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Abstract

Drop-outs are a common problem in longitudinal studies. In terms of statistical
models for the data, there are three types of drop-out mechanisms: drop-out occur-
ring completely at random (CRD), drop-out occurring at random (RD) and infor-
mative drop-out (ID). The drop-out mechanism is classified as CRD if the drop-out
mechanism is independent of the measurements; as RD if the drop-out mechanism
. depends only on the observed but not the unobserved measurements, and as ID if
the dfop-out mechanism depends on both the observed and unobserved measure-
ments. CRD and RD are referred to as ignorable because the drop-out mechanism
can be ignored for the purpose of making inferences about the observed measure-
meﬂts, while ID is non-ignorable. Analyses based on an assumption of ignorable
drop-out, when in reality the drop-out mechanism is non-ignorable, can lead to mis-
leading or biased results. Likelihood-based models for continuous and categorical
longitudinal data subject to non-ignorable drop-out have been developed. In this
thesis, we focus on exploring likelihood-based models for binary longitudiﬂal data
subject to informative drop-out.

The two modelling approaches considered are a selection model propdsed by
Baker (1995) and a transition model proposed by Liu et al. (1999). We apply these
models to a data set from a multiple sclerosis (MS) clinical trial. The aims of the
analyses are to investigate whether there is an indication of informative drop-out in
this data, and to assess the sentivity of inferences concerning the treatment effects

to the underlying drop-out mechanisms. We do not attempt to provide a definitive’
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analyses of the data set, but rather to explore a variety of models which incorpora.te

informative drop-out.
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Chapter 1

Introductibn

1.1 Background of this Thesis

The defining characteristic of a longitudinal study is a sample design which specifies
repeated observations on the same individual (or experimental unit). However,
failure to obtain a full set of observations on a given individual (or unit), resulting
in incomplete data and/or unbalanced designs, is a common problem in longitudinal
studies. The form of missingness in longitudinal studies is typically drop-outs, in
which sequences of measurements on some individuals terminate prematurely. This
drop-out phenomenon is reflected in'a data set collected over a 3-year period in a
multicenter multiple sclerosis (MS) clinical trial sponsored by Berlex Laboratories
of Richmond, California. The work presented in this thesis is motivated by this data
set. A detailed description of the clinical trial and the data set to be analyzed can
be found in Chapter 2.

Multiple sclerosis is a serious disease of the central nervous system (CNS), the
nerves that comprise the brain and spinal cord. The term “multiple sclerosis” refers
to multiple areas of patchy scarring, or plaques, that resuit from the destruction of
myelin. Myelin is a white substance which forms a sheath around the spinal cord.

When the myelin sheath is destroyed, signals transmitted throughout the CNS are




disrupted which leads to the occurrence of an acute attack, or exacerbation. During
these exaéerbations patients can suffer from a variety of symptons such as blurred
vision, a sensation of numbness or loss of control of the movements in parts of
the body. To date, the cause of MS is unknown and no cure exists. A number of
treatments éxamined over the past-decade have reduced rates of acute exacerbations
and slowed progression in disability. In fact, the Berlex trial, where the treatment
investigated was Interferon -1b, was the first to demonstrate beneficial effects of a
treatment for MS patients.

Patients withdrew from the Berlex trial due to reasons such as lack of effi-
cacy, toxicities in excess of prespecified toxicity levels, or other side effects to the
treatment. Nevertheless the overall drop-out rate did not exceed that anficipated
at the trial’s inception. The intent-to-treat analyses of the trial data were per-
formed under the assumption that the drop-out occurred completely at random, as
is custofpary in clinical trials. Methods have been developed for explicitly modelling
non-response (not only restricted to drop-'outs) under the more general assumption
that the non-response may not have occurred completely at random. Our main
objective is to investigate the sensitivity of the conclusions concerning the treat-
ment effects to different assumptions about the nature of the drop-out mechanisms.
Diggle and Kenward’s (1994) classification of drop-out mechanisms, modified from
Rubin (1976) and Little and Rubin (1987), is described in Chapter 3. Comparison
of different models also allows us to study the nature of the drop-out mechanism in

N

this data set.

1.2 Methods of Analyses

Likelihood-based methods are commonly used for incomplete data, including for
the analysis of longitudinal data with drop-outs. According to the Diggle and Ken-
ward (1994) terminology, drop-out mechanisms can be classified as completely ran-

dom drop-out (CRD), random drop-out (RD) or informative drop-out (ID). For a



CRD mechanism, drop-out is independent of the outcome (or measurement,) 'pro-
cess; for a RD mechanism, drop-out is independent of the unobserved outcbmes, but
depends on the observed outcomes. For an ID mechanism, drop-out depends on
both the observed and unobserved outcomes. Likelihood-based methods yield valid
results in the presence of CRD or RD provided the model used for the measurement
process is valid, and the observed information matrix is used rather than the ex-
pected information matrix. If, however, the drop-out mechanism is ID, modelling
the drop-out process is ne.cessary to permit valid inferences; see Laird (1988).
Modelling different drop-out mechanisms can provide insight into the na-
ture of the withdrawal process. It can also be used td investigate the sensitiv-
ity of inferences to the underlying assumptions. In the past decades, researchers
have proposed a number of methods for quantitative longitudinal data (usually nor-
mally distributed) and categorical longitudinal data subject td non-random drop-
out. Laird (1988) provided an excellent .discussion of how the drop-out process can
affect the inferences about both continuous and categorical measurement processes.
For continuous longitudinal data, Wu and Carroll (1988) considered ID in
a random effects model, with the data for each experimental unit following a lin-
ear time trend whose intercept and slope vary between individuals accor.ding to a
bivariate Gaussian distribution. Their likelihood-based method permits the com-
parison of non-ID and ID drop-out mechanisms. Schluchter (1992) outlined a new
approach based on a log-normal survival model when the primary outcome is the
rate of change in a continuous variable subject to informative censoring. More re-
cently, Diggle and Kenward (1994) proposed a general model-based approach for
analyzing continuous longitudinal data that combines a multivariate linear model
for the response with a logistic regression model for the drop-out prdcess. This is
the first paper to develop a modelling strategy that explicitly accommodates CRD

and RD as special cases within an ID model.

The issue of how to deal with ID in categorical longitudinal data is not yet




resolved.  Further, potential technical d.ifﬁculties may arise in the likelihood-based
methods for correlated categorical data due to the discreteness of the responses.
Baker and Laird (1988) developed a log-linear model for categorical response sub-
ject to non-ignorable non-response in a sample survey setting and drew attention to
the existerice of boundary solutions. A number of authors have focused their atten-
tion on the multivariate binary data case to better understand some of the potential
difficulties for correlated categorical data. Both Baker (1995) and Fitzmaurice et
al. (1996) used a multivariate binary model where the marginal probabilities for
the responses are specified as logistic regressions. However, these authors modelled
the associations among the responses differently. These models for the outcomes
were combined with logistic models for ignorable and non-ignorable drop-out mech-
anisms to analyze multivariate binary data. Both papers also highlighted the issue
of identifiability of these models. Baker (1995) provided outlines of the proof of
model identifiability for certain models he considered. Fitzmaurice et al. (1996)
gave some suggestions on how to examine the identifiability of non-ignorable drop-
out models. More recently, Ten Have et al. (1998) presented mixed effects models for
longitudinal.binary responses with informative drop-out analogous to the Wu and
Carroll (1988) models for longitudinal continuous data. Liu et al. (1999) adapted
- the method proposed by Diggle and Kenward (1994) for the analysis of a binary
longitudinal outcome.

Most of the likelihood-based models mentioned are formulated within the
selection modelling framework (Little and Rubin, 1987). A selection model factors
the joint distribution of the measurement and response processes into the marginal
measurement distribution and the response distribution, conditional on the mea-
surements. Molenberghs et al. (1999) discuss the strengths and limitations of se-
lection models for non-random missingness in the categorical data setting: There

are other ways to specify the joint distribution. For categorical responses, a log-

linear approach incorporates the measurement and response processes into a sin-




gle log-linear model. A time-ordered approach factors the joint probability into a
product of conditional probabilities ordered in time and a pattern-mixture model
(Little, 1993) factors the joint distribution into the marginal response distribution
and the measurement distribution,' given the response distribution. The latter two
approaches can be applied to both continuous and categorical repeated measure-
ments data. Ekholm (1998) re-analyzed the children’s obesity data set considered
by Baker (1995) using a pattern-mixture model. Michiels et al. (1999) studied
similarities and differences of modelliné incomplete data within the selection and
pattern-mixture settings assuming a missing at random mechanism.
Pseudo-likelihood and non-parametric approaches have also been proposed
for carrying out analyses under different types of drop-out mechanisms. Using Dale’s
model (1986) for ordinal categorical longitudinal data, Kenward et al. (1994) demon-
strated that, in the presence of RD, the generalized estimating equations (GEEs)
approach proposed By Liang and Zeger (1986) may give misleading results. Robins et
al. (1995) showed that appropriately weighted GEEs overcome this problem, but nbt'
in the presence of ID. More recently, Sun and Song (2000) proposed a non-parametric
approach for analyzing the data from a clinical trial of adult schizophrenics with

informative censoring.

1.3 Outline of this Thesis

Our attention will be on multivariate binary data. This special form of the data
allows us to focus on the aforementioned issues that arise mainly in correlated cat-
egorical data. We are also interested in studying the nature of the drop-out process
in our data. For this'purpose, we choose to work with models within the selection
modelling framework.

'The remainder of this thesis is outlined as follows: Chaptef 2 presents the
description of the Berlex tri@l and the binary responses which will comprise the data

set to be analyzed. Chapters 4 and 5 discuss Baker’s selection model and the Liu
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transition model respectively. These models can be used to examine various types
of drop-out mechanisms in our data. The definitions of the drop-out mechanisms is
provided in Chapter 3. Non-ignorable (or informative) drop-out (or non-response)
models are generally harder to implement due to potential analytical problems such
as model identifiability issues. Chapter 6 focuses on the issue of identifiability in
models for incomplete binary responses. Proofs of ‘identiﬁability of some of our
models are also included in the chapter. The detailed results of our anaiyses are
reportéd in Chaﬁter 7. We conclude the thesis with some general discussion in

Chapter 8; this includes comments on the two models and suggestions of other

possible methods for analyzing the data.




Chapter 2

Data Description

2.1 Description of the Berlex Clinical Trial

The Berlex clinical trial was a phase III trial of the effect of Interferon $3-1b on
relapsing-remitting multiple sclerosis (MS) patients. The primary outcome measure
was the rate of exacerbations. This was a multicenter, randomized, double-blind,
placebo-controlled trial with three parallel treatment groups. The study was origi-
nally planned with a 2-year treatment period; the trial was later extended to 3 years
(because by the end of the second year, some patients had been on the study for
almost three years due to different starting dates). The study was carried out in
a double-blind fashion for the full three years. The data from the first 2 years of
the study established that the Interferon B-1b treatment groups had decreased ex-
acerbation rates and increased proportions of patients remaining exacerbation-free.
These beneficial results were also found in the 3 year data. This was the first trial to
unequivocally identify an effective treatment for relapsing-remitting MS. Interferon
B-1b has emerged as a therapeutic option in MS and has been hailed as a major
advance in the management of this disorder.

This trial consisted of 372 patients from 11 centers in the United States and

Canada on three parallel treatment groups: placebo (PL), low dose (LD) and high




dose (HD). The dosage for LD and HD were 1.6 and 8.0 million international units
(MIU) respectively. All patients were between the ages of 18 and 50 years, had been
diagnosed with MS at least 1 year prior to entry to the study, had Krutzke Expanded
Disability Status Scale (EDSS) scores of 5.5 or less, and had experienced at least 2
exacerbations in the previous 2 years. Moreover, all had been clinically stable for
at least 30 days prior to entry and had received no medications to speed up the
recovery from relapse such as ACTH (adrenocorticotrophic hormone) or prednisone
during this period.

Patients were ra,n(iomized to the three treatment groups within each center °
and divided almost evenly within each center. All patients were blinded to the
treatment assignments. Of these 372 patients, 123 received PL, 125 received LD and
124 received HD of Interferon -1b by injection every other day. Two neurologists
were appointed at each center: one who performed the periodic examinations was
not aware of the drug side effects, and another who knew about the side effects and
injection reactions was responsible for reviewing laboratory findings for toxicity and

for overall patient care. Patients were scheduled to be evaluated every 12 weeks
except for the first few months of the study, where evaluations were more frequent.
In addition, visits were made when symptoms occurred suggesting the possibility
of an MS exacerbation. A Scripps Neurological Rating Scale (NRS) score and a
Kurtzke EDSS score were determined in each evaluation.

For all patients in the study, the beginning and end dates of all exacerba-
tions as well as the EDSS scores obtained at each visit were recorded. Besides these

~ clinical outcomes, each patient also had a baseline cranial magnetic resonance irﬁag-
ing (MRI) and this was repeated annually. The patients at one of the centers (the

University of British Columbia) had cranial MRIs repeated at 6-week intervals for

the first 2 years.




2.1.1 Drop-out Rate in this Clinical Trial

Since some beneficial results of Interferon $-1b were found after 3 years of study,
patients who remained in the study were offered the high dose treatment for another
2 years. Thus, the entire study continued for over 5 years, but many patients
dropped out during this period. Figure 2.1 shows a roughly constant rate of drop-
out during the first three and a half years, except for a largé Iiumber of drop-outs
at the end of the second year (the original intended end of the study). The plot
also indicates the drop-out rate increased dramatically after the end of the 3-year
treatment period. Because of the potential difficulty in interpreting the 5 year data
(e.g. how should patients who switched from one treatment to another be treated
in the analysis and how should the results obtained be interpreted), we employ the
3-year treatment period data to perform a variety of analyses in this thesis. |

' We can represent the inforfnation shown in Figure 2.1 in another fashion.
Figure 2.2 displays Kaplan-Meier surviva_l curves describing the proportion of pa-
tients remaining on study by treatment group; the dash, solid and dotted vertical
lines indicate the end of the 1-year, 2-year and 3-year periods respectively. The
most drop-outs over the_ 3-year period occurred in the low dose group (approxi-
mately 40%). Roughly 20% of patients withdrew from the trial during the first 2
years in all three groups. A number of patients in each treatment arm dropped
out around the end of the 2-year peric;d, but the proportion remaining for most
of the third year of the study is roughly 70% in both the PL and HD groups and
roughly 60% in the LD group. Table 2.1 summarizes the numbers of patients who
dropped-out by the end of the first, second and third year of the study.

More details concerning the clinical trial can be found in the published re-

ports of the IFNB Multiple Sclerosis Study Group [27, 35, 36].




Figure 2.1: Histogram for Length on Study (3-month bins)
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Table 2.1: Cumulative Number of Drop-outs After 1, 2 and 3 Years on Study

-

| | After 1-Year | After 2-Year | After 3-Year
Group | Number Proportion | Number Proportion | Number Proportion
PL 13 11% 27 22% 41 33%
LD 11 9% 30 24% 49 39%
HD 17 14% 29 23% 35 28%
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Figufe 2.2: Kaplan-Meier Survival Curves for Time on Study: Over 3-year Treat-
ment Period
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2.2 Description of the Data

The main objective of fhis thesis is to explore models for longitudinal binary re-
sponses incorporating different types of drop-out mechanisms in the context of the
Berlex trial. We consider the exacerbation variable as the response variablé of inter-
est in our analysis. We choose to represent these data in binary form on an annual
basis (whether exacerbations occurred in each 1-year interval) to allow a specific
focus on models for binary responses. In other ‘words, the data for each patient will
be represented by three binary responses indicating whether they experienced any
exacerbations during the 1-year intervals. One of the reasons for proceeding in this
way, as opposed to refining the time intervals to 6-month intervals say, is to reduce
the number of possible different derived sequences of the binary responses as well as
the number of drop-out patterns. This allows a focus on the key ideas for modelling
such data. This will become clearer in later chapters.

The rest of this section is 'structured as follows. In the next subséction, we
describe the annual drop—out patterns. We then discuss how the binary responses are
derived. We conclude the section with a brief description of the baseline covariates

to be included in our analyses.

2.2.1 Drop-out Patterns

- The data described in the previous section involve a total of 372 patients. Each
patient’s termination date from the study was recorded. To derive our annual data

set, the data on patients who dropped out are handled as follows:

e Scenario 1
If the patient’s termination date was prior to 365 days on study, then we will
treat these patients as if they dropped out at the beginning of the study. In

other words, these patients have no outcomes in our annual data set.
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Table 2.2: Number of Patients in the-4 Drop-out Cases (x=present,o=absent)

[ 0 | Year 1 Year 2 Year 3 | Number of Patients ]

1 o ) o 41
2 X ) o 45
3 X X o 39
4 X X X 247

e Scenario 2

If the patient’s termination date was after 365 days but prior to 730 days, then
- we will treat these patients as if they dropped out at the end of the first year

of the study. These patients have one outcome in our annual data set.

7

Scenario 3

If the patient’s termination date was after 730 days and prior to 1095 days,
then we will treat these patients as if they dropped out at the end of the
second year of the study. That is., these patients are missing only the third

year outcome in our annual data set.

Scenario 4

If the patient’s termination date exceeded 1095 days, then we will treat these

patients as if they completed the 3-year study and thus all three annual out-

comes were observed.

Table 2.2 summarizes the total number of patients according to the four scenarios
of available annual outcomes over the 3 year period (“x” denotes present and “o”

denotes absent).

Table 2.3 displays the breakdown of the 372 patients in our annual data set

by treatment groups and gender according to the total number of patients entering
- the study, and dropping-out at the beginning, the end of the first year and the end
of the second year of the study. Patients were quite evenly distributed across the

3 treatment arms at the beginning of the study, as were the patients who dropped
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Table 2.3: Summary of the Our Annual Data

By Treatment Groups By Gender

Number of Patients PL LD HD Males Females
Entering the Study 123 125 - 124 113 259
Drop-out At Beginning 13 11 17 16 25
Drop-out At End of Year 1 | 14 19 12 9 36
Drop-out At End of Year 2 | 14 19 6 8 31

out at the beginning of the study and at the end of year 1. However, fewer patients '
in the HD group dropped-out at the end of year 2 than in the PL and LD groups.
In summary, the LD group has the highest drop-out rate, followed by the PL group,
and both rates increase slightly over time. As expected, the drop-out rate in the HD
group is the lowest and it decreases over time. Table 2.3 also shoWs the drop-out
rates for females and males are fairly consistent over time, although the drop-out
rates for females are a bit higher than for males. |

In the next two sections, we provide a more detailed description of the bi-
nary outcome variable and baseline covariateé of interest. All the corresponding

descriptive statistics presented are based on our annual data.

2.2.2 Binary Outcome Variables

As mentioned earlier in the chapter, the start and end dates of any exacerbations
patients experienced during the study were recorded. For our purposes, we do not
use the end dates even though they could contain valuable information. All exacer-
bations are attributed to the annual period in which they began. Recall we divided
the time period of the study into three 1-year intervals. Since these intervals are
quite wide, some patients experienced multiple exacerbations within these intervals.
The number of exacerbations experienced by patients within these annual intervals
ranges from 0 to 6; the frequency of these counts by yearly interval is summarized in

Table 2.4. Most patients experienced either no exacerbations or a small number of
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Table 2.4: Frequency Table of the Exacerbation Counts for Patients with At Least
One Outcome :

Number of Exacerbations Number of
Interval | Group 0 1 2 3 4 5 6| Patients
Year 1 ALL | 121 103 63 27 13 2 2 331
PL 32 36 20 14 8 0 O 110
LD 39 35 26 7 4 1 2 114
HD 50 32 17 6 1 1 O 107
Year 2 ALL (122 8 53 15 4 5 1 286
PL 39 28 16 8 2 3 0 96
LD 39 28 22 2 2 1 1 95
HD 44 30 15 5 0 1 0 95
Year 3 | ALL (122 74 38 12 0 0 1 247
PL 37 23 18 4 0 0 O 82
LD 36 26 8 5 0 0 1 76
.HD 49 25 12 '3 0 0 O 89

exacerbations; only a few patients had 4 or more exacerbations within a year. Based
on this information and for simplicity of analysis, it seems reasonable to dichotomize
these data as no exacerbation or at least 1 exacerbation experienced. Clearly there
is some loss of informatioﬁ associated with dichotomizing these data. One way to
retain the information is to treat the counts of the total number of exacerbations
as if they are Poisson random variables and perform analyses based on the counts.
However, we will not explore such analyses in this thesis.

Figure 2.3 shows the proportion of patients experiencing exacerbations over
time by treatment group based on these dichotomized annual data. In general, the
propori;ion of patients experiencing exacerbations decreased over the 1-year periods
in all groups. Further, the HD group has the lowest proportions among the 3
treatment arms throughout the study. The proportion of patients experiencing
exacerbations is slightly higher in the PL group than in the LD group. This plot

also suggests a dose-response relationship in these data.
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Figure 2.3: Proportion of Patients Experiencing Exacerbations Over Time by Treat-.
ment Group Based on Dichotomous Annual Data
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2.2.3 | Baseline Covariates .

We are primarily interested in the assessment of the treatment effects on the binary
outcome variables described in the previous section, but patterns in the data over
time and the effects of several baseline covariates are also of interest. The baseline

covariates we considered are:
. gender,
e age,
e duration of MS,
e Kurtzke Expanded Disability Status Score (EDSS), and -
e burden of disease (BOD).

In general, more females than males suffer from MS. This phenomenon is reflected
in this trial; as shown in Table 2.5, the female-to-male ratios are roughly 2.5, 2.1,
and 2.3 in the PL, LD and HD 'groups respectively. Figure 2.4 shows the boxplots
of age, duration of MS and EDSS at bé.seline by treatment group. The ages range
between 18 and 50 years. The median age at baseline in the HD group is slightly
smaller than in the other groups, but the distribution of the ages is quite similar for
the.3 treatment groups. The boxplots also indicate that about 50% of the patients
had ages between 30 and 40 years in each treatment group. The duration of MS
ranges between 1 and 31 years and the median is slightly higher in the HD group.
The boxplots for baseline EDSS indicate a fairly balanced distribution across the
three groups, with scores ranging from 0 to 5.5 in each group.

There are two distinct forms of magnetic resonance imaging (MRI) $cans of
interest in MS studies: T1-weighted scans and T2-weighted scans. A T1-weighted
scan uses a small injection of the chemical gadolinium into the patient’s bloodstream.
The presence of gadolinium will enhance the appearance of active lesions (areas of

inflammation on the blood/brain barrier) on the brain stem, and facilitate their
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Table 2.5: Number of Female and Male Patients in Each Treatment Grbup

Treatment Group
PL LD HD

Female | 88 85 86.
Male | 35 40 38

| Total [123 125 124 |

detection. A T2-weighted scan provides clearer definition of the actual size and
shape of each lesion without any gadolinium injection into the bloodstream, which
usually blurs the border of the lesions. The MRI measure of interest in this thesis,
known as burden of disease (BOD), is a measure of the total volume of all lesions
on the T2-weighted scan. In our data set, there are 8 patients who did not have a
BOD measurement at baseline; 3 from the PL group, 4 from the LD group, and 1
from the HD group. Excluding these 8 patients, the histogram of BOD at baseline
and the boxplots of BOD at baseline by treatment group are shown in Figure 2.5.
The distribution of BOD is highly skewed to the right. There are only 2 patients
who did not have any lesions at baseline (BOD = 0), but there are 5 patients with
BOD greater than 10,000 (mm?): 2 belong to the PL group and 3 belong to the LD
group. This is also reflected in the boxplots in Figure 2.5. Excluding the 3 patients
in the LD group who had the largest BOD readings, the general distribution of the

BOD measurements is quite similar in each treatment arm.

2.3 Questions of Interest

Having introduced the annual data set to be analyzed, we now describe the study
questions we plan to address in this thesis. |

Recall that the main focus of this thesis is to explore models for analyzing
* repeated binary data incorporating different drop-out mechanisms. Although the

drop-out rate in our annual data is moderate, we would like to investigate the
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Figure 2.4: Boxplots of Age, Duration of MS and EDSS at Baseline by Treatment
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Figure 2.5: Histogram of BOD and Boxplots of BOD by Treatment Group (n = 364)
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most appropriate form of model for the drop-out process; in particular, to explore
whether fhere is an indication of informative drop-out. It is also of interest to assess
the sensitivity of inferences concerning the‘ treatment effects (primarily) to the form
of the models for the drop-out mechanism, and to explore the importance of baseline
covariates for our annual data. ’
Chapter 3 provides a discussion of different drop-out mechanisms. We de-
scribe general methodology for analyzing incomplete binary data in Chapters 4 and
5. Chapter 6 sheds some light on potential identifiability problems in such models.
Chapter 7 contains all the results from the analyses we performed and we conclude

the thesis with some discussion.
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Chapter 3

Classification of Missing Values

in Longitudinal Data

3.1 Introduction

Longitudinal studies are usually characterized by collecting a set of measurements
on an individual unit at prespecified points in time; in many cases (typically in
clinical trials), the set of prespeciﬁéd points in time are the same for all units.
Missing values arise whenever one or more of the intended measurements from units
within the study are incomplete. Such missing data are a common problem in
longitudinal studies, particularly when the experimental units are human subjects
and collecting data involves a visit to a hospital or clinic, or the time between
intended measurements is lengthy.

It is important to distinguish between unbalanced data and missing values.
Unbalanced data result when the set of times of intended measurements is ﬁot
common to all units; for example, if one chose in advance to take measurements
every half hour on one-half of the subjects and every hour on the other half. Such
unbalanced data could also be described as incomplete but there are no missing

values from the viewpoint of the design of data collection. Missing data also arise in
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unbalanced data; however, there are deeper conceptual issues as to why the values
are missing, and more specifically whether the missingness is related to the questions
posed by the study.

Little and Rubin (1987) have provided a useful classification of missing value
mechanisms. Let Y* denote the.complete set of méasurements for one unit which
would have been obtained if there were no missing values. Partition this set into
Y* = (Y©, Y™)) with Y(°) denoting the measurements actually obtained and
Y(m) the measurements which would have been available if they had not been
missing, for whatever reason or cause. Let R denote a set of indicator random
‘variables', denoting which elements of Y* fall into Y(‘;) and which into Y(™), We can
then specify a probabilify model for the missing value mechanism as the probability
distribution of R conditiénal on Y* = (Y(“’),Y(m)). In the terminology used by

Littlle and Rubin, the missing value mechanism is classified as:
1. completely random if R is independent of both Y(©) and Y™,
2. random if R is independent of Y{™);
3. informative if R is dependent on Y (™),

We will abuse the notation f to denote a probability density (or mass) func-
tion throughout this thesis; the function being referred to will be clear from the con-
text. For likelihood-based inference, the important distinction is between random
é.nd informative missing values. To see this, f (y©,y®™) r), the joint probability

density function (pdf) of (Y©), Y™ R) can be factored as

Fy@ym™r) = fy@,y™f(r | y©),y). (3.1)

For a likelihood-based analysis, we need the joint pdf of the observed random vari-
ables, (Y(©) R), which can be obtained by integrating (3.1) over all possible values

for the unobserved random variables

fo@,r) = / FyPLy ™) f(r | y©), ym)ygy ™, (3.2)
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If the missing value mechanism is random, f(r | y(®,y(™)) is independent

of y(™) and (3.2) becomes

f5@r) = fir|y®) / £, y ™) dym)
= f(r|y®)f®). (3.3)

Taking logarithms in (3.3), the log-likelihood function is

L = logf(r|y®)+logf(y), (3.4)

which can be'max_imized by separate maximization of the two terms on the right-
hand side provided the parameters appearing in f(r | y(®)) and in f(y(®) are dis-
joint. Since the first term contains no information about the distribution of Y(©)
we can ignore it for the purpose of making inferences about Y(®). Because of the
above result, both completely random and random missing value mechanisms are
sometimes referred to as ignorable.. On the other hand, informative missing value
mechanisms are referred to as non-ignorable because such a missing value mechanism

cannot be ignored when making inferences about Y (©). ,

3.2 Types of Drop-outs

We have distinguished between unbalanced data and missing values. Now let us
focus on different types of missing values. Missing values can occur either intermit-
tently or as drop-outs. Suppose we intend to obtain a sequence of n measurements,
say Y1,Ya,..., Yy, on a particular unit. We say that missing values occur as drop-
outs if whenever measurement Y] is missing, so are the measurements, Y}, for all
k > j; otherwise the missing values are intermittent. |

In this thesis, we are particularly interested in studying drop-out mecha-
nisms. Drop-outs are a common phenomenon in longitudinal studies. They typically
arise not as a result of censoring applied to the measurements on the experimental

unit, but because some units prematurely terminate their participation in the study.
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A unit’s withdrawal may be for reasons directly or indirectly connected to the mea-
surement process. Thus, it is of interest to investigate whether the drop-out-process

is related to the measur'ement‘process. Follbwing the Little and Rubin (1987) discus-

sion of the classification of missing value mechanisms, Diggle‘and Kenward (1994)

modified the above definitions slightly to describe drop-out processes as:

(a) Completely Random Drop-out (CRD): if the drop-out mechanism is indepen-

dent of the measurement process;

(b) Random Drop-out (RD): if the drop-out mechanism is independent of the

unobserved measurements, but depends on the observed measurements;

(c) Informative Drop-out (ID): if the drop-out mechanism depends on both the

observed and unobserved measurements.

Both CRD and RD are referred to as ignorable drop-outs, while ID is referred to as
non-ignorable drop-out. |

In next two chapters, we give an overview of the selection modelling approach
for longitudinal binary data subject to non-ignorable non-response. The basic idea
of a selection model is to factor the joint distribution of the measurement variables
and the non-response indicator variables, f(Y*,R), into f(R | Y*)f(Y*), where
F(Y*) is known as the outcome model and f(R | Y*) is known as the drop-out
model. The only distinction between the next two chapters is in the model Ifor the

outcome (or measurement) process.
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Chapter 4

Selection Model

4..1 Baker’s Selection Model for Binary Longitudinal

Data with Informative Non-response

Diggle and Kenward (1994) provided a general methodology for dealing with contin-
uous responses subject to informative, or non-ignorable, drop-outs in a longitudinal
study. Baker (1995) provided a discussion of a related model that accounts for
non-ignorable non-response. The meth;)dology is connected to that presented by
Diggle and Kenward, however Baker’s model is for repeated binary data and the
non-response is allowed to occur in various patterns, not only as drop-outs.

For simplicity, we limit our discussion to repeated binary data collected at
3 time points, as this coincides with the structure of our data set. Our model is
a simplified version of Baker’s model as we are only interested in monotonic non-
response patterns, i.e. drop-outs.

We first introduce the concepts of incomplete (observed) and complete data.
Let ¢ index the time points where measurements are intended to be taken. In this
particular context, ¢ represents the three successive 1-year period measurements that
are to be taken, coded as t = 1,2,3. Let X; denote a vector of covariates at time

t, and denote X = (X}, X%, X}). The vector of random variables for the complete
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(possibly unobserved) data is
(Yl*’ Y2*v Y'El*a Ry, Ry, R3, X)a

where Y;* is the binary outcome variable at time ¢ which takes on values 0 or 1, and
R; is an indicator variable of non-response at time ¢ with sample space {a,p} where
“a” denotes absent and “p” denotes present.‘ The vector of random variables for the

incomplete (observed) data is
(Yl, Y2a Y3a X)a

where Y; has sample space {0,1,a}. The complete and incomplete random variables

are related as follows:

Yy iR =p,
a if Ry =a.

Y. =

There are several approaches for modelling the joint distribution of the com-
plete data, Pr(Yy* = 43,Yy = y3,Yy = y%,R1 = r, Ry = 9, R3 = 73 | X). Baker -
chose to use a selection model in which the joint distribution is factored into
~ the probability of the outcomes multiplied by the probability of the non-response

indicators, given the outcomes; that is,

PI’(R1 =7, Ry = "'2’R3,= T3 | Yl* = yI"YZ* = y;’YS* = y§,X)

x Pr(Y!" = 41,Yy =43,Y5 = 43 |_X)-
Now, denote the outcome model as
Pr(Y =y,Yy =43, Y5 =93 | X) = f*(47,95,93 | ©;0), (4.1)
where @ is a vector of parameters. Also, denote the non-response model as

Pr(Ry =r,Ry=ro, Ry =73 | Y] =9, Yy =45,y =y3,X)

= q(’l"l,’f‘g,’f‘3 | y{ay;aygﬁn;n)’ : (42)
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Table 4.1: All Possible Patterns for Incomplete Data for the Case where 3 Observa-
tions were Intended for Every Unit: x = observed, o = missing.

| Pattern | y1 g2 s |
1 X X X
2 X X o
3 X o X
4 o X X
5 X o o
6 o X o
7 o o X
8 o o o)

where 7 is a vector of parameters. This construction assumes that the parameters
of the outcome and non-response models are distinct (Diggle and Kenward, 1994).
This relates back to the idea of ignorable and non-ignorable drop-out mechanisms
discussed in Chapter 3 (see .p.18). Under RD and CRD, inferences based on the
observed data are valid even though the drop-out mechanism is ignored, but this is
not true for an informative drop-out mechahism.

Table 4.1 displays all the possible realizations of the incomplete data in this
particular scenario, where “x” denotes the measurement is observed and “o” denotes
the measurement is unobserved. Using the outcome and non-response models, we

can write down the probability of these 8 realizations of incomplete data as follows:

@i, v3,u3 | 260)q(p, 0,0 | 41, v5,95, 2; 1), (4.3)

fWivsy3 | 25 0,m) =
1 .
f@hvsaleom) = 30 [£6hus 05 | 28) x alop,a | 9,935,935 25m),
| 7320
(4.4)
_ 1
i a9 | 2:0,m) = Z[f*(yi‘,yS,y§|w;e)xq(p,a,pIyi‘,yé‘,y;’i,w;n)],
y5=0 :

(4.5)




1
fla,ys,u3 | 2:0,m) = > [f*(yi‘,yS,y§ | z;8) x q(a,p,p | yI,yS,yE,w;n)],

*

Y1 =0

(4.6)

1 1 :
fehaal@0m) = 303 £ @i | 20) x a,a,a | vl u5,05, =)

* *

y3=0y3=0

(4.7)

1 1
fla,y5,a | z;0,m) = > Z[f*(yi‘,yé‘,yé‘|w;O)Xq(a,p,aIyi‘,yé‘,yE,w;n)],

y1=0y3;=0

(4.8)

1 1

fla,a,u5 | &;0,m) = > Y [f*(yI,yS,y§ | ©;6) x g(a,a,p | yi‘,yé,y§,w;n)],
y;=0y3=0

(4.9)

1 1 1
faalz6m) = 3 3 3 [F v | =6) xaa,aa | v 555 %m).

(4.10)

| Baker specified the outcome model, f*(yi,y3,y3 | ;0), in terms of a marginal
model which models the marginal probabilities as functions of covariates, and an
association model which models the temporal asSociations, using the idea suggested
by Ekholm (1991, 1992). The non-response model, ¢(r1,72,73 | ¥}, 43,43, ;n), was
modelled by employing a general time-order causal model. With the assumption |
that drop-out does not depend on future events, the time-ordered causal model for -

three time points has the form
q(7‘1,’r‘2,7‘3 | yf7y§»y§,w; 17) =
Pr(R3=r3 | Ry =71,Ry =13, Y] =41,y =43, Ys =y}, x)
X Pr(Rpy=ry | Ry =1, Y = yI,Yz* =y, &)
X Pr(Ry =7 | Y] =yi,2). (4.11)

To complete the specification of the non-response model, Baker modelled

each of these conditional probabilities as a loglstlc regression. Under non-ignorable
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non-response, these logistic regressions involve the unobserved outcomes as well as

the observed outcomes and the covariates.

4.2 Selection Model for Binary Longitudinal Data with

Informative Drop—out

Our main focus is to explore models for incomplete binary responses subject to in-
formative drop-out for our annual data set as described in Section 2.2. The approach
sketched in the previous section can be modified to serve our purpose.

We consider the case where drop-out occurs either at the first, second or
third time point. Our data are then limited to 4 of the 8 possible patterns listed in
Table 4.1: patterns 1, 2, 5 and 8. Patterns 2, 5 and 8 form a monotone pattern of
non-response, and are also known as drop-outs. Following Baker, the probabilities
for these 4 incomplete data patterns are given by equations (4.3), (4.4), (4.7) and
(4.10). In other words, our model is a..simpliﬁéd version of Baker’s more general
selection model.

In the next few subsections, we specify particular forms for the outcome
model, f*(y7,y3,v3 | ©;0), and the drop-out model, q(ri,r2,73 | ¥},¥5,93, ;7).

The likelihood function is then assembled dccording to these models.

4.2.1 Outcome Model

Baker’s outcome model f*(y3, 3,93 | «;0) is specified in terms of two models: a
marginal model (model for the univariate marginal probability) and an associa-
tion model (model for the multivariate probability). There are several approaches
to constructing marginal and association models with binary longitudinai data.
Baker used the parameterization introduced by Ekholm (1991, 1992) which expresses

f*(y1,v5,y3 | ;0) as a linear combination of marginal and association models.

Let & = {B,a}, where 8 = {B,,8,,03} and a = {012, 13, a3, 123}
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are vectors of parameters associated with the marginal and association models,
respectively. We model the ldgit of the marginal probability, Pr(Y;* = 1 | =) for
t = 1,2,3, as a linear function of the covariates. More precisely, if g:(x;8;) =
Pr(Y,* =1 | z), then the marginal model is given by logit{g;(x; 8;)} = X[B,. We
denote the association model as gs(x; ) = Pr(Yy) =1,V = 1 | z), for {s,t} =
{1,2},{1,3},{2,3} and gios(m;a123) = Pr(Y} = 1,Yy = 1,Y3 = 1 | ), where
logit{gst(x; ast)} = X[, 005 and logit{gi23(x; a123)} = X]o30123. The probabilities

for the different possible outcomes can then be expressed as follows:

ff(1,L1 ] 20) = gizs(x; azs),

F(L1,0]2;8) = gia(e; cu2) — gr23(x; 0123),

f(1,0,1 | z;0) = gi3(x;0u3) — g123(x; @123),

F7(1,0,0 [ z;0) = gi(m;81) — gr2(x; r2) — g13(x; 13) + g123(2; 123),
F5(0,1,1 | @;8) = gas(x; 023) — guas(; auros),

f0,1,0 | 2;0) = gao(x;B2) — 912(x; a12) — gos(r; az3) + g123(x; 123),
[70,0,1 | z;0) = g3(w;B3) — gr3(x; 013) — g23(T; @xg3) + g123(x; 123),

£7(0,0,0 | z;0) = 1—gi(x;8;) — 92(z; Bo) — g3(x; B3) + grz(e; aza)
+ g13(®; a13) + go3(x; a23) — gios(T; @r23).

The above probabilities must sum to 1. Further, each of these probabilities must be
bounded between 0 and 1, so that there are many constraints on the parameters.
Note that the parameters in the marginal and association models can be
interpreted as various types of odds ratios. More detailed interpretation of some
of these parameters are provided in Chapter 7 where we discuss the results of the
application of this model to 6ur annual data set. But the parameters in the associa-
tion models do not necessarily have direct interpretation relating to the strength of-
dependence among the responses. In other words, the magnitude of the parameter
estimates may not explicitly reflect whether the responses are positively or nega-

tively associated. Evaluating the correlations among the responses based on this
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model are straightforward, although somewhat tedious.

4.2.2 Drop-out Model

We now conéider the model for the drop-out process. We adopt Baker’s idea for
modelling the drop-out process as presented in (4.11). Let r¢—q = {r1,72,...,7t—1}
denofe the previous pattern of non-response indicators up to time ¢t — 1 and y} =
{v1,v3,...,v; } denote the outcomes up to and including the outcome at time t. Let
71, denote vectors of parameters associated with drop-out at time ¢, where t = 1,2, 3.

Further, denote
hi(re—1,¥¢ | ®;my) = Pr(Re = a | re—1, ¥y, @) (4.12)

and model logit{h;(rs—1,y; | ®;7;)} as a linear function of y} and x. The drop-
out process is ignorable if h;(r¢—1,y:,x;n,) depends only on observed outcomes
and covariates. More specifically, if h¢(r¢—1,yi | z;7,) depends only on covariates,
the drop-out is completely random; that is, the drop-out mechanism is referred
to as CRD. If, on the other hand, h:(r¢—1,y; | «;7,) depends on the observed
outcomes, and perhaps covariates, but not on the unobserved outcomes, the drop-
out mechanism is referred to as random drop-out (RD). The drop-out is informative
if he(r¢—1,y¢ | ©;m,) depends on the unobserved oﬁtcomes, and perhaps the observed
outcomes and covariates as well.

~ Various authors such as Baker and Laird (1988), Fitzmaurice, Laird and Zah-
ner (1996), and Glonek (1999), have drawn attention to the issue of identifiability
for non-ignorablé non-response models. If there are more independent parameters
than available degrees of freedom, a model is clearly not identifiable. But with non-
ignorable non-response, even some models with fewer independent parameters than
availablé degrees of freedom are not identifiable (Baker and Laird, 1988). Baker
(1995) established sufficient conditions for certain non-ignorable non-response mod-

els for three repeated binary outcomes to be identifiable. In particular, for ri_;

equal to {p, p}, {p, a}, {a, p}, or {p}, he considered logistic regressions in which
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the dependence on outcomes is limited to two predictors: yj g, the last observed
response (LOR), and yj R, the last unobserved response (LUR). Models that in-
clude the predictor yj;;p are non-ignorable. The values of yzo g and Y} depend
on the previous patterns of non-response. For r¢_j equal to {a, a}, {a}, and { },
hi(r¢—1,y: | «;m,) depends only on covariates. More details on Baker’s sufficient
conditions is provided in Chapter 6.

For our case, ry_; can take on six patterns: {p, p}, {p, a}, {a, a}, {p}, {a},
and { }. Since the only type of missing responses in our data set corresponds to
drop-outs, we only need to model those h;(r¢—1,y¢ | ;n,) where r¢_; equals {p, p},

{p}, or { }. More precisely, for the cases of drop-outs:
e consider rs:

(i) when r2 = {p, p} = Yjor =¥3, YViyr = ¥3, as in Baker (1995);
(ii) when rz = {p, a} = Pr(R3 = a | i‘z,y;,m) =1;

(iii) when rz = {a, a} = Pr(R3 =a | r2,y},z) = 1.
e consider ry:

(i) whenr1 ={p} = yjor = 41, Yiyr = ¥5, as in Baker (1995);

(ii) whenry = {a} = Pr(Ry = a | r1,y5,2) = 1.

e whenrg = { }, Baker (1995) suggested h1({ },47 | &;n;) should depend only

on the covariates, not on the observed and unobserved outcomes.

As in Baker (1995), we allow the models for hi(r¢—1,y} | z;7m,) when ry_;
equals {p,p} or {p} to be nested within one of the following:

1. Covariates (COV) * LUR [= COV + LUR + COV x LUR]J:

logit[ht(re-1,¥¢ | ;m,)] = 7"+’ 05y + 10k Vivr
+ ' lng(_)%/*LUR yZURa (4-13)
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2. COV + LOR + LUR:

logit[hi(re-1,y3 | @m,)] = 0™ + 2" 0oy + 6k Yior
+ 0k Yivrs (4.14)

3. LOR * LUR [= LOR + LUR + LOR x LUR]:

logit[hs(re—1,yt | Z;m)] = 7™ + 05k Yior + Mok VivR

+ NpoReLur YLOR YLUR: (4.15)

The drop-out model considered in Diggle and Kenward (1994) is a special

case of the model COV + LOR + LUR. They assumed the drop-out mechanism
only depended on LOR and LUR, and that the effects of these two predictors were
the same across different drop-out occasions. Note that the same covariates can

appear in both the drop-out and the outcome models.

4.2.3 Likelihood Function

We assemble these models into an explicit expression for the logarithm of the like-

lihood. Let ny, 4, 45z denote the total number of subjects with outcome ¥, at time

1, yo at time 2, y3 at time 3 and éategorical covariate at level . Further, denote

1 = {n1,M2,M3}. We can then express the.log-likelihood as L(8,n) = S_ L,(8,n),
p ,

where

L.(6,m) = Na,a,0,z 108 f(a,a,a | z;0,m)

1
+ Z Nyr a0,z log f(yi,a,a | z;6,n)
y1=0

1 1
+ Z Z Nyt 30,z log f(yf,yg,a l T; 0,7])
y1=0y5=0 :

1 1 1
+ Z Z Z Nyt y3 3.z log f(y1,v2,%3 | ;60,m), (4.16)

Y71 =0y5=0y3=0
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where the four functions f(y7,y3,%3 | =;0,%), f(v],v3,2| z;0,7n), f(v},a,a | z;6,7),
and f(a,a,a | z;8,n), are specified in (4.3), (4.4), (4.7) and (4.10) respectively.
We obtain the maximum likelihood estimates (MLEs) of the parameters, 8 and
7, by minimizing the negative log-likelihood using a quasi-newton minimization

routine [26].
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Chapter 5

| Transition Model

5.1 Introduction

In this chapter, we model the outcome (or measurement) process using a traﬁsi—
tion model coupled with several models for the drop-out process as described in
Chapter 4. The idea of using a transition model to describe the outcome process
is motivated by Liu, Waternaux and Petkova (1999), who investigated the effect of
human immunodeﬁciency. virus (HIV) status on neurological irﬁpairment on a co-
hort of HIV positive and negative gay men. These subjects were followed for 5 years
and assessed every 6 months. The primary outcome is the presence or absence of
neurological impairment which varies over time. Predictors of outcome include fixed
and time-vafying covariates, such as age at baseline, HIV status, disease progression
and time of assessment. Nearly half of the subjects dropped out before the end of
the study for reasons that might have been related to the missing ﬁeurological data.

Liu et al. (1999) adapted the likelihood-based _approach proposed by Diggle
and Kenward (1994) for the analysis of a Gaussian longitudinal outcome with in-
formative drop-out to analyze these binary longitudinal responses. More precisely,
they assumed a first-order Markov chain transition model for the binary longitudi-

nal responses combined with different logit models for the occurrence of drop-out.
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Transition models are often used for equally-spaced longitudinal data when the in-
terest is in prediction (Diggle and Kenward, 1994), and Liu et al. (1999) proposed
such a model for the outcome process as their interest was in predicting neurological
impairment.

Our data set consists of yearly observations on the presence or absence of ex-
acerbations in MS patients. According to Liu et al. (1999), “In biomedic.al research,
sequences of measurements are often fairly short and, in many cases, a first-order
transition model is reasonable”. Thus in this thesis, we embrace their idea of mod-
elling the repeated binary responses with first-order transition models.

In the next section, we give an overview of the Liu et al. transition model for
the outcome proéess and propose to combine this with Baker’s ideas for modelling
the drop-out process. We then briefly present the general expression of the log-

likelihood under these models to conclude the chapter.

5.2 The Liu et al. Transition Model for Binary Longi-

tudinal Data with Informative Drop-out

In this section, we illustrate the general approach of a first-order transition model.
To keep the discussion simple and consistent with Chapter 4, we assume each subject
~ is followed at three equally-spaced time points.

As in Chapter 4, (Y, Yy, Y3, Ry, Ry, R3,X), is the vector of random vari-
ables for the complete data, and (¥7,Y2,Ys, X) is the’ corresponding set of random
variables for the incomplete data. The relationship between them is: Y; = Y}* if
R, = pand Y; = a if Ry = a. The joint distribution for the complete data is

factored as
Pr(Yy =y1,Yy =45,y =y5,Ri=r,Re =713, R3 =13 | X =1x)

= PI'(Rl = "'1,R2 = T2)R3 =73 | yIay§7y§aw)

X Pr(}/l* = yI7Y2* = y;1Y3* = y; I :D),
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where Pr(Y;" = y},Ys = y3,Yy = y} | ) is known as the outcome model, and
Pr(R; =ri,Ry =1y, R3 =13 | yf,y5,v3, ) is the drop-out model.

~ As for Baker’s selection model, the basic idea is to construct a model for
both the outcome and drop-out processes. These models then specify a model for
the incomplete data. The log-likelihood function is expressed in terms of these

models and a maximum likelihood is employed to estimate the model parameters.

The only difference from the previous chapter is that here we model the outcome

process with transition models.

5.2.1 Outéome Model

Denote H; = {y},...,y{_1} as the responses up to but not including time ¢. The
joint distribution of the equally-spaced outcome variables given the covariates, ie.

Pr(Y* =vi,..., Yy =y} | ), can be decomposed as

Pr(Yl* = y;""’y;* = 'y: I :l:) = Pr(Yt* = y: | Ht’w)
xPr(Yil; = yiy | Hi-1,)
X...xPr(Y{' =yl | @). (5.1)
A transition model of order g > 0 postulates that the conditional distribution

of y}, given the history Hy, depends only on the observations: Yi—gr--->Yi_1- A first-

order (g = 1) transition model for the case of three repeated responses is of form

Pr(Y' =y,Yy = v, Y5 =w3 | @) = Pr(Yy =43 |y5,2)
x Pr(Yy =3 | 41, )
x Pr(Y]" =y | @). (5.2)
Liu et al. (1999) proposed using a first-order transition model for specifying
the joint distribution of an equally-spaced binary outcome process. They employed a

specific model for the conditional probabilities of the binary elements in the complete

outcome vector y* in which the conditional probabilities are assumed to depend only
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on the covariates observed at the immediately previous time point, denoted x¢_1.

The form of the model is

logit{Pr(¥;" =1 | y{_1,@)} = x¢ 181+ Bayi 1, (5.3)

where 81 and [3; are parameters to be estimated. The parameter 3, represents the ’
log odds ratio for presence at time ¢ given presence at time ¢t — 1, against presence
at time £ given absence at time ¢ — 1.

At first glance, the assumed form of dependence on the covariates seems a
bit peculiar since the covariates measured at time ¢ should have a stronger influence
on the response y; than the covariates measured at time ¢ — 1. However, they
noted that in most biomedical studies, there will be no information available after
a subject drops out of the study; that is, if y} is not observed, then x; would not be
observed either. They chose to overcome this (potential) data limitation problem
by the aforementioned approach.

In summary, the outcome model is specified in terms of conditional distribu-
tion of yf with the assumption that it depends only on y;_, and x¢_3. The structure
of the associations among the responses is more restricted than in Baker’s selection
model in that this model assumes the association between Y7* and Y5 to be the same

as the association between Yy* and Y5*.

5.2.2 Drop-out Model

Similarly, the drop-out model Pr(R; = r1, Ry = ro, R3 = r3 | y},y3, y3, T) is specified
in terms of Ry given (r¢-1, Hy,y;, x) for t = 2,3 as in Chapter 4. Liu et al. (1999)

modelled these conditional probabilities as:

logit{he(re—1, He,y7 | @m)} = mo +muyiy + moyt. (5.4)

This is a special case of (4.13) and (4.14) in which the drop-out mechanism is’
assumed to be independent of the covariates and the parameters in the logistic

regressions are the same regardless of ry_;. In their data set, the first observation
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was always observed, so they did not need to consider drop-out models for the
case where r¢_; equals {a} or { }. But for our purposes, the drop-out probability
with ry_; equals {a} is always 1 . For the case where r¢_; equals { }, we model
he({ },¥7 | ©,7m,) according to Baker’s '(1995) suggestion; that is, this probability

should depend only on the baseline covariates, not on the outcome measurements.

5.2.3 Likelihood Function

The general expression of the log-likelihood is the same as (4.15). Similarly, the four
models for the incomplete data, f(y},y5,v3), f(y},v5,a), f(¥},a,a) and f(a,a,a)
have the forms (4.3), (4.4), (4.7) and (4.10) respectively, which are specified in terms
of the models described in the previous two subsections. Liu et al. (1999) used the
'S-PLUS function ms to obtain the maximum likelihood estimates (MLE) for the
parameters in their problem. As in Chapter 4, we use a quasi-newton minimization
routine to obtain the MLEs for 8 and 7.

In the next chapter, we discuss potential identifiability problems in non-
ignorable non-response models for incomplete binary data before proceeding to use
~ the Baker’s selection model and the Liu et al. transition model to analyze our annual

data in Chapter 7.
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Chapter 6 |

Identifiability in Models for

Incomplete Binary Data

6.1 Introduction

Analyses based on an assumption of ignorable non-response when the non-response
mechanism is informative (or non-ignorable) can lead to misleading or biased results.

Thus in the past decade, various authors have developed models for continuous

* and categorical response data subject to non-ignorable non-response. In particu-

lar, likelihood-based analyses have been widely employed since there is a choice of
whether or not to introdure an explicit model for the non-response mechanism. Lit-
tle and Rubin (1987) noted that, by incorporating a model for non;response in a
likelihood-based approach, valid inferences can be obtaihed when the non-response
mechanism is non-ignorable provided the non-response model correctly represents
the non-response mechanism. Most of these papers have emphasized the formu-
lation and implementation of those models. However, it has been observed that
such models present certain analytical difficulties. In particular, it can happen that
the parameters of the non-ignorable models are not identifiable or the maximum

likelihood solutions can lie on the boundary of the parameter space.
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Baker and Laird (1988) drew attention to the issue of boundary solutions to
the maximum likelihood equations in a non-longitudinal setting. They illustrated
this issue with the pre-election data from four successive Roper polls carried out to
predict the proportion of voters preferring Truman in the 1948 presidential election.
The four variables used in their analyses were time of survey (X7 = July, August,
September, October), economic class of voter (Xg = A, B, C, D), voter preference
(Y = Truman, Dewey, other), and expression of preference (R = yes, no). They
employed two different log-linear models to describe the related regressions: the
marginal outcome model for the X7 XgY margin (a 4 x 4 x 3 array) which describes
the regression of Y on X1 and Xg, and the non-response model for the full contin-
gency table X7 XgY R, which describes the regression of R on X1, X E,. and Y. For
this framework, they showed that with non-ignorable non-response Iﬁodels, over-
parameterized and saturated models may not yield a perfect fit and the likelihood
equations can be satisfied by boundary values even when all observed counts are
strictly positive.

As discussed in Chapter 4, Baker (1995) used a selection model to analyze
data from the Muscatine Risk Factor 'Study to investigate the effects of gender
and age on obesity in schoolchildren who ranged between ages of 5 and 13- years. In
these data, each child was intended to have three binary responses at 2-year intervals
indicating whether or not they were obese at that point in time. However, there
wés a substantial amount of non-response due to no consent from the parents or
the child not being in school on the day of the examination. In this special setting,
Baker (1995) obtained sufficient conditions for non-ignorable non-response models
to be identifiable. Following Baker’s ideas, we establish sufficient conditions for
non-ignorable drop-out models to be identifiable in the last section of this chapter.

For the context of models for incomplete multivariate binary data, Fitzmau-
rice et al. (1996) suggested some simple procedures for examining local and global

identifiability in models with non-ignorable non-response. A summary of this por-
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tion of that paper is given in the following section. Mqre recently, Glonek (1-999)
formulated the specific application considered in Section 3 of Fitzmaurice et al.
(1996) in a somewhat more general fashion to discuss the identifiability issue for
rﬂodels for incomplete binary data. He derived necessary and sufficient conditions
for certain simple non-ignorable non-response modelsl(including some of the models
considered by Fitzmaurice et al. for their application) to be identifiable. His results
show that these models are identifiable except at a set of special parameter values
where the conditions fail to hold.

The consideration of model identifiability is an issue that should be resolved
prior to estimation, because it does no.t make sense to attempt intérpretation of
an estimate of a parameter that is not statistically identifiable. In Section 6.2, we
describe the procedures suggested by Fitzmaurice et al. (1996) for checking model
identifiability. We also describe the necessary and sufficient conditions obtained by
Glonek (1999) and the implications of these results for Fitzmaurice et al.’s suggested
approaches to examining the identifiability of non-ignorable non-response models.
Baker’s (1995) development of sufficient conditions for the identifiability of certain

non-ignorable non-response models for the case where the data consist of three

-repeated binary responses with all possible patterns of non-response is briefly sum-

marized in Section 6.3. We conclude this chapter by applying Baker’s ideas to the
special situation of interest here of models corresponding to monotone non-response

patterns.

6.2 Discussion in Fitzmaurice et al. (1996) and Glonek

(1999)

Fitzmaurice et al. (1996) proposed a likelihood-based regression model for ana-
lyzing incomplete multivariate binary responses based on the multivariate binary

model proposed by Fitzmaurice and Laird (1993). The latter model is extended to
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accommodate incomplete data by assuming a logistic model for the non-response
mechanism which depends on covariates and on both the observed and unobserved
responses. This idea is motivated by Diggle and Kenward (1994) and Molenberghs,
| Kenward, and Lesaffre (1997). Throug-hout Fitzmaurice et al. (1996), monotone
non-response is assumed.

Various authors have pointed out that the identifiability is an important yet
unresolved issue in non-ignorable non-response models. As Fitzmaurice et al. (1996)
stated, “So far, no general and practically useful necessary and sufficient conditions
for identifiability are available”. Fitzmaurice et al. (1996) suggested some simple
procedures for examining the identifiability status of non-ignorable models for the
case of discrete response variables; these are described in the next subsection. The
following subsection describes Glonek’s results and the implications of those resulté

for the procedures suggested by Fitzmaurice et al. (1996).

6.2.1 Fitzmaurice et al.’s Suggested Procedures

Fitzmaurice et al. (1996) indicate what they mean by a non-identifiable model. | Con-
sider a non-ignorable model with parameters (0, 1), where 8 and 7 are the vectors of
parameters associated with the outcome model and the non-response model respec-
tively. If it is the case that there are distinct parameter vectors (8o,n¢) # (61,1;)

such that

f(yoiari | 00a"70) = f(yoi'a r; I 01,”71)

for all y,; (the vector of observed responses for the i-th subject) and r; (the vector of
response indicators for the i-th subject), then L(8y,n,) = L(61,7n;) and the model
is not statistically identifiable. Showing algebraically that all of the parameters in
non-ignorable models are identifiable is not trivial (Fitzmaurice et al., 1996). If
“there are more parameters to bAe estimated than available degrees of freedom in

the data, the model is clearly not identifiable. But having no more parameters to
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be estimated than the available degrees of freedom is not sufficient to guarantee
identifiability for non-ignorable non—responsevmodels (Baker and Laird, 1988).
Fitzmaurice et al. (1996) suggested some simple procedures for efcamining
the identifiability of non-ignorable non-response models. Since local identifiability
(the model is identifiable in a subspace of the entire parameter space) is a necessary
condition for a model to be globally identifiable (the model is identifiable through-
out the entire parameter space), a first step is to examine the local identifiability
status of the model by checking that the Fisher information matrix is nonsingular.
Rothenberg (1971) has shown that, subject to certain regularity conditions, if the
Fisher information matrix is nonsingular, then the model is locally identifiable. This
idea of using the Fisher inforrhation matrix to determine the identifiability status

of a model was described in the context of latent class models by Goodman (1974).

e Checking for Local Identifiability

Fitzmaurice et al. (1996) suggested selecting a reasonable set of parameter values for
(0, n) and evaluating the Fisher information matrix at this particular set of parame-
ter values. This can be accomplished by taking the expectation of the outer-product
 of the score equations, summing all the possible realizations weighted by their re-
spective probabilities. In other words, for each possible realization of (Y;, Ry, X5),
calculate the sample covariance matrix of the scores and weight these contributions
by their respective joint probabilities. By summing over all possible realizations, the
Fisher information matrix is obtained. The information matrix can then be checked

to see whether it is nonsingular at this set of parameter values.

o Checking for Global Identifiability

Having established local identifiability, Fitzmaurice et al. (1996) recommend assess-

ing global identifiability with the following procedure:

1. Select a set of reasonable values for the parameters (6, n) (e.g. the estimated

values) and use them to generate an artificial sample comprising one observa-
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tion for each possible realization of (Y;, R, Xj).

2. Solve for (8, 7) from the likelihood equations obtained by weighting the con-

tribution for each possible realization by its respective probability.

If the resulting estimate (8, /) does not equal (8, 1), then the model is not globally
identifiable, and those parameters that give a different value are ﬁot statistical
identifiable. If the estimate (8, 7)) equals (8, n) for a whole grid of reasonable
values for (6, n), then the model is most likely identifiable (Fitzmaurice et al.,
1996).

Fitzmaurice et al. (1996) provide a simple example intended to show that the
model identifiability problem exists even when the number of parameters is no more
than the available degrees of freedom from the data. For the i-th patient there are
two binary responses, Y;; and Y2, and a dichotomous covariate, X;. Y;; is always
observed but Y5 is subject to missingness. Thus for each value of X;, there are 6
possible outcomes for (Y;1, Yi2): (0,0),(0,1),(0,a),(1,0),(1,1),(1,a). Consequently,
the observed data have 10 degrees of freedom, 5 for each of the two possible values |
of X;.

The outcome model they considered is not fully saturated and they also con-
sidered several non-ignorable non-response models. More specifically, the outcome
model consists of two parts: a marginal model (for the means of the responses) and

an association model. The (unrestricted) marginal model is parametrized as
logit{E(Y;;)} = Boj + B Xi;

for j = 1,2, but the association between Y;; and Y}, is assumed to be constant
across X;, i.e. the conditional log odds ratios are assumed to be constant across X;.
- Thus, the outcome model involves 5 parameters. This outcome model is coupled

with 8 non-ignorable non-response models having at most 5 parameters. With R;,
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denoting the response indicator for Y;2, these models are:

1. logit{Pr(Riz =p)} = mno+mYie

2. logit{Pr(Riz = p)} = mno+mX;:+nYiz
3. logit{Pr(Ria =p)} = mo+mYi +mVYi

5. logit{Pr =p)} = no+mXi+nYa +n3Y

(R
(R
(R
4. logit{Pr(Riz =p)} = no+mX;+mnYi +mX; x Y
(R
6. 10é;it{Pr(Rzz =p)} = mo+mYa+nYe +mYa x Yy
7. logit{Pr(Rio =p)} = mo+mX;+mYa +n3Yio +mXi x Vi
( )

8. logit{Pr(Rix=p)} = mo+mX;+mYa +n3Yi +mX; x Yip.

Based on the use of their suggés’ced procedures, Fitzmaurice et al. (1996)
claimed that only three of these eight non-response models (Models 1, 2, and 4) are
statistically identifiable. However, they do ﬁot indicate how they selected reasonable
sets of values for the parameters and how many sets they checked to reach their

conclusions.

6.2.2 Glonek’s Necessary and Sufficient Conditions

Glonek (1999) attacks the model identifiability problem from a different point of
view. He formulated the problem considered in Fitzmaurice et al. (1996) in a more
general fashion to address the issue of identifiability. Two binary‘ responses, Y7 and
Y5, and a categorical covariate X with I levels are considered. Only Y3 is subject to
non-response and R is the response indicator for Y3 (R2 = p if Y5 is observed and
R, = a otherwise).

~ The outcome model is denoted as
mjrk = Pr(Yi=4Yo=k| X =1)
for j,k = 0,1. The non-response model is denoted as

pije = Pr(Rp=p|V1=35Ys=kX =1).
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Thus, the observations corresponding to the i-th level of the covariate X are multi-

nomial across six cells with probabilities

Gijk = TijkPijk = PI‘(Yl = J,Yz = k,bOth responses observed | X = ’L)

Oijx = mijo(1 — pijo) +'7Tij‘-1(1 —pij1) = Pr(Y1 =3,Y2 unobserved | X =1). -

The simple example used by Fitzmaurice et al. (1996) to illustrate their suggested
procedures for checking model identifiability is of this form. As described in the
previous subsection, for the case of a binary covariate (I = 2), they considered a
restricted model for 7ijk involving no three-factor interaction and eight different
models for p; .

Combined with an unrestricted model for 7;;;, Glonek (1999) considered

homogeneous non-response models of two forms:

\

Pijk = Piks (6.1)
and‘

Pijk = Pik- . : (6.2)

In the first of these models, the probabil.ity of response is independent of the covari-
ate, while in the second, the probability of response does not depend on the first
response variable. Non-response models 1, 3 and 6 of Fitzmaurice et al. (1996) are
of the first form, whereas models 1, 2, aﬁd 4 are of the second form; models 5, 7,
and 8 are of more general forms.

For the case I = 2 with non—respénse model (6.1), Glonek showed that the

condition
Pr(p=1|¥1=j,X=1) # Pr(Ya=1|Y1=4,X=2) (63

for j = 0,1, is necessary and sufficient for the parameters of the model to be identi-
fied. The condition (6.3) would generally be satisfied, even under the restriction of

no three-factor interaction incorporated into the Fitzmaurice et al. (1996) outcome
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model. However, the restriction does not imply the condition (6.3); the condition
could fail to hold for specific values of the parameters. Hence, their outcome model
combined with any of their non-ignorable non-response models 1, 3, and 6 is iden-
tifiable except at those special values of the parameters where (6.3) fails to hold.
Similarly for the ca,se’I = 2 with ndn—responée model (6.2), a necessary and

sufficient condition for the parameters of the model to be identified is
Pr(Y2=1|Y1=0,X=1i) # Pr(Ya=1|Y1=1,X =1) (6.4)

for « = 1,2. The proof is provided in Appendix A. Again, even under the restric-
tion of no three-factor interaction in the outcome model, the condition (6.4) would
-generally be satisfied. But the restriction does not imply the condition. Hence, the
Fitzmaurice et al. (1996) outcome modeél combined with any of their non-ignorable
non-response models 1, 2 and 4 is identifiable except at those special values of the
parameters where (6.4) fails to hold. '

Contrary to the conclusions of Fitzmaurice et al. (1996), Glonek was able to
establish that with these homogeneous non-response models, the Fitzmaurice et al.
models 1, 2, 3, 4 and 6 for this simple example are identifiable except at a set of
special values of the parameters. (He did not address the issue for the Fitzmaurice et
al. non-response models 5, 7 aﬁd 8.) Thus, Glonek established that the identifiability
status of thesé models depends on the particular values of the parameters.

Glonek also provided a simple example with a non-homogeneous non-response
model where this phenomenon occurs. This is problematic for inference since it may

‘happen for a particular set of data that the maximum likelihood estimates are well-
defined in the sense that the parameters are identified while, in fact, the true values
of the parameters that generated the data are not. In such cases, it is clear that
local calculations performed at the MLE will not bring to light this underlying
non-identifiability. This phenomenon is different from the structural type of non-
identifiability that would lead to rank deficiency in the Fisher information matrix,

as considered by Fitzmaurice et al. (1996). Hence, the procedures suggested by
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Fitzmaurice et al. (1996) are not adequate to resolve the issue of identifiability.

Our annual data setting is slightly different from the problem Glonek consid-
ered. We have three binary responses, Y1, Ys, Y3, and all are subject to non-responée. ‘
The derivation of the necessary and sufficient conditions for the identifiability of non-
ignorable non-response models following Glonek’s ideas appears to be much more
complicated in our setting. A

However, - we were able to establish sufficient conditions for certain non-
ignorable models to be identified in our setting, by following the ideas illustrated
in Baker (1995). We briefly describe Baker’s ideas in the next section and conclude

this chapter with a description of the sufficient conditions we established.

6.3 Discussion of Model Identifiability for Incomplete
Binary Responses in Baker (1995)

In Chapter 4, we described Baker’s selection model for three repéated binary re-
sponses. He pointed out that all models with ignorable non-response are identifiable,
but identifiability becomes a concern with non-ignorable non-response models. To
restrict his models to those that are identifiable, he introduced two predictors for
the non-response model: yjp, the last observed response (LOR), and y} g, the
last unobserved response (LUR). Non-response models that include the predictor
YLy g are non-ignorable. ‘

Recall that Baker modelled Pr(R; = r1,Ry = ry, R3 = 13 | ¥},95,v3, ) in
terms of conditional probabilities assuming the non-response does not depend on

future events; that is,
Pr(Ry =7r1,Ro =10, R3 =713 | 41,¥5,¥3, &) =
P(R3=r13| Ri=r1,Re=19,Y] = LYy =y5,Ys = Y3, )
X P(R2 =T2 | Ry = T‘1,>Y1* = yIaY; = y;7w)

X P(Rl =n | Yl* = y{,w). ‘ (65)
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Each of these conditional probabilities is modelled as a logistic regression that de-
pends on y7,p and y7p. The values of these predictors are determined by the
previous observation pattern, r;_; = {ry,ro,...,7-1}. He claimed that the non-

ignorable non-response models are identifiable if the following conditions are satis-

fied:

A. When 7r;_; equals {a,a}, {a}, or { }, the corresponding conditional non-

response probabilities should depend only on covariates.

B. When r;_; equals {p, p}, {p,a}, {a,p}, or {p}, the non-response models should

be nested within one of the following three types:

(a) COV * LUR;
(b) COV + LOR + LUR;

(c) LOR * LUR.

~Baker allowed the model parameters to differ for each of the previous observation
patterns. Some of the details of the verification of identifiability are presented in
the appendix of his paper.

Our situation is slightly different from that Baker considered. He had 7
non-response history patterns to consider, i.e. {p,p}, {p,a}, {a,p}, {a,2}, {p}, {a},
and { }. Since the non-response in our data set is monotonic, we need to consider
only three different non-response history patterns: {p,p}, {p}, and { }. In the
following section, we present verifications of the identifiability of the non-ignorable

non-response models considered in our context.

6.4 Discussion of Model Identifiability

Our data set is a special case of Baker’s general data structure as we have only
monotone non-responses, i.e. drop-outs. In particular, we have four monotone non-

response patterns to consider: {-p7 b, p}7 {pa b, a’}a {pa a, 3.}, and {a'a a, a'}' Recall that
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0 = {B,a} and 7 = {n1,m2,n3}. As in Chapter 4, we model the incomplete data

in terms of the product of the outcome model,

Pr(Yl* = yI,YZ* = ySaYB* = y; | X) = f*(yf7y;vy§ | :n;B),
and the drop-out model,
Pr(Ri=ri,Ry =19, Ra = | Y] = 4, Yy =43, Y35 = 43,X)
= q(T1,T2,7"3 I Z/I,y;,y;,wan),

where q(r1,72,73 | ¥}, 3,3, T; 1) is specified as in (6.5). Recall also that y; denotes
the outcomes up to and including occasion ¢ and ry_; denotes the non-response
history prior to time t. The three conditional non-response probabilities are denoted

as follows:

Pr(R3 =a|r2 ={p,p},y¥3.2) = hs({p,p},¥3 | ;n3)
Pr(R; =a|r1 = {p},y3,2) = hao({p},¥3 | z;7m,)

Pr(Ri=alro={}yio) = h({ },yilaim).

Consequently, the drop-out models for the four monotone non-response patterns are

ao.p,p | Yo mn) = [1—hs({p,phys | 2;m3)]1 — ha({D},¥3 | 5m0)]
| x[1 = hi({ 1,1 | @my)]
q(p,palyz.zn) = hs({p,p}y3 | i n3)l — ha({P},¥5 | ;1))

X[1=hi({ },y1 | &m)]
g(p,a,a | y1,z;n) = ha({p},y3 | & ma)[1 — hi({ },yi | z;my)]

q(a,a,a | x;m) = hi({ },yi | zm).
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For the case of categorical covariates, the kernel of the log-likelihood function is

L(6,m) = 3_ L(6,7), where

1 1 1

L6,m) = Y > ny;,y;,y;,mIOg{f*(yI,yS,yE | 2,0)[1 — hs({p, P}, ¥} | 7;73)]

y;=0y5=0y3=0
L= o}y | smolll — A({ hyi | zim0)])

1 1 1 :
+ Z Z ny;,ya,a,z lOg{ Z f*(yI,ySayl’; | m')o)hﬁl({paI)}7y.’.='.’. I 93;773)
y1=0y3=0 y3=0

x L= ha({p},¥3 | mimIIL = ha({ 1,5 | z3m)] )

1 1 1 .
+ D Miaaclog{ 3 3 £l 95,05 | 5,0)ha({p},¥5 | 737m5)

yi‘:O i y;:Oy;:O
x [t =m({ by | zm)l}
11 1 ‘
+ nocaslog{ Y D Y £ whunvi | 5 0m{ byi lmm) )

» *

y1=0y5=0y3;=0
(6.6)

In the following subsections, we discuss the identifiability of the drop-out
models by verifying whether the conditional probabilities h3({p,p},¥5 | =;13),
ho({p},¥5 | z;m2) and hi({ },y} | z;m;) are identifiable under the conditions de-
scribed in the previous section. That is, h3({p,p},y3 | z;73) could‘ depend on y3,
y5 and z, while ho({p},y5 | z;7,) could depend on y}, y5 as well as z. However,

hi({ },¥3 | z;m) is allowed to depend 6nly on .

6.4.1 Identifiability of hs({p,p},y3 | z;n;)

The contribution of h3({p,p},¥3 | z;73) to L;(8,7) is given by
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1 1 1

>0 Y myasanalog{ 1wl u3 v3 | 201 — ha({p, B} ¥ | 5my)

* *

y1=0y5=0y3=0
x [1=ha({P}h,¥3 | msmo)ll — ha({ 1yt | wsm)]}
1 1 1
+ ) nyrgsae log{ >t vs, 3 | 2, 0)hs({p,p},v3 | 75m3)
yi=0y3=0 y3=0

x [1 - ho({p},¥3 | mim)lll = b ({ bovi [ msm)]}  (6.7)

To simplify the notation, substitute i for y7, j for y3 and k for y; and denote

ny; 35T = Myijk and ny; Y3z — Weij- We further define

pzijk = f Wi, v3,v3 | 2, 0)[1 — hs({p,p},¥5 | z;73)]

x [1= ho({p},¥3 | 5m2)) [1 = ha({ }, ¥} | %))
boir = hs({p, P}, ¥3 | z;7m5)
“k 1 - h3({p,p},¥5 | z;m3)’

where the notation reflects that h3({p,p},y3 | z;73) does not depend upon y}.

Then (6.7) can be re-expressed as:

1 1 1
Z Z Z Myijk log Pzijk + Z Z Weij IOg{Z pxz]k¢z]k}
k=0

=0 j=0 i=0 j=0
This is identical to the log-likelihood for a contingency table {mmjk} with a supple-
mentary margin {wg;;} corrésponding to cases where k was not observed. Therefore,
the expected cell counts for mm]k and Wgij are figijk = Prijk(Mottt + wz++) and

) Z 'u'm]kqsw]ka respectlvely
~ We address the identifiability of hs({p,p},¥3% | z;n3) for the three specific
forms of non-response models introduced by Baker (1995). In each case, a saturated

outcome model is assumed.

. COV * LUR

‘This model has ¢,;; = ¢gk, implying two distinct parameters for each level of z.

54



1
A perfect fit requires pgijx = Mgk and wg; = S Mzijk $zk- Hence, we require
' k=0 .
1

Wgij =D Mgijkdzk- Thus, for each level of z, we have four equations in the two
k=0
unknowns, ¢;o and ¢;1. The parameters are overdetermined even if z has only one

level. Hence, h3({p,p},¥3 | =;n3) is identifiable under this specification.

e COV + LOR + LUR

In this model, we can represent ¢k = ¢5 ¢; Py. If we denote

$111 = ¢, d110 = & bk, b101 = ¢ b7y br00 = Pu ¢K.’
then if z has only 2 levels, we can write
bors = & bx, ba10 = § bx brr b1 =  bx b1, bovo = & bx b1 Dk

1
A perfect fit requires wzi; = Y MgijkdePjdk. For £ = 1 (level 1), we have the
k=0 :

following equations:

wiir = mun ¢ +mie ¢ ok (6.8)
wilo = M1 ¢ $J + Moo ¢ b5 Pk (6.9)
wior = mio11 P+ Miowo ¢ Pk (6.10)
‘wie = Mmoo ¢ s+ Moo by b (6.11)

We can solve the two linear equations (6.8) and (6.10) for the two unknowns ¢ and
¢k . Substituting these solutions into (6.9) and (6.11) yields two equations for ¢;

and thus ¢, is overdetermined. The equation:

w11 = ma ¢ ¢x +maio ¢ dx dk,

then yields a value for ¢x. Indeed, each of the wy;; equations yields an equation for
Px-
If z has more than 2 levels, we would write ¢ as ¢ for the first level, ¢x .

as ¢¥ for the second level, etc. In other words, there is one parameter for each
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level of = and these parameters can all be identified. Thus, this specification for

h3({p,p},¥5 | z;7m3) is identifiable.

. LOR * LUR
This model has ¢;jr = ¢;i as there is no dependence on the covariate z. Thus,
there are only four parameters for all the levels of . As before, a perfect fit re-

1
quires wgi; = D MgijkP;x Which represents four linear equations in the same four

k=0
unknowns for each level of z. Hence, hs({p,p},y% | z;7m3) is also identifiable under
" this parameterization. - _
In summary, h3({p,p},¥3 | z;n3) can be identified if its form is one of the

three types considered above.

- 6.4.2 Identifiability of hy({p},¥5 | z;7,)

The verification of the identifiability of ha({p},y% | z;7m,) is similar to that for
hs({p,p},¥% | z;m3). In addition to the notation from the previous subsection,
denote v,; = Nyt 0,0,z and

ho({p}, ¥3 | z3m2)
1= ho({p},¥3 | 23m3) ,
The contribution of hy({p},¥3 | z;1,) to L;(8,7) in (6.6) can be expressed\ as:

1 1 1
Z Z Z Myijk log Pzijk + Z Z Weij lOg{Z pm]k¢:c1k}

’L=0 7=0 k=0 =0 j=0
1

1 .
+ZU“ IOg{ZZngk[l + ¢zgk]'7zzg} (6.12)

7=0 k=0

Yzij =

This is identical to the log-likelihood function for a contingency table {m;;x} with
two supplementary margins, namely {wg;;} (where k was not observed) and {v;}

(where neither of j and k were observed). Therefore, the expected cell counts for

Mgijk, Weij aNd Vg are figijk = Prijk(Mayit + Woiq + Vzy), Z sz]k¢zjk and

1 1.
EO >~ beijk(l + Gzjk)Vaij, Tespectively.
i=0k=0
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e COV * LUR
This model has ¢zjx = ¢z and 'yw = 7g5. A perfect fit requires pzijx = mgiji,

Waij = E Pzijk Pk and vy = Z Z bzijk(1 + ¢zk)vzj. Hence, we require

k=0 _j:Ok:[)
1
Wgij = Zmzijk¢zka ’ (6.13)
and
1 1 '
Vpi = ZZmzijk(l-i-(f)zk)’)’zj. (614)
§=0 k=0 .

For a fixed level of z, (6.13) represents four linear equations in the two unknowns,
¢z0 and ¢4, indicating these are overdetermined. With solutions for ¢,¢ and ¢.1,
(6.14) represents two linear equations in the two unknowns, 7z and 7,;. Thus,

ho({p},¥5 | z;n,) is identifiable under this model.

e COV + LOR + LUR

In this model, wé can represent @gjx = ¢z ¢; dx and vzi; = ¥z ¥ ;. The equations

for ¢y ;i are lidentical to the earlier case for this model and so are identifiable provided

the covariate takes on at least two levels. It remains to show that the parameters
' 7Ygij can also be identified. |

The equations for v,; are

Vi =

1
Zmzzjk 1 + ¢zgk)'7z Yi ’YJ
k=0

|
.
— 1|MH
o

= Yo Yi V5 Muij, (6.15)
0

.
Il

where Mgij = 3 mgiji(1 + @gjx) is treated as known since solutions for the ¢’s
k=0
exist. Suppose z has 2 levels. Using the same representation for v;;; as was used
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for ¢ ;i earlier, these equations become

vio = Moo v v1 Y7 + Mion 7 71, (6.16)
vii = Moy v+ M, (6.17)
v2o = Maoo v vx V1 Y7 + Mao1 v ¥x V1, (6.18)
var = Mooy vx ¥ + Mo v vx. (6.19)

Taking the ratio of (6.18) to (6.16) to eliminate vy v; and of (6.19) to (6.17) to
eliminate v leads to two equations in yx and v from which vx is easily eliminated.

This leads to a quadratic equation in vy; that is, A 73 + B v5 + C =0, where

A = MigoMao — vorM110Mago
= (M1 M210 + M211 Mioo) — vor(Mi11 Moo + Moo M119)

C = MM —vorMa2o Min
v10/v11
VoR = ——.
v20/v21
A perfect fit requires real roots, or B2 — 4AC > 0. Thus, hao({p},¥5 | z;m3) is .
identifiable under this model provided the covariate takes on at least two levels and

the equation B? — 4AC > 0 is satisfied.

¢ LOR * LUR |
This model has ¢gjx = ¢;r and ~yz;; = 7;;. Thus, there are 4 distinct parameters
of each type for all the levels of z. These 8 parameters can be identified from the

equations for a perfect fit:

1 . S
Woij = Y Maijebik, (6.20)
k=0
and
101 4
Vgi = szxijk(1+¢jk)’)’ij- (6.21)
7=0 k;O
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For each z, (6.20) corresponds to 4 lin-ear equations in the same 4 unknowns as
in the verification for h3({p,p},y¥% | Z;7m3). Substituting these solutions for the
¢’s into (6..21) leads to 2 linear equations in the same 4 unknowns for ‘each z.
The 4 +;; parameters are. determined as long as z has 2 or more levels. Hence,

hao({p},¥3 | z;n,) is identifiable provided the covariate = has 2 or more levels.

6.4.3 Identifiability of h({ },y} | z;m,)

In addition to the notation from the previous subsection, denote z; = n4 4 4, and
o _ _mhyilzm)
T — * .
1-h({ byl [ z5m)
The contribution of hi({ },y} | z;7,) to L(@,7n) can then be expressed as:
11 1

Z Z Z Mzijk log Pzijk + Z Z Weij IOg{Z pxz]k¢wjk}

y7=0y5;=0y3=0 y1=0 yz =0

(6.22)

1

+ Z Ugi log{ Z Pijk(l + ¢zgk)7mj}
H

1 1 1

+2,108{ D" 3" D paigi(l + daje) (1 + Yaig)s }- (6.23)

* - *

Y1 =0 Y =0 Y3 =0

A perfect fit requires

Wgij = meijkd)zjk, (6.24)
k=0
11
DD Maik(l + Grje) Vais (6.25)
§=0 k=0
and
1 1 1
Z Z Z m:z:ijk(l + ¢:cjk)(1 + ’Y:l:ij)‘s:c- _ ~ (6.26)
y1=0y5;=0y3=0
e COV * LUR

This implies @yjk = ¢z and yzij = 7z, while the equations (6.19) for wy;; and
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(6.20) for v,; are the same as before. The argument in the previous subsections
shows that the ¢zx and 7y;; are identified. With these solutions, (6.21) becomes a
single equation in one unknown, namely &,. Thus, &, is also identified. In other

words, h1({ },¥% | z;7;) is identifiable.

¢ COV + LOR + LUR

In this model, we can represent ¢, = gbz @i ¢ and vz = ¥z ¥ vj- The argument
for the identifiability of the ¢ and ~ par.ameters is identical to that in the previous .
subsection. Additionally, we have a ¢, parameter for each level of z in (6.21). In
other words, there exists a solution for J; provided the solutions for the ¢ and v

parameters exist. Hence, h1({ },y] | z;7,) is identifiable.

e LOR * LUR

This model implies ¢zjx = Pj (4 parameters for all levels of ), v4i; = v; (4
parameters for all levels of z) and 6, = § (1 parameter for all levels of ). The
argument for the identifiability of t.he ¢ and vy parameters is agaih identical to that
in the previous subsection. The additional parameter, 6, can be determined from

(6.21) provided solutions exist for the ¢ and y parameters. Hence, h;({ },¥3% | z;7,)
is 'identiﬁable. | '

Thus, we have shown that, when coupled with a saturated outcome model,
the parameters in the drop-out models of the three forms suggested by Baker (1995)
are identifiable. Notice. that we only consider the case where the covariates are
categorical. In the next chapfer, we analyze our annual data set with the models

mentioned in the previous chapters.
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Chapter 7
Application to the Data

7.1 Introduction

In this chapter, we implement the selection model approach for our annual MS data

as described in Chapter 2. Recall our study questions of interest are:

e to investigate the most appropriate form of drop-out model for our annual data
(in particular, to explore whether the data provide evidence of informative

drop-out);

e to assess the sensitivity of inferences concerning the treatment effects (and

other covariate effects) to the form of drop-out model employed;
e to explore the influence of baseline covariates.

Recall that the basic idea of a selection model is to factor the joint distri-
bution for the response variables (Y') and the indicator variables corresponding to

- whether or not the response variables are observed (R) as follows:

fY,R) =.fR|Y)f(Y). (7.1)

Thus, the selection model approach involves the specification of a model for the out-

comes, f(Y), and for the drop-out pattern conditional on the outcomes, f(R | Y).
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The outline of this chapter is as follows: Section 7.2 considers a simple struc-
ture for Baker’s selection model where only treatment group and time are 1ncluded as
covariates in the outcome model. This outcome model is coupled with a LOR+ LUR
type of drop-out model. In Section 7.3, we consider three more general model spec-
ifications for the drop-out process in conjunction with the same outcome model:
COV * LUR, COV + LOR + LUR, and LOR * LUR. We extend this simple model
by incorporating other baseline covariates described in Section 2.2.3 into the outcome
model in Section 7.4. The latter two sections can be v1ewed as further explorations
of Baker’s selection model. We conclude the chapter with a brief discussion of the

use of the Liu et al. transition model for the outcome model.

7.2 Baker’s Selection Model: With Only Treatment Groﬁps

and Time as Covariates

As described in Chapter 4, Baker (1995) suggested specifying the outcome model in
terms of marginal and association models. The drop-out process is modelled using a
time-dependent causal model assuming the non-response does not depend on future

events.

¢ Repeated Binary Outcomes with Informative Drop-out ¢

o Outcome Model

The outcome model f *(y{ ,Y3,Y3 | 2;0) is expressed in terms of marginal and as-
sociation models. As is apparent from Figure 2.3, the proportion of patients with
exacerbations seems to vary across the treatment groups and with time, so the

marginal model employed is

logit{g:(z;8)} = o+ B1LD + P2 HD + fBst, (7.2)

where ¢t = 1, 2,3, and LD and HD are indicator variables to represent the treatment

groups. For patients in the LD group, LD =1 and HD = 0. Similarly, LD = 0 and
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HD =1 if patients belong to the HD group. For patients in fhe PL group, both
LD and HD take on value 0.

We propose modelling the 2-way and 3-way associations with different inter-
cept parameters to describe different degrees of association. We further assume the
association among the responses is related to the treatment arms. For simplicity,
these treatment effects are taken to be the same for all associations.

e Models for 2-way Association:
logit{gst(z; ast)} = ast+ o1 LD+ asHD (7.3)

where st = {12,13,23}.

e Model for 3-way Association:

logit{glgg (:1:; 0123)} = a3+ o1LD+ayHD. (7.4)

Both the marginal and association models remain the same throughout the .analyses
in this section regardless of the assumption on the drop-out mechanism..

The adequacy of this non-saturated outcome model for our data has been
confirmed by comparing it to various more general models. This information is

presented in the next subsection.

© Drop-out Model

We model the drop-out process using time-dependent causal models assuming the
non-response does not depend on future events. We allow different regression pa-
rameters for the logistic regressions specifying the different conditional probabilities -
of absence, hi(ri—1,y{ | ©,7;); see (4.12). To simplify the notation, we introduce

two subscripts for these regression parameters:

logit{h3(r2 = {p,P},¥3 | ,m3)} = 703 + M3y} + 23y}

logit{ha(r1 = {p},¥3 | ,m2)} = 702 + M2y} + N2y’ (7.5)
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Table 7.1: Drop-out Models under Different Drop-out Mechanisms: 4/ denotes in-
clusion of a parameter and n; denotes parameters which are restricted to be equal

Drop-out Parameter
Mechanism | Model | no3 m3 723 [ mo2 m2 722 | no1
1 vV Vv VIV Vv VIV
2 vVv.m m |V m m|V
ID 3 Mo M M| M m M2 | T
4 vV - VIV - VIV
5 vV - m |V - m |V
6 T - MM - - |
T (v V -V 7 -]V
RD 2 vm -1V m -V
3 M _Mm  - { M m - | N
CRD T |y - - 1v - -1V
2 M - - |m - - |m

where the first subscript indexes the specific parameter in the model, while the
second subscript indexes the year the drop-out occurred. According to Baker (1995),
if the conditional non-response probability in the first year, Pr(R; = a | y},z) =
hi(r1 = { },y{ | ©,m1), depends only on the covariates, then the non-ignorable non-
response models under consideration will be identifiable. In our case, the model for

hi(r1 ={ },4{ | ®,7,) becomes:
logit{hi(r1 = { },91 | z,m)} = no1. (7.6)

These drop-out models belong to Baker’s LOR + LUR class of models. For sim-
plicity, we have taken the drop-out mechanism to be independent of the available
covariates. We relax this assumption in Section 7.3. |

To explore the adequacy of simpler models, we consider five other model
specifications which are obtained by letting certain parameters be equal or be equal
to zero. The ID models to be considered are summarized in the first six rows of

Table 7.1.
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¢ Repeated Binary Outcomes with Ignorable Drop-out ¢

To investigate the types of drop-out in our annual data, we also fit the data to

models under ignorable drop-out assumptions, i.e. with RD and CRD models.

© Random Drop-out

We consider the three RD bmodels summarized in Table 7.1. Modifying an ID model
by setting the parameters associated with the unobserved response to zero leads
to an RD model. For instance, RD1 (Model 1 under RD) is obtained by setting
723 = 122 = 0 in ID1 (Model 1 under ID). RD2 and RD3 are similarly obtained from
ID2 and ID3.

o Completely Random Drop-out

The two CRD models considered in Table 7.1 are obtained by simplifying the RD
models. Under CRD, the drop-out mechanism is independent of the measurement
process. Thus, CRD1 (obtained by setting 713 = 712 = 0 in RD1, or 5 = 0 in
RD2) and CRD2 (obtained by setting 7; = 0 in RD3) each consist of only intercept
parameters.

For both the RD and CRD cases, we also have the opportunity to examine
the sensitivity of the covariate effects (treatment and time) under different forms of
the RD or CRD models.

These outcome and drop-out models can be assembled into explicit expres-
sions for the logarithm of the likelihood (see (4.16)). The maximun likelihood esti-
mates of the parameters in these models are ob'tair/led by minimizing the negative
‘log-likel‘ihood function using a quasi-hewton (QN) minimization proceduré. This
procedure is briefly described in the following subsection. The corresponding re-

sults are summarized in next subsection.
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7.2.1 The Quasi-Newton (QN) Algorithm

The QN algorithm used to maximize the log-likelihood is a variable metric algorithm.
All variable metric methods seek to minimize a certain function S(8) (in our case,
S(0) is the negative log-likelihood function) of p parameters by means of a sequence

of basic iterative steps
0 =0 - kBg (7.7)

where g is the gradient of the function S, B is a matrix defining a transformation
. of the gradient and k is a step length.

Consider the set of nonlinear equations formed by t.he gradient at a minimum
g(@)=o. (7.8)

As in the one-dimensional root-finding problem, one can use a linear approximation

from the current 8, that is
9(8') ~ g(6) + H(8)(0' - 6) (7.9)

where H(8) is the Hessian matrix (the matrix of second derivatives of the func-

tion S). For convex functions, H will be positive definite. From (7.8), (7.9) becomes

' 0" ~0-H1(0)g(0) | (7.10)

which is Newton’s method for a function of p parameters. This is equivalent to (7.7)
with B=H"1! and k = 1.

Newton’s method is generally preferable if second derivatives can be analyt-
ically computed. But the implementation of Newton’s .method may induce errors
when closed form expressions for the second derivatives do not exist as it involves -
composing subroutines for evaluating p first derivatives, p? second derivatives and
a matrix inversion. For these reasons, Newton’s method does not recommend itself

for some problems.
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If H™! could be approximated directly from the first derivative information
available at each step of the iteration, this would save a great deal of work in
computing both the matrix H and its inverse. This is precisely the role of the
matrix B in the iteration defined by (7.7). The transformed gradients in the matrix
B aré used to generate linearly independent search directions; equivalently, these
search directions are conjugate to edch other with respect to H. Further, the step
parameter k is rarely fixed; its value is usually determined by some form of a linear
search. In particular, the role of k is to allow a search for values of 0' at which the
function value is reduced, i.e. S(8') < S(8). Since the second derivatives réquired in
Newton’s method are approximated in the iteration (7.7), this algorithm is known
- as a quasi-Newton method. ' '

We employ the QN algorithm suggested in Nash (1979). It involves specific
choices of the formula for updating the matrix B and of the linear search proce-
dure for obtaining the updated values of @’. An ‘acceptable point’ search procedure
suggested by Fletcher (1970) and a matrix-updating formula for B due to Broyden
(1970a, 1970b), Fletcher (1970) and Shanno (1970) are employed. Generally speak-
ing, the algorithm first goes through a linear search to find one value for @ which
gives a smaller function value than that at the previous value for 8. The approx-
imation to the Hessian matrix is then updated accordingly. The algorithm stops
when all the parameter values on consecutive iterations are sufficiently close. For
our purposes, the absolute difference between the parameter values of consecutive
iterations must be smaller than ‘10_7. A.detailed outline of this algorithm can be
found in Chapter 15 of Nash (1979).

Note that in this version of the QN algorithm, the matrix B is initialized as
a unit matrix. This simple choice nevertheless has the advantage of generating the
steepest descent direction (Nash, 1970). To ensure rounding errors which occur in

updating the matrix B and forming the search directions, ¢, through the equation

t=6—0=—kBg
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have not accidentally given a direction in which the function S cannot be reduced,
a reset of B to a unit matrix is suggested in any of the following cases:
(i) tTg > 0; that is, the direction of the search is ‘uphill’;
™~
(i) @' = ; that is, no change is made in the parameters by the linear search

along ¢;

(iii) tT{g(0") — g(@)} < 0; that is, an updating contrary to the objective of the
method to reduce S along t (t"g(8’) is expected to be greater (less negative)
than t"g(@)), indicating a danger that matrix B may no longer be positive

definite.

If either (i) or (ii) occurs during the first step after B has been set to the unit matrix,
the algorithm is taken to have converged.

All results described in this thesis are obtained using this QN algorithm
implemented in C. The results for the models described in the beginning of this

section are discussed in the next subsection.

7.2.2 Results

) Adequacy of the Outcome Model
To verify the adequacy of our reduced (non-saturated) outcome model, we consider

four more general outcome model specifications. These outcome models are

1. Saturated: a saturated ma_rgihal model (9 distinct parameters) and a satu-
rated association model of the same form as (7.3) and (7.4) but with regression
parametérs that differ for each of the 2-way and 3-way association models (12

distinct parameters);

2. Semi-saturated I: a saturated marginal model and a reduced association
model with common treatment effects in the 2-way associations (8 distinct

parameters);
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Table 7.2: Negative Log-likelihood Values for Five Outcome Model Specifications

l Outcome Model l Negative Log-likelihood | Number of Parameters |

Saturated 928.923 28
Semi-saturated I 930.450 : 24
Semi-saturated II 931.680 22
Semi-saturated III 930.304 23

Reduced 933.407 17

3. Semi-saturated II: a saturated marginal model and a reduced association
model with common treatment effects for all associations (6 distinct parame-

ters). Note that this reduced association model is exactly (7.3) and (7.4);

4. Semi-saturated III: a reduced marginal model assuming linearity in time (4
parameters) and a saturated association model (12 distinct parameters). Note

that this reduced marginal model is exactly (7.2).

The negative log-likelihood values presented in Table 7.2 correspond to these out-
come models coupled with the drop-out model (7.5).

The likelihood ratio test (LRT) indicates the reduction from the fully sat-
urated outcome model to semi-saturated I is reasonable (LR statistic = 3.05 on
degrees of freedom (df) = 4; p-value = 0.55). To examine whether the treatmént ‘
effects in the association model can be taken to be common across all associations,
we compare semi-saturated I to semi-saturated IL. The LR statistic of 2.46 (df =
2; p-value = 0.29), indicates the reduction is permissible. The result based on a
direct comparison between the saturated and semi-saturated II models also agrees
(LR statistic = 5.51 on df = 6; p-value = 0.48). This indicétes that an associa-
tion model with common treatment effects for all associations is reasonable for our
data set. The further reduction to our reduced outcome model is also allowed (LR

statistic = 3.45 on df = 5; p-value = 0.63).
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As our primary focus is on the marginal model, a more interesting comparison
is between the semi-saturated III and saturated outcome models. In the context of
a saturated association model, this provides an assessment of whether the reduced
marginal model (7.2), which incorporates additive treaﬁment effects and a linear
pattern over time for the log odds of having exacerbations, is reasonable. The LRT
allows this reduction (p-value = 0.74). As should be expected from the earlier com-
parisons, the semi-saturated III model can be further reduced to our non-saturated
model (p-value = 0.40).

Both sequences of model reductions lead to the same conclusion: the re-
duction to the model presented in the beginning of this section is permitted. This
reduced model also provides an adequate fit to our data. The usual goodness—of—ﬁt
statistics based on the 15 different possible patterns of binary responses for each
treatment arm lead to G? = 24.65 and X2 = 22.80 on 25 degrees of freedom (p-
values = 0.48 and 0.59 respectively). Thus, we can proceed confidently with further

work using .this reduced model as a starting point in the investigations.

o Informative Drop-out (ID)
The detailed results corresponding to the six ID models described in Table 7.1 can
be found in Appendix B: Tables B.1 to B.6. These tables include the sets of starting
values (SV) used, and the maximum likelihood estimates for the parameters (Est),
the corresponding standard errors (SE), and the negative log-likelihood computed
at the MLE which are all provided as part of the output from the QN minimization
procedure. The number of iterations ﬁeeded to achieve convergence is also cited in
the tables. »

In each of these tables, regardless of the starting values in the QN procedure,
the corresponding negative log-likelihoods computed at the parameter estimates (at
convergence) are the same (at least up to the 4 significant decimal digits displayed).

However, in Tables B.1, B.2, B.4 and B,5, not all the reported MLEs are the same
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(see especially for parameters 793 and 723 in Tables B.1 and B.4, and parameters 73,
n2 and 792 in Tables B.2 and B.5). Also, in these four tables, the SEs for the estimates
vary quite a bit across different sets of starting values. This phenomenon might be
due to how the Hessian matrix is approximated in the minimization procedure. As
mentioned earlier, the Hessian matrix is. approximated based on the search directions
for the parameter estimates obtained in each successive iteration. To illustrate,
consider starting value Sets #1 and #4 in Table B.1. For‘ Set #1, the estimated
Hessian matrix was reset to a unit matrix at the 56th iteration due to it not being
a positive definite matrix. The final SEs as displayed thus depend on both the
parameter estimates at convergencé and the corresponding search directions at the
subsequent iterations, i.e. the 57¢h iteration until convergence was achieved (at the
71st iteration). The estimated Hessian matrix for Set #4, however, was reset to a
unit matrix three times during the process of minimization (at the 4th, 9th, and 75th
iterations), with convergence established at the 91st iteration. Since the process of
minimization for the two sets .wa.s quite different, this might be the reason why the
estimated SEs differ considerably from one set of starting values to another.

The substantially different values of the estimates obtained with different
sets of starting values for some of the parameters in models ID1, ID2, ID4 and ID5
indicates a more fundamental difficulty. Consider the results for model ID1, for
example. Table B.1 shows the parameter 7y3 is always estimated as being large
negative,. while 793 is always estimated as large positive. Furthermore, for all four
sets of starting values, the sum of these two parameter estimates equals a constant
value, —1.548. This suggests the maximum likelihood estimates for this data set
satisfy the constraint 7jo3 4 7j23 = —1.548, with the MLE occurring on the boundary

“of the parameter space (fjp3 = —o0 or fg3 = o0). Recall that the non-response
probability for the third observation is modelled as a logistic regression on last
observed outcome (y3) and last unobserved outcome (y3); see (7.5). When fjo3 =

—00, 7jo3 + fl23 = —1.548 and ;3 is finite, the probability that the third observation
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is missing is estifnated to be zero if the history is either {y3 = 0,y = 0} or {y} =
1,y3 = 0}, but non-zero for the remaining two histories.

The same phenomenon is observed for model ID4 in Table B.4, but with
7lo3 + flag = —1.165. This phenomenon is also apparent for models ID2 (Table B.2)
and ID5 (Table B.5), but manifests itself in a slightly different fashion. Here, the
parameters 73 #nd no2 are always estimated as being large negative, while the
parameter 7, is always estimated as large positive. However, the sum of 73 and
72 always equals a constant, and the sum of 7jp; and 73 equals another constant.
The pair of constants differ from model ID2 to model ID5. Thus under models
ID2 and ID5, the probabilities for the second and third observations to be miésing
are estimated to be zero when the past observations are either {y} = 0,y3 = 0} or
{1 = 1,y5 = 0}, and when the history is either {y5 = 0,y} = 0} or {y3 = 1,73 = 0},
respectively.

In the next few paragraphs, we aiscuss the issue of boundary solutions for
model ID1 in greater detail. The corresponding discussion for models ID2, ID4, and
ID5 is omitted as the details are essentially identical to model ID1. But the results

for these three models evaluated at the boundary solutions are also presented.

° Discussion of Boundary Solutions

Consider model ID1. The estimates obtained for 793 and 723 displayed in Table B.1
vary across different starting values, but in each case 7oz + flas = —1.548. Further
the negative log-likelihood remains the same up to the four decimal digits displayed.
We believe that the MLE is located on the boundary of the parameter space. To
confirm this conjecture, we first use a graphical visualizatidn of the negative log-
likelihood function incorporating the special feature (e.g. o3 is estimated with large
negative value, while 7,3 is estimated with large positive values, and the sum of the .

two is always the same) observed in Table B.1.
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Figure 7.1: A Two-Dimensional Profile Log-likelihood Surface for Model ID1
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Figure 7.1 is a graphical representation of the profile log-likelihood surface for
the parameters n03~ and 723 in model ID1. This three-dimensional plot is produced
by maximizing the log-likelihood over all parameters except 793 and 723. For fixed
values of no3 and 723, we apply the QN minimization procedure to the negative log-
likelihood function. This log-likelihood value is then plotted against these values for
703 and 723 using the S-PLUS function “persp”. We chose the values for 7g3 and 703
to be a sequence of numbers between —20 and 20 with increment size of 0.5. This
yields a 81 by 81 grid of log-likelihood values. Notice that there seems to be a steady,
but very shallow, decrease in this surface along a line (where 793 + 723 = —1.548) in
the grid where 793 and 723 take on values ranging from —20.0 to —0.5, and from 0.0
to 20.0, respectively. This seems to agree with the results presented in Table B.1.

We also computed the log-likelihood on the boundary of the parameter space
to check that the log-likelihood values obtained in Table B.1 are what one would
obtain at the suggested point on the boundary. Because the parameter estimates
appear to satisfy the constraint 7oz + fjog = ;1.548, it is useful to re-parameterize
in terms of 793 and 723 = —nps + A, where A is a finite-valued param_eter. As no3
approaches —oo, the log-likelihood is a function of the remaining pafameters and
A. For the pxlobability of non-response, Pr(R3 = a | {p,p},y}, &), we substitute the
values presented in Table 7.3 to obtain the reduced log-likelihood function.

Applying the QN minimization routine to this reduced nega,‘tive‘ log-likelihood
function yields the results summarized in Table 7.4. The estimates for the model
parameters are essentially the same as those presented in Table B.1 and the log-
likelihood value also agrees. Thus; both Figure 7.1 and this computation of the
log-likelihood at the indicated boundary point seem to support our conjecture that
the parameter estimates for model ID1 occur on the boundary of the parameter
space. The same values of the estimates reported in Table 7.4 were obtained with
different choices of starting values and these minimizations required maﬁy fewer

iterations than those presented in Table B.1. Further, the estimated Hessian matrix
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was never réset to a unit matrix during these minimizations.

Notice that the standard errors for 7jgz and 7jy2 in Table 7.4 are relatively
large. One might suspect this reflects a potential boundary solution phenomenon
for the reduced log-likelihood even though these estimates did not vary with the sets
of starting values chosen (see also Table B.1). Perhaps these large standard errors
are simply indicating that our data set does not contain sufficient information to
obtain precise estimates for these parameters. We explored this further graphically.

- Figure 7.2 shows the profile log-likelihood surface for the parameters g2 and
722 of the reduced model ID1. The values for 72 and 720 were chosen to be a
sequence of numbers between —20 and 20 with increment size of 0.5. The plot is
not very informative in terms of revealing the existence of optimal solutions. The
rotating option in “persp” allowed us to view Figure 7.2 from different directions
and convinced us of the existence of optimal solutions in the interior of the param-
eter space for this reduced log-likelihood function. For further assurance, we also
calculated the log-likelihoodt values at various points in the neighbourhood of the
suggested estimates for 792 and 790; these values are all larger than 933.407. Thus
we are certain that this situation does not indicate a boundary solution, but simply
indicates a lack of information in the data to precisely estimate these parameters.

One can easily show, in a similar fashion, that the parameter estimates for
models ID2, ID4 and ID5 also occur on the boundary of the parameter space. The
correspondiﬂg results for these three models computed at the suggested boundary
points are presented in Tables 7.5, 7.6, and 7.7. Note that the parameter estimates
in the outcome models for ID2 and ID5 are the same. With the imposed boundary
constraints, the log-likelihood functions can be expressed as the sum of a function
of the parameters in the outcome model and a function of the parameters in the
drop-out model. Hence, the parameters in the outcome and drop-out models can be
maximized separately. Compared to the minimizations summarized in Tables B.2,

B.4 and B.5, the convergence for these three cases is achieved with many fewer
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Figure 7.2: A Two-Dimensional Profile Log-likelihood Surface for Model ID1 with
‘Boundary Constraint 793 — —oo and 793 + 723 = A
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Table 7.3: Non-response Probability for the Third Response Using Model ID1 with
no3 — —oo and o3 + 723 = A

3 | 3 [ logit{Pr(Rs = a| {p,p},¥3%,%)} |

010 -0
011 A

1 0 —00
1|1 ms + A

iterations. Further, the estimated Hessian matrices were never reset to a unit matrix
during the course of minimization. As expected, the standard errors for g2 and 799
in Table 7.6 behave similarly as in Table 7.4. This is again verified (by the same
approach) not to reflect a boundary solution. On the other hand, the standard
errors for all the estimates in Tables 7.5 and 7.7 look quite reasonable.

This feature of boﬁndary solutions does not appear in models ID3 and IDS.
For both models, the solutions obtained by the QN minimization are located in
the interior of the parameter space. Different sets of starting values lead to the
same parameter estimates and similar standard errors for the estimates, as shown
in Tables B.3 and B.6. Even though the Hessian matrix was never reset to unity
during the minimization process, the small discrepancy in the estimated SEs is
expected due to the way the Hessian matrix is approkimated. For these two models,
the convergence is achieved between 17 and 21 iterations, which is much faster than
for the models where the solutions are located on the boundary of the parameter

space. This concludes the discussion concerning the existence of boundary solutions.

. Results for the ID Models

Now we examine if the treatment effects are sensitive to the form of the informative
drop-out model based on the results presented in Tables 7.4, 7.5, B.3, 7.6, 7.7
and B.6. Our primary focus is on the treatment effects in the marginal model

for the exacerbation rates even though treatment effects are also incorporated in
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Table 7.4: Results for Model ID1 Evaluated on the Boundary: 793 — —oo and
Mo3 + 123 = A

| Parameter | Estimate | SE |
Bo 0.876 |  0.206
B1 (LD) —0.028 | 0.200
B2 (HD) -0.489 | 0.195
B3 (time) -0.122 | 0.074
012 —-0.020 | 0.170
o3 —0.031 0.168
Qo3 -0.136 | 0.183
o123 - —0.534 | 0.187
o -0.113 | 0.213
o —0.657 | 0.221
ms 0.558 |  0.409
A - —1.548 | 0.347
7102 -3.360 2.218
M2 0.140 |  0.417
2o 1.860 |  2.615
o1 —-2.089 | 0.167

| Neg. Loglik | 933.407 (# Iter = 25) |
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Table 7.5: Results for Model ID2 Evaluated on the Boundary: 793 — —o0, 192 —
—00, Mo3 + 2 = Ay and g2 + 12 = Ay

[ Parameter | Estimate | SE ]

Bo 0.886 | 0.204

B (LD) -0.017 | 0.195
B2 (HD) -0.484 | 0.194
B3 (time) —0.118 | 0.074
a2 —0.004 0.163
13 —0.010 0.161
Q23 fO.ll]. 0.173
123 —0.511 0.177
o1 —-0.103 0.208
as —-0.649 0.217

™ 0.286 0.275
Ay —1.356 0.264
Ag -1.499 0.258
o1 —2.089 0.164

| Neg. Loglik | 933.922 (# Iter = 20) |

Table 7.6: Results for Model ID4 Evaluated on the Boundary: 793 — —oo and
o3 + 123 = A

| Parameter | Estimate | SE |
Bo - 0.880 0.1809
B1 (LD) -0.024 0.190 .
B2 (HD) —0.487 | - 0.187
Bs (time) -0.120 0.071
a1 —-0.013 0.145
13 —0022 0.137
a3 —0.126 0.151
123 —0.524 0.152
a -0.109 |  0.202
s —0.654 0.214
A —1.165 0.181
102 -3.819 3.002
722 ' 2.464 3.217.
o1 —2.089 0.165

| Neg. Loglik | 934.432 (# Tter = 27) |
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Table 7.7: Results for Model ID5 Evaluated on the Boundary: 793 — —o0, mg2 —
—00, 703 + 72 = Ay and o2 + 12 = Ay '

| Parameter | Estimate I SE —l
Bo © 0.886 0.202
B1 (LD) -0.017 0.198
B (HD) —0.484 | 0.192
B3 (time) -0.118 0.073
o9 -0.004 0.162
o3 —0.010 0.160
93 -0.111 0.172
123 —0.511 0.176
o -0.103 0.211
s —0.649 0.217
Ay —1.165 0.182
A, - —1.293 0.168
o1 —-2.089 0.165

[ Neg. Loglik [ 934.473 (# Tter = 21) |

the association model. The structure Qf the ID drop-out model does not change -
the conclusions about the treatment effects in the marginal model. All six n;odels
conclude that the exacerbation rates in the LD and PL groups at any given time are
not significantly different (approximate two-sided p-value > 0.62 based on j3; in each
case). On the other hand, the exacerbation rate in the HD group is estimated to be
significantly lower than in the PL group at all time points (two-sided p-value < 0.02
based on B, in each case). The odds of experiencing exacerbations in the PL group
are roughly 1.6 times higher than in the HD group. There is a weak suggestion .
of a linear decrease with time in the log odds of experiencing exacerbations under
models ID1, ID2, ID4 and ID5 (two-sided p-value = 0.10 in each model), but the
estimates of 3 in both ID3 and ID6 provide a strong indication of a linear decrease
over time (two-sided p-values < 0.008).

The conclusions regarding the treatment effects in the association model

are similar. All six models indicate that the odds of having exacerbations at two
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occasions or at all three occasions in the study are not significantly different between
the LD and PL groups (two-sided p-values > 0.38 based on é1). But the models
suggest that the odds in the HD group are significantly smaller than in the PL group
(two-sided p-values < 0.004). '

Under models ID1, ID2, ID4 and ID5, the esfima.tes of the intercept param-
eters, aiz and a3, are fairly similar while &3 is slightly more negative. As would
be expected, the estimate for the intercept in the 3-way association model is most
negative. The situation is similar for models ID3 and ID6, although the estimates
are slightly more negative. Note that the estimates for a2, a3 and as3 are not very
different, suggesting a possibility. of a common intercept parameter for all the 2-way
association models. However, the reduction to a model with the same intercept
parameter for all 2- and 3-way association models may not seem reasonable since
the estimate for aj93 is always quite different from the others. Further, we could
explore explicitly whether the responses are positively or negatively associated by
comparing the joint probébilities of the responsés with those obtained under the in-
dependence assumption. If the joint prbbabilities are larger than the product of the
marginal probabilities, then there is some positive dependence among the responses;
otherwise, the respon.ses are negatively correlated. See Chapter 8 for more details.

We now consider selecting a parsimonious ID model to describe our data.
Table 7.8 summarizes the negative log-likelihood and available degrees of freedom
for all models listed in Table 7.1. Based on the LRT, the reduction from model ID1 to
ID2 is permissible (p;value = 0.60), indicating the dependence on the previous and
current observations is similar at time points 2 and 3. Using.model ID2 as the Base
model and comparing to rﬁodel ID3 examines whether the odds of dropping out (for
the same history) change over time; that is, the hypothesis is no3 = 792 = 701 = 70.
But the LRT statistic indicates this reduction is not reasonable (p-value = 0.03).
Note that one can also assess the reduction from model ID1 directly to ID3, although

this assessment is not as sensitive as the comparison between models ID2 and ID3.
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Table 7.8: Negative Log-likelihood Values for Models in Table 7.1

Drop-out Negative Degrees of
Mechanism | Model | Log-likelihood | Freedom (df)

1 933.407 25

2 933.922 27

ID 3 937.349 29

4 934.432 27

5 934.473 28

6 938.464 30

1 936.833 27

RD 2 937.250 - 28

R 3 937.457 30

CRD 1 940.422 29

2 941.040 31

The associated p-value is 0.096, indicatirig only fairly weak evidence- against reducing
from model ID1 to ID3. Thus, based on the more sensitive assessment, we conclude
that model ID2 is the simplest permissible ID model among these three.

To consider further model reductions, we next compare model ID2 to ID5.
The LRT statistic suggests this reduction is reasonable (p-value = 0.29). The overall
reduction from model ID1 to ID5 also agrees (p-value - 0.54). In model' ID5, the‘
drop-out probabilities do not depend on the last observed response, only on the last
unobserved response. The further reduction from model ID5 to ID6 is not allowed
(p-value = 0.02).

We conclude that model ID5 is the simplest of these six informative drop-
out models that can be used to describe our annual data set. The two reduced
models, ID2 and ID5. both fit the data adequately. For model ID2, G? = 25.94 and
X? = 23.81 on 27 degrees of freedom (p-values = 0.52 and 0.64 respectlvely) For
model ID5, G? = 26 53 and X? = 24.09 on 28 degrees of freedom (p-value = 0.54
and 0.68 respectlvely). Note that all parameter estimates m‘the outcome model are

the same for drop-out models ID2 and ID5. This phenomenon is induced by the
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imposed boundary constraints mentioned earlier which allow separate maximizations

for the parameters in the outcome and drop-out models.

. Ignorable Drop—out

Under the assumption of igndrable drop-out (either RD or CRD), the maximum
likelihood estimates obtained by the QN minimization are in the interior of the
parameter space. The results are summarized in Tables B.7 to B.11.

As expected, the parameter estimates in the measurement process are the
same in all the RD and CRD models. Hence, the conclusions about the treatment
effects in the marginal model for the exacerbation rates do not differ across the
different specifications of these drop-out models. Only the HD group has a different
effect on the exacerbation rates compared to the PL group (two-sided p-value = 0.01
based on Bg); the odds of having exacerbations in the PL group are about 1.6 times
the odds in the HD group.. There is a strong indication of a linear decrease over
time in the log odds of having exacefbations (two-sided p-value =~ 0.001 based on
Bs).

The treatment effects express themselves similarly in the association model.
There are no apparent differences between the LD and PL groups in the odds of _
having exacerbations at two and three occasions (two-sided p-value =~ 0.40 based on
d@1), but the HD and PL groups differ (two-sided p-value ~ 0.004 based on &2). The
. intercept parameter estimates are quite similar, although slightly more negative, to
. those obtained under models ID3 and ID6. Again, the estimated values for o,
a13 and ao3 are reasonably similar, and the estimate for ;o3 is somewhat more
negative. This indicates a model which assumes a common intercept parameter for
all the 2-way association models and a separate intercept parameter for the 3-way
association may be reasonable for our data.

We next consider selecting a simpler model among the three RD models.

Based on the LRT, the model reduction from RD1 to RD2 is permissible (p-value =
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0.36). One can also reduce model RD2 to RD3 (p-balue = 0.81). The LRT statistic
comparing model RD1 to RD3 also indicates the reduction to model RD3 is reé.son—
able (p-value = 0.74). Thus, model RD3 is the simplest permissble model under
the RD assumption. Similarly, if a CRD mechanism is assumed, model CRD2 can

be used instead of CRD1 to describe our annual data (p-value = 0.54).

) Types of Drop-out in the Data

In the earlier part of this section, we determined that reductions from model ID1
to models ID2 and ID5 are permissible, with model ID5 being the siI.anest possible
model among the six ID models considered. These three models cén be used to
examine whether the drop-out mechanisms in our data is ID, RD or CRD according
to the classification by Little and Rubin (1987).

To assess whether the drop-out occurred at random (RD), we can compare
model ID1 to RD1. This comparison examines 723 = 722 = 0. The LR statistic of
6.85 (df = 2; p-value = 0.03) provides evidence against this reduction. As already
established, it is reasonable to have common regression parameters describing drop-
out at the different time points (reduce from ID1 to ID2). Hence, the comparison
between model ID2 and RD2 should provide a more sensitive assessment of our
question. In this case, we investigate whether 7o = 0 and the result agrees with
the previous assessment. (LR statistic = 6.66, df = 1; p-value = 0.01). The less
sensitive comparison of model ID1 to RD2 also sugguests one should not reduce to
the simpler model (LR statistic = 7.69; df = 3; p-value = 0.05). Thus, the data
indicate that the drop-out did not occur at random. '

As reduction to an RD model is not allowed, presumably reduction to a CRD
- model will also not be allowed. For the sake of completeness, we perform various
asseséments to examine this. Model CRD1 can be compared to model ID1, ID2 and
ID5 to examine the dependence between the drop-out and the outcome processes.

The LR test comparing models ID1 and CRD1 clearly indicates the reduction is
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not permissible (LR statistic = 14.03, df = 4; p-value = 0.007). The LR statistics

for examining the reduction from model ID2 and ID5 to CRD1 are 13.00 (df = 2;

p-value = 0.002) and 11.90 (df = 1; p-value < 0.001), respectively. As expected,
the comparison to ID5 provides the strongest evidence. Thus, the data proyide
strong evidence against the hypothesis that the drop-out process is independent of
the outcome process. ..

According to these comparisons, one cannot reduce from the ID models to

any of these RD and CRD models. We can thus confidently conclude that the

. drop-out process in our data is informative.

7.2.3 Summary

We fitted six ID models and the maximum likelihood solutions for four of these
models lie on the boundary of the parameter space. This phenomenon does not
occur in the case where the drop-out mechanism is'assumed to be ignorable.
Based on LR tests, we conclude that the drop-out mechanism in our data is
informative and model ID5 is determined to be the simplest possible model for our
data. The treatment effects appear in both the marginal and association models.
However, we focus prilharily on the treatment effects in the marginal model. Under
model ID5, the HD group has a lower rate of exacerbations compared to the PL
group. The odds ratio of having exacerbations in the HD group relative to the PL
group is estimated to be 0.62 and the corresponding approximate 95% confidence
interval (CI) is (0.42, 0.90). The indication of a linear decrease in the odds of
having exacerbations over time is quite weak; the approximate 95% CI for 33 is
(—0.26,0.03). The treatment effects in the association'model convey a similar story:
the odds of experiencing exacerbations at two occasions and at all three occasions
in the LD group are not significantly different from the PL group, but these odds
are clearly lower in the HD group. |

Interestingly, these conclusions are not very sensitive to the underlying drop-
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out mechanisms for this data set. In particular, the parameter estimates (and stan-
dard errors) in the outcome model obtained with the ID assumption are fairly similar

to those obtained with the ignorable drop-out assumptions.

7.3 Baker’s Selection Model: Extensions of the Drop-
out Model

In this section, we are interested in investigating the impact of different specifictions

of the drop-out model on inferences concerning the treatment effects. The outcome

model remains the same as in the previous section, and is coupled with the drop-
out models considered in Baker (1995); that is, COV + LOR + LUR, COV * LUR
and LOR * LUR. Since the only covariates to be used are the treatment groups
indicators, we replace COV with TRT throughout this section.

We have established that models ID1, ID2 and ID5 can be used to describe
our annual data but no reduction to the RD and CRD models is allowed. Model
ID1 is of form LOR + LUR, with different parameters associated with each time of
occurrence of the drop-outs. Models ID2 is obtained from model ID1 by assuming
the regression parameters to be common at each time of occurrence of the drop-
outs, while model ID5 corresponds to the further assumption that the drop-out
probabilities do not depend on LOR.

In this section,. we retain the feature of cbmmon regression parameters in
all drop-out modelé considered. The three non-nested ID models considered for

hi(re-1,y; | @;m,) are:

1. TRT * LUR:
For ¢t = 2,3 (ry—y equal to {p,p} or {p}), we have

logit[ht(re-1,¥¢ | ;m))] = mo¢ +mLD + neHD + n3y}

+ naLDy; + ns HDy;, (7.11)
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‘and for t =1 (r¢—1 equal to { }), the model is
logitfh1 ({ },41 [ @;m1)] = mor +mLD +neHD; (7.12)

2. TRT + LOR + LUR:
For t = 2,3, the model is

logit[ht(re—1,¥t | ;m¢)] = nmo¢ + mLD + npHD
+ Mmyi_1 + N4yt (7.13)

and for t = 1, we have
logitlh1 ({ },y1 | ;m)] = mo1 + mLD +noHD; (7.14)

3. LOR * LUR:
For t = 2, 3, the model is
logit[he(re—1,¥: | &5m)] = noe + myi_y + m2yf + m3yi_1vs, (7.15)

and for £t = 1, we have
logitlhi ({ }u1 | z5m1)] = nou. (7.16)

One can view these models as expansions of models ID2 and ID5. More
specifically, all three drop-out models are expansions of model ID5. Further, models
TRT * LUR and TRT + LOR + LUR can also be considered as expansions of model - |
ID2. Hence we can compare these models to models ID2 or ID5 for examining the
improvement of the fit with these more general models. The results are presented

in next subsection.

7.3.1 Results

Tables C.1 to C.3 in Appendix C display detailed summaries of the results cor-

responding to the three extended drop-out models. For each drop-out model, we
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‘report the starting values used to obtain the parameter estimates, the estimated

standard errors, negative log-likelihood values, and the number of iterations re-
quired to achieve convergence. The phenomenon observed in models ID2 and ID5
can also be seen in these drop-out models. For the drop-out model TRT * LUR (see
Table C.1), the same parameter estimates are obtained regardless of the starting
values used except for the intercept parameters, 793 and 7g2, and the parameter
associated with LUR (7n3). Parameters 793 and 72 are estimated as large negative
values, and 73 is estimated as large positive. Further the estimates of 703 and 73 al-
ways sum to —1.226, and g2 +ﬁg = —1.350. Similarly, for model TRT+LOR+LUR
(see Table C.2), the intercept parameter.s, 703 and 72, are estimated as being large
negative, and the estimated value for 74 (the regression parameter corresponding to
LUR) is large positive, but 7jo3 + 74 = —1.430 and #jg + 7y = —1.573.

The situation for model LOR * LUR is more complicated. Here we have the
same phenomenon described for both models TRT * LUR and TRT + LOR + LUR,
but the.estimates of 71 (the parameter corresponding to LOR) and 73 (the param-
eter associated with the intefaction_ term, LOR x LUR) also appear to satisfy the
constraint, 7; + 73.= 0.286. The paramefer estimates obtained from the fourth set
of the starting values, in particular, indicate that the maximum likelihood solution
corresponds to 73 — —oo with 7; + 73 = 0.286.

To make comparison to.models ID2 or ID5, we need to verify that the maxi-
mum likelihood solutions for these extended models occur at the suggested points on
the boundary of the parameter space. Re-parameterizing in a similar fashion as pre-
viously, the conditional drop-out probabilities at years 2 and 3 can be expressed as
in Table 7.9. We then substitute these expressions into the log-likelihood functions
for the three models. To obtain the MLEs, we minimize the negative log-likelihood
functions using the QN procedure. The results are reported in Tables 7.10 to 7.12. .

The minimizations reported in Tables C.1 to C.3 required a large number

of iterations for convergence and, in each case, the estimated Hessian matrix was
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Table 7.9: Non-response Probability for the Second and Third Responses

Model: TRT * LUR
With mg2 + 73 = A1, mo3 + 13 = Ay
| LOR | LUR | logit{Pr(R2 =a [ {p},y},@)} [ logit{Pr(Rs =a | {p,p},¥5 =)} |
0/L | 0 —0 —oo
0/1 | 1 A+ (m+ngLD+(n2+ns)HD | Ay + (11 +14) LD + (12 + 15)HD

Model: TRT 4+ LOR + LUR
With ngs + 174 = A1, no3 + 174 = Ao
| LOR | LUR | logit{Pr(R; =a| {p},y3 =)} [ logit{Pr(Rs =a| {p,p},y3, =)} |

0/1 0 -0 - -00
0 1 Ay +mLD +nHD Ay +mLD +1n9oHD
1 1 Ay +mLD +nHD + 13 Ag+mLD+nHD + 13

Model: LOR * LUR
With o2 + 72 = A1, o3 + 12 = Ao, 1 + 73 = As
| LOR | LUR | logit{Pr(R2 = a | {p},y3,#)} [ logit{Pr(Rs =a| {p,p}, ¥}, 2)} |

0/1 0 —00 —00
0 1 A ‘ Ag
1 1 A+ Aj . Ao+ Aj

reset to a unit matrix in the course of the_computations. These features were not
found for the minimizations reported in Tables 7.10 to 7.12. In particular, the
number of iterations needed in Tables 7.10 to 7.12 is, on average, only one-third the
number required in Tables C.1 to C.3. Furthermore, the estimated Hessian matrix
in Tables 7.10, 7.11 and 7.12 was never reset to unity throughout the minimization
‘process. The parameter estimates and the log-likelihood values in the corresponding
tables in these two sets are identical to the number of digits displayed, but the log-
- likelihood is always siightly larger at the boundary point than at the interior points
located by the original minimizations. Hence, we have shown that the maximum
likelihood solutions for these extended models are indeed located at the suggested

. points on the boundary.
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Table 7.10: Results for Model TRT * LUR Evaluated on the Boundary: 793 — —o0,
Moz = —00, oz + N3 = Ay and o3 + 13 = Ag

| Parameter [ Estimate | SE |

Bo 0.836 | 0.204

B, (LD) ~0.017 | 0201 -
B, (HD) _0.484 | 0.198
Bs (time) _0.118 |  0.075
Q19 —0.004 0.165
ai3 —0.010 0.165
o3 —0.111 | 0.180
123 -0.511 0.182
oy —0.103 0.213
(o) —0.649 0.221
o1 —2.136 | 0.293
m(LD) ~0.203 | 0.433
m(HD) | 0296 | 0.304
na(LD x LUR) 0.571 |  0.521
ns(HD x LUR) | —0.620 | 0.518
A | —1.350 | 0.244
JAD) ' —1.226 0.251

| Neg. Loglik [ 931.223 (# Iter = 23) |
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Table 7.11: Results for Model TRT + LOR + LUR Evaluated on the Boundary:
To3 — —00, Moz — —00, Moz + M4 = Ay and no3 + 74 = Ay

| Parameter | Estimate l SE |
Bo 0.886 0.198
B1 (LD) -0.017 0.195
B2 (HD) —0.484 0.190
Bs (time) —-0.118 0.074
a9 —0.004 0.157
a3 —0.010 0.155
a23 —0.111 0.169
o123 -0.511 | 0.173
aq —-0.103 0.207
Qg —0.649 0.215
701 —2.156 0.223
m(LD) —0.209 0.238
n2(HD) -0.023 0.249
" n3(LOR) 0.290 0.202
AN —1.573 0.283
Ag -1.430 0.242

[ Neg. Loglik | 933.350 (# lter = 25) |
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Table 7.12: Results for Model LOR * LUR Evaluated on the Boundary: With
703 — —00, 7oz — —00, M1 —> —00, Moz + M2 = Ay, Moz + 72 = Ag and 71 + 13 = A3

[ Parameter | Estimate | SE ]

Bo 0.886 0.206

B1 (LD) -0.017 0.196

B2 (HD) | —0.484 0.194

Bs (time) -0.118 0.074
a2 —0.004 0.163
o3 —0.010 0.160
03 -0.111 0.172
Q1923 —0.511 0.177
o ~ —0.103 0.208
as —-0.649 0.217
701 -—2.089 0.167
A —1.499 0.265
A, —1.356 0.265
Aj 0.286 0.277

[ Neg. Loglik | 933.922 (# Tter = 21) |

There is an interesting point to note before moving on to the comparisons
between these models and the models described in the previous section. Tables 7.10
to 7.12 (see also Tables C.1 to C.3) display identical estimates for all the parameters
in the outcome model. In fact, these parameter estimates are identical to those
reported in Tables 7.5 and 7.7 (see also Tables B.2 and B.5) for models ID2 and
ID5, respectively. The explanation for this is simple: for these drop-out models,
the conditional probabilities that the second and third observations are missing are
estimated to be zero when LUR = 0 (for both values of LOR). This simplifies the
log—likelihood functions and ailows the parameters in the outcome model and in
the drop-out model to be maximized separately. As the 5 models share the same
specification for the outcome process, it is then no surprise that the estimates of the
parameterls in the outcome model are identical even though the model specifications

for the drop-out process differ.
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Table 7.13: Results for Model TRT + LUR Evaluated on the Boundary o3 — —00,
Moz = =00, 7oz + 74 = A1 and 7oz + 174 = Ag

| Parameter | Estimate | SE |
% 0.886 | 0.207
B1 (LD) —0.017 0.193
B (HD) | —0484| 0.194
By (time) | —0.118 | 0.076
Q12 —0.004 0.163
o3 -0.010 0.159
Q23 . —0.111 0.171
o193 -0.511 0.175
oq —0.103 0.206
a9 —0.649 0.218
oL 5136 | 0214
m(LD) 0.191 | 0.232
n2(HD) —0.051 | 0.248
A -1349 | 0211
A, ~1.222 | 0.226

| Neg. Loglik | 933.910 (# Iter = 27) |
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To examine if one of these more complicated models should be employed for
the drop-out process, we compare models TRT * LUR, TRT + LOR + LUR and
LOR * LUR to models ID2 and ID5. By comparing model TRT * LUR to model
ID5, we are examining whether the additional treatment effects (n1,72) and the
interaction between the treatment effects and the last unobserved response (n4,75)
provide a significant improvement on the fit of model ID5. The LR statistic (6.50 on
df = 4; p-value = 0.16) indicates that there is not strong evidence that we should
employ model TRT * LUR instead of model ID5. |

Table 7.10 suggests the two interaction terms contribute the major improve-
ment in expanding the model from ID5 to TRT * LUR. Further, the comparisons of
model ID5 with models TRT + LOR + LUR and LOR * LUR seem to agree with
this observation (LR statistics = 2.25 and 1.10, df = 3 and 2; p-values = 0.52 and
0.58, respectively). That is, neither the terms LOR and TRT nor the terms LOR
and LOR x LUR contribute signiﬁcant improvement to the fit of model ID5. Thus
model TRT + LUR (obtained by setting 74 = 75 = 0 in model TRT * LUR) is an
interesting intermediate model between models ID5 and TRT * LUR. The detailed
results for model TRT + LUR are provided in Table C.4, while the maximum likeli-
hood estimates evaluated on the suggested point on the boundary of the parameter
space is presented in Table 7.13. Corﬁparing model TRT * LUR to TRT + LUR
examines the contribution of the interaction terms, TRT x LUR. The correspond-
ing LRT statistic is 5.37 on 2 degrees of freedom (p-value = 0.07), indicating fairly
weak evidence against the hypothesis that the interaction terms are negligible. The
cautious approach in this situation might be to retain the moreb generalvmodel, le.
TRT * LUR, rather‘ than reducing to the simpler TRT + LUR. But the evidence is
not compelling, so we choose to reduce to the simpler TRT + LUR as the drop-out
model. We then further examine whether the reduction from model TRT + LUR
to ID5 is reasonable. Not surprisingly, in view of the earlier comparisons of model

TRT * LUR to ID5, the LRT shows that the data provide no evidence to conclude
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that the additional TRT covariates improve the fit of model ID5 (p-value = 0.57).
We have already identified that models TRT + LOR + LUR and LOR * LUR
do not improve the fit of model ID5. We can also examine whether these extended
drop-out models provide improvements to model ID2 (LOR + LUR). The LR statis-
tics are 1.15 and 0.00 (due to possible round-off error) on 2 and 1 degrees of free-
dom, respectively, indicating insufficient evidence to conclude that these extended
drop-out models improve upon the fit of ID2 to our data set. Thus, neither the
addition of TRT nor of LOR x LUR, provides a meaningful improvement in fit to
ID2 (LOR + LUR). Hence, the simpler models ID2 or ID5 can be used to describe

the drop-out process in our annual data set.

7.3.2 Summary

We eXplored various ways of modelling the drop-out process in our data. More
specifically, the three models considered can be viewed as extensions of ID2 and
IDS5, two of the permissible drop-out models described in the previous section. We
introduce treatment effects and interactions terms into the drop-out model with
a view to examining whether there is any impact on the conclusions about the
treatment effects. Because some of the conditional drop-out probabilities at years 2 |
and 3 are estimated to be zero for each of these three drop-out models (see Table 7.9),
the estimates of the parameters in the outcome model from these three dfop-out
model specifications are identical to those obtained under models ID2 and ID5. It
is also of interest to investigate whether a more general model speciﬁcation for the
drop-out process improves the fit. The results indicate that the simpler drop-out
models ID2 or ID5 are adequate for our annual MS data. Thus, models ID2 and

ID5 would be used throughout the next section.
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7.4 Baker’s Selection Model: Extension of the Outcome

Model

In this section, we explore extensions of the outcome model considered in the two
previous sections based on including other baseline covariates such as gender, age,
duration of MS, EDSS and BOD, in addition to the treatment arms and time. The
main purpose of this section is to investigate whether or not inclusion of other base-
line covariates in the model has any impact on the conclusions about the treatment
effects identified in Section 7.2.

For simplicity, we only consider the five ba,éeline covariates described in Sec-
tion 2.2.3, and these are introducéd only into thé marginal model for the exacerba-
tion rates. The structure of the associations among the measurements is assumed
to remain as previously described. This is thought reasonable as our primary in-
terest focuses on the impact of additional covariates on the conclusions about the
treatment effects in the marginal model for the exacerbation rates.

The baseline covariates are included one at a time into the marginal com-
ponent of the outcome model. The forward stepwise procedure for inclusion of the
baseline covariates in addition to the treatment and time effects is carried out in

the following fashion:

(1). Consider each covariate for inclusion in the marginal model and examine if it

has a significant effect;

(2). If any covariates have significant effects, include the most significant covariate
in the marginal model and repeat (1). Stop when no remaining covariates are

found to be significant;
(3). If no covariates have significant effects, terminate the procedure.

Even though EDSS score is an ordinal variable, for simplicity, we treat it as

a continuous variable in our analysis. The BOD at baseline is skewed to the right
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as is evident in Figure 2.5. Further, this covariate has a much larger scale than
the other covariates. To a&oid pbtential difficulties these features could induce in
the estimating procedure, we use a logarithm transformation of the baseline BOD.
Baseline BOD and its logarithm are highly associated (the correlation between them
is roughly 0.7 based on the 362 patients who had baseline BOD greater than zero).

' Among the ID models considered with the original form of the outcome
model, we found that the reduced models ID2 and ID5 were adequate. The exten-
sions considered in Section 7.3 did not improve the fit significantly, so these same

drop-out models will be considered here. The inclusion of additional covariates in

the outcome model contemplated here could improve the overall fit, in which case

it would again'be of interest to examine whether the drop-out procesé is ID, RD or

CRD. As noted in Section 7.2, model ID2 is more suitable for this purpose. Hence,

- model ID2 is used to describe the drop-out process throughout this section. .

7.4.1 Results

The results of the forward stepwise procedure to examine the role of each baseline
covariate are summarized in Table 7.14. These log-likelihood values correspond to
maximum likelihood estimates on the boundary of the parameter space as in the
earlier fitting with models ID2 and ID5. Detailed summaries for the several cases
reported ‘in Table 7.14 appear in Tables D.1 to D.5 of Appendix D. The minimization
process for obtaining the estimates reported in Tables D.1 to D.5 are similar to those
described eal;lier. These maximum likelihood estimates were, on average, obtained
at the 24th iteration and the Hessian matrix was never reset to a unit matrix in any
of the minimizations. _

The first baseline covariate in addition to the treatment group included in
the model is gender of the patients (Gender). The LRT indicates gender is not an
important covariate when estimating the exacerbation rate. This agrees with Wald

test (see Table D.1: z-score = 1.17, p-value = 0.24). The effects of baseline EDSS
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Table 7.14: The LRT Statistics in the Forward Stepwise Procedure

Neg. Loglik for Model with
LD + HD + time: 933.922

Case | Additional COV | Neg. Loglik | LRT | p-value | - Comment
1 Gender 933.244 |'1.357 | 0.24
2 EDSS 933.901 | 0.043| 0.84
3 Dur 933.768 0.154 | 0.69
4 Age 933.354 1.137 | 0.29
5 log(BOD 933.088 1.668 0.20 Based on Imputed Set 1

)
( ) 933.215 1.414 | 0.23 | Based on Imputed Set 2
log(BOD) 933.083 1.677 | 0.20 | Based on Imputed Set 3
( ) 933.211 1.421 | 0.23 | Based on Imputed Set 4

(EDSS), duration of MS at baseline (Dur), and age at baseline (Age), are similarly
not significant; see Table 7.14.

As mentioned before, there are 8 patients with missing BOD at baseline. In
addition, 2 patients did not have any lesions at baseline, i.e. their baseline BOD
: valué is zero. This creates a minor difficulty for convertihg baseline BOD to the
log scale. Since the smallest non-zero baseline BOD value is 9, we impute a value
between 0 and 9 for these 2 patients and perform a sensitivity analysis to determine
whether the specific value chosen has any impact on the conclusion of our analysis.
The arbitrary values chosen are 1.0 and 4.5. For the 8 patients who. did not have
any reading on BOD at baseline, one way to impute values for them is with the
expectation-maximization (EM) algorithm, utilizing the other baseline covariates.
For our purposes, it is sufficient to use the following values to fill in the 8 missing

values and perform. a sensitivity assessment:

e the average of the log of the baseline BOD from 362 patients (excluding the
10 patients mentioned earlier), i.e. 7.085 (BOD = 1194.516) |

9

e the average of the log of the BOD from 364 patients (2 patients with zero
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Table 7.15: Data sets used for assessing the sensitivity of the results when consid-
ering log(BOD) in addition to treatment group and gender as a covariate

In terms of BOD-

Data Set The 8 Patients | The 2 Patients
Imputed Set 1 1194.516 1.0
Imputed Set 2 1194.516 4.5
Imputed Set 3 1148.905 1.0
Imputed Set 4 1158.439 45 .

baseline BOD imputed to have a value 1.0), i.e. 7.047 (BOD = 1148.905);

e the average of the log of the BOD from 364 patients data (2 patients with zero
baseline BOD imputed to have a value 4.5), i.e. 7.055 (BOD = 1158.439).

The four different combinations of values for imputing the 8 missing values ‘and the
2 zero baseline BOD values are listed in Table 7.15. All four imputed data sets
lead to a similar conclusion: log(BOD) is not a statistically important factor; see
Table D.5 for the detailed results.

Since the other baseline covariates are demonstrated to be not important for
) estimating the rate of exacerbations, we can also perform an alternative assessment
for the significance of log(BOD). In particular, the 8 patients with missing baseline
BOD are withheld from the analysis and the 2 patients with zero baseline BOD are
imputed to have values of 1.0 and 4.5. _The results evaluated on the boundary of
the parameter space are displayed in Table D.6. To perform a LRT, we re-fit model
ID2 with this reduced data set; see Table D.7. The conclusion from this assessment
~ remains the same as in the previous analyses. The LR statistics corresponding to
the data sets with zero baseline BOD imputed as 1.0 and 4.5 are 1.83 and 1.56 on
1 degree of freedom (p-values = 0.17 and 0.21, ‘respectively). The Wald-test for 34
also leads to the same conclusion (z-scores = 1.30 and 1.20, with p-values = 0.19
and 0.23, respectively).

As expected, the parameter estimates associated with the drop-out process
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are identical in Tables D.1 to D.5. The reason is exactly as in the previous section.
Because the conditional drop-out probabilities at years 2 and 3 are estimated to be
zero, the log-likelihood functions in all five cases can be expressed as the sum of a
function of the parameters for the outcome. model and a function of the parameters
for the drop-out model. Hence, the MLEs for the parameters in the two processes
can be obtained separately. Since we employ the ID2 drop-out model in all five

cases, the parametef estimates are expected to be identical.

7.4.2 Summary

In the previous sections, the outcome model includes only the treatment gfoups
and time as covariates. Here we consider also including the five baseline covariates,
gender of the patients, EDSS, duration of disease, age and BOD, into the marginal
model for the exacerbation rates. Model ID2 is used to described the drop-out
process throughout the section. We found that none of these five baseline covariates

contribute significantly to the fit in estimating the exacerbation rates.

7.5 Overall Summary for Baker’s Selection Model

We have used Baker’s selection modelling approach to address various questions,
and we provided a brief summary of our findings at the end of Sections 7.2, 7.3
and 7.4. In this section, we briefly describe what we have learned about the data
according to the results obtained with the‘ simplest acceptable model.

In Section 7.2, we first determined that the non-saturated outcome model
described in (7.2) — (7.4) is sufficient for our data by comparing it to various more
general outcome rflodels. This outcome model was then used throughout the section,
coupled with drop-out models of the type LOR + LUR, to address questions of
interest. We discovered that the maximum likelihood solutions for four (models
ID1, ID2, ID4 and ID5) of the six informativg drop-out models are located on the

boundary of the parameter space. This results in identical parameter estimates for
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the outcome model associated with drop-out models ID2 and ID5 for our data set.
This boundary phenorhenon does not arise in any of the ignorable drop-out models,
i.e. the RD and CRD models.

Based on likelihood ratio tests, we concluded the drop-out mechanism in our
data set is informative. Modéls ID1, ID2 and ID5 are permi}ssible and adequate
models for modelling the drop-out process in our data. Model ID5, the simplest
permissible informative drop-out model, indicates that the drop-out process in our

~data depends on the outcome process only through the last unobserved measurement
(LUR).

In Section 7.3, we explored several drop-out models that can be viewed as
generalizations of models ID2 and ID5. In particular, we allowed the drop-out
process to depend on the treatment groups. We found that these general drop-out
models do not provide significant improvement to the fit of models ID2 or ID5.
Thﬁs, our drop-out process can be described by the simpler models ID2 and ID5.

In Section 7.4, we addressed the question of the significance of other base-
line covariates such as gender, EDSS, duration of MS, age and BOD in estimating
the rate of exacerbations. These covar.ia.tes were considered for inclusion only in
the marginal component of the outcome model. Based on the forward stepwise
procedure, none of these covariates were found to contribute significantly to the fit.

Consequently, the simplest Baker’s selection model consists of an outcome
model composed of (7.2) — (7.4), and the drop-out process described by model ID5;
see Table 7.7. This model fits the data quite adequately (p-value > 0.54). The

~ observed and expected counts for the 15 (observation patterns) by 3 (treatment
groups) contingency table are presented in Table 7.16. None of the expected cell
counts are zero even though this model estimates some of the conditional proba-
bilities of drop-out to be zero. The discrepencies between the observed and the
expected counts are generally small, indicating the data are well-described by the

model. Thus, we make inferences based on our data using this model in Chapter 8.
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Table 7.16: The Observed and Expected Cell Counts for Baker’s Selection Model

[

with Drop-Out Model ID5 (“x” denotes missing)

| Pattern | PL I LD | HD
(0,0,0) | 14 (13.5) | 9 (9.1) | 15 (15.3)
(0,0,1) 3 3.0) | 5 (5.0) | 11 (7.7)
(0,1,0) 6 (5.2) | 7 (74) | 12 (10.3)
(0,1,1) 5 (64) | 7 6.3) | 7 (5.3)
(1,0,0) 9 6.7 9 (95| 9 (13.9)
(1,0,1) | 12 (10.2) | 10 (102) | 6 (8.6)
(1,1,0) 8 (10.7) | 11 (10.7) | 13 (9.0)
(1,1,1) | 25 (24.5) | 18 (23.4) | 16  (15.8)
(0,0, %) 0 (0.9) 1 (1.6) 1 (2.4)
(0,1, %) 2 (2.0)| 3 (20)] 0 (1.6)
(1,0, %) 1 32)]| 5 (3.2) | 2 (2.7)
(1,1,%) | 11 (7.7) | 10 (7.3) | 3 (4.9)
(0, *, %) 2 @3Nl 7 (43) | 4 (4.7
(1,%,%) | 12 (11.8) | 12 (11.3) | 8 (8.1)
(*,%,%) | 13 (13.6) | 11 (13.8) | 17 (13.7)

I

Goodness-of-fit Tests

G? = 26.53 on 28 degrees of freedom; p-value = 0.54

X? = 24.09 on 28 degrees of freedom; p-value = 0.68
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7.6 The Liu et al. Transition Model

In this section, we apply the Liu transition model to our annual data. Recall
that Liu et al. (1999) employ a first-order transition model to model the out-
come process. Further they assume that each of the conditional probabilities,
Pr(Y;* = y; | Y, = y;_;, ), does not depend on the covariates measured at time
t which seems somewhat unusual (see Chapter 5 for details). In our case, we can
proceed with their idea without making such an assumption about the dependence
on the covariates measured at time t as we consider only covariates bmeasured at
baseline.

For the drop-out process, we consider three models: IDl, ID2 and ID3 as
described in Table 7.1. Based on the LRT, we can select the simplest permissible
model among the three. The basic idea of these models is similar to those considered
in Liu et al. (1999) in the sense that the drop-out probabilities are assumed to
depend only on the response observed prior the drop-out (LOR) and the response
which would be observed if drop-out had not occurred (LUR). But in their data
set, the first observation is always obser\./ed; Thus their models are slightly different
than ours as they do not need a model for the case where the response pattern ry_y

is equal to { }.

¢ Repeated Binary Outcomes with Informative Drop-out ¢

¢ Qutcome Model

A first-order transition model is assumed for the binary longitudinal data. This
means that the current measurement, yf, is related only to the previous measure-
ment, y;_;, for t = 2,3, as well as to the baseline covariates of interest. Here only the
treatment assignment and time are considered in the analysis since the results in the
previous section indicate that gender of the patients, baseline EDSS, age at baseline,

duration of MS, and baseline BOD were not important covariates in estimating the
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rates of exacerbation. Thus, the outcome model employed can be expressed as:

logit{Pr(Y =1 | Yt =yi_1,x¢)} = Bo+ P1LD + BHD + Bst + Bayr_,

(7.17)

o Drop-out Model v

Models similar to ID3 and ID6 from Table 7.1 were considered in Liu et al. (1999).
Here we proposé -to model the drop-out }process using models ID1, ID2, ID3 and ID5.
We choose to focus on these three ID models out of the six listed in Table 7.1 because
they allow straightforward investigatiori for the form of the drop-out mechanisms
according to the terminology by Little and Rubin (1987). Furthermore, it will be
interesting to determine if this leads to the same choice of the ID models for the

drop-out process, namely ID2 and ID5, as the Baker selection model approach.

¢ Repeated Binary Outcomes with Ignorable Drop-out ¢

To investigate the impact of different drop-out mechanisms on the treatment ef-
fects, we also consider drop-out models assuming the drop-out occurred at random
(RD) and completely at random (CRD). The RD and CRD models are the same in
Table 7.1. -7

Likelihood ratio tests can be performed to examine the type of drop-out in
our annual data based on these models. The results for the parameter estimates
under different drop-out mechanisms are presented in the subsequent subsection.

We conclude the section with a brief summary.

7.6.1 Results

. Informative Drop-out
The maximum likelihood solutions for models ID1 and ID2 lie on the boundary of

the parameter space, while those for model ID3 exist in the interior. The detailed
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results for these models are summarized in Tables E.1 tb E.6 of Appendix E. The
boundary solutions for models ID1 and ID2 occur in a similar fashion as in Baker’s
selection model (see Tables E.1 and E.2). We present the MLEs computed on the
boundary for drop-out models ID1 and ID2 in Tables 7.17 and 7.18, respectively.
These reported estimates are obtained with many fewer iterations than those in
Tables E.1 and E.2. Moreover, the estimated Hessian matrix in both cases was
never reset to unity throughout the minimization process.

Notice that the MLEs for the parameters in the outcome model are identical
for drop-out models ID1 and ID2. This is again because some of the conditional
probabilities of drop-out at years 2 and 3 are estimated to be zero and hence the
parameters in the outcome and drop-oﬁt models can be estimated separately. The
G? and X? goodness-of-fit statistics shown in Table 7.20 provide some evidence of
lack-of-fit in each case. Although the evidence is not compelling, the fit of these
models for our data are somewhat questionable; perhaps a more complicated asso-
ciation structure or a more general drop-out model should be employed. However,
our objective is not to perform a definitive analysis on our annual data, but rather -
to explore different approaches for modelling incomplete longitudinal binary data
with informative drop-outs. Hence, despite their somewhat questionable fit, we do
not elaborate on these models but rather go on to consider the best choices within
this collection of models. |

All three ID models lead to similar conclusions about the treatment effects.
In particular, the chance that an exacerbation would be experienced, given the past
'history (whether or not an exacerbation occurred at the previous time point), is
not significantly different between the LD and PL groups (all p-values > 0.47).
Nevertheless, the LD effect is estimated to be much strongef in model ID3 than in
models ID1 and ID2. All three models conclude that the HD group has a lower
chance than the PL group to experience an exacerbation, given the past history

(p-values < 0.01). Further, there is a strong suggestion of a linear decrease over
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Table 7.17: Results for Liu Transition Model with Drop-ocut Model ID1 Evaluated
on the Boundary: mo3 — —00,m02 = —00, 703 + 723 = A and 7z + 722 = Ag

| Parameter | Estimate | SE |

Bo 1.007 0.206

B (LD) | —0.040| 0.168

B2 (HD) —0.462 0.167

Bs (time) —0.324 0.095
B4 0.692 0.161°
no1 —2.089 0.165
M3 0.558 0.413
M2 0.048 0.374
Ay - —1.548 0.348
A, —-1.327 0.314

| Neg. Loglik | 942.259 (# Iter = 16) |

Table 7.18: Results for Liu Transition Model with Drop-out Model ID2 Evaluated
on the Boundary: 703,702 = —00, A1 = 13 + 72 and Ag = 72 + 72

| Parameter | Estimate | SE |

Bo 1.007 0.199

B1 (LDY —0.040 | 0.167

B2 (HD) —0.462 0.167

B3 (time) —-0.324 0.094
B4 0.692 | - 0.161
701 —2.089 0.169
m © 0.286 0.296
Ay —1.356 0.279
JAD) —1.499 0.273

| Neg. Loglik | 942.687 (# Iter = 15) |
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Table 7.19: Results for Liu Transition Model with Drop-out Model ID5 Evaluated
on the Boundary: 93,702 = ~00, A1 = 193 + 72 and Ag = 192 + 72

| Parameter | Estimate | SE |
Bo 1.007 0.206
8. (LD) —0.040 | 0.169
B, (HD) —0.462 | 0.168
. B3 (time) —0.324 0.095
Ba : 0.692 0.161
o1 —2.089 | 0.166
Ay —1.356 0.185
Ay —1.499 0.168

| Neg. Loglik | 943.239 (# Iter = 14) |

Tablé 7.20: Goodness-of-fit Statistics for Liu Transition Model with Drop-out Mod-
els ID1, ID2, ID3 and ID5

| Model [ Degrees of Freedom || G* | p-value | X2 | p-value |

-ID1 30 42.56 0.06 40.91 0.09
ID2 32 42.77 | 0.10 41.15 | 0.13
ID3 34 48.09 0.06 46.06 0.08
ID5 33 |t 46.10 | 0.06 45.76 0.07
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time in the log odds of having exacerbations given the past history (p-value < 0.001
based on f3 in each model). The association parameter (4 is rhighly significant (all
p-values < 0.001). Under models ID1 and ID2, the odds of having an exacerbation
given there was an exacerbation at the previous visit are 2.0 times the odds of
having an exacerbation given there was no exacerbation at the previous visit; the -
corresponding approximate 95% CI for the odds ratio is (1.46,2.74). Under model
ID3, the odds ratio is estimated as 1.8 and the approximate 95% CI is (1.27, 2.48).

The LR statistic for the reduction from model ID1 to model ID2 is 0.86 on 2
degrees of freedom (p-value = 0.65) and hence is permissible. However, we cannot
further reduée model ID2 to model ID3 (LR statistic = 6.43, df = 2; p-value = 0.04).
Thus, the simplest ID model among these three is ID2, which is the same conclusion
obtained with Baker’s selection model.

Recall that with Baker’s selection model, drop-out model ID5 is a reasonable
reduction of model ID2. Thus, it is of interest to perform this assessment with the
Liu transition model. The parameter estimates obtained from the QN minimization
with drop-out model ID5 are summarized in Table E.4. The results indicate a similar
feature of boundary solutions as in model ID2. Table 7.7 presents the maximum
likelihood estimates obtained at the suggested boundary points for model ID5. The
LR statistic indicates that the term corresponding to the last observed response
included in ID2 does not provide an important improvement to the fit (LR statistic
= 1.10, df = 1; p-value = 0.29). Further, while the goodness-of-fit of model ID5
is slightly less satisfactory than for ID2 (see Table 7.20), the evidence against the
adequacy of model ID5 is not overly compelling. These conclusions are qualitatively

similar to those obtainéd with Baker’s seléction model.

. Ignorable Drop-out
The results for the RD and CRD models are displayed in Tables E.5 and E.6, respec-

tively. As expected, the parameter estimates for the outcome model are identical

108




under bbth drop-out mechanisms. All parameter estimates are located in the interior
of the parameter space.

Under the assumption that the drop-out process is ignorable, the Wald tests
suggest that the chance a patient would have an exacerbation given the past history
is similar in the LD and PL group (p-value = 0.50). But the \risk is significantly
lower in the HD group than in the PL group (p-value =~ 0.01). As in the ID case,
the suggestion of a linear decrease over time in the log odds of having exacerbations
given the past history is quite strong (z-score =~ —4.4 based on §3; p-value < 0.001).
The odds of having an exacerbation given there was an exacerbation in the previous
period are about 1.8 times the odds of having an exacerbation given there was no
exacerbation in the previoﬂs period; the approximate 95% CI for the odds ratio is
(1.32, 2.50). |

We perform LRTs for selecting the simplest RD and CRD models. The
reduction from model RD1 to RD2 is pérmissible (p-value = 0.36), but the further
reduction from model RD2 to RD3 is not allowed (p-value = 0.007). Under the CRD
assumption, CRD1 is identified as the simplest possible model, as the reduction from
CRD1 to CRD2 is not permissible (p-value = 0.004). These choices differ from those

for Baker’s selection model; see Section 7.2.

e  Types of Drop-out

We established that models ID1 and ID2 are reasonable for describing our data. To
investigate the types of drop-out in our annual data set, we compare these models
with some RD and CRD models.

For assessing if the drop-out mechanism is of type RD, model ID1 can be

' compared to model RD1 and similarly, model ID2 can be compared to model RD2.

The reduction from ID1 to RD1 is permissible (LR statistic = 3.68, df = 2; p-
value = 0.16). However, the more sensitive assessment comparing model RD2 to

ID2 (since the reduction from ID1 to ID2 is reasonable) provides a less definite
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conclusion; the LR statisti'cequals 3.66 on 1 degree of freedom (p-value = 0.06).
- With a 5% level of significance, we would not reject the hypothesis that 7 - 0, but
.with only a slightly larger accéptable type I error, we would reject the hypothesis.
Thus further investigation is required.

The LR test indicates one cannot reduce from model RD2 to CRD1 (LR
_statistic = 6.14, df = 1; p-value = 0.01). The reduction from model ID2 to CRD1
is also not permitted (LR statistic = 9.80, df = 2; p-value = 0.007). Thus we need
to make a decision based on the comparison between model ID2 and RD2. In such
an ambiguous situation, one would usually prefer not to reduce from ID2 to RD2
because the simpler model may be more susceptible to potential bias in the results.
As mentioned earlier, model ID2 can be further reduced to ID5. The comparison
of model ID5 to CRD1 confirms that model CRD1 is not appropriate for our data
(LR statistic = 8.70, df = 1; p-value = 0.003). Thus \.ve conclude that the drop-out .

process in our data appears to be informative.

7.6.2 Summary

We considered a first-order transition model for modelling the outcome process,
coupled with the same drop-out models considered in Section 7.2. Based on the
likelihbod ratio tests, it appears that the drop-out process in our model cannot be
ignored. Model ID5 is identified as the simplest drop-out model that is acceptable
for our data.

Based on this model, we computed the expected cell counts for the 15 (obser-
vation patterns) by 3 (treatment arms) contingency table; see Table 7.21. Despite
some of conditional drop-out probabilities being estimated as zero, the expected
counts are all nonzero. Notice that the difference§ between the observed and ex-
pected counts in some cells are quite large. For instance, the differences in cells
(0,0,0) and (1, 1,0) for the PL group and in cell (1,1,1) for the LD group are larger
than 5.0 in magnitude. This is also reflected in the values of G2 and X2, both .
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Table 7.21: The Observed and Expected Cell Counts for the Liu Transition Model
with Drop-Out Model ID5 (“+” denotes missing)

HD |

| Pattern | PL | LD |
(0,0,0) | 14 (74) | 9 (8.1) | 15  (15.6)
(0,0,1) | 3 (6.1) | 5 (6.4) | 11 (8.1)
(0,1,0) | 6 (5.8) | 7 (6.1) | 12 (8.3)
(0,1,1) | 5 (95) | 7 (9.6) | 7 (8.6)
(1,0,0) | 9 93) | 9 07 [ 9 (132
(1,0,1) | 12 (7.6) | 10 (7)) | 6 (6.9)
(1,1,0) | 8 (14.4) | 11 (14.6) | 13 (14.0)
(1,1,1) [ 25  (23.6) |18  (23.1) | 16  (14.5)
(0,0,%) | © 16) | 1 16) | 1 (21
0,1,%) | 2 24 3 25) | 0 (22
(1,0,%) | 1 (2.0) | 5 20 [ 2 (18
(1,1,) (11 (61) |10  (6.0)| 3 (3.7
(0,%,%) | 2 (39| 7 (41) | 4 (4.3)
1,*,+) | 12 (98) |12 . (98) | 8 (7.2
(*,%,%) | 13 (13.6) | 11 (13.8) | 17  (13.7)

‘ Goodness-of-fit Tests |
G? = 46.10 on 33 degrees of freedom; p-value = 0.06
X? = 45.76 on 33 degrees of freedom; p-value = 0.07
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indicating a potential lack-of-fit of this model. One could explore more complicated
drop-out models or association structures to improve the fit of the model, but such
extensions are not our main interest. Thus, we go on to make inferences based on

our data using this model in the concluding chapter.
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Chapter 8
Conclusions

8.1 Conclusions

The main focus of this thesis has been on exploring likelihood-based methods for
analyzing longitudinal binary responses under informative (or non-ignorable) drop-
out. The two modelling approaches. considered were Baker’s selection model and
the Liu et al. transition model. Both models belong to a general class of models
known as selection models. A selection model factors the joint distribution for the
response variables (Y) and the indicator variables denoting whether the response

variables were observed (R) as

f(Y,R) = fR]Y)f(Y), (8.1)

where f(R. |'Y) is the model for the drop-out proéess and f(Y) correspoﬁds to the
model for the measurement (or outcome) process.

The main difference between Baker’s selection model and the Liu transi-
tion model resides in the model specification for the measurement process. Baker’s
selection model uses a parameterization proposed by Ekholm (1991, 1992) to acco-
modate longitudinal binary measurements. That is, the outcome model is expressed

in terms of a model for the (univariate marginal) pro.babilities of the responses and
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an association model for the tempofal associations among the responses. The Liu

transition model, however, employs a first-order Markov chain transition model for

the measurement process. The conditional distribution of response at time # (y;)

| given the history of the responses up to time ¢t — 1 is assumed to depend only on

the response at the previous time point (y:—1). These outcome models are coupled
with a drop-out model specified as a time-ordered causal model incorporating the
assumption that the drop-out does not depend on future events.

Given that the two approaches model the outcome process differently, this
raises the question of the advantages and disadvantages of the two approaches. If
the objective of the study is to study the effects of covariates on the marginal prob-
abiliﬁes of the responses, marginal models provide a direct answer to this question.
However, transition models should be used when the interest is in prediction (Diggle
et al., 1994). Baker’s selection model incorporates a more general structure for the
strength of association among the responses than the Liu transition model. The
structure for the associations among the reéponses in the Liu transition model is
completely specified in terms of a single lagged effect. (Additional lagged effects
could be added to the model but the nature of the association structure is lim-
ited by this parameterization.) For Baker’s selection model, the expression for the
outcome model for a sequence with more than three responses becomes more com-
plicated, and the number of parameters increasesvrapidly. This is particularly so for
the association model if no assurﬁptions are made regarding the nature of the asso-
ciation structure among the responses. Unlike Baker’s selection model, the number
of parameters in the Liu transition outcome model need not change with the length
of the response sequence.

Both models were applied to our annual version of the Berlex exacerbation
data described in Chapter 2 to examine the sensitivity ‘of the estimated effects of
Interferon S-1b on the exacerbation rates in relapsing-remitting MS patients to

various assumed forms for the drop-out mechanisms. More fundamentally, we were
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Table 8._1:> Estimated Chance of Exacerbations Based on Baker’s Selection Model

| Treatment Group | Year 1 | Year 2 | Year 3 |

PL - 0.68 0.66 0.63
LD 0.68 0.65 0.63
HD 0.57 0.54 0.51

interested in studying the nature of the drop-out process in this clinical trial.
Using Baker’s selection modelling approach, we verified that the relationships
expressed in (7.2) — (7.4) are sufficient for describing the outcome process in our
data. This outcome model coupled with drop-out model ID5 is determined to be_the
most parsimonious yet adequate model among other more general models considered.
In other words, the drop-out process in our data is informative and it depends on
the last unobserved response, but not on the last observed response. Based on this
model, we conclude that the low dose effect is not significant. vThe odds of having
exacerbations in the LD group are reduced only by 1.7%‘ relative to the odds of
- having exacerbations in the PL group. The corresponding approximate 95% CI for
the precent reduction in the odds is (—44.9%, 33.3%). The high dose effect, however,
is evidently different from the placebo effect. The odds of having exacerbations in the
HD group are roughly 38.4% lower than the odds in the PL group (95% CI: 10.1%,
© 57.7%). Under the model assumption that the log odds of having exacerbations
changes linearly over time, the odds are estimated to decrease by 11.1% per year
in each group. The approximate 95% CI for the relative reduction in odds over
time is (—2.6%, 23.0%), indicating the reduction is not statistically significant. The
estimated chances of having exacerbations at each occasion presented in Table 8.1
also reflect these conclusions. The chances of experiencing exacerbations are almost
the same in the LD and PL groﬁps, but are much smaller in the HD group. In each

group, these chances decrease only slightly over time.

As for the association models, the LD and PL groups seem to have similar




Table 8.2: Estimated Chances of Exacerbations Based on the Liu et al. Transition
- Model

Exacerbation Experienced in Previous Period
Treatment Group l Year 1 l Year 2 [ Year 3

PL 0.80 0.74 0.67
LD 0.79 0.73 | = 0.67
HD 0.71 | 0.64 0.57

No Exacerbation Experienced in Previous Period
Treatment Group | Year 1 | Year 2 | Year 3

PL 0.66 0.59 - 0.51
LD 0.66 0.58 . 0.50
HD - 0.56 "~ | 0.47 0.39

chances of having exacerbations at exactly two or all three time points during the
“study, but these chances are lower in the HD group. The odds ratios for the LD
and PL groups are estimated as 0.90, reflecting a 9.8% reduction in the odds in the
LD group. The corresponding approximate 95% CI is (—36.4%,40.3%), implying
the LD effect is not statistically significant. On the other hand, the odds in the HD
group are only about half the odds in the PL 'gfoup. The a,pproximatei 95% CI for
the decrease in the odds in the HD group is‘ (20.1%,65.8%). The estimates for the
intercept parameters, a2, a13 and aps, are all quite small. This éuggests a possible
reduction to a model with all the 2-way associations in each treatment group being
the same, i.e. 12 = 13 = ag3. On the other hand, a separate intercept parameter
for the 3-way association appears to be useful as é&j23 is considerably larger in
magnitude. Notice that, the estimated joint probabilities of the responses obtained
from our model are slightly larger than those obtained under the independence
aséumption? indicating that there is some positive dependence among the responses;

see Table 8.3.
With the Liu et al. transition approach, the simplest acceptable drop-out

model is also identified to be ID5, again indicating the drop-out mechanism in our
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data is informative. Even though the outcome model, and hence the parameters be-

ing estimated, are different than in Baker’s selection model, the conclusion regarding

the treatment effects remain quite similar. For fixed t and previous response y; ;,

the odds of having exacerbations are reduced by 3.9% (95% CI: —33.8%,31.0%) in
- the LD group and by 37.0% (95% CI: 12.5%, 54.6%) in the HD group relative to the
PL group. This indicates that only the high dosage of Interferon B-1b effectively
reduces the odds of experiencing exacerbations in MS patients.

Similarly, the parameters 83 and 4 can also be interpretated as log odds
ratios. In particular, eﬁcp(ﬁg) represents the ratio of the odds of héving exacerbations
at time ¢ + 1 as relative to time ¢ for a .patient with the same history at times £ — 1
- and t (y;_; = yi)- This odds ratio is estimated as 0.72 with approximate 95% CI
(0.60, 0.87). The odds of having exacerbations given exacerbations in the previous
period are 2.00 (= exp(f4)) times the odds given no exacerbations in the previoﬁs
period; the corresponding 95% CI for the odds ratio is (1.46, 2.74). '

The estimated chances of experiencing exacerbations given the previous his-

tory presented in Table 8.2 also indicate similar conclusions regarding the treatment

effects: the risks are much smaller in the HD group than in the LD and PL groups.
Given that exacerbations were observed in the previous period (i.e. yf_; = 1), the
relative differences in the chances between the HD and PL groups are 11%, 14% and
15% at years 1, 2, and 3, respectively. For the case where no-exacerbations were
detected in the previous period (i.e. yf_; = 0), the relative differences are slightly
larger:  15%, 20% and 24% at years 1, 2, and 3, correspondingly.

Table 8.3 displays the values of Pr(Y* = 1,Y;* = 1) where {s,t} = {1,2},
{1,3}, {2,3} and Pr(Y} = 1,Yy; = 1,Y5 = 1) obtained from Baker’s selection model
and the Liu et al. transition model. The estimates are generally similar for the two
approaches except for the estimated probability of exacerbétions at visits 1 and 3
and at all three visits. The differences are more substantial for the former estimated

probabilities; the magnitudés of the (absolute) differences are 0.08, 0.06, 0.12 in the
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Table 8.3: Estimated Pr(Y;” = 1,Y;* = 1) and Pr(¥Yy" = 1,Yy = 1,Y;* = 1) by
Treatment Groups

[ Baker’s Selection Model |

| - ‘ | PL | LD | HD |
Pr(Yy = 1,Y5 =1) 0.50 | 0.47 [ 0.34
Pr(Yy =1,Y5 =1) 0.50 | 0.47 | 0.34
Pr(Yy =1,Yy =1). 0.47 | 0.45 | 0.32

1P =1,Yy =1,Y7=1) | 038 |0.35 | 0.24

[ Assuming Independent Responses |

| [ PL]LD [ HD |
Pr(Y = 1,Y; = 1) 0.45 [ 0.44 | 0.31
Pr(Yy = 1,Y5 =1) 0.43 | 0.43 | 0.29
Pr(Yy =1,Yy =1) 0.42 | 0.41 | 0.28

Pr(Y=1,Yy=1,Yy=1) | 0.28 | 0.28 | 0.15

| Liu et al. Transition Model |
| | PL | LD | HD |

Pr(Y; =1,Y; = 1) 0.49 [ 0.48 | 0.36
Pr(Yy=1,Yy = 1) 0.42 | 0.41 | 0.28
Pr(Yy =1,Yy =1) 0.47 | 0.45 | 0.32
Pr(Y; =1,Y; =1,y =1) | 033 | 0.32 | 0.20

‘ PL, LD and HD groups respectively.

In the intent-to-treat analyses reported in [35] (which assumed the drop-out
occurred completely at random), the exacerbation rate was defined és the number of
exacerbations experienced in one year. “This is different from the exacerbation rate
referred to throughout this thesis (the.chance of having one or more exacerbations
in a year). Nevertheless, it is of interest to compare the two sets of estimated
treatment effects in terms of the relative change in the exacerbation rates. From
the intent-to-treat analyses, the exacerbation rates in the PL, LD and HD groﬁp
were 1.21, 1.05 and 0.84, respectively. Thus, the rates were 13% and 31% lower
for the LD and HD groups relative to the PL group. Based on Baker’s selection
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model, the odds of having exacefbations are reduced by 1.7% and 38.4% in the
LD and HD groups, respectively. Similarly, they are reduced by 3.9% .and 37.0%
under the Liu et al. transition model. The relative changes for the low dose effect
are quite different between our approaches and the intent-to-treat analyses, but the
variation is not as large for the high dose effect. Even though the magnitudes of the
relative changes are quite different, the results convey a similar conclusion; that is,
the effect of the high dosage of Interferon B-1b is much more evident than that of
the low dosage. We also found that there is a weak positive association over time
in the presence/absence of exacerbétions, and that the influence of the association
is present over more than 1 time period. .

In the previous chapter, we provided the results from goodness-of-fit teéts
for both Baker’s selection model and the Liu et al. transition model. The tests
provided no evidence to suggest any lack-of-fit of Baker’s selection model for our
data. However, the adequacy of the Liu et al. transition model (p-values = 0.06 and
0.07 for G2 and X? respectively) is questionable. The discrepency between some
of the observéd and expected counts obtained from the Liu et al. model is quite
large (see Table 7.21). This seems to suggest the restrictive assumption on the form
of the associations among thé responses in the Liu transition model may not be
adequate for our data; that is, a higher-ordered transition model could possible be -
used instead. Alternatively, this may suggest a more general model for the drop-out
process should be employed. Between Baker’s selection model and the Liu transition
model, Baker’s selection model seems much more satisfactory as' it fits the data quite
‘well (see Table 7.20).

In summary, analyses based on an assumption of ignorable non-response
when the non-response mgchanism is informative could lead to misleading results.
By incorporating a non-response model in a likelihood-based approach, valid infer-
ences can be obtained when the non-response mechanism is non-ignorable provided

the non-response model correctly describes the non-response mechanism (Little and
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Rubin, 1987). Howeve'r‘, this approach is not without analytical difficulties. The
parameters of the non-ignorable models may not be identifiable or the solutions to
the likelihood equations (which may not be the maximum) may lie on the boundary
of the parameter space. In Chapter 6, we showed that, with a saturated outcome
model, the informative models of types COV * LUR, COV + LOR + LUR and
LOR * LUR where COV represents categorical covariates, are identifiable. In the
course of our analyses in Chapter 7, we demonstrated that the maximum likelihood
solutions for some of our non-ignorable models were located on the boundary of the
parameter space. This boﬁndary phenomenon did not occur in any of the ignorable

non-response models considered. -

8.2 Further Work

. Other Approaches of Interest

There are approaches other than selection models that can be used for analyzing
incomplete data. In particular, the pattern-mixture modelling framework proposed
by Little (1993) has become an area of active research. The pattern-mixture ap-
proach specifies the joint distribution of the measurement and response processes in
terms of the ﬁarginal distribution of the responses multiplied by the distribution of
measurements, conditional on the response patterns. Pattern-mixture models are
natural when the interest is in population strata defined by missing data patterns,
but these models are ty‘pically underidentified (Little, 1993). Thus the models re-
quire restrictions or prior information to identify the parameters. Unlike selection
models, with the pattern-mixture approach one can avoid specifying the form of the
missing data mechanism as it is incorporated indirectly via parameter restrictions
(Little, 1993). This is a possible attractive feature over the selection model ap-
proach as the latter is vulnerable to misspecification of the form of the missing-data
mechanism. Further, pattern-mixture models are closer to the form of the data and

sometimes simpler to fit. Thus, it would be of interest to re-analyze our annual data
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with this approach and compare the results to those reported here.

° Generalizations of the Data

We chose to express the exacerbation data in terms of annué,l binary outcome vari-
ables. One could perform similar analyses on the binary data with more refined time
intervals; for instance, semi-annual intervals. This semi-annual data may contain
more information and may prdvide more precise estimates for the parameters.

As mentioned at the outset, there is a loss of information associatéd with
dichotomizing the data. To retain all the information, one could analyze the count
data presented in Table 2.4 tfeating these as realizations of Poisson random vari-
ables [18, 19]. One could also use this .approach with finer time—infervals, semi-annual

intervals say. The conclusions obtained from these annual and semi-annual count

data might be more informative than those based on the dichotomized data.
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Appendix A
Proof for Condition (6.4)

As in Section 6.2.2, there are two binary responses, Y1 and Y, with only Y5 subject
to non-response. The outcome model is Pr(Y1 =45Y, =k | X =1) = m, for
j,k=0,1. The non—respbnse model, Pr(Ry =p | Y1 = 5, Y2 = k,X =1) - Pijk, is
assumed to be homogeneous in Yy; that is, p;jx = pix. Thus, the joint probabilitieé
for the observed data are |
Pr(Y; = j,Y; = k,both observed | X =1i) = 05 = mijepuk

Pr(Y; = j,Y2 unobserved | X =14) = 6, = mijo(1 — pio) + mijn(1 — pir),
and the marginal probabilities for Y; are
M. = Mijo + Tij1 = Biju + Oijo + Oij1.

Let ¢ix = 1/ps and assume I = 2. The ¢;r must satisfy the following system of

equations:

f100 6101 O 0 $10 T10.

0 ) 0 0 1.
1m0 fin é11 _ 11 (A1)
0 0 B0 6201 $20 720

0 0 60210 6Gon1 P21 T21.
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Given the multinomial probabilities 8, there is a unique solution for the ¢ pro-
vided the coefficient matrix is non-singular; that is, provided the determinant of the
coefficient matrix does not equal to 0.

The determinant of the coefficient matrix, (61116100 — 61016110) (021160200 —

02016210), will be non-zero provided

01110100 — 61016110 # O - (A2)

and

62110200 — 02010210 # O. A (A.3)

To satisfy (A.2), we require

01110100 - B1016110

- T111P117100P10 ~ T101P117110P10

7101/ 10

<~
=4
é 7T111/7Tn~
=

Pr(Y=1]Y; =1,X =1) Pr(Ya=1|Yi=0,X =1).

#
#

w111 (710. — T101) #  moi{m. — m111)
. ,
£

Similarly, to satisfy (A.3) requires
Pr(Ya=1|Yi=1,X=2)#Pr(Y=1|¥; =0,X =2).

Thus the necessary and sufficient condition for the coefficient matrix to be non-

singular i$
PrYo=1|Y1=1,X=i)#Pr(Yo=1|Y1=0,X =13)

for ¢ = 1,2. Thus, the ¢;; are identifiable unless this condition fails to hold. Note
that, in contrast to the argument leading to condition (6.3), the argument leading to

-this condition remains the same if the number of levels of the categorical covariate

X is greater than 2 (I > 2).
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Append_ix B

Detailed Results for the
Selection Models Described in
Section 7.2
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Table B.1: Results for Model ID1

Set 2

Set 1
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.82 | 0.876 (0.919) 0.90 | 0.876 (0.816)
B 0.00 | —0.028 (1.036) | —0.02| —0.028 (0.584)
B 0.00 | —0.489 (0.896) —0.50 | —0.489 (0.357)
Bs ~0.26 | —0.122 (0.568) | —0.12 | —0.122 (0.388)
o Z0.60 | —0.020 (0.579) | —0.02 | —0.020 (0.404)
o13 -0.63 | —0.031 (0.840) ~0.03 —0.031 (0.378)
Qa3 —0.77 | —0.136 (0.959) | —0.14 | —0.136 (0.486)
12 ~1.15 | —0.534 (0.702) | —0.50 | —0.534 (0.446)
@ 0.00 | —0.113 (1.188) | —0.11 | —0.113 (0.656)
s 0.00 | —0.657 (0.938) | —0.66 | —0.657 (0.391)
03 ~1.95 | —14.421 (1.025) | —1.00 | —15.848 (0.784)
s 0.00 | 0558 (1.003) 0.50 |  0.558 (0.769)
o 0.00 | 12.874 (1.015) 1.00 | 14.301 (0.775)
oz —1.95 | —3.360 (1.042) | —2.00 | —3.360 (0.690)
712 0.00 0.140 (1.001) 0.14 0.140 (0.540)
o 0.00 | 1.860 (1.030) 2.00 | 1.860 (0.787)
o1 T1.95 | —2.080 (1.057) | —2.00 | —2.089 (0.563)
[Neg. Loglik | 933.407 (# Iter — 71) | 933.407 (# Iter = 70)
Set 3 Set 4
Parameter SV | Estimate (SE) SV | Estimate (SE)
5o 0.00 | 0.876 (0.799) | 0.876 | 0.876 (0.330)
B ~0.03 | —0.028 (0.266) | —0.028 | —0.028 (0.338)
By 0.00 | —0.489 (0.286) | —0.489 | —0.489 (0.341)
Bs ~0.12 | —0.122 (0.394) | —0.122 | —0.122 (0.079)
a1z ~0.02 | —0.020 (0.287) | —0.020 | —0.020 (0.302)
a3 ~0.04 | —0.031 (0.251) | —0.031 | —0.031 (0.311)
Q93 -0.15| —0.136 (0.434) | —0.136 | —0.136 (0.321)
Q123 ~0.50 | —0.534 (0.292) | —0.534 | —0.534 (0.334)
a; 0.00 —0.113 (0.287) —-0.113 —0.113 (0.355)
@ 0.00 | —0.657 (0.310) | —0.657 | —0.657 (0.371)
03 —2.00 | —15.400 (0.799) | —20.000 | —15.171 (0.737)
s 0.56 |  0.558 (0.865) | 0.558 |  0.558 (0.503)
o 0.00 | 13.853 (0.794) | 1.000 | 13.624 (0.739)
02 —2.40 | —3.360 (0.806) | —3.360 | —3.360 (0.800)
e 0.15| 0.140 (0.783) |  0.140 |  0.140 (0.828)
_— 2.00 | 1.860 (0.813) | 1.860 | 1.860 (0.813)
mo1 || 0.00 | —2.089 (0.266) | —2.089 | —2.089 (0.171)

| Neg. Loglik | 933.407 (# Iter = 59) | = 933.407 (# Iter = 91) |
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Table B.2: Results for Model ID2

: Set 1 Set 2
Parameter | SV | Estimate (SE) SV | Estimate (SE)
Bo 0.82 | 0.886 (0.553) 0.88 | 0.886 (0.733)
£ 0.00 | — 0.017 (0.538) —0.02 | — 0.017 (0.603)
Ba 0.00 | — 0.484 (0.538) —0.48 | — 0.484 (0.700)
Bs ~0.26 | — 0.118 (0.248) | —0.12 | — 0.118 (0.379)
Q12 —0.60 | — 0.004 (0.341) 0.00 | — 0.004 (0.487)
a3 —0.63 | — 0.010 (0.325) | —0.01 | — 0.010 (0.683)
o —0.77 | — 0.111 (0.373) | —0.11 | — 0.111 (0.848)
123 —1.15 | — 0.511 (0.368) | —0.51 | — 0.511 (0.607)
a 0.00 | — 0.103 (0.592) | —0.10 | — 0.103 (0.713)
s 0.00 | — 0.649 (0.647) | —0.65 | — 0.649 (0.818)
" 03 —1.95 | —14.421 (0.888) | —1.05 | —14.760 (1.075)
m 0.00 | 0.286 (0.815) 0.00 |  0.286 (0.844)
o 0.00 | 13.065 (0.708) | - 0.00 | 13.404 (0.875)
02 T1.95 | —14.564 (0.889) | —1.05 | —14.903 (0.982)
o1 ~1.95 | — 2.080 (0.990) | —2.00 | — 2.089 (0.995)
[ Neg. Loglik | 933.022 (# Iter = 67) | 933.922 (% lter — 64) |
Set 3 Set 4
Parameter | SV | Estimate (SE) SV | Estimate (SE)
Bo 0.90 0.886 (0.788) 0.886 0.886 (0.530)
B1 —0.02 | — 0.017 (0.734) —0.017 | —0.017 (0.389)
B2 —0.50 | — 0.484 (0.751) —0.484 | —0.484 (0.377)
. Bs —0.12 | — 0.118 (0.324) —-0.118 | —0.118 (0.286)
a1z 0.00 | — 0.004 (0.562) | —0.004 | —0.004 (0.370)
a3 ~0.01 | — 0.010 (0.694) | —0.010 | —0.010 (0.420)
a3 ~0.11 | — 0.111 (0.593) | —0.111 | —0.111 (0.546)
123 ~0.50 | — 0.511 (0.599) | —0.511 | —0.511 (0.489)
o ~0.10 | — 0.103 (0.792) | —0.103 | "-0.103 (0.441)
g —0.60 | — 0.649 (0.847) —0.649 | —0.649 (0.426)
o3 —6.00 | —14.384 (1.033) | —14.384 | —13.732 (0.616)
m | —0.30| 0.286 (0.957) | 0.000| 0.286 (0.318)
- 6.00 | 13.028 (0.990) | 0.000 | 12.376 (0.584)
oz ~4.00 | —14.527 (0.904) | 0.000 | —13.875 (0.642)
oL ~2.00 | — 2.089 (0.958) | 0.000 | —2.089 (0.838)

| Neg. Loglik | 933.922 (# Iter = 56) |

933.922 (# Iter = 72)

],
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Table B.3: Results for Model ID3

. Set 1 Set 2 _

Parameter | SV | Estimate (SE) | SV [ Estimate (SE)
Bo 0.88 | 0.986 (0.210) [ 1.00 [ 0.986 (0.210)
B —-0.02 | —0.097 (0.199) | —0.10 | —0.097 (0.200)
B2 —0.48 | ~0.475 (0.196) | —0.50 | —0.475 (0.195)
Bs —-0.12 | —0.230 (0.083) | —0.20 | —0.230 (0.083)
a1z 0.00 | ~0.082 (0.169) | —0.08 | —0.082 (0.171)
a3 —0.01 | —0.189 (0.177) | —0.20 | —0.189 (0.178)
Qo3 —0.11 | —0.345 (0.195) | —0.30 | —0.345 (0.198)
@123 —0.51 | —0.706 (0.200) | —0.70 | —0.706 (0.202)

@ —0.10 | —0.191 (0.219) | —0.20 | —0.191 (0.219) |
Qs —0.60 | —0.648 (0.226) | —0.60 | —0.648 (0.224)
o —1.95 | —2.195 (0.159) | —2.00 | —2.195 (0.161)
7 0.00 | 0.416 (0.286) | 0.40 | 0.416 (0.290)
72 . 0.00 | 0.222 (0.449) | 0.20 | 0.222 (0.459)

| Neg. Loglik | 937.349 (# Iter = 20) | 937.349 (# Iter = 21) |
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Table B.4: Results for Model ID4

Set 1 Set 2
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.82 0.880 (0.731) 0.88 0.880 (0.217)
B 0.00 | —0.024 (0.252) 0.00 | —0.024 (0.197)
B2 0.00 | —0.487 (0.241) —0.50 | —0.487 (0.202)
Bs —0.26 | —0.120 (0.386) | —0.12 | —0.120 (0.075) .
12 ~0.60 | —0.013 (0.216) 0.00 | —0.013 (0.174)
a13 —0.63 | —0.022 (0.225)" —0.02 | —0.022 (0.168)
a3 —0.77 | —0.126 (0.422) | —0.13 | —0.126 (0.179)
123 ~1.15 | —0.524 (0.257) | —0.52 | —0.524 (0.189)
a 0.00 | —0.109 (0.298) | —0.10 | —0.109 (0.208)
[a%) 0.00 | —0.654 (0.274) —0.65 | —0.654 (0.230)
03 —1.95 | —14.818 (0.730) | —4.00 | —16.284 (1.015)
. 123 0.00 13.654 (0.751) 2.00 15.119 (1.008)
o2 ~1.95 | —3.810 (0.728) | —3.80 | —3.810 (2.606) |
Tho 0.00 | 2.464 (0.761) 0.00 |  2.464 (2.754)
or —1.95 | —2.089 (0.209) | —2.08 | —2.089 (0.142)
[Neg. Loglik | 934.432 (# Tter — 67) 934.432 (# lter — 63)
Set 3 Set 4
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.880 | 0.880 (0.880) | 0.880 |  0.880 (0.170)
B1 —0.024 | —0.024 (0.720) —0.024 | —0.024 (0.165)
Bs —0.486 | —0.487 (0.703) | —0.487 | —0.487 (0.171)
Bs ~0.120 | —0.120 (0.434) | —0.120 | —0.120 (0.074)
as | —0.010 | —0.013 (0.438) | —0.013 | —0.013 (0.118)
o3 -0.022 | —0.022 (0.771) —0.022 | -0.022 (0.121).
23 —~0.125 | —0.126 (0.845) | —0.126 | —0.126 (0.139)
Q193 - -0.524 | —0.524 (0.641) | —0.524 | —0.524 (0.131)
o —0.109 | —0.109 (0.776) | —0.109 | —0.109 (0.174)
Qs —0.650 | —0.654 (0.820) | —0.654 | —0.654 (0.195)
03 0.000 | —15.432 (0.986) | —15.432 | —15.432 (1.363)
23 0.000 | 14.268 (0.988) | 14.268 | 14.268 (1.368)
o2 —3.820 | —3:819 (0.725) | —3.819 | —3.819 (1.973)
T2 2.460 | 2.464 (0.766) | 2.464 |  2.464 (2.093)
o1 ~2.090 | —2.089 (1.002) | —2.089 | —2.089 (0.156)
| Neg. Loglik | 934.432 (# Iter = 61) | 934.432 (4 Iter = 24) |
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Table B.5: Results for Model ID5

. Set 1 Set 2
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.82 | ~ 0.886 (0.926) 0.890 0.886 (0.169)
B 0.00 | —0.017 (0.898) | —0.017 |  —0.017 (0.178)
Ba 0.00 | —0.484 (0.874) | —0.480 —0.484 (0.187)
Bs ~0.26 | —0.118 (0.543) | —0.120 |  —0.118 (0.070)
. —0.60 | —0.004 (0.971) | 0.000 | —0.004 (0.134)
Q13 —-0.63 | —0.010 (0.965) | —0.010 —-0.010 (0.140)
azs ~0.77 | —0.111 (0.990) | —0.110 | —0.111 (0.153)
Q123 —-1.15 —0.511 (0.891) | —0.510 —0.511 (0.151)
o 0.00 | —0.103 (0.901) | —0.100 |  —0.103 (0.195)
o 0.00 | —0.649 (0.940) | —0.650 |  —0.649 (0.204)
03 —1.95 | —13.737 (1.000) | —4.000 | —15.608 (301.091)
- 0.00 | 12.573 (1.002) | 0.000 | 14.443 (301.002)
102 —1.95 | —13.866 (1.000) | —2.000 | —15.737 (301.091)
o1 —1.95 | —2.089 (1.000) | —2.080 —2.089 (0.166)
[Neg. Loglk | 934.473 (# Iter = 55) - |  934.473 (# Iter = 60) |
~ Set 3 Set 4
Parameter SV | Estimate (SE) SV | Estimate (SE)
Po 0886 | 0.886 (0.213) | 0.900 0.886 (0.400)
) ~0.017 | —0.017 (0.206) | —0.017 | —0.017 (0.573)
Ba _0.484 | —0.484 (0.192) | —0.480 | - —0.484 (0.482)
Bs —0.118 | —0.118 (0.074) | —0.120 |  —0.118 (0.214)
o T0.004 | =0.004 (0.171) | 0.000 | —0.004 (0.305)
s ~0.010 | —0.010 (0.167) | —0.010 |  —0.010 (0.306)
s ~0.111 | —0.111 (0.178) | —0.110 |  —0.111 (0.456)
193 _0.511 | —0.511 (0.185) | —0.510 | —0.511 (0.460)
Q) —0.103 | —0.103 (0.220) | —0.100 -~0.103 (0.619)
as —0.649 | —0.649 (0.214) | —0.650 —0.649 (0.534)
03 ~15.608 | —15.608 (0.582) | 0.000 | ~-13.737 (0.942)
s 14.443 | 14.443 (0.568) | 0.000 12.573 (0.587).
02 15737 | <15.737 (0.569) | 0.000 | —13.866 (0.896)
o1 —2.089 | —2.089 (0.166) | —2.000 —2.089 (0.577)
[Neg. Loglik | 934473 (# lter = 20) | 934473 (# Iter = 71) |
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Table B.6: Results for Model ID6

Set 1 Set 2

Parameter | SV | Estimate (SE) | SV [ Estimate (SE)
Bo 0.90 [ 0.962 (0.209) | 1.00 | 0.962 (0.208)
B —0.10 | —0.080 (0.197) | —0.08 | —0.080 (0.198)
B —0.50 | —0.483 (0.198) | —0.50 | —0.483 (0.195)
B3 —0.20 | —0.201 (0.077) | —0.20 | —0.201 (0.078)
T —0.05 | —0.057 (0.171) | —0.06 | —0.057 (0.168)
13 —0.10 | —0.137 (0.172) | —0.10 | —0.137 (0.170)
023 —0.20 | —0.279 (0.187) | —0.30 | —0.279 (0.186)
o123 —0.50 | —0.646 (0.193) | —0.60 | —0.646 (0.190)
o —0.10 | —0.172 (0.213) | —0.20 | —0.172 (0.216)
o —0.60 | —0.655 (0.223) | —0.70 | —0.655 (0.224)
Mo —1.95 | —2.206 (0.151) | —2.00 | —2.206 (0.161)
7 0.00 | 0.661 (0.264) | 0.70 | 0.661 (0.269)

| | Neg. Loglik | 938.464 (# Iter = 19) |

938.464 (# Iter = 17) |

Table B.7: Results for Model RD1

Set 1 Set 2

Parameter SV | Estimate (SE) | SV [ Estimate (SE)

Bo 0.82 | 0.999 (0.211) 1.00 | 0.999 (0.216)

b1 0.00 | —0.106 (0.196) | —0.12 | —0.106 (0.194)

B2 0.00 | ~0.470 (0.196) | —0.47 | —0.470 (0.194)

B3 —0.26 | —0.246 (0.080) | —0.20 | —0.246 (0.082)

Q12 —0.60 | —0.097 (0.166) | —0.10 | —0.097 (0.173)

o3 —0.63 | —0.219 (0.169) | —0.22 | —0.219 (0.172)

Q93 —0.77 | —0.384 (0.182) | —0.38 | —0.384 (0.188)

123 —1.15 | —0.742 (0.188) | —0.74 | —0.742 (0.195)

a1 0.00 | —0.201 (0.216) | —0.20 | —0.201 (0.217)

Qs 0.00 | —0.643 (0.229) | —0.64 | —0.643 (0.227)

703 —1.95 | —2.416 (0.335) | —2.41 | —2.416 (0.336)
M3 0.00 | 0.878 (0.396) | 0.90 | 0.878 (0.396)

T2 —-1.95 [ —2.117 (0.300) | —2.11 | —2.117 (0.293)

M2 0.00 | 0.401 (0.360) 0.40 | 0.401 (0.350)

701 —1.95 | —2.089 (0.165) | —2.08 | —2.089 (0.164)
Neg. Loglik | 936.833 (# Iter = 25) | 936.833 (# Iter = 23) |
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Table B.8: Results for Model RD2

Set 1 Set 2
Parameter .| SV | Estimate (SE) SV | Estimate (SE)
Bo 0.82 0.999 (0.204) | .0.999 0.999 (0.208)
By 0.00 | —0.106 (0.193) | —0.106 | —0.106 (0.197)
Bo 0.00 | —0.470 (0.187) | —0.470 | —0.470 (0.196)
B3 —0.26 | —0.246 (0.080) | —0.246 | —0.246 (0.077)
19 —0.60 | —0.097 (0.166) | —0.097 | —0.097 (0.168)
13 —0.63 | —0.219 (0.162) | —0.219 | —0.219 (0.170)
93 —0.77 | —0.384 (0.174) | —0.384 | —0.384 (0.186)
0123 —1.15 | —0.742 (0.183) | —0.742 | —0.742 (0.193)
o 0.00 | —0.201 (0.217) | —0.201 | —0.201 (0.217)
a9 0.00 | —0.643 (0.229) | —0.643 | —0.643 (0.227)
703 Z1.95 | —2.239 (0.258) | —2.239 | —2.239 (0.247)
m 0.00 | 0.625 (0.261) | 0.625 | 0.625 (0.264)
02 —1.95 | —2.278 (0.250) | —2.278 | —2.278 (0.253)
701 —2.08 | —2.089 (0.169) | —2.089 | —2.089 (0.167)
| Neg. Loglik | 937.250 (# Iter = 26) | 937.250 (# Iter = 17) |
Table B.9: Results for Model RD3
Set 1 _ Set 2 .
Parameter | SV | Estimate (SE) | SV [ Estimate (SE)
Bo 0.82 | 0.999 (0.206) | 0.999 | 0.999 (0.208)
B 0.00 | —0.106 (0.197) | —0.106 | —0.106 (0.195)
B 0.00 | —0.470 (0.179) | —0.470 | —0.470 (0.196)
Bs —0.26 | —0.246 (0.078) | —0.246 | —0.246 (0.073)
a1 —0.60 | —0.097 (0.167) | —0.097 | —0.097 (0.168) "
@13 —0.63 | —0.219 (0.168) | —0.219 | —0.219 (0.163)
93 —0.77 | —0.384 (0.180) | —0.384 | —0.384 (0.181)
0123 —1.15 | —0.742 (0.187) | —0.742 | —0.742 (0.191)
o 0.00 | —0.201 (0.227) | —0.201 | —0.201 (0.217)
a9 0.00 | —0.643 (0.219) | —0.643 | —0.643 (0.225)
o -1.95 | —2.153 (0.133) 0.000 | —2.153 (0.121)
m 0.00 0.518 (0.196) 0.000 0.518 (0.188)

| Neg. Loglik | 937.457 (# lter = 22) | 937.457 (# lter = 24) |
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Table B.10: Results for Model CRD1

Set 1 Set 2
Parameter SV | Estimate (SE) | SV | Estimate (SE)
Bo 0.82 | 0999 (0.203) | 1.00| 0.999 (0.212)
B 0.00 | —0.106 (0.173) | —0.10 | —0.106 (0.199)
Bs 0.00 | —0.470 (0.189) | —0.40 | —0.470 (0.197)
Ba —0.26 | —0.246 (0.078) | —0.20 | —0.246 (0.080)
. ~0.60 | —0.097 (0.172) | 0.00 | —0.097 (0.169)
o13 —0.63 | —0.219 (0.169) | —0.20 | —0.219 (0.171)
o —0.77 | —0.384 (0.186) | —0.40 | —0.384 (0.186) -
123 —1.15 | —0.742 (0.192) | —0.70 | —0.742 (0.193)
a 0.00 | —0.201 (0.196) | —0.20 | —0.201 (0.221)
a 0.00 | —0.643 (0.231) | —0.60 | —0.643 (0.229)
703 0.00 | —1.846 (0.161) | —2.00 | —1.846 (0.170)
o2 0.00 | —1.849 (0.152) | —2.00 | —1.849 (0.159)
ot 0.00 | —2.089 (0.154) | —2.10 | —2.089 (0.165)

Neg. Loglik | 940.322 (# Iter = 29) |

940.322 (# Iter = 21) |

Table B.11: Results for Model CRD2

Set 1 Set 2
Parameter SV | Estimate (SE) [ SV [ Estimate (SE)
Bo 0.82 0.999 (0.281) 1.00 0.999 (0.210)
51 0.00 | —0.106 (0.211) | —0.10 | —0.106 (0.192)
Ba 0.00 | —0.470 (0.228) | —0.40 | —0.470 (0.193)
B3 —0.26 | —0.246 (0.078) | —0.20 | —0.246 (0.079)
a2 | —0.60 | —0.097 (0.232) | 0.00 | —0.097 (0.169)
s —0.63 | —0.219 (0.221) | —0.20 | —0.219 (0.172)
" o3 —0.77 | —0.384 (0.227) | —0.40 | —0.384 (0.185)
123 ~1.15 | —0.742 (0.250) | —0.70 | —0.742 (0.190)
a 0.00 | —0.201 (0.228) | —0.20 | —0.201 (0.217)
g 0.00 | —0.643 (0.239) | —0.60 | —0.643 (0.224)
~ T1.95 | —1.933 (0.106) | —2.00 | —1.933 (0.095)
[ Neg. Loglik | 941.040 (% Tter — 21) | 941.040 (# Iter = 19) |
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Table C.1: Results for Drop-out Model: TRT * LUR

Set 1

Set 2

Parameter SV | Estimate (SE) .SV | Estimate (SE)
B 0.80 .0.886 (1.178) 0.90 | - 0.886 (0.926)
1(LD) ~0.10 | —0.017 (0.779) | —0.02 | —0.017 (0.988)
Bo(HD). | —0.50 | —0.484 (0.876) | —0.50 | —0.484 (1.095)

Bs (time) —0.20 | —0.118 (0.422) | —0.10 | —0.118 (0.911)
an —0.08 | —0.004 (1.143) | 0.00 | —0.004 (1.365)
a1 ~0.20 | —0.010 (1.025) | —0.01 | —0.010 (1.198).

a2 —0.30 | —0.111 (0.877) | —0.10 | —0.111 (1.265)

123 ~0.70 | -0.511 (0.617) | —0.50 | —0.511 (1.193)

o ~0.20 | —0.103 (1.096) | —0.10 | —0.103 (0.987)

s —0.70 | —0.649 (0.885) | —0.60 | —0.649 (1.143)

P ~1.95 | —13.608 (1.053) | —1.00 | —15.118 (1.047)

o2 ~1.95 | —13.732 (1.069) | —1.00 | —15.242.(1.044)

Mot ~1.95 | —2.136 (1.235) | —2.10 | —2.136 (1.026)
m(LD) 0.00 | —0.203 (1.232) | —0.20 | —0.203 (1.020)
n2(HD) 0.00 | 0296 (1.044) | 030 | 0.296 (1.133)
n3(LUR) 0.00 | 12.382 (1.122) | 1.00 | 13.802 (1.348)
na(LD x LUR) | 0.00 | 0.571 (1.001) | 0.60 | 0.571 (1.025)
ns(HD x LUR) | 0.00 | —0.620 (1.101) | ~0.60 | —0.620 (1.100)

Neg. Loglik

| 931.223 (# Iter = 60) | 931.223 (# lter = 65) |
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Table C.2: Results for Drop-out Model: TRT + LOR + LUR

Set 1 Set 2

Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.80 0.886 (0.602) [ 0.90 [ 0.886 (1.280)
Bi(LD) | —0.10 | —0.017 (0.687) | —0.02 | —0.017 (1.112)
B2(HD) | —0.50 | —0.484 (0.650) | —0.50 | —0.484 (1.012)
Bs(time) | —0.20 | —0.118 (0.267) | —0.10 | —0.118 (0.683)
a19 —0.08 | —0.004 (0.561) | 0.00 | —0.004 (1.067)
a3 —0.20 | —0.010 (0.899) | —0.01 | —0.010 (1.112)
Qg3 —-0.30 | —0.111 (0.715) | —0.10 | —0.111 (1.089)
193 -0.70 —0.511 (0.572) | ~0.50 —0.511 (1.104)
o —0.20 | —0.103 (0.732) | —0.10 | —0.103 (0.978)-

o —0.70 | —0.649 (0.774) | —0.60 | —0.649 (1.188)
703 —1.95 | —13.920 (1.010) | —2.00 [ —14.006 (1.019)
o2 —1.95 | —14.063 (0.998) | —1.00 | —14.149 (1.368)
o1 —~1.95 | —2.156 (0.923) | —2.10 | —2.156 (1.102)

m (LD) 0.00 0.209 (0.934) | 0.20 | —0.209 (1.287)
no(HD) 0.00 | —0.023 (0.974) | —0.20 | —0.023 (1.381)"
n3(LOR) 0.00 0.290 (0.873) 0.30 0.290 (1.145)
ns(LUR) 0.00 | 12.490 (0.777) | 1.00 | 12.576 (2.942)

| Neg. Loglik | 933.350 (# Iter = 65) | 933.350 (# Iter = 60) |
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Table C.3: Results for Drop-out Model: LOR * LUR
Set 1 Set 2
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.80 | 0.886 (0.664) | 0.90 | 0.886 (0.650)
B1(LD) —0.10 | —0.017 (0.411) | —0.02 | —0.017 (0.733)
Ba2(HD) —0.50 | —0.484 (0.639) | —0.50 | —0.484 (0.800)
B3 (time) —0.20 | —0.118 (0.361) | —0.10 | —0.118 (0.188)
T aga —0.08 | —0.004 (0.448) 0.00 | —0.004 (0.487)
a3 —0.20 | -0.010 (0.539) | —0.01 —0.010 (0.766)
a3 —0.30 | -0.111 (0.711) | =0.10 | —0.111 (0.586)
123 ~0.70 | —0.511 (0.643) | —0.50 | —0.511 (0.610)
o —0.20 | —0.103 (0.456) | ~0.10 | —0.103 (0.788)
s —0.70 | —0.649 (0.751) | ~0.60 | —0.649 (0.847)
703 —1.95 | —12.674 (0.953) | —1.00 | —14.340 (0.992)
o2 ~1.95 | —12.817 (0.936) | —1.00 | —14.483 (1.001)
o1 ~1.95 | —2.089 (0.979) | —2.10 | —2.089 (0.998)
m(LOR) -0.10 —0.711 (0.850) 0.10 0.152 (1.002)
n2(LUR) 0.00 11.318 (0.785) | 1.00 12.984 (0.995)
n3(LOR x LUR).| 0.20 0.996 (0.852) 0.20 0.134 (0.998)
| Neg. Loglik | 933.922 (# Iter = 61) | 933.922 (# Iter = 66)
Set 3 Set 4
Parameter SV | Estimate (SE) SV l Estimate (SE)
Bo 0.80 | 0.886 (0.008) | 0.90 | 0.886 (0.704)
BL(LD) ~0.10 | —0.017 (0.882) | —0.02 | —0.017 (0.722)
Ba(H D) —0.50 | —0.484 (0.963) | —0.50 | —0.484 (0.628)
B (time) —0.20 | —0.118 (0.593) | —0.10 | —0.118 (0.345)
o —0.08 | —0.004 (0.956) | 0.00 | —0.004 (0.710)
a3 —0.20 | —0.010 (0.945) | —0.01 —0.010 (0.806)
o3 —0.30 | —0.111 (0.887) | —0.10 | —0.111 (0.812)
123 —0.70 | —0.511 (0.884) | —0.50 | —0.511 (0.705)
a —0.20 | —0.103 (0.918) | —0.10 | —0.103 (0.787)
s ~0.70 | —0.649 (0.985) | —0.60 | —0.649 (0.793)
703 —1.95 | —14.338 (1.002) | —4.00 | —13.092 (0.922)
02 ~1.95 | —14.481 (1.004) |'—3.00 | —13.235 (1.002)
o1 ~1.95 | —2.089 (1.002) | —2.10 | —2.089 (0.992)
m(LOR) —0.50 | —0.496 (1.001) | 0.10 | —3.387 (0.916)
n2(LUR) —0.10 | 12.982 (1.009) | 2.00 | 11.736 (0.861)
ns(LOR x LUR) | 0.10 |  0.782 (1.001) | —0.20 |  3.672 (0.929)
| Neg. Loglik [ 933.922 (# Iter = 60), | 933.922 (# Iter = 59) |
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Table C.4: Results for Drop-out Model: TRT + LUR

Set 1 Set 2
Parameter SV | Estimate (SE) SV | Estimate (SE)
Bo 0.80 0.886 (0.202) | 0.80 0.886 (0.927)
Bi(LD) | 010 | —0.017 (0.195) | —0.02 | —0.017 (0.995)
B2(HD) —0.50 | —0.484 (0.192) | —0.50 | —0.484 (0.995)
Bs(time) | —0.20 | —0.118 (0.074) | —0.10 | —0.118 (0.600)
12 —0.08 | —0.004 (0.157) | 0.00 | —0.004 (0.988)
13 —0.20 | -0.010 (0.156) | —0.01 | —0.010 (0.981)
© s —0.30 | —0.111 (0.168) | —0.10 | —0.111 (0.981)
123 -0.70 | —0.511 (0.171) | —0.50 | —0.511 (0.976)
o —-0.20 | -0.103 (0.207) | —0.10 | —0.103 (1.000)
a2 —0.70 | —0.649 (0.215) | —0.60 | —0.649 (0.997)
701 ~1.95| —2.140 (0.151) | —2.10 | —2.140 (1.001)
o2 —1.95 | —15.364 (0.862) | —2.00 | —13.697 (1.001)
03 —1.95 | —15.236 (0.807) | —3.00 | —13.569 (1.001)
n1(LD) 0.00 0.191 (0.205) | 0.20 0.191 (1.002)
n2(HD) 0.00 | —0.051 (0.219) | —0.05 | —0.051 (1.002)
no(LUR) | 0.00| 14.014 (0.876) | 1.00 | 12.347 (1.021)

| Neg. Loglik | 933.910 (# Iter = 67) | 933.910 (# Iter = 54) |
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Table D.1: Results for Case 1 in Table 7.14 Evaluated at the Boundary: 193 — —00,
Moz — —00, Moz + M2 = Ay, Moz + M2 = Az

| Parameter | Estimate [ SE |
Bo 0.861 0.206
1 (LD) —0.007 |  0.196
B2 (HD) —0.495 0.193
Bs (time) -0.122 0.073
Ba (gender) 0.052 0.045
Q12 ) —0.002 0.164
013 —0.011 |. 0.159
Q93 —-0.111 0.172
123 —0.511 0.176 .
o —0.094 0.208 ‘
(0%, —0.661 0.218
n(LOR) 0.286 0.275
Ay .—1.356 0.264
Ay —1.499 0.262
o1 -2.089 |- 0.167

[Neg. Loglik | 933.244 (# Tter = 24) | -
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Table D.2: Results for Case 2 in Table 7.14 Evaluated at the Boundary: ng3 — —o0,
Toz — —00, 7oz + N2 = A1, Noz + N2 = Ag

{ Parameter | Estimate | SE | \

Bo 0.894 0.205

B1 (LD) —0.016 0.193
B2 (HD) —0.483 0.190
B3 (time) -0.117 0.073
Ba (EDSS) —0.004 0.017
aq2 —0.004 0.157
a3 —0.011 0.155
a923 -0.111 0168
123 . —0.511 0.170

o3 -0.101 .0.207

a9 —0.649 0.215
m(LOR) 0.286 0.251
Ay —1.356 0.209

Ao —1.499 | . 0.237

701 —2.089 | 0.164

| Neg. Loglik | 933.901 (# Iter = 24) |
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Table D.3: Results for Case 3 in Table 7.14 Evaluated at the Boundary: 193 — —oo,
Moz — —00, Moz + N2 = Ay, Moz + 72 = Ag

| Parameter | Estimate l SE

Bo 0.877 0.205

B1 (LD) —0.025 0.196
B2 (HD) -0.484 0.194
B3 (time) -0.119 0.073
Ba (duration) 0.002 0.003
a12 0.000 0.163

a3 —0.008 0.161"

Qo3 —-0.108 0.173

o193 —0.508 0.177

ay -0.110 0.208

o) —0.651 0.216

m (LOR) 0.286 0.279
Aq —1.356 0.263

Ay - —1.499 0.265

o1 —2.089 0.165

| Neg. Loglik [ 933.768 (# Iter = 24) |
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Table D.4: Results for Case 4 in Table 7.14 Evaluated at the Boundary: 13 = —o0,
To2 = —00, Moz + M2 = A1, Moz + 72 = Ag

l Parameter | Estimate | SE ]

Bo 0.745 0.241
B (LD) —-0.025 0.195
B2 (HD) —0.486 0.185
B3 (time) —0.118 0.073
B4 (age) 0.004 | - 0.004
12 —0.001 0.162
13 —0.005 0.162
as3 - -0.110 | . 0.174
123 -0.507 0.179
o —0.108 0.208
o9 —0.654 0.209
m(LOR) . 0.286 0.241
Ay —-1.356 0.247
Ag —1.499 0.232
no1 —2.089 0.138

| Neg. Loglik | 933.354 (# Iter = 26) |
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Table D.5: Results for Case 5 in Table 7.14 Evaluated at the Boundary: 793 — —oo,
Moz — —00, Moz + M2 = Ay, Moz + M2 = Az | '

Imputed Set 1 Imputed Set 2

Parameter Estimate | ~ SE Estimate | SE
Bo 0.718 0.253 0.726 0.251
B(LD) | 0008| 0.193 0.006 | 0.195
B2(HD) —0.474 |  0.190 ~0475 | 0.192
Bs(time) —0.108 0.075 —0.109 0.073
Ba(log(BOD)) 0.020 |  0.016 0.019 | 0.016
19 —0.022 0.164 —0.021 0.162
Q13 -0.031 0.161 | -0.029 0.159
Q93 —0.131 | ' 0.172 —0.130 0.171
Q123 -0.530 0.178 —0.529 0.175
a -0.071 0.207 -0.074 |  0.210
as —0.624 0.216 —0.626 0.218
m (LOR) 0.286 0.274 0.286 0.277
Ay —1.356 0.264 —~1.356 0.266

Asy —1.499 0.263 —1.499 0.261
o1 —2.089 0.164 —2.089 0.166

| Neg. Loglik | 933.088 (# Iter = 23) | 933:215 (# lter — 23) |

Imputed Set 3 Imputed Set 4

Parameter | Estimate | SE Estimate | -SE
Bo 0.717 0.251 0.725 0.249
B1(LD) 0.009 0.190 0.006 0.195
B2(HD) ~0.474 | 0.189 '—0.475 | 0.189
B3 (time) —-0.108 0.075 —-0.109 0.073
B4(log(BOD)) 0.020 | 0.016 0.019 | 0.016

a2 ‘ —-0.022 0.160 —0.021 0.160

Q13 "—0.031 0.158 -0.029 0.155
a3 —-0.131 | . 0.172 —-0.129 0.167
o123 —0.530 0.173 —0.529 0.171
Q) -0.071 | -0.204 -0.073 0.210
o ~0.624 | 0.215 —0.625 | 0.214
m(LOR) 0.286 0.278 0.286 0.283
A —1.356 0.266 —1.356 0.268
JAD) —1.499 0.264 —1.499 0.267
701 —2.089 0.166 —2.089 0.166

[ Neg. Loglik | 933.083 (# Iter = 23) | 933.211 (# lter = 23) |
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Table D.6: Results for Case 5 in Table 7.14 Evaluated at the Boundary (364 pa-
tients): nos — —00, o2 — —00, Moz + M2 = A1, oz + M2 = A

Imputed with 1.0 Imputed with 4.5
Parameter Estimate | SE Estimate | SE
Bo 0.686 0.248 0.694 0.249
B1(LD). 0.063 0.193 0.061 0.193 .
Bo(H D) —0.446 |  0.196 —0.447 | 0.192
Bs(time) —0.108 0.074 —0.108 0.074
Ba(log(BOD)) 0.020 | 0.016 0.020 |  0.016
Qa9 —0.061 0.166 —0.060 0.160
a3 —0.059 0.162 —0.058 0.159 .
93 - —-0.161 0.175 —0.160 0.172
123 —0.567 0.180 —0.565 0.176
o —0.022 0.208 —0.025 0.206
lo'%) —0.587 0.220 —0.589 0.212
m(LOR) 0301 | 0274 0.301 | 0.276
Aq —-1.342 |" 0.264 —1.342 0.264
AV —1.491 0.261 —1.491 0.263
701 —2.149 0.168 -2.149 0.171

| Neg. Loglik | 914.912 (# Iter = 24) | 915.047 (# Iter = 26) |
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Table D.7: Results for Model ID2 Evaluated at the Boundary (364 patients): 793 —
—00, 7oz = —00, No3 + M2 = Ay, Moz + 72 = Ay

| Parameter | Estimate | SE |
Bo ~ 0859 | 0.206
BU(LD) 0.035 |  0.193
Bo(HD) —0457 | 0.201
Bs(time) - —-0.118 0.074
12 —-0.041 | - 0.171
13 -0.037 | 0.161
Q93 —-0.140 0.174
123 —0.546 0.179
oy —0.056 0.207
(s%) -0.614 0.224
m(LOR) 0.301 | 0.276
A —1.342 0.250
Ao —1.491 0.266
o1 ~2.149 | 0.170

| Neg. Loglik | 915.825 (# Iter = 21) |
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Appendix E

Detailed Results for the
Liu et al. Transition Models

Described in Section 7.6
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Table E.1: Results for Liu Transition Model with Drop-out Model ID1

| Parameter | SV | Estimate (SE) | SV | Estimate (SE) |
Bo 0.89 1.007 (0.558) 1.00 1.007 (0.447)
B —0.12 | —0.040 (0.876) | —0.04 | —0.040 (0.475)
B —0.50 -0.462 (1.336) | —0.50 —0.462 (0.372)
Bs ~0.42 | —0.324 (0.369) | —0.30 | —0.324 (0.404)
Ba 0.90 | 0692 (0.707) | 0.70 |  0.692 (0.361)
703 —1.95 | —12.083 (2.727) | —2.00 | —10.451 (1.197)
ms | 0.00]| 0.558 (1.013) | 0.60 | 0.558 (0.767)
723 0.00 10.535 (0.888) 2.00 8.903 (0.970)
702 —1.95 | —18.645.(1.144) | —1.00 | —22.807 (0.746)
ma2‘ | 000| 0.048 (2.246) | 0.05| 0.048 (0.646)
M2 0.00 | 17.318 (0.913) | 2.00 | 21.480 (0.746)
o1 ~1.95 | —2.089 (0.828) | —2.00 | —2.089 (0.363)

| Neg. Loglik | 942.259 (# Iter = 137) | 942.259 (4 Iter = 97) |

Table E.2: Results for Liu Transition Model with Drop-out Model ID2

| Parameter | SV | Estimate (SE) | SV | Estimate (SE) |
Bo 0.89 | 1.007 (0.817) | 1.00 | 1.007 (0.873)
B —0.12 | —0.040 (0.748) | —0.04 | —0.040 (0.710)
Ba —0.50 | —0.462 (0.604) | —0.50 | —0.462 (0.625)
B3 —-0.42 | —0.324 (0.483) | —0.30 | —0.324 (0.481)
B 0.90 0.692 (0.631) 0.70 0.692 (0.697)
103 —1.95 | —14.182 (0.991) | —2.00 | —14.175 (0.908)
02 ~1.95 | —14.324 (1.388) | —1.00 | —14.318 (0.909)
o1 —1.95 | —2.089 (0.924) | —2.00 | —2.089 (0.886)
m 0.00 | - 0.286 (0.710) 0.30 0.286 (0.415)
79 0.00 12.826 (0.812) 3.00 12.819 (0.594)

[ Neg. Loglik | 942.687 (# Iter = 58) | 942.687-(# lter = 61) |
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Table E.3: Results for Liu Transition Model with Drop-out Model ID3

| Parameter | SV | Estimate (SE) | SV | Estimate (SE) |
Bo 0.89 1.123 (0.211) 1.10 1.123 (0.212)
) ~0.12 | —0.128 (0.178) | —0.13 | —0.128 (0.176)
Ba —0.50 | —0.437 (0.174) | —0.40 | —0.437 (0.173)
Bs —0.42 | —0.443 (0.102) | —0.50 | —0.443 (0.103)
B - | 090]| 0573(0.172) | 0.60| 0573 (0.177)
- ~1.95 | —2.023 (0.163) | —2.00 | —2.023 (0.161)
m 0.00 | 0.542 (0.311) | 0.50 | 0.542 (0.313)
72 0.00 | —0.262 (0.610) | —0.30 | —0.262 (0.609)

| Neg. Loglik | 939.471 (# Iter = 17) | 939.471 (# Iter = 15) |

Table E.4: Results for Liu Transition Model with Drop-out Model ID5

| Parameter | SV | Estimate (SE) | SV | Estimate (SE) |
Bo 0.89 | 1.007 (0.931) | L10| 1.007 (0.929)
B —0.12 | —0.040 (1.026) | —0.03 | —0.040 (0.994)
Bs —0.50 | —0.462 (0.984) | —0.40 | —0.462 (0.992)
B3 —0.42 | —0.324 (0.463) | —0.30 | —0.324 (0.485)
Ba 0.90 0.692 (0.975) 0.60 0.692 (0.971)
703 ~1.95 | —14.704 (0.863) | —1.00 | —13.967 (0.970)
< 702 —1.95 | —14.832 (0.972) | —0.00 | —14.096 (0.894)
o1 ~1.95 | —2.089 (1.028) | —1.00 | —2.089 (0.992)
- 0.00 | 13.539 (0.742) | 0.00 | 12.803 (0.570)

[ Neg. Loglik | 943.239 (# lter = 55) | 943.239 (# lter = 57) |
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- Table E.5: Results for Liu Transition Model with Random Drop-out (RD)

RD1 RD2 ' RD3
Parameter | Estimate l SE Estimate | SE Estimate I SE
Bo 1.113 0.206 1.113 0.209 1.113 0.212
"B -0.118 0.170 —0.118 0.172 -0.118 0.175
Ba —0.445 0.165 —0.445 0.172 —0.445 0.173
B3 -0.431 0.096 —0.431 0.099 -0.431 0.099
B4 0.596 0.160 0.596 0.164 0.596 0.169
103 —2.416 0.327 —2.239 0.248 - -
o2 -2.117 0.297 —-2.278 0.261 - -
701 —2.089 0.108 —2.089 0.163 = -
o - - - - —2.068 0.132
M3 0.878 0.367 - - - -
112 0.401 0.337 - - : - -
m - 0.625 0.261 0.432 0.195

| Neg. Loglik | 944.101 (# Iter = 21) | 944.518 (# Iter = 17) | 939.578 (# Iter = 14) |

Table E.6: Results for. Liu Transition Model with Drop-out Completely At Random

(CRD)

CRD1 CRD2 .

Parameter | Estimate [ SE - Estimate l SE

Bo 1.113 0.209 1.113 0.209

51 —-0.118 0.174 —-0.118 0.172

Bo —0.445 0.172 —0.445 0.172

B3 . —0.431 0.099 -0.431 0.099

B 0.596 0.169 0.596 0.164
o3 —1.846 0.172 - ‘ -
1702 —-1.849 0.160 - -
o1 —2.089 0.166 - -

0 - - —1.880 0.096

| Neg. Loglik | 947.589 (# Iter = 13) | 942.074 (4 Iter = 11) |
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