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Abstract 

With both the complete sequences of multicellular organisms as well as the emerging 

results from genomic scale expression experiments at our disposal the incentive to construct 

models detailing the interactions of gene products is greater than ever. An integral un

derstanding and input into any such model lies in the combinatorics of the transcription 

factors that result in gene expression. Footprinting experiments have led to the assump

tion that a specific transcription factor binds exclusively to a strongly conserved sequence 

of nucleotides. Consequently, the search for transcription factors has been simplified to the 

problem of determining the motif to which each transcription factor may bind. 

Caenorhabditis elegans, with its essentially complete genome sequence and comprehen

sive annotation is currently the best in silico model to study transcriptional regulation in a 

multicellular organism. Gathering between 200-2000 bp of the upstream region of all genes 

unlikely to lie within a polycistronic transcript, a number of different approaches to finding 

candidate motifs have been applied. These include the study of over-represented oligonu

cleotides in the above mentioned dataset vis-a-vis the whole genome, the examination of 

signal distribution in the dataset, the comparative genomic approach of phylogenetic foot-

printing with Caenorhabditis briggsae, and analyses based on the results of gene expression 

technologies. 

The cataloguing of motifs found through whatever means neccesitates a method of orga-
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nization as well as a ranking according to their possible biological relevance. Grouping into 

a large matrix all the potential motifs on one axis and the genes they lie proximal to on the 

other eliminates positional and ordering information but enables one to draw on techniques 

from graph theory and mutivariate statistics, as well as providing the ability to cluster genes 

based on common transcriptional profiles. Such methods allow one to extract information 

about composite motifs and points to their potential use in determining, when looking at 

sets of coregulated genes, the underlying control mechanisms. 
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Introduction 

Measure everything that is measurable, and make measurable everything that 

is not yet so. 

- Galileo Galilei 

Rene Thom, in his 1972 treatise "Stabilite Structurelle et Morphogenese" [121], made 

the following comment on disciplines that have in the past proven uneasy bedfellows: "... 

conversely, if some disciplines, like social sciences and biology, resisted mathematical treat

ment for so long, even if they have succumbed, this is not so much because of the complexity 

of their raw material, as is often thought (all nature is complicated), but because qualita

tive and empirical deduction already gives them sufficient framework for experiment and 

prediction." By mathematical treatment, Thom is not referring to the use of quantitative 

assessment - this is a staple in the field of biology - but rather the use of mathematics to 

provide a description of biological phenomena, allowing for prediction and the analysis of be

havioural properties. While it remains a daunting challenge to represent the morphology of 

aggregate cells when the aggregate constitute a multicellular organism, real insight has been 

made in modelling at the finer resolution of internal cellular processes and cell signalling. 
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The current excitement over gene expression technologies in determining the components 

involved in cellular processes testifies to the enormous strides in knowledge we are making. 

The value of predictive modelling, however, is not in hindsight description but in its ability 

to direct experiment. Or, in the boldest view, make experiment redundant. The curren-

t revolution in biology as a consequence of the sequencing of complete organisms has the 

potential to deepen this direction toward a predictive capacity. Following Zuckerkandl and 

Pauling's paper of 1962 on the relationship of globin genes from different organisms [142], 

the generation of vast amounts of sequence data has had the most immediate impact through 

inference by homology, and shall continue to do so. But it is the dynamic play of the gene 

products that has the largest role in the determination of an organism. Consequently it 

is the union of an organisms' complete DNA sequence with mRNA and protein expression 

technologies that will play the greater role in building predictive models. 

Differential equations, the traditional method for depicting dynamic relationships, are 

always somewhat of a blanket to an underlying discrete combinatorics. Similarly, models 

exploiting gene expression data are in an equivalent relationship vis-a-vis the underlying 

combinatorics of the transcription factors of the regulatory systems. It is the vast orchestra

tion of the transcription factors that, emerging from the studies of Jacob and Monod [51], 

provided hints of the intricate control mechanisms determining an organisms development. 

We have travelled along way from the early work on the A repressor [94], still the best under

stood regulatory system, and while many of the paradigms from bacterial systems naturally 

extend into the eukaryotic realm, the increase in complexity will likely be mirrored by an 

increase in the regulatory logic [26]. 

Much has been made of the results of experiments to determine the specific regions of 
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DNA to which transcription factors interact, the clearest of these being the footprinting 

method [17]. From the compilation of a number of DNA-protein interactions, an assumption 

has been promulgated that the determination of transcription factors, which play a role in 

gene regulation, may be reduced to whether the sequence to which the protein binds is in an 

effective position. This assumption has consequently taken the study of which transcription 

factors play a role in regulation into the computational arena, where motif searching has 

become one of the de rigueur "unsolved" problems. There are two distinct but intricately 

related problems motivating the community in this search for binding site motifs. The 

first is to find these motifs and to associate them with their affected gene, a process of 

cataloguing. The other is to use the knowledge of these motifs in lieu of the transcription 

factors as a basis for determining the logic underpinning the dynamics of gene expression. 

The second approach remains suspect in that there exists no proof that a consistent one-to-

one association is feasible. The search for computational rules demonstrating the association 

of binding sites with specific transcription factors and further, those binding sites that are 

consequential for expression owing to their position, is bound to bring to mind the attempts 

made to find rules of binding based on the amino acid composition of motifs found among 

the families of transcription factors, a trickle of such papers still to be found in the journals 

[27] [77] [116]. One cannot but be reminded of those intrepid souls who sought and still seek 

to square the circle. The prognosis is not necessarily so dire however, in that a rules based 

approach may yet find a renaissance. It may simply be a question of timing, of a problem 

not yet being, as Francois Jacob would phrase it, within the envelope of the possible. While 

the problem addressed in this thesis is enticing, because easily stated and easily studied, the 

real dilemma lies in the verification. 
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In considering transcriptional regulation, the most fundamental step in a gene products' 

regulated life, I am drawn not to the reasons why an in silico deconstruction would work, 

but why it won't, or at least prove problematic. It is these reasons that shall, if truly of im

port, be the information that in the future must be incorporated into a method of detection, 

whether epigenetic or not. The list is hardly exhaustive: the effects of methylation, current

ly addressed by a public consortium [45]; conformational properties, a nicely documented 

case being the situation in which an in vivo footprinting result could not be replicated in 

vitro [17]; indications of heretofore unexpected mRNA coding complexity, such as with the 

Drosophila melanogaster mod(mdg4) [68]; enhancer blocking by insulators [11]. As I run 

through these problematic situations I think of current gene prediction programs that take 

into account proximal regulatory elements, lending greater weight to the decisions, and won

der how future prediction programs might incorporate all genomic knowledge into models 

analogous to Hidden Markov Models to allow for increased informative decisions. Would it 

be possible to predict whether a hexamer 50,000 base pairs away from a gene plays a role 

otherwise? 

It is a striking testament to the fundamental change in biological investigation, along the 

lines of Jacques Monod's dictum that "what is true of E. coli is true of elephants," that I 

mention lastly, I shall not go so far as to say "merely in passing," the organism used as the 

model in this study. Why Caenorhabditis elegans? Simply because it is the most thoroughly 

sequenced multicellular organism. For proof of principle more headway might have been 

made with Saccharomyces cerevisiae, especially given the quantity and detail of expression 

data already compiled. But the potential payoff is greater with C. elegans. With in silico 

models there is no greater difficulty in kind between analyzing the genome of a single celled 
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over a multicelled organism, the same techniques hold. And if there is an ability to derive 

pertinent facts concerning the elements underlying a complex system, then the more complex 

the system, the bigger the payoff. But C. elegans is an extraordinary model in its own right, 

well beyond the mere priority of its sequences' completion. Although taking the stage as 

a model organism for genetic research quite late, C. elegans has a number of firsts to its 

credit, the most profound of which has been the complete elucidation of its cell lineage [115]. 

Acquaintance with this free-living nematode worm as an object of scrutiny stretches back at 

least 100 years and even before its consideration as a genetic model some cytological facts, 

such as chromosome number, had been determined [85]. The stories surrounding Sydney 

Brenner's choice of C. elegans owing to its short life cycle, ease of handling, and transparent 

body have become legendary [100]. Far from expected from Sydney's early studies was its 

future role in elucidating the processes involved in apoptosis [46] and aging [63], the discovery 

of genetic tools such as RNAi [36], and its use as a testbed for the techniques of mapping 

and sequencing [134] [19] instrumental to the revolution we have the pleasure to be living 

through. 
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Chapter 1 

Fits and Starts 

Analyses typified by the inaugural papers on any new genome necessarily draw on the state 

of the art in any given area, such as gene prediction, and it is a testimony to the paucity of 

general principles in regulatory analysis that in the two year hiatus between the publication 

of the two genomes of Caenorhabditis elegans [19] and Homo sapiens [70], during which 

Drosophila melanogaster [2] was also completed, that very little ground has been gained 

even with the vast amount of expression data available. Indeed it has been stated that no 

significant progress in general principles has been made in the twenty years this problem 

has been investigated [118]. Current methods require the knowledge of an experimentally 

determined motif and, through a position weight matrix (PWM), one is able to say whether 

such a motif resides in a region proximal to a gene or not, certainly not whether the site is 

functionally relevant. In a companion paper to the publication of the C. elegans genome, 

discussing the predicted Zinc Finger genes, Clarke and Berg [21] considered significant both 

the distribution of a consensus TRA-1 binding site throughout the genome as well as the 

number of occurrences of the site upstream of the set of predicted genes. A similar analysis 
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is incorporated in the H. sapiens publication [1]. While a few studies have proven successful 

in detailing the relationship between regulatory elements in eukaryotic systems, resulting in 

the regulatory module hypothesis [26] [139] [133], the problem from a genome perspective 

remains in its infancy. 

The approaches used in this study are all extremely simple. As highlighted in the intro

duction the incorporation of increasingly more complicated scenarios is certainly a goal, but 

we are currently facing the first hurdles. The problem of searching for strings of negligible 

length in the immense search space of the genome need hardly be stated and therefore of 

vital importance is the ability to reduce the noise in order to increase the signal. In truth we 

cannot afford to reduce any search space. Transcription factors have an effect from introns, 

positions downstream of the 3' untranslated region (UTR), exonic regions, and sites any 

number of base pairs upstream of the 5 ' UTR [73]. Realistically, however, we must target 

the area containing the densest concentration of functional signals, immediately 5 ' of the 

UTR [73]. The question of the average size of the UTR is also one not fully resolved in 

C. elegans and has necessitated utilizing the region 5 ' of the A T G translational start site. 

While the occurrence of polycistronic transcripts in C. elegans [109] may provide a heretofore 

unexpected but valuable source of analysis (see Chapter 2), they also complicate the search 

for binding sites and are best excluded. 

With the dataset generated as described in Appendix A . l one can begin, so to speak, 

where Clarke and Berg left off [21]. The occurrence of a number of potential binding sites, 

both experimental (in vivo and in vitro) and computationally determined by base similarity 

with Caenorhabditis briggsae, has been determined, in an exact manner, in both the whole 

genome and the dataset, as well the distributions of occurrences in the upstream regions. 
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Binding Site Associated Gene/TF Reference Total Ratio Max 
T C C C Y H R R G R R V daf-7/UNC-3/OLF-l D.Riddle (pers. comm.) 864 0.1632 4 
RTAAAYA FREAC-2,-3,-4,-7 M . Hellqvist-Greberg (pers. comm.) 105650 0.1476 39 
T A T A A hsp-16 / basal McGhee and Krause, 1997 306064 0.1472 32 
C A G C T G hlh-1 / MyoD McGhee and Krause, 1997 39824 0.1246 12 
A A A T T C A T mec-3 / UNC-86 McGhee and Krause, 1997 17668 0.1394 51 
T G G G W G G T C TRA-1L McGhee and Krause, 1997 644 0.0963 3 
R T C A T SKN-1 McGhee and Krause, 1997 417174 0.1399 29 
C T A A A A A T A MEF-2 McGhee and Krause, 1997 6512 0.1402 5 
T A A A G T G G T T G T G T G CEH-22 McGhee and Krause, 1997 2 0.5 1 
R T G G G A A LAG-1 McGhee and Krause, 1997 31372 0.1117 16 
T G T C A A T vit-2 / 6(VPE1) McGhee and Krause, 1997 21780 0.1354 45 
C T G A T A A vit-2 / 6(VPE2) McGhee and Krause, 1997 19844 0.1530 8 
T T T T C A G R SL1 RNA McGhee and Krause, 1997 64396 0.1255 19 
G A G T A T C N N N N N C T C T T C her-1 Streit et al. 1999 6 0.1667 1 
G A G T A T C T A A G T C T C T T C her-1 Streit et al. 1999 2 0.5 1 
T T T G A C C T T mel-32 Vatcher, 1999 1184 0.1993 3 
C A A A C T A C T mel-32 Vatcher, 1999 992 0.1109 2 
T C T T G T T T G C A A C A A mel-32 Vatcher, 1999 2 0.5 1 
T G A T C G A T A mel-32 Vatcher, 1999 720 0.1528 2 
G C T T T T C T C T C mel-32 Vatcher, 1999 132 0.1515 1 
T T T T T T G T T T T T mel-32 Vatcher, 1999 2972 0.1511 6 
C A A G T G T C A C C his-24 Perier et al, 2000 34 0.1177 1 
C A T C A G A T T C G his-12 Perier et al, 2000 46 0.1739 1 
T C T T C A T C T C A his-10 Perier et al, 2000 162 0.2469 1 
A T A G A G T T C T C msp-56 Perier et al, 2000 38 0.3158 1 
C A C T T G G C T T C col-12 / F15H10.1 Perier et al, 2000 56 0.125 1 
CA C T T T A T T T C col-13 / F15H10.2 Perier et al, 2000 154 0.1753 1 
A C G G T T C A G C C vit-2 Perier et al, 2000 12 0.25 1 
A C T C T C G C A A T vit-5 Perier et al, 2000 22 0.2727 1 
A C T C G G T C A C T vit-6 Perier et al, 2000 34 0.2647 1 
C G A G C A G A A A G cal-2 Pener et al, 2000 48 0.0625 1 
G G C G G G T G T A T kin-2 Perier et al, 2000 4 0.5 1 
G G G T A T C A A T T kin-2 Perier et al, 2000 28 0.1786 1 
A A A C A A C A T T C hsp-16K-l Perier et al, 2000 184 0.1630 1 
A A C C A A T A C A C hsp-16K-48 Perier et al, 2000 62 0.1290 1 
A G C T C A A T T T G mtl-1 Perier et al, 2000 134 0.0896 1 
G A A T C A A G C T T mtl-2 Perier et al, 2000 60 0.1667 1 
A A T A A C G T G T T casein kinase II Perier et al, 2000 134 0.1418 1 
T R T T K R Y T Y S pha-4 Gower et al, 2001 24332 0.1532 5 
W G A T A R GATA-1 Gower et al, 2001 231084 0.1377 17 
G G A T T A unc-25 Eastman et al, 1999 35468 0.1223 12 
T A A T C C unc-25/unc-47 Eastman et al, 1999 35382 0.1463 14 

Table 1.1: Potential binding sites culled from the literature. The column labelled 
Total is the total number of exact occurrences of the binding site in the whole genome 
while the Ratio column is the proportion found solely in the generated dataset of 
upstream regions. The column labelled Max is the maximum number of sites in the 
representative upstream region. See Appendix B for interpreting the ambiguity codes 
in the binding sites. 
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Figure 1.1: The distribution ofthe T A T A box throughout the C. elegans genome. Nor

malized along the horizontal axis by the size of chromosome V , each bin represents 

2 K B . The Y-axis is the number of occurrences of T A T A A in the given bin. 



Shown in Table 1.1 is their occurrence in the whole genome, the ratio found in the dataset 

and the maximum number of occurrences found in the representative upstream region. It is 

worth while keeping in mind when looking at the table that the dataset represents 26% of 

the whole genome. Even so, little emerges from this picture but rather draws me to consider 

what is known about competition and specificity. Ptashne, in his book A Genetic Switch [94], 

in surveying the results from E. coli on specificity and the amount of free repressor deduces 

that 99% of the repressor is not free in solution, but bound to non-specific operators. He 

closes by considering the eukaryotic case no different in kind. Does it matter then whether 

we are dealing with non-specific bound factors or specific non-functional bound factors, when 

so many are inconsequential? 

The TATA-box is, of course, quite central. It has been depicted in both its genome-

wide distribution (Figure 1.1) and its distribution of occurrences in the upstream regions 

of the dataset (Figure 1.2(A)). From Figure 1.2(B), however, emerges a point of possible 

significance. Representing the positional distribution of TATAA sites over the set of upstream 

regions shows a peak « 506p from the A T G start site: This hints at two things. A possible 

indication of the average size of the 5' UTR, as well as a depiction of functional signal. 

Looking at this figure I am drawn to restate the usual rendition of motif searching from a 

signal to noise problem in the obvious sense to a problem where the noise is identical to the 

signal. In this restatement, position takes centre stage. 

Since the availability of whole genomes, replete with gene predictions, it is a very natural 

question to ask, but possibly a dangerous one to assume, whether motifs that play a role 

in binding transcription factors are in greater abundance in the regions where they are of 

import. Figure 1.3(A) depicts the frequency of all hexamers in their ratio of occurrence in 
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Figure 1.2: Distribution of the frequency of the quantities of TATAA in the dataset 

of 15,525 upstream regions (A) and their positional distribution (B), determined by 

plotting the start site of each TATAA over all 15,525 upstream regions, where 0 depicts 

the ATG translational start site. 
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Figure 1.3: The distribution of the ratio of hexamers (A) and from hexamers to 30-

mers (B) in the upstream regions vs. the whole genome. Generated by determining 

exact quantities of all n-mers in both the dataset and the whole genome and plotting 

the frequency of the ratios. Those motifs above the line at the 95% mark in (B) were 

chosen to aid in building PWM's as shall be described in Chapter 3. 
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the generated dataset to the whole genome. The mean is « 26%, the same as the ratio 

of the dataset to the whole genome, a definitive statement that no hexamers involved in 

transcriptional regulation in C. elegans are more representative in the regions where they 

presumably play a role. Figure 1.3(B) pursues this line up to 30-mers. As we increase the size 

of the n-mer an interesting question takes root. While it is natural that large n-mers playing 

a role in transcription will have increased representation in the dataset - a consequence of 

every 13-mer in theory able to reside within C. elegans but not even half of all 14-mers - it is 

also true that as a motif increases in size the variability in nucleotide composition will also 

increase [94]. 
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Figure 1.4: Linear fit of variability of nucleotides vs. binding site size. Generated by 

stripping all N's, representing any of the possible four nucleotides, off the edges of the 

280 motifs in T R A N S F A C and plotting the size vs. the variability in the motif. 

This question of the variability of nucleotides is worth investigating, but reservations 

apply. Footprinting studies have determined that it is often only necessary to mutate one 
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critical base pair to cripple a protein-DNA interaction whereas a number of other base pairs 

may be variable with impunity [3]. Regardless, asking this question through analysis of 

the transcription factor database, Transfac [137], by gathering all 280 motifs, stripping any 

N's, representative of any possible base pair, from the edges, and plotting the number of 

ambiguous bases against the size of the binding site yields Figure 1.4, an increase that is 

roughly linear. 

K04F10.4e 

3000 -I 

200 400 600 800 1000 1200 1400 1600 1800 

Position of nucleotide along upstream region 

Figure 1.5: Distribution of the base pairs of the upstream region of bli-4 in alignment 

with all other upstream regions in the dataset. See Appendix A . 2 . 

Knowledge of the variability of nucleotides as the binding site grows is valuable when 

determining generalized searching strategies. One such approach has been motivated by 

the idea of illuminating the nature of the upstream regions comprising the dataset. While 

it was clear from Appendix A . l that the dataset represents no great change in nucleotide 

composition, it is likely that a greater density of functional binding sites occur in this set. 
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Given that, what sort of properties would emerge by a vast cross-comparison of any given 

upstream region against all other upstream regions in the dataset, utilizing an alignment 

mechanism customized to preference the unique properties of binding sites? The alignment 

of binding sites, regardless of whether there are mismatches, tend toward having consistent 

spacing. Consequently, a modification of the Smith-Waterman algorithm, removing the 

scoring mechanism for vertical or horizontal movement, would retain only diagonal scores 

(see Appendix A.2). This query on the nature of an upstream region vis-a-vis all other 

upstream regions is an attempt to ask what is common, what is unique? Figure 1.5 shows 

the disparity in the alignments over the upstream region of the bli-4 gene. While it might 

have been expected to be awash in noise, there is clearly strong demarcation. This procedure 

proved to be computationally taxing and was not followed through with enough upstream 

regions to gauge any possible emergent properties but it does point to regions of greater 

representation for the set as a whole. The immediate reaction is to consider these regions 

of greater representation as ubiquitous binding sites. This may well prove to be so but the 

regions examined, for instance in bli-4, showed no correlation to those sites known to have 

functional relevance. 

1.1 Phylogenetic Footprint ing 

Widespread opinion holds that the initial tasks set out in this study will prove redundant 

in a short while owing to the technique of phylogenetic footprinting [93]. As a model, 

C. elegans is far more powerful thanks to our knowledge of another free-living nematode, 

Caenorhabditis briggsae [37] [43] [114]. The morphological proximity of the two species, 
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despite the estimates of divergence between « 23—40myr [119], is such that wonderful stories 

of researchers confusing the two species, or thinking them to be one and the same, were finally 

laid to rest by mating experiments, their inability to cross ensuring their respective places 

[100]. At the genomic level the two species have proved remarkably reinforcing, highlighting 

gene structure [61], such as the determination of alternative transcripts [119], chromosomal 

changes through analysing altered synteny, and the analysis of conserved non-coding regions, 

the focus of the present study. C. briggsae is currently undergoing non-systematic sequencing 

of particular genomic regions, whereby selected BACs and fosmids built into a fingerprint 

map are chosen based on hybridization experiments on an investigator requested basis (J. 

Schein, personal communication). There is a strong desire, once funds are available in the 

large sequencing facilities ofthe Sanger Centre and Washington University, to ramp this up to 

a high-throughput production (M. Marra, personal communication). An approach to detect 

orthologues between the C. briggsae finished sequences housed at Washington University 

[131] and the C. elegans annotated gene collection is outlined in Appendix A.3. From the 

ensuing set I shall point out two cases. 

Highlighting the value of such sequence comparison is Figure 1.6 depicting, in Dotter 

format [108], the upstream region of predicted gene B0228.3 and its possible orthologue in 

C. briggsae. The sequence is an exon (D. Baillie, personal communication) and therefore an 

unannotated exon or partial exon of the gene, B0228.3, that was used to find it. 

Figure 1.7 depicts the alignment of predicted gene c47dl2.3 and its orthologue, their 

representation in Dotter format [108] and a positional distribution of the amount of cross 

alignment in terms of potential binding sites in which a match scores 1, a mismatch -1, 

as described in Appendix A.2. This requires more work to interpret. Indeed, it points 
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Figure 1.6: Alignment of the upstream region of predicted gene B0228.3 with its pos

sible orthologue in C. briggsae represented in Dotter format [108]. 

to a complicated scenario for automation to solve. The difficulty resides in the degree of 

cross alignment, making any extraction of a local orthology over any other suspect. This 

hints, whether correct in this case or not, at an approach to extract orthologous non-coding 

elements. In the modified Smith-Waterman algorithm described previously in Appendix A.2 

only the diagonal elements are represented, horizontal and vertical entries having been zeroed 

out. In extracting the entries once they are scored we might keep tally of the indexes for both 

the x and y coordinates, disallowing either index to fall below the maximum value achieved at 

any given point. Considering all possible paths over the traceback procedure, the elements 

in the path scoring the maximum would be chosen. In many respects this approach is 
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Figure 1.7: Alignment of the upstream region of predicted gene c47dl2.3 with its C. 

briggsae orthologue (A), the representation of the resulting noise in both Dotter (B) 

and linear (C) format, and a distribution of the scores (D) for aligning the binding 

sites as described in Appendix A.2. 
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akin to treating the Smith-Waterman algorithm in the framework of the Needleman-Wunsch 

algorithm. That is, the global alignment of the local alignments. 

j C. briggsae Homology 

2500-t - • _ . • 

_ 2000-
9 
E 

Position of nucleotide along upstream region 

Figure 1.8: Dis t r ibu t ion of the base pairs of the upstream region of predicted gene 

B0365.6 in alignment w i t h a l l other upstream regions in the dataset and its C. briggsae 

orthologue. 

A final point of quizzical interest concerning the predicted gene B0365.6 and its C. brig

gsae orthologue. When treated in the manner described previously with K04F10.4e aligned 

for binding sites against the other 15,524 upstream regions, an extraordinary correlation 

between the peaks of common alignment and the regions it shares with its C. briggsae or

thologue can be seen in Figure 1.8. 
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Chapter 2 

Coexpression and Coregulation 

The recent technologies for measuring genome-wide expression have created a much deserved 

excitement in much the same manner as having the full sequence of an organism. And indeed 

it will be the refinement and advancement of such technologies that shall be the overriding 

concern in the years to come. It is clear why. They provide a glimpse into the dynamic 

behaviour of the genes at any order of magnitude that is technologically feasible, from indi

vidual cells to tissues to whole multicellular organisms. Consequently, they are irrevocably 

changing the face of both fundamental biology and clinical medicine [4]. A fascinating aspect 

of these technologies is that they are drawing on and motivating developments across a wide 

range of fields, from cell sorting to hybridization techniques to statistical measurement to 

cluster analysis. There is a great deal of lively debate currently concerning the different 

approaches to measurement of gene expression with some camps prefering the microarray 

or gene chip technologies [103], whose strength lie in the ability to easily measure samplings 

from a number of different time points or developmental stages, with the other camp prefer

ing a more exacting analysis for a given time point or developmental stage, such as with the 
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SAGE protocol [127]. Both approaches have been applied to C. elegans. This study looks 

briefly at some results from the Stanford Microarray Database [110]. 

Figure 2.1: Unclustered correlation surface map of gene expression. The values in the 

array denning the surface are the pairwise Pearson correlation coefficients over the 

ratio values from a number of microarray experiments between all genes in the set. 

As stated, among the problems that are being tackled in a number of ways is that of 

clustering [32] [5] [117]. In its most general form the problem can be seen as a noisy surface 

of a correlation matrix representing the expression of a set of genes over a number of different 

experiments or time points as shown in Figure 2.1. In this context, the process of clustering 

can be separated into two problems, the first is the smoothing of the surface, the points of 

interest being the global as well as, within a cutoff, the local maxima and minima. The other 

is in determining the cliques that emerge from the correlation matrix [15]. 

The methods used in studying gene expression rely on the sampling of relative levels 

of mRNA product. But mRNA undergoes regulatory control of its own, not only in the 

translation to its final product but in its life span, each mRNA having potentially different 

rates of degradation. And even the same mRNA has been shown to have variable decay rates 
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that differ by more than two orders of magnitude [104]. Expression technologies, in order 

that the information be meaningful in terms of the final product, are interpreted with the 

implicit assumption of a consistent relationship between translation and mRNA turnover, 

as well as the role of RNA surveillance for the ensuring of no superfluous mRNA product. 

There are, however, a number of potential pitfalls with these assumptions in regards to the 

technologies as they are currently implemented. 'The existence of polycistronic transcripts 

in C. elegans, while themselves a subject of debate, provide an interesting context in which 

to examine expression technologies. Clearly, if any mRNA should have similar expression, 

then these transcripts should. If they don't, and they are truly polycistronic, then mRNA 

degadation should be the cause, although over a number of time points one might expect 

them to remain highly correlated. Whether this is the case or not leads to the approach 

possibly being of value in bringing to light different translational signals or, conversely, as 

a method for examining expression technologies. Table 2.1 shows a set of polycistronic 

transcripts described by Zorio et al [140]. 

Operon set Corre lat ion 
mot - l (K10B3.9) , opd-2(K10B3:8), spd-3(K10B3.7) 0.510 
lin-15b{ZK662A), lin-15a(ZK67'8.1) 0.314 
kin-16(M176.7), kin-15(M176.6) -0.055 
ZK353.8 , ZK353.7 0.768 
C50C3.8 , C50C3.7 0.401 
ZK637.9 , ZK637.10 0.383 
ZK637.3 , ZK637.5 0.853 
R05D3.2 , R05D3.1 , R05D3.11 0.783 
K06H7.4 , K06H7.3 0.636 
C06E1.10, C06E1.9 -0.054 

Table 2.1: Operons and their clustering correlation from expression data. See Ap
pendix A . 4 for details. 

The correlation results in Table 2.1 are derived from a microarray experiment containing 

genomic PCR products representing 11,917 predicted genes [98] (see Appendix A.4). The 
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results vary widely. Of the two sets of operons that contain three genes i.e. mai-l(K10BZ.9), 

0pri-jg(KlOB3.8), 0pd-3(KlOB3.7) and R05D3.1, R05D3.2, R05D3.11, two of the genes cor

relate a great deal more highly than with the inclusion of the third. For instance, gpd-1 

and gpd-3, two functionally related genes, correlate to a high value of 0.927 but with the 

inclusion of mai-1 the correlation drops to 0.510. If this is not an artifact of measurement, it 

is intriguing. It leads to a question of whether mai-1, the first upstream gene of the three, is 

not in fact a seperately transcribed gene, or whether it has different methods of degradation. 

If it is an artifact of measurement, here lies fuel for the critics. It would be of interest to 

tackle this approach in a bacterial system, where clearly understood operons are treated. 

B asymmetry lin-44 Un-17 vab-3 Emmons and Sternberg, 1997 
embryo polarity mex-1 par-1 par-2 par-3 par-4 par-5 par-6 Kemphues and Strome, 1997 
muscle actin act-1 act-2 act-3 act-4 Moerman and Fire, 1997 
cuticle L3 sqt-1 rol-6 col-12 col-13 col-1 col-17 col-15 Moerman and Fire, 1997 
cuticle Ld2 col-1 col-15 col-2 col-6 col-8 col-36 col-40 Moerman and Fire, 1997 
VPC generation lin-26 lin-39 unc-83 unc-84 Greenwald, 1997 
inductive signaling let-23 let-60 lin-3 lin-45 mek-2 mpk-1 sem-5 Greenwald, 1997 
inhibitory signaling lin-9 lin-13 lin-15 lin-36 lin-37 Greenwald, 1997 
vulval fates lin-11 Un-17 lin-18 vex-1 Greenwald, 1997 
phagocytosis ced-1 ced-6 ced-7 ced-2 ced-5 ced-10 Hengartner, 1997 
migration unc-5 unc-6 unc-40 Antebi et al, 1997 
major sperm protein msp family L'Hernault, 1997 
pharyngeal egl-2 egl-23 egl-36 exp-3 exp-4 unc-93 sup-10 

egl-30 unc-103 unc-58 unc-90 unc-105 unc-43 unc-110 Avery and Thomas, 1997 
cilium structure che-2 che-3 che-10 che-11 che-13 daf-10 

daf-13 osm-1 osm-5 osm-6 Bargmann and Mori, 1997 
axon guidance tax-2 tax-4 daf-11 daf-21 Bargmann and Mori, 1997 
water-soluble chemotaxis che-1 che-6 che-15 che-16 Bargmann and Mori, 1997 
osmotic avoidance osm-7 osm-8 osm-11 osm-12 Bargmann and Mori, 1997 
HSN path selection enu-1 fax-1 unc-42 unc-115 Antebi et al, 1997 
daf-c daf-1 daf-4 daf-7 daf-8 daf-14 Riddle and Albert, 1997 

Table 2.2: A sampling of functionally related genes potentially coexpressed through 
similar transcriptional programs. 

A major premise behind common transcriptional programs is their utility in coordinating 

tissue specific or developmentally coordinated processes [3]. Table 2.2 shows a collection of 
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genes that are involved in a number of different functional processes in C. elegans. From 

this collection the major sperm protein family provides an interesting set to examine. 

2.1 The Major Sperm Protein Family 

The major sperm protein (MSP) family consists of roughly 40 small intronless genes dispersed 

at three chromosomal loci and are exclusively expressed in late primary spermatocytes, where 

they comprise w 15% of all the protein, playing a role in sperm motility, oocyte maturation 

and gonadal sheath cell contraction [65] [82]. In this respect they are a unique multigene 

family in having preserved strict cellular and developmental regulation of expression without 

being organized in tandem arrays [130]. From the MSP genes annotated in the C. elegans 

Figure 2.2: Correlation surface map of 18 MSP genes generated by pairwise Pear

son correlation coefficients over all experiments housed in the Stanford Microarray 

Database [110]. 

database 23 were found in the previously constructed dataset of upstream regions. The 

recent microarray experiments of Reinke et al [98] include 17 of these 23 genes, 10 of which 
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Figure 2.3: Alignment of « 1006p of the upstream region immediately 5' of the ATG 

of 22 MSP genes. Aligned with the aid ofthe ClustalW server at EBI [23]. 

were of sufficiently good hybridization quality. These ten cluster together with a correlation 

of 0.986%, as measured by the software tool Cluster [31]. Indeed, querying all microarray 

experiments at the Stanford Microarray Database yielded 18 of this set of 23 genes, their 

strong overall correlation shown in the surface map of Figure 2.2. The degree of overall 

homology up to « lOObp of the upstream regions is striking amongst the 23 MSP genes, 

as was noted by Klass and Ammons [66] (see Figure 2.3), as well as their degree of cross 

alignment (see Figure 2.4). A homology search with the upstream region of just one of the 

MSP genes against the dataset of 15,525 upstream regions pulled out all the other 22 MSP 

genes in the set, as well as one seven-pass transmembrane chemoreceptor gene, a member of 

the serpentine receptor class d (srd) multigene family. This high degree of homology in the 

Motif MSP Family Total P value 
CATAATCTTTCA 16/23 37/15,525 < 0.0001 
AGATCT 21/23 4231/15,525 < 0.0001 
GATAAGA 16/23 2091/15,525 < 0.0001 
TTGCTATAAATT 9/23 20/15,525 < 0.0001 

Table 2.3: Sampling of motifs found in the first 100 bp upstream region of the MSP 
family and their relative abundance compared with the total dataset. 
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Figure 2.4: Signal profile of predicted gene C09B9.6 aligned for potential binding sites 

against nine other M S P genes, generated through the method described i n A p p e n d i x 

A . 2 . 

upstream regions of the M S P set indicates a high likelihood of their having arisen through 

gene duplication. That said, it would seem a difficult task to extract those elements that 

are functionally important. Klass and Amnions [66] pointed out, almost arbitrarily, a few 

conserved motifs from the set they analyzed. Table 2.3 examines these motifs in the light of 

the set of the 23 M S P genes vis-a-vis the dataset. As can be seen, all were significant under a 

Fisher exact test. Since the smallest motif was a hexamer this leads to a possibly interesting 

method for extracting significant motifs (see Appendix A.5). Table 2.4 shows the results, 10 

of which prove significant, the hexamer from the Klass and Ammons paper included. 
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Motif num Total num P value 
A A C T C C 17 4423 0.0033 
A A G A A G 18! 7127 . 0.0639 
A A T C T T 18 8556 0.1692 
A C T C C T 15 3414 0.0016 
A G A A G G 14 3967 0.0109 
A G A T A A 13 6341 0.2217 
A G A T C T 16 4231 0.0045 
A T A A A T 18 11515 0.4919 
A T A A C T 13, 6700 0.2702 
A T A A G A 15 6231 0.0998 
A T A A T C 18 6524 0.0365 
A T C T T C 17 7130 • 0.0938 
C A T A A T 18 i 6963 ' 0.0554 
C C T T C A , 13 4768 0.061 
C T A T A A • 15 5735 0-0642 
G A T A A G ;18 4422 )),'•.] 0.0016 
G C T A T A 15 2525 ' ,<0.0001 
T A A A T T 15 . ,12551 r i 0.7906 
T A A C T C ' 14 ' !3881 0.0094 
T A A G A A 13 7356 0.3638 
T A A T C T 17 5933 0.0309 
T A T A A A 16 10568 0.5343 
T C A T A A 19 7932 0.0827 
T C C T T C 13 5806 0.156 
T C T T C A 19 8907 ,' 0.1537 
T G C T A T 15 3465 0.0018 
T T C T C A 14 9880 0.6132 

Table 2.4: Statistical significance, determined by the Fisher exact test, of those hex-
amers arising from the first principal component in the matrix derived from the 23 
MSP genes. 

2.2 The Germ Line 

The totipotent and immortal hermaphroditic germline in C. elegans is a complex syncitial 

tissue that undergoes a number of fundamental processes such as spermatogenesis, oogenesis, 

sex-determination, meiosis, genetic recombination and chromosome re-assortment [64] [102] 

[105]. One of the first experiments to emerge subjecting C. elegans to genome-wide expression 

technologies, the previously, mentioned results from Reinke et al [98], studied the genetic 

changes taking place in the germline. Having built a microarray incorporating genomic P C R 

products representing 11,917 genes, this group exploited some well known mutants to arrive 
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Figure 2.5: Cross section of the correlation surface map of the germline intrinsic genes, 

generated by representing as a surface the array of pairwise correlations of microarray 

expression ratios arising from the set of germline intrinsic genes. 

at a collection of genes that were categorized as being sperm-enriched, oocyte-enriched or 

germline intrinsic, the latter simply those not particular to the preceding differentiations. 

It is the 508 germline intrinsic genes with which I shall be concerned. As shown in Figure 

2.6, the chromosomal distribution of the germline intrinsic set is similar to what would be 

expected of genes involved in fundamental and strongly conserved cellular functions. 

The reason for examining the germline intrinsic set of genes is for precisely the opposite 

reason in looking at the MSP set. It would be hoped that a complex patterning of regulatory 

signatures would emerge from the various nodes that the genes cluster into. However, even 

with such a complex set the correlations that arise from the microarray data (Figure 2.7) 

underlie the fact that many of these processes are active at temporally similar occasions and 

that the populations of worms involved in the preparation of mRNA do not lend themselves 

to the sort of fine scale expression studies that might be desired in this situation. Applying 

a hierarchical clustering program [31], the 508 genes, of which 377 are represented in the 

28 



84 

34 

24 

5000000 10000000 15000000 20000000 

Distance Along Chromosomes 

Figure 2.6: Distribution of germline intrinsic genes over the six chromosomes. 

dataset, break down into 70 nodes. Taking the largest node of 362 genes, and applying 

the same technique as with the MSP family (see Appendix A.5), building a matrix of the 

represented hexamers, the first principal component was determined and by the x2 test, with 

the traditional a value of 0.05, all those elements not deemed significant were discarded. The 

significant hexamers were then positionally ordered according to their place in the upstream 

regions of the genes comprising the node and pairwise aligned through a modification of the 

Needleman-Wunsch algorithm (see Appendix A.6). Figure 2.8 depicts the frequency of the 

runs of three consecutive motifs as a surface map, the peaks being the hexamer signatures 

for the node. Although to be significant it might be assumed that a particular run of motifs 

is at least as strongly represented as the number of pairwise alignments resulting from the 

genes in a node this is clearly not the case in the node just examined. Plotting the maximum 

run of three motifs divided by the number of pairwise alignments for the entire set of 70 
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Figure 2.7: The distribution of the correlation coefficients amongst the nodes clustering 

the germline intrinsic genes. The correlations were gathered from the nodes generated 

by the program Cluster [31]. 

nodes of the germline intrinsic set results in Figure 2.9. Not a substantial result and indeed 

shows little that might be construed as a strong argument in favour of the idea of regulatory 

signatures emerging from microarray clusters. As was mentioned, owing to the experimental 

protocol, the problematic aspect of this set of genes was the tight correlation of all the nodes. 

The mechanism of hierarchical clustering did not have to work too hard and the genes may 

have been found to settle into a very different and finer arrangement with another clustering 

method, in which case a new set of regulatory signatures might well prove more significant. 
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Figure 2.8: Regulatory signatures emerging from the surface map of the frequencies of 

a l l runs of the combinations of three significant motifs. See Append ix A.6 for further 

details. 
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Figure 2.9: No significant signatures emerge over the set of germline intrinsic genes. 

The graph was generated by plotting, for all 70 nodes, the number of runs for the 

maximum group of three significant motifs divided by the total number of pairwise 

alignments for the node. 
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Chapter 3 

Transcriptional Profiles 

The techniques from the preceding discussions, both of overrepresented oligonucleotides and 

phylogenetic footprinting, yielded a number of motifs, some of which one hopes have function

al relevance, others naturally more suspect. Regardless, they provide a reasonable harvest. 

From Figure 1.3(B) the red line at the 95% mark is the filter above which all motifs were 

selected, a total of 1539, many of the smaller motifs embedded in the larger motifs. The 

gathering of potential elements through phylogenetic footprinting entailed two approaches. 

The first, which was already discussed in section 1.1, resulted in a set of 163 potential binding 

sites. A subset of the sequenced BACs and fosmids have also been analysed for orthologous 

pairs by a team in University of California Santa Cruz [61]. Gathering from their results 

1003 orthologous regions upstream of the 5' UTR in 132 genetically characterized genes, 

and parsing these for motifs less that 50 bp in length, a set of 554 potential elements were 

extracted. 

This set of motifs were then grouped together into closely associated sequences in order 

to build motifs into either regular expressions or position weight matrices (PWM's). This 
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Figure 3.1: Size distribution, nucleotide composition, and nucleotide variability of bind

ing sites incorporated into the transcriptional profile matrix. See Appendix B for 

interpreting the IUPAC ambiguity codes. 

procedure is deceptively simple, and is actually the most difficult step in cataloguing com

putationally derived binding sites. The difficulty stems not simply from the watering down 

of a motif, the allowance of too much nucleotide variability, but in melding possibly true 

binding sites together. The complementary fear of being too stringent would entail having 

to group similar motifs after the fact, based on expression studies. This may well prove 

the sounder of the two approaches. For this study a simple rule enforced the grouping of 

two sequences if their sizes were similar and their variability under a certain number. As 

the size of the binding sites grow this allowance for variability increases. See Appendix A.7 

for details surrounding the generation of the 1362 PWMs from the set of overrepresented 

motifs and phylogenetic footprint results, to which were added 55 PWMs experimental and 

phylogenetic footprints from the literature and 550 binding sites gathered from the Transfac 

database [137]. The distribution of sizes, and both the ratio and variability of nucleotides 

for all the incorporated motifs can be seen in Figure 3.1. 
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Figure 3.2: Dis t r ibu t ion of the numbers of motifs found in the set of genes. 

The emergent picture of the resulting transcriptional profile matrix is of a small number 

of elements being shared by a large number of genes (see Figure 3.2 and Table 3.1). 

Although such a matrix is a simplification its value rests in the amount of information that 

can be represented. A n extension to the current matrix would be to include any translational 

signals, and any other contributing factors that may be treated discretely, influential to 

m R N A expression. A n equivalent way to perceive the matrix is as a graph. A n d in fact 

this is a more natural definition. In this manner examining the cliques that emerge from 

the graph is an obvious approach for defining subgroups of genes or regulatory elements, 

aided by transforming the matrix into adjacency matrices such as in Figure 3.3. Another 

immediate study would be to examine the adjacency matrices for their connectivity. While 

I have not pursued this, it is not difficult to imagine the graphs exhibiting the properties 

of the "small world" hypothesis [135] [113], phenomena that lie in a margin between order 

and randomness, seen in widely disparate contexts, from social networks to networks derived 
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Motif Transfac Name Total num Re value 
R T C A T 15442 2 48 
T R T T K R Y T Y S 15506 0 24 
N G G R G N ADR1 01 alcohol dehydrogenase gene regulator 1 15439 12 30 
N C R T G T N N W N MATALPHA2 01 mating factor alpha2 15407 26 82 
N N N N N N A T T A M Y N N N N DFD 01 Deformed 15474 2 86 
S M A N A A A A A A HB 01 Hunchback 15485 2 57 
A G A A N HSF 01 heat shock factor (Drosophila) 15525 29 69 
NNNNNNTAATNNNNNNN UBX 01 Ultrabithorax 15472 15 33 
T S T Y A M T 15504 0 97 
NCANNNNN C A P 01 cap signal 15525 61 64 
M T T T A T R C D X A 01 CdxA 15525 95 09 
W W T W M T R C D X A 02 CdxA 15523 85 62 
N N A T T R C N N A A N N N CEBPA 01 CCAAT/enhancer binding protein alpha 15506 19 90 
R N R T K N N G M A A K N N C E B P B 01 CCAAT/enhancer binding protein beta 15503 2 07 
N N T K T G G W N A N N N C E B P 01 C C A AT/enhancer binding protein 15511 27 08 
N N N T T G C N N A A N N N C E B P Q2 CCAAT/enhancer binding factor 15506 21 67 
NNNNMGGAWNNNN CETS1P54 02 c-Ets-l(p54) 15511 8 82 
SNNGATNNNN GATA1 01 GATA-binding factor 1 15522 29 54 
NNNGATRNNN GATA2 01 GATA-binding factor 2 15522 24 28 
N N G A T A R N G GATA3 01 GATA-binding factor 3 15522 16 86 
N N N A A A T C A N N G N N GFI1 O.i Growth Factor Independence 15442 1 57 
N N N A A C K G N C M Y B Q6 c-Myb 15524 11 95 
NNRTAATNANNN OCT1 03 octamer factor 1 15524 38 33 
A A A C W A M SRY 01 Sex-Determining Region Y 15516 30 95 
NWWAACAAWANN SRY 02 Sex-Determining Region Y 15421 3 94 
N N N N N C C A T N T W N N N W N YY1 01 Yin Yang-1 15455 11 61 

Table 3.1: Most represented motifs in the upstream regions of 15,525 genes. The RE 
value being, for the given motif, the random expectation of a good matrix score in a 
random sequence of lOOObp [96]. 

from metabolic pathways, to the C. elegans neuronal pathway [135]. 

The most fundamental subset of the genes from a regulatory point of view are the tran

scription factors. As a subset of the genes it is clear that their regulatory logic is quite 

central to the properties of all other genes under their command. Of the estimated 1300 

transcription factors in C. elegans, 569 have been associated with predicted genes contained 

in the dataset, which in turn contains 370 of the 1697 PWM's (RS 22%) representing the 

collection of regulatory elements. A clustering of the distances between them (depiction not 

shown) shows no obvious patterning or subgrouping, an indication that the motifs generated 

to date remain too indiscriminate. 

The properties that emerge from the matrix of an organisms' regulatory infrastructure 

will be invaluable in building up abstracted pictures and should be of interest when com-
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Figure 3.3: Adjacency matrix of the regulatory elements. An unweighted represen

tation of the Hamming distance between all pairwise columns in the transcriptional 

profile matrix. 

paring different organisms. But the more immediate problems lie in validating whether our 

knowledge of the regulatory infrastructure is reasonably correct and, if so, finding methods 

to associate to each transcription factor or binding site some assessment of its involvement. 

3.1 Toward a Deconstruct ion 

Expression data, like the arrays of microarray experiments, may be treated much like a cover 

on the underlying combinatorics of the transcription factors. I shall make this explicit. Con

sider two separate matrices. The first, the correlation matrix of pairwise Pearson correlation 

37 



coefficients of expression data1 over a set of experiments that was discussed previously, call it 

Cij. The second, a matrix of the sum of the differences between all pairwise transcriptional 

vectors. By this is meant the value T.\di ~ 9j\ for transcriptional profile vectors gi and pj, 

maintaining the same index ordering as in C^. Call this Ditj. Then Cjj is, so to speak, a 

cover over Dij. All those elements of value zero in Dij conceivably have the same regulatory 

mechanisms. Their correlations in the matrix dj should be within error margin to the value 

1. Defining the distribution of the values in dj all those elements with zero in A , j provide 

statistics on what may be termed the divergence from truth - or falsehood - of the matrix 

in its containing all regulatory information. So a falsehood measure or index is defined as 

1 — Fo where ; .'., 

# ( A , j — 0) the number of such entries. F0 is an interesting function in that in order for it 

to snap into place all motifs should be correctly assigned, which is akin to saying individual 

motifs are held accountable for their missing comrades (I could not use prisoners as this would 

eventually land me in a prisoners' dilemma). In this respect F 0 has immediate application 

as a cost function. 

Treating the matrix previously constructed to this assessment shows its paucity from 

calculating the pairwise differences of the transcriptional profiles. Figure 3.4 (left) shows 

the distribution of a small sampling of these pairwise values, indicating how far we are 

from a realistic situation. The usual agreement is that eukaryotic genes have, on average, 8 

regulatory proteins affecting it [94]. Figure 3.4 (right) shows the same depiction sampling 

~ 70% of the pairwise differences for a matrix constructed previously, containing no motifs 
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Pairwise differences of transcriptional profiles Pairwise differences of transcriptional profiles 

Figure 3.4: Distribution of the samplings of the pairwise differences between the tran

scriptional profiles of the matrices generated by PWM's (left) and an exact regular 

expression approach (right). 

from Transfac or from the experimental literature, and created without use of PWM's but 

rather exact regular expressions. From this graph there are 3311 pairwise differences of 

value 0, suitable for investigating the matrix's value for F0. Using a collection of microarray 

experiments containing 17,871 genes [53] and averaged over, for each of 6 developmental 

stages, 2-5 experiments, the values for the corresponding entries in Cij are plotted in Figure 

3.5, providing the atrocious value of F0 w 0.004. 

When this hurdle is overcome and F0 brought within error margin to 1 then those values 

for which Di j = 1 naturally lend themselves to a description and distribution of the influence 

of a particular motif. In order to effect this a new matrix must be created Eij which would 

be sparse except for those entries where Dij = 1 in which case E^j would take on the value 

of the position in the vector where gt and gj differ, call it k. For each distinct k in Ei%j 

a distribution may be determined by going back to the expression data and plotting, for 
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Correlation of pairwise expression profiles 

Figure 3.5: Distribution of the correlation values of an exact matrix with Fo w 0.004. 

each set of pairwise genes differing by motif k, and for each time point in the expression 

matrix, a value of the difference between the expression vectors of the gene containing motif 

k and the gene without. With all individual motifs of E$j exhausted in this manner the 

process naturally extends to generating statistics for a couple and, by increment, groups 

of transcription factors working together. It would be remarkable if a decoupling were 

possible between a known motif's statistics and the statistics generated by this motif and 

another motif whose statistics are unknown. Which could, by recursive descent, extend to 

one unknown motif and many known motifs. In this manner the complete reverse engineering 

of regulatory control might very well be within grasp. 
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3.2 A Measure of Complexity 

Complexity is the behaviour emerging from the interaction of aggregate parts. Since tran

scription is the most central in the hierarchy of cellular processes, a natural definition for 

the complexity of an organism is implicit in the transcriptional machinery. Treating a tran

scriptional profile matrix of size m x n, the number of possible unique gene signatures are 

which also happens to be the upper bound on the combinations of interacting transcription 

factors and, therefore, of organismal complexity at this level. Knowledge of the transcription 

factors and their own signatures gives an even clearer picture of an organisms' complexity. 

If we were to consider a snapshot of a transcriptional profile matrix of an organism whose 

gene's profiles are fully worked out then to each regulatory element may be associated a 

transcription factor, or factors, as in the case of heterodimers. In this respect, we may then 

consider a given cluster of genes, each of which represent a phase space in the total space 

of potential clusters, providing a tighter measure of an organisms' complexity. If fl are the 

transcription factors (]Cn, and if a are the set of regulatory elements of Q, then 

is an upper bound on the number of phase spaces, and hence a tighter upper bound on the 

transcriptional complexity of the organism. 

Such a measure points to a method to represent the dynamic behaviour of mRNA expres

sion. Since the widespread assumption is that any model of expression would be represented 

by a set of differential equations it is of interest to see how a first order depiction of the dy-
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namical behaviour of regulation can be viewed in terms of the transcriptional profile matrix. 

Each phase space of gene clusters is equivalent to the idea of a transcriptome state. And each 

unique cluster, the result of the action of a set of transcription factors and of a constraint 

imposed by the inactivity of other present transcription factors, provides a seed for a new 

round of clustering. Thus, implicit in each phase space is the next phase space, dependent on 

the reordering based on the columns representing the present transcription factors' binding 

sites. In this manner the dynamics of the cell may be represented as a continual reshuffling 

of the transcriptional profile matrix. Indeed, such consideration could well provide a method 

by which to infer the logic through which transcription factors en masse behave. 
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Conclusion 

Unlike Alan Turing's oft quoted statement that "we see a short distance ahead, but we 

can see plenty there that needs to be done," in the approach of reverse engineering the cell 

and of model building in this direction we can see both well into the future, as well as an 

enormous number of immediate hurdles that need be addressed. The study of regulatory 

systems is many layered: the combinatorics of the transcription factors, their modularity, 

their altered behaviour dependent on position, their variability in equivalent conditions, 

epigenetic factors, conformational properties, the vast arena of mRNA expression levels, the 

dependence on mRNA degradation, posttranscriptional modification.... The list goes on and 

at every layer the subject remains in its relative infancy, the recent strides of gene expression 

technologies notwithstanding. Many of the surprises around the corner will, I imagine, be 

in how information at one layer contributes and informs knowledge in the other layers, as is 

natural when isolating components of a vast interacting system. 

Not surprisingly, the initial aims of this thesis were a great deal broader than they have 

settled to. It would have been ideal to incorporate as much of the binding site information 

into the transcriptional profile matrix, including conserved translational regulatory sites and, 

by association with expression data, deduce the underlying regulatory logic by associating 

to each binding site (if not transcription factor) a value or mean or even simply a qualitative 
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assessment of its influence. The outrageousness of this scheme is apparent in hindsight 

only because of greater familiarity with the difficulties. Underlying principles are in effect, 

however, and abstracting them to create symbolic schemas that may be manipulated in any 

way to a desired expression level I see as routine, just not immediately. 

Ranging over the present work, the clearest statement to be made in its defence is that 

it is exploratory. No clearly defined goal, apart from the aforementioned, motivated the 

thesis from its inception. The strongest argument to be made against the work is that a 

computational method for determining the underlying regulatory logic and, more specifically, 

the binding sites for transcription factors, is bound to fail - this, because of the enourmous 

complexity involved and the paucity of our present understanding both in vivo and in vitro. 

Even the recent experiments from the Brown and Botstein laboratories [50] [76], describing 

the binding of purified transcription factors to microarray chips containing intergenic regions 

from Saccharomyces cerevisiae, lead us no furthur in this direction, as interesting as they are. 

It is trivial to simply pull out base pairs of commonality between any number of segments 

owing to their correlation by coexpression or phylogenetic relationship. Extending these 

facts of commonality toward a viable inference of relevance, without aid of a laboratory, is 

another matter. And in this I have failed. A point which this thesis touches on is that 

a simple cataloguing of binding sites and their proximal gene is not sufficient evidence for 

effect. A point well known but rarely displayed. An assumption little questioned in much of 

the literature on motif searching is the expectation of functional binding sites having more 

representation in promoter regions proximal to the 5' UTR. In C. elegans the exhaustive 

study of all n-mers up to 30 shows this to be fallacious. Of what remains in the thesis, 

little can be validated. A vast number of PWM's have been generated, including a number 
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derived from conserved regions between C. briggsae and C. elegans that, by all indication, 

should contain a good quantity of functional sites. All of the analyses based on expression 

data are crippled somewhat by the crude form of the experiments. They want the finer 

resolution capable, for instance, with Saccharomyces cerevisiae. The methods, for example 

determining regulatory signatures, lend almost more weight to highlighting the shortcomings 

of the expression data rather than in isolating relevant information on binding sites. As for 

the results utilizing the transcriptional profile matrix, a method that can be seen as little 

more than convenience at present, it must needs prove itself. 

As stressed throughout, building expression models of either mRNA or protein or even a 

combination will, in the final analysis, be made more cohesive by an underlying knowledge 

of the combinatorics of the transcription factors for each of the genes or gene products. As 

such, an immediate goal, even if only in a theoretical framework, would be the incorporation 

of this knowledge, such as with the transcriptional profile matrix, as input into models of 

interaction. 

Model building, whether of protein levels and their interactions, such as with the E-cell 

[86] and other virtual cell systems, or with mRNA models built from expression changes, have 

all been valuable attempts but remain precisely that, exploratory tools with experiment as 

vindicator. There are encouraging signs, however. The growing pains of a subject are usually 

marked by trial models and simple cases giving way to ever more daring approximations to 

realistic scenarios. Even though many of the simplest tasks are yet to be overcome, there 

is an emerging trend of sweeping aside idealized quantities, toward more realistic models 

stochastic in nature [80] [88]. Not only would these prove more realistic but any attempt to 

incorporate expression data into the models would be better served. 
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The true test of all these modelling approaches is whether it is finally accepted by those 

most practical of individuals, the trained biologists. And the enormity of the task of think

ing globally of all the processes in a cell in this more stringent environment is typified by 

a rather mocking article on the inauguration of Leroy Hood's Institute for Systems Biology 

in Seattle, Washington [106]. Recently, the Institute delivered its first proof of principle 

in systems-wide biology, a study perturbing the yeast metabolic pathways [49], incorporat

ing microarrays, quantitative proteomics, and databases resulting in the determination of 

affected mRNAs, proteins regulated posttranscriptionally and protein-protein interactions. 

The entire community should be one in hoping that Leroy Hood, and all those of equally 

audacious outlook, have the last laugh. 
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Appendix A 

Methodologies 

The tools used in this study have been run on a networked system at the Genome Sequence 

Centre, British Columbia Cancer Research Centre, Vancouver, B.C., Canada [38], consisting 

of « 30 computers, the majority of which are Intel based dual 600 P3's, with 512M R A M , 

running Red Hat's distribution of Linux [97]. The programs used throughout consist of Perl 

[129], AcePerl [111], ACEDB [28], Matlnd and Matlnspector [96], Matlab [78], Blastx [41], 

Waba [61], ClustalW [47], Dotter [108], Cluster and Treeview [31], and Phylip [34]. So as 

to leave no stone unturned, the thesis itself was coddled together using Gimp [40], Origin 

graphing software [89] on the Microsoft Windows operating sytem, and the MpjX typesetting 

system [69]. 
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A . l Interaction With the C. elegans Genome Sequence 

Interaction with the C. elegans genome sequence has been through the ACEDB [28] database, 

version WS9, via the AcePerl scripting language [111], which has been limited to the extrac

tion of the upstream regions of all genes. An arbitrary size of 2000bp upstream of the A T G 

start site of each chosen predicted gene has been used as the maximum cutoff. To counter 

including possible downstream genes of polycistronic transcripts, regardless of whether bind

ing sites might well reside there, consideration has been taken of a pre-genome assessment 

of a bimodal distribution tending to have a maximum at 400bp, as well as an argument 

that 25% of genes might be polycistronically transcribed [13]. Through the above mentioned 

database all upstream regions of predicted genes (only one when the gene in question had 

alternative transcripts) were chosen with a cutoff requiring all genes to be at least 700bp from 

the nearest upstream gene (on the same strand). The distribution of intergenic distances 

can be seen in Figure A . l . 

The cutoffs > 700bp and < 2000bp, from which was excluded, when applicable, 500bp 

from the next upstream gene resulted in a set of 15,525 gene's upstream regions, R * 81% 

of the total (as of this release), and a dataset, ranging from 200-2000bp of nucleotides for 

each upstream region, R i 26% of the 97MB total nucleotide content. Comparing the ratio of 

nucleotides in this set compared to the whole genome shows a fairly consistent representation 

(Figure A.2). 
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Figure A . l : Distribution of intergenic distances (A) and those below 700bp (B) in C. 

elegans. The survey used a total of 18,706 intergenic distances with 1923 exceeding the 

20,000 mark and 3168 below 700bp. 
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Figure A.2: Ratio of nucleotides in the selected upstream regions comprising the 

dataset vs. the whole genome. 

A.2 A Modification of the Smith-Waterman Algorithm 

for Binding Sites 

The Smith-Waterman algorithm is defined, in its simplest form, whereby every gap is assigned 

a penalty d, as 

r 
F{i-l,j - l) + s(xuyj) 

F(i-l,j) + d 

F(i,j-l)+d 

0 

with s(xi,yj) being the scoring of two elements based on a nucleotide distance matrix at 

position (ij). In searching for potential binding sites, the consideration of gaps may be 

waived. The above algorithm can then be rewritten, 

F(i,j) = max < 

F(i,j) = max 
F(i-l,j -l) + s(xhyj) 

0 

When considering dyads or motifs seperated by set spaces, such elements can be found on 

common diagonals during the traceback of the dynamic programming algorithm. In this re-
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spect it might prove interesting to ask whether two identical dimer binding sites are different 

by one or two base pairs separation, pointing to possibly different helical conformations to 

be active. 

This technique, used in numerous places throughout the present work, makes use of the 

simplest of scoring mechanisms for s(xi,yj): a match is 1, a mismatch -1. In recovering an 

alignment on the diagonal the default of a minimum of score 5 must be met and the region 

from the maximum value achieved upward to its drop below the score of 0 is retrieved. 

A.3 Phylogenetic Footprinting 

An approach to detect orthologues between 511 C. briggsae finished sequences representing 

12,023,822bp, w 12% of the genome, housed at Washington University [131] and the C. 

elegans annotated gene collection entailed their alignment, through the use of Blastx [41], 

against the database of C. elegans translated gene products, Wormpep [18]. The results 

of this alignment was the detection of the syntenous and orthologous regions in which the 

C. elegans proteins with C briggsae matches shared the same ordering on the C. elegans 

genome as on the C. briggsae sequence. When three or more proteins were anchored in this 

way, the first exon from each of the identified C. elegans genes was used to find the ortholo

gous C. briggsae exon through an alignment program customized for divergent comparisons 

[61]. A strict requirement was that the initial alignment had to begin within 50bp of the 

start of the C. elegans exon. This step proved extremely stringent, no doubt too much so. 

Indeed the entire filtering process brought the potential number of orthologues down from 

1356 in the step aligning for synteny to 95 eventual candidates. The stringency was for a 
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reason, however. It was necessary to ensure that the two upstream regions compared were 

orthologues, using a strictly computational approach, without manual check. A verification 

of sorts was corroboration from a similar analysis conducted at Washington University [132]. 

A.4 Microarray Experiments 

The microarray experiments used throughout are housed at the Stanford Microarray Database 

[110]. The particular experiments were those generated for the papers of Reinke et al [98] 

and Jiang et al [53], representing genomic PCR products of 11,917 and 17,871 predicted 

genes respectively. The results were analyzed through the programs Cluster and Treeview, 

written by Michael Eisen [31], or by grouping the experiments together for each pairwise set 

of genes by Pearson correlation coefficients and viewing the resulting pairwise gene array 

through Matlab [78]. 

The analysis of operons entailed querying the set of experiments generated by Reinke et 

al [98] for the collection of operons described by Zorio et al [140] and, through Cluster [31], 

generate the correlation coefficients. 

A.5 Decomposing the M S P Family 

By building a matrix containing all hexamers along the columns and the set of genes of 

interest down the rows and simply marking with a 1 when the upstream region of a gene 

has the hexamer in question and a 0 otherwise, produces a large sparse matrix. From this 

matrix, one can determine the most represented motifs through principal component analysis, 
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a method relying on the technique of singular value decomposition. With the hexamers that 

emerge from the first principal component one can then use the Fisher exact test to ask 

whether the set of motifs are also significant in relation to the entire dataset, as a method 

of filtering out those motifs that are more likely to be occuring randomly. 

Singular Value Decomposition is a technique that, for the purposes outlined in this thesis, 

enables the principal components of a correlation matrix to be determined. Taken from Golub 

and Van Loan [42], pg. 70, the theorem of singular value decomposition is stated as follows: 

If A is a real m-by-n matrix, then there exist orthogonal matrices 

U = . , um] e 3 f T * m and V = [vu .., vn] € W1™ 

such that 

UTAV = diag(ai,av) 6 Wlxn p = min{m, n} 

where 

C l > 02 > ••• > fT p > 0. 

The values of the columns of AV are the principal components. Each principal component 

(orthogonal to all the other principal components) represents the variability in the dataset 

according to the value of the eigenvalue associated with it, i.e. 

trace{UTAV) 

A.6 Regulatory Signatures in the Germ Line 

Making use of the Cluster program [31] to generate the correlation coefficients of the hi

erarchically clustered nodes, each node has been used to generate a matrix of hexamers 
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with 500bp upstream of each gene's translational start site, as described in Appendix A.5. 

Each of the first principal components of each node were then treated to a x2 test, with the 

traditional a value of 0.05, with all those elements not deemed significant discarded. The 
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Figure A.3: Upstream regions of genes in a node represented by the positional placing 

of significant hexamers. 

significant elements were then positionally ordered according to their place in the upstream 

regions of the genes comprising the node. Figure A.3 depicts this for clarity. With the genes 

represented in this manner a modification of the Needleman-Wunsch algorithm [84] may be 

used. Given two sequences of length n and m, the original algorithm of Needleman-Wunsch 

used the method of dynamic programming to course through a nxm matrix scoring in each 

position according to 

r 
F(i l) + s(xi,yj) 

F(i-l,j)+d 

F{i,j-l)+d 

s(xi,yj) being the scoring of two elements based on a nucleotide distance matrix at 
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position (i,j). The utility of this algorithm for global alignment problems is widespread. For 

the present purpose the idea is to pairwise align the motifs of significance in the upstream 

region rather than base pairs over all genes comprising a node. Naturally the possibility 

exits for extending the algorithm to allow for the alignment of approximate motifs which 

provides an immediate analogy to the variants in mismatch scoring. This produces a number 

of alignments depicting the positional similarity of the motifs over the set of genes. From 

these pairwise alignments of significant motifs the frequency of occurrence of any successive 

length may be determined for all combinations of significant hexamers. For the largest node 

in the germline intrinsic set the mean is plotted in Figure A.4 for the number of the given 

size of run of significant motifs. As a consequence a reasonable size of run for extracting a 

regulatory signature is 3, rather than the overabundant runs of 2. 
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Figure A.4: Numbers of composite runs of significant motifs in the largest node of the 

germline intrinsic set. 
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A.7 Transcriptional Profiles 

T A T A A W G A T A R R T C A T 
Y 4 8 G l A . e 1 1 (747) 1 1 (439) 0 0 0 
Y 3 9 G 1 0 A L . C 1 3 (1909,469,167) 1 2 (811,438) 1 2 (1786,1607) 
W03F11.6 0 0 •0 0 0 0 1 1 (376) 
Y 1 0 5 E 8 E . f 0 0 0 1 2 (1105,983) 1 4 (1422,1278,443,133) 
Y 2 3 H 5 A . 5 0 0 0 0 0 0 0 0 0 
W09C3.4 1 6 (1368,469,444,312,297,244) 0 0 0 1 2 (678,149) 

Table A . l : The entries of binary, weighted, and positional matrices. See appendix B 
for interpreting the I U P A C ambiguity codes. 

With the 1539 motifs gathered by their overabundance in the dataset of upstream regions, 

as well the 717 phylogenetic footprinting results, the next step entailed their being grouped 

into position weight matrices (PWM). The choice of using PWM's rather than the more 

constraining approach of regular expressions was decided based on the numerous studies 

justifying the technique [112]. The rules for the construction of PWM's based on the differing 

nucleotide composition of the contributing motifs were as follows: below 7 nucleotides the 

value for allowing a join was 2, from 7 to 10, 3, 10 to 17, 4 and above 17, 5. Two sequences 

of unequal lengths could be grouped if they differed by no more than 2, in which case the 

smallest sequence determined the rule by which they could join. The resulting set of 1362 

PWM's were constructed from the contributing sequences, the alignments of which were 

generated by ClustalW [122], with the aid of the program Matlnd [96]. To this constructed 

set were added 55 PWM's generated from experimental and phylogenetic footprints from 

the literature, as well as 550 binding sites gathered from the Transfac database [137]. 

With the full complement of all the PWM's, both gathered and generated, it was then 

necessary to return to the dataset of upstream regions defined in Appendix A . l and determine 

which elements lie in each gene's upstream region. To make best use of the PWM's I ran 
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Figure A.5: Depiction of a binary transcriptional profile matrix in a sparse matrix 

representation. The rows represent the collection of 15,525 genes in the dataset, while 

the columns represent the potential regulatory elements associated with the respective 

gene. As a binary matrix an entry has the value 1 if the given gene has, within its 

upstream region, the given motif. Otherwise the entry receives the value 0. The blue 

dots in the representation are those entries of value 1. 
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them through the program Matlnspector [96], relying on the default parameters. Figure 

A.5 depicts a binary sparse matrix (See Table A.l) represented in Matlab [78], in which the 

genes in the dataset lie on the vertical axis and the potential regulatory elements on the 

horizontal. 
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Appendix B 

IUPAC Ambiguity Codes 

Symbol Meaning 
G G 
A A 
T T 
C C 
R G or A 
Y T or C 
M A or C 
K G or T 
S G or C 
w A o r T 
H A, C or T 
B G, T or C 
V G, C or A 
D G, A or T 
N G, A , T o r C 

Table B. l : Single letter codes for ambiguous nucleotides defined by the International 
Union of Pure and Applied Chemistry (IUPAC) [25]. 
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