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Abstract 

This thesis describes p S R observations of the internal magnetic field 
distribution n{B) as a function of temperature in L u N ^ E ^ C (Tc = 16.0 K , 
Hc2(0) = 7 T ) , under a magnetic field of H = 1.2T applied parallel to the crystal 
c axis. The p S R polarisation signal is fitted to a nonlocal London model, assuming 
a square vortex lattice. By incorporating first order nonlocal corrections, this model 
achieves significantly better fits than the local London model. The fitted 
penetration depth temperature dependence A(T) follows the form expected for a 
B C S s-wave superconductor, although the dependence is also consistent with a 
slight linear increase in the penetration depth A with rising temperature. The rate 
of any such linear growth, however, is smaller than would be expected for an energy 
gap A with line nodes. The fitted core radius temperature dependence p(T) reveals 
a Kramer-Pesch effect, or linear contraction of the vortex core radius p upon cooling 
at low temperatures T <C T c , that is weaker than predicted. The Kramer-Pesch 
effect found for this nearly three-dimensional superconductor is almost identical to 
that seen in quasi two-dimensional NbSe2, implying that quasiparticles behave 
similarly in L u N i 2 B 2 C and NbSe2 despite their different dimensionalities, and that 
longitudinal disorder of vortices has negligible impact on /xSR determinations of the 
vortex core radius p. The surprisingly small magnitude of the Kramer-Pesch effect 
suggests that future theoretical work on the temperature dependence of vortex 
structure should consider zero point motion of vortices and intervortex interactions. 
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C h a p t e r 1 

I n t r o d u c t i o n 

Superconductivity refers to the unusual electrical and magnetic behaviour exhibited 
by certain materials below their critical temperature Tc, usually near absolute zero. 
These phenomena include negligible resistance to electric current and the expulsion 
of external magnetic fields, and find application in Magnetic Resonance Imaging 
(MRI) and high capacity power transmission cables. Based on their response to the 
applied magnetic field H, superconductors fall into two major classes, type I and 
type II, as illustrated in Figure 1.1. A type I superconductor exhibits the Meissner 
effect, the exclusion of the magnetic field from its interior, at an applied field H 
below its thermodynamic critical field HC(T). Exceeding the thermodynamic critical 
field HC(T) drives the type I material into the normal state. A type II 
superconductor also exists in the Meissner state for external fields H weaker than 
its lower critical field Hci(T), but for intermediate fields between this and its upper 
critical field i 7 c 2 ( T ) , the type II material enters the vortex state. Here the external 
field penetrates the sample as a lattice of flux lines, each associated with one 
quantum of flux $ 0 [1] encircled by a vortex of supercurrent. The number of 
magnetic vortices grows linearly with the applied field H, until the superconductor 
becomes normal at H = i 7 c 2 (T) . Type II materials generally superconduct at much 
higher temperatures T and fields H than those of type I, and fully realising their 
technological potential requires an improved understanding of the characteristics of 
the vortex state. 

This thesis focusses on the behaviour of the vortex core radius p as a function of 
temperature T in L u N i 2 B 2 C , as studied with muon spin rotation (^SR) 
spectroscopy. (For a discussion of the field dependence, see [2].) Whereas the core 
radius p is often assumed to remain constant at low temperatures T <C Tc, 
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Figure 1.1: Phase diagram for (a) type I and (b) type II superconductors. 
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theoretical works [3] [4] [5] propose that the core radius p should contract linearly 
with falling temperature T <C Tc, and stop shrinking at a quantum limit 
temperature To, where the radius p is on the order of a Fermi wavelength. 
Experimental confirmation of such a temperature dependence, known as the 
Kramer-Pesch effect, would necessitate a reconsideration of the common assumption 
that the radius p remains constant at low temperatures. To date, pSR 
observations [6] [7] of the core radius p have revealed only a fairly weak 
Kramer-Pesch effect. These experiments dealt with quasi two-dimensional materials, 
introducing the possibility of systematic overestimation of the core radius p as a 
result of longitudinal disorder of vortices [7]. This complication has much less 
impact in the case of L U N I 2 B 2 C , a member of a new family of materials that exhibit 
unusual superconducting behaviour, because L u N i 2 B 2 C is nearly isotropic. This 
superconductor is thus a prime candidate with which to see the predicted 
Kramer-Pesch effect. 

This thesis proceeds as follows. The next chapter outlines basic relevant 
superconductivity concepts, and goes into detail about the expected Kramer-Pesch 
effect and previous experimental results concerning it. A general overview of the 
properties of L u N i 2 B 2 C appears in Chapter 3, along with a quantitative estimate of 
the Kramer-Pesch effect anticipated for this superconductor. Chapter 4 describes 
the transverse field pSR technique and the experimental setup. Chapter 5 explains 
how the time dependent muon polarisation signal P ( t ) is fitted to a nonlocal 
London model developed for borocarbides, and how the core radius p is calculated 
from the fitted internal magnetic field profile B(r ) . It also examines the quality of 
the fits as a function of the penetration depth A, the nonlocality parameter C and 
the core radius p. Chapter 6 presents the resulting temperature dependence of the 
fitted penetration depth A and nonlocality parameter C, and the extracted core 
radius p, for L u N i 2 B 2 C under a constant applied field of H — 1.2 T. It compares the 
low temperature behaviour of the core radius p measured in L u N i 2 B 2 C with the 
predicted Kramer-Pesch effect, as well as the core radius temperature 
dependences p(T) observed previously in NbSe 2 and Y B a C u 3 0 7 _ 5 under an applied 
field H = 0.5 T. This chapter also contrasts the internal magnetic field 
distributions n(B) of the nonlocal and local London models. Finally, Chapter 7 
summarises these results and their implications. 



C h a p t e r 2 

S u p e r c o n d u c t i v i t y 

2.1 London Theory 

The London equations [8] deal with the electrodynamic behaviour of 
superconductors on a macroscopic scale. They relate the local electric (E) and 
magnetic (B) fields to the supercurrent density J as 

The supercurrent density J is due to the number density ns of carriers (either 
electrons or holes, depending on the superconductor) of effective mass m* which 
encounter no resistance. The London penetration depth, defined as 

is the only free parameter in these equations. The first London equation (2.1) 
expresses perfect conductivity in that the electric field accelerates the 
superelectrons. The second equation describes the Meissner effect. It implies that 
within a superconductor an external magnetic field decays over the characteristic 
distance A. A n example of this is the situation illustrated in Figure 2.1, where a 
constant applied field B0 z exists parallel to the surface at x = 0 of a 
superconductor. W i t h the aid of the vector identity 

(2-1) 

B + A 2 (V x V x B) = 0 (2.2) 

(2.3) 

4 
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CHAPTER 2. SUPERCONDUCTIVITY 6 

V x ( V x a) = V ( V • a) - V 2 a (2.4) 

and one of Maxwell's equations, V • B = 0, equation (2.2) becomes 

*(x) - A « C5> 

Inside the superconductor the solution for the internal field B is then 
B(x) = B0 exp(—x/X), as plotted in Figure 2.1. W i t h slight modification these 
London equations continue to be valid in the presence of magnetic vortices. 

The spatial magnetic field profile of a vortex lattice can be modelled with a 
generalized London theory. For an array of flux lines at positions r i , expression (2.2) 
becomes [9] 

B + A 2 ( V x V x B ) = $ o £ < 5 2 ( r - r i ) (2.6) 
i 

This equation portrays each filament of one flux quantum <l?o as having the 
proportions of a two-dimensional delta function, leading to unrealistic field and 
supercurrent divergences at the vortex centre. Such unphysical behaviour disappears 
through the incorporation of finite core size, often achieved by multiplying Fourier 
components of the field B with a cutoff factor in reciprocal space. Equation (2.6) 
applies when the external field H lies far enough from the upper critical field Hc2 

that the vortices are substantially more than the radius of a physical vortex apart. 
The internal field then consists of the superposition of the contributions [9] 

from each flux line i, where Ko(p) is the Hankel function of imaginary argument of 
zero order. A n explanation of the flux line lattice geometry transitions induced by 
external field changes in superconductors like L U N 1 2 B 2 C demands a further 
extension of the London equations [10] [11]. 

Nonlocal electrodynamics accounts for the dependence of the supercurrent density 
J(r) on the vector potential A(r) within a characteristic range £BCS from the 
point r [12]. The effects of nonlocality are significant in regions where the vector 
potential A(r) varies rapidly within a volume of radius ~ £BCS [8] [13], provided that 
the temperature is low and the mean free path I exceeds this radius. Otherwise 
scattering suppresses nonlocal effects [12]. The basic London equations (2.1) 
and (2.2) derive from the local relation 

J W = - 4 ^ A W ( 2 ' 8 ) 



CHAPTER 2. SUPERCONDUCTIVITY 7 

by taking the time derivative and the curl respectively [8] or, in terms.of spatial 
Fourier components [13], 

J ( k ) = - 4 ^ A ( k ) ( 2 " 9 ) 

Inclusion of nonlocality transforms this equation to [12] 

J(k) = - ^ Q ( k ) A ( k ) (2.10) 

where the expression for the kernel Q(k) emerges from the microscopic approach of 
the Bardeen-Cooper-Schrieffer (BCS) theory. 

2.2 BCS Theory 

B C S theory explains the occurrence of superconductivity quantum mechanically 
through the interaction of electrons and phonons [14] [15]. One electron pulls in 
nearby positive ions, generating a local excess positive charge which then draws a 
second electron towards the first. This attraction leads to the formation of Cooper 
pairs. These are bound states composed of two electrons whose momenta each 
exceed the Fermi momentum pp while their combined energy, both potential and 
kinetic, has fallen to less than 2Ep. Although these two electrons continually scatter 
each other to new individual momenta, the total momentum of each Cooper pair is 
unchanging and identical. The net energy of a Cooper pair is lowest when it 
possesses zero momentum and the electrons comprising it have opposite spins. The 
B C S cutoff stipulates that the attraction needed to create Cooper pairs transpires 
only between electrons within a Debye energy UBOD of the Fermi level Ep. For this 
reason the number of scattering processes allowed to the electrons of a Cooper pair, 
and consequently the amount by which their total energy decreases, is sharply 
maximal when their centre of mass is stationary. The existence of more Cooper 
pairs leaves fewer momentum states available for scattering into, diminishing the 
negative potential energy associated with the attractive interaction. The B C S 
ground state contains as many Cooper pairs as can form with a negative potential 
energy of greater magnitude than the requisite kinetic energy increment. This 
achieves the lowest possible total energy of all the electrons. Exciting a 
superconductor to higher states necessitates one or more Cooper pairs breaking up. 

The dissociation of a Cooper pair yields two quasiparticles [14]. These are electrons 
no longer restrained to occupy states of equal and opposite momenta. B C S theory 
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proposes that splitting up a Cooper pair needs at least an energy 2 A . This added 
energy supplies the binding energy of the Cooper pair and lifts the total energy of all 
the electrons. Consequently no quasiparticle energy levels exist within a B C S energy 
gap A of the Fermi energy Ep. The states absent from this energy region reside at 
its upper bound Ep + A , creating there a peak in the density of states N(E) [16]. 
As the temperature T rises, the B C S energy gap A ( T ) shrinks in all fc-space 
directions [17] and thermally excited quasiparticles become more numerous. 

The B C S energy gap A ( T ) is an important superconducting parameter. A 
spherically symmetric gap A is termed s-wave pairing, while one with the symmetry 
of the crystal is known as anisotropic s-wave pairing. Unconventional pairing results 
from interactions other than that between electrons and phonons. This produces 
gap A symmetries lower than that of the crystal [16], for example an energy 
gap A ( T ) with nodal lines. Through the relation [18] 

^ B C S TTA(O) 1 } 

where vp is the Fermi velocity, the B C S energy gap A provides an estimate of the 
scale £BCS of the spatial correlation of the superelectrons. This characteristic 
range £BCS is called the B C S coherence length. The B C S energy gap A turns out to 
be directly proportional to the order parameter ip of the Ginzburg-Landau theory. 

2.3 Ginzburg-Landau Theory 

The Ginzburg-Landau theory revolves around the concept of a complex order 
parameter tp(r)i a pseudowavefunction describing the centre of mass motion of the 
Cooper pairs [1]. The distribution |̂ >(r)|2 is directly proportional to the 
superelectron density ns(r) [19]. This theory assumes local electrodynamics and is 
strictly valid only at temperatures near the transition temperature T C [1]. The order 
parameter must be small and vary slowly to derive the Ginzburg-Landau differential 
equations. 

The Ginzburg-Landau differential equations proceed from minimising the Helmholtz 
free energy / of the superconducting state [1][19]. The free energy / is expanded in 
powers of the order parameter -0(r) and its spatial derivative V^>(r), and the effect 
of a magnetic field on a particle of charge e* and mass m* is included. Minimising 
the resulting free energy expression with respect to the order parameter ip(r) and 
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the internal field B(r) gives the Ginzburg-Landau equations 

( j V - f A(r) ) 2 ^(r) + mr)\2m = -a^(r) (2.12) 

J(r) = £ ^ [f(r)V^(r) - ^(r)V^(r)] - ^ | V ( r ) | 2 A ( r ) (2.13) 

where A(r) is the vector potential associated with the internal field 
B(r) = V x A(r). The quantities a and (5 are expansion coefficients which depend 
on the penetration depth A and the thermodynamic critical field Hc. 
Relations (2.12) and (2.13) form coupled differential equations for the order 
parameter -0(r) and the vector potential A(r). The first equation resembles the 
Schrodinger equation for a free particle plus a nonlinear term. This nonlinear 
term P\ip(r)\2ip(r) encourages the order parameter ^(r) to spread evenly throughout 
space. The second equation quantum mechanically describes a current of particles 
of charge e* and mass m*. Calculations based on the microscopic B C S theory show 
that the effective charge e* is twice the usual electronic charge e. Equation (2.12) 
also hints at another important length scale for superconductivity, the temperature 
dependent coherence length £ ( T ) = h/y/\2m*a(T)\. 

The temperature dependent coherence length £ ( T ) characterizes the distance over 
which changes in the order parameter ^(r) occur [1]. For this reason a finite 
coherence length £ ( T ) implies a gradual spatial evolution between superconducting 
and normal regions. Unlike the temperature independent B C S coherence 
length £BCS, the Ginzburg-Landau coherence length £ ( T ) grows with temperature T 
in a manner similar to the penetration depth X(T). 

The ratio K = X(T)/£(T) of the penetration depth of a superconductor to its 
coherence length determines whether this material exhibits a vortex lattice. 
Figure 2.2 depicts the scenarios associated with the two extremes of the 
Ginzburg-Landau parameter K. In both cases the order parameter ib rises from zero 
to its maximum value, and the internal field B drops from its maximum to zero, 
across the border from normal to superconducting domains. In the situation 
a zone exists where the field B has been substantially expelled and the order 
parameter tp is not yet maximal. Here the condensation energy is too small to 
completely compensate for the Gibbs free energy increase caused by the negative 
magnetisation. This leads to a positive surface energy in connection with the 
domain wall between the superconducting and the normal material. Conversely, in 
the case / t > l , a boundary region arises where the positive diamagnetic energy is 
not enough to counteract the Gibbs free energy reduction stemming from the 
growing number of superelectrons. The surface energy is now negative. Calculations 
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reveal that the surface energy of a domain wall becomes zero for a Ginzburg-Landau 
parameter of K = l/y/2. Type I labels superconductors with a K, smaller than this, 
while type II refers to those with a greater K. In type II superconductors the 
negative surface energy generates a regular array of flux tubes, each associated with 
a single flux quantum $ 0 = h/2e = 2.07 x 1 0 - 1 5 T m 2 . A flux line, also known as a 
vortex, is quasinormal at its centre, where the order parameter ^(r) , the 
supercurrent density J(r) and the B C S energy gap A all vanish. The detailed 
structure of a vortex forms the subject of the next section. 

2.4 The Vortex Core 

In the simple view, a vortex core is a cylinder of normal material whose radius is the 
Ginzburg-Landau coherence length £ ( T ) . Over this length scale the order 
parameter ^(r) and the supercurrent density J(r) fall monotonically to zero at the 
core centre. Although the Ginzburg-Landau formalism is only truly valid near the 
transition temperature T c , the core radius is also commonly defined as the 
temperature dependent coherence length £ ( T ) at low temperatures, where it 
becomes approximately a B C S coherence length £BCS [3]. Employing this 
assumption Caroli, de Gennes and Matricon [20] investigated the quasiparticle 
excitations of energy e <C A ^ localised near an isolated vortex line in a clean 
(£BCS 0 type II superconductor, where A ^ is the bulk value of the B C S energy 
gap. They determined these quasiparticles to have at least an energy 
emin ~ Ale/Ep, and above this a density of states like that of a cylindrical normal 
region of radius £ ( T ) . This traditional vortex core picture implies that at low 
temperatures the core radius, being roughly a B C S coherence length £BCS, is 
essentially temperature independent. 

The Kramer-Pesch effect, predicted for isolated flux lines in clean s-wave 
superconductors [3] [4] [5], refers to the rapid contraction of the vortex core radius p 
to around a Fermi wavelength 1/kp upon cooling at low temperatures. This flux 
line narrowing stems from the thermal depopulation of the quasiparticle bound 
states. The bound state energy levels E^ asymptotically approach the B C S energy 
gap A o o as their corresponding angular momenta [x become infinite, and the low 
energy radial wavefunctions are greatest at a distance r ~ u./kp from the core 
centre [4]. The reduction in core radius terminates at p ~ 1/kp in the quantum 
limit T < T 0 = Tc/{kp^Bcs) [5]. Here only the lowest energy bound state remains 
occupied [21]. From temperature T <^TC down to near the quantum limit 
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temperature T 0 , the core radius p shrinks linearly as 

T 

Over this distance p away from the core centre the supercurrent density J(r) climbs 
to its greatest value and the pair potential A ( r ) rises very steeply. However the pair 
potential still attains its asymptotic value over a length scale comparable to the 
B C S coherence length £,BCS [4] [21]. At the core centre the maximum internal field 
increases linearly as the temperature drops [22] [4]. Experimental evidence for such 
dramatic vortex core shrinking would contradict the common assumption that, at 
low temperatures, the value of the core radius p remains constant at around a B C S 
coherence length £BCS-

Experimental observations reveal the shrinking of the vortex cores upon cooling to 
be more limited than expected from the predicted Kramer-Pesch effect. Indirect 
evidence supporting the proposed Kramer-Pesch effect comes from the logarithmic 
singularity in the current-voltage characteristic for Ndi . s sCeo . i sCuOx films [23]. 
Muon spin rotation (pSR) measurements of the core radius p as a function of 
temperature show a surprisingly weak Kramer-Pesch effect in NbSe2 [6] 
(T c = 7.0 K ) , Y B a C u 3 0 6 . 9 5 [7] (T c = 93.2 K) and Y B a C u 3 0 6 . 6 o (T c = 59 K ) . The 
core radius p in NbSe 2 saturates at p « 72 A, many times larger than the 
anticipated low temperature radius p of around 10 A. The temperature dependence 
of the vortex size is weaker in YBaCu306 . 95 , and even more so in YBaCu 3 06.60- The 
apparent absence of significant core shrinking in YBaCu3O6 . 60 and YBaCusOe .gs 
possibly reflects the attainment of the quantum limit [5] [24] [25]. The quantum limit 
temperature T 0 should be much higher in these materials than in NbSe2, since they 
have a considerably smaller B C S coherence length £BCS- The substantially 
larger-than-predicted core radii found at very low temperatures in NbSe 2 are 
attributed to interactions between the vortices, and to their possible zero point 
motion. To date, all theoretical works concerning the Kramer-Pesch effect suppose 
isolated vortices, an assumption which likely fails for the transverse field p S R 
experiments mentioned here. Also, in quasi two-dimensional (2D) superconductors 
such as NbSe 2 and YBaCu307_5, longitudinal disorder of vortices potentially 
inflates the value of the core radius p determined with pSR, since a flux line in such 
materials consists of a column of 2D pancake vortices which could wobble [7]. Flux 
lines should be stiffer in three-dimensional (3D) superconductors, leading to a 
simpler dependence of the core radius p on temperature. This makes the clean 3D 
type II s-wave superconductor LuNi2B2C an ideal candidate for observation of the 
predicted Kramer-Pesch effect with pJ3R. The next chapter describes the 
characteristics of this material. 
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M a t e r i a l P r o p e r t i e s o f L u I N ^ E ^ C 

3.1 The Nickel Borocarbide Family 

The nickel borocarbides form a recently discovered class of compounds exhibiting 
unusual superconducting and magnetic characteristics. Their constituents combine 
in the ratio RM2B2C, where R stands for a rare earth element or yttrium (Y), 
giving rise to the lattice shown in Figure 3.1. Each nickel atom tetrahedrally 
co-ordinates with the four closest borons to build M2B2 layers which alternate with 
R C sheets. Despite this planar composition, band structure calculations predict 
isotropic electronic properties [27] and resistivity measurements [28] confirm this. 
These materials provide an excellent opportunity to study the connection between 
superconductivity and magnetism. 

Superconducting members of the nickel borocarbide family manifest relatively high 
critical temperatures Tc and mysterious field driven vortex lattice symmetry 
transitions. The substances are clean type II superconductors [29] with high 
Ginzburg-Landau parameters K ~ 5 — 15 [30] and intermediately strong electron 
phonon interaction [27]. As the external magnetic field varies the vortex lattice 
geometry evolves from hexagonal to square, a phenomenon attributed to the 
squarish flux line cross section [31]. Under this transformation T m N i 2 B 2 C 
(T c = 11.0K) exhibits simultaneous transitions in magnetic order [30]. 

Magnetic nickel borocarbide superconductors become antiferromagnetically ordered 
below a Neel temperature T V comparable to their critical temperature T c , and have 
the highest Neel temperatures Tjv of any superconductor [32]. E r N i 2 B 2 C 

13 
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Figure 3.1: R N i 2 B 2 C body centred tetragonal crystal structure (space group 
I4/mmm), from reference [26]. 
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(TC = 10.5 K , TN = 6.0 K ) displays weak ferromagnetism as well when cooled below 
TWFM = 2 .5K [30]. The wave vector for maximum generalised electronic 
susceptibility in L u N i 2 B 2 C also characterises the incommensurate magnetic 
structures in superconducting E r N i 2 B 2 C and F f o N i 2 B 2 C , and in the 
nonsuperconductors T b N i 2 B 2 C and G d N i 2 B 2 C [33] [34]. A phonon mode near this 
wave vector softens greatly on cooling, and is comparable to the superconducting 
gap in energy. These observations have triggered speculation that phonon softening 
and magnetic ordering stem from a common Fermi surface nesting and compete to 
decrease the system energy. Investigation of the superconductivity of this material 
family, without the complications introduced by magnetism, is possible with the 
nonmagnetic members Y N i 2 B 2 C and L u N i 2 B 2 C . 

3.2 LuNi 2 B 2 C 

L u N i 2 B 2 C has the crystal structure illustrated in Figure 3.1 with lattice parameters 
a = 3.4639(1) A and c = 10.6313(4) A at temperature T = 2.3 ° C , leading to a 
calculated density of 8 .488gem - 3 [35]. Table 3.1 lists the interatomic distances. 
The slightly shorter in-plane nickel separation, in comparison to that of metallic 

Table 3.1: Interatomic distances within the L u N i 2 B 2 C structure [35]. 

Atom pair Separation (A) 
B - C 1.47 

L u - C 2.449 
L u - B 2.855 
B - B 2.94 
Ni - B 2.10 
Ni - N i (in Ni plane) 2.449 

nickel (2.50 A), implies a strong metallic bond. Covalent [36] B - C bonds link the 
L u C and N i 2 B 2 layers together. As previously mentioned, the electronic properties 
of L u N i 2 B 2 C are of a strongly 3D metallic character. Band structure calculations 
indicate an average Fermi velocity vp — 2.3 x 1 0 7 c m s _ 1 [37] and a sharp local 
maximum in the electronic density of states N(E) near the Fermi surface Ep. 
Normal state heat capacity Cp = Ce + Cph measurements [38] yield a Debye 
temperature of QD = 360(3) K , related to the phononic contribution Cph oc T 3 , and 
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a Sommerfeld constant 7/v = 19.5(3) m J m o l 1 K 2 , the coefficient of the electronic 
term CE = 7ATT. The Sommerfeld constant gives rise to an estimated Fermi surface 
density of states N(EF) = l l . 8 m . J m o r 1 kB~2K~2 [39]. This, together with an 
experimentally determined plasma energy of h\ov\ = 4.0 eV, leads to a Fermi velocity 
vF = ^hu)pi J[e\/4/TN(Q)] = 2.76 x 1 0 7 c m s _ 1 , in near agreement with band theory. 
In addition to these normal state properties, LUN12B2C also exhibits various 
superconducting characteristics. 

The superconducting properties of LUN12B2C are intriguing. There exists much 
experimental evidence both for and against an s-wave pairing state [40]. Scanning 
tunneling microscopy [41] discloses a bulk energy gap of A = 2.2 meV, and thermal 
conductivity measurements [42] detect a large gap anisotropy A m a i / A m i n > 10. The 
average out of plane upper critical field anisotropy holds constant with temperature 
at 0 .5(^ 2

1 0 0 > + H£W))/H£01) = 1.16, as found from magnetisation studies [37]. The 
slight basal plane anisotropy falls from H^00^/H^10^ = 1.1 at temperature 
T = 4.5 K to H^00)/H^10) = 1.0 by the critical temperature TC. The initial slope of 
the upper critical field gives an estimated coherence length £Bcs = 130 A. O n the 
other hand small angle neutron scattering (SANS) [43] extracts a coherence length 
ZBCS = 82(2) A and a penetration depth A = 1060(30) A at temperature T = 2.2 K . 

One of the most fascinating aspects of the superconducting behaviour of LuNi2B2C 
is the occurrence of field driven transitions in its vortex lattice geometry. The 
evolution of the flux line lattice symmetry in LuNi2B2C, as a function of external 
field H, is clearly evident through Bitter decoration and S A N S . Under weak fields H 
applied parallel to the crystal c axis, the decoration method images a hexagonal to 
square vortex lattice transition [44] [45]. As the magnetic field H climbs from 
H = 0.002 T to H = 0.02 T , triangular flux line domains enlarge and one of their 
nearest neighbour directions becomes parallel with the (110) or (100) orientations. 
Raising the magnetic field H distorts the hexagonal configuration and local regions 
of square geometry appear above H = 0.06 T . Further magnetic field increase up to 
H = 0.1 T reveals an expanding square proportion co-existing with a heavily 
distorted triangular phase. At fields H upwards of H = 0.2 T , S A N S records [43] a 
square vortex lattice which slowly becomes completely amorphous by H = 6 T . 
S A N S also shows another vortex lattice symmetry transition occurring at an 
external field of H = 0.3 T a [46]. The hexagonal lattice reorients from having a 
nearest neighbour direction along the b axis at lower fields H to having one along 
the c axis at higher fields H. Whereas the geometrical transitions taking place in 
L u N i 2 B 2 C for applied fields H ||.c arise from nonlocal interactions, those for fields 
H || a stem from energy gap A anisotropy [46]. 

http://ll.8m.Jmor1
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The L 1 1 N 1 2 B 2 C sample examined in this p,SR experiment was a single crystal 1.3 cm 
in diameter and 1 g in mass. The crystal grew from a mixture of N i 2 B flux and 
arcmelted and annealed poly crystalline L u N i 2 B 2 C as the solution cooled from 
1500 ° C to 1200 ° C over several days [47] [48] [33]. The sample formed as a plate, with 
the crystalline c axis perpendicular to the plate plane. Thermal conductivity 
measurements [42] performed on this sample find an upper critical field 
Hc2(Qi) ~ 7 T . Its residual resistivity is p 0 — 1.30 p Q cm and its electron mean free 
path is I w 500 A. Resistivity data [48] from similarly grown crystals indicate that 
this sample should have a critical temperature Tc = 16.0 K . 

The expected Kramer-Pesch effect for the sample studied in this experiment is that 
the vortex core radius p should contract linearly with temperature T on cooling 
from T < 16.0 K (= Tc) down to T > 0.7(1) K [= T 0 , assuming £ B c s = 100(20) A]. 
Below the quantum limit temperature T 0 « 0.7 K , the core radius p should stay 
constant at p ~ 4 A (= 1/kp). The experimental setup employed to investigate this 
effect in L u N i 2 B 2 C is described in the following chapter. 



Chapter 4 

Experiment 

4.1 Transverse Field / i S R 

Transverse field pSR provides an effective means of measuring the distribution n(B) 
of internal magnetic fields B within a superconductor. This technique employs a 
beam of muons polarised so that their ensemble averaged spin direction is 
perpendicular to their momentum, which is itself parallel to the applied field H . 
The muons enter the sample one at a time and stop at random locations within the 
vortex lattice. There the spin of each muon precesses with an angular Larmor 
frequency u = i^B, directly proportional to the local magnetic field B. The 
magnetogyric ratio for muons is 7 ^ = 851.6 M r a d s _ 1 T _ 1 . The implanted muon 
decays after a mean lifetime of = 2.197ps, emitting a positron preferentially in 
the muon spin direction. The detection of many such positrons reveals the ensemble 
averaged muon spin polarisation P(r), also called the precession signal. The 
polarisation amplitude |P(r)| attenuates over time as the muon spins dephase due to 
the spatial variation of the magnetic field B within the vortex lattice. For this 
reason the spin precession signal P(t) constitutes a sensitive measure of the 
distribution n(B) of magnetic fields B within a flux line lattice. 

T R I U M F generates nearly 100% polarised muon beams through the parity violating 
decay of pions. The pions arise from protons, accelerated to about 500 M e V , 
striking a production target. Those pions decaying at rest near the target surface 
supply the muons employed in most modern p S R experiments. Almost all of these 
positive pions (TT+) disintegrate into a positive muon (p + ) and a muon neutrino (y^) 
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via the weak interaction 

7T+^U.+ + ^ (4.1) 

In the rest frame of these pions, the spin and momentum of neutrinos are oppositely 
directed. Therefore, in this frame, the spin and momentum of each muon created 
through process (4.1) must also be oppositely directed in order to conserve linear 
and angular momenta. This means that muons emitted in a given direction by pions 
decaying at rest are automatically highly polarised. In this way muon beams 
suitable for pSR spectroscopy are produced. 

The preferential emission of a positron (e +) in the muon spin direction when a 
positive muon (fi+) decays also stems from parity violation in the weak interaction. 
This weak decay nearly always produces an electron neutrino (ue) and a muon 
antineutrino (v^) as follows: 

fi+ -> e + + ue + 7JM (4.2) 

In the rest frame of the muon, the spin and momentum of the neutrino are 
antiparallel, while those of the antineutrino are parallel. When the neutrino and 
antineutrino are emitted in the same direction, the positron has maximum energy, 
and its spin direction is the same as that of the muon so as to conserve angular 
momentum. Consequently, the momentum of the positron reveals the spin direction 
of the muon at the time it decayed, since weak interactions like this one will only 
create a highly relativistic positron whose spin and momentum are parallel. Overall, 
taking into account all possible momenta of the emitted neutrino and antineutrino, 
the positron tends to be emitted in the muon spin direction. This enables the 
ensemble averaged muon spin polarisation P(t) to be measured. 

4.2 Apparatus Setup 

The experiment reported in this thesis used the M20 beamline at T R I U M F in 
conjunction with the Helios / J S R spectrometer to study the L u N ^ B ^ C sample 
described in Section 3.2. The M20 beamline delivers muons of mean 
momentum 2 8 M e V / c , so they stop throughout the bulk of the sample. Figure 4.1 
illustrates the path of the muon beam through the experimental apparatus. The 
collimator restricts the diameter d of the muon beam to d ~ 1 cm before the beam 
exits the vacuum of the beamline through a thin plastic window. Each muon then 
triggers the muon counter (M), starting the time to digital converter ( T D C ) . The 
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muon then travels through two more thin plastic windows, and the intervening 
vacuum of a helium gas flow cryostat. This vacuum thermally insulates the sample 
space from the warm bore of the Helios magnet. The muon finally comes to rest in 
the sample, which is attached with a.little Apiezon N grease to a thin Mylar film 
stretched over the end of an aluminium sample holder tube. The crystal c axis lies 
parallel to the applied field H . A n average of 2.197 ps later the muon decays, 
emitting a positron preferentially along the muon spin direction. When this 
positron is detected, the T D C is stopped. The T D C therefore records the elapsed 
time between the arrival of a muon and the detection of the subsequent decay 
positron. Sometimes a muon misses the sample, and instead it or its decay positron 
arrives at the veto (V) counter. Electronic logic modules reject such decay events, 
as well as ambiguous ones where the detectors register more than one muon or more 
than one positron within specified time periods of about 10 ps. 

Histograms are constructed for the number Ni of positrons detected in the i th 
positron counter during each time interval At after the T D C starts, from which the 
muon spin polarisation P(t) is computed. Figure 4.2 depicts the arrangement of the 
positron detectors. The positron counters form two concentric rings about the muon 
beam, with four counters in the inner layer and two in the outer. The inner 
detectors cover approximately equal solid angles around the sample, and the outer 
counters each completely overlap two of the inner ones. For a positron detection to 
be valid, both the inner and outer counters in a given direction must trigger 
simultaneously. The appropriate time bin of the histogram associated with that 
inner counter then increases by one. The number Ni of positrons registered per time 
bin At in the ith inner counter follows the form [7] 

Ni(t) = A ? exp(-ry%)[l + P^t)] + B ° (4.3) 

where TV? is a normalisation factor and Bf is the random background signal. In the 
simple situation where all muons experience the same local field B , the precession 
signal Pi(t) recorded by the ith inner detector is Pi(t) = At cos(7 M 5 + #j), where Ai 
is the initial precession amplitude and 9i is the initial phase of the muon spin 
polarisation P(0) relative to the centre of the ith counter. Generally, these 
precession signals Pi(t) are extracted numerically from equation (4.3). The 
single-counter functions Pi(t) belonging to each pair of opposing inner detectors 
combine to produce a component of the complex muon spin polarisation 
P(t) = Px(t) + iPy(t). Half the difference of the single-counter functions P%(t) of an 
opposing pair constitutes a polarisation component Px(t) or Py(t), depending on the 
choice of detector pair. The complex polarisation P(t) so obtained is then fitted to 
a theoretical model to extract the superconducting parameters of interest. In the 
experiment reported in this thesis, the four histograms Ni(t) together typically 
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Figure 4.2: Cross-sectional view of forward positron counters Fi and Fij (i — T or B 
and j = L or R) as seen by the muon beam (represented as travelling into the 
page). The valid detection of a decay positron requires both the Fi and counters 
to trigger simultaneously (Fi • Fij). 
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contained around 2.7 x 107 decay events for a given applied magnetic field H and 
temperature T , which were gathered over about two hours. 

Feedback control systems stabilise the applied field H and temperature T . Current 
carrying copper coils on the outside of the Helios superconducting magnet 
compensate for field drifts detected with a Hall probe situated near the sample. 
This keeps external field H fluctuations below 0.05 m T . Helium streaming past the 
sample from the nearby diffuser supplies cooling power, while a Lakeshore 330 
autotuning temperature controller heats the diffuser. The heating varies in such a 
way as to maintain the temperature of the diffuser at the set value. One calibrated 
G a A l A s diode monitors the diffuser temperature, and two others provide 
independent readings of the sample temperature. The analysis of the collected data 
is explained in the next chapter. 



Chapter 5 

Analysis 

5.1 Data Fitting in the Time Domain 

The pSR data are fitted to a theoretical model of the magnetic field B within a 
type II superconductor. The approximate field distribution n(B) yielded by taking 
the real amplitude of the Fourier transform of the measured muon spin 
polarisation P(t) is not useful for fitting, since the inherent finite time window 
introduces distortions in the form of ringing and broadening. To avoid these 
problems, all the results reported in this thesis come from fits in the time domain. 

Fitting the recorded muon polarisation to a function calculated from a theoretical 
field B model forms the basis of a time domain analysis. The polarisation function 

/

oo 

n(/)exp[i(27r/t + 0)]d/ 
-oo 

+ A e x p ( - c r 6 ¥ / 2 ) exp[i(27r/6* + 9b)} (5.1) 

utilised to fit the pSR data consists of a contribution from the muons that land in 
the superconducting sample and a term describing the background signal created by 
those that miss it. The parameters A and Ab reflect respectively the initial 
amplitudes of the superconducting and background asymmetries, or spin 
polarisations. The Gaussian damping factors exp(—ajt2/2) and exp(—a2t2/2) model 
the field B inhomogeneity which is additional to that of a regular array of 
vortices [49]. In the case of the superconducting signal the main sources of this are 
nuclear dipolar fields and vortex lattice disorder. The phase angles 9 and 9b account 
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for the amount of spin precession that occurs before the muons trigger the muon 
counter. The vortex lattice field model described in the next section determines the 
distribution n(f) of Larmor precession frequencies / . 

5.2 Model for the Internal Field Distribution 

The ^ S R data is fitted to a London model [11] that incorporates the effects of 
nonlocality though a kernel <2(k), an extension described in Section 2.1. As 
mentioned in that section, the London model is inapplicable within a vortex core. 
Despite this the theory can yield the vortex lattice structure belonging to high K 
superconductors, such as LUM2B2C, under weak external fields H <C Hc2, because 
in these situations the intervortex spacing greatly surpasses the diameter of a 
core [10]. L u N i 2 B 2 C exhibits both square and triangular vortex structures according 
to the field H applied, as discussed in Chapter 3. This nonlocal theory is chosen to 
fit the pSR data since it accounts for an observed vortex lattice transformation 
between these two geometries in LuNi2B 2 C, and because the data are collected 
under low field {H <C Hc2) conditions. 

Expanding [11] the B C S kernel Q(k), for weak currents J , to first order in the small 
term k2^QCS leads to the internal spatial field profile B(r) of a nonlocal London 
model: 

V L ( r \ = fBSr exp(zk • r) exp(-A: 2e 2/2) 
K ' V 1 + X 2 k 2 + A 4 ( 7 ( 0 - 0 7 0 5 f c 4 + 0-675/c2*:2) 1 " 1 

where the co-ordinates (x, y, z) coincide with the crystal frame (a, b, c) and the 
external field H is in the z direction. The average magnetic field inside the 
superconducting sample is B. The constant co-efficients 0.0705 and 0.675 arise from 
the evaluation of Fermi surface averages of products of Fermi velocities according to 
L u N i 2 B 2 C band structure. The Gaussian cutoff factor exp(-A; 2 ^ 2 /2) in the sum over 
the reciprocal lattice vectors k of the vortex lattice compensates for the failure of 
the London approach within the core region. This model neglects vortex-vortex 
interactions. The parameter C reflects the strength of the nonlocal effects, and 
contains several poorly known factors. 

The nonlocality parameter C varies theoretically with temperature T as [11] 

C ( T ) a ( ^ f ? ) 2 ( 5- 3 ) 
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where p„; (T) is the nonlocality radius, on the order of the B C S coherence 
length £BCS [12]. Figure 5.1 shows the numerically calculated behaviour of the 
penetration depth A(T) , the nonlocality radius pni{T) and the nonlocality 
parameter C(T) as functions of temperature. The relation [12] 

J-c,TA\T) £ ( A 2 ( T ) + [ ^ ( T ) ] 2 } - 3 / 2 (5.4) 

where hu(T) — irkBT(2n + 1) are the Matsubara frequencies and n is a non-negative 
integer, gives the expected temperature dependence of the penetration depth A in 
the clean limit. Solving [13] the equation 

x fkBeD tanh V ^ W ) 

N(0)V J0 y/e + A2(T) 
d£ (5.5) 

determines the B C S energy gap A ( T ) , where kBQD is the Debye energy, N(Q) is the 
density of states at the Fermi level for electrons of one spin orientation, and V 
describes the strength of the interaction potential for scattering a Cooper pair. 
Evaluating the above integral at temperature T = Tc reveals the constant N(0)V to 
be 

1 - 7 + M ( ^ > (5.6) 
N(0)V 1 1 " V T T T C 

where 7 = 0.5772... is Euler's constant. The calculations plotted in Figure 5.1 
assume a critical temperature Tc = 16 K and a Debye temperature QD = 360 K , 
values appropriate for L u N i 2 B 2 C . The expression [12] 

£ { A 2 ( T ) + M T ) ] T 5 / 2 

2 (rP\ „ ^(T)>0 /K n\ 

huj(T)>0 

generates the clean limit behaviour of the nonlocality radius pni{T) shown in this 
figure. The above sums over hw(T) converge by h\j(T) w 2kB&D- Combining the 
temperature dependence of the penetration depth A(T) and the nonlocality radius 
pni(T) according to (5.3) produces the temperature variation of the internal field 
model parameter C, displayed in Figure 5.1. The next section describes the software 
utilised to fit this internal field model to the experimental data. 
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5.3 Fitting Software 

The computer code for fitting the internal field model to the measured muon spin 
polarisation P(t) is written in F O R T R A N . The software incorporates Minuit 
function minimisation and error analysis routines from the European Organisation 
for Nuclear Research ( C E R N ) program library. Using trial parameter values, the 
fitting program calculates the distribution n(f) of muon precession frequencies / 
according to the field model, and then from n(f) evaluates the corresponding 
polarisation function (5.1). The code then computes the chi-squared x2 between 
this function and the experimentally recorded muon spin polarisation P(t). Minuit 
selects new trial values for the variable parameters until it minimises x2- The fitting 
program evolved from an earlier version [49] to include the nonlocal corrections 
outlined in the previous section and a square vortex lattice geometry. 

The fitting program determines the model distribution n(f) of muon frequencies / 
by sampling the internal field B o n a grid of evenly spaced points within the vortex 
lattice primitive cell. Previous observations (see Chapter 3) indicate that 
LUM2B2C has a square vortex lattice at the applied field H = 1.2 T of the data 
analysed in this thesis. Therefore the muon frequency distribution n(f) calculation 
employs the vortex and reciprocal lattice vector geometry appropriate to a square 
lattice under an applied field H aligned with the crystalline c axis. In this case the 
vortex lattice primitive axes b i and b2 are 

b 1 = - | ( x + y) (5.8) 

b 2 = ^ = ( - x + y) (5.9) 

where the intervortex spacing Figure 5.2 shows the sampled locations 
inside the vortex lattice unit cell. The square symmetry of the vortex lattice means 
the fitting software only needs to sample one eighth of the unit cell. Then, when 
evaluating the polarisation (5.1), the program weights contributions from locations 
on the edge of the sampled area by a compensatory factor of one half. Similar 
symmetry considerations in reciprocal space greatly shorten the time required to 
compute the field (5.2), and hence dramatically speed up the fitting process. The 
analysis utilises a sampling density of 5184 points per vortex lattice primitive cell. 
This density is sufficient since halving it only produces small changes (< 0.001%) in 
the best-fit values of the penetration depth A and the nonlocality parameter C , and 
in the calculated core radius p. 
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Figure 5.2: Geometry for n 2 / 2 = 32 sampling points within one eighth of the vortex 
lattice unit cell. The dashed line and the b i axis bound the sampled region. The 
closed circles depict sampling points while the open ones symbolise vortices. For 
data analyses n?s/2 = 648. 
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The ten fitted parameters are 

• the average muon precession frequency of the superconducting signal 
7 = 7 ^ / 2 7 r , 

• the penetration depth A, 

• the nonlocality parameter C , 

• the effective coherence length £, 

• the initial amplitude of the asymmetry of the superconducting signal A, 

• the initial phase angle of the superconducting signal 9, 

• the effective depolarisation rate of the the superconducting signal cr̂  due to 
nuclear dipoles and vortex lattice disorder, 

• the average muon precession frequency of the background signal 

• the initial phase angle of the background signal 9b, and 

• the effective depolarisation rate of the background signal ov 

The data fitting proceeds by alternately letting only the superconducting and then 
only the background signal parameters vary, until all the variables converge to the 
final result. Allowing the initial phases 9 and 9b of the superconducting and 
background signals to vary separately significantly improves fit quality. During early 
fitting attempts the initial background asymmetry Ab also varied and grew 
unphysically large. Therefore throughout all subsequent fits the initial background 
asymmetry Ab is fixed to 0.0044, as estimated by comparing fast Fourier transforms 
( F F T ) of the polarisation signals measured in the superconducting and normal 
states. In comparison, the asymmetry A of the superconducting signal is much 
greater at A = 0.237(2). The fitting takes place within a rotating reference frame 
set to the expected background signal frequency facilitating easy visual 
inspection of the accuracy of a fit. Knowledge of the best-fit values for the internal 
field model parameters enables the extraction of the vortex core radius p. 
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5.4 Calculation of the Core Radius 

Substituting the fitted parameters into expression (5.2) reveals the spatial profile of 
the internal field B(r) within the sample. Figure 5.3 displays the profile around a 
flux line generated by an external field H = 1.2 T at temperature T = 2.6 K . The 
inset contains the internal field distribution n(B) belonging to this spatial profile 
and, for comparison, the real amplitude of the F F T of the recorded precession 
signal P(t). The two distributions are similar; however, as alluded to in Section 5.1, 
the finite time span of the p S R data broadens the F F T and creates rapid 
oscillations in it. This ringing is especially visible in the high field B tail of the 
F F T , despite the F F T having undergone apodisation to smooth it. Apodisation 
effectively convolutes the F F T with a Gaussian function, and so broadens the 
distribution still further. Nuclear dipolar fields and slight vortex lattice disorder 
also broaden this distribution. The small peak in the F F T at field B « 1.204 T 
arises from muons that miss the sample. The maximum peak in the F F T , and in 
the fitted field distribution n(B), occurs for the field B located at the midpoint 
between nearest neighbour vortices. The shoulder corresponding to fields B weaker 
than this, expected for a square vortex lattice according to the local London model, 
is absent here in both the fitted field distribution n(B) and the F F T of the recorded 
polarisation P(t). This lack of a sizeable low field shoulder is a consequence of 
nonlocality. The effect of nonlocality on the field distribution n(B) appears in more 
detail in the next chapter. The very high fields B in the field distribution n(B) of a 
flux line lattice derive from the vortex core region. 

A useful definition of the radius p of a vortex core is the distance r from the core 
centre to the point where the supercurrent density J(r) is greatest. Applying one of 
Maxwell's equations, 

J(r) = V x -B(r) (5.10) 

where the constant p is the permeability of the medium, to the fitted internal field 
B(r) readily supplies the supercurrent density J(r). Figure 5.4 depicts the 
computed supercurrent density J(r) along a straight line between nearest neighbour 
vortices, and the extracted core radius p, due to an external field H = 1.2 T at 
temperature T = 2.6 K . The supercurrent density J(r) grows from zero at the 
vortex centre to its maximum value at the core radius p, and then subsides until it 
vanishes at the midpoint between adjacent vortices. A l l core radius values presented 
in this thesis are deduced from the fitted field B(r) in this way. Core radii 
determined by these means are relatively insensitive, compared to the fitted 
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parameters, to the specific choice of internal field model, as long as the model 
reproduces the actual field of the vortex lattice reasonably well [7]. This is because 
the calculated supercurrent density J(r) , and hence the core radius p, depend only 
on the spatial profile of the internal field B(r). The accuracy to which the model 
reconstructs the field B(r) can be inferred from the quality of the fit between the 
measured muon precession signal P(t) and that predicted by the model. 

Figure 5.5 displays a typical fitted muon precession signal P(t) in a rotating 
reference frame. The fitted function passes through most of the data points. The 
insets to this figure contain residual plots which exhibit a clear oscillation, 
indicating that the fitted function describes the data imperfectly. Such plots offer a 
useful qualitative assessment of the accuracy of a fit. 

Chi-squared x2 provides a quantitative evaluation of the fit quality. It is defined as 

where f(x) is the function fitted to the n measurements yt ± 5yi. A decrease in x2 of 
at least one reveals a significantly improved fit, while a reduced chi-squared 
X2/n < 1 means the fit is perfect. For the results reported in this thesis, the 
minimised reduced chi-squareds range between x2/n = 1-53 and x2/n = 1-84. These 
fits are comparable in quality to those obtained for other superconductors through 
analysis of pSR data in the time domain. Use of a more accurate cutoff factor [50] 
than the simple Gaussian exp(—k2£,2/2) in expression (5.2) might supply better fits 
for the LulN^B^C data discussed in this thesis. Figure 5.6 shows the dependence of 
X2/n on the penetration depth A in L u N i 2 B 2 C at several temperatures T , and 
Table 5.1 lists the number of degrees of freedom n for each of these temperatures. 
(The number of degrees of freedom n for fits at other temperatures is similar.) For 
each set value of the penetration depth A the parameters vary, in the way described 
in Section 5.3, until x2 1 S minimised. The error bars for fitted parameters reported 
in this thesis are the amount by which the parameter must change to raise x2 by 
one while the other parameters vary normally. A t each temperature there is a clear 
minimum in x2/n a s a function of penetration depth A, which moves to higher 
values of the penetration depth A at warmer temperatures. The shallowness of the 
minima is at least partly a consequence of compensation by the other free 

5.5 Fit Quality 

(5.11) 
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0 1 2 3 
Time t (/^s) 

Figure 5.5: Fitted muon polarisation P(t) in L u N i 2 B 2 C under an applied field 
H = 1.2 T at temperature T — 2.6 K . The real and imaginary polarisation 
components are perpendicular to the field. The squares represent data while the 
solid lines are the fitted function (5.1). The insets show the residuals R(t) formed 
by subtracting the fitted function from the data. 
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Table 5.1: Number of data points n analysed at each temperature T in Figures 5.6, 
5.7 and 5.8. 

Temperature T (K) Number of data points n 

2.6 556 
5.5 550 
8.5 547 

parameters, especially the nonlocality parameter C. Parameter C drops 
monotonically by two to three orders of magnitude over the displayed interval of 
increasing penetration depth A. This substantial playoff comes from the factor A 4 C 
appearing in the internal spatial field profile (5.2). The widening minima at higher 
temperatures T reflects the diminishing asymmetry of the internal field 
distribution n(B) as it approaches a Gaussian form. Figure 5.7 reveals how x V n 

varies with the nonlocality parameter C. At each temperature x2/n grows rapidly 
as C decreases below the location of the minimum x2 ln- This clearly demonstrates 
the substantial improvement in fit quality achieved by incorporating nonlocal 
corrections into the London model. The slow growth in x2ln a s the nonlocality 
parameter C increases away from the minimum further evidences the playoff 
between C and the penetration depth A. The penetration depth A falls 
monotonically as the nonlocality parameter C rises over the plotted interval. The 
shallower minima at warmer temperatures T again stem from the more 
Gaussian-like internal field distribution n(B). Figure 5.8 displays x2/n f ° r a range 
of vortex core radii p at the same temperatures T. Since the core radius p is a 
calculated rather than fitted parameter, this graph is constructed by minimising x2 

at fixed values of the coherence length £ and noting the corresponding core radii p. 
The strongly linear relationship between the coherence length £ and the core 
radius p makes this process possible. Similarly, altering the coherence length £ by 
its uncertainty 5£ and observing the consequent change in the core radius p 
produces error bars 6p for the core radius p. This means of computation of the 
uncertainty 8p in the core radius p is far simpler and more tractable than one based 
on combining the uncertainties of the fitted parameters according to equations (5.2) 
and (5.10). A t each temperature T the x2/n curve has a single minimum, which 
moves to larger core radii p as the temperature T rises. This behaviour of the core 
radius p, and also the penetration depth A, with temperature T is explored in more 
detail in the next chapter. 
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Chapter 6 

Results and Discussion 

The nonlocal model outlined in Section 5.2 fitted the pSR data on L u N i 2 B 2 C much 
better than the local London model used in combination with a triangular vortex 
lattice [51]. This reflects the presence of a highly ordered square flux lattice in 
L u N i 2 B 2 C at temperatures T between T = 2.6 K and T = 10 K , achieved through 
field cooling under an H = 1.2 T field applied parallel to the crystal c axis. The 
behaviour of the penetration depth A, the nonlocality parameter C and the core 
radius p in L u N i 2 B 2 C under these field and temperature conditions emerges readily 
from the fitted parameters. 

Figure 6.1(a) displays the behaviour of the fitted penetration depth A with 
temperature T under an external field H = 1.2 T . The fitted penetration depth A 
increases from A « 950 A to A « 1100 A over the temperature T range from 
T = 2.6 K to T = 10 K . The solid curve depicts the temperature dependence 
anticipated from relation (5.4) and plotted in Figure 5.1. Choosing a zero 
temperature penetration depth A(0) to optimally fit this B C S temperature variation 
to the measured penetration depth A indicates a zero temperature penetration 
depth A(0) = 949(8) A. The observed penetration depth appears fairly consistent 
with the exponentially-activated form expected for B C S electron-phonon coupling 
and s-wave order parameter symmetry in L u N i 2 B 2 C . However, the error bar size 
also permits the interpretation of the penetration depth temperature 
dependence A(T) as a power law, as would be expected [7] if nodes existed in the 
energy gap. The penetration depth grows much more weakly with temperature in 
L u N i 2 B 2 C than in Y B a 2 C u 3 0 6 . 9 5 [52], known to possess an energy gap with line 
nodes. While the penetration depth A measurements seem as anticipated, the fitted 
nonlocality parameter C appears a little more surprising. 

40 
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Reduced Temperature T / T c 

Figure 6.1: Measured dependence of (a) the penetration depth A and (b) the 
nonlocality parameter C on temperature T in LUN12B2C under an applied 
field H — 1.2 T . The circles are the best fit values obtained wi th the nonlocal 
London model. For comparison, the solid lines illustrate the expected variation 
according to (a) expression (5.4) and (b) relation (5.3). 
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Figure 6.1(b) depicts the variation of the fitted nonlocality parameter C with 
temperature T under an H = 1.2 T applied field. As described in Section 5.5, 
reasonable fits to the data require a nonzero C , demonstrating the importance of 
nonlocal effects in L u N i 2 B 2 C . The solid curve in Figure 6.1(b) is a fit to the 
predicted temperature dependence (5.3) in the clean limit. As expected, the best fit 
values of the nonlocality parameter C are fairly uniform at low temperatures. At 
higher temperatures the fitted nonlocality parameter C changes little, rather than 
dropping monotonically as anticipated. Possible explanations for this slight 
discrepancy include the presence of impurities and the approximate nature of the 
field distribution model (5.2). Figure 5.1 illustrates the behaviour of parameter C 
with temperature, as influenced by the nonlocality radius pni, when the 
L u N i 2 B 2 C sample is completely free of impurities. As the impurity level rises the 
nonlocality radius pni becomes temperature independent [12], leading to a weaker 
temperature dependence in parameter C that better agrees with that observed. In 
fact, the constancy of the fitted nonlocality parameter C over the studied 
temperature range agrees with recent small angle neutron scattering (SANS) 
data [53] that shows the onset field H2 of the square to hexagonal vortex lattice 
symmetry transition essentially holds constant below temperature T = 10 K . Closer 
agreement between the anticipated and fitted temperature dependences of 
parameter C might also result from the inclusion of higher order nonlocal terms in 
expression (5.2) for the spatial field profile B ( r ) . Refitting the data with the 
nonlocality parameter C fixed to its expected clean limit temperature 
variation (5.3) induces negligible change in the remaining fitted parameters and the 
inferred core radius p. 

Table 6.1: Fitted penetration depth A, effective coherence length £ and nonlocality 
parameter C for the field distributions n(B) plotted in Figure 6.2. 

London model Temperature T (K) A (A) *(A) C 
Nonlocal 10 1100(80) 57(1) 0.25(9) 

Nonlocal 2.6 940(30) 28(2) 0.17(4) 

Local 2.6 1494(9) 41(1) 0 

Figure 6.2 compares the internal magnetic field distributions n(B) calculated for the 
fitted spatial field profile (5.2) at temperatures T = 2.6 K and T = 10 K under 
an H = 1.2 T external field. The best fit values of the penetration depth A, the 
effective coherence length £ and the nonlocality parameter C for the 
distributions n(B) shown in this figure appear in Table 6.1. The shape of the 
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nonlocal field distributions n(B) differs qualitatively from that associated with the 
traditional London model, as illustrated at temperature T = 2.6 K in the inset to 
this figure. The distinct difference between these shapes explains the vast 
improvement in fit quality the nonlocal London model (5.2) achieves over the 
conventional one, as evident in Figure 5.7. The basic London model emerges from 
the nonlocal model when the nonlocality parameter C = 0, and, in the case of a 
square vortex lattice, generates a characteristic low field shoulder in the field 
distribution n(B). The nonlocal corrections greatly reduce the spectral weight of 
this shoulder, to the point where at temperature T = 2.6 K the shoulder almost 
vanishes. They also give rise to the small peak appearing at the lowest field B in 
the distribution n(B). Such a peak is absent in the local London model, and its 
presence reflects a flatter spatial field profile at the centre of the square unit cell 
with a vortex in each corner. The clear rise in the maximum field B of the 
distribution n(B) as the temperature T falls from T = 10 K to T = 2.6 K reflects the 
shortening of the vortex core radius p. 

Figure 6.3 compares the temperature dependence of the core radius p(T) measured 
in L u N i 2 B 2 C at external field H = 1.2T to that reported for NbSe 2 [6] (T c = 7.0 K ) , 
Y B a C u 3 0 6 . 9 5 [7] (T c = 93.2 K) and Y B a C u 3 0 6 . 6 o (T c = 59 K ) at H = 0.5 T . As the 
reduced temperature T/Tc rises from T/Tc = 0 to T/Tc « 0.6, the core radius p in 
Y B a C u 3 0 6 . 95 and YBaCu 3 O6 .60 remains almost constant, consistent with the 
attainment of the quantum limit as discussed in Section 2.4. In NbSe 2 the quantum 
limit temperature T 0 occurs around 1 K , above which the core radius p expands 
linearly with temperature T, at a rate much slower than anticipated from the 
proposed Kramer-Pesch effect. The Kramer-Pesch effect in L u N i 2 B 2 C appears 
equally weak, with no low temperature saturation in its core size evident over the 
temperature interval studied. Overlapping the L u N i 2 B 2 C data with that for NbSe 2 

determines the zero temperature core radius p(0) for L u N i 2 B 2 C to be 
p(0) = 64(1) A, greatly exceeding the predicted value p(0) ~ 1/kp = 4 A. The 
relation p — p(0)[l + a(T — Tb) /T c ] , displayed as a solid line in Figure 6.3 with the 
zero temperature core radius p(0) set to 64 A, best fits the L u N i 2 B 2 C data for 
slope a = 0.84(5) and quantum limit temperature T 0 = 1.0(4) K . This agrees with 
the expected quantum limit temperature To = 0.7(1) K calculated in Section 3.2, 
and is similar to that recorded for NbSe 2 . The almost identical reduced 
temperature T / T c dependence of the core radius p/p(0) in L u N i 2 B 2 C and NbSe 2 

suggests that quasiparticles in these materials behave in the same way as a function 
of reduced temperature T / T c , despite the different dimensionalities of these 
superconductors. It also implies that longitudinal disorder of vortices has negligible 
effect on p S R determinations of the core radius p. As with p S R studies of the 
Kramer-Pesch effect in NbSe 2 and YBaCu 307_<j, the weak core shrinkage upon 
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cooling and order-of-magnitude larger than expected zero temperature core 
radius p(0) observed in L u N i 2 B 2 C highlight the need to include interactions between 
vortices and their zero point motion in theories concerning the Kramer-Pesch effect. 



Chapter 7 

Conclusions 

This thesis reports /uSR measurements of the internal magnetic field 
distribution n(B) in L u N i 2 B 2 C at temperatures T between T = 2.6 K and T = 10 K , 
under a magnetic field H = 1.2 T applied parallel to the crystal c axis. The p,SR 
data are analysed with a nonlocal London model [11] developed specifically for 
borocarbide superconductors, assuming the square vortex lattice appropriate for 
these temperature T and external field H conditions. The results of this analysis 
enable a number of conclusions to be drawn regarding nonlocality and the behaviour 
of the penetration depth A and core radius p with temperature T in LuNi2B 2 C. 

Nonlocality plays an important role in the vortex state of L u N i 2 B 2 C . The 
incorporation of first order nonlocal corrections into the traditional London model 
improves the fit quality dramatically by qualitatively modifying the fitted internal 
magnetic field distribution n(B). In comparison to the field distribution n(B) 
produced for a square vortex lattice by the basic London model, the inclusion of 
these nonlocal terms considerably diminishes the spectral weight of the low field 
shoulder and generates a small peak at the lowest field B in the distribution n(B). 

The penetration depth A in L u N i 2 B 2 C increases slightly from A m 950 A at 
temperature T = 2.6 K to A « 1100 A at T = 10 K . The form of the measured 
penetration depth temperature variation X(T) agrees with that expected for a B C S 
s-wave superconductor, although the error bars suffice in size for the observed 
temperature dependence A(T) to be consistent with weak linear growth. Such a 
linear rise in the penetration depth A at low temperatures would imply the presence 
of low energy delocalised quasiparticles. However the considerably reduced 
steepness of the possible linear growth in L u N i 2 B 2 C relative to that observed for 

47 
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YBa2Cu .3O6 .95 means that the energy gap A anisotropy in LUM2B2C is much less 
than would be generated by line nodes. 

The core radius p in L u N i 2 B 2 C contracts linearly upon cooling through the 
investigated temperature interval. The rate of core shrinkage is remarkably slower 
than anticipated from the predicted Kramer-Pesch effect. The zero temperature 
core radius p(0) = 64(1) A, as determined by comparison with NbSe 2 data, greatly 
exceeds the proposed p(0) ~ 1/kp = 4 A. However, the extrapolated quantum limit 
temperature T 0 = 1.0(4) K for L u N i 2 B 2 C agrees well with the expected 
value To = 0.7(1) K . Surprisingly, the behaviour of the core radius p/p(0) with 
reduced temperature T / T c is almost identical in nearly three-dimensional LuNi2B2C 
and quasi two-dimensional NbSe 2 . This similarity indicates that longitudinal 
disorder of vortices exerts negligible influence on p S R measurements of the vortex 
core radius p, and that quasiparticles in these two superconductors act in much the 
same manner. As is the case for NbSe 2 , the weakness of the observed Kramer-Pesch 
effect in LuNi 2 B2C points to the need for theoretical work on the temperature 
dependence of vortex structure to take into account zero point motion of vortices 
and vortex-vortex interactions. 

http://YBa2Cu.3O6.95
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