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Abstract

This thesis develops the theory of continuous-time generalized AR(1) processes and presents
their use for non-normal time series models. The theory is of dual interest in probability and statis-
tics. From the probabilistic viewpoint, this study generalizes a type of Markov process which has
a similar representétion structure to the Ornstein-Uhlenbeck process (or continuous-time Gaussian
AR(1) process). However, the stationary distributions can now have support on non-negative in-
tegers, or positive reals, or reals; the dependence structures are no longer restricted to.be linear.
From the statistical viewpoint, this study is dedicated to modelling unequally-spaced or equally-
spaced non—ﬁormal time series with non;negative‘ integer, or positive, or real-valued observations.
The research on both the probabilistic and statistical sides contribute to a complete modelling
procedure which consists of model construction, choice and diagnoéis.

The main contributions in this thesis include the following new concepts: se;lf-generalized
distributions, extended-thinning operators, generalized Ornstein-Uhlenbeck stochastic differential
equations, continuous-time generalized AR(1) processes, generalized self-decomposability, general-
ized discrete self-decomposability, P-P plots and diagonal P-P plots. These concepts play crucial
roles in the newly developed theory.

We take a dynamic view to construct the continuous-time stochastic processes. Part II is de-
voted to the construction of the continuous-time generalized AR(1) process, which is obtained from
the generalized Ornstein-Uhlenbeck stochastic differential equation, and the proposed stochastic in-
tegral. The resulting continuous-time generalized AR(1) process consists of a dependent term and

an innovation term. The dependent term involves an extended-thinning stochastic operation which
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geﬁeralizes the commonly used operation of constant multiplier, Such a Markov process can have
a simple interpretation in modelling non-normal time series. In addition, the family of continuous- '
time generalized AR(1) processes is surprisingly rich. Both stationary and non-stationary situations
of the process are considered.

In Part III, we answer the question of what kind of stationary distributions are obtained
from the family of continuous-time generalized AR(1) processes, as well as the converse question of
whether a specific distribution can be the stationary distribution of a confinuous—t_ime generalized
AR(1) process. This leads to the characterization of distributions according to the extended-
thinning operations. The characterization results are meaningful in statistical modelling, because
under steady state,‘ the marginal distributions of a Markov process are the same as the stationary
distribution. They will guide us to choose appropriate processes to model a non-normal time series.
The probabilistic study also shows that the autocorrelation function is of exponential form in the
time difference, like that of the Ornstein-Uhlenbeck or Ornstein-Uhlenbeck-type process.

Part IV deals with statistical inference and modelling. We have studied parameter esti-
mation for various situations such as equally-spaced time, unequally-spaced time, finite marginal
mean, infinite marginal mean, and so on. The graphical tools, the P-P plot and diagonal P-P plot,
are proposed for use in identifying the marginal distribution and serial dependence, and diagnosing
the fitted model. Three data examples are given to illustrate the new modelling procedure, and
the application capacity of this theory of continuous-time generalized AR(1) proéesses. These time
series are non-negative integer or positive-valued, with equally-spaced or unequally-spaced time

observations.
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Introduction




Chapter 1

Overview

This thesis is devoted to the development of a theory to construct models for non-normal equally-
spaced or unequally-spaced time series. The time series models are based on continuous-time
bstochastic processes in a class called generalized AR(1) processes, and these are constructed based
on classes of random operators or stochastic differential equations.

Section 1.1 briefly explains the motivation of this study, and reviews the relevant literature.
In Section 1.2, we summarize the key ideas that led to our direction of theoretical development,
and highlight the new concepts and main results in subsequent chapters; these may help readers to
navigate through the details and obtain an integrated understanding of the theory of continuous-

time generalized AR(1) process.

1.1 Motivation and literature review

Dynamic phenomena exist in diverse disciplines like chemistry, physics, economics, actuarial science,
epidemiology, biology, management science, and so on. It means an event evolving over time.

People have been developing various stochastic process models to try to describe or approximate

these phenomena. A series of observations of a dynamic process lead to a time series.




Traditionally, for a real-valued time series, we use the Gaussian or normal time series model,
which has a Gaussian or normal marginal distribution. However, in reality, there are many situa-
tions where the observed series are discrete or positive-valued. Such issues arise especially in the
longitudinal studies or clinical trials. The marginal distributions are often skéwed and have large
variatiohs. Hence, the normal marginal distribution is no longer directly suitable for such situa-
tions. This has motivated the development of non-normal time series models, where the marginal
distributions could be like the Poisson or Gamma distribution, to handle discrete or positive-valued
data.

Such a transition is similar to the transition from the linear model to the generalized linear
model where the response variables are discrete or positive-valued. However, unlike the GLM
where distributions for modelling discrete or positive-valued responses are well developed, there
has been little past research for stochastic processes for discrete or positive-valued time series. For
example, suppose we find the marginal distribution for a count data time series is well modelled by
. the generalized Poiéson distribution, what kind of stochastic processes should we use? Or in other
words, is there any simple stochastic process which has the generalized Poisson margin? We believe
most people will face a difficulty when encountering such a problem. Therefore, it is important to
construct probabilistic models which haven’t been considered previously.

In addition, the sampling scheme is another serious question. Usually, we take the equally-
spaced sampling scheme when we design an experiment study. However, for practical reasons, we

may obtain unequally-spaced observations. Many reasons could lead to such phenomena:

e subjects can’t be observed on the original schedule plan, say the patients can’t visit the clinic

for the scheduled appointments due to personal matters;
e there exist missing values;
e or even more extreme, the schedule can’t be made equally-spaced, it is random.

For a stationary process, an equally-spaced sampling scheme can guarantee the dependence struc-

ture between two adjacent margins is always the same. However, this is not true when the sampling

scheme is unequally-spaced. Unequally-spaced time series are sometimes called irregular time series.




Many methods have been developed toward this issue. One reasonable approach is to construct
continuous-time stochastic process models as pointed out by Jones [1993], p. 56, because only the
continuous-time underlying process can allow the observations taken at arbitrary time points.

In this study, we focus on unequally-spaced count or positive-valued time series. We try
to develop the continuous-time stochastic processes for them in a systematic approach: Before we
proceed, we take a literature review for both discrete-time and continuous-time stochastic processes
with marginal distributions whose support is the non-negative integers or the bositive reals.

For positive-valued margins, an incomplete list is Gaver and Lewis_[1980] Lawrance and
Lewis [1980], Wolfe [1982], Sato and Yamazato [1983], Lewis, McKenzie and Hugus [1989], Andél
[1988, 1989a, 1989b], Rao and Johnson [1988], Hutton [1990], Sim [1990, 1993, 1994], Adke and
Balakrishna [1992], Jayakumar and Pillai [1993], Jergensen and Song [1998], Barndorff-Nielsen
[1998b], etc. These marginal distributions include gamma, exponential, and so on. Most of them
are discrete-time processes which can not be extended to continuous-time.

For non-negative integer-valued margins, there are: Phatarfod and Mardia [1973], van Harn,
Steutel and Vervaat [1981], McKenzie [1985, 1986, 1988], Al-Osh and Alzaid [1987], Al-Osh and
Aly [1992], Alzaid and Al-Osh [1993], Aly and Bouzar [1994]. These marginal distributions include
Poisson, negative binomial, generalized Poissen, etc. Some of the processes come from the birth-
death processes, especially for the linear birth-death pfocesses; one can even trace them to Kendall
[1948, 1949). '

Joe [1996] proposed a class of discrete-time stochastic processes with infinite divisible mar-
gins, which include both count and positive-valued margins.

These processes are ﬁrst—.order Markov processes. Some of them can be generalized to higher
order Markov proceeses. Although the constructions of these processes differ from one another,
~ there are three major approaches: constructing the birth-death process by the generating function
method, constructing the precess by specifying multivariate distributions for adjacent margins, and
constructing the process by solving stochastic differential equations. Next we give a brief comments

on these three approaches.

The approach of constructing the birth-death process by the generating function method




was established by Kendall [1948, 1949]. It will yield a continuous-time stochastic process with state
space being non-negative integers. This approach is still active in finding models for population
processes in biological and cancer research. By sampling on equally-spaced time points, we can
obtain the discrete-time processes. Two examples from the resulting linear birth-death processes
with Poisson and negative binomial margins respectively, are often cited in the literature to model
count data time series. However, the birth-death process approach can not yield the processes with
state space being the real numbers.

“In the area of multivariate non-normal statistics, researchers (see Joe [1997]; Kotz, Bal-
akrishnan and Johnson [2000]) have used copulas and other approaches to construct multivariate
distributions with given univariate margins and desirable dependence structures. The theory ex-
tends to construct discrete-time Markov processes with given non-normal margins by specifying
appropriate multivariate distributions for adjacent margins. One famous example is the one de-
fined by binomial thinning when the marginal distribution is discrete self-decomposable. However,
some of these models, for example, random coefficient models, are quite isolated without a sys-
tematic method. We can’t extend most of them from discrete-time case to continuous-time case
because of the consistency requirement for stochastic processes. Moving from the discrete-time to
the continuous-time situation, we will experience the change from finite or countably infinite dimen-
sions to uncountably infinite dimensions. This makes it harder to develop theory for continuous-time
stochastic processes with given margins.

The third approach is to define a type of stochastic differential equation, and find the so-
lution which yields a continuous-time stochastic process. The obvious -benefit is that it could
provide a large family of Markov processes with desired margins. For example, Ornstein-Uhlenbeck
and Ornstein-Uhlenbeck-type processes obtained from their corresponding SDE’s lead to self-
decomposable margins (see Section 7.1), known as the class L in Feller [1966b]. Since the theory
of stochastic differential equations is dominated by the It6 integral which is involved in Brownian
motion, the stochastic differential equations defined for processes with positive-valued margins was

not developed until the early 1980s when the Ornstein-Uhlenbeck-type process evolved. Probably

this is the first one appearing in that area. To our knowledge, we have not seen any stochastic




differential equation defined for processes with non-negative integer-valued margins. The reason
could be that we don’t know how to define such kind of stochastic differential equations and how
to define their solutions. However, the counterpart of self-decomposable distribution was proposed
a little bit earlier than the Ornstein-Uhlenbeck-type process, and it leads to the concept of discrete
self-decomposable distribution (see definition in Section 7.1). This discrete self-decomposability
property leads to continuous-time Markov processes with a special stochastic representation, which
involves the binomial thinning operation. The linear birth-death process with Poisson margins

discovered by Kendall [1948] is fortunately a concrete example in this family.

1.2 Highlights of our new research

Our study is dedicated to developing continuous-time stochastic processes with count or positive-
valued margins which can be used to model equally-spaced or unequally-spaced count or positive-
valued time series. To achieve this, for reasons of simplicity, we focus on first-order Markov pro-
cesses, rather than on more general classes.

We take the dynamic view of building the continuous-time stochastic process with desired
margins. Based on the infinitesimal analysis for the stochastic representations of the two linear
birth-death processes with Poisson and negative binomial margins, we propose the stochastic dif-
ferential equation for a continuous-time process with non-negative integer-valued margins. We
introduce the concepts of a self-generalized distribution and the extended-thinning operation to

define the stochastic differential equation:

dX(t) = [K(1 - pdt) ® X(t) — X(£)] + de(t)

= [(1 - pdt)x ® X(t) — X (t)] + de(t), (1.2.1)

which we call the generalized Ornstein-Uhlenbeck equation. Here K (a) is a self-generalized rv with

respect to parameter o, and “®” denotes the extended-thinning operation. The new stochastic

integral in our theory is defined by convergence in distribution, rather than in L? or probability.




The solution of the generalized Ornstein-Uhlenbeck equation has a simple stochastic representation,
» d t2;t1
X(t2) = (e"“(tr“))K ® X (t1)+ / (€7 @ de(t), (1.2.2)
0

with a dependent term (e™#(27")) ® X (t1) and an innovation term fgrtl (e7H)  ® de(t), quite

similar to the structure of first-order auto-regressive process. Hence, we call it the continuous-
time generalized AR(1) process. One special case of extended-thinning operations is binomial
thinning. In Section 1.1, we mentioned that the binomial thinning operation can lead to continuous-
time processes with non-negative integer-valued margins. Such a class is included in the class of
continuous-time generalized AR(1) processes. In this way, we can obtain the two linear birth-death
processes with Poisson and negative binomial margins again.

By the hint of a correspondence between self-decomposability and discrete self-decomposabi-
lity, we obtain the positive real counterpart of the discrete self-generalized distribution. This
leads to the positive real counterpart of the extended-thinning operation and stochastic differential
equation, as well as the solution. Finally, we generalize the extended-thinning opeiation to the
real case; the only known operator is the constant multiplier, and consequently the common AR(1)
process obtains.

In summary, we unite the cases of non-negative integer, positive-valued and real-valued
state space by the self-generalized distribution and extended-thinning. The corresponding general-
ized Ornstein-Uhlenbeck equation (1.2.1) leads to the continuous-time generalized AR(1) process
(1.2.2). This type of Markov process has a sirhple stochastic representation, which provides an easy
explanation when modelling, and a wide range of stationary infinitely divisible distributions such
as Poisson, negative binomial, generalized Poisson, Gamma, exponential, inverse Gaussian etc, to
cover diverse problems arising in various disciplines.

In addition, the generalized Ornstein-Uhlenbeck equation can allow us to obtain continuous-
time process which is not only stationary, but also non-stationary with time-varying parameters.
For example, replacing only the constant parameter 4 by a time-varying parameter u(t) in (1.2.1),

we obtain the stochastic differential equation

X@t+h) = (1-pt)h)k ®X(t)+ Ae(?), (1.2.3)
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which leads to non-stationary continuous-time generalized AR(1) processb
¢ t2
X (tp) 2 (e— Jit “(t)‘“) ® X(t) +/ (e_ I ”(T)‘“) ® de(t). (1.2.4)
- A K t K

Such flexibility is very‘meaningful in developing models for non-negative integer, or positive, or
real-valued time series with non-stationarity like trend, or seasonality, or covariate effects.

In the context of the continuous-time generalized AR(1) process, the constant mulf;iplier
operation leads to self-decomposability and the binomial thinning operation leads to discrete
self—deéomposability. This is well known in the literature. Now the development of the theory
of continuous-time generalized AR(1) processes certainly extends the existing concepts of self-
decomposability and discrete self-decomposability to other operators: a self—gene'ralized distribution
with non-negative integer support leads to generalized discrete self-decomposability, while a self-
generalized distribution with positive real support corresponds to generalized sel‘f-decomposability.
These concepts of generalized self-decomposability and discrete self-decomposability help us to
.develop continuous-time generalized AR(1) processes with specific marginal distributions to fit
practical needs. |

This work presents the theory of continuous-time generalized AR(1) processes in the order
of model constructions, properties and applications. Now we highlight by chapter the new concepts
and key results to help readers gain an overview of the theory of continuous-time generalized AR(1)
processes.

Chapter 2 defines the basic distribution families and independent increment processes for
the subsequent theoretical developments. S(;me new distributions are discovered; these include four
generalized convolution families: GC I, GCII, GCIII and GC IV, which will be used in constructing
independent increment processes.

We propose the concepts of self-generalized distributions and extended-thinning operations
in Chapter 3. These generalize the binomial thinning and constant multiplier operators for random
variables with support on non-negative integers'and positive reals. Besides a general theory, four
new pairs of families of self-generalized distributions are discovered; there is a one-one mapping of

operators with the two types of support. This theory has its 6rigins from a careful study of the

conditional probabilities of the linear birth-death process. The self-generalized operator in Example




3.2 is the operator associated with the linear birth-death process whose stationary distribution is
negative binomial. In addition, the discovery of extended-thinning operations for positive-valued
rv’s enlarges our vision on obtaining a positive linear conditional expectation; we need not restrict
ourselves on the commonly used constant multiplier operation to achieve this property. These
operators also give us more choices in modelling the correlation between two positive random
variables. |

Chapter 4 develops the generalized Ornstein-Uhlenbeck SDE’s to include processes with
support on non-negative integers, and construction of solutions of these equations (in the sense
of convergence in distribution). The solution has a simple representation in terms of an extended
thinning operator and an independent increment innovation process. These resulting processes are
called continuous—i;ime generalized AR(1) processes to emphase the similarity of their conditional
expectation with that of the continuous-time Gaussian AR(1) process.

Applying the theory in Chapter 4, we obtain interesting results from the generalizéd Ornstein-
Uhlenbeck equations by choosing different extended-thinning operations and independent 1ncrement
processes; their state spaces cover the non-negative integers, positive reals and reals. Both station-
ary and non-stationary processes are considered. Many special cases are developed and studied in
Chapter 5.

Tn Chapter 6, we study the stationary distributions of the continuous-time generalized AR(1)
processes. This study is to answer the question whéther a specific distribution can be the marginal
distribution of a continuous-time generalized AR(1) process. It guides us to choose proper pro-
cesses with certain margins when modelling. Time series with diverse marginal distributions from
the stationary continuous-time generalized AR(1) processes are also obtained. Key theorems are
Theorems 6.1.1 and 6.3.1. The latter theorem is a result on the pgf or LT of the indepéndent
increment innovation process based on the pgf or LT of the stationary distribution, with a given
extended-thinning operator. Many special cases are developed and studied.

Chapter 7 further studies the stationary distributions under different extended-thinning

operations. The generalized self—decomposable (GSD) and generalized discrete self-decomposable

(GDSD) classés are defined in a similar way to the self-decomposable and discrete self-decomposable




classes associated with the constant multiple and binomial thinning operators. Several ways are
developed to check if a given distribution is in one of the GSD or GDSD classes. Key theorems
are Theorems 7.2.3, 7.2.5 (possibly simpler ways to check if a distribution is GSD or GDSD), and
Theorem 7.2.7 (infinite divisibility of the classes). Relations between different GSD and GDSD
classes are studied, as well as analog results between the cases of discrete and continuous margins.

Chapter 8 investigates infinitesimal transition and duration features of the continuous-time
generalized AR(1) processes. A PDE characterization is given for the conditional pgf or LT; a key
result is that the pgf or LT of a self-generalized distribution is determined by its partial derivative
evaluated at a boundary. For the continuous-time generalized AR(l) process with non-negative
integer support, the infinitesimal generator matrix has the downwardly skip-free property. Another
key result is that a steady-state continuous-time generalized AR(1) process can be determined
based on two of the following three elements: marginal distribution, self-generalized distribution
for the operator, increment of the innovation process. |

In Chapter 9, we present some differences for stochastic process constructions for the
discrete-time and continuous-time situations. We also study conditional and multivariate distri-
butions associated with some specific cases of the continuous-time generalized AR(1) process. A
by-product is a new approach to construct families of multivariate distributions with given univari-

‘ate margins. Interesting stochastic representations are given for some special processes and it is
shown that sdme new discrete-time time series with gamma margins have better properties in the
innovation random variable, compared with tlme series based on self-decomposability.

We give a thorough study on parameter estimation methods in Chapter 10; these estimators
including MLE, CLS, ECF etc, are desired in different situations and have their own advantages
and disadvantages. |

Chapter 11 looks into the asympto't‘ic properties of the commonly used estimates like MLE
and CLS in the unequally-spaced setting. A random sampling scheme is proposed, and results build
on the techniques of proof in Billingsley [1961a] and Klimko and Nelson {1978].

Chapter 12 discusses a vari.ety of topics like detection of serial dependence, model diagnosis

and selection, hypothesis testing, forecasting and process simulation. The graphical methods, called




the P-P plot and diagonal P-P plot, are proposed for assessing autocorrelation and model diagnosis.
In Chapter 13, we illustrate the capability of the theory of continuous-time generalized
AR(1) processes for real problems with three applications. These time series include non-negative
integer and positive-valued observations.
Finally in Chapter 14, we summarize the strengths and weakness of the continuous-time
generalized AR(1) processes in modelling. Also we briefly discuss some thoughts on construction

of stochastic processes. Areas for future research are also mentioned.
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Part 11

Theory for model construction
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Chapter 2

Relevant background on characteristic
tools, distribution families and

stochastic processes

In this chapter, we cover background concepts needed in the development of the new theory of
continuous-time generalized AR(1) processes. We try to select a minimum of necessary materials
for the subsequent chapters.

This chapter is organized in the following way: Section 2.1 briefly introduces the Ornstein-
Uhlenbeck processes and Ornsteiﬁ—Uhlenbeck-type processes; we will generalize these processes to a
wider range, leading to the continuous-time generalized AR(1) processes. In Section 2.2, we discuss
some characteristic tools for probability distributions and prove some new results. We present some
particular distribution families in Section 2.3, and independent increment processes in Section 2.4.

These results are used in subsequent chapters for special examples of generalized AR(1) processes.
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2.1 Ornstein-Uhlenbeck processes and Ornstein-Uhlenbeck-type

processes

The Ornstein-Uhlenbeck process comes from the Ornstein-Uhlenbeck stochastic differential equa-
tion (SDE), which has another name, the Langevin equation (see Ornstein and Uhlenbeck [1930],
also Nelson [1967], @ksendal [1995], Hsu and Park [1988], Schuss [1988]). Let {X(t); t > 0} be a

continuous-time process. The Ornstein-Uhlenbeck equation is defined as
dX (t) = —pX(t)dt + odW (t), p>0,0>0,

where {W (t);t > 0} is a standard Brownian motion independent of X (0). The solution of this SDE
is well known as -

i
Xt ZLe X (0)+0 / e Ht=T) qw (1),
: 0

where f(f e~HTdW (1) is the Ito integral, which is the limit of a sequence of rv’s in the sense of
'convergence in L2, and is normally distributed. Hence, the support of the margin X(t) is R.

Furthermore, X (t) can be represented as

t—s )
X(t) 4 e M=) X (s) + a/ e~ Ht=s=T)gW (1), s < t.
0

Note that f{~* e #t=5=T)dW(r) can be written as [l e~#t=T)dW (r), and is independent of X (s)
because X (s) is independent of {W(7);7 >'s}. This feature shows that the process is a Markov
process, and a discrete-time AR(1) process can be readily obtained from it. If X (0) is normally
distributed, then X(t) is normally distributed for all ¢ > 0. This model serves continuous-time
time series very well, and is named as continuous-time AR(1) (CAR(1)). See Brockwell and Davis
[1996] and references therein. Because of normal margins under steady state, it is sometimes called
a continuous-time AR(1) Gaussian process. The Ornstein-Uhlenbeck process has applications in
mathematical finance (see Neftci [1996]).

Wolfe [1982] initiated the study of Ornstein-Uhlenbeck-type processes. ‘Almost at the same
time, Sato and Yamazato [1982], Jurek and Vervaat [1983] studied this process too. The Ornstein-
Uhlenbeck SDE is extended to

dX(t) = —pX (B)dt +dW (),  w>0,
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where {W(t);t > 0} is a homogeneous Lévy process independent of X (t). The solution has the
same form as the Ornstein-Uhlenbeck SDE:

’ t—s
X(t) £ e *t9) X (s) + / e M= gW (), s <t
0

but fot e~#(t=s=7)gW (1) is not the Ito integral. This stochastic integral is the limit of a sequence
of rv’s in the sense of convergence in probability. The existence of such stochastic integral can be

found in Lukacs [1968], where the characteristic function of the integral has the form

t—s
exp {/ log pw (1) (se—“(t_s_f)) dT} .
0

Similarly, fot_s e Ht=s=T)dW (1) (= fst e‘“(t‘T)dW(T)> is independent of X (s). The support of
W (t) can be positive real-valued. Hence, {X(t);t > .0} can be a positive-valued process. Sim-
ilar to the Ornstein-Uhlenbeck process, a generalized time series (other than classical Gaussian
distributed time series) can be easily obtained if sampling on equaily-spaced time points. This fea-
ture allows the Ornstein-Uhlenbeck-type processes to model positive-valued observed data. Wolfe
[1982] showed two possible applications: the study of radioactive material in stockpile, and bank
currency. Later Barndorff-Nielsen et al. [1993, 1998a] applied this kind of process with specific

marginal distributions to turbulence and finance.

Now we discuss some common features of Ornstein-Uhlenbeck and Ornstein-Uhlenbeck-type

processes:

e Nice stochastic representation form: the sum of two independent terms. One governs the
dependence relation with the previous state, one explains the input (noise or innovation).
Note that |e #(¢=9) X (s)| < |X(s)|, hence, the term e~#(t=%) X (s) looks “thinner” than X(s).

e First order Markov: this Markov property is very helpful in the study of conditional properties,

stationary distribution or margin under steady state, transition properties, and joint finite-

dimensional distributions.

e Simple auto-correlation: the auto-correlation function, if it exists, under steady state has the
exponential form Cor[X (s), X(t)] = e~Ht=sl This implies that for a bigger time difference,

there is less influence on the future state.
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Although the Lévy process {W (t); t > 0} can have increments which are non-negative inte-
ger valued, the term e‘“(t's)X (s) excludes the possibility of non-negative integer valued margins.
Such a disadvantage precludes the application to count data time series.

In the study of continuous-time generalized AR(1) process, we extend the stochastic oper-
ation of a constant multiplier to an extended-thinning operation, and define generalized stochas-
tic integrals. Such modifications allow us to obtain a similar representation for processes with

non-negative integer state space. The continuous-time generalized AR(1) processes includes the

Ornstein-Uhlenbeck process and Ornstein-Uhlenbeck-type process as special cases.

2.2 Characterization tools of distributions and examples

In this section, we review the common characterization tools which are heavily used in the theory
of continuous-time generalized AR(1) process. Note that this is a simplification of terminology; the
processes are AR(1)-like with AR(1) autocorrelation, but not always autoregressive. These tools
include the probability generating function (pgf), Laplace transformation (LT), moment generating
function (mgf) and characteristic function (cf).

This section consists of results that are used in subsequent chapters. It can be skimmed in
the first reading. Proposition 2.2.2 is especially important. ,

Any kind of generating function has the property that there is one-to-one mapping between
the generating functions and the distributions. Hence, by investigating the generating function, we
can know the corresponding distribution. In principle, the cf can be used in all types of random
variables because it always exists. However, for specific typeé of random variables or distribution
families, other generating functions may be more convenient. For example, the pgf is often used in
non-negative integer-valued rv’s, while the LT is adopted for positive real-valued rv’s. This is for
convenience of theorems for pgf’s and LT’s that can be applied. In exponential dispersion models,
the mgf is used because the definition of that kind of model is related to the cumulant generating

function.
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We also prove some new results concerning pgf’s and LT’s. These will play certain roles in

the theory of continuous-time generalized AR(1) processes.

2.2.1 Probability generating function

The probability generating function is used for discrete distributions with non-negative integer

support Ny. Assume X is a non-negative integer-valued rv with probability mass function
Pr[X =4l =p; >0, 1=0,1,2,....
The pgf of X is defined as

o
Gx(s)=E(s*)=>_ps’, 0<s<L
=0

Usually the pgf is defined on [0, 1] because the power series on the right hand side always exists
when 0 < s < 1. This domain is sufficient for our need. Of course, it can be extended to |s| < 1.
As for |s| > 1, the finiteness of Gx(s) depends on the individual probability mass function. The
function Gx(s) is increasing from po to 1 as s increases from 0 to 1. Once we have the pgf, we can

obtain the probability masses:
pi=GR0)/i, i=0,1,2,....
Also the mean and variance are derived as
E(X)=Gx(), Var(X)=E(X?) - (E(X))? = G%(1) + Gk (1) - (Gx(1)".

The index of dispersion, D, is defined as D(X) = Var (X)/E(X), and is referred as an index of
dispersion for distributions for count data. If D(X) > 1, there is overdispersion relative to Poisson.
If D(X) < 1, there is underdispersion relative to Poisson.

The following theorem characterizes the pgf; it is useful to verify if a function G (s) is a pgf.

Refer to Bondesson [1992], p. 9.

Theorem 2.2.1 Suppose G(s) is a Taylor series in s. Then, G(s) is a pgf iff
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1. G(s) is absolutely monotone (AM), i.e., GW(s) >0, i € Ny, s€0,1).
2. G(s) — 1, as s — 1.

This is equivalent to checking G@(0) > 0 for all 4 and G(1) = 1. It is viewed as the discrete
counterpart of Bernstein’s theorem (Theorem 2.2.5). See Bondesson [1992], p. 9.

Perhaps the simplest distribution is the Bernoulli distribution. It is often used to build other
distributions, say Binomial, Poisson, etc. Let X ~ Bernoulli(p). X takes only two values, 0 and 1,
with

Pr[X =1] =p, Pr[X =0} =1-p;

and the pgf is Gx(s) = (1 — p) + ps. Consequently, the mean and variance are
E(X)=p and Var(X)=p(l-p).

Some distributions with non-negative integer support are listed below; these can be used in mod-
elling count data. All of them are discussed to some extent in Bondesson [1992]. Also refer to

Johnson and Kotz [1969)].

(a) Poisson: X ~ Poisson(A). Then

The pgf is Gx(s) = exp{A\(s — 1)}, and E (X) = Var (X) = A. Thus, D(X) = 1, which is

referred to as equidispersion.
(b) generalized Poisson: Let X ~ GP(6,n). Then
pi = Pr[X =i = 6(0 +ni) " te 0 il i=0,1,2,...; >0, 0<n<L

The pgf is
o
Gx(s) = exp {9 (Z n(kn)E~Le m1sk /Kt — 1) } ,
k=1 . )

The mean, variance and index of dispersion are

E(X)=6(1-n)", Var(X)=60(1-n)7° DX)=(1-n"?2L
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Note that if = 0, it becomes Poisson(#). A good reference is Consul [1989]; there n can be
negative to obtain an underdispersed distrib\lution. However, this case has nothing to do with
the study of continuous-time generalized AR(1) processes, because the marginal distribution
of continuous-time generalized AR(1) process should have probability mass on the whole non-
negative integer set, not on a bounded subset. When n < 0, the generalized Poisson rv has

an upper bound of support.

negative binomial: Let X ~ NB(y,q). [Note that this is a non-standard parametrization. |

Then the pmf is

- )
pi=Pr[X=i]=<7+Z )(l—q)"’qz; :=0,1,2,...; v>0 ,0<¢<1L
The pgf is
1-q\" 1 [log(1 —gs)
= = —_ ——.—-——1
Gx() = (1=2) exp { 710g(1 ) it
and

E(X)=7q/(1-gq), Var(X)=v¢/(1-q¢)*, DX)=1/1-¢g) =1

When v is an integer, the negative binomial distribution can be explained by Bernoulli trials
with success probability 1 — ¢ or failure probability g, in which the experiment stops until the

~4-th successes, and X is the total number of trials in the experiment. '

The geometric distribution is the special case in the negative binomial family. It is obtained

when v = 1 with pmf:
pi=PrX =d=(1-¢¢; i=012...; y>0,0<¢<1,

and pgf Gx(s) = 11—:1—1";. Note that X can take value 0. But sometimes people treat X' = X +1

as the geometric distribution which is positive integer-valued and has pgf Gx/(s) = %.

Unless stated otherwise, we will take the former as geometric distribution throughout the

thesis.




(d) discrete stable: Steutel and van Harn [1979] proposed this discrete stable distribution. Let

X be a rv from discrete stable distribution. Then the pgf is defined as
Gx(s) =exp{-A(1 -5} =exp{M1-(1-58) -1}, A>0,0<6<1L

The pmf can be obtained by expanding the pgf in a power series:

—1)IM TG0 +1)
! T@EO+1—1)t

oo
pOZe_A7 p1:>‘96—/\7 pz:(_l)zz( '1’:2,37

Jj=1
However, since G'y(s) = Gx(s) - A0/(1 — s)179, the expectation will be infinite if 0 < 6 < 1.
When 6 = 1, it becomes Poisson(}).

(e) logarithmic series distribution: Let X be a rv from logarithm series distribution. Then the

pmf is defined as

o+
pz=Pr[X:z]—(i+,1)0 1=0,1,2,...; c=1-¢? 6>0.
The pgf is
Gx(s) =—s'log(l —cs)/6 = ~Log(1 — ¢s)/log(1l — ¢),
and
O (1 —ch71)

E(X) ="' /(1-c)-1, Var(X)=c '(1-c87")/(1~c)%, D(X)=

(1—c)(cb1+c—1)
Note that this logarithm series distribution is left shifted to 0 compared to the usual defi-
nition in Johnson and Kotz [1969], p. 166. Therefore, thls logarithm series distribution is
sometlmes overdispersed, and sometimes underdlspersed depending on the parameter 6. Let

0y be the solution of %C)(C—,——;_Ci:_% = 1. Then if 8 > 0y, it has overdispersion; otherwise,

underdispersion.

(f) power series distribution: Let X be distributed in power series distribution. Then the pmf is

po =6, p; = Pr[X = —OHk 9/z+1)!, i=1,2,...; 0<@<1.
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When 6 = 1, X degenerates to 0. The pgf is
Gx(s)=s"'1 - (1 -s)f

Note that when 0 < @ < 1, X has no moments. See Bondesson [1992], p. 128 and p. 132. This
is also related to LTC (Laplace transform family C) in Joe [1997], p. 375; there is a left shift.
Also the discrete stable distribution is compound Poisson with the distribution of X + 1. See

the pgf expression in (d).
(g) Zeta (discrete Pareto) distribution: Let X be a rv from Zeta(p). Then the pmf is defined as
pi=c-(i+1)7¢, i=0,12,...; p>0,

where ¢ = 3.3, i~(#+1). Note that this distribution comes from left shifting the Zeta dis-

tribution in Johnson and Kotz [1969], p. 240; it is commonly called the Zipf-Estoup law in

linguistic studies.

Unfortunately, the pgf, expectation and variance of Zeta distribution have no explicit expres-

sions.

Stochastic operations can lead to new pgf’s. Here we summarize some of the facts regarding

| operations on one rv.

Prqposition 2.2.2
(1) G(s) pgf = (1 —a)+aG(s), 0 < a <1, is a pgf [random zero-truncation operation].
(2) G(s) pgf = Glas+1—a), 0<a <1, is a pgf [binomial-thinning operation].

(8) G(s;B) pyf for 6 € B and F a distribution on B = / G(s; B)dF(B) is a pgf [mixture oper-
B .

ation].
(4) G(s) pgf = eMNEE)=1 (X > 0) is a pgf [compound Poisson operation].

(5) G(s) pgf = (1 —a)+asG(s), 0 < a <1, is a pgf [zero-modification operation].

21




Proof: Suppose X has pgf G(s) or G(s; ).

(1) Consider Y = I - X, where I ~ Bernoulli(a). Then

Gy (s) =E(s¥) = E(s/%) =Pr[I = 0] + P1[I = 1E (s%) = (1 — @) + aG(s).

(2) Let ¥ = S5 I, where Iy = 0, I; %" Bernoulli(a),i = 1,2,.... Then

X))

= E (E (sll)X> =E ([as+1 - o)) =Glas+1 - a).

Gy(s) = E(s")=E (55" ) =B (B (="

(3) Suppose Y conditioned on 8* = S has the same pgf G(s; 8), and S* is distributed in ¥ on B.
Then

Gy(s) = B(s") = E (B(s¥|8") = E(G(s; ") = /B G(s; B)dF ().

(4) Let Y = 22, X;, where Xo = 0, X; <" with pgf G(s) (i =1,2,...), and Z ~ Poisson(}).
Then ‘

Gy(s) = E(s¥)=E (sZiZ=o Xf) - E <E (sZiZ=0 Xi,z))
= E (E (sxl)z> =E (GZ(S)) = eA[G(s?_l].

(5) Consider Y = I - (X + 1), where I ~ Bernoulli(a). Then

Gy(s) = E(s¥) = E(s" X)) = Pr[T = 0] + Pr.[I =1JsE(s%) = (1 - @) + asG(s).

Note that random zero-truncation operation is very similar to zero-modification operation.
Both involve truncation. The random zero-truncation operation dir‘ectly applieé truncation to a rv
X, while the zero-modification operation first shifts X to right as X +1, then applies truncation.
Hence, both primarily keep the shape of the pmf of X with slight differences. However, there does
exist a difference between two operations. The random zero-truncation operation increases the

probability mass at zero:

Pr[I-X=0]=(1—a)+aPr[X=0]=(1—a)—(1—a)Pr[X=0]+Pr[X=0]ZPr[X-—-O].
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But the zero-modification operation relocates the probability mass at zero:
Pr[l- (X +1)=0] =Pr[I =0] = o,

which could be bigger or smaller than Pr[X = 0].

The fraction of zeros in count data is one concern when modelling. Both random zero-
truncated distribution and zero-modified distribution of X are alternative choices for data with
zero fraction if the original distribution of X does fit the data very well. However, the zero-
- modified distribution of X is more flexible then the random zero-truncated distribution, because
it can be used to either lower or higher zero fraction situation, while the random zero-truncated

distribution can only applied in higher zero fraction situation (sometimes called zero-inflated).

Example 2.1 Poisson(\) compounded with NB(1,q) will have pgf

o {11 e P

where A > 0 and 0 < g < 1. This is the basis of GC I introduced in Section 2.3.3.

Another ezample of a compound Poisson distribution leads to the GC II in Section 2.3.5.
We claim that

exp {q(s Z 1)(1;73)} - exp{(l — ) (11—_53 - 1)} 0<y<gqg<l, (2.2.1)

is a pgf. This is because

. = 1 —~s)(1
T, T gs 1_7( vs)(1+gs+q°s +q's + )
1-—
- 1—_—%[1+qs+q282+q353+---

—vs — gs® —vg*s® — -]
1-q  (1-q@g—v)  , (1-q)lg—7)

— 2 - s 0w
= 1_7—1- 1=~ s+ 1—~ 87 +
Let G(s):l—i—%ﬁjﬁ <11__qqs—1>,whered_>_1—fry>0. Then
171-¢ (1-g)g—7) , 1-aala=7) 2 1—1s
= 14+= e —
G(s) +d[1._7+ T s+ 1 5%+ [
1 ¢ y+(1—-g)g—7) , A—a)alg—"7) »
= 1—-= s+ e
dl—v S d(1-7) d(1-7)
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Since all coefficients of series expansion of G(s) are non-negative and G(1) = 1, G(s) is a pyf.

Hence we can represent 2.2.1 as

gls = D1 —vs)
exp { = g5

}=uﬂp&ﬂ1—vMG@>—1H-

This implies that exp {&_11%115——75)} is the pgf of a compound Poisson distribution.

Example 2.2 Following the zéro-modz'ﬁcation operation, we can show that

(1-a)+(a=7)s

Lo = =ay 1 =ams

, 0<a<], 0<y <.

is a pgf. This is because the following decomposition:
1- - 1- 1- 1—~)/(1—
L(s) = (l-a)t(-ys _[;_(A=-va] (-7 1-7/Q~ay)
l-ay) - (1—-a)ys 1-oay 1—ory 1-(1—-a)ys/(1 —ay)
Here we know that 0 < (}—:%l <land0<1- I% = (i—:‘;%l < 1. Let I ~ Bernoulli (%"—),
Z ~ NB (1, %—:—%) Then I(Z + 1) has the L(s) as its pgf. When a =0, X =0, while a = 1,

X=Z+1

We are not clear if such a distribution has been previously studied. Since Z is Geometric,

we call this distribution the zero-modified geometric distribution.

' Sometimes operations are carried out on more than one random variable. The well known
convolution, which is the sum of independent rv’s, is an example. For two independent non-

negative integer valued rv’s X; and Xo, the pgf of convolution X; + X is
Gx,+x,(s) = B(s¥11%2) = B(s¥)E(s™?) = Gx,(5)Gx, (5)-

For more than two, say n independent rv’s, we have

n

Gy x,(s) = B(sZ= %) = T[B(s™) = [[ Gx.(s).
=1

i=1
Furthermore, the convolution concept can be naturally extended to the situation of uncountably

many rv’s, leading to the generalized convolution. See Section 2.3.3.

Next we prove that some functions are probability generating functions; these will be used

in the study of continuous-time generalized AR(1) processes in later chapters.
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Theorem 2.2.3 The following functions L(s) are pgf’s.
JEPAY.
(1) M@:%—g%gv,0<agL
(2) L(s)=c1-—e?1"9(1-¢s)?], 0<a<l, c=1-e" 620,

(39) Lis)=1-a(1-7f[1-ayy+(1-71-5)"Y]"" 0<a<1l,0<y<1,0>1

(4) L(s)= (s~ l)g((:)) + 1, where G(s) is the pgf of Zeta(p), p > 0.

(5) ””=1+uw&:fﬁr 0<a<L0§ﬂ§LingW§ﬂga,wa<6§£§
(6) ug=1+—iﬂiTL— O<a<l1l, 0<B<1, 0<y<1, and either

(1- ﬁs( s)’
o < B <A or max (7,52 ) < B <o and BB-7(1-a)® 2 (@ f+y-an)a=h).

Proof: It is obvious that for all cases, L(1) = 1. Suppose L(s) has series expansion of form

o0
L(s)=rg+ 718 +re82 4 = Zrisi.
=0
It suffices to show that all coefficients r; > 0 (: =0,1,2,...).
(1) Rewrite L(s) as
1 e1-s° 1 [A-s0-1]"
SRS ET N
s 1—(1-3) s 0
Since
(0 +1 00+ 1)(6+2 (k+0)
(1-s)"=1+0s+ (2_:_ )32+ (+;‘( +)3 —1+93+Z—H——+— 5

3=2

et pgen] (e )

Assume the Taylor expansion:

~1
k+9 ‘
[1+ZH } =1—q1s— q2s” — q3s® —qus* —---.
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Le)=st(1-[1-qs—ps® —qss® —aqus’ = ]) =q1 + qes + @3s” +qus’ + .
We now need to prove that ¢; > 0 for j = 1,2,.... Because

o
[Tiey(k+8)
1+Z—k(;—~1+—1)!—‘3’ -qs—qs® —gss® —qus’ -] =1,

it follows that

1+
Q1———2—,

1+60)(2+6) 1+86
q = 3! - 9 qi,
q__nk1k+e ’i ‘1(k+9)
J = ]—l—l—l)‘ b

Notethat%g‘;_‘_i}if0<a§b. For j > 2,

. o
I_(k+0) _TNAG+0)  1+6

%= _(jTlﬁ_"H Golxip ¥~ g %t
_j+e T k+0 % —i4e [HTk+S) 146
g+ : ]—l+1 (j—l). @ g 41
j—1+6 m;;;(me) g—1+9’inf - 1(k+0)q 146
s . . 1 — j—1
J ! i = G- 2 Y
j—1+6 1+6 j—1+6 1+86
= S 4G-1 - —5 4-1= ; Ty gj-1-

Due to the fact that ¢; = 1—‘2*6—) > 0, by (induction, we obtain ¢; > 0 (j > 2), which means that
- L(s) is a pgf. |

(2) Note that for 0 < a <1, (1—~cs)®=1—acs — %—Tﬂczﬁ - 9(1——"2!(2——“20333

It is straightforward to show that all coefficients of series expansion of L(s) are non-negative,

which shows that L(s) is a pgf.




(3) Let r; = LU(0)/5!. Tt suffices to show that LU)(0) > 0 for j = 0,1,2,.... Check it when
j=0.

0
L0 =1 -1 = 1) [ - ey + (-7 =1 - (220 >0

Now consider the derivatives.

i) = —a’(1=)(=6) [(L—ahy+ (== ] @ =/ -7
Bl [F S P (R ) IO
—a ~(6+1)
Oéa [14-(1—1:%(1—8)1/9] y
woy _ 0+1 (1-a)y _ (1—a)y ~(6+2)
L'(s) = —— T a9(1—s)1/91[1+——1_7 (1—3)1/9] .

When 0 < s < 1, it follows that L'(s) > 0 and L"(s) > 0. Starting from j = 3, higher order

derivatives are non-negative linear combination of products of form

- —(6+k)
(1 — s)L/0-! [1 + ———(11 _a)7(1 - 3)1/0] I, k> (2.2.2)
Since for 0 <s <1 '

i _ \1/8-1 o1 -1 _\1/6-(141)
\ G- =g (=) >0,

d (1-a)y,, 16 —(0+k)

ds [1 + 1—7 (1-5s)

— _ —(0+k+1)
J 1—7v 1—7v

> 0,

(2.2.2) follows by induction, and we can conclude that all higher order derivatives are positive

when 0 < s < 1. This leads to that L&)(0) > 0.(5 > 1). Hence, L(s) is a pgf.

(4) Since the pmf of Zeta(p) is

. ’ 00
pi=c G+~ i=01,2,...; p>0,c=Y i Pt

i=1

the pgf of Zeta(p) is




Because L(s)G(s) = (s — 1)G'(s) + G(s), and

L(s)G(s) = poro + (por1 + p170)s + (pora + piry +paro)s” + -+ + (Z pk"'i—k) s,
(s — 1)G'(s) + G(s) -

= (s—1)[p1 + 2p2s + 3p3s® + -]+ [po + P15 + pas® + p3s® + -]

= (po — p1) + 2(p1 — p2)s + 3(p2 — pa)s” + - ot (4 )i~ pisn)st

we obtain
PoTo = Po — P1,

por1 + piro = 2(p1 — p2),
pore + p171 + paro = 3(p2 — p3),

S o Pkriok = (i + 1)(ps = pit1),

or more specifically,

( rog = 1-— 2_(p+1),

ry + 27ty = 2[2-(p+1) — 3—(p+1)],

Py 27Oy e (4 1) = (i 1]+ 17O — (4 2)7eHD),

Thus

ro=1—2"(tD) 5 ¢

r = 22"+ 3—(p+1)] — 9~ ([ — 9=+ = 9—(p+1) 4 4—(p+1) _ 9. g~ (p+1)

> 22— (r4=(p+D) — 2.3 0+) = 2[y/8-(p+) — V/9-(p+D] > 0.

Assume r; > 0 (i > 2). We show that rj41 > 0. To prove it, we apply the contradiction

method, which supposes 7;+1 < 0. Note that % < % < < Z—i—l This leads to

; (p+1) '
(k + 1)~(tD) < (o) (Z—:—;) L k=1,2,...,4
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Consider the new equation

3 (p+1)
<Z 1 ;) [Ti + 2_(P+1)”_1 4+ (’L + 1)—(p+1),,,0]

- [’I‘H-l 427 e 4 (i 4 2)_(p+1)7"0] (2.2.3)

- (Zié)w i+1) [(z‘+11)p+1 - (z’+;>p+1] ~l+2) [(z‘+;)p+l - (H;)M] |

The left hand side is

1\ (D) 1\ o) -
LHS = _¢H1+[(1+1>p _24wﬂ}”4_k—wu>(ttl)p —3*””}n_1

142 142

. (p+1) .
ot [i“”*l) (%) . (i + 1)“("“)] r

- (p+1)

1) (EFL (i +2)-(+D)

+{(z+1) <i+2 (1+2) 0
> —Tit1 > 0.

Denote the right hand side of (2.2.3) as a function of p:

1 (i + 1)°+2 i+ 2

RHS = o) = = ggyemt ~ (iwope T G
Then ,
log(i +2) 1 i+2 . 1 (i +2)%\ (i+1)r+2
, = —_—
R (p) = i+2 (i4+2)° z‘+310g(2+3)(z‘+3)p+10g( i+1 ) (i+2)20+2

o\ P : ‘
As p increases, (ﬂ—g) decreases to 0, thus, 10—%?;—2)-(1—_'_12—),, - Z—i’—g log(i + 3)(1+1T),, will eventually
be positive. This means h'(p) will eventually be positive when p increases, although it could
be negative at the beginning. Hence, h(p) could be either always increasing, or decreasing

first and then increasing. Thus
h(p) < max(h(0), h(c0)).
By calculation, we have

1 ' .
h(O) = _—(_Z'-}-—z)i(’l:'l‘—:‘}) <0, h(OO) = pl—l—golo h(p) = 0.

Thus h(p) < max(h(O),h(oo)) = h(oo) = 0. This contradicts to that LHS = RHS, which
implies that r;+1 > 0. Therefore, L(s) is a pgf.

29




(5) Rewrite and expand

~ s—1 B 1—-a 11 1
L(s) = L+O—Bﬂ(1—%%ﬂ = =X {Th " a (1_%%g

1-—
= 1+—755ﬂ+63+6%2+5%3+~1

[ (e (1) e (3220 ]
- afo-on- (22)) o= ()] 4
1

g ()]

Now we verify if all coefficients are non-negative, i.e.,

B”a)zo,i:Lz&”“

0-a - (

l-«

This is equivalent to

(L-@”lz(l—%)a i=1,2,3,.... (2.2.4)

If @ < B, then 1 — § > 0. Thus, (2.2.4) holds iff

1-2<@-a)Vi =123, ..,
g
iff
e ) . « 1
1= = <min{(1—- ““W}=1— 2 < = :
5—£W{( o) (=o' PsiTi-aP " 2-a
In this situation, we obtain the range of B:
: - .
a<p< 7
Ifa>p,1-5<0. Weonly need to consider 7 being even integers. (2.2.4) can be rewritten

as

. o 2
u—afﬁlz(5—1>, j=1,2,3,....
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This holds if
% -1< }23\1}{(1 — a)(2j+1)/(2j)} - (1 _ a)3/2.
Hence, the range of 5 in this situation is
a
—_——— < < .
1+ (1 - a)¥? shsa

These imply that for 8 in above ranges, the function L(s) is a pgf.

(6) We rewrite and expand

(1—ys)(s—1)

L(s) = 1+(1—Bs)(1—€§§s)

= YT e 1 B=2g
_ l-afy B-v 1
- @ (B_'- B 1—ﬁ3>
1 {(l-a)yy K (B-a)-(1—a)y 1
al\ -« 8-« 1_[;13:_23
- l-a)y (-a)y (1-a)B-7) 1
= 1+ af a(8 — a) af Xl—,Bs
B—v—a+ay 1
- (1-f)
_ (l-a)y (-a)y  (-a)(B8-7) .
= 1+ af _a(ﬁ—a)+ of x[1+ﬁs+6232+533 +]

B-v-atay B-o\ . (B-a\ o, (B-c)
 af-a) X[1+<1—a)s+'(m—> 8%+<I:_a) 83+“.j|
= az (1-a)(B-7B = (B-7-atan)(B-a) ' (1-a)7]s"
=1

We want

(1-a)(p- ) = (B-7-a+an(f-a) (1-0) 20, forizl
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The inequality can be written as

1-o/B

l—-«a

i—1
(ﬂ—v)(1~a)22(5—7—a+ay)( ) , for i > 1.

When a < 8,0 £ IT__O—‘OZLE < 1. In this case, it simply results in (8—7)(1-)? > (B—y—a+ay).

Further calculations lead to
a<fB and 1+y—-ay—-B2-a)>0,
ie,a<pB< 1%1__7‘”

When a > B, 11;?—&& <0. We obtain

i—1
B-nN1-a)? > (B-v-atay)(-1)" (‘a/ﬁ G 1)

l—-—«a

= (a-B+7v—ay)(-1) (_Oz/_ﬂ_—_l)i—l’ forié 1.

1-—a
Note that o — 8+ — ay > 0. First, 8 can’tA be smaller than 7. Otherwise, the left hand
side is always negative while the right hand side alternates in sign, which is a contradiction.
Thus, 8 > 7, and we only need to consider those situations where the right hand side is non-
negative. Secondly, if Eﬁ% > 1, ie., B < 52, the right hand side can go to infinity. This is
impossible because the left hand side is finite. Hence, it must be 72— < 3, and consequently,

0< gﬁ% < 1. Under such a situation, we can simplify the inequality to be

Xa/ﬁ——l

B-MNl-a)?2(a=-B+y-ay)x T——

i

or equivalently, 8(8 —7)(1 - @)’ > (a = B+ v — av)(a = B).
In summary, we obtain two groups of conditions: (1) a < 8 < (1+7 - av)/(2 — a); (2)
max(y,a/(2 —a)) < B < aand BB —v)(1 - a)® > (a— B +v— ay)(a — ). Under these

conditions, the function L(s) is a pgf.

Remark: More on the compounding operation. The compound Poisson rv can be represented

as random sﬁmmation:
Y .
Z = ZXZ'" Xo =0, X; did, Y is distributed in Poisson. (2.2.5)
1=0
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Here X; can be not only a non-negative integer-valued rv, but also positive-valued or real-valued rv.
The random variable Y can be extended to any other non-negative integer-valued rv. For example,
if Y is a Bernoulli rv, the compound operation is the random zero-truncation operation, it is often
used in Zero-inflated models for economic applications. See Winkelmann [1997], p. 107-108, and
references therein.

Now we briefly study a few properties of this extended compounding operation such as the

))'= (XDB(Y),
y)) + Var (E (ZX Y)>

= Var(X)E(Y)+ (BE(X1))* Var(Y),
Var(Z) Var(X))E(Y) + (E

mean, variance and probability mass at zero.

Var(Z) = Var (g‘o Xi) —E (Var(izo

— E(Var(Xy)Y) + Var (E(X1)Y)

E(Z)

B (X1))? Var (Y)
D@ = F@ - E(X)E(Y)
_ Var(X ) Var (Y)

1=

Y
Pr[Z=0] = Pr [Z X, = jl Pr[Y = 0] + Pr[X; = 0] Pr[Y = 1] + (Pr[X; = 0)2Pr[Y = 2]

4o+ (Pr[X; = 0)' Pr[Y = 4] + -

o

= Y (Pr[X; = 0))' PrlY = {]
1=0
= Gy(Pr[X; =0)), where Gy (s) is the pgf of Y.

If X, is also a non-negative integer-valued rv, we have

Gz(s) =E (s%) =E (523;0 Xi) - E (E (SZLo Xi |Y)) - ([GXI (s)]Y) — Gy (Gx, (),

where Gx, (s), Gy (s) are the pgf of X; and Y.

With these results, we have the following proposition.
Proposition 224 Suppose Xy is a non-negative integer-valuéd rv, and (2.2.5) holds.

(1) If E(X,) is positive and Var (X1) egists, then D(Z) > D(X1),
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(2) If Pr[Z = 0] > 1 — Pr[Y = 1], then Pr[Z = 0] > Pr[X; =0].
Proof: Apply the above results.

(1) Since E(X1) >0 and E(Y) > 0, we have

_ Var(Xl)

Var(Y)  Var(X;)
D& =%

TEX) ey 2 BXD)

= D(Xy).
This means that after compounding, the index of dispersion becomes larger.

(2) Because Gy (Pr[X; =0]) = fio(Pr[X1 = 0])! Pr[Y = i] > Pr[Y = 0]+Pr[X, = 0] Pr[Y = 1],
it follows that .

Pr[Z=0] > Pr[¥ = 0]+ Pr[X; = 0]Pr[Y = 1]
= PiY = 0]+ Pr[X; = 0)(1 — Pr[Y =0))
= PrY = 0)(1 - Pr[Xy = 0]) + Pr[X; = 0]
> Pr{X; =0],

where the equality holds only when Pr[Y = 1] = 1 or Pr[X; = 0] = 1, which are extreme

cases. Hence, the compound operation results in a larger mass at-zero in general.

The compound Poisson and random zero-truncation operations result in a larger probability
mass at zero. Such a property of a larger probability mass at zero makes the compound distribution

an alternative candidate in modelling count data with a higher fraction of zeros.

2.2.2 Laplace transformation, moment generating function and characteristic

function

The Laplace transformation (LT), moment generating function (mgf) and characteristic

function (cf) are widely used in probability and statistics. They are defined as below.

Definition 2.1 Let X be a rv. Then




(1) the LT of X is

bx(s) =E(e™*X), seS), whereS ={s:E(e*¥) < oo}
(2) the mgf of X is

Mx(s) = E(eX), s€8y, whereS={s:E(e¥) < oco0}.

(8) the cf of X is

ox(s) = E(”¥), s € (-00,00).

The relationships among the pgf, LT, mgf and cf, over approriate domains, are listed below:

Gx(s) = ¢x(—logs) = Mx(logs) = px(—ilogs),
¢x(s) = Gx(e™®) = Mx(~s) = px(is),
Mx(s) = Gx(es) = ¢x(—s) = px(—is),

px(s) = Gx () = Mx(is) = ¢x (—is).

For positive-valued rv X, the LT is more convenient than mgf, because its convergence
domain of s includes Ry = [0,00), a fixed set, while the domain of s for the mgf depends on the
individual distribution. The LT is decreasing while mgf is increasing.

The mean and variance can be derived from both LT and mgf.

¢ (0), $%(0) — (¢ (0))°,
E(X) =14 M4(0), and Var(X)=E(X?) - (E(X))?= MY (0) - (Mk(o))Q,
—~ig'y (0). —%(0) + (£ (0)% .

Note that the probability mass at zero can be obtained as

Pr{X = 0] = lim ¢x(s) = ¢x(00) = lim Mx(s) = M(~00).

§—00

Example 2.3 Gamma distribution: Let X be the rv of Gamma(a, B), where « is the shape param-

eter and f3 is the rate parameter. Then the pdf is

(83
(@i, B) = D201 550, a, f>0.

I(e)
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The LT 1s

({bX(S):(ﬁiS) ) SE[0,00),
the mgf is
M)\(S)=<ﬂl_ﬁ_s) ) SE(—OO, )a

and the cf is

The expectation and variance are
E(X)=aB8"! and Var(X)=af 2
The Gamma family contains a couple of special distribution cases:
e when o = 1, it is Exponential(3),
e when o = k/2, f =1/2 (k is an integer), it is Chi squared, X2.

More examples of LT and mgf can be seen in the successive subsections.
Because. the theory of continuous-time generalized AR(1) process heavily involves non-
negative rv’s, we focus on the LT in the rest of this subsection. The following theorem is important

to characterize the LT of a non-negative rv. Refer to Bondesson [1992], p. 8-9.

Theorem 2.2.5 (Bernstein’s theorem)

¢(s) is a LT off
1. ¢(s) is completely monotone (CM), i.e., (=1)ip®(s) >0, i € Ny, s € (0,00).
2. ¢(s) — 1, ass—0.

Following two theorems are very useful to identify new LT. Very nice proofs for the first two

can be found in Joe [1997], p. 374.

Theorem 2.2.6 Let ¢(s) be a LT. Then ¢°(s) is a LT for all a > 0 if and only if —log ¢(s) is

an infinitely differentiable increasing function of [0,00) onto [0,00), with alternating signs for the

derivatives.




Theorem 2.2.7 Suppose ¢1(s) and ¢2(s) are LT’s. If —log ¢1(s) is an infinitely differentiable in-
creasing function of [0,00) onto [0,00), with alternating signs for the derivatives, then ¢o(—log ¢1(s))

is a LT.

An explanation of ¢2(— log ¢1(s)) is discussed later in Section 3.4; refer tosBondesson [1992], p. 17.
Note that for a LT ¢(s), $*(s) being a LT for all @ > 0 means that ¢(s) is the LT of an infinitely
divisible distribution. See Section 2.3.1.

By Theorem 2.2.6, we can prove that the exponential function ¢(s) = exp{do(s)} is a LT
if ¢o(s) satisfies that ¢o(s) < 0, (—1) (()i)(s) >0, 1=123,..., 8 € (0,00), and ¢o(s) = 0
as s — 0. In some exponential form situations, the conditions of Theorem 2.2.7 are easier to be
verified than Theorem 2.2.5. ,

Applying these theorems, we can obtain the following éesults, which are used in the theory

of continuous-time generalized AR(1) processes.
Theorem 2.2.8 The following functions ¢(s) are LT of distribution with support on [0, 00).

(1)' o(s) =exp-{—)\-£_ﬁ'—1—;‘:7—s)}, where A, >0, 0<v<1andy< ﬁﬁ

(2) oxp { 2 log ({2328 ) } = (U=3088) ™77 where w0, 05 < 1
(3) =exp{ [ﬂ‘_ﬁl;l}, where 0 < a <1, 60> 0.
(4) :exp{ ﬁ(—f%} where 0 < a<1,0<v< 1.
(5) :exp{ = a;‘&la)s_l/e]o}, where 0 < a<1,0>1and 0 <y < 1.
(6) = exp{)\ 1+/3s 1/2} where A, B> 0.
Proof:

(1) When s = 0, ¢(s) = e® = 1. Hence, it suffices to show the complete monotonicity of function

#(s). Since v < &B, we know that 1 —y(1 + 8) > 0. Taking the first order derivative, we




obtain

¢'(5) ). 1 —'y+278)(€iﬁ++sz); s(1 = +s) exp{—A.ﬂl_;l_‘:”f_)}
ML= (1 + B8 + ) Fexp {2 Uorras)
< 0. ‘

By induction, the higher derivatives ¢(¥(s) (i > 2) are the sum of terms of form (omitting
the coefficients) ‘
‘ 1-—
(1) (B +s)* exp{—)\ : %3‘2} k> 0. (2.2.6)
This follows because derivatives of (2.2.6) lead to two terms having the same form (ignoring
coefficients that don’t depend on s). With this property, we can conclude that the derivatives

alternate the signs. By Theorem 2.2.5, ¢(s) is a LT.

First we prove that i—i‘;;s (0 < a < b)isa LT. This is because
l1+as a a 1 a ay 1/b
1+ bs 3 (1-3) e 5 ( b)l/b+s’

the LT of the zero truncation of the Exponential(1/b) distribution. Secondly, we show that

—log ﬁ‘;‘; is an infinitely differentiable increasing function of [0, 00) onto [0, 00), with alter-
nating signs for the derivatives. Since ii‘;i is decreasing, — log 11;‘;‘;5 is increasing, and
. ‘
g 1:22 = log(1 + bs) — log(1 + as),
o 14as)’ . b a b—a
1 bs T 14bs 14as (14as)(1+bs)

log LF9s 1+as\® _ (1)1 (1) lat (~1)i-1 (b+ abs)* — (a + abs)
1+bs

(I+bs)  (L+as)i (1 +as)i(1 +bs)*




(b+abs)* —(a+abs)’
(1+as)*(1+bs)*

alternating signs. Hence, by Theorem 2.2.6, (ii‘;‘;)c (¢ > 0) is a LT. Rewrite

> 0 for all i > 1, we conclude that the derivatives of —log 1tas ke

Becausg 1+bs

1—

—_—7
1—y (1+(137)us> e
o) = (=2 o N I e

(=) (u+s) N T 1 <o
T+ = ®  mETymrEs

ifl—y—yu2>0,

C
When either 1 —y—~u > 0 or 1 —y—~u < 0, ¢(s) has the form of (%%) (0<a<b c>0).
Therefore, ¢(s) is a LT.

It is clear that ¢(s) — 1 when s — 0. Hence, it suffices to show the complete ‘monotonicity

of function ¢(s). Taking the first and second order derivatives, we obtain

: e — a !
¢'(s) = (exp {— [1 + 5 _1)13] 1 })

= —q [1‘+ (60__ 1)8]&_1 exp {— L (e =)o) - 1} ,

e —1

$"(s) = (—a [1 + (e - l)s]a—l exp {_ 1+ (eia——‘l)ls]a 1 })
(14 (ef - 1)s]* - 1}

ed —1

+a? [1 + (ef - l)s]M_2 exp {~ L+ (7 1)3]0‘ -1 } )

= (@1 -a) [1 + (e - 1)3]“'2 exp {—

ed —1

Obviqusly, #'(s) has negative sign while ¢”(s) has positive sign. By induction, the higher

order derivatives are the sum of terms of form (omitting the coefficients)

yma-n 1+ (e? —1)s]* -1
[1+(60—1)8] exp{—[ (660_)13] }, 1<m<n.

Such a term has a derivative with negative sign, just like ¢(s) changes the sign of &' (s).

Hence, the derivatives ¢()(s) alternate in sign. This shows the CM property of ¢(s). By
Theorem 2.2.5, we conclude that ¢(s) is a LT.




(4) Rewrite

o el-ms Y\ __ fall-n[ (-/t-ap]
‘“S"ep{ (1—7)+(1—a)78} ep{(l-aw[(1—7)/[(1—am+s 1]}

Note that (1(:;7/)/1%;;213 is the LT of Exponential((1 —)/[(1 — a)v]). Hence, ¢(s) is the LT

of compound Poisson with the Exponential((1 — v)/[(1 — «)y]) distribution.

(5) Rewrite
¢(8). = exp {“ [(1 - a);x(+1 (—1 1)7)3—1/0]9}
] ] )
6 -0 -
R L

: -8 -6
Let ¢o(s) = 1 — ((11—_"(});> [%_%))7 +s_%] . We prove that ¢o(s) is a LT. First, when

Il
[¢]

T
——
I
—
=R
| [
ol !

2

s — 0,

1— -6 s
do(s) =1— ( ) — 1.

Hence, it suffices to show the CM i)roperty of ¢o(s). Now check the first and second order
—0
derivative of ¢g(s). Denote C = ((—11:_5;%) . We obtain

$o(s) = —C-(-9) [(1_—_04)1 +s'%]_0_1 (_l> 551

1-7) Z
<ol ,
0 = oo [ ] 7 (G5

- o 1]_(0+2) "

Note that ¢1(s) alternates the sign of ¢g(s). By induction, the higher order derivatives are

the sum of terms of form (omitting the coefficients)

[(1_—_@85 +1

—(0+k)
(T—7) ]

sm/6-n k>2 1<m<n.
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] —(0+k)

Since [%%sl/ o +1 and s™/%~" have derivatives with negative sign, it is straightfor-

ward to show that higher order derivatives qﬁg)(s) (i > 3) alternate in sign. Lastly, we check
that if ¢o(s) > 0 for s € (0,00). Since ¢g(s) is decreasing, it follows that

“o(s) > do(00) =1—C(CT'+0)=1-1=0.

Thus, ¢o(s) is non-negative. This completes the proof that ¢o(s) is a LT. Therefore, @(s) is
the LT of the compound Poisson with the distribution characterized by the LT ¢(s)-

(6) The proof is similar to that of (3). Rewrite

R e S

Then, the first order derivative is

[(1 +Bs) V- (1+ ,65)1/2] } :

™| >

06 = oo {r s g 0897 - 04097
= —% [(1 +Bs)2 4 (1+ ﬁs)—1/2] exp {)\. (ﬁzm}

< 0.

By induction, the higher order derivatives ¢@(s) (i > 2) are the sum of terms of form

(omitting the coefficients)

(14 Bs)~k/? e_xp{)\ : (Ti_ﬂ—ss)m} , k21,

By the same reasoning in (3), we know that ¢(s) is a LT.

The LT’s in (1) and (2) of Theorem 2.2.8 lead to GC IV and GC III in Section 2.3.3. This

distribution corresponding to (2) has non-zero probability mass at zero, and the mass is:

The LT’s in (3), (4) and (5) of Theorem 2.2.8 will be adopted as positive self-generalized distribu-
tions denoted as P4, P2 and P5 in Section 3.1.2. The LT in (3) belongs to Tweedie exponential

41




dispersion family. See Section 2.3.2. Comparing with the LT of Twa(u, 02) there, we find it is the
LT with spe'ciﬁcv parameter ‘

d:a—2

ao12% Kk=1l/e>0 0% = (1 - a)(¢ ~ 1)/a™= > 0.

The pdf is given in Section 2.3.2. This distribution does not have probability mass at zero, because
¢(00) = 0. However, the LT’s in (4) and (5) are not in the Tweedie exponential dispersion family.
This can be verified by comparing their LT forms. But they have non-zero (positive) probability

masses at zero, which are

o) ool

respectively. The LT in (6) will serve as the innovation of a stationary continuous-time generalized
AR(1) process with inverse Gaussian margins (see Section 6.3). As to their explicit pdf forms, we

are not clear at this moment.

Perhaps the most enjoyable and popular distribution is the Normal distribution. It has a
lot of good properties, such as bell-shaped density and limiting distribution of an average of rv’s.
To enlarge and modify this family of distributions, the variance mixture of normal distributions

was introduced:
X =vVYZ, Z~N(0,1)andY >0 isarv independent of Z.

Since X is a real rv, we prefer to calculate its cf. Let ¢y (s) be the LT of Y. Because wz(s) = e=s'/2,

we have
ox(s) = E (%) =E (eisﬁz) =E (E (eis‘/?ZIY)) =E (e—Ys2/2> = ¢y (s2/2).

See Bondesson [1992], p. 115. An equivalent version is the scale mixture of normal distributions,

which is defined as
X=2/Y, Z~N(0,1)andY > 0isarv independent of Z.

However, its cf can not be explicitly expressed via ¢y (s):

ox(s)=E (eisx) =E (eisz/y) =E (E (eisz/le)) =E (e'sz/(QYz)) .
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Refer to Joe [1997], p. 132-134 and references therein. Any symmetric Stable distribution is the
variance mixture of the normal distribution (see Bondesson [1992], p. 116). Other examples of the

variance mixture of the normal distribution are shown in the EGGC family in the Section 2.3.3.

2.3 Particular families of distributions

We review and investigate some distribution families which are used either as distribution of inno-

vation or as marginal distributions in the theory of continuous-time generalized AR(1) process.

2.3.1 Infinitely divisible, self-decomposable and stable distributions

Infinitely divisible (ID), self-decomposable and stable distributions appear quite often in the study
of the continuous-time generalized AR(1) process. For ease of reference, we briefly review them

here. Good references are Bondesson [1992] and Feller [1966a, 1966b].

Definition 2.2 (Infinite Divisibility) Suppose X ~ F. If for each n > 1, X can be decomposed

into the sum of n independent and identically distributed rv’s, namely
Xanl +Xn2 +"' +Xnn, where an,XnQ,...,Xnn sz,

then the probability distribution F is said to be infinitely divisible (ID).

By the definition, it follows that ¢x(s) = (¢x,,(s))". This leads to that go_lx/n(s) is a cf for

any non-negative integer n. Thus, the ID is equivalent to that % (s) is a cf for all & > 0. This class
of ID distributions is closed under convolution and weak limits. Some canonical representations of

the mgf of the ID distributions are summarized below.

Proposition 2.3.1 Suppose X ~ F, an ID distribution.
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e When the support of F is R, the Lévy(-Khintchine) representation of mgf is

2 .
- g .2 sy _1_ Y -
Mx(s) exp{as—l— 5 S +/y¢0 (e 1 1+y2)L(dy)}, Res=0, a eR,

where the measure L satisfies / min(1, y?)L(dy) < oo.
y7#0

o When the support of F is R, the representation of LT is
#x(s) = exp {—as +[ e L(dy)} L a0,
(0,00)

where the Lévy measure L is non-negative and satisfies / min(1,y)L(dy) < oo. The
(0,00)
" parameter a is called the left-extremity.

o When the support of F is Ny, the representation of pgf is

Gx(s) = exp {/(0 ) (s¥ = 1) L(dy)} = exp {A[Q(s) — 1]},

b)

where the Lévy measure L is non-negative and satisfies / min(1,y)L(dy) < oo. Here
(0,00)
A= f(o 00) L(dy), the total Lévy measure, and the pgf

o0

_ Q)= XY SFL{kD.

k=1

Note that the term e2* corresponds to the mgf of the constant a. Hence, for the case that the
support is R, the lower bound is @ > 0. Also for this case, there is a nice stochastic explanation.
Ignoring a and considering A = f(o, o0) L(dy) < oo, we know that L(dy)/) is a probability measure
on (0,06). Assume Yy = 0,Yj,j = 1,2,..., be iid rv’s with probability measure L(dy)/), and
7 ~ Poisson(A). Define the compound Poisson X = Z]Z:()Yj, namely Poisson compound with a

distribution with supf)ort on R,. Then the mgf of X is to be

Mx(s) = E(eX)=E (e32f=oyf) =E (E (estZ=oYf | Z))

Z
= ~les = ex ~les —
- E ({ /(O,OO)A yL(dy)] p{)\ [ /(O’oo))\ YL(dy) 1]}
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= X A A 163yL d - A 1L d
= XP GSy -1 L dy .

This shows that X is distributed in the ID distribution represented in the second case of this
proposition. When A = 0o, the explanation is a little bit complicated. Interested readers can refer
to Bondesson [1992], p. 16.

For support being Ny, the ID distribution is compound Poisson too, i.e., Poisson compound
with another discrete distribution with support on N (excluding 0). A nice proof for this case can
be found in Feller [1966a), p. 271-272.

Non-negative ID rv’s are of particular interest in our research. In practice, we may not have
the Lévy representation of its pgf or LT. However, there is an simple verification approach: check the
absolute monotonicity of M’ (s)/Mx(s). See Bondesson [1992], p. 16. This absolute monotonicity
is equivalent to the infinite divisibility of a non-negative rv. Note that this verification approach is
equivalent to Theorem 2.2.6 given by Joe [1997].

Common examples of infinitely divisible distributions are: Gamma, Negative Binomial,
Stable distributions, and so on.

Next we turn to self-decomposable distributions.

Definition 2.3 (Self-decomposability) Suppose X ~ F. If for each ¢, 0 < ¢ < 1, there exists
a v €. such that

XLcX +e,
where €, is independent of X, then the probability distribution F is said to be self-decomposable

(SD).

An equivalent definition is that X(s) is SD iff for each ¢, 0 < ¢ < 1, éx(s)/dx(cs) [or
 px(s)/¢x(cs)] is the LT [or cf] of a probability distribution. In probability, this class is sometimes
called the L—class. For example, Gamma and Stable distributions are SD. The property of self-

decomposability can be applied to construct the stationary discrete-time or continuous-time first
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order autoregressive process by setting
X(n+1)=cX(n)+ €&, neANy, X(n), €, are independent,
(refer to Vervaat [1979]) and
X(t+h) ge_“’hX(t) + e(h), h >0, te Ry, X(t), e(h) are independent.

The latter corresponds to Ornstein-Uhlenbeck-type processes; see Section 1.2. However, the support
of marginal distributions of these processes can not be Np. For this reason, the concept of SD is
generalized to discrete distributions with support Ny by replacing the constant multiplier with

binomial thinning.

Definition 2.4 (Discrete Self-decomposability) Suppose X ~ F. If for each ¢, 0 < ¢ < l,l

there exists a v €. such that

X
XLcesXte= Lite, Ih=0, Il .. 14 Bernoulli(c),
1=0

where €, is independent of X, then the probability distribution F is said to be discrete self-decomposable

(DSD).

This is credited to Steutel and van Harn [1979]. In the sense of pgf, this definition is equivalent to
that Gx(s)/Gx(cs+1—c) is a pgf for each 0 < ¢ < 1. Similar to SD, the property of DSD leads to
applications in construction of stationary discrete-time or continuous-time first order autoregressive
processes with non-negative integer-valued margins in the literature.

We will show examples of DSD distributions; these are analogues of continuous SD distri-

butions and are given in the end of this subsection.

Now we consider ‘phe Stable distributions.

Definition 2.5 (Stability) Suppose X ~ F. If for each n-> 1, there exists constants b, and c,

such that X can be ‘decomposed as

n
i.4.d

ngn+cn(an+Xn2+- ( + X >, where an,Xng,._..,Xnn '~ F,

=1
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then the probability distribution F is said to be Stable. If by, = 0 for all n, then F is said to be
strictly Stable.

This class has the mgf of form
My (s) = exp {-— / (—s)O‘K(da)} , K is a non-negative measure.
(0,1]

See Urbanik [1972]. ‘ _
Finally, we discuss the relationship among ID, SD and Stable. Obviously, Stable is a subset
of ID by their definitions. As to others, however, it’s not clear by their definitions. Further research
has shown that
Stable ¢ SD C ID.

The converses are not true. For example, the Gamma distribution is ID and SD; but not Stable. The
proof of SD C ID can be found in Feller [1966b], p. 553-555, and a brief explanation of Stable C SD
can be seen in Bondesson [1992], p. 19. As for the discrete self-decomposability, Steu’cel and van
Harn [1979] (Theorem 2.2) proved that a DSD distribution is ID.

For a continuous distribution with positive support, it is of interest to find and study its
discrete analogue, because they may share some common features in analysis. Essentially, the

discrete analogue is defined in such a way:

Definition 2.6 (Discrete analogue) Assume the LT of a continuous distribution with positive
support is ¢(s). Then, its discrete analogue with non-negative integer support is defined to have pgf
of form G(s) = ¢(1 — s).

This definition sometimes can be modified to be G(s) = ¢(d(1 - s)) (d > 0) to enlarge the

family of discrete analogue (see Ezample 2.5).

Common examples are: Poisson is the discrete analogue of a degenerate rv on a positive point;
Negative binomial is the discrete analogue of Gamma; in particular, Geometric is the discrete
analogue of Exponential.

If ¢(s) is a LT, then G(s) = ¢(1 — s) is always a pgf. This follows from Theorem 2.2.1 by
checking the [0,1] domain of s, G(1) = 1 and AM feature [follows from CM of #]. Thus, for any
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positive continuous distribution, we can always obtain its analogue by defining its pgf in terms of
the LT. One may wonder what'’s the explanation of the discrete analogue. Suppose A is a positive
rv with the LT ¢(s). Given A = )\, Y ~ Poisson(}). Hence Y is a Poisson mixture, and is a

non-negative integer rv. The pgf of Y is then
G(s)=E (s*) =E (B (s"|aA=)) =B (ND) =g(1-5), 0<s<L

This means that the discrete analogue is the Poisson mixture and the positive continuous distri-
bution is just the mixing distribution. Therefore, by Poisson mixing, there is one-to-one mapping
between the class of positivé continuous distributions and the class of discrete Poisson mixtures.
For a discrete Poisson mixture distribution', we call the correspénding positive mixing distribution
as the continuous analogue of that discrete distribution, and by algebra, it has the LT in terms
of the pgf: #(s) = G(1 — s).

Note that in general, we can’t define a LT by an arbitrary pef in this way. The big problem
is whether G(s) can be extended from domain [0,1] to (—oo,1]. It is sure to work for a Poisson
mixture, but not certain for a non-Poisson mixture.

We end this subsection with two examples of continuous SD distributions and their discrete

analogues, DSD distributions.

Example 2.4 (Positive stable distribution and discrete stable distribution) The positive

stable distribution has LT
#(s) = exp{—As"}, A>0,0<y<L
The discrete stable distribution was introduced b? Steutel and van Harn [1979] to have pgf
G(s) = (l—s5) =exp{-A1—s)T}, A>0,0<y<L
The first one is SD, while the latter is DSD (refer to Steutel and van Harn [1979]).

Example. 2.5 (Mittag-Leffler distribution and discrete Mittag-Leffler distribution) Re-
fer to Bondesson [1992], p. 15. Assume X = YY/7.Z, where Y ~ Gamma(8,1) and Z is distributed
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in positive stable with LT e™s", 0 <y < 1. Estending to v =1 so that 0 < v < 1, we will have
7 =1 as a special case at the upper bound of y. Then the LT of X is
_ —syVr.z\ _ —syl/1.z2 _ —sTYY _ 1
px(s) =E (e )=E(E (e 2)) =B (e )_—__(Hsv)ﬂ'
This LT family is labeled as LTE in Joe [1997], p. 876 where it is a special case of Theorem 2.2.7.
Taking B = 1, we obtain
1

=— 0 <1

which is the LT of Mittag-Leffler distribution named by Pillai [1990], because the corresponding cdf
is linked to the Mittag-Leffler function. When v = 1, it is exponential. Hence, the Mittag- Leffler
distribution can be viewed as a generalization of the exponential distribution.

It seems that the Miitag-Leﬁ‘ler distribution is unlikely to be a stable distribution since one
special case is the exponential distribution, which is in the Gamma family, and the Gamma family
is not stable.

The ‘discrete Mittag-Leffler distribution was introduced by Pillai and Jayakumar [1995], and

has pgf of form
1
T 14d(1-s)Y’

Pillai and Jayakumar [1995] also gave an ezplanation for this distribution. Consider an infinite

G(s) d>0 0<y<1.

sequence of Bernoulli trials where the k—th trial has success probability v/k, 0 < v < 1, k =
1,2,3,.... Denote Y as the trial number in which the first success happens. Then the pmf and pgf
of Y are _
| g T\

= = = _ 1 -_ —') R - -
b= Py =K = -9 (1-1) - (1-72) ]

_ (_1)k—17(7_1)"l'€'('7—k+1)’ k=123

Gy(s) = 1-(1—s)".

Hence Y has a power series distribution with lower support point 1. Let Z be from Geometric with

_ z
paf Gz(s) = 1:2;812_3 = 1_1ds, and X = S Y;, where Yo =0, Y; (i > 1) uid from the power
=0

series distribution. Then X has pgf of form

Gx(s) =B (sTEe¥) =B (B (555 1

Z)) - E ([1 (- s)"’]z) = T
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Similarly, the discrete Mittag-Leﬂer distribution can be seen as a genemlizatioh of Geometric
distribution, because it becomes Geometric distribution when v = 1.

The Mittag-Leffler distribution is SD', and the discrete Mittag-Leffler distribution is DSD.
See Section 7.1. ' |

2.3.2 Tweedie exponential dispersion family

The Tweedie exponential dispersion family is a major member in the class of exponential dispersion
| models, which has been systematically studied by Prof. Bent Jprgensen. Important referenées are
Jprgensen [1986, 1987, 1992, 1997]. The following is extracted from Jgrgensen [1997] and Song
[1996]. _
This section is referredlto in a few places in subsequent chapters. It can be skimrﬁed in the
first reading.
Suppose X ~ ED*(#,)), the exponential dispersion distribution with probability density

(mass) function proportional to
c(z; \) exp{fz — Ax(6)}, z €R,

where c(z; )) is a density with respect to a suitable measure (typically Lebesgue measure or counting

k(0) = log ( / (s A)dz) ,

the cumulant generator. Hence, a suitable measure v(dz) is required so that

measure), and

/c(m; Aeu(dz) = M),

This kind of distribution, ED*(8, \), is called the additive exponential dispersion model with
the canonical parameter 6 and the index parameter X. Let © = {# € R : &(f) < oo} be the
canonical parameter domain, int© be the interior of ©. Denote the mean value mapping

7:int® — R, and the mean domain defined by

7(0) = k'(#) and Q= 7(intO)
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respectively. Define the unit variance function V : @ — R, as V(p) = 7 (771(w)). By the

property of exponential family, the cumulant generating function is

K*(s;0,)) log E[e**] = log (e_’\“(a) /e“c(m;)\)eazv(dac)> ‘

= log (e”)‘”(a)e“(eﬂ)) = \k(0+s) —x(0)], s€©-0.

Note that s takes value 8* — 6 to guarantee that k(0+s) = x(6*) < oo, where 6* € ©. Differentiating

K*(s;0,)\) twice with respect to s and setting s = 0, we find the mean and variance to be
E(X)=Ar(f) and Var(X)=AV(r(0)) = A7'(6).

Lét Y = X/, p = 7(8),0% = 1/A. Then by definition, ¥ ~ ED(p,0?), with probability
density (mass) function

e(y; A) exp{ Ay — x(0)]}, yER,

where &(y; \) is a density with respect to a fixed measure, and the cumulant generator is

k() = log ( / e®e(y; A)dy> :

the cumulant generating function is
K(s;0,)\) =logE[e*Y] = A[x(0 + s/X) — k(0)], s€ 0O -0,
~and the mean and variance are
E(Y) =E(X)/\=pu(=7(0)) and Var(Y)= Var(X)/X* =a*V(u)(= o?7'(6)).

This kind of distribution, ED(u, 02), is called the reproductive exponential dispersion model.
Here 02 = 1/ is called the dispersion parameter.
Concrete examples in exponential dispersion models include the Binomial, Negative bino-
mial, Poisson, Gamma, Normal, hyperbolic secant and generalized hyperbolic secant distributions.
The Tweedie family is a special member in the class of exponential dispersion models; it
was first studied by Tweedie [1947). Following the reproductive form, it has special form of unit

variance function:

Vg =pt, peQ deR
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Hence, the ratio of variance and mean is

Var(Y) 4
By = i1,

A model with this reproductive form is denoted as TW4(p,0?). Tweedie models are closed with
respect to scale transformation, i.e., if Y ~ Twqa(u, 0?), then cY ~ Twy(cp, c2=dg?),

Since V(u) = p¢ = 74(6) = 7'(6), 7(#) must be

_ o/ -d)
) - { (L= e/, £,
el d=1.

For the sake of convenience, let 8 = g—:—%. Then 1/(1—d) =B-1, 1 —d=1/(8—1). This leads to

7(0)={ (), d#Lorpro

f, d=1, or 8 =o00.

Since 7(0) = /(8), for Twy(u,0?), the cumulant generator x(6) has explicit form

gg—l(%)ﬁ, d+#1, 2, or B#0, oo,
k(0) = ¢ —log(=6),  d=2,0rf=0,

e, d=1, or = oo0.
(ignoring the arbitrary constants in the integrations will not affect the final results of cumulant
‘generating function.) Thus, one of the other adVaﬁtages of Tweedie model we are appreciating

is that it has explicit expression for the cumulant generating function and mgf. The cumulant

generating function of Twg(u,0?) is

_ B
A2 (54) [(1+%)° - 1], d#1%
K(50,A) =19 —Alog(1+ %), d=2;
Aef [es/’\—l], d=1,
and the mgf of this family has special exponential form: _
8
exp {)\-ﬂ‘%l (%) [(1 + %)’3 - 1]} , d#1,2;
M(56,) =E[e] =1 (14+2)7, d=2;

exp {2’ [e/* — 1]}, d=1.
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Further research shows that d € (—oc,0]U[1,00]. Thus, ifd € (—00,0], then 8 € (1,2]; if d € [1, 00],
then B € [—00,1]. This leads to 8 € (1,2] U [—00,1] = [-00,2]. Now for the future use, we impose
the subscript 8 on 7(8), 6(8), K (s;6, ), M(s;8, ), c(z; A) and &(y; ) to indicate that they are linked
to the specific parameter . |

Also, the probability density (mass) function of Tweedie model can be obtained, though
it is complicated. Recall X = AY has the additive model if Y has the reproductive model. The

probability density (mass) function is

Fx(x:0,X, B) = ca(z; A) exp{fz — Arp(6)},

where
(1, , B <0,z =0;
k§1%%’ B <0,z >0;
cplai ) = kffl DUAKD) \kch(—1/z) sin(—knf),  0< B <1,z >0;
| e (Ml;/z(l))k sin(~krf), 1<B<2,z€R.

Here rg(6) is just the previously calculated x(8) for Twg(p, 0?). The corresponding reproductive

model then has has probability density (mass) function
Fr(y; 8, ), 8) = Acg(My; A) exp{A[By — r5(6)]}-

Tweedie family includes distributions with support on R, R, No, corresponding to real-
| valued, positive-valued and non-negative integer-valued random variables. These are related to
different ranges of d, in which we view the endpoints of ranges as boundaries. Table 2.1 summarizes
the different types of Tweedie models. From the table, we know that the real suppoft R appears
when d < 0 and d = oo; this corresponds to 1 < 8 < 2, while the non-negative support N, or Ry,
or R, appears when 1 < d < oo; it corresponds to 8 < 1. Some boundary cases are well known
distributions: normal (d = 0), Poisson (d = 1), Gamma (d = 2), inverse Gaussian (d = 3) and
extreme stable (d = co). When 1 < d < 2 (corresponding to 8 < 0), the compound Poisson with

Gamma obtains, that is,

Y=Y Z,

N
=0
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Table 2.1: Summary of Tweedie exponential dispersion models (S = support set).

Distributions d s Q ©

Extreme stable d<0 R Ry R
Normal d=0 R R R

(Do not exist) 0<d<l — — —
Poisson d=1 . Ny Ry R

Compound Poisson 1<d<2 Ry RNy -
Gamma d=2 R, Ry R-
Positive stable 2<d<3 Ry Ry -Ro
Inverse Gaussian d=3 Ry Ry -Ro
Positive stable d>3 R, Ry -Ro
Extreme stable d= 00 R R R

where Zy = 0, Z; ud Gamma(f, —B) and N ~ Poisson(\kq(f)). This distribution has a positive
probability on zero,

PrY = 0] = Pr[N = 0] = exp{—Asa(6)},

and density function

Ly~ Nrg(=1/y) exp{fy — Akq(0)}.

fY(y;‘),)\,ﬁ) = ;Z:Zlﬁ—(_—w)—

2.3.3 Generalized convolutions

The generalized convolution is a natural extension of a finite convolution. It helps to connect those
individual distributions which seem to have quite different forms in the pdf or cdf. Fortunately, we
find that the genéralized convolution provides a huge ammunition for the theory of continuous-time
generalized AR(1) process. A good reference on the generalized convolution is Bondesson [1992].
The following materials regarding GGC, EGGC, GCMED and GNBC are extracted from that book.

First, we review the generalized Gamma convolution, which was introduced by Thorin

[1977a, 1977b)], to understand the mechanism of construction of generalized convolution.




u;i+s

' Bi
Since the LT of Gamma(u;, 3;) is (—“L—) (i = 1,...,n), the LT of the sum of n such

Gamma rV’s, i.e., finite convolution, is

7 . B: n u; .
$n(s) = 1211 (u“+ S) = exp {;ﬂilog (u - s) } :

Consider pointwise limits of ¢,(s) and permit a Gamma distribution to be degenerate at a point

a > 0 with LT e~%. This leads to the following definition.

Definition 2.7 A generalized Gamma convolution (GGC) is defined as a distribution with support

on [0,00) and LT of the form

() = exp {—as + /(O’oo) log (u i S) U(du)} ,

where a > 0 and U(du) is a non-negative measure on (0,00) satisfying

/ |logu|U(du) < oo and uw U (du) < oo.
(0,1] (1,00).

Therefore, the GGC is the limiting distribution for a sequence of sums of independent
Gamma variables with possibly different rate parameters. Extending this idea to random variables
from other families, we obtain the concept of the generalized convolution, which is defined as
the limit distribution for a sequence of sums of independent variables from a parametric family. In
the sense of limit, we know that there are usually numerous rv’s involved in the convolution. In
our study, we tentatively call the distribution involved in the sum as the base distribution of the

generalized convolution.
For a rv X distributed in the GGC class, we have

E[X]=-¢'(0)=a+ /( oo uw"U(du), Var[X]=¢"(0) - (¢'(0))* = /( oo uw2U (du).

This class is surprisingly rich. Some of the examples include

e (strictly) positive Stable distribution on (0,00): the LT ¢(s) = exp{—s"} (0 <~ < 1), and

the measure U(du) = %Mqﬂ‘ldu which leads to / U(du) = oo.
(0,00)
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Pareto distribution: the pdf f(z) = yA\"(z + A)™~! (z,7,X > 0), and the density of the

measure U is U'(u) = r&—)/\”’tﬂ le=Au,

Generalized inverse Gaussian distribution: the pdf
f(z) = CzPLexp{—c1z — ez}, >0 (c1,2>0,6€R).
The U-measure has density

0, ‘ u < ¢y,
U'w) =4 [(w= e [0 O - e P e
1 o Jo c1) ple
-1
x exp {—ca(s — 1)2p(A — ¢1) 7'} dpdA] , u>cl.

Letting ¢; — 0 leads to inverse Gamma distribution. A good reference on the inverse Gaussian
distribution is Seshadri [1999], where applications can be found in reliability, survival analysis

and actuarial science.
Generalized Gamma distribution (power of Gamma random variable): the pdf is
flz) = CrP ltexp{-2z®}, z>0 (0<a<l1,B>0).

The density of U-measure is

Uu) =7 targ )exp{im(B + ko) JuFe

k=0
Beta distribution of the second kind (Ratio of Gamma variables): the pdf is
fl@)=Czf 1 +cx)™, >0 (y>pB>0,c>0).
However, the density of the U-measure does not have a simple exp;ession.

Lognormal distributions: the pdf is

f(z) = ﬁa‘lx_l exp {— (102%;:2:)2} , =>0.

Unfortunately, no simple expression for the U-measure exists.
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Next we visit the extended generalized Gamma convolutions (EGGC), which have support
on the whole real line ®. This class is needed to cover the limit distributions for sums of independent

positive and negative Gamma variables. It was also introduced by O. Thorin. See Thorin (1978).

Definition 2.8 An extended generalized Gamma convolution (EGGC) is defined as a distribution
with support on R and cf of the form

. cs? u isu
o(s) = exp {zbs 5 + /(_Oo’oo) (log (u — is) ks u2> U(du)} )

where b € R, ¢ > 0 and U(du) is a non-negative measure on R\ {0} satisfying

1
——U(du) < o0 and / log u2|U (du) < oo.
fo oy T g lu (@)

Remark: The term su/(1 +u?) is added to guarantee the convergence of the integral. When
/ |u|"'U(du) < oo, it can be omitted. Hence, GGC is a subclass of EGGC. Further research
|u|>1

shows that the symmetric EGGC is the variance mixture of the Normal distribution, with cf of

| 052 'LL2
p(s) = exp {——2— + /(O’oo) log (u2 n 52) U(dU)} ,

where U is symmetric on R \ {0}. Thorin [1978] proved the EGGC is SD.

form

Some examples of the EGGC class are listed below. They are verified by characterizations

other than specifying U-measure.

e Stable distribution: the cf of the general Stable distribution of index & (0 < @ < 2) is
o(s) = exp {ips — C|s|*(1 — iBsign(s)w(s,e))}, peR, C >0, |8 <1,

where

tan(am/2), a#1,
w(s,a) =
—2r~llogls|, a=1L1

The Cauchy distribution is within the Stable distribution family with cf

o(s) =exp{-C|s|]}, C>0.
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Generalized Logistic distribution: This rv is derived from two Exponential rv’s as X =

log(Y1/Y3), where Y; ~ Gamma(f;,1) (i = 1,2). The pdf of X is

f(z) = me-ﬁw/u LB g e R

When ﬂl = Bz = 1/2, it is
fz) = %(e“”/2 +e )7 zeR.

While 81 = 2 = 1, it is the logistic distribution with pdf

flz)=e*/(1+e®)?, zeR;

and mgf
. s % 1 00 1
M(s) =T+ =)= ey = gﬁ:‘f/?) = kll A s/R)A T s/k)

A stochastic representation of scale mixture of the Normal distribution for this logistic rv X
can be found in Joe [1997), p. 133-134. See also Andrews and Mallows [1974] and Stefanski
[1991]. It is

x<zv,

where Z ~ N(0,1), and V is a positive rv with pdf

fr() =23 (-1 R exp{—k?/ (227)}:

00
k=1

Hence, X is the rv of a variance mixture of the Normal distribution.
Logarithm of Gamma variable: X =logY, Y ~ Gamma(3,1).
Other symmetric EGGC distributions with pdf: |

(i) f(z) =C(1+cz?)~7, t-distribution, essentially
(ii) f(z) =C(1+clz])”7, two-sided Pareto distribution

(i) f(z) = Cexp{—cvz?+4d}; Hyperbolic distribution
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(iv) f(z) = Cexp{—cla|’*} (k=12,..)
The generalized convolutions of mixtures of Exponential distributions (GCMED) is another

extension of GGC (see Bondesson [1992], p139-140). This class has support on [0, c0).

Definition 2.9 A generalized convolution of miztures of Ezponential distribution ( GCMED) is
defined as a distribution with support on [0,00) and LT of the form

@(s) = exp {—as + /(O,oo) (u _1!_ o= %) U(du)} = exp {—as + /(O’OO) u(—u_j—_s—)U(du)} ,

where a > 0 and U(du) is a non-negative measure on (0,00) satisfying

1
——U(du) < oo.
/(0700) u(l +u) (du)

Remark: A mixture of Exponential distributions (MED) is defined as a probability distribution
on [0, 00) with pdf ‘
f@ = [ wem ),
‘ (0,00)
or cdf
Flz) = / (1= e=YU (du).
(0,00] ‘
Here U(du) is the mixing measure (for the inverse of the scale parameter), which is non-negative

and satisfies / U(du) = 1. U({oo}) > 0 implies the distribution has an atom at 0. The LT of

(0,00]
an MED is
U

o(s) = U({oo}) + /

U(du).
(0,00) U+ S

The LT of compound Poisson with Exponential has the form of

¢(s)=exp{)\ (uis—l)}=exp{)\u (uis—a}

Hence, the GCMED is a generalized compound Poisson-Exponential convolution following the

convention of GGC.

Some examples of GCMED are




Compound Poisson with Exponential distribution: Let X = Zz’]\io Y;, where N ~ Poisson())
and Yy = 0,Y; ~ Exponential(u) (1 =1,2,...). Then

dx(s) = exp{A(dy,(s) — 1)} = exp {Au ( Lo l) } . |

U+ S U

Non-central y?-distribution: Let Z; ~ N(u;,1) (1 =1,2,...,n) be independent. Then

n N
X=3277=>Y,
i—1 =0
where A = S 2, N ~ Poisson(}/2) and Yy = 0, ¥; ~ Exponential(1/2).

Logarithm of Beta variable: X = — log‘Y, where Y ~ Beta(a, 8). The LT of X is

bx(s) = T(a+ B)T(a+s)
X T D) (a+B+5)

Inverse Gaussian mixture distribution (introduced by Jorgensen, Seshadri & Whitmore [1991}):
the pdf is ,
fl@)=C'lp+gve/eaz)fi(z), ¢=1-p, 0<p<L,

where fi(z) is the pdf of inverse Gaussian distribution
fi(z) = Cx~3/? exp{—c1z — 02.’1:_1},
which has LT
¢1(s) = exp{es(1 - V14 cs)}, c3=2ycicz, ca=1/c1.
The LT of the inverse Gaussian mixture distribution is |
(s) = (p+a/V1+cas)di(s).

This family includes the well-known life distribution of Birnbaum & Saunders (1969) when
p=1/2.
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The last generalized convolution discussed in Bondesson [1992] is the generalized Negative
Binomial convolution (GNBC), which has support on non-negative integer {0,1,2,...}. The discrete
analogue of the Gamma distribution is the Negative Binomial distribution; hence, the GNBC is

the discrete analogue of the GGC.

Definition 2.10 A generalized Negative Binomial convolution (GNBC) is defined as a distribution

with support on non-negative integer and pgf of the form

G(s) = exp {a(s -1)+ /(0,1) log <1 —pqs> V(dq)} ,

where a > 0, p=1— q and U(du) is a non-negative measure on (0,1) satisfying

/ qV(dgq) < oo and log(p)V (dg) < oo.
(0,1/2 (1/2,0)

Some examples of the GNBC class are

e Discrete Stable distribution: the pgf is

G(s) = exp{—c(1 - s)*}, ¢>0,0<a<]l.
(refer to Steutel and van Harn [1979)]).

e Generalized Waring distribution: this family is defined with probability mass

gilall L(8+7)T'(a+7)
C 1R = 0’172,'." bl b bl > 0’ C = k)
atBrym e T(a+B+7T()

where B0 =1, Ul = . (B4 1)+ (B +j — 1). The pgf is the sum of a Hypergeometric

pj =

series. Furthermore, the generalized Waring distribution is the Poisson(A)-mixture, where

A=Y -X;/Xs and Y, X;, X, are independent with

Y ~ Gamma(8,1), X; ~ Gamma(a,1), X;~'Gamma(y,1).

This family leads to several distributions:




(i) Waring distribution (see Johnson & Kotz [1969], p. 250): 8 = 1.
A special case is the power series distribution when o = 1- n, v =7 (0 < n < 1), which

has pmf and pgf:

(- - (-s)
= =0,1,... d -
p] 77 (]+ 1)' 3 .7 07 b} 3 an G(S) s

(ii) Yule distribution: « = =1and v — 0.

(iii) NB(B, g)-distribution: ¢ = a/(a + ) and let o = oo, v — oo.

Distributions (i) and (ii) have applications in modelling word size in prose.

e Logarithmic series distribution (shifted): the pmf and pgf are

At
pi= (i=0,1,2,...), c=1-¢% 6>0, and G(s)

_ log(1 — cs)
S 06+ 1)

" slog(l —¢)’

In the study of continuous-time generalized AR(1) process, we have discovered four new
generalized convolutions, which we tentatively name as GC I, GC II, GC III and GC IV. These
generalized convolutions play an important role in customizing marginal distributions of a steady

state Markov process (see Chapter 6).

Definition 2.11 A generalized convolution I (GC I) is defined as a distribution with support on

non-negative integer and pgf of the form

_ q(s —1)
G(s) = exp {—as + /(0’1) 1 g5 V(dq)} ,

where a > 0 and V(dq) is a non-negative measure on (0,1) satisfying

/ qV(dg) < 0 and / (1 —¢)"V(dg) < oo.
(0,1/2] (1/2,1)

The base exp {ﬂls_;q?} was proved to be a pgf in Example 2.1 in Section 2.2.1.

Definition 2.12 A generalized convolution II (GC II) is defined as a distribution with support on

non-negative integer and pgf of the form

G(s) = exp {—as + /[ ) 9(s - DA = 79) V(dq)} ,
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where a > 0, v > 0 and V(dq) is a non-negative measure on [vy,1) satisfying

/ (1 - @) 'V (dg) < oo.
[7,1)

The base exp {ﬂi%%ﬂ}, 0 < v < ¢ < 1, was also proved to be a pgf in Example 2.1 in

Section 2.2.1.

Definition 2.13 A generalized convolution IIT (GC III) is defined as a distribution with support
on [0,00) and LT of the form '

_ 1—7 (1—=7+7vys)u
#e) = oxp {’“” [\ ) U(d“)} ’

where a >0, 0 < <1 (v is fized) and U(du) is a non-negative measure on (0,00) satisfying

/ |logu|U(du) < oo and / u2U (du) < oo.
(0,1) (1,00)
Note that when v = 0, GC III will become GGC. Hence, GGC is a special case of GC III.

The base exp {log (8:—;’;&:’%)} was proved to be a LT in (2) of Theorem 2.2?8.

Definition 2.14 A generalized convolution IV (GC IV) is defined as a distribution with suppdrt
on [0,00) and LT of the form

$(s) = exp {—as +)\/(0 - _MQUW)} ,
. 1o

u+ s

where a >0, A >0, 0 <y <1 (yis fired) and U(du) is a non-negative measure on (0,y7! — 1] |
satisfying

/' u U (du) < co. l
(0’7—1_1]

Note that when v = 0, the LT will be

-8

s )
¢(s) = exp {—as + )\/(O,oo) oy SU(du)} = exp {—as +./(0,00) mU (du)} ,

where U'(du) = MU (du). Thus, GC IV will become GCMED. This shows that GCMED is a special
case of GC IV.




The base exp {—A . ﬂlﬂgﬁ—s)} was proved to be a LT in (1) of Theorem 2.2.8.

Specific distributions which are in the new generalized convolution families are not known

at this moment; thus, further investigations are under study.

2.4 Independent increment processes and examples

The independent increment process is well studied, and is intimately connected with infinitely
divisible distributions. The latter links to the study of Lévy process. Refer to Prabhu [1980], p. 69,
Feller [1966b], p. 177-179, Bhattacharya & Waymire [1990], p. 349-356, Protter [1990], Section
5 in Chapter 1. We review this process family and will choose some of them to be the noise
process or innovation process in the theory of continuous-time generalized AR(1) processes defined

in subsequent chapfers.

Definition 2.15 Stationary independent increment process (IIP):
A process {X (t);t > 0} is said to have stationary independent increments if it satisfies the following

properties:
(i) For0< t1‘< to < - < ty(n >2), the random variables
X(t), X (t2) — X(t1), X (ta) = X (t2), ..., X (tn) — X (tn-1)
are independent.

(ii) The distribution of the increment X (ty) — X(tg—1) depends on (tx_1,tk) only through the

difference tg — tg—1.

Without loss of generality, X (0) is usually taken as 0. This is because that if X(0) # 0, we
can subtract it from the process which results: Y (t) = X (t) — X(0). The new process {Y (¢);¢ > 0}
has stationary independent increments and starts from Y (0) = 0. This means that the starting

point is independent of any increment for a stationary independent increment process. Since

X(t) =z§:_; [X (%t) -X (’;1t>] :
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X (t) can be viewed to be the sum of n independent random variables, all of which have the same
distribution as X (¢/n). This is true for all n > 1. Hence, it follows that X (¢) has an infinitely
divisible distribution.
Note that it’s easy to extend the stationary IIP to non-stationary ITP by loosening condition
(ii), in which case the distribution of X () may not be infinitely divisible if the small increments
are not identically distributed.
~ With the following additional conditions, the stationary independent increment process

becomes the Lévy process:
(iii) X (t) is continuous in probability, namely, for any € >0,
lim Pr[|X(t)] > ¢ — 0.
t—0+
This is equivalent to stochastic continuity: tlintl Pr[| X (t2) — X (t1)| > €] = 0.
112

(iv) There exist left and right limits X (t—) and X(i+). Assume that X(t) is right continuous:
X(t+) = X(t). Here the difference X (t+) — X (t—) = X (t) — X(t—) is called the jump of the

process at time t.

Note that the number of conditions required for a Lévy process may appear as three to five
in the literature, depending on the author’s view. For example, some impose X (0) = 0, some don’t.
Because the increment X (o) — X (t1) is infinitely divisible for the Lévy process, we can
characterize this process by the mgf, LT or pgf of the infinitely divisible distribution discussed in
Proposition 2.3.1. Some scholars even define the Lévy process in this way, e.g., Bondesson [1992],
p. 16. Since we are particularly interested in three kinds of supports of increment: (—o0,+00),

(0,400) and {0,1,2,...}, we summarize the results in these three cases in the following proposition.

Proposition 2.4.1 Suppose {X(t);¢t > 0} is a Lévy process with X(0) = 0. Consider X(t), the

margin at time 1.

e When the support of X(t) is R, the mgf of X(t) is

o2 s
bx (1) (8) =exp{t [a8+7'32+/y¢0 (esy—l— I—i—Ly?) L(dy)]}, Res=0, aeR,
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where the measure L satisfies / min(1,y?)L(dy) < oo.
y#0

o When the support of X (t) is Ry, the LT of X(t) is

bx(p)(s) = exp {t [—as + /(0 | (e™*¥ - 1) L(dy)} } , a>0,

where the Lévy measure L is non-negative and satisfies / min(1,y)L(dy) < co. Now the
(0,00)
parameter a is called the left-extremity.

o When the support of X (t) is No, the pgf of X (1) is
Gx(t)(s) = exp {t [/ (s -1) L(dy)} } = exp {tA[Q(s) — 1]},
(0,00) '

where the Lévy measure L is mon-negative and satisfies / min(1,y)L(dy) < oo. Here
(0,00)
A= f(o.oo) L(dy), the total Lévy measure, and the pgf is

o0

Qs) =271 D s*L({k}).

k=1

When the support of X (t) is N, obviously it is compound Poisson based on another discrete
distribution which also has support Ny. When the support of X(t) is R,, it is also compound
Poisson. See the explanation in Bondesson [1992], p. 16. When the support of X(t) is R, further
research shows that the Lévy process can be decomposed as a Brownian motion plus drift and a
jump process. And the only one in Lévy process family, which have a.s. continuous sample paths, is
the Brownian motion. See Bhattacharya & Waymire [1990], p. 349-356, and Protter [1990], Section
5 in Chapter 1. '

The compound Poisson process is a concrete example in Lévy process family, which is
defined to have compound Poisson increments. Assume X (0) = 0. Then

N(t)
X(t)=>_Y;, whereYp=0,Y; (i >1)iid and N(t) ~ Poisson(At).
=0
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The margin can be real, positive or non-negative integer valued depending on the support of ¥;.

The cf, LT or pgf of X(#) is then

t)(8) = exp {Xt(pv; (s) — 1)}, if Y7 is a real rv,
(1)(s) = exp {At(¢v; (s) = 1)
Gx()(s) = exp { (G, (s) - 1

where @y, (5), ¢v,(s) or Gy, (s) is the cf, LT or pgf of Y1 respectively. This family contains many

}
}, if Y7 is a positive rv,
)}

if Y7 is a non-negative integer rv,

processes such as Poisson process, Negative Binomial process, Gammd process, etc.

The increment with three kinds of domains: (—o0, +00), (0,+00) and {0,1,2,...} are of
our special interests in the theory of continuous-time generalized AR(1) process. In the rest of this
section, we list some specific stationary IIP {X(t);¢ > 0} with non-negative integer rv, positive rv
and real rv margins respectively for the future use. They are used to construct specific models in
the theory of continuous-time generalized AR(1) processes. The non-stationary case can be easily
generalized by allowing the the time difference ¢t — t; to be a function of ¢; and t, say a function’
of to — t;. All starting points are assumed as 0, namely X (0) = 0.

Case 1: Non-negative integer rv margins
Example 2.6 Poisson IIP. The increment X (t2) — X (t1) ~ Poisson(A(t2 — t1)), with pgf

Cx(t)-x()(8) = B (sX7X0)) = exp{A(t2 — 11)(s ~ 1)},
where A\ > 0. Thus, the margin X (t) ~ Poisson(\t) with pgf Gx(1)(s) = exp{Mt(s — 1)}.

Example 2.7 Compound Poisson IIP. {Y (t);t > 0} is a Poisson IIP defined as in Ezample 2.6.
7 is a non-negative integer rv with pgf Gz(s) = E(s?). The increment of {X(t);t > 0} is defined

as
Y (t2)-Y (1)
i=0
ird . Thus, the pgf of X (t2) — X (t1) is

Y(ta)-Y(t1) |

2 z;
GX(tz)—X(tl)(s) = E(SX(t2)—X(tl)):E Els i=o Y(ty) — Y(t1)

where Zy = 0 and 2y, Z3,. ..

= B{GyW VW) < exp (A2 - 1[Gz (s) ~ 11}
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and the pgf of X(t) is Gx()(s) =.exp{Mt[Gz(s) — 1]}

Gz(s) has a variety of choices. For instance, we can take Gz(s) =po+ps+ -+ pus,
where the p;’s are non-negative and sum to 1. If Gz(s) = s, the Poisson IIP in 'Ezqmple'2.6
obtains.

7 can be generalized to a continuous-time process {Z(t);t > 0} (Z(0) = 0) with the property

that for t; < ta < ts,
(ta — 11)[Gz(tp—11)(8) — 1] + (t3 — 22)[Gz(t3—1o)(8) = 1 = (t3 = £1)[G z(t—11)(8) — 1}

Define the increment of {X(t);t > 0} as
Y(tz)-Y(t1)

X(t) - X(t)= > Zilta—t),

=
where Zo(ig —t1) =0 and Zy(t2 —t1), Z2(ta —t1), - - i'}'\‘Jd.Z(tQ —t1). Hence, the pgf of X (t2) — X (1)
s

G x (t5)- X (t1)(8) = exp {A(tz —t1) [GZ(tz—n)(S) - 1] },

Checking the pgf of X (t3) — X (t1), we obtain

Cx—xls) = B(sXEIX00) = (¥ XXl

= Gx(t)-x(t1)(8)Gx(ts)-x(t2)(8)
= exp {A(t2 —t1) [GZ(tg—il)(s) - 1] + Mtz — t2) [GZ(tg—tz)(s) - 1]}
— exp {A(tg —t) [Gz(ta_tl)(s) - 1] }

Therefore, the pgf of X (t) is exp {At [Gz(t)(s) - 1] }

Example 2.8 Negative Binomial IIP. Let the increment X (t2) — X (t1) ~ NB(B(ty — t1),7), with

pof

1—~ )9(t2—t1)

GX(tz)—X(h)(s) = (1 s

?

ot
where >0 and 0 < v < 1. So X(t) has pgf (11__;’5) .
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Example 2.9 Discrete stable IIP. Let the increment X (tg) — X (1) be distributed with discrete
stable, i.e., the pgf is

GX(tg)—X(h)(S) = exp{—A(t2 — t1)(1 - 5)*},
where A >0 and 0 < a < 1. Then X(t) has pgf Gx(s) = exp{—=At(1 — 5)%}.

Example 2.10 Generalized Negative Binomial convolution (GNBC) IIP. Let the increment X(t2)—
X(t1) be distributed in GNBC with such kind of pgf

_ _ p
G x(ts)-X(t,)(8) = €xp {(t2 t1) /(0,1) 10g(1 = qS)V(dQ)}'

Then X (t) has pgf Gx(z)(s) = exp {t f(O,l) 1og(1—;”7'§)V(dq)}.

Example 2.11 GC I IIP. Let the increment X (t) — X (t1) be distributed in GC' I with pgf of the

form

Gxixin@ = (-t [ L= vy,

01 1—gs
Then X (t) has pgf

Gy (s) = exp {t /( y qis_—q? V(dg)}.

Example 2.12 GC II IIP. Let the increment X (t2) — X (t1) be distributed with GC II with pgf of
the form

. s— 1)1 —ys
GX(tQ)—X(tl)(s)=exp{(t2_t1)/(01) 4l 11((13 7 )V(dtJ)}, v > 0.

Then X (t) has pgf

Gx@) (s) = exp {t /(0 ! q(s —11)_((118_ 7vs) V(dq)}.

Case 2: Positive rv margins

Example 2.13 Gamma IIP. Let the increment X (ta) — X (t1) ~ Gamma(a(tz — t1),B), with LT

- afta—t1)
Px(t2)-X(01)(8) = B [es(X(t2)=X (1)) = (ﬂig ,

, t
where o, > 0. The LT of X(t) is (B%)a , i.e., the LT of Gamma(at, ).
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Example 2.14 Inverse Gaussian IIP. Inverse Gaussian rv X has pdf '

Fx(@ip\) = VA (2r23) exp{-A(z - p)*/(2u*2)}, = >0,

where p, A > 0, and the LT is

S\ 172
¢X($)=E[6SX]=6XP{% [1—<1+2/;\2) ]}

Now let A = ku?, where k is a constant. Then

¢x(s) = exp {ku [1 - (1 + 28)1/2] } .

~ For this special form, we can construct Inverse Gaussian IIP {X(t);t > 0}, such that the increment

X(tQ) — X(tl) has LT

| : 9 \ /2
$xX(t2)-X (1) (8) = €xp {k(tz —t) ll — (1 + E3> } } i

Hence, the LT of X (t) is
9 \ /2
bx(1)(s) = exp {kt [1— <1+ES> }}

Example 2.15 GGC IIP. Let the increment X (t2) — X(t1) be distributed in generalized Gamma

convolution distributed with LT

DX (t2)-X (1) (8). = €Xp {(t2 —t1) /10g (u—i—s> U(du)} :

x10) = o {t [ 1og (2 ) Ut |

This family is a big class, consisting of many known distributions.

Hence, X(t) has LT

Example 2.16 GCMED IIP. Let the increment X (t2) — X(t1) be distributed in GCMED with LT

DX (t)-X(t1)(8) = exp {(tz —t1) /(o - U(du)} ;

o0) U S

" Then X(t) has LT

bx()(s) = exp {t/(o 1o ust(du)} :
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Example 2.17 GC III IIP. Let the increment X (t2) — X (t1) be distributed in GC III with LT

¢X(t2)—X(t1)(5) = exp {(tQ —t1) /(;) 00) ‘1"%7_“ log (((11%;%-(%%) U(du)} , 0<y<1.

Then X (t) has LT

_ 1-7 (1—y+ys)u
d)X(t)(S) - P {t /(o,oo) 1—v—u log ((1 —)Hu+ s))_ U(du)} '

Case 3: Real rv margins

Example 2.18 Gaussian IIP (Brownian Motion). This is well known. The increment X(t2) —
X (t1) ~ N(O,t2 — t1).

Example 2.19 Cauchy IIP. A Cauchy(0,)) rv X has pdf

1 A

FxlelN = 25

—o <<+, A>0,

and cf
ox(s) = Ble®¥X] = el
To obtain a Cauchy IIP, just set the increment X (t2) — X (t1) ~ Cauchy(0, A(t2 — t1)).

Example 2.20 Stable Paretian (or stable non-Gaussian) IIP. Consider a special case in stable

Paretian family, which has cf of form
o(s) = exp{—A|s|*}, O0<a<l2
(When a = 2, it’s normal distribution.) To obtain a stable Paretian IIP, just let the cf of the
increment X(to) — X(t1) be
Px(t)-x(1)(8) = exp{—A(t2 — t1)[s|*}.

Thus, the cf of X (t) is exp{—At|s|*}.

In summary, all pgf’s, LT’s or cf’s in these examples are of exponential form with (tg—1t1) as
linear parameter in the exponent. We pick up such a form because we want to change the product |
form to summation form in obtaining the pgf, LT or cf form of the continuous-time generalized

“AR(1) process. In all these cases, X () is infinitely divisible.

71




Chapter 3

Self—generalizéd distributions and

extended-thinning operations

In this chapter, we shall propoée a new concept of closure for probability distributions. Families
with this closure property are called self-generalized distributions. The support of these families
can be non-negative integer or positive real. They induce a class of stochastic operators, which
we call extended-thinning operators. These stochastic operators will be applied in generalized
Ornstein-Uhlenbeck stochastic differential equations, and the property of self-generalizability plays
a crﬁcial role in model construction of continuous-time generalized AR(1) processes (see Chapter
4).
In Section 3.1, We" shall define the self-generalized distribution in the non-negative integer-
valued case and the positive-valued case respectively, and give some examples as well. We discuss the

properties of self-generalized distributions in Section 3.2, as well as construction of self-generalized

distributions in Section 3.3. Finally, we propose the extended-thinning operations in Section 3.4.




3.1 Self-generalized distributions

A family of self-generalized distributions has a pgf or LT which is closed under some compound one-
parameter operation. The support is non-negative integer or positive real. We give the thorough

discussion on both cases in the following subsections.

3.1.1 Non-negative integer case and examples

Suppose K is a non-negative integer random variable, taking value on {0,1,2,...}. Now we define

the self-generalized distribution in non-negative integer case.

" Definition 3.1 Let A be a subset of reals that is closed under multiplication. Suppose K has cdf

F(z;a) depending on a parameter o, o € A. The probability generating function is
00 -
Gx(s;0) = Bls¥] = / #dP(z;a) = 3 s Pr(K =i,
: 0 i=0

If
Gk(Gk(s;a);d) = Gk (s;ad),

then the distribution family {F(z;a); o € A} is said to be self-generalized with respect to parameter
. For brevity and convenience, we say that K is self-generalized with respect to parameter « to

refer to the self-generalizablity of the distribution family {F(z;a);a € A}.

In non-negative integer case, the self-generalizability is closed under the compound opera-
tion for the probability generating function. This closure operation corresponds to an interesting
stochastic representation (refer to Property 3.6, which leads us to call it self-generalizability).

To illustrate this new family in non-negative integer case, we give five examples in the

remainder of this subsection. For the sake of saving space and reducing redundancy in the later

study, we label them from I1 to I5.




Example 3.1 (I1): Let K ~ Bernoulli(a) (0 < o <1). The pgf of K is Gk (s;a) = (1 —a) + as.
Thus

Gk(Gk(s;a)d) = (1-d)+d'Gk(s0) = (1~ a') +d'[(1 - @) + as]

= (1-ad)+ads=Gk(s;ad).
Therefore K is self-generalized with respect to parameter o.

Example 3.2 (I2): Consider K = ZI, where I ~ Bernoulli(a), Z = Z'+1, Z' ~ NB(1,133), and

a = %, b= (T_o?;_’ 0<a<1,0<+v<1. Here the parameter v is fized. Note that Z, Z' have

Geometric distributions with positive integer support and non-negative integer support respectively.

The pgf of Z is (1 —q)s/(1 —gs) where g= (1L +b)"1. A straightforward calculation leads to

(1-a)+(a=17)s
(I-oy)=(1-a)ys".

Gk(s;a) =

It follows that

(1—d)+ (o —7)Gk(s; )
(1-ay) = (1-a)Gk(s50)

(- o)+ (o~ el

)
(1 - aly) — (1 - o)y ofEie=n
1—a)(1—ay) = (1= a)ys]+ (& =N[(1 — &) + (¢ —7)s]

(1 — a1 -ay) - (1=-a)ys] = (1 =/l - @) + (& —7)s] -
(1—a)1-ey) + (e =N -a)]+[-1 -1 -a)y+ (o —y){a=7s
(T—ady)1-e)-1-a)1-a)] - [(1 -yl -a)y+ (1 -a)(a=)]s
(1-7)(1—ad)+ (1 —7)(ad —7)s
(1—7)(1-ady)— (1 =71 - ad)ys

(1-ad)+ (ad —7)s
(1 - ady) - (1 —ad)ys

Gk (Gk(s;a);d) =

= Gg(s;ad).

Hence, K 1is self-generalized with respect to o.

When v =0, this becomes Ezample 3.1.




Example 3.3 (1I3): Let K bea right-shift power series random variable, taking values in {1,2,3,...}.
The pgf is ' '
Gk(s;a)=1—-(1-9)%, 0<a<l.

It follows that

GK<GK(5;a>;a'> = 1-(1-Gk(s0)* =1- (1 -8 =1- (1 -5

= Gg(s;ad).

Thié shows that K is self-generalized.

Example 3.4 (I4): Suppose the non-negative integer mndbm variable K has pgf
Gi(s;a) =c 1 - e~ 00—)(1 _ ¢5)9],

- where 0<a<lc=1- e ? 9> .0. The parameter 0 is fized. Then

Cr(Gr(sia)id!) = ¢ M1 —e 0021 — cG(s; )]

_ c—-l[l _ e—B(l—a’) (6—0(1—a)(1 _ Cs)a)a]

_ c—l[l _ e—@(l——a’+a'——aa’)(1 _ cs)aa’]
— c-—l[l _ e—0(1—aa’)(1 _ cs)aa’]

= Gg(s;ad).

Thus, K is self-generalized with respect to o.

Since %ir% 1 - e~01-0)(1 — ¢5)?) = 1 — a + as, the lower boundary leads to Ezample 3.1.
—
Example 3.5 (I5): Consider the non-negative integer random variable K which has pgf
| 9 0 —179]7°
Grlsio) =1 - a®(L=7) [1-a)y+ (L -7 =),
where 0 < @ < 1,0 <~y <1 and 0 > 1. Here the parameter v and 6 are fized. Then, it follows that
-8
Gr(Grlsiae) = 1=(@)P°0 - [(1- )y + (1= - Crls;a) ]

= 1-()(1 —.’7)0 [(1 ~d)y+a™ ((1 —a)y+ (1 —y)(1 - 8)_1/9) —0] !
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(1—ad)yy+ (1= - s>—1/0]“”
: |

= 1-()’(1-7)’ [
INYIRERY. ' —1/0]7°
= 1 (@)’ (1- ) [(1 - adhy+ (1 =)L - )]
= Gk(s;ad). A
Hence, K is self-generalized with respect to a.

- When 0 = 1, the pgf becomes

(l-—a)+(a—7)s
1—ay) - (1 -a)ys’

Grlsia) =1l =) [(1-a)y+1L-n-97] " = ¢

which is the pgf of Example 8.2. Therefore, Ezample 3.2 is a special case in this family.

We summarize the existing relationship among these classes: I1 C 12 C I5 and I1 C I4.

3.1.2 Positive case and examples

In this section, we define self-generalizability for positive rv’s.

Definition 3.2 Let A be a subset of reals that is closed under multiplication. Suppose K has cdf

F(z; ) depending on a parameter o, o € A. The Laplace imnsformation of K is
bxc(s;0) = Ble™¥].
If
¢ (—log px (s; a); o) = ¢k (s; ),

then the distribution family {F(z;a);a € A} is said to be self-generalized with respect to the pa-
rameter . For convenience, we say that K is self-generalized with respect to the parameter o to

refer to the self-generalizablity of the distribution family {F(z;a);a € A}

In positive rv case, self-generalizability is closed under the negative logarithm-compound op-

eration for the LT. This seems quite different from non-negative integef case, where self-generalizability
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is closed under compounding for the pgf. However, recalling that Gk (s;a) = E (s¥Y=E (e‘(‘ log ) K )=

éx (— log s; @), one can induce from
Gk (Gk(s;a);d') = Gk(s;aa)

to
¢ (—log px (—log s;0);0') = ¢(—log s; aa').

Replacing —logs with s, we see that the non-negative integer self-generalized distribution still
satisfy the definition for positive rv case. This implies that both definitions are the same in principle.
Of course, we can use the definition regarding LT to unite both cases; however, the pgf is more
convenient than the LT for the non-negative integer case.

Similarly, this kind of closure of LT with respect to a parameter corresponds to another inter-
esting stochastic representation (see property 3.7) leading to the terminology of self-generalizability.

The following are five positive rv self-generalizability examples. Similarly, we label them

from P1 to P5; they form pairs with I1 to I5.

Example 3.6 (P1): Suppose K is a degenerate v on point o (o > 0). Then the LT of K is

bK(s;0) = e~ 5. It is easy to check self-generalizability, because
¢>K(—log ¢K(s;a);a') — e—a’[— log o (s50)] e—a’[as] — e—aa's'

Example 3.7 (P2): Suppose K is a positive random variable with LT

L a(l —v)s
¢K(S,.a) = exp {_(1 _,),) + (1 — a)'ys}’

where 0 < a < 1,0 <~ < 1 and v is fized. This is the LT of a compound Poisson distribution with

ezponential rv’s. It follows that

_ o o (1 —v)[~log ¢k (s; )]
Pr(~log ¢ (s i) = exp {‘ (=) + (1 - )7l log Ms;aﬂ}

(1—7)s
o (1 - N ey

a{l—y)s
(1= 9) + (1= )=

~ ~ ad/(1—7)s
= exp.{ 1-9)+1-a)yys+a(l - a/)78}

= exp{ —
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_ 3 aa (1 —7)s
- e"p{ =) ‘+<1—aa')vs}

= ¢k(s;ad).

Hence, K 1is self-generalized with respect to «.

When v = 0, this becomes Ezample 3.6, namely P1.

Example 3.8 (P3): Let K be positive stable with LT ¢k (s; ) = exp{—s*}, where 0 < o < 1.
Then

$ic(~log xc(s5 0); ') = exp { - [~ og dc(ss )] | = exp {~ 51"} = exp { s}
= ¢ (s;ad).
Thus K is self-generalized.

Example 3.9 (P4): Consider positive random variable K with LT

[1+(e9—1)s]"—1}

e —1

oK (s;a) = exp {—
where 0 < a <1, 0 >0 and 6 is fized. It follows that

[1+ (¢ — 1){—log g (s; )} - 1}

e —1

¢k (—log ¢ (s;a);a’) = eXp{—

e —1)s]* - o
[1+(e9—1)ﬁeg—i)l]——l} -1

60—1.

{ [1+(e0—1)s]‘m’—1}
Rl e —1

= ¢r(s;ad).

= exp{ —

Thus, K 1is self-generalized with respect to o.
1+(ef —1)s]* -1
e’ —1

Since ;iH(l) exp {— } = e~ the lower boundary leads to Ezample 3.6.
—
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Example 3.10 (P5): Consider positive random variable K with LT

Pulsia) = e {_ [(1'— a)y+(1- y)s~d

a(l —v)

[}

where 0 < o <1,8 >1and 0 <y < 1. The parameters § and -y are fired. Now we check the

self-generalizability.

dx (— log k(53 0); )

p{

exp

exp

D=

- o'(1—7) ]0
(1= o)y + (1= y)[-log ¢k (s; )]

o (1-7)

—
1 — v+ (1 — a(1-9) }
( o)y +(1-1) ({(1—a)y+(1—7)3'5

0

1
[

o'(1—1)

1
- _(=a)y+(1-—y)s ¥
1-a)y+(1-7) o(1-7)

O —
Lol = o)y + (1 —a)y + (1 =7)s7s

el o/ (1 - ) lr
[(1—aa)y+ (1 -7)s77]

= ¢x(s;ad). |

This implies that K is self-generalized.
When 6 = 1, the LT will be

a(l

=) a(l —v)s

prc(5:.0) = exp {—(

l-a)y+(1-

7)3‘1} :eXp{_(l— }

v)+ (1 - a)ys

which is the LT of the Ezample 3.7. Hence, Example 3.7 is a special case in this bigger family.

The relationships among these classes are: P1 C P2 C P5 and P1 C P4.




3.2 Properties of self-generalized distributions

In this section, we shall discuss some properties of thé proposed self-generalized distributions in
proceeding section. These involve the properties of their means, boundaries, as well as possible
stochastic representations for the compounded pgf and LT.

For non-triviality we assume that the distributions of a self-generalized family {Fr(;a);a €
A} are distinct for different o € A. Thus, trivial cases like K being a constant 0 for the entire

family are excluded.

Theorem 3.2.1 Suppose K is a self—genemlized random variable. The expectation of K is:

B—G—’%M ; if K is non-negative integer rv,
ha) = E(K) = oon o) s=1 T -
T ) if K is positive rv.
5=0

Then

(This is the Cauchy functional equation.)

Proof:  Taking partial derivative with respect to s for both sides in the self-generalizability
definitions, by the chain rule, we obtain

0G K (Gi(s;); ) 9 0Gk(s;a)  0G(s;aa)
OGk(s; ) Os . 0s ’

and
Ok (~log ¢k (sie);i)  O(-logdx(s;ia)) _ dpx (s; aa)
I(—log dr(s;a)) Js B Os

The latter can be further written as

Odx (—log dk(s; a); ) y (_ 1 8¢K(s;a)> _ 0Kk (s;ad)
O(—log ¢k (s; @) ¢K(sia)  Os ds

By setting s = 1 or s = 0, we can obtain the related equations regarding to the expectations

associated with parameter values o and o' for non-negative integer and positive self-generalized

distributions respectively.




Since

Cr(l,0) =E(1F)=E(1)=1 and ¢x(0,0) =E(e ) =E(1) =1,

we have
0Gk (G(s; 0); ) _ 0Gk(s1;0) — h(d)
aGk(S;a) s=1 N 831 s1=1 N
and :
O (—log ¢ (s;a);c) | _ Opr(se;d) — _h(e)
O(—log pk (s;@))  ls=0 0 52=0 ’
where s = Gi(s;a) and sy = —log ¢k (s;a) respectively. Thus, for the non;negative integer

self-generalized distribution, it is straightforward to obtain

h(a)h(a') = h{ad').
For the poéitive self-generalized distribution, we first have the folloWing‘ equation
~h(a!) x h(a) = —h(ad'),
which simply leads to h(a)h(a’) = h{ad').

To distinguish the self-generalized random variables with different values of parameter a,
we adopt X(c) to denote the one corresponding to o. Hence, X(c) and X (o) will be from the
same self-generalized distribution family, but with parameter values o and o respectively.

Since the closure property of self-generalized distribution is with respect to the parameter
o, i.e., ae’ € A, the possible domain A for « are the real set, or the intervals [-1,1] and (—o0, —1]JU
[1,00) (including or excluding the boundaries), or the positive real set, or the intervals [0, 1], [1, o0)
(boundaries could be excluded). '

Note that reparametrizing by taking inverse, there is one-to-one mapping between (0, 1] and
[1,00), and such a reparameterization keeps the self-generalizability. This feature can be seen in
the following reseasoning. Suppose G’ (s;a) = Gk(s;1/a), where « € (0,1]. Then 1/a € [1,00),
and G% (G4 (s;0);d) = Gk (Gk(s;1/a);1/a’) = Gk (s; 1/(ad)) = G%(s,ad’). Hence, (0,1} and
[1,00) are equivalent. We only need to consider domain (0, 1]. However, we ‘can’t find a one-to-one

mapping between (0,1) and (0,00) such that the self-generalizability is kept.
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In the remainder of this section, we are only interested in non-negative set A: [0,1] and
[0, +00). In fact, the theory of continuous-time generalized AR(1) processes only needs A = [0, 1].
The boundary 0 may be excluded, but the boundary 1 is always included in A through the remainder
of this thesis.

The inclusion of 1 has been jusfiﬁed from the definition of self-generalizability. This property

plays an important roles in the theory of continuous-time generalized AR(1) processes.

Property 3.1 Let K be a self-generalized rv. Then, Gk(s;1) = s or oK (s;1) = e %, that is,
K(a) =1 for a=1.

Proof: We consider the discrete and positivé case respectively.

(1) Discrete case. Gk (s; ) Is increasing in s for any « € A. Hence, from
Gk (Gk(s;1);a) = Gk (s;a), for all s,

~we conclude that either Gi(s;1) = s or Gk(s;@) = 1. However, Gg(s;a) =1 means that
K (c) takes value 0 with probability 1 for all @. This contradicts the non-triviality assumption.

Therefore, the only choice is Gk (s;1) = s.

(2) Positive case. ¢k (s;a) is decreasing in s for any o € A. Since
$x(~log gk (s;0);1) = ¢k (s;0),  foralls,

either —log ¢ (s;1) = s or ¢k (s; @) = 1 holds. However, the latter implies that oK (s;0) =1,

contradicting to the non-triviality assumption. Thus, oK (s;1) =e™%.

Both cases imply that K(1) = 1.

With extra conditions, we can obtain the functional form of the expectation of a self-

generalized rv by Theorem 3.2.1.

Property 3.2 Suj)pose h(c), the ezpectation h(a) of a self-generalized rv K, is continuous with

respect to o. Then

h(d) =a.

82




Here r can be positive or negative (r = 0 is eliminated to avoid triviality). If h(c) is bounded in

(0,1), then r > 0. If h(e) is finite but unbounded in (0,1), then v <0.

Proof: Under the continuity assumption, it is straightforward to deduce
h(a) =o'

by Theorem 3.2.1. Excluding the trivial case, we know that r > 0 or r < 0. h(a) = o" will goes to

0 or oo according to 7 > 0 or 7 < 0 respectively. This completes the proof.

Note that h(a) may not be finite when a # 1. See the cases of (I3) and (P3) in the

following example.

Example 3.11 Checking the non-negative integer and positive self-generalized distributions in last
two sections, we find h(a) = a for 11, 12, 14, P1, P2 and P4. For13, the power series distribution,
and P3, the positive stable distribution, the expectations are infinity, i.e., h(a) =00 when 0 < a <
1. For 15 and P5, ﬁ(a) = af. Also see the ‘summary for the mean and variance of self-generalized

distribution in Table .91

Note that if K(c) has finite expectation for all > 0, namely E [K(a)] = a”, 7 > 0, then
K (a) can be reparameterized by o™ so that E[K(a)] = (al/’")r — . This is because that for the

reparameterization transformation, /" (e/)}/" = (ad/ )1/7, is closed under multiplication.
Property 3.3 Let K be a self-generalized rv.

(1) If the boundary 0 is included in the domain A ofpamhieter a, then Gk (s;0) =1 or ¢ (s;0) =
1, that is, K(a) =0 for a = 0.

(2) If the boundary 0 is not in domain A, but the ezpectation of K is bounded and continuous
with respect to o, then K(a) L0 asa—0.

Proof:

(1) The boundary 0 is included in the domain A. Then by self-generalizability, it follows that for
@ €A,
Gk (Gk(s;);0) = G(s;0), for all s,
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and
¢K (—log x (s;@); 0) = ¢k (s;0),  forall 5.
Because of the monotonicity of Gk (s; ) and ¢k (s; @) with respect to s, the above equations
yield that
Gk(s;a)=s  or Gk(s;0) =1,
and
—logpxr(s;a)=s or  ¢k(s0) =1
But Gk (s;a) = s and ¢ (s;a) = s will lead to the triviality that K(a) = 1, thus, it must
hold that Gk (s;0) = 1 and ¢k (s;0) = 1, namely K(0) = 0.

(2) The boundary 0 is not included in the domain A. Then by Property 3.2, lim+ E[K(a)] =0.
a—0

By non-negativity, we obtain that K(a) L2y0as a— 0.

The support of self-generalized rv is of interests. Below is the feature of support of a non-

negative integer self-generalized rv.

Property 3.4 Suppose Gg(s;a) = po(e) +p1(a)s+ -+ pa(a)s™, with n > 1, and pp(a) > 0 for

all o # 1 if n is finite. Then the order n is either 1 or co.

This is because that the polynomial degree of Gk (G (s; @); ') will be n?. Only 1 or +o00
are possible choices. Therefore, any distribution with domain in a finite non-negative integer set

other than {0, 1}, such as Binomial distribution, can not be self-generalized.

The pgf Gk (s;a) and the LT ¢x(s;) are uniformly continuous in s on their range [0,1]

and [0, oo] respectively. How about their continuity in a? This leads to the following conclusion.

Property 3.5 Let K be a self-generalized rv.

(1) For K being a non-negative integer-valued rv with pgf Gk (s;a), if Gk (s;a) is left continuous
at o = 1, then Gk (s;a) is continuous in o in (0,1].

Furthermore, if G (s;a) is right continuous at o =0 and liI(I)1+ Gk(s;a) =1, then Gk(s; @)
a—r

is uniformly continuous in o in [0, 1].
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(2) For K being a positive-valued rv with LT ¢x (s; @), if oK (s; ) is left continuous at o = 1, then

bk (s; ) is continuous in o in (0,1).

Furthermore, if ¢ (s;a) is right continuous at o = 0 and lim+ bk (s;a) = 1, then ¢k (s; )
a—0

is uniformly continuous in « in [0,1].
Proof:

(1) Suppose o < a. It follows that
Gk(s;a) — Gk (s; ) = Gk (s;a) — Gk (s; fo) = Gk (s; @) — Gk (Gk(s; B); a),

where 8 = o//a. When o — o, f — 1. Since lir? Gk (s;a) = s, thus, Gg(s; 8) — s. By
a—1"

the continuity of a pgf in s, we know that Gk(s;a) — Gk (Gk(s;B);) = 0. This implies

that G (s; ) is continuous in « in (0, 1).

If Gk (s; @) is left and right continuous at its two boundaries of &, then G k (s; &) is continuous

in o in the closed interval [0,1], which shows that Gk (s; ) is uniformly continuous in & in

[0, 1].
2) Applying the same reasoning, we can obtain the similar conclusion for ¢ (s; ).
g g

Remark: _

For 13, K does not have finite mean, and in fact, the right limit ali)r{){r Gk (s;a) = 0; this is not a
pef. Similarly, for P3, K does not have finite mean too, and the right limit ali)r(r)1+ oK (s;a) = ‘e"l,
which is not a LT. In both cases, the pgf or LT is left continuous at o = 1. As to I1, 12, I4, I5 and

P1, P2, P4, P5, K has finite mean, and its pgf or LT is continuous at boundaries @ = 0 and 1.

Stochastic representations of Gk (Gk(s;a);@’) and ¢ (—log px(s;a);a’) are of interest.

Here we discuss their possible representations.

Property 3.6 Suppose K(c) and K (o) are distributed from the same non-negative integer self-
generalized distribution family with respective parameter values o and o'. Then Zf:((?l) K;(a) has

pgf G (Gk(s;);a'), where Ko(a) = 0; Ki(a) v Fx(-;a) and are independent of K (o).
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Proof:

E {sti((?"Ki(a)} _ E [E {325‘:(6")Ki(a) K(a’)}] ~B [(E {SKl(a)})K(“')}

- B [Gﬁ(a’)(s;a)] = Gk (Gx(s;); ).

Property 3.7 Suppose the positive self-generalized v K(c) has the LT oK (s;a). K(d') is from
the same family but with parameter value o. Let {Jk (t);t > 0} be a process with stationary and

independent increments, and assume that

b (s) =Ele™/xO] = ¢l (s;0), 120

Also suppose that K(o') is independent of the process {Jx(t);t > 0}. Then J (K(d')) has the LT
dr(—log ¢k (s;); ).

Proof:

E {e‘SJ(K(a'))} = E [E {e'SJ(K(a'))‘K(a')}] =E [d)ﬁ(a/)(s;a)]

= B [ (orsx DK g (~log g (5; ); o)

Since the rv of self-generalized distribution can be decomposed as sum of any number of iid
rv’s from the same distribution (see Property 3.6 and 3.7), it arises an interesting question: is the
self-generalized distribution ID? We give a brief conclusion here.

Suppose K has the self-generalized distribution. If K is positive-valued, according to Prop-
erty 3.7, % (s;c) is a LT for any t > 0. Thus, K is ID. If K is non-negative integer-valued, by
Property 3.6, G%(s; ) is a pgf for n = 1,2,.... However, it is not clear whether this is true for
0 <n < 1orn > 0. Hence, it may or may not be ID. For example, K from I1 is obviously not ID.
It is also a boundary case in 12, I4 and I5. Thus, we know that at least some members in 12, 14
and I5 are not ID. There could exist ID members in these classes; their ID features can be verified

by Theorem 2.2.6, or the absolute monotonicity of M (s;a)/M Kk(s; ).

A few more properties of the self-generalized distribution are given below.

Property 3.8 Let K be a self-generalized rv. Suppose A is (0, 1] or (0, 00).
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(1) Discrete case. Suppose Gk is left differentiable in a at 1. Let H(s) = a—gf(s;a)i . If

H(s) < 0 for 0 < s < 1, then Gk(s;) is decreasing in o for all 0 < s < 1. Similarly if

H(s) >0 for 0 < s <1, then Gk(s; ) is increasing in o for all 0 < s < 1.

L If

a=1

(2) Positive case. Suppose ¢x 1is left differentiable in o at 1. Let H(s) = :3%5_@&(3;@)
H(s) > 0 for s > 0, then ¢k (s; ) is decreasing in o for all s > 0.

Proof:

(1) Fix 0 < s < 1. H(s) < 0 implies that G(s;B) > s for all B, < B < 1 for some S5 > 0. Let
o < a. There exists a positive integer m and Bs < f < 1 such that o = af™. Note that

Gk(s;9) is iﬁcreasing function of s,
Gk (s;68) = Gx(Gk(s; 8);0) > Gk(s;6), 0<d<1

Hence by induction Gk (s; /) > Gk(s; @) or Gk (s;a) is decreasing in o

(2) Fix s > 0. H(s) > 0 implies that —log bk (s;8) < s for all B; < B < 1 for some S5 > 0. Note
that .
¢k (s;08) = ¢ (—log Pk (s; B); 0) > x(s;6), 0<d <1

The' completion of the proof is like case (1).
Property 3.9 | Let K be a self-generalized rv.
(1) Discrete case. Suppose Gk (s; ) is decreasing in o € (0,1) for0 < s <1. Then E[K(a)] < 1.
(2) Positive case. Suppose dx (s;a) is decreasing in « € (0,1] for s > 0. Then E[K(a)] < 1.
Proof:

(1) Since G (s;1) = s, the supposition implies G (s; a) > s. Hence

Gk(l;a) — Gk (s;a) < 1-s
1-35 ~“1-3s

=1.

Take a limit as s 71 to get the conclusion.
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(2) The supposition implies ¢x (s; ) > e™*. Hence

Px(0;0) — dre (55 00) <= 6_3.

8 : S

Take a limit as s | 0 to get
ElK(a)] = —¢)(0;0) < 1.

3.3 Construction of new self-generalized distributions

Exploring new self-generalized distributions is quite meaningful and challenging. In this section,
we summarize some approaches leading to new self-generalized distributions, and conclude with
results/conjectures regarding the relationship between non-negative integer self-generalized and
positive self-generalized distributions. '

A function g: Rx R = R, g(z;9), satisfying
9(g(z;9);9') = g9(z39y),

is called a self-generalized function. We can search for non-negative integer self-generalized distri-
butions in the family of self-generalized functions. If a self-generalized function G(s; «) is a pgf in

s, then it is the pgf of a self-generalized distribution. With this idea, we have the following results.

Theorem 3.3.1 Suppose g1(z) is a monotone real-valued function, and its inverse 91_1 exists. Let
go(z; ) be a self-generalized function. Then

g(z;y) = g7 (92 (91(2); )
is another self-generalized function.

Proof: A direct calculation shows

9(g(zsmn)iye) = g7 (92 (91(9(z391)92))

= 97" (92 (9197 " (92 (91(2);91)) 5 92))
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Table 3.1: Some results from Theorem 3.3.1.

| 91(s) FR0) | g2(s;0) | 97" (92 (g1(); v)) |
= 117, (o))
1—_—,7; . ;—;T’ltl (1—a)+as W _
—67tlogl — (1 — e %)s] —711—_"'6__ - (1-a)+as e “1_[18‘_9‘5 Jsl
1 \1/6 1 _ 0 | _(Q—a)t(a—)s _ af(1—)°
1-( -9 -0 -1 | dan-tow | 1~ apr@na=a-7p

= 97" (92 (92 (91(2); 1) 5 92))
= g7 (92 (91(z);1192))

= g(z;y192)-

Hence, g(z;y) is a self-generalized function.

Certainly, g1 can be chosen as a pgf, and go a self-generalized pgf. Examples given by this
approach can be found in Examples 3.2, 3.4, 3.5 illustrated in Table 3.1. "

Theorem 3.3.2 Suppose g1(z;y) is a self-generalized function. Then
(1) g(z;y) = (g1 (:1:‘1;'7;))_1 is a self-generalized function.
(2) g(z;y) =1—q(l —z;y) is (.z self-generalized function.

Proof: We verify their self-generalizability by direct calculation.

(1)

-1 '
g(g(z;y1)sy2) = (91 (@;m)) = (91 (o1 (=7 9)52))

- -1
= (gl hnye) = 9(@yy)

glg(z;m)iye) = 1—gi(1—glz;y1)iy2) =1 — g1 (q1(z591); 92)

= 1-gi(z;niye) = g(z;y192).
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Next we study the analogues between non-negative integer self-generalized and positive self-
generalized distributions. This extends an idea of McKenzie [1986]. The following result describes

analogous features between these two kinds of self-generalized. distributions.

Theorem 3.3.3 Suppose Gk (s;a) is the pgf of a non-negative integer self-generalized rv K. Sup-
pose Gg(-;a) can be extended to domain (—oo,1] with self-generalizability Gk(Gk(s;a);d) =

Gr(s;ad') for all0 < a,o/ < 1. Let
#(s;a) = exp{Gk(1 — s;a) — 1}, s> 0.
If ¢(s; ) is a LT, then it is the LT of a positive self-generalized distribution.

Proof: We need to check the self-generalizability of ¢(s; ). By definition, it follows that
log ¢(s;a) = Gg(l — s;a) — 1.
Thus,

¢ (~logg(s;a);e’) = ¢(1=Gk(l-s;a)d)
= exp{Gxr (1 [l -Gk(l-s;a)];d) — 1}
= exp{Gk (Gk(l - s;a);d') — 1}
= exp{Gk(l-s;ad) -1}

= ¢(s;ad).

Examples 3.1 to 3.5 are just the analogues of Examples 3.6 to 3.10 respectively. The resulting

positive self-generalized rv denoted as K’ has expectation and variance:

E(K) = —¢(0:a) = Gx(l;a) = B(K),
Var(K') = ¢"(0;0) ~ (#(0;0))? = G(L;0) + (Ck (L)’ = (-Gx(150))”

= G%(1;0) = Var(K)+E*K) - E(K).

Furthermore, we have the following open questions.




Conjecture 1: If G(s; a) is the pgf of a non-negative integer self-generalized distribution, then

o(s;a) = exp{G(1 — s;a) — 1}

is the LT of a positive self-generalized distribution.

To show ¢(s; a) is a LT, we need to:
(1) extend the range of s in G(1 — s;) from 0 <s<1tos >0,
(2) prove the completely monotone property of ¢(s; a).

For (1), it is equivalent to extend the domain of s in pgf G(s;a) from 0 < s <1to —o0 <s < 1.
This is fine for the interval —1 < s < 0. As to (2), the completely monotone property holds for
0 < s < 1, but this is not clear for s > 1. ’

However, there is no need for domain extension if we define the pgf for the discrete analogue
by the LT of a positive self-generalized distribution. Thus, under minor conditions, the counterpart

" of Conjecture 1 holds. This leads to the following theorem.
" Theorem 3.3.4 Let ¢x(s;a) be the LT of a positive self-generalized distribution. Define
G(s;a)=10g¢K(1—s;a)+1, - 0<s<],0<a<l.

Suppose (1) ¢x(1;a) > e, 0<a <1, and (2) G(s;) has a Taylor series expansion in s. Then

G(s; a) is the pgf ofd non-negative integer self-generalized distribution.
Proof: First we check the self-generalized condition:

G(G(s;a);e!) = logor(l—G(s;a);e’) +1 = logpr(—logx(l—s;a);e') +1

= log¢r(l —s;ad)+1=G(s;ad).

Next note that G(s;a) = log ¢k (1 — s;@) + 1 is increasing in s, G(0;a) = loggk (L) +1 >
“14+1=0,G(L;a)=1.
On the other hand, G(s;a) = Gg/(s;0) = E (sK'(a)) is a proper pgf iff

bK(s;0) = Ggr(e7%; o), s >0,
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is a proper LT. We will show that ¢x-(s;a) is completely monotone. Note that
C ori(s;0) =log gk (l —e %5a) + 1. (3.3.1)

K infinitely divisible implies that (by Theorem 2.2.6) the derivatives of x(s) = —log Pk (s; )
alternate in sign, that is, (—=1)7"'x7(s) > 0. Then w(s) = w(s;a) = x(1 — e~*; @) has the -same

property:
W(s)=x(1—-e*e >0, Wis)=x"1-e e -x(1-e*)e® <0,

and the derivatives of each term of the form x)(1 — e~%) e~™* will continue to be opposite in sign
to the original term. Hence ¢/ (s; @), given in (3.3.1), is completely monotone.

Finally, ¢k (s; @) is the LT of an nonnegative integer-valued rv, if Gg(s; «) has a Taylor
series expansion. Because of condition (2), we know that ¢x(s; ) is a LT, and consequently G(s; @)

is a pgf. This completes the proof.

Theorem 3.3.3 and Theorem 3.3.4 disclose the relationship between a self-generalized oper-

ator for positive reals and one for non-negative integers.

3.4 Extended-thinning operation

In this section, we propose an extended-thinning operation which is one of the essentials to the
model construction of continuous-time stochastic processes with given univariate margins. This
extends binomial thinning (see (2) in Proposition 2.2.2). In fact, we hinted at this topic in Section
2.3, where we studied the stochastic representations of the compound self-generalized pgf and
logarithm-compound self-generalized LT. |

Now we study the stochastic operation between two independent rv’s X and K, which have
LT’s ¢x(s) and $x(s) respectively. We wish to define the operation: K ® X, such that its LT has

the form

drex(s) =E [C_S(K@BX)] = ¢x (—log ¢k (s)) .
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We shall give the stochastic representation of this definition in three cases where X is non-negative
integer-valued, positive-valued, and real-valued respectively.
Case 1: X is a non-negative integer rv. Define a discrete-time process {Jk(t);t = 0,1,2,...}

independent of X as

where Ky =0, Ki,...,Ki,. .. are iid with LT: ¢k, (s) = ¢k (s). Let
X
K®X=Jk(X)=) Ki
i=0

the random summation over the process {Jg(t);t =0,1,2,...}.

Direct calculations show that

branti) = B[rt5o7] =3 i (505 x)] =B ek
= E [e_(_log¢K(s))X] = dx (—log dx(s)).
The illustration can be seen in (a) of Figure 3.1.

Case 2: X is a positive rv. Consider a continuous-time process {Jx(t);t > 0} independent of X

which has stationary and independent increments, such that the LT of Jx(t) is:

br()(8) = @k (s), t>0.

Deﬁne_
K® X = Jg(X).

Then
drox(s) = E [e43<K@X)] —E [E (e'“Kl@X)IX)] —B [E (e"SJK(X)’X)]
= E [qﬁ}[g(s)] =F [e—(—logd)K(s))X] = ¢x (—log ¢k (s)).

See (b) in Figure 3.1 for the illustration.
One example of the defined process {Jx(t);t > 0} is that in the family of Lévy processes
with LT

bacio®) = ow {t|-as+ [ 5°(e—sy -]},
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where L(-) is the Lévy measure. Certainly, in this case,; the LT of the K is

exp { [—qs + /O e - l)L(dy)} } N |

Case 3: X is a real rv. Consider two stationary independent increment processes {Jy(t);t > 0}

and {J>(t);t > 0} independent of X with LT

bnw(s) = dh(s) and ¢re(s) = [pr(s)]™

respectively. Note that ¢,(;(s) is the reciprocal of ¢ 7.(t)(s). Hence, under the requirements of .
a LT, ¢x(s) can not be arbitrary. Construct a new process over the whole real axis {Jk(t);t €
(—00,400)} such that
J1(t), if t > 0;
Ik (t) =
L(t), ift<o.

For this new process, the LT of Jx () is

: (S)a t>0
¢JK(t)(s) = E [ev_SJK(t)] = I._(m
¢K (s)a t<0;
= ¢%k(s).
Define
K® X = Jg(X).
Then

¢rox(s) = B[e® 0] =B [E (¢7/xM)|x)]
= E [$%(s)] = bx (~log ¢k (s)) -
See the illustration in Figure 3.2.
In Case 3, process {Jo(t);t > 0} is in fact aftiﬁcially developed by“process {Ji(t);t > 0}
for ¢ 7,1 (s) = [dn 1) (s)]~!. Hence, Jy(t) and Jo(t) can not both be positive, because ¢, (s) and
$,(2)(s) both be bounded above by 1 and can’t satisfy the completely monotone property at the

same time. Suppose we restrict the process {J1(t);t > 0} to the Lévy process family, with

a0 = exp {2t | -as+ [T - VL) }.
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Jb) b

Figure 3.1: Illustration of {Jk (t); —co < t < oo} in-Cases 1 and 2. (a) corresponds to non-negative
integer X in Case 1, where dotted vertical lines indicate the discrete time points {0,1,2,...}. (b)
corresponds to positive X in Case 2, where t is continuous on [0, 00).
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Ji(t)

(a)

A1) j_/_’/_.

0 (b) t
4
.|
t
I
(c)

Figure 3.2: Illustration of {Ji(t);t > 0}, {Ji(t);t > 0} and {Jx(t); —00 <t < oo} in Case 3.
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oo
where L(-) is the Lévy measure, non-negative and satisfies / min(1,y)L(dy) < oc. Also assume
0

that the process {Ja(t);t > 0} is a Lévy process. Then

by (8) = [‘ﬁ(t) (s)] " =exp {t [as + /Ooo(e‘sy — 1)(—L)(dy)] } :

Since —L(dy) < 0, the only possible choice is L(dy) = 0. This implies
¢J1(t) (S) = e—ats’ and ¢J2(t) (3): eats,

for some constant a, i.e., Ji(t) = at, and J»(t) = —at, degenerate at points at and —at respectively.

In summary, we propose the extended-thinning operation as below.

Definition 3.3 Suppose {Jx(t);t € To} is an appropriate stationary independent increment pro-

cess constructed via rv K such that ‘

b1 (t)(8) = Bk (5),

where Ty could be {0,1,2,...}, or [0,00) or (—oo,+00) (refer to cases 1, 2 and 8). The extended-
thinning operation is defined as a stochastic operation between Jx and X with X independent of
K® X = Jg(X).

Such an operation results in a rv with LT

drex(s) = ¢x (—log dk(s)).

The notation K® means an independent copy of rv K, which has the same distribution as
that of K. Hence, notations K ® X and K ® Y do not means the rv K in both is the same, but
their distributions are the same.

Note that K and X may not be arbitrary random variables, restrictions on them in the
different domain cases should be imposed. In other‘words, ¢x (—log ¢ (s)) being a LT requires

conditions on ¢x and ¢x.
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We can calculate the ¢f of K ® X:

orex(s) = E [#F®X] = drex(is) = ¢x (—log ¢k (is))
¢x (—logpk(s)), if X is non-negative;
ox (1log ok (s)), if X is real.

A natural property regarding expectation is given next.
Property 3.10 If E[K (a)] is finite and continuous with respect to a, i.e., B[K(a)] = o, then
E[K(a) ® X] = E[K(a)] - E[X] = "E[X].

Proof: This can be readily derived by taking the derivative of the LT.
Hence, E[K(a)®X] < E[X] if o is within [0, 1] and r > 0. In general, the extended-thinning

operation rescales the expectation.

Now we look into the examples of extended-thinning operation in statistical practice.

Example 3.12 The well-known binomial-thinning is one special case of extended-thinning opera-

" tion, for
X .
ax X = ZKi, Ky=0, Ky, ..., K;, ... Z'}\'ad'Bernoulli(a).
1=0 ’

One special feature of binomial-thinning is that axX < X, which means axX does become “thinner”
than X almost surely. However, in general, the extended-thinning may not retain this feature, but

the expectation is “thinner” than E[X] if we restrict the domain of parameter o to [0,1].

Example 3.13 ‘A branching process has an operation similar to the extended-thinning operation.
This kind of processes {X(n):n =0,1,2,...} is defined as

X(n)
Xn+1)=> Z, Z0=0, %, ..., Z; ... iid.
1=0

X(n) is the size of the n'" generation.
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Example 3.14 The product of a constant o with a rv X, aX, s another example. This may not
be straightforward at the first glance. However, we can check its LT. In this case, we can view o as

a rv degenerate at point a. Hence, it has LT: ba(s) = e~ . The LT of aX, then, is

dax(s) = E (e7°%) = ¢x(as) = ¢x (—log ga(s))-
Therefore, aX is an extended-thinning operation.

We use the notation ‘®’ for the extended-thinning operation based on the consideration to
unite the constant multiplier ‘e’ and the binomial-thinning operation ‘’, in a simple expression,
namely,

() U (0 = (&-.
Following are two properties of extended-thinning operations; these are very important to
the construction of the continuous-time generalized AR(1) processes in Chapter 4.

Property 3.11 (Distributive law) Suppose K is a self-generalized rv, and let X and Y be
independent rv’s. Then

Ko (X+Y)iKoX+KoY.
Proof: Since X and Y are independent, we have
brexiy)(s) = x4y (= log ok (s)) = ¢x (- l'Og ¢K () ¢y (—log ok (s)) -
“This implies that the distributive law holds.

Property 3.12 (Associative law) Let Ki, Ko be two different self-generalized rv’s acting as
operators. Then

Ki® (K ®X)2 (K@ Ky) @ X.
Proof: Direct calculation shows

$rie(raex)(5) = Praex (—10g 9K, (5)) = ¢x (— log ¢k, (—log dx, (5)))

= ¢x (—log bk 0k.(5)) = d(k1@K)@X(S):
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Hence, the associative lavs) holds.
Recalling self-generalizability, we find that it is closed under the extended-thinnihg opera-

tion, i.e.,

K(o) ® K(o) L K(ad).
To keep symbolic consistency with constant multiplier e énd binomial-thinning operator *, we
rewrite the notation for the self-generalized rv K(a) in extended-thinning operation as ak such
that |

(@Qr®X ¥ K eX.

This change makes the extended-thinning operation with a self-generalized rv looks like constant
multiplier or binomial-thinning operator. For instance, we can rewrite the closure property of

self-generalizability via new notation:
d
()kx ® (Vi = () k-

But remember (a)k is a rv, not a parameter, and it is valid only with the extended-thinning
operator ®. The reason we impose the subscript K on a is to try to avoid the misunderstanding
of (a)k, a 1v, to the parameter o, and the convention of binomial-thinning operation as well. This

new notation will benefit us immediately with the following commutative law.
Property 3.13 (Commutative law) (@)k ® (o )k = (¢ )k ® (@)K
Proof: This is simply because
(a)k ® (o)k £ (0 )k = (d@)k )k ® (@)
Note that the commutative law only holds for two self-generalized rv’s from the same family.

Property 3.14 (Weak convei'gence) Let an — a, where o, € A for all m, and o € A. If

Gk (s;) or ¢x(s;a) is continuous with respect to c, then

(an)k ® X = (0)g ® X.
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Proof: This follows from the continuity of G or ¢ in a.
Suppose A, the domain of the parameter c«, is the interval [0,1]. Then on boundaries,

extended-operation behaviors like the constant multiplier. Here we assume boundary 0 is included

in A.
Property 3.15 (0)K®XgO and . (1)K®XiX.-

Proof: By Properties 3.1 and 3.3, we have

4

Hence, the resulting process {Jx(t);t > 0} has margins
Jk@t) =0, and  Jg(t)=t,  fort>0.

Thus,

4

0, Jr)(X)=X.

This completes the proof.
Remark: If the boundary 0 is excluded from A, but the expectation of the self-generalized rv K
is bounded and continuous in e, then lim,_,o+(a)x ® X = (0)x ® X = 0. This is because of (2) of

Property 3.3.

Lastly, we discuss the variable type of K ® X: non-negative integer, positive, or real. This
is basically determined by the variable type of K, not the variable type of X. Correspondingly, we
study its pgf, or LT, or cf. Recall K ® X = Jg(X). We have:

(1) if K is non-negative integer, then {Jk(t);t = 0,1,2,...:} or {Jk(t);¢ 2 0} is a process
with non-negative integer increments, so Jx (X) is non-negativé integer no matter if X is

non-negative integer or positive real. And it follows that

o (5) = E { JK(X)} Gx(Gk(s)) if X is non-negative integer;
K@X 5) = S =
dx(—logGk(s)) if X is positive,
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(2) if K is positive, then {Jx(t);t = 0,1,2,....} or {Jk(t);t > O} is a process with positive
increments, so Ji(X) is non-negative no matter if X is non-negative integer or positive real.

And it follows that

s (s) E{ sJK(X)} Gx (oK (s)) if X is non-negative integer;
kex(s) =E (e =
dx(—logdr(s)) if X is positive,

(3) if K is degenerate, namely being a real number «, then
K® X = alX,

and {Jx (t);t > 0} is a process with real-valued increments, so Jx (X) is real no matter if X

is positive or real. And it follows that

. ¢x(ias) if X is positive;
vrex(s)=E {ew(ax)} =
ox(as)  if X is real,

The extended-thinning operation will be discussed again in Section 4.1, where a geometrical

explanation is given.




Chapter 4

Generalized Ornstein—Uhlenbeck
stochastic differential equations and

their pbssible solutions

Ornstein-Uhlenbeck stochastic differential equations is a classical topic well discussed in the liter-
ature. Its applications can be found in mathematical finance, physics, and so on. Refer to Hsu
and Park [1988], Neftci [1996]. In this chapter, we shall propose generalized Ornstein-Uhlenbeck
étochastic differential equations, and define the corresponding generalized stochastic integration.
These are fundamental techniques and key ideas in the model construction of a class of continuous-
time Markov processes given in this chapter and the next chapter.

We start with the introduction to stochastic differentiation and integration in Section 4.1.
The generalization of Ornstein-Uhlenbeck equations will be given in Section 4.2, and the explanation

and examples are shown in Section 4.3. We construct the solutions for the generalized Ornstein-

Uhlenbeck equation in Section 4.4, and summarize the resulting processes in Section 4.5.




4.1 Stochastic differentiation and integration

The dynamic feature of a continuous-time process {X (t);¢t > 0} is of interest, as it describes the
instantaneous behavior of the process. To address this feature, we need the concept of stochastic
differentiation and integration. / |

In the literature, some scholars explain the concept of stochastic differentiation via stochas-
tic integration, while others illustrate it in terms of the infinitesimal increment of the process. For
the beginner, the former is not a direct approach, and furthermore, the definition of stbchastic in-
tegration requires the concepts of infinitesimal increment. Hence, we shall take the latter approach.
However, it may not be very strict in the mathematical sense. We just focus on rhain ideas. There
are many references on this area, such as: Chung and Williams [1990], Lukacs [1968], @ksendal
[1995], Protter [1990], etc. A good introductory book, which clearly explains the concepts of SDE
and stochastic integration without measure theory is Neftci [1996].

To clearly state the idea, let’s recall the concept of differentiation in calculus, where it is

defined as the infinitesimal increment. For instance, if z(t) is a function of t, denote by

Ax(t) = z(t + h) — z(t),

the increment of z(t) when the argument changes from ¢ to t+h. When h, the argument increment,
is infinitesimal, we denote it as dt. Correspondingly, the infinitesimal increment of z(t) is written

as dz(t), which can be, expressed as
dz(t) = z(t + dt) — z(t).

Thus, the differential is the infinitesimal increment.
For a stochastic process {X (t);¢ > 0}, this well-known idea can be borrowed to define the

differentiation of the process.

Definition 4.1 The differential dX(t) of a continuous-time stochastic process {X(t);t > 0} is

defined as the inﬁm’tesimdl increment X (t+h)—X (t), where the increment of time h is infinitesimal.
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Figure 4.1: INllustration of increment in the deterministic and stochastic cases. (a) corresponds to
deterministic function z(t). (b), (c) and (d) correspond to three different paths of the stochastic
process {X (t);t > 0}. :

Note that the increment of a function z(t) is a number, however, the increment of a process
is a rv. Hence, the differential dX (t) is understood as a rv, not a number unless in the degenerate
case. .

Figure 4.1 illustrates the increments in both cases. Note that in (b), (c) and (d) of Figure
4.1, the infinitesimal increment dX (t) are different because they correspond to three different paths
of the process {X(t);t > 0}. This clearly shows that dX(t) is a random variable.

The Riemann integration of a function x(t) over [t1,%3], the area with sign, is constructed

via the infinitesimal partition approach. Here we roughly review its idea. Consider the argument




range [t1,12]. Divide this interval in n equal pieces, i.e.,
[tl,t1+h [t1+h t1+2h) cey [t1+(n—1)h,t1+nh]=[t1+(n—1)h,t2],

where h = (ty — t;)/n. When n goes to infinity, each piece will become an infinitesimal interval.

Use a finite Riemann sum over these small intervals

|
,_.

n

SC(tl + ih)h

Il
=

i
to approximate the integrated “area”. When n goes to oo, the limit is defined as the int.egration.

This method was introduced to stochastic integration over a half century ago. However, the
difference between common integration and stochastic integration is how to define the limit. In
“probability theory, the common modes of convergence include in distribution, in pfobability, in L1,
in L2, a.s., etc. Hence, different stochastic integrations arise. For example, the It6 integration is
the limit in L2. In our study, the convergence mode that we adopt is “in distribution”.

Suppose {X(t);t > 0} is a continuous-time process. We now define the stochastic integral

t2 g(X (t))dX (t). Consider n + 1 equally spaced points
ti,t1+h,t1 +2h,... 1 + (n— l)h,tl +nh =ty

over [t1,t2], where h = (ta — t1)/n. Let

n—1

Sp=3 g(X(t+ih))[X(t+ (i+1)h) - X(t +ih)].
=0

If there exists a rv Y such that

Sn L, Y, as n — oo,
‘then Y is defined as |, ttf g(X (t))dX (t). This leads to the following definition.

Definition 4.2 Let {X(t);t > 0} be a continuous-time process. Divide [t1,t] into n equally small

intervals. Then

/tzg(X()) tihng (t + h))[X (¢ + (i + Dh) = X (¢ +ih)),

t n—0o0

where b = (t3 — t1)/n. The summation on the right hand side converges in distribution.
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Note that stochastic integral is still a rv, not a number. Figure 4.2 shows the idea of
stochastic integration via the infinitesimal partition approach. Note that the “area” in (a) and (b)
may not be the same, because they correspond to two different path of the process {X(t);t > 0}.
This clearly indicates that the stochastic integration fttf g(X(t))dX (t) is a random variable.

Since the increment, AX (t) = X (¢ + h) — X (t), of a continuous-time process- {X(t); t >0}
can be written as |

o i FNE
AX(t):X(t-i—h)—X(t):;[X(H— +1h>—X(t+;h)]

n

for any positive integer n, we can rewrite the increment via a stochastic differential and integral as
t+h »
AX(t) = X(t+h) — X(t) = / X (s).
_ ¢

This kind of expression is used to formally define the stochastic differentiation by many authors.
Look back at the extended-thinning where K ® X = Jg(X). When X is a hon—negative

integer rv, the extended-thinning K ® X = 'JK(X ) = Zf(:o K; is a random summation. What

will it be if X is a positive or real-valued rv? Note that in these two cases, {Jx(t);t > 0} is a

continuous-time process. Thus,

X
Jx(X) = Jx(X) = Jx(0) = /0 4Tk (),

a random stochastic integral. Therefore, in principle, the extended-thinning operation is a random
summation or a stochastic integration.

Now we make up a geometric explanation for the extended-thinning operation. Let’s consider
aX, a special case of an extended-thinning operation, as the area of random rectangle with length
X (in the horizontal direction) and width « (in the vertical direction). Imagine a random rectangle
in this way: the length is a rv. However, the width is not a fixed constant or rv. On every slice
. orthogonal to the length, the cutting width is a rv. All these cutting widths are iid rv’s. One can use
the sliced bread to mimic this random rectangle. Because fOX dJx (t) is the limit of a Riemann sum,
and in small time intervals the increments of process {Jx (t);t > 0} are iid, a natural explanation
of Ji(X) is that it is the limit of sums of areas of rectangles with widths rv X/n and iid heights

Ky, .., Knn (with distribution of Jx (X/n)). This area is random. Thus, it is a new random rv.
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Figure 4.2: Illustration of stochastic integration via infinitesimal partition. (a) and (b) correspond
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to two different paths of the stochastic process {X(t);t > 0}.
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Figure 4.3 illustrates the idea of this geometrical explanation of the extended-thinning op-
eration. We give the “imagined” random rectangles in three cases corresponding to X being (a)
real, (b) non-negative integer, and (c) positive valued.

Without loss of generality, we assume the mode of convergence for stochastic integration is

cbnvergence in distribution throughout the remainder of this thesis.

4.2 Generalized Ornstein-Uhlenbeck equations

Like a differential equation which expresses the dynamic characteristic of a function, a stochastic
differential equation describes the dynamic feature of a continuous-time process. However, because
the derivative of a process commonly doesn’t exist, we can not include the derivative of a process
in the equation. Instead, we include the differential of a process into the equation.

Recall the Ornstein-Uhlenbeck process (see Section 2.1), which is defined by the following

stochastic differential equation (SDE) for real-valued process rv X (1),
dX(t) = —pX(t)dt + odW (1),

where {W(t);t > 0} is a Brownian motion independent of X (t). To keep consistency with the

literature, we absorb ¢ into the innovation process so that it becomes
dX(t) = —pX(t)dt + dW (1).

. This SDE shows that the infinitesimal increment of X (t) in the near future depends on the present

circumstance and the innovation term. Note that X (t) has support on the range of (—o0, +00).
Replacing the innovation term from a Wiener process (Brownian motion) with a more general

- Lévy process (Brownian motion is a special process in Lévy process fdmily) leads to the Ornstein-

Uhlenbeck-type process (see Barndorfl-Nielsen et al. (1998) and references therein), namely,

dX(t) = —pX(t)d\t +dL(t),
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Figure 4.3: [Illustration of the geometrical explanation of the extended-thinning operation. (a)
corresponds to a constant multiplier ¢X; X can be either real or positive-valued. (b) corresponds to
a non-negative integer X. (c) corresponds to a positive X.




where {L(t);t > 0} is a Lévy process. This offers possible marginal distributions for X (t) with
support [0,00). However, it doesn’t provide any marginal distributions with support on the non-
negative integers, because pX (t)dt is unlikely to be an integer.

The extension of innovation processes seems to be ideal. It covers distributions with domain
on the non-negative integers. But only extending the innovation processes won’t help us to construct
models with marginal distributions having the non-negative integer support. Therefore, extending
the dependence term from a product to a generalized stochastic operation may lead to a successful
approach. This inspiration comes from Joe [1996].

Note that the dependence structure of such kind of processes { X (t);t > 0} is determined by..
—uX (t)dt, and an independent innovation process is introduced to explain the fluctuation. Hence,
the process is simpiy governed by the dependence mechanism part, —uX (t)dt, and the independent
input part {e(t);t > 0}.

Recall that oX is a special operation in the class of extended-thinning operations (see

Section 3.4). We can rewrite the dependent mechanism part —pX (t)dt as
—uX (t)dt = —pdtX (t) = (1 — pdt) X (t) — X(t).
Hence, a ﬁatural generalizatiqn for this\ dependent mechanism term is
K(1 - pdt) ® X(t) — X(t) = (1 — pdt)x ® X (t) — X (t).

However, we will restrict K to be within a self-generalized family. Since this new term could be a
non-negative integer, or positive, or real rv, we may hopefully obtain marginal distributions with
support on non-negative integer, or positive, or real values respectively.

We now formally define the generalized Ornstein-Uhlenbeck SDE below.

Definition 4.3 Suppose {X(t);t > 0} is a continuous-time process, and {e(t);t > 0} is an inno-
vation IIP. The generalized Ornstein-Uhlenbeck SDE is defined as

dX (1) = [K(1 — pdt) ® X(8) — X ()] + de(t) = [(1 — pdt)x ® X(£) — X(2)] + de(2),

where K(a) is a self-generalized rv with respect to parameter o.
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Because the generalized Ornstein-Uhlenbeck SDE involves an extended-thinning operation,

we should name the corresponding stochastic integration as generalized stochastic integration.

Definition 4.4 Let {X(t);t > 0} be a continuous-time process. Divide [t1,t2] into n equally small
intervals. Then

" pto

to
K(g(t)) ® dX(t)

t (9) x ®dX(t) = t
n—1
4 Tim S K(g(t+4h)) ® [X (¢ + (i + 1)h) = X (¢ +ih)]
=0

n—1

= lim ) (g(t+ih) ® [X(t+ (G + Dh) = X (¢ +ih)),
1=0

where h = (ta — t1)/n, g(-) is a function with range [0,1], and K(a) is a self-generalized v with
respect to parameter a. This is well defined if the summation on right hand side converges in

distribution.

This generalized stochastic integration will be applied to solving generalized Ornstein-

Uhlenbeck SDE in Section 4.4.

4.3 Explanations,. innovation types, non-stationary situations and

examples

~ We may give a further explanation of the generalized Ornstein-Uhlenbeck SDE in this section.

In the generalized Ornstein-Uhlenbeck SDE
dX(t) = [(1 - pdt)ic © X () — X ()] + de(2),

X (t) means present state, while dt, de(t) and dX (t) means the infinitesimal increment in the near
future infinitesimal time interval. Hence, we can comprehend the generalized Ornstein-Uhlenbeck

SDE as a forward expression, not a backward expression.
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Ae = e(t+h) — €(®)

'

X X(t+h)
> AX®, -pdy -

Figure 4.4: Illustration of the mechanism of the generalized Ornstein-Uhlenbeck SDE.

With such an understanding, we can write down the difference equation from the generalized

Ornstein-Uhlenbeck SDE. It is
X(t+h)— X)) =[(1 - ph)k ® X(t) - X()] +Ae, Ae=ce(t+h)—€(t),
which can be simplified as
X(t+h)=(1-ph)k ®X(t) + Ae. (4.3.1)
Denote A(X(t), —ph) = (1 — ph)k ® X (t), the dependence mechanism. We can further write it as
X(t+h) = A(X(t), —ph) + Ae.

This uncovers the stochastic representation of the process in an infinitesimal time interval. Figure
‘4.4 roughly shows the mechanism ide.a of the process generated from the generalized Ornstein-
Uhlenbeck SDE when h is infinitesimal.

From the discussion, we know that these type of continuous-time processes are completely

governed by the dependence mechanism term and the innovation term.
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Next we investigate the innovation types: non-negative integer, or positive, or real-valued
increment. From the stochastic difference equation (4.3.1), we see that the dependent term and the
innovation term are independent. Besides, the dependent term can take value 0 if K or X (t) can

be 0. Thus, we deduce the following.

(1) When K is a non-negative integer self-generalized rv, X (¢t +h) and (1— ph) g ® X(t) are non-
negative integer, thus, Ae is non-negative integer. This implies that the innovation process

{e(t);t > 0} has non-negative integer-valued increment.

(2) When K is a positive self-generalized rv, X (¢+h) and (1—ph)gk ® X (t)‘are non-negative real,
thus, Ae is positive. This implies that the innovation process {e(t); ¢t > 0} has positive-valued

increment.

(3) When K is a positive constant ¢, X (t + h) and c- X(¢) are real or positive; thus, Ac is real
or positive respectively. Note that positive case has been included in (2). We only consider

real case. Therefore, the innovation process {e(t);¢ > 0} has real-valued increment.

In summary, the type of the increment of the innovation process is the same as the margins of the

process {X(t);t > 0}.

In reality, we often encounter dynamic phenomena modelled by a process {X(t);t > 0} which
could be stationary or non-stationary over time. Stationarity is a simple and natural requirement
for a process model. Non-stationarity usually arises from seasonality, increasing or declining trend,
heteroscedasticity, etc. Thus, appropriate model settings should be considered. A good process
model theory should be able to accommodate both stationary and non-stationary situations.

For the stationary case, we may just simply assume that {e();¢ > 0} is stationary, and that
i, in the dependence mechanism term, is a constant. |

For the non-stationary case, we can modify either the dependence mechanism term or the

innovation term to be time-dependent. Hence, the SDE becomes

dX(t) = [(1 - p(t)dt)k ® X (t) — X(8)] + de(?),
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where {€(t);t > 0} may be a non-stationary independent increment process. However, the modifi-
cation should correspond to what the non-stationary situation is. Sometimes it is a time-varying
marginal mean or variance, sometimes it is a time-varying autocorrelation.

Finally, we look at some examples, where the innovation processes have non-negative integer,
or positive, or real increments. Also the stochastic operations include binomial-thinning, and other
extended-thinning operators. We just mention their SDE’s to illustrate the existence of generalized

Ornstein-Uhlenbeck SDE. Their solutions will be given in Section 4.4, as well as Chapter 5.

Example 4.1 Let {X(t);t > 0} be a process with non-negative integer margins. Consider the
binomial-thinning operation. Then the following is the corresponding generalized Ornstein- Uhlenbeck

SDE:
dX(t) = [(1 — pdt)x ® X(t) — X(t)] +de(t) = (1 - pdt) * X(t) — X (t) + de(t),

where {e(t);t > 0} is a stationary Poisson process, and the increment Ae = e(t + h) —e(t) has pgf
Gae = exp{urh(s = 1)}, p >0, A>0.

Example 4.2 Let {X(t);t > 0} be a process with non-negative integer margins. Still consider
binomial-thinning operation. But change the innovation process to be an IIP with an increment

whose pgf is
s—1
1— s

Gm:exp{pﬂ'yh }, u>0,0>0 0<y<Ll.

Then the following is another generalized Ornstein- Uhlenbeck SDE:
dX(t) = (1 — pdt) * X (t) — X(t) + de(t).

Example 4.3 Let {X(t);t > 0} be a process with non-negative integer margins. Consider gener-

alized Ornstein-Uhlenbeck SDE with operator 12 (Ezample 3.2):
(®)

dX(t) = [(1 — pdt)k ® X (1) — X (1)) +de(t) = | Y Ki — X(t) | + de(?),
=0

where Ky =0, K1, ..., K;, ... are iid, with pgf

ph+ (1 —ph—7)s : '
= 1.
CrO-u) = (T = k) = pyhs’ w0 0cy<
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{e(t);t > 0} is a stationary Poisson process with such increment Ae = e(t+ h) — €(t) that the pgf is

| 0
GAc = €xp {Ml jfyh(s - 1)}, 0>0.

Example 4.4 Let {X(t);t > 0} be a process with positive margins. Suppose {Jk (t);t > 0} is a sta-
tionary IIP such that ¢,.(1)(s; @) = ¢ (s; ) (a > 0), where ¢k (s; ) = exp {_ﬁ{%ﬁs—} ,0<
v < 1. Choose {e(t);t > 0} to be a stationary IIP with positive increment Ae = €(t + h) — €(t),

whose LT is
1 >< 141 —~— ph+2uyh](1 —7)7's
1+s 1+ py(1 —y)~ths ’

Pne w > 0.

Then Xt
dX(t) = [(1 — pdt)xk ® X(t) — X ()] + de(t) = [/0 dJk(s) — X(t)} + de(t)

is a.generalized Ornstein- Uhlenbeck SDE with operator P2 (see Ezample 3.7 ).

Example 4.5 We now return to constant multiplier operation, but choose the innovation process
{e(t);t > 0} to be a stationary IIP with real increment Ae = €(t + h) — €(t) such that its cf
wae = exp{—Ahls|*}, A >0, 0 <a <2 Then

dX (t) = [(1 — pdt)xk ® X (t) — X (t)] + de(t) = —pX (t)dt + de(t)

is a generalized Ornstein- Uhlenbeck SDE.

4.4 Construction of possible solutions for the generalized Ornstein-

Uhlenbeck SDE

We define the generalized Ornstein-Uhlenbeck SDE as
dX(t) = [(1 — pdt)k ® X (t) — X(t)] + de(t) for the stationary case,

or

dX(t) = [(1 — u(t)dt)k ® X (t) — X (t)] + de(?t) for the non-stationary case,
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where {K ()} is a family of self-generalized rv with respect to parameter a. This shows the
differential, or in other words, the infinitesimal increment of the process {X (t);t > 0} can be split
into two terms: a dependence term associated with the extended-thinning operation on the current
observation, and an innovation term introduced to explain the remaining fluctuation. Assuming

that a solution exists, our tasks are

(1) what does the solution mean?

(2) how to find it?

The unknown in the generalized Ornstein-Uhlenbeck SDE is the entire process { X (t);t > 0},
not just X(t) at a single time point. Thus, we need to find such a continuous-time process that
satisfies the generalized Ornstein-Uhlenbeck SDE. Such a process is called the solution of the
generalized Ornstein-Uhlenbeck SDE.

Next we have to figure out a way to obtain the solution. For. this purpose, we resort to
infinitesimal partition method well known in calculus. The following is the rough idea of how this
method works in stochastic calculus. . | |

Suppose the continuous-time process is {X(t);t > 0}. We study some kind of feature or
behavior of this process between time ¢; and t2, namely the time interval [t1,t2]. Divide this interval

into n equal pieces, i.e.,

[t1,t1 + R), [t1+h,t1 +2R), ..., [t1+(n—Dhti +nh]=[t1 + (n - 1)h, ta],
where h = (t; — t;)/n. When n goes to infinity, each piece will become an infinitesimal interval.
We consider the feature or behavior of the process in each small interval [t; + (k—1)h,t1 +kh) (k =
L2,... ,n), and apply an approkimation in each small interval. Then, we sum these approximations,
and finally let n increase to infinity to obtain the limit. This resulting limit is the desired process
on the interval [t1, t2).
In summary, the infinitesimal partition method applied to a continuous-time phenomena on

a certain time interval involves the following steps:

(1) Discretize the continuous-time phenomena by dividing the time interval into n equal' small

pieces;
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(2) Carry out relevant measures such as approximation and summation over these n small intervals;
(3) Make it continuous over time again for those n discretized pieces by letting n — +o00.

For the generalized Ornstein-Uhlenbeck SDE, the finite difference approximation in a small

interval is
X(t+h) = X(8) = [(1 - ph)k ® X(t) — X(B)] + Ae, A= e(t +h) — €(t),
or simply | |
X(t+h) = (1-ph)k ®-X(t) + Ag, (443)
for the stationary case; and
X(t+h) - X(@t) = [(1 - pt)h)k @ X(t) - X ()] + De(t), Ae(t) = et +h) —€(t),

or simply

X(t+h) = (1-pt)h)k ®X(t) + Ac(t), (4.4.2)

for the non-stationary case. These will be applied to construct the solution of the generalized
Ornstein-Uhlenbeck SDE next.

Before proceeding to the solution, we list a useful lemma below.

Lemma 4.4.1 If {a;} is a bounded sequence such that nll)rglo n~1Y %70 ax, = a, then

n—1
a —
H(l——k)—na‘_’ as n — 0o.
n
k=0

Proof: Expand the product and take a limit term by term.

In the rest of this section, we construct the possible solution { X (t);t > 0} for the generalized
Ornstein-Uhlenbeck SDE. We are interested in the conditional stochastic representation form of

(X ();t > 0}.
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First consider the generalized Ornstein-Uhlenbeck SDE in the stationary case. Concretely,
the setting of generalized Ornstein-Uhlenbeck SDE consists of constant parameter p, and the in-

novation being a stationary independent increment process, namely
dX(t) =[(1 — pdt)k ® X (t) — X (t)] + de(t).

We apply the infinitesimal partition method to obtain an explicit expression for X (t2) given X (1),
_ where £ < to.
Let h = (ty — t1)/n, and Ae¢j, = €(t1 + kh) — e(t1 + (k — 1)h), k = 1,2,...,n. Then from
(4.4.1), we haye |
X(ty+h) = (1 ph)k ® X(t1) + Aey;

X(t1+2h) = (1 — ph)k ® X(t1 + h) + Dey;

X(tz) = X(t1 +nh) = (1 — ph)k ® X(t1 + (n — 1)h) + Aen.

By induction and employing the properties of the extended-thinning operation,

X(ti+2h) = (1-ph)r ®[(1 - ph)k ® X(t1) + Aa]+ Aey
= (1—ph)k ® (1 —ph)k ® X(t1) + (1 — ph)k ® Aer + A€y
= (1-ph)% ®X(t)+ (1 — ph)k ® Aer + Aey,
X(ty +3h) = (1—ph)k ®X(t)+ (1 - ph)k ® Aer + (1 — ph)k ® Aey + Aes,

n—1
X(ta) = (1-ph)k @ X(t)+ ) (1 - ph)k ® Aen .
k=0

Let Y, = (1 — ph)% ® X (t1), and

3
—

Zn = > (1= ph) ® Aen. (4.4.3)
=0

o

Note that Y, and Z, are independent. When n goes to +oo0,

(1 — /,Lh,)n = (1 — Mtz_;ll)n _ e_y‘(t2—t1)_
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Hence, by Property 3.14,
Y, LN (e““(tr‘l))K ® X(t1), asn — +o0.

Assume that {Z,} converges in distribution. Then this limit will be

n—1 n—1
Jm o 2w S k@ A = lim 3 () @ A
= lim z": (e"‘(t2—t1'jh)) ® Aej = /trltl (e—ﬂ(tz—tl—t)) ® de(t).
n—+00 = K 0 K
However, in the stationary situation, since Aei, A€y, ..., Ae, are iid, we can derive a simpler
expression,
lim "il (e_“(kh) ® Aep_i = 1i1‘n T e HER) @ Ae = v (e, ® de(t
n-o0 £~ )K A k:0< )K_ * /0 )k @ del?).

Finally, by the independence of Y, and Z,, we obtain

X (ty) £ (e_“(t:’_tl))'K ® X (t) + / e (e7) ( ® de(t). (4.4.4)
0

Next we turn to the non-stationary case, where we allow p to be a function of ¢, i.e., u(t),
-and the innovation process could be a stationary independent increment process or a non-stationary

independent increment process. Then the generalized Ornstein-Uhlenbeck SDE becomes
dX(t) = [(1 — p(t)dt) k ® X (t) — X(t)] + de(t).

We follow the convention that a null product _]91 aj is 1. We have a slightly different version
of the approximation of differences in a small_interveilzll)ased on (4.4;2):
X(t +2h) = (1 —ult + h)h)K ® [(1 - u(tl)h)K ® X (t) + Aq] + Aey
= (1- pt +_h)h)K ® (1 - u(t})h)K ® X (1)
+(1 —ult + h)h) L ®ha+Aq
= (11 - pE)RIL = p(ta + WR]) © X (1)

+_(1 — p(ty + h)h)K ® A€y + Aeg,
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X(t1+3h) = ([1 — p(t)A][1 — p(ts + h)A][1 = p(t + 2h)h]>K ® X(t)

4 ([1 = plts + WAL = plts + 2h)h]) @A

TN TN

([ - plts + 2h)h])K ® Aes + Aes,

n—1

X)) = (L0 - st +E0R) @©X(h)

S (11

n—1

'El?r

u(ts + (n = f)h) ])K@)Aen_k.

=0 j=1
Similar to before, let
n—1
Yo= (JI(1-u(t+K0)A]) @ X(0)
k=0 ,
and
n—1 k
Z, = (H w(ts + (n — j)h)h])K®Aen_k
k=0 j=1
n—1 k
- ( H (t5 — jh) h]) L ©Den . (4.4.5)

Then Y, and Z, are independent. Note that by Lemma 4.4.1, as n — 400,

n—1

[0 = p(ts + kh)h

k=0

Hence,

Yn

n—1

H e HETERA — exp { Zu t1 + kh) } —e = Jii t)dt

k=0

f——> ( Jif dt) ® X (t1), asn — +o0.

Assume that {Z,} converges in distribution. Then

lim Z,

n—r4-00

= lim

n—1
n—-+o0o

k
(TI - stz - imm) @ Aeas
0 j=1

n—1 k ’
= i —u(t2—jh)h
LN (He ) ® Acn
K

k=0 \j=1

n—1 k
) E plta—jh)h '
- nll)r—i{looz (6 = ) ® Den—tk
k=0 K
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n—k
n = ¥ u(ta—jh)h
= lim E e =t ® Aeg,

n-—400
k=1 K

(o I8 de(t)
- It 7)dT
/t (e )K® e(t).

1

1B

Finally, by the independence of Y;, and Z,, we obtain

X(tg) ( =~ Jit t)dt) ® X(t1) + / ” (e‘fttz“(T)dT)K@)de(t). (4.4.6)

t1

2]
The stochastic integral /

t
(e_ ) “(T)‘h) ®de(t) can be viewed as a cumulative innovation.
ty

The more recent innovation has more influence on the cumulative innovation, because e~ J? wndr g
increasing as t approaches t2. For a stationary generalized Ornstein-Uhlenbeck SDE, although the
stochastic integrals fotz_tl (emrlta—ti=t)} @ de(t) and f; 270 (e=t) @ de(t) have slightly different

interpretations, it doesn’t matter because they are equal in distribution.

The stochastic representatidns of the solution of the generalized Ornstein-Uhlenbeck SDE
are shown in (4.4.4) and (4.4.6), where the current state can be split into two independent terms:
the first is the dependent part related to previous state; the second is the cumulative innovation, a

géneralized stochastic integration. Now the natural questions arise:

e When does the generalized stochastic integral exist?

e How to find this stochastic integral?

Recall thét the generalized stochastic integral is defined as the limit in distribution. Hence the
convenient tools to investigate such a generalized stochastic integral are the pgf, or LT, or cf,
depending on if the innovation process has non-negative integer, or positive, or real-valued margins.

Assume K has pgf Gk (s,a), or LT ¢k (s, ), or cf ¢k (s,a); and Ae haé pef Gae(s), or
bae(s), or pac(s). Now we study the pgf, or LT, or cf for Zn.

For the stationary case, since A€y, A€y, ..., Ae, are iid, it follows that

Gz, (s) = E [s Z;é((l_“h)k)K®A€n—k] HE[ (1-puh) )K®Aen_i]

n—1

= TIGac(Gk (50— uh))),

k=0
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or

¢z,(s) = E [e‘szz;é (1""’)'“”@““—?] = nl:[lE [e—s((l—uh)k)K@)Aen_i]
’ k=0

= T o (- 0w (50— b)),
k=0

or

is 'S ((1=uh)*)  ®Ben_i

0z, (s) = E [e k=0 } =ﬁE [eis((l—uh)k)K@Aen_k]
k=0
= nﬁ dae (— log vk (s; (1- uh)’“))
© k=0
n—1 -

=[] ea (z log ok (8; (1- Mh)k)) :

k=0

If as n — +o0,

Gz,(s) — G(s), or ¢z,(s) — d(s), or z,(s) — #(s),

and

G(s) is continuous at s = 1 with G(1) =1, or

$(s) is continuous at s = 0 with ¢(0) =1, or

(s) is continuous at s = 0 with ¢(0) = 1,

to—t .
then G(s), or ¢(s) or ¢(s) is the pgf, or LT, or cf of / (e_“t))K ® de(t).
0

For the non-stationary case, Aei, A€, ..., Ae, are independent, they may or may not be -

identically distributed. The corresponding pgf, or LT, or cf of Z, are

bl (ﬁ [1—u(t2—jh)h]> ®hen_
E sk=0 j=1 K

I

Gz, (s)

il [1—u(tz—jh)h]> ®hen-i
) K

| n—1 (
= H E |sV=!
k=0

n—1 k
= I Gae. (GK (s; JICE jh)hl) ) :

k=0 j=1.
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or

- Z <ﬁ[1 u(tz—jh)h]) ®ADen_k
¢z.(s) = E|e VT K

==

[1—p(ta— ]h)h]> ®Aen_i

t K

n—1 —s(
= HE e N
k=0

n—1 k
=[] ¢ac._s (—loggbK( H u(tz — jh) h]>>,

or

©z,(8)

i
=
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o
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Similarly, if
Gz,(5) — G(s), or ¢z,(5) — ¢(s), or @z.(s) — p(s), asn—r+oo,
and
G(s) is continuous at s =1 §vith G(1)=1, or

#(s) is continuous at s = 0 with ¢(0) =1, or

¢(s) is continuous at s = 0 with v(0) =1,

to
then we can conclude that G(s), or ¢(s), or ¢(s) is the pgf, or LT, or cf of/ (e‘ 1 “(T)‘”) K@de(t).
t1
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These analyses show that finding the generalized stochastic integral is equivalent to finding
the limit of pgf, or LT, or cf of Z,, where the limit should be a pgf, or LT, or cf. Due to self-
generalizability, the dependence part Y;, in the approximation always converges. Hence, we obtain

the following theorem.
Theorem 4.4.2 (Solutions of the generalized Ornstein-Uhlenbeck SDE)
(1) For the stationary generalized Ornstein-Uhlenbeck SDE
| dX(t) = [(1 — pdt)k ® X (t) — X (t)] + de(?),

to—11
z'f/ (e7#) . ® de(t) exists, then the solution is
0

X(tg) 2 (e #t71)) @ X(t T ) @ det

(t2) £ (e ) @X)+ [ () @ del)

(2) For the non-stationary generalized Ornstein-Uhlenbeck SDE, where u(t) is bounded,
dX(t) = [(1 - p(t)dt)  ® X () — X (1)) + de(t),

1o to .
if (e— Ji “(T)dT>K ® de(t) ezists, then the solution is
t1

t2

X(ty) < (e—fff "(t)‘“)K@BX(tl) + /

(e‘ I "(T)‘”) ® de(t).
t K

Note that in the sense of convergence in distribution, the classical Ornstein-Uhlenbeck SDE
has the same solution as in the sense of cbnvergence in L2

In summary, the stochastic representations of X (t2) conditioned on X (¢1) in both the sta-
tionary and non-stationary cases show that {X(t);¢ > 0} (if existing) is a first-order Markov
process. Since the classical Ornstein-Uhlenbeck SDE leads to the continuous-time AR(1) Gaussian
process, we name the new processes, constructed by the generalized Ornstein-Uhlenbeck SDE, the
continuous-time generalized AR(1) processes, or in short, the continuous—time GAR(1) processes.
Specifically, they are of the forms given in Theorem 4.4.2. Some comments about the comparison
with traditional AR(1) processes are given in the next section.

Our next main task is to search for appropriate IIP innovations, which guarantee that the

generalized stochastic integral exists.
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4.5 Summary and discussion

In this section, we compare among the Ornstein-Uhlenbeck processes, the Ornstein-Uhlenbeck-type
processes, and the new continuous-time generalized AR(1) processes. We summarize their features
only for the stationary situation.

The Ornstein-Uhlenbeck process and the Ornstein-Uhlenbeck-type process have the same

stochastic representation:
d to—1t1
X(t2) = e~ Ht2=t) o X (8;) + / e M o de(t).
- Jo

If {e(t); t > 0} is a Wiener process, it’s the ordinary Ornstein-Uhlenbeck process. If {e(t);t > 0} isa
Lévy procés's, it is then the Ornstein-Uhlenbeck-type processes. Extending the constant multiplier

operation to extended-thinning operation, we obtain the continuous-time generalized AR(1) process:

X (t2) L (e—u(t2—t1)>K ® X(t1) + /Otz—tl (e““t)K ® de(t).

Now we investigate their representation structure. The expressions of the stochastic repre-
sentation show that X (to) consists of two independent parts: one related to X (¢1) only and one
related to the innovation process only. When t; — 1 goes to infinity, e~H(2=1) goes to zero. Thus,
the first part will diminish to zero, which means X (t1) will gradually have less and less influence
on X(t2) until the influence reduces to null. Then the influence will exclusively come from the
innovation process. This shows us a dynamic process picture: after continuously repeated treat-
ment by the dependence mechanism device (i.e., A(X(t), —pdt)), the original input X (t1) will be
diminishing to nothing. On the other hand, the innovation during this period will be treated by
the same mechanism; however, it has accumulated as a stochastic integral and finally accounts for
X (t2) solely. _

What are the restrictions to applying the Ornstein-Uhlenbeck process and the Ornstein-
Uhlenbeck-type process in modelling dynamic phenomena? Since the Ornstein-Uhlenbeck process
has real-valued margins, it only works for those with real observations over time, otherwise, some
transformation for the data, say log-transformation, should be take to fit the model. The Ornstein-

Uhlenbeck-type process extends to positive real-valued margins, but can not have non-negative
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integer-valued margins, because e~H(t2—t1) o X (¢;) is not likely to be an integer. However, the
continuous-time generalized AR(1) process offers non-negative integer-valued, positive real-valued
and real-valued margins. Tflerefore, it is quite flexible in modelling different types of margins. In
Chapter 5, we give abundant examples.

For the Ornstein-Uhlenbeck process and the Ornstein-Uhlenbeck-type process, the depen-
dence part is a linear function of X (¢;). Hence, conditioned on X (t1), this dependence part is fixed,
not random. The conditional variation of X (t2) only comes from the part related to innovation.
For the continuous-time generalized AR(1) process, however, this part may not be a linear function
of X(t1). Furthermore, conditioned on X (t1), it’s no longer fixed, but random, so it looks like a
random effect, and also contributes to the conditional variation of X (t2).

The reader may wonder why we name this type process as continuous-time generalized
AR(1) process, instead of following the conventional way to name it like the generalized Ornstein-
Uhlenbeck-type process. This is because we focus on the statistical point of view. We wish ﬁo
emphasize its advantage, the auto-regression like property, in stétistical modelling. One big con-
cern in modelling dynamic .phenorr}ena is to capture the dependence structure over time. Since the
processes we study possess the same auto-correlation as the continubus—time AR(1) Gaussian pro-
cess, we propose the name continuous-time generalized AR(1) process to clearly show that one can
apply this kind of process to model, or in another word, to approximate the real dynamic problems
which have obvious dependence structure over time. However, the concept “auto- regression” in the
new processes is not strictly autoregression, because X (f2) is not equal in distribution to a linear
function of X (t1). This jump in concept resembles the relationship of the generalized linear model
to the linear model. If one like, one may call such an autoregression a generalized autoregression

to distinguish it with the classical autoregression, which is linear in the previous observation.
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Chapter 5

Results for continuous-time

generalized AR(1) processes

In this chapter, we shall deduce some concrete results of continuous-time GAR(1) processes dis-
cussed in Chapter 4. We consider special IIP’s as the innovation processes. These innovation
processes are classified as having non-negative integer; positive and real increment.

The general conclusion for these special innovation processes is given in Section 5.1. From
Sections 5.2 to 5.3, we discuss the non-negative integer, positive and real increment cases and
examples respectively. Finally, in Section 5.4 we explore the Tweedie IIP as the innovation process
to study or revisit the models from the view of dispersion.

These innovation processes lead to the continuous-time GAR(1) processes with non-negative
integer, positive and real margins. The abundant resulting processes could be potential models for

real phenomena that statisticians seek to explore.

5.1 Main results for continuous-time GAR(1) processes

In this section, we apply the theory in Chapter 4 to construct concrete examples of the continuous-

time GAR(1) processes. _
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First, we choose relevant IIP’s as innovation processes. They could have non-negative inte-
ger, or positive, or real margins. Secondly, we specify the extended-thinning operations. These two
steps determine the generalized Ornstein-Uhlenbeck SDE, and thus, the corresponding continuous-

time GAR(1) processes.
| The key point in such procedure is to calculaté G(s), or ¢(s), or ¢(s) discussed in Section
4.4. If this is a pgf, or LT, or cf, then we obtain the corresponding generalized stochastic integral,
as well as the corresponding continuous-time GAR(1) process.

Both stationary and non-stationary situations are investigated. However, for the sake of
simplicity, we restrict the innovation processes as stationary IIP’s so that we can easily give ex-
plicit results. This idea can be readily extended to the case of the non-stationary IIP’s being the
" innovation processes.

Now we probe the issue of the support type of margins of continuous-time GAR(1) processes.

Recall the stochastic representations of this kind of processes in stationary case:

to—11
X (t2) 4 (e—”(t2‘t1))K ® X (t1) + / (e7) o ® de(t).
0
When to — t; = 00, the term (e_“(‘2“t1)) x® X (t1) will converge to zero. Hence, the margins and
their support are essentially governed by the rv K and the innovation process {e(t);t > 0}. We
may want the marginal support to be the non-negative integer, or positive, or real set. This can
be realized by choosing the appropriate self-generalized rv K and IIP {e(t); t > 0}.

Recall that the generalized stochastic integral involved in the continuous-time GAR(1) pro-

to—1t1 12
cess, / (e'“t)K ® de(t) or / (e_ I “(T)dT)K ® de(t) have pgf, or LT, or cf as the following
. J0 t1

Tﬁl Gae (Gk (s; (1 — ph)Y)), for constant y;
Gz,(s) = :i(i ;

'Ho Gae (GK (5; Hl (1= plte = jh)h])) , for u(t);

= 1=

or

71:11 dae (—log px (s; (1 — ph)?)), for constant u;
$7.(9) = { oo . |

Il dac (- log ¢xc (s; 1[0 - plta - jh)h])) , for p(t);

3= i=

129




or or

n—1 . .
1 vac (—ilog ok (s; (1 — ph))). for constant y;
L TAe
0z,(s) = ;—1 i '
[1 ¢ac | —ilogox | s [T [(1 - plta —jh)A] | |, for u(t);
=0 . j=1

where Z,, is defined in (4.4.3) and (4.4.5). Since they are all products, we may choose innovation
processes in which the pgf, or LT, or cf of incremen"t is of the exporieritial form. Such a form has
the advantage that it can change the product to summation of their exponents so that the limit
will be an integral.

~ The following proposition from calculus is essential to our study of results of continuous-time

GAR(1) processes.

Proposition 5.1.1 Suppose R(z) is a differentiable real-valued function with bounded first order
derivative. Let h = (to — t1)/n, where to —t; > 0. Then '

(1) for constant p,

n—1

) to—t
hZR (1 — ph)') — /0 1 R (e™#) dt, as n — 00,

(2) for functi’on u(t),

n—1 ta :
h Z R H 1 — u(te — jh)h] | — / R (e— 52 “(T)dT) dt, as n — 00.
=0 _

j=1 2

Proof: The key step is to show that

|
—

n

n—1
hY R((1—uh)) = h
1=0

™

Il
=)

R (e"‘”h) + o(h),

2

—

n—1 % n— £ :

— > plt2—jh)h
RS R ([T - uit2 — ih)h RS R|e = + o(h).
’ =0 . 1

J=1 1=0

Il

Then by the definition of Riemann integration, the conclusions hold.
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According to Inequality 3.6.2 in Mitrinovi¢ and Vasié [1970] (Section 3.6, p. 266), we have

0-5 - 4-o(2)
Thus,

) _ nx% . i/n ) ) .
(1—ph) = (1 _ M) - <e—u(tz—t1) 4 é) _ b Ai +o <l> ’
n n n n

and consequently,

n—1 n—1 _ 1
KS R((1-ph)) = h R<e—'“h+ +0(—>>
zz:; ( ) 1=0 n
n-—1
) A 1
- —pih e M i} il
h;{R( )+ R () Ero (1)
n—1 1
= nY R( ”“‘)4-0(—)
=0 n
Similarly,
: Bt — 1)) L A
B o _ (to —jh)(t2 — 1 to —pu(ta—jh)(ta—t1) "
108t = | [ R EI[ -mia-t) 1 2]

_ H[ u(ta =i Aij+o<l)] _ e—z;’-=1u(tz—jh)h+§+o(l),
j=1 n n n n

which leads to

n—1 %
_ B; 1
hZR( [1 - pu(ta — jh)h ) hZR( i1 itz J’l)h+;+ (n)>
: b

—h Z {R (e— Yt u(tz—jh)h) + R (e- Szt u(tz—jh)h) : % +o (l) }
=h)_R (e— Tim ﬂ@z—jh)h) +o (1) :
; n

Remark: The technique of proof uses a bounded first order derivative, but it may be possible to

prove the result without this condition by a different method.

131




Now we choose a special innovation process, in which the increment, e(t 4+ h) — €(t), has

the exponential form of pgf, or LT, or cf. Applying Proposition 5.1.1, we can obtain the following

theorem.

Theorem 5.1.2 Assume the innovation process {e(t); t > 0} has increment e(t + h) — €(t) such
that its pgf, or LT, or cf is of form ehC) | depending on the increment being non-negative integer-

valued, or positive-valued, or real-valued. C(s) is assumed to be differentiable with bounded first

order derivative.

(1) For the stationary situation, let Z, be defined in (4.4.3). If Gk (s;a), or log ¢k (s;a), or
log ¢k (s; ) have bounded first order derivative with respect to a in [0,1] (boundaries could

be excluded), then it follows that

n-1 n—1
Gz.(s) = [ Gac(Gk(s:(1—uh))) =[] exp {rC (Gx (s; (1 - uh)'))}
1=0 1=0

3
1l
8

—5 exp {/Otrtl C(Gk (s;e7)) dt} = G(s),

n—1
$2.(5) =[] Gac(ox (s;(1—uh)))
=0
ta—ty
"2 exp {/0 C (¢K (s; e‘“t)) dt} = ¢(s),
or |
n—1 )
0z.(5) =[] vac(—ilogpk (s (1 —ph)'))
i=0

ta—t
"2 exp {/ o C (—z’log YK (3; e—l“)) dt} = ¢(s).
0

And the G(s), ¢(s) and ¢(s) are the pgf, LT and cf of the generalized stochastic integral

/tz—tl (e7)  ® de(t)
0

respectively.




(2) For the non-stationary situation, let Z, be defined in (4.4.5). If Gk (s; @), or log ¢k (s; ), or
log ¢k (s; @) have bounded first order derivative in [0,1] (boundaries could be ezcluded), then

it follows that

Gz, (s) = nl_[GAe(GK< H[l— 2—th])>

1=0

_ n{ ( (s;ﬁu_m_m))}
i=0 j=1

=3 exp {/tz C (GK (s;e_ e u(T)dT)) dt} = G(s),
t

1

3
4
3

' n—1 i
¢z.(5) = ][] dac (— log ¢k ( (1 — nu(ts — jh)h]))
=0 j=1
ni))o exp {/ C ( log ¢K (5 e” ftzll(T)dT)) dt} = ¢(S),
t1
or

=0

"2 exp {/t2 C (—ilog VK (s;e_ f‘2“(7)d7)) dt} = ¢(s).
. "

The G(s), ¢(s) and ¢(s) are the pgf, LT and cf of the generalized stochastic integral

/t ( —Jn T)‘“) ® de(t)

1

n—1 4
vz.(s) = ][] eac (—ilog YK ( H p(te — jh) h]))

respectively.
Proof: With suppression of the dependence on s, let

C(Gk(s;a)), if K is a non-negative integer rv,
R(a) = ¢ C(-logdk(s;a)), if K a is positive rv,
C(—ilogyk(s;)), if K aisrealrv.
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Then the derivative of R(c) is

C'(Gx(s;0) 2L Gk(s;a), if K is a non-negative integer rv,
da :
R(a) =< =C'(~log ¢x(s; @)L log ¢k (s; o), if K a is positive rv,
' —1C'(—1log vk (s; )) log vk (s; @), if K a is real rv.

Hence, R'(a) is bounded in [0,1] (boundaries could be excluded) under the conditions of this
theorem. To save space, we only verify them for K being a non-negative integer rv and the

increment of innovation process being non-negative integer-valued.

(1) For the stationary situation,

n-—1 v n—1
Gr(s) = [T Gac (G (51— uh)) = [ exp {hC (G s (1 = uh)))}
=0 =0
n—1 -
= exp{hZR(u—uh)i)}
1=0

under the conditions in this theorem, Proposition 5.1.1 holds. Thus,

G (5) =3 exp { /O T G (G (s5e7)) dt} ~ G(s).

When s = 1, since C(1) = log(Gac(1))/h = log(1)/h =0,
G(1) = exp {/t2_tl C (GK (l;e’“t)) dt} = exp {/tz_tl C(l)dt} = =1.
0 0

to—11 .
Therefore, G(s) is a pgf. We can conclude that / (e7) « ® de(t) exists with pgf G(s).
0 :

(2) For thé non-stationary situation,.

Gz,(8) = HGAe (GK (S,H [1— p(ta — jh)R]

Jj=1

_ Hexp{ho(g ( Tl ta—Jh)h]))}
_ exp{th( trmm)}

.




By Proposition 5.1.1,

Gz, (s) =3 exp {/tz C (GK (3;6_ i u(*r)df)) dt} — G(s),
t1

t2 t
(e_ Ji? M(T)‘”)K ® de(t) exists with pgf G(s). -

and G(1) = 1. Hence /
t1

Recall Examples 3.1 to 3.5 (labeled from I1 to I5) where all of the self-generalized rv K are

non-negative integer-valued. We check the partial derivatives

(

(s —1), for 11,
(1—7)(s = (L —ys)ly(s = Da+ (1 - ys)] 7% for 12,
0 —(1 - 8)*log(1 — s), for 13,
—Gi(s;a) =
da w50 =9 - [ef — (e? — 1)s] % log [¢? — (¢? — 1)s], for 14,
—0(1 )" [L+ (1 -7 =)~
( xa L [(1 =)y + (1 —7)(1 - )"V, for 1.

Thus, they are all bounded if 0 < s < 1.
For Examples 3.6 to 3.10 (labeled from P1 to P5) where K is a positive self-generalized rv,

because the following relationship corresponding to the I1 to I5 holds
K (s;a) = exp{Gk(1 — s;a) — 1},

we obtain
_3_10 Pk (s;0) = —8—G (1-s0)
A b
Therefore, the % log ¢K(.§; ) is bounded in [0, 1] too.
Essentially, to apply Theorem 5.1.2, we only need to check the boundedness of C'(s) if we
consider K being from I1 to I5 and P1 to P5.
The type of the generalized stochastic integral

to—1t1 ta
/0 (™), ®de(t) and / (e_ 12 “(T)dT) « ® de(t)

t1

is determined by the self-generalized rv K and the innovation process {e(t); ¢ > 0}. It could be
non-negative integer-valued, or positive-valued, or real-valued. Under the cases that K is from I1

" to I5 and P1 to P5, we classify them in the following theorem.
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Theorem 5.1.3 Assume the innovation process {e(t); t > 0} has increment Ae(t) = e(t+h) —€(t)
whose pgf, or LT, or cf has form ehC(s) depending on the increment being non-negative integer-
valued, or positive-valued, or real-valued. C(s) is differentiable with bounded first order derivative.

We classify the possible type of the generalized stochastic integral.

(1) non-negative integer-valued: - K could be from I1 to 15, the increment of innovation process

should be non-negative integer-valued.

In this circumstance, if the increment has pgf G aer)(s) = ehC0) | then
s pto—11

exp {/ C (Gk (s; e ) dt} , for constant p,
0 . .

s R "

(2) positive-valued: K could be from P1 to P5, the increment of innovation process should be

G(s) =

positive-valued.

In this circumstance, if the increment has LT ¢as)(s) = ehC(s) | then

to—11 ’ l
exp { C (— log ¢k (s; e'“t)) dt} , for constant u,
¢(S) = 0t2 ftQ ( )d
¢ (-1 jem JPura) ) gt | £).
exp{/t1 ( og o (s e )) } for u(t)

(8) real-valued: K is only from P1, the increment of innovation process is only real-valued.

’

to—11
exp {/ C (se_“t) dt} , for constant u,
p(s) = Otz
exp {/ C (se‘ 52 “(T)dT) dt} ; for u(t).
t

1

In this circumstance, Pa¢()(S) = ehC), and

Proof: The proof is straightforward. We omit it to save space.

Fortunately, there are several distribution families which have exponential form of pef, or
LT, or cf. For instance, the compound Poisson, GNBC, GGC, stable, Tweedie families are well-

known examples. We will discuss them in the case of innovation processes with non-negative integer,

positive and real increment respectively.




5.2 Non-negative integer innovation processes and examples

In the following wé mainly consider four process families as the innovations: compound Poisson
1IP, generalized Negative Binomial convolution ITP, GC I IIP and GC II IIP. These four families
lead to a lot of well-known distributions as margins.

As to the self-generalized distributions, because the inérement of the innovation process
{e(t);t > 0} is non-negative integer-valued, K should be a non-negative integer rv, which further
leads to the non-negative integer generalized stochastic integral. We pick up those five non-negative
integer rv’s in Examples 3.1 to 3.5 (labeled from I1 to I5) for the extended-thinning operations.

First, we consider the Compound Poisson IIP as innovation process. By Theorem 5.1.2, we

have
Theorem 5.2.1 Let {e(t);t > 0} be a Compound Poisson IIP with pgf of Ae = e(t+ h) — €(t)
Gac(s) = exp{Ah[g(s) — 1]},

o0 . .

where g(s)(= 3. pis®) is a pgf, and differentiable with bounded first order derivative. Suppose K ()
=0

is a non-negative integer self-generalized rv with pgf G (s; @), which is differentiable with bounded

first order derivative with respect to a. Then, it follows that

exp {)\ /t2_t1 [g (GK (3; e'“t)) — 1] dt}, for constant u;
0 . ,

exp {’\/tz [Q(GK (8;6" Ji* “.(TW» - 1] dt}’ for u(®);
11 :

and G(s) is a pgf. Hence, the generalized stochastic integrals

G(s) =

t2

to—ty
/0 (e_“t)K ® de(t) and

exist and are mnon-negative integer rv’s.

— [ w(r)dr '
e ® de(t
A ) © et

For a specific self-generalized rv K, we know the form of its pgf Gk (s). Thus, we can obtain
the full expression of G(s) by Theorem 5.2.1. This leads to the following corollary, where the K is

chosen from I1 to I5 (non-negative integer case).
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For the sake of saving space, we only list the results for the stationary case. The non-

stationary case can be straightforward to deduce without any difficulty.

Corollary 5.2.2 Consider the innovation being the Compound Poisson IIP. In Theorem 5.2.1,
by specifying Gk (s;a) or ¢pk(s;) for the self-generalized rv K, we can get the further form of
9(Gk(s;q)) or g(éx(s;a)). The following are the results for K being from I1 to I5 under the

stationary case.
to—11
I1: G(s) =exp {A/ [g (L —e ]+ e M) — 1] dt} .
: 0

o0
Furthermore, if g(s) Z p;st, then
=0

[3’3_ (;)pi] 1 - eimltat](s — 1)]’) } .
=]
S )

{
13:  G(s) = exp {,\/Otz_tl [g (1 (- s)e"”) - 1] dt} .
{

I12: G(s) =exp

I4: G(s) =exp

5. G(S) — exp )\/t2—t1 al1- e"0ut(1 —’7)0 -
: (- ey +@-ma-973]

t
For the non-stationary case, just replace the e=Ht with e~ Je* m(r)dT

Proof: The second half part of I1 needs some details.

o) = e ([ o(l- e o) < 1]ar)

= exp {)\/Otz_tl [ipi([l —e M+ 6_“t5>i - 1] dt}
i=0
= exp {)\ /()12241 ipi [([1 —e M+ e'ﬂts)i - 1] dt}
i=1
= exp{)\i—o:pi[/ot2 ! ([1+(3——1) _“t].——l)dt]}
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WSl [ (3 (e - )al)

j=1

{

BERl [ (e eral
— e {3Yn Z (J) (=17 [ " pamar] )

{

{7

2Son] Y (3 - )

JH

By choosing an appropriate pgf g(s), we can find the exact form of the pgf G(s) of interest
so that we can obtain the corresponding generalized stochastic integral. The following are a few

examples.

Example 5.1 Consider the compound Poisson IIP innovation. Let g(s) = s and let K be from

I1, so that the extended-thinning operator is binomial-thinning. Then

G(s) = exp {)\/Otttl [g([l —e M+ e_“ts) - 1] dt}

or
o) = o {n [ o e MO om0 )

— exp {A /t (-t W) 4 o I i) 1] ae}
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to

= exp{)\./t (s—1)e = det}

1

= exp{)\(/t e it n det)(s—l)}.

1

These results correspond to the following models:

. to—11
X (ts) = e~#2=t) 5« X (4;) + / e M x de(t),
0 .
to—t1 '
where \/O ‘e__l_/‘t * de(t) ~ Poisson(% [1 — e_ﬂ(t2—t1)])’ and

t2
X (t2) = ST HOIT L X (1) 4+ / e~ Ji? AT 4 de(h),
t1

t2
where / e~ I wndr de(t) ~ Poisson ()\/ e I m det)
11 t1

Example 5.2 Still consider the compound Poisson IIP innovation, and suppose K remains in I1.

Now we choose g(s) =

T_—%’ i.e., the pgf of NB(1,7). Then for the stationary case,

‘G(s) = exp

{

_{A/Otﬂl[l (@ _le_,n rens) - 1]as}
- oo e

{ 1

{

ta—t
)
- i)

-v(s-1)
((1 — ’y) — fy(s — 1)6—#(t2—t1)))\/u
1—7s

My
- —u(t2—t1) g2 —t1) i
(e +i= _ ] 1-— 'ys) '
This leads to the model

to—t1
X(tp) = e~ #B=8) « X (t;) + / e™H x de(t),
0
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t2—1 A
where /0 e x de(t) has pgf (e‘“(tz‘“) +[1- e"“(tz_tl)]ll_——;’;) i

For the non-stationary case, it follows that

G(s) = exp {)\/tt2 [g([l Y r)aT] 4 o= )2 ,u(T)dTS) _ 1] dt}

1

ty o 1—
= exp {)\ /t1 [1 B 7([1 ey p,(T)dZ] . [tz M(T)d73> - 1] dt}

t2 — - ftz u(r)dr )
e [ ey
11— — (s — 1) Jo* wr)dr

Hence, we have model

t2
X(tg) = e~ i HOI 4 X (1) + / e~ JE AT 4 (1),
. t1

t2 ’)’(8 — 1)6_ ftzz u(r)dr

, t
where / e J? wnydr de(t) has pgf exp {/\/ 2 dt}.
t1 1 1—y—9(s—1e” Jo? w(r)dr

Example 5.3 Let g(s) = % - %11—__—51%9 (8 > 1). Consider the compound Poisson IIP innovation,

and suppose K remains in I1. Then for the stationary case,

to—1t1
G(s) = exp A/ g{[1 — e ]+ e Ms) —1|dt
(5 e eers) ey
to—t1 —1(1 _ \1/0,—ut/8
)\/ 1 Q1 s)% 1l g
0 14+ (s —1e#t 1 —(1—s)t/0ent/6
v b (s-Det  97M(1-3)
0 14+ (s—1)e# 1
to—t1

[log 1+ (s— L)e #] .

L= (=)0 14 (s —Derem) \ M
- s /8 ’

—log [1 - (1- 3)1/06‘—ut/o]

1)

1— (]_ — 5)1/'96“H(t2—t1

to—11

which is the pgf of/ e x de(t). Thus, the model is
0

to—11 ‘
X(tg) = e~Hlb2—t) 4 X (8;) + / e M x de(t).
0 ‘
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X may take the same value as p. In this case, G(s) = sTI1-(1- 5)1/9] (as ta — t1 — o0, which
is just the pgf of power series distribution (this is an alternative way to show its DSD property).

For the non-stationary case, the pgf becomes

to :
G(S) = €xXp {)‘/ [g ([1 —e ftt2 dT] +e ft p(r)dr ) _ 1]}
t1
” 6711 = )00 2 il
= exp )\/ 1 : 71 —s) % t o
t1 |1+ (s—1)e” flu(nydr 1 = (1- 3)1/06_9—1 152 y(rydr
(s 1)e fitumar g1 1/8-071 {2 u(r)dr
= exp A/ (8 1) t _ 9 (1 ) dt ’
b |14 (s—1)e fuMdr 1 (1 - 5)l/0e07" [z T)dT

t2 ts
the pgf Of/ e~ Je7 AT o de(t), and the model is
t1

t2
X(ts) = & Jo HOI 4 X (1) + / e~ JE7 AT 4 Ge(4).
t

1

Example 5.4 Suppose innovation remains as compound Poisson IIP, and g(s) = s. Now consider

K from 12 with pgf Gk (s;a) = m‘f—z)—is, then

oy el=ME-1)
Gr(sie) =1 = ey~ (L= s’

and for the stationary case,
t2—t1 (1 —e M)+ (e™# —)s
G(s) = exp {)\/ [g((l o) — (1= e—l‘t)fys) - 1] dt}

bt — ) (s = 1)ett
Yo ) —(1— e “t)'ysdt}

J
/2 tl ) (s — 1)e™# dt}

{
{ 1—73 +’y(s—1)e pt

= exp{ % —7 log [(1 —v8)+v(s—1)e” “t]
{

to—11 }
0

;7 log [ 1—s) +,Y1(;j1)e—u(t2—t1)]}

Al—y

[T
(1 —s) +'y(s—1)e pta=t1)

AM1=) /() y(1—e—k(t2=t1)) AM1=7)/ ()
B ety | I Temmm
T\ o0ty B SRS '

1—ve e Hltz—t1) s 1- 1—ve u(tz ty) s
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Note that this last form is a NB pgf. Hence the model is

X(tr) = (e7H:7)) @ X(t1) + /0 T ) @ deld),

ta—11
_ (t2=t1)
where /0 (e74)  ® de(t) ~ NB(AU=2), AI=e ),

Similarly, the model for the non-stationary case is

(T)dT)K®X(t1)+/ ( -Jtw T"”) ® de(t),

t1

X(tr) = (e 4

where/ ( — 7 n T)dT) ® de(t) has pgf

t1
i — ft p(r)dr ft (r)dr _
exP{A/t 2 [9((1(1_ ;ft 2 u(r)dr ))-i__((j e Mft 2 y(7) d;Y;,y ) - 1]dt}

1

to—t
= exp{)\/o

Example 5.5 Keep the previous stochastic setting, but choose g(s) =

1-p
1— B (1—a)+(a—y)s -

(I—av)—(1-a)ys
(1= —vs) =71 = s)e]
(1-B)(1—=ys)+ (B =71 —s)
—B(1 - )1 = s)a
1-B)(1—7vs)+(B-1(1~-s)a

G(s) =

(1 - 'Y)(S - 1)6— fet2 u(r)dr dt}
(1—ys) + (s — D~ Ji?umar =0

12 (0 < B <1). Then,

g(GK(S’ a)) -1

i

For the stationary case,

to— t1 (1 — e—-ut) + (6 ut ) .
G(S) = eXP{A/O 1 — et ) ( —e “t)'ys) - 1]dt}

— to—t1 __5 1 — )( )6 ut
= exP{A 0 (1 —s)+ (B — )(1—8)6_tht} |
- {Af((ﬁl 3)) log (1~ B)(1 — ) + (8- 7)1 — )™}
~ exp { M=)\ ( — B)(1 —vs) + (B = y)(1 — s)e”H2~H) }

u(B - 7) A-B)1L—7s)+B-7{L—s)
= ((1 B —ys) + (B—7)(1 — s)e—u(tz—tl))wl =

=B -ys)+B-1N1~9) :
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and the model is
(ta—t1) -t ¢
X(ty) = (e plt 1>K®X(t1)+/0 (e7") . ® de(t),

to—11
where / : (e—"t)K ® de(t) has the above G(s) as its pgf.
0

For the non-stationary case,

t2 o= fI2 p(r)dr 1E2 u(r)dr ,
€7<I>{>‘/t1 [9((1(1_ ;ft 2 y(r)dr ))+ El e I r)dj)s ) ]dt}

N —B(1L = 7)1 - s)e” I u)er -
= expiA d
0, (1 - B)(1 = 8) + (B = N)(1 = )e= &> t}’

and corresponding model becomes

 X(t2) = (e— 1 WWT) L ®X(t)+ / ” (e- I MT)‘”)K ® de(t),

t1

G(s)

12 tg
where the second G(s) is the pgf of (e— Je "(T)dT)K ® de(t).
31

Secondly, we consider GNBC IIP as innovation processes. In this case, we have following

theorem, from Theorem 5.1.2.

Theorem 5.2.3 Let {e(t);t > 0} be a GNBC IIP with pgf of Ae = e(t + h) — €(t)

Gae(s) =exp {h/(o,n log <T—p—qs> V(dq)} .

Suppose K (a) is a non-negative integer self-generalized rv with pgf G (s; ), which is differentiable

with bounded first order derivative. Then, it follows that

( to—1t1
p .
P {/(0,1) </0 ‘ tog [1 — qGk (s; e‘“t)] dt) V(dq)} ’ for constant p;
t2 D .
exp / / log = dt | V(dg) ¢, for p(t),
{ o1 \Ju 1 - qGk (3; e J u(T)dT)

and G(s) is a pgf. Hence, the generalized stochastic integmls

/Otz_tl (e_“t)KéBde(t) and /t1 ( = J T)dT) ® de(t)

exist and are mon-negative integer rv’s.




Proof: Omitted.
Consequently, we have derived the following corollary by direct calculation.

Corollary 5.2.4 Here we consider the specific self-generalized rv K given in I1 to 15. The inno-
vation process is the GNBC IIP.

I1:
exp {(t2 —t1) Jo1y 108 (1{%) V(dq)
G(s) = { +M(t2;t41ﬁ f(0,1) "ﬁ;?V(dq)} for constant u;
exp {(tz —11) f(o 1) log (l—fq—s) V(dq)
\ + ( . [ 2 (s )dr] dt) Jom qgl_;?V(dq)} for u(2).
12:
)
exp {(tz —1t1) f(O,l) log (1qu—s) V(dq)
_t)2 ) (1—nys .
G(s) = < . +H(t22tl_). f(o,1) [1—_%(1—%‘7—2] V(dQ)} for constant u;
exp {(tQ —t1) f(0,1) log (1“%) V(dq)
|+ (2 [ wrar] de) fo [Hm SR Vida) } o for ).
13:
{0 o 1 25) V0
G(s) = +423 nr Jon —1‘1(?3—(1‘81‘/(61(1)} for constant u;
exp {(t2 —t) f(O,l) log (1_qs) V(dq)
L + ( tt12 [ tt2 “(T)dT] dt) f(o,l) il_?ﬂfsl_—slv( )} for u(t).
14:
exp {(tz —t1) f(o,l) log (1—P—£> V(dq)
Gls) = +N(t2—t1)2 fo ) H1- csl)[ﬂjslog(l CJV(dq)} for constant

exp{(tg—tl)f( )log(l qs) V(dq)
([ ] at) o 0= )y for )
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I5:

r

exp {(t2 - 1) f(O,l) log (%ﬁ) V(dq)
B0 (1— A (1-5)F].
N e

for constant u;

l—gs
G(s) = : v
| exp { (22— 1) fio o8 (25) V(da) + (s[4 u(r)dr| dt)
(1=7)f =0 (1—5)[B+0 1L (1=5)F
L X f(O,l) — 1—gs — ]V(dq)} for /J,(t).

However, usually the measure V(-) on (0,1) is not clear. Hence, Corollary 5.2.4 is not
helpful in obtaining the bgf or LT of the generalized stochastic integral. For each specific member

in the GNBC family, we have to calculate the pgf or LT individually. Following are some examples

resulting from the GNBC IIP innovation family.

Example 5.6 Consider the NB IIP innovation, in which the increment Ae = €(t + h) — €(t) has
pyf

Gae(s) = (1 f)qs)hg, :

where p,q > 0,p+q = 1. This is a special case of the GNBC when V(-) has a mass of 6 at a single
value q. -

When K is from I1, we obtain

( to—t1 P
? : dt tant p;
exp{ /0 og [p n Q(.S — 1)6—“t:| } s for constant p;

to
exp 9/ log p = dt 3, for u(t).
{ no [pg(s—1)em S e

which leads to the models

to—1t1 ’
X(tz) = e7#27) w X (1) -|~/ e x de(t),
: ' 0
and

to ¢
X(te) =€ Jif wrydr X(t) + / e Je? AT o de(t).

t1
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for the stationary and non-stationary case respectively.

 When K is from 12, then

( to—t1 —ut
p(l—ys) +py(s —1)e*
0 1 '

exp{ /o o8 [p(l —s)+ (v — q)(s — 1)eHt dt e, for constant p;

t - — - ftt2 (r)dr
exp {9/ log p(1—7s) +py(s —1e l; ‘ i oru.
\ t p(1 —s) + (v — q)(s — 1)e Ji* #lrdr |

The resulting models are

X(t2) = (e‘“(t?‘tl))K ® X(t1) + /tHl (e7)  ® de(t),
‘ 0

and
to

X(t2) = (6- 5t ”(T)dT')K ® X (t1) +/

t1

(e_ g “(T)dT) « @ de(t).

Example 5.7 Consider discrete stable IIP innovation, in which the increment e(t + h) — €(t) has

pof .
Gac(s) = exp{=An(1 —s)P}, A>0, 0<B <1

Case 1: K is from I1. For the stationary situation,

n—1 '
G(s) = lim JTexp{-2[l-(1—(1-s)(1- )%}
1=0
n—1
= lim exp{-2 " Al(L - 5)(1 — uh)"}
1=0

n—1
—  Tim —_ SEAY: —Buih
= nl_l_)ngoexp{ A1 -—s) z%he }
P

tz—tl_
= exp{ -1 - s)ﬁ/o e_ﬂ“tdt}
A1 = e Bulta—t1)
[ ](1 - 3)6}7

:‘eXp{~ Bu

which leads to the model




to—11 -

where / e M x de(t) has pgf G(s), and is distributed as discrete stable also.
0 .

For the non-stationary situation,

1

nll}rgo H exp{ — Ah[1 — (1 -(1-3) H[l -ty — jh)h])]ﬁ}

. g=1
B

1

which leads to model

t .
X (tz) = eI M9 4 X (1) + / T I A ge(t).

i1 .

15 ¢
where / e~ It AT o de(t) remains in discrete stable famaly.
t1 '
Case 2: K is from 12. Then, by straightforward calculation,

to—t
e [ exp(—But)
p{ A== 9) / [(1—73)—7(1—s>exp<—ut)1ﬁdt}

for constant u;

(

exp { =M1 —7)P(1-s)? /t2 = (_B a3 u(T)dT) ' dt

& [(1=8) =21 = shexp (~ 1 u(r)ar) |
. | for (1)

Hence, resulting models are

' to—i1
X(tg) = e Hlt2—t) @ X (t;) + / e " @ de(t),
0

and

X(tg)=e_ftt12“(7)dT®X(t1)+/ o= 52O @ de(t).
31

corresponding to the stationary and the non-stationary case respectively. In Case 2, the

generalized stochastic integrals are not in discrete stable family.
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In the remainder of this section, we study two generalized convolution families: GC I and

- GCIIL

Theorem 5.2.5 Let {€(t);t > 0} be a GC I IIP with pgf of Ae = e(t + h) — €(t) of form
Gacs) =ep {n [ L= Dy(ay)}.

01 L—gs
Suppose K (a) is a non-negative integer self-generalized rv with pgf Gk (s; a), which is differentiable

with bounded first order partial derivative with respect to a. Then, it follows that

( to—t1 o=t _
q [GK (S, e ) 1]
= dt | V(d ’ or constant u;
P {/(0,1) </0 1 — qG (s;e7Ht) (dg) f ‘ m

t2 ¢ [GK (S;e‘ i #(T)dT) _ 1] ‘
k exp {/(0’1) (/t1 1 - qGxk (S; o [i2 ﬂ(T)dT) dt) V(dQ)} ) for u(t),

and G(s) is a pgf. Hence, the generalized stochastic integrals

to—t1 to
—ut —ftz u(r)dr
/0 (") ® de(t) and / (e )K ® de(t)

t1

G(s) = \

exist and are non-negative integer Tv’s.

Proof: Omitted.

As in the case of GNBC innovation processes case, we can obtain the further expression for
a specific K. However, it may not be useful since the measure V(-) is not clear. Nevertheless, we

use two specific K in the following. -

Corollary 5.2.6 Consider the specific self-generalized rv K from I1 and I2. The innovation is
the GC I IIP. Then, it follows that

I1:

4

1—q—q(s—1)eHliz—t1)
l .
exp {u /(0,1) log ( T~ gs )V(dq)}, for constant p; .

t — J{? p(r)dr
2 q(s—l)e S u(r)
i dt|V (dg) }, £).
L exp{/(o’l) [/tl g a(s _ De-Faar ] ( Q)} for pu(t)
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12:

p .

exp { /(0,1) (L) jog (Lm0l =0 r 4o DN Vi),

for constant p;

t2 (1 = )(s — 1)e= Je* wrdr
o { /‘07” [/t (1- q)(lq— 73)7+8(q - 76)(1 — §)e= Ji? ur)ar dt] V(d‘”}’

\ for p(t).

Proof: Omitted.

Example 5.8 Ezample 5.2 can be revisited as one member of the GC I family.

Theorem 5.2.7 Let {e(t);t > 0} be a GC II IIP with pgf of Ae = €(t + h) — €(t) of form

Gac(s) = exp {h/ —9(1—s)(1 _VS)V(dq)}.

(0,1) 1—gs

Suppose K (a) is a non-negative integer self-generalized rv with pgf Gk (s; «), which is differentiable

with bounded first order partial derivatives with respect to o, Then, it follows that

o et g1 G (sse™)] [1 =G (57
ool [, ([ =t e v

for constant p;

. cem 7 uman] |1 - e Ji? u(rydr
S e B e A G A

1 1-4¢Gk (s; e It “(7)‘”)
\ ' for u(t),

and G(s) is a pgf. Hence, the generalized stochastic integrals

to—11 : 12
/0 (), ®de(t) and /t (i r) @ de(t)

1

ezist and are non-negative integer rv’s.




Proof: Omitted.

Like previous innovation cases, we can specify the self-generalized rv K to obtain the com-
plete expressions of pgf or LT of generalized stochastic integral. However, most of expressions in-
volve in integration over time ¢ are not simply expressed. Hence, we only give two self-generalized

rv K for GC II innovation in the following corollary.

Corollary 5.2.8 Consider the two special self-generalized rv’s discussed in I1 and 12, and the

innovation is the GC II IIP.

I1:
‘exp {% (1 —e#lt=t)) (s — 1) - V(dg)+
Vs
! 1-y. 1—g—g(s—1)e#l)
1 lo V(d s
g /[%1) ( q ® 1-g¢s )
G(s) = { ' for constant u;
t2 — — ) — —1je™ ftt2 w(r)dr)p— f;2 u(r)dr |
exp / / g(s = D1 =) — (s~ e i Je” % it vidg b,
v \Ju 1—q—q(s— e Je" ulrdr
\ | for u(t).
12:

1 (1—g)(1=y5)+(g—7)(1—s)e~#{f2—t1) 1-q :
e {} fon [1og ((1—q)(1—75)—7(1—q)(1—s)e~“<f2-t1>) +log 1] Vid)},

for constant u;

2] 1
P {(1 == Jo [(1 ~ D ((l—q)(l—'ys)+(q—7)(1—3)6_ i i

- ! dt\V(d }
(1—g)(1—7ys)—v(1—q)(1—s)e™ fttz #(T)d‘r) ] ( q)

for pu(t).

\

Proof: Omitted.




5.3 Positive-valued innovation processes and examples

For positive innovation processes, we choose the compound Poisson (with a distribution with posi-
tive support) IIP, Generalized Carﬁma Convolution IIP and GCMED IIP. The LT’s of the increment
in these three kind processes are of exponential form. The families of Generalized Gamma Con-
volution and GCMED include many distributions having domain on (0,00). Hence, these lead to
mahy continuous-time GAR(1) processes with positive-valued margins.

The results are summarized by Theorem 5.3.1, 5.3.2 and 5.3.3 in the following.

Theorem 5.3.1 Let {e(t);t > 0} be a compound Poisson IIP with pgf of Ae = €(t + h) — €(t)

$ac(s) = exp{Ah[do(s) — 1]},

where ¢o(s) is a LT, and differentiable with bounded first order derivative. Suppose K(«) is a pos-
itive self-generalized rv with LT ¢k (s; @), which is differentiable with bounded first order derivative

with respect to a. Then it follows that

exp {/\ /h_t1 [qSo( —log ¢k (s; e"‘t)) - 1] dt}, - for constant u;
0
¢(s) =
ta ¢
o 0 ol (e R)) st

and ¢(s) is a LT. Hence, the generalized stochastic integrals

to—11 12
/0 (e7M) , ®de(t) and / (e— e W)dT) @ delt)

t1

exist and are positive Tv’s.

Proof: It is straightforwardly derived by Theorem 5.1.2.

Example 5.9 Consider the innovation being a compound Poisson with Gamma IIP, in which the

increment €(t + h) — €(t) has LT

dae(s) = exp{Ah [(oisy - 1]} X, 0,7 > 0.
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Choose K a positive self-generalized rv. By (2) of Theorem 5.3.1, we have

( ta—t1 0 Y
exp {)\/0 [(0 “Tog ox (5 e—ut)) - 1] dt} , for constant p;.

: g

t2 9
A ~1|dt}, 1),
keXp{ /tl [(6—log¢>K (s;e—ft‘zu(r)df)) | } } for“()

Let K be from P1, then

t2—t1 9 g
exp {A/o [(W) - 1:| dt} , . for constant u;
ta 6 Y
exp 4 A —1|dts, or n(t).
p{ /m [(9+se—ffzu(f>d7) ] } for ()

When v = 1 and for constant u, this becomes

g+ e~ Ht2=t)g M
W)=\ )

Bls) = |

$(s) =

Let K be from P2, then

( to—t1 (1 _ 'y)se_“t =7 )
exp{)\/o. [(1— 0(1—7)+9’)’8(1—6_“t)> —1ldt,, for constant p;

4
-
t _ — 52 w(r)dr
exp )\/ 1- (1 = 7)se ! = —1|dt,, for p(t).
| t1 0(1 — ) + 6vs (1 —e Ji “(T)d7> .

When v = 1 and for constant u,

— —t;)1—y—0
(1+ [1—2—7+e ultz tl)a—(?_—ﬂ'x] 5)

A_1=v
b 1—y—8y

Theorem 5.3.2 Let {€(t);t > 0} be a GGC IIP with LT of Ae = e(t + h) — €(t)

dne(s) = exp {h/o log (

(0,00)

@ },

u+ s

153




where U(du) is a non-negative measure on (0,00) satisfying

/ |log ulU(du) < 0o, and / v U (du) < oco.
(0,1] (1,00)

Suppose K (o) is a positive self-generalized rv with LT ¢k (s; ), which is differentiable with bounded

first order partial derivative with respect to a. Then it follows that

( tz;tl ) u
o {/(0,00) [/0 tog (u — log ¢ (s; e““t)) dt] U(du__)} ’ for constant p;
S
12) U
exp / / log ™ dt| U(du) p, for u(t),
| (0,00) t1 u — log oK (3; e~ J; ,u(’r)d'r) -

and ¢(s) is a LT. Hence, the generalized stochastic integrals

ta—t1 . 12 ¢
/0 (€M), ® de(t) and /t (e— 1> “WT) @ de(t)

1

ezist and are positive rv’s.
Proof: Omitted.

Similar to GNBC and other generalized convolutions innovation situations, we have to cal-

culate the LT for specific member in GGC family by Theorem 5.1.2 or 5.1.3.

Example 5.10 Consider the Gamma IIP innovation, in which the increment e(t + h) — e(t) has

LT
1

Pac(s) = (1 + Bs
where o, 8 > 0. Let K be from P1. By Theorem 5.1.2, we have

~h
) = exp { — yhlog(1 + Bs)},

‘ Crta—t |
exp {—7/ log (1 + ﬂse"“t) dt} , for constant p;
0
¢(s) =
t2
exp {‘7/ log (1 + e “de) dt} , for u(t),
t

1

which seems to be in the GGC family.




Example 5.11 Consider the inverse Gaussian IIP innovation, in which the increment e(t+h)—e(t)

has LT
Pac(s) = exp {fyh [1 -1+ 2’)'_13)1/2]} ,

where v > 0. Let K be from P1. Then, we have

t2=h 1/2
exp {/ ~ [1 - (1 + 27_136—’”) ] dt} , for constant u;
0

to 1/2
exp {/ ¥ [1 - (1 + 2y lse™ 5 "(T)dT) / ] dt} , for u(t).
t1

$(s) =

Theorem 5.3.3 Let {(t);t > 0} be « GCMED IIP with LT of Ae = e(t + h) — €(t)

dae(s) = exp {h/ — U(du)},

(0,00) U+ 38

where U(du) is a non-negative measure on (0,00) satisfying / U (du) < oo. Suppose K (o)
(0,00)

is a positive self-generalized rv with LT ¢k (s;a), which is differentiable with bounded first order

partial derivative with respect to . Then it follows that

ol [ e
ex
P (0,00) | Jo u — log ¢x (s;€7t)

to  logox (3; e ftt2 #(T)dr)
ood [ | Uldu) {, for plt),
| (0,00) |Vt1 u — log ¢K (s; e~ e “(T)‘”) .

and ¢(s) is a LT. Hence, the generalized stochastic integrals

to—11 to
| /0 (™), ®de(t) and /t (e- I ”(T)df) @ de(t)

U (du)} , for constant u;

1

exist and are positive rv’s.

Proof: Omitted.
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For K from P1, we can calculate the LT under the stationary case:

wor = en{ [ [[" “Mz;‘;dtlwdw}
~ oo ([ [useren] o)
] AQXP{i/(O,@log(““s:f L o)

When t5 — t; — o0,

oo {L [ s (PR o} — oo ([ log(u':s)uuu)},

which is the GGC class. For K from P2, we can calculate the LT under the stationary case:
po) = oxp { /0 100) ;/ot2 ) u(l — v +;Sw: ;71)8_6;‘“_ wy)seHt dt] U(du)}
IO 7 AT it
When t5 — t; — o0,
o {/m,oo) L(l e Sﬂse_mw)] U(du)}
e { [ ] o)

which is the GC III class.

7w)

Furthermore, we can construct the following exampie.

Example 5.12 Consider the measure U(du) is  on point 3, and 0 elsewhere. If K 1is from P1,
it follows that

—pltg— b/p ;
exp {% log (£+5_€ﬁ’:.:;2_“))} = (e—u(t2—t1) + [1 = emmlta=t)] %) ,  for constant p;

$(s) =

exp { 0 / o sl for u(t)
P t ,3+3e—ff2#(f)df ’ H):
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Thus, resulting models are
to—11
X(tg) = 6~“(t2-t1) . X(tl) + / e "o de(t),
0

and
v t

X(t) = ¢ i HO¥ ¢ X (1)) + / e IO o de(t),

t1

corresponding to the stationary and the non-stationary case respectively.

5.4 Real-valued innovation processes and examples

Finally, we consider the real-valued innovation proceSses to include all possible cases for the theory
of continuous-time GAR(1) processes. Since for real rv’s, the only choice among extended-thinning
operations is the constant multiplier, our task is simply to choose proper innovation processes.
Also the cf of K in this case is of form e~*$; hence, its first partial derivative with respect to « is
bounded. |

First, we choose the compound Poisson (with a variance mixture of the normal distribution)
IIP as the innovation process. Then, we shall choose the EGGC IIP as the innovation process.
In particularly, we will calculate for a special case, the stable non-Gaussian distribution family,
which includes Gaussian (when v = 2) and Cauchy (when v = 1). Hence, the classical continuous-
time GAR(1) Gaussian process is included in our theory, but the process is defined in the sense
of convergence in distribution, not in L?. Note that Cauchy distribution has no expectation.
Therefore, it’s impossible to construct a continuous-time GAR(1) Cauchy process in the sense of
the Ito integral, but it works in the theory of continuous-time GAR(1) processes where convergence
in distribution is used. Note that these processes with stable stationary distributions are already
known in the literature, however, the convergence for stochastic integration there is in probability,
not in distribution; thus, they can induce the processes with stable stationary distributions in this
section. Interested readers can see Samorodnitsky and Taqqu [1994]. Here we just show that they

can be unified by the theory of continuous-time generalized AR(1) processes.
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Theorem 5.4.1 Let {(t);t > 0} be a IIP of the compound Poisson with the variance mizture of
the normal distribution, and the pgf of Ae = e(t + h) — €(t)

oae(s) = exp { Mh[go(s?/2) — 1]},

where ¢o(s) is a LT of a positive rv, and differentiable with bounded first order derivative. Then it

follows that

4

exp {)\‘/Oh_tl [qﬁg (526;2ut> — 1] dt}, for constaht ITh

t2

o {3 [ [ao( LY ), gor i

and @(s) is a cf. Hence, the generalized stochastic integrals

to—11 ta to
/ e o de(t) and / e~ Je? mT)AT o de(t)
0 t1

-ezist and are positive rv’s.

Proof: This is a direct conclusion from Theorem 5.1.3 since the extended-thinning operation is
very simple, just the constant multiplier operation. We can show the rough calculation for the
stationary case, i.e., constant p case in the following.

For K from P1, the cf is

oK (s;a) =€, and —ilogyk(s;a) = —i(ias) = as.
Thus
n—1 ‘ n—1 .
07.(5) = [] wac(~ilogpr(s;(1—ph))) = [ eac((t—ph)'s)
=0 =0
n-l B2 2
= Moo ol (57 1))

[ o () )




By Theorem 5.1.2, as n — oo, this goes to

2,—2ut

o) =ep {3 [ [0(E50) - 1]k

2—t1
and ¢(0) = exp {)\/Ot [450(0) - 1] dt} = exp{0} = 1. Therefore, (s) is a LT.

Note that the compound Poisson distribution has a positive mass at zero. These kind of

distributions are useful in modelling zero-inflated data.

Theorem 5.4.2 Let {€(t);t > 0} be a EGGC IIP with cf of Ae = €(t + h) — €(t)

_ €2 u __isu
vAe(s) = exp{ h2s + h/(‘oo’oo) [log (u — is) 1 +u2] U(du)} ,

where U(du) is a non-negative measure on (0,00) satisfying

1
Uldu) < oo and / log u?|U (du) < oo.
L T2V log u|U (du)

lu|<1
Then
¢ ta—t1
exp{ — 252 [1 — e~ 2ulta—t1)] +/( - [/0 - log (——u — il;e—#t> dt
oo,
_T%z’f [1 - 6“2““2_&)] ]U(du)}, for constant p;
p(s) = <
e { ¢ g2 /t2 e 12 2u(r)dr gy | / [/t2 lo ( Y ) dt
X —_ =
’ i b (—o0,00) "Vt & u — 18~ 2 ulrydr
_ _ius 2 o [z [L(T)d’rdt] U(du)} for u(t)
L W 4 ) H ’

and ¢(s) is a cf. Hence, the generalized stochastic integrals

tz—il to
/ e " ede(t) and - e” I wnydr de(t)
0

[3}

exist and are real rv’s.

Proof: This is the strdightforward result from Theorem 5.1.3.
However, we usually are not clear on the form of measure U(-). Thus, for a specific distribu-

tion in the EGGC to be the innovation process, we have to calculate the ¢(s) based on the specific

form of the cf of that distribution.




Theorem 5.4.3 Let {e(t);¢ > 0} be a stable non-Gaussian IIP with cf of Ae=e(t+h) —et)

QOAE(S) = exp{—)\h|s|7},
where A > 0 and 1 <y < 2. Then, it follows that

- —qu2—h)] .
exp {—A 1-e i |s|” ¢, for constant u;

exp {—,\ </t1 [ =10 m T)dT] dt) |s|7} for u(t).

This leads to the model

w(s) =

to—11
X(tg) = e #b270) o X (t1) + / e M o de(t),
: 0

and

123
X(t2) =€ Ji wtrydr X(t1)+/ e it MO ¢ de(),

t1

corresponding to statiohary and non-stationary case respectively. The stochastic integrals

to—11 t2 to
/ e " o de(t) and e~ Jitunidr o de(t)
0

t1

remain in the same distribution family as the innovation.

Proof: Directly applying (3) of Theorem 5.1.3 can lead to this theorem. However, we can check

some calculations by using Theorem 5.1.2. For the stationary case, we have

o(s) = nll)rglonwm( (1= ph)'s )- lim Hexp{ AR|(1 — ph)® 317}

n—1 ~

. ta—t1
= ,}ggoexp{—ngh<1—uh>“|sw} = oxp{ ~AsP’ /0 i dt),
=

AL — e~ At —t) .
= exp{ _A p” ]|s|7}

Similarly, for the non-stationary case,

n—1 i n—1 i
o(s) = tim [] oac(sT[0t ~uttz—j)n)) = tim T] exp{ —Anls [[01 - itz = im)RI"}
i=0 j=1 : =0 7=1
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= nli_)rgloexp{ AISPZh(H (to — jh) h]) }
= exp{— )\(/tt [e“jfﬁu('r)dr]dt)‘sp}_

1

Since (s) is still of the form exp{—p]|s|”}, we conclude that

to—11 to to
/ e " o de(t) and / e~ Je* BT o de(t)
0

t1
with cf ¢(s) in the same family as the innovation. Applying the generalized Ornstein-Uhlenbeck
SDE theory, we obtain the models in this theorem corresponding to stationary and non-stationary

case respectively.
Example 5.13 Consider Cauchy IIP. Then the increment €(t + h) — €(t) has cf:

©one(s) = exp{—hls|}.
By the above theorem, we have

exp{—p~ l—e ult2=t1)] . s}, » for constant p;

exp{— ( /t :2 [e 12 ucryir] dt) 131}, for u(d).

Example 5.14 Consider Brownian motion. Then the increment e(t + h) — €(t) has cf:

pac(s) = exp{—hs*/2}.
By the above theorem, we have

exp {—(4p)™" [1 - 6_2“(t2_t1)] s?}, for constant p; .

exp {—% (/t2 [e_ e N(T)df] dt) 82}, for p(t).
t1

This means for the stationary case,

to—1t1 ’ 1— —Q‘u(t2—'—t1)
/ e " ede(t) ~ N |0, ——e - - ,
0 2p
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and for the non-stationary case,

t t
/ ’ e ttz w(T)dT o de(t) ~ N (0, ’ [6_ ftt2 N(T)d‘r]dt> )
t

1 t1

5.5 Tweedie innovation processes

This is another viewpoint to choose the innovation processes. The Tweedie family includes many
of the distributions discussed in the previous sections in this chapter such as compound Poisson,
Gamma, inverse Gaussian, stable distribution, and so on. Although this overlaps with the previous
discussion, we would like to revisit or summarize this case from the perspective of dispersion.

The Tweedie family consists of three types of distributions: non-negative integer support,
positive support and real support. All the distributions in this family have the mgf of special

exponential form:

exp{,\ézg—l (%)ﬁ [(1+p§)5—1]}, d#LY
Mx(s;e,)\,ﬁ) =E [GSX] = (1+%)—)\, _ d=2;

exp {Aef [ — 1]}, d=1,

where d = g—:—f or f = %. In specific, the non-negative integer case includes only one distribution,’
that is Poisson distribution when 8 = 1. The positive case includes the compound Poisson with
Gamma distribution (1 < d < 2), Gamma (d = 2), positive stable (2 < d < 3 or d > 3) and inverse
Ga’ussian (d = 3). The real case includes normal (d = 0) and extreme stable (d < 0 or d = 00).
Refer to Section 2.3.2.

The innovation and the self-generalized rv should be of the same type. That is, if the
increment of innovation is to be Poisson, then the self-generalized rv K should be non-negative
integer-valued, which leads to the choice like I1, etc. If the increment of innovation is to be a
positive rv, we can choose a positive self-generalized rv K like P1. For the real case like normal

and extreme stable, K can only be P1. We give the following theorem withott proof.
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Theorem 5.5.1 Let {€(t);t > 0} be a Tweedie IIP with mgf of Ae = €(t + h) — €(2)

' _ 8
exp {h,\f% (%) [(1 F ) - 1] } Cd#£1,2
MAG(S; 0, >\7:8) =E [esX] = (1 + gi/\)_h)‘ d=2;

bl

exp {h)\ea [es/A — 1] } , d=1,

1. Suppose K (o) is a non-negative integer self-generalized rv with pgf Gk (s;a). In this situation,

the only non-negative integer distribution is Poisson and d = 1. Then, it follows that

exp {3t [T [ (e7#) -1 o
pq Ae K (s,e ) 1| dty, for constant p,
0
t2 .
exp § Ae? > s;e‘fttz“(T)dT —1|dt;, for u(t),
K
t1 _

and G(s) is a pgf. Hence, the generalized stochastic integrals

G(s) =

to

t2.—-t1 to
/0 (e_“t)K ®de(t) and (e“ Ji “(T)dT) « ® de(t)

t1

exist and are non-negative integer rv’s.

2. Suppose K(a) is a positive self-generalized rv with LT ¢x(s;). In this situation, d corre-

sponds to (1,2),{2},(2,3),{3} and (3,00). Then it follows that for constant p

5
_ g [t2—h log ¢x (—s;e7H)
exp{AﬂTl (%) /0 [<1+ (HA —1|dth, d#2;
ta—t1 e p—Ht
exp{——)\/ (1+log¢"( 5¢ )>dt}, d=2
L o )

and for p(t),

B
( 5 . B [tz log ¢k (——3; e~ fttz H(T)dT)
exp { M52 (5%) /t 1+ - —1lath,  d#

4




and M(s) is a mgf. Hence, the generalized stochastic integrals

to—11 to tg :
/0 (e“"t)K ® de(t) and /t (e” ki “(T)‘”)K ® de(t)

1

ezrist and are positive Tv’s.

. Suppose K(a) is from P1 with LT ¢k (s;a) = e **. In this situation, d corresponds to
(—00,0),{0} and {co}. Then it follows that

B to—1%1 —ut B
exp {)\% (Ef—l) /0 [(1 + Se@)\ ) - 1} dt} , for constant p,

: B
B [tz - f52 u(r)dr
exp )\ﬁ—g—l— (%) / (1 + %—— —1}dty, for u(t),

M(s) =

and M (s) is a mgf. Hence, the generalized stochastic integrals

to—11 to
/0 (™), ®de(t) and / (e i 0r) @ de(t)

t1

exist and are real Tv’s.
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Part 111

Probabilistic and statistical properties
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Chapter 6

Stationary distributions, steady states

and generalized AR(1) time series

The continuous-time GAR(1) processes constructed in Chapter 4 are first order Markov processes.
Hence, it's possible that the stationary distribution, namely the limiting distribution of the process,
could exist. These are discussed in Section 6.1: Also if the stationary distribution exists, then the
process will evolve under steady state when starting from the stationary distribution. This means
that X () is distributed as the stationary distribution for all {. We study three cases of margins in
Section 62 Such a steady state process offers a reasonable good model for a stationary time series.
This motivates us to study the possible margins under steady states. For margins with specific
distributions of interest, we propose a general apprbach to fit such a need in Section 6.3. In other
words, we are trying to investigate the continuous-time GAR(1) processes from the perspective of
state space. '

In Section 6.4, we discuss the generalized AR(I) time series obtained from the continuous-
time GAR(1) processes via equally-spaced time observations. They cover many of the first order

autoregressive non-Gaussian time series existing in the literature.
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6.1 Stationary distributions

Assume in this section that {K(a)} has bounded expectation for o € (0,1]. The stationary dis-
tribution, if it exists, is the long run result of a stationary or homogeneous process. Hence, it is
independent of “time”. This means that as the process evolves, the distribution of the margin X (t)
will finally reach a fixed or in\}ariant equilibrium. From the view of state space, i.e., the support of
X (t), we are interested in that if there is a stationary distribution for the continuous-time GAR(1)
process.

Now we look into the structure of the continuous-time GAR(1) process. By part (1) of

Theorem 4.4.2, .

d ta—t b2=t1 t
X(to) & (et 1))K ® X(t1) +/0 (e7 ) . @ de(t), t < ta,

to—11
where / (e“"t)) X ®de(t) g (0,5 —t1), the integrated innovation or cumulative innovation,
0 : .
has the following pgf G g(o,t,—1,)(8), or LT bB(0,2—11)(8), or cf OE(0,t2-11)(8):

( ' n—1 ) .
 GE@ts-t)(s) = lim [ Gae (Gk (s;(1 = ph)Y)), if the support of €(t) is N,
=0 :

n—oo ;_

n—1 . .
{ ¢m0p-m () = lim [1 dac(-logdx (s:(1 = wh)')), if the support of €(t) is R+,
n—1

L PB(0t—t)(s) = lim [ vae (ilog ok (s;(1 — ph)i)), if the support of €(t) is R.

n—o0 =0

Here h = (ty —t1)/n, and {e(t);t > 0} is a stationary independent increment process of innovation.
Ac is the.increment with time lag h in the innovation process.

| First we study the dependence term (e_“(t2“t1)) x ® X (t1) to see its limiting behavior. Fix
time t1, and let to — oo. Then the time difference o — ; — o0, which leads e~#(t2=t) — 0. For

the margin being a real rv, the extended-thinning becomes the constant multiplier. Hence,
(72 @ X(t) = M X(0) 50, t2—t1 o0,

This means that the dependence term will finally diminish to zero. It leaves us a hint that this

could be true for margins being positive or non-negative integer-valued. Revisiting Property 3.14
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and 3.15, we obtain
(e—u(tz—m))K ® X (1) — (0), ® X(t) =0, astp—t1 — oo.

Therefore, as time goes to infinity, the margin of a continuous-time GAR(1) process will be

X(o00) 2 lim e (e—"t))K ®de(t) = /000 (e—“t))K ® de(t).

t2—t1'—)00 0

Consequently, this integral will have the pgf

GOO(S) = lim GE(O,tz—tl)(S)’

to—t1—00
or LT
Pools) = lim _ Pp(0ta-11)(5),
or cf

Pool(s) =, Um _ 0p(o-1)(s),
where Goo(s) is continuous at s = 1 with Goo(1) = 1, or deo(s) is continuous at s = 0 with

$oo(0) = 1, OF peo($) is continuous at s = 0 with p(0) = 1.

It is possible to calculate the explicit form of pgf, or LT, or cf of the étationary distribution.
Note that the Goo(8), OF doo(8) OF Yoo(s) is of product form of the pé;f, or LT, or cf of the increment
of the innovation process. Hence, we can choose special innovation process, in which the increment,
e(t + h) — €(t), has the exponential form of pgf, or LT, or cf. Of course, the choice of extended-

thinning should be appropriate too. This leads to the following theorem.

Theorem>6.1.1 Assume the innovation process {e(t); t > 0} has increment (t+h) —¢(t) such that
its pgf, or LT, or cf is of form ehC(s)  depending on the increment being non-negative integer-valued,
or positive-valued, or real-valued. C(s) is assumed to be differentiable with bounded first order
derivative. Also assume G (s;a) and log Gk (s;a), or ¢x(s;a) and log ¢k (s; @), or logpk(s; )
" have bounded first order derivative with respect to a in [0,1] (boundaries could be ezcluded). It

follows that for the stationary continuous-time GAR(1) process

d { —p(ta—t1) Bt
X(tg) = (e miz =t )K®X(t1)+/0 (e ”)K®de(t), t < to,
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if the following integrals exist:

/oo C (Gk (s;e™™)) dt, /’oo C (- log ¢k (s;€7)) dt, /oo C (—ilog goK.(s;e_”t)) dt,
0 0 0

then the stationary distribution ezists, and has the following pgf, or LT, or cf according to non-

negative integer, or positive, or real margins:

r Goo(s) = exp {/00 C (Gk (s; e_“t)) dt} , if the support of €(t) is N,
0
{ Pool(8) =exp / C (—log ¢k (s; e™H)) dt} , if the support of €(t) is R4,
0
L Voo(8) = exp /0 C (—ilog vk (s;e7*)) dt} , if the support of €(t) is R.

S 4 v o
The corresponding T is the generalized stochastic integral / (e_"t) x ® de(?).
0

Proof: It is straightforward to derive them by Theorem 5.1.2.

By Theorem 5.1.3, we know if K is from I1, 12, 14, 15, P1, P2, P4 and P5, then Theorem
6.1.1 holds. This theorem is not valid for I3, P3, because Gk (s;0) # 1 for I3, and 13, P3 do not

have finite expectations.

In the next section, we will discuss the situations of steady state where the relevant stationary

distributions have support on N, or R, and R.

6.2 Marginal distributions under steady state

The stationary distribution is a particular feature of a homogeneoué Markov process. If the station-
ary distribution exists, then this. process has steady state when starting just from this stationary
distribution. Typically, the margins of a Markov process, do not have the same distributions when
the process evolves. However, under steady state, all marginal distributions are the same as the

stationary distribution.
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In this' section, we shall investigate the particular types of marginal distributions under
steady state; they may have non-negative integer, or positive, or real support. These results mainly
correspond to those continuous-time GAR(1) processes constructed in Chapter 5.

Iﬁ statistical practice, often we encounter time series data (observed on equally or unequally
spaced time points) which are near stationary. Hence, an assumption of stationarity is reasonable.
Of course, obvious non-stationary situations like trend, seasonality, and so on can happen too. This
leads to a general principle of modelling for observations over time: define a stationary t)rocess for
the time series first, then make parameters depend on covariates to define a process with time-
varying marginal distribution.

For this purpose, constructing a steady state process which has the same distribution on

every margin is the first consideration of modelling. Thus, it gains more attention from statisticians.

6.2.1 Non-negative integer margins

First, we turn to the continuous-time GAR(1) processes constructed in Chapter 5, which have non-
negative integer-valued margins. We shall study the limiting behavior of these processes as tg — {3
goes to infinity. We only consider the stationary SDE case, namely, constant g and stationary
IIP innovation. These limiting behaviors lead to the stationary distributions, and the resulting
processes have the same distribution as the marginal distributions under steady state.

To guarantee the margins being non-negative integer-valued, the self-generalized rv K in-
volved in extended-thinning operation should be non-negative integer-valued, and the increment of
innovation process {e(t);t > 0} should be non-negative integer-valued too. Hence, K could be from
I1 to I5, while the innovation process can be the compound Poisson (with a non-negative integer
distribution) IIP, GNBC IIP, GC I IIP and GC II IIP. The results for the general non-negative

integer-valued self-generalized rv K are given in the following theorem.

Theorem 6.2.1 Suppose K(a) is a non-negative integer self-generalized rv with pgf Gk(s;a),
which is differentiable with bounded first order derivative with respect to c. Consider the stationary

generalized Ornstein-Uhlenbeck SDE where p 1s a constant.
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(1) Let {e(t);t > 0} be a non-negative integer-valued compound Poisson IIP with pgf of Ae =
e(t + h) — €(t) '
Gae(s) = exp{Ah[g(s) — 1]},

o

where g(s)(= 3. pist) is a pgf, and differentiable with bounded first order derivative. Then,
=0

the limiting pgf is

Gool(s) = exp {A/OOO [g(GK (s; e_"t)) - 1] dt}.

(2) Let {e(t);t 2 O} be a GNBC IIP with pgf of Ae = €(t + h) — €(t)

Gae(s) = exp {h/(0,1) log (I-Z—?_qs) V(dq)} .

o<
P -y .
If/O log [1 —Cx (s;e'ﬂt)] dt < oo for any q € (0,1), then the limiting pgf is

Gools) = xp {/(0,1) (/ooo ‘og [1 - qGKp(S; f;‘“t)] dt) V(dq)} '

(3) Let {e(t);t > 0} be a GC I IIP with pgf of Ae = €(t + h) — €(t) of form

Gae(s) = §xp {h/(o,l) qis—__q?—V(dq)}.

q[Gx (s;e™) ~ 1 N
1 t t
If/ | — G (5~ H) dt < oo for any q € (0,1), then the limiting pgf is

ool [ ([ alex (e 1]
Geols) = exp.{/(o’l) (/0 1 4G (5 =) dt) V(dq)} .

(4) Let {e(t);t > 0} be a GC II IIP with pgf of Ae = e(t + h) — €(t) of form

Gac(s) = exp {h /(0’1) —a(1 . i)flls_ 1) V(dq)}.

_ —ut _ . —ut
If/ q[1 -Gk (s;e )] [1 -Gk (sie )]dt < oo for any q € (0,1), then the limiting

1- qGK (s;eHt)
pgf is

, © —q[1 -Gk (s5¢7#)] [1 = 7Gxk (s;e7#)]
Goolo) = exp {/[7,1) (/0 1 —qGk (s;e7#) dt | Vida) (-
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[ o]
All these Goo(s) are the pgf’s of the generalized stochastic integral / (e"“t)K ® de(t).
0
Proof: Straightforward to derive from Theorem 6.1.1.
We now verify the existence of stationary distributions for specific self-generalized rv’s K and

innovation processes. These stationary distributions are the Poisson, negative binomial, geometric,

power series, discrete stable distributions, and the GNBC class.

Example 6.1 (Poisson) Consider Example 5.1, where

A —u(te—
Griotamt(s) = exp {11 = (s 1)}

Thus, as to — t; — 00, the limiting pgf is

A
Gools) = exp{=(s = 1)},
_ <0 =eo (G-}
which implies that the stationary distribution is Poisson(A/p).

Example 6.2 (Negative binomial and geometric) First consider Example 5.2. Then

. ~ N
GE(O,tg—tl)(s) = (e—ﬂ(tz—tl) + [1 _ 6_”(t2-t1)] 11_ ’;ys) ,u.

This ledds to the limit

1 — Alp
= (122)"”

indicating that the stationary distribution is NB(\/p,7v). When A = p, it’s the geometric distribu-
tion with parameter 7.
Secondly consider Ezample 5.4, where

1 ,.Y(l__e—;l.(tz—tl)) A(1_—’7)/(1'1")/)
T T 1—ye—#ta=t1)
_ 2(1—erlt27h))

1 1_76—u(t2—t1) S

GE(0t2-11)(8) =

As tg — t; — 00, we have

3

1—n AL-7)/(p7)
1—7s

Gools) = (

which shows that the stationary distribution is NB(&EL),')/). When A1 — v) = v, it’s the

geometric distribution with parameter -y.

—
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Example 6.3 (Power series) Consider Ezample 5.3. We choose A = p, then

1-(1-s)Y 14 (s — 1)e—Hlt2—t2)
GEQ,ty—-11)(8) = ; X T TESO=TC=n

It goes to Goo(s) = s71[1—(1— 3)1/9] as ty — t; — 0o, namely the stationary distribution is the

power series distribution.

Example 6.4 (Discrete stable) Consider case 1 in Ezample 5.7. Then

Al — e Pulta—ta)] 1 s)ﬁ}

GE(O,tz—tl)(s) = exp{ - ,B,LL

When to — t1 — 00, we obtain Goo(s) = exp{ - ﬂL\ﬁ(l - s)ﬂ}, thus, the discrete stable distribution.

Example 6.5 (GNBC) First, we consider Case Il in Corollary 5.2.6, where

_ 1 1 —q—q(s —1)e#ltz—t1)
Gronwt) =ew {5 [ 1o E )via)}

when to —t] — 00, the limit is

Gusls) =exp {1 [ 108 (f:js)qu)},

which implies that the stationary distribution is a GNBC.

Secondly, we consider Case 12 in Corollary 5.2.8. Then GE,ts—11)(8) 18

1 (1= q)(1 —7s) + (g = 1)(1 — s)e 2=t 1-gq
=, /[> 108 ({1 =t 37— )T =) 18 T g Vida)}

. .
which goes to exp {%/ log T qqu(dq)} as tg — t; — oo. Since [y,1) C (0,1), it is the pgf of
[v,1) -

a GNBC where V (dq) has zero measure on (0,7).

Since the GNBC class covers many distributions like the logarithmic series distribution, the
two kind processes offer many specific continuous-time GAR(1) processes with the same GNBC

stationary distributions.
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6.2.2 Positive-valued margins

Secondly, as to — t; goes to infinity, we will study the limiting behavior of those continuous-time
GAR(1) processes having positive-valued margins. Like non-negative integer margin situation, we
only consider the stationary SDE case, and the limiting behaviors lead to the stationary distribu-
tions, as well as the processes being steady state.

For the sake of positive-valued margins, we require the self-generalized rv K involved
in extended-thinning operation to be positive-valued, and the increment of innovation process
{e(t);t > 0} to be positive-valued too. Therefore, K could be from P1 to PS5, while the innovation
procéss can be compound Poisson (with a positive distribution) IIP, GGC IIP, and GCMED IIP.

Similarly, we have the following results for the general positive self-generalized rv K.

Theorem 6.2.2 Suppose K(a) is a positive self-generalized rv with LT oK (8; @), which is differ-
entiable with bounded first order derivative with respect to a. Consider the stationary generalized

Ornstein-Uhlenbeck SDE where i s a constant.
(1) Let {e(t);t > 0} be a positive-valued compound Poisson I1IP with LT of Ae = e(t + h) — €(t)
¢Ae(3) = €Xp {’\h[¢0(3) - 1]})

where ¢o(s) is a LT, and differentiable with bounded first order derivative. Then, the limiting
LT s

doo(s) = exp { A /000 [¢0( -~ 10g ¢x CEE 1] qt}.

(2) Let {e(t);t > 0} be a GGC IIP with LT of Ae = e(t + h) — €(t)

)U(du)},

u+s

dae(s) = exp {h/ log (
(0,00)
where U(du) is a non-negative measure on (0,00) satisfying

/ |log u|U(du) < co, and u” U (du) < oo.
(0,1] : '

(1,00)
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If

< 0o for any u € (0,00), then the limiting LT 1s

o0 U
1 dt
/0 o8 (U — log ¢k (s; e“_‘t))

Pols) = exp {/(o,oo) [/0‘” e (u — log ¢>Z (s; e““)) dt] U(du)} '

(3) Let {e(t);t > 0} be a GCMED IIP with LT of Ae = ¢(t + h) — €(t)

dac(s) = exp {h/( —S U(du)},

0,00) U+ 8

where U(du) is a non-negative measure on (0,00) satisfying / - w U (du) < oo.

(0,00)
/°° log ¢ (s;e7H) gt
o u—logdx (s;eH)

B ©  log ¢k (s;e7H) '
foole) = exp {/(0,00) [/0 u—log i (s;e—ut)dt] U(du)}

o
All these ¢oo(s) are the LT’s of the generalized stochastic integral / (e—“t)K ® de(t).
0

If < 0o for any u € (0,00), then the limitiﬁg LT is

Proof: It is straightforward to derive them from Theorem 6.1.1.

For specific self-generalized rv K and innovation processes, vs./e can check if the stationary
distributions exist. Following are some examples which appeared in Chapter 5. These stationary
distributions ihclude the exponential, Gamma, inverse Gaussian, etc. Thus, we can obtain the
steady state processes with marginal distributions being the exponential, Gamma, GGC and GC

I1I.

Example 6.6 (Gamma and exponential) Consider Ezample 5.12. Then

—ultz—t1) —u(ta—t1)_ P o/n
¢E<°",2‘“>(3)=(e AR llm) '

Thus, as to — t; — 00, the limiting LT 1s

B 0/u
¢E(0,t2—t1)(3;oo) = (,8+3> 3

which implies that the stationary distribution is Gamma(6/u,B). By setting 6 = p, we obtain the

Ezponential(8) stationary distribution.
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Example 6.7 (GGC) Consider Theorem 5.3.8. We choose K being from P1. Then

1 u+ se~Ht2—t)
Petoin-u(e) = exp {ﬁ R G <d“>} -

When ty — t; — 00, we obtain

bools) =exp{%/(0w)log(uis)v<du>},

which shows that the stationary distribution is a GGC. Note that the GGC class covers a lot of

distributions such as the positive stable distribution, inverse Gaussian distribution, etc.

Example 6.8 (GC III) Still consider Theorem 5.3.8, but choose K being from P2. Then

_ 1-v u(l =y +78) + (L—y —uy)se~#la~t)
P02 (8) = exP {/(O,oo) [u(l -y —wy) fog = (1 =7)(u+s) } U(du)} :

When to — t1 — 0o, the limiting LT is

o 11—~ u(l — v +s) "
Feols) = p{/(o,oo) e e s o )}'

This leads to the stationary distribution being GC IIL

6.2.3 Real-valued margins

Lastly, we study those continuous-time GAR(1) processes with real margins. In this case, the job
.seems easier because the only known extended-thinning operation is the constant multiplier, or.in
our terminology, P1. We still consider the stationary situation of the processes, 1.e., constant p
and stationary innovation processes. The ihnovation processes we choose here are the compound
Poisson with the variance mixture of the normal distribution, EGGC, stable non-Gaussian IIP. It

gives us the following result.

Theorem 6.2.3 Consider the stationary generalized Ornstein-Uhlenbeck SDE where ,u s a con-

stant.
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(1)

(2)

(3)

Let {e(t);t > 0} be the IIP of a compound Poisson with the variance mizture of the normal
distribution, and the cf of Ae = e(t + h) — €(t) is

onc(s) = exp { Mh[go(s*/2) — 1]},

where ¢o(s) is a LT of a positive rv, and differentiable with bounded first order derivative.

Then, the limiting cf is
2 ,—2ut

ot = [ [i(Z5) - s}

Let {e(t);t > 0} be a EGGC IIP with cf of Ae=¢€(t +h) — e(t) is

c U 18U
= —h=¢2 —
QOAG(S) exp{ 23 + h/(—oo,oo) |:10g (? — ’LS) | 1+ ’U,2:I U(du)} )

where U(du) is a non-negative measure on (0,00) satisfying

] ,
Uldu) < 0o and log u?|U(du) < oo.
/%\{Q}HU_Q (du) [log w2 (du)

u[<1
*° u
1 — ) di
/0 ©8 (u - ise‘“t) d
¢ o o u ius
= —= _— - du) » .
Poale) = oxp { 2° ’ /(—00,00) [/0 tog (U - ise_l‘t) & 1+ u2:| d U)}

Let {€(t);t > 0} be a stable non-Gaussian IIP with cf of Ae = e(t + h) — €(t) is

< 0o for any u € (—o0,00), then the limiting cf is

pae(s) = exp{=Ahls|"},

where A > 0 and 1 <y < 2. then the limiting cf is

Poo(s) = exp{ - %ISI”’}'

o
All these @oo(s) are the cf’s of the generalized stochastic integral / e M o de(t).
0

Proof: Case (1) and (2) are derived from Theorem 6.1.1. Case (3) is simply setting t —¢1 — 00

in Theorem 5.4.3 so that the component e~74(2=%) vanishes.

Case (3) in Theorem 6.2.3 shows that stationary distribution is still a stable non-Gaussian

distribution. Here we list two boundary cases as examples: v = 1 (Cauchy) and y = 2 (Gaussian).
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Example 6.9 (Cauchy) Consider Ezample 5.13, where the innovation process 1s a Cauchy IIP.

When to — t; — 00, the limiting cf is

Poo(8) =exp{—%}-

AY

This leads to the stationary distribution being Cauchy again.

Example 6.10 (Gaussian) Consider Ezample 5.14, where the innovation process is a Brownian

motion. When to —t; — 00, the limiting cf is

pools) = exp{—ﬁ}.

This leads to the stationary distribution being the Gaussian distribution.

6.3 Customizing margins

Modelling is one of the biggest concerns of statisticians. In the context of time series, we éncounter
observations record over time. These observations may be count data (non-negative integer-valued),
positive data, or real-valued data. Each type of data may be modelled by several potential dis-
tributions. Hence, one typical approach is to propose appropriate marginail distributions for each
time point. These marginal distributions could be Poisson, negative binomial, generalized Poisson,
Gamma, exponential, inverse Gaussian, and so on. With these in mind, for the obtained data,
we may fix a couple of distributions to be the possible choices of the marginal distributions. In
other words, we wish to model the marginal distributions with certain known distributions which
are widely used in statistical practice fof a univariate response. This leads to the question of how
to customize the margins, which is Iiart of the model considerations. The method in Chapter 5
is a passive way to construct models, because we don’t know in advance the possible stationary
distributions or the marginal distributions under steady state. |

Recall the idea in Chapter 5. We first fix the extended-thinning operation and the inno-
vation proi:ess, namely K and {e(t);t > 0}, in the generalized Ornstein-Uhlenbeck SDE. Then we
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obtain the continuous-time GAR(1) process. Certain appropriate innovation processes will lead to
stationary continuous-time GAR(1) processeé as we discussed in the last section. Under steady
state, the margihal distributions are the same as the stationary distribution.

Now we assume to have a steady state continuous-time GAR(1) process with known marginal
distributions for a certain self-generalized rv K. Our task is to determine if there is an appropriate
innovation process. If such an innovation process exists, we know the assumed continuous-time
GAR(1) process exists which possesses the marginal distribution we prescribe. We shall describe
this idea more accurately in notation.

The possible stochastic representation for a stationary generalizéd Ornstein-Uhlenbeck SDE

has form
d ( —ulta—t1) =t —ut
X(t2) & (emtt 1)K®X(t1)+/0 () . ® deft).

Suppose it is under steady state. Now consider a small increment on (¢, + h]. This leads to

X(t+h)< (e-“h)K ® X (t) + E(t;t + h).

Here we use E(t;t+h) to replace the cumulative innovation on [t,t+ h], namely / " (e—#t)K ®de(t).

. First, we consider a non-negative integer self-generalized rv K with pngG k(s;@). In this
case, the margins are non-negative integer-valued and the innovation process has non-negative
.integer-.valued increment. Hence, we prescribe the pgf of stationary distribution as Gx(s). We

deduce the following:
E ( SX(t+h‘)) - E ( s(e-uh)K@X(t)+E(t;t+h))
_E (S(e—uh)Kcsax(t)) E (SE(t;t+h)) ’
Gxm(s) = Oxq (Gx (s5e7)) B (s5EH).
Since under steady state, Gx(+n)(s) = Gx()(s) =G x(8), it follows that
xt = x (0 (36 B (69).

This leads to

. Gx(s) Gx(s)
E (SE(t’tJrh)) ~ Gx (GKX(S; e~Hh)) =P {log Gx (GKX(S; e”“h))} ’
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namely

GE(t;t+h) (S) - exp {IOg GX (GGKX(S)e—ph)) } .

We wish to find out this stationary innovation process {e(t); ¢ > 0}, or equivalently, find out
the independent increment Ae(h) = €(t+h) —€(t). Let h be infinitesimal, expand GE(t+h)(8) in h,
keep the order one term of h and omit the terms with higher order of h. This procedure will lead
to the pgf or LT of Ae(h) so that the increment is determined in the sense of distribution. One can

recall the idea that we obtain the infinitesimal increment A f(t) of a function f(t) by expanding

f@t+h) = f@)+ f(t)h+o(h),

and retaining f'(t)h. Here we follow the same procedure. In this poi-nt of view of infinitesimal
analysis, one can imagine that Ae(h) is the first order differential of E(t;t + h), the cumulative
integfa,tion.

Denote H(s) = aa’g sio) |
o=

{03

v We expand the following at h = 0, or in the form of e Hh,

around e® = 1. By Property 3.1, we know that Gk (s;1) = s. Expansions are:

e Mh = 1 - ph+o(h),

Gic (sie™) = Gr(si1) + H(s)e™ = 1) +o(e™ —1)
= s H)uh+olh),
Gx (G (sse7™)) = Gx(s— H()h+o(h)
= Gx(s) + Gix(s)(~H(s)uh) +o(n)

Gx(s) _ G'x (s)
B G Gr ) <1 oM “’“”““”)
_ G'x(s) .
= G’;(S)H(s)uh + o(h).

[Note that by the infinite divisibility pfOperty proved in Theorem 7.2.7, Gx(0) > 0 and we don't

have to worry about the denominator as s — 0. ] Leaving out the term of o(h) in the last expression,

we derive




Table 6.1: Partial derivative of pgf, H(s), for self-generalized distributions with non-negative integer
support.

£ H{(s) |
11 s—1
2] (Q-9s)(s=1/0 -7
I3 (s —1)log(1 —s)

I4 | (s —c1)[0 +log(1l — cs)]
15 | 0(s—1) |1 - )Y +1

Therefore, we obtain the form of potential pgf of Ae(h) as:

Gaun®) = oxw { XDt (sun.

If we can verify that it is indeed a pgf, then we can conclude that {e(t);t > 0} stipulated by
independent increment with such pgf is appropriate for the assumed continuous-time AR(1) process.
Under steady state, this process has the prescribed margins. Table 6.1 list the H(s) of all five self-
generalized distributions with non-negative integer support.

Secondly, we consider the positive self-generalized rv K with LT ¢x(s; «). In this situation,
the margins of the process will be positive-valued and the increment of innovation process is positive-

valued too. Assume the LT of stationary distribution is ¢ x(s).

E (e—sx(t+h)) - E (e—s[(e‘“h)K@X(t)+E(t;t+h)])

= E (e‘s'(e—“h)x@)x(‘)) E (e—sE(t;Hh)) 7

¢

dxa+n)(8) = dx) (_ log ¢k (s;e‘“h)> E (e—sE(t;t+h)) .
Similarly, under steady state, we have ¢X(t+h)(3) = ¢X(t)(3) = ¢x(s), thus,

ox(s) = éx (—. log ¢ (3; 6_””)) E (6—3E(t;t+h)) )

which leads to

e sEttTh)) — ¢x(5) = ex (}SX(S) }
E ( Ettth ) - bx (—log ok (s;e"uh)) - eX‘p {log dx (—log ¢k (8;6_“h)) ’
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namely

px(s)
—log ¢k (s;e7+#h)) |
We shall apply the same reasoning as before to deduce the LT of Ae(h), the increment of stationary

¢E(t;t+h)(3) = exp {lbg o (

innovation process.

Denote H(s) = % [— log qbK(s;a)]‘ v We expand the following at h = 0. Note that
a=
¢x(s;1) = e~* (see Property 3.1) and e Hh — 1 = —ph + o(h).

—log ¢k (3; e_“h) = —logdx(s;1) + H(s)(e ™ — 1) + o(e ™ — 1)
= s— H(s)ph + o(h),
ox (~loggx (sie7)) = dx(s = H(shuh +o(h))
= ¢x(s) + #x(s)(=H(s)uh) + o(h),

¢x(s) = e (1 ) g
log bx (—log ok (s; e_,,,h)) = log (1 —_¢X(S)H( Yuh + O(h)>
¢x (s)

= (o) H(s)uh + o(h).

By leaving out the o(h) term, we obtain

E (esﬁé(h)) = exp { Z;/);EZ; H(S),uh} .

Thus, if the appropriate innovation process {e(t);t > 0} exists, the LT of the increment Ae(h) must

be of the form:
P'x(s) }
¢X(S)H(s),uh )

Now the issue comes down to prove that it is a LT. One can resort to relevant techniques of proof

bacn)(8) = exp {

used in Seétion 2.2.2. If proved, the assumed continuous-time GAR(1) process exists, and has the
prescribed margins. Table 6.2 list the H(s) of all five self-generalized distributions with positive
support.

Lastly, we discuss this method for real margins. Now the only self-generalized rv K involved

in extended-thinning operation is from P1. Hence, in this case, we have

X(t+h)=e e X(t) + E(t;t + h).
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Table 6.2: Partial derivative of negative log LT, H(s), for self-generalized distributions with positive
support.

S H(s) |
P1 ]
P2 (L—v+7ys)s/(t—7)
P3 slogs
P4 (s + ;;1_—1) log [1 + (e — 1)s]
P5 0 (1+ st/?)

This leads to
ex(s) = ¢x (6_“h8) PE(t+h)(8)s

where @x(s) is the cf of the margins of an assumed steady state continuous-time GAR(1) process.

Furthermore,
YxX\S S
SOE(t;t h) (3) = _L__ = exp {log _ rANDT ”{()} )

. Expanding it at h = 0, we obtain

x(O) ot (as)s
~ log ox(s) — sz';; Ez;uh + o(h)
= —log (1 - %(%uh + 0(h)>
= S

which leads to

©ne(h)(8) = exp {%uh} :

If it.is a cf, we can claim that our assumed continuous-time GAR(1) process is appropriate.
Note that k can be arbitrary once we obtain the form of the pgf or LT or cf of Ae(h). These

exponential forms show that they are infinitely divisible. Hence, the characterization form of ID
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pef, or LT or cf will be very helpful to prove that if these obtained expressions are pgf’s, LT and
cf or not. Refer back to Section 2.3.1 for those characterization forms. '
One byproduct is that once the assumed continuous-time GAR(1) process exists, we can

easily obtain the pgf, or LT or cf for the cumulative innovation

Bty ta) = /0 T ) @ de(t

in the stationary situation. It is simply the ratio:

E(t1;ta) — GX(S)
B (80 ) = GG (B e
CsE(hit)) $x(s)
O A R ()
vx(s)

CE(t)(8) = ox (e HE—h)s)’

This will avoid the tedious calculation in Chapter 5.

We summarize these results in the following theorem.

Theorem 6.3.1 Assume {X(t);t > 0} is a continuous-time GAR(1) process with stationary dis-
tribution. Under steady state, the margins have the same pgf Gx(s), or LT ¢x(s), or cf ox(s).

(1) If K is a non-negative integer self-generalized rv with pgf Gk(s;a), and H(s) = BG—’B(S;Q

a a:l’
then the innovation process must have such stationary independent increment that its pgf has

form:

Gauw(® = o0 { S i1(opun}.

(2) If K is a positive self-generalized rv with LT dx(s;a), and H(s) = 5% [~ log ¢k (s; )] 3

b
=1
then the innovation process must have such stationary independent increment that its LT has

form:

Bae(n)(s) = exp {%%H(s)uh} .

(8) If K is from P1 and the margins of the continuous-time AR(1) process bez’hg real-valued, then

the innovation process must have such stationary indépendent increment that its cf has form:

Pae(h)(s) = exp {S;i((f)) uh} :
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Proof: The stochastic representation of a stationary continuous-time GAR(1) process is
d to—11 :
X(ta) £ (e—“(tr“))K ® X(t) + / (e7#) . ® de(t).
0 .
Consider a small time increment h from time ¢. Then it will be

X(t+h)< (e_“h)K ® X (t) + E(t;t + h).

h
Here we use E(t;t+h) to replace the cumulative innovation on [t, ¢+ k], namely / (™) x ®de(?).
0

We want to find the corresponding stochastic difference equation (see Section 4.3)
X(t+h) — X L[(1 - ph)x ® X(8) — X(B)] + Ae, Ae=e(t+h) —e(t),
or
X(t+h) L (1 - ph)g @ X(t) + Ae.

The pgf, or LT, or cf of E(t;t + h) can be determined by the pgf, or LT, or cf of the stationary

distribution and the self-generalized distribution. They are all the ratios

Gx(s) or dx(s) . ox(s)
Gx (Gk (s;e7#h))’ ¢x (—log ¢ (s;€7+h))’ ox (e~rhs)’

Now we need to find the pgf, or LT, or cf of Ae, the increment of innovation. Recall that the
innovation process {€(t); t > 0} is additive. Hence, the pgf, or LT, or cf of Ae = €(t + h) — e(t) is
expressed in the exponential form with exponent being linear in k. i.e., the form like exp {hg(s)}.
Our task will simply become the expansion of the logarithm of these ratios in terms of h, and
omitting those terms with higher order.

The key step is that if we can expand the Gk (s; e‘“h), or ¢i (s; e‘“h) in terms of h. This
leads to the requirement of conditions of existence of the partial derivative with respect to a at
boundary a = 1 for the non-negative integer and positive stationary distribution situation. Gx(s)
and ¢x(s) are positive and continuous in their domains. Following the previous discussion, we can

. vcomplete the prodf without further difficulty.

Remarks:




(1)

Given the marginal distribution, the form of pgf, or LT, or cf of the increment of innovation

is

exp{giﬁ%H(s)uh}, or exp{jﬁ—Ez;H(s)uh}, or exp{s(:;)’f((si))uh}.

However, for any prescribed marginal distribution, it may not be a pgf, or LT, or cf. We need
to check whether it is a pgf, or LT, or cf. If yes, we obtain the increment of innovation, and

hence the innovation process.

On the other hand, if the form is indeed a pgf, or LT, or cf, we can claim that

oo { B0}, o o { B ), or exp (st}

is the pgf, or LT, or cf of an ID distribution, because h is arbitrary and these exponents are lin-

ear in k. This ID feature may further help us to simplify the proof of pgf by taking advantage

of the fact that non-negative integer ID distribution is compound Poisson distribution.

This customizing approach can be naturally extended to the non-stationary continuous-time

GAR(1) process situation. In this situation, we assume that y is still a constant to simplify the

case, but the innovation process is additive with time-varying increment. Then the stochastic

difference equation becomes

X(t+h) = (1— ph)k ® X(8) + Ac(h),  Ae(h) = e(t +h) = €(t).

Now we have to specify the pef, or LT, or cf for every margin X (t), instead of the only one pef,

or LT, or cf for all margins. Besides, we should assume that the partial derivative B—G’%(t;)(sl, or

6¢X6(z)(s), or awxgz)(s) exist for all times ¢ > 0. Combining the assumption on self-generalized

distribution, we can obtain the pgf, or LT, or cf of the time-varying increment of innovation
Ae(h) = €(t + h) — €(t) by the same reasoning, but in slightly different modifications. This is

essentially because that the innovation process is additive. The related expansions are

Gk (3; e’“h) = s— H(s)ph + o(h),

Gxm (G (€)= Gxtueny(s = H(s)uh + o(h)

aGX(t)(S) 8GX(t)(S)
as T o

= Gxey() —uH(s) b+ o(h),
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o N N ¢ 6G

Gx(t+n) (GK (5;€7#1)) 83
+o(h))
oG BG
= h[MH( )2 (¢) “’(3 ]/GX 5 (s
—log ¢k (S; e‘“h) = s— H(s)uh + o(h),

bxen (—logdx (s67)) = @xan(s — His)uh +o(h))

0 0
= fx(e) ~ HH(S) ¢’§;)(S)h+ 2X0E) L om),
bx()(s) L | Odx(1)(s) 3¢x(t
log ¢X(t+h) (—log i (s; e*/‘h)) = log (1 —h [N’H(S) 9s :| /¢X t)
+o(h))
9 8
= h[ H(s) ¢;;(:)(s) ¢X3(;)(8)] / Px 1) (s) + o(h),
ox)(8) - ox(+n) (€7Hs)
1 = -
o8 PX(t+h) (e=+hs) tog ‘PX(t)(S)
g Pta(e) = s P 2+ ofh)

<PX t)(s)

0 6
_ log h[us <.0X(t) ‘PX(t) ] /‘PX(t

. wa (S) _ Opx(s
= h[us D5 5t }/@xo ) + o(h).

Thus, the pgf, or LT, or cf of Ae(h) = €(t + h) —€(t) is

IG x (s oG T
exp {h |:/1,H(s) )((9(5)(3) _ Xa(tt)(S) /GX(t)(S)}a

or

0 0dx)(s)]
exp {h [uH(s) ¢)i9(;)(8) _ ¢Xa(t)(s) /¢X(t)(s)},

or

oo {h [usacp);(;)(s) ~ waa(z)(S)] /<pX(t)(8)}-

respectively.




When in steady state for the stationary situation, it follows that
0G x(1)(s) 0 O0dx1)(s) Ovx(t)(s)

= or ————— = or ————— =0,

ot ’ ot ’ ot

which lead to the statements in Theorem 6.3.1.

We will illustrate Theorem 6.3.1 by some examples. They were basically discussed before.
Now we revisit them from another perspective. In these examples, we prescribe the marginal
distributions as Poisson, negative binomial, modified Geometric, exponential or Gamma, inverse

Gaussian, and so on.

Example 6.11 (Poisson) Consider a continuous-time GAR(1) process under steady state. Pre-

scribe that the margins are distributed in Poisson()\). Thus

B Gx(s) _ dexp{A(s - 1)} _
Gx(s) =exp{As ~ 1)} ond G =BGy

By (1) in Theorem 6.8.1, the pgf or LT of increment of innovation process must be of form:
Gaeny(s) = exp {\H(s)ph},

where H(s) = E%%)— . Since the known types of K are from I1 to 15, we look into Table 6.1
Q=

to find the appropriate self-generalized rv’s so that the expression of Gac(n)(8) or d)AE(h)(s) s a pgf.

By the feature of ID, Ae(h) should be a compound Poisson rv. This fact leads to that H(s)

must satisfy:
C - H(s) = g(s) — 1, C is some positive constant which may be bounded above, and g(s) is a pgf.

In another word, C - H(s) + 1 must be a pgf. Checking with the form of H(s) in Table 6.1, we
find that only K being I1 works; the others lead to negative coefficients in the power series of H(s)
which implies that 12 to I5 are excluded.
With K is from I1,
Gaeny(s) = exp {Aph(s — 1)},
the pgf of Poisson(Auh). It basically corresponds to the Poissoﬂ IIP innovation process appearing

in Ezample 5.1. The assumed continuous-time GAR(1) process matches the process obtained in

Ezample 5.1 too.




Example 6.12 (Negative Binomial/Geometric) Consider a continuous-time GAR(1) process
under steady state. Prescribe that the margins are distributed in NB(B,v). When 8 =1, it 1s

geometric distribution. Thus

(17’ Gx(s) _ By
GX(S) = (m) and Gi(s) = 1 —"yS.

The form of the pgf or LT of increment of the potential innovation process must be:

Gaen)(8) = exp {5’7%#_—%} )

where H(s) = -a—GKTS—;a—) v Now we investigate H(s) in Table 6.1 to see which will lead to a proper
a=

innovation process. Recall the fact that C - 1%(—,% + 1 should be a pgf for a positive constant C'.

For K being from 11, take C =~. Then
H(s s—1 1—7
v )

1= - 1=
1—fys+ " 1—'ys+ 1—7s’

which is the pgf of NB(1,v). This corresponds to the innovation process appearing in Ezample 5.2.
For K being from 12, in which the fized parameter vy is exactly the same as prescribed for

the marginal distribution here, we take C =1 — . It gives

H(s) (L=ys)s=1) | _,
1—s (1—=~)(1—"~s) ’

which is, of course, a pgf. The corresponding innovation process is Poisson IIP appearing in
Example 5.4. '
For K being from I3, it seems that C - (s——}%l——s) + 1 is not a pgf.

(-7

+1=(01-7)-

Example 6.13 (Modified Geometric) Since a zero-modification operation can adjust the mass
at zero, we may be interested in considering a steady state continuous-time GAR(1) process with

modified Geometric margins, in which the pgf is

GX(3)=(1—P)+P31_;§? 0<p, B<L.

Then,

‘(s) = p(1—p)1—Bs)" +psB(l—B)(1~Bs)™%
G (s) p(l - B)

Gx(s) ~ (1-Bs)[(A1—p)+(p—B)s]
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The form of the pgf of increment of the potential innovation process should be:

H(s)
Gaan(®) =0 o0~ it T
where H( ) = 9Gx (s;0) R We search for suitable H(s) in Table 6.1. Bear in mind that 1 +C-

da
= ﬁs)[((l) ;) (ﬂg By5] should be a pgf for a positive constant C.

For K being from 11, take C 1 55 Then we have

H(s)p(1 - B) L s—1

14+C- =1+ '
i- ﬁs)[(l —p)+ - Ps] (1 - ps) (1 - 22s)
If W <B<porp<f< g, thisis a pgf: see (5) in Theorem 2.2.3. Thus, the assumed

continuous-time GAR(1) process emsts, and is new (to our knowledge).

For K being from 12, taking C =_M1_—m, leads to -

p(1-5)
 HEU-f . (=391
O TR - e (1) (1 E2s)

which is a pef when p < B < S=FY, or max (v,525) < B < p and (B -1 =p)° > (p— B+
v — py)(p — B); see (6) in Theorem 2.2.3. This implies that the assumed continuous-time GAR(1)

process. exists, which is also new.

For K being frorﬁ 13, it seems there is no such pgf. As to I4 and IS, further study is needed.

Example 6.14 (GNBC) Since the GNBC family includes many distributions, we now study this
kind of margin. For a continuous-time GAR(1) process ‘being under steady state, prescribe the

marginal distribution as GNBC with pgf

Gx(s) = exp {% /(0 ) log (11:qu>V(dq)}.

G’ ( ) _ ! . .
(o) = %/(0,1) [log (1= qq)] Vi) =, /<0 ST )

The form of the pgf of the increment of the potential innovation process must be:

Then

Gadn(s) = exp {h [ 1 (ZV(d«n} ,
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where H(s) = BG‘(,‘,;;&)

X Now we resort to Table 6.1 to see which form of H(s) will lead to a
a=

proper innovation process. We realize that this is the pgf of a generalized convolution and the base

distribution has pgf of form exp {h%}%‘?}. Following previous ezamples, C - ql_(qss) + 1 should be a

pgf for a positive constant.

For K being from I1, we obtain

qH(s) e gs—1),,
exp {h/(o,l) l_qu(dq)} = p{h/(o,l) = V(dq)},

which is the pgf of GC L Therefore, the assumed process exists and the innovation process corre-

sponds tol the one appearing in (I1) of Corollary 5.2.6.
For K being from 12, it is

gH(s) _ a(1 = ys)(s = 1)
P {h/(o,l) 1- qu(dq)} - P {h/(o,l) (L= —-gs) V(dQ)} .

When V(-) has 0 measure on (0,7), namely ¢ > 7, it is the pgf of GC II:

a=ys)s=1, al=79)(s 1),
e"p{"/@,n T-Ml-g9) V(dQ)} ¢ p{h/m) (L= —49) V(dq)}'

This means the innovation process is GC II IIP, which corresponds to the one in (I2) of Corollary

5.2.8. Thus, the assumed process exists. _
It is possible that a steady state continuous-time AR(1) process with GNBC margins exists
for K being from other non—negdtive integer self-generalized distributions. They are under further

study.

Example 6.15 (Gamma/Exponential) Consider a continuous-time GAR(1) process under steady

state. Prescribe that the margins are distributed in Gamma(d,). When § =1, it is ezponential

(B Fils) 6
¢X(S)—<5+3) and ox(s)  B+s

By (2) in Theorem 6.3.1, the form of the LT of the increment of the potential innovation process

distribution. Thus

must be:

baun(®) = o0 { - Hshun .
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where H(s) = g% [— log ¢k (s; @] ‘ '1. Now we investigate H(s) in Table 6.2 to search for proper
a=
self-generalized distributions which lead to an innovation process.

For K being from P1, then

) .
exp {—mH(S)Mh} = exp {—-ﬁj_ssuh} = exp {6uh (E—?‘_S - 1> }7

which is the LT of the compound Poisson(éuh) with Gamma(1, ). This corresponds to the inno-

vation process appearing in Example 5.9 when v = 1.
For K being from P2, we have

8 5§ (1- | Suh s(1—
exp{—mﬂ(s)ﬂh} =exp{—ﬁ+s( 17_+778)3uh} =exp{—1ﬁ78( ﬂltpys)}.

If v < ﬁﬁ—, this function is a LT (See (1) in Theorem 2.2.8). Hence, it can be the LT of the
increment of an innovation process, and the assumed continuous-time GAR(1) process éxists. This

process is new, with stochastic representation
d to—11
X(ta) = (e_“(t2_t1))K ® X (t1) + / (™) [ ® de(t),
0

where K is from P2, and the stochastic integral has LT

e #2711 (1—7)s d
#(s) = ¢x(s) — -l (1—7)+(1—e~rC2—t1))ys V< 1
, éx (—log ¢k (s;emt2—1n)}) B+ s : <175

For K being from P3, it is not a LT, becausé logs <0 as 0 < s <1, hence,

)
exp{—mH(s)uh} > 1, when 0 < s < 1,

contradicting to that a LT is less than or equal to 1.

Other cases of K being from P4 to P5 are under further study.

Example 6.16 (Inverse Gaussian) The inverse Gaussian distribution has many applications;

see Seshadri [1999]. Hence, it is of interest to see if there are any continuous-time GAR(1) procesrses

with inverse Gaussian margins in steady state.




Assume the LT of the inverse Gaussian margin 1is

This form is from Johnson and Kotz [1970a], p. 189, and credited to M. C. K. Tweedie. Then
' ' 2 \ /2]’ 2 \ —1/2
¢x(s) p A A
Hence, by (2) in Theorem 6.3.1, the form of the LT of increment of the potential innovation process

2 -1/2
Baciny(5) = exp {—;ﬂh (1 2 ) H(s)} ,

where H(s) = a% [—log ¢k (s; )] ’ R We search H(s) in Table 6.2.
o=
For K being from P1, it follows that

2\ —1/2 9 \ —1/2
exp {—;ﬂh (1 -+ 2%3) H(s)} = exp {—ths (1 + %—s) } .

By (6) in Theorem 2.2.8, it is a LT. Hence, the innovation process s well defined so that the as-

must be:

sumed continuous-time GAR(1) process exists. This continuous-time GAR(1) process has stochastic

'

representation
to—1t1

X(t2) L gmiltz=t) ¢ X (t1) + / e " o de(t),
0

where the stochastic integral has LT

¢x(s)
¢X (e_#(tz—tl)s)

2 : 1/2 9 \ 1/2
= exp {i l:(l + ?_'u‘_e"l"(t2_tl)s> — (]_ + _2_'u_s> :l }
n A A

¢E(t1;t2)($) =

_2“(1 — e_lf'(tZ—tl))s
= &P 2 2
\/1 4 A emulta—t) s \/I+ g

Other cases of K being other self-generalized rv’s are under further study.




Example 6.17 (GGC) The GGC class includes many distributions. It’s very meaningful to inves-
tigate the GGC margins. Consider a steady state continuous-time GAR(1) process with prescribed

GGC margin. Thus
s) =exp{q — lo ~ Uldu) ¢,
#x(9) {u R G L )}

jﬁi; N % /(o,oo) [log (U :L- 8)]1 vtde) = %/(o,oo) “:LIS-U(dU)'

By (2) in Theorem 6.3.1, the form of the LT of increment of the potential innovation process must

be:
—H(s
¢Ae(h)($) = exp {h/(o ( )U(du)} ,

and

,00) U+ s

where H(s) = % [— log ¢k (s; )] ‘aﬂ. Following the last example (with Gamma/Ezponential mar-
gins), we turn to Table 6.2 to find proper self-generalized distributions which lead to an innovation

process.

For K being from P1, then

—H(s) B —s
exp{h/(o’oo) P U(du)} —exp{h/(o,oo) u+8U(du)}

— exp {h /( oL (du)} , U* (du) = ul (du),

u+8)

which is the LT of the GOMED. This essentially corresponds to the innovation process appearing
in Theorem 5.8.3 when K is from P1.

For K being from P2, we have
—-H —s(1 —
exp h/ ) 17 () b = exp { — / (L= YY) 17 gy
(0,00) U+ S 1= Joe) — uts

IfU(-) has zero measure on (y~' —1,00), then it becomes

exp —h—/ _3(1_7+73)U(du) = exp —h—/ _3(1_7+78)U(du) ,
1 =7 Jo,m) U+ S 1= Jony-1-1) U+ 8 '




which is the LT of GC IV (refer to Section 2.3.83). Hence, we get an appropriate innovation
process, and can conclude the assumed continuous-time GAR(1) process exists. This process is

new. Its stochastic representation 1s

d ( -ulta—tr) R

= - 2~ —H

X (t) & (e 1)K®X(t1)+/0 (e™) ,c ® de(?),
where K is from P2, and the stochastic integral has LT

¢x(s)
bx (- 108 (536 H1))
e~ H(t2=t1)(1—~)s

1 u + — = —
= exp _/ log (1—7)+(1—e~#l2—t1))ys U(du)
ll' (0,7_1_1] U + $

¢(s) =

For other cases in which K is from P3 to P5, further investigations are under study.

From these examples, we see that there could be several steady state continuous-time
GAR(1) processes corresponding to the same marginal distribution. Such flexibility allows us to
try different models when we deal with data. However, this is also somehow vexing for us. Which
one should we use? This leads to the question that what are the features of these models with
common margins.

For the case of a positive-valued margin, one feature of the cumulative innovation, £ (t1;t2) =
/0t2_t1 (e—"t)K ® de(t), is whether it has mass at zero, namely Pr[E(t1;t2) = 0] > 0. This can be

checked with lim PE(t15t5)(8)- We can look the following example.
§—r 00 4
Example 6.18 Consider two models obtained in Ezample 6.15. One is
d to—1t1
X(tg) = et o X (¢) + / e H o de(t),
0

where the stochastic integral has LT

()= X&) B+ e\’
#(s) = bx (e Hla=t0)s) B+s '

Hence,

PI‘[E(tl; tz) = 0] - (,15(00) = 6_6”(t2_t1).




The bther model is

X(t2) 4 (e‘““r“)) L OX()+ / o (e7) g ® de(?),
0

where K is from P2, and the stochastic integral has LT

: e—nt2—t1)(1—x)s J
B(s) = Px(s) B Wl e ez o R M B
dx (—— log ¢k (S;e_“(trtl))) B+s ‘ ’ —1+8

In this case, it is

Pr[E(t1;t2) = 0] = ¢(o0) = 0,

and there i1s no mass at éem. ,
Even the model in Ezample 6.16 can be an alternate choice for the first model in Ezample

6.15 whose cumulative innovation has no mass at zero, because as s — 00,

—2u(l - e—#(tz—tl))s

PB(t1;t2)(8) = €xP — e =0.

The cumulative innovation with mass at zero is the primary cause for the phenomena of
sharp jump down or sharp drop pattern. Of course, the dependent term with mass at zero can lead
to the same phenomena too. Such a pattern can be imagined as the behavior of a small kid who
is climbing a high slide; he struggles to climb a little bit by a little bit. When he reaches a certain

height, he suddenly drops down some distance back. He repeats this game without ever tiring.

6.4 Generalized AR(1) time series

Time series data usually means that the observations are obtained at equally spaced time points.
It corresponds to the discrete-time process in the probabilistic point of view. Looking back to the
history of pr(;cesses development, it is very common that often the discrete-time processes have
been proposed earlier than the continuous-time processes. For example, this phenomena has be-:

ing happened in the development of Ornstein-Uhlenbeck-type processes and the continuous-time
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GAR(1) process proposgd in this thesis. It may lead to a false appearance that the continuous-
time processes are derived from the corresponding discrete-time processes. However, there is no
such sirhple conclusion that the continuous-time case comes out from the discrete, or vice versa,

~ although we may apply approaches like differentiating the continuous-time processes or integrating
the discrete-time processes. This point of view can be seen from the perspective of distribution the-
ory discussed later in Chapter 9, where we will see that construction of the discrete-time processes
is relatively easier than the continuous-time processes in some situations.

This clarification won’t prevent us from investigating the time series sampled from a continuous-

time process. In principle, sampling the observations on equally spaced time points from a continuous-

time GAR(1) process {X ();t > 0}, we will obtain a time series, denoted as
(Xo, X1, X2y, Xny ...}

which we call the generalized AR(1) time series. In the literature, there are some generalized
AR(1) time series models, but not rich classes. We will look into the generalized AR(1) time
series models from the continuous-time GAR(1) processes, and compare with those models in the
literature. | |

There is always an issue about stationary and non-stationary time series. If sampling from
a stationary continuous-time GAR(1) process, we will have a stationary generalized AR(1) time
series; while sampling from a non-stationary continuous-time GAR(1) process, we will obtain a
non-stationary generalized AR(1) time series. For the sake of simplicity, we only consider the
stationary case.

Now we introduce some notations. In the equally spaced case, the time difference between

any two consecutive points is the same. Denote
A
Azti—ti_l, a:ef“A, Ez=/ (e_m)K@BdE(t), ’i=1,2,....
0

Then the stochastic representation for a generalized AR(1) time series model is

Xt () ®Xio1+Ei, i€N. (6.4.1)

The classical time series data are real-valued, and the distribution of each observation is

stipulated as Gaussian. But for a generalized AR(1) time series, the data may be non-negative
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Table 6.3: Conditional pgf G(a)K®Xi_11Xi_1:a:(5) when K is a non-negative integer self-generalized
random variable. '

l K | G(a)K®Xi-1|Xi—1=CL'(s) l
il (L=a) +as)”
12 ()
I3 (= (=)
14 (cM1 = e~ P0-0)(1 — ¢s)?))”
15 | (1-o’(1-7) [1-a)y+ (1 -1A=-5)Y]")"

integer, positive, or real-valued. Hence, the corresponding distributions to model such kind of
data are non-Gaussian. Perhaps Phatarfod and Mardia [1973] was the first study for the count
data time series, where they defined an AR(1) time series model, in which the stationary (or in
another view, the marginal distribution under steady state) include Binomial, Negative Binomial,
Geometric and Poisson. Since the 1980’s, more non-normal time series models havle appeared in
the literature. Note that for the generalized AR(1) time series with non-negative integer margins,
it corresponds to the type of Galton-Watson process with immigration which has the form of the
sum of a branching part and an immigration part; see Nanthi [1983], p. 180-181 for the definition.

Tt is meaningful to give the conditional pgf or LT of (o), ® X;—1 in equation 6.4.1 when
X;_1 =z. They are

T

Gla) c@Xi_1)Xi_1=2(8) = (Gk(s;0))*, and D(a) @K1 |Xir=2(8) = (Px (55 0))

For specific self-generalized random variables K ,‘ see Table 6.3 and 6.4. They are useful when
comparing with the models in the literature. |
In the following, we will classify those generalized AR(1) time series models by their marginal

distributions, similar to what we have done in Section 6.3.

Example 6.19 (Poisson) Consider the model in Ezample 6.11. Its margins are distributed in

Poisson()\). Hence, we can derive the generalized AR(1) time series model, which s

Xiga*Xi._l-FEi, i €N,
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Table 6.4: Conditional LT ¢(Q)K®Xi_l|xi_1=z(s) when K 1is a positive self-generalized random vari-
able.

| K l ¢(a)K®Xi_1|X¢_1=z(3) l
P1 exp{—azs}
P3 exp {—zs*}

0 _ @
P4 exp{—a:- E(iegi—)lﬂ—l}

]
P5 | exp {—m [ o(1-7) 1] }
(1—a)y+(1-7v)s" 8

where X; ~ Poisson()\), and Gg,(s) = exp{A(1 — a)(s = 1)}.

This model has been discussed by many researchers, such as Phatarfod and Mardia [1978],
McKenzie [1985, 1988], Joe [1996], Jorgensen and Song [1998].

Example 6.20 (Negative binomial/Geometric) Consider two models in Ezample 6.12. Their
margins are distributed in NB(B,7) (when B = 1, it is Geometric distribution). Hence, we can

derive two generalized AR(1) time series models. One is
XitaxX; 1+ E;, i€N,

B
where X; ~ NB(8,v), and Gg,(s) = (QLTT;——?;W) . This model has been discussed by many
researchers, such as McKenzie [1985, 1986], Aly and Bouzar [1994].

The other generalized AR(1) time series model is
Xii(a)}{@Xi—l"'Ei, ieN.

where K is from 12, X; ~ NB(B,7), and G, (s) = (h_—m-l:(”mw)ﬁ namely E; ~ NB (5, (%‘;%’l) .
This model or a restriction of it has been discussed by many researchers, such as Phatarfod and
Mardia [1973], McKenzie [1985], Al-Osh and Alzaid [1992], Aly and Bouzar [1994]. Here the pa-
rameter v of 12 and of the NB margin are the same. In Chapter 7, we show that these can be
different.

The stochastic representation of the cumulative innovation can be found in McKenzie [1987].

199




Example 6.21 (Modified Geometric) Consider two models in Ezample 6.13. Their margins
are distributed as Modified Geometric. From them, we can obtain two generalized AR(1) time series
models. One is

X,‘ga*Xi_l-i-Ei, i EN,

where X; has pgf Gx(s) = (1 —p) + psll__—gg, and Gg,(s) = Eﬁlf;fﬁ)f[ﬁfigfl;%:f,ﬁaf&;_apﬁﬂ'

The other generalized AR (1) time series model is
Xl—“‘i‘—— (a)K®X¢'_1 + E;, 1 eN.

where K is from 12, X; has pgf Gx(s) = (1 — p) +p3117—5ﬁ§, and

Gg (s): [(1—-p)—(B_P)S]-[(l-—,@—a’y+a,8)+(_7_a5+a7+ﬁ7)8]
i (1_ﬁ8)'[(1_ﬂ—ap+aﬂ_a7+ap7)+(_7+0‘p_0‘ﬂ+017+,8’y——ap_fy)3]'

These two models are new.

Example 6.22 (Gamma/Exponential/Chi-square) Consider two models in Ezample 6.15.

Their margins are distributed in Gamma(é, B). Special cases include
o When 6 =1, it is Exponential(B);
o When § =k/2, B=1/2 (k is an integer), it is x%.
Hence, we can derive two generalized AR(1) time series models. One is

XigOzOXi_l—l-Ei, i €N,

B+s
Lewis [1980], Hutton [1990]. A stochastic representation of cumulative innovation can be seen in

Walker [2000].

5
where X; ~ Gamma(d,8), and ¢g,(s) = (M) . This model has been discussed by Gaver and

The other generalized AR (1) time series model is
Xzi (a)K®Xi_1 + E; 1 EN.

where K is from P2, X; ~ Gamma(é, 8), and

_ (BO=7) +(a—ay+py—oBys\’
¢Ei(s)_( B+ 3)[(L—7) + (1 - a)ys] )
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This model generalizes Sim [1990], Adke and Balakrishna [1992], where the cumulative innovation

is an exponential Tv, a special case when vy takes the upper boundary ﬁ, and has LT ¢g,(s) =
(switzer)
B+(1—-a)s ) °

Example 6.23 (Inverse Gaussian) Consider the model in Ezample 6.16. Its margins are dis-
tributed in Inverse Gaussian. Hence, we can derive the following generalized AR (1) time series

model:

Xi—i—OZOXi_l-l-Ei, i €N,

121 .
where X; has LT ¢x(s) = exp {% [1 — (1 4 2/;_25) / } } and ¢, (s) = exp { —2p(l—a)s }

1+2AL2as+\/1+2§‘\Es
We are not clear if this model has been previously studied.

In the literature, there are some generalized AR(1) time series models with other marginal
distributions. We will visit them in Chapter 7 when we study the generalized self-decomposability.
The auto-correlation feature of the generalized time series model will be discussed in Chapter 9. A
discussion of simulation of the processes can be found in Chapter 12.

Since the family of continuous-time GAR(1) processes is very rich, we can produce many
mé,ny generalized AR(1) time series models from them. These models differ in either the marginal
distributions or the extended-thinning operations. We have realized that the names of the gener-
alized AR(1) time series models appearing in the literature are quite diverse. Hence, it is a serious
problem to name them in a clear way to avoid the potential confusion for the readers. We don’t

want to open a “drug store” to sell the models in the fancy names like medicines.
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Chapter 7

Characterization of stationary

distribution families

In this chapter, we further investigate the stationary distributions reéulting from the continuous-
time GAR(1) processes. This will be from the perspective of extended-thinning operations.

| Since the continuous-time GAR(1) processes are essentially characterized by the defining
: extended;thinning operation, it seems that the resulting stationary distributions may be character-
ized by it too. This leads to t_he study of Self-decomposability (SD) and discrete self-decomposability
(DSD), and furthermore, the proposal of generalized self-decomposability (GSD) and generalized
discrete self-decomposability (GDSD). Similar to the SD and DSD case, we find that generalized
self-decomposable and generalized discrete self-decomposable distributions are infinitely divisible
distributions.

This study is not only for probabilistic interest, but also for statistical interest, because
it points oﬁt the equivalence between the continuous-time GAR(1) process and the correspond-
ing generalized self-decomposable or generalized discrete self-decomposable distribution. In other
words, a generalized (discrete) self-decomposable distribution can lead to the construction of a
continuous-time GAR(1) process. This feature attracts particuiar attention and interests of statis-

ticians in modelling data. For the SD and DSD situation, it has been studied by the statistical
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pioneers for a long time (see references in Section 7.1). Here, we extend this idea to generalized
self-decomposability and generalized discrete self-decomposability in Section 7.2. In Section 7.3, we
discuss the relationship among the classes of the generalized self-decomposable distributions and
the generalized discrete self-decomposable distributions respectively; that is, if they overlap with

one another, or if they are covered by one another.

7.1 Self-decomposable and discrete self-decomposable classes

In Section 2.3.1, we've reviewed the concept of SD and DSD, as well as their advantages to construct
a generalized discrete-time or continuous-time GAR(l) process. Now we do the reverse. We shall
investigate the self-decomposability and discrete self-decomposability of the stationary distribution
from a continuous-time GAR(1) process where K is from P1 and I1.

Now we consider the continuous-time GAR(1) process with K being from P1 and I1, namely
d to—t1 '
X(ty) L e-hlta=t1) 0 X (1) + / eIt o de(t),
0

and
to—11

X (tg) Zem#2=4) & X (8;) + / o e de(t).
0
The first process involves the constant multiplier operation which allows positive and real-valued
margins. The second involves the binomial-thinning operation which leads to non-negative integer-
valued margins. Suppose they have stationary distributions. Let X have a stationary distribution.

Under steady state, we have the following stochastic representation for X

d to—11 d ) to—t1
XL Mbt) o X + / e M ede(t) and XZe Hlt) X 4 / e M x de(t).
0 0

Denote the stochastic integral as E(t1;t) = E (e7#(f27%)) in the two cases. Since e~Ht2—t) can
be any value in (0, 1), hence, the previous representations are equivalent to that for any c€(0,1),

X can be decomposed as

XgCOX-l-E(C) and XZcx X+ E(c).
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By the definition of SD and DSD (see Section 2.3.1), we conclude that X is self-decomposable
and discrete self-decomposable in the two cases respectively. This is summarized in the following

theorem.

Theorem 7.1.1 The stationary distribution from the continuous-time GAR(1) process with con-

stant multiplier and binomial-thinning operation is SD and DSD respectively.

This discloses a new way to prove SD and DSD by the corresponding continuous-time
GAR(1) process. Traditionally, to prove SD or DSD, we need to show that ¢(s)/e(cs) is a cf for
. a distribution with real support, or ¢(s)/¢(cs) is a LT for a distribution with positive support, or
G(s)/G(1 — ¢+ cs) is a pgf for a distribution with non-negative integer support. They correspond
to the cumulative innovation in the stochastic representation of a continuous-time GAR(1) process
- with K being from P1 or I1. In the hew approach, we first specify a particular innovation process,
and then use the stochastilc integration approach discussed in Chapter 4 and 5 to obtain the
cumulative innovation. These particular innovation processes are based on the specific distributions.

Using this ﬁew approach, the key point is how to find the appropriate innovation process.
This has been answered in Section 6.3. Now we formalize it in a reverse way in the following

theorem.

Theorem 7.1.2 Suppose X is distributed in a specific distribution.

i : .
(1) Assume the distribution has real support with cf ox(s). If exp {C’- %} is a cf for all

C >0, then X is SD. .

(2) Assume the distribution has positive support with LT ¢x(s). If exp {C’ . %(%)} is a LT for
all C > 0, then X is SD. |

(8) Assume the distribution has non-negative integer support with pgf Gx(s). If 1+C'- —séTG(fj—(—)

is a pgf for some C > 0, then X is DSD.

Proof: The key step in the proof is that for ény 0 < ¢ < 1, we express p(s)/p(cs), or ¢(s)/¢(cs),
or G(s)/G(1 — ¢ + ¢s) in terms of exp {C- %}, or exp {C %} or1+C- %
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(1)

’ 1 !
Since exp {C . %ﬁ‘%} is a cf for any C > 0, it follows that exp { /C 8;;((65:') )

This comes from the idea of generalized convolution. By integration, we obtain

oo [ 2800} o [ ) o [ 251

= exp {10g ©x(Bs) 11} = exp {log px(s) — log wx(CS)}

dﬁ} is a cf.

_ ex(s)
px(cs)
This shows that %,f—((c% is a cf. Therefore, X is SD.
b sy (Bs)
Similar to (1), exp{ mdﬁ } is also a LT. We compute the integration in the expo-
c X

nent,

o[ ) o ) <o 550}

= exp {10g bx(Bs) ll} = exp {log ¢x (s) — log px (cs)}

_ ¢x(s)
¢x(cs)’

- which means that %‘%} is a LT. Hence, X is SD.

Since 1+ C - %ﬂg(i isapgfforaC>0,14+C- 5(5G2€;sgﬂs+ﬁl) A isa pef too (operation

(2) in Proposition 2.2.2). By the mixture operation in (3) of Proposition 2.2.2, it follows that

~ o B(s - )Gy (Bs +1—-B)\ .-
oto) = [tog™ [ (140 B DEBE o)) ot

is a pgf. Direct calculation shows

1 ! —
os) = [-loga™ | [O-ﬂ(s—l)G"EgZﬁ_g;Jrl] 51d8

e legd CIELEL PPN SN
- (oga {o [ St e 1)+ [ diogs))

|
[
- tolog - CX)
= [~logc]™ C’logG( +1—c)+1'

This leads to
Gx(s)
Gx(es+1—-c

= exp {log(c™")C ™ Mg(s) — 1]},

205




the pgf of a compound Poisson. Hence, X is DSD.

Remark: Taking K specifically from I1 and P1 in Theorem 6.3.1, we can prove the necessity.

Hence, the conditions in Theorem 7.1.2 are actually sufficient and necessary.

The key idea in the proof for SD is to use the concept of generalized convolution established
by O. Thorin in 1977. He used this concept to prove the ID of Pareto and lognormal distribution.
Steutel and van Harn [1979] gave the result for DSD where there was the shade of generalized
convolution. Here we prove it again from the view of continuous-time GAR(1) process theory.

Note that in (1) and (2), we require exp {C- Sf)’i‘((:))} and exp {C . %‘3)’%} to be a cfrand LT for

any C > 0 respectively. This is equivalent to say that they are the cf or LT of an ID distribution.
Recall that the stationary innovation process, an IIP, is just a Lévy process. It is reasonable to
impose such requirements when we prepare to use them as the increment to construct the innovation
process. In (3), we only require the condition holds for a positive constant C, not all constants.

In fact, this is because that the discrete ID distribution with non-negative integér support is a

-G (0)

compound Poisson and the constant C is just to guarantee that 1 +C - R (0)

> 0. Therefore, we
can pick C = %’i(% which equates the preceding inequality to 0.

A SD distribution is ID (See Feller [1966b], p. 550-555). Accordingly, Steutel and van Harn
[1979] proved that a DSD distribution is ID too. Since a discrete ID distribution is compound Pois-
son, then a DSD distribution must be compound Poisson. This leads us to consider the compound

Poisson as the marginal distribution, and consequently leads to the following useful theorem.
Theorem 7.1.3 For a compound Poisson rv X with pgf

Gx(s) = exp{Alg(s) — 1]}, A >0,
where g(s) = qo + 15+ qas® + ... + qrs® + ..., a pgf on the non-negative integers. If

qu_(k+1)qk+1_>_0a k=123,...,

then X is DSD.




Proof: Consider 1 + C - (s_élG(;)(s). By calculation, we obtain
(s —1)G%(s) /
1+C-—F—2-—— = 1+ AC(s—1)g'(s
e (s = 1)g'()

= 14+ XC(s—1)[g1 + 2g2s + 3(_]332 +...+ kgksk‘l +...]

[o.o]
= (1-XCq) +AC Y [kgr — (k+ Dgr+1]s*.
k=1

Thus, 1+ C - (—S—_Glz(i(,;‘)@ being a pgf is equivalent to

1—>\CQ1ZO, qu_(k+1)qk+120a k=1,2,3,....
We can always take C = A™! to guarantee 1 — ACq; = 1 — ¢1 > 0. This completes the proof.

Note that the conditions in Theorem 7.1.3 are also necessary because of Theorem 6.3.1 where
we can take K from I1. Now we give further results about SD and DSD which are not directly
related to Theorems 7.1.2 and 7.1.3.

We encounter many generalized convolutions in our study. We now consider whether these

are SD or DSD. This leads to the following theorem.

Theorem 7.1.4 Consider the real, or positive, or non-negative integer-valued generalized convo-

lution.

(1) If the base distribution of a real or positive-valued generalized convolution is SD, then the

generalized convolution is SD.

(2) If the base distribution of a non-negative integer-valued generalized convolution is DSD, then

the generalized convolution is DSD.

Proof: Apply the fact that the generalized convolution is the limit distribution fqr the sum of
independent rv’s from the base distribution. If the base distribution is SD or DSD, then. the
distribution of the sum is SD or DSD (using the distributive law in Property 3.11). This leads to
the SD or DSD of the generalized convolution.

The same idea can be applied to the stochastic integral [;° e #tde(t) and [;° e ™ * de(t),

where the increment of the innovation process is SD or DSD. Theorem 7.1.2 stipulates the form
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J
;

of cf, or LT, or pgf of the increment, which further indicates that they should be ID, but it does .
not require that the increment is SD or DSD. Here we consider these two particuiar innovation

processes.

Theorem 7.1.5 If the distribution of the increment of the innovation process in a continuous-time
GAR(1) process is SD or DSD, then the stationary distribution of the continuous-time GAR(1)
process with operator P1 or I1 is SD or DSD respectively.

Proof: The stationary distribution is the distribution of the stochastic integral Jo” e #de(t) or
Js° e7# x de(t), which is the limit of ftz " e=htde(t) or fotz_tl e M x de(t) as to — t; — o0.
Let h = (to — t1)/n, and Ae; = €ty + ih) — €(ty + (i — 1)h), i = 1,2,...,n. Then by the

commutative law and distributive law, -

to—t1 n—1 n—1
—ut - _ i R T _ @ ) .
/0 e M de(t) nll)rglo ;(1 ph) AEn—z nll>nc}o Zz_%(l ph) [cAen—i + Y]

n—1 n—1
= (nlggoz (1 — ph) Ay ,>+ lim Z(l—uh)Y

to—ty . n—1 : )
_ —p : _ iy
= ¢ (/0 e de(t)) + nlggo E (1 — ph)'Ys,

1=0
ta—t1 n—1 n—1
—ut _ . 3 R . = . . g
/0 e M xde(t). = nli)n;o E—O(l — ph) x Aep—y = nll}rgo ;—0(1 ph)t * [c* Aep—; + V3]

n—1 n-1
= cx* (nll)ngo Z(l — ph)t * Aen_i> + nll}ngo 2(1 — ph) +Y;

i=0 i=0
to—11 ; n—1 )
— - 1 . 1 .
= cx (/0 e H *de(t)> +nlg£10 E—O(l ph) « Y.

Because of the existence of [; 74 g=btde(t) and [ b2t o=ty de(t), lim E@—Ol(l — ph)'Y; and
lim S 775 (1 — ph)¢ * Y; exist. This means that IN =0 ot ge(t) and IN = t‘ —Ht x de(t) are SD and
n—oo

DSD respectively. Accordingly, their limits are SD and DSD too.

Remark: This approach works for the sum of a finite or infinite number of random variables.
The key point in this approach is that the two decomposed parts should be independent; which

may be naively neglected. For a finite sum, the two decomposed parts are of course independent.
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For an infinite sum, since the limits of two independent sequences are still independent, the two
decomposed parts are then independent. However, for a random sum, this approach will lead to

two dependent decomposed parts like:

N N N N
XL %L S Vi+ Y zife- X+ Z,
=0 1=0 =0 1=0
ot N N N N
x4 ZYigc* (ZYZ) +2Zigc*X+ZZi.
i=0 =0 i=0 i=0

Here N is a non-negative integer rv. c- Zf;o Y; and ¢ * (Zfio Y;) are dependent to the other part
Zi]\;o Z;. Such phenomena could happen in other situations like the variance mixture of the normal
distribution.

In other words, SD and DSD distributions have the closure property under the finite or
infinite sum of independent rv’s, but not under random sums. |

Next, we investigate the SD property for variance mixtures of the normal distribution.

Theorem 7.1.6 For a variance mizture of the normal distribution with representation X 4 VY Z,
where Y is a positive rv with LT ¢y (s) and independent of Z ~ N(0, 1), if exp {C~ %’%} is a LT
for any C > 0, then X is SD.

Proof: Recall that the variance mixture of the normal distribution has cf ¢x(s) = by (s2/2).

Hence, _
Py (s) _ sd(s%/2)
PRONNECIDN

This leads to

s\ _ [ S | B o
o fe B8} =enlo Sy b= p{c oy (272 } o=

. / ‘ 82 /
If for any C > 0, exp {C" %L((:—)} is a LT, then exp {C- M} is the cf of X! = VY'Z. where -

) by (52/2)
Y’ has LT exp {c- %;%'{—;} By (1) in Theorem 7.1.2, X is SD.

Note that an equivalent statement is that if Y is SD, then X is SD. One conclusion deduced

by this theorem can be seen in Example 7.2.




For the SD distribution with positive suppért, it is of interest to investigate its discrete
analogue; and vice versa. McKenzie [1987] implicitly mentioned this kind of relationship for a
specific pair of distributions: the Gamma and the negative binomial; there his original purpose was
to claim that the alternative pgf A(s) = G(1 — ) is much helpful. The following theorem gives a

complete explanation to his description.

Theorem 7.1.7 If the positive rv X is SD, then its discrete analogue Y is DSD (see Definition
2.6 for the discrete analogue).

Proof: Assume X has LT ¢x(s) (s > 0) and Y has pgf Gy(s) (0 < s < 1), where Gy(s) =
dx(1—s) (0 < s <1)or Gy(s) = ¢x(d(1 —s)) (d > 0). Without loss of generality, we consider
the modified version, namely the latter. Thus, we obtain ¢x(s) = Gy (1 — s/d). This leads to that

for 0 < ¢ < 1,
o(s) % Gy(s)  _ ¢x (d(1 - s)) _ ¢x(d(1 —s))
Gy(l1—c+cs) ¢x(d(l—[1—c+cs])) éx(cd(l — 5))’
and v
| h(s) & ¢x(s)  Gy(l—s/d) _ Gy(l - s/d)

T px(es) Gy (1 - cs/d) T Gy(l—c+c[l —cs/d))
Thus, g(s) = h(d(1 — s)) and h(s) = g(1 — s/d).

If X is SD, then h(s) = (ff((:g) is a LT. Now we need to prove that g(s) = h{(d(1 — s))
is a pgf. First, g(0) = h(d) > 0 and g(1) = h(0) = 1. Secondly, we take derivatives for g(s):

g™ (s) = (=1)*d*h™ (d(1 — s)) > 0 for n > 1. These indicate that g(s) is a pgf, so ¥ is DSD.

Open question: Conversely, for X, if the discrete analogue Y is DSD, is X SD?
We can show that h(s) is CM when s € [0, 1] and h(0) = g(1) = 1. But the difficulty is how

to extend the domain of A(s) from [0,1] to [0,00). We leave it as a conjecture.

This link between SD and DSD may help us to prove or disprove SD by looking at its

discrete analogue or DSD by looking at its continuous analogue.

In the following, we shall illustrate the applications of Theorem 7.1.2, 7.1.3 and 7.1.4 by

some examples. Many of them have been shown in the literature, but some are new. First we look

at the distribution with real support.




" Example 7.1 (Logistic) The SD of the logistic distribution is proved in Sim [1993] where he
‘proposed a discrete-time logistic GAR(1) process. Here we give another proof to illusirate the

power of generalized convolution. The logistic distribution has cf

1 1
M ]
px(s) = Mx(is) kHl 1— (is)2/k?) kl;[1(I+32/k2)

Hence, we obtain
svx(s) _ siﬁ 1+ s2/k) tox(s /cpx
vx(s) = K
oo [o 0]
= 2Zk2+32 = 2Z<k2+32 )

= 22 (k2/§24{232/2 1) '

o)
Now we need to show that for any C > 0, exp {20 > (FT%:-LEW - 1)} is a ¢f. Denote
k=1
[ Kk?/2
= 2 .
#s eXp{ Cz(k2/2+s )

k?/2
exp{2CZ <k2/2—|{32/2 1)} = ¢(s%/2).

o0 - .
This suggests that exp {20 > (p—% - 1)} is the cf of a variance mizture of the normal
k=1

Then

distribution if ¢(s) is the LT of a positive rv.
Recall GCMED (see Section 2.8.3), where the LT is defined as

exp {—as + /(0,00) <u—11-s - %) U(du)} = exp {—as + /(0,00) u(u_—f— S)U(du)} ,

' 1
where a > 0, / _
(0,00) U(]. + U)

U(du) < co. Taking a =0 and rewriting its LT, we have

exp {/(O’Oo) (uis - 1) %U(du)} — exp {/(O,OO) (uis _ 1) U*(du)},
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1 .
where U*(du) = u~ U (du) and / U*(du) < oo. It becomes ¢(s) if we choose the positive

(0,00) l1+u
measure U*(-) such that it only has mass 2C on discrete points {k?/2; k=1,2,3,....}. Obuiously,

o0
> 1_'_—’1'275 < 0. Hence, ¢(s) is a LT in GCMED family. This indicates that
k=1 .

k2/2
P {202 (k2/2 132/2 1)}

is a cf for any C > 0. By Theorem 7.1.2, the logistic distribution is SD.

Since logistic distribution is in symmetric EGGC family, a natural question is how about
other distributions in this family. This leads to the following conclusion for the symmetric EGGC
family.

Example 7.2 (symmetric EGGC) A symmetric EGGC distribution has cf of form

(s) = ex —43—2{/ tog (=) U(du) d>0
<p$ - p 2 (O,oo) g U2+52 U 9 ¢

where U(du) is a symmetric non-negative measure on R\ {0} satisfying

1
——U(du) < o and log ©2|U (du) < oo
/WO}HMQ (du) | Dog

Hence, it is the convolution of a N(0,d) and another distribution which has the cf

| 1 “_\
exp /(O’Oo) og (m) ( u) .

We know that the normal distribution is SD. If we can prove the latter generalized convolution s
SD, then the symmetric EGGC is SD. To do so, we consider the base distribution of the latter. It
has cf

) u? _ w u?/2
EXP1O8\ 21 2 T w2t s? u/2+s2/27

This can be viewed as the cf of a variance mizture of the normal distribution with representation
Xi\/?Z, where Y has the LT ¢y(s) = E%—?’ the LT of an exzponential. The exzponential dis-
tribution is SD (see Ezample 7.3). By Theorem 7.1.6, the base distribution is SD. Therefore, by
Theorem 7.1.4, the symmetric EGGC is SD.




Besides the logistic distribution, other common members in this symmetric EGGC family
include the t distribution, stable non-Gaussian distribution, and so on.

In fact, in a more general case, EGGC was proved to be SD by Thorin [1978]. Also one can
refer to Bondesson [1992], p. 107.

. Secondly, we turn to examples of distributions with positive support.

Example 7.3 (Gamma) Consider the Gamma distribution which has LT

ﬂ Y
¢X(§)=(ﬂ+s) ; B, v>0.

Then for any C > 0,

O e o R = ]

which is the LT of a compound Poisson with ezponential distribution. By Theorem 7.1.2, the

Gamma distribution is SD.

Special cases are the exponential and x? distributions.

Example 7.4 (GGC) It was shown in Bondesson [1992], p. 30 that a GGC distribution is SD.
This is simply because that Gamma distribution is SD. We now revisit it from the view of the theory
of continuous-time GAR(1) process.

Recall GGC in Section 2.3.3. It has LT

¢X(s)=exp{—as+/(0 )log (uis) U(du)}, a>0,

where the non-negative measure U(du) on (0,00) satisfies

/ [log u|U(du) < 0o and / U (du) < oo.
(0,1] (1,00)

Without loss of generality, we take a = 0, because any degenerate rv on a point o is always SD. By

calculation, for any C > 0, we have

exp {C. %"%} = ex? {C’/(O’oo) u__sSU(du)} = exp '{C/(O’oo) [uis - 1] U(du)} )




The conditions imposed on U(-) can lead to./ T +uU(du) < 00. It is indeed the LT of a
(0,00)
GCMED (see Ezample 7.1). By Theorem 7.1.2, GGC is SD.
This big family includes a lot of well known distributions. Common members are Gamma,

Pareto, strictly positive stable, lognormal, etc.

Example 7.5 (inverse Gaussian) Consider the inverse Gaussian which has LT

~ 1/2
¢X(s)=exp{% [1— (1+%‘;—23> ]} M p> 0.

Then, for any C >0,

-1/2
sdx(s) | _ 2u? \ 7
exp{C o) expg —pC-sl1+ 3S .
By (6) in Theorem 2.2.8, it is a LT. Therefore, the inverse Gaussian distribution is SD.

“Example 7.6 (Mittag-Leffler distribution) The SD property of Mittag-Leffler distribution can
be obtained from Jayakumar and Pillai [1993] where they construct a discrete-time Mittag-Leffler
GAR(1) process. Here we will use Theorem 7.1.2 to give another proof.

The Mittdg-Leﬁcler distribution has LT:

-1
= 1.
dx(s) el 0<y<
Hence, '
s’y (s) —3—737_1(14_87)_2 o=y 1 _1
ox(s) (1+ 7)1 T1xs |ite '

This means that for any C > 0,

erfo 280} wonfer -1

is the cf of a compound Poisson with the Mittag-Leffler distribution. By Theorem 7.1.2, the Mittag-
Leffler distribution is SD.

Lastly, we study examples of distributions with non-negative integer support. We shall use
the power of Theorem 7.1.3, which is very convenient when we know the pmf stipulated by g(s)

in the exponent. We only apply the arithmetic operation and do comparison, instead of the pgf

verification.




Example 7.7 (Poisson/some special compound Poisson) For Poisson, the pgf is G x(s) =
exp{A\(s — 1)} (A > 0), thus, ¢ =1, q& = 0 (k > 1). Obuiously, the conditions in Theorem 7.1.83
are satisfied. Therefore, Poisson is DSD.

Following are some ezamples of compound Poisson distribution.

(1) with Geometric:
The geometric distribution has the pgf

1—gq

g9(s) 0<g<l.’

T1-gs’

Thus, qk = (1-¢q)¢* (k > 1). By algebra, we have

kge — (k+ Dagep1r = k(1 — )¢ — (k+1)(1 — )" = (1-q)d* Ik~ (k+1)q]
= -+ [y ).

If ¢ < 1/2, then kg, — (k + V)gg41 > 0 for all k > 1. Otherwise, some may be negative.
Therefore, when q < 1/2, the compound Poisson with geometric is DSD, and when q > 1/2,

the compound Poisson with geometric is not DSD.

This leads to the result that GC I is DSD if V(-) has zero measure on (1/2,1) by Theorem
7.1.4. Refer to Section 2.3.3 for the pgf form of GC I

The compound Poisson with geometric distribution is the discrete analogue of the compound -
Poisson with exponential distribution. By Theorem 7.1.7, this result discloses that the con-
tinuous analogue in the compound Poisson with exponential distribution (corresponding to
q > 1/2 in discrete case) is not SD. However, to directly prove or dz’sprobe the SD ‘of the

compound Poisson with ezponential distribution is not an easy job.

(2) with another Poisson:

The Poisson distribution has pgf

g(s) = 67(5‘1), v > 0.




(3)

(4)

Thus, qx = 76—]:6“7 (k > 0). This compound Poisson with another Poisson is called Neyman’s

Type A distribution. See Johnson and Kotz [1969], p. 186. By algebra, we have

Qo1 _ TI® | _ 7 k> 1
qr :yk—lje_')’ kE+1° -

If v < 1, then it holds that %‘c’—‘ < k—fL—l for all k > 1, which leads to kqy — (k+ 1)gg41 > 0 for
all k > 1. Otherwise, some inequalities may not hold. Therefore, when v <1, the Neyman’s

Type A distribution is DSD; and when vy > 1, the Neyman's Type A distribution is not DSD.

with Katz family: -

It is defined by recursive probability system, i.e., the relationship between two successive prob-

ability masses is
' G+l _ o+t Bk
gk 14k
To guarantee that the ratio is non-negative, k < <5 when f < 0. See Winkelmann [1997],

k=0,1,2,...; a>0; B<1.

p. 36, Johnson and Kotz [1969], p. 87. Some well known members in this family include
Poisson, Negative Binomial, geometric, binomial, etc.

Since 3<1,1-B8>0. Thus, ifa+ B8 <1, thena<1-8< k(1 - B), for k=1,2,3,....
This leads to o+ Bk < k for k > 1, and q’;—:l < kL+1’ which indicates that the compound
Poisson with Katz family is DSD.

with Yousry and Srivastava family:

The recursive probability system has been expressed by three parameters as
Qet1 _ @ F Bk
o  k+7’
This results in the hyper-negative binomial model; see Winkelmann [1997], p. 37. When

£k=0,1,2,...; a, v>0; B<1.

vy=1, 1t becomes the Katz family. When B = 0, it leads to the hyper—Poisson distribution
(see Johnson and Kotz [1969], p. 43). ’

We want % < l—i—k for all k > 1. By algebra, we have

(1-Pk:—(a+B-7k-a>0
. A2, atfie
(k- 523) - w2 - (555) 20 k21

>
\%
=

2(1-5)




Let ko = [%—(‘Ll”;_—ﬂ}], the integer part. Then the minimum of the left hand side will be reached

; a+B-7\? a atf—y 2
at k = ko or k = ko + 1. Therefore, if (kg - 2(1_ﬁ)) ~ 5a-p) (2(1_[3)) > 0 and

2 : ‘
(ko +1- %{iﬂ;—_ﬁ}) - 2(1"1[3) — (2(155’) > 0, then the compound Poisson with the Yousry
and Srivastava family is DSD.

(5) with the Kulasekera and Tonkyn family:

The recursive probability system for this family has been formulated as

1+ k\“
q’;"’l:ﬁ( : ) , k=1,2,...; a€e®R 0< B <1
k

See Winkelmann [1997], p. 87. It includes the shifted negative binomial, the logarithmic series

and the discfete Pareto distribution.

' +1
We want (3 (1—%&) < 1+k for all k > 1. Thzs is equivalent to f < (%E)a for oll k& > 1.

Thus, it follows that for a +1 >0, B < (5) , or fora+1<0, 8 <1. Butin the second

case, it always holds because 8 < 1. Therefore, when a+1 > 0 and B < (%—

a+1 <0, the compound Poisson with the Kulasekera and Tonkyn family is DSD.

a+1
) , or when

Example 7.8 (generalized Poisson) The pgf is

Gx(s) —exp{ (Zn kn)k~ _k"sk/k!—1>}, where § >0, 0 <n <1.
Thus, qx = n(kn)*~te=*7/k! (k > 1). By algebra, we know that

kknke—kn (k‘ + 1)k+1nk+16—(k+1)n kknke——kn 1 k
- = - : = 1-ne(1+=) |.
kqi — (k+ 1)gr+1 X G x ne ( + k)

It is well known that (1 + %)k is increasing to e as k — oo. Thus,

1 k
1—ne™” (“‘ z) >1—pet™ € ().

Since lI'(n) = —e! ™M+ net™" = —e!"1(1-n) <0, I(n) >1(1)=1-1- el=1 =1-1=0. This leads
to kqr — (k + 1)gks1 > 0 for k > 1. Therefore, the generalized Poisson distribution is DSD.
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Example 7.9 (negative binomial) The pgf is

Gx(s) = (11—_;;)7 = exp {7 [log(1 —p)7'] [%‘_’%-1}}, ¥>0,0<p<l.

k

Thus qx = -_—mé’—(ljpj (k > 1). This leads to that for k > 1,
k k+1 k
kgk — (k + Ve = k——t—— — (k + 1) 2 v (1-p) =0

“klog (- p)] D= —les@—p)"

Hence, the negative binomial distribution is DSD.
Example 7.10 (discrete stable) The pgf is
Gx(s) =exp{-A1 -5} =exp{A1-(1-s)-1]}, A>0,0<6<1L

‘ k
Hence, qx = — [[ (i — 1 —0)/k! (k > 1). It follows that for k > 1,
i=1

k ka1
~[lGE-1-0) (i —1-9)
kgy — (E+1gppr = k—= X — (k+1)—= (1k+1)
k k
B Z];[1(1—1—0) 1 k0] HzI_'Il(zfl—O)
- S P s

> 0.
This shows that discrete stable distribution is DSD.

Note that the negative binomial and discrete stable distributions are the discrete analogues
of the Gamma and positive stable distribution respectively. Since the Gamma and positive stable
distributions are SD, we can also conclude that the negative binomial and discrete stable distribu-
tions are DSD by Theorem 7.1.7. Sometimes, like in the situation of logarithmic series and power
series distribution, because it is very difficult to directly prove that Gx(s)/Gx (1 —c+cs) is a pgf,

we have to resort to Theorem 7.1.2 to prove the DSD feature.

Example 7.11 (discrete Mittag-Leffler distribution) The DSD property of the discrete Mittag-
Leffler distribution can be derived from Pillai and Jayakumar [1995]. It also can be obtained by
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Theorem 7.1.7 for the Mittag-Leffler distribution is SD. Now we try to prove it using Theorem
7.1.2. '

-~

The pgf of the discrete Mittag-Leffler distribution 1s

1

Gx(8) = T rgn =y

d>0,0<y<1.

Let g(s) = 1 +v7 (s — 1)G% (s)/Gx(s). Then, it follows that

yd(1 — )77t d(i—s)" 1
1+dl—s)7 = 14d(l1—-s) 1+d(1-s)

g(s) -1 +77Hs - 1)
This completes the proof.
Example 7.12 (power series distribution) The pgf has form
Gx(s)=s1-(1-5)0, 0<6<1

Consider the function 1 4+ (s — 1 Gx(s) _ 1 _ ﬂl__s—)og. By (1) in Theorem 2.2.3, it is a pgf.
Gx(s) s 1—-(1-s)

Theréfore, the power series distribution is DSD.

Example 7.13 (Zeta distribution) The pgf Gx (s) does not have closed form. However, 1+ (s—

1)%5% is a pgf. See (4) in Theorem 2.2.3. This implies that Zeta distribution is DSD.

Example 7.14 (GNBC) Because the GNBC is the limit distribution of sums of independent
negative binomial rv’s, and NB distribution is DSD, the GNBC class is DSD. |

Taking advantage of SD or DSD feature of a distribution, we sometimes can prove new LT
or pgf. For example, suppose Zeta distribution is known to be DSD, then we can conclude that
L(s)=1+C(s - 1)%{% (C chosen so that L(0) > 0) is a pgf, which we had spent a lot energy
and time to prove in Section 2.2.1.

Now we finish this section. with the discussion about the Tweedie exponential dispersion
family. Tweedie model can be categorized as extreme stable, positive stable, Gamma, compound

Poisson with Gamma, inverse Gaussian, Normal and Poisson. From previous examples, we know

that the Poisson distribution is DSD, and the extreme stable, positive stable, Gamma, inverse
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Gaussian and Normal distributions are SD. The only category left is the compound Poisson with
Garﬁma, which can not always be SD but a subfamily of it is SD. One can refer to Example 7.7 to
see the DSD feature of the compound Poisson with the geometric distribution, which is the discrete
analogue of the compound Poisson with the exponential distribution. Only part of the family is
DSD. Hehce, we can not expect the whole family of the compound Poisson with Gamma to be
SD. This fact tells us that constructing a steady state continuous-time GAR(1) process with the
margins of the compound Poisson with the Gamma distribution may be futile if we just censider
the constant multiplier operation. A possible approach to solve this problem may be to resort to

the GSD classes proposed in the next section.

7.2 Generalized self-decomposable, generalized discrete self-

decomposable classes and their infinite divisibility property

In the previous section, we have coﬁsidered the pair of binomial-thinning and constant multiplier
stochastlc operation (I1, P1), which induce the DSD and SD. Now we turn to other pairs of
extended thinning operatlons (12, P2), (13, P3), (14, P4), (I5, P5). These will lead to new
concepts. |
in general, for a continuous-time GAR(1) process under steady state, the following kind of

decomposition holds:
d . ta—t1
x< (e—#(tr“))K ®X + / (e7) j ® de(t), p>0, t <t
0

or in another form

XL () ®X +E(ti;t2), c€(0,1).

With K is from (I1, P1), they are called DSD and SD. Naturally, such a question arises: how
about other extended-thinning operations? It seems that this is new to researchers.
Therefore, we introduce the generalized self-decomposability and generalized discrete self-

de-composability in the following.

220



Definition 7.1 (Generalized discrete self-decomposability (GDSD)) Suppose X ~ F. Let
{K(a)} be a family of self-generalized distributions with non-negative integer support. If for each

¢, 0 < ¢ <1, there ezists a non-negative integer-valued 1v €. such that
d
X: (C)K®X+6c,

where €, is independent of X, then the probability distribution F is called generalized discrete self-

decomposable (GDSD) with respect to {K(c)}.

This definition is equivalent to that Gx(s)/Gx(Gk/(s;c)) is a pgf for each 0 <c < 1.

Definition 7.2 (Generalized self-decomposability) Suppose X ~ F. Let {K(ca)} be a family
of self-generalized distributions with positive support. If for each ¢; 0 < ¢ < 1, there exists a
non-negative 1v €. such that

XL () ®X +e,

where €, is independent of X, then the probability distribution F is said to be generalized self-

decomposable (GSD) with respect to {K(a)}.

An equivalent definition is that X is GSD with respect to {K ()} iff for each ¢, 0 <c < 1,
¢x(8)/dx(—log px(s;c)) is the LT of a probability distribution.

An obvious fact is that for a non-negative integer GDSD(DSD) rv X or positive-valued
GDS(SD) rv X, it is always stochastically larger than (c)x ® X, ie.,

() ®X < X.

This is because €. > 0 and

Pr(X <z] = Pric)g ® X +e. <z] < Pr{(c)x ® X < zl.

The self-generalized distribution family may consist of many members although currently
we only know of the subclasses from I1 to P5. Each subclass could be associated with a fixed

parameter or parameter vector. For example, the distributions from I2 have an associated fixed
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parameter v where 0 < v < 1, and the distributions from I5 have an associated fixed pardmeter
vector (y,6) where 0 <y < 1 and 6 > 1. To distinguish these GDSD and GSD families associated
with different self-generalized distributions as well as their fixed parameter or parameter vector,
we shall adopt the notations like: GDSD(I2(7)), GDSD(I3), GDSD(I4(6)), GDSD(I5(v,6)), and
GSD(P2(v)), GSD(P3), GSD(P4(9)), GSD(P5(7,8)) to clearly indicate the attribute of associ-
ated self-generalized distribution and its corresponding fixed parameter or parameter .vector. The
label number can be extended for classes of self-generalized distributions discovered in the future.
Hence, we generally denote a specific GDSD or GSD class as GDSD(Ii(6)) and GSD(Pi(8)) re-
- spectively. Here 8 is the corresponding fixed parameter or parameter vecﬁor. In addition, the union
of all members from a self-generalized distribution family over the space of the fixed parameter or

parameter vector is denoted as GDSD(Ii) or GSD(Pi), namely
GDSD(Ii) = U GDSD(Ii(8)) and GDSD(Pi) = U GDSD(Pi(8)).
0 0

In previous sections, we have seen many examples where stationary distributions of the
continuous-time generalized AR(1) processes exist; these mean that the bresulting GDSD or GSD
classes corresponding to their extended-thinning operations are not empty. However, we are not
sure if the extended-thinning operation associated with a family of self-generaiized distributions
leads to a GDSD or GSD class. Perhaps some of these classes are empty. The following theorem

presents a necessary condition for non-empty GDSD or GSD classes.
Theorem 7.2.1 Suppose a family of self-generalized distributions have pgf Gk (s; @) or LT oK (s; ).

(1) A necessary condition for the ezistence of a GDSD class is that Gi(s;a) > s for all0 < s <1
and 0 < a < 1.

(2) A necessary condition for the ezistence of a GSD class is that oK (s;0) > €7 forall s >0
and 0 < a < 1. v

Proof: The proofs of the two cases have the same reasoning. To save space, we only show the

proof of (1).
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If X is GDSD with respect to the self-generalized distribution family, then X 4 () * X +e€q
for all 0 < @ < 1, where €, is a non-negative integer random variable. Hence (a)k * X <5t X

((a) k¢ * X is stochastically smaller than X), and
Ga)xrx(s) =E (s(")K*X) > E(s%) = Gx(s), forall 0 < s < 1,

because h(z) = s® is decreasing in z for all 0 < s < 1. Since G(q),+x(s) = Gx(Gk(s;)) and

Gx(s) is increasing in s, Gx (Gk(s; @) > Gx(s) iff Gk (s;a) > s.

In the study of SD and DSD, we found that the discrete analogue of positive SD is DSD.
This is.also true for each pair {GDSD(Ii(8)), GSD(Pi(8))}.

Theorem 7.2.2 If the positive v X is GSD(Pi(0)), then its discrete analogue Y is GDSD(1i(0)).
(see Definition 2.6 for the discrete analogue).

Proof: Assume X has LT éx(s) (s > 0) and Y has pgf Gy(s) (0 < s < 1), and Gy(s) =
¢x(1 —ds) (0 < s < 1). Thus, ¢x(s) = Gy(l — s/d). For each pair of the self-generalized
distribution with non-negative integer and positive support (Ii, Pi), the relationship between their
pgf and LT are

—log ¢k, (s;a) =1 — Gk, (1 — s; ).

where K; is from (Pi(@)) and K, is from GDSD(Xi(@)); see Section 3.3. It follows that for
0<c<1,withd=1, -

gt Gy(s) _ ¢x(1—s) _ ¢x (1 —s)
Gy (G, (s;c))  éx(1-Grk,(s;c))  ¢x(=log ¢, (1 —s;¢))’

()

and _
h(s) ¢x(s) _ Gy(l —s) _ Gy(l1-59)

| ¢x(—logdx,(s;c))  Gy(L+logox,(s;c))  Gy(Gr,(1—s;¢))
Thus, g(s) = h(1 — s) and h(s) =g(1 —s), 0 <s < 1.

If X is GSD(Pi(8)), then h(s) = %T(ﬁ)(s—-c)) is a LT. Now we need to prove that
1 b

g(s) = h(1 — s) is a pgf. First, g(0) = h(1) > 0 and g(1) = h(0) = 1. Secondly, we take derivatives
for g(s): g™ (s) = (=1)"d*h(™(1 - s) > 0 for n > 1. These indicates that g(s) is indeed a pgf, so

Y is GDSD(Ti(9)).




However, the converse is not true. A counterexample is shown in Example 7.18.

The GDSD and GSD classes are always associated with a self-generalized distribution and
its fixed parameter or parameter vector. Bearing this fact in mind, we shall suppress the associated
self-generalized distribution and its fixed parameter or parameter vector in the rest of this section,
i.e., leaving 1i(@) and Pi(@) out from the previous notations, unless we have special reason to
address them. This may lead to simpler writing.

Similar to Theorem 7.1.2, we have the following result, which is useful in proving the GSD

and GDSD.
Theorem 7.2.3 Let X be a non-negative Tv.

(1) Assume X has positive support with LT ¢X(s).- Let K be a positive self-generalized rv, and
H(s) = 2 [ log ¢k (s, )] 1a:1' If exp {C- %i—ﬁx)(—)} is @ LT for all C > 0, then X is GSD.
(2) Assume X has non-negative integer support with pgf Gx(s). Let K be a non-negative integer
self-generalized rv, and H(s) = %a—(-s’—a) ot If1+C- H—(CST))%)(—S) is a pgf for some C > 0,

{83
then X 1s GDSD.

Proof: Like Theorem 7.1.2, for any 0 < ¢ < 1, we express ¢(s)/¢(—log ¢x(s; ), or G(s)/G(Gk(s;c))
in terms of exp {C- %)-}, orl+C- H(g)XG(');)(S)_

(1) First, it follows that

H(-logdx(s:8) = [~ log dic(~log ¢ (si ). )

- %[—log¢K(S;aﬂ)].a=1 = <5a§[_10g¢1{(8;7)] ‘7=ﬁ)ﬁ
= (5% [—logqﬁx(s;ﬂ)]) B.

Since exp {C . —ml’—‘(rs)} is a LT for any C > 0,

ox(s

L H(~log ¢ (s; 8))dx (— log ¢k (5;8)) 1
e"p{/c bx (—log ¢k (5 B)) g% }

224




is a LT too. This comes from the idea of generalized convolution. We compute the integration

in the exponent,

exp{/l H(—log ¢k (s; B))#x (—log d’K(S;ﬁ))ldﬁ}

¢x (= log ¢x (s; £)) B
o /1 B (% [-10g dic(s; B)]) ¢ (~log bxc(s: 8)) 1 “
¢ ¢x(—log ¢x(s; B)) B

(o grl(siB) )
ool [ ey esno)]

= exp{/cldlog¢x(—10g¢1((3;f3))}

il

= exp {log ¢x(s) — log px (—log dx (s;c))}
_ $x(s)
¢x (—log ¢k (s;¢))’
which means that 7 ox(s) is a LT. Hence, X is GSD.

x (—log ¢k (sic

(2) Similarly, it follows that

HGk(s:B) = = lGx(Gx(s6),00]
= 2 ax(siap)

::1((% Grlsil] _,) B

- #(5 G5B

Since 1+ C - E(Gif(%(s—) is a pgf for some C > 0,

H(Gk(s;8))G% (Gk (s B))
Gx(Gk(s;8))

from the extended-thinning operation, is a pgf too. By the mixture operation in (3) of ‘

1+C-

Proposition 2.2.2, it follows that

- Cteeat [ H(Gk(s;8))Gx (Gk(s:8) | L
ot = -ogel™ [ (10 FORGERRREEL) Sas
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is a pgf. By algebrd, we obtain

0 = —togat [ o B@ < B))G'x (Gk (53 8)) o
o) = (g [ [o HEGRACEEE 1) 5mas

1 GK ﬁZGI G 1
= [~logd™! {C’/C ( K() ))dﬁ+/c d(logﬁ)}

(GK(31 /B)

= [~logd“Clog @(%XT((S;'m t
Thus
_Galy)
Gx(Gk(s;c))

the pgf of a compound Poisson distribution. Hence, X is GDSD.

= exp {log(c™1)C " g(s) — 11},

Remark: Theorem 6.3.1 is the necessary part of the results, while Theorem 7.2.3 is the sufficient

part. Also the conditions in the following Theorem 7.2.5 are necessary too when we pick up K

" from I2 in Theorem 6.3.1.

Corollary 7.2.4 Let {K(a):0 < a <1} be a family of self-generalized Tv’s.

(1) If it leads to extended thinning operators and a GSD class, then

() = o [Flogg(sa] | 20, 0gs<w.

(2) If it leads to extended thinning operators and a GDSD class, then

0Gk(s; )

Hs) = oo

<0, 0<s<1.

a=1

Proof:

(1) Since ¢’y (s) <0, —(—5 < 0. To guarantee that exp {C . %@} isa LT for all C > 0, it
must hold that H(s) > 0 for all 0 < s < oc. '

(2) Because L(s) = 1+ C - H(s)G'x(s)/Gx(s) is a pgf for some C > 0, 0 < L(s) < 1. Since
G's(s) > 0, Gx(s) >0 for all 0 < s < 1, it must hold that H(s) <0.
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In summary, both cases show that exp {%Q} and exp {H—(é—)x%%‘@} are the LT and
pgf of ID distributions. Thus, for K being a positive-valued self-generalized rv, accoraing to
Theorem 2.2.6, a necessary and sufficient condition for X being GSD is that H (3)% is completely
monotone. For K being a non-negative integer self-generalized rv, we can further derive the results

similar to Theorem 7.1.3. Here we give the corresponding result for K being frdm I2.
Theorem 7.2.5 For a compoun'd Poisson rb X with pgf
Gx(s) = exp{A[g(s) — 1]}, A >0,
where g(s) = qo +q15 + Qs+ ...+ qes® 4+ ..., a pgf on the non-negative integers. If
(1+7)a —2¢2 20, k(1 +7)gk— (k—1)vgqe-1 — (k+ 1)gks1 2 0, k=2i~q
then X is GDSD(12(7)).

(1—75)(s—1)Gx (5)

Proof: Consider 14 C'- . By algebra, we obtain

(1-7)Gx(s)
C (1-798)(s—1)G%(s) \C ,

1+ . =1+ —1Q—-7vs8)(s—1)g'(s

A T —Gx () 1_7( v8)(s —1)g'(s)

=1+ —1>\_—C’7(1 —vs)(s — )[q1 + 2g25 + 3g382 + ...+ kars® 1+

AC > k
=1+ 1—_;(1 —s) | —q1+ > _[kax — (k + 1)gesals

k=1

AC
=1+I?7("m+K1+ﬂm—2@b+{ﬂb+w@—7mf3%b2

+BG+VM3—?MT—MA§+~-+%O+7Mk—%—lh%qf%k+1MHﬂf+-~)

CX AC '
= (1 ~ 1 Q1> + ——([(1 +9)q1 — 2g2)s + [2(1 + 7)gz — va1 — 3]s
- 1 -7

+Bﬂ+7My—%@—4%HU~~+MO+Vwa%—lh%qf%k+n%ﬂbhk~)

, CA AC
=<1—1_7m)+fj; s* k(1 + )k = (k — yage-1 — (k + 1)gr4a]-
k=1

Thus, that it is a pgf is equivalent to

N
@ >0, k(1+7v)ge—(k—1)yge—1 ~ (k+1)gg+1 20, k=1,2,3,....
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We can always take C = 1—;1 to guarantee 1 — %ql =1— gy > 0. This completes the proof.

Recall that GDSD(I2(y)) is induced by a non-negative integer self-generalized rv K from
12, which has pgf of form

(1-a)+(a=7)s
(1-ay) - (1 -a)ys’

Gk(s;a) = 0<a<l,

where v is fixed and 0 < v < 1. Hence, the GDSD(I2) is a big class consisting of subclasses

associated with the fixed parameter . Thus,

GDSD(12) = | J GDSD(I2(v)).
Yelo,1)

Since when v = 0, K becomes from I1, we have DSD=GDSD(I2(0)) as the special boundary case.

Corollary 7.2.6 For a compound Poisson rv X with pgf
Gx(s) =exp{Alg(s) - 1]}, A>0,

where g(8) = go + q15 + g2s2 + ...+ qes® + ..., a pgf on the non-negative integers. If g1 — 292 >0
and X is GDSD(12(7)), then X is DSD.

Proof: We can rewrite the conditions in Corollary 7.2.5 aé
0 - 23 > —vq,  kak — (5 + Vg > (k- 1)§k—1 —kq),  k=23,....
Since X is GDSD(I2(vy)) and ¢1 — 2g2 > 0, we can conclude by inductiop that
kqr — (k + 1)gr+1 > 0, k=1,2,3,....
By Theorem 7.1.3, X is DSD.

As for the ID property, Steutel and van Harn [1979] (Theorem 2.2) proved that a DSD
distribution is ID. Their idea was to express the pgf, G(s), of a DSD distribution in an exponential

form which is the pgf of a compound Poisson. Specifically, it takes advantage of Theorem 6.3.1 so

that exp {2%)76%@} is the pgf of an ID distribution. Thus, it follows that

H(s)G's(s) — exp [ \a(s) —
oxp { LIEL — exp 20(0) - 1)
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where g(s) = qo + @15 + q25% + ... + qxs® + ..., a pgf. This indicates that

HOGKE) -1, o Glels) _ Mgls) = 1]

-1
Gx(s) H(s) =

By integration,

LGlh(u) , L _ [ Ag(u) - 1]
/s G—f((—u—)du = log(GX(u))L = —logGx(s) = /S —H(—u)—du.

This leads to Gx(s) = exp{—/1 %ﬂdu

2 gggfl] in term of u and integrate it to obtain a new power series in s. All coefficients in the new

}. For DSD, H(u) = u — 1. We can expand

power series are easily proved to be non-negative and the sum of them are finite. However, for
other self-generalized distributions with non-negative integer support, it is not easy to generalize
this idea, because we are not clear the form of H(u). Hence, their method is restricted by the form
of H(u). To prove the ID property for a GDSD distribution, we have to resort to other approaches.

Feller [1966b], p. 550-555, proved that a SD distribution is ID by taking advantage of a “null

array”, which is a special triangular array:
Xl,na X2,n, X3,n, ey Xrn,n§ n = 1,2,3,... y Tnp is finite.

All of them are independent rv’s. This “null array” is defined as that for given € > 0 and so > 0,

it has

11— ox; . (s)] <e |s| <s0, 1=1,2,...,7n;
for all n sufficiently large. Denote the row sum S, = X1, + -+ + Xy, n. Then, Theorem 1, on
page 550 in Feller [1966b], shows that if S, + 8, tends in distribution to a rv U, then U is ID. Here
{Bn;n € N'} is a sequence of real constants. Without any difficulty, we can modify the definition
of “null array” for a non-negative integer rv triangular array and a positive rv triangular array by

replacing their cf’s with their pgf’s or LT’s respectively, namely for given € > 0 and so > 0,
0<1-Gx;,(s)<e so<s<1l, i=12,...,mn;

and

0<1-¢x,(s)<e 0<s<sg, t=12,...,m0;
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for all n sufficiently large respectively. In principle, these new definitions are equivalent to their
original definitions. Therefore, for these two particular types of “null arrays”, Theorem 1 on page
550 in Feller [1966b)] is still valid.

In the following theorem, ‘we shall follow Feller’s-idea to show the ID property for both of
the GDSD and GSD classes.

Theorem 7.2.7 Let K be from a self-generalized distribution. It follows that

(1) if K is a non-negative integer rv with pgf Gk (s; ) continuous in a in [0,1], then a GDSD
distribution is ID;

(2) if K is a positive rv with LT ¢k (s;a) continuous in o in [0,1], then a GSD distribution is
ID. '

Proof:

(1) Assume G(s) = Gx(s) is the pgf of a GDSD distribution with non-negative integer support.
X is a rv from this distribution. Note that Gk (s;0) = 1 and Gk(s; 1) = s. Since G (s; ) is

continuous in « in [0, 1], The following identity always holds:

_ 1Y), GOk (s2) . COx(sh) Gl
ot = o(0x (1)) * GiEntady G (Gr (5%2)) * G (G (5 20))
_ G(Gk(sY)  C(Gx(s2) | G(Gx(s™L)  G(Gx (s3)
G ) " TG ad) T GO ) G R

where n = 1,2,3,.... When X is GDSD, this identity has the following explanation:

-1
(), o545,
n /K

1B

TN
3
S|
—
Na——’
=
®
o
e

-2 -1 , ~2
(n ) @(n ) ®X+E2=<n ) ® X + Eo,

1 .
) ®X+E,1= <—> ®X + FEn_1, (7.2.2)
K n/) kg

N
S|
SNe—’
=X

®
D
T
N
N | —
S——’
=

®
N
j o

n




where Ey, F, ..., E,_1 have respective pgf’s

6 _ 6 (G (5%5)
x5 Y T GG 5E)

n

6 (Gx (5:2))
G (Gk (si3))
Taking the sum for these equalities in (7.2.2) and computing the pgf for the left hand right

GE, (s) = ) GEn—l(s) =

hand sides, assuming independence, yield

Gx(s) X G("T_l)KGBX(S) XX G(%) @X(S)
= G(az1), ox(8) X X G(2) ox(8) X G(3) ox(8) X Tra(s) X X Ory (8):

By substitution, this leads to (7.2.1). This means that each factor (a ratio) in (7.2.1) is a pgf.

Note that it also shows a decomposition for X:

X =

1 .
(—) ®X + Ey_1+ -+ Ez + EL.
nJ) g ,

Hence, for each n € N, X can be seen as the sum of n independent rv’s
Xl,’n,a X2,na X3,TL’ ey Xn,n-

Therefore, it forms a triangular array, and the sum of each row has the same GDSD distri-

bution. If we can prove that this triangular array is a “null array”, namely
0<1-Gy,,(s) <e sp<s<1, 1=12,...,m

for all n sufficiently large, then, by Theorem 1 on page 550 in Feller [1966b], X is ID.

By Property 3.5, Gk(s;c) is uniformly continuous in e in [0,1]. Hence, G (Gk (s;)) is
uniformly continuous in « in [0,1]. Meanwhile, the pgf G (Gk (s;@)) is also uniformly con-
tinuous in s in its range [0,1]. Since Gk(s;0) = 1 and G(s;1) = s, Gk(s;a) is bounded
away from 0 for so < s <1 and 0 < a < 1. Hence G(Gk(s;)) is bounded away from 0 for
so < s < 1 and uniformly continuous in a. Therefore, given € > 0, for n sufficiently large,

Vsg<s<1,i=12,...,n,

o(on()-olox (] fo(ox () <

and the triangular array is a “null array”. This completes the proof.
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(2) Assume ¢(s) is the LT of a GSD distribution with positive support. X is a rv from this

distribution. Consider the identity:

(LY e (52) g logdu (s55)
#s) = ¢( lg‘“‘(’n)) 4 (Clog dx (1)) & (Clog éx (5 222))
5 (5)
X¢( logd)K( )) | o (7.2.3)
¢ (“log¢i (55)) (=1 og i (s:2)) ,,.X¢(—10g¢z<(a71))
¢( logéx (52))  #(—logox (5i4)) -~ ¢(~logex (s %2))
¢ (—log ¢k (5;2)) _
X¢>(—log¢K( _—l))’ n=123,....

Because

b (= log pc (5:8)) _ 6 (~1og pxc (5 8)) «_,

¢ (—log ¢x (3§04).) ¢(—108¢K (_10g¢K (3;5);%)>

and X is GSD, the right hand side is a LT. This indicates that each ratio in (7.2.3) is a LT.

Hence, for each n € N, X can be seen as the sum of n independent rv’s

Xl,na X2,na X3,na ) Xn -

’

Therefore, it forms a triangular array, and the sum of each row is distributed in the same

GSD distribution.

The remainder of the proof is exactly the same as in (1).

Accordingly, we can obtain the following results for GSD and GDSD which correspond to
those for SD and DSD. |

Theorem 7.2.8 Consider the positive or non-negative integer-valued generalized convolution.

(1) If the base distribution of a positive-valued generalized convolution is GSD, then the generalized

convolution 1s GSD.

(2) If the base distribution of a non-negative integer-valued generalized convolution is GDSD, then

the generalized convolution is GDSD.




Proof: Applying the fact that the generalized convolution is the limit distribution for the sum
of independent rv’s from the base distribution. If the base distribution is GSD or GDSD, then
the distribution of the sum is GSD or GDSD. This leads to GSD or GDSD for the generalized

convolution.

Theorem 7.2.9 If the distribution of the increment of the innovation process in a continuous-time
GAR(1) process is SD or DSD, then the stationary distribution of the continuous-time GAR(1)
process is SD or DSD respectively. ‘ ’

Proof: Apply the same reasoning as the proof of Theorem 7.1.5.

Next, we turn to some concrete examples. Basically, we are focusing on GDSD(I2(v)) using
Theorem 7.2.5 and GSD(P2(7)) with Theorem 7.2.2. This is enough to illustrate the concept of

GDSD and GSD for the general cases. More examples in other situations are under study.

Example 7.15 (negative binomial) The NB distribution can be viewed as a compound Poisson
with logarithmic series distribution. The NB(B,q) has pgf

GX(s)=exp{ﬁ [log(l——q)_l] [%H—l]}, B8>0 0<g<l.

k

Thus g(s) = lfogg(ll__q; and qr = —_kléh_—qi (k > 1). Now we want to check if it belongs to

GDSD(12(7y)). By verifying the conditions in Theorem 7.2.5, we obtain two inequalities:
(149 -¢>0, (1+v)g-7-¢20.

The first one always holds. The second one leads to v < ¢ < 1. Hence, for any q € (0,1), we can
always find a v such that v < g. This leads to that negative binomial belongs to

NB(8,q) € ‘ﬂ GDSD(12(v)) ¢ GDSD(I2).
76[0«1]_

Hence, any negative binomial is GDSD(12).

Example 7.16 (compbund Poisson with geometric) The geometric distribution has the pgf

- |
gls) = —L,  0<q<l.

T 1-gs’
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Thus, qx = (1 - q)qk (k 2 1); and
ke — (k+ Daesr = k(1 — q)¢" — (k + 1)1 - )" = (1 - q)¢*lk — (k+ g}, k21
We want

g1 —2q2 > —yq1, kge — (k+gr1 2k — Dae—1 —kge], k=23,

so that this compound Poisson distribution can be GDSD(12(7y)). These inequalities lead to

1+722q7 (q_f}l)(l_q)kzqz_’% k:2a37’

or in a uniform expression

(g-N1—-qk>¢* -7y, k=1,23,....

. iy , 2 .
If ¢ < 7, then k < —7—‘1——(7 =) 50 these inequalities won’t hold when k > -—’L—q—h_q)(l_q). Hence, it is
necessary that ¢ > v. To guarantee all inequalities hold, it suffices that 1+~ 2 2q when k =1, t.e.,
v > 2q — 1. Therefore, in summary, vy should satisfy that

max(0,2g-1)<v<g, 0<g<l.

If ¢ < 1/2, then max(0, 2g — 1) = 0, taking v = 0 is enough. This will lead to the conclusion
that when q < 1/2, the compound Poisson with geometric distribution 1s GDSD(12(0))=DSD,
consistent with our claim in the pé"evious section. Besides, it also belongs to any GDSD(I12(7)),
where 0 < v < q.

If ¢ > 1/2, max(0,2q — 1) = 2¢ — 1, then we can always take at least v = 2g —1 > 0.
Under this situation, the compound Poisson with geometric distribution won’t belong to DSD, but
is GDSD(12(7y)) with 2¢ —1 < v < gq. |

In summary, the compound Poisson with geometric distribution always belong to GDSD(12).
Example 7.17 (discrete stable) The pgf is

Gx(s) = exp{—-A(1— s)%}, A>0, 0<6<1.
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Thus, G'x(s)/Gx(s) = A(1 — s)9=1. Now consider-the class GDSD(12(v)). According to Table
6.1, H(s) = (1 —v)" (s — 1)(1 — 7vs). Applying (2) of Theorem 7.2.3, we consider

L) =1+C-(1—y) s =1)(1 —ys)M(1 —5)01=1-C- 21— (1 —vs)(1 - ).

Taking C = (A\0)~1(1 — v), we have
o

Lis) = 1—-(1—7s)(1—s)° = 1—(1—7s)(1—i

bjsj)
Jj=1 :
= 73+ij57 —'yij_ls] = ('y+b1)s+Z(bj — vbj_1)s7,
J= j= . J=2

where by = 0 and b; = O[22, (1 — 8)/5! for j > 2. Since bj/bj 1 =(j—1-0)/j =1-(1+6)/j is
increasing in j, L(s) is a pgf if y < bg/by =1— (1+6)/2 = (1 —6)/2. Hence, when v < 1/2 and
9 <1-2v, X is in GDSD(12(7)).

Example 7.18 (Counterexample of the converse of Theorem 7.2.2) The continuous ana-

logue of discrete stable (see Ezample 7.17) is positive stable with LT
dy(s) =exp{-Xs’}, A>0 0<d<1

the positive stable LT. ¢4 (s)/py(s) = 6s°=1. For P2, according to Table 6.2, we have
H(S)¢’y(8)/¢y(8) = =61 =y +798)s’/(1 = ).

Let x(s.) S —y+7ys)=(1—7)s® + vs9t1. Then, x is not completely monotone if 0 <y <1
since 4
Y (8) = (1 =7)8s% 1 + (6 + 1)s° > 0,
X'(8) = (1 —7)5(6 = 1)s°2 + (6 + 1)6s°
and x"(s) > 0 for s sufficiently large. By Theorem 2.2.6, exp{—C - x(s)} can not be a LT. Thus,
according to (1) of Theorem 7.2.8 and (1) of Theorem 6.3.1, the positive stable is not GSD(P2(vy))
for any 0 <y < 1. |

This is an ezample where the continuous distribution is not GSD but the discrete analogue

is GDSD [when v < (1 —46)/2].
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7.3 Relationships among the classes of generalized self-decomposable

and discrete self-decomposable distributions

Relationships among the GDSD and among the GSD classes are of interest. One may wonder if
one covers another, or if they are overlapping or disjoint. The‘difference between two classes will
certainly appear in modelling, namely leading to different model classes. In general, it’s hard to
answer such question. In this section, we shall particularly investigate the relationship among the
class of GDSD(I2), as well as among the class of GSD(P2). From this special study, we may have
some impression on and partially answer this issue.

First, we look into GDSD(I2). As a special case, it includes DSD=GDSD(I2(0)). But
in general, it consists of all GDSD(I2(y)), where 0 <y < 1. A natural question is what’s the
relationship between DSD and GDSD(I2(7)), for a fixed v. Although Theorem 7.1.3 and Theorem

7.2.5 offer conditions for DSD and GDSD(I2(y)), it won’t help us because we can’t deduce one
from the other. Hence, we have to study some special members to investigate the relationship

between DSD=GDSD(12(0)) and GDSD(I2(7)), where 0 <~y < 1.
(1) Do all distributions in DSD belong to GDSD(12(7))?

Let’s consider the Poisson and Neyman’s Type A distribution. The latter is the compound

Poisson with another Poisson.

The Poisson has pgf Gx(s) = e~ (A > 0). In terms of the pgf form of the compound
Poisson, g1 = 1, q; = 0, k> 2. Thus, ¢1 —2¢2 = g1 > 0 and 2¢; — 3¢3 = 0. For any v > 0, it
never holds that 2¢g2 — 3¢3 > v(q1 — 2¢2). By Theorem 7.2.5, the Poisson distribution doesn’t
belong to GDSD(I2(y)) for 0 <y < 1. -

The Neyman’s Type A distribution has pgf Gx(s) = exp {x (e”(s—l))} (A,7 > 0), that is

Q. = Z};!e"' (k > 0). Hence, gr41 = zqqx for k > 1. We check if for any 0 <y < 1,
@ - 202> —vq1, kg — (k+ Dgegr 2 7[(k — Dag-1 — kg,  k=2,3,....
These leads to

1>n—v, Yk*-—(+m+nk+n°<0, k=23,....
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For the latter inequalities, when k — oo, it is impossible to hold because the left hand side
will go to infinity. This means that the Neyman’s Type A distribution is not GDSD(12(%))
for 0 < v < 1. However, it is DSD when 1 < 1. See (2) in Example 7.7.

There are other examples like these two. This implies that DSD is not covered by GDSD(I2(7)).

(2) Do all distributions in GDSD(I2()) belong to DSD?

Consider the compound Poisson with geometric distribution, where the geometric distribution

has the pgf g(s) = f%qqs— (0 < g < 1). Now choose g such that
lag< Y, if0<y<y,
M if L <y <1

By Example 7.16, it is GDSD(I2(7)). However, it is not DSD. See (1) in Example 7.7.

This implies that GDSD(I2(7y)) is not covered by DSD.

(3) Are there distributions common to both of DSD and GDSD(12(%))?

' 8
We consider NB(ﬁ,g) with the pgf Gx(s) = (11{(195) (B >0, 0<q<1).It is known that
the negative binomial is DSD. Suppose ¢ > . Then, by Example 7.15, it is GDSD(12(7))

too.

This shows that DSD and GDSD(I2(y)) have common members for each 0 <y < 1.

Therefore, based on these analyses, the relationship between DSD and GDSD(I2(y)) is overlapping.
Recall that these distribution members will be used as the marginal distributions for a steady state
continuous-time GAR(1) process. Thus, the obtained fact means that for the common distribution
members, we can construct more than one kind of continuous-time GAR(1) processes; however,
for the non-common distribution members, we only can construct one continuous-time GAR(1)
process.

For 41 < 72, by the example of the compound Poisson with geometric distribution, we
know that GDSD(12(7:)) and GDSD(I2(72)) have common distribution members. In addition,
the conditions in Theorem 7.2.5 do not support that one is a subset of the other. Hence, their

relationship is overlapping.
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Figure 7.1: The relationship of ID, DSD and GDSD(12).

Figure 7.1 shows the relationship of ID, DSD and GDSD(I2).

For a given 0 < 7y < 1, it is interesting that we can always construct a distribution which
only belongs to GDSD(I2(y)). This fact is established by rearranging the first two probability
masses in the compound Poisson with geometric distribution in Example 7.16. We describe it in

the proof of the theorem below.

Theorem 7.3.1 For any 0 < vy < 1, there exists a distribution which belongs to GDSD(12(v))
but not GDSD(12(%y)), ¥ # o-

Proof: We shall apply a construction method. Example 7.16 shows that for any o € [0,1), the
compound Poisson with Geometric(yo) is GDSD(I12()) for v € [max(0,2vo — 1),70]. The lower

bound max (0, 279 — 1) comes from (1++)g1 —2g2 > 0. Now decrease g; to q = 1—1‘%—0 and increase gop

to g = go+ (g1 —¢})- Then, ¢} = 1—?&/—0— < g and gy =qo+q1 — 1—2% > go. The remaining g; (i > 2)
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are the same. We shall see when this new compound Poisson distribution is GDSD(12(y)) for some

7. This is equivalent to checking

(HWM}JQZO,Mrﬁ%Zﬂ%—%%km—w+D%H27M—D%4—MA k=3,4,...

_ The first inequality will hold iff y¥ > 9, because (1 +)q] — 2g2 = 2¢2 (1_13% - 1) = 2qs - % The

second one still holds when max(0,2yy — 1) < v < 70 because

. 2g2 — 3g3 > (g1 — 2g2] > ld) — 2¢2].

The remaining inequalities hold if max(0,2yo —1) <y < 0. Thus, the only choice of 7 is vo. This
means that the new compound Poisson is GDSD(I2(+yp)) for a fixed o only.
This fact also partially emphasizes that any two classes GDSD(I2(71)) and GDSD(I2 (72));

1 # 72, are not subsets of each other.

As to the relationship between the GDSD(I2) class and other classes, it could be overlapping,
subset inclusion or disjoint.

By Theorem 7.2.2, we can obtain the relationship among all GSD(P2) classes (including
the special case SD=GSD(P2(0))). Figure 7.2 shows the relationship of ID, SD and GSD(P2).
Like the discrete situation, its relationship with other classes could be overlapping, subset inclusion

or disjoint too.

Now we turn to other GDSD classes: GDSD(I3), GDSD(I4) and GDSD(15).
First, by (1) of Theorem 7.2.1, we find that GDSD(I3) is empty. This is simply because

that the self-generalized rv family from I3 does not satisfy the necessary condition:
Cr(s;0)=1-(1-8)*>s iff 1-s>(1-5)* iff a=>1l

'So {Gk(s;a): 0 < a <1} does not lead to any distribution in GDSD(I3).
For K from 14 with pgf

Gr(s;a) =cl—e "D (1—cs)?, c=1-¢" 6>0,
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GSD(P2)

xS

Figure 7.2: The relationship of ID, SD and GSD(P2).

\
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according to Table 6.1, we have H(s) = —c™}(1 — ¢s)[0 + log(1 — ¢s)]. By (2) of Theorem 7.2.3,
Gx € GDSD(I4(c)) if

Gx(s)

L(s)=1—-C-c (1 —cs)[6 + log(1 — ¢s)] - ]

is a pgf for some C' > 0. The following example shows that GDSD(I4(c)) is not empty.

Example 7.19 (negative binomial) NB(n,q) has pgf Gx(s) = [p/(1 — ¢s)]", where p =1 —gq.
Thus, G’ (s)/Gx(s) = np/(1 — gs). Check for conditions on ¢ so that

L(s)=1-C-c (1 - cs)[0 + log(1 — cs)] ] i’pqs

is a pgf. Choosing C = c(np)~! leads to
L(s) = 1— (1 — cs)[L + 8 log(1 — es)]/(1 — gs).

When q = ¢, L(s) = =0~ log(1 — cs) which is the pgf of the logarithmic series distribution. Hence
NB(n,q) is GDSD(14(c)) ifg=corp=1—-c.

For K from I5 with pgf

Gr(s;a) =1—f(1—9)[(1-a)y+ Q-1 -7 6>1,0<y<,

by Table 6.1, we have H(s) = —8(1 — s)(1 — ) 1 —y+~(1 - $)1/9]. From (2) of Theorem 7.2.3,
Gx € GDSD(I5(,6)) if

L(s)=1-C-6(1—7) "' (L= 8)[1 =y +7(1- 5" gig

is a pgf for some C > 0. The following example shows that for every parameter vector (,6),

GDSD(I5(vy,0)) is not empty.

Example 7.20 (diécrete stable) It has pgf Gx (s) = exp{—X(1-5)°}, where A > 0 and0 < § < 1.
Hence, G'x(s)/Gx(s) = M(1 — s)9~1. We check for conditions on (v, 8) so that

L(s)=1+C-0(1 -y Hs -1 —v+~(1- 3)1/9])\6(1 —s)0t
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is a pgf. Take C = (1 —v)(OX8)~ for simplicity. Then
L(S) =1- (1 — 3)5[]_ -y +’)’(1 _ 3)1/9] — (1 _ ,7)[1 _ (1 _ 8)6] + 7[1 _ (1 _ 5)54_1/0]'

Recalling the pgf form of a power series distribution, for any 0 <~y <1, we know that L(s) is a pgf
if6+0" 1 <1lorif6<1—0"" foro>1
Hence, this shows that GDSD(I5(v,0)) is non-empty for every 6 > 1 and 0 <y <1.

Similarly, for K from P3, the necessary condition in (2) of Theorem 7.2.1 is not satisfied,

because
b (s;a) = exp{—s*} < e %, if0<s<1.

Hence, GSD(P3) is empty.
As to K from P4 and P5, we give a brief discussion. X €GSD(P4) or GSD(P5) requires
that

crfe (o8}« emfon(ies2) )

must be LT for all C > 0. The following two examples show that GSD(P4) and GSD(P5) are not

empty.
)
Example 7.21 (Gamma) The LT of Gamma(é,8) is ¢x(s) = (ﬁ%) . Thus

Pyls) _ —0B°(B+s)~ " 4
ox(s)  BUB+s)t Bt

and

{0 (s+ g s [+ - s 5 p = e {55 (s gy ) toe 1+ = 0] .

For simplicity, we take B =1/(e? —1) so that

exp{C’- (s—l— 691_1) log [1—{- (ef — l)s]} =exp{~0510g [1 + (e - l)s]} = [%%]05,

which the LT of Gamma(C§,(e? — 1)71). This means that Gamma(9, (e —1)71) € GSD(P4(9))
and GSD(P4(0)) is not empty for any 6 > 0.
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Example 7.22 (Positive stable) The positive stable distribution has LT of form ¢x(s) = exp {—)\35}.

Thus, —X———Z;Ezg = —\6s%71, and

exp {C -0s (1 + ij—vsl/(’) %—EZ—;} = exp {—C)«SO .8 (1 + %31/")}

= exp {—CMO . 35} exp {—%%ﬁy—s‘sﬂ/e} .

If 6 +1/6 < 1, then both terms on the right hand side of the above are LT’s of posz:tz've stable
distributions. For any 0 < 6 < 1, we can always find a 6 > 1 such that 6§ +1/6 < 1, and vice versa.
Therefore, any positive stable distribution belongs to GSD(P5); and GSD(PS‘(H,fy)) is not empty
forany 6 > 1 and0<7<1.

The empty property of GDSD(I8) and GSD(P3) explains why we failed to find stationary
continuous-time generalized AR(1) processes resulting from extended-thinning operations by I3

‘and P3 in Chapter 6.
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Chapter 8

Transition and sojourn time

The margins of continuous-time GAR(1) processes are basically divided into two types: continuous
and discrete. The support of the process is the state space of a process. Given the previous
observation, the conditional distribution of the current state is continuous or discrete depending on
if its margins are continuous or discrete. For the discrete margins, the conditional probability for a
non-negative integer is usually positive. This means the process can stay in this state for some time,
then jumps to another state. However, for the continuous margins, the conditional probability at
one point is usually zero although its conditional density is not zero. Hence, we are unlikely to
observe a continuous-time GAR(1) process which can stay on a point over a time period.

In this chapter, we take a close look. from the viewpoint of path or trajectory of the
continuous-time GAR(1) processes. It motivates the transition study which describes the instan-
taneous change of a continuous-time Markov process. We shall investigaté the self-generalized
distribution involved in a continuous-time GAR(1) process via its transition property. Because for
real margins, the only known self-generalized distribution is the degenerate distribution on a point,:
we consider the non-negative integer and positive margins only. Section 8.1 shows the featuré of
the change of the conditional pgf and LT. Specifically, in Section 8.1.1, we study the infinitesimal
transition matrix, and compare it with relevant corresponding processes in other probabilistic areas

like queuing theory, while in Section 8.1.2 we give the instantaneous change rate and relative change
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rate of the conditional LT. In Sectiqn 8.2, we shall apply the generating function method to discuss
the corresponding partial differential equations, and make comparisons with some results in the
literature. In Section 8.3, we study the distribution of the sojourn time for the continuous-time
GAR(1) process with non-negative integer margins. This will be useful for situations of continuous

observations like queuing.

8.1 Infinitesimal transition analysis

The infinitesimal transition approximates the probability change over a very small time period for a
continuous-time process. It is commonly used in birth-death processes and in survival analysis. We
shall probe the feature of transitions for the continuous-time GAR(1) processes. They are discussed

separately by the type of their margins: non-negative integer or positive.

8.1.1 Non-negative integer margin

The state space of a continuous-time GAR(1) process with non-negative integer margins is S =
{0,1,2,...} = Ny. Suppose the time difference h is very small. Given X () = 4, the conditional
probabilities of X (¢ + k), Pr[X(t + h) = j | X(t) = i] (j € M), are called the infinitesimal
transition probabilities. This further-leads to the infinitesimal generator Q = (g:5) (4,7 €

No) with

o ’1213(1) Pr[X(t-i—h)h:ﬂX(t)iil’ j#1, ®.11)
dij = I Pr[X (t+h)=4| X ()=1]-1 =g h
B0 h ’ T

Note that g;; > 0 (i # j) and ¢;s = — D, ¢i,5 < 0. When ¢;; = 0 for |¢ — j| > 1, the process is
a birth-death process with birth rates {g;;+1; ¢ =0,1,2,...} and death rates {gii—1; i=1,2,...}.
This infinitesimal generator matrix remains the same for a Markov process whether it is under

steady state or not. Hence, we can assume the process is under steady state when we study
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the infinitesimal transition. Next we will investigate the infinitesimal genérator matrix of the
continuous-time GAR(1) process with non-negative integer margins.
To warm up, let’s first study the continuous-time GAR(1) process stipulated by the binomial-

thinning operation, i.e., K from I1:
Xt +Rh)EeHhx X (1) + /Oh etk de(t) L emh « X (1) + B(t; £+ h).
When h is small enough, it will become a stochastic difference equation:
X(t+h) L (1 - ph)« X (&) + Ae(h),  Ac(h) = et + h) — €(t).

Our aim is to find the infinitesimal transition probabilities with an expansion in terms of h. Assume
m is a non-negative integer. Iy =0, Iy z.'ild"Bernoulli(l — uh) (k > 1). By algebra, we have that for

m >0

Pr[X(t+h) =m | X(£) =0] = Pr[(1 - ph)* X(t) + Ae(h) =m | X(t) = 0]
= Pr(lo+ Ac(h) =m] = Pr[Ae(h) =m],
PrX(t+h)=1+m|X(£) =1 = Pr{(l—puh)* X(t)+Ac(h) =1+m | X(t) = 1]
—Pr[l + Ac(h) =m] = Pr[l; = 1,Ae(h) = m] + Pr[l; = 0, Ae(h) = m + 1]
— (1 uh) Pr[Ac(h) = m] + (uh) Pr[Ae(h) = m + 1] |
= Pr{Ae(h) = m] + ph (Pr[Ac(h) = m + 1] - Pr{Ae(h) = m}),

Pr(X(t+h) =i+m|X(t)=i] = Pr[(l - ph)*X(t)+Ac(h) =i+m|X(t) =1

= Y Pr [Z Iy = l] -Pr{Ae(h) = (i +m) -]
k=0

1
=Pr [ZIk+Ae(h) =i+m
=0

k=0

1

_ (;)[1— uh (uh)' Pr{Ae(R) = (i +m) 1]

=0
= (1 — ph): PrAe(h) = m] +i(1 — ph) " (uh) Pr{Ae(h) = m + 1]
i—2 /.
+ ; (1 — ph) (uh) ™ Pr[Ae(h) = (i +m) — ]
1=0

-2 4.
+(ph)? > C) (1 — luph + o(h)](uh)" =2 Pr[Ae(h) = (i +m) ~ ]

246




= Pr[Ae(h) = m] + iuh (Pr[Ae(h) = m + 1] — Pr[Ae(h) = m]) + o(h), i>2,
and for 0 <m <i (1>1)
PriX(t+h)=i—4|X(t) =4 = Pr[(1—ph)*X(t)+ Ae(h) =0] X(t) =1]

=Pr [i I+ Ae(h) =0| = Pr {i I, = 0,Ae(h) = 0:|

lf:O k=0
= (uh)’ PrlAc(h) = 0],

| I |

Pr{X(t+h) =i (i~ 1) | X(t) =i] = Pr(1—puh)X() +Ae(h) =1] X(t) =]

= Pr [i: I, + Ae(h) = 1} = Pr [i: I, =1,A¢(h) = 0] +Pr [i I, = 0,Ae(h) =
k=0

k=0 ) ) k=0
= i(1 — ph)(uh)""! Pr[Ae(h) = 0] + (uh)' Pr{Ae(h) = 1],

Pr[X(t+h)=i—m|X(t) =i = Pr[(l—ph)*X(t)+Ac(h) =i—m]|X(t) =]

:Pr[i:Ik—l-Ae(h =i—m } ZPr[ZIk—} - Pr[Ae(h) = (i —m) — ]
k=0 =0 :

Z ( ) [1 — ph) (uh) ' Pr[Ae(h) = (i —m) — ]

=0

o~

il

) (1 — ph)=™(uh)™ Pr[Ae(h) = 0]

+ (Z B 7; B 1) (1 — ph) =™ Y (uh)™ ! Pr{Ae(h) = 1]
i-m—2 ;.

+(uh)® > (;) (1 — ph) (uh) 2 Pr[Ae(h) = (i — m) — 1], i—-m>2.

=0

In summary, the infinitesimal transition probabilities are

Pr[X(t+h) =i+ k| X(t) = 1] (8.1.2)

[ Pr[Ac(h) = k] + iuh (Pr{Ac(h) = k + 1] — Pr[Ae(h) = k]) + o(h), k> 1
B Pr{Ae(h) = 0] + iph (Pr[Ae(h) = 1] — Pr[Ae(h) = 0]) + o(h), k=0,
]| iuhPr{Ac(h) = 0] + o(h), k= —1,

L o(h), k< -1.

From the infinitesimal transition probabilities, we can deduce that g;; = 0 for all j < 7 — 2,

i.e., the lower diagonal entries are zeros in the infinitesimal generator matrix. The other entries
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ij ( >4 — 1) will be further determined by Pr[Ae(h) = m], where m = 0,1,2,.... Under steady

state, by Theorem 6.3.1, the pgf of Ae(h) is of form exp {%‘—%(s - l)uh}. This form will help us

to obtain the expansions of the pmf of Ae(h) in terms of k. The following consists of two examples.

Example 8.1 Suppose the marginal distribution is Poisson(vy) with pgf Gx(s) = e~ where
| v =M. Then

exp { Cxlel (s - 1)Mh} = exp {yph(s — 1)} = V.

Gx(s)
This leads to .
. 1-Mi+o(h), m=0,
Pr[Ae(h) =m] = e M =2 M+olh), m =1,
o(h), m > 1.

Therefore, by algebra, zbe obtain

[ o(h), k>,
Ah + o(h), k=1,
PrX(t+h) =i+ k|X(t)=d=4 1—(XA+ip)h+o(h), k=0,
iph + o(h), k=-1,
L o(h), k< -1,
and the infinitesimal generator is
- A 0 0 0
g —(A+p) A 0 0
Q=] 0 24 —(A+2p) A 0
0 0 34 ~(A+3u) X

From the infinitesimal generator, we know it is a birth-death process with death-rates g;;—1 =
ip (5 = 1,2,3,...) and birth-rates giz11 = A (i = 0,1,2,...). This is one special case among the

linear birth-death processes, in which the birth-rates and death-rates are
giit1 =a+1ib, ¢ i1 =1c a, b, c>0.

See Anderson [1991], Section 8.2, p. 103.
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Example 8.2 Consider the marginal distribution is NB(v,q) with pgf Gx(s) = (iig—)v, where

0<g<1land~y>0. Then

oo {0 ) -

q\s -

1—gs

1 —_—
i} =1t

1—gs

D hv+ o(h)

qs

= 1+~vypg(s—1) [1+qs+q232+q333+---]h+o(h)

. x
= 1-—pygh+ [H7(1 —q) > qmsm} h+ o(h),
m=1

which indicates that

Pr[Ae(h) = 0] = 1 — pygh + o(h), Pr[Ae(h) =m] = py(1 — ¢)g™h + o(h), m=1,2,3,....
These lead to the infinitesimal transition probabilities
wy(1 = q)g*h + o(h), k>1,
1 — pvgh — iph + o(h), k=0,
PrX(t+h)=i+k|X@)=i]=4 7% (k)
iph + o(h), Ck=-1,
| o(h), k< -1,
and the infinitesimal generator
—wvg (l-g w1 -9 pr(l-9¢ wd-adt )
o o—plg+1) py(1l-9g my(1-a)d w9’
Q= 0 2 —plva+2) pyQ-gq py(l -9
K 0 0 3p —p(yg+3) py(l-4a)g

This is not a birth-death process.

Next we consider the more general situation where K is from any non-negative integer
self-generalized distribution. Correspondingly, when the time difference h is small enough, the

stochastic difference equation is

X(t+h) 21— ph)k ® X(t) + Ae(h), Ae(h) — et + h) — €(t).
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Assume under steady state, the margins have the pgf Gx(s). Then Ae(h) has pgf of form

Gy (s s
Gagny(8) = exp{GigsiH(s),uh} , where H(s) = ?ﬂ’ga—@ -

Given X (t) = i, the conditional pgf of X (t + h) is

Cxemxmi(s) = (k51— ) Gau(s) = (GK(s;l—#h))"exp{%ﬁgff(s)uh}

} /
= (s — H(s)uh+ o(h))" - (1 + GX(S)H(s)uh + o(h))
Gx(s)
_ if_HG) i Gx () )
= s (1 . uh—!—o(h)) <1 + GX(S)H(S),uh + o(h)
i il G (s)
= (s*—is" " H(s)uh + o(h)) - {1+ H(s)ph + o(h)
' - Gx(s)
!
= s+t GX(S)H(s)uh —is* Y H(s)uh + o(h).
Gx(s)
Expanding %{ng—gH (s) and —H (s) as power series of s,
!
GL(SlH(s) = aptarstapsi+--+agst -, (8.1.3)
Gx(s) ' .
—H(s) = bo+bis+bas®+ - +bpst+--, (8.1.4)
we finally obtain
G _i(s) = s+ si—GIX—(ﬂH(s)uh —is" Y H(s)uh + o(h)
X (t+h)| X (t)=i | Gx(s)

= ipbohst™t + [1 + (pao + ipb1)h)s® + (pay + ipbg)hst Tt
+ oo+ (uam + ipbpmir )hs™ + - - +o(h)

<
= iubohs"™! + 1 + (uag + ipby)h]st + Z (pam + ipbmy1)hs™ + o(h).

m=1
This shows that the infinitesimal transition probabilities are
[ (ak + ibei1)h + o(h), k> 1,
1+ p(ag + by )h + o(h), k=0,
Pr{X(t+h) =i+k| X(t) =] = { #ao + tbi)h + ofh) (8.1.5)
ipboh + O(h)a =-1,
. o(h), k< -1




and the infinitesimal generator is

pag pal  pa2 pas
pho. pag + pby  pai + pby  pas + pbs
Q= 0 2ubg pag + 2uby  pay +2pby oo |- (8.1.6)

0 0 3ubo pao + 3ub

The infinitesimal generator shows special interesting patterns:

(1) Every diagonal entries are linearly increasing. For example, the lower diagonal entries are

@iim1 = ipby (1 =1,2,3,...).
(2) All entries below the lower diagonal g; ; (j < % — 2) are zeros.

Mimicking the upwardly _skip-free processes which define ¢;; = 0 for all j > 7+ 2 (refer to

Anderson [1991], Chapter 9), we may call the phenomena in the continuous-time GAR(1) pro-

cess with non-negative integer margins as downwardly skip-free. They are opposite to the

upwardly skip-free processes which are basically birth-death processes, but with downward jumps

called “catastrophes”. In our cases, there are upward jumps, so these processes extend birth-death |
processes by allowing multiple births in the next time instant. .

A relevant question is when such a continuous-time GAR(1) process becomes a birth-death
process. To be a birth-death process, all entries 5bove the upper diagohal ¢, (j > i+ 2) should

be zeros. This requires that
pag + ipbg1 =0, 1=0,1,2,3,..., k=2,3,4,....
Because p > 0, they are equivalent to
oy =az =a4=---=0, by =by=bsg=---=0,
i.e., —H(s) is at most a sgcond order polynomial of s and glﬁ%H (s) is linear in s:

H(s) = ap + a1s, —H(s) = bg + b1s + bes”.
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In this situation, the infinitesimal generator becomes

pao pay 0 0
pbo  pag + pby  pay + pby 0

Q= 0 2ubg pap +2pby  pay + 2pby - ., (8.1.7)
. 0 -0 3ubg ag + 3uby

which indicates that these birth-death processes within the class of the continuous-time GAR(1)
process with non-negative integer margins are linear birth-death processes, because the birth-rates
and death-rates are
Qii+1 = pay +ipbz,  gii-1 = ipbo.

To guarantee these birth-rates and death-rates are non-negative, it is necessary that ai, b, b2 > 0.

We've already met one birth-death process which comes from the continuous-time GAR(1)
process with Poisson margins when the operation is binomial-thinning. In fact, this is the only
process based on binomial thinning that is a birth-death process, because that H(s) = s — 1 and
G's(s)/Gx(s) can only be a constant. For K being from 12, since H(s)=(1—vs)(s—1)/(1-7),
it is possible to find a birth-death process with a GDSD(I2) stationary distribution. This example
will be shown below. As for K being from I4, since H(s) is no longer a second order polynomial of
s, it is impossible to find a birth-death process with a GDSD(14) stationary distribution. For K
being from I5, H(s) will become a second order polynomial of s iff § = 1, which in turn becomes

12. Hence, for 6 # 1, there is no birth-death process with a GDSD(I5) stationary distribution.

Example 8.3 Suppose K is from 12 with pgf

1-a)+(a=7)s

ja) = h ] d and 0 < 1.
Gk(s; ) Ao — (=)’ where v 18 fized and 0 < v <
' B
Consider the marginal distribution is NB(B,~) with pgf Gx(s) = (11—__%) , where B > 0. Then
_ (=)= 1 1ty Y .2
H(s) = T =15 1_73-}-1_75,
Gx(s) By (A-ys)(s-1) - By | By
H(s) = : S I
Gx(s) (s) 1—s 1—v 1—7+1—78
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Thus

ao—___'B’y_, al—ﬂ__’ ak-ZO, k;____2’3, ,
1—v o 1=7
and
1 1
by = —, b =— +'Y, bz—i'a b, =0, k=34,
1—-v 1-—v 1—v
Hence
- ' , +ip(l + _ +i
Tuby = __Z’u'_’ ap + ipby = _,3’)’ Z,U»( ’Y), a1 +ipby = (ﬁ z,u)'y’
1-7 l-v 1—vy
These lead to a birth-death process with infinitesimal generator
8 8 |
= = 0 0
p _ Byte(ty) (B+u)y 0
1=y 1-v I—y
Q= 0 2u _ By+2u(i+7) (B+2m)y
1—y 1—y 1—y
3 By+3u(l+)
0 0 1__#7 _7_157_7_

This is another special case among linear birth-death processes (refer to Anderson [1991], Section
3.2, p 108.). It has death-rates g; ;-1 = Zf—u_v (i =1,2,3,...) and birth-rates g; j+1 = Té_fi'zi% (1=

0,1,2,...).

In practice, the transition probability approach, namely assigning the infinitesimal transition
probabilities, is one effective method to construct continuous-time Markov process models, for ex-
ample, in a medical study like tumor evolvement with several mutation states. The analyses in this
section show the transition feature of the continuous-time GAR(1) process with non-negative inte-
ger margins. It also provides the interpretation from the view of transition for the continuous-time
GAR(1) process with non-negative integer margins. By comparison of the infinitesimal genera-
tor, one can link the continuous-time GAR(1) process to a specific continuous-time Markov model
constructed by the transition probability approach.

For the continuous-time GAR(1) process with non-negative integer margins, one byproduct
of the transition analysis is that the process could be linked to queuing theory with unlimited num-
ber of servers, because of the downwardly skip-free pattern and linear death-rates in the infinites-

imal generator. Such a model has application in the customer self-service system. Coincidently,
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the process in Example. 8.1 is just M/M/oo. See Taylor and Karlin [1998], p. 552-553. In general,
these processes belong to M/G /oo queuing models (exponential distribution of service time /gen-
eral distribution of inter-arrival time/infinite servers). The exponential distribution of service time
comes from the linear pattern of the lower diagonal entries. Although the inter-arrival times have
exponential distributions (see Section 8.3), the parameters of these exponential distributions are
not the same, but depend on transition probabilities. ,

Lastly, we summarize the feature of the infinitesimal transition probabilities from new con-
cepts: instantaneous change rate of the conditional pgf and instantaneous relative change rate of
the conditional pgf. Conditioned on current state, the trivial conditional pgf of the current mar-
gin is Gx @) x@)=i(s) = E (sx(t)|X(t) =) = s'. For the near future given the current state, we

consider the change rate or relative change rate of its conditional pgf.

Definition 8.1 Given X(t) =i, the instantaneous change rate of the conditional pgf is defined as

G _.(s)-G i G () — &
Osit,i) = Jim x(ermx=i(8) = Gx@ixm=i(s) _ i XX (@)= (s) —s
—0 h h—0 h

bl

and the instantaneous relative change rate of the conditional pgf is defined as

G _(s)-G =
R(s;t,i) = (lim XX @=i(s) XOIX(t)= (S)>/Gx(t)|X(t):i(S)

h—0 h
= L Cxemxe=i(@) =5t 5T Gxemix@=i(s) 71

The relationship between O(s) and R(s) is
R(s;t,1) = s7¢0(s;t, 1), or O(s;t,1) = s'R(s;t,1).

Now we calculate them for the continuous-time GAR(1) process with non-negative integer margins.

G o (s) — &
O(s;t,1) = }LH% X(t+h)|X(;;)_z(S) s
_—)

/ ‘
= lim 1 (si + sigﬁH(s)uh — i Y H(s)uh + o(h) — s’)
X

h—0 h (s)
= S = is T H e,
xS
R(s;t,i) = s7'0O(s;t,1) = NGIX(S)H(S)——Z'/LH(S).
Gx(s) 8
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The interesting pattern we find in the instantaneous relative change rate of the conditional pgf is

that R(s;t,4) does not depend on time ¢ and is linear in state 4.

8.1.2 Positive-valued margin

Similarly, for the continuous-time GAR(1) process with positive margins, we can study its transi-
tion property by the instantaneous change rate of the conditional LT and instantaneous
relative change rate of the conditional LT, because the conditional distribution of X(t+ h)
given X (t) can be governed by its conditional LT. The instantaneous change rate of the éonditional
LT is defined as

bx(t+h) X (=2 (8) = Px(IX()=2(8) _ i DX (t+h) X (t)=2(8) — €77
= lim ,
h h—0 h

O(s;t,z) = flLir%
_’

and the instantaneous relative change rate of the conditional LT is defined as |

(lim X (t+h)| X (8)=2(8) — ¢X(t)|x(t)=a;(8)> /¢X(t)|X(t)_=x(3)

i

R(S; t, .’E) h—0 h

-8

L. bx(t+h)x()=z(8) — € — lim e TP x (t+h)|X (t)=2(8) — 1.
e 5T h—0 h h—0 h

The relationship between O(s) and R(s) is

O(s;t,x)

e—-SiE

R(s;t,x) = , or O(s;t,z) = e **R(s;t,1).

Assume the time difference h is small enough, then the continuous-time GAR(1) process

can be expressed by the the stochastic difference equation
CX(E+R)E (1 - ph) @ X(1) + Ae(h),  Ae(h) = e(t+h) — e(2).

Under steady state, the margins have the same LT as the stationary distribution, denoted as ¢x(s).

Then Ae(h) has LT of form

Px (s)
bx(s)

H(s)uh} , where H(s) = 5@& [—log ¢k (s; @) o
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Given X(t) = z, the conditional LT of X (t + h) is

Py (s)
¢x(s)

xamxme(®) = (Brcls;1— B badn(s) = (6x(s —u@fm@{

(¢
_ el log bk (sil—ph)] . gy, J PX ()
e ep{¢<>‘)“%

_ al—HEurrow) . 1 4 x(8) o o
o) (14 S8 H(s)uh + ofh)

H(é)uh}-

_ —sz  xH(s)uh+o(h) ¢X(3)
= e e uht (1 + ——¢X(S)H(s),uh + o(h))

Px(8)
¢x(s)

H(s)uh o(ﬂ)>

= e % (14+zH(s)uh +o(h)) - (1+
P (s)
$x(s)

= e T4 xe—st(s),uh + e °F Px (s )H(s)p,h + o(h).
$x(s)

H(s)uh +of1)

= o (1 aH)

The instantaneous change rate is then

O(s;t,z) = ’{ir%qsx(i-i-hﬂX(t);z(s)—e
_> .

e %% + ze *TH(s)uh + e‘“%ﬁ—%H(s)uh +o(h) — e %

= [l h

. —sT —sx¢, (S)
= pze **H(s)+ pe d)j;(s)H(S)’

and the instantaneous relative change rate is

O(s)

e—s:z:

Py(s) B ()
bx(5) Kox@

This discloses the pattern of the instantaneous relative change rate, R(s;t;x), is constant in ¢ and

R(s;t,z) = pzH(s) +p25H(s) = s) + [pH(s)]z.

linear in z. ‘

The expression of R(s;t,z) only involves ¢’y (s)/¢x(s) and H(s). Hence, it also shows
that for steady state continuous-time GAR(1) process, the marginal distribution and the self-
generalized distribution determine the whole process. This means that different continuous-time
GAR(1) process will lead to different instantaneous relative change rate of the conditional pgf.

For example, suppose two continuous-time GAR(1) processes share the same marginal distribution
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" with LT ¢(s). Then, their instantaneous relative change rates of the conditional pgf are

Ru(sityz) = u‘i((j))ﬂl<s)+[uﬂl(s>lm,
Ralsitis) = L H,(8) + [uHa(s))e

¢(s)
They differ in Hi(s) and Ha(s), which come from their respective self-generalized distributioné.
If the instantaneous relative change rates of the conditional pgf for two continuous-time GAR(1)
processes are the same, they must share the same marginal distribution and H(s). Later in Section
8.2, we will point out there is one-to-one mapping of the self-generalized distribution to H(s), the
derivative at the boundary.

The transition approéch offers another perspective for the continuous-time GAR(1) process
modelling. The instantaneous change rate and relative change rate of the conditional LT are
associated with current time ¢ and current state z in the state space. Considering a time period
[il, t5], if we know the instantaneous change rate or relative change rate of the conditional LT for
any time t and any state z, we can obtain the conditional LT ¢x(t,)|x(t1)=2: (s) of X(t2) given

X (t1) = z, by integration of them over the state space and the time period [t1, t2].

8.2 Characteristic feature of the PDE of the conditional pgf or LT

We will deduce the form of the PDE of the conditional pgf or LT for the continuous-time GAR(1)
process with non-negative integer and positive margins respectively. By solving the resulting PDE,

we surprisingly find that there is one-to-one mapping between the self-generalized distribution and

(a3

H(s) which is defined by either QGL@SE ’a:1 or ai [— log ¢ (s; )] oy’ the partial derivatives
with respective to « at the boundary 1. This indicates that the relevant partial derivative at the

boundary 1 determines the entire pef or LT of the self-generalized distribution.
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8.2.1 Non-negative integer margin: PDE of the conditional pgf

Kendall [1948, 1949] established the generating function method in the study of birth-death pro-
cesses. 'This method is also effective in other kinds of continuous-time Markov processes. For
example, Brockwell, Gani and Resnick [1982], Brockwell [1985, 1986], and Pakes [1986] applied it
to upwardly skip-free processes. See the summary in Anderson [1991], Chapter 9. We will use the
birth—death process to illustrate the generating function method.

Suppose {X (t) : t > 0} is a homogeneous birth-death process with initial value X(0) =1
The birth-rates are gi;+1 = A (1 = 0,1,2,...) and death-rates are Qi1 = i (= 1,2,3,...).

Denote the transition probabilities
pij(h) = Pr[X(t + h) = j|X(t) = 4] = Pr[X(h) = 71X(0) = 1], i, 7=0,1,2,....
We are focusing on the conditional pgf of X (t) given X (0) = I:
Gx ) x0)=1(s) = E(s XO|1x0)=1) = ZS p(ist) G(s;t),
where p(i;t) = Pr[X (¢) = i|X(0) = I]. Note that

G(50) = Ox =i (s) = B (s*O1X(0) = I) =

Then it follows that

8G(s;t) - g+l
ot = “Z(.Ui+)\i) (5;t)s* +Z>\1pzt +Z,upzt
1=0 =0 =1
o
= (l—s)Zulp(zt +(s—1) Z}\szt
i=1

This result comes from by applying the Chapman-Kolmogorov equations: for h > 0,

p(0;t+h) = pro(R)p(L;t) + poo(h)p(0;t)
p(G;it+h) = pj-1,(
(

+pj+1,(R)p(J + 1;t), ’ j>1.
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Hence,

p(0;) p1,0(h)

p(0it+ h,)l = ’—h—p(l;t) - po’—z(hlp(O;t),
p(s;t+ h})L pUst)  _ pj—l},lj(h)p(j 1) - pji-1(h) ij,m(h)p(j;t)
it P, i1
Let A — 0, and note that
pjj+1(h) = Xjh+o(h), A >0, j=0,1,...,

pji—1(h) = pih+ o(h), po=0, p; >0, 7=12,....

We obtain the derivatives

P(0;1) = wp(l;t) — Mp(0;t) = pap(1;t) — pop(0;t) — Aop(051),
PU:t) = XNoip(§ — 1;t) — (ug -+ Ao t) + pjap(i + 138), i>1
Therefore,

aGéi;t) = (Zsjp(a, ) = Zéjp’(j, = p'(0,1) + ZSJ ;)

= mp(L;t) — pop(0;t) — Aop(0; )

+ 3 No1p(G = 18) = (kg + A)p(3t) + pirap(G + 1;1)]

o0

= —puop(0;t) — Aop(0; 1) Z (15 + X)p(G; t)

+ Z sIAj_1p(j — 1;t) + Z I pjp(G + 1t) + mp(L;)

i=1 i=1
o0 . 00 _ 00 '

= =3 (ui + M)pls st + 3 Nip(is )T+ Y pip(ist)s'
=0 =0 i=1

= (L-s) > pp(ist)s™ + (s —1) Y Aip(i; t)s’
1=1 =0

Choosing appropriate forms of birth-rates and death-rates, we can obtain a first order linear

partial differential equation for the conditional pgf G(s;t) = G x(1)x(0)=1(5)- For example, consider
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the linear birth-death process with the birth-rates A\; = a +ib (i = 0,1,2,.. .) and death-rates
ps =ic (i =1,2,3,...), where a, b, ¢ > 0. Then the resulting PDE is

0G(s;t)
L

0G(s;1)
ot

=(s—1)(bs—¢) +a(s — 1)G(s;t).

Two special cases are the processes in Examples 8.1 and 8.3; they lead to the PDE

0G(s;t) B 0G(s;t) B )
5 =u(l S)_—Bs + As — 1)G(s;1)
and
0G(s;t)  p 3 1 9G(s;t) By ,. )
0 (s = 1)(s - D 4 17 = DG(630)
respectively.

The generating function method can be extended to upwardly skip-free processes. Hence, a
natural question is: can we apply it to downwardly skip-free processes, or specifically the continuous-
time GAR(1) process with non-negative integer margins? Our goal is to find the PDE of the
conditional pgf Gx ) x(0)=r(s). Essentially, this can be done through the infinitesimal generator
matrix. However, the continuous-time GAR(1) process with non-negative integer margins is a

special kind of process, which has a particular feature in its conditional pgf of the margins:

!
Gxuompx(y=ils) = 8+ 8/ G2 T H()uh — is' ™ H )+ o(h).

Note that it is conditioned on the current state, not the starting state; see Section 8.1. Thus,

0G(s;1) . Gx(t+n)x©0)=1(8) = Gx)x©0)=1(8)
= im
ot h—0 h

= Jim {B (X0 = 1) - B (0] x(0) = 1)}

- o ([l 0 1) -5 (<0]x0=1)
- ’%% {gp(i; HE [sX<t+h>‘X(t) - z] - gp(i;t)si}

. ip(i;t) ’111_%-}1; (E [sx(t+h>|X(t) = z] - sl)}

1 i
Jim > (Gx(t+h)|x(t):i(5) s )}
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1=0
= i— G' (s - . 1
= _HH(S);ZP(Z’t)S 1y Gigsg (s);p(z,t)s,
namely
P0650) (255D 4 WA ()6 i),
or
(5 2G| 0G(s:t) _ | Gx(&) prigya(ss ). (8.2.1)

Bs at MGx(s)

This is a special form of the first order linear partial differential equations, which is defined as
a(s,t)us(s,t) + b(s, t)ue(s, t) = c(s, t)u(s,t) +d(s,?)

(us, ug refer to partial derivatives). The technique of solution can be found in any introductory
PDE textbook, say Fritz [1_981], Chapter 1, Sections 4-6. Also one can refer to Anderson [1991],
p. 104-105 for a quick review.

We now use the traditional approach, called the method of characteristics, to solve this

particular form of PDE. The following is an outline of the procedure to find the solution for

. 8G(s: . G’
NH(S)BGa(S,t) + acég:,t) = MGiEgH(s)G(s;t), (8.2.2)
G(s:0) = 5. |

Let t = t(v), s = s(v,w), Z = G = Z(v,w), and

{ at = 1

v ’ (A.1)

t(0) = 0, -

{ & = pH(); (A.2)
s(0,w) = w;
® = wEEHZ; | (A.3)
Z(0,w) = G(s;t)lv=0 = G(5(0,w),(0)) = w'.
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From (A.1), we obtain ¢ = t(v) = v. Hence, the above equations become

& = pH(s); B.1)
s(0,w) = w; N

L = EGHG)Z 52)
Z(0,w) =- G(s(0,w),0) = w'.

From (B.1), we get
d -
S T e
s(0,w) = w.
Denote [ —_—% = —g(s) + c. Then, —g(s) + ¢ = —pt. By the initial condition, we have
—g(s(0,w)) + ¢ = —g(w) + ¢ =0.
Thus, the solution of (B.1) is
gls) =pt+g(w) or  glw)=—pt+g(s).

The latter can further lead to w = g~'(—ut + g(s)) if the inverse function, g~'(-), exists. From
(B.2), we have

dZ _ G'x(s) _ G%(s) ,  dGx(s)
7 o) O = G0 T ox(s)

which leads to log Z = log Gx(s) +¢. By the boundary condition in (B.2), we obtain ¢ = log —G%
This leads to the solution of the original PDE:

G(s:t) = Z(v,w) = (8.2.3)

—G
Gx(w
or furthermore in terms of s and ¢ exclusively,

Gx(s)
g (—pt+g(s))

Glsit) = o™+ 9] g

For a continuous-time GAR(1) process with non-negative integer margins, the solution of

the PDE of its conditional pgf discloses the fact that Gk (s, @), the pgf of the non-negative integer
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self-generalized rv K, is determined by its partial derivative with respect to the parameter o when

a = 1, namely H(s) = B—G%w

. a:l. _ .
Why? We can compare the solution from the PDE with the conditional pgf from the

stochastic representation of the process. From the stochastic representation

— (p—Ht .
X(t)‘x(o)zf = (e™)  ® I+ E(0;1),

we know that
I
Gxx©=r = (Gr(s;¢7"))" Grou(s)-

Hence, it should follow that
' —put -1 ds :
Gr(s;e ™) = g7 (—pt + g(s)), where g(s) = () + ¢, and c is a constant.

Furthermore, it unveils one expression of the form of the pgf of a non-negative integer self-

generalized rv, i.e.,
Gk (s;0) = g7 (log a + g(s)).

It is straightforward to verify that g~!(log a+g(s)) is a self-generalized function with one boundary
satisfying g~ (log1 + g(s)) = ¢ (g(s)) = s. It may be possible to derive more pgf’s of self-
generalized distributions with non-negative integer support from this new self-generalized function.

Consequently, there arises an open question: Under what kind of conditions on g(s),

is g7 '(loga + g(s)) a pgf?

8.2.2 Positive-valued margin: PDE of the conditional LT

Based on the same reasoning, we can obtain the corresponding PDE of the conditional LT

dx()x©)=c(s) = E (e_sx(t){x(o) = m) L 4(s;0)

for the continuous-time GAR(1) process with positive margins. Note that it is conditioned on the

starting state.




Recall from Section 8.1.2 that
Olsitz) = lim d”é(t*h)'X(t);z(s)—e_sx = pwe—TH(s) + e—smzig ;H(s).
We have |
08(s1t) _ | Pxemix=s(s) = Pxixo=s(s)
at et h
= Jim 5 {B (XX =) - B (X0 ]x(0) =)}
= g (B (s [ ixe] pro =) =m (00 =)
= Jim {B (B [XP 1 X)) - 00 = 2) )
- <hm {B [emsXtm) | X (1)) - X0} X (0) —-:1:)
= E (Ot X(t }X )=2) |
— E<uX(t)e_SX(t)H(s)+ ue'sx(t)%%H(s)|X(0)=x) |
= uH(s)B (X()eXO|x(0) = 2) + “Z'Zjiﬁi ;H(S)E (eX0]x(0) = ).
Note that
@%Z;—t) - _E (X(t)e—sx(“}X(O) - ac) .
Therefore
WD ()2 + S s
or
uti (201 | 00 Ol gy, (8.2.0

ER o Mox(s)
Comparing with (8.2.1), the PDE of the conditional pgf for the continuous-time GAR(1) process
with non-negative integer margins, we find that both have essentially the same form. Hence,

this new PDE of the conditional LT is also a special form of first order linear partial differential

equations. From the outline of the solution of the PDE of the conditional pgf, we know the following




PDE with boundary condition:

{ pH ()22 1 286) — 95 by () (1), 529

#(s;0) = e~*7,

will have solution (compare (8.2.3))

) — e_—ui s) = e VT . (f)x(S)
P50 = Gt ) px(w)’
where w satisfies
ow) =906 = [ g ==utor w=g7 (o gls),

that is, w is determined by the integration g(s) = [ % + ¢, where c is a constant.

On the other hand, the stochastic representation

X(t)’ = ("), ® I + E(0;1),

X(0)=I

shows that the conditional LT is

dxwix©)=1 = ($K(5567))° B0 (5)-

By comparison, we know that

dr(s;e™) = e =exp{—g " (—ut+9(s))},

which suggests another general expression for the LT of a positive self-generalized rv.

For this new expression form, it is straightforward to verify that
¢(s; ) = exp {—g "(log @ + g(s))}
satisfies
¢(—log p(s; &'); @) = P(s; &)

n addition, ¢(s;1) = e—97'(log1+9(s)) = ¢35 the same as the boundary situation for any self-
generalized LT. Comparing with the LT form of positive self-generalized distribution in Theorem

3.3.3, where ¢(s; o) = exp{Gk(1 — s;a) — 1}, we find they are matched with each other, because
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1—-Gg(1—s;a) is a self-generalized function too. By investigation of such form functions, we may
likely to find new self-generalized LT’s.

Similarly, it also raises the open question: Under what kind of conditions on g(s), is
exp {—g }(log o + g(s))} a LT?

These analyses also disclose the fact that for a continuous-time GAR(1) process with pos-
itive margins, the LT of the involved self-generalized distribution, ¢k (s,a), is determined by

its partial derivative of negative logarithm with respect to parameter o when a = 1, namely

H(s) = &l-log dx(si ]| _

8.2.3 Summary: margins, self-generalized distribution and increment of inno-

vation

In the previous two subsections, we uncovered the fact that the pgf or LT of a self-generalized
distribtition is determined by the boundary value of its relevant partial derivative with respect to
parameter o when o = 1, namely H(s) = aG’gfxs?a oy O H(s) = Z[-log ¢k (s;0)] oy This is
based on the solution of the PDE of the conditional pgf or LT. For a steady state continuous-time
GAR(1) process, once we know the distribution of margins and the increment of innovation, we can
determine the corresponding H(s), and consequently determine the self—generaliied distribution.
This is because that the form of pgf or LT of the increment of innovation has a special form; refer
to Theorem 6.3.1. Specifically, we can obtain the form of g(-) by integration: g(s f H(s)

Finally, we use the general expression form g~!(—put + g(s)) or exp {-97X

—ut+g(s } to get the
the pgf or LT of the self-generalized distribution. '

It is feasible to obtain the PDE for the non-stationary situation, where the instantaneous
change rate/relative change rate of the conditional pgf or LT are no longer independent of time .
These will be studied further.

Recalling the study in Chapters 5 and 6, we can give some brief comments on the margins,

self-generalized distribution and increment of innovation of a steady state continuous-time GAR(1)

266




process, which has the stochastic representation
d - to—11
X(tg) e Mb)@ X (1) + / e Mt ® de(t),
0
or the stochastic difference equation:
X(E+h)E(1— ph)k ® X(t) + Ae(h),  Ae(h) = et +h) — €(t).

In Chapter 5, we fixed the self-generalized distribution and the increment of innovation, and
deduced the representation of X (¢3) at a future time. This will in turn determine the stationary
distribution, and consequently all the marginal distributions in steady state.

In Chapter 6, the customizing approach shows how to find the increment of innovation by
fixing the marginal distribution (in steady state) and the self-generalized distribution. Specifically,
we obtain the form of pgf, or LT, or cf of the increment of innovation in terms of the pef, or
LT, or cf of the marginal distribution and the partial derivative H(s) = %‘&(j—;a) ey O H(s) =
%[— log ¢k (s; )] _ These partial derivatives can be deduced from the specified S(;if-generalized

distribution. -

Combining the study in the three chapters, we conclude that a‘ steady state continuous—time
GAR(1) brocess essentially consists of three elements: margins, self-generalized distribution, and
increment of innovation. |

From any two of the three elements, we can determine the third element. Thus, in prin-
ciple, any two elements will determine the entire continuous-time GAR(1) process. These three
approaches offer three different viewpoints for the researchers to build a continuous-time GAR(1)
process model. One can start from an easier approach which may have a clearer interpretation to
construct a reasonable model for a real problem. This indicates the framework of the continuous-

time GAR(1) process is quite flexible for statisticians to build models.

For a continuous-time generalized AR(1) process not in steady state, one needs the self-

generalized distribution, the increment of innovation and the distribution of X(0).




8.3 Distributions of sojourn time

For the continuous-time GAR(1) process with non-negative integer margins, the process can stay
in one state for a certain time, then jump to another state. This sojourn time is a random variable.
However, for the continuous-time GAR(1) process with positive margins, since the state space
consists of non-negative real values, the distribution of the near future conditioned on current state
is still continuous, and consequently it is unlikely to have sojourn time because the probability mass
on one point is usually zero for the continuous distribution. (In this case, an interesting question
is whether or not the process has continuous sample path.)

Hence, in this section, we consider the continuous-time GAR(1) process with non-negative
integer margins only. We are interested in the distribution of the sojourn time.

Conventionally, this can be obtained with the well known infinitesimal partition method we
used in Chapter 4. .

Suppose {X(t);t > 0} is a continuous-time GAR(1) process with non-negative integer mar-
gins. Thus the discrete state space is S = {0,1,2,3,...}. Suppose the process is in state 7 at time
t1. Denote

T;i={waiting time since ¢ in state ¢ until next jump occurs}.

We want to find the distribution of Tj;. Note that Tj; takes value in (0, 0o).
Applying the infinitesimal partition method, we will obtain n equal subintervals [t1,t1 + 2],

each with length h = t/n:
[tl,tl-l-h), [t1+h,t1+2h), R [t1+(n—1)h,t1 +nh]%[t1+(n—1)h,t1 —l—t].

When n approaches infinity, each subinterval will become an infinitesimal interval. Note the fol-
lowing identity:

Pr[T; > t] = Pr[X(t1+u) =4 0 <u<t]| X(t) =]
By the Markov property, we can decompose the right hand side as a limit of the product of n

factors on those infinitesimal intervals:

Pr[X(t1 +u) =1 0<u<t|X(t) =1
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n—+o00

— lim (Pr[X(t1 +h) =i | X(t) =] x Pr[X(t, + 2h) =i | X(tr + h) =1]

X --xPr[X(t1+t)=i|X(t1+(n—1)h)=i])

- n—+00

= lim (HPI‘ t1+kh —Z'X(t1+(k—1)h)=i]>.

The probability on each infinitesimal interval can be approximated according to the infinitesimal
generator matrix. Hence, we may find the limit when n goes to infinity. ‘We shall discuss it for
stationary and non-stationary situation respectively. |

| First, we consider the stationary situation, that is, the process is homogeneous over time.

Assume that the infinitesimal transition probability of remaining in the same state is

PrlX (¢ +h) = | X(t) =] = 1+ gigh + o(h),

where ¢;; <0 (1 =0,1,2,....), and h is inﬁnitesimal time increment. Then, it follows that
Pr[Ty; >t] = PriX(ti+u)=14 0<u<t]|X(t1)=1]
= lim (H Pr[X(t; + kh) =4 | X(t, + (k- 1)h) = i])
= lim (Pr[X(h) =i | X(0) =4))"
= lim (1+gih+ o))" = lim (1 + qm + O(h))n
— it = glaialt, | | (8.3.1).

- Therefore, T}; ~ exponential(|g;|)-
Secondly, we turn to non-stationary situation, in which the infinitesimal transition proba-

bility of remaining in the same state is
Pr(X(t+h) =i| X(t) =i] =1+ g(t)h + o(h),

where ¢; ;(t) < 0 (¢ = 1,2,....), and h is infinitesimal time increment. Suppose qi,i(t) is differen-

tiable with bounded first order derivative. By Proposition 5.1.1, it then follows that

PI‘[Tii>t] = Pr[X(t1+u)=i; OS’U,Sth(tl):i]
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n—+00

= lim (ﬁ Pr[X(t; + kh) =i | X(t1 + (k— 1)h) = i])
k=1

= lm ﬁ[l + éi,i(tl + (k = 1)h)h + o(h)]
k=1

= lim exp {i gt + (k- 1)h)h}

n—r+00
k=1

= exp {nglfoquz‘,i(tl + (k- 1)h)h}

k=1

— exp { /t t qi,i(f)df} . (8.3.2)

So, the distribution of Tj; is

t
Fr() = PrfTu <1 =1~ PelTi > =1 - exp { [ aistrlar |
t1.
Hence, T;; need not be exponential distributed.

The study of sojourn time provides another perspective on the continuous-time GAR(1)
processes with non-negative integer margins.- For example, for the stationary situation, once we
know the infinitesimal generator matrix, we can simulate the process by the embedding method,
namely, simulate the waiting time in a state, then jump to another state based on the conditional
probability mass function from a row of the infinitesimal generator matrix (excluding the current
state, or diagoﬁal entry), and so forth; see Section 12.5. Also for a continuous observation process

like in queuing theory, the sojourn time can be observed, hence, it offers more information for the

inference on the studied process.




Chapter 9

Conditional and joint distributions

In this chapter, we turn to study the conditional distributions and joint distributions resulting from
the continuous-time GAR(1) processes. From the point of view of distribution theory, defining a
discrete-time higher order Markov process is equivalent to defining a multivariate distribution for
adjacent observations, in which the dependence structure stipulates the dynamic mechanism of the
process. Conversely, the process provides an approach to construct multivariate distributions. This
view will be discussed in Section 9.1.

We will also calculate the conditional mean and variance in Section 9.2, as well as the auto-
correlation coefficient in Section 9.3. These statistics are very useful in the estimation of parameters
with sample data. In addition, we study the bivariate and multivariate distributions resulting from’
the continuous-time GAR(1) processes in Section 9.3. Some of them are new compared with those

existing in the literature.

9.1 Consistency in process construction: the view from distribu-

tion theory

Statistical inference is made based on a chance model. Diverse chance mechanisms are described

through probability distributions. Essentially, statistical modelling consists of specifying an appro-
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priate probabilistic framework for the practical problem.

A process (discrete-time or continuous-time) denoted as {X;; t € T'} is the collection of de-
numerable or innumerable random variables on a probability space (€2, F, P), which in turn leads to
joint distributions for every finite subset of rv’s like (X;,, X3,, ..., X4, ). For a discrete-time process
denoted as {X,; n =0,1,2,3,}, the path is just the sequence {Xp(w), X1(w), Xo(w),. ..}, and the

construction of such a process is equivalent to specifying all finite dimensional joint distributions:
FiXn, Xy X)) (E1, B25 -+ ,Tm) = Pr[Xpn, <21, Xn, <22,..., Xnp < T, meN.

For a continuous-time process denoted as {X(¢); t > 0}, the path is a function of ¢, denoted
as X (w;t). Since for a time interval, there are innumerable rv’s, the construction is a bit more
complicated. In this situation, we need to resort to the infinitesimal partition method again when

we evaluate an event over a continuous time period. For example, suppose we want to find
Pr[X(t) < f(t); A<t<B],  f(t)is a function of t.

Partition the interval [A, B] by points t1,ta,...,t, so that each piece [t;,#;+1] is very small. As
n goes to infinity, the length of each piece will go to zero. With the additional requirement like

stochastic continuity: thntl Pr[|X (t) — X(¢')| > €] = 0 for every € > 0 and every ¢, we can obtain
— !
Pr{X(t) < f(t) A<t< Bl = lim Pr[X(8) < (1), X(12) < f(t2)y- -, X(ta) < f(ta))-

This requires us to specify the joint distribution of (X (t1), X(t2),...,X(ts)) first; namely for any

finite number of time points t1,%s,...,t,, we need to specify the joint distribution
FiX (1), X (t2)y X (8)) (1,25 -+, Zn) = Pr[X (01) < 31, X (t2) < T2y, X(tn) < zn), nEN.

For more details about defining a process, see Karlin and Taylor [1975], p. 32-33, Doob [1953],
Chapter 2, and Breiman [1992], Chapter 12.

Basically, deﬁning a process is equivalent to specifying all possible multivariate distributions
with finite dimension no matter whether it is discrete-time or continuous-time.

However, those defined multivariate distributions can not be given arbitrarily. They should

satisfy the consistency condition proposed by Kolmogorov in 1933. Based on this consistency
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condition, Kolmogorov’s extension theorem asserts that there exists a probability space and a
process on it such that any finite number of rv’s from the process has the same joint distribution as
that prescribed in the consistency condition. This theorem is also referred as the first fundamental
theorem in the theory of stochastic processes; see Chung [1974], p. 60-61. The following states the
consistency condition in terms of distribution functions: for each m > 1 and (z1,Z9,...,Zm) € R™

and ti,to,...,t, € T which need not be ordered, if n > m, then

Wm, P, Ko Xep oy Xen) ELr o3 By Emtds -5 Tn) = Fixy, o Xem) (T - Tm)-

This means that the lower dimensional marginal distribution derived from a prescribed higher
dimensional joint distribution should be the same as the corresponding prescribed joint distribution
with lower dimension.

Now we look into the construction of a Markov process, and investigate whether it is well
defined from the point of view of consistency. Assume the state space is S. The key feature of a
Markov process is that the future depends only on the present, not the past.

First, we consider defining a discrete-time Markov process {Xy; n > 0}. In this situation,
we specify the conditional probability structure for any two neighboré: Pr[Xnt1 =y | Xn = 2]
for any z, y € S. Once all neighborhood conditional structures are defined, and given the dis-
tribution of starting poiflt, namely the distribution of Xp, then all finite dimensional joint distri-
butions are stipulated. This is because that for any positive integer n, the joint distribution of

(X0, X1,---,Xn-1,Xn) can be obtained by the following equation

f(XOaXI,---aXn—l,Xn) = fXO X fX1|X0 X X an|Xn_1'

Here we employ the notations f(x, x1,....X,_1,Xs) Fxos Fx11 X002 [Xn X0y tO .denote the pmf in the
discrete case or pdf in the continuous case to avoid the tedious work of setting separate notation
for the two cases. The joint distribution of any finite dimensional vector of random variables
(Xmys Ximg»- -+ Xmy) (0 < m1 < mp < --- < my) can then be derived by integrating (with
respect to the appropriate measure, e.g., Lebesgue or counting) out irrelevant variables in the joint
distribution of higher dimension of vector (Xo, X1,..., X, ). In this situation, the joint distribution

of any finite dimensional vector of random variables is just prescribed in the way that the marginal
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distribution is obtained from a higher dimensional joint distribution. This means that consistency
is automatically guaranteed. Therefore, Markov processes in the discrete-time situation are well
defined if the conditional probability structures of all neighboring pairs of variables are prescribed. .
These conditional probability structures can be arbitrarily specified. We db not need to impose
any conditions on such conditional probability structures. |

The previous discussed Markov process is usually referred to as the first-order Markov
process because the current state only depends on the last one. Similarly, for a higher order
Markov process in which the current state depends on the last few states, we can have the same
conclusion that the process is well defined if all conditional probability structures of the current
state given certain previous neighbors, X, | Xp—1,..., Xn—g, are specified. No restrictions on these
conditional probability structures are required‘. '

Returning to modelling, we usually impose certain requirements on the marginal distribu-
tions of discrete sets of time points. For example, a common assumption is stationarity, which leads
to all univariate marginal distributions being the same, namely the same as that of the starting
point. In this specific situation, defining a first-order Markov process is equivalent to defining a
bivariate distribution of (X,_1, X,,) with the common univariate marginal distribution, because the
distributions of X,_1 and X, are the same, and the conditional probability structure of X,, | Xp—1
is the same for every n. In general, defining a stationary mt order discrete-time Markov process
is equivalent to defining a (m + 1)-dimensional multivariate distribution of (Y1,Y2,...,¥m, Yim+1)
where fy, = fy, = = [y a0d fivi,vm) = f(va, Yompn)-

Let us look into Model (2.1) in Joe [1996] to check how it is well defined from the viewpoint of
distribution theory. Let {Fy} be a family‘of ID distributions, Gg,(1-a)g,y cOrresponds to conditional
distribution of Z; given Z; + Zs = y, where Zy ~ Fog, Z3y ~ F(1_4)s- This model has stochastic
representation

Y, = At()/t—l) + €ty

where Y;_; have distribution Fy, €; has distribution F(;_q)9, 4 is a random operator such that
A(Y) given Y = y has distribution Gyg,1-q)9y and A(Y) ~ Fop when Y ~ Fy. A(Y;—1) and

¢; are independent. Here 0 < a < 1 and 6 > 0. Fy is an infinitely divisible convolution-closed
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parametric family such that Fp, * F92 = Fy, +9,, where * is the convolution operator. This is a
typical Markov process. The conditional distribution of Y; given Y; 1 = y is Gap,(1-a)8,y * F(l_a)g. '
Thus, the bivariate distribution of (Y;_1, Y;) is determined by the marginal distribution of ;1 and
the conditional distribution of ¥; given Y;_; = y. By induction, the marginal distribution of ¥; is
also Fy. This model is well defined because of the appropriate marginal distribution and conditionai
prbbability structure. '

Conversely, if we define a bivariate distribution such that the two univariate margins are
the same, and the conditional probability structure of one margin given another one is the same
as before, we of course can obtain the same stochastic representation of one variable in terms of
another one as in Model (2.1) in Joe [1996]. Such a model can be applied in count data or positive
data time series, and it also unifies many models appeared in the literature like Lewis [1983], LeWis
et al. [1989], McKenzie [1986], [1988], Al-Osh and Alzaid [1987], [1991] Al-Osh and Aly [1992],
Barndorff-Nielsen and Jgrgensen [1991], Alzaid and Al-Osh [1993]. Jérgensen and Song [1998]
gives further study for this model. Note that a restriction on such models is that the innovation
and the mdrgins have distributions in the same family. Also in general, they do not extend to
continuous time. _

Next we turn to defining a continuous-time Markov process {X(t);t > 0}. Wé specify
the conditional probability structure of the current state given the previous state. In discrete-
time situation, the sequence of random variables are denumerable so that the neighbors are fixed.
However, in continuous-time situation, the random variables are innumerable, and even worse, we
can not fix the neighbor of time point {. We have to specify the conditional probability structure
of X (t) given X (t') =  for any ¢’ < t, i.e., fx@)x@)==(") of fx@xe)( 1)

With such a specification, for t; < t3 < -+ < t,, we can obtain the joint distribution of

(X(tl),-X(tg), ..., X(ty)) by the Markov property:

FOXX (t2) X (00)) (E1 255+ 5 Tn) = Fx(00) (T1) X X 21X (00 (T2 | 21) % - X FX(0) X (tner) (T | Tn—1)-

We view this way as the prescription for the joint distributions. Now we check the consistency.

Suppose t; < tp < t3. Then the prescribed joint distribution of (X (t1), X(t3)) is

fixw,xts) = Fxa) % Fxs)x ()
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N
while the prescribed joint distribution of (X (¢1), X (t2), X (t3)) is

fx ) x ()X (ts) = Fx(e) X Fx@a)x() X FX(ta)x(t2)-

From the latter, we can derive the joint distribution of (X (¢1), X (t3)) by integrating over possible
values of X (t2):

fx ), x(t3)) (21, 3) = /fX(tl)($1)fx(t2)|X(t1)(iC2 | 1) Fx(ta)1x (22) (%3 | T2)dv(z2).

Here v(-) is an appropriate measure. This raises the consistency problem, namely whether

Fxa)x(t) = /fX(t2)|x(t1)(932 | ) - Fxa)ix(ea) (| 22)dv(22). (9.1.1)

This means that the conditional probability structure fx (4 x(#)=z(-) is not arbitrary. It is totally
unlike the discrete-time situation where the conditional probability structure fx, X,_,=z(+) can be

érbitrary. Denote for ¢’ < ¢

Gxpxy=e(s) =B (O X({) =x), or Gxpx)(s) =E (¥ X(¥)).

bxoxr=e(s) =B (O | X(#) =2), or dxxa(s) =E (X0 | X)),
Px @ xt)=z(s) = E (eisx(t) | X(t") = ﬂf) , or ox@xw)(s) =E (eisx(t) | X(t')) :

for non-negative integer, positive or real support respectively. Then the consistency requires that

GX(tg)]X(tl)zx(S) =E (E (SX(ta)

X(t2)> ‘X(h) = 96) = E x(13) (Gx(te)| X (t2)(8) | X (1) = ) ,

or

b (1) X (t1)=2(5) = E (E (e—sX<t3>

X(82)) [X (1) = 2) = Bx(e) (xayxcea () | X (1) = 7).
or

Ox (t)|X (t1)=2(8) = E (E (eisx(t3) X(t2)) 'X(tl) = 3’) = B x(t2) (0x(t0)1x(2) (8) | X (82) = z)

respectively.




When we impose stationarity on a continuous-time Markov process, theﬁ for all ¢, X(t)
has the same distribution as X (0), and the conditional probability structure of X (t) given X(t')
only depends on the time difference ¢ — t'. This may ‘come from the practical consideration of
modelling. In this situation, the continuous-time Markov process leads to a trivariate distri-
bution of (X(t1), X (t2), X (¢3)) such that the conditional probability structures Fx(a) x )= ()5 |
Fx(ta) X (22)=c (") and fX(t3)[X(t1)=z(') have the same form and Equation 9.1.1 holds.

On the other hand, if there exists such a trivariate distribution, we can construct a stationary
continuous-time Markov process based on it and the consistency is guaranteed by the feature of
this trivariate distribution. Therefore, defining a stationary continuous-time Markov process is
equivalent to defining a trivariate distribution with a special property satisfied by its conditional
distributions.

This is the big gap between discrete-time and continuous-time Markov processes. Rela-
tively, 'deﬁning a required bivariate distribution is much easier than defining a required trivariate
distribution. Hence, this could be a partial reason for the phenomena that discrete-time Markov
processes were often developed earlier in the literature than the continuous-time Markov processes
as we discussed in Section 6.4. ‘

For higher order continuous-time Markov processes, the consistency conditions will be more
complicated. However, essentially, defining a stationary higher order continuous-time Markov pro-
cess (if possible) is equivalent to defining a higher dimensional multivariate distribution.

Sampling on equally-spaced time points from a continuous-time Markov process, we can
obtain a discrete-time Markov process. Hence, if a stationary discrete-time Markov process is ac-
tually coming from a stationary continuous-time Markov process, then its conditional distributions
of three neighboring points X,_2, Xp—1 and X, will satisfy the consistency conditions automati-
cally. We illustrate this issue by looking into the situation where the support of marginal distri-
bution of X, (n > 0) is non-negative integer. Stationarity leads to the identity Gx,| X 1=z(8) =

Gx,_1|Xn_o=c(8). We can obtain the conditional pgf of X, given X,,_o = z as

GXn|Xn_2=:I:(s) = EXn—l(GXnIXn_l(s) l Xn-2 = iI")

)

The resulting Gx,|x,,_,=z(5) should have the same form as G| Xpo1=2(5) OF Gx,_[X,_r=2(8),
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because they have been defined so in a continuous-time Markov process.

This indicates that if we wish to extend a stationary discrete-time Markov process to a
stationary continuous-time Markov process, the consistency among three neighboring points is a
ﬁecessary condition. If a discrete-time Markov process doesn’t satisfy this consistency condition,

we can not expect to extend it to a continuous-time Markov process.

Finally, we end this section with two theorems to illustrate the construction of a continuous-

time Markov process from the perspective of distribution theory.

Theorem 9.1.1 Define a trivariate distribution of (X (t1), X (t2), X (t3)) for any 0 < t1 <tp <13

based on the following.

(1) The distribution of X (t1) is GDSD associated with a self-generalized distribution which has
ngf Gr(s;0) (0 < a < 1). Assume the pgf of X (t1) is G(s).

(2) For t' <t, the conditional pgf of X (t) given X(t') =z is

e G
Guxtoprier—sls) = B (XO[xX(#) =) = G5 (si677) x (s;(jzu(t_w))'

Then the resulting trivariate distribution is consistent with a stationary continuous-time Markov

process which has G(s) as the pgf of the univariate marginal distributions.

Proof: The key step is to show that this trivariate distribution is well defined, or in another words,

the conditional pgf’s are consistent. It suffices to prove
G x(ta)|x(0r)=2(5) = Ex(ta) (Gxua)xe) (8) | X (01) = ) -

From (2) in the definition of the trivariate distribution, we have

. u(ta G(s)
GX(t2)|X(t1)=.’L‘(3) = GK (3;6 u(te tl)) e (GK (S;e_u(tz_tl)))a

. p(ta G(s)
GX(ts)IX(t2)=I(S) = Gk (8;6 us t2)) G(GK (s;e—u(ts—m)))’

. p(ts— G(s)
Cxtiix—s(s) = G (sse™) G (Gx (5, e Ha—t)))"
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By straightforward algebra, it follows that

E x(t2) (Gx(ta)x(t)(8) | X (1) =) = D Gxita)ix(t)=y(s) PriX (t2) = y | X(t1) = ]

y=0
.- G
=G (s;emmm)) e (S;Ei)u(ts_m))) Pr[X(ts) =y | X(t1) = 2]
y=0
_ G(s) — N B B
~ G (G (s;eHlts=t)) yZ_OG% (3"3 ¢ )) Pr[X(t2) =y | X(t1) = 2]
G _ o
= G (GK (8; ii)ﬂ(t3—t2))) GX(t2)|X(t1)::1: (GK (S, e plts t2)>)
G(s)

e (GK (s; e*“(tf"t?)))
N G(Gx (s;e7ts~)))
T o i(ta—t2) . —p(t2—t1) !
<G (G (37037 G G (G e o)

Cu(ts— —ulta—t)\ G(s)
_ . (ta—t2) . (t2—t1)
=Gk (GK (3’6 e ) e ) G (Gk (G (s;eHlta=t2)) ; e=nll2—t1)))

_G(s)
G (G (s;e#lta=t)))’

= G% (3; e—ﬂ(ta—tl))

which equals Gx(s,)x(t,)=z(8) obtained from (2) in the definition. Therefore, the trivariate distri-
bution is well defined. ‘

The trivariate distribution of (X (t1), X (t2), X (t3)) can be written down in

Fox) X)X (te)) = Fx(0) X Fx)x(t) X Fx(ta)iX(t2)-

" This motivates us to define the finite dimensional joint distribution of (X (t1), X (t2),..., X (ts)) for

t1 <ty < --- < tp, n>3,insuch a way:

FOX )X ()X (8)) = FX(01) X FX(t2)1X(t0) X 77 X FX () X (8n-1)-

Now we wish that this defined family is consistent. Because of the consistency feature of the

trivariate distribution which satisfies:

fxwixen(z|z) = /fX(t')|X(t“)(y | ) fxx@)(z | y)dv(y),  forany t" <t' <,
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we can take expectgtion over X (tiy1),..., X (tj-1) for Fxtten)ix @) X X FX(t)X(t5-1) and obtain
/"‘/fx(ti+1?|x(ti)($i+1 | i) X+ X Fx)x-) (@ | -1 av(ziv1) - - dv(zj1)
B / o / Fx (e (@) @i | 2i) X X Sx )X (k) (52 | Tj-3) |

X (/ Fx(ty_n)IX(t-2) (Ti-1 | Tj=2) Fx(t)1x (t5-1) (@5 | $j—1)dl/($j—1)> dv(zit1) -+ - dv(zj-2)

:/ o / Fx (o) x ) @isr | @) X - X fxe;_p)X(t5-0) (@2 | Tj-3)

XfX(tj)IX(tj-z)("’j | zj_o)dv(2is1) - - - dv(zj-2)

= /fx(ti+15|X(ti)($i+1 | 23) Fx(t;)1 X (ti42) (%5 | Ti1) A (@ign)

= Fx)x ) (@5 | Ti);
for 1 < i < j < n. Consistency always obtains when integrating out X (t1) or X(t,). Hence,
by induction, it follows that for any subset (X (tm,), ..., X (tm,)) of (X (t1), X (t2),.. .‘,X(tn)), the
joint distribution of (X (tm,),- -+ X(tm,)) deduced frorﬁ the higher dimensional joint distribution

of (X (1), X (t2),--., X (t,)) by integrating out irrelevant arguments, is just the same as that from

the direct definition. Therefore, the defined family is consistent.

According to Kolmogorov’s extension theorem, there exists a corresponding process { X (t);t >
0}. :
Now we calculate the pgf of X (¢) if the pgf of X (t') is G(s):

Gxp(s) = E(El(sx(t)}X(t’)))

= X() (. —nlt—t) G(s)
E (GK (8,6 ) C (GK (s;e_u(t_t/)))

~ G(Gk (f;(ji"(t_t')))E (Glﬁg(t') (S;é_“(t_t,)))
I

= G(s),

which is the same as the LT of X(#). This fact indicates the distribution of X(t2) and X (t3)

are the same as X(t;). Furthermore, the trivariate distribution corresponds to the stationary
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continuous-time Markov process with stochastic representation
X< (e—“(t—t'>) LOXE)+B(Y),  0<t <t

where the cumulative innovation E(¢,t') has the pgf G(s) / G (G K (s; e—u(t—t’))), and is indepen-
dent of (e‘l‘(t—t')) « ® X (t'). This comes from (2) in the definition of the trivariate distribution.

Theorem 9.1.2 Define a trivariate distribution of (X (t1), X (t2), X (¢3)) for any 0 < ¢ <2 <13

based on the following. , /

(1) The distribution of X (t1) is GSD associated with a self—genemlized distribution which has LT
dr(s;0) (0 < a<1). Assume the LT of X(t1) is ¢(s)-
(2) For t' < t, the conditional LT of X(t) given X(t') =z is

¢(s)
—log ¢x (s;e~+(=t))

Px()x(¢)=2(s) = E (esx(”)‘X (t") = w) = ¢% (s; e—W-t’)) T

Then the resulting trivariate distribution is consistent with a stationary continuous-time Markov

process which has ¢(s) as the LT of the univariate marginal distributions.

Proof: This is similar to the proof of Theorem 9.1.1. We only check the consistency. From (2) in

the definition of the trivariate distribution, it follows that

_ g (g o—nlta—ty ¢(s)
¢X(t2)|X(t1)=$(s) = ¢k (S’e ue t)) qS(—loquK (-s;e‘”(tr“)))’

_ gz (o pmlta—te ¢(s)
¢X(t3)|g(t2):x(3) = ¢k (3,6 wult t_)) ¢(—log¢;< (S;e—u(tg—tz)))"

_ z . o i(ta—t1 ¢(s)
bx(ta)x(t)=2(8) = 9k (3’6 ult t)) & (— log px (56 Plls—)))’

By algebra, we have
" Ex() ($xt0)x(t2)(8) | X(t1) = 2)

=E | g3 (se7b7" $(s) _
=E ( K (S,e ults—t >) F(—logox (S;e_u(t3_t2)))'X(t1) _gg)
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- $(s) X(2) (. —ults—ts B

- 0] (—— log ¢K (s;e—ﬂ(ts—tQ)))E (¢K (576 pls —t )) lX(tl) = x)

— (s) et

= g (5o Aty PX@IXC)=2 (—logide (s;e7tamt2)))

_ #(s) x ¢% (__ log dx (s; e—u(tg—t2)> ;e—,u(tz—tl)>

¢ (— log ¢k (s;erlis—12)))
d(—log pic (s;e~HE3~t2)))

3~ log dx (~ log dxc (s #=2)) je=r(a=)))

=% (= o i{ta—t2) ) . —plte—t1) ¢(s)

= ¢% ( log ¢K (s,e plts—t ),e mt2—t ) X 5 (“log ox (Clog o '(s;e—“(t3—t2)) ;e—u(t2~t1)))
= gt (g e Hta—t1) ¢(s)

= 9k (s,e 2 ) ¢ (— log dx (5, e-#B-))

= Px(t3)|X (t1)=2(5)-
This completes the proof.
Remarks:
(1) For the stationary continuous-time GAR(1) process
d ( —ui-t) N ! '
x() 2 (e >K®X(t)+E(t,t), 0<t <t
when t — # = h is very small, it will become a stochastic difference equation
X)L (1-pt—1)), ®X({¥) + Ae(h),

where Ae(h) = €(t) — €(t') is the increment of the innovation process {€(t);t > 0}. Since given
X(t) =z, the pgf or LT of (1 — pu(t — ') g @z is GE(s;1 — p(t — t')) or ¢%(s;1 — p(t —t')),
by Properties 3.1 and 3.3, it follows that - '

G%(s;1 — pu(t —t)) — s%, or P (531 — p(t—t)) — e, ast—t' — 0.

This shows that
(1—u(t~t’))K®w£->m, ast—t —0.
Hence, as t —t' — 0,

(1—plt—1)) , ® X(#) - X(t') == 0.
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On the other hand, the innovation process is a Lévy process under stationarity for the gen-

eralized Ornstein-Uhlenbeck SDE. By the definition of Lévy process, we know

Ae(h) N 0, ast—t — 0.

Thus,.
X(t)—X(t')—I;O, ast—t — 0.

Therefore, the stationary continuous-time GAR(1) process is stochastically continuous.

(2) The stationary continuous-time GAR(1) process can be constructed by taking limit of a series

of discrete-time processes:

k J
X()_{X(O),X<2k>aX<2k>a ’X(_2k)7 --.}, k_—0,1,2,3,....

These discrete-time processes can be constructed by the trivariate distributions in Theorems

9.1.1 and 9.1.2. By the consistency of the trivariate distributions, the embedding of X(k-1)

in X&) is consistent. With the stochastic continuity, the limit exists in distribution:

lim x® L x.
k—o00

This limiting process is indexed by ¢ € [0, 00).

9.2 Conditional properties

In this section, we study some conditional properties of a continuous-time GAR(1) process. These
properties include the conditional pmf or pdf, conditional mean and conditional variance. They are
of particular interest because they are needed for statistical inference such as parameter estimation.

Recall that a continuous-time GAR(1) process has the stochastic representation

X (tg) & (e—“(t2‘t1))K ® X (t1) + E(t1,t2), t < to,




where the two summands on the right hand side are independent. Therefore, given X (t1) = =,

X (t2) has representation
X (82)|X (81) = 2] < (e"‘(tZ“tl))K ®z + E(t1, t2).

Note that (e~#(*2=%1)) @ =z is usually a rv. Only in special cases like K being from P1, i.e., the
corresponding extended-thinning operation becomes the constant multiplier, does it degenerate to

a constant. This conditional representation leads to the pgf or LT or cf of X (t2) given X (1) =z

Cxmxi=s(s) = Gk (567 ™) Gy i) (5)
B (567070 B, ) (5),

‘PX(t2)|X(t1):z(3) = ¢€Xp {ime—u(tz_tl)s}(PE(tl,tz)(s)'

BX ()1 X (t2)=2(5)

The pgf, or LT, or cf-of K and E(t1,t2), and even the margin X (¢1) and X (t2) are specified by the
continuous-time GAR(1) process. In principle, the conditional pgf, or LT, or cf will determine the
conditional pmf or pdf, conditional mean and conditional variance.

We first consider.the conditional mean and conditional variance; assuming they exist:

E[X(t2) | X(n) =0] = E[(e4™) @] +B (B, b)],
Var[X(t2) | X(t1) =2] = Var [(e_“(tr“))K ® (B] + Var [E(t1,t2)] .

The mean and variance of the cumulative innovation E(t1,t2) can be obtained from its pgf, or LT,

or cf by the general formula

Gy (1), Gy (1) + Gy (1) - (Gy (1),
E(Y) =4 —4¢y(0), and  Var(Y) =4 ¢{(0) - (¢y(0))%
—igy (0), ~5(0) + (¢ (0))*.

They are independent of z. Now we investigate the mean and variance of (e~nlt2=t)) @ z. Since

%Ga;{ (siette=) = aGi? (s5e7nta) %GK (spemriomm),

9 g (o) = aggt (semnt) Ly (semtem),
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0
e~ i(t2—t) —  jre—ktz—t1) oKtz —11)
53 &XP {we ‘ S} ize exp {za:e s} ,

82

52 }’(. (s; e““(t2_t1)) = z(z - 1)G}”{2 (s;e"“(tz‘tl)) [%GK (s; e_“(tQ’tl))

+zGE! (s; e_“(trtl)) —

g—;qs}% (s;eem)) = (o - g2 (s;e70=)

o (s emutem) 95—2¢K Cha?

82

752 P {ixe—“(tz—tl)s} = —gle 2Mt2—t) exp {ixe‘”(”‘t.l)s} ,
and
Gk (1; e—“(t‘z—tl)) = ¢x (0; e'“(tz_t‘)) — exp {ixe*”(trtl) x 0} —1,
We have
BGy (sjeritmt))| = afGr (sieBm) |
a0 = | dore | = chortu |
Bk (ssemrtem) | = afiex (s )|

= o i (ete)].

Here K (e #(271)) denotes the self-generalized rv K associated with parameter e~Hlt2—t) (see

Chapter 3). For the variance, we calculate it from the pgf, or LT, or cf respectively:

o 0 o 2
G (s erltah) 262 | s: emHlt2—t1) NGz (.. —nlta—t1)
20 (e ne) |+ 0k (e ) | = [ (5o )|
2
8GK (31 e—ﬂ(h—tl)) 62GK (3’ e_ﬂ(tz—tl))
= x(ac - 1) [ Os o1 + 2z 532 .

dG (s;e 1)) 2 [3(}'1{ (5;eHlt2—1) r
+z —z
s s=1 0s s=1
2
_ :E62GK (S; e‘ﬂ(tz—tl)) + xaGK (S; e—ﬂ$t2—t1)) . OGk (S; e"#(t2—i1))
ds? s=1 0s s=1 s a1

= z'Var [K (e"“(t2_t1))] ,
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2
s:O]

0" z . p—h(ta—t1) 9 4 —p(ta—t1) 12
529K (s,e 2=t ) - [%dJK (s,e 2—t1 ) 520]
2 A
_ 0dK (s;e—u(tz—n)) 82¢K (s; e-u(tz—u)) ) Ok (3; e——u(tg—tl))
_Z‘(QI—]-) [ ~ Js s=0 +x 542 s—o_m o
32¢K (S;e—u(tz—tl)) 0dk (S;e‘u(tz—tl))
882 s=0 Os =0

— 5Var [K ()]

92 9 i
_@ exp {ixe_ll(tZ—tl)s} o + [—8—8 exp {ime‘#(tz -—tl)s} s:0:|

= zVar [e'“(t2_t1)] )

In summary,

zE [K (e_“(tz—tl)ﬂ ,

zVar [K (e‘“(t2_t1))] .

B [(c) 0]
Var [(e‘“(“_‘l)) « ® x]

These indicate that the conditional mean and variance of (e—"("2 ‘tl)) K @ z are proportional to the
last observation X (t;) = z; the larger the value of x, the larger the conditional mean and variance
‘of the dependence term. Table 9.1 summarizes the mean and variahce of self-generalized rv’s K (o)
discussed in Chapter 3.

Consider a self-generalized distribution with finite mean. By Theorem 3.2.1, we have
—u(te—t1) ] — —u(ta—t1) — —u(ty—t1) T — —ru(ta—t1)
E [(e )K@)a: zE [K(e )] .'B(e ) L.'ce Y. r > 0.

This shows that as the time difference ty — t; increases to infinity, the mean of the dependent term
decreases to zero. For the pair (z, (e““(trtl))K ® z), or more generally (X, (e‘“(tQ“tl))K ®X), if‘
K is a self-generalized rv from P1, then it becomes (z, e#lts ~t)g) or (X,e M1 X), a straight -
line through the origin with slope e~#t2—t1) leading to a singular bivariate distribution in R2.If

K is a self-generalized rv other than from P1 and E[K(a)] = «, then the expectation line is the
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Table 9.1: Mean and variance of non-negative integer and positive self-generalized random variable

K(a).
[ K(a) | Mean | Variance B
I1 o a(l — a)
12 " ol —a)(1+7)/(1—7)
13 00 NA
14 o a(l — a)é’
15 o |[when0=1,a(l1 —a)(l+7v)/(1 =) and oo (0 > 1)
P1 o 0
P2 a 2a(1 — a)y/(1 —7)
P3 00 NA
P4 ot a(l—a)(ef —1)
P5 af when 0 = 1,2a(1 — a)y/(1 —v) and oo (6 > 1)

saine as in the case of P1. However, the second argument (e~#*~%)) @z or (emrta—t)) @ X

is no longer a constant, but a random variable. This random variable will fluctuate around the
expectation line y = e~#(t2=11) . and form a cone shape, namely as 2 or X gets larger, the variation
of (e7#t2~1)) @z or (e~#(t2=t)) ® X is proportionally larger.

For a stationary continuous-time GAR(1) process with marginal mean A and marginal
variance V, we may find the mean and variance of the cumulative innovation E(ty,t2), which
further results in the the mean and variance of X (t2) given X (¢1) = x. This is to take advantage

of the independence of the two terms in the right hand side of the stochastic representation
X(ty) < (e‘“(t2_t1))  @X (1) + Bty 1),

or

(X (8)| X (1) = 2] < (e—.Mtz—tl))K ® z + E(t1, t2).
From the first representation, applying the previous results on the dependence term, we obtain
BX(t2)] = B[(e2 ) oX(t)]+E[E(h,b)]

= EX@)B [K (e#t0)] + BB, )],

Var [ X (t2)] = Var [(e‘“(tz_t1)>K ®X(t1)] + Var[E(t1, t2))
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— Var (E [(e—Mtﬁ“l))K ® X(tl)’X(tl)])
+E (Var [(e_“(t2_t1)) L ®X(t) 'X(tl)D + Var[E(t, t2)]
v e e )] s o ()
+Var[E(t1, t2)]
= Var[X(t)E? [K (e““<t2‘t1))] +E[X(t;)]Var [K (e_“(t2_t1))]
+Var [E(tl, tg)].

Thus
A = A-E[K ()] + BB, )],
v = v.B?[K (e#t)] + 4. Var [K (e7#t==0) | + Var[B(t1, 2)],
which lead to
E[B(h, )] = A(1-B[K(e#e)]),
Var[E(t,t2)] = V- (1-B2[K (e )]) - A Var [K (e0)) ]

Therefore, we obtain

E[X() | X(t) =a] = B[(c#&) @] +B[BH,b) (9.2.1)
= A+(z-A)B[K ()],
Var[X(ts) | X(t) =12] = Var [(e‘“(t2_t1))K ® m] + Var [E(t, t2)] | (9.2.2)

1l

V- (1 -E? [K (e_“(tz"tl))]) + (z — A) - Var [K (e_"(t2_t1)>] .

This shows that the conditioﬁal mean and conditional variance only depend on the marginal mean
and marginal variance specified in steady state, as well as the mean and variance of the self-
generalized rv K in the dependent term. Thus, when we fix the stationary distribution of the
process, the cumulative innovation seems to be dummy; it looks to have no influence on the condi-
tional mean and conditional variance no matter whether the process is in steady state or not. Note
that this approach can be extended to the non-stationary case where the stochastic representation
is

t
X (to) % (e_ Jef “(t)dt)K ® X (t1) + E(t1, t2),
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or

X (to) & ( - iy “(W) ®z + E(t1, t2).

Assume that the margin X (t) has the mean A(t) and variance V(). Then it will follow that

‘E[X(tg) | X(t) =2] = [( [ t)dt> ®x} + E [E(t1,t2)]
= Alta) +[z - A(t)] B [K (& S mee ]
Var[X(t2) | X(t1) =2] = Var [(e_ Lt “(t)dt) ® a:] + Var [E(t1,t2)]

= V(tg)—V(tl)..E2|: ( S t)dt)]
+[m—A(t1)].Var[ ( ~ [ t)dt)]

Next we turn to the conditional pmf and pdf. It is quite challenging to obtain them from
the conditional pgf, or conditional LT, or conditional cf. Without loss of generality, we consider the
stationary continuous-time GAR(1) process. Thus, given X(t1) = z, X (¢2) can be decomposed as
the sum of two independent terms, namely the convolution of ( plta— tl)) ®z and E(t1,t2). The
supports of ( plt2— “)) ® z and E(t1,t2) are of interest, because they will affect the expression

form of conditional probability of X (t2) given X (¢1) = z.

(1) If K is a non-negative integer self-generalized rv, then the support of (e~rl2—t)) s either
{0,1} (from I1) or Vg = {0,1,2,...} (other than I1). Hence, the support of (e—“(tz“tl))K ®z
is either {0,1,...,2} or Ng. However, the support of cumulative innovation £ (t1,t2) is always

No. -

In this situation, the general expression of conditional pmf is that for any y € No,

Pr(X(ts) =y | X(t1) =2] = Pr [( ultz— t1>)K®m+E(t1,t2) - y]

min(z,y)

Z%) Pr [(e‘“(trtl))K ® z =1i] x Pr[E(t1, t2) = y — i, K from I1,
= Yy
n P [(em#lt=t)) L @z = i] x Pr[E(t1,82) = y — 1], otherwise.

=0

(2) If K is a self-generalized rv from P1, then (e‘“(”_"l))K ® z degenerates to the point

ze~#(t2=%1)  which could be positive or real depending on the data type of z. The cumu-
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lative innovation E(t,%2) can be non-negative, positive or real. It could have non-zero mass

on the point zero.

In this situation, the conditional distribution of X (t2) could have non-zero mass on the point
e Htz—t) je

Pr [X(t2) = xe_“(”_tl)] = Pr[E(t1,12) = 0],

and conditional pdf
Ixa)x@)=2¥) = [E(t t2) (y - fw—“(t"’_t‘)) ; y # e Hlt2t),

(3) If K is a positive self-generalized rv from a distribution family other than P1, then the support
of (e~#(t2=1)) s either non-negative Ro (with non-zero mass on point zero) or positive R
(without non-zero mass on point zero). This leads to the support of (e"‘(t?“tl))  ® T being

either non-negative Ry or positive R;. The support of E(t1,t2) can be either Ry or R, too.

In this situation, the conditional distribution of X (t2) could have non-zero mass on point zero

if both have non-zero masses on 0:
Pr[X(t2) =0 | X(t) = 2] = Pr [(e-u@z—tl))K ®= o] Pr[E(t1, t2) = 0],
and have pdf on y > 0:

Yy
Fx)xt)=2(y) = /Of(e—#(t2—t1))K®z(z)'fE(t1,t2)(y_z)dz

+Pr [(e—“(tz_tl))K ®zT= 0] X fEt t2) (V)

+f(e—“(t2_t1))K®x(y) X Pr[E(tla t2) = 0] (923)

The dependence term (e‘“(t2—t1)) K ® T is associated with the self-generalized rv K. When
K is a non-negative integer rv, it is the sum of x iid rv’s with pgf Gx (s;e7#(t2=1)). When K is a
positive rv (from distribution family other than P1), since oK (s e““(t2_‘1)) is of exponential form

(see Section 8.2.2),

‘f’(e—#(%‘tl))K@m(s) = [(bK (S;e‘u(tz—tl))]m




is certainly of exponential form too, and consequently, (e"‘(t?‘tl)) x ®z and K are in the same
family. When K is from P1, it is trivial case. Essentially, this dependence term can be linked to
the associated self-generalized distribution, which can help us to probe the pmf or pdf of this term.
Comparing with known self-generalized distributions, the cumulative innovation varies very
much among different continuous-time GAR(1) processes. It is too general to be discussed in >a
simple way. Hence, we only focus on the self-generalized rv K to investigate its pmf or pdf.‘

First, we consider K being a non-negative integer self-generalized rv. Denote

[GK (S;e ulta— tl))] sz i om>l (9.2.4)

When m = 1, {po(1),p1(1),...,pi(1),...} is the pmf of K. By the property of convolution, we have

the following recursive formula
i
pi(m) =Y _pj(m—pi_j(1), m=2

This recursive formula is specially useful when we resort to computer to do the calculations. In
general, we can not easily find the closed form of p; (m). However, when K from I1, the Bernoulli
distribution family, the dependence term (e~#(t2—41)) K ®T= e~Ht2=t) x 7 is then distributed in

Binomial (z, e~#{24)) | which leads to

pi(m) = (m) e~ thlta—t1) [1 - e’“(tr“)]m—z , for0<i<mand m>1.
1

For the pmf of other self-generalized distribution families, one can refer to Section 3.1.1.

Secondly, consider a positive self—gen;ralized rv K. Now finding the pdf from the LT could
be a tough task. In many cases, they are still open questions. Even for those discussed in Section
3.1.2, we don’t know all of the pgf’s. What we know is that P2 is the compound Poisson with
exponential distribution. Here we briefly give the pdf of the dependence term (e"‘(t2‘t1)) ®T

‘when K is from P2. Since

' —u(ta—t)\ 1" e—u(tz—h)(l —v)s :
d’(e—u(tz—tl))K@z(s) = [¢K (s; € ultat )>] - |:exp {_ (1- '7) + (1 - e-“(t2_t1))73 }}

e—ﬂ(tz—tl)(l -7) (1 N (1 _ e—u(t2—t1)) 73) -t .

(1 — emnlta=t1)) o 1—

= exp{<T-
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the distribution of (e‘“(”'tl)) ® z is the compound Poisson with an exponential distribution.

ze~#(t2=t1) (1—n) (1 e—H(ta— t1))
(1 e—mlta— tl)) and 1—y

The means of the Poisson and exponentlal distributions are

respectively. This leads to the stochastic representation

N
(e‘ﬂ(t2—t1))‘K®I 4 Yy ly, (9.2.5)
i=0
where N ~ Poisson (m%{iﬂ——l&—fﬁ%), Yy = 0 and y, ik Exponential <(iT-}t(_t;zYT))7> (G > 1).
When N =0,Y =Y, =0, thus

ge 2=t (1 — ) |
Pr[Y =0 = Pr[N=0] = exp{— (= e rB) 4 > 0; -

that is, (e_“(tr“)) « ® = has non-zero mass on point 0. If N takes value n > 1, the convolution

n 4
> Y; ~ Gamma (n, (17_1—(';27_—hjﬁ> In this situation, (e”#*~%)) @ z has zero mass on point

=0
0. For n > 1 and y > 0, the joint density of (Y, N) is

_ 1 1—v y(1 =)
f(Y,N)(y’n) - F(n) ((1 _ e—-/_l,(tg——tl)) ) exp{ 1 — e~plta— tl))
| 1 (zerm(1 - ) Hia—) (1 — )
X1 ( - emt)yy | P 1_e Wta—1))
1 Te —u(ta— tl)(l _ 7)2 e : (1 - ) (me_ﬂ(t2—tl) A+ 'y)
5 y" exp —— )
(n — 1)!7’7,! (1 - e—u(tz—tl)) ,},2 (1 — e—u(te tl)) 04

which leads to the marginal pdf of Y as

0
fry) = D fomyn)
n=1
_ i ! zet (1 -2 \" (1 =) (zerla=t) 4 y)
= —_ (n —_— 1)'1’1,' (1 —e —pfta— tl))272 Y €xp (1 . e—p,(tz—tl)) v
1— p(t2—t1) —plta=t) (1 _ 2 \"
= expy — ( "Y) (.’L‘e + y Z re (1 ;y) yn_l
. (1 — e—mlt2- t1 = (n - 1 In! (1 _ e-—p(t2—t1)) 72
= f(e—u(tz—ti))K@x(y) (926)

. This calculation is tractable using the computer.
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Finding the stochastic representation for the dependence term and cumulative innovation
term is not only useful in obtaining their pmf’s or pdf’s, but also in simulation of the continuous-
time GAR(1) process. Hence, they are of particular interest for many researchers. To conclude this

section, we look at some specific examples.
Example 9.1 Consider the continuous-time GAR(1) process obtained in Example 5.1:
X(t2) Le w27 X (11) + E(t1, 12),

where E(t1,t2) ~ Poisson (% [1 — emHlt2 _tl)]). This process has stationary distribution Poisson(%).
Since the operation is binomial-thinning, given X (t1) = z, e #t2=41) 7 ~ Binomial (z, e—#(tz—tl))_

In this situation, we have

E[X(t2) | X(t) =2] = ze 1)y % [1 _ e—,u(tz——tl)]

= e\_ + (3; — 3‘_) e_‘“(tZ_tl),
: 2 H
Var[X(t3) | X (1) = 2] = geHt2—t) (1 - e—u(t:’—tl)) + A [1 - e—u(ta—tl)]
7
= i + (3; _ i) e—mlt2—t1) _ me—%(tz—t;),
H 2
and the conditional pmf is
min(z,y) :E . i
Pr(X(t2) =y | X(t1)=2) = E <Z_>e—W(t2—t1) (1 - e—u(tz—t1)>
=0
1 A y—t A
— {1 =11 - —p(ta—t1) -1 = —u(ta—t1)
><(y——z’)! (p[ € ] xp p,[ € ]
min(z,y) i '
- 1 . (:B) (é)y e—ill-'(tQ—tl) (1 _e-'lt(t2—t1))z+y-2l
— (y—a)\i/ \p \

X exp —% [1 _ e—#(trtl)]}

— exp {—2 [1 - e'“(t2't15]} (1 — e_ﬂ(t2_t1))z+y

. 1 2\ (A g—H(t2—t1) :
i=0 (y — o)t (’L> (ﬁ) (1 - e—ﬂ(tz-tl))2

1293
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Example 9.2 Consider the continuous-time GAR(1) process obtained in Example 5.4:

X(tg) = (e*““?”tl))K ® X(t1) + E(t1,t2),

. ! _ 1—e—HK(ta—t1) . ]
where K is from 12 and E(t1,t2) ~ NB()‘(}J,’yﬂ’71(_7:—M(¢2—t1)))' This process has stationary

“distribution NB(LL;—’Y—),’)'). The mean and variance of E(tl,tg) are

A A
A oplta—t1) _ o—i(ta—t1) _ e h(t2—t1)
| M[l e ] and 0 =) [1 e ][1 ye ]
respectively. By Table 9.1, we have
E[X(tg) | X(tl) = x] = Ie—“(t2_t1) 4 i [1._ e—#(t2—t1)] — i + (CL' _ i) e—u(tz—tl),
: M M M
Var[X(tp) | X(t1) =12] = g Hlt2—t) (1 - e‘“(tz‘tl)) —i +
-7

A
N s emmlte—t) | [1 — yemmlt2—t)
+,u(1 -7) [1 ¢ ] [ e ]

p(l~7)  1—v 1 1—v

However, in this situation, we do not have explicit expression of conditional pmf, only a recursive

form:

Pr(X(t2) =y | X(t1) =)
_ 4 . %Yl-}-y—i—l 1—7v . ’y(l—e—“(t2_t1)) v
= Xgpz(y) y— i 1 'ye—ﬂ(h—tl) 1— ’76_”(t2_t1)

3=

N 1—7 o ' &%’l-i-y—i— 1 7(1 —e—#(tz—tl)) vt

1=0

for y >0, where p;(y) is defined in (9.2.4).
Example 9.3 Consider the continuous-time GAR(1) process obtained in Ezample 5.12: |
X (tg) = e™#274) o X (t1) + E(t1, t2),

6/
where E(t1,t) is a positive tv with LT ¢y, ,)(s) = (e”“(t2_t1) + [1 - emHltz—t)] ﬂ%) " This

S

process will have stationary distribution Gamma(6/u,B). By taking derivatives, we have

0 - j—
‘f’IE(tl,tz)(O) = ——@ [1 —e pl(ta tl)] ,
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260 0 0 2
— 2V |y _ enlta—t1) Z _ —p(ta—t1)
OO B*u [1 ° ] B 7 ( 1) [1 ’ ,2 1] ’

which lead to the mean and variance of E(t1,t2)

E[E(t1,t2)] = ,_3% [1 - e-u(tz—u)] and Var[E(t1,t2)] = b [1 _ e—Zu(tz—tl)] )

Hence, given X (t1) = z, it follows that

E[X(t2) | X(t) = 7]

Il
8
ml
=
=
N)
|
=
+
—
—
o
=
=+
[\
o~
&
[
|=
+
TN
8
|
-
N’
9]
=
=
[N
=

= = _0_ _ o=2u(te—t1) | — 4 —2u(ta—t1)
Var(X(t) | X(h) =] = 0+ g ﬁ e ]—-ﬁﬁb—e }

Walker [2000] proposed a better representation for a rv with the same LT as E(t1,t2). With

that idea, we can write down the stochastic representation

N
E(t1,t2) 2 ZYi, Yo =0, Y; 24 Gamma (1 Be* (t2— tl)) = Exponential (,Be“(tz_tl)) ,
i=0

where N is a Tv resulting from a Gamma mizture of Poisson:
N|Z =z ~ Poisson (z [e“(tr“) - 1]) ) Z ~ Gamma (0/p,1).

This can be verified by algebra

N
(t2—t1)
_ A —s Y, Y _ _ Bt
bt = Bl = (e} - o] (S
ettt () \V ‘
Beu(tz Berlta—t1) + g }Z '
(t2>—t1)
— #(t2 —t1) _ - B_e“ -
= E {exp [ e ) (ﬂeu(tz—h) . 1)}}
ep(tz t1) _ 1) (eﬂ(tz—tl) — ]_) s
= E<exp . = ¢z Berlt=t) 1 s

0/p
p{ta—t1) 4. 6/u —p(t2—t1) 0/u
_ . Be +s _[B+te s
= eu(t2 t1) 1) - ﬁep,(tz—tl) + eblta—t1)g - ﬁ +s

5eu(t2 “t1) g

—u{t—t1) Mm%n B\
= e + ],B+3 = ¢E(t1,t2)(8)'
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E(t1,t2) has mass ¢pp(, 1,)(00) = e=0(t2=t1) op the point zero. With such a representation, we can

obtain fgg, 1,)(y), the pdf of E(t1,t2) fory > 0:

1 n
FEa (W) = D =1 [ﬁe"(t2—t1)] y" ' exp {—y,@e“(tz‘tl)} x Pr[N = n]
n=1 :

00 .
— Z mﬁnenu(tz tl)y 1 exp {_yﬁeu(tg t1)}
n=1 '

o R R | R A &

— X exp {_yﬁe#(tz—tl)}

r (%)
©°
. oo 5nenﬂ(t2—tl) (e“(tZ—tl) _ l)nyn__1 © ; ‘ N )
" Z ( (n —1)In! / A/mt Lexp {_ze#(t2 t1)} dz

n=1 0
1

r(2) |
ﬁn nu(ta—t1) (eu(tz —t1) 1)"‘ n—1

o Otn)ia—ta) [ 0/wn=1
B (R e )
1 _ B (erlta—t) — 1)yt (0
_ 0 X exp {_yﬂep.(tz ty } O(tz~t1) Z l: n — 1)'n') : T <— + n)
30 “

m

X exp {—;yﬁe“(t2‘t1)}

(n —1)In!

n=1

= exp {_yﬁeu(tz—tl) —B(ty — tl)} i [_?_:01_(%_)511 ( plta—t1) _ l)ny”‘i} .

'

Hence, given X (t1) = =, X (t2) has mass e~¢2=4) on the point ze Ht2—h) gnd pdf

fX(tz)lX(tl)Zm - fE(tl,t2) (y — :ée_ﬂ(tz—tl)) R fOT y > CL‘e—“(t?_tl).

The representation idea in Example 9.3 also leads to another representation of the cumulative
" innovation in the continuous-time GAR(1) process studied in Example 5.2; see Remark 2 in Walker

[2000].
Example 9.4 Consider the continuous-time GAR(1) process obtained in Ezample 5.2:

X(tz) — e—ﬂ(tZ"tl) * X(tl) + E(t1,t2),
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where E(t1,t2) is a non-negative integer rv with pgf

- _ _ _ 1-— v Mp
Gﬂmm“)z(thtﬂ+h—flmzm]1—w) '
This process will have stationary distribution NB(\/p,~). The mean and variance of E(t1,t2) can

be obtained by taking derivatives of its pgf when s = 1:

)\ ) )
IE(tl,tg)(l) —l— [1 —e p(te tl)] ,

p(1=1y) |
" — _2)‘_i _ o—i(ta—t1) _)l i _ 7 —y(tz—tl) 2
Frtin (D) = #O—WV[l ¢ ]+u p ]’(l—vﬁ[l—e ]’
which lead to
_ ’ _ Ay o —ufta—t1)
) 2
Var[E(t1, 8] = G (D) + G i@ — (D)
M muttem)] o M —attet) [ _ pmila—t)
- Ml—ﬂ2h ‘ ]+uﬂ—7V ° P ‘ }

Hence, by Table 9.1, the conditional mean and variance of X (t2) given X (t1) = z are

B
= — -—;L(tz _tl) __..,Y_ _ _Il'(t2 ‘tl)
E[X(t2) | X(t) =2] = ze +u0—7)b e ]

Ay ( Ay ) —ulta—t1)
= —-——+ T — — eNZ 1,
u(l —) p(l =)

V. _ — - — A »

ar|X X = = plta—t1) _ o—H(ta—t1) Y —p{ta—t1)
r[ (tg) | (t1) m] ze ‘ [1 e ] + (1 )2 [1 e ]
)\72 . e—u(tz—m) [1 e—,u(tz—tl)]

+ —_
p(l — )2
)\72

= MY ) galta—ty) ] _ g mlta—t)
(w+uﬂ—vﬁ>e P ¢ ]

Ay _—p(ta—t)
+p,(1—'y)2 [1 e ]

According to Remark 2 in Walker [2000], E(t1,t2) can be represented as a rv of Poisson mizture:

E(ti,t:) £V,  Y|Z=2z ~ Poisson(z) forz>0 and [Y|Z=0] = 0,
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where Z is a ﬁon—negative rv with LT ¢z(s) = (e'”(tz_tl) + [1 - erla—t)] (- )7)713) /#. This

can be verified as follows:
Gy(s) = E(s¥) = BE(E[s"]2]) = B(e5) = ¢2(1-3)

M
= —p(tz—t1) _ —u(ta—t1) (1- ¥) /7
(e +[1 ° ](1—7)/7+1—s

1— A
= —u(tz—t1) —M(t2—t1)
(e ‘ * [ ] 1- 'ys>

= GE(t1,t2)(s)'

Furthermore, from Ezample 9.8 with = (1 —v)/v and 6 = X, Z can be represented as

N
= ZZM

ZO =0, Z - Gamma (1 Y1 -7) 'eu(t2—t1)) = Exponential <’y_1(1 —)- e“(tz“tl)) ,

N|W =w ~ Poisson (w [e"(”_t‘) - 1]) , W ~ Gamma(A/p,1).
With this kind of representation, the pmf of E(t1,t2) is tractable:

(te—t)\ M P
Pr(E(ti1,t2) =0] = Gp,)(0) = (1—7+’ye w(t2 tl)) ,

and for j >0
o0 zj 3
Pr [E(tlatz) il = /0 ﬁe ?fz(2)dz
_0(t2 t1 / 2] eXp 1(1 _ ,y)e,u(tz-—tl) _ Z}
n-1(x, ; _
s i=0 (ﬁ +Z) n n
N LA o { op(ta—t1) _ n—1
* ; mom Y (e 1) 2 dz

- _0(t2 - Z [ (n _(1 :;'Z) Y1 - )" (el‘(h—tl) - 1)n

w .
X / zj+n—1 exp {—z’y_l(l _ ,Y)e[.l«(tQ—‘tl) _ Z} dz]

0

- le—e(tz—n) i I:I J +n—1)! y Y1 — )" (eﬂ(t2—t1) - 1)"
— ]! o n —_ 1)!7?/' [1 +,y—1(1 _ 'Y)ep‘(t2—t1)]n .
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Applying the convolution formula in Example 9.2, we can obtain the conditional pmf of X (to) given

Note that there is another representation for E(ty,t2):

N N
U;
E(t1,t2) 4 Z (e—ﬂ(t2~t1)) xV; = Ze—ﬂ(tz—tl)Ui * V;,
=0 =0
where N ~ Poisson(Alt2 — 1)), Uo =0, Vo =0, U;"5"U(0,1), V;"*NB(1,1-7) (i > 1), and
U;, V; are independent. This kind of representation can be found in McKenzie [1987], Sim and Lee

[1989).

Another stationary continuous-time GAR(1) process with Gamma margins in Example 6.15
is also of special interest to us, because it is an alternative to the model in Example 9.3 with the

same Gamma univariate margins.

Example 9.5 Consider the second continuous-time GAR(1) process obtained in Ezample 6.15:
X(t2) = (7)) @ X (1) + Elt1,ta),

where K is from P2 and E(ty,t2) is a positive rv with LT

—p(ta=t1) (1~7)s J
B+ — U
_ (1—y)+(1—e~#l2=t1))ys < 1
¢E(t1,t2)(3)_ ,B+S 3 0<7_ 1‘*—6

We know this process has stationary distribution Gamma(é,B), so that the marginal mean and -
variance are

A=68"1 and V=682
By employing Equations (9.2.1) and (9.2.2), as well as Table 9.1, we have
E[X(ty) | X(t) =a] = 071+ (z— 6B 1)e Bt .
Var[X(t) | X(t) =1] = 6872 [1 - e—%(t?—tﬂ] +(z - 55—1)%6-%&-“) [1 _ e—u(tz—tﬂ] .
Here the fized parameter vy associated y)ith the self-generalized rv K appears: it does not affect the

conditional mean, but affects the conditional variance. This may help the statistician to choose the

appropriate y among (0, ﬁ] when modelling.

299




Inspired by Walker [2000], we now investigate the representation for the cumulative inno-
vation E(t1,t2). For the sake of simpler notation, we replace e H2=1) yith o (0 < @ < 1) in the

LT of E(t1,t2) and rewrite it as:

e~ #(ta—t1)(1—7)s d 5
= (IB : (17)+(1_6_“(‘2‘1))7s) = (ﬁ o 75+Z1 )ajrys )

¢E(t1,t2)(3) ﬂ +s ,B +s

_ -(ﬂ(l N+ Byl - ) +a(l - 7)]3)6
B+ 91 —7) + (L= a)ys]

) [
o (1—y)(1—a)s+(1—a)ys? - (1—e)s[(1=7)+s] ’
1+ B=7)+[a(l—v=B7)+B]s 1+ BI—7)+[a(t—y=B1)+Bvis /

and with further algebra,

G-asli-perl  _  G-ay _s(+5)
BA—) +lal—-v=BN+Bs al—7=BN+B7 s+ 74———(1 1_@:334,37

_ (1—05)’}’- s+[1—7_ B(1—7) ] s
a(l—’Y—ﬂ’Y)-Fﬁ’Y Y a(l—fy——ﬁfy)_{_ﬂfy 8+&(1__ﬁ7£'1—_73%1ﬂ7

= (1-a)y B [l_ - B ] s
ol =7 =p7)+ 5y SO T AT B+ B s+aT1—Lv($_?r)m?>

- (1-a)y al-y)A-7y=57) s

S o(l=y =B+ By ST el =y = A7) + B s+m_7(173)_$>' (9.2.7)

We propose the following representation for the cumulative innovation E(t1,t2):

4

Y, [Y|Z=242% (L= o)y cz+ [W|Z = 2],

Bt t2) al=~y =P+ Br

d al id Bl —7)
W|Z = 2] Z:“SW Wo=0, W; "% Gamma(l,a(l_’y_ﬂv)_i_ﬁv),
N|Z =z ~ Poisson (z- a(l{;(;;z)_(17~_7;fyl) 127_]257)> ; Z ~ Gamma(é,1). |

We can verify this representation by checking the LT’s:

7))

| dy(s) = E(e*Y) = E (E [e—sY
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(1-a)
e (oo (= (= 2 )} 7))
(1-o) i,
E(eXp{ ((1—7 gv§+ﬂ7 Z>}E[e WZ])
_ (1-a)
—E(eXp{_s<a(1—7—/37’;+ﬁ7'Z>}
xexp{z_a(1~a)(1—7)(1—7—ﬁv)( e _1)})
[a(1 = = B7) + BY)? s+ gzl
(1-o) 1-71-7-587
el e B )

g (el g (Q=a)sl1=9) 499 -
-5 ({2 ﬁ(1—7)+[a(1—7—ﬂ7)+/37]s}) ffrom (9.2.7)]

: §
— 4z ( (1—a)s[(1 —7) +75] ) _ 1
B —7) + [l =y = Bv) + Bls 1+ 51 (1-0)s[(1—7)+7s] :

—7)Ha(l-v—B7)+B9ls
= ¢E (t1 t2)( )

Note that W is the same kind of random variable as Z Y; in Ezample 9.3. Thzs can help us to find

1=0
the pdf of Y in this example. Conditioned on Z = z, Y has non-zero mass on point E(T%_gym

(1-a)y A R _z,a(l—a)(l—v)(l-v—ﬂfy)
a(l —v = By) + By IZ ] ep{ [a(1 =y = Bv) + B7]? }

(1-a)y s dae
and the pdf for y > a0——B)FB7 % i

Pr [Y:

1 —
fyiz=:(y) = fwz=: <y "ol _(7 — g?;; e -z)

=1 AL -7) o (1 -a)y ., nt

_;(n—l)![a(l—v—ﬂvﬂﬂv] (y a(l =y —Bv)+ By )
N (1-a)y . B(1—-1)

XeXp{ (y ol —v = Bvy)+ By )a(l—v~ﬂ7)+ﬁv} ,

" xi[Z.a(l—a)(l—7)(1—7—B7)]"exp{_z.a(l—a)(l—v)(l—v—ﬂv)}
[a(1 —v = B7) + B2 [(1 —y = By) + B)?

:exp{_y' B —7) _, =) =—y(e—ay - ﬁv—aﬁv)}
a(l—y—By) + By a(l —v = Bv) + B)?

[
o1 [ e(l-0)B0 -y = v=B)
Z{(n—l)!n![ [a(l =7 = B7) + B ]

301




_ (L—a)y AN
X(y a(l —y - B7) + By z) }

Hence, the unconditional pdf of Y is

o = (R )

¥ a(lzl'v—ﬁ)w)ﬂiv
oy
+ [ Fri—s) f2(2)dz
for y > 0. Note that Y has zero mass on point 0. This is unlike the cumulative innovation

in Ezample 9.8. Thus, we obtain the pdf of E(t1,t2). By Equation (9.2.3), we can obtain the
conditional pdf of X (t2) given X (t1) = z:
y ,
Fx)xt)=<y) = /0 f(e-m—cl))K@x(Z) : fE(;l,t2)(y - z)dz
+Pr [(e"‘(”_tl)> ®r= 0] X fB t2)(Y)

K

Yy
= /0 f(e—#(tQ—tl))K(,B;,;(z)'fE(tl,tz)(y_z)dz

ge Mt (1 —v) |
+exp {_ (1 — e—#(tz—tl)) v x fE(tl,tz)(y)’

where f(e—u(tz—tl)) ez(?) can be found in Equation (9.2.6).
K
The conditional pdf does not have a closed form, but can be computed with numerical meth-

ods.

As an alternative to explicit stochastic representations, the numerical approach to calculate
the conditional pmf or cdf via approximation of inversion of the characteristic function seems to be

promising. This will be discussed in Section 10.1, where we study maximum likelihood estimation.

9.3 Joint properties

Developing multivariate distributions, in which every univariate margin has the same distribution,
like multivariate Poisson, multivariate Gamma, etc, is very useful for modelling and quite challeng-

ing for researchers. Perhaps the most successful multivariate distribution is the mulﬁinormal, which
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has a correlation coefficient parameter for each bivariate margin. However, for the non-normal sit-
uation, there is in general no multivariate distribution with such nice properties. Construction
approaches for multivariate distributions are very diverse. For references, recent books are Joe
[1997], Johnson, Kotz and Balakrishnan [1997], Kocherlakota and Kocherlakota [1992], Hutchinson
and Lai [1990].

Note that under steady state, the Markov process has the stationary distribution for each
univariate marginal distribution. Hence, a steady state Markov process provides multivariate
distribution with any finite dimensions, namely (X (¢1),X(t2),...,X(tn)) is distributed in a n-
dimensional multivariate distribution, where n = 2,3,....

The multivariate distribution may be of interest in themselves, and potentially have appli-
cations to non-normal .multivaria.te‘data. A byproduct of the construction of GAR(1) processes is
a method of construction of multivariate distributions.

Since the continuous-time GAR(1) process is newly developed, we shall study the multivari-
ate distributions resulting from margins of the stationary continuous-time GAR(1) process.

Also in this section, we shall study the covariance at two time points and the auto-correlation
function; these are useful in describing the degree of dependence over time for the continuous-time

GAR(1) process.

9.3.1 Bivariate distributions

We first investigate the auto-covariance and auto-correlation of a continuous-time GAR(1) process:
X(tg) L (e—#@z—tl))K ® X(11) + E(t1, ). (9.3.1)
Assume that the mean function and variance function exist and are
At)=BE(X(#) and V(t)=E[X() - A®)’] =BX*@®)] - 4%(t).
By the independence property of two summands on the right hand side of (9.3.1), we have

Cov [X(t1), X (t2)] = E[(X(t1) — A(tr)) - (X(t2) — A(t2))]
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(X (t1) - X(t2)] - E[X (t2)] - E[X (22)]

=B {x(0) ((e#0) @ X(t) + Elh,t2) } - Alh)Alt2)

[X () (727} @ X(0)] + B [X (1) - Bltr, 12)] ~ Alt1)Alto)

[B[X(0) (e27) @ X(t)|X(0)] } + BIX(0)IBE(h,82)] - A(R)Alt2)
{E [X(tl)-(e—““z-tl)) ® X(t }X(tl]} A(t1) - (A(ts) — E[E(t1,t)])
{E [X(tl)-(e'“(t2‘t‘)) ®Xt1)lX(t1)]} Alt) - [( —W?-tl)) ®X(t1)]
(x5 e ()} - B () o ]
i (e () - ) xt)8 s (-)])

[K (e ~plt2~ tl) ‘E {X%(t;)} - B [K (e —nlt2~ tl))]- (t1) - E {X(t1)}

K (7t ] - (B {X>(0)} - 4%(11)

( —p(t2— tl))_ V(t).

=

This shows that the auto-covariance is linear in the variance of earlier time point. If K has finite

mean, then by Theorem 3.2.1,
Cov [X(t1), X (t2)] = e ™27 . V(1;),  for 7 > 0.

Hence, the auto-covariance decreases at an exponential rate in the time difference t9 — £1.

Consequently, the auto-correlation function, p(t1,%2), can be obtained as

ot ts) = Cov [X(t1), X (t2)] _ E [K (e—u(tz—tl))} V()
bRT Nar (X ()] Var X (t2)] V)
_ o=t V(%)
= B[k (et K V(t;)'

When the variance function V (t) is a constant, the auto-correlation function will be
p(t1,t2) = E [K (e—“(t2_t1))] .
Besides, if K has finite mean, the auto-correlation function is finite and in exponential form

p(t1,t9) = e THta—t) where 7 > 0.
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Table 9.2: Auto-covariance and auto-correlation function of the stationary continuous-time GAR(1)
process associated with known self-generalized random variable K (e"‘(t2‘t1)). Here the variance
function is V(t) = V. :

l?(e_“(b.—tl)) | Cov [X(tl),X(tQ)] | p(tl,tgu

11 e Hlta—t) .y e~ mta—t1)
12 e—Hlta—t1) ./ e—ult2—t1)
14 e—kt2—t1) |y e—Htz—t1)
15 e fulta—t1) |/ e—Oulta—t1)
P1 e—Hlt2—t1) .y e—Hul(t2—t1)
P2 e hlt2—t1) . e—pt2—t1)
P4 e—mia—t1) . e—Mt2—t1)
P5 e~ Oultz—t1) | e—Bp.(tz—tl)

Table 9.2 lists the duto-covariance and auto-correlation function of the stationary continuous-time
GAR(1) process associated with known self-generalized random variable K discussed in Chapter 3.
These continuous-time GAR(1) processes have constant variance function: V(t) = V.

This approach can be applied 'directly to the continuous-time GAR(1) process where p(t) is

a function, instead of a constant:

I

E [K (e— [t u(T)dT)] V(t),

E [K (e— 52 u_(T)dT>] Vi)

Cov [X (t1), X (t2)]

p(tla t?)

Next we consider the bivariate distribution of (X (1), X (t2)). This is carried out by looking
into the bivariate pgf, or bivariate LT, or bivariate cf depending if X (¢1) and X (t2) are non-negative

integer, or positive, or real-valued.

. ‘_l"(t2—t1) @X(t )+E(t it )
G(X(tl),X(tz))(S]_,SQ) = E [sf(tl)sé"(tz)] - E Si’((h)sge )K L . 2]
x(w) |

[si‘(tl)G’g(“) (32; e~u(t2—t1)) E (sg(tm))]

[(316'1{ (82;e—#(t2—t1)>)x(tl)] ‘B [sf(tl’tﬂ] .

i
=

{E [Sf(tl)sge_u(trtl))K®X(t1)3125(t1,t2)
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= Gx) (31GK (82;6_”(t2_t1)>> - Gty ) (82), (9.3.2)

-e-—le(tl)—SQX(tg)] = E [e—slx(tl)e—82[(e"#(%—tl))K@X(t1)+E(t1,.t2)]]
i .

X))

= B -e_slx(tl)d))[g(tl) (32;6_“(t2—t1)> E (e—s2E(t1’t2))]

L

= B -e—[s1—1<;g¢K(82;€—“(t2;t1))]x(t1)] .E (e—szE(tl,tz))

L

= ¢x(t) (81 — log ¢k (32;6_“(t2_t‘))) BBt ) (52)s (9.3.3)
-ei(51X(t1)+82X(t2)):l = E [ei81X(t1)+isze_“(t2—t1)X(t1)+’i52E(t1,t2)]

bx() X () (51,82) = E
= E {E [6_31X(tl)6_32-(e_l"(tZ—ﬁl))K®X(t1)—52E(t1,tz)

P(X(t1),X(t2)) (31, 32) =

= E -ei[s1+e’“(t2'tl)sz]X(t1)] B [eiSQE(ty,tz)]

= Px(t) (31 + e _tl)SZ) CPE(t,t2) (52)- , (9.3.4)

Furthermore, if the continuous-time GAR(1) process is under steady state with the pgf G x(s), or
LT ¢ X(s), or cf px(s) of the marginal distribution, then the marginal distribution is DSD /GDSD,
or SD/GDSD (see Chapter 7). Hence, (X(tl),vX(tQ)) is distributed in a bivariate DSD/GDSD or
bivariate SD/GSD distribution. |

Theorem 9.3.1 Suppose fhe continuous-time GAR(1) process
X(t2) 2 (7)) ® X () + B, t2)
X .
has stationary distribution with pgf Gx(s), or LT ¢x(s), or cf px(s)-

(1) If X is GDSD associated with self-generalized rv K (o), then

G _ Gx (s1Gk (s2;eHt2—t))) . Gx (s9)
e X@(s152) = Gx (Gk (s2;e7(t2=1)))
is the pgf of a bivariate GDSD distribution whose marginal distributions are the same as that

of X.

(9.3.5)

(2) If X is GSD associated with self-generalized rv K (o), then

- ¢x (s1 —log gk (so;e7#B2~t))) - px(s2)
Px (1), X () (81,82) = T gx (Clogéx (32;e—u(t2—t1))) : (9.3.6)

is the LT of a bivariate GSD distribution whose marginal distributions are the same as that

of X.




(8) If X is a real SD rv, then

(pX (31 + e_ﬂ(t2"t1)32) . QDX(SQ)
px (e~nltz—t)sy)

(X (1), X (t2)) (81, 82) = (9.3.7)

is the cf of a bivariate SD distribution whose marginal distributions are the same as that of

X.

Proof: When the continuous-time GAR(1) process is under steady state, we know the form of the

pef, or LT, or cf of the cumulative innovation E(t1,t2) is

: Gx(s2)
GE(tl,tZ)(SQ) Gx (GK (32; e—#(tz—tl))) ’
_ bx(s2)
?E(tl’tz)(sﬂ " ¢x (—log ¢k (so;emHltz—t)))’
px(s2)

o e)(52) = o5 RZCEDINE

Substituting in the previous equations (9.3.2) - (9.3.4) completes the proof.

This theorem indicates that the resulting bivariate distributions depend only on the univari-
ate margin and the associated self-generalized random variable. After specifying the distributions
for them, we can obtain a specific bivariate pgf, or bivariate LT, or bivariate cf, which will deter-
mine the resulting bivariate distribution. As to the joint pmf or pdf of (X (¢1), X (¢2)), in general,

we can employ the equation:

Foxenx@n(@L22) = Fxe)(@1) - Fx@)x@) (@2 | £1),

where the conditional pmf or pdf fx(z,)x()(Z2 | z1) has been discussed Section 9.2. Therefore,
Theorem 9.3.1 shows one approach to cbnstructing the bivariate distributions for GDSD and GSD
univariate distributions.

In general, the bivariate distribution function of two adjacent time points is not symmetric
in its arguments, i.e., fix(s),x(t2)) (T1, T2) # fx(t1),x(t)) (T2, 71)- Only a few special cases exists.
This implies that generally the continuous-time generalized AR(1) process is not time reversible.

For DSD and SD, Gk (s2; e #t2—1)) and ¢k (s2; e~#t2=41)) are known. Hence, we have the

following corollary.




Corbllary 9.3.2 When K is from I1 or P1, Theorem 9.3.1 yields

GX ([1 - e—ﬂ(t2_t1)] S1 + e_“(t2~t1)3132) . GX (32)

Gx(t)x(t)(51,82) = G ([ e WG] o i -sy) ,  (9.3.8)

_ ¢x (st ehlt2=t)go) . bx (s2)
PX(t)x(t2)) (81,82) = o (oMt sy) ; (9.3.9)

' ox (s1+ e H bt s5) - px(sg)
(p(X(tl),X(f&))(Sl’S?) = Ox (e—u(tz—t1)32) ) (9310)

They are the pgf of a bivariate DSD distribution and the LT or cf of a bivariate SD distribution

respectively.

Next we look into some examples resulting from Theorem 9.3.1 and Corollary 9.3.2. For
the sake of simpler notation, we denote o = e~#f2~t)_ First, we study some bivariate DSD

distributions.

Example 9.6 (Bivariate DSD distributions) Here we assume the marginal distribution of a
stationary continuous-time GAR(1) process associated with binomial-thinning has pgf Gx(s). By

(9.3.8), we can obtain the pgf of a bivariate DSD distribution.

(1) (Poisson margins) Let Gx(s) = exp{\(s — 1)} (A > 0).‘ Then

Gx (s1([1 — a] + as2)) - Gx(s2)
Gx ([1 — o] + as2)
=exp{A(s1 ([l —a] + asz) +s2 — [1 —a] — asz — 1)}

G(x(t1),X(t2)) (815 82) =

=exp{A(s1[l —a]+s2[1 —a] +s1s00+ a~2)}

=exp{A(1— ) (51 — 1)} x exp {A (1 — ) (s2 = D} x exp {ha(s152 — 1)},

which leads to the following stochastic representation for bivariate (X (t1), X (t2)):

X(t1)
X (to)

where Zy, Zo ~ Poisson (A (1 —a)), Zia ~ Poisson (Aa), and Z1, Z, Zy2 are independent.

Z1 + Zya,
Zy + Zyo,

e Il

This representation is useful in finding the joint pmf of (X (t1), X (t2)):

Pr[X (t1) = z1, X (t2) = 22] = Pr[Z) + Z12 = 21, Z2 + Z12 = 29]

308




min(z1,22)

= Z Pr[Zlg=i,Z1=£E1—’i,Z2=£L‘2—’i]

=0
min(z1,%2)
= Z PI‘[Z12 = Z] . PI‘[Zl =z — Z] - PY[ZQ = X9 — Z]
=0
min(z1,22) i 1—i To—i
_ Zl 1 Qe ooy (A [1—e])™ " xa-a) AL —a)™" _xa-a)
2 il (@1 —9)! (@2 —i)! -
min(z1,z2) 1 i
= A1 — @t e e e 3 =

iz — )iz =D X (1 — )’

i=0
where T, x2 > 0.

)
(2) (NB margins) Let Gx(s) = (i:—;’g) (0<y<1,6§ >0). Then

Gx (s1([1 —a] + as2)) - Gx(s2)
Gx ([1 — a] + as2)

- (pls2 o (1 dlan) )‘5

T NA-y-a (1 -] +as)) (1 -ys2)

§
=( 1-7)QQ-—y+eay) —oy(l —7)s2 )
1— (1 — a)ysy —vs2 + [(1 — a)y — a]ys182 + ay?s1s3

G(X(tl),X(tz))(31,$2) =

(3) (generalized Poisson margins) Let Gx(s) = exp {0(3_;2, n(kn)*~te *nsk [kl — 1)}, where
0 >0, 0<n<1l. Then

Gx (51 ([1 — a] + as2)) - Gx(s2)
Gx ([1 — o] + as2)

= exp {9 (Z M:_lfﬁ [s’f (L—a]+as))* +s5— (1 -] + aSQ)’“] - 1) } .
k=1 ’ :

G(x(t1),x(t2)) (51, 82) =

(4) (power series margins) Let Gx(s) = s™'[1 — (1 - s)1 (0 <6< 1). Then

Gx (51 ([1 — ] + as2)) - Gx(s2)
Gx ([1 — o] + as2)
sTHl—a+as) t[1-(1-s1(l-a+ as2))?] sy 1 — (1 — 82)°]
(1—oa+asy) 11— (1-(1—-a+as))]
_ (1-1-Q1-a)s - asys2))?) - [L—-(1 - 59)%]
s1s2[1— (1 - s2)f]

G(X(t1),X(t2))(81,32) =
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(5) (logarithmic series margins) Let Gx(s) = s 1log(1 — cs)/log(1 — ¢), wherec=1— e ",
0 > 0. Then

Gx (51 ([l — a] + as2)) - Gx(s2)
Gx (1 —a] + «82)
. s7H1 — a+ asg) tlog[l —csi1(1 — a+ asy)] - 55+ log[1 — es9]/log(1 — ¢)
B (1 —a+asz) tlog[l —¢(l — a+ asz)]
_ log[l — (1 — a)cs1 — aecs1s9] - log(1 — cs2)
~ log(l —c) - s182log(l ~ ¢+ ac — acsy)

G(x (), X (t)) (81, 52) =

(6) (discrete stable margins) Let Gx(s) = e~M1=9) yhere A >0, 0< 0 < 1. Then

Gx (51 ([1 — a] + as2)) - Gx(s2)
Gx ([l — o]+ as2)

= exp {—)\ ([1 -s51{l-a+ aso)? + (1 - s —1-(1-a+ asz)]a)}

= exp {—‘—A ([1 — (1 - a)s1 — asise)? + (1 - o) (1 - 32)9)} .

G(x(t2),X(t2)) (51, 82) =

(7) (discrete Mittag-Leffler margins) Let Gx(s) = Tmi——?)?’ where d > 0, 0 < 7.3 1. Then

Gx (s1([1 — o] + as3)) - Gx(s2)
GX ([1 — a] + 0182)
1+d(1—([L— o] +ass))?
1+d(1—s1(1—a]+as))] [1+d(1-s2)]
_ 1+ da” (1l —s9)”
T l+d(1-(1-a)s; —asis2)’] - [L+d(l—s2)7]

G(X(tl),X(tg))(Sl,Sg) =

(8) (GNBC margins) Let Gx(s) = exp {/ log (%——_;_s) V(dq)} . Then
(0,1) -

G(X(tl),x(tz))(sl,SQ) — Gx (-ﬂé[i (_[la]_-;]of_il)s;)GX(%)‘

. 1—g¢g 1—g 1—g¢q ]
=ex lo +1lo —lo V(d
p{/(o,l)[ BT s (Lol +ass) | l-gs; Cl-q(1l—a]+as) (dg)

— ex . (1-—q).(1—q.([1_a]+a32)) _
= exp {/(0,1) log ((1 — q- 81 ([1 — a] + asy)) - 1- qs2)> V(dq)}

= ex 0 (1-q)(L—q+og) —ag(l —g)s
= exp {/(0,1)1 g (1 — (1~ a)gsy —gs2+ [(1 — a)g — algs1s2 + aq231s%) V(dq)} .
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Note that this is the general form of the pgf of the bivariate GNBC distribution family (in the
family of bivariate DSD distributions), which includes many bivariate DSD distributions with

GNBC margins.
Now we turn to the bivariate SD distributions.

Example 9.7 (Bivariate SD distributions) We assume the marginal distribution of a station-
ary continuous-time GAR(1) process associated with constant multiplier has LT dx(8) or cf px(s).

By (9.3.9) and (9.3.10), we can obtain the LT or cf of a bivariate SD distribution.
§
(1) (Gamma margins) Let ¢x(s) = <B_f-_§) , where 6, B > 0. Then

dx (s1+ as2) - ¢x(s2)
¢x (as2)

:(ﬂ+81ﬂ+082>6(ﬁf@)é(ﬁfa&)_& B ((ﬂ+sfj'+(i;)a-s(2;+s2))a

_ < B2+ afsy )5
TA\B2+Bs1+(a+1)Bs2+afsisa)

DX (11),X(12)) (51,82) =

(2) (GGC margins) Let ¢x(s) = exp{/ log(
(0,00)

)U(du)}, where the non-negative
measure U(du) on (0,00) satisfies

u-+ s

/ |log u|U(du) < o0 and U (du) < oo.
(0,1] (1,00,

Then

e,
PX (1), X (22)) (515 82) = Prin ¢Xaf;;2)¢X(S2)

U u u
= log —— + 1o —1 Uld
exp{/(o’oo) [Ogu+sl+a32 gu+52 Ogu—%—asz] ( u)}

= | u(u + asg)
= exp {/(0’00) log [(u + 51+ asg) - (u+ 32)] U(du)}

u? + uasy
= 1 U(d .
oxp {/(O,oo) °8 [u2 +usy + (a+ )usy + a'U/SlSQ:l (du)
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2

: 1/2 ’
(8) (inverse Gaussian margins) Let ¢x(s) = exp {% [1 - (1 + 2%3) ]} , where A, p > 0.
Then

¢x (s1+ as2) - dx(s2)
dx (as2)

2 1/2 2 1/2

:exp{i[1—<1+2ﬂ--(sl+a32)> ]}Xexp{i[l—(l-{—gy—sz) ]}

n A 7 A

2 1/2 .
xexp{—% {1—(14—2%-(%:2)) ]}
2 2 11/2 2 1l/2 ' 2 1/2

cepd 2 1o (142 s 2 P T 2, .

m A A A A

(4) (Mittag-Leffler margins) Let ¢x(s) = ﬁsw, where 0 < vy < 1. Then

Pex(t),x(2)) (81, 82) =

P (). X (1)) (51,82) = 23 (51¢Xa(‘222)¢X(82)

3 1 1 ( 1 )‘1 3 1+as]
T 14 (s1+as9)? 14+s) \1+ (asg)” T4 (s1+as2)?] - (14 s3)

oC .
(5) (logistic margins) Let px(s) = k]:[1 (1+812/k2) = sirf(”ifrs). Then

px (s1+ as) - px(s2)

O(X (), X (t2)) (81, 82) =

px (as2)
_am(s1 + asg) imsy  dsin(imasy) _ iw(sy + asy) - sin(iamss)
 sin(im(s; + as2)) sin(insg) ITQs2 " asin(ins; 4 iamwss) - sin(irsg)’

' 2
6) (symmetric EGGC margins) Let p(s) = exp _ds 4 log e U(du) 7,
2 )
(0,00) u® +s

where d > 0, U(du) is a symmetric non-negative measure on R\ {0} satisfying

/ ——1—2U(du) <oo and / |log u?|U (du) < oo.
r\foy L +u ul<1
Then
Yx (51 + a32) ‘ <PX(32)
ox (as2)

P(x(81),X (t2)) (81, 82) =

d- (51 + as2)? / ( u? )
= Bl G B L 1 U(d
exp { 2 + (0,00) B\uZt (51 + as2)? (du)

312




ds3 u?
X ——=+ 1 —— | U(d
eXP{ 2 /(0,00) % <“2+5%> ( U)}
d- (a32)2 / < u2~ )
_ - 1 — | U(d
xex?{ 5 (0.00) 08 \ .2 + (asg)? (du)

d- (s? + 2as;52 + 53) / ( w?(u? + a?s3)
— exp{ — 1 .
o { 2 * Jooe &\ a2 @7 79 ) U

(7) (stable margins) Let px(s) = exp{—X|s|"}, where A > 0 and 0 <y < 2. Note that when

0 <~ <1, X is a positive v, while for 1 <+ <2, X is a real-valued rv. We deal with both
situations in the unified form of a cf:
ox (81 + as2) - px(s2)

px (as2)
= exp {—\|s1 + as2|"} - exp {—A|s2|"} - exp {Xasa|"}

O(X(t1),X (t2)) (81, 82) =
=exp{-A[|s1 + as2|"+ (1 —a")]s2|"]}.

We end this subsection with two examples: a bivariate GDSD(I2(vy)) distribution, and a
bivariate GSD(P2(y)) distribution. They indicate that given marginal distributions, there may

exist different families of bivariate distributions.

Example 9.8 Consider K being from GDSD(12(v)) with pgf Gk(s;a) = 11_;?3“'_' ‘f:ggfys, where

: é
0 < v < 1. Let the margins be NB(3,~) with pgf Gx(s) = (11%}5) (0<y<1,6 >0). By (9.3.5),

we obtain

Gx (1Gk (s2;0)) - Gx(s2) _ Gx (31(1(1_;(;;%5(?—:3%> -Gx(s2)
Gx (QK (s2; @) Gx ((1(1_;:)4:%:2)22)
(- (-7 )
i (1 — -8 f:?f ‘1‘:3)212) (1~ 732)}

_ - (-2 r
(1 —oy) —y(1 = a)s1 —¥(1 —a)s2 - (o —v)s1s2]

G(x(t1),X(t2)) (51, 52)

é

This is different from (2) of Ezample 9.6.
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Example 9.9 Consider K being from GSD(P2(v)) with LT ¢x(s;a) = exp {—O—_%%m},
)

where 0 < v < 1. Let the margins be Gamma(s, ) with LT ¢x(s) = (Fg-?) , where 6, f > 0,

v < 1/(1 + B). By (9.3.6), we obtain

¢x (s1 —log K (s2;@)) - px(s2)

¢(X(t1),X(t2))(31’52) = bx (—log dx (52; )
_ ¢X (81 + (1 :")1(1’7 ?)752) ’ ¢X(82) _ ’8 (ﬁ + 0‘ 1 17‘312732
ox () (8+ 51+ =i f:% ;”S;m (5+52)
_ [ B(1—7)+[(1 - )yB+a(l —7)]Bsy 6
B =7+ ()51 + 11 = 0)B7 + a1 ~)lss + (1 - ayorss) (B + m

— (B =7 +[(1 ~ )8 + ol )] )’
x (ﬁ2(1 =) +B(L =751 +[(1 —'a)By + (B + ) (1 = 7)]s2

+H[(1 = @)y + (1 = )]s1s2 + [(1 — @) By + (1 = Y)]s5 + (1 - a)'ysls%) 0

This resulting LT is different from (1) of Example 9.7.

9.3.2 Multivariate distributions

We can directly extend the construction of a bivariate GDSD/GSD distribution to a multivariate
GDSD/GSD distribution via a stationary continuous-time GAR(1) process, where we incorporate
the univariate margins of the multivariate distribution into the margins of the process at different
time points, namely (X (t1), X (£2),- -+, X (ts)) for ¢ <tz <--- <ty.

For the sake of simpler notation, we use the new notation
aiyj=e MG =12,

Note that a;; = 1 (i =1,2,...,n). For a self-generalized rv K with pef Gk (s;a), or LT ¢k (s; ),

314




define the following recursive notations:

(

3;1._1 = Sn—lGK(Sn; an—l,n),
J sh_o = Sn—2Gk(Sh_1;n—2n-1),
L 51 = s1Gk(sy o),
or
( !
Sp—1 = Sn—-1— ¢K(3n§ an—l,n)a
ﬁ S;l_z = Sp- 2—¢K( Sp—1Cn—2,n— 1)
[ 5] = s1— pK(sh;012)-

¢
'
Sp—1 = Sn—1+ On-1,n8n,
! _ !
ﬁ Sp—2 = Sn-2 + an—2n-15,-1;
] _ ' !
L 51 = 81+ a31,25;.

With these new notations, we give the following theorem.

Theorem 9.3.3 Suppose the continuous-time GAR(1) process

X(t) £ (e—u(t—t’))K ®X({)+E({,1), t<t

has stationary distribution with pgf Gx(s), or LT ¢x(s), or cf px(s)- X(t1), X (t2), ...

. the T’s at time points t; < tg < --+ <t (n > 3) respectively.

(1) If X is GDSD associated with self-generalized rv K(c), then

G(X(tl), ,X(tn))(sla .y 5n)
[Ty Gx(s) y Gx(sn)
H ) Gx GK(SJ,ag 1)) Gx(Gk(sn;on-1n))

(9.3.11)

(9.3.12)

(9.3.13)

, X (t) are

(9.3.14)

is the pgf of a multivariate GDSD distribution whose univariate marginal distributions are

the same as that of X. Here s},...,s,_; are defined in (9.3.11).
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(2) If X is GSD associated with self-generalized rv K(c), then

DX (), X () (815 - 5 Sn)
_ [T ¢x(s0) y ¢ (sn)
T102s ¢x(~log ¢ (s aj-1,5))  ®x(=logdk(sn; Qn-1,n))

(9.3.15)

is the LT of a multivariate GSD. distribution whose univariate marginal distributions are the

same as that of X. Here s,...,s,_, are defined in (9.3.12).

(3) ffX s a real SD rv, then

-1
H?:l (IOX(SQ) x 2.4 (sn)
H;L:_zl px(@j-1,85) . ©x (Cn-1,n5n)

PX(t1)rors X (tn)) (815 - -+ Sn) (9.3.16)

is the cf of a multivariate SD distribution whose univariate marginal distributions are the

same as that of X. Here s,...,s),_, are defined in (9.3.13).

Proof: Similar to the proof of Theorem 9.3.1, we have:

GX(SQ) '

G n(s2) = Gx (Gk (so;e#(t-1)))’
. px(s2) ‘
Ppw (52 = gk (s M)
Px(s2)

PE( 1) (32) = ox (e‘“(t"t')sQ) >

for any ¢ < t. Under steady state, the marginal distributions are the same as the stationary distri-
bution of X. Hence, the joint distribution of (X (t1), X (t2),...,X(ts)) has the same distribution

for every margin. By the Markov property, we can obtain

X X
Gttty (5 r5) = B (57053 })
=B (57 )V (s X(ta1)))

n—-1

X(t) SX(tn—l) . G})g(tn_l)(

n-1 8n} Qn—1,n) - GE(tn_l,tn)(S"))

(
= (sf(tl) . (5%_1)X(tn_1)> . GE(tn_l,tn)(Sn)
(2

) SIn—Q)X(tn—z)> ) GE(tn—z,tn—l)(SIn—l) ) GE(tn—l,tn)(Sn)

—
ok
—
~—
~—
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=E ((3' )X(tl)) 'GE(n tz)(sf?) Tt GE(tn_z,tn_1)(${n—1) : GE(tn_l,tn)(Sn)

) GX(Sn)
H Gx( GK sj,a] 1,5)) X Gx(Gk(sn;0n—1n))
Mo ex) . Gxle)
H GX GK(SJ,CY] 1,])) GX(GK(Sn;an—l,n)).

This completes the proof of case (1). Using the same reasoning, it is straightforward to prove cases

(2) and (3).

Although we can obtain the pgf, or LT, or cf of a multivariate GDSD/GSD distribution by
Theorem 9.3.3, the simplification of the resulting multivariate pgf, or LT, or cf to a direct expression
in terms of s1,$2,...,8n 18 very challenging in most situations. ‘Sometimes, symbolic software like

Maple can help us. Three examples are listed below, where tedious induction details are omitted.

Example‘9.10 (Multivariate Poisson) Consider Poisson margins, where Gx(s) = b

(A > 0), and K is from 11 with pgf Gk (s;) =1 — a+ as. Define

Bo=PBn=0, Bi=0aii1= e—“(ti“_ti), 1=1,...,n;"
Afi) =1 -5 = Bi-1), 1=1,...,n;
Aii ity = ABiv Bij—1(1 — Bi—1)(1 = Bi+j), i=1,...,n—j; j=1,...,n—L

By (9.8.14) in Theorem 9.3.3, we can obtain

G(X(t1)yn X (tn)) (S15- -9 80)
n n—j
= exp {Z Ay (i = 1)+ > Mipirgy (868w = 1) -+ A np (517780 = 1)} :
=1 i=1

The stochastic representation is
d
(K(t2), - X)) £ (X Yooy D0 Y5>,
S:1€S$ SmeS
where the summations are over nonempty subsets S of {1,...,n}, Ys ~ Poisson(Ag), Ag =0 if S is
not a subset of consecutive integers (corresponding Ys = 0), and As is defined as in the beginning

otherwise. See Johnson, Kotz and Balakrishnan (1997) for this multivariate Poisson distribution.
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» s
Example 9.11 (Multivariate NB) Consider the NB margins, where Gx(s) = (—ﬂ>
(0<vy<1, 6>0). '

(1) K is from I1 with pgf G (s;) =1 — a+ as.

Define the new recursive notations:

Csi(1) = (1= ajo15) + o185,
5i(2) = (1 —aj_g-1)+ aj2;-15;(1)
= (1-ajg;-1)+aj2;-1[(1 - aj—l,j) + 0-1,5;]
= (1 - @jo2,-10-1;5) + 0-2,j-10-1,58;

= (1 - aj-2;) + aj-2;58;

si(3) = (1- aj_3j-2) + oj-3,5-255(2)

= (1-ajosj-2) +aj-3;-2((1 — @j-2;) + @j-2,5)]

= (1 - oj-35) + j-3,455

si() = (1—ajorji41) + i1 — 1)

= (1 - o) + 01,585
- Then by (9.8.14) in Theorem 9.3.3, we obtain

G (X (t1), X (8a)) (8155 80) = E[sF 1) ... X))
= B[N0 X@HECL) | oot X (o) Bl i)
= E[SzE(tlxt2)] x -+ x B[sEtn-1tn)] x E'[Si((tl)sgl,g*x(tl) _ --sﬁ"‘l*"*x(t"‘l)]
- E[SQE(tl,tz)] X o % E[sg(tn_l,t;)]
xE {'sf(tl)[(l —a12)+ a1’232]X(t1) [ = omo1n) + an—l,nsn]x(tn—l)}
= E[sf(t},tz)] X -+ x E[sEtn-1tn)|B {sf(t1)$2(1)x(t1) " Sn(l)X(tn_l)}
= E[SQE(tl,tz)] X e X E[sf(tn_l,tn)] X E[S3(1)E(t1,t2)] . __E[Sn(l)E(tn_l,tn)]

<xE {S{((tl)SZ(l)X(tl)33(2)X(t1)84(2)X(t1) . sn(2)X(t1)} .
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= E {[so55(1)s4(2) - snln — 215 } x B {[sasa(1)s5(2) - suln - HFE) ]

xB {[snoasa(1)]7r-2n-0} x B {sBltrmnin) |
xE {[3132(1)33(2) - sp(n — 1)]X(“)}

n X(t1) n E(t1,t2)
= E { (81 [(1 ; al,i) + al,isi]> } X E_ { (82 H[(l - 062’7:) —+ az,isi]> }
=2 - =3

x---XE {(Sn—l[(l — Op_1a) + an—l,nsn])E(tn_2’tn_l)} < B {Sf(tn—l,tn)}
{ 1 — ys1 [Timol(1 — 01 3) + a18i] }
o { (1 — v+ a1,y) — engys [Tial(l — 02,) + agsi }6 y

1 —yso [Tinal(1 — a24) + azgisi).
y { (1 =7+ an-22-17) — tn-22-17$n-1[(1 — @n_14) + An—1,n5n] }6
1- ’st—l[(l - an—l,n) + an—l,nsn]
% { (1 -+ an—l,n'Y) — Op-1,nYSn }5 .
1—ysp

(2) K is from 12 with pgf Gk (s;a) = (—1(%)@(?—:;’-% (0.< v < 1). Here v is the same as a

parameter in the pgf of NB margin.
Define

n

Ciyen = [I(in =0) = I = D] JJIL = yej1,,)I(i; = 4j-1 = 0)
i=2
+(1 - ajo1 ) (o1 = 1,45 = 0) = y(1 = @j-1,)I(4j-1 = 0,15 = 1)
+(aj-1,j — MNI(E; =11 =1)].

By (9.3.14) in Theorem 9.3.3 and induction with the help of symbolic manipulation, we obtain

0
1—-"
GXt vy X (tn (317"'73 ):E[SX(tl)”'SX(tn)]: i i
( (127 3 ( )) n 1 n 11120“'2'},;:067:1"'Cn3111“'S:Ln
)
This resulting multivariate distribution of (X(t1),...,X(tn)) is in the multivariate negative

binomial family given in Doss (1979).




Part IV

Statistical inference and applications




Chapter 10

Parameter estimation

In this chapter, we study parameter estimation based on observation of a GAR(1) process at a finite
number of time points. Usually in a real problem, after we decide on the potential models for the
observed data, the next step is to estimate the model parameter values based on the observations.
This procedure is called parameter estimation. The estimation approaches for the parameters in the
continuous-time GAR(1) process include: maximum likelihood, conditional least squares, empirical
characteristic function, as well as the method of moments and miscellaneous for special cases. We
wish to pursue some closed form estimates for easier computations. However, in general, there are
no closed form expressions for the estimates, in which case we will use numerical methods to find
the estimates.

We shall investigate maximum likelihood estimates (MLE) and conditional maximum like-
lihood estimates (CMLE) in Section 10.1. In Section 10.2, we discuss the conditional least squares
estimates (CLS) and variations such as the conditional weighted least squares estimates (CWLS),
quasi-conditional least squares estimates (QCLS) and conditional generalized least squares (CGLS).
The empirical characteristic function (ECF) approach and variations are studied in Section 10.3.

We shall discuss the method of moments, as well as miscellaneous methods for the continuous-time

GAR(1) processes in Section 10.4. Numerical methods are mentioned in Section 10.5.




10.1 Maximum likelihood estimation

The maximum likelihood estimation. approach is a conventional method, usually used in the models
where the distribution of the sample (X1, Xs,...,Xy) is clearly specified. One of the advantages
of this approach is that it is often most efficient (assuming the model is correct).

Let vector x = (z1,%9,...,Zs) denote the data observed at time points t; <3 < -+ <,

from a continuous-time GAR(1) process { X (t);¢ > 0}, namely
X(t) =1, X(t2) =2, ..., X(tn) = Zn.

Let = (61,- - - ,6%) be the vector of all parameters to be estimated in the continuous-time GAR(1)
process model. One of the important parameters is the dependence intensity p (see Chapter 4),
which we put into the first argument position in 6, i.é., 6, = p. Let © be the parameter space.
Usually, the parameter space is the subset in k. For example, ; = u > 0. The sample x can be

viewed from the joint distribution of (X (t1), X (¢2),...,X(ts)). Then the likelihood function is

LO|x) = fx(t)X(t2)wX(t))(T1:525 - Tn; 0)

= fx)(@1;0)fx ) x(0)(T2 lw1;0)”-fx(tn)lx(tn_lj(ﬂfnlwn—1;0)~ (10.1.1)

Here f denotes the pmf in the discrete case or pdf in the continuous case. Because it is a product,

we take logarithm and obtain the log-likelihood function:

log L(0 | x) = log fx(u)(21;0) +log fx (i) xt)(z2 | 21;0) +---

+108 Fx ()| X (tn1) (Zn | Tn-1;8), (10.1.2)

The MLE of 8, denoted as §MLE, is then the value of parameter 8 where the likelihood (or log-

likelihood) function reaches maximum, namely

Orvre = arglgleaécL(O |x) = argreneag){logL(O | x).

By taking partial derivatives on log-likelihood function with respect to parameter @, in general, we




can obtain the score or MLE equations by equating them to zeros:

dlog LIOIX) _ 0

90, -

BlogL!H X)) _ 0

30y, =

Assume the MLE is not on the boundary of ©. Solving these equations will lead to the MLE OrrE.
By calculus, it follows that '

Olog L6 |x) _ 1 Ofx(t)(2130) 1 Ofx () x(t1) (%2 | 715 6)
96, Fx(t)(2150) 99;  Fx@)x) (@2 | 213 6) 00;
g — 1 OF x(tn)X(ta=1) (Fn | Tn-1,0)
FX ()1 X (tner) (@n | Tn=150) 90,
= 0,

forj=1,2,...,k.
Sometimes, the marginal distribution of X (t1) is not specified or is not of primary interest.
In such a situation, we only focus on the conditional structure of the process, and view the sample

(29,3, ...,2n) as a realization of (¥1,Y2,...,Yn-1), where
d .
Y, = [X(tiq) | X (&) = zi], i=1,2,...,n—1

Note that these ¥; (i = 1,2,...,n — 1) are independent rv’s. We can maximize the conditional
Jlikelihood function of (X (t2), X (t3),.- ., X (t,)) conditioned on X (t;) = 1, which is the likelihood
function of (Y1,Ya,...,Yn 1), '

LiO1%) = f(xX@) Xta)X(t)(@2s- - Tn | 2150)
= fx)x)(@2 ] 2150) - FX (@)X (tn) (@n | Tn-130), (10.1.3)

or its logarithm
log L1(8 | X) = 10g fx(t)x(t1)(®2 | £150) + -+ 4108 fX (1) X (ta—1)(Tn | Tn-1;6), (10.1.4)
to obtain the conditional maximum likelihood estimate (CMLE)

OcmLE = argrgleachl(H |x) = argrgneag)(long(G | x).
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This will lead to

dlogLi(0|x) 1 Of X ()% (t1) (T2 | 215 0) N
00, T xa)x ) (@2 | £150) 96, .
+ 1 Of x ()| X (tn-1)(Tn | Tn-1;0)
X)X (tn1)(@n | Tn—150) 00
= 0,

for j = 1,2,...,k. This simply drops off the term fx, (1) in (10.1.1) and (10.1.2). It is fine
when the sample size n is large, because then the term fy(;,)(z1) has less influence in the MLE so
that the difference between MLE and CMLE is very small.

The conditional pmf or pdf fx (. ) x() (6 =1,2,...,n— 1) has been discussed in Section 9.2.
Usually, they do not have explicit forms of expression. Hence, we can not obtain the explicit form of
MLE or CMLE. Even the numerical solution of the MLE or CMLE could be a new challenge. Based
on these difficulties, the maximum likelihood approach may not be the first choice in parameter '
estimation unless other approaches are not good enough or one is particularly attracted by the
asymptotic efficiency of the MLE or CMLE.

The maximum likelihood approach can be used in either the stationary or non-stationary
situation if the relevant distributions are known. _

Lastly, we briefly discuss the numerical approach to obtain the MLE or CMLE when the
explicit form of likelihood is not available, but a closed form exists for the conditional pgf or LT.

The key issue in this situation is how to calculate the pmf or pdf by the characteristic
-function. Theoretically, the cdf Fz(z) can be computed by the inversion of characteristic function

¢z(s). Levy’s inversion theorem shows that

’ F2(e) - F2(0) = 5 | Tl (s,

27 J_ oo 8

Gil-Pelaez [1951] gave a new -version which has computational convenience:

) o0 182 o) _ o—tsz
Fylz) = %+ 1/ € pz(=s) — e Pz (s) (10.1.5)
0

2

Davies [1973] changed the form to

21s

Fu(z) = % _ /oo Im <?_—‘PZ—@) ds (10.1.6)




for the continuous real-valued case and to

1 T e—is(z+1)(pz(3)
Fs) = 5- /_ WRe<27r Tt ) (10.1.7)

for the discrete integer-valued case, then proposed a numerical approximation to the Gil-Pelaez’s

inversion theorem when the expectation exists. But, since only a one-dimension integral is involved,
it is feasible and better to apply a numerical integration method and obtain the corresponding
probability. Bohman [1970, 1972, 1975] gave a couple of approximations for different situations,
especially for the case of non-negative support.

These numerical techniques will play a promising role in finding MLE or CMLE numerically.
In addition, in a simulation study, we need to generate the samples from the continuous-time
GAR(1) processes, the numerical inversion of characteristic function can work well when the explicit
form of conditional cdf is not available, or when a simple stochastic représentation has not been

discovered.

10.2 Conditional least squares estimation and variations

The least squares approach is another conventional method. It does not depend on the full specifi-
cation of distributions, instead, it just uses the means and/or variances. Hence, the estimates from
the least squares app_roach can correspond to a class of distributions which have the same means
and/or variances. Compared with the maximum likelihood approach, the least squares approach
usually does not provide estimates as efficient as MLE. However, it usually has a computational
advantage and a simple interpretation.

The conditional least squares approach is specifically suitable for Markov process. It focuses
on the conditional mean and/or variance structure of the remaining observations given the first one
like the treatment in conditional maximum likelihood estimation. Thus, the sample z9,z3,...,Zn

are viewed from the independent rv Y7,Y5,...,Y,_1, where

Y £ [X(ti) | X(t) =2, i=12...n-1
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It considers
n—1
Rers(0) = ($i+1 ~E[X(tis1) | X (&) = =35 9])

=1

2
, (10.2.1)
and the conditional least squares estimate (CLS) is defined as

OcLs = ' 9).
OcLs arglgggRCLs( )

By taking partial derivatives and equating them to zero, we can obtain estimating equations

n_l ' =

; (:Ei+1 _ E[X(tz+1) | X(tz) — Iz; 0]) 3E[X(ti+18)|0)l{(ti)_ ugl —_ 0,
n—1

; ($i+1 —E[X(ti1) | X(b) = 25 0]) aE[X(ti+lgLf(ti):zi;o] = 0.

The solution of these equations will be the conditional least squares estimate §CLS.

Consider the stationary continuous-time GAR(1) process with marginal mean function A(8):
d i t—t
X)) £ w(t—t') Y+ E(t "<t
(1) £ (e#0-0) ©X(@)+B(,), 1<
Let
o; =B [K (e"“(t”l_ti),)] , where 1 = 1,2,...,n— L.
By (9.2.1), we have that for i = 1,2,...,n — 1,
E[X(tie1) | X(6) = 25,6) = 2B [K (e#tn9)] +49)- (1-E [ (emmtsnme)]),

zio; + A(0) [1 — ) .

i

If K has finite mean, then, by Theorem 3.2.1,

o = e THltir1—t) for some r > 0.

In many situations, o; is only related to the parameter . For example, when K is from I1, I2,

I4, P1, P2, and P4, r = 1 and o; = e~ #{tit1=4),




Now we consider that «; involves only the parameter p, namely 6; in 8. Thus,

OE [X(ti_H) | X(tz) = Ty, 0] _ _aai ) 3A(0) Bai
a6, = I B +[1 - o] B — A(0) o
OB[X (1) | X(t) =236) _ (| _,10A0)
00, N Y06,
OE[X (ti1) | X(t:) =256] _ - o] 9A(9)
00y, - 56,
and the CLS equations simplify to
n—1
S (is1 - zios - AL - ]} (2 - A0) G =0,
i=1 (10.2.2)
> (st —mios - A@)L - al)l-a] =0,
=1

When the data are observed at equally-spaced time points, a simpler result can be deduced. In
this situation, let A =t —t; = -+~ = t, — to—1, and all the a; (1 =1,2,...,n — 1) are the same
n—1

: 2
as @ = E [K (e7#2)]. Then minimizing (mi+1 —zia— A(0)[1 — ¢ ) is equivalent to find the
i=1

regression line, hence, we obtain

i=1 1=1

n—=1 1 n—1 n—1
Y TTipi— oy | 2 Ii) < > l‘i+1)
1

acrs =

n—1 2__1_(71— .)2 ’ ,

_f;% =1 i:i””’ (10.2.3)
— n—iflgl Tit1— "—1_—11;:1 z,»)a
A@)cLs = 1-a

Note that & can be written

If we arrange the generalized time series data x = (z1,T2,Z3,.-.,Tn-1,Ln) into lag-1 pairs:

(-7;17'7"2)7 (2’)2,1}3), EERE) (xn—lamn)a
‘then we can calculated sample lag-1 auto-correlation coefficient by
n-—1 L n—1 1 n—1
> (mz =) Iz) <$i+1 = $i+1>
5 = =1 =1 =1 , (10.2.4)
n—1 = 2 p—1 | nol 2
Z (iEz ~ -1 Z mz) Z <$i+1 ~ n-1 > $i+1>
i=1 i=1 i=1 i=1
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which is always within [—1,1]. Thus

n—1 = 2
Z Tit1 = 727 D Titl
=1 —~

« X p1-
L n—1 2
GRS
1=

n—1 n—1 2 n—1 n—1 2
When the sample size n is large, D (a;H_l =3 Z achq) will be close to ) (mz - Iz) ;
i=1 i i=1 i=1
thus, @& will be close to p;. This gives an explana,tlon for a: it is a modified sample lag-1 auto-

correlation coefficient.

From the two equations in (10.2.3), we may obtain 50 Ls- However, sometimes the estimated
value & or X(F) may lie outside of the range of & or A(@), then, the conditional least squares
approach won’t work. Note that for the discussed self-generalized rv K, the expectatioﬁ form of «;
can be found in Table 9.1. .

The following generalized time series examples are the applications of (10.2.3).

Example 10.1 (Poisson univariate margins) Consider the time series from the stationary

continuous-time GAR(1) process
X(t) LeH- « X(¢) + B(t, 1), t<t,

which have Poisson()\) margin. In this case, the parameter vector 8 = (u, \)', and marginal mean
function of the process is A(@) = X. For binomial-thinning, a = e M. According to (10.2.8), we

have -

acrs =

|

».
§
]

AcLs = =

p-l

Note that 0 < e #2 < 1 and A > 0. Hence, @ should be in (0,1) and X>0 When0<a<1, we

can further obtain icrs = —lo—gg.




Example 10.2 (Geometric univariate margins) Consider the time series with Geometric(y)
univariate margins, where 0 < v < 1. They can be from either the stationary continuous-time

GAR( 1) process

X)L =t « X(¢) + B(t,1), ¢ <t

or the stationary continuous-time GAR(1) process
x(@) < (e‘“(t_t'))K ® X(t) + E({,1), t<t,

where K is from 12 with pgf Gk (s;a) = ﬁ% Here v is the same as a parameter in the

marginal distribution. o ‘
Then 6 = (u,7)', A(0) = T—Lv For K being from either I1 or 12, a = e #&. Therefore,

according to (10.2.3), we have -

acrs = —— — 5 ,
| (g )
A/\ ﬁng:l S 21 zi>a ¥
O)crs = s = 5)

—

If & is in (0,1) and A(6) > 0, then we can further obtain

~ loga
ficLs = —“&5

YeLs = AO)kys
14+A@) o1 s

Example 10.3 (Exponential univariate margins) Consider the time series with exponential(B)
univariate margins, where B > 0. They can be from either the stationary continuous-time GAR(1)
process

X(@) Le -1 o X(¢) + BE(t,t), ¢ <t

or the stationary continuous-time GAR(1) process
X@t)< (e‘”(t—t’))K ®X({t)+E(,t), t<t,

where K is from P2 with LT ¢ (s;a) = exp {—zl’—_%rf—ls&m}. Here v = ﬁ

329




Then 6 = (i, B)', A(8) = B~1. For K being from either P1 or P2, a = e #2. Therefore,
according to (10.2.8), we have

,E“’“‘f—l(g )(Z ) (= e

dcrs = ~ —7 :
'g ’—" \& m,)
n—1
e z Tigl— (nl 1 Z:l 1‘1)& 1
A@)crs = = = 73‘)'

If @ is in (0,1) and A/(E) > 0, then we can further obtain

~ lo

ficLs = ——&5

Bers = ——.
A@)¢ys

By Table 9.1, for K from I1, 12, I4, P1, P2 and P4, the form of  is e H4 . Hence, from
the first equation of (10.2.3), we always obtain

dcrs =

fcrs = N log (10.2.5)

However, if icrs < 0 or Geors > 1, what can we do? In such situation, we may set a=0ora=1
respectively. These two situations are extreme cases for the continuous-time GAR(1) processes: the
first one corresponds to an iid situation, while the second one corresponds to a perfectly dependent
situation. But if @ is strongly negative and the sample size n is large, it may suggest that the
specified continuous-time GAR(1) process model is not appropriate to use. Or other approaches
should be considered For the marginal mean function A(O), if its estimate .X(F)C g exceeds the

range of A(@), one simple alternative estimate is A(0 = Z ;, which obtains from the method
z—l

of moments in Section 10.4.




Obviously, the advantage of CLS estimation is that it can offer closed form estimates for

generalized time series. However, the disadvantages are clear too:

e it can only estimate two parametérs, because the CLS estimating equations (10.2.2) or (10.2.3)

include only two equations;
e it ignores the conditional variance information.

These motivate us to turn to conditional weighted least squares (CWLS) approach. It considers

2
n—1 (x,ﬂ ~B[X(ti1) | X(t:) = i])
Rewers(6 Z Var [X (tir1) | X(t:) = 2]

(10.2.6)

and the conditional least squares estimate (CLS) is defined as
0 = in R 6).
cwLs = argmin cwrLs(0)

Similarly, we can obtain the estimating equations by taking partial derivatives of Rcwrs(8). For the
stationary continuous-time GAR(1) process, let the marginal mean function and variance function

be A(6) and V(@) respectively. Denote
a;=E [K (e—“(tm—tf))] .y =Var [K (e_"(”_tl))] , (10.2.7)
where i =1,2,...,n — 1. By (9.2.1) and (9.2.2), we have
E[X(tin) | X(t) =] = o B [K (e#678)] + 4(0) (1-E K (euttr=t)])
= ;045 + A(0) [1 - a,—] , (10.2.8)
Var[X(ti1) | X(t) =] = V(6) (1 _E? [K ( - tﬂ) )
+[z; — A(6)] - Var [K( wlt2— tl))]
= [z — A@)v; +V(8) [1 - of]. , (10.2.9)
where 1 = 1,2,...,n — 1. These lead to

' 2
n-1 <$Z+1 -z — A(0)[1 — ai])
Rowrs (0 Z ESZONErR (10.2.10)

=1
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It is ‘straightforward to show that the number of estimating equations won’t simplify to fewer than
the number of parameters k. However, no more closed form estimates can be expected even in the
generalized time series. Numerical methods have to be employed to obtain the CWLS estimates
BowLs.

An estimation method irelated to CWLS approach is the quasi-conditional least squares
approach (QCLS), which is a modification of the quasi-least squares approach proposed by Cha-
ganty [1997). The estimating equations of CWLS can be obtained by taking partial derivatives
of Rowrs(0) in (10.2.6) with respect to parameter 6. The partial derivatives will be the sum of
two terms: one is regarding the partial derivatives of conditional expéctation from the numerator
in the summands of (10.2.6), one is regarding the partial derivatives of conditional variance from
the denominator in the summands of (10.2.6). Further research shows that the CWLS estimator is
not consistent for the true parameter value 0° (see the comments in the last part of Section 11.3).
Thus, a consistent estimator is pursued.

The quasi-conditional least squares approach considers the sum

2
= (-’L'H-l —E[X(ti1) | X(t:) = ﬂCi;o])
Rqors(0,6%) = Z Var X (tiq1) | X (t:) = ;8"

(10.2.11)

where 0* is a variable independent of 8. When 8* = 0, Rgcrs(0,0) = Rewirs(0). Taking partial

derivatives of Rgcrs(0,0*) with respect to 8 = (61, ... ,0;)" and equating to zero, we have

2ot (i~ BIX (i) | X(8) = 9536))  GB(X(t00) | X(1) = ;6]
Var[X (tip1) | X () = ©5;07) 96;

-0, j=12...,k

=1

Taking 8* = 6, we obtain the following estimating equations

n-l ($i+1 —E[X(tin) | X(t) = :vi;O]) OE[X (tip1) | X (t) = 24 6]
Var[X(tis1) | X(t) = ;0] 80,

0, (10.2.12)

where j = 1,2,...,k. These estimating equations are not obtained from Rewrs(6). Hence, they
are not the same as those CWLS estimating equations. We call the solutions of (10.2.12) the
quasi-conditional least squares estimate, 5QC 5. Unlike other estimates, this estimate won’t

minimize any of the sums, at most it marginally minimizes Rgcrs(6,6").
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Similar to (10.2.2), the estimating equations of the CLS, for the stationary continuous-time
GAR(1) process with marginal mean function A(#) and marginal variance function V(8), (10.2.12)

- can simplify to

Tigl1—Ti0G— 0)[1 azL L [l B _
i=z1 * A(9)lvi+V (6)[1—a?] e - A@)] 5 =0, 10.2.13
nz—:l l+1 i~ A()[1—a] [1 B ] ~0 ( L. )
= A(8)) 1/1+V(6)[1 a2] T X -
Here o, v; (i =1,2,...,n — 1) are defined in (10.2.7). Since the number of parameters may exceed

2 which is the number of equations in (10.2.13), the application of QCLS approach is limited like
the CLS approach.

Note that the conditional variance Var [X (¢;+1) | X (t;) = ;] is linear in z;. This leads
to a simple variation of the CWLS estimates for the continuous-time GAR(1) process. Instead of

Rcwis(0) in (10.2.10), we shall consider

2
n-1 ($i+1 - 20 = AG)[1 - ai])
cx; +d

Rcwisa(8) = , (10.2.14)

i=1
where ¢, d > 0, but both are not equal to zero. These two constants are introduced so that
we can partially take advantage of the informatipn from the conditional variance. Usually d is
chosen to be positive so that the denominators are not zero. It could be a small number, say
d = 0.5. The constant ¢ may be chosen by borrowing information from other estimation sources,
because v; could be estimated by the function of o; which may be estimated by CLS estimates or
method of moments estimate gi. If ¢ =0, d = 1, Rewrs2(8) will simplify to R(6) in (10.2.1) for
the continuous-time GAR(1) process, which results to the conditional least squares estimates. By

minimizing Rowrs2(@), we can obtain
OowLs2 = argmin Rewrs2(0).

The big advantage over (10.2.10) is that we may obtain the closed form of estimates §CWL52 in
the generalized time series situation, because the denominators do not depend on parameters; this

is just like the situation of the CLS approach.
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Suppose the generalized time series is from a continuous-time GAR(1) process; in other

words, we make the equally-spaced assumption here. Let a = @ and b = A(0)(1 — ). Then by
2

(mi+1—zia—b)

n—1
‘taking partial derivatives with respect to a and b for Row 1s2(0) = 3 , we will have
i=1

cri;+d
n-l T T;a—b
it1—zia—=b = _
.Z cxi+d zi = 0,
1=
- Tit1—T;0—b -
Z cri+d = 0.
=1
Let
. n—1 1 n—1 T ‘ n—1 T n—1 1_2 n—1 o
% i+1 ] tLi+1
Bi=3 , Ba=) s By=)  Bi=) —t—, Bs=) ——.
£ ez, +d (< cx; +d L cx; +d L+ cx; +d L cx; +d
=1 =1 1=1 =1 1=1
Then the equations become
Bib+ Bsa = Bs,

Bsb + Bya = Bs,

-which have solutions

0 = BlBg, — B2B3 - B2B5 - B3B4
T "BiBy-B?’ = B:-BiBi
These lead to
& — BiBs—B B
owLs? B\B;-Bj (10.2.15)
@ _ 1 . ByBs—B3By
CWLS2 l-acwrs2 B5—B1By '

From (10.2.15), we may obtain 5CW Ls2. If the estimate §CLS is beyond the range of 8, it is possible

" to find an appropriate @cw Ls2 to be the alternative estimate.

The idea of conditional least squares can be extended to more general situation. Instead

of the original sample z1,%32,...,Zn, We may consider applying a real-valued function g to get:
g(z1),9(x2), . ..,9(zn). Correspondingly, we will replace the conditional least squares
n—1
2
Rers(8) = 3 (zin ~ B[X (1) | X () = 2:36])
=1
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with conditional generalized least squares (CGLS)

n—1

Roors®) = 3 (gleern) ~ Blo(X () | X(0) = 2:56]) (10.2.16)

=1

which results to the conditional generalized least squares estimate:

9 = i 9).
cGLs = argmin Rcers(9)

When g is the identity function, this reduces to conditional least squares.
Our goal is to find potential closed form estimates for the generalized time series. For this

purposé, we choose g(z) = z2. Then from (10.2.8) and (10.2.9),
E[Xé(tm).'l X(t) =] = (BX(ti1) | X(8) = @:))® + Var([X (ti1) | X () = 2]

= [zia + A(B)(1 — @)]? + [; — A(O)]v + V(0)(1 = &)
= a?22 + [20(1 — @) A(6) + i + [(1 — a)2A%(8) — vA(8) + (1 - &*)V(9)],

a linear equation of z; and mf Let

a=0a?, b=2a(l -a)AB) +v, c=(1-a)’A%@)—-vA(6)+(1 —»q?)V(O). (10.2.17)

Then
n—1

RCGLS(O) =y

i=1

2
(wlzﬂ — az? — bx; — c) , (10.2.18)

and resulting estimating equations from differentiating with respect to a, b and c are

¢ n—1
(zi41 — az? — bz; —c)z? = 0,
]
n—1
ﬁ (zip1 — az? —bz; —c)z; = 0,
o~
n-1
(zi11 — az? — bz; — ¢) = 0.
L =1

Let
n—1 n—1 n—1 n—1
2 3 4
Ci = _;_ z;,, Ch= E z;, C3= E z;, Cs4= E z;,
~i=1 i=1 =1 i=1

n—1 . n—1 n—1
2
Cs = E zit1, Ce= E ziziy1, Cr= E TiTit1.
i=1 i=1 i1
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We can rewrite the above equations as

Cua + C3b + Coc = Cr,
Csa + Cob + Cic = Cs,
Cya + Cib+ (n — 1)c = Cs,

and the solutions are

[(TL——I)C7—CzCs]-[(n—1)02—C%]——[(n—l)Cs—-ClCs]~[(n—1)C3—C1C2]
[n-1)Ca—C3 {(n—1)Ca—CFl~{(n=1)Cs~ LG 2 )
b= [(’I‘L—l)C7—0205]-[(’n—l)C3—0102]—[(71,—1)06—01C5]~[(71—1)C4—% (10 2 19)
- [(n—1)C3—C1C2)2—[(n=1)C4—C3]-[(n—-1)C2—C7] ’ -

—Cs G, C1
C= a1 n—la n—lb

a —

By (10.2.17) and (10.2.19), we may obtain the CGLS estimate ECGLS. Note that dcgrs = V-

Hence, it can be another alternative choice if Qcrs is outside of the range [0, 1].

Example 10.4 (Generalized Poisson univariate margins) Consider the time series from the

stationary continuous-time GAR(1) process
X(t)Le - X(¢) + E(f 1), ¥ <t

which have GP(®,n) (0 >0,0<n < 1) margin. In this case, 0 = (1,6,n), and the marginal mean

function and variance function of the process are
A@) =601 -, V(O)=0(1-n)"

From Table 9.1, for binomial-thinning, o = e gndv=ca(l —a)=e#* (1 - e HA). According
to (10.2.19), we have the values of a, b and c. If0 < a <1, by (10.2.17), we can obtain the

estimates

¢~ (1-a)2A(6) + a0 —38)A(6)
1— a2 '

_ . b-a1-8)
a=+/a, 4(0)—7&“(1—_5)—’ V(o) =

(10.2.20)

If f((-a) >0 and 17(3) > 0, we can further obtain the CGLS estimates

—3 —

- log & ~ A8 N A0
BcaLs = — i , Ocgrs = /(\) , Ncers =1- _'/(-T)
- V(o V()

- Note that §CGL5 should be positive and fogrs should be in the range [0, 1].
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Example 10.5 (NB univariate margins) Consider the time series from the stationary continuous-
time GAR(1) process
X)Lt « X(¢) + E(f,t), t <t

which have NB(4,v) (6 > 0,0 < v < 1) margin. In this cdse, the parameter vector .= (u,d,7)’,

and the marginal mean function and variance function of the process are
A@)=5y1 =771, V() =& -7

Similar to Ezample 10.4, we can obtain the estimate Q, A/(B) and 17(3) by (10.2.20). If A/(E) >0
and ‘7(3) > 0, we can further obtain the CGLS estimate

_ loga - A6 - A(®)
HCcGLS — — A dogLs = =—=————"—"; Yogrs =1 — —=.
: V(8) — A(6) v(e)

Note that SCGLS should be positive and Ycgrs should be in the range (0, 1).

Example 10.6 (Gamma univariate margins) Consider the time series from the stationary

continuous-time GAR(1) process
X)L =) o X(¢') + E(,1), t <t

which have Gamma(s,8) (5,8 > 0) margin. In this case, the parameter vector 6 = (u,6,B)', and

the marginal mean function and variance function of the process are
A(0) = 6871, V(8) =872

For K from P1, by Table 9.1, a = e“"A and v = 0. According to (10.2.19), we can calculate a, b
and c. If 0 < a < 1, we can obtain the following estimates by (10.2.17):

—2

~ vl b /\_c—(l—a)QA(O)
- a=+a, A(0)—2a(1_a), V(0) = a2
If A/(E) > 0 and ‘7(3) > 0, we can further obtain the CGLS estimate
~ log & ~ A(0) ~ A(6)
foerLs = —— 7 dcoLs = —=,  YcaLS = —=-
V(o V(o)

Note that XCGLS and BCGLS should be positive.
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In Examples 10.2 and 10.3, we restrict the parameter v associated with K from I2 and P2
to a specific value. This is simply because of the limitation of number of estimating equations in

the CLS approach. Now we can loosen such a restriction in the CGLS approach.

Example 10.7 (Geometric univariate margins) Consider the time series with Geometric(B)
univariate margins, where 0 < 8 < 1. This time series is from the stationary continuous-time
' GAR(i) process

X(t) 2 (e‘“(t—t’))K ® X(t)+E({,1), t<t,

where K is from 12 with pgf Gk (s; @) = 1(1—?;&((11:323 By Ezample 7.15, we can choose 0 < 7y < B.
Then 6 = (1,7, 8), A@) = B(1 —B)~* and V(0) = B(1 — B)~2. For K from 12, a = e™#&
and v = a(1 — a)(1 +)(1 — )~}. Therefore, according to (10.2.19), we can compute a, b and c.

Furthermore, from (10.2.17), we have

If

a?,

b = 2a(1-a)B1-Bt+al -+ -,
B2(1-B)2 —a(l - a1 +7)1-9)B(1 - ) + (1 -8B - B2

fl

c = (1-®p0

Solving these equations, we can obtain dccLs, Becers and 7. Since it is very tedious, we omit the

details' IfO S a _<_ ]-; we can Obt(lin ,ZZCGLS = __g_lOAa'

Example 10.8 (Exponential univariate margins) Consider the time series with Ezponential(B)
univariate margins, where 3 > 0. This time series is from the stationary continuous-time GAR(1)
process
X £ (e‘“(t‘t')) L®X )+ E{,1), t<t,

where K is from P2 with LT ¢x(s;a) = exp {—ﬁ%} By Ezample 6.15, we can choose
0<vy<(1+p8)7L '

Then 8 = (u,v,B), A(@) = B~ and V() =‘ﬁ‘2. For K from P2, a = e #® and
v = 2a(l.— a)y(1 — y)~'. Therefore, according to (10.2.19), we have a, b and c. Similarly, by
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(10.2.17), we obtain

a = a2
b = 2a(l-a)Bft+2aE(1 - a)F1-7)7,
c = (1-8)?282-28(1-a)/F(1-7) B +0-a%)82

The solutions will be LiceLs, Yocrs and BCGLS. The tedious details are omitted too.

Since (10.2.19) only offers estimation for three parameters, we can not apply the CGLS
approach to the continuous-time GAR(1) process associated with four or more parameters. For the
time series from a four-parameter continuous-time GAR(1) process, we may combine (10.2.3) and

(10.2.19) to obtain the estimate . The following is an example to illustrate this idea.

Example 10.9 (NB univariate margins) Consider the time series with NB(5,8) univariate
margins, where § > 0 and 0 < 8 < 1. This time series is from the stationary continuous-time
GAR(1) process '

X(t) % (e‘“(t‘t'?) . ® X))+ E{,1), t < t,

~where K is from 12 with pgf Gk (s; ) = é%%)lfy—s (0<vy<B).
Then 0 = (u,v,B)", A(@) = 6p(1—B)"! and V(0) = §B(1=pB)~2. For K from 12, e = e #&

and v = a(1 — a)(1 +7)(1 — ). Therefore, according to (10.2.19) and (10.2.17), we have
o = a2,
b = 2a(1-@a)A(0)+a(l-a) 1+ -7
— 2 —

¢ = (1-@2AB) -1 -a)1+7)(1-7) A0 + (1 -8V ().

On the other hand, by (10.2.3), we can obtain

o~ . i=1 i=1
o - nol n—1 )2 ’
r;y———7 T
12::1 e\t
1 n—1 1 n—1 -
— -1 21 ZTit+1— n—1 2 zl)a
— i= =
AB) = =
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Choosing one estimate of a from either set of equations, we can derive new equations

1 n—=1 1 n—1
n—1 El Tit1—\ =1 Zl Zi o
1= i=

14/(5) = ‘ 1-& )
b = 28(1-a)A0)+al - +HI -7,
¢ = (1-a2A®) -a(l-a)1+7)(1 -9)AWG) + (1 -a2)V(8).

Solving these equations, we can obtain

b—2a(1 — 3)A(0) - a(1 - &) _c+bA(6) - (1 ~8%)A(8)

= — . V(O . ,
b—2a(1 — &)A(8) + a(l — @) 1-a2
which finally lead to
—2 —
gz —/TA(E)7\—7 3 =1- é“(/ot)
- V(08) — A(9) : V(8)

Example 10.10 (Gamma univariate margins) Consider the time series with Gamma(s, )
univariate margins, where 6,8 > 0. This time series is fmm the stationary continuous-time GAR(1)
process
X(t) £ (e‘“(t‘t'))K ®X(t)+EW,t), t<t,
where K is from P2 with LT ¢k (s;a) = exp {—ﬁ%m} O0<y<(1+p8)71). |
Then 8 = (u,v,8), A®) = 687! and V(0) = 672 For K from P2, o = e M2 and
v =2a(l — a)y(1 — ). Similarly, choosing one estimate of o from either (10.2.8) or (10.2.19),

and combining the remaining equations, we obtain new equations

1 n=1 1 n—1
n—1 Zl Tit1™ | 71 Zl Ti o
1= =

A/(B) = 1-a ’
b= 2@(1-@)A(0) +2&(1 -1 -7) 7
c = (1-@?4(8) -2a(1-7L-)A@) + (1 -V (6).

Solving these equations, we can obtain

b— 2a(1 — 3)A(8)

o ¢+ bA) - (1-aNAB)
T by 281 - a)1 - AB)] = 1-a2 '
Thus, ,
s AR 5 A0
V() V(6)
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Now we look back the estimation approaches discussed in this section. The Rers and
Rew Lse functions are only related to conditional mean, hence, they are only applicable to estimate
those parameters which are arguments of the conditional mean. The Rewrs, Rocrs and RcgLs
functions involve not only the conditional mean, but also the conditional variance. Thus, they
can estimate more parameters than the previous two approaches. For the unequally-spaced time
observations, in general, we do not have the closed form estimates. ‘But, for equally-spaced time
observations, we have derived closed form estimates in the CLS, CWLS2 and CGLS approach.
However, we should always beware of the estimated parameter ranges in all approaches. If estimates
are out of range, the model may not be appropriate. :

In summary, the conditional least squares approach and its variations work only for finite
conditional mean and/or conditional variance. This requires that at least the marginal mean
function of a continuous-time GAR(1) process should be finite.’ Howevér, there are some continuous-
time GAR(1) process which have infinite marginal mean function, for example, the power series,

logarithmic series, positive stable marginal distributions, etc.

10.3 Empirical characteristic function estimation approach and

variations

There are some GDSD and GSD distributions whiéh have infinite mean. These distributions include
power series, logarithmic series, discrete stable, discrete Mittag-Leffler, Zeta (when 0 < p < 1),
Mittag-Leffler, stable (most of them), etc. Hence, the conditional least squares approach is not
applicable in the parameter estimation for the continuous-time GAR(1) process with marginal
distributions which have infinite mean. In principle, the maximum likelihood approach can handle
an infinite mean, but the conditional pdf or pmf should be in closed or simple form. Although we
usually know the conditional pgf, or LT, or cf form for those confinuous-time GAR(1) processes,
it is very difficult to find the corresponding pdf’s or pmf’s. Thus, in most cases, the maximum

likelihood approach may not realistic.
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If we just consider the equally-spaced time observation from a stationary continuous-time
GAR(1) process with infinite marginal mean, we may adopt the empirical characteristic function
estimation approach. For references, one can see Paulson, Holcomb and Leitch [1975], Feuerverger
and McDunnough [1981a, 1981b], Feuerverger [1990], Ushakov [1999] and references therein.

In such a stationary setting of time series, we view the sample x = (z1,%2,...,%n) as a

realization of (X (t1), X (£2),...,X(ts)). Hence, the pairs

(X(tl)aX(tZ)), (X(t2)aX(t3))a R (X(tn—l)aX(tn))

have the same bivariate distribution with cf ¢(x, x,)(51,82; ) =E [ei(31X1+s2X2)], although they
are not independent. Unlike in Feuerverger [1990], for the time series from a stationary continuous-
time GAR(1) process, we only need to consider the bivariate marginal cf and its corresponding
empirical bivariate cf. |
Denote
(3 s ) — —1—n—'1 ei(slzi+szz,~+1)
PnlS1, 52 m—1 2 ) |
the empirical bivariate chara,cteristic function of the stationary time series. Note that this is called
the poly-cf in Feuerverger and McDunnough [1981b] where they wanted to distinguish it from the
iid sample case. This is not necessary in our context. Intuitively, as sample size n goes to infinity,
the sample function ¢y (s1, s2) will tend to be the theoretical function ¢(x,, x2) (81, 825 0). Hence, we
wish this empirical bivariate cf to be close to the corresponding bivariate cf. By some procedures
to minimize the difference between the function ¢, (s1,52) and @(x, x,)(51,82;8), we may use the
empirical characteristic function (ECF) estimate 0 gcr for the parameter 6.
In the earlier papers for estimation in the stable distributions such as Paulson, Holcomb
and Leitch [1975], the goal is to minimize
x ’ oo
1= [ llpats) - ox(ssoNe s = [ x@)etas
- —00

o0

to obtain the estimate for univariate case, where

p(s) = 2306 px(5,0) = B[], and X6) = llgn(s) ~ ox(s50)I*
=1

342




Note that here || -||? is the modulus of a complex number. For the specific stable distribution case,
one can approximate the integration by 20 point Hermitian quadrature and then find the minimum
(see Paulson, et al. [1975]). However, this may not work for other distributions. Feuerverger and
McDunnough 1981b] sumrarized four estimation procedures. Instead of the difference between
two functions on every point, one may consider the difference between two functions on their finite
grid points. Then consider some kind of quadratic form of these finite differences to substitute the
overall difference I, and finally minimize the quadratic to obtain the parameter estimates. The last
étage is sjmilar to the least squares approach. Let s = (s1, sé)’ , and set the grid points as

' L, Sm = (S1msS2m),

s1 = (s11,821), S2 = (812, 522)

where m is a positive integer. Define

!
Zy = (Re (pn(sl)a s 7Re ‘Pn(sm)alm QDn(Sl), e ,Im ‘Pn(sm)) 3

and
!

29 = (Re P(x1,%)(8150), .- - s Re 9(x; x,)(8m; 8), Im @(x;,x,) (513 6), -, Im <P(X1,X2)(Sm;9)>

Consider the quadratic form
Rpcr(0) = (2zn — 20)' Q(2n — 26),

where Q is a 2m by 2m positive definite matrix. This quadratic somehow measures the closeness
of the empirical bivariate cf and the theoretical bivariate cf. Thus, the empirical characteristic

function estimate of 0 is then defined as
(/] = argminR 9).
ECF g 9ee ECF ( )

Feuerverger and McDunnough [1981b] considered four selections for the matrix Q which yield
consistent estimators with the same asymptotic normal distribution. They also claimed that the
asymptotic variances of these four estimators can be arbitrarily close to the Cramer-Rao bound by

choosing the grid {s;} to be sufficiently fine and extended. However, how to choose those grids in

the practice is not clear.




Feuerverger and McDunnough [1981b] applied the empirical characteristic function approach
to a stationary Markov emigration-immigration process {X;; t = 0,%1,...}, which has bivariate

marginal pgf

Gy o) (s1,52i,0) = B [53755%] = exp {v[(s1 = 1)+ (s2 = 1) + pls1 = 1)(s2 = 1)},
where v = E(X;) = Var(X;) and p = Cor (Xj, X3). Hence, the bivariate marginal cf is

e(xs 0 (1,230, 0) = exp {v [(€°1 = 1) + (€2 = 1) + p (e = 1) (¢ — )]}

This process is coincidently the discrete process sampling from a stationary continuous-time GAR(1)
process with Poisson margins. See the case of bivariate DSD distributions in Example 9.6, where

vr=2X\and p=a.

Most of the marginal distributions of the stationary continuous-time GAR(1) processes have
non-negative integer or positive real support. This motivates us to consider the variations of the
empirical characteristic function approach. Instead of the characteristic function, we may use the
probability generating function for non-negative integer r.na,rginsv and the Laplace transformation

for the positive real margins respectively. Since

G (x1,%5)(51,52; ) = 0(x1,x,) (—ilog 51, —i10g 52;0),  P(x,,x5)(51,52;0) = P(x1,X,) (181, 152; 6),

both are compound functions of the characteristic functions. Therefore, in principle, the new esti-
mates from the empirical pgf or LT approach will inherit the consistency, but change the efficiency.

Define the empirical bivariate pgf and LT as below:

1 n—1 1 n—1
T, Tit+il _— . .
Gn(s1,82) = —— E sty ga(st,s2) = —— E e (s12i+s2it1),
n—1 = n—14 1
= 1=

Choose the grid points
,, ,a vy Sm = (slma 32m),-

s1 = (s11,821), s2 = (812, 522)

Since the pgf and LT are real functions, we do not need to consider the imaginary part. Hence, we

obtain

Zy, = (Gn(sl),...,Gn(sm))l, or 2z, = (¢n(s1),t..,¢n(sm)),,
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and
!

!
zg = (G(Xl,Xg)(Sl;e))"'7G(X1,X2)(sm;0)) , or zg= (¢(X1,X2)(51§0),---7¢(X1,X2)(Sm§0)) :

Consider the quadratic form of z, — zg for both cases:

Repcr(0) = (20, — 20)'Q(2s — 29), or Rprr(8) = (zn — 26)' Q(2s — 20),

where Q is an ™ by m positive matrix. We can derive the empirical probability generating function
(EPGF) estimate or empirical Laplace transformation (ELT) estimate of 6 by minimizing this

quadratic:

Oepcr = arggélélREPGF(o), or Oprr = arggélgRELT(e)-

To give a rough estimation, one can naively choose Q = I, the identity matrix. For bivariate

pef, since the domain is [0, 1]?, a closed set in R?, we may simply choose the uniform grids:
Sij = (i/1,5/1)", i, 3 =0,1,...,1; [isa positive integer. .

Hence, in such a situation, the number of grid points m = (I + 1)2.

In general, there are no closed form estimates from the empirical characteristic function
approach and its variations. We need to employ numerical methods to find aEPGF, §ELT and
0 gcr. However, if we take an appropriate transformation for the pgf, or LT, or cf, and define the
corresponding sample counterpart, it may be possible to obtain a closed form estimate. This is the
generalization of the empirical characteristic function approach and its variations. One application

of such estimates is to use them as the initial values of numerical methods.

We remark that the empirical characteristic function approach and variations work not only
for the stationary continuous-time GAR(1) processes with infinite marginal mean, but also with
finite marginal mean. Howelver, they are only applicable in the equally-spaced time observations.
For the unequally-spaced time observations, we can’t use these approaches to estimate the param-

eters because we can’t define a reasonable empirical characteristic function for bivariate margins

or multivariate margins. This is a disadvantage of the empirical characteristic function approach.




10.4 Other estimation approaches

The maximum likelihood, the conditional least squares and the empirical characteristic function
5pproaches are classical recipes for parameter estimation. However, for models with special features,
one may use CoOmmon sense or imagination to construct a reasonable estinia.te. In this section, we
shall discuss some special approaches.

Methods of momenf approach. In this approach, we view the sample x = (1, Z2, ..., Zn)

as a realization of X (¢1), X (t2), ..., X (tn). Define

n n—1
1 o 1 1
§ : = § : 2 §
R1 = - T, = T, RQ = — :Ei, ng = — TiTi41,
n 4 n £ n—14
=1 ’ =1 i=1

1 n—2 1 n—I+1
Fis = —— S e 0 Ru= —— Y s
13 n_2i1 1Li4+2, 3 1 n—1+1 — iliHl—15
. = 1=

where ! is a positive integer. Assume that the corresponding stationary continuous-time GAR(1)
- process has marginal mean function A(@) and marginal variance function V(). By algebra, we

have

E[% X(m} = LY BIX@) = A6),

1 n
XQ(ti)jl = - ZlE [X%(t;)] = A%(0) +V(6).
1=
By equating them to the corresponding sample averages, we obtain two estimating equations:
A@) = R, A*(0)+V(9) = R, (10.4.1)

If the sampling is based on the equally-spaced time scheme, we can calculate the expectation of
n—j+1
n—_;—+—1 2 X ()X (tiyj-1). Let a = E [K (e7#2)], where A is the common time difference. Since

Cov (X (t:), X (t)) = &’V (6),  j >1i,

we can derive

1 n—j+1 1 n—j+1
S | ; X ()X (tirj-1)| = mit1 7,-—21 E [X (%)X (tivj-1)]
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n—j+1
— i 3 { OOV 0K, X b)) + B (X B [X -] }
=1 .

= o7V () + A%(0),
for  =1,...,l. These lead to estiinating equations:
o7V +A%0) = Ry, j=1,....1 (10.4.2)

From (10.4.1) and (10.4.2), we can derive the method of moment estimates for A(8), V(8) and o

L _ g\ VD
Gy = (-——R“’ Rl) , (10.4.3)

— _ 2
A@)y = R, V(0)y = Rp— Ry, am = R; — R
where 2 < r < [ such that Ry, — Rf > 0. To keep n — r + 1 as large as possible, we choose the

(i ———
smallest 7. Since Ry — R? = L ¥ (z; — z)2 > 0, V(0),, > 0. Hence, the method of moments
,L'_

approach guarantees that the estimate A(@),, and V(8),, are always positive for the stationary
continuous-time GAR(1) process with non-negative margins.

We briefly discuss the situation when r = 2. Let

1 n 1 n—1
Tn = ﬁ Ti, T(-1) = n—1 Zm“ iE(_n) -
=1 1=1
We shall have
. Rys — Ry 1 i Tigirl — T
ap = R2_R2 1 n
1 n z%(mi"mn)
1=
n—1
o Z_El (@i = &(-1) (241 — F(-m)) ) (n— 1)ZT(_1) - F—n) — (n — 1)T},
T on-1 2 — 2 n—1 - 7. )2
3 (@i = &) 2 (@i =)
=1 =1
_ - =2
Ty T(eg) — T
_ doLs + (-1) .( n) n

n—1 n—1
When n is large, ﬁ Saiw ﬁ Nz = %Z?:l z;; thus @ is close to dcrs.




From (10.4.3), we can further obtain the method of moments estimates of the model pa-
rameters associated with A(6), V() and . Typically, this approach allows us to handle three-
parameter models, because we gnly have three estimating equations. Of course, these equations
can be combined with estimating equations from other approaches.

Note that lthis approach only works in the continuous-time GAR(1) processes with finite
marginal mean and variance functions, not in the infinite case.

Now we study Example 10.4 again.

Example 10.11 (Generalized Poisson univariate margins) Consider the time series from

the stationary continuous-time GAR(1) process
X(t)Ze#t-") w X(¢') + E(t' 1), <t

which have GP(@,n) (8 > 0,0 <n < 1) margin. Thus, the parameter vector 8 = (n,8,m), and the

marginal mean function and variance function of the process are
AG)=0601-n)", V(@) =61-n""
For the sake of convenience, we assume Rio — R? > 0. According to (10.4.8), we have
. . Ry — R2
A(O)M = Rl, V(O)M = RQ - Rl’ (6373 ‘— m
If0 < a <1, we can further obtain the moment estimates

-1, (Bu-FRi o.o— Bl o [ B
Hrp = A g RQ—R% 3 M= RQ—R%’ M = RQ—'R%.

Note that Gy should be in the range [0, 1).

Ratio approach. This approach only focuses on the discrete-time process
Xit1 = aXi + €,

with positive real margins, and estimates the autoregressive coefficient . See Bell and Smith

[1986], and Andél [1989]. It is based on the following inequality

Xit1 €




The proposed ratio estimate is

~ . 9 X3 Tp
QR =1INY —, —,..., .
Ty T2 Tn—1

This non-parametric estimate was called “quick and dirty” in Bell and Smith [1986]. This ratio
estimate G is always positive, which is not always the case in other approaches. Andél [1989]
showed that it is a strongly consistent estimator for ¢, and in the simulation study it is better than
the least squares estimator when the mafginal distribution is the exponential distribution.

Here the process is a particular case, where K is from P1. This approach can not be
generalized to other self-generalized distribution. It seems that this approach also works in the

continuous-time GAR(1) processes with infinite marginal mean functions.

Marginal estimating (ME) approach. Like the ratio approach, this approach can help
us to estimate the parameter u too. It works in not only the equally-spaced case but also the
unequally-spaced case. The idea is to estimate those parameters in marginal distribution first,
then use them to estimate the marginal mean or variance, and substitute these estimated mean
and variance in the sum of conditional least squares or conditional weighted least squares. In this
way, we will obtain an objective function with only parameter f. Thus, we get strength from the

information of marginal distribution. For illustration, we consider the sum of conditional least

squares:
n—1
Reps = z (-’Ei+1 — e*u(ti+1—ti)xi — A(9) [1 _ e_“(ti+1—ti)])2
SO |
= > ([$i+1 — A(9)] — e Htir1E)[g; — A(o)]) :
i=1

i

Reparametrize y as ap = e~ * and estimate A(@) by Ri = 1 %" z;. Then, we obtain

Il

=1

n—1

| — 2
Rersuey(@) = Z ([iITi—H - Ry] - af)’“ bz — Rl]) . (10.4.4)

) =1
Now it is relatively easy to find the minimum point of ap, because Rors(m p)(ao) is a univariate
function on the bounded domain (0,1). We can draw the plot of function Rcrs( me)(ao) in (0,1)

which can even allow us to identify a rough estimation by eye.
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This method can be combined with other methods to find the estimates of the entire pa-
rameter vector @. Such an estimate of @ can in turn serve as the initial value for other approaches

like maximum likelihood which optimize a non-linear objective function.

Robust approach. Sometimes outliers may have a big influence on parameter estimates.
To reduce such influence, we may consider other convex objective function other than quadratic
forms. One common choice is to change the Ly function like Rcrg, the sum of conditional least
squares, to Lj:

n—1

RCLI (0) = Z

i=1

Tip1 — B[X (tiv1) | X(8) = i3 6]} (10.4.5)
Minimizing such L; objective function, we shall obtain a more robust estimate:
Ocr, = in Rer, ().
cr, = argmmin Ry, ()
However, to obtain the robust estimates, numerical methods are inevitable.

Diagonal probability least squares (DPLS) approach. This is a new estimating
approach inspired by the diagnostic technique developed in Section 12.3.1. It considers the bivafi-
ate cumulative distribution function along the vdiagonal line through the first quadrant, namely
Fy2(z, z). For simplicity, we take the equally-spaced time series as thé example and consider the
lag-l'pairs (X (tis1), X (t;)) (i =1,2,...,n —1). Let (1) < z(9) < -+ < Z(n). Denote
the number of (X (t;), X (t;—1) where X (t;) < ;) and X (ti—1) < z(;)

n—1

Fis(zgy,3(5)) =

the empirical bivariate cdf at point (z(;), z(;)), and

Fia(z),2()) = -Pr{X(0) Sz, X(f2 —t1) < 2]

= Pr{X(0) < z(j, (@)x ® X(0) + E(0,1 —t) < z(j);

the theoretical bivariate cdf at point (z(;), z(jy). We consider the sum of diagonal probability least

squares

n-—1

' 2
Rpprs(0 Z [F12 ) - Fn(m(j),.’z(j))] , (10.4.6)
J=1
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which measures the closeness of the observations with the model in the sense of diagonal probability.

Minimizing Rpprs(8), we can obtain the diagonal PLS estimate:
OpprLs = in R 9).
DPLS = aI§ Iafél({)l ppLs(9)

This estimate depends on the choice of time difference between the pairs. Numerical methods are

needed to find Fia(z,y), as well as the solution of minimum.

Subset-observation approach. In practice, we may encounter the zero-inflated situation
for count data. This motivates us to consider the subset-observations which can be viewed as
independent innovation samples. For a stationary continuous-time GAR(1) process, conditioned

on X (t;) = xz;, it follows that
X ()| X () = 23] & (00 79) @i + B(ti, tiga):

If z; = 0, then (e~#tn—4) @ z; = 0 and [X (ti41)| X (ti) = z4] 2 E(ti, tir1). This implies that
the observation z;; is an outcome of the cumulative innovation E(t;,ti+1). These cumulative
innovations are independent each other. Hence, such subset-observations can be considered as
independent replications. This feature may allow us to simplify the estimation.

Let {y1,¥2,...,%} being the subset-observations whose previous observations are zeros.
Usually, we know the pgf, or LT, or cf of the cumulative innovation, even the pmf or pdf in some
special cases. Then the maximum likelihood, or least squares, or empirical characteristic function
approach can be based on the subset-observations {y1,y2,--.,%}-

This subset-observation idea can be extended to other cases where z; is a fixed number\othe_r

than 0, because conditioned on a fixed number, say x; =,

z ,
X ()X (8) =1) £ D_K; (6_“(““_“)) + E(ti, tiv1),
3=0

are still independent of one another in the subset {X (t;) : X (t;-1) = I}

In summary, these approaches seem to provide rough estimates. They can be the initial

values of numerical solutions for the better estimates. There are some other estimation appi*oaches
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for specific models in the literature. Peoplé should be aware of the features of specific models. This

may help us to develop special parameter estimation methods for them.

10.5 Numerical solution of optimization

In previous sections, we often encounter the function maximization or minimization in parameter
estimation, such as maximizing the log-likelihood function or minimizing~ a quadratic form. Usually,
we can not obtain closed form solutions. Hence, numericéul methods have to be employed. A
good reference on various methods of optimization of functions is Press, Teukolsky, Vetterling and
Flannery [1996].

Maximizing a function is equivalent to minimizing the negative of the function. For the
sake of simplicity, we use function minimization to unify the optimization issue. Among those
optimization approaches, we favor the variable metric algorithms whiéh are also known as quasi-
Newton algorithms, especially if it is tedious to obtain derivatives of the function to be minimized.
A good introduction to this method can be found in Nash [1990], Section 15.3. This method also
provides the numerical evaluation of the asymptotic co{rariance matrix.

Suppose R(8) is a real function with argument 8 = (61, ...,0)'. Now our task is to minimize

R(8). Let the gradient of the function R(8) be g(8) = (g1, .., 9x)", where

__ OR(6) .
g9i = 99, i=1,...,k,
and the Hessian matrix be H(0) = (H;;)kxk, where
. 2 0
Hijzagz(e)—aR( ) i, j=1,...,k.

09;  06;00;’
Then all the variable metric methods seek to minimize the function R(8) by means of a sequence

of steps
0’ =0 — kBg(9),

where k is a step length, B is an approximation of the inverse of Hessian matrix. This means

that the search direction at each iteration step is —Bg(8). B is obtained iteratively and does not
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require the analytical form of H(8). Also g(8) can be computed as a numerical derivative rather

than in analytical form. Different approximation methods for B lead to different variable metric

algorithms.
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Chapter 11

Asymptotic study of estimators

Asymptotic properties of estimators of parameters have been always a key topic in statistical infer-
ence. These basically mean the consistency and asymptotic normality of the parameter estimators,
namely the convergence, in probability and in distribution, when sample size n goes to infinity,
of the estimates to the true values of parameters. An asymptotic analysis can help us not only
in choosing better estimators (in the sense of small asymptotic variances), but also in obtaining
asymptotic confidence intervals or regions of the parameters.

In our study, we consider the data {X(t1), X (t2),..., X (t,)} from a stationary continuous-
time GAR(1) process {X (t);t > 0}. They are observed at either equally-spaced time points for
which t5 —t; = ++- =t — tp—1, OF unequa,lly-spacéd time points for which the time differences
ty —1t1,...,tn — tn—1 are not all equal. In principle, both cases can be equivalently seen as samples
from a discrete-time process {X (t);t = 0,1,2,...}. However, there is an obvious difference between
the two cases: the resulting process from sampling at equally-spaced time poihts has constant
transition probabilities, while the resulting process from sampling at unequally-spaced timé points
has time-varying transition probabilities. One common feature for both types of observations is
that the marginal distributions are the same if the continuous-time process is in steady state.

In Chapter 10, we have studied estimation methods based on maximum likelihood, condi-

tional least squares and the empirical characteristic function, etc. The asymptotic study of these
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estimators for the stationary discrete-time process case has been well studied: Billingsley [1961a]
first discussed the results for the MLE, and gave a fundamental Central Limit theorem for mar-
tingale; Klimko and Nelson [1978] investigated CLS estimation; Feuerverger and McDunnough
[1981b)], Feuerverger [1990] studied the estimation based on empirical characteristic function. Ba-
sawa and Prakasa Rao [1980], Nanthi [1983], Nanthi and Wasan [1987] summarized and studied
the asymptotic properties of many estimators (except for the ECF estimator) for various processes,
while Ushakov [1999] provided a rich collection of results for the ECF estimator. These results
for ML, or CLS or ECF estimators are obtained for general stationary process families. For the
specific process in Section 10.4, Bell and Smith [1986] proved strong consistency of the ratio esti-
mator. Chaganty [1997] showed consistency and asymptotic normality for the quasi-least squares
estimator in a multivariate setting.

ATherefore, for the stationary continuous-time GAR(1) process, a special case in the sta-
tionary process family, we can directly adopt existing results for the case of equally-spaced time
observations. What we should do is to investigate the asymptotic properties of the estimators for
unequally-spaced time observations. For such a situation, the maximum likelihood estimator and
the conditional least squares estimator are applicable. Hence, our task will focus on these two kinds
of estimators for the unequally-spaced time observations.

In Section 11.1, we propose a random sampling scheme and some assumptions, as well as
the fundamental results needed for the proof of asymptotic properties. Sections 11.2 and 11.3 have

results for the MLE and CLS estimator respectively.

11.1 Random sampling scheme, assumptions and fundamental the-

orem

First, we discuss why the unequally-spaced time observations happen in reality. This will help us
to propose a plausible random sampling scheme from a continuous-time Markov process.
Usually, for a study which requires repeated measurements over time, the experiment will

be arranged to make observations at equally-spaced time points. For example, in a clinical trial
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study, patients may be asked to visit the clinic every six weeks. However, due to various reasons,
some subjects may not appear at scheduled times. They may come earlier or later, or even do
not appear for a specific scheduled test(missing values!). Such an occurrence can not be controlled
in advance. It is somehow random. Hence, instead of planned equally-spaced time observations,
a random sampling scheme may happen, yielding the unequally-spaced time observations. This
random sampling scheme is equivalent to a waiting time process in a recurrent dynamic system.
But it is usually not observable.
Based on such investigation, we propose a random sampling scheme which results in unequally-

spaced time observations. Let T1,T5,...,Ty,... be iid positive random variables with distribution

function Fr(t), where t > 0. Suppose for a fixed n, the values of T; (1=1,2,...,n) are

T1=t1, T2=t2—t1, ooy Tn=th—tn_1. '
Observations are made at time points ty,2g, ... ,t, of a continuous-time Markov process {X(t);t >
0}, yielding

X(t1)=$1, X(tg):.’Eg, XN X(tn) =Tp.

Here the T}’s can be seen as waiting time between two successive events. A special case is that
when all T,, (n > 1) have a degenerate distribution with mass 1 on a single point At. Then, the
waiting times are common, leading to a discrete-time process sample of equally-spaced time points
from the underlying continuous-time process { X (t);% > 0}.

We pursue the consistency and asymptotic normality of MLE’s and CLS estimators. For
this purpose, we need some assumptions regarding such the random sampling scheme for each
estimation method.

The goal of maximum likelihood estimation is to maximize
log L(B | x) = log fx(s,)(w1;0) +10g fxp)x (1) (€2 | £1560) + -+
+108 Fx(tn)| X (tn1)(@n | Tn-1;0),

where 8 = (61,0s,...,0;). For large sample theory, as the sample size n goes to infinity, the

influence of the first term, log fx,)(z1; @), will reduce to zero, so we can ignore it. This leads to

356




the maximization of
log L1(8 | x) = 10g fx(s)x(t) (@2 | £1;0) + -+ + 108 fx(t,) X (ta_1)(Tn | Tn-1;8),
the logarithm of conditional likelihood function. Denote |
9(@i, Tiv1; 0,8, tit1) = log fx (i ix () (Tier | 2560),  i=12,...,n—1L

To associate the log-likelihood function with sample size n, we rewrite it as

log Ln(0 | x) = log fx()x(t) (@2 | £1;0) + - - +108 fx (1) X (tn1) (Zn | Tn-1;0)
n—1
= ) g(@i,wis1; 0,81, 1) (11.1.1)
7=1

If the MLE is not on the boundary of the parameter space, then it is obtained from the estimating

equations

O logLn(@]x) = 0, i=12... .k (11.1.2)
30,

In the asymptotic study of the MLE estimator, the classical technique is to expand a%j log L, (6 |
x) (j = 1,2,...,k) around the true value 0°. Hence, the following assumption is required and plays

an important role in the proof of asymptotic properties.

Assumption 11.1.1 Suppose the parameter space © is an open set in Rk and w is a small neigh-
borhood of true parameter value 8°: w = {0 : ||@ — 0% < 6,6 > 0}. Fori=1,2,...,n—1,

g5, Tiy1; 0, i, tiva) 18 thrice continuously differentiable with respect to 0. Denote

0
95 (%i Tit1;0, 85, tin) = %Q(%axﬁﬁe,tiatwl)a
j
" 82 :
(@i, Tig1; 0,5, 8 = ——g(zi, 24150, 15, tiv1),
g]l]z( iy Ti+15 ) z+1) (99]'189]'29( 15 Li4+1 ) z+1)
n 83
gl (%, 20130, 8, ti1) = s (i, Tit1; 0, Ly tiga)
Jijaja\rr Tl ? 89]'169]'239]'3 i s ’
Gz, Tiv1sti, tiv1) = ;UP |95 jags (T4 Tit 15 0, tis i 1) (11.1.3)
cw .

where 7, 71,752,793 = 1,2,..., k. Asn goes to infinity, assume that
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xX0
(1) (n=1)" zgj (25, 350130, i, tis1) L/ B (¢}(X (to), X (o + £); 6%, o, to + 1)) dFr(2),
i |

P
(2) (n-1)" Z 973 (24, %415 0%, tiy tig1) —

oo
/0 E (g7, j,(X(to), X (to +1); 68°,to,to + t)) dFr(t),

(8) (n-— 1)_1721 G(zs, Tit1; i tiy1) £, / (G(X (o), X (to + t); to, to + 1)) dFr(t),

* where Fy is the “distribution” of {tiy1 —t:}, 1 < J, j1, jo < k. Also assume that all integrals on

the right hand sides are finite.

Remark: Assumption 11.1.1 is reasonable under the random sampling scheme designed for unequally-

spaced time observations. For equally-spaced time observations which is a special case in the random

samphng scheme, the sample forms a discrete-time process. Under ergodicity, (1 ) (3) hold as facts,
not assumptions, namely it follows that

n—1

(n 1) ghl@i,2i1;0% i ti) — B (g5(X (), X (to + A1); 8%, to, to + A2))
=1 ’
. n—1 P
(n =17 g} (@i, 21, 0% tis tirn) — B (g5, (X (f0), X(to + At); 0% o, to + At))
i=1 ' .
n—1 p
(n =171 Gz, wisistitin1) — B (G(X(to), X (fo + At);to, o + At))
1=1

as n goes to infinity, where At is the common time difference between two successivelobservat.ions.
Here the expectations are taken with respect to the random sampling scheme.

A rough interpretation of Assumption 11.1.1 for unequally-spaced time observations is given
below. For the sake of simplicity, we suppose the underlying process is a discrete-time Markov
process: {X(t);t =0,1,2,...}. The sample {X(t1), X (t2),..., X (tn)} is observed under the random

sampling scheme. Hence, we can arrange n — 1 successive pairs:

(X(t1), X(t2), (X(t2),X(23)), -y (X(ta-1), X(t))-




Let n; be the number of pairs with time difference equal to j, i.e., ti+1 — ¢ = J, where jeN. As
n and all the nonzero n;’s go to infinity, we have

T

P N o .
m—1 —%FT(])_FT(J_]-)a .7:172a-"'

Hence, for the average of a summation with summand being the function of the successive pairs
like A(X (t;), X (ti+1)), it follows that

. s .
— n—l.n2152+.”+n—]1.njlsj_’_”"

n—1
(n =17 X (), X (tig1)) =
i=1

where S; (j = 1,2,...) is the sum consisting of summands of function of successive pairs with time

lag j. Assume ergodicity holds. Then,

n718; 25 BR(X(t), X(bo+ 1) =12....

J
Thus,
n—1 ' 00
(n—1)7"1 Z h(X (t;), X (ti+1)) £, ZE[h(X'(to),X(to + NFr(G) — Fr(i — 1))
=1 7=1
- /0 " BIR(X (to), X (to + 0))dFr(t).

A continuous-time process can be approximated by a sequence of discrete-time processes. Thus,
for the continuous-time underlying process, this limit can be expected to hold.

The above assumptions just try to generalize the facts which hold for stationary and ergodic
discrete-time processes to the unequally-spaced case based on random sampling scheme from a
stationary continuous-time process. We don’t know if they hold as facts under certain conditions.

This is left as an open question.

The conditional least squares estimator is obtained by minimizing

n-—1

Ral6) = Rous(®) = 3 (w01~ B[X(ti31) | X(8) = 2:56))

i=1

Fori=1,2,...,n—1, let

g(zi;0,ti,tir1) = E[X(ti1) | X(6) = 25 0],

u(zi, Tiv1; 0, ti tix1) = @iyl — 9(2i5 0,10, tiv1)
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Then
n—1 9 n—1
R (0) = Z($¢+1—9(ﬂ7i;9,ti,ti+1)) = ) u (2, Tig1; 0, tis tiva)- (11.1.4)
i=1 1=1

For an asymptotic analysis, the traditional approach is to expand R, (0) around the true parameter

value 6°. Hence, the following assumptions play a critical role in the asymptotic properties of the

CLS estimator.

Assumption 11.1.2 Suppose the parameter space © is an open set in R%. and w is a small neigh-
borhood of true parameter value 6°: w = {8 : || — 6% < 46,6 > 0}. Fori=12,...,n—1,

g(zi;0,t;,ti11) is twice continuously differentiable with respect to 0. Denote

0
g_ly(x“e’tl’tl-Fl) = —g(xi;oatiati+1)7
09,
" 0?
gj1j2(m§;0,ti,ti+1) = Mg(mi§oatiati+l)a
Vv, = (Qfﬂ"o_)) ,
" 80,,00, ) i’

* * 62R71 6" g * '
Wn(0 ) = (lejz (0 ))kxk = (Eﬁf)k . - Vp, 0" cw,
: X

where j,51,J2 = 1,2,...,k. Assume that as n — 00,

(1)  lim sup (W) < 00, a.s.

n—00 540

a.s

(2) (n—-1)" Z u(zs, ziy1;0°, 1, H_l)gj(a:z,O tiytit1) —

/ X(tO + t) 0 tza H—l)gj(X(tO);OOatOvtO + t)) dFT(t)a

(3) ’Il—l Zg_’; mlaa t'La l+1)ggz($za0 t17t1+1) ii)

/ (5, (X (10); 8 t0,to -+ £)g), (X (t0); 6 to, o + 1)) dFr(t),

(4) n_l Z mlamz-i-lae tlvt'H-l)gyl”(xlao tza H—l) ﬁ)

oC
/ E (u(X (fo), X (to +1); 0%, ti, tir1)g), 5, (X (t0); 8%, 0, to + 1)) dFr (1),
0
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where Fr is the “distribution” of {t;x1 — t;}, 1 < J, j1, jo < k. Also assume that all integrals on
the right hand sides are finite.

Remark: (1) in Assumption 11.1.2 is inherited from conventional regularity conditions. Similar to
Assumption 11.1.1, (2), (3) and (4) in Assumption 11.1.2 are reasonable under the random sampling
scheme designed for unequally-spaced time observations. For equally-spaced time observations
which is a special case in the random sampling scheme, the sample forms a discrete-time process.
Under ergodicity, as well as other conditions (see Klimko and Nelson [1978], section 3), (2), (3)
and (4) are facts, not assumptions. Unlike Assumption 11.1.1, here we require convergence almost

surely, not in probability. Corresponding, the CLS estimator will be strongly consistent.

The asymptotic normality of both estimators makes use of the central limit theorem for
martingales, which was given by Billingsley [1961a]. We refer to this theorem as the fundamental

theorem for the asymptotic normality of an estimator in a Markov process.

Theorem 11.1.1 (Central Limit Theorem for Martingales)
Let uy,us, ... be random variables with moments of order 2 +d (d > 0), and let Fo C F1 C
F C ... be a filtration of Borel fields such that

E (up | Fno1) = 0, n=12,...

with probability one. Here Fn_1 is the o-algebra generated by ui,ug, ..., Un—1. Suppose that

n—oo

(1) lmntYE((|Fa) =D, D20,
i=1

n
: —1-d/2 24d | T. _
@) Jim a0 BB () i) =0

with probability one. Then
n
n'1/22ui N N(0,D).
i=1

This result can be generalized to the multivariate situation where u, = (Un1,Un2,- .. ,unk)T.

Each of the components has moment of order 2+ d (d > 0) and

E(unj| Foo1) = 0, =12,k n=12,..




with probability one. Suppose that

(1)  lim n~ 1ZE (uijug | Fi-1) = Dy, 4, 1=1,2,...,k,

n—00

(2) lim n~1- d/2§;E( 24| 7, 1) -0, j=12...,k

n—eo
with probability one, where D = (Dj)kxk is a non-negative definite matriz. Then
= L
n2Y "u; = N (Opx1, Dixk) -
i=1
For the univariate situation, since E (uy, | Fn—1) = 0 for all n, the sequence of partial sums

n
{Sn=2usn=12.. .} forms a martingale because
E(Snlsn—l) = n—1+E(un|Sn—1) = Sp-1+0 = Sp1, n=23....

Here we assume that Fn_; is the o-algebra generated by ui,us,...,up—1. For the multivariate
situation, the sequence of partial sums of any linear transformation {S, = Z alu;n =1,2,...}
forms a martingale, where a = (a1, az,...,ax)?. For the details of the proof, see Billingsley [1961a),
Theorem 9.1, p. 52, and Theorem 1.2, p. 6 and p. 61. With these preparations, we shall proceed

to the asymptotic study of the MLE estimator and CLS estimator in the next two sections.

11.2 Asymptotic properties of MLE

As mentioned before, the classical technique to investigate the asymptotic properties of MLE is to

take a Taylor expansion for
4 " n—1

d ' : .
5, 108 La(0 %) = > gi(@i, i1 0, tis tiga), i=1,2,...,k (11.2.1)
J i=1

around the true parameter value 6°. By the Mean Value Theorem, if § € w, then

K
93 (@i, Tit1; 0, tis tiy1) = g (i, Ti15 0% tis tign) )+ > (60— D) g (@i, Ti41;0° i, tiv1)
=1
+ |8 — 6°|°G (i, Tig1; tir tir1), lc| < k?/2,
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where G is defined in (11.1.3). Hence, it follows that for j = 1,2,...,k,

8 n—1
(n—1)"" 89 logL,(@|x) = (n—1)" Zg] i, Tip1; 00, b5, tir1)
1=l
k n—1
+Z ol 9l n—l 1Zg]l J;‘z,.’IIH.l,e » i, z+1)
=1 i=1
n—1
+ c||0 00112 (n — 1)1 Glai, Torististigr). (1122
i=1
By controlling the behavior of
n—1 , n—1
(=17 gh(@i, 2115 0% tistign),  (n— DY g (@i w113 0% tis tira),
=1 1=1
n—1
(n—1)" Z G(zi, Tig1 iy tiv1)s
) =1

we may further obtain a simpler approximation as n goes to infinity, and obtain the consistency
and asymptotic normality of the MLE. For this purpose, we investigate Assumption 11.1.1, and
proceed to the regularity conditions for the asymptotic properties.

First, for fixed t and j = 1,2,...,k, it follows that

E {QQ(X(to),X(tO +t); 00,t0,t0 + t)}
0
=E { [89 IngX(to+t)|x(t0)(X(t0 + )| X (to); ’X to) = ]}

of (y]X (t0); 0) _
=E {/ a8 t_°+t)lx(gg_ [Fx (to+)1 X (t0) (W X (t0); 0)] 1fX(to+t)|X(tg)(y|X(t0)§e)dy}
J

B A x (to+1)1 X (t0) (Y1 X (£0); )
=B {/ 96, dy} '

Traditionally, one imposes that the differentiation with respect to parameter 0 can be carried out

equivalently both inside and outside of integral sign. If so, it will yield

0 X (t9); 0
E {d(X(t0), X(to +); 0% to, to +1)} = E {/ fX(to+t)|X(g)9)‘(yl (to) )dy}
’ J

= {0 [ xwmw oixtow} = B{G =0 (1123)
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This further leads to
00 oo .
/ E (g;-(X(to), X(tg + t); 00, to, to + t)) dFr(t) = / 0dFr(t) = 0.. (11.2.4)
0 0
_Second.ly7 for fixed t and j = 1,2,...,k,

E {g},;,(X(to), X (to +1);6° to, to +£)}

62
=& {B [ 2 ot e sonso 01X 1050) [X(20) = 2] }

_ E{/BQfX(to-i—t)lX(to) (le(to);")dy
06,00,
_»/ Of x (to+1) X (o) (WX (20);8)  OFx(to+1)1 X (20) (y| X (to); 0)
891'1 891'2

X[ Fx (tor0) X (o) WIX (£0); O] 7> Fx(to+0)( X (10) (U| X (0); ) dy}

= {aeﬁaeﬁ / Fxtrot)ix o) (WX (to); )dy}
-E { [gjl (X (t0), X (to + 1); 8%, to, to + t)g, (X (to), X (to + £); 8%, to; o + t)‘X(to) = w]}
=-E {Cov [g§1(X(to),X(to +1); 6%, 0, to + 1), g5, (X (to), X (to + £); 6%, to, T +t)‘X(t0) _ x] }

(11.2.5)
The last step is due to (11.2.3). Since
(Cov [gh, (X (t0), X (to +1); 8°, o, to +1), g5, (X (t0), X (b0 + 1) O, 1o, to + HX(t) =4]),
is the covariance matrix of the. random vector
(64 (X (t0), X (to +£);0%, o fo + 1), .., gh(X (t0), X(to +1); 6% to, to + 1))
cqnditioned on X(tg) = z, it is a non-negative definite matrix. Consequently, it féllows that

(E {Cov [991 (X(tq)aX(to +1);8°, 10, to + 1), g5, (X (t0), X (o + 1); 6%, to, to -+ t)'X(tO.)] })kxk

and

0
Dxk = (01112)kxk = - (/0 E (g;-’ljz(X(to),X(tO +t);00,t0,t0 + t)) dFT(t)) (11.2.6)
kxk
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are also non-negative definite matrices.

Denote
9h(6) _ (3h(0) Bh(0) 8h(0))T 8°h(8) _ ( 82h(8) )
o0 06, ' 86, 7 06, ) 00067 865,00, ) ok
Then (11.2.2) can be rewritten in a vector form
] | = o
(n— 1)_13—0 logLn(0]x) = (n—1)7" ; 599 (i Tit1; 6°,ti,tis1)

n—1 _
+ ((n =17 ghlmi, migas 90,ti,tz’+1)) (6 - 6°
kxk

i=1
n—1

+l0 — 6°|2 [(n -ty G(miaxi+1;tiati+1):| C, (11.2.7)
=1

where Cix1 = (c1,¢2,-..,¢)T is a constant vector with |¢;| < k%/2 for j = 1,2,...,k. According
to Assumption 11.1.1, as n — oo,

n—1

- 0 '
(n—1)7 Z 3—09($i,xi+1; 6°,ti,ti11) 2y 0, (11.2.8)
i=1
n—1 P
((n =17 @i, 2is1;6% tm)) R SV (11.2.9)
=1 kxk

This implies that (n — 1)‘1% log Ln(0‘ | x) will be dominated by

n—1
((n =17 ghi(@i, miga; 0,ti,ti+1)> (6 -96° (11.2.10)
=1 kxk
and
n—1
|0 — 00||2(n - 1)—1 Z G(zi, Tiv1; tis tiy1)C (11.2.11)
. =1

when 7 goes to infinity. By imposing non-singularity on the matrix X, we can bound the vector
(11.2.10) away from the zero vector 0 in probability. This is because that all eigenvalues of X are

bigger than 0 and there exists a non-random function (6% > 0 such that

zL 3z > \(6°), l|z|| = 27z = 1. (11.2.12)
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n—1

Note that (n—1)~1 3 G(z;, Zi+1;ti, tit1) is bounded in probability (see (3) in Assumption 11.1.1),

=1
ie.,

n—1

(n— 1)—1 ZG($i,$i+1;tiati+1) i) M < oc, (11.2.13)
=1 )

and ||@ — 0°]|2 is of one higher order than (8 — 6°). We can choose 6 close enough to 6° so that
~ every component in vector (11.2.11) has smaller absolute value than the one in the vector (11.2.10).
This means that in probability, (n — 1)} % log L,,(8 | x) will be dominated by (11.2.10) in a small
néighborhood of 0°. Such a feature determines the consistency and asymptotic normality of the

MLE.

With the above discussion, we now give further regularity conditions for the consistency of

MLEJ.
Assumption 11.2.1
(1) | Conditioned on X (to) = x, differentiation with respect to @ for the integration of
[ 9(x(t0), Xta +£):6°,to,10 + DFr 1)
is equivalent outside and inside of the integral sign;
(2)  The limiting matriz 3 in‘ (11.2.6) is non-singular.

Assumption 11.2.1 together with Assumption 11.1.1 lead to the following consistency the-
orem. For this theorem, we use the technique of proof given by Billingsley [1961a], Theorem 2.1,

p. 10. The next two lemmas will be needed in the proof.

Lemma 11.2.1 IfPr[|U1]| > c1] <€, ..., Pr[|[Un| > cm] <€, then

m
Pr [|U1+--'+Um| >Zci] < me,

i=1

or equivalently,

m
Pr [|U1+"'+Um'| SZC,] > 1—me.

i=1




m
Proof: Since |U; + - -+ + Up| < |Uil+- - -+|Un|, we can claim that if event {lUl + 4+ Upl > 3 g}
i=1
occurs, then at least one of the following events occurs:

{IUII >01}, ceey {lUm’>Cm}-

m
Otherwise, event {|U1 +o+ Unl <30 ci} must happen. Thus,
=1

Pr

m m
|U1+---+Um|>zci} < PrUl Ui > )] < Y PriUil>a] < me.
i=1

i=1
Lemma 11.2.2 If h(0) is a continuous function mapping Rk into itself with the property that,

for every @ such that ||8|| = 1, 0Th(8) < 0, then there exists a point 0 such that H@H <1 and
' h(a) = Ogx1-

This is Lemma 2 in Aitchison and Silvey [1958]. A nice proof by contradiction can be found there.
Theorem 11.2.3 Under Assumptions 11.1.1 and 11.2.1, the MLE 5MLE is consistent for 0°.

Proof: As discussed previously, (11.2.8), (11.2.9), (11.2.12) and (11.2.13) will hold under Assump-
tions 11.1.1 and 11.2.1. Now for any € > 0, we can choose a small § = d(¢) > 0 in such a way

that .

§<e,  {6:106-6° <68},  §<AO°)/3K*(M +1). (11.2.14)

After choosing §, we choose ng(€) large enough so that for n > ng(e),

Pr [
n—1

Pr [0 <(n-1)71 Z G(zs, Tir1 tis tiv1) < M +1| > 1—¢€/3,

i=1

n—1

(n =11y gi(zi, zit1; 0% ti, ti1)
j

=1

]
<68 > 1-¢/3, j=12..k,

)

vV

d

n—1
(n—1)7) g} (@6, @i 0%, i 1) + 041 1-¢€/3, j1,52=12,...,k
=1 e .
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By (11.2.2) and Lemma 11.2.1, if n > ng(e) and |0 — 0%|| < 6, we have

n—1
(n—1)" Zgj Ty Tit1; 0, ti, tiv1 +Zaﬂ (6, — 67)
: =1 =1
n—1
= (TL - 1)_1 Zg;($2’wl+1) eo,tiati-f-l)
i=1
n-1
+Z(0l 9l) [(n — ]_ -1 Zg]l(xl’$7‘+1’ 0 tz,tz—i—l) + Ujl}
=1 i=1
n—1
+cl|0—6°)P(n — 1)1 D G(@i, B tis tirn)
1=1
n—1
< | =17 gh(i, 3it1; 0% s tig)
i=1
k n—1
+ Z(gl - 9?) |: (n—1)" Zg]l mz,xz+1a0 stistiv1) + U]l]
=1 i=1
n—1
+1c||@ — 8°1P(n — 1)1 Y G@s, Tiga; tis tiv)
i=1

< &% + k68||6 — 6°|] + K2||0 — 8°||2(M +1)/2

<52+ ko + K20 — 0°2(M +1)/2 < <1+k+k2M2+1)62

< (14+k+k2/2) (M +1)8% < 3K*(M +1)6°

with probability exceeding 1 — €. Thus, by (11.2.14), if ||@ — 0°%| = &, we have

k n—1 '
> |- Zg;'($ia$i+l§0atiati+1)} (6; - 69)

< =Y 06— 69)(61 - 6)) + k- 3k*(M +1)5?

IA

—A(0%)]16 — 6°|12 + 3K3 (M +1)82 = — \(0°)6% +3k3(M +1)6% < 0

with probability exceeding 1 — €. According to Lemma 11.2.2, there exists a value [ MmLE such that

10aE — 6°]] < 8 < € and

n—1

0
(TL'— 1 Z 809(:5171:7,—}-17OMLEat’Lat‘H-l) = kal
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with probability exceeding 1 — e. This completes the proof of the consistency of MLE.

With the consistency of MLE, we now can study its asymptotic normality. First, we give a
rough analysis. The maximum likelihood estimator ﬁMLE is obtained by equating (11.2.7) to the
zero vector. When n goes to infinity, §MLE £, 00 Ignoring the term of ||§MLE - 00|| with the

second order in (11.2.7) and dividing them by (n — 1)™*/2, we then have

n—1
0 ~
(n-1)""2%" B—ég(ivi,xiﬂ; 0°,ti,tir1) — Skxk [(n -l (GMLE - 00)] = Ogx1,  asn — 0o,
i=1
or

(n— 1)1/2 (ﬁMLE - 00) = 3!

n—1
_ 0
(n—=1) 1/2 E 8—09(%,%'-1-1; 00,'ti,ti+1):| , as 1 — 00.
i=1 '

Because of (11.2.3), the sequence of partial sums of partial derivatives with respect to 6; (j =
n—1

1,2,...,k), {Z g}(mi,miH;OO,ti,tiH) in=23,.. } is a martingale with respect to F,, where
=1

F, = o-algebra generated by {X(t1),...,X(tn—1)}. By Theorem 11.1.1 and same conditions,

n—1 .
(n — 1)_1/ Y %g(:ﬂi,le;OO,ti,tiH) converges in law to the multivariate normal distribution
=1 .

N (Okx1, Zkxk)- This leads to the result that (n — 1)1/2 (ﬁMLE - 00) converges in law to a mul-

tivariate normal distribution. The conditions in Theorem 11.1.1 lead to the following additional

regularity conditions in asymptotic hormality of MLE.

Assumption 11.2.2 (%jg(X(to),X(to +1);0%to,to + 1) ( = 1,2,...,k) has moment of order
2+d (d > 0) for any to,t > 0. Also it satisfies that

n—oo

n—1 9 2+d
lim (n_ 1)__1_d/QZE <|:%g(xi,X(ti+l);eoati,ti-i-l):l > = 0, J= 1,2,...',]{}.
1=1 J : :

The following lemma guarantees that the second order term 1|§MLE —0%% in (11.2.7) is

negligible.

Lemma 11.2.4 Suppose uj, us,... are random vectors in R satisfying

L
u, — Fp, as n — 00,
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where Fy is a multivariate distribution in RE. Suppose v1,va, ... are random vectors in RE satisfying

either
tun = Vall < €nl[unll, ond e — 0, asn— oo,
or
y - P

llup — vall < €llvall, and e, — 0, .asn — oo.
Then, u, — Vg £, 0rx1, so that vy, N Fy as n — oo.
This is Theorem 10.1 in Billingsley [1961a].

Theorem 11.2.5 Assume §MLE is a root of (11.1.2). Under Assumptions 11.1.1, 11.2.1 and
11.2.2, '
(n =12 (Brzp— 6°) =5 N (Okxr, Dighy)

where Ly is defined in (11.2.6).

Proof: By Theorem 11.1.1, it follows that

n—1
_ 0 : L.
(n—1) UQE _809(mia$i+13007ti7ti+1) — N(Ogx1, Zrxk) -

=1

Since §MLE is consistent for 8°, by (11.2.7), we have
n—1 (9
Opx1 = (n—1)712 ; %Q(Ii,%ﬂ; 6% i, tit1)
n—1 ' A
+ ((n — 1) ghes mig; 90,ti,ti+1)> (n— 1)}/ (OMLE - 90)
kxk

i=1

C.

+{Omrs — 69 - H(n - )Y (Burp - 6°) H [(n —1)? i\‘j G(@s, Tis1i tiy tiv1)

1=1

Noticing that ||§MLE -89 N 0, we can then obtain

X n—1 =
(n—-1)""2%" a%g(miamHl; 0°,ti,tiv1) — Zixk [(" - 1) (OMLE - 90)] H
i=1

(n —1)Y/? (gMLE - 00) H , “where €, .i) 0. (11.2.15)

<ep
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According to Lemma 11.2.4, we have
12 (4 0 L
Sk [0 = V2 (Barp = 0°)] = N0, Bisi), 8570~ 00,
which yields

(n — 1)1/2 (éMLE - 00) LN (kal,Egik) , as n — 00.

Remark: In practice, the asymptotic covariance matrix X is estimated from the data. A natural

£ = (G
92 J sk’

estimator is

where

n—1

Girie = —(n = 1)) gl :vz,a:Hl,OMLE,tz,t,H) G1, ja=1,2,...,k  (11.2.16)
i=1

This asymptotic normality will help us to obtain confidence intervals or regions and hypothesis
tests regarding parameters. |

Note that the martingale feature of the sequence of partial sums comes from (1) of Assump-
tion 11.2.1, not from the Markov property of the underlying process.

A byproduct is the following theorem, which is also useful in hypothesis testing.

Theorem 11.2.6 log L, (8 | x) is defined as in (11.1.1). Assume OrLE is a root of (11.1.2).
Under Assumptions 11.1.1, 11.2.1 and 11.2.2, ‘ -

2 [maxlog Ln(0 | x) — log L,(8° | x)] L X2, as n — 00.

Ocw

Proof: Let §MLE = (51, 52, ... ,ék)T. Continuing from Theorem 11.2.5, by the Mean _Value Theo-

rem, we have

k
g9(z,y;OmLe, to, to +t) = g(2,;0% 20,80 +1) + 2(9]' - 09)g;(x,y; 6% to,to + )
. =

l\DIv—-

k
Z 9 _00 el )g}'l(x,y;OO,to,to-l—t)

+cu5 6°|12G(z,y; to, to + 1),
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where |c| < k3/6. Therefore, when n — oo,

n—1

k
2 [reflaXlOgL (@] x) log L (6° | X)] = 22(/0\1 0 g (@i, wir1; 0% i ti1)
€w ;
_ poct

i=1
k n—1
Z (6, - 698~ 6]) Y g wi, w15 8% tis i)
=1 i=1
=R n—1
+2¢]16 — 6°11> > " G(&i, Tis1; tis ti1)-
i=1

When n — oo,

n—1

18 — 6°11 > G, migas tis tirn)

i=1

) =1
P
— 0.

= H(n - )l (aMLE - OO)HS (n—1)7Y2. {(” - 1)_17§G(Iia$i+l§tiati+l)}

This implies that as n — oo,

2 [rana.x log Ln(0 | x) — log L, (6° | x)]

cw '
k n—1
~2Y (n- 1)M2(8; - 69) {(n —1)7VEY " (@i, i 90,ti>ti+1)}
=1 i=1
k R R n—1
- Z (n— 1)1/2(0j - 92) (n—1)2(6, - 6)) [(n -1)7! Zg;ll($i7$i+1; eo,ti,ti+1):|
7,i=1 i=1
L 0.

Under all the given assumptions, and using (11.2.15), as n — oo,

k n—1
23 (n—1)"72(6; - 69) [(" —~1)7V2N gh(mi, miga; 00,ti,ti+1)}
j=1 i=1
k A. R n—1
+ 3 (n =128 - 63) - (n - 1)1/2(g, — 69) [(n —1)7> gl i, Tign; 00,10, tisn)
Jid=1

=1

- [(n - 1)1/2‘(§MLE - 00>]T z [(n — 1) (5MLE - 00)]

£




By Theorem 11.2.5,

Thus,

2 [max log Ln(8 | x) — log L,,(8° | x)} 5 2
Ocw :

when n — oo.

All of the techniques of proofs of theorems in this section are credited to Billingsley [1961a].

11.3 Asymptotic properties of conditional least squares estimatdr

The conditional least squares estimator is obtained by minimizing the sum in (11.1.4). Note that

fori=1,2,...,
wir1 = X (tiv1) — B [X (1) | X () = 24;0) = X (ti1) — 9(i5 0, b, i)

has zero expectation conditioned on X (¢;) = z;. This feature is totally determined by the definition,
not the Markov property of the underlying process. The zero conditional expectation feature implies

n—1
that the partial sums sequences constructed by u; such as { Y u;;n=2,3,... r form martingales
=1

with respect to F,, the o-algebra generated by {X(t1),...,X(tn—1)}. Furthermore, the relevant

expectations in Assumption 11.1.2 are zero, because

E (u(X (to), X (to +1); 8% ti, tis1)g} (X (t0); 8°, to, o + 1))

= E [E (u(X(to), X (to +t);0°, 1, ti11) g5 (X (to); 6°,t0,t0 + 1) | X (to) = z)]
=E[0] = 0, |

E (u(X (to), X (to + t); 0%, s, tir1)g, 1, (X (t0); 8°, to, to + 1))

=E [B (u(X(to), X (to +t);0°, ti, ti11)g], j, (X (to); 6° tg,to + 1) | X(to) = x)]

=0,
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which imply that the limits on the right hand side of (2) and (4) in Assumption 11.1.2 are zero,

namely,
n—1
(n—1)" 1Zu(xi,$i+1;00,ti,ti+1)g;~($i;eo,ti,ti+1) 28 0, (11.3.1)
i=1
n—1
(n = 1)1 w(zs, wig1; 0% i, tiv1) g, (@600, b, tirn) = 0. (11.3.2)

=1

il

Note that the sum in (11.1.4) also doesn’t require Markov property. Hence, the conditional
least squares estimating approach can be applic‘able in processes other than Markov processes. ‘

To pursue the consistency of the CLS estimator, we expand Rn(0) in (11.1.4) around the
true parameter value 8%, not the partial derivative functions a%Rn(e). This is unlike the previous
section where we prove the consistency of the MLE. However, to obtain the asymptotic normality,
we shall expand the partial derivative functions 6%R,L(O), which is similar to the MLE situation.

From (11.1.4), in a neighborhood w of 0°, we have by the Mean Value Theorem that

B : OR.(0°) 0%Rn(6%)
R.(6) = Rn(0°)+(6-6°"" —50 +3(0-6%"- 50907 (6-6°
_ OR, (0% 2R, (6°)
= R,(6°)+ (6~ eé)T S I Lo-6°T 20007 (6 -6%
1g _ g0\T *Rn(6) 8> R (6°) (g _ o
200 -6 20067 2006T ] (6-6)
= R,(6°)+ (0 —0%T. aRaéo ) +10-6°T-V, (60

+1(0-6°T . W,(6%) (6 -6, (11.3.3)

where 8* € w, and V,,, W, are defined in Assumption 11.1.2. We shall control the asymptotic

behavior of the first-order and second-order terms. Since for 7,/ =1,2,...,k,
au%—H _ 9w 09(z;6,ti, tit1)
®uiyy 5 09(2i; 0, bi, tiv1) O9(2i; 6, tis tin1) _ 8*g(xs; 0, ti, tit1)
| 06,06, 96 a6, T o000,
by (11.3.1) and (11.3.2), we obtain that as n — oo,
_,0R,(8° g(z; ,0 t,t 5,
(n—1) 1——5(0 . 2(n—1)" Zuz—H : ofisl) s, Ok x1,
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' B aan 00 ~ n—1
(n—1) 1%(07) = 2 ((Tl 1) gh (@65.0% i tig1 ), (w45 0%, i, tin)
i=1 ' kxk

n—1
-2 ((" — 1) wiga gl g, (25 6°, tiati+1)>
i=1 - kxk

xX0
2% 2 (/ E (g}, (X (t0); 8°, to, to + )9, (X (o); 6°,t,t0 + 1)) dFT(t))
0 kxk

Because the matrix (E (g;1 (X (to); 8°,t0, to + t)g}2 (X (to); 8°, o, to + t)))kxk is the covariance ma-
trix of random vector g%g(X (to); 8°,to, to -+ t), it is non-negative definite. This yields that the
mafrix
00
vV = </0 E (g}, (X (to); 8°, to, to + t)gj, (X (to); 8°, %0, t0 + 1)) dFT(t))ka (11.3.4)
is also non-negative definite. By (1) in Assumption 11.1.2, we know that (6 — 69T -W,,(6*)-(6-8°)
is dominated by &3 if ||@* — 8°]] < 4, ||@ — 8°|| < & as n — oo. Choosing é small enough, we
shall see that the right hand side of (11.3.3) multiplying through (n — 1)~! will be dominated by
(n—1)"'R,(6°) + (6 —6°7T -V-(8-6°. '
To guarantee that (6 —8°)7-V-(6 — 0°) is positive, we should impose the condition that V
is non-singular. To satisfy (1) in Assumption 11.1.2, we can require that g(X (to); 6°,t0,to +t) has
partial derivatives up to the third order, which also. satisfy certain conditions. All these analyses

lead to the following regularity conditions for the consistency of the CLS estimator.

Assumption 11.3.1

2 .
(1) %Q(X(to);e,'to,toﬂ-t), W%EQ(X(%);OJOJOH); and a—%%g()f(to);(’,to,toﬂ) exist

and are continuous in © for §,j1,42,53 =1,2,...,k;
(2) FO'f’j,jl,j2=1,2,...,k, andthtzoy

B {200+ - a0kt ta+0) - (oK) 0% 06 +0)) | <
J
2
96;,00,,”

E [(X(to +1) — g(X (t0); 0% to, to + 1)) - ( (X (t0); 8%, to,t0 + t))] < oo,

0 0 4 .0 .
E [(89]‘ g(X(t()),0 ,to,t0+t)) (66j2g(X(t0),0 ,to,to-{-t))} < o0
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(8)  For j,51,52,53 = 1,2,...,k, and to,t > 0, there exist functions

HO(X (to)ito, to +1),  Hy (X (to)ito.to +1),

(X(to);to,to +1),  H) . (X(to);to,to +1)

2
H; J1j27s

Jije

such that

|9(X (t0); 0, t0,t0 +1)| < HO (X (to); to, to + 1),
9
00;
é)2

00;,00,,

593
a0 an an 9
00;,00;,00,,
for all @ € ©, and

(X (t0); 8,%0,t0 + t){ < HJ('I) (X (to); to, to + 1),

9(X (t0); 8, o, to +t). < HY) (X (to);to,to + ),

J1j2Js

(X(to);o,t'o,to+t)} < H®) . (X(to);to,to +1)

B [‘X(to + i)HJ(?J)zjs(X(tO);to,to + t)H < 00,

B [[HO(X(t0)ito,to +)- HY), (X (ta)ito,to +9)|| < o0,

J1j2Js

E HHJ(.”(X(to); to, to+ 1)+ H{'),

(X(to);toato-i-t)ﬂ < .

(4)  The limiting matriz (11.3.4) is non-singular.
The proof of the strong consistency of the CLS estimator requires Egoroff’s theorem, which

deals with almost uniform convergence:

Theorem 11.3.1 (Egoroff’s Theorem) Suppose h and {h,} are measurable complez-valued
a.s.

functions on measure space (Q,F, p) with u(Q) < oo .such that hn — h. Then for every € > 0,
there exists E C Q such that u(E) < € and h, — h uniformly on E°.

For reference, see Folland [1984], p. 60.
Denote 8crs(n) as the CLS estimator when the sample size is n. Then, we have the following

theorem on the strong consistency of this estimator.
Theorem 11.3.2 Under Assumptions 11.1.2 and 11.3.1,

ECLS("Z) 2% 00, asn —r 00.
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Proof: Let § > 0, and w(4) be the neighborhood of 8° with radius 4.

Regularity conditions (1), (2) and (3) in Assumption 11.3.1 lead to condit‘ion (1) in As-
sumption 11.1.2 being satisfied. Then for any € > 0, under all the conditions in Assumption 11.1.2
and (4) in Assumption 11.3.1, we can find by Egoroft’s theorem an event F with Pr(E) > 1 — ¢,
a constant 6* (0 < 6* < §), M > 0 and ng > 0 such that on E, for any n > no, @ € w(8*), the

1

following three conditions hold:

1) |6 - 67T 200 < (n—1)8%, (refer to (11.3.1).)

2 19— %7 . W, (0*) (0 —0° < (n—1 M3, (refer to (1) in Assumption 11.1.2.
2 ;
3 the minimum eigenvalue of L__V, is greater than some Ag > 0. -
2(n—1)

Thus, by (11.3.3), for 8 on the boundary of w(8%),
Ro(0) > Rn(6%) + (n—1)(=6%+52h — M%) = Ru(68°) + (n — 1)8*Dho — (M +1)3).

Since § can be chosen small enough such that Ao — (M +1)é > 0, R,(0) must attain a minimum
at some Ocrs(n) € w(d*).

Let ¢ = 27! and & = 1/1, where] = 1,2,.... Then they will determine a sequence of
events {E;} and an increasing sequence. {n;} having the above properties. For n; < n < nyya,
define 8crs(n) on E; to be the point within w(d;) where R, (@) attains a relative minimum, and
define 50Ls(n) to be zero on Ef. This will yield that 5CLg(n) — 0% on liminf E; = G“ﬁ E,.
m=1l=m

Furthermore, since for any m > 1, it holds that
\

oo x oo x oo

Pr[limsup Ef] = Pr lﬂ U Ef} < Pr [U Ef] < Yopr[Ef] < Y 27t =27,
m=1l=m I=m I=m I=m

which implies that Pr [limsup Ef] = 0. Therefore, we have Pr{liminf Ey] = 1 — Pr [limsup Efl=1

This completes the proof.

To obtain the asymptotic normality, we need to expand the partial derivative function
8%RH(O) around @°:
0

RuB) = LRu(6%) + (Vet Wa(67)-(0-06°, 16" — 6% <|16—6° <5 8>0.

56 06
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Multiplying through (n — 1)71/2 and evaluating at the point OcLs, we have

. _ 8 —~
Opx1 = (n—1) 1/23—0Rn(00Ls)

= (n- 1)-1/233,,1(00) +(n—1)"1(V, +’Wn(o*)) (n—-1)Y?@crs - 6°)

00
= 9g(z:; 0%, t;, tit1)
= —2(n- 1)~? ;“(xiaivi—H; 6°,t:,ti11) = 85 n o
+(n— 1) (Vi + Win(8) - (n — )*(Bcrs — 0°). (11.3.5)
n-—1 ’ '
For each j = 1,2,...,k, {Z u(mi,zi+1;00,ti,ti+1)@(z—“0;9f“:——i‘*'—ll} is a martingale with respect
i=1 '

to F,,. Under appropriate regularity conditions, (n — 1)-1/2 ng:l w(zs, Tiq1; 0%, i, tHl)Qg(L—;egg“—t”ﬁ
converges in law to a multivariate normal distribution as 1;7.1—> oo. Note that under previous
regularity conditions for strong consistency, -(n — 1)1 (V, + Wp(0%)) goes to 2V, Hence,
(m— 1)V 2(50L5 — 8°) will converge in law to a multivariate normal distribution as n — 00.

We tailor the following additional regularity conditions for the asymptotic normality of the

CLS estimator.

~Assumption 11.3.2 u(X(to),X(fo+t);00,t0,t0+t)5‘37g(X(t0);00,t0,t0+t) (j=1,2,...,k) has
moment of order 2+ d (d > 0) for any to,t > 0. Also for j =1,2,...,k,

a 24-d
Jim (n—1)77 d/2ZE ([ u(zi, X z+1)§00,ti,ti+1)%9(mi§eoati;ti+1)] = 0.
; |

In addition, for 31,752 = 1,2‘, .ok,

n—1 .

P
('n'_l Zu J31a$1+1,0 stiytig1) - ggl(mue vti, tig1) - g]z(xl’o Jtistip1) — Ojr1j2 =
i=1

x
/ E [u?(X (to), X (to + t);8°, 10, to + )g], (X (o); 8°, to, to + t)g, (X (t0); 8°, to, to + t)] dFr(t).
0

namely,

n-—-1

P

((n‘—l E u? xz?mH—lag stistivt) - gjl(:ltz,e ytistiv1) - g]z(zz’o tzat2+1)> ’(Ujljz)kxkzz’
=1

as n — 00.
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Theorem 11.3.3 Assume §CL5 is a root of %9)- = 0. Under Assumptions 11.1.2, 11.3.1 and
11.8.2,
~ L - -
(n—1)Y2 (Bors —6°) = N(Ouxt, Vit ZeskVise)

where Sk is defined in Assumption 11.8.2 and Vi is defined in (11.8.4).

Proof: We continue the analysis from (11.3.5). Under Assumption 11.3.1, there is a 8* such that

Okx1 = (n— 1)"1/2?&720'0_) +(n— 1)1 (Vo + Wi (8Y) - (n — 1)Y*BcLs — 0°),

where W, (8*) can be written as

k
B ~ , 3R, (0%)
¥ 1 _f. | =\ 7
Wn(0 ) = (2 E <90L5(n.,‘73) 9]3) 89j160j280j3) :
xk

ja=1

Here 5CL5 = 50Ls(n) = (5CL5(n, 1),... ,§CL5(n,k))T. Since aCLS is strongly consistent for 8,
we can conclude that
(n —1)"1W,,(6%) 2 Okxk n — 0.
Thus,
(n—1)"1(V, + W,(8%) =3 2V, n-—oo

This implies that (n — 1)'/2 (5CL5 — 0°) will have the same limiting distribution as

©on—1
- _ dg(zi: 0°, 1, t;
(2v)™ {2(71“1) 1/2;U(_miami+1§007ti7ti+l) gz 50 1+1)j|
n—1
_ _ dg(zi;0°,t;, t;
=Vv! [(n—l) 1/2;u($i,$i+l§.00,ti,ti+1) 9(zi BOZ ’H)}
By Theorem 11.1.1, it follows that
n—1 0
- N 0g(x;; 0%, i, t; L
(n—1) 1/2ZU(CEi,ﬂUz‘H;eoati,tiﬂ) 9(i 301 i+1) — N (Ogx1, Zkxk) n — 00.
i=1

Therefore,

(n— 1)1/ (BCLS —00) Ly N(Opx1, VIZVTY).
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Remark: Usually, it is intractable to find the analytic forms of the matrices V and ¥. However,

they can be estimated from the data. The natural estimators for them are

n—1 ’
Y= ((n — 1) " wP (@i, 2iv1; Ocrss tis tiv) - g5, (23 O0Ls, Bis tiv1) - g, (i3 BCLSatiati+1)> ;
kxk

i=1
(11.3.6)
n—1 N N )
V= ((n — 1)—1 Zg;-l (243 OCLS,ti,ti-i-l)g;'Q (zi;0cLs, ti, ti+1)> . (11.3.7)
i=1 kxk

They are useful in construction of asymptotic confidence intervals or regions and hypothesis testing.

The following theorem is the analogue of Theorem 11.2.6.

Theorem 11.3.4 Let Y1,Ys,..., Y} be iid rv’s x2. Under Assumptions 11.1.2, 11.3.1 and 11.3.2,

El

R, (6°) — R, (§CLS) L SNy, noo,
j=1

where X; ( =1,2,...,k) are the (non-negative) eigenvalues of vz,
Proof: From (11.3.3), we have
| ~ ~ OR,,(6°
Ry (6°) — Ry (9CLS) = —(6cLs —6°)" - —'a(Tl
~L@crs —6°7 - W, (0%) - (BcLs — 6°).

— 1(@crs — %7 - V- (BoLs — 6°)

Furthermore, from (11.3.5),

_ORq(8)

—50 - (Vo + Wy (6%)) - (§CLS_— 0°).

Thus we obtain
R(60°) — R (Bers) = 3@Bows — 007 - (Vo + Wa(67)) - (Boss - 6")
= [t = 1"2@cis - 0] - 3 [Va/ = 1) + Wa(67)/(n = 1) - [(n = ) @crs - 0] .

According to Theorem 11.3.3, as n — 00,

LVl = )+ W@/ (-1 25V, (-1 (bos—6") = 2
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where Zgx1 ~ N (Okx1, V7'EV™). This yields that the limiting distribution of R.(8%) —
R, <§CL5) is the same as the distribution of ZTVZ, which has mgf

Myryg(s) = B[eZVE] = Ji-2sv7ig 7 = H (1-25))

k
It is also the mgf of Y A;Y;. Therefore, this completes the proof.
. ‘ =

The techniques of proof of asymptotic properties of the CLS estimator in this section are
from Klimko and Nelson [1978]. However, we deal with these asymptotic properties under different

regularity conditions.

Finally, we comment on the asymptotic properties of other estimators of variations of the
CLS estimating approach. Because of similar techniques to previous results, we will not discuss in
detail.

Similar to the CLS estimator, the CWLS2 and CGLS estimator have consistency and asymp-
totic normality under appropriate regularity conditions like those for the CLS estimator, because

the expansion of

2
n—1 (mH-l — E[X(ti_H) , X(tz) = T3; 0])

Rewrs2(0) = - o+ d
and
n—1
Roors(®) = 3 (s(ois1) — Blg(X (i) | X (1) = 2556])
1=1 .

are similar to the expansion of Rcrs(8). The expansion of a function R, () around 6° usually has
the following form

v OR.(6°)
86

7 0°Rn(6)

Rn(a) ~ Rn(oo) + (0 - 00) 8030T

+3(6-6° (0 - 6°).

The essential requirements for the strong consistency of the CLS estimator are that

_LOR,(6%) as.
(’n—l) ! gg )‘%i)()kxl
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2
and (n— 1)_1%@1-{8"—0(? converges a.s. to a non-negative definite matrix as n — co. Now we check the

first-order and second-order partial derivatives of Rowrs2(@) and Rogrs(8). They are

n-1 ($i+1 —E[X(tiy1) | X () = 5_171';0]) OB[X(ti1) | X(t:) = 2:;6)]

ORcwrs2(0) _
00 — cr; +d 00 ’
0’ Rowirs2(8) _ Znil 1 OE[X(tit1) | X(t:) = 24;60] OE[X(tiy1) | X(t) = @4 6]
8@80; paar) cx; +d 89j ' 06,

n-l (ivz'+1 —E[X(tiy1) | X(t:) ='Iz’;0]> O?E[X (tiy1) | X (t:) = x4 6]

2 ; czi +d ' 86,00, )
and
ORcars(0)
00 |
- —22 (olse1) ~ Blo(X (1) | X (1) = 2 0]) - 22X LX) = 28]
32RCGL5(0) ’
30‘801
L OB [g(X (tis1)) | X (&) = 2:;8] OB[g(X (ti11)) | X(t:) = 2:;6]
_ 22 +1))0|j (ti) | OE[g(X( +1)()9;l (t:) ]
? ] i) = Ty
_22( o(zi1) — Elg(X(tin)) | X(t:) = xz,e]) G, E[g(X(m;())zaléf(tz) e]’
=1
where 7,1 = 1,2,...,k. Since the sequences of the partial sums
S (wiH ~ B (i) | X() = xi;0]> OB[X (tix1) | X(t:) =250 _
p oz, +d : 590- ,m=23,... 7,
2 (e~ BIX () | X() = 250]) B {X () | X(0 =258) | _,
; cr; +d . 06,00, = S £
n-—-1 ‘ N s
{Z (s(zicr) ~ Blo(X(6101)) | X(8) = 2:56]) - aE[g(X(tm);;jX () = 2s0] | _ o 3}
i=1
n—1 o .
{Z (o) - Blo(X (ts41)) | X(6) = a0]) - TELEL ”5();33'9),(( )= o6l 2,3,...}
=1 ‘

are martingales with respect to F, for j, | = 1,2,...,k, by ergodicity, their averages will con-

verge to zero. Applying the same techniques of proof for the CLS estimator, under appropriate
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regularity conditions, we can derive the consistency and asymptotic normality for the CWLS2 and
CGLS estimators. Like the CLS estimator, their asymptotic normal distributions are of the form

N (Okx1, V;i o 2k x kV;i ;). For CWLS2, the estimated asymptotic matrices are

s =
n—1 R R N
((n = 1) " uP (@i, wir1; Ocwrse tis tivt) - 35, (€65 00w L2, i ti) - G5, (xi; @ cwLs2, i, ti+1)) :
=1 _
(11.3.8)
n—1 1 N ’ R
vV = ((n -1)7! Z pr—— - G5 ($i3OCWLSZati,ti+1)§;‘2(mi§BCWLSQatiati+1)> , (11.3.9)
i=t ¢
where
-~ (l'_i+1 —B[X(tiy1) | X(t) = 253 9])
w(i, Tit1; Ocwrse, tis tiv1) = ‘ p—— ,
B ~ OE [ X (t; X(t;) = z;;0 . .
g;(Ii;OCWLSQ,ti,ti+1) = RS +1)g0.(7’) ], i=1,2,...,n—1, j=1,...,k;
' J N
and for CGLS, they are
. n—1 N R N
= ((n — 1) uP (@i Ti1; 0cars, tiy tiv) - 3, (2400618, by tin) - G, (x5 OCGLSatiati-H)) ;
i=1
(11.3.10)
n—1 R ) N
vV = ((" -7y g, (mi§OCGLS,ti,ti-}-l)g;z(iBi;OCGLs,ti,tH—l)) : (11.3.11)
’ =1
where
w(@s, Tir1; 0ccrLs, tistiv1) = 9(zis1) —Blg(X(tir1)) | X () = 24 6),
- OE [g(X (t; X)) =1x;;0 . )
gi(zi;0cGLs, ti tiv1) = lg(X (ti41)) | X(t) — T ], i=1,2,...,n—1,3=1,...,k

00; _
However, the CWLS estimator is no longer consistent for 6°, because in the expansion of

Rcwrs(8), the first-order partial derivative is

ORowis(®) _ 5 (s BIX(tn) [ X() =5501) 0B[X (1) | X(t) = 50)
00 - 7’:21 Var [X(t'H—l) | X(tz) = x,,a] . : 80

2"‘1 ($¢+1 -E[X(tiy1) | X(4) = xi;e])z OVar[X (tir1) | X (t;) = ;0]
-2, Var?[X (tip1) | X (&) = ©;0) o6 ’

1=
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under ergodicity,

L (wi+1 —E[X(tis1) | X(t) = zi;o]) OB[X(tis1) | X(t:) = 2:;6]

= Var[X (tir1) | X(t:) = ;0] 00 = Ok,
but )
MR (e41 = BIX(ts2) | X(8) = 00]) gVar(X(tisa) | X(t) = wiso

pim Var?[X (ti41) | X (t:) = 45 6] de
doesn’t. Hence, (n — 1)‘1%%9—) doesn’t converge to a zero vector.

‘ This pitfall can be overcome with the quasi-conditional least squares estimator, because
it omits the second term with the partial derivative of the conditional variance. Following the

techniques of proof for the MLE estimator, under appropriate regularity conditions, we can show

that the QCLS estimator is consistent and asymptotically normal. Here the asymptotic normality

comes from Theorem 11.1.1.




Chapter 12

Autocorrelation detection, model
selection,- testing, diagnosis,

forecasting and process simulation

" In this chapter, we shall consider some practical problems with non-normal time series data. When
we apply a specific model to déta, a natural question is why should we use this model, not the
others? Such a question motivates people to scrutinize the data in all possible 'aspec‘ts. For example,
when we try to apply an auto-regressive model to a stationary time series, we should first check
the auto-correlation function plot to see if there exists aﬁy correlation pattern over time. Similarly,
for count data or positive data observations over time, when we consider fitting a continuous-
time GAR(1) process, we should investigate if there is any auto-correlation in the data. If the
dependence over time appears to be geometrically decreasing, then applying the continuous-time
GAR(1) process model may be appropriate.

Usually, for a real prqblem, there could be several possible models which can be applied to
the problem. Since the family of the continuous-time GAR(1) processes is so abundant, we have
to think about which models are most suitable. This raises the model selection issue.

Once we select a model, we can estimate the parameters in the model using the data. Later,
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we can use this model for inferences such as hypothesis testing, forecasting, etc. These steps
essentially cover the entire procedure for an applied statistical problem.

In Section 12.1, we will discuss visual and analytical detection of serial dependence. Section
12.2 deals with the model selection issue. We study diagnosis and hypothesis testing in Section
12.3, and forecasting in Section 12.4. Finally, we discuss the approaches of process simulation in

Section 12.5.

12.1 Assessing autocorrelation

When modelling, a necessary step is to examine the features of the data so that proper models can be
chosen. These examinations include graphical and analytical investigations. For the data sampled
from a dynamic system, or from a subject over time, an interesting question is whether there
exists any dependence structure over time, commonly called serial dependence or serial association.
Because we are focusing on stationary time series, stationarity should be checked before modelling.
This can be done with a time series plot to check for a trend or pattern, or an ACF plot to check for
periodicity or seasonality, or other advanced techniques like smoothing to check for potentially non-
stationary patterns. If the series can be considered stationary with geometric serial dependence,
then it is reasonable to model the data with a continuous-time GAR(1) process. In the following
two subsections, we will discuss some visual detection techniques for serial dependence.

Serial dependence, if it exists, is essentially hidden in pairs of data, points. For a sample with
size n, we can obtain (3) = n(n —1)/2 pairs. We can group them according to their lag lengths or
time differences as: Group 1, Group 2, ..., Group m. Each group consists of pairs with equal or
roughly equal lag lengths.

For equally-spaced time series, grouping these pairs is very easy. The lag lengths are very
regular: 1, 2, 3, .... Hence, we can obtain n —1 pairs with lag one, n — 2 pairs with lag 2, and so
on. But for the unequally-spaced time series, the lag lengths and numbers of pairs may not be as

regular as the equally-spaced case.
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For the sake of simplicity, we concentrate on the data sampled at the equally-spaced ti‘me'
points. This is partially because that in many studies, the data {X (t1), X (t2),..., X (tn)} are
schéduled to be observed at equally-spaced time points. The results from equally-spaced time
series can then be easily generalized to unequally-spaced time series.

Traditionally, for the stationary Gaussian time series {Xo, X1, Xo,.. .}, the scatterplot of
successive lag-j pairs such as (X;, X;4+;) (1 = 1,2,...) is very helpful in recognizing any potential
linear association patterns visually. |

In the context of the continuous-time GAR(1) processes, if the self-generalized rv K in the
extended-thinning operation is from P1 so that the observations are real-valued, the traditional
scatterplot can still display the linear pattern among successive pairs (X (¢;), X (ti+1)), where i =
1,2,...,n—1. Hence, it works well in this case and should be kept as a basic graphical tool. However,
if the observations are non-negative integer—valued or positive-valued, the marginal distribution is
no longer symmetric. Instead, it is most likely to be skewed. This will cause the association pattern
not to be a linear pattern with an ellipsoidal cloud of points. Besides, for the count data, there may
be many coincidences in the scatterplot because of the discreteness. Thus, some other graphical
tools should be introduced in such kinds of situations.

In this subsection, we mainly study three kinds of graphical methods: the sunflower plot,
the diagonal P-P plot and the randomized quantile transformation scatterplot. We illustrate them
by considering the lag-1 pairs in an equally-spaced setting. These tools, of course, will be applied in
other groups of pairs to check for the serial dependence of the equally-spaced or unequally-spaced

time series.

(1) Sunflower plot.

First, we turn to the sunflower plot introduced by Cleveland and McGill [1984]. This tool was
later improved by Schilling and Watkins [1994] to overcome some disadvantages. The sunflower plot
is in fact a type of two-dimensional histogram or contour plot without equal altitude curves. It is
designed to display bivariate data with coincident points. This is the typical phenomenon when the
data are discrete. Even for the positive-valued ciata, when we discretize them, the coincidences will

likely occur. These coincidences reflect the dependent information between two random variables in
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a bivariate situation. However, they are not shown in the traditional scatterplot. Thus, displaying
the occurrence of coincidences is meaningful in understaﬁding the dependence structure of two
variables in bivariate (.iata.

A sunflower plot displays the bivariate data on a plane with points labeled by integers
showing the number of coincidences at each location. For count time series data, we illustrate it

by the n — 1 successive lag-1 pairs:

(X(0), X(t2)),  (X(2), X(82))y oy (X(no1), X (tn)-

We count the coincidences on different locations, and plot them with those counts (as labels) on each
location. This will give us the sunflower plot for time series data, which provides more information
than the scatterplot. For positive time series data, there may not be any coincidences. In such a
situation, we can discretize the positive-valued data. By taking discretization, we may expect more
coincidences. Then we follow the steps for the count time series data to give the sunflower plot.
The integer number at each point is the frequency at that point. These frequencies contain the
‘serial dependence information. Usually, if there is an auto-correlation between the successive pairs,
it often forms some kind of ridge shape in the sunflower plot. Hence, we should probe any potential
ridge shape in the sunflower plot for evidence of serial dependence for the time series data.

Figure 12.1 illustrates the sunflower plots for two count time series data. The first one is

from model
X1 2065 X; + B,  i=1,2,...,500, | (12.1.1)

where the marginal distribution is Poisson(5), and E; S Poisson(1.75) (1 =1,2,...,500), and the
second one is just an iid sequence of Poisson(5) with sample size 500. The ridge shape of the first

plot is different from the second one because of serial dependence.

(2) P-P plot and diagonal P-P plot. _
Sometimes it may not be easy to judge the association pattern in the sunflower plot. Hence,
we develop the diagonal P-P plot to detect the potential dependence between two variables in

bivariate data. The diagonal P-P plot is a special P-P plot, which is the inversion of the Q-Q plot.
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Figure 12.1: Sunflower plots of two time series count data. The left one is from the model in
(12.1.1), while the right one is from an independent Poisson(5) series.
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" To compare the cdf’s of two univariate rv’s: Fx () and. Fy (-), the common Q-Q plot

(qnantile vs. quantile) will display the corresponding quantile pairs of

(F)?l .(pl)a Fl;l (pl))’ (szl (p2)7 F);l (pQ))a tres (F)—(_l (pn)a F};I (pn))a 0 sz < la

in a plane. Here F~! means the inverse function of F or the quantile function. If the two distri-
butions are the same, the points on the Q-Q plot will roughly locate around the 45° diagonal line.
Otherwise, the points will show a pattern deviating from the diagonal line.

The P-P plot takeé an inverse approach. It compares the probabilities of two distributions.

For the corresponding pairs of cdf values calculated at cut points c1,¢2,...,Cnt

(Fx (1), Fy(c1)), (Fx(e2), Fr(e2)), ..., (Fx(en), Fy(en));

we plot them in a plane. Because the range of a distribution function is from 0 to 1, these points
are displayed in a unit square. If the two distributions are the samé, then the points will roughly
lie around the 45° diagonal line. Otherwise, they will deviate from the line somehow. Therefore,
the P-P plot also has the ability to check if two distributions can be considered the same or not.

Tt is equivalent to plot the survival probabilities, (1 — Fx/(c;), 1 —va(ci)), of the two distri-
butions. As to which form, it is up to user’s preference.

To investigate the independence or dependence of two random variables in bivariate data,
say

(z1,51),  (@2,92), -5 (Zn¥n),

we can borrow the idea of the P-P plot for univariate distributions. If the rv X is independent of

the rv Y, then it holds that
PriX <a,Y <b = Fixy)le,b) = Pr[X <a]-PrlY <b] = Fx(a)- Fy(b),

for any a,b in the support. Thus, we choose the grid points (aj,b;), where j =1,2,...,N, and plot
(F\(X,y)(aj,bj), ﬁx(aj)ﬁy(bj)) for all j Here

= the number of z; being smaller than or equal to a;
Fx(a;) = p ;
~ the number of y; being smaller than or equal to b,
Fy(bj) = ~ ;
the number of (z;,v;) where z; < a; and y; < b;
Fixyy(aj,bj) = (=i, v:) . = =2 i=12,...,N
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These grid points are in fact the two-dimensional cut points. In the resulting P-P plot, if X and
Y are independent, then the points will lie around the diagonal line, if they are dependent, then
Pr[X < a,Y < b] # Pr[X < a] - Pr[Y < b], and the points will tend to deviate from the diagonal
line.

A simplified version of P-P plot to diagnose the independence or dependence of two random
variables in bivariate data is to choose the points (a;,b;) (j = 1,2,...,N) on a line y = cz + d.
This will reduce the burden of selecting grid points. In the stationary time series _framework, this
line will be chosen as the diagonal line of the first and third quadrants, namely y = z. We do
so because X (t;) and X(t;11) have the same marginal distribution, hence, we should put equal
weight on the two elements of the pairs (X (t;), X (t;+1)) which lead to this diagonal line. Due
to the feature of choosing cut points on the diagonal line, we call this special graphical tool the

diagonal P-P plot. Suppose the observations {X(t1),..., X (tn)} are arranged in increasing order

Ty S Z) £ 0 S Tny, then we can choose aj = b; = z(;), where j =1, 2,...,n, and plot
(ﬁ12($(j),$(j)), ﬁQ(m(J))) , i=12,...,n.
‘Here
~ the number of X (t;) being smaller than or equal to z(j
Flag) = » —— )
the number of (X (t;), X (ti—1) where X (t;) < z(;) and X(ti;l) < z(5)

Fua(eg),2i) = ——3

for j = 1,2,...,n. If the diagonal P-P plot shows that there exists a pattern deviating from the
diagonal line, then it suggests that the serial dependence exists in the time series.

We briefly discuss the pattern of diagonal P-P plot in positively and negatively correlated
bivariate distribution. We illustrate the patterns by bivariate normal distribution with staﬁda,rd
normal margins. The correlation coefficients are chosen to be 0.5 and —0.5. Setting the X-axis
being the bivariate cdf of independent margins and Y-axis being the empirical bivariate cdf of 500
samples, we obtain Figure 12.2. From these plots, we see that positive correlation leads to fish back

pattern (a curve above the diagonal), while the negative correlation leads to fish belly pattern (a

curve below the diagonal).
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Figure 12.2: Scatterplots and diagonal P-P plots of positively correlated and negatively correlated .
bivariate normal data. The left side corresponds to positive correlation, while the right side corre-
sponds to negative one.




The diagonal P-P plot can be applied to check whether the samples are from a specific
bivariate distribution Fio(z,y). It is just necessary to substitute F? (x(j)) in the case of independent
margins by Flg(ac(j),:v(]-)), and check the diagonal P-P plot. If there is any obvious deviation, it
suggests that the samples may not come from the bivariate distribution Fio(z,v).

Note that the P-P plot for bivariate data can be easily generalized to higher dimensions
which allows us to compare two multivariate distributions. We invent this P-P plot because it is
easy to apply this graphical tool in high dimensions while the Q-Q plot doesn’t exist in dimensions
greater than or equal to 2.

Figure 12.3 illustrates the diagonal P-P plots for two count time series data. The first one
is from the model in (12.1.1), and the second one is from an iid sequence of Poisson(5). One can

see the pattern of deviation in the first plot, and the pattern of closeness to the diagonal line in

~ the second plot. Therefore, they match the theory.

(3) Randomized quantile transformation plot.

The randomized quantile concept was introduced by Dunn and Smyth [1996]. It transforms
skewed data {z1,Z2,...,Ts} into symmetric data {ri,r2,... ,Tn} to please our eyes so that we can
get a more intuitive impression. This is because that our eyes handle symmetric data more easily
than non-symmetric data. Empirically, it is quite complicated to understand some features from
skewed distributions.

Let F be the cdf of the sampled population and @ be the standard normal cdf. Then the

randomized quantile transformation is defined as
r, = ®L(u), 1=1,2,...,n,

where u; = F(z;) if F is continuous at z;, and u; is a uniform random nimber on the interval
[F(z7), F(z])] if F is not continuous at z;. That s, it first transforms the raw data into a
roughly uniform random numbers, then transforms again to standard normal random numbers.
The standard normal distribution is symmetric around th.e‘origin.

We can borrow this idea for the count and positive-valued time series data to obtain the

randomized quantile transformation scatterplot, which is third useful graphical tool to por-
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Figure 12.3: Diagonal P-P plots of two time series count data. The left one is from the model in
(12.1.1), while the right one is from an independent Poisson(5) series.
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tray the dependence of two random variables in bivariate data. This is because almost all the
marginal distributions in such kinds of time series are skewed. We can first calculate the random-
ized quantile transformation for the stationary time series data {X (¢;), X (¢2),..., X(¢,)} to obtain

{r1,72,...,7Tn}, then we plot the scatterplot for the pairs

(7'1,7'2), (7'2,7'3), ".'7 ("'n——la"'n)v

namely the traditional scatterplot for the pairs (r;,ri11) (¢ = 1,2,...,n—1). Here F, the marginal
distribution, can be estimated by the data either parametrically or nbn—parametrically. If the
original time series data are from an iid sequence, then the randomized quantile transformations
are also iid. Thus, the randomized quantile transformation scatterplot won’t sthv any association
pattern. If the original data are serially correlated, then the randomized quantile transformations
are also serially correlated, which leads to some kind of association pattern in the randomized
quantile transformation scatterplot. Thus, if there is any association pattern in the randomized
quantile transformation plot, we ca{n. conclude that there exists serial correlation in the time series
data.

Figure 12.4 illustrates the randomized quantile transformation scatterplots for two count
time series data. The first one is from the model in (12.1.1), and the second one is the same iid
sequence as before. The distribution F in both cases is estimated parametrically, namely, we assume
that two distributions are from the Poisson family, and estimate the parameters from the data. We
can use the empirical distributions in both cases too. From the two scatterplots, we see different

patterns. The first one shows serial dependence, while the second one suggests independence.

Finally, we discuss the ACF plot. The widely used ACF plot is.a sophisticated tool to
detect the serial dependence in the equally-spaced or unequally-spaced time series. It plots the
auto-correlation coefficients against the lag lengths. It works well in Gaussian time series, as well
as non-normal time series. For example, we can draw the ACF plot of the count time series from
the model in (12.1.1). See Figure 12.5. In addition, it can identify one kind of non-stationarity:
seasonality.

One may also want to try some analytical tests for the temporal dependence. Dependence
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Figure 12.4: Randomized quantile transformation scatterplots of two time series count data. The
left one is from the model in (12.1.1), while the right one is from an independent Poisson(5) series.
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Figure 12.5: The Auto-correlation function (ACF) plot of the count time series from the model in -
(12.1.1). '
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over time in a time series data is often called serial correlation or serial dependence. See Anderson
[1988a, 1988b]. Testing the serial dependence or correlation has been studied since the 1940’s. Usu-
ally, the null hypothesis Hy is “randomness” meaning “no serial dependence” or “independence”,
the alternative hypothesis H4 is “serial dependence” or “serial correlation” under some underlying
stochastic process. There are many articles in the literature under the key word “serial correlation”
or “serial dependence”. Since the marginal distributions and dependence structures in the context
of the continuous-time GAR(1) processes are quite diverse, one may apply some noﬁ-parametric
tests for the serial dependence. For example, the contingency table test and Goodman’s simplified
runs test are two of those methods. The contingency table test is applicable for unequally-spaced
time series data. But Goodman’s simplified runs test is not applicable for unequally-spaced time

series; see Goodman [1958] and Granger [1963].

12.2 Model selection

If we detect serial dependence in the stationary equally-spaced or unequally-spaced time series data,
the next step is to find appropriate models for them. The continuous-time GAR(1) process models
will be naturally considered if the observations are positive or non-negative integer-valued.

Usually, we will first investigate the observations to see what kinds of distributions could be
the possible marginal distributions. For example, if the data are non-negative integer-valued, we
may use the Poisson distribution for the marginal distribution if the sample mean and variance of
{X(t1) = 21,...,X(tn) = z»} (or X = (z1,...,2,)T) are roughly equal, or we may try the negative
binomial or generalized Poisson distribution if the sample variance is much larger than the sample
mean. The possible family of marginal distribution to be considered may not be unique.

Next we will select the continuous-time GAR(1) process models which have the marginal
distributions under consideration. It is common that the processes with different extended-thinning
operations may have the same stationary distribution. Therefore, for a specific time series, we may

have several continuous-time GAR(1) process models to consider.
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For the possible models, we first apply them to fit the data. Then we do the diagnostic
check for each model to see if this model is suitable for the data. If a model is not suitable for the
data, we will remove it from the model list. The diagnosis techniques will be studied in Section
12.3. Hence, we finally could obtain more than one suitable model.

Then a natural question arises: which one is the best to model the data? To this end, we
should compare how well these models fit the data. Here we present a couple of approaches for the
model selection. ,

AIC approach. The Akaike information criterion (AIC) is widely used in model selection.
It is useful in either nested models case or non-nested models. Suppose the number of parameters

0 in a model is k, and the log-likelihood is L(6|x), where x = (z1,...,2,)T is the vector of

observations. Then, the Akaike information criterion is defined as
AIC = -=2L(6|x) + 2k.

For the fitted model, the AIC will be evaluated at the estimates of the parameters. The models
will be judged according tb their AIC values; the smaller, the better. We will choose the model
which has the smallest AIC value. Joe [1997] commented that this approach is in fact a penalized
log-likelihdod method if we look at L(6|x)— k, which takes the number of parameters as the penalty.
In this equivalent criterion, we will choose the model with the largest value of L(0|x) — k.
Comparison of fit approach. This idea had appeared in Joe [1997], Section 11.5, p. 365-

367. The sum of conditional least squares

n—1

Rois®) = Y (wis1 ~ BIX(441) | X(6) = 2::0])

i=1
measures the closeness of the model with the real data. This sum will be evaluated under each
suitable model with estimated value of parameter @ from the data, namely the conditional expec-
tation BE[X (t;41) | X(¢;) = z;; 0] is calculated under each suitable model where 0 is estimated from
x. The smaller this value is, the closer the fitted model is to the data in a prediction sense. This
will lead us to choose the model with the smallest value of the sum of conditional least squares.
Prediction comparison (cross-validation) approach. If the sample size n is ade-

quately large, we may use first part of the observations, say first half, to build each suitable model.
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Then we apply each built model to predict the remainihg observations. In this way, we can see
which model has the best predictive ability, and such a model with the best prediction for the
remaining observations will be selected. The model prediction or forecasting will be discussed in

Section 12.4.

12.3 Model diagnostics and hypothesis testing

After building a continuous-time GAR(1) process model by choosing its form and estimating related
parameters, we must check if the model fits the data well. This is called model diagnosis, and can
avoid the naive subjective mistake in the model choice. From the view of applied statistics, we wish
the subjective model to be as close to the réality as possible. If the built model doesn’t fit the data
well, then it implies that there is a gap between the subjectiveness and the reality, and the built
model could be a wrong model. Thus, building a good or suitable model is very important, because
‘a good model can summarize the information from the data and allow us to make correct inference.
We will present a graphical diagnostic technique, the diagonal P-P plot, in Section 12.3.1.

Based on the suitable model built from the data, we may test some kinds of practical
questions such as if a drugT is effective, or if one treatment is better than another. These questions
are part of hypothesis testing. Sometimes, they simply test the parameters in the built model, and
sometimes they may test more complex composite hypotheses regarding model parameters. We
will narrow the topic of hypothesis testing to the simple parameter test, and give a brief discussion

in Section 12.3.2.

12.3.1 Graphical diagnostic method

Traditionally, model diagnosis involves checking some kind of residuals. See Lindsey [1997], p. 223-
225 for a short summary of categories of residuals. The two widely used kinds of residuals are fitted
value residuals (observed value minus fitted value) or the variations (‘like studentized residuals),

and deviance residuals. These different types of residuals will then be displayed in the scatterplot
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against a variety of statistics like fitted values, or in a Q-Q plot against a specific distribution like
the standard normal, to check for any obvious departures from the specified model. If no departures
are observed, we will accept the fitted model as a suitable model.

For example, in linear regression, we display the scatterplot of fitted value residuals against
the fitted response values or one of the covariates to check if the residuals symmetrically lie around
the horizontal line within certain range, and/or show the Q-Q plot of studeﬁtized residuals against
the standard normal quantiles to check the normality; in the generalized linear model, we usually
display the deviance residual plot to check if the fitted model is close to the data. The residuals
could be plotted against their lagged values, which is common in the normal time series.

However, in the continuous-time GAR(1) process models, it is not easy to use these two
types of residuals. This is because both residuals are applicable in cefta,in types of models or
distributions. For the fitted value residual, it is very useful in the structure model like linear model
where conditioned on covariates, the model can be represented by two terms: one is fixed; one is
random. In this situation, the fixed term is estimated at each covariate value, and the random
term is obtained by subtracting the fitted value from the observed response value. This estimated
random term is in fact the fitted value residual. Checking these residuals by residual scatterplot
and/or Q-Q plot, we can find if the random term matches the assumptions imposed in the specified
model.

For the deviance residual, it is usually used in the stochastic model where no fixed term
can be decomposed out, only random term(s). In fact, they are defined according to the specific
exponential form of the pdf of the exponential family, and measure the difference of log-likelihood '
between a saturated model and the fitted model for each observation. See Lindsey [1997], p 210-
211, or Venables and Ripley [1994], Chapter 7 for a quick reference. Due to the discrete feature or
skewed feature of some diétributions in the exponential family, the deviance residual plot may show
some special pattern which is hard to be understood through our eyes. That is why the randomized
quantile transformation scatterplot is proposed.

The continuous-time GAR(1) process family is very rich in the stationary distributions,

and varies according to the éxtended—thinning operation. Many of them do not belong to the
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exponential family specified in the generalized linear model. From the representation

X(t) 2 ()k ® X(t1) + Eltr,t2),  t1 <t

we know that they are stochastic model (two random terms) unless K is from P1 which corresponds
to the constant multiplier and leads to a structure model like linear model. Hence, neither the fitted
value residual nor the deviance residual can meet the diagnostic need of the continuous-time GAR(1)
process model. To this end, developihg a new diagnostic technique is necessary.

We propose the diagonal P-P plot introduced in Section 12.1 to diagnose the built continu-
ous-time GAR(1) process model. This method doesn’t use any kind of residuals. The idea is that
any model specifies the theoretical distribution, which can then be compared with the empirical
distribution obtained from the data by the P-P plot. By comparison, we can find if they are close:
to each other or not.

The continuous-time GAR(1) process specifies the multivariate marginal distribution for any
number of adjacent margins. We choose the bivariate marginal distribution in our consideration
_because it is not likely to be the same for two different models in the continuous-time GAR(1)
process family. Hence, for the equally-spaced time series data {X(¢1),..., X (ts)}, we can estimate
the bivariate empirical distribution of lag 1 from the n — 1 successive pairs (X (¢;), X (t;+1)). Setting
the cut points as those observations z(;y < z(g) < -+ < z(y), we obtain the estimate of the bivariate

cdf
the number of (X (¢;), X (t;—1) where X(t;) < z(jy and X(t;—1) < z(5

n—1

Fra(z(), 2(5)) :
Note that these n — 1 successive pairs are not independent. Hence, ergodicity is necessary to
guarantee the consistent estimation of the joint distribution. The theoretical bivariate distribution

of two adjacent margins with the same time difference as that of the data can then be calculated

from the fitted model, namely
Fua(zgy,2g) = PrlX(0) <25, X(t2 —t1) < 35
= PI‘[X(O) < Z(5)s (a)xk ® X(0) + E(0,t3 — t1) < :L‘(j)].

Here the model parameters are estimated by the data, thus, they are known so that we can the-

oretically calculate the required probabilities. Then, we can draw the diagonal P-P plot of the
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successive pairs against the fitted model, namely plot the points

.(ﬁlg (fE(j), iL‘(j)), F12 (.’I}(j), J)(]))) ., ] = 1, 2, NS

Repeat it for lag 2,3,...,m, where m is an adequate integer that depends on the lengfh of the
series.

In these diagonal P-P plots, if the points lie around the diagonal linev, then we will accept
the fitted model as suitable. Otherwise, there is an obvious departure between the data and the
fitted model, which suggests that the fitted model is not suitable.

The calculation of the theoretical bivariate distribution may employ the stochastic repre-
sentation for the bivariate margins, or numerical inversion of bivariate characteristic function. In
. practice, at the two ends of the plot, there might occur deviation from the diagonal straight line
at 45°, because there are too few observed pairs at the lower end which could lead to inaccurate
estimates, and the calculation of theoretical bivariate cdf is cut off at the upper end so that it is
always less than 1 while the empirical cdf reaches 1.

For unequally-spaced time series data, we first divide the n(n — 1)/2 pairs into different
» groupé. Each group consists of pairs with common or roughly common time difference. Apply the
diagonal P-P plot to the groups with adequately Alarge number of pairs. This is because for a group
with too few pairs, it’s hard to obtain the empirical bivariéte distribution. If all of the diagonal
P-P plots show the pattern of a straight line at 45°, we will accept the fitted model as suitable.
Otherwise, if any of thefn doésn’t show this kind pattern, we will reject the fitted model because
the empirical bivariate distribution doesn’t match the theoretical calculated from the fitted model.

Note that the fitted value residual plot can still be épplied in th(_e continuous-time GAR(1) ‘
process model with extended-thinning operatiOI} P1, but one should check the histogram and Q-Q
plot of the residuals because they are usually distributed in a special distribution. The deviance
residual plot can also be applicable in the models where the margins have specific exponential

family required in the generalized linear model, if one favors it.
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12.3.2 Parameter testing

In this section, we simply test the null hypothesis Hy : @ = 6° under a continuous-time GAR(1)
process model. We don’t set up the alternative hypothesis, because it’s quite subjective to choose
such an alternative hypothesis. This alternative one could be the same structure model with
different parameter values, or another structure model. Here we want to have a general discussion,
thus, we do not have particular reason to choose one of them as the specific alternative hypothesis.
Due to this lack, we can not obtain the power function.

All testing approaches we will discussed depend on the asymptotic distribution of the test
statistic. Among these approaches, some depend on the estimation approach or model, and others
do not.

Asymptotic normality testing approach. Most estimators have an asymptotic normal

distribution, i.e.,
(TL - 1)1/2 (/é - 00) —Ii_> N (kala Ekxk)a n — 00,

where Xk is estimated by the data. Thus, we can use the confidence region for a test. Under

Hy, the 100(1 — )% confidence region for the mean vector is

(n—1) (5 - oO)T 5>F (6 - 00) < (fn,k—(jlk_f—)l)F’“’"—’“-l(“)' (12.3.1)

See Johnson and Wichern [1998], p. 236. If the null value 8° is in this ellipsoid, we accept Hy,
otherwise we reject it.
This method depends on the estimation approach, but doesn’t depend on the model.

Log-likelihood testing approach. For the MLE estimator, it follows that
2 0 L 2
2 [log L,(@nmrE | x) —log L,(0" | x)] — Xk n — 0o,

where L, is the likelihood function under the model. Refer to Theorem 11.2.6. This fact provides
another testing method. We first calculate the value of ¢ = 2 [log Ln(BypLE | x) — log L,,(6° | x)]
under the assumed 0°, then we obtain the p-value p = Pr[Y > ¢] where YV ~ X%- We accept the

null hypothesis if p < o, and reject it otherwise.
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This method depends on both the estimation approach and model.
Conditional least squares testing approach. Similar to the MLE, the CLS estimator

has an analogous result:

o

Bo(8%) - Ro (Bc1s) 5 S°%,  n-o,
j=1

where R, is the sum of conditional least squares defined in (11.1.4), A; (j = 1,2,...,k) are the
(non-negative) eigenvalues of V™%, and Y1,Y5,...,Y; be independent and identically distributed
in x?. Here V and ¥ are estimated by (11.3.6) and (11.3.7). See Theorem 11.3.4. This result also
provides another testing method for the CLS estimator. Under the assumed 8°, we calculate the
value of the difference ¢ = R,(0°) — R, (501,5), and then the p-value p = PF[Z§:1 A;Y; > c]. This
probability consists of a high dimensional integration or inversion of a characteristic function. It
can be computed by the method proposed by Imhof [1961]. We will accept Hy if p < a, and reject
it otherwise.

This method depends on the estimation approach, but doesn’t depend on the model (other

than the conditional expectation).

There exists some other approaches which use non-parametric statistics as the test statis-
tics such as the contingency table test, Goodman’s simplified run test, etc. These tests are also

applicable in testing the Markov process.

12.4 Forecasting

In some fields like economics or actuarial science, people need to make decisions for the future. This
leads to the issue of forecasting. In the following, we shall discuss three forecasting approaches to
meet such a need. Freeland [1998] studied all these three methods in a special GAR(1) time series
with Poisson margins.

Suppose we have a continuous-time GAR(1) process model, which has observation X (1) =

z1. Our task is to forecast the future value of X (¢3) where t5 > ¢;. This is equivalent to predict
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=TS "’ . . .
the conditional random variable X (¢2), X(t2), under certain criterion. The common criteria are
minimum mean squared error, minimum mean absolute error, maximum likelihood, and so on.

Conditional mean. The criterion of minimum mean squared error will yield the estimate
X(ta) = E[X(t2) | X(t1) = 21]- (12.4.1)

This value usually can be obtained easily by an explicit formula. However, it is in general a real
number, not an integer.i We may use it in‘the model with positive-valued margins. For models with
non-negative integer-valued margins, this forecast may not be natural.

Conditional median. The criterion of minimum mean absolute error leads to the esti-
mate of X (t2) conditioned on X (¢1) = z1 to be the median Q(0.5), of the conditional distribution
Fx i) 1x () (@2 | 21),

X(t2) = Q(0.5). (12.4.2)
This value is in the support of the marginal distribution. Hence, it can be used in models with any
type of margin. However, due to the lack of explicit formulas, we may have to pay the computational
price. A

Conditional mode. By the criterion of maximum likelihood, we mean that the random
variable will have the largest chance. This will lead to the conditional mode, @, of the distribution

Fx (1)) x(t1) (T2 | Z1) to be the estimate:

K X(t) = Q. (12.4.3)
Similar to the conditional median, this value is in the support of the marginal distribution. Hence,
it also can be used in models with any type of margins.

Sometimes we may be interested in interval prediction rather than point prediction. Based
on the known conditional cdf, we can construct a prediction interval with given probability by

cutting two sides with half of the given probability. This approach is called conditional prediction

interval method, and is independent to any criterion mentioned before.




12.5 Simulation of the continuous-time GAR(1) processes

The simulation of the continuous-time GAR(1) process is the basis for further simulation study
of methods of parameter estimation. For the general need, we want to simulate the equally-
spaced or unequally-spaced time series {X (t1), X (f2),..., X (t,)} from a stationary continuous-time
continuous-time GAR(1) process {X(t);t > 0}. If the margins of the continuous-time GAR(1)
process are non-negative integer-valued, we even can simulate the whole path in any time range of
the continuous-time process by simulating the jump points. However, for thé continuous margin
case, we can’t simulate the continuous path of the continuous-time process, instead, what we can do
is to set the time increment very small and simulate the discrete-time process as an approximation.

There are two simulation methods: the conditional and the embedding approaches. The
conditional approach will simulate the next observation conditioned on the current observation.
It takes advantage of the stochastic representation of the conditional random variable and the
conditional distribution. By repeating the steps in the conditional approach, we can simulate the
equally-spaced or unequally-spaced time series. The embedding approach works for the discrete
state space only, where we will simulate every sojourn time and successive jumping state alternately.
In this way, we can obtain the continuous-time path of the continuous-time GAR(1) process. But
both methods need the starting state at time ¢ = 0. This starting point can be simulated from the
stationary distribution of the process. |

First, we consider the conditional approach. Without loss of generality, we just consider the
simulation of X (t2) given X (t,) = 1 where t; < t, namely a conditional random variable. This

conditional random variable is denoted as [X (t2) | X (t1) = z1]. According to the model,
X(02) | X(tr) = 1) £ (@) @ + Elty,12),  a=e 71, (12.5.1)

where all parameters such as y are known. Thus, this conditional rv is the sum of two rv’s: () g ®z1
and E(ty,t;). The simulation of K from I1 to I5 is straightforward because their pgf’s have closed
form and Taylor expansions can be taken to obtain the pmf’s. For I1 and 12, K has a simple
stochastic representation. For non-negative integer-valued K, (@) ® z1 is just the summation of

the iid copies of K, thus, its simulation is rather straightforward. However, for positive-valued
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K, it’s not. as clear as that for the non-negative integer-valued case. For P1, it’s trivial because
K is constant and the extended-thihning operation is just the constant multiplication. For P2,
it’s compound Poisson with exponential, thus, (a),; ® z1 is another rv of compound Poisson with
exponentia,l. For P3 to P5, we don’t know of a simple approach for simulation. But we guess that
they may be compound Poisso;l or Poisson mixture. This is under further study. Also E(t1,t2) is
another concern in simulation. Recalling from Section 9.2, we find some examples where E(t1,t2)
has a stochastic representation. One advantage of stochastic representation is that it leads to easy
simulation. If both () ® z1 and E(t1,t) have stochastic representations, then we can simulate
(X (t2) | X(t1) = a:l] easily. Thus, it provides a direct and fast way to simulate the conditional

random variable. The following are two examples.

Example 12.1 (Poisson margins) Consider the stationary continuous-time GAR(1) process

with representation -
X(tg) Le#let) x X (1) + Bty t2),  t <t (12.5.2)

where E(il,tg) ~ Poisson (% (1 — e‘“(tz‘“))), X, p > 0. This process has Poisson(ﬁ-) as the
marginal distribution. Since the dependent term e~#t2=11) 4 X (¢;) and innovation term E(t1,t2)
can be simulated directly, we can obtain the simulation of [X (tg) | X (t1) = z1] easily.

We illustrate the simulation by generating a time series from this model on the equally-spaced

time points: t; =i fori=1,...,100, with A = 2.15 and p = 0.43. Hence, the marginal distribution

is Poisson(5). Figure 12.6 shows one simulation.

Example 12.2 (Gamma margins) Consider the stationary continuous-time GAR(1) process

with representation

—p(t2—t1)
X(tz) Lo e X (11) + Bty t2),  where ¢E<t1,t2)(s>=(wm—s) , (125.3)

and the process with representation

X(t) L (7)) @ X(h) + B, t2), (12.5.4)
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[
where $p(1,,t2)(8) = (ﬂ+(1_e—€<t2—t1>)s> , and the LT of (e7#2™W), @z is

estn-in) o (360 7) = exp {*5 T ft::in)) } |
Here p, 8,8 > 0. Both models lead to Gamma(5, B) margins. In (12.5:3), we need only to simulate
E(t1,t3). Its stochastic representation can be found in Ezample 9.3 which helps us to simulate this
innovation. In (12.5.4), E(t1,t2) ~ Gamma (6, 8/ (1 - e~#t2=1))) | and (e‘“(trtl))K ® z can be
simulated by the stochastic representation in (9.2.5).
Similarly, we simulate the time series from both models at time points: t; = 1 where 1 =
1,...,100, with p = 0.54, § = 8.1 and B = 0.17. The marginal distribution is Gamma(8.1,0.17)

with mean 47.65. Figure 12.7 shows the simulations.

However, in many cases, we do not have a stochastic representation for E(t;,t2), and thus
for [X(t2) | X(t1) = a:l] For example, for most GAR(I) processes with the binomial thinning
operation, we only know the pgf forms of E(t1,t2), but don’t know the stochastic representations.
In this situation, we turn to the conditional distribution of [X (t2) | X (t1) = Z1], Fx (1)1 X (t1) (z2 | z1).
Specifically, we can first simulate (), ® £y and E(t1,t2) according to their pmf or pdf separately,
and then sum these two random numbers to get the desired simulation of [X (t2) | X (t1) = z1]. For
the stationary GAR(1) process with the binomial-thinning operation, once the pmf of marginal
distribution is known, we can obtain the prhf of innovation term and consequently the pmf of
[X(t2) | X(t1) = z1]. This enables us to simulate the stationary GAR(1) process with binomial
thinning operation, in which the pmf of marginal distribution is known. As to simulation methods
for () ® z1 and E(ty,12), refer to Rubinstein [1981] or other books on simulation.

For the GAR(1) processes with the binomial thinning operation, once we know the marginal
distribution and the parameter involved in binomial thi‘nning, we can obtain the pmf of the inno-
vation term E(t1,t2), as well as the conditional random variable [X (t2) | X (t1) = z1] in (12.5.1).
These will allow us to simulate the innovation E(t;,tp) or the conditional random variable

X (1) | X (1) = 1] directly.

Secondly, we study the embedding approach. This approach is valid for the continuous-time
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Figure 12.7: Simulation of time series with length 100 from (12.5.8) and (12.5.4). Both processes
have Gamma(8.1,0.17) margins.
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Markov processes with discrete states. The continuous-time GAR(1) processes with non-negative
integer margins belong to this family. The feature of the path or realization of this kind of process
is a random step function. It will stay at one state for certain time, then jump to another state,

and so on so forth. The key points in embedding approach are
o the distribution of sojourn time;
e the probabilities of jumps to other states.

These two probability structures are governed by the infinitesimal generator.

For a continuous-time GAR(1) process model with non-negative integer margins, we can
obtain its infinitesimal generator Q = (g; ;) by (8.1.6), where i,7 = 0,1,2,.... This infinitesimal
generatbr Q is downwardly skip-free, namely ¢; ; = 0if j < i—1. We say the process is in state 4 if
the path is taking value i. Count the starting state as the first jump, then denote the sojourn time

of the I** jump since beginning as
Ti(l)-——{waiting time since the [** jump to state 4 until next jump happens}.

By (8.3.1), Ti(l) ~ Exponential(|g;;|). Hence, we simulate Ti(l) by an exponential random number
with parameter |g;;|. Then, the process jumps to a state j otﬁer than ¢ according to probability
¢i,j/1¢::|. However, by the property of downwardly skip-free, we only need to consider the states
{i —1,i+1,i +2,...}. Repeating these two steps, we will obtain two sequences: one is state
sequence {S1,59,...,S5,...} and one is sojourn time sequence {Tg),Téz), e ,Téll), ...}. Plotting
two sequences on a plane as a step function, we will obtain the graph of a path of the continuous-
time continuous-time GAR(1) process model.

From this path, we can get the equally-spaced or unequally-spaced time series at tfme points
{t1,t2,. . tn}. Let j

L O] -
T]_ZT(SI)’ i=12,....
=1

If ; <t < Tj41, then X(t;) = S;, where i = 1,2,...,n. The following is an example with the

same model as Example 12.1.
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Figure 12.8: Simulation of a continuous-time path from (1252) with A = 2.15 and p = 0.43.
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Example 12.3 (Poisson margins) Consider the GAR(1) process in Ezample 12.1 with Poisson(A/u)

margins. According to Ezample 8.1,
gi; = _(>‘+7’/"'), Qi,i-l—l =)‘a i=071a2a"'; ii—1 :7:/1'7 1= 1a2a3a-~-'

Hence, from i, the process will jump to i+ 1 with probability A/ (A +ip), and toi—1 with probability
ip/ (X +ip).
Chqosing A = 2.15 and p = 0.43, we simulate a continuous-time path for such a model. See

Figure 12.8, which shows a simulation up to t = 3.
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Chapter 13

Applications and data analyses

In this chapter, we analyze some real time series data to see the capability of the continuous-time '
generalized AR(1) process as the model. These real cases have equally-spaced or unequally-spaced
time series data which are non-negative integers or positive real numbers. In practice, oné approach
for such kinds of data, is to transform them into real valﬁes, say logarithmic transformation, and
then apply Gaussian time series models. By virtue of the generalized continuous-time AR(i)
process, we can model the count or positive time series data directly. This brings a new approach
to the real cases. Such a transition of methodology is analogous to that of linear model to generalized
linear model approach.

This new appfoach also brings new thinking for modelling timé series data; that is, how we
choose a model from the family of the continuous-time generalized AR(1) pfocess. We give a brief
discussion in Section 13.1 before we proceed to the real data in the subsequent sections. In Sections

13.2 to 13.4, we analyze real data and illustrate the modelling theory.

13.1 Introduction to modelling procedure

In this section, we summarize the procedure to model stationary count or positive-valued time

series (equally-spaced or unequally-spaced) with the GAR(1) process, because it is different from
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Gaussian time series modelling. Some special features arise when we use the GAR(1) process as
the model.

First, we need to investigate the marginal distribution. This is the significant difference from
Gaussian time series modelling where we never have this question due to the normal assumption
on the marginal distribution. However, for count or positive-valued time series, we need to know .
what kind of distribution could be the marginal distribution. This is important information to
guide the model choice. To this end, we will check the histogram, mean, variance and skewness of
the observations so that we can find the proper choices, e.g. Poisson, negative binomial or Gamma,
for the margins. No doubt, the support of the marginal distribution of the time series data is
one of the major factors to motivate us to use the GAR(1) process modetl. For example, it is not
appropriate to use Gaussian time series model for the count time series if the observed values are
not large; also it is not appropriate‘ for positive-valued time series if the variation is large. In such
situations, we may try the GAR(1) models with non-negative integer support margins. However,
this is not the absolute rule. Sometimes, for the positive-valued time series, say the daily price
series in economics, if the variation is small, we may be satisfied with the Gaussian time series
model, because the normal marginal distribution can cover that range with probability near one.
However, if the variation is large, the normal marginal distribution is no longer convincing. Thus,
besides the support of the marginal distribution, the variation is also a major factor to influence
us to use the GAR(1) process model or not. Empirically, we would try the GAR(1) process model
for time series with large variation compared with its mean. With the information on suitable
marginal distributions, we can find the corresponding choices of GAR(1) processes.

Secondly, we check the serial dependence or auto-correlation. This can be done by the
ACF plot, sunflower plot, randomized quantile transformation plot, diagonal P-P plot, or othéf
analytical methods. If time series data can be modelled by a GAR(1) process, then its auto-
correlation coefficients will be positive and geometrically decreasing as the time lag increases. This
can be seen by rough calculations: suppose for an equally-spaced time series, the lag one auto-

correlation coefficient is 0.8, then the lag 2 to lag 6 auto-correlation coefficients will be

0.82 =064, 083 =0512, 08' =041, 0.8°=0328 and 0.8° =0.262.
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Hence, time series data with such high lag one auto-correlation coefficient and medium sample size
will show the geometrical decrease in the first few lags, then fluctuate within a small range in its
ACF plot. Therefore, for the sample ACF plot, we only focus on the first few lags. The evidence
of fast decrease in the ACF plot would suggest the GAR(1) process models may be appropriate.
In general, the ACF plot can also help us to check for seasonality or non-stationarity in the time
series. '

If the evidence of serial dependence is strong enough, we could fit a GAR(1) process model to
the data. Because sometimes different GAR(1) processes can have the same marginal distribution,
we may have many choices of models for the data. To find the proper models, we need to study
the mechanism or behavior of the underlying process for real pfoblems. Such information will help
us to pin down the reasonable models. If no such information is available, we can try those models
with the required marginal distributions found in the first step. In this situation, if the involved
self-generalized rv K is not unique, then the preferred model is the simpler one.

These fitted GAR(1) models will be diagnosed with the diagonal P-P plot proposed in
Section 12.1. This is another difference from Gaussian time series modelling where we usually
check the ACF plot for the estimated residuals. But now we think that any residual concept is
not universally appropriate in the diagnosis of GAR(1) models, although it might be still valid for
some specific models. In this situation, we will draw the diagonal P-P plots for lag 1 to lag k where
the pbsitive integer k is chosen to be adequate, say 6.

The data to be studied in the following sections don’t involve any covariates, although these
often exist in longitudinal studies. We will be developing methods in the future to incorporate co-
variates. The examples in this chapter are mainly illusfrative and on trial to obtain some necessary

experience with the use of the GAR(1) model.

13.2 Manuscript data study

In this section, we shall analyze an unequally-spaced count time series which records the ‘number

of manuscripts in the refereeing queue of Prof. H. Joe.

417




Table 13.1: Summary of the frequencies of the number of manuscripts in refereeing queue.

Number | 0 | 1 | 2 | 38 [ 4 [ 5 [ 6 [ 7 [ 8 | 9 |
Frequency | 8 17 [ 25 | 19 6 8 0 0 1 [ 1
Proportion || 0.094 | 0.200 | 0.294 | 0.224 [ 0.071 | 0.094 | 0.000 | 0.000 | 0.012 | 0.012

Prof. Joe has been serving as a referee for many academic journals for many years. Every
year he receives a certain number of manuscripts now and then. Upon receiving a manuscript,
he will immediately decide to be a referee or not. The time series data (unequally-spaced) since
January 1, 1990 is based on retrospective construction from dates of correspondence. The recording
dates are given as the first day of a month because the exact month but not the day can be recovered.
After March 1999, the record keeping was better and the data are monthly. Here we have the data
until December 2000 so that the total length is 11 years. Prof. Joe feels that his refereeing process
is relatively smooth with no obvious increase or decreasé, or other non-stationary patterns in this
period. The data are given in Appendix A.l.

We plot the manuscript number against date (in month) in Figure 13.1, where the starting
time 0 corresponds to January 1, 1990. Here we choose month, rather than day, as the time unit
because of the data recording feature and the sake of simplicity. Next, we treat this series data
as univariate data, and check its histogram. The sample size n = 85, sample mean is 2.412 and
sample variance is 2.793. The frequencies and proportions (rounded) of the observed number of
manuscripts are summarized in Table 13.1. Since the sample distribution is skewed, and sample
mean and variance are quite close, it may suggest the Poisson for the marginal distribution. In
fact, ignoring dependence, Poisson(2.412) does fit the manuscript data very well. See Figure 13.2
for the evidence of the skewed distribution and Poisson fit.

Is this data set just an independent series, or to the contrary, a serially dependent se-
ries? If there is no serial dependence, we will be happy to end with the modelled distribution
" of Poisson(2.412). Otherwise, further modelling is needed.” Because’ these time series data are
unequally-spaced, we have to carefully select these pairs with a given monthly lag. The number of

these pairs are summarized in Table 13.2. These groups of pairs lead to the ACF plot in Figure
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Figure 13.1: The time series plot of refereeing queue length of manuscripts.

Table 13.2: Summary of the number of pairs by lag for the manuscripts data.

| Lag month [1[2[3]4[5[6]7[8]9[10]11]12]

- [ Number of pairs [ 38 [ 76 [ 38 | 70 [40 [ 65 [ 42 [ 60 [ 42 [ 58 | 41 [ 55 |
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Figure 13.3: The ACF plot of the manuscript data. The dotted horizontal line indicates the 95%
boundary of the estimate of correlation coefficient for 85 pairs of mdependent Poisson(2.412) ran-
dom variables; the boundary is obtained by simulation.

13.3. The ACF plot shows positive auto-correlation in the first couple of points, and then decreases
quickly to the 95% upper limit of the estimated correlation coefficient of 85 pairs of independent
Poisson(2.412) random variables. The 95% critical value is based on 10,000 simulations. We choose
the sample size 85 which is bigger than the number in each lagged pair group. Thus, it will lead to
a conservative boundary for all lagged pair groups. Besides, we do not observe any seasonality or
trend pattern on the ACF plot. This phenomena suggests that there is a strong serial dependence
and the series could be modelled by a GAR(1) process. The serial dependence is also disclosed by
the sunflower plot, randomized quantile transformation plot, and diagonal P-P plot. To save space,

we only show them for lag 1 to 3 months; see Figure 13.4. All plots for lag one month pairs show
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strong auto-correlation. As the lag increases, the correlation pattern gradually diminishes.

Now we face the modelling work for this unequally-spaced count time series. Actually, the
underlying refereeing process is a continuous-time process { X (¢);t > 0}. We may use a simple birth-
death process to approximate the refereeing process, where the infinitesimal transition probabilities

are supposed to be

PrX(t+h) =z +1| X(t) = z] = Ah + o(h), x>0, A>0,
PrX(t+h) =z — 1| X(t) = z] = pzh+ o(h), z>1, p>0,
Pr[|X(t + h) —z| > 1| X(t) = =] = o(h), z > 0.

Here h is small. The arrival process is assumed to have constant intensity A, while the intensity for
the leaving, pz, is assumed to be proportional to the number of current manuscripts in the queue.
The later is because of the naive assumption that Prof. Joe would speed up if more manuscripts
are accumulated. Such a model has stationary distribution Poisson(A/u), and has GAR(1) form
representation (with binomial-thinning operation). See Example 8..1, (8.1.7) and relevant discussion
in Section 8.2. Therefore, the background information of the underlying refereeing process leads to

the following GAR(1) process to be the approximation of reality:
X(tip1) 2 e Pln= w X(8) + Bty tiy1), i=1,2,...,84. (13.2.1)

where E(t;,t;11) ~ Poisson (% [1- e‘“(ti“‘ti)]), and the marginal distribution is Poisson(A/pu).

Next, we turn to estimating the parameters A and p. For an estimation approach like MLE,
CLS, CWLS2, as well as diagonal PLS, since no explicit forms of estimates, we need initial values
of the parameters to find the solutions when minimizing or maximizing the non-linear objectivé
functions. It’s better to find a good initial point which is close to the true parameter vector. In this
case, we have a simple way to find the initial point. By virtue of the marginal estimating approach

(refer to Section 10.4.), we can first estimate ap = e™# or g,

84 85
e 2 1
Rorsqumy (o) = Y ([ﬂfi+1 — ] - o e - 50]) ,  T= >z, g € (0,1).
=1 i=1

The plot of the function Rops(m E)(Olo) is shown in Figure 13.5. This method provides the estimate
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Figure 13.5: The plot of function Recrs(mp)(ao) of the manuscript data.

of ag: 0.695, or equivalently, —log0.695 = 0.384 for 4. Since the mean of marginal distribution
A(p, ) equals A\/u, which we have already estimated as T = 2.412 in above\RCLS(ME)(aO),J thus,
the estimate for ) is 2.412 x 0.384 = 0.878. This type of estimate is called the CLS(ME) estimate.
The point (i, \) = (0.384,0.878) is now the initial point for solving other types of estimates.
With this initial point, we use numerical iterative methods to obtain estimates of the ML,
CLS, CWLS2 and diagonal PLS. They are listed in Table 13.3. For the CWLS2 estimate, we choose

¢ =1 and d = 0.5 in target function

84 ([le — My = aft  w - A/H])z

Rewers? = pe—
2

) i=1

For the diagonal PLS estimate, we choose those pairs with lag 1 month. From this table, we can

roughly see that y is likely in (0.4,0.5), X is likely in (0.8,1.4), and the marginal mean is likely in
the range (2.0, 3.0). ‘

For the MLE and diagonal PLS approach, conditional probabilities are involved. We use
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Table 13.3: Summary of different estimates of parameter p and X in the GAR(1) model for the
manuscript data.

[Estimation Type “ m | h) ‘ A, N) =/)\\/ﬁ4|

CLS(ME) 0.384 | 0.878 2.286
MLE 0.448 | 1.002 2.237
CLS 0.378 { 0.793 2.098
| CWLS2 0.492 | 1.027 2.087
Diagonal PLS 0.481 | 1.405 2.921

the following recursion to compute them:

PI‘[X(ti_H) = Tj4+1 l X(t1) = Jtt] = e—“(ti+1—ti) . PI‘[X(ti_H) = Tj4+1 — 1 I X(tz) = T; — 1]

+ (1 - e—ﬂ<ti+1—ti>) PrX (ti1) = Tig1 | X (&) = 25 — 1],
where z; =1,2,... and 7;41 = 0,1,2,.... Hence, with

PI‘[X(ti+1) =1 l X(t;) = 0] = Pr[E(ti,ti+1) = l], 1=0,1,...,%i+1,

~

we can determine Pr[X (t;y1) = zi41 | X(t;) = ;] for any ¢ > 0. This recursion formula is also
helpful in computing the bivariate cumulative distribution function of the model GAR(1) process,
and hence for the diagonal P-P plots in model diagnosis. '

We have obtained a few estimates of parameters for the GAR(1) model. A natural question
_is that how good is the fit of the model plugged in with different estimates for the manuscript data.
To diagnose the fitted models, we resort to the diagonal P-P plot. For each estimating method, we
will draw the diagonal P-P plot for the pairs of manuscript data with lag 1,2, ... ,! month (! is an
adequate positive integer). If the model fits. the data well, then all diagonal P-P plots will display
the ideal pattern that all points fluctuate around the diagonal straight line at 45°. Otherwise, the
fitted model is not good. To save space, we only draw lag 1 to 3 month plots for the five estimating
methods; see Figures 13.6 and 13.7.

From these diagnostic plots, we see that none of the fitted models by five estimating methods

is ideal. Each model shows some minor discrepancies The first four methods (except for the diagonal
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Figure 13.6: Model diagnosis for manuscript data: diagonal P-P plots for estimates of the CLS(ME)
(top row), MLE (middle row) and CLS (bottom row).
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PLS method) seem to overestimate the autocorrelation coefficient of lag 1 month. There could be
a couple of possible reasons. First, the number of pairs with lag 1 month is small, only 38, which
may lead to an inaccurate estimate of bivariate cumulative distribution function. Secondly, the
total sample size 85 may not be big enough to obtain more accurate estimates of parameters for
the GAR(1) model. Thirdly, the specified GAR(1) model may not approximate reality very well.
If this is the case, we have to figure out a better model.
For the possible reason of inaccurate estimates of parameters, we have tried a robust method.
It seems not to be helpful in this problem. Thus, we set up grid points for (u, ) € (0.4,0.5) X
| (0.8,1.4) and find a better one by looking into the diagonal P-P plots. It seems that (u,A) =
© (0.433,1.04) leads to a better GAR(1) model from the view of diagonal P-P plot. See Figure 13.8.
Note that estimates based on a graphical plot are not asymptotically efficient.
This study shows that the diagonal P-P plot is an intuitive and useful graphical tool in
diagnosing or building GAR(1) process models.

13.3 WCB claims data study

The WCB claims data was originally studied by Freeland [1998] in his Ph.D thesis. Dr. Freeland
applied the Poisson GAR(1) model, i.e., the discrete—fime version of the model in Section 13.2, to
the data and made predictions based on the fitted models. These data are given in Appendix A.2.

The data record the monthly claim number of workers who got injured during work time and
collect the short-term disability benefit (STWLB) from the Workers’ Compensation Board (WCB)
of the province of British Columbia, Canada. These data are reported from one city center, the
Richmond claims center of WCB from the years 1985 to 1994. According to the industry category
and injury type, the claim counts are classified into six time series: CO0 (heavy manufacturing, burn
related injury), C1 to C5 (logging corresponding to five different types of injury). Other series
(Cla, C1A to C5A) in the dataset are relevant information for C1 to C5. It is well known that in

British Columbia, logging is a seasonal industry while heavy manufacturing is not.
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Figure 13.8: Model diagnosis for manuscript data: diagonal P-P plots for the estimate (u,\) =
(0.433,1.04). (
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Unlike the manuscript data in previous section, all series in this data set afe equally-spaced.
This feature brings convenience for data analysis. Freeland [1998] applied the stationary Poisson
GAR(1) model for the series C0, and non-stationary Poisson GAR(1) models for C1 to C5 with
a seasonal covariate adjustment. Howevef, only C3 was modelled by the Poisson GAR(1) model
with Poisson innovations whose means depend on the season. We investigate the seasonality of
C3 again. We think that the seasonality might not be large enough to cause the dispersion of the
marginal distribution for the series C3. Hence, we want to try other stationary GAR(1) models
which have negative binomial or generalized Poisson marginal distributions for the series C3. We
do so to see whether these new stationary GAR(1) models are good enough for the data. If they
are adequate, they are simpler than non-stationary models.

As pointed out by Freeland [1998], the claim counts of each month can be decomposed as
two parts: one is from the claimants from previous month, one is from arrival of new claimants.
Both parts are random, and seem to be-independent. It is reasonable to think that the number
of continuing claimants depends on the number of claimants in the previous month. Thus, this
leads to the type of Galton-Watson process with immigration (see Nanthi [1983], p. 180-181 for the
definition) as the model, with a branching term and an immigration term. For each claimant, we
can make a simple assumption that this person continues to collect the STWLB in next month in
probability c.. Hence, the resulting model based on this simplification is the GAR(1) model with

the binomial thinning operation, namely
X(tip1) £ axX(t)+E;, i=1,...,n. (13.3.1)

This is the model of generalized AR(1) time series. If E; is distributed as Poisson, then it leads to
Poisson GAR(1) model as in Section 13.2. Freeland [1998] had chosen the Poisson GAR(1) model
with constant « for all seri-es C0, C1 to C5, and Poisson innovation E; whose means are exponential
with sinusoid exponents, to account for the influence of season for C1 to C5.

Now we investigate the series C3. The summary statistics regarding this series are given in
Table 13.4. The histogram of C3 is plotted in (a) of Figure 13.9. From the histogram, we see it is
skewed. However, the variance of 11.8 is-quite a bit larger than the mean of 6.13, thus, leading to

a big coefficient of variation of 1.92. Hence, the Poisson may not be appropriate for the marginal
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Table 13.4: Summary of the series C38 in WCB claims data.

l Sample size | Minimum | Maximum | Mean ‘ Variance | D I
[ 120 | 1 [ 21 [613 ] 11.8 [192] .

300
I

40
250
1

30
1
il
200
I

20
150
1

“100
1

10
]

50

O_Tﬁ'o I8

[ T T T T 1 I T T 1

0] 5 10 15 20 25 0 5 10 15

C3 Sample Variance

Figure 13.9: The histogram of the series C3 (left), and 1000 simulated sample variances from
Poisson(6.13); the dotted vertical line is the sample variance of C3 (right).
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distribution. This is verified by (b) of Figure 13.9, where the variance of C3, 11.8, is far away from
the simulated sample variances of Poisson(6.13) with sample size 120. Such a dispersion index leads
us to consider the negative binomial and generalized Poisson distributions. Next we treat the series
(3 to be univariate data, and try to fit them by the NB(8,~) and GP(8,7) distributions. For the
NB(A, ) distribution, the mean A and variance V' are

A=py(1-7)""  V=/01-7177 (13.3.2)
and for the GP(6,7) distribution, they are
A=0(1-n)"Y V=001-n9)3 (13.3.3)

By the method of moments, we obtain their estimates

—~

B=664, 7=048; 0=442 7=0.28

as well as the P-P plots of the series C3 against NB(6.64,0.48) and GP(4.42,0.28). See Figure
13.10. These P-P plots show that the Poissvon distribution is not suitable, but that the negative
binomial and generalized Poisson distributions are fairly good univariate fits. A

Next we turn to check the autocorrelation in series C3. In Figure 13.11, (a) shows the time
series plot and (b) shows the ACF plot. From the ACF plot, the geometrical decrease is very
obvious, and indicates that serial dependence exists. The serial dependence is also detected by
sunflower plots, randomized quantile transformation plots and diagonal P-P plots. For the sake
of space, we only show them for lag 1 month to lag 3 months; see Figure 13.12. The ACF plot
shows that there exists seasonality in the series C3, as pointed out by Freeland [1998]. There
is a yearly period, but the yearly dependence is not strong. Hence, using the stationary model
to approximate non-stationary reality may work in this case. Thus, we finally decide to try two
GAR(1) models with NB(8,v) and GP(6,7) margins respectively. This means that we choose two
kinds of innovations in (13.3.1) which do not have an explicit form for the pmf.

Because each of the two models has three parameter.s, the CLS approach is not suitable,

and thus, we try the CGLS approach. By (10.2.19), this method leads to

a=—0023, b=0929, c=1587
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Figure 13.10: The P-P plots of C8 in WCB claims data against Poisson(6.13) (left), NB(6.64,0.48)
(middle) and GP(4.42,0.28) (right).
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However, it is impossible to estimate the positive parameter a (= J/a) by a negative number.
Hence, the CGLS approach fails for this data set. We then try the method of moments approach.
According to (10.4.3),

120 120 1 119
Ry = 1202% = 613, Ry = mzx 49.32, Ry = ngm,mzﬂ = 4427,

which lead to estimates of the marginal mean A, marginal variance V and o of

Ris - R?

= 0.57.
R, - R

Ay =R =613, Vy=R—-R}=117, au=
By (13.3.2) and (13.3.3), we obtain

B = A2,/ (Vir — An) =676, Anr =1 — Apr/Var = 0.48;
O = \/ A3,/ Vi = 4.4, five =1 — /Ay /Var = 0.28.

For the fitted GAR(1) models, we need to know the bivariate cdf so that we can draw

diagonal P-P plot for model diagnosis. Suppose ¢ < t'. Then,

PX(f) <z, X(1) <yl = 3 PrX(t)=i,X(t) =]
1<z,J<y
z y
= > [ DoPrx() =5 | X(@) =] | Pr[X(#) =1].
i=0 \j=0

In Section 13.2, we have noticed fhat the pmf of innovation E(t,t') will determine all conditional
probabilities Pr[X (t') = j | X(t) = 4] (4,j > 0). Can we find the pmf of innovation by the marginal
distribution for the GAR(1) process with binomial thinning operation? The answer is yes. To
obtain the pmf of E(t,t'), we will take advantage of the stochastic representation for the GAR(1)

process:
X(t)LaxX(t) + Bt t).
By this representation, we have

Pr’[X(t') =0] = Prla*xX(t)+E(tt)=0 = Prlax X(t) = 0] Pr[E(t,t') = 0],
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Pr{X (¢) =.j] = Prla* X(t) + E(t,t') = j]

= PrloxX(t) =0]-PrE(t,t) =]+ Y _ Prlax X(t) = 1] - Pr{E(t,t') =5 - ],
: =1

where j > 0. Thus,
Pr[X(¢') = 0]
Pr[a x X(t) = 0]’
Pr[X(t) = j] = by Prlo X (1) = 1] - Pr[E(t,t) = j — 1]
Prlax X(t) = 0] / ’

Pr[E(t,t') = 0]

Pr[E(t,t') =j] =
for j =1,2,.... Because the stochastic operation is binomial thinning, it is easy to find that

Prla* X(f) =0] = Pr[X(t)=0]+ iu — )k Pr[X(t) = K],
k=1

P+ x() =0 = 3 (§)altt -l Pilx() = 4] I> 0.

k=l
Figures 13.13 and 13.14 show the diagonal P-P i)lots of the series C3 against the fitted NB
GAR(1) and GP GAR(1) models. They are shown for lags 1 month to 6 months. From these plots,
it seems that both models fit the data well. Compared with the non-stationary GAR(1) model in .
Freeland [1998], they have a simpler structure.
Since the previous numerical method of probability calculation allows us to compute the
conditional probability Pr[X (') = j | X(t) =] (i, > 0), we can also try the MLE method with

the initial value being the estimates from the method of moments approach. This leads to |
Gyrp =050,  Burep =882,  Fure =04l

for the NB GAR(1) model, and
Gyre =050,  Oyrp =471,  fmLe =023

for the GP GAR(1) model. Their diagonal P-P plots are shown in Figures 13.15 and 13.16. These
plots are roughly ok, but show slight discrepancies with fitted models.
Now we have two kinds of fitted models at hand: NB GAR(1) model and GP GAR(1).

Which one is better? We compare them with the AIC, and follow the convention to check two
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Figure 13.16: Model diagnosis for
(MLE) GP GAR(1) model.
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fitted models with MLE. We obtain
AIC for NB GAR(1) model = 576.6, AIC for GP GAR(1) model = 578.4.

These AIC values are only slightly different. Thus, fairly speaking, the two models are equally
good. It may depend on user’s preference or other considerations to choose one of them."

Forecasting is one of the concerns in this study. We now give a brief discussion based on
the fitted GP GAR(1) model by method of moments approach. We want to forecast the number of
claimants in the next month conditioned on the current month for the year 1994. Why do we just
make one month prediction? This is because that the autocorrelation is geometrically decreasing
which implies short memory. -Hence, a fairly long time prediction may not be useful.

The year 1994 has observations:

We calculate the conditional pmf and cdf of X (¢') given X (t) = z, where the time difference -t
equals one month. They are given in Tables 13.5 and 13.6 respectively. Based on these two tables,
we make a one month prediction of the number of claimants by the apbroach of conditional mode,
conditional median and 50% conditional prediction interval (PI). The 50% conditional prediction
interval may not be exactly 50% because of discreteness. In fact, we cut both sides with probability
' being less or equai to 25%. Thus, the real probability to construct the prediction intervals is bigger
than dr equal to 50%. The predicted results are given in Table 13.7. For the conditional mode

predictions, the absolute error is
16— 3|+ ]2—4|+[4—1]+|1=3|+|6— 1|+ |5 —4]|+[3—4|+[2 - 2| +[2— 1| +[2—1[+[9—-1[+|5 6] = 28,
while for the conditional median predictions, the absolute error is

|6—4|+\2—51+|4—3|+11—4|+|6—2|+15—5|,+|3—4|+|2—3|+|2-—3|+|2—3l+19—31+|5—7| = 25.
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Table 13.5: Estimated conditional probabilities: Pr[X(t') = y | X(t) =.z]. The highest probability
in each column is highlighted with an asterisk.

x=1 x=2 x=3 x=4 x=5 x=6 x=9
y=0 | 0.203 | 0.087 | 0.037 | 0.016 | 0.007 | 0.003 0.000
y=1 | 0.204* | 0.203* | 0.137 | 0.080 | 0.044 0.023 | 0.003
y=2 | 0.171 | 0.190 | 0.197* | 0.163 | 0.116 0.075 | 0.014
y=3 | 0.132 | 0.154 |.0.175 | 0.188* | 0.174 | 0.141 0.045
y=4| 0.096 | 0.116 | 0.138 | 0.159 | 0.175" 0.174* | 0.094
y=5 | 0.067 | 0.083 | 0.102 | 0.122 | 0.143 0.161 | 0.141
y=6 | 0.045 | 0.057 | 0.072 | 0.089 | 0.108 | 0.128 0.160*
y=7 | 0.030 | 0.039 | 0.049 | 0.062 | 0.078 | 0.095 0.148
y=8 | 0.020 | 0.025 | 0.033 | 0.042 | .0.054 | 0.067 0.119
y=9 | 0.013 | 0.017 | 0.022 | 0.028 | 0.036 0.046 | 0.088

Table 13.6: Estimated conditional cdf: Pr[X(t) < y | X(t) = z]. The median in each column is
highlighted with an asterisk. :

x=1 x=2 x=3 x=4 | x=5 x=6 x=9

y=0 | 0.203 | 0.087 | 0.037 | 0.016 | 0.007 | 0.003 | 0.000
y=1 | 0.406 | 0.290 | 0.175 | 0.096 | 0.051 | 0.026 | 0.003
y=2 | 0.578* | 0.480 | 0.372 | 0.259 | 0.166 | 0.100 | 0.017

0.709 | 0.634* | 0.546* | 0.447 | 0.340 | 0.241 | 0.062
0.805 | 0.751 | 0.684 | 0.606* | 0.515* | 0.415 | 0.156
0.872 | 0.834 | 0.786 | 0.728 | 0.658 | 0.577* | 0.297
0.917 | 0.891 | 0.858 | 0.817 | 0.766 | 0.705 | 0.457
0.947 | 0.930 | 0.908 | 0.880 | 0.844 | 0.800 | 0.605*
0.966 | 0.955 | 0.941 | 0.922 | 0.898 | 0.867 | 0.724
0.979 | 0.972 | 0.962 | 0.950 | 0.934 | 0.913 | 0.813

1

l<‘<*<‘ﬁ‘<‘<‘<i
O 00 ~I| O O =i W

Table 13.7: One month predictions: Umode, Umedian 0nd Gpr-

X 4 6 2 4 1 6 5 3 2 2 2 9
Umode 3 4 1 3 1 4 4 2 1 1 1 6
?)median 4 5 3. 4 2 5 - 4 3 3 3 3 7
’gPI [2’5] [476] [1a4] [275] [1,3] [476] [375] [274] [1’4] [1a4] [1)4] [5’8]
y 6 2 4 1 6 5 3 2 2 2 9 5
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Table 13.8: Summary of the series of daily mazimum ozone concentration.

| Sample size I Minimum ‘ Maximum l Mean | Variance | Variance/ Meaﬂ
[ 110 | 195 | 1067 | 481 | 2885 | 6.0 |

For the conditional prediction intervals, we count the number of intervals which contain the real
observations. This number is 7, hence the successful prediction rate is 7/12 = 58.3%, close to the

actual probability we use to construct these prediction intervals. -

13.4 Ozone data study

In this section, we study a positive-valued time series from a project on tropospheric ozone fore-
casting in the Lower Fraser Valley, British Columbia, Canada.

These data are daily maximum ozone concentrations (thus, positive-valued) collected at the -
Abbortsford ozone station in the summer of 1985 from May 1 to August 18 inclusively, and can
be considered roughly stationary in this in‘terval. See Appendix A.3. They are just part of a large
data set in this environmental study.

The summary statistics of these ozone data are presented in Table 13.8. The ratio of the '
variance to the mean, 6.0, is large, which suggests a marginal distribution with large dispersion.
In addition, ié is expected to see the skewed pattern of the distribution of daily maximum ozone
concentration because they are maxima. The histogram verifies the skewness; éee the left subplot
in Figure 13.17. The Gamma distribution is often appiied in modelling skewed positive data, and

can have large dispersion. Thus, we fit the margins of the process by Gamma(d, 5) with

5
fx(z;6,B8) = %m‘s“lefﬂz, z, 6, B> 0;

B
B+s

~

é
¢x(s) =( ) ) E(X)=68"%,  Var(X) =55—2 

By the method of moments, we can obtain the estimates

-~

5§=803,  B=01T.

444




3 - 2
— )
w0
« — c 9 s
K°] o
] 3
= !
Q& g !
3 ¢ ."
P o
c
=] .
[To 2N N
- O
‘6 <
=] L
o o
8 4
g
TR
" |
o - !— g _
[ T T T T T 1 T T T T T T
0 20 40 60 80 100 120 0.0 0.2 04 0.6 0.8 1.0

CDF of Gamma( 8.03, 0.17)

Figure 13.17: The histogram of the daily mazimum ozone concentration, and the P-P plot against
Gamma(8.03,0.17).

445




C .
ke
: . |
‘QE) 8 .\ .y / . "o
g 8 . .. . .I . R /Oo.o L) . L4 \ . .
O o * . .. o . ..\ / \ \ / * '.\ . \ .’ / S .l o../
oee® /o oo _ o® - LY .
2 < R WU
N L] . . . .o d
(o) 8 o "
20 40 60 80 100
Time (day)

e

o
[T
S 3

L] ,
o [ 1 1 T
o
0 5 10 15 20
Lag (days)

Figure 13.18: The time series plot and ACF plot for the daily maximum ozone concentration.

This Gamma(8.03,0.17) distribution fits the data well. See the right subplot in Figure 13.17.

Our next concern is whether there exists serial dependence in the series of daily maximum
ozone concentration. The time series plot and ACF plot are shown in Figure 13.18. The ACF plot
shows an obvious pattern of geometrical decrease. The serial dependence is also confirmed by the
scatterplot and diagonal P-P plot with lagged days. We show them for lag one day to lag three
days in Figure 13.19.

Why does there exist serial dependence? Is there any scientific e)iplanation for such a

phenomena? To this end, we study the mechanism of formation and decomposition of ozone in
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troposphere. Nitrogen dioxide (NOs) is photodissociated by solar radiation to be nitric oxide (NO)

and ground state oxygen atoms, O(3P):
NOs + h- v— NO + O(P),

where h - v, the product of Planck’s constant h and the frequency v of the electromagnetic wave
of solar radiation, presents the energy from solar radiation. Then oxygen atoms combine with

molecular oxygen to form ozone:
3 M
OCGP) + Oy + — O3 + M.

Ozone will be photodissociated by near-ultraviolet solar radiation to form an excited oxygen atom,
O('D):
O3 + h-v— Oy + O(ID)

On the other hand, the nitric oxide can react with peroxy (ROs-) to form nitrogen dioxide:
RO, + NO + — NO2 + RO-.

This process is a chain reaction. The solar radiation plays a key role in this process. Due to the
alternating of day and night, the daily ozone concentration curve against hour is ¢yclic. It increases
from a low value at midnight, and rea;ches a maximum in the afternoon, then decreases in the night.
For more details, see NRC (National Research Council) [1992], p. 24-37.

Based on the photochémical mechanism of ozone, we can make up a simple reasoning. The
amount of today’s NO, consists of two parts: one is the newly formed NO; from NO reacting
with RO,-, one is emitted NO, from other sources. The whole NO in the troposphere, of course,
includes the NO decomposed from NO; yesterday, which roughly accounts for the amount of
yesterday’s ozone. Roughly, the daily maximum is positively associated with the daily amount of
ozone. Thus, the newly formed NO; from NO links today’s maximum with yesterday’s maximum,
a positive association. Thus, today’s maximum can be expressed in two terms: one is dependent
on yesterday’s maximum, and one is innovation. The emitted NO, and part of the NO which is

not involved in yesterday chemical reaction, can be accounted for the innovation.
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- Note that the daily maximum ozone concentration series is not a continuous-time process. It
is discrete-time, artificially divided by day. But from the continuous-time GAR(1) process, we can
obtain the discrete-time GAR(1) process which may be appropriate to model such data. Because
of the feature of Gamma margins as we have considered, we try the following GAR(1) model with
Gamﬁla(é, B3) margins: .

X (tig1) 2 (0)x ® X (&) + Ei, (13.4.1)

where the self-generalized rv K is from P2 with LT

a(l —v)s } 1
s; = e - , 0<y < ——.
Prelsi ) Xp{ Q-7+ 1-a)ys =148
When v = 0, K becomes the self-generalized rv from P1, and (13.4.1) is
X(tis1) Lo X(t:) + Ei. (13.4.2)

(13.4.1) is a big model family as « changes in [0, (1+ B)‘l]. Although the process has different

dependence structure for different vy, each process of this family has the common conditional mean
E[X(ti+1) l X(tz) = CL‘Z] = 5,3_1(1 - Ol) + ax;

no matter what the value of . In addition, v is a fixed parameter in P2 definition. Hence, we
first ignore it by assuming it being the boundary value 0 or (1 + B)~!. Applying the method of

moments, we obtain the estimates

-

5=8.10, [B=017, @&=0.58,

for all the models in (13.4.1).
To diagnose the fitted models, we need to calculate the bivariate cdf. However, it involves
two-dimension integration, and the integrand formula is very complicated. We can estimate the

bivariate cdf by simulating the process in Model 13.4.1 for any v € [0, (1 + B)~]. We choose

4 =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1/1.17,
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Figure 13.20: Model diagnosis: diagonal P-P plots of lag one day for v =0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7 and 1/1.17 in the ozone data study.
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Figure 13.21: One step ahead predictions (dotted line) by the conditional mean for the daily mazi-
mum ozone concentrations (solid line). '

and simulate each process with 1000,000 samples. The diagonal P-P plots are given in Figure
13.20. These diagonal P-P plots show that the discrepancy gradually decrease as vy increases. This
suggests that the model with y = 1/1.17 seems to fit the data better.

There is additional evidence that doesn’t_ support (13.4.2) where « reaches the lower bbund-
ary 0. If the true model is (13.4.2), then by “quick and dirty” method, we can obtain a upper
bound of o: &g = min{X (t;11)/X(t;)} = 0.32. However, this upper bound is quite a bit smaller
than the estimated lag-1 autocorrelation coefficient of 0.53.

‘Now we consider one step ahead prediction by using the conditional mean
E[X(tis1) | X(;) = 23] = 68711 - a) + az; = 0.58z; +20.01,.  i=1,2,...,109,

to forecast X (t2), X (t3), - - -, X (t110). This leads to Figure 13.21, where the dotted line denotes the
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predictions. It seems that the forecasting captures the main fluctuation. Furthermore, we investi-
gate the differences, z;11 —E[X (tiy1) | X () = 5] (i = 2,3,...,110), between the observations and
predictions. They can be viewed as residuals from (13.4.2). We can expect the skewness of their
distributions. Figure 13.22 presents the histogram, time series plot and ACF plot of these residuals.
They have a skewed distribution, fluctuating around zero with no obvious serial dependence. It

shows from another aspect that our model fitting is successful in gétting rid of the autocorrelation.

Lastly, we restrict the models in (13.4.1) which are associated with parameter 0 < v <
1/(B + 1) to the upper boundary case v = 1/(8 + 1). This is because the diagnostic analysis from
the diagonal P-P plots. Thus, the model is

X(tiv1) 2 (@) k ® X (t:) + E; (13.4.3)
where
DN _afs | _ aff B/l-a)
P (53 ) ‘e"p{’m a —a)s}"e"p{l —a (ﬂ/(l “a) +s 1>}
and

b ) = (m@m)é - (ﬂ—%u—)i—)

Note that K is a rv of compound Poisson(a3/(1 — a)) with exponential(8/(1 — a)), and E; is a
rv of Gamma(6, 8/(1 — a)). Therefore, conditioned on X (t;) = 2, (&) ® z; is a rv of compound

Poisson(aBz;/(1 — a)) with exponential(8/(1 — c)), leading to a stochastic representation
. A
d . iid. .
() ® ;= ZYJ, N ~ Poisson(afz;/(1 — a)), Yo =0, Y; ~ exponential(8/(1 — a)).
§=0
This representation will help us to find the closed form of pdf for the conditional rv [X (ti41)| X (8:) =

z;] because that conditioned on N = n,

iYJ ~ Gamma(n, /(1 —a)) and iYJ + E; ~ Gamma(n + 6, 8/(1 — a)).

=0 , §=0
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Figure 13.22: The analysis of differences between observations and one step ahead predictions by
the conditional mean for the daily mazimum ozone concentration. )
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Hence, the conditional pdf of X (¢;+1) given X (t;) = z; is

o0
fX(t,+1)|X(t,)($|xl) = ng;l:O Y;+E; ($) Pr(N = n)
n=0

> ( B )n+5

— — — — 1 1 n —_— : p—
1—a n+é—1_~PBz/(1-a) Bz afz;/(1-a)
= : O————( 5 T e X ] (1 ) e (13.4.4)

Generally, statistical software can calculate the Gamma density and the Poisson pmf. Thus, the
pdf of [X (t;i41)|X (t;) = z;) can be easily computed. With (13.4.4) and numerical optimization of

the log-likelihood using a quasi-Newton routine, we can obtain the MLE:
Svre =831,  Burg =017,  @yre = 0.51,

for Model (13.4.3). The estimate of 3 is still 0.17.

The calculation of the joint cdf for (X (t;), X (t;+1)) requires one-dimensional integration.

- Pr[X (%) < 2, X(tiq1) <yl = /Ox Prl(@)k ® = + E; < ylfx(,)(z)dz

N
_ [ R B 51,-pe
_ /0 Pr [ZY]+& <y] oM (13.4.5)

=0
“where

N i = 1 [ afz; \"
P Y;+E <y|l=) P Vi+E <yl x = [ 2] eobei/l-0)

iYJ + E; ~ Gamma(n + §,8/(1 — a)).

j=0 .
Usually, the gamma cdf is available in statistical software. With one-dimensional numerical inte-
gration function, such a joint probability can be obtained easily. Based on (13.4.5), we can draw
the diagonal P-P plot for Model (13.4.3). See Figure 13.23. For v = 1/0.17, comparing the model
with estimates by the method of moments, it seems there is an improvement for the model with

maximum likelihood estimates.

If0 < v < 1/(8 + 1), however, E; is no longer a Gamma rv. Thus, finding the pdf of
2?:0 Y; + E; may be a problem. If we know the pdf of E;, we can still use the previous method to
numerically obtain the pdf of Z?:o Y; + E;, because it will involve a one-dimensional integration.

Such a caléulation, of course, is much messier than that for v being the upper boundary.
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Part V

Discussion
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Chapter 14 |

Conclusions and further research

topics

Research in the area of non-normal time series does not have a long history. People have been
working on it from various perspectives. The theory of continuous-time generalized AR(1) processes
is developed to model problems from this area, especially with unequally-spaced time series data.
We of course want to know how good and how flexible it is for modelling practical problems. In
addition, wé are also concerned with its application scope and limitations. Based on this new theory,
we may further develop other complex. (continuous-time or discrete-time) stochastic processes to
handle those problems which can’t be suitably modelled by the continuous-time generalized AR(1)
processes. There remains much research for the new theory; there is interest from the viewpoint of
either probability or statistics.

In Section 14.1, we summarize some advantages and disadvantages of the theory of continuous-
time generalized AR(1) processes. In Section 14.2, we also discuss some ideas of construction of
stochastic processes for more complex problems. Lastly, in Section 14.3, we present some topics of

future research in the theory of continuous-time generalized AR(1) processes.
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14.1 Discussion of continuous-time generalized AR(1) processes

In the theory of generalized linear model (GLM), the distributions like Poisson, Gamma, etc, for
count and positive-valued responses are well developed; only a few situations like zero-inflation
need further development of distributions. However, to handle count or positive-valued time series,
we need models which haven’t been well developed. This is why we spend much time and effort
to develop the probabilistic foundation. Thus, unlike GLM, developing appropriate models in the
stochastic framework is one of the key pursuits.

The theory of continuous-time generalized AR(1) processes is designed to model equally-
spaced or unequally-spaced time series with count or positive-valued observations. From the sense of
data type, it is quite similar to generalized linear model theory, which handles the non—ﬁegative inte-
ger or positive-valued response. Our theory presents a systematic way to construct the continuous-
time Markov processes. From the continuous-time processes, we then can easily obtain the discrete-
time processes by sampling or observing at equally-spaced time points. The strengths of the GAR(1)

processes are:
e simple decomposition of the dependent and innovation terms;
e parametric families for the various probabilistic components;
e flexible choice among abundant models.

These features result in the model having a simple interpretation, a desired marginal distribution
and a reasonable dependence for real problems. The case studies in Chapter 13 illustrate these
capabilities.

Of course, the theory of continuous-time generalized AR(1) processes has some weaknesses:
e only a positive geometric autocorrelation function is possible;

e marginal or stationary distribution is restricted to the infinitely divisible class;

e no explicit expression of the conditionél pmf or pdf for many processes;




e support range [0,00) or (—oo,00) or {0,1,2,...};
e computational complexity.

These disadvantages motivate us to think about new stochastic processes to handle more general

situations.

14.2 Some thoughts on model construction

Stochastic operators blay an important role in the construction of stochastic processes, or even
more generally, multivariate distributions. The extended-thinning operators concretely provide the
positive association between two non-negative random variables; this enlarges our scope beyond
the constant multiplier operator. Exploration of new stochastic operators is very meaningful in de-
veloping new multivariate distributions, which consequently could lead to new stochastic processes
(in either continuous-time or discrete-time). This could help us to construct bivariate distribution
where two margins have negative correlation; such negatively correlated bivariate distributions may
help us to build discrete-time stochastic processes with negative lag-1 correlation.

Since construction of discrete-time processes oniy requires specifying the bivariate distribu-
tion of two adjacent time points, we may create a discrete-time stochastic process with more than
one stochastic operator We can apply one operator on one time period, and apply another one on
the next .time period, and so on. If we properly choose the stochastic operators, we may obtain a
stationary discrete-time process with the same correlation coefficient between any two adjacent time
pdints, because different extended-thinning operators can lead to the same correlation coefficient.

It’s possible to encounter time series data which can have a slow decrease in the ACF. This
may suggest higher order autoregressive processes which can be defined in discrete-time. [Note that
there are no known higher-order autoregressive or Markov processes in continuous-time.] Thus, it
is necessary to-build the higher order Markov processes. One idea is described in (2.2) and (2.4) of
Lawrance and Lewis [1980]; it leads to the similar autocorrelation structure to the Gaussian AR(p)

model, for non-normal discrete-time time series.
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Non-stationary process development is another practical concern, because there often arises
trends or periodicities. We could adjust the parameter p from constant to time-varying, which
leads to a time-varying correlation structure for possible application in growth curve studies. We
could also change the mean of the innovation to be time-varying, and allow a trend. Of course, we

can modify both to obtain more complex non-stationary processes.

14.3 Future research

In this section, we briefly discuss some further research topics relating to the theory of continuous-
time generalized AR(1) processes.

First, we could search for more. families of self-generalized distributions leading to new
extended-thinning operations. This in turn leads to new GSD and GDSD classes. Although we
fortunately find ten families of self-generalized distributions, it is not enough. We wish there could
exist a representation form for the pgf or LT of all self-generalized distributions. But this may not
be true, and thus, remains an open question.

We also need to study the property of different GSD or GDSD classes of distributions.
This leads to new continuous-time generalized AR(1) processes with different dependent structures
and marginal distributions of interest. These developments will meet the potential needs of real
problems from the point of view of either dependence or marginal distribution.

Further probabilistic study on the continuous-time generalized AR(1) processes is required.
This will be useful in probability calculations (conditional and bivariate), as well as in simulation
studies.

Asymptotic study of estimators other than MLE and variations of CLS are also needed,
because they will help us to construct confidence intervals or regions, and do hypothesis testing.

In addition, incorporating covariates to the model should be considered in the framework
of stochastic processes. Most of the models in both the GLM and GAR(l) theory are stochastic

models, hence, the P-P plot is a sophisticated diagnostic tool, different from residual plots which
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work well in structure models. When we develop non-stationary processes, we also need to develop

new diagnostic graphical tools.




Appendix A

Data sets

A.1 Manuscripts data

Description: The following irregular time series consists of the number of manuscripts in refer-

eeing queue of Prof. H. Joe.

Date Manuscripts Date Manuscripts - Date Manuscripts
1990-01-01 4 1992-03-01 8’ 1994-06-01 0
1990-03-01 1 1992-04-01 5 1994-08-01 0
1990-05-01 1 1992-05-01 4 1994-10-01 0
1990-07-01 1 1992-06-01 3 1995-01-01 1
1990-09-01 3 1992-07-01 3 1995-03-01 3
1990-10-01 5 1992-08-01 1 1995-05-01 2
1990-11-01 5 1992-10-01 1 1995-07-01 2
1990-12-01 5 1992-12-01 1 1995-08-01 2
1991-02-01 3 1993-02-01 2 1995-10-01 0
1991-04-01 5 1993-04-01 1 1995-12-01 3
1991-05-01 5 1993-05-01 2 1996-02-01 2
1991-06-01 2 1993-06-01 2 1996-04-01 2
1991-08-01 4 1993-08-01 1 1996-06-01 2
1991-10-01 3 1993-10-01 0 1996-08-01 3
1991-12-01 4 1993-12-01 2 1996-10-01 3
1992-01-01 5 1994-02-01 2 1996-12-01 1
1992-02-01 9 1994-04-01 2 1997-02-01 2




Date Manuscripts Date Manuscripts Date Manuscripts
1997-04-01 3 1999-03-01 2 2000-03-01 2
1997-06-01 2 1999-04-01 1 2000-04-01 0
1997-08-01 3 1999-05-01 1 2000-05-01 2
1997-10-01 1 1999-06-01 1 2000-06-01 2
1997-12-01 0 1999-07-01 2 2000-07-01 1
1998-02-01 1 1999-08-01 3 2000-08-01 3
1998-04-01 3 1999-09-01 2 2000-09-01 4
1998-06-01 3 1999-10-01 2 2000-10-01 5
1998-08-01 0 1999-11-01 1 2000-11-01 3
1998-10-01 2 1999-12-01 3 2000-12-01 2
1998-12-01 2 2000-01-01 3

1999-02-01 3 2000-02-01 4

Source: Prof. H. Joe. Dept. of Statistics, UBC, Vancouver, B.C. V6T 1Z2, Canada.

A.2 WCB claims data

Description: The following data are monthly counts of claims by workers collecting short-term

disability benefit (STWLB) from the Richmond claims center of the Workers’ Compensation Board
(WCB) of British Columbia, Canada.

Each column forms a time series. CO denotes the series of counts of claims by workers in
heavy manufacturing industry who are male and betweep age of 25 and 34. The injury is burn
related. The claimants in C1, C2, C3, C4, C5 are male and between age of 35 and 54 who work in
the logging industry. The difference émong them is the nature of injury: C1 indicates burn related
injury; C2 indicétes soft tissue injury such as contusions and bruises; C3 indicates cuts, lacerations
or punctures; C4 indicates dermatitis; C5 indicates dislocations.

Cla is obtained from C1 by removing one claimant who has a ten year claim. C1A to C5A

are the arrival data corresponding to C1 to C5, with the counts of new claims for each month.

"Date | CO C1 Cla €2 €3 C4 C5 ClA C2A C3A C4A C5A

Jan-85 NA O 0 9 6 0 0
Feb-85 NA O 0 6 7 1 0

o O
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Mar-93 10 O 0 10 3 0 1 0 2 1 0 0
Apr-93 2 0 0 8 1 0 1 0 5 0 0 0
May-93 7 1 0 9 3 0 0 1 6 2 0 0
Jun-93 9 1 0 10 6 1 0 1 6 3 1 0
Jul-93 9 2 1 13 6 0 0 1 8 3 0 0
Aug-93 3 1 0 6 9 0 1 0 1 5 0 1
Sep-93 6 1 0 8 9 0 1 0 4 6 0 0
Oct-93 9 1 0 9 .5 0 1 0 5 1 0 0
Nov-93 9 1 0 6 6 0 1 0 1 4 0 0
Dec-93 9 1 0 9 4 0 1 0 5 2 0 0
Jan-94 6 2 1 12 6 0 0 1 4 3 0 0
Feb-94 5 1 0 8 2 0 0 0 2 0 0 0
. Mar-94 6 1 0 9 4 0 0 0 4 3 0 0
Apr-94 5 1 0 5 1 1 0 0 2 0 1 0
May-94 9 1 0 6 6 0 0 0 5 4 0 0
Jun-94 7 1 0 9 5 0 1 0 2 3 0 1
Jul-94 11 1 0 9 3 0 0 0 4 1 0 0
Aug-94 12 1 0 13 2 0 0 O 6 1 0 0
Sep-94 11 2 1 12 2 0 1 1 5 1 0 0
Oct-94 12 2 1 10 2 1 2 0 4 1 0 1
Nov-94 7 2 1 9 9 0 3 1 2 8 0 1
Dec-94 11 1 0 7 5 0 2 0 3 3 0 0

Source: Freeland [1998], Appendix. The original data description is scattered throughout Free-

land’s thesis, mainly in Chapter 8.

A.3 Abbotsford daily maximum ozone concentrations data

Description: The following data are daily maximum ozone concentration collected at the Ab-
bortsford (British Columbia, Canada) ozone station m the summer of 1985 from May 1 to August
18 inclusively. The rows from the first to the eleventh are records corresponding to May 1 to 10,
May 11 to 20, May 21 to 30, May 31 to June 9, June 10 to June 19, June 20 to June 29, June 30
to July 9, July 10 to July 19, July 20 to July 29, July 30 to August 8, and August 9 to August
18. This is a part of a data set from a consulting project Prof. Joe conducted at the Statistical

Consulting and Research Laboratory (SCARL), UBC.

39.5 46.1 44.3 44.9 47.4 54.8 50.8 38.1 54.6 44.2
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