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Abstract 

This study explored the interrelationships among cognitive processes (planning 

and simultaneous and successive processing) based on Planning, Attention, Simultaneous, 

Successive (PASS) theory, the math problem-solving components (problem translation, 

problem integration, and planning) based on Mayer's (1982) model, and their 

underpinning math achievements. The effects of planning and simultaneous and 

successive processing on the comparison problem, a type of math problem specifically 

difficult to children and even college students, were also investigated. 

One hundred Chinese sixth graders participated in the present study. The student's 

PASS processes were measured individually by using subtests of Kaufman Assessment 

Battery for Children (K-ABC) (simultaneous processing: Picture Series, Triangles; 

sequential processing: Number Recall, Word Order). The student's planning process was 

measured by Matching Numbers, a planning subtest of Cognitive Assessment System 

(CAS). The student's cognitive components in math problem solving were measured by a 

group administered math test designed by Mayer. In addition, a set of comparison 

problems designed by the investigator was group administered. 

The results of multiple regression analyses suggested that sequential processing 

was significantly associated with translation problem-solving component. Both 

simultaneous processing and planning were significantly associated with the integration 

problem-solving component. Moreover, Matching Numbers and simultaneous processing 

were significantly associated with the problem-solving component of planning. 
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Students' performances in mathematical comparison problems were analyzed by a 

series of 2 X 2 mixed factorial ANOVAs , with the level of each PASS cognitive 

processing (high vs. low) and the problem type (consistent language vs. inconsistent 

language) as independent variables, respectively. The results showed that there were main 

effects of problem type and level of cognitive processing, and of the interaction among 

simultaneous processing and problem type, Matching Numbers and problem type. As 

findings of previous studies, inconsistent language (IL) comparison problems were much 

more difficult than consistent language (CL) comparison problems for Chinese sixth 

graders in this study. However, students with high simultaneous scores performed well in 

solving both comparison problems, whereas students with lower simultaneous scores 

tended to perform similar with high simultaneous students in consistent language (CL) 

problems but much poorer than their peers with high simultaneous processing in 

inconsistent language (IL) problems. Similarly, students with high Matching Numbers 

performed similarly in both types of problems. But those with low Matching Numbers 

performed significantly poorer in IL problems than their peers with high simultaneous 

processing do. These results can help us explain students' special difficulty with 

inconsistent language (IL) comparison problems. 

Finally, the manifestations of PASS processes in the special groups of good and 

poor problem solvers in composite scores of math problem solving were compared. 

Students who were poor math problem solvers were poor at both subtests of simultaneous 

processing (Photo Series and Triangles), Matching Numbers, and Word Order, but 

performed similar with their peers who were good math problem solvers in Number 
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Recall. The profile of PASS processes in good the poor problem solvers in inconsistent 

language (IL) comparison problems were also compared. Poor problem solvers in IL 

problems were poorer at all PASS processes compared to their peers who performed well 

in IL problems. 

It is concluded that all PASS processes (as measured by planning and 

simultaneous and sequential processing) involved in arithmetic word problem solving. In 

particular, simultaneous processing and planning are the essential cognitive processes to 

build up a correct problem representation, which in turn leads to successful problem-

solving performance in arithmetic word problems. 
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CHAPTER 1: INTRODUCTION 

Context of the Problem 

Needs From Educational Reform 

Mathematics is one of the most important subjects in school because it is 

considered the basis of scientific thinking and informed living in a technologically 

advanced society. It provides and prepares students accessing and exploring future 

occupations in the fields of commerce, industry, technology and science, medicine and 

education among other fields. The importance and usefulness of mathematics has been 

widely articulated by the international mathematical education community (National 

Council of Teachers of Mathematics [NCTM], 1989). 

However, until recently, mathematics was viewed and taught in North America as 

a set of isolated skills to be learned through repetitive practice. Although many students 

today can do mathematics, they lack the understanding of the principles underlying 

mathematics problems. As a result they are unable to use mathematical knowledge in 

their daily lives. Many students avoid mathematics courses at higher levels of education 

due to their beliefs that mathematical skills are innate, and that mathematics learned in 

school has little or nothing to do with the real world (National Council for Educational 

Statistics, [NCES], 1996). 
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Another worrisome phenomenon in math education is the well-established cross-

national differences in math achievement. Studies consistently found that American 

students lagged behind their Asian peers (Robitaille & Garden, 1989; Stevenson, Lee, 

Chen, Lummins, Stigler, Liu and Fang, 1990; Stevenson & Stigler, 1992). In the third 

International Mathematics and Science Study (TIMSS, 1997), an important international 

survey was done on the outcomes of math education in the 1990s. The top four best 

performing countries for both the Grade four and three were all Asian countries (i.e., 

Singapore, Korea, Japan, and Hong Kong). The United States and Canada were not listed 

in the top ten countries (TIMSS, 1997). The poor performance of North American 

students in mathematics in recent cross-national comparisons lead researchers to question 

the effectiveness of the current mathematics instruction in North American schools. It 

was argued that mathematics needs to be reinvented as a subject of ideas and mental 

processes, rather than a learning of facts. Students need to be encouraged to explore 

patterns and seek solutions instead of passively practicing repetitive exercises and 

memorizing procedures and formulas (Fennema, Franke, Carpenter, & Carey, 1993). 

Given the discouraging status of mathematics learning in North America, a major 

shift has occurred in the content and methodology of research in mathematics education. 

For example, Nesher (1986) argued that this shift may be attributed in part to the growing 

interest of cognitive science researchers in mathematical thinking and "the growing 

awareness of mathematics educators that remedies addressing difficulties in learning 

mathematics will not be found in didactic tricks, but rather should be sought in a better 

understanding of the cognitive processes underlying mathematical thinking" (Nesher, 

1986, p. 114). Mathematics educators and researchers interested in problem solving have 



been urged to examine and use the work being done currently by cognitive psychologists 

particularly in the area of information processing (Lester & Garofalo, 1982). Also, 

cognitive psychologists, including Mayer (1998), have advocated the development of the 

psychology of mathematical problem-solving based upon research in the area of 

information processing to serve as the framework for improving mathematical learning in 

the schools. 

In general, the increasing importance of current research in cognitive psychology 

to mathematical education is apparent. However, the currently available cognitive studies 

mainly focus on basic arithmetic computation. The underlying process and mechanism of 

various math problem-solving processes are not clear. Thus it is more difficult to isolate 

the loci of performance deficits on complex math tasks (Geary, 1993). In order to get a 

complete picture of math problem-solving processes, both a general theory on higher 

level cognition and a specific theory on math problem solving are needed. 

The PASS theory and Mayer's (1987) Model on Mathematical Problem Solving 

Information processing theorists have identified a small number of elementary 

processes underlying all cognitive activity, although there is little agreement as exact 

number and nature of those fundamental processes (Palmer & Kimchi, 1986). As a result, 

cognitive abilities can be analyzed at many levels by deconstructing tasks into different 

components. Efforts have been made in this direction such as Anderson's work on 

memory (Anderson, 1983), Baddeley's (1986) working memory model, and the PASS 

theory of intelligence (Das, Naglieri, & Kirby, 1994). Based on Luria's 
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nueropsychological work as well as cognitive psychological findings, the PASS theory 

(Das et al., 1994) attempts to study the general mental processes which can be used to 

manipulate the information input when children attempt to solve a variety of cognitive 

tasks. According to the PASS theory, intelligence could be conceptualized as deriving 

from the cognitive processes involved in planning, attention, and information coding 

(Naglieri & Das, 1990). 

The PASS theory and Cognitive Assessment System (CAS) (Naglieri & Das, 

1997a) offer a unique approach to the understanding of human mental functioning. It is 

believed to "provide one of the most comprehensive accounts of behavior based upon 

psychological and neuropsychological theory" (Das & Varnhagen, 1986, p. 122). It 

appears that the PASS theory of cognitive processing can provide a comprehensive theory 

of intelligence called for by mathematics researchers. Insight into the cognitive processes 

underlying mathematics abilities would also have important implications for theoretical 

understanding of math problem solving processes and diagnosis of students' difficulties 

in mathematics, as well as for instruction and remediation. 

A large body of research has been accumulated which supports the PASS theory 

(e.g., Naglieri & Das, 1987, 1988, 1997c; Das et a l , 1994). In addition, there is a growing 

body of research on the relationship among the various components of the PASS theory 

and academic achievement (Naglieri & Das, 1987, 1997c; Cummins & Das, 1978; Kirby 

& Das, 1977). However, the vast majority of such research has focussed on the 

relationship between the PASS theory to achievement in reading areas. Only a few studies 

have focused on the relationship of the PASS theory and math achievement (Das, 1988; 

Cheng, Das & Leong, 1984; Warrick, 1989; Naglieri & Gottling, 1995; 1997; Naglieri & 
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Johnson, 2000, VanLuit & Naglieri, 1999). These studies mainly explored the 

relationships between PASS processes and students' general math achievement scores, 

PASS processes and computation scores. Math problem-solving is a complex task that 

involves various cognitive processes and components. More thorough research in this 

area is needed. 

, Understanding and solving arithmetic word problems demand the ability to access 

many different skills, such as language comprehension, an understanding of the described 

situation, the abilities to build up an appropriate problem representation and to find an 

equation, and computation skills for solving the problem. Mayer (1987) proposed a model 

on mathematical word problem solving. The model includes four cognitive components 

involved in solving mathematical word problems: (a) problem translation, (b) problem 

integration, (c) planning, and (d) execution. Mayer's (1987) model has been used to assess 

cognitive aspects of mathematical problem solving on the Scholastic Aptitude Test (SAT) 

(Bejar, Embretson & Mayer,. 1987), and to explore the math problem-solving components 

in several cross-national studies (Mayer, Tajika, & Stanley, 1991; Tajika, Mayer, Stanley, 

& Sims, 1997; Cai, 1995). It was found that poor problem solving could be caused by 

deficiency in any one component. Based on the above description, using both the PASS 

theory and Mayer's (1987) model on math problem-solving components together might 

provide us a good opportunity to explore in detail the nature of math problem solving and 

students' difficulties. 

A number of studies based on Mayer's (1987) model found that problem 

representation is a very important component for mathematics problem solving (Mayer & 

Hegarty, 1996). Lack of appropriate problem representation leads to failure in 



mathematics problem solving. Locating students' difficulties in math problem-solving 

component and the deficiency of underlying cognitive processes is considered more 

helpful to instruction and remediation than a general math achievement score (Sternberg, 

1984). This work demands a clear understanding of relationship between each math 

problem solving component and PASS processes, which is not available in the literature. 

Thus, the present study filled this gap by examining PASS processes and math problem 

solving components based on Mayer's (1987) model. Also, students' difficulties in math 

problem-solving will be analyzed in terms of the deficiencies of PASS processes. In 

addition, in the literature of math problem solving, the comparison problem has been 

found especially difficult for students from elementary schools to college (Hegarty, 

Mayer, & Green, 1992; Hegarty, Mayer, & Monk, 1995; Ver'schaffel, De Corte, & 

Pauwels, 1992). This study examined students' difficulties in comparison problems in 

terms of their deficiencies in the underlying PASS processes. 

Why Chinese Students? 

Cross-cultural studies comparing the mathematical performance of students in the 

U.S. and in Asian countries (e.g., China, Japan, and Korea) have consistently found that 

Asian students outperformed American students (Robitaille & Garden, 1989; Song & 

Ginsburg, 1987; Stevenson & Stigler, 1992; Stevenson et al., 1990; Stigler, Lee, & 

Stevenson, 1990). Most of these studies involved comparisons of students' mathematics 

achievement scores and various cognitive processes underlying arithmetic computation. 

Only a few studies (e.g., Cai, 1995; Mayer, et al., 1991; Tajika, et a l , 1997) explored the 



cognitive components in solving arithmetic word problems. The present study extended 

this line of research by exploring the underlying cognitive processes, as measured by 

PASS processes, of arithmetic problem solving. This study aimed to identify the PASS 

processes underlying math problem-solving components as measured by Mayer's model 

for a group of sixth grade Chinese students to understand clearly the cognitive processes 

of this special group that performed particularly well in math achievement tests. 

Statement of the Problem 

In the literature of the PASS theory, simultaneous processing and planning were 

found to correlate significantly with mathematics problem solving scores, whereas 

successive processing correlated more strongly with computation (Naglieri & Das, 

1997c). However, most studies were all limited to investigations of PASS processes and 

general scores of mathematical achievement (either for problem solving or computation, 

or combining the two into one general score termed "mathematics"). The mechanism of 

math problem solving in terms of fundamental cognitive processes is not clear. Little is 

known about the relationship between PASS processes and the math problem-solving 

components in Mayer's (1987) model, and the contribution of PASS processes to students' 

difficulty in arithmetic word problems has not been explored. Moreover, students' 

cognitive deficits in solving comparison problems based on PASS theory have never been 

explored. Finally, an in depth analysis of cognitive processes for Chinese children, a 

special group which has been demonstrated to be very successful in mathematics 

achievement, has not been conducted. 
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Rationale 

There is a need for further investigation of the mechanism of math problem 

solving in terms of cognitive processes. The relationship of fundamental cognitive 

processes and cognitive components in mathematics problem solving need to be clarified. 

Further studies under both theoretical models, the PASS theory and Mayer's (1987) model 

of math problem solving components, might contribute significantly to our understanding 

of nature of math problem solving and the deficits of cognitive processes underlying 

students' difficulties in math problem solving. Moreover, analyzing students' performance 

in math comparison problems and their PASS processes can provide information to 

understand students' cognitive deficiencies and design effective training programs. In 

addition, although there are many studies on cross-national differences in math 

achievement between Chinese and North American students, the underlying cognitive 

processes in math problem solving by both groups have not been systematically 

investigated. Thus, this study examined the math problem-solving components and their 

underlying PASS processes in sixth grade Chinese children. 

Purpose of the Study 

The purpose of the study was to investigate Chinese sixth graders' mathematical 

achievement, as measured by Mayer's (1987) model of math problem-solving 

components, and the underlying cognitive processes, as measured by PASS processes 

(planning and simultaneous and successive processing). The manifestation of PASS 
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processes in poor problem solvers in arithmetic word problems were also explored. In 

addition, this study investigated the contribution of the PASS processes (planning, 

simultaneous processing and successive processing) to children's problem solving in math 

comparison problems. The manifestation of PASS processes in poor problem solvers in 

the inconsistent language (IL) comparison problem, a type of problems particular difficult 

for students, was analyzed. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter consists of three parts. The first part introduces the PASS theory of 

information processing (Das, Kirby, & Jarman, 1979; Das et al., 1994) and discusses the 

relevant studies. The second part is a review of the studies on mathematics word problem 

solving, which includes two sections. First, Mayer's (1987) model on mathematical 

problem solving and the relevant studies are described. Second, studies on comparison 

problems are reviewed. The third part integrates studies on PASS theory and Mayer's 

(1987) model on math problem-solving components together. Finally, the research 

questions and hypotheses of this study are proposed. 

The PASS Theory and the Relevant Studies 

Introduction of the PASS Theory 

Drawing upon the shift in focus within the fields of psychology and education 

from the examination of abilities to examination of the cognitive processes underlying 

abilities, Das, Kirby and Jarman (1975, 1979) and, more recently, Naglieri and Das 

(1990) have been advocating the reconceptualization of intelligence as cognitive 

processes from the traditional IQ test technology that has been dominated most of the 

20th century. They suggested that this new conception should be followed up by 
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constructing tests based on a theory-driven, multidimensional view with cognition (Das et 

al., 1994). Thus, Das and his colleagues (Das et al., 1979; Naglieri & Das, 1987, 1988) 

have expanded Soviet neuropsychologist A . R. Luria's (1966) theory to the PASS theory 

(Das et al., 1994) and operationalized it to CAS (Naglieri & Das, 1997a). The PASS 

theory is a complete theory of cognitive processing based upon clinical 

neuropsychological research and cognitive psychology. As Das and his colleague (Das, et 

al., 1994) summarized: "We believe that it has a strong theoretical foundation, has been 

sufficiently operationalized, and is making significant contribution to understanding 

exceptionally, predicting academic and job performance, and intervention design" (p. 12). 

The PASS theory consists of three parts: attention system, processing system 

engaging simultaneous and successive processing, and the planning system engaging in 

organization and monitoring of processing. Naglieri (1999) summarized the essence of 

each PASS process as follows: 

"Planning processes provide cognitive control, utilization of processes and 

knowledge, intentionality and self-regulation to achieve a desired goal; attentional 

processes provide focused, selective cognitive activity and resistance to 

distraction; and simultaneous and successive processes are the two forms of 

operating on information" (p. 11). 

The four PASS systems are interdependent. Input may occur through any of the sensory 

receptors, and be coded on the basis of information stored in the long-term memory; the' 

encoding is stored in the working memory, it can be maintained there, or manipulated or 

transferred to long-term memory. While all these occur in the processing system, the 

processing is guided or controlled by the planning system (Das et al., 1994). The PASS 
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theory proposes that planning, attention, and simultaneous and successive processing are 

basic building blocks of human cognition. It views intelligence as different specific 

abilities, which is different from the traditionally general ability approach of intelligence. 

Operationalization of the PASS Theory 

Since the vast majority of research on the PASS theory has focused on the 

operationalization of its components, it is briefly reviewed in the following sections. 

r 

Investigations of Simultaneous and Successive Processing 

The initial research regarding the PASS theory focused on the importance of the 

simultaneous and successive processes to a cognitive theory. Das (1972) first 

operationalized Luria's (1966) model by administering a series of tasks involving 

memory and reasoning to 60 educable mentally retarded (EMR) children and 60 . 

nonretarded children. Das used principal components factor analysis to analyze the data 

and found that two factors accounted for the performance of both groups, and the poorer 

performance of the E M R children would be attributed to their selection of inferior 

processing. Das explained the two factors as simultaneous and successive processing. 

Subsequent to this study, Das and his colleagues investigated the existence of 

simultaneous and successive processing across different populations. The different 

participants in these studies included different cultural groups (Das, 1973), different age 



13 

groups (Das & Molloy, 1975; McCallum & Merritt, 1983; Vernon, Rybe & Lang, 1978; 

Wachs & Harris, 1986), and different intellectual levels (Das, 1972; Jarman & Das, 

\917).< These studies confirmed the existence of the simultaneous and successive factors. 

Based on these earlier studies, Das et al., (1975, 1979) proposed the PASS theory. 

In summary, many studies have focussed on operationalization of simultaneous 

and successive processes. These information-coding processes have been validated by 

factor analysis, with data from a wide variety of populations. Following these earlier 

studies, the focus of subsequent studies was extended to studies on the PASS process of 

planning. 

Research Involving the Planning Process 

The tasks originally selected as measures of planning were tasks which had been 

demonstrated to differentiate between patients with frontal and honfrontal lobe 

impairment (Luria, 1973) and emphasized the selection and implementation of efficient 

strategies (Ashman & Das, 1980). The results of the principal component factor analysis 

demonstrated the emergence of the planning factor that was orthogonal to the information 

coding factors (Ashman & Das, 1980). The stability of planning as a separate factor was 

shown in studies with different populations including adults, mildly retarded, trainable 

mentally retarded participants (Ashman, 1978) and noninstitutionalized moderately 

retarded children (Snart, O'Grady & Das, 1982). 

After the general validation of the emergence of the planning factor, Das and his 

colleagues attempted to identify the best marker tests for planning using the factor 

j 
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analysis. Through studies with college students (Das & Heemsbergen, 1983), fourth and 

sixth grade Chinese students (Leong, et al., 1985), and American elementary school 

students (Naglieri & Das, 1988; Naglieri, Prewett, & Bardos, 1989), operationalization of 

the planning factor was established. 

Investigations Involving the Attention Factor 

Tasks designed to assess the attention component were the last to be developed. 

However, the attention factor is very important because theoretically both coding and 

planning processes depend on an appropriate level of attention. In addition, according to 

Naglieri and Das (1988), the assessment of this component is particularly important when 

dealing with problems of disorganization, hyperactivity, or impulsivity. Early studies on 

the emergence of the attention factor involved administering the Stroop test to large 

samples of children in the second, sixth and tenth grades (Price, 1987), delinquent and 

nondelinquent adolescents (Hunt, 1988), various groups of children including normal, 

learning disabled, developmentally handicapped elementary school students (Bardos, 

1988), and children with Attention Deficit Hyperactivity Disorder (ADHD) (Reardon & 

Naglieri, 1989, cited in Das et a l , 1994). 

Generally speaking, there are fewer studies in the area of attention compared to 

the other three factors in the PASS theory. Warrick (1989) found that math achievement 

was best predicted by attention for Grade 3 students; however, for Grade 6 students, 

attention does not significantly predict math problem solving ability. Thus, the present 

study did not include the PASS process of attention. 
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Comparing the PASS Theory with Other Models 

A series of studies were conducted to compare the PASS theory with other 

models. For example, Kirby and Das (1978) compared the simultaneous-successive 

factors to the more traditional primary mental ability model (PMA) (Thurstone, 1938, 

cited in Kirby & Das, 1978). The P M A model involves reasoning and memory; the two 
r 

batteries based on the two models were administered to 104 normal boys in the fourth 

grade. The results of the principal components analysis provided support for the 

conclusion that simultaneous processing was more than just reasoning or Level II ability, 

and the successive processing did not simply represent memory or Level I ability (Das, et 

al., 1979). Another study compared simultaneous and successive processing with the 

modality specific-cross modal theory (Jarman, 1978). The results of these studies 

indicated the stability of simultaneous-successive factors. Naglieri, et al., (1989) 

conducted an exploratory examination of the factorial validity of the PASS theory with 

the battery of tasks developed by Das and Naglieri (1988) to 112 normal fourth and fifth 

graders. The result indicated the appropriateness of the four factors. In another study, 

Naglieri, Das, Stevens, and Ledbetter (1989) conducted a confirmatory factor analysis 

study on a battery of PASS tasks to students in kindergarten and grade two and grades 

five through twelve. Again, the results supported the four-factor structure of the PASS 

theory. Further, they compared the PASS theory with other theoretical models (Verbal-

Nonverbal, Memory-Reasoning, Verbal-Spatial-Speed, and the Null Model), and found 

that the PASS theory was the model that fit best. 

In summary, based upon the research reviewed, the stability of the planning, 

simultaneous and successive processing, and attention process has been demonstrated in a 
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wide variety of age and culture groups, and across various levels of intellectual 

functioning. The operationalized tests formed the Cognitive Assessment System (CAS) 

(Naglieri & Das, 1997a). 

I 

K - A B C and Math Achievements 

The Kaufman Assessment Battery for Children (K-ABC) (Kaufman & Kaufman, 

1983a) is a broadly investigated and frequently used test in everyday assessment practice 

(Obringer, 1988; Bracken, 1985). It emphasizes sequential and simultaneous processing, 

and stresses how children solve problems rather than what type of problems they must 

solve. The underlying theory of this test is from Luria's cognitive approach and other 

neuropsychological studies. K - A B C is a well-established test for sequential and 

simultaneous processing. 

In K - A B C , subtests of sequential and simultaneous processing were shown to be 

significant predictors of future school achievement. In the K - A B C Interpretation manual 

(Kaufman & Kaufman, 1983c), the correlations between six achievement tests and K -

A B C simultaneous and successive processing scores were reported The coefficiencies 

between mathematics scores and simultaneous-successive processing are presented in 

Table 1. The correlation coefficiencies between simultaneous-successive and reading 

scores in these tests are not reported here because they do not directly relate to the present 

study. 
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Table 1 

The Coefficiencies Between Mathematics Test Scores and Simultaneous-Successive 

Processing Scores 

Mathematics Tests Simultaneous score Successive score 

SRAAS (n = 34) .40 .41 

ITBS(n=106) .35 .26 

SAT (n= 109) .45 .45 

ITBS(n = 42) .72 .49 

CAT (n = 44) .56 .50 

Note. SRAAS: Science Research Associates Achievement Series; ITBS: Iowa Tests of 

Basic Skills; SAT: Stanford Achievement Test; CAT: California Achievement Test. 

The PASS Theory and Academic Achievements 

PASS Processes in Reading 

Numerous studies using many different PASS tasks and achievement measures in 

many different populations have demonstrated that PASS processes were empirically 

related to achievement measures. 

The vast amount of research on the application of the PASS theory to academic 

achievement has focused on achievement in reading. Various aspects of reading 

achievement have been shown to be significantly related to simultaneous and successive 



processing (Cummins & Das, 1978; Kirby & Das, 1977; Naglieri & Das, 1987) and 

planning (Das, 1984; Naglieri # Das, 1987). 

Reading can be divided into decoding and comprehension. Studies found that 

decoding at the early elementary grades required successive processing, while 

comprehension at any age required simultaneous processing (Das, et al., 1979). Some 

studies found that both simultaneous and successive processing were required for 

comprehension (Kirby & Das, 1977). Recent studies confirmed the importance of both 

information-coding processes and planning in comprehension (Das, Mensink, & Janzen, 

1990; Das, Snart, & Mulcahy, 1982; Kirby & Gordon, 1988; Naglieri & Das, 1988). 

PASS Processes and Math Achievement 

Luria's Work. The first study in this line can be dated back to the 

neuropsychological research of Luria (1966, 1973). Luria found that lesions in different 

areas of the brain were associated with different types of difficulties in arithmetic 

performance. Patients with lesions in areas associated with successive synthesis (temporal 

lobes) experienced difficulties in problems which involve intermediate calculations to be 

carried out mentally and involve the memorization of the results of the previous steps. 

Lesions of the occipito-parietal region led to difficulties understanding relationships in 

the problem. Patients with frontal lobe lesions did not plan their action, but carried out 

disconnected operations impulsively (Luria, 1966). Luria (1966) and Das et al. (1979) 
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predicted that mathematics achievement might be more closely related to simultaneous 

processing than to successive processing due to the highly spatial nature of mathematics. 

Studies on PASS^Processes and Math Achievement. Some supporting data on 

PASS processes and math achievement came from an study conducted by Sprecht (1976, 

cited in Das et al., 1979). A battery of simultaneous and successive processing tasks along 

with vocabulary, mathematics and reading comprehension tests were administered to a 

sample of low-achieving high school students. The results of the factor analysis indicated 

that mathematics achievement demonstrated a moderate loading on the simultaneous 

processing factor. 

Wachs and Harris (1986) administered a battery of information coding tasks to a 

sample of undergraduate college students and correlated the scores with the scores of the 

Scholastic Aptitude Test (SAT). The results demonstrated that the SAT Math scores 

correlated significantly with simultaneous processing, whereas, successive processing 

was significantly correlated with the students' grade in English. 

Das, Manos and Kanungo (1975, cited in Das et al., 1979) examined the 

relationship of simultaneous and successive processing to academic achievement in 

fourth grade children of high (N=60) and low socioeconomic status (N=60). The findings 

indicated that mathematics achievement was strongly predicted by a simultaneous 

processing task, Figure Copying, for the high SES group. Whereas for low SES children, 

mathematics achievement was best predicted by a successive processing task, Serial 

Recall, although Figure Copying was also a strong predictor. The authors concluded that 

although simultaneous processing may be the most efficient form of processing for 

mathematics, it was used less often than successive processing by the low SES group. 
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The low SES group demonstrated a preference for successive processing. This might 

relate to the different usual learning style in the groups from different socioeconomic 

background (More, 1990). 

Das and his colleague conducted a study on simultaneous-successive processing 

and planning with general math achievement of Grade 4 and 6 Hong Kong Chinese 

children who go to Western-style schools (Cheng, et al., 1984). Factor scores for 

simultaneous, successive and planning processes were derived and used as predictors for 

standardized math achievement. The regression analysis showed simultaneous processing 

to be the best predictor of math achievement. However, this study did not separate 

composition and problem solving skills. The result was not clear in terms of the specific 

relationship between PASS processes and the two kinds of math achievements. 

Garofalo's study (1982) has filled this vacancy and clarified the interrelationship. 

Garofalo (1982) examined the relationship of planning and information coding processes 

(simultaneous, successive processing) to mathematical abilities (including computation, 

problem solving and quantitative ability) for 95 grade five American students. Factor 

analyses found three clearly defined orthogonal factors; Problem Solving had a high 

loading on the simultaneous factor in contrast to successive and planning; Computation 
( 

had its highest loading on the planning factor and smaller loading on simultaneous and 

successive factors. The author explained that problem solving required the understanding 

of mathematical and logico-grammatical relationships, which is a primary function of 

simultaneous processing. However, success in computation depends upon the planning 

functions of regulating and monitoring activity while completing the computations. 
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Another study relating planning skills to math achievement (Kirby and Ashman, 

1984) found similar results. Grade five children were given several tasks to measure 

planning and arithmetic operations. Factor analyses revealed a significant correlation 

between arithmetic operation and planning. 

Naglieri and Das (1987) examined the relationship of simultaneous, successive 

and planning processes to academic achievement in 434 students in grades two, six, and 

ten. The new battery of cognitive processing tasks was administered along with the 

Multilevel Academic Survey Test (MAST) that included M A S T reading and math. The 

results indicated developmental change in the cognitive processes involved in 

computation. At the second grade level, computation was most strongly related to 

simultaneous processing but also demonstrated a strong relation to planning. At the sixth 

grade level, mathematics achievement remained most strongly related to simultaneous 

processing, however, significant correlations were also demonstrated with both planning 

and successive processing. At grade ten, planning demonstrated the strongest relationship 

to mathematics achievement, and mathematics achievement was also associated with both 

simultaneous and successive processing. These results demonstrate the importance of 

planning in academic achievement, especially at the development point of view. 

Warrick (1989),examined the importance of PASS processes for math 

achievement including math concepts, computation, math problem solving, and total 

math in third, sixth, and ninth grade students. For the third grade, attention and 

simultaneous processing were the best predictor of math achievement in three of the four 

math areas. For the sixth grade, simultaneous processing was the best predictor of math 

achievement in all four areas. Meanwhile, the planning and successive also contributed 
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significantly to the prediction of math problem solving achievement. For the ninth grade, 

problem solving was best predicted by attention and planning following by simultaneous 

and successive processing. 

According to the Cognitive Assessment System Interpretive Handbook (Naglieri 

& Das, 1997c), the relationship between the CAS and achievement were examined for 

both individually administered measures (Woodcock-Johnson-Revised Tests of 

Achivement) and group administered measures (Scholastic Aptitute Test). The 

correlations betwen the Full Scale and separate PASS Scale scores with the WJ-R scores 

ranged from .46 to .72 for Broad mathematics, .44 to .69 for Basic Mathematics Skills, 

.44 to .67 for Mathematics Reasoning, .35 to .63 for Calculation, .44 to .67 for Applied 

Problems, and .44 to .68 for Quantitative Concepts. In all, Planning processing scores 

correlated the highest with Calculation, Basic Mathematics, Broad Mathematics, and 

Applied Mathematical Problems; Simultaneous processing scores correlated highest with 

all the math measures except for youngest age group; Successive processing scores 

correlated highest with only Calculation. 

The relationship between the CAS and the College Board Scholastic Aptitude 

Test (SAT; Donlon, 1985) suggested that Planning and Attention Scale scores were 

significantly related to SAT Math scores; Successive Scale scores correlated significantly 

with SAT Verbal scores, and Simultaneous Scale scores correlated significantly with both 

Verbal and Math SAT scores. 

Summary. In summary, studies provided the basic data regarding the relationship 

of mathematics achievement and the corresponding underlying PASS processes. 

However, the results of these studies have been somewhat inconclusive. It has been 
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shown that the relationship between mathematics achievement and the cognitive 

components varied depending on the type of mathematics performance examined and the 

type of cognitive processing task used (Garofalo, 1982). In addition, most previous 

research investigated only the relationship between PASS processes and students' math 

achievement scores or problem solving scores. A simple score is not good enough to 

represent the complex cognitive processes involved in mathematical word problem 

solving. With the new studies on math and Mayer's model on math problem-solving 

components, it is necessary and possible to analysis the cognitive processes underlying 

detail math problem-solving components. 

Studies on Learning Disabilities and the PASS Theory 

A number of studies have found that the PASS theory was very helpful for 

diagnosis and remediation. For example, students with poor math ability were found poor 

at all PASS processes (Warrick, 1989). Students with reading difficulties were found poor 

at Planning, Attention and Simultaneous processes compared to their normal peers, but 

no difference in Successive processing (Hildebrand, 1998). Wasserman and Becker 

(2000) summarized the clinical utility of the CAS with A D H A and learning disabilities 

and learning disordered as follows: 

planning and attentional processes are characteristically impaired in children 

diagnosed with A D H D , . . . a relatively weakness in simultaneous processing is 

associated with both verbal and quantitative difficulties in understanding 

relationships between items and concepts in learning disabled children, and that a 
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relative weakness in successive processing is associated with phonological 

awareness difficulties in learning disabled children (p. 5). 

In general, the CAS substantially outperforms other traditionally intelligence tests such as 

WISC-III and Gordon Diagnostic System in terms of diagnosis and prediction, and is the 

first intelligence test that can correctly identifies over three fourths of children diagnosed 

with A D H D (Wasserman & Becker, 2000). 

In addition, studies on the relationshipbetween poor performance in specific 

PASS processes and scores on the WJ-R subtests suggested that different cognitive 

weakness in PASS processes were related to different levels of performance on the 

various achievement tests. For example, simultaneous and successive cognitive weakness 

were found highly related to low scores in reading area; whereas cognitive weakness on 1 

the Planning process were associated with lower scores in Calculation. 

Summary 

Attention, planning, and simultaneous and successive processing are basic 

cognitive processes that are responsible for the acquisition, storage and retrieval of 

knowledge and planning for problem solving. A l l these interdependent processes may 

take place during perception, memory, or at conceptual level processes. As a general 

theory of cognition, the PASS theory is helpful to understand students' performance in all 

kinds of tasks, including mathematics problem solving. 
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Studies on Mathematical Problem Solving 

The mathematical problem solving has long been an important topic in cognitive 

psychology. The arithmetic word problem represents an important bridge between the 

child's developing computational skills and the application of these skills in real-world 

contexts. It is therefore important to understand how children develop problem-solving 

skills and to identify the sources of problem-solving difficulties. One potential impact of 

cognitive psychology on mathematics problem solving is the application of cognitive 

analysis to mathematical problems. Cognitive task analysis refers to specifying the 

cognitive capacities and knowledge that are required to successfully carry out a particular 

task, in this case, solving a mathematical word problem. 

i 

A Brief Introduction of Mayer's Model 

Mayer (1987) developed a model on math problem-solving components. Mayer 

(1987) assumed that the two major phases of mathematical problem solving were (1) 

representing the problem and (2) searching for a means to solve the problem. In order to 

represent a problem, a student must be able to translate each sentence of the word 

problem into an internal representation such as an equation or a diagram, and be able to 

put the elements of the problem together into a coherent whole. Cognitive research has 

suggested that the breakdown in linguistic comprehension, lack of schema for problem 

types, and the lack of the adequate simultaneous processing ability to integrate 

information into a coherent internal representation, are the sources of many difficulties in 
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problem solving (Kirby & Williams, 1991; Mayer, 1987). In order to search for a means 

to solve a problem, the student must also be able to plan and find an adequate algorithm 

and then correctly execute the algorithm. Thus, in Mayer's model, four cognitive 

components are involved in solving mathematical word problems: problem translation, 

problem integration, planning, and execution. 

Mayer's model has been used to assess students' general cognitive aspects of 

mathematics problem solving in the Scholastic Aptitude Test (SAT) (Bejar et al., 1987). 

Tests based on Mayer's model can be used to identify the underlying cognitive 

components required for success with mathematical word problems. For example, based 

on Mayer's model, the four components of mathematics problem solving can be directly 

evaluated, respectively. Translation skills can be evaluated by asking students to 

recognize paraphrases of the given problem, the problem goal, and pictures or equations 

corresponding to a sentence in the problem. Integration skills can be evaluated by asking 

students to distinguish relevant and irrelevant information to solve the problem, or to 

represent the problem as a number sentence, equation or picture. Planning skills can be 

evaluated by asking students to identify sub-goals of the problem, to identify necessary 

operations and to draw a conclusion. Computational skills can be evaluated by asking 

students to identify the result of arithmetic problems. A set of mathematical tests 

designed by Mayer to measure each math problem-solving component, based on his 

model, has been used successfully in several cross-cultural studies (Cai, 1995; Mayer, et 

al., 1991; Tajika, etal., 1998,). 
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Studies Related to the Cognitive Components in Mayer's Model 

The following is a detailed review of studies related to the first three cognitive 

components in Mayer's model, that is, problem translation, problem integration, and 

planning. 

Research on the Translation Component 

According to Mayer's (1987) model, the first step in representing a problem is to 

translate each proposition from the problem into an internal representation, which needs 

linguistic and factual knowledge. 

Comprehending relational statements. A number of studies suggested that the 

translation process could be very difficult for students, especially when the problem 

contained relational statements (i.e., statements that express a quantitative relation 

between variables). 

Loftus and Suppes (1972) found that the most difficult problems were the ones 

that contain relational propositions. For example, "Mary is twice as old as Betty was two 

years ago, Mary is 40 years old, how old is Betty?" Riley, Greeno, & Heller (1983) 

suggested that children might have difficulty in representing relational propositions. 

Children in primary grades were asked to listen to and immediately repeat problems 

involving relational propositions. They tended to ignore the relational statements and 
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stated them as assignment statements. Similarly, Stern (1993) found that the symmetry of 

language involves in quantitative comparisons is difficult for first graders to understand. 

Relational statements seem to be difficult also for adults (Soloway, Lochhead, & 

Clement, 1982). The study showed that college students tended to make mistakes when 

writing equations to represent a relational proposition (Mayer, 1982). College students 

were asked to read and recall eight algebra story problems. Each problem contained three 

types of propositions: assignments (assign a value to a variable), relations (expressed a 

quantitative relation between two variables), and questions (asked for a numerical value 

of a variable). The results indicated that students made approximately three times as many 

errors in recalling relational propositions than in recalling assignment propositions. It 

showed that some students were lack of skills to represent relations between variables. 

Hegarty, et al. (1995) explored the relationship between representing relational 

statements and problem solving performance. They asked college students to solve 12 

inconsistent language (IL) comparison problems (i.e., the keyword is inconsistent with the 

required operation, for example, the relational statement retains a key word "more" but 

the correct solution requires subtraction), and later asked them to recognize the problem 

they had solved from four alternatives. The three incorrect alternatives included a literal 

error in which the meaning of the relational statement was retained but the keyword was 

changed to the opposite, such as'from "less" to "more", and two semantic errors in which 

the meaning of the relational statement was changed. Poor problem solvers made much 

more semantic errors than good problem solvers. In contrast, good problem solvers made 

much more literal errors than poor problem solvers. These results suggested that good 
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problem solvers were able to represent and understand the meaning of the relational 

statements better. 

A recent study by Cai (1995) found a cross-cultural difference between Chinese 

and U.S. students in comprehending relational statements in mathematical problems. Cai 

(1995) compared Chinese and U.S. sixth graders' performance using Mayer's (1987) 

model of math problem-solving components. He found that Chinese students 

outperformed the U.S. students in both the translation component and the planning 

component, but scored the same in integration component. Particularly interesting, 

Chinese students outperformed U.S. students on all four translation questions containing 

a relational proposition. Cai (1995) related this result to the special linguistic 

characteristics of Chinese. 

Teaching translation skills. Lewis (1989) has developed a two-session training 

program teaching students how to represent relational statements in word problems 

through reorganizing relational statements and representing them on a number line. 

Students were first trained to classify problem statements as an assignment, a relation, or 

a question sentence. Then, they were trained to diagram problems using a simple number-

line method. A test-retest design showed that unsuccessful problem solvers improved 

their performance significantly after the training. Lewis (1989) concluded, "training 

aimed at remedying students' erroneous comprehension processes for relational 

statements can be successful and can result in transfer" (p.530) to more complex 

problems. 

Brenner and his colleagues (Brenner, Mayer, Mosely, Brar, Duran, Reed, & 

Webb, 1997) developed a 20-day program for middle-school pre-algebra students to 
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practice daily experience in translating relational sentences, tables, graphs, and equations. 

Students who received the training showed much more improvement than those who 

received conventional instruction. 

In summary, the results of these studies suggested that a major source of difficulty 

in mathematical problem solving was poor translation skills. Training students to build 

multiple representations of the problem in words, a diagram, or an equation can be 

helpful for students' mathematical problem solving. 

Research on the Integration Component 

Mayer (1999) defined the integration problem-solving component as the process 

"to put the statements of the problem together into a coherent representation" (p. 169). 

Problem integration relies on schematic knowledge of problem types during which, a 

coherent, integrated structure depicting the relations among the text's propositions is ^ 

formed, and the simultaneous ability to integrate all information together so that the 

correct problem type schema in long-term memory can be activated. 

Students' schemas for math word problems. According to Mayer's model, students 

need to possess knowledge of problem categories (schemas) to successful solve the 

problems. Hinsley, Hayes, & Simon (1977) identified eighteen basic problem schemas. 

Recently, Mayer (1981) analyzed the story problems in typical high-school algebra 

textbooks and found approximately one hundred problem types. In another study (Mayer, 

1982), students were asked to read and recall a series of eight story problems; the results 
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showed that the probability that a student can correctly recall a problem was strongly 

correlated to the frequency with which the problem type was represented in typical 

mathematical textbooks. 

Building an internal representation of a problem requires more than a sentence-by-

sentence translation. A solver could read and comprehend a problem's text but did not 

understand the problem's mathematical situation, i f he or she did not have the skill to 

integrate the information from the text and extract a higher-level problem representation. 

In the previously reviewed training program by Lewis (1989), 96 undergraduate students 

were divided into three groups of 32 participants: (a) the diagram group received training 

in both translation and integration of information in statements of math comparison 

problems; (b) the statement group received only translation training; (c) the control group 

received no training but was exposed to the same problems as the other two groups. 

Results showed that the diagram group made significantly fewer errors than the other two 

groups that did not significantly differ with each other. Participants in the statement 

group, who learned to identify the different statement types in word problems, did not 

improve their comprehension of the conceptual structure of comparison problems beyond 

the improvement of the control group. Thus, as many theorists suggest (Kintsch & 

Greeno, 1985; Paige & Simmon, 1966), translation of problem statements in isolation 

promotes comprehension of text but not necessarily improve comprehension of a 

problem's mathematical conceptual relationships. The latter demands the ability to 

integrate information. As discussed previously in this chapter, the essence of integrating 

information is simultaneous processing. Therefore, in order to understand the problem, 

readers have to relate each element in a sentence or a paragraph together and find out 
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their relationships. Studies have consistently demonstrated that simultaneous processing 

is significantly related to students' reading comprehension. 

r 

Differences in strategy choices. Silver (1981) found that seventh graders poor at 

solving word problems tended to sort story problems based on their cover stories, while 

successful problem solvers tended to sort based on mathematical structures. Quilici and 

Mayer (1996) asked college students to sort twelve statistics word problems into 

categories based on similarity. They found that students who had no experience in 

statistics tended to group the problems based on surface features, while graduate students 

who had extensive experience in statistics tended to group the problems based on 

structural features. Students tended to change from sorting mainly by surface features 

before taking an introductory course in statistics to sorting at least partially by structural 

features after taking the course. Hildebrand (1998) found that students with reading 

difficulties displayed a profile of less well developed cognitive processing (as measured 

by CAS) than those of average achieving students. These students with reading 

difficulties adopted primarily surface level processing strategies in learning. Mayer 

(1999) summarized that "experienced problem solvers are more likely to focus on the 

structural features of problems, such as underlying principle or relation, whereas 

inexperienced problem solvers are more likely to focus on the surface features, such as 

the objects described in the problem" (p. 174). 

Teaching the integration component. To make judgments about the relevance of 

information, a student needs to construct an integrated representation of the problem first. 

Low and Over (1989) found that students' performance in identifying adequacy of 
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information and irrelevant information highly correlated (r = .9) with their ability to solve 

problems. Then Low gave students 80 minutes training in recognizing whether a word 

problem contained sufficient, irrelevant, or missing information, in the feedback, the 

teacher specified how to classify the problem. The pre- and post-test results indicated that 

students in the training group showed a much greater improvement than students in the 

conventional instruction of calculating solutions and control groups which did not receive 

any instruction. Thus, a greater mixture of problems in exercise would encourage students 

to learn how to discriminate among different types of problems. In addition, multiple 

choices mathematical tests including relevant and irrelevant information are a powerful 

tool to exam students' integration skills such as Mayer's tests in which students are asked 

to choose the relevant numbers needed for solving the problem. 

In summary, the results of the studies reviewed above suggest that when students 

lack a schema for a given problem type, or lack skills to integrate information in a 

problem, the problem representation is more likely to be in error. Fortunately, the skills of 

integrating information in the problems and classifying problem types can be explicitly 

taught. 

Research on the Component of Planning 

The third component in Mayer's math problem solving model is to "devise and 

monitor a plan for solving the problem" (Mayer, 1999, p. 181). Planning involves the 

selection of appropriate strategies and the allocation of resources. It frequently includes 
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setting goals, activating relevant background knowledge, monitoring progress, and 

evaluating results. 

Mayer's study (1982) suggested that the presentation of the problem influenced 

the solution strategy a person will use. The subject's choice of strategy is at least partly 

determined by the presentation format of the problem. The recent studies on inconsistent 

language (IL) comparison problems showed that the key word in the statement may lead 

to a wrong problem representation and solution for poor problem solvers because they 

feel hard to overcome the interference of the key word (Hegarty et al., 1992, 1995). 

Teaching the component of planning. Schoenfield (1979, 1985) attempted to teach 

student problem solving strategies including finding a related problem, restating the 

problem, and breaking the problem into subgoals. The result showed that students who 

practiced using these heuristics improved significantly better on the post-test than those in 

the control group who practiced solving problems without heuristic training. It suggests 

that some problem solving strategies can be explicitly taught to learners. 

There are several instructional studies suggesting that metacognition in problem 

solving domains can be improved by direct instruction and modeling of metacogntive 

activities. For example, Paris and colleagues' Informal Strategies for Learning program 

(ISLP) (Paris, Cross, & Lipon, 1984; Jacobs & Paris, 1987) instructs children about 

knowledge and the use of metacognitive reading strategies in several ways. Gains during 

an academic school year have been particularly impressive with respect to reading 

awareness and evaluating the effectiveness of reading strategies. Delclos and Harrington 

(1991) examined fifth- and sixth-graders' ability to solve computer problems after 

assignment to one of three conditions. The first group received specific problem-solving 
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training; the second group received problem-solving plus self-monitoring training; and 

the third group received no training. The self-monitoring problem-solving group solved 

more of the difficult problems in less time than other groups did. 

Recently, Naglieri and his colleagues (Naglieri & Gottling, 1995, 1997; Naglieri 
r 

& Johnson, 2000) studied the effects of a cognitive strategy instruction designed to 

improve planning to groups of students with learning disabilities and mild mental 

impairments. The results showed that children with a planning weakness benefited from 

the instruction. Those children who were not low in planning did not show the same level 

of improvement. Thus, studies demonstrated that planning skills can be trained, and 

matching the instruction to the cognitive weakness of the child was suggested. 

Studies on Math Comparison Problems 

Typology of Math Problems 

Researchers have classified addition and subtraction word problems on the basis 

of semantic structure into four general categories: change, combination, comparison and 

equalization problems (Carpenter & Moser, 1983; Morales, Shute, & Pellegrino, 1985; 

Riley et al., 1983). The change problem implies that the child performed some type of 

action and this results in a changed (i.e., larger or smaller) collection. Combination, 

equalization, and comparison problems all begin with two quantities, which are either 

added or subtracted to find the whole or one of the parts. Although change and 



36 

combination problems are exactly the same in terms of computational demands, 

differences in the language presenting the problem gave them a very different meaning to 

children. This can influence how children represent and interpret the problems, which in 

turn can influence the child's conceptual understanding of what is being asked as well as 

the types of strategies used to solve the problem (De Corte & Verschaffel, 1987). 

Definitions of Two Types of Comparison Problems 

The comparison problem contains a relational statement comparing the values of 

two variables. There are two types of comparison problems: consistent language (CL) and 

inconsistent language (IL) comparison problems. Lewis and Mayer (1987) clearly defined 

the two forms of comparison problems as follows: 

In consistent language (CL) problems, the unknown variable (e.g., Tom's marbles) 

is the subject of the second sentence, and the relational term in the second 

sentence (e.g., more than) is consistent with the necessary arithmetic operation 

(e.g., addition). On the other hand, in inconsistent language (IL) problems, the 

unknown variable is the object of the second sentence, and the relational term 

(e.g., more than) conflicts with the necessary arithmetic operation (e.g., 

subtraction) (p. 363). 

Studies have shown that both college and elementary school students have 

particular difficulties in solving inconsistent language (IL) comparison problems (De 

Corte, & Pauwels, 1992; Hegarty et al., 1992, 1995; Lewis, 1989; Lewis & Mayer, 1987; 

Morales, et al., 1985; Riley, et al., 1983; Stern, 1993; Verschaffel, et a l , 1992). 
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Theories on Difference in Comparison Problem Difficulties 

In early research on young children's word problem solving, attention has turned 

to process models that explain why some word problems are more difficult than others 

are. They are briefly reviewed in the following sections. 

Logico-mathematical models of word problem-solving. Several models have been 

proposed to explain the difficulty difference in CL and IL problems. Briars and Larkin 

(1984), Riley et al. (1983) and Riley and Greeno (1988) presented logico-mathematical 

models of word problem solving, which stressed the importance of mathematical 

knowledge. They assumed that mathematical knowledge develops from action-based 

external modeling of quantitative information to reasoning on the basis of the quantitative 

part-whole schema. Representing the part-whole schema includes understanding numbers 

as parts of each other, the commutativity and associativity, as well as the commentary 

relation of addition and subtraction (Resnick, 1989). Therefore, having the part-whole 

schema represented means to connect language about quantities with mathematical 

concepts. 

According to the model, arithmetic word problems differ in mathematical 

knowledge requirements. Some problems can be modeled externally and thus require only 

simple procedures, whereas other problems demand the transformation of the problem 

text into part-whole relations. Inconsistent language (IL) comparison problems require 

access to the part-whole schema, combined with knowledge about the comparison of sets. 
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If the child can represent the texts into the three sets: compare, reference, and the 

difference set and their relationship, he or she can solve the IL problem by a mathematical 

transformation strategy. The child can infer from the second sentence in the problem the 

relationship between the compare set and the reference set, then either adds or subtracts 

the numbers. Thus, the knowledge of part-whole schema and their relationship decides 

whether children can transform and represent the textual information given in the word 

problem directly into a mathematical equation, which is believed to be the reason for the 

special difficulty of the IL comparison problem. But this modeling of the solution of 

comparison problems does not in all aspects fit with the empirical data (Riley & Greeno, 

1988; Cummins, Kintsch, Reusser, & Weimer, 1988; Davis-Dorsey, Ross, & Morrison, 

1991). 

Text processing models. A second type of word problem-solving model (e.g., 

Cummins et a l , 1988; Reusser, 1990) underscores the importance of text processing. 

According to these text-processing models, children's difficulties with word problems 

arise from a lack of textual understanding, which prevent them from making contact with 

relevant mathematical knowledge. For example, children interpret the relational 

statements such as "n more x then y" to indicating simple assignments such as "There are 

n x". Stern (1993) also proposed that an inability to understand the symmetry of language 

involving quantitative comparison made IL problems difficult for first graders. If the 

child can correctly understand the relational statement, he or she can simply use linguistic 

restructuring strategy to solve the problem, that is, transforming the second sentence into 

a consistent language (CL) sentence by exchanging the subject and object and changing 

the key word. This theory might be able to explain very young children's difficulties on 
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solving IL problems. However, it can not explain the difficulty of fifth to sixth graders 

and adults' difficulties in solving IL problems. 

Lewis and Mayer's (1987) language consistency hypothesis. To explain the special 

difficulty of the IL comparison problem, Lewis and Mayer (1987) proposed the language 

consistency hypothesis. They believed that the information presentation in inconsistent 

language (IL) comparison problems that required more mental processing resulted in 

difficulty for children and even adults. They argued that people prefer the presenting of 

information in a particular order in which the unknown set is the grammatical subject of 

the'second sentence. In the IL problem, the unknown set is the object of the relational 

sentence, students are assumed to mentally rearrange the relational sentence until it fits 

their preferred format. By doing this, the student needs to reverse the subject and the 

object of the relational sentence, and reverse the relational term. This additional 

transforming process of IL problems might put heavy demands on the student's working 

memory and leads to a wrong result. 

Studies on Reasons for the Language Consistency Effect 

In the 1990s, a number of studies analyzing students' problem solving errors, 

solution times and their eye fixation all demonstrated the existence of language 

consistency effects in comparison problem solving (Lewis and Mayer, 1989; De Corte, 

Verschaffel, & Pauwels, 1990; Hegarty et al., 1992). However, there are controversies as 

to the specific reasons causing this effect. Although IL problems are difficult, there are 
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individual differences in students' performance even as young as elementary school 

students. There are students who successfully solved the IL problems. Thus, researchers, 

including Mayer himself, started to consider the subject aspect of problem solving in 

addition to the general problem features such as language consistency effects as the loci 

of problem-solving difficulties (De Corte et al., 1990; Hegarty et al., 1992, 1995; Mayer 

&Hegarty, 1996). 

Two types of strategies to solve mathematical word problems. One recent body of 

research on factors contributing to the difficulty of comparison problems emphasizes the 

individual difference in students' general strategies to solve math problems (De Corte et 

al., 1990; Hegarty et al., 1992, 1995; Mayer & Hegarty, 1996). 

De Corte et al's study. In an early study on children's word problem solving, for 

the first time, De Corte et al. (1990) investigated different strategies of the high and low 

ability (HA and LA) students in CL and IL problems by using the eye fixation procedure. 

De Corte and his colleagues explored the two possible explanations of the poor 

performance of L A students in IL problems, that is, a rash, impulsive strategy due to an 

absence of a semantic processing stage or a faulty semantic analysis due to less-developed 

semantic schema. In the study, 20 second graders were instructed to mentally calculate 16 

one-step addition and subtraction word problems and answer orally, with no time limit. 

Eye fixation data and the child's answer were recorded. The response time was divided 

into two parts: first time reading period involving problem translation and rereading 

period including problem representation and solution seeking. Ten high-ability (HA) and 

ten low-ability (LA) pupils were selected based on the total score, of the 16 problems. 

They hypothesized that if L A children systematically use the superficial (key word) 
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strategies, the total time L A students spend on words will be significantly less than H A 

students. The study did not find supportive evidence for the systematic use of superficial 

strategies in L A children. Thus, they concluded that the use of superficial strategies can 

not be considered as the overall explanation for the lower performances of L A students 

on solving IL problems. The appropriate explanation is that loW-ability children's failures 

are not the result of the absence of a semantic processing stage, but of their faulty 

semantic analysis. 

However, this study has some methodological problems. The one-step word 

problems used in the study are not challenging for H A pupils, so there is no data on 

coping strategies of H A student on CL and IL problems. More importantly, students were 

asked to solve each problem by mental calculation, so the problem solving performance 

was confounded with text reading and the computational skills. It is hard to decide 

whether the longer reaction time during the stage of reread problem is due to the longer 

time to integrate problem representation or to calculate the answer. It is possible that L A 

students adopt "key-word" superficial strategy; however, their overall reaction time and 

reaction time in the second stage are not significantly shorter than H A due to L A students' 

slow calculation. Confounding integration and calculation may mask the appearance of 

students' different strategy choices. 

Mayer and He party's studies: Mayer and Hegarty further examined the language 

consistency hypothesis and proposed that the "key word" strategy is the reason for the 

poor performance on IL problems (Mayer and Hegarty, 1996; Hegarty et al., 1992, 1995). 

They did a series of experiments on college students using the eye movement procedure 

and found that poor solvers were more likely to use the key word strategy. Poor problem 
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solvers decided the operation based on the superficial key word of the problem, for 

example, add if there is a word "more", subtract if "less". Whereas good solvers were 

more likely to use situation strategy, deciding the operation based on text understanding 

and a correct problem representation. 

Hegarty et al.'s study (1992) improved the above-mentioned methodological 

issues of De Corte et al.'s study (1990). They used more demanding two-step problems. In 

their study, 32 undergraduates were asked to tell how they would solve the problem but 

not to carry out any actual arithmetic operation, in this way, the problem representation 

and execution processes would not be confounded. They found that consistency language 

effects on response time (i.e., students spent longer time in IL than C L problems) only 

occurs for high-accuracy subjects. Thus, only the H A students are sensitive to the 

different semantic features of CL and IL comparison problems and cope with them 

differently. Also, they found the consistency effect occurs during the later integration and 

planning phases, not in the initial reading of the problem (the translation phase). Finally, 

they found that H A students spent more fixation time on words and key words than on the 

numbers in second stage of rereading the IL problems. This study concluded that low-

accuracy students appeared to be using the direct translation approach, whereas high-

accuracy students appeared to be using the mental model approach. 

Recently, Hegarty et al, (1995) further examined their hypothesis on different 

strategies of H A and L A students based on eye fixation data. They proposed that the 

selection effect (selecting key words) observed in previous studies (Hegarty et al., 1992; 

De Corte et al., 1990) was symptomatic of the direct translation strategy. The absence of 

it is more reflective of a problem-model strategy. In their study, 38 undergraduates were 
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asked to tell how he or she would solve the problem but not to carry out any actual 

arithmetic operations. Eye movement data showed again that unsuccessful problem 

solvers were more likely than successful solvers to look at numbers and relational terms 

when they reread part of the problem. In addition, they analyzed two kinds of errors in 

students' recall and recognition tests. A literal error occurs when the relation between the 

two terms in students' recall or recognition was consistent with the presented problem, 

but the wording of the relational term was changed. A semantic error occurs when the 

relation between the two terms was reversed. They found that successful problem solvers 

made more literal errors and less semantic errors on both recall and recognition tasks than 

the unsuccessful problem solvers, which suggested that the successful problem solvers 

understand the problem and they are more likely to remember the situation described in 

the problem. 

Mayer and Hegarty (1996) described in details each of the three cognitive 

components for two strategy users. The direct translation strategy consists of a translation 

process in which a problem solver mentally represents each statement in the word 

problem as a semantic network, and an integration process in which a problem solver 

extracts numbers and the key words that suggest which arithmetic operations need to be 

performed. The resulting solution plan is likely to be incorrect for inconsistent 

comparison problems. In contrast, the problem model approach consists of the same 

translation process but a different integration process in which the problem solver seeks 

to mentally construct a model of the situation described in the problem, which leads to a 

correct solution plan. 
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These studies, including eye fixations of elementary school and college students 

(Hegarty et a l , 1992, 1995; Verschaffel et al., 1992), remembering word problems 

(Hegarty et al., 1995; Mayer, 1982), and learning to solve word problems (Lewis, 1989; 

Lewis & Mayer, 1987), all seem to provide supporting data to the two strategies 

hypothesis (Mayer & Hegarty, 1996). L A students systematically use key word strategy 

that leads to correct performance in CL problem and poor performance in IL problems. 

Recently, Stern (1993) challenged Hegarty et al.'s (1992; 1995) hypothesis of 

systematically use of key word strategy by the following logic: if poor problem solvers 

solve CL problems better than IL problems because they generally used key word 

strategies yet did not really understand the problems, their performance in retelling the 

two problem types would be equivalent. Retelling problems is supposed to be able to 

accurately reflect students' problem representations. Because verbal storage of a problem 

for most problems exceeds working memory capacity, therefore, to correctly store a 

problem requires comprehension, one has to understand and transform the information 

into a problem that is less demanding of working memory. Stern conducted a series of 

experiments to analyze first graders' performance and their retelling protocol. He found 

most first graders were able to retell and understand the CL problems but were not able to 

retell IL problems. Thus, he made the conclusion that the general key-word strategy is 

not the reason for the difficulty difference in CL and IL problems. 

Stern's data demonstrated that students' better performance in C L problems was not due 

to the usage of key word strategy because students understood CL problems and were 

able to correctly retell the problems. However, in logic, this does not necessarily lead to 

the conclusion that poor performance in IL problems is not due to key word strategy. 
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Actually the result indirectly supported the hypothesis that students use key word strategy 

for IL problems because they did not understand the IL problems and could not retell IL 

problems. Based on the previous studies, it seems plausible to conclude that even L A 

students can understand the CL problems and can correctly solve the problem based on 

understanding. However, they can not understand IL problems due to low working 

memory, and they have to use key word strategy in these IL problems. 

A l l these studies have not directly and explicitly examined the cognitive processes 

of IL problem solving. The differences of cognitive processes in successful and less 

successful students have not been explored. There are still many cognitive factors that 

need to be explored, such as PASS processes and students' working memory ability. 

There are a few studies relating the difficulty of IL problems to students' working 

memory. 

Verschaffel et al. (1992) directly compared effects of the working memory load in 

students' performance. He gave third graders and university students one-step CL and IL 

problems. The results confirmed Lewis and Mayer's language consistency hypothesis only 

for third graders; that is, more reversal errors and longer solution times were found for IL 

problems than for CL problems. University students showed similar results only when 

they had to mentally solve more complicated two-step problems. Apparently, the effect of 

inconsistent language on problem solving only occurs when the comparison problems 

have to be processed under rather heavy cognitive demands, in which it takes more time 

and a longer fixation time to transform the relational sentence in IL problems. This 

shows that working memory load seems to be an important factor that influences 

performance on comparison problems. It is plausible to hypothesize that different 
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working memory, especially the ability to activate processing information while holding 

the information, is relevant to mathematics performance. 

Most recently, d'Ailly, Simpson and MacKinnon (1997) tested whether and how 

self-referencing (i.e., using pronoun "You") affect one hundred third to fifth graders' 

cognitive processing in solving simple mathematical word problems. They hypothesized 

that self-referencing in comparison problems (for example, use of the term "You" in 

place of a noun) could decrease the working memory load effectively. They found that for 

Grade 3 children, working memory was proved to be an important factor in solving the 

problems. The marker test of working memory in the study was a dual task similar to the 

task developed by Swanson (1992). > 

Summary. In general, studies by Verschaffel et al. (1992), Stern (1993) and 

d'Ailly et al. (1997) all suggest that beyond L C and Li's problem features, students' 

mathematical conceptual knowledge and strategies, there might be other underlying 

factors influencing students' performance in IL problems. According to conceptual 

analysis of math problem solving components and PASS theory, these underlying factors 

might relate to working memory and simultaneous processing skills. Studies have found 

the difficulty of the IL problem located in the second stage of reading, that is, rereading 

and integrating information into a problem representation. Conceptually, simultaneous 

processing is particularly related to information integration. Thus, we hypothesize that 

simultaneous processing is one of the potential factors influencing students' performance 

in the comparison problem. 

In conclusion, what the factors are that can account for students' difficulties in the 

IL problem remain unresolved. It needs further examination under the guidance of 
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advances in cognitive psychology theories. Based on recent studies (Stern, 1993; 

Verschaffel, 1994; d'Ailly et al., 1997), it is plausible to hypothesize that working 

memory and simultaneous processing are important potential factors influencing students' 

performance in IL problems. Studies along this line might shed some light on our 

understanding of the cognitive processes underlying comparison problem. However, there 

is not a clear body of research or theory directly addressing this issue. Fortunately, the 

new developments in intellectual assessment such as the PASS theory on information 

processing might help us understand the nature of cognitive processes involved in 

comparison problems, especially the process of constructing a problem representation for 

the IL problem. 

The PASS Theory, Mayer's (1989) Model, and Mathematics Achievement 

Use of the New Assessment Tools 

In the past, although test scores have basically provided quantitative information 

regarding student performance, rarely have they reflected the qualitative or cognitive 

aspects of information processing (Sternberg, 1991). However, an increasing emphasis on 

a cognitive analysis of performance has shifted attention more to the cognitive or 

qualitative aspects of information processing: such as strategies for problem solving and 

modes of representation. The PASS theory of cognition that has been described in the 

previous review is an example of a new approach to examine math achievement. The 



48 

greatest advantage of such a model is that it is theory-based. It offers a theoretical basis 

for understanding PASS processes underlying math achievement, a solid basis for clinical 

diagnosis, and a rational basis for the remediation of low achievement. 

The PASS theory is a domain general information processing theory applicable to 

various subject areas, whereas Mayer's model is a domain specific theory on 

mathematical word problem solving. The PASS processes are more basic level skills. 

Use of these skills in math problems would lead to successful performance in math 

problem-solving component of translation, integration and planning. Previous studies 

have shown that simultaneous, successive processing and planning are related to math 

problem solving. However, it is not clear yet how these basic cognitive processes affect 

each math component. We do not know the mechanism of cognitive processing in each 

math problem-solving component. By using these two models in this study, we can get a 

more complete picture with details about students' mathematical performance and its 

nature in aspects of the underlying cognitive processes. It can also help us understand the 

cognitive deficiencies of students' difficulties in math problem solving. 

PASS Processes and Math Problem-Solving Components 

There are no empirical studies that directly relate the PASS theory and Mayer's 

(1987) model together. However, studies on PASS theory and reading could give us some 

insights about the relationship between the PASS processes (planning, simultaneous and 

successive processing) and math problem solving components (translation, integration 

and planning). Conceptually, translation and integration processes actually require very 

similar cognitive processes to those of reading comprehension. 
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Successive processing and the translation problem-solving component 

The first step in mathematical word problem solving, translation, actually is a 

sentence comprehension task. Basic level reading has been shown to require all PASS 

process, especially sequential processing (Naglieri.& Das, 1987; Das, et al., 1979). 

Kirby and Williams (1991) stated the role of successive processing in cognition 

research as follows: 

Within the psychology of intelligence, successive processing has been studied 

either as a rote memory ability or as a part of analytic reasoning. Most 

psychometric batteries of mental tests include measures of rote memory ... 

Successive processing has also featured prominently in information processing 

theories, though again under other names. Most theories contain a short-term or 

working memory, which is responsible for holding input information in serial 

order, to allow for further processing. ... This is presumably the same rote 

memory that the psychometricians test, but used in such instances for far more 

complex tests. The term "successive processing" is intended to capture this range 

of cognitive activity (p. 160). 

As Kirby and Williams (1991) stated, the relationship between successive processing and 

reading comprehension has been manifested in literature of reading and working memory. 

According to Baddeley and Hitch's (1974) working memory model, much of the earlier 

short-term memory literature were incorporated into the concept of slave systems of their 

working memory model: the articulatory or phonological loop and the visuaspatial 
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sketchpad. These slave systems refer to a temporary store (by phonological store) and a 

rehearsal mechanism for speech-based (by articulatory loop) and visuospatial-based 

information, respectively (Baddeley, 1986). Based on this working memory model, short-

term memory is viewed as the part of phonological loop in working memory. Simple digit 

span and word span traditionally are tasks that putatively reflect the short-term memory. 

On the basis of conceptual analysis and research evidence, the two subtests of sequential 

processing in K - A B C , Number Recall and Word Order, can be argued to reflect the 

capacities of short-term memory or phonological loop of working memory (Kauphaus, 

Beres, Kaufman, & Kaufman, 1997). There is evidence that the phonological loop 

contributes to performance only in tasks requiring the retention of order information 

(Richardson, 1996). Thus it is plausible to propose tentatively that the phonological loop 

corresponds to the successive processing in PASS theory. 

Baddeley, Gathercole, & Papagno (1998) summarized that phonological loop 

plays a crucial role in learning the novel phonological forms of new words. The primary 

purpose of phonological loop is to store unfamiliar sound patterns while more permanent 

memory records are being constructed. This finding is consistent with PASS model that 

successive processing is involved into word decoding (Das et al., 1979). Moreover, there 

is evidence of a relationship between phonological loop function during language 

acquisition and syntactic development. 

Reading achievement during childhood is linked with phonological short-term 

memory ability. Poor readers generally do not perform well in short-term memory tasks 

such as digit span, serial recall of unrelated strings of words, and the repetition of non-

words (Gathercole & Baddeley, 1993). Children with poor abilities to hold phonological 
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material temporarily may fail to develop adequate long-term representations of the words 

and phrases that are used to build syntactic patterns in speech (Speidel, 1989, 1993). 

Correlational studies of normally developing children also support a link between 

phonological memory ability in young children and speech output. Word span was found 

to be a better predictor of performance of 2- to 6-year-old children than chronological age 

in an artificial grammar-learning tasks (Daneman & Case, 1981), mean length of 

utterance in 2- to 3-year-olds (Blake, Austin, Cannon, Lisus, & Vaughan, 1994), and 3-

year-olds' spontaneous speech (Adams & Gathercole, 1995). 

Engle, Cantor, and Carullo (1992) argued that short-term memory was important 

to reading comprehension that involves surface coding (e.g., the recall of words in a 

phrase, i.e. literal comprehension); whereas working memory was important for grasping 

the complexities in reading comprehension. Swanson (1984) found that the effect of 

short-term memory in predicting reading comprehension and math ability was enhanced 

in the sample with learning disabilities, and argued that this might be due to the fact that 

students with learning disabilities might relied more on surface coding than normal 

group. 

In summary, the phonological loop, which may correspond to the successive 

processing in the PASS theory, plays a crucial role in syntactic learning and in the 

acquisition of the phonological form of lexical items. This finding in working memory is 

consistent with findings in PASS theory that successive processing is associated with 

syntactic processing of sentences. Thus, these findings all provided indirect evidences 

that successive processing were associated with translation problem-solving component. 
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Simultaneous processing and the integration problem-solving component 

During the second stage of math problem solving, integration, students were 

required to relate all elements in mind, and simultaneously process the information to 

build a problem representation. Simultaneous processing is important for the discovery of 

conceptual relationships between objects and events, so it is obviously involved in more 

advanced stages of reading, such as the integration component. Consistently, previous 

studies on PASS processes and reading revealed that simultaneous processing and 

planning were important for high level reading comprehension (Cummins and Das, 

1977). 

Kirby and Williams (1991) summarized that simultaneous processing was clearly 

demonstrated in verbal tasks that require the relating or integrating of discrete pieces of 

information, such as categorization and analogy. Simultaneous processing is also 

involved when the semantic coding of words is used to construct a new meaning in 

comprehending spatial or relational statements. Kirby and Williams (1991) specifically 

summarized the importance of simultaneous processing to math word problems as 

follows: 

At the level of mathematical word problems, most problems contain complex 

verbal information that must be comprehended. In many cases, inferences, or at 

least relationships between sentences, must be made. Therefore, virtually all of the 

examples of simultaneous processing in reading are also relevant to the solution of 

word problems in mathematics (p.200). 
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In addition, the literature in working memory and reading provided us more 

insights on the relationships between simultaneous processing in reading. In Baddeley 

and Hitch's (1974) working memory model; the multiple specialized subcomponents of 

cognition function differently through multiple components of working memory, namely, 

a central executive controlling mechanism and two subsidiary or "slave" systems, called 

the phonological loop and the visuospatial sketchpad, which are specialized for the 

processing and temporary maintenance of material within a particular domain. 

According to Baddeley and Logie (1999), "the central executive offers the 

mechanism for control processes in working memory, including the coordination of the 

subsidiary memory systems, the control of encoding and retrieval strategies, the switching 

of attention, and the mental manipulation of material held in the slave systems... 

However (italic added), The organization of these processes remains an open question and 

is the subject of ongoing empirical exploration" (p. 30). 

Comparing to the slave system of working memory, the central executive is a 

much less specified construct in the working memory model. Baddeley himself admitted 

that "it is not satisfactory to simply leave the central executive as a useful ragbag to 

contain all the phenomena that cannot be readily accounted for otherwise (Baddeley & 

Logie, 1999, p. 41)". Baddeley and Logie (1999) believed that "each of these components 

of working memory can be further fractionated i f such fractionation is adequately 

justified empirically. ... The central executive may also, in principle, not be a unitary 

construct, and a fractionation into different subcomponents or subprocesses is probably 

necessary" (p. 32). 
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Despite of the unclear nature of central executive, studies have consistently found 

that it plays an important role in many complex cognitive activities, such as 

comprehension (Gathercole & Baddeley, 1993), counting (Logie & Baddeley, 1987), 

mental mathematics (Logie, Gilhooly, & Wynn, 1994), syllogistic reasoning (Gilhooly, 

1998), and dynamic cognition and complex perceptuomotor control (e.g., a complex 

computer game) (Logie, Baddeley, Mane, Donchin, & Sheptak, 1989). In reading, the 

central executive is assumed to activate representations in long-term memory (LTM) 

extending up from individual words and concepts to complex schemata. Baddeley and 

Logie (1999) assumed that "the capacity to comprehend a particular passage will be 

determined both by the existing representations in L T M and by the capacity of the central 

executive to activate and combine such representation into a coherent mental model, 

which can then be consolidated into L T M " (p. 42). This process can be viewed as similar 

to simultaneous processing. 

In summary, the working memory literature that central executive processing is 

associated with reading comprehension (Gathercole & Baddeley, 1993) provides 

indirectly evidence to the involvement of simultaneous processing in integration problem-

solving component, i f we assume simultaneous processing is at least one of the 
i 

underlying processes of the central executive (Fan, 2000). Of course, this assumption on 

the simultaneous processing and the central executive is speculative and needs further 

empirical evidence. Studies on PASS processes and the sub-components of working 

memory are welcomed. 
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PASS Process of Planning and Planning Problem-Solving Component 

Findings of previous studies on planning and reading indicated that fast visual 

search group recalled more sentences, tended to master the central statements, questioned 

and evaluated the sentences they made, and were likely to modify their hypotheses as they 

went on reading (Ramey, 1985). Planning is shown to be increasingly important for 

reading with age increases (Naglieri & Das, 1988). Thus, it is plausible to hypothesize 

that PASS processes of planning skill is associated with students' translation, integration 

and planning components of math problem solving. 

An interesting aspect is linking planning and/or attention processes of the PASS 

theory with the central executive component of working memory. As discussed 

previously, the exact nature of central executive is not clear yet. Baddeley and Logie 

(1999) declared that the control processes involved in the central executive are complex. 

More explicitly, Engle, Kane, & Tuholski (1999) claimed that "working memory 

capacity" is not really about storage or memory per se, but about "the capacity for 

Controlled, sustained attention in the face of interference or distraction." (p. 104). Engle et 

al. (1999) further proposed that working memory equaled to controlled attention plus 

short-term memory. They believe that individual differences on measures of working 

memory capacity primarily reflect differences in capacity for controlled processing, which 

is the mediation of the strong relationship between working memory measures and fluid 

intelligence. They performed an analysis of the unique and shared variance in tasks 

reflecting short-term memory, working memory, and fluid intelligence. A structural 

model analysis revealed that the component of the working memory tasks important to 
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higher-order functioning was controlled attention rather than short-term memory. They 

summarized as follows: 

When tasks demand that subjects selectively focus attention amidst external or 

internal sources of distraction, or that subjects shift attention according to 

memorized rules, or that subjects divide their attention between different stimuli 

or tasks, working memory capacity and psychometric gF scores are good 

predictors of performance (p. 113). 

According to Engle and his colleague's definition of controlled attention, conceptually the 

controlled attention should involve the planning and attention PASS processes. The 

controlled attention has been shown to be the essence of gF arid good predictors of 

performance in higher-order cognitive activities, therefore, planning should be associated 

with math problem solving, especially the problem-solving components of integration and 

planning. 

Summary 

A l l above reviewed studies suggest that PASS processes might contribute to the 

difficulty of understanding math problem statements (e.g., in translating relational 

statements), of integrating information into a problem representation, and of devising an 

efficient solving plan. However, the relationship between PASS processes and math 

problem-solving components has never been explicitly explored. This study filled this 

gap by investigating cognitive processing (planning and simultaneous - successive 

processing) and math problem-solving components (translation, integration, and 

planning). 
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Cognitive Processes in Comparison Problems 

The analysis of the relationships of information coding and planning to math 

problem solving should be able to shed light on understanding students' special difficulty 

in solving inconsistent language (IL) comparison problem. This question needs to be 

investigated because of its theoretical importance and its educational implications. 

Why Study Comparison Problems? 

Comparison problems are chosen for this study for two reasons. First, studies 

consistently found that they are particularly difficult for students from elementary schools 

to colleges. Second, studies consistently indicated that building problem representation is 

the most important and hardest part in math problem solving. The comparison problem 

has special features that make it a good tool to study the process of problem 

representation formation. The two types of comparison problems have identical 

mathematical structures (and therefore require identical level of computations), but differ 

in their demands on students' representation skills, especially simultaneous processing 

skills and working memory. Thus, the comparison problem provides us a good tool to 

study children's problem representations. 
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Simultaneous Processing and Comparison Problems 

According to the previous review, the difficult of the inconsistent language (IL) 

problem can be attributed to the integration process to build problem representation (De 

Corte et al., 1990; Hegarty et al., 1992; 1995). Simultaneous processing has been shown 

to be strongly associated with more advanced levels of comprehension and inference 

(Kirby & Das, 1977; Cummins & Das, 1977; Naglieri & Das, 1987). Thus, we can 

propose that the underlying basis of the integration process, simultaneous processing, 

should be one of the reasons for the individual difference of performance in IL problems. 

That is, some students do not have enough simultaneous processing ability or can not use 

this ability to construct a coherent internal representation of the problem. As summarized 

by De Corte (1990), studies consistently found that "low-ability children's failure are not 

the results of the absence of a semantic processing stage, but of their faulty semantic 

analysis" (De Corte et al., 1990, p.365). We can further propose that the faulty semantic 

analysis may be attributed to the poor simultaneous processing skills. In the IL problems, 

in order to correctly complete the representation process, the student must clearly 

understand the relationship between the two sets, such as which is the larger set and 

which is the small set, and remember which set is a difference set (information in the last 

sentence) within the limited working memory. Keeping such information in mind, at the 

same time, the student has to simultaneously convert the subject and object in the 

relational statement and change the relational term. This process definitely demands good 

simultaneous processing capacity. Our hypothesis in this study is that simultaneous 

processing is strongly associated with differences of students' performance in the two 
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types of comparison problems. Students with good simultaneous processing should 

performance similarly in both types of problems, whereas students with poor 

simultaneous processing should perform poorly in IL problems. 

Training of Simultaneous Processing 

If students' simultaneous processing skills can be improved to a higher level, they 

may be able to understand the IL problem and solve it correctly as they do in the C L 

problem. Preliminarily, Lewis (1989)'s training study showed that we could help students 

effectively build the problem representation by teaching them a method for diagramming 

problem information. This diagramming method actually functioned as an outside 

memory aid. By diagramming the information, students did not need to keep the 

information of the problem in their working memory, they could focus on seeking the 

internal relationship between the problem elements and then reverse the inconsistent 

language sentence into a consistent one. In this way, the task demanded much less 

working memory. Diagramming might also reduce simultaneous processing demands by 

clearly and explicitly displaying the elements of the problem and therefore clarified their 

internal relationship. 

In summary, based on all these studies, we can hypothesize tentatively that 

simultaneous processing correlates with students' performance differences in the two 

types of comparison problem. Students with higher simultaneous processing skills will be 

more likely to use these skills in the integration component and construct a correct 

problem presentation, which will result in a correct problem solution. In contrast, students 
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with lower simultaneous processing do not have adequate simultaneous processing ability 

to integrate the information and build up correct problem representations, so they are 

more likely to return to a lower level but easier way to solve the problem, using direct 

translation strategy. Even students with lower simultaneous processing skills seemed to 

understand that they should build up a conceptual representation, and they did tried as 

suggested by their longer response time in the integration phase. However, due to poor 

simultaneous processing, the processing overloaded their limited working memory, and 

they could only rely on the direct translation strategy. After trained by a more helpful 

strategy, for example, diagramming as an outside aid to free their simultaneous 

processing ability and working memory, they could improve their performance to a higher 

level. 

Cross-Cultural Studies on Comparison Problems 

Although there are many cross-cultural studies on mathematics, there is no studies 

comparing North American and Asian students' performance in IL comparison problems. 

Cai's (1995) study is the only reported cross-cultural study involving only the consistent 

language (CL) comparison problem. Cai (1995) found that Chinese students 

outperformed U.S. students on all four translation questions involving relational 

propositions. Cai (1995) explained that this might relate to the more explicit expression 

of the comparing nature of the problem presented in Chinese. 

If we can test and compare American and Chinese students' simultaneous and 

successive processing, and planning, in relation to mathematical achievement, the result 
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might be able to shed light on and explain the well-documented cultural difference in 

math achievement. We can hypothesize that Asian students' higher math score in two 

math tests (computation and problem solving) should be correlated respectively to their 

relatively higher cognitive processing. If they are good at only computation, we can 

predict that it might be due to their better successive processing. Geary et al., (1993) 

found that Chinese students adopted a more advanced counting strategy due to their better 

short-term memory, which is mediated by their one-syllable number words in Chinese. If 

Chinese students are good at problem solving, it might'due to their superior simultaneous 

processing and /or planning skills. Cross-cultural studies on cognitive styles provided 

preliminary data to support this hypothesis. For example, Gardner (1986) conducted a 

validity study of K - A B C to Cantonese, English and Punjabi speaking third graders in 

Vancouver, Canada. The findings that Cantonese speaking students' high scores on the 

Triangles (the highest simultaneous loading) and the much lower scores on the Number 

Recall subtest (the highest sequential loading) supported the conclusion that the 

Cantonese group was much stronger in simultaneous processing than sequential 

processing compared to the English and Punjabi children (Gardner, 1986). This might 

relate to the fact that the Chinese characters used in students' daily life are structurally 

different from English and need to be processed as a whole. 

Summary 

Studies increasingly suggest that children's simultaneous-successive processing 

and planning related to their mathematical problem solving. However, systematic studies 

on children's cognitive processes in mathematical problem solving have not yet been done 

from the perspectives of PASS theory. 
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Despite of this, there are a number of studies on individual differences in math 

problem solving indirectly related to this topic. Hembree (1992) did a meta-analysis to 

487 research reports (1920s - 1980s) on math problem solving. Four main regions that 

related to math problem solving were identified. First, studies examined the relationship 

between math problem solving and a series of mental abilities including high-order 

thinking skills and a structure of mental abilities such as creative thinking, critical 

thinking, memory, perception, reasoning, skill with analogies, skill with inferences and 

spatial ability. Skill of forming analogies and skill at general reasoning achieved the 

strongest link with problem solving measures. Second, the relationships between problem 

solving performance and standardized measures of IQ, verbal achievement (reading and 

vocabulary), and math achievement (computation, math concepts, reasoning and 

vocabulary) were also positive and statistically significant. However, none of the links 

seemed stable across school grade level. The strongest relations with problem solving 

were found for basic skills in math, the weakest relations appeared for traditional IQ 

measures. Third, differences in math problem solving performance were studied with 

regard to demographic variables of gender, ethnicity and socioeconomic status (SES). No 

difference in performance was found between females and males in Grade 1-8. However, 

males performed better in high schools and showed a greater advantage in colleges. 

Students in the majority group scored significantly better than minority groups. High SES 

students outperformed their peers of low SES. Finally, a number of studies examined 

relations between problem solving performance and measures of various sub-skills 

involved with the problem-solving processes (e.g., comprehending the problem). The 

results consistently found that successful problem solvers are those students who 
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comprehend better, translate from English to mathematical symbolization more easily, 

select correct operations more often, and judge related information more correct. The 

more students perceived similarity on the basis of surface details or context, the lower 

their problem solving scores. Particularly interesting, to identify activities that may affect 

problem-solving performance, students were asked to think aloud while solving the 

problem. The result revealed that drawing a correct diagram to represent a problem was 

the most effective way to benefit problem-solving performance. This result is consistent 

with the finding of Lewis's training study (1989). Diagrams can function as an external 

memory aid to reduce the working memory load and the demand of simultaneous 

processing. 

The findings of this meta-analysis showed that some basic mental abilities and the 

various sub-skills involved with word problem solving were important factors influencing 

math problem solving performance. Based on the previous review, we can view PASS 

processes as basic level mental abilities that might be related to math problem solving. 

Mayer's math problem-solving components can be viewed as a series of sub-skills of 

math problem solving. Conforming to the findings of Hembree's meta-analysis (1992), we 

hypothesize that PASS processes and Mayer's components significantly relate to math 

problem solving performance. 

Similarly, Geary (1994) suggested the direction of future studies as follows: 

it is very likely that individual differences in the ability to mentally translate and 

represent the meaning of arithmetical and algebraic word problems (Lewis & 

Mayer, 1987) along with the ease with which the associated schemas develop are 

important sources of performance differences in mathematical reasoning. 



64 

Individual-difference studies that explicitly examine these skills, in concert with 

arithmetical processing and working memory skills, for their relation to 

performance on mathematical reasoning are needed to fill in the gaps in our 

understanding of this area (p. 147). 

This study is an attempt in this direction. Individual differences in mathematical 

problem solving were examined in concert with cognitive components of problem solving 

(translation, integration and planning), computation skills, and general cognitive 

processing related to working memory (planning, simultaneous and successive 

processing). The findings is helpful for our understanding of the cognitive processes 

underlying math problem-solving so that more effective instructional and remedial 

programs can be designed in the future. 

Research Questions 

The purpose of this study was to examine the children's simultaneous-successive 

processing and planning and its attribution to mathematical problem solving. This 

proposed study aimed to clarify the relationship between PASS processes (planning and 

simultaneous-successive processing) and math problem-solving components (translation, 

integration, and planning). In addition, the effects of PASS processes on students' 

performance in the two types of comparison problems (CL and IL) were examined to 

explain students' difficulty. Moreover, cognitive profiles of PASS processes in the special 

poor problem solvers in problem solving and in IL problems were analyzed. A particular 
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group, Chinese sixth graders, which has been consistently found to be prestigious in 

mathematics achievement, was chosen in this study. 

Six research questions derived from this literature review are as follows: 

1. What is the relationships between PASS processes (planning and simultaneous-

successive processing) and arithmetic computation? 

2. What is the relationships between PASS processes (planning and simultaneous-

successive processing) and arithmetic problem solving? 

3. What is the relationships between PASS processes (planning and simultaneous-

successive processing) and Mayer's math problem-solving components (translation, 

integration, and planning), respectively? 

4. How are PASS processes manifested in the special group of poor arithmetic 

problem solvers? 

5. What is the relationships between PASS processes (planning and simultaneous-

sequential processing) and students' performance in the two types of comparison 

problems (CL and IL)? 

6. How are PASS processes manifested in the special group of poor problem 

solvers in inconsistent language (IL) comparison problems? 

Research Hypotheses 

Based on the research questions presented in the previous section, it is 

hypothesized that: 
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1. Successive processing and planning are significantly associated with children's 

computation skills. 

2. A l l PASS processes (planning, simultaneous and successive processing) are 

significantly associated with children's arithmetic problem solving performances. In 

addition, simultaneous processing is the best predictor of math problem solving. 

3. Successive processing is significantly associated with students' performance in 

translation problem-solving component. 

4. Simultaneous and planning are significantly associated with integration 

problem-solving component. 

5. Planning and simultaneous processing are significantly associated with 

planning problem-solving component. 

6. Poor arithmetic problem solvers perform much poorer in all PASS processes 

than their peers who can successfully solve the arithmetic word problems. 

7. For Chinese sixth graders in this study, inconsistent language (IL) comparison 

problems are significantly harder than consistent language (CL) comparison problems. 

8. There are significant main effects of problem type and simultaneous processing 

level on students' performance in comparison problems. Students with high simultaneous 

processing skill significantly outperform their peers with lower simultaneous processing 

skill. And there is a main effect of the interaction between problem type and simultaneous 

processing level. Students with high simultaneous processing perform similarly in the two 

types of problems, whereas students with lower simultaneous processing perform 

significantly poorer in IL problems than in CL problems. 
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9. There are significant main effects of problem type and sequential processing 

level on students performance in comparison problems. Students with high sequential 

processing outperform those with low sequential processing. However, the interaction 

between sequential processing level and problem type is not significant. The performance 

difference in the two types of comparison problems are similarly for both students groups. 

10. There are significant main effects of problem type and planning level on 

students' performance in comparison problems. Students with high planning skills 

perform significantly better than those with low planning skills. And there is a significant 

interaction between planning level and problem type. The performance differences in the 

two types of comparison problems are small for students with high planning skills, 

whereas the performance differences are large for those with poor planning skills, that is, 

students with poor planning skills perform significantly poor in IL problems than in C L 

problems. 

11. Poor problem solvers in IL problems perform significantly poorer in all PASS 

processes than their peers who can solve IL problems successfully. 
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CHAPTER 3: METHODOLOGY 

This chapter first describes the participants and design, then describes in detail 

measures of the three PASS processes, the three math problem-solving components, and 

students' performance in comparison problems. Finally, the procedures is briefly 

described. 

Participants 

The participants in this study were 100 grade six students from two suburban 

"common" schools in Xi'an, China. 

General Background Information 

Xi 'an is a large, industrialized city arid cultural center in Northwest China. Xi'an 

covers a total area of over 9700 square kilometers, and there are seven districts and six 

counties under the jurisdiction of the municipal government. It has a population of over 

5.2 million, which is representative of the population of most of the large cities in China. 

The school system in Xi'an consists of two types of schools: a few key schools 

that are. highly selective and offer a high-quality educational program; then, many 

common schools that recruit students by family location ~ they have a much more 

representative population than the selective "key" schools. Two "common" schools 

participated in this study. One school [601 Elementary School] is in the southwest of 
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Xi'an. About half of the children are from farm families, about one-quarter from worker 

families and the remainder are from professional/intellectual families (at least one parent 

has a university degree). Two intact classes in grade six participated in this study. A l l 77 

children whose parents gave consent for participation in this study were recruited; no 

other exclusive criteria were used. The author excluded one child's data from data 

analysis because the mathematics teacher identified the child as having learning 

difficulties. The other 24 children were recruited from another school. This school [Xi'an 

Steel Factory Affiliated Elementary school] is located in the western suburb of the city. 

Most children come from families of factory workers and merchants. They were selected 

by the math teacher from a sixth grade class, the criterion is randomly selecting from 

high, medium and low achievement groups. 

Grade Level of the Participants 

Grade six students were chosen in this study for the following reasons. First, this 

study attempts to examine children's problem solving in mathematical word problems, 

and mathematical word problems are included and emphasized mainly in the higher 

grades in elementary schools in China. Second, this study will use a set of mathematical 

word problems adapted from a cognitive component test originally designed by Mayer. 

The test was designed and previously used for grade five and grade six children. In 

addition, Cai (1995) has used this test to measure the mathematical achievement of 

American and Chinese Grade six students, and found that the test is age appropriate. 

Thus, this study recruited sixth graders as participants. 
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Sample Size 

There are two ways to decide the minimum number of participants in this study. 

One is to simply decide according to a rule of thumb: select the number that represents 

the largest number of scores the dependent variables will generate, which is three in this 

case (translation, integration and planning). Then, multiply this number by a highly 

conservative number 20 (there are 20 subjects per variable). Thus, this study requires at 

least 60 participants. , 

Another way to determine the number of participants more accurately is to do a 

power analysis. Power is a function of sample size, the magnitude of the effects of the 

independent variables, and the alpha level. In this study, .80 was selected as the level of 

power. Then the next step is to decide the magnitude of the effects of the cognitive 

processing based on findings from previous studies that examined mathematical 

achievement and cognitive processing. For example, correlation coefficients between 

simultaneous processing and various mathematics achievement scores ranged from .34 to 

.72; correlation coefficients between successive processing and mathematical 

achievement scores ranged from .22 to .50. Thus, the average correlation coefficient 

between simultaneous processing and mathematics, successive processing and 

mathematics would be around .50 and .40, respectively (Kaufman & Kaufman, 1983c; 

Cheng et a l , 1984; Garofalo, 1982). Finally, one can look at the Table of Power of 

Significance Test of r, at a = .05 (Two Tailed), for power = .80, when population r = .40, 

n = 46; when r = .50, n = 28. Thus, 30 to 50 participants would be enough for the power 

level of .80 at the a level of .05. To be more conservative, we doubled the size, and so the 

sample of this study was set at 100. 



71 

Design 

The present study included three parts. The first part was a correlational design 

(see Table 2). The data were analyzed by computing zero-order correlations between 

cognitive processing (simultaneous-successive processing and planning) and two levels of 

achievement measures: score level and cognitive components level. The score level of 

mathematics achievement included students' final scores in mathematical problem solving 

and computation; the cognitive components level of mathematics achievement involved 

the three cognitive components of solving mathematical word problems based on Mayer's 

model, translation, integration and planning. Then factor analysis of the five subtests of 

PASS theory and multiple regression on each math problem-solving component with 

PASS processes as independent variables were conducted. 

The second part of the study was a 2 x 2 mixed factorial design (see Table 3). It 

investigated the effects of cognitive processing (as measured by PASS processes) and 

problem type (CL vs. IL) on children's performance in the two types of comparison 

problems. Based on students' scores of each cognitive processing, participants were 

assigned into high and low level. A l l groups of students received tasks of consistent 

language (CL) and inconsistent language (IL) comparison problems. The independent 

variables were cognitive processing level and problem type. Cognitive processing level 

(high vs. low) was a between-subject variable. Problem type (CL vs. IL) was a within-

subject variable. The dependent variable was performance in the two types of comparison 

problems. The mixed factorial A N O V A on each math problem-solving component was 
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conducted, respectively, with cognitive processing level and problem type as independent 

variables. 

Table 2 

Correlational Design 

Cognitive Processing Mathematics Achievement (dependent variables) 

PASS processes Score Level Cognitive Processing Level 

(independent variables) 

Computa Problem Transla- Integra- Planning 

-tion Solving Tion tion 

Simultaneous Processing 

Photo Series 

Triangles 

Successive Processing 

Number Recall 

Word Order 

Planning 

Matching Numbers 

In the last part, the manifestations of PASS processes for good and poor problem 

solvers in the composite scores of Problem Solving and in performance in IL comparison 

problems were analyzed, respectively. 

Students were first assigned into groups of good and poor problem solvers based 

on their performance in the composite scores in Problem Solving. A M A N O V A on all 
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PASS processes was analyzed With the group of good and poor problem solvers as the 

independent variable (see Table 4). 

Then students were assigned into groups of good and poor IL problem solvers 

based on their performance in IL problems. A M A N O V A on all PASS processes was 

analyzed with the group of good and poor IL problem solvers as the independent variable 

(see Table 4). 

Table 3 

Mixed Factorial Design for Part 2 

Level of PASS processes Type of Comparison problems 

(Between-subject) (Within-subject) 

Consistent language (CL) Inconsistent language (IL) 

High Level Group 

Low Level Group 

Table 4 

M A N O V A Analyses on PASS Processes for Good and Poor Problem Solvers 

Performance Group 

(independent variable) 

PASS processes (dependent variables) Performance Group 

(independent variable) 

Planning Simultaneous Sequential 

Good Problem Solvers 

Poor Problem Solvers 
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Measures 

Measures of Cognitive Processing 

Many tasks in CAS (Naglieri & Das, 1997a) assessing simultaneous and 

successive processing involve verbal materials; for Chinese participants of the present 

study, usage of them will involve many translation issues. Because of this consideration, 

the similar tasks of the Kaufman Assessment Battery for Children (K-ABC) (Kaufman & 

Kaufman, 1983a) were chosen as the tests of simultaneous and successive processing in 

the present study. 

Simultaneous Processing 

The Photo Series and Triangles subtests of the Kaufman Assessment Battery for 

Children (K-ABC) (Kaufman & Kaufman, 1983a), were used to assess simultaneous 

processing in the present study. 

Photo series. The Photo Series task measures the child's ability to organize a 

randomly placed array of photographs illustrating an event in the proper time sequence. 

The task was composed of a total of 17 items. Each item used four to ten cards. The 

investigator put all the cards in order as the number shown on the back of each card. The 

child was asked to put each card back in the investigator's hand one by one, in the proper 

time sequence. The cards given back always faced the child. Administration began with • 

the first item and was discontinued if the child failed every item in one unit before 
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reaching the stopping point. There was no time limit for this task and the child could 

correct their response at any time. The child got 1 point for each item only when he or 

she put back all the picture series in correct order. The child's total score in Photo Series 

was the number of total items he or she correctly finished. As Kamphaus and his 

colleagues emphasized, "the most crucial aspect of solving Photo Series items correctly 

involves developing a sense of the whole series of pictures and how they connect to one 

another" (Kamphaus et al., 1997, p. 350). 

Triangles. The Triangles subtest measures the child's ability to assemble several 

identical rubber triangles (blue on one side, yellow on the other) to match a picture of an 

abstract design. It measures nonverbal concept formation. The child has to figure out the 

relationship among the triangles and mentally integrate the components of the design to 

"see" the whole structure so that they can reproduce the abstract design. 

The investigator showed the child the abstract design in the K - A B C easel-kit, then 

the child was asked to use the rubber triangles to produce the same design as that in the 

kit. The design in the easel-kit was available to the child during the whole process. There 

were a total of 18 items in the subtest; this study used only Item 10-18 that was 

appropriate for children age 8 - 1214. Each item was allowed to be completed in 2 

minutes. Administration began with the first item and was discontinued if the child failed 

every item in one unit before reaching the stopping point. The child got 1 point for each 

item only when he or she correctly reproduced the matching design within the time limit. 

The total sore of Triangles for the child was the total number of correct responses 

calculated by the ceiling score minus the number of errors. 



76 

Successive Processing 

The Number Recall and Word Order subtests of the Kaufman Assessment Battery 

for children (K-ABC) (Kaufman & Kaufman, 1983a) were used to assess successive 

processing in the present study. Both tasks emphasize "the arrangement of stimuli in 

sequential or serial order for successful problem solving" (Kamphaus et al., 1997, p. 350). 

Number recall. Number Recall measures the child's ability to repeat in sequence a 

series of numbers spoken by the investigator. K-ABC's Number Recall only includes 

forward span,Avhich has been shown by Das, Kirby and Jarman (1975, 1979) to be a 

consistently strong measure of sequential or successive processing. 

The investigator read a series of numbers. The child was asked to repeat them 

right away. There were a total of 19 items, 2 numbers to 7 numbers per item were used. 

Administration began with the first item and was discontinued if the child failed every 

item in one unit before reaching the stopping point. The child got 1 point only when he or 

she completely repeated each item in correct order. 

Word order. Word Order "ranks behind Number Recall as the premier measure of 

sequential processing. The task required a child to touch a series of pictures in the same 

sequence as they were named by the examiner" (Kamphaus et al., 1997, p. 368). The task 

included two parts: the first part was as above described, the second part had an 

additional interference activity of naming color. After the investigator read a word series, 

the child was asked to name as soon as possible the color of a series of circles in the 

easel-kit in five seconds. Then the child was asked to point to pictures in the same 

sequence as the investigator named them at the beginning. It is primarily an adaptation of 
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of the left temporal lobe. Das, Kirby and Jarman (1979) also used a similar interference 

activity for the successive processing task in their test battery. 

Planning 

Planning was assessed using the Matching Numbers subtest from the Cognitive 

Assessment System (CAS) (Naglieri & Das, 1997a). The subtest of Matching Numbers 

was chosen because it involved only numbers, while other planning subtests in CAS all 

involved English letters that might be unfamiliar to Chinese students. Thus, the test of 

planning is referred to as "Matching Numbers" hereafter so that it can be clearly 

differentiated from Mayer's planning task. 

Matching Numbers. The Matching Numbers is a 4-page paper and pencil task. 

Each page consists of 1 item. Each item contains 8 rows of numbers with 6 numbers per 

row. Numbers increase in digit length with row. Children were required to underline the 

two same numbers in each row. In this study, item 2 through 4 appropriate for children 

age 8-17 were administered. The test score for each item was the ratio score of the total 

amount of time in seconds to complete each item and the number of item correctly 

completed, based on the Ratio Score Conversion Table included in the Record Form of 

CAS. The total score of this subtest was the sum of the ratio scores for all items. 
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Simultaneous and Sequential Processing Tasks of K - A B C . 

Reliability. 

The internal consistency, or homogeneity, of scores on each subtest has been 

examined by using the split-half method, a procedure that evaluates the degree to which 

each score represents measurement of an uni-dimensional, homogeneous ability or trait. 

Overall, the obtained split-half reliability coefficients showed very good internal 

consistency for the K - A B C subtests across the entire age range, as mean values of .80 and 

above were obtained for 12 of 16 subtests (Kaufman & Kaufman, 1983c). For age group 

11-0 to 11-11 (n = 200), the split-half reliability coefficients for the Number Recall is .77, 

Word Order .75, Triangles .84, Photo Series, .81. For age group 12-0 to 12-5 (n = 100), 

the coefficients are .83 for Number Recall, .76 for Word Order, .79 for Triangles, .86 for 

Photo Series. Thus, all items used in this study have a good internal consistency (split-

half reliability coefficients are .75 or above). 

Validity. 

Principal factor analysis of the K - A B C Mental Processing subtests offered strong 

support for the construct validity of the K - A B C (Kaufman & Kaufman, 1983c). Factor 

analysis showed that the most effective measures of Simultaneous Processing were Photo 

Series and Triangles (Their factor loadings in Simultaneous Processing for age 10 

children (N=200) are .75 and .69, respectively). The most effective measures of 

Sequential Processing were Number Recall (Factor loading: .92) and Word Order (Factor 

loading: .69) (Kaufman & Kaufman, 1983c). In a study on constructive validity of K -

A B C , selected confirmatory factor analysis solutions for the K - A B C (based on 
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standardization data) revealed that for age 11 (N=200), Number Recall (.58) and Word 

Order (.57) were the best marker tests for sequential processing. Triangles (.71) and 

Photo Series (.66) were the best marker tests for simultaneous processing (Kaufman & 

Kaufman, 1983c). Thus, this study selected Photo Series and Triangles as measures of 

simultaneous processing; Number Recall and Word Order as measures of sequential 

processing. 

Reliability of the Planning Subtests of CAS. According to Naglieri and Das 

(1997c), the average reliability for the Planning of standard Battery PASS Scales is .88. 

The internal reliability of the subtests was obtained by using the split-half method and the 

Spearman-Brown formula. The internal reliability coefficients of the subtest of Matching 

Numbers for children age 11-12 is: .75, .78; The test-retest reliabilities (Stability) for 

subtest of Matching Numbers across age groups over time is also good (.73). These 

reliabilities are good enough as suggested by Das and his colleagues (Das et al., 1994). 

Validity of CAS. 

Content validity. The PASS theory is based on Luria's (1980) three functional 

unit model for identifying the important processes involved in human cognitive 

competence. The subtest and items of CAS were developed based on the PASS theory. 

Therefore, they have good content validity. 

Conversent and discriminent validity. CAS subtests have shown an appropriate 

increase with age. Subtests from each of the PASS Scales typically correlate the highest 

with the scales on which they are assigned and lower on the scales on which they are not 

included. 
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Criterion-related validity. A representative sample of 1600 children aged 5-17 

were administered both the CAS and several WJ-R achievement tests (Woodcook-

Johnson Revised (WJ-R) tests of Achievement). The results showed that the PASS 

cognitive processes are related to achievement as measured by the WJ-R tests of 

achievement. Wasserman and Becker (2000) reported that the classification accuracy of 

CAS compares favorably to use of the WISC-III as well as the Gordon Diagnostic System 

in identifying children with ADHD. The results showed that the CAS was the best 

predictor among leading intelligence tests of reading and math academic skills. 

In general, various studies have provided evidence that tasks used to 

operationalize simultaneous, successive, and planning processes have functioned 

similarly despite wide differences in culture, language, and socioeconomic status. In 

particular, the Planning subtest has been found to correlate with other planning tasks in 

several studies (Ashman & Das, 1980; Naglieri & Das, 1988; Naglieri, Bardos, & 

Prewett, 1989). 

Measures of Mathematics Achievement 

Measures of Computation and Problem Solving 

The mathematical achievement measures were mainly adapted from the 

computation and problem-solving booklets designed by Mayer (Mayer et al., 1991). One 

question in Mayer's original computation booklet involves negative numbers. In the pilot 



81 

study, it was found difficult for the Chinese sixth grader children because the 

- computation of negative numbers has not been taught at their schools, thus the 

investigator removed it from the official computation booklet. The computation booklet 

consists of 14 multiple-choice arithmetic computation problems that Mayer selected from 

a test derived by Stevenson et al. (1986). The problem-solving test consists of 18 

multiple-choice word problems designed by Mayer (1991), which tapped the three 

cognitive components translation, integration, and planning, respectively. Both tests are 

multiple choice tests. The instructions and practice problems were presented in the first 

page of each test booklet. Table 5 shows the example items of each booklet in English. 

This test has been used in three cross-cultural studies on mathematical achievement 

between Asian and American students (Cai, 1995; Mayer et al., 1991; Tajika et al., 1997). 

Table 5 

Four Cognitive Processes Involved in Mathematical Problem Solving 

Cognitive process (and test) Example test item 

Translation process Which number sentence is correct? 

(6 items on problem-solving test) John has 5 more marbles than Peter. 

a. John's marbles = 5 + Peter's marbles 

b. John's marbles + 5 = Peter's marbles 

c. John's marbles + Peter's marbles = 5 

d. John's marbles = 5 

(To be continued) 
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(Continued) 

Cognitive process (and test) Example test item 

Integration process Which numbers are needed to solve this problem? 

(6 items on problem-solving test) . Liu Wei has 3 Yuan. He bought a book for .95 Yuan, a pencil 

for .20 Yuan, and a notebook for .45 Yuan. How much money 

did he spend? 

a. 3,0.95,0.20,0.45 

b. 0.95,0.20,0.45 

c. 0.95,0.45 

d. 3 

Planning process - Which operations should you carry out to solve this problem? 

(6 items on problem-solving test) If it costs 50 cents per hour to rent roller skates, what is the cost 

of using the skates from 1:00 p.m. to 3:00 p.m.? 

a. subtract, then multiply 

b. subtract, then divide 

c. add, then divide 

d. multiply only 

Execution process " 62.3 -37.8 = 

(14 items on computation test) a. 24.5 , 

b. 25 

c. 25.5 

d. none of these 

Note. Correct answers, respectively, are (a), (b), (a), and (a). 
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In his cross-cultural study on mathematics achievement of American and Chinese 

students, Cai (1995) reported that the reliability estimate (KR-20) for the computation 

tasks are .65 for the Chinese students, and the reliability estimate (KR-20) for the 

component tasks are .81 for the Chinese students. Thus, the mathematical tests used in the 

present study have good reliability. 

Measures of Problem Solving in Comparison Problems 

The investigator designed an assessment of problem solving in consistent 

language (CL) and inconsistent language (IL) comparison problems, which is very similar 

to the measures used in the studies of Verschaffle et al., (1994, 1992), De Corte and 

Verschaffle (1990), and Hegarty et a l , (1992, 1995). 

In previous studies, measures usually included some target problems (CL and IL 

comparison problems) and some filler problems. For example, Verschafflel (1994) gave 

fifth graders 9 one-step arithmetic problems, including 1 warm-up question, 4 target 

questions (2 CL, 2 IL) and 4 filler questions. In another study, Verschaffel (1992) gave 

15 grade three children a set of 26 questions, including 16 target comparison problems (8 

CL, 8 IL) and 10 other computation questions as filler items. Similarly, De Corte and 

Verschaffel (1990) studied the performance of 20 second graders in comparison 

i 

problems. The test material included 16 target questions and 4 filler items. Thus, in the 

present study, the author designed a set of questions including some comparison problems 

as target problems and some filler items to remove the response pattern. 

Most previous studies on elementary students mainly involved one-step 
. ' N 

comparison problems; whereas, studies on college students mainly involved two-step 
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comparison problems. For example, Hegarty and Mayer (1992, 1995) used two-step 

consistent language (CL) and inconsistent language (IL) comparison problems in their 

studies on college students. For college students, one-step problems have been shown to 

be too easy to reveal the cognitive processes of solving comparison problems 

(Verschaffel et al., 1992). In addition, the main part of class instruction and the practice 

of solving mathematical word problems for sixth graders in China involve various two-

step questions. Thus, in order to avoid the ceiling effect, in the present study, two-step 

comparison problems were used. The measure consisted of 16 target comparison 

problems, including 8 consistent language (CL) problems and 8 inconsistent language 

(IL) problems. Each type of problem included 4 additions and 4 subtractions. The format 

and structure of the comparison problems were very similar to those used in previous 

studies (Hegarty et al., 1992, 1995; Verschaffel, 1994; Verschaffel et al., 1992; De Corte 

et al., 1990). Each target problem consisted of three sentences, presented in four lines, as 

shown in Table 6. There were four cover stories for target problems as given in the rows 

of Table 6. The questions involved common names of objects in Chinese students' 

everyday context. 

To avoid stereotyped responses, the investigator combined the problem-solving 

booklet and the 16 comparison problems into one booklet. The 18 problem-solving tasks 

tapping cognitive components were used as filler problems in the present study. The order 

of problem type (CL and IL) and the order of the four cover stories were counterbalanced. 

Thus, the whole mathematical test included two booklets: computation test and word 

problems. The latter consisted of problem-solving tasks and comparison problems. For 
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the English version of the mathematics computation test, see Appendix A. For a complete 

English version of problem-solving tasks and comparison problems, see Appendix B. 

Table 6 

Consistent Language and Inconsistent Language Comparison Problems 

Consistent (Less) 

At store A, a box of candy costs 1.13 Yuan. 

Candy at store B costs 5 cents less per box 

than store A. 

If Xiao Wang wants to buy 5 boxes of 

candy, 

How much will he pay at store B? 

At store A , workers earn 10.00 Yuan per 

hour. 

Workers at store B earn 50 cents less per 

hour than workers at store A. 

If Da Wei works for 8 hours, 

How much will he earn at store B? 

At a grocery store at school, a pencil costs 

0.20Yuan; 

In a supermarket, a pencil costs 2 cents less 

than pencil at the grocery store. 

If Xiao Ming want to buy 4 pencils, 

How much will he pay at the supermarket? 

Inconsistent (Less) 

At store A, a box of candy costs 1.13 Yuan. 

This is 5 cents less per box than candy at 

store B. 

If Xiao Wang wants to buy 5 boxes of 

candy, 

How much will he pay at store B? 

At store A, workers earn 10.00 Yuan per 

hour. 

This is 50 cents less per hour than workers at 

store B. 

If Da Wei works for 8 hours, 

How much will he earn at store B? 

At a grocery store at school, a pencil costs 

0.20Yuan; 

This is 2 cents less than a pencil at a 

supermarket. 

If Xiao Ming want to buy 4 pencils, 

How much will he pay at the supermarket? 
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In store Dafa, apple costs 0.70 Yuan per In store Dafa, apple costs 0.70 Yuan per 

pound. pound. 

In Xiaoli's store, apple costs 20 cents less This is 20 cents less per pound than Xiaoli's 

per pound than store Dafa. store. 

If you want to buy 12 pounds of apples, If you want to buy 12 pounds of apples, 

How much will you pay at Xiaoli's store? how much will you pay at Xiaoli's store? 

Note. The remaining problems were identical to these except that more was substituted 

for less in the second line of each problem. 

Reliability of Comparison Problems 

The internal consistency of comparison problems was analyzed and good 

reliabilities were obtained. The cronbach alphas for the total comparison problems, 

consistent language (CL) comparison problems (total 8 items) and inconsistent language 

(IL) comparison problems (total 8 items) were .80, .66 and .79, respectively. 

Chinese Translations 

The contents of the selected K - A B C tests were primarily pictures and numbers, so 

the translation task was very limited; it only included direct translation of the instructions 

and numbers and names of the pictures in K - A B C easel-kit of measures of successive 
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processing (Number Recall and Word Recall). Contents of Matching Numbers subtest of 

CAS also involved only numbers, thus only the instruction was needed to be translated 

into Chinese. The investigator completed these simple translations. 

The translation of the Computation test into Chinese is straightforward and just 

involves translating instruction. The investigator completed it. The Chinese version of 

the problem-solving test was adapted from Cai (1995). Cai (1995) translated Mayer's 

cognitive component test into Chinese in a cross-culture study on math achievements. 

According to Cai, change of personal names, object names, terminology, and contexts 

into appropriate words for Chinese students would not affect the mathematical difficulty 

of the tasks. The investigator also consulted with the two mathematics teachers in the two 

schools in Xi'an regarding the appropriateness of the Chinese version of the tests; they 

both indicated that the questions were clearly described and that students were expected 

to be able to solve them. 

Pilot Study 

A pilot study was conducted to examine the appropriateness of the test. The three 

sets of test were administered to 10 randomly selected students. The students all showed 

that they understood the instructions. Only one question involving negative numbers has 

been shown to be too difficult; the investigator removed it from the formal test because it 

was beyond the content that students had been taught at school when the test was 

administered. 
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Procedure 

Setting 

The tests were administered to grade six students from three math classrooms in 

two schools of Xi'an, China. A letter with a consent form was sent to parents explaining 

the purpose and the procedures of the study. A l l parents agreed that their child could 

participate in the study. One student with learning difficulties identified by the teacher 

also participated in the study; however, her data was removed from the final analysis. 

The tests started first at the 201 Affiliated Elementary School. After finishing 

data collection at this school, testing at the Xi'an Steel Factory Affiliated Elementary 

School followed. 

In both schools, the tests of cognitive processing were individually administered 

to all students first in a quiet room at school. The K - A B C easel was put on the table, and 

the investigator and the child sat at adjacent sides of the table, so that the investigator 

could see the child's side of the easel. The mathematical tests were group administered to 

the intact class in the classroom. The testing occurred as an extra-curricular activity in an 

afternoon; it took one class time period (45 minutes). At the end, the two math teachers 

were asked to rate students' general math problem-solving abilities. 
/ 
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Procedure 

Tests of Cognitive Processing 

The child was asked background information before the test started. The 

information included the child's name, gender, birth data, and parents' education level. 

Then the formal tests started with instruction and sample problems. According to Naglieri 

(1999), in this study, the cognitive processing tests were conducted in the order of 

planning, simultaneous processing and sequential processing. The investigator 

administered the tests according to the Administrative and Scoring Manual for the 

Kaufman Assessment Battery for Children (Kaufman & Kaufman, 1983b) and Cognitive 

Assessment System Adminstration and Scoring Manual (Naglieri & Das, 1997b). Testing 

time for the cognitive processing battery was approximately fifty minutes. Students' 

answers were recorded during the test administering. 

The Math Tests 

The mathematical tests included tests using two booklets: the computation booklet 

and the problem-solving booklet (including math problem-solving component problems 
( . 

and comparison problems). Students were allowed 30 minutes for the problem-solving 

booklet first, and then 15 minutes for the computation booklet. Each booklet started with 

one page of instruction and practice problem samples. For each question, students were 

asked to choose the correct answer from the four given choices. Prior to each test, the 

investigator gave the instruction and practice problems in Chinese to the intact class (see 

Appendix A and Appendix B). The instruction and procedures were identical to those 

used by Mayer et al. (1991). The investigator was present during the whole testing 
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process and was available to answer questions. Two mathematical teachers helped 

classroom management while the test was administered. They were required not to give 

any hints about how to solve the problems. 

Data Coding 

Cognitive Processing Tests 

According to the Administrative and Scoring Manual for the Kaufman 

Assessment Battery for Children (Kaufman & Kaufman, 1983b), raw scores of each item 

were calculated. Then a composite score of each cognitive processing (simultaneous, 

successive processing and planning) was calculated by averaging the scores of the two 

corresponding subtests. 

Based on Cognitive Assessment System Administration and Scoring Manual 

(Naglieri & Das, 1997b), the scores of Matching Numbers were calculated. 

Mathematical Achievement Tests 

The score of computation is the total number of correctly answered items in the 

computation test. The maximum score is 14. The score of each problem-solving 

component is the total number of correctly answered items in the corresponding six items. 

The maximum score of each cognitive component problem is 6. The score of Problem 

Solving is the average of scores in the cognitive component test: translation, integration 

and planning. Thus, the maximum score of the composite score of Problem Solving is 6. 
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Tests of Comparison Problems 

The score of consistent language (CL) and inconsistent language (IL) comparison 

problems is the total number of correctly answered items. The maximum score is 8. 
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CHAPTER 4: RESULTS 

This chapter presents the results of the present study into three sections: 

(a) PASS processes and math problem-solving components: descriptive statistic 

analyses; correlational and regression analyses; and M A N O V A analyses. 

(b) PASS processes and students' performance in consistent language (CL) and 

inconsistent language (IL) comparison problems: contributions of each PASS process on 

students' performance were analyzed by a series of A N O V A analyses on students' 

performance, with level of each PASS process and problem type as independent 

variables. Profile of PASS processes in good and poor problem solvers in comparison 

problems were explored by a M A N O V A analysis. 

(c) Summary of the results. 

Analyses were performed using SPSS 7.5 (1977). An alpha level of .05 was used 

for all statistical tests. 

PASS Processes and Math Problem-Solving Components 

Demographic Statistics 

Demographic Data 

Data regarding the distribution of the sample by school, sex, parent education 

level (PEL) are presented in Table 7. As shown in Table 7, the sample consisted of 76 

participants from two Grade 6 math classes in 601 Elementary School and 24 participants 
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from a Grade 6 math class in Xi'an Steel Factory affiliated School, resulting in a total 

sample of 100 participants. The mean age of the sixth grader students was 11 years 8 

months (SD = 5.91 months). 

The sample represented an approximately equal distribution of males (N = 52) and 

females (N = 48). 47% of the participants were from professional / intellectual families 

(at least one of the parents had received college level education), 59% of the students 

were from lower education families (neither parents had college level education). 

Table 7 

Demographic Data 

Gender PEL School 

Male Female Low High 601 Factory 

Number 52 48 

% of Total Sample 52% 48% 

59 47 

59 % 47 % 

76 24 

76 % 24 % 

Demographic Variables and Descriptive Data 

The cognitive processing tasks included three parts: sequential, simultaneous, and 

planning tasks. The simultaneous processing tasks included Triangles (TR) and Photo 

Series (PS); the sequential processing tasks included Number Recall (NR) and Word 

Order (WO); the planning task was Matching Numbers (MN). 

The composite score for each cognitive process was formed by averaging the 

scores of all included relevant variables for each participant. Two composite scores were 

formed to represent the simultaneous processing and sequential processing. The 
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composite scores were constructed as follows: Sequential Processing = Number Recall, 

Word Order; Simultaneous Processing = Triangles, Photo Series. 

The math problem-solving components included three parts: translation, 

integration, and planning. Each component was measured by six items in the test 

designed by Mayer (Mayer et al., 1991), respectively. 

The student's math achievements were measured using computation and problem-

solving tasks. Computation score was the total score in the computation booklet. 

Problem-solving score was a composite score, which is an average of the students' scores 

in the three math problem-solving components. A complete description of all tasks in this 

study and the method of scoring for each task were provided in Chapter III. Because this 

study only used one task for the cognitive process of planning (i.e., Matching Numbers), 

it is referred to as "Matching Numbers" hereafter so that it can be clearly differentiated 

from Mayer's planning task which was one of the math problem solving components. 

Table 8 presents the raw score means and standard deviations of the cognitive 

processes (simultaneous, sequential processing, and planning), math problem-solving 

components (translation, integration, and planning), and math achievement scores 

(computation and problem-solving) for total sample and by gender. Table 9 represents 

raw score means and standard deviations of cognitive processing, math problem-solving 

components, and math achievements by parental education level (PEL). Table 10 

represents raw score means and standard deviations of cognitive processing, math 

problem-solving components, and math achievements by school. 
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Table 8 

Raw Score Means (M) and Standard Deviations (SD) of PASS Processes, Math 

Components, and Math Achievement Tests for Total Sample and by Gender 

Total Sample Males Females 

Tasks (n=100) (n=52) (n = 48) 

M SD M SD M SD 

Cognitive Processing 

Number Recall 17.70 1.47 17.73 1.60 17.67 1.34 

Word Order 14.75 1.71 14.98 1.70 14.50 1.71 

Sequential processing 16.23 1.29 16.36 1.37 16.08 1.20 

Triangles 16.89 1.26 17.00 1.14 16.77 1.39 

Photo Series 14.84 1.57 14.87 1.51 14.81 1.65 

Simultaneous Processing 15.87 1.19 15.93 1.15 15.79 1.23 

Matching Numbers 12.51 3.01 12.63 2.94 12.38 3.11 

Math Components 

Translation 5.44 1.01 5.40 1.03 5.48 .99 

Integration 4.95 1.28 4.98 1.39 4.92 1.16 

Planning 5.19 1.07 5.21 1.09 5.17 1.06 

Math Achievement 

Computation 12.90 1.52 12.52 1.90 13.31 .78 

Problem Solving 5.19 .89 5.20 .94 5.19 .83 



Table 9 

Raw Score Means (M) and Standard Deviations (SD) of PASS Processes, Math 

Components, and Math Achievement Tests by PEL 

High Education Low Education 

Tasks (n = 41) (n = 59) 

M SD M SD 

Cognitive Processing 

Number Recall 17.73 1.38 17.50 1.76 

Word Order 15.30 1.91 14.53 1.38 

Sequential processing 16.28 1.33 16.06 1.17 

Triangles 17.05 1.01 16.89 1.21 

Photo Series 15.28 1.24 14.56 1.68 

Simultaneous Processing 15.95 1.07 15.58 1.50 

Matching Numbers 12.85 3.21 12.27 2.86 

Math Components 

Translation 5.68 .57 5.47 .97 

Integration 5.30 1.04 4.81 ' 1.39 

Planning 5.53 .85 4.94 1.22 

Math Achievement 

Computation 13.05 1.28 12.67 1.99 

Problem Solving 5.50 .67 5.07 .92 



Table 10 

Raw Score Means (M) and Standard Deviations (SD) of PASS Processes, Math 

Components, and Math Achievement Tests by School 

Xi'an Steel Factory 

Tasks 601 Elementary School Elementary School 

(2 = 76) (n = 24) 

M SD M SD 

Cognitive Processing • 

Number Recall 17.62 1.57 17.96 ' 1.1.2 

Word Order 14.93 1.72 14.17 1.61 

Sequential processing 16.28 1.78 16.06 1.17 

Triangles 16.97 1.11 16.63 1.66 

Photo Series 14.93 1.50 14.54 1.77 

Simultaneous Processing 15.95 1.07/ 15.58 1.50 

Matching Numbers 12.43 3.18 12.75 2.42 

Math Components 

Translation 5.58 0.79 5.00 1.44 

Integration 5.07 1.24 4.58 1.38 

Planning 5.25 1.07 5.00 1.06 

Math Achievement 

Computation 12.87 1.65 13.00 1.02 

Problem Solving 5.30 0.82 4.86 1.02 
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Gender, PEL, and School Differences 

From Table 8, the means by gender appear to be similar for all variables. The 

correlations between each variable and Gender, PEL and school are presented in Table 
i 

11. T tests were further employed to examine whether there is a significant gender 

difference between male and female students in all task performance. The results are 

presented in Table 12. 
-> 

As shown in Table 11, gender correlated significantly with only Computation. 

Results presented in Table 12 further showed that female group (M = 13.31, SD = .78) 

appeared to perform significantly better than male group (M = 12.52, SD = 1.90) in 

computation test (t (98) = -2.8, p_<.05). There were no gender differences on all PASS 

processes and all math problem-solving components. This result is different with the 

finding in previous study that significant gender differences were found in Planning and 

Attention processes (Warrick & Naglieri, 1993). This study used only one subtest of 

Planning process and invovled only one age group of Chinese students. With more 

Planning and especially attention subtests and various age groups involved, we might be 

able to find more gender differences in PASS processes and various math scores. 

As shown in Table 11, PEL was significantly correlated with Word Order, Photo 

Series, all three math problem-solving components, and Problem Solving. School 

significantly correlated with only a few variables, namely Translation and Problem 

Solving. Although the effects of PEL and School on students' math achievements are not 

the main purposes of this study, these data can provide some insights about our 

understanding of the social factors influencing students' cognitive performance. It is 
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particularly interesting that school was significantly correlated with PEL. It makes sense 

considering that many students in 601 Elementary Schools came from families that at 

least one of the parents had received college level education, whereas most students in 

Xian Steel Factory came from families both parents had never entered college. 

In summary, as shown in Table 11 and 12, male and female students performed 

significantly different only in computation test (t (98) = -2.8, p< .05), in which female 

students outperformed male students. This result is consistent with previous findings that 

girls are slightly better at computation than boys during the elementary and middle school 

years (Hyde, Fennema, & Lamon, 1990). Students from different PEL families performed 

significantly different in Word Order, Photo Series, Triangles, Simultaneous Processing, 

Planning, and Problem Solving. Students from families that their parents had received 

higher level of education outperformed their peers from lower education families. School 

did not have a significant effect on most variables, and the only exception was Problem 

Solving. The Problem Solving scores of students from 601 Elementary schools were 

significantly better than those of students from Xi'an Steel Factory Affiliated School. 



Table 11 

Correlations Between Each Variable and Gender, PEL, and School 

Gender PEL School 

Tasks 

R r R 

Cognitive Processing 

Number Recall -.022 -.032 .099 

Word Order -.141 -.241* -.192 

Sequential processing -.106 -.178 -.071 

Triangles -.091 -.089 -.119 

Photo Series -.017 -.242* -.107 

Simultaneous Processing -.060 -.207* -.134 

Matching Numbers -.043 -.096 .045 

Math Components 

Translation .038 -.202* -.246*" 

Integration -.025 -.240* -.162 

Planning -.021 -.271** -.100 

Math Achievement 

Computation .262** -.095 .037 

Problem Solving -.006 -.301** -.211* 

PEL -.176 1.00 .421** 

School .069 .421** 1.00 

Note. *p<.05, **p< .01. 
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Table 12 

T-Test of Students' Performances by Gender 

Tasks t value Degrees of Freedom probability 

Cognitive Processing 

Number Recall 0.22 98.00 .829 

Word Order 1.41 98.00 .162 

Sequential processing 1.05 98.00 .295 

Triangles 0.91 98.00 .367 

Photo Series 0.17 98.00 .867 

Simultaneous Processing 0.59 98.00 .556 

Matching Numbers 0.43 98.00 .669 

Math Components 

Translation -0.37 98.00 .711 

Integration 0.25 98.00 .804 

Planning 0.21 98.00 .835 

Math Achievement 

Computation -2.8 68.59 .007** 

Problem Solving 0.06 98.00 .950 

Note. *p_<.05 **E<.01 . 
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PASS Processes and Math Problem Solving Components 

Correlational Matrix 

Intercorrelations among the three cognitive processing, the three math 

components, and math achievement scores were examined and presented in Table 13. 

As shown in Table 13, the two subtests of sequential processing were significantly 

correlated (r = .314, p < .01), and the two subtests of simultaneous processing were also 

significantly correlated (r = .404, p < .01). 

In addition, all cognitive processing tests were correlated significantly with 

Translation. Thus, it is clear that all three PASS processes were significantly related to 

students' performances in all three math problem-solving components, namely 

Translation, Integration, and Planning at a level of .01. Computation score significantly 

correlated with one sequential (Number Recall) and one simultaneous subtest (Triangles). 

Finally, Problem Solving score significantly correlated with all cognitive processing 

variables at a level of .01. These results are consistent with the hypotheses of this study. 

\ 
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That is, all three PASS processes were involved in understanding each sentence in 

arithmetic word problem. Students' abilities to integrate each elements of the information 

into a coherent problem representation were associated with all three cognitive 

processing, especially simultaneous processing. Their ability to plan to solve the problem 

also was associated with all three cognitive processing. Consistently, students' problem-

solving performance was associated with all the three processes. Their computation 

performance was associated with both coding processes (Sequential and simultaneous 

processing) and planning. These findings were consistent with findings from other studies 

that successive and simultaneous processing was associated with reading comprehension 

(Das & Cummins, 1982; Kirby, 1982; Kirby & Robinson, 1987; Leong, 1985). Based on 

the finding of this study, the association between students' math reasoning performance 

and planning, successive and simultaneous processing found in other studies (Garofalo, 

1982; Cheng et al., 1984; Kaufman & Kaufman, 1983c; Warrick, 1989; Naglieri & Das, 

1987) was further clarified by the fact that the three PASS processes were involved in the 

components of math problem solving. 

Principal Components Factor Analysis of Subtests of K - A B C and Matching Numbers 

This study used four subtests of K - A B C and one planning subtest of CAS as 

measures of PASS processes. Although the structure of these subtests was consistent with 

the PASS theory, whether the subtests in this study actually tap the three processes of the 

PASS theory needs to be verified. Thus, factor analyses were performed to further 

examine the structure of the five cognitive processing tests. Principal components factor 
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analysis has been used extensively in previous studies on the PASS theory (Das et al., 

1994; Naglieri & Das, 1997c). Thus, principal components factor analysis was employed 

in this study. The investigator hypothesizes that there are three factors underlying the five 

sub-tests, namely sequential, simultaneous processing, and planning, based on the 

theories and the similarity of tasks in this study and tasks involving in the previous 

studies on PASS theory (Naglieri, Bardos, & Prewett, 1989). 

Both the orthogonal and oblique solutions for the principal components factor 

analyses were performed. The orthogonal solution results in uncorrelated factors, and 

allows comparison with previous researches using this method. However, the oblique 

technique keeps correlations between factors and is more consistent with the interactive 

nature of the theoretical model. Table 14 and 15 presents the results of the both 

orthogonal and oblique solutions of the principal components factor analysis. As shown, 

the results demonstrate that factor structures obtained from two methods are very similar. 

The findings of both orthogonal and oblique solutions for the principal components factor 

analyses suggest that the three obtained factors can be identified as Simultaneous 

(Triangles, Photo Series); Sequential (Word Order, Number Recall); and Planning 

(Matching Numbers). Thus, the appropriateness for usage of these five subtests to 

measure sequential, simultaneous processing and planning as hypothesized is verified. In 

addition, factor analysis provides the basis for data reduction through either summated 

scales or factor scores. With the confirmed results of factor analysis, in the further 

analysis, we will be confident to combine the sub-tests within each factor into a single 

variable that can represent the original sub-tests: sequential and simultaneous processing. 
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Table 14 

Varimix Solution for the Principal Component Factor Analysis (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Triangles .794 .054 .111 

Photo Series .849 .216 .075 

Word Order .124 .807 .047 

Number Recall .121 .783 .107 

Matching Numbers .140 .120 .982 

Table 15 

Oblique Solution for the Principal Component Factor Analysis (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Triangles .796 -.082 .023 

Photo Series .873 .100 -.020 

Word Order .067 .822 -.027 

Number Recall -.001 .791 .037 

Matching Numbers .002 .006 .997 

Principal components factor analysis was further used to determine the factor 

loadings of the three math components. In addition, separate factor analyses were 
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performed with the five cognitive processing tasks and each of the three math 

components (Translation, Integration, and Planning) respectively. Garofalo (1982) and 

Warrick (1989) have used this technique previously in their studies to determine the 

factor loadings of math tests in relation to the components of the PASS theory. 

Table 16 and 17 presents the results of the principal components factor analysis 

(orthogonal and oblique solutions) for the cognitive processing and math problem-solving 

component of Translation. The results of both analyses demonstrated significant loading 

of sequential processing and translation, which was consistent with conceptual analysis 

and our hypothesis. 

Table 16 

Varimix Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem-Solving Component of Translation (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Number Recall JS2 ' !fJ81 ILT 

Word Order .760 .116 - O i l 

Translation .538 .297 .348 

Photo Series .063 .844 .115 

Triangles .226 .785 .078 

Matching Numbers .104 .119 .959 
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Table 17 

Oblique Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem-Solving Components of Translation (N=100) 

Cognitive 

Processing 

Factor I 

Simultaneous 

Factor II 

Sequential 

Factor III 

Planning 

Number Recall .802 .052 .033 

Word Order .786 -.007 -.099 

Translation .478 -.184 r .278 

Photo Series .093 -.879 .010 

Triangles .094 
\ 

-.795 -.037 

Matching Numbers 
\ 

-.023 .026 .985 

Table 18 and 19 presents the results of the principal components factor analysis 

(orthogonal and oblique solutions) for the cognitive processing and math problem-solving 

component of Integration. The results of both analyses demonstrated significant loading 

of simultaneous processing and integration, which was consistent with conceptual 

analysis and our hypothesis. 
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Table 18 

Varimix Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem-Solving Component of Integration (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Number Recall .161 .766 .112 

Word Order .129 .812 .044 

Integration .722 .222 .297 

Photo Series .860 .019 .074 

Triangles .711 .223 .016 

Matching Numbers .156 .113 .967 

Table 19 

Oblique Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem Solving Component of Integration (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Number Recall .022 • .773 .039 

Word Order -.011 .833 -.032 

Integration .688 .088 .211 

Photo Series .905 -.130 -.021 

Triangles .718 .116 -.081 

Matching Numbers .004 .004 .984 
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Table 20 and 21 presents the results of the principal components factor analysis 

(orthogonal and oblique solutions) for the cognitive processing and math problem-solving 

components of Planning. As hypothesized, Planning was loaded with Matching Numbers. 

Table 20 

Varimix Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem-Solving Component of Planning (TSNIOO) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Photo Series . M9 i041 A96 

Triangles .780 .228 .090 

Number Recall .138 .821 .017 

Word Order .101 .758 .205 

Matching Numbers .032 .131 .883 

Planning .388 .102 .737 
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Table 21 

Oblique Solution for the Principal Component Factor Analysis of PASS Processes and 

Math Problem-Solving Component of Planning (N=100) 

Cognitive Factor I Factor II Factor III 

Processing Simultaneous Sequential Planning 

Photo Series -.846 -.080 .072 

Triangles -.787 -.132 -.051 

Number Recall -.285 .838 -.085 

Word Order -.041 .759 .125 

Matching Numbers .020 .049 .914 

Planning .121 -.012 .706 

In general, correlational and factor analyses found preliminary support to our 

hypotheses about the relationship between cognitive processing based on PASS theory 

and the math problem-solving components based on Mayer's model. Specifically, all three 

PASS processes correlated with all three problem-solving components. Furthermore, the 

most important variable for Translation was Number Recall, the subtest of sequential 

processing. The most important process for Integration was Photo Series, the subtest of 

simultaneous processing. Also, Matching Numbers was the underlying process for the 

Planning component. These results supported our hypotheses derived from conceptual 

analysis of PASS theory and Mayer's model, that is, sequential processing is the 

underlying process for Translation component; Simultaneous processing is the underlying 
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process for Integration component; and finally Matching Numbers is the underlying 

process for Planning component. 

Multiple Regression Analyses 

To further test our hypotheses, multiple regression analyses was conducted on 

math problem-solving components (Translation, Integration and Planning) respectively, 

with PASS processes (Sequential, Simultaneous processing, and Matching Numbers) as 

independent variables. The assumptions of normality, Linearity, homoscedasticity, 

independence of residuals, and multicollinearity were checked and they were not severely 

violated. 

Translation score was analyzed by multiple regression with the five PASS 

processes (Number Recall, Word Order, Photo Series, Triangles, and Matching Numbers) 

as independent variables. The results are presented in Table 22. Number Recall appeared 

to be the only significant predictor for translation. Items in Translation test in this study 

were basically sentence comprehension tasks. This result was consistent with findings 

from other studies that sequential or successive processing is associated with reading 

comprehension, especially reading comprehension in sentence level such as single 

sentence comprehension. (Das & Cummins, 1982; Kirby, 1982; Kirby & Robinson, 1987; 

Leong etal., 1985). 
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Table 22 

Summary of Multiple Regression Analysis for PASS Processes Predicting Math Problem-
r 

Solving Component of Translation (TSNIOO) 

_ _ _ _ __ _ 

Sequential 

Number Recall . 162 

Word Order .061 

Simultaneous 

Triangles .128 

Photo Series . .069 

Matching Numbers .048 

Note. R 2 = . 2 3 a adjusted R 2 = .190. 

*p.<.05. **p_<.01. 

Integration score was analyzed by multiple regression with all five sub-tests of 

PASS processes (Number Recall, Word Order, Photo Series, Triangles, and Matching 

Numbers) as independent variables. One outliner was found and deleted. The summary of 

the results is presented in Table 23. Photo Series and Number Recall were found to be the 

significant predictors for Integration component of math problem solving. Photo Series, 

the subtest of simultaneous processing, was the best predictor of integration. This result 

supported our hypothesis and was consistent with the findings of the significant 

relationship between math and simultaneous processing from other studies (Dash et al., 

1985; Cheng, et al., 1984; Kaufman & Kaufman, 1983c; Garofalo, 1982; Naglieri & Das, 

.067 .236* 

.057 .104 

.082 .160 

.065 .107 

.032 .144 



114 

1987). In addition, as predicted, Matching Numbers was also significantly related to 

integration, although to a less extent. This result is in keeping with findings from 

previous studies that planning is important for math achievement (Das, 1984; Naglieri & 

Das, 1987). 

Table 23 

Summary of Multiple Regression Analysis for PASS Processes Predicting Math Problem 

Solving Component of Integration (N=99) 
_ _ _ _ __ _ 

Sequential 

Number Recall .125 .076 .144 • 

Word Order .065 .065 .086 

Simultaneous 

Triangles .130 .093 .128 

Photo Series .327 .073 .400** 

Planning 

Matching Numbers .074 .036 .174* 

Note. R 2 = .388. Adjusted R 2 = .356. : ' 

*E<.05. **p_<.01. 

Multiple regression was completed for math problem solving component of 

Planning with four subtests of PASS processes (Word Order, Photo Series, Triangles, and 

Matching Numbers) as independent variables. Number Recall was not included because it 

was found not significantly correlated with Planning in the previously mentioned 
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correlation analyses (see Table 13). The results are presented in Table 24. Planning 

actually measured planning of the necessary operation to solve the problem based on a 

correct problem representation. The student has to decide which computation he or she 

needs to do in certain sequence so that he or she can finally solve the problem. We 

hypothesize that Matching Numbers should be related to Planning score. Also, a correct 

representation of the problem is necessary for a good plan, although it is not sufficient. As 

predicted, Matching Numbers and Photo Series were significant predictors for Planning 

score. 

Table 24 

Summary of Multiple Regression Analysis for PASS Processes Predicting Math Problem 

Solving Component of Planning (N=100) 

Variable B S E B ' p 

Sequential 

Word Order .099 .055 .158 

Simultaneous 

Triangles .086 .080 .102 

Photo Series .177 .063 .260** 

Planning 

Matching Numbers .120 .031 .337** 

Note. R 2 = .334~ adjusted R 2 = .306. 

*p<.05. **E<-01. 
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As shown in Table 22, 23, and 24, results supported the three main hypotheses of 

this study. As we hypothesized, sequential processing was significantly associated with 

translation component; simultaneous processing and Matching Numbers were 

significantly associated with integration component, and Matching Numbers and 

simultaneous processing were significantly associated with the component of Planning. 

These findings were consistent with theory and findings from other studies on PASS and 

reading comprehension. Particularly interesting, simultaneous processing was found to be 

the best predictor for Integration and Planning; sequential processing was the best 

predictor for Translation. In the present study, items in Translation were simple sentence 

comprehension tasks that demand mainly sequential processing and less simultaneous 

processing. Integration and Planning tasks in the present study both required relating 

every pieces of information together for the coherent problem representation, so they 

were significantly associated with simultaneous processing. 

PASS Processes and Math Achievement Scores 

Computation. 

The computation test was relatively too easy for the participants in this study and 

there was a ceiling effect, although it has been proved age appropriate in other cross-

cultural studies with Chinese students (Cai, 1995). Thus, advanced statistic analysis such 

as multiple regression can not be performed. However, simple correlational analysis can 

provide us some useful information on the underlying process of computation. 
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Table 13 shows correlations among PASS processes and computation score. 

Number Recall, Triangles, and Matching Numbers were significantly correlated with 

computation. Interestingly, it was Triangles rather than Photo Series that was correlated 

with computation. It makes sense i f we consider the fact that both tests involve spatial 

cognition, for example, computation includes borrowing, carry over and so on. The 

finding that Number Recall and Matching Numbers was related to computation was in 

keeping with findings from other studies that complicated computation process involve 

planning and successive processing (Das et al., 1979; Garofalo, 1982). 

Problem Solving. 

Math problem solving is a complicated process. Despite the above clear picture of 

the association between PASS processes and each math problem solving component, the 

dynamic involvement of PASS processes may be different when the three problem 

solving component are considered separately as above and when student use them 

together in the actual problem solving process. For example, to grade one students, 

Successive processing and Translation skills may be the most important factors to 

differentiate good and poor math achievers, because understanding basic verbal 

expressions of math problems is the main task for this age group. However, for sixth 

graders, Translation skill may be well mastered. Simultaneous process and Integration 

component, Matching Numbers and Planning component may be the hardest part. 

In order to clarify the contribution of PASS processes to the overall Problem 

Solving performance for Chinese sixth graders, students' composite Problem Solving 



118 

score were analyzed by multiple regression, with the T score of PASS processes as 

independent variables. The results are presented in Table 25. 

Table 25 

Summary of Multiple Regression Analysis for PASS Processes Predicting Math Problem 

Solving Composite Score (N-100) 

Variable B SE B jj 

Sequential 

Number Recall .042 .024 .141 

Word Order .044 .024 .149 

Simultaneous 

Triangles .049 .025 , .165 

Photo Series .100 .025 .339** 

Planning 

Matching Numbers .082 .023 .275** 

Note. R 2 = .470. adjusted R 2 = .441. 

*p<.05. **p<.01. 

As shown in Table 25, the results supported our hypothesis that for sixth graders, 

Simultaneous (Photo Series) and Planning (Matching Numbers) are the main factors 

associate with general problem solving performance. Although Triangles was not 

significant; however, it was close to the a level of .05 (p = .055). 
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Manifestation of PASS Processes in Poor Problem Solvers 

M A N O V A Analyses. 

In order to understand students' problems with arithmetic word problems more 

clearly, profile of PASS processes for students performed poorly in arithmetic word 

problems is necessary. 

Students' composite scores in Problem Solving were converted to T scores 

(mean=10, SD=3). Tow groups of problem solvers were selected from the whole sample 

based on the composite Problem Solving T scores. Those who fell in the upper and lower 

fourths of the distribution of T scores of Problem Solving were defined as good (N = 22) 

and poor problem solvers (N = 25). Teachers' ratings of students' general math problem-

solving ability were consistent with this selection. Good problem solvers performed all 

correct in Problem Solving tests. Poor problem solvers have at least four or more errors in 

Problem Solving tests. The descriptive data are presented in Table 26. A M A N O V A 

analysis was performed on PASS processes, with performance group (good vs. poor) as 

independent variable. The results of M A N O V A analysis are presented in Table 27 and 

Table 28. 
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Table 26 

T scores of PASS Processes for Good and Poor Problem Solvers 

Poor Problem Solvers Good Problem Solvers 

(n = 25) (n = 22) 

Mean SD Mean SD 

Number Recall 8.58 4.44 10.43 2.34 

Word Order 8.34 2.95 , 10.60 3.19 

Sequential Processing 8.09 3.79 10.64 2.51 

Triangles 7.41 3.69 10.69 2.03 . 

Photo Series 7.63 3.31 11.52 2.09 

Simultaneous Processing 7.06 3.49 11.37 1.73 

Matching Numbers 8.14 2.62 10.99 2.59 

Table 27 

Summary of M A N O V A Analysis for Good and Poor Problem Solvers (N = 47) 

Effects Value F Hypothesis df Error's df 2 

Pillai's Trace S19 8.836 5.000 41.000 .000 

Wilks'Lambda .481 8.836 5.000 41.000 .000 

Hotelling's Trace 1.078 8.836 5.000 41.000 .000 

Roy's Largest Root 1.078 8.836 5.000 41.000 .000 
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Table 28 

Test of Between-Subiects Effects on PASS Processes for Good and Poor Problem Solvers 

(N = 47) 

SS Df MS F 

Number Recall 40.08 1 40.08 3.07 

Word Order 59.76 1 59.76 6.37* 

Sequential Processing 76.14 1 76.14 7.20* 

Triangles 126.17 1 126.17 13.72** 

Photo Series 177.61 1 177.61 22.49** 

Simultaneous processing 217.66 1 217.66 27.56** 

Matching Numbers 95.08 1 95.08 14.02** 

Note. * px.05. ** p<.01 

As shown in Table 27 and Table 28, poor problem solvers performed significantly 

worse than good problem solvers did in four PASS processes except Number Recall. In 

which, Word order is significant at the a level of .05, and all other three processes are 

significant at the a level of .01. Number Recall is a task of STM; Word Order is a more 

complicated task similar to the dual tasks measuring working memory in the literature. It 

demanded cognitive processes more than just short-term memory. Thus, the results 

demonstrated that poor problem solvers were poorer than good problem solvers in 

simultaneous processing, planning, and working memory. Hildebrand (1998) has found 

similar results in adolescents with reading difficulties. In the present study, short-term 

memory for poor and good problem solvers was not significantly different. This result is 
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in keeping with previous findings from studies on memory performance of good and poor 

arithmetic problem solving (Passolunghi, Cornoldi, & Liberto, 1999). 

Profiles of PASS Processes for Good and Poor Problem Solvers. 

^ To explicitly describe the profiles of PASS processes for good and poor problem 

solvers in Problem Solving composite scores, all T scores of PASS processes (i.e., T 

scores of Matching Numbers and T scores of composite scores of Sequential and 

Simultaneous processing, see Table 26) were depicted in Figure 1. 

__ _ . . . . ! 

-•— Poor Problem 
Solver 

*— Good Problem 
Solver 

Planning Simultaneous Sequential 
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PASS Processes and Performance in Comparison Problems 

This section first focusses on exploring the contributions of PASS processes on 

students' performances in comparison problems, especially in inconsistent language (IL) 

comparison problems. Second, the manifestation of the PASS processes in a special 

sample of poor problem solvers in IL problems is examined. Finally, profiles of PASS 

processes for poor and good IL problem solvers are provided. 

Contributions of PASS Processes on Students' Performance in Comparison Problems 

Studies have consistently found that the comparison problem, especially the 

inconsistent language (IL) comparison problem, is particularly difficult for students from 

elementary school to college (Riley, Greeno, & Heller, 1983; Lewis & Mayer, 1987; 

Hegarty et al., 1992, 1995; Mayer & Hegarty, 1996; Verschaffel et al., 1992). There are 

many controversies on the reasons for the special difficulty of the inconsistent language 

(IL) comparison problem compared to the consistent language (CL) comparison problem. 

A number of eye fixation studies on low and high performance groups found that students 

performed significantly different only in the second phase of problem-solving (i.e., 

rereading the statements in the problem), rather than the first part (reading all the 

sentences for the first time). In the sepond phase of problem-solving', students have to 

integrate all the information from the statements into a coherent problem representation, 

which is very difficult for the low performance students. The CL problem contains simple 
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information that does not need to be modified or manipulated in order to find out a 

correct relationship between variables. Whereas, in the second sentence of the IL 

problem, the key word in the statement is inconsistent with the actual required 

computation. In order to build up a correct problem representation based on finding out a 

correct conceptual relationship between the variables in the problem, the student has to 
j 

manipulate the information and convert the key word of the IL problem. Previous 

analyses have revealed that simultaneous processing was especially important for 

Integration component of arithmetic problem solving. Thus, Simultaneous processing 

should contribute to students' performance in the IL comparison problem, the problem 

that demands much more mental resources and simultaneous processing than the C L 

problem. 

Descriptive Analyses 

This section addresses the question that which PASS process is associated with 

performance difference in the two types of comparison problems. That is, why IL 

problem is particularly difficult for students who can successfully solve CL problems? 

According to the first part of this chapter, both simultaneous processing and planning are 

the most important processes underlying performance in Integration component, which 

leads to building up correct problem representations. Studies have shown that the special 

difficulty of IL problems locates in integration process. Thus, the investigator 

hypothesizes that simultaneous processing and planning are associated with students' 

performance difference in the two types of comparison problems. Moreover, 
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Simultaneous processing has a significant interaction with problem type. These 

hypotheses are summarized as the hypothesis 7 and 8 previously described in chapter 2. 

These hypotheses were tested by conducting a series of 2x2 mixed A N O V A s on 

students' performance in comparison problems, with level of each PASS process (high vs. 

low) and problem type (CLvs.IL) as independent variables. The problem type is a within 

subject variable, and the level of PASS process is a between subject variable. 

Students were assigned to high and low ability groups based on the T scores of 

their composite score of simultaneous processing, sequential processing, and planning 

(i.e., Matching Numbers), respectively. The high and low PASS process groups were 

defined as those who fell in the upper and lower fourths (up and bottom 25% percentile) 

of the distribution of scores of each PASS process, respectively. The sample size of high 

level group of simultaneous and successive processing and planning group is 47, 34, 30, 

respectively. The sample size of low level group of simultaneous and sequential 

processing and planning is 38, 28, 22, respectively. The descriptive statistics for these 

groups are presented in Table 29. 
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Table 29 

Descriptive Data of Problem Solving for High and Low Groups (N=100) 

Problem Cognitive Problem Solving Problem Solving Problem Solving 

Type Processing (Simultaneous (Sequential groups) (Planning groups) 

Level groups) 

Mean SD N Mean SD N Mean SD N 

C L Low 6.89 1.74 38 7.04 1.35 28 7.05 1.50 22 

High 7.45 .88 47 7.35 .95 34 7.60 .67 30 

IL Low 5.05 2.73 38 5.39 2.47 28 5.23 2.35 22 

High 6.89 1.22 47 6.74 1.83 34 6.83 1.44 30 

Correlation Matrix 

Correlation coefficiencies of simultaneous, sequential processing, Matching 

Numbers, and performance scores in CL and IL problems are presented in Table 30. 

Table 30 

Correlation Matrix of PASS Processes and Performance in CL and IL Problems (N=100) 

Cognitive Processing 

Sequential Simultaneous Matching Numbers 

C L 

IL 

.083 .192 .134 

.307** .393** .315** 

Note. CL: consistent language comparison problem. IL: inconsistent language 

comparison problem. 

* p_< .05. ** p< .01 
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Correlational analyses showed that students' three PASS processes were not 

associated with C L performance. A l l students mastered CL problems very well. However, 

students' three PASS processes all were associated with IL performance at a level of .01. 

Analyses of Variance (ANOVA). 

We test hypothesis 7 and 8 (see Chapter 2) here together. 

A 3X2 mixed A N O V A was conducted on students' performance in comparison 

problems, with problem type (CL vs. IL) and level of simultaneous processing (high vs. 

low) as independent variables. The results are presented in Table 31 and Figure 2. 

Table 31 

Analysis of Variance for Performance in Comparison Problems with High and Low 

Levels of Simultaneous Processing (N=100) 

Source SS Df ' MS F Sig. 

Between Subjects 

Simultaneous 60.164 1 60.164 15.594** .000 

S within-group error 320.224 83 3.858 

Within Subjects 

P_Type 60.277 1 60.277 29.200** .000 

P_Type x Simultaneous 17.453 1 17.453 8.455** .005 

P_Type x Simultanoues 171.335 83 2.064 

within-group error 

Note. S = subjects. P-Type = Problem type 
) 

* p< .05. ** p< .01 
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As shown in Table 31, at a level of .01, there were significant main effects of 

simultaneous group and problem type, and a significant interaction between simultaneous 

processing and problem type. Inconsistent language (CL) comparison problem was 

significantly harder than consistent language (IL) comparison problem. In addition, 

students with different simultaneous processing performed significantly different in two 

types of comparison problems. The group with high simultaneous processing performed 

significantly better than the low simultaneous group in both types of problems. 

Furthermore, the performances difference in the two types of problems (CL vs. IL) for the 

high simultaneous group was significantly smaller than that for the low simultaneous 

group. In another word, the student in high simultaneous group performed relatively 

similar in the two types of problems; whereas, students in low simultaneous group 

performed significantly different in the two types of problems. Their performances in IL 

problems were much poorer than in C L problems. IL problems were much harder for 

them to solve. 

The results of the present study demonstrated that, first, for Chinese students, 

same as findings with Caucasian students and European students, inconsistent language 

(IL) comparison problems were much harder than consistent language (CL) comparison 

problems. Second, Students with high simultaneous processing performed significantly 

better than those with low simultaneous processing did. Third, the performance difference 

in the two types of problems for high simultaneous group was very small, whereas it was 

much bigger for low simultaneous group. They performed much worse in the IL problem 

that demands high simultaneous processing. 
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In summary, simultaneous processing demonstrated to be a very important factor 

influencing students' performance in comparison problems. Particularly, students' low 

simultaneous processing contributed to their poor performance in the inconsistent 

language (IL) comparison problem that demanded high simultaneous processing due to its 

specific linguistic characteristics. 

Hypothesis 9 was tested and the results are presented in Table 32. A 3X2 mixed 

A N O V A was conducted on students' performance in both types of comparison problems, 

with problem type and level of sequential processing as independent variables 

Table 32 

Analysis of Variance for Performance in Comparison Problems with High and Low 

Levels of Sequential Processing (N=100) 

Source SS • D f MS F Sig. 

Between Subjects 

Sequential 21.147 1 21.147 5.799* .019 

S within-group error 218.796 60 3.647 

Within Subjects 

P_Type 39.231 1 39.231 17.406** .000 

P_Type x Sequential 8.069 1 8.069 3.580 .063 

P-Type x Sequential 135.229 60 2.254 

within-group error 

Note. S = subjects. P-Type: problem type 

*p_<.05. **p_<.01 
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As shown in Table 32, there were significant main effects of sequential processing 

and problem type. However, their interaction was not significant. Inconsistent language 

(IL) comparison problems were significantly harder than consistent language (CL) 

problems, and students with high sequential processing performed significantly better 

than those with low sequential processing. However, the difference of performance in the 

two types of problems was similar for different sequential groups. 

Finally, hypothesis 10 was tested and the results are presented in Table 33. A 3X2 

mixed A N O V A was conducted on students' performance in both types of comparison 

problems, with problem type and level of Matching Numbers as independent variables. 

Table 33 

Analysis of Variance for Performance in Comparison Problems with High and Low 

Levels of Matching Numbers Scores (N=100) 

Source SS Df MS 

Matching Numbers 

S within-group error 

PType 

P_Type x Sequential 

P_Type x Sequential 

within-group error 

Between Subjects 

29.625 1 29.625 9.565** 

154.865 50 3.097 

Within Subjects 

52.401 1 42.401 26.071** 

7.017 

81.320 

1 7.017 4.314* 

50 1.626 

Note. S = subjects. P-Type: problem type 
* p< .05. ** p< .01 
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As shown in Table 33, there were significant main effects of Matching Numbers 

and problem type. Inconsistent language (IL) comparison problems were significantly 

difficult than consistent language (CL) comparison problems. High Matching Numbers 

group performed significantly better than low Matching Numbers group. In addition, the 

interaction effect of Matching Numbers and problem type was also significant. The 

performance difference in the two types of problems for high planning group was similar; 

however, that for low planning group was significantly different. Students with lower 

Matching Number scores performed much worse in IL problems. 

Summary of the results. 

In summary, all four hypotheses were supported by the results of the present 

study. Consistent with findings of previous studies, inconsistent language (IL) 

comparison problems were significantly harder than consistent language (CL) comparison 

problems for Chinese sixth graders. As hypothesized, all PASS processes significantly 

influenced students' performance in comparison problems. However, the difference of 

performance in C L and IL problems was mediated by only the factors of students' 

simultaneous processing and planning (i.e., Matching Numbers)..High simultaneous and 

high planning students performed similarly in both types of comparison problems. 

Whereas, students in low simultaneous group performed significantly poorer in IL 

problems than in C L problems. This finding has important implications for diagnosing 

students' difficulties in math problem solving and designing remediation programs. 
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Profile of PASS Processes for Poor Problem Solvers in IL Problems 

To further understand students with poor performance in IL problems, a thorough 

exploration of their cognitive profiles seems to be necessary. Manifestation of PASS 

processes in this special sample of poor problem solvers in IL problems may provide us 

useful insights about these students' specific problems in solving arithmetic word 

problems and the nature of their cognitive deficiencies. 

Descriptive Analyses. Previous analyses revealed that simultaneous processing 

was the underlying process for students' special difficulty in IL problem. To further 

understand the cognitive deficiencies of poor problem solvers, their PASS profiles are 

provided here. 

The raw scores of students' performance were converted to T scores (Mean = 10, 

SD = 3). Poor problem solvers in IL problems were identified by lower fourths (e.g., 25% 

percentile) of the distribution of T scores of IL performance. The sample size is 26. Good 

problem solvers are those got full score in IL problems. The sample size is 32. The 

descriptive data are presented in Table 34. 
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Table 34 

T Scores of PASS Processes for Good and Poor Problem Solvers in IL Problems (N=58) 

Poor Problem Solvers Good Problem Solvers 

,(n_=26) (Q = 32) 

Mean SD Mean SD 

Number Recall 9.20 3.59 10.67 1.90 

Word Order 8.49 2.94 10.88 2.98 

Sequential Processing 8.54 3.31 10.96 2.43 

Triangles 8.98 3.02 10.93 1.93 

Photo Series 8.47 3.08 10.66 2.35 

Simultaneous Processing 8.45 3.20 10.93 1.84 

Matching Numbers 8.61 2.36 10.77 2.66 

M A N O V A Analyses. 

A M A N O V A was conducted on T scores of PASS processes, with group of 

problem solvers group as independent variable. The results are presented in Table 35 and 

Table 36. 
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Table 35 

Summary of M A N O V A Analysis on PASS Processes for Good and Poor IL Problem 

Solvers (N = 58) 

Value F Hypothesis df Error df 

Pillai's Trace .381 6.410 5.000 52.000 .000 

Wilks' Lambda .619 6.410 5.000 52.000 .000 

Hotelling's Trace .616 6.410 5.000 52.000 .000 

Roy's Largest Root .616 6.410 5.000 52.000 .000 

Table 36 

Univariate A N O V A on PASS Processes for Good and Poor IL Problem Solvers (N = 58) 

SS Df MS E 

Number Recall 31.12 1 31.13 4.02* 

Word Order 81.95 1 81.95 9.32** 

Sequential Processing 84.15 1 84.15 10.30** 

Triangles 54.43 1 54.43 8.86** 

Photo Series 69.32 . 1 69.32 9.48** 

Simultaneous Processing 88.51- 1 88.51 13.75** 

Matching Numbers 66.845 1 66.845 10.435** 

Note. *p<.05. **p<01 

As shown in Table 35 and Table 36, poor problem solvers performed significantly 

worse than good problem solvers in all five PASS processes. In which, only Number 
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Recall is significant at a level of .05, all other four processes were significant at a level 

of .01. Number Recall is a task of STM; Word Order is a task similar to the dual tasks 

measuring working memory in the literature. Thus, it seems that poor problem solvers 

were poorer than good problem solvers in all PASS processes, especially in simultaneous 

processing, planning and working memory. Poor problem solvers' short-term memory (as 

measured by Number Recall) was also poorer than good problem solvers, although to a 

less extent. These results are consistent with findings in other studies that there were 

differences in short-term memory between rmathematical disabled children and a control 

group (Shafrir & Siegel, 1994; Siegel & Linder, 1984; Siegel & Ryan, 1989). 

Figure 2 explicitly shows the profile of PASS processes for poor and good 

problem solvers in IL problems. 
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CHAPTER 5: DISCUSSION A N D CONCLUSION 

The intent of this study was to investigate the relationships among cognitive 

processes (as measured by PASS processes of planning and sequential and simultaneous 

processing), math problem solving components based on Mayer's (1987) model (as 

measured by components of Translation, Integration, and Planning), and math problem 

solving performance (as measured by students' computation and composite problem 

solving scores). In this chapter, the findings of the study are discussed within the context 

of the two main research questions concerning: (a) PASS processes and math problem 

solving components, and (b) Pass processes and performance in inconsistent language 

(IL) comparison problems. 

Pass Processes and Math Problem Solving Components 

This section focusses on the following two main questions: (a) what are the 

relationships between PASS processes and math problem-solving components based on 

Mayer's model? And (b) what are the manifestation of PASS processes in a special 

sample of poor arithmetic problem solvers. 

PASS Processes and Math Problem Solving Components 

Based on the conceptual analyses of PASS processes and each math problem 

solving components in Mayer's model, the investigator proposed that sequential 

processing is the underlying process of the translation component of math problem 
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solving, whereas simultaneous processing and planning (as measured by Matching 

Numbers) are the underlying processes of the integration and planning components of 

math problem solving. 

Translation Component and Sequential Processing 

According to Mayer's (1987) model, translation component in math problem 

solving implies the process that students' understand each sentence of the math word 

problem. From this definition, translation component can be viewed as a reading 

comprehension process at the sentence level. Naglieri and Das (1997c) described 

successive processing as "a mental process by which the individual integrates stimuli into 

a specific serial order that forms a chain-like progression" (p.5). Naglieri (1999) further 

explained that "successive processing has strong sequential components and is involved 

in the syntax of language" (p. 18). 

The results of this study showed that sequential processing was significantly 

associated with students' performance in the Translation component. First, both subtests 

of sequential processing (i.e., Number Recall and Word Order) had significant 

correlations with Translation (r = .355**, r = .263**, respectively). Second, principal 

components factor analysis of PASS processes and Translation showed that Translation 

was loaded with the two subtests of sequential processing; see Table 10 and Table 11. 

Finally, multiple regression analyses indicated that Number Recall is the only PASS 

process significantly associated with Translation score (p<.05). These results 

conclusively showed that sequential processing is the underlying process of Translation 

component. They are in keeping with recent research findings of sequential processing 
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and reading comprehension (Cummins & Das, 1977; Naglieri & Das, 1987) and finding 

on phonological S T M tasks and reading (Gathercole & Baddeley, 1993). 

Integration Component and Simultaneous Processing 

Mayer (1999) defined the integration component in math problem solving as the 

ability "to put the statements of the problem together into a coherent representation" (p. 

169). Conceptually relating each piece of information together is the essence of 

simultaneous processing. Luria (1970) defined simultaneous processing as "a mental 

process by which the individual integrates separate stimuli into a single whole or group 

(cited in Naglieri & Das, 1997c, p.4). Naglieri (1999) further explained the nature of 

simultaneous processing as "that the person must see how all the separate elements are 

interrelated in a conceptual whole. Simultaneous processing has strong spatial and logical 

dimensions for both nonverbal and verbal (e.g., grammar) content" (p. 17). 

In general, the results of this study showed that simultaneous processing was 

significantly associated with students' performance in the Integration component of math 

problem solving. First, both subtests of simultaneous processing (i.e., Triangle and Photo 

Series) significantly correlated with Integration (r = .383**, r = .534**, respectively); see 

Table 7. Second, principal components factor analysis of PASS processes and Integration 

showed that Integration loaded with the two subtests of simultaneous processing; see 

Table 12 and Table 13. Finally, multiple regression analysis indicated that Photo Series is 

the most significant predictor of Integration (p<.01), although Matching Numbers also 

predicted Integration to a less extent (p_<.05). 

These results are consistent with previous results of other studies that 

simultaneous processing is primarily involved in high level reading comprehension 
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(Cummins & Das, 1978; Kirby et al., 1996), and planning becomes increasingly 

important for reading and math achievement with age (Naglieri & Das, 1987). 

A good example of the involvement of simultaneous processing in mathematics 

problems is reading comprehension in paragraph level of math Comparison problems. In 

Comparison problems, students must keep the early information in the first two sentences 

in mind and must integrate them with question statement occurring much later in order to 

find out the relationship between the two variables. Obviously, simultaneous processing 

is the key element for successful solving of this problem. Simultaneous processing is 

even more important for inconsistent language (IL) Comparison problems, in which the 

relationship between the two variables is not explicitly shown from the surface. The 

student must infer the meaning of a pronoun ("this") and convert the position of subject 

("this") and object in the second sentence; see Appendix B. This process is very complex 

to younger students. It demands simultaneous processing and planning skills. 

The integration component of math word problem solving in this study was 

measured indirectly by questions requiring students to select necessary information for 

solving the problem. Mayer designed this test based on the logic that i f students can 

correctly integrate all information into a coherent problem representation by using 

simultaneous processing, they should be able to identify relevant and irrelevant 

information to the problem. As expected, in the present study, students' simultaneous 

processing was found to be the most significant predictor of their performance in 

integration component. Matching Numbers also predicted students' performance to a less 

extent. Thus, this study's results and literature on the PASS processes and reading 

together conclusively demonstrate that simultaneous processing and planning are 
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involved in high level reading comprehension, which is very important for setting up a 

correct problem representation for arithmetic word problems. 

Planning Component and Matching Numbers 

Mayer (1999) defined Planning component of math problem solving as the 
( 

process to "devise and monitor a plan for solving the problem" (p. 181). Planning 

involves setting goals, selecting appropriate strategies, allocating resources, and 

monitoring process. Similarly, Naglieri and Das (1997c) stated that "planning is a mental 

process by which the individual determines, selects, applies, and evaluates solutions to 

problems" (p.2). Naglieri (1999) further pointed out that planning is a complex process 

that may involves attention, simultaneous, successive processes as well as knowledge. 

The essence of it includes control the impulse to act without careful considerations. 

The results of this study showed that Matching Numbers and Photo Series were 

significantly associated with students' performance in the Planning component (oc< .01). 

First, Matching Numbers and Photo Series significantly correlated with Planning 

component (r = .446; r = .404; see Table 7). Second, principal components factor analysis 

of PASS processes and Planning component showed that Planning component loaded 

with Matching Numbers (see Table 14 and Table 15). Finally, multiple regression 

analysis indicated that Matching Numbers is the most significant predictor of Planning (J3 

= .337, p_<.01). Photo Series is also significantly associated with Planning to a less extent 

(J3 = .260, p_< .01). Consistently, the literature of the PASS theory shows that planning is 

an important ability for many higher level cognitive activities, such as reading 

comprehension (Naglieri & Das, 1988) and math reasoning (Ashman & Das, 1980; 

Garofalo, 1982; Kirby & Ashman, 1984). Planning has been found especially important 
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to math achievement with age level increases (Warrick, 1989; Naglieri & Das, 1987). The 

involvement of simultaneous processing is expected if we consider the fact that correctly 

devising a plan to solve the problem depends on the ability to set up a correct problem 

representation. 

In addition, according to the research on working memory, controlled attention 

has been proved to be important for higher-order level cognition and fluid intelligence. If 

we assume planning process is involved in controlled attention, planning process should 

be associated with math problem solving. This point has been proven by the results of this 

study. 

Manifestation of PASS Processes in a Special Group of Poor Problem Solvers 

Mathematical disabilities (MD) in children are widely reported (Badian, 1983). 

The cognitive and neuropsychological studies on cognitive deficits have mainly focussed 

on arithmetic computation, and few studies have been conducted on cognitive deficits in 

math problem solving performance (Geary, 1993). This is partly because that the nature 

\ 

of the cognitive process underlying different problem solving components is not clearly 

addressed. Passolunghi et al (1999) studied working memory and inhibition process in 

children's arithmetic problem solving for a group of students with difficulties in math 

problem solving. Their results showed that math problem solving ability was related to 

the ability to reduce the memory accessibility of nontarget and irrelevant information, 

which should conceptually correspond to the construct of selective attention in PASS 

theory or controlled attention in Engle et al.'s (1999) working memory theory. The present 

study followed this line of research by examining the cognitive processing of a special 
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group of students with difficulties in math problem solving. The manifestation of PASS 

processes (planing and simultaneous and sequential processes) manifested in a special 

group of students with difficulties in arithmetic problem solving were explored. 

Planning in good and poor math problem solvers 

According to Das et al., (1994), planning is involved in higher level cognitive 

processing and associated with school achievement including math and reading. That is, 

planning directs, regulates and evaluates problem-solving behavior. Naglieri and Gottling 

(1997) pointed out that "effective use of problem solving strategies is particularly 

problematic for students with learning difficulties (Das et al., 1994) and especially 

important in mathematics, where careful analysis and systematic execution of procedures 

is required" (p. 513). Results of the present study indicated that students with arithmetic 

problem solving difficulties exhibited poorer planning skills than good problem solvers. 

This study provides empirical data to support Naglieri and Gottling's (1997) suggestion 

that "poor planning processes should be considered as another important influence on 

mathematical performance, along with other variables, such as slow rate of execution 

(Kirby & Becker, 1988), deficit reading skills, and working memory limitations (Kirby & 

Williams, 1991)" (p.519). 

In addition, previous research has shown that reading disabled children were 

significantly lower than the normal group in planning (Bardos, 1988; Das, Snart, & 

Mulcahy, 1982; Ramey, 1985; Hildebrand, 1998). However, this study and Warrick 

(1989)'s study are the only studies that compared planning process in good and poor math 

problem solvers. 
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Simultaneous and Sequential Processing in Good and Poor Math Problem Solvers 

Previous studies on PASS processes and reading disabilities revealed that students 

with reading difficulties demonstrated significantly poorer performance on simultaneous 

processing than their normal peers, whereas no differences between groups were found on 

successive processing (Hildebrand 1998). 

In the present study, students with math problem solving difficulties showed 

significantly poor performance than their good problem solver peers on both 

simultaneous and sequential processing, although the magnitude of difference on 

sequential processing is less than that of simultaneous processing. In addition, although 

the two sequential processing tasks were moderately correlated (r = .314), see Table 7, 

students with problem solving difficulties and their good problem solver peers performed 

differently on Word Order and Number Recall. The performance difference of the two 

groups on Number Recall is not significant, whereas that on Word Order is significantly 

at a level of .01. This might relates to the nature of the two tasks. 

For example, on Number Recall, the participant is required only to repeat the list 

of numbers given by the investigator. This only demands STM. Whereas, on Word Order, 

the participant listens to a list of words, then has to name as quickly as possible the colour 

of a series of circles in another page in 10 seconds. Then he or she is asked to point to the 

figures according to the list of words reported. This test of delayed memory is an actual 

dual task similar to working memory tasks. Previous studies have found working memory 

ability was associated with math problem solving and computation (Geary, 1993; Logie et 

al., 1994; Siegel & Ryan, 1989; Swanson et al., 1993). Consistently, in this study, poor 

math problem solvers were lower in Word Order than good problem solvers. Passolunghi 
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et al. (1999) compared the memory performance of groups of children who were poor and 

good at arithmetic problem solving, and found that the two groups performed similarly on 

short-term memory tests. Thus, it is not unexpected that students with math problem 

solving difficulties performed poorly on Word Order but not on Number Recall. 

Summary 

According to the results of this study, students with math problem solving 

difficulties demonstrated poorer planning and simultaneous and sequential processing 

skills compared to their peers who are better math problem solvers. The performance 

difference of the two groups of students, however, is not significant in Number Recall, 

which measured short-term memory. 

PASS Processes and Math Comparison Problems 

This section addresses the research question on relationships between PASS 

processes and performance in math comparison problems, especially inconsistent 

language (IL) comparison problems. There were two main questions regarding (a) what is 

the contribution of PASS processes on comparison problem performance, and (b) what is 

the manifestation of PASS processes on poor problem solvers in IL problems? 

PASS Processes and Comparison Problem Performance 

The comparison problem has long been demonstrated as one of the most difficult 

type of math word problem for students from elementary school to college (Lewis & 
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Mayer, 1987; Hegarty et al., 1992; 1995). The inconsistent language (IL) comparison 

problem is especially much harder for students. There are controversies in terms of the 

reason for this difficulty. The reasons include lack of part-whole schema (Riley & 

Greeno, 1988); extra processing caused by language inconsistency (Lewis & Mayer, 

1987); students' different strategies (conceptual understanding or key word strategy) 

(Hegarty et al., 1992, 1995); and lack of understanding of the symmetry of language about 

quantitative comparison and working memory load (d'Ailly et al., 1997). However, none 

of these studies have systematically examined the underlying processes of comparison 

problem solving. This study has filled this gap by exploring students' PASS processes 

and their performance in Comparison problems. 

Problem Representation and Simultaneous Processing 

The conceptual analysis of cognitive processes involved in the two types of 

comparison problem reveals clearly that the two types of problem demand different level 

of integration processing. Studies have located the performance difference in the two 

types of comparison problems in the second phase of problem solving: integrating and 

planning (Verschaffel et al., 1992; Hegarty et al., 1992; 1995). The results of this study 

have demonstrated that simultaneous processing and Matching Numbers is the main 

underlying process of the components of integration and planning, respectively. Thus, i f 

the integration ability is the key factor influencing the difficulty of the problems, we can 

infer that simultaneous processing should associate with the difference of students' 

performance in the two types of comparison problems. If planning also contribute to 

difference in comparison problems, Matching Numbers should be associated with 

performance. i 
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In this study, the contributions of PASS processes on students' performance in the 

two types of comparison problems were examined statistically using a series of 2x2 mix 

A N O V A s on students' performance, with level of each PASS processes (high vs. low) 

and problem type (IL vs. CL) as independent variables. The results showed that IL 

problem is significantly difficult for this sample of 6th grade Chinese students, same as 

the result for American and European students (Hegarty et al., 1992, 1995; Stein, 1993; 

Verschaffel et al., 1992). Simultaneous and Matching Numbers were associated 

significantly with students' performance in comparison problems. Moreover, they both 

showed significant interaction with problem type. That is, the performance difference 

between IL and C L problems was similar for good problem solver group, whereas it was 

significantly bigger for poor problem solver group. In another word, poor problem solvers 

performed similar to good problem solvers in CL problems, but they did significantly 

poorly compared to their peers did in IL problems. Sequential processing also influence 

•studentŝ  performance, but its influence is similar to both groups of students. Thus, the 

inconsistent language (IL) comparison problem is especially difficult for students with 

low simultaneous and / or planning skills. 

Strategy Choices, Controlled Attention, and Inhibition Process: Planning or Attention? 

A main explanation of the difficulty of comparison problems is students' different 

strategies in inconsistent language (IL) comparison problems (Mayer & Hegarty, 1996; 

Hegarty et al., 1992; 1995). In which, good problem solvers were found focus more on 

variables and key word; whereas poor problem solvers focus solely on key words and this 

surface processing lead them to poor performance. Studies on planning process in PASS 

theory found that strategy choice were related to planning process. Thus, if different 
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strategies were the main reason for performance difference in comparison problems, 

Matching Numbers should be associated with performance. The present study did find 

supportive results for this hypothesis. Matching Numbers had a significant effect on 

performance in comparison problems. Despite that we used only one sub-test (Matching 

Numbers) of CAS to represent the planning process of the PASS theory, we still found 

supportive results. Thus, we can conclude that planning is involved in the performance of 

comparison problems and students' strategy choices. This is consistent with the findings 

from other studies that different groups of problem solvers use different strategies (Geary 

etal., 1993). 

From the view of cognitive processes, there may be some overlap between the 

explanations of the difficulty of IL problems in terms of strategy choices and 

simultaneous processing/working memory. They probably are two theories trying to 

explain same phenomena from different angles. Geary et al. (1993) found that working 

memory influences kindergarten children's use of different counting strategies. Chinese 

students developed more advanced counting strategies than American students because of 

their higher working memory span which may be mediated by their one-syllabus Chinese 

number words. American students adopted less advanced counting strategies that fit their 

working memory level. Thus, different working memory leads to different problem-

solving strategies. Based on this logic, when inconsistent language (IL) comparison 

problem demands large working memory or simultaneous processing due to its 

complicated semantic structure, students with poor simultaneous/working memory may 

face a limit of available mental resources. As a coping method, they might use the "key 
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word" strategy intentionally or use it without any controlled planning. Thus, simultaneous 

processing may influence students' strategy choices. 

Another interesting aspect is to view it from the perspective of inhibition. Recent 

studies on working memory has focused on the mechanism of inhibition (Conway, 

Tuholski, Shisler, & Engle, 1998; Engle et al., 1999). One main function of controlled 

attention is to suppress or inhibit irrelevant and misleading information such as the "key 

word" in Comparison problems. R. Engle, M . Kane, and S. Tuholski (1999) described 

situations demand controlled attention such as "when there is value in maintaining some 

task information in the face of distraction and interference;... when there is value in 

suppressing or inhibiting information irrelevant to the task;... when controlled, planful 

search of memory is necessary or useful" (p. 104). Thus, "working memory capacity 

reflects the ability to apply activation to memory representations, to either bring them into 

focus or maintain them in focus, particularly in the face of interference or distraction" 

(Engle et al., 1999, p. 104). This definition and the above listed situations seem to reflect 

the functions of planning and attention processes in the PASS theory. Planning subtests in 

CAS measure the ability to design a strategy to solve the problem effectively. Attention 

subtests measure the ability to maintain focus especially in face of distraction (Naglieri, 

1999). Conceptually, these processes should correspond to Engle et al.'s (1999) construct 

of controlled attention. Currently, the definition and nature of controlled attention is still 

quite vague. There is no clear operational definition of controlled attention available 

except the standard working memory span tasks. It will be helpful to develop other 

measures on controlled attention so that the exact nature of it can be further clarified. The 

PASS theory and CAS might be a suitable choice for this purpose. CAS is a well 
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established measure for simultaneous processing, planning, and attention processes, the 

processes proposed to correspond to the main parts of controlled attention or central 

executive (Fan, 2000). 

In addition, inconsistent language (IL) comparison problem may be a very good 

tool to examine controlled attention. Its complicated semantic structure demands higher 

level of controlled processing. The key word can be misleading if the student processes 

the problem statements in the literal level rather than seeking for conceptual 

understanding. In order to overcome the interference from the key words, the student has 

to intentionally suppress the automatically activated information by the key words and 

focus attention on the conceptual relation between the variables. This process demands 

planning and attention. The results of this study strongly supported the planning part of 

this hypothesis, although there was only one test of planning used. Because this study did 

not include attention tests, it is not clear whether attention was included in comparison 

problem solving. Further studies including both factors and more subtests are welcomed. 

Manifestation of PASS Processes in Poor Problem Solvers in IL Problems 

The profile of scales of CAS has been used to diagnose children's various 

problem, such as A D H D , reading disable, math calculation problem (Naglieri, 1999). In a 

set of clinical investigation of students diagnosed having learning disabilities or learning 

disorders, results show that relative weakness in simultaneous processing tend to be 

associated with reduced performance on Quantitative Concepts and Reading Vocabulary, 

test involve understanding the relationships between separate elements. Whereas, relative 

weakness in successive processing are associated with reduced Word Attack 

performance, a measure of auditory processing and phonological awareness. And to a less 



extent, associated with reading in general, broad reading, basic reading skills, and reading 

comprehension (Wasserman & Becker, 2000). Particularly, according to Wasserman and 

Becker (2000): 

planning and attentional processes are characteristically impaired in children 

diagnosed with ADHD. A relative weakness in simultaneous processing is 

associated with both verbal and quantitative difficulties in understanding 

relationships between items and concepts in learning disabled children, and a 

relative weakness in successive processing is associated with phonological 

awareness difficulties in learning disabled children" (p.5). 

Thus, it may be an effective way to identify children's problem with Comparison 

problems by their PASS profiles. 

A profile analysis for comparison problem performance was conducted in this 

study. The results showed that students with difficulties in IL problems were significantly 

lower in all five PASS processes. Except Number Recall was significant at a level of .05, 

all other four processes were significant at a level of .01. These results are in keeping 

with the above mentioned findings in other studies. Although only simultaneous 

processing and planning significantly contributed to the special difficult of IL problems, 

the results demonstrated that students who are poor at IL problems perform poorly at all 

five PASS processes. 

Summary 

A l l PASS processing influence students' performance in comparison problems, 

and simultaneous and planning particularly contribute to students' special difficulty in 

inconsistent language (IL) comparison problems. Students who perform poor at solving 
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inconsistent language (IL) problems are much poor in all five PASS subtests than their 

peers who perform well in IL problems. This study is the first to explore math 

comparison problems in the cognitive processes level, and the first to link PASS 

processes with math comparison problems. 

Conclusions 

The purpose of this study was to examine the relationships between PASS 

processes and math problem solving components, PASS processes and math comparison 

problems. The findings of this study have indicated that sequential processing was 

associated with translation component of math problem solving; simultaneous processing 

and planning were associated with integration component of math problem solving; and 

planning and simultaneous processing were associated with planning component of math 

problem solving. 

Thus, cognitive processes, as measured by PASS processes, are the underlying 

processes of math problem solving. This finding further provided support for the previous 

findings of the relationship between PASS processes and math reasoning achievement 

(Naglieri & Das, 1987; Garofalo, 1982). 

Students with math problem solving difficulty displayed a profile of cognitive 

processing that was discrepant from their peers who performed well in arithmetic word 

problems. Poor math problem solvers' skill in planning, their competence in processing 

information integrally, and their working memory were less developed than their peers 

who performed well in math word problems. 
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Simultaneous and planning, rather than sequential processing, are found 

contribute to students' special difficulty in inconsistent language (IL) comparison 

problems. Students performed poorh/in IL problems displayed poorer PASS processing 

in planning and simultaneous and sequential processing than their peers who performed 

well in IL problems did. 

Implications for Educational Practice and Future Research 

This study was the first to examine math problem solving components in the 

perspective of PASS processes. The findings clarify the relationships between each math 

problem solving component and its underlying PASS processes. This information is very 

helpful for our understanding of nature of math problem solving. The findings of poor 

math problem solvers are particularly important for theoretical understanding of math 

problem solving deficits and intervention programs. Naglieri and his colleagues (Naglieri 

& Gottling, 1995, 1997; Naglieri & Johnson, 2000) have found that instruction on 

planning for students who are poor at computation can be helpful, computation 

performance for students with a cognitive weakness in Planning on the CAS improved 

the most. This study provides useful information on students' problems in arithmetic word 

problems. Further intervention program based on the results of this study may be 

successful to help students improve their math problem solving. Especially, instructional 

programs in simultaneous and planning may be particularly helpful with students' 

difficulties in IL problems. 

This study is the first to link PASS processes with components of math problem 

solving and students' performance in comparison problems. Only two subtests of 
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Simultaneous and Sequential Processing on the K - A B C and one subtest of Planning on 

CAS were used in the present study. More empirical studies using the CAS certainly are 

needed to verify the findings. Attention process is not included in this study, future 

studies with attention are warranted in order to provide better and more thorough 

explanation of students' difficulties in arithmetic word problems. 
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iName: School: 
First middle last 

This test has 14 mathematical questions for you to solve. For each problem there will be 
four possible answers labeled a, b, c, d. Your job is to circle the letter next to the correct 
answer. If none of the answers is correct then circle the letter d. Here's a sample problem 
for you to try. Circle one of the letters. 

a. 3/5 
5 x 3 = b. 8 

c. 15 
d. none of these 

The correct answer is 15 so you should circle the letter c. 
(The fraction 3/5 is just another way to write 3_ ) 

5 
When I say "START" you should turn the page and begin working on the problems. You 
will have 15 minutes. If you finish one page go on to the next page. Keep working until I 
tell you to stop. Check over your answers if you finish early. 

DO NOT T U R N THIS P A G E U N T I L I S A Y " S T A R T " 
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(1) a. 6 
42 + 6= b. 7 

c. 8 
d. none of these 

(2) a. 4 
24 + 3= b. 6 

c. 8 
d. none of these 

(3) a. 66 
6 ) 432 b. 72 

c. 70R12 
d. none of these 

(4) 198 a. 400 
x 4 b. 762 

c. 792 
d. none of these 

(5) a. 556 
5) 3281 b. 656 

c. 656R1 
d. none of these 

GO ON TO THE N E X T P A G E 
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(6) a. 71 
45 b. 1170 

x 26 c. 1350 
d. none of these 

(7) a. 56.9 
102.9 + 56= b. 108.5 

c. 158.9 
d. none of these 

(8) a. 24.5 
62.3 - 37.8= b. 25 

c. 25.5 
d. none of these 

(9) a. 2 / 3 
24 b. 3/4 
— = c. 12/18 
36 d. none of these 

(10) a. 2 / 3 
3 1 b. 2 / 6 

= ^ c. 7 /12 
4 6 d. none of these 

GO ON TO THE N E X T P A G E 
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(11) a. 25/28 
7 18 b. 63/80 
— x — = c. 126/20 
8 20 d. none of these 

(12) a. 3 /8 
5 2 b. 10/33 
— -s- — = c. 15/22 
1 1 3 d. none of these 

(13) ' a. 1/15 
3 -5- 5 = b. 3 /5 .. 

c. 5 /3 
d. none of these 

(14) a. .57 
4 j 7 b. 1.30 

c. 1.75 
d. none of these 

GO ON TO THE N E X T P A G E 
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Name: School: 
First middle last 

This test has 34 mathematical questions for you to solve. For each problem there will be 
four possible answers labeled a, b, c, d. Your job is to circle the letter next to the correct 
answer. The questions do not ask you to compute anything, so you should not do any 
arithmetic. Here's a sample problem to try. Circle a letter. 

Which numbers are needed to solve this problem? 
Marbles come in bags of 5 marbles each and each bag costs 25 cents. You want to 
buy 10 marbles. How many bags of marbles should you buy? 

a. 5,25, 10 
b. 5,25 
c. 5, 10 
d. 10 

You need to use only 5 and 10 so you should circle letter c. Now try this problem. 

Which operations should you carry out to solve this problem? 
There are 12 hats and 24 children. How many children will not get hats? 

a. add, then subtract 
b. divide, then subtract 
c. divide only 
d. subtract only 

The correct answer is to subtract 12 from 24 so you should circle d. Now try this. 

Which number sentence is correct? 
Apples come in crates of 72 apples each. There are 6 crates. 

a. the total number of apples = 72 x 6 
b. the total number of apples x 6 = 72 
c. the total number of apples x 72 = 6 
d. the total number of apples = 72 

You should circle the latter a. If you multiply the number of apples in each crate (72) by 
the number of crates (6) times you will find the total number of apples. 

Remember that you never have to compute a solution; just answer the question. When I 
say "START" you should turn the page and begin working on the problems. You will 
have 30 minutes. If you finish one page go on to the next page. Keep working until I tell 
you to stop. Check over your answers if you finish early. 
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DO NOT T U R N THIS P A G E U N T I L I S A Y " S T A R T " 
(1) Which numbers are needed to solve this problem? 
A package of 5 pencils costs 59 cents. L i Xiang bought 3 packages and gave the cashier 
$2. How many pencils did he buy? 

a. 5,59,3,2 
b. 59,3,2 
c. 5,59,3 
d. 5, 3 

(2) Which operations should you carry out to solve this problem? 
At a grocery store at school, a pencil costs 0.20 Yuan; 
In a supermarket, a pencil costs 2 cents more than pencil at the grocery store. 
If Xiao Ming want to buy 4 pencils, 
How much will he pay at the supermarket? 

a. Subtract only 
b. add only 
c. subtract, then multiply 
d. add, then multiply 

(3) Which operations should you carry out to solve this problem? 
The 200 children at a school are going^on a bus trip. Each bus holds 50 children. How 
many buses are needed? 

a. divide, then add 
b. subtract only 
c. multiply only 
d. divide only 

(4) Which operations should you carry out to solve this problem? 
At store A , a box of candy costs 1.13 Yuan. 
Candy at store B costs 5 cents less per box than store A. 
If Xiao Wang wants to buy 5 boxes of candy, 
How much will he pay at store B? 

a. Add, then multiply 
b. subtract only 
c. add only 
d. subtract, then multiply 

(5) Which number sentence is correct? 
Huang Xia and L i Na have 20 books altogether. 

a. Huang Xia's books = L i Na's books + 20 
b. Huang Xia's books + 20 = L i Na's books 
c. Huang Xia's books + Li Na's books = 20 
d. Huang Xia's books = Li Na's books 
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(6) Which operations should you carry out to solve this problem? 
In store Dafa, apple costs ¥ 0.70 per pound. 

In Xiaoli's store, apple costs 20 cents per pound more than store Dafa. 
If you want to buy 12 pound apples, 
How much will you pay at Xiaoli's store? 

a. Subtract, then multiply 
b. Add, then multiply 
c. Subtract only 
d. Add only 

(7) Which numbers are needed to solve this problem? 
Chen Qiang's home is 8 blocks from his school. School starts at 8:00. He left home at 
7:42 and arrived at school at 7:54. How long did it take her to get there? 

a. 8,8:00,7:42,7:54 
b. 8:00,7:42,7:54 
c. 8:00,7:54 
d. 7:42,7:54 

(8) Which operations should you carry out to solve this problem? 
At store A, workers earn 10.00 Yuan per hour. 
This is 50 cents less hour than workers at store B. 
If Da Wei works for 8 hours, 
How much will he earn at store B? 

a. Add only 
b. Subtract, then multiply 
c. Add, then multiply 
d. Subtract only 

(9) Which operations should you carry out to solve this problem? v 

There are 30 students in a class, including 12 boys and 18 girls. The teacher asks them to 
get into groups of 3. How many groups are there? 

a. add, then multiply 
b. divide, then divide 
c. divide only 
d. subtract only 

(10) Which operations should you carry out to solve this problem? 
At store A, workers earn 10.00 Yuan per hour. 
Workers at store B earn 50 cents more hour than workers at store A. 
If Da Wei works for 8 hours, 
How much will he earn at store B? 

a. Subtract only 
b. Add only 
c. Subtract, then multiply 
d. Add, then multiply 
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(11) Which number sentence is correct? 
Chen Liang and Zhang Da ate 12 candies altogether. 

a. number of candies Chen Liang ate = number of candies Zhang Da ate + 12 
b. number of candies Chen Liang ate + 12 = number of candies Zhang Da ate 
c. number of candies Chen Liang ate + number of candies Zhang Da ate = 12 
d. number of candies Chen Liang ate = number of candies Zhang Da ate 

(12) Which operations should you carry out to solve this problem? 
At a grocery store at school, a pencil costs 0.20 Yuan; 
In a supermarket, a pencil costs 2 cents less than pencil at the grocery store. 
If Xiao Ming want to buy 4 pencils, 
How much will he pay at the supermarket? 

a. Add, then multiply 
b. Subtract only 
c. Add only 
d. Subtract, then multiply 

(13) Which numbers are needed to solve this problem? 
Liu Wei has 3 Yuan. He bought a book for .95 Yuan, a pencil for .20 Yuan, and a 
Notebook for .45 Yuan. How much money did he spend? 

a. 3,0.95,0.20,0.45 
b. 0.95,0.20,0.45 
c. 0.95,0.45 
d. 3 

(14) Which operations should you carry out to solve this problem? 
At store A, a box of candy costs 1.13 Yuan. 
This is 5 cents more per box than candy at store B. 
If Xiao Wang wants to buy 5 boxes of candy, 
How much will he pay at store B? 

a. Subtract, then multiply 
b. Add, then multiply 
c. Subtract only 
d. Add only 

(15) Which operations should you carry out to solve this problem? 
Twelve candies come in each bag at the store. You buy 3 bags on Monday, 2 bags on 
Wednesday, and 1 bag on Friday. How many candies do you have? 

a. add, then multiply 
b. add, then divide 
c. add only 
d. divide only 



177 

(16) Which operations should you carry out to solve this problem? 
In store Dafa, apple costs 0.70 Yuan per pound. 
This is 20 cents per pound less than Xiaoli's store. 
If you want to buy 12 pound apples, 
How much will you pay at Xiaoli's store? 

a. Add only 
b. Subtract, then multiply 
c. Add, then multiply 
d. Subtract only 

(17) Which number sentence is correct? 
Zhao Min has 5 more marbles than Zhou Xiang. 

a. Zhao Min's marbles = 5 + Zhou Xiang's marbles 
b. Zhao Min's marbles + 5 = Zhou Xiang's marbles 
c. Zhao Min's marbles + Zhou Xiang's marbles = 5 
d. Zhao Min's marbles = 5 

(18) Which operations should you carry out to solve this problem? 
In store Dafa, apple costs 0.70 Yuan per pound. 
In Xiaoli's store, apple costs 20 cents per pound more than store Dafa. 
If you want to buy 12 pound apples, 
How much will you pay at Xiaoli's store? 

a. Subtract only 
b. Add only 
c. Subtract, then multiply 
d. Add, then multiply 

(19) Which numbers are needed to solve this problem? 
Recess at Eastern Elementary School starts at 10:00 and is over at 10:20. Students go 
home for lunch starts at 12:15. If it is 9:40 right now, how many minutes are there before 
recess? 

a. 10:00, 10:20, 12:15,9:40 
b. 10:00, 12:15 
c. 10:00, 10:20, 12:15 
d. 10:00,9:40 

(20) Which operations should you carry out to solve this problem? 
At store A, workers earn 10.00 Yuan per hour. 
Workers at store B earn 50 cents less hour than workers at store A. 
If Da Wei works for 8 hours, 
How much will he earn at store B? 

a. Add, then multiply 
b. Subtract only 
c. Add only , . 
d. Subtract, then multiply 
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(21) Which operations should you carry out to solve this problem? 
If it costs 50 cents per hour to rent roller skates, what is the cost of using the skates from 
1:00 p.m., to 3:00 p.m.? 

a. subtract, then multiply 
b. subtract, then divide 
c. add, then divide 
d. multiply only 

(22) Which operations should you carry out to solve this problem? 
At a grocery store at school, a pencil costs 0.20 Yuan; 
This is 2 cents more than a pencil at a supermarket. 
If Xiao Ming want to buy 4 pencils, 
How much will he pay at the supermarket? 

a. Subtract, then multiply 
b. Add, then multiply 
c. Subtract only 
d. Add only 

(23) Which number sentence is correct? 
Wang Feng weighs 6 more kg than his brother Wang Bin. 

a. the weight of Wang Feng = 6 + weight of Wang Bin 
b. the weight of Wang Feng + 6 = weight of Wang Bin 
c. the weight of Wang Feng + weight of Wang Bin = 6 
d. the weight of Wang Feng = 6 

(24) Which operations should you carry out to solve this problem? 
At store A , a box of candy costs 1.13 Yuan. 
This is 5 cents less per box than candy at store B. 
If Xiao Wang wants to buy 5 boxes of candy, 
How much will he pay at store B? 

a. Add only 
b. Subtract, then multiply 
c. Add, then multiply ' 
d. Subtract only 

(25) Which numbers are needed to solve this problem? 
It takes Zhang Jin 15 minutes to walk 3 blocks to school. Chen Deming lives 4 blocks 
from school and he needs 5 more mintes than Zhang Jin to walk to school. How long does 
it take for Chen Deming to walk to school? 

a. 15, 3, 5, 4 -
b. 15,5,4 
c. 15,3 
d. 15,5 
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(26) Which operations should you carry out to solve this problem? 
At store A, a box of candy costs 1.13 Yuan. 
Candy at store B costs 5 cents more per box than store A. 
If Xiao Wang wants to buy 5 boxes of candy, 
How much will he pay at store B? 

a. Subtract only 
b. Add only 
c. Subtract, then multiply 
d. Add, then multiply 

(27) Which operations should you carry out to solve this problem? 
You need to bring enough cookies so everyone at the class party can have 2 cookies each. 
There are 20 people at the party. Cookies come in boxes of 10 cookies each. How many 
boxes should you bring? 

a. divide, then add 
b. multiply, then divide 
c. divide only 
d. multiply only 

(28) Which operations should you carry out to solve this problem? 
In store Dafa, apple costs 0.70 Yuan per pound. 
In Xiaoli's store, apple costs 20 cents per pound less than store Dafa. 
If you want to buy 12 pound apples, 
How much will you pay at Xiaoli's store? 

a. Add, then multiply 
b. Subtract only 
c. Add only 
d. Subtract, then multiply 

(29) Which number sentence is correct? 
Cai Xiaoqin is 12 years old. This is 3 years older than Sun Liping. 

a. Cai Xiaoqin's age + 3 = Sun Liping's age 
b. Cai Xiaoqin's age = Sun Liping's age + 3 
c. Cai Xiaoqin's age + Sun Liping's age = 3 
d. Sun Liping's age = 12 + 3 

(30) Which operations should you carry out to solve this problem? 
At store A , workers earn 10.00 Yuan per hour. 
This is 50 cents more hour than workers at store B. 
If Da Wei works for 8 hours, 
How much will he earn at store B? 

a. Subtract, then multiply 
b. Add, then multiply 
c. Subtract only 
d. Add only 
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(31) Which numbers are needed to solve this problem? 
Mr. L i spent 8 Yuan for 2 packages of large nails. Mr. Zhang spent 4 Yuan more than Mr. 
L i and bought 6 packages of amll nails. How much did Mr. Zhang spend? 

a. 8, 2,4 6 
b. 8,4,6 
c. 8,4 
d. 4 

(32) Which operations should you carry out to solve this problem? 
At a grocery store at school, a pencil costs 0.20 Yuan; 
This is 2 cents less than a pencil at a supermarket. 
If Xiao Ming want to buy 4 pencils, 
How much will he pay at the supermarket? 

a. Add only 
b. Subtract, then multiply 
c. Add, then multiply 
d. Subtract only 

(33) Which operations should you carry out to solve this problem? 
On five tests in your math class your scores are 98, 63, 72, 86, and 100. What is your 
average score? 

a. Add, then multiply 
b. Add, then divide 
c. Divide only 
d. Multiply, then subtract 

(34) Which number sentence is correct? 
An apple costs 10 cents. This is 5 cents more than the cost of a banana. 

a. cost of an apple = cost of a banana + 5 
b. cost of an apple + 5 = cost of a banana 
c. cost of an apple + cost of a banana = 5 
d. cost of a banana =10 + 5 

- E N D — 
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Name, Principal 

Elementary School 
Oct. 16, 1998 

Dear 

I am a graduate student in the Department of Educational Psychology and Special 
Education, the University of British Columbia, Canada. I am writing to request the 
support of your school to recruit participants for a study for my Masters thesis. The study 
will be conducted under the supervision of Dr. Arthur More. The project has been 
approved by the University of British Columbia's Ethical Review Committee. 

The project explores the underlying cognitive processes in 
mathematics achievement. Researchers do not yet understand the nature of the 
mathematics learning. Especially the cognitive processes underlying solving 
the mathematical word problems has not been clearly uncovered. The results of 
the study will provide a better understanding of the interrelationships between 
mathematics achievement (both computation and problem solving) and cognitive 
processes. Teachers will find the results useful. 

For a detailed description of the study, please see the enclosed Outline of 
Research Methodology. / 

If your school is able to agree to participate, students will be recruited by sending 
home letters of information and consent to their parents. We would like to collect the 
following data from each student involved in the study: 

• Group mathematics achievement test (computation and problem solving) 
• Marker tests of cognitive processes (simultaneous, successive and 

planning). This tests will be administrated by me on an individual basis. 
Students will be given consent form to indicating whether or not they 

would like to participate in the study. If they do choose to take part, they have 
the right to withdraw from this study at any time. If they do not take part or i f they 
decide to withdraw, their standing at the school will not be affected in any way. The 
answers to the tests will be viewed only by the researchers and used for the research 
purposes. Data will be kept on file by the investigators in a locked cabinet during data 
coding and analysis. Completed data will be destroyed after verification of coding and 
scoring. There are no expected risks with the proposed procedures. 

I will call your office recently to discuss the project in detail. Thank you very 
much for your time and consideration. I look forward to speaking with you. 

Respectfully yours, 

Airriei Fan, Co-investigator, 
Department of Educational and Counselling Psychology, and Special Education 
Phone number (home): (604) 228-2367 
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Project Title: mathematics achievement and simultaneous-successive processing and 
planning of Chinese Sixth Graders 

Principal Investigator: Arthur J. More, 
Department of Educational and Counselling Psychology, and Special Education 
The University of British Columbia 
Tel: 822-2338 
Co-investigator: Aimei A. Fan, 
Department of Educational and Counselling Psychology, and Special Education 
The University of British Columbia 
Tel: 228-2367 

Outline of Research Methodology 

The purpose of the project is to explore the realtionship between math 
achievement (computation and problem solving skill) and its underlying cognitive 
processes (simultaneous, successive, and planning). Researchers have not yet understood 
the nature of mathematical problem solving and differences in the underlying cognitive 
processes which may be contribute to individual difference in math achievement. The 
objective of this study: first, to examine the relationship between the cognitive processing 
(simultaneous, successive processing and planning) and math achievement (computation 
and problem solving); second, to examine the relationship between the three cognitive 
processes (simultaneous, successive and planning) and math in the terms of the more 
detail cognitive components in math problem solving; third, to further examine the 
difference in cognitive processing and students' performance in a special difficult math 
problem: compre problems. 

The study will extend the studies in math (Mayer, 1991) and studies in 
simultaneous-successive processing and planning (Garofalo, 1983; Leong, Cheng & Das, 
1984; Kirby & Ashman, 1984) by using two kinds of math tests (computation and 
problem solving) and three cognitive processes (simultaneous, successive, and planning). 
The two math tests are adapted from a test developed by Mayer (Mayer, 1991). The three 
cognitive processing tests are adapted from the K - A B C and CAS (Das, 1994). 

Participants will be approximately 100 sixth graders in China. Students will 
receive letters with a consent form, describing the project, assuring them confidentiality 
and anonymity. No person will be intentionally excluded from participating in the study 
except those who do not give consent or those who has learning difficulties. 

Procedure: Aimei Fan will give a brief introduction of the study and procedure. 
Each participant will be tested individually for the three marker tests of simultaneous, 

- successive and planning. Then all students will be tested in-group for two math booklet as 
an intact class. The administration time will be approximately 4-5 minutes for the math 
tests and 50 minutes for the processing tests. 

Design: This study will be comparative. Correlational analyses will also be 
conducted to analyze the relationship between math achievement and the underlying 
cognitive processing. 
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Informed Consent Form 

Project: Cross-cultural comparison in math achievement and 
simultaneous-successive processing and planning 

Principal Investigator: Arthur J. More, Ph.D., Department of Educational and 
Counselling Psychology, and Special Education, U.B.C., (822-2338) 

Co-investigator: Aimei A. Fan, Department of Educational and Counselling 
Psychology, and Special Education, U.B.C., (228-2367) 

Dear Parent or Guardian, 

We are writing you to describe a research project at 
Elementary School and to invite you to participate in the project. We are 
interested in children's math and problem solving skills. 

. This study is being completed by Aimei Fan, in partial fulfillment of the 
requirements for the Masters of Arts in Human Learning, Development and 
Instruction at the University of British Columbia, under the supervision of Dr. Art 
More. 

Dr. More and I are pleased to get the cooperation from the principal and 
teachers, we hope to also get your support. We hope that the study will provide 
information important for researchers and teachers, who are interested in better 
understanding of the cognitive processes in math problem solving. Hopefully it 
will benefit for teachers and your child that the result might provide some 
strategies of math learning and benefit developing programs to enhance students' 
math learning. 

Project Summary 

Our study attempts to examine the thinking processes of math 
(computation and problem solving). First, your child will be given will be given 
three groups of cognitive processing tasks to solve in about fifty minutes. Then in 
another day, your child will participate in the group testing together with the 
intact class. Your child will be asked to solve two math booklets (computation 
and problem solving) within 45 minutes (15 minutes for computation booklet, 30 
minutes for word problem booklet) in one afternoon class of the extra-curriculum 
activity. The answers will be treated anonymously and will be used for research 
purposes only. 
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Please sign below indicating whether or not you would like your child to 
participate in the study. If you do choose to take part, you have the right to let 
your child withdraw from this study at any time. If you do not want your child to 
take part in the study, your child's standing at the school will not be affected in 
any way. 

If now or at any time in the future you have questions about the research, 
please feel free to contact us at the above numbers. If you have any 
concerns about your child's treatments or rights as a research participant, you may 
contact Dr. Richard Spratley, Director of the University of British Columbia 
Office of Research Services and Administration, at 822-8598. 

Thank you very much for your interest and cooperation. 

Aimei A. Fan, M.Sc. Arthur J. More, Ph.D. 

Parent Assent Form 

I have read the project summary. I understand the nature of the 
involvement for those students who agree to participate. I am aware that my 
child's participation in this study is entirely voluntary and that I may withdraw 
consent for my child's participation from this study at any time without jeopardy 
to her/his standing at school. 

I have received a copy of this consent form for my own records. 

I do consent / do not consent (circle one) to my child's participation in 
this study. 

(Signature) (Date) 


