
A Comparison of Methods for Multivariate Familial Binary 

Responses 

by 

Abu Hena M. Mahbub-ul Latif 

M.Sc, Dhaka University, 1991 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

in 

THE FACULTY OF GRADUATE STUDIES 

(Department of Statistics) 

we accept this thesis as conforming 
to the required standard 

The University of British Columbia 

September 2001 

© Abu Hena M. Mahbub-ul Latif, 2001 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of 5 T A T I $ T [ C $ 

The University of British Columbia 
Vancouver, Canada 

Date 

DE-6 (2/88) 



Abstract 

Among the existing methods for analysing the multivariate familial binary response, we discuss 
latent variable models and the estimating equations based methods. A brief description of the 
multivariate Plackett distribution is given and the role of this distribution in developing the esti­
mating equations based methods is pointed out. The maximum likelihood and estimating equations 
based methods for estimating the parameters of the multivariate logistic model are compared. For 
this comparison, a simulation study examines the effects of the sample sizes, dependence struc­
tures, the within-family dependence, etc. in estimating the parameters. The data are generated 
from the multivariate probit models. The multivariate logistic and probit models are compared for 
estimating conditional probabilities of interest in a genetics context and the respective standard 
errors. Numerical methods are used to estimate the parameters of the models considered. Because 
the original GEE2 code cannot handle multivariate binary data for arbitrary family structures, we 
have a new implementation of the GEE2 method for familial data; this routine used automatic 
differentiation for computing the Hessian matrix. 
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Chapter 1 

Introduction 

In quantitative genetics, researchers are often interested in identifying important variables related 

to the occurrence of a genetic disease of interest. Since relatives are genetically more alike, the 

association between the members of a family (familial aggregation) for the occurrence of the disease 

is also of interest. Accurate quantification of the familial aggregation leads to more sophisticated 

genetic studies. Depending on the type of the disease and the objective of the study, the response 

corresponding to the disease status can be continuous or discrete. For continuous responses (e.g. 

blood pressure, cholesterol level, etc.), statistical models are well developed (see [1]) to meet the 

objective of this type of genetic study. But for discrete responses (e.g. presence/absence of disease, 

levels of disease status, etc.), there is still active research in development of statistical methods. In 

this thesis, we focus on methods available for binary response. 

The same data structure also arises in the analysis of repeated measurements, where each 

individual is examined over time to record the presence/absence of a specific event. Covariates are 

also recorded for all the individuals over time. Since the measurements are made from the members 

of a family or from the same individual over time, the responses are usually positively correlated. 

Responses of this type are known as multivariate or correlated binary responses. The methods 
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available for analyzing multivariate binary response can be classified into two broad classes of 

methods: likelihood based and estimating equation based methods. The likelihood based methods 

require complete specification of the joint distribution of the multivariate responses. On the other 

hand, the estimating equation based methods can be employed when the joint distribution is not 

fully specified. The likelihood based models can further be divided into several categories: (i) latent 

variable models, (ii) random effect models, (iii) transition or Markov models, and (iv) conditional 

logistic regression models. In this thesis, we are mainly interested in latent variable models because 

of the attractive interpretation of the parameters of this models. 

The latent variable approach assumes that there is an underlying continuous variable which 

is categorized to give the observed discrete response. Here the regression models express the param­

eters of the distribution of the latent variable as functions of the explanatory variables. Equivalently, 

this is a model of the marginal distribution of the observed response directly as a function of the 

explanatory variables. For estimating equation based methods, only the univariate marginal prob­

abilities and some form of the associations are specified. Figure 1.1 shows the classification of the 

methods for analyzing multivariate binary responses that are considered in this thesis. 

Figure 1.1: Classifications of the methods for multivariate binary responses. 

Methods for Mult. 
Binary Responses 

Likelihood 
Based 

Est. Equation 
Based 

Mprobit Mlogit G E E l GEE2 
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A common latent variable model is the probit model (Finney [8]), which is widely used in 

the dose-response studies. In such studies, different dosages of a stimulus are applied to randomly 

selected subjects and binary responses such as the presence/absence of a specific event of interest 

(e.g. death) are observed on the subjects. It is assumed that the binary responses depend upon the 

tolerance of the stimulus and for each subject there is a certain level of tolerance below (above) which 

the response occurs and above (below) which the response does not occur. In probit analysis, it is 

assumed that the unobserved tolerance variable follows normal distribution; hence the probability of 

the occurrence of the observed response can be expressed as a function of the cumulative distribution 

function of the standard normal distribution (see §2.1). In case of multivariate binary responses, 

by assuming the tolerance distribution is multivariate normal, Ashford and Sowden [2] used a 

multivariate probit model (Mprobit) to analyze the data from a dose-response study. 

In quantitative genetics, when the character or trait is measured on an individual, the 

observed value is known as the phenotypic value; this depends on the genotypic value and the 

environmental deviation. The genotypic value is the aggregation of one or several genes possessed 

by the individual and all other sources of variation in the phenotypic value are assumed to arise 

from environmental deviation. The phenotypic value can be continuous or discrete. In this thesis, 

we consider only binary phenotypic values such as presence/absence of a specific trait. Falconer [7] 

proposed that there is an underlying variable liability and the observed phenotypic value depends 

on some threshold values of the distribution of the liability. The liability variable related to the 

phenotypic value is known as the phenotypic liability which is the sum of two independent random 

variables: the genetic liability and the environmental liability. Each of these two liability variables 

may be considered as the sum of many small effects so that a normal distribution is reasonable 

for liability variables, based on the central limit theorem (CLT). The liability variable is analogous 

to the tolerance in dose-response studies. If the distribution of the liability variable is assumed to 

be normal, the probit model can be used to analyze the binary response regarding the qualitative 
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trait (e.g. presence/absence of the disease) of interest. In genetic study, the individual who is 

the first member of the family diagnosed with the disease is known as the proband and usually 

subjects are selected from the family members of the probands. Since the family members are 

genetically alike, responses of this type of study are usually correlated. Mendell and Elston [30] 

considered multivariate probit models for studying multifactorial qualitative traits. Lesaffre and 

Molenberghs [22] used multivariate probit model to study the relationship between drinking and 

smoking behavior among Belgians. 

Another important latent variable model for univariate binary responses is the linear logistic 

model. This model assumes the underlying distribution is logistic and can be also used for identify­

ing important covariates for occurrence of a specific event of interest. The standard logistic density 

is bell-shaped like the normal density and has a variance of 7r 2/3 (SD=1.81). Logistic regression for 

a binary response is common in biostatistics and epidemiology. This is mainly due to the convenient 

closed form of the logistic density and the ready interpretation of resulting regression coefficients 

as log odds-ratios; however it has not been derived from physical principles. 

The multivariate version of the logistic model is not as advanced as the multivariate probit 

model because there is no natural multivariate logistic distribution. Bivariate Plackett distributions 

(see Plackett [34], Mardia [28]), can provide a legitimate joint bivariate distribution function corre­

sponding to a given pair of the univariate margins with the cross-product ratio or odds-ratio as the 

dependence parameter. The bivariate logistic distribution with cross-product ratio as the depen­

dence parameter can be constructed by using univariate logistic margins in the bivariate Plackett 

distribution. Molenberghs and Lesaffre [31] proposed a procedure for constructing multivariate 

Plackett distributions for the given univariate margins and two- and higher-order cross-product 

ratios as the dependence parameters. Joe [17] also discussed different properties and applications 

of bivariate and multivariate Plackett distributions, as well as a more general view of the construc­

tion. The joint distribution function of the multivariate Plackett construction satisfies the Frechet 
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bounds (see Joe [17]), which is one of the necessary conditions for a multivariate joint distribution 

function. To be a proper distribution function the joint distribution function of the three- and 

higher-order Plackett distribution must satisfy some necessary conditions; the analytic proof of 

these conditions are still open problems. Joe [17] has numerically shown for many combinations of 

parameters that the multivariate Plackett construction is a proper distribution if the third- and 

higher-order parameters are not too large or too small. 

Dale [5] used bivariate Plackett distribution for analyzing bivariate categorical responses. 

She considered regression models corresponding to the univariate margins as well as the dependence 

parameter the global cross-product ratio. Molenberghs and Lesaffre [31] extended Dale's model for 

multivariate ordinal categorical responses. Dale's models are defined for any continuous univariate 

margins and different link functions can be considered for modeling the univariate margins and the 

cross-product ratios (so that there is not always a latent variable interpretation). A multivariate 

logistic model (Mlogit) can be obtained by using the logit link for the univariate margins and the 

log link for the cross-product ratios. Glonek and McCullagh [11] considered a different approach to 

define a multivariate logistic model. In their approach, the regression models are defined for both 

the univariate margins and the dependence parameters (cross-product ratios). No distributional 

assumption corresponding to the univariate margins are required to estimate the parameters of the 

model. 

Beside these likelihood based methods for analyzing the multivariate binary responses, a 

common approach is generalized estimating equations (GEE). Liang and Zeger [23] proposed a 

estimating equation based method (known as GEE1) which can be used for analyzing both con­

tinuous and discrete correlated responses within the generalized linear model framework. This 

method provides inferences only for the regression coefficients and considers the dependence among 

the observations as a nuisance. This method can provide consistent estimators of the regression 

parameters if the specification of the marginal means is correct. They introduce the "working" 
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correlation matrix in which a larger value of the working correlation parameter is used if there is 

more dependence in the data. 

In 1990, Zhao and Prentice [38] proposed a method for correlated binary regression by using 

a quadratic exponential model. The quadratic exponential family is a special case of Cox's [3] log-

linear representation of the joint distribution of multivariate binary responses. Zhao and Prentice 

called this method a "pseudo-likelihood" approach which can estimate the regression parameters 

corresponding to the marginal means and the dependence parameters of the model. The difference 

of the "pseudo-likelihood" approach to the classical likelihood approach is that the former does not 

require to estimate all the parameters which are necessary to fully define the likelihood function of 

interest. Zhao and Prentice [38] consider one-to-one transformations of the canonical parameters 

of the quadratic exponential family to the first two moments of the marginal responses. If the 

regression models corresponding to the marginal means and the pairwise marginal correlations are 

correctly specified then this pseudo-likelihood approach can consistently estimate the regression 

parameters of the model. By using the Frechet bounds it can be shown that the range of the pairwise 

correlation coefficient depends on the univariate margins (see Joe [17], Chapter 7). Lipsitz, Laird 

and Harrington [27] considered a simulation study to show the advantages of odds-ratio over the 

correlation coefficient as a dependence parameter for analyzing multivariate binary responses. 

Fitzmaurice and Laird [9] considered conditional log odds-ratios (canonical parameters of 

the Cox's log-linear representation) as the dependence parameters to model multivariate binary 

responses by using the quadratic exponential family. This model is explained more clearly in Joe 

and Liu [16]. This model is not appropriate to use for familial data of various sizes, because it 

is not closed under margins (not reproducible). In 1992, Liang, Zeger and Qaqish [25] proposed 

a method (known as GEE2) for analyzing multivariate binary responses which is based on esti­

mating equations for regression and dependence parameters. They considered odds-ratios as the 

dependence parameters. Given the correct model specification of the mean function and the de-
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pendence structure, the GEE2 can provide consistent estimators for the parameters defined for the 

mean function and the dependence structure simultaneously. Liang and Beaty [24] used the GEE2 

method for examining the degree of familial aggregation for binary responses. Because the GEE2 

method considers odds-ratio as the dependence parameter, it turns out that it implicitly uses the 

multivariate logistic model of Molenberghs and Lesaffre, but are using estimating equations that 

are easier to compute compared with the maximum likelihood equations. 

The objective of this thesis is to compare the likelihood based and estimating equation based 

procedures for the multivariate logistic model based on cross-product ratios. For this comparison, 

we first review the theoretical development of these models and then consider a simulation study to 

examine their performance in analyzing data. In comparing these models, the effect of the family 

sizes and the strength of the within-family dependence are also examined. In the subsequent 

three chapters the multivariate probit model, the multivariate logistic model, and the estimation 

equation based methods are described. In Chapter 5, the results of the simulation study is given. 

A brief description of the numerical optimization methods used for fitting these models is given in 

Chapter 5. 
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Chapter 2 

The Multivariate Probit Model 

Probit analysis (Finney [8]) is a technique which is commonly used to study the dose-response 

relationship in a population of biological organisms. In dose-response study, different levels of a 

stimulus (e.g. a vitamin, a drug, etc.) are applied to a randomly selected group of subjects and the 

action of a particular level of stimulus is assessed in terms of a quantal responses which depend on 

the intensity of the stimulus. For any subject, there will be a certain level of intensity below which 

the response does not occur and above which the response occurs. This level of intensity is known 

as tolerance or threshold which will vary from subject to subject in the population. 

The main objective of the dose-response study is to assess the relationship between the levels 

of stimulus and the probability of occurrence of the response. If the distribution of the tolerance is 

assumed to be normal normal, a regression technique of probit analysis can assess this relationship 

after controlling for important covariates. 

In a dose-response study the response can also be multivariate. In some studies for a specific 

level of the stimulus, in addition to the responses regarding the main effect responses about some 

side effects might also be of interest in some studies. In this situation to assess the efficacy of the 

stimulus, analyzing the responses simultaneously would be the most efficient procedure. Ashford 
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and Sowden [2] used the multivariate probit model in the dose-response context. 

The multivariate probit model is also considered in quantitative genetics. Mendell and 

Elston [30] used the multivariate probit model to analyze multi-factorial qualitative traits. In 

genetics, the term liability is used analogously to tolerance in the dose-response study. For any 

subject the trait will show up if the liability is smaller (or greater depending on the relationship 

between the trait and the liability) than a specific threshold value. It is assumed that there 

is an underlying normal distribution of the liability and different thresholds of this distribution 

provides the response in terms of qualitative traits. The normal distribution is reasonable because 

the liability variable may be considered as the sum of many small effects in a polygenic model 

(response is influenced by many genes). 

Ochi and Prentice [33] considered multivariate probit models with exchangeable correlation 

structure. Lesaffre and Molenberghs [22] used multivariate probit models to analyze multivariate 

ordinal categorical response. A detailed discussion of the general class of multivariate probit models 

can be found in Joe [17]. In the following sections, probit models are described for univariate, 

bivariate, and multivariate binary responses respectively. 

2.1 Univariate Probit Model 

Let us consider a study where K subjects are randomly selected from a population and each 

subject is examined to collect information about the presence of a specific qualitative trait of 

interest. The focus of the study is to identify important covariates for the occurrence of the trait 

(we are assuming the selected subjects are independent for the time being). The response y^ 

(i = 1,2,..., K) corresponding to the i t h subject is a binary variable, where yi — 1 if the trait is 

present and otherwise yi = 0. Let X be the design matrix of order K x (p + 1), with the first 

column of X being 1 to accommodate an intercept term. 

Suppose the random variable Zj, which denotes the latent variable for the z t h subject, follows 

9 



a normal distribution with mean 0 and variance 1. Let the response yi be the realization of the 

random variable Yi, such that 

Yi = I(Zi<Xil3), (2.1) 

where (3 = (/3o,[3\...., f3p)T is the vector of regression parameters corresponding to the design 

matrix X, Xi is the ith row of X, and /(•) is an indicator function such that 

1(A) = 
1, if A is true, 

0, otherwise. 
(2.2) 

The probability that the i t h subject has the trait is 

-jTi(f3) = Pv(Yi = l)=Pv(Zi<Xif3) = ^(Xif3), (2.3) 

where $(•) is the cumulative distribution function of the standard normal distribution. For the 

given sample y\, y2, • • •, DK, the log-likelihood function is > 

K 

m = E ^ 1 ° g ^ ( / 3 ) + ( 1 - ^ ) 1 ° g ( 1 - ^ ^ ) ) } - (2-4) 

The maximum likelihood estimator f3 is a solution of the score equations t/(/3) = 0, where 

the jth (j = 1,2,... ,p) element of the score vector U(f3) is 

3*08) 
dfij 

K 

and <j)(-) is the probability density function of the standard normal distribution. The covariance 

matrix of $ can be obtained from the Fisher information matrix. The (j, k) element of the observed 

Fisher Information matrix I((3) is 

-d2l([3) 
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<&2(X,/3) {l-S'XiP)}-

\ Vi 1 - Vi 

| (j>2{XiP)XijXik 

<j)(XiB)XijXik. (2.6) 

The estimated covariance matrix of /3 can be obtained as 10) l . In the univariate probit model 

the score function and the elements of the Fisher information matrix can be written in simple 

convenient form, so an iterative procedure such as the Newton-Raphson procedure can be used to 

estimate the parameters of the model. 

In the previous section to describe univariate probit model, we considered a hypothetical study 

where each of the K independent units provide binary responses about a specific qualitative trait 

of interest. But there might be a situation where binary responses are available for the members of a 

family; for example, we could consider a situation where the responses are available for each father-

son pair of K randomly selected families from a population. Besides identifying the important 

covariates for the occurrence of the trait, the objective of this study is to estimate the association 

of the occurrence of the trait between the father and the son in the father-son pairs. In this case, 

the responses between families are independent but within-family responses are correlated. So the 

univariate probit model is not appropriate for this problem. 

Let yj = (yn,yi2)T and X j be the response vector and and covariate matrix of order 

2 x (p + 1) corresponding to the ith (i = 1,2,..., K) family. As the binary responses are bivariate, 

the corresponding distribution of the latent variable is also bivariate. Suppose the latent vector 

Zi = (ZJ I ,ZJ2 ) t follows a bivariate standard normal distribution with correlation coefficient p. 

That means the marginal distribution of Zij (j = 1,2) corresponding to the ith family follows 

standard normal distribution and corr(Zji, Zi%) = p-

2 . 2 Bivariate Probit Model 
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(2.7) 

The observed responses are realizations of the random variables Y^-, where 

Yij = I{Zij < Xtj0), j = 1,2. 

The marginal probabilities corresponding to the occurrence of the trait are 

7rii.(/3) = Pr(y i l = l) = Pr(Zil<Xilf3) = $(Xilf3), 

= Pr(y i 2 = 1) = Pr(Zi2<Xi2p) = $(Xi2p), 

where $(•) is the standard normal cumulative distribution function. The other marginal probabil­

ities are 7TJO. = 1 — T^H- and TX^Q = 1 — 7 ^ . 1 . The bivariate probability of both the members of the 

family has the trait is 

""in (Pi p) = Pr(y i i = i , y i 2 = i) 

= Pr(Zil<Xilp,Zi2<Xi2p) 

= ^ ( X i i / S , X i 2 / 3 ;p ) , . (2.8) 

where <&2(-> •; •) is the cumulative distribution function of the bivariate standard normal distribution. 

Similarly, we can write the other bivariate probabilities as 

7r i l0(/3,p) = Pr (y i i= 1,^2 = 0) 

= • Pr(Zil<Xilp,Zi2> Xi2p) 

= P r ( Z a < Xn 0) - Pv(Zil < Xn p,Zi2 < Xi2p) 

= ^il-(P) - Kiu(P,P), 

nm(P,p) = n-\(P) ~ nni(P,p), 

nm{$,p) = l-Triu(P,p)-Tno{P,p)-'Km(P,p)-

To construct the likelihood function, let us consider a 2 x 2 contingency table M j for the ith 

response vector with (j, k = 0,1) be the number of observations in the (j, k) cell. If there 
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is only one observation per subject within any family then only one cell of Mj will take the value 

1 and the remaining cells take the value 0. Throughout this thesis we assume that there is only 

one observation per member of any family. The likelihood function for the sample of size K can be 

written as 

K 1 1 
(0) 

1=1 jl=0 j2=0 
K 

= £ £ ™ y l o g 7 r y ( 0 ) , (2.9) 
i=l j 

where j indicates a multi-index j = {(j'1,.72) : ji,J2 = 0,1} and 6 — ((3T,p)T. The vector of score 

function for the parameters can be written as 

The maximum likelihood estimator 6 can be obtained from the solution of the equation U(0) = 0. 

The elements of the score vector and Fisher information matrix can be expressed in terms of 

probability density function (pdf) and cumulative distribution function (cdf) of the standardized 

univariate and bivariate normal distributions. 

2.3 Multivariate Probit Model 

The multivariate probit model is an extension of the bivariate probit model, considering the under­

lying distribution of the latent vector as multivariate normal. When binary responses are available 

for more than two members of a family, multivariate probit models can be used. In practice the fam­

ily sizes can be unequal but for notational simplicity throughout this thesis, we will consider equal 

family sizes for deriving multivariate methods. Let = (yn,yi2, • • •, yid)T be the binary response 

vector corresponding to the i t h (i = 1, 2 , . . . , K) family and Xij be the 1 x (p + 1) covariate vector 

corresponding to the jth (j = 1,2,..., d) member of the ith family. Let Zj = (Zji, Z ^ , • • •, Z ^ ) 7 be 
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the latent vector corresponding to the i family which is assumed to follow a multivariate standard 

normal distribution with correlation matrix R. 

Let us assume the observed responses are the realizations of the random variables 

Assume that there are q different types of relative pairs (e.g. father-offspring, sibling-sibling, etc.) 

within a family, q < d(d — l)/2. Then we can express the correlation matrix as R(a), where 

a = (ai, #2, • • • j &q)T is the vector of correlation parameters corresponding to the different types 

of relative pairs within families. 

For a response vector of dimension d, 21 univariate, 2 2 bivariate, 2 3 3-variate, ..., 2d d-

variate probabilities can be obtained. These probabilities can be expressed in terms of the cumu­

lative distribution function of the multivariate normal distribution. We can express the marginal 

probabilities 

T T i i . . .(fi) = Pv(Yih = 1) 

= Qiix^fi), (2.11) 

the bivariate probabilities 

7rai.. .(fi,a) P r ( % = l , ^ i a = l ) , h + h 

= *2(-Xyi fi, Xij2 fi; RjlJ2(a)), (2.12) 

the 3-variate probabilities 

W i l l i - <*) = P r ( % = 1, Ym = L Yij3 = 1), j i + j2 # h 

— §3{Xijx fi, Xij2 fi, Xij3 fi; Rj-Ljij^a)), (2.13) 

and in general the d-variate probabilities 

TTJII-I(/3, a) = Pr(Yij x = 1, YiJ2 = 1,..., Yijd = 1), j l ^ j 2 ^ - - - ^ jd 

= $d(X i j 1 fi,XiJ2 fi,.. .,Xijd fi;Rjl...jd(ct)), (2.14) 
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where <frj (•; S) is the cumulative distribution function corresponding to the j-variate (j — 1,2,..., d) 

standard normal distribution with correlation matrix £. Once we have these probabilities, we can 

compute the remaining orthant probabilities. 

As in the bivariate case, let Mj be a 2 x 2 x • • • x 2 (= 2d) contingency table corresponding 

to the d—dimensional response vector y^ Let mij1,,,jd be the number of observations corresponding 

to the (ji,J2, • • • ,jd) cell of Mj. The log-likelihood function can be written as 

K 1 1 

= E E • - • E Wiii-id l o S - i d ( e ) 
i=l.j'i=0 jd=0 

' . i f 

= E E ^ w W - (2-15) 
i= l j 

where j-indicates a multi-index j = {(ji,J2,---,jd) '• jr G {0,1}, r = 1,2, and 6 = 

(f3T, ctT)T. The maximum likelihood estimator 6 is the solution of the equations U(9) = 0, 

where 

is the vector of the score functions. The equations (2.15) and (2.16) are the general form of the 

corresponding equations (2.10) and (2.9) of the bivariate case. 

As the score function U(0) contains multi-dimensional integrals, the second derivative of 

the score function (i.e. elements of Fisher information matrix) is very difficult to write down. 

Numerical integration can be used to approximate these high-dimensional integrals; we used the 

approximations proposed in Joe [15]. 

Since for the multivariate probit model, it is very difficult to evaluate the Hessian matrix 

analytically; the classical Newton-Raphson method is no longer useful as an optimization method 

for estimating the parameters of the model. Numerical methods, which can apply without having 

the Hessian matrix analytically, are required for this case. A brief description of these methods will 

be given in Chapter 5. 
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2.4 Conditional Probabilities 

In the preceding sections, we discussed the multivariate probit model which can be used for iden­

tifying important covariates for the occurrence of a disease of interest. This model can be used 

to estimate the association of the occurrence of the disease between the relatives. The multivari­

ate probit model can also be used to predict the disease status of an individual given the disease 

status and the covariate values of that individual's relatives. Predicting future disease status has 

significant importance in genetics. 

In this section, we discuss a procedure to predict an individual's future disease status given 

the information about his relatives. Let us define 

p(d\ 1 , 2 , . . . , = Pv(Yd = l\Yl = yuY2 = y2,...,Yd„1=yd_1,X) 

Pr(Y1 = yl,Y2 = y2,...,Yd = l,X) 
(2.17) 

Pr(Yi = j / i , Y2 = y2,..., Y" d_i = yd-i,X)' 

where p(d | 1, 2 , . . . , d — 1) is the conditional probability that the d}h member of the family will 

have the disease given the current disease status of the other members of the family and the 

covariate values. This conditional probability is the ratio of orthant probabilities of order d and 

d — 1 respectively. The equation (2.14) shows that these orthant probabilities are functions of 

6 = ( / 3 t , Q t ) t , where (3 and a are the regression and association parameters defined for the 

multivariate probit model. So for the multivariate probit model, the conditional probability can be 

written as 

. W H O rl-U - MXiP,---,Xd/3;R1...d(<x)) 
P [ ' ' j " * d_ 1(JT 1/3,... >A: < l_ l i8;il 1... < f_ 1(a)) 

= q{9). (2.18) 

Given the maximum likelihood estimator 0 and the covariate values, the maximum likelihood 

estimate of the conditional probability p(d \ 1,2,..., d — 1) can be obtained from (2.18) as q(9)-

The conditional probability is a function of the parameters 0, we can approximate the 
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variance of the maximum likelihood estimate of the conditional probability by using delta method. 

The approximate expression for the variance of the estimate of p(d | 1,2,..., d — 1) can be written 

as • 

= | £ J v < . ) ^ . • (2.19) 

where V(0) is the covariance matrix of 0. The estimate of the variance can be obtained by replacing 

0 by 0 in (2.19). Because of the complex form of q(6), the partial derivatives of the equation (2.19) 

is very difficult to be obtained analytically. We have used numerical methods to compute the 

conditional probabilities and the respective standard errors, which are shown in Chapter 5. 

2.5 Summary 

In this chapter different types of probit models are described which can be used to analyze binary 

responses. The multivariate probit models are very useful in analyzing correlated binary responses. 

Maximum likelihood estimates for the regression parameters of the model can be obtained. The 

estimates of the association between the members of the family in terms of the latent correlation 

coefficient, also known as the tetrachloric correlation, can also be obtained. The multivariate 

probit model can estimate the conditional probabilities that a particular member of a family has 

the disease given the current status of the other members of the family and the covariate values, 

which has importance in genetics. 

17 



C h a p t e r 3 

The Multivariate Logistic Model 

In the previous chapter, the multivariate probit model was described. This chapter contains the 

description of an analogous multivariate logistic model. This model is also a latent variable model 

and has univariate margins that regress each response on the covariate vector. The multivariate 

logistic model models the dependence parameter in terms of the cross-product ratio which has an 

attractive interpretation. However there is no physical or stochastic model that leads naturally 

to the cross-product ratio as the natural dependence parameter. For the multivariate logistic and 

probit models the underlying univariate margins are assumed to be logistic and normal respectively. 

This approach of modeling multivariate binary data is based on a class of bivariate dis­

tributions proposed by Plackett [34]. For given univariate margins and cross-product ratios as 

dependence parameter, the Plackett distribution can completely specify the joint latent distribu­

tion of bivariate binary responses. Mardia [28] studied the properties of the bivariate Plackett 

distribution. 

Dale [5] first considered the bivariate Plackett distribution to model bivariate categorical re­

sponses; this model is known as bivariate Dale model in the literature. Molenberghs and Lesaffre [31] 

introduced the multivariate Plackett distribution and extended the Dale model to multivariate or-
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dinal categorical responses. In the Dale model, the global cross-product ratio is considered as the 

dependence parameter which is equivalent to the local cross-product ratio for the binary case. The 

multivariate version of the Dale model is defined for any underlying univariate continuous distribu­

tion. For this model, different link functions can be considered for modeling the univariate margins 

and the cross-product ratios. For the multivariate logistic distribution, the underlying univariate 

margins are logistic and the multivariate Plackett distribution is used to construct higher order 

margins with the univariate logistic margins. Joe [17] studied the multivariate Plackett construc­

tion within a more general theoretical framework and considered different data sets to show the 

applications of the multivariate logistic model. Besides the Plackett distribution based approach to 

multivariate logistic models, McCullagh and Nelder [29] described this model differently based on 

the logistic transformation of linear combinations of joint probabilities. Their approach does not 

consider any latent variables. Glonek and McCullagh [11] also studied this approach of modelling 

the multivariate logistic model. 

The main focus of this chapter is to describe the multivariate logistic models for analyzing 

multivariate binary response. The Plackett distribution plays a vital role in defining the multi­

variate logistic models that we consider, so we first discuss the bivariate and multivariate Plackett 

distribution in Section 3.1. The subsequent two sections contain the model description and methods 

of estimating parameters of this multivariate logistic model. In Section 3.3, a brief description of 

the McCullagh-Nelder-Glonek approach is given. 

3.1 Plackett Distributions 

In this section, a brief introduction of bivariate and multivariate Plackett distribution is given. 

Throughout this chapter we will consider the binary responses as taking either 1 (diseased) or 

2 (non-diseased) instead of 1/0 which we considered in the previous chapters. This will help 

us to derive general expression of cumulative distribution function of the multivariate Plackett 
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construction. 

3.1.1 The Bivariate Plackett Distribution 

In 1965, Plackett proposed a procedure for constructing a class of bivariate distributions. Suppose 

Z\ and Z2 are two continuous random variables and F\(z\) = Pr(Zi < z\) and F2(z2) = Pr(^2 < z2) 

are the univariate margins of Z\ and Z2 respectively. Plackett [34] considered F\2(z\, z2) = Pr(Zi < 

zi,Z2 < z2), the possible joint bivariate distribution function of Z\ and Z2, as the solution of the 

equation 

_ -̂ 12(̂ 12 - F\ — F2 + I) ^ ^ 
! (Fl — Fi2)(̂ 2 - F12) 

where F12 = 1̂2(̂ 1, 2̂), F\ = Fi(z\), F2 = F2(z2) and the cross-product ratio or odds-ratio 7 
is a positive constant for all (zi,z2) for which neither Fi nor F2 assumes the value 0 or 1. The 

equation (3.1) is known as defining equation. Mardia [28] showed that only the following solution 

of the defining equation (3.1) 

(3-2) 
(l/2)( 7 - I)" 1!.! - (Fi + F2)(l - 7) - S(FuF2,j)}, if 7 * 1 

, Fi F2, if 7 = 1, 

where 

5 ( F i , F 2 , 7 ) = [ { l - ( F ! + F 2 ) ( l-7)} 2 +47(1-7)^1^2]V2 (3.3) 

is the only root leading to a proper bivariate distribution. The corresponding joint density function 

of Z\ and Z2 can be written as 

, , . d2F12(zl,z2) 7/ 1/ 2{(7 - l ) ( F i + F 2 - 2 F i F 2 ) + l} 
/ l 2 ( 2 l ' * 2 ) = a ^ i = s~* ' 7 > 0 ' ( 3 " 4 ) 

where f\ and f2 are the univariate marginal density functions of Z\ and Z2 respectively and S is 

given in (3.3). 
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For given univariate margins F i and F2, the dependence parameter of the bivariate Plackett 

distribution (the cross-product ratio 7) is a monotonic increasing function in F12, i.e. 7 = 0 when 

F\2 = FL a n d 7 = 00 when F12 = Fu, where 

Fu(zi,Z2) = mm{Fi(zi),F2(z2)}, and FL(zuz2) = max{Fi(;zi) + F2(z2) - 1,0}, 

are known as upper and lower Frechet bounds (see [17]) respectively. From equation (3.2) the 

following can also be seen 

(i) If F i (F 2) tend to 1 then F 1 2 tends to F 2 (Fi). 

(ii) If F i and F2 tend to 1 then F i 2 also tends to 1 which indicates that FL and F2 are marginal 

distribution functions. 

(iii) For fixed F i (F2) and 7, F i 2 increases with F2 (Fi). 

Bivariate Plackett—normal vs Bivariate Normal 

The bivariate Plackett distribution is defined for continuous random variables with arbitrary uni­

variate margins. The most widely used bivariate distribution is the bivariate normal, so it is of 

interest to examine how the bivariate Plackett distribution with univariate standard normal margins 

(which is known as bivariate Plackett-normal distribution) resembles the usual bivariate standard 

normal distribution. 

To compare the bivariate standard normal and the bivariate Plackett-normal distributions, 

the relationship between the cross-product ratio (7) and the correlation coefficient (p), the depen­

dence parameters of these two distributions respectively, is required. For a specific cut-off point 

(z\,z2) the cross-product ratio can be written from equation (3.1) as 

/ s = $2f>l,32;p)$2(-Zl, -Z2;p) ,0 e\ 
Wl,Z2,P) {a>{z1)-$2(Zl,Z2;p)}{*(z2)-$2(Zi,Z2;p)y ^ " ' 
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The quantity on the right hand side of equation (3.5) depends on the bivariate normal orthant 

probabilities corresponding to the cut-off point (21,22)- Kepner et al. [21] derived the following 

expression for the orthant probability for the cut-off point (0,0) 

Using this result in equation (3.5), we get the following relationship between the cross-product 

ratio and the correlation coefficient for the cut-off point (0,0): 

We use this relationship to obtain the cross-product ratio at the cut-off point (0,0) from a given 

value of the correlation coefficient. 

For a given correlation coefficient p, different cross-product ratios can be obtained from the 

equation (3.5) for different cut-off points (21,22)- Numerically it can be shown that 

i.e. the lower bound of the cross-product ratios is attained at the cut-off point (0,0). The theoretical 

proof of this result is still an open problem. 

Figure 3.1 shows contour plots of the bivariate standard normal density for selected values 

of correlation coefficient p. The corresponding plot for the Plackett-normal distribution is shown 

in Figure 3.2, where the identical cross-product ratios are obtained from the correlation coefficient 

values (used to generate plots for bivariate normal) by using the equation (3.6). These sets of plots 

are almost similar which indicates that the bivariate Plackett distribution with univariate standard 

normal margins is similar to the bivariate normal distribution. 

3.1.2 The 3-variate Plackett Construction 

Let Z\, Z2, and Z3 be three continuous random variables with univariate margins F\, F2, and F 3 re­

spectively. Let us consider F J U 2 (1 < j\ < j2 < 3) as the bivariate Plackett margin corresponding to 

$2(0,0;p) = l /4+(2 7 r)- 1 sin- 1 p-

(3-6) 

7(0,0;p) = min 7(21,22^), (3.7) 
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( ZJD Zj2). Given the univariate and bivariate margins, the 3-variate margin F123 = 2*123(21, 22,23) 

is a solution of the defining equation 

^ 3 _ ^123(2*123 - Ql)(-P1123 - ^2) (2*123 ~ Q3) ^ 
( 6 l - Fi2s){b2 - -Fl23)(?>3 - ^123)(^4 - -F123) ' 

where ai = F12 + Fi3 - Fu a2 = F12 + F13 - F2, a 3 = F13 + F23 - F3, bi = F12, b2 = Fi3, b3 = F23, 

64 = 1 — Yl,iF + J2i<j Fij- The function F123 satisfies the Frechet bounds (Joe, 1997), 

Fu = m i n { 6 i , & 2 , & 3 , & 4 } , a n d
 FL = max{ai, a2, a3,0}. 

Because Fi23(zi, z2, z3) is defined implicitly for each (z±,z2,z3), it is difficult to check if-F123 satisfies 

the rectangle condition necessary for a proper cumulative distribution function. 

Interpretation of the parameters 

Let Y i , Y 2 , and Y3 are three independent Bernoulli variables. The third-order dependence param­

eter of the 3-variate Plackett distribution can be expressed as 

7123 = CR3(YUY2,Y3) 

CR2(YUY2\Y3 = 1) 
CR2(YUY2\Y3 = 2) 

_ W i l l 7T221 7T122 7T212 

7!"H2 W222 Wl21 7T211 

Now by comparing this with the equation (3.8), the orthant probabilities can be expressed in terms 

of the 3-variate joint distribution function as 

W i n = -^123, Wi 2 2 = Fi23 - O i , 7T212 = -£123 _ a2, ^221 = 2*123 ~ ^3, 

W112 = h — Fi23, 7T121 = 62 - F123, 7T2H = 63 ~ 2*123, W222 = 6 4 - 2*123-

Given the dependence parameters 712, 7123 and the univariate and bivariate margins,,these orthant 

probabilities can be computed from the 3-variate Plackett distribution function. 
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3.1.3 The d-variate Plackett Construction 

In this section, we describe the multivariate Plackett distribution for arbitrary dimension d (d > 1). 

To express the general form of the joint distribution and the cross-product ratios, we use the 

notation of Molenberghs and Lesaffre [31]. Let Z = (Zi, Z2,. • •, Zd)T be the d-dimensional random 

vector and Fh (1 < jx < 2), F j l h (1 < jx < j2 < 2), . . . , Fj1j2„jd_1 (1 < ji < • • • < jd-i < 2) be 

the univariate, bivariate,..., (d — l)-variate Plackett distribution functions of Z respectively. Let 

1Tjij2-jd = P r ( ^ i = Ji) ^2 = J2y • • i Yd = 3d) be the d-dimensional orthant probabilities. 

The general expression for the d-dimensional cross-product ratio can be written as 

_ n ( J - 1 , . . . j < , ) e A+ 7 r i i - jd . . 
7l2-d = Ff > W - y ) n 0 l , . . . , 

where 

A$ = | (J"I ,J2 ,-- . e {l,2}d : Yji~d i s e v e n | ' 

A-A = {l,2}d\A+. 

For example, 

when d = 2, A+ = {(1,1),(2,2)}, 

when d = 3, A+ = {(1,1,1), (1,2,2), (2,1,2), (2,2,1)}, 

when d = 4, ^+ = {(1,1,1,1), (1,1,2,2), (1,2,1,2), (1,2,2,1), 

(2,1,2,1), (2,2,1,1), (2,1,1,2), (2,2,2,2)}, 

Now by using these elements of the sets A^ and A^ in equation (3.9), we can get the cross-product 

ratios 

7ril7T22 7rill7ri227!"2127T221 
712 = — , 7123 = , • ' ' . 

7!"127I"21 7ril27I"12l7!"21l7r222 
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To get the general expression of the defining equation corresponding to the d-variate Plackett 

distribution, the orthant probabilities in equation (3.9) need to be expressed in terms of the marginal 

distributions of different dimensions. Suppose the multi-index j represents a d-dimensional vector 

of l's and 2's, i.e. j € {1,2}d. Let K(J) = n(ji,J2, • • • ,jd) be the set of dimensions for which ji = 1 

(1 < I < d), i.e. 

«(j) = {/ : 1 < « < d,ji = 1}. 

For example, K(1,2) = {1}, K(1,2, 1) = {1,3}, K(2, 1,2,1) = {2,4}, etc. Let us introduce another 

notation s(j): the set s(j) contains all possible subsets of {1,2, ...,d} which contain with 

the elements of s(j) are arranged in lexicographical order. For example, 

d = 2, «(1,2) = {1} => 8(1,2) = {1},{1,2}, 

d = 3, K(2, 2,1) = {3} =• s(2,2,1) = {3}, {1,3}, {2,3}, {1,2,3}, 

d = 4, «(2,1,1,2) = {2,3} => s(2,1,1,2) = {2,3}, {1,2,3}, {2,3,4}, {1,2,3,4}, 

Let N be the difference between the number of elements of the sets s(j) and n(j). Using the 

inclusion and exclusion probability law, we can define the general form of the orthant probabilities 

as 

= £ s g n ( S ( j ) ) F a ( j ) , (3.10) 

where 

1 if AT is even, 

-1 otherwise. 

For instance, we can write down the expressions for the orthant probabilities as 
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T221 

""2112 

= Fs - F\3 — F23 + F123, 

Using equation (3.10), we can rewrite the equation (3.9) as 

i l j eA+^J = nieA+Zs(i)Sgn(s(j))FsQ) 

UjeA- *j n j e A - Ea(j) sgn(s(j))F s ( j ) 

7l2-d = 

(3.11) 
i W ^ - « j ) ' 

where F = Fi2-d) o>j and 6̂ - are the functions of the margins of order d! (< d) which can be 

obtained from equation (3.10). The d-dimensional Plackett distribution function is the solution of 

equation (3.11) which satisfies the Frechet bounds 

^max{aj, 0}, min{6j}^ . 

For third- and higher-order Plackett distributions, an open problem is whether the function F is 

a proper distribution function, i.e. whether the mixed derivatives are non-negative. 

3.2 The Regression Model 

The main objective of this study is to compare the existing estimation methods for analyzing 

multivariate binary responses. We wish to examine the performance of the multivariate logistic 

model in the field of genetics. As already discussed in the previous chapter, in genetics studies 

the response is sometimes binary (e.g. presence/absence of a qualitative trait of interest) and the 

responses are not independent within families. It is assumed that for any individual, the occurrence 

of the qualitative trait depends on the underlying distribution of a latent variable. Let us assume 

that the trait occurs if the liability is less than a predefined threshold value; otherwise it does not 

occur. 
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Let j/j = (yn,yi2, • • • , y i d ) T be the response vector corresponding to the i t h (i = 1,2,..., K) 

family, where the yjj's are binary variables representing the presence (y^ = 1) or absence (yij = 2) 

of the qualitative trait of interest in the j t b member of the family. Suppose the random vector 

Z{ = (Zn, Z i 2 , . . . , Zi,i)T denotes the latent vector corresponding to the i t h family. Let us assume 

Zij follows standard logistic distribution, i.e. location parameter is 0 and scale parameter is 1. Let 

X{ be the covariate matrix of order d x (p + 1) corresponding to the ith family with a first column 

of 1, to accommodate an intercept term. Suppose the observed response y^ is the realization of 

the random variable Yij, where 

Yij = I(Zij < Xijd), 

where Xij is the j t h row of X i and /(•) is the indicator function such that 

1, if A is true, 
1(A) = 

2, otherwise. 

Let us assume only the univariate margins depend on the covariates. The univariate margin 

corresponding to the j t h member of the ith family ir^ = Pr(Yij = 1) can be written as a function 

of the unknown regression parameters 3 as 

itijiP) = Pv(Yij = l)=Pv(Zij <Xij3)=F0(Xij8), l < j < d , (3.12) 

where Fo(x) = 1/{1 + e~x} is the distribution function of the standard logistic distribution. Prom 

equation (3.12) the linear predictor can be written as 

Vij(3) = 3 = F Q - 1 (^(3)) = log Y Z ^ f y 

In G L M terminology the function F 0

- 1 ( - ) is known as the link function; beside this logit link, 

depending on the distribution of the latent variable other link functions can also be considered. 

These univariate margins do not fully determine the joint distribution of because the 

elements of yj are not independent. This mean dependence parameters are needed to describe the 
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association between the elements of Let us assume the third- and higher-order cross-product 

ratios, the dependence parameters of the Plackett distribution, are constant at a fixed value 70 = 1. 

The choice of 70 = 1 leads to a multivariate logistic distribution that is analogous to the multivariate 

normal distribution (see Joe [17] for an entropy interpretation). Suppose q different types of pairs 

(e.g. parent-offspring, sib-sib, grandfather-grandchild, etc.) are possible in the selected families. 

Suppose the (j, k) pair of the ith family is of the Ith (1 < I < q) type of the pair. We can define the 

bivariate cross-product ratios corresponding to (j, k) pair of the ith family as 

lijk(a) = 9~l{oLi), 1 < I < q, (3.13) 

where ct = (ai, a2, • • •, (xq)T is the vector of the parameters corresponding to the q different types 

of the association and g(-) is the link function for the cross-product ratios. 

Having values of the parameters 6 = (f3T,a.T)T, the univariate margins and the cross-

product ratios can be computed from equations (3.12) and (3.13) respectively. Given the univariate 

margins and cross-product ratios corresponding to a pair of members within a family, the bivariate 

margins 7TJJ U 2(0) = Pr(Yij1 = l,Yij2 = 1) (1 < j\ < j2 < d) can be computed from the equa­

tion (3.2). As we already assumed the third- and higher-order cross-product ratios are fixed at 

70 = 1 (which is known), the 3-variate margins are the solution of equation (3.8) provided the 

univariate and bivariate margins are known. Similarly, higher-order margins can also be obtained 

by using the equation (3.9). Once all the margins are known, the orthant probabilities can be 

obtained from the equation (3.10). 

3.2.1 The Likelihood Function 

Let Mi (i = 1,2,..., K) denote a 2 x 2 x • • • x 2 (= 2d) contingency table which can be constructed 

from the observed response vector y^ Let be the number of observations in the j th cell of 

the table Mj, where j indicates a multi-index j = {ji,j2, • • • ,jd)- Let 7^(0) = Pr(Yi = ji,Y2, = 
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J2,..., Yd = jd) (ji G {1,2}, 1 < l < d) be the orthant probabilities corresponding to the j th cell of 

Let 0 = (f3T, aT)T be the vector of parameters of the model. As for the multivariate probit 

model, for the given sample j / ^ (i = 1,2,..., K), the log likelihood function can be written as 

K 2 2 

l ( e ) = E E " " E mijij2...jd log ninj2...jd (0) 
i=lji=l jd=l 
K 2 

= E E m i j l o g T r ^ ) . (3.14) 
t=i j=i 

The maximum likelihood estimator 0 is the solution of the score equation U(0) — 0, where the 

score function 

U ( 9 ) - d l { 6 ) - f f m * (3 15) 

Using the chain rule we can write 

dTTjj _ drjj _ dirjj dr)ik 

d\3 ~ dVi d(3 ~ £r[ drjik df3 

da ~ d~ii da ~ ^ fc£^ dyijk da ' 

For the general dimension d, it is impossible to obtain the algebraic expression of the terms 

(diTij/drjik) and (dir^/djijk) because 7Tjj contains higher dimension cumulative distribution func­

tions of the multivariate Plackett construction which has no closed form. So the expressions for 

the elements of the Fisher information matrix cannot be shown. Numerical methods are needed 

to get the maximum likelihood estimates of the regression parameters 6. In Chapter 5, two such 

numerical methods will be described. 

The conditional probabilities which we discussed for the multivariate probit model (see 

§2.4) can also be defined for the multivariate logistic model. The conditional probability p(d | 

1,2,..., d — 1), which is the ratio of two orthant probabilities, is a function of the parameters of 
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the model. So, given the maximum likelihood estimator 6 of the multivariate logistic model, the 

estimate of p(d | 1,2,..., d — 1) and corresponding standard error can be obtained for this model. 

3.3 McCullagh-Nelder-Glonek Approach 

McCullagh and Nelder [29] introduced a multivariate logistic transformation and used this to define 

a class of regression models which can be applied for analyzing multivariate categorical responses. 

These models are also known as multivariate logistic models and are systematically studied by 

Glonek and McCullagh [11]. This approach of defining multivariate logistic models does not as­

sume any underlying distribution of the univariate margins. The likelihood construction is similar 

for both the logistic models, but the estimating procedure of the orthant probabilities is differ­

ent. In the previous sections, we developed how the multivariate Plackett distribution can be 

used to estimate the orthant probabilities; McCullagh and Nelder used the multivariate logistic 

transformation to estimate these probabilities. We have numerically checked that these two ap­

proaches give identical orthant probabilities. In the following section, inference procedure of the 

McCullagh-Nelder-Glonek approach is briefly described. 

3.3.1 The Model and Parameter Estimation 

Let j/j = [yn,yi2, • • •, Vid)T be the response vector corresponding to the ith (i = 1,2,..., K) family, 

where the response corresponding to the jth (j = 1,2,..., d) member of the iih family, y^ is binary 

indicates the presence (y^ = 1) or absence (y^ = 2) of a qualitative trait of interest. As before, 

the objective is to estimate the effect of the covariate for the occurrence of the trait. The estimate 

of the dependence parameter of the occurrence of the trait between the members within a family is 

also of interest. Let Xi be the covariate matrix of order d x (p + 1) corresponding to the members 

of the i t h family. 
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Let us define 

nj(Xi) = 'Pr(Yii=yii,Yi2 = yi2,...,Yid = yid\Xi), yu = 1,2, l = l,2,...d, 

as the probability of observing the response vector y{ given the covariate matrix Xi and j indicates 

a multi-index. Let 7r be the vector of all possible 2d probabilities. For example, for bivariate case 

7r = (7ri i ,7r i2,7T2i,7T22) T . If 7 is the vector of (f) x 2 1 univariate, (2) x 2 2 bivariate, (d) x 2d 

d-variate margins, let us make a linear transformation n —> 7 by 

7 = LTV (3.16) 

where L is a matrix of zeros and ones. For example, when d = 3, 7 would be the vector of 6 

univariate, 12 bivariate and 8 trivariate margins. 

Let us define rj = (770,771, • • • 1 Vd,Vi2, • • •, Vd,-i,d, • • • ,Vi2-d)T as the vector of the logistic 

factorial contrasts which can be obtained from 7 by 

77 = C log(LTr), (3.17) 

where C is an appropriately chosen contrast matrix. The transformation 7r —> rj defined in equa­

tion (3.17) is called a multivariate logistic transformation by McCullagh and Nelder [29]. A latent 

multivariate logistic distribution obtains only for a suitable choice of L . The first element 770 of the 

vector 77 is for ensuring the requirement Yij TTJ = 1; 770 also ensures the transformation TC to 7 is of 

full rank. For the bivariate case the elements of the vector 77 would be 

770 = log(7Tn + 7T12 + 7T21 + 7T 2 2) , 

7?l = l o g T T i . - 10g7T 2 . = l 0 g i t ( 7 T l . ) , 

772 = l og7T . l - logTT.2 = logit(7T.l), 

7?12 = log 7Tn + log 7T22 - log 7Ti2 - log 7T21 = log OR\2, 

where OR\2 is the ratio of the odds of having the trait corresponding to the first and second member 

of the family, i.e. ORn = {Pr(Yi = 1)/Pr(y x = 2)}/{Pr(y 2 = l ) /P r (F 2 = 2)}. 
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In G L M terminology these 77's are known as linear predictors. The dependence of the 7r's on 

the covariates can be described through these 77's. Let us assume that only the univariate margins 

depend on the covariates, so we can define the following regression models for the univariate margins 

where [3 is the vector of regression parameters. To define the joint distribution of j/j fully, we need 

to define regression models corresponding to the two- and higher-order margins. Let us assume 

there are at most q different types of pairs (e.g. father-son, sib-sib, etc.) are in a family; the 

bivariate margins can be expressed as 

where the vector a = (a\,... ,aq)T represents the dependence parameter. Let us assume third-

and higher-order margins are constant at ao, i.e. 

»7l23 = V124 = ••• = 7?1234 = ' ' ' = Vli-d = <*Q. 

The likelihood construction is similar to the model described in previous sections. The score 

function (3.15) can be written as 

= f ± r ^ % (3.13) 
i=l j=i li • 

From equation (3.17), we can write 

d 7 V = (CJD _ 1 L) _ 1 , 
Or} 

where D = diag(L7r). The matrix D can be written in terms of the elements of 7, as an example 

which is shown in Appendix (A.2) for 3-variate model. McCullagh and Nelder [29] provide the 

detailed expressions for the elements of the score function and the Fisher information matrix. 
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3.4 S u m m a r y 

In this chapter, we have described multivariate logistic models for analyzing multivariate binary 

responses. The multivariate Plackett distribution, which is described in Section 3.1.3, has been 

used to construct a multivariate logistic distribution. The bivariate Plackett distribution (see 

Section 3.1.1) is flexible to consider any continuous univariate margin to construct corresponding 

bivariate margin. Using two univariate logistic margins, we have constructed bivariate logistic 

margins from the Plackett distribution with a constant bivariate cross-product ratio. A comparison 

between the bivariate Plackett-normal distribution and the bivariate normal distribution with a 

set of comparable dependence parameters is shown in Section 3.1.1. This comparison reveals that 

the bivariate Plackett distribution with standard normal margin is similar to the bivariate normal 

distribution. In Section 3.3, McCullagh-Nelder approach of multivariate logistic model is briefly 

described. 
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ure 3.1: Contour plots for the bivariate normal distribution. 
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Figure 3.2: Contour plots for the bivariate Plackett-normal distribution. 
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Chapter 4 

Generalized Estimating Equations 

The objective of this thesis is to compare the available regression models and methods for multi­

variate binary responses. Generalized linear models (GLM) [29] are a general class of regression 

methods for univariate discrete and continuous responses, in which the density has a certain expo­

nential form. Logistic regression models for binary responses, linear regression models for continu­

ous responses, and log-linear models for count data are special cases of generalized linear models. 

In this chapter, we start our discussion from generalized linear models because the construction of 

a class of multivariate regression methods (estimating equation based) are closely related to that 

of G L M . 

The main focus of this chapter is to describe generalized estimating equations (GEE) meth­

ods for analyzing multivariate binary responses. In 1986, Liang and Zeger [23] and Zeger and 

Liang [37] proposed the first version of the GEE method (GEEl) which can be used for analyzing 

both multivariate continuous and discrete responses in which the univariate margins are G L M . By 

considering the dependence parameters as a nuisance, the G E E l method focus on estimation of 

the regression parameters defined for the mean function of the model. Later Liang, Zeger, and 

Qaqish [25] proposed a second version of the GEE method (GEE2) which can estimate both the 
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regression and dependence parameters (in the form of the log odds-ratios) simultaneously. GEE 

methods are not likelihood based other than in the case of the normal distribution; estimating 

equations are defined for estimating the parameters. These estimating equations are similar to the 

score equations of a multivariate normal model. For analyzing multivariate binary data, models 

based on the quadratic exponential family, which can provide pseudo-likelihood estimators, are 

also available in the literature, e.g. Zhao and Prentice [38], Fitzmaurice and Laird [9]. A detailed 

discussion of these models can be found in Fitzmaurice et al. [10]. 

In this chapter, first we describe generalized linear models for analyzing univariate and 

multivariate binary responses. The GEE1 method and quadratic exponential family based methods 

are described in §4.2 and §4.3 respectively. Section 4.4 contains a description of the GEE2 method. 

4.1 Generalized Linear Models 

The GLM is the unified class of regression models for univariate continuous and discrete responses. 

Though our main focus is binary responses, in this section, we describe the GLM for general 

responses. The GLM has two important components: systematic and random component. The 

random component specifies the distribution of the response. The systematic component specifies 

the linear predictor which is a linear function of the known explanatory variables. The systematic 

component can be expressed as a known function of the mean parameter of the distribution of 

the response. This function is known as the link function which is a monotonic and differentiable 

function, with an appropriate domain. 

4.1.1 The Model 

Let yi,t/2, • • • ,VK be a random sample from a distribution in the exponential family (see Lindsey 

[26], p. 11) having mean parameter m (i = 1, 2,..., K) and constant dispersion parameter <f>. The 
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density function of yi is of the form 

fy(yf,0i,4>) = exp{{yi0i-b(ei))/a(<t>)+c(yi, </>)}, (4.1) 

where a(-), b(-), and c(-) are specified functions and di is a function of //j, known as canonical 

parameter of the exponential family. It can be shown that 

l H = E{Yi) = b'{9i) and va r^ ) = b"{6i) a(4>). 

def 

The variance of yi is product of two terms: one, V(fii) = b"(9i), a function of /ij, is known as 

variance function and the other, a((j)), is a function of only the dispersion parameter <f>. Thus, the 

second moment of yi is a function of its first moment. 

To define the systematic component of the model, let us consider the matrix X of order 

K x (p + 1) as the design matrix and to accommodate an intercept term, the first column of X is 

1. The linear predictor corresponding to the ith (i — 1,2,..., K) observation can be written as 

rji{0) = fa + Btfa + foXa + • • • + 8pXip, 

where /?o is the intercept term and /3j (j = 1,2,... ,p) is the regression coefficient corresponding to 

the jf t h explanatory variable. 

Let h(-) be any monotonic differentiable function such that 

rji(B) = h(m), i = l,2,...,K; 

h(-) is known as the link function in generalized linear model terminology. The link function relates 

the systematic component to the random component of the model. 

4.1.2 Parameter Es t imat ion 

Given the sample yi,y2, • • • ,yK, the log-likelihood function can be written as 
K 

i(e) = 5 > s / » u / . ; ; ^ ) 
i = l 
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i=i i=i 

To estimate the parameters (3 of the model, we must solve the score equations 

17(0) = ^ = 0. (4.2) 

By using chain rule, we can write 

T J I Q \ = y d l i d d i d ^ drn 

h "i 5 M i drli 9(3 

_ y (Vi ~ Mi) 1 dfij 

= E f S ^ ^ - M i ) 
i=l " 

" ( i ) V l ' ^ " > - ( 4 ' 3 ) 

where V = diagjVi, V2,..., VK} and V. = V(p,i)a(4>) = var(j/j). From the expression of the score 

equation (4.3), it is evident that the dispersion parameter <p can be ignored for estimating the 

regression parameters f3. But the estimate of the dispersion parameter is required to compute the 

standard error of the estimate of regression parameter. 

The equation (4.2) can be solved by iteratively reweighted least squares (McCullagh and 

Nelder [29], p.41) to estimate the parameters of interest [3. Replacing /3 by the maximum likelihood 

estimator [3, equation (4.3) becomes a function of the dispersion parameter only which can be 

solved to obtain the maximum likelihood estimator (f>. The maximum likelihood estimator (3 has 

an asymptotic multivariate normal distribution with mean vector /3 and covariance matrix 

Vu = 
d(3) \df3 

(4.4) 

The variance can be estimated by Vu which is obtained by replacing (3 and <j> by the corresponding 

maximum likelihood estimates /3 and <j> respectively in expression (4.4). 
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4.1.3 Multivariate Binary Response 

In this section, the GLM procedure is described for multivariate binary responses. Let y{ = 

(yn,yi2, • • • >yid)T be the binary response vector corresponding to the ith (i = 1,2,... ,K) family. 

Let Xij be the p-dimensional covariate vector corresponding to the j t h (j = 1,2,..., d) member of 

the i t h family. 

To apply the GLM procedure to multivariate binary responses, let us naively assume the 

responses are "independent" within each family. That means there are d x K independent obser­

vations in the sample. Assuming the marginal distribution of (i = 1, 2,... K; j = 1, 2,..., d) is 

a member of the exponential family, the log-likelihood contribution of the j t h member of the ith 

family is 

kj(0ij) = eyupKyijOij-b(6ij))/a(4>)+c(yij,(f))}, (4.5) 

where 6{j is the canonical parameter which is a function of the corresponding mean function u-ij = 

E{Yij). Let h(-) be the link function which relates the mean parameter ̂  to the linear predictor 

r]ij(B) = XijB as nij = h~1(XijB), where 8 = (/3o, Q\,Bi, • • • ,PP)T is the vector of parameters of 

interest. The score function for the i t h family (similar to equation (4.3)) can be written as 

UiW) = {^)TV-\yi-^ (4.6) 

where Vi = diag{var(j/ii), var(yj2)5 • • •, va^y )̂}. The maximum likelihood estimator 0r is the 

solution of the equation U(B) = 0, where 

= Y.CiVr^y,-^). (4.7) 

If the binary responses within each family were independent, the maximum likelihood estimator 

fii is consistent and has an asymptotic multivariate normal distribution with mean vector B and 
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covariance matrix 

\i=l 

Replacing /3 by 0j, equation (4.5) becomes a function of the dispersion parameter cf> only. The 

corresponding likelihood function can be maximized to obtain the estimate (4>) of the dispersion 

parameter. 

In spite of the fact that the responses within a family are correlated, the pseudo maximum 

likelihood estimator $j (obtained by assuming within family responses as independent) is consistent 

but V/ 0 can be inconsistent. To obtain the consistent estimator of the covariance matrix of 0r, 

Liang and Zeger [23] used the inverse Godambe information matrix (see Godambe [12]) as 

Vr = VjoHitfriVjo, (4.8) 

where 

H2(f3) = J2CiVf1(Vi ~ f*i)(Vi ~ HifV^C?. 
i=i 

The estimated covariance matrix Vj of $j can be obtained by using the estimator f3t and 4> in the 

equation (4.8). The main disadvantage of this approach is that it sometimes provides less efficient 

estimates of the regression parameters in some cases when the intra-familial association is high. 

4.2 Generalized Estimating Equations I 

In the previous section, we have seen that the G L M procedure can be used for analyzing multivariate 

binary responses. Although this approach does not consider the within-family dependence in 

the analysis, with the correct specification of the univariate margins this approach can provide 

consistent estimators for both the regression parameters and the respective variances. However, 

ignoring the within-family dependence in the analysis costs in the efficiency of the estimators 

corresponding to the regression parameters. 
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To incorporate within-family dependence in the analysis, Liang and Zeger [23] proposed 

the generalized estimating equations procedure (GEE1). The main focus of the GEE1 method 

is to examine the dependence of the response on the covariate set which are measured for each 

observation. In the GEE1 method, regression models are defined for the mean function of each ob­

servation. Instead of specifying the joint distribution of the responses, Liang and Zeger [23] defined 

estimating equations for the regression parameters only, which they called generalized estimating 

equations. They introduce a "working" correlation or weight matrix to avoid the specification of 

a joint distribution of the responses. When there is stronger dependence in the data, then one 

should use larger correlations in the weight matrix. Crowder [4] showed some examples where the 

estimators corresponding to the parameters of the "working" correlation matrix do not converge in 

probability to a value in [—1,1] or [0,1]. 

4.2.1 The Method and Parameter Estimation 

Let Hi = (yn,yi2, • • •, yid)T be the response vector corresponding to the ith (i = l,2,...,K) family, 

where yij, the binary response corresponding to the jth (j = l,2,...,d) member of the ith family, 

representing the presence/absence of a specific trait of interest. Let X{j be the p-dimensional 

vector of covariate values for the j t h member of the iih family. As in Section (4.1.3), let us assume 

that y^ follows a distribution from exponential family and the dependence of the mean function 

Hij = Pv(Yij = 1) on the covariate set can be expressed by the link function h(-) as /Zjj = 

where [3 = (fio, /3i, /?2, - • •, Pp)T is the parameter of interest. 

Liang and Zeger [23] used a "working" correlation matrix Ri(a) (i = 1,2,... ,K) of order 

dx d for specifying the within-family dependence. In the case of unequal family sizes, the dimension 

of the "working" correlation matrix is different for different families. The form of the "working" cor­

relation matrix is assumed to be fully specified by the parameters a = (ai, a2,..., oeq)T. Common 

correlation structures such as "independence" and "exchangeable" correlation structures can be ob-
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tained by considering Ri(ct) = Id and Ri(ct) = (1 — p)I([+pJ(i respectively, where p = covv{Yij ,Yn), 

j,k — 1,2,..., d (j / k), where /<$ is an unit matrix of order d x d and is a d x d matrix with 

all elements are one. The estimation equations corresponding to the "independence" correlation 

structure is known as independence estimating equations (IEE) which is similar to the procedure 

described in 4.1.3. 

For estimating the regression parameters, Liang and Zeger [23] proposed the following set 

of estimating equations 

U(P) = I j ( ^ f ) VfHVi-Pi), (4-9) 

where Vi is the "working" covariance matrix considered for ith family, which can be expressed as a 

function of "working" correlation matrix as 

Vi = A j / 2 i i i ( a ) A j / 2 , (4.10) 

where Aj = diag{var(ya), var(yj2), • • •, var(yj<f)} and var(yy) = p,ij a((j)), is a function of the known 

mean function and the dispersion parameter. So the "working" covariance matrix V} is a function 

of 0, ct, and <j>. 

Thus the estimating equations defined in equation (4.9) are a function of B, a and (f>. Since 

we are only interested in estimating the regression parameters, the score equation (4.9) can be 

reduced as a function of 0 only by replacing a. and <f> by &(Y,3, <f>) and (j){Y, 0) respectively. So 

equation (4.9) can be written as 

K "r 

u[0,&{0,m}] = E(^) {Vi(p,c\(0^))Yl{yi-Hi) 
K 

= 2~2CiBiAi. (4.11) 
i = i 

Let 0Gl be the solution of the equation U[0, d{/3, <̂ (/3)}] = 0. According to Liang and Zeger [23] 

given the estimators of a and <j> that converge in probability, the estimator of the regression param­

eter 0Gx is consistent and asymptotically multivariate normal with mean vector 0 and covariance 
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matrix 

V G I = ( z a ^ c f ) ^J2^Bi(yi-»i)(yi-»i)TBic?}(^ • (4-12) 

The variance estimate VQX of $ G l can be obtained by replacing 3, <f>, and a in the expression 

for VGI by their estimates. Liang and Zeger [23] showed that the consistency of the regression 

parameters and their variances does not depend on the choice of the "working" correlation matrix 

as long as the estimates of the parameters of this matrix converge in probability. This is an error 

of Liang and Zeger pointed out by Crowder [4] and Sutradhar and Das [35]; one cannot talk about 

the consistency of the parameter that does not have real interpretation. 

There are also some other drawbacks of the maximum quasi-likelihood estimator 0Gl. Crow­

der [4] also indicated that there may not exist any solution for d; in that situation G E E l cannot 

estimate the regression parameters. Even if d exist and it converges to a specific value, its limiting 

value depend on the form chosen for "working" correlation matrix. Sutradhar and Das [35] showed 

some results for multivariate binary data where the estimators corresponding to IEE are found as 

efficient as the estimators from G E E l . 

4.3 Quadratic Exponential Family 

As we have seen in the Section (4.2), G E E l focus on estimation of the regression parameters 

corresponding to the marginal mean functions. The G E E l procedure is not sufficient when the 

objective of the study is to estimate the parameters corresponding to both the mean function and 

within-family dependence structure. Regression methods based on a quadratic exponential family 

can estimate both kind of parameters simultaneously. In this section, we first describe the quadratic 

exponential family and then review a regression method based on this family of distribution. 

Let yt = (j /j i , yi2,..., yid)T be the binary response vector corresponding to the ith (i = 

1,2,..., K) family. According to Cox [3], the joint distribution of j/j can be written in the following 
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saturated log-linear form: 

f(yi;&i,ni)=exp{&Jyi + nfzi-A(^i,Qi)}, (4.13) 

where Z ; = (yaw,. • • ,yid-iVid, • • •, Vi\Vi2 • • • Vid)T contains the second- and higher-order cross-

products oi y^ @i = {0n,0i2,...,6id)T and Qi = (wji2, • • •, ^id-i,d, • • •, ^H2...d)T are vectors of 

canonical parameters, and A(@i,Q{) is a normalizing constant such that J2exp{A(@i,fi;)} = 

Y^exP{®TVi + zi} where sum is over all 2d possible values of yi. 

The parameters of 6; have interpretations in terms of conditional probabilities as 

Oij = logit{Pr(Yy: = 1 | Yik = 0, j + k)} 

and the parameters of Q; can be interpreted in terms of log conditional odds-ratios and contrasts 

of log conditional odds-ratios as 

Vijij2 = logOiJd/iji,yij 2 | yij3 = 0, j3 ^ j i , j 2 ) , 

.. . . _ l o ORiyijiiVm 1 Vijs = hVm = ° ' J4 ̂ 'ju 32,33) 
« U 2 j 3 OR{yih,yiJ2 \ yiJ3 = 0,yiJ4 = 0, j4 + h,h,hY 

where 

Pr(Y! = 1, y 2 = 0) Pr(Yi = 0, Y 2 = 1)' 

is the odds-ratio between between two binary variables Y\ and Y 2 . 

A special case of Cox's log-linear representation is the quadratic exponential family (Zhao 

and Prentice [38]) obtained by setting three- and higher-order dependence parameters in fi; at 

some fixed values in (4.13). This special case of the Cox's log-linear representation is equivalent 

to that obtained from conditionally logistic regressions (Joe and Liu [16]). Gourieroux et al. [13] 

consider an exponential quadratic model, parameterized by the mean vector and covariance matrix, 

for a general response vector. 
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However, one drawback of this representation is that it is not reproducible or closed under 

margins, i.e. if y* is a subset of y; of order d* x 1 (d* < d), then 

Vi' 
# exp {0J r yJ + nf<-A(e?,fi;)} , 

where 0* is the corresponding subset of 6; of order d* x 1, and fl* and z* are the corresponding 

subsets of fi; and z; respectively. 

The canonical parameters in fi; are defined in terms of conditional odds-ratios which have 

limited use for the studies with unequal family sizes because conditional odds-ratios are specific to 

the number of subjects in a family. For example, since 0 -R(y ; i , y ;2 | y ; 3 — 0) ^ OR(yn,yi2 | y%z = 

yi4 = 0), the same parameters cannot be used to measure the association between yn and yj2 if 

some families have three subjects and others have four subjects. 

4.3.1 Zhao-Prentice Method 

Zhao and Prentice [38] used the quadratic exponential family for analyzing multivariate binary data 

by making a one-to-one transformation from the canonical parameters (©;,fi;) to the marginal 

parameters (p^cri), where \ij = Oi and cr; is the vector of the marginal covariances for the i t h 

family. Let us define the regression model for marginal parameters /ij and cr; as 

»i(f3) = h-1(Xi(3), o-i(a,f3)=g-1(a,Xif3), 

respectively, where X ; be the matrix of covariates for the ith (i = 1,2,..., K) family, [3 and a are 

the vectors of parameters to be estimated, and h(-) and g(-) are the link functions. Let £; = E(zi) 

and for (j, k) pair of the iih family we can write £ ; j f c = + Hij^ik- That is, £; is the function of 

both the parameters (3 and a. 
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The score function for the Zhao-Prentice model is 
T 

K ( dJh n V / 
i=i 

K 

w 0 

i ?L M i 

\ d/3 da 

cov(y») coviy^Zi) 

\ cov{zi,yi) C O V ( Z J ) J 

= CjBjAj. (4.14) 
i=i 

The solution of U(0, a) — 0 provides pseudo-maximum likelihood estimators (/3 ,aT)T. 

Pseudo-maximum likelihood estimation of (0,ct) requires direct calculation of third and 

fourth order moments of y, which involves summation over 2d possible values of ŷ . This computa­

tion is tedious when the family size is large. In this context, Zhao and Prentice [38] suggested the 

use of any convenient "working" covariance matrices in equation (4.14). In this case, the estimator 

(/3, &) is no longer a pseudo-maximum likelihood estimator but the estimator is consistent and is 

asymptotically normally distribution provided the model specification of /Zj and <Tj is correct. 

Both the G E E l and Zhao-Prentice approaches considered the correlation coefficient for 

specifying the dependence among the observations within a family. But as a dependence parameter, 

the correlation coefficient is not the best choice because its range depends on the univariate margins. 

Fitzmaurice and Laird [9] used quadratic exponential family with conditional log odds-ratio as the 

dependence parameter. The main drawback of this approach is that the joint distribution of the 

observations are not reproducible. Thus this approach has limited application for studies with 

unequal family sizes. The interpretation of the conditional log odds-ratio is not as attractive as 

the unconditional association parameters. In the following section we will describe a GEE2 method 

which overcomes some of the drawbacks of the G E E l , the Zhao-Prentice, and the Fitzmaurice-

Laird methods. 
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4 . 4 Generalized Estimating Equations II 

The focus of the GEE1 method is to describe the dependence of the mean function of the response 

on the explanatory variables. By considering the dependence as a nuisance, the GEE1 procedure 

provides consistent estimators of the regression parameters given the correct specification of the 

mean function. If the objective of the study is to describe both the dependence of the mean response 

on the explanatory variables and the dependence structures among the responses, the GEE1 method 

is not sufficient. The quadratic exponential model is one way to deal with such problems but has 

several drawbacks. Liang, Zeger, and Qaqish [25] extended the GEE1 procedure for estimating the 

parameters defined in the mean function and the dependence structure simultaneously. They call 

this procedure GEE2 and considered the bivariate log-odds ratio as the dependence parameter to 

illustrate this procedure. 

4.4.1 The Method 

Let yi = (yn,yi2, • • •, yid)T be the binary response vector corresponding to the ith (i = 1,2,..., K) 

family. Let us also define Zj = (ynyi2,ynyi3, • • • ,yid-iyid)T, a vector of order m, where m = (ij). 

Let Xij be the covariate vector of order 1 x (p+1) corresponding to the jth (j = 1,2,..., d) member 

of the ith family. Let h(-) be the link function such that 

jjij(/3) = E(Yij) = h-1(Xijf3). 

The pairwise dependence is expressed in terms of the odds-ratios, for the (j, k) pair of the i t h family 

the odds-ratio is defined as 

= Pr(j/jj = l,yik = 1) Pr(3/tj = 0, yik = 0) 
7 l j f c Pr(y;j = 1, yik = 0) Pr(yjj = 0, yik = 1)' 

Let us assume the vector 7 of order m x 1, where m is the number of the pairs in the i t h family, can 

be expressed as a function of the q x 1 (q < m) vector a. = ( a i , . . . ,aq)T, i.e. 7 = g~1(a), where 
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g(-) is any suitable link function. From the bivariate Plackett distribution (see §3.1), for any pair 

of responses we can write 

( l / 2 ) ( 7 i j f e - l ) - 1 { ^ i Hiki lijk 

- 4(7yfe - 1) 7ijfc Hij Mifc]1/2} , if lijk / 1, ( 4- 1 5) 

Hij Hik i if lijk = 1 > 

Zijk{P,ot) = E<yijYik) = { 

de f 
where S((ii,H2,l) = 1 ~ ( ^ l + A*2>(1 - 7)-

4.4.2 Estimating Equations 

Let 0 = (3T, aT)T be the parameters of the model which we wish to estimate. Since the joint 

distribution of the response vector y{ is not fully specified, Liang et al. [25] consider the following 

estimating equations for 0: 

K a , J. \ ( „. \ ( 
U(0) = E^Mcov-1 

K 

= £ 

80 

w 0 

\ a/3 da J 

K 
= £ CjSjAj = 0. 

i = l 
(4.16) 

For the i t h family the inverse of the covariance matrix is 

Bi = 
( cov{yi) cov(yj,Zi) ^ 

- l 

\ cov{zi,yi) cov(zi) J 

The components of this matrix can be expressed in terms of the first four moments of yu which are 

shown in Appendix A . l . The estimating equations (4.16) are similar to the pseudo-score functions 

of the Zhao-Prentice method with the odds-ratio as the marginal dependence parameter and a 

specific choice of "working" covariance matrix. 
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The solution 9 — (0 , a ) of U(9) = 0 follows an asymptotic multivariate normal distri­

bution with mean vector 9 and covariance matrix 

VG2 = Hil{0)H2{9)H?{9), (4.17) 

where 

K 
H\{9) — CjBjCj', 

2=1 

f y.-U \ / « - » ^ 
^ 2 - ^ 2 

The estimator 0 is consistent if the model for both the mean parameters h(fx) and the association 

parameters 3(7) are correctly specified. 

The main advantage of the GEE2 method over the regression methods based on the quadratic 

exponential family lies in the interpretation of the dependence parameters. The GEE2 models the 

bivariate odds-ratios for the within-family dependence which has a straightforward interpretation 

regarding the magnitude of the association between any pair of members within a family. The 

quadratic exponential family methods consider conditional models for association parameters which 

are of limited use in the case of unequal family sizes. 

4 . 5 Summary 

In this chapter chronological developments of some estimating equation approaches which are ap­

plicable to multivariate binary responses have been shown. Starting from the GLM, which is used 

for analyzing univariate binary responses, we have covered regression methods based on generalized 

estimating equations as well as quadratic exponential family based methods. 

By naively assuming the correlated binary responses as "independent", one can apply GLM 

to estimate the regression parameters defined for the mean function. These estimators are con-
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sistent but less efficient if the within-family association is high. The G E E l approach considers 

within family dependence in the analysis as a nuisance and can estimate regression parameters 

corresponding to the marginal mean function. Provided the model specification of the marginal 

means is correct, the G E E l approach provides consistent estimators of the regression parameters. 

The G E E l approach does not estimate the parameters corresponding to the within family 

correlation structure which might be of interest of some studies. Some models based on quadratic 

exponential family (e.g Zhao-Prentice, Fitzmaurice—Laird) and the GEE2 can estimate regression 

parameters and parameters corresponding to dependence structure simultaneously. These three 

models considered three different types of association parameters in the respective models. Pair-

wise correlations, conditional odds-ratios and bivariate odds-ratios are considered as dependence 

parameters in the Zhao-Prentice, the Fitzmaurice-Laird and the GEE2 methods respectively. Liang 

et al. [25] proposed the GEE2 method without mentioning that the probabilistic assumptions are 

consistent with the multivariate logistic model of Molenberghs and Lesaffre [31] (which came later). 
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Chapter 5 

Simulation Study 

The main objective of this thesis is to compare maximum likelihood and estimation equation based 

estimators of the multivariate logistic model for analyzing multivariate binary responses. For this 

comparison, a simulation study is considered with different family structures. The multivariate 

probit and logistic models are also compared for estimating the conditional probabilities. Numerical 

methods have been used for estimating the parameters of the methods that are considered in this 

thesis. 

This chapter contains results of the simulation study and the description of the numerical 

methods that are used in this thesis for estimating the parameters of the models. In the following 

section, a brief description of these numerical methods is given. 

5.1 Numerical Optimization Methods 

Generally numerical optimization methods are used to optimize a function of the independent 

variables which can also consider restrictions on the independent variables; the function to be 

optimized is known as the objective function. In statistical applications, the negative of the log-

likelihood function 1(0) is the objective function to be minimized to estimate the unknown pa-
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rameters 0 = (0i,..., 6V)T. A common method for estimating the unknown parameters is the 

Newton-Raphson method which requires analytic evaluation of the gradient and the Hessian ma­

trix. If the objective function has a complex form, often the Hessian matrix cannot be evaluated 

analytically; in such situations quasi-Newton methods which only require analytic evaluation of the 

objective function, can be used for minimizing the negative of the log likelihood function. Numer­

ical differentiation techniques are also useful for estimating the Hessian and possibly the gradient 

at fixed values of the parameters. 

For fitting the multivariate logistic and probit models we have used the C routines of 

Joe ([18], [19]) respectively. The quasi-Newton method with numerically approximated gradient 

has been used in these routines. For solving the estimating equations, we have used the C++ code of 

Joe [20]. This routine is based on quasi-Newton method with the gradient and the Hessian matrix 

computed by a differentiation package FADBAD (http://www.imm.dtu.dk/~os/fadbad.html) 
which uses automatic differentiation techniques to compute the derivatives of a function written in 

a high level language such as FORTRAN, C, or C++. 

The public domain version of the GEE2 code, originally written in Pascal1 and converted 

to C with p2c, cannot handle general familial data. It can handle familial data with a simple 

interclass/intraclass structure. It is also restrictive in computer memory requirements. It would 

have taken more time to modify the original GEE2 code to suit our purposes than to start from 

scratch; The advantage of the automatic differentiation approach is that we need to code only 

the likelihood function. For simulated familial data with a structure such that the original GEE2 

program can be used, we checked that our program and the original program gave the same (or 

nearly the same) estimates. The main difference between the public domain version of GEE2 and 

our implementation is the computational procedure for the second- and higher-order moments. 

We used the multivariate Plackett construction for computing these moments, whereas the pub-

'http://statlab.uni-heidelberg.de/statlib/GEE/GEE2/ 
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lie domain version uses the McCullagh-Nelder-Glonek approach. For estimating the parameters, 

the public domain version uses the classical Newton-Raphson method and we have used a FAD-

BAD based Newton-Raphson method. Because of the operator overloading, the FADBAD based 

Newton-Raphson method is bit slower than the classical Newton-Raphson method. 

In the subsequent two sections, we first describe the classical Newton-Raphson method and 

then the quasi-Newton methods are also briefly described. 

5.1.1 The Newton-Raphson Method 

The Newton-Raphson method is based on approximating the objective function 1(0) locally by a 

quadratic model and then minimizing that function. For the value of the parameters 0k at the fcth 

iteration, the objective function can be approximated as 

l(Ok + d) * l(0k) + UT(0k)d+^dTH(0k)d, (5.1) 

where 

are the gradient and the Hessian matrix of the objective function 1(0) respectively. The Hessian 

matrix is the Jacobian of the gradient which is symmetric and assumed to be positive definite. 

The minimum of the right-hand side of (5.1) is achieved when dk is the minimum of the quadratic 

function 

Q(d) = UT(0k)d+^tfH(0k)d. 

The expression for dk can be obtained by solving the equation {dQ(d)/dd} — 0, which leads to 

dk = -H-\0k)U(0k). 
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The quantity dk is known as the Newton direction and is used to update the current parameter 

value Ok by 

Ok+i = Ok + dk, fc = 0 , l ,2 . . . 

= 0k-H-\ek)U{0k) 

= Ok-H^gk, (5.2) 

where Hk = H(0k) and gk — U(0k) are introduced to simplify the notation. Starting with a 

suitable initial value Oo, the equation (5.2) is successively evaluated until the parameter vector 0 

has converged. 

This method requires the computation of the gradient and inverse of the Hessian matrix at 

each iteration. To evaluate the Hessian matrix, p(p + l)/2 partial derivatives must be calculated 

analytically and for inverting the Hessian matrix a system of linear equations must be solved. But 

in many cases the second derivative of the objective function is not available analytically, so the 

Hessian matrix cannot be computed. The Newton method also breaks down if the Hessian matrix 

is singular at some iteration. Otherwise Newton's method works very well if the initial value is 

sufficiently close to the true value. These difficulties of the Newton's method lead researchers 

to search for other optimization methods, such as quasi-Newton methods which do not require 

computing the Hessian matrix or the gradient analytically. 

5.1.2 The Quasi-Newton Method 

The quasi-Newton method, also known as a variable metric method (see Nash [32]), approximates 

the inverse of the Hessian matrix by some modification of the previously constructed matrix. This 

method does not require computation or inversion of the Hessian matrix for minimizing the objective 

function 1(0). For implementing the quasi-Newton method, assume that either the gradient is 

available analytically or a computer routine is available for numerically computing the gradient. 
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For example, at the kth iteration, from the currently available quantities such as 9k, 9k, 0 f c - i , and 

g k - i the quasi-Newton method provide an approximation Bk to H^1. This approximation can be 

used to update the current value of the parameter by 

9k+i = 9k-Bkgk- (5.3) 

By using Taylor's theorem, the gradient at kth iteration can approximately be written as 

fffc-i - 9k + Hk(9k-i - 9k) 

=>yfc ~ Hksk (5.4) 

where Sk = 9k — 9k-i and y k — 9k — 9k-i- If the objective function is quadratic, the Hessian 

matrix is constant, i.e. Hk = H, VA; > 0 and the relationship of (5.4) is exact. If the objective 

function is not quadratic but is strictly convex and has continuous second partial derivatives in a 

neighborhood of 9* then the objective function is well approximated by a quadratic function with 

Hessian matrix H(9*) in a sufficiently small neighborhood of 9* (Wolfe [36]). For such objective 

functions the relation (5.4) becomes exact as 9k approaches 9*. So, it seems desirable that the 

approximation Bk to H^1 should satisfy the relation 

Bkyk = sk- (5.5) 

This equation is known as the quasi-Newton equation. It is desirable that Bk can be computed 

from Sk, and y k - Consider 

Bk = Bk_i + Ck{sk,yk,Bk-i), (5.6) 

where the correction matrix Ck has the same properties as the matrix Bk. This construction of 

the sequence {Bk} is not unique; a number of methods are available for computing Bk from the 

current values of the parameters. One such method is described in the following subsection. 
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Davidson-Fletcher-Powell Method 

The Davidson-Fletcher-Powell method (see Wolfe [36]) is one of the popular methods for construct­

ing the sequence {Bk}. For this method the correction matrix is written as 

Ck(sk,yk,Bk-i) = SkU? - Bk-iyk Vfe, 

where Uk and Vk are nonzero vectors such that 

ukVk = !> vkVk = 1- (5-7) 

By using the this form of correction matrix Ck in equation (5.6) we get 

BkVk = Bk-iVk + SkuTyk - -S fc_iy feujy fc 

= Bk-iyk + Sk~ Bk-iVk 

= sk. 

This shows that the Davidson-Fletcher-Powell method satisfies the quasi-Newton equation (5.5). 

The choice 

Sk Bk-iVk 
Uk = ~T—, vk = s%yk VkBk-iVk 

satisfies the equation (5.7). Therefore, we can write the expression of the matrix Bk+i as 

o o , sksl (Bk-iyk){Bk-iyk)T 

ok = ±>A:-1 + ~y 7fr- . 

skVk VkBk-iVk 

After getting the value of Bk we can update the parameter by using the equation (5.2). 

5.1.3 Newton method with Automatic Differentiation 

As we already mentioned that the Newton-Raphson/quasi-Newton method can be used with the 

gradient and the Hessian matrix obtained from differentiation packages. A differentiation package 

FADBAD, which is based on automatic differentiation, is used for coding the routine of Joe [20]. 
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Automatic differentiation has become a very popular tool for numerical differentiation in 

the last twenty years. The advantages of this method over other existing procedures (e.g. divided 

difference, symbolic differentiation) have been discussed by Griewank [14]. There are two versions of 

automatic differentiation, known as forward and backward modes. A number of software packages 

for automatic differentiation written in high-level languages such as FORTRAN or C++ are avail­

able. The user only needs to provide the subroutine to evaluate the underlying objective function 

provided an interface routine has been written for Newton-Raphson. We have used the forward 

mode of the automatic differentiation method to evaluate the Hessian matrix. This Hessian matrix 

used in Newton-Raphson routine for estimating the parameters of the GEE2 method. 

Automatic differentiation introduced a data type doublet (see Dixon [6]). A doublet 

variable U, consists of p + 1 values (u, XjUi), where \/U{ = du/dxi, i = 1,2,... ,p. For doublet 

variable the usual operators (e.g. +, —, *,.••) a r e overloaded; operator overloading is a nice 

feature of the computer languages such as C++/Fortran which helps to redefine the meaning of 

the elementary operators. For an assignment W — U * V where U and V are doublets, the 

multiplication operator * is defined in such a way that it not only computes the product of U 

and V but also update the associated gradient object by \/Wi = usj Vi + vsj u% (i = 1,2,... ,p). 

Similarly all other elementary operations can also be defined; for example 

W = U + V ->• (u + v,S7Ui + S7Vi, i = 1,2,... ,p), 

W = l/U -»• (-,4v«i>« = l , 2 p), 
W-logu -+ flogu, - v«» i = 1,2,... ,p). 

Automatic differentiation packages convert any given functions to these elementary functions and 

then use the chain rule to compute the derivatives of the given function. 
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5.2 Comparison of the Methods 

In this section, a comparison of maximum likelihood (ML) and GEE2 approaches for estimating 

the parameters of the multivariate logistic model is shown by considering a simulation study. Four 

different types of the family structures namely Pedigree A, B, C, and D are considered, the descrip­

tion and the graphical representation of these families are given in the following sections. Because 

the multivariate logistic distribution is defined based on implicit equations for dimensions d > 3, 

simulation from it would be very difficult. To simulate from the multivariate logit binary model 

requires the computation of 2d (d is the family size) multivariate probabilities and then the 2d pos­

sible binary d-dimensional vectors can be considered as outcomes of a multivariate discrete random 

variable with these probabilities. This is much more difficult than simulation from the multivariate 

probit model. Therefore, the comparison is based on multivariate binary data simulated from the 

multivariate probit model. 

A sample of 200 families (family size depends on the pedigree types) is generated for each 

pedigree. For simplicity of the comparison, all 200 families have the same family structure. A 

mixture of pedigrees A, B, and C is also considered for the simulation study because for real data 

pedigrees for different families will typically be different. To examine the effect of the sample size for 

the comparison of ML and GEE2 approaches, we also analyzed a data set from Pedigree A with 600 

families. The only covariate Age is assumed uniform on (I, u), where / and u depend on the member 

of the family. The response vector is generated by using the multivariate probit model; i.e., given 

the specified correlation structure and the values of the intercept (Bo) and regression coefficient 

(B\) for the covariate Age the response vector is obtained by using the equation (2.1). To simulate 

binary response vectors by the multivariate probit models, two types of correlation structures 

(exchangeable and familial) are considered for each pedigree. For an exchangeable correlation 

structure, the correlation is the same for all pairs of members of a family; on the other hand, for a 

familial correlation structure, the correlations differ for different types of pairs. Three values (0.9, 
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0.5, 0.1) of the correlation coefficients and two sets of the correlation coefficients are considered for 

the exchangeable and familial correlation structures respectively. We also used different values of 

the regression constant and coefficient in different analyses. 

For this analysis, we assume that only the univariate margins depend on the covariate Age. 

The multivariate logistic model has equations 

logit 7T = fio+Pi* Age, 

log7 = a, 

for the univariate margins and the dependence structure respectively. Here, 7r and 7 are the vector 

of univariate margins and cross-product ratios respectively. For the multivariate logistic model the 

third- and higher-order dependence parameters are assumed fixed at one. 

For each pedigree, the results of the simulation analysis for the exchangeable and famil­

ial correlation structures are shown in two separate tables. The maximum likelihood and GEE2 

methods are compared with respect to the mean estimates of the regression parameters and log 

OR for dependence parameters, and their corresponding standard errors. The average of the ab-

solute difference of the parameter estimates and their standard errors corresponding to these two 

methods are also shown in these tables. Empirical standard deviations of the parameter estimates 

corresponding to these two approaches are also shown in these tables. For each of the analysis 500 

repetitions were considered to obtain the results of these tables. The true parameter values which 

are used to generate the data for different pedigree are also listed in these tables. 

5.2.1 Pedigree A 

Pedigree A is the simplest family structure considered for the simulation study. This pedigree 

consists of four members who are from two different relative classes and the graphical diagram of 

this pedigree is shown in Figure 5.1. The first member is one of the parents and the others are 
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offspring, so only two types of dependence namely, sib-sib (SS) (2:3, 2:4, 3:4) and parent-offspring 

(PO) (1:2, 1:3, 1:4) are considered for this pedigree. 

Figure 5.1: Graphical diagram of Pedigree A. 

Table 5.2 shows the simulation results for the Pedigree A, where the responses are generated 

by a multivariate probit model with an exchangeable correlation structure, i.e. ppo = pss- The 

average absolute difference of the estimates show that the maximum likelihood and GEE2 parameter 

estimates are equal up to two decimal places for the correlation coefficient p = 0.1 and p = 0.5. 

For p = 0.9, the parameter estimates corresponding to the covariate Age (/3i) and corresponding 

to parent-offspring pair (log ORpo) are equal up to one decimal place and others are equal up to 

two decimal places. The differences among the parameter estimates tend to increase as the within-

family dependence increases. The averages of the maximum likelihood and the GEE2 estimates of 

the standard errors are equal up to one decimal place for all the values of p. For the extreme values 

of correlation coefficients (i.e. p = 0.1,0.9) the absolute differences between the corresponding 

standard errors are larger than at p = 0.5. The average standard errors of the estimates of the 

dependence parameters (log ORpo and log ORss) increase as p increases. The average of the 

intercept (/3o) and the estimates corresponding to the covariate Age tend to decrease as p increases. 

For Pedigree A, on average the GEE2 estimates are marginally more efficient than maximum 

likelihood estimates with exchangeable correlation structure. 

Table 5.3 shows the simulation results for Pedigree A, where the responses are generated by 

a multivariate probit model with a familial correlation structure with sib-sib and parent-offspring 
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correlations. Two sets of correlation coefficients {pss — 0.8, ppo — 0.6} and {pss — 0.9, ppo = 

0.4} are considered for this case. The ML estimates are found marginally less efficient than the 

corresponding estimates from the GEE2. 

Table 5.4 shows the simulation results for Pedigree A with a sample of size 600. This results 

show that the average of the difference of the ML and GEE2 estimates tend to decrease as sample 

size increases and standard errors behave as expected. 

For the Pedigree A, the empirical standard deviations (SDs) of the parameter estimates are 

also shown in the Tables 5.2-5.4. The SDs are quite similar for the estimates corresponding to the 

ML and GEE2 approaches. As expected these empirical standard deviations are approximately 

equal to the average of the corresponding standard errors. 

Note that as expected, most of the regression estimates are approximately 1.6-1.8 times 

the probit regression coefficients. Also the odds-ratio parameter estimates are roughly satisfied 

the equations (3.6) and (3.7). For example, for Pedigree A with exchangeable correlation structure 

(p = 0.5), the regression parameter estimates from the logistic model of /3o = 1.318 and $i = 0.362 

correspond to the regression parameters of the probit model of 6Q = 0.8 and B\ = 0.2. That 

is, the logistic estimates are 1.65 (=1.318/0.8) and 1.81 (=0.362/0.2) times the respective probit 

parameters. 

5.2.2 Pedigree B 

Figure 5.2 shows the graphical diagram of Pedigree B, which has four members from three different 

relative classes. The members are one grandparent, one parent and two offspring; three types of 

dependence namely sib-sib (3:4), parent-offspring (1:2, 2:3, 2:4), and second-degree relationship 

(D2) (1:3, 1:4) can be considered for this family structure. 

Table 5.5 shows the simulation results of Pedigree B, where the responses are generated 

by a multivariate probit model with an exchangeable correlation structure. The averages of the 
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Figure 5.2: Graphical diagram of Pedigree B. 

parameter estimates and the corresponding standard errors for the maximum likelihood and the 

GEE2 methods are very close. For p = 0.1, the average absolute differences show that the maximum 

likelihood and GEE2 estimates of the regression parameters are similar up to two decimal places. 

For p = 0.5, $i and log ORpo are similar up to two decimal places and other estimators are similar 

up to one decimal place. For p = 0.9, all the.estimators are similar up to one decimal place. The 

average of the difference between the parameter estimates increases as the within-family dependence 

increases. The difference between the standard errors of the parameter estimates corresponding to 

the maximum likelihood and the GEE2 are equal up to one decimal points for all the values of the 

correlation coefficients. The average standard errors agree more closely for p = 0.5 than for the 

other values of p. For Pedigree B with exchangeable correlation structure, the estimates of Q\ and 

log OR are found to be marginally less efficient for the maximum likelihood in most cases. 

Table 5.6 shows the simulation result for Pedigree B, where the responses are generated by a 

multivariate probit model with a familial correlation structure. Two sets of correlation coefficients 

{pss = 0.8, ppo = 0.6, and pm = 0.5} and {pss = 0.9, ppo = 0.5, and pm = 0.1} are considered 

for this case. The average of the absolute differences show that except for \ogORm-, all other 

estimators from the maximum likelihood and the GEE2 are similar up to two decimal places. For 

this case the parameter estimates corresponding to the GEE2 are found to be marginally more 
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Figure 5.3: Graphical diagram of Pedigree C. 

efficient than maximum likelihood estimator. 

The empirical SDs of the corresponding parameter estimates of the ML and GEE2 ap­

proaches are very close and are consistent with the average of the corresponding standard errors. 

5.2.3 P e d i g r e e C 

Pedigree C has five members: one grandparent, one parent, one uncle, and two offspring; the 

graphical diagram of this pedigree is in Figure 5.3. Similar to Pedigree B, for this pedigree three 

types of dependence can be considered: sib-sib (2:3, 4:5), parent-offspring (1:2, 1:3, 2:4, 2:5), and 

second-degree relationship (1:4, 1:5, 3:4, 3:5). 

Table 5.7 shows the results for Pedigree C, where the responses are generated by a multivari­

ate probit model with an exchangeable correlation structure. For correlation coefficient p = 0.1, 

the average of the absolute differences show that the parameter estimates corresponding to the 

maximum likelihood and GEE2 are similar up to two decimal places. For p = 0.5 and p = 0.9 

all the estimates corresponding to the dependence parameters are similar up to one decimal place. 

The absolute difference between the respective parameter estimates increases as the within-family 

dependence increases. The average of the absolute differences also show that the standard errors 

are similar up to one decimal place for all values of the correlation coefficients. For p — 0.5 these 
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standard errors are more similar than for the other values of the correlation coefficient. For Pedigree 

C, the maximum likelihood method provides marginally more efficient estimators than the GEE2 

only for the case in which within-family dependence is high. 

Table 5.8 shows the simulation results for Pedigree C, where the responses are generated by 

a multivariate probit model with a familial correlation structure. As before two sets of correlation 

coefficients are considered for this case. The averages of the absolute differences show that both 

the parameter estimates and the corresponding standard errors for the maximum likelihood and 

the GEE2 are similar up to one decimal place. The estimates corresponding to the GEE2 are found 

to be marginally efficient than the estimates corresponding to maximum likelihood. 

The empirical SDs of the corresponding parameter estimates of the ML and GEE2 ap­

proaches are very close and are consistent with the average of the corresponding standard errors. 

Though the family sizes are different, the same dependence structures were used for Pedigree 

B and C in the simulation study. The comparison of the results of these two pedigrees would provide 

the effect of family size for comparing the parameter estimates of the maximum likelihood and the 

GEE2. This comparison reveals that the standard errors of all the parameter estimates decreases 

as the pedigree size increases and the absolute differences between the parameters and the standard 

errors also decreases as pedigree size increases. 

5.2.4 Pedigree D 

Figure 5.4 shows the graphical diagram of the Pedigree D which has six members: one grandparent, 

one parent, one uncle, two offsprings, and a cousin. This pedigree can consider four types of 

dependences: sib-sib (2:3, 4:5), parent-offsprings (1:2, 1:3, 2:4, 2:5, 3:6), second-degree relationship 

(1:4, 1:5, 1:6, 2:6, 3:4, 3:5) and third-degree relationship (D3) (4:6, 5:6). 

Table 5.9 shows the simulation results for Pedigree D, where the responses are generated by a 

multivariate probit model with exchangeable correlation structure. The average absolute difference 
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Figure 5.4: Graphical diagram of Pedigree D. 

show that the parameter estimates corresponding to the dependence structure (i.e. log OR) are 

similar up to one decimal place for all correlation coefficients we have considered. The parameter 

estimate corresponding to the covariate Age is similar up to two decimal place except for p = 0.9. 

The average of the absolute difference also show that the standard errors corresponding to log ORs 

are similar up to one decimal place for p = 0.1 and 0.5. For correlation coefficient p = 0.9 the 

average differences between these standard errors are greater than 0.1. The maximum likelihood 

estimates corresponding to the log ORs are found marginally efficient than the corresponding GEE2 

estimates for p = 0.9. For p — 0.5 both the parameter estimates and the standard errors are found 

to be closer than the extreme cases. 

Table 5.10 shows the simulation results for Pedigree D, where the responses are generated 

by a multivariate probit model with a familial correlation structure. The averages of the absolute 

differences show that the maximum likelihood and GEE2 parameter estimates and standard errors 

are similar up to one decimal place. The maximum likelihood estimates are found marginally more 

efficient than the GEE2 only for log ORpo and log ORr>2-

The empirical SDs of the corresponding parameter estimates of the ML and GEE2 ap­

proaches are very close and are consistent with the average of the corresponding standard errors. 
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5.2.5 Mixture of pedigrees A, B, and C 

For the mixture of the pedigrees A, B, and C, a sample of 100 families from each of these pedigrees 

are considered. The comparison of ML and GEE2 for this mixture pedigree is very important 

because in practice, the families are of different sizes. For this case, we can consider three types of 

dependences: sib-sib, parent-offspring, second-degree relationship. 

Table 5.11 shows the simulation results for the mixture of pedigrees with exchangeable 

correlation structure. The averages of the absolute differences show that the maximum likelihood 

and GEE2 parameter estimates are similar up to two decimal places for p = 0.1,0.5; for p = 0.9 

these estimates are similar up to one decimal place. The absolute differences also show that the 

standard errors corresponding to maximum likelihood and GEE2 are similar up to one decimal place 

for all values of the correlation coefficients. The estimators corresponding to maximum likelihood 

are found to be marginally more efficient than the corresponding estimators of the GEE2 method 

only when the within-family dependence is high. 

Table 5.12 shows the results for mixture pedigrees with a familial correlation structure. The 

absolute differences show that the maximum likelihood and GEE2 estimators are similar up to one 

decimal place. The estimators corresponding to the GEE2 are found to be marginally more efficient 

than the corresponding parameters of the maximum likelihood. 

5.2.6 Estimating Conditional Probabilities 

In Chapter 2, we have discussed the procedure of estimating conditional probabilities and their 

standard errors for the multivariate probit model (see §2.4). A similar procedure can also be 

derived for the multivariate logistic model, but not for the GEE2 method. The GEE2 method does 

not specify the joint distribution, so expressions for the orthant probabilities which enter into the 

conditional probabilities are not available. Given estimates of the parameters of the multivariate 

probit and logistic models, these orthant probabilities can be computed from equations (2.14) and 
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(3.10) respectively. We have used C routines of Joe ([18] and [19]) for computing these orthant 

probabilities; the conditional probabilities and corresponding standard errors are obtained by using 

numerical differentiation methods. 

To compare the multivariate probit and logistic models for the estimation of these conditional 

probabilities, we have considered samples of size 200 from the pedigrees A, B, and C. As before 

these samples are also generated from the multivariate probit models. Tables 5.13-5.15 show the 

estimates of the conditional probabilities and their standard errors for these pedigrees. As an 

example, five different conditional probabilities are arbitrarily chosen for each of these cases. Given 

the parameter estimates and the covariate values similar estimates of other probabilities can also 

be obtained. For example, given a diseased individual of age 67 from Pedigree B the estimate of 

the probability that his younger offspring of age 14 has the disease is about 0.85, with a standard 

error 0.02. These tables show that most of these estimates are similar for the multivariate probit 

and logistic models. 

The empirical SDs of the corresponding parameter estimates of the ML and GEE2 ap­

proaches are very close and are consistent with the average of the corresponding standard errors. 

5.2.7 Comments on Computing Time 

This research was motivated by the observation that maximum likelihood estimation for the mul­

tivariate logistic model became very time consuming when there were pedigrees in the data set of 

sizes 7 or more. The computing time for the multivariate Plackett distribution is exponentially in­

creasing in the dimension, because of the equations that must be solved for dimension 3 and higher. 

Table 5.1 shows the average computing time needed for the maximum likelihood and the GEE2 

methods. The GEE2 equations are computationally more efficient in dimensions > 6 because they 

require only computation of the multivariate Plackett distribution up to dimension 4. In practice, 

if the familial data has many pedigrees of dimension 6 or more, we recommend the GEE2 approach 
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over maximum likelihood. 

5.3 Summary 

In this chapter, a simulation study for comparing the maximum likelihood and GEE2 method for 

the multivariate logistic model is discussed. In Section 5.1, a brief description of the numerical 

optimization methods which are used to fit these models is given. Because of the complex form of 

the gradient and Hessian matrix, the classical Newton-Raphson method is not be used for these 

models. The quasi-Newton method is used to estimate the parameters of the models considered in 

this chapter. The results of the simulation study indicate that the maximum likelihood and GEE2 

estimates of the regression parameters and their respective standard errors are usually equal at 

least up to one decimal place. This result is consistent for all the pedigrees we have considered 

for this study. The empirical SDs of the parameter estimates corresponding to the M L and GEE2 

approaches are found quite close and are consistent with the corresponding average of the standard 

errors. The estimates of the conditional probabilities corresponding to the multivariate probit and 

logistic models are also found to be similar. 
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Table 5.1: Average computing time (in mins.) by pedigrees and methods. 

Correlation coefficient 
0.1 0.5 0.9 

ML GEE2 ML GEE2 ML GEE2 
A 
B 
C 
D 

Mixed 

0.216 0.465 
0.294 0.460 
3.755 2.037 
36.852 4.204 
2.288 1.479 

0.215 0.460 
0.283 0.466 
3.628 1.911 
31.120 3.681 
2.324 1.494 

0.217 0.507 
0.277 0.542 
3.653 2.190 

40.951 4.914 
2.266 1.704 

Table 5.2: Simulation results for Pedigree A with exchangeable correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.307 (0.155) 1.308 (0.155) 0.001 0.155 0.152 0.004 
Age 0.2 0.383 (0.532) 0.381 (0.532) 0.002 0.517 0.504 0.017 
SS 0.1 0.282 (0.249) 0.283 (0.249) 0.001 0.253 0.250 0.019 
PO 0.1 0.291 (0.273) 0.292 (0.272) 0.002 0.265 0.263 0.015 

Const. 0.8 1.318 (0.149) 1.318 (0.149) 0.002 0.158 0.159 0.004 
Age 0.2 0.362 (0.442) 0.360 (0.442) 0.008 0.444 0.442 0.014 
SS 0.5 1.547 (0̂ 266) 1.545 (0.266) 0.005 0.274 0.272 0.010 
PO 0.5 1.578 (0.287) 1.575 (0.287) 0.008 0.284 0.281 0.009 

Const. 0.8 1.316 (0.175) 1.312 (0.175) 0.009 0.170 0.169 0.003 
Age 0.2 0.376 (0.311) 0.378 (0.305) 0.032 0.305 0.307 0.014 
SS 0.9 3.827 (0.379) 3.824 (0.374) 0.008 0.390 0.376 0.016 
PO 0.9 3.849 (0.393) 3.839 (0.378) 0.032 0.409 0.388 0.023 

tempirical SDs are in the parenthesis 
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Table 5.3: Simulation results for Pedigree A with familial correlation structure. 

True Parameter Estimates Standard Errors 
values M L G E E 2 Diff. M L G E E 2 Diff. 

Const. 0.8 1.314 (0.181) 1.312 (0.181) 0.005 0.183 0.180 0.004 
Age 0.2 0.369 (0.442) 0.371 (0.443) 0.012 0.450 0.440 0.015 
SS 0.8 2.960 (0.346) 2.959 (0.347) 0.003 0.339 0.327 0.012 
P O 0.6 1.927 (0.325) 1.921 (0.325) 0.009 0.341 0.330 0.012 

Const. 0.5 0.810 (0.185) 0.810 (0.185) 0.003 0.184 0.179 0.006 
Age 1.0 1.731 (0.532) 1.731 (0.533) 0.010 0.505 0.483 0.025 
SS • 0.9 3.717 (0.364) 3.718 (0.364) 0.006 0.368 0.357 0.017 
P O 0.4 1.221 (0.359) 1.219 (0.359) 0.010 0.376 0.364 0.015 

tempirical SDs are in the parenthesis 

Table 5.4: Simulation results for Pedigree A with exchangeable correlation structure and sample of 
size 600. 

True Parameter Estimates Standard Errors 
values M L G E E 2 Diff. M L G E E 2 Diff. 

Const. 0.8 1.311 (0.084) 1.312 (0.084) 0.001 0.090 0.090 0.001 
Age 0.2 .0.361 (0.292) 0.359 (0.291) 0.002 0.300 0.299 0.006 
SS 0.1 0.298 (0.146) 0.298 (0.146) 0.001 0.146 0.146 0.007 
P O 0.1 0.306 (0.154) 0.306 (0.154) 0.001 0.152 0.151 0.005 

Const. 0.8 1.316 (0.090) 1.316 (0.089) 0.001 0.093 0.093 0.001 
Age 0.2 0.352 (0.252) 0.352 (0.252) 0.004 0.260 0.260 0.005 
SS 0.5 1.548 (0.164) 1.546 (0.164) 0.003 0.160 0.158 0.004 
P O 0.5 1.558 (0.165) 1.556 (0.165) 0.005 0.165 0.162 0.004 

Const. 0.8 1.324 (0.099) 1.320 (0.098) 0.006 0.098 0.097 0.002 
Age 0.2 0.344 (0.168) 0.346 (0.167) 0.018 0.173 0.176 0.006 
SS 0.9 3.812 (0.221) 3.809 (0.222) 0.004 0.223 0.220 0.005 
P O 0.9 3.840 (0.229) 3.834 (0.227) 0.016 0.231 0.226 0.007 

tempirical SDs are in the parenthesis 
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Table 5.5: Simulation results for Pedigree B with exchangeable correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.309 (0.154) 1.310 (0.154) 0.001 0.158 0.156 0.003 
Age 0.2 0.372 (0.395) 0.370 (0.395) 0.001 0.400 0.393 0.011 
SS 0.1 0.261 (0.432) 0.261 (0.432) 0.002 0.422 0.417 0.015 
PO 0.1 0.287 (0.265) 0.287 (0.265) 0.002 0.258 0.262 0.019 
D2 0.1 0.288 (0.340) 0.288 (0.340) 0.002 0.321 0.317 0.024 

Const. 0.8 1.316 (0.148) 1.317 (0.149) 0.003 0.159 0.162 0.004 
Age 0.2 0.357 (0.321) 0.354 (0.326) 0.008 0.346 0.343 0.010 
SS 0.5 1.527 (0.397) 1.563 (0.920) 0.047 0.385 0.388 0.015 
PO 0.5 1.574 (0.273) 1.572 (0.274) 0.008 0.282 0.281 0.012 
D2 0.5 1.580 (0.324) 1.581 (0.328) 0.011 0.317 0.316 0.018 

Const. 0.8 1.323 (0.177) 1.314 (0.172) 0.020 0.171 0.171 0.006 
Age 0.2 0.356 (0.246) 0.367 (0.236) 0.067 0.229 0.243 0.019 
SS 0.9 3.822 (0.493) 3.857 (0.478) 0.035 0.482 0.475 0.030 
PO 0.9 3.862 (0.386) 3.838 (0.373) 0.052 0.397 0.392 0.035 
D2 0.9 3.897 (0.414) 3.878 (0.409) 0.086 0.432 0.432 0.041 

fempirical SDs are in the parenthesis 

Table 5.6: Simulation results for Pedigree B with familial correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.5 0.797 (0.163) 0.797 (0.163) 0.002 0.171 0.167 0.005 
Age 1.0 1.768 (0.391) 1.767 (0.392) 0.005 0.412 0.397 0.018 
SS 0.8 2.861 (0.411) 2.861 (0.412) 0.003 0.399 0.393 0.017 
PO 0.6 1.971 (0.280) 1.972 (0.278) 0.009 0.294 0.288 0.013 
D2 0.4 1.249 (0.409) 1.245 (0.406) 0.013 0.393 0.381 0.027 

Const. 0.5 0.796 (0.183) 0.797 (0.183) 0.001 0.180 0.175 0.005 
Age 1.0 1.765 (0.445) 1.764 (0.446) 0.003 0.430 0.415 0.016 
SS 0.9 3.764 (0.478) 3.765 (0.477) 0.003 0.469 0.452 0.023 
PO 0.5 1.581 (0.272) 1.581 (0.270) 0.006 0.295 0.289 0.013 
D2 0.3 0.905 (0.443) 0.904 (0.442) 0.010 0.419 0.400 0.031 

fempirical SDs are in the parenthesis 
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Table 5.7: Simulation results for Pedigree C with exchangeable correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.313 (0.157) 1.314 (0.158) 0.001 0.156 0.153 0.006 
Age 0.2 0.361 (0.405) 0.359 (0.405) 0.002 0.400 0.391 0.015 
SS 0.1 0.281 (0.324) 0.281 (0.325) 0.003 0.306 0.303 0.013 
PO 0.1 0.264 (0.231) 0.264 (0.232) 0.003 0.231 0.229 0.016 
D2 0.1 0.283 (0.222) 0.284 (0.222) 0.002 0.227 0.224 0.021 

Const. 0.8 1.313 (0.159) 1.311 (0.160) 0.004 0.161 0.159 0.006 
Age 0.2 0.370 (0.339) 0.370 (0.339) 0.008 0.343 0.341 0.014 
SS 0.5 1.563 (0.289) 1.557 (0.292) 0.012 0.290 0.287 0.014 
PO 0.5 1.553 (0.246) 1.546 (0.248) 0.012 0.253 0.247 0.014 
D2 0.5 1.579 (0.240) 1.573 (0.239) 0.010 0.249 0.244 0.017 

Const. 0.8 1.317 (0.174) 1.309 (0.175) 0.015 0.171 0.168 0.007 
Age 0.2 0.364 (0.235) 0.369 (0.230) 0.032 0.229 0.234 0.020 
SS 0.9 3.835 (0.393) 3.817 (0.407) 0.024 0.364 0.370 0.034 
PO 0.9 3.811 (0.375) 3.793 (0.374) 0.027 0.342 0.342 0.030 
D2 0.9 3.835 (0.364) 3.818 (0.348) 0.035 0.341 0.342 0.032 

fempirical SDs are in the parenthesis 

Table 5.8: Simulation results for Pedigree C with familial correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.5 0.787 (0.157) 0.787 (0.157) 0.003 0.165 0.160 0.007 
Age 1.0 1.796 (0.395) 1.798 (0.394) 0.011 0.406 0.394 0.021 
SS 0.8 2.885 (0.295) 2.888 (0.293) 0.011 0.294 0.294 0.014 
PO 0.6 1.944 (0.272) 1.947 (0.271) 0.021 0.273 0.271 0.018 
D2 0.4 1.223 (0.272) 1.212 (0.273) 0.019 0.281 0.279 0.022 

Const. 0.8 1.310 (0.178) 1.310 (0.178) 0.004 0.181 0.178 0.008 
Age 0.2 0.374 (0.394) 0.375 (0.393) 0.011 0.399 0.393 0.021 
SS 0.9 3.815 (0.353) 3.821 (0.351) 0.015 0.343 0.342 0.020 
PO 0.5 1.527 (0.272) 1.534 (0.275) 0.018 0.267 0.263 0.020 
D2 0.3 0.914 (0.293) 0.909 (0.293) 0.020 0.287 0.279 0.025 

fempirical SDs are in the parenthesis 
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Table 5.9: Simulation results for Pedigree D with exchangeable correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.303 (0.131) 1.306 (0.139) 0.003 0.137 0.131 0.009 
Age 0.2 0.385 (0.317) 0.388 (0.325) 0.004 0.321 0.315 0.020 
SS 0.1 0.317 (0.301) 0.294 (0.590) 0.026 0.309 0.307 0.030 
PO 0.1 0.320 (0.197) 0.306 (0.363) 0.017 0.216 0.212 0.032 
D2 0.1 0.309 (0.190) 0.286 (0.542) 0.026 0.200 0.196 0.036 
D3 0.1 0.272 (0.315) 0.249 (0.584) 0.026 0.311 0.306 0.035 

Const. 0.8 1.326 (0.147) 1.323 (0.146) 0.005 0.146 0.144 0.007 
Age 0.2 0.354 (0.264) 0.355 (0.264) 0.008 0.275 0.271 0.017 
SS 0.5 1.558 (0.285) 1.544 (0.289) 0.019 0.287 0.286 0.023 
PO 0.5 1.577 (0.233) 1.564 (0.234) 0.017 0.231 0.226 0.021 
D2 0.5 1.572 (0.221) 1.559 (0.223) 0.017 0.220 0.215 0.020 
D3 0.5 1.548 (0.290) 1.538 (0.294) 0.016 0.298 0.294 0.025 

Const. 0.8 1.342 (0.181) 1.325 (0.174) 0.019 0.190 0.162 0.040 
Age 0.2 0.327 (0.181) 0.342 (0.175) 0.030 0.193 0.187 0.048 
SS 0.9 3.855 (0.364) 3.817 (0.379) 0.046 0.326 0.366 0.115 
PO 0.9 3.825 (0.317) 3.787 (0.322) 0.046 0.285 0.319 0.106 
D2 0.9 3.840 (0.314) 3.802 (0.316) 0.052 0.274 0.311 0.107 
D3 0.9 3.813 (0.389) 3.779 (0.407) 0.046 0.346 0.378 0.108 

tempirical SDs are in the parenthesis 

Table 5.10: Simulation results for Pedigree D with familial correlation structure. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.321 (0.145) 1.318 (0.140) 0.008 0.156 0.142 0.022 
Age 0.2 0.354 (0.303) 0.353 (0.310) 0.017 0.318 0.303 0.041 
SS 0.9 3.802 (0.347) 3.812 (0.336) 0.025 0.333 0.333 0.059 
PO 0.5 1.529 (0.228) 1.546 (0.232) 0.024 0.212 0.222 0.053 
D2 0.3 0.911 (0.232) 0.907 (0.232) 0.022 0.212 0.221 0.048 
D3 0.1 0.264 (0.409) 0.258 (0.406) 0.027 0.388 0.378 0.063 

tempirical SDs are in the parenthesis 
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Table 5.11: Simulation results for mixed Pedigree with exchangeable correlation structures. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.318 (0.125) 1.319 (0.125) 0.001 0.127 0.125 0.003 
Age 0.2 0.352 (0.338) 0.351 (0.338) 0.002 0.346 0.341 0.010 
SS 0.1 0.286 (0.263) 0.287 (0.263) 0.002 0.253 0.247 0.018 
PO 0.1 0.304 (0.201) 0.304 (0.201) 0.002 0.205 0.203 0.012 
D2 0.1 0.321 (0.263) 0.321 (0.263)' 0.002 0.261 0.257 0.031 

Const. 0.8 1.316 (0.129) 1.315 (0.128) 0.002 0.131 0.130 0.003 
Age 0.2 0.358 (0.302) 0.359 (0.301) 0.006 0.300 0.300 0.009 
SS 0.5 1.547 (0.256) 1.544 (0.258) 0.007 0.250 0.247 0.011 
PO 0.5 1.561 (0.206) 1.557 (0.206) 0.008 0.221 0.218 0.010 
D2 0.5 1.580 (0.267) 1.576 (0.268) 0.009 0.259 0.258 0.024 

Const. 0.8 1.318 (0.136) 1.313 (0.136) 0.010 0.138 0.137 0.004 
Age 0.2 0.360 (0.206) 0.363 (0.204) 0.024 0.199 0.206 0.013 
SS 0.9 3.822 (0.330) 3.813 (0.335) 0.016 0.324 0.324 0.024 
PO 0.9 3.830 (0.295) 3.821 (0.308) 0.022 0.303 0.302 0.021 
D2 0.9 3.850 (0.323) 3.843 (0.331) 0.035 0.331 0.340 0.038 

fempirical SDs are in the parenthesis 

Table 5.12: Simulation results for mixed Pedigree with familial correlation structures. 

True Parameter Estimates Standard Errors 
values ML GEE2 Diff. ML GEE2 Diff. 

Const. 0.8 1.322 (0.136) 1.323 (0.137) 0.004 0.156 0.153 0.007 
Age 0.2 0.342 (0.358) 0.343 (0.355) 0.009 0.350 0.344 0.016 
SS 0.9 3.781 (0.251) 3.783 (0.245) 0.012 0.322 0.316 0.017 
PO 0.5 1.539 (0.212) 1.541 (0.215) 0.012 0.243 0.238 0.015 
D2 0.3 0.917 (0.279) 0.908 (0.282) 0.025 0.306 0.294 0.033 

Const. 0.5 0.809 (0.149) 0.807 (0.150) 0.006 0.138 0.135 0.005 
Age 1.0 1.734 (0.347) 1.737 (0.348) 0.017 0.359 0.351 0.016 
SS 0.8 2.809 (0.341) 2.816 (0.337) 0.018 0.254 ' 0.253 0.017 
PO 0.6 1.931 (0.221) 1.942 (0.223) 0.023 0.230 0.226 0.016 
D2 0.3 0.611 (0.291) 0.602 (0.294) 0.035 0.298 0.290 0.033 

fempirical SDs are in the parenthesis 
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Table 5.13: Conditional probabilities for a family of Pedigree A with pss = 0.9, ppo = 0.4, X\ = 53, 
X2 = 20, X3 = 16, and X4 = 14. 

Conditional 
Probabilities 

Mlogit 
Est. SE 

Mprobit 
Est. • SE 

Pr(Y 4 = 1 | Yi = 1,Y2 = 1,Y3 = 1,X) 
Pr(Y 4 = l | Yi = l , Y 2 = l , Y 3 = 0 , X ) 
Pr(Y 4 = l | Yi = l , Y 2 = 0,Y 3 = 0 ,X) 
Pr(Y 4 = l | Y 1 = 0,Y 2 = 1,Y3 = 1 , X ) 
Pr(Y 4 = l | Y 1 = 1,Y2 = 1 , X ) 

0.952 0.009 
0.638 0.028 
0.140 0.033 
0.932 0.016 
0.930 0.013 

0.959 0.008 
0.551 0.022 
0.160 0.033 
0.931 0.018 
0.932 0.012 

Table 5.14: Conditional probabilities for a family of Pedigree B with pss = 0.9, ppo = 0.5, 
pD2 = 0.3, X-i = 68, X2 = 46, X3 = 14 and X4 = 10. 

Conditional 
Probabilities 

Mlogit 
Est. SE 

Mprobit 
Est. SE 

Pr(Y 4 = l | Y1 = 1,Y2 = 1,Y3 = 1,X) 
Pr(Y 4 = l | Y 1 = 1 ) Y 2 = 0 , Y 3 = 0 ,X) 
Pr(Y 4 = 1 | Yi = 0,Y 2 = 1,Y3 = 0 , X ) 
Pr(Y 4 = 1 | Yi = 0,Y 2 = 0,Y 3 = 1,X) 
Pr(Y 4 = l | Y2 = l,X) 

0.950 0.012 
0.156 0.046 
0.321 0.093 
0.912 0.029 
0.825 0.021 

0.953 0.011 
0.178 0.041 
0.259 0.060 
0.895 0.032 
0.826 0.021 

Table 5.15: Conditional probabilities for a family of Pedigree C with pss — 0.9, ppo = 0.5, 
pD2 = 0.3, Xx = 68, X2 - 46, X3 = 14, and XA = 10. 

Conditional 
Probabilities 

Mlogit 
Est. SE 

Mprobit 
Est. SE 

Pr(Y 5 = 1 | Yi = 1,Y2 = 1,Y3 = 1,Y4 = 1,X) 
Pr(Y 5 = 1 | Yi = 0,Y 2 = 1,Y3 = 0,Y 4 = 0,X) 
Pr(Y 5 = 1 | Yi = 1,Y2 = 0,Y 3 = 0,Y 4 = 0,X) 
Pr(Y 5 = 1 | Yi = 0,Y 2 = 0,Y 3 = 1,Y4 = 0,X) 
Pr(Y 5 = l | Yi = 1,Y2 = 1,Y3 = 1 , X ) 

0.957 0.009 
0.277 0.094 
0.171 0.035 
0.094 0.035 
0.870 0.022 

0.962 0.008 
0.227 0.053 
0.186 0.034 
0.139 0.033 
0.875 0.023 
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Chapter 6 

Discussion 

The objective of this thesis was to compare existing methods for analyzing multivariate binary 

responses. We are mainly interested to study the performance of these methods for analyzing 

the binary response (e.g. presence/absence of a genetic disease) in the context of data structures 

typically arising in genetics. In genetics, it is assumed that these binary responses are the quantal 

values of an underlying continuous distribution. This assumption leads us to consider latent variable 

models for analyzing binary data in genetics. These latent variable models are likelihood based and 

have been widely used since the early 1930's. Recently, estimating equation based methods were 

introduced which can also be used to analyze multivariate binary responses. Among the existing 

methods, we have compared latent variable and estimating equation based methods for multivariate 

binary responses. 

We have reviewed the latent variable models (multivariate probit and logistic) in Chapters 2 

and 3 respectively. The multivariate probit model is based on the assumption that the underlying 

latent variable follows multivariate normal distribution. In genetics, this assumption has physical 

meaning because the observed phenotypic value is assumed to be the sum of many small genetic 

effects and the environmental deviations. By the central limit theorem, the normality assumption 
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for this phenotypic value is reasonable. The multivariate probit model is useful to obtain maxi­

mum likelihood estimator of the parameters corresponding to the regression model defined for the 

univariate margins. The maximum likelihood estimator of the association between the members 

of the family can also be obtained in terms of the latent correlation coefficient, which is known 

as tetrachloric correlation. In biostatistics and epidemiology, the odds-ratio has a more attractive 

interpretation than the correlation coefficient as a dependence parameter. Because of that linear 

logistic model is widely used though there is no physical reasoning of considering this model. 

In Chapter 3, we discussed the multivariate logistic model which is based on the assumption 

that the underlying univariate margins are logistic. Given the univariate logistic margins and 

the two- and higher-order cross-product ratios as the dependence parameters, we have used the 

multivariate Plackett construction to obtain the higher-order margins. Besides estimating the 

regression parameters corresponding to the univariate margins, the multivariate logistic model 

parameterizes the dependence among the members of the family in terms of the log odds-ratio. We 

also described the McCullagh-Nelder-Glonek approach to the multivariate logistic model. Instead 

of using the multivariate Plackett construction, to obtain the orthant probabilities, they defined 

univariate margins and the two- and higher-order dependence parameters in terms of the linear 

combinations of the joint probabilities. Using the logit and logarithmic links corresponding to the 

univariate margins and the dependence parameters respectively, the McCullagh-Nelder-Glonek 

approach provide similar results as the multivariate Plackett construction based model. 

In Chapter 4, estimating equation based methods are reviewed. These methods do not re­

quire full specification of the joint distribution of the responses. Among the estimating equation 

based methods, the GEE2 method can estimate the regression parameters and the dependence 

parameters (in terms of logORs) simultaneously. Instead of using likelihood based score functions, 

for the GEE2 method, a set of estimating equations are considered to estimate the parameters cor­

responding to the univariate margins and to the dependence structure. These estimating equations 
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are similar to the score function of a multivariate normal model. In GEE2, the bivariate dependence 

parameters are defined according to the Plackett distribution. These estimating equations require 

the computation of third- and fourth-order moments, for which McCullagh-Nelder-Glonek's ap­

proach of multivariate logistic model has been used. Besides using estimating equations in place 

of likelihood score functions for estimating the parameters of the model, the GEE2 method is sim­

ilar to the multivariate logistic model. That means, the GEE2 method is an estimating equation 

approach for estimating the parameters of the multivariate logistic model. 

For analyzing binary responses, besides identifying important covariates and estimating 

the association between the family members for the occurrence of the disease, the estimate of 

the probability that an individual has the disease given the disease status of the other family 

members is also of interest in genetics. This conditional probability is the ratio of the two orthant 

probabilities. The GEE2 method cannot estimate the orthant probabilities. In this thesis we have 

compared the multivariate logistic and probit models for estimating these conditional probabilities 

and the respective standard errors. 

Since the form of the likelihood function of the multivariate logistic model is very complex, 

the elements of the gradient and the Hessian matrix cannot be computed analytically. We have 

used quasi-Newton method to solve the system of equations for estimating the parameters and the 

corresponding standard errors of the multivariate logistic model. For estimating the parameters 

of the GEE2 method, we have used a Newton-Raphson routine with the gradient and Hessian 

matrix which are computed by FADBAD, a differentiation package. FADBAD is relatively a new 

differentiation package which uses automatic differentiation to compute the derivatives of a given 

function. Automatic differentiation could be useful elsewhere in statistical applications for solving 

system of non-linear equations or optimizing a function where analytic derivatives are too difficult 

to obtain with symbolic manipulation software. 

To compare the maximum likelihood and estimating equation based approaches, we have 
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carried out a simulation study with different pedigrees. The multivariate Plackett construction 

does not have a closed form expression of the joint cumulative distribution function, so generating 

multivariate binary data from the multivariate Plackett construction is difficult. For our simulation 

study, we used the multivariate probit model to generate multivariate binary data. The effects of 

the pedigree sizes, the types of pedigree, the dependence structure, and the sample sizes have been 

studied for the comparison of these two approaches. To define the regression model corresponding 

to the univariate margins, only the covariate Age is used. No covariates have been used for the 

model corresponding to the dependence structure. 

Chapter 5 contains the simulation results and the description of the estimation procedures 

that are used for the methods considered in this thesis. The maximum likelihood and estimating 

equation based estimates of the parameters defined for the univariate margins and dependence 

structures are found to be quite similar for all the pedigrees we have considered. For samples of 

size 200, the estimating equation based estimates are marginally more efficient than the maximum 

likelihood based estimates. But for samples of size 600, there is no difference between the efficiency 

of the corresponding estimates of these two approaches. The estimates of the conditional probabil­

ities and the respective standard errors are similar for the multivariate logistic and probit models. 

The estimating equation based method GEE2 requires the computation only to the fourth-order 

moments, whereas the maximum likelihood method based on the multivariate Plackett construc­

tion requires the computation of all the moments up to the dth-order (d is the family size). As a 

consequence, this of this maximum likelihood based method requires more computation time for 

estimating the parameters than the estimating equation based approach if the family size > 6. 
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Appendix A 

A . l 

cov(j/jj, yik) 

cov{yij, yikVii) 

cov(yij yik, yu yis) 

E(yij){l - E(yij)} Hj = k, 

, E(yij yik) ~ E(yij)E(yik) if j ^ k. 

E(yij y^ yu) - E(yij)E{yik yu) if j ± k ± l 

' E(yij yik) - E(yij)E(yik yu) ii j = I ^ k 

E(yij yu) - E{yij)E(yik yu) if j = k + I 

* 

E(yij yik yu yis) - E(yij yik)E(yu yis) if j ^ k ^ I ^ 

E(yij yik yu) - E(yij yik)E(yu yis) if j = s or k = 

* E{yij yik yis) - E(yij yik)E{yu yis) if j = I or k = 

E(yij y i f c ) ! 1 -
 E(yij yik)} if (j = i k k = 

(j = s&k = 
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