Analysis of the S-layer Transporter Mechanism and Smooth Lipopolysaccharide Synthesis in *Caulobacter crescentus*

by

Peter Alan Awram

B.Sc., The University of British Columbia, 1992

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES (Department of Microbiology and Immunology)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA November 1999 © Peter Alan Awram, 1999 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

MICROBIOLOGY Department of

The University of British Columbia Vancouver, Canada

Date <u>Pec 1 / 99</u>

Abstract

C. crescentus is a Gram-negative bacterium that possesses an hexagonal array called the S-layer that covers the entire outer surface of the bacterium. This array is composed of an estimated 60 000 copies of the 98 kDa protein RsaA. RsaA secretion is directed by a C-terminal secretion signal located in the last 82 amino acids of the protein. Once RsaA is secreted from the cell, it assembles into the S-layer and attaches to the outer membrane via a specific species of smooth lipopolysaccharide (S-LPS). The mechanisms required for the secretion of RsaA and the synthesis of the S-LPS were examined in this thesis.

Tn5 mutagenesis of wildtype *C. crescentus* demonstrated the presence of two genes, *rsaD* and *rsaE*, 3' of the *rsaA* gene that were required for transport of RsaA. These genes were isolated and are capable of complementing the Tn5 mutations 3' of RsaA *in trans*. The resulting proteins of *rsaD* and *rsaE* belong to the type I secretion family that uses three components: an ATP Binding Cassette-transporter (RsaD), a Membrane Fusion Protein (RsaE) and an outer membrane protein (OMP), to secrete proteins through both membranes of Gramnegative bacteria. The OMP, RsaF, of the Rsa system was found by screening the partial *Caulobacter* genome sequence for sequence identity to other type I OMPs. The gene for RsaF is found 5 kb 3' of *rsaE*. Deletion of the N-terminus or C-terminus of RsaF prevents the Rsa secretion mechanism from functioning.

The secretion of the S-layer subunits in a number of other *Caulobacter* species was also examined. A partial ORF from FWC27 with 44.6% identity to RsaA was isolated. In addition, the ABC-transporter components from FWC6, FWC8 and FWC39 were isolated. These components were >95% identical to

ii

RsaD. These results were used to explore the evolutionary relationships between the different *Caulobacter* species.

Eighteen Tn5 mutations resulting in the inability of the S-layer to attach to the surface of the bacterium were also isolated. Southern blot analysis demonstrated that twelve of these insertions were linked to the Rsa transporters. The Tn5 insertion points were isolated and sequenced allowing identification of several putative genes involved in S-LPS synthesis from the *Caulobacter* genome sequence. A total of twelve open reading frames (ORFs) were found by Tn5 mapping and two more were found 3' of *rsaE*. Six of these putative genes may code for proteins involved in the synthesis of sugar residues including five that make perosamine. Five of the genes appear to be glycosyltransferases involved in forming the linkages between sugar residues in the O-antigen. One of the genes appears to be a repressor, while the remaining genes are unidentified. These data suggest that the major component of the O-antigen is perosamine and that a number of different linkages are made between the perosamine residues.

iii

TABLE OF CONTENTS

Abstract	ii
Table of Conte	nts
List of Tables	
List of Figures	vi
List of Abbrevia	ations
List of Species	abbreviations
Acknowledgen	nentsix
CHAPTER 1	Introduction
CHAPTER 2	Materials and Methods
CHAPTER 3	Secretion of RsaA 24
CHAPTER 4	Identification of the Outer Membrane Protein Component of the RsaA Transport Complex
CHAPTER 5	Identification of the S-layer Subunit and Transporter genes in Freshwater <i>Caulobacter</i> species
CHAPTER 6	Identification of Genes involved in the Synthesis of the O-antigen of <i>C. crescentus</i>
CHAPTER 7	Conclusion and Future Considerations
Bibliography	
Appendix 1	RAT fragment - <i>rsaADEF</i> and <i>lpsABCDEF</i> 113
Appendix 2	ATC15252 S-layer subunit and transporter genes 122
Appendix 2	Sequences of <i>lpsGHIJK</i> , orf1 and orf2

,

iv

.

List of Tables

Table 2-1	Strains and Plasmids used in this study	17
Table 2-2	Primers used for PCR for this report	19
Table 5-1	Differences between the Rsa genes found in lab strains	55
Table 5-2	FWC species secreting alkaline protease	56
Table 5-3	Southern Blot Banding patterns of different FWC species	57
Table 5-4	BLAST alignment of RsaA with itself	62
Table 6-1	Southern blot of Shedder mutants using EcoRI	71
Table 6-2	Southern blot of Shedder mutants using Sstl	72
Table 6-3	List of shedder mutants	73
Table 6-4	Deduced proteins involved in O-antigen synthesis	77
Table 6-5	Characteristics of the S-LPS synthesis genes	79

List of Figures

Figure 1-1	Shed S-layer from C. crescentus	2
Figure 1-2	Developmental cycle of C. crescentus	2 3 5 9
Figure 1-3	3-Dimensional reconstruction of the S-layer	5
Figure 1-4	Type I secretion system	
Figure 2-1	Plasmids containing NA1000 chromosomal DNA	18
Figure 3-1	Colony Immunoblot	25
Figure 3-2	S-layer negative Tn5 insertions	26
Figure 3-3	Complementation of Tn5 mutants with rsaA	27
Figure 3-4	Genes 3' of <i>rsaA</i>	28
Figure 3-5	ClustalW alignment of ABC-transporters	29
Figure 3-6	ClustalW alignment of MFPs	30
Figure 3-7	Complementation of transport deficient mutants	32
Figure 3-8	Expression of <i>prtB</i> in <i>C. crescentus</i>	34
Figure 4-1	Alignment of OMP components	41
Figure 4-2	The two possible OMPs	43
Figure 4-3	Comparison of possible Rsa OMP components	45
Figure 4-4	DNA surrounding <i>rsaA</i>	48
Figure 4-5	OMPs similar to Rsa(973)	49
Figure 4-6	AprA secretion from C. crescentus	50
Figure 5-1	Alignment of partial FWC RsaD genes	58
Figure 5-2	ClustalW alignment of FWC 27	60
Figure 5-3	Dendrogram of FWC species	66
Figure 6-1	Shed S-layer from C. crescentus	69
Figure 6-2	Colony Immunoblot	69
Figure 6-3	S-LPS of shedding Tn5 mutants	70
Figure 6-4	S-LPS synthesis genes linked to <i>rsaA</i>	75
Figure 6-5	Genes interrupted by Tn5 insertions in shedder mutants	76
Figure 6-6	ClustalW alignment LpsB	81
Figure 6-7	ClustalW Alignment of LpsD and LpsE	82
Figure 6-8	ClustalW alignment of LpsF	83
Figure 6-9	ClustalW alignment of LpsJ	85
Figure 6-10	ClustalW alignment of LpsK	87
Figure 6-11	Perosamine Synthesis Pathway	90

List of Abbreviations

HCIhydrochloric acidKDOketodeoxy octulosonic acidkDakilodaltonKmkanamycin
LPS lipopolysaccharide
min minute
MFP membrane fusion protein
mg milligram
ml millilitre μl microlitre
μg microgram
NaCl sodium chloride
NeuNAc N-acetyl neuraminic acid (sialic acid)
NAD nicotinamide adenine dinucleotide
NMR nuclear magnetic resonance
N-terminus amino terminus
NTG 1-methyl-3-nitro-1-nitrosoguanidine
O-antigen antigenic determinant found on the outside of cell consisting of repeating units of oligosaccharides
ORF open reading frame
OMP outer membrane protein
PAGE polyacrylamide gel electrophoresis
PCR polymerase chain reaction
PYE peptone yeast extract
RNA ribonucleic acid
S-layer surface layer S-LPS smooth lipopolysaccharide of <i>C. crescentus</i>
SDS sodium dodecyl sulphate
Sm streptomycin
Tc tetracycline
T _m Melting temperature of two strands of DNA
TIGR The Institute for Genome Research
Tris Tris (hydroxymethyl) methylamine
UV ultra violet light

List of Species Abbreviations

B. pertussis
B. melitensis
C. crescentus
C. fetus
C. jejuni
E. chrysanthemi
E. coli
P. aeruginosa
S. enterica
S. marcescens
V. cholerae
R. meliloti
R. leguminosarum

Bordetella pertussis Brucella melitensis Caulobacter crescentus Campylobacter fetus Campylobacter jejuni Erwinia chrysanthemi Escherichia coli Pseudomonas aeruginosa Salmonella enterica Serratia marcescens Vibrio cholerae Rhizobium meliloti Rhizobium leguminosarum

Acknowledgements

I would like to acknowledge myself for persevering throughout this process. I would further like to thank my wonderful girlfriend Bianca Kuipers for being supportive during this time. I would like to thank John Nomellini and Stephen Walker for helpful suggestions and thoughtful insights and the occasional gel along the way. I would also like to thank all my 'partners in pain' that started with me.

Chapter 1 Introduction

This thesis focuses on the secretion and attachment of the S-layer of *Caulobacter crescentus*. S-layers are not well understood and have not been studied extensively even though they are found on a wide range of prokaryotes (Messner and Sleytr, 1992; Sleytr *et al.*, 1993; Sleytr and Sara, 1997). Consequently, there is a need for basic research to describe these structures. Despite this lack of study, some research has been done on the commercial aspects of S-layers (Sleytr *et al.*, 1997a). The research presented here is applicable to both of these areas. It is of general interest to know the methods of secretion and attachment of the S-layer and this information can also be applied to the commercial aspects of S-layers.

Evidence is presented that the S-layer subunit of *C. crescentus* is secreted by a type I secretion mechanism and that the S-layer subunits of a number of other *Caulobacter* species are probably secreted by an almost identical type I mechanism. Also presented are several putative proteins involved in the synthesis of the Oantigen that support the predicted composition of the O-antigen as being a polymer of a 4,6-dideoxy-4-amino-hexose with complex linkages (Walker *et al*, 1994; Smit unpublished). Furthermore these data suggest that the 4,6-dideoxy-4-amino-hexose is perosamine and that a number of glycosyltransferases provide complex linkages between the perosamine residues.

The S-layer of *C. crescentus* can be used as a biotechnology vehicle. The Slayer is a 2-dimensional array made from approximately 60 000 copies of the protein, RsaA (Smit *et al.*, 1981). This layer covers the entire outer surface of the bacterium and makes up about 10% of the cell's protein. Therefore, RsaA must be secreted, passing through both membranes, from the Gram-negative cell. An uncleaved C-terminal secretion signal directs this secretion of RsaA (Bingle *et al.*, 1999; Bingle *et al.*, 1996; Bingle *et al.*, 1997b; Bingle and Smit, 1994). Once secreted, the S-layer is attached to the outer membrane via the smooth

lipopolysaccharide (S-LPS) (Walker *et al.*, 1994). If the S-LPS is disrupted or absent the S-layer detaches from the membrane and aggregates into particles that are up to 90% pure RsaA making it easy to collect large amounts of relatively pure protein (Fig. 1-1). It has been found that the N-terminus of RsaA contains the attachment domain and a C-terminus Ca²⁺ binding domain is responsible for aggregation of the protein (Bingle *et al.*, 1997b).

To produce recombinant proteins it is desirable to produce large quantities that are easily isolated from the rest of the cellular protein. The properties of the *C. crescentus* S-layer and secretion apparatus allow this. The C-terminal secretion signal and Ca^{2+} binding domain can be fused to a desired protein and recombinant proteins can then be secreted from *C*.

Figure 1–1. Shed Slayer from *C. crescentus.* EM photograph of Slayer shed from a strain with defective S-LPS. (Photo courtesy John Smit)

crescentus by the RsaA secretion signal. The proteins aggregate together in the medium where they can be filtered away from the cells. This process has been shown to be viable and recombinant proteins have been expressed and purified from *C. crescentus* (Bingle *et al.*, 1997a).

S-layers also have other uses such as the expression of epitopes in S-layers to be used for recombinant vaccines. Another aspect that is being examined is to use the regular arrays formed by the S-layer as templates for the deposition of metal or silicon atoms to allow creation of circuitry finer than is allowed by current integrated circuit etching technology. It would also be possible to use the arrays as surface supports to which biologically active molecules could be attached (Sara and Sleytr, 1996a; Sara and Sleytr, 1996b; Sleytr *et al.*, 1997a; Sleytr *et al.*, 1997b; Sleytr and Sara, 1997). Obviously, all these uses could be applied to the S-layer of *C. crescentus.*

To increase the utility of *C. crescentus* S-layers for such applications it is vital to understand how the RsaA protein is secreted and attached to the surface. For example, it is necessary to understand the conformation of the protein when it is

passing through the secretion apparatus. This will determine what kind of foreign proteins or epitopes can be secreted and are capable of forming aggregates using the RsaA secretion pathway. To answer some of these questions this thesis examines the RsaA secretion and S-LPS synthesis pathways.

C. crescentus is a Gram-negative, motile eubacterium found in soil and aquatic environments including drinking water. The non-pathogenic bacterium

Figure 1–2. Developmental cycle of *C. crescentus* Sessile cells attached to the surface via the holdfast bud off swarmer cells which move to a new location where they lose their flagellum and grow a stalk to attach to the surface again. (Figure courtesy lan Bosdet.)

derives its name from the crescent shape of the C. crescentus cells. undergoes a dimorphic developmental life cycle (for reviews see Brun et al., 1994; Gober and 1995; Marques, Poindexter, 1981; Shapiro, 1976; Shapiro and Losick, 1997) during which it switches between а motile (swarmer) phase and a sessile stalked phase (Fig 1-2). In both phases

the bacterium is completely covered by the S-layer (Smit *et al.*, 1981). In the swarmer phase the cell expresses a single flagellum, pili and a holdfast (an adhesin) at one pole. When the cell differentiates into the stalked form, it loses the flagellum and a stalk (containing no cytoplasm) grows out from the cell envelope keeping the holdfast on its tip. Stalked cells divide and produce a swarmer cell with the flagellum being created at the pole furthest from the stalked cell. Most of the current research on *C. crescentus* focuses on the developmental process resulting in these two different forms and the development of the flagellum (Brun *et al.*, 1994; Roberts *et al.*, 1996; Shapiro and Losick, 1997).

S-layers are two-dimensional arrays that cover the outside surface of many prokaryotes. *C. crescentus* is one of many species of bacteria covered with a crystalline protein surface layer (S-layer) (Boot and Pouwels, 1996; Sleytr and Messner, 1983; Sleytr and Sara, 1997; Smit *et al.*, 1981). Thousands of copies of nearly always a single protein or glycoprotein self-assemble into a crystalline-like lattice (Sleytr and Messner, 1983). The S-layers described so far have subunits ranging in size from 30 to 220 kDa (Messner and Sleytr, 1992). Although a large number of bacteria have been found to have S-layers, enteric bacteria, the most studied, lack them and consequently have not been studied much (Hovmoller *et al.*, 1988; Sleytr and Messner, 1988). For reviews on S-layers see Beveridge *et al.*, 1997; Sleytr, 1992; Sleytr and Messner, 1983.

S-layers typically make up 10% of the protein in a cell and thus represent a large energy expenditure by the cell (Sleytr and Messner, 1983). Many bacteria have been found to lose their S-layers when there is no environmental pressure for maintenance, such as during sub-culturing in the laboratory, showing that S-layers are not essential for growth (Blaser et al., 1985; Borinski and Holt, 1990; Luckevich and Beveridge, 1989; Stewart and Beveridge, 1980). Considering the energy expenditure, the function of the S-layer must be required for survival in the normal environment of the bacterium. It is presumed that most S-layers have a protective barrier role because the pore-like structures formed by the layer likely act as molecular sieves and prevent the entry of molecules, such as proteases and lytic enzymes, larger than the pore (Sleytr and Messner, 1983) as shown by several cases (Koval and Hynes, 1991; Sleytr, 1976). In addition, some infectious bacteria use their S-layers to adhere to and invade the cells of other organisms (Blaser et al., 1988; Messner and Sleytr, 1992; Munn et al., 1982). It has been demonstrated that the S-layer of C. cresentus protects it from a Bdellovibrio-like organism (Koval and Hynes, 1991), but the S-layer also acts as a receptor for the bacteriophage *ø*CR30 (Edwards and Smit, 1991) showing that the S-layer also allows C. crescentus to be infected by a parasite.

S-layers have common features, such as an acidic pl, an absence of cysteine residues and a high number of hydroxylated amino acids. Subunits are held

4 -

together and to the surface by noncovalent (hydrophobic, ionic, hydrogen or polar) bonds (Koval and Murray, 1984; Messner and Sleytr, 1992; Sleytr and Messner, 1983). Despite these similarities, there is very little sequence similarity among S-layer proteins (Gilchrist *et al.*, 1992; Messner and Sleytr, 1992), suggesting that S-layers may have arisen by convergent evolution.

The S-layer of C. crescentus is composed of the protein RsaA. Six copies of

Figure 1–3. 3-Dimensional reconstruction of the S-layer. The arrow indicates a single C-shaped RsaA monomer. (Figure from Smit *et al*, 1992).

RsaA form a ring-like subunit (Fig. 1-3) that interconnects with other subunits to form a two-dimensional hexagonal array (Smit et al., 1992). The gene for RsaA has been cloned (Smit and Agabian, 1984) and sequenced (Gilchrist et al., 1992). N-terminal protein sequencing of the mature RsaA polypeptide has shown that only the initial N-formyl methionine is cleaved, leaving a mature polypeptide of 1025 residues with a molecular weight of 98 kDa (Fisher et al., 1988; Gilchrist et al., 1992). The S-layer is anchored to the cell surface via a noncovalent interaction between the N-terminus of the protein and a specific smooth LPS in the outer

membrane (Walker *et al.*, 1994). Ca^{2+} is required for the proper crystallization of RsaA into the S-layer and its removal using EGTA disrupts S-layer structure (Nomellini *et al.*, 1997; Walker *et al.*, 1994).

RsaA is a true secreted protein. RsaA must pass through both the inner and outer membranes to form the S-layer on the outer surface of the bacterium. As there is a large amount of RsaA (10 to 12% of the cellular protein), an efficient secretion system or a large number of transport complexes are required to secrete the protein during the 105 min generation time. Linker mutagenesis of RsaA has shown that the

extreme N-terminus is required for surface attachment while the C-terminus is required for secretion. Further, deletion and hybrid protein analyses have indicated that secretion of RsaA relies on an uncleaved C-terminal secretion signal located within the last 82 amino acids of the RsaA protein (Bingle et al., 1999; Bingle et al., 1996; Bingle et al., 1997a; Bingle et al., 1997b; Bingle and Smit, 1994). The presence of an uncleaved C-terminal secretion signal usually indicates secretion by a type I system (Binet et al., 1997; Salmond and Reeves, 1993) rather than a type II, III or IV system. Most Gram-positive bacterial S-layers have been shown to use the General Secretion Pathway (GSP) or Sec-dependent pathway (Pugsley, 1993) for export (Messner and Sleytr, 1992; Sleytr and Messner, 1988; Sleytr et al., 1993; Sleytr and Sara, 1997), whereas S-layer proteins in Gram-negative bacteria are secreted using a type II system (Boot and Pouwels, 1996) which also employs the GSP to transport the S-layer subunit across the inner membrane. Recently, it has been shown that the S-layer of Campylobacter fetus is secreted by a type I mechanism (Thompson et al., 1998) and an S-layer-like protein in Serratia marcescens with significant similarity to RsaA has been shown to use a type I secretion mechanism (Kawai et al., 1998).

In addition to the secretion signal, the C-terminal portion of RsaA also contains repeats of a glycine and aspartate acid-rich region which are thought to bind calcium ions (Gilchrist *et al.*, 1992) and result in the aggregation of free RsaA in the medium. Such Ca²⁺-binding motifs are found in most proteins secreted by type I systems (Binet *et al.*, 1997) and consist of a glycine/aspartate rich GGXGXD motif that repeats 4-36 times (Welch, 1991). *C. crescentus* has two groups of three repeats separated by 12-16 residues containing this motif. Interestingly, there are no obvious repeat regions in the S-layer of *C. fetus* (Thompson *et al.*, 1998). It has been suggested that these motifs are important for the proper presentation of secretion signal to the ABC transporter (Duong *et al.*, 1996; Létoffé and Wandersman, 1992; Sutton *et al.*, 1996). Thus, in the case of RsaA, the glycine and aspartate rich repeats may function (along with Ca²⁺) both in maintaining the crystalline structure of the S-layer and in the secretion of the S-layer protein itself.

There are four described Gram-negative bacterial transport systems. These systems have been named type I through type IV. The type I system requires 3 proteins that are thought to form a pore through the inner and outer membranes allowing the protein to be secreted. This is the method by which RsaA is secreted and it is discussed in depth below.

Type II systems use the GSP for export across the inner membrane and then use a complex of 12-14 proteins for secretion to the outside of the bacterium. The secretion substrates contain classical Sec-dependent N-terminal signal sequences that direct transport across the inner membrane by the Sec pathway (Pugsley, 1993). Proteins are transported across the cytoplasmic membrane in an unfolded state and then fold in the periplasm. This folding is necessary as the components for secretion seem to recognize the secondary or tertiary structure of the substrate as no sequence similarity has been found (Lu and Lory, 1996). Both ATP hydrolysis as well as proton motive forces appear to be required for secretion of the substrate (Feng *et al.*, 1997; Letellier *et al.*, 1997). For a review of type II secretion systems see Russel, 1998.

The auto-secreting proteins, such as the IgA proteases, like the type II secreted proteins, use the GSP to cross the inner membrane. These proteins have an N-terminal signal sequence and a C-terminal pro-sequence. They are exported across the cytoplasmic membrane by the Sec dependent pathway in the usual manner with cleavage of the N-terminus signal sequence. The pro-sequence then forms a pore in the outer membrane through which the rest of the protein passes. Once the protein is outside, autocatalytic cleavage of the pro-sequence occurs, releasing the protease from the cell (Pohlner *et al.*, 1987).

Type III secretion has only been found in pathogens and is used to deliver bacterial proteins into the host cytoplasm to alter the host's metabolism to the advantage of the bacterium. Type III systems are the most complex of the secretion systems, involving more than 20 proteins. The proteins form a needle-like structure that spans the inner and outer membrane (Kubori *et al.*, 1998). Before secretion can occur, the bacterium must make contact with the host cell. Secretion seems to be directed by the mRNA. It is thought that the mRNA forms a hairpin loop that obscures the translation start signal until the 5' region of the mRNA interacts with the

secretion apparatus (Anderson and Schneewind, 1997). A signal recognition protein may mediate this process. Therefore, secretion is coupled with translation. ATP hydrolysis appears to be required for secretion, as components of type III systems are capable of hydrolyzing ATP *in vitro* (Eichelberg *et al.*, 1994). The substrate may then pass through the needle structure to the outside of the cell, though this has not been proven. For reviews of type III secretion see Anderson and Schneewind, 1999; Galan and Collmer, 1999

Type IV secretion systems have only recently been discovered and are not well understood. This transport pathway, like the type III, has so far been found exclusively in pathogens. The type IV system seems to have been designed to transport DNA, though the *Bordetella pertussis* PtI system only transports proteins (Weiss *et al.*, 1993). There are at least 9 proteins involved in the transport process and their functions are not well understood. There are usually two proteins containing nucleotide binding motifs that appear to be the transporting units that hydrolyze ATP to effect transport. It is not known if the substrate is transported in a one step process where the substrate bypasses the periplasm or a two step process where the substrate is first transported to the periplasm and then a second transport process secretes the protein. For a review of type IV secretion see Burns, 1999

RsaA is secreted by a type I mechanism. The goal of this thesis was to elucidate the secretion mechanism of RsaA. Initial indications suggested that it was a type I secretion mechanism (i.e., a C-terminal secretion signal and the presence of glycine/aspartate rich repeats) and data are presented here directly demonstrating that RsaA is secreted by a type I mechanism. Figure 1-4 shows the predicted structure of the *C. crescentus* membrane and also serves as a general model of a type I mechanism.

The best described type I secretion systems are those required for the secretion of *Escherichia coli* α –hemolysin (HIyA), *Erwinia chrysanthemi* metalloproteases (PrtB) and *Pseudomonas aeruginosa* alkaline protease (AprA) (Binet *et al.*, 1997; Salmond and Reeves, 1993). A type I secretion apparatus requires three components (Delepelaire and Wandersman, 1991). One component, the ABC transporter, is embedded in the inner membrane and contains an ATP-

binding cassette (ABC). It has been shown that this component recognizes the C-terminal signal sequence of the substrate protein and hydrolyzes ATP during the transport process (Binet and Wandersman, 1995; Koronakis et al., 1993). Another component, the membrane fusion protein (MFP), is anchored in the inner membrane and appears to span the periplasm (Dinh et al., 1994). The remaining component is an outer membrane protein (OMP) that has been shown to interact with the MFP. It these is thought that three components form a channel that extends from the cytoplasm through the two membranes to the

Figure 1-4. Type I secretion system. Diagram of the hypothetical membrane architecture of *C. crescentus* showing the predicted type I secretion mechanism of RsaA

outside of the cell (Akatsuka *et al.*, 1997; Hwang *et al.*, 1997). The substrate may pass through this channel (probably in an unfolded state) to the outside of the cell. In many cases, the genes for all three transport components are found immediately adjacent to the substrate gene(s) (Duong *et al.*, 1992; Létoffé *et al.*, 1990). In other type I systems, only the ABC-transporter and MFP genes are next to the substrate gene (Létoffé *et al.*, 1994b; Mackman *et al.*, 1985). The Rsa genes are organized like the latter and the OMP gene is not adjacent to the ABC-transporter and MFP. Recently, it was determined that the OMP gene is only separated from the MFP gene by five ORFs and a distance of 5 kb in the Rsa system. There are also instances where the substrate gene is separate from the secretion genes (Finnie *et al.*, 1998; Scheu *et al.*, 1992). As shown in Figure 1-4, from analysis of the ABC-transporter family, such as P-glycoprotein, contain two

almost identical domains in tandem, each with its own membrane spanning and ABC region (Sheps *et al.*, 1996). Association of two ABC transporters has been shown for monomeric ABC-transporters (Davidson and Nikaido, 1991). The proteins may work in pairs so that one ATP is hydrolyzed for transport and a second ATP is hydrolyzed to return the complex to the resting conformation. It is also possible that the proteins work in tandem and small sequential conformational changes in each separate protein push the proteins along (Welsh, 1998). Recent work indicated that while the ABC-transporters may work as a dimer, the MFP may work as a hexamer and the OMP as a trimer (Holland, 1999; Koronakis *et al.*, 1997).

The ABC-transporter family is very large and the type I secretion systems make up only a small portion. They are found in all forms of life and are sufficient to transport a substrate across a single membrane. There is significant sequence similarity among the ABC-transporters, even between eukaryotic and prokaryotic genes. The eukaryotic P-glycoprotein shares close to 50% conserved amino acids with many of the bacterial ABC-transporters such as HlyB and PrtD over the entire length of the protein (Croop, 1998; Sheps *et al.*, 1996). Mammalian P-glycoproteins actually have more sequence identity to these prokaryotic transporters than to proteins considered to belong to the P-glycoprotein family. ABC-transporters are also involved in the import of substrates such as the Mal transporter where maltose is transported across the inner membrane (for reviews see Boos and Shuman, 1998; Ehrmann *et al.*, 1998; Nikaido, 1994).

The basic monomeric ABC-transporter consists of 2 domains. One domain, usually N-terminal and consisting of six to eight membrane spanning segments, recognizes the substrate and forms the pore through the membrane. The other domain contains the ABC region, which provides the energy for transport from the hydrolysis of ATP. The ABC domain is highly conserved and consists of about 215 amino acids and within this region there are four distinct motifs. Like all ATPases, ABC-transporters contain Walker A or P-loop (consensus GXXGXGK[ST])¹ and Walker B (hhhhD)¹ motifs which interact directly with ATP binding and hydrolysis

¹X-denotes any amino acid; h-denotes hydrophobic amino acid; brackets indicate alternative amino acids at a single position

(Walker et al., 1984), but they are immediately followed by a specific ABCtransporter motif (LSGGQ[QRK]QR)¹ (Bairoch, 1992; Gorbalenya and Koonin, 1990) which is thought to be involved in energy transduction (Hyde et al., 1990). A fourth motif has recently been identified in a majority of E. coli and Saccharomyces cerevisiae ABC-transporters (Decottignies and Goffeau, 1997; Linton and Higgins, 1998). This fourth motif is hhhhH¹ followed by a charged residue and is found approximately 30 amino acids C-terminal of the aspartic acid in the Walker B motif. No one has so far been able to make a 3-dimensional crystal of the complete ABCtransporter from which the structure could be determined. However, the ABC domain has been crystallized from two proteins (Armstrong et al., 1999; Hung et al., 1998) showing that the ABC forms an L with 2 arms; arm 1 binds with the ATP and arm 2 interacts with the membrane-spanning domain. It is thought that hydrolysis of ATP causes a conformational change in arm 2 which transfers the energy to the membrane spanning domain, possibly through the ABC-transporter motif found at the end of arm 2, and the conformational change in the membrane spanning domain results in transport of the substrate (Welsh, 1998).

The MFP is characterised by a single hydrophobic transmembrane domain in the N-terminus that sits in the inner membrane. A hydrophilic domain spans the periplasm and the C-terminus consists of beta sheet that may interact with the outer membrane component (Dinh *et al.*, 1994). The MFP family contains the conserved motif [LIVM]XXG[LM]XXX[STGAV]X[LIVMT]X[LIVMT][GE]X[KR]X[LIVMFYW] [LIVMFYW]X[LIVMFYW][LIVMFYW]¹ (PROSITE:PDOC00469)

The OMP sits in the outer membrane and interacts with the MFP. Of the known OMPs only TolC, from the α -hemolysin transporter, has been studied extensively. It has been found that three smooth LPS synthesis genes are required for secretion of α -hemolysin. It is likely that the smooth LPS is required for proper insertion of TolC in the membrane (Stanley *et al.*, 1993; Wandersman and Létoffé, 1993). Two-dimensional crystals of TolC have been examined using electron microscopy and show that TolC forms a trimer. It also appears that a portion of the C-terminus is located in the periplasm (Koronakis *et al.*, 1997). TolC contains a centrally located sequence of 44 amino acids in the middle of the protein that is highly similar to a sequence in HlyD (the MFP); these sequences are required for

transport and can be interchanged and still allow transport (Schulein *et al.*, 1994). Thus, ToIC is thought to provide the essential function of linking the transporter complex to the external environment.

While members of the ABC-transporter family secrete a huge range of substrates ranging from Ca²⁺ ions to cancer drugs to proteins, the type I secretion subfamily has been found to only secrete proteins. The specific features for secretion of a protein by a type I system are not known except that the secretion signal is located in approximately the last 60 amino acids of the C-terminus of the protein (Mackman et al., 1985). As little as 15 amino acids of the C-terminus of the protease, PrtG, from *E. chrysanthemi* still allows secretion, although this is only 1% as efficient. It was found that substrates can be secreted by closely related type I systems (Binet and Wandersman, 1996; Létoffé et al., 1994a; Létoffé et al., 1994b), but only if there is more than 25% amino acid identity between ABC-transporters of the systems (Delepelaire and Wandersman, 1990; Fath et al., 1991). No sequence similarity is found among the secretion signals of the different substrate proteins; however, in the proteases, lipases and NodO a conserved motif of a negatively charged amino acid followed by several hydrophobic amino acids has been found at the end of the C-terminus (Binet *et al.*, 1997). The C-terminal signal sequence of α hemolysin was extensively mutagenized, but few individual amino acids were found to affect secretion (Kenny et al., 1992). Because of this lack of sequence similarity and identification of important residues it is thought that the secretion signal relies on secondary structure to initiate transport. NMR and circular dichroism studies of the C-terminus of PrtG, HasA (the heme acquisition protein from Serratia marcescens), HIVA (the hemolysin from E. coli) and LktA (the leukotoxin from Pasteurella *haemolytica*) have shown that there are two α helices in the C-terminus (Wolff *et al.*, 1997; Wolff et al., 1994; Yin et al., 1995). Mutation of these α helical regions in HlyA and LktA showed that the secretion signal appears to bind to a pocket in the ABC-transporter and induce a conformational change that causes transport to occur (Zhang et al., 1998).

Presented in this thesis is evidence that all three components of a type I secretion system have been found in *C. crescentus* and these components are required for the secretion of RsaA. They have greatest similarity to the protease

type I secretion systems from *P. aeruginosa* and *E. chrysanthemi* and the proteases from these systems can be secreted by the Rsa system.

The S-layers subunits from other Caulobacter species appear to be secreted by type I systems. Several FWC species with S-layers have been isolated from a wide number of aquatic sources (MacRae and Smit, 1991; Walker et al., 1992). The subunits of these S-layers react with anti-RsaA antibody and their smooth-LPS reacts with antibody raised against the smooth-LPS of NA1000. The S-layer subunits from these FWC species range in size from 100 to 193 kDa and can be removed from the bacterium's surface using low pH or EGTA (Walker et al., 1992). Portions of the genome of the FWC species with S-layers hybridize to the rsaA gene while the genomes of FWC species without S-layers do not (MacRae and Smit, 1991). It is shown in Ch. 5 that the protease, AprA from P. aeruginosa, was expressed and secreted in some of these FWC species. These facts suggest that type I secretion mechanisms secrete the S-layer subunits in the FWC species. Since the FWC species secrete S-layer subunits varying widely in size, it is desirable to examine the S-layer subunits and their corresponding secretion systems and examine the differences and similarities to allow one to determine how the mechanisms work, what parts of the protein are essential for secretion and what parts provide specificity. With these goals in mind, procedures are reported here for the characterisation of the S-layer subunit, ABC-transporter and MFP genes from various FWC species.

The S-layer is attached to the surface of *C. crescentus* using a species of smooth LPS. The outer membrane of Gram-negative bacteria contains phospholipids, proteins and LPS (Nikaido and Vaara, 1985). In many cases, including *C. crescentus*, there is also an extracellular polysaccharide (EPS) (Ravenscroft *et al.*, 1991); the S-layer is external to all of these molecules (although the EPS may pass through the S-layer). Smooth LPS is a major component of the outer membrane of Gram-negative bacteria and consists of three regions. The lipid A moiety is the endotoxic part of LPS and is anchored in the outer leaflet of the outer membrane. The core, a branched chain oligosaccharide linked to ketodeoxy

octulosonic acid (KDO), is attached to the lipid A molecule. Extending from the core is the O-antigen which contains a repeating linkage of oligosaccharides (Schnaitman and Klena, 1993). It has been found in C. crescentus that the S-LPS anchors the Slayer to the cell surface via a noncovalent interaction with the N-terminus of RsaA. Immunolabelling showed that the S-LPS is completely occluded by the S-layer (Walker et al., 1994). Isolation and characterization of the S-LPS showed that the core sugars and fatty acids are identical to those of the rough LPS and that the Oantigen is of a homogeneous length, unlike the variable length S-LPS found in many enteric bacteria. Previous reports (Walker et al., 1994) indicated that the O-antigen was composed of a 4,6-dideoxy-4-amino-hexose, a 3,6-dideoxy-3-amino-hexose and glycerol, but recent results (Smit, unpublished) indicate that glycerol is a contaminant of the S-LPS isolation procedure, and that the 3,6-dideoxy-3-aminohexose assignment is likely due to a co-purifying polymer. Therefore, it seems possible that the O-antigen is composed solely of a 4,6-dideoxy-4-amino-hexose. Anomeric traces found by analysis of proton NMR spectra indicate that the linkages between the 4,6-dideoxy-4-amino-hexose are not identical, implying the involvement of a larger number of glycosyltransferases than needed for a simple polymer with only one kind of linkage.

These data correlate with the information presented in this thesis. I have found a number of S-LPS synthesis genes, indicating that *C. crescentus* may make perosamine, a 4,6-dideoxy-4-amino-hexose, and that perosamine is likely a component of the S-LPS. A number of glycosyltransferases were also found as would be expected considering that several transferases would be required to produce the different linkages that result in the different anomeric proton traces found by proton NMR.

Evidence is presented in this thesis demonstrating how RsaA is secreted and how the S-LPS, involved in attachment of the S-layer, is synthesized. Three genes composing the ABC-transporter, MFP and OMP of a type I secretion system required for secretion of RsaA in *C. crescentus* are described. A type I secretion system is also required for secretion of the S-layer subunits of other FWC species. The genes required for the secretion of RsaA and the synthesis of S-LPS are linked

leading to the discovery of a number of putative genes involved in the synthesis of the S-LPS required for S-layer attachment. Additional genes involved in synthesis of the S-LPS were discovered by Tn5 mutagenesis.

ي بدير

Chapter 2 Materials and Methods

Strains, plasmids and growth conditions. All strains, libraries and plasmids used in this study are listed in Table 2-1. Plasmids with NA1000 DNA inserts are listed in Figure 2-1.The *E. coli* strains DH5 α JM109 or RB404 were used for all *E. coli* cloning manipulations. *E. coli* was grown at 37°C in Luria broth (1% tryptone, 0.5% NaCl, 0.5% yeast extract), with 1.2% agar for plates. *C. crescentus* strains were grown at 30°C in PYE medium (0.2% peptone, 0.1% yeast extract, 0.1% CaCl₂, 0.2% MgSO₄, with 1.2% agar for plates). Ampicillin was used at 100 µg/ml, streptomycin at 50 µg/ml, kanamycin at 50 µg/ml in both *C. crescentus* and *E. coli*, and tetracycline was used at 0.5 µg/ml and 10 µg/ml and chloramphenicol was used at 2 µg/ml and 20 µg/ml in *C. crescentus* and *E. coli*, respectively, when appropriate.

Recombinant DNA manipulations. Standard methods of DNA manipulation and isolation were used (Sambrook *et al.*, 1989). Electroporation of *C. crescentus* was performed as previously described (Gilchrist and Smit, 1991). Southern blot hybridizations were done according to the membrane manufacturer's instructions (Amersham Hybond-N). Southern blot analysis allowing up to 30% mismatch between the probe and chromosomal DNA was performed in an identical manner except the hybridization step was performed at 50°C instead of 65°C. Blots were washed: twice for 15 min at room temperature with 2X SSPE (0.18M NaCI, 0.01M NaPO₄, 0.001 EDTA pH 8.0), 0.1% SDS; once for 15 min at 50°C with 1X SSPE, , 0.1% SDS. Radiolabelled probes were made by nick translation using the DNase/DNA Pol manufacturer's instructions (GIBCO/BRL). Chromosomal DNA was isolated as previously described (Yun *et al*, 1994).

PCR products were generated using the primers listed in Table 2-2. PCR was performed using Taq polymerase (BRL), following the manufacturer's suggested protocols. Annealing temperatures (T_A) 2°C below the melting temperature T_m of the

	DIE 2-1. Strains and Plasmids used in this stud Relevant characteristics	Reference or Source
Bacterial strains		
E. coli JM109	recA1, endA1,gyrA96, thi,hsdR17,supE44,relA1, Δ (lac-proAB), λ F',	(Yanisch-Perron et
3141109	[traD36, proAB lacI ⁴ , lacZ Δ M15]	al., 1985)
RB404	F-dam-3,dam-6,metB1, galK2, galT22 lacY1, thi-1, tonA31, tsx-78, mtl-1,	(Brent and Ptashne,
	supE44	1980)`
DH5a	recA1, endA1,gyrA96, thi,hsdR17,supE44,relA1, Δ (lacZYA-arfF)U196 λ	Life Technologies
C. crescentus	$(\phi 80 lac Z\Delta M 15)$	
NA1000	Ap ^r , syn-1000. Variant of wild-type strain CB15, ATCC 19089, that	
	synchronizes well	
JS1001	S-LPS mutant of NA1000, sheds S-layer into medium	(Edwards and Smit,
JS1003	NA 1000 with read interrupted with KSAC Km concette	1991) (Edwards and Smit,
131005	NA1000 with <i>rsaA</i> interrupted with KSAC Km ^r cassette	(Edwards and Shift, 1991)
JS3001	S-LPS mutant of ATCC 15252, sheds S-layer into medium	
JS4000	S-layer negative, derivative of ATCC 15252	
Plasmids		
pBBR1MCS	Cm ^r , broad host range vector	(Kovach et al., 1994)
pBBR1AprF	<i>Eco</i> R1- <i>Bam</i> H1 fragment containing <i>aprF</i> from pJUEK72 in pBBR1MCS	this study
pBBR1PrtF	HindIII-Pstl fragment containing prtF from pRUWinh4 in pBBR1MCS	this study
pBBR3 pBBR3AprA	Sm ^r , broad host range vector aprA ⁺ , aprA cloned into pBBR3 using EcoR1 and Pst1	this study this study
pBBR3PrtB	<i>prtB⁺</i> , <i>prtB</i> cloned into pBBR3 using	this study
pBBR3AprA:pRAT5	aprA ⁺ , rsaD ⁺ , rsaE ⁺ , Ap ^r , Sm ^r , pBBR3AprA fused with pRAT5 at the Xba1	this study
F	site	,
pBBR3PrtB:pRAT5	prtB ⁺ , rsaD ⁺ , rsaE ⁺ , Ap ^r , Sm ^r , pBBR3PrtB fused with pRAT5 at the Xba1 site	this study
pBBR3AprA:	aprA ⁺ , rsaF ⁺ , pBBR3AprA fused with pCR2.1F11Sal1 at the Xba1 site	this study
pCR2.1F11Sal1	Transa hard hard hard hard and hard hard hard hard hard hard hard har	als in the day
pBBR5	Tc ^r , broad host range, broad host range	this study
pBSKS+ pBSKS-gcc1984	ColE1 cloning vector, <i>lacZ</i> , Ap ^r 736 bp PCR product containing valyl tRNA synthetase made using the	Stratagene this study
pD3K3-gee1984	primers gcc1984-1407 and gcc1984-12143 and T-tailed into pBSKS	uns study
pCR2.1	Km ^r , Ap ^r , commercial T-tail cloning vector	Invitrogen
pCR2.1F11Sal1	PCR product generated using Tn5 and Tn5Sal1 primers from ligation of	this study
-	F11Tn5 chromosomal DNA cut with Sal1 in pCR2.1	
pCR2.1F11Xma1	PCR product generated using Tn5 and Tn5Xma primers from ligation of	this study
	F11Tn5 chromosomal DNA cut with Xma1 in pCR2.1	
pCR2.1rsaF(1984)	2.1kb PCR product generated using primers gcc1984-28 and gcc1984-I2310	this study
pJUEK72 pRAT1	aprD ⁺ , aprE ⁺ , aprF ⁺ , aprA ⁺ , aprI ⁺ rsaA ⁺ , rsaD ⁺ , rsaE ⁺ , Ap ^r	(Guzzo <i>et al.</i> , 1990) this study
pRAT4∆H	rsaA ⁺ , rsaD ⁺ , rsaE ⁺ , Ap ^r , rsaA is under control of a lacZ promoter	this study
pRAT4 Δ H : pBBR5	$rsaA^+$, $rsaD^+$, $rsaE^+$, Ap ^r , Tc ^r , pBBR5 was fused with pRAT4 Δ H at the Sst1	this study
pruti ini poblici	site	and stady
pRAT5	$rsaD^+$, $rsaE^+$, Ap ^r	
pRAT5 : pRK415	rsaD ⁺ , rsaE ⁺ , Ap ^r , Tc ^r , pRK415 was fused with pRAT5 at the Sst1 site	this study
pRAT HI (B/E)	BamH1/ EcoR1 fragment from pRAT1 cloned into pTZ18U	this study
pRK415	$lacZ^{+}, Tc'$, broad host range	(Keen et al., 1988)
pRK415 rsaA Δ PK	rsaA under control of lacZ promoter in pRK415	this study
pRUW500	<i>prtB</i> ⁺ , Ap ^r	(Delepelaire and
pRUW500 :	prtB ⁺ , Tc ^r	Wandersman, 1990) this study
pROW5001	pRK415 was fused with pRUW500 at the <i>Pst</i> 1 site	ano otuay
pSUP2021	carries Tn5, unable to replicate in C. crescentus	(Simon et al., 1983)
pTZ18UB:rsaA∆P	The wildtypepromoter of rsaA has been replaced with a lacZ promoter	(Bingle <i>et al.</i> , 1997)
pTZ18R and pTZ18U	Ap ^r ,ColE1 cloning vector	(Mead et al., 1986)
pTZ19U	A phagemid version of pUC18 or pUC19	
pTZ18U(CHE)	Cm', Ap' gene of pTZ18U replaced with Cm' gene	this study
pTZ19U∆SSm	Sm ^r , Sm ^r gene inserted into <i>Sca</i> ¹ site in Ap ^r gene of pTZ19U	this study
pTZ18R aprA	<i>aprA</i> ⁺ , Ap ^r The <i>Eco</i> R1- <i>BgI</i> II fragment from pJUEK72 containing <i>aprA</i> was inserted	this study
	into the <i>Eco</i> R1-BamH1 sites of pTZ18R	
pTZ19UASSmANAC-	internal Kpn1-Pst1 fragment of $rsaF(973)$ in pTZ19U Δ SSm	this study
RsaF(973)	······································	······································
pTZ19UASSm973circ	recircularized plasmid isolated from BamH1 digestion of	this study
	NA1000::pTZ19UΔSSmΔNΔC-RsaF(973)	
$pTZ18U(CHE)\Delta N\Delta C$ -	internal PvuII-Stu1 fragment of rsaF(1984) in Sma1 site of pTZ18U(CHE)	this study
RsaF(1984)	ColE1 aloning vector las 7 Art	(Vioiro and Manie
pUC8	ColE1 cloning vector, <i>lacZ</i> , Ap ^r	(Vieira and Messing, 1982)
pUC9 rsaAΔNΔC	rsaA missing the extreme N-terminus and C-terminus	1982) (Bingle <i>et al.</i> , 1996;
pocyramanac	sur mosting the extreme re-terminus and C-terminus	Bingle and Smit,
	•	1994)
pUC8 neoR	HindIII-BamH1 from Tn5 containing neomycin resistance gene in pUC8	this study
pTZ18R aprA :	aprA ⁺ , Tc ^r	this study
pRK415	pRK415 was fused with pTZ18R at the BamH1 site	
Libraries		(41)
NA1000 cosmid	1000 cosmids containing 20 - 25 Kb of NA1000 DNA	(Alley et al., 1991)

(

Table 2-1. Strains and Plasmids used in this study

• ,

primers were used. Extension times (t_E) were based on 60 sec/1000 bp of DNA. General PCR parameters were 95°C – 30 sec, T_A - 30 sec, 72°C - t_E . The vector pBSKS+ was cut at the *Eco*RV site and T-tailed (Holton and Graham, 1991) and the PCR product was ligated into this vector.

Cloning of chromosomal DNA adjacent to Tn5 insertions: Chromosomal DNA of the Tn5 mutant was cut with *Bam*HI, *Sal*1 or *Xma*1. *Bam*HI fragments were cloned directly into the *Bam*HI site of pTZ18 vectors. A second method that was used for isolating the chromosomal DNA adjacent to the Tn5 insertions involved an inverse PCR method developed by V. Martin (Martin and Mohn, 1999).

PCR product	forward primer name- sequence (5'-3')	reverse primer name- sequence (5'-3')
RAT5	RsaD-A-CGGAATCGCGCTACGCGCTGG	RsaE1-GGGAGCTCGAAGGGTCCTGA
Degenerate primers	F60-	IF340-
for RsaF search	(GC)CG(GC)(AGT)(GC)(GTC)(GC)(GC)(GC)	GCCGCC(CG)(CGT)(TAG)(GA)(TA)A(GC)A
	(CT)T(CG)CT(CG)CC(CG)CAGCT(CG)G	(GT)(GC)GG(GC)AG(GC)(TCG)(TA)(CG)T
	FB110-	IFB415-
	CT(GC)(CA)(GC)CAG(AC)C(GC)AC)T(GC)T	CTG(TC)TC(GC)GC(GC)(AT)(CT)(GC)AG(G
	TCGAC	C)ACGTC
Inverse PCR to	Tn5 universal –	Tn5Xma1-AGGCAGCAGCTGAACCAA
obtain chromosomal	GGTTCCGTTCAGGACGGCTAC	Tn5Sal1-ATGCCTGCAAGCAATTCG
DNA next to Tn5		
insertion		
Degenerate primers	RD43B-	IRD477B-
for amplification of	TA(TC)ATGCT(GC)CAGGT(GC)TAT(GC)AC	C(GC)A(GT)(GC)CGCTG(GC)CGCTGGCC
internal portion of	CGIG	GC
RsaD homologues		
in FWC species		
Unsuccessful PCR	RsaF140-GCGGTCGAGCAGGGGGGTGCT	RsaFIEND-ACGAATCCTTGCGCGCCTTGG
of rsaF(1984)		
Amplification of pUC	TZ1920-	TZI1060-
type vectors	GAGGCCTAGTACTCTGTCAGACCAAGTTT	GAGGCCTACTCTTCCTTTTCAATATTATT
•	ACTCATA	GAA
Amplification of	Gcc1984-28-	Gcc1984-I1200
gcc1984 (numbers	CGCTCTACACCGGCGGTCGCGCCAGCGC	GGAGCTCTGGCGCCCCACCAGGGACGC
correspond to bp in	Gcc1984-1407-	GTAGAACG
contig)	GCCGGAACCCGAACCTGAACCGGTGTCG	Gcc1984-I2143-
		GTGGTCGGTGCCCGGCAGCCACAGGG
Amplification of	Gcc973-1600-	Gcc973-I2310-
gcc973 (numbers	GGAATCCATGTCACATGGGAAGAGACGG	GCTGGCGCCCCACCAGGGACGCGTAGA
correspond to bp in	тссдссдт	ACG
contig)		· · · · · · · · · · · · · · · · · · ·

Table 2-2. Primers used for PCR for this report.

Construction of plasmid vectors that replicate in *C. crescentus*.: The plasmid pBBR5 was constructed from the plasmids pBBR1MCS (Kovach *et al.*, 1994) and pHP45 Ω -Tc (Fellay *et al.*, 1987). The Ω -Tc fragment from pHP45 Ω -Tc was removed using *Hind*III and the ends were blunted using T4 polymerase. A 0.3 kbp portion of the Cm^r gene was removed from pBBR1MCS by cutting with *Dral* and replaced with the blunted Ω -Tc fragment producing a Tc^r broad host range vector that replicates in *C. crescentus*. The plasmid pBBR3 was constructed in an identical manner except the plasmid pHP45 Ω -Sm (Fellay *et al.*, 1987) was used to provide a Sm^r marker. Both these plasmids were constructed by John Nomellini.

Construction of vectors that replicate only in *E. coli*: The vector pTZ18U(CHE) was constructed by amplification of all of pTZ18U except the ap^r gene using the primers TZ1920 and TZI1060 that were designed with *Stu*1 sites. The PCR product was cut with *Stu*1 and a Cm^r gene (Morales *et al.*, 1991) with blunt ends was inserted into the site.

Tn5 mutagenesis. Tn5 mutagenesis was accomplished using the narrow host range (ColE1 replicon) plasmid pSUP2021 (Simon *et al.*, 1983) which is not maintained in *C. crescentus*. The plasmid was introduced by electroporation and 20,000 colonies that were streptomycin and kanamycin resistant were pooled, frozen at -70°C and aliquots were used for subsequent screening.

Southern blot analysis of chromosomal DNA isolated from the Tn5 library was used to assess the randomness of insertions. Hybridization with a Tn5 probe, pUC8neoR, indicated that while there were some hot spots of Tn5 integration, the Tn5 insertions were randomly distributed throughout the chromosome (data not shown).

SDS-PAGE and Western blot analysis. Proteins and S-LPS were isolated from *C. crescentus* as previously described (Walker *et al.*, 1992; Walker *et al.*, 1994). SDS-polyacrylamide gel electrophoresis (PAGE) and Western immunoblot analysis was performed as previously described (Walker *et al.*, 1992). After transfer of proteins to nitrocellulose, the blots were probed with polyclonal antibody and antibody binding

was visualized using goat anti-rabbit serum coupled to horseradish peroxidase and colour-forming reagents (Smit and Agabian, 1984).

To detect *C. crescentus* whole cells synthesizing an S-layer, a colony blot assay was used (Bingle *et al.*, 1997a). Briefly, cell material was transferred to nitrocellulose by pressing the membrane onto the surface of an agar plate. The membrane was air dried for 10 to 15 min, washed in a blocking solution (3% skim milk powder, 20 mM Tris (pH 8.0), 0.9% NaCl) with vigorous agitation on a rotary shaker and then processed in the standard fashion (Bingle *et al.*, 1997a).

Surface protein from *C. crescentus* cells was extracted using pH 2.0 HEPES buffer as shown by Walker (Walker *et al.*, 1992). To compare the amounts of surface protein extracted from different mutants equal amounts of cells growing at log phase were harvested and equal amounts of the protein extract were loaded on the protein gel. SDS-PAGE and Western blotting were performed according to standard procedures (Sambrook *et al.*, 1989).

Isolation of cosmids containing rsaA, rsaD and rsaE. The NA1000 and JS4000 cosmid libraries were probed with radiolabelled rsaA, using the plasmid pUC9 $rsaA\Delta N\Delta C$. 5 cosmids from the NA1000 library were isolated and 4 cosmids from the JS4000 library. Southern blot analysis of the cosmids hybridizing to the probe was used to determine which cosmids contained DNA 3' of rsaA. An 11.7 kb Sstl-EcoRI fragment containing rsaA plus 7.3 kb of 3' DNA was isolated from one of the NA1000 cosmids and cloned into the Sstl-EcoRI site of pBSKS+; the resulting plasmid was named pRAT1. The 3' end of the cloned fragment consisted of 15 bp of pLAFR5 DNA containing Sau3A, Smal and EcoRI sites. BamHI fragments from the NA1000 cosmid were subcloned into the BamHI site of vector pTZ18R for sequencing. The 3' end fragment was subcloned using BamHI and EcoRI into pTZ18R. The 5' end fragment was subcloned using SstI-HindIII into pTZ18R. A cosmid containing the rsaA, rsaD and rsaE genes was isolated from the JS4000 cosmid library and pieces were subcloned as BamHI fragments in pTZ18U for sequencing. HindIII/BamHI fragments containing the rsaA gene were cloned directly from the genome of JS4000 and JS3001 by isolating bands of the correct size from an agarose gel and ligating to pUC8. Colonies were probed with rsaA from NA1000 for plasmids

containing the correct insert. These clones were subcloned in three pieces as *Hind*III/*Cla*I, *Cla*I/*Eco*RV and *Eco*RV/*Bam*HI fragments into pUC type vectors. *Cla*I sites for cloning were generated in the vector by cutting with *Bam*HI and filling in the 5' overhangs with Klenow fragment. Ligation of the blunt ends then produces a *Cla*I site.

Isolation of FWC S-layer subunit genes. FWC27 chromosomal DNA was digested with *Bam*HI and *Pst*I. The digested DNA was ligated to a pTZ19U vector also digested with *Bam*HI and *Pst*I. A portion of the ligation mixture was electroporated in to *E. coli* JM109 and allowed to incubate at 37°C for 1 hour in 1 ml of Luria broth. The mixture was divided evenly and spread on 10 agarose plates and incubated overnight. The colonies were adsorbed to sterile filter paper (Whatman 541). The colonies were then lysed by soaking the filter paper in 0.5M NaOH for 5 min. The filter paper was neutralized by soaking the filter paper in 1M Tris-HCl (pH 7.0) for 5 min twice. A filter was then soaked in 0.5M Tris-HCl (pH 7.0), 1.5M NaCI. Then, the filter was washed with 70% EtOH and baked at 80°C for 2 hours. The filters were then probed with pUC8neoR using the Southern blot hybridization procedure allowing 30% mismatch (see above).

Nucleotide sequencing and sequence analysis. Sequencing was performed on a DNA sequencer (Applied Biosystems model 373). After use of universal primers, additional sequence was obtained by "walking along" the DNA using 15-20 bp primers based on the acquired sequence. DNA was sequenced in both directions for all original sequence, thereafter DNA was only sequenced in both directions when ambiguities were found. Nucleotide and amino acid sequence data were analyzed using Geneworks and MacVector software (Oxford Molecular Group) and the NCBI BLAST e-mail server using the BLAST algorithm (Altschul *et al.*, 1990). Primers were designed with the help MacVector and Amplify 1.2 (Engles, 1993) Protein alignments were generated using the ClustalW algorithm as implemented by the MacVector software using the default settings. The sequences for NA1000 *rsaADEF* and *IpsABCDEF* were submitted to Genbank and can be accessed as AF06235. The sequences for JS3001 *rsaA* and JS4000 *rsaADEE* can be accessed

using the accession numbers AF193063 and AF193064. Preliminary sequence data of the *C. crescentus* genome was obtained from The Institute for Genomic Research through the website at http://www.tigr.org. Signal peptides predictions were made using the SignalP web server (<u>http://www.cbs.dtu.dk/services/SignalP/</u>) (Nielsen *et al.*, 1997).

Chapter 3 Secretion of RsaA

Introduction

The major purpose of my thesis was to elucidate the transport pathway of RsaA. The strain NA1000 was chosen for these studies because *rsaA* had originally been isolated from NA1000 and it is this gene that has been sequenced and used for all recombinant manipulations in the Smit Lab. In addition a number of useful mutants, with and without S-layers have been derived from NA1000. The lack of a cleaved secretion signal, the presence of calcium repeats, no periplasmic intermediate and a C-terminal secretion signal, indicated that RsaA was probably transported using a type I secretion system (Bingle *et al.*, 1999; Bingle *et al.*, 1996; Bingle *et al.*, 1997a; Bingle *et al.*, 1997b; Bingle and Smit, 1994) in which case other proteins would be required for secretion.

Results and Discussion

C. crescentus was screened for genes involved in the secretion of the S-layer subunit, RsaA. Since a type I secretion system uses 3 main proteins to form the transport mechanism, it was necessary to devise a method for finding the genes coding for the components by screening for the loss of RsaA secretion. Unfortunately, there is no easy method to detect the presence of RsaA on the exterior of a colony, as found for α -hemolysin or the metalloproteases which can be detected using blood or skim milk plates (Mackman *et al*, 1985; Wandersman *et al*, 1987).

Previous research had shown that the lytic phage ϕ CR30 could only infect *C. crescentus* when an S-layer was present (Edwards and Smit, 1991). This phage was isolated using the strain CB15BE, a derivative of ATCC 19089, as is NA1000. When the phage was used to lyse NA1000 cells with an S-layer using an moi of 10⁴, it was found that spontaneous mutants occurred at a high frequency of approximately 10⁻⁵. When these mutants were examined, it was found that approximately 15% had lost their S-layer while the remaining 85% still retained their S-layer and were susceptible to re-infection. Obviously, the phage was not lysing all

the bacteria with an S-layer, since these bacteria still behaved like the wildtype strain. Of the bacteria that no longer had an S-layer, RsaA secretion was restored if a plasmid carrying the *rsaA* gene was expressed inside the bacterium (data not shown). It seems that the *rsaA* gene is a more likely target for mutation when selection pressure against the S-layer is applied. This is in agreement with the observation that many bacteria lose their S-layers during sub-culturing in the laboratory environment. This method was discarded in favour of a colony immunoblot assay which was much more labour intensive, but did not have a high background.

For the colony immunoblot assay, two polyclonal primary antibodies were used: α -RsaA (Walker *et al.*, 1992) and α -S-LPS (Walker *et al.*, 1994). α -RsaA reacts to RsaA and α -S-LPS reacts to the smooth LPS required for the anchoring of the S-layer to the surface of the bacterium (Walker *et al.*, 1994). When α -RsaA was used, colonies with an S-layer reacted with the antibody and appeared as a spot on the blot (Fig. 3-1). It was also found that a 'halo' could be detected around colonies when the S-layer could not anchor to the cells (e.g., cells with a defective S-LPS). The halo occurs when shed S-layer diffused away from the colony and was detected by α -RsaA as a ring around the colony (Fig. 3-1). When α -S-LPS was used, the antibody reacted to exposed S-LPS only when the cells of a colony lacked an S-

NA1000 (wildtype) JS1003 (S-layer negative) JS1001 (S-LPS negative)

Figure 3–1. Colony Immunoblot. Example of an immunoblot using α -RsaA against colonies demonstrating the different phenotypes exhibited. layer; S-layer blocks the binding of α -S-LPS. RsaA appears to be completely degraded when it is not secreted (Bingle *et al.*, 1996; Bingle and Smit, 1994), therefore cell lysis during this procedure and release of unsecreted RsaA was not a concern. Using this method, it was possible to differentiate between cells secreting RsaA, cells secreting and shedding S-layer and cells without an Slayer.

Identification of Tn5 mutants lacking an S-layer. A pooled NA1000 Tn5 library was screened for S-layer negative mutants using the Western colony immunoblot

assay. In total, 9,000 colonies from the pooled Tn5 mutant library were screened using α -S-LPS antibody and 22,000 colonies were screened using α -RsaA. Eighteen Tn5 S-layer negative mutants were found. SDS-PAGE and Western blot analysis of whole cell lysates and culture supernatants confirmed that no S-layer was found in or on the cells or in the culture supernatant of these mutants (data not shown). One mutant, B12, on further examination was found to have an S-layer and was kept for use as a random Tn5 mutation control. Twenty-six Tn5 mutants with a shedding phenotype were also isolated during the screening and are described in Ch. 6.

Identification of Tn5 mutants defective in RsaA secretion. Several possible Tn5 insertion events, in addition to those in secretion genes could result in an S-layer negative phenotype. To eliminate Tn5 insertions in the *rsaA* gene, Southern blot analysis was performed on the S-layer negative mutants. Eleven of the mutants contained Tn5 insertions in *rsaA* and were not further characterised. Five mutants, B5, B9, B13, B15 and B17, contained insertions in the DNA immediately 3' of *rsaA* and one mutant, B2, had a Tn5 integration elsewhere on the chromosome (Fig. 3-2). These six mutants represented possible RsaA translocator mutants.

Figure 3–2. S-layer negative Tn5 insertions. Graphical representation of the positions of Tn5 insertions from mutants that no longer secreted RsaA. B = BamHI, H = HindIII, S = SstI. Triangles indicate Tn5 insertion points.

To determine whether the loss of S-layer was caused by a mutation affecting regulation of the gene, *rsaA* was expressed in the mutants under the control of a *lacZ* promoter, using the plasmid pRK415*rsaA* Δ PK. This construct restored RsaA production in JS1003 and B1, mutants with an interrupted *rsaA* gene, although wildtype RsaA expression levels were not reached. No S-layer was found on any of the five mutants with a Tn5 insertion in the DNA immediately 3' of *rsaA* secreted RsaA when *rsaA* was expressed *in trans* in this manner (Fig. 3-3).

In addition, the one mutant (B2) where the Tn5 insertion was not adjacent to the *rsaA* gene also produced an S-layer when complemented with the plasmid pRK415*rsaA* Δ PK. This indicates that the B2 insertion was not in a gene involved in RsaA secretion. B2 may have an interruption in a gene responsible for regulation of

Figure 3–3. Complementation of Tn5 mutants with *rsaA*. Protein was extracted from the surface of the Tn5 mutants and JS1003 carrying the plasmid pRK415 *rsaA* Δ PK which expresses RsaA under control of the *lac* promoter and wildtype and *rsaA* knockout mutants that did not contain any plasmid to demonstrate differences in expression. Equal amounts of surface extracts were loaded on the gel and a Western performed using polyclonal antibody against RsaA. The lanes are as follows: Lanes 2 through 10 are surface extractions from cells containing the plasmid pRK415 *rsaA* Δ PK indicated by (Δ PK). 1, purified RsaA; 2, JS1003(Δ PK); 3, B9(Δ PK); 4, B13(Δ PK); 5, B1(Δ PK) (a Tn5 insertion in *rsaA*); 6, B5(Δ PK); 7, B15(Δ PK); 8, B17(Δ PK); 9, B2(Δ PK); 10, B12(Δ PK) (a random Tn5 insertion); 11, JS1003 (*rsaA*); 12, NA1000 (wildtype). The arrow indicaties wildtype RsaA.

RsaA production or, possibly, the Tn5 insertion mutation does not eliminate secretion and a second mutation in *rsaA* was responsible for the loss of secretion.

Isolation and sequencing of DNA near rsaA. A previously constructed cosmid library was used to isolate an 11.8 kb DNA fragment containing *rsaA* plus 7.3 kb of 3' DNA. This fragment was cloned into pBSKS+ forming the plasmid, pRAT1, and sequenced to search for translocator genes. An open-reading frame (ORF) was found 5' of *rsaA*, confirming earlier results (Fisher *et al.*, 1988) and 5 ORFs were found 3' of *rsaA* (Fig. 3-4).

A search of sequence databases showed that there were two ORFs immediately 3' of *rsaA* that encoded proteins with significant similarity to the ABC transporter and membrane fusion proteins (MFP) of two type I secretion systems: the alkaline protease transport system of *P. aeruginosa* (Guzzo *et al.*, 1990) and metalloprotease transport system of *E. chrysanthemi* (Létoffé and Wandersman, 1992) (Figs. 3-5, 3-6).

The first ORF was 1734 bp long and started 246 bp after the termination codon of *rsaA*. This ORF was predicted to code for a 578 amino acid protein with a predicted molecular weight of 62.0 kDa and pl of 9.02. Alignments of the predicted amino acid sequence show that the putative protein is 46% identical and 69% similar

Figure 3–4. Genes 3' of *rsaA*. Graphic showing the ORFs found after sequencing the plasmid pRAT1. B = BamHI, E = EcoRI, H = HindIII, S = SstI.

to AprD from *P. aeruginosa* and 33% identical and 62% similar to PrtD from *E. chrysanthemi*. The gene was designated *rsaD* because of this similarity (Fig. 3-5). RsaD exhibits several N-terminal hydrophobic domains that may be transmembrane regions and a possible ATP binding site in the C-terminal half of the protein. The predicted protein contains Walker A, Walker B, and ABC signature motifs as well as the newly discovered *E. coli* motif (hhhhH). These motifs are highlighted in Fig. 3-5.

Figure 3–5. ClustalW alignment of ABC-transporters. Alignment of RsaD with AprD (Accession number CAA05795), PrtD (AAB03671), HasD (CAA57069) and LipB (BAA08631) which are the most closely related ABC transporters. The green box surrounds the Walker A motif, the blue box surrounds the Walker B motif, the red box surrounds the ABC motif and the yellow box surrounds the fourth ABC transporter motif recently discovered in most *E. coli* ABC transporters.

ClustalW Formatted Alignments

Figure 3–6. ClustalW alignment of MFPs. Alignment of RsaE with AprE (Accession number CAA45856), PrtE (CAA37343), HasE (CAA57067) and LipC (BAA08632) which are the most closely related ABC transporters.

RsaD was predicted to have a insertion signal sequence consistent with insertion of the RsaD protein in the cytoplasmic membrane.

The second ORF started 68 bp after *rsaD*, contained 1308 bp and encoded a protein of 436 residues with a predicted molecular weight of 48.4 kDa and pl of 6.59. Alignment of the predicted protein shows that the sequence is 28% identical and 50% similar to AprE from *P. aeruginosa* and 29% identical and 52% identical to PrtE from *E. chrysanthemi*. The gene was designated *rsaE* because of this similarity (Fig. 3-6). The deduced protein sequence of *rsaE* was predicted to have a typical N-terminal insertion signal sequence that would direct it to the inner membrane.

Possible ribosome binding sites were found 7 bp and 8 bp upstream of the ATG initiation codon for *rsaD* and *rsaE*, respectively. There was no indication of a promoter immediately 5' of either *rsaD* or *rsaE*, but there was a putative rhoindependent terminator immediately after the stop codon of *rsaE* suggesting that they may be part of a polycistron which includes *rsaA*. It has been found in the type I secretion systems secreting *E. coli* α -hemolysin and *E. chrysanthemi* metalloprotease that the genes are part of an operon consisting of the substrate and the transport genes. It seems likely that transcription of the Rsa genes is similar.

Three more ORFs were found 3' of *rsaE*. None of these ORFs encoded proteins similar to the third component of type I secretion systems. Instead, these ORFs encoded proteins similar to those involved in synthesis of perosamine, a dideoxyaminohexose (see Ch. 6).

The chromosomal DNA near B1, B2, B5, B9, B13, B15 and B17 Tn5 insertions was isolated and sequenced to determine the Tn5 insertion point. It was found that the B1 Tn5 interrupts *rsaA*, as expected from the Sourthern blot analysis. B5 and B13 are identical insertions interrupting the N-terminus of RsaD while B17 is located 22 amino acids from the C-terminus. B9 and B13 are Tn5 insertions in *rsaE*. The sequence interrupted by the B2 Tn5 insertion has no sequence similarity to any known proteins.

Complementation of the secretion-defective Tn5 mutants. To demonstrate that the Tn5 insertions were responsible for the secretion defect the mutations were complemented *in trans*. First, the cosmid, 17A7, containing the entire Rsa locus, was introduced into the mutants. All attempts at complementation using this cosmid were unsuccessful, including an attempt to restore RsaA production in JS1003 (which contains an inactivated *rsaA* gene). Since RsaA production in JS1003 can be restored with other plasmids containing *rsaA*, it is believed that expression of the genes was too low for complementation.

A PCR product containing the genes *rsaD* and *rsaE* was generated and cloned into a suitable expression vector; the result was named pRAT5:PRK415 (see Ch. 2). This plasmid was introduced into the Tn5 mutants B15 and B17. With this plasmid, mutant B17 secreted RsaA while the B15 mutant did not (Fig. 3-7A).

Figure 3-7. Complementation of transport deficient mutants using *rsaD* and *rsaE*.

Westerns of surface extracted protein using anti-S antibody. A) Lanes are as follows: 1, B17 (DE); 2, B15 (DE);3, B1(DE); 4, B17 (17A7); 5, B15 (17A7); 6, JS1003; 7, NA1000. (DE) indicates that the cells carried the plasmid pRAT5:pRK415 containing the genes *rsaD* and *rsaE*. (17A7) indicates that the cells carry the cosmid 17A7 containing the entire RSA operon. Equal amounts of surface extract were loaded in all lanes. The arrow indicates full length RsaA. B) Lanes are as follows: 1, B1 (DE); 2, B5 (DE); 3, B9 (DE); 4, B15 (DE); 5, B17 (DE); 6; NA1000. DE indicates that the cells carry the plasmid pRAT5:pBBR5 expressing the genes *rsaD* and *rsaE*. Equal amounts of surface extract were loaded in all lanes except (6) where there was only one quarter of the amount loaded in the other lanes. The arrow indicates full length RsaA.

То address the problems with B15 complementation, a new tetracycline-resistant (Tc^r) broad host range vector, pBBR5, was constructed. It was hoped that this vector would have a higher copy number and expression of the Rsa genes that would alleviate the problems encountered when using pRK415 or pLAFR5 (the cosmid vector). In the resulting constructs a lac promoter is used for transcription of the rsaD and *rsaE* genes in pRAT5: PBBR5 and the rsaA, rsaD and rsaE in pRAT4 Δ H: PBBR5. When pRAT5: PBBR5 was introduced into the mutants B1, B5, B9, B15 and B17, Western blot analysis showed that the mutants with defective rsaD or rsaE genes expressed RsaA on the surface while the rsaA mutant B1 did not (Fig. 3-7B). When

pRAT4∆H:pBBR5 was expressed in the same mutants, RsaA was only found on the surface of the B1 and B17 mutants (data not shown). The ability to complement the

Tn5 insertions in *rsaD* and *rsaE* using pRAT5:pBBR5 expressing *rsaD* and *rsaE in trans* indicates that these genes are responsible for the secretion of RsaA.

The lack of complementation in some cases was probably the result of lower expression of the Rsa genes. It was necessary to use Tc to maintain the vectors as Tn5 confers kanamycin and streptomycin resistance, but *C. crescentus* does not tolerate Tc well. When cells carry the Tc resistance marker are exposed to even low levels of Tc (0.5 μ g/ml), they appear anomalous by microscopy. The cells are often severely elongated and there are few motile cells. It was difficult to grow cultures carrying Tc^r plasmids with the Rsa genes to densities high enough to extract sufficient protein to be seen on the Western blot. It seems probable that the Tc was causing membrane abnormalities and that these factors contributed to lower expression of the Rsa genes with all the plasmids.

The cosmid, 17A7, only has 1-2 copies per cell and similarly, pRAT5:pRK415 would be maintained at 2-3 plasmids per cell (Keen *et al*, 1988). Preliminary experiments with pBBR5 suggest that it has a much higher copy number than either pLAFR5 or pRK415 based vectors which would result in higher expression of any genes that pBBR5 carries (data not shown).

Expression levels would also be affected by the promoter transcribing the genes. The *lac* promoter transcribes at higher levels than the wildtype *rsaA* promoter (Yap *et al.*, 1994). In addition, in the cosmid and pRAT4 Δ H:pBBR5, *rsaD* and *rsaE* are either transcribed by their wildtype promoter or as part of the *rsaA* transcript as described above. In either case, a lesser amount of transcript would be produced than from the lacZ promoter of pRAT5:pBBR5.

These data suggest why the complementation occurred only in some cases. The plasmid pRAT5:pBBR5 (strong promoter and high copy number) produced the highest levels of RsaD and RsaE allowing full complementation of all the transport mutants while the cosmid, 17A7, (weaker promoter and low copy number) produced the lowest levels and could not complement any of the mutants. The plasmids pRAT5:pRK415 (strong promoter and low copy number) and pRAT4 Δ H:pBBR5 (weak promoter and high copy number) probably make an intermediate amount of protein that is only enough to complement the mutant B17. This mutant may differ from the others because the Tn5 insertion is only 22 amino acids from the C-

interrupted (Fig. 3-8). Smaller zones of clearing are seen around the wildtype strain,

Figure 3-8. Expression of *prtB* in *C. crescentus.* PrtB was expressed in all the colonies shown using the plasmid pRK415: pRUW500. The cells were spotted on to PYE plates containing 1% skim milk. Halos around colonies indicate that active PrtB is being secreted. Note that NA1000 and B12 cells are producing RsaA as well as PrtB and the halos surrounding these colonies are smaller. B12 represents a random Tn5 mutant control.

NA1000, and the S-layer producing B12 (representing a random Tn5 insertion unrelated to secretion), as compared to JS1003 or B1, where the *rsaA* gene has been interrupted, suggesting that there was competition between RsaA and PrtB for the secretion machinery, further supporting the supposition that RsaD and RsaE are parts of a type I secretion mechanism. Identical results were found when *aprA* was expressed in the Tn5 mutants (data not shown).

Summary

Analysis of the region 3' of *rsaA* revealed the presence of two genes (*rsaD* and *rsaE*) encoding proteins with significant sequence similarity to components of the type I secretion systems used by *P. aeruginosa* and *E. chrysanthemi* to secrete two different extracellular proteases (Duong *et al.*, 1992; Wandersman *et al.*, 1990). Because interruption of *rsaD* and *rsaE* eliminated secretion of RsaA and the defects could be restored by complementation, it was apparent that their gene products make up part of the RsaA translocator machinery.

When these results were reported (Awram and Smit, 1998), it was the first example of an S-layer that is secreted using a type I secretion system. Before then, S-layers had only been found to be secreted by a type II system (Messner and Sleytr, 1992; Sleytr *et al.*, 1993). It is now known that a protein with amino acid

unrelated to secretion), as compared to JS1003 or B1, where the *rsaA* gene has been interrupted, suggesting that there was competition between RsaA and PrtB for the secretion machinery, further supporting the supposition that RsaD and RsaE are parts of a type I secretion mechanism. Identical results were found when *aprA* was expressed in the Tn5 mutants (data not shown).

Summary

Analysis of the region 3' of *rsaA* revealed the presence of two genes (*rsaD* and *rsaE*) encoding proteins with significant sequence similarity to components of the type I secretion systems used by *P. aeruginosa* and *E. chrysanthemi* to secrete two different extracellular proteases (Duong *et al.*, 1992; Wandersman *et al.*, 1990). Because interruption of *rsaD* and *rsaE* eliminated secretion of RsaA and the defects could be restored by complementation, it was apparent that their gene products make up part of the RsaA translocator machinery.

When these results were reported (Awram and Smit, 1998), it was the first example of an S-layer that is secreted using a type I secretion system. Before then, S-layers had only been found to be secreted by a type II system (Messner and Sleytr, 1992; Sleytr *et al.*, 1993). It is now known that a protein with amino acid sequence similarity to RsaA is secreted by the *S. marcescens* type I secretion system (Kawai *et al.*, 1998). In addition, the *C. fetus* S-layer protein is secreted by a type I secretion mechanism. The *C. fetus* S-layer shares several features in common with that of *C. crescentus.* It is produced by a free-living Gram-negative bacterium, is hexagonally-packed, anchors to the cell surface via its N-terminus to a particular species of LPS (Bingle *et al.*, 1997b; Dworkin *et al.*, 1995; Walker *et al.*, 1992) and so far has the greatest similarity of any S-layer protein to RsaA (Gilchrist *et al.*, 1992).

The genes for the ABC transporter and the MFP components of type I secretion systems are generally found in an operon that includes the transported protein (Binet *et al.*, 1997; Salmond and Reeves, 1993). In this respect then, the organization of the *rsaA*, *rsaD* and *rsaE* genes was not surprising. In contrast, the gene encoding the outer membrane protein component of type I secretion systems may or may not be closely linked to the other secretion genes. The third component of the Rsa transporter has now been found 5 kb 3' of *rsaE* and is described in Ch. 4.

A potential Rho-independent terminator sequence is located after the rsaA coding region (Gilchrist et al., 1992). This predicted terminator results in a predicted transcript that matched closely the size of a transcript found using Northern blot analysis (Fisher et al., 1988). In this study, no obvious indications of a promoter were found immediately 5' of either the rsaD or rsaE genes suggesting that transcription of rsaD and rsaE is similar to transcription of the hlyA, hlyB and hlyD genes of *E. coli*, where a similar Rho-independent terminator is found after the hlyA gene and terminates most transcripts at this point. An anti-terminator, RfaH, prevents termination and when it does, a larger transcript including the hlyB and hlyD genes is made (Leeds and Welch, 1996). This transcript is difficult to detect because it has a short half-life and an analogous transcript in C. crescentus may have been missed in the northern blot analysis. Transcription of the E. chrysanthemi protease secretion genes appears to be accomplished by a similar method (Létoffé et al., 1990) and it is postulated that the same is true for the Rsa operon. A transcription pattern like this may account for the reduced expression found in the JS1003 and B1 mutants when they are complemented with rsaA. The kanamycin fragment interrupting rsaA in JS1003 does not have a transcription terminator and transcription may continue through to the end of rsaE, resulting in a transcript 1.5 kb longer than the wildtype, which would likely be more unstable and result in fewer transport complexes. In B1, it is likely that rsaD and rsaE are transcribed off one of the Tn5 promoters resulting in decreased amounts of transcript and, in turn, transport complexes.

Type I secretion systems can be grouped into families. The RTX toxins, such as α -hemolysin (*E. coli*) and leukotoxin (*P. hemolytica*), comprise one family while extracellular proteases (e.g. AprA, PrtB) and lipase from *S. marcescens* constitute

another (Binet *et al.*, 1997). Within the families there is high sequence similarity and functional secretion mechanisms can be constructed from using components from the different members without a dramatic drop in protein transport. Because it has been demonstrated that AprA and PrtB proteins can be secreted from *C. crescentus* in active form and there is higher sequence similarity between these proteins than with RTX toxins, presumably, RsaA can be grouped with the protease family of type I secretion systems.

Chapter 4

Identification of the Outer Membrane Protein Component of the RsaA Transport Complex

Introduction

The gene encoding the OMP component of the RsaA secretion machinery proved difficult to isolate since it was not found immediately 3' of the MFP, as in many other type I systems. This difficulty has also been found with most of the other type I secretion systems where the OMP is separated from the rest of the transporter complex. In fact, the OMP has only been found in 2 other cases of this type: ToIC, required for transport of α -hemolysin in *E. coli* (Wandersman and Delepelaire, 1990) and HasF, part of the heme transporter in *S. marcescens* (Binet and Wandersman, 1996). In both of these cases the experimenters had simple, efficient screens to look for mutants.

Several different strategies were considered to find the OMP component. As none of the original S-layer negative Tn5 mutants interrupted the OMP and considering the number of mutants screened, it was believed that the NA1000 Tn5 library did not contain the mutant. The Tn5 library may not have been complete or a Tn5 insertion in the OMP may have been lethal. If a Tn5 insertion was lethal there was no further point in screening another Tn5 library. It seemed possible that a point mutant with reduced secretion, but not having a lethal phenotype could be constructed. Since a UV/NTG point mutant library had been previously made by others, it was decided that this library could be screened for an OMP mutant.

Alternatively, a functional type I system could be reconstructed as was done in *E. coli* using *hasDE*, the ABC-transporter and MFP genes, from *S. marcescens* and the OMP gene, *tolC* (Binet and Wandersman, 1996). This secretion apparatus was capable of secreting the *S. marcescens* heme-acquisition protein, HasA, as well as AprA and PrtB. The *S. marcescens* OMP gene, *hasF*, was then isolated by expressing a protease along with *hasDE* in an *E. coli tolC*⁻ mutant along with a plasmid library of *S. marcescens* chromosomal DNA, and screening for the presence

of protease secretion on skim milk plates. It was hoped that a similar method would be capable of identifying the Rsa OMP gene.

A third option for finding the OMP was to screen by similarity to OMP components from other bacteria. There are two ways to approach this. One method is to search the genome of *C. crescentus* for DNA fragments hybridizing to the genes from OMP components. The other is to compare the sequences of different OMP components to find regions of similarity and design primers with degenerate sequences for PCR amplification of a portion of the OMP DNA sequence that can be used to isolate the complete gene by hybridization.

All of these approaches were attempted and are summarized below, but none worked. The OMP gene was eventually found using the partial *C. crescentus* genome sequence provided by The Institute for Genome Research (TIGR). Two partial ORFs with similarity to OMP components from other bacteria were found in this sequence data and this information was used to devise strategies to clone the complete sequence and to test which of the two ORFs was a legitimate OMP gene involved in the secretion of RsaA.

<u>.</u>

Results and Discussion

Screening libraries for OMP mutants defective in secretion. Since the original immunoblot assay was very labour intensive, attempts were made to develop a new screening method for finding secretion deficient mutants. The proteases, AprA and PrtB, are secreted by type I transporters and can be secreted by the Rsa secretion machinery, allowing skim milk plates to be used for rapid screening. Therefore, vectors carrying these genes were designed for screening the libraries. The plasmid pBBR3AprA:pRAT5 was constructed and consists of the *aprA* gene and the *rsaDE* genes under the control of separate *lacZ* promoters. The plasmid pBBR3PrtB:pRAT5 is identical to pBBR3AprA:pRAT5 except the *aprA* gene is replaced with *prtB*. When these plasmids were introduced into the UV/NTG mutant library, no secretion of AprA or PrtB was observed. The *rsaDE* genes had originally been included in the plasmid to exclude *rsaDE* mutants from being found during the

screening process, but since the plasmid did not work the approach was dropped. When the plasmids pBBR3AprA and pBBR3PrtB were used to express their respective proteases in the UV/NTG mutant library a large number of colonies failed to show secretion of the proteases. When some of these colonies were examined, it was found that they were still capable of secretion of RsaA. This was an unexpected result as expression of the proteases in NA1000 results in protease secretion from >99.9% of colonies. It was concluded that these proteases are not tolerated well by *C. crescentus* and could not be used as a screen. In agreement with this was the observation that *C. crescentus* colonies expressing the proteases could not be sub-cultured after growing for 5 days while normally *C. crescentus* can be sub-cultured even after several weeks. It appeared that the proteases were killing the bacteria. (see Ch. 5 for further discussion about protease expression in *Caulobacter* species).

Without a rapid screening method, it was decided to drop screening of mutant libraries in favour of the other approaches.

Searching for the OMP using complementation systems. If a complementation system was going to succeed in finding the OMP component, it was necessary to determine if a functional system could be constructed using the *C. crescentus* transporter components. In many other type I systems the components can be interchanged with components from other bacterial systems and allow heterologous secretion. To determine if the Rsa system would work in a similar manner plasmids expressing RsaD and RsaE were expressed in bacterial hosts along with OMP components from several different bacterial systems.

The plasmids pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 Δ H were constructed and express either a protease or *rsaA* along with *rsaD* and *rsaE*. These plasmids were introduced into *E. coli tolC*⁺ alone or with either of the plasmids pBBR1AprF and pBBR1PrtF which express OMP components from the Apr and Prt systems. None of these strains secreted either the protease or RsaA (data not shown). Since *E. coli* is an enteric microorganism and *C. crescentus* is a free-living groundwater bacterium, their outer membranes are quite different. It is possible that the Rsa transport complex was unable to assemble in the membrane of *E. coli*.

Rhizobium meliloti and *Rhizobium leguminosarum* are ground water bacteria living in environments similar to *C. crescentus* and likely have a membrane resembling that if *C. crescentus*. In addition, the type I secretion systems, Nod and Prs, with similarity to the Rsa secretion machinery have been found in *R. leguminosarum* (Finnie *et al.*, 1998; Scheu *et al.*, 1992). In *R. leguminosarum*, as in the Rsa system, the OMP gene of the Prs secretion system has not been found close to the other transport genes and is expected to be elsewhere on the chromosome and could possibly complement the Rsa machinery. With this in mind, pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 Δ H were expressed in *R. meliloti* and *R. leguminosarum*. Again, none of the constructs expressed the proteases or RsaA. Further experiments were tried by introducing pBBR3AprA:pRAT5, pBBR3PrtB:pRAT5 and pRAT4 Δ H along with pBBR1AprF and pBBR1PrtF, in various combinations in the *Rhizobium* species. In no case was secretion of RsaA or the protease found (data not shown).

Sequence similarity to other OMP genes was used to search for the Rsa OMP gene. Southern blots of *C. crescentus* chromosomal DNA were probed with the OMP genes, *aprF* and *prtF* under conditions allowing 30% mismatch. No hybridization of these probes to *C. crescentus* DNA was found (data not shown) demonstrating that this method could not be used.

A sequence alignment of OMP components revealed areas of sequence identity among the different proteins. The protein sequences of the OMPs from a number of closely related type I transport systems (with OMP genes that are both linked and unlinked to the other transporter genes) were aligned (Fig 4-1). The OMP, HasF, was given the highest priority in the comparison because it is from the type I system with an unlinked OMP gene most closely related to the Rsa system. Areas of significant homology were examined for the purpose of designing degenerate primers to amplify a portion of the OMP gene using PCR. Four areas, shown in Fig 4-1, were chosen for making primers. The primers were designed by taking the consensus amino acid sequence and using the codon preferences of *C*.

Figure 4–1. Alignment of OMP components. Arrows are placed above regions of similarity that were used to design degenerate primers. The arrows are colour coded according the primer they were used to create (see legend)

crescentus to determine the DNA sequence. The design process was governed by the suggestions in Colnaghi *et al.*, 1996; Maser and Kaminsky, 1998; and Tobin *et al.*, 1997. A variety of conditions, as well as different combinations of the primers, were used to amplify fragments from NA1000 chromosomal DNA (see Ch. 2). When the PCR conditions resulted in a product, multiple bands were always seen. Three DNA fragments of the expected size were gel purified and cloned. Sequencing of these products revealed similarity to 23S RNA, poly (3-hydroxybutyrate) biosynthesis genes and NADH dehydrogenase genes. The primers appeared to be amplifying undesired DNA sequences and as a result these experiments were abandoned.

Two candidates for the Rsa OMP gene were identified in the preliminary *Caulobacter* genome data. As all other attempts had failed to identify the OMP gene, contact was made with The Institute for Genome Research (TIGR) who provided preliminary sequence data from the *Caulobacter* genome. FASTA searches (Pearson *et al.*, 1997) of this database produced two contigs with similarity to known OMP components. Contig gcc_973 contains an ORF coding for the first 225 amino acids of a possible OMP component with a G+C content of 65.3%. Examination of the DNA 5' of this ORF revealed that this ORF is 5 kb 3' of the *rsaE* gene and there are 5 intervening ORFs that likely code for S-LPS synthesis proteins (Fig. 4-2). This ORF has been designated *rsaF*(973). The deduced amino acid

sequence of rsaF(973) had greatest similarity to ToIC with 26.1% identity and 52.2% similarity over the 225 amino acids coded by gcc_973 (Fig. 4-3). Contig gcc_1984 has a G+C content of 67% and contains an ORF coding for the last 384 amino acids of a possible OMP. This ORF has been designated rsaF(1984). 3' of rsaF(1984) is an ORF coding for valyl tRNA synthetase (Fig 4-2). The coding sequence of rsaF(1984) had greatest similarity to the HasF OMP with 26.8% identity and 48.5% similarity (Fig. 4-3). The G+C content of these two ORFs is comparable to *C. crescentus's* 67%, suggesting that neither is a recent genetic acquisition. These two contigs overlap with 59.6% identity over a region of 344 bp indicating that they are not part of the same ORF, but suggest that one arose by gene duplication of the other (Fig. 4-3).

Once sequence was available it was assumed that it would be relatively simple to obtain both complete genes. This did not prove to be the case. Using these sequences, primers were designed to amplify portions of rsaF(973) and rsaF(1984) that could then be used as probes to isolate the complete genes. These primers had melting temperatures (T_m) between 58°C and 62°C and did not appear to have any hairpin loops or secondary priming sites when analyzed using primer analysis and design programs. Primers of this size and T_m have been used routinely for PCR amplification of *C. crescentus* DNA with excellent results. These primers produced products of the expected size, but when cloned and sequenced the products were identical to the *C. crescentus* DNA gyrase and glutamate permease genes.

Suspecting that there may be something peculiar about the structure of the DNA around the *rsaF* genes it was decided to attempt to isolate the DNA of the adjacent regions. Since the start of *rsaF*(973) is found in the genome 1.5 kb 3' of sequences cloned into pRAT1, a 2 kb *Bam*HI-*Eco*RI fragment was sub-cloned from pRAT1 and designated pRAT HI (B/E). To amplify a fragment of DNA close to the *rsaF*(1984) gene, new primers were made to amplify a 736 bp region 3' of *rsaF*(1984). These primers were designed with T_m of 70°C and were 26-28 bp long.

A. BlastX comparison of gcc_973

Sequences p	roducing High-scoring Segment Pairs:	High Score	Smallest Probability P(N)
1. gi 72556	outer membrane protein tolC E.coli	92	4.0e-11
2. gi 3080540	(D49826) LipD [Serratia marcescens]	115	7.4e-07
3. gi 4826418	(Y19002) PrtF protein [Erwinia amylovora]	115	1.0e-06
4. ai 281563	agglutination protein - Pseudomonas putida	61	3.4e-05

B. BlastX comparison of gcc_1984

Sequences producing High-scoring Segment Pairs:	High Score	Smallest Probability P(N)
1. gi 1405817 (X98513) HasF ABC exporter outer membrane .	154	1.0e-23
2. gi 135980 OUTER MEMBRANE PROTEIN TOLC PRECURSOR E.col	i 159	1.2e-23
3. gi 3080540 (D49826) LipD [Serratia marcescens]	126	8.3e-23
4. gi 4826418 (Y19002) PrtF protein [Erwinia amvlovora]	111	4.2e-21

C. Overlap of gcc_973 and gcc_1984.

gcc_973	CAGACCTCGACCCTCTCTGAGCCAGAGCCTCTACACCAACGGTCGTTTCTCGGCCCGC
gcc_1984	::::::::::::::::::::::::::::::::::::::
gcc_973	CTGGCGGGTGTCGAGGCGCAGATCAAGGCCGCGCGCGAGAACCTGCGCCGCATCGAGATG
gcc_1984	: : :: :: : : : : : : : : : : : : : :
gcc_973	GACCTGCTGGTCCGCGTGACCAACGCCTATATCTCGGTGCGCCGCGACCGCGAGATCCTG
gcc_1984	: ::::::::::::::::::::::::::::::::::::
gcc_973	CGGATCAGCCAAGG-CGGTGAAGCCTGGCTGCAGAAGCAATTGAAGGACACCGAGGACAA
gcc_1984	:: ::: :::::::::::::::::::::::::::::::
gcc_973	GTACAGCGTCCGTCAGGTGACCTTGACCGÅCGTGCAGCAGGCCAAGGCCCGCCTGGCGTC
gcc_1984	: : ::: :: :: ::: ::: :::: ::: ::: :::
gcc_973	GGCCAGCACTCAGGTGGCGAACGCCCAGGCGCAGCTGAATGTCAGCGTAGCGTTCTACGC
gcc_1984	::::: ::::::: ::::::: ::::::: ::::::: ::::::: ::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: :::::::: ::::::::: :::::::: ::::::::: :::::::: ::::::::: ::::::::::::::::::::::::::::::::::::
gcc_973	GTCCCTGGTGGGGCGCCAGCCGGAGAC
gcc_1984	: :::: :: : TGCGGTGGTCGGTCAAACGCCCGGCGAACTGGCTCCCGAGCCGAGCTTGGCCGGACTGCT

Figure 4–3. Comparison of possible Rsa OMP components. A) Closest similar proteins to the ORF from gcc_973. B) Closest similar proteins to the ORF from gcc_1984. C) comparison of gcc_973 to gcc_1984. Note that the P(N) numbers are higher for gcc_1984 than gcc_973 because the gcc_1984 contig has a larger portion of the ORF.

PCR using these primers produced a product of the expected size that was successfully cloned and the resulting plasmid was called pBSKS-gcc1984. When sequenced, the product proved to be the correct fragment.

The NA1000 cosmid library was probed with pRAT HI (B/E) and pBSKSgcc1984. A number of cosmids hybridized to pRAT HI (B/E), but all proved to contain only DNA 5' of rsaF(973) and it was concluded that rsaF(973) was not located within the NA1000 cosmid library. The cosmid, 7A22, hybridized to pBSKSgcc1984. Southern blots of the cosmid showed that pBSKS-gcc1984 hybridized to a 5.5 kb *Bam*HI band. Several attempts were made to subclone this fragment and while the surrounding fragments could be cloned, it was not possible to subclone the fragment containing rsaF(1984).

Yet another approach was taken to isolate the *rsaF* genes. The plasmids pRAT HI (B/E) and pBSKS-gcc1984 will not replicate in C. crescentus and could be forced to integrate into the genome by homologous recombination. The plasmid pBSKS-gcc1984 was not successfully integrated into the chromosome, but pRAT HI (B/E) was, giving NA1000::pRAT HI (B/E). Chromosomal DNA from NA1000::pRAT HI (B/E) was partially digested with *Bam*HI and ligated under conditions promoting the circularization of the DNA fragments. The ligation mix was electroporated into E. *coli* and plated on selective medium which allowed only the growth of cells carrying the plasmid pRAT HI (B/E) and chromosomal DNA adjacent to the integration points that had circularized during the ligation. The 14 kb plasmid, pTZ19UASSm973Bcirc. was isolated in this manner. Restriction mapping and Southern blotting of this plasmid showed that insert consisted of DNA from 2.5 kb of 5' to 5.5 kb 3' of rsaF(973). Fragments of this plasmid were sub-cloned and sequenced, including a fragment containing the N-terminal of RsaF(973), but it proved impossible to subclone and sequence the entire rsaF(973) from this plasmid. This is not the first example of DNA from C. crescentus that has proved impossible to subclone. A 6.6 kb fragment, containing the holdfast genes involved in C. crescentus attachment, has proven resistant to the subcloning efforts of several graduate students and postdoctoral fellows (Smit, unpublished).

Fortuitously, one of the shedder Tn5 mutants, F11 (see Ch. 6), contains a Tn5 insertion 400 bp 5' of the rsaF(973) ORF. Using primers that hybridize to the

Tn5 it was possible to use an inverse PCR method (Martin and Mohn, 1999) to isolate and clone two fragments of DNA containing rsaF(973). Plasmid pCR2.1F11Sall contains the DNA from the F11 Tn5 insertion to the Sall site 1.1 kb 3' of rsaF(973). The other, pCR2.1F11Xmal, contains the DNA from the F11 Tn5 insertion to the Xmal site 2.0 kb 3' of rsaF(973). Again, both of these clones proved difficult to isolate. Large amounts of PCR product were obtained from the PCR reaction, but cloning of these fragments only produced one clone of pCR2.1F11Sall and two clones of pCR2.1F11Xmal. Usually when cloning products in this manner a minimum of 50 clones and as many as 300 clones can be expected. E. coli carrying these plasmids grow slowly and appear distended and malformed when observed by phase contrast light microscopy. It is possible that the inserts in these plasmids are not identical to wildtype NA1000 chromosomal DNA sequences, but contain mutations generated by inaccuracies in the Tag polymerase amplification. It may be that the majority of PCR product is lethal when introduced into E. coli, but some of the PCR product containing mutations in rsaF(973) making the product less toxic could be cloned in E. coli. The sequence of the insert from pCR2.1F11Sall assembled together with sequence from the plasmid pTZ19U∆SSm973Bcirc and the TIGR genome (Fig. 4-4, Appendix I). The RsaF (973) sequence from pCR2.1F11Sall, showed considerable similarity to other OMPs. The highest degree of sequence similarity was to E. coli TolC with 25.2% identity and 48.6% similar amino acids. The OMPs AprF and PrtF from P. aeruginosa and E. chrysanthemi were not as similar (Fig. 4-5). Analysis of the sequence of RsaF(973) revealed the presence of a predicted signal sequence encompassing the first 32 amino acids and the presence of β -strands capable of forming a β -barrel structure typical of outer membrane proteins.

Comparison of RsaF(973) to the protein databases					Smallest	
					High	Probability
	Document ID	Accession	Protein	Species	Score	P(N)
1.	gi 3860786	(AJ235270)	TolC	Rickettsia prowazekii	160	5.7e-23
2.	gi 882565	(U28377)	n/a	Escherichia coli	103	5.1e-17
З.	gi 135980	(X54049)	TolC	Escherichia coli	103	6.9e-17
4.	gi 3080540	(D49826)	LipD	Serratia marcescens	115	<u>1.9e-16</u>
5.	gi 2495191	(U25178)	TolC	Salmonella enteritidis	90	1.4e-14
6.	gi 4826418	(Y19002)	PrtF	Erwinia amylovora	115	3.2e-13
7.	gi 281563	(M64540)	n/a	Pseudomonas putida	99	1.3e-11
	gi 72556	(X00016)	TolC	Escherichia coli (partia)	1) 92	1.4e-11
9.	gi 1405817	(X98513)	HasF	Serratia marcescens	90	3.4e-11
	gi 4838370	(AF121772)	NatC	Neisseria meningitidis	111	3.2e-10
11.	gi 4115627	(AB015053)	PrtF	Pseudomonas fluorescens.	92	1.0e-09
12.	gi 117799	(X14199)	CyaE	Bordetella pertussis	87	1.9e-09
	qi 3493599	(AF064762)	ZapD	Proteus mirabilis	94	5.9e-09
14.	gi 4063019	(AF083061)	TliF	Pseudomonas fluorescens	85	1.1e-08
	gi 2983554	(AE000721)	n/a	Aquifex aeolicus	108	1.6e-08
	gi 416635	(X64558)	aprF	Pseudomonas aeruginosa	86	5.3e-08
	gi 5759289	(AF175720)	n/a	Porphyromonas gingivalis	66	6.7e-06
18.	gi 5759287	(AF175719)	n/a	Porphyromonas gingivalis	83	0.00017
19.	gi 1653357	(D90913)	n/a	Synechocystis sp.	70	0.00018
20.	-	(AJ007827)	EprF	Pseudomonas tolaasii	78	0.00024
21.	gi 3184190	(AB011381)	OprM	Pseudomonas aeruginosa	74	0.00035
22.	gi 5091481	(AF031417)	TtgC	Pseudomonas putida	66	0.00043
	gi 3914250	(L23839)	OprK	Pseudomonas aeruginosa	74	0.0011
24.	gi 95600	(S12527 <u>)</u>	PrtF	Erwinia chrysanthemi	80	0.0015

Figure 4–5. BLASTX search showing OMPs similar to RsaF(973). Lines 1 and 2 are predicted from ORF found in genome sequences. OMP from type I systems with the greatest similarity to RsaD and RsaE are underlined. The P(N) value gives the probability of the match arising by chance.

Was either of RsaF(973) or RsaF(1984) the OMP component involved in secretion of RsaA? Sequence similarity was not enough to show that either or both of the genes coded for the OMP. One approach to determine this, was to construct knockout mutants of these ORFs and determine if this prevented secretion. The plasmids pTZ19U Δ SSm Δ N Δ C-RsaF(973) and pTZ18U(CHE) Δ N Δ C-RsaF(1984) were constructed to perform the required integration events. Both plasmids consisted of internal portions of the respective genes without the N-terminal and C-terminal. These constructs required only a single recombination event to accomplish the knockout. A single cross-over would produce two copies of the gene, one with an N-terminal deletion and one with a C-terminal deletion, neither of which would be expected to function. To make the pTZ18U(CHE) Δ N Δ C-

RsaF(1984), it was still necessary to generate a PCR product containing the coding sequence of *rsaF*(1984). New primers were created using the primer selection methods provided by the MacVector software. The resulting primers were 26 and 28 bp long and had T_m of 71-73°C. Once again the PCR process proved difficult. A PCR product could not be generated at any annealing temperature higher that 55°C, considerably lower than the predicted T_m . When a product was generated, contaminating bands were always present and could not be eliminated by changes in the PCR reaction conditions. Instead, the band of the expected size was gel purified and cloned, giving the plasmid pCR2.1rsaF(1984) which was then used for constructing the deletion clone pTZ18U(CHE) Δ N Δ C-RsaF(1984).

The plasmids $pTZ19U\Delta SSm\Delta N\Delta C$ -RsaF(973) and $pTZ18U(CHE)\Delta N\Delta C$ -RsaF(1984) were electroporated into the strains NA1000, and JS4000. JS4000 is a strain of *C. crescentus* that cannot make RsaA, but has functional *rsaDE* genes

NA1000 (wildtype)

JS4000 (S-layer neg.)

JS4000 rsaF(973)

JS4000 rsaF(1984)

Figure 4–6. AprA secretion from *C. crescentus.* AprA was expressed in all bacteria using pBBR3AprA on skim milk plates. Zones of clearing around the colonies indicate secretion of AprA. Deletion of rsaF(973) interrupts secretion of AprA while interruption of rsaF(1984) does not interrupt secretion.

virtually identical to that of NA1000 (see Ch. 5). Knockouts were only obtained in the strain JS4000 and not NA1000, resulting in the mutants JS4000*rsaF*(973) and JS4000*rsaF*(1984). When AprA was expressed in these mutants, AprA was not secreted by JS4000*rsaF*(973), but was by JS4000*rsaF*(1984) (Fig. 4-6). From these data it was concluded that RsaF(973) is the OMP of the RsaA secretion system.

To confirm that RsaF(973) was required for secretion. the clone pBBR3AprA:pCR2.1F11Sal1, expressing AprA and RsaF(973) was created. This construct could not be made in E. coli. This may be because both of the separate plasmids were toxic, but sublethal. Together the toxic effects may be lethal. The plasmid was obtained by introducing the ligation mix directly into the knockout strain of RsaF(973). No AprA is secreted from this construct as the plasmid pBBR3AprA:pCR2.1F11Sal1 was unable to complement the knockout. Despite this, it is still believed that RsaF(973) is the OMP of the RsaA secretion system.

Summary

This portion of the project was exceptionally arduous because the *rsaF* genes appeared to be toxic in *E. coli*. This would explain much of the difficulty encountered, such as why the NA1000 cosmid library did not contain *rsaF*(973), why the TIGR genome sequence database does not contain a complete *rsaF* gene sequence, and why it proved difficult to isolate the genes. The lack of colonies resulting from the cloning of the *rsaF*(973) PCR products also suggests a toxic effect. All other attempts to isolate the *rsaF* genes on a fragment of DNA smaller than 7 kb failed, presumably because the smaller inserts were lethal. This suggests that the *rsaF* genes are lethal to *E. coli* and the clones obtained contain mutations that make the insert less toxic.

As mentioned above, this presumed toxicity may explain why the partial TIGR genome sequence contained only partial ORFs of the *rsaF* genes. Other analysis of the TIGR sequence suggests that greater than 80% of the *C. crescentus* genome is represented (see Ch. 6). Given that, the sequence reported here for *rsaF*(973) may differ from the wildtype sequence. Such a mutant *rsaF*(973) gene in the plasmid PCR2.1F11Sall may not produce a protein that functions correctly. This would explain why this plasmid was tolerated in *E. coli* while other constructs appeared to be lethal and would explain why the plasmid pBBR3AprA:pCR2.1F11Sall failed to complement the RsaF(973) knockout. It is unlikely that the phenotype of the *rsaF*(973) knockout is caused by a polar mutation because the gene 3' of *rsaF*(973) is transcribed in the opposite orientation. Even given the failure to complement the knockout, the results presented here indicate that RsaF(973) is the OMP required for secretion of RsaA.

The function *rsaF*(1984) is not known. The entire ORF was never cloned and sequenced so it was not possible to determine if an entire ORF coding for an OMP exists. The sequence identity between the two *rsaF* ORFs suggests that one may

be a gene duplication of the other and that rsaF(1984) is no longer functional. Another possibility is that there is a second type I secretion system in *C. crescentus* (though it is not known what it might transport) that uses RsaF(1984) as the OMP component. Determining the function of rsaF(1984) represents a future project.

Chapter 5

Identification of the S-layer subunit and transporter genes in Freshwater *Caulobacter* species

Introduction

The Smit laboratory strain culture collection contains numerous strains that have been isolated from locales around the world and are designated FWC (freshwater *Caulobacter*) species (MacRae and Smit, 1991). Analysis of these FWC species showed that not all have an S-layer (Walker *et al.*, 1992). There seems to be a geographical as well as evolutionary distinction between these species (Abraham *et al.*, 1999; MacRae and Smit, 1991). No FWC with an S-layer has been found in Europe, though admittedly, only a small fraction of the FWC species were isolated from European sources while FWC species with and without S-layers were found in North America.

The evolutionary relationships between the different FWC species have recently been examined by 16S rDNA sequencing, profiling of restriction fragments of 16S-23S rDNA interspacer regions, lipid analysis, immunological profiling and salt tolerance characteristics to organize the taxonomy of 76 different strains (Abraham *et al.*, 1999). It was demonstrated that all of the FWC species with S-layers are much more closely related to one another than to the species without S-layers, and the non-S-layer FWC species have been reclassified as the genus *Brevundimonas* instead of *Caulobacter*. Therefore S-layers are a characteristic of *Caulobacter* species.

The S-layers of the *Caulobacter* species have been previously examined. The S-layer subunits range in size from 100 kDa (comparable to NA1000) to 193 kDa and can be removed by a low pH or EGTA extraction method. All the putative S-layer proteins react with antibody raised against RsaA (though most often to a lesser extent) and most also produce a polysaccharide that reacts to antibody against the S-LPS responsible for attachment of the S-layer in NA1000 (Walker *et al.*, 1992). It was also shown that these FWC species will hybridize with an *rsaA* probe under conditions that would allow up to 30% mismatch (MacRae and Smit,

1991). This suggests that the S-layer subunits on these other FWC species are similar to RsaA and may also be secreted by a type I secretion mechanism.

Two strains have been used predominantly for the examination of the S-layer in *C. crescentus*. NA1000 is a variant of the ATCC 19089 strain, whose genome is being sequenced by TIGR. It is from NA1000 that the *rsaA* gene and *rsaD* and *rsaE*, genes responsible for secretion of RsaA, were isolated (see Ch. 3). The second strain used in the Smit lab is JS4000, a lab variant of the ATCC 15252 strain that spontaneously lost its S-layer during culturing, and is being used for expression of recombinant proteins secreted using the NA1000 *rsaA* gene. The S-layer gene from JS4000 has been cloned and expressed in *E. coli* where it produces a 40,000 molecular weight protein in inclusion bodies (Bingle *et al.*, 1999). ATC15252 has an S-layer gene that appears to be identical to RsaA as determined by size and antibody reactivity, yet other characteristics of the bacterium (i.e. cell appearance, growth rates), 16S rRNA sequencing (Stahl *et al.*, 1992) and RFLP mapping of the genome (B. Ely, pers. comm.) showed that it is different from NA1000.

Preliminary investigations of these S-layers that were begun in order to determine the differences between the S-layer subunits and their associated transport systems are presented here and have now been taken over by Mihai luga. It is hoped that analysis of these other S-layer systems will provide insight into the transport mechanisms by showing what changes in the transporters are required to transport the different sized subunits.

Results and Discussion

The S-layer subunit, ABC-transporter and Membrane Forming Unit proteins of JS4000 and NA1000 *Caulobacter* species are virtually identical. The S-layer genes from both JS4000 and JS3001, a shedding derivative of ATCC 15252, were cloned and sequenced (see Ch. 2) and have few differences when compared to the sequence of the NA1000 *rsaA*. In a few places the guanosine (G) and cytosine (C) residues are reversed (i.e., GC instead of CG), but these are in regions of high G+C content and appear to be errors in the original sequencing of *rsaA* (Gilchrist *et al.*, 1992) as the partial *Caulobacter* genome sequence from TIGR supports my sequencing results. The sequence for NA1000 was amended accordingly. The error in the JS4000 sequence that truncates the S-layer protein consists of a guanosine base that has been deleted from codon 357 which causes a termination codon to be read at codon 359. These differences are listed in Table 5-1.

The *rsaD* and *rsaE* genes from JS4000 have been isolated from a cosmid library (see Ch.2) and were sequenced. These genes are almost identical to the NA1000 genes. The differences between the strains are summarized in Table 5-1.

		ATCC 19089	ATCC 15252	
		NA1000	JS4000	JS3001
RsaA	aa 358-359-360	Gln-Asn-Leu	Gln-Thr-None	Gln-Asn-Leu
	aa 475	Val	Ile	Val
	aa 860	Thr	Ser	Thr
RsaD	aa 298	Asn	Thr	ND
RsaE	aa 131-132	Ser-Gln	Arg-Leu	ND

Table 5–1. Differences between the Rsa genes found in lab strains. Deduced amino acid sequence differences between the RsaA, RsaD and RsaE proteins of three common lab strains of *C. crescentus*. ND- not determined

The S-layers of FWC species are probably transported by a type I secretion system. The alkaline protease gene, AprA, from *P. aeruginosa* is secreted by the RsaA secretion machinery (see Ch. 3). AprA was successfully secreted in selected strains covering the range of S-layer subunit sizes, demonstrating that these strains also had type I secretion mechanisms (Table 5-2). AprA secretion was varied in the differing FWC species. While in NA1000 all the colonies containing the *aprA* gene secreted AprA, not all FWC colonies did. While some species (i.e., FWC 19)

	AprA	Penetrance*	Subunit
Species	secretion	(%)	size
NA1000	++	>99.9	98 kDa
JS4000	++	>99.9	98 kDa
FWC 8	++	80	122 kDa
FWC 9	+	>99.9	133 kDa
FWC 17	+	78	106 kDa
FWC 19	+	>99.9	108 kDa
FWC 28	+	45	106 kDa
FWC 32	+	10	133 kDa
FWC 39	+	80	193 kDa
FWC 42	+	10	181 kDa

Table 5–2. FWC species secreting alkaline protease. ++ represents 70-100% of the NA1000 secretion level, + represents 20-69% of the NA1000 secretion level

* penetrance was the number of colonies expressing AprA

showed full penetrance (all colonies expressed AprA), in other FWC species as few as 10% of the colonies secreted AprA when the aprA gene was expressed (i.e., FWC 32). It is not known why only some colonies secreted AprA. Ρ. aeruginosa also expresses an inhibitor that binds to the AprA and prevents proteolytic activity inside the cell. As the inhibitor is not expressed with aprA in the FWC species, AprA

may have a toxic effect on *Caulobacter* cells and there may be selective pressure to eliminate it from the cells. Cells not secreting AprA, may have found a way to prevent expression of the gene. NA1000 and some of the FWC species may be better able to tolerate the toxicity than other species.

FWC species with similar subunit sizes have similar Southern blot banding patterns. To further characterise the FWC species, Southern blot analysis was performed using probes to *rsaA* and *rsaDE*. These blots were performed under conditions that would allow up 30% mismatch. The results are summarized in Table 5-3.

Caulobacter species	Subunit size (kDa)	Fragment size when probed with <i>rsaD</i> and <i>rsaE</i> (enzyme ¹)	Fragment size when probed with <i>rsaA</i>	
			(enzyme ¹)	
NA1000	98	>20kb(<i>Eco</i> RI),7.1kb(<i>Hind</i> III)	7.1kb (<i>Hind</i> III)	
JS3000				
FWC 17	106	3.5 kb (EcoRI), 5kb (HindIII)	4.3 kb (<i>Eco</i> RI)	
FWC 18	131	ND^2	7.0 kb (<i>Bam</i> HI)	
FWC 19	108	3.5 kb (<i>Eco</i> RI)	4.4 kb (<i>Eco</i> RI)	
FWC 28	106	3.5 kb (<i>Eco</i> RI)	4.3 kb (<i>Eco</i> RI)	
FWC 31	106	3.5 kb (<i>Eco</i> RI)	4.3 kb (<i>Eco</i> RI)	
FWC 42	181	10 kb (<i>Eco</i> RI)	8.0 kb (<i>Eco</i> RI)	
Table 5-3. Comparison of Southern Blot banding patterns of different FWC				
species. Chromosomal digests with the enzyme specified were probed with either rsaA or rsaDE.				
¹ Enzyme that chromosomal DNA was cut with for Southern blot analysis				
² Not Determine	ed			

Analysis of the Southern blot data suggests that the S-layer subunits and transporters can be grouped according to size. All of the FWC species with subunits ranging from 106-108kDa have identical Southern banding patterns, while all the other FWC species with different subunit sizes have different banding patterns. The ability of the *rsaDE* genes to hybridize to the chromosome of the differing FWC species suggests that the S-layer subunit is being secreted by a type I transporter. With this in mind, methods were devised for isolating the genes involved.

The ABC-transporter subunits were isolated from several different FWC species. The sequence identity between ABC transporter among different type I systems is the most significant of the 3 transporter components. Using the sequence identity between the ABC-transporters *aprD* (*P. aeruginosa*), *prtD* (*E. chrysanthemi*) and *rsaD* (NA1000), degenerate primers were designed to amplify a central portion of the ABC transporter using PCR. Using these primers it was possible to amplify, clone and sequence fragments of the ABC transporter from FWC6, FWC8 and FWC39. PCR products were not successfully generated from FWC17, FWC26,

Figure 5–1. ClustalW alignment of partial RsaD genes from FWC species. Identical residues have dark shading. Similar residues are shaded lightly. The line underneath the alignment is the consensus sequence.

FWC28, FWC29 and FWC41. Multiple bands were generated from FWC27 and FWC42, but I was unable to clone any of the fragments.

Obviously, the PCR strategy selects for ABC-transporters most closely related to the NA1000 gene. This suggests that even though the subunit of FWC6 is 181kDa and that of FWC39 is 193 kDa, the transporters are still closely related to FWC8 with a subunit of 122 and NA1000 with a subunit of 98 kDa and this was confirmed by sequencing (Fig 5-1). Curiously, FWC species with small subunit sizes close to that of NA1000 failed to generate PCR products suggesting that the sequences of their ABC-transporters have diverged more from the NA1000 sequence. Analysis of the sequence showed little division between the FWC species according to size. In some places along the deduced protein sequence, the transporters of smaller subunits are more similar to one another than to the transporters of larger subunits while in others, the sequences of transporters of differing sizes are more similar to one another (Fig 5-1).

A method for screening the chromosomes of FWC species for the S-layer subunit and S-layer transport genes was devised (see Ch. 2). Using this method, part of the S-layer subunit gene for FWC 27 was isolated. FWC27 has an S-layer subunit size of 145 kDa. Comparison of the sequence to NA1000 reveals that there is a considerable difference in the sequence of these proteins (Fig. 5-2). A BLAST alignment of the RsaA and FWC27 sequences (Altschul *et al.*, 1990) shows that the proteins are 44.6% identical and 61.5% similar over 130 amino acids.

Figure 5-2. ClustalW alignment of FWC 27 with the first 200 amino acids of RsaA. Identical residues have dark shading. Similar residues have light shading. Identical and similar residues are boxed. The line underneath the sequences is the consensus sequence.

The sequence of RsaA contains repeating amino acid sequence elements. Sequence analysis of RsaA has revealed that portions of the sequence exhibit considerable sequence similarity to other portions of the molecule. Table 5-4 shows the similarity of the Ca²⁺ binding domain of RsaA to sequences closer to the N-terminal. These similar units do not appear to be uniform in size and appear to consist of 60 to 90 amino acid segments, but the exact sizes have not been determined. These segments may represent a complete structural domain (i.e., α -helix or β -strand) that is replicated along the length of the protein, but further analysis is required to confirm this.

As Table 5-4A shows, the alignments of RsaA along different portions of itself can result in as much as 28% identical amino acids. Furthermore, the Expect numbers, representing the possibility of the match occurring by chance in a random sequence database of the current size, are very small. Table 5-4B shows the other hits in the database to the same portion of RsaA. The Sap proteins from *C. fetus* are S-layer proteins with the greatest identity to RsaA. HlyA from *Aquifex aeolicus* and the hypothetical protein from *Rhodobacter capsulatus* both contain the calcium binding motifs found in proteins secreted by type I systems, leading to higher identity. As the Expect numbers show, the identity to RsaA along itself is greater than what would be found by chance in the sequence database. This repetitive

nature is also seen at the DNA level (data not shown). It must be taken into account that the nature of the RsaA composition (26% threonine and serine) leads to a higher number of repetitive sequences occurring than would be expected by chance. This explains why a low Expect number occurs with alignments to a membrane glycoprotein from Equine herpesvirus which also contains a high number of threonine and serine residues. It is only at Expect numbers of 1.8e-08, much higher than the best expect number of 6e-14 of RsaA to itself, that random proteins begin to show identity. Overall, the repetitive nature found here is higher than could be expected by chance and suggests that RsaA evolved by duplicating structural portions of the molecule to form a larger protein.

Table 5–4. BLAST alignment of RsaA with itself.

Α

pir A4	18995	paracrystalline surface layer protein RsaA - Caulobacter cre Length = 1026	escentus
		73 bits (1461), Expect = e-163 = 300/300 (100%), Positives = 300/300 (100%)	
Query:	1	QLGATAGATTFTNVAVNVGLIVLAAPTGTTTVTLANATGTSDVFNLTLSSSAALAAGIVA QLGATAGATTFTNVAVNVGLIVLAAPTGTTTVTLANATGTSDVFNLTLSSSAALAAGIVA	60
Sbjct:	721	QLGATAGATTFINVAVNVGLIVLAAPIGITTVTLANATGTSDVFNLIILSSSAALAAGIVA	780
Query:	61	LAGVETVNIAATDINITAHVDILIIQATSAKSIVVIGNAGLNLINIGNIAVISFDASAVT LAGVETVNIAATDINITAHVDILIIQATSAKSIVVIGNAGLNLINIGNIAVISFDASAVT	120
Sbjct:	781	LAGVEIVNLAATDINITAHVDILIIQATSAKSIVVIGNAGLNLINIGNIAVISFDASAVI	840
Query:	121	GTGSAVTFVSANITVGEVVTIRGGAGADSLIGSATANDTIIGGAGADTLVYTGGTDTFTG GTGSAVTFVSANITVGEVVTIRGGAGADSLIGSATANDTIIGGAGADTLVYTGGTDTFTG	180
Sbjct:	841	GIGSAVIFVSANITVGEVVTIRGGAGADSLIGSATANDTIIGGAGADILVYTOGIDIFIG	900
Query:	181	GTGADIFDINAIGTSTAFVTITDAAVGDKLDLVGISINGAIADGAFGAAVILGAAATLAQ GTGADIFDINAIGTSTAFVTITDAAVGDKLDLVGISINGAIADGAFGAAVILGAAATLAQ	240
Sbjct:	901	GIGADIFDINAIGTSTAFVTITDAAVGDKLDLVGISINGAIADGAFGAAVILGAAATLAQ	960
Query:	241	YLDAAAAGDGSGTSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKL/IGLVIL/ITSAFAT YLDAAAAGDGSGTSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKL/IGLVIL/ITSAFAT	300
Sbjct:	961	YLDAAAAGDGSGTSVAKWFQFQGDTYVVVDSSAGATFVSGADAVIKLIGLVTLITSAFAT	1020
		.4 bits (190), Expect = 6e-14 = 85/318 (26%), Positives = 133/318 (41%), Gaps = 37/318 (11	٤)
Query:		LGATAGATTFTNVAVNVCLTVLAAPIGITTVILANATGISDVFNLTLSSSAALAAGIV L AT A NVAV+ G V A TG T T T+ + S ++++++S+ G +	59
Sbjct:		LTATTAAQAANNVAVDOGANVIVASIGVISGTTTVGANSAASGIVSVSVANSSTTTTGAI	419
Query:		ALAGVETVNIAATDINITAHVDTLITLQATSAKSIVVTGNAGLNLIINIGNTAVTSFDASAV A+ G V +A T N V+T QA + VIGN+ TA + A+	119
Sbjct:		AVIGGIAVIVAQIAGNAVNITLIQADVIVIGNSSTIAVIVIQIAAATAGATVA	472
Query:	120	TGTGSAVIFVSANFIVGEVVIIR-OGAGADSLIGSATANDTIIGGAGADTL AVT ++ TT G++ T+ G GA ++ SA + G G G L	169
Sbjct:	473	GRVNGAVTITDSAAASATTAGKLATVTLGSFGAATIDSSALITVNLSGTGTSLGIGRGAL	532
Query:	170	VYTOGIDIFTOGICADIFDINAIGISTAFVTITDAAVCDKLDLVGISINGALADGAF T +T T ++N + T+T +T ++AA D ++++G + + IA	226
Sbjct:	533	TATPTANILTINVNEL-TTIGAITDSEAAADDGFTTINIAGSTASSTIASLVA	584
Query:		GAAVIIGAAATLAQYLDAAAAGDGSGTSVAKWFQFGGDTYVVVDSSAGATFVS A TL A T+ + AA G SV T +V AGA + +	279
Sbjct:	585	A IL A I+ + AA G SV I +V AAA + + ADATTINISCDARVTITSHTAAALIGITVINSVGATLGAELATGLVFTOGAGADSILLGA	644
Query:	280	GADAVIKLICLVILITISA 297 A++ G T+T S+	
Sbjct:	645	AFF G 1FF SF TIKAIVMGAGDDIVIVSS 662	

Table 5–4 continued

	s (159), Expect = 3e-10 361 (26%), Positives = 143/361 (39%), Gaps = 80/361 (22%)
~ -	TFINVAVNVGLIVLAAPIGTITIVILANATGISDVFNLIILSSSAALAAG 57 T +AV G V A T TI+T A+ T G S +T++ +AA AG
	TTGALAVIGGTAVIVAQIAGNAVNITLIQADVIVIGNSSTTAVIVIQIAAATAG 468
~ 1	LAGVETVNIAATDINITA-HVDTLTLQATSAKSIVVICNAGLNLINICNTAVIS 113 + G T+ +A + TTA + T+TL + A +I + +NL+ TG +
	VNGAVTITDSAAASATTAGKIATVILGSFGAATIDSSALITVNLSGTGTSLGIG 528
	TGTGSAVIF-VSANTTVGEVVTIROGAGADSLIGSATANDT 159 T T + +T V+ TT G + + + I G + ++ A+ T
	TPTANTLTINVNGLITTTGAITDSEAAADDGFTTINIAGSTASSTIASLVAADAT 588
Query: 160 IIGGAG + +G	ADILVYTOGID 191 + T T FICG GAD + A
	DARVIITSHTAAALIGITVINSVGATLGAELATGLVFTGGAGADSILLGATTKA 648
	TAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVIIGAAATIA 239 VT++ A + GD D++ + NG+ AD AFG TL
Sbjct: 649 IVMGAG	DDIVIVSSATLGAGGSVNGGDGIDVLVANVNGSSFSADPAFGGFETLRV 703
	AAGDGSGTSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLIGLVTLITSAFA 299 AA GS +
Sbjct: 704AG	AAAQGSHNANGFTALQLGATAGATTFINVAVNVGLIVLAAPIGITTV 752
	(158), Expect = 3e-10 301 (28%), Positives = 121/301 (39%), Gaps = 46/301 (15%)
~ -	ATTFINVAVNVGLTVLAAPIGITIVILANATGISDVFNLILSSSAALAAGIVAL 61 AT A++LVAAGT +NA T+S ATA+
	ANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAAM 219
	NIAATDINITAHVDILIIQATSAKSIVVIGNAGLNLINIGNIAVTSFDASAVIG 121 ++ A T+ A V+ T +S S G+T + +IG
	SDGALSIDNAAGVNLFTAYPSSGVSGSTLSL/TIGIDILIG 263
	FVSANITVGEVVTIRGGAGADSLIGSATANDTIIGGAGADTLVYTGGIDIFTOG 181 FV+ GEV AGA +LT DT+ GGAG D L +
	FVAGEVAGAATLTVGDTLSCGAGTDVLNWVQAAAVTALP 308
	DINAIG-TSTAFVTITDAAVGDKLDLVGISINGAIADGAFGAAVTLGAAATLAQ 240 I + TS A +T+ ++ L + +T+GA GA L A T AQ
	GIEIMNVISGAAITINISSGVIGLITALNINISGAAQIVTAGAQQNL-TATTAAQ 367
Query: 241 YLDAAA	
	AGDGSGTSVAKWFQFGGDTYVVVDSSA-GATFVSGADAVIKLTGLVTLTTSAFA 299 A G+ +VA G T V +S+A G VS A++ TG + +T

Table 5–4 continued

		2.8 bits (150), Expect = 3e-09 s = 77/293 (26%), Positives = 125/293 (42%), Gaps = 38/293 (12%)
Query:	12	TNVAVNVGLIVLAAPIGITTVILANATGISDVFNLILSSSAALAAGIVALAGVEIVNIAA 71
Sbjct:	230	T+ A V L +G + TL+ TGT + +++ AG VA A TV TDNAAGVNLFTAYPSSGVSGSTLSLITIGIDILIGTANNDIFVAGEVAGAATLIVGDIL 287
Query:	72	TDINTTAHVDILTLQATSAKSIVVIGNAGLNLINIGNTAVISFDASAVIGIGSAVIFVSA 131
~ -		+ T ++ + A +A VT + + T A+T +S VIG +T ++
Sbjct:	288	SOGAGTIVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITINTSSGVIGLTALNT 343
0.000	122	NIIVGEVVTIRGGAGADSLIGSATANDTIIGGAGADILVYIGGIDIFIGGIGADIFDI 189
Query:	1.02	NITUGEN VIILAGENEEN SUIGENEEN UNITUGENEEN
Sbjct:	344	NIS-GAAQIVIAGAGQNIJIATTAAQAANNVAVDGGANVIVASTGVTSGTTTVGA 396
Query:	190	NAIGTSTAFVTITDAAVGDKLDLVGISINGALADGAFGAAVTLGAAATLAQYLDAAAAGD 249
Shict	397	N+ + T V++ +++ +T GAIA VT G A T+AQ AG+ NSAASGTVSVSVANSSTTITIGAIAVTOGTAVTVAQTAGN 435
colorer.	,,,	
Query:	250	GSGTSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLIGLVTLITTSAFAT 300
		T++ A G + V + A +GA ++ G VT+T SA A+
Sbjct:	436	AVNITLIQADVIVIGNSSITAVIVIQIAAATAGATVAGRVNGAVTITDSAAAS 488

В	Sequences p	roducing High-scoring Segment Pairs:	High Score	–
1.	gi 477427	RsaA - Caulobacter crescentus	1461	1.1e-187
2.	gi 2120535	SapB – Campylobacter fetus	154	9.5e-17
3.	gi 2120536	SapA - Campylobacter fetus	108	1.1e-11
4.	gi 2114323	membrane glycoprotein Equine herpesvirus 1	153	1.5e-11
5.	gi 94640	SapA - Campylobacter fetus	100	1.4e-10
б.	gi 2983562	HlyA - Aquifex aeolicus-hemolysin protein	132	9.9e-09
7.	gi 2114321	membrane glycoprotein Equine herpesvirus 1	130	1.8e-08
8.	gi 3128319	hypothetical protein-Rhodobacter capsulatus	98	4.3e-08
9.	gi 2606019	envelope glycoprotein – Equine herpesvirus	4 127	4.7e-08
10.	gi 4063042	glycoprotein – Cryptosporidium parvum	125	8.7e-08
11.	gi 790694	epimerase -Azotobacter vinelandii	111	4.1e-07
12.	gi 3128317	hypothetical protein-Rhodobacter capsulatus	102	1.4e-06
. 13.	gi 790692	epimerase -Azotobacter vinelandii	109	1.4e-06

Table 5-4. BLAST alignment of RsaA with itself. A) Portions of the sequence of RsaA exhibit considerable sequence similarity to other portions of the molecule. Query represents the 300 amino acid segment of RsaA from 721-1020. Sbjct represents the entire sequence of RsaA. Numbers alongside the sequence indicate amino acid positions. The line between the Query and Sbjct lines indicates identical amino acids with the appropriate letter code and similar amino acids with a '+'. Identities refers to the number of identical amino acids shared between the sequences. Positives refers to the combined number of identical and similar amino acids shared between the sequences. Expect gives the possibility of the sequence alignment occurring by chance considering the current size of the sequence databases. B) Result of BLAST search showing the closest matches to the amino acids 721-1020. P(N) numbers are almost identical to Expect numbers for Expect numbers<0.001 (Altschul et al., 1990).

Phylogenetic analysis of the FWC species has shown that the FWC species can be divided into five branches. Analysis of the phylogenetic study Abraham et al., 1999 shows that there are two branches, B and D, of the Caulobacter phylogenetic tree that contain species with only small, 100-108, kDa S-layers (Fig 5-3). FWC19, FWC28 and FWC31 belong to one of these branches and FWC 17 belongs to the other. These are the four strains with identical Southern blot banding patterns (Table 5-3) suggesting that the S-layers and associated transporters of these two branches are more closely related to each other than to the other three branches. The three other branches show no correlation between subunit size and evolutionary distance as they have S-layer subunit sizes ranging from small (102 kDa) to large (193 kDa). In addition to this, the species FWC6, FWC8 and FWC39, that proved easiest to amplify the ABC-transporter by degenerate PCR, all belong to different branches. This may simply reflect the conserved nature of the ABCtransporter. It may be that the larger S-layers evolved separately from one another and the similarities between ABC-transporters transporting large subunits (but not found in ABC-transporters transporting small subunits) may represent convergent evolution required to accommodate secretion of a larger subunit.

Figure 5–3. Dendrogram derived from *Caulobacter* glycolipid content (Adapted from Abraham *et al*, 1999). The FWC species have been organized into 5 groups with a linkage difference of more than 0.05. * species examined in this study. Numbers in brackets refer to the size of the S-layer subunit in kDa.

Summary

The evolutionary relationships of the S-layer subunits and associated transporters of the different FWC species have been examined here. These results are still preliminary and more work needs to be done to substantiate these conclusions. While keeping this in mind, I will hypothesize on the evolutionary relationships that the data presented here suggest.

The repetitive nature of RsaA suggests how the different sizes of S-layers could have arisen among the different FWC species. The larger S-layer subunits from such strains as FWC39 and FWC41 may consist of an even more repetitive nature to account for the greater bulk. Larger S-layer subunits might arise from a duplication of DNA within the gene for the subunit.

The phylogenetic analysis of the FWC species by Abraham and collegues shows little evolutionary relatedness with regard to S-layer subunit size (Fig. 5-3). While groups B and D contain only smaller S-layer subunits other groups contain a range of sizes. The most pronounced difference in subunit size is found in group E between the species with the largest (FWC 39) and the smallest (NA1000/JS3000) subunits, yet the bacteria are very closely related according to glycolipid content. Thus, it seems that the large S-layer subunits arose independently. The identical amino acid changes seen in the ABC-transporters with large S-layer subunit of a large size. Further work on analyzing these differences is required before anything conclusive can be determined, and is of great interest since this information would help determine the factors that must be considered when designing recombinant proteins for secretion.

In reviewing all current data, I hypothesize that the progenitor of the six branches of FWC species had a small (106-108 kDa) S-layer subunit and the two branches consisting solely of small S-layer subunits represent FWC that are most closely related to the progenitor. The S-layer subunits of the FWC species in the other four branches may have altered their sizes more recently. The repetitive nature of the S-layer sequence may have assisted in the duplication of sequence segments by allowing slippage during gene replication to create larger S-layer

subunits. Smaller subunits such as the 98 kDa NA1000 subunit may have resulted from deletion of repeated units. It may be that to accommodate the different sized subunits, the ABC-transporter components must be changed at specific residues to allow secretion of larger subunits. If convergent evolution resulted in the similarities found between the large subunit transporters here, then these similarities will indicate what portions of the protein are involved in transport of the larger subunit. I believe that the analysis of the S-layer subunits and transporters in this manner will allow a much greater understanding of the type I secretion systems.

Chapter 6 Identification of genes involved in the synthesis of the O-Antigen of *C. crescentus*

Introduction

The S-LPS of C. crescentus is responsible for attachment of the S-layer to the surface of the bacterium. Disruption of proper O-antigen formation in the S-LPS causes the RsaA molecules to slough off or 'shed' from the surface and assemble into sheets (Fig. 6-1). The S-LPS has been isolated and analyzed from S-layer negative NA1000 mutants (Walker et al., 1994) and has the same core and lipid composition as the rough LPS (Ravenscroft et al., 1992). Further analysis of the O-antigen (Smit, unpublished) has revealed that the O-antigen of the S-LPS appears to be composed of a homopolymer of a 4,6-dideoxy-4-amino-hexose. Mass spectrometry indicates that the O-antigen has a mass consistant with of forty of these hexose units. This homopolymer is unusual in that a number of different anomeric proton signals can be found when it

Figure 6-1. Shed Slayer from C. crescentus. EM photo-graph of Slayer shed from a strain with defective S-LPS. (Photo courtesy John Smit)

Wildtype

S-layer negative

S-LPS negative

Figure 6–2. Colony Immunoblot. Example of an immunoblot demonstrating the different phenotypes exhibited by mutants. is analyzed by proton NMR suggesting that the individual sugar units may not all be linked in the same manner. Presented in this report is evidence that this 4,6-dideoxy-4-amino-hexose is, most likely, the sugar perosamine. Perosamine is not commonly found in the O-antigen and only a few species, including *Vibrio cholerae*, *Brucella melitensis* and *E. coli* O157, contain perosamine residues (Stroeher *et al.*, 1995; Wang and Reeves, 1998). In addition, a number of glycosyltransferases have been found which may be

the basis for the different linkages making up the homopolymeric O-antigen.

Results and Discussion

Several Tn5 mutants producing altered S-LPS were found. The screen used to detect transport deficient mutants also detected S-LPS mutants in the NA1000 Tn5 library. On plates, these mutants exhibit a 'halo' of RsaA protein diffusing out from the colonies that can be easily distinguished with an immunoblot from bacterial colonies not shedding the S-layer (Fig. 6-2). This method was used to isolate a total of 26 'shedders' from the NA1000 Tn5 library with altered S-LPS (Fig 6-3).

Figure 6–3. S-LPS of shedding Tn5 mutants. Silver stained polyacrylamide gel of S-LPS extracts from representative NA1000 shedder Tn5 mutants. NA1000 shows the wildtype form of S-LPS. JS100 is a spontaneous shedder mutant with a defective S-LPS. The large dark band at the bottom is the rough LPS.

Southern blot analysis of these mutants has shown that mutants F1-F22 consisted of 16 different Tn5 insertions (data not shown). Further Southern blot characterisation of the mutants showed that F8 was not a proper Tn5 insertion since the banding pattern was incorrect when probed with Tn5. Southern blots probed with the coding sequence of *rsaA* showed that the *rsaA* band in the mutant F21 was not the same as wildtype. This suggested that the Tn5 mutation did not result in the shedding phenotype, but instead a second mutation resulting in a deletion of the

rsaA gene was responsible (data not shown). To further characterise these mutants, Southern blot analysis using *Eco*RI and *SstI* was performed on the chromosomal DNA of these mutants. Both of these enzymes do not cut Tn5 and as a result can be used to determine if the Tn5 insertions are linked. The Southern blots were probed with a portion of the Tn5 and the banding patterns have been summarized in Tables 6-1 and 6-2. The results showed that the majority of these mutants have identical banding patterns (groups C and I) and are linked. Of the remaining mutants: F10 and F22 appear to be linked, while F3 and F9 are not linked to any of the others (Tables 6-1 and 6-2). Four of these mutants were isolated at a later date and were not characterised by Southern (F23-F26).

Mutant	Group A	Group B	Group C	Group D	Group E
- <u></u>	8.1 kb	15 kb	23 kb	30 kb	35 kb
F1			x		
F2			x		
F3		x			
F4			x		
F6	x				
F9					x
F10				x	
F11			x		
F12			x		
F14			x		
F15			x		
F19			x		
F20			x		
F22				x	

Southern blot analysis of chromosomal DNA digested using EcoRI

Table 6–1. Compilation of Southern blot data from *Eco*RI digestion of shedder mutant chromosomal DNA. *Eco*RI does not cut Tn5. The Southern blots were probed with a fragment of Tn5. Mutants are grouped according the band size seen on the Southern blots.

					<u> </u>	<u> </u>
Mutant	Group F	Group G	Group H	Group I	Group J	Group K
	9.3 kb	14 kb	18 kb	20 kb	21 kb	23 kb
F1				x		1
F2				x		
F3	x					
F4				x		
F6				х		
F9		x				
F10						x
F11				х		
F12				x		
F14			x			
F15				x		
F19				x		
F20					x	
F22						x

Southern blot analysis of chromosomal DNA digested using Sstl

Half of the Tn5 and associated chromosomal DNA from a representative of each of these 16 groups and F23-F26 was cloned by one of two methods. The majority of Tn5 insertions were cloned by cutting the chromosomal DNA with *Bam*HI. This cuts the Tn5 in half, but leaves the kanamycin resistance gene intact. This DNA was ligated into a pUC-based vector and selected on kanamycin. This gives an insert with Tn5 sequences on one side and chromosomal DNA on the other. A few mutants proved resistant to this technique and were cloned using an inverse PCR method, developed by V. Martin (Martin and Mohn, 1999). Sequencing off the end of the Tn5 revealed the insertion site of the Tn5 and this sequence was used to search the partial TIGR *C. crescentus* genome library for the DNA surrounding the Tn5 insertion site. All of the Tn5 insertion sites were found in the partial genome

sequence. Open reading frames (ORFs) were determined using the sequence from the partial genome and analyzed for *C. crescentus* codon preference. These ORFs were used to search the known protein databases for similar proteins using the BLAST algorithm (Altschul *et al.*, 1990). The genes² interrupted by the Tn5 insertions were characterised using this data (Table 6-3).

Tn5 mutant	Similarity to known proteins	Location*	ORF
group			designation
F1, F7	regulator and transcription repressor LacI	gcc. 433	lpsI
F2	perosamine synthetase, RfbE – V. cholerae	RAT1	lpsC
F3	nucleotide sugar epimerase/dehydratase	gcc 1444	lpsK
F4, F5	similarity to mannosyl transferase WbaZ - E. coli	RAT1	lpsD
F6	methyl-accepting chemotaxis receptor	gcc 648	orf1
F9, F13, F17	Phosphomannomutase, RfbB – V. cholerae	gcc 227	lpsG
F10	none-downstream of kpsT-like ORF (O-antigen transporter)	gcc 279	orf2
F11	similarity to mannosyl transferase (rfb region)	gcc 973	lpsE
F12	similarity to mannosyl transferase WbaZ from E. coli	RAT1	lpsD
F14, F16	mannose–6-phosphate isomerase	gcc 506	lpsH
F15, F18	similarity to mannosyl transferase WbaZ from E. coli	RAT1	lpsD
F19	similarity to mannosyl transferase WbaZ from E. coli	RAT1	lpsD
F20	similarity to mannosyl transferases	gcc 395	lpsF
F22	none-downstream of kpsT-like ORF (O-antigen transporter)	gcc 1290	orf2
F23	Phosphomannomutase	gcc 227	lpsG
F24	galactosyl-1-phosphate transferase, WlaH C. jejuni	gcc 2537	lpsJ
F25	mannose–6-phosphate isomerase	gcc 506	lpsH
F26	Rhamnosyl transferase	gcc 2218	lpsL

Table 6–3. List of shedder mutants. ORFs with similarity to sugar modification enzymes have been given an *lps* designation. * Location gives either the contig (gcc) found in the partial *Caulobacter* genome or shows that the gene was found in the RAT1 fragment 3' of *rsaE* and had been sequenced while looking for the third translocator protein, RsaF.

 2 For clarity the ORFs will be referred to as genes and the corresponding deduced protein sequences as proteins even though it is acknowledged that neither assumption has been proven.

The S-LPS synthesis genes are genetically linked to the RsaA transport genes. Analysis of the DNA sequence around the *rsaA* transporter complex (see Ch. 3 and Ch. 4) revealed 5 ORFs with coding sequences having significant similarity to S-LPS synthesis enzymes between *rsaE* and *rsaF*(973) and one ORF 3' of *rsaF*(973) was found. The first ORF encoded a protein with similarity to GDP-D-mannose dehydratase (Currie *et al.*, 1995; Stroeher *et al.*, 1995), the second ORF encoded a protein with similarity to UDP-N-acetylglucosamine acyltransferases (Canter Cremers *et al.*, 1989; Vuorio *et al.*, 1994) and the third protein had similarity to perosamine synthetase (Bik *et al.*, 1996; Stroeher *et al.*, 1995). The fourth and fifth proteins have similarities to mannosyltransferases (Drummelsmith and Whitfield, 1999; Rocchetta *et al.*, 1998). These five ORFs have been designated *lpsA*, *lpsB*, *lpsC*, *lpsD* and *lpsE* (Fig. 6-4). Another ORF, *lpsF*, was found 3' of *rsaF*(973), and also had similarity to glycosyl transferases (Kido *et al.*, 1998).

Since the S-LPS is required for attachment of the S-layer, it is not that surprising that some of the genes involved in S-LPS synthesis are physically near *rsaA* and the transport genes. Smooth LPS genes have also been implicated in the proper formation of the transport complex in some type I secretion signals (Wandersman and Létoffé, 1993). It is thought that smooth LPS is required for proper insertion of the OMP into the outer membrane. Sequencing of the Tn5 insertions in the shedders has shown that F2 is located within *lpsC* and the four different insertions F4, F12, F15, and F19 are located within *lpsD*. The presence of four different Tn5 mutations in *lpsD* suggests that the Tn5 mutations are the cause of the shedding phenotype and this gene plays a role in S-LPS synthesis. In addition, F11 is found in *lpsE* and F20 is found in *lpsF*.

Most of the remaining Tn5 insertions are also in genes that have similarity to smooth LPS synthesis genes (Fig. 6-5, Table 6-4). Two of these insertions interrupt genes with similarity to glycosyltransferases. Four Tn5 insertions are found in genes that have been implicated in pathways for the production of GDP-4-keto-6-D-deoxymannose, a precursor of GDP-L-fucose and GDP-perosamine. One insertion appears in a gene with similarity to transcription regulators. Two other insertions are in unknown genes.

Figure 6-4. S-LPS synthesis genes linked to rsaA. Boxes represent genes or ORFs. Protein functions have been assigned on the basis of sequence similarity. Triangles indicate Tn5 insertions. Numbers above the triangles indicate the designation of the Tn5 insertion (B for S-layer negative mutants and F for shedding mutants).

Caulobacter	Similar	Organism	Function	Identity/%	Accession
protein	Proteins	Booudomonoo oonuzinaaa		Similarity	
LpsA	GCA	Pseudomonas aeruginosa	GDP-mannose dehydratase	65.2/88.6	Q51366
	RfbB	Synechocytis species	GDP-mannose dehydratase	55.2/83.4	P72586
	GMD	Escherichia coli	GDP-mannose dehydratase	55.7/85.0	P32054
	GMD	Escherichia coli O157	GDP-mannose dehydratase	55.7/84.9	O85339
LpsB	YvfD	Bacillus subtilis	Serine O-acetyltransferase	47.2/83.1	P71063
	WlaI	Campylobacter jejuni	Serine O-acetyltransferase	37.9/83.4	O86157
	NeuD	Escherichia coli	acetyltransferase	32.4/77.2	Q46674
	WbdR	Escherichia coli O157	N-acetyltransferase	30.3/72.2	O85344
LpsC	SpsC	Synechocytis species	Spore coat polysaccharide synthesis	50.0/86.1	P73981
	Mth334	Methanobactium thermoautotropicum	Perosamine synthetase	46.4/82.4	O26434
	RfbE	Escherichia coli O157	Perosamine synthetase	45.4/82.4	O07894
	RfbE	Vibrio cholerae	Perosamine synthetase	42.3/80.1	Q06953
LpsD	WbaZ-1	Archaeoblubus fulgidus	Mannosyl transferase	24.3/69.8	O30192
	Mth332	Methanobactium thermoautotropicum	LPS biosynthesis	24.5/68.6	O26432
	ORF18.9	Salmonella enterica	Mannosyl transferase	19.6/62.0	Q00483
	ExpE4	Sinorhizobium meliloti		25.0/40.7	P96434
LpsE	ORF18.9	Salmonella enterica	Mannosyl transferase	26.5/89.7	Q00483
Epse	WbaZ-2	Archaeoblubus fulgidus	Mannosyl transferase	24.5/64.6	029649
	WbaZ-1	Methanobactium thermoautotropicum	Mannosyl transferase	24.2/66.5	O30192
LasE	What	Escherichia coli	Mannosyl transferase	19.4/66.2	O66234
LpsF	WbdA		-		
	AF0617	Archaeoblubus fulgidus	LPS biosynthesis protein	24.8/69.9	029638
	Mth370	Methanobactium thermoautotropicum	LPS biosynthesis protein, RfbU -like	29.0/65.7	026470
LpsG	AigC	Pseudomonas aeruginosa	phosphomannomutase	36.0/57.4	P26276
	PGM	Neisseria gonorrhoeae	phosphomannomutase	32.9/50.6	P40390
	PmmA	Mycobacterium	phosphomannomutase	38.0/54.2	086374
	PGM	Neisseria meningitidis	phosphomannomutase	35.0/53.5	P40391
LpsH	XanB	Xanthomonas campestris	Phosphomannose isomerase	38.3/71.7	P29956
•	ManC	Yersinia enterocolitica	Mannose-1-phosphate	33.2/64.0	Q56874
			guanyltransferase		
	RfbM	Escherichia coli	Mannose-1-phosphate	32.6/65.9	Q59427
			guanyltransferase		
LpsI	CcpA	Bacillus megaterium	Catabolite control protein	34.9/74.2	P46828
	CcpA	Bacillus subtilis	Catabolite control protein	33.1/74.5	P25144
	DegA	Bacillus subtilis	Degradation activator	33.1/74.9	P37947
	LacI	Bacillus subtilis	LacI repressor like protein	30.0/72.9	O34396
LpsJ	LpsB1	Rhizobium etli	galactosyltransferase	59.7/71.0	034301
եիու	1 -	Staphylococcus aureus	unknown	45.7/79.6	P95706
	CapM RfbW	Vibrio cholerae	galactosyltransferase	47.2/79.8	Q56624
	PssA	Rhizobium leguminosarum	galactosyltransferase	34.6/69.2	Q52856
			· ·		
LpsK*	WlaL	Campylobacter jejuni	amino sugar epimerase	43.8/79.6	O86159
	BplL	Bordetella pertussis	LPS biosynthesis	31.0/64.4	Q45387
	LpsB2	Rhizobium etli	dTDP-glucose 4,6, dehydratase	25.9/39.4	O34302
	CAPD	Bacillus subtilis	unknown	26.5/69.9	P72370
LpsL	CPS23FV	Streptococcus pneumoniae	Rhamnosyltransferase	29.8/51.7	O86159
-	CPS23FI	Streptococcus pneumoniae	LPS biosynthesis	29.8/51.7	AAC69532
	ORF51x5	Vibrio anguillarum	unknown	26.7/45.0	O31012

Table 6-4. Deduced proteins involved in O-antigen synthesis and their homologues.BLAST and FASTA alignments were used to determine identity and similarity.Percentage similarityrepresents identical amino acids and conserved substitutions.

* incomplete ORF

As shown by Southern blotting, the Tn5 insertions, F1, F2, F4, F6, F11, F12, F14, F15, F19 and F20 are linked. Figure 6-4 shows that the Tn5 insertions F2, F4, F11, F12, F15 and F20 are linked to the RsaA transporter genes. F1, F6, and F14 must be linked as well, but it was not possible to construct the DNA sequence of this linkage. In addition, of the four mutants not characterised by Southern analysis, F23 is in the same ORF as F9, and F25 is in the same ORF as F14. The other two mutants, F24 and F26, were not obviously linked to any of the other insertions.

Analysis and proposed function of individual proteins involved in S-LPS synthesis.

A total of 14 ORFs associated with the formation of the S-LPS were found (Table 6-4). Four of these ORFs are incomplete. A summary of the characteristics of these ORFs is listed in Table 6-5. All of the ORFs start with an ATG codon except *lpsH* which starts with a TTG. Sequence similarity and codon preference indicate that the TTG is the most probable start codon for *lpsH*. Using the *C. crescentus* promoter consensus for biosynthetic genes (Malakooti *et al.*, 1995), possible promoters were found 31 bp and 99 bp 5' of *lpsG*, 52 bp 5' of *lpsH*, 204 bp 5' of *lpsI*, 154 bp 5' of *lpsJ* and 63 bp 5' of *lpsK*. In some clusters of smooth LPS genes the G+C content of the individual clusters varies with respect to the G+C content of the bacterium suggesting recent acquisition of the genes (Fallarino *et al.*, 1997; Fry *et al.*, 1998; Stroeher *et al.*, 1995). The G+C content of these ORFs is consistent with the average *C. crescentus* content of 67%.

ORF	Translation start	Size (aa)	Predicted mass(kDa)	pI	G+C %
lpsA	TGITACIGGAGICAGCGATACGCAIG	325	36.3	6.2	65.1
lpsB	CATCGCGCGCGCGCCCCCCCCCCCCCCCCCCCCCCCCCC	215	21.4	8.5	69.3
lpsC	GAACGTGACTATGT <u>ACT</u> CGAATGC ATG	346	37.8	5.9	63.1
lpsD	CTCGATCAGGIGIT <u>GGT</u> CTAGCCGATG	346	39.1	5.7	65.2
lpsE	GCCIGACCICAT <u>GAGAA</u> CGCCCGC AIG	345	38.2	5.8	65.8
lpsF	GCGICICGCCCGCCI <u>GCA</u> TCGCCCAIG	430	47.0	7.5	69.1
lpsG	CATCICAACIG <u>AAGCGA</u> GCCTICA AIG	>469	ND	5.0	65.8
lpsH	CCTAAGACIGIGT <u>GGGGA</u> CAAGAC TIG	434	45.5	4.6	67.4
lpsI	CGGGCTCGCCAT <u>GACAGC</u> CTTGTC ATG	356	38.7	6.3	65.4
lpsJ	TCIGGCCTAGG <u>CCGAG</u> CCGGCIGA ATG	187	20.5	10.5	66.0
lpsK	TTCACCGCTTC <u>AGAGG</u> TTCGTTTC ATG	>459	ND .	10.4	69.8
lpsL*	ND	>336	ND	5.5	68.7
orf1*	ND	>352	ND	6.4	73.8
orf2	GGCCTACCGCGAAACCCAGGCCGCATG	316	34.1	10.2	72.5

Table 6–5. Characteristics of the putative S-LPS synthesis genes. Start codons are in bold. Putative Shine-Dalgarno sequences are underlined. * - incomplete ORF. ND – not determined because ORF is incomplete.

LpsA resembles GDP-mannose 4,6-dehydratases. The start codon for *lpsA* is 143 bp 3' of *rsaE*. No promoter matching the consensus sequence was found upstream of *lpsA*, as would be expected if there is a terminator after *rsaE* (see Ch.3). The LpsA sequence has up to 65.2% identity and 88.6% similarity over its entire length to GDP-mannose 4,6-dehydratases from *P. aeruginosa* and *E. coli*. (Table 6-4). These enzymes convert GDP-mannose to GDP-4-keto-6-deoxymannose (Stevenson *et al.*, 1996) as part of biosynthetic pathways polysaccharides. One example of this is the synthesis of perosamine in *V. cholerae* and *E. coli* O157. The significant similarity to GDP-mannose 4,6-dehydratases suggests that this is also the function of LpsA, although no Tn5 insertion was found in the gene.

LpsB is similar to N-acetyltransferases. The gene *lpsB* follows *lpsA* by 2 bp suggesting that these genes are transcriptionally coupled. The protein encoded by the gene shows significant similarity to Wlal from *C. jejuni* and NeuD from *E. coli* (Table 6-4). Wlal is involved in the synthesis of the O-antigen (Fry *et al.*, 1998) while

the function of NeuD is not clear, but is thought to be involved in NeuNAc transfer (Annunziato *et al.*, 1995). These proteins also show some similarity to the LpxA genes from *E. coli* and *S. enterica*. The LpxA proteins are UDP-N-acetylglucosamine O-acetyltransferases that are involved in the first step of Lipid A biosynthesis and have 24 to 26 unique hexapeptide motifs starting with an isoleucine, leucine or valine residue often followed by a glycine (Vaara, 1992; Vuorio *et al.*, 1994). LpsB, Wlal and NeuD contain several of these hexapeptide repeats (Fig. 6-6). The protein WbdR from *E. coli* O157 also contains these hexapeptide repeats and has 72.2% sequence similarity to LpsB. WbdR is thought to encode an N-acetyltransferase which converts GDP-perosamine to GDP-N-acetyl perosamine (Wang and Reeves, 1998). Since the data in this chapter suggest that the genes involved in perosamine synthesis in *E. coli* O157 are also present in *C. crescentus* LpsB may acetylate GDP-perosamine like WbdR.

LpsC appears to be a perosamine synthetase. The gene encoding LpsC starts 74 bp 3' of *lpsB*, but no promoter sequence was found between *lpsB* and *lpsC*. LpsC has considerable identity over its entire length to the *rfbE* and *per* gene products that are thought to synthesize perosamine (Table 6-4). These proteins likely catalyze the conversion of GDP-4-keto-6-D-deoxymannose to GDP-perosamine (4-amino-4,6-dideoxymannose) in *V. cholerae* and *E. coli* O157 (Stroeher *et al.*, 1995; Wang and Reeves, 1998) and show similarity to two classes of pyridoxal-binding proteins involved in the synthesis of amino sugars similar to perosamine. The perosamine synthetic pathway has not been proven chemically, but the proteins suspected in the synthesis found in common between *Vibrio cholerae*, and *E. coli* O157 supporting these predictions (Wang and Reeves, 1998). Based on the similarity to these genes, it is likely that LpsC is a perosamine synthetase.

LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	10 20 30 40 50 M R I v L l s s i v p f i n G G a r f I v ew L e e k l i
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	60 70 80 90 100
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	110 120 130 140 150 f r p p a y V v d h p N k v L w F I H - h i R t f Y D L w d t p y R g m p d d a Q h
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	160 170 180 190 200 R a I r d n L R a 1 D T Q A i s e a r a v f T N S Q v V a d R L K a F n G 1 D A t p L Y P P I y q p R a V k a a I R a D n a C f a e c r K i y C N S P v t q n R L M K F n G v a S q V L Y P P L n d g R m L 1 h k T R 1 W D C R T a n g V D H f i A N S Q f I a r R I K K v y G r D A d V I Y P V V v n K w L 1 h k I R i W D S R T a n g V D H f i A N S Q y I a r R I K K v y r r E A s V I Y P V V v d i 1 w v k f h R k W a e R m 1 k h I D T v d k r V D Y y f S N S P v t k r R L w K Y 1 k r D S v V L Y P P I E f d
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	210 220 230 240 250 e r f s H t g g y g D e i v A i s R L e P h K R q a L M I E A m q y V k s g v K L r L a G t a s s a e e 1 f t g g e h g D Y v f A g g R V a g K R q h L L I E A 1 a 1 L p g s 1 R L V I a G p p e n q a r F e 1 n f n k e D Y f f T a s R L v P Y K R i D L I V E A f s e M p n - r K L V V I G d g n F e v K n e k q D Y y f A g R V a R I Y P Y K R i D L I V E A f s k M p e - k K L V V I G d g k F k f K c y - g D F w 1 S v n R I Y P e K R i E L q L E v f k k L q d - e K K I V V I G d g k F k f K c Y - g D F w 1 S v n R I Y P e K R i E L q L E v f k k L q d - e K K I V V I G s g k F k f K c Y - g D F w 1 S v n R I Y P e K R i E L q L E v f k k L q d K K I V V I G s g k F k c K n s - e D F y 1 f v g R L w h e K R p E e a I r g c i k a k k K I V V I G s g k P k c K n s - b D F y 1 F v g R L w h e K R i E L F E A I S - K K I V V I G s g
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	260 270 280 290 300 y g r q l v k m tHd l g v a d r v I l e d r w i SE D E k aDm L k q A l A v a Y l p k D E b s Y y a d r l t K l Ve d l d l k d r v e l r f G F h p r E D l a r w a n g A l i c a Y l p f D E b s v p e m Q k I K s k a k t N I e i l G Y q p D s v M q E y M r n A K A f V F a - a E E D - F p e m K k I K s k a t d N I k l l G Y q S E E L i D l y s r C K g l L C t a k D E D - F h a e r y a R k I m k i a p d N - V k f l G s v S E E E L i D l y s r C K g l L C t a k D E D - F y l e K y L R d k y g k N p y V e i k G F v S E E E K D l L a s C K A v I Y p c i a E D - F y l e K y L R d k y g k N p y V e i k G F v S E E E K D l L a s C K A v I Y p c i a E D - F
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	
LpsD LpsE WbaZ Ec WbaZ Se WbaZ-1 Af WbaZ-2 Af	

Figure 6–7. ClustalW Alignment of LpsD and LpsE with WbaZ genes from *E. coli* (Accession AAD21571) and *S. enterica* (X61917) and WbaZ homologues from *A. fulgidus* (AAB91187). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.

.

LpsD and LpsE resemble glycosyltransferases. The gene for LpsD follows *lpsC* by 6 bp and the gene for LpsE follows *lpsD* by 13 bp, suggesting that all three genes are part of a polycistron. Both LpsD and LpsE have significant similarity to the WbaZ proteins (Fig 6-7). These proteins also have similarity to the RfbU related proteins, but size and amino acid similarity indicates that the WbaZ-like protein are a separate family. WbaZ is a known mannosyltransferase in *S. enterica* (Liu *et al.*, 1993). It seems likely that LpsD and LpsE function to link perosamine monomers to the O-antigen with each providing a different form of linkage.

LpsF is similar to perosamine transferases. The gene for LpsF is separated from *lpsABCDE* by *rsaF* and is transcribed in the opposite orientation. LpsF, like LpsD and LpsE, appears to be a mannosyltransferase, but has greater similarity to the RfbU family. The similarity to mannosyltransferases is much less than that seen with LpsD and LpsE, but it does have significant similarity to the C-terminal of *E. coli* mannosyltransferases, WbdB and WbdA (Kido *et al.*, 1998; Sugiyama *et al.*, 1998) and RfbU, from *V. cholerae* (Wang and Reeves, 1998). RfbU, from *V. cholerae*, is known to transfer a perosamine residue onto the growing O-antigen chain. These proteins contain a signature motif that is also found in LpsF (Fig 6-8). This motif consists of the sequence EX[XF]GXXXXE[AG] with a serine preceding the motif by 3 to 5 residues (Geremia *et al.*, 1996; Rocchetta *et al.*, 1998). Again, it seems likely that LpsF acts to add perosamine residues onto the O-antigen.

Figure 6–8. ClustalW alignment of LpsF with a number of known mannosyl transferases. The mannosyl transferase motif is boxed. The conserved serine is marked with *. RfbU - *Vibrio cholerae* (Accession Y07788), RfbU – *E. coli* (BAA31838), WbdA, WbdB – *E. coli* (D43637). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.

LpsG is similar to phosphomannomutases. Two Tn5 insertions mutants had interrupted LpsG genes. The LpsG gene does not appear to be linked to any of the other *lps* genes (Table 6-1 and Table 6-2). This protein has very high identity along its entire length to a number of phosphomannomutase enzymes suggesting that this is the function of LpsG (Table 6-4). Phosphomannomutase converts mannose-6-phosphate to mannose-1-phosphate and is one of the enzymes implicated in perosamine synthesis (Stroeher *et al.*, 1995; Wang and Reeves, 1998).

LpsH may have a dual function as a phosphomannoisomerase and mannose-1-phosphate guanyltransferase. Two shedder mutants have Tn5 insertions within *lpsH* that result in loss of proper O-antigen production. It was not possible to link this gene with the RsaA transport genes using the TIGR *Caulobacter* genome sequence, but Southern analysis showed that *lpsH* is linked (Table 6-1 and Table 6-2). LpsH has significant identity over its entire length to a large family of enzymes that have dual functions as a phosphomannoisomerase and mannose-1-phosphate guanyltransferase (Table 6-4) Both functions are required for the synthesis of perosamine (Stroeher *et al.*, 1995) and are probably also performed by LpsH in *C. crescentus*. These functions are split up in *E. coli* O157 into the *manA* and *manC* genes (Wang and Reeves, 1998).

LpsI has similarity to the Lacl repressor family. The Tn5 insertion in mutant F1 interrupts *lpsI*. Southern blot analysis indicated that this insertion is linked to the Rsa locus. This insertion has a different phenotype than every other shedder Tn5 insertion. Analysis of the O-antigen by SDS-PAGE and silver staining reveals that a lower amount of O-antigen is produced by this mutant. Analysis of LpsI indicates that the highest degree of identity is with CcpA, the catabolite control protein in *Bacillus subtilis*. CcpA represses carbohydrate utilization enzymes such as α -amylase and acetyl coenzyme A synthetase and has a positive regulatory affect on excess carbon excretion proteins such as acetate kinase (Henkin *et al.*, 1991). Lower sequence identity is found to a number of Lacl repressor-like proteins (Table 6-4). Analysis of the genes adjacent to *lpsI* revealed the presence of analogues of

glucokinase, 6-phosphogluconate dehydratase and glucose-6-phosphate-1dehydrogenase enzymes involved in basic metabolic pathways. This positioning suggests that LpsI may regulate the transcription of these genes. If LpsI has a repressor effect on these enzymes it could slow the production of O-antigen as glucose-6-phosphate would tend not be shunted into the perosamine synthetic pathway. Instead, it would be used for energy production in central metabolism.

LpsJ is similar to galactosyl transferases. The Tn5 insertion F24 interrupts a gene with sequence similarity to several galactosyl transferases (Fig. 6-9). These enzymes appear to transfer the first sugar residue (usually a galactose) to undecaprenol phosphate, the lipid precursor. RfbW is one of these enzymes and its

Figure 6–9. ClustalW alignment of LpsJ with putative galactosyltransferases. RfbW-*V. cholerae* (Accession Y07788), LpsB1-*R.etli* (U56723), WlaH-*C. jejuni* (CAA72357), WblG - *Bordetella pertussis* (X90711). Identical and similar residues are boxed. Identical residues have dark shading. Similar residues have light shading. The consensus sequence is located below the alignment.

sequence is 47.2% identical and 79.8% similar to LpsJ over 144 amino acids. RfbW is involved in the synthesis of the perosamine homopolymer making up the O-antigen of *V. cholerae* O1 (Fallarino *et al.*, 1997) suggesting that RfbW may transfer the first perosamine to the lipid precursor. In *C. crescentus*, LpsJ may initiate the formation of the O-antigen by attaching the first sugar residue (probably a perosamine) to the undecaprenol phosphate.

LpsK has sequence similarity to amino sugar synthesis enzymes. The mutant, F3, has an interruption in IpsK. It was only possible to determine the sequence for the 5' end of *lpsK* from the TIGR genome. The partial sequence of LpsK is similar to a number of large proteins, usually consisting of over 600 amino acids, suggesting that approximately 150 amino acids are missing from the C-terminal of the LpsK coding sequence (Fig 6-10). There is still considerable similarity, especially in the middle of the protein, to WlaL, RfbV and WlbL from C. jejuni, V. cholerae O1 and B. These proteins contain 5 hydrophobic, predicted transmembrane pertussis. domains in the N-terminus. The central portion contains an NAD-binding site and is homologous to UDP-glucose-4-epimerases. Two motifs have been implicated in binding of NAD in these proteins, GXGXXG and GAGGSIG (Fallarino et al., 1997). As seen in Fig 6-10, the second motif is found in all the proteins, but the first only occurs in RfbV and WlbL suggesting that not all members of this family contain this motif. The C-terminal 300 amino acids of these proteins have identity with dTDPglucose 4,6-hydratases (Bechthold et al., 1995; Linton et al., 1995). These proteins are usually associated with synthesizing amino 6-deoxy and dideoxy sugars involved in LPS synthesis or extracellular polysaccharides and probably perform multiple functions to account for the 3 domains. LpsK was not found linked to the other Oantigen synthesis genes. This may indicate that LpsK is involved in the synthesis of a core sugar, possibly the terminal core sugar. Interruption of this gene may prevent attachment of the O-antigen to the core, resulting in the observed shedding phenotype.

Figure 6–10. ClustalW alignment of LpsK. The first NAD binding motif is underlined. The second NAD motif is boxed. Only RfbV and WlbL contain the first motif. Only a partial sequence of LpsK has been deduced and the alignment is truncated after the LpsK sequence. RfbV - *V. cholerae* (Accession Y07788), WlaL – *C. jejuni* (CAA72360), WlbL – *B. pertussis* (X90711)

LpsL may be a glycosyltransferase. The mutant F26 has an insertion in *lpsL*. This gene is 5' to an ORF with similarity to *exsG* which was implicated in extracellular polysaccharide synthesis (Becker *et al.*, 1995). The LpsL amino acid sequence is 29.8% identical and 51.7% similar over a range of 87 amino acids to a putative rhamnosyl transferase in *Streptococcus pneumoniae* (Table 6-4). Rhamnose is a 6-deoxy derivative of mannose, as is perosamine, suggesting that LpsL may be another perosamine transferase.

The functions of some of the Tn5-interrupted genes are still unidentified. The Tn5 insertions F22 and F10 interrupt an ORF with no identity to any known protein. But 5' of this ORF is an ORF corresponding to an ABC-2 transporter. These transporters are known to transport extra-cellular polysaccharides and O-antigens through the cytoplasmic membranes (Whitfield, 1995). Unlike the ABC transporters of the type I secretion systems, the ABC and transmembrane domains consist of separate proteins. It is possible that the ORF interrupted by F10 and F22 represents the transmembrane protein part of the ABC-2 transporter, but hydropathy analysis does not suggest that this protein contains transmembrane segments. The ABC-2 transporters are often found adjacent to genes involved in polysaccharide synthesis, therefore it may be that the ORF interrupted by the F10 and F22 mutants is also involved in polysaccharide synthesis.

The Tn5 insertion F6 interrupts orf1 which has similarity to a chemotaxis receptor (Ward *et al.*, 1995). CheY, a chemotaxis regulator, is found linked to a number of O-antigen synthesis genes with similarity to *IpsJ, IpsB, IpsC and IpsK* in *C. jejuni*. It may be that the genes involved in chemotaxis are found close to the O-antigen synthesis genes in *C. crescentus* and that the F6 insertion has a polar effect on downstream S-LPS genes. It is also possible that this ORF has nothing to do with LPS synthesis and the Tn5 insertion may not cause the shedding phenotype. Instead, a second mutation may cause the altered phenotype.

Summary

As stated at the beginning of the chapter, it seems likely that the S-LPS of C. crescentus is a fixed length homopolymer of approximately forty 4,6-dideoxy-4amino-hexose residues. Proton NMR anomeric traces suggest that the linkages between the hexose residues may not all be identical. Several of the genes discussed in this chapter are similar to genes found in the synthesis of perosamine in V. cholerae and E. coli O157 (Stroeher et al., 1995; Wang and Reeves, 1998) and as perosamine is a 4.6-dideoxy-4-amino-hexose, it seems likely that the O-antigen of C. crescentus consists of perosamine residues. All of the enzymes responsible for perosamine synthesis can be found in the *lps* genes listed above. Four enzymes are involved in converting fructose-6-phospate to perosamine (Fig. 6-11). The first enzyme in the pathway described by Stroeher et al (1995) is a phosphomannoisomerase, RfbA. Mutants F25 and F14 are located in LpsH which has significant similarity to RfbA. The second step in the pathway is performed by the enzyme RfbB, a phosphomannomutase. Two Tn5 mutants, F9 and F23, are in the gene for LpsG, an enzyme with considerable similarity to RfbB. The third step in the pathway is catalyzed by RfbA. RfbD, a GDP-mannose 4,6-dehydratase, catalyses the fourth reaction. No Tn5 insertion has been found in a gene with similarity to RfbD, but the coding sequence of C. crescentus gene immediately 3' of rsaE, IpsA, shows considerable similarity to RfbD. The last step of the process requires RfbE, the perosamine synthetase. LpsC presumably fulfills this role in C. crescentus, and the shedding mutant F2 has a Tn5 insertion in the LpsC gene.

Two more genes need to be considered as part of the perosamine pathway in *C. crescentus* (Fig. 6-11). Bacteria using the Embden-Meyerhof-Parnas pathway require phosphoglucoisomerase as part of the pathway leading into the bottom half of glycolysis, but *C. crescentus* uses the Entner-Doudoroff glycolytic pathway instead (Riley and Kolodziej, 1976) and as such would not be expected to normally have the enzyme phosphoglucoisomerase for converting glucose-6-phosphate to fructose-6-phosphate. But *C. crescentus* requires phosphoglucoisomerase if it makes perosmaine by the pathway described here (Fig 6-11). None of the Tn5 hits were found in such a gene, so the TIGR *Caulobacter* genome was searched for a phosphoglucoisomerase analogue and one was found in contig gcc_2205. A

Figure 6–11. Perosamine synthesis pathway [Adapted from Stroeher et al. 1995]. The enzyme pgi is required for this pathway but is not normally found in species using the Entner-Doudoroff pathway. pgi has been found in the TIGR *Caulobacter* genome. Glucokinase is also required by this pathway and its gene is found adjacent to the F1 Tn5 insertion which may act as a repressor on its synthesis.

second enzyme, glucokinase, is required for converting glucose to glucose-6phophate. A glucokinase analogue was found next to the F1 Tn5 insertion in the potential repressor *lpsl*. From the position of *lpsl* may be deduced that Lpsl has a regulatory effect on the synthesis of glucokinase. Interruption of Lpsl by the F1 insertion may alter the expression of glucokinase, which in turn would affect perosamine synthesis, resulting in the phenotype seen in the F1 mutant (less Oantigen). These data suggest that *C. crescentus* contains all the genes necessary for the synthesis of perosamine. Furthermore, 5 separate Tn5 insertions in 3 of the ORFs cause loss of O-antigen synthesis, strengthening the argument that perosamine makes up the O-antigen of the S-LPS.

Six of the Tn5 insertions appear to be in glycosyltransferases (*lpsD*, *lpsE*, *lpsF*, *lpsJ*, and *lpsL*) (Fig. 6-4). This is would be expected since proton NMR suggests there are a number of different linkages between the sugars in the O-antigen. The similarities of LpsJ to galactosyltransferases, which transfer the initial sugar to the lipid precursor, suggest that LpsJ may initiate the first addition of a sugar to the undecaprenol phosphate. The S-LPS chemical composition suggests that this first sugar is a perosamine, but it is possible that it is galactose. Galactose is found in the core and it is possible that traces found during analysis of the O-antigen would be attributed to contamination from the core.

LpsK may be involved in the synthesis of a sugar residue. As all the enzymes for the synthesis of perosamine are accounted for in the other *lps* genes, LpsK may synthesize an unidentified sugar in the O-antigen (possibly an initial galactose linked by LpsJ) or a sugar in the LPS core.

O-antigens are elongated at either the reducing terminus or the non-reducing terminus. If the O-antigen elongates at the reducing terminus, individual sugars are 'flipped' across the cytoplasmic membrane by a flippase enzyme and the O-antigen is assembled in the periplasm. If synthesis of the O-antigen occurs at the non-reducing terminus, the chain elongates in the cytoplasm and an ABC-2 transporter is required to transport the O-antigen chain across the cytoplasmic membrane (Whitfield, 1995). If the ABC-2 transporter upstream of the F10 and F22 insertions is involved in the transport of the O-antigen, it suggests that the O-antigen is elongated by polymerization at the non-reducing terminus. The O-antigen would then be

transported through the cytoplasmic membrane by the ABC-2 transporter where it would then be transferred to the lipid-A core.

While it has not been proven that any of the ORFs listed here are required for O-antigen synthesis, the presence of multiple Tn5 insertions in some of the ORFs confirms that the Tn5 is responsible for causing the defective S-LPS phenotype and the interrupted ORF is very likely a gene involved in making the S-LPS.

Chapter 7 Conclusions and Future Considerations

The attachment and secretion of the S-layer appear to be linked, although RsaA can be secreted even when the S-LPS is defective and the S-layer cannot attach to the surface. While searching for the secretion components, genes involved in the synthesis and assembly of the S-LPS were found linked to the transport complex. In prokaryotes, genetic linkage often implies linkage of the function. In this case, the most obvious link is that the S-LPS is required for attachment of the S-layer. Since C. crescentus is a non-pathogenic bacterium, the only apparent function for the S-LPS is to allow attachment of the S-layer to the outer membrane. As such, it seems likely that the bacterium coordinates production of the S-layer and S-LPS and that clustering of the genes allows better control. Similar linkages between the S-LPS and S-layer translocation have been found in Acinetobacter sp. and Aeromonas salmonicida (Belland and Trust, 1985; Thorne et al., 1976). A linkage between type I secretion systems and S-LPS has also been found. Three genes involved in the synthesis of the smooth LPS have also been implicated in the secretion of α -hemolysin from *E. coli* (Stanley *et al.*, 1993; Wandersman and Létoffé, 1993). It is suspected that these genes are required for the proper insertion of the OMP component in the outer membrane.

RsaA is secreted by a type I secretion mechanism. All three main components of this system have been found and all are linked to the *rsaA* gene although the OMP gene is separated from the others by 5 kb. These genes are similar to a number of other type I secretion mechanisms. The highest similarity was found to systems secreting proteases and lipases from *P. aeruginosa, E. chrysanthemi* and *S. marcescens.* The identity between these systems is high enough that the proteases, AprA and PrtB, were successfully secreted by the RsaA transport machinery. The genetic arrangement of the RsaA transporter genes is unusual. Typically, either all three genes are on either side of the substrate gene or the OMP gene is unlinked to the rest of the genes. In the RsaA transport system, 5 genes are found between the MFP and the OMP, an arrangement that has not been found

before. These 5 genes appear to be required for the synthesis of the O-antigen.

Another unusual finding was the presence of a homologous ORF of the OMP component found elsewhere in the genome. This homologue has 60% identity to *rsaF*, but is not required for the secretion of RsaA. The function of this homologue remains to be discovered or even if the gene produces a functional protein.

RsaA accounts for a large portion of the cellular protein (10 to 12%). As far as can be determined, the RsaA secretion machinery secretes a larger fraction of total cell protein than any other known type I secretion mechanism. This high level of protein production is apparently necessary to keep the cell completely covered with S-layer at all times and is similar to the levels noted for other bacterial S-layer proteins (Messner and Sleytr, 1992). This means that the RsaA secretion machinery is either more efficient than that of other type I secretion systems or that a larger number of transport complexes exist in the membranes or a combination of both factors. This question is an important one to answer from a fundamental research perspective, to address such things as what makes a secretion apparatus more efficient. It is also important because some current research is engaged in evaluating the potential of the S-layer protein secretion system for the secretion of heterologous proteins and peptides in a biotechnological context (Bingle *et al.*, 1997a; Bingle *et al.*, 1997b), where increased levels of secretion has obvious utility.

Now that the genes involved in the transport of RsaA have been discovered, it will be possible to address such issues. For example, gene duplications of the transporter genes can be made to see if more copies of the transporter components increase secretion. In addition, with the genes in hand it will be possible to produce and isolate the individual components and make antisera against them. Antibodies can then be used to assess the amount of protein present in the cell.

Most of the genes involved in O-antigen synthesis are linked to the transporter genes. In addition to the O-antigen synthesis genes mentioned above, a number of other genes involved in O-antigen synthesis have been found by Tn5 mutagenesis. While the linkage pattern of these genes was not as obvious, Southern blot analysis showed that the majority of the Tn5 insertions found were linked to the transporter genes as well. However, it was not demonstrated that all of the Tn5 insertions were

as closely linked to the transporters. As the Southern analysis of the Tn5 insertions only used two restriction enzymes, further analysis may prove that these other genes are also linked. Usually, all the genes involved in the synthesis of the Oantigen are linked on a 20-30kb fragment of DNA. Sequencing further, past *lpsF*, should reveal other genes involved in O-antigen synthesis, possibly including genes not found here by Tn5 mutagenesis.

Perosamine appears to be the major component of the O-antigen. Analysis of the O-antigen showed that it is composed of a 4,6, dideoxy-4-amino-hexose, of which perosamine is an example. It was shown in this report that all the genes required for the synthesis of perosamine are found in the genome of *C. crescentus*. Furthermore, three of these genes were disrupted by transposon mutagenesis leading to an altered O-antigen. It is reasonable to conclude from these data that perosamine is the 4,6, dideoxy-4-amino-hexose seen in the chemical analysis of the O-antigen.

Several glycosyltransferases are involved in the synthesis of the O-antigen. NMR analysis of the O-antigen revealed a number of different anomeric proton signals, suggesting that there are several different linkages between the sugar residues. This implies the presence of multiple glycosyltransferases to produce these linkages. A number of Tn5 insertions altering the O-antigen were found in genes with similarity to mannosyltransferases. Since perosamine is a derivative of mannose the transferases are probably highly similar and this has been found with the perosamine transporter, RfbV from *E. coli* O157 (see Ch. 6). One Tn5 insertion interrupts a gene with similarity to galactosyltransferases that transfer the first sugar residue to the lipid precursor of the O-antigen. It may be that this enzyme, LpsJ, transfers a galactose to the lipid precursor as a first step in the growing O-antigen. Alternatively, since perosamine is an isomer of galactose, a perosamine may be the first residue of the O-antigen chain. Galactose may have been missed in the analysis of the O-antigen since it is also found in the core and a slightly increased level, relative to other core sugars, would have gone unnoticed.

Several other genes involved in the proper formation of the smooth LPS have also been found. One, *IpsK*, may be involved in synthesis of a core or O-antigen sugar. Another, *IpsI*, appears to code for a transciption repressor that affects smooth LPS production. Tn5 insertions interrupting O-antigen synthesis were found in two ORFs with no similarity to any known proteins. Two of these insertions are 3' of an ORF coding for an ABC-2 transporter. ABC-2 transporters export O-antigens and extracellular polysaccharides. If this is the ABC-2 transporter that exports the O-antigen, it suggests that the O-antigen is synthesized in the cytoplasm by addition of sugar residues to the non-reducing terminus.

The information provided here should assist in determining the correct structure of the S-LPS and may also allow the attachment site(s) of the O-antigen to RsaA to be determined. A number of possibilities present themselves for future steps in analysis of the S-LPS. The first obvious step is to isolate the DNA containing the genes *lpsGHIJKL* and determine how closely they are linked. Sequencing of this DNA may reveal other genes involved in O-antigen synthesis and possibly synthesis of the core (for example LpsK may be involved in synthesis of a core sugar and the DNA surrounding it may contain the remaining synthesis genes). The other obvious experiment is to knock-out LpsA and LpsB and confirm that they are involved in the synthesis of the O-antigen.

There may be more genes involved in the synthesis of the O-antigen that were not found when screening the Tn5 library. For example, interruption of Oantigen synthesis genes that did not result in complete detachment of the S-layer may have been missed by the screen. An example of this might be enzymes involved in the transfer of the sugar residues that are not involved in the attachment of process.

The S-layer lies very close to the outer membrane of the bacterium as seen in electron micrographs (Smit *et al*, 1981, Smit *et al*, 1984). If the O-antigen consisted of a single chain, it would be 40 residues long; long enough to span the distance between the S-layer and outer membrane numerous times. This suggests that the S-layer either attaches to several points along the chain (Fig 1-4) or the O-antigen has multiple branches. Selective mutation of the various transferases, or by using

the Tn5 mutants, should allow one to determine which of these possibilities is correct by analyzing the different sized O-antigens that are produced.

Summary

RsaA, the S-layer subunit of *C. crescentus*, is transported by a type I secretion system involving three proteins, an ABC-transporter, a periplasmic spanning Membrane Forming Protein and an outer membrane protein.

It was shown that a number of other FWC species also contain type I secretion systems that probably secrete the S-layer subunit. The evolutionary relationships of these type I secretion systems and the S-layer subunit genes was examined.

A number of genes involved in the synthesis of the smooth LPS were found. Some of these genes code for enzymes involved in the synthesis of perosamine, the likely major component of the O-antigen. Other genes code for the glycosyltransferases that link the sugar residues of the O-antigen to each other.

Bibliography

- Abraham, W., Strömpl, C., Meyer, H., Lindholst, S., Moore, E.R.B., Christ, R., Vancanneyt, M., Tindall, B.J., Bennasar, A., Smit, J. and Tesar, M. (1999)
 Phylogeny and polyphasic taxonomy of *Caulobacter* species. Proposal of *Maricaulis* gen. nov. with *Maricaulis maris* (Poindexter) comb. nov. as the type species and emended description of the genera *Brevundimonas* and *Caulobacter*. *Intl J. of System. Bacteriol.*, **49**, 1053-1073.
- Akatsuka, H., Binet, R., Kawai, E., Wandersman, C. and Omori, K. (1997) Lipase secretion by bacterial hybrid ATP-binding cassette exporters: molecular recognition of the LipBCD, PrtDEF, and HasDEF exporters. *J. Bacteriol.*, **179**, 4754-4760.
- Alley, M.R., Gomes, S.L., Alexander, W. and Shapiro, L. (1991) Genetic analysis of a temporally transcribed chemotaxis gene cluster in *Caulobacter crescentus*. *Genetics*, **129**, 333-341.
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. *J. Mol. Biol.*, **215**, 403-410.
- Anderson, D.M. and Schneewind, O. (1997) A mRNA signal for the type III secretion of Yop proteins by *Yersinia enterocolitica* [see comments]. *Science*, **278**, 1140-1143.
- Anderson, D.M. and Schneewind, O. (1999) Type III machines of Gram-negative pathogens: injecting virulence factors into host cells and more. *Curr. Opin. Microbiol.*, **2**, 18-24.
- Annunziato, P.W., Wright, L.F., Vann, W.F. and Silver, R.P. (1995) Nucleotide sequence and genetic analysis of the *neuD* and *neuB* genes in region 2 of the polysialic acid gene cluster of *Escherichia coli* K1. *J. Bacteriol.*, **177**, 312-319.
- Armstrong, S., Zhang, H., Tabernero, L., Hermodson, M. and Stauffacher, C. (1999) Powering the ABC transporter: The crystallographic structure of the ATP-binding cassette, RbsA. *ATP-Binding Cassette Transporters: From Multidrug Resistance* to Genetic Disease. FEBS Advanced Lecture Course, Gosau, Austria, p. 3.

- Awram, P. and Smit, J. (1998) The *Caulobacter crescentus* paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. *J. Bacteriol.*, **180**, 3062-3069.
- Bairoch, A. (1992) PROSITE: a dictionary of sites and patterns in proteins. *Nuc. Acids Res*, **20 Suppl**, 2013-2018.
- Bechthold, A., Sohng, J.K., Smith, T.M., Chu, X. and Floss, H.G. (1995) Identification of *Streptomyces violaceoruber* Tu22 genes involved in the biosynthesis of granaticin. *Mol. Gen. Genet.*, **248**, 610-620.
- Becker, A., Kuster, H., Niehaus, K. and Puhler, A. (1995) Extension of the *Rhizobium meliloti* succinoglycan biosynthesis gene cluster: identification of the exsA gene encoding an ABC transporter protein, and the *exsB* gene which probably codes for a regulator of succinoglycan biosynthesis. *Mol Gen Genet*, 249, 487-497.
- Belland, R.J. and Trust, T.J. (1985) Synthesis, export, and assembly of *Aeromonas salmonicida* A-layer analyzed by transposon mutagenesis. *J. Bacteriol.*, **163**, 877-881.
- Beveridge, T.J., Pouwels, P.H., Sara, M., Kotiranta, A., Lounatmaa, K., Kari, K., Kerosuo, E., Haapasalo, M., Egelseer, E.M., Schocher, I., Sleytr, U.B., Morelli, L., Callegari, M.L., Nomellini, J.F., Bingle, W.H., Smit, J., Leibovitz, E., Lemaire, M., Miras, I., Salamitou, S., Beguin, P., Ohayon, H., Gounon, P., Matuschek, M. and Koval, S.F. (1997) Functions of S-layers. *FEMS Microbiol. Rev.*, **20**, 99-149.
- Bik, E.M., Bunschoten, A.E., Willems, R.J., Chang, A.C. and Mooi, F.R. (1996) Genetic organization and functional analysis of the *otn* DNA essential for cell-wall polysaccharide synthesis in *Vibrio cholerae* O139. *Mol. Microbiol.*, **20**, 799-811.
- Binet, R., Létoffé, S., Ghigo, J.M., Delepelaire, P. and Wandersman, C. (1997) Protein secretion by Gram-negative bacterial ABC exporters - a review. *Gene*, **192**, 7-11.
- Binet, R. and Wandersman, C. (1995) Protein secretion by hybrid bacterial ABCtransporters: specific functions of the membrane ATPase and the membrane fusion protein. *EMBO J.*, **14**, 2298-2306.
- Binet, R. and Wandersman, C. (1996) Cloning of the *Serratia marcescens has*F gene encoding the Has ABC exporter outer membrane component: a TolC analogue. *Mol. Microbiol.*, **22**, 265-273.

- Bingle, W.H., Awram, P., Nomellini, J.F. and Smit, J. (1999) The Secretion Signal of *C. crescentus* S-layer Protein is Located Within the C-Terminal 82 Amino Acids of the Molecule. *submitted J. Bacteriol.*
- Bingle, W.H., Le, K.D. and Smit, J. (1996) The extreme N-terminus of the *Caulobacter crescentus* surface-layer protein directs export of passenger proteins from the cytoplasm but is not required for secretion of the native protein. *Can. J. Microbiol.*, **42**, 672-684.
- Bingle, W.H., Nomellini, J.F. and Smit, J. (1997a) Cell-surface display of a *Pseudomonas aeruginosa* strain K pilin peptide within the paracrystalline S-layer of *Caulobacter crescentus*. *Mol. Microbiol.*, **26**, 277-288.
- Bingle, W.H., Nomellini, J.F. and Smit, J. (1997b) Linker mutagenesis of the *Caulobacter crescentus* S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. *J. Bacteriol.*, **179**, 601-611.
- Bingle, W.H. and Smit, J. (1994) Alkaline phosphatase and a cellulase reporter protein are not exported from the cytoplasm when fused to large N-terminal portions of the *Caulobacter crescentus* surface (S)-layer protein. *Can J Microbiol*, **40**, 777-782.
- Blaser, M.J., Smith, P.F. and Kohler, P.F. (1985) Susceptibility of Campylobacter isolates to the bactericidal activity of human serum. *J. Infect. Dis.*, **151**, 227-235.
- Blaser, M.J., Smith, P.F., Repine, J.E. and Joiner, K.A. (1988) Pathogenesis of *Campylobacter fetus* infections. Failure of encapsulated *Campylobacter fetus* to bind C3b explains serum and phagocytosis resistance. *J. Clin. Invest.*, **81**, 1434-1444.
- Boos, W. and Shuman, H. (1998) Maltose/maltodextrin system of *Escherichia coli:* transport, metabolism, and regulation. *Microbiol. Mol. Biol. Rev.*, **62**, 204-229.
- Boot, H.J. and Pouwels, P.H. (1996) Expression, secretion and antigenic variation of bacterial S-layer proteins. *Mol. Microbiol.*, **21**, 1117-1123.
- Borinski, R. and Holt, S.C. (1990) Surface characteristics of *Wolinella recta* ATCC 33238 and human clinical isolates: correlation of structure with function. *Infect. Immun.*, **58**, 2770-2776.
- Brent, R. and Ptashne, M. (1980) The *lexA* gene product represses its own promoter. *Proc. Natl. Acad. Sci. U. S. A.*, **77**, 1932-1936.

- Brun, Y.V., Marczynski, G. and Shapiro, L. (1994) The expression of asymmetry during Caulobacter cell differentiation. *Annu. Rev. Biochem.*, **63**, 419-450.
- Burns, D.L. (1999) Biochemistry of type IV secretion. *Curr. Opin. Microbiol.*, **2**, 25-29.
- Canter Cremers, H., Spaink, H.P., Wijfjes, A.H., Pees, E., Wijffelman, C.A., Okker, R.J. and Lugtenberg, B.J. (1989) Additional nodulation genes on the Sym plasmid of *Rhizobium leguminosarum* biovar *viciae*. *Plant Mol. Biol.*, **13**, 163-174.
- Colnaghi, R., Pagani, S., Kennedy, C. and Drummond, M. (1996) Cloning, sequence analysis and overexpression of the rhodanese gene of *Azotobacter vinelandii*. *Eur. J. Biochem.*, **236**, 240-248.
- Croop, J.M. (1998) Evolutionary relationships among ABC transporters. *Methods Enzymol.*, **292**, 101-116.
- Currie, H.L., Lightfoot, J. and Lam, J.S. (1995) Prevalence of *gca*, a gene involved in synthesis of A-band common antigen polysaccharide in *Pseudomonas aeruginosa*. *Clinical and Diagnostic Lab. Immun*, **2**, 554-562.
- Davidson, A.L. and Nikaido, H. (1991) Purification and characterization of the membrane-associated components of the maltose transport system from *Escherichia coli. J. Biol. Chem.*, **266**, 8946-8951.
- Decottignies, A. and Goffeau, A. (1997) Complete inventory of the yeast ABC proteins. *Nature Genet.*, **15**, 137-145.
- Delepelaire, P. and Wandersman, C. (1990) Protein secretion in gram-negative bacteria. The extracellular metalloprotease B from *Erwinia chrysanthemi* contains a C-terminal secretion signal analogous to that of *Escherichia coli* alphahemolysin. *J Biol. Chem.*, **265**, 17118-17125.
- Delepelaire, P. and Wandersman, C. (1991) Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium *Erwinia chrysanthemi*. *Mol. Microbiol.*, **5**, 2427-2434.
- Dinh, T., Paulsen, I.T. and Saier, M.H., Jr. (1994) A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria. *J. Bacteriol.*, **176**, 3825-3831.

- Drummelsmith, J. and Whitfield, C. (1999) Gene products required for surface expression of the capsular form of the group 1 K antigen in *Escherichia coli* (O9a:K30). *Mol. Microbiol.*, **31**, 1321-1332.
- Duong, F., Lazdunski, A., Cami, B. and Murgier, M. (1992) Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in *Pseudomonas aeruginosa*: relationships to other secretory pathways. *Gene*, **121**, 47-54.
- Duong, F., Lazdunski, A. and Murgier, M. (1996) Protein secretion by heterologous bacterial ABC-transporters: the C-terminal secretion signal of the secreted protein confers high recognition specificity. *Mol. Microbiol.*, **21**, 459-470.
- Dworkin, J., Tummuru, M.K.R. and Blaser, M.J. (1995) A lipopolysaccharide-binding domain of the *Campylobacter fetus* S-layer protein resides within the conserved N-terminus of a family of silent and divergent homologs. *J. Bacteriol.*, **177**, 1734-1741.
- Edwards, P. and Smit, J. (1991) A transducing bacteriophage for *Caulobacter crescentus* uses the paracrystalline surface layer protein as a receptor. *J. Bacteriol.*, **173**, 5568-5572.
- Ehrmann, M., Ehrle, R., Hofmann, E., Boos, W. and Schlosser, A. (1998) The ABC maltose transporter. *Mol. Microbiol.*, **29**, 685-694.
- Eichelberg, K., Ginocchio, C.C. and Galan, J.E. (1994) Molecular and functional characterization of the *Salmonella typhimurium* invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. *J. Bacteriol.*, **176**, 4501-4510.
- Fallarino, A., Mavrangelos, C., Stroeher, U.H. and Manning, P.A. (1997)
 Identification of additional genes required for O-antigen biosynthesis in *Vibrio* cholerae O1. J. Bacteriol., **179**, 2147-2153.
- Fath, M.J., Skvirsky, R.C. and Kolter, R. (1991) Functional complementation between bacterial MDR-like export systems: colicin V, alpha-hemolysin, and *Erwinia* protease. J. Bacteriol., **173**, 7549-7556.
- Fellay, R., Frey, J. and Krisch, H. (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. *Gene*, **52**, 147-154.

- Feng, J.N., Russel, M. and Model, P. (1997) A permeabilized cell system that assembles filamentous bacteriophage. *Proc. Natl. Acad. Sci. U. S. A.*, 94, 4068-4073.
- Finnie, C., Zorreguieta, A., Hartley, N.M. and Downie, J.A. (1998) Characterization of *Rhizobium leguminosarum* exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. *J. Bacteriol.*, **180**, 1691-1699.
- Fisher, J.A., Smit, J. and Agabian, N. (1988) Transcriptional analysis of the major surface array gene of *Caulobacter crescentus*. *J. Bacteriol.*, **170**, 4706-4713.
- Fry, B.N., Korolik, V., ten Brinke, J.A., Pennings, M.T., Zalm, R., Teunis, B.J., Coloe,
 P.J. and van der Zeijst, B.A. (1998) The lipopolysaccharide biosynthesis locus of *Campylobacter jejuni* 81116. *Microbiolology*, **144**, 2049-2061.
- Galan, J.E. and Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. *Science*, **284**, 1322-1328.
- Geremia, R.A., Petroni, E.A., Ielpi, L. and Henrissat, B. (1996) Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic alpha-mannosyltransferases. *Biochem. J.*, **318**, 133-138.
- Gilchrist, A., Fisher, J.A. and Smit, J. (1992) Nucleotide sequence analysis of the gene encoding the *Caulobacter crescentus* paracrystalline surface layer protein. *Can. J. Microbiol.*, **38**, 193-202.
- Gilchrist, A. and Smit, J. (1991) Transformation of freshwater and marine caulobacters by electroporation. *J. Bacteriol.*, **173**, 921-925.
- Gober, J.W. and Marques, M.V. (1995) Regulation of cellular differentiation in *Caulobacter crescentus. Microbiol. Rev.*, **59**, 31-47.
- Gorbalenya, A.E. and Koonin, E.V. (1990) Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. *J Mol Biol*, **213**, 583-591.
- Guzzo, J., Murgier, M., Filloux, A. and Lazdunski, A. (1990) Cloning of the *Pseudomonas aeruginosa* alkaline protease gene and secretion of the protease into the medium by *Escherichia coli*. *J. Bacteriol.*, **172**, 942-948.
- Henkin, T.M., Grundy, F.J., Nicholson, W.L. and Chambliss, G.H. (1991) Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-

acting gene product homologous to the *Escherichia coli lacl* and *galR* repressors. *Mol. Microbiol.*, **5**, 575-584.

Holland, I.B. (1999) personal communication.

- Holton, T.A. and Graham, M.W. (1991) A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. *Nuc. Acids Res.*, **19**, 1156.
- Hovmoller, S., Sjogren, A. and Wang, D.N. (1988) The structure of crystalline bacterial surface layers. *Prog. Biophys. Mol. Biol.*, **51**, 131-163.
- Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F. and Kim, S.H. (1998) Crystal structure of the ATP-binding subunit of an ABC transporter [see comments]. *Nature*, **396**, 703-707.
- Hwang, J., Zhong, X. and Tai, P.C. (1997) Interactions of dedicated export membrane proteins of the colicin V secretion system: CvaA, a member of the membrane fusion protein family, interacts with CvaB and TolC. *J. Bacteriol.*, **179**, 6264-6270.
- Hyde, S.C., Emsley, P., Hartshorn, M.J., Mimmack, M.M., Gileadi, U., Pearce, S.R., Gallagher, M.P., Gill, D.R., Hubbard, R.E. and Higgins, C.F. (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport [see comments]. *Nature*, **346**, 362-365.
- Kawai, E., Akatsuka, H., Idei, A., Shibatani, T. and Omori, K. (1998) *Serratia marcescens* S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. *Mol. Microbiol.*, **27**, 941-952.
- Keen, N.T., Tamaki, S., Kobayashi, D. and Trollinger, D. (1988) Improved broadhost-range plasmids for DNA cloning in gram-negative bacteria. *Gene*, **70**, 191-197.
- Kenny, B., Taylor, S. and Holland, I.B. (1992) Identification of individual amino acids required for secretion within the haemolysin (HIyA) C-terminal targeting region. *Mol Microbiol*, **6**, 1477-1489.
- Kido, N., Sugiyama, T., Yokochi, T., Kobayashi, H. and Okawa, Y. (1998) Synthesis of *Escherichia coli* O9a polysaccharide requires the participation of two domains of WbdA, a mannosyltransferase encoded within the wb* gene cluster. *Mol Microbiol*, **27**, 1213-1221.

- Koronakis, V., Hughes, C. and Koronakis, E. (1993) ATPase activity and ATP/ADPinduces conformational change in the soluble domain of the bacterial protein translocator HlyB. *Mol. Microbiol.*, **8**, 1163-1175.
- Koronakis, V., Li, J., Koronakis, E. and Stauffer, K. (1997) Structure of ToIC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. *Mol. Microbiol.*, **23**, 617-626.
- Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M. and Peterson, K.M. (1994) pBBR1MCS: a broad-host-range cloning vector. *Biotechniques*, **16**, 800-802.
- Koval, S.F. and Hynes, S.H. (1991) Effect of paracrystalline protein surface layers on predation by *Bdellovibrio bacteriovorus*. *J. Bacteriol.*, **173**, 2244-2249.
- Koval, S.F. and Murray, R.G. (1984) The isolation of surface array proteins from bacteria. *Can J Biochem Cell Biol*, **62**, 1181-1189.
- Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A.,
 Galan, J.E. and Aizawa, S.I. (1998) Supramolecular structure of the *Salmonella typhimurium* type III protein secretion system. *Science*, **280**, 602-605.
- Leeds, J.A. and Welch, R.A. (1996) RfaH enhances elongation of *Escherichia coli hly*CABD mRNA. *J. Bacteriol.*, **178**, 1850-1857.
- Letellier, L., Howard, S.P. and Buckley, J.T. (1997) Studies on the energetics of proaerolysin secretion across the outer membrane of *Aeromonas* species. Evidence for a requirement for both the protonmotive force and ATP. *J. Biol. Chem.*, **272**, 11109-11113.
- Létoffé, S., Delepelaire, P. and Wandersman, C. (1990) Protease secretion by *Erwinia chrysanthemi*: The specific secretion functions are analogous to those of *Escherichia coli* alpha-haemolysin. *EMBO J*, **9**, 1375-1382.
- Létoffé, S., Ghigo, J.M. and Wandersman, C. (1994a) Iron acquisition from heme and hemoglobin by a *Serratia marcescens* extracellular protein. *Proc. Natl. Acad. Sci. U. S. A.*, **91**, 9876-9880.
- Létoffé, S., Ghigo, J.M. and Wandersman, C. (1994b) Secretion of the *Serratia marcescens* HasA protein by an ABC transporter. *J. Bacteriol.*, **176**, 5372-5377.
- Létoffé, S. and Wandersman, C. (1992) Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in *Escherichia coli*: Involvement of the glycine-rich repeat domain of *Erwinia chrysanthemi* protease B. *J. Bacteriol.*, **174**, 4920-4927.

- Linton, K.J. and Higgins, C.F. (1998) The *Escherichia coli* ATP-binding cassette (ABC) proteins. *Mol. Microbiol.*, **28**, 5-13.
- Linton, K.J., Jarvis, B.W. and Hutchinson, C.R. (1995) Cloning of the genes encoding thymidine diphosphoglucose 4,6- dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerase from the erythromycinproducing *Saccharopolyspora erythraea*. *Gene*, **153**, 33-40.
- Liu, D., Haase, A.M., Lindqvist, L., Lindberg, A.A. and Reeves, P.R. (1993) Glycosyl transferases of O-antigen biosynthesis in *Salmonella enterica*: identification and characterization of transferase genes of groups B, C2, and E1. *J. Bacteriol.*, **175**, 3408-3413.
- Lu, H.M. and Lory, S. (1996) A specific targeting domain in mature exotoxin A is required for its extracellular secretion from *Pseudomonas aeruginosa*. *EMBO J.*, **15**, 429-436.
- Luckevich, M.D. and Beveridge, T.J. (1989) Characterization of a dynamic S layer on *Bacillus thuringiensis. J. Bacteriol.*, **171**, 6656-6667.
- Mackman, N., Nicaud, J.M., Gray, L. and Holland, I.B. (1985) Identification of polypeptides required for the export of haemolysin 2001 from *E. coli. Mol. Gen. Genet.* **201**, 529-536.
- MacRae, J.D. and Smit, J. (1991) Characterization of *caulobacters* isolated from wastewater treatment systems. *Appl. Environ. Microbiol.*, **57**, 751-758.
- Malakooti, J., Wang, S.P. and Ely, B. (1995) A consensus promoter sequence for *Caulobacter crescentus* genes involved in biosynthetic and housekeeping functions. *J. Bacteriol.*, **177**, 4372-4376.
- Martin, V.J. and Mohn, W.W. (1999) An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions [In Process Citation]. *J. Microbiol. Methods*, **35**, 163-166.
- Maser, P. and Kaminsky, R. (1998) Identification of three ABC transporter genes in *Trypanosoma brucei* spp. *Parasitol. Res.*, **84**, 106-111.
- Mead, D.A., Szczesna-Skorupa, E. and Kemper, B. (1986) Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. *Protein Eng.*, **1**, 67-74.

- Messner, P. and Sleytr, U.B. (1992) Crystalline bacterial cell-surface layers. In Rose, A.H. and Tempest, D.W. (eds.), *Advances in Microbial Physiology*. Academic Press, London, Vol. 33, pp. 213-275.
- Morales, V.M., Backman, A. and Bagdasarian, M. (1991) A series of wide-hostrange low-copy-number vectors that allow direct screening for recombinants. *Gene*, **97**, 39-47.
- Munn, C.B., Ishiguro, E.E., Kay, W.W. and Trust, T.J. (1982) Role of surface components in serum resistance of virulent *Aeromonas salmonicida*. *Infect. Immun.*, **36**, 1069-1075.
- Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. *Protein Eng.*, **10**, 1-6.
- Nikaido, H. (1994) Maltose transport system of *Escherichia coli*: an ABC-type transporter. *FEBS Lett.*, **346**, 55-58.
- Nikaido, H. and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. *Microbiol. Rev.*, **49**, 1-32.
- Nomellini, J.F., Kupcu, S., Sleytr, U.B. and Smit, J. (1997) Factors controlling in vitro recrystallization of the *Caulobacter crescentus* paracrystalline S-layer. *J. Bacteriol.*, **179**, 6349-6354.
- Pearson, W.R., Wood, T., Zhang, Z. and Miller, W. (1997) Comparison of DNA sequences with protein sequences. *Genomics*, **46**, 24-36.
- Pohlner, J., Halter, R., Beyreuther, K. and Meyer, T.F. (1987) Gene structure and extracellular secretion of *Neisseria gonorrhoeae* IgA protease. *Nature*, **325**, 458-462.
- Poindexter, J.S. (1981) The caulobacters: ubiquitous unusual bacteria. *Microbiol. Rev.*, **45**, 123-179.
- Pugsley, A.P. (1993) The complete general secretory pathway in gram-negative bacteria. *Microbiol. Rev.*, **57**, 50-108.
- Ravenscroft, N., Walker, S.G., Dutton, G.G. and Smit, J. (1991) Identification, isolation, and structural studies of extracellular polysaccharides produced by *Caulobacter crescentus. J. Bacteriol.*, **173**, 5677-5684.

- Ravenscroft, N., Walker, S.G., Dutton, G.S. and Smit, J.K. (1992) Identification, isolation, and structural studies of the outer membrane lipopolysaccharide of *Caulobacter crescentus. J. Bacteriol.*, **174**, 7595-7605.
- Riley, R.G. and Kolodziej, B.J. (1976) Pathway of glucose catabolism in *Caulobacter crescentus*. *Microbios*, **16**, 219-226.
- Roberts, R.C., Mohr, C.D. and Shapiro, L. (1996) Developmental programs in bacteria. *Curr. Top. Dev. Biol.*, **34**, 207-257.
- Rocchetta, H.L., Burrows, L.L., Pacan, J.C. and Lam, J.S. (1998) Three rhamnosyltransferases responsible for assembly of the A-band D- rhamnan polysaccharide in *Pseudomonas aeruginosa*: a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis [published erratum appears in Mol Microbiol 1998 Dec;30(5):1131]. *Mol. Microbiol.*, **28**, 1103-1119.
- Russel, M. (1998) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. *J. Mol. Biol.*, **279**, 485-499.
- Salmond, G.P. and Reeves, P.J. (1993) Membrane traffic wardens and protein secretion in gram-negative bacteria. *Trends in Biochem. Sci.*, **18**, 7-12.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) *Molecular cloning: a laboratory manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.
- Sara, M. and Sleytr, U.B. (1996a) Biotechnology and biomimetic with crystalline bacterial cell surface layers (S-layers). *Micron*, **27**, 141-156.
- Sara, M. and Sleytr, U.B. (1996b) Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. *Prog. Biophys. Mol. Biol.*, **65**, 83-111.
- Scheu, A.K., Economou, A., Hong, G.F., Ghelani, S., Johnston, A.W. and Downie, J.A. (1992) Secretion of the *Rhizobium leguminosarum* nodulation protein NodO by haemolysin-type systems. *Mol. Microbiol.*, **6**, 231-238.
- Schnaitman, C.A. and Klena, J.D. (1993) Genetics of lipopolysaccharide biosynthesis in enteric bacteria. *Microbiol. Rev.*, **57**, 655-682.
- Schulein, R., Gentschev, I., Schlor, S., Gross, R. and Goebel, W. (1994) Identification and characterization of two functional domains of the hemolysin translocator protein HlyD. *Mol. Gen. Genet.*, **245**, 203-211.
- Shapiro, L. (1976) Differentiation in the Caulobacter cell cycle. Annu. Rev. Microbiol., **30**, 377-407.

- Shapiro, L. and Losick, R. (1997) Protein localization and cell fate in bacteria. *Science*, **276**, 712-718.
- Sheps, J.A., Zhang, F. and Ling, V. (1996) Phylogenetic Analysis of Members of the ABC transporter superfamily. In Rothman, S.R. (ed.) *Membrane Protein Transport*. JAI Press, Greenwich, Conneticut, Vol. 3, p. 81.
- Simon, R., Priefer, U. and Puhler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. *Bio/technology*, **1**, 784-790.
- Sleytr, U.B. (1976) Self-assembly of the hexagonally and tetragonally arranged subunits of bacterial surface layers and their reattachment to cell walls. *J. Ultrastruct. Res.*, **55**, 360-377.
- Sleytr, U.B., Bayley, H., Sara, M., Breitwieser, A., Kupcu, S., Mader, C., Weigert, S., Unger, F.M., Messner, P., Jahn-Schmid, B., Schuster, B., Pum, D., Douglas, K., Clark, N.A., Moore, J.T., Winningham, T.A., Levy, S., Frithsen, I., Pankovc, J., Beale, P., Gillis, H.P., Choutov, D.A. and Martin, K.P. (1997a) Applications of Slayers. *FEMS Microbiol. Rev.*, **20**, 151-175.
- Sleytr, U.B. and Messner, P. (1983) Crystalline surface layers on bacteria. *Annu. Rev. Microbiol.*, **37**, 311-339.
- Sleytr, U.B. and Messner, P. (1988) Crystalline surface layers in procaryotes. *J. Bacteriol.*, **170**, 2891-2897.
- Sleytr, U.B., Messner, P., Pum, D. and Sara, M. (1993) Crystalline bacterial cell surface layers. *Mol. Microbiol.*, **10**, 911-916.
- Sleytr, U.B., Pum, D. and Sara, M. (1997b) Advances in S-layer nanotechnology and biomimetics. *Adv. Biophys.*, **34**, 71-79.
- Sleytr, U.B. and Sara, M. (1997) Bacterial and archaeal S-layer proteins: structurefunction relationships and their biotechnological applications. *Trends Biotechnol.*, **15**, 20-26.
- Smit, J. and Agabian, N. (1984) Cloning of the major protein of the *Caulobacter crescentus* periodic surface layer: detection and characterization of the cloned peptide by protein expression assays. *J. Bacteriol.*, **160**, 1137-1145.
- Smit, J., Engelhardt, H., Volker, S., Smith, S.H. and Baumeister, W. (1992) The Slayer of *Caulobacter crescentus*: three-dimensional image reconstruction and structure analysis by electron microscopy. *J. Bacteriol.*, **174**, 6527-6538.

- Smit, J., Grano, D.A., Glaeser, R.M. and Agabian, N. (1981) Periodic surface array in *Caulobacter crescentus*: fine structure and chemical analysis. *J. Bacteriol.*, **146**, 1135-1150.
- Stahl, D.A., Key, R., Flesher, B. and Smit, J. (1992) The phylogeny of marine and freshwater caulobacters reflects their habitat. *J. Bacteriol.*, **174**, 2193-2198.
- Stanley, P.L., Diaz, P., Bailey, M.J., Gygi, D., Juarez, A. and Hughes, C. (1993) Loss of activity in the secreted form of *Escherichia coli* haemolysin caused by an *rfaP* lesion in core lipopolysaccharide assembly. *Mol. Microbiol.*, **10**, 781-787.
- Stevenson, G., Andrianopoulos, K., Hobbs, M. and Reeves, P.R. (1996) Organization of the *Escherichia coli* K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. *J. Bacteriol.*, **178**, 4885-4893.
- Stewart, M. and Beveridge, T.J. (1980) Structure of the regular surface layer of *Sporosarcina ureae. J. Bacteriol.*, **142**, 302-309.
- Stroeher, U.H., Karageorgos, L.E., Brown, M.H., Morona, R. and Manning, P.A. (1995) A putative pathway for perosamine biosynthesis is the first function encoded within the *rfb* region of *Vibrio cholerae* O1. *Gene*, **166**, 33-42.
- Sugiyama, T., Kido, N., Kato, Y., Koide, N., Yoshida, T. and Yokochi, T. (1998) Generation of *Escherichia coli* O9a serotype, a subtype of *E. coli* O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. *J. Bacteriol.*, **180**, 2775-2778.
- Sutton, J.M., Peart, J., Dean, G. and Downie, J.A. (1996) Analysis of the C-terminal secretion signal of the *Rhizobium leguminosarum* nodulation protein NodO; a potential system for the secretion of heterologous proteins during nodule invasion. *Mol. Plant Microbe Interact.*, **9**, 671-680.
- Thompson, S.A., Shedd, O.L., Ray, K.C., Beins, M.H., Jorgensen, J.P. and Blaser, M.J. (1998) *Campylobacter fetus* surface layer proteins are transported by a type I secretion system. *J. Bacteriol.*, **180**, 6450-6458.
- Thorne, K.J., Oliver, R.C. and Glauert, A.M. (1976) Synthesis and turnover of the regularly arranged surface protein of *Acinetobacter* sp. relative to the other components of the cell envelope. *J. Bacteriol.*, **127**, 440-450.
- Tobin, M.B., Peery, R.B. and Skatrud, P.L. (1997) Genes encoding multiple drug resistance-like proteins in *Aspergillus fumigatus* and *Aspergillus flavus*. *Gene*, **200**, 11-23.

- Vaara, M. (1992) Eight bacterial proteins, including UDP-N-acetylglucosamine acyltransferase (LpxA) and three other transferases of *Escherichia coli*, consist of a six-residue periodicity theme. *FEMS Microbiol. Lett.*, **76**, 249-254.
- Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. *Gene*, **19**, 259-268.
- Vuorio, R., Harkonen, T., Tolvanen, M. and Vaara, M. (1994) The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. *FEBS Letters*, **337**, 289-292.
- Walker, J.E., Saraste, M. and Gay, N.J. (1984) The unc operon. Nucleotide sequence, regulation and structure of ATP- synthase. *Biochim. Biophys. Acta.*, **768**, 164-200.
- Walker, S.G., Karunaratne, D.N., Ravenscroft, N. and Smit, J. (1994) Characterization of mutants of *Caulobacter crescentus* defective in surface attachment of the paracrystalline surface layer. *J. Bacteriol.*, **176**, 6312-6323.
- Walker, S.G., Smith, S.H. and Smit, J. (1992) Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. *J. Bacteriol.*, **174**, 1783-1792.
- Wandersman, C., Delepelaire, P. and Létoffé, S. (1990) Secretion processing and activation of *Erwinia chrysanthemi* proteases. *Biochimie*, **72**, 143-146.
- Wandersman, C. and Létoffé, S. (1993) Involvement of lipopolysaccharide in the secretion of *Escherichia coli* alpha-haemolysin and *Erwinia chrysanthemi* proteases. *Mol. Microbiol.*, **7**, 141-150.
- Wang, L. and Reeves, P.R. (1998) Organization of *Escherichia coli* O157 O antigen gene cluster and identification of its specific genes. *Infect. Immun.*, **66**, 3545-3551.
- Ward, M.J., Bell, A.W., Hamblin, P.A., Packer, H.L. and Armitage, J.P. (1995) Identification of a chemotaxis operon with two cheY genes in *Rhodobacter sphaeroides. Mol. Microbiol.*, **17**, 357-366.
- Weiss, A.A., Johnson, F.D. and Burns, D.L. (1993) Molecular characterization of an operon required for pertussis toxin secretion. *Proc. Natl. Acad. Sci. U. S. A.*, **90**, 2970-2974.

Welch, R.A. (1991) Pore-forming cytolysins of gram-negative bacteria. *Mol. Microbiol.*, **5**, 521-528.

Welsh, M.J. (1998) The ABC of a versatile engine. Nature, 396, 623-624.

- Whitfield, C. (1995) Biosynthesis of lipopolysaccharide O antigens. *Trends Microbiol.*, **3**, 178-185.
- Wolff, N., Delepelaire, P., Ghigo, J.M. and Delepierre, M. (1997) Spectroscopic studies of the C-terminal secretion signal of the *Serratia marcescens* haem acquisition protein (HasA) in various membrane-mimetic environments. *Eur. J. of Biochem.*, 243, 400-407.
- Wolff, N., Ghigo, J.M., Delepelaire, P., Wandersman, C. and Delepierre, M. (1994) C-terminal secretion signal of an *Erwinia chrysanthemi* protease secreted by a signal peptide-independent pathway: proton NMR and CD conformational studies in membrane-mimetic environments. *Biochemistry*, **33**, 6792-6801.
- Yanisch-Perron, C., Vieira, J. and Messing, J. (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. *Gene*, **33**, 103-119.

Yap, W.H., Thanabalu, T. and Porter, A.G. (1994) Influence of transcriptional and translational control sequences on the expression of foreign genes in *Caulobacter crescentus*. *J Bacteriol*, **176**, 2603-2610.

- Yin, Y., Zhang, F., Ling, V. and Arrowsmith, C.H. (1995) Structural analysis and comparison of the C-terminal transport signal domains of hemolysin A and leukotoxin A. *FEBS Lett.*, **366**, 1-5.
- Yun, C., Ely, B. and Smit, J. (1994) Identification of genes affecting production of the adhesive holdfast of a marine caulobacter. *J Bacteriol.*, **176**, 796-803
- Zhang, F., Sheps, J.A. and Ling, V. (1998) Structure-function analysis of hemolysin B. *Methods Enzymol.*, **292**, 51-66.

Appendix 1

RAT fragment-*rsaADE*, *lpsABCDE*, *rsaF*, *lpsF*

LOCUS DEFINITION	NA1000RATX 16458 bp DNA BCT 07-OCT-1999 Caulobacter crescentus sst1, S-layer subunit (rsaA), ABC-transporter (rsaD), Membrane Forming Unit (rsaE), putative GDP-mannose-4,6-dehydratase (LpsA), putative acetyltransferase (LpsB), putative perosamine synthetase (LpsC), putative mannosyltransferase (LpsD), putative mannosyltransferase (LpsE), Outer membrane protein (rsaF), and putative perosamine transferase (LpsE) genes, complete cds.
ACCESSION	NA1000RATX
VERSION	
KEYWORDS	·
SOURCE ORGANISM	Caulobacter crescentus. Caulobacter crescentus
ORGANISM	Bacteria; Proteobacteria; alpha subdivision; Caulobacter group;
	Caulobacter.
REFERENCE	1 (bases 1230 to 2387)
AUTHORS	Fisher, J.A., Smit, J. and Agabian, N.
TITLE	Transcriptional analysis of the major surface array gene of
	Caulobacter crescentus
JOURNAL	J. Bacteriol. 170 (10), 4706-4713 (1988)
MEDLINE	89008089
REFERENCE	2 (bases 1336 to 4645)
AUTHORS	Gilchrist,A., Fisher,J.A. and Smit,J. Nucleotide sequence analysis of the gene encoding the Caulobacter
TITLE	crescentus paracrystalline surface layer protein
JOURNAL	Can. J. Microbiol. 38 (3), 193-202 (1992)
MEDLINE	93007489
REFERENCE	3 (bases 1 to 16458)
AUTHORS	Awram, P. and Smit, J.
TITLE	The Caulobacter crescentus paracrystalline S-layer protein is
	secreted by an ABC transporter (type I) secretion apparatus
JOURNAL	J. Bacteriol. 180 (12), 3062-3069 (1998)
MEDLINE	98292737
REFERENCE	4 (bases 1 to 16458)
AUTHORS	Awram, P.A. and Smit, J.K.
TITLE	Identification of Genes involved in the Synthesis of the Smooth Lipopolysaccharide
JOURNAL	Unpublished
REFERENCE	5 (bases 1 to 16458)
AUTHORS	Awram, P.A.
TITLE	Direct Submission
JOURNAL	Submitted (07-OCT-1999) Microbiology and Immunology, University of
	British Columbia, 300-6174 University Blvd, Vancouver, BC V6T 1Z3,
	Canada
FEATURES	Location/Qualifiers
source	e 116458 /organism="Caulobacter crescentus"
	/strain="NA1000"
gene	complement(227799)
500	/gene="sst1"

		/noto-llunknounll
	CDS	/note="unknown"
Ĺ	202	complement (227799)
		/gene="sst1"
		/note="unknown"
		/codon_start=1
		/transl_table=11
		/product="Sst1"
		/translation="MAAQVLSFFQRSPRYAPQPADWSQQELAEFYRVESALIRAGIRV
		GTDRGLSDENEPWFVFYRADDGEVVIHFARIDGEYLIAGPAYEEIARGFDFTSLVRNL
		VARHPLIRRSDSGSNLSVHPAALLVAVVGTAFFKTGEARAAETGQSNATSGHNRPVLL
		SSSSNASLNDRCRAGRLPAARLCLGATAGQ"
ç	gene	14434523
		/gene="rsaA"
(CDS	14434523
		/gene="rsaA"
		/citation=[1]
		/citation=[2]
		/codon start=1
		/transl table=11
		/product="S-layer subunit"
		/translation="MAYTTAQLVTAYTNANLGKAPDAATTLTLDAYATQTQTGGLSDA
		AALTNTLKLVNSTTAVAIQTYQFFTGVAPSAAGLDFLVDSTTNTNDLNDAYYSKFAQE
		NRFINFSINLATGAGAGATAFAAAYTGVSYAQTVATAYDKIIGNAVATAAGVDVAAAV
		AFLSROANIDYLTAFVRANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAA
		MINDLSDGALSTDNAAGVNLFTAYPSSGVSGSTLSLTTGTDTLTGTANNDTFVAGEVA
		GAATLTVGDTLSGGAGTDVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITLNTSSG
		VTGLTALNTNTSGAAQTVTAGAGQNLTATTAAQAANNVAVDGGANVTVASTGVTSGTT
		TVGANSAASGTVSVSVANSSTTTTGAIAVTGGTAVTVAQTAGNAVNTTLTOADVTVTG
		NSSTTAVTVTQTAAATAGATVAGRVNGAVTITDSAAASATTAGKIATVTLGSFGAATI
		DSSALTTVNLSGTGTSLGIGRGALTATPTANTLTLNVNGLTTTGAITDSEAAADDGFT
		TINIAGSTASSTIASLVAADATTLNISGDARVTITSHTAAALTGITVTNSVGATLGAE
		LATGLVFTGGAGADSILLGATTKAIVMGAGDDTVTVSSATLGAGGSVNGGDGTDVLVA
		NVNGSSFSADPAFGGFETLRVAGAAAQGSHNANGFTALQLGATAGATTFTNVAVNVGL
		TVLAAPTGTTTVTLANATGTSDVFNLTLSSSAALAAGTVALAGVETVNIAATDTNTTA
		HVDTLTLQATSAKSIVVTGNAGLNLTNTGNTAVTSFDASAVTGTGSAVTFVSANTTVG
		EVVTIRGGAGADSLTGSATANDTIIGGAGADTLVYTGGTDTFTGGTGADIFDINAIGT
		STAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVTLGAAATLAQYLDAAAAGDGSG
		TSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLTGLVTLTTSAFATEVLTLA"
ç	gene	47666502
		/gene="rsaD"
(CDS	47666502
		/gene="rsaD"
		<pre>/note="ABC-transporter of RsaA type I secretion system"</pre>
		/codon start=1
		/transl table=11
		/product="ABC-transporter"
		/translation="MFKRSGAKPTILDQAVLVARPAVITAMVFSFFINILALVSPLYM
		LQVYDRVLTSRNVSTLIVLTVICVFLFLVYGLLEALRTQVLVRGGLKFDGVARDPIFK
		SVLDSTLSRKGIGGQAFRDMDQVREFMTGGLIAFCDAPWTPVFVIVSWMLHPFFGILA
		IIACIIIFGLAVMNDNATKNPIQMATMASIAAQNDAGSTLRNAEVMKAMGMWGGLQAR
		WRARRDEQVAWQAAASDAGGAVMSGIKVFRNIVQTLILGGGAYLAIDGKISAGAMIAG
		SILVGRALAPIEGAVGQWKNYIGARGAWDRLQTMLREEKSADDHMPLPEPRGVLSAEA
		ASILPPGAQQPTMRQASFRIDAGAAVALVGPSAAGKSSLLRGIVGVWPCAAGVIRLDG
		YDIKQWDPEKLGRHVGYLPQDIELFSGTVAQNIARFTEFESQEVIEAATLAGVHEMIQ
		SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA
		MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP
		PTPPPAPLQRVQ"

gene	65707880
	/gene="rsaE"
CDS	65707880
	/gene="rsaE"
	/note="MFP of RsaA type I secretion system" /codon start=1
	/transl table=11
	/product="Membrane Forming Unit"
	/translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV
	IANGVVSAEGNRKTVQHLEGGMLAKILVRÉGEKVKAGQVLFELDPTQANAAAGITRNQ
	YVALKAMEARLLAERDQRPSISFPADLTSQRADPMVARAIADEQAQFTERRQTIQGQV
	DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE
	QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE
	VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL
	PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE"
gene	80208997
	/gene="LpsA"
CDS	80208997
	/gene="LpsA"
	/codon_start=1
	/transl_table=11 /product="putative GDP-mannose-4,6-dehydratase"
	/translation="MAKTALITGVTGQDGAYLAKLLLEKGYTVHGMLRRSASADVIGD
	RLRWIGVYDDIQFELGDLLDEGGLARLMRRLQPDEVYNLAAQSFVGASWDQPHLTGSV
	TGLGTTNMLEAVRLECPQARFYQASSSEMYGLVQHPIQSETTPFYPRSPYAVAKLYAH
	$\tt WMTVNYRESFGLHASAGILFNHESPLRGIEFVTRKVTDAVAAIKLGQQKTVDLGNLDA$
	KRDWGHAKDYVEAMWLMLQQETPDDYVVATGKTWTVRQMCEVAFAHVGLNYQDHVTIN
~~~~	PKFLRPAEVDLLLGDPAKAKAKLGWEPKTTMQQMIAEMVDADIARRSRN"
gene ·	89979644 /gene="LpsB"
CDS	89979644
	/gene="LpsB"
	/codon_start=1
	/transl_table=11
	<pre>/product="putative acetyltransferase" /translation="MSASLAIGGVVIIGGGGHAKVVIESLRACGETVAAIVDADPTRR</pre>
	AVLGVPVVGDDLALPMLREQGLSRLFVAIGDNRLRQKLGRKARDHGFSLVNAIHPSAV
	VSPSVRLGEGVAVMAGVAINADSWIGDLAIINTGAVVDHDCRLGAACHLGPASALAGG
	VSVGERAFLGVGARVIPGVTIGADTIVGAGGVVVRDLPDSVLAIGVPAKIKGDRS"
gene	971610756
	/gene="LpsC"
CDS	971610756
	/gene="LpsC"
	/codon_start=1 /transl_table=11
	/product="putative perosamine synthetase"
	/translation="MDTTWISSVGRFIVEFEKAFADYCGVKHAIACNNGTTALHLALV
	AMGIGPGDEVIVPSLTYIASANSVTYCGATPVLVDNDPRTFNLDAAKLEALITPRTKA
	IMPVHLYGQICDMDPILEVARRHNLLVIEDAAEAVGATYRGKKSGSLGDCATFSFFGN
	KIITTGEGGMITTNDDDLAAKMRLLRGQGMDPNRRYWFPIVGFNYRMTNIQAAIGLAQ
	LERVDEHLAARERVVGWYEQKLARLGNRVTKPHVALTGRHVFWMYTVRLGEGLSTTRD
	QVIKDLDALGIESRPVFHPMHIMPPYAHLATDDLKIAEACGVDGLNLPTHAGLTEADI DRVIAALDOVLV"
gene	1076011797
200	/gene="LpsD"
CDS	1076011797

	/gene="LpsD"
	/codon_start=1
	/transl_table=11
	<pre>/product="putative mannosyltransferase"</pre>
	/translation="MRIVLLSSIVPFINGGARFIVEWLEEKLIEAGHEVERFYLPFVD
	DPNEILHQIAAWRLMDLTQWCDRVICFRPPAYVVDHPNKVLWFIHHIRTFYDLWDTPY
	${\tt RGMPDDAQHRAIRDNLRALDTQAISEARAVFTNSQVVADRLKAFNGLDATPLYPPIYQ$
	PERFSHTGYGDEIVAISRLEPHKRQALMIEAMQYVKSGVKLRLAGTASSAEYGRQLVK
	MTHDLGVADRVILEDRWISEDEKADMLKQALAVAYLPKDEDSYGYPSLEGAHARKPVI
	$\tt TTTDSGGVLELVEHGRNGLISAPDPRALAEQFDRLHADKAATAKMGTASLNRLAEMKI$
	DWSTVVERLTS"
gene	1180812845
	/gene="LpsE"
CDS	1180812845
	/gene="LpsE"
	/codon_start=1
	/transl_table=11
	<pre>/product="putative mannosyltransferase"</pre>
	/translation="MKVLVVNNAAPFQRGGAEELADHLVRRLNATPGVQSELVRVPFT
	WEPAERLIEEMLISKGMRLYNVDRVIGLKFPAYLIPHHQKVLWLLHQFRQAYDLSEAG
	$\tilde{C}$
	DGELFTGGEHGDYVFAGGRVAAGKRQHLLIEALALPGSLRLVIAGPPENQAYADRLT
	${\tt KLVEDLDLKDRVELRFGFHPREDIARWANGALICAYLPFDEDSVGYVTMEAFAAGKAV}$
	$\verb"LTVTDSGGLLEIVSADTGAVAEPTPQALAEALDRLTSDKARAISLGDAARRLWRDKNV"$
	TWEETVRRLLD"
gene	1290214485
	/gene="rsaF"
CDS	1290214485
	/gene="rsaF"
	/note="OMP of RsaA type I secretion system"
	/codon_start=1
	/transl_table=11
	/product="Outer membrane protein"
	/translation="MRVLSKVLSVRTSLIALAMAMAVVGRADLAHAETLAEAITAAYQ
	SNPNIQAQRAAMRALDENYTQARSAYGLQASASVAEVYGWSKGVNAKNGVEAASQTST
	LSLSQSLYTNGRFSARLAGVEAQIKAARENLRRIEMDLLVRVTNAYISVRRDREILRI
	SQGGEAWLQKQLKDTEDKYSVRQVTLTDVQQAKARLASASTQVANAQAQLNVSVAFYA
	SLVGRQPETLKPEPDIDGLPTTLDEAFNQAEQANPVLLAAGYTEKASRAGVAEARAQR
	LFSVGARADYRNGSSTPYYARGGLREDTVNASITLTQPLFTSGQLNASVRQSIEENNR
	DKLLMEDARRSMVLSVSQYWDSLVAARKSLVSLEEEMKANTIAFYGVREEERFALRST
	IEVLNAQAELQNAQINFVRGRANEYVGRLHLLAQVGTLEVGNLAPGVQPYDPERNFRK
	VRYRGALPTELIIGTFDKIALPLEPKKPAPGDTSPIRPPSSELPARPVSADKVTPPAS
	MNDLPALTDDTPVQTAPRN"
gene	complement(1459115880)
	/gene="LpsE"
CDS	complement(1459115880)
	/gene="LpsE"
	/codon_start=1
	/transl_table=11
	/product="putative perosamine transferase"
	/translation="MTSRLLEIWRRLPTPIRRSAHVVAGAPRAALEALDKALAEHRHR
	SAERTALARARRRAGPRGLSPTLPVTVIGFHSAVHGLGEGARMLARGFGDMGLGVRAL
	DLSASVGFAAEIAPAYSSPDPDERGVTISHINPPELLRWARETEGRFLEGRRHIGYWA
	WELEEVPSDWLPAFDFVDEVWTPSAFAADAIRRVAPRGVKVTPVPYPLYLNPRPQADR
	QRFGLQDDRVVVLMAFDLRSTAQRKNPDAALRAFRDATVKATRPATLVCKVVGADLYP
	ETFQALAAEVADDPSIRLLTDNLSAQDMAALTASSDIVLSLHRSEGYGLLLAEAIWLG KPTLATGWSSNVEFMDPASSQFVDYRLVPVEGDGVIYRAGRWADADVGDAAEKLARMI

#### SDDAWRNTLAAATARNGHVSFNRDAWVAMTSARLPLT"

BASE COUNI ORIGIN	r 2845 a		5354 g 2	2717 t		
	gagctcaccg	catassocaa	catattatca	acquitchaaq	teggegggg	asaacacact
	ggccccgccg					
	agccgcagcg					
	acggaagtcc					
	ttgcaccgag					
	tggcgttcga					
	ggccggtctc					
	ccagcagggc					
	gatggcgggc					
	cataggcggg					
	cgccgtcgtc					
	cagtgccgac					
	gctcctgctg					
	acaggacctg					
	ccgtcggccc					
	atctcgtagg					
	acctccaggg					
	tccagctgag					
	gacaggccgg					
	tgcacctccg					
	accgagggca					
	gcgcttttcg					
	aatgctgtac					
1381	ctgctcccat	gcgcgccact	cggtcgcagg	gggtgtggga	tttttttgg	gagacaatcc
1441	tcatggccta	tacgacggcc	cagttggtga	ctgcgtacac	caacgccaac	ctcggcaagg
, 1501	cgcctgacgc	cgccaccacg	ctgacgctcg	acgcgtacgc	gactcaaacc	cagacgggcg
1561	gcctctcgga	cgccgctgcg	ctgaccaaca	ccctgaagct	ggtcaacagc	acgacggctg
1621	ttgccatcca	gacctaccag	ttcttcaccg	gcgttgcccc	gtcggccgct	ggtctggact
1681	tcctggtcga	ctcgaccacc	aacaccaacg	acctgaacga	cgcgtactac	tcgaagttcg
1741	ctcaggaaaa	ccgcttcatc	aacttctcga	tcaacctggc	cacgggcgcc	ggcgccggcg
1801	cgacggcttt	cgccgccgcc	tacacgggcg	tttcgtacgc	ccagacggtc	gccaccgcct
1861	atgacaagat	catcggcaac	gccgtcgcga	ccgccgctgg	cgtcgacgtc	gcggccgccg
1921	tggctttcct	gagccgccag	gccaacatcg	actacctgac	cgccttcgtg	cgcgccaaca
1981	cgccgttcac	ggccgctgcc	gacatcgatc	tggccgtcaa	ggccgccctg	atcggcacca
2041	tcctgaacgc	cgccacggtg	tcgggcatcg	gtggttacgc	gaccgccacg	gccgcgatga
2101	tcaacgacct	gtcggacggc	gccctgtcga	ccgacaacgc	ggctggcgtg	aacctgttca
2161	ccgcctatcc	gtcgtcgggc	gtgtcgggtt	cgaccctctc	gctgaccacc	ggcaccgaca
	ccctgacggg					
	ccctgaccgt					
						gaaacgatga
	acgtgacgtc					
	ccctgaacac					
	tgaccgccac					
	tcaccgtcgc					
	cttcgggcac					
	ccgtgaccgg					
	cgttgacgca					
	cccaaaccgc					
	cgatcaccga					
	tgggcagctt					
	gcacgggcac					
	ccctgaccct					
	ctgctgacga					
	ccagcctggt					
1010	Juguergyt	Jungergan	Jugaugauuu	-guadalette	JJJJJJUJU	Juguesuuugu

					gaccaacagc	
					cggcgctggc	
					cggcgacgac	
3421	tcagctcggc	gaccctgggc	gctggtggtt	cggtcaacgg	cggcgacggc	accgacgttc
					ggccttcggc	
3541	ccctccgcgt	cgctggcgcg	gcggctcaag	gctcgcacaa	cgccaacggc	ttcacggctc
3601	tgcaactggg	cgcgacggcg	ggtgcgacga	ccttcaccaa	cgttgcggtg	aatgtcggcc
3661	tgaccgttct	ggcggctccg	accggtacga	cgaccgtgac	cctggccaac	gccacgggca
3721	cctcggacgt	gttcaacctg	accctgtcgt	cctcggccgc	tctggccgct	ggtacggttg
					caccaacacg	
3841	tcgacacgct	gacgctgcaa	gccacctcgg	ccaagtcgat	cgtggtgacg	ggcaacgccg
3901	gtctgaacct	gaccaacacc	ggcaacacgg	ctgtcaccag	cttcgacgcc	agcgccgtca
3961	ccggcacggg	ctcggctgtg	accttcgtgt	cggccaacac	cacggtgggt	gaagtcgtca
4021	cgatccgcgg	cggcgctggc	gccgactcgc	tgaccggttc	ggccaccgcc	aatgacacca
4081	tcatcggtgg	cgctggcgct	gacaccctgg	tctacaccgg	cggtacggac	accttcacgg
4141	gtggcacggg	cgcggatatc	ttcgatatca	acgctatcgg	cacctcgacc	gctttcgtga
4201	cgatcaccga	cgccgctgtc	ggcgacaagc	tcgacctcgt	cggcatctcg	acgaacggcg
4261	ctatcgctga	cggcgccttc	ggcgctgcgg	tcaccctggg	cgctgctgcg	accctggctc
					ctcggttgcc	
4381	agttcggcgg	cgacacctat	gtcgtcgttg	acagctcggc	tggcgcgacc	ttcgtcagcg
4441	gcgctgacgc	ggtgatcaag	ctgaccggtc	tggtcacgct	gaccacctcg	gccttcgcca
4501	ccgaagtcct	gacgctcgcc	taagcgaacg	tctgatcctc	gcctaggcga	ggatcgctag
4561	actaagagac	cccgtcttcc	gaaagggagg	cggggtcttt	cttatgggcg	ctacgcgctg
4621	gccggccttg	cctagttccg	gtggctatga	tttagcggga	ctggggggct	tgctcacttt
4681	ccgccacaat	ttcgtggtcg	agacggcgcc	ttagttgtta	ctgtacatgg	ccgcgtcggt
4741	tcgcgcggcg	tcctgaaggc	tcacaatgtt	caagcgcagc	ggcgcgaagc	cgacgatcct
4801	cgaccaggcc	gtgctggtcg	cccgcccggc	ggtgatcacc	gccatggtct	tcagcttctt
4861	catcaacatt	ctggccctgg	tcagcccgct	gtacatgctg	caggtctatg	accgcgtgct
4921	gaccagccgc	aacgtttcga	ccctgatcgt	gttgacggtc	atctgcgtct	tcctgttcct
4981	ggtctacggc	ctgctcgagg	cgctgcgcac	ccaggtgctg	gtgcgcggcg	gtctgaagtt
5041	cgacggcgtg	gcccgggatc	cgatcttcaa	gtcggtgctg	gactccacgc	tcagccgcaa
5101	gggcatcggc	ggccaggcgt	tccgcgacat	ggaccaggtc	cgagagttca	tgaccggcgg
5161	cctgatcgcc	ttctgcgatg	cgccctggac	gccggtgttc	gtcatcgtct	cgtggatgct
5221	gcacccgttc	ttcggcatcc	tggcgatcat	cgcctgtatc	atcatcttcg	gcctggccgt
5281	gatgaacgac	aacgccacca	agaacccgat	ccagatggcc	accatggcct	cgatcgccgc
5341	ccagaacgac	gccggttcca	ccctgcgcaa	cgccgaggtc	atgaaggcca	tgggcatgtg
5401	gggcggcctg	caagcccgct	ggcgcgcgcg	ccgcgacgag	caggtggcct	ggcaggccgc
					gtgttccgca	
					ggcaagatct	
					cccatcgagg	
					cgcctgcaga	
					ccgcgcggcg	
					accatgcgcc	
					agcgcggcgg	
					ggcgtcatcc	
					cacgtcggct	
					gcccgcttca	
					cacgagatga	
					tcgctgtccg	
					gccctgctgg	
					atggaagcga	
					gtgaacctgt	
					tttggcgaac	
					ccgccgacgc	
					ctctcccttc	
					caagatccag	
					cgccctgacc	
			5 - 22	JJ	5 - 5-54	

<i>ccc</i> 1						
	tgttgggctg					
	ccgccgaggg					
	tggtccgcga					
	aggccaacgc					
	cgcgcctgct					
	gccagcgcgc					
	agcgtcgcca					
7081	agagcgagat	cgagggcatc	gaccgtcaga	cccagggcct	gaaggaccaa	ctcggcttca
	tcgaggacga					
	gtctgctggc					
	cagaccgctc					
	agcaggagtt					
7381	aggtgaccga	gaaggaggtc	gtcgcctccg	acgcccagaa	gcggatcaag	atcgtgtcgc
7441	ccgtcaacgg	cacggcgcag	aacctgcgct	tcttcaccga	gggcgctgtc	gttcgcgccg
7501	ccgagccgct	ggtcgacatc	gcgcccgagg	acgaggcctt	cgtgatccag	gcgcatttcc
	agccgaccga					
	tccactcgcg					
	tttccgatcc					
	agetgeegee					
	cgaccggcga					
	ccacgatgcg					
	tgggcggcgc					
	gtcaggaccc					
	accggtgtga					
	accgtccacg					
	tggatcggcg					
	ctggcgcgcc					
	ttcgtcggcg					
	accaacatgc					
	tcgtccgaaa					
	ccccgctcgc					
	gagagctttg					
	ggcatcgagt					
	caaaagaccg					
	tatgtcgagg					
	accggcaaga					
	aactatcagg					
	ctgctgggcg					
	caacagatga					
	gcgcttccct					
	tcatcgagag					
	cgcggcgcgc					
	gcgagcaggg					
	tgggccgcaa					
	tcgtttcgcc					
	acgctgacag					
9421	actgccgcct	gggcgcggcc	tgccacctgg	gaccegeete	ggccctggcc	ggcggcgtat
	ccgtgggaga					
	gcgccgacac					
	ttgcgatcgg					
	ttccgtcgcc					
	cacgacctgg					
	ctactgtggc					
	cctggtggcg					
9901	cgcctcggcc	aattcagtca	cctattgcgg	cgcgacgcct	gtgctggtcg	acaacgatcc
9961	gcggaccttc	aacctggacg	ccgcgaagtt	ggaggcgctg	ataacgccgc	gcacgaaggc
10021	gatcatgccc	gtgcacctct	acggtcagat	ttgcgacatg	gatccgatcc	tcgaagttgc

10081	tcgcaggcat	aacctgctcg	tgatcgagga	tgcggccgag	gcggtgggcg	cgacctaccg
					agcttcttcg	
					gatgacctgg	
					tactggtttc	
					ctggcgcagc	
					tacgagcaga	
					ggtcgccacg	
					gatcaggtga	
					atgcacatca	
					tgcggggtcg	
					cgtgtcatcg	
					tcgatcgtgc	
					ctgatcgagg	
					gagatcctgc	
					gtgatctgct	
					atccaccaca	
					gacgcgcagc	
					gaageeegeg	
					ggcctggacg	
					ggctatggcg	
					atgatcgagg	
					tccagcgccg	
					cgggtcattc	
					gctctggccg	
					ggcgctcacg	
					gtcgagcatg	
					ttcgaccgcc	
					cgtctggccg	
					cgcccgcatg	
					ggagctggcc	
					ggtgcgcgtg	
					caaggggatg	
					gatcccgcat	
					gtccgaagcg	
					gatccgcgcg	
					cgtcacccag	
					gctgaacgac	
					ccgggtcgcg	
					cagtctgcgg	
					caagctggtc	
					gcgcgaggac	
					cgaggatagt	
					cgtgaccgac	
					gcccacgccg	
					gatatcgctg	
					gacggtccgc	
					gggtcggcta	
					ctgatcgcct	
					accttggccg	
					gccgccatgc	
					gccagcgcct	
					gtcgaggccg	
					cgtttctcgg	
					cgccgcatcg	
					gaccgcgaga	
					gacaccgagg	
10441	cycccyccay	gryaddriga	ccyacycyca	ycayyccady	gcccgcctgg	cyccyyccay

13501	cactcaggtg	gcgaacgccc	aggcgcagct	gaatgtcagc	gtagcgttct	acgcgtccct	
13561	ggtggggcgc	cagccggaga	cgctgaagcc	tgaacccgat	attgacggcc	tgcctacaac	
13621	cctcgacgag	gcgttcaatc	aggccgaaca	agccaatccg	gtcctgctgg	cggcgggcta	
					gcccagcgcc		
					tactacgcgc		
					ccgctgttca		
					cgcgacaagc		
13921	agacgcacgt	cgcagcatgg	tcctgagcgt	ctcgcagtac	tgggacagcc	tggtggccgc	
13981	gcggaagtcg	ctggtcagcc	tcgaagagga	aatgaaggcc	aacacgatcg	ccttctatgg	
					gaagtgctga		
					gccaacgagt		
					aatctcgctc		
					cgcggcgctt		
					gagcccaaga		
					ccggccaggc		
					gccctgaccg		
					gatcgcctca		
					gtcaccgttt		
					cgccacccag		
					ggtgttgcgc		
					atcagcgtcg		
					ccgatagtcg		
					tgtcgccagg		
					ggaccggtgc		
					cgacaggttg		
					ttgaaaggtc		
					tgtcgccttg		
					ggcggtcgaa		
					gcgctggcga		
					ctttacgccc		
					gacctcgtcg		
					ggcccagtag		
					tcgcagaagc		
15481	tgatgtgcga	gatcgtgacc	ccgcgttcgt	cgggatccgg	tgaagaatag	gccggggcga	
					gcggacccca		
					accgtgcacc		
					gggaccggc <u>g</u>		
					ctcggccaag		
15781	gcgcctccag	agcggcgcgc	ggggcgccgg	cgacgacatg	cgccgagcgc	cggatgggcg	
15841	tgggcaggcg	gcgccatatc	tcaagcaggc	gtgaggtcat	gggcgatgca	ggcgggcgag	
15901	acgcatgggc	gaccgtatag	ccgttcaggc	cgagccgaca	ccagcaaagc	tgcgcggggc	
15961	cgcgtcaggc	gatcttgtca	tgcgaaaggt	ttgcatgcag	caatggcggc	ccactgcgcc	
					gtcacggacg		
					cttccgctcc		
					tttggccagg		
					ggaaccgact		
					gcggaggcca		
					gacttcgact		
					gtgctggtcg		
	tcgcaagctc		-	-	- <b></b> , <b>-</b>	2	
	-						

. //

# Appendix 2

### ATC15252 S-layer subunit and transporter genes

LOCUS DEFINITION	JS3001A19 4255 bp mRNA BCT 07-OCT-1999 Caulobacter crescentus S-layer subunit (rsaA) and ABC-transporter (rsaD(partial)) mRNAs, complete cds.
ACCESSION VERSION KEYWORDS	JS3001A19
SOURCE	Caulobacter crescentus. Caulobacter crescentus Bacteria; Proteobacteria; alpha subdivision; Caulobacter group;
REFERENCE	Caulobacter.
AUTHORS TITLE	<pre>1 (bases 1 to 4255) Bingle,W.H., Awram,P.A., Nomellini,J.F. and Smit,J.K. The Secretion Signal of C. crescentus S-layer Protein is Located in the C-terminal 82 Amino Acids of the Molecule</pre>
JOURNAL	Unpublished
REFERENCE AUTHORS	2 (bases 1 to 4255) Bingle,W.H., Awram,P.A., Nomellini,J.F. and Smit,J.K.
TITLE JOURNAL	Direct Submission Submitted (07-OCT-1999) Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd, Vancouver, BC V6T 1Z3,
	Canada
FEATURES	Location/Qualifiers
source	
	/organism="Caulobacter crescentus" /strain="JS3001"
gene	6373717
5	/gene="rsaA"
CDS	6373717
	/gene="rsaA"
	/codon_start=1 (transl.table=11
	/transl_table=11 /product="S-layer subunit"
	/translation="MAYTTAQLVTAYTNANLGKAPDAATTLTLDAYATQTQTGGLSDA
	AALTNTLKLVNSTTAVAIQTYQFFTGVAPSAAGLDFLVDSTTNTNDLNDAYYSKFAQE
	NRFINFSINLATGAGAGATAFAAAYTGVSYAQTVATAYDKIIGNAVATAAGVDVAAAV
	AFLSRQANIDYLTAFVRANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAA
	MINDLSDGALSTDNAAGVNLFTAYPSSGVSGSTLSLTTGTDTLTGTANNDTFVAGEVA
	GAATLTVGDTLSGGAGTDVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITLNTSSG
	VTGLTALNTNTSGAAQTVTAGAGQNLTATTAAQAANNVAVDGGANVTVASTGVTSGTT TVGANSAASGTVSVSVANSSTTTTGAIAVTGGTAVTVAQTAGNAVNTTLTQADVTVTG
	NSSTTAVTVTQTAAATAGATVAGRVNGAVTITDSAAASATTAGKIATVTLGSFGAATI
	DSSALTTVNLSGTGTSLGIGRGALTATPTANTLTLNVNGLTTTGAITDSEAAADDGFT
	TINIAGSTASSTIASLVAADATTLNISGDARVTITSHTAAALTGITVTNSVGATLGAE
	LATGLVFTGGAGADSILLGATTKAIVMGAGDDTVTVSSATLGAGGSVNGGDGTDVLVA
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
	HVDTLTLQATSAKSIVVTGNAGLNLTNTGNTAVTSFDASAVTGTGSAVTFVSANTTVG
	EVVTIRGGAGADSLTGSATANDTIIGGAGADTLVYTGGTDTFTGGTGADIFDINAIGT
	$\verb+STAFVTITDAAVGDKLDLVGISTNGAIADGAFGAAVTLGAAATLAQYLDAAAAGDGSG$
	TSVAKWFQFGGDTYVVVDSSAGATFVSGADAVIKLTGLVTLTTSAFATEVLTLA"

	39604253				
gene	/gene="rsal	)(nartial)"			
CDS	39604253	(partiar)			
000	/gene="rsal	)(partial)"			
	/codon star				
	/transl tak				
		ABC-transpor	ter"		
				RPAVITAMVFS	SFFINILALVSPLYM
					GLKFDGVARD"
BASE COUNT 722	a 1512 c	1296 g	725 t		
ORIGIN					
1 aagcttcccc				-	
61 gacacgataa					
121 gcggagcagt					
181 gtaacggtcc					
241 atcagcgccg					
301 cttcagccag					
361 cgggttacca					
421 cactcacccg					
481 acgctatata 541 ttgtcgacgt					
601 cagggggtgt					
661 gtgactgcgt					
721 ctcgacgcgt					
781 aacaccctga					
841 accggcgttg					
901 aacgacctga					
961 tcgatcaacc					
1021 ggcgtttcgt					
1081 gcgaccgccg	ctggcgtcga	cgtcgcggcc	gccgtggctt	tcctgagccg	ccaggccaac
1141 atcgactacc	tgaccgcctt	cgtgcgcgcc	aacacgccgt	tcacggccgc	tgccgacatc
1201 gatctggccg					
1261 atcggtggtt					
1321 tcgaccgaca					
1381 ggttcgaccc					
1441 acgttcgttg					
1501 ggcggtgctg					
1561 accggcgtga					
1621 ctgaacacgt					
1681 gctcaaaccg					
1741 gcgaacaacg					
1801 tcgggcacga					
1861 gcgaactcga 1921 gtggctcaaa					
1981 accggtaact					
2041 gctacggtcg					
2101 gccacgaccg					
2161 gactcgagcg					
2221 cgcggcgctc					
2281 acgacgaccg					
2341 aacatcgctg					
2401 accctgaaca					
2461 acgggcatca					
2521 ctggtcttca					
2581 atcgtcatgg					
2641 ggttcggtca					
2701 ttcagcgctg	acccggcctt	cggcggcttc	gaaaccctcc	gcgtcgctgg	cgcggcggct

**ب**ہ

2761 c	aaggctcgc	acaacgccaa	cggcttcacg	gctctgcaac	tgggcgcgac	ggcgggtgcg
2821 a	cgaccttca	ccaacgttgc	ggtgaatgtc	ggcctgaccg	ttctggcggc	tccgaccggt
2881 a	cgacgaccg	tgaccctggc	caacgccacg	ggcacctcgg	acgtgttcaa	cctgaccctg
2941 t	cgtcctcgg	ccgctctggc	cgctggtacg	gttgcgctgg	ctggcgtcga	gacggtgaac
3001 a	tcqccqcca	ccgacaccaa	cacgaccgct	cacqtcqaca	cgctgacgct	gcaagccacc
3061 t	caaccaaat	caatcataat	gacgggggaac	accaatctaa	acctgaccaa	caccaacaac
					cgggctcggc	
					gcggcgggcgc	
					gtggcgctgg	
					cgggcgcgga	
					ccgacgccgc	
					ctgacggcgc	
					tggacgctgc	
3541 g	acggcagcg	gcacctcggt	tgccaagtgg	ttccagttcg	gcggcgacac	ctatgtcgtc
					acgcggtgat	
					tcctgacgct	
					agaccccgtc	
					cttgcctagt	
					caatttcgtg	
					ggcgtcctga	
					ggccgtgctg	
					cattctggcc	
					ccgcaacgtt	
4141 t	cgtgttgac	ggtcatctgc	gtcttcctgt	tcctggtcta	cggcctgctc	gaggcgctgc
4201 g	cacccaggt	gctggtgcgc	ggcggtctga	agttcgacgg	cgtggcccgg	gatcc
11						
			•			
LOCUS	JS4000RAT	1 7493 br	D DNA	B	ст 07-	-OCT-1999
DEFINITION					saA(truncate	
DBIINIIION					ing Unit (rs	
	complete		ab), and her	ibrane rorm.	ing onic (is	sall, genes,
NOCHOLON	-					
ACCESSION	JS4000RAT	T				
VERSION						
KEYWORDS	•					
SOURCE	Caulobact	er crescent	cus.			
ORGANISM	Caulobact	er crescent	cus			
	Bacteria;	Proteobact	ceria; alpha	a subdivisio	on; Caulobad	cter group:
	Caulobact		· · · · · · · · · · · · · · · · · · ·		,	JF,
REFERENCE		1 to 7493)				
AUTHORS					nd Smit, J.K.	
TITLE					S-layer pro	
			C-Terminal	82 Amino Ac:	ids of the N	Molecule
JOURNAL	Unpublish					
REFERENCE	2 (bases	1 to 7493)	)			
AUTHORS	Bingle,W.	H., Awram, H	P.A., Nomel	lini,J.F. a	nd Smit, J.K.	•
TITLE	Direct Su					
JOURNAL			999) Microb	iology and	Immunology.	University of
						r, BC V6T 1Z3,
	Canada	orunibra, st	00-01/4 0m1	versicy bive	i, vancouvei	L, DC VOI 125,
		T				
FEATURES		Location/Qu	Jallflers			
source		17493				
		-		r crescentu:	5"	
		/strain="JS	54000"			
gene		6371716				
-		/gene="rsa#	A(truncated)	) "		
CDS		6371716				

	/gene="rsaA(truncated)"
	/note=" The RsaA protein is truncated because of a deleted
	G basepair. A stop codon results after translation of 359
	amino acids."
	/codon_start=1
	/transl_table=11
	/product="S-layer subunit"
	/translation="MAYTTAQLVTAYTNANLGKAPDAATTLTLDAYATQTQTGGLSDA
	AALTNTLKLVNSTTAVAIQTYQFFTGVAPSAAGLDFLVDSTTNTNDLNDAYYSKFAQE
	NRFINFSINLATGAGAGATAFAAAYTGVSYAQTVATAYDKIIGNAVATAAGVDVAAAV
	AFLSRQANIDYLTAFVRANTPFTAAADIDLAVKAALIGTILNAATVSGIGGYATATAA
	MINDLSDGALSTDNAAGVNLFTAYPSSGVSGSTLSLTTGTDTLTGTANNDTFVAGEVA
	GAATLTVGDTLSGGAGTDVLNWVQAAAVTALPTGVTISGIETMNVTSGAAITLNTSSG
	VTGLTALNTNTSGAAQTVTAGAGQT"
2020	39595695
gene	
	/gene="rsaD"
CDS	39595695
	/gene="rsaD"
	/codon_start=1
	/transl_table=11
	/product="ABC-transporter"
	/translation="MFKRSGAKPTILDQAVLVARPAVITAMVFSFFINILALVSPLYM
	LQVYDRVLTSRNVSTLIVLTVICVFLFLVYGLLEALRTQVLVRGGLKFDGVARDPIFK
	SVLDSTLSRKGIGGQAFRDMDQVREFMTGGLIAFCDAPWTPVFVIVSWMLHPFFGILA
	IIACIIIFGLAVMNDNATKNPIQMATMASIAAQNDAGSTLRNAEVMKAMGMWGGLQAR
	WRARRDEQVAWQAAASDAGGAVMSGIKVFRNIVQTLILGGGAYLAIDGKISAGAMIAG
	SILVGRALAPIEGAVGQWKTYIGARGAWDRLQTMLREEKSADDHMPLPEPRGVLSAEA
	ASILPPGAQQPTMRQASFRIDAGAAVALVGPSAAGKSSLLRGIVGVWPCAAGVIRLDG
	VOIRONDERI CDUUCUI DODIEI ECCUUDONI ADEMERE CORVIERAMI ACUURMIO
	YDIKQWDPEKLGRHVGYLPQDIELFSGTVAQNIARFTEFESQEVIEAATLAGVHEMIQ
	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA
	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA
	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP
gene	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ"
gene	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE"
gene CDS	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE"
-	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1</pre>
-	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11</pre>
-	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit"</pre>
-	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV</pre>
-	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ</pre>
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD
-	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL
CDS	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE"
CDS BASE COUNT 1261	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE"
CDS BASE COUNT 1261 ORIGIN	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t
CDS BASE COUNT 1261 ORIGIN 1 aagcttccc	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac
CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 5763.7073 /gene="rsaE" 5763.7073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac a ccgaactagt cttcgctgaa caggatctcg taggtgatcg gatcatagaa
CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac
CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata 121 gcggagcag	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 5763.7073 /gene="rsaE" 5763.7073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac a ccgaactagt cttcgctgaa caggatctcg taggtgatcg gatcatagaa
CDS CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata 121 gcggagcag 181 gtaacggtc	SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 5763.7073 /gene="rsaE" 5763.7073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac a ccgaactagt cttcgctgaa caggatctcg taggtgatcg gatcatagaa t tcgcgcacga acgtcttctc cgagacctcc agggccttgg cccagtcgcg
CDS CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata 121 gcggagcag 181 gtaacggtc 241 atcagcgcc	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codo_start=1 /transl_table=11 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac a ccgaactagt cttcgctgaa caggactcg taggtgatcg gatcatagaa t tcgcgcacga acgtcttctc cgagacctcc agggccttgg cccagtcgcg c ggcggaatgc ggccgcgacc cgtctccagc tgagagatga aggtgtaata g accttagcgg ccagctggcg ttgcgacagg ccgcgcgct cgcgcatctc</pre>
CDS CDS BASE COUNT 1261 ORIGIN 1 aagcttccc 61 gacacgata 121 gcggagcag 181 gtaacggtc 241 atcagcgcc 301 cttcagcca	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codon_start=1 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagaa t ccgcaacga acgtcttctc cgagactcc agggccttgg cccagtcgcg c ggcgaatgc ggccgcgacc cgtctccagc tggagatga aggtgtaata g accttagcgg ccagctgcg ttgcgacagg ccgcgcgct cgccatcc g cggccacctt cgcggcgag gtcttgcacc tccgagcgc tgcggcgttg</pre>
CDS CDS BASE COUNT 1261 ORIGIN 1 aagcttcccc 61 gacacgata 121 gcggagcag 181 gtaacggtc 241 atcagcgcc 301 cttcagcca 361 cgggttacc	<pre>SLPMGYDTAIGEGGASLSGGQRQRLALARAVFRMPALLVLDEPNASLDQVGEVALMEA MKRLKAAKRTVIFATHKVNLLAQADYIMVINQGVISDFGERDPMLAKLTGAAPPQTPP PTPPPAPLQRVQ" 57637073 /gene="rsaE" 57637073 /gene="rsaE" /codo_start=1 /transl_table=11 /transl_table=11 /product="Membrane Forming Unit" /translation="MKPPKIQRPTDNFQAVARIGYGIIALTFVGLLGWAAFAPLDSAV IANGVVSAEGNRKTVQHLEGGMLAKILVREGEKVKAGQVLFELDPTQANAAAGITRNQ YVALKAMEARLLAERDQRPSISFPADLTRLRADPMVARAIADEQAQFTERRQTIQGQV DLMNAQRLQYQSEIEGIDRQTQGLKDQLGFIEDELIDLRKLYDKGLVPRPRLLALERE QASLSGSIGRLTADRSKAVQGASDTQLKVRQIKQEFFEQVSQSITETRVRLAEVTEKE VVASDAQKRIKIVSPVNGTAQNLRFFTEGAVVRAAEPLVDIAPEDEAFVIQAHFQPTD VDNVHMGMVTEVRLPAFHSREIPILNGTIQSLSQDRISDPQNKLDYFLGIVRVDVKQL PPHLRGRVTAGMPAQVIVPTGERTVLQYLFSPLRDTLRTTMREE" a 2627 c 2358 g 1247 t c aagcctaggt gaaaagccga ccccccgtcg gcccaaacac gctagcagac a ccgaactagt cttcgctgaa caggactcg taggtgatcg gatcatagaa t tcgcgcacga acgtcttctc cgagacctcc agggccttgg cccagtcgcg c ggcggaatgc ggccgcgacc cgtctccagc tgagagatga aggtgtaata g accttagcgg ccagctggcg ttgcgacagg ccgcgcgct cgcgcatctc</pre>

101	aasstttaat	atagaatta	assastaat	atagggtas	aattaaaata
				gtacccctga	
				ccatgcgcgc	
				cctatacgac	
				acgccgccac	
				cggacgccgc	
				tccagaccta	
				tcgactcgac	
				aaaaccgctt	
				ctttcgccgc	
				agatcatcgg	
				tcctgagccg	
				tcacggccgc	
				acgccgccac	
				acctgtcgga	
				atccgtcgtc	
				cgggcaccgc	
				ccgttggcga	
				ctgcggttac	
				cgtcgggcgc	
				acaccaacac cacgaccgcc	
				cgcctcgacg	
				caccgtgtcg	
				cggtggtacg	
				gcaagccgac	
				cgccgccgcc	
				cgactctgcc	
				cttcggcgcc	
				cacctcgctc	
				cctgaacgtc	
				cgatggtttc	
				ggtggccgcc	
				gcacaccgct	
				cgccgaactg	
				gggcgccacg	
				ggcgaccctg	
				caacgtcaac	
				cgtcgctggc	
				gggcgcgacg	
				tctggcggct	
				cgtgttcaac	
				tggcgtcgag	
				gctgacgctg	
				cctgaccaac	
				gggctcggct	
				cggcggcgct	
				tggcgctggc	
				gggcgcggat	
				cgacgccgct	
				tgacggcgcc	
				ggacgctgct	
				cggcgacacc	
				cgcggtgatc	
				cctgacgctc	
				gaccccgtct	
				ttgcctagtt	
				aatttcgtgg	
	 	-	-	2 3 3	

.

						gcgtcctgaa	
396						gccgtgctgg	
402						attctggccc	
408	31	gctgtacatg	ctgcaggtct	atgaccgcgt	gctgaccagc	cgcaacgttt	cgaccctgat
414	41	cgtgttgacg	gtcatctgcg	tcttcctgtt	cctggtctac	ggcctgctcg	aggcgctgcg
420	01	cacccaggtg	ctggtgcgcg	gcggtctgaa	gttcgacggc	gtggcccggg	atccgatctt
426	61	caagtcggtg	ctggactcca	cgctcagccg	caagggcatc	ggcggccagg	cgttccgcga
432	21	catggaccag	gtccgagagt	tcatgaccgg	cggcctgatc	gccttctgcg	atgcgccctg
438	31	gacgccggtg	ttcgtcatcg	tctcgtggat	gctgcacccg	ttcttcggca	tcctggcgat
444	41	catcgcctgc	attatcatct	tcggcctggc	cgtgatgaac	gacaacgcca	ccaagaaccc
45(	01	gatccagatg	gccaccatgg	cctcgatcgc	ċgcccagaac	gacgccggtt	ccaccctgcg
450	61	caacgccgag	gtcatgaagg	ccatgggcat	gtggggcggc	ctgcaagccc	gctggcgcgc
462	21	gcgccgcgac	gagcaggtgg	cctggcaggc	cgccgccagc	gacgccggcg	gcgcggtgat
468	81	gtcgggcatc	aaggtgttcc	gcaacatcgt	ccagaccctg	atcctgggcg	gcggcgccta
474	41	tctggccatc	gacggcaaga	tctcggccgg	cgcgatgatc	gccggctcga	tcctggtcgg
480	01	ccgcgccctg	gcgcccatcg	agggcgcggt	gggccagtgg	aagacctata	tcggcgcgcg
48	61	cggcgcctgg	gatcgtctgc	agaccatgct	gcgcgaggaa	aagagcgccg	acgaccacat
						gcctcgatcc	
498	81	cgcgcaacag	ccgaccatgc	gccaggccag	cttccgcatc	gacgccggcg	ccgcggtggc
504	41	ccttgtcggt	cccagcgcgg	cgggcaagtc	ctcgctgctg	cgcggcatcg	tcggcgtctg
						atcaagcagt	
						gagctgttct	
						gaagtcatcg	
						ggctatgata	
534	41	cgagggcggc	gcctcgctgt	ccggcggcca	gcgccagcgc	ctggccctgg	cccgcgcggt
540	01	gttccgcatg	ccggccctgc	tggtgctgga	cgagccgaac	gccagcctcg	accaggtggg
54	61	cgaagtggcg	ctgatggaag	cgatgaagcg	gctcaaggcc	gccaagcgca	cggtgatctt
						atcatggtga	
						aagctgaccg	
						cagcgcgtcc	
						cgcccatcag	
57	61	caatgaagcc	ccccaagatc	cagcgtccga	cggacaactt	ccaggctgtg	gcccgtatcg
582	21	gctacggcat	catcgccctg	acctttgtcg	gtctgttggg	ctgggccgcg	ttcgccccgc
						gggtaatcgc	
59	41	agcacctcga	aggcggcatg	ctggccaaga	tcctggtccg	cgaaggcgag	aaggtgaagg
						cgccgccgcc	
60	61	gcaaccagta	tgtggcgttg	aaggccatgg	aagcgcgcct	gctggccgag	cgcgaccagc
61:	21	gtccgtccat	cagcttcccc	gccgacctga	cccgcctgcg	cgccgatccg	atggtcgccc
61	81	gcgccatcgc	cgacgaacag	gcccagttca	ctgagcgtcg	ccagacgatc	cagggccagg
62	41	tcgacctgat	gaacgcccag	cgtttgcagt	atcagagcga	gatcgagggc	atcgaccgtc
						cgagctgatc	
63	61	agctctatga	caagggcctg	gtgccccggc	cgcgtctgct	ggccctggag	cgcgagcagg
643	21	cctcgctgtc	gggctcgatc	ggccgtctga	ccgcagaccg	ctccaaggcc	gtccagggcg
64	81	cctctgacac	ccagctcaag	gttcgccaga	tcaagcagga	gttcttcgag	caggtcagcc
65	41	agagcatcac	cgagacccgg	gttcgcctgg	ccgaggtgac	cgagaaggag	gtcgtcgcct
66	01	ccgacgccca	gaagcggatc	aagatcgtgt	cgccggtcaa	cgggacggcg	cagaacctgc
66	61	gcttcttcac	cgagggcgct	gtcgttcgcg	ccgccgagcc	gctggtcgac	atcgcgcccg
						cgatgtggac	
						gcgggaaatc	
						tccgcagaac	
						gccgcatctg	
						cgagcgcacc	
						gcgcgaggag	
						cgcgggcgag	
						cccttcgttg	
						tgaccggtca	
						acggcatgct	

7321 gceteggeeg atgtgategg egaeegeetg egetggateg gegtetatga egaeateeag 7381 ttegagetgg gegaeetett ggaegaggge ggtetggege geetgatgeg gegeetgeag 7441 eeggatgagg tetaeaaeet ggeggeeeag agettegteg gegeetegtg gga

//

# Appendix 3

#### Sequences of *IpsGHIJK*, orf1 and orf2

LOCUS DEFINITION ACCESSION VERSION KEYWORDS	gcc227 4883 bp mRNA BCT 15-OCT-1999 gcc227. gcc227
SOURCE ORGANISM	Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; Caulobacter.
REFERENCE AUTHORS TITLE	<pre>1 (bases 1 to 4883) Awram,P.A. Analysis of the S-layer Transporter Mechanism and Smooth Lipopolysaccharide Synthesis in Caulobacter crescentus</pre>
JOURNAL REFERENCE AUTHORS TITLE	Unpublished 2 (bases 1 to 4883) Awram,P.A. Direct Submission
JOURNAL	Submitted (15-OCT-1999) UBC
FEATURES	Location/Qualifiers
source	14883
	/organism="Caulobacter crescentus"
	/strain="NA1000"
gene	complement(11242)
2	/gene="orf3"
CDS	complement(11242)
	/gene="orf3"
	/codon start=1
	/product="putative glycolipid transporter"
	/translation="MSAAASTPQEYKRLTQYEVDVICAKHDRLWSARMGGARAVFAFC
	DLSGLSVPGRNLCDADFTGAILVGCDLRKAKLDNANFYGADLQGADLTDASLRRADLR
	GSSLRGANLTGADMFEADLREGTIAAADRKEGYRVIEPTQREAFAAGANLSGANLERS
	RLSGIVATKADFSDAILKDAKLVRANLKQANFNGANLAGADLSGANLAGADLRNAVLV
	GAKTLSWNVNDTNMDGALTDKPSGTSVSDLPYEQMIADHARWIETGGGEGKPSVFDKA
	${\tt DLRNLRSVRGFNLTALSAKGSVFYGLDMEGVQMQGAQLDGADLRACNLRRADLRGARL}$
	${\tt KGAKLTGADLRDAQLGPLLIAADRLLPVDLTGAILTNADLARADLRQARMAGADVSRA}$
	NFTGAQLRDLDLTGAIRLAARG"
gene	complement(13352048)
	/gene="orf4"
CDS	complement(13352048)
	/gene="orf4"
	/codon_start=1
	<pre>/product="putative phosphoglycerate mutase" /</pre>
	/translation="MPTLVLLRHGQSQWNLENRFTGWVDVDLTAEGEAQARKGGELIA
	AAGIEIDRLFTSVQTRAIRTGNLALDAAKQSFVPVTKDWRLNERHYGGLTGLNKAETA
	EKHGVEQVTIWRRSYDIPPPELAPGGEYDFSKDRRYKGASLPSTESLATTLVRVLPYW
	ESDIAPHLKAGETVLIAAHGNSLRAIVKHLFNVPDDQIVGVEIPTGNPLVIDLDAALK PTGARYLDDSRAEALPKVG"
	24213377
gene	/gene="orf5"
CDS	24213377
000	

	/gene="orf	5 11					
	-		•				
		/codon_start=1					
		<pre>/product="putative sugar phosphate isomerase KpsF-like" /translation="MSAFNAVQVGRRVLAVEADALRVLADSLGEAFANAVETIFNAKG</pre>					
		RVVCTGMGKSGHVARKIAATLASTGTQAMFVHPAEASHGDLGMIGPDDVVLALSKSGA GRELADTLAYAKRFSIPLIAMTAVADSPLGQAGDILLLLPDAPEGTAEVNAPTTSTTL					
					IGADELPLVAADAAM		
					TAGEVMTHAPLTIGP		
		MNERRITVLFV			AGEVMINAPLIIGP		
dene	34774883		EVENE AGI TH	UDTTVVG A I			
gene	/gene="lps	a''					
CDS	34774883	9					
605	/gene="lps	~"					
	/codon_sta						
		phosphomanno	mutaco"				
					ZDARWLFGPEINLLG		
					AGCEVHDIGLALSPT		
					SRLKAIVLNAEFVER		
					/VEALQKMGVAEVVP		
					GDRCGVVDDEGEEIF		
					/IYWKTGHSYIKRKS		
					GVKLSDMRKALPVAF		
					TVNGVRVHLEDGSW		
	VLVRASSNKP		A CELEDIFAAG	POILOUVIIEA	LINNGVENUTEDG2M		
BASE COUNT 80	7 a 1647 c	1587 g	837 t	5 others			
ORIGIN	, u 101, O	100, 9	007 0	o otherb			
	cc gccagcctga	taacaccaat	cagatccagg	togogtaget	acacaccaat		
	cg cgcgagacat						
	cg ttggtaagaa						
	gc ggccccagct						
	cg cctcgcaggt						
	cg ccctgcatct						
	gg gccgtgagat						
	cc gagggcttgc						
	gc tcatacggca						
	ta ttggtgtcgt						
	ga tcagcgccgg						
	aa ttggcctgtt						
	ag tccgccttcg						
	gg ttcgcgccgg						
	tg cggtcggcgg						
	tc aggttggcgc						
	tc aagtcggcgc						
1021 ggcctttc							
1081 gcgccccg							
1141 catccgcg							
1201 caggcgct							
1261 agttaacg							
1321 aagettte							
1381 cgcgcgcc							
1441 atctccac 1501 agcgagtt							
1561 tcgctttc							
1621 aggettge							
1681 tccggcgg							
1741 tcggcggt							
1801 cagtcctt	gg ccacyggggac	yaayototyo	LLYYCYYCYCYL	claycyceag	allycelyly		

1861	cggatggcgc	gggtctgaac	cgaggtgaac	aagcggtcga	tctcgatgcc	ggccgcagcg
1921	atcagctcgc	cgcccttccg	ggcctgagct	tcgccctcag	cggtgaggtc	cacatcaacc
1981	caaccggtga	agcggttttc	caggttccac	tggctttggc	catggcgcag	caggacgagc
2041	gtcggcatcg	ggcttccttc	ggagatcagg	gaaatgtcag	ggcgggctaa	ggccagcccg
2101	cttcagcgtc	aagcgccgaa	gcgaccaagg	acccgatcgg	cccggtgcgc	gccccctccc
2161	ccaggccgcc	gcgcgtgcta	taggcgagcc	atgcctgatc	gcatcttcat	gcctctgatg
		ccgccgcgct				
		gccccttcgg				
		aaaaggactc				
		agctttcgca				
		agccgatgcg				
		gacgatcttc				
		ggcgcggaag				
		cgccgaagcc				
		gtccaagtcg				
		gatecegetg				
		cctgctgctg				
		gaccaccctg				
2941	agcggcgcgg	cttcaccgcc	agcgacttcc	gcgtcttcca	ccccggcggc	aagctcggcg
3001	ctatgctgcg	cacggtcggc	gacctgatgc	acggcgccga	tgagcttccc	ctggtcgccg
3061	ccgacgccgc	catgcccgac	gctttactgg	tcatgagcga	aaagcgtttc	ggcgcggtcg.
3121	gcgtcgttga	taacgcgggt	cacctggccg	gcttgatcac	gkacggtgat	ctgcgtcgac
3181	acatggatgg	gctgctgacc	cacaccgccg	gcgaggtcat	gacgcacgct	cccctgacca
3241	tcggccccgg	cgccctggcg	gctgaagcgc	tgaaggttat	gaacgagcgg	cggatcaccg
		cgtcgagcgc				
3361	gcgcgggtgt	gatctaggtc	acatcgaaac	tttgcaaaac	cttgtcatgc	gaacgcgcta
3421	gtcgtgccgc	gtccgcacgg	ctaaagccat	accatctcaa	ctgaagcgag	ccttcaatgt
3481	tctcctcgcc	ccgcgccgat	ctggttccga	atacggccgc	ctacgaaaac	gaagccctgg
3541	tcaaggcgac	gggctttcgc	gagtacgacg	cgcgctggct	gtttgggccg	gagatcaatc
3601	tcctgggcgt	gcaggccctg	ggcctgggtc	tgggaaccta	tatccacgaa	ctgggccaat
3661	cgaagatcgt	ggtcggccat	gacttccgct	cgtattcgac	ctcgatcaag	aacgccctga
3721	tcctggggct	gatcagcgcc	ggctgcgagg	tgcacgacat	tggcctggcc	ctgtcgccca
3781	ccgcctattt	cgcccagttc	gacctcgaca	tcccgtgcgt	ggccatggtc	acggccagcc
3841	acaacgaaaa	cggctggacc	ggcgtgaaga	tgggcgccca	gaagccgctg	accttcggcc
3901	ccgacgagat	gagccgcctc	aaggccatcg	tgctgaacgc	cgagttcgtc	gagcgcgatg
3961	gcggcaagct	gatccgcgtg	cagggcgagg	cccagcgcta	tatcgacgac	gtggccaagc
4021	gcgccagcgt	cacccgtccc	ctgaaggtga	tcgccgcctg	cggcaacggc	acggccggcg
4081	ccttcgtggt	cgaggccctg	cagaagatgg	gtgtcgctga	ggtcgtgccg	atggacaccg
4141	acctcgactt	caccttcccc	aagtacaatc	ccaaccccga	agacgccgag	atgctgcacg
4201	cgatggctga	cgctgtccgt	gagacgggcg	cggacctggc	gttcggcttc	gacggcgacg
4261	gcgaccgctg	cggtgtggtc	gatgacgagg	gcgaggagat	cttcgccgac	aagatcggcc
4321	tgatgctggc	gcgcgacctg	gccccgctac	atccgggcgc	grcyttcgtc	gtgratgtga
4381	agtcgacggg	cctmtacgcc	accgatccga	tcctggccca	gcacggctgc	aaggtgatct
		cggccacagc				
		gagcggccac				
		cgccgcggcc				
		caaggccctg				
		gaagtacggc				
		ttcgatcctg				
		ggaggacggc				
		ggtcgaaagc				

LOCUS	gcc506	8012 bp	mRNA	BCT	15-OCT-1999
DEFINITION	gcc506.				

//

.

.

ACCESSION VERSION	gcc506
KEYWORDS	•
SOURCE	Caulobacter crescentus.
ORGANISM	Caulobacter crescentus
	Bacteria; Proteobacteria; alpha subdivision; Caulobacter group;
	Caulobacter.
REFERENCE	1 (bases 1 to 8012)
AUTHORS	Awram, P.A.
TITLE	Analysis of the S-layer Transporter Mechanism and Smooth
11.10	Lipopolysaccharide Synthesis in Caulobacter crescentus
JOURNAL	Unpublished
REFERENCE	2 (bases 1 to 8012)
AUTHORS	Awram, P.A.
	Direct Submission
TITLE	Submitted (15-OCT-1999) UBC
JOURNAL	Location/Qualifiers
FEATURES	
source	18012
	/organism="Caulobacter crescentus"
	/strain="NA1000"
gene	complement (18453860)
	/gene="orf6"
CDS	complement(18453860)
	/gene="orf6"
	/codon_start=1
	/product="putative transketolase"
	/translation="MRVRPSRSPAKHIKTEAPMPVSPIKMADAIRVLSMDAVHKAKSG
	HQGMPMGMADVATVLWGKFLKFDASKPDWADRDRFVLSAGHGSMLLYSLLHLTGFKAM
	TMKEIENFRQWGALTPGHPEVHHTPGVETTTGPLGQGLATAVGMAMAEAHLAARYGSD
	LVDHRTWVIAGDGCLMEGVSHEAISIAGRLKLSKLTVLFDDNNTTIDGVATIAETGDQ
	VARFKAAGWAVKVVDGHDHGKIAAALRWATKQDRPTMIACKTLISKGAGPKEGDPHSH
	GYTLFDNEIAASRVAMGWDAAPFTVPDDIAKAWKSVGRRGAKVRKAWEAKLAASPKGA
	DFTRAMKGELPANAFEALDAHIAKALETKPVNATRVHSGSALEHLIPAIPEMIGGSAD
	LTGSNNTLVKGMGAFDAPGYEGRYVHYGVREFGMAAAMNGMALHGGIIPYSGTFLAFA
	DYSRAAIRLGALMEARVVHVMTHDSIGLGEDGPTHQPVEHVASLRAIPNLLVFRPADA
	VEAAECWKAALQHQRTPSVMTLSRQKTPHVRTQGGDLSAKGAYELLAAEGGEAQVTIF
	ASGTEVGVAVAARDILQAKGKPTRVVSTPCWELFDQQPAAYQAAVIGKAPVRVAVEAG
	VKMGWERFIGENGKFIGMKGFGASAPFERLYKEFGITAEAVAEAALA"
gene	42816041
-	/gene="orf7"
CDS	42816041
	/gene="orf7"
	/codon start=1
	/product="putative NH(3)-dependent NAD(+) synthetase"
	/translation="MIVVGGPLRDAGRLYNTAIVIQGGKVLGVVPKSFLPNYREFYER
	RWFTPGAGLTGKTLTLAGQTVPFGTDILFRGEGVAPFTVGVEICEDVWTPTPPSTAQA
	LAGAEILLNLSASNITIGKSETRRLLCASQSSRMIAAYVYSAAGAGESSTDLAWDGHV
	DIHEMGALLAETPRFSTGPAWTFADVDVQRLRQERMRVGSFGDAMALSPASTPFRIVP
	FAFDAPEGDLALARPIERFPFTPSDPARLRENCYEAYNIQVQGLARRLEASGLKKLVI
	GISGGLDSTQALLVAAKAMDQLGLPRSNILAYTLPGFATSDRTKSNAWALMKAMAVTA
	AELDIRPAATOMLKDLDHPFGRGEAVYDVTFENVQAGLRTDYLFRLANHNAALVVGTG
	DLSELALGWCTYGVGDHMSHYNPNCGAPKTLIQHLIRFVAHSGDVGAETTALLDDILA
	TEISPELVPGEAVQATESFVGPYALQDFNLYYMTRYGMAPSKIAFLAWSAWHDADQGG
	WPVGLPDNARRAYDLPEIKRWLELFLKRFFANQFKRSAVPNGPKISSGGALSPRGDWR
	MPSDATADAWLAELRTNAPI"
gene	61217446
gene	/gene="lpsH"

CDS		61217446						
005		/gene="lpsH"						
		/codon start=1						
		/product="putative mannose-6-phosphate isomerase"						
		/translation="VWGQDLAAIYPVILCGGSGTRLWPASRSDHPKQFLKLVSDRSSF						
						PEARDSAPAVAAAA		
						TFGVQPTVPATGFG		
						FQAATLLGEFETFE		
						QKAAVAPAAFAWSD		
						GVNDIVVVAEPDAV		
						GVNDIVVVAL DAV GFDVELRRVPAGETL		
					/QARAIGAATLI			
BASE COUNT	1292 a			.342 t	2 others			
ORIGIN								
	gcttgaagct	tgcgcgaggc	gaccgccacg	gccgcgatga	gcaggagcgc	qccaaaccac		
					ccacgatggg			
					agcgaaggcc			
					ccaaggtcgg			
					cggcggaggt			
					tctgcggtcg			
					agagcgctcc			
					tcgcaaaggt			
					ccaggtcaat			
					cagagcaatc			
601	taaccctagt	cacgaggggc	taagaggaaa	tgaaagacca	gcgtttcgtc	aacggcttgg		
661	gtgtccggcg	cgcaccggaa	gatttttgcg	cgttactgcc	attggggcag	gttttggggc		
721	ataaaatccc	aataatgccg	acccgcgcta	gttcggcggc	ccgaacgcgc	gtgcgacatc		
781	ggctgggtcc	acgccctcca	gttcgagacg	ctttagccgc	gcggtttcgc	cagccgccag		
841	tcgtacggcc	gagcraggaa	tcttcagggt	ctttgccaga	aaggcgatga	gggccgcatt		
901	cgccgcgccc	tcgacgggcg	gactggcgac	cctcaccttc	agatagaggc	ggccgtcggc		
					ggggtcaggc			
1021	cgtcaccgcc	acgccgtcag	ccaagaagag	cgatcagcgt	gccttgaagc	gcaggcagca		
1081	gatagttctg	cacgcccgaa	atgatcagca	gaacaacgat	cgggctgatg	tcgacgccgc		
					tccggtcacg			
					cacgtcgaac			
					gctgagcagg			
					gtccggactt			
					cgagcgcgct			
					cgcctcgttc			
					ccttagcctc			
					ctaacgtcgc			
					cctcgccggc			
					aggcgcgagc			
					tccgccctgg			
					gatttcaggc			
					ggcgctcgaa			
					caatgaagcg			
					tgccgatgac			
					tggagaccac			
					cgccgacctc			
					gcagctcgta			
					tctggcgcga			
					actcggcggc			
					agctggcaac			
					cgtgggtcat			
					ggctgtagtc			
2521	aggaaggtgc	ccgaataggg	gatgatcccg	ccgtgcaggg	ccatgccgtt	catggccgcg		

					cttcgtagcc	
2641	aacgcgccca	tgcccttgac	cagggtgttg	ttcgagccgg	tcaggtcggc	cgagccgccg
2701	atcatctcgg	ggatcgccgg	gatcaggtgc	tccagggccg	agccggagtg	gacgcgggtg
					cgtccagcgc	
2821	ttcgccggca	gctcgccctt	catggcgcgg	gtgaagtcgg	cccccttggg	cgaggcggcc
2881	agcttggcct	cccaggcctt	gcggaccttg	gcgccgcgac	ggccgacgct	cttccaggcc
2941	ttggcgatgt	cgtcgggcac	ggtgaagggc	gcagcgtccc	agcccatggc	cacgcgcgag
3001	gcggcgatct	cgttgtcgaa	cagggtgtag	ccgtggctgt	gggggtcgcc	ttccttgggg
3061	cccgcgccct	tcgagatcag	cgtcttgcac	gcgatcatgg	tcgggcggtc	ctgcttggtg
3121	gcccagcgca	gggccgcagc	gatcttgccg	tggtcgtggc	cgtcgacgac	cttgaccgcc
					cggcgatggt	
3241	tcgatggtgg	tgttgttgtc	gtcgaagagg	accgtcagct	tcgagagctt	caggcggccg
					atccgtcgcc	
					ccaggtgcgc	
					cggtcgtggt	
3481	ggcgtgtgat	gcacttccgg	gtggcccggg	gtcagcgccc	cccactgacg	gaagttctcg
3541	atctccttca	tcgtcatggc	cttgaagccg	gtcagatgca	gcagggaata	gagcagcatc
3601	gagccgtgac	cggccgacag	cacgaagcgg	tcgcggtcgg	cccagtcagg	cttagacgcg
3661	tcgaatttca	ggaacttgcc	ccataggacc	gtcgccacgt	cggccatgcc	catcggcatg
					agaggacgcg	
					ttatatgttt	
					ccgcgcaggg	
					gtcggcgtta	
					tcccttgggt	
					cgccgttccg	
					ggcccgcgag	
					gggctacacg	
					gatcgccacc	
					gctgcgcgac	
					gggcgtggtc	
					cacgccgggc	
					cgggaccgac	
					ctgcgaggat	
					gatcctgctg	
					gctctgcgcc	
					gggcgagagc	
					gctgctcgcc	
					cgtccagcgc	
					atcgccggcc	
					cctggcgctg	
					gcgcgagaac	
					ggcttcgggt	
					tctgctggtg	
					ctacactctg	
					gaaggcgatg	
5281	ccgccgagct	cgatatccgg	cccgcagcga	cccagatgct	caaggacctc	gaccacccgt
5341	tcgggcgcgg	cgaggcggtc	tatgacgtca	ccttcgagaa	tgtgcaggcc	ggcctgcgaa
5401	ccgactatct	gttccgtctg	gccaaccaca	acgccgccct	ggtcgtcggc	acgggggacc
					cgaccacatg	
					gatccgcttc	
					catcctcgcg	
					gagcttcgtc	
5701	ccctgcagga	cttcaatctc	tactacatga	cccgctacgg	catggcgccg	tccaagatcg
					cggctggccc	
5821	ccgacaacgc	tcgccgcgcc	tacgacctgc	ctgagatcaa	gcgctggctg	gagctgttcc
					acccaacggg	
					gccgtcggat	

6001	atgcctggct	ggcggaactg	cgcacaaatg	cgccgatttg	aggaaaactc	ttcgttacag
					aaggggcgaa	
					tgtgtggcgg	
6181	cgcctctggc	ccgcatcgcg	gagcgaccat	cccaaacagt	tccttaaact	cgtgagcgat
					ttccgggtgt	
6301	gtcgtcgtga	ccggcgaggc	gatggtcggg	tttgtgtccg	agcagaccgc	cgagatcggc
					gcgcgccggc	
					tgttgatgct	
					tcaccgccac	
					tcccggcgac	
					gtgaggtcgc	
6661	gagaagcccg	accaggcgac	cgccgagcgc	tatcttctgg	aaggctatct	ctggaacagc
6721	ggcaatttcg	cgttccaggc	ggcgaccttg	ctgggcgagt	tcgagacctt	tgaaccgtcg
6781	gtcgccgccg	ccgccaaggc	gtgcgtggcc	ggcctgcagc	tggaggccgg	catcggccgc
6841	ctggatcgcg	aggccttcgc	ccaggccaag	aagatctcgc	tcgactacgc	catcatggag
					ggtcggacct	
6961	gacgcgatct	gggaggcctc	cacccgcgac	ggcgacggta	acgcccagac	gggcgacgtc
7021	gacttgcacg	gctcgtccaa	tgttctggtg	cgctcgacgg	gtccctatgt	cggcgtgatc
7081	ggggtcaacg	acatcgtcgt	cgtggccgag	cccgacgcgg	tgctggtctg	ccatcgcaag
					ccaagggccg	
					tctcgaccga	
7261	gtggagttgc	gtcgcgtacc	ggcgggagag	accttgatgc	tgccggtatc	gacgcttcag
					ctgcgggcgc	
					ccttgctggt	
					atggtagaac	
					gtcgcgccag	
					ggcggccatg	
					gatccgctcg	
					cagggcgttg	
					catgcgcaag	
					cagccagccc	
					ggggttccag	
					ggagagcgcc	agttcggcga
7981	tctcgtcggn	cagggtgcgc	cagatcgggt	сс		
				•		

1	1
	'

LOCUS DEFINITION ACCESSION VERSION	gcc433 gcc433. gcc433	9041	bp	mRNA		BCT	15-OCT-1999
KEYWORDS	•						
SOURCE	Caulobacter						
ORGANISM	Caulobacter	cresc	entus				
	Bacteria; Pr Caulobacter.	oteob	acteri	a; alpha	subdivis	ion; Caulo	obacter group;
REFERENCE	1 (bases 1	to 90	41)				
AUTHORS	Awram, P.A.	0 00	• • /				
TITLE	Analysis of	the S	-laver	Transpo	rter Mech	anism and	Smooth
1 + 1 20	Lipopolysacc		-	-			
JOURNAL	Unpublished						
REFERENCE	2 (bases 1	to 90	41)				
AUTHORS	Awram, P.A.						
TITLE	Direct Submi	ssion					
JOURNAL	Submitted (1	5-OCT	-1999)	UBC			
FEATURES	Loc	ation	/Quali	fiers			
source	1	9041					

	/organism="Caulobacter crescentus"
aono	/strain="NA1000" 9132295
gene	
CDC	/gene="orf8" 9132295
CDS	,
	/gene="orf8"
	/codon_start=1
	/product="putative Glucose-6-Phosphate 1-Dehydrogenase"
	/translation="MLLPSLYFLELDRLLPHDLRIIGVARADHDAASYKALVREQLGK
	RATVEEAVWNRLAARLDYVPANITSEEDTKKLAERIGAHGTLVIFFSLSPSLYGPACQ
	ALQAAGLTGPNTRLILEKPLGRDLESSKATNAAVAAVVDESQVFRIDHYLGKETVQNL
	TALRFANVLFEPLWDRSTIDHVQITIAETEKVGDRWPYYDEYGALRDMVQNHMLQLLC
	LVAMEAPSGFDPDAVRDEKVKVLRSLRPFTKETVAHDTVRGQYVAGVVEGGARAGYVE EVGKPTKTETFVAMKVAIDNWRWDGVPFFLRTGKNLPDRRTQIVVOFKPLPHNIFGPA
	TDGELCANRLVIDLQPDEDISLTIMNKRPGLSDEGMRLQSLPLSLSFGQTGGRRRIAY
	EKLFVDAFRGDRTLFVRRDEVEQAWRFIDGVSAAWEEASIEPAHYAAGTWGPOSAQGL
	ISPGGRAWKA"
gene	22982996
gene	/gene="orf9"
CDS	22982996
020	/gene="orf9"
	/codon start=1
	/product="putative 6-phosphogluconolactonase"
	/translation="MPFTPIKLEAFGSREDLYDAAASVLVGALTTAVARHGRVGFAAT
	GGTTPAPVYDRMATMTAPWDKVTVTLTDERFVPATDASSNEGLVRRHLLVGEAAKASF
	APLFFDGVSHDESARKAEAGVNAATPFGVVLLGVGPDGHFASLFPGNPMLDQGLDLAT
	DRSVLAVPPSDPAPDLPRLSLTLAALTRTDLIVLLVTGAAKKALLDGDVDPALPVAAI
	LKQDRAKVRILWAE"
gene	29974811
	/gene="orf10"
CDS	29974811
	/gene="orf10"
	/codon_start=1
	/product="putative phosphogluconate dehydratase"
	/translation="IAMSLNPVIADVTARIVARSKDSRAAYLANMDRAIENQPGRAKL
	SCANWAHAFAASPGVDKLRALDPNAPNIGIVSAYNDMLSAHQPLEAYPALIKDAARDV
	GATAQFAGGVPAMCDGVTQGRPGMELSLFSRDVIAMATAVALTHDAFDSALYLGVCDK
	IVPGLVIGALTFSHLPALFVPAGPMTSGLPNSEKARIRALYAEGKVGREELLAAESAS
	YHGPGTCTFYGTANTNQMLMELMGFHLPGSAFVHPNTPLREALVKESARRVAAVTNKG
	NEFIPVGRMIDEKSFVNGVVGLMATGGSTNLALHIIAMAAAAGVQLTLEDLDDISKAT
	PLLARVYPNGSADVNHFQAAGGMAFVIRELLKAGLVHEDVQTIAGAGLSLYAKEPVLE
	DGMLTWRDGAHESLDPAIVRPVSDPFSKEGGLRLMAGNLGRGVMKISAVKPEHHVIEA
	PCAVFQEQEDFIAAFKRGELDRDVVVVRFQGPSANGMPELHNLSPSISVLLDRGHKV
	ALVTDGRMSGASGKTPAAIHVTPEAAKGGPLAYVQDGDVIRVNAETGELKIMVDEATL
	LARTPANVPASKPGFGRELFGWMRSGVGAADAGASVFA"
gene	58566926
CDC	/gene="lpsI" 58566926
CDS	/gene="lpsI"
	/codon start=1
	/product="putative repressor similar to LacI"
	/translation="MAKYSPKRANRTGEGRKLSAKVTIHDVARESGVSIKTVSRVLNR
	EPNVKADTRDRVQAAVAALHYRPNISARSLAGAKAYLIGVFFDNPSPGYVTDVQLGAI
	ARCRQEGFHLIVEPIDSTADVEDQVAPMLTTLRMDGVILTPPLSDHPVVLAALEREGV
	AYVRIAPGDDFDRAPWVSMDDRLAAYEMTKHLVDLGHKDIAFIVGHPDHGASHRRHQG
	FLDAMRDSGLRVRDDRVAQGWFSFRSGFEAAEKLLGGADRPTAIFASNDDMALGVMAV
	ANRLRLDVPTQLSVAGFDDTPGAKITWPQLTTVRQPIHAMAGAAADMLMQGVEREEGA

.

			JVVRESTGPASH	1"					
gene		72249041							
		/gene="orf11"							
CDS		72249041							
		/gene="orf11"							
		/codon_start=1 /product="putative 1,4-B-D-glucan glucohydrolase"							
						PNATANPAVWPMS.			
		PAAITDAKTEAFIAQLMSRMTVEEKVAQTIQADGASITPEELKKYRLGSVLVGGNSAP							
		DGNDRASPQRWIEWIRAFRAAALDKRGDRQEIPIIFGVDAVHGHNNVVGATIFPHNVG							
		LGAAHEPDLIRRIGEVTAKEMAATGADWTFGPTVAVPRDSRWGRAYEGYGENPEIVKA YSGPMTLGLQGALEAGKPLAAGRVAGSAKHFLADGGTENGRDQGDAKISEADLVRLHN							
						GFVVGDWNAHGQ RIDDAVRRILRVK			
						LKSSÄRVLVAGD			
						SAELSVSGDFKQK			
						VSVFLSGRPLWT			
				ADVLVGDKAGKI		O . I DOUE DWI			
BASE COUNT	Г 1492 a			L480 t	1 others				
ORIGIN					- 000010				
	ggacgcqctq	aacaccatca	acgcgacccg	cacgacqatc	ctgccgcccg	ccctgaacgc			
					ggacgctatg				
					atccgcggcg				
					cggtccctgg				
					ttgċtgcgcg				
301	ctacagtctc	gccgatgacg	acgcggcgct	cggtcgcctg	cgcgcccgct	ggtcgggctt			
361	catcgagaca	gccagcaacc	ctgaaggtct	tcgcgtagcg	ctacagggca	tgtcgatggg			
421	cgcggtgtcc	gcgtccgact	ttggacgggt	ttccgccgac	aacgaggcct	tcaatggctg			
481	gatcggtcgc	ctcaaggaac	gtttccggac	aggacaaccg	gccgggtcac	ccgcccgcgc			
					cgttagaagg				
					gcagggcgtt				
					tcttatggcg				
					gcggcgaagc				
					ggtggacgac				
					tgctgggcgg				
					agctcgaccg				
					acgcggccag				
					aggcggtttg				
					aggaagacac				
					tctcgctgtc				
					cggggcccaa aggccaccaa				
					actatctggg				
					tcgagcccct				
					aaaaggtcgg				
					agaaccacat				
					ccgatgcggt				
					agaccgtggc				
					cgcgcgctgg				
					tgaaggtcgc				
					agaacctgcc				
					tcttcggtcc				
					cggacgaaga				
					tgcgactgca				
					tcgcttacga				
					gcgatgaggt				
					ccagtatcga				

					tgatctcgcc	
					cgaagcattt	
					tttgacgacg	
					gccggcgccg	
					cacgctcacc	
					gcgtcgccac	
					cggcgtgagc	
2641	gcgcgcgcaa	ggccgaggcg	ggcgtcaatg	ccgccacccc	gttcggcgtc	gttctcctgg
2701	gcgtggggcc	ggatgggcat	ttcgcttcgc	tgtttccggg	caatccgatg	ctggatcagg
2761	gtctggacct	cgccaccgac	cgttcggtgc	tggccgtgcc	gcccagcgat	cccgcgccgg
					caccgacctg	
2881	tggtcaccgg	cgcggccaag	aaagctttgt	tggacggcga	cgttgatccg	gccctgccgg
2941	tcgccgccat	tctgaaacag	gaccgcgcca	aggtccgcat	cctctgggcg	gagtagatcg
					gatcgtggcg	
3061	acagccgcgc	ggcctatctc	gccaacatgg	atcgggcgat	cgagaaccag	ccggggcgcg
3121	ccaagctgtc	ctgcgccaac	tgggcccacg	ccttcgccgc	ctcgccgggc	gtcgacaagc
3181	tccgtgctct	ggatccgaac	gcgccgaaca	tcggcatcgt	ctcggcctat	aatgacatgc
3241	tgtcagccca	ccagccgctg	gaagcctatc	ccgcgctgat	caaggacgcc	gcccgggacg
3301	tgggcgcgac	cgcccagttc	gccggcgggg	tgccggccat	gtgcgacggt	gtcacccagg
3361	gccgtcccgg	catggagctg	tcgctgttct	cgcgcgacgt	gatcgccatg	gcgaccgccg
3421	tggccctgac	ccatgacgcc	ttcgactcgg	cgctgtatct	gggcgtctgc	gacaagatcg
3481	tgccgggcct	ggtgatcggc	gcactgacct	tcagccatct	gcccgccctg	ttcgtgcccg
3541	ccggcccgat	gacctcgggc	ctgcccaaca	gcgagaaggc	ccgcatccgc	gcgctctacg
3601	ccgagggcaa	ggtcggtcgt	gaggaactgc	tggcggccga	gagcgccagc	tatcatggcc
3661	cgggcacctg	caccttctat	ggcacggcca	acaccaacca	gatgctgatg	gagctgatgg
3721	gcttccattt	gcctggctcg	gccttcgtcc	atcccaacac	gccgctgcgt	gaggccctgg
3781	tcaaggaatc	cgcccgccgc	gtggctgcgg	tgaccaacaa	gggcaatgaa	ttcatcccgg
3841	tcggccggat	gatcgacgag	aagtcgttcg	tcaacggcgt	ggtcgggttg	atggcgaccg
3901	gcggctcgac	caacctggcg	ctgcacatca	tcgccatggc	cgccgctgcg	ggcgtgcaac
3961	tgaccctcga	agacctggac	gatatctcca	aggccacgcc	gctgctggcg	cgcgtctatc
4021	cgaacggttc	ggccgacgtg	aaccacttcc	aggccgccgg	cggcatggct	ttcgtgatcc
					gacgatcgcg	
					gctgacctgg	
					cgacccgttc	
					gatgaagatc	
4321	agcccgagca	ccacgtgatc	gaggcgccgt	gcgccgtgtt	ccaggaacag	gaagacttca
					cgtggtggtc	
					gccgtcgatc	
					catgtccggc	
					gggcgggccg	
					ggaactgaag	
					ggcgtccaag	
					ggccgacgcc	
					agcggcgggc	
					gagttcgacg	
					ggcacggccg	
					caggcggtgg	
					gactggcgga	
					atcaacgact	
					cagatcggcg	
					ggcttcggcg	
					ggtggtcacg	
					acccggcgcc	
					gaggacctcc	
					aagcagatca	
					ttctgcgcca	
					ggtgttttca	
5501	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	guoulogooo	-gaeeeeggg	cycacycyyc	59090000a	

5641	catcgcacca	cgcatcatcg	acattctgga	gaagagcccg	ttccgcgagc	gcttcgacag
5701	caaggggcgt	ctgtccggct	tcacccgttc	gatcccgacg	cacgtgatcc	tgcatccgca
					ggccgtgcgg	
					taagtactcg	
					cacgatccac	
					gaatcgcgag	
					gctgcactat	
					cggcgttttc	
					cgcccgttgc	
					tgtcgaggat	
					cccgccgctc	
					tgtgcgcatc	
					gctggccgcc	
					tattgtaggg	
					aatgcgcgac	
					tcgctcgggc	
					cttcgcctcg	
					tgacgttcct	
					ctggcctcag	
					catgctgatg	
					cttcgaactc	
					gcaaggtggt	
					atagatcaag	
					ggccagtcca	
					agccgcttat	
					taaacaccgc cgccttcgct	
					ccagacgccg	
					cgccatcacc	
					cgaggagaag	
					gaagaagtac	
					ccgcgccagc	
					caagegegge	
					caacaacgtc	
					gcccgacctg	
					ggactggacc	
					tgagggctat	
					gctgcagggg	
					caagcacttc	
					ctccgaggcc	
					catcctgtcg	
					aagcctgctg	
					ctggaacgcc	
					cgccggcatg	
					ggcgcaggtg	
					cctgcgagtc	
					ggagctcctc	
					ggtgctgctg	
					cggagacggc	
					caccggcaac	
8641	acttcccgca	cggccagtcg	atctatgcag	gcgtcgcgga	ggccgtgaaa	gccggcggcg
8701	gcagcgcgga	actgtcggtt	tcgggcgatt	tcaagcagaa	gcccgacgtg	gcgatcgttg
8761	tgttcggcga	gaacccctac	gccgagttcc	agggcgacat	caccagcatc	gagtatcagg
8821	ctggcgacaa	gcgtgacctg	gcgctgctga	agaagctcaa	ggctgcgggc	attccggtgg
8881	tgtcggtgtt	cctgagcggc	cggcccctgt	ggaccaaccc	cgaactcaac	gcgtccgacg
					cgtggccgac	
				tccagggcaa		

,

.

<pre>KEYMORDS . ORGANISM Caulobacter crescentus. ORGANISM Caulobacter crescentus Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; Caulobacter. REFERENCE 1 (bases 1 to 1177) AUTHORS Awram, P.A. TITLE Analysis of the S-layer Transporter Mechanism and Smooth Lippoplysaccharide Synthesis in Caulobacter crescentus JOURNAL Unpublished REFERENCE 2 (bases 1 to 1177) AUTHORS Awram, P.A. TITLE Direct Submission JOURNAL Submitted (15-OCT-1999) UBC FEATURESS Location/Qualifiers source 11177 /organism="Caulobacter crescentus" /strain="NAL000" gene complement(111177) /gene="lpsj" CDS complement(41998) /gene="lpsj" CDS complement(41998) /gene="lpsj" /codom start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQPOPIEQKRAPAQIFGVKGDLVGDRQLVS FIDLRPFRHACTCQVNACCTARCDQVILIEQSRPSDQAHYTDEHAPELGQLEFTELA HQAADRRQFLERIVERVGGHRBDGALGCRARARARKRRKQRRGAPHALRPVETRPRRSQPHK RPCHGGRDODROPDRCSQRKSTRIHTM" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagcg acggcaattg gagtggcag gaggactag cacgagcet cacagacggt 181 gacggaagg gocgccgaag ggggccgd caggagacteg cacggacteg cacggcgct cacagacgg 301 tatgeggca tgategacg gggggccgd agggacteg acggcactag caccgccg 301 tatgeggca tgategacg gggggccgd agggacteg cacggacteg 61 ccggcgct cgtatecteg caggacgga aggtggccg agggacteg 61 dcgggcat gategacga gggggccgd agggacteg cacggacgac cacagacget 181 gacggaagg gegccgaag ggggccgd caggacacac ccgaccgccg cacagacgg 301 tatgeggca tgategacg ggggccgd agggacteg cacggacteg 301 tatgeggca tgategacg ggggccgd tgategacac ccgaccgcg cacagacgg 301 tatgeggca tgategacg ggggccgd tgategacac ccgaccteg caggacteg 301 tatgeggca tgategacg ggggccgd tgategaca ccgacgccg tcacagacgg 301 tatgeggca tgategacg ggggccgd tgategacac ccacetter gacaatecg 301 tatgeggaag tgategacg ggggccgd tggtegacac cacetter gacaatecg 301 tatgeggaag ttgategacg ggeggccgd tggtegacac cacetter gacaatecg 301 tatgeggaag ttgategacg ggeggecgg tatgegcag aggtgeccc 303 tatgeggaag ctggtegac ggeggccgg tatgegcag gactgggec 304 tgacggagg ctggtegac categgccgg cacagacgg gactgggc 304 tgacggag</pre>	LOCUS DEFINITION ACCESSION VERSION	gcc2537 gcc2537. gcc2537	1177 bp	o mRNA	BC	CT 15-	-OCT-1999	
AUTHORS Awram, P.A. TITLE Analysis of the S-layer Transporter Mechanism and Smooth Lipopolysaccharide Synthesis in Caulobacter crescentus JOURNAL Unpublished REFERENCE 2 (bases 1 to 1177) AUTHORS Awram, P.A. TITLE Direct Submission JOURNAL Submitted (15-OCT-1999) UBC FEATURES Location/Qualifiers source 11177 //organism="Caulobacter crescentus" //strain="NAN1000" gene complement(11177) /gene="lpsj" CDS complement(441998) /gene="lpsj" CDS complement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl=1-phosphate transferase" /translation="TGDAPCGQHRDGADQDPQIEQKRAPAQIFGVKGDLVGRQLVS PTDLRPPRHAGTQGVNACCTARGDQVILIEQSRPESDQAHVTDEHAPELGQLIETELA HQAADROPLIRIVEKGGLUCRTUAHGAKARRKQRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDRQDRCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccqaagccg acggcaattg gagtggcgg tggcgaagtc gccgcagag tcccqcag gagcagctg 11 gccgaagccg acggcaatg gagtggcgg caggaatg caccgacgat ccgtagcgt 12 ccccacgct tyttgccgg cggacgatg gagcaagtcg ccgacgag tcccacgacg 13 tacggagagg gccgccgaa ggcggcagt cgacgagtcg acggcgg cgcgcagg 301 tatgcggca tgatcgacg gggcgcgg caggacgta cgacgagtcg gcdgcagg 301 tatgcggca gagccatg ggcgcgta tgacgacgt cgcgcagcg cgcacgag cgcacggg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcgcagg cgcacgagg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcgcagg cgcacgagg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcacgag cgcactgg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcgcacga cgcactgg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcgcagg cgcacgagg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcacgag cgcacgagg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cgcacgag cgcactgg 301 tatgcggca gaccgtag ggcgcgta tgacgacgt cggcgctg dtgcggcg 301 tatgcggca gaccgtag ggcgcgtag tggcgcat cgccgacga cgcactgg 301 tatgcggca gaccgtag ggcgcgtag tggcgcat cgccgacg cgcacgag 301 tatgcggca gaccgtag ggcgcgtag tggcgcat cgcacgag cgcactgg 301 tatgcggca gaccgtag ggcgcgtag tggcgcat cgccgggg cgcacgacgag 301 tatgcggaga ggcgcada gacggcggg cgcagagag cgcacgag cgcacgag cgcacgaga 302 tggcggag	SOURCE	Caulobact Bacteria;	er crescent Proteobact	us	a subdivisio	on; Caulobac	cter group;	
JOURNAL Unpublished REFERENCE 2 (bases 1 to 1177) AUTHORS Awram, P.A. TITLE Direct Submission JOURNAL Submitted (15-OCT-1999) UBC FEATURES Location/Qualifiers source 11177 /cransim="Caulobacter crescentus" /strain="NA1000" gene complement(11177) /gene="lpsj" CDS complement(441998) /gene"lpsj" /codo_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDQDEQTEQKRAPAQIFGVKGDLVGDRQLVS FIDILRPRHACTQGVNACCTARGDQV1LIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPLIRIVEKVGGHLGRIDAKALKHRKQRRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDRQDRCSQHIKHTH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagccg acgccattg gagttgagt ggccgaga tcaccgccat gggcatcga 61 ccgggcgatg cgggcgaga ggcggccga ggcgaccga gaggactga ccacgacgt 18 gacggaagg ggccgaag ggcgactga ggcgactga agggcaaca ccgaggctt cctaagcgc 19 tagcagacg agccgatg agggcactg ggcgaccga agggcaaca ccgaggctt cctaagcgc 301 tatgcggca tgatcgaca ggcggcctga tgtgggct gttgggag tgtgggcg aggacgatg 421 gcctagccg agccgatg atgaagcat gttgggct gttgggag tgtgggcg aggacgtgg 541 tggcggacg agccgatg agaggcattg tgtggggc tgtgggacg aggacggg 541 tggcggacg agccgata gatagcgca tgtgggcag aggtggcag tgtggggg tgtgggg tgtgggg agcggggg 541 tggcggcat gatcgaca ggcgcgga atgaagcga ggcgggga tgtgggggggggg	REFERENCE 1 (bases 1 to 1177) AUTHORS Awram,P.A. TITLE Analysis of the S-layer Transporter Mechanism and Smooth							
AUTHORSAwram, P.A.TITLEDirect SubmitsionJOURNALSubmitted (15-0CT-1999) UBCFEATURESLocation/Qualifierssource11177/crganism="Caulobacter crescentus" /strain="NA1000"genecomplement (411970) /gene="lpsj"CDScomplement (41998) /gene="lpsj"CDScomplement (41998) /gene="lpsj"CDScomplement (41998) /gene="lpsj"/codo_start=1 /product="putative galactosyl-1-phosphate transferase" /franslation="TCDAPEGGHRDGADOPOIDEQKRAPAQIFGVKGDLVGRQLVS PIDLRPPRHACTQGVNAGCTARGDQVILIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPLINVEKVGGHLGENDAGADOPOIDEQKRAPAQIFGVKGDLVGRQLVS PIDLRPPRHACTQGVNAGCTARGDQVILIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPLINVEKVGGHLGENDAHALKPVETRPRRSQPHK RPGHGQRDDDPOPORSQHINTHTH"BASE COUNT169 a387 c416 g205 tORIGIN1gccgaagccggaggcaagt ggcgcgcgcgcgcgcgc ccgcgcgc ccagacgct ggcactga1gccgaagcggcgggcgag ggggccgggagggaacaccgagcgct ggcgcgcg1gccgaagggccgcgcgag gggggccgcgggcatcg1gccgagggggcgcgaag ggcggggcggggcgcg1gccgagggggcggggggcggggcgg211gcccgaggggcgcgggggagggcag1gccgagcgggcgcggggggggggg211gcccgagcgggcgcggggcggggggg212gcccagcgggcgcggggcgggggg213gcctggccgggcgcggggcggggggg214gccggcggggcgcggggcggggggggg214gccggcgg	JOURNAL							
<pre>TITLE Direct Submission JUURNAL Submitted (15-OCT-1999) UBC FEATURES Location/Qualifiers source 11177 //organism="Caulobacter crescentus" //strain="NA1000" gene complement(11177) //gene="lpsj" CDS complement(41998) //gene="lpsj" CDS complement(41998) //gene="lpsj" //codon_start=1 //product="putative galactosyl-1-phosphate transferase" //translation="TGDAPGCQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGQVILIEQSRPGSDQHHYDEHAPELGQLIETELA HQADNRQPLINVEKVGGHLGRIDAHGKLIRHRQRRAPALIRPVETRPRRSQPHK RPQHGQRQDQDRQPDRCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagcg acggcaatg gagtggcg ggcgcaga tcaccgcca ggcgcatcg 61 ccgggcqatg cgggcgtgg tgagaagct gccgcagag tcaccgcca ggcgcatcg 121 ccccacgcc tgttccccg cgcgacgtg caggagatg caggcgctg 241 gtccgtcgc tgttctcgg cggagcatg tgtggcg aaggcctag acggcgttg tgtggcg acggcgag aggcgcaga tgtggcgg aggcgcag aggcgcaga 241 tgccgtcgc tgttctcgg cggacgcat tgttggcg tgtggcg aaggctcg cagagcgtt cctaaagcgc 361 ctgctgtcc ccgacgctgg dgagcgcg agggcgcg agggcdcgg aggcgcgga cggcgcgg aggcgcgg tgtggcg tgtggcg tgtggcg acggcgcg cggcgcg cggcgcg cggcgcgc cgacggcg cggcgcgc cgacgcgt cctaaagcgc 361 ctgctgtcc ccgacgctgg dgacgcg atggacgcg aggcgcgg cggcgcg cggcgcgg cggcgcgg cggcgcgg cggcgcgg cggcgcgg cggcgcgg cggcgg</pre>								
JOURNALSubmitted (15-0CT-1999) UBCFEATURESLocation/Qualifierssource1177/organism="Caulobacter crescentus" /strain="NAIDOU"genecomplement(11177)/gene="lpsj"CDScomplement(411998) /gene="lpsj"/codon_start=1 /product="putative gal_ctosyl-1-phosphate transferase" /product="gudative" /product="putative gal_ctosyl-1-phosphate transferase" /franslation="TGDAPCGGHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PTDLRPPRHAGTGGVNAGCTAREGVTLIEQSRFGSDQAHVTDEHAPELGQLIETELA HQAADRQPLRIVEKVGGLKHTTH"BASE COUNT169 a387 c416 g205 tORIGIN1gecgecagad gecgecagadcacgccat ggccatca ggccatcagggccatcag ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad ggccacgad <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>								
FEATURESLocation/Qualifierssource11177source11177/organism="Caulobacter crescentus" /strain="NAl-00"genecomplement(11177) /gene="lps]"CDScomplement(441998) /gene="lps]"CDScomplement(441998) /gene="lps]"CDScomplement(441998) /gene="lps]"CDScomplement(441998) /gene="lps]"CDScomplement(441998) /gene="lps]"Acon_start=1 /product="putative gal=ctosyl=1-phosphate transferase" /translation="TGDAPCCGURDDGADQDQDEKCRAPAQTFGVKGDLVGDRQLVS PDLEPPRHACTGCVNACTAREDQVILLEQSAPGSDQAHVTDEHAPELGQLIETELA HQAADRQPLIRUVEKVGGHL RPQHGQRQDDEVEDRSQHTHTH"BASE COUNT169 a' 387 c' 416 g' 205 tORIGIN1gecgagedgg ggggdtggggggdtggggggdtgg1gecgagedggggggdtggggggdtgg21ccccacgcctgtgccggggggdtgg21gcccggcggtgtgccggcggggdtgg21gcccggcgatgtgccggcggggdtgg21gcccggcgatgtgccggccaggggad221gcccggcgatgtgccggccaggggdcd221gcccggcgatgtgccggccaggggdcd221gcccggcgatgtgccggdtgtggdggd221gcccggcatgtgccggacgccggdgg231tgtccggctgtgccggacgccggdgg241gtccggcatgtgccggacgccggdgg241gtccggcatgtgccggacgccggdgg241gtccggcatgtgccggacgccggggg241gtccggcatgtgcc				999) UBC				
<pre>/organism="Caulobacter crescentus" /strain="NA1000" gene complement(11177) /gene="lpsj" CDS complement(441998) /gene="lpsj" CDS complement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl=1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNACCTARGDQVILLEQSRPGSDQAHYTDEHAPELGQLETELLA HQAADRRQPLIRIVEKVGHLGRIDAHGAKLRHRKQRGAPHALRPVETRPRSQPHK RPQHGQRQDQDPQDPCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagccg acggcaattg gagttggcgt ggctcctga cggcgctga gagcagctg 61 ccggcgcdg cggggctgg tgagaagctc gccgcagaa tcaccgccat ggcatcgac 121 ccccacgct tgttgccgc cggacgtac gacggcaat caccgccat ggcatcgac 121 ccccacgct tgttgccgc cggacgtac gacggcaaca ccgaagcgtt 181 gacgaagagg gccgcgaag ggcggccga atgacgcaa ccgaagcgtt cctcaagcgc 301 tatgcggca tgatcgacg acggcagta tgatcgacc cggcgcgaa cggcatcgg 61 ccgtgctct ccgacgctgg cggcgctg tgttgatgag tggtgcaaca cgaggctct ctcaagcgc 361 ctgctgtcct ccgacgctg cggcgctg tgttgatgag tgtggcatcg agcggcgaa gcgcatcgg 661 atgcatgcc ggtcctgce ctgtccccga cggcgctg agcggcgg 541 ggcctggtct ctactggtcg cagcggtg ggcgcgcaag ccgcgcgcg ccacctctg qactggcg 661 atgatgct ggccgcta gatcgccg agcgggtg ggcgccca ggcgcgcg gcctggcg 771 agcctggg cggccgaa cggcagga gcggcgga agcgggcg cagcggga cccggcgg gccggcgg 841 tgacggatg cggccgaa cggcggg acggcgga agcggcgg cagcggg gacgcgg gccggcgg gccgg gacggg gaccgg gacggcgg gccgcgg gccggcg gccgcgg gccggcgg gcccgg gccggcgg</pre>		0 0.0.1.2 0 000						
<pre>/strain="NA1000" gene complement(1177) /gene="lpsj" CDS complement(441998) /gene="lpsj" CDS complement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="GGDAPCGQHRDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGDQVILIEQSRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGDQVILIEQSRAPAQIFGVKGDLVGDRQLVS RPQHGQRQDQDRQDRCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagccg acggcaattg gagttggcgt ggtctcctga cggcgctac ggcgcatcg 61 ccgggcgatg cggggctgg tgagaagctc gccgcagaa tcaccgccat ggcatcga 121 cccacgctc tgttgccgcg cggaaggatc gacggaateg ccgccgcgt cccagagcgt 161 gacggaagg gccgcgaa ggcggctgg aggggcaca ccgaggctt cctcaagcgc 301 tatgcggca tgatcgacg aggggctgg tggggcaca ccgaggcgt gccgcaga gcggdatcg 421 gcctggct ggtctgcg ctggccgtg tggggcgg agggtgcag agggttccg acgtcggcg aggatcg 301 tatgcggca tgatcgacg aggggcgg tggggcaga tggtggcag agggtgtca gccgcgga cgcgcgga gcggdatcg 431 tggcggtct ggtctgccg ctggccgtg tggggcgg tggggcaga tcgcgcggg cggcggg 431 tggcggtct ggtctgccg cagcgctgg tgggcagat tggtggcag acgtggcg 431 tggcggtct ggtctgccg cggcgctga tggcgaagt cgccgcgg acgttggc 431 tggcggtct ggtctgccg cggcgctga tggcgaagt cgcgcggg gccggdattg 431 tggcggtct ggtctgccg cggcgctgg tggtggcag ccgcggg gccggg gccggg 431 tggcggtgt ggacgcgt ggtcgcdga ggcggcgg ccgcgggggggg gccgcdga gactggcg 431 tggcggtgt ggtgctgc ggtcacatag gccggcgg gccggg gccgg gccggg gccgg 431 tgacggatg cgtgctgc ggccgctg tggcggcgg ccgcggg gccggg gccgg 431 tgacggatg cgtgctgc ggccgcgg aggggggg ccgccgg gccggg gccgcggg 431 tgacggatg cgtgctgc ggccgcgg acgggggg ccgg cc</pre>	source	9	11177					
gene complement(11177) /gene="lpsj" CDS complement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGDQVILIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPDLTRIVEKVGHLGFIDAHGAKLRHRKQRGAPHALRPVETRPRSQPHK RPQHGQRQDQDRVDEDSOHTKHTH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaageeg acggeaattg gagttggeg ggcgaagat cacegeat gggeatega 61 ccgggcgat cgggetgg tgagaagete gecgaagat cacegeat gggeatega 121 ccceacget tgttgccge cgaaegat gagttggeg aggeaget cacegeat gggeatega 121 ccceacget tgttgccge cggaegat cagegaate cacegaeget 181 gacggaagg ggcgcgaag ggtggtaag cggcagat cacegeat ggcaatega 301 tatgcggea tgategaeg atgaageta tgttgdeg aggeatet gecgaegaeg 301 tatgcggea tgategaeg atgaageta tgttgdeg aggeaget gacgaeget 421 gcctagee gacegeat gagegegta tgtgtgeg aggeageta cacegaeget cetacege 301 tatgcggea tgategaeg atgaageta tgttgdeg aggeageta gacgaeget 421 gcctagee gacegetg atgaageta tgttgdeg aggeageta gacgaeget 421 gcctagee gacegetg atgaageta tgttgdeg aggedeta gacgaeget 301 tatgcggea tgategaeg agcegetga atgaageta tgttgdeg aggedeta gecgaege 301 tatgcggea tgtetgee ctggeegta tgtgdgeag agedeteg agedegeag agedeteg 301 tatgegget ggdetgeeg agegegetga tgtggeget tgtggegeta gacegegeg 301 agttegae agecgeta gategeeg agedegea cagedegea agedeteg 301 agttegae agecgeta gatageega agedgeta tgtgegeget agedeteg 301 agttegae atggeega ggegeega agedgeega agedgeega agedgeeg 301 agttegae atggeega ggegeega agedgeega agedgeeg accegege gedgettet gaeaateteg 301 agttegae atggeega agedgeega agedgeega agedgeega agedgeega agedgeega 301 agttegae atggeega agedgeega agedgeega agedgeega agedgeega agedgeega 301 agttegae atggeega agedgeega agedgeega agedgeega aggtgeeega 301 agttegae atggeegae gecgeegae agedgeega agedgeega aggtgeege 301 tgaegeag atategee gecgeegeg tetgttega accegeega aggtgeeega 301 tageggag ggegeaga atategee gecgegege tetegttega accegeega aggtgeege 301 ttgaegeega atategee gacegeage cecegta gecgegaea agegteega 301 tgaegeega atategee gacegeg			-		crescentus	5"		
/gene="lpsj"CDScomplement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PTDLRPPRHACTQCVNAGCTARCDQVILIEQSRFCSDQAHVTDEHAPELGQLIETELA HQAADRRQPLIRIVEKVGGHLGRIDAHGAKLRHRKQRRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDRQPDRCSQHIKHTLH"BASE COUNT169 a387 c416 g205 tORIGIN1gccgaagcg acggcaattg gagtggcg ggccgaag tcacccaat gggcaatcg tagagaag gccgcagag gggggtgg tgagaagct gccgcagag tcacccaat gggcaatcg a gaggaag gccgcagag ggcggcgg caggacgaa ccgcgcggt ccagacggt 181 gacggagag gccgcagag ggcggcgaa aggcgaaca ccgaggctt cctcaagcgc 301 tatgcggca tgatcgaca ggcggctgg tgggcata tgttgatg gcgggcgg caggacgaat cgtggctgg acggacgg atgacgata tgttgatg tgttggtag tgttggggt tgttgggg aggggtgg gcggcagga ggcgatcg atgacggta ggcgctgg agggatcg gcggatcg acggacgg agggatcg aggggcaat catcgccg agggcgg agggatcg aggggcaat catcgcgcg361 ctgctgtcctcgacggcgg gcggcgg caggacga ccgagggg agggatcg gcggcggt ggggatcg aggggcad agggcaat tgttgatg gcgggggg agggatcg acgggcgg gggatcg aggggcgg gggatcg361 ctgctgtcctcgacgcggg gcgggcg caggacga ccgagggg agggatcg gcggatcg agggggg361 ctgctgtcctcgacgcggtg ggcggcg caggacga ccaccttct gacaatcg gcggtgt datggcgt ggcgcaat catcgccg ggcgdagg361 atgctggtctgtctgtgcg ggcgcgtg ggcgcgc cagtcggg acccgat ggtggcg361 atgctggtcggccggtcg ggcgcggg ggcgggg ggcgggg ccaccaccttct gacatcgg361 ttgctggtcggccggtg ggcgcaat ggcgggg accaccaccttg gacagcgg361 ttgctggtcggccggtg ggcgcgg ggcgggg ggcgggg ccaccaccttc gacatcgg361 ttgctggtcggccggtggg ggcgggg ggcgggg ccaccaccttcc gacatcgg361 ttgctggtggacggcggg ggcggg ggcggg ggcggg								
CDS complement(441998) /gene="lpsj" /codon_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGDQVILEQSRGSDQAHVTDEHAPELGQLIETELA HQADRRQPLIRIVEKVGGHLGRIDAHGAKLRHRKQRRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDQDPDCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagcg acggcagtg tgagaagct gccgcagag tcaccgcca tggcatcga 121 ccccacgtc tgttgccgc cggacggat gacgagatcg ccgccgcgt ccagacggt 181 gacggagag gccgcagaa ggtggtcaag cgccggaga ccgtcgccg 301 tatgcggca tgatcgaca ggcggccgc caggatcga cggcgcgcg cggacggt 421 gtccgtcct ccgacgctg gcggccgc caggatcga cgcggcgg 301 tatgcggca ggccgctga atgaagcta tgttgatg gctggcgg cggcgatcgg 421 gcctaggcg agccgctga atgaagcta tgttgatg gctggcgg cggcgatcgg 421 gcctggcc tgttctcga cggcgctgc tgtgggcct tgtggcgc tgtggcgcg 301 tatgcggca tgatcgacg gcggccgg gggcgcta cgtgcgcg 481 tggcggtct ggtcgtcg ggccgtg tgagagct tgtgggcc tgtgggcg cgcggdg cggcgg 541 ggccgtgtc tctactggc ggcggctg tgtggcgcc cagctcgat ccgtcgcgg 541 ggccggdc ggcgcat ggtcgccg ggcggcg tgtggcgcc cagctcgat cgtcgccg 661 atcaatgct ggtcctgc ggccgtg tgtggcaca caccttct gacaatctg 661 atcaatgct gacgcatc ggccgtg tgcgcagcg tggcgcgc tgtggcgcg 841 tgacgggdg cggcgatc ggcggcg tgcggcg tggcgccg aggcgcgg ggcgcgg 841 tgacgggg ggcgcagta atgaggcg tgcgggcg tgacggcg accggcgg ggcgcg 841 tgacgggg ggcgcagta atgggcgg accgggcg tggcgcd tgggcgct tgggcgct tgggcgcc 841 tgacgggg ggcgagat atggcgg gccggcg ttcgtgg gaccggcg ggcggcg 841 tgacgggg ggcgcagat atggcgg gccggg tcactgg ggcgcgcg tggcgcgc tggtcgg accggcg 841 tgacgggg ggcgcagat atggcgg gccggg tcactgg gccggcg aggcgcg aggcgcg 841 tgacgggg ggcgagat atggcgg gccggg tcaccgg gccggg accgggg tggcgc 841 tgacgggg ggcgcagat atggcgg gccggg tcaccgt gccggg aggcgc 841 tgacgggg ggcgcagat atggcgg tcaccgt gccggg aggcgc 841 tgacgggg ggcgagat atggcgg tcaccgt gccggg tcgggagcc 841 tgacgggg ggcgagat atggcg gccggg tcaccgt gccgggad accgggg gccggg adggcc 841 tgacgggg ggcgagat atggcg gcgcgg tcaccgga gccggad aggcgc 841 tgacgggg ggcgaga tattcggc ggcggg tcaccgt g	gene		-					
/gene="lpsj" /codon_start=1 /product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQEVNAGCTARGDQVILIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPLIRIVEKVGGHLGRIDAHGAKLRHRKQRRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDRQPDRCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagccg acggcaattg gagttggcgt ggtctcctga cggcatcga gagcagctg 61 ccgggcgatg cggggctggg tgagaagctc gccgcagaga tcaccgccat gggcatcga 121 ccccacgctc tgttgccgcg ggacggatc gacgagatg cggcgcgca ccgtcgttg 241 gtccgtcgc tgttctccga cgcgacgta cggcgcgcg caggatcg acggcagtcg 301 tatgcggga tgatcgacg gggggcgg atgggcaga cgacggcg cggcagat cgtcgcgg 481 tggcggtcg ggccgta atgaagcgt tgtggcgc ggcggdt ggtggccag ccgacgct fig agcgggtg tgatcgcg gggcgga atgagggt tgtgggcg agggctgg acggatcg 481 tggcggtct ggtcctgcg ctggccgca tgtgggccg acggatcg 661 actatggtc catcggtcg cagcgcgtg tgtggccag acggcgtg tgtggcgg 541 ggcctggtc catcggcg cggccgg atgggcgg aggggcag cggcggg cggcggg aggggcgg 661 actatggtg gagcgcag ggtggcdg tgtggcgg caccactct gacatcgg 661 atcatggtg gacgcgat gatcgccg aggtggcg caccactct gacatcgg 661 atcatggtg gggcgcag cggcgggg cagggcgg caccaggc caccattct gacatcgg 661 atcatggtg ggtgctgt ggtcgcgg caccagg caccaggc gcttgttca 721 agcctgggg gggcgaat atgggcgag caccgggcg caccagcg gcttgttca 781 atcaggatg gggcgaat atgggcga acgaggg caccaggg caccggcg gcttgttca 781 atcaggatg gggcgaat atgggcgg tcaccggt cgccagga caccggcg gctggt 841 tgacgggtg ggcgaat aatgggcg tcaccgtt ggccgaac aaggtcgc 901 ttgcaccga attatcgcc gcgcgcgg tacccgtta gacgcactg gctggtcc 901 ttgcaccga attatcgcc gcaccggg tacccgtta gccagatcg gctgacca 901 ttgcaccca attatcgcc cgaccggg tacccgtta gccagatcg gctagac 901 ttgcaccca attatcgcc gcaccggg tcaccgtta gccagatcg gctagac 901 ttgcaccca attatcgcc cgaccggg tacccgtta gccagatcg gctaggcct 1021 ttccacgc cgaaccgaa cgcaggt cgccaga accggatca 901 ttgcaccaga ggggcgaa caccggcg tccttcccgt ggccagatca 901 ttgcaccaa attatcgcc gcaccggg tccccgtta gccagatcg gctaggcct 1021 ttccacgc cgaaccgaa ccacgggcg tcctctcccgt ggccagaa accgagtca	CDS							
<pre>/product="putative galactosyl-1-phosphate transferase" /translation="TGDAPCGQHRDDGADQDPQTEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTOGVNAGCTARGDQVILIEQSRPGSDQAHVTDEHAPELGQLIETELA HQAADRRQPLIRIVEKVGGHLGRIDAHGAKLRHKQRRGAPHALRPVETRPRRSQPHK RPOHGQRQDDDROPDRCSQHIKHTLH" BASE COUNT 169 a 387 c 416 g 205 t ORIGIN 1 gccgaagcg acggcattg gagtggcgg ggtcccg cggcgcatcg gggcatcga 61 ccgggcgatg cggggctgg tggaaagct gccggagat ccaccgccat gggcatcga 61 ccgggcgatg ggggcgga ggtggtcag cgccgaga tcaccgccat gggcatcga 61 ccgggcgatg ggcgcgaga ggtggtcag cgccgggc cggccggat ccgtcgttg 241 gtccgtcgc tgttctccga cgcgacgct aggggcagc caggatcgg aggggctgg cgggatctg 301 tatgcggca tgatcgacg ggggccgg caggatcgg aggggcgg cggggcttg gccggcg agcggat ggtggtcag cggcgggg tggggcgg 481 tggcgtcct ggtcctgcg cggcggtg tggggccgc cggccggc</pre>			-					
<pre>/translation="TGDAPCGURDDGADQDPQIEQKRAPAQIFGVKGDLVGDRQLVS PIDLRPPRHAGTQGVNAGCTARGDQVIIEQSRPGSDQAHVTDEHAPELGQLIETELA HQADRRQPLITIVEKVGGHLGKIDHGKLRHKKQRGAPHALRPVETRPRRSQPHK RPQHGQRQDQDRQPDRCSQHIHTLH"</pre> BASE COUNT 169 a 387 c 416 g 205 t ORIGIN  1 gccgaagccg acggcatg gagtggccg ggccgaaga grogcagac gccgaagaa ccgcgcca ggccgaaga ccgccgcat ggccgaaga ggcgcagag ggcgcgaag ggcgcgaag ggcgcgaag ccgccgaaga ccgccgcat ccaacgcac 121 ccccacgct tgttgccgcg cggcagaat ggcggccgaa ggcggccg agggggaaca ccgccgcgat cctacagcgc ccaagagat ggcggcgaag ggcggcgag ggcggcgaa ggcggccga aggggccgaa ccgcgcgaa ccgcaggat cctacagcgc 181 ggccggccg tgttgccgg cggcgcgaa ggcggccgaa ggcggccgaa ccgaagaca ccgaggct cctacagcgc 361 ctgctgtcc tgttcccga ggcggcgaa tggcggcgaa tggtggccag aggggcgaa ccgagggcg aggggcgaa tggtggccg tgtggggcaa ccgagggaa ggcggcgaa tggtggcgg tggtggcaag cggcggaa ggcggcgaa ggcggcgaa tggtggcgaa tggtggccaa ccacttct gccgacggaa aggtggccgaa cagctgga ggcggcgaa tggcggcgg ccagcggcg agttgg aggtggccaa ccacttct gacaccgag ggcggcgaa aggcggcgg ccggcggaa tggtggccg ccgcggcg tggcggcaa ccacttct gacaccgag ggcggcgaa aggcggcgg ccggcgga agttgg agttgcca ccacttct gacaccgag ggcggcgaa aggtggccg accgggcg agttgg agatgg ccggcgg agttgg agatgg ccggcgg agttgg agatggcg accggcgg agttgg agatggcg acccggcg agttgg agatggcg accggcg agatggg accggcgg agatgggcg accggcg agatggg accgggg tgggccaa ccactttc gacagcga ggcggcgaa aggtggccg accgggcg accggcgg accggcgg accggcg accggcg agatgg agatggcg agatgg agatgg acccggcg agatggg agatgg acccggcg agatgg agatggcg agatgg agatggcg agatggcg accggggg accggcg agatgg agatgg agatgg agatgg acccggcg agatgg accgggg agatgg agatgg agaggg accg agatgg accgggg accgg accgg agatgg accgggg accgg accggg accgg accggg accgg accggg accgg accg agaggg accg agaggg accg agaggg accg agaggg acggg acgg agaggg accg agaggg acgg acggg acgg agaggg accg agaggg acgg acgg agagg			_					
PIDLRPPRHAGQCUAGCTAGE       PIDLRPPRHAGQCUE         PIDLRPPRHAGQCUE       PIDLRPPRHAGQCUE         RPUE       PIDLRPPRHAGQCUE         PIDLRPPRHAGQCUE       PIDLRPPRHAGQUE         PIDLRPPRHAGQUE								
HQAADREQPLICIEVEVEGENERSUPHICENTENT         NADE COUNT       169       a       387       c       416       g       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G       G <th cols<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
RPQHGQRQDDRUPDRCSQHIHTLH"BASE COUNT169 a387 c416 g205 tORIGIN1gccgacgtgcggggctgggagtggctggagtggctgg1gccgacgtgcggggctgggagtggctgggagacgtcgggcatgg11gccgacgtgcggggctgggggctggacggagacgtcgggcatgg121ccccacgtctgttgccgcggggctggggggcatggcggggctgg181gacggaggacggggccggacgggggccggcggggccggcggggccgg301tatgcgggatgatcgacgggcggccggcgggggctggcgggggcg301tatgcggcgggcgcggctgatgacgggcgggggcgggggggggggg301tatgcggcgggcgcggctgatgacgggtgttggggcggggggg301tatgcggcgggcgcggctgatgacgggtgttggggcggggggg301tatgcggcgggcgcggctgatgacgggtgttggggcgggggg301tatgcggcgggcgcggctgtgtaggggtgttggggcgggggg421gcctggccggcgcggctgtgtaggggtgttggggcgggggg421gcctggcgggcctgccgggcggcggtgttggggcggggg421gcctggcgggcctggcggcggggtgtggggcggggg421gcctggcgggcctgccgggcggggtgtgggg421gcctggcgggcggggcggggtgtgggg421gcctggcgggcggggtgtggggtgtgggg421gcctggggggcggggtgtggggtgtgggg421ggcctgggg <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
BASE COUNT169 a387 c416 g205 tORIGIN1 gccgaagccg acggcaattg cgggctggg tgagaagctcggtctcctga ggccatcg tcacgcact gggcatcg11 ccccaagctc tgttgccgcg cggacggatcggcgaggagggcgcaggatc121 ccccaagctc tgttgccgg cggacggatcgacgagatcg ccgccggat ccgtcgcgt181 gacggagagg gcgcgcgag ggtggtcaag cgctggcg cggccggat ccgtcgcgtccaagcgct241 gtccgtcgc tgttctccga cgcgacgctg agggcacaccggcgcggt ccggcggat ccgtcgcgc301 tatgcggca tgatcgacg ggcggcgg aggggcgccaggatcgg agggcggat cggcggat cgtgcggc ggggtgt301 tatgcggca tgatcgacg agccgctg atgagcggt atgaggcgt ccgcgggg cggggatcg gcgggatcg agggcggat cgtgcggg agggcggat cgtgcggg gggggat aggggcgg cgggggg cgggggg ggggggg ggggggg gggggg								
1gccgaagccgacggcaattggagttggcgtggtctcctgacgggcatcgagagcagctcg61ccgggggatgcggggctgggtgagaagctgccgcagagatcaccgccatgggcatcgac121ccccacgctctgttgccgcgcggacggatggacgagatcgccgccgcggtccagacgcgt181gacggagagggccgcggagaggtggtcaagcgcctggcgccggcgcggatccgtcgctgt241gtccgtcgcctgttctccgacgcgacgcggaaggcaacaccgagcggtcctcaagcgc301tatgcgggcatgatcgacgaggcgggccgaccaggatcgcaaggcttcctgccggcgcgc361ctgctgtcctccgacgctggggcgggcctatctgctgctgagcggggtggg421gcctaggccgagccggcgtgatgtttgatgtgctggcgga421gcctaggccgagccggctggtgtggggcctgcggggtgg421gcctaggccgggtctgccgctggcggggcggggccgg421gcctaggccgagccggcgggtgtgggcgtgcgggggc421gcctaggccgggtctgccgctggcgggggcggggggg421gcctaggccgggtctgccgctggcgggggggggg421gcctaggccgggtctgccgccgacggggggggggggggggggggggggggggggggg	BASE COUNT	169 a						
61ccgggcgatgcggggctgggtgagaagctcgccgcagagatcaccgccatgggcatcgac121ccccacgctctgttgccggcggacggatcgacgagatcgccgccgcgtccagacgct181gacggagagggcgcgcggagaggtggtcaagcgcctggcgcggccggatccgtcgctg241gtccgtcgcctgttctccgacgcgacgcgaagggcaacaccgacgcgtcctcaagcgc301tatgcgggcatgatcgacgaggcggcggccaggatcggaaggcttctgctcgccgc361ctgctgtcctccgacgctgaatgaagcgtatgtttgatgtgctggcggagcgggatcgg421gcctaggccgagccggctgaatgaagcgtatgtttgatgtgctggcggagcggcatcgg421gcctaggccgagccggctgaatgaagcgtatgttggggcctgcgggcggagcggcatcgg421gcctaggccgagccggtcgcagcggggggggcgcgccattggcggctggcgga421gcctaggccgagccggtcgctggcgggctgtggggcggctggcgggcgggggg481tggcggtcctggtctggcgcagcggggggggggcggggctgggggggctggcggg541ggcctggaccatggcggggtggccggaggtggcacccacttccgacaatctg61atcaatggctgacggggggggggggggggggggggggggggggggggg								
121 ccccacgctc tgttgccgg cggacggat gacgagatg ccgccggct ccagacgcgt 181 gacggagag gcgcgcgag ggtggtcaag cgcctggcg cggccggat ccgtcgttg 241 gtccgtcgc tgttctccga cgcgacgct aagggcaaca ccgagcgtt cctcaagcgc 301 tatgcgggca tgatcgacg ggcggccgc caggatcgg aaggcttct gctcgccgc 361 ctgctgtct ccgacgctg gcgggctat ctgctggt gcggcgtat ggcgggcg 421 gcctaggcg agccggctg atgaagggt tgttgagg cggcggg cggcgatcg 421 gcctaggcg agccggctg atgaagggt tgttgagg cggcggt tgtggggg 481 tggcggtct ggtcctgcc ctggccgtg ggcggctat tgtggggcgt tgtgggggt acttcg 541 ggcctggtct ctactggtcg cagcggtg ggcggccta tgtggggcac ccacttct gacaatcctg 661 atcaatggct gacgccgat ggtcacatg ggcggccg cagcgggg acccggg gctcgtta 721 agctctggag cgtgctcgt ggtcacatg ggcggcgg cagcggg tggcggg ggcggg 841 tgacgggtg ggcgagat aatggggg acgggggg acggggtg cagcgggg acccgggg gctcggt 841 tgacggggt ggcgcagat aatggggg acgggggg tggcggg tggcggg acccgggg gctcgg 841 tgacggggt ggcgagat aatggggg acggggtg cagcgggg tggcggg ctggttg ctggtcgg 841 tgacggggt ggcgagat aatggggg acggggtg tgacgcgg tggcggg accgggg cggggcc 901 ttgacgcga atatctgcg cggcgggg tcaccgg ttcggtcg ctggtcgg accgggg ccgggacc 901 ttgacgcg cgaaacgag cggggatcg cggcggg tcaccgta gccgggaac accgagtca 961 ccgtcatcc ggtgctgac gcacgggg tcaccgta gccgggaac accgagtca 961 ccgtcatcc ggtgctgac gcacgggg tcaccgta gccgggaac accgagtca 961 ccgtcatcc ggtgctgac gcacgggg tcaccgta gccgggaac accgagtca 961 ccgtcatcc ggtgctgac gcaaggag cggcggac tacccgta gccgggaac accgagtca 1021 tttccagcg cgaaacgaa gcggggatcg ccagcgg ccaggg ccaggg ccagagca								
<ul> <li>181 gacggagagg gcgcggaga ggtggtcaag cgcctggcgc cggccgcgat ccgtcgttg</li> <li>241 gtccgtcgcc tgttctccga cgcgacgctg aagggcaaca ccgagcgtt cctcaagcgc</li> <li>301 tatgcgggca tgatcgacg ggcggccggc caggatcgg aaggctteet gctcgccgc</li> <li>361 ctgctgtcet ccgacgctgg gcgggcetat ctgctgcteg acgcggcgg cggcgatctg</li> <li>421 gcctaggccg agccggctg atgaagcgt tgttgatgt gctggctga gcgatcgg</li> <li>481 tggcggteet ggtcctgceg ctggccggg ggggcetet ggcggcete ggcgtgtt ccgatgccga</li> <li>601 agttcgcac catgcgcat ggcggcetga ggcggcetga tggcgaget cagteggeg gctggteg</li> <li>61 atcaatgget gacgcgate ggcggcetg ggcgcgget cagteggeg accceggeg gctcgte</li> <li>721 agctctggag cgtgetege ggcgcegg cagccggeg tgacggege tggcgcge aaggtcgec</li> <li>841 tgacgggtg ggcgcagate aatgggega acgagttgt gatcgcgg accceggeg gctcgteg</li> <li>841 tgacggggtg ggcgcagate aatgggegg tctcgteg acggggteg cagcgggte tggcggege aaggtcgee</li> <li>901 ttgacgccga atactgge cggcgctge ttctgttcga tctgcgggte ctggtcaga</li> <li>901 ttgacgcga atactgge cgggggetge cggccgga cggcggae acccgggg gcgtaggee</li> <li>901 ttgacgcga atactgge cggcggeeg cggcgge tcaccgga gcgggae acccgggg cgggae</li> <li>901 ttgacgcga atactgge cgggggetge cggcaggae acccggag cgcgggae acccgggae accggggae</li> <li>901 ttgacgcga aggggae cgggggeeg cggcggae cgccggae accggggae accgggae accgggae accggggae accgggae accggae accgggae accgggae accgggae accgggae accgggae accgggae accgggae accgggae accgggae accggae accggae accggae accgggae acccggae accgggae accgggae accggae accgggae accgggae accggg</li></ul>								
241 gtccgtcgcc tgttctccga cgcgacgctg aagggcaaca ccgagcgctt cctcaagcgc 301 tatgcgggca tgatcgacga ggcggccggc caggatcgcg aaggcttcct gctcgccgcc 361 ctgctgtcct ccgacgctgg gcgggcctat ctgctgctg acgcggcgg cggcgatctg 421 gcctaggccg agccggctga atgaaggta tgtttgatg gctggctgca gcgatcgggc 481 tggcggtcct ggtcctgccg ctggccgtgc tgtggggcgct tgtgggcgcg acttcgccgg 541 ggcctggtct ctactggtcg cagcgcgtg ggcgcgccc ggcgctgtt ccgatgccga 601 agttcgcac catgcgcatc gatacgccg aggtggccac ccaccttct gacaatcctg 661 atcaatggct gacgcgatc ggcggccgg cagcggcgg acccggcg ggctgttca 721 agctctggag cgtgctgc ggcgccgg cagcgggg acccggcg tgacggcg actcggcg 841 tgacgggtg ggcgcagatc aatgggcgag acgagtgg accccggcg ggtcggcg 841 tgacgggtg ggcgcagat aatgggggg acgagttg gatcgccg aaggtggc 901 ttgacgccga atatctgcg cggcgctgg tcccgtta gatcgcgg tctggtcag 961 ccgtcatcc ggtgctgac gcacggggg tcacccgta gccgagatc ggcgagac 961 ccgtcatcc ggtgctgac gcacggggg tcacccgta gccgagatc ggcgagac 961 ccgtcatcc ggtgctgac gcacggggg tcacccgta gccgagatc gcgaggct 1021 tttccagcg cgaaacgaag cggggatcg ccggccgg cccgg gcccagg cccagagcca 1081 gggccaggaa ggcggaga gccggtgg cctctcccgt ggccgag cccagagcca								
301 tatgeggea tgategaega ggeggeegge caggategeg aaggetteet getegeege 361 etgetgteet eegaegetgg gegggeetat etgetgateg aegeggeggg eggegege 421 geetaggeeg ageeggetga atgaagegta tgtttgatgt getggetgea gegateggg 481 tggeggteet ggteetgeeg etggeeggeg tgtgggeget tgtggeggetg aettegeegg 541 ggeetggtet etaetggteg eageegegtgg ggegegeete ggegetgttt eegatgeega 601 agttegeae eatgegeate ggeegeetga tgegeaaget eagetegat gagateegg 661 ateaatgget gaegeegate ggeegeetga tgegeaaget eagetegget gagateege 721 ageetetggag egtgetegte ggeegeegtg eageeggegt tgaegeegg geetegtte 841 tgaegggtg ggeegaate aatgggeag aeeeegget tgaegeegg geetegte 841 tgaeggggt ggeegaate aatggeegg eageegget tgaegeegt egteegge 841 tgaeggggt ggeegaate aatggeegg aeeggeegt egteegget eageegget 901 ttgaegeega atatetgee eggegeetge ttetgttega tetgeegget etggeegee 961 eegteatee ggtgetgae geeggegge teaeeegta geeggaate geeggae 961 eegteatee ggtgetgae geeggegge teaeeegta geeggaate geeggae 961 eegteatee ggtgetgae geeggeegg eegeegga eegeeggae aeegggae 1021 ttteeagege egaaaegaag eggggatege eggeeggae aeegggae aeegggee 1081 gggeeagaa ggeggegaeg tetgeetgg eeteteegt ggeegeeagg eeeagg								
<ul> <li>361 ctgctgtcct ccgacgctgg gcgggcctat ctgctgctg acgcggag cggcgatctg</li> <li>421 gcctaggccg agccggctga atgaagcgta tgtttgatgt gctggctga gcgatcgggc</li> <li>481 tggcggtct ggtcctgccg ctggccgtg ggcgcgct ggcgtgtt ccgatgccga</li> <li>541 ggcctggtct ctactggtcg cagcggtgg ggcgcgcct ggcgtgtt ccgatgccga</li> <li>601 agtttcgcac catgcgcatc ggcgcctga tgcgaagct cagtctgat gagttgcccc</li> <li>661 atcaatggct gacgccgtc ggtcacatga gcctggtcg accccggcg gctctgttca</li> <li>721 agctctggag cgtgctcgt ggcgccgtg cagccggcg tgacgcctg ggcgcctg ggcgcctg acccggcg</li> <li>841 tgacggggtg ggcgagatc aatgggcgag acgagtgt gatcgccg gctctgttca</li> <li>781 atcaggatga cttgatcgc cggcgctga acgagttgt gatcgccga aaggtgccc</li> <li>901 ttgacgccga atatctgcg ggcgctg ttctgttcga tctgcgggt cggcggct acccgggg gcgggt cacccgta gccgggatc gcggggcct</li> <li>911 tttccagcg cgaaacgaag cggggtcg ccgccgg ccgccgg gccgggaac accggggaac accgagtca</li> <li>1021 tttccagcga ggcgcgacg tctgcggg ccttcccgt ggccagag cccagagca</li> <li>923 ggccaggaa ggcggcgacg tctgccgg cctctcccgt ggccagag cccagagca</li> </ul>								
<ul> <li>421 gcctaggccg agccggctga atgaagcgta tgtttgatgt gctggctgca gcgatcgggc</li> <li>481 tggcggtct ggtcctgcg ctggccgtg tgtgggcgct tgtggggctg acttcgcgg</li> <li>541 ggcctggtct ctactggtcg cagcggtg ggcgcgccc ggcgtgtt ccgatgccga</li> <li>601 agtttcgcac catgcgcatc ggtggcctga tgcgcagct cagtctcgat gagttgcccc</li> <li>661 atcaatggct gacgccgatc ggcggcctg tgcggcgg accccggcg gctctgttca</li> <li>721 agctctggag cgtgctcgtc ggcgccgg cagccggg accccggcg gctctgttc</li> <li>781 atcaggatga cttgatcgc ggcgccga acgggggtg accgggcgt tgacgccga aaggtcgcc</li> <li>901 ttgacgccga atatctgcg ggcgctgc tctgttcga tctgcgggt cggcggct tctggtcga tcgcgggt ggcgggt tcaccgggg gcgggatc</li> <li>901 ttgacgccga atatctgcg gcacgggg tcaccgta gccgggatc gcggggatc</li> <li>901 ttgacgccga atatctggc tgggggtcg tcaccgta gccgggatc accggggatc</li> <li>901 ttgacgccga atatctgcg tggggtcg tcaccgta gccgggatc accggggatc</li> <li>901 ttgacgccga atatctgcg tggggtcg tcaccgta gccgggatc accggggatc</li> <li>901 ttgacgccg tggtgtgatc tgggggtcg tcaccgta gccgggatc accggggatc</li> <li>901 ttgacgccga atatctgcg tggggtcg tcaccgta gccgggatc accggggatc</li> <li>901 ttccagcg tggtgtgatc tgggggtg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tggtgtgatc tgggggtg tcaccgta gccgggatc accggggatc</li> <li>901 ttccagcg tggatgatc tgggggtg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tggtgtgatc tgggggtg tcaccgta gccgggatc accggggatc</li> <li>901 ttccagcg tggatgatc tggggtg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tggatgat tgggggtg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tggatgat tgggggtg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tgggtg tcg tggggtg tcg tcaccgta gccgggatc accgggatc</li> <li>901 ttccagcg tgggtg tcg tgggtg tcg tcgg tggcggg tcg tc</li></ul>								
<ul> <li>481 tggcggtcct ggtcctgccg ctggccgtgc tgtgggcgct tgtgggcgt acttcgccgg</li> <li>541 ggcctggtct ctactggtcg cagcgcgtg ggcgcgcctc ggcgctgtt ccgatgccga</li> <li>601 agtttcgcac catgcgcatc gatacgcccg aggtggccac ccaccttct gacaatcctg</li> <li>661 atcaatggct gacgccgatc ggcggcctga tgcgcaagct cagtctcgat gagttgcccc</li> <li>721 agctctggag cgtgctcgtc ggcgccgtg cagccggcg tgacgcctg cgtccggcg</li> <li>841 tgacggggtg ggcgcagatc aatgggcgag acgagttgt gatcgcccg aaggtggccac ctggtcgg</li> <li>841 tgacggggtg ggcgcagatc acggggcgg cggcgtg cagccggcg tgacgccgg aaggtcgcc</li> <li>901 ttgacgccga atatctgcg ggcgctgg tcacccgta gccggggt ctggtcgg</li> <li>961 ccgtcatcc ggtgctgac gcaggggt cggcggg tcacccgta gccgggaac accgagtca</li> <li>961 ccgtcatcc ggtgctgac gcaggggt cggccggg cggcagat accgggga cgccgggaac accgagtcg</li> <li>961 ttccagcg cgaaacgaag cggggatcg cggccagca accgagtca</li> <li>961 gggccaggaa ggcggcgacg tctgcggg ccgccgg cgccagcg cgccaggaac accgagtca</li> <li>961 ttccagcg cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtca</li> <li>961 gggccaggaa ggcggacg tctgcggg ccgcagcg cgccagcg cgccagcg cgccaggaac accgagtca</li> <li>961 ttccagcg cgaaacgaag cggggatcg cggccagca cgccagca cgccggaac accgagtca</li> <li>961 ttccagcg cgaaacgaag cggggatcg cggccagca cgccagca cgccggaac accgagtca</li> <li>961 ttccagcg cgaaacgaag cggggatcg cggccagca cgccagca cgccggaac accgagtca</li> </ul>								
<ul> <li>541 ggcctggtct ctactggtcg cagcgcgtgg ggcgcgcctc ggcgtgttt ccgatgccga</li> <li>601 agtttcgcac catgcgcatc gatacgcccg aggtggccac ccaccttctc gacaatcctg</li> <li>661 atcaatggct gacgccgatc ggcggcctga tgcgcaagct cagtctcgat gagttgcccc</li> <li>721 agctctggag cgtgctcgtc ggtgcacatga gcctggtcgg accccggccg gctctgttca</li> <li>781 atcaggatga cttgatcgcc ggcgccgtg cagccggct tgacgccgac aggtggccc</li> <li>841 tgacggggtg ggcgcagatc aatgggcgag accgggtgt tctggtcga caggtggcc ctggtcagca</li> <li>901 ttgacgccga atatctgcgc gcacggggcg tcacccgtta gccgagatc gcgtaggcct</li> <li>961 ccgtcatccc ggtgctgac gcacgggg cggcagatc accggggg cgcagatc accgggga cagcgggatc gcgcagatc accgggga cgcaggtg cccagggac accgagtca</li> <li>961 lttccagcgc cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtcca</li> <li>961 lttccagcg cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtca</li> <li>961 lttccagcg cgaaacgaag cggggatcg cggccagca cgccggaac accgagtca</li> <li>961 lttccagcg cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtca</li> <li>961 lttccagcg cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtca</li> <li>961 lttccagcg cgaaacgaag cggggatcg cggccagca cgccgggaac accgagtca</li> </ul>								
<ul> <li>661 atcaatggct gacgccgatc ggcggcctga tgcgcaagct cagtctcgat gagttgcccc</li> <li>721 agctctggag cgtgctcgtc ggtcacatga gcctggtcgg accccggccg gctctgttca</li> <li>781 atcaggatga cttgatcgcc gcgccgtg cagccggcgt tgacgcctga cgtcccggcg</li> <li>841 tgacggggg ggcgcagatc aatgggggag acgagttgtc gatcgccgac aaggtcgcc</li> <li>901 ttgacgccga atatctgcgc gcacggggcg tcacccgtta gccgagatcg gcgtaggcct</li> <li>961 ccgtcatccc ggtgctgacc gcacggggcg tcacccgtta gccgggaac accgagtcca</li> <li>1021 tttccagcgc cgaaacgaag cggggatcg ccggccagca cgccgggaac accgagtcca</li> <li>1081 gggccaggaa ggcggcgacg tctgcctgg cctctcccgt ggccgccag cccagagcca</li> </ul>								
721 agetetggag egtgetegte ggteacatga geetggtegg acceeggeeg getetgttea 781 ateaggatga ettgategee gegegeegtg eageeggegt tgaegeettg egteeeggeg 841 tgaeggggtg ggegeagate aatgggegag aegagttgte gategeegge aaggtegeee 901 ttgaegeega atatetgege eggegetege ttetgttega tetgegggte etggteagea 961 eegteateee ggtgetgaee geaeggggeg teaceegtta geegagateg gegtaggeet 1021 ttteeagege egaaacgaag eggggatege eggeeagega egeegggaae aeegagteea 1081 gggeeaggaa ggeggegaeg tetgeetgg eeteteeegt ggeegeeagg eeeagageea	601	agtttcgcac	catgcgcatc	gatacgcccg	aggtggccac	ccaccttctc	gacaatcctg	
781 atcaggatga cttgatcgcc gcgcgccgtg cagccggcgt tgacgccttg cgtcccggcg 841 tgacggggtg ggcgcagatc aatgggcgag acgagttgtc gatcgccgac aaggtcgccc 901 ttgacgccga atatctgcgc cggcgctcgc ttctgttcga tctgcgggtc ctggtcagca 961 ccgtcatccc ggtgctgacc gcacggggcg tcacccgtta gccgagatcg gcgtaggcct 1021 tttccagcgc cgaaacgaag cggggatcgc cggccagcga cgccgggaac accgagtcca 1081 gggccaggaa ggcggcgacg tctgcgctgg cctctcccgt ggccgccagg cccagagcca								
841 tgacggggtg ggegcagate aatgggegag acgagttgte gategeegae aaggtegeee 901 ttgacgeega atatetgege eggegetege ttetgttega tetgegggte etggteagea 961 eegteateee ggtgetgaee geaeggggeg teaccegtta geegagateg gegtaggeet 1021 ttteeagege egaaaegaag eggggatege eggeeagega egeegggaae aeegagteea 1081 gggeeaggaa ggeggegaeg tetgegetgg eeteteeegt ggeegeeagg eeeagageea								
901 ttgacgccga atatetgege eggegetege ttetgttega tetgegggte etggteagea 961 eegteateee ggtgetgaee geaeggggeg teaecegtta geegagateg gegtaggeet 1021 ttteeagege egaaacgaag eggggatege eggeeagega egeegggaae acegagteea 1081 gggeeaggaa ggeggegaeg tetgegetgg eeteteeegt ggeegeeagg eeeagageea								
961 ccgtcatccc ggtgctgacc gcacggggcg tcacccgtta gccgagatcg gcgtaggcct 1021 tttccagcgc cgaaacgaag cggggatcgc cggccagcga cgccgggaac accgagtcca 1081 gggccaggaa ggcggcgacg tctgcgctgg cctctcccgt ggccgccagg cccagagcca								
1021 tttccagcgc cgaaacgaag cggggatcgc cggccagcga cgccgggaac accgagtcca 1081 gggccaggaa ggcggcgacg tctgcgctgg cctctcccgt ggccgccagg cccagagcca								
1081 gggccaggaa ggcggcgacg tctgcgctgg cctctcccgt ggccgccagg cccagagcca								

//

.

LOCUS DEFINITION ACCESSION	gcc1444 gcc1444. gcc1444	2031 bp	mRNA	B	ст 1	5-OCT-1999
VERSION KEYWORDS						
SOURCE	• Caulobac	ter crescentu	ıs.			
ORGANISM		ter crescentu				
	Bacteria Caulobac		eria; alph	a subdivisi	on; Caulob	acter group;
REFERENCE		s 1 to 2031)				
AUTHORS	Awram,P.					
TITLE		of the S-lay				
JOURNAL	Lipopoly: Unpublis	saccharide Sy	nthesis 1	n Caulobacte	er crescen	tus
REFERENCE	-	s 1 to 2031)				
AUTHORS	Awram, P.J					
TITLE		ubmission				
JOURNAL	Submitte	d (15-OCT-199				
FEATURES		Location/Qua	llfiers			
source	:	/organism="(	aulobacte	r crescentu	5 ¹¹	
		/strain="NA1			0	
gene		3569				
		/gene="orf15	5 "			
CDS		3569	- <b></b>			
		/gene="orf15 /codon start				
		/product="pi		lybdenum co	factor bio	synthesis
		protein"		rybaenam ee	140001 010	5 ynene 515
		-	n="GEAIRLS	PQGDDAQAIAS.	AVSPAPVDVI	VTIGGASVGDHDLVKP
						ALVCAELFLRPLLAAL
					STDPDGRVVA	TPFPDQDSSLVSVFAR
		ADALLRRRPGAN	PPAATGEVVD	VLPLRRG"		
gene		/gene="lpsK'	,			
CDS		6582031				
		/gene="lpsK'	,			
		/codon_start	:=1			
			utative nu	cleotide su	gar epimer	ase/dehydratase
		protein"				
						PFTRDTLLQATLYGLA LTHPGIDGGLRTVAGA
						LIIGSASEAEAFLRAP
						LRDSGLSPAAILFLTD
		SAMSTFGAERL	GRLKTEGVRL	LRRHGVVEMGA	AANTPQLREI	SIEELLSRPPVRLDPE
						EYNLFHIEREIAERHP
						NHPCEGVRTNVLGTRN
		VAVAAKACGAAI LGSAGSVV"	HLALISTDKA	VAPTSVMGAAK	RVAEAVARQY	GGGGDMRVSIVRFGNV
BASE COUNT	255		703 g	350 t	1 others	
ORIGIN	200					
	gcggtgaggc	gatccgactt f	ccccgcagg	gcgacgacgc	ccaggcgat	c gccagcgccg
						c ggcgaccatg
121 a	acctggtcaa	accegeacte o	cgaacgctgg	gccttgcgct	ttcggtcga	g acggtcgccg

181	tgcgccccgg	caagccgacc	tggagcgggc	ggttgccgga	cggtcgccgc	gtggtgggtc
241	tgccaggaaa	cccggcctcg	gcgctggtgt	gcgcggaact	cttcctgcgg	cctctgctgg
301					cgcgggcttg	
361	ttccggcggg	cggaccgcgg	gagcattgga	tgcgcgccgc	gctgtcgacg	gatccggacg
421					tctggtcagc	
481	gcgccgatgc	tctgctacgg	cgacggcctg	gcgcgccccc	tgcggcgacg	ggcgaggttg
541	tcgatgttct	gccgctccgg	cgcggctgaa	accgcgacgg	catagaattg	acgtgctaag
601	cccggatttg	agttcgccgg	gcgtgacccg	accttcaccg	cttcagaggt	tcgtttcatg
661	gggcatgcag	gaaagatcgc	gacccacgtt	ctgctggcct	tcgtggccct	gctggccggt
721	cgctatctcg	tcatcgacat	gccgttcacg	cgggacacgc	tgcttcaggc	gaccctgtac
781	ggcctcgcag	cattcatcgt	ggagttggct	ttccgggtgg	agcgggcccc	gtggcgcttc
841	gtctcggcca	ccgaccacct	gcgacttctc	cgctcggccg	tcctgacggc	ggcggcgttc
901	ctggtcatta	cccgcctgac	ccatccaggc	atcgacggtg	gcctgcgcac	cgtggccggc
961	gcggccctga	tccaggcggc	gctgctgtcg	gcgctgcggg	tgatccggcg	gagcctgcat
1021	gagcgaatgc	tgctcgattc	ggtgctgcgc	cttggscccg	cctcgatgca	tccggcgctg
1081	ccgcgcctgc	tgatcatcgg	ctcggcctcc	gaggccgaag	ccttcctgcg	cgcgccggcc
1141	gggcttggcg	aacgttacgc	cccgatcggc	gtggtctcgc	cgctcgaccg	cgagaccggc
1201	gatgaactgc	gcggcgtctg	cgttctgggc	tcgatcgccg	atttcgacag	cgtgctggcc
1261	cgtctgcgcg	acagcggcct	gtcgccggcc	gcgatcctgt	tcctcaccga	cagcgcgatg
	agcaccttcg					
1381	cgccacggcg					
1441					cagagccggt	
1501	gtgtccggtc	gacgggtgct	ggtgacaggc	gcggggggca	gcatcggttc	cgagctctgc
1561	cgtcagatcg	ccgccagcgg	ctgcgcccat	ctgaccatgg	tcgacgcctc	cgaatacaac
1621					tcctctcgcg	
	ctctgcgacg					
1741	atcatcttcc	acgctgcggc	gctgaagcat	gtcacgctgg	tggagaacca	cccctgcgag
1801					tcgccgccaa	
1861					cgccgaccag	
1921					gcggcggcgg	
1981	gtcagcatcg	tgcgctttgg	caatgtgctg	ggctcggccg	gatcggtcgt	a

//

LOCUS DEFINITION ACCESSION VERSION	gcd2218 gcc2218. gcc2218	2142	bp	mRNA	ВСТ	15-OCT-1999
KEYWORDS	•					
SOURCE	Caulobacter	cresc	entus.			
ORGANISM	Caulobacter	cresc	entus			
			acteri	a; alpha :	subdivision;	Caulobacter group;
	Caulobacter	•				
REFERENCE	1 (bases 1	to 21	42)			
AUTHORS	Awram,P.A.					
TITLE	-		-	-		m and Smooth
		charid	e Synt	hesis in (	Caulobacter	crescentus
JOURNAL	Unpublished					
REFERENCE	2 (bases 1	to 21	42)			
AUTHORS	Awram, P.A.					
TITLE	Direct Subm					
JOURNAL	Submitted (					
FEATURES		cation	/Quali	fiers		
source		.2142				
		rganis train=			crescentus"	
gene	CO	mpleme	nt(3	719)		

CDS		/translatic PVARGRPRQGG VHRHRRLGAEG	(3719) .4" ct=1 anknown exs0 on="SCGQAHAH SPALFAPDQGQP SDGRALDLEPSF	FGERRAQREDQA (PRSGRLVDVPE RNVVGEGRQGAI	DRDPALGGREG	AEVPRQALMHHLGAE GAMARGVGDQLVDGH GAAGQQLVRLRERQD
			JQLAQHLGRRI'		AV TÕTHÕVEV I V	/LERGGEVVIETPAL
gene		11342138				
		/gene="lpsI				
CDS		11342138	. 11			
		/gene="lpsI /codon star				
				cosyltransf	erase"	
						RQLLAELHGVDGERL
						ALRREQGVVQARAE
						AEGLGRAHAAPADEQ
						/ARVVGDDLLVGQHH
						EVEVGDHEGPVEPVR GHHAFGHQQVDIGRV
		E"		GIGNEGVDEL	VQDQVIAGAP (	aunt anõõ a pi arva
BASE COUNT	Г 324 а		757 g	337 t	1 others	
ORIGIN			2			
1	atgatccgcc	gcccaaggtg	ctgcgcaagc	tgcaggtggt	cgcgcgcgcc	acggcctcgg
					gctcgagcac	
			· · · · · · · · · · · · · · · · · · ·		gatcgtgcag	
					agacgtcttc	
					cgcctgggga	
					cgacgttgcg ggtgtcggtg	
					ctcgaccccc	
					gcttctgacc	
					caacgggttc	
					ggtgctcgac	
661	cgggcctggt	cttcacgctg	cgcgcgccgc	tctccgaacg	catgagcctg	gccgcatgaa
					gccatgatgg	
					gccgtcgacg	
					gacgtcaata	
					gtgccgttcg	
					caggtgctgg atcggctaga	
					tgtctgatct	
					ccgccatggc	
					ccacggggtc	
					ggccgtcggc	
					gcacctccac	
					tgtgcaggcc	
					gctggtccca	
					cctcgatctc	
					ggctgacgaa	
					ggttccagcg ccgcgccgat	
,					gcatcatccg	
					cggtgatccc	
						ccagacgaag

1921 ttgaagtggg tgatcacgaa ggcccggtcg agccggtgcg tcaccggcgc gtcgaaatcc 1981 caggcctggc gcgcaatgtc gtgctggtac cagtgctgga cgtaataggg ataggcgccc 2041 tcggcgtaga cgagctggtc gtccagcttc aggtgcgcgc cggagccttc ggccaccacg 2101 cgtttggcca ccagcaggtc gacatcgggc gcgtggagat cg

11

LOCUS gcc648 2699 bp mRNA BCT 15-OCT-1999 DEFINITION gcc 648. ACCESSION qcc648 VERSION KEYWORDS SOURCE Caulobacter crescentus. ORGANISM Caulobacter crescentus Bacteria; Proteobacteria; alpha subdivision; Caulobacter group; Caulobacter. REFERENCE (bases 1 to 2699) 1 AUTHORS Awram, P.A. Analysis of the S-layer Transporter Mechanism and Smooth TITLE Lipopolysaccharide Synthesis in Caulobacter crescentus JOURNAL Unpublished REFERENCE (bases 1 to 2699) 2 Awram, P.A. AUTHORS TITLE Direct Submission Submitted (15-OCT-1999) UBC JOURNAL FEATURES Location/Qualifiers 1..2699 source /organism="Caulobacter crescentus" /strain="NA1000" 1..1056 gene /gene="orf1" CDS 1..1056 /gene="orf1" /codon start=1 /product="putative chemotaxis receptor protein" /translation="RPVIAPGRTDDODOVITVLSEOFKALAAGDLTARVDVVFSERYG HVRDEFNAAMTKLGQVMDEISMAAGGLGESSDEVARVSQHLSRGAGRQALDLHGARAA LQKVGAAAGRGVDGLRRVTEAAAGLRIDAASARRSVREAVGSIAEVEOSALRISOAAA LFDEVAQQANVLSLIADVEGARGGEGXGPFQAVAADKMRVLAERASGAAREIKGVTAA NSAQVSRCARLMDAASASFGGMASRITQIDGLVSGLAKSAQEQAHGLRAVDEAVDRAD DIAQTHADQVDEAAAVTGRLIEEAESLIQAASPFRAHVVSRPASRPEPARAGHHAPAG NAVARAHARIAAYARPR" 1060..2577 gene /gene="orf1" CDS 1060..2577 /gene="orf1" /codon start=1 /product="putative hippurate hydrolase protein" /translation="MLCHPGKRVALVRDPGAASAALPQSLGPGSTPGFRRGSAGMTQD ISVRGGGGGEHVRRSCDSRNPRPSMKSLFAASALALLIATAAQAGPLNVPATQKVISA OLDRDYPALEALYKDIHAHPELGFOEVETAKKLAAOMRALGFTVTEGVGKTGVVAVLK NGEGPKVLIRTELDGLPMQEKSGLAWASQATATWNGEKVFVAHACGHDIHMAAWVGAA RQLVAMKAKWKGTLVFVAQPSEETVRGARAMLDDGLWDKIGGKPDYGFALHVGSGPXG EVYYKAGVLTSTSDGLDITFNGRGGHGSMPSATIDPVLMAARFTVDVOSVISREKDPS AFGVVTVGSIQAGSAGNIIPDKARVRGTIRTODNAVREKILDGVRRTVKAVTDMAGAP PADLKLTPGGKMVVNDAALTDRTAVVFKAAFGARAVAQDKPGSASEDYSEFVLAGVPS VYFAIGGSDPAELAKAKAEGREPPVNHSPYFAPVAEPTIRTGVEAMTLAVLNVLK"

BASE COUN ORIGIN	I 396 a	a 935 c	984 g .	381 t	3 others	
	cgccccgtga	teacaceaaa	cogcaccgac	gatcaggatc	aggtgatcac	catactatec
	gagcagttca					
	gagcgctatg					
	atggacgaga					
	gtctcgcagc					
	gcggcgctgc					
	accgaagccg					
	gcggtggggt					
	ctgttcgacg					
	acacadadca					
	ctggccgagc					
	gcgcaggtct					
	gcgtccagga					
	caggcccatg					
	acccatgccg					
	gagagcctga					
	cggcccgaac					
	cacgcccgca					
	cgtgtagcgc					
	cccggctcta					
	aggggtggcg					
	tccatgaagt					
	gccgggccgt					
	tatccggcgc					
	gaggtcgaga					
	gagggcgtcg					
	ctgatccgca					
	agtcaggcga					
	gacatccaca					
	tggaagggca					
	gccatgctgg					
	ctgcacgtcg					
	acctcggatg					
	gccaccatcg					
	agccgcgaga					
	agcgccggta					
2161	aacgccgtgc	gcgagaagat	cctcgacggc	gtgcgccgca	cggtgaaggc	ggtgaccgac
2221	atggccggcg	ccccgcccgc	cgacctgaaa	ctgaccccgg	gcggcaagat	ggtggtcaat
2281	gatgcggccc	tgaccgatcg	cacggcggtg	gtgttcaagg	ccgccttcgg	ggcccgcgcc
2341	gtggcgcagg	acaagccggg	ctcggcgtcc	gaggactatt	cggaattcgt	gctggccggc
	gtgccgtcgg					
	gccgaaggcc					
	acgatccgca					
	ttctcccctt					
	ccgcgcgacc					
11	-	2	2		_	

LOCUS	gcc1290	2109 bp	mRNA	BCT	15-0CT-1999
DEFINITION	gcc1290.				
ACCESSION	gcc1290				
VERSION					
KEYWORDS	•				
SOURCE	Caulobacter	crescentus.	•		
ORGANISM	Caulobacter	crescentus			

.

	Bacteria; Caulobact	Proteobact	eria; alpha	a subdivisio	on; Caulobac	ter group;		
REFERENCE		1 (bases 1 to 2109)						
AUTHORS		Awram, P.A.						
TITLE		Analysis of the S-layer Transporter Mechanism and Smooth						
JOURNAL	Lipopolysaccharide Synthesis in Caulobacter crescentus Unpublished							
REFERENCE		s 1 to 2109)						
AUTHORS	Awram,P.A							
TITLE	Direct Sı							
JOURNAL	Submitted	d (15-0CT-19						
FEATURES		Location/Qu	alifiers					
sourc	e	12109						
		-		crescentus	6 ''			
		/strain="NA						
gene		<pre>complement( /gene="orf1</pre>						
CDS		complement (						
CD3		/gene="orf1						
		/codon star						
				errupts O-ar	ntigen synth	nesis"		
		-		-		RDGDPQMVWTPTREE		
						LKAGPDGWFASLPAR		
						DALKPMLGPLRGPAG		
						- HYAAPIAAPITLPAE		
		APKVVAFYLPQ	) FHPFPENDTWV	GKGFTEWTNV	SKAQPQFLGHY	QPRLPADLGFYDLVS		
		ARCWPSRWTWE	PRARASTPSAST	TTGSPESAFW	NGRWICS"			
gene		complement	(17662107)	1				
		/gene="orf1						
CDS			(17662107)	)				
		/gene="orf1						
		/codon_star						
		-	-		rter kpsT-l:			
						VATVFEADILVLDEW		
		DWLAYRETQAA		JAKIVVMATHDI	HDLVQRVCNRV(	CELQGGKIXFLGSXE		
BASE COUNI	r 310 a	-	767 g	311 t	2 others			
ORIGIN	. 510 8		,0, g	JII C	2 Others			
	atcaacacac	ttggcgaact	aactetatae	ctcggcgatg	atcggatggg	cattaatcaa		
		caggcgctga						
		tcgagatagg						
		ttgggatgcc						
		ggatcggcgt						
		ggcatgacgc						
		gccacggcgg						
		ttggtgatct						
		tggccggcat						
		cccatggccc						
		tcggggcggt						
661	cgggtcgcgc	atgtagcgcg	ccaggtcctc	gaacaccgcg	cggtcgtcct	gcggcgagtg		
		atcaggatgt						
		agggcgaagg						
		aggcgctttc						
		gccaggtcca						
		ccggcaggcg						
		actcggtgaa						
1081	aactgcggca	ggtagaaggc	caccaccttg	ggcgcttcgg	ccggcagggt	gatcggggcg		

1141 gcgatcgggg cggcgtagtg cgggctgcgc aggttgcggg agaccgcgat cgcgtgggcg 1201 taggtcgcgc cgaccgcgcc ctcgtcgcgt cctgccggac gcgccacgcg tcccttggcc 1261 agcagegeec geeegeteg ceaggeegeg eegegagge egegeaaggg geeeageate 1321 ggcttcagcg cctggatcgc cgcgccgcg aggccgcgcg gatcgcggcc gagatccccg 1381 atacgggtga ccgtgagggc ctcgaccgtg aaggcgcagg cgccctcgga cgggtccagc 1441 cgcacgccgt tcagttggaa actgcgcgcc ggcagcgagg cgaaccagcc gtccggaccg 1501 gccttcaggc gggcgtagga atcctcggaa aagccgtcgc cccagtcggc gtagagcgcg 1561 gggccgacca gcttgccctc gaccgcctca agcttgacgt cgatccgcac cgccttggcc 1621 gcccgcagcg ccttgcgctc ttcgcgggtg ggcgtccaga ccatctgcgg gtcgccgtcg 1681 cgqgcqgtca ggaccgtgcg cccggccgca tcgacgccgg tgaccgacac gtcgcggccg 1741 gtcttcaggc cgggcggcag gcggctcatg cggcctgggt ttcgcggtag gccagccagt 1801 cetegktega geegaggaag gsgatette egeeetgeag tegeagaeg eggttgeaga 1861 cccgctggac caggtcatgg tcgtgggtgg ccatcaccac gatcttggcg tcctcgacca 1921 teeggtgeat eegetgggeg geettetgea egaaggegge gtegeeggeg etgageeact 1981 cgtccagcac caggatgtcg gcctcgaaca cggtggccac cgtgaacatc aggcgcgcca 2041 gcataccggc cgaataggtg cgcaccggca ggtgcagaaa gtcgcccagg cccgataact 2101 cggcggggg

LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE	gcc 2205 Caulobacte	r crescentus	mRNA	BCT	15-OCT-1999	
ORGANISM			ia; alpha	subdivision; Ca	aulobacter group;	
REFERENCE		1 to 2365)				
AUTHORS	Awram, P.A.					
TITLE				rter Mechanism a Caulobacter cre		
JOURNAL	Unpublishe	_				
REFERENCE	2 (bases	1 to 2365)				
AUTHORS	Awram, P.A.					
TITLE	Direct Sub	mission				
JOURNAL		(15-OCT-1999				
FEATURES		ocation/Qual	ifiers			
source		2365				
		organism="Ca		crescentus"		
		strain="NA10				
gene		omplement(2.				
CDC		gene="orf16"				
CDS complement(2550) /gene="orf16"						
		codon start=				
		—		ODA hydrolase p	rotein"	
					EVTVDGRKVAYREWGGGERTL	
	VMVSGLGDGAETFETVGPRLAQGWRVIAYDRAGYGGSADDPRVHDAERAEAELKGLLA					
	A	LKVRKPVLLGHS	LGGVFAAHF.	AARNPGEVTGLVLEE	TRPTGFTAACKAKRMRGCAFP	
	P	LLKYAFPPGGRR	EVETLORIE	R"		
gene		omplement(55	92178)			
		gene="pgi"				
CDS		omplement(55	92178)			
		gene="pgi"	<b>_</b>			
	/	codon_start=	1			

LAPQRTFAGNRPSTLVLLDRLTPQTFGALIALYEHKTFVEGVIWGINSFDQWGVELGK							
VMANRILPELESGASGQHDPSTAGLIQRLKR"							
BASE COUN	r 367 a	a 849 c	783 g	364 t	2 others		
ORIGIN							
	gccgctcaat						
	tgagcagcgg						
	cggtcggccg						
	agtgggcggc						
	acgccgccag						
	catcggcgct						
	gccgggggcc						
	gggtccgctc						
	cgccggcctg						
	gccctcgcat						
	atgctggccc						
	cagctcgacg						
721	cttgtgctca	tagagggcga	tcagggcgcc	gaaggtctgg	ggcgtcaggc	ggtcgaggag	
781	caccagggtc	gagggccggt	tgccggcgaa	agttcgctgc	ggggccaggg	tggcgatttc	
841	ggcgtcagag	acgcccttgg	ccgtgagctc	ggccacgaca	tcgtccgtgg	tccgcccgac	
901	catgaaggcc	tcggcctggg	ccaagaggtt	cgagagcagc	ttctcgtgca	tgccggccgg	
961	gccttcgtcc	gacttggcga	cgccgatcag	ctccatcggc	gtgatgtcgg	tcccctggtg	
1021	catgcactgg	aaataggcgt	gctgaacatt	ggtgccttcg	tcgccgaaca	ccaccgtggc	
	cgtgccgcgc						
	cagctgctgg						
	ggcccggcgg						
	attctgctcc						
	accctggaac						
1381	cgaatagcgg	ccqccqaccc	agteccagaa	cccgaacacg	cgatcgtccg	gcacgccgaa	
1441	ggcggcggtc	ttatccaaca	cootcoadat	qqcqqccaqa	tgctgattgg	cccctqctc	
	gcctagggcc						
						cggcggtggt	
	cagggcgaac						
	cggtcgcagg						
						gcacggmctg	
	cgcgaaagcc						
	ggccttgacg						
	ggacgaattg						
	gtgggccaga						
	caggtgcagg						
	gaactcgacg						
	ggcgtcgaga						
	gcttatcaaa						
	cgatgtcctg			coalgolotg	yaryycgrcg	licaaloogy	
2341	agcagacgac	cygeceegee	cloge				

/product="putative phosphoglucoisomerase"

/translation="MADLDAAWTRLEAAAKAAGDKRIVEFFDAEPGRLDALTLDVAGL HLDLSKQAWDEAGLEAALDLAHAADVEGARARMFDGEAINSSEGRAVLHTXLRAPAGA DVKALGQPVMAEVDAVRQRMKAFAQXVRSGAIKGATGKPFKAILHIGIGGSDLGPRLL WDALRPVKPSIDLRFVANVDGAEFALTTADMDPEETLVMVVSKTFTTQETMANAGAAR AWLVAALGEQGANQHLAAISTALDKTAAFGVPDDRVFGFWDWVGGRYSLWSSVSLSVA VAAGWDAFQGFLDGGAAMDEHFRTAPLEQNAPVLVALAQIFNRNGLDRRARSVVPYSH RLRRLAAFLQQLEMESNGKSVGPDGQPAKRGTATVVFGDEGTNVQHAYFQCMHQGTDI TPMELIGVAKSDEGPAGMHEKLLSNLLAQAEAFMVGRTTDDVVAELTAKGVSDAEIAT

11