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Abstract 
In this thesis an airline network inventory control policy is developed. The inventory problem 
being faced differs from traditional hierarchical inventory problems. In this problem the 
inventory system is composed of a network of warehouses where demand is observed between 
warehouses and inventory "consumed" from one warehouse is "provided" to another. 

The control policy is developed using two modeling techniques: Dynamic Programming and 
Simulation. Dynamic programming, or Markov Decision Processes, is used to help define a 
control policy. The limitations imposed by the use of Dynamic Programming are overcome by 
implementing the results in a Simulation model. 

The policy resulting from this analysis demonstrates the potential to save $390,000 per year with 
minimal operational impact to Canadian Airlines International. This represents a 60% reduction 
in non-service related equipment movements. 
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1.0 Background 

This project was developed for the Inflight Service department of our1 partnership company, 
Canadian Airlines International (CAI). CAI is one of Canada's two major airlines2, with service 
to many domestic and international cities. The objective of the Inflight Service department is to 
enhance the primary product of the airline, passenger transportation. To do this, the Inflight 
Service department provides services such as meals, reading materials and video entertainment 
on many of CAI's flights. 

To support inflight operations, CAI must monitor and maintain adequate levels of stock at the 
many cities it operates flights to. One of the difficulties of maintaining stock levels is managing 
the daily inflows and outflows of equipment at each station3. Equipment is loaded onto each 
flight, decreasing the departing city's inventory. Upon the completion of a flight, the equipment 
is unloaded and added to the arrival city's inventory. The problem of maintaining adequate 
inventory levels is amplified by the existence of many levels of service, each requiring a unique 
set of equipment, and the volatility in passenger demand. 

The airline industry is cost competitive. This requires CAI to examine its costs and seek new 
ways of doing business that either enhance service or reduce costs. Two areas, related to inflight 
service equipment, where costs are incurred include 1) the amount of equipment or inventory in 
the CAI system, and 2 ) the provisioning of that equipment to each flight that CAI operates. The 
cost incurred from the amount of inventory in the CAI system consists of the capital required to 
purchase the equipment and the opportunity cost of that capital. The cost incurred from the 
provisioning of equipment to each flight is composed of several components, the largest of 
which is the handling charges for preparing the equipment for loading, and cleaning the 
equipment after its use. 

The current inventory control policy that CAI uses to manage its inflight service equipment is 
called the deadhead policy. Under this policy each and every flight is loaded to capacity so that 
inflows and outflows of equipment are balanced. This results in reduced levels of inventory, at 
the cost of loading equipment onto aircraft that may never be used; most flights do not fly to 
capacity with passengers. Therefore, one potential area to reduce costs is the provisioning of 
inflight service equipment (trays, cutlery, carriers, ovens, etc) to aircraft, and this is the topic of 
this thesis. 

The remainder of this section is organized as follows. First the general problem being addressed 
wil l be described with the aid of an example. Then the general characteristics of the problem 
will be identified. The section concludes with a description of the Canadian Airlines system. 

' The partnership is with the COE- Centre for Operations Excellence UBC 
2 During the course of this project, Air Canada acquired CAI. Both airlines are currently undergoing merger 
activities 
3 A station is a city that CAI operates flights to and from 
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1.1 Problem Description 
Aircraft provisioning, or determining the amount of equipment to load onto an aircraft, involves 
the management of thousands of commissary and equipment items. CAI operates approximately 
220 flights per day4, from over 30 flight kitchens (stations), and each flight may require up to 
20,000 pieces of equipment. The equipment may range from coffee pots and high temperature 
ovens to china and cutlery. 

The objective of this study is to devise an equipment provisioning policy that will reduce the 
amount of excess equipment boarded onto aircraft and simultaneously ensure that 
significant equipment flow imbalances are mitigated. 

A n equipment provisioning policy is the set of rules that defines the quantities of equipment to 
be loaded onto an aircraft. When determining the amount of equipment to load onto an aircraft, 
two things must be considered, the amount of equipment required to provide service to the 
passengers, and the impact of loading excess equipment on operational costs. 

Two general approaches to an equipment provisioning policy are described below. The first is 
the equipment provisioning policy that CAI currently uses, and the second is an alternative 
equipment provisioning policy. 

1.1.1 CAI's Current Equipment Provisioning Policy 
The current equipment provisioning policy dictates that equipment be loaded onto aircraft to 
capacity5, regardless of customer load. This policy has the advantage of balancing the quantities 
of equipment into and out of a station. However, given that the average occupancy of CAI 
aircraft is 70%, a significant portion of the equipment loaded onto aircraft is never used to 
provide inflight service. 

1.1.2 Alternative Equipment Provisioning Policy 
A n alternative equipment provisioning policy would load equipment onto aircraft in relation to 
the anticipated customer load. This policy would reduce the amount of excess equipment 
boarded onto flights. However, the inbound and outbound equipment quantities wouldn't 
necessarily be equal, resulting in a need to balance inventory between stations. 

1.2 An Illustrative Example 
The following example highlights the difference between the current equipment provisioning 
policy and an alternative equipment provisioning policy. 

4 Based on 1999 operating statistics 
5 capacity is considered to be the amount of equipment required to provide service to the passenger capacity of the 
aircraft; strictly, this definition of capacity is not true. Additional equipment could be bulk loaded as belly cargo, 
however, this possibility is ignored for the purposes of this study. 
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Figure 1 - Graphical Representation of Problem 

Current Equipment 
Provisioning Policy 

Alternative Equipment 
Provisioning Policy 

• 

• 
• 

Unit of equipment used on a flight 
- required equipment 

Unit of equipment not used on a 
flight - excess equipment 

Representation of a 10 seat aircraft 

Let us start with a ten seat aircraft and let us assume that there are only seven passengers on the 
ten seat aircraft, as shown in Figure 1. Under the current provisioning policy ten units6 of 
equipment will be loaded onto the aircraft. During the flight only seven units are actually used to 
provide service, the remaining three units are not. Upon completion of the flight, all equipment 
is removed from the aircraft and transported to the flight kitchen. At the flight kitchen the 
equipment is cleaned and stored for later use. Although the three units of equipment incur costs 
because of handling charges, breakage and fuel burn, they do not provide any tangible service 
benefit. 

Under an ideal alternative provisioning policy enough equipment is loaded to provide service to 
the seven passengers. Equipment not required for service is not loaded. In this example, 3 units 
of excess equipment are not loaded onto the aircraft, resulting in reduced costs. However, when 
equipment is loaded in relation to passenger demand, equipment flow imbalances can occur. An 
example of how an imbalance can occur is shown in Figure 2. As a consequence, an alternative 
equipment policy requires extra movements of equipment to balance inventories between 
stations. This introduces new logistical concerns and additional costs. 

In summary, we are faced with the decision of whether to load equipment onto aircraft to 
capacity or to customer load. If we choose to load equipment onto aircraft to capacity, we 
eliminate the additional logistical difficulties but we ignore potential cost savings. However, i f 
we choose to load equipment onto aircraft in relation to customer load, we reduce operational 
costs, but we introduce new logistical difficulties and possibly additional costs. 

6 one unit of equipment is the amount of equipment required to provide service to one passenger 
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Figure 2 - A n Example of Equipment Flow Imbalance 

Example Flight Set-up 

Inbound 
Flight 

•W c i t y A 

Outbound 
Flight 

Passengers 7 Passengers 9 

Under Current Policy Under Alternative Policy 

Inbound 
Flight 

Passengers 7 

Equipment 
Loaded 10 

Outbound 
Flight 

• 

Passengers 9 

Equipment 
Loaded 10 

Inbound 
Flight 

Passengers 

Equipment 
Loaded 7 

Outbound 
Flight 

• 

Passengers 9 

Equipment 
Loaded 9 

Current policy net equipment flow into 
City A = 10- 10 = 0 

Alternative policy net equipment flow into 
City A = 7 - 9 = -2 

1.3 General System Description 
The general problem being addressed can be described as an equipment flow on a network of 
stations (cities). Each station has inventories of several types of equipment. There is a flight 
schedule that defines all flights to and from the stations of the network. Each scheduled flight 
has an associated equipment manifest to be loaded prior to its departure. The equipment that is 
loaded onto an aircraft will be subtracted from the departing station's inventory and added to the 
arriving station's inventory. Finally, there is a passenger demand for each flight, which 
determines the required amount of equipment. 

1.4 Definitions 
Several terms, which may appear to be synonymous, can have a different meaning. In order to 
avoid confusion, and provide clarity for the remainder of the thesis, several terms and definitions 
are provided in the glossary at the end of this thesis. 

1.5 Canadian Airlines System Description 
Defining the CAI system characteristics allows us to translate the general case to the specific 
case. This requires a description of the network characteristics, the flight schedule, the method 
for determining a flight's equipment manifest, the equipment inventories and the nature of the 
passenger demand. 
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1.5.1 Network Description 
The Canadian Airlines network of cities is characterized by three high volume cities. The air 
traffic between those three cities accounts for 25% of the total Canadian Airlines traffic7. The 
flights between the three main cities and flights directly connected to them represent 92% of the 
total air traffic. Directly connected flights are flights that fly to and from at least one of the three 
main cities. The remaining 8% of the traffic neither arrives nor departs from the three main 
cities. 

Figure 3 - Airline Traffic 

1.5.2 Flight Schedule 
A flight schedule is a listing of flights between city pairs, and the corresponding arrival/departure 
times, effective date range of operation, days of the week the flight operates, and the aircraft 
type serving it. 

The final schedule can be difficult to understand. Flights that routinely appear every day can 
unexpectedly disappear for a day, a month or indefinitely and then reappear. In addition, the 
flight routings ensure that a flight offering from one city to another isn't always matched by a 
flight offering in the opposite direction. In this sense the schedule is not predictable or 
"balanced". A final addition to the schedule complexity is mechanical uncertainty. Aircraft 
maintenance requirements cannot always be predicted. An aircraft that is scheduled for a 
specific route can be recalled for repairs. In order to maintain the schedule, the aircraft routings 
are adjusted. As a result, the specific aircraft scheduled to provide a specific flight is only 
tentatively known 48hrs in advance. 

7 based on 1999 operating statistics 
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1.5.3 Equipment Manifest 
The entire equipment manifest is determined by a combination of the meal service, galley 
configuration and the aircraft providing the flight. The meal service variation on Canadian 
Airlines flights is impressive. There are over 140 different meal service types in the 2000 meal 
schedule. The meal service types represent different combinations of meal type , tray type, china 
type, and type of service accompanying the meal. This variation is accompanied by over 70 
unique galley configurations. The galley configurations are a function of aircraft, seating 
configuration of the aircraft9, origin/destination10, and assigned galley code11. Finally, not every 
aircraft of the same type is exactly the same. There are minor variations from aircraft to aircraft 

12 

that affect a small quantity of components loaded onto aircraft . The entire process of 
determining the equipment manifest is summarized in Figure 4. 
1.5.4 Equipment Inventories 
The inflight service equipment is stored at the caterer's flight kitchen while not in use. It is the 
responsibility of the caterer to report inventory levels when requested, and these numbers are 
confirmed via periodic flight kitchen audits. The typical amount of inventory that CAI plans to 
have available at a given flight kitchen is approximately 36hrs worth of operating equipment. In 
other words, each flight kitchen is allocated enough inventory of equipment so that it can 
continue its operations with no incoming equipment for approximately 36hrs. 

It is important to remember for every flight into a station, one must leave. Therefore, each 
station is constantly "shipping" and "receiving" equipment. 

1.5.5 Passenger Demand 
Passenger demand on any flight is a difficult quantity to predict. The volatility in passenger 
demand is observed in two separate spheres. First, the passenger demand varies significantly 
from flight to flight. Second, the passenger demand on a particular flight varies considerably in 
the hours leading up to departure. 

Comparing passenger demand across flights can be accomplished by examining the population 
of observed passenger demands, and the passenger demand on city pair flights. The previous 
three years of CAI flight data demonstrate that passenger demand exhibits an hour of the day 
effect, a day of week effect and a month of year effect. The amplitude of variation is largest in 
the hour of day effect, followed by month of year and finally day of week. A n examination of 
the city pair relationships, reveals that the demand difference is non zero and seasonal. Finally, 
the observed patterns in the difference of city pair demand are difficult to characterize. 

The anticipated passenger demand varies considerably during the final hours prior to departure. 
The characterization of this change was one component of a thesis conducted by Jason Goto[6]. 
The results of his work demonstrate a passenger demand that is uncertain and volatile in the 
hours leading up to departure. 

8this is a general grouping such as hot dinner, cold lunch, cold breakfast 
9 The business class section of some aircraft can be removed and replaced with additional economy class seating 
1 0 The equipment manifest is a function of destination, for example when travelling to the Pacific Rim, an Asian tea 
trolley is substituted for the regular beverage trolley. Another example is the increased provisioning of alcoholic 
beverages on flights to certain destinations 
1 1 each flight has a particular galley code assigned to it, this is a high level code and gives an indication to the kinds 
of equipment to be loaded, but does not allow the identification of a specific equipment manifest 
1 2 Specifically, the aircraft type affects oven types and contour carriers 
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Figure 4 - Getting the Equipment Manifest 

Flight 
Provisioning 

Schedule 

Flight Provisioning Schedule Data 
• Arrival and departure station 
• Arrival and departure time 
• Date of flight 
• Aircraft type 
• Seating Configuration 
• Galley Code 
• Meal service type 

Select a Specific Flight 
Arrival and departure station ^ 
Aircraft type 
Seating configuration 
Galley Code 
Meal service type 

Day of operations aircraft 
assignment 

Catering 
Commissary 

Manual 

CCM Data 
• Galley specifications 
referenced by 
(aircraft type, galley 
code, meal service type, 
arrival and departure 
station, actual aircraft) 

Flight 109 
Calgary to Vancouver: 
Departs at 9:05 arrives at 10:15 
Boeing 737 - 12 first class seats 

economy seats 

Equipment manifest 
88 economy teaspoons 

economy knives 
88 economy forks 
20 2011 trays 
etc... 

Passenger 
Demand 

• estimated on day 
of operations 

Equipment 
Provisioning 

Policy 

Passenger 
Demand 

• estimated on day 
of operations 

w 

Equipment 
Provisioning 

Policy 

Flight 109 Passenger Count 
• 11 business class passengers 
•55 economy class passengers 

Flight 109 
Calgary to Vancouver: 
Departs at 9:05 arrives at 10:15 
Boeing 737 - 12 first class seats 

- 88 economy 
seats 

Equipment manifest 
55 economy teaspoons 
55 economy knives 
55 economy forks 
16 2011 trays 
etc... 
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1.6 Data Availability 
The two main data sources used in the Inflight Service department prior to this project were the 
Meal Pages and the Catering Commissary Manual. Both documents existed in an "electronic 
paper" format, meaning the data were stored in desktop publishing software, as it would look in 
the final printed reports. 

1.6.1 Meal Pages 
The Meal Pages is a meal service and equipment provisioning schedule. It is the result of the 
application of meal service selection rules to the flight schedule. It contains all the original flight 
schedule information along with additional information such as the type of meal service, high-
level galley code, miscellaneous service items and additional comments for the caterers. 

1.6.2 Catering Commissary Manual 
The Catering Commissary Manual is a document that contains all of the galley configurations. 
This includes itemized lists of the types and quantities of equipment that comprise a galley. In 
addition, it provides assembly and loading instructions, complete with diagrams of the galleys 
and aircraft galley locations. This document is used in conjunction with the meal pages by over 
thirty flight kitchens that service CAI flights 
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2.0 Literature Review 
There has been substantial investigation into the development of inventory management systems. 
The basic methods for managing inventory include the Fixed Order Quantity (FOQ) models, 
Economic Order Quantity (EOQ) models, and the A B C classification system. These models, 
with the exception of the A B C system, address inventory control when there is a clear hierarchy 
of inventory flow; where there is a clearly identified production center or distributor that fulfills 
the orders of retailers. Inventory levels are observed at all levels in the hierarchy, and external 
demand is observed at the retailer level of the hierarchy. The A B C model dictates which 
components of the inventory stock to actively manage. The model addressed by this thesis is 
unique in that there is no hierarchy, demand is only observed from other warehouses, and the 
inventory is not consumed rather it is reused. 

The simplest inventory management policy is a stationary policy where a fixed quantity of 
inventory arrives at a warehouse at fixed intervals. The inventory levels at the warehouse are 
depleted by some external demand. In practice this type of policy would be readjusted on a 
regular basis, either adjusting the magnitude of shipments or adjusting the period between 
shipments. 

A n improvement to the stationary policy is the FOQ or fixed order quantity model. 
In this model a fixed amount of inventory is ordered whenever the inventory level falls below a 
re-order level. 

A n improvement to the FOQ model, would allow order quantities to vary. EOQ or economic 
order quantity can be used to determine the optimal amount of inventory to order. Standard 
assumptions for an EOQ model include: demand certainty, constant demand, no stock outs, and a 
constant lead time. The EOQ model can be extended to account for variable lead times and 
variable customer demand. 

Finally, the A B C model categorizes the types of inventory by the costs incurred. Type A 
inventory is high cost impact items, meaning high unit cost and low volume, high unit cost high 
volume or low unit cost and high volume. Type B and C contain lower cost inventory items. 
The results of the A B C analysis indicate which inventory items to manage aggressively, and 
which inventory items to put less emphasis on. In practice, this method would be combined with 
an inventory control model, focusing mainly on type A inventory items. 
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Figure 5 - Traditional Hierarchal Inventory Model 
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Typical research topics in this area include examining the optimality of inventory policies 
applied to inventory models of this form. 

D.Atkins and P. Iyogun [1] investigated lower bounds on performance in coordinated multi-
product inventory systems. In this type of inventory system, orders are placed for multiple 
inventory items. The question to be answered is how much of each type of inventory should be 
requested at each order point. Given that there are many possible solutions to an inventory 
problem of this type, it becomes necessary to define the optimal solution so that the proposed 
solutions can be compared to the performance of the optimal solution. However, the lower 
bound is dependent upon the model formulation. For example, standard assumptions include 
deterministic demand, no backlogging, instantaneous delivery and defined systems costs. If any 
of these assumptions are changed the new formulation must be assessed. 

Many papers have been written on the effectiveness of lot-sizing policies. One of the papers by 
J.Mitchell [2] extended previous results from R.Roundy. The parameters of the model solved 
include an N-retailer inventory system with no backlogging, constant demand, with setup and 
storage costs at each facility. This work proved the 98% effectiveness of optimal power-of-two 
policy. 

M . Fu [3] developed sample path derivative estimates of performance with respect to s and S for 
the (s,S) policy. The result of this work was sample path derivative estimators for average 
inventory, back order and cost per period for an (s,S) inventory policy. The estimators can be 
used for sensitivity analysis and gradient-based optimization techniques. 

F. Chen [4] examined the effectiveness of stationary policies. The advantage of a stationary 
policy is the predictability of the impact to operations. The disadvantage is that stationary 
policies can be costly. In this paper, the effectiveness of a stationary policy used in a multi 
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echelon system with deterministic demand and backlogging was determined. The effectiveness 
of the stationary policy is 70% for both the multistage serial system and the one warehouse multi 
retailer system. It should be noted that in a randomly generated set of 1000 stationary policies 
the average effectiveness was 99%. In addition, it was demonstrated that integer ratio policies 
are only 70% effective. 

R. Anupindi and S.Tayur [5] developed a simulation model to manage a single stage that 
produces multiple items. The problem solved was that of production scheduling to achieve 
service level targets. The model assumes a cyclic schedule that determines production sequence 
of items, and the number of times an item is produced in a cycle. Given the schedule, the 
production of each item is determined by an (s,S) inventory policy. The demand for each type of 
product is random and the inter arrival times between demands are also random. Finally, a 
simulation was developed to determine "good" values of S and s. 

As mentioned above the types of problems solved are all very similar. There is a warehouse that 
supplies external demand and places orders for new inventory. The demand is either 
deterministic or stochastic. The reorder quantities are either fixed or variable. The reorder times 
are either fixed or variable. Some models include backlogging, others do not. The model can be 
extended to include a production center, other warehouses and downstream warehouses. 
However, the basic model is inventory is provided by some source and consumed by some sink. 

The problem being addressed in this thesis has many similarities to the traditional inventory 
models. But, there are three key distinctions: 
1. The inventory system is composed of a network of warehouses 
2. Demand is only observed between warehouses 
3. Inventory that is "consumed" from one warehouse is "provided" to another. 

Figure 6 - Network Inventory Model 
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Let us consider two warehouses in this type of inventory model. In Figure 6 under heading A 
we see that warehouse 1 is supplying inventory to warehouse 2 according to some demand 
observed between warehouse 1 and 2. Under heading B we see that the opposite occurs. 
Therefore we see that there is no inventory hierarchy - inventory flows from warehouse to 
warehouse in circles, rather than down through the inventory system. 
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3.0 Methodology 
Before appropriate modeling techniques could be selected, the operations of inflight service had 
to be understood. After the information gathering phase was completed it was apparent that a 
Markov Decision Process (MDP) model was a natural fit to the problem. An M D P analysis 
would generate an optimal equipment provisioning policy and permit an analysis of a 
generalized problem. From the optimal policy it would be possible to devise a suitable 
alternative equipment provisioning policy. Unfortunately, due to the heavy computational 
burden inherent in M D P analysis, the complete CAI network could not be modeled. Therefore, 
the results of the M D P analysis were used in the development of a simulation model. The brute 
force approach of simulation techniques permitted an in-depth analysis of the complete CAI 
system. The simulation was based upon operating data from CAI. Consequently it accurately 
approximated the actual system under study. The result of the simulation was an alternative 
equipment provisioning policy that was formulated using the most information available. The 
relationships between the three phases are represented in Figure 7. 

Figure 7 - Pictorial Representation of Project Plan 
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3.1 Gather Information 
The purpose of this phase of the project was to develop a conceptual framework of Inflight 
Service operations. This included understanding the entire process of provisioning equipment, 
from scheduling to fulfillment. In addition, we identified the data requirements of the project 
and took appropriate measures to ensure that the data requirements were fulfilled. The results of 
this phase are presented in the previous section, 1.0 Background. 

3.1.1 Develop a Conceptual Framework 
In order to understand the operations in Inflight service, we spent a significant amount of time 
working on project related activities at the client site. This allowed a daily interaction with 
Inflight service personnel, access to department meetings, tours of catering operations and an 
understanding of computer systems in use. Many areas of CAI were consulted including 
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inventory management, catering operations, and inflight service. In addition we had the 
opportunity to meet with SABRE, the developers of the inventory management software 
available at CAI, as well as to discuss inventory management with C A F s partner airline A M R . 
This resulted in a rigorous understanding of the operations. 

3.1.2 Access to Required Data 
Generally, data management at companies is directly linked to operational activities. As a result, 
the data are in a format that is suited to operations. This can make accessing the data in a manner 
other than intended, extremely difficult. At CAI, the data in the meal pages and the catering 
commissary manual presented access issues. 

In order to construct a complete equipment flow model of the CAI system, data from both the 
Meal Pages and from the Catering Commissary Manual were required. These information 
sources are described in section 1.6. With the help of CAI personnel and COE associate Sean 
Baird, the design and implementation of the Meal Pages database and the Catering 
Commissary database was completed. These two databases have been integrated into CAI's 
operations. The benefit to CAI was the ability to streamline the main operations associated with 
these two databases as well as automate some ancillary activates. The benefit to this project was 
the direct access to required operational information that, as a result of being implemented, had 
the most current and up to date data. 

3.2 Develop Markov Decision Processes 
A standard problem to be addressed in inventory theory is the existence and performance of an 
optimal policy. Without an understanding of the structure of an optimal policy, it is impossible 
to gauge the performance of other policies precisely. M D P models can be used to identify and 
evaluate the performance of an optimal policy. MDP models, and dynamic programming in 
general, do have one drawback - the computational burden required to solve the model. Given 
that the network to be solved contains 31 nodes, it is unlikely that a 31 node M D P model can be 
formulated and solved in reasonable amount of time (or even lifetime). Consequently, the M D P 
models usefulness is limited to the analysis of simplified versions of the CAI network. 

Three separate models of the Canadian Airlines operational system were formulated. Each of the 
three models gave a different perspective on what the alternative policy should be 1 3. The results 
of the three separate models were combined to form an alternative equipment provisioning 
policy for use in the simulation. In addition the use of M D P allowed for a comparison of the 
alternative policy to the optimal policy for each model. 

3.2.1 What is MDP? 
A decision can be thought of as a choice of action based upon available data, to affect a future 
outcome. Generally, the action and resulting outcome are associated with a reward or cost. In 
special cases there are a sequence of decisions to be made. In addition, the outcome of a specific 
action may be deterministic or stochastic. A Markov Decision Process is a model of a stochastic 
sequential decision process. The defining characteristic of a Markov Decision Process is the fact 
that "the history of the problem has no effect on future decisions."(Puterman 1994) A l l that is 
required to make a future decision is the current state; the path to that state is irrelevant. 

Each model will have an optimal policy for that specific model, and the policy is not necessarily optimal for the 
actual Canadian Airlines system. The results of three separate models combined demonstrate the form of an 
alternative provisioning policy. 
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3.2.2 MDP and Equipment Provisioning 
Equipment provisioning involves the decision of how much excess equipment to load onto 
aircraft. The amount of excess equipment loaded onto aircraft will have two effects. First, the 
inventory levels at the departure station will decrease while the inventory levels at the arrival 
station will increase. Second, the loading of excess equipment will incur costs. We are not just 
concerned with the provisioning of equipment to a single flight, but all flights. As such we are 
faced with a sequence of similar decisions. The final elements of the problem arise from the 
calculation of the future inventory of equipment at a station. The future inventory level is equal 
to the current inventory level plus the amount of equipment loaded onto arriving flights, minus 
the amount of equipment loaded onto departing flights. If the equipment is loaded onto the 
aircraft in relation to passenger demand, then the equipment flow is stochastic. Finally, when 
making the decision, we are not concerned with how the current inventory level came to be. We 
are only concerned with current value itself. 

3.3 Develop Simulation 
The purpose of this phase of the project is to validate the effectiveness of an alternative 
provisioning policy suggested by the MDP analysis. Due to the difficulty involved in modeling 
the complete CAI system as an MDP, the decision was made to use another operations research 
tool, simulation. Simulation is used when the real world system under study is too complex to 
model using other tools. 

3.3.1 What is Simulation? 
A simulation can be of many types, stochastic or deterministic, discrete event based or 
continuous, however the fundamentals of simulation are generally the same. Generally, we are 
interested in simulating the operations of real world facilities and processes. "The facility or 
process of interest is usually called a system, and in order to study it scientifically we often have 
to make assumptions about how it works. These assumptions, which usually take the form of 
mathematical or logical relationships, constitute a model that is used to try and gain some 
understanding of how the corresponding system behaves." [7] 

The main distinction between Simulation Models and MDP models is that simulation models can 
only test policies; they cannot be used to determine policies. M D P analysis will define a policy. 

3.3.2 Simulation and Equipment Provisioning 
For this project, simulation was used to model the complete 31 node CAI network. The 
alternative provisioning policy generated from the M D P analysis was modeled using simulation. 
This allowed the incorporation of system specific details, such as passenger demand by market 
segment, multiple aircraft types, and a complicated flight schedule. The simulation model was 
constructed in MS E X C E L , incorporating relevant operational data from CAI. 
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4.0 Markov Decision Process: Model Formulations 
A Markov Decision Process model is composed of states, actions, assumptions, rewards, and 
state transitions. States represent the current condition of the model. For example, in these 
models one of the factors that is of interest is inventory level, and so the current level of 
inventory is one portion of the state. Actions are the means by which a decision is enacted in the 
model. In this case we would like to decide how much equipment to load onto an aircraft, and as 
such the action is how much equipment is loaded onto an aircraft. The assumptions simplify the 
real world system under study. The rewards or costs are given as a result of achieving a 
particular state. Finally, the state transitions define how to determine a future state given the 
current state and the current action. 

This section begins with a description of the states and actions of the models. Then the 
assumptions used in the three different model formulations are presented. Next, the basis for the 
cost function is developed. Finally, each model is presented in sequence, starting with the 1-
node and ending with the 3-node. 

4.1 States and Actions 
The state at time t is defined to be the quantity of the vector of inventory imbalances at each 
station at time t, and the current value of the passenger demand for all flights at time t. For 
example, in the one node model, there is one inventory imbalance for each time t, and one 
passenger demand for each time t. Therefore, the state is defined by the value of the inventory 
imbalance at time t and the demand on the flight at time t. 

Inventory imbalance is defined as the difference between the inventory level and the inventory 
allotment14. An inventory imbalance can be positive or negative, and it measures the deviation 
of the inventory level from the specified allotment. The use of inventory imbalance allows us to 
ignore the cumbersome nature of dealing with inventory allotments and inventory levels. 

The action set at time t is defined to be the vector of excess equipment movements for each flight 
at time t. Each action at time t is equal to the amount of excess equipment to be loaded onto each 
flight at time t. The value of an action is restricted to be between 0 and the aircraft capacity 
minus observed passenger demand. This means that the total equipment loaded must at least be 
equal to passenger demand and must at most be equal to the aircraft capacity. 

4.2 Model Assumptions 
The models, as formulated, are based on several assumptions. Each assumption is listed below, 
and then described in detail in the following sections: 

1) One single type of aircraft 
2) One class of seat 
3) C aggregate seats on aircraft 
4) Simplified flight schedule 
5) Sufficient inventory to satisfy demand out 
6) Single type of equipment 
7) Approximate passenger demand distributions 

1 4 The allotment is determined outside of the scope of this model 

15 



4.2.1 One Single Type of Aircraft 
For simplicity, we have assumed that the aircraft in the model are all of the same type. In the 
CAI system there are over 9 different types of aircraft. 

4.2.2 Aircraft Have One Class of Seats 
Most aircraft in the CAI system have two classes of seats, business and economy. In the M D P 
models no distinction is made between the classes of seats. 

4.2.3 C aggregate seats on aircraft 
A l l aircraft at CAI have a combined seating capacity over 100 seats. These seats are treated as C 
aggregate seats. This is required to ensure that the formulated models are solvable. 

4.2.4 Simplified Flight Schedule 
The actual flight schedule is a complicated web of flights between cities. Several flights can 
arrive in a city before a flight departs. In the MDP model we assume that for each epoch, one 
flight arrives and departs at each station for every other station in the model. In the 1-node 
(station) model, one flight arrives and one flight departs from the one station. In the 2-node 
model, one flight arrives and one flight departs from each of the two stations. In the 3-node 
model, two flights arrive and two flights depart from each of the three stations. This leads to a 
flight schedule that does not allow aircraft to build up at a station. Also, the simplified schedule 
has balanced flights between city pairs- for every flight going from A to B there is a flight going 
from B to A . 

4.2.5 Sufficient Inventory to Satisfy Demand Out 
As previously discussed, each station has an inventory allotment equal to approximately 36hrs of 
operations. During a period of a week it is possible that sufficient differences between in 
inbound and outbound passenger demand could exist to exhaust a stations inventory. However, 
such an imbalance would be observable and rectifiable before it occurred. For example, with 
18hrs of inventory remaining a decision could be made to rebalance stock from other cities, and 
this inventory would arrive within the eighteen remaining hours. Therefore, it is assumed that 
sufficient inventory is available to satisfy passenger demand on any aircraft. The formulation of 
the model incorporates bounds on deviation from inventory allotments and enforces those 
bounds with automatic reshipments. 
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4.2.6 Single Type of Equipment 
A n average equipment manifest wi l l contain many types of equipment in varying quantities. For 
the M D P model we will represent the maximum possible equipment to be loaded as C units of 
equipment. This representation is a consolidation of equipment into a single type of equipment, 
as well as an aggregation of the quantity of equipment into C groups. 

4.2.7 Simplified Passenger Demand 
As described in the previous section, the passenger demand is difficult to characterize and 
predict. It varies depending on several factors, including market segment (origin and 
destination), time of year and time of day. In the MDP model, we have assumed all passenger 
distributions to be triangular (0.4C, 0.7C, 1 .OC). Varying demand patterns by region will be 
addressed in the simulation model. 

4.3 Model Cost Function 
The cost function is what motivates the model to choose actions. When evaluating a series of 
available choices, the model will compute the corresponding costs and choose the action 
associated with the lowest cost. It is perhaps one of the most important components of the 
model. To define the cost function we must first revisit the project objective: 

To reduce the amount of excess equipment boarded onto aircraft and 
simultaneously ensure that significant equipment flow imbalances are mitigated 

The objective statement describes two measures of success, equipment flow imbalance and 
excess equipment loaded. The cost function incorporates both of these, and one more- the 
rebalance action. The complete cost function will be presented below, followed by a description 
of each component. Finally the section concludes with an interpretation of cost multipliers 

4.3.1 The Complete Cost Function 
The complete cost function is given by: 

rt{st,a,) = Kx *\S,\ + K2 *a,+K3*R, 
The cost function will penalize inventory imbalances, movements of excess equipment and 

rt = reward at time t 
K i = inventory imbalance penalty multiplier 
K2=excess equipment movement penalty multiplier 
S, = inventory imbalance at time t 
at = amount of excess equipment loaded in period t 
R, = rebalance action in period t (enforces inventory imbalance limits, discussed later) 
K 3 = equipment rebalance penalty multiplier 

rebalance actions. When comparing costs generated from the cost function, it is the lower cost 
that is preferred. 

17 



4.3.2 Inventory Imbalance Penalty 
The inventory imbalance can be measured by subtracting the current inventory level from the 
inventory allotment. Alternatively, i f the system is assumed to start with a zero inventory 
imbalance, then the cumulative sum of equipment flows to and from a station will determine the 
inventory imbalance. 

±xi=it-iA=s, 
X,1 = equipment flow imbalance in period t 
It = inventory level in period t 
IA = inventory allotment 
S, = inventory imbalance in period t 

We can change the relative importance of the deviation from inventory allotment by multiplying 
it by a constant. Finally, we can represent the contribution of the inventory imbalance penalty to 
the cost function as: 

K , * \S , | 
K| = inventory imbalance penalty multiplier 
St = inventory imbalance in period t 

4.3.3 Movement of Excess Equipment Penalty 
The excess equipment boarded onto an aircraft can be measured by subtracting the demand for 
equipment on an aircraft (passenger demand) from the total amount of equipment loaded. 

at=X\-dt 

a, = amount of excess equipment loaded in period t 
X, L = total equipment loaded in period t 
dt = demand for equipment in period t 

The demand for equipment is equal to the passenger demand on the flight, d t. The excess 
quantity of equipment is defined by the amount of additional equipment we choose to load, at. 
We wish to minimize the amount of excess equipment movement in every period. We can 
represent the contribution of excess equipment movement penalty to the cost function as: 

K2*at 

a, = amount of excess equipment loaded in period t 
K2= excess equipment movement penalty multiplier 

Again, K 2 allows us to change the relative importance of this penalty. 

4.3.4 Equipment Rebalance Penalty 
As discussed in the assumptions section, an automatic equipment rebalance is incorporated in the 
model. This rebalance is activated i f the inventory imbalance is permitted to grow too large and' 
is not corrected. Operationally, this would correspond to a bulk shipment of equipment either by 
train, truck or aircraft. The rebalance action is directly measurable; R t represents its value. We 
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wish to minimize the automatic rebalance actions. The contribution of the equipment rebalance 
penalty to the total cost function can be represented as 

K3*R, 

R, = automatic rebalance action in period t 
K 3 = equipment rebalance penalty multiplier 

4.3.5 K Term Interpretations 
The value of the K terms in the cost function relative to each other will affect the model results. 
Therefore, a complete understanding of their individual significance is warranted. The K values 
will be discussed in the order K 2 , K 3 and K j . 

The value of K 2 has a direct interpretation in the real world system under study. If the objective 
function is measured in dollars, then the value of K 2 is the cost of supporting the logistics to 
provide a unit of equipment to the aircraft. Specifically, this encompasses such costs as 
handling charges, cleaning charges, fuel burn and expected breakage. 

The value of K 3 also has a direct interpretation in the real world system under study. The value 
of K 3 is the cost of all activities required to rebalance equipment. This includes packing, 
transportation, unpacking, cleaning, and additional breakage costs. 

The value of K i does not have a direct interpretation in the real world system under study. Its 
model representation is a penalty for deviation from allotment. However, its real world 
interpretation does not represent a completely identifiable cost. There are costs that could be 
associated with inventory imbalances, for example square footage at a caterer's flight kitchen. 
But assuming that there are sufficient units of equipment to satisfy the demand requirements, 
what is the value of additional units of equipment? Operationally, the only "cost" is the 
probability of stock out, and this will be discussed in greater detail in the simulation section. For 
the purposes of the M D P model, the cost function encourages lower inventory imbalances - that 
is what we need it to do. 

4.3.6 Cost structure Representations 
Choosing specific ratios for the relative values of the K terms allows us to identify and 
characterize the resulting cost structure. A list of cost structures used in the MDP analysis is 
given in Table 1. This is known as a two way factorial design for K] and K 2 . 

Table 1 - M D P Model Cost Structures 

J Cost Structure Name K, K2 K3 

113 1 1 3 
123 1 2 1 3 
133 1 3 3 
213 2 1 3 
223 2 2 1 3 
233 2 3 3 
313 3 1 3 
323 3 2 3 
333 3 3 3 
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These specific cost structures were chosen to allow the identification of trends with the change of 
specific K terms. For example, examining the results of the 113, 123 and 133 cost structures will 
reveal the influence of increasing and decreasing K.2. The cost structures provided allow for easy 
analysis of various relative magnitudes of K i and K 2 . 

K.3 was kept constant for two reasons. The first is the fact that moving a unit of equipment in a 
rebalance action is at least as expensive as moving a unit of equipment as excess equipment. If 
this were not the case then CAI would not bother to ship excess equipment at all. The second is 
that this choice reduces the number of analyzed models by a factor of three, allowing us to focus 
on the more industrially relevant questions of this investigation. 

4.4 Model 1: 1-Node Model Formulation 
The simplest representation of the CAI network is a collection of cities that act independently of 
one another. This framework leads to a 1-Node model of the problem. In this case we are 
modeling the network in the presence of demand and inventory information asymmetry, 
specifically, we only have access to information from station A when making the decisions. This 
model will yield a solution that optimizes only the station being analyzed without any 
consideration of the network around it. A graphical representation of the problem is given in 
Figure 8. 

Figure 8-1 Node MDP model 

sA 

4.4.1 Definitions 
N = number of epochs 
D t

A = random variable representing passenger demand out of city A 
D t

B = random variable representing passenger demand in to city A 
d A

t = observed passenger demand on a flight in period t out of city A 
d B

t = observed passenger demand on a flight in period t into city A 
S A = inventory imbalance at city A 
S L = upper limit on absolute inventory imbalance 
at = amount of excess inventory to load onto aircraft from city A in period t 
K i = inventory imbalance penalty multiplier 
K 2 = excess equipment movement penalty multiplier 
K 3 = equipment balancing penalty multiplier 
C = aircraft passenger capacity 
R t = equipment rebalance action in period t 
r t = cost in period t 
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4.4.2 Timeline of the model 
We start at time t in state st. The state of one node model is defined as the current value of 
passenger demand out of the station (dA

t), and the current inventory imbalance at the station sA

t. 
An action (at) is selected by using information contained in the state. The passenger demand into 
the station (dB

t) is then observed. The future inventory imbalance at time t = t+1 can be 
calculated by using the current state, action and demand in. The rebalance action is determined 
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by comparing the calculated inventory imbalance to the automatic rebalance limit. Once the 
rebalance action is known, the actual future inventory imbalance can be determined. Finally a 
new passenger demand out is observed. The combination of the new passenger demand out and 
the actual inventory imbalance at time t=t+l defines the future state, st+i. 

4.4.3 State Space 
The state space for this model is the cross product of the passenger demand out space and the 
inventory imbalance space. A typical state is written as St=(dt

A,st

A). The presence of demand out 
in the state space is peculiar. However, when we realize that we are trying to choose the amount 
of excess equipment to send, the three variables that we would like in a one-node problem are 
demand in, demand out and deviation from inventory allotment. The model is based on 
asymmetric demand information; demand in is not observed prior to the choice of action. 
Consequently, demand in is not included in the state space, but the observed quantities, demand 
out and inventory imbalance, are. 

4.4.4 Action Space 
The action space consists of all possible quantities of excess equipment that can be boarded onto 
a given aircraft. The action space starts at zero and stops at the capacity of the aircraft minus the 
demand on the aircraft. An action equal to 1 means 1 unit of excess equipment has been 
boarded onto the aircraft. 

4.4.5 State Transitions 
The transition of sA can be broken down into two regions, (1) normal inventory accounting and 
(2) automatic rebalance. In the normal inventory accounting region, a future realization of 
inventory imbalance (s t +i A) is determined by adding s A and demand in, and subtracting demand 
out and the current action. In the automatic rebalance region st+iA is determined by comparing 
st+iA to S L I 5 . If the absolute value of st+iA is greater than S L , a rebalance action is initiated and 
the st+iA is set equal to zero. If the absolute value of s t + i A is less than S L , the st+iA is equal to the 
result from the normal inventory accounting region. 

5 note SL is not a decision variable, it is a model parameter 
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4.4.6 The Complete Formulation 
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4.5 Model 2: 2-Node Model Formulation 
The motivation for extending the first model is the fact that the first model has only one node. 
As a result its ability to capture the essential elements of a network is limited. The next logical 
extension is a 2-Node problem. This model is analogous to a single city pair. The 2-Node model 
is represented in Figure 9. 

Figure 9 - 2 Node M D P Model 
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4.5.1 Definitions 
A l l the definitions are included for completeness. In the 2-node model we have added two 
variables, S B and a 3 . 

N = number of epochs 
D t

A = random variable representing passenger demand out of city A 
D t

B = random variable representing passenger demand in to city A 
d A

t = observed passenger demand on a flight in period t out of city A 
d B

t = observed passenger demand on a flight in period t into city A 
S A = inventory imbalance at city A 
S B = inventory imbalance at city B 
S L = upper limit on absolute inventory imbalance 
a A = amount of excess inventory to load onto aircraft from city A to city B in period t 
a B = amount of excess inventory to load onto aircraft from city B to city A in period t 
Kj = inventory imbalance penalty multiplier 
K 2 = excess equipment movement penalty multiplier 
K 3 = equipment balancing penalty multiplier 
C = aircraft passenger capacity 
R t = equipment rebalance action in period t 
r t = cost in period t 
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4.5.2 Timeline 
As in the previous model, the timeline starts with the model in state st at time t. The actions are 
selected, the rebalance quantity is determined, and then a cost is incurred. Finally, the 
appropriate state transition occurs moving the state to s t+i. The main difference between the 2N 
model and the I N model is the fact that both demands are observed prior to making a decision. 

Time = t Time = t+1 

i 

dB0 

k A 

1 

i 

r St+i(sAt+i> 

1 

d t+i, 

Select Determine Calculate Observe 
a t> a t s t+i, Rt rt d A

t + i , dB

t + 

4.5.3 State Space 
The state space for this model is the union of the passenger demand out space, the passenger 
demand in space and the inventory imbalance at station A space. Capitalizing on the fact that the 
model represents a closed system reduces the size of the state space. In any epoch, i f we are 
given the inventory imbalance at one station, we know what the inventory imbalance at the other 
station must be. 

4.5.4 Action Space 
The action space for the 2-Node model incorporates an additional action. Each component of the 
action space is exactly the same as in the 1-node model. 

4.5.5 State Transition 
A future state, s t+i,is dependent on two things, 1) the probability of observing particular values 
for dA

t+i and d B

t+i and 2) the total result of equipment movements in period t. The inventory 
accounting procedures for this model are almost identical to the one node model, except that 
action b is now incorporated. 
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4.5.6 The Complete Formulation 

State Space: 

T = {l,...,N} 

S = DAxDBxSA 

DA - {0,h—,C} 

DB={0,l,..,C} 

SA ={sA :-SL <sA <S\ in t} 
s, = —s, 

Actions: 

Rewards: 

af = {0,l,2,...,C-df} 

af ={0,l,2,...,C-rf*} 

r, (V. ,a,) = 2*Kl* \sf+l \ + K2* (af + af) + K3* \Rt | 

rN(sN) = 0 

0 

„A . jB . B iA „A 
st + dt +at —a, -at 

if sf+df+af -df-af <SL 

i f n A * j B . B jA „A . n i 
11 s, +at + a, —at —at > o 

P(Df =d) = pd 

P(D? =d) = qd 

State 
Transition: 

sA = A . J B . B iA A 
st +dt +at —at — at 

i \sf +df +af -df -af\<Sl 

i \sf +df +af -df -af\>SL 

Bellman Eqn: Vt (df,df ,sf) = max\ 2 * * \sf+l\ + K2* (af + af ) + K3 * \R, | + £Z/V a

d ° * V>* « i <i s L ) I 

VN(dA

N,dB

N,sA) = 0 
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4.6 Model 3: 3-Node Model Formulation 
The 3-node model is the smallest "network" that we can create. It consists of three city pairs. It 
is directly analogous to the three high volume cities of the CAI network. The 3- node model is 
represented in Figure 10. 

Figure 1 0 - 3 Node MDP model 

CITY 
A 

CITY 
B 

CITY 
C 

As can be seen, the movement from a 2-Node model to the 3-Node model involves a significant 
increase in the size and complexity of the model. 

4.6.1 Definitions 
N = number of epochs 

t= random variable representing passenger demand from station A to station B 
t= random variable representing passenger demand from station A to station C 
t= random variable representing passenger demand from station B to station A 
t= random variable representing passenger demand from station B to station C 
t= random variable representing passenger demand from station C to station A 
t= random variable representing passenger demand from station C to station B 

demand from station A to station B in period t 
demand from station A to station C in period t 

D 
D 2 

D 3 

D 4 

D 
D 
d \ 
d 2 , 
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d 3

t = demand from station B to station A in period t 
d 4

t = demand from station B to station C in period t 
d 5

t = demand from station C to station A in period t 
d 6

t = demand from station C to station B in period t 
a' t = amount of excess inventory to load from station A to station B in period t 
a 2

t = amount of excess inventory to load from station A to station C in period t 
a 3

t = amount of excess inventory to load from station B to station A in period t 
a 4

t = amount of excess inventory to load from station B to station C in period t 
a 5

t = amount of excess inventory to load from station C to station A in period t 
a 6

t = amount of excess inventory to load from station C to station B in period t 
S A = inventory imbalance at station A 
S B = inventory imbalance at station B 
S c = inventory imbalance at station C 
S L = inventory imbalance limit 
R t = equipment rebalance action in period t 
C = aircraft capacity 
K i = deviation from allotment penalty multiplier 
K 2 = excess equipment movement penalty multiplier 
K3 = rebalance inventory multiplier 

4.6.2 Timeline 

Time=t Time = t+1 

l V 1 k 

1 

i 

r 

i 

< 

w-

>t+l 

Select Determine Calculate Observe 
a t St+i, Rt rt d't+i 

As in the two previous models, the timeline starts with the model in state st at time t. The actions 
are selected, the rebalance quantity is determined, and then a cost is calculated. Finally, the 
appropriate state transition occurs moving the state to st+i. 

4.6.3 State Space 
The state space for this model is the union of the six passenger demand spaces and two inventory 
imbalance spaces (the third inventory imbalance is defined by the first two inventory 
imbalances). 

4.6.4 Action Space 
The action space for this model is the set of six actions. Each action can take a value between 0 
and the aircraft capacity minus the corresponding passenger demand. 
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4.6.5 State Transition 
Passenger demand is a random variable; as such a future realization of a state is dependent on the 
future inventory imbalance and the probability of obtaining a particular set of demands {d't+i, 
d t+i> d t+i, d t+i, d t+i, d t+i}. 

The process of summing equipment flows into and out of a station is the same, but the process 
for determining the rebalance action is significantly different. In the 3-Node model, we must 
know which station has an excessive inventory imbalance and which of the two stations (perhaps 
both) to rebalance the inventory with. The method for determining the rebalance action and the 
stations participating in the rebalance action is provided in the complete formulation section. 

4.6.6 Complete Formulation 
The complete formulation is provided on the following page 
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State Space: 

T = {l,...,N} 

S = DX xD2 xD3 xD4 xD5 xD6 xSAB 

SAB ={(sA,sB):-SL <sA+sB <SL} 
-SL <sA <SL 

-SL <sB <SL 

sf + sf + sf = 0 
sA,sB integer 

Actions: As = [a], a2 ,af,af ,af,af) 

a/ ={0,1,2 rf/} 

Rewards: rt{sM,at) = K, *{\sf+l\ + \sf+\ + 

P(D; =d) = P

l

d 

cf+l = sf - d) - d] + df + df - a] - af + af + af 

^,+5* 1) + ^ 2*(S«r') + ^ 3 ^ 

1=1 

> ctL > c s 
t+l 

cf+l = sf - df - df + d) + df - of - af + a) + af 

Ct+l ~ St 

R,=0 

*, = \ct+i 

•sf -d4 -df +d3 + df 

if 

if 

if 

if 

if 

cf+1<S< 

>SL 

>SL 

<SL 

<SL 

• af - af + af + af 

S ^ r i and 

and 

and 

and 

and 

cM < -S 

't+l 
H 

> l+l 

l+l I < \Cl+l 
Ct+l ̂  C,+l 

•t+l < U+l 

s = small 
m = medium 
h = high 

State 
Transition: 

st+l ~ c t+l's t+l ~ c t+l's t+l 
sl+l ~ st+l ~ st+l ~ u 

St+l ~ St+l ~ St+l ~ V 

— c 

-7+1 >st+l st+l c t+l Is t+l 

t+l 

s"=0;s M 
t+l 

... = 0 

' ct+l ->st+l ~ Ct+l 

if 

if 

if 

if 

if 

c^+i<SL 

,M 
't+l 

't+l 

>SL 

>SL 

cf+i <SL 

\c?+i <SL 

and 

and 

and 

and 

and 

cf+i<Sl 

Bellman Eqn: 

Vt(d'l,s,) = max\ 
Ki*(\4i\ + \sf+l\+ sf+1 +sf+1) + K2*(£ol) + K3 *\Rt 

i=l 

</<'+! dnl df+t d^l 

VN(d!

N,sN) = 0 
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5.0 Markov Decision Process: Model Results 
The goal of the MDP analysis is to generate an alternative equipment provisioning policy, and to 
determine the performance of that policy. To achieve the goal we must first develop an optimal 
policy. Then an alternative policy can be developed using the optimal policy as a basis. Next, 
the current policy, the deadhead policy must be developed. Finally, we can use the results of the 
optimal policy and the deadhead policy to quantify the performance of the alternative policy. 

The results of the MDP analysis can be summarized as: 
1. The alternative provisioning policy suggested by the M D P analysis is the Single 

Reference (SR) policy. 
2. As the size of the network increases, the SR policy performance also increases 
3. The SR policy information requirements are flight demand and inventory imbalance of 

the station, the D H policy only requires flight demand 

The remainder of this section is devoted to presenting the results in greater detail. The results of 
each model analysis are presented in order of increasing complexity, starting with the 1 Node 
and ending with the 3 Node. In this section, many policies are presented that have similar 
names. For clarification, these policies are listed on the following page in Table 2. Lastly, 
throughout the analysis many references wil l be made to cost structures. As discussed in section 
4, the cost structure is defined as the 3 values for K i , K 2 and K 3 . Typically a cost structure wil l 
be written as Ki,K 2 ,K .3 or as K i K 2 K 3 . For example, a cost structure of 1,2,3 or 123 means K i = 1, 
K 2 = 2 a n d K 3 = 3. 
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Table 2 - M D P Policies 

Policy Policy Name 
D H Deadhead 

SR Single Reference 

"OPT Optimal 

I N D H 1 Node Deadhead 

Description 

I N SR 1 Node Single Reference 
IN OPT 1 Node Optimal 

General policy, all flights are loaded to capacity 
General policy, compare inventory imbalance and 
reference level to determine excess equipment to load 
General policy, the policy resulting from the application 

f the Bellman equation 
Flights into and out of the only station are always loaded 
to capacity 

1 Node Optimal, SL = 20 

1 Node Optimal, SL = 
100 

2 Node Deadhead 

Flights out of the only station follow the SR policy 
The policy resulting from an application of the Bellman 
equation for the 1 Node model 
The policy resulting from an application of the Bellman 
equation for the 1 Node model with SL = 20 
The policy resulting from an application of the Bellman 
equation for the 1 Node model with SL = 100 

2 Node Single Reference 
2 Node Optimal 

3 Node Deadhead 

3N SR 
3 N O P T 

3 Node Single Re 
3 Node Optimal 

Flights into and out of both stations are always loaded t 

Flights out of both stations follow the SR policy 
'he policy resulting from an application of the Bellman 
uation for the 2 Node model 

Flights into and out of all three stations are always 
loaded to capacity 
lights out of all three stations follow the SR policy 

The policy resulting from an application of the Bellman 
equation for the 3 Node model 

The single reference provisioning policy will base the decision of how much excess equipment to 
load on two pieces of information, the current inventory imbalance, and the reference level. If 
the current inventory imbalance is less than the reference level then no excess equipment is to be 
loaded. If the current inventory imbalance is greater than the reference level then the aircraft is to 
be loaded to capacity. 
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5.1 Model 1 Results: 
The I N models were coded using V B A and M S access. The total computation time for 18 
parameterized versions of the optimal policy, 108 parameterized versions of the SR policy and 
the 9 parameterized versions of the D H policy was approximately 1 hour. 

The results of the 1-Node (IN) analysis can be summarized as follows: 

• The IN alternative policy suggested by analysis is the 1-Node Single Reference(lN 
SR) policy 

• The difference in expected costs between the I N SR policy and the I N OPT policy is 
small, the maximum difference is less than 5%. 

• The I N SR policy outperforms the I N D H policy when the I N OPT policy 
outperforms the I N D H policy 

• Acceptable I N SR policies exist in cost structures 123 , 133 and 233, for these three 
cost structures the cost of the I N SR is on average 63% that of the I N DH. Over all 
cost structures, the cost of the I N SR is on average 142% that of the IN DH, and 
104% that of the I N OPT. 

We will begin the discussion of the I N results by examining the I N OPT policy. The 
formulation and results of the I N SR policy, will be presented. This will be followed by a 
discussion of the results from the I N D H policy. In each of these sections there is a discussion 
of the effect of K I and K2 on policy performance. Finally, the effectiveness of the I N SR policy 
will be presented. 
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5.1.1 1 Node Optimal Policy 
The I N MDP model was parameterized and solved. This process was repeated for eighteen 
parameter configurations. Table 3 summarizes the parameters used for identifying the 
characteristics of the I N optimal policy. 

Table 3 - 1 Node Model Parameters 

SL - inventory imbalance limit 
N - number of epochs 
C - aircraft capacity 
K i - inventory imbalance penalty multiplier 
K2 - excess equipment movement penalty multiplier 
K3 - rebalance inventory multiplier 

The results of the eighteen parameterized I N OPT models for each epoch are presented in 
graphical form in appendix A - model 1 results. The selection of various K's allows for the 
identification of trends and patterns that result from varying the magnitude of K i , K 2 and K 3 
relative to each other. 

The analysis of the I N OPT models is broken into to groups, the models with S L equal to 100, 
and the models with S L equal to 20. We will refer to these models as the SL 100 and SL 20 
respectively. 

5.1.1.1 SL 100 models 
The SL 100 models are a simplified version of the I N model. Given the model parameters, 
when S L is set at 100, the rebalance behavior of the model can never be triggered. This yields a 
simplified version of the complete model results. The control surface of one epoch in one of the 
models is presented in Figure 11. The control surface allows the identification of an action given 
a particular demand and inventory imbalance. For example, i f the demand in epoch 7 is equal to 
7 and the inventory imbalance is equal to 9, then the number of units of excess equipment to load 
(action) is 3. 
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Figure 11 - 1 Node O P T SL 100, Control Surface: Cost Structure 1,1,2 

Control Surface, Epoch 8 

Inventory Imbalance 

Comparing across the 9 SL 100 models, for all epochs several trends are identified. These can 
be summarized as: 

Each epoch has three regions: 
1. Ship no extra equipment 
2. Ship as much excess as possible 
3. Decision region connecting regions 1 and 2 

Each epoch has a Decision Region: 
The decision region is linear with increasing inventory 
The decision region is linear with increasing demand 
The bounds of the decision region move as K I and K2 vary 

The Cost Multipliers have several effects: 
As K I increases the decision region is pushed to the left 
As K2 increases the decision region is pushed to the right 
K I > K2 decision region is pushed to the right 
K2 > K I decision region is pushed to the left 
If K I =0 all three regions are zero, K I is driving term 

5.1.1.2 S L 2 0 models 
The SL 20 models incorporate the full functionality of the one node model. Rebalance actions 
can be triggered. The behavior of the SL 20 models is similar to, but more complex than, the SL 
100 models. The control surface of one epoch in one of the models is presented in Figure 12. 
The interpretation of the control surface is the same as for the SL 100 models. 
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Figure 1 2 - 1 Node OPT SL 20, Control Surface: Cost Structure 1,1,2 

Control Surface, Epoch 8 
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The behavior of the SL 20 models can be described as follows: 

Each epoch has at most seven regions 
1. Trigger rebalance (inventory negative) - move all possible excess equipment 
2. Increase inventory level - move no extra equipment 
3. Decrease inventory level - move all possible excess equipment 
4. Trigger rebalance (inventory positive) - move no extra equipment 
5. Decision region connecting 1 and 2 
6. Decision region connecting 2 and 3 
7. Decision region connecting 3 and 4 

Each epoch has at most three Decision Region: 
Decision region connecting 1 and 2 is not smooth 
Decision region connecting 2 and 3 is smooth 
Decision region connecting 3 and 4 is not smooth 

Basic Characteristics 
These models are the same as the SL 100 models, with the additional effect of the two 
trigger-rebalance regions. The results of the IN optimal policy are presented in Figure 13 
below. The expected costs are presented for each cost structure, and denote the expected 
cost of starting in epoch zero with an inventory imbalance of zero. 
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Figure 13 - Expected Costs of the 1 Node Policy 

Optimal Policy Summary 
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Cost Structure 

5.1.2 1 Node Alternative Provisioning Policy 
The initial analysis of the I N OPT policy suggests that a good approximation of the optimal 
policy exists. An alternative equipment provisioning policy would approximate 3 of the regions 
identified, 1-move no extra equipment, 2-move all available excess equipment and the 3-region 
connecting these two (middle region). The trigger rebalance regions observed outside these three 
are mathematical curiosities, they have little practical significance. If a decision was made to 
trigger a rebalance, why not instead conduct a rebalance that turn- that would avoid paying to 
move the same equipment twice. Approximating the decision region 3 as a step function 
generates an alternative policy that can be described as: 

1) If current inventory imbalance is less than a reference inventory level (X H ) , load no 
extra equipment 

2) If current inventory imbalance is more than a reference inventory level (X H ) , load all 
available extra equipment 

This policy has its decisions based on a single reference inventory level (X H ) and as such is 
referred to as the Single Reference policy (SR). This model was coded, parameterized with the 
SL 20 parameters, and solved for values of X H from -2 to 10. The results of the SR model for the 
optimal value of X H , X H = 3, are presented in Figure 14. 

36 



Figure 1 4 - 1 Node SR Model Summary 

SR Policy (XH=3) Summary 
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Cost Structure 

The expected costs for the I N SR policy are very similar to the expected costs of the optimal 
policy. The only significant difference is that the expected cost for the I N SR policy is at most 
5% higher than the expected cost for the optimal policy for every cost structure. This suggests 
that the I N SR policy is a very good approximation of the I N OPT policy. 

5.1.3 1-Node Deadhead Policy 
The results of the I N D H policy are obtained by adjusting the action selection rule to ensure that 
for any given demand, the amount of total equipment moved is always equal to the capacity of 
the aircraft. Therefore, given a passenger demand on an aircraft, the amount of excess 
equipment loaded is equal to the aircraft capacity minus the passenger demand. The results from 
the I N D H policy are presented in Figure 15. 

Figure 1 5 - 1 Node D H Policy Summary 

Deadhead Policy Summary 
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Cost Structure 
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5.1.4 Optimality and the 1 Node Optimal Policy 
Generally when we refer to an optimal policy we mean that it is the best policy available. In the 
case of M D P analysis, and this thesis, the optimal policy is defined as the policy resulting from 
the application of the bellman equation. However, referring to Figure 16 we see that the I N D H 
policy outperforms the I N OPT policy for some cost structures, which is counter to the definition 
of the optimal policy. The short answer to this is that the Deadhead policy is not in the set of 
policies that we maximize over for the I N model. The Deadhead policy is applied to a different 
I N model. 

Figure 1 6 - 1 Node Comparison of OPT and D H Policies 

Optimal Policy vs Deadead Policy 
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The fact that the I N D H policy formulation results in a different model being solved was not 
discovered until after the formulation of the first MDP model. Rather than discarding the results, 
we should instead focus on them. This model has illuminated a very important fact- the strength 
of the I N D H policy lies in convention. The I N D H policy has the benefit of perfect information 
(knowing all equipment flows to and from all stations) because of the fact that equipment flows 
do not change. The cost that the I N D H policy pays for the perfect information is the excess 
equipment that must be moved in order to maintain constant inbound and outbound equipment 
flows. 

5.1.5 Effectiveness of Alternative Equipment Provisioning Policy 
Recall that the objective of the MDP analysis was to develop an alternative equipment 
provisioning policy. The alternative provisioning policy has been identified as the SR policy. 
The objective of this section is to qualify the performance of the I N SR policy. An acceptable 
alternative policy would outperform the I N D H policy. A good policy would not deviate to far 
from the I N OPT policy. It then follows that when qualifying the performance of an alternative 
policy, it must be compared to the optimal policy and to the deadhead policy. 

5.1.5.1 Policy Cost Comparisons 
In this section we will compare the expected costs generated by each model. The expected costs 
for all IN policies, D H , OPT and SR with X H ranging from -2 to 10, are presented in Figure 17. 
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Figure 1 7 - 1 Node Policy Cost Comparisons 

1-Node Expected Costs 

For example, looking at policy type = OPT ( IN Optimal policy) and K Values = 1,1,3 (Ki = 1, 
K 2 = 1, K3 = 3) reveals an expected cost of approximately 37. Although only three K values 
appear on the Y-axis, 113, 223 and 333 the values for all 9 cost structures are provided in the 
order 113, 123, 133,213,223,233,313,323,333. 

Three conclusions can be drawn from this graph. The I N D H policy outperforms the I N OPT 
policy for some cost structures. The I N SR policy outperforms the I N D H policy in at most three 
cost structures. The optimal value of X H (the value of X H that yields the lowest cost) is between 
2 and 4. The optimal values of X H for each cost structure are given in Table 4. 

Table 4 - 1 Node Optimal Value of X H 

Cost Structure Optimal X H 
1,1,3 3 
1,2,3 3 
1,3,3 4 
2,1,3 3 
2,2,3 3 
2,3,3 3 
3,1,3 2 
3,2,3 3 
3,3,3 3 
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For all but two cost structures, X = 3 is the optimal value. In the two cost structures where the 
optimal value of X H is not 3, the expected costs for X H = "the optimal value" and X H = 3 differ 
by less than 1%. 

5.1.5.2 S R Performance 
Two performance metrics are used to evaluate the effectiveness of the I N SR policy. The first 
performance metric is a comparison of the magnitude of the costs for each policy. This is 
summarized in Figures 18 and 19. From these two figures it can be seen that for all cost 
structures the I N SR policy does not deviate too far from the optimal policy. However, only for 
those cost structures where the optimal policy outperforms the I N D H policy does the I N SR 
policy outperform the I N D H policy. In the worst case, the I N SR policy achieves a cost 300% 
greater than the I N D H policy. In the best case, the I N SR policy achieves a cost 55% lower 
than the I N D H policy. 

Figure 18-1 Node SR Policy Performance, Expected Cost 
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Figure 19-1 Node SR Policy, Relative Magnitude of Expected Costs 
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The second performance metric is the proportion of the expected cost reduction available that the 
I N SR policy captures (%performance). The expected cost reduction available is defined as the 
difference in the expected costs of the IN OPT policy and the I N D H policy. In the case where 
the expected cost of the I N D H policy is lower than the expected cost of the I N OPT or IN SR 
policy the % performance is zero. This metric is summarized in Figure 20. 

% performance = 
SR - Optimal 
DH - Optimal 

Figure 2 0 - 1 Node SR Policy Performance, % Performance 

1-Node Policy Performance 

Policy Type 

K Values 
K1.K2.K3 

Figure 20, demonstrates that the I N SR policy can capture a substantial portion of the cost 
reduction available. However, it also demonstrates that the % performance is highly sensitive to 
the selection of X H and to the cost structure 

5.1.5.3 S R policy Conclusions 
The I N SR policy is a good approximation of the optimal policy. However, attention must be 
made in the determination of the reference inventory level as this can significantly affect 
performance. More importantly, great consideration must be given to the identification of the 
prevailing cost structure, as this can make the difference between an alternative policy that 
reduces costs and one that significantly increase costs. 
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5.2 Model 2 Results: 
The results of the 2-Node analysis can be summarized as follows: 

1. The 2N alternative policy is the 2N SR policy 
2. The 2N SR policy outperforms the 2N D H policy in all but 3 cost structures, the IN 

SR policy was outperformed by the I N D H policy in 6 cost structures implying that 
adding more nodes to the problem will generate a further increase 

3. In the 6 cost structures where the 2N SR policy outperforms the 2N D H policy, the 
expected cost of the 2N SR policy (using optimal X H ) is on average 62% that of the 
2N D H , over all cost structures this value is 92% 

4. The 2N OPT policy has a lower expected cost than the I N OPT policy, the 2N OPT 
policy has similar decision regions to the I N OPT policy, and the effect of K I and 
K2 on the 2N OPT policy are opposite from the I N OPT policy 

5. The effect of K I and K2 are the same for the 2N SR policy and the I N SR policy 
6. C++ should be used to develop the 3N model i f results are to be achieved in my 

lifetime 

The 2N models were originally coded and solved using V B A and MS Access. The total 
computation time to solve nine parameterized versions of the optimal policy was approximately 
168 hours of computation time. The nine parameterized versions of the D H policy were solved 
in approximately 2 and 1/2 hours. Finally, the 108 parameterized versions of the SR policy were 
solved in 33 hours. However, the SR policy was re-coded in C++ in order to verify the original 
results. The 108 parameterized versions of the SR model coded in C++ were solved in less than 
one minute. 

5.2.1 Characteristics of 2 Node Optimal Policy 
The model formulation presented in section 3.7 was coded and solved. Table 5 presents the 
different parameterizations of the model that were solved. 

Table 5 - 2 Node Model Parameters 

Model # K, K3 

1 1 3 
2 1 3 
3 1 3 
4 2 3 
5 2 3 
6 2 3 
7 3 3 
8 j 2 3 

3 3 3 
SL - limit of deviation from inventory allotment 
N - number of epochs 
C - aircraft capacity 
Ki -deviation from allotment penalty factor 
K 2 - excess equipment movement penalty factor 
K 3 - rebalance inventory factor 

The optimal solution to the 2N model is similar to the optimal solution to the one node model. 
The solution to the 2-node 323 optimal policy is presented as Figure 21. 
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Figure 2 1 - 2 Node OPT, Control Surface: Cost Structure 3,2,3 

Control Surface Epoch 3 

Inventory Imbalance A 

The above graph is the action space for station A only. Given an inventory imbalance at station 
A , and the demand on flights A and B, the action for flight A can be determined. For example, 
given that the current epoch is 3, the inventory imbalance at station A is -4, the demand on flight 
A of 9, the demand on flight B of 5 we can determine the number of units of excess equipment 
units to load on flight A . Referring to inventory imbalance = -4 and demand (AB) = 9,5 we see 
that the action on flight A is 0. To determine Action B , we would need to consult the station B 
control surface. 

If the results are analyzed on a per station16 basis, then each component of the action space can 
be described as follows: 

There are 2 stations in the two node problem. The action space consists of two actions for each state; one action 
for each station. The results, meaning the action space corresponding to a particular state are difficult to present and 
interpret using a graphical 3 dimensial representation. For simplicity, each component of the action space is graphed 
separately. 
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Each epoch has at most seven regions 
1. Trigger rebalance (inventory negative) - move all possible excess equipment 
2. Increase inventory level - move no extra equipment 
3. Decrease inventory level - move all possible excess equipment 
4. Trigger rebalance (inventory positive) - move no extra equipment 
5. Decision region connecting 1 and 2 
6. Decision region connecting 2 and 3 
7. Decision region connecting 3 and 4 

Decision regions 
Decision region connecting 1 and 2 is not smooth 
Decision region connecting 2 and 3 is smooth 
Decision region connecting 3 and 4 is not smooth 

Given that the 2N OPT is similar to the I N OPT, it would follow that the SR policy would be 
applicable to the 2N model as well. This will be addressed in more detail in section 5.2.2. 

The expected cost for the 9 parameterized models are presented in Figure 22. Surprisingly, the 
expected costs for the 2N OPT policy are less than the expected costs for the I N OPT policy. 
Upon closer examination it can be seen that this is due to the differences in model formulation, 
namely, the 2N model contains demand information for both station. More specifically, the 2N 
OPT policy has the benefit of knowing the demand on both flights, the inventory imbalance at 
both stations when making the decisions on what to load on both flights. Clearly, the additional 
information wil l result in a superior policy, and this is borne out in the 2N OPT policy expected 
costs. 
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Figure 22-2 Node OPT Policy Summary 
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5.2.2 2 Node Alternative Provisioning Policy 
The 2N alternative equipment provisioning policy is based upon the decision regions identified 
from the 2N OPT policy. Given the similarity between the I N OPT policy decision regions and 
the 2N OPT policy decision regions, it is appropriate to apply the SR policy as the alternative 
policy for the 2N model. The 2N SR policy can be described as: 

1) If current inventory is less than a reference inventory level (X H ) , load no extra 
equipment 

2) If current inventory is more than a reference inventory level (X H ) , load all available 
extra equipment 

The 2N SR policy is similar as the I N SR policy. A key distinction between the 2N SR policy 
and the 2N OPT policy is the fact that the decision made for the 2N SR policy does not use all 
the information available in the state. In particular, when deciding what amount of excess 
equipment to ship from one of the stations, for arguments sake station A, the policy will consider 
two quantities; the observed demand level on the departing flight from station A and the current 
level of inventory at station A . The policy will ignore the observed demand level on a flight 
departing from station B that is going to arrive at station A . The policy wil l also ignore the 
current level of inventory at station B. The reverse is true when deciding how much equipment 
to be loaded on the flight from station B. 

The 2N SR policy was solved for various values of the reference inventory level X H . For each 
reference level X H , the model was solved using the same parameters presented in Table 5. The 
expected costs for the case where X H = 3 are presented in Figure 23. 
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Figure 23-2 Node SR Policy Exected Costs 

The expected costs for the 2N SR policy are higher than the expected costs for the I N SR policy, 
however, there is also another station contributing to those costs. In all cases the 2N SR expected 
costs are lower than two times the I N SR expected costs. 
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5.2.3 2 Node Deadhead policy 
The 2N D H policy is similar to the IN D H policy. Given any passenger demand on a flight, the 
amount of excess equipment will be equal to the aircraft capacity minus the observed passenger 
demand. The key difference between the 2N D H policy and the I N D H policy is that the 2N D H 
policy takes into account the cost implications of a second station. 

The 2N D H policy was solved using the same parameters presented in Table 5. The expected 
costs for the 9 parameterized models are presented in Figure 24. 

Figure 2 4 - 2 Node D H Policy Summary 

Dead Head Policy Summary 
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The expected costs for the 2N D H policy are similar to the expected costs for the I N D H policy. 
The only difference is that in all cases the expected cost for the 2N D H policy is exactly two 
times the expected cost for the I N D H policy. 

5.2.4 Optimality and the 2 Node Optimal Policy 
The results of the 2N policies (OPT, SR and DH) demonstrate that the 2N OPT policy is always 
optimal. This result is expected because all three policies are applied to the same model 
formulation, which means that by definition the policy resulting from the application of the 
Bellman equation is the optimal policy. 

5.2.5 Effectiveness of the 2 Node Single Reference Policy 
In order to determine the effectiveness of the 2N SR policy, its results must be compared to the 
2N D H policy and the 2N OPT policy. 
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5.2.5.1 Policy Cost Comparisons 
The expected costs for all parameterized 2N models are presented in Figure 25. 
From Figure 25 it can be seen that: 

1) The 2N OPT policy outperforms all other policies by a considerable margin 
2) For some cost structures the deadhead policy outperforms the single reference policy 
3) Negative values of X H in the 2N SR policy result in expected costs identical to the 2N 

D H policy 
4) The optimal value of X H (inventory reference level) varies depending on cost 

structure 

Each of the above observations wil l be discussed in greater detail. 

Figure 2 5 - 2 Node Policy Cost Comparisons 

2-Node Expected Costs 

In all cases the 2N OPT policy costs are at least 70% lower than the costs of the 2N D H policy 
and 22-70% lower than the cost of the 2N SR policy. This can be thought of as the value of 
using perfect information. In the D H policy and the SR policy, information in the state is 
disregarded when making the decision. The result is a considerably lower cost for the 2N OPT 
policy. 

47 



The value of X resulting in the lowest expected cost for the 2N SR policy changes given the 
cost structure parameterization. The optimal value of X H for each cost structure is presented in 
Table 6. 

Table 6-2 Node Optmal Value of X H 

Cost Structure (K's) Optimal Value of X M 

1,1,3 2 
1,2,3 2 
1,3,3 3 
2,1,3 -1 
2,2,3 2 
2,3,3 2 
3,1,3 -1 
3,2,3 -1 
3,3,3 2 

As in the I N model, the 2N D H policy outperforms the 2N SR policy, for some cost structures. 
This occurs in cost structures 2,1,3 , 3,1,3 and 3 , 2 , 3 . However, their are fewer cost structures in 
which the 2N D H policy outperforms the 2N SR policy than in which the I N D H policy 
outperforms the I N SR policy. 

When X H is negative, the 2N SR policy behaves exactly like the 2N D H policy. This should not 
come as a surprise when we realize that the starting inventory imbalance is zero. Therefore, 
when X H is less than zero, the action selected by the 2N SR policy is always move all available 
excess equipment, which is exactly the 2N D H policy. 

5.2.5.2 2 Node S R Performance 
Two performance metrics are used to gauge the performance of the 2N SR policy. These are the 
same two metrics used for the I N model analysis. 

The first performance metric is magnitude of expected costs. This metric is summarized in 
Figures 26 and 27. There are two important observations from Figure 26. First, as K I increases, 
the difference in expected cost between the 2N SR policy and the 2N D H policy decreases, in 
three cases the 2N D H policy performs better than the 2N SR policy. In addition, as K I 
increases the difference between the 2N SR policy and the 2N OPT policy increases. Second, 
there are several cost structures for which the 2N SR policy is below the 2N D H policy and close 
to the 2N OPT policy. As can be seen in Figure 27, the 2N SR policy expected cost ranges from 
130%-700% of the 2N OPT policy, and 35%-200% of the 2N D H policy. 
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Figure 26-2 Node SR Policy Performance, Expected Cost 
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Figure 27-2 Node SR Policy, Relative Magnitude of Expected Costs 
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The second performance metric is the proportion of expected cost reduction available that is 
captured by the 2N SR policy (%performance). The expected cost reduction available is defined 
as the difference in the expected costs of the 2N OPT policy and the 2N D H policy. The 
proportion captured is therefore equal to the expected cost of the 2N SR policy minus the 
expected cost of the 2N OPT policy, all over the expected cost of the 2N D H policy minus the 
expected cost of the 2N OPT policy. 

- SR-Optimal 
vo performance = 

DH - Optimal 

This metric is summarized in Figure 28. As can be seen, the most favorable cost structure is 113 
followed by 123 and then by 233. It is visually apparent by the presence of many "0% cost 
reduction captured" that the 2N D H policy does indeed outperform the 2N SR policy for some 
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cost structures. It can also be seen that XM=2 performs very well in the most favorable cost 
regimes. Finally, comparing Figure 28 to Figure 20 we see that the 2N SR policy captures 
available cost reduction for more cost structures than does the IN SR policy, 6 for the 2N and 3 
for the IN. However, due to the superior performance of the 2N OPT policy in comparison to 
the I N OPT policy, the average available cost reduction captured by the 2N SR policy, is less 
than the IN SR policy, 23% for 2N SR verses 27% for I N SR. Considering only non-zero 
performance regions for I N SR, this value is 60% for 2N SR verses 77% for I N SR. 

Figure 2 8 - 2 Node SR Policy Performance, % Performance 
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5.3 Model 3 Results 
The 3N models were coded in C++. The total computation time required to solve all the 
parameterized versions of the model was approximately 350 hours. Interested readers are 
directed to Appendix A for an in depth discussion of computation problems with solving the 3 
Node Model. 

The 3N results can be summarized as follows: 
1. The 3N SR policy outperforms the 3N D H policy in all but 1 cost structure, implying that 

adding more nodes to the problem will generate a further increase 
2. In the 8 cost structures where the 3N SR policy outperforms the 3N D H policy, the 

expected costs of the 3N SR policy (using optimal X H ) is on average 50% that of the 3N 
D H , over all cost structures this value is 58% 

3. The 3N OPT policy is always optimal, and the expected cost of the OPT policies may be 
linearly related to the number of stations 

4. The computational burden presented by the 3N model indicates that the development of a 
4N model is impractical 

The model formulation presented in section 3.8 was coded and solved using C++. In order to 
formulate the problem, a rebalance algorithm was created to determine which stations would be 
involved in an automatic rebalance action, i f required. 

5.3.1 Characteristics of the 3 Node Optimal Policy 
An analysis of a scaled down version of the model (aircraft capacity =2, 2 bins of demand), 
resulted in an understanding of 3N OPT policy. The policy will select the minimum amount of 
excess equipment to load onto departing aircraft in order to maintain a zero inventory imbalance. 

The full version of the 3N OPT policy was solved for the 9 different cost structures used in the 
previous two models. The expected costs for the 9 parameterized versions of the 3N OPT model 
are presented in Figure 29. 

Figure 2 9 - 3 Node OPT Policy Summary 
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Comparing the 3N OPT policy to the 2N OPT policy, we see that the 3N expected costs are 
approximately 1.5 times the cost of the 2N costs. This indicates that the expected costs for the 
optimal policies with complete information (ie the 2N and the 3N) may be linearly related to the 
number of nodes in the model. 

5.3.2 3 Node SR Policy 
The results for the 3N SR policy are summarized in Figure 30 

Figure 3 0 - 3 Node SR Policy Summary 
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The expected costs for the 3N SR policy are larger than the expected costs for the 3N OPT 
policy. In addition, they are 1.6-2.0 times the expected costs for the 2N SR model. Although the 
stations only increase by a factor of 1.5, the number of flights increased by a factor of 2. 
Therefore it would appear that the 3N SR policy is benefiting from additional flight volumes in a 
larger network. 

5.3.3 3 Node DH policy 
The 3N D H policy is similar to the 2N and I N D H policy. The only difference is that the policy 
is applied to all six flights per epoch. The results from the 3N D H policy are summarized in 
Figure 31 The expected costs for the 3N D H policy are noticeably higher than the 3N SR policy 
and the 3N OPT policy. The expected costs for the 3N D H policy are exactly three times higher 
than the expected costs for the 2N D H policy, and exactly six times higher than the expected 
costs for the IN D H policy. This indicates that the expected costs for all D H policies are linearly 
related to the number of flights per epoch. The effect of K I and K2 on 3N D H expected costs 
are exactly the same as the effect of K I and K2 on 2N D H and IN D H expected costs. K I has 
no effect, and K2 has a correlation of 1 with expected cost. 
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Figure 31-3 Node DH Policy Summary 

Dead Head Policy Summary 
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5.3.4 Effectiveness of the 3 Node Alternative Provisioning Policy 
The expected costs for all 3N policies are presented in Figure 32 It can be seen that: 

1. The 3N OPT policy has the lowest expected cost for all cost structures 
2. The 3N SR policy has lower expected costs then the 3N D H policy 
3. The 3N SR policy has higher expected costs than the 3N OPT policy 
4. The optimal value for reference level (X H ) is 3 
5. When X H is less than 0, the 3N SR policy degenerates into the 3N D H policy 
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Figure 32 - 3 Node Policy Cost Comparisons 

3-Node Expected Costs 

The metrics used for the 2N and I N models will be used to quantify the performance of the 3N 
SR policy. 

5.3.4.1 3 Node S R Policy Performance 
Figures 33 and 34 present the expected costs and relative magnitudes of expected costs for the 
3N models (The 3N SR policy is presented with the optimal value of X H ) . 

Referring to Figure 33, it can be seen that the 3N SR policy has a lower expected cost for 8 of the 
9 cost structures. Recall that the 2N SR policy was 6 of 9, and the I N SR policy was 3 of 9. In 
addition, in the cost structure where the 3N SR policy has higher expected cost then the D H 
policy, the difference between the 3N SR policy and 3N D H policy is small. 

Figure 34 demonstrates that the 3N SR policy deviates substantially from the 3N OPT policy. 
This indicates that there is significant cost reduction still available that is not captured. 
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Figure 33 -3 Node SR Policy Performance, Expected Costs 
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Figure 3 4 - 3 Node Policy Performance, Relative Magnitude of Expected Costs 

SR Perfromance - Relative Magnitudes of 
Expected Cost 

The proportion of available cost reduction captured by the 3N SR policy is presented in Figure 
35. The 3N SR policy has a reasonable performance (>30%) for 8 of the 9 cost structures. 
Comparing Figure 35 to Figure 28 and Figure 20 it can be seen that an increase in the number of 
nodes has increased the number of cost structures in which the 3N SR policy has a non zero 
performance. In addition the magnitude of the percent performance has also increased from the 
2N to the 3N SR policy. The average performance, across all cost structures, for the 2N SR 
policy with X H = 3 is 36%. The average performance, across all cost structures, of the 3N SR 
policy with X H =3 is 53%. 
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Figure 3 5 - 3 Node SR Policy Performance, % Performance 
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In summary, the 3N SR policy is superior policy than the 3N D H policy for 8 of 9 cost 
structures. However, the 3N SR policy does not capture all of the available cost reduction; 
defined as the difference between the 3N OPT policy and 3N D H policy. The 3N SR policy 
results indicate that an increase in the number of nodes, and more importantly, the number of 
flights per epoch results in an increase in the performance of the SR policy. 
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6.0 Simulation: Model Formulation 
A simulation model is a representation of the real world system under study. Entities are 
defined; in the case of this simulation the entities are aircraft. The entities follow some logical 
flow; in this case an entity enters the simulation, acquires equipment from its departing station, 
flies to the arriving station and drops off its equipment there. In many simulations there are 
metrics for measuring the performance of the simulation. There can be deterministic events and 
stochastic events in a simulation. In this simulation an example of a deterministic event is a 
flight leaving its departure station and arriving at its arrival station. We know with certainty ( at 
least in the simulation) that the flight wil l arrive at the arrival station. An example of a stochastic 
event would be the number of passengers that are actually on the aircraft. Finally, the simulation 
comes to life by executing the simulation logic many times over, a process know as replication, 
with each replication randomly choosing a different set of stochastic events. 

In this section we will present the simulation model formulation. There are four main 
components in model formulation; model inputs, model logic, model metrics, and provisioning 
policy. Each component will be discussed in more detail. 

6.1 Simulation Model Inputs 
The simulation model has three inputs, namely: 

1. Flight schedule 
2. Passenger demand 
3. Equipment manifest 

The simulation allows for an equipment provisioning policy to be implemented in a test 
environment. The simulation flight schedule defines the number and time of flights between the 
stations. Each flight in the simulation flight schedule has a simulated passenger demand. 
Finally, each flight has an equipment manifest. 

6.1.1 Flight Schedule 
The flight schedule was obtained from the Meal Pages database17. The flight schedule defines 
the following for every flight CAI offers: 

• Date of flight 
• Arrival station, departure station 
• Arrival time, departure time 
• Aircraft type and seating configuration 
• Galley code 
• Meal service type 
• Miscellaneous service descriptions 

A representative 2-week sample from the schedule was selected. The sample data set contained 
2986 flights, over 14 days, operating between 31 flight stations, with nine different aircraft types. 

For more information please refer to section 1.6.1 
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6.1.2 Modeling Passenger Demand 
The purpose of modeling passenger demand is to provide a method for determining the number 
of passengers on any given flight in the flight schedule. There are several available methods for 
modeling passenger demand for use in the simulation. One method is to model the passenger 
demand for each city pair for each direction. However, this would require 1860 different 
distributions. An alternative approach is to cluster the stations in groups that share common 
characteristics in order to reduce the total required number of distributions and also minimize the 
loss of information. 

For this simulation 9-passenger demand distributions were generated. The first six passenger 
demand distributions are for general geographic areas that have similar passenger demand 
characteristics. For example, i f CAI operated flights to many destinations in the Middle East 
region, and the characteristics of passenger demand on those flights were similar, one demand 
distribution would be created for all flights to the many destinations in the Middle East region. 
The remaining three passenger distributions are for the three main cities (three main city pairs) of 
the CAI network. Specifically, each of the distributions is based only on observed passenger 
demand between one city pair. 

From the discussion of the CAI network in section 1.4.5, it can be seen that this choice of 
passenger distribution parameterization will capture most of the essential elements of the system. 
The use of a passenger distribution for each of the three main city pairs permits an accurate 
representation of a large number of flights. In addition, the majority of the flights to geographic 
regions is directly linked to one of the three main stations, and do in fact have similar demand 
profiles. 

6.1.3 Equipment Manifest 
In order to complete the equipment flow model, the quantity and type of equipment flown on 
each aircraft must be determined. 

From the development of the Catering Commissary Database18, it became apparent that the 
variation in equipment manifest on the Tray set up (TSU) level for economy class passengers 
was minimal. In fact, the only major difference in equipment manifests was the number of TSUs 
loaded per passenger. On long over seas flights two meals are provided for each Y class 
passenger, requiring two TSUs to be loaded per passenger. On short domestic and trans border 
flights, one meal is provided per passenger. Therefore the economy class passenger equipment 
manifest can be approximated as a tray set up unit with several standard components. 

However, the variation in equipment manifest on the TSU level for business class passengers is 
much more extreme. Fortunately, there are several reasons to exclude business class passengers 
from this analysis. The comparative size of business class is small, on average 12.8% aircraft 
seating. The risk involved in adjusting business class service is very high, business class 
passenger's account for a disproportionately large percentage of an Airline's revenue. The 
variation in the equipment manifest for business class passengers is significant, meaning there 
are many more types of equipment to be balanced. Finally the occupancy percentage of business 
class is higher than economy, meaning there is less excess equipment loaded in the first place. 
From the above, business class passengers will be excluded from the analysis. 

1 8 For more information please refer to section 1.6.2 
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In summary, the equipment manifest used in the simulation is approximated as a tray set up unit 
with several standard components. Accordingly, the analysis is restricted to economy equipment 
only. 

6.2 Simulation Model Logic 
The model logic is as follows, 

1. Initialize replication with all stations starting with an inventory imbalance of 0, and time 
equal to starting date 

2. Determine passenger demand for each flight 
3. Apply the provisioning policy to determine excess equipment loaded onto all flights 
4. Calculate total equipment loaded for each flight (passenger demand + excess equipment 

loaded) 
5. Calculate total outbound equipment for each station 
6. Calculate total inbound equipment for each station 
7. Calculate next days inventory imbalance for each station 
8. If the current date is less than the ending date, increment the date by one day and return 

to step 2 

The simulation is evaluated on a flight-by-flight basis; however, statistics are gathered on a daily 
basis. 

6.3 Simulation Model Metrics 
In order to analyze the output it is necessary to develop simulation performance metrics. These 
include: 

1. Quantity of excess equipment moved 
2. Magnitude of inventory imbalances 

6.3.1 Quantity of Excess Equipment Moved 
This metric is a means of measuring the cost reduction potential of an alternative policy. In 
order to measure the cost reduction we would first determine the reduction in excess equipment 
movements. This is calculated by determining the excess equipment movements resulting from 
the deadhead policy X E

D H . Then determining the excess equipment movements resulting from 
an alternative policy X E S R . The reduction in excess equipment movements is found by 
subtracting X E S R from X E D H - Finally, the reduction in excess equipment movements is 
multiplied by the incremental cost associated with moving a unit of excess equipment, yielding 
the cost reduction potential of a policy. 

This metric is easy to measure. The equipment provisioning policy prescribes the number of 
excess equipment movements for each flight. Therefore, the quantity of excess equipment 
moved can be measured by summing over the appropriate time interval. 

6.3.2 Magnitude of Inventory Imbalances 
This metric is a measure of the risk of stock out for an alternative policy. The risk of stock out 
can be used to determine required inventory allotment levels, because with any feasible solution, 
the risk of a stock out should be very close to zero. Therefore i f an alternative policy has a high 
risk of stock out at a station, then additional equipment would have to be purchased for that 
station in order to reduce the risk of a stock out to acceptable levels. The level of inventory 
increase / decrease required to maintain a probability of stock out close to zero will have cost 
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ramifications with respect to purchasing and supplying additional safety stock. Ideally the 
required additional inventory will be zero. 

The inventory imbalances are also directly measurable for each simulated day of operations. The 
important metric is the number of times the inventory imbalance decreases past the safety stock 
level. Measuring the inventory imbalance with respect to the safety stock level will allow us to 
assess the risk of stock out. Whenever the policy requires the use of safety stock, it is running 
the risk of stock out. The relative risk of the policy can be approximated by counting the number 
of times it required the use of safety stock, at each station. 

6.4 Simulation: Alternative Equipment Provisioning Policy 
In this section, we transform the single reference policy (SR) resulting from the Markov 
Decision Process (MDP) analysis19 into the universal simulation single reference policy (USSR). 
The objective of this section is to identify the differences between the simulation and MDP 
models, and modify the SR policy accordingly. 

6.4.1 Developing the Universal Simulation Single Reference Policy (USSR) 
The simulation model has several differences from the M D P model that should be taken into 
consideration, and used to modify the SR policy. There are four main differences: 

1) The simulation model has multiple sizes of aircraft 
2) Each station has a varying number of flights 
3) There are multiple passenger demand distributions 
4) Any given station does not have flights to all other stations 

A l l four points highlight a key distinction between the M D P models and the simulation model; 
the M D P models are symmetric, in flights, passenger demand and aircraft types. The simulation 
model is not symmetric. 

The SR policy resulting from the M D P analysis is repeated for convenience: 

1) If current inventory imbalance is less than a reference level move no extra equipment 
2) If current inventory imbalance is more than a reference level move all available extra 

equipment 

Recall that the value of the reference level defined the provisioning policy. In the MDP model, 
the reference level for all stations was equal. 

1 9 Refer to Section 5.0 
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Applying the SR policy to a simulation with 31 stations, each with a different number of flights 
per day, we get the USSR policy: 

if Sy<X> 

if sg>xj 
H 
H 

i = station index, a value between 1 and 31 
j = day index, a value between 1 and 14 
k = flight index, each station i will have ny flights on day j 
Cijk=aircraft capacity 
Dijt = passenger demand 
XijkL = excess equipment loaded 
X " = reference inventory imbalance level 
Sij = inventory imbalance for station i on day j 

Remembering the fact that the simulation model is not symmetric, it is not appropriate for the 
value of reference level X j H to be equal for all stations. Therefore, the reference level X j H should 
be unique for each station, meaning that the values of the set of reference levels define the 
policy. 

In order to quantify the non symmetric nature of the simulation model, we can calculate the 
average sum total of the number of seats flown out of each station in one day. We will call this 
quantity Daily Volume (V). 

Vj is calculated for each station. This is then divided by the sum total of V; for all stations and 
multiplied by 100. This is the % of system V , and is shown for all stations in Figure 36. Figure 
36 shows that the station size (% of system V) varies significantly across all stations. There are 
19 small stations (% of system V < 2%), 9 medium size stations (% of system V < 10%), and 
three very large stations (% of system V > 10%). The 19 small stations account for 16.4% of the 
system V. The 9 medium stations account for 24.2% of the system V. The 3 large stations 
account for 59.4% of the system V. 

14 "ij 

/=! k=\ 
14 

i = station index, a value between 1 and 31 
j = day index, a value between 1 and 14 
kj = flight index, each station i will have riy flights on day j 
Vj=Daily volume out of station i 
PC = Aircraft capacity 

61 



Figure 36 - Histogram of Normalized City Size 
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Figure 37 - Percent System Volume by Station Group 
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Given that we wish to modify X j to allow for simulation asymmetry, it follows that the value of 
X H j should be related to Vj. 

X? = k*Vi 

X = V multiplier 

This approximation will allow the USSR policy to vary depending on station size. It is important 
to note that it is the choice of A. combined with the set of Vj that now define X " , and therefore 
the policy. It should be noted that as X becomes increasingly negative, the USSR policy 
approaches the D H policy. In the following section we will determine lambda by trying various 
values for lambda and selecting the best one. 

62 



6.4.2 Inventory imbalance limit (SL), safety stock level 
Another important difference between the Simulation model and the MDP model is the value of 
the inventory imbalance limit (SL). In the M D P models, this value was constant across all 
stations, owing to the homogeneous nature of the stations. However, for reasons cited in the 
previous section the value of S L should also vary by station. 

In the CAI system, each station has an inventory allotment, IAj. The value of IAj is equal to 1.5 
times the maximum daily use of equipment. We can approximate this as 1.5 V i 2 0 . The safety 
stock level I S j , will then be defined as I A minus the value of SLj. 

The inventory imbalance limit S Li must be some value between 1 and 1.5 Vj. For any given day, 
the amount of equipment used is approximately equal to Vj, so the inventory imbalance limit 
must be greater than this. In addition, we do not want to add additional equipment, there fore the 
maximum absolute inventory imbalance must be less than the allotment, or 1.5 Vj. 

Defining the inventory imbalance limit is important for two reasons. First it is required in order 
to determine i f inventory imbalances are acceptable. Secondly, the choice of S L i defines the 
safety stock level. The safety stock level wil l be a value between 0.5Vj and 0, corresponding to 
a S L i between 1 V and 1.5 Vj. For the simulation SLj will be defined as: 

S i L = y V i 

y = a constant between 1 and 1.5 

The choice of y then becomes very important- i f it is too high, very low safety stock is available, 
i f it is too low the station is forced to carry extra inventory. The value of gamma is arbitrarily set 
at 1.3 for the simulation model. This value provides a "middle" of the road approach, with a 
safety stock level of 0.2 Vj. The effect of varying the value of y will be investigated before final 
simulation results are obtained. 

Strictly, the inventory allotment is equal to the maximum possible equipment use for the entire schedule. The 
simulation only incorporates 2 weeks of the schedule, and therefore DVj is a conservative approximation 
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7.0 Simulation: Model Results 
The goal of developing the simulation model is to test the single reference policy resulting from 
the M D P analysis in a model that more closely approximates the actual CAI system. The 
simulation model formulation section has described how the CAI system was translated into the 
simulation model. This section will present the results of the single reference policy applied in 
the simulation. 

The simulation model presented in section 6.0 was formulated and solved using MS Excel and 
V B A . Each parameterized version of the model was solved using 100 replications, with each 
replication using a distinct set of random numbers (for generating passenger demand). 

The provisioning policy used in the simulation was modified as a result of the analysis, 
generating two variants of the USSR policy; the RSSR policy and the 3SSR policy. These 
policies are summarized in table 8. 

Table 7 - Summary of Provisioning Policies 

Policy Policy Name Policy Description 

SR Single Reference 
If inventory imbalance is greater than reference level, ship all 
available excess equipment, i f inventory imbalance is less 
than reference level, ship no excess equipment 

D H Deadhead Always ship all available excess equipment 

USSR Universal Simulation 
Single Reference 

A l l 31 simulated stations follow a customized SR policy, the 
reference level varies by station 

RSSR Reduced Simulation 
Single Reference 

19 small stations follow the D H policy, the 12 other stations 
follow a customized SR policy 

3SSR 3 Station Simulation 
Single Reference 

28 stations follow the D H policy, the three largest stations 
follow a customized SR policy 

The main results of the simulation analysis can be summarized as: 
1. The USSR policy generates unacceptable inventory imbalances 
2. The RSSR policy results in a reduction in excess equipment movements of 3200/day, 

reducing 60% of all possible excess equipment movements 
3. The 3SSR policy results in a reduction in excess equipment movements of 1000/day, 

reducing 19% of all possible excess equipment movements 
4. The resulting cost savings for the RSSR policy are estimated to be $390,000 annually 
5. The resulting cost savings for the USSR policy are estimated to be $120,000 annually 
6. The D H policy has a total of 5300 excess movements per day, out of a total of 24,000 

total equipment movements per day 
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The following sections present the results for the simulation model in greater detail. The 
method for analysis is a follows: 

Step 1 - determine i f policy reduces excess equipment movements and maintains acceptable 
inventory imbalances 

Step 2 - determine range of optimal value of X 
Step 3 - assess stability of model resulting from range of values of X; select one value of X 
Step 4 - determine suitable warm-up period 
Step 5 - determine reduction in excess equipment movements for policy with optimal stable 

value of X, adjusting for warm-up period 

7.1 USSR Results 
The simulation was parameterized and solved with y equal to 1.321 for several values of A. (recall 
that the value of X defines the SR policy). The results demonstrated that several stations 
exhibited unacceptably high inventory imbalances, and that these stations are the 19 small 
stations. In addition, the cost reduction potential of the USSR policy is realized for values of X 
between -0.1 and 0.3. The value captured increases exponentially with increasing X. The next 
step is to reformulate the provisioning policy; 19 small stations will use the D H policy, and the 9 
medium stations and 3 large stations will use the SR policy. 

Figure 38 shows the minimum inventory imbalance as a percent of SLj (% M i l ) . 2 2 . Each line in 
Figure 38 represents one station. For each value of A,, the simulation is replicated 100 times. 
The minimum value of inventory imbalance (Mil) across the 100 replications is recorded for 
each station. The M i l is then divided by SLj (inventory imbalance limit for station i) and 
multiplied by negative one. The %MII is presented for each station for values of X from -1.1 to 
+1.1 in 0.1 increments. Finally the results of the simulation using a D H policy are presented for 
comparison on the left hand side of the x axis. 

As X increases, the %MII also increases. However, it can be seen that the %MII doesn't stabilize 
for the large stations (the three increasing series below 50%). In addition the %MII reaches its 
maximum value after X = 0.3. From an initial inspection it can be seen that quite a few stations 
(19) are experiencing inventory imbalances that are significantly higher than their SLj. 

2 1 the value of y will determine the value of SL, and therefore influence the simulation metrics as defined in 6.4.2 
22 C L 

23 
S j is a positive number, to make %MII a positive number it must be multiplied by -1 
remember that inventory imbalance can be negative 
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Figure 38 - USSR, Minimum Inventory Imbalance, % of SL, y = 1.3 
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A n interesting question is why do some stations exhibit a non-zero minimum inventory deviation 
for the D H policy? The D H policy is supposed to ensure that inventory imbalances are zero, and 
there are clearly non-zero values for inventory imbalances. The answer comes from an 
investigation of the flight schedule. Over some period of time, for example a week, the number 
of aircraft into a station should equal the number of aircraft out of a station. A n investigation of 
the schedule demonstrates that this is the case. However, over a day, this is not necessarily true. 
For example, consider a station following the deadhead policy, a station, which has only one 
flight that departs on Monday, and returns on Tuesday. On Monday, the station wil l show a 
negative inventory imbalance. On Tuesday the inventory imbalance will return to zero. 
Therefore over short periods it is possible for stations following the Deadhead policy to 
experience non zero inventory imbalances. 

Figure 39, presents the total number of times the inventory imbalance decreased past the 
inventory imbalance limit for all 100 replications. Again each line represents one station. As 
can be seen the inventory imbalances generated by the USSR policy are too large to be 
acceptable. Interestingly, it is only the small stations that exhibit this behavior. 
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Figure 39 - USSR, # of Times Inventory Imbalance Decreases Below -S L , y = 1.3 
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Figure 40 - USSR, Average Excess Equipment Moved, y = 1.3 
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Figure 40 shows the average excess equipment moved from each station. As can be seen the 
number of excess equipment movements of the USSR policy are minimized for values of A, 
greater than 0.3, meaning the cost reduction is maximized2 4. Cost reduction from the USSR 
policy is not realized until A, exceeds -0.1, and from there the cost reduction increases 
exponentially with increasing A. 

Recall the discussion from section 6.3.1 
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7.2 Reducing the Number of Cities 
The simulation was re-formulated and solved with y equal to 1.3 for several values of A.. For this 
policy the "small" stations with unacceptable inventory imbalances are set to use the D H policy. 
The remaining 12 stations continued to operate on the SR policy. This combined policy of D H 
for 19 stations and SR for 12 stations is referred to as the reduced simulation single reference 
(RSSR) policy. 

The results from RSSR policy demonstrate that the inventory imbalance for all stations is 
acceptable for A,<0.2. For X>0.3 some additional inventory would have to be purchased for three 
of the stations. The cost reduction for the RSSR policy increases exponentially with increasing 
X, reaching a maximum of 67% at X = 0.3. Consequently, it can be seen that the 19 stations 
removed (61% of stations) account for only 33% of the potential cost reduction. 

Figure 41 presents the %MII for the reduced simulation. Figure 41 demonstrates the impact of 
removing the small stations. %MII increases with increasing X, and the large stations' %MII still 
do not stabilize, but the maximum %MII is approximately 100%. This indicates that the RSSR 
policy generates acceptable levels of inventory imbalance. This finding is further supported by 
Figure 42, which shows that the there are only three stations that exhibit inventory imbalances 
below SLj. Further, this only occurs 3 times over 100 replications of 14 days when X is greater 
than 0.2. 

Figure 41 - RSSR, Minimum Inventory Imbalance Deviation, %, y = 1.3 
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Figure 42 - RSSR, # of Times Inventory Imbalance Decreases Below -S L , y = 1.3 
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Figure 43 shows the average excess equipment moved for the reduced simulation model by city. 
Similar to what was observed for the USSR policy, the cost reduction for the RSSR policy is 
zero until X = -0.1. From there, cost reduction increases exponentially until X = 0.3. When X = 
0.3 the RSSR policy still generates excess equipment movements as a result of the 19 stations 
following the D H policy. The maximum value captured as 67% for X = 0.3 onward. The % 
value captured is defined as 100 multiplied by one minus the excess equipment movements 
generated by the RSSR policy divided by the excess equipment movements generated by the D H 
policy. 

Figure 43 - RSSR, Average Excess Equipment Moved, y = 1.3 

Average Excess Equipment Moved 

1400 
4-1 
c 
O 1200 -
E 
Q. 
'5 42 1000 -
UJ 

c 
<D 
E 

800 -

xc
es

s 
M

ov
ei

 

600 
400 

UJ 

o 200 -
* 0 -0 -

DH -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
Value of Lambda 

69 



7.3 Inventory Imbalance Stability 
Up to this point, the stability of the inventory imbalances generated by the provisioning policy 
has been ignored. No consideration has been given to the overall trends displayed by the 
inventory imbalances over time and across replications. 

A n investigation into inventory imbalances by station over the 14 days indicates that for the 
RSSR policy, X>-0.2 the inventory imbalance variance is increasing. For X = 0.1 the inventory 
imbalance variance is non-increasing. Therefore the next step is to determine an optimal stable 
value of X between 0.1 and 0.2. 

Figures 44 and 45 are box plots of inventory imbalances for the 100 replications, by day, for two 
of the 12 stations not using the D H policy. From previous analysis in section 7.2, we know that 
the magnitude of the inventory imbalances is satisfactory. However, the issue of long-term 
sustainability has not been addressed. One way to determine i f the system is operating at steady 
state after the 14 days of simulated operations is to examine the variances of inventory 
imbalances across all 14 days for each station. An indicator of stability would be a non-
increasing variance. From Figures 44 and 45, it can be seen that the variance is constant i f we 
discount the first few days2 5. Referring to the days after day 4, we see that the variance does 
change but it isn't strictly increasing. Rather, it seems to be bounded. Finally, referring to the 
mean inventory imbalance, we see that it is oscillating around zero. The conclusion is that when 
X = 0.1, the RSSR policy generates stable long-term inventory imbalance variances. 

Figure 44 - Station Stability, Large Station, X =0.1 
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The first few days will have a lower variance simply because they are closer to the starting initial condition of 0 
inventory imbalance. This issue will be addressed in greater detail in section 7.4. 

70 



Figure 45 - Station Stability, Medium Station, X =0.1 
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Figure 46 - Station Stability, Large Station, X =0.2 
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Figure 47 - Station Stability, Medium Station, X =0.2 
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Figure 46 and 47 are box plots of inventory imbalances for the 100 replications, by day when A 
=0.2, for the same two stations in Figure 44 and 45. The notable difference between X =0.2 and 
X =0.1, is that the variances appear to be increasing for X =0.2. Although the mean still oscillates 
around 0, the increasing variance indicates that the simulation with X =0.2 has not yet reached 
steady state. The importance of this finding is that the previous analysis for X =0.2 does not 
consider the possibility that the inventory imbalances could increase in the days following the 
end of the simulation. Therefore the conclusions drawn about the RSSR policy performance 
when X =0.2 is based upon data that is not representative of the actual performance of the RSSR 
policy. In order to fully investigate this, the simulation period would have to be extended until 
the results for X =0.2 stabilized. This possibility is left for future investigation 

7.4 Optimimizing A 
From section 7.2 we know that the RSSR policy has an acceptable level of inventory imbalance 
for all stations. We also know from the previous section that the RSSR policy is stable for X 
=0.1 and unstable for X =0.2. Finally, we know that the value captured by the RSSR policy 
increases exponentially with increasing X. 

Up to this point the RSSR policy has been evaluated for values of X ranging from -1.1 to 1.1 in 
0.1 increments. The goal of this section is to narrow the analysis to the range of 0.1 < X < 0.2, in 
0.05 increments, in order to find the optimal value of X. This is defined as the largest value of X 
for which a stable solution exists. From the following analysis it is determined that this value of 

Figures 48 to 53 present box plots of inventory imbalance for various values of X. Some key 
observations from the graphs are: 

1. The patterns in the graphs are apparent across different values of A 
2. Variances increase with increasing X 
3. For a single value of X, there appears to be a weekly pattern for both the large and 

medium station 
4. For the large station, the inventory imbalances are stable for all values of A 
5. For the medium station, the inventory imbalances are stable for A=0.125, questionably 

stable for A=0.15 and not stable for A=0.175 

A is 0.125. 

Figure 48 - Station Stability, Large Station, X =0.125 
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Figure 49 - Station Stability, Medium Station, X =0.125 
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Figure 50 - Station Stability, Large Station, A=0.15 
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Figure 51 - Station Stability, Medium Station, A.=0.15 
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Figure 52- Station Stability, Large Station, A=0.175 
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Figure 53- Station Stability, Medium Station, K= 0.175 
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There are patterns that are observed across the different values of X. Referring to the large 
station box plots (Figures 48, 50 and 52), we can see that day one is negative, day two is lower 
than day one, day three is higher and positive and so on. This observation is expected as the 
flight schedule does not change, and the 100 different random number streams (one for each 
replication) are the same across each value of X. 

Variances for a particular day for both stations do increase with increasing X. Again this is 
expected, as a higher value of lambda would result in a lower number of excess equipment 
movements. This in turn would increase the possible inventory imbalances, which would directly 
increase the variance. 
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For a single value of X, for either station, there are weekly patterns in the inventory imbalances. 
Referring to Figure 49, we see that day one is high, days two through five are lower and about 
the same, day six is high, and day seven is lower than days 2 through five. Continuing on we see 
that day eight is high, days 9-12 are lower and about the same, day 13 is high and day 14 is lower 
than days 9-12. Again this is expected as the flight schedule from the Meal Pages database is 
based on a seven-day pattern. Although there are other patterns and random events, the seven-
day pattern usually dominates. 

Referring to Figures 48, 50 and 52 we can see that inventory variances are not increasing, 
neglecting the increase for the first few days. This is evident in Figures 48 and 50, and is a little 
questionable for Figure 52. It should be noted that to increase confidence in the conclusion that 
variances are non-increasing, the simulation schedule should be increased from 14 days to a 
minimum of 28 days. 

Referring to Figures 49, 51 and 53 we can see that the inventory variances are not increasing for 
X = 0.125. For X = 0.15 it is inconclusive, and for X = 0.175 the variance appears to be 
increasing. Again to increase confidence in these conclusions, the simulation schedule should be 
increased. 

As a result of the above analysis, it is possible to select either X = 0.15 or X = 0.125. However, 
in order to be conservative, the choice is X = 0.125. The RSSR policy with X = 0.125 will 
capture 61.6% of the available cost reduction. This result must be modified to take into account 
the required warm up period. 

Figure 54 - RSSR, % Available Cost Reduction Captured, y = 1.3, II 

% of Availble Cost Reduction Captured 

100% 

80% 

60% 

40% / 
20% / 
0% / 

DH 0.105 0.125 0.145 0.165 0.185 
Value of Lambda 

7.5 The effect ofSL,y=1 
The inventory imbalance limit, S L , has been set to 1.3Vj for all previous analyses. Recall from 
section 6, that the safety stock resulting from this choice is 0.2*Vj. In the event that this amount 
is deemed too low, the results for the RSSR policy with S L = l.OVj are presented below. 
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Changing the value of S L will only affect the threshold that determines whether the inventory 
imbalances are acceptable for a given policy. Figures 55 and 56 present the inventory 
imbalances for the RSSR policy for values of A. between 0.1 and 0.2. As can be seen the 
decrease in y has resulted in several values of A. which demonstrate unacceptable inventory 
imbalances. However, for A=0.125, there is only one station which has an inventory imbalance 
greater than S L , and this only occurs twice in 100 replications of 14 days. If the users of this 
policy still felt that this was unacceptable, the offending station could be removed from the SR 
policy, and placed on the D H policy or a small amount of equipment could be added to its safety 
stock. The case where y = 1.5 is uninteresting as it will have a better inventory imbalance 
performance than when y=1.3; and y=1.3 already has acceptable inventory imbalances for all 
stations at A=0.125. 

Figure 55 - RSSR, Minimum Inventory Imbalance, % of SL, y = 1.0 
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Figure 56 - RSSR, # of Times Inventory Imbalance Decreases Below -S L , y = 1.0 
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7.6 Selecting a Warm up Period 
The next step in quantifying the RSSR policy is to determine its performance relative to the D H 
policy. In order to do this the RSSR policy results must not include the simulated warm-up 
period, because this will generate results that are not entirely characteristic of the RSSR policy. 
The policy will not operate in an environment where every two weeks the starting inventory 
imbalance is zero. 

The results for the simulation model presented thus far have been inclusive of the warm-up 
period. Up to this point, the inclusion of the warm-up period did not significantly affect results. 
Specifically, the only concern has been the performance of the policies relative to one another 
and the maximum/minimum inventory imbalance. The performance of policies relative to one 
another is not influenced significantly by the warm-up period - all policies would receive about 
the same benefit / detriment. The maximum / minimum inventory imbalance would always 
occur outside of the warm-up period. At this point we are interested in determining the 
appropriate reduction in excess equipment movements. As such it is important to ensure only 
steady state results, those excluding the warm-up period, are analyzed. 

The purpose of the warm-up period is to remove results from the simulation run that are not 
representative of the normal expected results. In this case, we are interested in removing the 
period where inventory imbalances are abnormally low; i.e. the period where the inventory 
imbalances are highly correlated to the initial condition. There are several approaches to 
determining this period. Three possible approaches are listed below: 

1. Arbitrarily truncate the first seven days 
2. Inspect the box plots of inventory imbalance, and select only those points that occur after 

the average variance in inventory imbalance has been reached 
3. Inspect the excess equipment movements, and select only those points that occur after the 

moving average is lower than the total average 

The first option is simple, but would need to be supported with additional evidence. The second 
option seems reasonable, and given the data analysis from section 7.3, this would occur 
sometime around day 4. The third option is also reasonable. However when the actual data is 
examined, there is significant volatility in the excess equipment movements by station. 
Encouragingly, the system total excess equipment is relatively constant. Referring to Figure 57, 
the warm-up period would extend to day four. As can be seen, the warm-up period will have a 
minimal impact on average excess equipment movements. 
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Figure 57 - RSSR, System Total Excess Equipment Movements, 1=0.125, y=1.3 
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As a result of the excess equipment analysis and the inventory imbalance analysis coming to the 
same conclusion, the warm-up period will be set to 4 days. It should be noted that Figure 57 
suggests that the warm-up period selection wil l not affect the results significantly. Still, in all 
remaining simulation analysis, the first four days of simulation output are removed. 

7 .7 Final Simulation Models 
The final simulation models are based upon the following parameters: 

X = 0.125 
y =1.3 
Warm up period -- 4 days 
Replications 100 

The policies are evaluated based upon the number of times that inventory level decreases past S L , 
reduction in excess equipment movements and the total possible excess equipment movements. 

7.7.1 RSSR Policy 
The results of this policy indicate that there is never an inventory imbalance below S L . The 
number of excess equipment movements is reduced by approximately 3200. The number of 
excess equipment movements for the simulation deadhead policy SDH policy is approximately 
5300 per day. 

7.7.2 3SSR Policy 
The 3SSR policy is an application of the SSR policy to the three largest stations only. Under this 
policy, the three largest stations will load equipment according to a reference inventory level, 
and the other 28 stations follow the deadhead policy. The results of this policy indicate that there 
is never an inventory imbalance below S L . In addition, the number of excess equipment 
movements is reduced by approximately 1000 per day. The number of excess equipment 
movements for the SDH policy is approximately 5300 per day. 
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7.8 Cost Savings Analysis 
The main benefit of implementing an alternative provisioning policy is a potential reduction in 
costs. There are four main areas where cost reductions could arise: 

• reduced inventory levels: safety stock levels could decrease as a result of lower 
equipment use 

• reduced shrinkage: each time a piece of equipment is used, there is a chance that it 
may be broken; i f we reduce usage, we should reduce breakage 

• reduced fuel consumption: the amount of fuel consumed is proportional to the total 
weight of the aircraft; reduction in excess equipment reduces total weight of aircraft 

• reduced handling costs: all equipment is cleaned and assembled for boarding, and is 
cleaned again at the arrival station, whether it is used or not 

It is conceivable that safety stock levels could decrease. The safety stock levels are defined as a 
multiple of daily consumption. Therefore, i f daily consumption decreases, the resulting safety 
stock required could also decrease. This is supported by the results of the simulation analysis, 
which indicate not one of the 31 stations experienced inventory deviations below S L . However, 
when the actual costs associated with inventory are tallied up, we see that the total system wide 
inventory costs for the equipment under analysis is less than $500,000. Recognizing that we 
would only be able to reduce a fraction of that, the one-time savings become something around 
$50,000. Clearly, this is not something worthy of further investigation. 

CAI records historical breakage statistics for many of its items in inventory. The breakage is 
generally attributed to normal wear and tear, and to this end the breakage percentage is combined 
with the cost per item to generate a breakage cost per use. For the items in this investigation, the 
breakage cost per use is approximately $0.09. Multiplying this amount by the reduction in 
excess equipment movements calculated in the previous section we see that the RSSR policy 
saves $288 / day,(100K annually) and the 3SSR policy saves $90/day (33K annually). 

The fuel burn on aircraft is proportional to the take off weight of the aircraft. If the amount of 
excess equipment loaded onto an aircraft is reduced, then the weight of the aircraft is reduced. A 
rough estimate of potential cost savings yielded an optimistic estimate of $5000 annually. This 
amount is insignificant and does not warrant further investigation. 

Equipment is cleaned and assembled every time it is used. The exact cost of this is determined 
by the caterer contract, but is generally in the range of $0.25-$0.75. This corresponds to a 
system wide savings of $800 to $2400 / day (290K-875K annually) under the RSSR policy, and 
a savings of $250 to $750 / day (90K-275K annually) under the 3SSR policy. This potential cost 
savings combined with the breakage costs is significant and is worthy of future investigation. 
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8.0 Conclusion 
This thesis presents a network inventory control policy for an airline, the single reference policy. 
This policy was developed using Markov Decision Process models in conjunction with a 
Simulation model. 

The three M D P models provided an objective basis for determining an alternative equipment 
provisioning policy and quantifying the performance of the policy. The one-node M D P model 
demonstrated that the deadhead policy was a useful local optimization policy. The two-node 
M D P model demonstrated that the single reference policy could outperform the Deadhead 
policy, however the cost structure of the system was important. The three-node M D P model 
demonstrated that the single reference policy's performance would improve as the number of 
nodes increased. The three node single reference policy, reduced costs related to the movement 
of excess equipment by 56% on average. 

The Simulation model was used to test the single reference policy using more detailed 
operational data. Three variants of the single reference policy were developed and tested: the 
universal simulation single reference policy, the reduced simulation single reference policy and 
the three-city single reference policy. The results of the universal simulation single reference 
(USSR) indicated that reduction in excess equipment movements were exponentially related to 
the reference level chosen in the USSR policy. The second was that the USSR policy generated 
unacceptably high inventory imbalances for many of the "small" stations. The reduced 
simulation single reference policy (RSSR) indicated that the inventory imbalance levels were 
acceptable, and stable, for certain values of the reference level. The RSSR policy reduced the 
excess equipment movements by 60% 2 6. The final model was the 3SSR model. This model 
reduced the excess equipment movements by 19%. 

The results of the simulation were used in a cost savings analysis that demonstrated the 
annualized potential cost savings for the RSSR model were a minimum of $390,000 per year, 
and for the 3SSR model were a minimum of $120,000 per year. The operational impact of 
implementing either the RSSR or the 3SSR equipment provisioning policy is minimal. The only 
additional data requirement is a daily estimation of inventory levels. 

In order to complete this thesis, we required operational data. A result of this project was the 
development and implementation of two databases at Canadian Airlines International, the Meal 
Pages Database and the Catering Commissary Database. Both databases have replaced the 
previous processes for developing a meal provisioning schedule and for maintaining the aircraft 
equipment configurations / loading procedures. These by themselves, represent a significant 
contribution to operations. 

for 1=0.125 
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9.0 Future Recommendations 
The results of this investigation are based on several models, each with its own assumptions, 
order to increase the confidence in the model results, the following steps should be taken: 

In 

1. Incorporate a longer flight schedule for simulation 
2. Include more passenger demand distributions 
3. Investigate airline-caterer relationship 

The simulation model as formulated relies on 2 representative weeks of flight data. This 
corresponds to almost 3000 flights. However, with the continued implementation of the Meal 
Pages database, additional flight information wil l be available. This would permit a broader 
sample period. 

The passenger demand data available is very extensive, and would permit further investigation. 
Additional areas of analysis include increasing the number of distributions used to accommodate 
more regions, developing passenger distributions for each season, and developing passenger 
distributions for each direction. 

Finally, the cost savings analysis of the simulation results is based upon limited information 
about the nature of the Caterer-Airline relationship. The cost reductions cited are based upon 
previous caterer service pricing. However, significant variation occurs from caterer to caterer 
and from station to station. This would suggest that the prices as quoted do not accurately reflect 
the true cost of the service. Therefore to improve the accuracy of the estimated cost savings, 
further investigation into the airline-caterer relationship is required. 
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Glossary 
Aircraft -

Aircraft type -

Aircraft route -

City pair -

D H -

D V j -

Flight -

Flight leg -

Flight route -

an air vehicle 

the model of aircraft, (B737, B747 etc.) 

the listing of flight routes, in order, that a particular aircraft will follow 

two of the cities from the network of cities 

deadhead policy, always move all available excess equipment 

daily Volume for station I, equal to the average daily total of seats flown 
out of station I 

an aircraft transporting passengers between two cities 

one origin and one destination city from a flight route 

the origin and destination cities of a flight, a flight route can have more 
than two cities, for example, consider a flight from Vancouver to London 
that has a stopover in Calgary 

Inventory allotment - the working equipment assigned to each station 

Inventory imbalance -the difference between the current inventory level and the inventory 
allotment 

S L -

S R -

S S R -

Station 

R S S R -

3 S S R -

inventory imbalance limit, for M D P analysis i f S is exceeded and 
automatic rebalance action is initiated, for simulation S L is used to 
determine acceptable models 

single reference policy, i f inventory imbalance is greater than X H , move all 
available excess equipment, i f less than X H move no excess equipment 

simulation single reference policy, all simulated stations follow the SSR 
policy 

a station is a city that flights fly to and from 

reduced simulation single reference policy, 19 simulated stations follow 
the D H policy, 12 simulated stations follow the SSR policy 

3 city simulation single reference policy, only the three largest stations 
follow the SSR policy, all other stations follow the D H policy 

reference inventory imbalance level, for use with SR policy and derivative 
policies 
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Appendix A: Solving the 3 Node Model 
The final execution time required to solve the 3N problem was approximately 38hrs. The total 
computation time required to solve all the parameterized versions of the models (9) was 336 
hours. In order to solve the 3N problem in 38hrs, several concessions had to be made. These 
concessions are summarized below: 

1. Sum of inventory = 0 
2. No record of action space for each state 
3. Storing expected values for each combination of inventory levels 
4. Smaller passenger demand distribution 

Without these changes to the model, the computation time would have been excessively long. 
The unreduced model has approximately 8.1X109 individual states for each epoch. Given 11 
epochs, that total number of states for the model is 8.9 X10 1 0 . There are 15 relevant statistics for 
each state, 14 integer data type and 1 float data type. This yielded a required storage space of 
approximately 2.9 X 1 0 1 2 bytes. In addition, for each state, the algorithm would have to solve a 
number of iterations equal to the size of the action space. Depending on the size of the demand 
space the number of iterations is in the range of 1 to 117,649. Table 7 details the reduction in 
storage space required for each successive model reduction. Table 8 details the number of 
iterations required for each successive model reduction. Assuming that the model with no 
reduction could have been solved, and that the space requirements would not have restricted 
computation speed, it would have required 1.9 X I 0 6 years or execution time to solve all 9 
parameterized versions of the model. The following sections describe each model reduction. 

Table A l - 3 Node Storage Space 

Model Inventory Demand # States / Total # Bytes / Total # 
Reduction Configs Configs Epoch States State Bytes 

Reduction 68921 117649 8.11E+09 8.92E+10 32 2.85E+12 

Sum of 
Inventory = 0 

1261 117649 1.48E+08 1.63E+09 32 5.22E+10 

H H 
Expected 

values 1261 N/A 1261 1.39E+04 8 1.11E+05 

Passenger 
demand 

1261 N/A 1261 1.39E+04 8 1.11E+05 

Table A2 - 3 Node Number of Iterations 

Model 
Reduction 

Total # States Max Iterations 
/ State 

Total 
Iterations 

No Model 8.92E+10 1.18E+05 1.15E+17 

Sum of 
Inventory = 0 1.63E+09 1.18E+05 2.11E+15 

No action 
space 

1.63E+09 1.18E+05 ~Il1E +15 
Expected 

values 
1.39E+04 1.18E+05 1.80E+10 

Passenger 
demand 

1.39E+04 1.56E+04 2.38E+09 
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Sum of Inventory Levels = 0 
Every state is defined by three inventory levels and six passenger demands. Given that the 
starting inventory level for all stations is zero, it follows that the sum of inventory levels at all 
other times must also be zero. Therefore, although there are 68,921 (41X41X41 2 7) different 
combinations of inventory levels, there are only 1261 combinations of inventory levels that add 
up to zero. It is important to note that this model reduction does not alter the model solved; rather 
it capitalizes on the fact that the model is a closed system. 

No Record of Action Space for each state 
In the previous two models, for every state (inventory levels at all stations, and all passenger 
demands to and from each station) the actions selected by the model were stored for later 
analysis. Removing the actions from the state reduced the storage space required for each state 
by 12bytes (6X2). Unfortunately this reduction removed the possibility of examining the 
decision regions as was previously done in the 1 and 2 node models. 

Storing expected values for each configuration of inventory levels 
The 3N models, like the I N and 2N models require the demand information for two things. The 
first is to calculate an immediate cost, the second is to determine the expected value of all future 
costs given a current state. Fortunately, the stochastic nature of the problem only occurs from 
epoch to epoch. The behavior of the model in the current epoch given the current state is 
deterministic. This fact removes the necessity of storing demand information for all states in 
epochs later than the epoch currently being examined. Therefore, all states in a given epoch that 
share a common set of inventory imbalances can be equivalently represented as the set of 
inventory imbalances and the expected cost associated with it. Given that the choice has been 
made not to store the actions for every state, there is no purpose for storing the demand 
configurations. As such, storing only expected values of cost for a set of inventory imbalances 
does not limit further limit the analysis. 

Smaller passenger demand distribution 
The first three model reductions solved the space requirement problem presented by the 
unreduced model. Unfortunately, there were still a daunting number of iterations to be 
performed. The only method for reducing the number of iterations was to reduce the number of 
states. This implied either reducing the number of epochs, reducing the allowable inventory 
imbalances, or reducing the passenger demand space. Reducing the number of epochs would 
only have a linear effect on the number of states, and therefore was not considered a viable 
option. Reducing the allowable inventory levels would enforce even smaller bounds on the auto 
rebalance limit. Given that the rebalance limit should in some way be proportional to the amount 
of equipment that could possibly enter or exit a station in any given epoch, the progression to a 
3-node model from a 2-node model should actually see the rebalance limit increase. The only 
option remaining was to reduce the size of the passenger demand space. Although this was not a 
desirable option, it did have one positive- a small reduction in demand space would have a very 
large impact on the total number of states. The final choice was to reduce the demand space 
from a discrete triangular distribution (4,7,10) with 7 points to a discrete triangular distribution 
(5,7,9) with 5 points. This decision will improve the results of the alternative provisioning 
policy, and the optimal policy, because it reduces the number of situations where balancing 
inventory requires moving 6 units of excess equipment. 

Remember that the auto rebalance action will not permit inventory levels greater than 20 or less than -20. This 
gives 41 possible values for inventory at each station. 
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