Analysis of the S-layer Transporter Mechanism and Smooth Lipopolysaccharide Synthesis in Caulobacter crescentus by
 Peter Alan Awram

B.Sc., The University of British Columbia, 1992

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES
(Department of Microbiology and Immunology)

We accept this thesis as conforming to the required standard

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of MicROBiology
The University of British Columbia
Vancouver, Canada

Abstract

C. crescentus is a Gram-negative bacterium that possesses an hexagonal array called the S-layer that covers the entire outer surface of the bacterium. This array is composed of an estimated 60000 copies of the 98 kDa protein RsaA. RsaA secretion is directed by a C-terminal secretion signal located in the last 82 amino acids of the protein. Once RsaA is secreted from the cell, it assembles into the S-layer and attaches to the outer membrane via a specific species of smooth lipopolysaccharide (S-LPS). The mechanisms required for the secretion of RsaA and the synthesis of the S-LPS were examined in this thesis.

Tn5 mutagenesis of wildtype C. crescentus demonstrated the presence of two genes, $r s a D$ and $r s a E, 3$ ' of the $r s a A$ gene that were required for transport of RsaA. These genes were isolated and are capable of complementing the Tn5 mutations 3 ' of RsaA in trans. The resulting proteins of $r s a D$ and $r s a E$ belong to the type I secretion family that uses three components: an ATP Binding Cassette-transporter (RsaD), a Membrane Fusion Protein (RsaE) and an outer membrane protein (OMP), to secrete proteins through both membranes of Gramnegative bacteria. The OMP, RsaF, of the Rsa system was found by screening the partial Caulobacter genome sequence for sequence identity to other type I OMPs. The gene for RsaF is found 5 kb 3 ' of $r s a E$. Deletion of the N -terminus or C-terminus of RsaF prevents the Rsa secretion mechanism from functioning.

The secretion of the S-layer subunits in a number of other Caulobacter species was also examined. A partial ORF from FWC27 with 44.6% identity to RsaA was isolated. In addition, the ABC-transporter components from FWC6, FWC8 and FWC39 were isolated. These components were >95\% identical to

RsaD. These results were used to explore the evolutionary relationships between the different Caulobacter species.

Eighteen Tn5 mutations resulting in the inability of the S-layer to attach to the surface of the bacterium were also isolated. Southern blot analysis demonstrated that twelve of these insertions were linked to the Rsa transporters. The Tn5 insertion points were isolated and sequenced allowing identification of several putative genes involved in S-LPS synthesis from the Caulobacter genome sequence. A total of twelve open reading frames (ORFs) were found by Tn5 mapping and two more were found 3 ' of rsaE. Six of these putative genes may code for proteins involved in the synthesis of sugar residues including five that make perosamine. Five of the genes appear to be glycosyltransferases involved in forming the linkages between sugar residues in the O-antigen. One of the genes appears to be a repressor, while the remaining genes are unidentified. These data suggest that the major component of the O-antigen is perosamine and that a number of different linkages are made between the perosamine residues.

TABLE OF CONTENTS

Abstract ii
Table of Contents iv
List of Tables v
List of Figures vi
List of Abbreviations vii
List of Species abbreviations viii
Acknowledgements ix
CHAPTER 1 Introduction 1
CHAPTER 2 Materials and Methods 16
CHAPTER 3 Secretion of RsaA 24
CHAPTER 4 Identification of the Outer Membrane Protein Component of the RsaA Transport Complex 38
CHAPTER 5 Identification of the S-layer Subunit and Transporter genes in
Freshwater Caulobacter species 53
CHAPTER 6 Identification of Genes involved in the Synthesis of the O-antigen of C. crescentus 68
CHAPTER 7 Conclusion and Future Considerations 92
Bibliography 97
Appendix 1 RAT fragment - rsaADEF and IpsABCDEF 113
Appendix 2 ATC15252 S-layer subunit and transporter genes 122
Appendix 2 Sequences of lpsGHIJK, orf1 and orf2 129

List of Tables

Table 2-1 Strains and Plasmids used in this study 17
Table 2-2 Primers used for PCR for this report 19
Table 5-1 Differences between the Rsa genes found in lab strains 55
Table 5-2 FWC species secreting alkaline protease 56
Table 5-3 Southern Blot Banding patterns of different FWC species 57
Table 5-4 BLAST alignment of RsaA with itself 62
Table 6-1 Southern blot of Shedder mutants using EcoRI 71
Table 6-2 Southern blot of Shedder mutants using Sstl 72
Table 6-3 List of shedder mutants 73
Table 6-4 Deduced proteins involved in O-antigen synthesis 77
Table 6-5 Characteristics of the S-LPS synthesis genes 79

List of Figures

Figure 1-1 Shed S-layer from C. crescentus 2
Figure 1-2 Developmental cycle of C. crescentus 3
Figure 1-3 3-Dimensional reconstruction of the S-layer 5
Figure 1-4 Type I secretion system 9
Figure 2-1 Plasmids containing NA1000 chromosomal DNA 18
Figure 3-1 Colony Immunoblot 25
Figure 3-2 S-layer negative Tn5 insertions 26
Figure 3-3 Complementation of Tn5 mutants with rsaA 27
Figure 3-4 Genes 3' of r saA 28
Figure 3-5 ClustalW alignment of ABC-transporters 29
Figure 3-6 ClustalW alignment of MFPs 30
Figure 3-7 Complementation of transport deficient mutants 32
Figure 3-8 Expression of prtB in C. crescentus 34
Figure 4-1 Alignment of OMP components 41
Figure 4-2 The two possible OMPs 43
Figure 4-3 Comparison of possible Rsa OMP components 45
Figure 4-4 DNA surrounding $r s a A$ 48
Figure 4-5 OMPs similar to Rsa(973) 49
Figure 4-6 AprA secretion from C. crescentus 50
Figure 5-1 Alignment of partial FWC RsaD genes 58
Figure 5-2 ClustalW alignment of FWC 27 60
Figure 5-3 Dendrogram of FWC species 66
Figure 6-1 Shed S-layer from C. crescentus 69
Figure 6-2 Colony Immunoblot 69
Figure 6-3 S-LPS of shedding Tn5 mutants 70
Figure 6-4 S-LPS synthesis genes linked to rsaA 75
Figure 6-5 Genes interrupted by Tn5 insertions in shedder mutants 76
Figure 6-6 ClustalW alignment LpsB 81
Figure 6-7 ClustalW Alignment of LpsD and LpsE 82
Figure 6-8 ClustalW alignment of LpsF 83
Figure 6-9 ClustalW alignment of LpsJ 85
Figure 6-10 ClustalW alignment of LpsK 87
Figure 6-11 Perosamine Synthesis Pathway 90

List of Abbreviations

ABC	ATP-Binding Cassette
ATP	adenosine triphosphate
BLAST	Basic Local Alignment Search Tool
C-terminus	carboxy terminus
DNA	deoxyribonucleic acid
EDTA	ethylene diaminetetra-acetic acid
EGTA	ethylene glycol-bis(β-aminoethyl Ether) NNN'N' tetraacetic acid
G+C	guanosine and cytosine content of DNA
FWC	freshwater Caulobacter
HCl	hydrochloric acid
KDO	ketodeoxy octulosonic acid
KDa	kilodalton
Km	kanamycin
LPS	lipopolysaccharide
min	minute
MFP	membrane fusion protein
mg	milligram
ml	millilitre
μl	microlitre
μg	microgram
NaCl	sodium chloride
NeuNAc	N-acetyl neuraminic acid (sialic acid)
NAD	nicotinamide adenine dinucleotide
NMR	nuclear magnetic resonance
N-terminus	amino terminus
NTG	1-methyl-3-nitro-1-nitrosoguanidine
O-antigen	antigenic determinant found on the outside of cell consisting of
	repeating units of oligosaccharides
ORF	open reading frame
OMP	outer membrane protein
PAGE	polyacrylamide gel electrophoresis
PCR	polymerase chain reaction
PYE	peptone yeast extract
RNA	ribonucleic acid
S-layer	surface layer
S-LPS	smooth lipopolysaccharide of C. crescentus
SDS	sodium dodecyl sulphate
Sm	streptomycin
Tc	tetracycline
Tm	Melting temperature of two strands of DNA
TIGR	The Institute for Genome Research
Tris	Tris (hydroxymethyl) methylamine
UV	ultra violet light

List of Species Abbreviations

B. pertussis	Bordetella pertussis
B. melitensis	Brucella melitensis
C. crescentus	Caulobacter crescentus
C. fetus	Campylobacter fetus
C. jejuni	Campylobacter jejuni
E. chrysanthemi	Erwinia chrysanthemi
E. coli	Escherichia coli
P. aeruginosa	Pseudomonas aeruginosa
S. enterica	Salmonella enterica
S. marcescens	Serratia marcescens
V. cholerae	Vibrio cholerae
R. meliloti	Rhizobium meliloti
R. leguminosarum	Rhizobium leguminosarum

Acknowledgements

I would like to acknowledge myself for persevering throughout this process. I would further like to thank my wonderful girlfriend Bianca Kuipers for being supportive during this time. I would like to thank John Nomellini and Stephen Walker for helpful suggestions and thoughtful insights and the occasional gel along the way. I would also like to thank all my 'partners in pain' that started with me.

Chapter 1

Introduction

This thesis focuses on the secretion and attachment of the S-layer of Caulobacter crescentus. S-layers are not well understood and have not been studied extensively even though they are found on a wide range of prokaryotes (Messner and Sleytr, 1992; Sleytr et al., 1993; Sleytr and Sara, 1997). Consequently, there is a need for basic research to describe these structures. Despite this lack of study, some research has been done on the commercial aspects of S-layers (Sleytr et al., 1997a). The research presented here is applicable to both of these areas. It is of general interest to know the methods of secretion and attachment of the S-layer and this information can also be applied to the commercial aspects of S-layers.

Evidence is presented that the S-layer subunit of C. crescentus is secreted by a type I secretion mechanism and that the S-layer subunits of a number of other Caulobacter species are probably secreted by an almost identical type I mechanism. Also presented are several putative proteins involved in the synthesis of the Oantigen that support the predicted composition of the O -antigen as being a polymer of a 4,6-dideoxy-4-amino-hexose with complex linkages (Walker et al, 1994; Smit unpublished). Furthermore these data suggest that the 4,6-dideoxy-4-amino-hexose is perosamine and that a number of glycosyltransferases provide complex linkages between the perosamine residues.

The S-layer of \boldsymbol{C}. crescentus can be used as a biotechnology vehicle. The Slayer is a 2-dimensional array made from approximately 60000 copies of the protein, RsaA (Smit et al., 1981). This layer covers the entire outer surface of the bacterium and makes up about 10% of the cell's protein. Therefore, RsaA must be secreted, passing through both membranes, from the Gram-negative cell. An uncleaved C-terminal secretion signal directs this secretion of RsaA (Bingle et al., 1999; Bingle et al., 1996; Bingle et al., 1997b; Bingle and Smit, 1994). Once secreted, the S-layer is attached to the outer membrane via the smooth
lipopolysaccharide (S-LPS) (Walker et al., 1994). If the S-LPS is disrupted or absent the S-layer detaches from the membrane and aggregates into particles that are up to 90% pure RsaA making it easy to collect large amounts of relatively pure protein (Fig. 1-1). It has been found that the N -terminus of RsaA contains the attachment domain and a C-terminus Ca^{2+} binding domain is responsible for aggregation of the protein (Bingle et al., 1997b).

To produce recombinant proteins it is desirable to produce large quantities that are easily isolated from the rest of the cellular protein. The properties of the C. crescentus S-layer and secretion apparatus allow this. The C-terminal secretion signal and Ca^{2+} binding domain can be fused to a desired protein and recombinant proteins can then be secreted from C.

Figure 1-1. Shed slayer from c. crescentus. EM photograph of s layer shed from a strain with defective S-LPS. (Photo courtesy John Smit) crescentus by the RsaA secretion signal. The proteins aggregate together in the medium where they can be filtered away from the cells. This process has been shown to be viable and recombinant proteins have been expressed and purified from C. crescentus (Bingle et al., 1997a).

S-layers also have other uses such as the expression of epitopes in S-layers to be used for recombinant vaccines. Another aspect that is being examined is to use the regular arrays formed by the S-layer as templates for the deposition of metal or silicon atoms to allow creation of circuitry finer than is allowed by current integrated circuit etching technology. It would also be possible to use the arrays as surface supports to which biologically active molecules could be attached (Sara and Sleytr, 1996a; Sara and Sleytr, 1996b; Sleytr et al., 1997a; Sleytr et al., 1997b; Sleytr and Sara, 1997). Obviously, all these uses could be applied to the S-layer of C. crescentus.

To increase the utility of C. crescentus S-layers for such applications it is vital to understand how the RsaA protein is secreted and attached to the surface. For example, it is necessary to understand the conformation of the protein when it is
passing through the secretion apparatus. This will determine what kind of foreign proteins or epitopes can be secreted and are capable of forming aggregates using the RsaA secretion pathway. To answer some of these questions this thesis examines the RsaA secretion and S-LPS synthesis pathways.
C. crescentus is a Gram-negative, motile eubacterium found in soil and aquatic environments including drinking water. The non-pathogenic bacterium

Figure 1-2. Developmental cycle of C. crescentus Sessile cells attached to the surface via the holdfast bud off swarmer cells which move to a new location where they lose their flagellum and grow a stalk to attach to the surface again. (Figure courtesy Ian Bosdet.) derives its name from the crescent shape of the cells. C. crescentus undergoes a dimorphic developmental life cycle (for reviews see Brun et al., 1994; Gober and Marques, 1995 ; Poindexter, 1981; Shapiro, 1976; Shapiro and Losick, 1997) during which it switches between a motile (swarmer) phase and a sessile stalked phase (Fig 1-2). In both phases the bacterium is completely covered by the S-layer (Smit et al., 1981). In the swarmer phase the cell expresses a single flagellum, pili and a holdfast (an adhesin) at one pole. When the cell differentiates into the stalked form, it loses the flagellum and a stalk (containing no cytoplasm) grows out from the cell envelope keeping the holdfast on its tip. Stalked cells divide and produce a swarmer cell with the flagellum being created at the pole furthest from the stalked cell. Most of the current research on C. crescentus focuses on the developmental process resulting in these two different forms and the development of the flagellum (Brun et al., 1994; Roberts et al., 1996; Shapiro and Losick, 1997).

S-layers are two-dimensional arrays that cover the outside surface of many

 prokaryotes. C. crescentus is one of many species of bacteria covered with a crystalline protein surface layer (S-layer) (Boot and Pouwels, 1996; Sleytr and Messner, 1983; Sleytr and Sara, 1997; Smit et al., 1981). Thousands of copies of nearly always a single protein or glycoprotein self-assemble into a crystalline-like lattice (Sleytr and Messner, 1983). The S-layers described so far have subunits ranging in size from 30 to 220 kDa (Messner and Sleytr, 1992). Although a large number of bacteria have been found to have S-layers, enteric bacteria, the most studied, lack them and consequently have not been studied much (Hovmoller et al., 1988; Sleytr and Messner, 1988). For reviews on S-layers see Beveridge et al., 1997; Sleytr, 1992; Sleytr and Messner, 1983.S-layers typically make up 10% of the protein in a cell and thus represent a large energy expenditure by the cell (Sleytr and Messner, 1983). Many bacteria have been found to lose their S-layers when there is no environmental pressure for maintenance, such as during sub-culturing in the laboratory, showing that S-layers are not essential for growth (Blaser et al., 1985; Borinski and Holt, 1990; Luckevich and Beveridge, 1989; Stewart and Beveridge, 1980). Considering the energy expenditure, the function of the S-layer must be required for survival in the normal environment of the bacterium. It is presumed that most S-layers have a protective barrier role because the pore-like structures formed by the layer likely act as molecular sieves and prevent the entry of molecules, such as proteases and lytic enzymes, larger than the pore (Sleytr and Messner, 1983) as shown by several cases (Koval and Hynes, 1991; Sleytr, 1976). In addition, some infectious bacteria use their S-layers to adhere to and invade the cells of other organisms (Blaser et al., 1988; Messner and Sleytr, 1992; Munn et al., 1982). It has been demonstrated that the S-layer of C. cresentus protects it from a Bdellovibrio-like organism (Koval and Hynes, 1991), but the S-layer also acts as a receptor for the bacteriophage øCR30 (Edwards and Smit, 1991) showing that the S-layer also allows C. crescentus to be infected by a parasite.

S-layers have common features, such as an acidic pl, an absence of cysteine residues and a high number of hydroxylated amino acids. Subunits are held
together and to the surface by noncovalent (hydrophobic, ionic, hydrogen or polar) bonds (Koval and Murray, 1984; Messner and Sleytr, 1992; Sleytr and Messner, 1983). Despite these similarities, there is very little sequence similarity among Slayer proteins (Gilchrist et al., 1992; Messner and Sleytr, 1992), suggesting that Slayers may have arisen by convergent evolution.

The S-layer of C. crescentus is composed of the protein RsaA. Six copies of

Figure 1-3. 3-Dimensional reconstruction of the S-layer. The arrow indicates a single C-shaped RsaA monomer. (Figure from Smit et al, 1992). RsaA form a ring-like subunit (Fig. 1-3) that interconnects with other subunits to form a two-dimensional hexagonal array (Smit et al., 1992). The gene for RsaA has been cloned (Smit and Agabian, 1984) and sequenced (Gilchrist et al., 1992). N-terminal protein sequencing of the mature RsaA polypeptide has shown that only the initial N -formyl methionine is cleaved, leaving a mature polypeptide of 1025 residues with a molecular weight of 98 kDa (Fisher et al., 1988; Gilchrist et al., 1992). The S-layer is anchored to the cell surface via a noncovalent interaction between the N-terminus of the protein and a specific smooth LPS in the outer membrane (Walker et al., 1994). Ca^{2+} is required for the proper crystallization of RsaA into the S-layer and its removal using EGTA disrupts S-layer structure (Nomellini et al., 1997; Walker et al., 1994).

RsaA is a true secreted protein. RsaA must pass through both the inner and outer membranes to form the S-layer on the outer surface of the bacterium. As there is a large amount of RsaA (10 to 12% of the cellular protein), an efficient secretion system or a large number of transport complexes are required to secrete the protein during the 105 min generation time. Linker mutagenesis of RsaA has shown that the
extreme N -terminus is required for surface attachment while the C -terminus is required for secretion. Further, deletion and hybrid protein analyses have indicated that secretion of RsaA relies on an uncleaved C-terminal secretion signal located within the last 82 amino acids of the RsaA protein (Bingle et al., 1999; Bingle et al., 1996; Bingle et al., 1997a; Bingle et al., 1997b; Bingle and Smit, 1994). The presence of an uncleaved C-terminal secretion signal usually indicates secretion by a type I system (Binet et al., 1997; Salmond and Reeves, 1993) rather than a type II, III or IV system. Most Gram-positive bacterial S-layers have been shown to use the General Secretion Pathway (GSP)' or Sec-dependent pathway (Pugsley, 1993) for export (Messner and Sleytr, 1992; Sleytr and Messner, 1988; Sleytr et al., 1993; Sleytr and Sara, 1997), whereas S-layer proteins in Gram-negative bacteria are secreted using a type II system (Boot and Pouwels, 1996) which also employs the GSP to transport the S-layer subunit across the inner membrane. Recently, it has been shown that the S-layer of Campylobacter fetus is secreted by a type I mechanism (Thompson et al., 1998) and an S-layer-like protein in Serratia marcescens with significant similarity to RsaA has been shown to use a type I secretion mechanism (Kawai et al., 1998).

In addition to the secretion signal, the C-terminal portion of RsaA also contains repeats of a glycine and aspartate acid-rich region which are thought to bind calcium ions (Gilchrist et al., 1992) and result in the aggregation of free RsaA in the medium. Such Ca^{2+}-binding motifs are found in most proteins secreted by type I systems (Binet et al., 1997) and consist of a glycine/aspartate rich GGXGXD motif that repeats 4-36 times (Welch, 1991). C. crescentus has two groups of three repeats separated by 12-16 residues containing this motif. Interestingly, there are no obvious repeat regions in the S-layer of C. fetus (Thompson et al., 1998). It has been suggested that these motifs are important for the proper presentation of secretion signal to the $A B C$ transporter (Duong et al., 1996; Létoffé and Wandersman, 1992; Sutton et al., 1996). Thus, in the case of RsaA, the glycine and aspartate rich repeats may function (along with Ca^{2+}) both in maintaining the crystalline structure of the S-layer and in the secretion of the S-layer protein itself.

There are four described Gram-negative bacterial transport systems. These systems have been named type I through type IV. The type I system requires 3 proteins that are thought to form a pore through the inner and outer membranes allowing the protein to be secreted. This is the method by which RsaA is secreted and it is discussed in depth below.

Type II systems use the GSP for export across the inner membrane and then use a complex of 12-14 proteins for secretion to the outside of the bacterium. The secretion substrates contain classical Sec-dependent N-terminal signal sequences that direct transport across the inner membrane by the Sec pathway (Pugsley, 1993). Proteins are transported across the cytoplasmic membrane in an unfolded state and then fold in the periplasm. This folding is necessary as the components for secretion seem to recognize the secondary or tertiary structure of the substrate as no sequence similarity has been found (Lu and Lory, 1996). Both ATP hydrolysis as well as proton motive forces appear to be required for secretion of the substrate (Feng et al., 1997; Letellier et al., 1997). For a review of type II secretion systems see Russel, 1998.

The auto-secreting proteins, such as the IgA proteases, like the type II secreted proteins, use the GSP to cross the inner membrane. These proteins have an N -terminal signal sequence and a C-terminal pro-sequence. They are exported across the cytoplasmic membrane by the Sec dependent pathway in the usual manner with cleavage of the N -terminus signal sequence. The pro-sequence then forms a pore in the outer membrane through which the rest of the protein passes. Once the protein is outside, autocatalytic cleavage of the pro-sequence occurs, releasing the protease from the cell (Pohlner et al., 1987).

Type III secretion has only been found in pathogens and is used to deliver bacterial proteins into the host cytoplasm to alter the host's metabolism to the advantage of the bacterium. Type III systems are the most complex of the secretion systems, involving more than 20 proteins. The proteins form a needle-like structure that spans the inner and outer membrane (Kubori et al., 1998). Before secretion can occur, the bacterium must make contact with the host cell. Secretion seems to be directed by the mRNA. It is thought that the mRNA forms a hairpin loop that obscures the translation start signal until the 5 ' region of the mRNA interacts with the
secretion apparatus (Anderson and Schneewind, 1997). A signal recognition protein may mediate this process. Therefore, secretion is coupled with translation. ATP hydrolysis appears to be required for secretion, as components of type III systems are capable of hydrolyzing ATP in vitro (Eichelberg et al., 1994). The substrate may then pass through the needle structure to the outside of the cell, though this has not been proven. For reviews of type III secretion see Anderson and Schneewind, 1999; Galan and Collmer, 1999

Type IV secretion systems have only recently been discovered and are not well understood. This transport pathway, like the type III, has so far been found exclusively in pathogens. The type IV system seems to have been designed to transport DNA, though the Bordetella pertussis Ptl system only transports proteins (Weiss et al., 1993). There are at least 9 proteins involved in the transport process and their functions are not well understood. There are usually two proteins containing nucleotide binding motifs that appear to be the transporting units that hydrolyze ATP to effect transport. It is not known if the substrate is transported in a one step process where the substrate bypasses the periplasm or a two step process where the substrate is first transported to the periplasm and then a second transport process secretes the protein. For a review of type IV secretion see Burns, 1999

RsaA is secreted by a type I mechanism. The goal of this thesis was to elucidate the secretion mechanism of RsaA. Initial indications suggested that it was a type I secretion mechanism (i.e., a C-terminal secretion signal and the presence of glycine/aspartate rich repeats) and data are presented here directly demonstrating that RsaA is secreted by a type I mechanism. Figure $1-4$ shows the predicted structure of the C. crescentus membrane and also serves as a general model of a type I mechanism.

The best described type I secretion systems are those required for the secretion of Escherichia coli α-hemolysin (HlyA), Erwinia chrysanthemi metalloproteases (PrtB) and Pseudomonas aeruginosa alkaline protease (AprA) (Binet et al., 1997; Salmond and Reeves, 1993). A type I secretion apparatus requires three components (Delepelaire and Wandersman, 1991). One component, the ABC transporter, is embedded in the inner membrane and contains an ATP-
binding cassette (ABC). It has been shown that this component recognizes the C-terminal signal sequence of the substrate protein and hydrolyzes ATP during the transport process (Binet and Wandersman, 1995; Koronakis et al., 1993). Another component, the membrane fusion protein (MFP), is anchored in the inner membrane and appears to span the periplasm (Dinh et al., 1994). The remaining component is an outer membrane protein (OMP) that has been shown to interact with the MFP. It is thought that these three components form a channel that extends from the cytoplasm

Figure 1-4. Type I secretion system. Diagram of the hypothetical membrane architecture of C. crescentus showing the predicted type I secretion mechanism of RsaA through the two membranes to the outside of the cell (Akatsuka et al., 1997; Hwang et al., 1997). The substrate may pass through this channel (probably in an unfolded state) to the outside of the cell. In many cases, the genes for all three transport components are found immediately adjacent to the substrate gene(s) (Duong et al., 1992; Létoffé et al., 1990). In other type I systems, only the ABC-transporter and MFP genes are next to the substrate gene (Létoffé et al., 1994b; Mackman et al., 1985). The Rsa genes are organized like the latter and the OMP gene is not adjacent to the ABC-transporter and MFP. Recently, it was determined that the OMP gene is only separated from the MFP gene by five ORFs and a distance of 5 kb in the Rsa system. There are also instances where the substrate gene is separate from the secretion genes (Finnie et al., 1998; Scheu et al., 1992). As shown in Figure 1-4, from analysis of the ABCtransporters it is thought that the protein components work in multimers of at least 2. Some members of the ABC-transporter family, such as P-glycoprotein, contain two
almost identical domains in tandem, each with its own membrane spanning and $A B C$ region (Sheps et al., 1996). Association of two ABC transporters has been shown for monomeric ABC-transporters (Davidson and Nikaido, 1991). The proteins may work in pairs so that one ATP is hydrolyzed for transport and a second ATP is hydrolyzed to return the complex to the resting conformation. It is also possible that the proteins work in tandem and small sequential conformational changes in each separate protein push the proteins along (Welsh, 1998). Recent work indicated that while the ABC-transporters may work as a dimer, the MFP may work as a hexamer and the OMP as a trimer (Holland, 1999; Koronakis et al., 1997).

The ABC-transporter family is very large and the type I secretion systems make up only a small portion. They are found in all forms of life and are sufficient to transport a substrate across a single membrane. There is significant sequence similarity among the ABC-transporters, even between eukaryotic and prokaryotic genes. The eukaryotic P-glycoprotein shares close to 50% conserved amino acids with many of the bacterial ABC-transporters such as HlyB and PrtD over the entire length of the protein (Croop, 1998; Sheps et al., 1996). Mammalian P-glycoproteins actually have more sequence identity to these prokaryotic transporters than to proteins considered to belong to the P-glycoprotein family. ABC-transporters are also involved in the import of substrates such as the Mal transporter where maltose is transported across the inner membrane (for reviews see Boos and Shuman, 1998; Ehrmann et al., 1998; Nikaido, 1994).

The basic monomeric ABC-transporter consists of 2 domains. One domain, usually N-terminal and consisting of six to eight membrane spanning segments, recognizes the substrate and forms the pore through the membrane. The other domain contains the ABC region, which provides the energy for transport from the hydrolysis of ATP. The ABC domain is highly conserved and consists of about 215 amino acids and within this region there are four distinct motifs. Like all ATPases, ABC-transporters contain Walker A or P-loop (consensus GXXGXGK[ST]) ${ }^{1}$ and Walker B (hhhhD) ${ }^{1}$ motifs which interact directly with ATP binding and hydrolysis

[^0](Walker et al., 1984), but they are immediately followed by a specific ABCtransporter motif (LSGGQ[QRK]QR) ${ }^{1}$ (Bairoch, 1992; Gorbalenya and Koonin, 1990) which is thought to be involved in energy transduction (Hyde et al., 1990). A fourth motif has recently been identified in a majority of E. coli and Saccharomyces cerevisiae ABC-transporters (Decottignies and Goffeau, 1997; Linton and Higgins, 1998). This fourth motif is hhhhH ${ }^{1}$ followed by a charged residue and is found approximately 30 amino acids C-terminal of the aspartic acid in the Walker B motif. No one has so far been able to make a 3-dimensional crystal of the complete ABCtransporter from which the structure could be determined. However, the ABC domain has been crystallized from two proteins (Armstrong et al., 1999; Hung et al., 1998) showing that the ABC forms an L with 2 arms; arm 1 binds with the ATP and arm 2 interacts with the membrane-spanning domain. It is thought that hydrolysis of ATP causes a conformational change in arm 2 which transfers the energy to the membrane spanning domain, possibly through the ABC-transporter motif found at the end of arm 2, and the conformational change in the membrane spanning domain results in transport of the substrate (Welsh, 1998).

The MFP is characterised by a single hydrophobic transmembrane domain in the N -terminus that sits in the inner membrane. A hydrophilic domain spans the periplasm and the C-terminus consists of beta sheet that may interact with the outer membrane component (Dinh et al., 1994). The MFP family contains the conserved motif [LIVM]XXG[LM]XXX[STGAV]X[LIVMT]X[LIVMT][GE]X[KR]X[LIVMFYW] [LIVMFYW]X[LIVMFYW][LIVMFYW][LIVMFYW] ${ }^{1}$ (PROSITE:PDOC00469)

The OMP sits in the outer membrane and interacts with the MFP. Of the known OMPs only TolC, from the α-hemolysin transporter, has been studied extensively. It has been found that three smooth LPS synthesis genes are required for secretion of α-hemolysin. It is likely that the smooth LPS is required for proper insertion of TolC in the membrane (Stanley et al., 1993; Wandersman and Létoffé, 1993). Two-dimensional crystals of ToIC have been examined using electron microscopy and show that TolC forms a trimer. It also appears that a portion of the C-terminus is located in the periplasm (Koronakis et al., 1997). TolC contains a centrally located sequence of 44 amino acids in the middle of the protein that is highly similar to a sequence in HlyD (the MFP); these sequences are required for
transport and can be interchanged and still allow transport (Schulein et al., 1994). Thus, ToIC is thought to provide the essential function of linking the transporter complex to the external environment.

While members of the ABC-transporter family secrete a huge range of substrates ranging from Ca^{2+} ions to cancer drugs to proteins, the type I secretion subfamily has been found to only secrete proteins. The specific features for secretion of a protein by a type I system are not known except that the secretion signal is located in approximately the last 60 amino acids of the C-terminus of the protein (Mackman et al., 1985). As little as 15 amino acids of the C-terminus of the protease, PrtG, from E. chrysanthemi still allows secretion, although this is only 1% as effficient. It was found that substrates can be secreted by closely related type I systems (Binet and Wandersman, 1996; Létoffé et al., 1994a; Létoffé et al., 1994b), but only if there is more than 25% amino acid identity between ABC-transporters of the systems (Delepelaire and Wandersman, 1990; Fath et al., 1991). No sequence similarity is found among the secretion signals of the different substrate proteins; however, in the proteases, lipases and NodO a conserved motif of a negatively charged amino acid followed by several hydrophobic amino acids has been found at the end of the C-terminus (Binet et al., 1997). The C-terminal signal sequence of α hemolysin was extensively mutagenized, but few individual amino acids were found to affect secretion (Kenny et al., 1992). Because of this lack of sequence similarity and identification of important residues it is thought that the secretion signal relies on secondary structure to initiate transport. NMR and circular dichroism studies of the C-terminus of PrtG, HasA (the heme acquisition protein from Serratia marcescens), HlyA (the hemolysin from E. coli) and LktA (the leukotoxin from Pasteurella haemolytica) have shown that there are two α helices in the C-terminus (Wolff et al., 1997; Wolff et al., 1994; Yin et al., 1995). Mutation of these α helical regions in HlyA and LktA showed that the secretion signal appears to bind to a pocket in the ABC-transporter and induce a conformational change that causes transport to occur (Zhang et al., 1998).

Presented in this thesis is evidence that all three components of a type I secretion system have been found in C. crescentus and these components are required for the secretion of RsaA. They have greatest similarity to the protease
type I secretion systems from P. aeruginosa and E. chrysanthemi and the proteases from these systems can be secreted by the Rsa system.

The S-layers subunits from other Caulobacter species appear to be secreted

 by type I systems. Several FWC species with S-layers have been isolated from a wide number of aquatic sources (MacRae and Smit, 1991; Walker et al., 1992). The subunits of these S-layers react with anti-RsaA antibody and their smooth-LPS reacts with antibody raised against the smooth-LPS of NA1000. The S-layer subunits from these FWC species range in size from 100 to 193 kDa and can be removed from the bacterium's surface using low pH or EGTA (Walker et al., 1992). Portions of the genome of the FWC species with S-layers hybridize to the rsaA gene while the genomes of FWC species without S-layers do not (MacRae and Smit, 1991). It is shown in Ch. 5 that the protease, AprA from P. aeruginosa, was expressed and secreted in some of these FWC species. These facts suggest that type I secretion mechanisms secrete the S-layer subunits in the FWC species. Since the FWC species secrete S-layer subunits varying widely in size, it is desirable to examine the S-layer subunits and their corresponding secretion systems and examine the differences and similarities to allow one to determine how the mechanisms work, what parts of the protein are essential for secretion and what parts provide specificity. With these goals in mind, procedures are reported here for the characterisation of the S-layer subunit, ABC-transporter and MFP genes from various FWC species.The S-layer is attached to the surface of C. crescentus using a species of smooth LPS. The outer membrane of Gram-negative bacteria contains phospholipids, proteins and LPS (Nikaido and Vaara, 1985). In many cases, including C. crescentus, there is also an extracellular polysaccharide (EPS) (Ravenscroft et al., 1991); the S-layer is external to all of these molecules (although the EPS may pass through the S-layer). Smooth LPS is a major component of the outer membrane of Gram-negative bacteria and consists of three regions. The lipid A moiety is the endotoxic part of LPS and is anchored in the outer leaflet of the outer membrane. The core, a branched chain oligosaccharide linked to ketodeoxy
octulosonic acid (KDO), is attached to the lipid A molecule. Extending from the core is the O -antigen which contains a repeating linkage of oligosaccharides (Schnaitman and Klena, 1993). It has been found in C. crescentus that the S-LPS anchors the Slayer to the cell surface via a noncovalent interaction with the N -terminus of RsaA. Immunolabelling showed that the S-LPS is completely occluded by the S-layer (Walker et al., 1994). Isolation and characterization of the S-LPS showed that the core sugars and fatty acids are identical to those of the rough LPS and that the Oantigen is of a homogeneous length, unlike the variable length S-LPS found in many enteric bacteria. Previous reports (Walker et al., 1994) indicated that the O-antigen was composed of a 4,6-dideoxy-4-amino-hexose, a 3,6-dideoxy-3-amino-hexose and glycerol, but recent results (Smit, unpublished) indicate that glycerol is a contaminant of the S-LPS isolation procedure, and that the 3,6-dideoxy-3-aminohexose assignment is likely due to a co-purifying polymer. Therefore, it seems possible that the O -antigen is composed solely of a 4,6-dideoxy-4-amino-hexose. Anomeric traces found by analysis of proton NMR spectra indicate that the linkages between the 4,6-dideoxy-4-amino-hexose are not identical, implying the involvement of a larger number of glycosyltransferases than needed for a simple polymer with only one kind of linkage.

These data correlate with the information presented in this thesis. I have found a number of S-LPS synthesis genes, indicating that C. crescentus may make perosamine, a 4,6-dideoxy-4-amino-hexose, and that perosamine is likely a component of the S-LPS. A number of glycosyltransferases were also found as would be expected considering that several transferases would be required to produce the different linkages that result in the different anomeric proton traces found by proton NMR.

Evidence is presented in this thesis demonstrating how RsaA is secreted and how the S-LPS, involved in attachment of the S-layer, is synthesized. Three genes composing the ABC-transporter, MFP and OMP of a type I secretion system required for secretion of RsaA in C. crescentus are described. A type I secretion system is also required for secretion of the S-layer subunits of other FWC species. The genes required for the secretion of RsaA and the synthesis of S-LPS are linked

leading to the discovery of a number of putative genes involved in the synthesis of the S-LPS required for S-layer attachment. Additional genes involved in synthesis of the S-LPS were discovered by Tn5 mutagenesis.

Chapter 2

Materials and Methods

Strains, plasmids and growth conditions. All strains, libraries and plasmids used in this study are listed in Table 2-1. Plasmids with NA1000 DNA inserts are listed in Figure 2-1.The E. coli strains DH5 JM109 or RB404 were used for all E. coli cloning manipulations. E. coli was grown at $37^{\circ} \mathrm{C}$ in Luria broth (1% tryptone, 0.5% $\mathrm{NaCl}, 0.5 \%$ yeast extract), with 1.2% agar for plates. C. crescentus strains were grown at $30^{\circ} \mathrm{C}$ in PYE medium (0.2% peptone, 0.1% yeast extract, $0.1 \% \mathrm{CaCl}_{2}$, $0.2 \% \mathrm{MgSO}_{4}$, with 1.2% agar for plates). Ampicillin was used at $100 \mu \mathrm{~g} / \mathrm{ml}$, streptomycin at $50 \mu \mathrm{~g} / \mathrm{ml}$, kanamycin at $50 \mu \mathrm{~g} / \mathrm{ml}$ in both C. crescentus and E. coli, and tetracycline was used at $0.5 \mu \mathrm{~g} / \mathrm{ml}$ and $10 \mu \mathrm{~g} / \mathrm{ml}$ and chloramphenicol was used at $2 \mu \mathrm{~g} / \mathrm{ml}$ and $20 \mu \mathrm{~g} / \mathrm{ml}$ in C. crescentus and E. coli, respectively, when appropriate.

Recombinant DNA manipulations. Standard methods of DNA manipulation and isolation were used (Sambrook et al., 1989). Electroporation of C. crescentus was performed as previously described (Gilchrist and Smit, 1991). Southern blot hybridizations were done according to the membrane manufacturer's instructions (Amersham Hybond-N). Southern blot analysis allowing up to 30% mismatch between the probe and chromosomal DNA was performed in an identical manner except the hybridization step was performed at $50^{\circ} \mathrm{C}$ instead of $65^{\circ} \mathrm{C}$. Blots were washed: twice for 15 min at room temperature with $2 \mathrm{X} \operatorname{SSPE}(0.18 \mathrm{M} \mathrm{NaCl}, 0.01 \mathrm{M}$ $\mathrm{NaPO}_{4}, 0.001$ EDTA pH 8.0), 0.1% SDS; once for 15 min at $50^{\circ} \mathrm{C}$ with 1 X SSPE, , 0.1% SDS. Radiolabelled probes were made by nick translation using the DNase/DNA Pol manufacturer's instructions (GIBCO/BRL). Chromosomal DNA was isolated as previously described (Yun et al, 1994).
PCR products were generated using the primers listed in Table 2-2. PCR was performed using Taq polymerase (BRL), following the manufacturer's suggested protocols. Annealing temperatures $\left(T_{A}\right) 2^{\circ} \mathrm{C}$ below the melting temperature T_{m} of the

Table 2-1. Strains and Plasmids used in this study

Bacterial strains		
E. coli		
JM109	recA1, endA1,gyrA96, thi,hsdR17,supE44,relA1, $\Delta($ lac-proAB $), \lambda-\mathrm{F}$, [traD36, proAB lacIq, lacZDM15]	$\begin{aligned} & \text { (Yanisch-Perron et } \\ & \text { al., 1985) } \end{aligned}$
RB404	F-dam-3,dam-6,metB1, galK2, galT22 lacY1, thi-1, tonA31, tsx-78, mtl-1, supE44	(Brent and Ptashne, 1980)
DH5 α	recAl, endAl,gyrA96, thi,hsdR17,supE44,relA1, $\Delta($ lacZYA-arfF)U196 λ (ф80lacZAM15)	Life Technologies
C. crescentus		
NA1000	Apr, syn-1000. Variant of wild-type strain CB15, ATCC 19089, that synchronizes well	
JS1001	S-LPS mutant of NA1000, sheds S-layer into medium	(Edwards and Smit, 1991)
JS1003	NA 1000 with rsaA interrupted with KSAC Kmr cassette	(Edwards and Smit, 1991)
$\begin{aligned} & \text { JS3001 } \\ & \text { JS4000 } \end{aligned}$	S-LPS mutant of ATCC 15252, sheds S-layer into medium S-layer negative, derivative of ATCC 15252	
pBBRIMCS	Cm', broad host range vector	(Kovach et al., 1994)
pBBRIAprF	EcoR1-BamHl fragment containing aprF from pJUEK72 in pBBR1MCS	this study
pBBR1PrtF	HindIII-PstI fragment containing prtF from pRUWinh4 in pBBR1MCS	this study
pBBR3	Smr broad host range vector	this study
pBBR3AprA	$a p r A^{+}, a p r A$ cloned into pBBR3 using EcoR1 and Pst 1	this study
pBBR3PrtB	$p r t B^{+}, \mathrm{prtB}$ cloned into pBBR3 using	this study
pBBR3AprA:pRAT5	$a p r A^{+}, r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{\top}, \mathrm{Sm}^{\top}$, pBBR3AprA fused with pRAT5 at the Xbal site	this study
pBBR3PrtB:pRAT5	$p r t B^{+}, r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{r}, \mathrm{Sm}^{r}, \mathrm{pBBR} 3$ PrtB fused with pRAT5 at the $X b a 1$ site	this study
pBBR3AAprA: pCR2.1F11Sal1	$a p r A^{+}, r s a F^{+}, \mathrm{pBBR} 3$ AprA fused with pCR2.1F11Sall at the Xbal site	this study
pBBR5	$\mathrm{Tc}{ }^{\text {r }}$, broad host range, broad host range	this study
pBSKS+	ColE1 cloning vector, lac Z, $\mathrm{Ap}^{\text {r }}$	Stratagene
pBSKS-gcc1984	736 bp PCR product containing valyl tRNA synthetase made using the primers gec 1984-1407 and gec1984-I2143 and T-tailed into pBSKS	this study
pCR2.1	$\mathrm{Km}^{\text {r }}$, Ap ${ }^{\text {r }}$, commercial T-tail cloning vector ${ }^{\text {a }}$,	Invitrogen
pCR2.1F11Sall	PCR product generated using Tn5 and Tn5Sall primers from ligation of F11Tn5 chromosomal DNA cut with Sall in pCR2.1	this study
pCR2.1F11Xmal	PCR product generated using Tn5 and Tn5Xma primers from ligation of F11Tn5 chromosomal DNA cut with Xmal in pCR2.1	this study
pCR2.1rsaF(1984)	2.1 kb PCR product generated using primers gcc 1984-28 and gec 1984-12310	this study
pJUEK72	apr D^{+}, aprE ${ }^{+}$, aprF^{+}, aprA^{+}, aprI I^{+}	(Guzzo et al., 1990)
pRAT1	$r s a A^{+}, r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{r}$	this study
pRAT4 4 H	$r s a \mathrm{~A}^{+}, r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{\text {r }}, r s a \mathrm{~A}$ is under control of a lacZ promoter	this study
pRAT4AH : pBBR5	$r s a \mathrm{~A}^{+}, r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{\mathrm{f}}, \mathrm{Tc}^{+}, \mathrm{pBBR} 5$ was fused with $\mathrm{pRAT} 4 \Delta \mathrm{H}$ at the Ss t 1 site	this study
pRAT5	$r s a D^{+}, r s a E^{+}, ~ A p^{r}$	
pRAT5 : pRK415	$r s a D^{+}, r s a E^{+}, \mathrm{Ap}^{r}, \mathrm{Tc}^{r}, \mathrm{pRK} 415$ was fused with pRAT5 at the Sst1 site	this study
pRAT HI (B/E)	BamH1/ EcoR1 fragment from pRAT1 cloned into pTZ18U	this study
pRK415	$l a c Z^{+}, \mathrm{Tc}^{r}$, broad host range	(Keen et al., 1988)
pRK415 rsaA \triangle PK	rsaA under control of lacZ promoter in pRK415	this study
pRUW500	$p r t B^{+}, \mathrm{Ap}^{\text {r }}$	(Delepelaire and Wandersman, 1990)
pRUW500:	$p r t B^{+}, \mathrm{Tc}^{\text {r }}$	this study
pRK415	pRK415 was fused with pRUW500 at the Pst 1 site	
pSUP2021	carries Tn5, unable to replicate in C. crescentus	(Simon et al., 1983)
pTZ18UB:rsaADP	The wildtypepromoter of $r s a A$ has been replaced with a lacZ Z promoter	(Bingle et al., 1997)
pTZ18R and pTZ18U	Ap^{\top}, ColE 1 cloning vector	(Mead et al., 1986)
pTZ19U	A phagemid version of pUC18 or pUC19	
pTZ18U(CHE)	Cm^{r}, Ap ${ }^{\text {r }}$ gene of $\mathrm{pTZ18U}$ replaced with Cm^{r} gene	this study
pTZ19UASSm	$\mathrm{Sm}^{\mathrm{r}}, \mathrm{Sm}^{\mathrm{r}}$ gene inserted into Scal site in Ap ${ }^{\text {r }}$ gene of pTZ19U	this study
pTZ18R aprA	aprA ${ }^{+}, \mathrm{Ap}^{+}$ The EcoR1-BglII fragment from pJUEK72 containing aprA was inserted into the EcoR1-BamH1 sites of pTZ18R	this study
$\begin{aligned} & \mathrm{pTZ19U} \mathrm{\Delta SSm} \Delta \mathrm{~N} \Delta \mathrm{C}- \\ & \text { RsaF(973) } \end{aligned}$	internal Kpn1-Pst1 fragment of rsaF(973) in pTZ19U4SSm	this study
pTZ19U4SSm973circ	recircularized plasmid isolated from BamH1 digestion of NA1000::pTZ19U $\Delta \operatorname{SSm} \Delta N \Delta C-R s a F(973)$	this study
$\begin{aligned} & \mathrm{pTZ18U(CHE)} \Delta \mathrm{~N} \Delta \mathrm{C}- \\ & \operatorname{RsaF}(1984) \end{aligned}$	internal PvuII-Stul fragment of rsaF(1984) in Smal site of pTZ18U(CHE)	this study
pUC8	ColEl cloning vector, $\operatorname{lac} \mathrm{Z}, \mathrm{Ap}{ }^{\text {r }}$	(Vieira and Messing, 1982)
pUC9 rsaA $\Delta \mathrm{N} \triangle \mathrm{C}$	rsaA missing the extreme N -terminus and C-terminus	(Bingle et al., 1996; Bingle and Smit, 1994)
pUC8 neor	HindIII-Bam H 1 from Tn5 containing neomycin resistance gene in pUC8	this study
$\begin{aligned} & \text { pTZ18R aprA: } \\ & \text { pRK415 } \end{aligned}$	aprA $^{+}, \mathrm{Tc}^{\text {r }}$ pRK415 was fused with pTZ18R at the BamH1 site	this study
Libraries NA1000 cosmid	1000 cosmids containing $20-25 \mathrm{~Kb}$ of NA1000 DNA	(Alley et al., 1991)

Figure 2-1. Plasmids containing NA1000 chromosomal DNA. E-EcoR1, B-BamH1, C-Cla1, A-Sal1, H-Hindlll S-Sst1
primers were used. Extension times (t_{E}) were based on $60 \mathrm{sec} / 1000 \mathrm{bp}$ of DNA. General PCR parameters were $95^{\circ} \mathrm{C}-30 \mathrm{sec}, \mathrm{T}_{\mathrm{A}}-30 \mathrm{sec}, 72^{\circ} \mathrm{C}-\mathrm{t}_{\mathrm{E}}$. The vector pBSKS+ was cut at the EcoRV site and T-tailed (Holton and Graham, 1991) and the PCR product was ligated into this vector.
Cloning of chromosomal DNA adjacent to Tn5 insertions: Chromosomal DNA of the Tn5 mutant was cut with BamHI, Sal1 or Xma1. BamHI fragments were cloned directly into the BamHI site of $\mathrm{pTZ18}$ vectors. A second method that was used for isolating the chromosomal DNA adjacent to the Tn5 insertions involved an inverse PCR method developed by V. Martin (Martin and Mohn; 1999).

PCR product	forward primer name- sequence (5'-3')	reverse primer name- sequence (5'-3')
RAT5	RsaD-A-CGGAATCGCGCTACGCGCTGG	RsaE1-GGGAGCTCGAAGGGTCCTGA
Degenerate primers for RsaF search	$\begin{aligned} & \text { F60- } \\ & \text { (GC)CG(GC)(AGT)(GC)(GTC)(GC)(GC)(GC) } \\ & \text { (CT)T(CG)CT(CG)CC(CG)CAGCT(CG)G } \\ & \text { FB110- } \\ & \text { CT(GC)(CA)(GC)CAG(AC)C(GC)AC)T(GC)T } \\ & \text { TCGAC } \end{aligned}$	IF340- GCCGCC(CG)(CGT)(TAG)(GA)(TA)A(GC)A (GT)(GC)GG(GC)AG(GC)(TCG)(TA)(CG)T IFB415- CTG(TC)TC(GC)GC(GC)(AT)(CT)(GC)AG(G C)ACGTC
Inverse PCR to obtain chromosomal DNA next to Tn5 insertion	Tn5 universal - GGTTCCGTTCAGGACGGCTAC	Tn5Xma1-AGGCAGCAGCTGAACCAA Tn5Sal1-ATGCCTGCAAGCAATTCG
Degenerate primers for amplification of internal portion of RsaD homologues in FWC species	$\begin{aligned} & \text { RD43B- } \\ & \text { TA(TC)ATGCT(GC)CAGGT(GC)TAT(GC)AC } \\ & \text { CGIG } \end{aligned}$	$\begin{aligned} & \text { IRD477B- } \\ & \mathrm{C}(\mathrm{GC}) \mathrm{A}(\mathrm{GT})(\mathrm{GC}) \mathrm{CGCTG}(\mathrm{GC}) \mathrm{CGCTGGCC} \\ & \mathrm{GC} \end{aligned}$
Unsuccessful PCR of rsaF(1984)	RsaF140-GCGGTCGAGCAGGGGGTGCT	RsaFIEND-ACGAATCCTTGCGCGCCTTGG
Amplification of pUC type vectors	TZ1920- GAGGCCTAGTACTCTGTCAGACCAAGTTT ACTCATA	TZI1060- GAGGCCTACTCTTCCTTTTTCAATATTATT GAA
Amplification of gcc1984 (numbers correspond to bp in contig)	Gcc1984-28- CGCTCTACACCGGCGGTCGCGCCAGCGC Gcc1984-1407- GCCGGAACCCGAACCTGAACCGGTGTCG	Gcc1984-11200 - GGAGCTCTGGCGCCCCACCAGGGACGC GTAGAACG Gcc1984-12143- GTGGTCGGTGCCCGGCAGCCACAGGG
Amplification of gcc973 (numbers correspond to bp in contig)	Gcc973-1600- GGAATCCATGTCACATGGGAAGAGACGG TCCGCCGT	Gcc973-12310- GCTGGCGCCCCACCAGGGACGCGTAGA ACG

Table 2-2. Primers used for PCR for this report.

Construction of plasmid vectors that replicate in C. crescentus.: The plasmid pBBR5 was constructed from the plasmids pBBR1MCS (Kovach et al., 1994) and pHP45 Ω Tc (Fellay et al., 1987). The Ω-Tc fragment from pHP45 Ω-Tc was removed using Hindlll and the ends were blunted using T4 polymerase. A 0.3 kbp portion of the $\mathrm{Cm}^{\text {r }}$ gene was removed from pBBR1MCS by cutting with Dral and replaced with the blunted Ω-Tc fragment producing a Tcr broad host range vector that replicates in C. crescentus. The plasmid pBBR3 was constructed in an identical manner except the plasmid pHP45 these plasmids were constructed by John Nomellini.
Construction of vectors that replicate only in E. coli: The vector pTZ18U(CHE) was constructed by amplification of all of $\mathrm{pTZ18U}$ except the ap' gene using the primers TZ1920 and TZI1060 that were designed with Stu1 sites. The PCR product was cut with Stu1 and a Cm' gene (Morales et al., 1991) with blunt ends was inserted into the site.

Tn5 mutagenesis. Tn5 mutagenesis was accomplished using the narrow host range (ColE1 replicon) plasmid pSUP2021 (Simon et al., 1983) which is not maintained in C. crescentus. The plasmid was introduced by electroporation and 20,000 colonies that were streptomycin and kanamycin resistant were pooled, frozen at $-70^{\circ} \mathrm{C}$ and aliquots were used for subsequent screening.

Southern blot analysis of chromosomal DNA isolated from the Tn5 library was used to assess the randomness of insertions. Hybridization with a Tn5 probe, pUC8neoR, indicated that while there were some hot spots of Tn5 integration, the Tn5 insertions were randomly distributed throughout the chromosome (data not shown).

SDS-PAGE and Western blot analysis. Proteins and S-LPS were isolated from C. crescentus as previously described (Walker et al., 1992; Walker et al., 1994). SDSpolyacrylamide gel electrophoresis (PAGE) and Western immunoblot analysis was performed as previously described (Walker et al., 1992). After transfer of proteins to nitrocellulose, the blots were probed with polyclonal antibody and antibody binding
was visualized using goat anti-rabbit serum coupled to horseradish peroxidase and colour-forming reagents (Smit and Agabian, 1984).

To detect C. crescentus whole cells synthesizing an S-layer, a colony blot assay was used (Bingle et al., 1997a). Briefly, cell material was transferred to nitrocellulose by pressing the membrane onto the surface of an agar plate. The membrane was air dried for 10 to 15 min , washed in a blocking solution (3% skim milk powder, 20 mM Tris (pH 8.0), $0.9 \% \mathrm{NaCl}$) with vigorous agitation on a rotary shaker and then processed in the standard fashion (Bingle et al., 1997a).

Surface protein from C. crescentus cells was extracted using pH 2.0 HEPES buffer as shown by Walker (Walker et al., 1992). To compare the amounts of surface protein extracted from different mutants equal amounts of cells growing at log phase were harvested and equal amounts of the protein extract were loaded on the protein gel. SDS-PAGE and Western blotting were performed according to standard procedures (Sambrook et al., 1989).

Isolation of cosmids containing rsaA, rsaD and rsaE. The NA1000 and JS4000 cosmid libraries were probed with radiolabelled rsaA, using the plasmid pUC9 $r s a A \Delta N \Delta C .5$ cosmids from the NA1000 library were isolated and 4 cosmids from the JS4000 library. Southern blot analysis of the cosmids hybridizing to the probe was used to determine which cosmids contained DNA 3' of rsaA. An 11.7 kb Sstl-EcoRI fragment containing rsaA plus 7.3 kb of 3' DNA was isolated from one of the NA1000 cosmids and cloned into the Sst/-EcoRI site of pBSKS+; the resulting plasmid was named pRAT1. The 3' end of the cloned fragment consisted of 15 bp of pLAFR5 DNA containing Sau3A, Smal and EcoRI sites. BamHI fragments from the NA1000 cosmid were subcloned into the BamHI site of vector $\mathrm{pTZ18R}$ for sequencing. The 3 ' end fragment was subcloned using BamHI and EcoRI into pTZ18R. The 5' end fragment was subcloned using Sstl-HindIII into pTZ18R. A cosmid containing the rsaA, rsaD and rsaE genes was isolated from the JS4000 cosmid library and pieces were subcloned as BamHI fragments in pTZ18U for sequencing. Hindlll/BamHI fragments containing the rsaA gene were cloned directly from the genome of JS4000 and JS3001 by isolating bands of the correct size from an agarose gel and ligating to pUC8. Colonies were probed with rsaA from NA1000 for plasmids
containing the correct insert. These clones were subcloned in three pieces as HindIII/Clal, ClallEcoRV and EcoRV/BamHI fragments into pUC type vectors. Clal sites for cloning were generated in the vector by cutting with BamHI and filling in the 5 ' overhangs with Klenow fragment. Ligation of the blunt ends then produces a Clal site.

Isolation of FWC S-layer subunit genes. FWC27 chromosomal DNA was digested with BamHI and Pstl. The digested DNA was ligated to a pTZ19U vector also digested with BamHI and Pstl. A portion of the ligation mixture was electroporated in to E. coli JM109 and allowed to incubate at $37^{\circ} \mathrm{C}$ for 1 hour in 1 ml of Luria broth. The mixture was divided evenly and spread on 10 agarose plates and incubated overnight. The colonies were adsorbed to sterile filter paper (Whatman 541). The colonies were then lysed by soaking the filter paper in 0.5 M NaOH for 5 min . The filter paper was neutralized by soaking the filter paper in 1 M Tris-HCl (pH 7.0) for 5 min twice. A filter was then soaked in 0.5 M Tris- $\mathrm{HCl}(\mathrm{pH} 7.0)$, 1.5 M NaCl . Then, the filter was washed with $70 \% \mathrm{EtOH}$ and baked at $80^{\circ} \mathrm{C}$ for 2 hours. The filters were then probed with pUC8neoR using the Southern blot hybridization procedure allowing 30% mismatch (see above).

Nucleotide sequencing and sequence analysis. Sequencing was performed on a DNA sequencer (Applied Biosystems model 373). After use of universal primers, additional sequence was obtained by "walking along" the DNA using 15-20 bp primers based on the acquired sequence. DNA was sequenced in both directions for all original sequence, thereafter DNA was only sequenced in both directions when ambiguities were found. Nucleotide and amino acid sequence data were analyzed using Geneworks and MacVector software (Oxford Molecular Group) and the NCBI BLAST e-mail server using the BLAST algorithm (Altschul et al., 1990). Primers were designed with the help MacVector and Amplify 1.2 (Engles, 1993) Protein alignments were generated using the ClustalW algorithm as implemented by the MacVector software using the default settings. The sequences for NA1000 rsaADEF and $I p s A B C D E F$ were submitted to Genbank and can be accessed as AF06235. The sequences for JS3001 rsaA and JS4000 rsaADE can be accessed
using the accession numbers AF193063 and AF193064. Preliminary sequence data of the C. crescentus genome was obtained from The Institute for Genomic Research through the website at http://www.tigr.org. Signal peptides predictions were made using the SignalP web server (http://www.cbs.dtu.dk/services/SignalP/) (Nielsen et al., 1997).

Chapter 3 Secretion of RsaA

Introduction

The major purpose of my thesis was to elucidate the transport pathway of RsaA. The strain NA1000 was chosen for these studies because rsaA had originally been isolated from NA1000 and it is this gene that has been sequenced and used for all recombinant manipulations in the Smit Lab. In addition a number of useful mutants, with and without S-layers have been derived from NA1000. The lack of a cleaved secretion signal, the presence of calcium repeats, no periplasmic intermediate and a C-terminal secretion signal, indicated that RsaA was probably transported using a type I secretion system (Bingle et al., 1999; Bingle et al., 1996; Bingle et al., 1997a; Bingle et al., 1997b; Bingle and Smit, 1994) in which case other proteins would be required for secretion.

Results and Discussion

C. crescentus was screened for genes involved in the secretion of the S-layer subunit, RsaA. Since a type I secretion system uses 3 main proteins to form the transport mechanism, it was necessary to devise a method for finding the genes coding for the components by screening for the loss of RsaA secretion. Unfortunately, there is no easy method to detect the presence of RsaA on the exterior of a colony, as found for α-hemolysin or the metalloproteases which can be detected using blood or skim milk plates (Mackman et al, 1985; Wandersman et al, 1987).

Previous research had shown that the lytic phage $\phi C R 30$ could only infect C. crescentus when an S-layer was present (Edwards and Smit, 1991). This phage was isolated using the strain CB15BE, a derivative of ATCC 19089, as is NA1000. When the phage was used to lyse NA1000 cells with an S-layer using an moi of 10^{4}, it was found that spontaneous mutants occurred at a high frequency of approximately 10^{-5}. When these mutants were examined, it was found that approximately 15% had lost their S-layer while the remaining 85% still retained their S-layer and were susceptible to re-infection. Obviously, the phage was not lysing all
the bacteria with an S-layer, since these bacteria still behaved like the wildtype strain. Of the bacteria that no longer had an S-layer, RsaA secretion was restored if a plasmid carrying the rsaA gene was expressed inside the bacterium (data not shown). It seems that the rsaA gene is a more likely target for mutation when selection pressure against the S-layer is applied. This is in agreement with the observation that many bacteria lose their S-layers during sub-culturing in the laboratory environment. This method was discarded in favour of a colony immunoblot assay which was much more labour intensive, but did not have a high background.

For the colony immunoblot assay, two polyclonal primary antibodies were used: α-RsaA (Walker et al., 1992) and α-S-LPS (Walker et al., 1994). α-RsaA reacts to RsaA and α-S-LPS reacts to the smooth LPS required for the anchoring of the S-layer to the surface of the bacterium (Walker et al., 1994). When α-RsaA was used, colonies with an S-layer reacted with the antibody and appeared as a spot on the blot (Fig. 3-1). It was also found that a 'halo' could be detected around colonies when the S-layer could not anchor to the cells (e.g., cells with a defective S-LPS). The halo occurs when shed S-layer diffused away from the colony and was detected by $\alpha-$ RsaA as a ring around the colony (Fig. 3-1). When α-S-LPS was used, the antibody reacted to exposed S-LPS only when the cells of a colony lacked an Slayer; S-layer blocks the binding of α-S-LPS.

NA1000 (wildtype)
JS1003 (S-layer negative)

JS1001 (S-LPS negative)

Figure 3-1. Colony Immunoblot. Example of an immunoblot using α-RsaA against colonies demonstrating the different phenotypes exhibited.

RsaA appears to be completely degraded when it is not secreted (Bingle et al., 1996; Bingle and Smit, 1994), therefore cell lysis during this procedure and release of unsecreted RsaA was not a concern. Using this method, it was possible to differentiate between cells secreting RsaA, cells secreting and shedding S-layer and cells without an Slayer.

Identification of Tn5 mutants lacking an S-layer. A pooled NA1000 Tn5 library was screened for S-layer negative mutants using the Western colony immunoblot
assay. In total, 9,000 colonies from the pooled Tn5 mutant library were screened using α-S-LPS antibody and 22,000 colonies were screened using α-RsaA. Eighteen Tn5 S-layer negative mutants were found. SDS-PAGE and Western blot analysis of whole cell lysates and culture supernatants confirmed that no S-layer was found in or on the cells or in the culture supernatant of these mutants (data not shown). One mutant, B12, on further examination was found to have an S-layer and was kept for use as a random Tn5 mutation control. Twenty-six Tn5 mutants with a shedding phenotype were also isolated during the screening and are described in Ch. 6.

Identification of Tn5 mutants defective in RsaA secretion. Several possible Tn5 insertion events, in addition to those in secretion genes could result in an Slayer negative phenotype. To eliminate Tn5 insertions in the rsaA gene, Southern blot analysis was performed on the S-layer negative mutants. Eleven of the mutants contained Tn5 insertions in rsaA and were not further characterised. Five mutants, B5, B9, B13, B15 and B17, contained insertions in the DNA immediately 3' of rsaA and one mutant, B2, had a Tn5 integration elsewhere on the chromosome (Fig. 3-2). These six mutants represented possible RsaA translocator mutants.

$\overline{1 \mathrm{~kb}}$

Figure 3-2. S-layer negative Tn5 insertions. Graphical representation of the positions of Tn5 insertions from mutants that no longer secreted RsaA. $\mathrm{B}=$ BamHI, $\mathrm{H}=$ HindIII, $\mathrm{S}=\mathrm{Sstl}$. Triangles indicate Tn5 insertion points.

To determine whether the loss of S-layer was caused by a mutation affecting regulation of the gene, rsaA was expressed in the mutants under the control of a lacZ promoter, using the plasmid pRK415rsaA 1 PK. This construct restored RsaA production in JS1003 and B1, mutants with an interrupted rsaA gene, although wildtype RsaA expression levels were not reached. No S-layer was found on any of the five mutants with a Tn5 insertion in the DNA immediately 3 ' of r saA secreted RsaA when rsaA was expressed in trans in this manner (Fig. 3-3).

In addition, the one mutant (B2) where the Tn5 insertion was not adjacent to the rsaA gene also produced an S-layer when complemented with the plasmid pRK415rsaADPK. This indicates that the B2 insertion was not in a gene involved in RsaA secretion. B2 may have an interruption in a gene responsible for regulation of

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Figure 3-3. Complementation of Tn5 mutants with rsaA. Protein was extracted from the surface of the Tn5 mutants and JS1003 carrying the plasmid pRK415 rsaADPK which expresses RsaA under control of the lac promoter and wildtype and rsaA knockout mutants that did not contain any plasmid to demonstrate differences in expression. Equal amounts of surface extracts were loaded on the gel and a Western performed using polyclonal antibody against RsaA. The lanes are as follows: Lanes 2 through 10 are surface extractions from cells containing the plasmid pRK415 rsaA $\Delta \mathrm{PK}$ indicated by (P PK). 1, purified RsaA; 2, JS1003($\Delta \mathrm{PK})$; 3, B9($\Delta \mathrm{PK})$; 4, B13(P PK); 5, B1(P PK) (a Tn5 insertion in rsaA); 6, B5(P PK); 7, $\mathrm{B} 15(\Delta \mathrm{PK}) ; 8, \mathrm{~B} 17(\Delta \mathrm{PK}) ;$ 9, $\mathrm{B} 2(\Delta \mathrm{PK}) ;$ 10, $\mathrm{B} 12(\Delta \mathrm{PK})$ (a random Tn5 insertion); 11, JS1003 (rsaA ${ }^{-}$); 12, NA1000 (wildtype). The arrow indicaties wildtype RsaA.

RsaA production or, possibly, the Tn5 insertion mutation does not eliminate secretion and a second mutation in $r s a A$ was responsible for the loss of secretion.

Isolation and sequencing of DNA near rsaA. A previously constructed cosmid library was used to isolate an 11.8 kb DNA fragment containing rsaA plus 7.3 kb of 3' DNA. This fragment was cloned into pBSKS+ forming the plasmid, pRAT1, and sequenced to search for translocator genes. An open-reading frame (ORF) was found 5^{\prime} of $r s a A$, confirming earlier results (Fisher et al., 1988) and 5 ORFs were found 3^{\prime} of r saA (Fig. 3-4).

A search of sequence databases showed that there were two ORFs immediately 3 ' of $r s a A$ that encoded proteins with significant similarity to the ABC transporter and membrane fusion proteins (MFP) of two type I secretion systems: the alkaline protease transport system of P. aeruginosa (Guzzo et al., 1990) and metalloprotease transport system of E. chrysanthemi (Létoffé and Wandersman, 1992) (Figs. 3-5, 3-6).

The first ORF was 1734 bp long and started 246 bp after the termination codon of rsaA. This ORF was predicted to code for a 578 amino acid protein with a predicted molecular weight of 62.0 kDa and pl of 9.02 . Alignments of the predicted amino acid sequence show that the putative protein is 46% identical and 69% similar

1 kb

Figure 3-4. Genes 3 ' of rsaA. Graphic showing the ORFs found after sequencing the plasmid pRAT1. $\mathrm{B}=\mathrm{BamHI}, \mathrm{E}=\mathrm{EcoRI}, \mathrm{H}=$ HindIIII, $\mathrm{S}=\mathrm{Sstl}$.
to AprD from P. aeruginosa and 33% identical and 62% similar to PrtD from E. chrysanthemi.. The gene was designated rsaD because of this similarity (Fig. 3-5). RsaD exhibits several N-terminal hydrophobic domains that may be transmembrane regions and a possible ATP binding site in the C-terminal half of the protein. The predicted protein contains Walker A, Walker B, and $A B C$ signature motifs as well as the newly discovered E. coli motif (hhhhH). These motifs are highlighted in Fig. 3-5.

Figure 3-5. Clustalw alignment of ABC-transporters. Alignment of RsaD with AprD (Accession number CAA05795), PrtD (AAB03671), HasD (CAA57069) and LipB (BAA08631) which are the most closely related $A B C$ transporters. The green box surrounds the Walker A motif, the blue box surrounds the Walker B motif, the red box surrounds the ABC motif and the yellow box surrounds the fourth $A B C$ transporter motif recently discovered in most E. coli $A B C$ transporters.

Clustalw Formatted Alignments

Figure 3-6. Clustalw alignment of MFPs. Alignment of RsaE with AprE (Accession number CAA45856), PrtE (CAA37343), HasE (CAA57067) and LipC (BAA08632) which are the most closely related $A B C$ transporters.

RsaD was predicted to have a insertion signal sequence consistent with insertion of the RsaD protein in the cytoplasmic membrane.

The second ORF started 68 bp after $r s a D$, contained 1308 bp and encoded a protein of 436 residues with a predicted molecular weight of 48.4 kDa and pl of 6.59 . Alignment of the predicted protein shows that the sequence is 28% identical and 50% similar to AprE from P. aeruginosa and 29% identical and 52% identical to PrtE from E. chrysanthemi. The gene was designated $r s a E$ because of this similarity (Fig. 3-6). The deduced protein sequence of $r s a E$ was predicted to have a typical N terminal insertion signal sequence that would direct it to the inner membrane.

Possible ribosome binding sites were found 7 bp and 8 bp upstream of the ATG initiation codon for $r s a D$ and $r s a E$, respectively. There was no indication of a promoter immediately 5^{\prime} of either rsaD or rsaE, but there was a putative rhoindependent terminator immediately after the stop codon of r saE suggesting that they may be part of a polycistron which includes rsaA. It has been found in the type I secretion systems secreting E. coli α-hemolysin and E. chrysanthemi metalloprotease that the genes are part of an operon consisting of the substrate and the transport genes. It seems likely that transcription of the Rsa genes is similar.

Three more ORFs were found 3 ' of r raE. None of these ORFs encoded proteins similar to the third component of type I secretion systems. Instead, these ORFs encoded proteins similar to those involved in synthesis of perosamine, a dideoxyaminohexose (see Ch. 6).

The chromosomal DNA near B1, B2, B5, B9, B13, B15 and B17 Tn5 insertions was isolated and sequenced to determine the Tn5 insertion point. It was found that the B1 Tn5 interrupts rsaA, as expected from the Sourthern blot analysis. B5 and B13 are identical insertions interrupting the N-terminus of RsaD while B17 is located 22 amino acids from the C-terminus. B9 and B13 are Tn5 insertions in rsaE. The sequence interrupted by the B2 Tn5 insertion has no sequence similarity to any known proteins.

Complementation of the secretion-defective Tn5 mutants. To demonstrate that the Tn5 insertions were responsible for the secretion defect the mutations were complemented in trans. First, the cosmid, 17A7, containing the entire Rsa locus, was introduced into the mutants. All attempts at complementation using this cosmid were unsuccessful, including an attempt to restore RsaA production in JS1003 (which contains an inactivated rsaA gene). Since RsaA production in JS1003 can be restored with other plasmids containing rsaA, it is believed that expression of the genes was too low for complementation.

A PCR product containing the genes rsaD and rsaE was generated and cloned into a suitable expression vector; the result was named pRAT5:PRK415 (see Ch. 2). This plasmid was introduced into the Tn5 mutants B15 and B17. With this plasmid, mutant B17 secreted RsaA while the B15 mutant did not (Fig. 3-7A).

Figure 3-7. Complementation of transport deficient mutants using rsaD and rsaE.
Westerns of surface extracted protein using anti-S antibody. A) Lanes are as follows: 1, B17 (DE); 2, B15 (DE);3, B1(DE); 4, B17 (17A7); 5, B15 (17A7); 6, JS1003; 7, NA1000. (DE) indicates that the cells carried the plasmid pRAT5:pRK415 containing the genes rsaD and rsaE. (17A7) indicates that the cells carry the cosmid 17A7 containing the entire RSA operon. Equal amounts of surface extract were loaded in all lanes. The arrow indicates full length RsaA. B) Lanes are as follows: 1, B1 (DE); 2, B5 (DE); 3, B9 (DE); 4, B15 (DE); 5, B17 (DE); 6; NA1000. DE indicates that the cells carry the plasmid pRAT5:pBBR5 expressing the genes $r s a D$ and $r s a E$. Equal amounts of surface extract were loaded in all lanes except (6) where there was only one quarter of the amount loaded in the other lanes. The arrow indicates full length RsaA.

To address the problems with B15 complementation, a new tetracycline-resistant (Tc^{r}) broad host range vector, pBBR5, was constructed. It was hoped that this vector would have a higher copy number and expression of the Rsa genes that would alleviate the problems encountered when using pRK415 or pLAFR5 (the cosmid vector). In the resulting constructs a lac promoter is used for transcription of the rsaD and rsaE genes in pRAT5: PBBR5 and the rsaA, rsaD and rsaE in pRAT4DH: PBBR5. When pRAT5: PBBR5 was introduced into the mutants B1, B5, B9, B15 and B17, Western blot analysis showed that the mutants with defective $r s a D$ or rsaE genes expressed RsaA on the surface while the rsaA mutant B1 did not (Fig. 3-7B). When
pRAT4 HH:pBBR5 was expressed in the same mutants, RsaA was only found on the surface of the B1 and B17 mutants (data not shown). The ability to complement the

Tn5 insertions in rsaD and rsaE using pRAT5:pBBR5 expressing rsaD and rsaE in trans indicates that these genes are responsible for the secretion of RsaA.

The lack of complementation in some cases was probably the result of lower expression of the Rsa genes. It was necessary to use Tc to maintain the vectors as Tn5 confers kanamycin and streptomycin resistance, but C. crescentus does not tolerate Tc well. When cells carry the Tc resistance marker are exposed to even low levels of $\mathrm{Tc}(0.5 \mu \mathrm{~g} / \mathrm{ml})$, they appear anomalous by microscopy. The cells are often severely elongated and there are few motile cells. It was difficult to grow cultures carrying Tc^{r} plasmids with the Rsa genes to densities high enough to extract sufficient protein to be seen on the Western blot. It seems probable that the Tc was causing membrane abnormalities and that these factors contributed to lower expression of the Rsa genes with all the plasmids.

The cosmid, 17A7, only has 1-2 copies per cell and similarly, pRAT5:pRK415 would be maintained at 2-3 plasmids per cell (Keen et al, 1988). Preliminary experiments with pBBR5 suggest that it has a much higher copy number than either pLAFR5 or pRK415 based vectors which would result in higher expression of any genes that pBBR5 carries (data not shown).

Expression levels would also be affected by the promoter transcribing the genes. The lac promoter transcribes at higher levels than the wildtype rsaA promoter (Yap et al., 1994). In addition, in the cosmid and pRAT4 4 H:pBBR5, rsaD and $r s a E$ are either transcribed by their wildtype promoter or as part of the rsaA transcript as described above. In either case, a lesser amount of transcript would be produced than from the lacZ promoter of pRAT5:pBBR5.

These data suggest why the complementation occurred only in some cases. The plasmid pRAT5:pBBR5 (strong promoter and high copy number) produced the highest levels of RsaD and RsaE allowing full complementation of all the transport mutants while the cosmid, 17A7, (weaker promoter and low copy number) produced the lowest levels and could not complement any of the mutants. The plasmids pRAT5:pRK415 (strong promoter and low copy number) and pRAT4 4 H :pBBR5 (weak promoter and high copy number) probably make an intermediate amount of protein that is only enough to complement the mutant B17. This mutant may differ from the others because the $\operatorname{Tn} 5$ insertion is only 22 amino acids from the C -
interrupted (Fig. 3-8). Smaller zones of clearing are seen around the wildtype strain,

Figure 3-8. Expression of prtB in C. crescentus. PrtB was expressed in all the colonies shown using the plasmid pRK415: pRUW500. The cells were spotted on to PYE plates containing 1% skim milk. Halos around colonies indicate that active PrtB is being secreted. Note that NA1000 and B12 cells are producing RsaA as well as PrtB and the halos surrounding these colonies are smaller. B12 represents a random Tn5 mutant control.

NA1000, and the S-layer producing B12 (representing a random Tn5 insertion unrelated to secretion), as compared to JS1003 or B1, where the $r s a A$ gene has been interrupted, suggesting that there was competition between RsaA and PrtB for the secretion machinery, further supporting the supposition that RsaD and RsaE are parts of a type I secretion mechanism. Identical results were found when aprA was expressed in the Tn5 mutants (data not shown).

Summary

Analysis of the region 3^{\prime} of $r s a A$ revealed the presence of two genes (rsaD and rsaE) encoding proteins with significant sequence similarity to components of the type I secretion systems used by P. aeruginosa and E. chrysanthemi to secrete two different extracellular proteases (Duong et al., 1992; Wandersman et al., 1990). Because interruption of $r s a D$ and $r s a E$ eliminated secretion of RsaA and the defects could be restored by complementation, it was apparent that their gene products make up part of the RsaA translocator machinery.

When these results were reported (Awram and Smit, 1998), it was the first example of an S-layer that is secreted using a type I secretion system. Before then, S-layers had only been found to be secreted by a type II system (Messner and Sleytr, 1992; Sleytr et al., 1993). It is now known that a protein with amino acid
unrelated to secretion), as compared to JS1003 or B1, where the rsaA gene has been interrupted, suggesting that there was competition between RsaA and PrtB for the secretion machinery, further supporting the supposition that RsaD and RsaE are parts of a type I secretion mechanism. Identical results were found when aprA was expressed in the Tn5 mutants (data not shown).

Summary

Analysis of the region 3 ' of $r s a A$ revealed the presence of two genes ($r s a D$ and $r s a E$) encoding proteins with significant sequence similarity to components of the type I secretion systems used by P. aeruginosa and E. chrysanthemi to secrete two different extracellular proteases (Duong et al., 1992; Wandersman et al., 1990). Because interruption of $r s a D$ and $r s a E$ eliminated secretion of RsaA and the defects could be restored by complementation, it was apparent that their gene products make up part of the RsaA translocator machinery.

When these results were reported (Awram and Smit, 1998), it was the first example of an S-layer that is secreted using a type I secretion system. Before then, S-layers had only been found to be secreted by a type II system (Messner and Sleytr, 1992; Sleytr et al., 1993). It is now known that a protein with amino acid sequence similarity to RsaA is secreted by the S. marcescens type I secretion system (Kawai et al., 1998). In addition, the C. fetus S-layer protein is secreted by a type I secretion mechanism. The C. fetus S-layer shares several features in common with that of C. crescentus. It is produced by a free-living Gram-negative bacterium, is hexagonally-packed, anchors to the cell surface via its N -terminus to a particular species of LPS (Bingle et al., 1997b; Dworkin et al., 1995; Walker et al., 1992) and so far has the greatest similarity of any S-layer protein to RsaA (Gilchrist et al., 1992).

The genes for the ABC transporter and the MFP components of type I secretion systems are generally found in an operon that includes the transported protein (Binet et al., 1997; Salmond and Reeves, 1993). In this respect then, the organization of the $r s a A, r s a D$ and rsaE genes was not surprising. In contrast, the gene encoding the outer membrane protein component of type I secretion systems may or may not be closely linked to the other secretion genes. The third component of the Rsa transporter has now been found 5 kb 3 ' of rsaE and is described in Ch. 4.

A potential Rho-independent terminator sequence is located after the rsaA coding region (Gilchrist et al., 1992). This predicted terminator results in a predicted transcript that matched closely the size of a transcript found using Northern blot analysis (Fisher et al., 1988). In this study, no obvious indications of a promoter were found immediately 5 ' of either the rsaD or rsaE genes suggesting that transcription of $r s a D$ and rsaE is similar to transcription of the hlyA, hlyB and hlyD genes of E. coli, where a similar Rho-independent terminator is found after the hlyA gene and terminates most transcripts at this point. An anti-terminator, RfaH, prevents termination and when it does, a larger transcript including the hlyB and hlyD genes is made (Leeds and Welch, 1996). This transcript is difficult to detect because it has a short half-life and an analogous transcript in C. crescentus may have been missed in the northern blot analysis. Transcription of the E. chrysanthemi protease secretion genes appears to be accomplished by a similar method (Létoffé et al., 1990) and it is postulated that the same is true for the Rsa operon. A transcription pattern like this may account for the reduced expression found in the JS1003 and B1 mutants when they are complemented with rsaA. The kanamycin fragment interrupting rsaA in JS1003 does not have a transcription terminator and transcription may continue through to the end of $r s a E$, resulting in a transcript 1.5 kb longer than the wildtype, which would likely be more unstable and result in fewer transport complexes. In B1, it is likely that rsaD and rsaE are transcribed off one of the Tn 5 promoters resulting in decreased amounts of transcript and, in turn, transport complexes.

Type I secretion systems can be grouped into families. The RTX toxins, such as α-hemolysin (E. coli) and leukotoxin (P. hemolytica), comprise one family while extracellular proteases (e.g. AprA, PrtB) and lipase from S. marcescens constitute
another (Binet et al., 1997). Within the families there is high sequence similarity and functional secretion mechanisms can be constructed from using components from the different members without a dramatic drop in protein transport. Because it has been demonstrated that AprA and PrtB proteins can be secreted from C. crescentus in active form and there is higher sequence similarity between these proteins than with RTX toxins, presumably, RsaA can be grouped with the protease family of type I secretion systems.

Chapter 4

Identification of the Outer Membrane Protein Component of the RsaA Transport Complex

Introduction

The gene encoding the OMP component of the RsaA secretion machinery proved difficult to isolate since it was not found immediately 3^{\prime} of the MFP, as in many other type I systems. This difficulty has also been found with most of the other type I secretion systems where the OMP is separated from the rest of the transporter complex. In fact, the OMP has only been found in 2 other cases of this type: ToIC, required for transport of α-hemolysin in E. coli (Wandersman and Delepelaire, 1990) and HasF, part of the heme transporter in S. marcescens (Binet and Wandersman, 1996). In both of these cases the experimenters had simple, efficient screens to look for mutants.

Several different strategies were considered to find the OMP component. As none of the original S-layer negative Tn5 mutants interrupted the OMP and considering the number of mutants screened, it was believed that the NA1000 Tn5 library did not contain the mutant. The Tn5 library may not have been complete or a Tn5 insertion in the OMP may have been lethal. If a Tn5 insertion was lethal there was no further point in screening another Tn5 library. It seemed possible that a point mutant with reduced secretion, but not having a lethal phenotype could be constructed. Since a UVINTG point mutant library had been previously made by others, it was decided that this library could be screened for an OMP mutant.

Alternatively, a functional type I system could be reconstructed as was done in E. coli using hasDE, the ABC-transporter and MFP genes, from S. marcescens and the OMP gene, toIC (Binet and Wandersman, 1996). This secretion apparatus was capable of secreting the S. marcescens heme-acquisition protein, HasA, as well as AprA and PrtB. The S. marcescens OMP gene, has F, was then isolated by expressing a protease along with hasDE in an E. coli tolC mutant along with a plasmid library of S. marcescens chromosomal DNA, and screening for the presence
of protease secretion on skim milk plates. It was hoped that a similar method would be capable of identifying the Rsa OMP gene.

A third option for finding the OMP was to screen by similarity to OMP components from other bacteria. There are two ways to approach this. One method is to search the genome of C. crescentus for DNA fragments hybridizing to the genes from OMP components. The other is to compare the sequences of different OMP components to find regions of similarity and design primers with degenerate sequences for PCR amplification of a portion of the OMP DNA sequence that can be used to isolate the complete gene by hybridization.

All of these approaches were attempted and are summarized below, but none worked. The OMP gene was eventually found using the partial C. crescentus genome sequence provided by The Institute for Genome Research (TIGR). Two partial ORFs with similarity to OMP components from other bacteria were found in this sequence data and this information was used to devise strategies to clone the complete sequence and to test which of the two ORFs was a legitimate OMP gene involved in the secretion of RsaA.

Results and Discussion

Screening libraries for OMP mutants defective in secretion. Since the original immunoblot assay was very labour intensive, attempts were made to develop a new screening method for finding secretion deficient mutants. The proteases, AprA and PrtB, are secreted by type I transporters and can be secreted by the Rsa secretion machinery, allowing skim milk plates to be used for rapid screening. Therefore, vectors carrying these genes were designed for screening the libraries. The plasmid pBBR3AprA:pRAT5 was constructed and consists of the aprA gene and the rsaDE genes under the control of separate lacZ promoters. The plasmid pBBR3PrtB:pRAT5 is identical to pBBR3AprA:pRAT5 except the aprA gene is replaced with prtB. When these plasmids were introduced into the UV/NTG mutant library, no secretion of AprA or PrtB was observed. The rsaDE genes had originally been included in the plasmid to exclude rsaDE mutants from being found during the
screening process, but since the plasmid did not work the approach was dropped. When the plasmids pBBR3AprA and pBBR3PrtB were used to express their respective proteases in the UV/NTG mutant library a large number of colonies failed to show secretion of the proteases. When some of these colonies were examined, it was found that they were still capable of secretion of RsaA. This was an unexpected result as expression of the proteases in NA1000 results in protease secretion from $>99.9 \%$ of colonies. It was concluded that these proteases are not tolerated well by C. crescentus and could not be used as a screen. In agreement with this was the observation that C. crescentus colonies expressing the proteases could not be sub-cultured after growing for 5 days while normally C. crescentus can be sub-cultured even after several weeks. It appeared that the proteases were killing the bacteria. (see Ch. 5 for further discussion about protease expression in Caulobacter species).

Without a rapid screening method, it was decided to drop screening of mutant libraries in favour of the other approaches.

Searching for the OMP using complementation systems. If a complementation system was going to succeed in finding the OMP component, it was necessary to determine if a functional system could be constructed using the C. crescentus transporter components. In many other type I systems the components can be interchanged with components from other bacterial systems and allow heterologous secretion. To determine if the Rsa system would work in a similar manner plasmids expressing RsaD and RsaE were expressed in bacterial hosts along with OMP components from several different bacterial systems.

The plasmids pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 4 H were constructed and express either a protease or $r s a A$ along with $r s a D$ and $r s a E$. These plasmids were introduced into E. coli tol C^{+}alone or with either of the plasmids pBBR1AprF and pBBR1PrtF which express OMP components from the Apr and Prt systems. None of these strains secreted either the protease or RsaA (data not shown). Since E. coli is an enteric microorganism and C. crescentus is a free-living groundwater bacterium, their outer membranes are quite different. It is possible that the Rsa transport complex was unable to assemble in the membrane of E. coli.

Rhizobium meliloti and Rhizobium leguminosarum are ground water bacteria living in environments similar to C. crescentus and likely have a membrane resembling that if C. crescentus. In addition, the type I secretion systems, Nod and Prs, with similarity to the Rsa secretion machinery have been found in R. leguminosarum (Finnie et al., 1998; Scheu et al., 1992). In R. leguminosarum, as in the Rsa system, the OMP gene of the Prs secretion system has not been found close to the other transport genes and is expected to be elsewhere on the chromosome and could possibly complement the Rsa machinery. With this in mind, pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 $4 H$ were expressed in R. meliloti and R. leguminosarum. Again, none of the constructs expressed the proteases or RsaA. Further experiments were tried by introducing pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 4 H along with pBBR1AprF and pBBR1PrtF, in various combinations in the Rhizobium species. In no case was secretion of RsaA or the protease found (data not shown).

Sequence similarity to other OMP genes was used to search for the Rsa OMP gene. Southern blots of C. crescentus chromosomal DNA were probed with the OMP genes, aprF and prtF under conditions allowing 30% mismatch. No hybridization of these probes to C. crescentus DNA was found (data not shown) demonstrating that this method could not be used.

A sequence alignment of OMP components revealed areas of sequence identity among the different proteins. The protein sequences of the OMPs from a number of closely related type I transport systems (with OMP genes that are both linked and unlinked to the other transporter genes) were aligned (Fig 4-1). The OMP, HasF, was given the highest priority in the comparison because it is from the type I system with an unlinked OMP gene most closely related to the Rsa system. Areas of significant homology were examined for the purpose of designing degenerate primers to amplify a portion of the OMP gene using PCR. Four areas, shown in Fig 4-1, were chosen for making primers. The primers were designed by taking the consensus amino acid sequence and using the codon preferences of C.

Figure 4-1. Alignment of OMP components. Arrows are placed above regions of similarity that were used to design degenerate primers. The arrows are colour coded according the primer they were used to create (see legend)
crescentus to determine the DNA sequence. The design process was governed by the suggestions in Colnaghi et al., 1996; Maser and Kaminsky, 1998; and Tobin et al., 1997. A variety of conditions, as well as different combinations of the primers, were used to amplify fragments from NA1000 chromosomal DNA (see Ch. 2). When the PCR conditions resulted in a product, multiple bands were always seen. Three DNA fragments of the expected size were gel purified and cloned. Sequencing of these products revealed similarity to 23 S RNA, poly (3-hydroxybutyrate) biosynthesis genes and NADH dehydrogenase genes. The primers appeared to be amplifying undesired DNA sequences and as a result these experiments were abandoned.

Two candidates for the Rsa OMP gene were identified in the preliminary Caulobacter genome data. As all other attempts had failed to identify the OMP gene, contact was made with The Institute for Genome Research (TIGR) who provided preliminary sequence data from the Caulobacter genome. FASTA searches (Pearson et al., 1997) of this database produced two contigs with similarity to known OMP components. Contig gcc_973 contains an ORF coding for the first 225 amino acids of a possible OMP component with a G+C content of 65.3%. Examination of the DNA 5' of this ORF revealed that this ORF is 5 kb 3 ' of the rsaE gene and there are 5 intervening ORFs that likely code for S-LPS synthesis proteins (Fig. 4-2). This ORF has been designated rsaF(973). The deduced amino acid

Figure 4-2. The two possible OMPs, $\operatorname{rsaF}(973)$ and rsaF(1984). A) The figure shows that $\operatorname{rsaF}(973)$ is located 5 kb downstream of $r s a E$. B) $r s a F(1984)$ is located adjacent to a gene coding for valyl tRNA synthetase. The location of the gec contigs is shown with black bars. B-BamHI, C-Clal, S-Sstl,
sequence of $\operatorname{rsaF}(973)$ had greatest similarity to ToIC with 26.1% identity and 52.2% similarity over the 225 amino acids coded by gcc_973 (Fig. 4-3). Contig gcc_1984 has a G+C content of 67% and contains an ORF coding for the last 384 amino acids of a possible OMP. This ORF has been designated rsaF(1984). 3' of rsaF(1984) is an ORF coding for valyl tRNA synthetase (Fig 4-2). The coding sequence of $r s a F(1984)$ had greatest similarity to the HasF OMP with 26.8% identity and 48.5% similarity (Fig. 4-3). The G+C content of these two ORFs is comparable to C. crescentus's 67%, suggesting that neither is a recent genetic acquisition. These two contigs overlap with 59.6% identity over a region of 344 bp indicating that they are not part of the same ORF, but suggest that one arose by gene duplication of the other (Fig. 4-3).

Once sequence was available it was assumed that it would be relatively simple to obtain both complete genes. This did not prove to be the case. Using these sequences, primers were designed to amplify portions of r saF(973) and rsaF(1984) that could then be used as probes to isolate the complete genes. These primers had melting temperatures $\left(\mathrm{T}_{\mathrm{m}}\right)$ between $58^{\circ} \mathrm{C}$ and $62^{\circ} \mathrm{C}$ and did not appear to have any hairpin loops or secondary priming sites when analyzed using primer analysis and design programs. Primers of this size and T_{m} have been used routinely for PCR amplification of C. crescentus DNA with excellent results. These primers produced products of the expected size, but when cloned and sequenced the products were identical to the C. crescentus DNA gyrase and glutamate permease genes.

Suspecting that there may be something peculiar about the structure of the DNA around the rsaF genes it was decided to attempt to isolate the DNA of the adjacent regions. Since the start of $r \operatorname{saF}(973)$ is found in the genome 1.5 kb 3 ' of sequences cloned into pRAT1, a 2 kb BamHI-EcoRI fragment was sub-cloned from pRAT1 and designated pRAT HI (B/E). To amplify a fragment of DNA close to the rsaF(1984) gene, new primers were made to amplify a 736 bp region 3' of $r s a F(1984)$. These primers were designed with $T_{\text {min }}$ of $70^{\circ} \mathrm{C}$ and were $26-28 \mathrm{bp}$ long.

A. BlastX comparison of gcc_973

Sequences producing High-scoring Segment Pairs:	$\begin{aligned} & \text { High } \\ & \text { Score } \end{aligned}$	Smallest Probability P(N)
1. gi\|72556 outer membrane protein tolC E.coli	92	4.0e-11
2. gil3080540 (D49826) LipD [Serratia marcescens]	115	$7.4 \mathrm{e}-07$
3. gil4826418 (Y19002) PrtF protein [Erwinia amylovora]	115	$1.0 \mathrm{e}-06$
4. ail281563 aqalutination protein - Pseudomonas putida	61	$3.4 \mathrm{e}-05$

B. BlastX comparison of gcc_1984

C. Overlap of gcc_973 and gcc_1984.

```
gcc_973 CAGACCTCGACCCTCTCTCTGAGCCAGAGCCTCTACACCAACGGTCGTTTCTCGGCCCGC
gCc_1984 CGCTCTACACCGGCGGTCGCGCCAGCGCGGGC
gCc_973 CTGGCGGGTGTCGAGGCGCAGATCAAGGCCGCGCGCGAGAACCTGCGCCGCATCGAGATG
gcc_1984 GTCAGCCCCGCTGAAGCCGACGTGCTGTCTGCGCGGGAAGGTCTTCGCGCGGTCGAGCAG
gCc_973 GACCTGCTGGTCCGCGTGACCAACGCCTATATCTCGGTGCGCCGCGACCGCGAGATCCTG
    : ::::::: :::: : : : : : : : :: : : : : : :: :::: : : : : : :
gcc_1984 GGGGTGCTGGTCAGCGTCGTCCAGGCCTATGTCGACGTGCGCCGAGACCAGGAACGCCTG
gcc_973 CGGATCAGCCAAGG-CGGTGAAGCCTGGCTGCAGAAGCAATTGAAGGACACCGAGGACAA
    :: :: : :: :: : : : : : : : : : : : : : : :
gcc_1984 CGCATC-GCCAAGGAAAACGTCGCGGTTCTGCAGCGCCAGCTCGAAGAATCGAACGCTCG
gcc_973 GTACAGCGTCCGTCAGGTGACCTTGACCGACGTGCAGCAGGCCAAGGCCCGCCTGGCGTC
gcc 1984 CTTCGACGTGGGTGAGATCACCCGGACGGACGTCGCCCAGTCTCAGGCGCGCTTGGCTTC
gcc_973 GGCCAGCACTCAGGTGGCGAACGCCCAGGCGCAGCTGAATGTCAGCGTAGCGTTCTACGC
    ::::: : , : : : : : : : : : : : : : : : : :: : : :: : : : : : : ::
gCc_1984 GGCCAAGGCCAGCCTGTCGGGCGCCCAGGCCCAGTTGGAAGTCAGCCGCGCCTCCTACGC
gcc_973 GTCCCTGGTGGGGCGCCAGCCGGAGAC
    : :::: :: :
gCc_1984 TGCGGTGGTCGGTCAAACGCCCGGCGAACTGGCTCCCGAGCCGAGCTTGGCCGGACTGCT
```

Figure 4-3. Comparison of possible Rsa OMP components. A) Closest similar proteins to the ORF from gcc_973. B) Closest similar proteins to the ORF from gcc_1984. C) comparison of gcc_973 to gcc_1984. Note that the $\mathrm{P}(\mathrm{N})$ numbers are higher for gcc_1984 than gcc_973 because the gcc_1984 contig has a larger portion of the ORF.

PCR using these primers produced a product of the expected size that was successfully cloned and the resulting plasmid was called pBSKS-gcc1984. When sequenced, the product proved to be the correct fragment.

The NA1000 cosmid library was probed with pRAT HI (B/E) and pBSKSgcc1984. A number of cosmids hybridized to pRAT $\mathrm{HI}(\mathrm{B} / \mathrm{E})$, but all proved to contain only DNA 5' of $r s a F(973)$ and it was concluded that $r s a F(973)$ was not located within the NA1000 cosmid library. The cosmid, 7A22, hybridized to pBSKSgcc1984. Southern blots of the cosmid showed that pBSKS-gcc1984 hybridized to a 5.5 kb BamHI band. Several attempts were made to subclone this fragment and while the surrounding fragments could be cloned, it was not possible to subclone the fragment containing rsaF(1984).

Yet another approach was taken to isolate the rsaF genes. The plasmids pRAT HI (B/E) and pBSKS-gcc1984 will not replicate in C. crescentus and could be forced to integrate into the genome by homologous recombination. The plasmid pBSKS-gcc 1984 was not successfully integrated into the chromosome, but pRAT HI (B/E) was, giving NA1000::pRAT HI (B/E). Chromosomal DNA from NA1000::pRAT $\mathrm{HI}(B / E)$ was partially digested with BamHI and ligated under conditions promoting the circularization of the DNA fragments. The ligation mix was electroporated into E. coli and plated on selective medium which allowed only the growth of cells carrying the plasmid pRAT $\mathrm{HI}(\mathrm{B} / E)$ and chromosomal DNA adjacent to the integration points that had circularized during the ligation. The 14 kb plasmid, pTZ19U4SSm973Bcirc, was isolated in this manner. Restriction mapping and Southern blotting of this plasmid showed that insert consisted of DNA from 2.5 kb of 5 ' to $5.5 \mathrm{~kb} 3^{\prime}$ of rsaF(973). Fragments of this plasmid were sub-cloned and sequenced, including a fragment containing the N -terminal of $\operatorname{RsaF}(973)$, but it proved impossible to subclone and sequence the entire $\operatorname{rsaF}(973)$ from this plasmid. This is not the first example of DNA from C. crescentus that has proved impossible to subclone. A 6.6 kb fragment, containing the holdfast genes involved in C. crescentus attachment, has proven resistant to the subcloning efforts of several graduate students and postdoctoral fellows (Smit, unpublished).

Fortuitously, one of the shedder Tn5 mutants, F11 (see Ch. 6), contains a Tn5 insertion 400 bp 5 ' of the $r s a F(973)$ ORF. Using primers that hybridize to the

Tn5 it was possible to use an inverse PCR method (Martin and Mohn, 1999) to isolate and clone two fragments of DNA containing rsaF(973). Plasmid pCR2.1F11Sall contains the DNA from the F11 Tn5 insertion to the Sall site 1.1 kb 3 ' of rsaF(973). The other, pCR2.1F11Xmal, contains the DNA from the F11 Tn5 insertion to the $X m a l$ site 2.0 kb 3 ' of $r s a F(973)$. Again, both of these clones proved difficult to isolate. Large amounts of PCR product were obtained from the PCR reaction, but cloning of these fragments only produced one clone of pCR2.1F11Sall and two clones of pCR2.1F11Xmal. Usually when cloning products in this manner a minimum of 50 clones and as many as 300 clones can be expected. E. coli carrying these plasmids grow slowly and appear distended and malformed when observed by phase contrast light microscopy. It is possible that the inserts in these plasmids are not identical to wildtype NA1000 chromosomal DNA sequences, but contain mutations generated by inaccuracies in the Taq polymerase amplification. It may be that the majority of PCR product is lethal when introduced into E. coli, but some of the PCR product containing mutations in rsaF(973) making the product less toxic could be cloned in E. coli. The sequence of the insert from pCR2.1F11Sall assembled together with sequence from the plasmid pTZ19U Δ SSm973Bcirc and the TIGR genome (Fig. 4-4, Appendix I). The RsaF (973) sequence from pCR2.1F11Sall, showed considerable similarity to other OMPs. The highest degree of sequence similarity was to E. coli ToIC with 25.2% identity and 48.6% similar amino acids. The OMPs AprF and PrtF from P. aeruginosa and E. chrysanthemi were not as similar (Fig. 4-5). Analysis of the sequence of RsaF(973) revealed the presence of a predicted signal sequence encompassing the first 32 amino acids and the presence of β-strands capable of forming a β-barrel structure typical of outer membrane proteins.

Figure 4-4. DNA surrounding rsaA. Boxes represent genes or ORFs. Triangles indicate Tn5 insertions. Numbers above the triangles indicate the designation of the Tn5 insertion (B for S -layer negative mutants and F for shedding mutants).

Comparison of RsaF(973) to the protein databases					Smallest
Document ID	Accession	Protein	Species	High Score	$\begin{gathered} \text { Probability } \\ P(N) \end{gathered}$
1. gi\|3860786	(AJ235270)	Tolc	Rickettsia prowazekii	160	$5.7 \mathrm{e}-23$
2. gi\|882565	(U28377)	n / a	Escherichia coli	103	$5.1 \mathrm{e}-17$
3. gil135980	(X54049)	Tolc	Escherichia coli	103	$6.9 \mathrm{e}-17$
4. gi\|3080540	(D49826)	LipD	Serratia marcescens	115	$1.9 \mathrm{e}-16$
5. gi\|2495191	(U25178)	TolC	Salmonella enteritidis	90	$1.4 \mathrm{e}-14$
6. gi\|4826418	(Y19002)	PrtE	Erwinia amylovora	115	$3.2 \mathrm{e}-13$
7. gi\|281563	(M64540)	n/a	Pseudomonas putida	99	1. $3 \mathrm{e}-11$
8. gi\|72556	(X00016)	TolC	Escherichia coli (partial)) 92	$1.4 \mathrm{e}-11$
9. gil1405817	($\times 98513$)	HasF	Serratia marcescens	90	$3.4 \mathrm{e}-11$
10. gi\|4838370	(AF121772)	NatC	Neisseria meningitidis	111	$3.2 \mathrm{e}-10$
11. gi\|4115627	(AB015053)	PrtF	Pseudomonas fluorescens.	92	1.0e-09
12. gill17799	(X14199)	CyaE	Bordetella pertussis	87	$1.9 \mathrm{e}-09$
13. gil3493599	(AF064762)	ZapD	Proteus mirabilis	94	$5.9 \mathrm{e}-09$
14. gil4063019	(AF083061)	Tlif	Pseudomonas fluorescens	85	1. 1e-08
15. gi\|2983554	(AE000721)	n/a	Aquifex aeolicus	108	1. $6 \mathrm{e}-08$
16. gi\|416635	(X64558)	aprF	Pseudomonas aeruginosa	86	$5.3 \mathrm{e}-08$
17. gil5759289	(AF175720)	n / a	Porphyromonas gingivalis	66	$6.7 \mathrm{e}-06$
18. gil5759287	(AF175719)	n/a	Porphyromonas gingivalis	83	0.00017
19. gil1653357	(D90913)	n/a	Synechocystis sp.	70	0.00018
20. gil3646415	(AJ007827)	EprF	Pseudomonas tolaasii.	78	0.00024
21. gi\|3184190	(AB011381)	OprM	Pseudomonas aeruginosa	74	0.00035
22. gi\|5091481	(AF031417)	TtgC	Pseudomonas putida	66	0.00043
23. gil3914250	(L23839)	OprK	Pseudomonas aeruginosa	74	0.0011
24. gil95600	(S12527)	PrtE	Erwinia chrysanthemi	80	0.0015

Figure 4-5. BLASTX search showing OMPs similar to RsaF(973). Lines 1 and 2 are predicted from ORF found in genome sequences. OMP from type I systems with the greatest similarity to RsaD and RsaE are underlined. The $\mathrm{P}(\mathrm{N})$ value gives the probability of the match arising by chance.

Was either of $\operatorname{RsaF}(973)$ or $\operatorname{RsaF}(1984)$ the OMP component involved in

 secretion of RsaA? Sequence similarity was not enough to show that either or both of the genes coded for the OMP. One approach to determine this, was to construct knockout mutants of these ORFs and determine if this prevented secretion. The plasmids $\mathrm{pTZ19U} \Delta \mathrm{SSm} \Delta \mathrm{N} \Delta \mathrm{C}-\mathrm{RsaF}(973)$ and $\mathrm{pTZ18U}(\mathrm{CHE}) \Delta \mathrm{N} \Delta \mathrm{C}$ RsaF(1984) were constructed to perform the required integration events. Both plasmids consisted of internal portions of the respective genes without the N terminal and C-terminal. These constructs required only a single recombination event to accomplish the knockout. A single cross-over would produce two copies of the gene, one with an N-terminal deletion and one with a C-terminal deletion, neither of which would be expected to function. To make the $\mathrm{pTZ18U}(\mathrm{CHE}) \Delta \mathrm{N} \Delta \mathrm{C}$ -RsaF(1984), it was still necessary to generate a PCR product containing the coding sequence of $r \operatorname{saF}(1984)$. New primers were created using the primer selection methods provided by the MacVector software. The resulting primers were 26 and 28 bp long and had T_{m} of $71-73^{\circ} \mathrm{C}$. Once again the PCR process proved difficult. A PCR product could not be generated at any annealing temperature higher that $55^{\circ} \mathrm{C}$, considerably lower than the predicted T_{m}. When a product was generated, contaminating bands were always present and could not be eliminated by changes in the PCR reaction conditions. Instead, the band of the expected size was gel purified and cloned, giving the plasmid pCR2.1rsaF(1984) which was then used for constructing the deletion clone $\mathrm{pTZ18U}(\mathrm{CHE}) \Delta \mathrm{N} \Delta \mathrm{C}-\mathrm{RsaF}$ (1984).

The plasmids pTZ19U 4 SSm $\Delta N \Delta C-R s a F(973)$ and $p T Z 18 U(C H E) \Delta N \Delta C-$ RsaF(1984) were electroporated into the strains NA1000, and JS4000. JS4000 is a strain of C. crescentus that cannot make RsaA, but has functional rsaDE genes

Figure 4-6. AprA secretion from C. crescentus. AprA was expressed in all bacteria using pBBR3AprA on skim milk plates. Zones of clearing around the colonies indicate secretion of AprA. Deletion of $\operatorname{rsaF}(973)$ interrupts secretion of AprA while interruption of $\operatorname{rsaF}(1984)$ does not interrupt secretion.
virtually identical to that of NA1000 (see Ch. 5). Knockouts were only obtained in the strain JS4000 and not NA1000, resulting in the mutants JS4000rsaF(973) and JS4000rsaF(1984). When AprA was expressed in these mutants, AprA was not secreted by JS4000rsaF(973), but was by JS4000rsaF(1984) (Fig. 4-6). From these data it was concluded that $\operatorname{RsaF}(973)$ is the OMP of the RsaA secretion system.

To confirm that RsaF(973) was required for secretion, the clone pBBR3AprA:pCR2.1F11Sal1, expressing AprA and $\operatorname{RsaF}(973)$ was created. This construct could not be made in E. coli. This may be because both of the separate plasmids were toxic, but sublethal. Together the toxic effects may be lethal. The plasmid was obtained by introducing
the ligation mix directly into the knockout strain of RsaF(973). No AprA is secreted from this construct as the plasmid pBBR3AprA:pCR2.1F11Sal1 was unable to complement the knockout. Despite this, it is still believed that RsaF(973) is the OMP of the RsaA secretion system.

Summary

This portion of the project was exceptionally arduous because the rsaF genes appeared to be toxic in E. coli. This would explain much of the difficulty encountered, such as why the NA1000 cosmid library did not contain rsaF(973), why the TIGR genome sequence database does not contain a complete rsaF gene sequence, and why it proved difficult to isolate the genes. The lack of colonies resulting from the cloning of the rsaF(973) PCR products also suggests a toxic effect. All other attempts to isolate the rsaF genes on a fragment of DNA smaller than 7 kb failed, presumably because the smaller inserts were lethal. This suggests that the rsaF genes are lethal to E. coli and the clones obtained contain mutations that make the insert less toxic.

As mentioned above, this presumed toxicity may explain why the partial TIGR genome sequence contained only partial ORFs of the rsaF genes. Other analysis of the TIGR sequence suggests that greater than 80% of the C. crescentus genome is represented (see Ch. 6). Given that, the sequence reported here for r saF(973) may differ from the wildtype sequence. Such a mutant rsaF(973) gene in the plasmid PCR2.1F11Sall may not produce a protein that functions correctly. This would explain why this plasmid was tolerated in E. coli while other constructs appeared to be lethal and would explain why the plasmid pBBR3AprA:pCR2.1F11Sall failed to complement the $\operatorname{RsaF}(973)$ knockout. It is unlikely that the phenotype of the rsaF(973) knockout is caused by a polar mutation because the gene 3 ' of $r s a F(973)$ is transcribed in the opposite orientation. Even given the failure to complement the knockout, the results presented here indicate that RsaF(973) is the OMP required for secretion of RsaA.

The function $r s a F(1984)$ is not known. The entire ORF was never cloned and sequenced so it was not possible to determine if an entire ORF coding for an OMP exists. The sequence identity between the two rsaF ORFs suggests that one may
be a gene duplication of the other and that $r s a F(1984)$ is no longer functional. Another possibility is that there is a second type I secretion system in C. crescentus (though it is not known what it might transport) that uses RsaF(1984) as the OMP component. Determining the function of $r s a F(1984)$ represents a future project.

Chapter 5

Identification of the S-layer subunit and transporter genes in Freshwater Caulobacter species

Introduction

The Smit laboratory strain culture collection contains numerous strains that have been isolated from locales around the world and are designated FWC (freshwater Caulobacter) species (MacRae and Smit, 1991). Analysis of these FWC species showed that not all have an S-layer (Walker et al., 1992). There seems to be a geographical as well as evolutionary distinction between these species (Abraham et al., 1999; MacRae and Smit, 1991). No FWC with an S-layer has been found in Europe, though admittedly, only a small fraction of the FWC species were isolated from European sources while FWC species with and without S-layers were found in North America.

The evolutionary relationships between the different FWC species have recently been examined by 16 S rDNA sequencing, profiling of restriction fragments of 16S-23S rDNA interspacer regions, lipid analysis, immunological profiling and salt tolerance characteristics to organize the taxonomy of 76 different strains (Abraham et al., 1999). It was demonstrated that all of the FWC species with S-layers are much more closely related to one another than to the species without S-layers, and the non-S-layer FWC species have been reclassified as the genus Brevundimonas instead of Caulobacter. Therefore S-layers are a characteristic of Caulobacter species.

The S-layers of the Caulobacter species have been previously examined. The S-layer subunits range in size from 100 kDa (comparable to NA1000) to 193 kDa and can be removed by a low pH or EGTA extraction method. All the putative S-layer proteins react with antibody raised against RsaA (though most often to a lesser extent) and most also produce a polysaccharide that reacts to antibody against the S-LPS responsible for attachment of the S-layer in NA1000 (Walker et al., 1992). It was also shown that these FWC species will hybridize with an rsaA probe under conditions that would allow up to 30% mismatch (MacRae and Smit,
1991). This suggests that the S-layer subunits on these other FWC species are similar to RsaA and may also be secreted by a type I secretion mechanism.

Two strains have been used predominantly for the examination of the S-layer in C. crescentus. NA1000 is a variant of the ATCC 19089 strain, whose genome is being sequenced by TIGR. It is from NA1000 that the rsaA gene and rsaD and $r s a E$, genes responsible for secretion of RsaA, were isolated (see Ch. 3). The second strain used in the Smit lab is JS4000, a lab variant of the ATCC 15252 strain that spontaneously lost its S-layer during culturing, and is being used for expression of recombinant proteins secreted using the NA1000 rsaA gene. The S-layer gene from JS4000 has been cloned and expressed in E. coli where it produces a 40,000 molecular weight protein in inclusion bodies (Bingle et al., 1999). ATC15252 has an S-layer gene that appears to be identical to RsaA as determined by size and antibody reactivity, yet other characteristics of the bacterium (i.e. cell appearance, growth rates), 16 S rRNA sequencing (Stahl et al., 1992) and RFLP mapping of the genome (B. Ely, pers. comm.) showed that it is different from NA1000.

Preliminary investigations of these S-layers that were begun in order to determine the differences between the S-layer subunits and their associated transport systems are presented here and have now been taken over by Mihai luga. It is hoped that analysis of these other S-layer systems will provide insight into the transport mechanisms by showing what changes in the transporters are required to transport the different sized subunits.

Results and Discussion

The S-layer subunit, ABC-transporter and Membrane Forming Unit proteins of JS4000 and NA1000 Caulobacter species are virtually identical. The S-layer genes from both JS4000 and JS3001, a shedding derivative of ATCC 15252, were cloned and sequenced (see Ch. 2) and have few differences when compared to the sequence of the NA1000 rsaA. In a few places the guanosine (G) and cytosine (C) residues are reversed (i.e., GC instead of CG), but these are in regions of high G+C content and appear to be errors in the original sequencing of rsaA (Gilchrist et al., 1992) as the partial Caulobacter genome sequence from TIGR
supports my sequencing results. The sequence for NA1000 was amended accordingly. The error in the JS4000 sequence that truncates the S-layer protein consists of a guanosine base that has been deleted from codon 357 which causes a termination codon to be read at codon 359. These differences are listed in Table 51.

The rsaD and rsaE genes from JS4000 have been isolated from a cosmid library (see Ch.2) and were sequenced. These genes are almost identical to the NA1000 genes. The differences between the strains are summarized in Table 5-1.

	ATCC 19089		ATCC 15252	
		NA1000	JS4000	JS3001
RsaA	aa 358-359-360	Gln-Asn-Leu	Gln-Thr-None	Gln-Asn-Leu
	aa 475	Val	Ile	Val
	aa 860	Thr	Ser	Thr
RsaD	aa 298	Asn	Thr	ND
RsaE	aa 131-132	Ser-Gln	Arg-Leu	ND

Table 5-1. Differences between the Rsa genes found in lab strains. Deduced amino acid sequence differences between the RsaA, RsaD and RsaE proteins of three common lab strains of C. crescentus. ND- not determined

The S-layers of FWC species are probably transported by a type I secretion system. The alkaline protease gene, AprA, from P. aeruginosa is secreted by the RsaA secretion machinery (see Ch. 3). AprA was successfully secreted in selected strains covering the range of S-layer subunit sizes, demonstrating that these strains also had type I secretion mechanisms (Table 5-2). AprA secretion was varied in the differing FWC species. While in NA1000 all the colonies containing the aprA gene secreted AprA, not all FWC colonies did. While some species (i.e., FWC 19)

Species	AprA secretion	Penetrance $(\%)$	Subunit size
NA1000	++	>99.9	98 kDa
JS4000	++	>99.9	98 kDa
FWC 8	++	80	122 kDa
FWC 9	+	>99.9	133 kDa
FWC 17	+	78	106 kDa
FWC 19	+	>99.9	108 kDa
FWC 28	+	45	106 kDa
FWC 32	+	10	133 kDa
FWC 39	+	80	193 kDa
FWC 42	+	10	181 kDa

Table 5-2. FWC species secreting alkaline protease. ++ represents $70-100 \%$ of the NA1000 secretion level, + represents $20-69 \%$ of the NA1000 secretion level * penetrance was the number of colonies expressing AprA
showed full penetrance (all colonies expressed AprA), in other FWC species as few as 10% of the colonies secreted AprA when the aprA gene was expressed (i.e., FWC 32). It is not known why only some colonies secreted AprA. P. aeruginosa also expresses an inhibitor that binds to the AprA and prevents proteolytic activity inside the cell. As the inhibitor is not expressed with aprA in the FWC species, AprA may have a toxic effect on Caulobacter cells and there may be selective pressure to eliminate it from the cells. Cells not secreting AprA, may have found a way to prevent expression of the gene. NA1000 and some of the FWC species may be better able to tolerate the toxicity than other species.

FWC species with similar subunit sizes have similar Southern blot banding patterns. To further characterise the FWC species, Southern blot analysis was performed using probes to $r s a A$ and $r s a D E$. These blots were performed under conditions that would allow up 30% mismatch. The results are summarized in Table 5-3.

Caulobacter species	Subunit size (kDa)	Fragment size when probed with $r s a D$ and $r s a E$ (enzyme ${ }^{1}$)	Fragment size when probed with rsaA (enzyme ${ }^{1}$)
$\begin{gathered} \text { NA1000 } \\ \text { JS3000 } \end{gathered}$	98	$>20 \mathrm{~kb}$ (EcoRI), 7.1 kb (Hind III$)$	7.1 kb (HindIII)
FWC 17	106	3.5 kb (EcoRI), 5 kb (HindIII)	4.3 kb (EcoRI)
FWC 18	131	ND^{2}	7.0 kb (BamHI)
FWC 19	108	3.5 kb (EcoRI)	4.4 kb (EcoRI)
FWC 28	106	3.5 kb (EcoRI)	4.3 kb (EcoRI)
FWC 31	106	3.5 kb (EcoRI)	4.3 kb (EcoRI)
FWC 42	181	10 kb (EcoRI)	8.0 kb (EcoRI)

Table 5-3. Comparison of Southern Blot banding patterns of different FWC species. Chromosomal digests with the enzyme specified were probed with either rsaA or rsaDE.
${ }^{1}$ Enzyme that chromosomal DNA was cut with for Southern blot analysis
${ }^{2}$ Not Determined

Analysis of the Southern blot data suggests that the S-layer subunits and transporters can be grouped according to size. All of the FWC species with subunits ranging from $106-108 \mathrm{kDa}$ have identical Southern banding patterns, while all the other FWC species with different subunit sizes have different banding patterns. The ability of the rsaDE genes to hybridize to the chromosome of the differing FWC species suggests that the S-layer subunit is being secreted by a type I transporter. With this in mind, methods were devised for isolating the genes involved.

The ABC-transporter subunits were isolated from several different FWC species. The sequence identity between $A B C$ transporter among different type I systems is the most significant of the 3 transporter components. Using the sequence identity between the ABC -transporters aprD (P. aeruginosa), prtD (E. chrysanthemi) and rsaD (NA1000), degenerate primers were designed to amplify a central portion of the $A B C$ transporter using PCR. Using these primers it was possible to amplify, clone and sequence fragments of the ABC transporter from FWC6, FWC8 and FWC39. PCR products were not successfully generated from FWC17, FWC26,

NA1000

A1000
JS4000
FWC8
FWC6
FWC39

Figure 5-1. ClustalW alignment of partial RsaD genes from FWC species.
Identical residues have dark shading. Similar residues are shaded lightly. The line underneath the alignment is the consensus sequence.

FWC28, FWC29 and FWC41. Multiple bands were generated from FWC27 and FWC42, but I was unable to clone any of the fragments.

Obviously, the PCR strategy selects for ABC-transporters most closely related to the NA1000 gene. This suggests that even though the subunit of FWC6 is 181 kDa and that of FWC39 is 193 kDa , the transporters are still closely related to FWC8 with a subunit of 122 and NA1000 with a subunit of 98 kDa and this was confirmed by sequencing (Fig 5-1). Curiously, FWC species with small subunit sizes close to that of NA1000 failed to generate PCR products suggesting that the sequences of their ABC-transporters have diverged more from the NA1000 sequence. Analysis of the sequence showed little division between the FWC species according to size. In some places along the deduced protein sequence, the transporters of smaller subunits are more similar to one another than to the transporters of larger subunits while in others, the sequences of transporters of differing sizes are more similar to one another (Fig 5-1).

A method for screening the chromosomes of FWC species for the S-layer subunit and S-layer transport genes was devised (see Ch. 2). Using this method, part of the S-layer subunit gene for FWC 27 was isolated. FWC27 has an S-layer subunit size of 145 kDa . Comparison of the sequence to NA1000 reveals that there is a considerable difference in the sequence of these proteins (Fig. 5-2). A BLAST alignment of the RsaA and FWC27 sequences (Altschul et al., 1990) shows that the proteins are 44.6% identical and 61.5% similar over 130 amino acids.

Figure 5-2. ClustalW alignment of FWC 27 with the first 200 amino acids of RsaA. Identical residues have dark shading. Similar residues have light shading. Identical and similar residues are boxed. The line underneath the sequences is the consensus sequence.

The sequence of RsaA contains repeating amino acid sequence elements. Sequence analysis of RsaA has revealed that portions of the sequence exhibit considerable sequence similarity to other portions of the molecule. Table 5-4 shows the similarity of the Ca^{2+} binding domain of RsaA to sequences closer to the N terminal. These similar units do not appear to be uniform in size and appear to consist of 60 to 90 amino acid segments, but the exact sizes have not been determined. These segments may represent a complete structural domain (i.e., $\alpha-$ helix or β-strand) that is replicated along the length of the protein, but further analysis is required to confirm this.

As Table 5-4A shows, the alignments of RsaA along different portions of itself can result in as much as 28% identical amino acids. Furthermore, the Expect numbers, representing the possibility of the match occurring by chance in a random sequence database of the current size, are very small. Table 5-4B shows the other hits in the database to the same portion of RsaA. The Sap proteins from C. fetus are S-layer proteins with the greatest identity to RsaA. HlyA from Aquifex aeolicus and the hypothetical protein from Rhodobacter capsulatus both contain the calcium binding motifs found in proteins secreted by type I systems, leading to higher identity. As the Expect numbers show, the identity to RsaA along itself is greater than what would be found by chance in the sequence database. This repetitive
nature is also seen at the DNA level (data not shown). It must be taken into account that the nature of the RsaA composition (26% threonine and serine) leads to a higher number of repetitive sequences occurring than would be expected by chance. This explains why a low Expect number occurs with alignments to a membrane glycoprotein from Equine herpesvirus which also contains a high number of threonine and serine residues. It is only at Expect numbers of $1.8 \mathrm{e}-08$, much higher than the best expect number of $6 \mathrm{e}-14$ of RsaA to itself, that random proteins begin to show identity. Overall, the repetitive nature found here is higher than could be expected by chance and suggests that RsaA evolved by duplicating structural portions of the molecule to form a larger protein.

Table 5-4. BLAST alignment of RsaA with itself.

A

pir||A48995 paracrystalline surface layer protein RsaA - Caulobacter crescentus Length = 1026

Score $=573$ bits (1461), Expect $=$ e-163

Identities $=300 / 300$ (100\%), Positives $=300 / 300$ (100\%)
Query: 1 QLGATAGATIFTNVAVNVGITVLAAPIGTTTIVIIANATGTSDVFNLTLSSSAALAAGIVA 60QLGATAGATIFINVAVNVGLIVLAAPIGITIVILANAIGTSDVFNLTLSSSAALAAGIVA
Sbjet: 721 QLGATAGATTFINVAVNVGLTVLAAPIGITTVILANATGTSDVFNLTLLSSSAALAAGIVA 780
Query: 61 LAGVEIVNIAATDINLTAHVDILTLQATSAKSIVVTGNAGLNLTNIGNTAVTSFDASAVT 120IAGVEIVNIAATDINTTAHVDILTLQATSAKSIVVIGNAGINLTNIGNTAVTSFDASAVT
Sbjct: 781 LAGVEIVNIAATDINITAHVDILITLQATSAKSIVVIGNAGINLINIGNTAVISFDASAVT 840
Query: 121 GIGSAVIFVSANITVGEVVTIRGGAGADSLIGSATANDTIIIGGAGADILVYTGGTDIFTG 180GIGSAVIFVSANITVGEVVTIRGGAGADSLTGSATANDIIIGGAGADILVYTGGIDIFTG
Sbjct: 841 GIGSAVIFVSANTIVGEVVIIRGGAGADSLIGSATANDIIIGGAGADILVYIGGIDIFIG 900
Query: 181 GIGADIFDINAIGTSTAFVIITDAAVGDKLDLVGISINGAIADGAFGAAVILGAAATLAQ 240GIGADIFDINAIGTSTAFVIITDAAVGDKLDLVGISTNGAIADGAFGAAVILGAAATLAQ
Sbjct: 901 GIGADIFDINAIGTSTAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVILGAAATLAQ 960
Query: 241 YLDAAAAGDGSGISVAKWFQFGGDTYVVDSSAGATFVSGADAVIKLTGIVILITSAFAT 300
YLDAAAAGDGSGISVAKWFQFGGDIYVVVDSSAGATFVSGADAVIKL.TGLVIUITTSAFAT
Sbjct: 961 YLDAAAAGDGSGISVAKWFQFGGDTYVVDSSAGATFVSGADAVIKLTGLVIUTTSAFAT 1020
Score $=78.4$ bits (190), Expect $=6 e-14$
Identities $=85 / 318$ (26\%), Positives $=133 / 318$ (41\%), Gaps $=37 / 318$(11\%)
Query: 2 LGATAGATTFTNVAVNVGLIVLAAPIGIT--TVILANATGTSDVFNLILSSSAALAAGTV 59LAT A NVAV+ G V A TG T T T $+\quad+\mathrm{S}+++++$ S+ $\mathrm{G}+$
Sbjct: 360 LTATTAAQAANNVAVDOGANVIVASIGVISGITTVGANSAASGIVSVSVANSSTTTTGAI 419
Query: 60 ALAGVEIVNIAATDINITAHVDTLTLQATSAKSIVVIGNAGLNLTNIGNTAVTSFDASAV 119$\mathrm{A}+\mathrm{G} \mathrm{V}+\mathrm{A} T \mathrm{~N} \quad \mathrm{~V}+\mathrm{T} \mathrm{QA} \quad+\mathrm{VIGN}+\quad \mathrm{TA}+\mathrm{A}+$
Sbjct: 420 AVIGGTAVIVAQTAGNA---VNITLTQA----DVIVIGNSSTTAVIVTQTAAATAGATVA 472
Query: 120 TGIGSAVIF----VSANTTVGEVVTIR-GGAGADSLTGSATANDTIIG-----GAGADIL 169
AVT ++ TT G++ T+ G GA + SA $\quad+\mathrm{G} \quad \mathrm{GG}$ L
Sbjct: 473 GRVNGAVTITDSAAASATTAGKIATVITGSFGAATIDSSALITINNLSGIGISLGIGRGAL 532
Query: 170 VYTGGIDTFIGGIGADIFDINAIGTSTAFVIITDAAVGD---KLDLVGISTNGAIADGAF 226
$\mathrm{T}+\mathrm{T} \mathrm{T}++\mathrm{N}+\mathrm{T}+\mathrm{T}+\mathrm{T}+\mathrm{AA} \mathrm{D}+++\mathrm{G}++\mathrm{A}$
Sbjct: 533 TATPTANILT-------LNVNGL-TTTIGAITDSEAAADDGFTTTINIAGSTASSTIASLVA 584
Query: 227 GAAVILG----AAATLAQYLDAAAAGDGSGISVAKWFQFGGDIYVVVDSSAGATFV---S 279
A TL A T+ + AA G SV T +V AGA + +
Sbjct: 585 ADATTLNLSGDARVTITSHTAAALIGITVINSVGATLGAELATGLVFIGGAGADSILLGA 644
Query: 280 GADAVIKLTGLVILITSA 297
At+ G T+T St
Sbjct: 645 TTKAIVMGAGDDIVIVSS 662

Table 5-4 continued

Score $=66.3$ bits (159), Expect $=3 \mathrm{e}-10$

Identities $=94 / 361$ (26\%), Positives $=143 / 361$ (39\%), Gaps $=80 / 361$ (22\%)
Query: 4 ATAGATTFINVAVNVGLTVLAAPIG----TITVILANAT--GISDVFNLTLSSSSAALAAG 57
$A+T T \quad+A V G V A T \quad T T+T A+T G S \quad+T+++A A \quad A G$
Sbjct: 409 ANSSTITIGALAVIGGTAVIVAQTAGNAVNITLLIQADVIVIGNSSTTIAVIVIQTAAATAG 468
Query: 58 -TVA--LAGVETVNIAATDTNTTA-HVDILTLQATSAKSIVVIGNAGLNLTNIGNTAVTS 113
TVA $+\mathrm{G}+\mathrm{T}+\mathrm{A}+\mathrm{TLA}+\mathrm{T}+\mathrm{TL}+\mathrm{A}+\mathrm{I}+\quad+\mathrm{NL}+\mathrm{TG}+$
Sbjct: 469 ATVAGRVNGAVIITISSAAASATTAGKIATVILGSFGAATIDSSALTTVNLSGTGTSLGIG 528
Query: 114 FDASAVIGIGSAVIF-VSANITVGEV--------------VITRGAGADSLTGSATANDT 159
A T T + +T V+ TT G + $+I G+++\quad A+T$
Sbjct: 529 RGALTATPTANILILNVNGITTTGAITDSEAAADDGFITINLAGSTASSTIASLVAADAT 588
Query: 160 IIGGAGADILVYTGGID-------------------------TFTGGTGADIFDINA-----1 191
+ +G + T T FIGG GAD + A
Sbjct: 589 TLNISGDARVIITSHTAAALTGITVINSVGATLGAEI ATGLVFTGGAGADSILILGATTKA 648
Query: 192 --IGTSTAFVIITDAAV-------GDKLDLVGISINGA--IADGAFGAAVILGAAATLA 239
$+G \quad V T+A+G D D++N G+A D$ AFG TL
Sbjct: 649 IVMGAGDDIVIVSSATLGAGGSVNGGDGIDVLVANVNGSSFSADPAFGGFETLRV----- 703
Query: 240 QYLDAAAAGDGGGISVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLIGLVILTTSAFA 299
A AA GS $+\quad \mathrm{GT}+++$ AGAT $+\quad+\mathrm{LT} \mathrm{L} \mathrm{T}+$
Sbjct: 704 ----AGAAQQGSHNA-------NGFTALQLGATAGATIFINVAVNVGLIVLAAPIGITIV 752
Score $=66.0$ bits (158), Expect $=3 e-10$
Identities $=85 / 301$ (28\%), Positives $=121 / 301$ (39\%), Gaps $=45 / 301$ (15\%)
Query: 2 LGATAGATTFINVAVNVGLIVLAAPTGITTVTLANATGTSDVFNLTLSSSSAALAAGIVAL 61
LA A T A + LVAA Gr +NA T+S A T A+
Sbjct: 172 LTAFVRANIPFTAAADIDLAVKAALIGT----IINAA--------TVSGIGGYATATAAM 219
Query: 62 AGVEIVNLAATDINITAHVDILTLQATSAKSIVVIGNAGLNLINTGNIAVTSFDASAVIG 121
$+++\mathrm{AT} \mathrm{A} \mathrm{V}+\mathrm{T}+\mathrm{S} \mathrm{S} \quad \mathrm{G}+\mathrm{T}+\quad+\mathrm{TG}$
Sbjct: 220 --INDLSDGALSTINAAGVNLFTAYPSSGVS--------------GSILSIITIGIDILTG 263
Query: 122 TGSAVIFVSANITVGEVVIIRGGAGADSLTGSATANDIIIGGAGADTLVYTGGTDIFTGG 181
$\mathrm{T}+\mathrm{TFV}+\quad$ GEV AGA +LT $\quad \mathrm{DT}+$ GGAG D L +
Sbjct: 264 TANADIFVA------GEV------AGAATLT----VGDILSGGAGIDVLNWQAAAVTALP 308
Query: 182 TGADIFDINAIG-TSTAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVILGAAATLAQ 240
TG I I $+\mathrm{TS} \mathrm{A}+\mathrm{T}+\quad+\mathrm{L}++\mathrm{T}+\mathrm{GA} \quad \mathrm{GA} \mathrm{L}$ AT AQ
Sbjct: 309 TGVIISGIEIMNVISGAAITLNTSSGVIGLTALNINISGAAQIVTAGAGQNL-TATTAAQ 367
Query: 241 YLDAAAAGDGSGISVAKWFQFGGDIYVVVDSSA-GATFVSGADAVIKLITGUILTTSSAFA 299
$+\mathrm{A} \mathrm{G}++\mathrm{VA} \quad \mathrm{GTV}+\mathrm{S}+\mathrm{A} \mathrm{G}$ VS A++ $\mathrm{TG}++\mathrm{T}$
Sbjct: 368 AANNVAVDGGANVIVASTGVTSGITTVGANSAASGTVSVSVANSSTITTTGAIAVIGGIAV 427

Table 5-4 continued

```
Score = 62.8 bits (150), Expect = 3e-09
Identities = 77/293 (26%), Positives = 125/293 (42%), Gaps = 38/293
(12%)
Query: 12 TNVAVNVGUIVLAAPIGITIVILANATGTSDVFNLTLSSSAALAAGIVALAGVEIVNLAA 71
    T+ A VL +G + TL+ TGT + +++ AG VA A TV
Sbjct: 230 TDNAAGVNLFTAYPSSGVSGSTLSLTTGTDILTGT--ANNDTFVAGEVAGAATLTVGDIL 287
Query: 72 TDINITAHVDILTLQATSAKSIVVIGNAGINLINIGNIAVTSFDASAVIGIGSAVIFVSA 131
    + T ++ + A +A VI + + T A T +S VIG +T +
Sbjct: 288 SGGAGIDVLNWVQAAAVTALPTGVIISGIEIMNVISGAAITLNTSSGVIG----LTALNT }34
Query: 132 NITVGEVVTIRGGAGAD--SLIGSATANDTIIGGAGADILVYTIGGIDIFIGGIGADIFDI 189
    NI+G T+ GAG + + T + AN+ + G T+ TG T +G
Sbjct: 344 NTS-GAAQTVTAGAGQNLTATTAAQAANNVAVDGGANVIVASTGGT------SGITTIVGA 396
Query: 190 NAIGISTAFVTITDAAVGDKLDLVGISINGAIADGAFGAAVILGAAATLAQYLDAAAAGD 249
    N+ + T V++ +++ +T GATA VT G A T+AQ AG+
Sbjct: 397 NSAASGTVSVSVANSST---------TTTGAIA-------VIGGIAVTVAQ------TAGN 435
Query: 250 GSGTSV--AKWFQFGGDIYVVVDSSAGATFVSGADAVIKLIGLVILTTSAFAT 300
            T++A G + V + A +GA + +GVT+T SA A+
Sbjct: 436 AVNITILTQADVIVIGNSSITAVIVIQIAAATAGATVAGRVNGAVIITDSAAAS 488
B
\begin{tabular}{lc} 
& Smallest \\
High & Probability \\
Score & \(\mathrm{P}(\mathrm{N})\)
\end{tabular}
```

1. gi|477427 RsaA - Caulobacter crescentus

1461 154 108
3. gi|2120536 SapA - Campylobacter fetus membrane glycoprotein Equine herpesvirus 1
SapA - Campylobacter fetus
HlyA - Aquifex aeolicus-hemolysin protein
membrane glycoprotein Equine henpesvirus 1 hypothetical protein-Rhodobacter capsulatus envelope glycoprotein - Equine herpesvirus 4 glycoprotein - Cryptosporidium parvum epimerase -Azotobacter vinelandii hypothetical protein-Rhodobacter capsulatus 102
epimerase -Azotobacter vinelandii 109
$1.1 e-187$
9.5e-17
1.1e-11
$1.5 \mathrm{e}-11$
$1.4 \mathrm{e}-10$
$9.9 \mathrm{e}-09$
$1.8 \mathrm{e}-08$
$4.3 \mathrm{e}-08$
$4.7 \mathrm{e}-08$
8.7e-08
4.1e-07
$1.4 \mathrm{e}-06$
$1.4 \mathrm{e}-06$

Table 5-4. BLAST alignment of RsaA with itself. A) Portions of the sequence of RsaA exhibit considerable sequence similarity to other portions of the molecule. Query represents the 300 amino acid segment of RsaA from 721-1020. Sbjct represents the entire sequence of RsaA. Numbers alongside the sequence indicate amino acid positions. The line between the Query and Sbjct lines indicates identical amino acids with the appropriate letter code and similar amino acids with a ' + '. Identities refers to the number of identical amino acids shared between the sequences. Positives refers to the combined number of identical and similar amino acids shared between the sequences. Expect gives the possibility of the sequence alignment occurring by chance considering the current size of the sequence databases. B) Result of BLAST search showing the closest matches to the amino acids 721-1020. $\mathrm{P}(\mathrm{N})$ numbers are almost identical to Expect numbers for Expect numbers<0.001 (Altschul et al., 1990).

Phylogenetic analysis of the FWC species has shown that the FWC species can be divided into five branches. Analysis of the phylogenetic study Abraham et al., 1999 shows that there are two branches, B and D, of the Caulobacter phylogenetic tree that contain species with only small, 100-108, kDa S-layers (Fig 53). FWC19, FWC28 and FWC31 belong to one of these branches and FWC 17 belongs to the other. These are the four strains with identical Southern blot banding patterns (Table 5-3) suggesting that the S-layers and associated transporters of these two branches are more closely related to each other than to the other three branches. The three other branches show no correlation between subunit size and evolutionary distance as they have S-layer subunit sizes ranging from small (102 kDa) to large (193 kDa). In addition to this, the species FWC6, FWC8 and FWC39, that proved easiest to amplify the ABC-transporter by degenerate PCR, all belong to different branches. This may simply reflect the conserved nature of the ABCtransporter. It may be that the larger S-layers evolved separately from one another and the similarities between ABC-transporters transporting large subunits (but not found in ABC-transporters transporting small subunits) may represent convergent evolution required to accommodate secretion of a larger subunit.

FWC without S-layers

Figure 5-3. Dendrogram derived from Caulobacter glycolipid content (Adapted from Abraham et al, 1999). The FWC species have been organized into 5 groups with a linkage difference of more than 0.05 . * species examined in this study. Numbers in brackets refer to the size of the S -layer subunit in kDa .

Summary

The evolutionary relationships of the S-layer subunits and associated transporters of the different FWC species have been examined here. These results are still preliminary and more work needs to be done to substantiate these conclusions. While keeping this in mind, I will hypothesize on the evolutionary relationships that the data presented here suggest.

The repetitive nature of RsaA suggests how the different sizes of S-layers could have arisen among the different FWC species. The larger S-layer subunits from such strains as FWC39 and FWC41 may consist of an even more repetitive nature to account for the greater bulk. Larger S-layer subunits might arise from a duplication of DNA within the gene for the subunit.

The phylogenetic analysis of the FWC species by Abraham and collegues shows little evolutionary relatedness with regard to S-layer subunit size (Fig. 5-3). While groups B and D contain only smaller S-layer subunits other groups contain a range of sizes. The most pronounced difference in subunit size is found in group E between the species with the largest (FWC 39) and the smallest (NA1000/JS3000) subunits, yet the bacteria are very closely related according to glycolipid content. Thus, it seems that the large S-layer subunits arose independently. The identical amino acid changes seen in the ABC-transporters with large S-layer subunits suggest that these amino acids may be required changes for transporting a subunit of a large size. Further work on analyzing these differences is required before anything conclusive can be determined, and is of great interest since this information would help determine the factors that must be considered when designing recombinant proteins for secretion.

In reviewing all current data, I hypothesize that the progenitor of the six branches of FWC species had a small ($106-108 \mathrm{kDa}$) S-layer subunit and the two branches consisting solely of small S-layer subunits represent FWC that are most closely related to the progenitor. The S-layer subunits of the FWC species in the other four branches may have altered their sizes more recently. The repetitive nature of the S-layer sequence may have assisted in the duplication of sequence segments by allowing slippage during gene replication to create larger S-layer
subunits. Smaller subunits such as the 98 kDa NA1000 subunit may have resulted from deletion of repeated units. It may be that to accommodate the different sized subunits, the ABC-transporter components must be changed at specific residues to allow secretion of larger subunits. If convergent evolution resulted in the similarities found between the large subunit transporters here, then these similarities will indicate what portions of the protein are involved in transport of the larger subunit. I believe that the analysis of the S-layer subunits and transporters in this manner will allow a much greater understanding of the type I secretion systems.

Chapter 6
 Identification of genes involved in the synthesis of the O-Antigen of C. crescentus

Introduction

The S-LPS of C. crescentus is responsible for attachment of the S-layer to the surface of the bacterium. Disruption of proper O -antigen formation in the S-LPS causes the RsaA molecules to slough off or 'shed' from the surface and assemble into sheets (Fig. $6-1)$. The S-LPS has been isolated and analyzed from S-layer negative NA1000 mutants (Walker et al., 1994) and has the same core and lipid composition as the rough LPS (Ravenscroft et al., 1992). Further analysis of the O-antigen (Smit, unpublished) has revealed that the O-antigen of the S-LPS appears to be composed of a homopolymer of a 4,6-dideoxy-4-amino-hexose. Mass spectrometry indicates that the O-antigen has a mass consistant with of forty of these hexose units. This homopolymer is unusual in that a number of different anomeric proton signals can be found when it

Figure 6-1. Shed slayer from C. crescentus. EM photo-graph of Slayer shed from a strain with defective S-LPS. (Photo courtesy John Smit)

 is analyzed by proton NMR suggesting that the

Wildtype
S-layer negative

S-LPS negative

Figure 6-2. Colony Immunoblot. Example of an immunoblot demonstrating the different phenotypes exhibited by mutants.
individual sugar units may not all be linked in the same manner. Presented in this report is evidence that this 4,6-dideoxy-4-amino-hexose is, most likely, the sugar perosamine. Perosamine is not commonly found in the O-antigen and only a few species, including Vibrio cholerae, Brucella melitensis and E. coli O157, contain perosamine residues (Stroeher et al., 1995; Wang and Reeves, 1998). In addition, a number of glycosyltransferases have been found which may be
the basis for the different linkages making up the homopolymeric O -antigen.

Results and Discussion

Several Tn5 mutants producing altered S-LPS were found. The screen used to detect transport deficient mutants also detected S-LPS mutants in the NA1000 Tn5 library. On plates, these mutants exhibit a 'halo' of RsaA protein diffusing out from the colonies that can be easily distinguished with an immunoblot from bacterial colonies not shedding the S-layer (Fig. 6-2). This method was used to isolate a total of 26 'shedders' from the NA1000 Tn5 library with altered S-LPS (Fig 6-3).

Figure 6-3. s-LPS of shedding Tn5 mutants. Silver stained polyacrylamide gel of SLPS extracts from representative NA1000 shedder Tn5 mutants. NA1000 shows the wildtype form of S-LPS. JS100 is a spontaneous shedder mutant with a defective S-LPS. The large dark band at the bottom is the rough LPS.

Southern blot analysis of these mutants has shown that mutants F1-F22 consisted of 16 different Tn5 insertions (data not shown). Further Southern blot characterisation of the mutants showed that F8 was not a proper Tn5 insertion since the banding pattern was incorrect when probed with Tn5. Southern blots probed with the coding sequence of $r s a A$ showed that the $r s a A$ band in the mutant F21 was not the same as wildtype. This suggested that the Tn5 mutation did not result in the shedding phenotype, but instead a second mutation resulting in a deletion of the
rsaA gene was responsible (data not shown). To further characterise these mutants, Southern blot analysis using EcoRI and Sstl was performed on the chromosomal DNA of these mutants. Both of these enzymes do not cut Tn5 and as a result can be used to determine if the Tn5 insertions are linked. The Southern blots were probed with a portion of the Tn5 and the banding patterns have been summarized in Tables 6-1 and 6-2. The results showed that the majority of these mutants have identical banding patterns (groups C and I) and are linked. Of the remaining mutants: F10 and F22 appear to be linked, while F3 and F9 are not linked to any of the others (Tables 6-1 and 6-2). Four of these mutants were isolated at a later date and were not characterised by Southern (F23-F26).

Southern blot analysis of chromosomal DNA digested using EcoRI

Mutant	Group A 8.1 kb	Group B 15 kb	Group C 23 kb	Group D 30 kb	Group E 35 kb
F1			x		
F2			x		
F3		x			
F4			x		
F6	x				
F9					
F10			x		
F11			x		
F12			x		
F14			x		
F15					
F19					
F20					
F22					

Table 6-1. Compilation of Southern blot data from EcoRI digestion of shedder mutant chromosomal DNA. EcoRI does not cut Tn5. The Southern blots were probed with a fragment of Tn 5 . Mutants are grouped according the band size seen on the Southern blots.

Southern blot analysis of chromosomal DNA digested using Sstl

Mutant	Group F 9.3 kb	Group G 14 kb	Group H 18 kb	Group I 20 kb	Group J 21 kb	Group K 23 kb
F1				x		
F2				x		
F3	x					
F4				x		
F6						
F9						
F10				x		
F11				x		
F12						
F14						
F15						
F19						
F20						
F22						

Table 6-2. Compilation of Southern blot data from Sstl digestion of shedder mutant chromosomal DNA. Sstl does not cut Tn5. The Southern blots were probed with a fragment of Tn5. Mutants are grouped according the band size seen on the Southern blot.

Half of the Tn5 and associated chromosomal DNA from a representative of each of these 16 groups and F23-F26 was cloned by one of two methods. The majority of Tn5 insertions were cloned by cutting the chromosomal DNA with BamHI. This cuts the Tn5 in half, but leaves the kanamycin resistance gene intact. This DNA was ligated into a pUC-based vector and selected on kanamycin. This gives an insert with Tn5 sequences on one side and chromosomal DNA on the other. A few mutants proved resistant to this technique and were cloned using an inverse PCR method, developed by V. Martin (Martin and Mohn, 1999). Sequencing off the end of the Tn5 revealed the insertion site of the Tn5 and this sequence was used to search the partial TIGR C. crescentus genome library for the DNA surrounding the Tn5 insertion site. All of the Tn5 insertion sites were found in the partial genome
sequence. Open reading frames (ORFs) were determined using the sequence from the partial genome and analyzed for C. crescentus codon preference. These ORFs were used to search the known protein databases for similar proteins using the BLAST algorithm (Altschul et al., 1990). The genes ${ }^{2}$ interrupted by the Tn 5 insertions were characterised using this data (Table 6-3).

Tn5 mutant group	Similarity to known proteins	Location*	ORF designation
F1, F7	regulator and transcription repressor LacI	gcc 433	lpsI
F2	perosamine synthetase, RfbE - V. cholerae	RAT1	lps C
F3	nucleotide sugar epimerase/dehydratase	gcc 1444	$l p s K$
F4, F5	similarity to mannosyl transferase WbaZ - E. coli	RAT1	$l p s D$
F6	methyl-accepting chemotaxis receptor	gcc 648	orf1
F9, F13, F17	Phosphomannomutase, RfbB - V. cholerae	gcc 227	$l p s G$
F10	none-downstream of kpsT-like ORF (O-antigen transporter)	gcc 279	orf2
F11	similarity to mannosyl transferase (rfb region)	gcc 973	$l p s E$
F12	similarity to mannosyl transferase WbaZ from E. coli	RAT1	$l p s D$
F14, F16	mannose-6-phosphate isomerase	gcc 506	lps H
F15, F18	similarity to mannosyl transferase WbaZ from E. coli	RAT1	$l p s D$
F19	similarity to mannosyl transferase WbaZ from E. coli	RAT1	$l p s D$
F20	similarity to mannosyl transferases	gcc 395	$l p s F$
F22	none-downstream of kpsT-like ORF (O-antigen transporter)	gcc 1290	orf2
F23	Phosphomannomutase	gcc 227	$l p s G$
F24	galactosyl-1-phosphate transferase, WlaH C. jejuni	gcc 2537	$l p s J$
F25	mannose-6-phosphate isomerase	gcc 506	$l p s H$
F26	Rhamnosyl transferase	gcc 2218	$l p s L$

Table 6-3. List of shedder mutants. ORFs with similarity to sugar modification enzymes have been given an 1 ps designation. * Location gives either the contig (gcc) found in the partial Caulobacter genome or shows that the gene was found in the RAT1 fragment 3 ' of rsaE and had been sequenced while looking for the third translocator protein, RsaF.

[^1]The S-LPS synthesis genes are genetically linked to the RsaA transport genes. Analysis of the DNA sequence around the rsaA transporter complex (see Ch. 3 and Ch .4) revealed 5 ORFs with coding sequences having significant similarity to S-LPS synthesis enzymes between rsaE and $r s a F(973)$ and one ORF 3^{\prime} of $r s a F(973)$ was found. The first ORF encoded a protein with similarity to GDP-D-mannose dehydratase (Currie et al., 1995; Stroeher et al., 1995), the second ORF encoded a protein with similarity to UDP-N-acetylglucosamine acyltransferases (Canter Cremers et al., 1989; Vuorio et al., 1994) and the third protein had similarity to perosamine synthetase (Bik et al., 1996; Stroeher et al., 1995). The fourth and fifth proteins have similarities to mannosyltransferases (Drummelsmith and Whitfield, 1999; Rocchetta et al., 1998). These five ORFs have been designated IpsA, IpsB, $\operatorname{lpsC}, \operatorname{IpsD}$ and IpsE (Fig. 6-4). Another ORF, IpsF, was found 3' of $r s a F(973)$, and also had similarity to glycosyl transferases (Kido et al., 1998).

Since the S-LPS is required for attachment of the S-layer, it is not that surprising that some of the genes involved in S-LPS synthesis are physically near rsaA and the transport genes. Smooth LPS genes have also been implicated in the proper formation of the transport complex in some type I secretion signals (Wandersman and Létoffé, 1993). It is thought that smooth LPS is required for proper insertion of the OMP into the outer membrane. Sequencing of the Tn5 insertions in the shedders has shown that F2 is located within $\operatorname{lps} C$ and the four different insertions F4, F12, F15, and F19 are located within IpsD. The presence of four different Tn5 mutations in IpsD suggests that the Tn5 mutations are the cause of the shedding phenotype and this gene plays a role in S-LPS synthesis. In addition, F 11 is found in IpsE and F20 is found in $/ p s F$.

Most of the remaining Tn5 insertions are also in genes that have similarity to smooth LPS synthesis genes (Fig. 6-5, Table 6-4). Two of these insertions interrupt genes with similarity to glycosyltransferases. Four Tn5 insertions are found in genes that have been implicated in pathways for the production of GDP-4-keto-6-Ddeoxymannose, a precursor of GDP-L-fucose and GDP-perosamine. One insertion appears in a gene with similarity to transcription regulators. Two other insertions are in unknown genes.

Figure 6-4. S-LPS synthesis genes linked to rsaA. Boxes represent genes or ORFs. Protein functions have been assigned on the basis of sequence similarity. Triangles indicate Tn5 insertions. Numbers above the triangles indicate the designation of the Tn5 insertion (B for S-layer negative mutants and F for shedding mutants).

Figure 6-5. Genes interrupted by Tn5 insertions in shedder mutants. Protein functions have been assigned on the basis of sequence similarity. Triangles indicate Tn5 insertion sites causing shedding phenotype. Numbers above the triangles indicate the designation of the Tn5 insertion.

Caulobacter protein	Similar Proteins	Organism	Function	Identity/\% Similarity	Accession
LpsA	GCA	Pseudomonas aeruginosa	GDP-mannose dehydratase	65.2/88.6	Q51366
	RfbB	Synechocytis species	GDP-mannose dehydratase	55.2/83.4	P72586
	GMD	Escherichia coli	GDP-mannose dehydratase	55.7185.0	P32054
	GMD	Escherichia coli 0157	GDP-mannose dehydratase	55.7/84.9	085339
LpsB	YvfD	Bacillus subtilis	Serine O -acetyltransferase	47.2/83.1	P71063
	WlaI	Campylobacter jejuni	Serine O-acetyltransferase	37.9/83.4	086157
	NeuD	Escherichia coli	acetyltransferase	32.4/77.2	Q46674
	Wbdr	Escherichia coli O 157	N -acetyltransferase	30.3/72.2	085344
LpsC	SpsC	Synechocytis species	Spore coat polysaccharide synthesis	50.0/86.1	P73981
	Mth334	Methanobactium thermoautotropicum	Perosamine synthetase	46.4/82.4	O26434
	RfbE	Escherichia coli O157	Perosamine synthetase	45.4/82.4	007894
	RfbE	Vibrio cholerae	Perosamine synthetase	42.3/80.1	Q06953
LpsD	Wbaz-1	Archaeoblubus fulgidus	Mannosyl transferase	24.3/69.8	030192
	Mth332	Methanobactium thermoautotropicum	LPS biosynthesis	24.5/68.6	O26432
	ORF18.9	Salmonella enterica	Mannosyl transferase	19.6/62.0	Q00483
	ExpE4	Sinorhizobium meliloti		25.0/40.7	P96434
LpsE	ORF18.9	Salmonella enterica	Mannosyl transferase	26.5/89.7	Q00483
	WbaZ-2	Archaeoblubus fulgidus	Mannosyl transferase	24.5/64.6	O29649
	WbaZ-I	Methanobactium thermoautotropicum	Mannosyl transferase	24.2/66.5	030192
LpsF	WbdA	Escherichia coli	Mannosyl transferase	19.4/66.2	066234
	AF0617	Archaeoblubus fulgidus	LPS biosynthesis protein	24.8/69.9	029638
	Mth370	Methanobactium thermoautotropicum	LPS biosynthesis protein, RfbU -like	29.0/65.7	026470
LpsG	AlgC	Pseudomonas aeruginosa	phosphomannomutase	36.0/57.4	P26276
	PGM	Neisseria gonorrhoeae	phosphomannomutase	32.9/50.6	P40390
	PmmA	Mycobacterium	phosphomannomutase	38.0/54.2	086374
	PGM	Neisseria meningitidis	phosphomannomutase	35.0/53.5	P40391
LpsH	XanB	Xanthomonas campestris	Phosphomannose isomerase	38.3/71.7	P29956
	ManC	Yersinia enterocolitica	Mannose-1-phosphate guanyltransferase	33.2/64.0	Q56874
	RfbM	Escherichia coli	Mannose-1-phosphate guanyltransferase	32.6/65.9	Q59427
LpsI	CcpA	Bacillus megaterium	Catabolite control protein	34.9/74.2	P46828
	CcpA	Bacillus subtilis	Catabolite control protein	33.1/74.5	P25144
	DegA	Bacillus subtilis	Degradation activator	33.1/74.9	P37947
	LacI	Bacillus subtilis	LacI repressor like protein	30.0/72.9	034396
LpsJ	LpsB1	Rhizobium etli	galactosyltransferase	59.7/71.0	034301
	CapM	Staphylococcus aureus	unknown	45.7/79.6	P95706
	RfbW	Vibrio cholerae	galactosyltransferase	47.2/79.8	Q56624
	PssA	Rhizobium leguminosarum	galactosyltransferase	34.6/69.2	Q52856
LpsK*	WlaL	Campylobacter jejuni	amino sugar epimerase	43.8/79.6	086159
	BplL	Bordetella pertussis	LPS biosynthesis	31.0/64.4	Q45387
	LpsB2	Rhizobium etli	dTDP-glucose 4,6, dehydratase	25.9/39.4	034302
	CAPD	Bacillus subtilis	unknown	26.5/69.9	P72370
LpsL	CPS23FV	Streptococcus pneumoniae	Rhamnosyltransferase	29.8/51.7	086159
	CPS23FI	Streptococcus pneumoniae	LPS biosynthesis	29.8/51.7	AAC69532
	ORF51x5	Vibrio anguillarum	unknown	26.7/45.0	031012

Table 6-4. Deduced proteins involved in 0 -antigen synthesis and their homologues. BLAST and FASTA alignments were used to determine identity and similarity. Percentage similarity represents identical amino acids and conserved substitutions.

* incomplete OPF

As shown by Southern blotting, the Tn5 insertions, F1, F2, F4, F6, F11, F12, F14, F15, F19 and F20 are linked. Figure 6-4 shows that the Tn5 insertions F2, F4, F11, F12, F15 and F20 are linked to the RsaA transporter genes. F1, F6, and F14 must be linked as well, but it was not possible to construct the DNA sequence of this linkage. In addition, of the four mutants not characterised by Southern analysis, F23 is in the same ORF as F9, and F25 is in the same ORF as F14. The other two mutants, F24 and F26, were not obviously linked to any of the other insertions.

Analysis and proposed function of individual proteins involved in S-LPS synthesis.

A total of 14 ORFs associated with the formation of the S-LPS were found (Table 6-4). Four of these ORFs are incomplete. A summary of the characteristics of these ORFs is listed in Table 6-5. All of the ORFs start with an ATG codon except IpsH which starts with a TTG. Sequence similarity and codon preference indicate that the TTG is the most probable start codon for 1 psH . Using the C. crescentus promoter consensus for biosynthetic genes (Malakooti et al., 1995), possible promoters were found 31 bp and $99 \mathrm{bp} 5^{\prime}$ of $/ \mathrm{psG}, 52 \mathrm{bp} 5^{\prime}$ of $\mathrm{lpsH}, 204 \mathrm{bp} 5 \prime$ of $\mathrm{Ips} /$, $154 \mathrm{bp} 5^{\prime}$ of $\operatorname{lps} J$ and $63 \mathrm{bp} 5^{\prime}$ of lpsK. In some clusters of smooth LPS genes the G+C content of the individual clusters varies with respect to the G+C content of the bacterium suggesting recent acquisition of the genes (Fallarino et al., 1997; Fry et al., 1998; Stroeher et al., 1995). The G+C content of these ORFs is consistent with the average C. crescentus content of 67%.

ORF	Translation start	Size (aa)	Predicted mass (kDa)	pI	$\begin{gathered} \mathrm{G}+\mathrm{C} \\ \mathrm{o} \end{gathered}$
1psA	TGITACIGGAGICAGCGGATACGCATG	325	36.3	6.2	65.1
IpsB	CATCGCGCGGCGCICGCGCAACIGATG	215	21.4	8.5	69.3
IpsC	GAACGIGACTATGTACICGAATGCATG	346	37.8	5.9	63.1
$1 \mathrm{ps} D$	CTCGATCAGGIGITGETCTAGCCGATG	346	39.1	5.7	65.2
IpsE	GCCIGACCICATGAGAACGCCCGCAIG	345	38.2	5.8	65.8
lpsF	GCGICTCGCCCGCCIGCA TCGCCCATG	430	47.0	7.5	69.1
1psG	CATCICAACTGAAGCGAGCCITCAATG	>469	ND	5.0	65.8
1psh	CCIAAGACIGIGIGGGGACAAGACIIG	434	45.5	4.6	67.4
IpsI	CGGGCTCGCCATGACAGCCTIGICAIG	356	38.7	6.3	65.4
1psJ	TCIGGCCIAGGCCGAGCCGGCIGA ATG	187	20.5	10.5	66.0
IpsK	TTCACCGCTICAGAGGITCGITICATG	>459	ND	10.4	69.8
IpsL*	ND	>336	ND	5.5	68.7
orf1*	ND	>352	ND	6.4	73.8
orf2	GGCCIACCGCGAAACCCAGGCOGCAIG	316	34.1	10.2	72.5

Table 6-5. Characteristics of the putative S-LPS synthesis genes. Start codons are in bold. Putative Shine-Dalgarno sequences are underlined. * - incomplete ORF. ND - not determined because ORF is incomplete.

LpsA resembles GDP-mannose 4,6-dehydratases. The start codon for IpsA is 143 bp 3 ' of rsaE. No promoter matching the consensus sequence was found upstream of $I p s A$, as would be expected if there is a terminator after rsaE (see Ch.3). The LpsA sequence has up to 65.2% identity and 88.6% similarity over its entire length to GDP-mannose 4,6-dehydratases from P. aeruginosa and E. coli. (Table 6-4). These enzymes convert GDP-mannose to GDP-4-keto-6deoxymannose (Stevenson et al., 1996) as part of biosynthetic pathways polysaccharides. One example of this is the synthesis of perosamine in V. cholerae and E. coli O157. The significant similarity to GDP-mannose 4,6-dehydratases suggests that this is also the function of LpsA, although no Tn5 insertion was found in the gene.

LpsB is similar to N -acetyltransferases. The gene $l p s B$ follows $I p s A$ by 2 bp suggesting that these genes are transcriptionally coupled. The protein encoded by the gene shows significant similarity to Wlal from C. jejuni and NeuD from E. coli (Table 6-4). Wlal is involved in the synthesis of the O-antigen (Fry et al., 1998) while
the function of NeuD is not clear, but is thought to be involved in NeuNAc transfer (Annunziato et al., 1995). These proteins also show some similarity to the LpxA genes from E. coli and S. enterica. The LpxA proteins are UDP-Nacetylglucosamine O-acetyltransferases that are involved in the first step of Lipid A biosynthesis and have 24 to 26 unique hexapeptide motifs starting with an isoleucine, leucine or valine residue often followed by a glycine (Vaara, 1992; Vuorio et al., 1994). LpsB, Wlal and NeuD contain several of these hexapeptide repeats (Fig. 6-6). The protein WbdR from E. coli O 157 also contains these hexapeptide repeats and has 72.2% sequence similarity to LpsB. WbdR is thought to encode an N -acetyltransferase which converts GDP-perosamine to GDP-N-acetyl perosamine (Wang and Reeves, 1998). Since the data in this chapter suggest that the genes involved in perosamine synthesis in E. coli 0157 are also present in C. crescentus LpsB may acetylate GDP-perosamine like WbdR.

Figure 6-6. ClustalW alignment LpsB. Alignment of LpsB with Wlal from C. jejuni (Accession CAA72358) and NeuD from E. coli (ACC43301). Asterisks mark the hexapeptide motifs found in glycosyl transferase. Identical and similar residues are boxed.

LpsC appears to be a perosamine synthetase. The gene encoding LpsC starts 74 bp 3' of IpsB, but no promoter sequence was found between IpsB and IpsC. LpsC has considerable identity over its entire length to the rfbE and per gene products that are thought to synthesize perosamine (Table 6-4). These proteins likely catalyze the conversion of GDP-4-keto-6-D-deoxymannose to GDPperosamine (4-amino-4,6-dideoxymannose) in V. cholerae and E. coli 0157 (Stroeher et al., 1995; Wang and Reeves, 1998) and show similarity to two classes of pyridoxal-binding proteins involved in the synthesis of amino sugars similar to perosamine. The perosamine synthetic pathway has not been proven chemically, but the proteins suspected in the synthesis of perosamine are the only highly similar proteins involved in O-antigen synthesis found in common between Vibrio cholerae, and E. coli O157 supporting these predictions (Wang and Reeves, 1998). Based on the similarity to these genes, it is likely that LpsC is a perosamine synthetase.
LpsD LpsE
WbaZ
E WbaZ Se WbaZ-1 Af WbaZ-2 Af

Figure 6-7. ClustalW Alignment of LpsD and LpsE with WbaZ genes from E. coli (Accession AAD21571) and S. enterica (X61917) and WbaZ homologues from A. fulgidus (AAB91187). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.

LpsD and LpsE resemble glycosyltransferases. The gene for LpsD follows IpsC by 6 bp and the gene for LpsE follows IpsD by 13 bp , suggesting that all three genes are part of a polycistron. Both LpsD and LpsE have significant similarity to the WbaZ proteins (Fig 6-7). These proteins also have similarity to the RfbU related proteins, but size and amino acid similarity indicates that the WbaZ-like protein are a separate family. WbaZ is a known mannosyltransferase in S. enterica (Liu et al., 1993). It seems likely that LpsD and LpsE function to link perosamine monomers to the O-antigen with each providing a different form of linkage.

LpsF is similar to perosamine transferases. The gene for LpsF is separated from IpsABCDE by rsaF and is transcribed in the opposite orientation. LpsF, like LpsD and LpsE, appears to be a mannosyltransferase, but has greater similarity to the RfbU family. The similarity to mannosyltransferases is much less than that seen with LpsD and LpsE, but it does have significant similarity to the C-terminal of E. coli mannosyltransferases, WbdB and WbdA (Kido et al., 1998; Sugiyama et al., 1998) and RfbU, from V. cholerae (Wang and Reeves, 1998). RfbU, from V. cholerae, is known to transfer a perosamine residue onto the growing O -antigen chain. These proteins contain a signature motif that is also found in LpsF (Fig 6-8). This motif consists of the sequence EX[XF]GXXXXE[AG] with a serine preceding the motif by 3 to 5 residues (Geremia et al., 1996; Rocchetta et al., 1998). Again, it seems likely that LpsF acts to add perosamine residues onto the O -antigen.

Figure 6-8. Clustalw alignment of LpsF with a number of known mannosyl transferases. The mannosyl transferase motif is boxed. The conserved serine is marked with *. RfbU -Vibrio cholerae (Accession Y07788), RfbU - E. coli (BAA31838), WbdA, WbdB - E. coli (D43637). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.

LpsG is similar to phosphomannomutases. Two Tn5 insertions mutants had interrupted LpsG genes. The LpsG gene does not appear to be linked to any of the other lps genes (Table 6-1 and Table 6-2). This protein has very high identity along its entire length to a number of phosphomannomutase enzymes suggesting that this is the function of LpsG (Table 6-4). Phosphomannomutase converts mannose-6phosphate to mannose-1-phosphate and is one of the enzymes implicated in perosamine synthesis (Stroeher et al., 1995; Wang and Reeves, 1998).

LpsH may have a dual function as a phosphomannoisomerase and mannose-1-phosphate guanyltransferase. Two shedder mutants have Tn5 insertions within IpsH that result in loss of proper O-antigen production. It was not possible to link this gene with the RsaA transport genes using the TIGR Caulobacter genome sequence, but Southern analysis showed that lpsH is linked (Table 6-1 and Table 6-2). LpsH has significant identity over its entire length to a large family of enzymes that have dual functions as a phosphomannoisomerase and mannose-1-phosphate guanyltransferase (Table 6-4) Both functions are required for the synthesis of perosamine (Stroeher et al., 1995) and are probably also performed by LpsH in C. crescentus. These functions are split up in E. coli O157 into the manA and manC genes (Wang and Reeves, 1998).

Lpsl has similarity to the Lacl repressor family. The Tn5 insertion in mutant F1 interrupts $l p s l$. Southern blot analysis indicated that this insertion is linked to the Rsa locus. This insertion has a different phenotype than every other shedder Tn5 insertion. Analysis of the O-antigen by SDS-PAGE and silver staining reveals that a lower amount of O-antigen is produced by this mutant. Analysis of Lpsi indicates that the highest degree of identity is with CcpA, the catabolite control protein in Bacillus subtilis. CcpA represses carbohydrate utilization enzymes such as α amylase and acetyl coenzyme A synthetase and has a positive regulatory affect on excess carbon excretion proteins such as acetate kinase (Henkin et al., 1991). Lower sequence identity is found to a number of Lacl repressor-like proteins (Table $6-4)$. Analysis of the genes adjacent to $\mid \mathrm{ps} /$ revealed the presence of analogues of
glucokinase, 6-phosphogluconate dehydratase and glucose-6-phosphate-1dehydrogenase enzymes involved in basic metabolic pathways. This positioning suggests that Lpsl may regulate the transcription of these genes. If Lpsl has a repressor effect on these enzymes it could slow the production of O -antigen as glucose-6-phosphate would tend not be shunted into the perosamine synthetic pathway. Instead, it would be used for energy production in central metabolism.

LpsJ is similar to galactosyl transferases. The Tn5 insertion F24 interrupts a gene with sequence similarity to several galactosyl transferases (Fig. 6-9). These enzymes appear to transfer the first sugar residue (usually a galactose) to undecaprenol phosphate, the lipid precursor. RfbW is one of these enzymes and its

Figure 6-9. ClustalW alignment of LpsJ with putative galactosyltransferases. RfbW-V. cholerae (Accession Y07788), LpsB1-R.etli (U56723), WlaH-C. jejuni (CAA72357), WblG - Bordetella pertussis (X90711). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.
sequence is 47.2% identical and 79.8% similar to LpsJ over 144 amino acids. RfbW is involved in the synthesis of the perosamine homopolymer making up the O antigen of V. cholerae $O 1$ (Fallarino et al., 1997) suggesting that RfbW may transfer the first perosamine to the lipid precursor. In C. crescentus, LpsJ may initiate the formation of the O-antigen by attaching the first sugar residue (probably a perosamine) to the undecaprenol phosphate.

LpsK has sequence similarity to amino sugar synthesis enzymes. The mutant, F3, has an interruption in lpsK. It was only possible to determine the sequence for the 5' end of lpsK from the TIGR genome. The partial sequence of LpsK is similar to a number of large proteins, usually consisting of over 600 amino acids, suggesting that approximately 150 amino acids are missing from the C-terminal of the LpsK coding sequence (Fig 6-10). There is still considerable similarity, especially in the middle of the protein, to WlaL, RfbV and WIbL from C. jejuni, V. cholerae O 1 and B. pertussis. These proteins contain 5 hydrophobic, predicted transmembrane domains in the N-terminus. The central portion contains an NAD-binding site and is homologous to UDP-glucose-4-epimerases. Two motifs have been implicated in binding of NAD in these proteins, GXGXXG and GAGGSIG (Fallarino et al., 1997). As seen in Fig 6-10, the second motif is found in all the proteins, but the first only occurs in RfbV and WIbL suggesting that not all members of this family contain this motif. The C-terminal 300 amino acids of these proteins have identity with dTDPglucose 4,6-hydratases (Bechthold et al., 1995; Linton et al., 1995). These proteins are usually associated with synthesizing amino 6-deoxy and dideoxy sugars involved in LPS synthesis or extracellular polysaccharides and probably perform multiple functions to account for the 3 domains. LpsK was not found linked to the other O antigen synthesis genes. This may indicate that LpsK is involved in the synthesis of a core sugar, possibly the terminal core sugar. Interruption of this gene may prevent attachment of the O-antigen to the core, resulting in the observed shedding phenotype.

Figure 6-10. ClustalW alignment of LpsK. The first NAD binding motif is underlined. The second NAD motif is boxed. Only RfbV and WIbL contain the first motif. Only a partial sequence of LpsK has been deduced and the alignment is truncated after the LpsK sequence. RfbV - V. cholerae (Accession Y07788), WlaL - C. jejuni (CAA72360), WIbL - B. pertussis (X90711)

LpsL may be a glycosyltransferase. The mutant F26 has an insertion in IpsL. This gene is 5' to an ORF with similarity to exsG which was implicated in extracellular polysaccharide synthesis (Becker et al., 1995). The LpsL amino acid sequence is 29.8% identical and 51.7% similar over a range of 87 amino acids to a putative rhamnosyl transferase in Streptococcus pneumoniae (Table 6-4). Rhamnose is a 6-deoxy derivative of mannose, as is perosamine, suggesting that LpsL may be another perosamine transferase.

The functions of some of the Tn5-interrupted genes are still unidentified. The Tn5 insertions F22 and F10 interrupt an ORF with no identity to any known protein. But 5' of this ORF is an ORF corresponding to an ABC-2 transporter. These transporters are known to transport extra-cellular polysaccharides and O-antigens through the cytoplasmic membranes (Whitfield, 1995). Unlike the ABC transporters of the type I secretion systems, the ABC and transmembrane domains consist of separate proteins. It is possible that the ORF interrupted by F10 and F22 represents the transmembrane protein part of the ABC-2 transporter, but hydropathy analysis does not suggest that this protein contains transmembrane segments. The ABC-2 transporters are often found adjacent to genes involved in polysaccharide synthesis, therefore it may be that the ORF interrupted by the F10 and F22 mutants is also involved in polysaccharide synthesis.

The Tn5 insertion F6 interrupts orf1 which has similarity to a chemotaxis receptor (Ward et al., 1995). CheY, a chemotaxis regulator, is found linked to a number of O-antigen synthesis genes with similarity to $I p s J, I p s B, I p s C$ and $l p s K$ in C. jejuni. It may be that the genes involved in chemotaxis are found close to the O antigen synthesis genes in C. crescentus and that the $F 6$ insertion has a polar effect on downstream S-LPS genes. It is also possible that this ORF has nothing to do with LPS synthesis and the Tn5 insertion may not cause the shedding phenotype. Instead, a second mutation may cause the altered phenotype.

Summary

As stated at the beginning of the chapter, it seems likely that the S-LPS of C. crescentus is a fixed length homopolymer of approximately forty 4,6-dideoxy-4-amino-hexose residues. Proton NMR anomeric traces suggest that the linkages between the hexose residues may not all be identical. Several of the genes discussed in this chapter are similar to genes found in the synthesis of perosamine in V. cholerae and E. coli O157 (Stroeher et al., 1995; Wang and Reeves, 1998) and as perosamine is a 4,6-dideoxy-4-amino-hexose, it seems likely that the O-antigen of C. crescentus consists of perosamine residues. All of the enzymes responsible for perosamine synthesis can be found in the lps genes listed above. Four enzymes are involved in converting fructose-6-phospate to perosamine (Fig. 6-11). The first enzyme in the pathway described by Stroeher et al (1995) is a phosphomannoisomerase, RfbA. Mutants F25 and F14 are located in LpsH which has significant similarity to RfbA. The second step in the pathway is performed by the enzyme RfbB, a phosphomannomutase. Two Tn5 mutants, F9 and F23, are in the gene for LpsG, an enzyme with considerable similarity to RfbB. The third step in the pathway is catalyzed by RfbA. RfbD, a GDP-mannose 4,6-dehydratase, catalyses the fourth reaction. No Tn5 insertion has been found in a gene with similarity to RfbD , but the coding sequence of C. crescentus gene immediately 3^{\prime} of rsaE, IpsA, shows considerable similarity to RfbD. The last step of the process requires RfbE , the perosamine synthetase. LpsC presumably fulfills this role in C. crescentus, and the shedding mutant F2 has a Tn5 insertion in the LpsC gene.

Two more genes need to be considered as part of the perosamine pathway in C. crescentus (Fig. 6-11). Bacteria using the Embden-Meyerhof-Parnas pathway require phosphoglucoisomerase as part of the pathway leading into the bottom half of glycolysis, but C. crescentus uses the Entner-Doudoroff glycolytic pathway instead (Riley and Kolodziej, 1976) and as such would not be expected to normally have the enzyme phosphoglucoisomerase for converting glucose-6-phosphate to fructose-6-phosphate. But C. crescentus requires phosphoglucoisomerase if it makes perosmaine by the pathway described here (Fig 6-11). None of the Tn5 hits were found in such a gene, so the TIGR Caulobacter genome was searched for a phosphoglucoisomerase analogue and one was found in contig gcc_2205. A
Figure 6-11. Perosamine synthesis pathway [Adapted from Stroeher et al. 1995]. The enzyme pgi is required for this pathway but is not normally found in species using the Entner-Doudoroff pathway. pgi has been found in the TIGR Caulobacter genome. Glucokinase is also required by this pathway and its gene is found adjacent to the F1 Tn5 insertion which may act as a repressor on its synthesis.
second enzyme, glucokinase, is required for converting glucose to glucose-6phophate. A glucokinase analogue was found next to the F1 Tn5 insertion in the potential repressor $l p s l$. From the position of $l p s l$ may be deduced that $L p s l$ has a regulatory effect on the synthesis of glucokinase. Interruption of Lpsl by the F1 insertion may alter the expression of glucokinase, which in turn would affect perosamine synthesis, resulting in the phenotype seen in the F1 mutant (less Oantigen). These data suggest that C. crescentus contains all the genes necessary for the synthesis of perosamine. Furthermore, 5 separate Tn5 insertions in 3 of the ORFs cause loss of O-antigen synthesis, strengthening the argument that perosamine makes up the O-antigen of the S-LPS.

Six of the Tn5 insertions appear to be in glycosyltransferases (IpsD, IpsE, IpsF, IpsJ, and $/ p s L$) (Fig. 6-4). This is would be expected since proton NMR suggests there are a number of different linkages between the sugars in the O antigen. The similarities of LpsJ to galactosyltransferases, which transfer the initial sugar to the lipid precursor, suggest that LpsJ may initiate the first addition of a sugar to the undecaprenol phosphate. The S-LPS chemical composition suggests that this first sugar is a perosamine, but it is possible that it is galactose. Galactose is found in the core and it is possible that traces found during analysis of the O antigen would be attributed to contamination from the core.

LpsK may be involved in the synthesis of a sugar residue. As all the enzymes for the synthesis of perosamine are accounted for in the other lps genes, LpsK may synthesize an unidentified sugar in the O -antigen (possibly an initial galactose linked by LpsJ) or a sugar in the LPS core.

O -antigens are elongated at either the reducing terminus or the non-reducing terminus. If the O -antigen elongates at the reducing terminus, individual sugars are 'flipped' across the cytoplasmic membrane by a flippase enzyme and the O -antigen is assembled in the periplasm. If synthesis of the O-antigen occurs at the nonreducing terminus, the chain elongates in the cytoplasm and an $A B C-2$ transporter is required to transport the O -antigen chain across the cytoplasmic membrane (Whitfield, 1995). If the ABC-2 transporter upstream of the F10 and F22 insertions is involved in the transport of the O -antigen, it suggests that the O -antigen is elongated by polymerization at the non-reducing terminus. The O-antigen would then be
transported through the cytoplasmic membrane by the ABC-2 transporter where it would then be transferred to the lipid-A core.

While it has not been proven that any of the ORFs listed here are required for O-antigen synthesis, the presence of multiple Tn5 insertions in some of the ORFs confirms that the Tn5 is responsible for causing the defective S-LPS phenotype and the interrupted ORF is very likely a gene involved in making the S-LPS.

Chapter 7

Conclusions and Future Considerations

The attachment and secretion of the S-layer appear to be linked, although RsaA can be secreted even when the S-LPS is defective and the S-layer cannot attach to the surface. While searching for the secretion components, genes involved in the synthesis and assembly of the S-LPS were found linked to the transport complex. In prokaryotes, genetic linkage often implies linkage of the function. In this case, the most obvious link is that the S-LPS is required for attachment of the S-layer. Since C. crescentus is a non-pathogenic bacterium, the only apparent function for the S-LPS is to allow attachment of the S-layer to the outer membrane. As such, it seems likely that the bacterium coordinates production of the S-layer and S-LPS and that clustering of the genes allows better control. Similar linkages between the S-LPS and S-layer translocation have been found in Acinetobacter sp. and Aeromonas salmonicida (Belland and Trust, 1985; Thorne et al., 1976). A linkage between type I secretion systems and S-LPS has also been found. Three genes involved in the synthesis of the smooth LPS have also been implicated in the secretion of α-hemolysin from E. coli (Stanley et al., 1993; Wandersman and Létoffé, 1993). It is suspected that these genes are required for the proper insertion of the OMP component in the outer membrane.

RsaA is secreted by a type I secretion mechanism. All three main components of this system have been found and all are linked to the rsaA gene although the OMP gene is separated from the others by 5 kb . These genes are similar to a number of other type I secretion mechanisms. The highest similarity was found to systems secreting proteases and lipases from P. aeruginosa, E. chrysanthemi and S. marcescens. The identity between these systems is high enough that the proteases, AprA and PrtB, were successfully secreted by the RsaA transport machinery. The genetic arrangement of the RsaA transporter genes is unusual. Typically, either all three genes are on either side of the substrate gene or the OMP gene is unlinked to the rest of the genes. In the RsaA transport system, 5 genes are found between the MFP and the OMP, an arrangement that has not been found
before. These 5 genes appear to be required for the synthesis of the O-antigen.
Another unusual finding was the presence of a homologous ORF of the OMP component found elsewhere in the genome. This homologue has 60% identity to $r s a F$, but is not required for the secretion of RsaA. The function of this homologue remains to be discovered or even if the gene produces a functional protein.

RsaA accounts for a large portion of the cellular protein (10 to 12\%). As far as can be determined, the RsaA secretion machinery secretes a larger fraction of total cell protein than any other known type I secretion mechanism. This high level of protein production is apparently necessary to keep the cell completely covered with S-layer at all times and is similar to the levels noted for other bacterial S-layer proteins (Messner and Sleytr, 1992). This means that the RsaA secretion machinery is either more efficient than that of other type I secretion systems or that a larger number of transport complexes exist in the membranes or a combination of both factors. This question is an important one to answer from a fundamental research perspective, to address such things as what makes a secretion apparatus more efficient. It is also important because some current research is engaged in evaluating the potential of the S-layer protein secretion system for the secretion of heterologous proteins and peptides in a biotechnological context (Bingle et al., 1997a; Bingle et al., 1997b), where increased levels of secretion has obvious utility.

Now that the genes involved in the transport of RsaA have been discovered, it will be possible to address such issues. For example, gene duplications of the transporter genes can be made to see if more copies of the transporter components increase secretion. In addition, with the genes in hand it will be possible to produce and isolate the individual components and make antisera against them. Antibodies can then be used to assess the amount of protein present in the cell.

Most of the genes involved in O-antigen synthesis are linked to the transporter

 genes. In addition to the O-antigen synthesis genes mentioned above, a number of other genes involved in O-antigen synthesis have been found by Tn5 mutagenesis. While the linkage pattern of these genes was not as obvious, Southern blot analysis showed that the majority of the Tn5 insertions found were linked to the transporter genes as well. However, it was not demonstrated that all of the Tn5 insertions wereas closely linked to the transporters. As the Southern analysis of the Tn5 insertions only used two restriction enzymes, further analysis may prove that these other genes are also linked. Usually, all the genes involved in the synthesis of the Oantigen are linked on a $20-30 \mathrm{~kb}$ fragment of DNA. Sequencing further, past $1 \mathrm{ps} F$, should reveal other genes involved in O -antigen synthesis, possibly including genes not found here by Tn5 mutagenesis.

Perosamine appears to be the major component of the O -antigen. Analysis of the O-antigen showed that it is composed of a 4,6, dideoxy-4-amino-hexose, of which perosamine is an example. It was shown in this report that all the genes required for the synthesis of perosamine are found in the genome of C. crescentus. Furthermore, three of these genes were disrupted by transposon mutagenesis leading to an altered O -antigen. It is reasonable to conclude from these data that perosamine is the 4,6, dideoxy-4-amino-hexose seen in the chemical analysis of the O-antigen.

Several glycosyltransferases are involved in the synthesis of the \mathbf{O}-antigen.

 NMR analysis of the O-antigen revealed a number of different anomeric proton signals, suggesting that there are several different linkages between the sugar residues. This implies the presence of multiple glycosyltransferases to produce these linkages. A number of Tn5 insertions altering the O-antigen were found in genes with similarity to mannosyltransferases. Since perosamine is a derivative of mannose the transferases are probably highly similar and this has been found with the perosamine transporter, RfbV from E. coli O 157 (see Ch. 6). One Tn5 insertion interrupts a gene with similarity to galactosyltransferases that transfer the first sugar residue to the lipid precursor of the O -antigen. It may be that this enzyme, LpsJ, transfers a galactose to the lipid precursor as a first step in the growing O -antigen. Alternatively, since perosamine is an isomer of galactose, a perosamine may be the first residue of the O -antigen chain. Galactose may have been missed in the analysis of the O -antigen since it is also found in the core and a slightly increased level, relative to other core sugars, would have gone unnoticed.Several other genes involved in the proper formation of the smooth LPS have also been found. One, IpsK, may be involved in synthesis of a core or O-antigen sugar. Another, Ipsl, appears to code for a transciption repressor that affects smooth LPS production. Tn5 insertions interrupting O-antigen synthesis were found in two ORFs with no similarity to any known proteins. Two of these insertions are 3^{\prime} of an ORF coding for an ABC-2 transporter. ABC-2 transporters export O-antigens and extracellular polysaccharides. If this is the ABC-2 transporter that exports the O -antigen, it suggests that the O -antigen is synthesized in the cytoplasm by addition of sugar residues to the non-reducing terminus.

The information provided here should assist in determining the correct structure of the S-LPS and may also allow the attachment site(s) of the O-antigen to RsaA to be determined. A number of possibilities present themselves for future steps in analysis of the S-LPS. The first obvious step is to isolate the DNA containing the genes $\operatorname{lps} G H I J K L$ and determine how closely they are linked. Sequencing of this DNA may reveal other genes involved in O-antigen synthesis and possibly synthesis of the core (for example LpsK may be involved in synthesis of a core sugar and the DNA surrounding it may contain the remaining synthesis genes). The other obvious experiment is to knock-out LpsA and LpsB and confirm that they are involved in the synthesis of the O -antigen.

There may be more genes involved in the synthesis of the O -antigen that were not found when screening the Tn5 library. For example, interruption of O antigen synthesis genes that did not result in complete detachment of the S-layer may have been missed by the screen. An example of this might be enzymes involved in the transfer of the sugar residues that are not involved in the attachment of process.

The S-layer lies very close to the outer membrane of the bacterium as seen in electron micrographs (Smit et al, 1981, Smit et al, 1984). If the O-antigen consisted of a single chain, it would be 40 residues long; long enough to span the distance between the S -layer and outer membrane numerous times. This suggests that the S-layer either attaches to several points along the chain (Fig 1-4) or the O-antigen has multiple branches. Selective mutation of the various transferases, or by using
the Tn5 mutants, should allow one to determine which of these possibilities is correct by analyzing the different sized O -antigens that are produced.

Summary

RsaA, the S-layer subunit of C. crescentus, is transported by a type I secretion system involving three proteins, an ABC-transporter, a periplasmic spanning Membrane Forming Protein and an outer membrane protein.

It was shown that a number of other FWC species also contain type I secretion systems that probably secrete the S-layer subunit. The evolutionary relationships of these type I secretion systems and the S-layer subunit genes was examined.

A number of genes involved in the synthesis of the smooth LPS were found. Some of these genes code for enzymes involved in the synthesis of perosamine, the likely major component of the O-antigen. Other genes code for the glycosyltransferases that link the sugar residues of the O-antigen to each other.

Bibliography

Abraham, W., Strömpl, C., Meyer, H., Lindholst, S., Moore, E.R.B., Christ, R., Vancanneyt, M., Tindall, B.J., Bennasar, A., Smit, J. and Tesar, M. (1999) Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species and emended description of the genera Brevundimonas and Caulobacter. Intl J. of System. Bacteriol., 49, 1053-1073.
Akatsuka, H., Binet, R., Kawai, E., Wandersman, C. and Omori, K. (1997) Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. J. Bacteriol., 179, 4754-4760.
Alley, M.R., Gomes, S.L., Alexander, W. and Shapiro, L. (1991) Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus. Genetics, 129, 333-341.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403-410.
Anderson, D.M. and Schneewind, O. (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [see comments]. Science, 278, 11401143.

Anderson, D.M. and Schneewind, O. (1999) Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. Curr. Opin. Microbiol., 2, 18-24.
Annunziato, P.W., Wright, L.F., Vann, W.F. and Silver, R.P. (1995) Nucleotide sequence and genetic analysis of the neuD and neuB genes in region 2 of the polysialic acid gene cluster of Escherichia coli K1. J. Bacteriol., 177, 312-319.
Armstrong, S., Zhang, H., Tabernero, L., Hermodson, M. and Stauffacher, C. (1999) Powering the ABC transporter: The crystallographic structure of the ATP-binding cassette, RbsA. ATP-Binding Cassette Transporters: From Multidrug Resistance to Genetic Disease. FEBS Advanced Lecture Course, Gosau, Austria, p. 3.

Awram, P. and Smit, J. (1998) The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J. Bacteriol., 180, 3062-3069.
Bairoch, A. (1992) PROSITE: a dictionary of sites and patterns in proteins. Nuc. Acids Res, 20 Suppl, 2013-2018.
Bechthold, A., Sohng, J.K., Smith, T.M., Chu, X. and Floss, H.G. (1995) Identification of Streptomyces violaceoruber Tu22 genes involved in the biosynthesis of granaticin. Mol. Gen. Genet., 248, 610-620.
Becker, A., Kuster, H., Niehaus, K. and Puhler, A. (1995) Extension of the Rhizobium meliloti succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the exsB gene which probably codes for a regulator of succinoglycan biosynthesis. Mol Gen Genet, 249, 487-497.
Belland, R.J. and Trust, T.J. (1985) Synthesis, export, and assembly of Aeromonas salmonicida A-layer analyzed by transposon mutagenesis. J. Bacteriol., 163, 877881.

Beveridge, T.J., Pouwels, P.H., Sara, M., Kotiranta, A., Lounatmaa, K., Kari, K., Kerosuo, E., Haapasalo, M., Egelseer, E.M., Schocher, I., Sleytr, U.B., Morelli, L., Callegari, M.L., Nomellini, J.F., Bingle, W.H., Smit, J., Leibovitz, E., Lemaire, M., Miras, I., Salamitou, S., Beguin, P., Ohayon, H., Gounon, P., Matuschek, M. and Koval, S.F. (1997) Functions of S-layers. FEMS Microbiol. Rev., 20, 99-149.
Bik, E.M., Bunschoten, A.E., Willems, R.J., Chang, A.C. and Mooi, F.R. (1996) Genetic organization and functional analysis of the otn DNA essential for cell-wall polysaccharide synthesis in Vibrio cholerae O139. Mol. Microbiol., 20, 799-811.
Binet, R., Létoffé, S., Ghigo, J.M., Delepelaire, P. and Wandersman, C. (1997) Protein secretion by Gram-negative bacterial ABC exporters - a review. Gene, 192, 7-11.
Binet, R. and Wandersman, C. (1995) Protein secretion by hybrid bacterial ABCtransporters: specific functions of the membrane ATPase and the membrane fusion protein. EMBO J., 14, 2298-2306.
Binet, R. and Wandersman, C. (1996) Cloning of the Serratia marcescens hasF gene encoding the Has ABC exporter outer membrane component: a TolC analogue. Mol. Microbiol., 22, 265-273.

Bingle, W.H., Awram, P., Nomellini, J.F. and Smit, J. (1999) The Secretion Signal of C. crescentus S-layer Protein is Located Within the C-Terminal 82 Amino Acids of the Molecule. submitted J. Bacteriol.
Bingle, W.H., Le, K.D. and Smit, J. (1996) The extreme N-terminus of the Caulobacter crescentus surface-layer protein directs export of passenger proteins from the cytoplasm but is not required for secretion of the native protein. Can. J. Microbiol., 42, 672-684.
Bingle, W.H., Nomellini, J.F. and Smit, J. (1997a) Cell-surface display of a Pseudomonas aeruginosa strain K pilin peptide within the paracrystalline S-layer of Caulobacter crescentus. Mol. Microbiol., 26, 277-288.
Bingle, W.H., Nomellini, J.F. and Smit, J. (1997b) Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N -terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. J. Bacteriol., 179, 601-611.
Bingle, W.H. and Smit, J. (1994) Alkaline phosphatase and a cellulase reporter protein are not exported from the cytoplasm when fused to large N-terminal portions of the Caulobacter crescentus surface (S)-layer protein. Can J Microbiol, 40, 777-782.
Blaser, M.J., Smith, P.F. and Kohler, P.F. (1985) Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. J. Infect. Dis., 151, 227-235.
Blaser, M.J., Smith, P.F., Repine, J.E. and Joiner, K.A. (1988) Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J. Clin. Invest., 81, 14341444.

Boos, W. and Shuman, H. (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev., 62, 204-229.
Boot, H.J. and Pouwels, P.H. (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol., 21, 1117-1123.
Borinski, R. and Holt, S.C. (1990) Surface characteristics of Wolinella recta ATCC 33238 and human clinical isolates: correlation of structure with function. Infect. Immun., 58, 2770-2776.
Brent, R. and Ptashne, M. (1980) The lexA gene product represses its own promoter. Proc. Natl. Acad. Sci. U. S. A., 77, 1932-1936.

Brun, Y.V., Marczynski, G. and Shapiro, L. (1994) The expression of asymmetry during Caulobacter cell differentiation. Annu. Rev. Biochem., 63, 419-450.
Burns, D.L. (1999) Biochemistry of type IV secretion. Curr. Opin. Microbiol., 2, 2529.

Canter Cremers, H., Spaink, H.P., Wijfjes, A.H., Pees, E., Wijffelman, C.A., Okker, R.J. and Lugtenberg, B.J. (1989) Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Mol. Biol., 13, 163-174.
Colnaghi, R., Pagani, S., Kennedy, C. and Drummond, M. (1996) Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. Eur. J. Biochem., 236, 240-248.

Croop, J.M. (1998) Evolutionary relationships among ABC transporters. Methods Enzymol., 292, 101-116.

Currie, H.L., Lightfoot, J. and Lam, J.S. (1995) Prevalence of gca, a gene involved in synthesis of A-band common antigen polysaccharide in Pseudomonas aeruginosa. Clinical and Diagnostic Lab. Immun, 2, 554-562.
Davidson, A.L. and Nikaido, H. (1991) Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem., 266, 8946-8951.

Decottignies, A. and Goffeau, A. (1997) Complete inventory of the yeast ABC proteins. Nature Genet., 15, 137-145.

Delepelaire, P. and Wandersman, C. (1990) Protein secretion in gram-negative bacteria. The extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alphahemolysin. J Biol. Chem., 265, 17118-17125.
Delepelaire, P. and Wandersman, C. (1991) Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium Erwinia chrysanthemi. Mol. Microbiol., 5, 2427-2434.
Dinh, T., Paulsen, I.T. and Saier, M.H., Jr. (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. J. Bacteriol., 176, 3825-3831.

Drummelsmith, J. and Whitfield, C. (1999) Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a:K30). Mol. Microbiol., 31, 1321-1332.
Duong, F., Lazdunski, A., Cami, B. and Murgier, M. (1992) Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene, 121, 47-54.
Duong, F., Lazdunski, A. and Murgier, M. (1996) Protein secretion by heterologous bacterial ABC-transporters: the C-terminal secretion signal of the secreted protein confers high recognition specificity. Mol. Microbiol., 21, 459-470.
Dworkin, J., Tummuru, M.K.R. and Blaser, M.J. (1995) A lipopolysaccharide-binding domain of the Campylobacter fetus S-layer protein resides within the conserved N -terminus of a family of silent and divergent homologs. J. Bacteriol., 177, 17341741.

Edwards, P. and Smit, J. (1991) A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface layer protein as a receptor. J. Bacteriol., 173, 5568-5572.

Ehrmann, M., Ehrle, R., Hofmann, E., Boos, W. and Schlosser, A. (1998) The ABC maltose transporter. Mol. Microbiol., 29, 685-694.
Eichelberg, K., Ginocchio, C.C. and Galan, J.E. (1994) Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol., 176, 45014510.

Fallarino, A., Mavrangelos, C., Stroeher, U.H. and Manning, P.A. (1997) Identification of additional genes required for O -antigen biosynthesis in Vibrio cholerae O1. J. Bacteriol., 179, 2147-2153.

Fath, M.J., Skvirsky, R.C. and Kolter, R. (1991) Functional complementation between bacterial MDR-like export systems: colicin V, alpha-hemolysin, and Erwinia protease. J. Bacteriol., 173, 7549-7556.
Fellay, R., Frey, J. and Krisch, H. (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene, 52, 147-154.

Feng, J.N., Russel, M. and Model, P. (1997) A permeabilized cell system that assembles filamentous bacteriophage. Proc. Natl. Acad. Sci. U. S. A., 94, 40684073.

Finnie, C., Zorreguieta, A., Hartley, N.M. and Downie, J.A. (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J. Bacteriol., 180, 1691-1699.
Fisher, J.A., Smit, J. and Agabian, N. (1988) Transcriptional analysis of the major surface array gene of Caulobacter crescentus. J. Bacteriol., 170, 4706-4713.
Fry, B.N., Korolik, V., ten Brinke, J.A., Pennings, M.T., Zalm, R., Teunis, B.J., Coloe, P.J. and van der Zeijst, B.A. (1998) The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiolology, 144, 2049-2061.
Galan, J.E. and Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science, 284, 1322-1328.
Geremia, R.A., Petroni, E.A., Ielpi, L. and Henrissat, B. (1996) Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic alpha-mannosyltransferases. Biochem. J., 318, 133-138.
Gilchrist, A., Fisher, J.A. and Smit, J. (1992) Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein. Can. J. Microbiol., 38, 193-202.
Gilchrist, A. and Smit, J. (1991) Transformation of freshwater and marine caulobacters by electroporation. J. Bacteriol., 173, 921-925.
Gober, J.W. and Marques, M.V. (1995) Regulation of cellular differentiation in Caulobacter crescentus. Microbiol. Rev., 59, 31-47.
Gorbalenya, A.E. and Koonin, E.V. (1990) Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J Mol Biol, 213, 583-591.
Guzzo, J., Murgier, M., Filloux, A. and Lazdunski, A. (1990) Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J. Bacteriol., 172, 942-948.
Henkin, T.M., Grundy, F.J., Nicholson, W.L. and Chambliss, G.H. (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-
acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol., 5, 575-584.
Holland, I.B. (1999) personal communication.
Holton, T.A. and Graham, M.W. (1991) A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nuc. Acids Res., 19, 1156.
Hovmoller, S., Sjogren, A. and Wang, D.N. (1988) The structure of crystalline bacterial surface layers. Prog. Biophys. Mol. Biol., 51, 131-163.
Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F. and Kim, S.H. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter [see comments]. Nature, 396, 703-707.
Hwang, J., Zhong, X. and Tai, P.C. (1997) Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. J. Bacteriol., 179, 6264-6270.
Hyde, S.C., Emsley, P., Hartshorn, M.J., Mimmack, M.M., Gileadi, U., Pearce, S.R., Gallagher, M.P., Gill, D.R., Hubbard, R.E. and Higgins, C.F. (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport [see comments]. Nature, 346, 362-365.
Kawai, E., Akatsuka, H., Idei, A., Shibatani, T. and Omori, K. (1998) Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol. Microbiol., 27, 941-952.
Keen, N.T., Tamaki, S., Kobayashi, D. and Trollinger, D. (1988) Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene, 70, 191197.

Kenny, B., Taylor, S. and Holland, I.B. (1992) Identification of individual amino acids required for secretion within the haemolysin (HIyA) C-terminal targeting region. Mol Microbiol, 6, 1477-1489.
Kido, N., Sugiyama, T., Yokochi, T., Kobayashi, H. and Okawa, Y. (1998) Synthesis of Escherichia coli O9a polysaccharide requires the participation of two domains of WbdA, a mannosyltransferase encoded within the wb* gene cluster. Mol Microbiol, 27, 1213-1221.

Koronakis, V., Hughes, C. and Koronakis, E. (1993) ATPase activity and ATP/ADPinduces conformational change in the soluble domain of the bacterial protein translocator HlyB. Mol. Microbiol., 8, 1163-1175.
Koronakis, V., Li, J., Koronakis, E. and Stauffer, K. (1997) Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol. Microbiol., 23, 617-626.
Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M. and Peterson, K.M. (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques, 16, 800-802.
Koval, S.F. and Hynes, S.H. (1991) Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol., 173, 2244-2249.
Koval, S.F. and Murray, R.G. (1984) The isolation of surface array proteins from bacteria. Can J Biochem Cell Biol, 62, 1181-1189.

Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J.E. and Aizawa, S.I. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science, 280, 602-605.
Leeds, J.A. and Welch, R.A. (1996) RfaH enhances elongation of Escherichia coli hlyCABD mRNA. J. Bacteriol., 178, 1850-1857.
Letellier, L., Howard, S.P. and Buckley, J.T. (1997) Studies on the energetics of proaerolysin secretion across the outer membrane of Aeromonas species. Evidence for a requirement for both the protonmotive force and ATP. J. Biol. Chem., 272, 11109-11113.

Létoffé, S., Delepelaire, P. and Wandersman, C. (1990) Protease secretion by Erwinia chrysanthemi: The specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J, 9, 1375-1382.
Létoffé, S., Ghigo, J.M. and Wandersman, C. (1994a) Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. Proc. Natl. Acad. Sci. U. S. A., 91, 9876-9880.
Létoffé, S., Ghigo, J.M. and Wandersman, C. (1994b) Secretion of the Serratia marcescens HasA protein by an ABC transporter. J. Bacteriol., 176, 5372-5377.
Létoffé, S. and Wandersman, C. (1992) Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in Escherichia coli: Involvement of the glycine-rich repeat domain of Erwinia chrysanthemi protease B. J. Bacteriol., 174, 4920-4927.

Linton, K.J. and Higgins, C.F. (1998) The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol., 28, 5-13.
Linton, K.J., Jarvis, B.W. and Hutchinson, C.R. (1995) Cloning of the genes encoding thymidine diphosphoglucose 4,6- dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5 -epimerase from the erythromycinproducing Saccharopolyspora erythraea. Gene, 153, 33-40.
Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. (1993) Glycosyl transferases of O -antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J. Bacteriol., 175, 3408-3413.
Lu, H.M. and Lory, S. (1996) A specific targeting domain in mature exotoxin A is required for its extracellular secretion from Pseudomonas aeruginosa. EMBO J., 15, 429-436.
Luckevich, M.D. and Beveridge, T.J. (1989) Characterization of a dynamic S layer on Bacillus thuringiensis. J. Bacteriol., 171, 6656-6667.
Mackman, N., Nicaud, J.M., Gray, L. and Holland, I.B. (1985) Identification of polypeptides required for the export of haemolysin 2001 from E. coli. Mol. Gen. Genet. 201, 529-536.
MacRae, J.D. and Smit, J. (1991) Characterization of caulobacters isolated from wastewater treatment systems. Appl. Environ. Microbiol., 57, 751-758.
Malakooti, J., Wang, S.P. and Ely, B. (1995) A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J. Bacteriol., 177, 4372-4376.
Martin, V.J. and Mohn, W.W. (1999) An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions [In Process Citation]. J. Microbiol. Methods, 35, 163-166.

Maser, P. and Kaminsky, R. (1998) Identification of three ABC transporter genes in Trypanosoma brucei spp. Parasitol. Res., 84, 106-111.
Mead, D.A., Szczesna-Skorupa, E. and Kemper, B. (1986) Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng., 1, 67-74.

Messner, P. and Sleytr, U.B. (1992) Crystalline bacterial cell-surface layers. In Rose, A.H. and Tempest, D.W. (eds.), Advances in Microbial Physiology. Academic Press, London, Vol. 33, pp. 213-275.
Morales, V.M., Backman, A. and Bagdasarian, M. (1991) A series of wide-hostrange low-copy-number vectors that allow direct screening for recombinants. Gene, 97, 39-47.
Munn, C.B., Ishiguro, E.E., Kay, W.W. and Trust, T.J. (1982) Role of surface components in serum resistance of virulent Aeromonas salmonicida. Infect. Immun., 36, 1069-1075.
Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng., 10, 1-6.
Nikaido, H. (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett., 346, 55-58.

Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 49, 1-32.

Nomellini, J.F., Kupcu, S., Sleytr, U.B. and Smit, J. (1997) Factors controlling in vitro recrystallization of the Caulobacter crescentus paracrystalline S-layer. J. Bacteriol., 179, 6349-6354.

Pearson, W.R., Wood, T., Zhang, Z. and Miller, W. (1997) Comparison of DNA sequences with protein sequences. Genomics, 46, 24-36.

Pohlner, J., Halter, R., Beyreuther, K. and Meyer, T.F. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature, 325, 458462.

Poindexter, J.S. (1981) The caulobacters: ubiquitous unusual bacteria. Microbiol. Rev., 45, 123-179.
Pugsley, A.P. (1993) The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev., 57, 50-108.
Ravenscroft, N., Walker, S.G., Dutton, G.G. and Smit, J. (1991) Identification, isolation, and structural studies of extracellular polysaccharides produced by Caulobacter crescentus. J. Bacteriol., 173, 5677-5684.

Ravenscroft, N., Walker, S.G., Dutton, G.S. and Smit, J.K. (1992) Identification, isolation, and structural studies of the outer membrane lipopolysaccharide of Caulobacter crescentus. J. Bacteriol., 174, 7595-7605.
Riley, R.G. and Kolodziej, B.J. (1976) Pathway of glucose catabolism in Caulobacter crescentus. Microbios, 16, 219-226.
Roberts, R.C., Mohr, C.D. and Shapiro, L. (1996) Developmental programs in bacteria. Curr. Top. Dev. Biol., 34, 207-257.
Rocchetta, H.L., Burrows, L.L., Pacan, J.C. and Lam, J.S. (1998) Three rhamnosyltransferases responsible for assembly of the A-band D- rhamnan polysaccharide in Pseudomonas aeruginosa: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis [published erratum appears in Mol Microbiol 1998 Dec;30(5):1131]. Mol. Microbiol., 28, 1103-1119.
Russel, M. (1998) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol., 279, 485-499.
Salmond, G.P. and Reeves, P.J. (1993) Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends in Biochem. Sci., 18, 7-12.
Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.
Sara, M. and Sleytr, U.B. (1996a) Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). Micron, 27, 141-156.
Sara, M. and Sleytr, U.B. (1996b) Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. Prog. Biophys. Mol. Biol., 65, 83-111.
Scheu, A.K., Economou, A., Hong, G.F., Ghelani, S., Johnston, A.W. and Downie, J.A. (1992) Secretion of the Rhizobium leguminosarum nodulation protein NodO by haemolysin-type systems. Mol. Microbiol., 6, 231-238.
Schnaitman, C.A. and Klena, J.D. (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev., 57, 655-682.
Schulein, R., Gentschev, I., Schlor, S., Gross, R. and Goebel, W. (1994) Identification and characterization of two functional domains of the hemolysin translocator protein HlyD. Mol. Gen. Genet., 245, 203-211.
Shapiro, L. (1976) Differentiation in the Caulobacter cell cycle. Annu. Rev. Microbiol., 30, 377-407.

Shapiro, L. and Losick, R. (1997) Protein localization and cell fate in bacteria. Science, 276, 712-718.
Sheps, J.A., Zhang, F. and Ling, V. (1996) Phylogenetic Analysis of Members of the ABC transporter superfamily. In Rothman, S.R. (ed.) Membrane Protein Transport. JAI Press, Greenwich, Conneticut, Vol. 3, p. 81.
Simon, R., Priefer, U. and Puhler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/technology, 1, 784-790.
Sleytr, U.B. (1976) Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. J. Ultrastruct. Res., 55, 360-377.

Sleytr, U.B., Bayley, H., Sara, M., Breitwieser, A., Kupcu, S., Mader, C., Weigert, S., Unger, F.M., Messner, P., Jahn-Schmid, B., Schuster, B., Pum, D., Douglas, K., Clark, N.A., Moore, J.T., Winningham, T.A., Levy, S., Frithsen, I., Pankovc, J., Beale, P., Gillis, H.P., Choutov, D.A. and Martin, K.P. (1997a) Applications of Slayers. FEMS Microbiol. Rev., 20, 151-175.
Sleytr, U.B. and Messner, P. (1983) Crystalline surface layers on bacteria. Annu. Rev. Microbiol., 37, 311-339.
Sleytr, U.B. and Messner, P. (1988) Crystalline surface layers in procaryotes. J. Bacteriol., 170, 2891-2897.
Sleytr, U.B., Messner, P., Pum, D. and Sara, M. (1993) Crystalline bacterial cell surface layers. Mol. Microbiol., 10, 911-916.
Sleytr, U.B., Pum, D. and Sara, M. (1997b) Advances in S-layer nanotechnology and biomimetics. Adv. Biophys., 34, 71-79.
Sleytr, U.B. and Sara, M. (1997) Bacterial and archaeal S-layer proteins: structurefunction relationships and their biotechnological applications. Trends Biotechnol., 15, 20-26.

Smit, J. and Agabian, N. (1984) Cloning of the major protein of the Caulobacter crescentus periodic surface layer: detection and characterization of the cloned peptide by protein expression assays. J. Bacteriol., 160, 1137-1145.

Smit, J., Engelhardt, H., Volker, S., Smith, S.H. and Baumeister, W. (1992) The Slayer of Caulobacter crescentus: three-dimensional image reconstruction and structure analysis by electron microscopy. J. Bacteriol., 174, 6527-6538.

Smit, J., Grano, D.A., Glaeser, R.M. and Agabian, N. (1981) Periodic surface array in Caulobacter crescentus: fine structure and chemical analysis. J. Bacteriol., 146, 1135-1150.
Stahl, D.A., Key, R., Flesher, B. and Smit, J. (1992) The phylogeny of marine and freshwater caulobacters reflects their habitat. J. Bacteriol., 174, 2193-2198.
Stanley, P.L., Diaz, P., Bailey, M.J., Gygi, D., Juarez, A. and Hughes, C. (1993) Loss of activity in the secreted form of Escherichia coli haemolysin caused by an rfaP lesion in core lipopolysaccharide assembly. Mol. Microbiol., 10, 781-787.
Stevenson, G., Andrianopoulos, K., Hobbs, M. and Reeves, P.R. (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol., 178, 4885-4893.
Stewart, M. and Beveridge, T.J. (1980) Structure of the regular surface layer of Sporosarcina ureae. J. Bacteriol., 142, 302-309.
Stroeher, U.H., Karageorgos, L.E., Brown, M.H., Morona, R. and Manning, P.A. (1995) A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Gene, 166, 33-42.
Sugiyama, T., Kido, N., Kato, Y., Koide, N., Yoshida, T. and Yokochi, T. (1998) Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O 3 into E . coli via recombination. J. Bacteriol., 180, 2775-2778.
Sutton, J.M., Peart, J., Dean, G. and Downie, J.A. (1996) Analysis of the C-terminal secretion signal of the Rhizobium leguminosarum nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion. Mol. Plant Microbe Interact., 9, 671-680.
Thompson, S.A., Shedd, O.L., Ray, K.C., Beins, M.H., Jorgensen, J.P. and Blaser, M.J. (1998) Campylobacter fetus surface layer proteins are transported by a type I secretion system. J. Bacteriol., 180, 6450-6458.
Thorne, K.J., Oliver, R.C. and Glauert, A.M. (1976) Synthesis and turnover of the regularly arranged surface protein of Acinetobacter sp. relative to the other components of the cell envelope. J. Bacteriol., 127, 440-450.
Tobin, M.B., Peery, R.B. and Skatrud, P.L. (1997) Genes encoding multiple drug resistance-like proteins in Aspergillus fumigatus and Aspergillus flavus. Gene, 200, 11-23.

Vaara, M. (1992) Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli, consist of a six-residue periodicity theme. FEMS Microbiol. Lett., 76, 249-254.
Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene, 19, 259-268.

Vuorio, R., Harkonen, T., Tolvanen, M. and Vaara, M. (1994) The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Letters, 337, 289-292.
Walker, J.E., Saraste, M. and Gay, N.J. (1984) The unc operon. Nucleotide sequence, regulation and structure of ATP- synthase. Biochim. Biophys. Acta., 768, 164-200.
Walker, S.G., Karunaratne, D.N., Ravenscroft, N. and Smit, J. (1994) Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J. Bacteriol., 176, 6312-6323.
Walker, S.G., Smith, S.H. and Smit, J. (1992) Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. J. Bacteriol., 174, 1783-1792.
Wandersman, C., Delepelaire, P. and Létoffé, S. (1990) Secretion processing and activation of Erwinia chrysanthemi proteases. Biochimie, 72, 143-146.
Wandersman, C. and Létoffé, S. (1993) Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol. Microbiol., 7, 141-150.
Wang, L. and Reeves, P.R. (1998) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect. Immun., 66, 35453551.

Ward, M.J., Bell, A.W., Hamblin, P.A., Packer, H.L. and Armitage, J.P. (1995) Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. Mol. Microbiol., 17, 357-366.
Weiss, A.A., Johnson, F.D. and Burns, D.L. (1993) Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. U. S. A., 90, 2970-2974.

Welch, R.A. (1991) Pore-forming cytolysins of gram-negative bacteria. Mol. Microbiol., 5, 521-528.
Welsh, M.J. (1998) The ABC of a versatile engine. Nature, 396, 623-624.
Whitfield, C. (1995) Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol., 3, 178-185.
Wolff, N., Delepelaire, P., Ghigo, J.M. and Delepierre, M. (1997) Spectroscopic studies of the C-terminal secretion signal of the Serratia marcescens haem acquisition protein (HasA) in various membrane-mimetic environments. Eur. J. of Biochem., 243, 400-407.
Wolff, N., Ghigo, J.M., Delepelaire, P., Wandersman, C. and Delepierre, M. (1994) C-terminal secretion signal of an Erwinia chrysanthemi protease secreted by a signal peptide-independent pathway: proton NMR and CD conformational studies in membrane-mimetic environments. Biochemistry, 33, 6792-6801.
Yanisch-Perron, C., Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33, 103-119.
Yap, W.H., Thanabalu, T. and Porter, A.G. (1994) Influence of transcriptional and translational control sequences on the expression of foreign genes in Caulobacter crescentus. J Bacteriol, 176, 2603-2610.
Yin, Y., Zhang, F., Ling, V. and Arrowsmith, C.H. (1995) Structural analysis and comparison of the C-terminal transport signal domains of hemolysin A and leukotoxin A. FEBS Lett., 366, 1-5.
Yun, C., Ely, B. and Smit, J. (1994) Identification of genes affecting production of the adhesive holdfast of a marine caulobacter. J Bacteriol., 176, 796-803
Zhang, F., Sheps, J.A. and Ling, V. (1998) Structure-function analysis of hemolysin B. Methods Enzymol., 292, 51-66.

Appendix 1

RAT fragment-rsaADE, IpsABCDE, rsaF, IpsF

LOCUS	NA1000RATX 16458 bp DNA BCT 07-OCT-1999
DEFINITION	Caulobacter crescentus sst1, S-layer subunit (rsaA),
	ABC-transporter (rsaD), Membrane Forming Unit (rsaE), putative
	GDP-mannose-4,6-dehydratase (LpsA), putative acetyltransferase (LpsB), putative perosamine synthetase (LpsC), putative mannosyltransferase (LpsD), putative mannosyltransferase (LpsE),
	Outer membrane protein (rsaF), and putative perosamine transferase (LpsE) genes, complete cds.
ACCESSION	NA1000RATX
VERSION	
KEYWORDS	-
SOURCE	Caulobacter crescentus.
ORGANISM	Caulobacter crescentus
	Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; Caulobacter.
REFERENCE	1 (bases 1230 to 2387)
AUTHORS	Fisher, J.A., Smit, J. and Agabian, N.
TITLE	Transcriptional analysis of the major surface array gene of Caulobacter crescentus
JOURNAL	J. Bacteriol. 170 (10), 4706-4713 (1988)
MEDLINE	89008089
REFERENCE	2 (bases 1336 to 4645)
AUTHORS	Gilchrist, A., Fisher, J.A. and Smit, J.
TITLE	Nucleotide sequence analysis of the gene encoding the Caulobacter crescentus paracrystalline surface layer protein
JOURNAL	Can. J. Microbiol. 38 (3), 193-202 (1992)
MEDLINE	93007489
REFERENCE	3 (bases 1 to 16458)
AUTHORS	Awram, P. and Smit, J.
TITLE	The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus
JOURNAL	J. Bacteriol. 180 (12), 3062-3069 (1998)
MEDLINE	98292737
REFERENCE	4 (bases 1 to 16458)
AUTHORS	Awram, P.A. and Smit,J.K.
TITLE	Identification of Genes involved in the Synthesis of the Smooth Lipopolysaccharide
JOURNAL	Unpublished
REFERENCE	5 (bases 1 to 16458)
AUTHORS	Awram, P.A.
TITLE	Direct Submission
JOURNAL	Submitted (07-OCT-1999) Microbiology and Immunology, University of
	British Columbia, 300-6174 University Blvd, Vancouver, BC V6T 1Z3, Canada
FEATURES	Location/Qualifiers
source	1..16458
	/organism="Caulobacter crescentus"
	/strain="NA1000"
gene	complement (227. 799)
	/gene="sst1"

```
    /note="unknown"
CDS
    complement (227. . 799)
    /gene="sst1"
    /note="unknown"
    /codon_start=1
    /transl_table=11
    /product="Sst1"
    /translation="MAAQVLSFFQRSPRYAPQPADWSQQELAEFYRVESALIRAGIRV
    GTDRGLSDENEPWFVFYRADDGEVVIHFARIDGEYLIAGPAYEEIARGFDFTSLVRNL
    VARHPLIRRSDSGSNLSVHPAALLVAVVGTAFFKTGEARAAETGQSNATSGHNRPVLL
    SSSSNASLNDRCRAGRLPAARLCLGATAGQ"
gene
CDS
gene
CDS
1443..4523
/gene="rsaA"
1443..4523
/gene="rsaA"
/citation=[1]
/citation=[2]
/codon_start=1
/transl table=11
/produc\overline{t="S-layer subunit"}
/translation="MAYTTAQLVTAYTNANLGKAPDAATTLTLDAYATQTQTGGLSDA
AALTNTLKLVNSTTAVAIQTYQFFTGVAPSAAGLDFLVDSTTNTNDLNDAYYSKFAQE
NRFINFSINLATGAGAGATAFAAAYTGVSYAQTVATAYDKIIGNAVATAAGVDVAAAV
AFLSRQANIDYLTAFVRANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAA
MINDLSDGALSTDNAAGVNLFTAYPSSGVSGSTLSLTTGTDTLTGTANNDTFVAGEVA
GAATLTVGDTLSGGAGTDVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITLNTSSG
VTGLTALNTNTSGAAQTVTAGAGQNLTATTAAQAANNVAVDGGANVTVASTGVTSGTT
TVGANSAASGTVSVSVANSSTTTTGAIAVTGGTAVTVAQTAGNAVNTTLTQADVTVTG
NSSTTAVTVTQTAAATAGATVAGRVNGAVTITDSAAASATTAGKIATVTLGSFGAATI
DSSALTTVNLSGTGTSLGIGRGALTATPTANTLTLNVNGLTTTGAITDSEAAADDGFT
TINIAGSTASSTIASLVAADATTLNISGDARVTITSHTAAALTGITVTNSVGATLGAE
LATGLVFTGGAGADSILLGATTKAIVMGAGDDTVTVSSATLGAGGSVNGGDGTDVLVA
NVNGSSFSADPAFGGFETLRVAGAAAQGSHNANGFTALQLGATAGATTFTNVAVNVGL
TVLAAPTGTTTVTLANATGTSDVFNLTLSSSAALAAGTVALAGVETVNIAATDTNTTA
HVDTLTLQATSAKSIVVTGNAGLNLTNTGNTAVTSFDASAVTGTGSAVTFVSANTTVG
EVVTIRGGAGADSLTGSATANDTIIGGAGADTLVYTGGTDTFTGGTGADIFDINAIGT
STAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVTLGAAATLAQYLDAAAAGDGSG
TSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLTGLVTLTTSAFATEVLTLA"
4766..6502
/gene="rsaD"
4766..6502
/gene="rsaD"
/note="ABC-transporter of RsaA type I secretion system"
/codon_start=1
/transl_table=11
/product="ABC-transporter"
/translation="MFKRSGAKPTILDQAVLVARPAVITAMVFSFFINILALVSPLYM
LQVYDRVLTSRNVSTLIVLTVICVFLFLVYGLLEALRTQVLVRGGLKFDGVARDPIFK
SVLDSTLSRKGIGGQAFRDMDQVREFMTGGLIAFCDAPWTPVFVIVSWMLHPFFGILA
IIACIIIFGLAVMNDNATKNPIQMATMASIAAQNDAGSTLRNAEVMKAMGMWGGLQAR
WRARRDEQVAWQAAASDAGGAVMSGIKVFRNIVQTLILGGGAYLAIDGKISAGAMIAG
SILVGRALAPIEGAVGQWKNYIGARGAWDRLQTMLREEKSADDHMPLPEPRGVLSAEA
ASILPPGAQQPTMRQASFRIDAGAAVALVGPSAAGKSSLLRGIVGVWPCAAGVIRLDG
YDIKQWDPEKLGRHVGYLPQDIELFSGTVAQNIARFTEFESQEVIEAATLAGVHEMIQ
SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA
MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP
PTPPPAPLQRVQ"
```

gene	$\begin{aligned} & 6570 . .7880 \\ & \text { /gene="rsaE" } \end{aligned}$
CDS	6570..7880
	/gene="rsaE"
	/note="MFP of RsaA type I secretion system"
	/codon start=1
	/transl_table=11
	/product="Membrane Forming Unit"
	/translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV
	IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ
	YVALKAMEARLLAERDQRPSISFPADLTSQRADPMVARAIADEQAQFTERRQTIQGQV
	DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE
	QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE
	VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD
	VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL
	PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE"
gene	8020..8997
	/gene="LpsA"
CDS	8020..8997
	/gene="LpsA"
	/codon_start=1
	/translıtable=11
	/product="putative GDP-mannose-4,6-dehydratase"
	/translation="MAKTALITGVTGQDGAYLAKLLLEKGYTVHGMLRRSASADVIGD
	RLRWIGVYDDIQFELGDLLDEGGLARLMRRLQPDEVYNLAAQSFVGASWDQPHLTGSV
	TGLGTTNMLEAVRLECPQARFYQASSSEMYGLVQHPIQSETTPFYPRSPYAVAKLYAH
	WMTVNYRESFGLHASAGILFNHESPLRGIEFVTRKVTDAVAAIKLGQQKTVDLGNLDA
	KRDWGHAKDYVEAMWLMLQQETPDDYVVATGKTWTVRQMCEVAFAHVGLNYQDHVTIN
	PKFLRPAEVDLLLGDPAKAKAKLGWEPKTTMQQMIAEMVDADIARRSRN"
gene	8997.9644
	/gene="LpsB"
CDS	8997. 9644
	/gene="LpsB"
	/codon_start=1
	/transl_table=11.
	/product="putative acetyltransferase"
	/translation="MSASLAIGGVVIIGGGGHAKVVIESLRACGETVAAIVDADPTRR
	AVLGVPVVGDDLALPMLREQGLSRLFVAIGDNRLRQKLGRKARDHGFSLVNAIHPSAV
	VSPSVRLGEGVAVMAGVAINADSWIGDLAIINTGAVVDHDCRLGAACHLGPASALAGG
	VSVGERAFLGVGARVIPGVTIGADTIVGAGGVVVRDLPDSVLAIGVPAKIKGDRS"
gene	9716..10756
	/gene="LpsC"
CDS	9716..10756
	/gene="LpsC"
	/codon_start=1
	/transl_table=11
	/product="putative perosamine synthetase"
	/translation="MDTTWISSVGRFIVEFEKAFADYCGVKHAIACNNGTTALHLALV
	AMGIGPGDEVIVPSLTYIASANSVTYCGATPVLVDNDPRTFNLDAAKLEALITPRTKA
	IMPVHLYGQICDMDPILEVARRHNLLVIEDAAEAVGATYRGKKSGSLGDCATFSFFGN
	KIITTGEGGMITTNDDDLAAKMRLLRGQGMDPNRRYWFPIVGFNYRMTNIQAAIGLAQ
	LERVDEHLAARERVVGWYEQKLARLGNRVTKPHVALTGRHVFWMYTVRLGEGLSTTRD
	QVIKDLDALGIESRPVFHPMHIMPPYAHLATDDLKIAEACGVDGLNLPTHAGLTEADI
	DRVIAALDQVLV"
gene	10760.11797
	/gene="LpsD"
CDS	10760..11797

```
    /gene="LpsD"
    /codon_start=1
    /transl_table=11
    /product="putative mannosyltransferase"
    /translation="MRIVLLSSIVPFINGGARFIVEWLEEKLIEAGHEVERFYLPFVD
    DPNEILHQIAAWRLMDLTQWCDRVICFRPPAYVVDHPNKVLWFIHHIRTEYDLWDTPY
    RGMPDDAQHRAIRDNLRALDTQAISEARAVFTNSQVVADRLKAFNGLDATPLYPPIYQ
    PERFSHTGYGDEIVAISRLEPHKRQALMIEAMQYVKSGVKLRLAGTASSAEYGRQLVK
    MTHDLGVADRVILEDRWISEDEKADMLKQALAVAYLPKDEDSYGYPSLEGAHARKPVI
    TTTDSGGVLELVEHGRNGLISAPDPRALAEQFDRLHADKAATAKMGTASLNRLAEMKI
    DWSTVVERLTS"
gene
CDS
    /gene="LpsE"
    11808..12845
    /gene="LpsE"
    /codon_start=1
    /transl_table=11
    /product="putative mannosyltransferase"
    /translation="MKVLVVNNAAPFQRGGAEELADHLVRRLNATPGVQSELVRVPFT
    WEPAERLIEEMLISKGMRLYNVDRVIGLKFPAYLIPHHQKVLWLLHQFRQAYDLSEAG
    QSHLDFDDTGRAVKAAIRAADNACFAECRKIYCNSPVTQNRLMKFNGVASQVLYPPLN
    DGELFTGGEHGDYVFAGGRVAAGKRQHLLIEALALLPGSLRLVIAGPPENQAYADRLT
    KLVEDLDLKDRVELRFGFHPREDIARWANGALICAYLPFDEDSVGYVTMEAFAAGKAV
    LTVTDSGGLLEIVSADTGAVAEPTPQALAEALDRLTSDKARAISLGDAARRLWRDKNV
    TWEETVRRLLD"
```

gene

```
12902..14485
    /gene="rsaF"
    12902..14485
    /gene="rsaF"
    /note="OMP of RsaA type I secretion system"
    /codon_start=1
    /transl_table=11
    /product="Outer membrane protein"
    /translation="MRVLSKVLSVRTSLIALAMAMAVVGRADLAHAETLAEAITAAYQ
    SNPNIQAQRAAMRALDENYTQARSAYGLQASASVAEVYGWSKGVNAKNGVEAASQTST
    LSLSQSLYTNGRFSARLAGVEAQIKAARENLRRIEMDLIVRVTNAYISVRRDREILRI
    SQGGEAWLQKQLKDTEDKYSVRQVTLTDVQQAKARLASASTQVANAQAQLNVSVAFYA
    SLVGRQPETLKPEPDIDGLPTTLDEAFNQAEQANPVLLAAGYTEKASRAGVAEARAQR
    LFSVGARADYRNGSSTPYYARGGLREDTVNASITLTQPLFTSGQLNASVRQSIEENNR
    DKLLMEDARRSMVLSVSQYWDSLVAARKSLVSLEEEMKANTIAFYGVREEERFALRST
    IEVLNAQAELQNAQINFVRGRANEYVGRLHLLAQVGTLEVGNLAPGVQPYDPERNFRK
    VRYRGALPTELIIGTFDKIALPLEPKKPAPGDTSPIRPPSSELPARPVSADKVTPPAS
    MNDLPALTDDTPVQTAPRN"
    complement(14591..15880)
    /gene="LpsE"
    complement(14591..15880)
    /gene="LpsE"
    /codon_start=1
    /transl_table=11
    /product="putative perosamine transferase"
    /translation="MTSRLLEIWRRLPTPIRRSAHVVAGAPRAALEALDKALAEHRHR
    SAERTALARARRRAGPRGLSPTLPVTVIGFHSAVHGLGEGARMLARGFGDMGLGVRAL
    DLSASVGFAAEIAPAYSSPDPDERGVTISHINPPELLRWARETEGRELEGRRHIGYWA
    WELEEVPSDWLPAFDFVDEVWTPSAFAADAIRRVAPRGVKVTPVPYPLYLNPRPQADR
    QRFGLQDDRVVVLMAFDLRSTAQRKNPDAALRAFRDATVKATRPATLVCKVVGADLYP
    ETFQALAAEVADDPSIRLLTDNLSAQDMAALTASSDIVLSLHRSEGYGLLLAEAIWLG
    KPTLATGWSSNVEFMDPASSQFVDYRLVPVEGDGVIYRAGRWADADVGDAAEKLARMI
```

SDDAWRNTLAAATARNGHVSFNRDAWVAMTSARLPLT"
BASE COUNT 2845 a 5542 c 5354 g 2717 t
ORIGIN

1 gagctcaccg
61 ggccccgccg
121 agccgcagcg
181 acggaagtcc
241 ttgcaccgag
301 tggcgttcga
361 ggccggtctc
421 ccagcagggc
481 gatggcgggc
541 cataggcggg
601 cgccgtcgtc
661 cagtgccgac
721 gctcctgctg
781 acaggacctg
841 ccgtcggccc
901 atctcgtagg
961 acctccaggg
1021 tccagctgag
1081 gacaggccgg
1141 tgcacctccg
1201 accgagggca
1261 gcgcttttcg
1321 aatgctgtac
1381 ctgctcccat
1441 tcatggccta
1501 cgcctgacgc
1561 gcctctcgga
1621 ttgccatcca
1681 tcctggtcga
1741 ctcaggaaaa
1801 cgacggcttt
1861 atgacaagat
1921 tggctttcct
1981 cgccgttcac
2041 tcctgaacgc
2101 tcaacgacct
2161 ccgcctatcc
2221 ccctgacggg
2281 ccctgaccgt
2341 aagctgctgc
2401 acgtgacgtc
2461 ccctgaacac
2521 tgaccgccac
2581 tcaccgtcgc
2641 cttcgggcac
2701 ccgtgaccgg
2761 cgttgacgca
2821 cccaaaccgc
2881 cgatcaccga
2941 tgggcagctt
3001 gcacgggcac
3061 ccctgaccct
3121 ctgctgacga
3181 ccagcctggt
cgtgaaccgg ccaaaaccac gcggcggtca gaggccagca gcataggcgg gctgctgctg ggcggcgcgc ggcggggtga gacgaggttg gccggcgatc cgctcggtag gcggatgccc gctccagtcc tgcggccata aaacacgcta tgatcggatc ccttggccca agatgaaggt cggcctcgcg aggcgctgcg ggagcgcggg gcggggggta ccctgaaatt gcgcgccact tacgacggcc cgccaccacg cgccgctgcg gacctaccag ctcgaccacc cogcttcatc cgccgccgcc catcggcaac gagccgccag ggccgctgcc cgccacggtg gtcggacggc gtcgtcgggc caccgccaac tggcgacacc ggttacggct gggcgctgcg caacaccagc gaccgccgct ctcgacgggc cgtgtcggtg tggtacggcc agccgacgtg cgccgccacc ctctgccgcc cggcgccgcc ctcgctcggc gaacgtcaat tggtttcacc ggccgccgac
cgtgttgtcg tgatgccggc ggcccgagcg gggcggcggc gctgctggaa agcaggacgg gcttcgccgg accgacaggt cgcaccaggc agatactcgc aagacgaacc gcgcggatca gccggttgcg cggcggaagc gcagacgaca atagaagcgg gtcgcggtaa gtaataatca catctccttc gcgttgcggg cgcgctcact caaggaacgc cggctattgt cggtcgcagg cagttggtga ctgacgctcg ctgaccaaca ttcttcaccg aacaccaacg aacttctcga tacacgggcg gccgtcgcga gccaacatcg gacatcgatc tcgggcatcg gccotgtcga gtgtcgggtt aacgacacgt ctgagcggcg ctgccgaccg atcaccctga ggcgcggctc caagccgcga gtgacctcgg agcgtcgcga gtgaccgtgg accgtgaccg gccggegcta gcctcggeca acgatcgact atcggccgcg ggtctgacga accatcaaca gcgacgaccc
acggtctgag cggcaaggcc cacggccggg cagaaccagc gccgaccggc ggcgattgtg tcttgaagaa tgctgccgct tggtgaagtc cgtcgatacg agggttcgtt gggcgetctc gcgcgtagcg ttccccaagc cgataaccga agcagttcgc cggtccggcg gcgccgacct agccagcggc ttaccataca cacccgccag tatataggaa cgacgtatga gggtgtggga ctgcgtacac acgcgtacgc ccctgaagct gcgttgcccc acctgaacga tcaacctggc tttcgtacgc ccgccgctgg actacctgac tggccgtcaa gtggttacgc ccgacaacgc cgaccctctc tcgttgcggg gtgctggcac gcgtgacgat acacgtcttc aaaccgtcac acaacgtcgc gcacgaccac actcgagcac ctcaaacggc gtaactccag cggtcgccgg cgaccgccgg cgagcgctct gcgctctgac cgaccggcgc tcgctggttc tgaacatctc
tcggcggggg gaggcgcgct
gaggcgtcgc tgaagtcgag tccaggctcg cggcgtccac accgcctcat tggccggcag gcgacaccgg tcgttcaggc gcccgaggtc gcattgctct ggcggtgccg accacggcca gtcggagcgg cggatcagcg gaagccgcgc gcaatctctt cgcaaagtgg atcaccacct ctcgtcgctc aggccgcgat gacacggtag aactcggcca cggcgagcgc tgaaagaacg ctaggtgaaa agccgacccc actagtcttc gctgaacagg gcacgaacgt cttctccgag gaatgcggcc gcgacccgtc tagcggccag ctggcgttgc caccttcgcg gcggaggtct ttataaagcc tcgcgcgttg gtgaacagtc tttatatata tttgctgtac cggttagaaa cgtttgctct atagccatcg ttttttttgg gagacaatcc caacgccaac ctcggcaagg gactcaaacc cagacgggcg ggtcaacagc acgacggctg gtcggccgct ggtctggact cgcgtactac tcgaagttcg cacgggcgcc ggcgccggcg ccagacggtc gccaccgcct cgtcgacgtc gcggccgccg cgccttcgtg cgcgccaaca ggccgccetg atcggcacca gaccgccacg gccgcgatga ggctggcgtg aacctgttca gctgaccacc ggcaccgaca tgaagtcgcc ggcgctgcga cgacgtcctg aactgggtgc ctcgggcatc gaaacgatga gggcgtgacg ggtctgaccg cgccggcgct ggccagaacc cgtcgacggc ggcgccaacg ggtcggcgcc aactcggccg gaccaccacg ggcgctatcg cggcaacgcc gtgaacacca caccacggcc gtgacggtca tcgcgtcaac ggcgctgtga caagatcgcc acggtcaccc gacgaccgtc aacctgtcgg cgccacgccg accgccaaca gatcacggac tcggaagcgg gaccgcctct tcgacgatcg gggcgacgct cgcgtcacga

3241 tcacctcgca caccgctgcc gccctgacgg
3301 ccctcggcgc
3361 tcctgctggg
3421 tcagctcggc
3481 tggtggccaa
3541 ccctccgcgt
3601 tgcaactggg
3661 tgaccgttct
3721 cctcggacgt
3781 cgctggctgg
3841 tcgacacgct
3901 gtctgaacct
3961 ccggcacggg
4021 cgatccgcgg
4081 tcatcggtgg
4141 gtggcacggg
4201 cgatcaccga
4261 ctatcgctga
4321 agtacctgga
4381 agttcggcgg
4441 gcgctgacgc
4501 ccgaagtcct
4561 actaagagac
4621 gccggccttg
4681 ccgccacaat
4741 tcgcgcggcg
4801 cgaccaggcc
4861 catcaacatt
4921 gaccagccgc
4981 ggtctacggc
5041 cgacggcgtg
5101 gggcatcggc
5161 cctgatcgcc
5221 gcacccgttc
5281 gatgaacgac
5341 ccagaacgac
5401 gggcggcictg
5461 cgccagcgac
5521 gaccctgatc
5581 gatgatcgcc
5641 tcagtggaag
5701 cgaggaaaag
5761 cgaagccgcc
5821 ccgtatcgac
5881 gctgctgcgc
5941 ctacgacatc
6001 ggacatcgag
6061 atcgcaggaa
6121 gccgatgggc
6181 ccagcgcctg
6241 gccgaacgcc
6301 taaggccgct
6361 cgactacatc
6421 gctggccaag
6481 gccgttgcag
6541 cagaacgcgc
6601 acaacttcca
cgaactggcg
cgccacgacc gaccctgggc cgtcaacggt cgctggcgcg cgcgacggcg ggcggctccg gttcaacctg cgtcgagacg gacgctgcaa gaccaacacc ctcggctgtg cggcgctggc cgctggcgct cgcggatatc cgccgctgtc cggcgccttc cgctgctgct cgacacctat ggtgatcaag gacgctcgcc cccgtcttcc cctagttccg ttcgtggtcg tcctgaaggc gtgctggtcg ctggccctgg aacgtttcga ctgctcgagg gcccgggatc ggccaggcgt ttctgcgatg ttcggcatcc aacgccacca gccggttcca caagcccgct gccggcggcg ctgggcggcg ggctcgatcc aattatatcg agcgccgacg tcgatcctgc gccggcgecg ggtatcgtcg aagcagtggg ctgttctcgg gtcatcgagg tatgacacgg gccctggcgc agcctcgacc aagcgcacgg atggtgatca ctgaccgggg cgcgtccagt ccatcaggct ggctgtggcc
accggtctgg aaggcgatcg gctggtggtt tcgtcgttca gcggctcaag ggtgcgacga accggtacga accctgtcgt gtgaacatcg gccacctcgg ggcaacacgg accttcgtgt gccgactcgc gacaccctgg ttcgatatca ggcgacaagc ggcgctgcgg gccggcgacg gtcgtcgttg ctgaccggtc taagcgaacg gaaagggagg gtggctatga agacggcgcc tcacaatgtt cccgccoggc tcagcccgct ccctgatcgt cgctgcgcac cgatcttcaa tccgcgacat cgccctggac tggcgatcat agaacccgat ccctgcgcaa ggcgcgcgcg cggtgatgtc gcgcctatct tggtcggccg gcgcgcgcgg accacatgcc cgccgggcgc cggtggccet gcgtctggcc atcccgagaa gcaccgtcgc ccgcgaccet cgatcggcga gtgcggtgtt aggtgggcga tgatcttcgc accagggtgt ctgcgccgcc aagcgccttc tgaatctcaa cgtatcggct
gcatcacggt gaccaacagc gttggtgcga tcttcacggg cggcgctggc gctgactcga tcatgggcgc cggcgacgac accgtcaccg cggtcaacgg cggcgacggc accgacgttc gcgctgaccc ggccttcggc ggcttcgaaa gctcgcacaa cgccaacggc ttcacggctc ccttcaccaa cgttgcggtg aatgtcggcc cgaccgtgac cctggccaac gccacgggca cctcggccgc tctggccgct ggtacggttg ccgccaccga caccaacacg accgctcacg ccaagtcgat cgtggtgacg ggcaacgccg ctgtcaccag cttcgacgcc agcgccgtca cggccaacac cacggtgggt gaagtcgtca tgaccggttc ggccaccgcc aatgacacca tctacaccgg cggtacggac accttcacgg acgctatcgg cacctcgacc gctttcgtga tcgacctcgt cggcatctcg acgaacggcg tcaccctggg cgctgctgcg accctggctc gcagcggcac ctcggttgcc aagtggttcc acagctcggc tggcgcgacc ttcgtcagcg tggtcacgct gaccacctcg gccttcgcca tctgatcctc gcctaggcga ggatcgctag cggggtcttt cttatgggcg ctacgcgctg tttagcggga ctggggggct tgctcacttt ttagttgtta ctgtacatgg ccgcgtcggt caagcgcagc ggcgcgaagc cgacgatcct ggtgatcacc gccatggtct tcagcttctt gtacatgctg caggtctatg accgcgtgct gttgacggtc atctgcgtct tcctgttcct ccaggtgctg gtgcgcggcg gtctgaagtt gtcggtgctg gactccacgc tcagccgcaa ggaccaggtc cgagagttca tgaccggcgg gccggtgttc gtcatcgtct cgtggatgct cgcctgtatc atcatcttcg gcctggccgt ccagatggcc accatggcct cgatcgccgc cgccgaggtc atgaaggcca tgggcatgtg ccgcgacgag caggtggcct ggcaggccgc gggcatcaag gtgttccgca acatcgtcca ggccatcgac ggcaagatct cggccggcgc cgccctggcg cccatcgagg gcgccgtggg cgcctgggat cgcctgcaga ccatgctgcg gctgcccgag ccgcgcggcg tgctgtcggc gcaacagccg accatgcgcc aggccagctt tgtcggtccc agcgcggcgg gcaagtcctc ctgcgcggcg ggcgtcatcc gcctcgacgg gctgggtcgc cacgtcggct acctgccgca ccagaacatc gcccgcttca ccgagttcga ggcgggcgtg cacgagatga tccagagcct gggcggcgcc tcgctgtccg gcggccagcg ccgcatgccg gccctgctgg tgctggacga agtggcgctg atggaagcga tgaagcggct cacccacaag gtgaacctgt tggcccaggc gatcagcgac tttggcgaac gcgacccgat ccagacgecg ccgccgacgc cgccgcccgc gtcagtccgc ctctcccttc ctggccgttt tgaagccccc caagatccag cgtccgacgg acggcatcat cgccctgacc tttgtcggtc

6661
ggccgcgttc taatcgcaag aggcgagaag cgccgccggc ggccgagcgc cgatccgatg gacgatccag cgagggcatc gctgatcgac cctggagcgc caaggccgtc cttcgagcag gaaggaggtc cacggcgcag ggtcgacatc tgtggacaat ggaaatcccg gcagaacaag gcatctgcgc gcgcaccgtg cgaggagtag gggcgagtta ttcgttgtta ccggtcagga gcatgctgcg tctatgacga tgatgcggcg cctcgtggga tcgaagccgt tgtacggtct cctatgcggt gcctgcacgc tcgtgacccg tcgatctggg ccatgtggct cctggaccgt accacgtgac atccggccaa tcgccgaaat cgccatcggg cctgcgggcc ggtgttgggc gctgtccaga ggcgcgcgac
tagcgtacgt ctggatcggc gggcgcggcc gcgggctttt gatcgtcggc cgtgccggcc gcgccgcgcc atctcgtcgg gtcaagcacg atggggatcg aattcagtca aacctggacg gtgcacctct
gccccgctcg acagcgcggt accgtgcagc acctcgaagg gtgaaggccg gccaggtgct atcacccgca accagtacgt gaccagcgtc cgtccatcag gtcgcccgcg ggccaggtcg gaccgtcaga ctgcgtaagc gagcaggcct cagggcgcct gtcagccaga gtcgcctccg aacctgcgct gcgcccgagg gtccatatgg atcctgaacg ctcgactact ggcagggtca ctgcagtacc ggcaaaggtt attcgccgg ctggagtcag cggggcgtac tcgctcggcc catccagttc cctgcagccg ccagccgcac gcgtctggaa ggtgcagcac ggccaagctc ctcggccggc caaggtcacc caatctcgac gatgctgcag gcgccagatg gatcaatccg ggccaaggcc ggtcgacgcc ggcgtcgtca tgcggtgaga gttccggtag ctgttcgtgg cacggctttt ctgggcgagg gacctggcga tgccacctgg ctcggtgtcg gccggcggtg aagatcaaag tcgacggcaa tcggacgctt cgatcgcctg gacccggcga cctattgcgg ccgcgaagtt acggtcagat
ccatcgccga acctgatgaa cccagggcct tctatgacaa cgctgtcggg ctgacaccca gcatcaccga acgcccagaa tcttcaccga acgaggcctt gcatggtcac gcacgatcca tcctcgggat ccgccggcat tgttctcgcc tcaagggcct cgctgctttc cggatacgca ctcgccaagc tcggccgatg gagctgggcg gacgaggtct ctgacgggct tgcccgcagg ccgatccagt tacgcccact atcctgttca gacgcggtgg gccaagcgcg caggagacgc tgcgaagtgg aagttcctgc aagctcggct gacatcgcgc tcatcggcgg cggtggcggc tgggcgatga cgatcggcga cgctggtcaa gggttgcggt tcatcaacac gaccogcctc gcgcccgggt tcgtcgtgcg gagaccgttc cgaacgtgac catcgttgag caacaacggt cgaggtgatc cgcgacgcct ggaggcgctg ttgcgacatg
gatcgccaac ggcgtcgtct cggcatgctg gccaagatcc gttcgagctg gacccgaccc ggctttgaag gccatggaag cttccccgcc gacctgacca cgaacaggcc cagttcactg cgcccagcgt ttgcagtatc gaaggaccaa ctcggcttca gggcctggtg ccccggccgc ctcgatcggc cgtctgaccg gctcaaggtt cgccagatca gacccgggtt cgcctggccg gcggatcaag atcgtgtcgc gggcgctgtc gttcgcgecg cgtgatccag gcgcatttcc cgaagttcgg ctgccggcct gtcgctgtcg caggaccgca cgtgcgcgtg gacgtcaagc gccggcccag gtgatcgtgc gctgcgagac accctgcgca gatttccaaa gcttttcgga cattcgcggg caatagtgta tggcgaaaac ggctttgatc tgctgctgga gaagggttac tgatcggcga ccgcctgcgc acctcttgga cgagggcggt acaacctggc ggcccagagc cggtgacggg cctgggcacg cgcggttcta tcaggcctcg cggagacgac gccgttctat ggatgacggt gaactatcgc accacgagag cccgctgcgc cggccatcaa gctgggtcag actggggtca cgccaaggac cggacgacta tgtggtcgcg ccttcgccca tgtcggcctg gtccggcgga agtggacctg gggaacccaa gacgaccatg ggcgctcgcg caactgatga cggcggccac gccaaggtgg cattgtcgat gcggatccga cctggcgctg ccgatgcttc caaccggctg cgccagaagc cgccatccat ccctctgccg gatggccggc gtcgcgatca cggcgctgtt gtcgaccatg ggccctggcc ggcggcgtat catacctggc gtcacgatcg cgaccttccg gactcggtcc gtgagtgacc tgccgcgcat tatgtactcg aatgcatgga ttcgaaaagg ccttcgccga acgaccgcct tgcacctggc gttccgagcc tgacctatat gtgctggtcg acaacgatcc ataacgccgc gcacgaaggc gatccgatcc tcgaagttgc

10081 tcgcaggcat aacctgctcg tgatcgagga

10141 gggcaagaag t 10201 catcaccacc 10261 gcgcttgctg 10321 cttcaattac 10381 cgacgaacac 10441 cctgggcaat 10501 gtacactgtg 10561 cgacgcgttg 10621 tgcgcatctg 10681 cctgccgacc 10741 tcaggtgttg 10801 cggcggcgcg 10861 ggtcgagcgg 10921 cgcctggcgg 10981 ggcctatgtg 11041 ctacgacctg 11101 11161 11221 gtatccgccg 11281 ggccatcticg 11341 cgtgaagagc 11401 acagctggtc 11461 ctggatcagc 11521 gcccaaggac 11581 ggtgatcacc 11641 cttgatcagc 11701 caaggctgcg 11761 cgactggagc 11821 tcgtcaacaa 11881 tccgccgcct 11941 gggagccggc 12001 atgtggaccg 12061 tgctgtggct 12121 atctggactt 12181 cctgcttcgc 12241 tgaagttcaa 12301 tcaccggcgg 12361 gccagcacct
12421 ccggaccgcc 12481 atctgaagga 12541 gggccaacgg 12601 tcacgatgga
12661 tgctggagat
12721 ccgaggcget
12781 12841 12901 12961 13021 13081 13141 13201 13261 13321
13381 cagccas
13441
cgcgcaggct atggcgcgac attaagccac aatgcgagtg catggcggtc cgcagcctat cgagaactac ggtctatggc ctcgaccctc gggtgtcgag gctggtccgc cagccaaggc cgtccgtcag aaacattggg ctgtcgaaag gtcggtcgcg cagagcaatc acccaggccc tggtccaagg tctctgagcc gcgcagatca gtgaccaacg ggtgaagcct gtgaccttga
tcaggctcgc ggcgagggcg cgaggccagg cggatgacca ctggccgcgc cgggtcacca cgcctgggcg ggcattgaga gccacggatg cacgcggggc gtctagccga cgcttcatcg ttctacctgc ctgatggacc gtggaccatc tgggacacgc ctccgcgegc gtggtggccg atctatcagc cggctggagc ggcgtgaagc aagatgaccc gaggacgaga gaggacagct acgaccgact gccccggacc acagccaaga accgtcgtgg cgccgcgecg gaacgccacg cgagcgtctg ggtcattggc gctgcaccag cgacgacacg cgagtgccgc cggggtcgcc cgagcatggc gttgattgag ggagaaccag tcgcgtcgag ggccctgatc ggccttcgcc cgtcagcgcg tgatcgtttg
tgggcgactg ggatgatcac gcatggatcc acatccaggc gcgaaagggt agccccatgt agggectttc gccgtccggt atctgaagat tgactgaagc tgcgcatcgt tcgagtggct cgtttgtcga tgacccagtg cgaacaaggt cctatcgcgg tcgacaccca accgcttgaa ccgagcgctt cgcacaagcg tgcgcctggc acgacctggg aggccgatat atggctatcc ccggcggggt cgcgcgcgct tggggaccgc agcgcctgac ttccaacgeg cccggcgtcc atcgaggaga ctcaaatttc ttccgtcagg ggcagggcgg aagatctact agccaggtgc gactatgtct gccctagcct gcctatgccg ctgcggtttg tgcgcctatc gcaggcaagg gataccggtg acctcggaca aagaatgtca ttgaagacca ttctgtccgt ctgatctcgc cgaatattca gttcggccta gcgtcaacgc agagcctcta aggccgcgcg cctatatctc ggctgcagaa ccgacgtgca
tgcggccgag gcggtgggcg cgacctaccg cgccaccttc agcttcttcg gcaacaagat caccaatgat gatgacctgg cggccaagat caaccgccgc tactggtttc cgatcgtcgg cgcgatcggt ctggcgcagc tggagcgggt cgtgggctgg tacgagcaga agctggcgcg cgcgctgacc ggtcgccacg tgttctggat caccacgcgc gatcaggtga tcaaggatct gttccacccg atgcacatca tgccgcccta cgccgaagcc tgcggggtcg acggcttgaa cgatatcgac cgtgtcatcg cggcgctcga cctgctgtcc tcgatcgtgc cgttcatcaa cgaggagaag ctgatcgagg ccggccacga cgatccgaac gagatcctgc accagatcgc gtgcgaccgg gtgatctgct tccggccgcc cttgtggttc atccaccaca tccgcacctt catgcctgac gacgcgcagc accgggccat ggcgatttcg gaagcccgcg cggtgttcac ggcgttcaac ggcctggacg ccacgccgct ttcccatacc ggctatggcg acgagatcgt tcaggccctg atgatcgagg ccatgcagta gggcacggcg tccagcgccg agtatggtcg cgtcgccgac cgggtcattc tcgaggatcg gctgaaacag gctctggccg tggcctatct ttcgctggag ggcgctcacg cccgcaagcc gctggaactg gtcgagcatg gccgcaacgg ggccgagcag ttcgaccgcc tgcacgctga ctcgctgaac cgtctggccg agatgaagat ctcatgagaa cgcccgcatg aaggttctgg gcggcgccga ggagctggcc gaccatctgg agtccgagct ggtgcgcgtg cccttcacct tgctgatctc caaggggatg cggctctaca cggcctatct gatcccgcat caccaaaagg cctacgacct gtccgaagcg ggccagagcc tgaaggcggc gatccgcgcg gccgacaacg gcaactcgcc cgtcacccag aaccgcctga tctatccgcc gctgaacgac ggtgagctgt tcgcgggcgg ccgggtcgcg gcgggcaagc tgctgcccgg accgcctgac gcttccatcc tgccctttga ccgtgctgac cggtcgccga aggcgcgggc catgggaaga cgttaagacg gcgaacgtct ccacgecgag ggcccaacgc tgggctgcaa caagaacggc caccaacggt cgagaacctg ggtgcgccgc gcaattgaag gcaggccaag cagtctgcgg ctggtgatcg caagctggtc gaggatctgg gcgcgaggac atcgcccgtt cgaggatagt gtaggttacg cgtgaccgac tccggcggcc gcccacgccg caagccctgg gatatcgctg ggcgacgcgg gacggtccgc cgtcttcttg gggtcggcta cagtctagga ctgatcgcct tggccatggc accttggccg aggcgatcac gccgccatgc gcgcgctgga gccagcgcct cggtcgctga gtcgaggccg ccagccagac cgtttctcgg cccgcctggc cgccgcatcg agatggacct gaccgcgaga tcctgcggat gacaccgagg acaagtacag gcccgcctgg cgtcggccag

13501 cactcaggtg gcgaacgccc aggcgcagct gaatgtcagc gtagcgttct acgcgtccct

13561 ggtggggcgc cagccggaga
13621 cctcgacgag gcgttcaatc
13681 caccgagaag gcctctcgcg
13741 cggcgcgcgc
13801 gcgcgaggac
13861 gctgaacgcc
13921 agacgcacgt
13981 gcggaagtcg
14041 ggtgcgcgaa
14101 cgaattgcag
14161 gctccatctt
14221 gccctacgat
14281 gctgatcatc
14341 gggggacacc
14401 cgacaaggtg
14461 ggtccagacc
14521 atcaaagggg
14581 ggagaacgct
14641 tgaacgagac
14701 cggagatcat
14761 cggcgcgata
14821 tggacgccgg
14881 cgagccatat
14941 cgatgtcgct
15001 gccggatgga
15061 ggtccgcgcc
15121 cccgaaaggc
15181 aggccatcag
15241 ggcgcggatt
15301 cgcgacggat
15361 aggcggggag
15421 ggcggccctc
15481 tgatgtgcga
15541 tctcggcggc
15601 cgccaaaccc
15661 agccgatgac
15721 cgcgcgccaa
15781 gcgcctccag
15841 tgggcaggcg
15901 acgcatgggc
15961 cgcgtcaggc
16021 gaggggggaa
16081 gtttggctat
16141 ccgccacgct
16201 ctccatccac
16261 acaggcggcc
16321 cgaggccttc
16381 ccacggcatc
16441 tcgcaagctc
cgctgaagcc
aggccgaaca
ccggcgtcgc
gcaatggctc
cctcgatcac
agtcgatcga
tcctgagcgt
tcgaagagga
tcgcgcttcg
tcaatttcgt
tcggcacgct
acttcaggaa
acaagatcgc
ggccgccgtc cgtcgatgaa
actagagccc
gaagtttaga ggcagccgcg cgcgccgtcg ttttcggcgg tcgccctcca tccacgttcg agcagcaggc agggcggcca gccacctcgg cagacaaggg gcgtcgggat cggtcgtcct gggtagggga gcgaaggcgg gggacctctt ccttcggtct ccgcgttcgt gacgccgaca atccgtgcgc agcgtgggtg tccgcactcc ggggcgccgg tcaagcaggc ccgttcaggc tgcgaaaggt ctgagtggag tgaacccgct agaacgcctg agccggggat agatggtccg gtaatcgcaa tctccgacca
tgaacccgat agccaatccg cgaggcgcgg cagcacgccg cotgacccag ggagaacaac ctcgcagtac aatgaaggcc cagcacgatc ccgcgggcgc tgaggtcggc ggtccggtac cttgccgctc gagcgaactg cgatctgccc tttccgatcg acgttcttcg cgctcgtcat cggcggccaa cgtcgcccac cgggaaccag atgaccagcc cgtaaccctc tgtcctgcgc cggcgagcgc ttgcgggacg tcttgcgctg gcaggccaaa ccggcgtaac agggggtcca ccagctccca cccgcgccca cgggatccgg ggtccaaggc cttcgcccag acaaacccct ggtgtcggtg cgacgacatg gtgaggtcat cgagccgaca ttgcatgcag cgccggctat ccgctgccgc cgagctcggg caactggtac tctgtcgggc ggacctgccg
attgacggcc tgcctacaac gtcctgctgg cggcgggcta gcccagcgcc tgttctcggt tactacgcgc gtggcggtct ccgctgttca ccagcggtca cgcgacaagc tgctgatgga tgggacagcc tggtggccgc aacacgatcg ccttctatgg gaagtgctga acgcccaagc gccaacgagt atgtcggtcg aatctcgctc ccggcgtcca cgcggcgctt tgccgacgga gagcccaaga agccggcgcc ccggccaggc ctgtttcggc gccctgaccg acgacacgcc gatcgcctca atccgatcgg gtcaccgttt cgcacggatc cgccacccag gcgtcgcggt ggtgttgcgc caggcgtcgt atcagcgtcg gcccagcgcc ccgatagtcg acgaactggc tgtcgccagg gtgggcttgc ggaccggtgc agggacagca cgacaggttg tccgtcagaa ttgaaaggtc tcgggataga tgtcgccttg actgtggcgt ggcggtcgaa cgcagatcga gcgctggcga tcggcctgcg ctttacgccc cgcggcgcca gacctcgtcg acgaaatcga ggcccagtag ccgatgtgcc tcgcagaagc tctgggggat tgaagaatag gccggggcga gcggacccca aggcccatgt accgtgcacc gcgctatgga gggaccggcg cgtctgcgcg ctcggccaag gccttgtcca cgccgagcgc cggatgggcg gggcgatgca ggcgggcgag ccagcaaagc tgcgcggggc caatggcggc ccactgcgcc gtcacggacg tcaactatac cttccgctcc tgacggtcgg tttggccagg gtctttccgt ggaaccgact tcaacccctc gcggaggcca agctctacga gacttcgact tcatcgggct gtgctggtcg acttcattcg

Appendix 2

ATC15252 S-layer subunit and transporter genes

LOCUS	JS3001A19 4255 bp mRNA BCT 07-OCT-1999
DEFINITION	Caulobacter crescentus S-layer subunit (rsaA) and ABC-transporter (rsaD(partial)) mRNAs, complete cds.
ACCESSION	JS3001A19
VERSION	
KEYWORDS	
SOURCE	Caulobacter crescentus.
ORGANISM	Caulobacter crescentus
	Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; Caulobacter.
REFERENCE	1 (bases 1 to 4255)
AUTHORS	Bingle, W.H., Awram, P.A., Nomellini, J.F. and Smit, J.K.
TItLe	The Secretion Signal of C. crescentus S-layer Protein is Located in the C-terminal 82 Amino Acids of the Molecule
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 4255)
AUTHORS	Bingle,W.H., Awram, P.A., Nomellini,J.F. and Smit, J.K.
TITLE	Direct Submission
JOURNAL	Submitted (07-OCT-1999) Microbiology and Immunology, University of
	British Columbia, 300-6174 University Blvd, Vancouver, BC V6T 1Z3,

FEATURES

source
gene
CDS

Location/Qualifiers

1. . 4255
/organism="Caulobacter crescentus"
/strain="JS3001"
2. 3717
/gene="rsaA"
637.. 3717
/gene="rsaA"
/codon_start=1
/transl_table=11
/product="S-layer subunit"
/translation="MAYTTAQLVTAYTNANLGKAPDAATTLTLDAYATQTQTGGLSDA AALTNTLKLVNSTTAVAIQTYQFFTGVAPSAAGLDFLVDSTTNTNDLNDAYYSKFAQE NRFINFSINLATGAGAGATAFAAAYTGVSYAQTVATAYDKIIGNAVATAAGVDVAAAV AFLSRQANIDYLTAFVRANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAA MINDLSDGALSTDNAAGVNLFTAYPSSGVSGSTLSLTTGTDTLTGTANNDTFVAGEVA GAATLTVGDTLSGGAGTDVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITLNTSSG VTGLTALNTNTSGAAQTVTAGAGQNLTATTAAQAANNVAVDGGANVTVASTGVTSGTT TVGANSAASGTVSVSVANSSTTTTGAIAVTGGTAVTVAQTAGNAVNTTLTQADVTVTG NSSTTAVTVTQTAAATAGATVAGRVNGAVTITDSAAASATTAGKIATVTLGSFGAATI DSSALTTVNLSGTGTSLGIGRGALTATPTANTLTLNVNGLTTTGAITDSEAAADDGFT TINIAGSTASSTIASLVAADATTLNISGDARVTITSHTAAALTGITVTNSVGATLGAE LATGLVFTGGAGADSILLGATTKAIVMGAGDDTVTVSSATLGAGGSVNGGDGTDVLVA NVNGSSFSADPAFGGFETLRVAGAAAQGSHNANGFTALQLGATAGATTFTNVAVNVGL TVLAAPTGTTTVTLANATGTSDVENLTLSSSAALAAGTVALAGVETVNIAATDTNTTA HVDTLTLQATSAKS IVVTGNAGLNLTNTGNTAVTSFDASAVTGTGSAVTFVSANTTVG EVVTIRGGAGADSLTGSATANDTIIGGAGADTLVYTGGTDTFTGGTGADIFDINAIGT STAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVTLGAAATLAQYLDAAAAGDGSG TSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLTGLVTLTTSAFATEVLTLA"
gene

CDS

BASE COUNT
ORIGIN
3960.. 4253
/gene="rsaD(partial)"
3960.. 4253
/gene="rsaD(partial)"
/codon start=1
/transl_table=11
/product="ABC-transporter"
/translation="MFKRSGAKPTILDQAVLVARPAVITAMVFSFFINILALVSPLYM LQVYDRVLTSRNVSTLIVLTVICVFLFLVYGLLEALRTQVLVRGGLKFDGVARD" 722 a $\quad 1512$ c $\quad 1296$ g 725 t

1 aagcttcccc
61 gacacgataa
121 gcggagcagt
aagcctaggt ccgaactagt tcgcgcacga ggcggaatgc accttagcgg cggccacctt tacattataa ccaggtgaac ggaatttgct atgacgtttg gggatttttt acaccaacgc acgcgactca agctggtcaa ccccgtcggc acgacgcgta tggccacggg acgcccagac ctggcgtcga tgaccgcctt tcaaggccgc acgcgaccgc acgcggctgg tctcgctgac cgggtgaagt gcaccgacgt cgatctcggg cttcgggcgt tcaccgccgg tcgccgtcga ccacggtcgg gcacgaccac cggccggcaa ccagcaccac ccggtcgcgt ccggcaagat ctctgacgac tgaccgccac gcgcgatcac gttcgaccgc tctcgggcga cggtgaccaa cgggcggcgc gcgccggcga acggcggcga acccggcctt
gaaaagccga c cttcgctgaa c acgtcttctc c ggccgcgacc ccagctggcg cgcggcggag agcctcgcgc agtctttata gtaccggtta ctctatagcc ttgggagaca caacctcggc a aacccagacg cagcacgacg cgctggtctg ctactcgaag cgccggcgcc ggtcgccacc cgtcgcggcc cgtgcgcgcc cctgatcggc cacggccgcg cgtgaacctg caccggcacc cgccggcgct cctgaactgg catcgaaacg gacgggtctg cgctggccag cggcggcgcc cgccaactcg cacgggegct cgccgtgaac ggccgtgacg caacggcgct cgccacggtc cgtcaacctg gccgaccgcc ggactcggaa ctcttcgacg cgctcgcgtc cagcgttggt tggcgctgac cgacaccgtc cggcaccgac cggcggcttc
cccccogtcg gcccaaacac gctagcagac caggatctcg taggtgatcg gatcatagaa cgagacctcc agggccttgg cccagtcgcg cgtctccagc tgagagatga aggtgtaata ttgcgacagg ccggcggcct cgcgcatctc gtcttgcacc tccgaggcgc tgcggcgttg gttgaccgag ggcaggagcg cgggcgcgct tatagcgctt ttcggcgggg ggtacaagga gaaaatgct gtacccctga aattcggcta atcgctgctc ccatgcgcgc cactcggtcg atcctcatgg cctatacgac ggcccagttg aaggcgcctg acgccgccac cacgctgacg ggcggcctct cggacgccgc tgcgctgacc gctgttgcca tccagaccta ccagttcttc gacttcctgg tcgactcgac caccaacacc ttcgctcagg ggcgcgacgg gcctatgaca gccgtggctt aacacgccgt accatcctga atgatcaacg ttcaccgcct gacaccctga gcgaccctga gtgcaagctg atgaacgtga accgccctga aacctgaccg aacgtcaccg gccgcttcgg atcgccgtga accacgttga gtcacccaaa gtgacgatca accctgggca tcgggcacgg aacaccctga gcggctgctg atcgccagcc acgatcacct gcgaccctcg tcgatcctgc accgtcagct gttctggtgg gaaaccctcc
aaaaccgctt catcaacttc
ctttcgccgc cgcctacacg agatcatcgg caacgccgtc tcctgagccg ccaggccaac tcacggccgc tgccgacatc acgccgccac ggtgtcgggc acctgtcgga cggcgccctg atccgtcgtc gggcgtgtcg cgggcaccgc caacaacgac ccgttggcga caccctgagc ctgcggttac ggctctgccg cgtcgggcgc tgcgatcacc acaccaacac cagcggcgcg ccacgaccgc cgctcaagcc tcgcctcgac gggcgtgacc gcaccgtgtc ggtgagcgtc ccggtggtac ggccgtgacc cgcaagccga cgtgaccgtg ccgccgccgc caccgccggc ccgactctgc cgccgcctcg gcttcggcgc cgccacgatc gcacctcgct cggcatcggc ccctgaacgt caatggtctg acgatggttt caccaccatc tggtggccgc cgacgcgacg cgcacaccgc tgccgccctg gcgccgaact ggcgaccggt tgggcgccac gaccaaggcg cggcgaccet gggcgctggt ccaacgtcaa cggttcgtcg gcgtcgctgg cgcggcggct

```
    2 7 6 1 \text { caaggctcgc acaacgccaa cggcttcacg gctctgcaac tgggcgcgac ggcgggtgcg}
2 8 2 1 ~ a c g a c c t t c a ~ c c a a c g t t g c ~
2 8 8 1 ~ a c g a c g a c c g ~ t
2 9 4 1
3 0 0 1
3061
3121
3.181
3241
3301
3 3 6 1 ~ a t c a a c g c t a ~
3 4 2 1 ~ a a g c t c g a c c ~
3 4 8 1 ~ g c g g t c a c c c ~ t
3541
3601
3 6 6 1 ~ g g t c t g g t c a ~
3 7 2 1 ~ a a c g t c t g a t ~
3 7 8 1 ~ g a g g c g g g g g t ~
3 8 4 1 ~ a t g a t t t a g c ~ g
3 9 0 1 ~ c g c c t t a g t t ~ g
3 9 6 1 ~ t g t t c a a g c g ~ c
4 0 2 1 ~ c g g c g g t g a t ~ c
4 0 8 1 ~ c g c t g t a c a t ~ g
4 1 4 1 ~ t c g t g t t g a c ~ g = ~
4 2 0 1 ~ g c a c c c a g g t ~
```

ccaacgttgc tgaccctggc ccgctctggc ccgacaccaa cgatcgtggt ccagcttcga acaccacggt gttcggccac ccggcggtac tcggcacctc tcgtcggcat tgggcgctgc gcacctcggt cggctggcgc cgctgaccac cctcgcctag ctttcttatg gggactgggg gttactgtac cagcggcgeg caccgccatg gctgcaggtc ggtcatctgc gctggtgcgc
ggtgaatgtc caacgccacg ggcacctcgg cgctggtacg gttgcgctgg cacgaccgct cacgtcgaca gacgggcaac gccggtctga cgccagcgcc gggtgaagtc g ggacaccttc gaccgctttc ctcgacgaac tgcgaccctg gctcagtacc tgccaagtgg ttccagttcg gaccttcgtc agcggcgctg ctcggccttc gccaccgaag gcgaggatcg ctagactaag ggcgctacgc gctggccggc ggcttgctca ctttccgcca atggccgcgt cggttcgcgc aagccgacga tcctcgacca gtcttcagct tcttcatcaa tatgaccgcg tgctgaccag gtcttcctgt tcctggtcta ggcggtctga agttcgacgg
tgggcgcgac ttctggcggc gaccggt acgtgttcaa cctgaccctg ctggcgtcga gacggtgaac cgctgacgct gcaagccacc acctgaccaa caccggcaac cgggctcggc tgtgaccttc gcggcggcgc tggcgccgac gtggcgctgg cgctgacacc cgggcgcgga tatcttcgat ccgacgccgc tgtcggcgac ctgacggcgc cttcggcgct tggacgctgc tgctgccggc gcggcgacac ctatgtcgtc acgcggtgat caagctgacc tcctgacgct cgcctaagcg agaccccgtc ttccgaaagg cttgcctagt tccggtggct caatttcgtg gtcgagacgg ggcgtcctga aggctcacaa ggccgtgctg gtcgcccgcc cattctggcc ctggtcagcc ccgcaacgtt tcgaccctga cggcctgctc gaggcgctgc cgtggccegg gatcc

481 acgctatata ggaatttgct gtaccggtta gaaaaatgct gtacccctga aattcggcta 541 ttgtcgacgt atgacgtttg ctctatagcc atcgctgctc ccatgcgcgc cactcggtcg 601 cagggggtgt gggatttttt ttgggagaca atcctcatgg cctatacgac ggcccagttg 661 gtgactgcgt acaccaacgc caacctcggc aaggcgcctg acgccgccac cacgctgacg 721 ctcgacgcgt acgcgactca aacccagacg ggcggcctct cggacgccgc tgcgctgacc 781 aacaccctga agctggtcaa cagcacgacg gctgttgcca tccagaccta ccagttcttc 841. accggcgttg ccccgtcggc 901 aacgacctga acgacgcgta 961 tcgatcaacc tggccacggg 1021 ggcgtttcgt acgcccagac 1081 gcgaccgccg ctggcgtcga 1141 atcgactacc tgaccgcctt 1201 gatctggccg tcaaggccgc 1261 atcggtggtt acgcgaccgc 1321 tcgaccgaca acgcggctgg 1381 ggttcgaccc tctcgctgac 1441 acgttcgttg cgggtgaagt 1501 ggcggtgctg gcaccgacgt 1561 accggcgtga cgatctcggg 1621 ctgaacacgt cttcgggcgt 1681 gctcaaaccg tcaccgccgg 1741 cgaacaacgt cgccgtcgac 1801 cgggcacgac cacggtcggc 1861 cgaactcgag cacgaccacc 1921 tggctcaaac ggccggcaac 1981 ccggtaactc cagcaccacg 2041 ctacggtcgc cggtcgcgtc 2101 ccacgaccgc cggcaagatc 2161 actcgagcgc tctgacgacc 2221 gcggcgctct gaccgccacg 2281 cgacgaccgg cgcgatcacg 2341 acatcgctgg ttcgaccgcc 2401 ccctgaacat ctcgggcgac 2461 cgggcatcac ggtgaccaac 2521 tggtcttcac gggcggcgct 2581 tcgtcatggg cgccggcgac 2641 gttcggtcaa cggcggcgac 2701 tcagcgctga cccggccttc 2761 aaggctcgca caacgccaac 2821 cgaccttcac caacgttgcg 2881 cgacgaccgt gaccctggcc 2941 cgtcctcggc cgctctggcc 3001 tcgccgccac cgacaccaac 3061 cggccaagtc gatcgtggtg 3121 cggctgtcac cagcttcgac 3181 tgtcggccaa caccacggtg 3241 cgctgaccgg ttcggccacc 3301 tggtctacac cggcggtacg 3361 tcaacgctat cggcacctcg 3421 agctcgacct cgtcggcatc 3481 cggtcaccct gggcgctgct 3541 acggcagcgg cacctcggtt
3601 ttgacagctc ggctggcgcg
3661 gtctggtcac gctgaccacc
3721 acgtctgatc ctcgcctagg
3781 aggcggggtc tttcttatgg
3841 tgatttagcg ggactggggg
cgctggtctg
ctactcgaag
cgccggcgcc
ggtcgccacc
cgtcgcggcc cgtgcgcgcc cctgatcggc cacggccgcg cgtgaacctg caccggcacc cgccggcgct cctgaactgg catcgaaacg gacgggtctg cgctggccaa ggcggcgcca gccaactcgg acgggcgcta gccgtgaaca gccgtgacgg aacggcgctg gccacggtca gtcaacctgt ccgaccgcca gactcggaag tcttcgacga gctcgegtca agcgttggtg ggcgctgact gacaccgtca ggcaccgacg ggcggcttcg ggcttcacgg gtgaatgtcg aacgccacgg gctggtacgg acgaccgctc acgggcaacg gccagcgccg t ggtgaagtcg t gccaatgaca gacaccttca accgctttcg tcgacgaacg gcgaccctgg gccaagtggt t accttcgtca tcggccttcg cgaggatcgc gcgctacgcg gcttgctcac t
gacttcctgg tcgactcgac caccaacacc ttcgctcagg aaaaccgctt catcaacttc ggcgcgacgg ctttcgccgc cgcctacacg gcctatgaca agatcatcgg caacgccgtc gccgtggctt tcctgagccg ccaggccaac aacacgccgt tcacggccgc tgccgacatc accatcctga acgccgccac ggtgtcgggc atgatcaacg acctgtcgga cggcgccctg ttcaccgcct atccgtcgtc gggcgtgtcg gacaccctga cgggcaccgc caacaacgac gcgaccctga ccgttggcga caccctgagc gtgcaagctg ctgcggttac ggctctgccg atgaacgtga cgtcgggcgc tgcgatcacc accgccctga acaccaacac cagcggcgcg acctgaccgc cacgaccgcc gctcaagccg acgtcaccgt cgcctcgacg ggcgtgacct ccgcttcggg caccgtgtcg gtgagcgtcg tcgccgtgac cggtggtacg gccgtgaccg ccacgttgac gcaagccgac gtgaccgtga tcacccaaac cgccgccgcc accgccggcg tgacgatcac cgactctgcc gccgcctcgg ccctgggcag cttcggcgcc gccacgatcg cgggcacggg cacctcgctc ggcatcggcc acaccctgac cctgaacgtc aatggtctga cggctgctga cgatggtttc accaccatca tcgccagcct ggtggccgcc gacgcgacga cgatcacctc gcacaccgct gccgccctga cgaccetcgg cgccgaactg gcgaccggtc cgatcctgct gggcgccacg accaaggcga ccgtcagctc ggcgaccctg ggcgctggtg ttctggtggc caacgtcaac ggttcgtcgt aaaccctccg cgtcgctggc gcggcggctc ctctgcaact gggcgcgacg gcgggtgcga gcctgaccgt tctggcggct ccgaccggta gcacctcgga cgtgttcaac ctgaccctgt ttgcgctggc tggcgtcgag acggtgaaca acgtcgacac gctgacgctg caagccacct ccggtctgaa cctgaccaac accggcaaca tcaccggcac gggctcggct gtgaccttcg tcacgatccg cggcggcgct ggcgccgact ccatcatcgg tggcgctggc gctgacaccc cgggtggcac gggcgcggat atcttcgata tgacgatcac cgacgccgct gtcggcgaca gcgctatcgc tgacggcgcc ttcggcgctg ctcagtacct ggacgctgct gctgccggcg tccagttcgg cggcgacacc tatgtcgtcg gcggcgctga cgcggtgatc aagctgaccg ccaccgaagt cctgacgctc gcctaagcga tagactaaga gaccccgtct tccgaaaggg ctggccggcc ttgcctagtt ccggtggcta tttccgccac aatttcgtgg tcgagacggc

3901 gccttagttg ttactgtaca tggccgcgtc 3961 gttcaagcgc agcggcgcga 4021 ggcggtgatc accgccatgg 4081 gctgtacatg ctgcaggtct 4141 cgtgttgacg 4201 cacccaggtg 4261 caagtcggtg 4321 catggaccag 4381 gacgccggtg 4441 catcgcctgc 4501 gatccagatg 4561 caacgccgag
4621 gcgccgcgac
4681 gtcgggcatc
4741 tctggccatc
4801 ccgcgccetg
4861 cggcgcctgg
4921 gccgctgccc
4981 cgcgcaacag
5041 ccttgtcggt
5101 gccctgcgcg
5161 gaagctgggt
5221 cgcccagaac
5281 cctggcgggc
5341 cgagggcggc
5401 gttccgcatg 5461 cgaagtggcg
5521 cgccacccac
5581 tgtgatcagc
5641 gccccagacg
5701 ttcgtctgtc
5761 caatgaagcc
5821 gctacggcat
5881 tcgacagcgc
5941 agcacctcga
6001 ccggccaggt
6061 gcaaccagta
6121 gtccgtccat
6181 gcgccatcgc
6241 tcgacctgat
6301 agacccaggg
6361 agctctatga
6421 cctcgctgtc
6481 cctctgacac
6541 agagcatcac
6601 ccgacgccca
6661 gcttcttcac
6721 aggacgaggc
6781 tgggcatggt
6841 acggcacgat
6901 acttcctcgg
6961 tcaccgccgg
7021 acctgttctc
7081 gtttcaaggg
7141 cggcgctgct
7201 cagcggatac
7261 tacctcgcca
gtcatctgcg ctggtgcgcg ctggactcca gtccgagagt ttcgtcatcg attatcatct gccaccatgg gtcatgaagg gagcaggtgg aaggtgttcc gacggcaaga gcgcccatcg gatcgtctgc gagccgcgcg ccgaccatgc cccagcgcgg gccggcgtca cgccacgtcg atcgcccgct gtgcacgaga gcctcgetgt ccggccctgc ctgatggaag aaggtgaacc gactttggcg ccgccgccga cgcctctccc ccccaagatc catcgccctg ggtgatcgcc aggcggcatg gctgttcgag tgtggcgttg cagcttcccc cgacgaacag gaacgcccag cctgaaggac caagggcctg gggctcgatc ccagctcaag cgagacccgg gaagcggatc cgagggcgct cttcgtgatc caccgaagtt ccagtctctg gatcgtgcgc catgccggcc gccgctgcga cctgatttcc ttccattcgc gcatggcgaa agctgctgct
agccgacgat tcttcagctt atgaccgcgt tcttcctgtt gcggtctgaa cgctcagccg tcatgaccgg tctcgtggat tcggcctggc cctcgatcgc ccatgggcat cctggcaggc gcaacatcgt tctcggccgg agggcgcggt agaccatgct gcgtgctgtc gccaggccag cgggcaagtc tccgcctcga gctacctgcc tcaccgagtt tgatccagag ccggcggcca tggtgctgga cgatgaagcg tgttggccca aacgcgaccc cgccgccgcc ttcctggccg cagcgtccga acctttgtcg aacggcgtcg ctggccaaga ctggacccga aaggccatgg gccgacctga gcccagttca cgtttgcagt caactcggct gtgccccggc ggccgtctga gttcgccaga gttcgcctgg aagatcgtgt gtcgttcgcg caggcgcact cggctgccgg tcgcaggacc gtggacgtca caggtgatcg gacaccctgc aaagcttttc gggcaatagt aacggctttg ggagaagggt
ggttcgcgcg gcgtcctgaa ggctcacaat cctcgaccag gccgtgctgg tcgcccgccc cttcatcaac attctggccc tggtcagccc gctgaccagc cgcaacgttt cgaccctgat cctggtctac ggcctgctcg aggcgctgcg gttcgacggc gtggcccggg atccgatctt caagggcatc ggcggccagg cgttccgcga cggcctgatc gccttctgcg atgcgccctg gctgcacccg ttcttcggca tcctggcgat cgtgatgaac gacaacgcca ccaagaaccc cgcccagaac gacgccggtt ccaccctgcg gtggggcggc ctgcaagccc gctggcgcgc cgccgccagc gacgccggcg gcgcggtgat ccagaccctg atcctgggcg gcggcgccta cgcgatgatc gccggctcga tcctggtcgg gggccagtgg aagacctata tcggcgcgcg gcgcgaggaa aagagcgccg acgaccacat ggccgaagcc gcctcgatcc tgccgccggg cttccgcatc gacgccggcg ccgcggtggc ctcgctgctg cgcggcatcg tcggcgtctg cggctacgac atcaagcagt gggatcccga gcaggacatc gagctgttct cgggcaccgt cgagtcgcag gaagtcatcg aggccgcgac cctgccgatg ggctatgata cggcgatcgg gcgccagcgc ctggccctgg cccgcgcggt cgagccgaac gccagcctcg accaggtggg gctcaaggcc gccaagcgca cggtgatctt ggccgactac atcatggtga tcaaccaggg gatgctggcc aagctgaccg gggctgcgcc cgcgccgttg cagcgcgtcc agtaagcgcc tttcagaacg cgcccatcag gcttgaatct cggacaactt ccaggctgtg gcccgtatcg gtctgttggg ctgggccgcg ttcgccccgc tctccgccga gggtaatcgc aagaccgtgc tcctggtccg cgaaggcgag aaggtgaagg cccaggccaa cgccgccgcc ggcatcaccc aagcgcgcct gctggccgag cgcgaccagc cccgcctgcg cgccgatccg atggtcgccc ctgagcgtcg ccagacgatc cagggccagg atcagagcga gatcgagggc atcgaccgtc tcatcgagga cgagctgatc gacctgcgta cgcgtctgct ggccctggag cgcgagcagg ccgcagaccg ctccaaggcc gtccagggcg tcaagcagga gttcttcgag caggtcagcc ccgaggtgac cgagaaggag gtcgtcgcct cgccggtcaa cgggacggcg cagaacctgc ccgccgagcc gctggtcgac atcgcgcccg tccagccgac cgatgtggac aatgtccata ccttccactc gcgggaaatc ccgatcctga gcatttccga tccgcagaac aagctcgact agcagctgcc gccgcatctg cgcggcaggg tgccgaccgg cgagcgcacc gtgctgcagt gcaccacgat gcgcgaggag taggtcaaag ggatgggcgg cgcgggcgag ctaaattcgc gtagtcagga cccttcgttg ttactggagt atcaccggtg tgaccggtca ggacggggcg tacaccgtcc acggcatgct gcgtcgctcg

7321 gcctcggccg atgtgatcgg cgaccgcctg cgctggatcg gcgtctatga cgacatccag
7381 ttcgagctgg gcgacctctt ggacgagggc ggtctggcgc gcctgatgcg gcgcctgcag
7441 ccggatgagg tctacaacct ggcggcccag agcttcgtcg gcgcctcgtg gga

Appendix 3

Sequences of IpsGHIJK, orf1 and orf2

> /gene="orf5"
> /codon_start=1
> /product="putative sugar phosphate isomerase KpsF-like" /translation="MSAFNAVQVGRRVLAVEADALRVLADSLGEAFANAVETIFNAKG RVVCTGMGKSGHVARKIAATLASTGTQAMFVHPAEASHGDLGMIGPDDVVLALSKSGA GRELADTLAYAKRFSIPLIAMTAVADSPLGQAGDILLLLPDAPEGTAEVNAPTTSTTL QIALGDAIAVALLERRGFTASDFRVFHPGGKLGAMLRTVGDLMHGADELPLVAADAAM PDALLVMSEKRFGAVGVVDNAGHLAGLITXGDLRRHMDGLLTHTAGEVMTHAPLTIGP GALAAEALKVMNERRITVLFVVERERPVGILHVHDLLRAGVI" $3477 . .4883$
> /gene="lpsg"
> 3477.4883
> /gene="lpsg"
> /codon_start=1
> /product="phosphomannomutase"
> /translation="MFSSPRADLVPNTAAYENEALVKATGFREYDARWLFGPEINLLG VQALGLGLGTYIHELGQSKIVVGHDFRSYSTSIKNALILGLISAGCEVHDIGLALSPT AYFAQFDLDIPCVAMVTASHNENGWTGVKMGAQKPLTFGPDEMSRLKAIVLNAEFVER DGGKLIRVQGEAQRYIDDVAKRASVTRPLKVIAACGNGTAGAFVVEALQKMGVAEVVP MDTDLDFTFPKYNPNPEDAEMLHAMADAVRETGADLAFGFDGDGDRCGVVDDEGEEIF ADKIGLMLARDLAPLHPGAXFVVXVKSTGLYATDPILAQHGCKVIYWKTGHSYIKRKS AELGALAGFEKSGHFFMNGELGYGYDCGLTAAAAILAMLDRNPGVKLSDMRKALPVAF TSLTMSPHCGDEVKYGVVADVVKEYEDLFAAGGSILGRKITEVITVNGVVVHLEDGSW VLVRASSNKPEVVVVVESS"
gene
CDS
BASE COUNT $807 \mathrm{a} \quad 1647 \mathrm{c} \quad 1587 \mathrm{~g} \quad 837 \mathrm{t} \quad 5$ others
gccgcgcgcc gccagcctga aaagttggcg cgcgagacat gagatcggcg ttggtaagaa gatgagcagc ggccccagct caaccgcgcg cctcgcaggt caactgcgcg ccctgcatct cgccgacagg gccgtgagat gtcgaacacc gagggcttgc gatcatctgc tcatacggca gccgtccata ttggtgtcgt gttgcgcaga tcagcgccgg gccgttgaaa ttggcctgtt gtcactgaag tccgccttcg gcccgacagg ttcgcgccgg accttccttg cggtcggcgg ggcgccggtc aggttggcgc ggcgtcggtc aagtcggcgc ggcctttcgc aggtcacagc gcgccccggc acggagaggc catccgcgcc gaccacagac caggcgcttg tattcttgtg agttaacggg acaccttgcg aagctttcgg cgttttaacc cgcgcgccgg tcggcttcaa atctccacac cgacgatctg agcgagttgc cgtgggcggc tcgctttccc agtagggcag aggcttgcgc ccttgtagcg tccggcggcg ggatatcgta tcggcggtct cagccttgtt cagtccttgg tcacggggac
tggcgccggt cagatccagg tcgcgtagct gcgcgccggt ccgcgccggc cattcgggcc tgccgcaggt cggcgcgcgc tcgctcccgt cagatcgacc ggcagcaagc ggtcggctgc gtgcgtcacg caggtccgct cccgtcagct tggcgccctt cggcgcggcg caggttgcag gctcgcagat cggcgccatc gcacgccttc catgtcgagg ccgtagaaca ccgacccctt tgaagcctcg gacagatcgc agattccgca gatcggcctt cctcgccgcc gccggtctcg atccatcgtg cgtggtcggc ggtcagagac gcttgtgccc gacggcttgt cggtcaacgc tgacgttcca ggacagggtc ttggccccaa ccagcacggc cgaggttagc gcccgacaga tcggcccccg ccaggttggc tgaggttggc ccgaaccagc ttggcgtcct tcaggatagc tcgcgacgat gcccgacagg cgcgaacgct cgaggttggc ccgcgaaggc ttcgcgttgg gtcggttcga tgacgcgata cggcgatcgt gccctcccgc agatcggcct cgaacatgtc cgcgcagact ggatccgcgc aggtcagccc gccgcaacga cttgcagatc cgcgccatag aagttggcgt tgtccagctt cgacgagaat ggcgccggtg aaatcggcgt cgcagagatt cagacaggtc gcagaacgcg aaaaccgcgc gcgcgccccc ggtcatgctt ggcgcagata acgtccactt cgtactgcgt gcgtgctggc ggcggcgctc atggctcgct gggtatcccg cagagcaaaa ttaacgccgt gtttccaaca ccttccgctt aactttggga agcgcctcag cccgactgtc gtccaggtag cgcagcatcc aggtcgatca ccagcggatt gccggtcgga gtcgtccggc acgttgaaca gatgcttgac gatggcgcgc gatcagcaca gtctcacccg ccttgagatg cggagcgatg aacgcgaacc agcgtcgtcg ccaggctttc cgtgctgggc gcgatccttg ctgaagtcgt actcgccgcc cggcgccagc cgaacggcgc cagatggtca cctgctcgac gccgtgcttt caggccggtc agcccgccat agtggcgctc gttcaggcgc gaagctctgc ttggcggcgt ccagcgccag attgcetgtg

```
1861 cggatggcgc gggtctgaac cgaggtgaac aagcggtcga tctcgatgcc ggccgcagcg 1921 atcagctcgc cgcccttccg ggcctgagct tcgccctcag cggtgaggtc cacatcaacc 1981 caaccggtga agcggttttc caggttccac tggctttggc catggcgcag caggacgagc 2041 gtcggcatcg ggcttccttc ggagatcagg gaaatgtcag ggcgggctaa ggccagcccg 2101 cttcagcgtc aagcgccgaa gcgaccaagg acccgatcgg cccggtgcgc gccecctccc 2161 ccaggccgcc gcgcgtgcta taggcgagcc atgcctgatc gcatcttcat gcctctgatg 2221 ggactcatcg ccgccgcgct gatcgccctc tctctcgtct ggccccaggg ccagggcgac 2281 cgctcctggg gccccttcgg ccacacgccc gttcagcaga ccccggagat gaaggccaag 2341 attcagcggg aaaaggactc ggcgcgccgt cgggacgagg cggcgaaaaa ggctgtcgag 2401 gccatggatc agctttcgca atgagcgect tcaacgctgt tcaggtgggc cgccgcgtcc 2461 tcgccgtaga agccgatgcg ctgcgegtcc tcgcagactc gctgggcgag gccttcgcca 2521 atgcggtcga gacgatcttc aacgccaagg gtcgcgtcgt ctgcacgggc atgggcaagt 2581 cggggcatgt ggcgcggaag atcgccgcca ccctcgcttc gaccggcacc caggcgatgt 2641 tcgtccaccc cgccgaagcc tcgcacggcg acctgggcat gatcgggcca gacgacgtgg 2701 ttctggcgct gtccaagtcg ggcgccggcc gcgaactggc cgacaccctg gcctacgcta 2761 agcgcttctc 2821 cgggcgacat 2881 cgaccacgtc 2941 agcggcgcgg 3001 ctatgctgcg 3061 ccgacgecge 3121 gcgtcgttga 3181 acatggatgg 3241 tcggccccgg
3301 tgcttttcgt 3361 gcgcgggtgt 3421 gtcgtgccgc 3481 tctcctcgcc 3541 tcaaggcgac 3601 tcctgggcgt 3661 cgaagatcgt 3721 t 3781 ccgcctattt 3841 acaacgaaaa 3901 ccgacgagat 3961 gcggcaagct 4021 gcgccagcgt 4081 ccttcgtggt 4141 acctcgactt 4201 cgatggctga 4261 gcgaccgctg
4321 tgatgctggc
4381 agtcgacggg
4441 actggaagac 4501 gcttcgaaaa 4561 gcctgaccgc 4621 cggacatgcg 4681 gtgacgaggt 4741 ccgccggcgg 4801 gggtgcacct 4861 tcgtcgtcgt
\begin{tabular}{llllll} 
LOCUS & gcc506 \\
DEFINITION & gcc506.
\end{tabular}
\begin{tabular}{|c|c|}
\hline ACCESSION & gcc506 \\
\hline \multicolumn{2}{|l|}{VERSION} \\
\hline KEYWORDS & - \\
\hline \multirow[t]{4}{*}{SOURCE
ORGANISM} & Caulobacter crescentus. \\
\hline & Caulobacter crescentus \\
\hline & Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; \\
\hline & Caulobacter. \\
\hline REFERENCE & 1 (bases 1 to 8012) \\
\hline AUTHORS & Awram, P.A. \\
\hline \multirow[t]{2}{*}{TITLE} & Analysis of the S-layer Transporter Mechanism and Smooth \\
\hline & Lipopolysaccharide Synthesis in Caulobacter crescentus \\
\hline JOURNAL & Unpublished \\
\hline REFERENCE & 2 (bases 1 to 8012) \\
\hline AUTHORS & Awram, P.A. \\
\hline TITLE & Direct Submission \\
\hline JOURNAL & Submitted (15-OCT-1999) UBC \\
\hline FEATURES & Location/Qualifiers \\
\hline \multirow[t]{3}{*}{source} & \(1 . .8012\) \\
\hline & /organism="Caulobacter crescentus" \\
\hline & /strain="NA1000" \\
\hline \multirow[t]{2}{*}{gene} & complement (1845..3860) \\
\hline & /gene="orf6" \\
\hline \multirow[t]{16}{*}{CDS} & complement (1845..3860) \\
\hline & /gene="orf6" \\
\hline & /codon_start=1 \\
\hline & /product="putative transketolase" \\
\hline & /translation="MRVRPSRSPAKHIKTEAPMPVSPIKMADAIRVLSMDAVHKAKSG \\
\hline & HQGMPMGMADVATVLWGKFLKFDASKPDWADRDRFVLSAGHGSMLLYSLLHLTGFKAM \\
\hline & TMKEIENFRQWGALTPGHPEVHHTPGVETTTGPLGQGLATAVGMAMAEAHLAARYGSD \\
\hline & LVDHRTWVIAGDGCLMEGVSHEAISIAGRLKLSKLTVLFDDNNTTIDGVATIAETGDQ \\
\hline & VARFKAAGWAVKVVDGHDHGKIAAALRWATKQDRPTMIACKTLISKGAGPKEGDPHSH \\
\hline & GYTLFDNEIAASRVAMGWDAAPFTVPDDIAKAWKSVGRRGAKVRKAWEAKLAASPKGA \\
\hline & DFTRAMKGELPANAFEALDAHIAKALETKPVNATRVHSGSALEHLIPAIPEMIGGSAD \\
\hline & LTGSNNTLVKGMGAFDAPGYEGRYVHYGVREFGMAAAMNGMALHGGIIPYSGTFLAFA \\
\hline & DYSRAAIRLGALMEARVVHVMTHDSIGLGEDGPTHQPVEHVASLRAIPNLLVFRPADA \\
\hline & VEAAECWKAALQHQRTPSVMTLSRQKTPHVRTQGGDLSAKGAYELLAAEGGEAQVTIF \\
\hline & ASGTEVGVAVAARDILQAKGKPTRVVSTPCWELFDQQPAAYQAAVIGKAPVRVAVEAG \\
\hline & VKMGWERFIGENGKFIGMKGFGASAPFERLYKEFGITAEAVAEAALA" \\
\hline \multirow[t]{2}{*}{gene} & 4281..6041 \\
\hline & /gene="orf7" \\
\hline \multirow[t]{15}{*}{CDS} & 4281..6041 \\
\hline & /gene="orf7" \\
\hline & /codon_start=1 \\
\hline & /product="putative NH(3)-dependent NAD(+) synthetase" \\
\hline & /translation="MIVVGGPLRDAGRLYNTAIVIQGGKVLGVVPKSFLPNYREFYER \\
\hline & RWFTPGAGLTGKTLTLAGQTVPFGTDILFRGEGVAPFTVGVEICEDVWTPTPPSTAQA \\
\hline & LAGAEILLNLSASNITIGKSETRRLLCASQSSRMIAAYVYSAAGAGESSTDLAWDGHV \\
\hline & DIHEMGALLAETPRFSTGPAWTFADVDVQRLRQERMRVGSFGDAMALSPASTPFRIVP \\
\hline & FAFDAPEGDLALARPIERFPFTPSDPARLRENCYEAYNIQVQGLARRLEASGLKKLVI \\
\hline & GISGGLDSTQALLVAAKAMDQLGLPRSNILAYTLPGFATSDRTKSNAWALMKAMAVTA \\
\hline & AELDIRPAATQMLKDLDHPFGRGEAVYDVTFENVQAGLRTDYLFRLANHNAALVVGTG \\
\hline & DLSELALGWCTYGVGDHMSHYNPNCGAPKTLIQHLIRFVAHSGDVGAETTALIDDILA \\
\hline & TEISPELVPGEAVQATESFVGPYALQDFNLYYMTRYGMAPSKIAFLAWSAWHDADQGG \\
\hline & WPVGLPDNARRAYDLPEIKRWLELFLKRFFANQFKRSAVPNGPKISSGGALSPRGDWR \\
\hline & MPSDATADAWLAELRTNAPI" \\
\hline gene & 6121..7446 \\
\hline & /gene="lpsH" \\
\hline
\end{tabular}
6121.. 7446
/gene="lpsH"
/codon_start=1
/product="putative mannose-6-phosphate isomerase"
/translation="VWGQDLAAIYPVILCGGSGTRLWPASRSDHPKQFLKLVSDRSSF QETVLRVKDI PGVAEVVVVTGEAMVGFVSEQTAEIGAWATILVEPEARDSAPAVAAAA AYVEAQDPAGVVLMLAADHHIAQPEIFQQAALTATKAAEQGYIVTFGVQPTVPATGFG YIRPGAPLLDGSVREVAAFVEKPDQATAERYLLEGYLWNSGNFAFQAATLLGEFETFE PSVAAAAKACVAGLQLEAGIGRLDREAFAQAKKISLDYAIMERTQKAAVAPAAFAWSD LGAWDAIWEASTRDGDGNAQTGDVDLHGSSNVLVRSTGPYVGVIGVNDIVVVAEPDAV LVCHRKDSQAVKTLVDGLKAKGRSIASRKSASPNGTETLVSTDGFDVELRRVPAGETL MLPVSTLQVLEGVIEMDGDVYAAGAIIALDDSVQARAIGAATLLVTKPR"

1 agggcgttgg agatagccga atgacgacgt cgtcggacg gggcgatga cccagcgca gcagatagg cagcgctca tgtccggcg ataaaatccc ggctgggtcc cgtacggce gccgcgcco gtcaagcgcc cgtcaccgcc
tgcgcgaggc ccaggggtgc cgtacggcgt tcatcagcgc cgaacagggg cggagaagcg gccaggtctc agccaacgac tattgacgcg tgggcgctcc cacgaggggc cgcaccggaa aataatgccg acgccctcca gagcraggaa tcgacgggcg caaccctcgg acgccgtcag cacgcccgaa gatcaggcgt ctggtacaca cgccgagatg gaattgaatg gcgcgcgctg ctccttgggg tcgattcccc gcccatcgga gccacagcct tcgctgtggg aggtgtttct gcggagctcc cttcagcggt ccttcatgcc cogcttcgac gctgctgatc cctgcaggat tcacctgcgc cgccgccctg tgcgttgatg ggaagaccag tgggaccgtc ccatcagggc ccgaataggg

2741 g 1342 t
2 others
gaccgccacg atcgggattg cgctgcggcg cccggccagc aatcgccagg gcgccagcga caggaactgg gaggtgcagg tcgcgaggcg gccccccccc taagaggaaa gatttttgcg accogcgcta gttcgagacg tcttcagggt gactggcgac cggcgtctcg ccaagaagag atgatcagca tggaacgggc gcggtgttgc acgatggccc atggcggtca gcaagcaagg ccgtagctca tcggctccac ctccgtccgc gggttcgagg gcaggcatgg gtttcggacc ggactccacc gatgccgaac gatgaacttg ggcgacgcgc gaacagctcc gtcgcgcgcg ctcgccgccc ggtgcggacg ttgcagggcc caggttcgga ttcgccgaga gcccaggcgg gatgatcccg
cctgccgga atggtcgctg agcatgccgc aatccgaaga tcagggctgc atcgcggtgt gtcgcgcaga acagcgcgtt aaggagatcg tgaaagacca cgttactgcc gttcggcggc ctttagccgc ctttgccaga cctcaccttc cccgcccctc cgatcagcgt gaacaacgat gaagcaccgg ggcggttgat accaaaggag tgggtttccc agccgcttga gatggtagag caaggacctc attttcttgc aacagcggcg ggccagggtc gcgctatcga cccgcgcagc tctttataca ccgttctcgc accggggcct cagcagggcg t gcgacggcga tcggccgcca tgcggggtct gccttccagc atggcgcgca ccgatggagt atggccgcgc ccgtgcaggg
gcaggagcgc gccaaaccac ccacgatggg gatgaccagg agcgaaggcc gccgtggacg ccaaggtcgg cgcgaaccgg cggcggaggt tagaaagggc tctgcggtcg cttgatgagc agagcgctcc ccagatccaa tcgcaaaggt cgagctgagg ccaggtcaat atccttcgtc cagagcaatc ccttacccaa gcgtttcgtc aacggcttgg attggggcag gttttggggc ccgaacgcgc gtgcgacatc gcggtttcgc cagccgccag aaggcgatga gggccgcatt agatagaggc ggccgtcggc ggggtcaggc gcaccacgag gccttgaagc gcaggcagca cgggctgatg tcgacgccgc tccggtcacg cgatccagga cacgtcgaac gcgaccagcc gctgagcagg ccgccgagga gtccggactt tccgcttctt cgagcgcgct ttggggccgt cgcctcgttc gcaatgagga ccttagcctc gatcacgacc ctaacgtcgc gtgcgcccet cctcgccggc aagatcggcc aggcgcgagc ctgctctgta tccgccctgg cccttattct gatttcaggc cagagccgct ggcgctcgaa cggagccgag caatgaagcg ctcccagccc tgccgatgac ggcggcctgg tggagaccac gcgggtcggc cgccgacctc ggtgcccgag gcagctçta ggcgcccttg tctggcgcga cagggtcatc actcggcggc ctcgacggca agctggcaac gtgctcgacc cgtgggtcat cacgtggacg ggctgtagtc ggcgaaggcc ccatgccgtt catggccgcg

2581 gccatgccga 2641 aacgcgccca 2701 atcatctcgg 2761 gcgttgaccg 2821 ttcgccggca 2881 agcttggcct 2941 ttggcgatgt 3001 gcggcgatct 3061 cccgcgccct 3121 3181 3241 tcgatggtgg 3301 gcgatgctga 3361 caggtgcggt
gccatgccga ggcgtgtgat atctccttca gagccgtgac tcgaatttca ccctggtggc gccatcttga cgcgaggggc cgtgcggaac cagacttatg tcttctcgcc tggcggatcc agggcgtggc ttctgcagca ccagcgcagg tctacaatac tctgcccaa caggcaagac ggggcgaggg cgaccccgcc ccagcaacat cgcggatgat tggcctggga ggttttcgac agcggatgcg tccggatcgt tcgaacgctt cctacaacat tcgtcatcgg ccatggacca cgacgtccga ccgccgagct tcgggcgcgg cogactatct tgtcggagct accccaactg cgggtgacgt cgccggagct ccctgcagga ccttcctggc ccgacaacgc tgaagcggtt cgtcgggcgg
actcacgcac tgccettgac ggatcgccgg gcttggtctc gctcgccctt cccaggcctt cgtcgggcac cgttgtcgaa tcgagatcag gggccgcagc ccttgaagcg tgttgttgtc tcgcctcatg ggtcgacgag cggcggtggc gcacttccgg tcgtcatggc cggccgacag ggaacttgcc cggacttcgc tgggcgaaac gcactcgcat gcctgtcgtg ctcagtttca ctaccgtcac cgccgccaat tgtggtcgtg agaggcgttg cctggcgccg cgcgatcgtc ctatcgcgag cctgaccctg cgtcgccccg cagcaccgcc caccatcggc cgcggcctat cggccatgtc gggcccggcc cgtcggcagc tccgttcgcc tcccttcacg ccaggtccag tatttccggc gctgggcctg tcgcaccaag cgatatccgg cgaggcggtc gttccgtctg ggcgetgggc cggtgcgccc cggcgecgag ggtgcccggc cttcaatctc ctggagcgcc tcgccgcgcc cttcgccaac cgcgttgtcg
gccatagtgg cagggtgttg gatcaggtgc cagggccttg catggcgcgg gcggaccttg ggtgaagggc cagggtgtag cgtcttgcac gatcttgccg cgcgacctgg gtcgaagagg gctgacgccc gtcagagccg caggccctgg gtggcccggg cttgaagccg cacgaagcgg ccataggacc cttgtgcacg gggcatgggg gggaaccccc gacgctatgc gcataacccg ggtttcgtcc gctcagaacg ttcccggaac ctggacgcgg atgatcgtgg atccagggcg ttctacgagc gccggccaga ttcacggtgg caggccttgg aagtccgaaa gtctattcgg gatattcacg tggaccttcg ttcggcgacg tttgacgcgc ccgtccgacc ggcctggcgc gggctcgact ccgcgcagca tccaacgcct cccgcagcga tatgacgtca gccaaccaca tggtgcacct aagacgctga accacggctc gaggcggttc tactacatga tggcatgacg tacgacctgc cagttcaagc ccgcgggggg
acatagcggc cttcgtagcc gggcgcgtcg ttcgagccgg tcaggtcggc cgagccgccg tccagggccg agccggagtg gacgcgggtg gcgatgtggg cgtccagcgc ctcgaaggcg gtgaagtcgg cccccttggg cgaggcggcc gcgccgcgac ggccgacgct cttccaggcc gcagcgtccc agcccatggc cacgcgcgag ccgtggctgt gggggtcgcc ttccttgggg gcgatcatgg tcgggcggtc ctgcttggtg tggtcgtggc cgtcgacgac cttgaccgcc tcgccggtct cggcgatggt ggccaccccg accgtcagct tcgagagctt caggcggccg tccatcaggc atccgtcgcc ggcgatcacc tagcgggcgg ccaggtgcgc ctcggccatg cccagcggac cggtcgtggt ctcgacgccg gtcagcgccc cccactgacg gaagttctcg gtcagatgca gcagggaata gagcagcatc tcgcggtcgg cccagtcagg cttagacgcg gtcgccacgt cggccatgcc catcggcatg gcgtccatgg agaggacgcg gatcgcgtcg gcttccgtct ttatatgttt tgcagggctg gggggtcaac ccgcgcaggg cggctaaggc aacatcgtcc gtcggcgtta taggtggagg gaaaggccgc tcccttgggt agtccgtcgt gggtcgcgac cgccgttccg aaggtcaagc tcgtggctct ggcccgcgag gcccatgcgg tggggctgac gggctacacg atcgacgacc ttgaggccgc gatcgccacc ctgaccgagg tcggaggtcc gctgcgcgac gcaggccgcc gcaaggtgct gggcgtggtc ccgaaaagct gtcgctggtt cacgccgggc gccggcttga ccgttccgtt cgggaccgac attctgttcc gcgtcgagat ctgcgaggat gtctggaccc cgggggccga gatcctgctg aacctgtcgg cgcggcgtct gctctgcgcc agccagtcgt cggccggcgc gggcgagagc tcgaccgacc agatgggcgc gctgctcgcc gagaccccgc ccgatgtgga cgtccagcgc cttcggcagg ccatggcgtt atcgccggcc tcgaccccgt ccgagggcga cagccaggct ggcgcctcga ccacccaggc acatcctggc gggcgctgat cccagatgct cottcgagaa acgccgccct acggcgtcgg tccagcacct tgctggacga aggcgaccga cccgctacgg ccgaccaggg ctgagatcaa gctcggctgt actggcgcat
cctggcgctg gcccggccga gcgcgagaac tgctacgagg ggcttcgggt ctcaagaagc tctgctggtg gcggccaagg ctacactctg ccgggctttg gaaggcgatg gccgtcaccg caaggacctc gaccacccgt tgtgcaggcc ggcctgcgaa ggtcgtcggc acgggggacc cgaccacatg agccactaca gatccgcttc gtggcccatt catcctcgcg accgagatct gagcttcgtc ggcccctacg catggcgccg tccaagatcg cggctggccc gtcggcctgc gcgctggctg gagctgttcc acccaacggg ccgaaaatct gccgtcggat gcgacagccg
```

6 0 0 1 ~ a t g c c t g g c t ~ g g c g g a a c t g ~ c g c a c a a a t g ~ c g c c g a t t t g ~ a g g a a a a c t c ~ t t c g t t a c a g ~

```

6061 ctctgtttgc ctttaagcag tcgacgcaat
6121 gtgtggggac aagacttggc tgcgatctat
6181 cgcctctggc ccgcatcgcg
6241 cggtcctcct tccaggagac
6301 gtcgtcgtga ccggcgaggc
6361 gcctgggcca caatcctggt
6421 gcggcggcct atgtcgaggc
6481 caccacatcg cccagcccga
6541 gagcagggct atatcgtcac
6601 tatatccgcc ctggcgcgcc
6661 gagaagcccg accaggcgac
6721 ggcaatttcg cgttccaggc
6781 gtcgccgccg ccgccaaggc
6841 ctggatcgcg aggccttcgc
6901 cgcacccaga aggccgctgt
6961 gacgcgatct gggaggcctc
7021 gacttgcacg gctcgtccaa
7081 ggggtcaacg acatcgtcgt
7141 gacagccagg cggtgaagac
7201 tcgcgcaaga gcgcctcgcc
7261 gtggagttgc gtcgcgtacc
7321 gtgctggaag gcgtgatcga
7381 ttggacgact cggttcaggc
7441 cgttgatcac ccggtccatc
7501 ggacgggctc ttcgataaag
7561 tcgccgtgcg cagataggcc
7621 gcgcttggcc ggtgatctcc
7681 acagtcgggc gccgtcgtcg
7741 ctcgcgatag gtcaacgccg
7801 tagcgtcggc gcggccggca
7861 gatgccccgg ctcgcagatc
7921 agaactcacg gatctggccg
7981 tctcgtcggn cagggtgcgc
gagcgaccat
tgtcctgcgg gatggtcggg cgaacccgag ccaggatccg aatcttccag gttcggggtt gcttctggat cgccgagcgc ggcgaccttg gtgcgtggcc ccaggccaag cgccoctgcg cacccgcgac tgttctggtg cgtggccgag cctggtcgat gaacgggacc ggcgggagag gatggacggc tcgggcgatc tccaggatcg gtttcgtcgg atcaggccct gccgccagca tgggtcgaga tgggtctcgg agctggcccc cgacccgcga ctgggcgcgt cagatcgggt
cgccgatttg aggaaaactc ttcgttacag agcacccgat aaggggcgaa gactaagact ccggtaatcc tgtgtggcgg ctcgggcacc cccaaacagt tccttaaact cgtgagcgat gtgaaggata ttccgggtgt ggccgaggtg tttgtgtccg agcagaccgc cgagatcggc gctcgcgaca gcgcgccggc cgtggcggcg gccggcgtcg tgttgatgct ggccgccgac caggccgccc tcaccgccac taaggcggcc cagccgacgg tcccggcgac cggctttggt ggttcggtgc gtgaggtcgc cgccttcgtc tatcttctgg aaggctatct ctggaacagc ctgggcgagt tcgagacctt tgaaccgtcg ggcctgcagc tggaggccgg catcggccgc aagatctcgc tcgactacgc catcatggag gcgttcgcct ggtcggacct tggggcctgg ggcgacggta acgcccagac gggcgacgtc cgctcgacgg gtccctatgt cggcgtgatc cccgacgcgg tgctggtctg ccatcgcaag ggcctgaagg ccaagggccg ctccatcgcc gagaccctgg tctcgaccga cggcttcgat accttgatgc tgccggtatc gacgcttcag gacgtctatg ctgcgggcgc gatcatcgcc ggggcggcga ccttgctggt cacgaagccg ccaaggcgat atggtagaac gagctggccg gctggtactt gtcgcgccag aggccgggga cagcggcggc ggcggccatg tcccagtagc cggccgcctt gatccgctcg gtttggggcc aatcatcgag cagggcgttg atcgccacgc cgtcatcgat catgcgcaag gccgccgccg agcgcatcag cagccagccc cattcgaact cgcctggcgc ggggttccag tcgaggtcga gaatgaacct ggagagcgcc agttcggcga cc

```

 /organism="Caulobacter crescentus"
 /strain="NA1000"
 gene
CDS
/gene="orf8"
913..2295
/gene="orf8"
/codon_start=1
/product="putative Glucose-6-Phosphate 1-Dehydrogenase"
/translation="MLLPSLYFLELDRLLPHDLRIIGVARADHDAASYKALVREQLGK
RATVEEAVWNRLAARLDYVPANITSEEDTKKLAERIGAHGTLVIFFSLSPSLYGPACQ
ALQAAGLTGPNTRLILEKPLGRDLESSKATNAAVAAVVDESQVFRIDHYLGKETVQNL
TALRFANVLFEPLWDRSTIDHVQITIAETEKVGDRWPYYDEYGALRDMVQNHMLQLLC
LVAMEAPSGFDPDAVRDEKVKVLRSLRPFTKETVAHDTVRGQYVAGVVEGGARAGYVE
EVGKPTKTETFVAMKVAIDNWRWDGVPFFLRTGKNLPDRRTQIVVQFKPLPHNIFGPA
TDGELCANRLVIDLQPDEDISLTIMNKRPGLSDEGMRLQSLPLSLSFGQTGGRRRIAY
EKLFVDAFRGDRTLFVRRDEVEQAWRFIDGVSAAWEEASIEPAHYAAGTWGPQSAQGL
ISPGGRAWKA"
gene
CDS
/gene="orf9"
2298..2996
/gene="orf9"
/codon_start=1
/product="putative 6-phosphogluconolactonase"
/translation="MPFTPIKLEAFGSREDLYDAAASVLVGALTTAVARHGRVGFAAT
GGTTPAPVYDRMATMTAPWDKVTVTLTDERFVPATDASSNEGLVRRHLLVGEAAKASF
APLFFDGVSHDESARKAEAGVNAATPFGVVLLGVGPDGHFASLFPGNPMLDQGLDLAT
DRSVLAVPPSDPAPDLPRLSLTLAALTRTDLIVLLVTGAAKKALLDGDVDPALPVAAI
LKQDRAKVRILWAE"
2997..4811
/gene="orf10"
CDS
gene
2997..4811
/gene="orf10"
/codon_start=1
/product="putative phosphogluconate dehydratase"
/translation="IAMSLNPVIADVTARIVARSKDSRAAYLANMDRAIENQPGRAKL
SCANWAHAFAASPGVDKLRALDPNAPNIGIVSAYNDMLSAHQPLEAYPALIKDAARDV
GATAQFAGGVPAMCDGVTQGRPGMELSLFSRDVIAMATAVALTHDAFDSALYLGVCDK
IVPGLVIGALTFSHLPALFVPAGPMTSGLPNSEKARIRALYAEGKVGREELLAAESAS
YHGPGTCTFYGTANTNQMLMELMGFHLPGSAFVHPNTPLREALVKESARRVAAVTNKG
NEFIPVGRMIDEKSFVNGVVGLMATGGSTNLALHIIAMAAAAGVQLTLEDLDDISKAT
PLLARVYPNGSADVNHFQAAGGMAFVIRELLKAGLVHEDVQTIAGAGLSLYAKEPVLE
DGMLTWRDGAHESLDPAIVRPVSDPFSKEGGLRLMAGNLGRGVMKISAVKPEHHVIEA
PCAVFQEQEDFIAAFKRGELDRDVVVVVRFQGPSANGMPELHNLSPSISVLLDRGHKV
ALVTDGRMSGASGKTPAAIHVTPEAAKGGPLAYVQDGDVIRVNAETGELKIMVDEATL
LARTPANVPASKPGFGRELFGWMRSGVGAADAGASVFA"
5856..6926
/gene="lpsI"
CDS
5856..6926
/gene="lpsI"
/codon_start=1
/product="putative repressor similar to LacI"
/translation="MAKYSPKRANRTGEGRKLSAKVTIHDVARESGVSIKTVSRVLNR
EPNVKADTRDRVQAAVAALHYRPNISARSLAGAKAYLIGVFFDNPSPGYVTDVQLGAI
ARCRQEGFHLIVEPIDSTADVEDQVAPMLTTLRMDGVILTPPLSDHPVVLAALEREGV
AYVRIAPGDDFDRAPWVSMDDRLAAYEMTKHLVDLGHKDIAFIVGHPDHGASHRRHQG
FLDAMRDSGLRVRDDRVAQGWFSFRSGFEAAEKLLGGADRPTAIFASNDDMALGVMAV
ANRLRLDVPTQLSVAGFDDTPGAKITWPQLTTVRQPIHAMAGAAADMLMQGVEREEGA

```
\begin{tabular}{ll} 
gene & PPPSRLLDFELVVRESTGPASH" \\
CDS & \(7224 . .9041\) \\
& /gene="orf11" \\
& \(7224 . .9041\) \\
& /gene="orf11" \\
& /codon_start=1 \\
& /product="putative \(1,4-B-D-g l u c a n ~ g l u c o h y d r o l a s e " ~\) \\
& /translation="MLPRRFAFASALALTIACGSAGVVLAQTPPNATANPAVWPMSAS \\
& PAAITDAKTEAFIAQLMSRMTVEEKVAQTIQADGASITPEELKKYRLGSVLVGGNSAP \\
& DGNDRASPQRWIEWIRAFRAAALDKRGDRQEIPIIFGVDAVHGHNNVVGATIFPHNVG \\
& LGAAHEPDLIRRIGEVTAKEMAATGADWTFGPTVAVPRDSRWGRAYEGYGENPEIVKA \\
& YSGPMTLGLQGALEAGKPLAAGRVAGSAKHFLADGGTENGRDQGDAKISEADLVRLHN \\
& AGYPPAIEAGILSVMVSFSSWNGVKHTGNKSLLTDVLKERMGFEGFVVGDWNAHGQVE \\
& GCSNTSCAQAYNAGMDMMMAPDSWKGLYDNTLAQVKAGQIPMARIDDAVRRILRVKVK \\
& AGLFEDKRPLEGKLELLGAPEHRAVAREAVRKSLVLLKNEGVLPLKSSARVLVAGDGA \\
& DDIGKASGGWTLTWQGTGNKNSDFPHGQSIYAGVAEAVKAGGGSAELSVSGDEKQKPD \\
& VAIVVFGENPYAEFQGDITSIEYQAGDKRDLALLKKLKAAGIPVVSVFLSGRPLWTNP
\end{tabular}
BASE COUNT 1492 a 3016 c \(3052 \mathrm{~g} \quad 1480 \mathrm{t} \quad 1\) others

ORIGIN

1
61 121 181 241
ggacgcgctg aacaccatca acgcgacccg cac cgagcgtcgt ctggctaccg ggatctggtc gaaaccgaca gaagcaacgc gcctggccgg caggacaggc ggggcgctca ctacagtctc gccgatgacg catcgagaca gccagcaacc cgcggtgtcc gcgtccgact gatcggtcgc ctcaaggaac gggcggctag cgctcgctgc tgaaagcgcg cctcaaacag gttagagccc cgcaggcatg tcggcgagaa ggatgctgct ggatcattgg agcaactggg tcgactacgt tcggtgcgca cttgccaggc agccgcttgg tcgacgagag tgacggccct accatgtgca acgaatacgg tcgccatgga tgctgcgctc agtacgtcgc agcccaccaa acggcgtgcc tcgtccagtt gcgccaaccg acaagcgtcc cgtttggcca tccgcggcg tccgcggcga ccgtacgctg tcgacggcgt ctcggcggcc t
acgacgatc ctgccgcccg ccctgaacgc gatgggtctg ggacgctatg acgcggcgct cgggcaggag atccgcggcg agatcgcttg gctctatgag cggtccctgg gcgaccgctt ggaggcgagg ttgcitgcgcg cctcggtggc cggtcgcctg cgcgcccgct ggtcgggctt tcgcgtagcg ctacagggca tgtcgatggg ttccgccgac aacgaggcct tcaatggctg aggacaaccg gccgggtcac ccgcccgcgc ggttcgcgcg cgttagaagg gcggcagggc tttatggaag gcagggcgtt tccgaatggc accggattgg tcttatggcg ggcgccgggc cgatccgagg gcggcgaagc gcggtcgctt gttgtcatag ggtggacgac attggctaag gtcttggtgc tgctgggcgg agcgggcgat tatttcctgg agctcgaccg actgctgccg gccgaccatg acgcggccag ctacaaggcg acagtggagg aggcggtttg gaatcgcctc atcaccagtg aggaagacac caagaagctg gtcatcttct tctcgctgtc gcccagcctc gccggcctga cggggcccaa cacgcgcttg gaaagctcca aggccaccaa cgccgccgtc cgcatcgacc actatctggg caaggaaacc aacgtgctgt tcgagcccct gtgggatcgc gccgagaccg aaaaggtcgg cgaccgctgg gacatggtgc agaaccacat gctgcaactg ggcttcgatc ccgatgcggt gcgcgacgag ttcaccaagg agaccgtggc ccacgacacc gagggcggcg cgcgcgctgg ctatgtcgag ttcgtggcca tgaaggtcgc gatcgacaac cgcaccggca agaacctgcc ggaccgccgc ccgcacaaca tcttcggtcc ggcgaccgat gacctgcagc cggacgaaga catctcgctg gacgagggca tgcgactgca gtcgctgccg cgccgtcgca tcgcttacga aaagctgttc ttcgtgcgtc gcgatgaggt cgagcaggcc tgggaagagg ccagtatcga accggcgcac

2221 tatgcggcgg

2281 gcctggaagg
2341 aggacctcta
2401 gtcacggcag
2461 gcatggcgac
2521 ttgttcccgc
2581 gcgaggcggc
2641 gcgcgcgcaa
2701 gcgtggggcc
2761 gtctggacct
2821 acctcccacg
2881 tggtcaccgg
2941 tcgccgccat
3001 ccatgagcct
3061 acagccgcgc
3121 ccaagctgtc
3181 tccgtgctct
3241 tgtcagccca
3301 tgggcgcgac
3361 gccgtcccgg
3421 tggccctgac
3481 tgccgggcct
3541 ccggcccgat
3601 ccgagggcaa
3661 cgggcacctg
3721 gcttccattt
3781 tcaaggaatc
3841 tcggccggat
3901 gcggctcgac
3961 tgaccctcga
4021 cgaacggttc
4081 gtgagctgct
4141 tgtcgctgta
4201 ctcacgagag
4261 gcggcctgcg
4321 agcccgagca
4381 tcgccgcttt
4441 ggccgtccgc
4501 tggatcgcgg
4561 agacgcccgc
4621 tccaggacgg
4681 acgaggcgac
4741 gccgggaact
4801 tctttgcttg
4861 cggcgacatc
4921 gcgcctgatc
4981 cgaggagtat
5041 cgggccgatc
5101 cggcctgcgc
5161 ggcgctggcc
5221 gtcgggggag
5281 tgtccgtcgc
5341 gccggtcgat
5401 tcgggtgtcg
5461 ggcggccgct
5521 cgtagagggc
5581
gcacctgggg cctgagcatg tgacgcggcc ggtcggcttc catgaccgcc caccgacgcc caaggcctcg ggccgaggcg ggatgggcat cgccaccgac cctgagcctg cgcggccaag tctgaaacag gaatcccgtc ggcctatctc ctgcgccaac ggatccgaac ccagccgctg cgcccagttc catggagctg ccatgacgcc ggtgatcggc gacctcgggc ggtcggtcgt caccttctat gcctggctcg cgcccgccgc gatcgacgag caacctggcg agacctggac ggccgacgtg gaaggcgggt cgcgaaggaa tctggatccc cctgatggcg ccacgtgatc caagcgcggc caacggcatg tcacaaggtg cgccatccac cgatgtgatc cctgctcgcc gtttggatgg aggaagcgct ggcggtacga gagccgacgg ctccgcaagg gaccacggtc cgcgcaggcg gcgccgcgcg ggcgatctgg catggccagg gacgtcgaga gtcgagcgga gaagggcgcg tgcgccgaca gacatcgctc
accgcagtcc cccttcacgc gcctcggttc gccgccaccg ccctgggaca agcagcaatg ttcgcgccgc ggcgtcaatg ttcgettcgc cgttcggtgc accctggccg aaagctttgt gaccgcgcca atcgccgacg gccaacatgg tgggcccacg gcgccgaaca gaagcctatc gccggcgggg tcgctgttct ttcgactcgg gcactgacct ctgcccaaca gaggaactgc ggcacggcca gccttcgtcc gtggctgcgg aagtcgttcg ctgcacatca gatatctcca aaccacttcc ctagtgcacg ccggtgctcg gccatcgtgc ggcaatctgg gaggcgccgt gagctggatc cctgaactgc gccctggtca gtgacgccgg cgcgtcaatg cggacccccg atgcggtcgg aggtcatgga acgcccgctt cctatagggg tcggtgtcaa aggtccacat gttttcggaa ttggccctaa cgatcctggg agatcccgct tcgaggtgct tcctgtcggg gtgtcgaggc gcctggcgac tgaccttggg
gcccagggcc tgatctcgcc cggcggccga ccatcaagct cgaagcattt gggtcccgcg tggtcggcgc tttgacgacg gcggtcgctc gcggcacgac gccggcgccg gtctatgacc aggtcacggt cacgctcacc gacgagcgct agggtctggt gcgtcgccac ctgctcgtgg tgttcttcga cggcgtgagc cacgacgaga ccgccacccc gttcggcgtc gttctcctgg tgtttccggg caatccgatg ctggatcagg tggccgtgcc gcccagcgat cccgcgccgg ccctgaccog caccgacctg atcgtgctgc tggacggcga cgttgatccg gccctgccgg aggtccgcat cctctgggcg gagtagatcg tcaccgcccg gatcgtggcg cgcagcaagg atcgggcgat cgagaaccag ccggggcgcg ccttcgccgc ctcgccgggc gtcgacaagc tcggcatcgt ctcggcctat aatgacatgc ccgcgctgat caaggacgcc gcccgggacg tgccggccat gtgcgacggt gtcacccagg cgcgcgacgt gatcgccatg gcgaccgccg cgctgtatct gggcgtctgc gacaagatcg tcagccatct gcccgccctg ttcgtgcccg gcgagaaggc ccgcatccgc gcgctctacg tggcggccga gagcgccagc tatcatggcc acaccaacca gatgctgatg gagctgatgg atcccaacac gccgctgcgt gaggccctgg tgaccaacaa gggcaatgaa ttcatcccgg tcaacggcgt ggtcgggttg atggcgaccg tcgccatggc cgccgctgcg ggcgtgcaac aggccacgcc gctgctggcg cgcgtctatc aggccgccgg cggcatggct ttcgtgatcc aagacgtcca gacgatcgcg ggcgccggcc aggacggcat gctgacctgg cgtgacggcg ggccggtctc cgacccgttc agcaaggaag gccgcggcgt gatgaagatc tcggccgtga gcgccgtgtt ccaggaacag gaagacttca gcgacgtggt cgtggtggtc cgcttccagg ataacctgtc gccgtcgatc tcggtgttgc ccgacggccg catgtccggc gcctctggca aagcggccaa gggcgggccg ctggcctatg ccgagaccgg ggaactgaag atcatggtgg cgaacgtccc ggcgtccaag ccgggctttg gggtcggcgc ggccgacgec ggcgcctccg cggcaatcac agcggcgggc tcggcctcgt cgccctggtc gagttcgacg gtcaggaccc cgaggactac ggcacggccg aggacgccat gcatcctgac caggcggtgg tcgctgtggc gaccaatctg gactggcgga tctccgagga cgccaagctg atcaacgact tcaccgccca ggacctgcgc cagatcggcg aattgccgac tccaggcacc ggcttcggcg tcgcaggcct ggccaccgag ggtggtcacg tcgccttcgc ccgcgccctg acccggcgcc tcccggcatg gaggacctcc gctgaccgcc aagcagatca ggtgaaccgt ttctgcgcca cgcacgcggc ggtgttttca
tggacggcgg atgtggatct ccgagcgggc tcctgggctc tcgccggcgg

5641 catcgcacca cgcatcatcg acattctgga gaagagcccg ttccgcgagc gcttcgacag

5701 caaggggcgt
5761 caccgccctg
5821 gtcgttttct
5881 cgaatcggac
5941
6001 aggctgacac
6061 tctcggcccg
6121 ccagccccgg
6181 ggttccatct
6241 cgatgctgac
6301 cggtcgttct
6361 acgatttcga
6421 ccaagcatct
6481 acggcgcttc
6541
6601
6661
6721
6781
6841
6901
6961
7021
7081
7141 cgcggacacc
7201 7261 7321
7381
7441
7501
7561
7621
7681
7741
7801
7861
7921
7981
8041
8101
8161
8221
8281
8341
8401
8461
8521
8581 ttggcaaggc
8641 acttcccgca
8701 gcagcgcgga
8761 tgttcggcga
8821 ctggcgacaa
8881 tgtcggtgtt
8941 cctttgtcgc
9001 gcgacaaggc
ctgtccggct tcaccogttc atcggtgcgg tggggctcgc cggcgaggga agtctcgatc ccgtgatcgc tagcctggcg ctacgtcacc gatcgtcgag gacgttgcgc ggcggcgctt ccgtgcgccg ggtcgatctg gcaccggcgt tgatcgtgtg gctgggcggc cgtcatggcg cttcgacgac gatccacgcc gggcgegccc cccagcgtcg gacagcgctg gcgtcaggag gcacgatcac ccgcaagcgc tcaaggatcg cgcctgtgga cgccgtttgg catcgcccag cgatggcgcc cggcggcaac gatccgcgcc catcttcggc gcacaatgtc gaccgctaag gcctcgcgat gaaggcctat gctggcggcc gaatggccgc cgccggctac ctggaacggg catgggcttt cagcaacacc cagctggaag ggcgeggatc cgaggacaag cgtggcgcgc gctgaagagc ctcgggcggt cggccagtcg actgtcggtt gaacccctac gcgtgacctg cctgagcggc ggcgtggctg gggtaagccg aagaccgtct gtgcaggccg ggggcgaagg c gatgtgcagc ccgatcgact atggacggcg gagcgggaag
tgggtcagca ggccacaagg a catcaggggt gcgcagggct gcggatcgac gtcgccaatc acgccgggag atggccggag ccgccatcgc cactgacgag tccgatcgac gaaacgccat tcccctccaa cgcgecgagc cccatgctgc tcggccggcg t ccgatgtcgg ctgatgagcc tcgatcacgc tcagcgccgg ttccgcgcgg gtcgacgccg ggcetgggcg gaaatggccg tcacgctggg tcgggcccga ggccgcgtgg gaccagggcg ccgccggcga gtcaagcaca gagggcttcg agctgcgccc ggcctytacg tcggctcgtg t tggaccctga cggcccctgt cccggctcgg cgccacgact
ggtggcgct catgacagcc ttgtcatggc cggaaattga gcgccaaagt acaacacctt cggcctttgg agggcaagct gaggcggtgc gcaaatcgct tatgcag gcgtcgcgga tcgggcgatt tcaagcagaa gccgagttcc agggcgacat gcgctgctga agaagctcaa
cacgtgatcc tgcatccgca ggccgtgcgg cggtgtcgta taagtactcg ccgaagcgag cacgatccac gacgtggccc gaatcgcgag cccaacgtca gctgcactat cgccccaata cggcgttttc ttcgacaacc cgccogttgc cggcaggaag tgtcgaggat caggtcgcgc cccgccgctc agcgatcatc tgtgcgcatc gccccaggcg gctggccgcc tacgagatga tattgtaggg caccccgacc aatgcgcgac agcggcctgc tcgctcgggc ttcgaggcgg cttcgcctcg aacgatgaca tgacgttcct actcaactgt ctggcctcag ctcaccacgg catgctgatg caaggcgtcg cttcgaactc gtcgtgcggg gcaaggtggt accgcaatca atagatcaag acagtcgcca ggccagtcca gcggctgtcg agccgcttat cttcgctcgg taaacaccgc tccgcccgac cgccttcgct tccgccctgg ccagacgccg ccgaacgcca cgccatcacc gacgccaaga cgaggagaag gtcgcccaga gaagaagtac cggttgggat ccgcgccagc ccgcagcgct caagcgcggc gaccggcagg caacaacgtc gtgggcgeca gcccgacctg atccgtcgta ggactggacc tttggtccga tgagggctat ggcgagaatc gctgcagggg gcgctggaag caagcacttc ctcgccgatg ctccgaggcc gatctggtgc catcctgtcg gtgatggtct aagcctgctg accgacgtgc ctggaacgcc cacggccagg cgccggcatg gacatgatga ggcgcaggtg aaggccgggc cctgcgagtc aaggtcaagg ggagctcctc ggcgcgcctg ggtgctgctg aagaacgaag cggagacggc gccgacgaca caccggcaac aagaacagcg ggccgtgaaa gccggcggcg gcccgacgtg gcgatcgttg caccagcatc gagtatcagg ggctgcgggc attccggtgg cgaactcaac gcgtccgacg cgtggccgac gttctggtcg g



\begin{tabular}{|c|c|}
\hline \multirow{10}{*}{CDS} & /gene="orf14" \\
\hline & complement (3..719) \\
\hline & /gene="orf14" \\
\hline & /codon_start=1 \\
\hline & /product="unknown exsG-like" \\
\hline & /translation="SCGQAHAFGERRAQREDQARGREVEHRLAAEVPRQALMHHLGAE \\
\hline & PVARGRPRQGGPALFAPDQGQKPRSGRLVDVPFDRDPALGGREGAMARGVGDQLVDGH \\
\hline & VHRHRRLGAEGDGRALDLEPSRNVVGEGRQGALQNLLQLRTSPGAAGQQLVRLRERQD \\
\hline & PALEDVCKGLGRRGRAQGLAGDRLHDRQGVLHAVIQLAQXEVTVLERGGEVVIETPAL \\
\hline & QGRGRGARDHLQLAQHLGRRI" \\
\hline \multirow[t]{2}{*}{gene} & 1134. 2138 \\
\hline & /gene="lpsL" \\
\hline \multirow[t]{11}{*}{CDS} & 1134..2138 \\
\hline & /gene="lpsL" \\
\hline & /codon_start=1 \\
\hline & /product="putative glycosyltransferase" \\
\hline & /translation="EPEFRRIDGEGGVVPARHGLARLGPVHGDRQLLAELHGVDGERL \\
\hline & VGLGFDRIEPGLAVGGQDVADVVAAEVADPRLHLHQPVQRHHLAALRREQGVVQARAE \\
\hline & LAGHQTRPREETRLLVPAQGLGAHQGEAGLLGQALDLGLVFELAEGLGRAHAAPADEQ \\
\hline & HVGVTALGEAQGLALKVPAQEVVEHIVAVQHVRQQGRADLDGFVARVVGDDLLVGQHH \\
\hline & PHDARHIAGGGPGQQQRRGDPRRVQGADHEQLRVHLGQPVTPDEVEVGDHEGPVEPVR \\
\hline & HRRVEIPGLARNVVLVPVLDVIGIGALGVDELVVQLQVRAGAFGHHAFGHQQVDIGRV \\
\hline & E" \\
\hline
\end{tabular}
BASE COUNT \(324 \mathrm{a} \quad 723 \mathrm{c} \quad 757 \mathrm{~g} \quad 337 \mathrm{t} \quad 1\) others

1 atgatccgec
61 ccctggagag 121 tgctgcgcga 181 gccagaccct
241 tcctggcgct 301 tggaggagat 361 aggtccaggg 421 tccacgagct 481 tcgcgatcga 541 gcgaacaggg 601 tggtgcatca 661 cgggcctggt 721 gaccgcccgg 781 gctcggcgac 841 ctggctgcgc 901 gatggtgttt 961 cggctatggc 1021 caacgccggc 1081 ctgggatggg 1141 1201 1261 1321

\section*{1561 tcgagctcgc}

1621 gcgtcaccgc
1681 tggaacacat 1741 tcgtcgcgcg 1801 gccacatagc 1861 agggcgcgga
gggcgtctc aatgactacc t gctggatcac cgcgtgaaga a gcgcacgacc ccgtcgcccg ctcgcaggcg cacgagttgc t tctgcaacgc accetggcga c cccggccgtc gccttcagcg c gatcgccaac gccgcgcgcc a atggaacgtc gacaaggcga cgggcccgcc ctgtcggggc c gggcctggcg cgggacctcg cttcacgctg cgcgcgccgc gtcatgatcg tcgaggatga atggggtgtg aggtggccgg gatcatccct cgcccgacgg c ccggtcgccg aacgcctgcg c gacctgccgc gcgcgggctt gcgctgcgcc tggccgtcga gagcto atcatccaaa tatcgacggg gaagggggcg t ccacggcgat cgccagcttc cctggggttc gatcgaatag a cgtggcggcg cctggcagcc c ccagacgcgc c ccagggtgag \(g\) ggaaggactg g ccttggtgaa g agttgcggtt c ggtcgtaggt g cgggggcggt c tcacgaacag c
tgcaggtggt tcgccgcctc acaccctggc aggcctttgc tgaccogccg cttcgccga ccgagacggc atggcgccet ccgctccggg cgcccacgeg gcggccaggc tctccgaacg ggccctggtg ctcgttcggc cgcggtgctg cgagcagggc cgagtcggtg gggcgctgga tcgtcccagc tggcggaact agccgggcct atccgcgact agcagggcgt agacgcgcct tgggccaggc acgccgcccc tcgcgctcaa ggcagcaggg tggtcgggca agcagcggcq atctcggtca
cgcgcgcgcc acggcctcgg gctcgagcac ggtcacttcm gatcgtgcag tcgatcaccc agacgtcttc gagagccgga cgcctgggga cgtccgcaac cgacgttgcg ggacggttcg ggtgtcggtg cacatggcca ctcgaccccc caaggccggg gcttctgacc ctgatctggc caacgggttc ggctccaaga ggtgctcgac ttcgcgccca catgagcctg gccgcatgaa gccatgatgg tcgaggacat gccgtcgacg ccgccctggc gacgtcaata tcggcggcga gtgccgttcg tcttcgccac caggtgctgg ccaagccgat atcggctaga accccttggc tgtctgatct ttagagcctg ccgccatggc cttgcgcgcc ccacggggtc gatggtgaac ggccgtcggc gggcaggatg gcacctccac cagccagttc tgtgcaggcc cgagccgaac gctggtccca gcccagggtc cctcgatctc ggcctcgttt ggctgacgaa cagcatgtcg ggttccagcg caggaagtcg ccgcgccgat ctcgacggct gcatcatccg cacgatgcgc cggtgatccc cgccgcgttc gccagtgacc ccagacgaag




```


[^0]: ${ }^{1}$ X-denotes any amino acid; h-denotes hydrophobic amino acid; brackets indicate alternative amino acids at a single position

[^1]: ${ }^{2}$ For clarity the ORFs will be referred to as genes and the corresponding deduced protein sequences as proteins even though it is acknowledged that neither assumption has been proven.

