real-valued time series with non-stationarity like trend, or seasonality, or covariate effects. 

In the context of the continuous-time generalized AR(1) process, the constant multiplier 

operation leads to self-decomposability and the binomial thinning operation leads to discrete 

self-decomposability. This is well known in the literature. Now the development of the theory 

of continuous-time generalized AR(1) processes certainly extends the existing concepts of self-

decomposability and discrete self-decomposability to other operators: a self-generalized distribution 

with non-negative integer support leads to generalized discrete self-decomposability, while a self-

generalized distribution with positive real support corresponds to generalized self-decomposability. 

These concepts of generalized self-decomposability and discrete self-decomposability help us to 

develop continuous-time generalized AR(1) processes with specific marginal distributions to fit 

practical needs. 

This work presents the theory of continuous-time generalized AR(1) processes in the order 

of model constructions, properties and applications. Now we highlight by chapter the new concepts 

and key results to help readers gain an overview of the theory of continuous-time generalized AR(1) 

processes. 

Chapter 2 defines the basic distribution families and independent increment processes for 

the subsequent theoretical developments. Some new distributions are discovered; these include four 

generalized convolution families: GC I, GC II, GC III and GC IV, which will be used in constructing 

independent increment processes. 

We propose the concepts of self-generalized distributions and extended-thinning operations 

in Chapter 3. These generalize the binomial thinning and constant multiplier operators for random 

variables with support on non-negative integers and positive reals. Besides a general theory, four 

new pairs of families of self-generalized distributions are discovered; there is a one-one mapping of 

operators with the two types of support. This theory has its origins from a careful study of the 

conditional probabilities of the linear birth-death process. The self-generalized operator in Example 
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3.2 is the operator associated with the linear birth-death process whose stationary distribution is 

negative binomial. In addition, the discovery of extended-thinning operations for positive-valued 

rv's enlarges our vision on obtaining a positive linear conditional expectation; we need not restrict 

ourselves on the commonly used constant multiplier operation to achieve this property. These 

operators also give us more choices in modelling the correlation between two positive random 

variables. 

Chapter 4 develops the generalized Ornstein-Uhlenbeck SDE's to include processes with 

support on non-negative integers, and construction of solutions of these equations (in the sense 

of convergence in distribution). The solution has a simple representation in terms of an extended 

thinning operator and an independent increment innovation process. These resulting processes are 

called continuous-time generalized AR(1) processes to emphase the similarity of their conditional 

expectation with that of the continuous-time Gaussian AR(1) process. 

Applying the theory in Chapter 4, we obtain interesting results from the generalized Ornstein-

Uhlenbeck equations by choosing different extended-thinning operations and independent increment 

processes; their state spaces cover the non-negative integers, positive reals and reals. Both station

ary and non-stationary processes are considered. Many special cases are developed and studied in 

Chapter 5. 
In Chapter 6, we study the stationary distributions of the continuous-time generalized AR(1) 

processes. This study is to answer the question whether a specific distribution can be the marginal 

distribution of a continuous-time generalized AR(1) process. It guides us to choose proper pro

cesses with certain margins when modelling. Time series with diverse marginal distributions from 

the stationary continuous-time generalized AR(1) processes are also obtained. Key theorems are 

Theorems 6.1.1 and 6.3.1. The latter theorem is a result on the pgf or LT of the independent 

increment innovation process based on the pgf or LT of the stationary distribution, with a given 

extended-thinning operator. Many special cases are developed and studied. 

Chapter 7 further studies the stationary distributions under different extended-thinning 

operations. The generalized self-decomposable (GSD) and generalized discrete self-decomposable 

(GDSD) classes are defined in a similar way to the self-decomposable and discrete self-decomposable 
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classes associated with the constant multiple and binomial thinning operators. Several ways are 

developed to check if a given distribution is in one of the GSD or GDSD classes. Key theorems 

are Theorems 7.2.3, 7.2.5 (possibly simpler ways to check if a distribution is GSD or GDSD), and 

Theorem 7.2.7 (infinite divisibility of the classes). Relations between different GSD and GDSD 

classes are studied, as well as analog results between the cases of discrete and continuous margins. 

Chapter 8 investigates infinitesimal transition and duration features of the continuous-time 

generalized AR(1) processes. A PDE characterization is given for the conditional pgf or LT; a key 

result is that the pgf or LT of a self-generalized distribution is determined by its partial derivative 

evaluated at a boundary. For the continuous-time generalized AR(1) process with non-negative 

integer support, the infinitesimal generator matrix has the downwardly skip-free property. Another 

key result is that a steady-state continuous-time generalized AR(1) process can be determined 

based on two of the following three elements: marginal distribution, self-generalized distribution 

for the operator, increment of the innovation process. 

In Chapter 9, we present some differences for stochastic process constructions for the 

discrete-time and continuous-time situations. We also study conditional and multivariate distri

butions associated with some specific cases of the continuous-time generalized AR(1) process. A 

by-product is a new approach to construct families of multivariate distributions with given univari

ate margins. Interesting stochastic representations are given for some special processes and it is 

shown that some new discrete-time time series with gamma margins have better properties in the 

innovation random variable, compared with time series based on self-decomposability. 

We give a thorough study on parameter estimation methods in Chapter 10; these estimators 

including MLE, CLS, ECF etc, are desired in different situations and have their own advantages 

and disadvantages. 

Chapter 11 looks into the asymptotic properties of the commonly used estimates like M L E 

and CLS in the unequally-spaced setting. A random sampling scheme is proposed, and results build 

on the techniques of proof in Billingsley [1961a] and Klimko and Nelson [1978]. 

Chapter 12 discusses a variety of topics like detection of serial dependence, model diagnosis 

and selection, hypothesis testing, forecasting and process simulation. The graphical methods, called 
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the P-P plot and diagonal P-P plot, are proposed for assessing autocorrelation and model diagnosis. 

In Chapter 13, we illustrate the capability of the theory of continuous-time generalized 

AR(1) processes for real problems with three applications. These time series include non-negative 

integer and positive-valued observations. 

Finally in Chapter 14, we summarize the strengths and weakness of the continuous-time 

generalized AR(1) processes in modelling. Also we briefly discuss some thoughts on construction 

of stochastic processes. Areas for future research are also mentioned. 
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Part II 

Theory for model construction 
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Chapter 2 

Relevant background on characteristic 

tools, distribution families and 

stochastic processes 

In this chapter, we cover background concepts needed in the development of the new theory of 

continuous-time generalized AR(1) processes. We try to select a minimum of necessary materials 

for the subsequent chapters. 

This chapter is organized in the following way: Section 2.1 briefly introduces the Ornstein-

Uhlenbeck processes and Ornstein-Uhlenbeck-type processes; we will generalize these processes to a 

wider range, leading to the continuous-time generalized AR(1) processes. In Section 2.2, we discuss 

some characteristic tools for probability distributions and prove some new results. We present some 

particular distribution families in Section 2.3, and independent increment processes in Section 2.4. 

These results are used in subsequent chapters for special examples of generalized AR(1) processes. 
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2.1 Ornstein-Uhlenbeck processes and Ornstein-Uhlenbeck-type 

processes 

The Ornstein-Uhlenbeck process comes from the Ornstein-Uhlenbeck stochastic differential equa

tion (SDE), which has another name, the Langevin equation (see Ornstein and Uhlenbeck [1930], 

also Nelson [1967], 0ksendal [1995], Hsu and Park [1988], Schuss [1988]). Let {X(t); t > 0} be a 

continuous-time process. The Ornstein-Uhlenbeck equation is defined as 

dX(t) = -pX{t)dt + adW(t), n > 0, a > 0, 

where {W(t);t > 0} is a standard Brownian motion independent of X(0). The solution of this SDE 

is well known as 

X(<) = e-"*X(0) + ff / e-^-^dWir), 
Jo 

where J0* e _ / i T dW(r) is the Ito integral, which is the limit of a sequence of rv's in the sense of 

convergence in L2, and is normally distributed. Hence, the support of the margin X(t) is 5R. 

Furthermore, X(t) can be represented as 

X(t) = e - ^ - s ) X ( s ) + a f S e-^-^dWir), s < t. 
Jo 

Note that f*~s e~'1( t~fl~7"JdW(T) can be written as $1 e~^'^dW{T), and is independent of X(s) 

because X(s) is independent of {W(T);T > s}. This feature shows that the process is a Markov 

process, and a discrete-time AR(1) process can be readily obtained from it. If X(0) is normally 

distributed, then X(t) is normally distributed for all t > 0. This model serves continuous-time 

time series very well, and is named as continuous-time AR(1) (CAR(l)). See Brockwell and Davis 

[1996] and references therein. Because of normal margins under steady state, it is sometimes called 

a continuous-time AR(1) Gaussian process. The Ornstein-Uhlenbeck process has applications in 

mathematical finance (see Neftci [1996]). 

Wolfe [1982] initiated the study of Ornstein-Uhlenbeck-type processes. Almost at the same 

time, Sato and Yamazato [1982], Jurek and Vervaat [1983] studied this process too. The Ornstein-

Uhlenbeck SDE is extended to 

dX{t) = -iiX{t)dt + dW{t), n>0, 
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where {W(t);t > 0} is a homogeneous Levy process independent of X(t). The solution has the 

same form as the Ornstein-Uhlenbeck SDE: 

X(t) = e-^-^Xis) + f S e-^-s-TUw(r), s < t. 
Jo 

but f0* e"*'( t" s~ T ' ( i iy(T) is not the Ito integral. This stochastic integral is the limit of a sequence 

of rv's in the sense of convergence in probability. The existence of such stochastic integral can be 

found in Lukacs [1968], where the characteristic function of the integral has the form 

exp S log < p w { l ) ( s e - " ( * - « - T ) ) d T j . 

Similarly, f^~s e'^-'-^dWir) {= /* e - " ( ' - T ' d i y ( T ) ) is independent of X{s). The support of 

W(t) can be positive real-valued. Hence, {X(t);t > 0} can be a positive-valued process. Sim

ilar to the Ornstein-Uhlenbeck process, a generalized time series (other than classical Gaussian 

distributed time series) can be easily obtained if sampling on equally-spaced time points. This fea

ture allows the Ornstein-Uhlenbeck-type processes to model positive-valued observed data. Wolfe 

[1982] showed two possible applications: the study of radioactive material in stockpile, and bank 

currency. Later Barndorff-Nielsen et al. [1993, 1998a] applied this kind of process with specific 

marginal distributions to turbulence and finance. 

Now we discuss some common features of Ornstein-Uhlenbeck and Ornstein-Uhlenbeck-type 

processes: 

• Nice stochastic representation form: the sum of two independent terms. One governs the 

dependence relation with the previous state, one explains the input (noise or innovation). 

Note that | e -M*-*)x(s) | < \X{s)\, hence, the term e'^'^Xis) looks "thinner" than X{s). 

• First order Markov: this Markov property is very helpful in the study of conditional properties, 

stationary distribution or margin under steady state, transition properties, and joint finite-

dimensional distributions. 

• Simple auto-correlation: the auto-correlation function, if it exists, under steady state has the 

exponential form Cor [X(s), X(t)} = e - / t l*~ s L This implies that for a bigger time difference, 

there is less influence on the future state. 
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Although the Levy process t > 0} can have increments which are non-negative inte

ger valued, the term e~^t~s'lX(s) excludes the possibility of non-negative integer valued margins. 

Such a disadvantage precludes the application to count data time series. 

In the study of continuous-time generalized AR(1) process, we extend the stochastic oper

ation of a constant multiplier to an extended-thinning operation, and define generalized stochas

tic integrals. Such modifications allow us to obtain a similar representation for processes with 

non-negative integer state space. The continuous-time generalized AR(1) processes includes the 

Ornstein-Uhlenbeck process and Ornstein-Uhlenbeck-type process as special cases. 

2.2 Characterization tools of distributions and examples 

In this section, we review the common characterization tools which are heavily used in the theory 

of continuous-time generalized AR(1) process. Note that this is a simplification of terminology; the 

processes are AR(l)-like with AR(1) autocorrelation, but not always autoregressive. These tools 

include the probability generating function (pgf), Laplace transformation (LT), moment generating 

function (mgf) and characteristic function (cf). 

This section consists of results that are used in subsequent chapters. It can be skimmed in 

the first reading. Proposition 2.2.2 is especially important. 

Any kind of generating function has the property that there is one-to-one mapping between 

the generating functions and the distributions. Hence, by investigating the generating function, we 

can know the corresponding distribution. In principle, the cf can be used in all types of random 

variables because it always exists. However, for specific types of random variables or distribution 

families, other generating functions may be more convenient. For example, the pgf is often used in 

non-negative integer-valued rv's, while the LT is adopted for positive real-valued rv's. This is for 

convenience of theorems for pgf's and LT's that can be applied. In exponential dispersion models, 

the mgf is used because the definition of that kind of model is related to the cumulant generating 

function. 
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We also prove some new results concerning pgf s and LT's. These will play certain roles in 

the theory of continuous-time generalized AR(1) processes. 

2.2.1 Probability generating function 

The probability generating function is used for discrete distributions with non-negative integer 

support AV Assume X is a non-negative integer-valued rv with probability mass function 

Pr[X = i] = pi > 0, i = 0,1,2,... . 

The pgf of X is defined as 
oo 

Gx(s) = E{sx) = Y,Pis\ 0 < s < l . 

i=0 

Usually the pgf is defined on [0,1] because the power series on the right hand side always exists 

when 0 < s < 1. This domain is sufficient for our need. Of course, it can be extended to \s\ < 1. 

As for |s| > 1, the finiteness of Gx{s) depends on the individual probability mass function. The 

function Gx(s) is increasing from po to 1 as s increases from 0 to 1. Once we have the pgf, we can 

obtain the probability masses: 

P i = Gx\o)/i\, i = 0,1,2,.. . . 

Also the mean and variance are derived as 

E ( X ) = G'x(l), Var (X) = E ( X 2 ) - (E(X)) 2 = G"x{\) + G'x(l) - {G'x(l))2. 

The index of dispersion, D, is defined as D(X) = Var ( X ) / E ( X ) , and is referred as an index of 

dispersion for distributions for count data. If D(X) > 1, there is overdispersion relative to Poisson. 

If D(X) < 1, there is underdispersion relative to Poisson. 

The following theorem characterizes the pgf; it is useful to verify if a function G(s) is a pgf. 

Refer to Bondesson [1992], p. 9. 

Theorem 2.2.1 Suppose G(s) is a Taylor series in s. Then, G(s) is a pgf iff 
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1. G(s) is absolutely monotone (AM), i.e., G^(s) >0,i € JVQ, S 6 [0,1). 

2. G{s) —• 1, as s -»• 1. 

This is equivalent to checking G^(0) > 0 for all i and G(l) = 1. It is viewed as the discrete 

counterpart of Bernstein's theorem (Theorem 2.2.5). See Bondesson [1992], p. 9. 

Perhaps the simplest distribution is the Bernoulli distribution. It is often used to build other 

distributions, say Binomial, Poisson, etc. Let X ~ Bernoulli(p). X takes only two values, 0 and 1, 

with 

Pr[X = l]=p, Pv[X = 0] = 1 - p; 

and the pgf is Gx(s) = (1 — p) +ps. Consequently, the mean and variance are 

B(X)=p and Var(X) = p(l -p). 

Some distributions with non-negative integer support are listed below; these can be used in mod

elling count data. A l l of them are discussed to some extent in Bondesson [1992]. Also refer to 

Johnson and Kotz [1969]. 

(a) Poisson: X ~ Poisson(A). Then 

Pi = Pr[X = *] = — e~A; i = 0,1,2,...; A > 0. 

The pgf is Gx(s) = exp{A(s - 1)}, and E (X) = Var (X) = A. Thus, D(X) = 1, which is 

referred to as equidispersion. 

(b) generalized Poisson: Let X ~ GP(0,7?). Then 

P i = Pr[X = i] = 0(6 + rli)i-1e-e-rii/i\, i = 0,1,2,...; 6 > 0, 0 < n < 1. 

The pgf is 

Gx{s) = exp | e (^n(kr1)k-le-kr>sk/k\ - 1 

The mean, variance and index of dispersion are 

B(X)=e(l-rj)-\ V a r ( X ) = f l ( l - » 7 ) - 3 , D(X) = (1 - r?)"2 > 1. 
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Note that if r\ = 0, it becomes Poisson(0). A good reference is Consul [1989]; there r\ can be 

negative to obtain an underdispersed distribution. However, this case has nothing to do with 

the study of continuous-time generalized AR(1) processes, because the marginal distribution 

of continuous-time generalized AR(1) process should have probability mass on the whole non-

negative integer set, not on a bounded subset. When r? < 0, the generalized Poisson rv has 

an upper bound of support. 

) negative binomial: Let X ~ NB(7 , q). [Note that this is a non-standard parametrization.] 

Then the pmf is 

P i = Fv[X = i}= ( 7 + * - 1 ) ( l - g ) V ; » = 0,1,2,...; 7 > 0 , 0 < g < l . 

The pgf is 

Gx(s) = ( Y T T ^ ) 7 = e x P - S ) " 1 

and 

E ( X ) = 79/(1-<?), V a r ( X ) = <yq/(l -q)\ D{X) = 1/(1 - q) > 1. 

When 7 is an integer, the negative binomial distribution can be explained by Bernoulli trials 

with success probability 1 — q or failure probability q, in which the experiment stops until the 

7-th successes, and X is the total number of trials in the experiment. 

The geometric distribution is the special case in the negative binomial family. It is obtained 

when 7 = 1 with pmf: 

P i = Pr[X = i] = (1 - <?)V; •* = 0,1,2,...; 7 > 0 , 0 < g < l , 

and pgf Gx{s) = jE^- Note that X can take value 0. But sometimes people treat X' = X + l 

as the geometric distribution which is positive integer-valued and has pgf Gx'(s) = 

Unless stated otherwise, we will take the former as geometric distribution throughout the 

thesis. 

log(l - qs) 
log(l - q) 
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(d) discrete stable: Steutel and van Harn [1979] proposed this discrete stable distribution. Let 

X be a rv from discrete stable distribution. Then the pgf is defined as 

Gx(s) = exp{-A(l - s)e} = exp{A[l - (1 - s)e ' - 1]}, A > 0, 0 < 9 < 1. 

The pmf can be obtained by expanding the pgf in a power series: 

n = P l = Afc-*, p , = (-1). g ' - f ^ ^ ^ , , - 2.3 

However, since G'x(s) = Gx(s) • A0/(1 — the expectation will be infinite if 0 < 0 < 1. 

When # = 1, it becomes Poisson(A). 

(e) logarithmic series distribution: Let X be a rv from logarithm series distribution. Then the 

pmf is defined as 

ci+i 
P i = Pr[X = i] = ^—y0, 1 = 0,1,2,...; c = 1 - e'\ 6 > 0. 

The pgf is 

Gx(s) = - s - M o g l l - c S ) / 0 = 5 - 1 l o g ( l - c S ) / l o g ( l - c ) , 

and 

c0~^(l — c0~^) 
E(X) = c 0 - l / ( l - c ) - l s Var(X) = d T ^ l - c O / U - c ) 2 , D(X) = ( 1 _ c ) ( ^ - i + c 1 1 } -

Note that this logarithm series distribution is left shifted to 0 compared to the usual defi

nition in Johnson and Kotz [1969], p. 166. Therefore, this logarithm series distribution is 

sometimes overdispersed, and sometimes underdispersed depending on the parameter 9. Let 

9o be the solution of (i^^fl-i+c-i) = Then if 0 > 9Q, it has overdispersion; otherwise, 

underdispersion. 

(f) power series distribution: Let X be distributed in power series distribution. Then the pmf is 

i 
p0 = 0, Pl=Pr[X = i}=6H(k-9)/+ * = 1,2,...; 0 < 6 < 1. 

k=l 
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When 9 = 1, X degenerates to 0. The pgf is 

Gx(s) = s-1[l-(l-s)e]. 

Note that when 0 < 9 < 1, X has no moments. See Bondesson [1992], p. 128 and p. 132. This 

is also related to LTC (Laplace transform family C) in Joe [1997], p. 375; there is a left shift. 

Also the discrete stable distribution is compound Poisson with the distribution of X + 1. See 

the pgf expression in (d). 

(g) Zeta (discrete Pareto) distribution: Let X be a rv from Zeta(p). Then the pmf is defined as 

P i = c • (i + l)-( ' + 1 >, i = 0 , l , 2 , . . . ; p>0 , 

where c = Y^ili i~^p+1^- Note that this distribution comes from left shifting the Zeta dis

tribution in Johnson and Kotz [1969], p. 240; it is commonly called the Zipf-Estoup law in 

linguistic studies. 

Unfortunately, the pgf, expectation and variance of Zeta distribution have no explicit expres

sions. 

Stochastic operations can lead to new pgf's. Here we summarize some of the facts regarding 

operations on one rv. 

Proposition 2.2.2 

(1) G(s) pgf =>• (1 — a) + ctG(s), 0 < a < 1, is a pgf [random zero-truncation operation]. 

(2) G(s) pgf G(as + 1 - a), 0 < a < 1, is a pgf [binomial-thinning operation]. 

(3) G{s;8) pgf for 3 £ B and F a distribution on B ^ G(s;B)dF(8) is a pgf [mixture oper-
JB 

ation]. 

(4) G(s) pgf eAfG( s) _ 1] (A > 0) is a pg/[compound Poisson operation]. 

(5) G(s) pgf (1 - a) + asG(s), 0 < a < 1, is a pgf [zero-modification operation]. 
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Proof: Suppose X has pgf G(s) or G(s;B). 

(1) Consider Y = I • X, where 7 ~ Bernoulli(a). Then 

GY(s) = E ( s y ) = B(sLX) = Pr[7 = 0] + Pr[7 = l}E{sx) = (1 - a) + aG(s). 

(2) Let y = 0

 w h e r e 7o = 0, 7i ' - ' Bernoulli(a), i = 1,2,.... Then 

(3) Suppose y conditioned on /3* = 8 has the same pgf G(s\ B),. and/3* is distributed in F on 73. 

(4) Let Y = Ezto where X 0 = 0, Xt

 i - ~ ' with pgf G(s) (t = 1,2,...), and Z ~ Poisson(A). 

(5) Consider Y = 7 • (X + 1), where 7 ~ Bernoulli^). Then 

GY(s) = E (a y ) = E (sr<x+V) = Pr[7 = 0] + Pr[7 = l]sE(s x) = (1 - a) + asG{s). 

Note that random zero-truncation operation is very similar to zero-modification operation. 

Both involve truncation. The random zero-truncation operation directly applies truncation to a rv 

X, while the zero-modification operation first shifts X to right as X + 1, then applies truncation. 

Hence, both primarily keep the shape of the pmf of X with slight differences. However, there does 

exist a difference between two operations. The random zero-truncation operation increases the 

probability mass at zero: 

Pr[7 • X = 0] = (1 - a) + a Pr[X = 0] = (1 - a) - (1 - a) Pr[X = 0] + Pr[X = 0] > Pr[X = 0]. 

Then 

Then 
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But the zero-modification operation relocates the probability mass at zero: 

Pr[I • {X + 1) = 0] = Pr[I = 0] = a, 

which could be bigger or smaller than Pr[X = 0]. 

The fraction of zeros in count data is one concern when modelling. Both random zero-

truncated distribution and zero-modified distribution of X are alternative choices for data with 

zero fraction if the original distribution of X does fit the data very well. However, the zero-

modified distribution of X is more flexible then the random zero-truncated distribution, because 

it can be used to either lower or higher zero fraction situation, while the random zero-truncated 

distribution can only applied in higher zero fraction situation (sometimes called zero-inflated). 

Example 2.1 Poisson(X) compounded with NB(l,q) will have pgf 

where A > 0 and 0 < q < 1. This is the basis of GC I introduced in Section 2.3.3. 

Another example of a compound Poisson distribution leads to the GC II in Section 2.3.3. 

We claim that 

is a pgf. This is because 

1-73 l-q _ l - q n _ W 1 ^ _ ^ 2 0 2 ^ 3 C 3 

1-7 1 - qs 1-7 
(1 - 7s)(l + qs + q2s2 + g 3s 3 + • • •) 

-[1 + qs + q2s2 + q3s3 + ••• 
1-7 

-7s - 79s 2 - 7<?2s3 - • • •] 

l-q , ( l - g ) ( g-7)„ , (1 ~ g)g(9 - 7) „2 , 
H s -\ : :* T 1-7 1-7 1-7 

Let G(s) = 1 + ̂  (T=£ " l ) , ^ere d>j^>0. Then 

G(s) = 1 + 1 i-q , ( i - g ) ( g-7). , ( i - g ) g ( g-7 ) „2 , 
-f* S ~r z o ~r~ ' ' * , 

1.-7 1-7 1-7 1-7 
1 1 g , 7 + ( i - g ) ( g -7) „ 1 (1-9)9(9-7 ) 2 , 

~ 1 _ d l - 7

+ rf(l-7) S + d ( l - 7 ) 
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Since all coefficients of series expansion of G(s) are non-negative and G(l) = 1, G(s) is a pgf. 

Hence we can represent 2.2.1 as 

exp { " - ^ ~ ^ } - exp M l - T)|0(.) - 1]} . 

This implies that exp j ^^l^T 7 ^ j is the pgf of a compound Poisson distribution. 

Example 2.2 Following the zero-modification operation, we can show that 

is a pgf. This is because the following decomposition: 

Lis) = (X ~ ") + (a ~ ^ 5 

^ (1 - cry) - (1 - a)^s 
' (1 -7 ) 0 ( l - 7 ) a _ ( l - 7 ) / ( l - c r y ) 

l - c r y 1 - (1 - a)7s/(l - «7) 1 — cry 

Here we know that 0 < {-]^~ < 1 and 0 < 1 - ^ = < i . Let I ~ Bernoulli ) , 

Z ~ NB ( l , (|l^ 7). TTien 7(Z + 1) /ias i/ie L(s) as its pc//. Mien a = 0, X = 0, iwMe a = I, 

X = Z + 1. 

We are noi c/ear z/ SUC/J a distribution has been previously studied. Since Z is Geometric, 

we call this distribution the zero-modified geometric distribution. 

Sometimes operations are carried out on more than one random variable. The well known 

convolution, which is the sum of independent rv's, is an example. For two independent non-

negative integer valued rv's X\ and X2, the pgf of convolution X\ + X2 is 

GXl+X2{s) =E(sx^x>) = E ( S

X l ) E ( S * 2 ) = GXl(s)GX2(s). 

For more than two, say n independent rv's, we have 

G E ? = i X i (s) = E = f[ E = f[ GXi (s). 
i=l i=l 

Furthermore, the convolution concept can be naturally extended to the situation of uncountably 

many rv's, leading to the generalized convolution. See Section 2.3.3. 

Next we prove that some functions are probability generating functions; these will be used 

in the study of continuous-time generalized AR(1) processes in later chapters. 
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Theorem 2.2.3 The following functions L(s) are pgf's. 

(V Hs) = l-00?> o<e<i. 

(2) L(s) = c - ^ l - e - ^ - ^ l - cs)Q], 0 < a < 1, c = 1 - e~\ 0 > 0, 

(3) L(s) = l - a e ( l - 7 ) e [ ( l - a ) 7 + ( l - 7 ) ( l - s ) " 1 / e ] ~ 9 ' 0 < a < 1, 0 < 7 < 1, 0 > 1. 

(4) L(s) = {s- + 1, where G(s) is the pgf of Zeta(p), p > 0. 

(5) L(s) = l+ ^ ^ ^ y 0 < a < 1, 0 < B < 1, ° a ) 3 / 2 < / 3 < « , ^ a < / 3 < ^ 

= 1 + , t

 (1"71

)(V-1I \, 0 < a < l , 0 < / 3 < l , 0 < 7 < 1 , and either 

a </? < i ^ ™ , or max (7 , < /? < a and B(B - 7)(1 - a) 3 > ( a - 0 + 7-07)1/*-0) 

Proof: It is obvious that for all cases, L(l) = 1. Suppose L(s) has series expansion of form 

00 
L(s) = r0 + ns + r2s2 H = ^ r,s\ 

i=0 

It suffices to show that all coefficients rj > 0 (i = 0,1,2,.. .)• 

(1) Rewrite L(s) as 

Since 

L ( s ) _ s 1 - ( 1 - S ) 0 _

S 

(1 

(1 _ s)-« = 1 + # s + v
 2 j V + — ^ V + • • • = 1 + es + ^ j{ 

QIlizKk + e) j 

we have 

j=2 J " 

1 -
00 r-n 

1 + r D k M ^ 
- I N 

Assume the Taylor expansion: 

1 , y n i = 1 ( H g ) = 1 - qis - q2S2 - Q3s 3 - -
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Then 

L(s) = s~l (1 - [1 - qis - q2S2 - g 3s 3 - c /4« 4 - • • • ] )= gi + gas + q%s2 + g 4s 3 + 

We now need to prove that q3 > 0 for j = 1,2,.... Because 

x , ^ n i = i ( f c + g ) , , -
ft (i + i ) ' 

1 - c/is - g 2s 2 - 93« 3 - c/4S 4 

it follows that 

9i 

92 

1 + 9 
2 ' 

(l + 0)(2 + 0) _ l+_0 
3! 2 

9i, 

9j = 
ni = i ( fc+g) y n i = i ( f c + g ) m 

(i + i)! 

Note that f < if 0 < a < b. For j > 2, 

n u ( f c + g ) y i i a ( f c + f l ) - i+e 

j-i+e ni=i(fc+g) j - 1 + f l y m ; ' r x ( f c + A . 1+e 

7 - 1 + 0 1+0 /j -1+6 l + 0 \ 
— — 9 , - 1 - — * - i = ( — ^ J 9 , - L 

> 

Due to the fact that c/i = ^ > 0, by induction, we obtain qj > 0 (j > 2), which means that 

L(s) is a pgf. 

(2) Note that for 0 < a < 1, (1 - cs)a = 1 - acs - ^~^-c2s2
 - Q ( 1 ~ Q

3

) , ( 2 " ^ C 3 S 3 . . 

It is straightforward to show that all coefficients of series expansion of L(s) are non-negative, 

which shows that L(s) is a pgf. 
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(3) Let rj = L^{0)/j\. It suffices to show that L^(0) > 0 for j = 0,1,2,.... Check it when 

j = 0. e 

L(0) = 1 - a°(l - j)6 [(1 - ah + (1 - T)]-* = 1 " ( a ( 1 ~ 7 ) > \ > 0. 
1 — ory Now consider the derivatives. 

L'(s) = - a 0 ( l - 7 ) e ( - ^ ) f ( l - « ) 7 + ( l - 7 ) ( l - 5 ) _ 1 / 1 ^ f l - ^ W " ^ 1 

= a 9 ( l - 7 ) 9 + 1 ( l - a ) 7 + ( l - 7 ) ( l - s ) " 
-i/e (1 - s ) 

= a 1 + 0 ^ ( 1 
1 - 7 

-(«+i) 

L"(s) 
1 - 7 

"(0+2) 

0 1 - 7 

When 0 < s < 1, it follows that L'(s) > 0 and L"{s) > 0. Starting from j = 3, higher order 

derivatives are non-negative linear combination of products of form 

(1 - s)1'6-1 i + i l z^2( i - a ) i / » 
1 - 7 

, f > 1, fc > 2. (2.2.2) 

Since for 0 < 5 < 1 

d 
ds 
_d 
ds 

( 1 - , ) ! / « - ' = ^ f l ( l - f l ) V M ' + D > o , 

1 + 0 - a h ( 1 _ f l ) i / , 
1 - 7 

_ 0 + _ (1 - a ) 7 ^ _ s ) i / e - i 
0 1 - 7 

1 + 
1 - 7 

>0, 

(2.2.2) follows by induction, and we can conclude that all higher order derivatives are positive 

when 0 < s < 1. This leads to that L^(0) > 0.(j > 1). Hence, L(s) is a pgf. 

(4) Since the pmf of Zeta(p) is 
oo 

p i = c-( i + l ) - ( p + 1 ) , i - 0,1,2,...; p>0, c = J2 

the pgf of Zeta(p) is 
oo oo 

G(i) = x)w«i
 = E c - ( » + 1 ) " ( p + 1 ) s * -

i=l 

i=0 i=0 
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Because L(s)G(s) = (s - l)G'(a) + G(a), and 

L(s)G(s) = p 0 r 0 + (p0ri + pir0)s + (p 0r 2 + P\n + p 2 r 0 )s 2 H h I ̂ p ^ i - k ) s% H , 
\k=o ) 

(s-l)G'{s) + G(s) 

= (5 - 1) • [pi + 2p2s + 3p 3s 2 + •••] + [po + pis + p 2 s 2 + P3S 3 + • • •] 

= (po - Pi) + 2(pi -p 2 ) s + 3(p2 - p 3 ) s 2 + ••• + (» + l)(pi -pi+i)si + •••, 

we obtain 
pon> = po - p i , 

Pon +pi r 0 = 2(pi - p 2 ) , 

Por2 + p i n +p 2 r 0 = 3(p2 - p 3 ) , 
< 

El;=0P* rt-* = (* + l)(Pt -Pi+l) , 

or more specifically, 

r 0 = l - 2 - ( " + 1 ) , 

n + 2-("+1)r0 = 2[2-("+1) -

< : 

n + 2-(P+1)ri_1 + . . . + (» + l)-("+i) r o = (i + i)[(i + i)-(P+i) _ (j + 2)-("+ 1)], 

Thus 

r 0 = 1 - 2~^ + 1) > 0, 

r i = 2 [ 2 _ ( p + 1 ) - 3-^ + 1)] - 2 ~ ( p + 1 ) [ l - 2~ ( p + 1 ) ] = 2~ ( / , + 1 ) + 4~^ + 1) - 2 • 3-^ + 1 ) 

> 2\/2~iP+l)^P+1) - 2 • 3 ~ ( p + 1 ) = 2[\ /8-^ + 1 ) - v V ^ + 1 ) ] >.0. 

Assume rj > 0 (i > 2). We show that r j + i > 0. To prove it, we apply the contradiction 

method, which supposes r j + i < 0. Note that 5 < § < • • • < j+i- This leads to 

(fc + l ) - ^ 1 ) < fc-^"1) ^ i ± i j , fe = l > 2 , . . . J i > 
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Consider the new equation 

i + 1 
i + 2 

(P+1) r 

n + 2 - ( " + 1 V i _ i + . . . + (» + l ) - ^ + 1 V 0 

' r i + 1 + 2 ' ^ r i + --- + (i + 2 ) - ^ r 0 

1 1 

(2.2.3) 

i + l\{p+1) 

The left hand side is 

LHS = -n+i + 

(i + (i + 2)P+ 1  

i + l\(p+1) 

(i + 2) 

+ • • • + 

+ 2 

-(p+i) 

rt + 2~(P+!) 

(i + 2)P+ 1 (i + 3)P+ L\' 

i + l\{p+1) 

i + V 
_ 3-(p+i) 

I + 1 N(P+D 
i + 2 

+ (̂  + 1) -(P+1) 
i + l \ ( p + D 
i + 2 

(i + l ) - ( p + 1 ) | n 

- ( i + 2 ) "^ + 1 ) | r 0 

> -ri+i > 0. 

Denote the right hand side of (2.2.3) as a function of p: 

1 (i + l)p+2 

Then 

h'(p) = 

RHS = h(p) = -

\og(i + 2) 1 i + 2 

+ 
i + 2 

(i + 2)P+1 (i + 2)2"+2 (i + 3)P+ L' 

(i + 2)2\ (i + l)P+ 2  

log(t + 3)- + log 
i + 2 (i + 2)P i + 3 ~ 6 V * ' " ; (i + 3)P 1 ~ & V * + 1 J (i + 2)2P+2 ' 

As p increases, (j^Y decreases to 0, thus, ' ° g ^ 2 2 ) JI+Ty ~ f+§ l o § ( * + 3){7+3p" w i l 1 eventually 

be positive. This means h'(p) will eventually be positive when p increases, although it could 

be negative at the beginning. Hence, h(p) could be either always increasing, or decreasing 

first and then increasing. Thus 

h(p) < max(/i(0), h(oo)). 

By calculation, we have 

M0) = - 5 T W T W < 0 , M~) = ,£»*(,) = <>. 

Thus h(p) < max(/i(0),/i(oo)) = h(oo) = 0. This contradicts to that LHS = RHS, which 

implies that rj+i > 0. Therefore, L(s) is a pgf. 
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(5) Rewrite and expand 

L{s) = 1 + 

= 1 + 

s - 1 

(1 - M ( l -
1 - a 

I - a 1 1 
= 1 + x x 

a l-Bs a 

a 
1 
a 

1 + 8s + 82s2 + 83s3 + ••• 

1 - a I - a 
8 — a\ Q 
7 I s 3 + 
1 — a 

1 
a 

1 
s + -

a 
(1 - a)82 -

8 - a 
1 - a 

1 + -
a 

1 oo 

S
3 + -< 

(1 - a)/3 1 - a 

Now we verify if all coefficients are non-negative, i.e. 

'B-a "' 
(1 - a)Bl -

This is equivalent to 

1 - a 

a 

>0, * = 1,2,3,.... 

( l - a r + 1 > ( 1 - ^ ) > * = 1,2,3 

Ua<8, then 1 - f > 0. Thus, (2.2.4) holds iff 

1 - ^ < (1 - <*) ( i + 1 ) / i, * = 1,2,3,... 

iff 

1 - - < mm 1 
B - JGAT r 

a 8 ~ ieM 
In this situation, we obtain the range of 8: 

(I-a)', 8< — a 
(1-cr) 2 2-a' 

a<8< 1 

(2.2.4) 

2 - a 

If a > 8, 1 - | < 0. We only need to consider i being even integers. (2.2.4) can be rewritten 

as 
2j 

( l - a ) 2 J + 1 * ( i - l ) 3 ' j ' = 1 , 2 , 3 
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This holds if 

8 ~ jeM 

Hence, the range of B in this situation is 

2 - 1< min( ( l - a)(^yM\ = (1 - a) 3 / 2 . 

a <B<a. 
1 + (1 - a) 3 / 2 

These imply that for 8 in above ranges, the function L(s) is a pgf. 

(6) We rewrite and expand 

( l - 7 s ) ( s - l ) 
L(s) = 1 + 

(1 - M ( l -

= l + ( l - 7 S ) l 1 - a 1 1 
x x 

1 - a 1 — 7s 1 1 — 7s 
= 1 + X '- X 

a 1 - 8s a 1 - £zH< 
l - a / 7 /? - 7 1 

= 1 + l^ + ^-r1 X a 8 B I-8s 

1 / ( l - a ) 7 | Q 8 - a ) - ( l - a ) 7 y 

a \ 6 - a 8 - a 

" a/3 a(/3 - a) a/3 1 - Ba 
8 — 7 — a + cry 1 

a(/3 - a) 

= 1 + (1 - « ) 7 _ (1 ~ a)7 + (1 - - 7) x h + ^ + ^ 2 + ^ 3 + ,. .j 
a/3 a(/3 - a) a/3 

/J — 7 — a + a 7 

a(/3 — a) 1 - a 1 - a 1 - a 

= i V [ ( l - a ) ( | 3 - 7 ) ^ - r - (8 - 7 - a + 07)03 - a ^ l - a)''} sl. 
a f-r' 

We want 

(1 - a)(/3 - a ) ^ " 1 - (/3 - 7 - a + a7)(/3 - a)1'1^ - a)" 2 > 0, for i > 1. 
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The inequality can be written as 

(8 - 7)(1 - a)2 > (B - 7 - a + cry) (Y^) , for t > 1. 

When a < 8, 0 < < 1. In this case, it simply results in (8—7)(l-a)2 > (/?—7—a+cry). 

Further calculations lead to 

a < 8 and 1 + 7 - cry - 8(2 - a) > 0, 

i.e., a < 8 < 1 ± ™ . 

When a > 8, < 0. We obtain 

( / ? - 7 ) ( l - a ) 2 > ( / 3 - 7 - « + « 7 ) ( - i r 1 1 

= ( a - / 3 + 7 - a 7 ) ( - l ) i ( a ( ^ ~ ^ > f o r « > l . 

Note that a — 8 + •y — cry > 0. First, /3 can't be smaller than 7. Otherwise, the left hand 

side is always negative while the right hand side alternates in sign, which is a contradiction. 

Thus, 8 > 7, and we only need to consider those situations where the right hand side is non-

negative. Secondly, if a{^_~1 > 1, i.e., 8 < the right hand side can go to infinity. This is 

impossible because the left hand side is finite. Hence, it must be 5 ^ < P, and consequently, 

0 < "(f" 1 < 1. Under such a situation, we can simplify the inequality to be 

( / i - 7 ) ( l - a ) 2 > ( 0 - / 3 + 7 - 0 7 ) x 
1 — a 

or equivalently, 8(8 — 7)(1 — a) 3 > (a - 8 + 7 — 07) (a — 

In summary, we obtain two groups of conditions: (1) a < 8 < (1 + 7 — cry)/(2 — a); (2) 

max(7, a/(2 - a)) < 8 < a and 8(8 - j)(l - a ) 3 > (a - 8 + 7 - cry)(a - /?). Under these 

conditions, the function L(s) is a pgf. 

Remark: More on the compounding operation. The compound Poisson rv can be represented 

as random summation: 
Y 

Z = ^ X ; , Xo = 0, Xi iid, Y is distributed in Poisson. (2.2.5) 
i=0 
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Here Xi can be not only a non-negative integer-valued rv, but also positive-valued or real-valued rv. 

The random variable Y can be extended to any other non-negative integer-valued rv. For example, 

if Y is a Bernoulli rv, the compound operation is the random zero-truncation operation, it is often 

used in Zero-inflated models for economic applications. See Winkelmann [1997], p. 107-108, and 

references therein. 

Now we briefly study a few properties of this extended compounding operation such as the 

mean, variance and probability mass at zero. 

E fe*^ = E fE (E X*| y)) = E ( X 1 ) E ( F ) , 

Y 

E(Z) 

Var(Z) 

vi=0 / \ \i=0 
Y \ / / Y 

s.i=0 

D(Z) = 

V a r {po
Xi)=E [V a r [ E x « - | y J J + V a r (̂ E ( E x * | y 

E(Var(X!)y) + Var(E(X!)y) 

Var(X!)E(y) + (E (Xi)) 2 Var(Y), 
Var(Z) _ Var(Xi)E(y) + (E [X1))2 Var(y) 

E(Z) 
Var(Xi) 

+ E ( X i ) 

E(Xi)E(y) 
Var(y) 

Pr[Z = 0] = Pr 

E ( X i 

,i=0 

oo 

E(Y) ' 

= Pr[Y = 0] + Pr[Xi = 0] Pr[Y = 1] + (Pr[Xi = 0])2 Pr[Y = 2] 

+ --- + (Pr[Xi = 0 ] ) ^ ^ = !] + ••• 

£ ( P r [ X 1 = 0]) iPrrr = i] 

= Gy(Pr[Xi = 0]), where GY(s) is the pgf of Y. 

If X\ is also a non-negative integer-valued rv, we have 

Gz(s) = E {sz) = E ( a£r=o*) = E (E ( s £. r =o*|y)) = E ( [G X l ( S ) ] y ) = GY(GXl(s)), 

where Gxt {s), Gy{s) are the pgf of X\ and Y. 

With these results, we have the following proposition. 

Proposition 2.2.4 Suppose X\ is a non-negative integer-valued rv, and (2.2.5) holds. 

(1) J / E ( X i ) is positive and Var(Xi) exists, then D(Z) > D(X{), 
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(2) If Pv[Z = 0] > 1 - Pr[Y = 1], then Pv[Z = 0] > Pr[Xi = 0]. 

Proof: Apply the above results. 

(1) Since B(Xi) > 0 and E(Y) > 0, we have 

_ V a r ^ ) Var(y) Var (X x ) _ 

This means that after compounding, the index of dispersion becomes larger. 

(2) Because GV(Pr[A"i = 0]) = £ ^ 0 ( P r [ ^ i = 0]) JPr[y = i] > Pr[Y = 0]+Pr[Xi = 0]Pr[y = 1], 

it follows that . 

PT[Z = 0] > Pr[Y = 0] + Pr[Xi = 0] Pr[y = 1] 

= Pr[y = 0 ] + P r [ X i = 0 ] ( l - P r [ Y = 0]) 

= Pr[y = 0](1 - Pr[Xi = 0]) + Pr[A"i = 0] 

> Pr[Xi=0], 

where the equality holds only when Pr[Y = 1] = 1 or Pr[Xi =0] = 1, which are extreme 

cases. Hence, the compound operation results in a larger mass at zero in general. 

The compound Poisson and random zero-truncation operations result in a larger probability 

mass at zero. Such a property of a larger probability mass at zero makes the compound distribution 

an alternative candidate in modelling count data with a higher fraction of zeros. 

2.2.2 Laplace transformation, moment generating function and characteristic 

function 

The Laplace transformation (LT), moment generating function (mgf) and characteristic 

function (cf) are widely used in probability and statistics. They are defined as below. 

Definition 2.1 Let X be a rv. Then 
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(1) the LT of X is 

4>x{s) = E ( e - s X ) , s e Si, where Sx = {s : E(e-sX) < oo}. 

(2) the mgf of X is 

Mx{s) = E ( e s X ) , s E S2, where S2 = {s : B{esX) < oo}. 

(3) the cf of X is 

ipx(s) =V(eisX), se (-00,00). 

The relationships among the pgf, LT, mgf and cf, over approriate domains, are listed below: 

Gx(s) = fo-(-loga) = Mx{logs) = (px(-ilogs), 

<f>x{s) = Gx(e~s) = Mx(-s) = tpx(is), 

Mx(s) = Gx{es) = <j>x(-s) = <px(-is), 

<Px(s) = Gx{eis) = Mx(is) = 4>x{-is). 

For positive-valued rv X, the LT is more convenient than mgf, because its convergence 

domain of s includes 5Ro = [0, 00), a fixed set, while the domain of s for the mgf depends on the 

individual distribution. The LT is decreasing while mgf is increasing. 

The mean and variance can be derived from both LT and mgf. 

' ^ ( O ) - ( ^ ( O ) ) 2 , 

E ( X ) = M'x(0), and Var (X) = E (X 2 ) - (E (X)) 2 = { 

[ - « ^ ( o ) . 

Note that the probability mass at zero can be obtained as 

M'x(0) - (M'X(Q))2, 

{ - ^ ( o ) + ( ^ ( o ) ) 2 . 

Pr[X = 0] = lim </>x(s) = <j>x(oo) = lim Mx(s) = M(-oo). 
s—>oo s—> —OO 

Example 2.3 Gamma distribution: Let X be the rv of Gamma (a, 6), where a is the shape param

eter and B is the rate parameter. Then the pdf is 

fx(x;a,P) = -^-xa-le-^, 
r(a) 

x > 0; a, B > 0. 
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The LT is 

the mgf is 

and the cf is 

<Px(s) = (^g f i g ) > a € ( - 0 0 , 0 0 ) . 

The expectation and variance are 

E ( X ) = ad~l and Var (X) = a3~2. 

The Gamma family contains a couple of special distribution cases: 
• when a = 1, it is Exponential(/3), 

• when a = k/2, 3 = 1/2 (k is an integer), it is Chi squared, x | . 

More examples of LT and mgf can be seen in the successive subsections. 

Because, the theory of continuous-time generalized AR(1) process heavily involves non-

negative rv's, we focus on the LT in the rest of this subsection. The following theorem is important 

to characterize the LT of a non-negative rv. Refer to Bondesson [1992], p. 8-9. 

Theorem 2.2.5 (Bernstein's theorem) 

0(5) is a LT iff 

1. 4>(s) is completely monotone ( C M ) , i.e., (-l)l(p^(s) >0,ie A/"o, s 6 (0,00). 

2. <p{s) —> 1, as s -> 0. 

Following two theorems are very useful to identify new LT. Very nice proofs for the first two 

can be found in Joe [1997], p. 374. 

Theorem 2.2.6 Let cf>(s) be a LT. Then </>a(s) is a LT for all a > 0 if and only if -log0(s) is 

an infinitely differentiable increasing function of [0, 00) onto [0,oo)7 with alternating signs for the 

derivatives. 
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Theorem 2.2.7 Suppose <f>i(s) and (j>2{s) are LT's. / / - log is an infinitely differentiable in

creasing function of[0, oo) onto [0, oo), with alternating signs for the derivatives, then log</>i(s)) 

is a LT. 

An explanation of <j)2{— log </>i(s)) is discussed later in Section 3.4; refer to„Bondesson [1992], p. 17. 

Note that for a LT <f>(s), 4>a(s) being a LT for all a > 0 means that <j>(s) is the LT of an infinitely 

divisible distribution. See Section 2.3.1. 

By Theorem 2.2.6, we can prove that the exponential function <p(s) = exp{</>o(s)} is a LT 

if Ms) satisfies that <f>o(s) < 0, (-iy<$\s) > 0, i = 1,2,3,..., s € (0,oo), and </>0(s) ->• 0 

as s —>• 0. In some exponential form situations, the conditions of Theorem 2.2.7 are easier to be 

verified than Theorem 2.2.5. 

Applying these theorems, we can obtain the following results, which are used in the theory 

of continuous-time generalized AR(1) processes. 

Theorem 2.2.8 The following functions </>(s) are LT of distribution with support on [0, oo). 

(1) </>{s) = exp{-A- " ( 1 ^ 7 S ) | , where A,/3>0, 0 < 7 < 1 and 7 < j ^ . 

(2) ^ ) = e x p { ^ l o 6 ( g E ^ ) } = ( g E ^ ) ^ , ^ e r e « > 0 , 0 < 7 < l . 

(3) <f>{s) = exp j - ^ 1 + ( e ^ ^ ~*} , where 0 < a < I, Q > 0. 

(4) ^ ) = exp{- ( 14 (^a ) 7 S}, ^ e r e 0 < a < l , 0 < 7 < l . 

(5) fa) = exp | - [(1_a)7%"-V̂ ]g} ' « ^ f i e O < a < l , 0 > l a n d 0 < 7 < l . 

(6) <(>(s) = exp j A • (^^1/2 } , where A, 8 > 0. 

Proof: 

(1) When s = 0, (f>(s) — e° = 1. Hence, it suffices to show the complete monotonicity of function 

(j)(s). Since 7 < ytĵ j, we know that 1 - 7(1 + 8) > 0. Taking the first order derivative, we 
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obtain 

(1 - 7 + 21S)(B + s) - s(l - 7 + is) / 3 (1 -7 + 7*) 1 
*(*) = - A : e x p j - A - B + s j 

/?(1-7)+ 2/37s + 7s2 / 3 (1 -7 + 73)1 —exprA' ^ + 3 / = - A - (P + s) 
f s ( l - 7 + 7s)l 

-\B[l - 7(1 + B)]{B + 3 ) " 2 exp { - A • ̂ - T + T ^ j 

< 0. 

By induction, the higher derivatives (f>^(s) (i > 2) are the sum of terms of form (omitting 

the coefficients) 

( - i r (^ + 3 ) - f c e x p | - A - S ( 1 ~ ^ 7 ' ) } , k>0. (2.2.6) 

This follows because derivatives of (2.2.6) lead to two terms having the same form (ignoring 

coefficients that don't depend on s). With this property, we can conclude that the derivatives 

alternate the signs. By Theorem 2.2.5, 4>(s) is a LT. 

) First we prove that (0 < a < b) is a LT. This is because 

1 + as a t a\ 1 _ a t a\ 1/6 
1 + bs = b + \ ~b)l + bs = b + \ ~ b) 1/6 +a ' 

the LT of the zero truncation of the Exponential(l/6) distribution. Secondly, we show that 

~ logy+ff is a r i infinitely differentiable increasing function of [0, oo) onto [0, oo), with alter

nating signs for the derivatives. Since is decreasing, — log is increasing, and 

- log \ + a S = log(l. + 6s) - l o g ( l + as), 
1 + OS 

1 + a s \ ' 6 a 6 — a 
log l + 6s/ l + 6s 1 + as ( l + as)(l + 6s) 

1 + O 3 \ ( 0 _ ( - l ) * - 1 ^ (-!)*" V = , (b + absf - (a + a6s)' 
g l + 6sJ ~~ (1 + 63)* (1 + as)' [ ' ( l + as)*(l + 6s)i ' 
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Because ^ i + ^ i W ^ > 0 for all i > 1, we conclude that the derivatives of - log ± ± f f take 

alternating signs. Hence, by Theorem 2.2.6, ( i ^ f f ) (c > 0) is a LT. Rewrite 

y v ; 1 (1 - 7 ) ( « + s) 

x 1 - 7 

1+, " 7 , S \ 1 - 7 - 7 " ( l - 7 ) u 1 

1-7 

1 I ! - 7 . 
i + ( l - 7 ) " ' 

(1-7)" 

(1 |0" 

if 1 — 7 — 7 U > 0, 

if 1 — 7 — 7U < 0. 

When either I - 7 - 7 U > 0 or I - 7 - 7 U < 0, cj>(s) has the form of ( p ^ f f ) (0 < a < b, c> 0). 

Therefore, 4>(s) is a LT. 

It is clear that <f>(s) —> 1 when s ->• 0. Hence, it suffices to show the complete monotonicity 

of function 4>(s). Taking the first and second order derivatives, we obtain 

4>'(s) exp 
[ i + ( e e - i ) * r - i i v 

e9 - 1 

—a l + (ee -l)s a - i j [l + {ee - l)s]a - 1 
exp< -

0"(s) = I - a [ l + [ee - l)s 
Q - l 

= ( a ) ( l - a ) l + ( e e - l ) s 

e* - 1 J ' 
[ l + ( e ^ - l H a - l l V 

a - 2 f [ l + ( e « - l ) S ] a - l 

exp 

exp < -

l + (ee- l)a 
2a-2 

exp 

e8 - 1 

[ l + ( e * - l ) g ] Q - l 

ee - 1 

Obviously, </>'{s) has negative sign while 0"(s) has positive sign. By induction, the higher 

order derivatives are the sum of terms of form (omitting the coefficients) 

[1 + (eP-DsT-l] 
1 + (ee - l)s exp < - - ee - 1 

1 < m < n. 

Such a term has a derivative with negative sign, just like (j)"(s) changes the sign of (j)'(s). 

Hence, the derivatives ^(s) alternate in sign. This shows the C M property of <f>(s). By 

Theorem 2.2.5, we conclude that (f>(s) is a LT. 
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(4) Rewrite 

i, \ f a ( l - 7)« ] 
* " - a p - ( i - T ) H i - . ) T . r B p 

"(1 - 7) ( l - 7 ) / [ ( l - g ) 7 ] 
( l _ 7 ) / [ ( l _ a ) 7 ] + a (1 - a ) 7 

Note that (1

(l;7

/

)

[

/

(

[

1

(l;"jj7j.s is the LT of Exponential(1 - 7 ) / [ ( l - a) 7]). Hence, 0(s) is the LT 

of compound Poisson with the Exponential (1 - 7 ) / [ ( l - 0)7]) distribution. 

(5) Rewrite 

4(s) exp 

exp 

a ( l -7) 
L ( l - a ) 7 + ( l - 7 ) s - 1 / 0 

" ( 1-7) 

exp 

(1 - 0)7 

" ( l - 7 ) l e / 
. ( l - a ) 7 J \ 

Let ^ ) = 1-((T̂ )̂  [TJE$ 

^o(s) = 1 -

1 

1-7 - I 
(1 - a ) 7 

1-7 
(1 - 0)7 

(1 — 0)7 _ i 

( 1-7) 
- 1 

0, 

+ 5 « 

1-7 

We prove that </>o(s) is a LT. First, when 

1. 
(1 - a ) 7 , 

Hence, it suffices to show the C M property of <j>o(s). Now check the first and second order 

derivative of </>0(s). Denote C = (j^E^) • W e obtain 

<j>'0(s) = -C-(-0) 

= -C 

(1 — 0)7 _ i 

-(6+1) 

1 
—- s ^ - 3 - 1 

(1 — 0)7 I 

0 + 1 (1 - a ) 7 

0 ( 1-7) 

(1-7) J U 1 - 7 ) e ) 

= c 
(1 - crW 1 

-(0+2) 
-1 

(1-7) 
Note that 0'o'(s) alternates the sign of $,(s). By induction, the higher order derivatives are 

the sum of terms of form (omitting the coefficients) 

(1 - 0)7 1 L. LLse + 1 
(1-7) 

-(0+fc) 
m/6—n k > 2, 1 < m < n. 
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Since (l-<*h A16 , i 
-(e+fc) 

and smle~n have derivatives with negative sign, it is straightfor

ward to show that higher order derivatives <^ (s) (i > 3) alternate in sign. Lastly, we check 

that if 4>o(s) > 0 for s € (0, oo). Since <j>o(s) is decreasing, it follows that 

Ms) > M°o) = 1 - C{C~l + 0) = 1 - 1 = 0. 

Thus, <f>o(s) is non-negative. This completes the proof that 4>o(s) is a LT. Therefore, (f)(s) is 

the LT of the compound Poisson with the distribution characterized by the LT (po(s). 

(6) The proof is similar to that of (3). Rewrite 

^ ) = e x p { A . ( i + - S

s ) 1 / 2 } = e x p { 

Then, the first order derivative is 

A r 
8 

( l + ^ ) - l / 2 _ ( l + ^ ) l / 2 ] j 

(l + 6s)-^2 + (l + 3s)-^2 

\-V2 - (1 + Bs) 

—s 

1/2 

exp < A (1 + Bs) 1/2} 

< 0. 

By induction, the higher order derivatives ^W(s) (i > 2) are the sum of terms of form 

(omitting the coefficients) 

(1 + ^ / 2 e x p { A ' ( i w ) ' + Bs)1/2 

By the same reasoning in (3), we know that 4>(s) is a LT. 

The LT's in (1) and (2) of Theorem 2.2.8 lead to GC IV and GC III in Section 2.3.3. This 

distribution corresponding to (2) has non-zero probability mass at zero, and the mass is: 

1 - 7 

The LT's in (3), (4) and (5) of Theorem 2.2.8 will be adopted as positive self-generalized distribu

tions denoted as P4, P2 and P5 in Section 3.1.2. The LT in (3) belongs to Tweedie exponential 
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dispersion family. See Section 2.3.2. Comparing with the LT of Tw^in, o2) there, we find it is the 

LT with specific parameter 

d = ̂ —4>2, fi = l/a>0, a2 = (1 - a)(ee - l)/a^ > 0. 
a — 1 

The pdf is given in Section 2.3.2. This distribution does not have probability mass at zero, because 

0(oo) = 0. However, the LT's in (4) and (5) are not in the Tweedie exponential dispersion family. 

This can be verified by comparing their LT forms. But they have non-zero (positive) probability 

masses at zero, which are 

respectively. The LT in (6) will serve as the innovation of a stationary continuous-time generalized 

AR(1) process with inverse Gaussian margins (see Section 6.3). As to their explicit pdf forms, we 

are not clear at this moment. 

Perhaps the most enjoyable and popular distribution is the Normal distribution. It has a 

lot of good properties, such as bell-shaped density and limiting distribution of an average of rv's. 

To enlarge and modify this family of distributions, the variance mixture of normal distributions 

was introduced: 

X = VYZ, Z ~ N(0,1) and Y > 0 is a rv independent of Z. 

Since X is a real rv, we prefer to calculate its cf. Let 4>Y{S) be the LT of Y. Because <pz(s) = e -" 2/ 2 , 

we have 

<px(s) = E (e"x) = E (eis^z) = E ( E (j'^Y)) = E (e^ 2 ) = <M*2/2). 

See Bondesson [1992], p. 115. An equivalent version is the scale mixture of normal distributions, 

which is defined as 

X = Z/Y, Z ~ N(0,1) and Y > 0 is a rv independent of Z. 

However, its cf can not be explicitly expressed via (f>y(s): 

<px(s) = E {elsX) = E (eisZlY) = E ( E (eisZ'Y\Y)) = E ( e ^ ' ^ ) . 
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Refer to Joe [1997], p. 132-134 and references therein. Any symmetric Stable distribution is the 

variance mixture of the normal distribution (see Bondesson [1992], p. 116). Other examples of the 

variance mixture of the normal distribution are shown in the EGGC family in the Section 2.3.3. 

2.3 Particular families of distributions 

We review and investigate some distribution families which are used either as distribution of inno

vation or as marginal distributions in the theory of continuous-time generalized AR(1) process. 

2.3.1 Infinitely divisible, self-decomposable and stable distributions 

Infinitely divisible (ID), self-decomposable and stable distributions appear quite often in the study 

of the continuous-time generalized AR(1) process. For ease of reference, we briefly review them 

here. Good references are Bondesson [1992] and Feller [1966a, 1966b]. 

Definition 2.2 (Infinite. Divisibility) Suppose X ~ F. IJ for each n > 1, X can be decomposed 

into the sum of n independent and identically distributed rv's, namely 

X = XnX + Xn2 -I h Xnn, where XnX, Xn2, • • •, Xnn iid, 

then the probability distribution F is said to be infinitely divisible (ID). 

By the definition, it follows that <fix{s) = {<Pxnl {s))n. This leads to that ip][n(s) is a cf for 

any non-negative integer n. Thus, the ID is equivalent to that tpx(s) 1S a °f f ° r a u a > 0. This class 

of ID distributions is closed under convolution and weak limits. Some canonical representations of 

the mgf of the ID distributions are summarized below. 

Proposition 2.3.1 Suppose X ~ F, an ID distribution. 
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• When the support of F is 5J, the Levy(-Khintchine) representation of mgf is 

Mx{s) =exp |as + y ' ̂  + Jy if ~ 1 ~ 1+^) ' ^ e s = °> a 6 K> 

where the measure L satisfies J min(l, y2)L(dy) < oo. 

• When the support of F is 3ft+, the representation of LT is 

<j)x{s)=exp\-as+ I (e~sy - l) L{dy) \ , a > 0, 
I •/(o.oo) J 

w/iere t/ie Lew?/ measure L is non-negative and satisfies / min(l, y)L(dy) < oo. The 
J(0,oo) 

parameter a is called the left-extremity. 

• When the support of F is Ao, the representation of pgf is 

Gx(s) = exp { I (Sy - 1) L(dy) \ = exp {\[Q(s) - 1]} , 
'(0,oo) I 

where the Levy measure L is non-negative and satisfies / min(l, y)L(dy) < oo. Here 
J(0,oo) 

A = JjQ ^ L(dy), the total Levy measure, and the pgf 

Q(s) = X-1J2skL({k})-
k=l 

Note that the term eas corresponds to the mgf of the constant a. Hence, for the case that the 

support is 3 ? + , the lower bound is a > 0. Also for this case, there is a nice stochastic explanation. 

Ignoring a and considering A = Jj 0 ^ L(dy) < oo, we know that L(dy)/\ is a probability measure 

on (0,oo). Assume Yo = 0,Yj,j = 1,2,..., be iid rv's with probability measure L(dy)/X, and 

Z ~ Poisson(A). Define the compound Poisson X = 2~Zf=ô j> n a m e r y Poisson compound with a 

distribution with support on Then the mgf of X is to be 

Mx(s) = E(esX) = E [e"^UY^ = E (E (es^UYi | z ) ) 

E f \-lesyL{dy) 
J(0,oo) 

= exp < A f A- 1 e^L(dy) - 1 
J(0,oo) 
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{A f \-lesyL(dy)- [ \-xL(dy) 
\ |_./(0,oo) 7(0,oo) 

{/ ( 

(7(0,00) 

= expM (eaV-l)L(dy)\. 
(7(0,oo) J 

This shows that X is distributed in the ID distribution represented in the second case of this 

proposition. When A = oo, the explanation is a little bit complicated. Interested readers can refer 

to Bondesson [1992], p. 16. 

For support being yVo, the ID distribution is compound Poisson too, i.e., Poisson compound 

with another discrete distribution with support on J\f (excluding 0). A nice proof for this case can 

be found in Feller [1966a], p. 271-272. 

Non-negative ID rv's are of particular interest in our research. In practice, we may not have 

the Levy representation of its pgf or LT. However, there is an simple verification approach: check the 

absolute monotonicity of M'x(s)/Mx(s). See Bondesson [1992], p. 16. This absolute monotonicity 

is equivalent to the infinite divisibility of a non-negative rv. Note that this verification approach is 

equivalent to Theorem 2.2.6 given by Joe [1997]. 

Common examples of infinitely divisible distributions are: Gamma, Negative Binomial, 

Stable distributions, and so on. 
Next we turn to self-decomposable distributions. 

Definition 2.3 (Self-decomposability) Suppose X ~ F. If for each c, 0 < c < 1, there exists 

a rv e c such that 

X = cX + e c, 

where ec is independent of X, then the probability distribution F is said to be self-decomposable 

(SD). 

An equivalent definition is that X(s) is SD iff for each c, 0 < c < 1, (j>x{s)/4>x{cs) [or 

ipx(s)/(fx{cs)] is the LT [or cf] of a probability distribution. In probability, this class is sometimes 

called the L—class. For example, Gamma and Stable distributions are SD. The property of self-

decomposability can be applied to construct the stationary discrete-time or continuous-time first 
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order autoregressive process by setting 

X(n + 1) = cX(n) + en, n G A/"o, X(n), en are independent, 

(refer to Vervaat [1979]) and 

X(t + h)= e-phX(t) + e{h), h > 0, t £ 3ft+, X(t), e(h) are independent. 

The latter corresponds to Ornstein-Uhlenbeck-type processes; see Section 1.2. However, the support 

of marginal distributions of these processes can not be MQ. For this reason, the concept of SD is 

generalized to discrete distributions with support MQ by replacing the constant multiplier with 

binomial thinning. 

Definition 2.4 (Discrete Self-decomposability) Suppose X ~ F. If for each c, 0 < c < 1, 

there exists a rv ec such that 

where ec is independent of X, then the probability distribution F is said to be discrete self-decomposable 

(DSD). 

This is credited to Steutel and van Harn [1979]. In the sense of pgf, this definition is equivalent to 

that Gx (s)[Gx (cs + l- c) is a pgf for each 0 < c < 1. Similar to SD, the property of DSD leads to 

applications in construction of stationary discrete-time or continuous-time first order autoregressive 

processes with non-negative integer-valued margins in the literature. 

We will show examples of DSD distributions; these are analogues of continuous SD distri

butions and are given in the end of this subsection. 

Now we consider the Stable distributions. 

Definition 2.5 (Stability) Suppose X ~ F. If for each n > 1, there exists constants bn and cn 

such that X can be decomposed as 

X = bn + cn{Xnl + Xn2 + . • • + Xnn) = ( — + cnXni) , where Xnl,Xn2,..., Xnn 

X 

X = c * X + ec = ^ h + ec, IQ = 0, h , I 2 , . . . i.i.d. Bernoulli(c), 
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then the probability distribution F is said to be Stable. If bn = 0 for all n, then F is said to be 

strictly Stable. 

This class has the mgf of form 

See Urbanik [1972]. 

Finally, we discuss the relationship among ID, SD and Stable. Obviously, Stable is a subset 

of ID by their definitions. As to others, however, it's not clear by their definitions. Further research 

has shown that 

proof of SD C ID can be found in Feller [1966b], p. 553-555, and a brief explanation of Stable C SD 

can be seen in Bondesson [1992], p. 19. As for the discrete self-decomposability, Steutel and van 

Harn [1979] (Theorem 2.2) proved that a DSD distribution is ID. 

For a continuous distribution with positive support, it is of interest to find and study its 

discrete analogue, because they may share some common features in analysis. Essentially, the 

discrete analogue is defined in such a way: 

Definition 2.6 (Discrete analogue) Assume the LT of a continuous distribution with positive 

support is (/)(s). Then, its discrete analogue with non-negative integer support is defined to have pgf 

of form G(s) = cj>{\ - s). 

This definition sometimes can be modified to be G(s) = <j)(d(l — s)) (d > 0) to enlarge the 

family of discrete analogue (see Example 2.5). 

Common examples are: Poisson is the discrete analogue of a degenerate rv on a positive point; 

Negative binomial is the discrete analogue of Gamma; in particular, Geometric is the discrete 

analogue of Exponential. 

If cj)(s) is a LT, then G(s) = 0(1 — s) is always a pgf. This follows from Theorem 2.2.1 by 

checking the [0,1] domain of s, G(l) = 1 and A M feature [follows from C M of <f>\. Thus, for any 

K is a non-negative measure. 

Stable C SD C ID. 

The converses are not true. For example, the Gamma distribution is ID and SD, but not Stable. The 
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positive continuous distribution, we can always obtain its analogue by denning its pgf in terms of 

the LT. One may wonder what's the explanation of the discrete analogue. Suppose A is a positive 

rv with the LT cf>{s). Given A = A, Y ~ Poisson(A). Hence Y is a Poisson mixture, and is a 

non-negative integer rv. The pgf of Y is then 

G(s) = E (sY) = E (E (sY\A = A)) = E (e^"'1^ = <p{\ - s), 0 < s < 1. 

This means that the discrete analogue is the Poisson mixture and the positive continuous distri

bution is just the mixing distribution. Therefore, by Poisson mixing, there is one-to-one mapping 

between the class of positive continuous distributions and the class of discrete Poisson mixtures. 

For a discrete Poisson mixture distribution, we call the corresponding positive mixing distribution 

as the continuous analogue of that discrete distribution, and by algebra, it has the LT in terms 

of the pgf: <t){s) = G( l - a). 

Note that in general, we can't define a LT by an arbitrary pgf in this way. The big problem 

is whether G(s) can be extended from domain [0,1] to (-00,1]. It is sure to work for a Poisson 

mixture, but not certain for a non-Poisson mixture. 

We end this subsection with two examples of continuous SD distributions and their discrete 

analogues, DSD distributions. 

Example 2.4 (Positive stable distribution and discrete stable distribution) The positive 

stable distribution has LT 

ci(s) = exp {-As 7} , A > 0, 0 < 7 < 1. 

The discrete stable distribution was introduced by Steutel and van Ham [1979] to have pgf 

G{s) = <j>{l -s) = exp {-A(l - s)7} , A > 0, 0 < 7 < 1. 

The first one is SD, while the latter is DSD (refer to Steutel and van Ham [1979]). 

Example 2.5 (Mittag-Leffler distribution and discrete Mittag-Leffler distribution) Re

fer to Bondesson [1992], p. 15. Assume X — Y1^ Z, where Y ~ Gamma(/3,1) and Z is distributed 
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in positive stable with LT e s 7 , 0 < 7 < 1. Extending to 7 = 1 so that 0 < 7 < 1, we will have 

Z = 1 as a special case at the upper bound of 7. Then the LT of X is 

Ms) = E ( e ^ 1 ^ ) = E (E ( e - ^ \ Z ) ) = E ( e-^) = 

This LT family is labeled as LTE in Joe [1997], p. 376 where it is a special case of Theorem 2.2.7. 

Taking 3 = 1, we obtain 

Ms) = —-—, 0 < 7 < 1 , 

which is the LT of Mittag-Leffler distribution named by Pillai [1990], because the corresponding cdf 

is linked to the Mittag-Leffler function. When 7 = 1, it is exponential. Hence, the Mittag-Leffler 

distribution can be viewed as a generalization of the exponential distribution. 

It seems that the Mittag-Leffler distribution is unlikely to be a stable distribution since one 

special case is the exponential distribution, which is in the Gamma family, and the Gamma family 

is not stable. 

The discrete Mittag-Leffler distribution was introduced by Pillai and Jayakumar [1995], and 

has pgf of form 
G(s) = - - , d > 0, 0 < 7 < 1. 

w 1 + d( l - s) 7 "~ 

Pillai and Jayakumar [1995] also gave an explanation for this distribution. Consider an infinite 

sequence of Bernoulli trials where the k—th trial has success probability y/k, 0 < 7 < 1, k = 

1,2,3, Denote Y as the trial number in which the first success happens. Then the pmf and pgf 
ofY are 

- l 7 ( 7 - l ) - - - ( 7 - f c + l) J . - 1 2 . 1 
ĵ j 5 ft, — 1, Z, O, . . . , 

GY(S) = i-(i-sy. 

Hence Y has a power series distribution with lower support point 1, Let Z be from Geometric with 

pgf Gz{s) = i lwn+d - i ) = i=S' and X = YI Yi> where Y0 = 0, Yt (i > 1) iid from the power 

series distribution. Then X has pgf of form 

GX(S) = . - E (B (.EJ.*|Z)) = E ([1 - ( 1 - sVf) - f T ^ -

Pk 

I i \k 
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Similarly, the discrete Mittag-Leffler distribution can be seen as a generalization of Geometric 

distribution, because it becomes Geometric distribution when 7 = 1. 

The Mittag-Leffler distribution is SD, and the discrete Mittag-Leffler distribution is DSD. 

See Section 7.1. 

2.3.2 Tweedie exponential dispersion family 

The Tweedie exponential dispersion family is a major member in the class of exponential dispersion 

models, which has been systematically studied by Prof. Bent J0rgensen. Important references are 

J0rgensen [1986, 1987, 1992, 1997]. The following is extracted from J0rgensen [1997] and Song 

[1996]. 

This section is referred to in a few places in subsequent chapters. It can be skimmed in the 

first reading. 

Suppose X ~ ED*(9,\), the exponential dispersion distribution with probability density 

(mass) function proportional to 
c(x; A) exp{0x — XK(9)}, X G 5ft, 

where c(x; A) is a density with respect to a suitable measure (typically Lebesgue measure or counting 

measure), and 

the cumulant generator. Hence, a suitable measure v(dx) is required so that 

This kind of distribution, ED*(9, A), is called the additive exponential dispersion model with 

the canonical parameter 9 and the index parameter A. Let 6 = {9 £ Sft : K(9) < oo} be the 

canonical parameter domain, int0 be the interior of 0. Denote the mean value mapping 

T : int9 —>• 9?, and the mean domain defined by 

r{9) = K'(0) and ft = r(intG) 
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respectively. Define the unit variance function V : 0 —• 3?+ as V{n) = r ' (T 1(/X)). By the 

property of exponential family, the cumulant generating function is 

- . o g E [ e - , = IoE(e-M.)/E-C(L;A)E%(DL)) 
= log (E-M«)EM»+«)) = A[k(0 + S) - «(&)], s e e - 0. 

Note that s takes value 0*-0 to guarantee that K(9+S) = n(6*) < oo, where 6* € 9. Differentiating 

K*(s; 9, A) twice with respect to s and setting s = 0, we find the mean and variance to be 

E ( X ) = Ar(0) and Var (X) = AV(r(0)) = \T'{9). 

Let Y = X / A , fi = r(0),cr2 = 1/A. Then by definition, Y ~ ED{fi,a2), with probability 

density (mass) function 

c(y]X)exp{X[9y-K(6)}}, ye®, 

where c(y; A) is a density with respect to a fixed measure, and the cumulant generator is 

K(0) =log(y 'e e»'c(y;A)dy) , 

the cumulant generating function is 

K(s;9,X) = \ogE[esY} = X{K(9 + s/X)-K(9)}, s 6 9 - 9, 

and the mean and variance are 

E ( Y ) = E ( X ) / A = /i(=T(0)) and Var (Y) = V a r ( X ) / A 2 = a2V{p){= CTV(0)). 

This kind of distribution, ED(p, a2), is called the reproductive exponential dispersion model. 

Here a2 = 1/A is called the dispersion parameter. 

Concrete examples in exponential dispersion models include the Binomial, Negative bino

mial, Poisson, Gamma, Normal, hyperbolic secant and generalized hyperbolic secant distributions. 

The Tweedie family is a special member in the class of exponential dispersion models; it 

was first studied by Tweedie [1947]. Following the reproductive form, it has special form of unit 

variance function: 
v(ji) = pen, d e K . 
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Hence, the ratio of variance and mean is 

Var(T) _ „_! 
E ( y ) - " • 

A model with this reproductive form is denoted as TWd(/i, o 2). Tweedie models are closed with 

respect to scale transformation, i.e., if Y ~ Twd(/x, cr2), then cY ~ Twd(cfi, c 2~ do 2). 

Since V{n) = u- d = rd(9) = T'{9), T{9) must be 

[(1 -d)9]1^1~d\ 
r(9) = 

dfl, 

d = l. 

For the sake of convenience, let 8 = ffi • Then 1/(1 -d) = B-l, l-d = 1/(8 - 1). This leads to 

ee, d = l, or jS = oo. 

K(0) 

Since T(6>) = «'(#), for Tw^f//, er2), the cumulant generator «(0) has explicit form 

( ^(^y, d?l, 2, o r / 3 ^ 0 , oo, 

log(-0), d = 2, or/3 = 0, 

d = 1, or /3 = oo. 

(ignoring the arbitrary constants in the integrations will not affect the final results of cumulant 

generating function.) Thus, one of the other advantages of Tweedie model we are appreciating 

is that it has explicit expression for the cumulant generating function and nigf. The cumulant 

generating function of Twd(/i, a 2) is 

K(S-0,X)= I _ A l 0 g ( i + J L ) , 

k Xee [e*/A - 1] , 

and the mgf of this family has special exponential form: 

e x p J A ^ ^ / ^ l + ^ - l ] } , d # l , 2 ; 

( l + d = 2; 

[ exp {Xe9 [eslx - l] } , d = 1. 

d = 2; 

d = l, 

M(s;9,X)=B [esX] = \ 
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Further research shows that d £ (-00,0]U[1,00]. Thus, if d £ (-00,0], then 8 £ (1,2]; if d £ [1,00], 
then 8 £ [—00,1]. This leads to 8 £ (1,2] U [—00,1] = [—00,2]. Now for the future use, we impose 

the subscript 8 on T(6), K(6),K(S; 6, A), M(s; 0, A), c(x; A) and c(y; A) to indicate that they are linked 

to the specific parameter 8. 

Also, the probability density (mass) function of Tweedie model can be obtained, though 

it is complicated. Recall X = XY has the additive model if Y has the reproductive model. The 

probability density (mass) function is 

fx{x;d,X,B) = c0(x; A)exp{0a; - A / ^ f l ) } , 

where 

1, 8<0,x = 0; 

2_, xV(-k/3)k< ' p <u,x > V, 

00 
D X^Xk4(-Vx)*™(-k*P)> 0 < /3 < l , x > 0; 

k=l 

£ £ ^ ( l ^ ) ' : ^ ( - ^ ) , K8<2,x£X. 

Here Kp(0) is just the previously calculated K(9) for Twd(n,o-2). The corresponding reproductive 

model then has has probability density (mass) function 

fy(y; 8, X,8) = Xcp(Xy; A) exp{A[% - K0(6)]}. 

Tweedie family includes distributions with support on 5R, 5ft+,.A/o, corresponding to real-

valued, positive-valued and non-negative integer-valued random variables. These are related to 

different ranges of d, in which we view the endpoints of ranges as boundaries. Table 2.1 summarizes 

the different types of Tweedie models. From the table, we know that the real support 3ft appears 

when d < 0 and d = 00; this corresponds to 1 < 8 < 2, while the non-negative support A/o, or Oft0, 

or 3 f t + appears when 1 < d < 00; it corresponds to 8 < 1. Some boundary cases are well known 

distributions: normal (d = 0), Poisson (d = 1), Gamma (d = 2), inverse Gaussian (d = 3) and 

extreme stable (d = 00). When 1 < d < 2 (corresponding to 8 < 0), the compound Poisson with 

Gamma obtains, that is, 

i=0 

N 
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Table 2.1: Summary of Tweedie exponential dispersion models (S = support set). 

Distributions d S 0 6 
Extreme stable d < () 3ft 3ft+ 3fto 
Normal d = 0 3ft 3ft 3ft 
(Do not exist) 0 < d< 1 — — — 

Poisson d = 1 3ft+ 3ft 
Compound Poisson 1 < d < 2 3?o 3ft+ 3ft_ 
Gamma d 2 3ft+ 3ft+ 3ft_ 
Positive stable 2 • d < 3 3ft+ 3ft+ -3ft0 

Inverse Gaussian d 3 3ft+ 3ft+ -3ft0 

Positive stable d > 3 3ft+ 5ft+ -3ft0 

Extreme stable d oo 5ft 3ft 3ft_ 

where ZQ = 0,Zi *~ Gamma(0, — 8) and N ~ Poisson(AKrf(0)). This distribution has a positive 

probability on zero, 
Pr[F = 0] = Pr[7V = 0] = exp{-A« d(0)}, 

and density function 

My; 6,\8) = -J2 'V exp{% - A/*(0)}. 
y~{ v-T{-tB) 

2.3.3 G e n e r a l i z e d c o n v o l u t i o n s 

The generalized convolution is a natural extension of a finite convolution. It helps to connect those 

individual distributions which seem to have quite different forms in the pdf or cdf. Fortunately, we 

find that the generalized convolution provides a huge ammunition for the theory of continuous-time 

generalized AR(1) process. A good reference on the generalized convolution is Bondesson [1992], 

The following materials regarding GGC, EGGC, GCMED and GNBC are extracted from that book. 

First, we review the generalized Gamma convolution, which was introduced by Thorin 

[1977a, 1977b], to understand the mechanism of construction of generalized convolution. 
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Since the LT of Gamma(uj,/%) is ( J (i = 1,... , n), the LT of the sum of n such 

Gamma rv's, i.e., finite convolution, is 

*-w=n(̂ r-̂ {|*̂ (̂ )}-
Consider pointwise limits of (j>n{s) and permit a Gamma distribution to be degenerate at a point 

a > 0 with LT e~as. This leads to the following definition. 

Definition 2.7 A generalized Gamma convolution (GGC) is defined as a distribution with support 

on [0, oo) and LT of the form 

</>{s) = exp \ -as + / log ( —-— ) U(du) > , 
{ 7(0,00) V« + s / J 

where a > 0 and U(du) is a non-negative measure on (0, oo) satisfying 

/ | logu(C/(du) < oo and / u~lU(du) < 
7(0,1] 7(l,oo) 

oo. 

Therefore, the GGC is the limiting distribution for a sequence of sums of independent 

Gamma variables with possibly different rate parameters. Extending this idea to random variables 

from other families, we obtain the concept of the generalized convolution, which is defined as 

the limit distribution for a sequence of sums of independent variables from a parametric family. In 

the sense of limit, we know that there are usually numerous rv's involved in the convolution. In 

our study, we tentatively call the distribution involved in the sum as the base distribution of the 

generalized convolution. 

For a rv X distributed in the GGC class, we have 

E[X] = -<//(0) = a + [ u~lU{du), Var[X] = 0"(O) - (</>'(0))2 = / u~2U{du). 
7(0,oo) 7(0,oo) 

This class is surprisingly rich. Some of the examples include 

• (strictly) positive Stable distribution on (0, oo): the LT <f)(s) = exp{—s7} (0 < 7 < 1), and 

the measure U(du) = ysm^J7I'>u'y~1du which leads to / U(du) = 00. 
JfO.oo) 
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Pareto distribution: the pdf f(x) = 7 A 7 (a: + A) 7 1 (x,7, A > 0), and the density of the 

measure U is U'{u) = j^Xyu1~1e~Xu. 

Generalized inverse Gaussian distribution: the pdf 

—C\X — c2x 1}, x > 0 (ci,C2 > 0,/3 G 3ft). 

The [/"-measure has density 

0, U < C l , 

> - c i ) ' , + 1 / o 0 0 / 0

0 0 ( A - c 1 ) - ' , - 1 p - 1 e - 1 / ' ' 

x exp {-C2(s - l)2p(A - c i ) - 1 } dpc/A , u > c x. 

Letting cx —> 0 leads to inverse Gamma distribution. A good reference on the inverse Gaussian 

distribution is Seshadri [1999], where applications can be found in reliability, survival analysis 

and actuarial science. 

Generalized Gamma distribution (power of Gamma random variable): the pdf is 

f(x) = Cxp-1exp{-xa}, x>0 ( 0 < a < l,/3 >0). 

The density of [/-measure is 

U{u) = 7r 1 arg 
0 0 f-~nfc 

-ka 

k=0 

Beta distribution of the second kind (Ratio of Gamma variables): the pdf is 

f{x) = Cxp~l(l + cx)" 7 , x>0 (7 > £ > 0,c > 0). 

However, the density of the [/-measure does not have a simple expression. 

Lognormal distributions: the pdf is 

/(x) = ^ - ^ e x p { - S ^ } , *>0 . 

Unfortunately, no simple expression for the [/-measure exists. 
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Next we visit the extended generalized Gamma convolutions (EGGC), which have support 

on the whole real line Oft. This class is needed to cover the limit distributions for sums of independent 

positive and negative Gamma variables. It was also introduced by O. Thorin. See Thorin (1978). 

Definition 2.8 An extended generalized Gamma convolution (EGGC) is defined as a distribution 

with support on Oft and cf of the form 

v { s ) = e x p { i 6 s _ £ + ( l o g ( _ H _ ) _ J^L.) u(Mj , 

where b £ Oft, c > 0 and U(du) is a non-negative measure on Oft \ {0} satisfying 

[ —-—7rU(du) < oo and f | log u21U(du) < oo. 
JSt\{0} 1+UZ i|u|<! 

Remark: The term su/(l +u2) is added to guarantee the convergence of the integral. When 

/ \u\~1U(du) < oo, it can be omitted. Hence, GGC is a subclass of EGGC. Further research 
J\u\>\ 

shows that the symmetric EGGC is the variance mixture of the Normal distribution, with cf of 

form 

= exp j - ^ + 1 ^ log ( ^ ) J7(d«) j , 

where U is symmetric on Oft \ {0}. Thorin [1978] proved the EGGC is SD. 

Some examples of the EGGC class are listed below. They are verified by characterizations 

other than specifying [/-measure. 

• Stable distribution: the cf of the general Stable distribution of index a (0 < a < 2) is 

<p(s) = exp {iu-s - C\s\a(l - i/3sign(s)uj(s, a))} , p £ Oft, C > 0, \B\ < 1, 
where 

tan(«7r/2), a ^ 1, 

-27T-1 log [s|, a = l. 

The Cauchy distribution is within the Stable distribution family with cf 

u(s,a) = { 

<p(s) = exp{-C| 5 |} , C > 0 . 
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Generalized Logistic distribution: This rv is derived from two Exponential rv's as X = 

]og(Yi/y 2), where Yi ~ Gamma(/3i, 1) (i = 1,2). The pdf of X is 

o(Pl,P2) 

When Bx = /32 = 1/2, it is 

/(a;) = - (e x / 2 + e- s / 2 ) - 1 , s 6 S. 

While /3i = Bi = 1, it is the logistic distribution with pdf 

f(x) =e-x/{l+e-x)2, x€3ft; 

and mgf 

s °° 1 °° 1 

M(S) = r ( i + s ) r ( i - s ) = .™ = T T ^ — 5 7 7 ^ = T T 7 1 — , / M -

sm(7rs) £J (1 - s2/k2) ^ (1 - s/k)(l + s/k) 

A stochastic representation of scale mixture of the Normal distribution for this logistic rv X 

can be found in Joe [1997], p. 133-134. See also Andrews and Mallows [1974] and Stefanski 

[1991]. It is 
X = Z/V, 

where Z ~ N(0,1), and V is a positive rv with pdf 
oo 

/ y ( a ;) = 2 5](- l )^ 1 fc 2 ^ 3 exp{-fc 2 / (2x 2 )} . 
fc=i 

Hence, X is the rv of a variance mixture of the Normal distribution. 

» Logarithm of Gamma variable: X = logy, Y ~ Gamma(/3,1). 

» Other symmetric EGGC distributions with pdf: 

(i) f(x) — C ( l + e x 2 ) - 7 , t-distribution, essentially 
(ii) /(x) = C ( l + c |x | ) - 7 , two-sided Pareto distribution 

(iii) /(aj) = Cexp{—cy/x2 + J}; Hyperbolic distribution 
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(iv) f(x) = Cexp{-c\x\2/k} (k = 1,2,...) 

The generalized convolutions of mixtures of Exponential distributions (GCMED) is another 

extension of GGC (see Bondesson [1992], pl39-140). This class has support on [0, oo). 

Definition 2.9 A generalized convolution of mixtures of Exponential distribution (GCMED) is 

defined as a distribution with support on [0, oo) and LT of the form 

<b(s) = exp \ -as + f (— | U(du) \ = exp \ -as + / —:—^-^U(du) > , 
[ 7(0,oo) \U + S U) J [ ./(O.oo) «(« + J 

where a > 0 and U(du) is a non-negative measure on (0, oo) satisfying 

1 -U(du) < oo. 
'(0,oo) «(1 + « ) ' 

Remark: A mixture of Exponential distributions (MED) is defined as a probability distribution 

on [0, oo) with pdf 

f{x) = [ ue~xuU{du), 
7(0,oo) /(0,oo) 

or cdf 

F(x)= [ (l-e-xu)U(du). 
7(0,00] 

Here U(du) is the mixing measure (for the inverse of the scale parameter), which is non-negative 

and satisfies / U(du) = 1. U({oo}) > 0 implies the distribution has an atom at 0. The LT of 
7(0,oo] 

an MED is 
<f>(s) = U({^}) + / ^-U{du). 

7(0,oo) u + s 

The LT of compound Poisson with Exponential has the form of 

1 1 
^ ) = e x p { A ( ^ _ i ) } = e x p { A w G + s u / 

Hence, the GCMED is a generalized compound Poisson-Exponential convolution following the 

convention of GGC. 

Some examples of GCMED are 
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Compound Poisson with Exponential distribution: Let X = YiLo^i, where N ~ Poisson(A) 

and Yo = 0, Yi ~ Exponential(u) (i = 1,2,...). Then 

4>x{s) = exp{A(c6yi(s) - 1)} = expJAu ( —-• J 1 . 
^ \u + s u J ) 

Non-central x2-distribution: Let Z\ ~ N(jUj, 1) (i = 1,2,... ,n) be independent. Then 

n W 

where A = YH=I A*?, ~ Poisson(A/2) and Y 0 = 0, Y, ~ Exponential(l/2). 

Logarithm of Beta variable: X = - log Y', where Y ~ Beta(a, B). The LT of X is 

i > + /3)r(q + s) 
^ l s j ~ r ( a ) r ( a + /3 + s ) ' 

Inverse Gaussian mixture distribution (introduced by Jorgensen, Seshadri & Whitmore [1991]): 

the pdf is 

f{x) =C'(p + q^/cl~j72x)fl{x), q=l-p, 0 < p < 1, 

where /i(a:) is the pdf of inverse Gaussian distribution 

fiix) = Cx~3l2 exp{—c\x — c2x~1}, 

which has LT 

<t>\is) = exp{c3(l - yjl + C4s)}, C 3 = 2y/CiC2, c 4 = 1/ci. 

The LT of the inverse Gaussian mixture distribution is 

cf>{s) = ip + q/y/l + CAs)(j)i($). 

This family includes the well-known life distribution of Birnbaum & Saunders (1969) when 

p = l /2 . 
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The last generalized convolution discussed in Bondesson [1992] is the generalized Negative 

Binomial convolution (GNBC), which has support on non-negative integer {0,1,2,...}. The discrete 

analogue of the Gamma distribution is the Negative Binomial distribution; hence, the GNBC is 

the discrete analogue of the GGC. 

Definition 2.10 A generalized Negative Binomial convolution (GNBC) is defined as a distribution 

with support on non-negative integer and pgf of the form 

<K.) = « P { . ( . - i ) + / w i i , ( r i i ; j v w } , 

where a >0, p = 1 — q and U(du) is a non-negative measure on (0,1) satisfying 

/ qV(dq) < oo and / log(p)V(dq) 
7(0,1/2] 7(1/2,1) 

< oo. 

Some examples of the GNBC class are 

Discrete Stable distribution: the pgf is 

G(s) = exp{-c(l - s)a}, c> 0, 0 < a < 1. 

(refer to Steutel and van Ham [1979]). 

Generalized Waring distribution: this family is defined with probability mass 

W = C ; ! ( a + /3 + 7)br ^ = 0 ' 1 ' 2 ' — a ^ > 0 ' c = r ( a + ^ + 7 ) r(7)' 

where 8^ = 1, 8^ = 8 • (8 + 1) • • • (8 + j - 1). The pgf is the sum of a Hypergeometric 

series. Furthermore, the generalized Waring distribution is the Poisson(A)-mixture, where 

A = Y • X\ IX2 and Y, X\, X2 are independent with 

Y ~ Gamma(/3,1), X\ ~ Gamma(a, 1), X2 ~'Gamma(7,1). 

This family leads to several distributions: 
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(i) Waring distribution (see Johnson h Kotz [1969], p. 250): 8 = 1. 

A special case is the power series distribution when a = l — n, 7 = n (0 < n < 1), which 

has pmf and pgf: 

(1 - n)W 1 - (1 - s)71 

Pi = T l r ^ L . 3 = 0,1,..., and G(s) = U *J . 

(ii) Yule distribution: a = 8 = 1 and 7 —>• 0. 

(iii) NB(/3, g)-distribution: q = a/(a + 7 ) and let a —»• 00, 7 - 4 00. 

Distributions (i) and (ii) have applications in modelling word size in prose. 

• Logarithmic series distribution (shifted): the pmf and pgf are 

^ = ^ T T (̂  = 0,1,2,...), c = l - e * , 0>O, and G(s) = ^ . ~ ^ 6(1 + 1) slog(l — cj 

In the study of continuous-time generalized AR(1) process, we have discovered four new 

generalized convolutions, which we tentatively name as GC I, GC II, GC III and GC IV. These 

generalized convolutions play an important role in customizing marginal distributions of a steady 

state Markov process (see Chapter 6). 

Definition 2.11 A generalized convolution I (GC I) is defined as a distribution with support on 

non-negative integer and pgf of the form 

G(s) = exp J -as + [ q[S~l)V(dq) \ , 

^ 7(o,i) 1 - 9 s J 
where a > 0 and V(dq) is a non-negative measure on (0,1) satisfying 

I qV(dq) < 00 and / (1 - q)~lV{dq) < 00. 
7(0,1/2] 7(1/2,1) 

The base exp j 9 !̂_~^ j was proved to be a pgf in Example 2.1 in Section 2.2.1. 

Definition 2.12 A generalized convolution II (GC II) is defined as a distribution with support on 

non-negative integer and pgf of the form 

G(s)=e*J-as+ [ q { s ~ " ^ V(dg)\, 
I 7[7,l) 1-qs J 
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where a > 0, 7 > 0 and V(dq) is a non-negative measure on [7,1) satisfying 

f (l-q)-1V(dq)<^. 

The base exp { ^ " i l ^ " " 7 ^ }' 0 < 7 < c/ < 1, was also proved to be a pgf in Example 2.1 in 

Section 2.2.1. 

Definition 2.13 A generalized convolution III (GC III) is defined as a distribution with support 

on [0,00) and LT of the form 

= exp Las+ [ 1

 1 - 7 l o g f ( 1 " 7 + 7 ^ ) ^ ) l , 
[ 7(o,oo) 1 - 7 - iu V U - 7 ) ( « + s) / J 

where a > 0, 0 < 7 < 1 (7 is fixed) and U(du) is a non-negative measure on (0,00) satisfying 

/ I logu\U(du) < 00 and / u~2U{du) < 00. 
7(0,1]) 7(1,00) 

iVoie that when 7 = 0, GC III will become GGC. Hence, GGC is a special case of GC III. 

The base exp {log ( { r f ^ g ^ y ) } was proved to be a LT in (2) of Theorem 2.2.8. 

Definition 2.14 A generalized convolution IV (GC IV) is defined as a distribution with support 

on [0, 00) and LT of the form 

Hs) = exp J -as + A f ~ 7 + 7 s ) U(du) I, 
^ 7(o , 7 - l - i ] u + s J 

where a > 0, A > 0, 0 < 7 < 1 ( 7 is fixed) and U(du) is a non-negative measure on ( 0 , 7 - 1 — 1] 

satisfying 

/ u~lU(du) < 00. 
7 (o , 7 - 1 - i ] 

Note that when 7 = 0, the LT will be 

4>{s) = exp \ -as + A / ——U(du) \ = exp I -as + / - r -
1 7(0,oo) u + s J I 7(0,oo) «(« 

S U'{du) 
• + a) 

where U'(du) = XuU(du). Thus, GC IV will become GCMED. This shows that GCMED is a special 

case of GC IV. 
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The base exp {-A • a ( 1 ^ 7 ' ) ' } w a s P r o v e d t o b e a L T i n ^ o f T n e o r e m 2 - 2 - 8 -

Specific distributions which are in the new generalized convolution families are not known 

at this moment; thus, further investigations are under study. 

2.4 Independent increment processes and examples 

The independent increment process is well studied, and is intimately connected with infinitely 

divisible distributions. The latter links to the study of Levy process. Refer to Prabhu [1980], p. 69, 

Feller [1966b], p. 177-179, Bhattacharya & Waymire [1990], p. 349-356, Protter [1990], Section 

5 in Chapter 1. We review this process family and will choose some of them to be the noise 

process or innovation process in the theory of continuous-time generalized AR(1) processes defined 

in subsequent chapters. 

Definition 2.15 Stationary independent increment process (IIP): 

A process {X(t);t > 0} is said to have stationary independent increments if it satisfies the following 

properties: 

(i) For 0 < t\ < t2 < • • • < tn(n > 2), the random variables 

(ii) The distribution of the increment X(tk) — X(tk-i) depends on (tk-\,tk) only through the 

difference tk-tk-\-

Without loss of generality, X(0) is usually taken as 0. This is because that if X(0) ^ 0, we 

can subtract it from the process which results: Y(t) = X(t) - X(0). The new process {Y(t);t > 0} 

has stationary independent increments and starts from Y(0) = 0. This means that the starting 

point is independent of any increment for a stationary independent increment process. Since 

X(h),X(h) - X(ti),X(t3) - X(t2),X(tn) - X{tn-i) 

are independent. 
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X(t) can be viewed to be the sum of n independent random variables, all of which have the same 

distribution as X (t/n). This is true for all n > 1. Hence, it follows that X(t) has an infinitely 

divisible distribution. 

Note that it's easy to extend the stationary IIP to non-stationary IIP by loosening condition 

(ii) , in which case the distribution of X(t) may not be infinitely divisible if the small increments 

are not identically distributed. 

With the following additional conditions, the stationary independent increment process 

becomes the Levy process: 

(iii) X{t) is continuous in probability, namely, for any e > 0, 

lim Pr[|X(i)| > el —> 0. 

This is equivalent to stochastic continuity: lim Prfl-X^) — -X"(*i)| > e] = 0. 
*i — 

(iv) There exist left and right limits X(t—) and X(t+). Assume that X(t) is right continuous: 

X(t+) = X(t). Here the difference X(t+) - X(t-) = X(t) - X(t-) is called the jump of the 

process at time t. 

Note that the number of conditions required for a Levy process may appear as three to five 

in the literature, depending on the author's view. For example, some impose X(0) = 0, some don't. 

Because the increment Xfa) — X{t\) is infinitely divisible for the Levy process, we can 

characterize this process by the mgf, LT or pgf of the infinitely divisible distribution discussed in 

Proposition 2.3.1. Some scholars even define the Levy process in this way, e.g., Bondesson [1992], 

p. 16. Since we are particularly interested in three kinds of supports of increment: (—oo,+oo), 

(0, +00) and {0,1,2,...}, we summarize the results in these three cases in the following proposition. 

Proposition 2.4.1 Suppose {X(t);t > 0} is a Levy process with X(0) = 0. Consider X(t), the 

margin at time t. 

• When the support of X(t) is 5ft, the mgf of X(t) is 

cf>xit)(s) = exp j i as + y • s2 + J - 1 - L(dv) } > »e s = 0, o G », 
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where the measure L satisfies / min(l, y2)L(dy) < oo 
Jy^O 

When the support of X(t) is 5?+, the LT of X(t) is 

<i>x(t)(s) = e x P \ * —as + 
7(0,00) 

-sy 1) L(dy) a > 0, 

w/iere i/ie Levy measure L is non-negative and satisfies / min(l, y)L(dy) < oo. Now the 
7(0,00) 

parameter a is called the left-extremity. 

When the support of X(t) is No, the pgf of X(t) is 

f (Sy-l)L(dy) 
7(0,oo) 

= exp{*A[Q(a)-l]} 

where the Levy measure L is non-negative and satisfies / min(l, y)L(dy) < oo. Here 
7(0,oo) 

A = f,Q ^ L(dy), the total Levy measure, and the pgf is 

oo 

Q(s) = \~lYJskL({k}). 
k=l 

When the support of X(t) is Tvo, obviously it is compound Poisson based on another discrete 

distribution which also has support AV When the support of X(t) is 0?+, it is also compound 

Poisson. See the explanation in Bondesson [1992], p. 16. When the support of X(t) is Dft, further 

research shows that the Levy process can be decomposed as a Brownian motion plus drift and a 

jump process. And the only one in Levy process family, which have a.s. continuous sample paths, is 

the Brownian motion. See Bhattacharya & Waymire [1990], p. 349-356, and Protter [1990], Section 

5 in Chapter 1. 

The compound Poisson process is a concrete example in Levy process family, which is 

defined to have compound Poisson increments. Assume X(0) = 0. Then 

N(t) 
X(t) = Yh where Y0 = 0, Yi (i > 1) iid and N(t) ~ Poisson(Ai). 

i=0 
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The margin can be real, positive or non-negative integer valued depending on the support of Yj. 

The cf, LT or pgf of X{t) is then 

<Px(t) (s) = e x P {Xt(tpY\ (s) - 1)} , if Yi is a real rv, 

</>X{t)(s) = e x P {^(^Yi (s) — 1)} , if Yi is a positive rv, 

[ GX(t)(s) — exp{A2(Gyi(s) - 1)} , if Yi is a non-negative integer rv, 

where (py1(s), ^ ( s ) or Gyj(s) is the cf, LT or pgf of Y\ respectively. This family contains many 

processes such as Poisson process, Negative Binomial process, Gamma process, etc. 

The increment with three kinds of domains: (—00,+00), (0,+00) and {0,1,2,...} are of 

our special interests in the theory of continuous-time generalized AR(1) process. In the rest of this 

section, we list some specific stationary IIP {X(t);t > 0} with non-negative integer rv, positive rv 

and real rv margins respectively for the future use. They are used to construct specific models in 

the theory of continuous-time generalized AR(1) processes. The non-stationary case can be easily 

generalized by allowing the the time difference t2 — t\ to be a function of ti and t2, say a function 

of t2 — t\. A l l starting points are assumed as 0, namely X(0) = 0. 

Case 1: Non-negative integer rv margins 

Example 2.6 Poisson IIP. The increment X(t2) - X{t\) ~ Poisson(\(t2 - t\)), with pgf 

Gx{t2)-x{tl){s) = E = e x p { A ( i 2 - t^s - 1)}, 

where A > 0. Thus, the margin X(t) ~ Poisson(Xt) with pgf Gx(t)(s) = exp{Ai(s — 1)}. 

Example 2.7 Compound Poisson IIP. {Y(t);t > 0} is a Poisson IIP defined as in Example 2.6. 

Z is a non-negative integer rv with pgf Gz{s) = E ( s z ) . The increment of {X(t);t > 0} is defined 

as 
Y(t2)-Y(h) 

X(t2)~X(h)= Z^ 
i=0 

where Z0 = 0 and Zx, Z2,... '~d' Z. Thus, the pgf of X(t2) - X(h) is 

E 
• y(t2)-^(*i) 

E Zi 
s i = 0 Y(t2)-Y(h) 

= E{G2 ( t 2 )" y ( t l ) ( s ) } = e x p { A ( i 2 - i 1 ) [ G z ( s ) - l ] } , 
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and the pgf of X(t) is GX(t)(s) =.exp{Ai[G^(s) - 1]}. 

Gz(s) has a variety of choices. For instance, we can take Gz(s) = Po + Pis + • • • + pnsn, 

where the pi's are non-negative and sum .to 1. If Gz(s) = s, the Poisson IIP in Example 2.6 

obtains. 

Z can be generalized to a continuous-time process {Z(t);t > 0} {Z(0) = 0) with the property 

that for ti < t2 < £3, 

(*2 - h)[Gz{t2_tl)(s) - 1] + (is - t2)[Gz{t3-t2)(s) - 1] = (t3 - h)[Gz{t3-h)(s) - 1]. 

Define the increment of {X(t);t > 0} as 
Y(ta)-Y(t!) 

x(t2) - x(h) = Z ^ - *i)> 

where Z 0 ( t 2 - * i ) =0 and Zx(t2-ti), Z2(t2-tx),... Z(t2-h). Hence, the pgf ofX(t2) - X(t±) 

is 

GX(t2)-x(h){s) =expJA(< 2 - t i ) Gz{t2_tl)(s) -1 J , 

Checking the pgf of X(t^) — X(t\), we obtain 

= exp {A(*2 - h) 

= exp{A(i3-ti) 

O W - 1 ] } 

C?x( t 3)-x ( t l)(3) = E ( ^ ^ ) - x ( t 1 ) ) = E ( s ^ 3 ) - x ( < 2 ) + x ( t 2 - x ( t l ) ) 

= GX(t2yX(ti)(s)Gx{t3)-x(t2)(s) 

GZ{t2-ti)(s) - 1 + Hh ~ h) Gz(tz_t2 

GZ(t3-h){s) - 1 }• 

Therefore, the pgf of X(t) is exp {A^GZ(t)(s) - 1 }• 

Example 2.8 Negative Binomial IIP. Let the increment X(t2) - X(t\) ~ NB(6(t2 - ti),j), with 

P9f 
( i _ 7 ^ ( t 2 - t l ) 

Gx{t2)_x{tl){s) = [ Y Z ^ J 
, et 

where 9 > 0 and 0 < 7 < 1. S o X{t) has pgf {^jz^) • 
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Example 2.9 Discrete stable IIP. Let the increment X(t2) — X(t\) be distributed with discrete 

stable, i.e., the pgf is 

GX(t2)-x(h)(s) = exp{-A(*2 - - s)a}, 

where A > 0 and 0 < a < 1. Then X(t) has pgf Gx(t)(s) = exp{—Ai(l — s)a}. 

Example 2.10 Generalized Negative Binomial convolution (GNBC) IIP. Let the increment X(t2)~ 

X(ti) be distributed in GNBC with such kind of pgf 

GX(t2)-X(tl)(s) = exp {(t2 - h) j ]og(^—)V (dq)}. 

Then X(t) has pgfGx{t)(s) = exp [t J m log^JV (dq)}. 

Example 2.11 GC I IIP. Let the increment X(t2) — X(ti) be distributed in GC I with pgf of the 

form 

Gx{t2)-X(tl)(s) = exp Ut2 - h) f ^^-V(dq)}, 
Then X(t) has pgf 

Gx{t)(s)=exp{t f q-^±V(dq)}. 
' L 7(o,i) i-qs > 

Example 2.12 GC II IIP. Let the increment X(t2) - X(t\) be distributed with GC II with pgf of 

the form 

GXM-XMW = exp {fe ~ ti) J ^ ~ ^ 7 ' V ( d g ) } , 7 > 0. 
Then X(t) has pgf 

Gx(„(») = e x P { * / " < ' - 1 » 1 - ^ V W } . 
L 7(0,1) l - q s i 

Case 2: Positive rv margins 

Example 2.13 Gamma IIP. Let the increment X(t2) - X(ti) ~ Gamma(a(t2 - h),B), with LT 

where a,B>0. The LT of X(t) is (̂ f̂ )0*, *-c, the LT of Gamma(at,B). 
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Example 2.14 Inverse Gaussian IIP. Inverse Gaussian rv X has pdf 

fx(x;n,\) = y/\/(2irx3)exp{-\{x- /i)2/(2^x)}, x > 0, 

where u-, A > 0, and the LT is 

fo(S) = E[e**] = expj - 1 - 1 + 
2u2s^1/2' 

Now let A = ku2, where k is a constant. Then 

4>x(s) = exp \kn 
2 ^l'2 

For this special form, we can construct Inverse Gaussian IIP {X(t);t > 0}, such that the increment 

X(t2) - X{h) has LT 

l - [ 1 + k S 

1/2 

^A'(e 2 ) -A' (d)( -5) = exp |A;(t 2 - *i) 

Hence, the LT of X(t) is 

<t>x(t)(s) = exp j / c f l - ^ l + | s ^ 

Example 2.15 GGC IIP. Let the increment X(t2) — X(t\) be distributed in generalized Gamma 

convolution distributed with LT 

- X ( t i ) W . » X ( t 2 ) - X ( t i ) exp | ( t 2 - *i) / l o S (^7) ̂ d u) 
#ence, X(t) has LT 

r*x(i)(5) = e x p [ * y " I o S (^7) ^(RFTI)} • 
This family is a big class, consisting of many known distributions. 

Example 2.16 GCMED IIP. Let the increment X(t2) - X(ti) be distributed in GCMED with LT 

ixM-xwis) = exp [ft , - tl) 1 ^ ^-U(du)} , 

Then X(t) has LT 

<l>x(t)(s) = exp H (0,+oo) u + s 

U(du) } . 

70 



Example 2.17 GC III IIP. Let the increment X(t2) - X{tx) be distributed in GC III with LT 

[ 7(0,00) 1 ~ 7 - iu \(1 - 7)(« + 5)) J 

T/ien /ms LT 

[ 7(o,oo) 1 - 7 - 7" V C 1 -7>(« + s ) / J 

Case 3: Real rv margins 

Example 2.18 Gaussian IIP (Brownian Motion). This is well known. The increment X(t2) — 

X(h) ~ N(0,t2~h). 

Example 2.19 Cauchy IIP. A Cauchy(0,\) rv X has pdf 

fx(x\X) = - T 0 - 7 — 2 , -00 < x < +00, A > 0, 
7T A ~r X 

and cf 

<px(s) = E[eisX]=e-xW. 

To obtain a Cauchy IIP, just set the increment X(t2) — X(t\) ~ Cauchy(0,X(t2 — ti)). 

Example 2.20 Stable Paretian (or stable non-Gaussian) IIP. Consider a special case in stable 

Paretian family, which has cf of form 

<p(s) = exp{-A|s| a}, 0 < a < 2. 

(When a = 2, it's normal distribution.) To obtain a stable Paretian IIP, just let the cf of the 

increment X(t2) — X(t\) be 

Px(t2)-*(ti)( s) = exp{-A(t 2 - ti)|5|Q}. 

Thus, the cf of X(t) is exp{-Ai|s | a }. 

In summary, all pgf's, LT's or cf's in these examples are of exponential form with (£2 — 1̂) as 

linear parameter in the exponent. We pick up such a form because we want to change the product 

form to summation form in obtaining the pgf, LT or cf form of the continuous-time generalized 

AR(1) process. In all these cases, X(t) is infinitely divisible. 
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Chapter 3 

Self-generalized distributions and 

extended-thinning operations 

In this chapter, we shall propose a new concept of closure for probability distributions. Families 

with this closure property are called self-generalized distributions. The support of these families 

can be non-negative integer or positive real. They induce a class of stochastic operators, which 

we call extended-thinning operators. These stochastic operators will be applied in generalized 

Ornstein-Uhlenbeck stochastic differential equations, and the property of self-generalizability plays 

a crucial role in model construction of continuous-time generalized AR(1) processes (see Chapter 

4). 

In Section 3.1, we shall define the self-generalized distribution in the non-negative integer-

valued case and the positive-valued case respectively, and give some examples as well. We discuss the 

properties of self-generalized distributions in Section 3.2, as well as construction of self-generalized 

distributions in Section 3.3. Finally, we propose the extended-thinning operations in Section 3.4. 
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3.1 Self-generalized distributions 

A family of self-generalized distributions has a pgf or LT which is closed under some compound one-

parameter operation. The support is non-negative integer or positive real. We give the thorough 

discussion on both cases in the following subsections. 

3.1.1 Non-negative integer case and examples 

Suppose iv" is a non-negative integer random variable, taking value on {0,1,2,...}. Now we define 

the self-generalized distribution in non-negative integer case. 

Definition 3.1 Let A be a subset of reals that is closed under multiplication. Suppose K has cdf 

F(x; a) depending on a parameter a , a € A . The probability generating function is 

then the distribution family {F(x; a); a £ A } is said to be self-generalized with respect to parameter 

a. For brevity and convenience, we say that K is self-generalized with respect to parameter a to 

refer to the self-generalizablity of the distribution family {F(x;a);a € A } . 

In non-negative integer case, the self-generalizability is closed under the compound opera

tion for the probability generating function. This closure operation corresponds to an interesting 

stochastic representation (refer to Property 3.6, which leads us to call it self-generalizability). 

To illustrate this new family in non-negative integer case, we give five examples in the 

remainder of this subsection. For the sake of saving space and reducing redundancy in the later 

study, we label them from II to 15. 

GK(s;a) =B[sK}= / sxdF(x;a) = £ V Pr[# = *]. 

If 
GK{GK(S; a); a') = GK(s; act), 
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Example 3.1 (II): Let K ~ Bernoulli(a) (0 < a < I). The pgf of K is GK(s; a) = (1 - a) + as. 

Thus 

GK(GK(s;a);a') = (1 - a') + a'GK(s; a) = (1 - a') + a'[(l - a) + as] 

= (1 — aa) + aa's = GK(s;aa'). 

Therefore K is self-generalized with respect to parameter a. 

Example 3.2 (12): Consider K = ZI, where I ~ Bernoulli(a), Z = Z' + l, Z' ~ NB(l,^h), and 
a — ^{^a > b = {i-a)i> 0 < a ^ l j 0 ^ 7 < l - Llere the parameter 7 is fixed. Note that Z, Z' have 

Geometric distributions with positive integer support and non-negative integer support respectively. 

The pgf of Z is (1 — q)s/(l — qs) where q = (1 + 6 ) - 1 . A straightforward calculation leads to 

(1 - a) + (a - 7)a 
GK(s;a) = { 1 _ o n ) _ { 1 _ a h a -

It follows that 

n ( r ( , ,x (1 -a') + (a' -l)GK(s;a) 
GK(GK(s; a); a ) = ( 1 _ _ ( 1 _ ( a ; a ) 

= ( i - ^ + ( a - - 7 ) ( r Q ; ; i [ n )

) ; 
(1 - a ' 7 ) - (1 - a07(l

(ir7{!(

(?:a

7

)

); 
(1 - a')[(l - 07 ) - (1 - a)js] + (a1 - 7)[(1 - a) + (a - j)s] 

(1 — a ; 7)[(l - 07) - (1 - a)7s] - (1 - a ' )7[(l - a) + (a - 7)5] 

,[(1 - 00(1 - ay) + (a' - 7 )(1 - a)] + [-(1 - a')(l - 0)7 + K - 7)(« - 7)]« 

[(1 - 0/7)(1 - 07) - (1 - a')(l - 0)7] - [(1 - a ' 7 ) ( l - a ) 7 + (1 - a'){a - 7 ) 7 ] s 

_ (1 — 7)(1 — aa') + (1 — 7)(aa' — 7)5 

(1 — 7)(1 — aa ' 7 ) — (1 — 7)(1 — aa ' )75 

(1 — aa') + (aa' - j)s 
(1 — aa ' 7 ) — (1 — a a ' ) 7 « 

= Gxis^aa'). 

Hence, K is self-generalized with respect to a. 

When 7 = 0, this becomes Example 3.1. 
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Example 3.3 (13): Let K be a right-shift power series random variable, taking values in {1,2,3,...}. 

The pgf is 

GK(s;a) = l-(l-s)a, 0 < a < 1. 

It follows that 

GK(GK(s;a);a') = 1 - (1 - GK(s; a)f = 1 - ((1 - s)a)a' = 1 - (1 - s)aa' 

= GK(s;aa'). 

This shows that K is self-generalized. 

Example 3.4 (14): Suppose the non-negative integer random variable K has pgf 

GK{s;a) = c-l[l-e-^l-a\l-cs)% 

where 0 < a < 1, c = 1 — e~e, 8 > 0. The parameter 8 is fixed. Then 

GK(GK(s;a);a') = c^l - e ^ - a ' \ l - cGK(s; a))a'} 

= c-l[l-e-e^(e-e^-a\l-cs)a)a'] 

= C-l[l - e-^l-a'+a'-aa')^ _ ^ j a o / j 

= c - 1 [ l - e - * ( 1 - a a ' > ( l - c s ) Q a ' ] 

= GK{s;aa'). 

Thus, K is self-generalized with respect to a. 

Since lim c _ 1 [ l — e~6(l~a^(l — cs)a] = 1 — a + as, the lower boundary leads to Example 3.1. 

Example 3.5 (15): Consider the non-negative integer random variable K which has pgf 

GK(s; a) = l - a 8 ( l - j)0 [(1 - ah + (1 - 7 ) U - s)~1/d} ^ , 

where 0 < a < l , 0 < 7 < l and 8 > 1. Here the parameter 7 and 8 are fixed. Then, it follows that 

GK(GK(s;a);a') = 1 - ( « ' ) * ( ! - 1)e \(1 - a'h + (1 - 7)(1 - GK(s;a))"1/*! 

l - ( « r ( l - 7 ) 6 (1 - a'h + « _ 1 ((1 - «)7 + (1 - 7)(1 - s)~1/8) 
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= l - ( a Y ( i - 7 ) 6 ( l - a a ' ) 7 + ( l - 7 ) ( l - a ) _ 1 / 0 

a 

= 1 - (aa')9(l - j)9 [(1 - aa'h + (1 - 7)(1 - s)'1^9 

= Gft-(s;aa'). 

Hence, K is self-generalized with respect to a. 

When 6 = 1, the pgf becomes 

GK(s; a) = l- a(l - 7 ) [(1 - a ) 7 + (1 - 7)(1 - s)"1]~' = ^ ^ Z ^ 

which is the pgf of Example 3.2. Therefore, Example 3.2 is a special case in this family. 

We summarize the existing relationship among these classes: I I C 12 C 15 and I I C 14. 

3.1.2 P o s i t i v e case a n d e x a m p l e s 

In this section, we define self-generalizability for positive rv's. 

De f in i t i on 3.2 Let A be a subset of reals that is closed under multiplication. Suppose K has cdf 

F(x;a) depending on a parameter a, a € A. The Laplace transformation of K is 

bK(s;a) = E[e -sKi 

If 
$ K {-log <j)K(s; a); a') = <f>K(s;aa'), 

then the distribution family {F(x;a);a € A} is said to be self-generalized with respect to the pa

rameter a. For convenience, we say that K is self-generalized with respect to the parameter a to 

refer to the self-generalizablity of the distribution family {F(x; a); a € A}. 

In positive rv case, self-generalizability is closed under the negative logarithm-compound op

eration for the LT. This seems quite different from non-negative integer case, where self-generalizability 

76 



is closed under compounding for the pgf. However, recalling that GK(s; a) = E (sK) = E (e ( l o e s ) K ) 

4>K{ — logs; a), one can induce from 

GK{GK(s]a)\a') = GK(s;aa') 

to 
</>/f(-log - logs; a); a') = <j>{-log s; aa'). 

Replacing — log s with s, we see that the non-negative integer self-generalized distribution still 

satisfy the definition for positive rv case. This implies that both definitions are the same in principle. 

Of course, we can use the definition regarding LT to unite both cases; however, the pgf is more 

convenient than the LT for the non-negative integer case. 

Similarly, this kind of closure of LT with respect to a parameter corresponds to another inter

esting stochastic representation (see property 3.7) leading to the terminology of self-generalizability. 

The following are five positive rv self-generalizability examples. Similarly, we label them 

from P I to P5; they form pairs with II to 15. 

Example 3.6 (PI) : Suppose K is a degenerate rv on point a (a > 0). Then the LT of K is 

(f>K{s;ot) = e~as. It is easy to check self-generalizability, because 

where 0 < a < 1, 0<7<1 and 7 is fixed. This is the LT of a compound Poisson distribution with 

exponential rv's. It follows that 

4>K(-log (j)K{s; a); a') = e -a'[-\og(pK(s;a)} _ e~a'[as] _ g - . 

Example 3.7 (P2): Suppose K is a positive random variable with LT 
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= exp < - ( l - 7 ) 
= <f>K{s\aa'). 

aa'(l — 7)s 1 
+ (1 - aa'^s J 

Hence, K is self-generalized with respect to a. 

When 7 = 0, this becomes Example 3.6, namely P I . 

Example 3.8 (P3): Let K be positive stable with LT ^K(S;O) = exp{—sa}, where 0 < a 

Then 

M~ log <t>K(s;a);a') = exp { - [- log <j>K(s; a)f } = exp { - [saf } = exp {-s a a'} 

= <f>K (s;aa'). 

Thus K is self-generalized. 

Example 3.9 (P4): Consider positive random variable K with LT 

4>K(s;a) = exp < - -
e8 - 1 

where O < a < l , 0 > O and 9 is fixed. It follows that 

f [l + ( e 0 - l ) { - l o g ^ ( g ; a ) } ] a ' - l 
4>K{-\og<t>K(s\a)\a ) = exp< 

exp < 

a ' ^ 

- 1 

= expj-

= 4>K(s;aa') 

Thus, K is self-generalized with respect to a. 

e° - 1 

[1 + (e* - 1 )*P ' - 1 
ee - 1 

Since lim exp 
0->o 

|_[1 + ( e^H—_ j = e - Q S , tfie lower boundary leads to Example 3.6. 
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Example 3.10 (P5): Consider positive random variable K with LT 

A t \ J I" "(1-7) (f>K{s\a)=exp<- — r 

y [(1 - 0)7 + (1 -7)s « 

where 0 < a < l , 0>1 and 0 < 7 < 1. The parameters 9 and 7 are fixed. Now we check the 

self-generalizability. 

a ' ( l-7) 
<f>K(-log<i>K(s;a);a') = exp < -

(l-a ,)7+(l-7)[-log^(a;a)] * 

exp < 
a'(l - 7) 

exp 

= exp < -

(1- a')7 + ( l - 7 ) 

a ' ( l - 7 ) 

a ( l - 7 ) 
L ( l -a)7+( l -7)s * 

, ( l - ^ ) 7 + ( l -7 ) ( 1 - a y iV" r 

a a ' ( l - 7) 

exp 

a ( l - a')7 + (1 - «)7 + (1 - 7) s" 

aa'(l — 7) 

(1 - aa')7 + (1 - 7)s « J 

TTiis implies that K is self-generalized. 

When 9 = 1, the LT will be 

a(l - 7) 
4>K{S;O>) = exp T | =exp[-

a ( l — 7)5 

a)7s } ' ( l - a ) 7 + ( l - 7 ) * - 1 J " " I ( l - 7 ) + (l 

lo/iic/i is the LT of the Example 3.7. Hence, Example 3.7 is a special case in this bigger family. 

The relationships among these classes are: P I C P2 C P5 and P I C P4. 
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3.2 Properties of self-generalized distributions 

In this section, we shall discuss some properties of the proposed self-generalized distributions in 

proceeding section. These involve the properties of their means, boundaries, as well as possible 

stochastic representations for the compounded pgf and LT. 

For non-triviality we assume that the distributions of a self-generalized family {FK(; a); a G 

A} are distinct for different a G A. Thus, trivial cases like K being a constant 0 for the entire 

family are excluded. 

Theorem 3.2.1 Suppose K is a self-generalized random variable. The expectation of K is: 

dGK(s,a) j 

l s=l 
if K is positive rv. 

h(a)=B(K) = 
ds 

d4>K(s,a) 
ds 

, if K is non-negative integer rv, 
=i 

s=0 

Then 
h{a)h(a') = h{aa'). 

(This is the Cauchy functional equation.) 

Proof: Taking partial derivative with respect to s for both sides in the self-generalizability 

definitions, by the chain rule, we obtain 

dGK(Gk(s;a);a') dGk(s;a) _ dGk{s;aa') 
dGk(s;a) ds ds 

and 
d(j)K{-1og^K{s;a);a') ^ d(-log (fa-(s; a)) _ d<j>K{s;aa') 

d(-log<fa(s;a)) ds ds 
The latter can be further written as 

d<fa(--log<fa-(s;a);a') ^ ( 1 d<j>K{s\a)\ = d<j)K(s;aa') 
d{-log<fa(s;a)) ~ V <J>K{S\O) ds J ds 

By setting s = 1 or s = 0, we can obtain the related equations regarding to the expectations 

associated with parameter values a and a' for non-negative integer and positive self-generalized 

distributions respectively. 
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Since 

GK(l,a) = E{1K) = E(1) = 1 and <^(0,a)=E(e -QxK )=E(1) = 1, 

we have 
dGK(Gk(s;a);a') 

dGk{s;a) s=l 

dGK{si;a') = h(a') 

and 
d(j>K (-log (PK(S; a);a') 

d{-\og <j}K(s;a)) s=0 dS2 
= -h(a'), 

where Si = Gk(s;a) and s2 = - log <$>K{S; a) respectively. Thus, for the non-negative integer 

self-generalized distribution, it is straightforward to obtain 

which simply leads to h(a)h(a') = h(aa'). 

To distinguish the self-generalized random variables with different values of parameter a, 

we adopt X(a) to denote the one corresponding to a. Hence, X(a) and X(a') will be from the 

same self-generalized distribution family, but with parameter values a and a' respectively. 

Since the closure property of self-generalized distribution is with respect to the parameter 

a, i.e., aa' 6 A, the possible domain A for a are the real set, or the intervals [^1,1] and (—oo, —1]U 

[1, oo) (including or excluding the boundaries), or the positive real set, or the intervals [0,1], [1, oo) 

(boundaries could be excluded). 

Note that reparametrizing by taking inverse, there is one-to-one mapping between (0,1] and 

[l,oo), and such a reparameterization keeps the self-generalizability. This feature can be seen in 

the following reseasoning. Suppose G*K(s;a) = GK(s;l/a), where a E (0,1]. Then l/a € [l,oo), 

and G*K(G*K{s;a);a') = GK{GK(s; l/a); l/a') = GK(s;l/{aa')) = G*K(s,aa'). Hence, (0,1] and 

[1, oo) are equivalent. We only need to consider domain (0,1]. However, we can't find a one-to-one 

mapping between (0,1) and (0, oo) such that the self-generalizability is kept. 

h{a)h(a') = h{aa'). 

For the positive self-generalized distribution, we first have the following equation 

-h(a') x h(a) = -h(aa'), 
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In the remainder of this section, we are only interested in non-negative set A: [0,1] and 

[0, +00). In fact, the theory of continuous-time generalized AR(1) processes only needs A = [0,1]. 

The boundary 0 may be excluded, but the boundary 1 is always included in A through the remainder 

of this thesis. 

The inclusion of 1 has been justified from the definition of self-generalizability. This property 

plays an important roles in the theory of continuous-time generalized AR(1) processes. 

Property 3.1 Let K be a self-generalized rv. Then, GK(S'A) — s or </>#-(s;l) = e~s, that is, 

K(a) = 1 for a = 1. 

Proof: We consider the discrete and positive case respectively. 

(1) Discrete case. GK{S\O) is increasing in s for any a G A. Hence, from 

GK(GK(S;1);<X) = GK(s;a), for all s, 

we conclude that either GK(S;1) = s or GK(S;CX) = 1. However, GK(S\O) = 1 means that 

K(a) takes value 0 with probability 1 for all a. This contradicts the non-triviality assumption. 

Therefore, the only choice is GK{S\ 1) = s. 

(2) Positive case. 4>K{S\ ct) is decreasing in s for any a € A. Since 

<J>K{-log 0̂ 0; a); 1) = 4>K(S; a), for all s, 

either — logcj^s; 1) = s or 4>K(S~, a) = 1 holds. However, the latter implies that <[>K(S; 01) = 1, 

contradicting to the non-triviality assumption. Thus, <J>K{S; 1) = e~s-

Both cases imply that K(l) = 1. 

With extra conditions, we can obtain the functional form of the expectation of a self-

generalized rv by Theorem 3.2.1. 

Property 3.2 Suppose h(a), the expectation h(a) of a self-generalized rv K, is continuous with 

respect to a. Then 

h(a) = ar. 
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Here r can be positive or negative (r = 0 is eliminated to avoid triviality). If h(a) is bounded in 

(0,1), then r > 0. If h(a) is finite but unbounded in (0,1), then r < 0. 

Proof: Under the continuity assumption, it is straightforward to deduce 

h(a) = ar 

by Theorem 3.2.1. Excluding the trivial case, we know that r > 0 or r < 0. h(a) = ar will goes to 

0 or oo according to r > 0 or r < 0 respectively. This completes the proof. 

Note that h(a) may not be finite when a ^ 1. See the cases of (13) and (P3) in the 

following example. 

Example 3.11 Checking the non-negative integer and positive self-generalized distributions in last 

two sections, we find h(a) = a for II, 12, 14, PI, P2 and P4. For 13, the power series distribution, 

and P3, the positive stable distribution, the expectations are infinity, i.e., h(a) = oo when 0 < a < 

1. For 15 and P5, h(a) = oP. Also see the summary for the mean and variance of self-generalized 

distribution in Table 9.1. 

Note that if K(a) has finite expectation for all a > 0, namely E [iv"(a)] = ar, r > 0, then 

K(a) can be reparameterized by allr so that E [K(Q)] = (allr)T = a. This is because that for the 

reparameterization transformation, allT(a!)llr = (aa')llr, is closed under multiplication. 

Property 3.3 Let K be a self-generalized rv. 

(1) If the boundary 0 is included in the domain A of parameter a, then GK(S; 0) = 1 or <fa(s; 0) = 

1, that is, K(a) = 0 for a = 0. 

(2) If the boundary 0 is not in domain A, but the expectation of K is bounded and continuous 
P 

with respect to a, then K(a) —> 0 as a —> 0. 

Proof: 

(1) The boundary 0 is included in the domain A. Then by self-generalizability, it follows that for 

a e A, 

GK(GK(s;a);0)=GK(s;b), for all s, 
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and 

<fa(-log <fa(s; a); 0) = (f>K{s;0), for all s. 

Because of the monotonicity of GK{S; a) and 4>K{S\ &) with respect to s, the above equations 

yield that 

GK(S',CX) = S or GK(S;0) = 1, 

and 

- log (j>K(s; a) = s or <fa(s;0) = 1. 

But Gftr(s;a) = 5 and (f>K{s;a) = s will lead to the triviality that K(a) = 1, thus, it must 

hold that GK(s;0) = 1 and <fa(s;0) = 1, namely K(0) = 0. 

(2) The boundary 0 is not included in the domain A. Then by Property 3.2, lim E[K(a)] = 0. 
p 

By non-negativity, we obtain that K(a) ——10 as a —> 0. 

The support of self-generalized rv is of interests. Below is the feature of support of a non-

negative integer self-generalized rv. 

Property 3.4 Suppose Gx(s;«) = Po(a) +pi(a)s-| \-pn(a)sn, with n > I, and pn(a) > 0 for 

all a ^ 1 if n is finite. Then the order n is either 1 or oo. 

This is because that the polynomial degree of GK(GK{S\ a); a') will be n2. Only 1 or +00 
are possible choices. Therefore, any distribution with domain in a finite non-negative integer set 

other than {0,1}, such as Binomial distribution, can not be self-generalized. 

The pgf GK{S]O) and the LT <fa(s; a) are uniformly continuous in s on their range [0,1] 

and [0,00] respectively. How about their continuity in a? This leads to the following conclusion. 

Property 3.5 Let K be a self generalized rv. 

(1) For K being a non-negative integer-valued rv with pgf G K ( S ; a), if GK{S\ a) is left continuous 

at a = 1, then GK(S; a) is continuous in a in (0,1]. 

Furthermore, if GK{S;OI) is right continuous at a = 0 and lim GK(S;(X) = 1, then Gft-(s;a) 

is uniformly continuous in a in [0,1]. 
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(2) For K being a positive-valued rv with LT 4>K{S; a), if 4>K{S; a) is left continuous at a — 1, then 

4>K{S',O>) is continuous in a in (0,1). 

Furthermore, if (J>K(S;O) is right continuous at a = 0 and lim (f>n(s;a) = 1, then <pK{s;a) 

is uniformly continuous in a in [0,1]. 

Proof: 

(1) Suppose a' < a. It follows that 

GK(s; a) - GK{s; a') = GK{s; a) - GK{s; Ba) = GK(s; a) - GK{GK(s; 3); a), 

where B = a'/a. When a' —> a, 3 —> 1. Since lim GK{S\O) = s, thus, GK{S\B) —> s. By 

the continuity of a pgf in s, we know that Gxisya) — GK(GK(S] 8)\a) —> 0. This implies 

that GK{S; a) is continuous in a in (0,1). 

If GK{S\ a) is left and right continuous at its two boundaries of a, then GK{S; a) is continuous 

in a in the closed interval [0,1], which shows that GK(S;O) is uniformly continuous in a in 

[0,1]. 

(2) Applying the same reasoning, we can obtain the similar conclusion for <J>K{S\ «). 

Remark: 

For 13, K does not have finite mean, and in fact, the right limit lim GK{S;O) = 0; this is not a 

pgf. Similarly, for P3, K does not have finite mean too, and the right limit lim <PK(S; a) = e - 1 , 

which is not a LT. In both cases, the pgf or LT is left continuous at a = 1. As to II , 12, 14, 15 and 

P I , P2, P4, P5, K has finite mean, and its pgf or LT is continuous at boundaries a = 0 and 1. 

Stochastic representations of GK{GK{S;a);a') and <J>K{— log<J>K{S\a);a') are of interest. 

Here we discuss their possible representations. 

Property 3.6 Suppose K(a) and K(a') are distributed from the same non-negative integer self-

generalized distribution family with respective parameter values a and a!. Then Y^i=o ^ Ki(a) has 

pgf GK(GK(s;a);a'), where KQ(Q) = 0; Ki(a) FK{-\a) and are independent of K(a'). 
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Proof: 
K(a')l 

Property 3.7 Suppose the positive self-generalized rv K(a) has the LT (pK(s;a). K(a') is from 

the same family but with parameter value a'. Let (J^(*);* > 0} be a process with stationary and 

independent increments, and assume that 

Also suppose that K(a') is independent of the process {Ji({t)\t > 0}. Then J{K(a')) has the LT 

<fa(-log 4>K{s;a);a'). 

Proof: 

Since the rv of self-generalized distribution can be decomposed as sum of any number of iid 

rv's from the same distribution (see Property 3.6 and 3.7), it arises an interesting question: is the 

self-generalized distribution ID? We give a brief conclusion here. 

Suppose K has the self-generalized distribution. If K is positive-valued, according to Prop

erty 3.7, </>̂ -(s;a) is a LT for any t > 0. Thus, K is ID. If K is non-negative integer-valued, by 

Property 3.6, G^-(s;a) is a pgf for ra = 1,2, However, it is not clear whether this is true for 

0 < n < l o r n > 0 . Hence, it may or may not be ID. For example, K from II is obviously not ID. 

It is also a boundary case in 12, 14 and 15. Thus, we know that at least some members in 12, 14 

and 15 are not ID. There could exist ID members in these classes; their ID features can be verified 

by Theorem 2.2.6, or the absolute monotonicity of M'K(s; OI)/MK(S; a). 

A few more properties of the self-generalized distribution are given below. 

Property 3.8 Let K be a self-generalized rv. Suppose A is (0,1] or (0, oo). 

<PjK(t)(s)=V{e-sJK{t)} = Ms;<x), *>0-
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(1) Discrete case. Suppose GK is left differentiate in a at 1. Let H(s) = %j*-(s;a)\ . // 
a=l 

H(s) < 0 for 0 < s < 1, then GK(S',CX) is decreasing in a for all 0 < s < 1. Similarly if 

H(s) > 0 for 0 < s < 1, i/ten G K ( S ; a) is increasing in a for all 0 < s < 1. 

(#,) Positive case. Suppose 4>K is left differentiate in a at 1. Let H(s) = ~dl2^K (s; a) . If 

H(s) > 0 for s > 0, then cf>x(s;a) is decreasing in a for all s > 0. 

Proof: 

(1) Fix 0 < s < 1. H(s) < 0 implies that GK{s\B) > s for all Bs < 8 < 1 for some 8S > 0. Let 

a' < a. There exists a positive integer m and Bs < 8 < 1 such that a' = aBm. Note that 

GK{S; S) is increasing function of s, 

GK(s;58) = GK(GK(s;B);6) > GK(s;8), 0 < S < 1. 

Hence by induction GK(S;(X') > Gx(s;a) or GK(S;a) is decreasing in a. 

(2) Fix s > 0. i f (s) > 0 implies that -\og</>K{s;B) < s for all Bs < 8 < 1 for some & > 0. Note 

that 

4>K(S;88) = $K(-logct>K(s;8);5) > </>K{S;S), 0 < S < 1. 

The completion of the proof is like case (1). 

Property 3.9 Let K be a self-generalized rv. 

(1) Discrete case. Suppose GK{S; a) is decreasing in a £ (0,1] for 0 < s < 1. Then Fi[K(a)] < 1. 

(2) Positive case. Suppose 4>K{S\OL) is decreasing in a £ (0,1] for s > 0. Then E[iv"(a)] < 1. 

Proof: 

(1) Since GK(S; 1) = s, the supposition implies GK{S\OI) > s. Hence 

GK(l;a) - GK(s;a) < 1 - s _ 
1-s ~ 1-s ' 

Take a limit as s 11 to get the conclusion. 
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(2) The supposition implies <f>K(s;a) >es. Hence 

4>K(0;C<) - <t>K{s\ct) < 1 - e~ 
s • ~ s 

Take a limit as s | 0 to get 

E[K{a)] = -ct>'K{^a)<\. 

3.3 Construction of new self-generalized distributions 

Exploring new self-generalized distributions is quite meaningful and challenging. In this section, 

we summarize some approaches leading to new self-generalized distributions, and conclude with 

results/conjectures regarding the relationship between non-negative integer self-generalized and 

positive self-generalized distributions. 

A function g : 3ft x 3ft —>• 3ft, g(x; y), satisfying 

g(g(x]y);y') = g{x;yy'), 

is called a self-generalized function. We can search for non-negative integer self-generalized distri

butions in the family of self-generalized functions. If a self-generalized function G(s; a) is a pgf in 

s, then it is the pgf of a self-generalized distribution. With this idea, we have the following results. 

Theorem 3.3.1 Suppose gi{x) is a monotone real-valued function, and its inverse gT1 exists. Let 

9i{x;y) be a self-generalized function. Then 

g(x;y) = g7l (g2 (gi(x);y)) 

is another self-generalized function. 

Proof: A direct calculation shows 

g{g{x;yi)\y2) = g^1 (g2 {gi(g(x; yx)\y2)) 

= gT1 (92.(51 (gi1 (92 (9i{x);yi));2/2)) 
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Table 3.1: Some results from Theorem 3.3.1. 

9i{s) 92(5;") 9i 1 (92 {9i(x);y)) 
l - 7 

1—7s 
I _ l z i r i 
7 7 

(1 - a) + as (1—a)+(a-7)s l - 7 

1—7s 
I _ l z i r i 
7 7 

(1 - a) + as 
( l - Q 7 ) - ( l - a ) 7 « 

-0 - x log[ l - (1 -e-6)s] l-e-O' (1 - a) + as l _ e - A ( l - a ) f 1 _ ( 1 _ e - t f ) s ] a -0 - x log[ l - (1 -e-6)s] l - e -« 
(1 - a) + as 

l-(l-s)1'0 1 - ( ! - * ) * (l-a)+(a-7)s ! a" (.1-7)" l-(l-s)1'0 1 - ( ! - * ) * 
(1—07) — (1—a)7s 1 fd-aW+fl^fl-s)- 1 /"!" 

= 9'1 (92(92 (gi{x);yi);y2)) 

= gi1 (92 (910*0; 2/12/2)) 

= g(x;ym)-

Hence, y) is a self-generalized function. 

Certainly, g\ can be chosen as a pgf, and g2 a self-generalized pgf. Examples given by this 

approach can be found in Examples 3.2, 3.4, 3.5 illustrated in Table 3.1. 

Theorem 3.3.2 Suppose g\(x\y) is a self-generalized function. Then 

(1) g(x;y) = (gi(x~1;y)) 1 is a self-generalized function. 

(2) g(x;y) = 1 — 31(1 — x;y) is a self-generalized function. 

Proof: We verify their self-generalizability by direct calculation. 

(1) 

g(g(x\y\)\y2) = (91 ( g ( g ^ y i ) ; ! / 2 ) ) = (91 (9i(^ _ 1;yi);y2)) 1 

= (91 ( z - 1 ; 2/12/2)_1 = g(x;yiU2). 

(2) 

9(9^; 2/1); 2/2) = l - 91 (1 - g(x\y\)\y2) = 1 - gi (gi(x;yi);y2) 

= 1 - 91 (z; 2/12/2) = g(x; 2/12/2)-
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Next we study the analogues between non-negative integer self-generalized and positive self-

generalized distributions. This extends an idea of McKenzie [1986]. The following result describes 

analogous features between these two kinds of self-generalized distributions. 

Theorem 3.3.3 Suppose GK(S; a) is the pgf of a non-negative integer self-generalized rv K. Sup

pose GK{-\O) can be extended to domain (—oo, 1] with self-generalizability Gfc{Gfc{s;a);a') = 

GK(s\aa.') for all 0 < a,a' < 1. Let 

c/)(s; a) = exp {GK(1 - s; a) - 1} , s > 0. 

If cj)(s; a) is a LT, then it is the LT of a positive self-generalized distribution. 

Proof: We need to check the self-generalizability of <f>(s;a). By definition, it follows that 

log^(s; a) = GK(1 - s;a) - 1. 

Thus, 

(/>(-log (j>{s; a); a') = <f> ( l - GK(1 - s; a); a') 

= exp{G* ( l - [ l - G * ( l - a ; a ) ] ; a ' ) - l} 

= exp{GK (GK{1~ s;a);a')-1} 

= exp {GK(1 - s; act) - l} 

= cp(s;aa'). 

Examples 3.1 to 3.5 are just the analogues of Examples 3.6 to 3.10 respectively. The resulting 

positive self-generalized rv denoted as K' has expectation and variance: 

E(i l") = -^'(0;a) = G'K(l;a) = E ( K ) , 

Var( lC) = 0"(O;a)-f>'(O;a)) 2 = G"K{1;a) + {G'K(l;a)) 2 - {-G'K(1;a)) 2  

= G"K{l;a) = V&r{K)+E2{K)-E{K). 

Furthermore, we have the following open questions. 
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Conjecture 1: If G(s\a) is the pgf of a non-negative integer self-generalized distribution, then 

(f>(s; a) = exp{G(l — s; a) — 1} 

is the LT of a positive self-generalized distribution. 

To show (f)(s; a) is a LT, we need to: 

(1) extend the range of s in G(l — s; a) from 0 < s < l t o s > 0 , 

(2) prove the completely monotone property of (/>(s; a). 

For (1), it is equivalent to extend the domain of s in pgf G(s; a) from 0 < 5 < 1 to —oo < s < 1. 

This is fine for the interval — 1 < s < 0. As to (2), the completely monotone property holds for 

0 < s < 1, but this is not clear for s > 1. 

However, there is no need for domain extension if we define the pgf for the discrete analogue 

by the LT of a positive self-generalized distribution. Thus, under minor conditions, the counterpart 

of Conjecture 1 holds. This leads to the following theorem. 

Theorem 3.3.4 Let <fa(s;a) be the LT of a positive self-generalized distribution. Define 

G(s;a) = log (fa (1 - s ; « ) + 1. 0 < s < 1, 0 < a < 1. 

Suppose (1) <fa(l;a) > e~l, 0 < a < 1, and (2) G(s;a) has a Taylor series expansion in s. Then 

G(s;a) is the pgf of a non-negative integer self-generalized distribution. 

Proof: First we check the self-generalized condition: 

G(G(s;a);a') = log<fa(l - G(s;a);a') + 1 = log<fa(- log<fa(l - s; a); a') + 1 

= log (fa(l — s;aa') + 1 = G(s;aa'). 

Next note that G(s;a) = log <fa(l - s;a) + 1 is increasing in s, G(0;a) = log<fa(1; a) + 1 > 

-1 + 1 = 0, G(l;a) = 1. 

On the other hand, G(s; a) = GK'(S; a) = E ( > » ) is a proper pgf iff 

<fa/(s;a) = GK,(e~s;a), s > 0, 
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is a proper LT. We will show that <pK'{s; a) is completely monotone. Note that 

. ^ ( s ; a ) = l o g ^ ( l - e - * ; a ) + l . (3.3.1) 

K infinitely divisible implies that (by Theorem 2.2.6) the derivatives of x(s) = — l°g <t>K {s; a) 

alternate in sign, that is, (—1)J'-1X , ,'(S) t 0- Then UJ(S) = ui(s;a) = x ( l - e~s;a) has the same 

property: 

u'(s) = x ' ( l - e") e-s > 0, U"(s) = x"( l - e~s) e~2s - x ' ( l - e"*) e~s < 0, 

and the derivatives of each term of the form x ^ ( l _ e _ s ) e _ m s will continue to be opposite in sign 

to the original term. Hence <f>K'(s;a), given in (3.3.1), is completely monotone. 

Finally, <j>K>(s;a) is the LT of an nonnegative integer-valued rv, if GK'{S\OI) has a Taylor 

series expansion. Because of condition (2), we know that (pK'{s; a) is a LT, and consequently G(s; a) 

is a pgf. This completes the proof. 

Theorem 3.3.3 and Theorem 3.3.4 disclose the relationship between a self-generalized oper

ator for positive reals and one for non-negative integers. 

3.4 Extended-thinning operation 

In this section, we propose an extended-thinning operation which is one of the essentials to the 

model construction of continuous-time stochastic processes with given univariate margins. This 

extends binomial thinning (see (2) in Proposition 2.2.2). In fact, we hinted at this topic in Section 

2.3, where we studied the stochastic representations of the compound self-generalized pgf and 

logarithm-compound self-generalized LT. 

Now we study the stochastic operation between two independent rv's X and K, which have 

LT's 4>x(s) and 4>K{S) respectively. We wish to define the operation: K © X , such that its LT has 

the form 

(j>K®x{s) = E e-s(K®X) = <j)X (-log0*(s)). 
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We shall give the stochastic representation of this definition in three cases where X is non-negative 

integer-valued, positive-valued, and real-valued respectively. 

Case 1: X is a non-negative integer rv. Define a discrete-time process {J^( i ) ; i = 0,1,2,...} 

independent of X as 
t 

JK(t) = Y,Ki, 
i=0 

where K0 = 0, K\,..., Ki,... are iid with LT: <j>Ki (s) = <J>K(S)- Let 
x 

K®X = JK(X) = J2Kii 
i=0 

the random summation over the process {J/<(£); t — 0,1,2,...}. 

Direct calculations show that 

E(e-°Z?=0Ki\x)]=-E[<f>x-(s)] 

= <j>x(-log<f>K(s)). 

4>K®X{S) = E 

= E 

0-s{K®X) E 
- ( - l o g ^ ( « ) ) X 

The illustration can be seen in (a) of Figure 3.1. 

Case 2: X is a positive rv. Consider a continuous-time process {Ji<-(£);t > 0} independent of X 

which has stationary and independent increments, such that the LT of J K W is: 

<t>jK{t){s) = 4>K(*),. *>0-

Define 

Then 

K®X = JK(X). 

<I>K®X{S) = E 
-s(K®X) = E 

= E [^(s)} =E 

E (^es(K®X) 

e-(-log0jc(*))x" 

X ) ] =E [E (e-8jK{x)\x) 
= 4>X ("log 4>K (s)) • 

See (b) in Figure 3.1 for the illustration. 

One example of the defined process {.//<-(£); i > 0} is that in the family of Levy processes 

with LT 

(t>jK{t)(s) = e x p | i -as + jo {e~sy - l)L(dy) j , 
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where L(-) is the Levy measure. Certainly, in this case, the LT of the K is 

exp[ -as + j™{e~sy - l)L(dy) j . 

Case 3: X is a real rv. Consider two stationary independent increment processes {Ji(t);t > 0} 

and {J2(t);t > 0} independent of X with LT 

<l>Mt)(s) = 4>K(S) a n d ^ J 2 ( t ) ( s ) = 

respectively. Note that (j>j2(t){s) 1S ^ e reciprocal of ^ (^ ( s ) . Hence, under the requirements of 

a LT, 4>K{S) can not be arbitrary. Construct a new process over the whole real axis {Jx{t);t G 
(—oo,+oo)} such that 

Mi) = { 

For this new process, the LT of J/c (t) is 

<t>JK(t)(s) = E 

M\t\) 

= < 

if t > 0; 

if t < 0. 

t > 0; 

t < 0; 

Define 

Then 

K®X = JK(X). 

<t>K®x{s) = E 
-s(K®X) E E(e-sJ«W\x) 

= E [^(s)] = 4>x (— log (J>K(S)) • 

See the illustration in Figure 3.2. 

In Case 3, process {J2(t);t > 0} is in fact artificially developed by process {J\(t);t > 0} 

for (f)j2(t)(s) — [ < / ) J i ( t ) ( s ) ] - 1 - Hence, J\(t) and Jiit) can not both be positive, because (f>j^t){s) and 

4>j2(t){s) both be bounded above by 1 and can't satisfy the completely monotone property at the 

same time. Suppose we restrict the process {J\(t);t > 0} to the Levy process family, with 

^ J l ( t ) (a) = exp[t - a s + jo (e~sy-l)L(dy) j 
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Figure 3.1: Illustration of{JK(t); - o o < t < 00} in Cases 1 and 2. (a) corresponds to non-negative 
integer X in Case 1, where dotted vertical lines indicate the discrete time points {0,1,2,...}. (b) 
corresponds to positive X in Case 2, where t is continuous on [0,00). 
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(a) 

J2(t) / 

— 
X 

0 t 

(c) 

gure 3.2: Illustration of {Ji(t);t > 0}, {Ji(t);t > 0} and {Jk(t); -oo < t < oo} in Case 3. 
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/•oo 
where L(-) is the Levy measure, non-negative and satisfies / min(l, y)L(dy) < oo. Also assume 

Jo 
that the process {J2{t);t > 0} is a Levy process. Then 

<t>Mt)(s) = [ ^ J i ( t ) ( 5 ) ] _ 1 = exp j i 

Since —L(dy) < 0, the only possible choice is L(dy) = 0. This implies 

4>Jl{t)(s) = e-ats, and 4>Mt)(s) = eats, 

for some constant a, i.e., Ji{t) = at, and J 2 W = —at, degenerate at points at and — at respectively. 

In summary, we propose the extended-thinning operation as below. 

Definition 3.3 Suppose {Jx{t);t £ To} is an appropriate stationary independent increment pro

cess constructed via rv K such that ' 

0J , r ( t ) ( s ) = ^Kis), 

where To could be {0,1,2,...}, or [0,oo) or (—00,+00) (refer to cases 1, 2 and 3). The extended-

thinning operation is defined as a stochastic operation between JK and X with X independent of 

{JK(t)}, 

K®X = JK(X). 

Such an operation results in a rv with LT 

(f>K®x(s) = 4>x (-log<Ms)). 

The notation K® means an independent copy of rv K, which has the same distribution as 

that of K. Hence, notations K © X and K ® Y do not means the rv K in both is the same, but 

their distributions are the same. 

Note that K and X may not be arbitrary random variables, restrictions on them in the 

different domain cases should be imposed. In other words, <j>x ( _ l o g 0 K ( s ) ) being a LT requires 

conditions on 4>K and <j>X-

as 
poo 

/ ( ( 

Jo 

-sy i)(-L)(dy) 
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We can calculate the cf of K ® X: 

<PK®x(s) = E [eisK®x] = cj>mx{is) = <l>x ( - l o g ^ ( w ) ) 

4>x (— log IPK(S)) , if X is non-negative; 
= < 

<px (i log > if X is real. 

A natural property regarding expectation is given next. 

Property 3.10 IfE[K(a)] is finite and continuous with respect to a, i.e., ~E[K(a)] = ar, then 
E [K(a) ® X] = E [K(a)] • E [X] = arB [X]. 

Proof: This can be readily derived by taking the derivative of the LT. 

Hence, E[K(a)®X] < E[X] if a is within [0,1] and r > 0. In general, the extended-thinning 

operation rescales the expectation. 

Now we look into the examples of extended-thinning operation in statistical practice. 

Example 3.12 The well-known binomial-thinning is one special case of extended-thinning opera

tion, for 
x 

a * X = ^ i f i , K0 = 0, K\, Ki, ... ' Bernoulli(a). 

One special feature of binomial-thinning is that a*X < X, which means a*X does become "thinner" 

than X almost surely. However, in general, the extended-thinning may not retain this feature, but 

the expectation is "thinner" than E[X] if we restrict the domain of parameter a to [0,1]. 

Example 3.13 A branching process has an operation similar to the extended-thinning operation. 

This kind of processes {X(n) : n = 0,1, 2,...} is defined as 

X(n) 

X ( n + 1) = ^ Zi, Z0 = 0, Zu Zl, ... iid. 

X(n) is the size of the nth generation. 
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Example 3.14 The product of a constant a with a rv X, aX, is another example. This may not 

be straightforward at the first glance. However, we can check its LT. In this case, we can view a as 

a rv degenerate at point a. Hence, it has LT: (f)a(s) = e~as. The LT of aX, then, is 

<f>aX(s) = E {e~saX) = <f>x{as) = <j>x (- log <f>a(s)). 

Therefore, aX is an extended-thinning operation. 

We use the notation '©' for the extended-thinning operation based on the consideration to 

unite the constant multiplier '• ' and the binomial-thinning operation '*', in a simple expression, 

namely, 

(•) U (*) = > ( < § > ) . 

Following are two properties of extended-thinning operations; these are very important to 

the construction of the continuous-time generalized AR(1) processes in Chapter 4. 

Property 3.11 (Distributive law) Suppose K is a self-generalized rv, and let X and Y be 

independent rv's. Then 

K®{X + Y) = K®X + K®Y. 

Proof: Since X and Y are independent, we have 

<t>K®(X+Y)(s) = <t>X+Y (-log<fa'(s)) = 4>X {-^g (j)K{s)) 4>Y {-\0g(j)K{s)) . 

x 

This implies that the distributive law holds. 

Property 3.12 (Associative law) Let K\, K2 be two different self-generalized rv's acting as 

operators. Then 

Kx © (K2 ®X)~ {Ki ® K2) ® X. 

Proof: Direct calculation shows 
4>Ki®(K2®X){s) = (f>K2®X (~ log (j)Kl{s)j = (f>X (-log<fa2 (-logfofi(s))) 

= 4>x {-^og(j)Kl@K2(s)) = cj)^Kim^@x(s). 
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Hence, the associative law holds. 

Recalling self-generalizability, we find that it is closed under the extended-thinning opera

tion, i.e., 
K(a)®K(a')=K{aa'). 

To keep symbolic consistency with constant multiplier • and binomial-thinning operator *, we 

rewrite the notation for the self-generalized rv K(a) in extended-thinning operation as ax such 

that 

(a)K ®X = K(a)®X. 

This change makes the extended-thinning operation with a self-generalized rv looks like constant 

multiplier or binomial-thinning operator. For instance, we can rewrite the closure property of 

self-generalizability via new notation: 

{a)K® {a')K = (aoi')K-

But remember (O)K is a rv, not a parameter, and it is valid only with the extended-thinning 

operator ©. The reason we impose the subscript K on a is to try to avoid the misunderstanding 

of (CX)K, a rv, to the parameter a, and the convention of binomial-thinning operation as well. This 

new notation will benefit us immediately with the following commutative law. 

Property 3.13 (Commutative law) (a)K © {a')K = ( « ' ) # © (a)K-

Proof: This is simply because 

(a)K ® (a')K = (aa')K = (a'a)K{a')K © {OL)K-

Note that the commutative law only holds for two self-generalized rv's from the same family. 

Property 3.14 (Weak convergence) Let an -4 a, where an G A for all n, and a £ A. If 

GK(S;O.) or (f>K{s\a) is continuous with respect to a, then 

(an)K®X-^(a)K®X. 
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Proof: This follows from the continuity of GK or fa in a. 

Suppose A, the domain of the parameter a, is the interval [0,1]. Then on boundaries, 

extended-operation behaviors like the constant multiplier. Here we assume boundary 0 is included 

in A. 

Property 3.15 ( 0 ) ^ © X = 0 and. [l)K®X = X. 

Proof: By Properties 3.1 and 3.3, we have 

(0)K = K(0)±0 and (1)^ = ^ ( 1 ) ^ 1 . 

Hence, the resulting process {«/#(*);£ > 0} has margins 

JR-(O) (t) = 0, and J]<{i)(t) — *> for £ > 0. 

Thus, 

This completes the proof. 

Remark: If the boundary 0 is excluded from A, but the expectation of the self-generalized rv K 

is bounded and continuous in a, then lima_>0+(Q!)ft' ® X = (0)K ® X = Q. This is because of (2) of 

Property 3.3. 

Lastly, we discuss the variable type of K ® X : non-negative integer, positive, or real. This 

is basically determined by the variable type of K , not the variable type of X . Correspondingly, we 

study its pgf, or LT, or cf. Recall K ® X = JK(X). We have: 

(1) if K is non-negative integer, then {J^-(i);i = 0,1,2,....} or {JK{t);t > 0} is a process 

with non-negative integer increments, so JK{X) is non-negative integer no matter if X is 

non-negative integer or positive real. And it follows that 

GX(GK(S)) if X is non-negative integer; 

<f>x{~ log GK(S)) if X is positive, 
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(2) if K is positive, then {JK{t);t = 0,1,2,....} or {JK(t)\t > 0} is a process with positive 

increments, so JR(X) is non-negative no matter if X is non-negative integer or positive real. 

And it follows that 

^ J [ fixi— log<J>K{S)) if X is positive, 

(3) if K is degenerate, namely being a real number a, then 

K © X = a l , 

and {</#(£);£ > 0} is a process with real-valued increments, so JK(X) is real no matter if X 

is positive or real. And it follows that 

The extended-thinning operation will be discussed again in Section 4.1, where a geometrical 

explanation is given. 

if X is non-negative integer; 

<PK®x(s) = -E{eiaW} = 
4>x {ias) if X is positive; 

(px {OLS) if X is real, 
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Chapter 4 

Generalized Ornstein-Uhlenbeck 

stochastic differential equations and 

their possible solutions 

Ornstein-Uhlenbeck stochastic differential equations is a classical topic well discussed in the liter

ature. Its applications can be found in mathematical finance, physics, and so on. Refer to Hsu 

and Park [1988], Neftci [1996]. In this chapter, we shall propose generalized Ornstein-Uhlenbeck 

stochastic differential equations, and define the corresponding generalized stochastic integration. 

These are fundamental techniques and key ideas in the model construction of a class of continuous-

time Markov processes given in this chapter and the next chapter. 

We start with the introduction to stochastic differentiation and integration in Section 4.1. 

The generalization of Ornstein-Uhlenbeck equations will be given in Section 4.2, and the explanation 

and examples are shown in Section 4.3. We construct the solutions for the generalized Ornstein-

Uhlenbeck equation in Section 4.4, and summarize the resulting processes in Section 4.5. 
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4.1 Stochastic differentiation and integration 

The dynamic feature of a continuous-time process {X(t);t > 0} is of interest, as it describes the 

instantaneous behavior of the process. To address this feature, we need the concept of stochastic 

differentiation and integration. / 

In the literature, some scholars explain the concept of stochastic differentiation via stochas

tic integration, while others illustrate it in terms of the infinitesimal increment of the process. For 

the beginner, the former is not a direct approach, and furthermore, the definition of stochastic in

tegration requires the concepts of infinitesimal increment. Hence, we shall take the latter approach. 

However, it may not be very strict in the mathematical sense. We just focus on main ideas. There 

are many references on this area, such as: Chung and Williams [1990], Lukacs [1968], 0ksendal 

[1995], Protter [1990], etc. A good introductory book, which clearly explains the concepts of SDE 

and stochastic integration without measure theory is Neftci [1996]. 

To clearly state the idea, let's recall the concept of differentiation in calculus, where it is 

defined as the infinitesimal increment. For instance, if x(t) is a function of t, denote by 

Ax{t) =x(t + h) -x(t), 

the increment of x(t) when the argument changes from t to t + h. When h, the argument increment, 

is infinitesimal, we denote it as dt. Correspondingly, the infinitesimal increment of x(t) is written 

as dx(t), which can be, expressed as 

dx(t) = x(t + dt) - x(t). 

Thus, the differential is the infinitesimal increment. 

For a stochastic process {X(t);t > 0}, this well-known idea can be borrowed to define the 

differentiation of the process. 

Definition 4.1 The differential dX(t) of a continuous-time stochastic process {X(t);t > 0} is 

defined as the infinitesimal increment X(t+h)—X(t), where the increment of time h is infinitesimal. 
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Figure 4.1: Illustration of increment in the deterministic and stochastic cases, (a) corresponds to 
deterministic function x(t). (b), (c) and (d) correspond to three different paths of the stochastic 
process {X(t);t>0}. 

Note that the increment of a function x(t) is a number, however, the increment of a process 

is a rv. Hence, the differential dX(t) is understood as a rv, not a number unless in the degenerate 

case. 

Figure 4.1 illustrates the increments in both cases. Note that in (b), (c) and (d) of Figure 

4.1, the infinitesimal increment dX(t) are different because they correspond to three different paths 

of the process {X(t); t > 0}. This clearly shows that dX(t) is a random variable. 

The Riemann integration of a function x(t) over [ii,^2], the area with sign, is constructed 

via the infinitesimal partition approach. Here we roughly review its idea. Consider the argument 
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range [£1,̂ 2]- Divide this interval in n equal pieces, i.e., 

[ti,ti + h), [h + h, tv + 2h), ..., [h + (n- l)h, h + nh] = [ti + (n - l)h, t2), 

where h = (t2 — ti)/n. When n goes to infinity, each piece will become an infinitesimal interval. 

Use a finite Riemann sum over these small intervals 
71-1 

x(ti + ih)h 
i=0 

to approximate the integrated "area". When n goes to 00, the limit is defined as the integration. 

This method was introduced to stochastic integration over a half century ago. However, the 

difference between common integration and stochastic integration is how to define the limit. In 

probability theory, the common modes of convergence include in distribution, in probability, in L 1 , 

in L2, a.s., etc. Hence, different stochastic integrations arise. For example, the Ito integration is 

the limit in L2. In our study, the convergence mode that we adopt is "in distribution". 

Suppose {X(t);t > 0} is a continuous-time process. We now define the stochastic integral 

ft'2 g(X(t))dX(t). Consider n + l equally spaced points 

ti,ti + h,ti + 2h,..., ti + (n - l)h,ti + nh = t2 

over [£ i ,£ 2 ] , where h = (t2 — ti)/n. Let 
n - l 

Sn = 9{x(t + ih))[X(t + + l)h) - X(t + ih)}. 
i=0 

If there exists a rv Y such that 

Sn Y, as n —> 00, 

then Y is defined as g(X(t))dX(t). This leads to the following definition. 

Definition 4.2 Let {X(t);t > 0} be a continuous-time process. Divide [ti,t2] into n equally small 

intervals. Then 

/ g(X(t))dX(t) = lim V g(X{t + ih))[X{t + (t + l)h) - X{t + ih)}, 
L n—>oo ^—' 

t=0 

where h = (t2 — ti)/n. The summation on the right hand side converges in distribution. 
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Note that stochastic integral is still a rv, not a number. Figure 4.2 shows the idea of 

stochastic integration via the infinitesimal partition approach. Note that the "area" in (a) and (b) 

may not be the same, because they correspond to two different path of the process {X(t);t > 0}. 

This clearly indicates that the stochastic integration g(X(t))dX(t) is a random variable. 

Since the increment, AX(t) = X(t + h) - X(t), of a continuous-time process {X(t); t > 0} 

can be written as 

for any positive integer n, we can rewrite the increment via a stochastic differential and integral as 

This kind of expression is used to formally define the stochastic differentiation by many authors. 

Look back at the extended-thinning where K © X = JK(X). When X is a non-negative 

integer rv, the extended-thinning K ® X = JR(X) = Yld=Q^i IS a random summation. What 

will it be if X is a positive or real-valued rv? Note that in these two cases, {Jx(t);t > 0} is a 

continuous-time process. Thus, 

a random stochastic integral. Therefore, in principle, the extended-thinning operation is a random 

summation or a stochastic integration. 

Now we make up a geometric explanation for the extended-thinning operation. Let's consider 

aX, a special case of an extended-thinning operation, as the area of random rectangle with length 

X (in the horizontal direction) and width a (in the vertical direction). Imagine a random rectangle 

in this way: the length is a rv. However, the width is not a fixed constant or rv. On every slice 

orthogonal to the length, the cutting width is a rv. Al l these cutting widths are iid rv's. One can use 

the sliced bread to mimic this random rectangle. Because fX dJx{t) is the limit of a Riemann sum, 

and in small time intervals the increments of process {«/&:(£); t > 0} are iid, a natural explanation 

of JK{X) is that it is the limit of sums of areas of rectangles with widths rv X/n and iid heights 

Kn\,..., Knn (with distribution of Jx(X/n)). This area is random. Thus, it is a new random rv. 

) 

•t+h 
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X(t) 

(a) 
t 2 

X(t) 

t i 
(b) 

Figure 4.2: Illustration of stochastic integration via infinitesimal partition, (a) and (b) correspond 
to two different paths of the stochastic process {X(t);t > 0}. 
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Figure 4.3 illustrates the idea of this geometrical explanation of the extended-thinning op

eration. We give the "imagined" random rectangles in three cases corresponding to X being (a) 

real, (b) non-negative integer, and (c) positive valued. 

Without loss of generality, we assume the mode of convergence for stochastic integration is 

convergence in distribution throughout the remainder of this thesis. 

4 .2 Generalized Ornstein-Uhlenbeck equations 

Like a differential equation which expresses the dynamic characteristic of a function, a stochastic 

differential equation describes the dynamic feature of a continuous-time process. However, because 

the derivative of a process commonly doesn't exist, we can not include the derivative of a process 

in the equation. Instead, we include the differential of a process into the equation. 

Recall the Ornstein-Uhlenbeck process (see Section 2.1), which is defined by the following 

stochastic differential equation (SDE) for real-valued process rv X(t), 

dX{t) = -nX(t)dt + adW{t), 

where {W(t);t > 0} is a Brownian motion independent of X(t). To keep consistency with the 

literature, we absorb a into the innovation process so that it becomes 

dX(t) = -nX{t)dt + dW{t). 

This SDE shows that the infinitesimal increment of X(t) in the near future depends on the present 

circumstance and the innovation term. Note that X(t) has support on the range of (—oo,+oo). 

Replacing the innovation term from a Wiener process (Brownian motion) with a more general 

Levy process (Brownian motion is a special process in Levy process family) leads to the Ornstein-

Uhlenbeck-type process (see Barndorff-Nielsen et al. (1998) and references therein), namely, 

dX(t) = -fiX{t)dt + dL(t), 
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(a) 

(b) 

AK 

(C) 

Figure 4.3: Illustration of the geometrical explanation of the extended-thinning operation, (a) 
corresponds to a constant multiplier cX; X can be either real or positive-valued, (b) corresponds to 
a non-negative integer X. (c) corresponds to a positive X. 
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where {L(t);t > 0} is a Levy process. This offers possible marginal distributions for X(t) with 

support [0,oo). However, it doesn't provide any marginal distributions with support on the non-

negative integers, because /j,X(t)dt is unlikely to be an integer. 

The extension of innovation processes seems to be ideal. It covers distributions with domain 

on the non-negative integers. But only extending the innovation processes won't help us to construct 

models with marginal distributions having the non-negative integer support. Therefore, extending 

the dependence term from a product to a generalized stochastic operation may lead to a successful 

approach. This inspiration comes from Joe [1996]. 

Note that the dependence structure of such kind of processes {X(t);t > 0} is determined by., 

—fj,X(t)dt, and an independent innovation process is introduced to explain the fluctuation. Hence, 

the process is simply governed by the dependence mechanism part, —p:X(t)dt, and the independent 

input part {e(t);t > 0}. 

Recall that aX is a special operation in the class of extended-thinning operations (see 

Section 3.4). We can rewrite the dependent mechanism part —fiX(t)dt as 

-liX(t)dt = -ftdtX{t) = (1 - ndt)X{t) - X{t). 

Hence, a natural generalization for this dependent mechanism term is 

K(l - iidt) © X(t) - X(t) = (1 - fidt)K © X(t) - X{t). 

However, we will restrict K to be within a self-generalized family. Since this new term could be a 

non-negative integer, or positive, or real rv, we may hopefully obtain marginal distributions with 

support on non-negative integer, or positive, or real values respectively. 

We now formally define the generalized Ornstein-Uhlenbeck SDE below. 

Definition 4.3 Suppose {X(t);t > 0} is a continuous-time process, and {e(t);t > 0} is an inno

vation IIP. The generalized Ornstein-Uhlenbeck SDE is defined as 

dX(t) = [K(l-iidt).®X{t) -X(t)]+de(t) = [(1 - ndt)K © X(t) -X{t)] +de(t), 

where K(a) is a self-generalized rv with respect to parameter a. 
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Because the generalized Ornstein-Uhlenbeck SDE involves an extended-thinning operation, 

we should name the corresponding stochastic integration as generalized stochastic integration. 

Definition 4.4 Let {X(t);t > 0} be a continuous-time process. Divide [ii,^] into n equally small 

intervals. Then 

(g(t))K®dX(t) = t K(g(t))®dX(t) 

n-1 

= lim V K(g(t + ih)) ® [X(t + (i + l)h) - X(t + ih)} 
n—>oo z—' 

i=0 
n-1 

= lim *y (g{t + ih))K®[X(t + (i + l)h) -X(t + ih)], 
n-4oo ' 

i=0 

where h = (t2 — ti)/n, g(-) is a function with range [0,1], and K(a) is a self-generalized rv with 

respect to parameter a. This is well defined if the summation on right hand side converges in 

distribution. 

This generalized stochastic integration will be applied to solving generalized Ornstein-

Uhlenbeck SDE in Section 4.4. 

4 .3 Explanations, innovation types, non-stationary situations and 

examples 

We may give a further explanation of the generalized Ornstein-Uhlenbeck SDE in this section. 

In the generalized Ornstein-Uhlenbeck SDE 

dX(t) = [(1 - iidt)K ® X(t) - X(t)} + de{t), 

X(t) means present state, while dt, de(t) and dX(t) means the infinitesimal increment in the near 

future infinitesimal time interval. Hence, we can comprehend the generalized Ornstein-Uhlenbeck 

SDE as a forward expression, not a backward expression. 
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Ae = e(t+h) - £(t) 

X(t) X(t+h) 

A(X(t), -Vdt) 

Figure 4.4: Illustration of the mechanism of the generalized Ornstein- Uhlenbeck SDE. 

With such an understanding, we can write down the difference equation from the generalized 

Ornstein-Uhlenbeck SDE. It is 

X{t + h)- X{t) = [(1 -nh)K® X(t) - X(t)} + Ae, Ae = e(t + h) - e(t), 

which can be simplified as 

X{t + h) = (l-fih)K®X(t) + Ae. (4.3.1) 

Denote A(X(t), —fih) = (1 — (J.h)K ® X(t), the dependence mechanism. We can further write it as 

X(t + h) = A(X{t),-nh)+Ae. 

This uncovers the stochastic representation of the process in an infinitesimal time interval. Figure 

4.4 roughly shows the mechanism idea of the process generated from the generalized Ornstein-

Uhlenbeck SDE when h is infinitesimal. 

From the discussion, we know that these type of continuous-time processes are completely 

governed by the dependence mechanism term and the innovation term. 
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Next we investigate the innovation types: non-negative integer, or positive, or real-valued 

increment. From the stochastic difference equation (4.3.1), we see that the dependent term and the 

innovation term are independent. Besides, the dependent term can take value 0 if i i " or X(t) can 

be 0. Thus, we deduce the following. 

(1) When K is a non-negative integer self-generalized rv, X(t + h) and (1 — (J.h)x ®X(t) are non-

negative integer, thus, Ae is non-negative integer. This implies that the innovation process 

{e(t);t > 0} has non-negative integer-valued increment. 

(2) When i f is a positive self-generalized rv, X(t + h) and (1 — fih) K ® X (t) are non-negative real, 

thus, Ae is positive. This implies that the innovation process {e(t); t > 0} has positive-valued 

increment. 

(3) When i f is a positive constant c, X(t + h) and c • X(t) are real or positive; thus, Ae is real 

or positive respectively. Note that positive case has been included in (2). We only consider 

real case. Therefore, the innovation process {e(t);t > 0} has real-valued increment. 

In summary, the type of the increment of the innovation process is the same as the margins of the 

process {X{t);t > 0}. 

In reality, we often encounter dynamic phenomena modelled by a process {X(t);t > 0} which 

could be stationary or non-stationary over time. Stationarity is a simple and natural requirement 

for a process model. Non-stationarity usually arises from seasonality, increasing or declining trend, 

heteroscedasticity, etc. Thus, appropriate model settings should be considered. A good process 

model theory should be able to accommodate both stationary and non-stationary situations. 

For the stationary case, we may just simply assume that (e(i); t > 0} is stationary, and that 

in the dependence mechanism term, is a constant. 

For the non-stationary case, we can modify either the dependence mechanism term or the 

innovation term to be time-dependent. Hence, the SDE becomes 

dX(t) = [(1 - v{t)dt)K ® X{t) - X(t)] + de{t), 
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where {e(t);t > 0} may be a non-stationary independent increment process. However, the modifi

cation should correspond to what the non-stationary situation is. Sometimes it is a time-varying 

marginal mean or variance, sometimes it is a time-varying autocorrelation. 

Finally, we look at some examples, where the innovation processes have non-negative integer, 

or positive, or real increments. Also the stochastic operations include binomial-thinning, and other 

extended-thinning operators. We just mention their SDE's to illustrate the existence of generalized 

Ornstein-Uhlenbeck SDE. Their solutions will be given in Section 4.4, as well as Chapter 5. 

Example 4.1 Let {X(t);t > 0} be a process with non-negative integer margins. Consider the 

binomial-thinning operation. Then the following is the corresponding generalized Ornstein- Uhlenbeck 

SDE: 

dX(t) = [(1 - fj,dt)K ® X(t) - X(t)] + de(t) = (1 - fidt) * X(t) - X(t) + de(t), 

where {e(t); t > 0} is a stationary Poisson process, and the increment Ae = e{t + h) —e(t) has pgf 

G A e = exp{^A/i(s - 1)}, n > 0, A > 0. 

Example 4.2 Let {X(t);t > 0} be a process with non-negative integer margins. Still consider 

binomial-thinning operation. But change the innovation process to be an IIP with an increment 

whose pgf is 

G A e = exp IuO-yh^-—— 1, u > 0, 6 > 0, 0 < 7 < 1. 
I 1 - is J 

Then the following is another generalized Ornstein- Uhlenbeck SDE: 

dX{t) = {l-iidt)*X{t)-X{t)+de(t). 

' Example 4.3 Let {X(t);t > 0} be a process with non-negative integer margins. Consider gener

alized Ornstein-Uhlenbeck SDE with operator 12 (Example 3.2): 

dX(t) = [(1 - fidt)K ®X(t) - X(t)} + de{t) 

where K0 = 0, Ki, ..., Kh ...are iid, with pgf 

[ih + (1 - \ih -
(1 - 7 - jfih) - njhs 

x(t) 
Ki - X(t) I +de(t), 

i=0 

(ih + (l-fih-7)3 • Q 0 < ^ < 1 

115 



f 

{e(t);t > 0} is a stationary Poisson process with such increment Ae = e(t + h) — e(i) that the pgf is 

GA(L = exp ^^r^h(s - l ) j , 0>O. > 

Example 4.4 Lei i > 0} 6e a process with positive margins. Suppose {Jftr(i); £ > 0} is a sia-

tionary IIP such that (f)jK^(s; a) = ̂ ( s ; a) (a > 0), where <fa(s; a) = exp {- ^ J ^ ^ - a h s } ' 0 < 

7 < 1. Choose {e(t);t > 0} to be a stationary IIP with positive increment Ae = e(t + h) — e(t), 

whose LT is 
- _ J _ 1 + [1 - 7 ~ A*h + 2M7^](1 ~ 7 ) - 1 g 

^ A e _ l + s X 1+A*7(1 - 7 ) - 1 ^ 
T/ien 

H > 0. 

dX(t) = [(1 - /id*)A- © *(*) - X{t)} + de(t) = 
rX{t) 

/ dJK(s) - X(t) 
Jo 

+ de{t) 

is a generalized Ornstein-Uhlenbeck SDE with operator P2 (see Example 3.7). 

Example 4.5 We now return to constant multiplier operation, but choose the innovation process 

{e(t);t > 0} to be a stationary IIP with real increment Ae = e(t + h) — e(t) such that its cf 

ipAe = exp{-Xh\s\a}, A > 0, 0 < a < 2. Then 

dX{t) = [(1 - iidt)K © X{t) - X{t)] + de{t) = ~nX{t)dt + de(t) 

is a generalized Ornstein-Uhlenbeck SDE. 

4 .4 Construction of possible solutions for the generalized Ornstein-

Uhlenbeck SDE 

We define the generalized Ornstein-Uhlenbeck SDE as 

dX(t) = [(1 - fidt)K ® X(t) - X(i)] + de(t) for the stationary case, 

or 
dX(t) = [(1 - fi(t)dt)K © X{t) - X(t)} + de(t) for the non-stationary case, 
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where {K(a)} is a family of self-generalized rv with respect to parameter a. This shows the 

differential, or in other words, the infinitesimal increment of the process {X(t);t > 0} can be split 

into two terms: a dependence term associated with the extended-thinning operation on the current 

observation, and an innovation term introduced to explain the remaining fluctuation. Assuming 

that a solution exists, our tasks are 

(1) what does the solution mean? 

(2) how to find it? 

The unknown in the generalized Ornstein-Uhlenbeck SDE is the entire process {X(t); t > 0}, 

not just X(t) at a single time point. Thus, we need to find such a continuous-time process that 

satisfies the generalized Ornstein-Uhlenbeck SDE. Such a process is called the solution of the 

generalized Ornstein-Uhlenbeck SDE. 

Next we have to figure out a way to obtain the solution. For this purpose, we resort to 

infinitesimal partition method well known in calculus. The following is the rough idea of how this 

method works in stochastic calculus. 

Suppose the continuous-time process is {X(t);t > 0}. We study some kind of feature or 

behavior of this process between time t\ and t2, namely the time interval [ti, t2]. Divide this interval 

into n equal pieces, i.e., 

[ti,h + h), [h + h,h + 2h), [h + {n- l)h,h + nh] = [h + (n - l)h,t2], 

where h = (t2 — ti)/n. When n goes to infinity, each piece will become an infinitesimal interval. 

We consider the feature or behavior of the process in each small interval [ti + (k — l)h, ti + kh) (k = 

1,2,..., n), and apply an approximation in each small interval. Then, we sum these approximations, 

and finally let n increase to infinity to obtain the limit. This resulting limit is the desired process 

on the interval [ti, t2]. 

In summary, the infinitesimal partition method applied to a continuous-time phenomena on 

a certain time interval involves the following steps: 

(1) Discretize the continuous-time phenomena by dividing the time interval into n equal small 

pieces; 
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(2) Carry out relevant measures such as approximation and summation over these n small intervals; 

(3) Make it continuous over time again for those n discretized pieces by letting n —> +00. 

For the generalized Ornstein-Uhlenbeck SDE, the finite difference approximation in a small 

interval is 

X{t + h)-X(t) = [(l-iih)K®X(t)-X{t)] + Ae, Ae = e{t + h) - e(t), 

or simply 

X(t + h) = (l-iih)K®X{t) + Ae, (4.4.1) 

for the stationary case; and 

X{t + h)- X{t) = [(1 - n(t)h)K © X{t) - X{t)] + Ae(t), Ae{t) = e(t + h) - e(t), 

or simply 

X(t + h) = (l-n(t)h)K®X(t) + Ae{t), (4.4.2) 

for the non-stationary case. These will be applied to construct the solution of the generalized 

Ornstein-Uhlenbeck SDE next. 

Before proceeding to the solution, we list a useful lemma below. 

Lemma 4.4.1 If {a^} is a bounded sequence such that lim n _ 1 5Zfc=o ak = a> ^en 

n-1 
J J (1 _ £*) e~a as n -> 00. 
k=0 n 

Proof: Expand the product and take a limit term by term. 

In the rest of this section, we construct the possible solution {X(t);t > 0} for the generalized 

Ornstein-Uhlenbeck SDE. We are interested in the conditional stochastic representation form of 

{X(t);t>0}. 
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First consider the generalized Ornstein-Uhlenbeck SDE in the stationary case. Concretely, 

the setting of generalized Ornstein-Uhlenbeck SDE consists of constant parameter /A, and the in

novation being a stationary independent increment process, namely 

dX(t) = [(1 - ndt)K © X(t) - X(t)] + de{t). 

We apply the infinitesimal partition method to obtain an explicit expression for X(t2) given X(t\), 

where t\ < t2. 

Let h = (t2 - h)/n, and Ae^ = e(t\ + kh) - e(t\ + (k - l)/i), k = 1,2,... ,n. Then from 

(4.4.1), we have 

X(tl + h) = (l-Lih)K®X(t1)+Ae1; 

X(ti + 2h) = (1 - (J,h)K © X{tx +h) + Ae 2 ; 

X(t2) = X(h + nh) = (1 - iih)K © X(h + (n - l)h) + Aen. 

By induction and employing the properties of the extended-thinning operation, 

X{t1+2h) = (I-Lih)K®[(l-Lxh)K®X(ti) + Aei] + Ae2 

= (1 - LLK)K © (1 - Lih)K ® X(ti) + (1 - iih)K © Aei + Ae 2 

= (l-Lih)2

K®X(h) + {l-Lih)K®Ae1 + Ae2, 

X(h + 3h) = {l-nh)3

K®X{t1) + (l-fxh)2

K®Ael + (l-nh)K®Ae2 + Aeri, 

n - l 

X(t2) = (l-Lih)n

K®X{tl) + Y,(l-Vh) k

K®&en-k-

Let Yn = (1 - iih) n

K ® X(ti), and 

n-l 

Z n = £ ( l - / x / i ) k ® A e n _ f c . (4.4.3) 
fc=0 

Note that Y n and Zn are independent. When n goes to +oo, 

(1 _ = ( l _ ^ ^ i ) " e - " ^ - * 0 . 

119 



Hence, by Property 3.14, 

Yn A ( e - ^ * 2 - * 0 ) ®X(t i ) , asn—++00. 

Assume that {Zn} converges in distribution. Then this limit will be 

n—1 n—1 

lim Zn = lim V ( l - A / / 0 t f ® A e „ - f c = lim W e " " ^ ) © Ae„_ f c 
ra—>+oo ra—>+oo ^—' ra—>+oo z — ' \ / K k=0 k=0 

n . , rt2-h 
lim V f e - ^ 2 - * 1 " ^ ®Ae3 = (e-^-t,-t)\ @de(i)_ 

However, in the stationary situation, since Aei, Ae2, Ae n are iid, we can derive a simpler 

expression, 

lim Y(e-*khA ©Ae„_ f c = lim V ( V ^ ) © Ae f c = P ^ ( e ~ K ® de{t). 
k=0 k=0 u 

Finally, by the independence of Yn and Zn, we obtain 

X(t2) = (e-rtt*-t^)K®X(t1) + h {e-^)K®de(t). (AAA) 

Next we turn to the non-stationary case, where we allow p to be a function of £, i.e., n(t), 

and the innovation process could be a stationary independent increment process or a non-stationary 

independent increment process. Then the generalized Ornstein-Uhlenbeck SDE becomes 

dX(t) = [(1 - n(t)dt)K ® X{t) - X{t)] + de{t). 

0 

We follow the convention that a null product f] aj 1S 1- We have a slightly different version 

of the approximation of differences in a small interval based on (4.4.2): 

X(h+2h) = (l - n(ti + h)h) ® (l-n{h)hjK®X(ti) + Ael + Ae 2 

= ( l - (i(ti + h)h)K®(1~ © 

+ ( l - /x(ii + h)fi) ® Aei + Ae 2 

= ([1 - A*(*I)/I][1 - fi(h + h)h]) ® X(ti) 

+ ( l - /x(ti + /i)/i) © Aei + Ae 2 , 
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X(tx + 3h) = ( [ l - / / ( i i ) / i ] [ l - / x ( i i + /i)/i][l-M(£i + 2/i)/ i])^©X(£ 1 ) 

+ ([1 - n(ti + h)h][l - n(ti + 2/i)/i]) © Aei 

+ ([1 - n(h + 2ft)/t]) © Ae 2 + Ae 3 , 

x(h) = (Y[[i-^(ti + kh)h])K®x(t1) 
k=0 
n— 1 k 

Similar to before, let 

Yn = ( [1 - A*(*l + ^ © *(*l) 
n-l 

k=0 
and 

it,— ± rv 

z" = E(II[1-^i + (N~̂ /L 0̂̂ ®AE"-FC 

fc=0 j = l 
n—1 k 

= z)(ntI-̂ *2_^,I0A:®AEN-*- (4A5) 
fc=0 "j'=l 

Then V n and Z n are independent. Note that by Lemma 4.4.1, as n —> +oo, 

J][l - /i(t! + Jfc/i)/»] = II e - " ( * 1 + f c h ^ = exp [ - ^ + ^4 —>• e " ^ m d t -
fc=0 fc=0 I fc=0 J 

Hence, 

r„ A (e" "(0<tt) © X(*!), as n —> +oo. 

Assume that {Zn} converges in distribution. Then 
n—l k 

lim Zn = lim V ( TTj1 - n(t2 - jh)h]) ® Ae„_* 
fc=0 j = l 

= ni&ooE ne"Mt2_j/l)M ®Ae"-fc 

^ / - £ Kt2-jh)h\ 
= lim > e © Ae n _ f c 

n—>4-oo ̂ —^ 1 / fc=0 \ i x 
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( n-k \ 
- E n{t2-jh)h\ 

e ' = 1 

I 
I K 

®Aek 

f2 L- St2 ^r)dr\ @ r f e ( t J 
Jti V / l 

Finally, by the independence of YN and Z N , we obtain 

(4.4.6) 

The stochastic integral J St2 ^)dr\ ®de(t) can be viewed as a cumulative innovation. 

The more recent innovation has more influence on the cumulative innovation, because e J* ^T> T is 

increasing as t approaches t2. For a stationary generalized Ornstein-Uhlenbeck SDE, although the 

stochastic integrals j*-'1 { e - ^ - t ^ ) K ® de{t) and /0*2 t l {e~'a)K®de{t) have slightly different 

interpretations, it doesn't matter because they are equal in distribution. 

The stochastic representations of the solution of the generalized Ornstein-Uhlenbeck SDE 

are shown in (4.4.4) and (4.4.6), where the current state can be split into two independent terms: 

the first is the dependent part related to previous state; the second is the cumulative innovation, a 

• When does the generalized stochastic integral exist? 

• How to find this stochastic integral? 

Recall that the generalized stochastic integral is defined as the limit in distribution. Hence the 

convenient tools to investigate such a generalized stochastic integral are the pgf, or LT, or cf, 

depending on if the innovation process has non-negative integer, or positive, or real-valued margins. 

Assume K has pgf GK{S',(X), or LT <fa(s, a), or cf </>#(«, a); and Aei has pgf G&.e(s), or 

<f>Ae(s), ° r <PAe(s)- Now we study the pgf, or LT, or cf for Z N . 

For the stationary case, since Aei, Ae2, • • •, Aen are iid, it follows that 

generalized stochastic integration. Now the natural questions arise: 

K®Aen-i 

n-l 
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or 
n-1 

<t>zM E 

n-1 

9 - « E 2 i o ( ( 1 - " h ) * ) « ® A e » - = iW< , - s ( ( l -M/ i ) ' c )K©Ae n - i 

fc=0 

= *[[<l>At(-\og<l>K(s;{l-iih)ky) 
k=0 

or 
is^Ul-iiti)*) ®Aen-k 

n-1 

= II E \ [ e i s ( { 1 - f l h ) k " > K ® A € n - k  

fc=0 

fc=0 
n—1 n ̂  (* i os ( s; (x - v hn) • 

n-1 

fc=0 

If as n — > +00, 

and 

—>G(s), or <j)Zn{s) —• </>(s), or y>z„(s) —> y>(s), 

G(s) is continuous at s = 1 with G(l) = 1, or 

<f)(s) is continuous at s = 0 with <̂ (0) = 1, or 

ip(s) is continuous at s = 0 with <p(0) = 1, 

then G(s), or c/>(s) or ip(s) is the pgf, or LT, or cf of j ( e © de(*)-

For the non-stationary case, Aei, Ae2, . . . , Ae„ are independent, they may or may not be 

identically distributed. The corresponding pgf, or LT, or cf of Zn are 

E I ft [l-/*(*2-.j70/i] ) © A e „ _ * 

GZn(s) = E l . ' ^ V = ' JK 

n-1 = ri E 
fc=0 

n-1 

Jl [l-v(t2-jh)h] © A e n _ f c 

1=! ) K 

II G ^ n - k \ GK\S; - n(h - jh)h] 
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or 

4>zM = E 
( n [l-ti(.t2-jh)h]) © A e n _ f c 

, fc=0 \j=i / K 

n-1 

n-1 = n* 
-s\^U.[l-ii(t2-jh)h]j © A e n _ f c 

fc=0 

log for ( s ; n [ r - M * 2 - j / i M 
i=i 

or 

and 

i E ( f l [l-«(*2-j/i)fc] ) © A e n -
fc=0 \ j = l / K 

n-1 

n-1 
II ^Ae n _ f c 

fc=0 

n-1 

log^K s,Y[[l -n(t2 -jh)h] 

k = n ̂  e n — fc 
fc=0 

Similarly, if 

•Gz„(s) — o r fon(s) —•> fas), or V Z n ( s ) —> as n 

G(s) is continuous at s = 1 with G(l) = 1, or 

<£(s) is continuous at s = 0 with 0(0) = 1, or 

<p(s) is continuous at s = 0 with cp(0) = 1, 

+oo, 

then we can conclude that G(s), or fas), or <p(s) is the pgf, or LT, or cf of I (e ^ ^r)dr) ^®de(t). 

124 



These analyses show that finding the generalized stochastic integral is equivalent to finding 

the limit of pgf, or LT, or cf of Zn, where the limit should be a pgf, or LT, or cf. Due to self-

generalizability, the dependence part Yn in the approximation always converges. Hence, we obtain 

the following theorem. 

Theorem 4.4.2 (Solutions of the generalized Ornstein-Uhlenbeck SDE) 

(1) For the stationary generalized Ornstein-Uhlenbeck SDE 

dX(t) = [(1 - ndt)K®X{t) -X(t)] + de{t), 
Pt2—tl 

if / ( e _ / i t ) i < - ® de(t) exists, then the solution is 
Jo 

X(t2) = ( e - /*( fe-t i )} © X(h) + f2 h [e-^)K © de(t). 

(2) For the non-stationary generalized Ornstein-Uhlenbeck SDE, where ii(t) is bounded, 

dX{t) = [(1 - n(t)dt)K ® X{t) - X(t)} + de(t), 

if (e~^2^T"ldr^j^® de(t) exists, then the solution is 

X{t2)± (e-tt^)K®X{tl) + (e-tt^)K®de(t). 

Note that in the sense of convergence in distribution, the classical Ornstein-Uhlenbeck SDE 

has the same solution as in the sense of convergence in L2. 

In summary, the stochastic representations of X(t2) conditioned on X(t\) in both the sta

tionary and non-stationary cases show that {X(t);t > 0} (if existing) is a first-order Markov 

process. Since the classical Ornstein-Uhlenbeck SDE leads to the continuous-time AR(1) Gaussian 

process, we name the new processes, constructed by the generalized Ornstein-Uhlenbeck SDE, the 

continuous-time generalized AR(1) processes, or in short, the continuous-time GAR(l) processes. 

Specifically, they are of the forms given in Theorem 4.4.2. Some comments about the comparison 

with traditional AR(1) processes are given in the next section. 

Our next main task is to search for appropriate IIP innovations, which guarantee that the 

generalized stochastic integral exists. 
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4 .5 Summary and discussion 

In this section, we compare among the Ornstein-Uhlenbeck processes, the Ornstein-Uhlenbeck-type 

processes, and the new continuous-time generalized AR(1) processes. We summarize their features 

only for the stationary situation. 

The Ornstein-Uhlenbeck process and the Ornstein-Uhlenbeck-type process have the same 

stochastic representation: 

X(t2) = e~^-^ • X{h) + f2 h •de{t). 

Jo 

If {e(t);t > 0} is a Wiener process, it's the ordinary Ornstein-Uhlenbeck process. If {e(t); t > 0} is a 

Levy process, it is then the Ornstein-Uhlenbeck-type processes. Extending the constant multiplier 

operation to extended-thinning operation, we obtain the continuous-time generalized AR(1) process: 

X(t2) = ( e - " t e - ' i ) ) ®X(t1) + f2 h {e-»t)K®de(t). 
^ ' K Jo 

Now we investigate their representation structure. The expressions of the stochastic repre

sentation show that X{t2) consists of two independent parts: one related to X(t\) only and one 

related to the innovation process only. When t2 — t\ goes to infinity, e - ^ 2 - * 1 ) goes to zero. Thus, 

the first part will diminish to zero, which means X(t\) will gradually have less and less influence 

on X(t2) until the influence reduces to null. Then the influence will exclusively come from the 

innovation process. This shows us a dynamic process picture: after continuously repeated treat

ment by the dependence mechanism device (i.e., A(X(t), — fj.dt)), the original input X(ti) will be 

diminishing to nothing. On the other hand, the innovation during this period will be treated by 

the same mechanism; however, it has accumulated as a stochastic integral and finally accounts for 

X(t2) solely. 

What are the restrictions to applying the Ornstein-Uhlenbeck process and the Ornstein-

Uhlenbeck-type process in modelling dynamic phenomena? Since the Ornstein-Uhlenbeck process 

has real-valued margins, it only works for those with real observations over time, otherwise, some 

transformation for the data, say log-transformation, should be take to fit the model. The Ornstein-

Uhlenbeck-type process extends to positive real-valued margins, but can not have non-negative 
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integer-valued margins, because e - / i(* 2 _ i l) • X(ti) is not likely to be an integer. However, the 

continuous-time generalized AR(1) process offers non-negative integer-valued, positive real-valued 

and real-valued margins. Therefore, it is quite flexible in modelling different types of margins. In 

Chapter 5, we give abundant examples. 

For the Ornstein-Uhlenbeck process and the Ornstein-Uhlenbeck-type process, the depen

dence part is a linear function of X(t\). Hence, conditioned on X(t\), this dependence part is fixed, 

not random. The conditional variation of Xfo) only comes from the part related to innovation. 

For the continuous-time generalized AR(1) process, however, this part may not be a linear function 

of X(tj). Furthermore, conditioned on X(ti), it's no longer fixed, but random, so it looks like a 

random effect, and also contributes to the conditional variation of Xfo)-

The reader may wonder why we name this type process as continuous-time generalized 

AR(1) process, instead of following the conventional way to name it like the generalized Ornstein-

Uhlenbeck-type process. This is because we focus on the statistical point of view. We wish to 

emphasize its advantage, the auto-regression like property, in statistical modelling. One big con

cern in modelling dynamic phenomena is to capture the dependence structure over time. Since, the 

processes we study possess the same auto-correlation as the continuous-time AR(1) Gaussian pro

cess, we propose the name continuous-time generalized AR(1) process to clearly show that one can 

apply this kind of process to model, or in another word, to approximate the real dynamic problems 

which have obvious dependence structure over time. However, the concept "auto- regression" in the 

new processes is not strictly autoregression, because X(£2) is not equal in distribution to a linear 

function of X(t\). This jump in concept resembles the relationship of the generalized linear model 

to the linear model. If one like, one may call such an autoregression a generalized autoregression 

to distinguish it with the classical autoregression, which is linear in the previous observation. 
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Chapter 5 

Results for continuous-time 

generalized AR(1) processes 

In this chapter, we shall deduce some concrete results of continuous-time GAR(l) processes dis

cussed in Chapter 4. We consider special HP's as the innovation processes. These innovation 

processes are classified as having non-negative integer; positive and real increment. 

The general conclusion for these special innovation processes is given in Section 5.1. From 

Sections 5.2 to 5.3, we discuss the non-negative integer, positive and real increment cases and 

examples respectively. Finally, in Section 5.4 we explore the Tweedie IIP as the innovation process 

to study or revisit the models from the view of dispersion. 

These innovation processes lead to the continuous-time GAR(l) processes with non-negative 

integer, positive and real margins. The abundant resulting processes could be potential models for 

real phenomena that statisticians seek to explore. 

5.1 Main results for continuous-time G A R ( l ) processes 

In this section, we apply the theory in Chapter 4 to construct concrete examples of the continuous-

time GAR(l) processes.̂  
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First, we choose relevant HP's as innovation processes. They could have non-negative inte

ger, or positive, or real margins. Secondly, we specify the extended-thinning operations. These two 

steps determine the generalized Ornstein-Uhlenbeck SDE, and thus, the corresponding continuous-

time GAR(l) processes. 

The key point in such procedure is to calculate G(s), or (f>(s), or ip(s) discussed in Section 

4.4. If this is a pgf, or LT, or cf, then we obtain the corresponding generalized stochastic integral, 

as well as the corresponding continuous-time GAR(l) process. 

Both stationary and non-stationary situations are investigated. However, for the sake of 

simplicity, we restrict the innovation processes as stationary HP's so that we can easily give ex

plicit results. This idea can be readily extended to the case of the non-stationary HP's being the 

innovation processes. 

Now we probe the issue of the support type of margins of continuous-time GAR(l) processes. 

Recall the stochastic representations of this kind of processes in stationary case: 

X(t2) = (e-^-^)K © X(h) + 11 {e'^)K © de(t). 

When t2 - t\ oo, the term ( e - ^ ' 2 - ' 1 ) ) K © X(t\) will converge to zero. Hence, the margins and 

their support are essentially governed by the rv K and the innovation process {e(t);t > 0}. We 

may want the marginal support to be the non-negative integer, or positive, or real set. This can 

be realized by choosing the appropriate self-generalized rv K and IIP {e(t); t > 0}. 

Recall that the generalized stochastic integral involved in the continuous-time GAR(l) pro-

/ (E_/II) K ® DE(^> 0 1 / (e~ / e ' 2 fl(T)dT) ® de(t) have pgf, or LT, or cf as the following 
Jo Jti ^ ' K cess 

Gzn(s) 

iti 
nf[GAe (GK (s; ( 1 - ^ ) ) 
i=0 I n - l II GAe 
i=0 

GK U n [(I-M*2 -rn 

for constant /J,; 

for n(t); 

or 

<t>zn(s) = 

( n ^ A ^ - i o g ^ ^ a - ^ r ) ) , 

j Jl <t>Ae f - 4>K \ S \ ft [(1 - M*2 - jh)h] 

for constant LI; 

, for n(t); 
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or or 
n - l 

<Pzn{s) = < 
IT fAe {-ilog ipK (s;{l- un)*)) . for constant LI; 
i=0 

Tl1
 ^Ae (~i log WK (s; ]Q [(1 - M * 2 - J J , for M*)? 

where Z n is defined in (4.4.3) and (4.4.5). Since they are all products, we may choose innovation 

processes in which the pgf, or LT, or cf of increment is of the exponential form. Such a form has 

the advantage that it can change the product to summation of their exponents so that the limit 

will be an integral. 

The following proposition from calculus is essential to our study of results of continuous-time 

GAR(l) processes. 

P r o p o s i t i o n 5.1.1 Suppose R(x) is a differentiate real-valued function with bounded first order 

derivative. Let h = (t2 — t\)/n, where t2 — t\ > 0. Then 

(1) for constant LI, 

h V i ? ( ( l - / i h ) ' ) - > / R(e-^)dt, asn->oo, 
7=t J o 

(2) for function //(£), 

n - l ( i \ r t 2 

H E R n i 1 - - -> / R ( E _ H 2 MR)DT) DT> 
i=o \j=i I J t l 

as n —>• oo. 

Proof : The key step is to show that 

n - l n - l 

i=0 i=0 

i=0 \j=l J i=0 \ 

Then by the definition of Riemann integration, the conclusions hold. 
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According to Inequality 3.6.2 in Mitrinovic and Vasic [1970] (Section 3.6, p. 266), we have 

1' 
Ct

rl 

Thus, 

(1-fihY = (1-

and consequently, 

n-1 

M*2 _ * l) 

n 
= e 

-fi(t2-ti) + 
A 

n 

i/n 

n n 

fc£fl((l-

i=0 

n-1 

h ^ R 
i=0 
n-1 

,~Hih , til + — + 0 
n \n 

i=o n V 

Similarly, 

n[i-M<2-j/oft] = n 

i = n 
which leads to 

n—1 / i 

1 -
A«(*2 -jh){t2 - h) 

n 
n e-Kt2-Jh)(t2-h) + 

e-Kt2-jh)h + Mj_ + q 

n \n 

n-1 

n n 

i=0 \j=i J *=o v 

= fc £ {i? (e- SJ=I + R> ( e - S j - i Mb-ifc)fc) . | + 0 ( I ) } 
i=0 
n-1 

i=0 ^ ' 

Remark: The technique of proof uses a bounded first order derivative, but it may be possible to 

prove the result without this condition by a different method. 
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Now we choose a special innovation process, in which the increment, e(t + h) — e(i), has 

the exponential form of pgf, or LT, or cf. Applying Proposition 5.1.1, we can obtain the following 

theorem. 

Theorem 5.1.2 Assume the innovation process {e(t); t > 0} has increment e(t + h) — e(t) such 

that its pgf, or LT, or cf is of form ehC^s\ depending on the increment being non-negative integer-

valued, or positive-valued, or real-valued. C(s) is assumed to be differentiable with bounded first 

order derivative. 

(1) For the stationary situation, let Zn be defined in (4-4-3). If GK(S;OS), or log <J>K{S; a), or 

log <PK{S\ OL) have bounded first order derivative with respect to a in [0,1] (boundaries could 

be excluded), then it follows that 

GZn(s) = n °^ (* - )̂)=n e x p i h c (g* (x - PW))) 

or 
n-1 

<t>zn(s) l\GAe {4>K (s;(l-nhy)) 

or 
n-1 

<pzAs) 

And the G(s), fas) and <p(s) are the pgf, LT and cf of the generalized stochastic integral 

respectively. 
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(2) For the non-stationary situation, let ZN be defined in (4-4-5). IfGK{S\Q), or log4>K(S;a), or 

log <PK(S; ct) have bounded first order derivative in [0,1] (boundaries could be excluded), then 

it follows that 

n-l 
Gzn(s) = HGA£\GK[s;Yl[l-^t2-jh)h} 

i=0 \ V 3=1 
n-l 

or 

or 

= HexplhC lGK ls;H [1 - n{t2 - jh)h] 

^ ° exp {J** C (GK (S; e~^ ^ d r ) ) dt} = G(s), 

<f>zn (s) = n 4>Ae ( - log <f>K ( s; fl [1 - M*2 - jh)h] 

e x p [ ^ * 2 C (-log<fa (S;e-̂ 2^dr)) d i } = 

n-l 

i=0 \ \ J'=l 

n—>oo exp [ j ^ C ^ - i log ( s ; e - £ 2 " ( r ) d T ) ) df} = ^(s). 

The G(s), (f>(s) and cp(s) are the pgf, LT and cf of the generalized stochastic integral 

"t2 

respectively. 

Proof: W i t h suppression of the dependence on s, let 

R(a) = 

C(GK(S; a)), if iv" is a non-negative integer rv, 

( C ( - log <fa(s; a)), if iv" a is positive rv, 

C(-i log ipK(S; a)), if iv" a is real rv. 
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Then the derivative of R(a) is 

C'(GK(S; O))-^GK(S; a), if A" is a non-negative integer rv, 

R'(a) = { -C'(-\og(f)K(s;a))£-\og<t>K{s;a), if K a is positive rv, 

-iC(-Hog ipK(s; a))log <pK(s; a), if K a is real rv. 

Hence, R'(a) is bounded in [0,1] (boundaries could be excluded) under the conditions of this 

theorem. To save space, we only verify them for K being a non-negative integer rv and the 

increment of innovation process being non-negative integer-valued. 

(1) For the stationary situation, 

n-1 n-1 

GZn(s) = l[GA£(GK{s;(l-fihy)) = lleW{hC(GK{S;(l-^h)i))} 
i=0 i=0 

( n-1 \ 

exp / i ^ x u - ^ r ) 
i . i=o ; 

under the conditions in this theorem, Proposition 5.1.1 holds. Thus, 

GzM ^ exp { ^ 2 _ t l C {GK e""*)) dt} = G(s). 

When s = 1, since C(l) = \og(G Ae{l)) / h = log(l)//i = 0, 
rti-ti -\ ( cti-t\ 

G(l) = exp | ^ * 2 ^ C {GK (1; e""*)) dt} = exp C(l)dt j = eu = 1. 

rti—ti 
Therefore, G{s) is a pgf. We can conclude that / (e^*)*- © de(t) exists with pgf G{s). 

Jo 

(2) For the non-stationary situation, 

GzM = \lGAAGK(s-,fl[l-^h-jh)h] 
i=0 \ \ j=l 

n-1 

i=0 
= n e x p 

hC i GK s;Y[[l - fi(t2 - jh)h] 
J'=I 

= exp < 
n-1 

i=0 \j=l 
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By Proposition 5.1.1, 

GZn(s) exp { jf" C (GK (S; e'^ dt} = G(a), 

and G(l) = 1. Hence ^ ' (e~ & ^ d T ^ ® de(t) exists with pgf G(s). • 

Recall Examples 3.1 to 3.5 (labeled from II to 15) where all of the self-generalized rv K are 

non-negative integer-valued. We check the partial derivatives 

(s - 1), for II, 

(1 - 7)(a - 1)(1 - 7*)[7(* - 1)« + (1 - 7s)] - 2 , for 12, 

-(1 - s ) Q l o g ( l - s ) , for 13, 

-^zr[ee- (ed - l)s}a log [e° - (e9 - l)s] , for 14, 

-6(1 - 7 ) * [l + ( l - 7 ) ( l - s ) - 1 / ( ? ] 

x a ^ 1 [ ( l - a ) 7 + ( l - 7 ) ( l - 5 ) - 1 / 0 ] " ( m ) , for 15. 

Thus, they are all bounded if 0 < s < 1. 

For Examples 3.6 to 3.10 (labeled from PI to P5) where K is a positive self-generalized rv, 

because the following relationship corresponding to the II to 15 holds 

4>K(S;a) = exp{Gj<-'(i - s;a) - 1}, 

JL 
da 

GK(s;a) = < 

we obtain 
3 0 — log(f)K{s; a) = Q^Gk(1 - s;a). 

Therefore, the ^ log<fo-(.s; a) is bounded in [0,1] too. 

Essentially, to apply Theorem 5.1.2, we only need to check the boundedness of C'(s) if we 

consider K being from II to 15 and PI to P5. 

The type of the generalized stochastic integral 

Jo Jti ^ ' K 

is determined by the self-generalized rv K and the innovation process {e(t); t > 0}. It could be 

non-negative integer-valued, or positive-valued, or real-valued. Under the cases that K is from II 

to 15 and PI to P5, we classify them in the following theorem. 

135 



G(s) = 

Theorem 5.1.3 Assume the innovation process {e(t); t > 0} has increment Ae(i) = e(t + h) — e(t) 

whose pgf, or LT, or cf has form ehC^ depending on the increment being non-negative integer-

valued, or positive-valued, or real-valued. C(s) is differentiate with bounded first order derivative. 

We classify the possible type of the generalized stochastic integral. 

(1) non-negative integer-valued: K could be from I I to 15, the increment of innovation process 

should be non-negative integer-valued. 

In this circumstance, if the increment has pgf GAe^(s) = ehC^, then 

exp [y C (GK (S; dt} , for constant LI, 

| exp[yt2c(G^(S;e-/*2^dT))^}, for »{t). 

(2) positive-valued: K could be from P I to P5, the increment of innovation process should be 

positive-valued. 

In this circumstance, if the increment has LT 4>Ae(t)(s) = ehC(s\ then 

exp[y C (— \og(j>K (s;e _ ' i t)) dt} , for constant LI, 

exp [ jT 2 C ( - log for (a; e" tt ^ d r ) ) di} , for Li(t). 

(3) real-valued: K is only from P I , the increment of innovation process is only real-valued. 

In this circumstance, <fiAe(t)(s) = ehC(s\ and 
( rt2-ti -\ 

exp IJ C (se _ / i t) dtj , for constant LI, 

exp [yf2
 C (se' tt dt} , for n{t). 

Proof: The proof is straightforward. We omit it to save space. 

<j>(s) = 

<p(s) 

Fortunately, there are several distribution families which have exponential form of pgf, or 

LT, or cf. For instance, the compound Poisson, GNBC, GGC, stable, Tweedie families are well-

known examples. We will discuss them in the case of innovation processes with non-negative integer, 

positive and real increment respectively. 
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5.2 Non-negative integer innovation processes and examples 

In the following we mainly consider four process families as the innovations: compound Poisson 

IIP, generalized Negative Binomial convolution IIP, GC I IIP and GC II IIP. These four families 

lead to a lot of well-known distributions as margins. 

As to the self-generalized distributions, because the increment of the innovation process 

{e(t);t > 0} is non-negative integer-valued, K should be a non-negative integer rv, which further 

leads to the non-negative integer generalized stochastic integral. We pick up those five non-negative 

integer rv's in Examples 3.1 to 3.5 (labeled from II to 15) for the extended-thinning operations. 

First, we consider the Compound Poisson IIP as innovation process. By Theorem 5.1.2, we 

have 

Theorem 5.2.1 Let {e(t);t > 0} be a Compound Poisson IIP with pgf of Ae = e(t + h) - e(t) 

GA£(s) = exp{\h[g(s)-l}}, 

where g(s)(= YlPis*) z s a P9f> a n d differentiate with bounded first order derivative. Suppose K(a) 

is a non-negative integer self-generalized rv with pgf GK{S\OL), which is differentiate with bounded 

first order derivative with respect to a. Then, it follows that 

e x p J A ^ h [g(GK(s;e-'d)) 

G(s) = | 

e x p J A ^ [g(GK(s;e-Si2»WT)) _ 

and G(s) is a pgf. Hence, the generalized stochastic integrals 

for constant /J,; 

for n(t); 

f* h ( E ~ ^ ) K ® D E W A N D ( E ~ / T < 2 " ( T ) D R ) K © D E ( * ) 

exist and are non-negative integer rv's. 

For a specific self-generalized rv K, we know the form of its pgf GK{S)- Thus, we can obtain 

the full expression of G(s) by Theorem 5.2.1. This leads to the following corollary, where the K is 

chosen from II to 15 (non-negative integer case). 
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For the sake of saving space, we only list the results for the stationary case. The non-

stationary case can be straightforward to deduce without any difficulty. 

C o r o l l a r y 5.2.2 Consider the innovation being the Compound Poisson IIP. In Theorem 5.2.1, 

by specifying GK{S\Q) or <fa(s;a) for the self-generalized rv K, we can get the further form of 

g(GK(s;a)) or g(<fa(s;a)). The following are the results for K being from II to 15 under the 

stationary case. 

II: G(s) = exp [A [g ([1 - e""*] + e'^s) - l] dt} . 

oo 
Furthermore, if g(s) = YlPisl> then 

r*2—ti 

i = 0 
oo 

[ l _ e - J > ( t 2 - t 1 ) ] ( s _ l ) J 

(1 - e~^) + (e-^ - -y)s , _ j 
9 ' (1 - - (1 - e - ^ ) 7 s 

12: G(s) = expJAy 

13: G(s) = exp JÂ2"*1 [<? ( l - (1 - s)^) - l ] dt} 

dt 

14: G(s) = exp 

15: G(s) = exp ^ A L 

t2-h 

t2 - * i 

dt 

1 -
e - W ( l _ 7 ) » 

V ( l - e - ^ ) 7 + ( l - 7 ) ( l - s ) -

For the non-stationary case, just replace the e~̂ * with e~ •/*2 ̂ d T . 

- 1 dt 

P r o o f : The second half part of II needs some details. 

r*2—ti 
G(s) = exp JA r t l \g([l - e""*] + e""**) - l ]d t} 

= exp {A ft2~h [ f > ( [ l - e~"*] + e ^ ' s ) ' - l ]d t} 
i = 0 

= e x p { A / ^ ^ [ ( [ l - e - ^ + e-^a) - l ] d t } 
, ' 0 i=i 

O O pt^—tl 

{A5>[/1 ([i + ( ^ - i ) ^ r - i ) d t ] } = exp 
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0 0

 r rt2-h 
= e x p J A ^ T 

i=l J 0 j=l V / 

= exp{A5>[/ W M ( s _ i ) V ^ d i ] } 
i=i •'° j=i 

- - {* | * [£G)« - I » I 1 1 ^ ]} 
, oo 1 OO / . \ 

= ^ {; E (HE (iWli- '-^'K'-»>')}• 
^ j=l J i=j V 

By choosing an appropriate pgf g(s), we can find the exact form of the pgf G(s) of interest 

so that we can obtain the corresponding generalized stochastic integral. The following are a few 

examples. 

Example 5.1 Consider the compound Poisson IIP innovation. Let g(s) = s and let K be from 

I I , so that the extended-thinning operator is binomial-thinning. Then 

G{s) = exp JA J2 

- t i 

[»( 1 - e~^] + e - ^ s ) - l] dt} 

= exp{A^ - t i 

[01 - e""*] + e - " *a ) -

= exp{Â  - t i 

( s — 

= exp |A(S — 
'o 

- t i . 

e'^dtj 

= e x p { - [ l -

or 

G(s) = exp{Ar[ 0 ([ l-e-/ / 2 ^] + e - ^ ^ ) - l ] d t } 

= exp (A j f* [([1 - e- / / 2 ^ ] + 6 " / i 8 - l] d*} 
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= exv{\([t2e-tt^dt)(s-l)}. 

These results correspond to the following models: 

r*2—*i 
X(t2) = e-^'^ * X{ti) + f~ " e-^ * de(t), 

Jo 

where j ' \ e"^ * de(t) ~ Poisson^ [l - e^* 2 " ' 1 )]) , and 

X(t2) = e~ tt " ( T ) d T *X{t1)+ f2 e~ tt Mr)dr + d e ( i ) ; 

w/iere e~ tt vWdr ^ d e ^ „ P o i s s o n ^ A E - / / 2 M M * - ^ 

Example 5.2 Still consider the compound Poisson IIP innovation, and suppose K remains in II. 

Now we choose g(s) = j^^, i.e., the pgf of NB(\,~j). Then for the stationary case, 

G(s) = expJA^* 2 11 [g{[l-e-^] + e-^s) - l]dt) 

= exp | A 
t2—tl r 1-7 

exp 

exp 

1 - 7^[1 - e-^] + e-^s^j 
- 1 dt} 

t 2 - t i 7 ( s _ ! ) e - M t 

(1 - 7) - 7(s - l ) e -^ 
dt } 

= exp { - log 

- ( 

r A r *1 * 2 - t i i 

{^log (1 - 7 ) - l{s - l)e^ } 
I LI I J 0 J 

]} 
( l - 7 ) - 7 ( s - l ) e - ^ 2 ~ t l ) 

(1-7) -7 ( ^ - 1 ) 
(1 _ 7 ) _ 7 ( a - i ) e -M*2- t iK x/n 

1 — 7s / 
( e -Mt 2 - t i ) + [j _ e - ^ - t O ] ^ ^ ) ^ 

T/iis Zeads to the model 

X(t2) = e - ^ ~ t l ) * X ( t i ) + T2 1 e-** * de(t) 
Jo 
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where P e~^ * de(t) has pgf (e-"(fe-*i) + [1 - e ' ^ ^ } ^ ) 
Jo 
For the non-stationary case, it follows that 

A / u 

G(s) = exp{A P [ g ( [ l - e - ^ ^ ] + e-^^s)-l]dt} 

'- 1^1 ; . - l]dt\ 
- 1 _ 7 ^ [ l _ e - / / 2 M r ) d r ] + e - / / V ( r ) d r ^ J J 

exp \ A 

exp 
t 2

 1 ( s - l ) e - t i 2 ^ d l 

\X P — ^ 
L Jt! 1 - 7 -7 - 7 ( 5 - l)e-/* 2 '*( r) d 

dt). 
T)dr ) 

Hence, we have model 

X(t2) = e- ̂  ^ T ) d T * X{h) + P e~ & ̂ d T * de(t), 
Jh 

where e" & ̂ r ) d T * de(t) has pgf exp { A j f * — 
7 ( s - l ) e - / / 2 ^ d l 

-dt 
• 7 - 7 ( s - l ) e - / t 2 M T ) d r 

Example 5.3 Let g(s) = ± - e^~^/e (#>!)• Consider the compound Poisson IIP innovation, 

and suppose K remains in II. Then for the stationary case, 

t2—*1 r 

G(s) = exp < A 

= exp < A 

= exp < A 

o 
- e""*] + e-^s) - l] dt} 

i e- l(\-s)xi 9e-^i° 
1 + (s - l)e-^ 1 - (1 - sY^e-^l6 

- ( g - l ) e - ^ 9-l{l-s)^ee-^e 

1 + (s - l)e-" 1 1 - (1 - sY^e-M0 

t2—*1 

0 
A / u 

dt 

dt 

= exp { - [log [1 + (s - l)e-"*] *2 ^ - log [l - (1 - s)l'ee L u L o L 
-/zt/0 * 2 - t l -

0 

' l l + ( a - l ) e - M t 2 - t i ) 

~ X 1 - (1 - S)l/fl e-M*2-tl)/e 

/"*2—*1 

w/uc/i is t/te pgf of / e_M* * de(t). T/ius, t/te model is 
Jo 

X{t2) = e-^t2-^ * X(h) + P 1 1 e""' * de(t). 
7o 
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A may take the same value as LI. In this case, G{s) = s _ 1 [ l - (1 - s)1/9] (as t 2 - h ->• oo), which 

is just the pgf of power series distribution (this is an alternative way to show its DSD property). 

For the non-stationary case, the pgf becomes 

G(s) = exp [A j'' \g ([1 - e~ ̂ fi{T)dr) + e~ & " ( r ) d T s ) - l ] } 

1 9~l(l -sf/Oe-o-'St'nWT 
= exp < A 

= exp < A 

l + ( s _ l ) e - / / V ( r ) r f r ~ 1 _ (1 _ s J l / A e - O - 1 Si2 Kr)dr 

-{S- l ) e - J / 2 M ^ - a ) l / g e - 0 J l j/2Mr)dr 

1 + (a - l ) e - /» 2 1 - (1 - a)!/^-*"1 / / 2 "Mrfr 

- 1 dt 

dt}, 

the pgf of [ e'tt ^T">dr * de(t), and the model is 
Jti 

X(t2) = e~fi »{T)dT * X(h) + f2 e~tt " M " T * de(t). 
Jti 

Example 5 . 4 Suppose innovation remains as compound Poisson IIP, and g(s) = s. Now consider 
r ( g - 7 ) s 
- ( I — a ) 7 « ' i f / r o m 12 with pgf GK(s; a) = Jlffi? 7 ^ - - Men 

^ , v , a ( l - 7 ) ( a - l ) Gif(s;a) - 1 = 7- r 7- r — , v (1 - 07) - (1 - a)-ys 

and for the stationary case, 

G{s) = e x p { A ^ 

= e x p J A ^ 

•t2-ti (1 - e "^ ) + (e-^f - 7 ) 8 

(1 - e-^7) - (1 - e'^-ys 
t2-h ( ! _ 7 ) ( s _ i ) e - M « 

) - i ] * } 

exp 

exp 

exp 

(1 - ye-^) - (1 - e -«* )7s 

•fa-ti ( ! _ 7 ) ( s _ i ) e - M t 

( A / (1 - 7 s ) + 7 ( 5 - l )e~^ 

I / i 7 

4 log 
LM 7 

d i } 
( 1 _ 7 s ) + 7 ( s _ l ) e - ^ ] | o

2 _ 1 } 

( l -7s)4-7 (s - l )e - ' i ( t 2 -* 1 ) -IJ 

1 - 7 
X 1--) 

p 1 
(1 - 7s) + 7(5 - l ^ - ^ - ' 1 ) . 

x _ 7 \ A( l -7 ) / (^7) 

l _ - y e - M ( ' 2 _ t l ) 

_ 7 ( i - e - ^ ( ' 2 - t i ) ) \ A ( l - 7 ) / ( M 7 ) 

l _ 7 e - ^ ( t 2 - ' l ) 

_ 7 ( i - e - / . ( t 2 - t i ) ) 
l _ 7 e - M ( t 2 - ' l ) 

_ 7 ( i - e - M ( i 2 - ' i ) ) 
l _ 7 e - f » ( ' 2 - ' t l ) 
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Note that this last form is a NB pgf. Hence the model is 

X{t2)= (e-^-^)K®X(h) + j'' H {e~'a)K ®de(t) 

where (e^)K®de(t) ~ NB^^Z-X) 
Similarly, the model for the non-stationary case is 

X(t2) = (e-fc ® X(h) + £ 2 (e'fc ® de(t), 

where P [e~ ^ ^dT) k® de{t) has pgf 

ow = «P{A r [»(""'"frr'̂ '̂ T.vi') - w 
= exp 

T L L v (1 _ e - M W ^ - y ) _ (1 _ e - Jt"' M ( T J d r ) 7 S , 

* 2 - * i (1 _ 7 ) ( a _ l ) e - / / V ( r ) d r 
-dt 

(1 - 7 5 ) + 7 ( s - l)e - / / 2 " ( r ) d T 

Example 5.5 ifeep the previous stochastic setting, but choose g(s) = jEps (0 < /3 < 1). Then, 

1-6 
g(GK(s,a))-l 

I _ a ( l - a ) + ( q - 7 ) s 1 

" (1—07) —(1—a)7« 

( 1 - / ? ) [ ( !-7*)- 7 ( 1 - * H 1 

( l - / 3 ) ( l - 7 s ) + ( i 8 - 7 ) ( l - s ) a 
- /3 (1 -7)(!-*)« 

( l - j 8 ) ( l - 7 s ) + ( ) 8 - 7)(l-s)a-

For the stationary case, 

rti—h 
G(s) = e x p { A ^ 

= e x p { A ^ 1 

- (1 - e-"*) + (e~^ - 7 )3 

,(1 - e-^7) - (1 - e - ^ s 
-3(l-7)(l-s)e-^ 

(1 - 6)(1 - 1S) + (6 - j)(l - s)e-

)-l}dt} 

It} 

exp { A / ? ' ' _ ^ l o g [(1 - « ( 1 - 7*) + (0 " 7)(1 - } 

- ( 

M/3 - 7) 
f W - 7 ) (1 -B)(l- 7^) + - 7)(1 - a ) e - ^ -^ ) ^ 

6 X P I „(/9 - 7) § (1 -B)(l- 7 f l ) + 03 - 7)(1 -.̂ ) J 
(1 - B)(l - 7 5 ) + ()9 - 7)(1 - aje-^"* 1 ) \ 

( l - / 5 ) ( l - 7 5 ) + ( / 3 - 7 ) ( l - s ) 
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and the model is 

X(t2) = ( e - M * 2 - t i ) ^ ® + J^2 h (e-^)K ® de(t), 

where I ( e _ / i t ) K © de(t) has the above G(s) as its pgf. 
Jo 
For the non-stationary case, 

r«2 r , (1 - e ~ St2 Kr)dr^ + (g- / / 2 n{r)dr _ ^ g 

G{s) = exp {A J2[g( _ (1 _ e - / / 2 ^ ( r ) d r ) y J J 

= exp 

(1 _ e - f t 2 ^(r)dr^ _ _ e-j;*l*(T)dTfrs. 

t 2-ti - 7)(1 - a ) e - / t 2 / * W d T 
-Jt'^\T) a T 1 

; r, 
(1 -/3)(1 - 7 s ) + ( / 3 - 7 ) ( l - s ) e - / t

2 M r ) r f r J 
and corresponding model becomes 

X{t2) = (e-^2^dTyK®X(ti) + J*' ( e - ^ 2 ^ T ) ^ © d e ( t ) , 

where the second G(s) is the pgf of (e~ ^ 2 ^ T ) d r ^ ^ © rfe(<). 

Secondly, we consider GNBC IIP as innovation processes. In this case, we have following 

theorem, from Theorem 5.1.2. 

Theorem 5.2.3 Let (e(t); t > 0} be a GNBC IIP with pgf of Ae = e(t + h) - e(t) 

GAe(s) = exp \h ' I l o g ( i^Ts 1  v { d q )  

J(o,i) 
Suppose K(a) is a non-negative integer self-generalized rv with pgfGK{s;a), which is differentiate 

with bounded first order derivative. Then, it follows that 
•v 

r*2—*i 
exp / (/' 

7(o,i) \Jo 

log P 
l-qGK (s;e-^) 

dt V{dq) for constant LI; 

G(s) = { 

exp < / if 
7(o,i) Wti 

log dt V(dg)>, /or/z(t), P 
[ l - g G * (s;e-ft2^)dr^ 

and G(s) is a pgf. Hence, the generalized stochastic integrals 

f2 t l ( e " ^ ) K® de(t) and [** (e~ "WT) ©de(t) 
To 7ti v ' K " 

ezist and are non-negative integer rv's. 
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Proof: Omitted. 

Consequently, we have derived the following corollary by direct calculation. 

Corollary 5.2.4 Here we consider the specific self-generalized rv K given in I I to 15. The inno

vation process is the GNBC IIP. 

I I : 

12: 

13: 

14: 

G(s) = I 

[ e x p { ( * 2 - t i ) / ( 0 ! l ) i o g ( r ^ ) m ) 

+ ^ ^ - /(0>1) &=£v(dq)} for constant M; 

exp{(i2-i1)/(01)log( I^5) V(dq) 
+ ( j ? [tt M r ) d r ] eft) J ( 0 ) 1 ) *£=£v{dq)} for 

( e x p l ^ - t O / ^ l o g ^ ) ^ ) 

G(s) = { + 
H(t2-h)2 

2 /(0,1) 

+{it: [it2 dt) /(o,D 
q (l-s)(l-7s) 

1—qs 1—7 

/ o r constant LI; 

' V(dq)} forLi{t). 

G(s) = { 
q(l-s)log(l-s) y ( d g ) | / o r constant LI; 2 J( 0 ) i) 

^ t ^ - * 0 / ( o , i ) log ( r ^ s ) n<*rt 
+ {tt [tt »(r)alr] dt) » - l F ( ^ } f o r ^ 

[ e x p { ( t 2 - t 1 ) / ( 0 ] 1 ) l o g ( T ^ )m) 

G(s) = { 
M*2-*i) 2 qc~1(l-cs)[e+log(l-cs 

"r" 2 J(0,1) 1-qs % ( d g ) } / o r constant LI; 

+ (j? [J/2
 M ( r ) d r ] <tt) / { 0 > 1 ) ^ M i - c s ) ^ o g ( i - c s ) ] y ( d g ) | f Q r 
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15: 

f e x p j ^ - t O / ^ j l o g^ndg) 

+ 2 J(0,1 1) 1 - 9 S 

exp {(t 2 - ti) / ( 0 i l ) log ( ^ j ) + [ j? /x(r)dr] dt) 

9(l-7) / 3- e(l-s)[^+flTi-(l-S)^] 1 

/(0,1) 1—qs 
-V{dq) 

for constant LI; 

for Li(t). 

However, usually the measure V(-) on (0,1) is not clear. Hence, Corollary 5.2.4 is not 

helpful in obtaining the pgf or LT of the generalized stochastic integral. For each specific member 

in the GNBC family, we have to calculate the pgf or LT individually. Following are some examples 

resulting from the GNBC IIP innovation family. 

Example 5.6 Consider the NB IIP innovation, in which the increment Ae = e(t + h) — e(t) has 

pgf 

where p,q> 0,p + q = 1. This is a special case of the GNBC when V(-) has a mass of 0 at a single 

value q. 

When K is from II, we obtain 
rt2—t\ 

[ exp j# J log P 

G(s) = { 

log 

p + q{s - l ) e -^J 

P 
p + q(s - l)e-ft2 n(r)dT 

dt > , for constant LI; 

dt>, for fi(t). 

which leads to the models 

X{t2) = e-^~tl) *X(tl)+ [ 
Jo 

e **** de(t), 

and 

X(t2) = e~ tt M ( r ) d r * X(t i ) + t e~ tt ^)dT * de(t) 
Ju 

146 



for the stationary and non-stationary case respectively. 

When K is from 12, then 

( rt-2-ti 

exp <.6J log 

G(s) = { 

p(l - js) +P7{s - l)e - / i t 

dt} for constant \i; 

exp ^0 ft
 l o S dt} , for fj,(t). 

[p(l- 7 s ) + ( 7 - q){s - l ) e - " * J 

p(l - 7 5 ) + p 7(s - l)e~ ̂ 2 ^ r ) r f T 

_p(l - 7 s ) + ( 7 - o)(s - l ) e " -A'2 ^ r ) d T 

T^e resulting models are 

X(t2) = (e-^-^) ®X(t1)+ r t l (e^t)K®de{t), 
v ' K Jo 

and 

X{t2) = (e~ ti2 ^ d T ^ k® X{h) + j* (e-fc^dT^K®de{t). 

Example 5.7 Consider discrete stable IIP innovation, in which the increment e(t + h) — e(t) has 
pgf 

GA,(s) = exp{-A/i(l - s)0}, A > 0, 0 < 8 < 1. 

Case 1: X is /rom II. For </ie stationary situation, 

n-1 
G(s) = l im T T e x p { - A / i [ l - ( l - ( l - s ) ( l - / i / i ) ¥ } 

n—+00 
i=0 

n-1 

= l i m e j c p{ -AV/» [ ( l - s ) ( l - / i / i ) f } 
t=0 

n-1 

= JLim exp{ - A(l - s f Y h e ' ^ i h } 
n °° i=0 

= exp 

{- A ""'"7'" ' ' > 1 (1-^}, exp 

w/iic/i Zeads to i/ie model 

X{t2) = e - ^ t 2 ~ h ) * X ( t i ) + / e-"* * de(t), 
7o 

t 2 - t i 
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rt2—t\ 

JO 

where / e_/i* * de(t) has pgf G{s), and is distributed as discrete stable also. 

For the non-stationary situation, 

n-1 

G(s) = Jim JJ exp { - Xh[l - ( l - (1 - s) - M(*2 - jh)h])f) 
" _ > 0 ° i=0 j=i 

= exp { - A(l - sf J'2 e-0fc ^ d t } 

which leads to model 

X(t2) = e-fc »{r)dT * X(h) + f2 e~fc ^ d T * de(t). 
Jti 

where 
/ e~^2 ^T)dT * de(t) remains in discrete stable family. 

Ju Dase 2: K is from 12. Then, by straightforward calculation, 

f exp | - A ( 1 - 7)*(1 -sf £ H p 
exp(-/0/u£) 

7s) - 7(1 -a)exp(-/i t)p 
/or constant n; 

G(s) = < 

exp | -A(1 - 7)^(1 - ^ / ' 2 

exp (-Bg*n(T)dT 
Tdt 

(l-ys)-j(l-s)exp[-f;^(r)dr) 

for n(t). 

Hence, resulting models are 

X(t2) = e-^t2~tl) ® X(ti) + f2 11 e-i* © de(t), 
Jo 

and 

X(t2) = e-ti>[r)dT ®X{tx)+ P e-fc^)dT ®de{t). 

Jti 

corresponding to the stationary and the non-stationary case respectively. In Case 2, the 

generalized stochastic integrals are not in discrete stable family. 
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In the remainder of this section, we study two generalized convolution families: GC I and 

GC II. 

Theorem 5.2.5 Let {e{t);t > 0} be a GC I IIP with pgf of Ae = e(t + h) - e(t) of form 

GAe(s)=eW{h f ?^lv(dq)}. 
L 7(0,1) 1 - <l s  J  

Suppose K(a) is a non-negative integer self-generalized rv with pgf GK(S; ot), which is differentiate 

with bounded first order partial derivative with respect to a. Then, it follows that 

G(s) = { 

exp 

exp < 

r I r 2 _ t l q[ 
7(0,1) l i o 1 

q [GK (a;e-^) - 1 
qGK (s;e-^) 

dt V(dq) } , 

i / ( f- ' l c ' (^; f ; ' " ;" ' )- 1 L , | 1 , w 
[7(0,1) y t i l-qGK(s;e-ft 2^)drj 

for constant LI; 

for Li(t), 

and G(s) is a pgf. Hence, the generalized stochastic integrals 

ft2 h [e-^)K®de{t) and {e~ ̂  ^)dr^ @ d e ^ 
Jo J t\ ^ 

exist and are non-negative integer rv's. 

Proof: Omitted. 

As in the case of GNBC innovation processes case, we can obtain the further expression for 

a specific K. However, it may not be useful since the measure V(-) is not clear. Nevertheless, we 

use two specific K in the following. 

Corollary 5.2.6 Consider the specific self-generalized rv K from II and 12. The innovation is 

the GC I IIP. Then, it follows that 

I I : 

e x p j j / log( 
L ^ 7(o,i) v 

i - g - q{s - i)e-"fo-*.i) 
1 — qs 

)v(dq)}, for constant LI; 

G(s) = { 
e x p I / \ I ~ L 7(o,i) L7t! 1 

*** q(s - l)e~ ft2 

q-q(s- l)e~St2^T)d-
-dt V(dq)}, forLi(t). 
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12: 

G(a) = { 

9 ( 1 - 7 ) , / (1 - g)(l - 7*) + (Q ~ 7)(1 ~ g ) e - ^ 2 - t l } 

6 X P ^ /o,i) -M9 - 7) ^ / i ( Q - 7 ) " ° ^ ( l - 7 ) ( l - ? s ) 

6 X P < f /o,i) t / i ( 1 - « ) ( 1 

i 2 g ( l - 7 ) ( s - l ) e - ^ 2 ^ T 

7s) + ( q - 7 ) ( l - s ) e - / / 2 ^ T ) d 
-dt 

)]v(dq)}, 

for constant LI; 

V(dq)}, 

for n(t). 

Proof: Omitted. 

Example 5.8 Example 5.2 can be revisited as one member of the GC I family. 

GAt(s) = exp\h 

Theorem 5.2.7 Let {e(t);t > 0} be a GC II IIP with pgf of Ae = e(t + h) - e(t) of form 

-q{l-3){l-is) y 
'(o,i) J 

Suppose K(a) is a non-negative integer self-generalized rv with pgf GK(S; a), which is differentiate 

with bounded first order partial derivatives with respect to a. Then, it follows that 

-t 2-ti - Q [l _ QK (a;e-^)] [ I - ^ G K (s;e-*)] 

G(s) = { 

exp / / l-qGK (s;e-"*) 
dtj V(dq)j, 

for constant LI; 

exp / / 
J[j,i) \Jti 

- G K ( S ; e - / / 2 ^ ) ] [l -TGK ( * ; e - / / 2 ^ ) 

l-qGK (s;e-tt ^ d r ) 
dt ) V{dq) 

for Li{t), 

and G(s) is a pgf. Hence, the generalized stochastic integrals 

f2 h i^^K ® d e W a n d f2(e-tt^r)dr^ m d £ ^ 
Jo J ti ^ 

exist and are non-negative integer rv's. 
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Proof: Omitted. 

Like previous innovation cases, we can specify the self-generalized rv K to obtain the com

plete expressions of pgf or LT of generalized stochastic integral. However, most of expressions in

volve in integration over time t are not simply expressed. Hence, we only give two self-generalized 

rv K for GC II innovation in the following corollary. 

Corollary 5.2.8 Consider the two special self-generalized rv's discussed in II and 12, and the 

innovation is the GC II IIP. 

II: 

exp I £ (1 - e-^- t ! ) ) ( s _ !) f V{dq)+ 

1 - 7 , 1 -q-q(s- l)e-^-^ log 
' [ 7 , D \ Q 

V(dq) 

G(s) = { for constant //; 

exp 
q{S - 1) [(1 - 7 ) - 7 (a - l)e~ St 2 ^)dr^- ft

 2 ^r)<J7 

l-q-q(s- l)e~ /*2 ^ d r 

dtj V(dq)\, 

for fi(t). 

12: 
( OTJl f |Ya- ( (l-<?)(l-7s)+(<7-7)(l-s)e-^2-t i) \ . ( 

/ o r constant fx; 

G(s) = { 
e x p { ( l - 7 ) ( l - 7 « ) / [ 7 l l ) [(!-<?)]? ( — 

7 « ) + ( 9 - 7 ) ( l - s ) e J* 
1 

( l - 9 ) ( l - 7 s ) - 7 ( l - 9 ) ( l - s ) 
^ ^ ) r f t ] ^ ( d g ) ) , 

/ o r n(t). 

Proof: Omitted. 
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5.3 Positive-valued innovation processes and examples 

For positive innovation processes, we choose the compound Poisson (with a distribution with posi

tive support) IIP, Generalized Gamma Convolution IIP and GCMED IIP. The LT's of the increment 

in these three kind processes are of exponential form. The families of Generalized Gamma Con

volution and GCMED include many distributions having domain on (0,oo). Hence, these lead to 

many continuous-time GAR(l) processes with positive-valued margins. 

The results are summarized by Theorem 5.3.1, 5.3.2 and 5.3.3 in the following. 

Theorem 5.3.1 Let {e(t); t > 0} be a compound Poisson IIP with pgf of Ae = e(t + h) — e(t) 

where fa{s) is a LT, and differentiate with bounded first order derivative. Suppose K{a) is a pos

itive self-generalized rv with LT 4>K(s;a), which is differentiate with bounded first order derivative 

with respect to a. Then it follows that 

<f>Ae{s) = exp {Xh[(f>0(s) - 1]} , 

exp { A T 1 ^ ( - l o g ^ s j e - " * ) ) -l]dt}, for constant p,; 

)) -l]dt], for fi{t), 

and 4>(s) is a LT. Hence, the generalized stochastic integrals 

and 

exist and are positive rv's. 

Proof: It is straightforwardly derived by Theorem 5.1.2. 

Example 5.9 Consider the innovation being a compound Poisson with Gamma IIP, in which the 

increment e(t + h) — e(t) has LT 
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Choose K a positive self-generalized rv. By (2) of Theorem 5.3.1, we have 

fas) = ^ 

exp < A 
*2—ti r e 

e-\og<t>K(s;e-i*) 
) 7 - l dt}, for constant LI; 

exp{A£2 
log for (s;e~fc Mr)dry 

dt), for fi(t). 

Let K be from P I , then 

fas) = { 

exp < A 

exp < A 

t 2 - * l 

t 2 

9 
9 + se-v* 

l\9 + se~ St2 Kr)dr 

dt> , for constant LI; 

dt), for Li(t). - 1 dt}, 

When 7 = 1 and for constant LI, this becomes 

fas) = 9 + s 

Let K be from P2 , then 

rt2 — t l 

exp < A r ( (1 - 7)ae"'rf 

fas) = { 

exp | A £ 2 

9(1 - 7) + 07«(1 - e-"*) 

(1 _ 7 ) s e - / / 2 /x(r)dT 

- 1 

0(1 - 7 ) +^7S (l-e-fc Mr )<2T 
- 1 

for constant 

dt) , for n(t). 

When 7 = 1 and for constant LI, 

' l + 
fas) = 

1 -7 + e 0(1-7) 

A 1 - 7 
y. 1 —7—#7 

1+1 

Theorem 5.3.2 Let {e(t);t > 0} be a GGC IIP with LT of Ae = e(t + h) - e(t) 

Ms) =exp{/i f log (^—)U(du)\, 
L 7(0,00) u + s } 
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where U(du) is a non-negative measure on (0, oo) satisfying 

/ \logu\U(du) < oo, and / u~xU(du) < oo. 
7(0,1] J(l,oo) 

Suppose K(a) is a positive self-generalized rv with LT 4>K(S\ ct), which is differentiate with bounded 

first order partial derivative with respect to a. Then it follows that 

fas) = { 

exp 

exp 

/ [/ 
J(0,oo) UO 

"t2-tl 
log u 

u - log (f>K (s; e 
dt U(du) } , 

/ f log 
'(0,oo) \Jti \u-\og4>K (s;e-ti2^dT 

dt U{du) 

for constant pt; 

}, for n{t), 

and fas) is a LT. Hence, the generalized stochastic integrals 

ft2-ti rtz rt2-ti rt2 , 
I {e-"t)K®de{t) and / ( 

Jo Jh v 

exist and are positive rv's. 

e-St 2^T)dr\ @ d e ^ 
/ K 

Proof: Omitted. 

Similar to GNBC and other generalized convolutions innovation situations, we have to cal

culate the LT for specific member in GGC family by Theorem 5.1.2 or 5.1.3. 

Example 5.10 Consider the Gamma IIP innovation, in which the increment e(t + h) — e(t) has 

LT 

<])Ae(s) = ( ^ T ^ ) 7 / l = e x P { - 7^1og(l + Bs)}, 

where a, B > 0. Let K be from P I . By Theorem 5.1.2, we have 
rt2—ti 

e x p { - 7 ^ log (l + Bse dt > , for constant LI; 

fas) = I 

exp < —7 • log ( l + Bse' fc ^dT) dt} , for Li(t), 

which seems to be in the GGC family. 
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Example 5.11 Consider the inverse Gaussian IIP innovation, in which the increment e(t+h)-e(t) 

has LT 

<t>Ae(s) = exp { 7 h [l - (1 + 2 7 - 1 s ) 1 / 2 ] } , 

where 7 > 0. Let K be from P I . Then, we have 

r *2 - t i 

4>{s) = { 

exp<; / 7 
lo 

exp<; / 7 

1 - (1 + 2 7 for constant fj-; 

( l + 2 7 - 1

S e - ^ ^ ) d T ) 1 / 2 dt}, for fj,(t). 

Theorem 5.3.3 Let (e(i); i > 0} be a GCMED IIP with LT of Ae = e(t + h) - e(t) 

(f>At(s) = exp{/j / —^-U(du)\, 
' . L 7(0,00) u + s J 

w/iere U(du) is a non-negative measure on (0,00) satisfying / u~lU(du) < 00. Suppose K(a) 
7(0,oo) 

?'s a positive self-generalized rv with LT fo(s;a), which is differentiate with bounded first order 

partial derivative with respect to a. Then it follows that 
'2-ti log fo (s; e~^) 

(s) = { 

exp / 
7(0,00) 

it - logfo (s;e dt C/(du) /or constant JJL; 

exp < / /" 
J(0,oo) Jti U 

,t2 log for ( s ; e - /* t 2 ^ T ) d T ) 
-dt [/(du) ^ , /or/i(t), 

logfo: (s ;e-J i ' 2 ^ T ) d T ) J 

and (j)(s) is a LT. Hence, the generalized stochastic integrals 

exist and are positive rv's. 

Proof : Omitted. 
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For K from P I , we can calculate the LT under the stationary case: 

exp( / f-log(u + e-"*) * 2 tl}u{du)\ 
1 7(0,oo) LM o J > 

e x p { - / log ( 
LM7(0,oo) v u + s 

)[/(du)}. 

When *2 — *i °°> 

exp { - / log ( 
l-M7(o,oo) v 

u + se"^* 2 - ' 1) ) t / ( ( i u ) } - . e x P { I ^ ) 1 o g ( ^ ) ^ „ ) } , 
u + s 

which is the GGC class. For K from P2, we can calculate the LT under the stationary case: 

-V-l)**-'* ^dt]u(du)} cj)(s) = exp 

= exp 

= exp 

When t 2 - *i °°-> 

u 
r 

\J(0 

(0,oo) 

/(0,oo) 

u(l - 7 + 7s) + (1 - 7 - wy)se-^ 

1-7 / " * 2 - t l

J , / u ( l - 7 + 7a) 
^ x- / d l o § 7T^ ' — ^ + e 
. / i ( l - 7 - « 7 ) 7o" \ ( l - 7 - « 7 ) s 

17 (du) 

/(0,oo) 

1-7 , u ( l-7 + 7s) + ( l-7-w7 ) s e - M ( t 2 _ t l ) 

log 
/z(l - 7 - «7) ( l - 7 ) ( « + s) 

17 (du) 

exp I 
7(0 
/(0,oo) 

exp 

1-7 , u ( l-7 + 7s) + ( l-7-^7 ) s e ~ / i ( * 2 " i l ) 

log 

7(o,, 

- 7 - «7) 

1 - 7 log 

( l - 7 ) ( u + s) 

u(l - 7 + 7s) 

U{du) 

. / x ( l - 7 - « 7 ) 5 ( l - 7 ) ( ^ + s) 
t/(du) } , 

/(0,oo) 

which is the GC III class. 

Furthermore, we can construct the following example. 

Example 5.12 Consider the measure U(du) is 9 on point 8, and 0 elsewhere. If K is from P I , 

it follows that 

' exp log ('+'e~;(;a~'l)) } - (e-"te-*i) + [1 - e -" te-«i)] , /or constant w 

<£(s) = < 
t2 ( _ s p - / / 2 M r ) d r 

for n(t). 
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Thus, resulting models are 

X{t2) = e - ^ - f i ) . + ft2 t l

 e-nt . d c ( t ) ) 

Jo 

and 

X(t2) = e- fc ^T)dT . X(h) + t e~ fc ^T)dT . de(t), 
Jh 

corresponding to the stationary and the non-stationary case respectively. 

5.4 Real-valued innovation processes and examples 

Finally, we consider the real-valued innovation processes to include all possible cases for the theory 

of continuous-time GAR(l) processes. Since for real rv's, the only choice among extended-thinning 

operations is the constant multiplier, our task is simply to choose proper innovation processes. 

Also the cf of K in this case is of form e~tas; hence, its first partial derivative with respect to a is 

bounded. 

First, we choose the compound Poisson (with a variance mixture of the normal distribution) 

IIP as the innovation process. Then, we shall choose the EGGC IIP as the innovation process. 

In particularly, we will calculate for a special case, the stable non-Gaussian distribution family, 

which includes Gaussian (when 7 = 2) and Cauchy (when 7 = 1). Hence, the classical continuous-

time GAR(l) Gaussian process is included in our theory, but the process is defined in the sense 

of convergence in distribution, not in L2. Note that Cauchy distribution has no expectation. 

Therefore, it's impossible to construct a continuous-time GAR(l) Cauchy process in the sense of 

the Ito integral, but it works in the theory of continuous-time GAR(l) processes where convergence 

in distribution is used. Note that these processes with stable stationary distributions are already 

known in the literature, however, the convergence for stochastic integration there is in probability, 

not in distribution; thus, they can induce the processes with stable stationary distributions in this 

section. Interested readers can see Samorodnitsky and Taqqu [1994]. Here we just show that they 

can be unified by the theory of continuous-time generalized AR(1) processes. 
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Theorem 5.4.1 Let {e(t);t > 0} be a IIP of the compound Poisson with the variance mixture of 

the normal distribution, and the pgf of Ae = e(t + h) — e(t) 

<pAe(s) = exp {\h[fa(s2/2) - 1]} , 

where fa(s) is a LT of a positive rv, and differentiate with bounded first order derivative. Then it 

follows that 

( ft2-ti ,- ,52g-2ut. , . 

exp|A / [fay— J - l J d i J , for constant LI; 
J 0 

<P(s) = { 

exp 
s2e-2fp H{r)dr 

and ip(s) is a cf. Hence, the generalized stochastic integrals 

f2 ^ e-^ • de(t) and P e~ & ^ r ) d r • de(t) 
Jo Jti 

exist and are positive rv's. 

Proof: This is a direct conclusion from Theorem 5.1.3 since the extended-thinning operation is 

very simple, just the constant multiplier operation. We can show the rough calculation for the 

stationary case, i.e., constant \x case in the following. 

For K from P I , the cf is 

(PK{S; a) = eias, and - ilog <PK{S; a) = —i(ias) = as. 

Thus 

n-1 n-1 

i=0 
VzM - n^f-ilog^fed-Mr)) = IJ <PA, ((1 - lihfs) 

( n-1 
= exp { A/i ] P 

i=0 

158 



By Theorem 5.1.2, as n oo, this goes to 

tp{s) =exp{\f 
*2-*i r 's2e~2^ 

0 o ( ^ — ) - l ] ^ } , 

and ip(0) = exp {\J 2 1 [̂ o(O) - = exp{0} = 1. Therefore, y>(s) is a LT. 

Note that the compound Poisson distribution has a positive mass at zero. These kind of 

distributions are useful in modelling zero-inflated data. 

Theorem 5.4.2 Let {e(t);t > 0} be a EGGC IIP with cf of Ae = e(t + h) - e(t) 

<PAe{s) =exp{ -h-s + 
(—00,00) 

log u ISU 

u — is I 1 + u1 
U(du) } , 

where U(du) is a non-negative measure on (0, 00) satisfying 

f ^-^rU(du) < 00 and / | \ogu2\U{du) < 00. 

M m 1 + u •/iU|<i 
Then 

exp { - Is2 [1 - e - 2 M t 2 - t i ) ] + 

IUS 1 _ e-2M*2-ti)] u(du)} 

1 ir'v 
J(-00,00) lJo \ 

u — ise' 
dt 

exp { - Is2 t e~ tt 2 ^ d t +[ [ f log (-
L Jti J(-00,00) lJh \i 

J* e-Stt2i*WTdt]u(dv.)}, 

ise' St 2 Mr)dr 

for constant LI; 

dt 

IUS 
1+u2 

for Li{t), 

and (p(s) is a cf. Hence, the generalized stochastic integrals 

t h e^ • de(t) and t e~ tt ^)dr . de(t) 
Jo Jti 

exist and are real rv's. 

Proof: This is the straightforward result from Theorem 5.1.3. 

However, we usually are not clear on the form of measure U(-). Thus, for a specific distribu

tion in the EGGC to be the innovation process, we have to calculate the ip(s) based on the specific 

form of the cf of that distribution. 
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Theorem 5.4.3 Let {e{t);t > 0} be a stable non-Gaussian IIP with cf of Ae = e(t + h) - e(t) 

<PAe(s) = exp{-Aft|s|7}, 

where A > 0 and 1 < 7 < 2. Then, it follows that 

[ exp|-

<p(s) = { 

exp 

This leads to the model 

7/x '}• 

-or -lit2 ^(-r)dr 

/or constant LI; 

for n{t). 

rt2—t\ 
X(t2) = e-^t2~tx) • + / e^* • de(i), 

and 

X(t2) = e-^i^dT . JTfo) + r e - ^ ^ d T • de(t), 

corresponding to stationary and non-stationary case respectively. The stochastic integrals 

P ^ e^ • de{t) and P e~ ^ ^ d r • de{t) 
Jo J ti 

remain in the same distribution family as the innovation. 

Proof: Directly applying (3) of Theorem 5.1.3 can lead to this theorem. However, we can check 

some calculations by using Theorem 5.1.2. For the stationary case, we have 

n-1 n—1 

(p(s) = lim T]ipAe((l-pihYs] = lim TT exp ( - Xh\(l-/ifc^sl7} 
n—>oo A - L \ / n—>oo - L - L L J 

i=0 i=0 
n-l s . t 2 _ t l 

= Jiirn expj - A ^ f c ( l - ^ ) 7 i | s | 7 | = exp{-A | s | 7 y e'^dtj 

— exp 
A[l - e"7^*2-*1)] 

JLl 

Similarly, for the non-stationary case, 

n-1 n-1 i n-1 * .. 

<p(s) = t^J\(PAe(s]][l-tJi(t2-jh)h]) = Jiirn J J e x p [ - A / i | s f J [ l - / i ( t 2 - i / i ) ^ | 7 } 
n 0 0 i=0 j=l i=0 i=i 

160 



n—1 i 
= Mm e x p { - A | S p ^ / i ( j ] [ l - u ( t 2 - j 7 l ) / l ] ) } 

i=o j = i 

= exp { - A( j ' ' [e-jti2^dT]dt) 

Since ip(s) is still of the form exp{-/3|s|7}, we conclude that 

t2 

[ t 2 e""* • de(t) and /" * e~ ̂  " ( r ) d r • de(t) 

with cf </>(s) in the same family as the innovation. Applying the generalized Ornstein-Uhlenbeck 

SDE theory, we obtain the models in this theorem corresponding to stationary and non-stationary 

case respectively. 

Example 5.13 Consider Cauchy IIP. Then the increment e(t + h) - e(t) has cf: 

(fAe(s) = exp{-/i|s|}. 

By the above theorem, we have 

' e x p l - Z J - ^ l - e - ^ - ^ H s l } , 

<P(*) = { 

for constant LI; 

/ x p H r • ft* l*(T)*r dt)\s\\, for n{t). 

Example 5.14 Consider Brownian motion. Then the increment e(t + h) — e(t) has cf: 

<P&e(s) = exp{-/is 2/2}. 

By the above theorem, we have 

\ exp {-(ALL)'1 [l - e-Mt2-h)j s 2 | ^ jor c o n s t a n t ^ 

<p(s) = I 

exp 
•ft2 »(r)dr d?j S 2 } , for n(t). 

This means for the stationary case, 

Jo 
e'^ • de{t) ~ J V 0, 

1 _ e - 2 M ( t 2 - t i ) ' 
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and for the non-stationary case, 

j*2

 e - ft2 Mr)*- . de{t) „ N (o, [e"St2 »W-r]dtj . 

5.5 Tweedie innovation processes 

This is another viewpoint to choose the innovation processes. The Tweedie family includes many 

of the distributions discussed in the previous sections in this chapter such as compound Poisson, 

Gamma, inverse Gaussian, stable distribution, and so on. Although this overlaps with the previous 

discussion, we would like to revisit or summarize this case from the perspective of dispersion. 

The Tweedie family consists of three types of distributions: non-negative integer support, 

positive support and real support. Al l the distributions in this family have the mgf of special 

exponential form: 

Mx(s;6,X,8)=E[esX] = { 

' e x p J A ^ ^ ) ' [(1 + ^ - 1 

exp 

d ^ l , 2 ; 

d = 2; 

d= 1, 

where d = jjrf or 8 = j^j. In specific, the non-negative integer case includes only one distribution,' 

that is Poisson distribution when 0 = 1. The positive case includes the compound Poisson with 

Gamma distribution (1 < d < 2), Gamma (d = 2), positive stable (2 < d < 3 or d > 3) and inverse 

Gaussian (d = 3). The real case includes normal (d = 0) and extreme stable (d < 0 or d = oo). 

Refer to Section 2.3.2. 

The innovation and the self-generalized rv should be of the same type. That is, if the 

increment of innovation is to be Poisson, then the self-generalized rv K should be non-negative 

integer-valued, which leads to the choice like II, etc. If the increment of innovation is to be a 

positive rv, we can choose a positive self-generalized rv K like PI. For the real case like normal 

and extreme stable, K can only be PI. We give the following theorem without proof. 

162 



Theorem 5.5.1 Let {e{t);t > 0} be a Tweedie IIP with mgf of Ae = e(t + h) - e(t) 

' exp j f c A ^ [(1 + ^ - l] } , d+1,2; 

M A e ( 5 ; 0 , A , / 3 ) = E [ e ^ ] = i (l + fx)~hX, d = 2; 

^ exp {hXe9 [eslx - l] } , d = 1, 

1. Suppose K(a) is a non-negative integer self-generalized rv with pgf GK{S; a). In this situation, 

the only non-negative integer distribution is Poisson and d = 1. Then, it follows that 

r*2—*1 r 

G(s) = 
exp 

exp dt} 

for constant p,, 

for Li(t), 

and G(s) is a pgf. Hence, the generalized stochastic integrals 

^ (E~^) K ® D E ^ A N D (E~ /T<2 KT)DT) K ® D E ^ 

exist and are non-negative integer rv's. 

2. Suppose K(a) is a positive self-generalized rv with LT (f>K{s;a>). In this situation, d corre

sponds to (1,2), {2}, (2,3), {3} and (3, oo). Then it follows that for constant p, 

M(s) = I 

exp < A 
0 rt2-ti 

ex j 
dt d#2; 

d = 2; 

and /or //(£), 

M(s) = ^ 

exp A0-r ( * ) ' f 
' l o g ^ ( - s ; e - ^ V ( T ) d T ) 
1 H -
^ ex 

- I dt d + 2; 

f ft2 ( \og<pK(-s;e-fc^d 

e x p j - A ^ ^1 + ^ - dt d = 2; 
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and M(s) is a mgf. Hence, the generalized stochastic integrals 

f2 h (e-"*) K® de(t) and F (e~ ^ ^dT) ®de(t) 
Jo Jti ^ ' K 

exist and are positive rv's. 

3. Suppose K(a) is from PI with LT <px(s;a) = e~as. In this situation, d corresponds to 

(—oo,0), {0} and {oo}. Then it follows that 

M(s) = { 

i + se - 1 

1 + 

ex 

s e ~ ft2 Mi")dr ' 

9X 

dt } , for constant LI, 

l\dt), forn(t), 

and M(s) is a mgf. Hence, the generalized stochastic integrals 

j ' 2 ^ (e""*) K ® de(t) and . (e~ & ̂ r)dT) r ® de(t) 

exist and are real rv's. 
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Part III 

Probabilistic and statistical properties 
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Chapter 6 

Stationary distributions, steady states 

The continuous-time GAR(l) processes constructed in Chapter 4 are first order Markov processes. 

Hence, it's possible that the stationary distribution, namely the limiting distribution of the process, 

could exist. These are discussed in Section 6.1. Also if the stationary distribution exists, then the 

process will evolve under steady state when starting from the stationary distribution. This means 

that X(t) is distributed as the stationary distribution for all t. We study three cases of margins in 

Section 6.2. Such a steady state process offers a reasonable good model for a stationary time series. 

This motivates us to study the possible margins under steady states. For margins with specific 

distributions of interest, we propose a general approach to fit such a need in Section 6.3. In other 

words, we are trying to investigate the continuous-time GAR(l) processes from the perspective of 

In Section 6.4, we discuss the generalized AR(1) time series obtained from the continuous-

time GAR(l) processes via equally-spaced time observations. They cover many of the first order 

autoregressive non-Gaussian time series existing in the literature. 

time series 

state space. 
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6.1 Stationary distributions 

Assume in this section that {K(a)} has bounded expectation for a G (0,1]. The stationary dis

tribution, if it exists, is the long run result of a stationary or homogeneous process. Hence, it is 

independent of "time". This means that as the process evolves, the distribution of the margin X(t) 

will finally reach a fixed or invariant equilibrium. From the view of state space, i.e., the support of 

X(t), we are interested in that if there is a stationary distribution for the continuous-time GAR(l) 

process. 

Now we look into the structure of the continuous-time GAR(l) process. By part (1) of 

Theorem 4.4.2, 

X(t2)= (e~'ite-V)K®X(t1) + ^ (e-^)K®de(t), h < t2, 

where / ( e - ^ ) ©de(t) = E(0,t2 - t i ) , the integrated innovation or cumulative innovation, 
Jo ^ / K 

has the following pgf G E { 0 ^ h ) ( s ) , or LT <pE{0M-ti)(s)i o r c f < / > E ( o , t 2 - i i ) ( s ) : 

n-1 
GE{0M-ti)(s) = l i m FI °Ae {GK (S; (1 - , i f t h e support of e(t) is jV, 

n->oo i;_Q 
n-1 

<l>E(o,t2-ti)(s) = hm n <Me (-log for (s ; ( l - M ) 1 ) ) , if the support of e(t) is &+,• 
n->oo i = Q 

n-1 
<PE(ot2-ti)(s) = L I M IT VAe (i log <p K {s; {I-phy)), if the support of e(t) is SR. i=0 

Here h = (t2 — t i)/n, and {e(i); £ > 0} is a stationary independent increment process of innovation. 

Ae is the increment with time lag h in the innovation process. 

First we study the dependence term (e -^* 2 -* 1))^ ®X(t\) to see its limiting behavior. Fix 

time t i , and let t2 -t oo. Then the time difference t2 - ti —>• oo, which leads e~^t2~tl^ -¥ 0. For 

the margin being a real rv, the extended-thinning becomes the constant multiplier. Hence, 

^e-^* 2 -* 1^ ®A"(ti) = e " ' l ( t 2 - * l ) - X ( t i ) ^ 0 , * 2 — * i —> oo. 

This means that the dependence term will finally diminish to zero. It leaves us a hint that this 

could be true for margins being positive or non-negative integer-valued. Revisiting Property 3.14 
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and 3.15, we obtain 

(e-ri**-^ ®X(ti) —>{0)K®X{t1) = 0, a s * 2 - * i -> oo. 

Therefore, as time goes to infinity, the margin of a continuous-time GAR(l) process will be 

Consequently, this integral will have the pgf 

Goo(s) = lim GE(o,t2-ti)(s), 

or LT 

0oo(s) = lim cpE(0t2_tl)(s), 

or cf 

Voof» = lim VB(o,ta-ti)(a). 
C2—tl—>00 

where Goo(s) is continuous at s = 1 with Goo(l) = 1, or <f><x>{s) is continuous at s = 0 with 

ôo(O) = 1, or <£>oo(s) is continuous at s = 0 with <Poo(0) = 1. 

It is possible to calculate the explicit form of pgf, or LT, or cf of the stationary distribution. 

Note that the Goo(s), or </>oo(s) or <poo(s) is of product form of the pgf, or LT, or cf of the increment 

of the innovation process. Hence, we can choose special innovation process, in which the increment, 

e(t + h) — e(t), has the exponential form of pgf, or LT, or cf. Of course, the choice of extended-

thinning should be appropriate too. This leads to the following theorem. 

Theorem 6.1.1 Assume the innovation process {e(t); t > 0} has increment e(t+h) — e(t) such that 

its pgf, or LT, or cf is of form ehC^s\ depending on the increment being non-negative integer-valued, 

or positive-valued, or real-valued. C(s) is assumed to be differentiate with bounded first order 

derivative. Also assume GK{S; a) and logGK{S; a), or (f>i((s;a) and log <J>K{S; ct), or log <£K(S; a) 

have bounded first order derivative with respect to a in [0,1] (boundaries could be excluded). It 

follows that for the stationary continuous-time GAR(l) process 

X(t2) = (e~^-^)k®X{h) + j'' h {e^t)K®de(t), h < t2, 

168 



if the following integrals exist: 

poo poo poo 

/ C(GK{s;e-i*))dt, / C ( - log for^e-"*) )* , / C {-ilog<pK {s; e""')) dt, 
Jo Jo Jo 

then the stationary distribution exists, and has the following pgf, or LT, or cf according to non-

negative integer, or positive, or real margins: 

Goo(s) = exp |y C ( G K (s; e~M*)) dt} , if the support of e(t) is jV, 

' (f>oo{s) = exp ij C (— log 4>K {s; e _ / 2 t)) dt} , if the support of e(t) is SR+, 

Voo(s) = e x P G (—i log (fx (s; e _ , i t )) dt} , if the support of e(t) is SR. 

poo 

The corresponding rv is the generalized stochastic integral / (e_A(t)j<- ®de(t). 
Jo 

Proof: It is straightforward to derive them by Theorem 5.1.2. 

By Theorem 5.1.3, we know if K is from II, 12, 14, 15, P I , P2, P4 and P5, then Theorem 

6.1.1 holds. This theorem is not valid for 13, P3, because GK(S;0) ^ 1 for 13, and 13, P3 do not 

have finite expectations. 

In the next section, we will discuss the situations of steady state where the relevant stationary 

distributions have support on j\f, or SR+ and SR. 

6.2 Marginal distributions under steady state 

The stationary distribution is a particular feature of a homogeneous Markov process. If the station

ary distribution exists, then this process has steady state when starting just from this stationary 

distribution. Typically, the margins of a Markov process, do not have the same distributions when 

the process evolves. However, under steady state, all marginal distributions are the same as the 

stationary distribution. 
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In this section, we shall investigate the particular types of marginal distributions under 

steady state; they may have non-negative integer, or positive, or real support. These results mainly 

correspond to those continuous-time GAR(l) processes constructed in Chapter 5. 

In statistical practice, often we encounter time series data (observed on equally or unequally 

spaced time points) which are near stationary. Hence, an assumption of stationarity is reasonable. 

Of course, obvious non-stationary situations like trend, seasonality, and so on can happen too. This 

leads to a general principle of modelling for observations over time: define a stationary process for 

the time series first, then make parameters depend on covariates to define a process with time-

varying marginal distribution. 

For this purpose, constructing a steady state process which has the same distribution on 

every margin is the first consideration of modelling. Thus, it gains more attention from statisticians. 

6.2.1 Non-negative integer margins 

First, we turn to the continuous-time GAR(l) processes constructed in Chapter 5, which have non-

negative integer-valued margins. We shall study the limiting behavior of these processes as t2 — t\ 

goes to infinity. We only consider the stationary SDE case, namely, constant LI and stationary 

IIP innovation. These limiting behaviors lead to the stationary distributions, and the resulting 

processes have the same distribution as the marginal distributions under steady state. 

To guarantee the margins being non-negative integer-valued, the self-generalized rv K in

volved in extended-thinning operation should be non-negative integer-valued, and the increment of 

innovation process {e(t);t > 0} should be non-negative integer-valued too. Hence, K could be from 

II to 15, while the innovation process can be the compound Poisson (with a non-negative integer 

distribution) IIP, GNBC IIP, GC I IIP and GC II IIP. The results for the general non-negative 

integer-valued self-generalized rv K are given in the following theorem. 

Theorem 6.2.1 Suppose K(a) is a non-negative integer self-generalized rv with pgf GK(S;O:), 

which is differentiate with bounded first order derivative with respect to a. Consider the stationary 

generalized Ornstein- Uhlenbeck SDE where LI is a constant. 
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(1) Let {e(i);t > 0} be a non-negative integer-valued compound Poisson IIP with pgf of Ae = 

e(t + h)-e(t) 

GAe(s)=exV{Xh[g(s)-l]}, 
oo 

where g(s)(= J2, Pis%) * s a P9f> and differentiate with bounded first order derivative. Then, 

the limiting pgf is 

Goo(S) = exp{A r [g(GK(s;e-^)) -l]dt). 
J 0 

(2) Let {e(i); t > 0 } k a GNBC IIP with pgf of Ae = e(t + h) - e(t) 

G a < W = e x P { A / ( w ) l o g ( r ^ ) ^ ) } . 

1 If / log [l-qGK (s;e-^) 

Goo(s) = exp^ / ( / 
I 7(o,i) \7o 

dt < oo for any q G (0,1), then the limiting pgf is 

log P dt V(dq) } • 
l-qGK (s;e-^) 

(3) Let {e{t);t > 0} be a GC I IIP with pgf of Ae = e(t + h) - e(t) of form 

q(s - 1) 
sAe{S) = exp W i I 

1 7(0,1) 

r°° q [GK (s;e-^) -1 ] 

GAe(s)=exv{h q-^-V(dq)}. 
L 7(o,i) L - qs J 

C a \ GK \S' 
If / q 1 v ' —'-—-^-dt < oo for any q £ (0,1), then the limiting pgf is 

J0 1 - qGK [s; e-A**) 

GM = eXPV(o,i) \ h l-qGK{s;e-^) 
dt V(dq) 

(4) Let {e{t);t > 0} be a GC II IIP with pgf of Ae = e(t + h) - e(t) of form 

-q(i-8)(l-is)v{dq)y GAe(s) = exp \ h 
(0,1) 1 — qs 

To 

Goo(s) =exp\ / 
I 7[7,1) \70 

1 - 9 G A - ( s ; e - " 4 ) 

°°-q[l- GK (s;e-^)] [ l - 7GK ( 8 ; e - * ) ] 

l-qGK ( s ; e - " * ) 
dt F(dg) > . 
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rOO 

All these Goo(s) are the pgf's of the generalized stochastic integral / (e-^*) K © de(t). 
Jo 

Proof: Straightforward to derive from Theorem 6.1.1. 

We now verify the existence of stationary distributions for specific self-generalized rv's K and 

innovation processes. These stationary distributions are the Poisson, negative binomial, geometric, 

power series, discrete stable distributions, and the GNBC class. 

Example 6.1 (Poisson) Consider Example 5.1, where 

p 

Thus, as t2 — t i -» oo, the limiting pgf is 

A 
-I H 

which implies that the stationary distribution is Poisson(Xfp). 

G E t o M - t ^ s ) = exp { £ [ 1 - c - * f a - ' i ) ] ( s - 1)}. 

Goo{s) = exp j - ( s - 1)}, 

Example 6.2 (Negative binomial and geometric) First consider Example 5.2. Then 

G E { o M - h ) ( s ) = (e-"<*-*> + [1 - e-^)]^-fr 

This leads to the limit 

^ ) = ( ^ ) A / " . 

indicating that the stationary distribution is NB(X/p, 7). When A = p, it's the geometric distribu

tion with parameter 7. 
Secondly consider Example 5.4, where 

I _ 7 ( l _ e - M ( t 2 - * i ) ) \ M l - 7 ) / ( « 7 ) 
,^ _ j l - 7 e - M ( t 2 - t i ) * 

bE(o,t2-ti)W - 7 ( 1 - e - M ( t a - ^ r 

As t2 — ti —> 00, we have 

which shows that the stationary distribution is NB^1^1^, 7^. When A(l — 7) = /17, it's the 

geometric distribution with parameter 7. 

I _ 7 \ A ( l - 7 ) / ( / n ) 
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Example 6.3 (Power series) Consider Example 5.3. We choose A = LI, then 

l - ( l - 8 ) i / g 1 + (S - l ) e - ^ 2 - t i ) 

Ti goes to Goo(5) = s _ 1 [l — (1 — s)l/e] as ti — t\ —> oo, namely the stationary distribution is the 

power series distribution. 

Example 6.4 (Discrete stable) Consider case 1 in Example 5.7. Then 

GE{o,t2-h)(s) = exp { - - i — 1(1 - sf}, 

When t2 — t\ —> oo, we obtain Goo(s) '= exp | — ^ (1 — s)^}, thus, the discrete stable distribution. 

Example 6.5 ( G N B C ) First, we consider Case I I in Corollary 5.2.6, where 

when t2 — t\ —> oo, the limit is 

GooOO = exp { - / logfl^Wg)}, 

which implies that the stationary distribution is a GNBC. 

Secondly, we consider Case 12 in Corollary 5.2.8. Then GE(o,t2-ti)(s) *s 

(If r { (1 - q)(l - ys) + (q - - s)e-^-^ \ , l - q i i r f J , \ 

which goes to exp \jf log ——V(dq) \ as t2 — t\ ->• oo. Since [7,1) C (0,1), it is the pgf of 

a GNBC where V(dq) has zero measure on (0,7). 

Since the GNBC class covers many distributions like the logarithmic series distribution, the 

two kind processes offer many specific continuous-time GAR(l) processes with the same GNBC 

stationary distributions. 
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6.2.2 Positive-valued margins 

Secondly, as t2 — i i goes to infinity, we will study the limiting behavior of those continuous-time 

GAR(l) processes having positive-valued margins. Like non-negative integer margin situation, we 

only consider the stationary SDE case, and the limiting behaviors lead to the stationary distribu

tions, as well as the processes being steady state. 

For the sake of positive-valued margins, we require the self-generalized rv K involved 

in extended-thinning operation to be positive-valued, and the increment of innovation process 

{e(t);t > 0} to be positive-valued too. Therefore, K could be from PI to P5, while the innovation 

process can be compound Poisson (with a positive distribution) IIP, GGC IIP, and GCMED IIP. 

Similarly, we have the following results for the general positive self-generalized rv K. 

Theorem 6.2.2 Suppose K(a) is a positive self-generalized rv with LT <f>K(s;a), which is differ

entiate with bounded first order derivative with respect to a. Consider the stationary generalized 

Ornstein-Uhlenbeck SDE where p is a constant. 

(1) Let {e(t);t > 0} be a positive-valued compound Poisson IIP with LT of Ae = e(t + h) — e(t) 

<t>Ae{s) = exp {\h[(f>o{s) - 1]} , 

where (f>o(s) is a LT, and differentiable with bounded first order derivative. Then, the limiting 

LT is 

(2) Let {e(t);t > 0} be a GGC IIP with LT of Ae = e(t + h) - e(t) 

(0,oo) 

where U(du) is a non-negative measure on (0, oo) satisfying 

and 

174 



If dt 
I l°g{U-\ogct>K(s;e-^) 

</>oo(s) = exp I / / 
I J(0,oo) UO 

< oo for any u € (0, oo), then the limiting LT is 

log u dt U(du) } . 
— log 4>K (s; e 

(3) Let {e{t);t > 0} be a GCMED IIP with LT of Ae = e(t + h) - e(t) 

<t>Ae(s) = exp\h / —^—U{du)\, 
1 7(0 ,00) u + s J 

where U(du) is a non-negative measure on (0, oo) satisfying / u~1U(du) < 
i(0,oo) 

log^(s;e-"*) 

oo. 

/ 
Jo 

u - log <f>K (s; e ^ ) 

0oo(s) = exp 

dt < oo /or any u € (0, oo), £/ien the limiting LT is 

logfo- (sje""*) {/ / 
(/(O.oo) [JO 

-dt 17 (du) 
u — log 4>K {s;e ^)' 

/•oo 
these 0oo(s) are i/ie LT's of the generalized stochastic integral / {EFLT) K ®de(t). 

Jo 
Proof: It is straightforward to derive them from Theorem 6.1.1. 

For specific self-generalized rv K and innovation processes, we can check if the stationary 

distributions exist. Following are some examples which appeared in Chapter 5. These stationary 

distributions include the exponential, Gamma, inverse Gaussian, etc. Thus, we can obtain the 

steady state processes with marginal distributions being the exponential, Gamma, GGC and GC 

III. 

Example 6.6 (Gamma and exponential) Consider Example 5.12. Then 

MOM-HM = [e-^-^ + [1 - e - M t a - t i ) ] _ £ _ y / " . 

Thus, as ti — t\ —>• oo, the limiting LT is 

( 6 \ e / ^ 

<^(o,t2- t l)(s;oo) = yj^rsJ , 
which implies that the stationary distribution is Gamma(6/p, 3). By setting 9 = p, we obtain the 

Exponential(3) stationary distribution. 
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Example 6.7 ( G G C ) Consider Theorem 5.3.3. We choose K being from P I . Then 

M o ) i 2 - t l ) ( 5 ) =ex P | -y ( a o o ) log( M + g ) l W 

When t2 — ti oo, we obtain 

^oo(s) = exp J - / log (-^—)u(du) \ , 
(^7(0,oo) ^w + s^ J 

w/iic/i s/tows i/iaf. t/ie stationary distribution is a GGC. Note that the GGC class covers a lot of 

distributions such as the positive stable distribution, inverse Gaussian distribution, etc. 

Example 6.8 ( G C III) Still consider Theorem 5.3.3, but choose K being from P2 . Then 

</>E(o,t 2-ti)( s) =exp^ / 
I J(0,oo) 

1 - 7 
LI(1 - 7 - ui) 

log 
t(l - 7 + 73) + (1 ~ 7 ~ u^se-rt**-^ 

( l - 7 ) ( u + s) 
U{du) } . 

When ti — h —>• 00, the limiting LT is 

0oo(s) =exp 7 
J(0,00) 

u(l - 7 + 7s) 

- 7 - "7) ~ & ( l - 7 ) ( « + ») 
1 - 7 log U(du) 

This leads to the stationary distribution being GC III. 

6.2.3 Real-valued margins 

Lastly, we study those continuous-time GAR(l) processes with real margins. In this case, the job 

seems easier because the only known extended-thinning operation is the constant multiplier, or in 

our terminology, P I . We still consider the stationary situation of the processes, i.e., constant LI 

and stationary innovation processes. The innovation processes we choose here are the compound 

Poisson with the variance mixture of the normal distribution, EGGC, stable non-Gaussian IIP. It 

gives us the following result. 

Theorem 6.2.3 Consider the stationary generalized Ornstein-Uhlenbeck SDE where LI is a con

stant. 
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(1) Let {e(t);t > 0} be the IIP of a compound Poisson with the variance mixture of the normal 

distribution, and the cf of Ae = e(t + h) — e(t) is 

<PAe(s) =exp{A/i[0o(s2/2) - 1]}, 

where (f>o(s) is a LT of a positive rv, and differentiate with bounded first order derivative. 

Then, the limiting cf is 

( f00 T / s2e~2tit\ I i 

^oo(s) =
 exp{Ayo [foy—2—)~1\dt\-

(2) Let {e(t);t > 0} be a EGGC IIP with cf of Ae = e(t + h) - e(t) is 

(pAe(s) = exp I -h-s2 + 
' (—00,00) 

log 
ISU 

u — is J 1 + u2 

where U(du) is a non-negative measure on (0,00) satisfying 

f }—U(du) <oo and / \ logu2\U(du) < 
Jx\{o} 1 + u -V|<1 
u 

U{du) 

00. 

If dt 
POO 

J0

 l 0 f e \u - ise-i* 

* . ( . ) = e,P { - p + [ f log ( ^ p s ) * " 1 

< 00 for any u G (-00,00), then the limiting cf is 

U(du)\ . IUS 

+ u1 

(3) Let {e(t);t > 0} be a stable non-Gaussian IIP with cf of Ae = e{t + h) - e(i) is 

(pAe(s) = exp{-A/i|s| 7}, 

where A > 0 and 1 < 7 < 2. i/ien f/ie limiting cf is 

_A_ 
7 / i ' 

<^oo(s) = exp { - — | s | 7 }. 
I 7/i J 

roo 

All these <foc(s) are the cf's of the generalized stochastic integral / e-^ • de(t). 
Jo 

Proof: Case (1) and (2) are derived from Theorem 6.1.1. Case (3) is simply setting t2 - h ->• 00 
in Theorem 5.4.3 so that the component e - 7 ^' 2 - * 1 ) vanishes. 

Case (3) in Theorem 6.2.3 shows that stationary distribution is still a stable non-Gaussian 

distribution. Here we list two boundary cases as examples: 7 = 1 (Cauchy) and 7 = 2 (Gaussian). 
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Example 6.9 (Cauchy) Consider Example 5.13, where the innovation process is a Cauchy IIP. 

When *2 - h -> 0 0 > the limiting cf is 

<Poo{s) = exp j - ^ j . 

This leads to the stationary distribution being Cauchy again. 

Example 6.10 (Gaussian) Consider Example 5.14, where the innovation process is a Brownian 

motion. When t2 — h —>• oo, the limiting cf is 

This leads to the stationary distribution being the Gaussian distribution. 

6.3 Customizing margins 

Modelling is one of the biggest concerns of statisticians. In the context of time series, we encounter 

observations record over time. These observations may be count data (non-negative integer-valued), 

positive data, or real-valued data. Each type of data may be modelled by several potential dis

tributions. Hence, one typical approach is to propose appropriate marginal distributions for each 

time point. These marginal distributions could be Poisson, negative binomial, generalized Poisson, 

Gamma, exponential, inverse Gaussian, and so on. With these in mind, for the obtained data, 

we may fix a couple of distributions to be the possible choices of the marginal distributions. In 

other words, we wish to model the marginal distributions with certain known distributions which 

are widely used in statistical practice for a univariate response. This leads to the question of how 

to customize the margins, which is part of the model considerations. The method in Chapter 5 

is a passive way to construct models, because we don't know in advance the possible stationary 

distributions or the marginal distributions under steady state. 

Recall the idea in Chapter 5. We first fix the extended-thinning operation and the inno

vation process, namely K and {e(t);t > 0}, in the generalized Ornstein-Uhlenbeck SDE. Then we 
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obtain the continuous-time GAR(l) process. Certain appropriate innovation processes will lead to 

stationary continuous-time GAR(l) processes as we discussed in the last section. Under steady 

state, the marginal distributions are the same as the stationary distribution. 

Now we assume to have a steady state continuous-time GAR(l) process with known marginal 

distributions for a certain self-generalized rv K . Our task is to determine if there is an appropriate 

innovation process. If such an innovation process exists, we know the assumed continuous-time 

GAR(l) process exists which possesses the marginal distribution we prescribe. We shall describe 

this idea more accurately in notation. 

The possible stochastic representation for a stationary generalized Ornstein-Uhlenbeck SDE 

has form 

X(t2) = (e-^-t^)K®X(t1) + j* 1 (e-»t)K®de(t). 

Suppose it is under steady state. Now consider a small increment on [t,t + h]. This leads to 

X(t + h) = (e-^) ®X(t)+ E(t; t + h). 

fh 

Here we use E(t;t + h) to replace the cumulative innovation on [t, t + h], namely / (e ^) K®de(t). 
Jo 

First, we consider a non-negative integer self-generalized rv K with pgf GK(S\ OC). In this 

case, the margins are non-negative integer-valued and the innovation process has non-negative 

integer-valued increment. Hence, we prescribe the pgf of stationary distribution as Gx(s). We 

deduce the following: 

E (> ' ( t+/^ = E ^s(e-^)K®X(t)+E(t;t+h)^ 

= E ( s ( e - ' i ' l ) K ® * M ) E (sWW) , 

Gx{t+h)(s) = Gx{t) (GK ( a ; c - " A ) ) E . 

Since under steady state, Gx(t+h)is) — Gx(t)is) = Gx{s), it follows that 

Gx(s) = GX (Gk (s;e^h)) E . 

This leads to 

E (sE{t;t+k)\ = Gx{s) f Gx{s) 1 

V s j Gx(GK(s;e-^)) \ Gx (GK {S; e~^h)) J ' 
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namely 

GE(t,+h)(s) = exp {log G x { ^ e - , h ) ) } • 

We wish to find out this stationary innovation process {e(t);t > 0}, or equivalently, find out 

the independent increment Ae(h) = e(t + h) - e(t). Let h be infinitesimal, expand G E{t-,t+h)(s) m K 

keep the order one term of h and omit the terms with higher order of h. This procedure will lead 

to the pgf or LT of Ae(h) so that the increment is determined in the sense of distribution. One can 

recall the idea that we obtain the infinitesimal increment Af(t) of a function f(t) by expanding 

f(t + h) = f(t) + f'(t)h + o(h), 

and retaining f'(t)h. Here we follow the same procedure. In this point of view of infinitesimal 

analysis, one can imagine that Ae(h) is the first order differential of E(t;t + h), the cumulative 

integration. 

Denote H(s) = 9 G k ^ . We expand the following at h = 0, or in the form of e~»h, 

around e° = 1. By Property 3.1, we know that GK(S; 1) = s. Expansions are: 

E-M = i-ph + oih), 

GK{s;e-»h) = GK(s;l) + H(s)(e-"h-l)+o(e-^-l) 

= s — H(s) ph + o(h), 

GX\GK(s;e^h)) = Gx(s - H(s)ph + o(h)) 

= Gx(s) + G'x(s)(-H(s)nh) + o(h), 

G'x(s) H(s)ph + o(h). 
Gx(s)' 

[Note that by the infinite divisibility property proved in Theorem 7.2.7, Gx(0) > 0 and we don't 

have to worry about the denominator as s -> 0. ] Leaving out the term of o(h) in the last expression, 

we derive 

E 
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Table 6.1: Partial derivative of pgf, H(s), for self-generalized distributions with non-negative integer 
support. 

K H(s) 
11 s - l 
12 ( l - 7 * ) ( * - l ) / ( l - 7 ) 
13 ( s - l ) l o g ( l - s ) 
14 (s-c-l)[6 + ]og(l-cs)] 
15 0(8-1) T ^ ( l - * ) 1 / 0 + l 

Therefore, we obtain the form of potential pgf of Ae(h) as: 

G*f(h)(s)= exp { g ^ l t f ^ } . 

If we can verify that it is indeed a pgf, then we can conclude that {e(t);t > 0} stipulated by 

independent increment with such pgf is appropriate for the assumed continuous-time AR(1) process. 

Under steady state, this process has the prescribed margins. Table 6.1 list the H(s) of all five self-

generalized distributions with non-negative integer support. 

Secondly, we consider the positive self-generalized rv K with LT fo(s; a). In this situation, 

the margins of the process will be positive-valued and the increment of innovation process is positive-

valued too. Assume the LT of stationary distribution is fo(s). 

E ^e-sX(t+h)^ = E ^e-s[(e-^)K®X(tHE(t;t+h)}^ 

= E ( e - s - ( e - ^ ) K ® x W ) E (V*E(*;t+/0) ? 

<j>x(t+h)(s) = <t>x{t) ( - l o g f o ( a ; e - ^ ) ) E ( e - ^ t + h ) ) . 

Similarly, under steady state, we have <j>x(t+h)(s) — 0x(t)(s) = thus, 

4>x(s) = fo ( - l o g f o (s;e-" h )) E ( e - ^ ( W ) ) , 

which leads to 

E (e-^(t;t+h)\ = W) = exp/log \ 
V J fo(-logfo(s;e-^)) p \ s f o ( - l o g f o ( s ; e - ^ ) ) J ' 
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namely 

= « P { l o ^ x ( - i o g ^ t ; e - ^ ) ) 

We shall apply the same reasoning as before to deduce the LT of Ae(/i), the increment of stationary 

innovation process. 
We expand the following at h = 0. Note that Denote H(s) = ^ [- log C/>K(S; a 

a=l 

4>K{S; 1) = e s (see Property 3.1) and e ^h - 1 = —Lih + o(h). 

-logfo-(s;e-< 4 h) = -log<t>K(s;l) + H(s)(e-»h-l) + o(e-»h-l) 

= s — H (s)/ih + o(h), 

4>x ( - l o g ^ ( 5 ; e - ^ ) ) = ^ ( s - f r ( a ) / i / i + o(h)) 

= 4>x(s) + <t>x(s)(-H(s)Lih) + o{h), 

log . . . = - l o g f l - ^ ^ M + ow) 

fof(s) 

By leaving out the o(h) term, we obtain 

E f esA<hA = exp { &¥\H(s)»h) . 

Thus, if the appropriate innovation process {e(t)\t > 0} exists, the LT of the increment Ae(h) must 

be of the form: 

<t>Ae(h)(s) = exp !^^H(S)Llh j . 

Now the issue comes down to prove that it is a LT. One can resort to relevant techniques of proof 

used in Section 2.2.2. If proved, the assumed continuous-time GAR(l) process exists, and has the 

prescribed margins. Table 6.2 list the H(s) oi all five self-generalized distributions with positive 

support. 

Lastly, we discuss this method for real margins. Now the only self-generalized rv K involved 

in extended-thinning operation is from P I . Hence, in this case, we have 

X{t + h) = e-"h»X{t)+E{t\t + h). 
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Table 6.2: Partial derivative of negative log LT, H(s), for self-generalized distributions with positive 
support. 

K H(s) 
PI s 
P2 (1 - 7 + 7s)s/( l -7) 
P3 slogs 
P4 (̂  + ^ r ) log [l + (e*-l)s] 

P5 Os (1 + ^ ) 

This leads to 

VxOO = fx ( e _ M s ) <pE(t;t+h)(s), 

where <px(s) is the cf of the margins of an assumed steady state continuous-time GAR(l) process. 

Furthermore, 

VE(t,+H){s) = ^ { e _ „ h s ) = exp (log ^ ( e _ M s ) j . 

Expanding it at = 0, we obtain 

W = - l o g ^ ^ l 
ipxie'^s) <Px(s) 

ipx (s) - 5</>x (S)M^ + o(h) 
= ~ lOg 7-T 

<Px{s) 

which leads to 
. . f sip'x(s) , 1 

<PAe(h){s) =exp(—T^ fh] -

If it is a cf, we can claim that our assumed continuous-time GAR(l) process is appropriate. 

Note that h can be arbitrary once we obtain the form of the pgf or LT or cf of Ae(h). These 

exponential forms show that they are infinitely divisible. Hence, the characterization form of ID 
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pgf, or LT or cf will be very helpful to prove that if these obtained expressions are pgf's, LT and 

cf or not. Refer back to Section 2.3.1 for those characterization forms. 

One byproduct is that once the assumed continuous-time GAR(l) process exists, we can 

easily obtain the pgf, or LT or cf for the cumulative innovation 

£ ( < i ; * 2 ) = r t l (e-fit)K®de(t) 
Jo 

in the stationary situation. It is simply the ratio: 

Gx(s) 
B V ) - Gx(GK(s;e-^))) 

fo(- logfo ( 3 ; e - M * 2 - t i ) ) ) ' 

This will avoid the tedious calculation in Chapter 5. 

We summarize these results in the following theorem. 

Theorem 6.3.1 Assume {X(t);t > 0} is a continuous-time GAR(l) process with stationary dis

tribution. Under steady state, the margins have the same pgf Gx{s), or LT fo(s), or cf <px(s). 

(1) If K is a non-negative integer self-generalized rv with pgf GK (S; a), and H(s) = dGli^'a^ , 

then the innovation process must have such stationary independent increment that its pgf has 

form: 

G A £ ( h ) ( S ) = e x p | ^ | ^ ( a ) ^ } . 

(2) If K is a positive self-generalized rv with LT fo(s;a), and H(s) = [— log for (s; ex)] , 

then the innovation process must have such stationary independent increment that its LT has 

form: 

<t>Ae(h)(s) = exp j | £ ^ j f f ( > ) / i f c j . 

(3) If K is from PI and the margins of the continuous-time AR(1) process being real-valued, then 

the innovation process must have such stationary independent increment that its cf has form: 

i \ [ stP'xis) , 1 
<PA£(fc) s = exp < —^TTfJ/h ( • I <Px{s) J 

184 



Proof: The stochastic representation of a stationary continuous-time GAR(l) process is 

*(<2)= (e-^-^)k®X{h) + j ' ' ^ (e-»t)K®de(t). 

Consider a small time increment h from time t. Then it will be 

X{t + h) = (e-"h)K®X(t) + E(t;t + h). 

Here we use E(t; t + h) to replace the cumulative innovation on [t, t+h], namely / (e >J't)K®de(t). 
Jo 

We want to find the corresponding stochastic difference equation (see Section 4.3) 

X(t + h)- X(t) = [(1 -Lih)K® X(t) - X(t)] + Ae, Ae = e(t + h) - e(t), 

or 
X{t + h) = (l-Lih)K®X(t) + Ae. 

The pgf, or LT, or cf of E(t; t + h) can be determined by the pgf, or LT, or cf of the stationary 

distribution and the self-generalized distribution. They are all the ratios 

Gxjs) <t>x{s) . fx(s) 
Gx{GK{s;e-»h)y ° r fo ( - l og fo (s;e~^))' ° r y>x (e-^s) ' 

Now we need to find the pgf, or LT, or cf of Ae, the increment of innovation. Recall that the 

innovation process {e(i); t > 0} is additive. Hence, the pgf, or LT, or cf of Ae = e(i + h) — e(t) is 

expressed in the exponential form with exponent being linear in h. i.e., the form like exp {hg(s)}. 

Our task will simply become the expansion of the logarithm of these ratios in terms of h, and 

omitting those terms with higher order. 

The key step is that if we can expand the GK (S; e'flh), or 4>K (S; e - ^ ) in terms of h. This 

leads to the requirement of conditions of existence of the partial derivative with respect to a at 

boundary a = 1 for the non-negative integer and positive stationary distribution situation. Gx {$) 

and fo(s) are positive and continuous in their domains. Following the previous discussion, we can 

complete the proof without further difficulty. 

Remarks: 

185 



(1) Given the marginal distribution, the form of pgf, or LT, or cf of the increment of innovation 

is 

However, for any prescribed marginal distribution, it may not be a pgf, or LT, or cf. We need 

to check whether it is a pgf, or LT, or cf. If yes, we obtain the increment of innovation, and 

hence the innovation process. 

On the other hand, if the form is indeed a pgf, or LT, or cf, we can claim that 

is the pgf, or LT, or cf of an ID distribution, because h is arbitrary and these exponents are lin

ear in h. This ID feature may further help us to simplify the proof of pgf by taking advantage 

of the fact that non-negative integer ID distribution is compound Poisson distribution. 

(2) This customizing approach can be naturally extended to the non-stationary continuous-time 

GAR(l) process situation. In this situation, we assume that LI is still a constant to simplify the 

case, but the innovation process is additive with time-varying increment. Then the stochastic 

difference equation becomes 

X(t + h) = (l-pJh)K® X(t) + Ae(h), Ae{h) = e(t + h) - e(t). 

Now we have to specify the pgf, or LT, or cf for every margin X(t), instead of the only one pgf, 

or LT, or cf for all margins. Besides, we should assume that the partial derivative — x $ ^ - , or 

d^at^^' o r d<PXQt^ exist for all times t > 0. Combining the assumption on self-generalized 

distribution, we can obtain the pgf, or LT, or cf of the time-varying increment of innovation 

Ae(h) — e(t + h) — e(t) by the same reasoning, but in slightly different modifications. This is 

essentially because that the innovation process is additive. The related expansions are 

GK{s;e-^ = s-H(a)iih + o(h), 

GX(t+h)(GK(s;e-^)) = Gx{t+h)(s - H(s)ph + o(h)) 

dGX(t)(s) dGv(t\(s) 
= G x { t ) (a) - nH{s) X ^ K>h+ x ® l J h + o(h), 
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log 
Gx(t)(s) 

GX(t+h) (GK (s;e-^)) 
dGx{t)(s) dGx{t)(s) 

= h 

- l o g ( l - / i iiH{s) 

\ us 

+o(h)) 
• „ . ,dGx(t)(s) dGx{t)(s) 

— QT— 

at /GXW(S) 

GX(t)(s) + o{h), 

-\og<f>K (s ;e-^) = s- H(s)(ih + o{h), 

4>X(t+h) ( - log <t>K (s; e""*) ) = 4>x(t+h) (*' - + o(/i)) 

log <t>x{t+h) ( - l o g ^ ( s ; e ^)) 
log ( l - h 

+o{hj) 

pH(s) 

d<Px(t)(s)u d<f>X(t)(s) 
ds + dt 
94>x{t){s) dc/)x(t)(s) 

ds dt 

= h 

log <Px(t)(s) 
Vx{t+h) (e-^s) 

pH(s) 

log 

log 

d<Px(t){s) d<j)x(t)(s) <Px(t)(s) + o(h), 
ds dt 

<Px(t+h) (e-»hs) 
<Px(t){s) 

V x ( t ) ( s ) - , s d - ^ h +

d - ^ h + o(h) 

<Px(t)(s) 
d<Px(t){s) dipX(t)(s) 

•log (l-h 

+o(h)) 

ds dt <Px(t)(s) 

= h ps 
d<Pxtt)(s) d(pX(t){s) 

ds dt 

Thus, the pgf, or LT, or cf of Ae{h) = e{t + h) - e{t) is 

/ Vx{t){s) + o(h). 

exp {/i LIH(S) 
dGX(t)(s) dGx{t)(s) 

ds dt /GX(t)(s)\, 

or 

or 

exp < h LIH(S) 
d(pX(t){s) d(t>x(t)(s) 

ds dt 

exp fis 
d<fx(t){s) dtpx(t){s) 

ds dt 

x(t)(s) j , 

• /v*( t ) (*)}-

respectively. 
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When in steady state for the stationary situation, it follows that 

dGX(t){s) d4>x{t){s) d<Px(t)(*>) „ 

which lead to the statements in Theorem 6.3.1. 

We will illustrate Theorem 6.3.1 by some examples. They were basically discussed before. 

Now we revisit them from another perspective. In these examples, we prescribe the marginal 

distributions as Poisson, negative binomial, modified Geometric, exponential or Gamma, inverse 

Gaussian, and so on. 

Example 6.11 (Poisson) Consider a continuous-time GAR(l) process under steady state. Pre

scribe that the margins are distributed in Poisson(X). Thus 

„ , s rw , M J G'x{s) Aexp{A(s- 1)} x Gx(s) = exp{A(S - 1)} and ^ = ^ _ ^ = A. 

By (1) in Theorem 6.3.1, the pgf or LT of increment of innovation process must be of form: 

GAe(h){s) = exp {XH(s)ph} , 

where H(s) — dGli^s'a^ . Since the known types of K are from II to 15, we look into Table 6.1 

to find the appropriate self-generalized rv's so that the expression of GA€(h){s) o r
 </ )Ae(/i)( s) « s

 a P9f-

By the feature of ID, Ae(h) should be a compound Poisson rv. This fact leads to that H(s) 

must satisfy: 

C • H{s) = g(s) — 1, C is some positive constant which may be bounded above, and g(s) is a pgf. 

In another word, C • H(s) + 1 must be a pgf. Checking with the form of H(s) in Table 6.1, we 

find that only K being II works; the others lead to negative coefficients in the power series of H(s) 

which implies that 12 to 15 are excluded. 

With K is from II, 
GAe(h){s) = exp {Xph{s - 1)} , 

the pgf of Poisson(Xph). It basically corresponds to the Poisson IIP innovation process appearing 

in Example 5.1. The assumed continuous-time GAR(l) process matches the process obtained in 

Example 5.1 too. 
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Example 6.12 (Negative Binomial/Geometric) Consider a continuous-time GAR(l) process 

under steady state. Prescribe that the margins are distributed in NB(B,y). When L3 = 1, it is 

geometric distribution. Thus 

1 - 7 V G'x(s) _ 07 G x { s ) = (hi)  a n d  
Gx(s) l - 7 s ' 

The form of the pgf or LT of increment of the potential innovation process must be: 

GAe(h)(s) = exp { 0 7 / ^ T ~ ~ } ' 

where H(s) = dGK

d^l'a^ • Now we investigate H(s) in Table 6.1 to see which will lead to a proper 
a=l 

innovation process. Recall the fact that C • + 1 should be a pgf for a positive constant C. 

For K being from II, take C = j. Then 
H{s) 1 a-\ , 1 - 7 
1 — 7s 1 — 7s 1 — 7s 

which is the pgf of NB(l,-y). This corresponds to the innovation process appearing in Example 5.2. 
For K being from 12, in which the fixed parameter 7 is exactly the same as prescribed for 

the marginal distribution here, we take C = 1 — 7. It gives 

n ^ #(*) , 1 n ^ ( i - 7 * ) ( a - i ) , 1 „ 
( 1 - 7 ) T ^ + 1 = ( 1 - 7 ) ' ( i - 7 ) ( i - 7 S ) + U s ' 

which is, of course, a pgf. The corresponding innovation process is Poisson IIP appearing in 

Example 5-4-

For K being from 13, it seems that C • ^ s ~ 1 ^^ 1 ~ s ^ +1 is not a pgf. 

Example 6.13 (Modified Geometric) Since a zero-modification operation can adjust the mass 

at zero, we may be interested in considering a steady state continuous-time GAR(l) process with 

modified Geometric margins, in which the pgf is 

Then, 

Gx(s) = (l-P)+ps^-^-s, 0<p, 8<1. 

G'X(S) = p{i-m-^ri+psp{i-m-^r\ 
G'x(s) = p(l - B) 
Gx(s) (1 - ps)[(l - p) + (p - M 
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The form of the pgf of increment of the potential innovation process should be: 

GA£(h)(s) = exp {p(l - , 

where H(s) = d G , Q ^ ' a ^ • We search for suitable H(s) in Table 6.1. Bear in mind that 1 + C • 

(i-p$(i-p)+(p-p)s] sh°uld be a pgf for a positive constant C. 

For K being from II, take C = p({~_?p) • Then we have 

H(s)p{l-B) _ a - 1 
(1 - 0s)[(l - p) + (p - B)s] +

 ( 1 _ p a ) (x _ • 

V i + ( i - p ) 3 / 2 <B<porp<6< this is a pgf; see (5) in Theorem 2.2.3. Thus, the assumed 

continuous-time GAR(l) process exists, and is new (to our knowledge). 

For K being from 12, taking C — ^~^i~^y^> leads to 

H(s)p(l-B) ( l - 7 s ) ( a - l ) 
(I - Bs)[{l -p) + (p- B)8] +

 ( 1 _ p a ) _ fc£s) ' 

which is a pgf when p < B <
 1"I ,̂P7? OR MAX (T> — & — P a n ( ^ ~ 7)(1 _ P ) 3 > (P _ + 

7 —P7)(p —/3); see ftf) in Theorem 2.2.3. This implies that the assumed continuous-time GAR(l) 

process exists, which is also new. 

For K being from 13, it seems there is no such pgf. As to 14 and 15, further study is needed. 

Example 6.14 ( G N B C ) Since the GNBC family includes many distributions, we now study this 

kind of margin. For a continuous-time GAR(l) process being under steady state, prescribe the 

marginal distribution as GNBC with pgf 

G x ( * ) = e x P a / i o g ( l - ± ) v { d q ) y 
L M 7(0,1) i 

Then 

Gx{s) p 7(0,1) L V l - g s / J p 7 ( 0 , 1 ) ! - Qs 

The form of the pgf of the increment of the potential innovation process must be: 

W , I - , , P ( I L * V W ) ' 
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where H{s) = dG^'a^ • Now we resort to Table 6.1 to see which form of H(s) will lead to a 

proper innovation process. We realize that this is the pgf of a generalized convolution and the base 

distribution has pgf of form exp ^hq^}^} j . Following previous examples, C • Y Z ^ T + 1 should be a 

pgf for a positive constant. 

For K being from II, we obtain 

e.Jhf ^V(dq)\=exJhf ^ V ( d q ) \ , 
{ 7(0,1) 1-9* J I 7(o,i) 1-9* J 

which is the pgf of GC I. Therefore, the assumed process exists and the innovation process corre

sponds to the one appearing in (II) of Corollary 5.2.6. 

For K being from 12, it is 

e J h [ f M v w \ L t y - y - ' l y w } . 
( 7(0,1)1-9* J ^ 7(0,1) ( l-7 ) ( l - 9 s ) J 

When V(-) has 0 measure on (0,7), namely q > 7, it is the pgf of GC II: 

exp 1 i(0, l) (l-7)(l-?«) J I 4,D (l-7)(l-9«) 
This means the innovation process is GC II IIP, which corresponds to the one in (12) of Corollary 

5.2.8. Thus, the assumed process exists. 

It is possible that a steady state continuous-time AR(1) process with GNBC margins exists 

for K being from other non-negative integer self-generalized distributions. They are under further 

study. 

Example 6.15 (Gamma/Exponential) Consider a continuous-time GAR(l) process under steady 

state. Prescribe that the margins are distributed in Gamma(5,B). When S = 1, it is exponential 

distribution. Thus 

6x(s) = -pr— and = --3 . 
; \B + sJ 4>x{s) B + s 

By (2) in Theorem 6.3.1, the form of the LT of the increment of the potential innovation process 

must be: 

<l>Ae(h)(s) = exp j - - g ^ f f ( s ) / i / i j , 
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where H(s) = -jr- [— log <PK(S; a)] . Now we investigate H(s) in Table 6.2 to search for proper 

self-generalized distributions which lead to an innovation process. 

For K being from P i , then 

e x p {-pis H { s ) t i h} = e x p {-pis s l l h}=exp {-prs ~l)}' 

which is the LT of the compound PoissonfSfxh) with Gamma(l, 8). This corresponds to the inno

vation process appearing in Example 5.9 when 7 = 1. 

For K being from P2, we have 

J 5 TJ( \ u\ / 6 ( 1 - 7 + 7 * ) * , \ / Sfih s ( l - 7 + 7 s ) ^ 
exp {-- H{s)fj.h } = exp < —fih } = exp < — > . 

l / 3 + * J y \ B + 8 1 - 7 J
 F1 1 - 7 P + s J 

If 1 < TTj3> this function is a LT (See (1) in Theorem 2.2.8). Hence, it can be the LT of the 
increment of an innovation process, and the assumed continuous-time GAR(l) process exists. This 

process is new, with stochastic representation 

X(t2)= (e-"te-V)K®X{t1) + h {e-^)K®de(t), 

where K is from P2, and the stochastic integral has LT 

( a , e-^t2- ti)(l-7)a \ 5 

P 1- ( i - 7 ) + ( i - e - M ( t a - « l ) ) 7 a \ I 
B + s I ' 7 - \ + B' 

For K being from P3 , it is not a LT, because logs <0as0<s<l, hence, 

exp | — ~p~r~H(s)fih} > l , when 0 < s < l, 

contradicting to that a LT is less than or equal to l . 
Other cases of K being from P4 to P5 are under further study. 

Example 6.16 (Inverse Gaussian) The inverse Gaussian distribution has many applications; 

see Seshadri [1999]. Hence, it is of interest to see if there are any continuous-time GAR(l) processes 

with inverse Gaussian margins in steady state. 
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Assume the LT of the inverse Gaussian margin is 

,2 \ i / 2 ' 

4>x(s) = exp < -
2u , A, p>0. 

This form is from Johnson and Kotz [1970a], p. 139, and credited to M. C. K. Tweedie. Then 

<Px(s) p 
2a 2 \ l / 2 -

, 1

 2A* 
2 \ - l / 2 

Fence, 6y (2) in Theorem 6.3.1, the form of the LT of increment of the potential innovation process 

must be: , 
2p2 

<W)(*)=exp j - M

2 n ( ^ + - ^ J H(s)j, 

where H{s) = -§- [- log<fo(«; a)] I . We search H(s) in Table 6.2. a=l 
For K being from PI, it follows that 

,2 \ - l / 2 

exp | —p2h (l + ^ - s ) H(s) i = exp J -p2hs (l + 
2p2 

By (6) in Theorem 2.2.8, it is a LT. Hence, the innovation process is well defined so that the as

sumed continuous-time GAR(l) process exists. This continuous-time GAR(l) process has stochastic 

representation 

X(t2) = e"^ 2 - ' 1 ) • X(h) + f 2 e""* • de{t), 
Jo 

where the stochastic integral has LT 

<f>x(s) 
-*i)s) 

1/2 
<t>E(tv,t2)(s) 

exp 
2 \ l / 2 -

-2JL*(1 - e-^ i 2-* 1))s 
exp ' 

Ot/ier cases o / K 6ein# ot/ier self-generalized rv's are under further study. 
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Example 6.17 (GGC) The GGC class includes many distributions. It's very meaningful to inves

tigate the GGC margins. Consider a steady state continuous-time GAR(l) process with prescribed 

GGC margin. Thus 

(j)X(s) = exp{ - / lo 0 

u U(du) \ , 

and 
4>W _ 1 

<t>x{s) M 7(0 
log 

(0,oo) L \u + s 

u U(du) = - f ——U{du). 
V 7(0,oo) « + s 

By (2) in Theorem 6.3.1, the form of the LT of increment of the potential innovation process must 

be: 

4>Ae(k)(s) = exp J ft f J^-U(du) \ , 
• [ 7(0,oo) u + s J 

where H(s) — [— log 4>K{S\ a)] . Following the last example (with Gamma/Exponential mar-

gins), we turn to Table 6.2 to find proper self-generalized distributions which lead to an innovation 

process. 

For K being from PI, then 

-H{s) 
/(0,oo) u + s 

exp L [ Z±t¥tU{du)) =exp\h [ -^-U(du)\ 

\ 7(0,oo) U + S ' \ \ 7(0,oo)^ + 5 J 

[ 7(0,oo) u \ 

;U*(du)\, U*idu) =uUidu), 
i(u + s)' 

which is the LT of the GCMED. This essentially corresponds to the innovation process appearing 

in Theorem 5.3.3 when K is from PI. 

For K being from P2, we have 

exJhr zmu{du)\=expl>L-[ 
{ 7(0,oo) u + s J [ 1 - 7 7(0,00) 

- s ( l - 7 + 75) 
u + s 

Uidu) 

IfU(-) has zero measure on (7 1 - l,oo), then it becomes 

exp — f 
1 - 7 7(0,oo) 

-s(l - 7 + 7s) 
U + S 

Uidu) > = exp i—f 
[1 - 7 7(0,7-!-

- s ( l - 7 + 7s) 

•1] u + s 
Uidu) } , 
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which is the LT of GC IV (refer to Section 2.3.3). Hence, we get an appropriate innovation 

process, and can conclude the assumed continuous-time GAR(l) process exists. This process is 

new. Its stochastic representation is 

X(t2)= (e-^-t^)K®X{tl) + j'' h [e-^)K®de{t), 

where K is from P2, and. the stochastic integral has LT 

<t>x ( - l og fo (s;e-"(t2-ti))) 
e~>'('2-ti)(l-7)s 

= exp < 
If / " + ( 1 - 7 ) + ( 1 - . - , ( t , - t l ) ) 7 J \ u { d u ) \ 

M i(o ) 7-i-i] \ ™ + s / 

rt2—t\ 

Jo 

For other cases in which K is from P3 to P5, further investigations are under study. 

From these examples, we see that there could be several steady state continuous-time 

GAR(l) processes corresponding to the same marginal distribution. Such flexibility allows us to 

try different models when we deal with data. However, this is also somehow vexing for us. Which 

one should we use? This leads to the question that what are the features of these models with 

common margins. 

For the case of a positive-valued margin, one feature of the cumulative innovation, E(t\;t2) = 

(e~M*) K ® de(t), is whether it has mass at zero, namely ~Pr[E(ti\t2) = 0] > 0. This can be 

checked with lim fo(ti;t2)(s). We can look the following example. 

Example 6.18 Consider two models obtained in Example 6.15. One is 

X{t2)=e-^-t')»X(tl)+ t U e-"* 
7o 

where the stochastic integral has LT 

x _ fo(s) _ (B + e-rf>-Vs\5 

n S ) ~ fo (e-^-^)s) { B + s j • 

Hence, 

Pr[E(h;t2) = 0] = (j){oo) = e'6^'^. 
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The other model is 

X(t2)= (e-^-V) ®X(h)+ F h {e-»t)K®de(t), • 
v ' K Jo 

•where K is from P2, and the stochastic integral has LT 

/ e - " ( ' 2 - * i ) ( i - 7 ) a \ 5 

n S J fo(- logfo ( S;e-"C-'i))) ^ + * J ' U < 7 - l + 0-

in £/iis cose, is 

Pr [£ (* i ; i 2 ) = O] = 0(.oo)=O, 

and i/iere is no mass at zero. 

Even the model in Example 6.16 can be an alternate choice for the first model in Example 

6.15 whose cumulative innovation has no mass at zero, because as s —> oo, 

- 2 / i(l - e-nte-t^s 
</>E(ti;t2)(s) =exp e-°° = 0. 

The cumulative innovation with mass at zero is the primary cause for the phenomena of 

sharp jump down or sharp drop pattern. Of course, the dependent term with mass at zero can lead 

to the same phenomena too. Such a pattern can be imagined as the behavior of a small kid who 

is climbing a high slide; he struggles to climb a little bit by a little bit. When he reaches a certain 

height, he suddenly drops down some distance back. He repeats this game without ever tiring. 

6.4 Generalized AR(1) time series 

Time series data usually means that the observations are obtained at equally spaced time points. 

It corresponds to the discrete-time process in the probabilistic point of view. Looking back to the 

history of processes development, it is very common that often the discrete-time processes have 

been proposed earlier than the continuous-time processes. For example, this phenomena has be

ing happened in the development of Ornstein-Uhlenbeck-type processes and the continuous-time 
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GAR(l) process proposed in this thesis. It may lead to a false appearance that the continuous-

time processes are derived from the corresponding discrete-time processes. However, there is no 

such simple conclusion that the continuous-time case comes out from the discrete, or vice versa, 

although we may apply approaches like differentiating the continuous-time processes or integrating 

the discrete-time processes. This point of view can be seen from the perspective of distribution the

ory discussed later in Chapter 9, where we will see that construction of the discrete-time processes 

is relatively easier than the continuous-time processes in some situations. 

This clarification won't prevent us from investigating the time series sampled from a continuous-

time process. In principle, sampling the observations on equally spaced time points from a continuous-

time GAR(l) process {X(t);t > 0}, we will obtain a time series, denoted as 

{Xo, X\, X2, • • •, Xn,...} 

which we call the generalized AR(1) time series. In the literature, there are some generalized 

AR(1) time series models, but not rich classes. We will look into the generalized AR(1) time 

series models from the continuous-time GAR(l) processes, and compare with those models in the 

literature. 

There is always an issue about stationary and non-stationary time series. If sampling from 

a stationary continuous-time GAR(l) process, we will have a stationary generalized AR(1) time 

series; while sampling from a non-stationary continuous-time GAR(l) process, we will obtain a 

non-stationary generalized AR(1) time series. For the sake of simplicity, we only consider the 

stationary case. 

Now we introduce some notations. In the equally spaced case, the time difference between 

any two consecutive points is the same. Denote 
/ •A 

A = * i a = e-"A, Ei= / (e""*) K® de(t), t = l , 2 , . . . . 
Jo 

Then the stochastic representation for a generalized AR(1) time series model is 

Xi= (a)K®Xl_1 + Ei, iejV. (6.4.1) 

The classical time series data are real-valued, and the distribution of each observation is 

stipulated as Gaussian. But for a generalized AR(1) time series, the data may be non-negative 
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Table 6.3: Conditional pgf G( a ) K ®x i _i |X i _ 1 =a;(*) w h e n K i s a non-negative integer self-generalized 
random variable. 

K G ( a ) , , © X i _ i | X i - i = a : ( s ) 

11 ((1 - a) + as) x 

12 
/ ( i _ Q ) + ( a _ 7 ) s \ -
^ ( l -a7 ) - ( l -a )7s / 

13 ( 1 - ( 1 - S ) « r 
14 ( c - M l - e - ^ 1 - 0 1 ^ ! - « ) « ] ) " 

15 ( l - c / ( l - 7 )« [(1 - 'ah + (1 - 7)(1 " 

integer, positive, or real-valued. Hence, the corresponding distributions to model such kind of 

data are non-Gaussian. Perhaps Phatarfod and Mardia [1973] was the first study for the count 

data time series, where they defined an AR(1) time series model, in which the stationary (or in 

another view, the marginal distribution under steady state) include Binomial, Negative Binomial, 

Geometric and Poisson. Since the 1980's, more non-normal time series models have appeared in 

the literature. Note that for the generalized AR(1) time series with non-negative integer margins, 

it corresponds to the type of Galton-Watson process with immigration which has the form of the 

sum of a branching part and an immigration part; see Nanthi [1983], p. 180-181 for the definition. 

It is meaningful to give the conditional pgf or LT of (a)K © in equation 6.4.1 when 

Xi-i = x. They are 

G !(a) J f®x i_1|x i-1=x(a) = (GK{S; a))x , and fa^^x^^Xi^xis) = {4>K(S\ &))X • 

For specific self-generalized random variables K, see Table 6.3 and 6.4. They are useful when 

comparing with the models in the literature. 

In the following, we will classify those generalized AR(1) time series models by their marginal 

distributions, similar to what we have done in Section 6.3. 

Example 6.19 (Poisson) Consider the model in Example 6.11. Its margins are distributed in 

Poisson(X). Hence, we can derive the generalized AR(1) time series model, which is 

Xi = a*Xi^l + Ei, ieiV, 
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Table 6.4: Conditional LT ̂ ^x^lXi^xis) when K is a positive self-generalized random vari
able. 

K 
PI exp {—arcs} 

P2 f all—y)xs 1 
e x P i (l- 7) +(l-a) 7, j" 

P3 exp {—xsa} 

P4 

P5 exp | —x a(l-7) 

} P5 exp | —x 
_(l-a)7+(l-7)s"^. } 

where Xi ~ Poisson(A), and G^^s) = exp{A(l - a)(s - 1)}. 

This model has been discussed by many researchers, such as Phatarfod and Mardia [1973], 

McKenzie [1985, 1988], Joe [1996], J0rgensen and Song [1998]. 

Example 6.20 (Negative binomial/Geometric) Consider two models in Example 6.12. Their 

margins are distributed in NB(8,y) (when 8 = I, it is Geometric distribution). Hence, we can 

derive two generalized AR(1) time series models. One is 

Xi = a*Xi-i + Ei, i£j\f, 

where Xi ~ NB(/?,7) , and G ^ s ) = ^(ir2+£liz^I£^ _ jyjj s model has been discussed by many 

researchers, such as McKenzie [1985, 1986], Aly and Bouzar [1994]-

The other generalized AR(1) time series model is 

Xi= {a)K®Xi.l + Ei, iejV. 

where K is from 12, Xt ~ NB( /3 , 7 ) , and GEi(s) = ( ^ f o l ^ , ) * , namely Et ~ NB [B, . 

This model or a restriction of it has been discussed by many researchers, such as Phatarfod and 

Mardia [1973], McKenzie [1985], Al-Osh and Alzaid [1992], Aly and Bouzar [1994]. Here the pa

rameter 7 of 12 and of the NB margin are the same. In Chapter 7, we show that these can be 

different. 

The stochastic representation of the cumulative innovation can be found in McKenzie [1987]. 
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Example 6.21 (Modified Geometric) Consider two models in Example 6.13. Their margins 

are distributed as Modified Geometric. From them, we can obtain two generalized AR(1) time series 

models. One is 

Xi = a*Xi-i+Ei, i£jV, 

where X% has PgfGx(s) = (1 -p) + ps^-s, and GE%(s) = ^H^S-i)^ti" 
The other generalized AR(1) time series model is 

Xi= (a)K®Xi-1 + Ei, ieX. 

where K is from 12, Xi has pgfGx(s) = (1 - p) +PSjz^> 

Q , . _ [(1 - p ) - { 8 - P)s] • [(1 - - 07 + aP) + (~7 - <*P + «7 + M)s] • 
(1 - 6s) • [(1 - 6 - ap + a.6 - cry + apr/) + (-7 + ap - a>6 + cry + $7 - ap~/)s]' 

These two models are new. 

Example 6.22 (Gamma/Exponential/Chi-square) Consider two models in Example 6.15. 

Their margins are distributed in Gamma(8,6). Special cases include 

• When 6 = 1, it is Exponential(8); 

• When 6 = k/2, 6 = 1/2 (k is an integer), it is \ \ . 

Hence, we can derive two generalized AR(1) time series models. One is 

Xi^amXi-i + Ei, ieAf, 

where Xi ~ Gamma(d,/3), and ̂ ( s ) = (jjiff*) • This model has been discussed by Gaver and 

Lewis [1980], Hutton [1990]. A stochastic representation of cumulative innovation can be seen in 

Walker [2000]. 

The other generalized AR(1) time series model is 

Xi = (a)K ® Xi-X +EU i G JV. 

where K is from P2, Xi ~ Gamma(J, 6), and 

(8(1 - 7) + (a - «7 + Pi ~ aBj)sV 
* E * S ) \ ( i 8 + S ) [ ( i _ 7 ) + ( i _ a ) 7 a ] ) 
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This model generalizes Sim [1990], Adke and Balakrishna [1992], where the cumulative innovation 

is an exponential rv, a special case when 7 takes the upper boundary and has LT (j>Ei{s) = 

( P V 
Example 6.23 (Inverse Gaussian) Consider the model in Example 6.16. Its margins are dis

tributed in Inverse Gaussian. Hence, we can derive the following generalized AR(1) time series 

model: 

where Xi has LT <f>x (s) = exp j J 1 - ( l + *g-s) ̂  j , and cf>Ei (s) = exp j ^ i + 2^~^ + 2^ 
We are not clear if this model has been previously studied. 

In the literature, there are some generalized AR(1) time series models with other marginal 

distributions. We will visit them in Chapter 7 when we study the generalized self-decomposability. 

The auto-correlation feature of the generalized time series model will be discussed in Chapter 9. A 

discussion of simulation of the processes can be found in Chapter 12. 

Since the family of continuous-time GAR(l) processes is very rich, we can produce many 

many generalized AR(1) time series models from them. These models differ in either the marginal 

distributions or the extended-thinning operations. We have realized that the names of the gener

alized AR(1) time series models appearing in the literature are quite diverse. Hence, it is a serious 

problem to name them in a clear way to avoid the potential confusion for the readers. We don't 

want to open a "drug store" to sell the models in the fancy names like medicines. 
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Chapter 7 

Characterization of stationary 

distribution families 

In this chapter, we further investigate the stationary distributions resulting from the continuous-

time GAR(l) processes. This will be from the perspective of extended-thinning operations. 

Since the continuous-time GAR(l) processes are essentially characterized by the defining 

extended-thinning operation, it seems that the resulting stationary distributions may be character

ized by it too. This leads to the study of self-decomposability (SD) and discrete self-decomposability 

(DSD), and furthermore, the proposal of generalized self-decomposability (GSD) and generalized 

discrete self-decomposability (GDSD). Similar to the SD and DSD case, we find that generalized 

self-decomposable and generalized discrete self-decomposable distributions are infinitely divisible 

distributions. 

This study is not only for probabilistic interest, but also for statistical interest, because 

it points out the equivalence between the continuous-time GAR(l) process and the correspond

ing generalized self-decomposable or generalized discrete self-decomposable distribution. In other 

words, a generalized (discrete) self-decomposable distribution can lead to the construction of a 

continuous-time GAR(l) process. This feature attracts particular attention and interests of statis

ticians in modelling data. For the SD and DSD situation, it has been studied by the statistical 

202 



pioneers for a long time (see references in Section 7.1). Here, we extend this idea to generalized 

self-decomposability and generalized discrete self-decomposability in Section 7.2. In Section 7.3, we 

discuss the relationship among the classes of the generalized self-decomposable distributions and 

the generalized discrete self-decomposable distributions respectively; that is, if they overlap with 

one another, or if they are covered by one another. 

7.1 Self-decomposable and discrete self-decomposable classes 

In Section 2.3.1, we've reviewed the concept of SD and DSD, as well as their advantages to construct 

a generalized discrete-time or continuous-time GAR(l) process. Now we do the reverse. We shall 

investigate the self-decomposability and discrete self-decomposability of the stationary distribution 

from a continuous-time GAR(l) process where K is from PI and II. 

Now we consider the continuous-time GAR(l) process with K being from PI and II, namely 

X{t2)=e-^-tl) mX{h) + P ^ e-^ *de(t), 
Jo 

and 
X{t2) = e-^t2-tl) *X(ti)+ f 2 1 e-^ *de{t). 

Jo 

The first process involves the constant multiplier operation which allows positive and real-valued 

margins. The second involves the binomial-thinning operation which leads to non-negative integer-

valued margins. Suppose they have stationary distributions. Let X have a stationary distribution. 

Under steady state, we have the following stochastic representation for X 

x£e-n(t2-tl) % x + ft2 tl

e-^t9de^ a n d x = e-^t2-h) *X + P t l e-* * de(t). 
Jo Jo 

Denote the stochastic integral as E(ti;t2) = E (e -^* 2 -* 1)) in the two cases. Since e _ / x ^ 2 _ i l ^ can 

be any value in (0,1), hence, the previous representations are equivalent to that for any c G (0,1), 

X can be decomposed as 

X = c»X + E(c) and X = c*X + E{c). 
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By the definition of SD and DSD (see Section 2.3.1), we conclude that X is self-decomposable 

and discrete self-decomposable in the two cases respectively. This is summarized in the following 

theorem. 

Theorem 7.1.1 The stationary distribution from the continuous-time GAR(l) process with con

stant multiplier and binomial-thinning operation is SD and DSD respectively. 

This discloses a new way to prove SD and DSD by the corresponding continuous-time 

GAR(l) process. Traditionally, to prove SD or DSD, we need to show that <p(s)/ip(cs) is a cf for 

a distribution with real support, or cp(s)/<j>{cs) is a LT for a distribution with positive support, or 

G(s)/G(l — c + cs) is a pgf for a distribution with non-negative integer support. They correspond 

to the cumulative innovation in the stochastic representation of a continuous-time GAR(l) process 

with K being from P I or II. In the new approach, we first specify a particular innovation process, 

and then use the stochastic integration approach discussed in Chapter 4 and 5 to obtain the 

cumulative innovation. These particular innovation processes are based on the specific distributions. 

Using this new approach, the key point is how to find the appropriate innovation process. 

This has been answered in Section 6.3. Now we formalize it in a reverse way in the following 

theorem. 

Theorem 7.1.2 Suppose X is distributed in a specific distribution. 

(1) Assume the distribution has real support with cf ipx(s). 7/exp J C - Sp£(s) } *s a cf for a^ 

C> 0, then X is SD. 

(2) Assume the distribution has positive support with LT (j)x{s)- 7/exp J C • j is a LT for 

all C > 0, then X is SD. 

(3) Assume the distribution has non-negative integer support with pgf Gx(s). Ifl + C- ^ 

is a pgf for some C > 0, then X is DSD. 

Proof: The key step in the proof is that for any 0 < c < 1, we express <p(s)/^p(cs), or <f>(s)/<f>(cs), 

or G(s)/G(l -c + cs) in terms of exp [c • ̂ g } , or exp {c • or 1 + C • ' ' o f f i / ' * -
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(1) Since exp J C • is a cf for any C > 0, it follows that exp i^j ^xiPs) i S a °f' 

This comes from the idea of generalized convolution. By integration, we obtain 

= exp j log^xO&O c | = exp {log (px{s) - log <px{cs)} 

ipx(cs)' 

This shows that is a cf. Therefore, X is SD. 

1 d[<px(Bs)] 
<Px(ps) 

(2) Similar to (1), exp 

nent, 

/ f s^x(Ps)dA i s a j s 0 a \Ye compute the integration in the expo-

exp { r w * } - { / , » ^ » } - { / , w 1 } 
= exp |logfo(Ps) c | = exp{logfo(s) - logfo(cs)} 

0x(s) 
fo(cs)' 

which means that is a LT. Hence, X is SD. 

(3) Since 1 + C • ( J " G ^ ( j ) is a pgf for a C> 0, 1 + C • P{'a^s+i-l) ^ i s a P § f t o ° ( ^ r a t i o n 

(2) in Proposition 2.2.2). By the mixture operation in (3) of Proposition 2.2.2, it follows that 

f \ r i i - i (7i4 .r B{s-l)Gx(Ba + l-B)\ Q _ l j o 9(s) = [-logc] ^ (1 + C G x { f i s + 1 _ p ) )P dB 

is a pgf. Direct calculation shows 

g(s) = [ - l ogc ] - 1 / 
J c 

l r , ^G'x(8s + l-8) , B~xdB 
Gx(8s + l-/3) 

Gx(>) 
= i-to^r'g'og^—_ c ) + i. 

This leads to 

—~~7 \ = exp { l o g ^ C " 1 ^ ) - 1]} , 
cs + 1 - c 
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the pgf of a compound Poisson. Hence, X is DSD. 

Remark: Taking K specifically from II and P I in Theorem 6.3.1, we can prove the necessity. 

Hence, the conditions in Theorem 7.1.2 are actually sufficient and necessary. 

The key idea in the proof for SD is to use the concept of generalized convolution established 

by O. Thorin in 1977. He used this concept to prove the ID of Pareto and lognormal distribution. 

Steutel and van Ham [1979] gave the result for DSD where there was the shade of generalized 

convolution. Here we prove it again from the view of continuous-time GAR(l) process theory. 

Note that in (1) and (2), we require exp J C •
 S££$ j and exp J C • j to be a cf and LT for 

any C > 0 respectively. This is equivalent to say that they are the cf or LT of an ID distribution. 

Recall that the stationary innovation process, an IIP, is just a Levy process. It is reasonable to 

impose such requirements when we prepare to use them as the increment to construct the innovation 

process. In (3), we only require the condition holds for a positive constant C , not all constants. 

In fact, this is because that the discrete ID distribution with non-negative integer support is a 
—G' (0) 

compound Poisson and the constant C is just to guarantee that 1 + C • > 0. Therefore, we 

can pick C = G*(O) which equates the preceding inequality to 0. 

A SD distribution is ID (See Feller [1966b], p. 550-555). Accordingly, Steutel and van Harn 

[1979] proved that a DSD distribution is ID too. Since a discrete ID distribution is compound Pois

son, then a DSD distribution must be compound Poisson. This leads us to consider the compound 

Poisson as the marginal distribution, and consequently leads to the following useful theorem. 
Theorem 7.1.3 For a compound Poisson rv X with pgf 

G x ( 5 ) = exp{A[ 9(s)-l]}, A> 0 , 

where g(s) = qo + qis + q^s2 + ... + qkSk + ..., a pgf on the non-negative integers. If 

kqk - (k + l)qfc+i > 0, k = 1,2,3,..., 

then X is DSD. 
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Proof: Consider 1 + C (s-l)G'x(s) 
Gx(s) . By calculation, we obtain 

1 + C-
(s-l)G'x(s) 

Gx(s) 
= l + \C(s-l)g'(s) 

1 + XC{s - l)[qi + 2q2s + 3g3s2 + • • • + kqksk 1 + ...] 
oo 

(1 - XCqi) + XCYfiqk - {k + l)qk+1]sk. 
k=l 

Thus, 1 + C-( S - l ) G ' y ( s ) 

Gx(s) being a pgf is equivalent to 

1 - XCqi > 0, kqk - (k + l)qk+1 > 0, k = 1,2,3,.... 

We can always take C = A 1 to guarantee 1 — \Cq\ = 1 — q\ > 0. This completes the proof. 

Note that the conditions in Theorem 7.1.3 are also necessary because of Theorem 6.3.1 where 

we can take K from II. Now we give further results about SD and DSD which are not directly 

related to Theorems 7.1.2 and 7.1.3. 

We encounter many generalized convolutions in our study. We now consider whether these 

are SD or DSD. This leads to the following theorem. 

Theorem 7.1.4 Consider the real, or positive, or non-negative integer-valued generalized convo

lution. 

(1) If the base distribution of a real or positive-valued generalized convolution is SD, then the 

generalized convolution is SD. 

(2) If the base distribution of a non-negative integer-valued generalized convolution is DSD, then 

the generalized convolution is DSD. 

Proof: Apply the fact that the generalized convolution is the limit distribution for the sum of 

independent rv's from the base distribution. If the base distribution is SD or DSD, then, the 

distribution of the sum is SD or DSD (using the distributive law in Property 3.11). This leads to 

the SD or DSD of the generalized convolution. 

The same idea can be applied to the stochastic integral J0°° e-M*de(2) and /0°° e _ A t t * de(t), 

where the increment of the innovation process is SD or DSD. Theorem 7.1.2 stipulates the form 
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of cf, or LT, or pgf of the increment, which further indicates that they should be ID, but it does 

not require that the increment is SD or DSD. Here we consider these two particular innovation 

processes. 

Theorem 7.1.5 If the distribution of the increment of the innovation process in a continuous-time 

GAR(l) process is SD or DSD, then the stationary distribution of the continuous-time GAR(l) 

process with operator P I or II is SD or DSD respectively. 

Proof: The stationary distribution is the distribution of the stochastic integral J0°° e"^de(t) or 

J0°° e-^ * de(t), which is the limit of j J 2 - * 1 e~^de(t) or fQ

2~h e""' * de(t) as t2 - h -> oo. 

Let h = (*2 - h)/n, and Ae; = e{t\ + ih) - e{t\ + (i — l)h), i = 1,2,... ,n. Then by the 

commutative law and distributive law, 
n—1 n—1 

e-^de(t) = lim V ( l - phfAen^ = lim V ( 1 - phy[cAen^ + Yi] 
n—>oo L—4 n—too —' 

i=0 i=0 
/ n-1 \ n-1 

= c lim V ( l - phYAen_i + lim V ( l - phfYi 
\ n—>oo / n->oo f—̂  

• < 2 - t l 

i=0 / i=0 
n-1 

/•*2—*1 

JO 

i=0 
n-1 n-1 

2=0 j-o 
\ n-1 

Ji™ D1 - ^ * ^ n - * + Um £ ( 1 - /i/i)* * Yi 

= c * ( ^ 4 1

 e - « * &(*)) + Jim g ( l - M ^ * F 2. 

Because of the existence of J J 2 " ' 1

 e-"'de(i) and f,,*2"*1 e"^ * de(t), Um E"=o (1 ~ rf1* a n d 

lim ^ ( l - /z/i)* * 1; exist. This means that / 0 ' 2 _ t l e~^de(t) and / 0

t 2 _ t l * de(t) are SD and 
n—>oo 1 

DSD respectively. Accordingly, their limits are SD and DSD too. 

Remark: This approach works for the sum of a finite or infinite number of random variables. 

The key point in this approach is that the two decomposed parts should be independent; which 

may be naively neglected. For a finite sum, the two decomposed parts are of course independent. 
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For an infinite sum, since the limits of two independent sequences are still independent, the two 

decomposed parts are then independent. However, for a random sum, this approach will lead to 

two dependent decomposed parts like: 
N N N N 

X ± ^ Y i ± c . £ Y i + ^Zi±c-X + 'Ezi, 
i=0 i=0 i=0 i=0 

or 

N ( N \ N N 

i=0 \i=0 ) i=0 i=0 

Here AT is a non-negative integer rv. c • J2iLo ^ a n c l c * (^l2i=o ^ ) a r e dependent to the other part 

YliLo Such phenomena could happen in other situations like the variance mixture of the normal 

distribution. 

In other words, SD and DSD distributions have the closure property under the finite or 

infinite sum of independent rv's, but not under random sums. 
Next, we investigate the SD property for variance mixtures of the normal distribution. 

Theorem 7.1.6 For a variance mixture of the normal distribution with representation X = y/YZ, 

where Y is a positive rv with LT 4>Y{S) and independent of Z ~ N(0,1), if exp J C • ^ j is a LT 

for any C > 0, then X is SD. 

Proof: Recall that the variance mixture of the normal distribution has cf <px(s) = ^Y(S2/2). 

Hence, 
<p'x(s) = s<t>'Y(s2/2) 
<Px{s) 4>Y(S2/2) ' 

This leads to 

^•m-^-wzhA*-*®®}- c'-2a 

If for any C > 0, exp | c • ̂ 7^} is a LT, then exp |c • ffiffffi } is the cf of X' = y/Y'Z. where 

Y' has LT exp J C • By (1) in Theorem 7.1.2, X is SD. 

Note that an equivalent statement is that if Y is SD, then X is SD. One conclusion deduced 

by this theorem can be seen in Example 7.2. 
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For the SD distribution with positive support, it is of interest to investigate its discrete 

analogue; and vice versa. McKenzie [1987] implicitly mentioned this kind of relationship for a 

specific pair of distributions: the Gamma and the negative binomial; there his original purpose was 

to claim that the alternative pgf A(s) = G(l — s) is much helpful. The following theorem gives a 

complete explanation to his description. 

Theorem 7.1.7 If the positive rv X is SD, then its discrete analogue Y is DSD (see Definition 

2.6 for the discrete analogue). 

Proof: Assume X has LT fo(s) (s > 0) and Y has pgf Gy(s) (0 < s < 1), where Gy{s) = 

4>x(l — s) (0 < s < 1) or Gy(s) = (/>x(d{l - s)) (d > 0). Without loss of generality, we consider 

the modified version, namely the latter. Thus, we obtain (f>x(s) = Gy(l — s/d). This leads to that 

for 0 < c < 1, 
, , d e f GY(s) = 4>x(d(l-s)) = 4>x(d(l-s)) 

9 [ S ) Gy(l-c + cs) 4x(d{l-[l-c + cs])) foM(l-s))' 
and 

, , d j f <j>x(s) = Gyjl-s/d) = Gyjl-s/d) 
[ S ) (j>x{cs) Gy(l-cs/d) Gy(l-c + c[l-cs/d])' 

Thus, g(s) = h{d(l - a)) and h(s) = 5(1 - s/d). 

If X is SD, then h(s) = is a LT. Now we need to prove that g(s) = h(d(l - s)) 
is a pgf. First, g(0) = h(d) > 0 and g(l) = h(0) = 1. Secondly, we take derivatives for g{s): 

5 («)( 5 ) = ( - l ) n d n f tW(d(l - s)) > 0 for n > 1. These indicate that g(s) is a pgf, so Y is DSD. 

Open question: Conversely, for X, if the discrete analogue Y is DSD, is X SD? 

We can show that h(s) is C M when s E [0,1] and h(0) = g(l) = 1. But the difficulty is how 

to extend the domain of h(s) from [0,1] to [0,00). We leave it as a conjecture. 

This link between SD and DSD may help us to prove or disprove SD by looking at its 

discrete analogue or DSD by looking at its continuous analogue. 

In the following, we shall illustrate the applications of Theorem 7.1.2, 7.1.3 and 7.1.4 by 

some examples. Many of them have been shown in the literature, but some are new. First we look 

at the distribution with real support. 
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Example 7.1 (Logistic) The SD of the logistic distribution is proved in Sim [1993] where he 

proposed a discrete-time logistic GAR(l) process. Here we give another proof to illustrate the 

power of generalized convolution. The logistic distribution has cf 

Vx 

Hence, we obtain 

O O ^ O O j 

(s)=MX(iS)=n (1 _ { i s ? / k 2 ) = n ( i + S 2 / f c 2 ) -

<Px(s) k2 I k=l 
oo 2 

fc=l fc=l v 

- ^ 1^ 2 / 2 + 52 /2 ± ) -
k=l 

Now we need to show that for any C > 0, exp i^2C Y ( f c 2 / 2 + 2 2 / 2 } ^s a cf- Denote 

« s ) = e X p { 2 C | ( ^ - l ) } . 

Then 

- P { 2 C | : ( W | ^ - I ) } = ^ / 2 ) . 

T/iis suggests that exp{2C Y (fc /̂2+^2/2 ~ "0̂  ?S ̂E C^ °̂  ° v a r ^ a n c e
 M^URE °/ ̂ E

 normal 

distribution if fas) is the LT of a positive rv. 

Recall GCMED (see Section 2.3.3), where the LT is defined as 

exp < -as + [ (— — ) Uidu) \ = exp < - a s + / —•;—-—rU(du) > , 
[ 7(0,00) \U + S U) J [ 7(0,oo) « ( « + s) J 

where a > 0, / ^—-U{du) < oo. Taking a = 0 and rewriting its LT, we have 
7(0 ,00) u ( l + « ) 

( / - 0 - t f ( A i ) } = exp ( / - l ) C/*(dn)l , 
1^7(0,00) \ « + « / u J 1,7(0,00) V ^ + S / J 

exp 
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where U*(du) = u 1U(du) and [ —-—U*(du) < oo. It becomes (j)(s) if we choose the positive 
7(0,oo) 1 + u 

measure U*(-) such that it only has mass 2C on discrete points {k2/2; k = 1,2,3,....}. Obviously, 
oo 

Y 1 + f c 2 / 2 <
 0 0 • Hence, <j)(s) is a LT in GCMED family. This indicates that 

k=l . 1 

is a cf for any C > 0. By Theorem 7.1.2, the logistic distribution is SD. 

Since logistic distribution is in symmetric EGGC family, a natural question is how about 

other distributions in this family. This leads to the following conclusion for the symmetric EGGC 

family. 

Example 7.2 (symmetric E G G C ) A symmetric EGGC distribution has cf of form 

«2 r f „ 2 

'(0,00) 

where U(du) is a symmetric non-negative measure on 3? \ {0} satisfying 

/ —^—~U(du) < 00 and [ | \ogv?\U(du) < 00. 
M { o } 1 + u 7|«|<i 

Hence, it is the convolution of a N(0,d) and another distribution which has the cf 

We know that the normal distribution is SD. If we can prove the latter generalized convolution is 

SD, then the symmetric EGGC is SD. To do so, we consider the base distribution of the latter. It 

has cf 
u 

2 „ 2 « 7 2 
x2 + s 2 u2/2 + s2/2" 

This can be viewed as the cf of a variance mixture of the normal distribution with representation 

X = y/YZ, where Y has the LT 4>Y{S) = M " / 2 + s > the LT of an exponential. The exponential dis

tribution is SD (see Example 7.3). By Theorem 7.1.6, the base distribution is SD. Therefore, by 

Theorem 7.1.4, the symmetric EGGC is SD. 
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Besides the logistic distribution, other common members in this symmetric EGGC family 

include the t distribution, stable non-Gaussian distribution, and so on. 

In fact, in a more general case, EGGC was proved to be SD by Thorin [1978]. Also one can 

refer to Bondesson [1992], p. 107. 

Secondly, we turn to examples of distributions with positive support. 

Example 7.3 (Gamma) Consider the Gamma distribution which has LT 

Then for any C > 0, 

•> + s 

which is the LT of a compound Poisson with exponential distribution. By Theorem 7.1.2, the 

Gamma distribution is SD. 

Special cases are the exponential and x2 distributions. 

Example 7.4 ( G G C ) It was shown in Bondesson [1992], p. SO that a GGC distribution is SD. 

This is simply because that Gamma distribution is SD. We now revisit it from the view of the theory 

of continuous-time GAR(l) process. 

Recall GGC in Section 2.3.3. It has LT 

(f)x(s) = exp log 
(0,oo) \ U + S 

U{du) a > 0, 

where the non-negative measure U(du) on (0, oo) satisfies 

/ | logu\U(du) < oo and / u~lU(du) < oo. 

7(0,1] ./(l.oo) 

Without loss of generality, we take a = 0, because any degenerate rv on a point a is always SD. By 

calculation, for any C > 0, we have 

u + s '(0,oo) u + s 
- 1 U(du) } , 
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The conditions imposed on U(-) can lead to f U(du) < oo. It is indeed the LT of a 
•/(0,oo) 1 + u 

GCMED (see Example 7.1). By Theorem 7.1.2, GGC is SD. 

This big family includes a lot of well known distributions. Common members are Gamma, 

Pareto, strictly positive stable, lognormal, etc. 

Example 7.5 (inverse Gaussian) Consider the inverse Gaussian which has LT 

<Px{s) = exp 
2/i 2 

1/2' 
A, /i > 0. 

Then, for any C > 0, 

• * ( l . + - f * 

-1/2' 

By (6) in Theorem 2.2.8, it is a LT. Therefore, the inverse Gaussian distribution is SD. 

Example 7.6 (Mittag-Leffler distribution) The SD property of Mittag-Leffler distribution can 

be obtained from Jayakumar and Pillai [1993] where they construct a discrete-time Mittag-Leffler 

GAR(l) process. Here we will use Theorem 7.1.2 to give another proof. 

The Mittag-Leffler distribution has LT: 

1 

Hence, 
S(j)'x{s) 

Ms) = j - ^ , 

- T ^ - ^ l + s 7 ) - 2 

0 < 7 < 1. 

Ms) (1 + ^ r 1 

This means that for any C > 0, 

— 7 s 7 

1 + S T 
7 

1 
1 + S T 

1 -1 
l + st 

is the cf of a compound Poisson with the Mittag-Leffler distribution. By Theorem 7.1.2, the Mittag-

Leffler distribution is SD. 

Lastly, we study examples of distributions with non-negative integer support. We shall use 

the power of Theorem 7.1.3, which is very convenient when we know the pmf stipulated by g(s) 

in the exponent. We only apply the arithmetic operation and do comparison, instead of the pgf 

verification. 
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Example 7.7 (Poisson/some special compound Poisson) For Poisson, the pgf is Gx{s) = 

exp{A(s - 1)} (A > 0), thus, q\ = 1, qk = 0 (k > 1). Obviously, the conditions in Theorem 7.1.3 

are satisfied. Therefore, Poisson is DSD. 

Following are some examples of compound Poisson distribution. 

(1) with Geometric: 

The geometric distribution has the pgf 

9{s) = l ^ ± , 0 < g < l . " 
1 — qs 

Thus, qk = (1 — q)qk (k > 1). By algebra, we have 

kqk-(k + l)qk+1 = k{l-q)qk-{k + l){l-q)qk+l = (1 - q)qk[k - (k + l)q] 
k 

= (l-q)qk(k + l) 
k + 1 

If Q < 1/2, then kqk - (k + l)qk+i > 0 for all k > 1. Otherwise, some may be negative. 

Therefore, when q < 1/2, the compound Poisson with geometric is DSD, and when q > 1/2, 

the compound Poisson with geometric is not DSD. 

This leads to the result that GC I is DSD ifV(-) has zero measure on (1/2,1) by Theorem 

7.1.4. Refer to Section 2.3.3 for the pgf form of GC I. 

The compound Poisson with geometric distribution is the discrete analogue of the compound 

Poisson with exponential distribution. By Theorem 7.1.7, this result discloses that the con

tinuous analogue in the compound Poisson with exponential distribution (corresponding to 

q > 1/2 in discrete case) is not SD. However, to directly prove or disprove the SD of the 

compound Poisson with exponential distribution is not an easy job. 

(2) with another Poisson: 

The Poisson distribution has pgf 

g(s) = e«s-1\ 7>0 . 
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Thus, qk — fcT-e-7 (k > 0). This compound Poisson with another Poisson is called Neyman's 

Type A distribution. See Johnson and Kotz [1969], p. 186. By algebra, we have 

7 w _ 7 

qk+i = (fc+i)!e

 = _J_ 
qk ge" 7 k + V 

If 1 < 1> then it holds that qj^L < for all k > 1, which leads to kqk — {k + l)qk+i > 0 for 

all k > 1. Otherwise, some inequalities may not hold. Therefore, when 7 < 1, the Neyman's 

Type A distribution is DSD; and when 7 > 1, the Neyman's Type A distribution is not DSD. 

(3) with Katz family: 

It is defined by recursive probability system, i.e., the relationship between two successive prob

ability masses is 

To guarantee that the ratio is non-negative, k < ^ when 8 < 0. See Winkelmann [1997], 

p. 36, Johnson and Kotz [1969], p. 37. Some well known members in this family include 

Poisson, Negative Binomial, geometric, binomial, etc. 

Since 8 < 1, 1 - 6 > 0. Thus, ifa + 8<\, then a < 1 - 8 < k(l - 8), for k = 1, 2, 3,.. . . 

This leads to a + 8k < k for k > 1, and Qj^L < which indicates that the compound 

Poisson with Katz family is DSD. 

(4) with Yousry and Srivastava family: 

The recursive probability system has been expressed by three parameters as 

This results in the hyper-negative binomial model; see Winkelmann [1997], p. 37. When 

7 = 1, it becomes the Katz family. When 8 = 0, it leads to the hyper-Poisson distribution 

(see Johnson and Kotz [1969], p. 43)-

We want < ^ for all k>l. By algebra, we have 

gfc+i = a> + 8k 
qk 1 + k 

k = 0,1,2,...; a > 0; 8 < 1. 

qk+i = a + Bk 
qk fc + 7 ' 

k = 0,1,2 . . . ; a, 7>0 ; 8 < 1. 

(1 -8)k2 -{a + 8-i)k-a>0, k > 1; 

k > 1. 
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Let ko = , the integer part. Then the minimum of the left hand side will be reached 

at k = k0 or k =• k0 + 1. Therefore, if (k0 - 2(1-/3j) 2 ( 1 - / 

(ko + 1 - 2 ( i -^ | ) ' ~~ 2 ( 1 % ) _ ( 2 ( 1 - / ^ ) - ^ ' ^ E N
 comPound Poisson with the Yousry 

and Srivastava family is DSD. 

(5) with the Kulasekera and Tonkyn family: 

The recursive probability system for this family has been formulated as 

Qk+1 k = 1,2,...; a € 3?, 0 < 0 < 1. 

See Winkelmann [1997], p. 37. It includes the shifted negative binomial, the logarithmic series 

and the discrete Pareto distribution. 

We want 0 < for all k > 1. This is equivalent to 0 < (x£jfc) for a^ k > I-

Thus, it follows that for a + 1 > 0, 0 < (^)a+1, or for a + 1 < 0, 0 < 1. But in the second 

case, it always holds because 0 < 1. Therefore, when a + 1 > 0 and 0 < ( | ) a + 1 , or when 

a + 1 < 0, the compound Poisson with the Kulasekera and Tonkyn family is DSD. 

Example 7.8 (generalized Poisson) The pgf is 

Gx(s) = exp U (JTtr,(kri)k-1e-k«sk/k\ - 1 where 0 > 0, 0 < 77 < 1. 

l - „ e - " [ l + -

Thus, qk = r)(krj)h 1e kr>/k\ (k > 1). By algebra, we know that 

kkvke-kr, + fe+le-(fc+l), kkr)ke~kr> 
kqk - (k + l)qM = — - J j ^ [ = — — 

It is well known that ( l + is increasing to e as k —>• 00. Thus, 

1 - Ve-i (l + ̂  > 1 - ne1^ d= l(V). 

Since l'(rj) = -e1^+r]ei-v = - ^ - " ( i - ^ ) < 0 , l(rj) > = 1 - 1 • e 1" 1 = 1-1 = 0. This leads 

to kqk — (k + l)qfc+i > 0 for k > 1. Therefore, the generalized Poisson distribution is DSD. 
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Example 7.9 (negative binomial) The pgf is 

Gx(s) 1 - P 
1 — ps 

= exp \ 7 [log(l - p) x] 
log(l - ps) 
log(l - p) 

7 > 0, 0 < p < 1. 

T/ius % = -fciog(i-p) ( f c - T W s l e a d s t o t h a t for k - 1 ' 

kqk - (k + l)qk+i = k- -(fc + 1)- P ,fe+i 

log(l -p) -fclog[(l-p)] v " ' ^ - ( f c + l ) log[( l -p)] 

Hence, the negative binomial distribution is DSD. 

Example 7.10 (discrete stable) The pgf is 

Gx(s) = exp{-A(l - s)6} = exp{A[l - (1 - s)6 - 1]}, A > 0, 0 < 6 < 1. 

(1 -p ) >0. 

Hence, 9* = - f l (* - 1 - 9)/k] (k>l). It follows that for k>l, 
i=i 

-H(i-i-e) 

kqk - (k + l)9fc+i = i=i -(k + iy 

fe+i 
• n ( i - i - ^ ) 
i=i 

( & + i ) 

T\(i-l-9) r 

j = i 
(fc-1)! 

k-e 
-0T\{i-l-O) 

i=i 
k\ 

> 0. 

This shows that discrete stable distribution is DSD. 

Note that the negative binomial and discrete stable distributions are the discrete analogues 

of the Gamma and positive stable distribution respectively. Since the Gamma and positive stable 

distributions are SD, we can also conclude that the negative binomial and discrete stable distribu

tions are DSD by Theorem 7.1.7. Sometimes, like in the situation of logarithmic series and power 

series distribution, because it is very difficult to directly prove that Gx{s)/Gx{l — c + cs) is a pgf, 

we have to resort to Theorem 7.1.2 to prove the DSD feature. 

Example 7.11 (discrete Mittag-Leffler distribution) The DSD property of the discrete Mittag-

Leffler distribution can be derived from Pillai and Jayakumar [1995]. It also can be obtained by 
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Theorem 7.1.7 for the Mittag-Leffler distribution is SD. Now we try to prove it using Theorem 

7.1.2. 

The pgf of the discrete Mittag-Leffler distribution is 

G x ^ = i + d{i-s)V  d>^o<-r<i. 

Let g(s) = 1 + 7 _ 1 ( s - l)G'x(s)/Gx(s). Then, it follows that 

a(s) = l + 1 - H s - l ) j d { 1 - s V ~ l =1- d { 1 - S ) 1 = I 
g{s) 1 + 7 {s l J 1 + d ( 1 _ s ) 7 l + d ( l - a ) 7 1 + d(l - sp' 

This completes the proof. 

Example 7.12 (power series distribution) The pgf has form 

Gx(s) = s-l[l-(l-s)e], O < 0 < 1 . 

Consider the function 1 + (s — 1)^*^) — 7 — • By (1) in Theorem 2.2.3, it is a pgf. 

Therefore, the power series distribution is DSD. 

Example 7.13 (Zeta distribution) ThepgfGx(s) does not have closed form. However, l + (s — 

1) G*(J) is a pgf. See (4) in Theorem 2.2.3. This implies that Zeta distribution is DSD. 

Example 7.14 ( G N B C ) Because the GNBC is the limit distribution of sums of independent 

negative binomial rv's, and NB distribution is DSD, the GNBC class is DSD. 

Taking advantage of SD or DSD feature of a distribution, we sometimes can prove new LT 

or pgf. For example, suppose Zeta distribution is known to be DSD, then we can conclude that 

L(s) = 1 + C(s- (C chosen so that L(0) > 0) is a pgf, which we had spent a lot energy 

and time to prove in Section 2.2.1. 

Now we finish this section, with the discussion about the Tweedie exponential dispersion 

family. Tweedie model can be categorized as extreme stable, positive stable, Gamma, compound 

Poisson with Gamma, inverse Gaussian, Normal and Poisson. From previous examples, we know 

that the Poisson distribution is DSD, and the extreme stable, positive stable, Gamma, inverse 
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Gaussian and Normal distributions are SD. The only category left is the compound Poisson with 

Gamma, which can not always be SD but a subfamily of it is SD. One can refer to Example 7.7 to 

see the DSD feature of the compound Poisson with the geometric distribution, which is the discrete 

analogue of the compound Poisson with the exponential distribution. Only part of the family is 

DSD. Hence, we can not expect the whole family of the compound Poisson with Gamma to be 

SD. This fact tells us that constructing a steady state continuous-time GAR(l) process with the 

margins of the compound Poisson with the Gamma distribution may be futile if we just consider 

the constant multiplier operation. A possible approach to solve this problem may be to resort to 

the GSD classes proposed in the next section. 

7.2 Generalized self-decomposable, generalized discrete self-

decomposable classes and their infinite divisibility property 

In the previous section, we have considered the pair of binomial-thinning and constant multiplier 

stochastic operation (II, P I ) , which induce the DSD and SD. Now we turn to other pairs of 

extended-thinning operations: (12, P2), (13, P3), (14, P4), (15, P5). These will lead to new 

concepts. 

In general, for a continuous-time GAR(l) process under steady state, the following kind of 

decomposition holds: 

X = ( e - ^ - h A ®X+ f 2 h (e-^)K ® de(t), LI > 0, h < t2, 
^ ' K Jo 

or in another form 

X=(c)K®X + E{h;t2), cG (0,1). 

With K is from (II, P I ) , they are called DSD and SD. Naturally, such a question arises: how 

about other extended-thinning operations? It seems that this is new to researchers. 

Therefore, we introduce the generalized self-decomposability and generalized discrete self-

de-composability in the following. 
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Definition 7.1 (Generalized discrete self-decomposability (GDSD)) Suppose X ~ F. Let 

{K(a>)} be a family of self-generalized distributions with non-negative integer support. If for each 

c, 0 < c < 1, there exists a non-negative integer-valued rv ec such that 

X= (c)K®X + ec, 

where ec is independent of X, then the probability distribution F is called generalized discrete self-

decomposable (GDSD) with respect to {K(a)}. 

This definition is equivalent to that G x{s) / G x{G K{S; C)) is a pgf for each 0 < c < 1. 

Definition 7.2 (Generalized self-decomposability) Suppose X ~ F. Let {K(a)} be a family 

of self-generalized distributions with positive support. If for each c; 0 < c < 1, there exists a 

non-negative rv ec such that 
X= {c)K®X + ec, 

where ec is independent of X, then the probability distribution F is said to be generalized self-

decomposable (GSD) with respect to {K(a)}. 

An equivalent definition is that X is GSD with respect to {K(a)} iff for each c, 0 < c < 1, 

^x{s)/<f>x{— logfov'^; c)) i s the LT of a probability distribution. 

An obvious fact is that for a non-negative integer GDSD (DSD) rv X or positive-valued 

GDS(SD) rv X, it is always stochastically larger than (c)K ©X, i.e., 

(c)K®X^stX. 

This is because ec > 0 and 

Pr[X<x] = Pv[(c)K®X + ec<x] < T?i[{c) K ® X < x]. 

The self-generalized distribution family may consist of many members although currently 

we only know of the subclasses from II to P5. Each subclass could be associated with a fixed 

parameter or parameter vector. For example, the distributions from 12 have an associated fixed 
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parameter 7 where 0 < 7 < 1, and the distributions from 15 have an associated fixed parameter 

vector (1,9) where 0 < 7 < 1 and 9 > 1. To distinguish these GDSD and GSD families associated 

with different self-generalized distributions as well as their fixed parameter or parameter vector, 

we shall adopt the notations like: GDSD(I2( 7)), GDSD(I3), GDSD(I4(0)), GDSD(I5( 7,0)), and 

GSD(P2( 7 )) , GSD(P3), GSD(P4(0)), GSD(P5(7,0)) to clearly indicate the attribute of associ

ated self-generalized distribution and its corresponding fixed parameter or parameter vector. The 

label number can be extended for classes of self-generalized distributions discovered in the future. 

Hence, we generally denote a specific GDSD or GSD class as GDSD(Ii(0)) and GSD(Pi(0)) re

spectively. Here 0 is the corresponding fixed parameter or parameter vector. In addition, the union 

of all members from a self-generalized distribution family over the space of the fixed parameter or 

parameter vector is denoted as GDSD(Ii) or GSD(Pi), namely 

GDSD(Ii) = (J GDSD(Ii(0)) and GDSD(Pi) = (J GDSD(Pi(0)). 

0 9 

In previous sections, we have seen many examples where stationary distributions of the 

continuous-time generalized AR(1) processes exist; these mean that the resulting GDSD or GSD 

classes corresponding to their extended-thinning operations are not empty. However, we are not 

sure if the extended-thinning operation associated with a family of self-generalized distributions 

leads to a GDSD or GSD class. Perhaps some of these classes are empty. The following theorem 

presents a necessary condition for non-empty GDSD or GSD classes. 

Theorem 7.2.1 Suppose a family of self-generalized distributions have pgfGK(S; a) or LT 4>K{S;O>). 

(1) A necessary condition for the existence of a GDSD class is that GK{S; a) > s for all 0 < s < 1 

and 0 < a < 1. 

(2) A necessary condition for the existence of a GSD class is that C/)K{S;CX) > e~s for all s > 0 

and 0 < a < 1. 

Proof: The proofs of the two cases have the same reasoning. To save space, we only show the 

proof of (1). 
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If X is GDSD with respect to the self-generalized distribution family, then X = {OL)K *X + ea 

for all 0 < a < 1, where ea is a non-negative integer random variable. Hence (CX)K * X -<st X 

{(CX)K * X is stochastically smaller than X ) , and 

G ( a) K *x(s)=E (>)***) >E(sx) = Gx(s), f o r a l l O < s < l , 

because h(x) = sx is decreasing in x for all 0 < s < 1. Since G(a)K*x(s) = GX(GK(S; a)) and 

is increasing in s, Gx(G/<-(s; a)) > Gx(s) iff GK{S; a) > s. 

In the study of SD and DSD, we found that the discrete analogue of positive SD is DSD. 

This is also true for each pair (GDSD(Ii(0)), GSD(Pi(0))}. 

T h e o r e m 7.2.2 If the positive rv X is GSD(Pi(9)), then its discrete analogue Y is GDSD(Ii(9)). 

(see Definition 2.6 for the discrete analogue). 

Proof: Assume X has LT (j>x(s) (s > 0) and Y has pgf GY(s) (0 < s < 1), and Gy(s) = 

4>x{^ — ds) (0 < s < 1). Thus, 4>x(s) = Gy ( l - s/d). For each pair of the self-generalized 

distribution with non-negative integer and positive support (Ii, P i ) , the relationship between their 

pgf and LT are 

- log4>Kl(s; a) = 1- GK2{1 - s;a). 

where Kx is from (Pi(0)) and K2 is from GDSD(Ii(0)); see Section 3.3. It follows that for 

0 < c < 1, with d = 1, 

, s def GY{s) = </>x(l ~ s) = <ftx(l - s) 
9 [ S ) ~ GY(GK2(s;c)) ~ <Px(l-GK2(s;c)) " 4>x{-log4>Kl(1 - s;c))' 

and 
n d g f <j>x(s) = GY(l-s) = G y ( l - s ) 
[ S ) ^ ( - l o g f o ^ c ) ) GY(l + log4>Kl(s;c)) GY{GK2(1-S-C)Y 

Thus, g(s) = h(l - s) and h(s) = g(l - s), 0 < s < 1. 

If X is GSD(Pi(0)), then h(s) = M_f0^l ( s ; c ) ) is a LT. Now we need to prove that 

g(s) = h(l - s) is a pgf. First, g(0) = h(l) > 0 and g(l) = /i(0) = 1. Secondly, we take derivatives 

for g(s): g^(s) = (-l)n<in/i(n^(1 — s) > 0 for n > 1. These indicates that g(s) is indeed a pgf, so 
Y is GDSD(Ii(0)). 
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However, the converse is not true. A counterexample is shown in Example 7.18. 

The GDSD and GSD classes are always associated with a self-generalized distribution and 

its fixed parameter or parameter vector. Bearing this fact in mind, we shall suppress the associated 

self-generalized distribution and its fixed parameter or parameter vector in the rest of this section, 

i.e., leaving li(0) and Pi(#) out from the previous notations, unless we have special reason to 

address them. This may lead to simpler writing. 

Similar to Theorem 7.1.2, we have the following result, which is useful in proving the GSD 

and GDSD. 

Theorem 7.2.3 Let X be a non-negative rv. 

(1) Assume X has positive support with LT </>x(s). Let K be a positive self-generalized rv, and 

H(s) = g£ [- log^r (a, a)] . If exp {c • H^sja)} is a LT for all C > 0, then X is GSD. 

(2) Assume X has non-negative integer support with pgf Gx{s). Let K be a non-negative integer 

self-generalized rv, and H(s) = 8 G ^ ' a ) . If 1 + C • g (g ) CX ( a ) is a pgf for some C > 0, 

then X is GDSD. 

Proof: Like Theorem 7.1.2, for any 0 < c < 1, we express </>(s)/</>(- log fo(s; }), or G(S)/G(GK(S; C)) 

i n t e n o s o f e x p { c . ^ } , o r l + C . ^ f . 

(1) First, it follows that 

H'(-log 4>K(s; B)) = ^ [ - logfof ( - logfor (s ;0) ,a ) 
a=l 

= ^ [ - i o g ^ ( , ; ^ ) ] | a = i = ( |^ [ - iog fo ( 5 ;7 ) ] | 7 J /5 

A[_l O g^( a ;0) ] ) p \ 

Since exp [c • H{ffiM } is a LT for any C> 0, 

/ fl H{-logfo(a;B)WX{-loSMs;B)) 1 \ 
e x p U 4>x{-togM*;B)) i*) 
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is a LT too. This comes from the idea of generalized convolution. We compute the integration 

in the exponent, 

1,1 H(-\og</>K{s;B))<l/x{-log<l>K{s;8)) 1 

exp 

= exp f. 
fo(-logfo(5;/3)) 6~dP 

B (jfe [- log <j>K{s; B)}) 4>'x{-log <j>K{s; 8)) 

fo(-logfo(s;/3)) 
dB 

f f1 <jSx(-log<j>K(s;B))Jf \ 

= e x p { / ^ foRogfo(^)) ( _ g ( s ; )}j 

= e x p | ^ d logfo ( - log fo ( s ;^ ) ) | 

= exp j logfo ( - l og fo (s;/3)) c | 

= exp{logfo(s) - logfo(-logfo(s;c))} 

= ^ ( 5 ) 
fo(-logfo(s;c))' 

which means that ^ x ( - f 0 g ^ - ( j - c ) ) i s a LT. Hence, X is GSD. 

(2) Similarly, it follows that 

H{GK(s;B)) = ^[GK(GK(s;B),a)} 

d_ 
da 

[ G K ( S ; a f f l ] | a = 1 = ( ^ [ G X ( " ^ ) ] | 7 = ( ! ) / 3 

- "(I|GK(S;/?)1)-
Since 1 + C • fl^G^ is a pgf for some C > 0, 

ff(G^;l))Gx(G^(5;/?)) 
Gx(GK(s;B)) 

from the extended-thinning operation, is a pgf too. By the mixture operation in (3) of 

Proposition 2.2.2, it follows that 

g(s) = [-logo}'1 £ ( l + C 
H(GK(8;B))G'x(GK(s1pjy\ 1 ^ 

GX(GK(S;B)) B 
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is a pgf. By algebra, we obtain 

g(s) = [-
1 0 § C ] L [C GX(GK(S;0)) + 1 

0~ld0 

Thus 

ri aufR

s'p>G'(GK(s;0)) fl 

r , ? * { ? „ = exp {log(c-i)C-'[g(s) - 1]} , 
GX{GK{S\C)) 

the pgf of a compound Poisson distribution. Hence, X is GDSD. 

Remark: Theorem 6.3.1 is the necessary part of the results, while Theorem 7.2.3 is the sufficient 

part. Also the conditions in the following Theorem 7.2.5 are necessary too when we pick up K 

from 12 in Theorem 6.3.1. 

Corollary 7.2.4 Let {K(a) : 0 < a < 1} be a family of self-generalized rv's. 

(1) If it leads to extended thinning operators and a GSD class, then 

> 0, 0 < s < oo. H(s) = — [-log (j)K{s, a)] 
a=l 

(2) If it leads to extended thinning operators and a GDSD class, then 

dGK(s;a) 
H(s) = < 0, 0 < s < 1. 

da 

Proof: 

(1) Since <j>'x{s) < 0, J^f) < o. To guarantee that exp {c • H ( ^ ( s ) j is a LT for all C > 0, it 

must hold that H(s) > 0 for all 0 < s < oo. 

(2) Because L(s) = 1 + C • H{s)G'x(s)/Gx{s) is a pgf for some C > 0, 0 < L(s) < 1. Since 

G'x(s) > 0, Gx(s) > 0 for all 0 < s < 1, it must hold that H(s) < 0. 
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In summary, both cases show that exp j j and exp j j are the LT and 

pgf of ID distributions. Thus, for K being a positive-valued self-generalized rv, according to 

Theorem 2.2.6, a necessary and sufficient condition for X being GSD is that H(s)^^ is completely 

monotone. For K being a non-negative integer self-generalized rv, we can further derive the results 

similar to Theorem 7.1.3. Here we give the corresponding result for K being from 12. 

Theorem 7.2.5 For a compound Poisson rv X with pgf 

Gx(s)=exp{\[g(s)-l}}, A > 0, 

where g(s) = qo + qis + q2s2 + ... + qksk + ..., a pgf on the non-negative integers. If 

(1 + 7 )g i - 2q2 > 0, +7)9* - (*: - l)79fc-i - (*: + > 0, A; = 2, 3 , . . . , 

then X is GDSD(I2(^)). 

Proof: Consider 1 + C • ̂ ~(Y-7)Gx̂ ^̂  • By a lg e b r a > w e obtain 

C (1 -is)(s - l)G'v-(s) , AC . 1 N „ , 
1 + - i n < \ = 1 + i (l-js)(s-l)g'(s) 

1 - 7 Gx{s) 1 - 7 
AC 

= 1 + (1 - -ys)(s - l)[qi + 2q2s + 3o3s2 + . . . + kqksk~l + ...] 
1 - 7 
AC • ' 

7 

= 1 + T ^ t 1 ~ 7 S ) + Sfc«* - (fc + l)<?fc+i]sFCJ 

AC / 
= 1 + z ( - 91 + [(1 + 7)9i - 2g2]s + [2(1 + 7)92 - 79i •- 3g3]s2 

1 — 7 \ 

+[3(1 + 7)93 - 2792 - Mi]s3 + ••• + [fc(l + 7)9fe - (fc - l)79fe-i - (fc + l)9fc+i]*fc + • • • ) 

= ( l - f = ^ i ) + ([(! + 7)9i - 2g2]s + [2(1 + 7)92 - 791 - 3g3]s2 

+[3(1 + 7)93 - 2792 ~ 4g4]s3 + • • • + [fc(l + 7)9fc - (fc - l)79fe-i - (fc + lhk+i]sk + • • •) 

= (l - r^-Qi) + T ^ " f>* + l)*< ~{-k~ ^ f c - i - (fc + l)9fc+i] • 

Thus, that it is a pgf is equivalent to 

CA 
1 - ; 9 i > 0 , fc(l+7)?fc-(fc-l)79fe-i-(fc + l)9fc+i>0, fc = l , 2 , 3 , . . . . 

1 - 7 
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We can always take C = ^-j1 to guarantee 1 — jz^qi = 1 — qi > 0. This completes the proof. 

Recall that GDSD(12(7)) is induced by a non-negative integer self-generalized rv K from 

12, which has pgf of form 

GK{s;a) = r— r—, 0 < a < 1, 
(1 — 07) - (1 — a)7S 

where 7 is fixed and 0 < 7 < 1. Hence, the GDSD(12) is a big class consisting of subclasses 

associated with the fixed parameter 7. Thus, 

GDSD(I2) = (J GDSD(I2( 7)). 
7G[0,1) 

Since when 7 = 0, K becomes from II , we have DSD.=GDSD(I2(0)) as the special boundary case. 

Corollary 7.2.6 For a compound Poisson rv X with pgf 

Gx(s)=exp{X{g(s)-l}}, A > 0, 

where g(s) = qo + qis + q2s2 + . . . + qkSk + . . . , a pgf on the non-negative integers. If q\ — 2q2 > 0 

and X is GDSD(I2(>y)), then X is DSD. 

Proof: We can rewrite the conditions in Corollary 7.2.5 as 

qi ~ 2q2 > -79 i , kqk - {k + l)qk+i > j[(k - l)qk-X - kqk], A; = 2,3, . . . . 

Since X is GDSD(12 (7)) and q\ - 2q2 > 0, we can conclude by induction that 

kqk - (k + l)qk+i > 0, k = 1,2,3,.... 

By Theorem 7.1.3, X is DSD. 

As for the ID property, Steutel and van Harn [1979] (Theorem 2.2) proved that a DSD 

distribution is ID. Their idea was to express the pgf, G(s), of a DSD distribution in an exponential 

form which is the pgf of a compound Poisson. Specifically, it takes advantage of Theorem 6.3.1 so 

that exp jH (~Gxfii) S^ } i s the pgf of an ID distribution. Thus, it follows that 

e x p { ^ ^ } = e x p { A [ 9 ( S ) - l ] } , 
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where g(s) = qo + Qis + q2s2 + . . . + qkSk + ..., a pgf. This indicates that 

H(s)G'x(s) g^( a ) A[ g( S) - 1] 
GX(S) - A ^ ) - 1 J ' o r c ^ y - • 

By integration, 

This leads to Gx(s) = e x p j - ^ A ^ f f ( i ) ^ " j - F o r D S D ' = u ~ L W e c a n e x P a n d 

X^9H{v)1^ m t e r m °^ u a n d integrate it to obtain a new power series in s. A l l coefficients in the new 

power series are easily proved to be non-negative and the sum of them are finite. However, for 

other self-generalized distributions with non-negative integer support, it is not easy to generalize 

this idea, because we are not clear the form of H(u). Hence, their method is restricted by the form 

of H(u). To prove the ID property for a GDSD distribution, we have to resort to other approaches. 

Feller [1966b], p. 550-555, proved that a SD distribution is ID by taking advantage of a "null 

array", which is a special triangular array: 

Xi,n, X2,n, X3tTl, Xr^n\ n = l , 2 , 3 , . . . , rn is finite. 

A l l of them are independent rv's. This "null array" is defined as that for given e > 0 and SQ > 0, 

it has 

I 1 ~ <Pxi)n(s)\ < e, |s |<so, * = l , 2 , . . . , r „ ; 

for all n sufficiently large. Denote the row sum Sn = XijU + • • • + Xrn^n. Then, Theorem 1, on 

page 550 in Feller [1966b], shows that if Sn + 0n tends in distribution to a rv U, then U is ID. Here 

{/3n;n € J\f} is a sequence of real constants. Without any difficulty, we can modify the definition 

of "null array" for a non-negative integer rv triangular array and a positive rv triangular array by 

replacing their cf's with their pgf's or LT's respectively, namely for given e > 0 and SQ > 0, 

0 < 1 - G X i , n ( s ) < e, , s 0 < s < l , t = l , 2 , . . . , r „ ; 

and 

0 < 1 - 4>Xin (s) < e, 0 < s < s0, i = 1,2, . . . , r n ; 
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for all n sufficiently large respectively. In principle, these new definitions are equivalent to their 

original definitions. Therefore, for these two particular types of "null arrays", Theorem 1 on page 

550 in Feller [1966b] is still valid. 

In the following theorem, we shall follow Feller's idea to show the ID property for both of 

the GDSD and GSD classes. 

Theorem 7.2.7 Let K be from a self-generalized distribution. It follows that 

(1) if K is a non-negative integer rv with pgf GK^S^O) continuous in a in [0,1], then a GDSD 

distribution is ID; 

(2) if K is a positive rv with LT <fo(s;a) continuous in a in [0,1], then a GSD distribution is 

ID. 

Proof: 

(1) Assume G(s) = Gx{s) is the pgf of a GDSD distribution with non-negative integer support. 

X is a rv from this distribution. Note that GK{S; 0) = 1 and GK{S; 1) = s. Since GK{S; a) is 

continuous in a in [0,1], The following identity always holds: 

G(s) - G{G«{^))XG(GK(s^n))X *G(GK *G{GK {,•,*?)) 

,G(GK (*;$)) v G(GK(s;*=±)) G(GK(s;*)) 
- G(GK G(GK(s;$) "' G (GK {s;*=*)) G{GK{a;*=±))' 

(7.2.1) 

where n = 1,2,3,.... When X is GDSD, this identity has the following explanation: 

X = ( — ) ®X + E U 

±Z1\ © X I ( ^ ) ®(^-) ®X + E 2 = ( ^ ) ®X + E 2 , 
n )K \ n - l J K \ n )K \ n JK 

= QAS*****- 1-®*****- 1'  < 7- 2 : 2 )  
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where E\, E%, ..., En-\ have respective pgf's 

E l [ ) ~ G(GK(s;^)Y G E A S ) - G(GK(s;^)Y ' " ' ~~ G (GK ( S ; 

Taking the sum for these equalities in (7.2.2) and computing the pgf for the left hand right 

hand sides, assuming independence, yield 

GX(S) x G ( n ^ e x ( s ) x • • • x G(1)k9X(S) 

= G7n=i) @x{s) x ••• xG(A) @ X { S ) X G ( L ) g I ( s ) x G £ l ( s ) x . . . x G £ „ _ 1 ( s ) . 
\ TL / V TL / V TL J 

By substitution, this leads to (7.2.1). This means that each factor (a ratio) in (7.2.1) is a pgf. 

Note that it also shows a decomposition for X: 

X=(^ ®X + En-l + --- + E2 + Ei. 

Hence, for each n G JV, X can be seen as the sum of n independent rv's 

Xi>n, X2tni -^3,rn • • • > Xn^n. 

Therefore, it forms a triangular array, and the sum of each row has the same GDSD distri

bution. If we can prove that this triangular array is a "null array", namely 

0 < 1 - GXiJs) < e, s 0 < s < l , t = l , 2 , . . . , n ; 

for all n sufficiently large, then, by Theorem 1 on page 550 in Feller [1966b], X is ID. 

By Property 3.5, GK(S;(X) is uniformly continuous in a in [0,1]. Hence, G(GK(S;OC)) is 

uniformly continuous in a in [0,1]. Meanwhile, the pgf G (GK (S; a)) is also uniformly con

tinuous in s in its range [0,1]. Since GK(S;0) = 1 and G(s; 1) = s, GK{S;O) is bounded 

away from 0 for so < s < 1 and 0 < a < 1. Hence G(GK(S; a)) is bounded away from 0 for 

so < s < 1 and uniformly continuous in a. Therefore, given e > 0, for n sufficiently large, 

Vso < s < 1, i = 1,2,..., n, 

G ( C . ( , i ) ) - G ( G K ( S ; i ± i ) ) ] / G ( G . ( S i i ) ) < £ , 

and the triangular array is a "null array". This completes the proof. 
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(2) Assume 4>(s) is the LT of a GSD distribution with positive support. I is a rv from this 

distribution. Consider the identity: 

l \ \ f ( - l o g f o . , , ^ ( - l o g f o ( « ; * r ) ) ^ J y * ( 1 \ V , f - l o g t o 5;^)) fo-jogfoi^VJI 
= ^ - log fo ^ ; - j j x ^ ^ ^ ^ } x • • • x H _ ^ ^ ( s ; ^ } } 

fos) 

4>{- l o g f o ( a ; 2 = i ) ) 

</> ( - l o g f o ( s ; i ) ) < / > ( - l o g f o ( s ; f ) ) ^ _ 0 ( - l o g f o ( a ; 2 ^ ) ) 

log foe (*;£)) X l o g f o (s;^)) </>(-log<fo(S;^)') 
„ ^ ( - l o g to («;£)) 

(7.2.3) 

> ( - l o g to (s-^)Y 
n = 1,2,3,.... 

Because 

fo-logto(s;ff)) = fo-log to (g;/3)) a 
4>(-log<^K(s;a)) ^ ( - l o g f o ( - l o g f o ( 5 ; 0 ) ; f ) ) ' B . 

and X is GSD, the right hand side is a LT. This indicates that each ratio in (7.2.3) is a LT. 

Hence, for each n £ Af, X can be seen as the sum of n independent rv's 

Xl>n, X2tn, -^3,ni • • • ) Xn<a. 

Therefore, it forms a triangular array, and the sum of each row is distributed in the same 

GSD distribution. 

The remainder of the proof is exactly the same as in (1). 

Accordingly, we can obtain the following results for GSD and GDSD which correspond to 

those for SD and DSD. 

Theorem 7.2.8 Consider the positive or non-negative integer-valued generalized convolution. 

(1) If the base distribution of a positive-valued generalized convolution is GSD, then the generalized 

convolution is GSD. 

(2) If the base distribution of a non-negative integer-valued generalized convolution is GDSD, then 

the generalized convolution is GDSD. 
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Proof: Applying the fact that the generalized convolution is. the limit distribution for the sum 

of independent rv's from the base distribution. If the base distribution is GSD or GDSD, then 

the distribution of the sum is GSD or GDSD. This leads to GSD or GDSD for the generalized 

convolution. 

Theorem 7.2.9 If the distribution of the increment of the innovation process in a continuous-time 

GAR(l) process is SD or DSD, then the stationary distribution of the continuous-time GAR(l) 

process is SD or DSD respectively. 

Proof: Apply the same reasoning as the proof of Theorem 7.1.5. 

Next, we turn to some concrete examples. Basically, we are focusing on GDSD(I2(7)) using 

Theorem 7.2.5 and GSD(P2(7)) with Theorem 7.2.2. This is enough to illustrate the concept of 

GDSD and GSD for the general cases. More examples in other situations are under study. 

Example 7.15 (negative binomial) The NB distribution can be viewed as a compound Poisson 

with logarithmic series distribution. The NB(0,q) has pgf 

GX(s) = exp j/3 [log(l - q)'1} ^ " f f i " 1 } - 0 > 0, 0 < q < 1. 

Thus g(s) = ^gY^lffi and Qk = _fciog(i-g) — ^ o w w e w a n t to check if it belongs to 

GDSDiVl^)). By verifying the conditions in Theorem 7.2.5, we obtain two inequalities: 

( l + 7 ) " 9 > 0 , (1 + 7)<? - 7 - <72 >0. 

The first one always holds. The second one leads to 7 < q < 1. Hence, for any q € (0,1), we can 

always find a 7 such that 7 < q. This leads to that negative binomial belongs to 

NB(/3,g) G f | GDSD(I2( 7)) C GDSD(I2). 
7€[0,«] 

Hence, any negative binomial is GDSD(I2). 

Example 7.16 (compound Poisson with geometric) The geometric distribution has the pgf 

g(s) = -5—̂ -, 0 < q < 1. 
1 — qs 
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Thus, qk — (I - q)qk {k > 1), and 

kqk -{k + 1)%+1 = *(1 - q)qk ~ (k + 1)(1 - q)qk+l = (1 - q)qk[k - (k + l)q], k > 1. 

We want 
i 

9i - 2g2 > - 7 9 i , *9* - + > 7 P ~ l ) ? f c - i A ; = 2,3 , . . . 

so that this compound Poisson distribution can be GDSD{12{ry)). These inequalities lead to 

l + 7 > 2 9 , ( < ? - 7 ) ( l - 9 ) f c > 9 2 - 7 , * = 2,3, . . . , 

or in a uniform expression 

(q - - q)k > q2 - 7 , A; = 1,2,3, 

2 2 

If q < then k < ^J^^^, so these inequalities won't hold when k > ^ J ^ , ^ • Hence, it is 

necessary that q > 7. To guarantee all inequalities hold, it suffices that 1 + 7 > 2q when k = 1, i.e., 

7 > 2q — 1. Therefore, in summary, 7 should satisfy that 

max(0,2q - 1) < 7 < g, 0 < q < 1. 

If q < 1/2, t/ien max(0,2q — 1) = 0, taking 7 = 0 is enough. This will lead to the conclusion 

that when q < 1/2, i/ie compound Poisson with geometric distribution is GDSD(I2(0))=DSD, 

consistent with our claim in the previous section. Besides, it also belongs to any GDSD(I2('j)), 

where 0 < 7 < q. 

If q > 1/2, max(0,2q — 1) = 2q — 1, i/ien we can always take at least 7 = 2q — 1 > 0. 
Under this situation, the compound Poisson with geometric distribution won't belong to DSD, but 

is GDSD{\2{-y)) with 2q - 1< 7 < q. 
In summary, the compound Poisson with geometric distribution always belong to GDSD(12). 

Example 7.17 (discrete stable) The pgf is 

, Gx(s) = exp{-A(l -s)6}, A>0, 0 < 6 < 1. 
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Thus, G'x(s)/Gx(s) = X9(l -s)9'1. Now consider the class GDSD(I2(*y)). According to Table 

6.1, H(s) = (1 -7 ) _ 1 ( s - 1)(1 -7s). Applying (2) of Theorem 7.2.3, we consider 

L(s) = 1 + C • (1 - 7 ) - 1 ( s - 1)(1 - 7a)A0(l - s)e~l = 1 - C • X9(l - 7 ) _ 1 ( 1 - js)(l - s)e. 

Taking C = (A#) _ 1(l — 7), we have 
00 

L(s) = l-(l-jS)(l-s)0 = l _ ( l - 7 s ) (1 - 5 3 6^') 
00 00 00 

= 7 5 + E bjsJ - 7 E = (7 + ^ i ) 5 + _ ibj-ijs3, 

w/iere 61 = 9 and bj = 9U{=l(l ~ for j > 2. Since bj/bj-i = (j - 1 - 0)/j = 1 - (1 + 9)/j is 

increasing in j, L(s) is a pgf 2/7 < 62/&1 = 1 — (1 + #)/2 = (1 — 9)/2. Hence, when 7 < 1/2 and 

9 < 1 - 27, X is in GDSD(I2(j)). 

Example 7.18 (Counterexample of the converse of Theorem 7.2.2) The continuous ana

logue of discrete stable (see Example 7.17) is positive stable with LT 

4>Y{s) = exp{-Xss}, A > 0 0 < <5 < 1. 

the positive stable LT. cf)Y(s)/4>Y(S) = — Ss6-1. For P2, according to Table 6.2, we have 

H(s)<t>'Y(s)/<f>Y(s) = -8(1 - 7 + is)ss/(l - 7). 

Let x(s) = ^ ( l — 7 + 7s) = (1 — j)s5 + 7s5"1"1. Then, x is not completely monotone ifO < 7 < 1 

since 

x'(s) = (l-1)8s5-l+1(8 + l)ss >0, 

X"(s) = (1 - 1)8(8 - l)ss~2 + 7(,y + l)Ss5~\ 

and x"(s) > 0 for s sufficiently large. By Theorem 2.2.6, exp{—C • x(s)} can not be a LT. Thus, 

according to (1) of Theorem 7.2.3 and (1) of Theorem 6.3.1, the positive stable is not GSD(P2(^)) 

for any 0 < 7 < 1. 

This is an example where the continuous distribution is not GSD but the discrete analogue 

is GDSD [when 7 < (1 - 8)/2]. 
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7.3 Relationships among the classes of generalized self-decomposable 

and discrete self-decomposable distributions 

Relationships among the GDSD and among the GSD classes are of interest. One may wonder if 

one covers another, or if they are overlapping or disjoint. The difference between two classes will 

certainly appear in modelling, namely leading to different model classes. In general, it's hard to 

answer such question. In this section, we shall particularly investigate the relationship among the 

class of GDSD(I2), as well as among the class of GSD(P2). From this special study, we may have 

some impression on and partially answer this issue. 

First, we look into GDSD(I2). As a special case, it includes DSD=GDSD(I2(0)). But 

in general, it consists of all GDSD(12(7)), where 0 < 7 < 1. A natural question is what's the 

relationship between DSD and GDSD(I2(7)), for a fixed 7. Although Theorem 7.1.3 and Theorem 

7.2.5 offer conditions for DSD and GDSD(I2(7)), it won't help us because we can't deduce one 

from the other. Hence, we have to study some special members to investigate the relationship 

between DSD=GDSD(I2(0)) and GDSD(I2(7)), where 0 < 7 < 1. 

(1) Do all distributions in DSD belong to GDSD(I2(7))? 

Let's consider the Poisson and Neyman's Type A distribution. The latter is the compound 

Poisson with another Poisson. 

The Poisson has pgf Gx(s) = ex^~^ (A > 0). In terms of the pgf form of the compound 

Poisson, qi = 1, qk — 0, k > 2. Thus, q\ -2q2 = qi > 0 and 2q2 - 3% = 0. For any 7 > 0, it 

never holds that 2q2 — 3^3 > 7(91 — 2q2). By Theorem 7.2.5, the Poisson distribution doesn't 

belong to GDSD (12 (7)) for 0 < 7 < 1. 

The Neyman's Type A distribution has pgf Gx(s) = exp {A (e^ 5 - 1))} (A, r\ > 0), that is 
k 

qk = ^|-e_?? (A; > 0). Hence, qk+i = i^qk f° r k > 1. We check if for any 0 < 7 < 1, 

qi - 2q2 > -79 i , kqk - (k + l)qk+i > j[(k - 1)^-1 ~ kqk], /c = 2,3, 

These leads to 

l > t j - 7 , 7/c2 - {i + jr] + rj)k + r]2 < 0, A: = 2,3, . . . . 
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For the latter inequalities, when k —> oo, it is impossible to hold because the left hand side 

will go to infinity. This means that the Neyman's Type A distribution is not GDSD(12(7)) 

for 0 < 7 < 1. However, it is DSD when 77 < 1. See (2) in Example 7.7. 

There are other examples like these two. This implies that DSD is not covered by GDSD(12(7)). 

(2) Do all distributions in GDSD(12(7)) belong to DSD? 

Consider the compound Poisson with geometric distribution, where the geometric distribution 

has the pgf g(s) = (0 < g < 1). Now choose q such that 

! < 9 < i ± 2 , i f 0 < 7 < i 
1 < Q < "4p> i f i < 7 < l -

By Example 7.16, it is GDSD(I2(7)). However, it is not DSD. See (1) in Example 7.7. 

This implies that GDSD(I2(7)) is not covered by DSD. 

(3) Are there distributions common to both of DSD and GDSD(I2(7»? 

We consider NB(0,g) with the pgf Gx{s) = (jr^Y (P > 0, 0 < q < 1). It is known that 

the negative binomial is DSD. Suppose q > 7. Then, by Example 7.15, it is GDSD(I2(7)) 

too. 

This shows that DSD and GDSD(12(7)) have common members for each 0 < 7 < 1. 

Therefore, based on these analyses, the relationship between DSD and GDSD(12(7)) is overlapping. 

Recall that these distribution members will be used as the marginal distributions for a steady state 

continuous-time GAR(l) process. Thus, the obtained fact means that for the common distribution 

members, we can construct more than one kind of continuous-time GAR(l) processes; however, 

for the non-common distribution members, we only can construct one continuous-time GAR(l) 

process. 

For 71 < 72, by the example of the compound Poisson with geometric distribution, we 

know that GDSD(I2(7i)) and GDSD(I2(72)) have common distribution members. In addition, 

the conditions in Theorem 7.2.5 do not support that one is a subset of the other. Hence, their 

relationship is overlapping. 
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Figure 7.1: The relationship of ID, DSD and GDSD(12). 

Figure 7.1 shows the relationship of ID, DSD and GDSD(I2). 

For a given 0 < 70 < 1, it is interesting that we can always construct a distribution which 

only belongs to GDSD(I2(7o)). This fact is established by rearranging the first two probability 

masses in the compound Poisson with geometric distribution in Example 7.16. We describe it in 

the proof of the theorem below. 

Theorem 7.3.1 For any 0 < 70 < 1, there exists a distribution which belongs to GDSD(12(io)) 

but not GDSD(J2(rt)), 7 / 7 0 -

Proof: We shall apply a construction method. Example 7.16 shows that for any 70 G [0,1), the 

compound Poisson with Geometric(7o) is GDSD(I2(7)) for 7 e [max(0,270 - l),7o]- The lower 

bound max(0, 270 — 1) comes from (1+7)91 — 2q2 > 0. Now decrease qi to q[ = and increase qo 

to q'0 = qo + (<?i - 9i)- Then, q[ = jf^ < 91 and q'0 = 90 + 9i - r+% ^ lo- T h e remaining q, (i > 2) 
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are the same. We shall see when this new compound Poisson distribution is GDSD(12(7)) for some 

7. This is equivalent to checking 

(l + 7)9i-292 >0, 2^2-3^3 > iWi-292], kqk-{k + l)qk+i>1/[{k-l)qk-i-kqk], A; = 3,4,... 

The first inequality will hold iff 7 > 70, because (1 + 7)9! - 292 = 2q2 ~ l ) = 292 • i ^ y - The 

The remaining inequalities hold if max(0,270 — 1) < 7 < 70. Thus, the only choice of 7 is 70. This 

means that the new compound Poisson is GDSD(12(70)) for a fixed 70 only. 

This fact also partially emphasizes that any two classes GDSD(12(71)) and GDSD(I2(72)); 

7 i 7^ 72) are not subsets of each other. 

As to the relationship between the GDSD(I2) class and other classes, it could be overlapping, 

subset inclusion or disjoint. 

By Theorem 7.2.2, we can obtain the relationship among all GSD(P2) classes (including 

the special case SD=GSD(P2(0))). Figure 7.2 shows the relationship of ID, SD and GSD(P2). 

Like the discrete situation, its relationship with other classes could be overlapping, subset inclusion 

or disjoint too. 

Now we turn to other GDSD classes: GDSD(I3), GDSD(I4) and GDSD(I5). 

First, by (1) of Theorem 7.2.1, we find that GDSD(I3) is empty. This is simply because 

that the self-generalized rv family from 13 does not satisfy the necessary condition: 

second one still holds when max(0,270 - 1) < 7 < 7o because 

292 - 393 > 7[9i - 292] > 7[9i - 29 2]-

GK( s;a) = l-(l-s)a>s iff l - s > ( l - s ) Q iff a > 1. 

So {GK(s; a) : 0 < a < 1} does not lead to any distribution in GDSD(I3). 

For K from 14 with pgf 

GK(s;a) =c-l[l-e •»(i-«)( l_cs) a ] , c = 1 -e~\ 6 > 0, 
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ID 

Figure 7.2: The relationship of ID, SD and GSD(P2). 
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according to Table 6.1, we have H(s) = -c~l(l - cs)[0 + log(l - cs)}. By (2) of Theorem 7.2.3, 

Gx € GDSD(I4(c)) if 

L(s) = l - C - c - \ l - cs)[0 + log(l - cs)} • 

is a pgf for some C > 0. The following example shows that GDSD(I4(c)) is not empty. 

Example 7.19 (negative binomial) NB(n,q) has pgf Gx(s) = [p/(l — qs)]v, where p = 1 — q. 

Thus, G'x(s)/Gx{s) = r]p/(l — qs). Check for conditions on c so that 

L(s) = l-C-c~1(l- cs)[0 + log(l - cs)]j^-

is a pgf. Choosing C = c{np)~l leads to 

L(s) = 1 - (1 - cs)[l + 9~l log(l - cs)]/(l - qs). 

When q = c, L(s) = —0~l log(l — cs) which is the pgf of the logarithmic series distribution. Hence 

NB(n,q) is GDSD(I4{c)) if q = c or p = 1 - c. 

For K from 15 with pgf 

GK(s; a) = 1 - cxe(l - i)e[(l - a ) 7 + (1 - 7 ) U - s)-^e]-e, 6 > 1, 0 < 7 < 1, 

by Table 6.1, we have H{s) = -6(1 - s)(l - j)-l[l - 7 + 7 (1 - s)1/6}. From (2) of Theorem 7.2.3, 

Gx G GDSD(I5(7,0)) if 

L(s) = 1-Ce(l- 7)^(1 - - 7 + 7(1 - S)^] • g ĵj 

is a pgf for some C > 0. The following example shows that for every parameter vector (7,9), 

GDSD(I5(7,0)) is not empty. 

Example 7.20 (discrete stable) It has pgf Gx(s) = exp{-A(l-s) 5 }, where X > 0 andO < S < 1. 

Hence, G'x(s)/Gx{s) = Ad(l - s ) 1 5 - 1 . We check for conditions on (7 ,0) so that 

L(s) = 1 + C • 9(1 - 7) _ 1 (s - 1)[1 - 7 + 7(1 - s)^e]\5(l - a)*'1 
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is a pgf. Take C = (1 — 7)(0A<$) 1 for simplicity. Then 

L(s) = 1 - (1 - s) 5[l - 7 + 7 (1 - s)Ve] = (1 - 7 ) [ i - (1 - s ) s ] + 7[1 - (1 - a)*+V*]. 

Recalling the pgf form of a power series distribution, for any 0 < 7 < 1, we fcnou* that L(s) is a pgf 

if8 + 6-l<\ orifS<l- 6'1 for 6 > 1. 

Hence, this shows that GDSD(I5(y,9)) is non-empty for every 9 > 1 and 0 < 7 < 1. 

Similarly, for K from P3, the necessary condition in (2) of Theorem 7.2.1 is not satisfied, 

because 

(f>K{s\a) =exp{-s Q} < e" if 0 < s < 1. 

Hence, GSD(P3) is empty. 

As to K from P4 and P5, we give a brief discussion. X GGSD(P4) or GSD(P5) requires 

that 

exp 

must be LT for all C > 0. The following two examples show that GSD(P4) and GSD(P5) are not 

empty. 

Example 7.21 (Gamma) The LT of Gamma(5,0) is 4>x(s) = (3+7) • Thus 

and 

exp l C • ( s + log [1 + (e° - l)s 

<t>'x{s) = -805(0 + s) 
/3 + s' 

exp ' B + s s + log 1 + (ee - l)s 

For simplicity, we take 0 = l/(ee - 1) so that 

1 (e9 - 1) 
-1 -,Ctf 

exp {c • (s + 7 3 1 ) l Q g [X + (e° - H } = e x p {-CSlo& i1 + ^ ~ Vs] } = [(e9 - I )" 1 + 5 

wWcA i/ie £T 0/ Gamma(C6,(ee - l ) " 1 ) . Tftt* means that Gamma{5,{e6 - l ) " 1 ) G GSD(P4(9)) 

and GSD(P4(9)) is not empty for any 6 > 0. 
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Example 7.22 (Positive stable) The positive stable-distribution has LT of form 4>x{s) = exp {-As 5 

Thus, = -X5ss-\ and 

exp {C + ^ / . ) | k M } _ e x p {_CXSg V (l + ^ ) } 

If 6 + 1/6 < 1, then both terms on the right hand side of the above are LT's of positive stable 

distributions. For any 0 < 6 < 1, we can always find a 9 > 1 such that 8 + 1/6 < 1, and vice versa. 

Therefore, any positive stable distribution belongs to GSD(P5); and GSD(P5(6,j)) is not empty 

for any 6 > 1 and 0 < 7 < 1. 

The empty property of GDSD(I3) and GSD(P3) explains why we failed to find stationary 

continuous-time generalized AR(1) processes resulting from extended-thinning operations by 13 

and P3 in Chapter 6. 
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Chapter 8 

Transition and sojourn time 

The margins of continuous-time GAR(l) processes are basically divided into two types: continuous 

and discrete. The support of the process is the state space of a process. Given the previous 

observation, the conditional distribution of the current state is continuous or discrete depending on 

if its margins are continuous or discrete. For the discrete margins, the conditional probability for a 

non-negative integer is usually positive. This means the process can stay in this state for some time, 

then jumps to another state. However, for the continuous margins, the conditional probability at 

one point is usually zero although its conditional density is not zero. Hence, we are unlikely to 

observe a continuous-time GAR(l) process which can stay on a point over a time period. 

In this chapter, we take a close look from the viewpoint of path or trajectory of the 

continuous-time GAR(l) processes. It motivates the transition study which describes the instan

taneous change of a continuous-time Markov process. We shall investigate the self-generalized 

distribution involved in a continuous-time GAR(l) process via its transition property. Because for 

real margins, the only known self-generalized distribution is the degenerate distribution on a point, 

we consider the non-negative integer and positive margins only. Section 8.1 shows the feature of 

the change of the conditional pgf and LT. Specifically, in Section 8.1.1, we study the infinitesimal 

transition matrix, and compare it with relevant corresponding processes in other probabilistic areas 

like queuing theory, while in Section 8.1.2 we give the instantaneous change rate and relative change 
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rate of the conditional LT. In Section 8.2, we shall apply the generating function method to discuss 

the corresponding partial differential equations, and make comparisons with some results in the 

literature. In Section 8.3, we study the distribution of the sojourn time for the continuous-time 

GAR(l) process with non-negative integer margins. This will be useful for situations of continuous 

observations like queuing. 

8.1 Infinitesimal transition analysis 

The infinitesimal transition approximates the probability change over a very small time period for a 

continuous-time process. It is commonly used in birth-death processes and in survival analysis. We 

shall probe the feature of transitions for the continuous-time GAR(l) processes. They are discussed 

separately by the type of their margins: non-negative integer or positive. 

8.1.1 Non-negative integer margin 

The state space of a continuous-time GAR(l) process with non-negative integer margins is S = 

{0,1,2,...} = jVo- Suppose the time difference h is very small. Given X(t) = i, the conditional 

probabilities of X(t + h), Pr[X(t + h) = j | X(t) = i] (j G JVo), are called the infinitesimal 

transition probabilities. This further leads to the infinitesimal generator Q = (qij) G 

JVo) with 

l i m p r [ x ( m ) r J i x ( * M . # . . 
(8.1.1) 

Pr[X(t+h)=i\X(t)=i]-l • • V > 

Note that > 0 (i ^ j) and q^i = - Y^jfrQij - 0- When qij = 0 for \i — j\ > 1, the process is 

a birth-death process with birth rates {(fê +i; i = 0,1,2,...} and death rates {q^j-i; « = 1,2,...}. 

This infinitesimal generator matrix remains the same for a Markov process whether it is under 

steady state or not. Hence, we can assume the process is under steady state when we study 
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the infinitesimal transition. Next we will investigate the infinitesimal generator matrix of the 

continuous-time GAR(l) process with non-negative integer margins. 

To warm up, let's first study the continuous-time GAR(l) process stipulated by the binomial-

thinning operation, i.e., K from II: 

X(t + h) = e~'th*X(t) + e""'* de(t) = e'^ * X(t) + E(t;t + h). 
Jo 

When h is small enough, it will become a stochastic difference equation: 

X(t + h) = (l- nh) * X(t) + Ae(h), Ae(h) = e(t + h) - e(t). 

Our aim is to find the infinitesimal transition probabilities with an expansion in terms of h. Assume 

m is a non-negative integer. 1$ = 0, Ik

 2 ~ d Bernoulli(l — jih) (k > 1). By algebra, we have that for 

m > 0 

Pr[X(t + h) = m\ X(t) = 0] = Pr [(1 - iih) * X(t) + Ae(h) = m | X(t) = 0] 

= Pr [I0 + Ae{h) = m] = Pr [Ae{h) = m], 

Pr[X(t + h) = l + m\ X(t) = 1] = Pr [(1 - nh) * X(t) + Ae(h) = 1 + m \ X(t) = 1] 

= Pr [h + Ae{h) = m] = Pr [h = 1, Ae{h) = m] + Pr [h = 0, Ae{h) = m + 1] 

= (1 - nh) Pr[Ae(h) = m] + (nh) Pr[Ae(ft) = m + 1] 

= Pr[Ae(/i) = m] + nh (Pr[Ae(/i) = m + 1] - Pr[Ae(/i) = m]), 

Pv[X(t + h)=i + m\ X(t) = i] = Pr [(1 - ph) * X(t) + Ae(h) =i + m\ X(t) = i] 

= Pr 

= E 
i=o 

- m 
.k=0 

i 

= E P r 

(=0 .fc=0 

Y,h + ^(h) = i + 

[1 - nh]l(nhY~l
 Pr[Ae(/i) = (t + m) - I] 

• Pr[Ae(h) = (i + m) - 1} 

= (1 - nhf Pv[Ae(h) = m] + t(l - /xft) i _ 1 (/*/») Pr[Ae(/i) = m + 1] 
i-2 

+ E (/ ) (J - W * " ' P4Ae(/») = (« + m) - Z] 

= [1 - ifi/i + o(h)] Pr[Ae(/») = m] + i[l - (i - l)/i/i + o(h)](ju/i) Pr[Ae(/i) = m + 1] 
i-2 

(=0 
+ (/ih)2 E ( J t1 - ^ + o(/»)] W i _ ' " 2 Pr[Ae(h) = (i + m)-l] 
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= Pr[Ae(/i) =m} + i^h (Pr[Ae(/i) = m + 1] - Pr[Ae(/i) = m]) + o(/i), 

and for 0 < m < i (i > 1) 

Pv[X(t + h)=i-i\ X(t) = i] = Pr [(1 - /i/i) * X(i) + Ae(/\) = 0 | X{t) = i] 

i > 2, 

= Pr ^Ik + Ae(h) = 0 
.fc=0 

= Pr ^ J f c = 0, Ae(n) = 0 
j Lfc=o 

= (fihY Pi[Ae{h) = 0], 

Pv[X(t + h)=i-(i-l)\ X{t) = t] = Pr [(1 - »h) * X{t) + Ae(h) = 1 | X(t) = i] 

Pr Y/Ik + Ae(h) = l 
lk=0 

= Pr + Pr J2lk = 0,Ae(h) = l 
.k=0 

^ / f c = l ,Ae(h)=0 | 
.fc=0 

= i(l - nh)(nhy-1 Pr[Ae(h) = 0] + (JU/I)* Pr[Ae(» = 1], 

Pr[X(i + /i) = t - m | X(t) = i] = Pr [(1 - ph) * X{t) + Ae(h) =i-m\ X(t) = i] 

= Pr ^2 h + Ae(/i) = i-m 
.k=o Lfc=o 

• Pr[Ae(/i) = (* - m) - /] 

1=0 
= E ( /) - H'(/^r' Pr[Ae(/i) = (t - m) - /] 

i — m 
(1 - ^hy-m{fih)m Pv[Ae(h) = 0] 

+ l — 771 

i—m—2 

J (1 - nh)i-m-1(lih)m+l Pi[Ae(h) = 1] 

+ (M^2 E 2 0 (J - MW~l~2 Pr[Ae(h) = (i - m) - /], 

In summary, the infinitesimal transition probabilities are 

i — m > 2. 

= < 

Pi[X(t + h) = i + k\ X(t) = i] 

Pr[Ae(h) = it] + inh (Pr[Ae(/i) = ib + 1] - Pr[Ae(/i) = A:]) + o(h), 

Pr[Ae(h) = 0] + inh (Pr[Ae(/i) = 1] - Pr[Ae(h) = 0]) + o(h), 

i/j,hPv[Ae{h) = 0] + o(h), 

, o(n), 

From the infinitesimal transition probabilities, we can deduce that qij = 0 for all j < i — 2, 

i.e., the lower diagonal entries are zeros in the infinitesimal generator matrix. The other entries 

(8.1.2) 

k > 1, 

fc = 0, 

k = - 1 , 

k < - 1 . 
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Qi,j (j> i ~ 1) will D e further determined by Pr[Ae(h) = m], where m = 0,1,2, Under steady 

state, by Theorem 6.3.1, the pgf of Ae(h) is of form exp j§^r jy( s _ l)ph^. This form will help us 

to obtain the expansions of the pmf of Ae(h) in terms of h. The following consists of two examples. 

Example 8.1 Suppose the marginal distribution is Poisson(j) with pgf Gx(s) = e'y^s~1\ where 

7 = X/p. Then 

exp {GW){S ~ 1 W = exp {7/ iMs"1)} = eAMS_1)' 
This leads to 

Pr[Ae(/i) = m] = 

Therefore, by algebra, we obtain 

(\h)> 

ml 
= < 

I - Xh + o(h), m = 0, 

Xh + o(h), 

o(h), 

rn = 1, 

m > 1. 

Pr[X(t + h) = i + k\ X(t) =i] = { 

o(h), 

Xh + o{h), 

1 - (X + ip)h + o{h), 

iph + o(h), 

o(h), 

k>l, 

k = 1, 

fc = 0, 

fc = - 1 , 

fc < - 1 , 

and the infinitesimal generator is 

( -X X 0 

A 

-(X + 2p) 

3/J 

0 

0 

A 

0 

0 

0 

p, -(X + p) 

Q = | 0 2/i 

0 0 3/i - (A + 3/i) A 

V : : ; ; / 

From the infinitesimal generator, we know it is a birth-death process with death-rates q^i-i = 

ip (i = 1,2,3,...) and birth-rates = A (i — 0,1,2,...). This is one special case among the 

linear birth-death processes, in which the birth-rates and death-rates are 

\ 

qi>i+i =a + ib, qiti-± = ic, 

See Anderson [1991], Section 3.2, p. 103. 
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Example 8.2 Consider the marginal distribution is NB(-y,q) with pgf Gx{s) = (T=̂) > WHERE 

0 < q < 1 and 7 > 0. Then 

exp 

= 1 + 7/JQ(s - 1) [1 + qs + q2s2 + q3s3 + •••]& + o(h) 

= 1 - /rygh + / i 7 ( i - 9 ) E ^ / i + o(/i), 

which indicates that 

Pr[Ae(/i) = 0] = 1 -wqh + o(h), Pr[Ae(/i) = m] = /u 7(l - q)qmh + o(/i), m = l,2,3, 

T/iese Zead to i/ie infinitesimal transition probabilities 

/ i 7 ( l -q)qkh + o(h), 

1 - /J7Qn — i / i / i + o(/i), 
Pr[A'(t +ft) =t + * I A"(t) =*] = < 

i[ih + o(/i), 

o(/»), 

ife > 1, 

k = 0, 

k = - 1 , 

ifc < - 1 , 

and the infinitesimal generator 

( —fj.'yq M7(l - q)q ^(1 - q)q2 - q)q3 fi^(l - q)qA 

\x -n(r/q + 1) M7(l - q)q M7(l - Q)l2 /*7(1 - <?)93 

Q = 0 2/i • -/i(7<7 + 2) /*7(1 - 9)9 / i 7 ( l - <z)<72 

0 0 3/i -M(79 + 3) / i7 ( l -9 )9 

V ; ; •; ; ; 

\ 

This is not a birth-death process. 

Next we consider the more general situation where K is from any non-negative integer 

self-generalized distribution. Correspondingly, when the time difference h is small enough, the 

stochastic difference equation is 

X{t + h) = (1 - nh)K © X{t) + Ae{h), Ae(h) = e{t + h) - e(t). 
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Assume under steady state, the margins have the pgf Gx{s)- Then Ae(h) has pgf of form 

GMh)(8) = eXp^^H{8)nhY where H( S ) = 

Given X(t) = i, the conditional pgf of X(t + h) is 

GX(t+h)\x(t)=i(s) = (GK(s; 1 - nh)Y GAe(h)(s) = (GK(s; 1 - M^))1 exp { | ^ t f ( S ) / / / i } 

= (s - H(s)Lih + o(h)Y • (1 + G^H(s)fih + o(h) 

H(8) 

Gx(s)' 

g nh + o(h)J • ̂ l + ̂ ^H(s)nh + o(h) 

= ( s * - is^H^Lih + o(h)) • ( l + ̂ j j j t f + o(h) 

lG'x(s) 
= sl + s' Gx(s) 

H{s)/j,h - is i _ 1 #(s)/ / / i + o{h). 

Expanding ^^H(s) and -H(s) as power series of s, 

5J44#(S) = ao + a i 5 + a 2s 2 + --- + afcsfc + ---, 
Gx{s) 

-H(s) = b0 + b1s + b2s2 + --- + bksk + ---, 

(8.1.3) 

(8.1.4) 

we finally obtain 

Gx(t+h)\x(t)=i(s) = Gx{s) 
ipbohs1"1 + [1 + (//ao + i//&i)/Y]s* + (//aa + iLib2)hs%Jrl 

+ ••• + (//am + ijjLbm+\)hsm H + o(h) 
oo 

= iLib0hsl~l + [1 + (//ao + i//6i)/i]s* + ̂  (M am + i//bm-t-i)hsm + o(h). 
m = l 

This shows that the infinitesimal transition probability ties are 

Pi[X(t + h)=i + k\ X(t) = i] = < 

Li{ak + ibk+x)h + o(h), 

1 + //(a0 + ib\)h + o(h), 

iLiboh + o(h), 

( o(h), 

k > 1, 

k = 0, 

= - 1 , 

fc < - 1 . 

(8.1.5) 
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and the infinitesimal generator is 

Q = 

fibo / J a o + fJ-h M«i + M&2 M«2 + 

0 2^6o /jao + 2^bi iiai + 2/ib2 

0 0 Sfj,b0 /jao + 3/J6I 

(8.1.6) 

The infinitesimal generator shows special interesting patterns: 

(1) Every diagonal entries are linearly increasing. For example, the lower diagonal entries are 

= ifJ-bo {i = 1,2,3,...). 

(2) A l l entries below the lower diagonal qij (j < i — 2) are zeros. 

Mimicking the upwardly skip-free processes which define qij = 0 for all j > i + 2 (refer to 

Anderson [1991], Chapter 9), we may call the phenomena in the continuous-time GAR(l) pro

cess with non-negative integer margins as downwardly skip-free. They are opposite to the 

upwardly skip-free processes which are basically birth-death processes, but with downward jumps 

called "catastrophes". In our cases, there are upward jumps, so these processes extend birth-death 

processes by allowing multiple births in the next time instant. 

A relevant question is when such a continuous-time GAR(l) process becomes a birth-death 

process. To be a birth-death process, all entries above the upper diagonal q^j (j > i + 2) should 

be zeros. This requires that 

fiak + i^bh+i = 0, i = 0 , l ,2 ,3 , . . . , k = 2,3,4, 

Because \i > 0, they are equivalent to 

0.2 = 03 = ct4 = • • • = 0, 63 = h = h = • • • = 0, 

Ql (g\ 

i.e., —H(s) is at most a second order polynomial of s and G*^H(s) is linear in s: 

G^~H(s) = a0 + alS, -H(s) = b0 + bis + b2s2. 
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In this situation, the infinitesimal generator becomes 

Q = 

pao Lia\ 0 0 

pb0 pa0 + pb\ Liai + pb2 0. 

0 2pbo MOo + 2/i&i /Jai + 2/i&2 

0 0 3/x60 a 0 + 3/J6I 

V 

(8.1.7) 

) 

which indicates that these birth-death processes within the class of the continuous-time GAR(l) 

process with non-negative integer margins are linear birth-death processes, because the birth-rates 

and death-rates are 

Qi,i+l = AtOl + i^fo, Qi,i-\ = if-°o-

To guarantee these birth-rates and death-rates are non-negative, it is necessary that ai, &o, b2 > 0. 

We've already met one birth-death process which comes from the continuous-time GAR(l) 

process with Poisson margins when the operation is binomial-thinning. In fact, this is the only 

process based on binomial thinning that is a birth-death process, because that H(s) = s — 1 and 

G'x(s)/Gx(s) can only be a constant. For K being from 12, since H(s) = (1 — js)(s — 1)/(1 - 7), 
it is possible to find a birth-death process with a GDSD(I2) stationary distribution. This example 

will be shown below. As for K being from 14, since H(s) is no longer a second order polynomial of 

s, it is impossible to find a birth-death process with a GDSD(I4) stationary distribution. For K 

being from 15, H(s) will become a second order polynomial of s iff 0 = 1, which in turn becomes 

12. Hence, for 0 / 1 , there is no birth-death process with a GDSD(I5) stationary distribution. 

Example 8.3 Suppose K is from 12 with pgf 

(1 — Oct + \Oc — 7)S 
GK(S; a) = — r -. r — , where 7 is fixed and 0 < 7 < 1. 

(1 — cry) — (1 — a)7S 

Consider the marginal distribution is NB(8,/y) with pgf Gx{s) = ( jz^) > where 0 > 0. Th en 

1-7 I - 7 I - 7 I - 7 
G'x(s)TT,_, 01 ( l - 7 s ) ( a - l ) 

Gx(s) 
H(s) = 

1 — 7s 1-7 
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Thus 

and 

Hence 

b0 = 

ao = -- , ai ., 
1 — 7 1 — 7 

1+7 

ifib0 = 

1-7 

ao + i^bi = 

h = - bo = 
1-7' 1-7 

07 + + 7) 

, afc.= 0, A; = 2,3, . . . , 

6fc = 0, A; = 3,4,.... 

(6 + » / i ) 7 

7 

, ai + i/j&2 = 
1-7' ' ' 1-7 

These lead to a birth-death process with infinitesimal generator 

1-7 
» = 0,1,2,... 

Q 

1-7 

1-7 

0 

0 

£L 0 
1-7 -

07+^(1+7) ( £ + ^ 7 
1-7 ! - 7 
2̂  ,87+2^(1+7) 

1-7 1 - 7 
3 ^ 

1-7 
0 

0 

0 
(/3+2A»)7 

1 - 7 
/ 3 7 +3^ ( l +7 ) 

1 - 7 

V 
T/m 25 another special case among linear birth-death processes (refer to Anderson [1991], Section 

3.2, p. 103.). It has death-rates q^i-i = i (i = 1,2,3,...) and birth-rates qij+i = j^+i^z^ (* = 

0,1,2,...). 

In practice, the transition probability approach, namely assigning the infinitesimal transition 

probabilities, is one effective method to construct continuous-time Markov process models, for ex

ample, in a medical study like tumor evolvement with several mutation states. The analyses in this 

section show the transition feature of the continuous-time GAR(l) process with non-negative inte

ger margins. It also provides the interpretation from the view of transition for the continuous-time 

GAR(l) process with non-negative integer margins. By comparison of the infinitesimal genera

tor, one can link the continuous-time GAR(l) process to a specific continuous-time Markov model 

constructed by the transition probability approach. 

For the continuous-time GAR(l) process with non-negative integer margins, one byproduct 

of the transition analysis is that the process could be linked to queuing theory with unlimited num

ber of servers, because of the downwardly skip-free pattern and linear death-rates in the infinites

imal generator. Such a model has application in the customer self-service system. Coincidently, 
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the process in Example 8.1 is just M/M/oo. See Taylor and Karlin [1998], p. 552-553. In general, 

these processes belong to M/G/oo queuing models (exponential distribution of service time /gen

eral distribution of inter-arrival time/infinite servers). The exponential distribution of service time 

comes from the linear pattern of the lower diagonal entries. Although the inter-arrival times have 

exponential distributions (see Section 8.3), the parameters of these exponential distributions are 

not the same, but depend on transition probabilities. 

Lastly, we summarize the feature of the infinitesimal transition probabilities from new con

cepts: instantaneous change rate of the conditional pgf and instantaneous relative change rate of 

the conditional pgf. Conditioned on current state, the trivial conditional pgf of the current mar

gin is Gx(t)\x(t)=i(s) = E (sxW\X(t) = i) = sl. For the near future given the current state, we 

consider the change rate or relative change rate of its conditional pgf. 

Definition 8.1 Given X(t) = i, the instantaneous change rate of the conditional pgf is defined as 

0(s-1 i) = lim Gx(t+h)\x(t)=i^ ~ Gx(t)\x(t)=d*) = U m Gx(t+h)\x{t)=i(s) ~ s% 

/i-vo h h^o h ' 

and the instantaneous relative change rate of the conditional pgf is defined as 

R{s;t,i) = I lim *—^-^ j/GX(t)\x{t)=i(s) 

= 1 lim G x ( t + h ^ x ( t ) = i ^ ~ s * = i i m

 s'lGX(t+h)\x(t)=i(s) -1 
sl h->0 h h->0 h 

The relationship between O(s) and R(s) is 

R(s;t,i) = s'lO(s;t: i), or 0(s; t, i) = s li?(s; t, i). 

Now we calculate them for the continuous-time GAR(l) process with non-negative integer margins. 

0(s-tt,i) = ^GxM\m=iW-8i 

h-+0 h 
lim i (ai + siG^\H{s)ixh - is^His^h + o(h) - s' 
h->o h \ Gx{s) 

= s ^ x p^ms^-is^His)^ 
GX{s) 

G'y(s) , , , H(s) 
R(s;t,i) = s-lO(s;t,i) = " 
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The interesting pattern we find in the instantaneous relative change rate of the conditional pgf is 

that R(s; t, i) does not depend on time t and is linear in state i. 

8.1.2 Positive-valued margin 

Similarly, for the continuous-time GAR(l) process with positive margins, we can study its transi

tion property by the instantaneous change rate of the conditional L T and instantaneous 

relative change rate of the conditional LT, because the conditional distribution of X(t + h) 

given X(t) can be governed by its conditional LT. The instantaneous change rate of the conditional 

LT is defined as 

Ois-t x) = lim 4x(t+h)\x{t)=.x{.8) ~ <t>x(t)\x(t)=x(s) = H m <f>x(t+h)\x(t)=x(s) - e~sx 

/ i -»o h /i->o h ' 

and the instantaneous relative change rate of the conditional LT is defined as 

D , , , /,. <t>X(t+h)\X(t)=x{s) ~ 4>X(t)\X(t)=x(s)\ I . . 
R{s;t,x) = ( h m — * — ^ - ^ j /.<l>x{t)\x{t)=x\*) 

=

 1

 liui^nt+h)\x{t)=x{s)-e-sx

 = l{mes*<t>x{t+h)\x{t)=x{s)-l ^ 
e-sx h_>0 fa h—>-0 h 

The relationship between O(s) and R(s) is 

R(s; t, x) = or 0(s; t, x) = e~sxR{s; t, x). 

Assume the time difference h is small enough, then the continuous-time GAR(l) process 

can be expressed by the the stochastic difference equation 

X(t + h) = (l- ph) ®X(t) + Ae(/i), Ae{h) = e{t + h) - e(i). 

Under steady state, the margins have the same LT as the stationary distribution, denoted as (f>x{s). 

Then Ae(/i) has LT of form 

0Ae(A)(*) = exp j | j j^f f ( s ) / ih j , where H{s) = ^ [-logfo(s; a)] 
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Given X(t) = x, the conditional LT of X(t + h) is 

. <t>x(t+h)\x(t)=As) = (Ms-tl-nh))x^h)(s) = ( 0 / < ( 5 ; l - ^ r e x p { ^ | i ? ( 5 ) / i n } 

- x [ - l o g ^ ( S ; l - ^ ) ] . e x p 1^14^(3)^) 

l<f>x{s) j 
= e 

= e-z(,-ff(,),dH-o(h)) . A + fx!AH^)^h + 0(h) 

= e-,x . e x H ( » ) / i h + o ( A ) . ( \ + M^H^h + 0(̂)̂1 
= e~sx (1 + xH(s)nh + o(h)) • + ^^H(s)Lih + o(/i) 

+ xH(s)»h + ^±H(s)Lih + o(h)j 

= e - s : r + xe-SXH(s)Lih + e'sx^r{H(s)Lih + o(h). 
<f>x{s) 

The instantaneous change rate is then 

0(s:t,x) = h m — , 
/i->o h 

e~sx + xe-SXH{s)nh + e~sx ^±H(s)ph + o(h) - e-sx 

/i->0 h 

= Lixe-SXH(s)+pe-SX^^>H(s), 

and the instantaneous relative change rate is 

R(s;t,x) = ^ = ^H(S) + V%&\H(8) = V^\H(S) + IPH(S)}X. 
e s x <px{s) 9x{s) 

This discloses the pattern of the instantaneous relative change rate, R(s;t, x), is constant in t and 

linear in x. 

The expression of R(s;t,x) only involves (f>'x(s)/(f)x{s) and H(s). Hence, it also shows 

that for steady state continuous-time GAR(l) process, the marginal distribution and the self-

generalized distribution determine the whole process. This means that different continuous-time 

GAR(l) process will lead to different instantaneous relative change rate of the conditional pgf. 

For example, suppose two continuous-time GAR(l) processes share the same marginal distribution 
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with LT Then, their instantaneous relative change rates of the conditional pgf are 

i?i(s;t,a;) = /x^^Hxis)+ \MH1(s)]xt (pis) 

R2(s;t,x) = v^rTH2(s) + [vH2(s)]x. 
4>{s) 

They differ in -Hi(s) and H2(s), which come from their respective self-generalized distributions. 

If the instantaneous relative change rates of the conditional pgf for two continuous-time GAR(l) 

processes are the same, they must share the same marginal distribution and H(s). Later in Section 

8.2, we will point out there is one-to-one mapping of the self-generalized distribution to H(s), the 

derivative at the boundary. 

The transition approach offers another perspective for the continuous-time GAR(l) process 

modelling. The instantaneous change rate and relative change rate of the conditional LT are 

associated with current time t and current state x in the state space. Considering a time period 

[<i,t2]) if w e know the instantaneous change rate or relative change rate of the conditional LT for 

any time t and any state x, we can obtain the conditional LT 0 x ( « 2 ) | ^ ( t i ) = x 1 ( s ) °f X(t2) given 

X(ti) = x\ by integration of them over the state space and the time period [ti,^]-

8.2 Characteristic feature of the PDE of the conditional pgf or LT 

We will deduce the form of the PDE of the conditional pgf or LT for the continuous-time GAR(l) 

process with non-negative integer and positive margins respectively. By solving the resulting PDE, 

we surprisingly find that there is one-to-one mapping between the self-generalized distribution and 

H(s) which is defined by either 9 G k

9 ^ or ^ [-log fo(s; a)] , the partial derivatives 
a = l a = l 

with respective to a at the boundary 1. This indicates that the relevant partial derivative at the 

boundary 1 determines the entire pgf or LT of the self-generalized distribution. 

257 



8.2.1 Non-negative integer margin: P D E of the conditional pgf 

Kendall [1948, 1949] established the generating function method in the study of birth-death pro

cesses. This method is also effective in other kinds of continuous-time Markov processes. For 

example, Brockwell, Gani and Resnick [1982], Brockwell [1985, 1986], and Pakes [1986] applied it 

to upwardly skip-free processes. See the summary in Anderson [1991], Chapter 9. We will use the 

birth-death process to illustrate the generating function method. 

Suppose {X(t) : t > 0} is a homogeneous birth-death process with initial value X(0) = I. 

The birth-rates are Oj,j+i = Ai (i = 0,1,2,...) and death-rates are o^i-i = m (i = 1,2,3,...). 

Denote the transition probabilities 

Pij(h) = Pi[X(t + h) = j\X(t) = i] = Pr[X(h) = j\X(0) = i], i, j = 0,l,2,.... 

We are focusing on the conditional pgf of X(t) given X(0) = I: 
oo 

Gx{t)\x(o)=i(s) = E(sx^\X(0) = /) = XVp(t;<) = G(a;t), 
t=0 

where p(i;t) = Pr[X(t) = i\X{0) = I]. Note that 

G(s-O) = G x m m = I ( a ) = E (sxW\X(0) =l)= a1. 

Then it follows that 

8G{s;t) OO o u ^ = - X>i + *i)p(»; + E *)s'+1 + E t>l~l 

d t i=o i=0 i=l 
oo 

= (1 - a) E WPfc ^ + (5 - !) E ^P(*5 
i=l i=0 

This result comes from by applying the Chapman-Kolmogorov equations: for h > 0, 

p(0;t + h) = pi,0(/i)p(l;*)+Po,o(%(0;t) 

= Pi,o(h)p{l;t) + (l-po,i{h))p(0;t), 

p{j;t + h) = Pj-ij(h)p(j -l;t)+ pj,d{h)p{j;t) + pj+1J(h)p(j + 1;t) 

= Pj-ij{h)p{j - l;t) + (1 -Pj,j-i{h) -pjj+i{h))p{j;t) 

+Pj+ltj(h)p{j + l;t), j>l. 
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Hence, 

P(0;t + h)-p(0;t) = PiMpfrQ-nhMptot), 
h h h p{j;t + h) -p(j;t) = p7--i„7-(/t) ( M ) Pjj-i(h) + Pjj+i{h)p^ 

h h h 
+mMp(J + 1]t)t j>i. 

Let h —> 0, and note that 

Pjj+i(h) = Xjh + o(h), Xj>0, .7 = 0 , 1 , . . . , 

Pjj-i{h) = pjh + o(h), Mo = 0, p.j>0, i = 1,2,... 

We obtain the derivatives 

p'(0;i) = /i ip(l;*)-A 0 p(0;t) = MiP(l;*)-A*oP(0;t)-A 0p(0;t), 

p'(j;t) = A j _ i p ( i - l ; t ) - ( / i j + Aj)p(j;*) + ^-+iPO' + 1 ; * ) . J > L 

Therefore, 

d-^TL = | ( f>^)) = f>V(j;*) = p'M + fyVO;*) 
\j=o / j=o i=i 

= /iip(l;t) -/i 0p(0;t) - A0p(0;i) 
oo + E sjix3-ip(i +

 AJ)P0'; *) + MJ+IPO" +*)] 
oo 

= -/j0p(0; t) - A0p(0; <) - E +
 XJ)P(J> *) 

j=i 
oo oo 

+ ^ sjXj-lP(j-i;i) + E sVj+ip(i +1; <) + *) 
oo oo oo 

= - E^ + A i ^ i ; *)a< + E A i ^ i ; + ViPii; tV'1 

i=0 i=0 i=l 
oo oo 

= (1 - s) /iip(t; i ) ^ " 1 + (a - 1 ) £ AiP(*5 
i= l i=0 

Choosing appropriate forms of birth-rates and death-rates, we can obtain a first order linear 

partial differential equation for the conditional pgf G(s; t) = Gx(t)\x(o)=iis)- F ° r example, consider 
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the linear birth-death process with the birth-rates A; = a + ib (i = 0,1,2,...) and death-rates 

fi{ = ic (i = 1,2,3,...), where a, b, c> 0. Then the resulting PDE is 

dG{s;t) ,dG(s;t) , . , . — = (s- l)(bs - c)——— + a(s - l)G(s; t). 

Two special cases are the processes in Examples 8.1 and 8.3; they lead to the PDE 

and 

dt 

dG(s; t) LI 

ds 

. ( i _ 1 ) ( 7 , _ 1 ) ^ + J ] L ( . - l ) G ( i ; t ) 
dt i - 7 v " ~ ' w " _ / as ' i - 7 ' 

respectively. 

The generating function method can be extended to upwardly skip-free processes. Hence, a 

natural question is: can we apply it to downwardly skip-free processes, or specifically the continuous-

time GAR(l) process with non-negative integer margins? Our goal is to find the PDE of the 

conditional pgf Gx(t)\x(0)=iis)- Essentially, this can be done through the infinitesimal generator 

matrix. However, the continuous-time GAR(l) process with non-negative integer margins is a 

special kind of process, which has a particular feature in its conditional pgf of the margins: 

G X(t+h)\X(t)=i (s) = 3i + siG^H(s)Lih - is^Htfnh + o(h). 
Cxi*)' 

Note that it is conditioned on the current state, not the starting state; see Section 8.1. Thus, 

dG{s;t) 
dt 

= lim 
h-*0 

GX{t+h)\X{0)=l(s) - GX(t)\x{o)=i(s) 
h 

= lim i { E (Sx^\X(0) = i) - E (s*W\X(0) = i) } 

= l i m i J E (E [sx^\x(t)] \x(0)=l) - E (sx®\x(0) =/)} 

= i ! i m n r l E ^ E aX(t+h) 

. i-0 
0 0 r 1 / 

i=0 
oo 

= i t *) { J ™ \ (G^+h)\x(t)=i M - ^)} 
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2=0 
oo 

h V Gx(s) 

oo C1 ( \ 0 0 

i=0 2=0 

namely 
dG{s;t) „ - >3G(s;t) , G' x(s) 

or 

pH(s) dG(s;t) , S M _ , M f f W G ( i ; t ) . + ds ' 0i M G x ( s ) ' 

This is a special form of the first order linear partial differential equations, which is defined as 

a(s,t)us(s,t) + b(s,t)ut(s,t) = c(s,t)u(s,t) + d{s,t) 

(us, ut refer to partial derivatives). The technique of solution can be found in any introductory 

PDE textbook, say Fritz [1981], Chapter 1, Sections 4-6. Also one can refer to Anderson [1991], 

p. 104-105 for a quick review. 

We now use the traditional approach, called the method of characteristics, to solve this 

particular form of PDE. The following is an outline of the procedure to find the solution for 

G(s;0).= s7. 

Let t = t(v), s = s(v, w), Z = G = Z(v, w), and 

(8.2.1) 

(8.2.2) 

dt 
dv 

t(0) 

i ; 

0; 

= nH(s); 

s(0,w) = w; 

dZ _ ..G'x(s) UIAZ-

ds 
dv 

Z(0,w) = G(s;t)\v=0 = G{s{0,w),t{0)) =wI. 

(A.l) 

(A.2) 

(A.3) 
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From (A.l), we obtain t = t(v) = v. Hence, the above equations become 

ft = 
5 ( 0 , 1 0 ) = w; 

Z(0,w) =- G(s(0,w),0) = wI. 

(B.l) 

(B.2) 

From (B.l), we get 
f rfs 

J -H(s) 
s{0,w) 

-fj,t, 

w. 

Denote / = -g{s) + c. Then, -g(s) + c = -/ i t . By the initial condition, we have 

-g{s(0,w)) +c = -g(w) + c = 0 . 

Thus, the solution of (B.l) is 

g{s) = fit + g{w) or g(w) = -lit + g(s). . 

The latter can further lead to w = g~l{-jJ.t + g(s)) if the inverse function, g~l{-), exists. From 

(B.2), we have 
dZ G'x(s) G'x(s) ,_dGxW 
Y = ^ G ^ ) H { s ) d t ^ G ^ ) d S - - G l M ' 

which leads to log Z = log Gx(s) + c. By the boundary condition in (B.2), we obtain c = log g^jy• 

This leads to the solution of the original PDE: 

G(s;t) = Z(v,w) = w 
Gx{w) 

or furthermore in terms of s and t exclusively, 

Gx(s) = w 
1 Gx(s) 

Gx(wV 
(8.2.3) 

G(s;t) = [g-1(-M* + ^ ) ) ] / -
Gx(s) 

Gxig-H-tf + gi*))) 

For a continuous-time GAR(l) process with non-negative integer margins, the solution of 

the PDE of its conditional pgf discloses the fact that GK{s, a), the pgf of the non-negative integer 
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self-generalized rv K, is determined by its partial derivative with respect to the parameter a when 

a = 1, namely H(s) = . 

Why? We can compare the solution from the PDE with the conditional pgf from the 

stochastic representation of the process. From the stochastic representation 

x ( i ) L (o ) = / = ( e " / i ^ ® / + j B ( 0 ; i ) ' 

we know that 

GX(t)\x(0)=i = (G/f(s ie"" ' ) ) ' 'G E m (s) . 

Hence, it should follow that 

/
ds 

, + c, and c is a constant. 
H{s) 

Furthermore, it unveils one expression of the form of the. pgf of a non-negative integer self-

generalized rv, i.e., 

G K (s; a) = g"1 {log a + g{s)). 

It is straightforward to verify that </-1(loga:-|-<j(s)) is a self-generalized function with one boundary 

satisfying ( j - 1 ( logl + g(s)) = g~1(g{s)) = s. It may be possible to derive more pgf's of self-

generalized distributions with non-negative integer support from this new self-generalized function. 

Consequently, there arises an open question: Under what kind of conditions on g(s), 

is g-1{loga + g(s)) a pgf? 

8.2.2 Positive-valued margin: P D E of the conditional LT 

Based on the same reasoning, we can obtain the corresponding PDE of the conditional LT 

9x(t)\x(0)=x(s) = v(e-sX{t) X(0)=x) =f 4>(s;t) 

for the continuous-time GAR(l) process with positive margins. Note that it is conditioned on the 

starting state. 
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Recall from Section 8.1.2 that 

0(s:t,x) = lim h <Px\s) 

We have 

dcj>(s;t) 
dt 

Note that 

Therefore 

_ (l>X(t+h)\X(0)=x(s) - <l>X(t)\X(0)=x(s) 

h-¥0 h 

= & o \ ( E *«>) = *) - E ( e - * W Z(0) = *) } 

= & £ ( E ( E [e~S W ) I *(')] *(0) = *) - E ( e - ' * « | * ( 0 ) = x) } 

= & £ ( E ( E [ e ~ S X [ t + h ) I *(*)] - e"^W\X(0) = *) } 

= E 

lim i { E [e-*Jf(*+'») | X(t)j - e~sX^) |x(0) = x ) 

(o(s;i,X(*))|x(0)=z) 

E ( W ) e - s X « t f ( s ) + ^ e - ^ W ^ £ ) ^ ( s ) X (0) = ^ 
V 9x{s) ) 

= fiH(s)B (X(t)i -sX(t) X{0) = x) +/z 

ds 
= - E (X(t)< ,-sX(t) 

4Wi 

<Px{s) 

X{0) = x) . 

#(s)E ( e - s X W | x ( 0 ) = x) . 

or 

<9s at <px{s) 
(8.2.4) 

Comparing with (8.2.1), the PDE of the conditional pgf for the continuous-time GAR(l) process 

with non-negative integer margins, we find that both have essentially the same form. Hence, 

this new PDE of the conditional LT is also a special form of first order linear partial differential 

equations. From the outline of the solution of the PDE of the conditional pgf, we know the following 
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PDE with boundary condition: 

(8.2.5) 
fas; 0) =e- s*, 

will have solution (compare (8.2.3)) 

(t>x(w) (px{w) 

where w satisfies 

/
ds 

-H(s) = 0 1 w = g'l(-pt + g(s)), 

that is, w is determined by the integration g(s) = J + c, where c is a constant. 

On the other hand, the stochastic representation 

X ( ^ ) l x ( 0 ) = / = ( e " " t ^ ® / + £ ; ( 0 ; < ) ' 

shows that the conditional LT is 

4>x(t)\X(o)=i = (<Ms;e - / i i))X0£;(o;t)( s)-

By comparison, we know that 

<PK(S; e""') = e~w = exp {-g~l (-/ii + g(s))} , 

which suggests another general expression for the LT of a positive self-generalized rv. 

For this new expression form, it is straightforward to verify that 

fas; a) = exp { - a - 1 (log a + g{s))} 

satisfies 

fa- log fas; a'); a) = fas; a'a). 

In addition, fas; 1) = e - * " 1 ^ ^ ^ 8 ) ) = e~s, the same as the boundary situation for any self-

generalized LT. Comparing with the LT form of positive self-generalized distribution in Theorem 

3.3.3, where fas;a) — exp{Gft-(l — s;a) — 1}, we find they are matched with each other, because 
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1 — GK(1 — s; a) is a self-generalized function too. By investigation of such form functions, we may 

likely to find new self-generalized LT's. 

Similarly, it also raises the open question: Under what kind of conditions on g(s), is 

exvi-g-1 (loga+ g{s))} a LT? 

These analyses also disclose the fact that for a continuous-time GAR(l) process with pos

itive margins, the LT of the involved self-generalized distribution, </>K(s,a), is determined by 

its partial derivative of negative logarithm with respect to parameter a when a = 1, namely 
H ( s ) = ^ h l o g ^ ( a ; a ) ] 

Q = l 

8.2.3 Summary: margins, self-generalized distribution and increment of inno

vation 

In the previous two subsections, we uncovered the fact that the pgf or LT of a self-generalized 

distribution is determined by the boundary value of its relevant partial derivative with respect to 

parameter a when a = 1, namely H(s) = 9Gli^'°^ or H(s) = log 4>K{S; a)] . This is 

based on the solution of the PDE of the conditional pgf or LT. For a steady state continuous-time 

GAR(l) process, once we know the distribution of margins and the increment of innovation, we can 

determine the corresponding H(s), and consequently determine the self-generalized distribution. 

This is because that the form of pgf or LT of the increment of innovation has a special form; refer 

to Theorem 6.3.1. Specifically, we can obtain the form of <?(•) by integration: g(s) = J -j^j +  c-

Finally, we use the general expression form g~l(—pt + g(s)) or exp {— g-1(—pt + <?(«))} to get the 

the pgf or LT of the self-generalized distribution. 

It is feasible to obtain the PDE for the non-stationary situation, where the instantaneous 

change rate/relative change rate of the conditional pgf or LT are no longer independent of time t. 

These will be studied further. 

Recalling the study in Chapters 5 and 6, we can give some brief comments on the margins, 

self-generalized distribution and increment of innovation of a steady state continuous-time GAR(l) 
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process, which has the stochastic representation 

X{t2) = e-^t2-^ ®X(tl)+ tye-^®de{t), 
Jo 

or the stochastic difference equation: 

X(t + h) = (1 - nh)K ® X{t) + Ae{h), Ae(/i) = e(t + h) - e(t). 

In Chapter 5, we fixed the self-generalized distribution and the increment of innovation, and 

deduced the representation of X(t2) at a future time. This will in turn determine the stationary 

distribution, and consequently all the marginal distributions in steady state. 

In.Chapter 6, the customizing approach shows how to find the increment of innovation by 

fixing the marginal distribution (in steady state) and the self-generalized distribution. Specifically, 

we obtain the form of pgf, or LT, or cf of the increment of innovation in terms of the pgf, or 

or H{s) = _ dGK(s;a) LT, or cf of the marginal distribution and the partial derivative H(s) = —^ 
a=l 

. These partial derivatives can be deduced from the specified self-generalized 
Q = l 

£[-log (f>K(s; a)] 

distribution. 

Combining the study in the three chapters, we conclude that a steady state continuous-time 

GAR(l) process essentially consists of three elements: margins, self-generalized distribution, and 

increment of innovation. 

From any two of the three elements, we can determine the third element. Thus, in prin

ciple, any two elements will determine the entire continuous-time GAR(l) process. These three 

approaches offer three different viewpoints for the researchers to build a continuous-time GAR(l) 

process model. One can start from an easier approach which may have a clearer interpretation to 

construct a reasonable model for a real problem. This indicates the framework of the continuous-

time GAR(l) process is quite flexible for statisticians to build models. 

For a continuous-time generalized AR(1) process not in steady state, one needs the self-

generalized distribution, the increment of innovation and the distribution of A^O). 
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8.3 Distributions of sojourn time 

For the continuous-time GAR(l) process with non-negative integer margins, the process can stay 

in one state for a certain time, then jump to another state. This sojourn time is a random variable. 

However, for the continuous-time GAR(l) process with positive margins, since the state space 

consists of non-negative real values, the distribution of the near future conditioned on current state 

is still continuous, and consequently it is unlikely to have sojourn time because the probability mass 

on one point is usually zero for the continuous distribution. (In this case, an interesting question 

is whether or not the process has continuous sample path.) 

Hence, in this section, we consider the continuous-time GAR(l) process with non-negative 

integer margins only. We are interested in the distribution of the sojourn time. 

Conventionally, this can be obtained with the well known infinitesimal partition method we 

used in Chapter 4. 

Suppose {X(t); t > 0} is a continuous-time GAR(l) process with non-negative integer mar

gins. Thus the discrete state space is S = {0,1,2,3,...}. Suppose the process is in state i at time 

t\. Denote 
Tij={waiting time since t\ in state i until next jump occurs}. 

We want to find the distribution of Tu. Note that Ta takes value in (0, oo). 

Applying the infinitesimal partition method, we will obtain n equal subintervals [t\,t\ + t], 

each with length h = t/n: 

[ti,ti+h), [$i + M i + 2/0, •••> [h + (n-l)h,ti+nh] = [ti + (n-l)h,ti+t]. 

When n approaches infinity, each subinterval will become an infinitesimal interval. Note the fol

lowing identity: 

Pi[Tu > *] = Pi[X(h +u) = i; 0<u<t\ X{h) = i]. 

By the Markov property, we can decompose the right hand side as a limit of the product of n 

factors on those infinitesimal intervals: 

Pr[X(ij + « ) = »; 0 < u < t | X{ti) = i] 
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= lim ( Pi[X(tx + h)=i\ X(h) =i}x Pv[X(h + 2h) = i\ X(tx + h)=i] 

x • • • x Pr[X(ti +t)=i\ X(h + {n- l)h) = »]) 

= lim (f[Pi[X(t1 + kh)=i\X{t1 + (k-l)h)=i]\. 
n—>+oo 

\k=l 
The probability on each infinitesimal interval can be approximated according to the infinitesimal 

generator matrix. Hence, we may find the limit when n goes to infinity. We shall discuss it for 

stationary and non-stationary situation respectively. 

First, we consider the stationary situation, that is, the process is homogeneous over time. 

Assume that the infinitesimal transition probability of remaining in the same state is 

Pv[X{t + h)=i\ X{t) = i] = 1 + qi4h + o{h), 

where ô j < 0 (i = 0,1,2,....), and h is infinitesimal time increment. Then, it follows that 

Pr[Tu > t] = Pr[X{h +u)=i; 0<u<t\ X(h) = *] 

= lim \T]PT[X(ti + kh) = i I X(h + (k - l)h) = *] ) 
n->+oo \ -"-J- / 

U = l / 

= lim (Pr[X(h) = i \ X{0) = i])n 

n-t+oo 
= lim (1 + qiih + o{h))n = lim (1 + qiA- + o(h)] 

n—>+oo n->-+oo \ n J 

= = e-^K (8.3.1). 

Therefore, Tu ~ exponentialdg^jl). 

Secondly, we turn to non-stationary situation, in which the infinitesimal transition proba

bility of remaining in the same state is 

Pr[X(t + h)=i\ X(t) = i] = 1 + qij(t)h + o(h), 

where qij(t) < 0 (i = 1,2, ) , and h is infinitesimal time increment. Suppose qij{t) is differen-

tiable with bounded first order derivative. By Proposition 5.1.1, it then follows that 

Pr[Tii > t] = Pr[X(ti +u) = i; 0 < u < t \ X(ti) = *] 
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= lim f TT PvlXih + kh)=i\ X{h + (k - l)h) = «] ] 

n 

= lim T][l + gi,i(ti + (k - l)h)h + o(h)] 
n - » + o o *••*• 

k=l 

= lim exp { V " qiAh + (k - l)h)h > 
7 l - » + 0O * ' 

Kk=l J 

= exp { lim y^Qi,i(h + (k-l)h)h> 
L k=l ) 

= e x p { ^ ft,i(r)dTJ. (8.3.2) 

So, the distribution of Ta is 

^r i t (t) = Pr[Tii < t] = 1 - Pr[Tii > t] = 1 - exp j jT ^(rj^rj . 
Hence, Tu need not be exponential distributed. 

The study of sojourn time provides another perspective on the continuous-time GAR(l) 

processes with non-negative integer margins. For example, for the stationary situation, once we 

know the infinitesimal generator matrix, we can simulate the process by the embedding method, 

namely, simulate the waiting time in a state, then jump to another state based on the conditional 

probability mass function from a row of the infinitesimal generator matrix (excluding the current 

state, or diagonal entry), and so forth; see Section 12.5. Also for a continuous observation process 

like in queuing theory, the sojourn time can be observed, hence, it offers more information for the 

inference on the studied process. 
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Chapter 9 

Conditional and joint distributions 

In this chapter, we turn to study the conditional distributions and joint distributions resulting from 

the continuous-time GAR(l) processes. From the point of view of distribution theory, defining a 

discrete-time higher order Markov process is equivalent to defining a multivariate distribution for 

adjacent observations, in which the dependence structure stipulates the dynamic mechanism of the 

process. Conversely, the process provides an approach to construct multivariate distributions. This 

view will be discussed in Section 9.1. 

We will also calculate the conditional mean and variance in Section 9.2, as well as the auto

correlation coefficient in Section 9.3. These statistics are very useful in the estimation of parameters 

with sample data. In addition, we study the bivariate and multivariate distributions resulting from 

the continuous-time GAR(l) processes in Section 9.3. Some of them are new compared with those 

existing in the literature. 

9.1 Consistency in process construction: the view from distribu

tion theory 

Statistical inference is made based on a chance model. Diverse chance mechanisms are described 

through probability distributions. Essentially, statistical modelling consists of specifying an appro-
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priate probabilistic framework for the practical problem. 

A process (discrete-time or continuous-time) denoted as {Xt; t € T} is the collection of de-

numerable or innumerable random variables on a probability space (ft, T, V), which in turn leads to 

joint distributions for every finite subset of rv's like (Xtl, Xt2,..., Xtm). For a discrete-time process 

denoted as {Xn; n = 0,1,2,3,}, the path is just the sequence {XQ(UJ), Xi(u), X2(UJ), ...}, and the 

construction of such a process is equivalent to specifying all finite dimensional joint distributions: 

F(xni,xn2,...,xnm)(xi,x2,... ,xm) = Pr[Xm < xi,Xn2 < x2,...,Xnm < xm], m e A/\ 

For a continuous-time process denoted as {X(t); t > 0}, the path is a function of t, denoted 

as X(uj;t). Since for a time interval, there are innumerable rv's, the construction is a bit more 

complicated. In this situation, we need to resort to the infinitesimal partition method again when 

we evaluate an event over a continuous time period. For example, suppose we want to find 

Pr[X(i) </(*); A<t< B], f(t) is a function of t. 

Partition the interval [A,B] by points t\,t2,... ,tn so that each piece [ti,ti+i] is very small. As 

n goes to infinity, the length of each piece will go to zero. With the additional requirement like 

stochastic continuity: limPr[|X(i) — X(t')\ > el = 0 for every e > 0 and every i , we can obtain 

Pr[X(t) < f(t); A<t<B] = lim Pv[X(h) < f(h),X(t2) < f(t2),..., X(tn) < f(tn)}. . 
n—>oo 

This requires us to specify the joint distribution of (X(t\), X(t2),... ,X(tn)) first; namely for any 

finite number of time points t\,t2,... ,tn, we need to specify the joint distribution 

F(x(h),x(t2),...,x(tn)){xi,x2,... ,xn) = Pr[X(ii) <xuX{t2) <x2,...,X{tn) < xn], n £ j\f. 

For more details about defining a process, see Karlin and Taylor [1975], p. 32-33, Doob [1953], 

Chapter 2, and Breiman [1992], Chapter 12. 

Basically, defining a process is equivalent to specifying all possible multivariate distributions 

with finite dimension no matter whether it is discrete-time or continuous-time. 

However, those defined multivariate distributions can not be given arbitrarily. They should 

satisfy the consistency condition proposed by Kolmogorov in 1933. Based on this consistency 
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condition, Kolmogorov's extension theorem asserts that there exists a probability space and a 

process on it such that any finite number of rv's from the process has the same joint distribution as 

that prescribed in the consistency condition. This theorem is also referred as the first fundamental 

theorem in the theory of stochastic processes; see Chung [1974], p. 60-61. The following states the 

consistency condition in terms of distribution functions: for each m > 1 and (x\,x2,..., xm) € 

and t\,t2,... ,tn € T which need not be ordered, if n > m , then 

* m + ™ ~ F(Xtl,...,Xtm,Xtm+1,...,Xtn)(xU • • .,XM,XM+U ...,XN)= F{Xti ,...,X t m) . . . ,XM). 

This means that the lower dimensional marginal distribution derived from a prescribed higher 

dimensional joint distribution should be the same as the corresponding prescribed joint distribution 

with lower dimension. 

Now we look into the construction of a Markov process, and investigate whether it is well 

defined from the point of view of consistency. Assume the state space is S. The key feature of a 

Markov process is that the future depends only on the present, not the past. 

First, we consider defining a discrete-time Markov process {Xn; n > 0}. In this situation, 

we specify the conditional probability structure for any two neighbors: P r [ X n + i = y | Xn = x] 

for any x, y € S. Once all neighborhood conditional structures are defined, and given the dis

tribution of starting point, namely the distribution of XQ, then all finite dimensional joint distri

butions are stipulated. This is because that for any positive integer n , the joint distribution of 

(Xo, X\,..., Xn-i, Xn) can be obtained by the following equation 

f(Xo,Xu...,Xn-UXn) = fx0

 X fXi\X0 X • ' • X fxn\Xn^-

Here we employ the notations / ( X o , x l r . . , x n _ i , x n ) i fx0, fx!\x0, • • • , / x „ | X n - i to denote the pmf in the 

discrete case or pdf in the continuous case to avoid the tedious work of setting separate notation 

for the two cases. The joint distribution of any finite dimensional vector of random variables 

(Xmi,Xm2,...,Xmk) (0 < m i < 7712 < • • • < mk) can then be derived by integrating (with 

respect to the appropriate measure, e.g., Lebesgue or counting) out irrelevant variables in the joint 

distribution of higher dimension of vector (XQ,XI, . . . , Xmk). In this situation, the joint distribution 

of any finite dimensional vector of random variables is just prescribed in the way that the marginal 
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distribution is obtained from a higher dimensional joint distribution. This means that consistency 

is automatically guaranteed. Therefore, Markov processes in the discrete-time situation are well 

defined if the conditional probability structures of all neighboring pairs of variables are prescribed. 

These conditional probability structures can be arbitrarily specified. We do not need to impose 

any conditions on such conditional probability structures. 

The previous discussed Markov process is usually referred to as the first-order Markov 

process because the current state only depends on the last one. Similarly, for a higher order 

Markov process in which the current state depends on the last few states, we can have the same 

conclusion that the process is well defined if all conditional probability structures of the current 

state given certain previous neighbors, Xn | Xn-i,..., Xn_k, are specified. No restrictions on these 

conditional probability structures are required. 

Returning to modelling, we usually impose certain requirements on the marginal distribu

tions of discrete sets of time points. For example, a common assumption is stationarity, which leads 

to all univariate marginal distributions being the same, namely the same as that of the starting 

point. In this specific situation, defining a first-order Markov process is equivalent to defining a 

bivariate distribution of (Xn_i,Xn) with the common univariate marginal distribution, because the 

distributions of and Xn are the same, and the conditional probability structure of Xn | Xn_\ 

is the same for every n. In general, defining a stationary mth order discrete-time Markov process 

is equivalent to defining a (m + l)-dimensional multivariate distribution of (Y l 5 Y 2 , . . . , l m i ^ m + i ) 

where fYl = fv2 = • • • = fym+i a n d f{Yu...,Ym) = f(Y2,...,Ym+1)-

Let us look into Model (2.1) in Joe [1996] to check how it is well defined from the viewpoint of 

distribution theory. Let {Fg} be a family of ID distributions, Gag^i_a^g<y corresponds to conditional 

distribution of Z\ given Z\ + Z2 = y, where Z\ ~ Fag, Z2 ~ F ( i - a ) 0 . This model has stochastic 

representation 

Yt = MYt.x) + et, 

where Yt-i have distribution Fg, et has distribution F^_a)g, A is a random operator such that 

A(Y) given Y = y has distribution Gag^i_a^gty and A{Y) ~ Fag when Y ~ Fg. At{Yt-i) and 

et are independent. Here 0 < a < 1 and 6 > 0. Fg is an infinitely divisible convolution-closed 
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parametric family such that Fg1 * Fg2 = Fg1+g2, where * is the convolution operator. This is a 

typical Markov process. The conditional distribution of Yt given Yt~\ = y is Gag^i_a)gty * F^^^g. 

Thus, the bivariate distribution of (Yt-i,Yt) is determined by the marginal distribution of Yt-i and 

the conditional distribution of Yt given Yt-\ = y. By induction, the marginal distribution of Yt is 

also Fg. This model is well defined because of the appropriate marginal distribution and conditional 

probability structure. 

Conversely, if we define a bivariate distribution such that the two univariate margins are 

the same, and the conditional probability structure of one margin given another one is the same 

as before, we of course can obtain the same stochastic representation of one variable in terms of 

another one as in Model (2.1) in Joe [1996]. Such a model can be applied in count data or positive 

data time series, and it also unifies many models appeared in the literature like Lewis [1983], Lewis 

et al. [1989], McKenzie [1986], [1988], Al-Osh and Alzaid [1987], [1991] Al-Qsh and Aly [1992], 

Barndorff-Nielsen and J0rgensen [1991], Alzaid and Al-Osh [1993]. J0rgensen and Song [1998] 

gives further study for this model. Note that a restriction on such models is that the innovation 

and the margins have distributions in the same family. Also in general, they do not extend to 

continuous time. 

Next we turn to defining a continuous-time Markov process {X(t);t > 0}. We specify 

the conditional probability structure of the current state given the previous state. In discrete-

time situation, the sequence of random variables are denumerable so that the neighbors are fixed. 

However, in continuous-time situation, the random variables are innumerable, and even worse, we 

can not fix the neighbor of time point t. We have to specify the conditional probability structure 

of X(t) given X(t') = x for any if < t, i.e., fx(t)\X(t')=x(-) or fx(t)\X(t')(- I x)-
With such a specification, for t\ < t2 < • • • < tn, we can obtain the joint distribution of 

(X{tx), X(t2),.. •, X(tn)) by the Markov property: 

f{x{tl),x(ti),...,x{tn)){xiiX2,...,xn) = /x(ti)(xi)x/x(t2)|x(ti)(x2 I x i ) x - - - x / X ( t B ) | j f ( 4 n _ 1 ) ( a : n | xn-i). 

We view this way as the prescription for the joint distributions. Now we check the consistency. 

Suppose t i < t2 < £3. Then the prescribed joint distribution of (X(ti), ^ ( £ 3 ) ) is 

f(X(h),X(t3)) = fx{h) x fx(t3)\X(t!)i 
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while the prescribed joint distribution of (X(*i), X (t2), X(£3)) is 

f(X(h),X(t2),X(t3)) = fx(ti) x /x ( t 2 ) |X( t i ) x fx(t3)\x(t2)-

From the latter, we can derive the joint distribution of (X(ti), X(ts)) by integrating over possible 

values of X(t2): 

/(xctij.xcta))^!.^) = j fx(h)(xi)fx(t2)\x(tl)(x2 \ xi)fx{t3)\x(t2)(x3 I x 2 ) d u ( x 2 ) . . 

Here v(-) is an appropriate measure. This raises the consistency problem, namely whether 

fx(t3)\x{t!) = j fx(t2)\x(h)(x2 | •) • fx(t3)\x(t2)(- I x 2 ) d u { x 2 ) . (9.1.1) 

This means that the conditional probability structure fx(t)\x(t')=x{') 1 S
 n ° t arbitrary. It is totally 

unlike the discrete-time situation where the conditional probability structure fXn\Xn_1=x{') c a n be 

arbitrary. Denote for t' < t 

Gxw\x(t>)=x(s) = E ( > « | X(t') = x ) , or Gm{x(t/)(s) = E (><«> | X(t')) , 

<l>x(t)\x{e)=x(s) = E (e~sXW | X(t') =x), or 4x>t)lX{t>)(s) = E ( e " ^ W I > 

V x W W ) = x W = E ( e " ^ ) | X ( t ' ) = x ) , or = E ( ^ ( t ) | , 

for non-negative integer, positive or real support respectively. Then the consistency requires that 

X(h) = z) = E x ( i 2 ) {Gx{t3)lX(t2){s) | -X"(*i) = x) , 

or 

X(«i) = s) = E x ( t a ) (^x ( t 3 ) |X(t 2 ) ( s ) I = > 

or 

X(ti) = x) = E x ( t 2 ) (¥>x(t3)|x(ta)(s) I *(*i) = «) 

respectively. 
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When we impose stationarity on a continuous-time Markov process, then for all t, X(t) 

has the same distribution as X(0), and the conditional probability structure of X(t) given X(t') 

only depends on the time difference t — t'. This may come from the practical consideration of 

modelling. In this situation, the continuous-time Markov process leads to a trivariate distri

bution of (X(t\),Xfo),X(ts)) such that the conditional probability structures fx(t2)\x(ti)=x(')-> 

fx(t3)\x(t2)=x(-) a n d
 fx(t3)ix(tl)=x(-) have the same form and Equation 9.1.1 holds. 

On the other hand, if there exists such a trivariate distribution, we can construct a stationary 

continuous-time Markov process based on it and the consistency is guaranteed by the feature of 

this trivariate distribution. Therefore, defining a stationary continuous-time Markov process is 

equivalent to defining a trivariate distribution with a special property satisfied by its conditional 

distributions. 

This is the big gap between discrete-time and continuous-time Markov processes. Rela

tively, defining a required bivariate distribution is much easier than defining a required trivariate 

distribution. Hence, this could be a partial reason for the phenomena that discrete-time Markov 

processes were often developed earlier in the literature than the continuous-time Markov processes 

as we discussed in Section 6.4. 

For higher order continuous-time Markov processes, the consistency conditions will be more 

complicated. However, essentially, defining a stationary higher order continuous-time Markov pro

cess (if possible) is equivalent to defining a higher dimensional multivariate distribution. 

Sampling on equally-spaced time points from a continuous-time Markov process, we can 

obtain a discrete-time Markov process. Hence, if a stationary discrete-time Markov process is ac

tually coming from a stationary continuous-time Markov process, then its conditional distributions 

of three neighboring points X n _ 2 , X n _ i and Xn will satisfy the consistency conditions automati

cally. We illustrate this issue by looking into the situation where the support of marginal distri

bution of Xn (n > 0) is non-negative integer. Stationarity leads to the identity Gxn\xn-i=x( s)  =  

Gx„-i\xn-2=x( s)• We can obtain the conditional pgf of Xn given X n _ 2 = x as 

GXn\xn-2=x{s) = Ex„_i(Gx„|x n _i(s) | X n _ 2 = x). 
> 

The resulting GXn\xn-2=x( s) should have the same form as GXn\xn^1=x(s) or G X n _ 1 | X n _ 2 = x ( s ) , 
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because they have been defined so in a continuous-time Markov process. 

This indicates that if we wish to extend a stationary discrete-time Markov process to a 

stationary continuous-time Markov process, the consistency among three neighboring points is a 

necessary condition. If a discrete-time Markov process doesn't satisfy this consistency condition, 

we can not expect to extend it to a continuous-time Markov process. 

Finally, we end this section with two theorems to illustrate the construction of a continuous-

time Markov process from the perspective of distribution theory. 

Theorem 9.1.1 Define a trivariate distribution of (X (t\), X (t2), X (t^)) for any 0 < t\ < t2 < £3 

based on the following. 

(1) The distribution of X(t\) is GDSD associated with a self-generalized distribution which has 

pgf Gx{s;a) (0 < a < 1). Assume the pgf of X(t\) is G(s). 

(2) For t' < t, the conditional pgf of X(t) given X(t') = x is 

Then the resulting trivariate distribution is consistent with a stationary continuous-time Markov 

process which has G(s) as the pgf of the univariate marginal distributions. 

Proof: The key step is to show that this trivariate distribution is well defined, or in another words, 

the conditional pgf's are consistent. It suffices to prove 

(s) = E (sxW\x(t') =x)=Gx

K (s;e-rt-V) x 
G(s) 

GX(t)\x(t>) G{GK {s;e-rt-*))Y 

GX(t3)\x(h)=x(s) = E x ( t 2 ) (GX(t3)|x(t2)(s) I X{h) = x) • 

From (2) in the definition of the trivariate distribution, we have 
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By straightforward algebra, it follows that 
oo 

E X ( t 2 ) {GX(t,)\x(t2)(s) I X(h) =x) = £ GX(t3)\x(t2)=y(s) Pr[X(t2) = y | X{h) = x] 

G(s) 

G(GK (s;e-M*3-t2))) 
xGl (GK (a.e-«*-*)).e-M-V) G(GK (s;e~^)) 

J G(GK(GK(s;e-^-^);e-^-^)) 
UK^K[s,e j,e ) G(GK{GK(S;e-^-^);e-^-^))) 

= G%r (s-e-^-^A ' °{s) 

U k V'6 / G ( G , ( S ; e - * - i . ) ) ) ' 

which equals Gx(t3)\x(ti)=x(s) obtained from (2) in the definition. Therefore, the trivariate distri

bution is well defined. 
The trivariate distribution of (X(ti), X(t2), -^(£3)) can be written down in 

/ (X(t i ) ,x ( t2 ) , * ( i3) ) = fxfa) x fx(t2)\X(h) x /x(t 3)|X(t 2)-

This motivates us to define the finite dimensional joint distribution of (X(ti), X(t2),..., X(tn)) for 

t\ < t2 < • • • < tn, n > 3, in such a way: 
f{X{h),X{t2),-,X{tn)) = fx(h) x fx(t2)\X(h) X • • • X / x ( i n ) | X ( t n _ ! ) -

Now we wish that this defined family is consistent. Because of the consistency feature of the 

trivariate distribution which satisfies: 

fx(t)\x(t"){z I x) = j fX(t')\x(t")(y I x)fx{t)\x{t'){z I v)dv(y), for any t" < t' < t, 
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we can take expectation over X(ti+i),..., for fx{ti+x)\x{u) x • • • x fx^x^) and obtain 

j • • • j fx(ti+1)\x(u)(xi+i I xi) x • • • x fxit^xit^^ixj I ^ - 1 ) ^ ( ^ + 1 ) • • • dv(xj-i) 

= J • • • J fx(ti+1)\X(ti)(xi+l I Xi) X • • • X / x ( t ; _ 2 ) | X ( 4 J _ 3 ) ( 2 ; j - 2 I Xj-z) 

x ^y ' / x ( t i - i ) | x ( t , - _ 2 ) (» i - i I Xj^fxit^xitj.^ixj I arj_i)di/(sj_i)^ a V ( x m ) • • • aV(^_ 2 ) 

=• f ••• f fx(u+i)\x(ti)(xi+i \xi)x---x fx(tj-2)\x(tj-3){xj-2 I x j_ 3 ) 

x / x c t ^ l A - ^ - a j ^ i I ^ - 2 ) ^ ( ^ + 1 ) • • • ^ ( ^ - 2 ) 

= J fx(ti+l)\x(ti)(xi+i I I xi+i)dv{xi+i) 

= fx(tj)\X(U)(xj I X j ) , 

for 1 < i < j < n. Consistency always obtains when integrating out X(t\) or X(tn). Hence, 

by induction, it follows that for any subset (X(tmi),... ,X(tmk)) of (X (ti), X (t2),..., X(tn)), the 

joint distribution of ( X ( i T O l ) , . . . ,X(tmk)) deduced from the higher dimensional joint distribution 

of (X(ti), X(t2),..., X(tn)) by integrating out irrelevant arguments, is just the same as that from 

the direct definition. Therefore, the defined family is consistent. 

According to Kolmogorov's extension theorem, there exists a corresponding process {X(t);t > 

0}. 

Now we calculate the pgf of X(t) if the pgf of X(t') is G(s): 

Gx{t){s) = E(E(**W|X(0)) 

- E (GX{t'] (s-e-M-'A ° { S ) ^ 

- E \ G * l S ' )G(GK(s;e-^')))) 

- °M B(GX^ (s-e-^'A) 

G{GK{s;e-^-t')))U{UKV'e )) 
= G(s), 

which is the same as the LT of X(t'). This fact indicates the distribution of -X"^) and X(ts) 

are the same as X(t\). Furthermore, the trivariate distribution corresponds to the stationary 
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continuous-time Markov process with stochastic representation 

X{t) ~ ( e - ^ ' ) ) © X(t') + E(t, t'), 0 < t' < t, 

where the cumulative innovation E(t,t') has the pgf G(s) jG (GK (S; e - ^* - * '^ , and is indepen

dent of © X(t'). This comes from (2) in the definition of the trivariate distribution. 

Theorem 9.1.2 Define a trivariate distribution of (X(ti),X(t2),X(ts)) for any 0 < t\ < t2 < t$ 

based on the following. 

(1) The distribution of X{t\) is GSD associated with a self-generalized distribution which has LT 

4>K{S;O) (0 < a < 1). Assume the LT of X{tx) is fos). 

(2) For t' < t, the conditional LT of X(t) given X(t') = x is 

Then the resulting trivariate distribution is consistent with a stationary continuous-time Markov 

process which has <fi(s) as the LT of the univariate marginal distributions. 

Proof: This is similar to the proof of Theorem 9.1.1. We only check the consistency. From (2) in 

the definition of the trivariate distribution, it follows that 

' « N W = ^(''•^'•-"O^-lng^U--)))-
By algebra, we have 

E x ( t 2 ) (to(t 3)|x(t 2)(s) I -X"(*i) = x) 

' ^ Ue-««-») , , , f ] „ , m X(tl) = x) K \ ) <f>(-logfo ( s ;e-M*3 -*2))) J = E 
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log to (s;e" -M*3-"*.))) 

~H- log fo (s; e" -M(*3--*))) 
<f>{s) 

~H- log to ( s ; e " - / l ( *3--*))) 

x </>(-logfo (*;e-"te-*»>)) 
<?!>(-logfo ( - l og fo ( s je -^'a-^)) ; e - M * 2 - * i ) ) ) 

= « r ( - log to ( . ; e - ^ > ) ;e-"fr-*>) x ^ ff],^ ; e _ , ( t 2 _ t l ) ) ) 

^ V S ' 6 ^ ( - l o g f o ( S ; e - M t 3 - t i ) ) ) 

= </>X(ts)\X(ti)=x(s)-

This completes the proof. 

Remarks: 

(1) For the stationary continuous-time GAR(l) process 

X(t)= (e->M{t-t'))K®X{t') + E{t,t'), 0<t'<t, 

when t — t' = h is very small, it will become a stochastic difference equation 

X{t)= {l-n(t-t'))K®X(t') + Ae(h), 

where Ae(h) = e(t) — e(i') is the increment of the innovation process {e(t);t > 0}. Since given 

X(t') = x, the pgf or LT of (1 - fi(t - t'))K®x is Gx

K(s; 1 - n(t - ?)) or 4>x

K{s; 1 - ~ *')), 

by Properties 3.1 and 3.3, it follows that 

Gx

K(s;l-n(t-t')) —+ sx, or <f>x

K(s;l-n(t-t'))^e-xs, as t - t' -»• 0. 

This shows that 

( l - /i(t - f/))# ©x - A a:, a s i - i ' - > 0 . 

Hence, as t — t' —> 0, 

(1 - fi{t - t'))K ® X{t') - X{t') A 0. 
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On the other hand, the innovation process is a Levy process under stationarity for the gen

eralized Ornstein-Uhlenbeck SDE. By the definition of Levy process, we know 

Ae(h) -A 0, as 0. 

Thus, 

X{t) - X(t') -A 0, as t - t' -> 0. 

Therefore, the stationary continuous-time GAR(l) process is stochastically continuous. 

(2) The stationary continuous-time GAR(l) process can be constructed by taking limit of a series 

of discrete-time processes: 

X « = | X ( 0 ) , X (1) , X (J,) , • . . , * ( £ ) , . . - } , A: = 0 , l ,2 ,3 , . . . . 

These discrete-time processes can be constructed by the trivariate distributions in Theorems 

9.1.1 and 9.1.2. By the consistency of the trivariate distributions, the embedding of X^k~^ 

in X^ is consistent. With the stochastic continuity, the limit exists in distribution: 

lim X^ _L> X. 
fc—KX> 

This limiting process is indexed by t G [0, oo). 

9.2 Conditional properties 

In this section, we study some conditional properties of a continuous-time GAR(l) process. These 

properties include the conditional pmf or pdf, conditional mean and conditional variance. They are 

of particular interest because they are needed for statistical inference such as parameter estimation. 

Recall that a continuous-time GAR(l) process has the stochastic representation 

X(t2) = ( e-Mfc-'0) ^ © X(h) + E{tu t 2), h < t2, 
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where the two summands on the right hand side are independent. Therefore, given X(h) = x, 

X(t2) has representation 

.[X{t2)\X(h) = x]= (e-M*-*1^ ®x + E(h,t2). 

Note that (e -^* 2 -* 1))^ © a; is usually a rv. Only in special cases like K being from PI, i.e., the 

corresponding extended-thinning operation becomes the constant multiplier, does it degenerate to 

a constant. This conditional representation leads to the pgf or LT or cf of X(t2) given X(t\) = x 

Vx(t 2)|Jf(ti)=x(a) = ^v{ixe-»{t2-tl)s}yE{tut2){s). 

The pgf, or LT, or cf of K and E(t\,t2), and even the margin X(t\) and X(t2) are specified by the 

continuous-time GAR(l) process. In principle, the conditional pgf, or LT, or cf will determine the 

conditional pmf or pdf, conditional mean and conditional variance. 

We first consider the conditional mean and conditional variance; assuming they exist: 

E[X(t2)\X(h) =x] = E [ ( e - ^ 2 - * 1 ^ © ^ ] +E [E(tut2)], 

Var[X(i 2 ) | X(h) = x] = Var ( e ^ 2 - * 1 ) ) © x + Var [E{tut2)]. 

The mean and variance of the cumulative innovation E(ti,t2) can be obtained from its pgf, or LT, 

or cf by the general formula 

E(y) and Var(y) = ̂  
G'Y(l)+G'Y(l)-(G'Y(l))2, 

# ( 0 ) - (4>'r(0))2, 
{ -<p'Y(0) + (<p'y(0))2. 

They are independent of a;. Now we investigate the mean and variance of (e'^2'1^)K ® x. Since 

G'Y(1), 

-MO), 
-Vy(0), 

j-G*K (a; e-^ 2"* 1)) = xGx

K~l (s; c " ^ - * i ) ) ±GK (s; e'^2'^) , 

Ift (s; e - " f c - « 0 ) = x ^ (.; e - ^ - ' O ) ^ K (s; e ^ M ) , 
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d2 

+xG^ (8;e-«*-V) ^2GK (s;e-«»-*) , 

5s2 

and 

e x p j ^ e - ^ 2 - * 1 ^ } = -x2e-2^-^exp{ixe-^hh], 

GK (l;e-^-h)) = 4>K ( O ^ - ^ 2 " * 1 ^ = exp [ixe~^-h) x o} = 1, 

We have 

E 

G|- (sje-̂ *2-*1)) 
•=i 

s=0 

s=0 

s=l 

s=0 

= xE 

Here K [e~^t2~tl)) denotes the self-generalized rv K associated with parameter e ^(*2 * x ) (see 

Chapter 3). For the variance, we calculate it from the pgf, or LT, or cf respectively: 

= X ( X — 1) 
8GK {s;e-^-^) 

ds 

+x 
dGK {s;e-^-^) 

ds 

s=l 

s=l 

+ X 
82GK (s;e-^t2'^) 

ds2 

dGK (sje-^2"*1)) 
ds 

s=l 

s=l 

d 2Gjr (sje-^2-*1^) 
= x d? 

= xVar \K (e-M*-*1^ 

dGK (sje-^2-*1)) 
5s — re 

dGK (sje-^*2"*1)) 
- i 2 

5s 
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ds 2 ' 
^ ( S ; e - ^ - ^ ) | s = o - [ ^ ^ ( S ; e - ^ - ^ ) 

= rc(rc — 1) d<j>K (s;< 

s=0 

- M * 2 - * i ) ) 

s=0 

s=0 

+ 2; 
d2<t>K {s;e-^-^) 

ds2 

s=0 
— X 

-fj-iti-h)) 
ds s=0 

X 
d24>K ( s ; e -^ -^ ) ) 

ds2 

d<j>K (s;e-^-^) 
s=0 ds s=0 

= rrVar 

ds2 s > I + 
s=0 

— exp 4 arce 
as l. 

- / i ( t 2 - t l ) -} 
J s=0 

= rrVar [e-^^2"*1) 

Var 

In summary, 

2-/*(fe-*i)^ © a ; = rrVar K {e'^2-^ 

These indicate that the conditional mean and variance ® x are proportional to the 

last observation X(ti) = x; the larger the value of x, the larger the conditional mean and variance 

of the dependence term. Table 9.1 summarizes the mean and variance of self-generalized rv's K(a) 

discussed in Chapter 3. 

Consider a self-generalized distribution with finite mean. By Theorem 3.2.1, we have 

-rn(t2-ti) E ' ( e - / * ( * 2 - * i ) ) ® z | = XE[K ( e - ^ 2 - * 1 ) ) ] = x ( e - ^ - * i ) ) = rre" r > 0. 

This shows that as the time difference t2 —t\ increases to infinity, the mean of the dependent term 

decreases to zero. For the pair (re, (e -^* 2 -* 1)) K ©re), or more generally (X, (e -^* 2 -* 1)) ® X), if 

K is a self-generalized rv from P I , then it becomes (re, e - ^ ' 2 - * 1 ^) or (X,e~^t2~tl">X), a straight 

line through the origin with slope e - ^* 2 - ' 1 ) , leading to a singular bivariate distribution in 5 f t 2 . If 

K is a self-generalized rv other than from P I and E[if(a)] = a, then the expectation line is the 
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Table 9.1: Mean and variance 
K(a). 

of non-negative integer and positive self-generalized random variable 

K(a) M e a n Variance 

11 a a(l - a) 

12 a . a ( l - a ) ( l + 7 ) / ( l - 7 ) 
13 oo N A 

14 a a ( l - a ) e y 

15 a" when6> = l , a ( l - a ) ( l + 7 ) / ( l - 7 ) and 00 (0 > 1) 
P I a 0 
P 2 a 2 a ( l - 0)7/(1 - 7 ) 
P 3 oo N A 

P 4 a a ( l - a ) ( e 8 - l ) 

P 5 a° when 0 = 1,2a(l - 0)7/(1 - 7 ) and 00 (0 > 1) 

same as i n the case of P I . However, the second argument (e ^ t 2

 K ® x or 

is no longer a constant, but a random variable. T h i s random variable w i l l fluctuate around the 

expectat ion line y = e'^'^x, and form a cone shape, namely as x or X gets larger, the variat ion 

of ( e - ^ * 2 - * 1 ) ) ^ © x or ( e - ^ * 2 - * 1 ) ) ^ © X is proport ional ly larger. 

For a stationary continuous-time G A R ( l ) process w i t h marginal mean A and margina l 

variance V, we may find the mean and variance of the cumulative innovat ion E{t\,t2), which 

further results i n the the mean and variance of X(t2) given X(t\) = x. T h i s is to take advantage 

of the independence of the two terms i n the right hand side of the stochastic representation 

X{t2) = ( V ^ 2 - ^ ) © X{h) + E(tut2), 

or 

[X(t2)\X(tl) = x] = ( e - ^ - t ^ ) K ® x + E(tl,t2). 

F r o m the first representation, apply ing the previous results on the dependence term, we obta in 

E[X(t2)} = E[[e-^t2-t^K®X(t1)] + E[E(tut2)} 

= E[X(h)}E [K ( e - ^ 2 " ^ ) ] +E[E(tut2)}, 

Var[X(t 2 )] = Var [ ( e ^ ' 2 " ' 1 ) ) ® X ( t i ) ] + Var[E{tut2)] 
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= Var (E [ ( e - ^ 2 - ' 1 ^ ® 

+E (Var [(e-»te-V)K®X(t1)\x(t1j\) + Var[E(tut2)] 

= Var ( x ( i i ) E [if ( e ^ ^ O ^ . + E ( x ^ V a r [K (e^' 2"**))]) 

+Var[E(i 1 , i 2 )] 

= Var[X( i ! ) ]E 2 [K ( e ^ 2 " ^ ) ] + E[X(i 1 )]Var [K ( e - ^ - * i ) | 

+Var [£ (* i ,< 2 ) ] . 

Thus 

# ^ e - M * 2 - t i ) 

A = A • E 

V = V • E 2 

which lead to 

E[E(tut2)] = A(l-E 

+ E[E{tut2)}, 

+ A • Var K ( e - ^ t 2 - 4 l ) ) ] +Var[E(tut2)], 

Vax[E(h,t2)] = V-(l-

Therefore, we obtain 

E K (e^ ' 2 - * 1 *)] ) - A - V a r 

E[X(t2)\X(h)=x] = E [(e-^*2-*1)) ®x] +E[E(t1,t2)] 

= A + (x~A)-E K (e^**-*1^ 

Var[X( i 2 ) | X(h) = x] = Var [ ( e^ ' 2 " ' 1 ) ) 

= V-(I-E2[K( 

(9.2.1) 

- / x ( 4 2 - t l ) 

(9.2.2) 

X ^ e - M * 2 - i i ) j 

+ Var t2)] 

) + (x - A) • Var 

This shows that the conditional mean and conditional variance only depend on the marginal mean 

and marginal variance specified in steady state, as well as the mean and variance of the self-

generalized rv K in the dependent term. Thus, when we fix the stationary distribution of the 

process, the cumulative innovation seems to be dummy; it looks to have no influence on the condi

tional mean and conditional variance no matter whether the process is in steady state or not. Note 

that this approach can be extended to the non-stationary case where the stochastic representation 

is 

X(t2)± (e-tii2ti(t)dt)K®X(h) + E(U,t2), 
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or 

X(t2) = (e~ ti Kt)dt) k®X + E(h, h). 
Assume that the margin X(t) has the mean A(t) and variance V(t). Then it will follow that 

E[X(t2)\X(t1)=x] = E + E [E{h, t2)} 

Var I 

= A(t2) + [x- A(h)} • E [K (e" ti ^t)dt)] , 

[X(t2) | X{h) = x] = Var [ ( W n " ( t ) d i ) ^ © x] + Var [£(t i , t 2 )] 

= V(t2)-V(h)-E2[K(e-ti^d^ 

+[x - A(ti)] • Var K [e" ^ 

Next we turn to the conditional pmf and pdf. It is quite challenging to obtain them from 

the conditional pgf, or conditional LT, or conditional cf. Without loss of generality, we consider the 

stationary continuous-time GAR(l) process. Thus, given X(t\) = x, X(t2) can be decomposed as 

the sum of two independent terms, namely the convolution of (e -^* 2 -* 1))^. ®x and E(t\,t2). The 

supports of ( e^* 2 - * 1 ' ) ^ © x and E(t\,t2) are of interest, because they will affect the expression 

form of conditional probability of X(t2) given X(t\) = x. 

(1) If i f is a non-negative integer self-generalized rv, then the support of (e -^* 2 -* 1))^ is either 

{0,1} (from II) or No = {0,1,2,...} (other than II). Hence, the support of ( e ^ 2 ^ 1 ) ^ ®x 

is either {0,1, . . . , x} or Mo- However, the support of cumulative innovation E(t\,t2) is always 

Mo. • 

In this situation, the general expression of conditional pmf is that for any y G MQ, 

Pr[X(t2) = y | X(h) = x] = Pr 

min(x,j/) 

(e-rt*2-11^ ®x + E{h,t2) = y 

]T Pr[(e~^t2-t^)K®x = i] xPr[E(ti,t2) = y - i], K from II , 
i=0 

y 

Y, Pr [(e -^* 2 -* 1))^ ©x = *] x Pi[E(ti,t2) = y - i], otherwise. 

(2) If K is a self-generalized rv from P I , then ( e ^ 2 - * 1 ^ © x degenerates to the point 

xe~^t'i~tl\ which could be positive or real depending on the data type of x. The cumu-
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lative innovation E(t\,t2) can be non-negative, positive or real. It could have non-zero mass 

on the point zero. 

In this situation, the conditional distribution of X(t2) could have non-zero mass on the point 

xe-n(t2-ti)^ i - e - j 

Pr X{t2) = xe — ~.p -M J 2 - * l ) = Pt[E(tut2) = 0], 

and conditional pdf 

fx(t2)\xfr)=x(y) = fE(tlM) (v ~ xe-^~^) , y ? xe 
- / i ( * 2 - t l ) 

(3) If iv" is a positive self-generalized rv from a distribution family other than P I , then the support 

of (e -^* 2 -* 1))^ is either non-negative 3?o (with non-zero mass on point zero) or positive 3?+ 

(without non-zero mass on point zero). This leads to the support of (e - ^* 2 - * 1 ))^ ®x being 

either non-negative 3?o or positive The support of E(t\,t2) can be either J J Q or 5ft+ too. 

In this situation, the conditional distribution of X(t2) could have non-zero mass on point zero 

if both have non-zero masses on 0: 

Pr [X(t2) = 0 | X(h) =x]= Pr [(e -"** 2 -* 0) © x = o] Pi[E(ti,t2) = 0], 

and have pdf on y > 0: 

fx(t2)\x(h)=x(y) = J / ( E - ^ T 2 - t i ) ) K © x ( 2 ; ) • fB(tut2)(y - z)dz 

+ Pr [(e-^2-^)K ®x = 0] x fE{tlM){y) 

+ / ( c - ^ 2 - ' i ) ) K ® s ( y ) x ?*[E{tiit2) = 0]. (9.2.3) 

The dependence term (e -^' 2 -* 1))^, ©a; is associated with the self-generalized rv K. When 

i f is a non-negative integer rv, it is the sum of x iid rv's with pgf GK [S] e - ^ ' 2 - * 1 ) ) . When i f is a 

positive rv (from distribution family other than PI) , since <J>K (S; e~^(*2_tl)) is of exponential form 

(see Section 8.2.2), 
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is certainly of exponential form too, and consequently, (e -^* 2 -* 1))^ © x and K are in the same 

family. When K is from PI, it is trivial case. Essentially, this dependence term can be linked to 

the associated self-generalized distribution, which can help us to probe the pmf or pdf of this term. 

Comparing with known self-generalized distributions, the cumulative innovation varies very 

much among different continuous-time GAR(l) processes. It is too general to be discussed in a 

simple way. Hence, we only focus on the self-generalized rv K to investigate its pmf or pdf. 

First, we consider K being a non-negative integer self-generalized rv. Denote 
oo 

GK [s^e'^-^Y = Y,Pi(™y, rn>\. (9.2.4) 
2 = 0 

When m = 1, {p 0(l),Pi(l), • • • >Pi(l)> • • •} is the pmf of K. By the property of convolution, we have 

the following recursive formula 
i 

Pi(m) = ̂ 2Pj(m
 - ^Pi-ji1), m>2. 

This recursive formula is specially useful when we resort to computer to do the calculations. In 

general, we can not easily find the closed form of pi(m). However, when K from I I , the Bernoulli 

distribution family, the dependence term (e - ^ ' 2 - * 1 ) ) K ®x = e -^*2 -*1) * x is then distributed in 

Binomial(:r,e~^' 2 _ i l)), which leads to 

Pi(m) ™tg-t/l(*2-tl) 
i 

for 0 < i < m and m > 1. 

For the pmf of other self-generalized distribution families, one can refer to Section 3.1.1. 

Secondly, consider a positive self-generalized rv K. Now finding the pdf from the LT could 

be a tough task. In many cases, they are still open questions. Even for those discussed in Section 

3.1.2, we don't know all of the pgf's. What we know is that P2 is the compound Poisson with 

exponential distribution. Here we briefly give the pdf of the dependence term (e~^t'2~t^) K © x 

when K is from P2. Since 
e - /* ( fa- t i ) ( i_ 7 ) s 

^ ( e - " ( t 2 - ' i ) ) K . ® x ( 
(s) = [ f o ^ e - ^ 2 " * 1 ) ) exp 

exp < x 
e -M*2-*l)( l - 7 ) 

( l _ e - / i ( * 2 - « l ) ) /y 
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1 , ( l - e - ^ 2 - ^ ) ) 7 „ y 1

 1 

1-7 



the distribution of (e ^ t 2 t l ^ ) K © £ is the compound Poisson with an exponential distribution. 

The means of the Poisson and exponential distributions are (i_e-n(t2-ti)^
 a n d 

respectively. This leads to the stochastic representation 

N 
( e - ^ - ' O ) ®x £ Y,Yi = Y, (9.2.5) 

where N ~ Poisson (x ̂ -Mta - l i " ) ) ^ ) ' y ° = 0 and Yi ' Exponential ( ^ z ^ ^ I ) ) ^ ) (* ̂  *)• 

When TV" = 0, Y = Y0 = 0, thus 

{ T p - M * 2 - t l ) f l _ ^ 1 

- ( l - e - ^ U ) ) 7 } > 

that is, ( e ~ ^ t 2 ~ t l ^ ) K © x has non-zero mass on point 0. If N takes value n > 1, the convolution 

J2 Yi ~ Gamma ^n , ^^ -^ ( " J-ti))^ • * n ̂ s s r t u a t i ° n > (e -^*2 -*1))^- © x has zero mass on point 

0. For n > 1 and y > 0, the joint density of (Y, TV) is 

f(Y,N)(y,n) = ^ ( ( i - e - M J - t O ) ^
 vB_lexp{-(l -̂ -l)̂ } 

X n ! \^ (1 - e - M * 2 - t i ) ) 7 J e x p | ~ (i - e - /x( i 2 - t i ) ) 7 j 

1 / a ; e - M f a - t i ) ( i - 7 ) 2 \ w

 n - 1 f (1 - 7 ) ( x e - ^ 2 - M + y) 1 
~ (n - l ) !n! ^ ( 1 _ e - M t 2 - * 1 ) ) 2

7 2 y |
 y 6 X p j (l - e-^-tx)) 7 J' 

which leads to the marginal pdf of Y as 

oo 

M y ) = E - f o * ) ( y ' n ) 
n=l 
^ 1 //xe-^2-^)(l-7)2V „_x f ( l-^^e-^-^+y)] 
^ (n - l)!n! ^ (x _ e - M * 2 - t i ) ) 2 y ) V 6 X P \ (l - e - r t *2 - t i ) ) 7 J 

f ( i - 7 ) ( g e - M f a - « i ) + y ) | " 1 /rxe-^fa-t')(l-7)2y w - i 
" e X P { ( i - e - M * 2 - * i ) ) 7 | x Z . ( n - l ) ! n ! ^ ( i _ e - M t 2 - t i ) ) 2

7 2 j 2 7 

= / ( e - ^ 2 - n ) ) K © x ( y ) ( 9- 2- 6) 

for y > 0. This calculation is tractable using the computer. 
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Finding the stochastic representation for the dependence term and cumulative innovation 

term is not only useful in obtaining their pmf's or pdf's, but also in simulation of the continuous-

time GAR(l ) process. Hence, they are of particular interest for many researchers. To conclude this 

section, we look at some specific examples. 

Example 9.1 Consider the continuous-time GAR(l) process obtained in Example 5.1: 

X(t2) = e~^-^ * X(h) + E{h,t2), 

E(h,t2) ~ Poisson [l - e -^* 2 -* 1)]) . This process has stationary distribution Poisson(^x^ . 

the operation is binomial-thinning, given X(h) = x, e'^^ * x ~ Binomial (x, e^* 2"* 1)). 
where 

Since the operati 

In this situation, we have 

E[X{t2) | X(h) = x] = xe-^-^ + - r 

-+ [x 1 e 
M V /* 

I _ e -M*2- t i ) 

bA p-M*2-tl) 

V&r[X(t2)\X(h)=x] = xe-rt>-V(l-e-^-V)+±[l-e-^-V 

= * + (x _ bA e - M t 2 - t i ) _ ^ - a r t f e - t O 

and the conditional pmf is 

Pr(X(t 2 ) = y | X(h) = x) 
min(x,3/) / . 

E j X ) e - v ( * 2 - i i ) ^ _ e-M*2-ti)j 
i=0 

]_ _ g-M(*2-tl 

in(x,j/) / \ / \ \ , \ 

]_ _ g-M*2-*l) 

min(x,2/) 

exp <̂  — 1 _ g-M*2-tl) 

x+?/—2i 

A 
x exp 4 — 

exp H i 
min(x,?/) 

- E 
i=0 

^ _ e - / i ( * 2 - * i ) 

1 z\ /A D -M*2-tl) 

(y-»)!w W ^(i_ e-M*2-ti)) ; 

/or y > 0. 
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Example 9.2 Consider the continuous-time GAR(l) process obtained in Example 5.4: 

X(t2) = (e-^-t^)K®X{tl) + E{tl,t2), 

where K is from 12 and E(h,t2) ~ NB(^^' \ ^ l - r t 2 - t i t y • T h i s P r o c e s s h a s stationary 

distribution NB(^j^-,^. The mean and variance of E(h,t2) are 

A* 
I _ e - / * ( < 2 - « l ) and 

M l - 7 ) 
1 - e -A»(t2—*l) 1 _ T e - / * ( * 2 - * i ) 

respectively. By Table 9.1, we have 

V[X(t2)\X(h)=x] = xe-^-^ + - \ l - e - ^ - ^ ] = - + (x - ±) e~^^\ 

n i J n \ /i / 

Var[X(t2)\X(h)=x] = x e - / * ( * 2 - * i ) (l - c -Mb -* i ) ) i ± 2 A + -
M l - 7 ) L A . 1 + 7 

1 _ e - M * 2 - * l ) 1 [j _ ~ e - M * 2 - « l ) 

-ti) a. A7//i~g(l+7) -s 
1-7 

+ _ ^ U _ _ | e - M * 2 - t i ) , A 7 / M - x A x ^ 7 ^ _ 2 A t ( t 2 _ t l ; 

M l - 7 ) 1 - 7 

However, in this situation, we do not have explicit expression of conditional pmf, only a recursive 

form: 

Pv(X(t2) = y | X(h) = x) 
y / A ( l - 7 ) 

i=0 

/X7 
+y-i-l 

y ~ « 

1-7 
1 — <y e - M*2 - t l ) 

^ / 7 ( l _ e - M t 2 - t i ) ) ' 

1 — 7 e - M * 2 - t i ) 

1-7 
M l - 7 ) + ( i { i - e - ^ ) \ y - 1 

1 _ 7 e - M t 2 - t i ) y y ^ i _ 7 e - / . ( * 2 - t i ) 

/or y > 0, where Pi{y) is defined in (9.2.4). 

Example 9.3 Consider the continuous-time GAR(l) process obtained in Example 5.12: 

X(t2) = e-^-hKx(h)+E(tut2), 

where E(h,t2) is a positive rv with LT 0£(J l, t2)(s) = (e^*2"'1) + [ l - e'^^} ^ ) & ^ • This 

process will have stationary distribution Gamma(0/iJ,,[3). By taking derivatives, we have 

# 5 ( t i , t 2 ) ( ° ) = ~Jft 
I _ e - M * 2 - t i ) 
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29 I _ g-M*2-tl) <P'kh , t 2 ) (°) = ^ 

W/MC/I /ead to the mean and variance of E(t\,t2) 

9 r 

I _ e - M * 2 - t l ) 

E[E(tut2)} = i- l-e-^-^ and Var[E(t1,t2)] = 
Pv 

Hence, given X(ti) = x, it follows that 

E[X(t2) \ X(h) = x] = x e - ^ h ) 

Var[X(t2) | X{h) =x] = 0 + 

P2» 
I _ e-2M*2-ti) 

+ 0M 
1 _ e—At(*2—*l) 

0 ^ JL\e-t*te-ti)_ 
P» + V Pn 

P2» 
\ _ e-2M*2-*l)" 0 1 _ e -2M*2-«l)' 
- " P2» • 

Walker [2000] proposed a better representation for a rv with the same LT as E(t\,t2). With 

that idea, we can write down the stochastic representation 
N 

E(h,t2) = J2Yi> y o = 0, Yi Gamma ( l , ^ e ^ 2 " ^ ) = Exponential (pe^-tl^ , 

where N is a rv resulting from a Gamma mixture of Poisson: 

N\Z = z ~ Poisson (z e ^ t 2 _ t l ) - 1 ) , Z ~ Gamma (0//x, 1) . 

This can be verified by algebra 
< £ E J V y.(s) = E { e - s ^ ' = o y i j = E J E [ e - ^^o^l /v ] } = E 

0eH(t2-h) 

0eH(t2-tl) + s 

N 

= E | E 

= E |exp 

= E |exp 

/ 

0en(t2-ti) + s J 

Z (e^ 2 " ' 1 ) - l ) Qeli{t2-ti) -I- s 

£ (e/»(fe-ti) _ !) s 

\ / 

= 
' ( e / * ( t 2 - * l ) _ l) / 

0efJ-(t2-tl) _|_ s 

( e M ( t 2 - t l ) - l ) s 

V1 + / 3 e M ( t 2 - t i ) + s y 

e-/x(*2-ti) + [l - e -M*2- t i ) 

0efi(t2-tl) _|_ e M * 2 - t l ) S 

I 0 \ f l / " 

^ + e - M * 2 - t l ) a 

0 + 1 

J /3 + s 
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E(ti,t2) has mass (pEfa^i00) = e_e^2 ^ on the point zero. With such a representation, we can 

obtain fE{tut2)(v)> t h e Pdf of E{h,t2) for y > 0: 

oo i 

fE(tl,t2)(y) = E T^rijT [/̂ (<2_tl)] Vn-1e*p{-vf>e«t*-V}xPT[N = n] 
n=l 

(» - iji' 
1 f 1 

= V L0new(t2-ti)yn-l e x p J _ y / g e ^(*2 - * i ) I 

( ? ) 
x exp 

E > e n „ ( « 2 - * i ) ( e Mt2 - t i ) _ x ) y - i roo ^ / / i + n _ 1 

io 
n=l 

(?) 
x e x p j - y ^ * 2 - * 1 ) } 

( n - l ) !n ! 
expl-ze^*2-*1' }dz) 

L>\ {n-l)\n\ Jo 1 

n=l \ / 

n=l 
( n - l)\n\ 

oo 
= exp i-yj5e^-^ - 6(t2 - h)} £ 

71=1 

n?=o(Z+«) / M t 2 _ t l ) _ \ » n _ i 
( n - l ) ! n ! P V V y 

Hence, given X(t\) = x, X(t2) has mass e e(t2 *^ on the point xe ^* 2 *^ and pd / 

/ x ( t 2 ) | x ( i l ) = z = M t i A ) (v - ̂ (t2-tl}) , /or 1/ > xe-**-*\ 

The representation idea in Example 9.3 also leads to another representation of the cumulative 

innovation in the continuous-time GAR(l) process studied in Example 5.2; see Remark 2 in Walker 

[2000]. 

Example 9.4 Consider the continuous-time GAR(l) process obtained in Example 5.2: 

X(t2) = e -M*2 - t i ) * X(ti) + E(h, t2), 
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where E(ti,t2) is a non-negative integer rv with pgf 

1 - e -/i(*2-*l) 
J 1 - 7s J 

A//x 

TTiis process will have stationary distribution NBiX/p^). The mean and variance of E(h,t2) can 

be obtained by taking derivatives of its pgf when s — 1: 

A7 
G ? ' i ; ( t 1 , t 2 )( 1 ) = 

which lead to 

Ml-T) 2A72 
/ i ( l - 7 ) 2 

I _ g - M ( * 2 - t l ) 

I _ g - / i ( f 2 - < l ) 

A7 
(1-7) S 

1 _ g-M*2-*l) 

1 _ g-M*2-tl) E [ £ ( i x , i 2 ) ] = G' E ( i i ) i 2 ) ( l ) = L 

V a r ^ . t a ) ] = G"E{tlM){\) + G'E{tlM){l) - ( G ^ U ) ) 

A7 M l - 7 ) 2 L 
1 _ e -M*2-ti) + A7

2 
M1-7) J 

-fi(t2-t\) I _ g - M ( * 2 - * l ) 

i7ence, by Table 9.1, the conditional mean and variance of X(t2) given X{h) = x are 

B[X(t2) \X{ti) = x] = x e - ^ - t i ) + 

AT 
/i(l-T) 

Var[X(i 2) | X(h) = x] = xe'^^ 

A7 
+ x 

M l - 7 ) 

A7 
1 _ g-M*2-*l) 

„- /x (*2 - t l ) 
M l - 7 ) 

1 _ e -M*2-*i) 

. AT2 
+ AT 

MI-T)2 

M i - 7 ) 2 

e -M*2-tl) 

1 _ e -M*2-ti) 

I _ g - M ( « 2 - t l ) 

= x + AT2 
MI-T)2 

+ 

-/i(t2-*l) 

AT 

J _ g-/i(*2-*l) 

1 _ g - / i ( * 2 - t l ) 

MI-T)2 

According to Remark 2 in Walker [2000], E(tut2) can be represented as a rv of Poisson mixture: 

E{h,t2) = Y, Y\Z = z ~ Poisson^) for z > 0 and [Y|Z = 0] = 0, 
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where Z is a non-negative rv with LT <f>z(s) = ^e -^* 2 -* 1) + [l - e -^' 2 -* 1)] ^l_ryy!y

1

+s j 

can be verified as follows: 

GY{s) = E ( s r ) = E ( E [ S

y | Z ] ) = E ^ " 1 ' ) = </>z(l-s) 

(l-7)/7 
J (1 - 7 ) / 7 + 1 - s 

1 - 7 5 / 

This 

= ^e"^ t 2 - t l ^+ 1 — e -^*2 -*1) 

_ ^ e - M * 2 - * i ) + i — e -M*2- t i ) 

= GErtut2)(s). 

Furthermore, from Example 9.3 with 0 = (1 - 7 ) / 7 and 9 — A, Z can be represented as 

N 

Zo = 0, Z%

 U~ Gamma (l,7_1(l - 7 ) • e ^ 2 " ^ ) = Exponential ̂ (l - 7 ) • e ^ 2 " ^ ) 

N\W = w ~ Poisson e^2'^ - 1 ) , W ~ Gamma (A///, 1). 

Wif/i tfiis Jfcind 0/ representation, the pmf of E{tx,t2) is tractable: 

Pi[E(tl,t2)=0) = GE{tut2)(0) = ( l - 7 + 7 e - ' i ( t 2 - t l ) ) A / M , 

and for j > 0 

= ]Le-m-ti) y°° (V exp {-̂ (l - 7)e^ t 2-* 1) - z] 

E 
n=l ( n - l)!n! 

l(l - 7 ) " ( e ^ i 2 _ t l ) - l)". dz 

00 n n _ 1
 (- + i\ 

= I e - » ( f c - t i ) y riA*=0 U A-(l - 7 ) " - l)' 
L (n — l)!n! \ ' 

n=i v 7 

1! 

_ i . P - « ( * 2 - * i ) E 
n=l 

x y°° ^ + n " 1 exp {-Z7 _ 1(l - 7 K ( t 2 - t l ) - dz] 

^ / A \ ( j + n-1)! 7-"(l-7) n (ê -̂ )-l)w 

iiU + 7 X (n-l)\n\ X [ I+7 - H I - 7 ) e / j ( t 2 - i l ) ] n 

'n-1 

Li=0 

298 



Applying the convolution formula in Example 9.2, we can obtain the conditional pmf of X(t2) given 

X(h) = x. 

Note that there is another representation for E(t\,t2): 
N ,ut

 N 

E(h,t2) = ^(e-rt'-Vy *Vi = ^ e - " ^ * * ^ 
i=0 i=0 

where N ~ Poisson(A(t2 - h)), U0 = 0, VQ = 0, UiU(0,1), V J N B ( 1 , 1 - 7) (i > 1), and 

Ui, Vi are independent. This kind of representation can be found in McKenzie [1987], Sim and Lee 

[1989]. 

Another stationary continuous-time GAR(l) process with Gamma margins in Example 6.15 

is also of special interest to us, because it is an alternative to the model in Example 9.3 with the 

same Gamma univariate margins. 

Example 9.5 Consider the second continuous-time GAR(l) process obtained in Example 6.15: 

X(t2) = ( e - ^ - * i ) ) k ® X(h) + E{tut2), 

where K is from P2 and E(t\,t2) is a positive rv with LT 

I e-M(« 2-«i)(i- 7) 8 \ s 

1 / \ f P ^ (l-7)+(l-e-' i( t2-'i))7s 1 A ^ . 1 

. ^ w a > = y JTI J ' 7 T+p" 
We know this process has stationary distribution Gamma(5,f$), so that the marginal mean and 

variance are 

A = SB~1 and V = 5/3~2. 

By employing Equations (9.2.1) and (9.2.2), as well as Table 9.1, we have 

E[X(t2)\X(t1)=x] = &rl + (x - 5f3-l)e-^-^, 
Var[X( i 2 ) \X{h) = x] = S / T 2 [l - e ^ 2 - ^ ! + {x - J / r ^ - ^ - e " " * ' 2 - ' 1 ) f l - e - " t e - * i ) . 

L J I - 7 L J 

Here the fixed parameter 7 associated with the self-generalized rv K appears: it does not affect the 

conditional mean, but affects the conditional variance. This may help the statistician to choose the 

appropriate 7 among (0, j+p when modelling. 
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Inspired by Walker [2000], we now investigate the representation for the cumulative inno

vation E(ti,h). For the sake of simpler notation, we replace e ~ ^ t 2 _ t l ) with a (0 < a < 1) in the 

LT of E(ti,t2) and rewrite it as: 

(l>E(ti,t2)(s) = 

e - M ( t 2 - t l ) ( l - 7 ) 5 
( l -7 )+( l -e-^( '2- t i ) )7s 

0 + S 

P "t" ( l - 7 ) + ( l - a ) 7 S 

' + S 

0(1 - 7 ) + [07(1 ~ <*) + «(1 - 7 ) K * 
(0 + s)[(l - j) + (1 - ahs] 

s 
1 

1 ( l - 7 ) ( l - q ) s + ( l - a ) 7 S 2 

1 ^(l-7)+[a(l-7-^7)+/37js 
1 ( l - g ) s [ ( l -7 )+7s l 

. 1 /3(l-7)+[a(l-7-/97)+^7js 

and with further algebra, 

(1 - a)s[(l - 7 ) + 7 « ] (1 - a ) 7 

/ ? ( l - 7 ) + [ a ( l - 7 - / 3 7 ) + / 3 7 ] * «(1 - 7 - 07) + 07 3 + a { l ^ ) + M 

(1 - a ) 7 

a( l - 7 - 0 7 ) + 07 

(1 - ah 
a( l - 7 - fo) + fo 

(1 - ah 
a( l - 7 - fo) + fo 

s + 
1 - 7 0 ( 1 - 7 ) 

s + (1 - 7 ) 
1 ' P* 

s + 1(1-7) 

5 + 

7 a ( l - 7 - ^7) + ^7 

a ( l - 7 ) ( 1 - 7 - 0 7 ) * 

a(l-i-f3~i)+M 

S 

- 1 0(1-7)" 
6 ^ a(l-7-^7)+/87 

(9.2.7) 
7 L « ^ - r M n ^ - p / j 3 + Q ( 1 _ 7 _ ^ 7 H / J 7 

J^e propose the following representation for the cumulative innovation E(ti,t2): 

E(h,t2) = Y, [Y\Z = z] = 
(1 - 0 )7 

N 
a( l - 7 - 07) + 07. 

i.i.d. 

z + [W\Z = z], 

0 ( 1 - 7 ) 
[W\Z = z] = £ W i t Wo = 0, Wi Gamma ( l , q ( 1 _ ? _ ^ + ^ j , 

« ( l - « ) ( l - 7 ) ( l - 7 ^ 7 ) ^ z „ Gamma(M). 

VTe can ueri/y t/iis representation by checking the LT's: 

N\Z = z ~ Poisson z • J T — ^ r ~ T ' a 12 
1 1 [a(l - 7 - 07) + 07] 

^y(s) = E (e- s y ) = E (E [e~ s y |^]) 
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= E E (1 - a)7 
: P { S ( a ( l - 7 - / 3 7 ) + 07 

= E I exp < — s I 

= E I exp 

a(l - 7 - 07) + 07 
(1 - Qp7 

a(l - 7 - /37) + /?7 

Z + W 

)} 
)} 

-sW 

0(1-7) 
x exp < Z «(1 - a)(l ~7)(! ~ 7 ~ 07) | a(l-7-07)+07 

= E exp < - Z 

[ a ( l - 7 - 0 7 ) + 0 7 ] 2 

(1 - 0)7 

s + 0(1-7) 

s + 

a(l-7-/37)4r^7 

a(l -7 ) (1 - 7 - 0 7 ) 

\ V 

= E ^exp I -
= <Pz 

a( l - 7 - 07) + 07 

(1 -a)s[ ( l - 7 ) + 7 3 ] 

- 7) + - 7 - 07) + 07]5 

( l - a ) a [ ( l - 7 ) + 7 « ] 

7 [ a ( l - 7 - 0 7 ) + 07] g + a ( 1_^U 
}) 

<5 

v 0 ( l - 7 ) + [ « ( l - 7 - 0 7 ) + 07]s 

= to(t!,t2)(«)-

1 
1 -1- (l-Q)4(l-7)+7sl 
1 /3(l-7)+[a(l-7-07)+/37js 

JV 
iVoie t/iai VP is the same kind of random variable as £ * i in Example 9.3. This can help us to find 

i=0 
the pdf ofY in this example. Conditioned on Z = z,Y has non-zero mass on point a ( 1 J 7 _ ^ ] + ^ 7 -z: 

Pr Y = 
(1 - 0)7 

a( l - 7 - 07) + 07 
Z = z exp /_ a(l-a)( I *" [ « ( 1 -

Q(l - 7 ) ( 1 - 7 - 0 7 ) | 
7 - 0 7 ) + 07] 2 J ' 

and the pdf for y > a ( 1 _ ( * _ f f i j + j 8 7 • z is: 

( (1 - 0)7 \ 
fY\z=z(y) = fw\z=z\y- a ( 1 _ 7 _ / 3 7 ) + ^ 7 - ^ 

00 ^ 
= E ( n - l ) ! 

n=l V ' 

07) + 07 
0 (1 -7 ) 

x exp 

1 
X n ! 

exp j - y 

00 

L « ( l - 7 - 0 7 ) + 07j 
(1 - a)7 

(1 - a)7 
a(l - 7 - 07) + 07 

n - l 

J_Y ( 1 ~ « ) 7 \ 0 (1 -7 ) 1 
1 Vy a(l -7-07) + 07 7 a(l -7-07) + 07j a ( l - 7 - 07) + 07 a(l -a)(l -7 ) (1 - 7 - 0 7 ) a(l-a)(l-7)(l -7-07)1 6XP<i Z" Kl - 7 - 0 7 ) + 0 7 ] 2 J [a(l - 7 - 07) + 07]2 

0(1 -7 ) (1 - a)(l - 7)(a - 0 7 - 07 ~ «07) 1 

a ( l - 7 - 0 7 ) + 0 7 [a(l - 7 - 07) + 07] 2 J 
a ( l - a ) 0 ( l - 7 ) 2 ( l - 7 - 0 7 ) ^ \ ( n - l ) ! n ! 

n=l k V ' 
[a(l - 7 - 07) + 07] 3 
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(1 - g ) 7 \ n _ 1 l 

Hence, the unconditional pdf of Y is 

(y[a{l - 7 - 0 7 ) + 0 7 ] \ / ~ 7)(1 ~ 7 - M) \ 
M V ) = f Z { ( T ^ h J - e X P i " 7 [ « ( l - 7 - 0 7 ) + 0 7 ] / 

i / [a( l -7-g7)+g7l 

+ / fY\z=z(y)fz{z)dz 
Jo 

for y > 0. iVoie Y /ms zero mass on point 0. TTiis is unlike the cumulative innovation 

in Example 9.3. Thus, we obtain the pdf of E(t\,t2)- By Equation (9.2.3), we can obtain the 

conditional pdf of Xfo) given X(t\) = x: 
rv 

/x(t 2)|X(ti)=x(y) = Jo f(e-^2-h))K®x(z) • fE(tut2)(y - z)dz 

+ Pr [{e-^-^)K® x = 0] x fE{tlM){y) 
rv 

= Jo f[e-^t2-tx^K@x{z)-fE{tlM){y-z)dz { x e-M * 2-ti)M - 7) 1 

- (x _ e-pfa-tO) 7 j X 

w/iere / ( e - M ( * 2 - « i ) ) c a n be found in Equation (9.2.6). 

The conditional pdf does not have a closed form, but can be computed with numerical meth

ods. 

As an alternative to explicit stochastic representations, the numerical approach to calculate 

the conditional pmf or cdf via approximation of inversion of the characteristic function seems to be 

promising. This will be discussed in Section 10.1, where we study maximum likelihood estimation. 

9.3 Joint properties 

Developing multivariate distributions, in which 

like multivariate Poisson, multivariate Gamma, 

ing for researchers. Perhaps the most successful 

every univariate margin has the same distribution, 

etc, is very useful for modelling and quite challeng-

multivariate distribution is the multinormal, which 
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has a correlation coefficient parameter for each bivariate margin. However, for the non-normal sit

uation, there is in general no multivariate distribution with such nice properties. Construction 

approaches for multivariate distributions are very diverse. For references, recent books are Joe 

[1997], Johnson, Kotz and Balakrishnan [1997], Kocherlakota and Kocherlakota [1992], Hutchinson 

and Lai [1990]. 

Note that under steady state, the Markov process has the stationary distribution for each 

univariate marginal distribution. Hence, a steady state Markov process provides multivariate 

distribution with any finite dimensions, namely (X(ti), X(t2), • • •, X(tn)) is distributed in a n-

dimensional multivariate distribution, where n = 2,3,.... 

The multivariate distribution may be of interest in themselves, and potentially have appli

cations to non-normal multivariate data. A byproduct of the construction of GAR(l) processes is 

a method of construction of multivariate distributions. 

Since the continuous-time GAR(l) process is newly developed, we shall study the multivari

ate distributions resulting from margins of the stationary continuous-time GAR(l) process. 

Also in this section, we shall study the covariance at two time points and the auto-correlation 

function; these are useful in describing the degree of dependence over time for the continuous-time 

GAR(l) process. 

9.3.1 Bivariate distributions 

We first investigate the auto-covariance and auto-correlation of a continuous-time GAR(l) process: 

(9.3.1) 

Assume that the mean function and variance function exist and are 

A(t) = E(X(t)) and V(t) = E[(X(t) - A(t))2} = E[X 2 ( i ) ] - A\t). 

By the independence property of two summands on the right hand side of (9.3.1), we have 

Cov [X(tL),X(t2)} = E [(X(h) - A(h)) • (X(t2) - A(t2))} 
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= E [X(h) • X(t2)] - E [ X (M • E[X(i 2 )] 

= E [X(h) • ( ( e - " ( * 2 - t i ) ) © + E(h,t2))} - A(ti)A(<2) 

= E [X(h)- ( e -M*2- t i )) ©X(t!)] + E [ X ( t 1 ) - £ ( i 1 , i 2 ) ] - A ( i 1 ) A ( i 2 ) 

= E { E • (ê 2"'1)) © 
= E { E [X(h) • (e-^t2~h))k® X(h)\x(h) 

= E J E • (e-̂ 2-*1 ®̂̂ !)̂ *!) 
= E [X2(h) • E [K (e-^ 2-* 1))] } - A{h) • E 

= E [K (e-^ 2-* 1))] • E {X2(h)} - A(h) • E 

| + E[X{t!)]E[E(h,t2)] - A(ii)A(t 2 ) 

} - A ( t i ) - ( A ( < 2 ) - E [ £ 7 ( t i , t 2 ) ] ) . 

| - A(t\) • E | ( e - " ( t 2 _ t l }) ©X(<!) 

{ E [ ( e - ^ 2 - 4 1 ) ) ^ © ^ ^ ) ! ^ ^ ) ] } 

( X ( t i ) - E [We- '̂2-̂)]} 
= E 

= E 

= E 

K (e-^*2"*1))] • E {X2(h)} -E[K (e-^ 2"* 1))] • A(h) • E {X(h)} 

K ( e - ^ 2 - * i ) ) j . ( E {X2(h)}-A2(t1)) 

This shows that the auto-covariance is linear in the variance of earlier time point. If K has finite 

mean, then by Theorem 3.2.1, 

Cov[X(h),X(t2)] = e V(h), for r > 0. 

Hence, the auto-covariance decreases at an exponential rate in the time difference t2-t\. 

Consequently, the auto-correlation function, p{h,t2), can be obtained as 

Cov[X(h),X(t2)] _ E [K(e-»&-V)] .V(h) 

= E 

V V a r ^ i O l V a r f X ^ ) ] Vv(h)v(t2) 

)\\v(t2y 

When the variance function V(t) is a constant, the auto-correlation function will be 

p(tut2) = -E[K(e-»te-V)' . 

Besides, if K has finite mean, the auto-correlation function is finite and in exponential form 

p(tut2) = e-rrtt2-h)^ w h e r e r > o 
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Table 9.2: Auto-covariance and auto-correlation function of the stationary continuous-time GAR(l) 
process associated with known self-generalized random variable K ( e - M*2 - t i ) ) . Here the variance 
function is V(t) = V. 

K (e-^*2-*i)) Cav[X{tx),X{ti)] P (* l , *2 ) 

11 e-ll{t2-t\) . y e - / i ( t 2 - * i ) 

12 e-n(ti-ti) . Y e - M*2 - * i ) 

14 e - M*2 - t i ) . Y e - M*2 - t i ) 

15 e-6»/x(t 2—*i) . Y e -e / i(t 2 -ti) 

PI e - M*2 - t i ) . Y e - M*2 - * i ) 

P2 e - M*2 - t i ) . Y g-M*2-*lJ 

P4 e - M*2 - t i ) . y e - M*2 - * i ) 

P5 e - « / i ( t 2 - t i ) . y e-6n{t2-ti) 

Table 9.2 lists the auto-covariance and auto-correlation function of the stationary continuous-time 

GAR(l) process associated with known self-generalized random variable K discussed in Chapter 3. 

These continuous-time GAR(l) processes have constant variance function: V(t) = V. 

This approach can be applied directly to the continuous-time GAR(l) process where n(t) is 

a function, instead of a constant: 

CovlXfalXfo)] = E [K ( W / 2 ^ ) d T ) ] • V(h), 

p(h,t2) = E 
V(h) 
v(t2) 

Next we consider the bivariate distribution of {X(h), X(t2)). This is carried out by looking 

into the bivariate pgf, or bivariate LT, or bivariate cf depending iiX{h) and X{t2) are non-negative 

integer, or positive, or real-valued. 

G ( x ( t i ) , x(t2 ) ) ( s i ' s 2 ) = E 

= E <!E 

X(ti) o X(t 2 ) 2 sx S = E sx s 

X{ti) (e-^-^)K®X(h) E(tl,t2) X(h) } 
= E 

= E 

^o^o^ .g -^ -h )^^ !^ )^ -
,s(ti,t 2) 
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= G x { t l ) (SlGK (s2;e-rt*-V)) • GE{tlM){s2), (9.3.2) 

•(X(h),X(t2)) (sus2) = E [ e - * 1 ^ 1 ) - * 2 * ^ " = E 0-SlX(h) -s2{{e-^-t^)K®X{tl)+E{t1,t2)\ 

= E 

= E 

J E [ e - * i ^ ( t i ) e - * 2 - ( c " ' , ( ' 2 " < l ) ) x ® x ( * 1 ) - * a B ( t l ' * 2 ) | x ( t i ) ] } 

[ e - ^ ^ K ^ (s2;e-^-^)E(e-s*E^)' 

e - [ s i - l o g < / » K ( s 2 ; e - " ( t 2 - ' i ) ) ] x ( t i ) " . E (e-S2E(tut2)^ 

= <t>X(t,) (si - log 4>K ( s 2 \ e " ^ 2 - * 1 ) ) ) • ^ ( t l ) t 2 ) ( S 2 ) , (9.3.3) 

¥ > ( X ( t i ) , X ( t 2 ) ) ( s l ' S 2 ) E 

E 

J(s1X'h)+S2X(t2)) = E 

• E 

~eisiX(t1)+is2e-»<-t2-t^X(ti)+is2E(ti,t2) 

,is2E{tv,t2) ei[si+e-"('2-ti)S 2]x(ii)" 

= <Px{tl){sl + e-^-t^s2)-lpE{tut2){s2). (9.3.4) 

Furthermore, if the continuous-time GAR(l) process is under steady state with the pgf Gx(s), or 

LT 4>x(s), or cf ipx(s) of the marginal distribution, then the marginal distribution is DSD/GDSD, 

or SD/GDSD (see Chapter 7). Hence, (X(*i), X(t2)) is distributed in a bivariate DSD/GDSD or 

bivariate SD/GSD distribution. 

Theorem 9.3.1 Suppose the continuous-time GAR(l) process 

X(t2)= (e-^-t^)K®X(t1) + E(t1,t2) 

has stationary distribution with pgf Gx(s), or LT (f>X{s), or cf ipx(s). 

(1) If X is GDSD associated with self-generalized rv K(a), then 

G(x(i 1),x(t 2))(si )

s2) -
Gx [SlGK {s2;e-^-^))-Gx(s2) (9.3.5) 

Gx [GK ( s 2 ; e - M * 2 - t i ) ) ) 

is the pgf of a bivariate GDSD distribution whose marginal distributions are the same as that 

ofX. 

(2) If X is GSD associated with self-generalized rv K(a), then 

${X(h),X(t2))(sl'S2) 
cj>x (Sl-\oz4>K {s2ie-rt*-V)) • 4>X(s2) (9.3.6) 

4>x ( - log^jr ( 5 2 ; e - M « 2 - t i ) ) ) 

is the LT of a bivariate GSD distribution whose marginal distributions are the same as that 

ofX. 
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(3) If X is a real SD rv, then 

, , <Px (s1 + e-»te-VS2)-<px{s2) 

nxwwM'**) = v x ( e - ^ - « i ) a 2 ) ( 9 - 3 7 ) 

is the cf of a bivariate SD distribution whose marginal distributions are the same as that of 

X. 

Proof: When the continuous-time GAR(l) process is under steady state, we know the form of the 

pgf, or LT, or cf of the cumulative innovation E(t\,t2) is 

R • ( A N Gx{s2) 
G e ^ { S 2 > ~ G x (GK (sxe-M-U))' 

i ( x <t>x(s2) 
*EM)W fo ( - l o g f o ( ^ e - ^ - t : ) ) ) ' 

/ \ <Px{s2) 
^ W " vx (e~M* 2- t l) S 2)-

Substituting in the previous equations (9.3.2) - (9.3.4) completes the proof. 

This theorem indicates that the resulting bivariate distributions depend only on the univari

ate margin and the associated self-generalized random variable. After specifying the distributions 

for them, we can obtain a specific bivariate pgf, or bivariate LT, or bivariate cf, which will deter

mine the resulting bivariate distribution. As to the joint pmf or pdf of (X(ti),X(t2)), in general, 

we can employ the equation: 

f{x{h),x{t2))(.xuxi) = fx{tx){x\) • fx(t2)\x{t1){x2\xi), 

where the conditional pmf or pdf fx(t2)\x(ti){x2 \ xi) has been discussed Section 9.2. Therefore, 

Theorem 9.3.1 shows one approach to constructing the bivariate distributions for GDSD and GSD 

univariate distributions. 

In general, the bivariate distribution function of two adjacent time points is not symmetric 

in its arguments, i.e., f(x(tl),x(t2))(xi,X2) ^ f(X(h),x(t2))(x2,xi)- 0 n l y a f e w special cases exists. 

This implies that generally the continuous-time generalized AR(1) process is not time reversible. 

For DSD and SD, GK {s2\e"^'2-*1') and fo (s2; e"^* 2 _ t l )) are known. Hence, we have the 

following corollary. 
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Corollary 9.3.2 When K is from II or P I , Theorem 9.3.1 yields 

% ( t . W t . ) ) ( « M 2 ) - G x ( [ i - e - M « a - * i ) ] + e - M * a - « i ) f l 2 ) ' ( 9 - 3 > 8 ) 

. , , 4>x {si + e-^-^s2)-<l>x{s2) 
tmuwrtisi'**) = ^ (e-Mt2-toS2) ' ( 9- 3- 9 ) 

^ ( M ^ W ) ( ^ J 2 ) = y x ( e -M«»-t i ) a 2 ) • ( 9 - 3 ' 1 0 ) 

They are the pgf of a bivariate DSD distribution and the LT or cf of a bivariate SD distribution 

respectively. 

Next we look into some examples resulting from Theorem 9.3.1 and Corollary 9.3.2. For 

the sake of simpler notation, we denote a = e~^t2~tx\ First, we study some bivariate DSD 

distributions. 

Example 9.6 (Bivariate D S D distributions) Here we assume the marginal distribution of a 

stationary continuous-time GAR(l) process associated with binomial-thinning has pgf Gx(s). By 

(9.3.8), we can obtain the pgf of a bivariate DSD distribution. 

(1) (Poisson margins) Let Gx(s) = exp{A(s — 1)} (A > 0). Then 

n , x Gx {Sl([l-a} + as2))-Gx(s2) 
GW'1).*<*)><*1>«2) = G x { [ 1 _ a ] + a S 2 ) 

= exp {A (si ([1 - a] + as2) + s2 - [1 - a] - as2 - 1)} 

= exp {A (s\ [1 - a] + s2 [1 - a] + sxs2a + a - 2)} 

= exp (A (1 - a) (si - 1)} x exp {A (1 - a) (s2 - 1)} x exp {\a(sis2 - 1)} , 

which leads to the following stochastic representation for bivariate (X(ti), X(t2)): 

X(h) = zx + zl2, 

X(t2) = z2 + zl2, 

where Z\, Z2 ~ Poisson (A (1 — a)), Z\2 ~ Poisson (AOJ), and Z\, Z2, Z\2 are independent. 

This representation is useful in finding the joint pmf of (X(t\), X(t2)): 

Pv[X(t1)=xl,X(t2)=x2] = Pv[Z1 + Zl2 = xl,Z2 + Z12=x2] 
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mm(xi,X2) 

= ^2 Pr[Zu — i, Z\ = x\— i, Z2 = x2 - i] 
i=0 

min(xi,X2) 

= Pr[Zi2 = i ] -Pr[Zi=a: i -*] -Pr [Z2 = a;2--t 
i=0 

min(xi , X 2 ) - E 
i=0 

( W 6 - A . x ( A [ i - a ] r - c _ A ( 1 , Q ) x (A[i-g]r- c_A ( 1-Q ) 

?! {x\-i)\ {x2-i)\ 
min(xi,X2) 

i=0 

where x\, X2 > 0. 

( N B margins) Lei G x ( s ) = (0 < 7 < 1,5 > 0). T/ien 

Gx ( s i ( [ l - a ] + Q i S 2 ) ) - G x ( g 2 ) 
G ( x ( < l ) ) X ( t 2 ) ) ( « i ^ 2 ) = G X ([1 - a] + as2) 

( l - 7 ) . ( l - 7 . ( [ l - a ] + q 3 2)) y 
k (1 - 7 • si ([1 - a] + as2)) • (1 - 7S2) / 

(1 - 7)(1 - 7 + 07) - 0:7(1 - 7)^2 

- 1 

1 — (1 — Q;)7SI — 7 S 2 + [(1 — ct)7 — a]jsis2 + cr is is 2 , , 

(3) (generalized Poisson margins) Let Gx{s) = exp {0(Yk=i rj(kr))k~1 e~kr)sk/k\ — 1)} , where 

0 > 0, 0 < 77 < 1. Then 

. Gx (si ([1 - a] + as2)) • Gx(s 2 ) 
G w t . W ) ^ ^ ) = G x « l - « ] + « S 2 ) { /«2L n(kr)\k-1p~krl r , \ 1 

* (E fc! K (f1 - «] + a s ^ + - ([1 -<*]+ as2f 
(4) (power series margins) Let Gx{s) = s~l[l - (1 - s)°] (0 < 0 < 1). Then 

„ , x Gx (si ([1 - « ] + as2)) • G x ( « 2 ) 
G ( x ( t l ) ,x( t 2 ) ) (« i^2) = Gx([l-a}+as2) 

_ s7\l - a + C1S2)-1 [1 - (1 - 3 i ( l - a + «s 2 ) ) e ] • s^[l - (1 - s 2) e] 
(1 - a + as 2 ) - ! [1 - (1 - (1 - a + « 5 2 ) ) e ] 

= (1 - [l - (l - q ) 3 l - aslS2)}e) • [ ! - ( ! - s2) e] 
5 X s 2 [1 - ad{l - s2)d] 

309 



(5) (logarithmic series margins) Let Gx(s) = s 1 log(l - cs)/log(l - c), where c = 1 - e e , 

6> > 0. Then 

n . , , Gx (s1([l-a] + as2))-Gx(s2) 
GWtl)Mt2))^uS2) - Gx([l-a] + as2) 

_ Sil(l - a + as 2)~ 1log[1 -csijl - a + as2)] • s 2

1 log[l -cs 2 ] / log( l - c) 
(1 - a + a s 2 ) _ 1 log [1 - c(l - a + as2)] 

_ log[l - (1 - a)csi - acsis2] • log(l — cs2) 
log(l - c) • s\S2 log(l - c + ac - acs2) 

(6j (discrete stable margins) Let Gx(s) = e - ^ 1 - 8 ) ' , w/iere A > 0, 0 < 0 < 1. T/ien 

G W M , x ( i 2 ) ) ( s i , s 2 ) - G x ( [ 1 _ a ] + a S 2 ) 

= exp {-A ([1 - si (1 - a + as2))6 + (1 - s2)e - [1 - (1 - a + as2)}9) } 

= exp {-A ([1 - (1 - a)Sl - aslS2]9 + (1 - ae){\ - s2)e) } . 

(7) (discrete Mittag-Leffler margins) Let Gx{s) = 1 + d ( l _ s ) - , , where d > 0, 0 < 7 < 1. Then 

Gx (sl([l-a\ + as2))-Gx{s2) 
G W " ^ f e » ( S l ' S 2 ) = GX ([1 - a] + as2) 

1 + d {!-([!- a] + as2)y 
[1 + d (1 - si ([1 - a] + as 2)) 7] • [1 + d(l - s2p] 

l + da 7 ( l - s 2 ) 7 

[1 + d (1 - (1 - a)si - asis 2) 7] • [1 + d{\ - s 2 ) 7 ] ' 

(8) ( G N B C margins) Let Gx{s) = exp ^ log ( ^ T ^ ) j • T / i e n 

, , _ Gx (s1([l-a] + a32))-Gx(s2). 
G ( x( t l ) ,x( t 2 ) )^ i^2) - G x ( [ l - a ] + as 2) 

= exp 
" '(0,1) 

1-9 1 -9 . 1 - 9 
l 0 g l-q8l([l-a] + a82) + g 1 - ^ 2 g 1 - 9 ([1 - «] + ^2) 

{Llog((̂  
7(dg) 

(1 - q) • ( 1 - g - Q l - a] + as2)) 
si ([1 - a] + as2)) • (1 - q*2) exp <; / log l T T - vr, T • . . w ITT I ^ ( ^ ) 

{Llog(r , . . . {l-q){l-q + aq)-aq{l-q)s2 1 y ( d ) 

e x P W 1 0 g I 1 (l _ a)qSl - qs2 + [(1 - a)q - a]qslS2 + aq2

Slsl> 
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Note that this is the general form of the pgf of the bivariate GNBC distribution family (in the 

family of bivariate DSD distributions), which includes many bivariate DSD distributions with 

GNBC margins. 

Now we turn to the bivariate SD distributions. 

Example 9.7 (Bivariate SD distributions) We assume the marginal distribution of a station

ary continuous-time GAR(l) process associated with constant multiplier has LT 4>x(s) or cftpx(s)-

By (9.3.9) and (9.3.10), we can obtain the LT or cf of a bivariate SD distribution. 

(1) (Gamma margins) Let 4>x(s) = > where 6, 0 > 0. Then 

<Px (si + as2) • (j)x{s2) 
0 ( X ( i i ) , X ( i 2 ) ) ( s l > a 2 ) -

0 N 6 0 
<i>x (ois2) 
S / p \ —6 

0 + si + as2J \0 + s2J \0 + as2 

02 + a0s2

 x 6 

02 + 0Sl + (a + l)0s2 + a0Sls2 

0-{0 + as2) 
{0 + Si + as2) • (0 + s2) 

(2) ( G G C margins) Let <f>x{s) = exp I / log ( —^— ) U(du) > , where the non-negative 

measure U(du) on (0, oo) satisfies 

/ |logu\U(du) < oo and / u'1 U(du) < oo. 
7(0,1] •'(1 . 0° ) . 

Then 

4>(X{h),X(t2))(sl>S2) ~ 
<t>X (s\ + OiS2) • (j>x(S2) 

<f>x (as2) 

= exp 

exp 

exp 

'(0,oo) 
log 

/ log 
i(0,oo) 

/ log 
J(0.oo) 

u . u 
+ log — — - log 

u + sx + as2 ' " u + s2 u + as2 

u(u + as2) 

U(du) 

(u + si + as2) • (u + s2)\ 

u2 + uas2 

U(du) 

u2 + us i + (a + l)us2 + ausis2 J 
U(du)} . 
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(3) (inverse Gaussian margins) Let 4>x(s) = exp | J 1 - ( l + ^ s ) ' J , w/iere A, // > 0. 

<£x (si + as2) • (pX{s2) 

Then 

0(X(t i ) ,x ( t 2 ) ) ( s i» s 2) -

= exp 
A* 

<£x {as2) 
2 \ 1/2' 

1 - ( 1 + ^ - • (s i + a s 2 ) x exp < — 
, 2M 

x exp < — i _ f i + ^ . ( a S 2 ) y / 2 

= exp 1 -
2u 2 2a//2 1/2 2/i 2 

1 + -T S 2 

1/2 2a/x2 

1 + ^ T 8 2 

1/2N 

(4) (Mittag-Leffler margins) Let <j)X(s) = where 0 < 7 < 1. T/ten 

</>x (si + a«2) • <ftx(s2) 
0 ( x( t l ) ,x ( t 2 ) ) (5i ,5 2 ) - ^ { a S 2 ) 

1 + a7s2! 

1 + (si + OS2)T ' 1 + si ' V1 + ( « s 2 ) 7 / [1 + (*i + as2)-r] • (1 + 4) 

00 ^ 
(5j (logistic margins) l e i </>x(s) = II (i+^/fc2) = SKp^J- T / i e n 

¥>(X(ii),X(t 2))( sl> 52) 

fc=l 

¥>X (*1 + « s 2 ) • ¥>x(s2) 
ipx (as2) 

i%(si + as2) ins2 is'm(iTras2) in{si + as2) • sm(iairs2) 
sm(iir(si + as2)) sin(ms2) inas2 asin(i7rsi + ians2) • sin(ms2) 

(6) (symmetric E G G C margins) Let <p(s) = exp log 
(0,oo) \ u 2 + s 2 

U(du) } , 

where d>0, U(du) is a symmetric non-negative measure on 3t\ {0} satisfying 

f —^rU{du) <oo and f \\ogu2\U(du) < 00. 
Jmio}1 + u J\u\<i 

Then 

(si + as2) • (fX{s2) 
V (X( t l ) ,X ( t 2 ) ) (S l ,S2) - ^ ( a S 2 ) 

J d-{si + as2)2 . 
= exp{ + / log • [ log ( 

7(0,00) V 
(0,00) \u2 + {Sl + as2)< 

U{du) 
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(7) (stable margins) Let ipX{s) = exp{—A|s|7}, where A > 0 and 0 < 7 < 2. Note that when 

0 < 7 < 1, X is a positive rv, while for 1 < 7 < 2, X is a real-valued rv. We deal with both 

situations in the unified form of a cf: 

, x fx («i + as2) • ipx(s2) 
W t l W ) ( 3 i , 3 2 ) = ^ 7 ^ ) 

= exp {—A|si + a s 2 p } • exp {-A|s2| 7} • exp{A]as2p} 

= exp {-A + as 2 | 7 + (1 - a 7 ) N 7 ] } • 

We end this subsection with two examples: a bivariate GDSD(I2(7)) distribution, and a 

bivariate GSD(P2(7)) distribution. They indicate that given marginal distributions, there may 

exist different families of bivariate distributions. 

Example 9.8 Consider K being from GDSD(I2(j)) with pgf GK(s;a) = ( ^ " " f f i ^ h s » w h e r e 

0 < 7 < 1. Let the margins be NB(6,i) with pgfGx(s) = (TE^)* (0 < 7 < 1, c5 > 0). By (9.3.5), 

we obtain 

n ( (l-a)+(a-7)s2 \ n (c \ 
, s _ Gx(SlGK(s2;a))-Gx(s2) _ G* {*i (i-ai)-(i-a)JS2) ' GX(s2) 

G ( x ( t l ) M t 2 ) ) ( s u ^ ~ Gx(GK(s2;a)) " gx ( ( i - a W a - ^ ) 

(I _ ~\ . (l _ ~ . (l-Q)+(a-7)^2 N 1S 

X 1 - 7 - - i ( f e ^ i ? E f e ) - ( l - 7 - 2 ) . 

( 1-7) 2 l ' _ 

(1 - 07) - 7(1 - a)s\ - 7(1 - a)s2 - j(a - i)s\s2_ 

This is different from (2) of Example 9.6. 
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Example 9.9 Consider K being from GSD(P2(-y)) with LT fo(s;«) = exp j - (1_7j* ̂ l)-^ } > 
where 0 < 7 < 1. Let the margins be Gamma(5,0) with LT fo(s) = ' where 5, 0 > 0, 

7 < 1/(1 + 0). By (9.3.6), we obtain 

. 1 x fo(si - l og fo ( s 2 ; a ) ) - f o (5 2) 
W ^ 2 ) ) ( ^ s 2 ) = fo ( - l og fo (52;c*)) 

0 " + (l-7)+(l7-a)7S2 ) 

(/9 + ̂ l+(l4+a-a)7.J-^ + a 2 ) 
0(1 - 7) + [(1 - « ) 7 0 + a ( l-7 ) ] f o 2 

( g i + (14V257S2)-to(^2) = 

j ( 0(1-7)^2 >\ 

V* V(l-7)+(l-a)7'S2 J 

[[0(1 - 7) + (1 - 7 ) s i + [(1 - a)07 + a( l - T)]*2 + (1 - a h ^ ] • (0 + s2) J 
(0(1 - 7) + [(1 - a)70 + a( l - 7)] 0* 2) ^ 

x (0 2(1 - 7) + 0(1 - 7 ) s i + [(1 - ' a )07 + (0 + a)(l - 7)^2 

+[(1 - a h + (1 - 7)]sis2 + [(1 - « ) 0 7 + a ( l - 7 ) ] ^ + (1 - ah*!*!) • 

77ns resulting LT is different from (1) of Example 9.7. 

9.3.2 Mul t i va r i a t e dis tr ibut ions 

We can directly extend the construction of a bivariate GDSD/GSD distribution to a multivariate 

GDSD/GSD distribution via a stationary continuous-time GAR(l) process, where we incorporate 

the univariate margins of the multivariate distribution into the margins of the process at different 

time points, namely (X (ti), X (t2), • • •, X(tn)) for tx < t2 < • • • < tn. 

For the sake of simpler notation, we use the new notation 

ouj = e-^-u\ i,j = l , 2 , . . . , n . 

Note that a^i = 1 (i = 1,2,... ,n). For a self-generalized rv K with pgf GK(S; a), or LT for(s; a), 
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define the following recursive notations: 

s'n_i = Sn-lGK{Sn',Oin-iin), 

bn-2 

or 

n-1 

n-2 

= Sn-2<JA-(sJ l _ 1 ;a n -2 ,n-l)) 

= SIGK-(S'2; 0:1,2), 

= S n_l - <j>K{Sn\ « n - l , n ) ) 

= « n - 2 - 0 i c ( S n - l i a n - 2 , n - l ) , 

s'l = Si - ^(s^ai^)-

When i f is from P I with LT (j)K(s;a) = e _ Q S , definition (9.3.12) becomes 

s^_i = sn—i + a n _i ] n s n , 

'n-2 = Sn-2 + « n _2,n-l-5 n _i , 

(9.3.11) 

(9.3.12) 

(9.3.13) 

[ s[ = Si + « 1 , 2 S 2 -

With these new notations, we give the following theorem. 

Theorem 9.3.3 Suppose the continuous-time GAR(l) process 

X(t) == (e-M-V) ® X(t') + E{t', t), t' <t, 

has stationary distribution with pgf Gx(s), or LT <j>x(s)> or cf ipx{s). X{t\), X ( f 2 ) , . . . , X{tn) are 

the rv's at time points ti < i 2 < • • • < tn (n > 3) respectively. 

(1) If X is GDSD associated with self-generalized rv K(a), then 

G ( X ( t i ) , . . . , X ( 4 n ) ) ( s l > - - - ' 5 n ) 

1 X 7 GxW Gx(Sn) (9.3.14) 
WjZl GX{GK{S'J] <*j-i,j)) Gx{GK{sn;an^n)) 

is the pgf of a multivariate GDSD distribution whose univariate marginal distributions are 

the same as that of X. Here s[,.. • a r e defined i n (9-3.11). 
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(2) If X is GSD associated with self-generalized rv K(a), then 

0(X(t1),...)x(M)(Sl>-"'Sn) 
(9.3.15) 

Ili=2 ^(-l0g^(sj-;aj_ij)) " ^A-(-log^K(Sn;an-l ,n)) 

is i/ie 0/ a multivariate GSD distribution whose univariate marginal distributions are the 

same as that of X. Here s[,... ,s^_1 are defined in (9.3.12). 

(3) If X is a real SD rv, then 

V(jf(t1),...^))(*i,-,sn) = x — x „, y f a i fl ) (9-3-16) 
11,7=2 VxyCkj-ijSj) . <PX\<Xn-l,nSn) 

is the cf of a multivariate SD distribution whose univariate marginal distributions are the 

same as that of X. Here s[,..., s'n_1 are defined in (9.3.13). 

Proof: Similar to the proof of Theorem 9.3.1, we have: 

r (a \ - Gx{s2) 
G e ^ 8 2 ) - GX (GK (axe-*-*)))' 

't>E{t''t)iS2 - 4>x (-logMs 2;e-^-t<)))' • 

for any t' < t. Under steady state, the marginal distributions are the same as the stationary distri

bution of X. Hence, the joint distribution of (X(ti), X(t2),... ,X(tn)) has the same distribution 

for every margin. By the Markov property, we can obtain 

GWtx),...Mt,))(su...,Sn) = E ( s f ^ s X ^ . . . s ^ ) 

= E ( s f ^ . . - s S - 1 ) E ( s ^ ) | x ( i n _ 1 ) ) ) 

= E (sf ( t l ) • • • • G^-'Hsni «n-l,n) • GE(tn^tn)(sn)) 

= E ( s f ^ - - . ( s U ) X ( t ' 1 - l ) ) - G £ ; ( t n _ l A ) ( s n ) 

= E ( s f • • • (C/ ( t - j ) ) • G E ( t n _ 2 , ^ l } ( s ' n _ i ) • GE[tn_utn)(sn) 
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= E • GE(tut2)(s'2) • • • G J S ( t B _ 2 i t n _ l ) ( s U i ) • GE[tn_utn){sn) 

- Cxv^i) x 11 GxiGK^ctj-ij)) Gx(GK(sn;an^n)) 
i=2 

nS^(G/f(^;aj- i j ) ) " G^(GK(s B ; a n _i , n ) ) -

This completes the proof of case (1). Using the same reasoning, it is straightforward to prove cases 

(2) and (3). 

Although we can obtain the pgf, or LT, or cf of a multivariate GDSD/GSD distribution by 

Theorem 9.3.3, the simplification of the resulting multivariate pgf, or LT, or cf to a direct expression 

in terms of s\,S2,•••,sn is very challenging in most situations. Sometimes, symbolic software like 

Maple can help us. Three examples are listed below, where tedious induction details are omitted. 

Example 9.10 (Multivariate Poisson) Consider Poisson margins, where Gx(s) = e A ( s - 1 ' 

(A > 0), and K is from I I with pgf GK{S; a) = 1 — a + as. Define 

0o=Pn = 0, ^ = a M + 2 = e-rtti+i-tO, i = l,...,n; 

= A(l - ft)(l - A - i ) , i = l,...,n; 

= Aft •••)8t+j-i(l - f t - i ) ( l ~ Pi+j), i = l,...,n-j; j = 1,... ,n - 1. 

By (9.3.14) in Theorem 9.3.3, we can obtain 

G(x(h),...,x(tn))(si,...,sn) 

{ n n-j 1 

i=l i=l J 
T/ie stochastic representation is 

(x(tl),...,x(tn)) 1 y s , . . . , E 
where the summations are over nonempty subsets S of {1,... ,n}, Y$ ~ Poisson(A5), As = 0 if S is 

not a subset of consecutive integers (corresponding Ys = 0), and Xs is defined as in the beginning 

otherwise. See Johnson, Kotz and Balakrishnan (1997) for this multivariate Poisson distribution. 
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E x a m p l e 9.11 (Multivariate NB) Consider the NB margins, where Gx{s) = 

(0 < 7 < 1, 8 > 0). 

(1) K is from II with pgf GK(S; a) = 1 - a + as. 

Define the new recursive notations: 

Sji1) = (1 - a y - i j - ) + a j - i j - a j , 

S j ( 2 ) == (1 - a y - 2 j - i ) + a y _ 2 j - i a j ( l ) 

= (1 - a j _ 2 j - i ) + a j _ 2 j - i [ ( l - a j - i j ) + « j - i , i s j ] 

= (1 - aj-2j-iaj-ij) + a,-_2j-iajf-ij'sj 

= (1 - a j _ 2 j ) + Otj-2j3j, 

Sj(3) = (1 - « j - 3 J - 2 ) + a j - 3 j _ 2 S j ( 2 ) 

= (1 - a j _ 3 j - 2 ) + a j - 3 j - 2 [ ( l - <*j-2j) + <*j-2jSj] 

= (1 - a y - 3 j ) + aj-3,jSj, 

= ( l - a j _ / j _ / + i ) + a j _ j j _ i + i 5 j ( Z - l ) 

T/ien fry (9.3.14) in Theorem 9.3.3, we obtain 

G{x{tl),...Mu))(*u.~,Sn) = E[af(tl) •••**<«•>] 
_ _r X{h) ai,2*X(h)+E{tut2) an-i,n*X(tn-i)+E(tn-i,tn)-, 
— H i [Sj S 2 • ' ' Sn J 

= E [ S f t l , t 2 ) ] x . . . xE^C-'1"'] xE[«f ( t l )^ ja (' l )-C- I" , ,X( t"- l )] 
= E [ a f ( t l , t 2 ) ] x ••• x E^f^- 1 '*")] 

x E {sf ( t l ) [ ( l - a i , 2 ) + a i , 2 s 2 ] X ( t l ) • • • [ ( ! - + an-i,nsn]x(^-

= E[sf(tl't2)] x ••• x E [ S £ ^ « ) ] E { Sf ( t l )s 2(l)X ( t l )
 • • • S n ( l ) X ( t " - l ) } 

= E[sftl,t2)] x ••• xEtsf*"-1'̂ ] x E [ S 3 ( l ) E ( i l ' t 2 ) ] - E [ S „ ( l ) £ ( f » - l W ] 

x E { S f ( t l )

S 2 ( l ) X ( t l )

5 3 ( 2 ) X ( t l )

5 4 ( 2 ) X ( i l ) - - - ^ ( 2 ) ^ 1 ) } 
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E { [ s 2 s 3 ( l > 4 ( 2 ) - - - s „ ( n - 2 ) f ^ x ••• 

x E { [ a „ _ i s „ ( l ) ] B ( t B - 2 ' t B - l ) } . x E 

x E {[sis 2(l)a 3(2) • • • sn(n - l ) ] * ^ ) } 

si JJ[(1 - o ^ i ) + a 1 > < s J J | X E | [ s 2 IJ[(1 - a2,i) + a2,isi] 
\ i=2 

x • • • x E 

i=3 

{ ( S n - l [ ( l - « n - l , n ) + a n - l . n S n ] ) ^ - 2 ' ' " - 0 } X E {Sf * - ! . * » ) J 

= J Lzl V 
i i - 7 s i n ? = 2 [ ( i - « i , i ) + Q ! i , i a i ] i 

( 1 - 7 + Q i ,27) - ai,2732 I l i U K 1 ~ a2,i) + a2,iSi] \ 6

 x 

1 - 7 S 2 n r = 3 [ ( 1 - ° ! 2 , i ) + a2,iSi]. J 
(1 - 7 + a n_ 2, n_i7) - a n_ 2 !„_i7s n _i[(l - a n - i ,n ) + 

1 - 7 S n - l [ ( l ^ n - l,7i )+• "n—l.n^nj J 

( 1 - 7 + 
C^n—l,n7) "n—l,Ti7^n I 

1 ~ 7*r» J 

{ 
i f is /rem 12 u/itA pp/ G#(s;a) = (iia°)t[i-2j7g (0 < 7 < 1)- Here 7 is i/ie same as a 

parameter in the pgf of NB margin. 

Define 
n 

c^-cn = [/(«i = 0) - 7 / (» i = 1)]JI[{1 --vaj-uWij = ij-! = 0) 

+ ( 1 - a j - i j ) / ^ - ! = = 0) - 7 (1 - a ^ i j ) / ^ - . ! = 0,ij = 1) 

- 7 K ( * j = = !)]• 

i?y (9.3.14) in Theorem 9.3.3 and induction with the help of symbolic manipulation, we obtain 

G(x{tl),...Mtn))(Sl, . . . ,*„) = E [ s f ^ • • • = (* ~ I)" . _ 
L 2 ^ i 1 = 0 ' ' ' 2_/in=0 C « i " - C n s l • • • 5 n 

T/iis resulting multivariate distribution of (X(ti),..., X(tn)) is in the multivariate negative 

binomial family given in Doss (1919). 

319 



Part IV 

Statistical inference and applications 
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Chapter 10 

Parameter estimation 

In this chapter, we study parameter estimation based on observation of a GAR(l) process at a finite 

number of time points. Usually in a real problem, after we decide on the potential models for the 

observed data, the next step is to estimate the model parameter values based on the observations. 

This procedure is called parameter estimation. The estimation approaches for the parameters in the 

continuous-time GAR(l) process include: maximum likelihood, conditional least squares, empirical 

characteristic function, as well as the method of moments and miscellaneous for special cases. We 

wish to pursue some closed form estimates for easier computations. However, in general, there are 

no closed form expressions for the estimates, in which case we will use numerical methods to find 

the estimates. 

We shall investigate maximum likelihood estimates (MLE) and conditional maximum like

lihood estimates (CMLE) in Section 10.1. In Section 10.2, we discuss the conditional least squares 

estimates (CLS) and variations such as the conditional weighted least squares estimates (CWLS), 

quasi-conditional least squares estimates (QCLS) and conditional generalized least squares (CGLS). 

The empirical characteristic function (ECF) approach and variations are studied in Section 10.3. 

We shall discuss the method of moments, as well as miscellaneous methods for the continuous-time 

GAR(l) processes in Section 10.4. Numerical methods are mentioned in Section 10.5. 
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10.1 Maximum likelihood estimation 

The maximum likelihood estimation approach is a conventional method, usually used in the models 

where the distribution of the sample (Xi,X2,... ,Xn) is clearly specified. One of the advantages 

of this approach is that it is often most efficient (assuming the model is correct). 

Let vector x = (x\,X2,.- - ,xn)' denote the data observed at time points *i < t2 <• • • • < tn 

from a continuous-time GAR(l) process {X(t);t > 0}, namely 

X(tx) = xi, X(t2) = x2, X(tn) = xn. 

Let 6 = (0i, • • •, 6k) be the vector of all parameters to be estimated in the continuous-time GAR(l) 

process model. One of the important parameters is the dependence intensity fi (see Chapter 4), 

which we put into the first argument position in 0, i.e., 0i = /u. Let 9 be the parameter space. 

Usually, the parameter space is the subset in For example, 6>i = /i > 0. The sample x can be 

viewed from the joint distribution of (X(ti), X(t2),... ,X(tn)). Then the likelihood function is 

L (0 | x ) = f(x(t1),x(t2),...,x(tn))(xi,x2,...,xn;0) 

= fx(tl)(xi;d)fx(t2)\X(t1)(x2 I xi;0)---fX(tn)\X{tn-l){xn I xn_i;0). (10.1.1) 

Here / denotes the pmf in the discrete case or pdf in the continuous case. Because it is a product, 

we take logarithm and obtain the log-likelihood function: 

logL(0 |x) = log/;c( t i)Oi;0) +log/X(.t 2)|x(ti)(»2 I xi\B) + ••• • 

+ togfx(tn)\x(tn-1)(xn I xn-i;0), (10.1.2) 

The M L E of 0, denoted as OMLE, is then the value of parameter 0 where the likelihood (or log-

likelihood) function reaches maximum, namely 

OMLE = argmaxL(0 | x) = argmaxlogL(0 | x). 

By taking partial derivatives on log-likelihood function with respect to parameter 0, in general, we 
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can obtain the score or M L E equations by equating them to zeros: 

f d\ogL(0\x.) _ n 

<31ogL(fl|X) _ n 

dek ~ u-

Assume the M L E is not on the boundary of 6. Solving these equations will lead to the M L E OMLE-

By calculus, it follows that 

<91ogL(fl 1 x) = 1 dfX(tl){xi;d) | 1 dfX(t2)\x{tx){x2 \ xi;0) 
ddj fx(ti)(.xi;0) dOj fx(t2)\x(t1)(x2\xi;$) d6j 

+ . . . + I dfx't^Xjtn-^jXn I g n - l j g ) 

fx{tn)\x{tn-l){xn\xn-i;0) dOj 

= 0, 

for ; = 1,2,... ,k. 

Sometimes, the marginal distribution of X(tx) is not specified or is not of primary interest. 

In such a situation, we only focus on the conditional structure of the process, and view the sample 

(x2,xs,..., xn) as a realization of (Yi, Y2,..., Yn-\), where 

Yi = [X{ti+1) | X(ti) = xt], % = 1 ,2 , . . . , n -1 . 

Note that these Yi (i — 1,2,... ,n — 1) are independent rv's. We can maximize the conditional 

likelihood function of (X(t2),X(£3),... ,X(tn)) conditioned on X(t\) = x\, which is the likelihood 

function of (Yi, Y2,..., Y n _ i ) , 

Li (0 |x ) = f(X(t2),...,x(tn))\X{t1){x2,...,xn\xy,0) 

= fx(t2)\x(t1)(x2\x1;6)---fX(tn)\x(tn-1)(Xn\xn-i;0), (10.1.3) 

or its logarithm 

log£i(0 | x) = logfX(t2)\x(ti)(x2 I xi;0) + • • •+ togfX(tn)\X(tn-i)(xn I xn-v,9), (10.1.4) 

to obtain the conditional maximum likelihood estimate (CMLE) 

0CMLE — argmaxLi(0 | x) = argmaxlogZi(0 | x). 
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This will lead to 

dlogLi(0 |x) 1 d /x ( t 2 ) |x( t l)(z2 I xy,0) 
+ ddj fx{t2)\x{h){x2\xi\0) dOj 

1 dfx{tn)\x{tn^){xn I g n - i;g) 
fx(tn)\x(tn--l){xn\xn-i\0) d6j 

= 0, 

for j = 1,2, ...,k. This simply drops off the term fx(ti)(xi) in (10.1.1) and (10.1.2). It is fine 

when the sample size n is large, because then the term fx(ti)(xi) n a s l e s s influence in the M L E so 

that the difference between M L E and C M L E is very small. 

The conditional pmf or pdf fx{u+l)\x{u) = 1> 2,.. •, n - l ) has been discussed in Section 9.2. 

Usually, they do not have explicit forms of expression. Hence, we can not obtain the explicit form of 

M L E or C M L E . Even the numerical solution of the MLE or C M L E could be a new challenge. Based 

on these difficulties, the maximum likelihood approach may not be the first choice in parameter 

estimation unless other approaches are not good enough or one is particularly attracted by the 

asymptotic efficiency of the MLE or CMLE. 

The maximum likelihood approach can be used in either the stationary or non-stationary 

situation if the relevant distributions are known. 

Lastly, we briefly discuss the numerical approach to obtain the M L E or C M L E when the 

explicit form of likelihood is not available, but a closed form exists for the conditional pgf or LT. 

The key issue in this situation is how to calculate the pmf or pdf by the characteristic 

•function. Theoretically, the cdf Fz{z) can be computed by the inversion of characteristic function 

(pz(s). Levy's inversion theorem shows that 
1 Z"00 1 - e~isz 

Fz(z) - FZ(0) = - / — - • <pz{s)ds. 

Gil-Pelaez [1951] gave a new version which has computational convenience: 

F z ( z ) _ ' + r ^ H ) : » - > * ) f c ( 1 0 . u ) 

Davies [1973] changed the form to 
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for the continuous real-valued case and to 

Fz(z) = o 2TT [1 - e ~ i s ( z + 1 )] 
ds (10.1.7) 

for the discrete integer-valued case, then proposed a numerical approximation to the Gil-Pelaez's 

inversion theorem when the expectation exists. But, since only a one-dimension integral is involved, 

it is feasible and better to apply a numerical integration method and obtain the corresponding 

probability. Bohman [1970, 1972, 1975] gave a couple of approximations for different situations, 

especially for the case of non-negative support. 

These numerical techniques will play a promising role in finding M L E or C M L E numerically. 

In addition, in a simulation study, we need to generate the samples from the continuous-time 

GAR(l) processes, the numerical inversion of characteristic function can work well when the explicit 

form of conditional cdf is not available, or when a simple stochastic representation has not been 

discovered. 

10.2 Conditional least squares estimation and variations 

The least squares approach is another conventional method. It does not depend on the full specifi

cation of distributions, instead, it just uses the means and/or variances. Hence, the estimates from 

the least squares approach can correspond to a class of distributions which have the same means 

and/or variances. Compared with the maximum likelihood approach, the least squares approach 

usually does not provide estimates as efficient as MLE. However, it usually has a computational 

advantage and a simple interpretation. 

The conditional least squares approach is specifically suitable for Markov process. It focuses 

on the conditional mean and/or variance structure of the remaining observations given the first one 

like the treatment in conditional maximum likelihood estimation. Thus, the sample x 2 , x ^ , . . . ,xn 

are viewed from the independent rv Y\,Y2,... ,Yn-\, where 

Yi = [X{ti+i) | X{ti) = xi], i = 1,2,... , n — 1. 
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It considers 
n-1 

RCLS(0) = ]T (xi+1 -B[X(ti+i)'\ X(U) = xi-,9]) , 
i=l 

(10.2.1) 

and the conditional least squares estimate (CLS) is defined as 

OCLS = argmin RCLS(9). 

By taking partial derivatives and equating them to zero, we can obtain estimating equations 

' WE ( s i + i - E Wi+i) I X{U) = xf, 6]) 8*[x(u+mu)=xi-,e\ = 0 ) 

i=i v ' 

(xi+1 - E[X(ti+i) | X(ti) = xf, 0}) aE[x( t < +Ojx(tO=xi;0] = 0 . 

The solution of these equations will be the conditional least squares estimate BCLS-

Consider the stationary continuous-time GAR(l) process with marginal mean function A(0): 

X{t) = (e-^-1'^ K®X{t') + E{t',t), t'<t. 

Let 

a; = E X (e~ / i (* i + 1~' i )) , where i = 1,2,... ,n - 1. 

By (9.2.1), we have that for i = 1,2,..., n - 1, 

E L Y ( i m ) | X f t ) = x i ;0} = XI-E[K ( e - ^ m - ' i ) ) ] + A(9) -(I-E[K ( e " " ^ - * ) ) ] ) 

= Xicti + A(9) [1 - at] 

If K has finite mean, then, by Theorem 3.2.1, 

on = e-rMti+i-t>)5 for some r > 0. 

In many situations, on is only related to the parameter \i. For example, when K is from II, 12, 

14, PI, P2, and P4, r = 1 and on = e -M*i+i-*«). 
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Now we consider that at involves only the parameter / i , namely 9\ in 9. Thus, 
dai dB[X{ti+l) \X(U) = xf, 6} 

d6i 

dE[X{ti+1) \X(ti) = xr,0] 
oe2 

dB[X(ti+1) | X(ti) = xf, 6) 

= [l - <*i 
S A W 

and the CLS equations simplify to 

| I ! ( x i + i - X i a i - ^ J t l - a i ] ) ^ - ^ ) ) ^ =0, 

[ nE{x1+1-xiai-A{e)[l-aty)[l-ai} = 0. 

When the data are observed at equally-spaced time points, a simpler result can be deduced. In 

this situation, let A = t2 — i i = • • • = tn - i n _ i , and all the ai (i = 1,2,..., n - 1) are the same 

a = E [iv" (e~^A)]. Then minimizing ^ [xi+i — Xia - A(0) [1 - a] ) is equivalent to find the 
t=i ^ ' 

(10.2.2) 

regression line, hence, we obtain 

dCLS 

, M0)CLS 

Note that a can be written 

n - l / n - l \ / n - l \ 
E ^ i ^ i + l - ^ T E J E J 

_ n^l " / n - l ^ 
(10.2.3) 

n - l 
n"=T E 

1 -3 

• / n - l \ / n - l \ 

E U i - S=T E ^ i + i - S=T E ^ + 1 J 

n—1 / n—1 

E ( ^ _ ^ r r E 

i=l V i=l 
If we arrange the generalized time series data x = (xi, x2, S3,..., Z n - i , x n ) into lag-1 pairs: 

(aji,x2), (^2,2:3), (xn-i,xn), 

then we can calculated sample lag-1 auto-correlation coefficient by 
n - l / n - l \ / n - l 
E [xi - ^[E Xi) [ xi+i - ^ Z T E xi+i 

Pi i=l i=l i=l 
n - l / n - l \ 2 / n - l / n - l 
E ( x l - ^ I E x i ) W E U i + 1 - ^ i E 
i=i V i=i / V i=i V i=i 

(10.2.4) 
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which is always within [—1,1]. Thus 

^ V i=i V i=i 
a = - ! — 2

 x P i -
/n-1 / n-1 y 

' E («i - s=i E ^) 
i=i V 1=1 / 

n-1 / n-1 \ 2 n-1 / n-1 \ 2 

When the sample size n is large, YI ( x i + i _ ^31 E ^ J + I ) w * u D e c l ° s e to [xi ~ ^hj E xi ) ; 
i=l V i=l / i=l V i=l / 

thus, a will be close to p\. This gives an explanation for a: it is a modified sample lag-1 auto
correlation coefficient. 

From the two equations in (10.2.3), we may obtain 6CLS- However, sometimes the estimated 

value a or A(0) may lie outside of the range of a or A(0), then, the conditional least squares 

approach won't work. Note that for the discussed self-generalized rv K, the expectation form of ai 

can be found in Table 9.1. 
The following generalized time series examples are the applications of (10.2.3). 

Example 10.1 (Poisson univariate margins) Consider the time series from the stationary 

continuous-time GAR(l) process 

X{t) = e-^-^*X{i!) + E{i!,t), t'<t, 

which have Poisson(X) margin. In this case, the parameter vector 0 = (p,X)', and marginal mean 

function of the process is A(0) — A. For binomial-thinning, a = e _ A t A . According to (10.2.3), we 

have 

OiCLS -

XcLS = 

£ i j i i + i - ^ i E x i ( E x i + i ) 

i=i Vi=i / \i=i / ( _ e - / * A \ 
n-1 , /n -1 \ 2 ^ h 

i=i \i=i / 
n-1 / n-1 \ 

^rr E xi+i-(—i E xils 
i = l \ z = l / 1-3 

Note that 0 < e " ^ < 1 and A > 0. Fence, a should be in (0,1) and A > 0. If/ten 0 < a < 1, we 

can further obtain PCLS = — 
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Example 10.2 (Geometric univariate margins) Consider the time series with Geometric^) 

univariate margins, where 0 < 7 < 1. They can be from either the stationary continuous-time 

GAR(l) process 

X{t) = e - / ^ - f ' ) * X(t') + E(t', t), t' < t, 

or the stationary continuous-time GAR(l) process 

X(t)= (e-rt-V} ®X(1?) +E(t',t), t'<t, 

where K is from 12 with pgf GK{S;O) = Ji~"̂ "Z2)7S • Here 7 is the same as a parameter in the 

marginal distribution. 

Then 6 = (//,7)', A(6) = j - 7 ^ . For K being from either II or 12, a = e~^A. Therefore, 

according to (10.2.3), we have 

&CLS ~l ' / n - l y 2  

i= l \ i = l / 

(= e~tA), 

n - l / n - l \ 

.— £ 1 E xi+1-l ^ E ^ is 
A{0)CLS = ^ i- Va 1 = 1 7 (= 

If a is in (0,1) and A{6) > 0, then we can further obtain 

_ logS ^ log 5 
VCLS = A ' 

7CLS l+A{0)CLS' 

Example 10.3 (Exponential univariate margins) Consider the time series with exponential (p') 

univariate margins, where B > 0. They can be from either the stationary continuous-time GAR(l) 

process 

X(t)=e-^-^ •X{t') + E{t',t), t'<t, 

or the stationary continuous-time GAR(l) process 

X{t)= (e-M-V) ®Xtf)+Etf,t), t'<t, 

where K is from P2 with LT </>K(s; a) = exp j - ̂ j ^ - a h a }• H e r e T = 1+0 • 
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Then 9 = (n,0)', A(0) = 0 " 1 . For K being from either PI or P2, a = e~^A. Therefore, 

according to (10.2.3), we have 
n-1 /n -1 \ /n -1 \ 

E x i i j + i - ^ r j ( E ^ E x i + i ) 
i = l \ i = l / /_ 

~~ n^l / n - 1 "T5 

i=l \ i= l / 

OtCLS (= 

A(0) CLS 
v ,= i / ( = i } _ 

1-3 

If a is in (0,1) and A(6) > 0, then we can further obtain 

^ log 3 
PCLS = _ _ A ' 

0CLS = A{6) CLS 

By Table 9.1, for K from II, .12, 14, PI, P2 and P4, the form of a is e ^ A . Hence, from 

the first equation of (10.2.3), we always obtain 

n-1 

E XiXi+l - n^I E 

« C L S i=l 

n-1 

i=l 

n-1 

E ^i+1 
i=l 

n—1 / n - 1 

E ~ I E 
i=l \j=l 

= e 

When 0 < S C L 5 < 1, the CLS estimate of p is 

log 
E a w + i - E « i I I E 
j=l \ i=l / \i=l 

V 

n—1 / n - 1 

E ^ - ^ r E ^ 
i=l \i=l 

(10.2.5) 

However, if SCLS < 0 or OLCLS > 1> what can we do? In such situation, we may set a = 0 or a = 1 

respectively. These two situations are extreme cases for the continuous-time GAR(l) processes: the 

first one corresponds to an iid situation, while the second one corresponds to a perfectly dependent 

situation. But if a is strongly negative and the sample size n is large, it may suggest that the 

specified continuous-time GAR(l) process model is not appropriate to use. Or other approaches 

should be considered. For the marginal mean function A(0), if its estimate A(0)CLS exceeds the 

range of A(6), one simple alternative estimate is A{6) = ^ Y xi-> which obtains from the method 
2=1 

of moments in Section 10.4. 
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Obviously, the advantage of CLS estimation is that it can offer closed form estimates for 

generalized time series. However, the disadvantages are clear too: 

• it can only estimate two parameters, because the CLS estimating equations (10.2.2) or (10.2.3) 

include only two equations; 

• it ignores the conditional variance information. 

These motivate us to turn to conditional weighted least squares (CWLS) approach. It considers 

n-i - E[X(ti+l) I X(U) = Xi])' 
RcwLs(e) = ̂  Var[X(tl+l)\X(ti)=xl] 

(10.2.6) 

and the conditional least squares estimate (CLS) is defined as 

OCWLS = arg min RCWLS{0)-

Similarly, we can obtain the estimating equations by taking partial derivatives of RcwLS (0)- For the 

stationary continuous-time GAR(l) process, let the marginal mean function arid variance function 

be A(0) and V(0) respectively. Denote 

cn = E K ( e - ^ i + i - * ; ) ^ Vi — Var K e 

w here i = 1,2,... ,n - 1. By (9.2.1) and (9.2.2), we have 

E[X(ti+i) | X(U) = Xi] = Xi-E 

Var[X{ti+1) | X{ti) = Xi] 

E K ( e - ^ + i - * * ) ) ] + A(0) • (l 

Xiai + A(9) [1 - a j , 

V(9) (l-E2 \K (e-"^-^))] ) 

+[xi - A{B)\ • Var [if (VMfe-<i)y 

[xt - A(0)]ui + V{B) [1 - a2] . 

(10.2.7) 

K ( e - r t U + i - U ) ) ) 

(10.2.8) 

(10.2.9) 

where i = 1,2,..., n - 1. These lead to 

RCWLS{9) = E 
(xi+i - Xiai - A(0) [1 - on]) 

- [xi-A(0)]vi + V(0)[l-a}] " 
(10.2.10) 
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It is straightforward to show that the number of estimating equations won't simplify to fewer than 

the number of parameters k. However, no more closed form estimates can be expected even in the 

generalized time series. Numerical methods have to be employed to obtain the CWLS estimates 

QCWLS-

An estimation method related to CWLS approach is the quasi-conditional least squares 

approach (QCLS), which is a modification of the quasi-least squares approach proposed by Cha-

ganty [1997]. The estimating equations of CWLS can be obtained by taking partial derivatives 

of RCWLS(6) in (10.2.6) with respect to parameter 9. The partial derivatives will be the sum of 

two terms: one is regarding the partial derivatives of conditional expectation from the numerator 

in the summands of (10.2.6), one is regarding the partial derivatives of conditional variance from 

the denominator in the summands of (10.2.6). Further research shows that the CWLS estimator is 

not consistent for the true parameter value 9° (see the comments in the last part of Section 11.3). 

Thus, a consistent estimator is pursued. 

The quasi-conditional least squares approach considers the sum 

(xi+1--E[X(ti+i) | X(U) =Xi-9]f 

where 9* is a variable independent of 9. When 9* = 9, RQCLS(6, &) = RCWLS{&)- Taking partial 

derivatives of RQCLS(9, 0*) with respect to 9 = (#i,..., 9k)' and equating to zero, we have 

r^{xi+1--E[X(U+i)\X(ti) = xi;e]) ffE[X(ti+1)\X(ti) = xi;9] 
^ Var[X(ti+1)\X(ti) = xi;0*] ' d9j U, j . 

Taking 6* = 9, we obtain the following estimating equations 

r±i(xi+1-E[X(ti+1)\X(ti)=xi]6]) dK{x{ti+l)\X{ti)=xi]9] = 

^ Var[X(ti+1)\X(ti) = xi;0] ' 80, , ( • • - > 

where j = 1,2,..., k. These estimating equations are not obtained from RCWLS(Q)- Hence, they 

are not the same as those CWLS estimating equations. We call the solutions of (10.2.12) the 

quasi-conditional least squares estimate, 9QCLS- Unlike other estimates, this estimate won't 

minimize any of the sums, at most it marginally minimizes RQCLS{0,9*). 
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Similar to (10.2.2), the estimating equations of the CLS, for the stationary continuous-time 

GAR(l) process with marginal mean function A(0) and marginal variance function V(0), (10.2.12) 

can simplify to 

n—1 
Xi+i-Xiai-A(0)[l-ai] r _ A(Q\\ do^ _ n 

[Xi-A(0)]ui+V(0)[l-a2] ^ du ~ U> 
71—1 
V Xi+i-Xiai-A(9)\l-ai] ri _ „.] = n 

^ [ x i-A(0)], i +V(0)[l-a?] ^ ^ J 

(10.2.13) 

Here OJJ, fj (i = 1,2,..., n - 1) are defined in (10.2.7). Since the number of parameters may exceed 

2 which is the number of equations in (10.2.13), the application of QCLS approach is limited like 

the CLS approach. 

Note that the conditional variance V a r [X(t{+i) | X(U) = xi\ is linear in xi. This leads 

to a simple variation of the CWLS estimates for the continuous-time GAR(l) process. Instead of 

RCWLS(9) m (10.2.10), we shall consider 

" r i (xi+i - lit* - A{9) [1 - at] Y 
RCWLS2(0) = E " C X I + D -« (10-2-14) 

where c, d > 0, but both are not equal to zero. These two constants are introduced so that 

we can partially take advantage of the information from the conditional variance. Usually d is 

chosen to be positive so that the denominators are not zero. It could be a small number, say 

d = 0.5. The constant c may be chosen by borrowing information from other estimation sources, 

because i/j could be estimated by the function of CCJ which may be estimated by CLS estimates or 

method of moments estimate p[. If c = 0, d = 1, RcwLS2{0) will simplify to R(0) in (10.2.1) for 

the continuous-time GAR(l) process, which results to the conditional least squares estimates. By 

minimizing RCWLS2{9)I we can obtain 

0CWLS2 = &r g min RCw LS2(0)-

The big advantage over (10.2.10) is that we may obtain the closed form of estimates 0CWLS2 M 

the generalized time series situation, because the denominators do not depend on parameters; this 

is just like the situation of the CLS approach. 
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Suppose the generalized time series is from a continuous-time GAR(l) process; in other 

words, we make the equally-spaced assumption here. Let a = a and b = A(6)(l — a). Then by 
n—1 (x;+i— x,a—bj 

taking partial derivatives with respect to a and b for RCWLS2(Q) = X) — > w e w i l 1 h a v e 

i = i 

n - l 

E Xj+i-Xja-b _ Q 
cxi+d 1 ' 

i = l 
n - l 
i = l 

i = l 
= 0. 

Let 
n - l n - l n—1 n—1 o n—1 

=i • - i= i 

Then the equations become 

which have solutions 

These lead to 

Bib + B2a = B3, 

B2b + B4a = B5, 

BxBb - B2B3 B2Bb - B3B4 a = z r ^ - . o = BXBA-Bl ' B | - B1.B4 

CWLS2 

B i B 4 - B ^ ' 

1 . B 2 B 5 - B 3 B 4 
1 - S C W L S 2 B\-B\Bi 

(10.2.15) 

From (10.2.15), we may obtain OQWLSZ- If the estimate OCLS is beyond the range of 6, it is possible 

to find an appropriate OCWLSI to be the alternative estimate. 

The idea of conditional least squares can be extended to more general situation. Instead 

of the original sample x\,x2\... ,xn, we may consider applying a real-valued function g to get: 

g(xi), g(x2),... ,g{xn). Correspondingly, we will replace the conditional least squares 

n—1 2 

RCLS{0) = E (si+i - E[X(t i +i) I X(U) = Xi-,0}) , 
. 2 = 1 
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with conditional generalized least squares (CGLS) 
n - 1 2 

RcGLsiO) = E ( 3 ( ^ + 1 ) - Efo(*(<i+i)) I X(U) = Xi-6]) , (10.2.16) 
i=i 

which results to the conditional generalized least squares estimate: 

QCGLS = arg min RCGLS(0)-

When g is the identity function, this reduces to conditional least squares. 

Our goal is to find potential closed form estimates for the generalized time series. For this 

purpose, we choose g{x) = x2. Then from (10.2.8) and (10.2.9), 

F,[X2(ti+1)\ X(U) = Xi) = (E[X{ti+i) I X(U) = Xi})2 + Vax[X(ti+l) | X(U) = xt] 

= [Xia + A(0){1 - a)]2 +[xi - A{9)]u + V{0)(1 - a2) 

= a2xf + [2a(l - a)A{6) + v]Xi + [(1 - a)2A2{6) - vA(0) + (1 - a2)V(0)} , 

a linear equation of Xi and xf. Let 

a = a 2 , b = 2a(l - a)A(0) + v, c = (1 - a)2A2(0) - vA(0) + (1 - a2)V{6). (10.2.17) 

Then 
n - 1 2 

RCGLS{0) = { x i + l ~ a x i ~ b x i - c ) > (10.2.18) 
1=1 

and resulting estimating equations from differentiating with respect to a, b and c are 

( n - 1 

Y {xi+i - axf - bxi - c)xf = 0, 
2=1 
n - 1 
Y {xi+\ - axf - bxi - c)xi = 0, 
i=i 
n - 1 

Y {xi+i - axf - bxi - c) = 0 . 
V i=i Let 
n - 1 n - 1 n - 1 n - 1 

- i=i i=l i=l i=l 
n - 1 n - 1 n - 1 

C,5 = Ea;i+1' C?> = 'l2l

XiXi+^ C7 = ^2xfxi+i. 
2=1 2 = 1 1 = 1 
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We can rewrite the above equations as 

Cia + Czb + C2c = C7, 

C3a + C2b + Cic = C 6 , 

C2a + Cib + {n- l)c = C 5 , 

and the solutions are 
( _ ^n-l)C7-C2C&]i(n-l)C2-C2]-[(n-l)C6-CiC5]-[(n-l)C3-CiC2} 
1 a - [(n-l)C4-C 2

2 ]-[(n-l)C 2 -C?]-[(n-l)C3-CiC 2 ] i ! : 

, __ [(n-l)C7-C2C5]-[(n-l)C3-CiC2]-[(n-l)C6-CiC 5]-[(n-l)C4-C 2

2] 
& - [ (n - l )C3 -C 1 C2 ] 2 - [ (n - l )C4 -C | ] - [ (n - l )C 2 -C 1 ^j 

(10.2.19) 

n - l n—1 n—1 

By (10.2.17) and (10.2.19), we may obtain the CGLS estimate OCGLS- Note that CXCGLS = y/a. 

Hence, it can be another alternative choice if acLS is outside of the range [0,1]. 

Example 10.4 (Generalized Poisson univariate margins) Consider the time series from the 

stationary continuous-time GAR(l) process 

X(t)=e-^-^ * X(t') + E(t',t), t' < t, 

which have GP(6,r)) (9 > 0,0 < n < I) margin. In this case, 0 = (/J,M)'> and the marginal mean 

function and variance function of the process are 

A(0) = 0(l-n) - l V(0) = 6(l-n) - 3 

From Table 9.1, for binomial-thinning, a = e~^A and v — a(l - a) = e _ A i A (l - e _ / i A ) . According 

to (10.2.19), we have the values of a, b and c. If 0 < a < I, by (10.2.17), we can obtain the 

estimates 

v ' . ' 23(1 - S) v ' I- a2 

If A{6) > 0 and V(0) > 0, we can further obtain the CGLS estimates 

log a 
HCGLS = -• OCGLS = 

M») 

\ no) 
, rjCGLS = 1 -

MB) 

\no) 
Note that 9CGLS should be positive and rfCGLS should be in the range [0,1]. 
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Example 10.5 ( N B univariate margins) Consider the time series from the stationary continuous-

time GAR(l) process 

which have NB(S,ry) (i5>0,0<7<lj margin. In this case, the parameter vector 0 — (p,8,^)', 

and the marginal mean function and variance function of the process are 

A{6) = <J7(1 - 7 ) - \ V{6) = 51{\-1)-2. 

Similar to Example 10.4, we can obtain the estimate a, A(0) and V(0) by (10.2.20). If A(0) > 0 

and V(0) > 0, we can further obtain the CGLS estimate 

logS 7 MO)2 MO) 
P-CGLS — ficGLS = z==r, 1CGLS = 1 ~ 

V{0) - A(0) V(0) 

Note that 6CGLS should be positive and 7 C G L S should be in the range (0,1). 

Example 10.6 (Gamma univariate margins) Consider the time series from the stationary 

continuous-time GAR(l) process 

X(t) = e-^-^ • X(t') + E(t', t), t! < t, 

which have Gamma(d, 0) (6,0 > 0) margin. In this case, the parameter vector 0 = (p,S,0)', and 

the marginal mean function and variance function of the process are 

A{0) = 80~L, V(0) = S 0 - 2 . 

For K from PI, by Table 9.1, a — e~M A and v = 0. According to (10.2.19), we can calculate a, b 

and c. If 0 < a < 1, we can obtain the following estimates by (10.2.17): 

- r iTm 6 v?ff\ c-(i-a)2MB) 

If A(0) > 0 and V{0) > 0, we can further obtain the CGLS estimate 

logs 7 M0) ^ MO) 
VCGLS = 7 — , OCGLS = ) JCGLS = - • 

A V(0) V{0) 

Note that SCGLS and PCGLS should be positive. 
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In Examples 10.2 and 10.3, we restrict the parameter 7 associated with K from 12 and P2 

to a specific value. This is simply because of the limitation of number of estimating equations in 

the CLS approach. Now we can loosen such a restriction in the CGLS approach. 

Example 10.7 (Geometric univariate margins) Consider the time series with Geometric(B) 

univariate margins, where 0 < 0 < 1. This time series is from the stationary continuous-time 

GAR(l) process 

X(t) = (e-M-V) ®X(1!) + E(t',t), t' <t, 

where K is from 12 with pgfGK^s; a) = ([^c^y^Z^g • By Example 7.15, we can choose 0 < 7 < 8. 

Then 9 = (n,i,B)', A(0) = 0(1 - 0)~l and V(9) = 8(1 - 8)~2. For K from 12, a = e"^A 

and v = a(l — a)(l +7)(1 — 7 ) _ 1 - Therefore, according to (10.2.19), we can compute a, b and c. 

Furthermore, from (10.2.17), we have 

a = or, 

b = 2a ( l - S ) 0(1 - 0 ) " 1 + 3(1-2)(1+7)(1-7)- 1, 

[c = ( l - 3 ) 2 0 2 ( l - 0 ) - 2 - 3 ( 1 - 3 X 1 + 7 X 1 ^ 

Solving these equations, we can obtain acGLS, @CGLS and 7. Since it is very tedious, we omit the 

details. If0<a<l, we can obtain JICGLS = — 

Example 10.8 (Exponential univariate margins) Consider the time series with Exponential(B) 

univariate margins, where 0 > 0. This time series is from the stationary continuous-time GAR(l) 

process 

X(t) = (e-^*-*')) © X(t') + E(t',t), t' < t, 

where K is from P2 with LT 4>K(S;O) = exp j - ( 1 _ 7

t ) ^ 1

7 - a ) 7 8 } • Example 6.15, we can choose 

0 < 7 < (1 + /3)- 1 . 

Then 9 = (ti,j,0)', A(9) = 0-1 and V(9) = 0~2. For K from P2, a = and 

v = 2a(l - 0)7(1 — 7 ) - 1 . Therefore, according to (10.2.19), we have a, b and c. Similarly, by 
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(10.2.17), we obtain 

a = a", 

b = 2 3 ( 1 - a ) ^ " 1 + 2 a ( l - S)7 ( l-7)- 1, 
[ c = (1 - 3 ) 2 / T 2 - 23 (1 - 3)7(1 -i)-1?'1+ {l-a2)p-2. 

The solutions will be ficGLS, 1CGLS and BCGLS- The tedious details are omitted too. 

Since (10.2.19) only offers estimation for three parameters, we can not apply the CGLS 

approach to the continuous-time GAR(l) process associated with four or more parameters. For the 

time series from a four-parameter continuous-time GAR(l) process, we may combine (10.2.3) and 

(10.2.19) to obtain the estimate 9. The following is an example to illustrate this idea. 

Example 10.9 ( N B univariate margins) Consider the time series with NB(6,B) univariate 

margins, where 5 > 0 and 0 < 0 < 1. This time series is from the stationary continuous-time 

GAR(l) process 

X{t) = (V"<'-''>) © X{t') + E(t',t), t! < t, 

where K is from 12 with pgf GK(s; a) = (tl°y$Zl]S

JS (0 < 7 < 0)-

Then 9 = 0,7,0)', A{0) = 58{1 -0)" 1 and V(9) = 50(1- B)~2. For K from 12, a = e"^ A 

and v = a(l — a)(l +7)(1 - 7 ) _ 1 - Therefore, according to (10.2.19) and (10.2.17), we have 

2̂ 

a = a , 

b = 23(1 - a)A{9) + 3(1 - 3)(1+7)(1 - 7 ) " 1 , 
c = (1 - a)2M9) - 3(1 - 3)(1 + 7)(1 - i)~lA(9) + (1 - a2)V{9). 

On the other hand, by (10.2.3), we can obtain 

n— 1 /n—1 \ /n —1 
£ x j X j + i - ^ ( £ x i E : 

i = l \i=l J \ i = l 
n - l / n - l \ ^ . Si^-^Cs-) 

n - l / n - l \ 
n~^T E H=T .2, X 0 S 

1=1^ \ 1=1 / 

Xi+1 

A(0) = l - a 
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Choosing one estimate of a from either set of equations, we can derive new equations 
n-1 / n-1 \ 

— E xi+i-1 ^ E xils 
A{9) = =2 - * ^ , 

6 = 23(1-3)1(0) + 3 ( 1 - 3 ) ( 1 + 7 ) ( 1 - 7 ) _ 1 , 

c = ( l - a ) 2 i ^ ) 2 - a ( l - S ) ( l + 7 ) ( l - 7 ) _ 1 ^ ) + ( l - S 2 ) f W . 

Solving these equations, we can obtain 

7 
fe - 23(1 - 3)A(fl) - 3(1 - 3) 

b - 23(1 - 3)i(0) + 3(1 - 3) 

which finally lead to 

7 m 

V(9) 
_ c + bA{9) - (1 -a2)A(9) 

1 - 3 2 

0 = 1 -
A(0) 

F (») -A(»y y(6>) 

Example 10.10 (Gamma univariate margins) Consider the time series with Gamma(S, 8) 

univariate margins, where 5,0>O. This time series is from the stationary continuous-time GAR(l) 

process 

X(t)= (e-M-V) ®Xtf)+Etf,t), t'<t, 

where K is from P2 with LT <t>K{s;a) = exp { - ( 1 _ ^ f f a ) 7 a } (0 < 7 < (1 + 0)'1)-

Then 9 = (p,i,8)', A(9) = SB'1 and V{9) = Sp'2. For K from P2, a = e~»A and 

v = 2a(l — 0)7(1 — 7 ) _ 1 - Similarly, choosing one estimate of a from either (10.2.3) or (10.2.19), 

and combining the remaining equations, we obtain new equations 
n-1 / n-1 \ 

— i i E i E i f « 

A{9) = e - 1 V - = ^ -1-3 ' 

b = 23 (1 -3 ) i ( ^ )+23(1 -3 )9 (1-7)- 1, 
c = (1 -a)2A{9) - 23(1 - 3 ) 7 ( 1 - ^)~lM9) + {I - a2)V{9). 

Solving these equations, we can obtain 

„ 6-23(1-3)1(0) ^ c + bA{9) - (1 - a2)A{9) 
7 = : V(6) = ^5 

b + 2a(l-a)[l- A(9)} 1 - «2 

Thus, 

6 = 
V(9) 

0 = MP) 

no) 
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Now we look back the estimation approaches discussed in this section. The RCLS a n d 

RcwLS2 functions are only related to conditional mean, hence, they are only applicable to estimate 

those parameters which are arguments of the conditional mean. The RCWLS, RQCLS and RCGLS 

functions involve not only the conditional mean, but also the conditional variance. Thus, they 

can estimate more parameters than the previous two approaches. For the unequally-spaced time 

observations, in general, we do not have the closed form estimates. But, for equally-spaced time 

observations, we have derived closed form estimates in the CLS, CWLS2 and CGLS approach. 

However, we should always beware of the estimated parameter ranges in all approaches. If estimates 

are out of range, the model may not be appropriate. 

In summary, the conditional least squares approach and its variations work only for finite 

conditional mean and/or conditional variance. This requires that at least the marginal mean 

function of a continuous-time GAR(l) process should be finite. However, there are some continuous-

time GAR(l) process which have infinite marginal mean function, for example, the power series, 

logarithmic series, positive stable marginal distributions, etc. 

10.3 Empirical characteristic function estimation approach and 

variations 

There are some GDSD and GSD distributions which have infinite mean. These distributions include 

power series, logarithmic series, discrete stable, discrete Mittag-Leffler, Zeta (when 0 < p < 1), 

Mittag-Leffler, stable (most of them), etc. Hence, the conditional least squares approach is not 

applicable in the parameter estimation for the continuous-time GAR(l) process with marginal 

distributions which have infinite mean. In principle, the maximum likelihood approach can handle 

an infinite mean, but the conditional pdf or pmf should be in closed or simple form. Although we 

usually know the conditional pgf, or LT, or cf form for those continuous-time GAR(l) processes, 

it is very difficult to find the corresponding pdf's or pmf's. Thus, in most cases, the maximum 

likelihood approach may not realistic. 
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If we just consider the equally-spaced time observation from a stationary continuous-time 

GAR(l) process with infinite marginal mean, we may adopt the empirical characteristic function 

estimation approach. For references, one can see Paulson, Holcomb and Leitch [1975], Feuerverger 

and McDunnough [1981a, 1981b], Feuerverger [1990], Ushakov [1999] and references therein. 

In such a stationary setting of time series, we view the sample x = (x\,x2,.. • ,xn)' as a 

realization of (X(ti), X(t2), • • •, X(tn)). Hence, the pairs 

(X(h),X(t2)), (X(t2),X(t3)), (X(tn-!),X(tn)) 

have the same bivariate distribution with cf ip(Xi,x2)(si>s2) #) = E[el^SlXl+S2X^], although they 

are not independent. Unlike in Feuerverger [1990], for the time series from a stationary continuous-

time GAR(l) process, we only need to consider the bivariate marginal cf and its corresponding 

empirical bivariate cf. 

Denote 

^(^,S2)~Ee,(sll'+S2Ii+1' 
Ti — 1 *—* 

1=1 

the empirical bivariate characteristic function of the stationary time series. Note that this is called 

the poly-cf in Feuerverger and McDunnough [1981b] where they wanted to distinguish it from the 

iid sample case. This is not necessary in our context. Intuitively, as sample size n goes to infinity, 

the sample function <pn(si, s2) will tend to be the theoretical function (P(Xi,x2)(sii 5 2; Hence, we 

wish this empirical bivariate cf to be close to the corresponding bivariate cf. By some procedures 

to minimize the difference between the function <pn{si,s2) and <P(xltx2)(siis2',0), we may use the 

empirical characteristic function (ECF) estimate OECF for the parameter 0. 

In the earlier papers for estimation in the stable distributions such as Paulson, Holcomb 

and Leitch [1975], the goal is to minimize 

/
OO /"OO 

\Wn{s)-ipx(s;0)\\2e-s ds = / A(0)e"s ds 
-oo J — oo 

to obtain the estimate for univariate case, where 

1 n 
tpn(s) = -Teisx>: <px(S]e)=E[eisX], and X(0) = \\tpn(s) - <px(s;9)\\2. 

n ' 
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Note that here || • | | 2 is the modulus of a complex number. For the specific stable distribution case, 

one can approximate the integration by 20 point Hermitian quadrature and then find the minimum 

(see Paulson, et al. [1975]). However, this may not work for other distributions. Feuerverger and 

McDunnough [1981b] summarized four estimation procedures. Instead of the difference between 

two functions on every point, one may consider the difference between two functions on their finite 

grid points. Then consider some kind of quadratic form of these finite differences to substitute the 

overall difference J, and finally minimize the quadratic to obtain the parameter estimates. The last 

stage is similar to the least squares approach. Let s = ( s i , s 2 ) ' , a n d set the grid points as 

Sl = ( s i l , S 2 l ) \ S 2 = (S12,S22)', S m = ( s i m , S 2m)', 

where m is a positive integer. Define 

z n = (Re </j„(si),...,Re <pn(sm),Im <pn(si),... ,Im y n ( s m ) ) , 

and 

z0 = (Re </> (Xl ix2)(si;0),...,Re ^(x 1 ) A- 2)(sm; 0),lm p ( X l ) A- 2 )(si;0),... ,Im V(x 1,x 2)(Sm; #)) • 

Consider the quadratic form 

RECF{9) = (zn ~ z<j)'Q(zn - Z f l ) , 

where Q is a 2m by 2m positive definite matrix. This quadratic somehow measures the closeness 

of the empirical bivariate cf and the theoretical bivariate cf. Thus, the empirical characteristic 

function estimate of 0 is then defined as 

OECF = arg min RECF(&)-

Feuerverger and McDunnough [1981b] considered four selections for the matrix Q which yield 

consistent estimators with the same asymptotic normal distribution. They also claimed that the 

asymptotic variances of these four estimators can be arbitrarily close to the Cramer-Rao bound by 

choosing the grid {SJ} to be sufficiently fine and extended. However, how to choose those grids in 

the practice is not clear. 
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Feuerverger and McDunnough [1981b] applied the empirical characteristic function approach 

to a stationary Markov emigration-immigration process {Xf, t = 0, ± 1 , . . . } , which has bivariate 

marginal pgf 

G{xux2)(sus2;v,p) = E [ s f s f 2 ] = exp{i/[(S l - 1) + (s2 - 1) + p{si - l)(s2 - 1)]} , 

where u = E ( X i ) = V a r ( X i ) and p = C o r ( X i , X 2 ) . Hence, the bivariate marginal cf is 

<P{xux,)(su s2; u, p) = exp {u [{e^ - l) + (e"2 - l) + p (e"1 - l) {e^ - l)] } . 

This process is coincidently the discrete process sampling from a stationary continuous-time GAR(l) 

process with Poisson margins. See the case of bivariate DSD distributions in Example 9.6, where 

v = A and p = a. 

Most of the marginal distributions of the stationary continuous-time GAR(l) processes have 

non-negative integer or positive real support. This motivates us to consider the variations of the 

empirical characteristic function approach. Instead of the characteristic function, we may use the 

probability generating function for non-negative integer margins and the Laplace transformation 

for the positive real margins respectively. Since 

G(Xl,x2)(si,s2;0) = ip{Xux2)(-ilogsl,-ilogs2;9), 4>{Xl,x2){si,s2;6) = <P(XuX2){isx, is2; 6), 

both are compound functions of the characteristic functions. Therefore, in principle, the new esti

mates from the empirical pgf or LT approach will inherit the consistency, but change the efficiency. 

Define the empirical bivariate pgf and LT as below: 

1 n—1 1 n—1 

Gn{sus2) = — Y , s X i s x

2

i + \ Msus2) = —STe~(siXi+S2Xi+l)-
i=l i=l 

Choose the grid points 

Sl = ( sn ,S 2 i ) ' , S 2 = (S12,S 2 2)', S m = (sim,S2rn)'. 

Since the pgf and LT are real functions, we do not need to consider the imaginary part. Hence, we 

obtain 
z n = (c n(si), • • • , G n ( s m ) ) , or Z n = (</>n(Si),. . . , 0 n ( s m ) ) , 
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and 

Z 0 = (G(X I,X 2)(SI;0),. • . ,G ( X l,x 2)(sm;0)) , or ze= ^Xux2)(sr, • • •, 0(x1,x2)(sm; 0)) • 

Consider the quadratic form of z„ — z# for both cases: 

REPGF(O) = (z„ - z f l ) 'Q(z n - z f l), or RELT(9) = (z n - z e ) 'Q(z n - z 0 ) , 

where Q is an m by m positive matrix. We can derive the empirical probability generating function 

(EPGF) estimate or empirical Laplace transformation (ELT) estimate of 9 by minimizing this 

quadratic: 

9EPGF = arg min REPGF{9), or 0#LT = argmin.R£LT(0)-

To give a rough estimation, one can naively choose Q = I, the identity matrix. For bivariate 

pgf, since the domain is [0, l ] 2 , a closed set in 5 f t 2 , we may simply choose the uniform grids: 

Sy = , i, j = 0,1,...,/; / is a positive integer. 

Hence, in such a situation, the number of grid points m = (I + l ) 2 . 

In general, there are no closed form estimates from the empirical characteristic function 

approach and its variations. We need to employ numerical methods to find 9EPGF, OELT and 

9ECF- However, if we take an appropriate transformation for the pgf, or LT, or cf, and define the 

corresponding sample counterpart, it may be possible to obtain a closed form estimate. This is the 

generalization of the empirical characteristic function approach and its variations. One application 

of such estimates is to use them as the initial values of numerical methods. 

We remark that the empirical characteristic function approach and variations work not only 

for the stationary continuous-time GAR(l) processes with infinite marginal mean, but also with 

finite marginal mean. However, they are only applicable in the equally-spaced time observations. 

For the unequally-spaced time observations, we can't use these approaches to estimate the param

eters because we can't define a reasonable empirical characteristic function for bivariate margins 

or multivariate margins. This is a disadvantage of the empirical characteristic function approach. 
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10.4 Other estimation approaches 

The maximum likelihood, the conditional least squares and the empirical characteristic function 

approaches are classical recipes for parameter estimation. However, for models with special features, 

one may use common sense or imagination to construct a reasonable estimate. In this section, we 

shall discuss some special approaches. 

Methods of moment approach. In this approach, we view the sample x = (x\, x2, • • •, xn)' 

as a realization of X(ti), X(t2), ..., X(tn). Define 
n - l 

i=l 

1 n 1 1 

i=l i=l " 1 

^ n-2 ^ n-l+ 
xi%i+l—li 

i - 1 -- - . r i 

where I is a positive integer. Assume that the corresponding stationary continuous-time GAR(l) 

process has marginal mean function A(0) and marginal variance function V(6). By algebra, we 

have 

E 

E 

n z—' n f—' 
1=1 J 4=1 

- £ x 2 ( J = - E E [ X 2 ( t O ] = A2(0) + F(0). 
i=i J i=i 

By equating them to the corresponding sample averages, we obtain two estimating equations: 

A(0) = Ri, A2{0) + V(0) = R2. (10.4.1) 

If the sampling is based on the equally-spaced time scheme, we can calculate the expectation of 

l 
n-j+l 

. n - j+ l 
£ X(ti)X(U+j-i). Let a = E [K (e _ / i A ) ] , where A is the common time difference. Since 
i=i 

Cav(X{U),X{tj)) = cP^ViO), j > i, 

we can derive 

E 
n-j+ l 

-4—r £ 
n-j+ l 

——- Y E[X(ti)X(ti+j-1)} 
n — j + 1 r-^ 

i=i 
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1 n ~ j + 1 r 1 
— - {Cav(X(ti),X(ti+j.1))+B[X(U)]E[X(ti+j.l)]\ 

n 3 + 1 »=i 
= ai-1V(e) + A2{0), 

for j = 1,..., I. These lead to estimating equations: 

o?-lV{9) + A2(0) = Rij, j = l,...,I. (10.4.2) 

From (10.4.1) and (10.4.2), we can derive the method of moment estimates for A(0), V(6) and a: 

M6)M = RU V{d)M = R2-R2, S M = (̂ T̂ ) ̂  ̂  (10A3) 
where 2 < r < I such that Rir - R2 > 0. To keep n — r + 1 as large as possible, we choose the 

smallest r. Since R2 - R\ = ^ E (xi ~ x)2 ^ u> - 0- Hence, the method of moments 
i=l 

approach guarantees that the estimate A(6)M and V{6)M are always positive for the stationary 

continuous-time GAR(l) process with non-negative margins. 

We briefly discuss the situation when r — 2. Let 
j n j n—1 j n—1 

5 n = — y Xi, x(-l) = 7 / . xii X(-n) — 7 / j xi+l-

We shall have 

^ _ ' fl12 - R\ _ HTT E ^ ~ * n 
a M — r> r>2 — n 

* ^ 2 

n-1 

n £ " { X l + l ~ ~X[-n)) n (n - • x ( _ n ) - (n - 1)4 
+ n - 1 A / _ x 2 n - 1 v> = ^ 2 

X, (Si - aJn) 2^ \xi - xn) 
i=l *=1 

n _ £(-i) • x (_ n ) - x2

n 

= -^—^OLCLS + • 

n E (xi ~ xn) 
i=l 

n-1 n—1 

When n is large, ^ E ^ - ^ E xi+i ~ s E?=i x t >
 t h u s is close to aCLS-

i=i i=i 
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From (10.4.3), we can further obtain the method of moments estimates of the model pa

rameters associated with A(0), V(0) and a. Typically, this approach allows us to handle three-

parameter models, because we only have three estimating equations. Of course, these equations 

can be combined with estimating equations from other approaches. 

Note that this approach only works in the continuous-time GAR(l) processes with finite 

marginal mean and variance functions, not in the infinite case. 

Now we study Example 10.4 again. 

Example 10.11 (Generalized Poisson univariate margins) Consider the time series from 

the stationary continuous-time GAR(l) process 

X(t) = e-M-*) * X(t') + E(t', t), t' < t, 

which have GP(6,rj) (0 > 0,0 < n < 1) margin. Thus, the parameter vector 6 = (/i,#, n)', and the 

marginal mean function and variance function of the process are 

A(e) = 9(l-n)-1, V(0)=e(l-r1r 3. 

For the sake of convenience, we assume R\2 — R2 > 0. According to (10.4-3), we have 

A{d)M = Rx, V(0)M = R2-RI, SM = R^2R2-

If 0 < a <\, we can further obtain the moment estimates 

1 (R12-RW g- / R\ ~ -, / Ri 

^ = - s i o g ^ - ^ r ^ J , ^ = y ^ r ^ . r}M = 1-\lRT^1-
Note that T]M should be in the range [0,1]. 

Ratio approach. This approach only focuses on the discrete-time process 

Xi+i = aXi + ei, 

with positive real margins, and estimates the autoregressive coefficient a. See Bell and Smith 

[1986], and Andel [1989]. It is based On the following inequality 

Y = « + — > « • 
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The proposed ratio estimate is 

. ( 2 : 2 x 3 xn \ 
[xi x2 Xn-l) 

This non-parametric estimate was called "quick and dirty" in Bell and Smith [1986]. This ratio 

estimate Q.R is always positive, which is not always the case in other approaches. Andel [1989] 

showed that it is a strongly consistent estimator for a, and in the simulation study it is better than 

the least squares estimator when the marginal distribution is the exponential distribution. 

Here the process is a particular case, where K is from P I . This approach can not be 

generalized to other self-generalized distribution. It seems that this approach also works in the 

continuous-time GAR(l) processes with infinite marginal mean functions. 

Marginal estimating ( M E ) approach. Like the ratio approach, this approach can help 

us to estimate the parameter /J, too. It works in not only the equally-spaced case but also the 

unequally-spaced case. The idea is to estimate those parameters in marginal distribution first, 

then use them to estimate the marginal mean or variance, and substitute these estimated mean 

and variance in the sum of conditional least squares or conditional weighted least squares. In this 

way, we will obtain an objective function with only parameter \x. Thus, we get strength from the 

information of marginal distribution. For illustration, we consider the sum of conditional least 

squares: 
n-l 2 

RCLS = £ (xi+i - e -"^ 1 -^Xi - A{0) [l - e-"fr+i ) 

= ]T (Wi - A(0)] - e-»^-V[xi - A{6)))2 . 
i=l 

n 
Reparametrize ^asao = e _ / t and estimate A(0) by Ri = ^ YI xi- Then, we obtain 

i=i 
n—1 2 

RCLS(ME)M = ^{[xi^-R^-al^ixi-R,]) . (10.4.4) i=i 
Now it is relatively easy to find the minimum point of ao, because RcLS(ME)(ao) is a univariate 

function on the bounded domain (0,1). We can draw the plot of function RcLS{ME)(ao) m (0,1) 

which can even allow us to identify a rough estimation by eye. 349 



This method can be combined with other methods to find the estimates of the entire pa

rameter vector 9. Such an estimate of 9 can in turn serve as the initial value for other approaches 

like maximum likelihood which optimize a non-linear objective function. 

Robust approach. Sometimes outliers may have a big influence on parameter estimates. 

To reduce such influence, we may consider other convex objective function other than quadratic 

forms. One common choice is to change the L 2 function like RCLS, the sum of conditional least 

squares, to L \ : 
n-1 

i = i 

Minimizing such L \ objective function, we shall obtain a more robust estimate: 

9 c L i = argmini?cLi(0)-

However, to obtain the robust estimates, numerical methods are inevitable. 

Diagonal probability least squares (DPLS) approach. This is a new estimating 

approach inspired by the diagnostic technique developed in Section 12.3.1. It considers the bivari

ate cumulative distribution function along the diagonal line through the first quadrant, namely 

Fi2(x,x). For simplicity, we take the equally-spaced time series as the example and consider the 

lag-1 pairs (X(ti+i),X(ti)) (i = 1,2,... ,n - 1). Let x^ < X( 2 ) < • • • < X(ny Denote 

~ the number of (X(ti),X(ti-i) where X(ti) < X<A\ and X(U-i) < x/j\ 

the empirical bivariate cdf at point (x^,x^), and 

F12{x{j),x{j)) = Pr[X{0) < X(j), X(t2-h) < x{j)] 

= Pr[X(0) <xU), (a)K ® X(0) + E(0,t2 - h) < x(j)], 

the theoretical bivariate cdf at point (x^yx^). We consider the sum of diagonal probability least 

squares 
n—1 2 

RDPLS{9) = Y [FMx(j)ix(j)) ~ FMx(j)ix(j)) , (10.4.6) 
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which measures the closeness of the observations with the model in the sense of diagonal probability. 

Minimizing RDPLS{Q), we can obtain the diagonal PLS estimate: 

ODPLS = arg min RDPLS(Q)-

This estimate depends on the choice of time difference between the pairs. Numerical methods are 

needed to find Fi2(x, y), as well as the solution of minimum. 

Subset-observation approach. In practice, we may encounter the zero-inflated situation 

for count data. This motivates us to consider the subset-observations which can be viewed as 

independent innovation samples. For a stationary continuous-time GAR(l) process, conditioned 

on X(ti) = Xi, it follows that 

[X(ti+1)\X(ti) = Xi}= (e-^-u^K®Xi + E(ti,ti+l). 

li Xi = 0, then (e^*^ 1 - *^)^ ® xt = 0 and [X (ti+i)\X {U) = xt] = E{U, ti+1). This implies that 

the observation Xi+\ is an outcome of the cumulative innovation E(ti,ti+\). These cumulative 

innovations are independent each other. Hence, such subset-observations can be considered as 

independent replications. This feature may allow us to simplify the estimation. 

Let {y\, y2, • • •, yi) being the subset-observations whose previous observations are zeros. 

Usually, we know the pgf, or LT, or cf of the cumulative innovation, even the pmf or pdf in some 

special cases. Then the maximum likelihood, or least squares, or empirical characteristic function 

approach can be based on the subset-observations {yi,2/2, • • • ,yi}-

This subset-observation idea can be extended to other cases where Xi is a fixed number.other 

than 0, because conditioned on a fixed number, say Xi = I, 
1 

[X(ti+l)\X(ti)=l] = YtKj(e-^-^)+.E(U,U+1)i 

3=0 

are still independent of one another in the subset {X(tj) : X(tj-\) = /}. 

In summary, these approaches seem to provide rough estimates. They can be the initial 

values of numerical solutions for the better estimates. There are some other estimation approaches 
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for specific models in the literature. People should be aware of the features of specific models. This 

may help us to develop special parameter estimation methods for them. 

10.5 Numerical solution of optimization 

In previous sections, we often encounter the function maximization or minimization in parameter 

estimation, such as maximizing the log-likelihood function or minimizing a quadratic form. Usually, 

we can not obtain closed form solutions. Hence, numerical methods have to be employed. A 

good reference on various methods of optimization of functions is Press, Teukolsky, Vetterling and 

Flannery [1996]. 

Maximizing a function is equivalent to minimizing the negative of the function. For the 

sake of simplicity, we use function minimization to unify the optimization issue. Among those 

optimization approaches, we favor the variable metric algorithms which are also known as quasi-

Newton algorithms, especially if it is tedious to obtain derivatives of the function to be minimized. 

A good introduction to this method can be found in Nash [1990], Section 15.3. This method also 

provides the numerical evaluation of the asymptotic covariance matrix. 

Suppose R(6) is a real function with argument 6 — (Oi,..., 6k)'• Now our task is to minimize 

R{6). Let the gradient of the function R(6) be g(0) = (g\,... ,gk)', where 

and the Hessian matrix be H(8) = (#r,)fcXfc> where 

Then all the variable metric methods seek to minimize the function R(9) by means of a sequence 

of steps 
a' = e - kBg($), 

where k is a step length, B is an approximation of the inverse of Hessian matrix. This means 

that the search direction at each iteration step is — Bg(0). B is obtained iteratively and does not 
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require the analytical form of H(0). Also g(0) can be computed as a numerical derivative rather 

than in analytical form. Different approximation methods for B lead to different variable metric 

algorithms. 
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Chapter 11 

Asymptotic study of estimators 

Asymptotic properties of estimators of parameters have been always a key topic in statistical infer

ence. These basically mean the consistency and asymptotic normality of the parameter estimators, 

namely the convergence, in probability and in distribution, when sample size n goes to infinity, 

of the estimates to the true values of parameters. An asymptotic analysis can help us not only 

in choosing better estimators (in the sense of small asymptotic variances), but also in obtaining 

asymptotic confidence intervals or regions of the parameters. 

In our study, we consider the data {X(t\), Xfa), • • • ,X(tn)} from a stationary continuous^ 

time GAR(l) process {X(t);t > 0}. They are observed at either equally-spaced time points for 

which £2 — *i = • •' = tn — in - i , or unequally-spaced time points for which the time differences 

ti — t i , . . . , tn — tn-i are not all equal. In principle, both cases can be equivalently seen as samples 

from a discrete-time process {X(t); t = 0,1,2,...}. However, there is an obvious difference between 

the two cases: the resulting process from sampling at equally-spaced time points has constant 

transition probabilities, while the resulting process from sampling at unequally-spaced time points 

has time-varying transition probabilities. One common feature for both types of observations is 

that the marginal distributions are the same if the continuous-time process is in steady state. 

In Chapter 10, we have studied estimation methods based on maximum likelihood, condi

tional least squares and the empirical characteristic function, etc. The asymptotic study of these 
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estimators for the stationary discrete-time process case has been well studied: Billingsley [1961a] 

first discussed the results for the MLE, and gave a fundamental Central Limit theorem for mar

tingale; Klimko and Nelson [1978] investigated CLS estimation; Feuerverger and McDunnough 

[1981b], Feuerverger [1990] studied the estimation based on empirical characteristic function. Ba-

sawa and Prakasa Rao [1980], Nanthi [1983], Nanthi and Wasan [1987] summarized and studied 

the asymptotic properties of many estimators (except for the ECF estimator) for various processes, 

while Ushakov [1999] provided a rich collection of results for the ECF estimator. These results 

for ML, or CLS or ECF estimators are obtained for general stationary process families. For the 

specific process in Section 10.4, Bell and Smith [1986] proved strong consistency of the ratio esti

mator. Chaganty [1997] showed consistency and asymptotic normality for the quasi-least squares 

estimator in a multivariate setting. 

Therefore, for the stationary continuous-time GAR(l) process, a special case in the sta

tionary process family, we can directly adopt existing results for the case of equally-spaced time 

observations. What we should do is to investigate the asymptotic properties of the estimators for 

unequally-spaced time observations. For such a situation, the maximum likelihood estimator and 

the conditional least squares estimator are applicable. Hence, our task will focus on these two kinds 

of estimators for the unequally-spaced time observations. 

In Section 11.1, we propose a random sampling scheme and some assumptions, as well as 

the fundamental results needed for the proof of asymptotic properties. Sections 11.2 and 11.3 have 

results for the M L E and CLS estimator respectively. 

11.1 Random sampling scheme, assumptions and fundamental the

orem 

First, we discuss why the unequally-spaced time observations happen in reality. This will help us 

to propose a plausible random sampling scheme from a continuous-time Markov process. 

Usually, for a study which requires repeated measurements over time, the experiment will 

be arranged to make observations at equally-spaced time points. For example, in a clinical trial 
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study, patients may be asked to visit the clinic every six weeks. However, due to various reasons, 

some subjects may not appear at scheduled times. They may come earlier or later, or even do 

not appear for a specific scheduled test(missing values!). Such an occurrence can not be controlled 

in advance. It is somehow random. Hence, instead of planned equally-spaced time observations, 

a random sampling scheme may happen, yielding the unequally-spaced time observations. This 

random sampling scheme is equivalent to a waiting time process in a recurrent dynamic system. 

But it is usually not observable. 

Based on such investigation, we propose a random sampling scheme which results in unequally-

spaced time observations. Let Ti,T2, •.. , T n , . . . be iid positive random variables with distribution 

function Fr(t), where t > 0. Suppose for a fixed n, the values of Tj (i = 1,2,..., n) are 

Ti=t\, T2 = t2-t\, Tn = tn — tn_\. 

Observations are made at time points ti,t2,... ,tn of a continuous-time Markov process {X(t); t > 

0}, yielding 

X(h) = xi, X{t2) = x2, X(tn) = xn. 

Here the Tj's can be seen as waiting time between two successive events. A special case is that 

when all Tn (n > 1) have a degenerate distribution with mass 1 on a single point At. Then, the 

waiting times are common, leading to a discrete-time process sample of equally-spaced time points 

from the underlying continuous-time process {X(t);t > 0}. 

We pursue the consistency and asymptotic normality of MLE's and CLS estimators. For 

this purpose, we need some assumptions regarding such the random sampling scheme for each 

estimation method. 

The goal of maximum likelihood estimation is to maximize 

logL(0 |x) = log / x ( i l ) (x i ;0 )+ log / x ( i 2 ) | X ( 4 l ) (a ;2 | 0) + • • • 

+ togfx(tn)\x(tn-i)(xn | z n_i;0), 

where 0 = (6\, 92,..., 9k)'. For large sample theory, as the sample size n goes to infinity, the 

influence of the first term, log fx(ti)(xi'i 0)> w i u reduce to zero, so we can ignore it. This leads to 
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the maximization of 

logLi(0 | x) = logfx{t2)\x{tl)(x2 | xv,e) + • • • + log fx{tn){x{tn_x)(xn | x„_i;0), 

the logarithm of conditional likelihood function. Denote 

g(xi,Xi+i;0,ti,ti+i) = logfX(ti+1)\X(ti){xi+i\xi;0), i = 1,2,...,n - 1. 

To associate the log-likelihood function with sample size n, we rewrite it as 

logL n(0 | x) = \ogfx[t2)\X{tl)(x2 | xi;0) + --- + logfx{tn){x{tn_l)(xn | sn_i;0) 
n-l 

= Yl^Xi,Xi+l]d,tl,t2^ ( H . l . l ) 

If the M L E is not on the boundary of the parameter space, then it is obtained from the estimating 

equations 

d 
d63 

logL n(0 . |x) = 0, * = 1,2,... ,Ar. (11.1.2) 

In the asymptotic study of the M L E estimator, the classical technique is to expand ^ - l o g L n ( 0 | 

x) (j = 1,2,..., k) around the true value 0°. Hence, the following assumption is required and plays 

an important role in the proof of asymptotic properties. 

Assumption 11.1.1 Suppose the parameter space © is an open set in $lk, and u> is a small neigh

borhood of true parameter value 6°: u — {6 : ||0 - 0°|| < 6,6 > 0}. For i = 1,2, . . . , n — 1, 

g(xi,Xi+\;d,ti,ti+i) is thrice continuously differentiate with respect to 6. Denote 

d 
^(xt,xi+i;0,<i,ti+i) = —g(xi,xi+i;d,ti,ti+i), 3 

d2 

9jij2(Xi^xi+l'iB-,U,U+l) = QQ QQ g(xi,Xi+i;9,ti,ti+i), 

fl,jlj2J3(a;*'a;*+1'^'= ^Q~QQ~~QQ~S{Xi,Xi+l-,6,ti,ti+l), 

G(xi,xi+1;ti,ti+i) = sup \g"[hJ3(xi,Xi+i;0,ti,-ti+i)\, ' (11.1.3) 

where j,ji,j2,jz = 1,2,... ,k. As n goes to infinity, assume that 357 



n-1 p /•oo 

(1) (n-1) - 1 £ dj(xuXi+\\0*,U,U+{) / E ( ^ (X( i o ) ,X( io + t);0°,to,*o + i))di ? TW, 
i=l JO 

#) (n - l ) " 1 nEg'J1J2(xu xi+1; 9°, th ti+l) A 
roo 

/ E {g'j1J2(X(to),X(t0 + t);9°,t0,t0+t))dFT(t), 
Jo 

n-1 p f°o 
fS; (n - I ) " 1 £ G(a;i,a;,-+1;<t-,ti+1) —>• / E (G(X(t0), X(t0 + i); <0, to + *)) dFr(t), 

i=i Jo 

where FT is the "distribution" of {U+\ — U}, 1 < j, j\, j2 < k. Also assume that all integrals on 

the right hand sides are finite. 

Remark: Assumption 11.1.1 is reasonable under the random sampling scheme designed for unequally-

spaced time observations. For equally-spaced time observations which is a special case in the random 

sampling scheme, the sample forms a discrete-time process. Under ergodicity, (l)-(3) hold as facts, 

not assumptions, namely it follows that 

n-1 

(n - I ) " 1 Sfj(xi>xi+^ 0 ° ' * * >*<+0 E (9j(X(t0),X(t0 + At); 9°, t0,t0 + At)) , 
i=l 

n-1 

( r e- 1)" 15Z^ 2fe,^+i;0°,^,^+i) A E (glh(X(to),X(t0 + At);9°,t0,t0 + At)) , 
i=i 

n-1 

(n-iy1J2G{xi,xl+1;tt,ti+l) A E (G(X(to),X(t0 + At);to,to + At)), 
i=i 

as n goes to infinity, where At is the common time difference between two successive observations. 

Here the expectations are taken with respect to the random sampling scheme. 

A rough interpretation of Assumption 11.1.1 for unequally-spaced time observations is given 

below. For the sake of simplicity, we suppose the underlying process is a discrete-time Markov 

process: {X(t);t = 0,1,2,...}. The sample {X (t\), X (t2),..., X(tn)} is observed under the random 

sampling scheme. Hence, we can arrange n — 1 successive pairs: 

(X(h),X(t2)), (X(t2),X(t3)), (X(tn-!),X(tn)). 
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Let rij be the number of pairs with time difference equal to j , i.e., ti+i - U = j, where j ej\f. As 

n and all the nonzero n/s go to infinity, we have 

rti p FT(j)-FT(j-l), J = 1,2,.. 
n - l 

Hence, for the average of a summation with summand being the function of the successive pairs 

like h(X{ti),X{ti+1)), it follows that 

( n - l ) - 1 ^ ^ ^ ) , ^ ^ ! ) ) = ^ • % 1 5 i + ^ - n 2 - 1 5 2 + --- + - ^ T - n - 1 5 , + - - - , 
i=i 

where Sj (j — 1,2,...) is the sum consisting of summands of function of successive pairs with time 

lag j. Assume ergodicity holds. Then, 

nfSj A B[h(X(t0),X(t0+m, i = 1,2,.... 

Thus, 
n-l ' oo 

(n - l)~1Ylh(X(U),X(U+l)) A £ E [&(*'(*<>), *(*o + j))][FT(j) ~ MJ ~ 1)] 
i=i i=i 

E[h(X(t0),X(t0 + t))}dFT(t). 
lo f 
Jo A continuous-time process can be approximated by a sequence of discrete-time processes. Thus, 

for the continuous-time underlying process, this limit can be expected to hold. 

The above assumptions just try to generalize the facts which hold for stationary and ergodic 

discrete-time processes to the unequally-spaced case based on random sampling scheme from a 

stationary continuous-time process. We don't know if they hold as facts under certain conditions. 

This is left as an open question. 

The conditional least squares estimator is obtained by minimizing 

n-l 2 

i=l 
For i = 1,2,..., n — 1, let 

g{xi;0,U,ti+1) = B[X{ti+1) | X{U) = Xi;0], . 

u{xi,Xi+i;6,ti,ti+i) = Xi+\ - g(xi;0,ti,ti+{). 
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Then 
n-1 . . 2 n-1 

Rn(9) = /2 {Xi+i ~ 9(xi;0,ti,ti+1)) = ^2u2(xi,xi+i;e,ti,ti+1). (11.1.4) 
i=i i=i 

For an asymptotic analysis, the traditional approach is to expand Rn(0) around the true parameter 

value 0°. Hence, the following assumptions play a critical role in the asymptotic properties of the 

CLS estimator. 

Assumption 11.1.2 Suppose the parameter space 0 is an open set in $ik, and u is a small neigh

borhood of true parameter value 0°: u> = {0 : ||0 - 0°|| < 6,6 > 0}. For i = 1,2,... ,n - 1, 

g(xi;0,ti,ti+i) is twice continuously differentiable with respect to 0. Denote 

d 
^•(rci; 0,^,^+1) = —g(xi;0,ti,ti+i), 

d2 

g'jwiXuO^uti+i) = QQ. 9(xi\0,ti,ti+l), 

v„ 
d2Rn(0°) 
d9jld932 j k x k 

w.(«-> - = ( ^ ) ) t a 4 - - v „ r e » : 

where j,ji,j2 — 1,2,... ,k. Assume that as n —> oo, 

n-1 
(2) (n - 1 ) _ 1 £ u{xi,Xi+i;0o,ti,ti+i)g'Axi;0o,ti,ti+i) 

' L 

/•oo 
/ E (u(X(t0), X(t0 + t); 0°, )g'(X(t0y,O0,to,to + t))dFT(t), 
Jo 

(3) ( n - r ' E i f e ; ^ ^ ^ ) ^ ^ ^ 0 . ^ ^ ! ) ^ 
i=l 

/ E (4(X(£o);0O,to,io + i)4(^(io);0°,io,io + i))dF 'TW ) 

Jo 

(4) ( n - l ) - 1 ' ! : 1 ^ , ^ ! ; ^ 0 , ^ , ^ ! ) ^ ^ ^ ; © 0 , ^ , ^ ! ) ^ 
i=i 

poo 
/ E («(X(t0), X ( t 0 + t); 0°, U, t i + i )#" i 2 ( * (<o); 0°, t0, t0 +1)) dFT (t), 
Jo 

i=l 

n-1 
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where FT is the "distribution" of {ij+i — U}, 1 < j, ji, j2 < k. Also assume that all integrals on 

the right hand sides are finite. 

Remark: (1) in Assumption 11.1.2 is inherited from conventional regularity conditions. Similar to 

Assumption 11.1.1, (2), (3) and (4) in Assumption 11.1.2 are reasonable under the random sampling 

scheme designed for unequally-spaced time observations. For equally-spaced time observations 

which is a special case in the random sampling scheme, the sample forms a discrete-time process. 

Under ergodicity, as well as other conditions (see Klimko and Nelson [1978], section 3), (2), (3) 

and (4) are facts, not assumptions. Unlike Assumption 11.1.1, here we require convergence almost 

surely, not in probability. Corresponding, the CLS estimator will be strongly consistent. 

The asymptotic normality of both estimators makes use of the central limit theorem for 

martingales, which was given by Billingsley [1961a]. We refer to this theorem as the fundamental 

theorem for the asymptotic normality of an estimator in a Markov process. 

Theorem 11.1.1 (Central L imi t Theorem for Martingales) 

Let u\, u2, • • • be random variables with moments of order 2 + d (d > 0), and let Fo C T\ C 

T2 C .. • be a filtration of Borel fields such that 

E {un | Tn-{) = 0,' n = 1,2,... 

with probability one. Here Tn-\ is the a-algebra generated by u\,u2, • • •>Hn-i- Suppose that 

(1) lim r T 1 £ E (uf | Fi-i) = D, D>0, 

(2) lim n~l~dl2 £ E (u2+d | J^_i) = 0, 

with probability one. Then 
n 

i=i 

This result can be generalized to the multivariate situation where un — (unx,un2, • • • ,unk)T• 

Each of the components has moment of order 2 + d (d > 0) and 

E [unj | Fn-i) = 0 , j = 1,2,..., A;; n = l , 2 , . . . 
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with probability one. Suppose that 
n 

(1) lim n~l Y E (uijUu \ ft-i) =Dji, j, I = 1,2,..., k, 

(2) lim n-1-*'2 Y E (u? + d | ̂ _ i ) = 0 , j = 1,2,..., k, 

with probability one, where D = (Dji)kxk ? s a non-negative definite matrix. Then 
n 

n~ll2Yui N (O f c x l ,D f c x f c ) . 
i=l 

For the univariate situation, since E (un | .F n - i ) = 0 for all n, the sequence of partial sums 
n 

{5 n = Y uu n = 1:2,...} forms a martingale because 
i=l 

E (Sn | 5 n - i ) = 5„_i + E (un | 5 n_i) = 5„_i + 0 = 5„_i, n = 2,3, 

Here we assume that Tn-\ is the cr-algebra generated by u\, u2,.. •, un-i. For the multivariate 
n 

situation, the sequence of partial sums of any linear transformation {Sn = Y a T U i ; n = 1,2,...} 
i=l 

forms a martingale, where a = (ai, a2, • • •, o,k)T• For the details of the proof, see Billingsley [1961a], 

Theorem 9.1, p. 52, and Theorem 1.2, p. 6 and p. 61. With these preparations, we shall proceed 

to the asymptotic study of the MLE estimator and CLS estimator in the next two sections. 

11.2 Asymptotic properties of M L E 

As mentioned before, the classical technique to investigate the asymptotic properties of M L E is to 

take a Taylor expansion for 

— logL n (0 |x) = £ ^ ( x i , x i + i ; 0 , t i , t i + i ) , j = l,2, . . . ,fc (11.2.1) 
^ i=i 

around the true parameter value 0°. By the Mean Value Theorem, if 0 € w, then 
k 

gfauXj+i;0, ti, ti+i) = gfauxi+l;0°, tu ti+1) + £ ( ( 9 / - O^g'-^xuxi+i;0°,U, ti+i) 
i=i 

+ c\\0-0°\\2G{xi,Xi+1;ti,ti+l), \c\<k2/2, 
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where G is defined in (11.1.3). Hence, it follows that for j = 1,2,..., fc, 

n-1 

( n - 1 ) " 1 — logLn(0 I x) = ( n - i r ^ ^ i . Z i + i ^ V t ^ i + i ) 
i=i 

n-1 
( n - 1 ) 1^2g"l(xi,xi+i;00,ti,ti+1) 

i=i 
n-1 

+ cWe-^in-iy^GixuXi+^tuU+i). (11.2.2) 

By controlling the behavior of 

n-1 

i=l 

n-1 

i=l 
( n - l ) - 1 ^ ^ ^ , ^ ! ; ^ 0 , ^ , ^ ! ) , ( n - 1 ) 1 ^ t f i f a , x i + x \ 0 ° , U , t i + l ) , 

i=i 
n-1 

(n - I ) - 1 ^2 G(X*' ^i+l! *») *i+l)) 
i=l 

we may further obtain a simpler approximation as n goes to infinity, and obtain the consistency 

and asymptotic normality of the MLE. For this purpose, we investigate Assumption 11.1.1, and 

proceed to the regularity conditions for the asymptotic properties. 

First, for fixed t and j — 1,2,..., fc, it follows that 

E { 5 ; . (X( t 0 ) ,X( i 0 + t)]0°,to,to + t)} 

= E IE 
wiogfx{to+t)mo)(x(t0 + t)\x(t0y,o)\x(t0) = x 

=E jl 
„ f / •^(to + oix( t o )(yl^(*o);g). 

Traditionally, one imposes that the differentiation with respect to parameter 0 can be carried out 

equivalently both inside and outside of integral sign. If so, it will yield 

E { 9 ' f f l < o > . * ( < o + ');*V»,<»+t)} = E { / a W W « l * ( ' . > ; % } 

E { ^ - / W w o ) ( y W o ) ; 0 ) ^ } = E { ^ } = o. (n.2.3) 
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This further leads to 

poo poo 
/ E (g1 AX (to), X (to +t); 0°, to, to +t)) dFx(t) = / <W T (t) = 0. (11.2.4) 
Jo Jo 

Secondly, for fixed t and j = 1,2,..., k, 

E {<# i 2(X(t 0), *( t 0 + *); 0°, ^o, to + *)} 
a2 11 

log/x(to+t)|x(to) {y\X(to);9) X{t0) = x j = E < E d0hd6j2 

^/x( t o + t ) |x( t o )(y |^(to);0) 

-/ d/x(t0+t)|X(t0) fal^(to);0) dfx(t0+t)\X{t0) (y\x(t0);0) 
de de. 32 

x [ / x ( t o + i ) | x ( t o ) (y\X(to);0)}-2fx(to+t)\x(to) (y\X(to);0)dy} 

fx(t0+t)\X(t0) 
(y\X(to);0)dy 

= - E 

- E { E [g'h {X(t0), X(to + t); 0°, t0, t0 + t)g'J2 (X(t0), X(t0 + t); 9°, tQ, t 0 + t) | X(t0) = x\ } 

{Cov [g'h(X(to),X(to + i ) ;0° , t 0 , t 0 + t),g'J2(X(t0), X ( t 0 + t);0°,t0, t 0 + t)\x(t0) = x] } . 

(11.2.5) 

fexfc 

The last step is due to (11.2.3). Since 

(Cov (X(to),X(t0 + t);0°,to,t0 + t),g'J2(X(t0),X(t0 + t ) ;0°, t 0 , t 0 + t)|X(t0) - x\) 

is the covariance matrix of the random vector 

( 5 i (X (t0), X (t0 + t); 0°, to, to + t), . . . , g'k (X (t0), X ( i 0 + t); 0°, t 0, t 0 + t ) ) T 

conditioned on X(to) = re, it is a non-negative definite matrix. Consequently, it follows that 

( E {Cov [ 4 (X(to), X ( t 0 + t); 61°, to, t 0 + t), 4 (X (t0), X (t0 +1); 0°, to, t 0 + t) |X(t 0)] } ) 

and 

S*xfc - K i a W = - ( / ° ° E (9"1J2(X(to),X(tQ + t);0o,to,tQ + t)) dF r ( t ) ) (11.2.6) 
V O /fcxfc 

fcxfc 
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are also non-negative definite matrices. 

Denote 

dh(6) _ (dh{9) dh{9) dh(9)\T d2h(6) = ( d2h(0) 

Then (11.2.2) can be rewritten in a vector form 

(n - l ) " 1 logL n (0 | x ) = ( n - l ) " 1 £ ^z9(xi,xi+i; d ° , t i , t i + l ) 
n-l 0 

00* 
n-l 

+ i (n-ir^g'ji^xi+^^u+i) {o-o°) 
i=i kxk 

+||0-0 0112 
n-l 

( n - l ) 1 y ^ g ( x i , X j + i ; ^ , ^ + i ) 
i=i 

C, (11.2.7) 

where C f c x i = (ci, c 2 , . . . , c f c ) r is a constant vector with \CJ\ < k2/2 for j = 1,2,..., A;. According 

to Assumption 11.1.1, as n —>• oo, 

n-l 
(n - 1 ) _ 1 Y -^9(xi,xi+i^°,ti,ti+i) —> Ofcxi, 

t=i 
n-l 

( n - l ) 1 £ ^ ( x i , z i + i ; 0 V i , t i + i ) - S fcxfe-

(11.2.8) 

(11.2.9) 
i=l kxk 

This implies that (n - l ) - 1 ^ logLn(0 I *) will be dominated by 

n-l 
(11.2.10) 

i=i kxk 

and 
n-l 

||0 - 0°||2(n - I)" 1 £ G ( a : i , X i + i ; t i , « i + i ) C (11.2.11) 

i=i 
when n goes to infinity. By imposing non-singularity on the matrix S, we can bound the vector 

(11.2.10) away from the zero vector 0 in probability. This is because that all eigenvalues of E are 

bigger than 0 and there exists a non-random function A(0°) > 0 such that 

z T S z > A(6»°), |z|| = zJz = l . (11.2.12) 
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n-l 
Note that ( n - l ) " 1 £ G(xi}xi+i;ti,U+i) is bounded in probability (see (3) in Assumption 11.1.1), 

i=l 
i.e., 

n-l 
( n - i r ^ G ^ + i j M i + i ) ^> M < o o , (11.2.13) 

i=i 

and \\e-9°\\ 2 is of one higher order than (0-6°). We can choose 0 close enough to 6 so that 

This means that in probability, ( n - l ) 1 logLn(0 | x) will be dominated by (11.2.10) in a small 

neighborhood of 6°. Such a feature determines the consistency and asymptotic normality of the 

M L E . 
With the above discussion, we now give further regularity conditions for the consistency of 

M L E . 

Assumption 11.2.1 

(1) Conditioned on X(to) = x, differentiation with respect to 0 for the integration of 

is equivalent outside and inside of the integral sign; 

(2) The limiting matrix S in (11.2.6) is non-singular. 

Assumption 11.2.1 together with Assumption 11.1.1 lead to the following consistency the

orem. For this theorem, we use the technique of proof given by Billingsley [1961a], Theorem 2.1, 

p. 10. The next two lemmas will be needed in the proof. 

Lemma 11.2.1 //Pr[|f7i| > ci] < e, Pr[|17m| > cm] < e, then 

every component in vector (11.2.11) has smaller absolute value than the one in the vector (11.2.10). 

m 

Pr |f7i + • • • + Um\ > Y °i ^ me> 
i=i 

or equivalently, 
rn 

Pr |l71 + . . . + r/ m | <Y, > 1 — me. 
i=l 
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Proof: Since \ Ui H + Um\ < \Ui\-\ \-\Um\, we can claim that if event j|£/i H 1- Um\ > £ C j | 

occurs, then at least one of the following events occurs: 

{ |f / i |>ci}, {\Um\>cm}. 

Otherwise, event H + Um\ < J2 c i | must happen. Thus, 

Pr \ui + --- + um\ > J2< 
in, 

< Pr [Uj l id^l > C i } ] < £ Pr[|E/i| >*] < me. 

Lemma 11.2.2 If h(8) is a continuous function mapping ?Rk into itself with the property that, 

for every 6 such that \\6\\ = 1, 9Th(9) < 0, then there exists a point 0 such that \\9\\ < 1 and 

h(0)=0kxl. 

This is Lemma 2 in Aitchison and Silvey [1958]. A nice proof by contradiction can be found there. 

Theorem 11.2.3 Under Assumptions 11.1.1 and 11.2.1, the MLE OMLE is consistent for 6°. 

Proof: As discussed previously, (11.2.8), (11.2.9), (11.2.12) and (11.2.13) will hold under Assump

tions 11.1.1 and 11.2.1. Now for any e > 0, we can choose a small 6 = 6(e) > 0 in such a way 

that 

5<e, {0 : | | 0 - 0 ° | | < 8}, 8 < \(9U)/W(M + 1). 

After choosing 8, we choose no(e) large enough so that for n > no(e), 

(11.2.14) 

Pr 
n-l 

Pr 

<82 

( n - l ) 1 Y^9'j(xi,Xi+i;0°,U,U+i) 
i=i 
n-l 

0 < (n - l ) " 1 Y G ^  xi+^ <  M +  1  

i=l 

Pr 
n-l 

(n - 1) 1 £ ^ J 2 ( £ i , X j + i ; 0 ° , i j , t i + i ) + a j l h 

i=l 

< 8 

> 1 - e/3, 

> l - e / 3 , 

> l - e / 3 , 

j — 1,2,... ,k, 

ji,32 = l,2,...,k. 
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By (11.2.2) and Lemma 11.2.1, if n > n0(e) and ||0 - 0°|| < 6, we have 

n-1 k 
(n - I )" 1 5 ^ ( x i , a ; i + i ;0 , t i , t i + 1 ) + ~ °i) 

l=i 
n-1 

= (n - l ) " 1 ^^ • (x j ,x j + i ;0° , t i , i i+ i ) 

2 = 1 

n-1 

< 

(n - l)'lY^9ji(xi,xi+i;d ,ti,ti+1) + ajt 

i=i 
n-1 

+ c\\0- e°\\2(n - l j - ^ G ^ . i . + i i f c t i + i ) 
i=i 

n-1 

(n - 1 ) _ 1 Ya'i{xuxi+l\e°^i^i+l) 
i=l 

+ 

+ 

2=1 

n-1 
(n - 1)

 1
 E^( xi' xi+l'^°,U, *J+l) 

i=l 
n-1 

c\\0 - 0°| | 2(n - l J - ^ G l i . ^ i t t . + i ) 
i=i 

< J 2 + fcj||0 - 0°\\ + k2\\0 - 0° | | 2 (M + I)/2 

<52 + k82 + k2\\O-0°\\2(M + l)/2 < (l + k + k2^^]s2 

< (l + k + k2/2){M + l)S2 < 3k2(M + l)62 

with probability exceeding 1 - e. Thus, by (11.2.14), if ||0 - 0°|| = S, we have 

E 
3=1 

n-1 

(n-irlJ29'j(x 

1=1 

< -Ê(̂-̂0)(̂-̂°) + ^-3fc 2 (M + l ) ^ 2 

< - A(0° ) | | 0 -0° | | 2 + 3A:3,(M + 1)J2 = - A(0°)J2 + 3ks(M + 1)S2 < 0 

with probability exceeding 1 — e. According to Lemma 11.2.2, there exists a value OMLE such that 

\\0MLE-e°\\ < 6 < e and 
n—1 Q 

[n - I)""1 E Tjfl 5 ^*' xi+liOMLE,ti,~ti+l) = Ofcxi 
i=l 
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with probability exceeding 1 — e. This completes the proof of the consistency of M L E . 

With the consistency of M L E , we now can study its asymptotic normality. First, we give a 

rough analysis. The maximum likelihood estimator OMLE is obtained by equating (11.2.7) to the 

zero vector. When n goes to infinity, OMLE 0°. Ignoring the term of \\0MLE — 0°\\ with the 

second order in (11.2.7) and dividing them by (n — l ) - 1 / 2 , we then have 

n—1 Q 

{n-\)-ll2Y^{xi,xi+i\9Q,U,U+i)-^kxk [ ( n - l ) 1 / 2 (^MLS - 6>0)] = 0 f c x l, as n ̂  oo, 

or 

(n - l ) 1 / 2 (0MLE - 0°) = S - 1 

n-1 d 
( n - 1 ) 1/2 Yog9(xi, Xi+i'-: e°^hti+i) 

i=l 
asn-> oo. 

Because of (11.2.3), the sequence of partial sums of partial derivatives with respect to 9j (j = 

1,2,... ,k), ^ £ g'j(xi,Xi+i; 0°,ti, U+i) : n — 2,3,... | is a martingale with respect to Tn, where 

Tn — er-algebra generated by {X(t\),..., X(tn^i)}. By Theorem 11.1.1 and same conditions, 
n-1 

(n — l ) - 1 / 2 £ Q§9(xi,Xi+\;0°,ti,U+i) converges in law to the multivariate normal distribution 
i=i 

N (OfcXi, Sfcxfc)- This leads to the result that (n - l ) 1 / 2 {OMLE — 0°) converges in law to a mul

tivariate normal distribution. The conditions in Theorem 11.1.1 lead to the following additional 

regularity conditions in asymptotic normality of MLE. 

Assumption 11.2.2 -^-g(X(to),X(to + t);0°,to,to + t) (j = 1,2,...,A;) has moment of order 

2 + d (d > 0) for any to, t > 0. Also it satisfies that 

n-1 

lim ( n - i r ^ V E 
i=i 

d_ 
89, 

g(xi,X(ti+i);0 ,ti,ti+±) = 0, j = l,2,..:,k. 

The following lemma guarantees that the second order term \\0MLE - 0°|| 2 i n (11.2.7) is 

negligible. 

Lemma 11.2.4 Suppose u i , u 2 , . . . are random vectors in satisfying 

FQ, as n —> oo, 
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where F0 is a multivariate distribution in §ftfc. Suppose v i , v 2 , . . . are random vectors in 5 R f e satisfying 

either 
P 

||u„ - v n | | < e n | |u n | | , and en —> 0, as n-too, 

or 
|u„ - v n | | < ejj|v n | |, and e'n'—> 0, as n o o . 

Then, un - v n A 0 f c xi , so that v„ A F0 as n -t oo. 

This is Theorem 10.1 in Billingsley [1961a]. 

Theorem 11.2.5 Assume OMLE is a root of (11.1.2). Under Assumptions 11.1.1, 11.2.1 and 

11.2.2, 

(n - l ) 1 / 2 (eMLE - 9°) -A N (0 f c x l , S^ f c) , 

where ^kxk is defined in (11.2.6). 

Proof: By Theorem 11.1.1, it follows that 
n-l d 

{n-l)-ll2Y,^e3{^xi+l;e\ti,ti+l) A N ( 0 f c x l ,S f c x f c ) 
i=l 

Since OMLE is consistent for 0°, by (11.2.7), we have 

n-l d 
Ofcxi = (n-l) 1 / 2 £ ^ 5 ( z i , Z i + i ; 0 V i , * i + i ) 

i=l 
n-l 

+ (n - l ) " 1 £ ^ ( x i , x m ; 0 o , t i , i i + 1 ) (n - l ) 1 / 2 ( w - 0°) 
kxk 

+\\0MLE - 0°| (n - l ) 1 / 2 (\0MLE - 9°) 
n-l 

( n - l ) 1 £ G ( x i , : Z j + i ; t j , i i + i ) 
i=l 

C. 

Noticing that \\9MLE - A 0, we can then obtain 

n-l d 
(n - l ) - 1 / 2 £ — g(Xi, xi+l; 0°, U, ti+1) - E f c x f c 

i=i 

( n - l ) 1 / 2 ( W - 0 ° ) ' 

< en (n - 1 ) 1 / 2 (eMLE - 0°) where en — > • 0. (11.2.15) 
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According to Lemma 11.2.4, we have 

Sfcxfc (n - 1) 1 / 2 (OMLE ~ 0°) A N ( 0 f c x l , £ f e x f c ) , as n o o , 

which yields 

(n - 1 ) 1 / 2 ( 0 M L E - 0°) A N (0 f c x l , S - 1 , ) , as n -+ oo. 

Remark: In practice, the asymptotic covariance matrix X is estimated from the data. A natural 

estimator is 

where 
n-l 

°ji32 = ~( n ~ i ) " 1 Y9hh( X h X i + 1>0 M L E> t h t i + 1^ J2 = l ,2, . . . , fc. (11.2.16) 
i=l 

This asymptotic normality will help us to obtain confidence intervals or regions and hypothesis 

tests regarding parameters. 

Note that the martingale feature of the sequence of partial sums comes from (1) of Assump

tion 11.2.1, not from the Markov property of the underlying process. 

A byproduct is the following theorem, which is also useful in hypothesis testing. 

Theorem 11.2.6 \ogLn{d | x) is defined as in (11.1.1). Assume OMLE is a root of (11.1.2). 

Under Assumptions 11.1.1, 11.2.1 and 11.2.2, 

maxlogL n(0 | x) - logL n(0° | x) 
0EU 

A a s n -> oo. 

Proof: Let 0MLE - (#i, #2, • • •, h)T• Continuing from Theorem 11.2.5, by the Mean Value Theo

rem, we have 
k 

g{x, y; 0MLE, tQ, t0 + t) = g{x, y; 9°, t0, t0 + t) + YJfij ~ fa V\e^ * o , *o + *) 

3=1 
k +\E - - e*Kifa e^ * o , * o + * ) 

3,1=1 
+c\\e-00\\3G(x,y;t0,to + t), 
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where |c| < k3/6. Therefore, when n —> oo, 

maxlogL n(0 | x) - logL„(0° | x) 
I0eu> 

n - l 

= 2 Y,(Pj - *°) E 9j(xi,xi+i;9°, th ti+i) 
3=1 i=l 

n—1 + E -~*°) E ®°. **> 
3,1=1 i=l 

n - l 
+2c||0 - 6 > ° | | 3 ^ G ( x i , a ; i + i ; t j , t i + i ) . 

i=i 

n - l 

When n -> oo, 

iifl-^l^E^^+i;**'*^!) 
i=l 

= \(n-i)^(dMLE-e°)\\3.(n-iy^-

This implies that as n ̂  oo, 

2 

n - l 

( n - l ) iy^jG{xi,xi+i;ti,ti+i) 
i=i 

maxlogL n(0 | x) - logL n (0° | x) 
L0et>> 

- 2 X > - D 1 / 2 ( % - e ? ) 
j=i 

n - l 

(n - 1 ) - 1 / 2 ]T 5^a;i,a; i +i; 0°, U, ti+i) 
i=l 

j,«=i 

n - l 
( n - l ) 1 ]T^(x;,£j+i ;0Vi ,*i+i) 

i=i 
0. 

Under all the given assumptions, and using (11.2.15), as n oo, 

2 5>-l) 1 / 2 (%-0}) 
3=1 

n - l 

( n - i r^E^ f e x i + i ^ V ^ + i ) 

+ E(»-1)1/!(%-«!)-(''-i)1/2(ft-«f) 
3,1=1 

n-l 

( n - l ) 1 E^(a;i ,2;i +i;0 o ,ij,ii +i) 
i=i 

\n - 1)1I2(9MLE - 0 ° ) ] T S [(n - l ) 1 / 2 ( w - 0°)" 

0. 
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By Theorem 11.2.5, 

\n - I)1'2 (OMLE ~ e°)f S [(n - I)1'2 ( w - 0°) 
L , 2 

—>• Xfc-

Thus, 

when n —>- oo. 

max l o g L n ( 0 | x ) - l o g L n ( 0 ° | x ) 
L0GW 

L , 2 
—> Xfc, 

All of the techniques of proofs of theorems in this section are credited to Billingsley [1961a]. 

11.3 Asymptotic properties of conditional least squares estimator 

The conditional least squares estimator is obtained by minimizing the sum in (11.1.4). Note that 

for i = 1,2,..., 

u-i+i = X(ti+l) - E [X(U+i) | X(U) = Xi; 6} = X(U+i) ~ 9(xf, 0, U, U+i). 

has zero expectation conditioned on X(ti) — X j . This feature is totally determined by the definition, 

not the Markov property of the underlying process. The zero conditional expectation feature implies 

that the partial sums sequences constructed by ttj such as < £ n — 2,3,.. . > form martingales 

with respect to Fn, the <7-algebra generated by {X(t\),..., X(tn-i)}. Furthermore, the relevant 

expectations in Assumption 11.1.2 are zero, because 

E (u(X(t0), X(t0 +1); 0°, U, ti+ityiXito); 0°, *o, to + t)) 

= E [E (u(X(t o),X(to + t);0 o , ti ,ti+iK(^(to);0°,to,to + t) I X(t0)=x)] 

= E[0] = 0, 

E (u(X(t0),X(t0 + t);0°,U,ti+l)glJ2(X(to);90,t0,t0 +1)) 

= E [E [u{X{t0),X(t0 + t);0°,tx,ti+i)g"1J2(X{t0);0°,t0,t0 + t)\ X(t0) = x)] 

= 0, 
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which imply that the limits on the right hand side of (2) and (4) in Assumption 11.1.2 are zero, 

namely, 
n-1 

( n - 1 ) - 1 ^ " ^ ^ ^ ! ; ^ 0 , ^ , ^ ! ) ^ ^ ; ^ 0 , ^ , ^ ! ) ^ o, (n.3.1) 
i=l 

n-1 

( n - i ) - 1 ^ " ^ ^ ^ ! ; ^ 0 - ^ - ^ ! ) ^ ^ ; ^ 0 ^ ^ ^ ! ) ^ 0- (H-3-2) 
i=l 

Note that the sum in (11.1.4) also doesn't require Markov property. Hence, the conditional 

least squares estimating approach can be applicable in processes other than Markov processes. 

To pursue the consistency of the CLS estimator, we expand Rn{9) in (11.1.4) around the 

true parameter value 9°, not the partial derivative functions -^gRn(9). This is unlike the previous 

section where we prove the consistency of the M L E . However, to obtain the asymptotic normality, 

we shall expand the partial derivative functions •^gRn(9), which is similar to the M L E situation. 

From (11.1.4), in a neighborhood w of 9°, we have by the Mean Value Theorem that 

89 2V ' 89891 

n rn(3\ fl2n IQ®\ 

+ i ( 0 - 0 ° ) 

89 2V ' • 8989 
82Rn{9*) 82Rn(9°) 

8989T 8989T 

>0\T 

(9- 9°) 

(9- 9°) 

•(9- 9°) 

9°) 

-9°), + \{9 - 9°)T- Wn(0*) • (9 - 9°), (11.3.3) 

where 9* G u>, and V„, W n are defined in Assumption 11.1.2. We shall control the asymptotic 

behavior of the first-order and second-order terms. Since for j, I = 1,2,...., k, 

dui+i _ _9 8g(xi;8,ti,ti+1) 
86j ~ 1 + 1 89, 

d2u2

i+l dg(xj;9,thti+i) 8g(xi;9,ti,ti+i) d2g{xi;9,U,ti+i) 
89^ ~ d6j 86i U l + l defidi 

by (11.3.1) and (11.3.2), we obtain that as n -> oo, 

. ^_l8Rn(9°) ^ 8g(xf,90,U,ti+l) ^ 
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- 2 ((n-i)-1E^+i4i2(^;6'0J^ii+i)) 
\ i=l ' / fcxfc 

^> 2 ( ^ ° ° E {g'h(X(t0);d0,to,to + t)g'J2(X(toy,80,to,to + t))dFT(t) 

Because the matrix (E ( ^^(^"(to); 0°,*o,*o + * ) f f j - 2 ( - ^ ( * ° ) ' ) is the covariance ma-

trix of random vector ;Jgg(X(£o);0O,£o,io + *)> it is non-negative definite. This yields that the 

matrix 

V = ( / ° ° E ( !/j 1(X(fo)iflVo 1to + <)4(^);«°,<o,<o + <)) <tfr(<)) (11-3.4) 
\Jo J kxk 

is also non-negative definite. By (1) in Assumption 11.1.2, we know that (8 — 8°)T - W n(8*) • (8 — 8°) 

is dominated by 53 if - < 5, \\0 - 0°\\ < S as n oo. Choosing 8 small enough, we 

shall see that the right hand side of (11.3.3) multiplying through (n — l ) - 1 will be dominated by 

(n - lr'RniO0) + \{0- 8°)T • V • (8 - 8°). 
To guarantee that (9 — 8°)T • V • (8 - 8°) is positive, we should impose the condition that V 

is non-singular. To satisfy (1) in Assumption 11.1.2, we can require that g(X(to); 8°, to, to +t) has 

partial derivatives up to the third order, which also satisfy certain conditions. A l l these analyses 

lead to the following regularity conditions for the consistency of the CLS estimator. 

Assumption 11.3.1 

(1) J^g{X{to);8,to,to+t), Q^gg-g(X(t0);8,t0,to+t), and a 6

 d

e e g(X(to);8,t0,to+t) exist 

and are continuous in 0 for j,ji,J2,J3 — L 2 , . . . , k; 

(2) For j,ji,J2 = 1,2,... ,k, and t0,t> 0, 

E 

E 

E 

(X(t0 +t)- g(X(tQ);8°,t0,to + t)) • ( gf9(X(t0);6°,t0,t0 + t) 
9 

< oo, 

(X(to + t)-g(X{to);80,t0,to + t)) 
92 

99j199j2 

g(X{t0);80,t0,to + t) < oo, 

99h 

g{X(to);80,to,to + t) _9_ 
99 

•g{X{t0);80,to,to + t) 
32 

< oo; 
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(3) For j,ji,J2,J3 = 1) 2, • • •, k, and to, t>0, there exist functions 

H^(X(t0);t0, t0 + t), H^(X(t0y,to, t0 + t), 
(3) 

\g(X(to);e,to,to + t)\ < H^(X(to);t0,to + t), 
_a 
86, 

•g(X{t0);0,to,to+t) < ffa)(X(i0);to,io + «), 

a2 

a3 

g{X{to);0,to,to + t) ^ #j32(*(*o);*o,*o + *), 

d6hd6j2d6j3 

for all 6 € 9, and 

E 

E 

E 

g(A-(t 0);Mo,io + t) 

X(t0 + t)H^J2J3(X(toyt0,to + t)\\ < oo, 

ff(°)(X(t0);*o,*o +*) • ffj?L8(*(*o);*o,*o + <) 

< flj1

3]2J-3(A-(t0);*o,<o + *) 

(2) 

< oo, 

< oo. 

(4) The limiting matrix (11.3.4) is non-singular. 

The proof of the strong consistency of the CLS estimator requires Egoroff's theorem, which 

deals with almost uniform convergence: 

Theorem 11.3.1 (Egoroff's Theorem) Suppose h and {hn} are measurable complex-valued 

functions on measure space (Q,F,p) with //(Q) < oo such that hn h. Then for every e > 0, 

there exists E C f2 such that fi{E) < e and hn —> h uniformly on Ec. 

For reference, see Folland [1984], p. 60. 

Denote 9cLsin) a s * n e CLS estimator when the sample size is n. Then, we have the following 

theorem on the strong consistency of this estimator. 

Theorem 11.3.2 Under Assumptions 11.1.2 and 11.3.1, 

OcLsin) as n -> oo. 
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Proof: Let 8 > 0, and w(8) be the neighborhood of 0° with radius 8. 

Regularity conditions (1), (2) and (3) in Assumption 11.3.1 lead to condition (1) in As

sumption 11.1.2 being satisfied. Then for any e > 0, under all the conditions in Assumption 11.1.2 

and (4) in Assumption 11.3.1, we can find by Egoroff's theorem an event E with Pr(E) > 1 - e, 

a constant 6* (0 < 8* < 8), M > 0 and n 0 > 0 such that on E , for any n > n0, 0 6 w (<$*), the 

following three conditions hold: 

(1) | ( 0 - 0 ° ) r - ^ p - \ < {n-l)83, (refer to (11.3.1).) 

(2) ±(0 - 0°)T • Wn(0*) • (0 - 0°) < (n - l)M83, (refer to (1) in Assumption 11.1.2.) 

(3) the minimum eigenvalue of 2(n-i)"^n is greater than some Ao > 0. 

Thus, by (11.3.3), for 0 on the boundary of w(0*), 

Rn{0) > Rn(0°) + {n-l){-53 + 52X0 -MS3) = Rn(0°) + (n - 1)<52[A0 - ( M + 1)<5]. 

Since 8 can be chosen small enough such that Ao — ( M + 1)8 > 0, Rn(0) must attain a minimum 

at some 0cLs{n) € OJ(8*). 

Let e/ = 2~' and Si = 1//, where / = 1,2, Then they will determine a sequence of 

events {E{\ and an increasing sequence {n/} having the above properties. For n\ < n < n ; + 1 , 

define 9cLs{n) on E; to be the point within u>(8i) where Rn{0) attains a relative minimum, and 
^ ^ oo oo 

define 0cLs{n) to be zero on Ef. This will yield that 0CLs(n) —>• 0° on liminf E ( = (J D Ei-
m=l l=m 

Furthermore, since for any m > 1, it holds that 

Pr [lim sup Ef] = Pr n I K 
.m=l l=m 

< Pr 
OO OO uu Û f < EPr^c] ̂  E2-' = 2m^ 

Z=m l=m 

which implies that Pr [lim sup Ef] = 0. Therefore, we have Pr[liminf E{\ = 1 - Pr [lim sup Ef] = 1. 

This completes the proof. 

To obtain the asymptotic normality, we need to expand the partial derivative function 

•§QRn{9) around 0°: 

^RnW) = ^ n ( 0 ° ) + ( V n + W n (0* ) ) - (0 -0° ) , \\0*-0o\\<\\0-0°\\<8, 8>0. 
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Multiplying through (n - 1) ll2 and evaluating at the point OCLS, we have 

Ofcxi = ( n - l ) - V 2 — ^ ( ^ 5 ) 

= (n - l ) - 1 / 2 ^ / ^ 0 ) + (n - l ) " 1 ( V n + W n(0*)) • (n - l)^2(eCLS - 0°) 

= - 2 ( n - 1 ) " 1 / 2 £ e\ u, t i + 1 ) d 9 { X z ] 9 l e

t l A + l ) 

i=l 

+(n - I ) " 1 ( V n + W„(0*)) • (n - l)ll2(8CLS - 0°). (11.3.5) 

For each j = 1,2, . . . ,A;, | E ^ O î > ^t+i; 0° I *i > * i + i ) g g ^ ' % Q * ' U + 1 ̂j is a martingale with respect 
to Tn. Under appropriate regularity conditions, ( n - 1 ) - 1 / 2 £ u(xi,xi+i;8° ,ti,ti+i)d9^x''e

dg

il^ 
i=i 

converges in law to a multivariate normal distribution as n —> oo. Note that under previous 

regularity conditions for strong consistency, • (n - 1 ) _ 1 ( V n + Wn(0*)) goes to 2Vytxfc- Hence, 

(n — 1)1I2{0CLS — 0°) will converge in law to a multivariate normal distribution as n —> oo. 

We tailor the following additional regularity conditions for the asymptotic normality of the 

CLS estimator. 

Assumption 11.3.2 u(X(tQ),X{t0 +t); 8°,t0,*o + *)m]9{X(to); 0°, to, t0 +1) {j = 1 , 2 , . . . , fc) has 

moment of order 2 + d (d > 0) for any to, t > 0. Also for j = 1 , 2 , . . . , k, 

n - i / r o 
u(Xl,X{ti+ly,80,ti, ti+1)—g(xi; 8°, U, U+i) 

2+d\ 
= o. lim ( n - l J - ^ V E 

n—•oo z — ' 
i=l 

7n addition, for j\,J2 = 1 ,2 , . . . , fc, 

n _ 1 P 
(n - l ) " 1 ^u 2 ( i i 1 i i + i ; f l ^ t i , t j + i)-4 ( i i i ^ f i 1 t i+ i)-4 ( I «i^ ' 1 i ' t i+ i ) —• = 

i=l 
/•oo 

/ E [u2{X{to),X{to + t);d\to,to+t)g'h{X(to);8\to,to + ^^^ 
Jo 

namely, 

as n —> 00. 
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Theorem 11.3.3 Assume OCLS is a root of —fig-1 = 0. Under Assumptions 11.1.2, 11.3.1 and 

11.3.2, 

(n - I)1'2 (eCLS ~e°) A N (0 f c x l , V^ f c = f c x *Vfc X f c ) , 

where "Ekxk is defined in Assumption 11.3.2 and "Vkxk is defined in (11.3.4). 

Proof: We continue the analysis from (11.3.5). Under Assumption 11.3.1, there is a 9* such that 

0 f e x l = ( n - l ) - ^ ^ ^ + (n-l)-l(Yn+Wn(9*)).(n-l)lf2(9cLS-e°), 

where W n(0*) can be written as 

( k / \ 83R (9*) 

kxk 

Here 9CLS = OcLs{n) = (OcLs{n,l),... ,0CLs{n,k)^\ Since 9CLS is strongly consistent for 9, 

we can conclude that 

(n-l)-1Wn(9*) ^ > 0 f c x f e , n ^ o o . 

Thus, 

( n - l ) " 1 (V„ + W„(0*)) 2V, n oo. 

This implies that (n - l) 1 / 2(0cz,s - 0°) will have the same limiting distribution as 

(2V)" 1 

n-l 
2(n - 1 ) - 1 / 2 Y u(xi' 0°> *<' 

dg(xi;90,ti,ti+i) 

i=i 

= V 
n-l 

( n - l ) ll2 E U(XJ, Xj+i; 9°, U, ti+i) 
i=i 

89 

8g{xi;90,ti,ti+i) 
89 

By Theorem 11.1.1, it follows that 

V i \ - i / 2 Y ^ / QO J. 4 ^8g(xi;9°,ti,ti+i) L 
( n - l ) i/£2^u{xi,Xi+i;9u,ti,ti+i)— ~ —' 

i=i 

Therefore, 

89 
N ( 0 j f c x i , S f c x f c ) , n->oo. 

(n -1) 1 ' 2 (9CLS - o°) A N (Ofcxi, v-^v- 1). 
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Remark: Usually, it is intractable to find the analytic forms of the matrices V and S. However, 

they can be estimated from the data. The natural estimators for them are 

/ n - l ^ - _ f \ 
£ = ( n - I ) - 1 Y^u2(xiixi+^OcLS,-thU+l) • g'j.iXuOcLS^i^i+l) • 9j2{xi;0cLS,ti,U+l) 

i=l 

n - l 

kxk 
(11.3.6) 

V = [ ( ^ - l l - ^ ^ i ^ c M . t i . t r t i ^ f e ^ a s . ^ t w ) ] • (H-3.7) 

V 2=1 / kxk 

They are useful in construction of asymptotic confidence intervals or regions and hypothesis testing. 

The following theorem is the analogue of Theorem 11.2.6. 

Theorem 11.3.4 Let Yi,Y2,... ,Yk be iid rv's x\- Under Assumptions 11.1.2, 11.3.1 and 11.3.2, 

k 

RniO^-RnficLs) A J^AjYj, Tl I OO, 
3=1 

where Xj (j — 1,2, ...,k) are the (non-negative) eigenvalues o / V _ 1 E . 

Proof: From (11.3.3), we have 

Rn{e«)-Rn(ecLs) = - ( e c L S - o y - ^ ^ - U h L s - e y - v n - ( e c L s - e 0 ) 

Furthermore, from (11.3.5), 

dRn(0°) 

ae 

-WCLS - e°f • wn(o*) • (9CLS - e»). 

= (vn + w n (r ) ) - (0 C Ls -0° ) . 

Thus we obtain 

Rn(e°) - Rn (dcLs) = h(eCLs - e°)T • (v„ + w , ( r » • (BCLS - e°) 

(n - 1)1/2(0CLS - 9°)T] • i [VB/(n - 1) + W„(ff*)/(n - 1)] • [(n - 1 ) 1 / 2 ( 0 C L S - 0°) 

According to Theorem 11.3.3, as n ->• oo, 

I [V„/(n - 1) + Wn(e*)/(n - 1)] ^ V, (n - 1 ) 1 / 2 (eCLS ~ 0°) A Z, 
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where Z f c x i ~ N (O f c x i , V ^ E V - 1 ) . This yields that the limiting distribution of Rn(0°) 

Rn (OCLS) is the same as the distribution of Z T V Z , which has mgf 

-1/2 

%vz(») = E e,.z-vz = | l - 2 a V - 1 s r 1 / 2 H(l-2sXj) 

k 
It is also the mgf of £ XjYj. Therefore, this completes the proof. 

j=i 
The techniques of proof of asymptotic properties of the CLS estimator in this section are 

from Klimko and Nelson [1978]. However, we deal with these asymptotic properties under different 

regularity conditions. 

Finally, we comment on the asymptotic properties of other estimators of variations of the 

CLS estimating approach. Because of similar techniques to previous results, we will not discuss in 

detail. 

Similar to the CLS estimator, the CWLS2 and CGLS estimator have consistency and asymp

totic normality under appropriate regularity conditions like those for the CLS estimator, because 

the expansion of 

(xi+1 -V[X{U+i) | X(ti)=xi;0}) 
RCWLS2(0) = E — ~ d 

2 

and 
n-l 

RCGLS(0) = 'Yt{g(xi+1)-E\g(X(ti+1))\X{ti) = xi;9]y 

i=l 

are similar to the expansion of RCLS(&)- The expansion of a function Rn(0) around 6° usually has 

the following form 

« Rn^) + {e-er. d-  ̂ + ^e-er-~l^-(e-e 0). 

The essential requirements for the strong consistency of the CLS estimator are that 

idRnje*) a.s 

("•-!) —Q-g >»kxi 
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and (n - l ) ~ l 8 ^ j y ^ converges a.s. to a non-negative definite matrix as n -> oo. Now we check the 

first-order and second-order partial derivatives of RpwLS2(9) and RCGLS{9)- They are 

" - 1 (zt+i -B[X(ti+i) | Xfo) = s<;f l ] ) Q E [ X ( ^ + i ) | X f c ) = x,;0] 

50 

d2i?CWLS2(0) 
dOjddi = 2 E 

2 ^ cxi + d 50 

1 a E [X ( t i + i ) \X{ti) = Xi;0] dE[X{ti+1) | = g i ;g] 
i=l 

n-1 

i= l 
90, 

- E [ X ( t i + i ) j X(U) =-gjjg]) d 2 E [ X ( * m ) = s i ; g ] 
_ 2 E + d 00,301 

and 

dRcGLsjO) 
89 

n-1 

= - 2 ^ (g(xi+1)-B[g(X(ti+1)) | X(^ ) = ^;0]J 
i=i 

dE\g(X{ti+1))\X{ti) = Xi;0] 
89 

82RCGLS(9) 
dBjd9i 

8E[g(X(ti+1)) \ X(U) = XJ-,9] 8E[g(X(ti+1)) \ X(U) = xf,9] 
86, ' dOi 

n-1 

- 2 j ] ( j ( % i ) - E[<?(X(i m )) | X(U) = xf,9}) 
i= l 

where j , Z = 1,2,..., fc. Since the sequences of the partial sums 

82E[g(X(ti+1)) \X(n) = Xi-9] 
86j861 

'n^i (xi+1 - B[X{U+i) | X(U) = XJ-,0]) dE[X(ti+1) 1 X(U) = Xi-,9] = 

i= l 
CXi + d 

- E [ X | X(U) = Xi; 9}) g2E [x(ti+l) I Xfo) = xf, 9] n = 2 3 

/ 7 " * < ~ \ O r t ' 5 5 ' * ' 

i= l 
C X J + d 86j861 

8E[g{X(ti+l))\X{ti)=xf,9} 
E (ste+i) -Eb(̂ (*i+i)) I *(**) = wo]) 
i=i 
n-1 

E - E [ 5 ( X ( t m ) ) I Xfo) =x i ; 0]J 

89, 
,n = 2,3, 

d 2 E [ g ( X f o + 1 ) ) j X ( t , ) = ^ ; 0 ] 

are martingales with respect to Tn for j , / = 1,2,...,A;, by ergodicity, their averages will con

verge to zero. Applying the same techniques of proof for the CLS estimator, under appropriate 
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regularity conditions, we can derive the consistency and asymptotic normality for the CWLS2 and 

CGLS estimators. Like the CLS estimator, their asymptotic normal distributions are of the form 

N (Ofcxi, V^ f cSjfcxJfcV^ f c). For CWLS2, the estimated asymptotic matrices are 

S = 
n - l 

(n- 1) 1 Eu 2OEj,Z; +i;0cWLS2,ti,*i+l) • g'j1(xf,9cWLS2,U,ti+l) • 9j2{xi;0cWLS2, 

(11.3.8) 

V = I (n-l) 1£^--j-^-i?^ (11.3.9) 

where 

(xi+1 - E[X(ti+1) | X(U) = Xi-,0]\ 
V,(Xi,Xi+i;0cWLS2,ti,ti+l) - — , 

cxi + a 
-'( ?i t t \ dTL[X(ti+1)\X(ti)=xi;0] 

9j{Xi;ecwLS2,ti,ti+i) = ~Q9~- ' » = 1,2,... ,n - 1, j = 1,..., fc; 
and for CGLS, they are 

S = (^n - \)~lY^u2{xiixi+iiQc^^ > 

(11.3.10) 

V = i^n-iy^Y^M^cGLS^ (11.3.11) 

where 

u(xi,xi+y,0cGLS,ti,ti+1) = ^(XJ+I) - E [ p ( X ( t i + i ) ) | X(U) = Xi;0], 
n ' i . - R tt \ dE[g(X(tl+1))\X(ti)=xi;d] 

9j{xi,ScGLS,U,ti+i) = — : , i = l,2,...,n- 1, j = l,...,k. 

However, the CWLS estimator is no longer consistent for 0°, because in the expansion of 

RCWLS{Q)I the first-order partial derivative is 
dRcwLsiO) ^ ( ^ + 1 -V[X(ti+1)\X(ti)=xi;0]) ^ dE[X(ti+1)\X(ti)=xi;9] 

de 2 ^ Var [X( t i + i ) | X(ti) = Xi-,0] i=i 
de 

i [xi+l - B[X{U+i) \X{ti)=xi;e]f d V a r [ X ( t i + 1 ) 1 X{U)=Xi;0] 
- V a r 2 [ X ( i m ) \X(U) = Xi-,0] de 
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under ergodicity, 

i n-i (Xi+1 - B[X(tl+1) | X(tj) = a t j f l ] ) &E[x(ti+1) | X{ti)=xi;6] 
^ Var[X(tl+1)\X(ti) = xl;0] dd 
i=l 

but 
_ (gj+i - E [ X ( t i + i ) 1 = gj;o]) dVax[X{U+i) \ X{U) = Xj;e] 

h . Vnr2[X(k+i)\X(tl) = xi;o] ' de 

doesn't. Hence, (n — Y)~x 9RCWLS{0) doesn't converge to a zero vector. 

This pitfall can be overcome with the quasi-conditional least squares estimator, because 

it omits the second term with the partial derivative of the conditional variance. Following the 

techniques of proof for the M L E estimator, under appropriate regularity conditions, we can show 

that the QCLS estimator is consistent and asymptotically normal. Here the asymptotic normality 

comes from Theorem 11.1.1. 
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Chapter 12 

Autocorrelation detection, model 

selection, testing, diagnosis, 

forecasting and process simulation 

In this chapter, we shall consider some practical problems with non-normal time series data. When 

we apply a specific model to data, a natural question is why should we use this model, not the 

others? Such a question motivates people to scrutinize the data in all possible aspects. For example, 

when we try to apply an auto-regressive model to a stationary time series, we should first check 

the auto-correlation function plot to see if there exists any correlation pattern over time. Similarly, 

for count data or positive data observations over time, when we consider fitting a continuous-

time GAR(l) process, we should investigate if there is any auto-correlation in the data. If the 

dependence over time appears to be geometrically decreasing, then applying the continuous-time 

GAR(l) process model may be appropriate. 

Usually, for a real problem, there could be several possible models which can be applied to 

the problem. Since the family of the continuous-time GAR(l) processes is so abundant, we have 

to think about which models are most suitable. This raises the model selection issue. 

Once we select a model, we can estimate the parameters in the model using the data. Later, 
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we can use this model for inferences such as hypothesis testing, forecasting, etc. These steps 

essentially cover the entire procedure for an applied statistical problem. 

In Section 12.1, we will discuss visual and analytical detection of serial dependence. Section 

12.2 deals with the model selection issue. We study diagnosis and hypothesis testing in Section 

12.3, and forecasting in Section 12.4. Finally, we discuss the approaches of process simulation in 

Section 12.5. 

12.1 Assessing autocorrelation 

When modelling, a necessary step is to examine the features of the data so that proper models can be 

chosen. These examinations include graphical and analytical investigations. For the data sampled 

from a dynamic system, or from a subject over time, an interesting question is whether there 

exists any dependence structure over time, commonly called serial dependence or serial association. 

Because we are focusing on stationary time series, stationarity should be checked before modelling. 

This can be done with a time series plot to check for a trend or pattern, or an ACF plot to check for 

periodicity or seasonality, or other advanced techniques like smoothing to check for potentially non-

stationary patterns. If the series can be considered stationary with geometric serial dependence, 

then it is reasonable to model the data with a continuous-time GAR(l) process. In the following 

two subsections, we will discuss some visual detection techniques for serial dependence. 

Serial dependence, if it exists, is essentially hidden in pairs of data points. For a sample with 

size n, we can obtain (™) = n(n - l)/2 pairs. We can group them according to their lag lengths or 

time differences as: Group 1, Group 2, . . . , Group m. Each group consists of pairs with equal or 

roughly equal lag lengths. 
For equally-spaced time series, grouping these pairs is very easy. The lag lengths are very 

regular: 1, 2, 3, Hence, we can obtain n — 1 pairs with lag one, n — 2 pairs with lag 2, and so 

on. But for the unequally-spaced time series, the lag lengths and numbers of pairs may not be as 

regular as the equally-spaced case. 
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For the sake of simplicity, we concentrate on the data sampled at the equally-spaced time 

points. This is partially because that in many studies, the data {X(ti), X(t2), •.., X(tn)} are 

scheduled to be observed at equally-spaced time points. The results from equally-spaced time 

series can then be easily generalized to unequally-spaced time series. 

Traditionally, for the stationary Gaussian time series {XQ,XI,X2, • • .}, the scatterplot of 

successive lag-j pairs such as (Xi, Xi+j) (i — 1,2,...) is very helpful in recognizing any potential 

linear association patterns visually. 

In the context of the continuous-time GAR(l) processes, if the self-generalized rv K in the 

extended-thinning operation is from PI so that the observations are real-valued, the traditional 

scatterplot can still display the linear pattern among successive pairs (X(ti),X(ti+\)), where i = 

1,2,..., n—1. Hence, it works well in this case and should be kept as a basic graphical tool. However, 

if the observations are non-negative integer-valued or positive-valued, the marginal distribution is 

no longer symmetric. Instead, it is most likely to be skewed. This will cause the association pattern 

not to be a linear pattern with an ellipsoidal cloud of points. Besides, for the count data, there may 

be many coincidences in the scatterplot because of the discreteness. Thus, some other graphical 

tools should be introduced in such kinds of situations. 

In this subsection, we mainly study three kinds of graphical methods: the sunflower plot, 

the diagonal P-P plot and the randomized quantile transformation scatterplot. We illustrate them 

by considering the lag-1 pairs in an equally-spaced setting. These tools, of course, will be applied in 

other groups of pairs to check for the serial dependence of the equally-spaced or unequally-spaced 

time series. 

(1) Sunflower plot. 

First, we turn to the sunflower plot introduced by Cleveland and McGill [1984]. This tool was 

later improved by Schilling and Watkins [1994] to overcome some disadvantages. The sunflower plot 

is in fact a type of two-dimensional histogram or contour plot without equal altitude curves. It is 

designed to display bivariate data with coincident points. This is the typical phenomenon when the 

data are discrete. Even for the positive-valued data, when we discretize them, the coincidences will 

likely occur. These coincidences reflect the dependent information between two random variables in 
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a bivariate situation. However, they are not shown in the traditional scatterplot. Thus, displaying 

the occurrence of coincidences is meaningful in understanding the dependence structure of two 

variables in bivariate data. 

A sunflower plot displays the bivariate data on a plane with points labeled by integers 

showing the number of coincidences at each location. For count time series data, we illustrate it 

by the n — 1 successive lag-1 pairs: 

(X(h),X(t2)), (X(t2),X(t3)), (X(tn^),X(tn)). 

We count the coincidences on different locations, and plot them with those counts (as labels) on each 

location. This will give us the sunflower plot for time series data, which provides more information 

than the scatterplot. For positive time series data, there may not be any coincidences. In such a 

situation, we can discretize the positive-valued data. By taking discretization, we may expect more 

coincidences. Then we follow the steps for the count time series data to give the sunflower plot. 

The integer number at each point is the frequency at that point. These frequencies contain the 

serial dependence information. Usually, if there is an auto-correlation between the successive pairs, 

it often forms some kind of ridge shape in the sunflower plot. Hence, we should probe any potential 

ridge shape in the sunflower plot for evidence of serial dependence for the time series data. 

Figure 12.1 illustrates the sunflower plots for two count time series data. The first one is 

from model 

Xi+i = 0M*Xi + Ei, i = 1,2,... ,500, (12.1.1) 

where the marginal distribution is Poisson(5), and Ei1 ~ d ' Poisson(1.75) (i = 1,2,..., 500), and the 

second one is just an iid sequence of Poisson(5) with sample size 500. The ridge shape of the first 

plot is different from the second one because of serial dependence. 

(2) P - P plot and diagonal P - P plot. 

Sometimes it may not be easy to judge the association pattern in the sunflower plot. Hence, 

we develop the diagonal P-P plot to detect the potential dependence between two variables in 

bivariate data. The diagonal P-P plot is a special P-P plot, which is the inversion of the Q-Q plot. 
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Figure 12.1: Sunflower plots of two time series count data. The left one is from the model 
(12.1.1), while the right one is from an independent Poisson(5) series. 
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To compare the cdf's of two univariate rv's: Fx (•) and FY (•), the common Q-Q plot 

(quantile vs. quantile) will display the corresponding quantile pairs of 

(Fx1 (Pi) , Fy1 (pi)) , ( i ^ 1 (p2) , Fy1 (pa)) , . . . , (F^1 (Pn) , ^ (Pn)) , 0 < P l < 1, 

in a plane. Here F - 1 means the inverse function of F or the quantile function. If the two distri

butions are the same, the points on the Q-Q plot will roughly locate around the 45° diagonal line. 

Otherwise, the points will show a pattern deviating from the diagonal line. 

The P-P plot takes an inverse approach. It compares the probabilities of two distributions. 

For the corresponding pairs of cdf values calculated at cut points c\, c 2 , . . . , cn: 

(Fx (cO , FY (Cl)), (Fx (c2), FY (c2)), . . . , (Fx (cn), FY (cn)); 

we plot them in a plane. Because the range of a distribution function is from 0 to 1, these points 

are displayed in a unit square. If the two distributions are the same, then the points will roughly 

lie around the 45° diagonal line. Otherwise, they will deviate from the line somehow. Therefore, 

the P-P plot also has the ability to check if two distributions can be considered the same or not. 

It is equivalent to plot the survival probabilities, (1 - Fx(ci), 1 - Fy(cj)), of the two distri

butions. As to which form, it is up to user's preference. 
To investigate the independence or dependence of two random variables in bivariate data, 

say 

(xi,yi), (X2,V2), (xn,yn), 

we can borrow the idea of the P-P plot for univariate distributions. If the rv X is independent of 

the rv Y, then it holds that 

Pv[X < a, Y < b] = F{x,Y)(a, b) = Pi[X < a] • Pr[Y < b] = Fx(a) • FY(b), 

for any a, b in the support. Thus, we choose the grid points (aj, bj), where j = 1,2,..., TV, and plot 

(F(x,Y)(aj,bj), Fx(aj)FY(bjj) for all j . Here 

' Oj , the number of Xi being smaller than or equal to aj 
Fx(aj) = ) 

n 
~ the number of yi being smaller than or equal to bj 
Frfy) = , 

~ , . the number of (xi,yi) where Xi < a-i and % < 6,- „ „ 
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These grid points are in fact the two-dimensional cut points. In the resulting P-P plot, if X and 

Y are independent, then the points will lie around the diagonal line, if they are dependent, then 

Pr[X < a, Y < b] ^ Pi[X < a] • Pr[Y < b], and the points will tend to deviate from the diagonal 

line. 

A simplified version of P-P plot to diagnose the independence or dependence of two random 

variables in bivariate data is to choose the points (a,j,bj) (j = 1,2,... ,N) on a line y = cx + d. 

This will reduce the burden of selecting grid points. In the stationary time series framework, this 

line will be chosen as the diagonal line of the first and third quadrants, namely y = x. We do 

so because X(ti) and X(U+\) have the same marginal distribution, hence, we should put equal 

weight on the two elements of the pairs (X (ti), X (ti+i)) which lead to this diagonal line. Due 

to the feature of choosing cut points on the diagonal line, we call this special graphical tool the 

diagonal P - P plot. Suppose the observations {X(t\),..., X(tn)} are arranged in increasing order 

< X(2) < • • • < x(n), * n e n w e c a n choose dj — bj = x^, where j = 1,2,..., n, and plot 

(P12(x{j),x{j)), F2(x{j))y j = l , 2 , . . . , n . 

Here 

~ the number of X(ti) being smaller than or equal to x^ 

^ the number of (X(U), X(ti-i) where X(U) < xt~\ and X(U-i) < xi~\ 
Fl2(x{j),x{j)) = — ^ , 

for j = 1,2,..., n. If the diagonal P-P plot shows that there exists a pattern deviating from the 

diagonal line, then it suggests that the serial dependence exists in the time series. 

We briefly discuss the pattern of diagonal P-P plot in positively and negatively correlated 

bivariate distribution. We illustrate the patterns by bivariate normal distribution with standard 

normal margins. The correlation coefficients are chosen to be 0.5 and —0.5. Setting the X-axis 

being the bivariate cdf of independent margins and Y-axis being the empirical bivariate cdf of 500 

samples, we obtain Figure 12.2. From these plots, we see that positive correlation leads to fish back 

pattern (a curve above the diagonal), while the negative correlation leads to fish belly pattern (a 

curve below the diagonal). 
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Correlation Coefficient: 0.5 Correlation Coefficient: -0.5 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Bivariate (independent margins) Bivariate (independent margins) 

Figure 12.2: Scatterplots and diagonal P-P plots of positively correlated and negatively correlated 
bivariate normal data. The left side corresponds to positive correlation, while the right side corre
sponds to negative one. 
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The diagonal P-P plot can be applied to check whether the samples are from a specific 

bivariate distribution 2*12(2;, y). It is just necessary to substitute F2(x^) in the case of independent 

margins by F\2(x(jy ajy)), and check the diagonal P-P plot. If there is any obvious deviation, it 

suggests that the samples may not come from the bivariate distribution 2*12(2;, y). 

Note that the P-P plot for bivariate data can be easily generalized to higher dimensions 

which allows us to compare two multivariate distributions. We invent this P-P plot because it is 

easy to apply this graphical tool in high dimensions while the Q-Q plot doesn't exist in dimensions 

greater than or equal to 2. 

Figure 12.3 illustrates the diagonal P-P plots for two count time series data. The first one 

is from the model in (12.1.1), and the second one is from an iid sequence of Poisson(5). One can 

see the pattern of deviation in the first plot, and the pattern of closeness to the diagonal line in 

the second plot. Therefore, they match the theory. 

(3) Randomized quantile transformation plot. 

The randomized quantile concept was introduced by Dunn and Smyth [1996]. It transforms 

skewed data {xi, x2, • • •, xn} into symmetric data { n , r2,..., rn} to please our eyes so that we can 

get a more intuitive impression. This is because that our eyes handle symmetric data more easily 

than non-symmetric data. Empirically, it is quite complicated to understand some features from 

skewed distributions. 

Let F be the cdf of the sampled population and $ be the standard normal cdf. Then the 

randomized quantile transformation is defined as 

n = $ - 1 -(ui) , * = l , 2 , . . . , n , 

where Uj = F(x{) if F is continuous at x^, and tij is a uniform random number on the interval 

[F(x7),F(xf)\ if F is not continuous at 2̂ . That is, it first transforms the raw data into a 

roughly uniform random numbers, then transforms again to standard normal random numbers. 

The standard normal distribution is symmetric around the origin. 

We can borrow this idea for the count and positive-valued time series data to obtain the 

randomized quantile transformation scatterplot, which is third useful graphical tool to por-
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Bivariate (independent margins) Bivariate (independent margins) 

Figure 12.3: Diagonal P-P plots of two time series count data. The left one is from the model in 
(12.1.1), while the right one is from an independent Poisson(h) series. 
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tray the dependence of two random variables in bivariate data. This is because almost all the 

marginal distributions in such kinds of time series are skewed. We can first calculate the random

ized quantile transformation for the stationary time series data {X(t\),X(t2),... ,X(tn)} to obtain 

{ n , r2, . . . , r n } , then we plot the scatterplot for the pairs 

(n,r2), (r 2 , r 3 ) , ( r n _i , r„ ) , 

namely the traditional scatterplot for the pairs (rj, rj+i) (i = 1,2,..., n — 1). Here F, the marginal 

distribution, can be estimated by the data either parametrically or non-parametrically. If the 

original time series data are from an iid sequence, then the randomized quantile transformations 

are also iid. Thus, the randomized quantile transformation scatterplot won't show any association 

pattern. If the original data are serially correlated, then the randomized quantile transformations 

are also serially correlated, which leads to some kind of association pattern in the randomized 

quantile transformation scatterplot. Thus, if there is any association pattern in the randomized 

quantile transformation plot, we can conclude that there exists serial correlation in the time series 

data. 

Figure 12.4 illustrates the randomized quantile transformation scatterplots for two count 

time series data. The first one is from the model in (12.1.1), and the second one is the same iid 

sequence as before. The distribution F in both cases is estimated parametrically, namely, we assume 

that two distributions are from the Poisson family, and estimate the parameters from the data. We 

can use the empirical distributions in both cases too. From the two scatterplots, we see different 

patterns. The first one shows serial dependence, while the second one suggests independence. 

Finally, we discuss the A C F plot. The widely used ACF plot is a sophisticated tool to 

detect the serial dependence in the equally-spaced or unequally-spaced time series. It plots the 

auto-correlation coefficients against the lag lengths. It works well in Gaussian time series, as well 

as non-normal time series. For example, we can draw the ACF plot of the count time series from 

the model in (12.1.1). See Figure 12.5. In addition, it can identify one kind of non-stationarity: 

seasonality. 

One may also want to try some analytical tests for the temporal dependence. Dependence 
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Figure 12.4: Randomized quantile transformation scatterplots of two time series count data. The 
left one is from the model in (12.1.1), while the right one is from an independent Poisson(5) series. 
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Figure 12.5: The Auto-correlation function (ACF) plot of the count time series from the model 
(12.1.1). 
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over time in a time series data is often called serial correlation or serial dependence. See Anderson 

[1988a, 1988b]. Testing the serial dependence or correlation has been studied since the 1940's. Usu

ally, the null hypothesis Ho is "randomness" meaning "no serial dependence" or "independence", 

the alternative hypothesis HA is "serial dependence" or "serial correlation" under some underlying 

stochastic process. There are many articles in the literature under the key word "serial correlation" 

or "serial dependence". Since the marginal distributions and dependence structures in the context 

of the continuous-time GAR(l) processes are quite diverse, one may apply some non-parametric 

tests for the serial dependence. For example, the contingency table test and Goodman's simplified 

runs test are two of those methods. The contingency table test is applicable for unequally-spaced 

time series data. But Goodman's simplified runs test is not applicable for unequally-spaced time 

series; see Goodman [1958] and Granger [1963]. 

12.2 Model selection 

If we detect serial dependence in the stationary equally-spaced or unequally-spaced time series data, 

the next step is to find appropriate models for them. The continuous-time GAR(l) process models 

will be naturally considered if the observations are positive or non-negative integer-valued. 

Usually, we will first investigate the observations to see what kinds of distributions could be 

the possible marginal distributions. For example, if the data are non-negative integer-valued, we 

may use the Poisson distribution for the marginal distribution if the sample mean and variance of 

{X(t\) = xi,... ,X(tn) = xn} (or x = (x\,..., xn)T) are roughly equal, or we may try the negative 

binomial or generalized Poisson distribution if the sample variance is much larger than the sample 

mean. The possible family of marginal distribution to be considered may not be unique. 

Next we will select the continuous-time GAR(l) process models which have the marginal 

distributions under consideration. It is common that the processes with different extended-thinning 

operations may have the same stationary distribution. Therefore, for a specific time series, we may 

have several continuous-time GAR(l) process models to consider. 
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For the possible models, we first apply them to fit the data. Then we do the diagnostic 

check for each model to see if this model is suitable for the data. If a model is not suitable for the 

data, we will remove it from the model list. The diagnosis techniques will be studied in Section 

12.3. Hence, we finally could obtain more than one suitable model. 

Then a natural question arises: which one is the best to model the data? To this end, we 

should compare how well these models fit the data. Here we present a couple of approaches for the 

model selection. 

A I C approach. The Akaike information criterion (AIC) is widely used in model selection. 

It is useful in either nested models case or non-nested models. Suppose the number of parameters 

0 in a model is k, and the log-likelihood is L(6\x), where x = (x\,..., xn)T is the vector of 

observations. Then, the Akaike information criterion is defined as 

For the fitted model, the AIC will be evaluated at the estimates of the parameters. The models 

will be judged according to their AIC values; the smaller, the better. We will choose the model 

which has the smallest AIC value. Joe [1997] commented that this approach is in fact a penalized 

log-likelihood method if we look at L(t9|x) — k, which takes the number of parameters as the penalty. 

In this equivalent criterion, we will choose the model with the largest value of L(t9|x) — k. 

Comparison of fit approach. This idea had appeared in Joe [1997], Section 11.5, p. 365-

367. The sum of conditional least squares 

measures the closeness of the model with the real data. This sum will be evaluated under each 

suitable model with estimated value of parameter 0 from the data, namely the conditional expec

tation E[X(ti+i) | X(ti) — Xi;0] is calculated under each suitable model where 0 is estimated from 

x. The smaller this value is, the closer the fitted model is to the data in a prediction sense. This 

will lead us to choose the model with the smallest value of the sum of conditional least squares. 

Prediction comparison (cross-validation) approach. If the sample size n is ade

quately large, we may use first part of the observations, say first half, to build each suitable model. 

AIC = -2L(0 |x) + 2fc. 

n - l 

i = l 
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Then we apply each built model to predict the remaining observations. In this way, we can see 

which model has the best predictive ability, and such a model with the best prediction for the 

remaining observations will be selected. The model prediction or forecasting will be discussed in 

Section 12.4. 

12.3 Model diagnostics and hypothesis testing 

After building a continuous-time GAR(l) process model by choosing its form and estimating related 

parameters, we must check if the model fits the data well. This is called model diagnosis, and can 

avoid the naive subjective mistake in the model choice. From the view of applied statistics, we wish 

the subjective model to be as close to the reality as possible. If the built model doesn't fit the data 

well, then it implies that there is a gap between the subjectiveness and the reality, and the built 

model could be a wrong model. Thus, building a good or suitable model is very important, because 

a good model can summarize the information from the data and allow us to make correct inference. 

We will present a graphical diagnostic technique, the diagonal P-P plot, in Section 12.3.1. 

Based on the suitable model built from the data, we may test some kinds of practical 

questions such as if a drug is effective, or if one treatment is better than another. These questions 

are part of hypothesis testing. Sometimes, they simply test the parameters in the built model, and 

sometimes they may test more complex composite hypotheses regarding model parameters. We 

will narrow the topic of hypothesis testing to the simple parameter test, and give a brief discussion 

in Section 12.3.2. 

12.3.1 Graphical diagnostic method 

Traditionally, model diagnosis involves checking some kind of residuals. See Lindsey [1997], p. 223-

225 for a short summary of categories of residuals. The two widely used kinds of residuals are fitted 

value residuals (observed value minus fitted value) or the variations (like studentized residuals), 

and deviance residuals. These different types of residuals will then be displayed in the scatterplot 
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against a variety of statistics like fitted values, or in a Q-Q plot against a specific distribution like 

the standard normal, to check for any obvious departures from the specified model. If no departures 

are observed, we will accept the fitted model as a suitable model. 

For example, in linear regression, we display the scatterplot of fitted value residuals against 

the fitted response values or one of the covariates to check if the residuals symmetrically lie around 

the horizontal line within certain range, and/or show the Q-Q plot of studentized residuals against 

the standard normal quantiles to check the normality; in the generalized linear model, we usually 

display the deviance residual plot to check if the fitted model is close to the data. The residuals 

could be plotted against their lagged values, which is common in the normal time series. 

However, in the continuous-time GAR(l) process models, it is not easy to use these two 

types of residuals. This is because both residuals are applicable in certain types of models or 

distributions. For the fitted value residual, it is very useful in the structure model like linear model 

where conditioned on covariates, the model can be represented by two terms: one is fixed, one is 

random. In this situation, the fixed term is estimated at each covariate value, and the random 

term is obtained by subtracting the fitted value from the observed response value. This estimated 

random term is in fact the fitted value residual. Checking these residuals by residual scatterplot 

and/or Q-Q plot, we can find if the random term matches the assumptions imposed in the specified 

model. 

For the deviance residual, it is usually used in the stochastic model where no fixed term 

can be decomposed out, only random term(s). In fact, they are defined according to the specific 

exponential form of the pdf of the exponential family, and measure the difference of log-likelihood 

between a saturated model and the fitted model for each observation. See Lindsey [1997], p. 210-

211, or Venables and Ripley [1994], Chapter 7 for a quick reference. Due to the discrete feature or 

skewed feature of some distributions in the exponential family, the deviance residual plot may show 

some special pattern which is hard to be understood through our eyes. That is why the randomized 

quantile transformation scatterplot is proposed. 

The continuous-time GAR(l) process family is very rich in the stationary distributions, 

and varies according to the extended-thinning operation. Many of them do not belong to the 
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exponential family specified in the generalized linear model. From the representation 

X(t2) = (a)K®X(t1) + E{ti,t2), t i <* 2 , 

we know that they are stochastic model (two random terms) unless K is from PI which corresponds 

to the constant multiplier and leads to a structure model like linear model. Hence, neither the fitted 

value residual nor the deviance residual can meet the diagnostic need of the continuous-time GAR(l) 

process model. To this end, developing a new diagnostic technique is necessary. 

We propose the diagonal P-P plot introduced in Section 12.1 to diagnose the built continu

ous-time GAR(l) process model. This method doesn't use any kind of residuals. The idea is that 

any model specifies the theoretical distribution, which can then be compared with the empirical 

distribution obtained from the data by the P-P plot. By comparison, we can find if they are close 

to each other or not. 

The continuous-time GAR(l) process specifies the multivariate marginal distribution for any 

number of adjacent margins. We choose the bivariate marginal distribution in our consideration 

because it is not likely to be the same for two different models in the continuous-time GAR(l) 

process family. Hence, for the equally-spaced time series data {X(ti),..., X(tn)}, we can estimate 

the bivariate empirical distribution of lag 1 from the n — 1 successive pairs (X(U), X(ti+i)). Setting 

the cut points as those observations x^ < XQ) < • • • < x(n)-> w e obtain the estimate of the bivariate 

cdf 
~ the number of (X(ti),X(ti-\) where X(t{) < xu\ and X(tj_i) < xi~\ 
F12(x{j),xU)) = — , 

Note that these n — 1 successive pairs are not independent. Hence, ergodicity is necessary to 

guarantee the consistent estimation of the joint distribution. The theoretical bivariate distribution 

of two adjacent margins with the same time difference as that of the data can then be calculated 

from the fitted model, namely 

F12(x{j),x{j)) = Pr[X(0) < x(j), X(t2 - t i ) < x{j)] 

= Pi[X(Q) < x{j), (a)K®X(0)+E(0,t2 - tx) < xU)]. 

Here the model parameters are estimated by the data, thus, they are known so that we can the

oretically calculate the required probabilities. Then, we can draw the diagonal P-P plot of the 
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successive pairs against the fitted model, namely plot the points 

(FI2(X(J),X(J)), Fi2(a;(j),X(j)))', j = l , 2 , . . . , n . 

Repeat it for lag 2,3,.. . ,m, where m is an adequate integer that depends on the length of the 

series. 

In these diagonal P-P plots, if the points lie around the diagonal line, then we will accept 

the fitted model as suitable. Otherwise, there is an obvious departure between the data and the 

fitted model, which suggests that the fitted model is not suitable. 

The calculation of the theoretical bivariate distribution may employ the stochastic repre

sentation for the bivariate margins, or numerical inversion of bivariate characteristic function. In 

practice, at the two ends of the plot, there might occur deviation from the diagonal straight line 

at 45°, because there are too few observed pairs at the lower end which could lead to inaccurate 

estimates, and the calculation of theoretical bivariate cdf is cut off at the upper end so that it is 

always less than 1 while the empirical cdf reaches 1. 

For unequally-spaced time series data, we first divide the n(n — l)/2 pairs into different 

groups. Each group consists of pairs with common or roughly common time difference. Apply the 

diagonal P-P plot to the groups with adequately large number of pairs. This is because for a group 

with too few pairs, it's hard to obtain the empirical bivariate distribution. If all of the diagonal 

P-P plots show the pattern of a straight line at 45°, we will accept the fitted model as suitable. 

Otherwise, if any of them doesn't show this kind pattern, we will reject the fitted model because 

the empirical bivariate distribution doesn't match the theoretical calculated from the fitted model. 

Note that the fitted value residual plot can still be applied in the continuous-time GAR(l) 

process model with extended-thinning operation PI, but one should check the histogram and Q-Q 

plot of the residuals because they are usually distributed in a special distribution. The deviance 

residual plot can also be applicable in the models where the margins have specific exponential 

family required in the generalized linear model, if one favors it. 
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12.3.2 Parameter testing 

In this section, we simply test the null hypothesis HQ : 9 — 9° under a continuous-time GAR(l) 

process model. We don't set up the alternative hypothesis, because it's quite subjective to choose 

such an alternative hypothesis. This alternative one could be the same structure model with 

different parameter values, or another structure model. Here we want to have a general discussion, 

thus, we do not have particular reason to choose one of them as the specific alternative hypothesis. 

Due to this lack, we can not obtain the power function. 

Al l testing approaches we will discussed depend on the asymptotic distribution of the test 

statistic. Among these approaches, some depend on the estimation approach or model, and others 

do not. 

Asymptotic normality testing approach. Most estimators have an asymptotic normal 

distribution, i.e., 

(n - l ) 1 / 2 (o - 9°) - ^ N ( 0 * x i , E ^ ) , n->oo, 

where £fcXfc is estimated by the data. Thus, we can use the confidence region for a test. Under 

HQ, the 100(1 — a)% confidence region for the mean vector is 

(n-l)(9-9°)T •V.(e-9°) < * ( ^ f c "_ 2 ) F f c , B_ f c- 1(a). (12.3.1) 

See Johnson and Wichern [1998], p. 236. If the null value 9° is in this ellipsoid, we accept Ho, 

otherwise we reject it. 

This method depends on the estimation approach, but doesn't depend on the model. 

Log-likelihood testing approach. For the M L E estimator, it follows that 

logL n {9 M LE I x) - logL„(0° | x) Xk, n->oo, 

where Ln is the likelihood function under the model. Refer to Theorem 11.2.6. This fact provides 

another testing method. We first calculate the value of c = 2 log Ln(9MLE I x) — logL„(0° | x) 

under the assumed 9°, then we obtain the p-value p = Pi[Y > c] where Y ~ xt- We accept the 

null hypothesis if p < a, and reject it otherwise. 

404 



This method depends on both the estimation approach and model. 

Conditional least squares testing approach. Similar to the M L E , the CLS estimator 

has an analogous result: 

k 

Rn(0°) - Rn (OCLS) EA >̂ n^oo, 

3 = 1 

where i ? n is the sum of conditional least squares defined in (11.1.4), Xj (j = 1,2,..., k) are the 

(non-negative) eigenvalues of V _ 1S, and Y i , Y2,..., be independent and identically distributed 

in xi- Here V and £ are estimated by (11.3.6) and (11.3.7). See Theorem 11.3.4. This result also 

provides another testing method for the CLS estimator. Under the assumed 0°, we calculate the 

value of the difference c = Rn(0°) - Rn (OCLS) > a n d then the p-value p — P r [ £ * = 1 XjYj > cj. This 

probability consists of a high dimensional integration or inversion of a characteristic function. It 

can be computed by the method proposed by Imhof [1961]. We will accept Ho if p < a, and reject 

it otherwise. 

This method depends on the estimation approach, but doesn't depend on the model (other 

than the conditional expectation). 

There exists some other approaches which use non-parametric statistics as the test statis

tics such as the contingency table test, Goodman's simplified run test, etc. These tests are also 

applicable in testing the Markov process. 

12.4 Forecasting 

In some fields like economics or actuarial science, people need to make decisions for the future. This 

leads to the issue of forecasting. In the following, we shall discuss three forecasting approaches to 

meet such a need. Freeland [1998] studied all these three methods in a special GAR(l) time series 

with Poisson margins. 

Suppose we have a continuous-time GAR(l) process model, which has observation X(t\) = 

x\. Our task is to forecast the future value of X(t2) where t2 > t\. This is equivalent to predict 
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the conditional random variable X(t2), X(t2), under certain criterion. The common criteria are 

minimum mean squared error, minimum mean absolute error, maximum likelihood, and so on. 

Conditional mean. The criterion of minimum mean squared error will yield the estimate 

X(t2J •= E[X(t2)\X(tl)=xl}. ' (12.4.1) 

This value usually can be obtained easily by an explicit formula. However, it is in general a real 

number, not an integer. We may use it in the model with positive-valued margins. For models with 

non-negative integer-valued margins, this forecast may not be natural. 

Conditional median. The criterion of minimum mean absolute error leads to the esti

mate of X(t2) conditioned on X(t\) = x\ to be the median Q(0.5), of the conditional distribution 

Fx{t2)\x{u){x2 I Xi), 

Xfo) = Q(0.5). (12.4.2) 

This value is in the support of the marginal distribution. Hence, it can be used in models with any 

type of margin. However, due to the lack of explicit formulas, we may have to pay the computational 

price. 

Conditional mode. By the criterion of maximum likelihood, we mean that the random 

variable will have the largest chance. This will lead to the conditional mode, Q, of the distribution 

Fx{t2)\x{ti){x2 I X\) to be the estimate: 

X ( Q = Q. (12.4.3) 

Similar to the conditional median, this value is in the support of the marginal distribution. Hence, 

it also can be used in models with any type of margins. 

Sometimes we may be interested in interval prediction rather than point prediction. Based 

on the known conditional cdf, we can construct a prediction interval with given probability by 

cutting two sides with half of the given probability. This approach is called conditional prediction 

interval method, and is independent to any criterion mentioned before. 
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12.5 Simulation of the continuous-time G A R ( l ) processes 

The simulation of the continuous-time GAR(l) process is the basis for further simulation study 

of methods of parameter estimation. For the general need, we want to simulate the equally-

spaced or unequally-spaced time series {X(ti), X(t2),..., X(tn)} from a stationary continuous-time 

continuous-time GAR(l) process {X(t);t > 0}. If the margins of the continuous-time GAR(l) 

process are non-negative integer-valued, we even can simulate the whole path in any time range of 

the continuous-time process by simulating the jump points. However, for the continuous margin 

case, we can't simulate the continuous path of the continuous-time process, instead, what we can do 

is to set the time increment very small and simulate the discrete-time process as an approximation. 

There are two simulation methods: the conditional and the embedding approaches. The 

conditional approach will simulate the next observation conditioned on the current observation. 

It takes advantage of the stochastic representation of the conditional random variable and the 

conditional distribution. By repeating the steps in the conditional approach, we can simulate the 

equally-spaced or unequally-spaced time series. The embedding approach works for the discrete 

state space only, where we will simulate every sojourn time and successive jumping state alternately. 

In this way, we can obtain the continuous-time path of the continuous-time GAR(l) process. But 

both methods need the starting state at time t = 0. This starting point can be simulated from the 

stationary distribution of the process. 

First, we consider the conditional approach. Without loss of generality, we just consider the 

simulation of X(t2) given X(ti) — x\ where i i < t2, namely a conditional random variable. This 

conditional random variable is denoted as [X(t2) | X(t\) = x\\. According to the model, 

[X(h)\X(h) = xl]l (a)K®Xl + E(h,t2), a = e-^-^\ (12.5.1) 

where all parameters such as /j, are known. Thus, this conditional rv is the sum of two rv's: (a)K®x\ 

and E(ti, t2). The simulation of K from II to 15 is straightforward because their pgf's have closed 

form and Taylor expansions can be taken to obtain the pmf's. For II and 12, K has a simple 

stochastic representation. For non-negative integer-valued K, (ot)K ® x\ is just the summation of 

the iid copies of K, thus, its simulation is rather straightforward. However, for positive-valued 
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K, it's not as clear as that for the non-negative integer-valued case. For P I , it's trivial because 

K is constant and the extended-thinning operation is just the constant multiplication. For P2, 

it's compound Poisson with exponential, thus, (cv)K ® x\ is another rv of compound Poisson with 

exponential. For P 3 to P5, we don't know of a simple approach for simulation. But we guess that 

they may be compound Poisson or Poisson mixture. This is under further study. Also E(t\,t2) is 

another concern in simulation. Recalling from Section 9.2, we find some examples where E(t\,t2) 

has a stochastic representation. One advantage of stochastic representation is that it leads to easy 

simulation. If both (a)K ® x\ and E(t\,t2) have stochastic representations, then we can simulate 

\X(t2) | X(ti) = x\] easily. Thus, it provides a direct and fast way to simulate the conditional 

random variable. The following are two examples. 

Example 12.1 (Poisson margins) Consider the stationary continuous-time GAR(l) process 

with representation 

X{t2)±e-^-tlKx{ti) + E{tut2), h<h, (12.5.2) 

where E(t\,t2) ~ Poisson ^ ( l — e - ^ ' 2 - ' 1 ) )^ , A, /z > 0. This process has Poisson(^j as the 

marginal distribution. Since the dependent term e -^' 2 -* 1^ * X(ti) and innovation term E(ti,t2) 

can be simulated directly, we can obtain the simulation of[X(t2) \ X{t\) = x\\ easily. 

We illustrate the simulation by generating a time series from this model on the equally-spaced 

time points: i j = i for i = 1,..., 100, with A = 2.15 and p, = 0.43. Hence, the marginal distribution 

is Poisson(5). Figure 12.6 shows one simulation. 

Example 12.2 (Gamma margins) Consider the stationary continuous-time GAR(l) process 

with representation 

. ( ft A- p - M * 2 - * l ) o \ 

X(t2) = e-^-^*X(h) + E(tut2), where 4>E{u,t2)(s) = I p + s J > (12-5-3) 
and the process with representation 

X(t2)= (e-*t*-V)K®X(t1)+E(tllt2), (12.5.4) 
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Figure 12.6: Simulation of a time series with length 100 from (12.5.2) with A = 2.15 and fi = 0.43. 
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where cf)E{tut2)(s) = ( f l + ^ - ^ - ' i ) ) , ) ' a n d t h e L T °f (e "(*2 i s 

//ere p.,8,0 > 0. .Bo/Ti models lead to Gamma(8,0) margins. In (12.5.3), we need only to simulate 

E(t\,t2). Its stochastic representation can be found in Example 9.3 which helps us to simulate this 

innovation. In (12.5.4), E{tx,t2) ~ Gamma (8,0/ ( l - e ^ 2 - * 1 ) ) ) , and (e'^2'^) K © x can be 

simulated by the stochastic representation in (9.2.5). 

Similarly, we simulate the time series from both models at time points: U = i where i = 

1,...,100, with p, = 0.54, 8 — 8.1 and 0 = 0.17. The marginal distribution is Gamma(8.1,0.17) 

with mean 47.65. Figure 12.7 shows the simulations. 

However, in many cases, we do not have a stochastic representation for E(ti,t2), and thus 

for \X(t2) | X(ti) = xi\. For example, for most GAR(l) processes with the binomial thinning 

operation, we only know the pgf forms of E(t\,t2), but don't know the stochastic representations. 

In this situation, we turn to the conditional distribution of [X(t2) \ X(ti) = x\], Fx^t2)\x(t1){x2 I ^I). 

Specifically, we can first simulate {a)K ®xi and E(t\,t2) according to their pmf or pdf separately, 

and then sum these two random numbers to get the desired simulation of [X(t2) \ X(t\) = x\\. For 

the stationary GAR(l) process with the binomial-thinning operation, once the pmf of marginal 

distribution" is known, we can obtain the pmf of innovation term and consequently the pmf of 

[X(t2) | X(t\) = xi). This enables us to simulate the stationary GAR(l) process with binomial 

thinning operation, in which the pmf of marginal distribution is known. As to simulation methods 

for (a)K ®x\ and E(t\,t2), refer to Rubinstein [1981] or other books on simulation. 

For the GAR(l) processes with the binomial thinning operation, once we know the marginal 

distribution and the parameter involved in binomial thinning, we can obtain the pmf of the inno

vation term E(t\,t2), as well as the conditional random variable [X(t2) \ X(ti) = x\\ in (12.5.1). 

These will allow us to simulate the innovation E(t\,t2) or the conditional random variable 

[X{t2) | X{h) = xi] directly. 

Secondly, we study the embedding approach. This approach is valid for the continuous-time 
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Figure 12.7: Simulation of time series with length 100 from (12.5.3) and (12.5.4). Both processes 
have Gamma(8.1,0.17) margins. 
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Markov processes with discrete states. The continuous-time GAR(l) processes with non-negative 

integer margins belong to this family. The feature of the path or realization of this kind of process 

is a random step function. It will stay at one state for certain time, then jump to another state, 

and so on so forth. The key points in embedding approach are 

• the distribution of sojourn time; 

• the probabilities of jumps to other states. 

These two probability structures are governed by the infinitesimal generator. 

For a continuous-time GAR(l) process model with non-negative integer margins, we can 

obtain its infinitesimal generator Q = (qij) by (8.1.6), where i,j = 0,1,2,— This infinitesimal 

generator Q is downwardly skip-free, namely qij = 0 if j < i — 1. We say the process is in state i if 

the path is taking value i. Count the starting state as the first jump, then denote the sojourn time 

of the Ith jump since beginning as 

T^={waiting time since the Ith jump to state i until next jump happens}. 

By (8.3.1), ~ Exponentialdg^il). Hence, we simulate by an exponential random number 

with parameter \qij\. Then, the process jumps to a state j other than i according to probability 

Qi,j/\Qi,i\- However, by the property of downwardly skip-free, we only need to consider the states 

{i — l,i + l,i + 2,...}. Repeating these two steps, we will obtain two sequences: one is state 

sequence {Si,S2,..., Si,...} and one is sojourn time sequence {T^,Tg^,... ,Tg1^,...}. Plotting 

two sequences on a plane as a step function, we will obtain the graph of a path of the continuous-

time continuous-time GAR(l) process model. 

From this path, we can get the equally-spaced or unequally-spaced time series at time points 

{ti,t2,...,tn}. Let 

j 

i=i 

If TJ < U < Tj+i, then X(ti) — Sj, where i = 1,2,... , n . The following is an example with the 

same model as Example 12.1. 
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Figure 12. <S: Simulation of a continuous-time path from (12.5.2) with A = 2.15 and p - 0. 
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Example 12.3 (Poisson margins) Consider the GAR(l) process in Example 12A with Poisson(X/'//) 

margins. According to Example 8.1, 

= - (A + ifJ>), qi,i+i = \ , « = 0,1,2,...; q i t i - i = in, i = 1,2,3, 

Hence, from i, the process will jump to i +1 with probability A/(A-H/i), and toi — 1 with probability 

ifi/(X + ifi). 

Choosing X — 2.15 and / i = 0.43, we simulate a continuous-time path for such a model. See 

Figure 12.8, which shows a simulation up to t = 3. 
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Chapter 13 

Applications and data analyses 

In this chapter, we analyze some real time series data to see the capability of the continuous-time 

generalized AR(1) process as the model. These real cases have equally-spaced or unequally-spaced 

time series data which are non-negative integers or positive real numbers. In practice, one approach 

for such kinds of data, is to transform them into real values, say logarithmic transformation, and 

then apply Gaussian time series models. By virtue of the generalized continuous-time AR(1) 

process, we can model the count or positive time series data directly. This brings a new approach 

to the real cases. Such a transition of methodology is analogous to that of linear model to generalized 

linear model approach. 

This new approach also brings new thinking for modelling time series data; that is, how we 

choose a model from the family of the continuous-time generalized AR(1) process. We give a brief 

discussion in Section 13.1 before we proceed to the real data in the subsequent sections. In Sections 

13.2 to 13.4, we analyze real data and illustrate the modelling theory. 

13.1 Introduction to modelling procedure 

In this section, we summarize the procedure to model stationary count or positive-valued time 

series (equally-spaced or unequally-spaced) with the GAR(l) process, because it is different from 
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Gaussian time series modelling. Some special features arise when we use the GAR(l) process as 

the model. 

First, we need to investigate the marginal distribution. This is the significant difference from 

Gaussian time series modelling where we never have this question due to the normal assumption 

on the marginal distribution. However, for count or positive-valued time series, we need to know 

what kind of distribution could be the marginal distribution. This is important information to 

guide the model choice. To this end, we will check the histogram, mean, variance and skewness of 

the observations so that we can find the proper choices, e.g. Poisson, negative binomial or Gamma, 

for the margins. No doubt, the support of the marginal distribution of the time series data is 

one of the major factors to motivate us to use the GAR(l) process model. For example, it is not 

appropriate to use Gaussian time series model for the count time series if the observed values are 

not large; also it is not appropriate for positive-valued time series if the variation is large. In such 

situations, we may try the GAR(l) models with non-negative integer support margins. However, 

this is not the absolute rule. Sometimes, for the positive-valued time series, say the daily price 

series in economics, if the variation is small, we may be satisfied with the Gaussian time series 

model, because the normal marginal distribution can cover that range with probability near one. 

However, if the variation is large, the normal marginal distribution is no longer convincing. Thus, 

besides the support of the marginal distribution, the variation is also a major factor to influence 

us to use the GAR(l) process model or not. Empirically, we would try the GAR(l) process model 

for time series with large variation compared with its mean. With the information on suitable 

marginal distributions, we can find the corresponding choices of GAR(l) processes. 

Secondly, we check the serial dependence or auto-correlation. This can be done by the 

ACF plot, sunflower plot, randomized quantile transformation plot, diagonal P-P plot, or other 

analytical methods. If time series data can be modelled by a GAR(l) process, then its auto

correlation coefficients will be positive and geometrically decreasing as the time lag increases. This 

can be seen by rough calculations: suppose for an equally-spaced time series, the lag one auto

correlation coefficient is 0.8, then the lag 2 to lag 6 auto-correlation coefficients will be 

0.82 = 0.64, 0.83 = 0.512, 0.84 = 0.41, 0.85 = 0.328 and 0.86 = 0.262. 
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Hence, time series data with such high lag one auto-correlation coefficient and medium sample size 

will show the geometrical decrease in the first few lags, then fluctuate within a small range in its 

ACF plot. Therefore, for the sample ACF plot, we only focus on the first few lags. The evidence 

of fast decrease in the ACF plot would suggest the GAR(l) process models may be appropriate. 

In general, the ACF plot can also help us to check for seasonality or non-stationarity in the time 

series. 

If the evidence of serial dependence is strong enough, we could fit a GAR(l) process model to 

the data. Because sometimes different GAR(l) processes can have the same marginal distribution, 

we may have many choices of models for the data. To find the proper models, we need to study 

the mechanism or behavior of the underlying process for real problems. Such information will help 

us to pin down the reasonable models. If no such information is available, we can try those models 

with the required marginal distributions found in the first step. In this situation, if the involved 

self-generalized rv K is not unique, then the preferred model is the simpler one. 

These fitted GAR(l) models will be diagnosed with the diagonal P-P plot proposed in 

Section 12.1. This is another difference from Gaussian time series modelling where we usually 

check the ACF plot for the estimated residuals. But now we think that any residual concept is 

not universally appropriate in the diagnosis of GAR(l) models, although it might be still valid for 

some specific models. In this situation, we will draw the diagonal P-P plots for lag 1 to lag k where 

the positive integer k is chosen to be adequate, say 6. 

The data to be studied in the following sections don't involve any covariates, although these 

often exist in longitudinal studies. We will be developing methods in the future to incorporate co

variates. The examples in this chapter are mainly illustrative and on trial to obtain some necessary 

experience with the use of the GAR(l) model. 

13.2 Manuscript data study 

In this section, we shall analyze an unequally-spaced count time series which records the number 

of manuscripts in the refereeing queue of Prof. H. Joe. 
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Table 13.1: Summary of the frequencies of the number of manuscripts in refereeing queue. 

Number 0 1 2 3 4 5 6 7 8 9 

Frequency 8 17 25 19 6 8 0 0 1 1 
Proportion 0.094 0.200 0.294 0.224 0.071. 0.094 0.000 0.000 0.012 0.012 

Prof. Joe has been serving as a referee for many academic journals for many years. Every 

year he receives a certain number of manuscripts now and then. Upon receiving a manuscript, 

he will immediately decide to be a referee or not. The time series data (unequally-spaced) since 

January 1, 1990 is based on retrospective construction from dates of correspondence. The recording 

dates are given as the first day of a month because the exact month but not the day can be recovered. 

After March 1999, the record keeping was better and the data are monthly. Here we have the data 

until December 2000 so that the total length is 11 years. Prof. Joe feels that his refereeing process 

is relatively smooth with no obvious increase or decrease, or other non-stationary patterns in this 

period. The data are given in Appendix A . l . 

We plot the manuscript number against date (in month) in Figure 13.1, where the starting 

time 0 corresponds to January 1, 1990. Here we choose month, rather than day, as the time unit 

because of the data recording feature and the sake of simplicity. Next, we treat this series data 

as univariate data, and check its histogram. The sample size n = 85, sample mean is 2.412 and 

sample variance is 2.793. The frequencies and proportions (rounded) of the observed number of 

manuscripts are summarized in Table 13.1. Since the sample distribution is skewed, and sample 

mean and variance are quite close, it may suggest the Poisson for the marginal distribution. In 

fact, ignoring dependence, Poisson(2.412) does fit the manuscript data very well. See Figure 13.2 

for the evidence of the skewed distribution and Poisson fit. 

Is this data set just an independent series, or to the contrary, a serially dependent se

ries? If there is no serial dependence, we will be happy to end with the modelled distribution 

of Poisson(2.412). Otherwise, further modelling is needed. Because these time series data are 

unequally-spaced, we have to carefully select these pairs with a given monthly lag. The number of 

these pairs are summarized in Table 13.2. These groups of pairs lead to the ACF plot in Figure 
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Time (month) 

Figure 13.1: The time series plot ofrefereeing queue length of manuscripts. 

Table 13.2: Summary of the number of pairs by lag for the manuscripts data. 

Lag month 1 2 3 4 5 6 7 8 9 10 11 12 

Number of pairs 38 76 38 70 40 65 42 60 42 58 41 55 
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Figure 13.3: The ACF plot of the manuscript data. The dotted horizontal line indicates the 95% 
boundary of the estimate of correlation coefficient for 85 pairs of independent Poisson(2AYl) ran
dom variables; the boundary is obtained by simulation. 

13.3. The ACF plot shows positive auto-correlation in the first couple of points, and then decreases 

quickly to the 95% upper limit of the estimated correlation coefficient of 85 pairs of independent 

Poisson(2.412) random variables. The 95% critical value is based on 10,000 simulations. We choose 

the sample size 85 which is bigger than the number in each lagged pair group. Thus, it will lead to 

a conservative boundary for all lagged pair groups. Besides, we do not observe any seasonality or 

trend pattern on the ACF plot. This phenomena suggests that there is a strong serial dependence 

and the series could be modelled by a GAR(l) process. The serial dependence is also disclosed by 

the sunflower plot, randomized quantile transformation plot, and diagonal P-P plot. To save space, 

we only show them for lag 1 to 3 months; see Figure 13.4. Al l plots for lag one month pairs show 
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Lag 1 Month Lag 2 Months Lag 3 Months 

0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 

Bivariate (independent margins) Bivariate (independent margins) Bivariate (independent margins) 

Figure 13.4: The sunflower, randomized quantile transformation, and diagonal P-P plots for the 
pairs with lag 1, 2 and 3 months from the manuscript data. 
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strong auto-correlation. As the lag increases, the correlation pattern gradually diminishes. 

Now we face the modelling work for this unequally-spaced count time series. Actually, the 

underlying refereeing process is a continuous-time process {X(t);t > 0}. We may use a simple birth-

death process to approximate the refereeing process, where the infinitesimal transition probabilities 

are supposed to be 

Pr[X(t + h)=x + l\ X(t) =x] = \h + o(h), x > 0, A > 0, 

Pv[X(t + h)=x-l\ X{t) =x] = \ixh + o(h), x>l, fj, > 0, 

Pr[\X(t + h)-x\>l\ X(t) =x} = o{h), x>0. 

Here h is small. The arrival process is assumed to have constant intensity A, while the intensity for 

the leaving, /xx, is assumed to be proportional to the number of current manuscripts in the queue. 

The later is because of the naive assumption that Prof. Joe would speed up if more manuscripts 

are accumulated. Such a model has stationary distribution Poisson(A//x), and has GAR(l) form 

representation (with binomial-thinning operation). See Example 8.1, (8.1.7) and relevant discussion 

in Section 8.2. Therefore, the background information of the underlying refereeing process leads to 

the following GAR(l) process to be the approximation of reality: 

X(U+i) = e~^u+^ *X(ti) + E{tuti+1), z = l ,2 , . . . ,84. (13.2.1) 

where E(ti,ti+\) ~ Poisson [l - e -^*'+1_ t')] and the marginal distribution is Poisson(A/JJ). 

Next, we turn to estimating the parameters A and /x For an estimation approach like M L E , 

CLS, CWLS2, as well as diagonal PLS, since no explicit forms of estimates, we need initial values 

of the parameters to find the solutions when minimizing or maximizing the non-linear objective 

functions. It's better to find a good initial point which is close to the true parameter vector. In this 

case, we have a simple way to find the initial point. By virtue of the marginal estimating approach 

(refer to Section 10.4.), we can first estimate «o = or n, 

84 2 1 8 5 

RcLS(ME){aa) = Y {^Xi+1 ~ao+1~Uixi ' s = ~S X i ' a o G ( 0 , l ) . 
i=l i=l 

The plot of the function RcLS(ME)(ao) is shown in Figure 13.5. This method provides the estimate 
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Figure 13.5: The plot of function RcLS{ME){ao) °f t h e manuscript data. 

of ao: 0.695, or equivalently, - log 0.695 = 0.384 for p. Since the mean of marginal distribution 

A(p, A) equals \/p, which we have already estimated as x — 2.412 in above RcLS(ME)(ao)\ thus, 

the estimate for A is 2.412 x 0.384 = 0.878. This type of estimate is called the CLS(ME) estimate. 

The point (p, A) = (0.384,0.878) is now the initial point for solving other types of estimates. 

With this initial point, we use numerical iterative methods to obtain estimates of the ML, 

CLS, CWLS2 and diagonal PLS. They are listed in Table 13.3. For the CWLS2 estimate, we choose 

c = 1 and d = 0.5 in target function 

8^ {[Xi+l - X/p] - C%+1-U[Xi - X/p]f 

RCWLS2 = E • 
i=l 

For the diagonal PLS estimate, we choose those pairs with lag 1 month. From this table, we can 

roughly see that p is likely in (0.4,0.5), A is likely in (0.8,1.4), and the marginal mean is likely in 

the range (2.0,3.0). 

For the M L E and diagonal PLS approach, conditional probabilities are involved. We use 
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Table 13.3: Summary of different estimates of parameter p and A in the GAR(l) model for the 
manuscript data. 

Estimation Type M A A(p,X) = \/p 
CLS(ME) 0.384 0.878 2.286 
M L E 0.448 1.002 2.237 
CLS 0.378 0.793 2.098 
CWLS2 0.492 1.027 2.087 
Diagonal PLS 0.481 1.405 2.921 

the following recursion to compute them: 

Pv[X(ti+1) = xi+x | X{U) = Xi] = e - " ( * i + i - * 0 • Pr[X(ti+1) = xi+1 - 1 | X(U) = x 4 - 1] 

+ e-MU+i-ti)) . Pv[X(ti+1) = | X(U) = X i - 1], 

where Xi = 1, 2, . . . and Xj+i = 0,1, 2,. . . . Hence, with 

Pr[X{ti+l)| = I | X{U) = 0] = Pi[E(ti,U+i) = I], / = 0 , l , . . . , x m , 

we can determine Pr[X(tj+i) = Xj+i | X(ti) = Xj] for any i > 0. This recursion formula is also 

helpful in computing the bivariate cumulative distribution function of the model GAR(l) process, 

and hence for the diagonal P-P plots in model diagnosis. 

We have obtained a few estimates of parameters for the GAR(l) model. A natural question 

is that how good is the fit of the model plugged in with different estimates for the manuscript data. 

To diagnose the fitted models, we resort to the diagonal P-P plot. For each estimating method, we 

will draw the diagonal P-P plot for the pairs of manuscript data with lag 1,2,...,/ month (/ is an 

adequate positive integer). If the model fits the data well, then all diagonal P-P plots will display 

the ideal pattern that all points fluctuate around the diagonal straight line at 45°. Otherwise, the 

fitted model is not good. To save space, we only draw lag 1 to 3 month plots for the five estimating 

methods; see Figures 13.6 and 13.7. 

From these diagnostic plots, we see that none of the fitted models by five estimating methods 

is ideal. Each model shows some minor discrepancies The first four methods (except for the diagonal 
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Lag 1 Month Lag 2 Months Lag 3 Months 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Bivariate Cdf (Poisson GAR(1)) with ( 0.384,0.878 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.384,0.878 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.384,0.878 ) 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Bivariate Cdf (Poisson GAR(1)) with ( 0.378 ,0.793 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.378 ,0.793 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.378 , 0.793 ) 

Figure 13.6: Model diagnosis for manuscript data: diagonal P-P plots for estimates of the CLS(ME) 
(top row), MLE (middle row) and CLS (bottom row). 
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Lag 1 Month Lag 2 Months Lag 3 Months 

Bivariate Cdf (Poisson GAR(1)) with ( 0.481 ,1.405 ) Bivariate Cdt (Poisson GAR(1)) with ( 0.481 ,1.405 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.481 ,1.405 ) 

Figure 13.7: Model diagnosis for manuscript data: diagonal P-P plots for estimates of the CWLS 
(top row) and diagonal PLS (bottom row). 
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PLS method) seem to overestimate the autocorrelation coefficient of lag 1 month. There could be 

a couple of possible reasons. First, the number of pairs with lag 1 month is small, only 38, which 

may lead to an inaccurate estimate of bivariate cumulative distribution function. Secondly, the 

total sample size 85 may not be big enough to obtain more accurate estimates of parameters for 

the GAR(l) model. Thirdly, the specified GAR(l) model may not approximate reality very well. 

If this is the case, we have to figure out a better model. 

For the possible reason of inaccurate estimates of parameters, we have tried a robust method. 

It seems not to be helpful in this problem. Thus, we set up grid points for (/i, A) € (0.4, 0.5) x 
(0.8,1.4) and find a better one by looking into the diagonal P-P plots. It seems that (//, A) = 
(0.433,1.04) leads to a better GAR(l) model from the view of diagonal P-P plot. See Figure 13.8. 

Note that estimates based on a graphical plot are not asymptotically efficient. 

This study shows that the diagonal P-P plot is an intuitive and useful graphical tool in 

diagnosing or building GAR(l) process models. 

13.3 W C B claims data study 

The WCB claims data was originally studied by Freeland [1998] in his Ph.D thesis. Dr. Freeland 

applied the Poisson GAR(l) model, i.e., the discrete-time version of the model in Section 13.2, to 

the data and made predictions based on the fitted models. These data are given in Appendix A.2. 

The data record the monthly claim number of workers who got injured during work time and 

collect the short-term disability benefit (STWLB) from the Workers' Compensation Board (WCB) 

of the province of British Columbia, Canada. These data are reported from one city center, the 

Richmond claims center of WCB from the years 1985 to 1994. According to the industry category 

and injury type, the claim counts are classified into six time series: CO (heavy manufacturing, burn 

related injury), C l to C5 (logging corresponding to five different types of injury). Other series 

(Cla, CIA to C5A) in the dataset are relevant information for C l to C5. It is well known that in 

British Columbia, logging is a seasonal industry while heavy manufacturing is not. 
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Lag 1 Month Lag 2 Months Lag 3 Months 

w.-r v.w •-v — — 
Bivariate Cdf (Poisson GAR(1)) with ( 0.433 ,1.04 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.433 ,1.04 ) Bivariate Cdf (Poisson GAR(1)) with ( 0.433 , 

Figure 13.8: Model diagnosis for manuscript data: diagonal P-P plots for the estimate (/z, A) -
(0.433,1.04). 
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Unlike the manuscript data in previous section, all series in this data set are equally-spaced. 

This feature brings convenience for data analysis. Freeland [1998] applied the stationary Poisson 

GAR(l) model for the series CO, and non-stationary Poisson GAR(l) models for C l to C5 with 

a seasonal covariate adjustment. However, only C3 was modelled by the Poisson GAR(l) model 

with Poisson innovations whose means depend on the season. We investigate the seasonality of 

C3 again. We think that the seasonality might not be large enough to cause the dispersion of the 

marginal distribution for the series C3. Hence, we want to try other stationary GAR(l) models 

which have negative binomial or generalized Poisson marginal distributions for the series C3. We 

do so to see whether these new stationary GAR(l) models are good enough for the data. If they 

are adequate, they are simpler than non-stationary models. 

As pointed out by Freeland [1998], the claim counts of each month can be decomposed as 

two parts: one is from the claimants from previous month, one is from arrival of new claimants. 

Both parts are random, and seem to be independent. It is reasonable to think that the number 

of continuing claimants depends on the number of claimants in the previous month. Thus, this 

leads to the type of Galton-Watson process with immigration (see Nanthi [1983], p. 180-181 for the 

definition) as the model, with a branching term and an immigration term. For each claimant, we 

can make a simple assumption that this person continues to collect the STWLB in next month in 

probability a. Hence, the resulting model based on this simplification is the GAR(l) model with 

the binomial thinning operation, namely 

X{ti+i) = a * X{U) + Ei, i = l,...,n. (13.3.1) 

This is the model of generalized AR(1) time series. If Ei is distributed as Poisson, then it leads to 

Poisson GAR(l) model as in Section 13.2. Freeland [1998] had chosen the Poisson GAR(l) model 

with constant a for all series CO, C l to C5, and Poisson innovation Ei whose means are exponential 

with sinusoid exponents, to account for the influence of season for C l to C5. 

Now we investigate the series C3. The summary statistics regarding this series are given in 

Table 13.4. The histogram of C3 is plotted in (a) of Figure 13.9. From the histogram, we see it is 

skewed. However, the variance of 11.8 is quite a bit larger than the mean of 6.13, thus, leading to 

a big coefficient of variation of 1.92. Hence, the Poisson may not be appropriate for the marginal 
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Table 13.4: Summary of the series CS in WCB claims data. 

Sample size Minimum Maximum Mean Variance 
120 1 21 6.13 11.8 1.92 
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Figure 13.9: The histogram of the series CS (left), and 1000 simulated sample variances from 
Poisson(6.13); the dotted vertical line is the sample variance of CS (right). 
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distribution. This is verified by (b) of Figure 13.9, where the variance of C3, 11.8, is far away from 

the simulated sample variances of Poisson(6.13) with sample size 120. Such a dispersion index leads 

us to consider the negative binomial and generalized Poisson distributions. Next we treat the series 

C3 to be univariate data, and try to fit them by the NB(/J,7) and GP(f9,v7) distributions. For the 

NB(/3,7) distribution, the mean A and variance V are 

A = B1(l-1)-1, V = 0j(l - 7 ) - 2 , (13.3.2) 

and for the GP(0,?7) distribution, they are 

A = 0{l-ri)-\ V = 0(l~rj)-3. (13.3.3) 

By the method of moments, we obtain their estimates 

0 = 6.64, 7 = 0.48; $ = 4.42, rf =0.28, 

as well as the P-P plots of the series C3 against NB(6.64,0.48) and GP(4.42,0.28). See Figure 

13.10. These P-P plots show that the Poisson distribution is not suitable, but that the negative 

binomial and generalized Poisson distributions are fairly good univariate fits. 

Next we turn to check the autocorrelation in series C3. In Figure 13.11, (a) shows the time 

series plot and (b) shows the ACF plot. From the ACF plot, the geometrical decrease is very 

obvious, and indicates that serial dependence exists. The serial dependence is also detected by 

sunflower plots, randomized quantile transformation plots and diagonal P-P plots. For the sake 

of space, we only show them for lag 1 month to lag 3 months; see Figure 13.12. The ACF plot 

shows that there exists seasonality in the series C3, as pointed out by Freeland [1998]. There 

is a yearly period, but the yearly dependence is not strong. Hence, using the stationary model 

to approximate non-stationary reality may work in this case. Thus, we finally decide to try two 

GAR(l) models with NB(/3,7) and GP(6,r)) margins respectively. This means that we choose two 

kinds of innovations in (13.3.1) which do not have an explicit form for the pmf. 

Because each of the two models has three parameters, the CLS approach is not suitable, 

and thus, we try the CGLS approach. By (10.2.19), this method leads to 

a = -0.023, b = 0.929, c = 1.587. 
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V | , , I , , 1 1 H H 1 1 1 < 1 - 1 

0 0 0 2 0 4 0 6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
CDF of Poisson(6.13) CDF of NB(6.64, 0.48) CDF of GP(4.42, 0.28) 

Figure 13.10: The P-P plots of CS in WCB claims data against Poisson{Q.13) (left), 7Y5(6.64,0.48) 
(middle) and GP(4.42,0.28) (right). 
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Figure 13.11: The time series plot (top) and ACF plot (bottom) of CS in WCB claims data. 
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Lag 1 month Lag 2 months Lag 3 months 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Bivariate (independent margins) Bivariate (independent margins) Bivariate (independent margins) 

Figure 13.12: Serial dependence: sunflower plots (1st row), randomized quantile transformation 
plots (2nd row) and diagonal P-P plots (3rd row) of pairs in CS with lag 1, 2 and 3 months. 
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However, it is impossible to estimate the positive parameter a (= ^/a) by a negative number. 

Hence, the CGLS approach fails for this data set. We then try the method of moments approach. 

According to (10.4.3), 
^ 120 ^ 120 ^ 119 

R * = 120 = 6 " 1 3 ' *2 = i 2 0 ? > ' ? = 49.32, Rl2 = J > ^ + 1 = 44.27, 
i=l i=l i=l 

which lead to estimates of the marginal mean A , marginal variance V and a of 

A M = Ri = 6.13, VM = R2-R\ = 11-7, aM = = °-57-

By (13.3.2) and (13.3.3), we obtain 

PM = A\/(VM - A M ) = 6.76, jM = 1 - A M / V M = 0.48; 

0M = \ I A M / V M = 4.44, TJM = 1 - ^ A M / V M = 0.28. 

For the fitted GAR(l) models, we need to know the bivariate cdf so that we can draw 

diagonal P-P plot for model diagnosis. Suppose t < t'. Then, 

Pv[X(t)<x,X(t')<y] = £ Pr[X(t) = i,X(t')=j] 
i<x,j<y 

i=0 \j=0 J 

In Section 13.2, we have noticed that the pmf of innovation E(t,t') will determine all conditional 

probabilities Pr[X(t') — j | X(t) = i] > 0). Can we find the pmf of innovation by the marginal 

distribution for the GAR(l) process with binomial thinning operation? The answer is yes. To 

obtain the pmf of E(t,t'), we will take advantage of the stochastic representation for the GAR(l) 

process: 

X{t') = a*X(t)+E(t,t'). 

By this representation, we have 

Px[X{1?) = 0] = Pr[a *X{t)+ E(t, t') = 0] = Pr[a * X(t) = 0] • Pv[E(t, t') = 0], 
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Pv{X(t')=j] = Pv[a*X(t) + E(t,l/)=j] 
3 

= Pr[a * X(t) = 0] • Pv[E(t, t') = j] + ̂  Pr[a * X(t) = 1} • Pi[E(t, t') = ;-/], 
i=i 

where j > 0. Thus, 

Pv[E(t,t)-0\ - P l [ a ^ x { t ) = o y 

p < P U _ _ Pr[*(Q = j] - SLi Pr[« * A-(t) = f] • Pr[E(t, = j - 1} 
f T [ ^ { t , t ) - j i - Pv[a*X(t) = 0] 

for j = 1,2,.... Because the stochastic operation is binomial thinning, it is easy to find that 
oo 

Pr[a * X(t) = 0] = Px[X(t) = 0] + - a) f c Pr[X(i) = fe], 
k=i 

Pv[a*X(t)=l] = f2(k

l)al(1-a)k~lpTlX(t) = k}> l > 0 -

Figures 13.13 and 13.14 show the diagonal P-P plots of the series C3 against the fitted NB 

GAR(l) and GP GAR(l) models. They are shown for lags 1 month to 6 months. From these plots, 

it seems that both models fit the data well. Compared with the non-stationary GAR(l) model in 

Freeland [1998], they have a simpler structure. 

Since the previous numerical method of probability calculation allows us to compute the 

conditional probability Pr[X(t') = j | X(t) = i] > 0), we can also try the M L E method with 

the initial value being the estimates from the method of moments approach. This leads to 

5 M L £ = 0.50, /3MLS = 8.82, j M L E = 0.41 

for the NB GAR(l) model, and ' 

OLMLE = 0.50, OMLE - 4.71, T\MLE = 0.23 

for the GP GAR(l) model. Their diagonal P-P plots are shown in Figures 13.15 and 13.16. These 

plots are roughly ok, but show slight discrepancies with fitted models. 

Now we have two kinds of fitted models at handivNB GAR(l) model and GP GAR(l) . 

Which one is better? We compare them with the AIC, and follow the convention to check two 
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Lag 1 month Lag 2 months Lag 3 months 

Bivariate Cdf (NB GAR(1)) Bivariate Cdf (NB GAR(1)) Bivariate Cdf (NB GAR(1)) 

Figure 13.13: Model diagnosis for WCB claims data: diagonal P-P plots of CS against the fitted 
(method of moments) NB GAR(l) model. 
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Lag 1 month Lag 2 months Lag 3 months 

Bivariate Cdf (GP GAR(1)) Bivariate Cdf (GP GAR(1)) Bivariate Cdf (GP GAR(1)) 

Figure 13.14: Model diagnosis for WCB claims data: diagonal P-P plots of CS against the fitted 
(method of moments) GP GAR(1) model. 
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Lag 1 month Lag 2 months Lag 3 months 

Bivariate Cdf (NB GAR(1)) Bivariate Cdf (NB GAR(1)) Bivariate Cdf (NB GAR(1)) 

Figure 13.15: Model diagnosis for WCB claims data: diagonal P-P plots of C3 against the fitted 
(MLE) NB GAR{1) model. 
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Lag 1 month Lag 2 months Lag 3 months 

Bivariate Cdf (GP GAR(1)) Bivariate Cdf (GP GAR(1)) Bivariate Cdf (GP GAR(1)) 

Figure 13.16: Model diagnosis for WCB claims data: diagonal P-P plots of CS against the fitted 
(MLE) GP GAR(l) model. 
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fitted models with MLE. We obtain 

AIC for NB GAR(l) model = 576.6, AIC for GP GAR(l) model = 578.4. 

These AIC values are only slightly different. Thus, fairly speaking, the two models are equally 

good. It may depend on user's preference or other considerations to choose one of them. 

Forecasting is one of the concerns in this study. We now give a brief discussion based on 

the fitted GP GAR(l) model by method of moments approach. We want to forecast the number of 

claimants in the next month conditioned on the current month for the year 1994. Why do we just 

make one month prediction? This is because that the autocorrelation is geometrically decreasing 

which implies short memory. Hence, a fairly long time prediction may not be useful. 

The year 1994 has observations: 

6, 2, 4, 1, 6, 5, 3, 2, 2, 2, 9, 5. 

The corresponding preceding observations are 

4, 6, 2, 4, 1, 6, 5, 3, 2, 2, 2, 9. 

We calculate the conditional pmf and cdf of X(t') given X(t) = x, where the time difference t' — t 

equals one month. They are given in Tables 13.5 and 13.6 respectively. Based on these two tables, 

we make a one month prediction of the number of claimants by the approach of conditional mode, 

conditional median and 50% conditional prediction interval (PI). The 50% conditional prediction 

interval may not be exactly 50% because of discreteness. In fact, we cut both sides with probability 

being less or equal to 25%. Thus, the real probability to construct the prediction intervals is bigger 

than or equal to 50%. The predicted results are given in Table 13.7. For the conditional mode 

predictions, the absolute error is 

|6 -3 | + |2-4 | + | 4 -1 | + |1-3 | + |6 -1 | + |5-4 | + |3-4 | + |2-2 | + | 2 -1 | + | 2 -1 | + | 9 -1 | + |5-6 | = 28, 

while for the conditional median predictions, the absolute error is 

|6-4 | + |2 -5 | + |4 -3 | + |1-4 | + |6-2 | + |5-5|.+ |3-4 | + |2 -3 | + |2 -3 | + | 2 -3 | + | 9 -3 | + |5 -7 | =25. 
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Table 13.5: Estimated conditional probabilities: Pr[X(t') = y \ X{t) =.x]. The highest probability 
in each column is highlighted with an asterisk. 

x=l x=2 x=3 x=4 x=5 x=6 x=9 
y=0 0.203 0.087 0.037 0.016 0.007 0.003 0.000 

y=i 0.204* 0.203* 0.137 0.080 0.044 0.023 0.003 
0.171 0.190 0.197* 0.163 0.116 0.075 0.014 

y=3 0.132 0.154 0.175 0.188* 0.174 0.141 0.045 
y=4 0.096 0.116 0.138 0.159 0.175* 0.174* 0.094 
y=5 0.067 0.083 0.102 0.122 0.143 0.161 0.141 
y=6 0.045 0.057 0.072 0.089 0.108 0.128 0.160* 
y=7 0.030 0.039 0.049 0.062 0.078 0.095 0.148 
y=8 0.020 0.025 0.033 0.042 0.054 0.067 0.119 
y=9 0.013 0.017 0.022 0.028 0.036 0.046 0.088 

Table 13.6: Estimated conditional cdf: Pr[X(t') < y \ X{t) = x}. The median in each column is 
highlighted with an asterisk. 

x=l x=2 x=3 x=4 x=5 x=6 x=9 
y=o 0.203 0.087 0.037 0.016 0.007 0.003 0.000 
y=i 0.406 0.290 0.175 0.096 0.051 0.026 0.003 
y=2 0.578* 0.480 0.372 0.259 0.166 0.100 0.017 
y=3 0.709 0.634* 0.546* 0.447 0.340 0.241 0.062 
y=4 0.805 0.751 0.684 0.606* 0.515* 0.415 0.156 
y=5 0.872 0.834 0.786 0.728 0.658 0.577* 0.297 
y=6 0.917 0.891 0.858 0.817 0.766 0.705 0.457 
y=7 0.947 0.930 0.908 0.880 0.844 0.800 0.605* 
y=8 0.966 0.955 0.941 0.922 0.898 0.867 0.724 
y=9 0.979 0.972 0.962 0.950 0.934 0.913 0.813 

Table 13.7: One month predictions: ymode, Vmedian and yPI. 

x 4 6 2 4 1 6 5 3 2 2 2 9 

I/mode 3 4 1 3 1 4 4 2 1 1 1 6 
Vmedian 4 5 3 4 2 5 4 3 3 3 3 7 

VPI [2,5] [4,6] [1,4] [2,5] [1,3] [4,6] [3,5] [2,4] [1,4] [1,4] [1,4] [5,8] 

y 6 2 4 1 6 5 3 2 2 2 9 5 
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Table 13.8: Summary of the series of daily maximum ozone concentration. 

Sample size Minimum Maximum Mean Variance Variance/Mean 

110 19.5 106.7 48.1 288.5 6.0 

For the conditional prediction intervals, we count the number of intervals which contain the real 

observations. This number is 7, hence the successful prediction rate is 7/12 = 58.3%, close to the 

actual probability we use to construct these prediction intervals. 

13.4 Ozone data study 

In this section, we study a positive-valued time series from a project on tropospheric ozone fore

casting in the Lower Fraser Valley, British Columbia, Canada. 

These data are daily maximum ozone concentrations (thus, positive-valued) collected at the 

Abbortsford ozone station in the summer of 1985 from May 1 to August 18 inclusively, and can 

be considered roughly stationary in this interval. See Appendix A.3. They are just part of a large 

data set in this environmental study. 

The summary statistics of these ozone data are presented in Table 13.8. The ratio of the 

variance to the mean, 6.0, is large, which suggests a marginal distribution with large dispersion. 

In addition, it is expected to see the skewed pattern of the distribution of daily maximum ozone 

concentration because they are maxima. The histogram verifies the skewness; see the left subplot 

in Figure 13.17. The Gamma distribution is often applied in modelling skewed positive data, and 

can have large dispersion. Thus, we fit the margins of the process by Gamma(<5, B) with 

fx(x;6,P) = - ^ L ^ V ^ , x, 6, 0 > 0; 
T{b) 

^ = {pTl) '  E ( x ) =  V a r ( x )  =  5 I 5~ 2-

By the method of moments, we can obtain the estimates 

?=8 .03 , 0 = 0.17. 
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Figure 13.17: The histogram of the daily maximum ozone concentration, and the P-P plot against 
Gamma(8.03,0.17). 
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Figure 13.18: The time series plot and ACF plot for the daily maximum ozone concentration. 

This Gamma(8.03,0.17) distribution fits the data well. See the right subplot in Figure 13.17. 

Our next concern is whether there exists serial dependence in the series of daily maximum 

ozone concentration. The time series plot and ACF plot are shown in Figure 13.18. The ACF plot 

shows an obvious pattern of geometrical decrease. The serial dependence is also confirmed by the 

scatterplot and diagonal P-P plot with lagged days. We show them for lag one day to lag three 

days in Figure 13.19. 

Why does there exist serial dependence? Is there any scientific explanation for such a 

phenomena? To this end, we study the mechanism of formation and decomposition of ozone in 
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Lag Day = 1 Lag Day = 2 Lag Day = 3 

Bivariate (independent margins) Bivariate (independent margins) Bivariate (independent margins) 

Figure 13.19: The scatterplots and diagonal P-P plots of lag one day to three days for the daily 
maximum ozone concentration. 

447 



troposphere. Nitrogen dioxide (NO2) is photodissociated by solar radiation to be nitric oxide (NO) 

and ground state oxygen atoms, 0 ( 3 P) : 

NO2 + h- v —+ NO + 0 ( 3 P) , 

where h • u, the product of Planck's constant h and the frequency v of the electromagnetic wave 

of solar radiation, presents the energy from solar radiation. Then oxygen atoms combine with 

molecular oxygen to form ozone: 

0(3P) + 02 + A 0 3 + M. 

Ozone will be photodissociated by near-ultraviolet solar radiation to form an excited oxygen atom, 

OfD): 

O 3 + h- v—> O2 + 0(lD). 

On the other hand, the nitric oxide can react with peroxy (R02-) to form nitrogen dioxide: 

R02- + NO + —> NO2 + RO-. 

This process is a chain reaction. The solar radiation plays a key role in this process. Due to the 

alternating of day and night, the daily ozone concentration curve against hour is cyclic. It increases 

from a low value at midnight, and reaches a maximum in the afternoon, then decreases in the night. 

For more details, see NRC (National Research Council) [1992], p. 24-37. 

Based on the photochemical mechanism of ozone, we can make up a simple reasoning. The 

amount of today's NO2 consists of two parts: one is the newly formed NO2 from NO reacting 

with R02-, one is emitted NO2 from other sources. The whole NO in the troposphere, of course, 

includes the NO decomposed from NO2 yesterday, which roughly accounts for the amount of 

yesterday's ozone. Roughly, the daily maximum is positively associated with the daily amount of 

ozone. Thus, the newly formed NO2 from NO links today's maximum with yesterday's maximum, 

a positive association. Thus, today's maximum can be expressed in two terms: one is dependent 

on yesterday's maximum, and one is innovation. The emitted NO2 and part of the NO which is 

not involved in yesterday chemical reaction, can be accounted for the innovation. 
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Note that the daily maximum ozone concentration series is not a continuous-time process. It 

is discrete-time, artificially divided by day. But from the continuous-time GAR(l) process, we can 

obtain the discrete-time GAR(l) process which may be appropriate to model such data. Because 

of the feature of Gamma margins as we have considered, we try the following GAR(l) model with 

Gamma(<5, B) margins: 

X(ti+1) = (a)K®X(U)+Ei, (13.4.1) 

where the self-generalized rv K is from P 2 with LT 

<j>K(s;a) = e x p ( - - — " ( 1 , 1, 0 < 7 < T^15-r K V ' P \ ( l - 7 ) + ( l - a ) 7 s J ' - ; - l + /3 

When 7 = 0, K becomes the self-generalized rv from P I , and (13.4.1) is 

X(ti+1) = a»X(ti) + Ei. (13.4.2) 

(13.4.1) is a big model family as 7 changes in [0,(1 + /3) - 1]. Although the process has different 

dependence structure for different 7, each process of this family has the common conditional mean 

B[X(ti+1) I X(U) = = SB-^l -a) + axi 

no matter what the value of 7. In addition, 7 is a fixed parameter in P 2 definition. Hence, we 

first ignore it by assuming it being the boundary value 0 or (1 4- B)~l. Applying the method of 

moments, we obtain the estimates 

?=8.10, 0 = 0.17, 3 = 0.58, 

for all the models in (13.4.1). 

To diagnose the fitted models, we need to calculate the bivariate cdf. However, it involves 

two-dimension integration, and the integrand formula is very complicated. We can estimate the 

bivariate cdf by simulating the process in Model 13.4.1 for any 7 € [0, (1 + /3) _ 1] • We choose 

7 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1/1.17, 
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Figure 13.20: Model diagnosis: diagonal P-P plots of lag one day for 7 = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7 and 1/1.17 in the ozone data study. 
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Time (day) 

Figure 13.21: One step ahead predictions (dotted line) by the conditional mean for the daily maxi
mum ozone concentrations (solid line). 

and simulate each process with 1000,000 samples. The diagonal P-P plots are given in Figure 

13.20. These diagonal P-P plots show that the discrepancy gradually decrease as 7 increases. This 

suggests that the model with 7 = 1/1.17 seems to fit the data better. 

There is additional evidence that doesn't support (13.4.2) where 7 reaches the lower bound

ary 0. If the true model is (13.4.2), then by "quick and dirty" method, we can obtain a upper 

bound of a: O~R = min{X(ti+i)/X(ti)} =. 0.32. However, this upper bound is quite a bit smaller 

than the estimated lag-1 autocorrelation coefficient of 0.53. 

Now we consider one step ahead prediction by using the conditional mean 

E [X(ti+i) I X(U) = Xi] = <J/3_1(1 - a) + axi = 0.58x; + 20.01, * = 1,2,..., 109, 

to forecast X(t2),X(tz), • • •, -X'(tno)- This leads to Figure 13.21, where the dotted line denotes the 
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predictions. It seems that the forecasting captures the main fluctuation. Furthermore, we investi

gate the differences, Xi+i — ~E[X(ti+i) \ X(ti) = X{] (i = 2,3, . . . , 110), between the observations and 

predictions. They can be viewed as residuals from (13.4.2). We can expect the skewness of their 

distributions. Figure 13.22 presents the histogram, time series plot and ACF plot of these residuals. 

They have a skewed distribution, fluctuating around zero with no obvious serial dependence. It 

shows from another aspect that our model fitting is successful in getting rid of the autocorrelation. 

Lastly, we restrict the models in (13.4.1) which are associated with parameter 0 < 7 < 
1/(0 + 1) to the upper boundary case 7 = 1/(0 + 1). This is because the diagnostic analysis from 

the diagonal P-P plots. Thus, the model is 

X(tl+l)±(a)K®X(tl) + Eh (13.4.3) 

where 

. , . / a0s \ / a0 ( 0/(1-a) \ \ 

and 

= {0 + (l-a)s) = [0/(1 - a)+ s) • 

Note that K is a rv of compound Poisson(ai5/(l - a)) with exponential(0/(1 - a)), and Ei is a 

rv of Gamma((5,0/(1 — a)). Therefore, conditioned on X(ti) = Xi, (CX)K © %i is a rv of compound 

Poisson(a/3a;i/(l — a)) with exponential(/3/(l - a)), leading to a stochastic representation 

N 

(Q)K ®xi=Y/ Yji N ~ Poisson(a/?Xi/(l - a)), Yo = 0, Yj l ~ exponential(/9/(l - a)). 
3=0 

This representation will help us to find the closed form of pdf for the conditional rv [X (U+i)\X (ti) = 

Xi] because that conditioned on N = n, 
n n 

Yj ~ Gamma(n, 0/(1 - a)) and ^ + Ei ~ Gamma(n + c5,0/(1 - a)). 
j=Q j=0 
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Figure 13.22: The analysis of differences between observations and one step ahead predictions by 
the conditional mean for the daily maximum ozone concentration. 
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Hence, the conditional pdf of X(U+i) given X(U) = Xi is 

fx(ti+1)\x(ti)(x\xi) = Y f2Z7=oy^i(x)Pv(N = n) 
n=0 

oo i _§_\n+5 
= Y _ ! xn+S-lc-Px/(l-<*) x

 1  

n=0 
T(n + 8) 

/ # i \ n
e - a t e / ( l - a ) ^ 1 3 ^ 

n\ \\ - a) 

Generally, statistical software can calculate the Gamma density and the Poisson pmf. Thus, the 

pdf of [X(ti+i)\X(ti) = x^ can be easily computed. With (13.4.4) and numerical optimization of 

the log-likelihood using a quasi-Newton routine, we can obtain the MLE: 

&MLE = 8.31, BMLE = 0.17, OLMLE = 0.51, 

for Model (13.4.3). The estimate of (3 is still 0.17. 

The calculation of the joint cdf for (X(ti), X(ti+i)) requires one-dimensional integration. 

Pv[X{ti) < x,X{ti+l) < y] = I ?x[{a)K®x + Ei < y]fX(ti){x)dx 
Jo 

- f 
Jo 

Pr 
N 

3=0 
J^x^e-^dx, (13.4.5) 
T(6) 

where 
' N oo n 

Pr Y, Y3 + E*<y = EPr 
YYj + Ei<y 

j=° 
n=0 J=° 

nl 

aBxi 
a 

-a/?Xi/(l-a) 

Y Yj + Ei~ Gamma(n + S, 0/(1 - a)). 
3=0 

Usually, the gamma cdf is available in statistical software. With one-dimensional numerical inte

gration function, such a joint probability can be obtained easily. Based on (13.4.5), we can draw 

the diagonal P-P plot for Model (13.4.3). See Figure 13.23. For 7 = 1/0.17, comparing the model 

with estimates by the method of moments, it seems there is an improvement for the model with 

maximum likelihood estimates. 

If 0 < 7 < 1/(0 + 1), however, Ei is no longer a Gamma rv. Thus, finding the pdf of 

Y?j=o Yj + Ei may be a problem. If we know the pdf of Ei, we can still use the previous method to 

numerically obtain the pdf of Y^j=oYj + Ei, because it will involve a one-dimensional integration. 

Such a calculation, of course, is much messier than that for 7 being the upper boundary. 
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Figure 13.23: Model diagnosis: diagonal P-P plot of lag one day for Model (13.4.3) at 8MLE - 8.31 
PMLE = 0.17 and OLMLE = 0.51. 
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P a r t V 

Discussion 
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C h a p t e r 14 

Conclusions and further research 

topics 

Research in the area of non-normal time series does not have a long history. People have been 

working on it from various perspectives. The theory of continuous-time generalized AR(1) processes 

is developed to model problems from this area, especially with unequally-spaced time series data. 

We of course want to know how good and how flexible it is for modelling practical problems. In 

addition, we are also concerned with its application scope and limitations. Based on this new theory, 

we may further develop other complex (continuous-time or discrete-time) stochastic processes to 

handle those problems which can't be suitably modelled by the continuous-time generalized AR(1) 

processes. There remains much research for the new theory; there is interest from the viewpoint of 

either probability or statistics. 

In Section 14.1, we summarize some advantages and disadvantages of the theory of continuous-

time generalized AR(1) processes. In Section 14.2, we also discuss some ideas of construction of 

stochastic processes for more complex problems. Lastly, in Section 14.3, we present some topics of 

future research in the theory of continuous-time generalized AR(1) processes. 
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14.1 Discussion of continuous-time generalized AR(1) processes 

In the theory of generalized linear model (GLM), the distributions like Poisson, Gamma, etc, for 

count and positive-valued responses are well developed; only a few situations like zero-inflation 

need further development of distributions. However, to handle count or positive-valued time series, 

we need models which haven't been well developed. This is why we spend much time and effort 

to develop the probabilistic foundation. Thus, unlike G L M , developing appropriate models in the 

stochastic framework is one of the key pursuits. 

The theory of continuous-time generalized AR(1) processes is designed to model equally-

spaced or unequally-spaced time series with count or positive-valued observations. From the sense of 

data type, it is quite similar to generalized linear model theory, which handles the non-negative inte

ger or positive-valued response. Our theory presents a systematic way to construct the continuous-

time Markov processes. From the continuous-time processes, we then can easily obtain the discrete-

time processes by sampling or observing at equally-spaced time points. The strengths of the GAR(l) 

processes are: 

• simple decomposition of the dependent and innovation terms; 

• parametric families for the various probabilistic components; 

• flexible choice among abundant models. 

These features result in the model having a simple interpretation, a desired marginal distribution 

and a reasonable dependence for real problems. The case studies in Chapter 13 illustrate these 

capabilities. 

Of course, the theory of continuous-time generalized AR(1) processes has some weaknesses: 

• only a positive geometric autocorrelation function is possible; 

• marginal or stationary distribution is restricted to the infinitely divisible class; 

• no explicit expression of the conditional pmf or pdf for many processes; 
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• support range [0, oo) or (—00 ,00 ) or {0,1,2,...}; 

• computational complexity. 

These disadvantages motivate us to think about new stochastic processes to handle more general 

situations. 

14.2 Some thoughts on model construction 

Stochastic operators play an important role in the construction of stochastic processes, or even 

more generally, multivariate distributions. The extended-thinning operators concretely provide the 

positive association between two non-negative random variables; this enlarges our scope beyond 

the constant multiplier operator. Exploration of new stochastic operators is very meaningful in de

veloping new multivariate distributions, which consequently could lead to new stochastic processes 

(in either continuous-time or discrete-time). This could help us to construct bivariate distribution 

where two margins have negative correlation; such negatively correlated bivariate distributions may 

help us to build discrete-time stochastic processes with negative lag-1 correlation. 

Since construction of discrete-time processes only requires specifying the bivariate distribu

tion of two adjacent time points, we may create a discrete-time stochastic process with more than 

one stochastic operator We can apply one operator on one time period, and apply another one on 

the next time period, and so on. If we properly choose the stochastic operators, we may obtain a 

stationary discrete-time process with the same correlation coefficient between any two adjacent time 

points, because different extended-thinning operators can lead to the same correlation coefficient. 

It's possible to encounter time series data which can have a slow decrease in the ACF. This 

may suggest higher order autoregressive processes which can be defined in discrete-time. [Note that 

there are no known higher-order autoregressive or Markov processes in continuous-time.] Thus, it 

is necessary to build the higher order Markov processes. One idea is described in (2.2) and (2.4) of 

Lawrance and Lewis [1980]; it leads to the similar autocorrelation structure to the Gaussian AR(p) 

model, for non-normal discrete-time time series. 
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Non-stationary process development is another practical concern, because there often arises 

trends or periodicities. We could adjust the parameter yu from constant to time-varying, which 

leads to a time-varying correlation structure for possible application in growth curve studies. We 

could also change the mean of the innovation to be time-varying, and allow a trend. Of course, we 

can modify both to obtain more complex non-stationary processes. 

14.3 Future research 

In this section, we briefly discuss some further research topics relating to the theory of continuous-

time generalized AR(1) processes. 

First, we could search for more families of self-generalized distributions leading to new 

extended-thinning operations. This in turn leads to new GSD and GDSD classes. Although we 

fortunately find ten families of self-generalized distributions, it is not enough. We wish there could 

exist a representation form for the pgf or LT of all self-generalized distributions. But this may not 

be true, and thus, remains an open question. 

We also need to study the property of different GSD or GDSD classes of distributions. 

This leads to new continuous-time generalized AR(1) processes with different dependent structures 

and marginal distributions of interest. These developments will meet the potential needs of real 

problems from the point of view of either dependence or marginal distribution. 

Further probabilistic study on the continuous-time generalized AR(1) processes is required. 

This will be useful in probability calculations (conditional and bivariate), as well as in simulation 

studies. 

Asymptotic study of estimators other than M L E and variations of CLS are also needed, 

because they will help us to construct confidence intervals or regions, and do hypothesis testing. 

In addition, incorporating covariates to the model should be considered in the framework 

of stochastic processes. Most of the models in both the G L M and GAR(l) theory are stochastic 

models, hence, the P-P plot is a sophisticated diagnostic tool, different from residual plots which 
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work well in structure models. When we develop non-stationary processes, we also need to develop 

new diagnostic graphical tools. 
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A p p e n d i x A 

Data sets 

A . l Manuscripts data 

Description: The following irregular time series consists of the number of manuscripts in refer-

eeing queue of Prof. H. Joe. 

Date Manuscripts Date Manuscripts 

1990-01-01 4 
1990-03-01 . 1 
1990-05-01 1 
1990-07-01 1 
1990-09-01 3 
1990-10-01 5 
1990-11-01 5 
1990- 12-01 5 
1991- 02-01 3 
1991-04-01 5 
1991-05-01 5 
1991-06-01 2 
1991-08-01 4 
1991-10-01 3 
1991- 12-01 4 
1992- 01-01 5 
1992-02-01 9 

1992-03-01 8 
1992-04-01 5 
1992-05-01 4 
1992-06-01 3 
1992-07-01 3 
1992-08-01 1 
1992-10-01 1 
1992- 12-01 1 
1993- 02-01 2 
1993-04-01 1 
1993-05-01 2 
1993-06-01 2 
1993-08-01 1 
1993-10-01 0 
1993- 12-01 2 
1994- 02-01 2 
1994-04-01 2 

Date Manu£ 

1994--06- 01 0 
1994-•08--01 0 
1994--10--01 0 
1995--01--01 1 
1995--03--01 3 
1995--05--01 2 
1995--07--01 2 
1995--08--01 2 
1995--10--01 0 
1995--12--01 3 
1996--02--01 2 
1996 -04--01 2 
1996 -06--01 2 
1996 -08--01 3 
1996 -10--01 3 
1996 -12 -01 1 
1997 -02 -01 2 
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Date Manuscripts Date Manuscripts Date Manuscripts 

1997-04-01 
1997-06-01 
1997-08-01 
1997-10-01 
1997- 12-01 
1998- 02-01 
1998-04-01 
1998-06-01 
1998-08-01 
1998-10-01 
1998- 12-01 
1999- 02-01 

3 
2 
3 
1 
0 
1 
3 
3 
0 
2 
2 
3 

1999-03-01 
1999-04-01 
1999-05-01 
1999-06-01 
1999-07-01 
1999-08-01 
1999-09-01 
1999-10-01 
1999-11-01 
1999- 12-01 
2000- 01-01 
2000-02-01 

2 
1 
1 
1 
2 
3 
2 
2 
1 
3 
3 
4 

2000-03-01 
2000-04-01 
2000-05-01 
2000-06-01 
2000-07-01 
2000-08-01 
2000-09-01 
2000-10-01 
2000-11-01 
2000-12-01 

2 
0 
2 
2 
1 
3 
4 
5 
3 
2 

Source: Prof. H. Joe. Dept. of Statistics, UBC, Vancouver, B.C. V6T 1Z2, Canada. 

A.2 W C B claims data 

Description: The following data are monthly counts of claims by workers collecting short-term 

disability benefit (STWLB) from the Richmond claims center of the Workers' Compensation Board 

(WCB) of British Columbia, Canada. 

Each column forms a time series. CO denotes the series of counts of claims by workers in 

heavy manufacturing industry who are male and between age of 25 and 34. The injury is burn 

related. The claimants in C l , C2, C3, C4, C5 are male and between age of 35 and 54 who work in 

the logging industry. The difference among them is the nature of injury: C l indicates burn related 

injury; C2 indicates soft tissue injury such as contusions and bruises; C3 indicates cuts, lacerations 

or punctures; C4 indicates dermatitis; C5 indicates dislocations. 

C l a is obtained from C l by removing one claimant who has a ten year claim. CIA to C5A 

are the arrival data corresponding to C l to C5, with the counts of new claims for each month. 

Date CO Cl Cla C2 C3 C4 C5 CIA C2A C3A C4A C5A 

Jan-85 NA 0 0 9 6 0 0 0 2 2 0 0 
Feb-85 NA 0 0 .6 7 1 0 0 0 3 1 0 
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Mar-85 NA 0 0 6 8 
Apr-85 NA 0 0 7 9 
May-85 NA 0 0 10 6 
Jun-85 NA 0 0 8 . 8 
Jul-85 NA 0 0 14 5 
Aug-85 NA 0 0 8 3 
Sep-85 NA 0 0 7 7 
Oct-85 NA 0 0 10 11 
Nov-85 NA 0 0 10 8 
Dec-85 NA 0 0 12 4 
Jan-86 NA 0 0 8 2 
Feb-86 NA 0 0 8 3 
Mar-86 NA 1 1 8 4 
Apr-86 NA 1 1 8 5 
May-86 NA 1 1 13 7 
Jun-86 NA 1 1 12 8 
Jul-86 NA 0 0 14 12 
Aug-86 NA 0 0 13 11 
Sep-86 NA 0 0 13 12 
Oct-86 NA 0 0 8 6 
Nov-86 NA 0 0 13 2 
Dec-86 NA 1 1 10 2 
Jan-87 6 1 1 12 3 
Feb-87 11 0 0 12 3 
Mar-87 5 0 0 9 5 
Apr-87 5 0 0 8 6 
May-87 5 0 0 13 13 
Jun-87 2 0 0 9 12 
Jul-87 7 0 0 8 21 
Aug-87 4 0 0 6 9 
Sep-87 5 0 0 7 11 
Oct-87 4 0 0 10. 11 
Nov-87 6 1 1 17 10 
Dec-87 8 0 0 11 8 
Jan-88 7 1 1 13 5 
Feb-88 7 0 0 10 4 
Mar-88 9 1 1 9 4 
Apr-88 9 2 2 15 4 
May-88 13 0 0 13 2 
Jun-88 12 0 0 12 9 
Jul-88 11 0 0 8 8 
Aug-88 13 1 1 8 5 
Sep-88 16 0 0 9 10 
Oct-88 8 0 0 9 12 
Nov-88 14 0 0 12 11 
Dec-88 10 0 0 9 9 
Jan-89 6 0 0 5 4 
Feb-89 6 0 0 9 5 

0 1 0 3 4 0 1 
0 1 0 3 5 0 0 
1 1 0 8 1 1 0 
0 1 0 2 4 0 0 
0 1 0 10 4 0 0 
0 1 0 4 1 0 0 
0 0 0 5 4 0 0 
0 1 0 8 8 0 1 
1 1 0 9 5 1 0 
0 2 0 6 3 0 2 
0 0 0 6 1 0 0 
0 0 0 4 2 0 0 
0 0 1 5 3 0 0 
1 0 0 4 4 1 0 
1 1 1 8 2 1 0 
0 0 1 8 5 0 0 
0 0 0 7 8 0 0 
0 1 0 6 6 0 1 
0 1 0 6 7 0 1 
1 1 0 3 5 1 0 
1 1 0 8 1 1 0 
0 1 1 3 0 0 0 
0 0 1 5 2 0 0 
0 0 0 7 1 0 0 
0 0 0 4 2 0 0 
0 1 0 4 2 0 1 
2 0 0 10 9 2 0 
0 0 0 4 6 0 0 
0 0 0 3 15 0 0 
0 0 0 3 3 0 0 
1 0 0 4 6 1 0 
0 0 0 8 7 0 0 
0 2 1 11 5 0 2 
0 1 0 6 2 0 1 
0 0 1 8 2 0 0 
0 0 0 4 2 0 0 
0 2 0 5 3 0 2 
0 2 2 7 2 0 1 
0 2 0 8 i 0 0 
0 2 0 9 8 0 1 
0 1 0 2 5 0 0 
0 0 1 5 3 0 0 
0 0 0 2 8 0 0 
1 1 0 4 4 1 1 
1 1 0 5 7 0 0 
0 1 0 4 3 0 0 
0 1 0 2 1 0 0 
0 1 0 4 2 0 0 
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Mar-89 15 0 0 10 5 
Apr-89 9 0 0 6 10 
May-89 15 0 0 8 14 
Jun-89 13 0 0 17 7 
Jul-89 11 0 0 16 11 
Aug-89 14 0 0 17 12 
Sep-89 11 0 0 16 7 
Oct-89 17 0 0 8 8 
Nov-89 8 0 0 10 14 
Dec-89 10 0 0 7 6 
Jan-90 11 0 0 8 4 
Feb-90 13 0 0 7 3 
Mar-90 10 0 0 4 4 
Apr-90 8 0 0 5 4 
May-90 8 0 0 4 7 
Jun-90 6 0 0 4 6 
Jul-90 9 1 1 10 9 
Aug-90 12 0 0 9 8 
Sep-90 11 1 1 12 2 
Oct-90 9 0 0 12 4 
Nov-90 11 1 1 11 3 
Dec-90 7 0 0 9 1 
Jan-91 9 0 0 8 3 
Feb-91 11 0 0 9 1 
Mar-91 6 0 0 8 4 
Apr-91 4 0 0 6 3 
May-91 6 0 0 8 5 
Jun-91 6 0 0 13 3 
Jul-91 12 0 0 13 8 
Aug-91 10 0 0 10 11 
Sep-91 12 0 0 7 7 
Oct-91 8 1 1 17 9 
Nov-91 6 0 0 14 5 
Dec-91 1 0 0 10 3 
Jan-92 3 0 0 12 6 
Feb-92 5 0 0 6 4 
Mar-92 5 0 0 4 5 
Apr-92 10 0 0 7 6 
May-92 12 0 0 8 7 
Jun-92 9 0 0 10 7 
Jul-92 7 0 0 16 3 
Aug-92 9 0 0 15 5 
Sep-92 12 0 0 10 5 
Oct-92 14 0 . 0 14 4 
Nov-92 11 0 0 16 4 
Dec-92 9 0 0 12 2 
Jan-93 3 0 0 10 3 
Feb-93 4 0 0 11 6 

0 2 0 5 2 0 1 
0 2 0 2 6 0 0 
0 2 0 5 5 0 0 
1 2 0 11 2 1 0 
1 2 0 11 4 0 1 
1 3 0 12 9 0 0 
1 1 0 7 2 0 0 
1 2 0 4 6 0 2 
1 2 0 8 7 0 2 
1 1 0 2 2 0 1 
1 1 0 3 0 0 0 
1 0 0 1 1 0 0 
1 1 0 1 3 0 1 
1 3 0 3 3 0 1 
0 1 0 2 3 0 . 0 
0 1 0 2 4 0 0 
0 1 0 4 3 0 0 
0 1 0 2 5 0 0 
0 2 1 6 0 0 1 
0 1 0 4 3 0 0 
0 1 1 6 0 0 0 
0 2 0 3 0 0 1 
0 2 0 0 2 0 0 
0 1 0 3 0 0 0 
1 1 0 3 2 1 0 
0 3 0 3 1 0 1 
0 4 0 3 4 0 2 
0 3 0 6 1 0 1 
0 2 0 5 6 0 0 
0 1 0 3 4 0 0 
0 1 0 2 4 0 0 
0 0 1 11 6 0 0 
0 0 0 2 1 0 0 
1 0 0 0 1 1 0 
0 1 0 3 2 0 0 
0 2 0 0 2 0 1 
0 0 0 1 4 0 0 
0 0 0 4 3 0 0 
1 0 0 4 3 1 0 
1 0 0 4 4 0 0 
1 0 0 9 2 0 0 
1 0 0 8 4 0 0 
2 0 0 1 2 1 0 
0 1 0 6 2 0 1 
0 1 0 5 3 0 1 
0 1 0 3 0 0 0 
0 1 0 2 1 0 0 
0 1 0 2 1 0 0 
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Mar-93 10 0 0 10 3 0 1 0 2 1 0 0 
Apr-93 2 0 0 8 1 0 1 0 5 0 0 0 
May-93 7 1 0 9 3 0 0 1 6 2 0 0 
Jun-93 9 1 0 10 6 1 0 1 6 3 1 0 
Jul-93 9 1 13 5 0 0 1 8 3 0 0 
Aug-93 3 1 0 6 9 0 1 0 1 5 0 1 
Sep-93 6 1 0 8 9 0 1 0 4 6 0 0 
Oct-93 9 1 0 9 .5 0 1 0 5 1 0 0 
Nov-93 9 1 0 6 6 0 1 0 1 4 0 0 
Dec-93 9 1 0 9 4 0 1 0 5 2 0 0 
Jan-94 6 1 12 6 0 0 1 4 3 0 0 
Feb-94 5 1 0 8 2 0 0 0 2 0 0 0 
Mar-94 6 1 0 9 4 0 0 0 4 3 0 0 
Apr-94 5 1 0 5 1 1 0 0 2 0 1 0 
May-94 9 1 0 6 6 0 0 0 5 4 0 0 
Jun-94 7 1 0 9 5 0 1 0 2 3 0 1 
Jul-94 11 1 0 9 3 0 0 0 4 1 0 0 
Aug-94 12 1 0 13 2 0 0 0 6 1 0 0 
Sep-94 11 2 1 12 2 0 1 1 5 1 0 0 
Oct-94 12 2 1 10 2 1 2 0 4 1 0 1 
Nov-94 7 2 1 9 9 0 3 1 2 8 0 1 
Dec-94 11 1 0 7 5 0 2 0 3 3 0 0 

Source: Freeland [1998], Appendix. The original data description is scattered throughout Free-

land's thesis, mainly in Chapter 8. 

A.3 Abbotsford daily maximum ozone concentrations data 

Description: The following data are daily maximum ozone concentration collected at the Ab-

bortsford (British Columbia, Canada) ozone station in the summer of 1985 from May 1 to August 

18 inclusively. The rows from the first to the eleventh are records corresponding to May 1 to 10, 

May 11 to 20, May 21 to 30, May 31 to June 9, June 10 to June 19, June 20 to June 29, June 30 

to July 9, July 10 to July 19, July 20 to July 29, July 30 to August 8, and August 9 to August 

18. This is a part of a data set from a consulting project Prof. Joe conducted at the Statistical 

Consulting and Research Laboratory (SCARL), UBC. 

39.5 46.1 44.3 44.9 47.4 54.8 50.8 38.1 54.6 44.2 
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47 9 58 32 8 47 5 55 1 92 2 83 7 60 60 3 57.1 
58 1 55 6 25 9 36 7 31 2 44 3 29 9 34 26 6 32.9 
46 1 39 5 43 3 43 2 30 6 40 2 29 6 42 3 43 5 50.7 
52 2 63 1 39 9 37 8 24 6 38 9 59 6 75 3 73 5 33.3 
58 9 42 6 35 7 32 40 3 59 9 53 6 44 8 57 42.8 
48 65 7 65 1 58 5 64 5 34 8 56 8 65 2 60 2 64.3 
39 38 6 39 47 5 60 58 1 34 8 69 2 95 4 106.7 
72 55 30 6 26 1 39 9 47 5 64 3 78 1 75 6 85 
30 7 19 9 20 .3 25 44 2 33 9 30 .9 59 2 25 2 25.4 
22 35 5 37 .8 48 .1 55 .7 53 27 .4 65 1 60 2 19.5 
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