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A b s t r a c t 

We study the problem of performing statistical inference based on robust esti

mates when the distribution of the data is only assumed to belong to a contamination 

neighbourhood of a known central distribution. We start by determining the asymp

totic properties of some robust estimates when the data are not generated by the 

central distribution of the contamination neighbourhood. Under certain regularity 

conditions the considered estimates are consistent and asymptotically normal. For 

the location model and with additional regularity conditions we show that the conver

gence is uniform on the contamination neighbourhood. We determine that a class of 

robust estimates satisfies these requirements for certain proportions of contamination, 

and that there is a trade-off between the robustness of the estimates and the extent 

to which the uniformity of their asymptotic properties holds. When the distribution 

of the data is not the central distribution of the neighbourhood the asymptotic vari

ance of these estimates is involved and difficult to estimate. This problem affects the 

performance of inference methods based on the empirical estimates of the asymptotic 

variance. We present a new re-sampling method based on Efron's bootstrap (Efron, 

1979) to estimate the sampling distribution of MM-location and regression estimates. 
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This method overcomes the main drawbacks of the use of bootstrap with robust esti

mates on large and potentially contaminated data sets. We show that our proposal is 

computationally simple and that it provides stable estimates when the data contain 

outliers. This new method extends naturally to the linear regression model. 
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C h a p t e r 1 

I n t r o d u c t i o n 

In this chapter we introduce and illustrate the problems addressed in the rest of this 

thesis. In the first section we use a real-life example to show how an analysis based 

on a robust regression estimate compares with previous analyses of these data. In 

those analyses the data were carefully screened, suspicious observations were deleted, 

and least squares methods were used on the remaining data. 

Unfortunately there are no proposals in the literature to consistently estimate 

the variability of the estimates obtained after deleting potential outliers. The second 

section of this chapter explores this problem. 

An alternative method to perform statistical inference when the data are con

taminated is to use robust estimates. Most attention in the robust literature has 

been paid to the case of errors with symmetric distributions. Section 1.3 briefly re-

1 



views some of the published studies for asymmetric distributions. In the same section 

we discuss our results regarding the asymptotic properties of some robust estimates 

for more general error distributions. In particular we study their consistency and 

asymptotic distribution. Empirical estimates of these asymptotic variances provide 

consistent estimates of the variability of these robust estimates. Unfortunately, sim

ulation experiments suggest that they can be numerically unstable and hence yield 

poor estimates. 

We also consider computer-intensive inference methods, in particular Efron's 

bootstrap (Efron, 1979). In Section 1.4 we discuss two drawbacks of the use of 

Efron's bootstrap with robust estimates. Both the presence of outliers in the data 

and the computational complexity of robust estimates are important challenges for 

this method. 

In Section 1.5 we introduce a new computer-intensive method that overcomes 

these limitations and hence can be used with large data sets that might contain 

outliers. In this section we present the basic idea for the simple location model with 

known scale. Details of the application of this method to the location-scale and linear 

regression models are presented in Chapters 3 and 5 respectively. 

Finally, Section 1.6 outlines the rest of this thesis. 
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1.1 Robust estimates and data screening 

Consider the Stack Loss data, first published by Brownlee (1965, page 454). These 

data have been extensively studied in the literature (see Daniel and Wood, 1980, 

Chapters 5 and 7; Atkinson, 1985, pp. 129-136, 267-8; and Venables and Ripley, 

1997, pp 262-264). They consist of 21 daily observations measured in a plant for 

the oxidation of ammonia to nitric acid. The response variable is ten times the 

percentage of ammonia lost. This is an indirect measure of the efficiency of the plant. 

There are 3 explanatory variables: air flow, temperature of the cooling water and 

acid concentration. 

The linear model used in the literature is 

Ammonia Lost (%) = Po + Pi Ai r flow + p2 Water temperature 

+ Ps Acid concentration + e, (1.1) 

where e are independent identically distributed normal errors. The residuals of the 

least squares fit of model (1.1) presented some features worth further consideration. 

After a very careful analysis of the listing of the data, Daniel and Wood (1971, Chapter 

5, page 81) noticed a different behavior in the response variable every time the water 

temperature was above 60. They concluded that the plant seemed to have needed a 

period of one day to stabilize after the water temperature reached 60. Hence they 

decided that the observations that were obtained with water temperature above 60 

(cases 1, 3, 4 and 21) require special attention, and were removed from the analysis. 

Figure 1.1 contains the plot of residuals versus fitted values for the least squares 
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fit. The dotted lines correspond to twice the estimated standard deviation of the er

rors in (1.1). Note that observation number 21 appears to have a residual considerably 

larger than the others. Three other cases are somewhat outlying, but within 2 es

timated standard deviations from zero. Classical outlier detection methods, such as 

the externally Studentized residuals test (Weisberg, 1985, page 115-6) only detect 

observation 21 as an outlier. 

We also estimated the coefficients of model (1.1) using an MM-regression es

timate with 50% breakdown point, 95% efficiency and Tukey's loss functions (see 

Sections 4.1 and 4.2 for the corresponding definitions). We worked with the complete 

data set. The plot of residuals versus fitted values is shown in Figure 1.2. The dotted 

lines correspond to twice the estimated standard deviation of the errors. With this 

robust estimate cases 1, 3, 4 and 21 are clearly identified as outliers. 

This example illustrates the potential of robust estimates. Daniel and Wood 

(1980) had to rely on an careful analysis of the listing of the data until some pattern 

seemed apparent. The additional complications and limitations of this method when 

the data have either more explanatory variables or more cases are obvious. In this 

example the analysis based on a robust regression estimate yields the same conclusion 

as Daniel and Wood (1980, Chapter 5), namely that observations 1, 3, 4 and 21 seem 

to follow a different model from the rest of the data. Note that we did not require a 

detailed case-by-case analysis as Daniel and Wood did (1980, Chapter 5). 

From the discussion above one might conclude that the main role of robust 

estimates is to help to identify outliers or suspicious observations. These cases could 
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Figure 1.1: Residuals of the least squares fit for the Stack Loss data. The dotted lines 
correspond to twice the estimated standard deviation of the errors 
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Figure 1.2: Residuals of a robust fit for the Stack Loss data. The dotted lines corre
spond to twice the estimated standard deviation of the errors 
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then be discarded and classical methods applied to the "clean" data set. In the next 

section we discuss some drawbacks of this approach. 

1.2 The variability caused by cleaning the data 

There are two classes of methods to detect outliers: "subjective" and "objective" 

procedures. In this section we will focus on outlier detection methods applied to 

linear regression analyses. 

Subjective methods rely on the judgment of data analysts. They normally use 

a classical fit followed by an analysis of the residuals. Using plots and other devices 

the researcher identifies outliers or suspicious observations. These observations are 

then removed and classical methods applied to the remaining data. 

A formal study of the variability introduced into the final least squares esti

mate by these data-cleaning methods seems impossible with the mathematical tools 

available today (but see Relies and Rogers (1977) for a Monte Carlo experiment on 

subjective outlier rejection rules). 

On the other hand, objective methods are based on a well defined rule, such as: 

"discard all observations with a residual larger than 2 standard deviations", or "reject 

all observations with associated Cox Distance larger than 1". Because it is expected 

that if there are outliers in the data the classical fit will be misleading, another set of 

objective rules are based on the residuals from a robust fit as follows: 
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1. Fit a robust estimate. 

2. Calculate a robust estimate of the standard deviation of the residuals, a. 

3. Fix a number c > 0 and drop any observation with a residual larger than ca 

(typically 2 < c < 3). 

4. Apply classical methods to the remaining data. 

We will refer to this last family of methods as "hard rejection rules" (HRR). See 

Hampel et al. (1986, page 31) for a Monte Carlo study of objective rejection rules for 

the location model. 

If we apply steps 1-4 to the Stack Loss data with the same MM-regression 

estimate we used before, and set c = 2 in step 3, we find that observations 1, 3, 4 and 

21 should be removed. The least squares fit of the remaining 17 data points yields 

regression estimates that are indistinguishable from the MM-regression fit. However, 

the estimates of the standard deviations of the regression estimates given by the least 

squares analysis are consistently smaller than those reported by the robust procedure 

(see Table 1.1). 

It is important to note that the standard errors of the estimates reported by the 

least squares analysis of the "cleaned" data do not take into account the variability 

introduced by the "cleaning" step. In other words, the column of estimated standard 

deviations in the computer output may not reflect the actual variability of the reported 

point estimates. 
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Estimated Standard Deviations 
LS on the Robust 

Coefficient "cleaned" data fit 
Intercept 4.732 5.003 
Air flow 0.067 0.071 
Water temp. 0.166 0.176 
Acid cone. 0.062 0.065 
Residuals 1.253 1.837 

Table 1.1: Comparison of the estimated standard deviations of the linear regression 
estimates for the Stack Loss data 

To illustrate this problem we performed a small Monte Carlo experiment (also 

see Dupuis and Hamilton (2000) for a theoretical assessment of this inference proce

dure). The objective of the experiment is to show that the estimates of the standard 

deviations of the regression estimates calculated by the H R R method consistently 

underestimate the actual standard deviations of those regression estimates. 

In order to do so, we first estimated the actual variability of the point estimates 

obtained by using a HRR. We considered a linear model of the form 

Vi = A> + Pi xu H r(3pXpi + 6 i , i = l , . . . , n , (1.2) 

where e» are independent standard normal random variables. Note that in the above 

model there are no outliers in the data. We used all the combinations with n = 20, 

n — 50, p = 1 and p = 3. The robust estimate used in the H R R procedure was a 

95% efficient MM-regression estimate with 50% breakdown point and scale calculated 

with Tukey's loss function (see Sections 4.1 and 4.2 for the corresponding definitions). 

For each combination of sample size and number of predictors we generated 100,000 
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samples following model (1.2). With each sample we followed steps 1 to 4 above. 

In step 3 we used c = 2.5 and the robust estimate of the standard deviation of 

the errors associated with the MM-regression estimate. Our estimate of the actual 

variability of these estimates is the Monte Carlo standard deviation of these 100,000 

coefficient estimates. In Table 1.2, the column labeled "Monte Carlo estimate of the 

standard deviation" contains this estimated standard deviation for each coefficient in 

the different models. 

The next step in the experiment is to show that the estimates of those standard 

deviations as reported by the H R R analysis are consistently smaller that the estimates 

obtained in the first part of our study. With the same design matrices we generated 

100,000 new samples following model (1.2). We applied steps 1 to 4 as before to 

each of these new samples, and recorded the estimates of the standard errors of each 

coefficient as reported by the least squares analysis in step 4. Column " H R R estimates 

of the standard deviation" in Table 1.2 contains the mean and standard error of these 

100,000 estimated standard deviations. 

From Table 1.2 it is clear that the estimates of the standard deviations reported 

by the least squares fit after cleaning the data consistently underestimate the actual 

variability of this estimation procedure. Hence we might obtain optimistic confidence 

intervals and smaller p-values than their actual value. The researcher should be 

concerned that this difference can affect the validity of his or her conclusions. 

An alternative method of performing inference that can deal with outliers in the 

data is to use robust estimates. These methods naturally incorporate the variability of 

10 



H R R estimates of the Monte Carlo estimate of 
n P standard deviation the standard deviation 

p = 2 20 Po 0.205 (0.046) 0.256 
P i 0.227 (0.051) 0.283 

50 Po 0.133 (0.017) 0.152 
P i 0.138 (0.017) 0.156 

p = 4 20 Po 0.182 (0.057) 0.322 
P i 0.164 (0.051) 0.410 
P2 0.173 (0.054) 0.478 
Ps 0.177 (0.056) 0.295 

50 Po 0.135 (0.018) 0.159 
P i 0.144 (0.019) 0.170 
P2 0.145 (0.019) 0.171 
p3 0.132 (0.018) 0.157 

Table 1.2: Comparison of actual and estimated standard deviations using the H R R 
method to "clean" the data. The first column contains the Monte Carlo mean of 
the H R R estimates of the standard deviations and the corresponding Monte Carlo 
standard deviation within parentheses. The second column contains the estimate of 
the standard deviations obtained from a separate simulation experiment. These last 
values are the "actual" standard deviations. 
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the down-weighting step into the estimated standard deviations. In the next section 

we discuss some limitations of the existing asymptotic theory for robust estimates. 

1.3 Inference based on robust estimates 

The finite sample distribution of robust estimates is unknown and hence inference 

must be based on their asymptotic distribution (see Hampel et ai, 1986, Chapter 3; 

Ronchetti, 1982; Markatou and Hettmansperger, 1990; among others). 

The asymptotic distribution of robust regression estimates is well known when 

the distribution of the errors is symmetric (Huber, 1967; Maronna and Yohai, 1981; 

Davies, 1993). In this case the estimates of the regression coefficients and of the scale 

of the errors are asymptotically independent. 

Because outliers need not be balanced on both sides of the regression line, many 

data sets with outliers do not satisfy this symmetry assumption. If one relaxes this 

condition, the calculation of the asymptotic variance of robust location and regression 

estimates becomes very involved. The main difficulty seems to be that the scale 

estimate is no longer asymptotically independent of the estimate of the location or 

regression parameters. This problem has received little attention in the literature. 

Carroll (1979), Huber (1981) and Rocke and Downs (1981) are among the few who 

studied it. Carroll (1979) compared several variance estimates of both location and 

simple linear regression robust estimates. He showed that the asymptotic variance 

derived under the symmetry assumption underestimates the true variance. In the 
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location case, this effect can be ameliorated by jackknifing. However, this technique 

does not seem to work for the intercept of the simple linear regression model. Huber 

(1981, page 140) gave a formula to compute the influence functions of location and 

scale estimates when they are calculated simultaneously. Rocke and Downs (1981) 

also studied variance estimation for robust location estimates when the distribution 

of the data is asymmetric. Their simulation study concluded that estimating the 

variance of robust location estimates in this situation is very difficult. In particular, 

for symmetric distributions the empirical estimate of asymptotic variance estimate 

worked better than the bootstrap, but for asymmetric distributions the performances 

reversed. Their numerical results do not show a variance estimation method that 

yields good estimates for both symmetric and asymmetric distributions. 

In Sections 2.3 and 4.3 we study the consistency and asymptotic distribution 

of the S-scale, S- and MM-location and regression estimators (see Sections 2.1 and 

4.1 for the corresponding definitions). We assume that the distribution of the errors 

belongs to a contamination neighbourhood of a symmetric central distribution and 

show that these estimates are consistent for any distribution in this neighbourhood. 

For the location-scale model, with further regularity conditions we show that these 

results hold uniformly on the neighbourhood. That is, the speed of the convergence 

does not depend on the particular distribution F in the contamination neighborhood 

rle (see Section 2.2). Formally, the uniformity result we obtain is as follows. Let 

fin be the robust location estimate calculated on a sample of size n generated by a 

distribution F 6 rie. Let a- be the almost sure asymptotic value of jxn when n —> oo. 

13 



Let 5 > 0 be arbitrary, then 

lim sup PF < sup \pn — p\ > 8 > = 0. 
m - » o o F e K e yn>m ) 

We also find that under certain regularity conditions the MM-location estimates are 

asymptotically normal and we derive an explicit formula for their asymptotic variance. 

For the location model it has the form 

V(LI,O,F) = o2a2EF{[U - b x W]2} , (1.3) 

where U and W are certain random variables (see equation 2.70 on page 71), the 

constants a and b are given by 

a=l/EF{ib'{(X-ii)/<j)}, 

and 

EpWUX-ri/tT) (X-p)/a} 
EF {p> ((X - fl) I a) (X - fa) /a} ' 

where Ji is the almost sure asymptotic value of the S-location estimate p,n associ

ated with the MM-location estimate fin. The functions ip and p are bounded, and 

continuously differentiable (see Definition 2.9). 

Another result we derive for the location-scale model is that the asymptotic 

normality of these estimates holds uniformly on the distribution generating the data. 

That is, we have 

lim sup sup PF\y/n (pn - LI) < x \/V \ - $ (x) 
n->oo p p , , . j e t > 

= 0. 
1 Fenc xi 

where $ denotes the standard normal cumulative distribution function and V 

V (pi, a, F) is the asymptotic variance given by (1.3). 
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In general, consistent estimates for the asymptotic standard deviations of ro

bust estimates can be obtained from the corresponding empirical asymptotic vari

ances. For example, to estimate V above we can use V = V (p,n, an, Fn) where Fn is 

the empirical distribution function of the sample x\,...,xn. However, for the case of 

asymmetric error distributions, we found some numerical problems that seem to arise 

from the involved form of V in (1.3). In particular, the denominators in a and b can 

become small for asymmetric distributions F. In Section 3.6.1 we describe a Monte 

Carlo experiment that illustrates the extent of this instability. 

1.4 Bootstrapping robust estimates 

Another approach to estimate the variability of estimates is given by the bootstrap 

(Efron, 1979). This method has been extensively studied for diverse models. In 

particular, the theory for bootstrap distribution of robust estimates has been studied 

by Shorack (1982), Parr (1985) and Yang (1985) among others. 

Two problems of practical relevance arise when bootstrapping robust regres

sion estimates. First, the proportion of outliers in the bootstrap samples may be 

higher than that in the original data set causing the bootstrap quantiles to be very 

inaccurate. Intuitively the reasoning is as follows. Both outlying and non-outlying 

observations have the same chance of being in any bootstrap sample. With a certain 

positive probability, the proportion of outliers in a bootstrap sample will be larger 

than the fraction of contamination the robust estimate tolerates. In other words, a 
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certain proportion of the re-calculated values of the robust estimate will be heavily 

influenced by the outliers in the data. Thus, the tails of the bootstrap distribution 

can be heavily influenced by the outliers. 

This "lack of robustness" of the classical bootstrap was noted by Ghosh et al. 

(1984), and Shao (1990, 1992) in the context of estimating asymptotic variances, and 

by Singh (1998) for quantile estimates. Ghosh et al. (1984) showed that a condition is 

needed on the tails of the distribution of the data for the bootstrap variance estimate 

of the median to converge. Note that no matter how robust the estimate being boot

strapped, a tail condition is still needed. Shao (1990) proved that if one truncates 

the tails of the bootstrap distribution (with the truncation limit going to infinity as 

the sample size increases, so that asymptotically there are no discarded bootstrapped 

estimates) then the bootstrap variance converges to the asymptotic variance of the 

estimate of interest. Unfortunately it is not clear how to implement this method 

in a finite sample setting. Singh (1998) quantified this robustness problem for the 

estimates of the quantiles of the asymptotic distribution of location estimates. He 

defined the breakdown point for bootstrap quantiles and showed that it is disap

pointingly low even for highly robust location estimates. He proposed to Winsorize 

the observations using the robust location and scale estimates and then to re-sample 

from these Winsorized observations. He showed that the quantiles obtained from this 

method have a much higher breakdown point and that they converge to the quantiles 

of the asymptotic distribution of the estimate. 

The second difficulty is caused by the heavy computational requirements of 
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the bootstrap which are compounded with robust estimates. Robust regression esti

mates are generally determined by the solution of a non-linear optimization problem 

in several dimensions. In the particular case of MM-estimates (Yohai, 1987) for each 

sample we have to solve two such problems. Moreover, one of them is only implicitly 

defined as the solution of a non-linear equation. We see that bootstrapping M M -

estimates involves repeatedly solving two non-linear optimization problems in several 

dimensions. We have also found additional computational issues that needed spe

cial attention. For example, a bootstrap sample may not be in general position (see 

Definition 5.1 in Section 5.4) and this has consequences in determining the scale of 

the residuals. This large number of non-linear optimization problems may render the 

method unfeasible for high dimensional problems. As an example of the computa

tional times that can be expected, the evaluation of 5,000 bootstrap re-calculations 

of an MM-regression estimate on a simulated data set with 200 observations and 

10 explanatory variables took 9120 C P U seconds («2.5 hours) on a Sun Sparc Ultra 

workstation. The same number of re-calculations performed with the robust bootstrap 

we introduce in the next section took 416 C P U seconds (approximately 7 minutes) 

under the same conditions. 

1.5 A new computer intensive method 

The basic ideas are best presented using the simple location model. Let x±,..., xn be 

a random sample satisfying 

Xi = n-rei, i = l,...,n, (1.4) 
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where are independent and identically distributed random variables with known 

variance. Let xj) : R —> R be odd, bounded, and non-decreasing. The associated 

M-location estimate for LL is defined as the solution fin of 

n 

^2^(Xi-iln) = 0. (1.5) 

We are interested in estimating the standard deviation of fin. For this purpose we 

present the following computer intensive method to generate a large number of re

calculated estimates //*. We will use the variability observed in these re-calculated 

estimates to assess the variance of fin. 

It is easy to see that jxn can also be expressed as a weighted average of the 

observations: 
E n iP(xj-iin) n 

where uji = ip (XJ — fin)/ (%i — An)- This representation of fin cannot be used directly 

to calculate fin because the weights on the right hand side depend on the estimate. 

Note that commonly used functions ip (such as Huber's family ipc, see equation 

2.5) yield weights to (u) = ip (u)/u that are decreasing functions of In this case, 

outlying observations that typically have a large residual \xi — p,n\ will have a small 

weight in (1.6). 

Let x\,..., x*n be a bootstrap sample of the data (i.e. a random sample taken 

from Xi,... ,xn with replacement). Recalculate fin using equation (1.6): 

K = (1.7) 

18 



with UJ* — ip{x* — ftn)/ {x* — fln). We have seen above that observations that are far 

from the bulk of the data will typically come into the bootstrap samples associated 

with small weights. Hence the influence of outliers in the bootstrapped estimate 

is bounded. Also note that we are not fully recalculating the estimate from each 

bootstrap sample. 

The re-calculated /x*'s in (1.7) may not reflect the actual variability of fin. 

Intuitively this happens because the weights are not re-computed with each boot

strap sample. Instead, we are using the weights obtained with the estimate fin as 

calculated with the original data. To remedy this loss of variability in the /}*'s we use 

an estimable correction factor. One way to derive this correction is to think of (1.6) 

as a fixed-point equation of the form fin = / (fin). The first-order Taylor expansion 

of / around the limit u. of fin suggests that we should multiply the re-weighted / i n ' s 

by [1 — / ' (A*)] - 1 - With this notation, the correction factor we use is [1 — / ' ( /z„)] _ 1 . 

Theorem 3.1 in Section 3.3 shows that the corrected /i*'s have the same asymptotic 

distribution as the estimates fin. 

Our method yields quantile estimates with a high breakdown point as defined 

by Singh (1998) (see Sections 3.4 and 5.4). This property means that a high propor

tion of outliers is needed to push the robust bootstrap quantile estimates above any 

bound. Classical bootstrap quantile estimates have a disappointingly low breakdown 

point, in spite of the robustness of the estimate being re-calculated (Singh, 1998). In 

Section 3 we study the robust bootstrap for the location model with unknown scale. 

This new bootstrap method, which we call the robust bootstrap, is also compu-
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tationally simple. In the linear regression context studied in Chapter 5, this property 

is very desirable. As opposed to the classical bootstrap that would need to solve 

a full multivariate optimization problem with each re-calculation, robust bootstrap 

evaluations only require solving a linear system of equations. 

To compare the performance of our method with the classical bootstrap we ran 

5,000 robust bootstrap iterations on the same artificial data set we used to illustrate 

the computational demands of the classical bootstrap (see page 17). Our method took 

416 C P U seconds (approximately 7 minutes) to finish, while the classical bootstrap 

used 2.5 C P U hours. Both programs were written in C and called within Splus 3.4 

for Unix. 

To illustrate the stability of the distribution estimates obtained with the ro

bust bootstrap, we applied our method to the MM-regression estimate for the Stack 

Loss data (see Chapter 4 for the definitions). We used both re-sampling methods to 

estimate the distribution of the 4-dimensional vector 

QQ-plots of the estimates of the distribution of the projections (/% — /%), i = 1,..., 4, 

obtained with each method. Note that in all cases the distribution estimates yielded 

by our method are closer to the limiting normal distribution and have lighter tails 

than the re-calculated estimates using the classical bootstrap. 

where 0O,Pi, fa,h) is the MM-regression estimate. Figures 1.3 to 1.6 display the 
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(a) Classical bootstrap 
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(b) Robust bootstrap 

Figure 1.3: QQ-plots of the re-sampled Intercept coefficient estimates obtained wi th 
both the classical and robust bootstrap for the Stack Loss data. 
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Quantiles of Standard Normal 

(a) Classical bootstrap 

Quantiles of Standard Normal 

(b) Robust bootstrap 

Figure 1.4: QQ-plots of the re-sampled A i r Flow coefficient estimates obtained with 
both the classical and robust bootstrap for the Stack Loss data. 
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(a) Classical bootstrap 
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(b) Robust bootstrap 

Figure 1.5: QQ-plots of the re-sampled Water Temperature coefficient estimates ob
tained with both the classical and robust bootstrap for the Stack Loss data. 
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Quantiles of Standard Normal 

(a) Classical bootstrap 

(b) Robust bootstrap 

Figure 1.6: QQ-plots of the re-sampled A c i d Concentration coefficient estimates ob
tained wi th both the classical and robust bootstrap for the Stack Loss data. 
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1.6 Thesis outline 

The rest of this thesis is organized as follows. Chapter 2 studies the asymptotic 

properties (consistency and asymptotic distribution) of some robust scale and location 

estimates. We introduce the location-scale model and the classes of S-scale, S-location 

and MM-location estimates. We study the asymptotic behaviour of these estimates 

when the distribution of the errors belongs to a contamination neighbourhood of 

the standard normal. We present consistency and asymptotic normality results that, 

under additional regularity conditions, hold uniformly on the distribution of the errors 

(see Davies, 1998). As a side result we derive a technique to determine the maximum 

asymptotic bias of M-location estimates with re-descending score functions. 

In Chapter 3 we present a new computer intensive inference method for the 

location-scale model and we study its asymptotic properties. In particular we show 

that the resulting bootstrap distribution converges to the asymptotic distribution 

of the estimates of interest and that the derived quantile estimates have satisfac

tory robustness properties. Finally, we report the results of two Monte Carlo studies 

that compare the performance of this new method with other proposals in the lit

erature. The first study compares several asymptotic variance estimates while the 

second compares the mean length and empirical coverage of confidence intervals for 

the parameters of interest in the model. 

In Chapter 4 we extend the results of Chapter 2 to the linear regression model. 

Section 4.1 presents the model and defines the MM-regression estimates. Section 4.2 
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presents the contamination neighbourhood and the robustness properties of the M M -

regression estimates. Section 4.3 studies the asymptotic properties of these estimates. 

Chapter 5 extends the inference method presented in Chapter 3 to the linear 

regression model. We illustrate its use with two examples and we study the consis

tency of the distribution estimate and the robustness of the corresponding quantile 

estimates. Section 5.5 contains the results of a simulation study that investigates 

the finite sample size behaviour of the confidence intervals based on new method 

introduced here. 

Chapter 6 contains a brief list of the results obtained in this thesis, the chal

lenges that remain to be solved and the directions we forsee for future work. 

The appendix in Chapter 7 contains most of the auxiliary results needed in 

the proofs. Proofs are presented for those results that could not be found in the 

literature. 
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C h a p t e r 2 

G l o b a l a s y m p t o t i c p r o p e r t i e s o f 

r obus t es t imates for the 

loca t ion - sca le m o d e l 

In this chapter we study the asymptotic properties (consistency and asymptotic distri

bution) of some robust estimates of a location parameter when the observations may 

have an asymmetric distribution. First we define the classes of M-location estimates 

with general scale, S-location, S-scale estimates, and MM-location estimates. Most 

attention in the robustness literature has been paid to the asymptotic properties of 

robust estimates (in particular to their consistency and asymptotic distribution) when 

the data follow the non-contaminated model. In this chapter we study the properties 

of S- and MM-estimates in the full contamination neighbourhood. We show that the 
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S- and MM-estimates are consistent and asymptotically normal for any distribution 

in the gross-error neighbourhood of a symmetric distribution. We also discuss condi

tions that ensure these results hold uniformly over the contamination neighbourhood. 

As discussed by Davies (1998), uniformity is a reasonable property to expect in this 

context. Robust estimates have been proposed to deal with uncertainty in the model 

that generates the data, hence we expect their properties not to depend on a specific 

distribution in the neighbourhood. For example, the speed of convergence can depend 

on the distribution that generated the data. Our results guarantee that this is not 

the case with the estimates we consider in this chapter. 

This chapter is organized as follows. Section 2.1 defines the classes of M - , 

S- and MM-location and scale estimates. Section 2.2 introduces the contamination 

neighbourhood 7^e and briefly discusses the robustness properties of these estimates. 

Section 2.3 studies the asymptotic properties of S-location, S-scale and MM-location 

estimates when the distribution of the data belongs to We provide conditions to 

obtain consistency and asymptotic normality of these estimates. We also obtain reg

ularity conditions that ensure that the consistency and asymptotic normality results 

hold uniformly on the contamination neighbourhood. We show that a certain family 

of robust estimates satisfies these conditions. 
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2.1 Definitions 

In this chapter we consider the following location-scale model. Let x\,...,xn be n 

observations on the real line satisfying 

Xi = LI + a Ci i = l , . . . n , (2.1) 

where ê , i = 1,.. .n are independent and identically distributed (i.i.d.) observations 

with variance equal to 1. The interest is in estimating pi. The scale o is a nuisance 

parameter. 

Huber (1964) introduced the class of M-estimates. Suppose that xi,...,xn 

are i.i.d. observations with density function / (x,9), 9 G 0 , with 0 some parameter 

space. The M-estimate of 9 is 

n 

An = An (xi, ...,xn)= a r g m i n ^ p ( x i , ( 9 ) , (2.2) 
i=l 

where p is a loss function. When p(x,d) = — l o g / (x,9), fin is the maximum like

lihood estimate of 9. Under regularity conditions on p and 0 the estimate An also 

satisfies 
n 

J 3 V ( z i , £n ) = 0 , (2-3) 
i=l 

where ib = dp/89. 

If the data follow model (2.1) and 8 = p, in (2.2) it is natural to choose the loss 

function p to be a function of the residuals, p (x, 9) = p(x — 9). Then (2.3) becomes 

n 

X ^ ( z i - £ n ) = 0. (2.4) 
1=1 
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In the following we will assume that the function ip : R —v R satisfies: 

P . l ip (—u) — —ip (u), u>0, and bounded; 

P.2 ip is non-decreasing and lim u _nx, ip (u) > 0; 

P.3 ip is continuous. 

Without loss of generality, if ip satisfies P . l we can assume that \ip (u)\ < 1, u € R. 

Definition 2.1 - M-location estimates (with known scale): Let x\,...,xn be a 

random sample following model (2.1). Let ip : R —)• R satisfy P.l to P.3 above. The 

solution fin of (2.4) is called an M-location estimate. 

(2.5) 

A widely used family of functions ipc was proposed by Huber (1964). Its mem

bers are given by 

( 
sgn (u) if |«| > c 

u/c if | M | < c, 

where c G R+ is a user-chosen constant and sgn (u) is the sign function. The constant 

c determines the asymptotic ; properties of the sequence fin (see Definition 2.13 on 

page 39). One corresponding function pc is given by 

u — c/2 if u > c 

Pc (u) = { u

2/2c if |u| < c 

-u — c/2 if u < —c. 

Under certain regularity conditions the corresponding M-location estimates are asymp

totically normal (Huber, 1967). The choice c = 1.345 yields an asymptotic efficiency 
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of 95% when t{ ~ N (0,1). For some asymptotic results we will need the function 

yjc to be twice continuously differentiable. We can easily construct functions that 

satisfy the regularity conditions of Definition 2.1 and that are twice continuously dif

ferentiable. For example, for a given c > 0 we can find constants a, b, d and e such 

that 

{ sgn (u) if Iwl > c 

(2.6) 
a u7 + bub + du3 + e u if |w| < c 

is twice continuously differentiable with fc (±c) = ± 1 , f'c (±c) = 0, f'c (0) = 1 and 

f'J ( ± c ) = 0. 
Beaton and Tukey (1974) proposed another family of functions ipd, 

{ 0 if Id > d 

[u/d) (1 - (u/df) if |u| < d. 

The constant d determines the asymptotic properties of these estimates. The associ

ated family of functions pd is given by 

{ 3(u/d) 2 - 3 ( u / df + (ul df i f | « | < d 
(2.8) 

1 if \u\ > d, 

This family of functions ipd differs from Huber's in that its members vanish for large 

values of x. In terms of the estimate this feature means that outlying points will be 

ignored instead of down-weighted. In the robustness literature these functions are 

called re-descending. 

A property that is natural to expect from an estimate for the location param

eter in (2.1) is that it be equivariant under shifts in the center of the data. 
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Definition 2.2 - Translation equivariance: We will say that an estimate fin = 

(in (xi,... i „ ) is translation equivariant if for any sample x\,..., xn and real number 

a we have 

fin (x i + a,..., xn + a) = fin (xi,..., xn) + a. 

It is easy to verify that estimates fin that satisfy (2.4) are translation equivari

ant. Equivariance with respect to change of scale is also of interest. 

Definition 2.3 - Scale equivariance: We will say that an estimate fin = fin ( x i , . . . x. 

is scale equivariant if for any sample Xi,...,xn and real number a we have 

fin(axi,...,axn) = ajln(xl,...,xn). (2.9) 

The estimates jxn defined by equation (2.4) are not generally scale equivariant. 

To obtain equivariant estimates we introduce scale estimates. 

Definition 2.4 - Scale estimate: Let xi,...,xn be a sample of n real numbers. An 

estimate dn = on (x\,..., xn) such that 

on ( o i l + 6, • • •, axn + b) = \a\ bn ( x \ , x n ) V a, b € M, (2.10) 

will be called a scale estimate. 

Equation (2.4) can incorporate the scale estimate on as follows. 

Definition 2.5 - M-location estimates with general scale: Let yj : M. -> M. 

satisfy P.l to P.3. Let X\,... ,xn be a random sample of real numbers and let on be 
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a scale estimate. The M-location estimate with general scale is the solution fin of 

1 n 

-J2ib((xi- Lin)/on) = 0. (2.11) 

Let be a real function such that p'^ = ib, then fin can also be defined by 

1 " 

fin = a r g m i n - J^p^ {( x* ~ *)/^n) • (2.12) 
i=l 

If ip is not continuous in the above definition, then the solution of (2.11) may 

not exist. We can still define the M-location estimate in this situation as 

n 
£„ = i n f { t G l : ^ ^ ( ( x i - i ) / f f n ) < 0 }, 

i = l 

where inf A denotes the infimum of the set A (see Huber, 1981, page 46). 

It is easy to verify that the M-location estimates with general scale as defined 

in Definition 2.5 are translation and scale equivariant. 

Different scale estimates on generate different classes of M-location estimates. 

Definitions 2.6 and 2.7 consider two particular classes: the M-scale and S-scale esti

mates respectively. 

In the following we will assume that the real function p : R —>• R+, satisfies 

p (0) = 0 and 

R . l p{-u) = p(it), u > 0, and sup u e K p(u) = 1; 

R.2 p (u) is non-decreasing in u > 0; 

R.3 p is continuous. 
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Note that without loss of generality, any symmetric and bounded function p that is 

not constantly equal to 0 can be adjusted to satisfy R . l above. 

For an arbitrary measurable function / and a random variable X with distri

bution function F, let Epf (X) denote the expected value of the random variable 

/ (X) when X has distribution F, if this expectation exists. 

Def ini t ion 2.6 - M-scale estimates (Huber, 1964): Let p : K -> E satisfy R.l to 

R.3 above. Let b € (0,1/2]. Let xi,..., xn be a random sample and let p,n be a scale-

and translation-equivariant estimate. Define the residuals r\ = X\ — p,n,...,rn = 

xn — fan- The M-scale on is implicitly defined by 

The choices of the function p and the constant b in (2.13) determine the proper

ties of the resulting scale estimate. For example, to ensure consistency of on when the 

residuals r;'s in (2.13) are standard normal random variables we choose b — E^p(Z), 

where Z ~ N (0,1). The constant b will also characterize the robustness properties 

of the sequence dn (see Section 2.2). 

A widely used family of p functions is given by 

where A; is a user-chosen constant. For a given b G (0,1/2] we can choose k to obtain 

E$pk (Z) -b. k = 1.04086 satisfies E^pk (Z) = 1/2. 

(2.13) 
i=l 

(2.14) 
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Another family of scale estimates is that of the S-scales (Rousseeuw and Yohai , 

1984). 

Definition 2.7 - S-scale estimates: Let p : R —> R+ and b £ R as in Definition 

2.6. Let x\,..., xn be a random sample. For every t E R consider the residuals 

x\ — t,..., xn — t and their M-scale sn (t) satisfying 

1 " 
-J2p((xi-t)/sn(t)) = b. (2.15) 

The S-scale on is defined by 

n • 1 

on(x1,...,xn) = Msn(t). (2.16) 

Natural ly associated with this family are the S-location estimates. 

Definition 2.8 - S-location estimates: Let x\,...,xn be a random sample, and 

for each t e R let sn (t) be as in (2.15). The S-location estimate pn is 

fin (xi,...,xn)= a rg inf sn (t). (2.17) 

It is easy to see that i f the function p is continuously differentiable, the pair 

(pLn,dn) in (2.16) and (2.17) satisfies the following system of equations 

1 " 
-^2p({xi-}in)/dn) = b (2.18) 

i=l 

1 " 
-^2p'{{xi-jin)/on) = 0, (2.19) 

i=l 
where p' denotes the derivative of p. 

In analogy wi th Yohai (1987) we wi l l refer to the M-locat ion estimates calcu

lated with an S-scale as MM-loca t ion estimates. 
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Definition 2.9 - MM-location estimates: Let x \ , . . . , x n be a random sample fol

lowing model (2.1). Let ip : R —> R satisfy P.l to P.3. Let on be an S-scale estimate 

as in (2.16). The solution fin of 
n 

^2^((Xi- Ml On) = 0 , (2.20) 

t=l 
will be called the MM-location estimate of X i , . . . , x n . 

Definition 2.10 - Simultaneous M-location and scale estimates (Huber, 1964): 

Let ip : R -> R satisfy P.l to P.3, and let p : R ->• R+ satisfy R.l to R.3. Let 

x i , . . . , x n be a random sample and let b — E^p(Z). The simultaneous M-location 

and scale estimates pn and on are given by the solution of the following system of 

equations 

1 " 
_ ^ (& - Ml (Jn) = 0, 
n i=l 

1 n 

-^p((Xi- pn)/dn) =b, (2.21) 

2.2 Robustness properties 

The asymptotic properties of the M-locat ion estimates given by (2.12) are well-known 

when the distribution of the errors is symmetric (Huber, 1964, 1967, 1981; Boos and 

Serfling, 1980; Clarke, 1983, 1984). 

We wi l l assume that the distribution of the errors belongs to the following gross 

error neighbourhood 

rle = {FeV : F (x) = (1 - e) F0((x - p)/o) + eH (x)} , (2.22) 
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where V denotes the set of all distribution functions, F0 is a fixed symmetric distri

bution, e G (0,1/2), and H is an arbitrary distribution function. Intuitively e is the 

fraction of outliers that are expected to be present in the sample. We should mention 

here that (2.22) does not constitute a topological neighbourhood. See Huber (1981, 

page 10) for a discussion of different neighbourhoods. 

We need to introduce some notation. Let £ be a subset of the set of all dis

tribution functions. We will assume that all possible empirical distribution functions 

belong to £. Let p and b be as in the definition of M-scale estimates, Definition 2.6. 

Define the functional cr : £ —> R as follows. Let F G £. For every t G R, let a (F,t) 

satisfy 

EF[p{(X-t)/o{F,t))) = b. (2.23) 

For F G S the value of the functional cr (F) is 

tr(F) = Ma{F,t). (2.24) 

Define the S-location functional as 

/2(F) =arg inf a (F,t). (2.25) 

Clearly, we have cr (F) = a (F, fx (F)). Similarly define the functional p : £ R by 

the equation 

EF[iP((X-p(F))/o-(F))}=0, (2.26) 

or, equivalently 

p (F) = argmin EF [ ( (X — p, (F)) / cr (F) ) ], 
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where p'^ = ip. It is easy to see that if Fn denotes the empirical distribution function 

of the sample, then /z (Fn) — pn and cr (Fn) = an where pn and an are given by (2.12) 

and (2.16) respectively. 

In what follows we will assume that rit C 5. 

One measure of robustness of an estimate is given by its asymptotic bias. If F 

is not symmetric we will typically have /z (F) =fi p, where fx (F) is defined in (2.26) 

and p is the actual location parameter in (2.1). The supremum of the absolute value 

of this difference as F ranges over the neighbourhood rit (see 2.22) measures the worst 

asymptotic deviation we can have. This quantity is called the maximum asymptotic 

bias. 

Definition 2.11 - Maximum asymptotic bias: Let n be a statistic defined by a 

functional as in (2.26). The maximum asymptotic bias of pb over %e is given by 

B ( e ) = sup | / * ( F ) - / i ( F o ) | / < r ( F 0 ) , 
F€Ut 

where F0 is the central distribution of the neighborhood rit. 

Another measure of robustness for estimates is the breakdown point. This 

concept was defined by Hampel (1971). Intuitively the breakdown point is the smallest 

proportion of contamination e* such that the maximum asymptotic bias is unbounded. 

Definition 2.12 - Asymptotic breakdown point: Let pb be a statistic as before 

and let B (e) be its maximum asymptotic bias function given in Definition (2.11). The 
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asymptotic breakdown point of fx is defined by 

e* = e* (F0) = sup {e G (0,1) : B (e) < 00} . 

In many cases e* does not depend on F0 (Huber, 1981, page 13). Donoho and 

Huber (1983) introduced the following modified version for finite samples. Let fx (Fn) 

be an estimate of the parameters of interest, where Fn denotes the empirical distri

bution of the sample. Let b ( m , fx, Fn) be the maximum disturbance you can cause to 

the estimate for this data set if you arbitrarily change m observations. Formally, let 

where Fn is an empirical distribution that differs from Fn in that m data points have 

been replaced by arbitrary values. The finite sample breakdown point (BP) is the 

minimum m that yields an unbounded b (m, fx, Fn). 

Definition 2.13 - Finite sample breakdown point: Let Fn be the empirical dis

tribution function of a sample of size n, and let fx be a statistic defined by a functional 

as above. The breakdown point of p, at the sample Fn is 

There is an asymptotically equivalent version of this definition where b (m, fx, Fn) 

is calculated by adding m points to the sample instead of replacing them (see Donoho 

and Huber, 1983). 

When the scale o is known, M-location estimates can be defined as in (2.4). 

b (m, fx, Fn) = sup \fi (Fn) - fx (Fn) |, 

m G N, such that b (m, fx, Fn) < 00 
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In this case we have (Huber, 1981, page 53) that 

with n = min {— ip (—oo)/ip (oo), — ip (po)/ip (—oo)} and ip (oo) = lim x^oo ip (x). 

Hence, e* = 0.50 when ip (oo) = — ip (—oo). Note that if ip satisfies P . l and P.2 then 

e* = 0.50. When a is unknown and is estimated simultaneously as in (2.21) the 

breakdown point e* of pn decreases. To avoid this effect, we can use an estimator an 

with e* = 0.50 and that does not use fin as its centering statistic (such as the median 

of the absolute deviations from the median, M A D ) . In this way, if ip satisfies P . l we 

can achieve e* = 1/2 for pn when a is unknown (see Huber, 1981, page 144). 

On the other hand, M-scale estimates (2.13) have e* = min (b, 1 — b) (Huber, 

1981). To obtain a consistent scale estimate an with e* = 0.50 when we use a function 

Pk in (2.14) we set k = 1.04086. When pd belongs to Tukey's family (2.8) we need d = 

1.54764. More generally, to construct a consistent M-scale estimate with breakdown 

point 8 G (0,1/2), the tuning constant d — d(S) can be determined by solving 

E^pd (Z) — 5 for d. S-estimates of scale and location as defined in (2.16) and (2.17) 

respectively, also have e* = 0.50 when b = 0.50 (Rousseeuw and Yohai, 1984). 

2.3 Asymptotic properties 

The objective of this section is to determine the conditions under which the M M -

location estimates (2.20) are consistent and asymptotically normal when the distri

bution of the data F G rie is not necessarily symmetric. We are also interested in 
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obtaining uniform properties over the contamination neighbourhood % £ . 

We will see that if F is asymmetric the asymptotic distribution of MM-location 

estimates depends heavily on that of the S-scale (2.16) and associated S-location (2.17) 

estimates. Hence we begin by studying their asymptotic behaviour. 

The rest of this section is organized as follows. Section 2.3.1 considers the 

consistency of the S-scale estimate. Sections 2.3.2 and 2.3.3 deal with the S-location 

estimates. Finally, Sections 2.3.4 to 2.3.7 study the consistency and asymptotic dis

tribution of MM-location estimates. 

2.3.1 Uniform consistency of the S-scale estimate 

The following theorem shows that the S-scale estimate is consistent for the asymptotic 

value defined in (2.24), and that this convergence holds uniformly for F G 7i€. Let 

gp (s, t) = EFop ((X - t)l s) and hp (s, t) = (d/ ds) gp (s, t). 

Theorem 2.1 - (Martin and Zamar, 1993) - U n i f o r m consistency of the S-scale: 

Let p and b satisfy the conditions in the definition of M-scale estimates, Definition 

2.6. Let dn be the S-scale as in Definition 2.7 and cr (F) its asymptotic value as in 

(2.24)- Let hp be as above. Assume that hp is continuous and that hp(s,t) < 0 for 

all s G R+ and i e l . Then, for any 5 > 0 

lim sup Pp sup |<7„ - CT (F) | > <5 
n>m 

= 0 

41 



The following lemma shows that if we use a function pd in Tukey's family 

to obtain an S-scale estimate, and the contamination neighbourhood rle is centered 

around a distribution function with strictly positive density on R (such as the standard 

normal) then the conditions of Theorem 2.1 are met. 

Lemma 2.1 Let pd belong to Tukey's class (2.8) and let rie be a contamination neigh

bourhood as in (2.22) around a distribution F0 with density function f0 that is strictly 

positive on R. Let hPd be defined as above. Then, pd and hPd are continuous, and 

hPd (s,t) < o, Vs e R+, yt e R. 

Proof: The continuity of pd follows from its definition. Note that for pd in Tukey's 

family we have 

The continuity of hPd is a consequence of the Dominated Convergence Theorem. Note 

that p'd (u) u > 0 for all u e R. Finally, that hPd (s,t) < 0, Vs e R+, Vt e R follows 

by noting that for any pair (s, t) e R+ x R there exists a set / C M G R such that 

s,t • 

By hypothesis we have F0 (/CS]() > 0. Then 

EF0Pd 

X-t 

s 
fo(X)>0. 
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2.3.2 Consistency of the S-location estimate 

Our next theorem shows that under certain regularity conditions the S-location esti

mate is consistent for distributions F G 7ie- Conditions under which this convergence 

holds uniformly on % e are discussed in the next section. 

We need to introduce the following notation. Let p(x,t,s) = p((x — t)/s). 

Denote the set of positive real numbers (0, oo) by R+. For each t G R and s G R+ let 

where Fn denotes the empirical distribution function of the random sample x\,..., xn. 

As in Martin and Zamar (1993), for each e G [0,1/2) let s~ = s~ (e) and s+ = s+ (e) 

be such that 

0 < s" < inf cr (F) < sup a (F) < s+ < oo, (2.29) 
F€UE F E H E 

where a (F) is given by (2.24). 

Theorem 2.2 - Consistency of the S-location estimate: Let p satisfy R.l to 

R.3, and assume that p is not constant. Let pn be the associated S-location estimate 

as in Definition 2.8. Let F G 7ic and let ft (F) be as in (2.25). Assume the following: 

1. 7 (F, t, s) = EFp((X — t)/S) is continuous in s uniformly in t; 

2. g(t) = 7 (F, t, cr (F)) has a unique minimum fi; 

l(F,t,s) = EFp(X,t,s), (2.27) 

(2.28) 
i=i 
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3. for any neighbourhood B (t0) we have 

inf p(X,t',cr) 
.t'eB(to) . 

as B (t0) shrinks to {t0}; 

B(t0)\{to] 
p(X,t0,cr) 

4- for any bounded neighbourhood B (to) we have 

E inf p(xi,t',on) EF 
,o . t'eB(to) n->oo 

inf p(X,t',cr) 
t'eB(t0) 

Then 

pn ——>• jx. 
n—>oo 

Proof: First note that by the previous result we know that on a almost surely. 

Hence, with high probability, on G JC, a fixed compact set, for n sufficiently large. 

Note that g (t) — 7 (F, t, cr) is a continuous, bounded function, and by hypoth

esis it has a unique minimum. Denote the value of t where this minimum is attained 

by t0, i.e. g (t0) < g (t) for all t ^ t0. We will show that there exist sets I\ C h with 

to G h such that 

sup 7 (F, t, cr) < inf 7 (F, t, a). (2.30) 
teii 

Because p is not constant, we have limit^oo g (t) = 1 > g (to). Let ei = 1 — g (t0) > 0. 

Choose ai such that | i | > a\ implies 1 — g (t) < ei/2. Then we have in f | 4 | > a i g (t) > 

1 — ei/2 = g (t0) + ei/2. Hence, A = {\x\ < a\) satisfies i n f ^ g (t) — g (tQ) > 0. Also 

note that necessarily |t 0| < «i- By continuity of g there exists a neighbourhood of t0, 

44 



B (to) such that g (t) — g (t0) < ei/4 for all t G B (to). It follows that supB( t o) g (t) < 

9 (to) + ei/4. We will now show that B (to) C {\t\ < o i} . Let t G B(t0). Then, 

g(t) < g (to) + ei/4. If \t\ > a\ then, g (t) > g (to) + e i /2, which is a contradiction. 

Hence, the above inclusion holds. Next note that in f | t | > a i g (t) > 9 (to) + ei /2 > 

g (t0) + ei/4 > sup B ( i o ) ^ (t). Hence IX = B (t0) C {|i| < o j = 72 satisfy (2.30). 

We now show that, with high probability, jin eventually lies in the compact 

set I2. It is enough to prove that with high probability, there exists n i such that for 

n > rti we have 

sup 7 „ (*, <rn) < inf 7 n (t, an). (2.31) 

Let 

a = sup 7 (F, t, cr), and 77 = inf 7 (F, t, cr) . 
teh 

Let 0 < e' < (rj - a) /2. Note that for any 8 > 0, t G K and s G R+, Chebychev's 

inequality yields 

P F ( | 7 n (t, 5) - 7 (F, i , 5) I > 8) < - 1 V F . 

It follows that there exists an integer n0 (e') such that, with high probability, 

|7„ (t, s) - 7 (F, t, s ) | < e'/2, V n > n 0 (e'), V t, V s, VF. (2.32) 

Note that because of the uniformity in (2.32) we have for each fixed t and n > n0 

hn(t,crn)-i(F,t,an) \ < e'/2. 

Let ni (e1) be such that with high probability an and a are close enough so that by 

the continuity of 7 we have 

| 7 (F, t, on) - 7 (F, t, cr) I < e'/2 for n > m . 
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Note that n\ does not depend on t. It follows that jn (t, dn) < 7 (F, t, cr) + e' and 

s u p t e / l 7 n (t, an) < a + e' for n > rt\. Similar ly we have n — e' < inf t ^/ 2 7 n (£, an) for 

n > ni and (2.31) holds. It follows that, with high probability, there exists an integer 

n such that n > fi jj,n (E h-

Having proved that /2 n is ultimately in a compact set 7 2 , and that the unique 

minimum of the asymptotic equation belongs to I2, we now adapt a standard argu

ment (Huber, 1967) to show that pn converges almost surely to ft. 

Let B (p.) be an arbitrary neighbourhood of jx. We wi l l restrict our attention 

to the compact set I2. We have 

inf 7 (F, t, cr) > 7 (F, p,,cr)+4e, 

for some e > 0. B y hypothesis, for each t ^ B (fi) there exists a neighbourhood of t 

such that 

E inf p(X,t',cr) 
t ' £ B ( t ) 

> 7 (F, ix, CT) + 3 e. (2.33) 

The collection of open sets B (t) covers the compact set I2H B (fi)c. Pick a finite 

number of them such that 

k 
\jB(ti)Dl2nB{p,)c. (2.34) 
i=l 

For each of them we have that if n is large enough 

1 " 1 n 

inf ~ y ^ p ( x j , i , CT„) > -Y^ inf p(xi,t,an) 

t — 1 %—1 
> 7 (F, fi, cr) + 2 e. (2.35) 
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Also 

(2.36) 

It follows that for n large enough 

1 
-^2p(xi,t,an) + e, 

and hence fin & B (/2). 

A p p l i c a t i o n of Theorem 2.2 to Tukey's family of functions pd 

Lemmas 7.7 to 7.11 in the Appendix show that if pd belongs to Tukey's family (2.8) 

then assumptions 1, 3 and 4 of Theorem 2.2 are met. Assumption 2 is particularly 

difficult to verify in general. Under certain regularity conditions and for e < 0.10 we 

can show that it holds uniformly on F G 7^£ (see next Section). We conjecture that 

it holds for any F G He. The following plots illustrate the behaviour of the family 

of functions fe(t) = 7 (F e , t, cr (Ft)) for Fe in the contamination neighbourhood of 

the standard normal distribution and pd in Tukey's family (2.8). We considered 

Fe (x) = (1 - c) $ (x) + e$ ((x - XQ)/0.1) for e = 0.15, 0.20, 0.25, 0.30, 0.40, 0.45 and 

x0 = 1, 2, and 5. We see that in all cases 7 (Fe, t, cr (Fe)) has a unique global minimum. 

Note that as x0 increases a second local minimum appears. Only for e > 0.40 this 

local minimum approaches the global minimum of the function, but these functions 

seem to always have a unique global minimum for t < 0.50 for the contaminations 

considered here. 
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•10 -5 0 5 10 

(a) e = 0.15, x0 = 1 

-10 -5 0 5 10 

(b) e = 0.15, x0 = 2 

-10 -5 0 5 10 -10 -5 0 5 10 

(c) e = 0.15, x0 = 5 (d) e = 0.20, z 0 = 1 

(e) e = 0.20, x0 = 2 (f) e = 0.20, z 0 = 5 

Figure 2.1: Plots of / (t) = 7 (F e, t, cr (Fe)) wi th Fe(x) = (1 - e) $ (rr) + 
e $ ((1 — in) / 0.1), for different values of e and x0. 
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- 1 0 -5 0 5 1 0 

(a) e = 0.25, x0 = 1 

- 1 0 -5 0 5 1 0 

(b) e = 0.25, x0 = 2 

- 1 0 -5 0 5 10 - 1 0 -5 0 5 10 

(c) e = 0.25, xo = 5 (d) e = 0.30, z 0 = 1 

(e) c = 0.30, zn = 2 (f) e = 0.30, x0 = 5 

Figure 2.2: Plots of / (t) = 7 ( F £ , t, <r (Fe)) wi th F e (x) = (1 - t) $ (x) + 
e $ ((a; — x0)/ 0.1), for different values of e and x 0 . 
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-10 -5 

(a) e = 0.40, x0 = 1 (b) e = 0.40, x0 = 2 

(c) e = 0.40, x0 = 5 (d) e = 0.45, x 0 = 1 * 

(e) e = 0.45, x0 = 2* (f) e = 0.45, zo = 5 

Figure 2.3: Plots of / (t) = 7 (Fe, t, a (Fe)) wi th Fe(x) = (1 - e) $ (x) + 
e $ ((x - x 0 ) / 0 . 1 ) , for different values of e and x0. *Note the different scale on the 
x-axis for e = 0.45, xQ = 1 and 2. 
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2.3.3 Uniform consistency of the S-location estimate 

In this section we show that under stronger conditions on p than those of Theorem 2.2 

we obtain uniform consistency of pn. These new regularity assumptions are basically 

the uniform counterparts of those of Theorem 2.2. 

We first state the theorem and its proof. We then obtain sufficient conditions 

to meet the required uniform assumptions and we verify them for Tukey's family of 

functions pa in a range of values of the proportion of contamination e. 

Theorem 2.3 - Uniform consistency of the S-location estimate: Let p satisfy 

R.l to R.3, and assume that p is not constant. Let b G (0,1/2], pn as in Definition 

2.8 andfi{F) as in (2.25). If 

U.1 j(F,t,s) is continuous in s uniformly in t G R and F G rie, that is, for any 

e > 0 there exists a 5 = S (e) > 0 such that if | s i — s2\ < 5 then 

j(F,t,Sl)-j(F,t,s2) <i, V i G R , V F G K ; (2.37) 

U.2 for each F G rie, fF (t) = y{F,t, cr (F)) has a unique minimum fi (F); 

U.3 there exists sets I± C I2 with I2 compact that do not depend on F G rle, and 

such that 

s u p 7 ( F , £ , < T ( F ) ) < infy(F,t,tr{F)), V F G H £ ; (2.38) 
teh ltl2 

U.4 the convergence in assumption 3 of Theorem 2.2 holds uniformly in F G H€, 

51 



i.e. for every I > 0 and t 0 e l there exists 5 = 5 (e, t0) such that 

inf p{X,t',cr(F)) E i p(X,t0,tr(F)) <e, VFeHe, (2.39) 

where the ball B$ (t0) has diameter 5; 

U.5 the convergence in 4 of Theorem 2.2 holds uniformly in F G H£, that is, if 

Yi= inf p(Xi,t',on) and Y (F) = E F t'eBs(to) 

then for any S > 0 

lim sup PF( sup\Y n - Y (F)\ > 5 ) = 0 ; 
m->oo Feue V n>m ' 

U. 6 for every 5 > 0, e (S, F) defined by the property 

where ft(F) is the global minimum oj'^{F,t,cr (F)), satisfies 

i(6) = inf e(S,F) > 0; 

(2.40) 

WMF)) 7 ( F ' i ' ° ' ( F ) ) ^ y(F,fi{F),*r(F)) + i{5,F) , (2.41) 

(2.42) 

then 

lim sup PF( sup \fln - fj, (F)\ > 5 ) = 0 . 
m->oo F e n \ n > m ) 

(2.43) 

Proof: Fix an arbitrary neighbourhood B{JL (F)) of jx (F) and let e > 0 be given by 

(2.42). Let i i and7 2 be as in U.3. Note that by assumption U.4 the finite coverage 

of I2 in (2.33) and (2.34) associated with e (6) in U.6 does not depend on F. Let Yi 

and Y be as in U.5. Consider the events 

Am (F) = Lup\Yn - Y (F)\ < i] , m € N . 
(n>m J 
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Choose an arbitrary 8 > 0. By U.5 we have that there exists m 0 (8) such that 

PF(Am(F)} > 1-8, Vm>m 0(<5) MF 

Now note that 

Am(F)c\-J2 in / P (xu t, an) > 7 ( F , fx (F), cr (F)) + 21, Vn > m 1 — cv, 
Let 

A » ( F ) = j ^ p ( ^ , £ ( F ) , < r ( F ) ) < y(F,jJL(F),tr(F))+i, Vn > m j 
We also have that there exists mi = mi (8) such that for m > mi we have 

PF(Dm{F))>l-5 VFeHe. 

Take rri2 = max (mo, mi). We have 

Cm(F)nDm (F) > 1-28 V m > m 2 , \/F Erie 

We also have 

Cm(F)nDm(F) C /2m G / i ( /2 (F ) ) ,m > m 2 

Hence, for each 8 > 0 there exists m 2 (5) such that 

PF prneB(ii(F)),Mm>m2 > 1 - 28, VF Erie, 

that is, for each neighbourhood B(p, (F)) we have 

lim inf PF 

m->oo FeHe 

jln G B(p,(F)), V n > m 

or equivalently, if i i B > 0 is the diameter of B^fi (F)), 

= 1 

lim sup PF sup - /2 (F) | > d B m->-oo F e H e in>m 

0. 
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Application of Theorem 2.3 for Tukey's family of functions pd 

Here we discuss sufficient conditions for U.1 to U.6 to hold for S-location estimates 

obtained with functions pd in Tukey's family (2.8). 

Assumption U.1 holds by Lemmas 7.8 and 7.9. To see that assumption U.4 

holds use Lemmas 7.7 and 7.10. 

We now show that U.5 holds. Let Y{ and Y (F) be as in U.5 and 

Vi(F)= inf p(Xi,t',<r (F)), i = l,...,n. 
t GB(to) 

Then Y (F) — EF [Vi]. We have to show that for any 5 > 0 and e > 0 there exists m0 

such that 

< e V m > m 0 . sup\Yn-Y(F)\ > r j 
n>m 

We cannot use Lemma 7.2 (Bernstein's inequality) on Y (F) because these random 

variables do not have mean zero nor are they independent. We have 

sup\Yn-Y(F)\ >S 
n>m 

< PF sup\Vn(F)-Y(F)\>5/2 
n>m + 

+ PF sup \Yn-Vn(F)\ > 5/2 
n>m 

(2.44) 

for some e' (5) > 0 that depends on <5. We have 

s u p | F n - y „ ( F ) | >5/2 
n>m 

< PF sup |<7„ -tr(F)\ > e' 
n>m 

(2.45) 

for some e' = e'(<5). To prove inequality (2.45) note that Yn = l/n £)"=1 g (xt, an) 

and Vn = l/n Y J " = 1 g (x{, cr). In the proof of Lemma 7.11 we see that g(x,s) is 
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continuous in s uniformly on x. Hence, for a given 5/2 there exists a positive e' such 

that \an — cr| < e' implies \Yn — Vn\ < 8/2. Hence, for each n we have 

{\Yn-Vn\>8/2} C{\an-cr\>e'}, 

and then note that for any sequence of random variables {-X„} n e N if a is a real number, 

we have { s u p n > m X n > a} = \Jn>m{Xn > a}. Together with (2.45) this bounds the 

second term in (2.44). To control the first term, note that the sequence of random 

variables Wi = V{ - E (Vi) = V* - Y (F) satisfies the assumptions of Bernstein's 

Lemma (Lemma 7.2 in the Appendix) with c = 2sup u p(u) and sn = na^, where o2

w 

denotes the variance of Hence for any 8 > 0 we have 

D

F(\Vn-E(V)\>5) =PF(\Wn\ ><j) 

-n82 

< 2exp 

= 2 

2(al + cS) 

exp^—a (8)^ 

< 2 exp -n 8
2 

2 (k2 + c8) 

(2.46) 

where a2

w < k2 < oo for all F e rl£ and a (8) > 0. Note that they do not depend on 

F. Use Theorem 2.1 to find m 0 large enough such that 

sup PF sup|<rn -tr(F)\ > e' 
n>m 

< c / 2 , (2.47) 

and use (2.46) together with the Borel-Cantelli Lemma (Lemma 7.3) and a standard 

argument to find mi large enough such that 

sup Pp s u p \ V n - Y ( F ) \ > 5/2 
n>m 

< 1/2. (2.48) 

Equations (2.44), (2.47) and (2.48) show U.5. 
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Assumptions U.2, U.3 and U.6 are closely related and we consider them to

gether. Let s+ and s~ be as in (2.29) and suppose that there exists f e l such 

that 

inf 
s~<s<s+ 

„ , X - t \ „ (X 
> -—-—, V | i | > r * . (2.49) 

The above condition, together with the hypothesis of existence of a unique minimum 

for each F G He suffices to show U.3 (i.e., that the set 72 in (2.30) does not depend on 

F G "H e ). Equation (2.49) is hard to verify analytically. Numerical evaluation shows 

that (2.49) holds for e < 0.25 for estimates calculated with pd in Tukey's family (2.8) 

and d = 1.54764 (i.e., estimates with breakdown point 50%). Assumption U.2 seems 

hard to prove. Together with (2.49) a condition to ensure that for all F G He the 

function 7 (F, •, a) has a unique minimum is 

inf E*p" f ̂ —H > — — sup p" (x)~ , (2.50) 
-**<*<** \ s / 1 — e x 

s~<s<s+ 

where t* is given in (2.49). The above condition suffices to show that the functions 

7 (F, •, cr (F)), with F G Hc, are uniformly convex on (—t*, t*). We have the following 

implication: 

(2.49) and (2.50) U.2, U.3 and U.6. 

It is easy to see that (2.49) implies that 7 (F, 0, cr (F)) < 7 (F, t, cr (F)) for all \t\ > t* 

and thus U.3 holds. Equation (2.50) implies 

mf 7" (F, t, s) > rj > 0, V F G He, 
s~ <s<s+ 

where n does not depend on F . Equation (2.50) ensures that the functions are strictly 

convex on that interval, and hence have a unique global minimum in this fixed interval 
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(assumption U.2). To verify U.6 note that for any t P>s(p, (F)) we have 

7 ( F , t, cr (F)) - 7 (f, £ (F), cr (F)) = ± 7" (F, f, <r (F)) (t - ft (F)) 2 

> 17 (* - A ( ^ ) ) 2 

>77<52 V F G 7 i e , 

where i ^ B^{ji (F)) and 77 does not depend on F . 

Condition (2.50) is quite strong. The S-estimates obtained with p functions in 

Tukey's family having breakdown point 50% do not satisfy (2.50) for e = 0.10. That 

is, if there is 10% contamination we cannot guarantee uniform convergence over the 

neighbourhood. The main problem seems to be that the threshold t* found in (2.49) 

is unnecessarily large. We can adjust the choice of this constant as follows. For each 

t eR define the set 

A(t) = J sH (t) : EHp ( ^ y ) = b, H G Ue j , 

let s~ (t) = inf A (t) and s+ (t) = sup A (t). If we choose t* as the solution of 

supp'(x) , (2.51) 
X 

then (2.50) holds for a larger range of values of e. 

We will now show that (2.51) and (2.50) are sufficient conditions to ensure 

that 7 (F, •, cr) has its unique global minimum in the interval (—t*,t*) for any F G rie, 

where t* is given by (2.51). The reasoning is as follows. If t is a minimum of 7 (F, -, cr) 

then it solves the equation 

( 1 - £ ) ^ ( f ( i r ) + ^ ( T ( i r ) = 0 ' (2-52) 

5 7 

inf 
* " ( * * ) < * < » + ( t * ) 

-E*p' 
X-t* 



where s (t) = cr. Hence, t solves 

E*p'd ( 
X-t 

S(t) 
(2.53) 

For each e G (0,1/2] the largest solution t of (2.53) is determined by solving 

that is, equation (2.51). In Figure 2.4 we plot the function ge (t) for estimates with 

breakdown point 50% and 40% and different values of e. We include the threshold t* 

obtained in (2.49). We see that the largest solution of (2.51) (or 2.54) is larger than 

the mentioned threshold, and hence this solution corresponds to a local minimum of 
e 

7 (F,-,cr). The smallest solution t* of (2.51) is then the largest possible value of t 

satisfying (2.52) that corresponds to a global minimum. Equation (2.50) guarantees 

that every function 7 (F, •, cr) is strictly convex in (—£*,£*). It follows that there only 

exists one global minimum, and that it belongs to this interval. 

We evaluated conditions (2.50) and (2.51) for S-location estimates obtained 

with Tukey's pd functions. We considered estimates with breakdown point 50% and 

40%. Details are presented in Tables 2.1 and 2.2. For estimates with 50% breakdown 

point equation (2.50) holds for e < 0.10. When we lower the breakdown to 40%, 

(2.50) holds for e < 0.15. We see that there is a trade-off between high breakdown 

point and the uniform convexity condition in (2.50). 

1 -
sup (a) , (2.54) 
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(a) BP = 50%, e = 0.05 (b) BP = 50%, e = 0.10 

r t f t 

(c) BP = 40%, e = 0.10 (d) BP = 40%, c = 0.15 

Figure 2.4: Plots of ge (t) = inf s -(t)< s < s +( t ) [—E$p'd (^f^)] for estimates wi th break
down point 50 and 40%. The threshold t* is given by (2.49). The horizontal line is 
at e/(I-e)supxp'd(x). 
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B P d e s s+ sup p'd sup [pd] 
0.50 1.54764 0.05 0.933919 1.069247 1.1096251 2.0040167 

0.10 0.863700 1.150487 
0.11 0.849103 1.168490 
0.12 0.834307 1.187162 
0.13 0.819307 1.206545 
0.15 0.788662 1.247639 
0.20 0.707933 1.366741 

0.40 1.987967 0.05 0.949208 1.081607 0.86384744 1.214571 
0.10 0.895659 1.181595 
0.15 0.838933 1.308399 
0.16 0.827163 1.338136 
0.17 0.815240 1.369688 
0.20 0.778506 1.477396 

Table 2.1: Numerical parameters for Tukey's family of functions pd. B P = Breakdown 
Point, d = tunning constant. s~ and s+ are defined in (2.29). sup p'd ~ supxeR p'd (x). 
supp2 = sup i e R p2(a;) . 

B P e t* as in t* as in satisfies 
(2.49) (2.51) (2.50) 

0.50 0.10 0.835 0.37205 Yes 
0.11 0.891 0.41940 No 
0.15 1.229 0.62620 No 

0.40 0.10 0.786 0.26313 Yes 
0.15 1.038 0.43912 Yes 
0.16 1.092 0.47839 No 
0.20 1.203 0.65011 No 

Table 2.2: Numerical evaluation of regularity conditions required for uniform consis
tency of S-location estimates wi th Tukey's family of functions pd. 
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2.3.4 Consistency of the MM-location estimate 

The next theorem shows that under certain regularity conditions, if an is a consistent 

S-scale estimate, then the MM-location estimates that satisfy 

n 

X ^ ( ( X i - £ n ) / * n ) =0, (2.55) 
t=l 

are also consistent. In Section 2.3.5 we study regularity conditions that suffice for 

these estimates to be uniformly consistent over the contamination neighbourhood ri€. 

Theorem 2.4 - Consistency of the M M - l o c a t i o n estimate - Let x\,... ,xn be 

a random sample of i.i.d. random variables with distribution function F G rie. Let 

&n = vn(xi,..., xn) be an S-scale estimate. Let ip : R —> R satisfy P.l to P.3 and let 

fbn be a sequence of MM-estimates that solve (2.55) above. Then 

p p i) if &n —> o (F) then jxn > ti (F) ; 
n—too 

ii) if on o (F) then fin

 a'S' > /x (F). 
n—>oo 

Proof: Fraiman, Yohai and Zamar (2000) show that if tp satisfies P . l to P.3 and the 

central distribution of rie has a density function / 0 (u) that satisfies f'Q (u) < 0 for all 

u > 0, then there exists a unique solution /x (F) of 

' X - A x ( F ) ' 
= 0 . 

They also show that under the same conditions ry(F,t,cr) = Ep[^p({X — t)/o)] is 

strictly monotone as a function of t G R. Also note that P . l to P.3 imply that there 

exists 0 < L < oo such that lim|x|._KX) ip (x) = L. The proof of Lemma 7.13 can be 
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easily modified to show that these conditions imply that ip is uniformly continuous on 

R. We now adapt a classical argument (Huber, 1981, page 46) to obtain the desired 

results. Let A n satisfy (2.55). To simplify the notation, in what follows let p denote 

To prove (i) we will show that for any e > 0 

P(fan < A* ~ e ) —> 0 a n d P[pn > P + e) — • 0. 

By Lemma 7.1 we know that for each i e K, 

EFip i f p „ , fx-t 
n \ ON J n->oo 

In particular, if £ < p then the monotonicity of EF [ip ((X — t)/a)] as a function of 

t € R implies 

n ^ \ ON J n->oo \ a J 

and hence 

^ * ' < 0 1 —-> 0 , V t < n. (2.56) 

Similarly we can show that 

P U E ^ f V ^ J < 0 I — V (2-57) 

Note the following inclusion 

[t: fin <*} C j<: ^ E ^ ( ( x ' - < °J ^ A n < * } 

We have 

{ A n < / i ~ e } C J A n < / x - e / 2 } C ^ V - (/i - e/2))/<j n) < o| 
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Now (2.56) yields 

P (pn < fi ~ e) < P f^ip ((Xi - (fi - e/2))/an) < 0^ — ^ 0, (2.58) 

so that lirrin^oo P (p,n < p - e) = 0 , and hence l i m ^ o o P (£L„ < fi - e) = 0. For the 

second result, the inclusion 

together with (2.57) yields 

p ( / i „ < / J + e) > p ^ I ^ ^ ( ( X i - ( A ( + c ) ) / a n ) < o j — > 1 . 

Thus l im n _ ) , 0 0 P (fin < fi + e) = 1 and l im^oo P (fin > \x + e) = 0. The result follows 

by noting that for any e > 0 

Plfi-e < iln < fi + e) • 1. 

This proves part (i) of the Theorem. 

The proof of part (ii) follows the same lines. Now Lemma 7.1 yields 

n^—f \ crn J n-foo \ a J 

Hence, for each e > 0 there exists a null set J\fe such that if u £ J\fe there exists 

no = no ( w ) with 

n *7-! V a, 
i=i 

for all n>nQ. Consider the null set N = (JfceN-^iA- F o r a n y e > 0 a n d a n y u N 

there exists nx = nx (u,e) such that (2.59) holds for n > nx. This null set does not 
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depend on e. If M denotes the corresponding null set where 

(2.60) 

holds for large enough n, then for any to MIJ M the same reasoning as in the 

previous proof yields that there exists n 2 = n 2 (to, e) such that for any n > n2 , 

\pn - fi\ < e. • 

2.3.5 Uniform consistency of the MM-location estimate 

In this section we show that if the scale estimates an are uniformly consistent over 

the distributions in He, and we impose more regularity conditions on the function ip, 

then the MM-location estimates (2.20) are also uniformly consistent. 

We need the following additional regularity condition: 

P.4 ip is continuously differentiable. 

Theorem 2.5 - Uniform consistency of the M-location estimate with gen

eral scale: Let X\,...,xn be i.i.d. observations following the location model (2.1). 

Let on be a scale estimate that satisfies (2.29) and the conclusion of Theorem 2.1. Let 

ip satisfy P.l to P.4- Let fin be the solution of (2.20) and let LI (F) be the asymptotic 

value of fin as defined in (2.26). Then for any 8 > 0 

lim sup PF sup| / i n - n(F)\ > 5 
n>m 
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Proof: For any t G R and F G Ue let 

^(t,F) = EFxb(?-^ 

Let e > 0 be arbitrary. We first show that 

and 

o(c )= inf / v ( / i ( F ) - « / 2 , F ) > 0 , (2.61) 
J* fc He 

b ^ = H ( A* (^) + e/2, F ) > 0 . (2.62) 
r t r t f 

Equations (2.61) and (2.62) can be expressed as: the family of functions fx^ (t, F) has 

"uniform minimum slope" at fx (F). Bounding d\i$j dt\^ uniformly over F G ~H£ will 

be enough for these conditions to hold. Let XF (e) be 

w , „ , fX-fx(F) + e\ 

then a (e) = i n f F e ^ £ XF (e). Note that \ F (0) = 0; hence 

A F (e) = e\'F (eF) , 

where lF G (0, e). By (2.29) we have 0 < s~ < cr (F) < s+ < oo. Then 

where e-u€ is the proportion of contamination in He. It is easy to see that the last 

term in the above equation is a decreasing function of iF. Hence eF < e implies 

XF (e) = e \'F (iF) > ^ ( l - e n J EFoip' (* " j f f i + *) • 
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The Dominated Convergence Theorem shows that the above expression is continuous 

as a function of fx and cr. It is also positive and hence a sufficient condition to obtain 

a positive lower bound is that \x (F) and cr (F) be bounded for any F e 7ie. A similar 

argument can be applied to show that equation (2.62) holds. 

Let cr = c r (F) and ix = LI(F). To simplify the notation let ip(X,t,s) = 

ip ((X - t)/s). For each t it is easy to see that Yt (t) = ip (Xi, t, an) and Y (F, t) = 

EFip (X,t,tr) have the same properties as those in U.5 , hence the proof on page 54 

holds. Let ijn (t) = i J2"=i Yi (*) and m (t, F) = EF (iP (X, t, cr)). For each T > 0 

and t G K we have 

l im sup PF( sup \ipn (t) - m (t, F)\ >T) = 0, 

For each m G N , t G M, F G Ue and r > 0 let 

(2.63) 

iPn (*.^) > r An (F, t, T) = I S U p 
(n>m 

then (2.63) can be written as 

l i m sup PF( Am(F,t,T)) = 0 . (2.64) 

Now note that LI^ (/X (F) ,F) = 0 and that fx^ (t, F) is a non-increasing function in t. 

We also have 

1 
An < /* - e> C S ~ E ^ fa" A* ~ e / 2 ' ^ ) ^ 0 

C 

c 

V>n (A* - e/2) -^(fx- e/2, F) 

iPn (fx - e/2) - ̂  (fx-e/2, F) 

> Aty (/x - e/2, F ) 

> a ( c U = A n (F, e) , 
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where a (e) is given by (2.61). Similarly 

/}„ > A* + e j C j^XJ^ (x^ fi + e/2, an) > 0 j 

C 

c 

ybn (/x + e/2) - A ^ ( / X + e/2, F ) 

V>n (/x - e/2) - Aty (M - e/2, F ) 

> - / t y (/x + e/2, F ) 

> 6 ( e U = P „ ( F , e ) 

It follows that {|/xn - > e} C An (F, e) (J P n (F, e). Hence, 

oo oo oo 

|J { | / i n - A * | > e } C |J A , (F , e )U [J -BN (F, e) . 
n=m n=m n=m 

Immediately 

Mm (F,e) = < sup|fi n - A * | > e > 
l_n>m J 

C { sup | ^ n (AX - e/2) - (/x - e/2, F) | > ^ (AX - e/2, F ) ) 

|J j sup (AX + e/2) - AV (/* + e/2, F) | > (AX + e/2, F) 

C A m (F, AX - e/2, a (e)) |J A n (F, AX + e/2, b (e)) . 

We have 

PF [Mm (F, e)] < PF [Am (F, /x - e/2, a (e))] + P F [ A n (F, AX + e/2, 6 (e))] , 

and then 

sup PF [Mm (F, e)] < sup PF [Am (F, AX - e/2, a (e))] 

+ sup P F [ A n ( F , A * + e/2,6(e))] , 
Fe-He 
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so that 

lim sup PF [Mm (F, e)] < lim sup PF [Am (F, fx - e/2, a (e))l 

+ lim sup PF [Am (F, ix + e/2, b (e))] = 0 , 
m-+oo FeHc 

and the proof is complete. 

2.3.6 Asymptotic distribution of the MM-location estimate 

Having shown the consistency of the estimates for any distribution F in the contam

ination neighbourhood, we turn our attention to their asymptotic distribution. The 

following argument will show the basic idea behind the proof of Theorem 2.6 and will 

also illustrate why we concentrate on location estimates calculated with an S-scale. 

Let fJLn be an M-location estimate and a n a general scale estimate. To simplify the 

notation denote their asymptotic values fx (F) and cr (F) by // and a respectively. We 

will consider M-location estimates with general scale, i.e. jin satisfies 

1 n 

-^2tp({Xi-ixn)/an) = 0. (2.65) 

Under certain regularity conditions a Taylor expansion of the above equation around 

(/j, a) yields 

i=l i=l i=l 

~ E W < (Xi -^1^ & -»)/°} + Rn, (2-66) 
i=l 
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where Rn = Op (1/ y/n) is the residual term. From here we obtain 

y/n (/xn - n) = y/nAn (fx, a) + y/n (an - a) Bn (fx, a) + Rn, (2.67) 

where 

n I n 

An (fi, a) = a ̂ 2 ip ((x{ - fx)/a) / ^ip'((xt - fx)/a), 
i=i / i=i 

and 

n I n 

Bn (fi, o) - W (& ~ A*)/ o-) (xt - fx)/a] I ^ ip' ((Xi - fx)/a). 
i=l / i=l 

Assume that F is symmetric and ip (u) is odd (and hence ip' (u) u is also odd). 

Let U — (X — fx)/a. It is easy to see that EF [ip' (U) U\ = 0 and that in this case 

Bn (P,CT) converges almost surely to zero. If in addition y/n(an — a) = Op (1) (see 

Definition 7.1) we immediately obtain 

y/^(fxn-fx)^N(0,V), 
n—>oo 

where denotes weak convergence and 

2 Ep[iPH(X-fx)/a)} 
{Ep[iP'((X-fx)/a)}}2-

In the case of asymmetric F we typically have EF [ip' (U) U] ̂  0. Hence, the 

term involving y/n (an — a) in (2.67) will not vanish. Thus we need the corresponding 

Taylor expansion for an. Assume that an is a M-scale, that is, it is given by an 

equation of the form 
n 

5^p((x i-T n)/c> n) = 6', (2.68) 
i=l 
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for some function p not necessarily related with ip in (2.65). As in Definition 2.6, Tn 

in (2.68) is some arbitrary location estimate and b' G (0,1/2]. A Taylor expansion of 

equation (2.68) yields 

(an - a) = 4= C - ( T ' a) + ~D- ( T ' °) (Tn ~T) + R'n, (2.69) 

where R'n is the remaining term, T is the asymptotic value of Tn, and Cn and Dn are 

sums of independent random variables. 

To be able to obtain a Taylor expansion of (2.68) that can be used in (2.67) 

we need an estimate Tn which is at the same time linearizable (i.e., it accepts a 

Taylor expansion) and does not depend on another scale estimate. If we use the same 

location estimate in the scale equation, that is, if we set Tn = pn, we are solving a 

system of two simultaneous equations as in (2.21). Estimates obtained in this way 

do not have satisfactory robustness properties (Martin and Zamar, 1993). As far 

as we know there is no robust estimate that simultaneously satisfies: (i) is location 

and scale equivariant; (ii) admits a Taylor expansion of first order; and (iii) does not 

depend on an scale estimate. 

Our next result shows that this problem can be avoided if we use an S-scale 

an in (2.65). The basic idea is that in this case the expansion (2.69) asymptotically 

does not depend on the distribution of y/n (Tn — T). 

We need the following additional regularity conditions: 

R.4 p is twice continuously differentiable; 
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P.5 ip is twice continuously differentiable; 

Theorem 2.6 - Asymptotic normality - Assume the regularity conditions of The

orems 2.1 and 2.4- Assume that ip satisfies P.l to P.3 and P.5. Assume that p satisfies 

R.l to R-4- Let pn be the M-estimate of location given by (2.12), pn be the S-estimate 

of location and an the corresponding S-estimate of scale, as defined in (2.17) and 

(2.16). Denote the almost sure finite limits of the sequences pn, pn and on by p (F); 

p (F) and o (F) respectively. Assume that ip and p also satisfy the following regularity 

conditions for any F Erie: 

Al: EFip' (u) > 0 and finite; 

A2: EP [ip' (u) u] is finite; 

A3: EF [p' (u) u}^0 and finite; 

A4: EF [ip" (u)} is finite; 

A5: EF [p" (u)} is finite; 

A6: EF [ip" (u) v? + 2 ip' (u) u] is finite; 

A 7: EF [p" (u) u2 + 2p' (u) u] is finite; 

where u= (x — p (F))/o(F) and u = (x - p (F))/o (F). Then 

Vn(pn- P (F)) —• N (0 , V (p, o, F)) (2.70) 
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where 

V(fi,o,F) = cr(F)2H(F)2Ef 

~ A4 (F) 
(F) 

x I P 

-J(F) 

X-p(F) 
a(F) 

H (F ) = l/EF W {{X - p (F)) /a (F))} , 

J ( F ) = EF W ((X - ix (F)) fa (F)) (X-LI (F)) /a (F)} 
{ } EF y ((X - fl (F)) J a (F)) (X-fx (F)) /a (F )} 

Proof: To simplify the notation let LI = p ( F ) , a = a ( F ) , fx = fx ( F ) and 

ui = (xt - p)l a. 

and 

(2.71) 

A second order Taylor expansion of (2.12) around the l imit values (p, a) yields 

(2.72) 

1 1 1 n 

+ o~2 (r*n ~ -y\^'{ui)+ (2.73) 

1 1 1 ^ 
+ 2 ^ * " ' ) 2 n ^ k'(fii) ( 2 7 4 ) 

i=i 
+ 2<// (Si) u, (2.75) 

1 1 
+ ^"^2 E r " + ^ ' ~ CT) (A*n - A*) 

i=i 
(2.76) 
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where Ui = (xi — /})/a and (//, a) lies between (p,n,an) and (/_*, a). Let 

11 1 " 
= r - (An - /i) - E "̂ (̂ ) ' 

i=l 
11 1 " 

Cn = ~ - (ff„ - O) - V (Ui) U 2 + 2ip' (Ui) Ui] , 

(2.77) 

(2.78) 
i=i 

and 

1 1 
D n = — 2 E W ("0 + $ (<7n - o) • 

Th (J 
(2.79) 

i=i 

By hypothesis fin — fj, = op (1) and, from assumption A4, 

= O P (1). 
i=l 

Then (7.3) implies that Bn = Op (1). Similarly we can show that Cn = oP (1) and 

Dn = oP (1). From (2.72)-(2.76) we have 

- y/n (p,n - fi) l-ih'ip' (v-i) - Bn - Dn J 
° \nl=1 ) 

1 n 1 / l n \ 

= -rYjy>{ui)--s/n~{on-o) \-'y,ip'{ui)ui-Cn\. (2.80) 

From equation (2.18) we get 

1 l~l " 

-Vn~(on-o) -Y/P'(vi)vl-B'n-D,

n 

i=l 

= H=itp M - b - ^ - ( - E ^ («0 - C n 1 , (2-81) 

where, as before, B'n = oP (1), C'n = Op (1) and D'n = oP (1). Note that 

^E*/(«i) = op(i) . 
i=l 
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and hence 

- y y («o - c;=op a). (2.82) 

From (2.19) we have 

a \ n t l J ° \ n l = i J 

= OP (1) - -y/E {an -a) + 0P (1). (2.83) 
a 

From (2.81), (2.83) and Lemma 7.12 we have 

1 fill* x _ ~ b , . m r 9 o 4 ^ - \ M (̂ Vi - cr) = ——-.—=j \-Op(l) . (2.84) 
c V n E i = l P («•) w* 

The theorem now follows from (2.80), (2.84) and Lemma 7.12. • 

2.3.7 Uniform asymptotic distribution for MM-location es

timates 

In this section we wi l l show that the MM-loca t ion estimates /x n converge weakly to a 

normal distribution uniformly over F 6 ?{ f . Our main result is the following Theorem. 

Theorem 2.7 Suppose that all the assumptions of Theorems 2.1, 2.3, 2.5 and 2.6 

hold. Then 

sup sup 
FeHe xgR 

< x > - $ (x) = o(l), 

where V = V (F) is given by (2.71). 
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To prove Theorem 2.7 we need to define uniform versions of op (an), Op (an) 

and asymptotic normality, and that these quantities have analogous convergence prop

erties to the usual (non-uniform) ones. 

Definition 2.14 - Uniform big O in probability: Let an, n > 1, be a sequence 

of real numbers and let Xn, n > 1, be a sequence of random variables. We say that 

Xn = UOp (a„) over the set of distribution functions %e if 

l im sup l im Pp 

Definition 2.15 - Uniform small o in probability: Let an, n>\, be a sequence 

of real numbers and let Xn, n > 1, be a sequence of random variables. We say that 

Xn = Uop (an) over the set of distribution functions %e if Vr5 > 0 

> k = 0 

l im sup Pp 
Xn > 5 = 0. 

Definition 2.16 - Uniformly asymptotically normal: We say that a sequence 

Xn, n 6 N is uniformly asymptotically normal (UAN) over the set of distribution 

functions rie if 

sup sup PF (Xn <x)-$(x) =o (1) . (2.85) 
FeHe x e R 

Lemma 2.2 Let Xn, n G N , be sequence of random variables that are uniformly 

asymptotically normal as in Definition 2.16. Then Xn = UOp (1). 

Proof: For any K > 0 we have 

PF{\Xn\ >K)= PF{Xn >K)+ PF(Xn < -K) 

= l-PF(Xn<K)+ PF(Xn < -K) . 
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Fix I > 0. By (2.85) there exists n0 = nQ (e) such that for all n>n0 

PF{Xn<x)-<f>(x) <e, V x , VF£He. 

Hence, PF(\Xn\ > K) < 1 - $ (K) + $ ( - i f ) + 2c, for all n > n0 and for all F G ft£. 

Similarly we obtain P p ( | X n | > i f ) > 1 - $ (if) + $ (-iv") - 2e. Hence, given e > 0 

we find n0 (e) such that for all n > n0 

PF(\Xn\ >K)-[l-$(K) + $ {-K)] < 2e, 

or, equivalently, l im^oo PF(\Xn\ > K) = 1 - $ (K) + $ (-K). It follows then that 

l i n i K - K x , s u p F e W e l i m n ^ o o P F ( | ^ I » | > K) = 0. • 

L e m m a 2.3 Lei a n , n € N, 6e a sequence of random variables such that an = 

t/Op (1), and /ei n G N, 6e another sequence such that bn — UoP(l), then 

anxbn = UoP (1). 

Proof: The Lemma follows easily from the following inequality, valid for any 5 > 0 

and K > 0. 

PF(\anbn\ >6) <PF(\bn\ > S/\an\ , \an\ < K) + PF (\an\ > K) 

<PF{\bn\> 5/K) + PF(\an\>K) . 

L e m m a 2.4 Let an, n G N , be a sequence of random variables such that an = 

UOp(l), and let bn, n G N, be another sequence such that there exists b ^ 0 with 
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bn — b = Uop (1), then 

^ = ^ + UoP(l) 

Proof: We have 

We now show that 

^71 

b \b„ 

- l = UoP (1) . 

(2.86) 

(2.87) 

For simplicity assume that b > 0. The same argument, wi th appropriate modifications 

can be applied to the case b < 0. F i x 5 > 0. For any 0<e<b<Kv?e have 

>8j =PF(\b-bn\>\bn\5) 

< PF (\b -bn\> \bn\ 5,\bn\<K) + PF (\bn\ > K) 

< PF (|6„| < e) + PF (\b - bn\ > \bn\ 5,e<\bn\<K) 

+ PF(\bn\>K) 

<PF(\bn\<£) + PF(\b-bn\>e5)+Pp(\bn\>K) . 

Now note that \b — bn\ > b — \bn\ and \b — bn\ > \bn\ — b imply 

PF(\bn\<~e)<PF(\b-bn\>b-e) , 

and PF (\bn\ > K) < PF (\b - bn\ > K - b). Choose an arbitrary r > 0. For fixed 5, 

i and K choose n 0 (r) such that 

PF(\b-bn\ >b-e) < r / 3 , 

PF{\b-bn\ >K-b)<r/3, 
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and 

PF(\b-bn\ > 15) < r / 3 . 

for a l l F £H€ and n > n0. It follows that for n > n 0 we have 

bn J 

Hence (2.87) holds. The result now follows from (2.86) and Lemma 2.3. 

Lemma 2.5 Let an, n E M, be a sequence of random variables such that an = 

UOp (1), and let bn, n E N , be another sequence such that there exists b with bn — b = 

Uop (1), then anbn = anb + Uop (1). 

Proof: This follows immediately by noting that an bn—an b = an (bn — b) = UOp (1) x 

Uop (1) and applying Lemma 2.3. • 

Lemma 2.6 Let D\,...,Dn be n independent and identically distributed random 

variables and let Dn = F>{. Assume that EF [Df] < c < oo, for all F E He-

Then Dn = UOp (1) and Dn - EF ( A ) = UoP (1). 

Proof: Note that the assumption on the second moment of D j implies that EF \Di\ < 

1 + c for al l F E%t. To simplify the notation, let d = 1 + c. Then we have 

PF [\Dn\ >2d]<PF [\Dn - EFDi\ >d]< ~ V a r F ( A ) < ^\E

FD] . 
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Hence, l i m n P F [ | / J n | > 2d] = 0 for al l F G He, where d does not depend on F. It 

follows that 

l im sup l im PF \\Dn\ > k] = 0 , 
fe—>oo FeT-Lc n ~ > o c 

that is, D n = UOp (1). A similar argument shows that Dn — EF (Di) = UoP (1). • 

Lemma 2.7 7 / a „ = Uop (1) and X n zs UAN (see Definition 2.16) then Xn + a„ is 

C/^AT. That is: 

sup sup | P F {Xn + an < x) - $ (x) | = o (1) . (2.88) 

Proof: First note that for any x G R, 5 > 0 and F e He 

PF [Xn + an < x] < PF [Xn + an < x , | a n | < 8] + P F [|a n | > <5] 

< P F [ X „ < x - ( 5 ] + P F [ | a n | > ( 5 ] . (2.89) 

Similar ly we have 

P F [X„ + an > x] < PF [\an\ > 6] + PF [Xn + an > x , \an\ < 5] 

<PF[Xn >x-6] + PF[\an\ >S] , 

which yields 

P F [Xn + an < x] > PF [Xn < x - 5] - PF [ K I > 5] . (2.90) 

Equations (2.89) and (2.90) together yield 

-PF [\an\ >5]<PF [Xn + an < x] - PF [Xn < x - 5] < PF [\an\ > 8] . (2.91) 
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To simplify the notation, let un (8, F) = PF [\an\ > 8]. We have 

- Un (8, F) < PF [Xn + an < x] - $ (a;) + $ (x - 8) - PF [Xn < x - 8} 

+ $ (a;) - $ (x - 8) < un (8, F) . (2.92) 

Let e > 0 be arbitrary. Choose 8 = 8 (e) > 0 such that 

sup |$ (x - <5) - $ (a;) | < e/3 . (2.93) 

xeR 

For this 8 choose n0 = n0 (8) such that sup F e ^ £ \un (5, F)\ < e/3. Choose ni = n\ (e) 

such that 

sup sup |$ (x - 8) — PF [Xn < x - 8]\ = sup sup |<2> (x) - PF [Xn < x]\ < e/3. 
Fenc x e R Fenc X G R 

(2.94) 

Let bn (x, F) = $ (x - 8) - PF [Xn < x - 8} and c (x) = $ (x - 8) - $ (x). Then, 

equation (2.92) can be written as 

-e/3 < PF [Xn + an < x] - $ (x) + bn (x, F) + c (x) < e/3 . (2.95) 

We know that for n > max(n0,ni), sup F sup s \bn (x, F)\ < e/3, sup x | c (x) | < e/3. 

Let dn {x, F) = PF [Xn + an < x] — $ (x). Equation (2.95) implies 

-e /3 - bn (x, F)-c (x) < dn (x, F) < e/3 - bn (x, F) — c (x) , (2.96) 

and we immediately obtain that for n sufficiently large (not depending on x or F), 

-e < dn (x, F) < e. • 

Remark 2.1 Let / be a real function such that 

EFo [f (X, t, s)] = Jf (X, t, s) dF0 (X) > 0 
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for any f e l and s > 0, where F0 denotes the central distribution of the contam

ination neighbourhood rlt. It is easy to see that if EFo [f (X,t,s)] is a continuous 

function of (t, s) and JCt and K,s are compact sets in the real line such that Ks C (0, oo) 

then we have 

In particular, if a (F) denotes a scale estimate that satisfies (2.29) and p (F) is an 

M-location with general scale calculated with a function tpc in Huber's family (2.5) 

then 

inf Var F [VJC ((X - p (F))/a (F))] > 0 . (2.97) 

P r o o f of Theorem 2.7: To simplify the notation, in what follows let \x = fJ.(F), 

/} = p. (F) and a = a (F). The idea of the proof is to show that y/n (p,n — fi) can 

be represented as a linear term plus a uniformly small remainder. We use the Berry 

Esseen Theorem to show that the linear part is U A N (see Definition 2.16) and Lemma 

2.7 to show that the sum of these terms is also U A N . 

We now show that 

where 

^^7=4 = + UoP (1) . (2.98) 

Wi= i^{{xi - y)la) - d {p{{Xi - p)la) - b ) ) / ( 2 . 9 9 ) 

EF {>' ((X - p) /a) (X - p) /a} 
EF {ff ((X - p) /a) (X - p) /a) 

e = EF{iP'((X-p)/o)} . 
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Theorems 2.1, 2.3 and 2.5 show that that an — a — UoP (1), A n — p, = [/op (1) and 

fin - p = UoP(l) respectively. From (2.72) to (2.76) and (2.77) to (2.79), using 

Lemmas 2.3 and 2.6 we have 

^ Vn ( A n - lA (^J2^'(ui) + UoP(l)Sj 

1 " 1 ( \ n \ 

i=l \ i=l / 

From (2.81) and (2.82) we have 

1 -\/n(on - a) ^ p ' ( < K + t / 0 p ( l ) 
i=l 

= -7=E'0(Ui) ~ 6 ~ - \ / ^ ( A n - A ) x ^ O p (1) . 
V " i=l CT 

Similarly, from equation (2.83) we have 

1 / l " \ 1 
- V ^ ( A n - A ) - J2 P" M = ^ ( J ) - - V " - CT) + ^ 
°" V n7=? / ° 

From the last two equations we obtain 

-VH (o-n -a)\a + UoP (1)1 = V p((«0 - 6) + f / o P (1) , (2.101) 

where a = £ p {p' ( ( X - A ) / a ) ( X - A ) M - From (2.100) and (2.101) we have 

^ \/n ( A n - A*) [c + f io F ( l )J 

= 4= E ^ -\--7=i2(PM ~b)+ U°r \d + U°r > 

where c = EF {ip' ((X - p) / a )} , and d = £ F {ip' {(X - p) / a ) (X - p) / a } . Hence, 

1 r i 1 n d 1 n 

- V ^ ( A n - A * ) C+f /0 P ( l ) = 7 : V ^ B i ) j= V] (p (^) - b) + UoP (l) . 
v t=l v i=l 
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From the last equation and Lemma 2.4 we obtain (2.98). 

Note that \Wi\ are bounded (see (2.99)), and hence their moments are bounded 

uniformly for F G He- Using (2.97) we see that their variance is bounded away from 

zero uniformly on F G ri€. The Berry Esseen Theorem (Chow and Teicher, 1988, 

page 305) yields 

Validity of the required regularity conditions to obtain uniform asymptotic 

normality 

The required conditions to obtain uniform consistency and asymptotic normality 

are satisfied by estimates wi th breakdown point 50% obtained wi th functions pd in 

Tukey's family (2.8) when the proportion of contamination e is up to 10%. If we 

consider estimates in the same family with breakdown point 40% the conditions hold 

for e < 0.15. There seems to be a trade-off between the breakdown point of the 

estimate and the extent to which the uniform consistency holds. Uniform results for 

contamination neighbourhoods with e < 0.10 are nevertheless of practical interest. 

There are reports in the literature suggesting that most data sets have fractions of 

contamination ranging between 0 and 10%. (Hampel, et a/., 1986). 

Hence we have 
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C h a p t e r 3 

R o b u s t b o o t s t r a p for t he 

loca t ion-sca le m o d e l 

In this chapter we introduce a new computer intensive method of inference based 

on Efron's bootstrap (Efron, 1979; Efron, 1982; Hall, 1992; Efron and Tibshirani, 

1993). To distinguish Efron's bootstrap from the method presented here we will 

refer to the former as "classical bootstrap". Efron's method applies to the problem of 

estimating the sampling distribution of a complex statistic. It is based on the following 

principle. Suppose we are interested in the sampling distribution of the statistic /}„ 

when the data have distribution function F. If we knew F we could obtain either 

the exact distribution of fin or an approximation to it via Monte Carlo simulations. 

The idea behind Efron's bootstrap is to use an estimate of F in order to estimate 

the distribution of jln. If F is assumed to belong to a parametric family, F = Fg, 
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then, given an estimate 9 for 9, we can use F = F§ to estimate Fg. This method is 

called parametric bootstrap. If we do not assume an underlying parametric family 

for F, then a natural non-parametric estimate is the sample distribution function 

F = Fn. In this case we call the method non-parametric bootstrap. Throughout this 

thesis we only assume that the distribution F that generated the data belongs to a 

contamination neighborhood He of a certain central distribution (see Section 2.2). 

Hence, we will focus on non-parametric bootstrap methods. 

For both types of bootstrap (parametric and non-parametric) we need to cal

culate the distribution of p,n assuming data generated by F. However, in most cases 

it is very difficult to obtain an explicit expression for this distribution of fin. In those 

cases we can use computer simulations to get an estimate of this law. One generates 

several thousand samples from F and re-calculates p,n for each of these samples. The 

empirical distribution of those replicated values of fin gives an estimate of the desired 

sampling distribution. In what follows we will also refer to this empirical distribution 

as the "bootstrap distribution estimate". 

When each evaluation of jxn is computationally demanding, re-calculating the 

statistic many times can make the method too slow to be of practical interest. Robust 

estimates are not easy to calculate. For example, S-scales (2.16) solve an optimization 

problem where the function being minimized is implicitly defined. The MM-location 

estimate is calculated by solving the non-linear equation in (2.12). The numerical 

complexity of robust estimates for the linear model is significantly greater (see Chap

ter 4). 
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Another potential problem when using the classical bootstrap on data that 

might contain outliers arises with the tails of the distribution estimate. Intuitively, 

the problem is that the outliers may appear in the bootstrap samples in larger pro

portions than in the original sample. For example, if there is one outlier among 10 

data points, we expect that over 3% of the bootstrap samples of size 10 will contain 

the outlier 5 or more times. This means that over 3% of the re-sampled statistics may 

be severely affected by the single outlier. In other words, the corresponding tail of 

the empirical distribution of the re-calculated estimates might be unreliable. A sym

metric 95% confidence interval might then be affected because it uses the estimated 

2.5% and 97.5% quantiles, and at least one of them can be influenced by the outlier. 

This problem has been quantified by Singh (1998). He defined the breakdown point 

of bootstrap quantile estimates and showed that even robust estimates do not yield 

bootstrap quantile estimates with satisfactory breakdown points. To remedy this 

problem he proposes to re-sample from the Winsorized data (see Section 3.6.1). Un

fortunately this variant of the bootstrap method does not reduce the computational 

requirements of the re-calculation scheme. 

The large amount of data that businesses and government agencies can collect 

and store with the available information technology makes large-scale applications a 

reality. Hence, it is of practical interest to study the feasibility of estimation methods 

when applied to moderate and large data sets. Compared to the classical bootstrap, 

our method, which we call "robust bootstrap", is significantly faster, more stable 

when the data are contaminated and produces comparable results when applied to 

data that do not contain outliers. 
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To illustrate the gain in speed of calculation of our proposal consider the simple 

case of constructing a 95% confidence interval for the location parameter ti when the 

observations Xi satisfy x^ = p + e;. We assume that the errors are independent 

observations with unknown variance. We generated an artificial data set of 1,000 

independent standard normal observations (i.e. we set // = 0 in the model above) 

and built a 95% confidence interval for the population mean based on an MM-loca t ion 

estimate (see Definition 2.9). We used the function ^1.345 i n Huber's family. The S-

scale an was calculated wi th the function P1.04086 in (2-14). The basic percentile 

confidence interval based on the classical bootstrap with 3,000 bootstrap samples 

was (—0.05341,0.07601) (for the definition of these bootstrap confidence intervals see 

Davison and Hinkley, 1997, page 194). It took 1545 C P U seconds (that is around 25 

C P U minutes) to finish on a d u a l - C P U Sun Sparc U l t r a 4 (each C P U a 296 Megahertz 

S U N W U l t r a S P A R C - I I ) with 1.1 Gigabytes of R A M memory running SunOS 5.7. O n 

the other hand, the basic percentile confidence interval using the robust bootstrap 

based on the same number of bootstrap samples took less than 3 C P U seconds. The 

95% confidence interval was (—0.05309,0.07574). Figure 3.1 displays a comparison 

of the 3,000 re-calculated /i*'s with each method. Note that the boxplots look very 

similar. This example illustrates that when the data do not contain outliers both 

methods are comparable, and the robust bootstrap is significantly faster to compute. 

The improved stability of the robust bootstrap can be illustrated wi th the 

following simple example. Consider a random sample of size 100 containing 65 ob

servations that follow a standard normal distribution and 35 observations with dis-
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Figure 3.1: Boxplots of 3,000 re-calculated MM-loca t ion estimates with the classical 
and robust bootstrap. The artificial data set contains 1,000 independent standard 
normal observations without contamination. 
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tribution function G (u) = $ ((« — 10)/ \/G\5), where $ denotes the standard normal 

cumulative distribution function. In other words, this sample contains 35% of outliers 

centered around 10. We used the same MM-location estimate as above. Figure 3.2 

contains the boxplots of the 3,000 re-calculated MM-location estimates for each boot

strap method, and a simulated data set from the actual asymptotic distribution of fin. 

Note that the tails of the robust bootstrap re-calculated MM-location estimates are 

more stable than those corresponding to the classical bootstrap method. The new 

method presented here also gives quantile estimates with higher breakdown points 

than those obtained with the classical bootstrap (see Section 3.4). The intuitive rea

son is that we use weights based on the robust estimate to re-calculate the statistic. 

Hence outlying points will typically be associated with small weights and have small 

impact on the bootstrapped estimate. 

The rest of this chapter is organized as follows. Section 3.1 presents the re

sampling method for the location-scale model. Section 3.2 contains a one-sample and 

a two-sample example of statistical inference performed with the robust bootstrap. 

Section 3.3 studies the asymptotic behaviour of the robust bootstrap. Section 3.4 

discusses the breakdown point of the quantiles estimates obtained with the robust 

bootstrap. Section 3.5 proposes a way to studentize the robust bootstrap in order to 

improve on its order of convergence. Finally, Section 3.6 contains two Monte Carlo 

comparison studies on the performance of the robust bootstrap to estimate asymptotic 

variances and to build confidence intervals. 
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CLASSICAL ROBUST ASYMPTOTIC 
BOOTSTRAP BOOTSTRAP DISTRIBUTION 

Figure 3.2: Boxplots of 3,000 re-calculated MM-loca t ion estimates with the classical 
and robust bootstrap. The artificial data set contains 100 independent observations; 
65 of them follow a standard normal distribution, while the remaining 35 have distri
bution function G (u) = $ ((u - 10)/ where $ denotes the standard normal 
cumulative distribution function. The boxplot labeled "Asymptotic Distr ibution" 
contains a sample of 3,000 observations simulated from the actual asymptotic distri
bution of fin. 
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3.1 Definitions 

The intuitive idea behind our method was briefly discussed in Section 1.5 for the 

simple case when the scale parameter a is known. Here we present the method for 

the case of unknown a. We use MM-location estimates (see Definition 2.9). 

Let x\,...,xn be i.i.d. observations following model (2.1). Assume that the 

x,'s have distribution function F belonging to the contamination neighborhood Ht 

defined in (2.22). Let fin be an MM-location calculated with an S-scale an, and let 

//„ be the associated S-location estimate. 

As in Section 1.5, we are interested in making statistical inferences about the 

location parameter p. We consider two methods to achieve this goal. The first alter

native is to use the result of Theorem 2.6 on the asymptotic normality of the sequence 

y/n(£in — (J,). To use this method we only have to estimate the variance of fin. The 

second option is to directly estimate the distribution function of y/n (fin — p). We can 

then use this distribution estimate to approximate the quantiles needed to construct 

confidence intervals (see for example, Efron and Tibshirani, 1993, and Davison and 

Hinkley, 1997). 

We propose to use the following computer intensive method to generate a large 

number of re-calculated /t*'s. These re-computed statistics can be used to estimate 

both the variance and the distribution function of the sequence fin. For the first 

objective we can use the empirical variance of the fi„'s. A natural estimate of the 

distribution function Fn of jln is given by the empirical distribution function of the 
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re-computed statistics. 

Recall that in the discussion in Section 2.3.6 we noted that for data generated 

by an arbitrary distribution F in the contamination neighborhood rl€, the location 

and scale estimates are not necessarily asymptotically independent. Hence, to esti

mate the distribution of fin we have to take into account the behaviour of the scale 

estimate an. Intuitively this is the reason why in what follows we re-calculate both 

estimates to incorporate the information obtained from the re-computed cr*'s into the 

final re-calculated /i*'s. 

For each 1 < i < n define the residuals = Xi — fin and fi = Xi — f~Ln associated 

with the M M - and the S-location estimates respectively. We first write (xn and an as 

weighted averages. Define the weights Ui and Vi as 

1 
n b 

Simple computations yield 

Vi = -Kpinl'<?„)/'fif l<i<n. (3.1) 

n I n 

A n = E Ui Xi / Yl Ui ' (3-2) 
i=l I i=l 
n 

i=l 

Clearly this representation does not help in calculating the estimates because the 

right-hand side depends on fin and an, but it motivates the robust bootstrap proce

dure. 

Let x\, i — 1,... ,n be a non-parametric bootstrap sample from the obser-
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vations. That is: x* are i.i.d. random variables with distribution function assigning 

probability l/n to each of the points in the original sample. Define the random 

variables fi*n and <r* by 

n / n 

i=l / i=l 
n 

where UJ* = ip {r*/an)/r*, v* = p(r*/an)/ {n b f*), r* = x* - pn, and f* = x* - pn 

for 1 < i < n. Note that the estimates fin, fin and an involved in u>* and v* are based 

on the original data, not the bootstrap samples. 

The re-calculated jx*n and <r* obtained in (3.4) and (3.5) may not reflect the 

actual variability of the random vector ( / i n , an)' due to the fact that the estimates fin, 

an and pn used in the weights uii and Vi are those evaluated from the original sample. 

We now give an intuitive argument on how to derive a correction factor to remedy 

this unwanted phenomenon. Think of (3.2) and (3.3) as a fixed-point equation of the 

form (fin, on)' = f (fin,crn) for certain f : M 2 —>• R 2 . Let p and a be the almost sure 

limits of fin and an respectively. A first-order Taylor expansion of f around LI and 

a suggests that we should multiply the re-calculated pairs (fin,an)' by the matrix 

[I — Vf (p, <T)] _ 1, where V f denotes the matrix of first derivatives of f. We estimate 

this factor with [I — Vf ( / t n , a n ) ] _ 1 . Hence, the re-calculated fi^* — fin with the robust 

bootstrap is a linear combination of fi*n and cr* obtained in (3.4) and (3.5). 

Recall that our interest lies in estimating the sampling distribution of y/n (fin — p). 
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The robust bootstrap "replicates" of this expression, An — fin, are given by 

An* ~ An = an (A* - An) + K (d*n - On) , (3.6) 

where An and on are the location and scale estimates obtained with the original 

sample, 

^n — 0~n 
i=l 
n 

i=l 

i=l 
n 

^2^P'(ri/an) , 
i=i 

(3.7) 
i=l 

and ip' and p' denote the derivatives of ip and p respectively. 

Remark 3.1 - Computational Ease: To estimate the distribution of An — fJ> with the 

classical bootstrap we have to re-calculate on as well as An- Wi th each bootstrap 

sample, to determine bn we have to minimize the function sn (t), t G R, implicitly 

defined as the solution of (see (2.15)) 

1 7 1 

i=l 

Once the minimum d* of s n (t) is found we have to solve for (x*n 

n 

^ ( ( * i - A n ) / * n ) = 0 . 
i=l 

These optimization problems have to be solved several thousand times. On the other 

hand, to re-calculate An* — An with the robust bootstrap we use the weighted averages 

(3.4) and (3.5). The correction factors an, bn and c„ are computed only once with 

the full sample. In the location-scale examples we considered, the robust bootstrap 
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required less than 0.2% of the C P U time needed to compute the same number of 

classical bootstrap re-calculations. 

Remark 3.2 - Robustness: Note that both Huber's and Tukey's families of functions 

•0's yield weights u>i(u) = ip(u)/u that are decreasing functions of Out ly ing 

points wi l l typically have large residuals and hence be associated wi th small weights 

i n equations (3.4) and (3.5). Note that when using a function ipd from Tukey's family, 

extreme outliers (those wi th a residual |rj | > don) receive a zero weight, and hence 

have no effect on the re-calculated estimate. For pd in Tukey's family, the resulting 

weights Vi used in re-calculating the scale are also decreasing in the absolute value of 

the residuals. This makes outlying points less influential in the re-calculated a*. See 

Section 3.4 for a formal discussion of the robustness properties of this method. 

3.2 Examples 

3.2.1 One sample location-scale: Blood pressure 

Consider the following data set obtained from a hypertension screening program (Ros-

ner, 1977). Ten monthly observations were obtained for each patient. The data for 

a particular individual are: 40, 75, 80, 83, 86, 88, 90, 92, 93 and 95. We wish to 

estimate the individual 's mean blood-pressure LLQ. 

Let fin denote the MM-loca t ion estimate for p 0 calculated wi th the function 

•01.345 in Huber's family and S-scale on obtained with pi.04086 in (2.14). W i t h the above 
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data set we obtain pn = 86.03. In order make inferences about LIQ we would like to 

have an estimation of the distribution of pn — fi0 for this patient. To this end we use 

both the classical bootstrap and the robust bootstrap and compare their performance. 

We generated 50,000 bootstrap samples from the data and calculated p%* — pn, where 

p%* denotes the classical bootstrap re-calculated pn. We also computed 50,000 robust 

bootstrap p^* — pn-

Figure 3.3 contains boxplots for both — pn and p^* — pn. Note that 

the robust bootstrap empirical distribution is less skewed than that of the classical 

bootstrap. We see that the lower ta i l of the classical bootstrap distribution estimate 

is heavier than that of the robust bootstrap. This happens because in the bootstrap 

samples the outlier is appearing in larger proportions than in the original sample. 

The difference in the re-sampled distributions is reflected in the correspond

ing 99% basic percentile confidence intervals for /u0- W i t h the classical bootstrap 

we get (79.537,101.121) and wi th the robust bootstrap yields (78.505,94.869). The 

corresponding 95% confidence intervals are also different, but the disagreement is 

less severe. The classical bootstrap yields (80.349,93.79) and the robust bootstrap 

(79.717,91.994). 

3.2.2 Two-sample location-scale: Seeded clouds 

We consider data from an experiment conducted in the state of F lor ida (USA) between 

1968 to 1972. The data we use is a subset corresponding to the period 1968 to 
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Robust Bootstrap Classical Bootstrap 

Figure 3.3: Comparison of the classical and robust bootstrap distribution estimates 
of fin — HQ for the blood pressure data. 
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Clouds 

Figure 3.4: Precipitation data 

1970. These data were originally analyzed by Simpson et al. (1975) using Bayesian 

techniques. The question of interest is whether "dynamic seeding" (massive silver 

iodide seeding of clouds) produces, under certain conditions, increased precipitation. 

The experimental unit is a single cumulus cloud and the outcome is the rain volume 

falling from the cloud. There are two groups of 26 clouds each. One group contains 

the "seeded clouds" and the other the "unseeded clouds". 

We applied a log transformation to the data to get similar dispersions in both 

groups. Boxplots of the transformed data are provided in Figure 3.4. 
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Using a two-sample t-test for populations with equal variance, the p-value for 

the null hypothesis of equal means is p = 0.0141. The corresponding 99% confidence 

interval for the difference of the means yields (—0.06,2.35). Thus, at the 1% level, 

we would conclude that there is not enough evidence to support the alternative hy

pothesis of different mean rainfall. Figure 3.4 suggests that there is a difference in 

the location of the two boxplots, but that this shift is probably concealed by the two 

smallest observations in the seeded group. Indeed, after removing these two clouds 

the two-sample t-test assuming equal variances for the hypothesis of equal means now 

yields a p-value of 0.0014 (roughly ten times smaller than above). The corresponding 

confidence interval with nominal level of 99% becomes (0.30,2.56). Of course, the 

actual level of this confidence interval is unknown since its construction involved a 

subjective rejection rule. 

If we bootstrap the two-sample t-test for populations with equal variances using 

the classical bootstrap, we obtain the following 95% and 99% basic percentile confi

dence intervals for the difference of the means: (—4.561, —0.202) and (—5.119,0.599) 

respectively. These results also yield a p-value p that satisfies 0.01 < p < 0.05. The 

inference based on bootstrapping the classical two-sample Welch test for populations 

with different variances leads to basic percentile confidence intervals that are equal 

to the ones shown above. 

We now apply our robust bootstrap to construct a 99% confidence interval for 

the difference in the location parameters. We first describe a more general method 

to compare several location estimates. Given independent samples from k potentially 
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different populations we want to build a confidence interval for c'/x, where c' = 

(c i , . . . , Ck) are fixed constants with Ci ^ 0 and LI = (/ii , . . . , is the vector of the 

population parameters. 

Assume, for simplicity of the argument, that all the groups have the same 

number of observations, n. Equation (2.12) for the i-th population becomes 

^E^((v«-/£)M0)=°. (3-8> 

where yij, 1 < j < n is the data for the i-th population, and is the corresponding 

S-scale estimate. We base our inference on the distribution of 

V ^ c ' ( A „ - M ) , (3.9) 

where fi'n = (/*„,... /}„) and fln, 1 < % < k is the robust location estimate for the 

i-th population given by (3.8). The distribution function of (3.9) can be obtained as 

follows. 

/

O O / " O O 

• • • / FV1 ( u / C l + c'g) dFV2 (g2) • • • dFVk (gk), 
• 0 0 J —oo 

(3.10) 

where v{ = V " (#, - Mi), ^ («) = P (vt < u) for i = 1,... ,h, g = (g2, ...,gk) and 

c = (—c 2 /ci , . . . , —Cfc/ci). To simplify the notation we do not explicitly indicate that 

F and F„. above depend on the sample size n. 

An estimate for (3.10) based on N bootstrap samples for each population (k N 

independent bootstrap samples overall) can be constructed as follows. For i = 1,..., k 

and j = 1,..., N let v*1 — y/n (jl^*1 - Lij) be the re-calculated uj's for the z-th 
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population. Let FVl be the empirical distribution function of the v*1, j = 1 , . . . , N. 

The estimate of (3.10) is given by 

1 N 1 N 

12 = 1 »fc = l 

where Q denotes the /-th coordinate of the vector c. W i t h this method we can estimate 

the required quantiles of (3.9) by solving F (u) = a. 

We apply this method wi th k — 2 and c' = ( 1 , - 1 ) using the same MM-loca t ion 

estimate as in the previous example (see page 95). The 99% confidence interval for 

c'/x = pi — A*2 is (0.22,2.22). We thus conclude that the p-value satisfies p < 0.01 

and reject the null hypothesis of equal means at the 1% level. Our conclusion is in 

agreement wi th the one reached by Simpson et al. (1975). Splus functions for one- and 

two-sample confidence intervals based on this method are available from the author. 

3.3 Asymptotic properties 

The following theorem shows that the robust bootstrap re-calculated quantities 

yfn (/if* — / i n ) have the same asymptotic distribution as the sequence yfn (fin — /i) 

when n —t oo. This result justifies the use of our method in order to perform infer

ence on the parameter \x. Note that this result holds for any distribution F in the 

contamination neighbourhood rit (see page 36). 

Theorem 3.1 - Convergence of the robust bootstrap distribution - Let ip : 

R —> R be odd, bounded, and non-decreasing in (0,oo]. Let p : R —> R+ be even, 
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bounded, and non-decreasing in (0, oo]. Let b G (0,1/2]. Let pn be the MM-location 

estimate based on ip, let on be the S-scale calculated with the function p and let pn 

be the associated S-location estimate (see Definitions 2.7 and 2.9). Let p, o and p be 

the almost sure limits of the sequences pn, bn and pn respectively. Assume that the 

following conditions hold. 

1. The following expected values exist and are finite for all F G rie-

EF [ip (X)}, EF [iP (X)/X], Ep [iP' (X)} and EF [iP' (X) X] . 

2. For all F G He, EF [p' (X) X] ± 0 and finite. 

3. The following functions are continuous: ip, p', ip(u)/u, p'(u)/u, ip', p", ip", 

p'", (iP (u) - ip' (u) u)/u2, and (p' (u) - p" (u) u)/u2. 

Let V2 be the asymptotic variance of the sequence y/n(pn — t1) (see Theorem 2.6), 

and let p^* — pn be the robust bootstrap re-calculated estimates. Then along almost 

all sample sequences, conditional on the first n observations, 

v ^ ( A f - A n ) ^ iv(o,v 2). 

Remark 3.3 Note that if ipc is a Huber-type function then 

(ipc (u) - ip'c (u) u)/u2 - 0 for | w | < c . 

When pd is a re-descending function in Tukey's family we have 

( p ' d W - P ^ W « ) / ^ 2 = | ( ^ - Q ) 3 ) ^ |u |<d. 
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Hence assumption 3 is also satisfied if the distribution F generating the data does not 

have positive mass at the points where ip is not differentiable. A p p l y Lemma 7.13 to 

verify that conditions 1 and 2 also hold for ipc and pd in Huber's and Tukey's families 

respectively. 

Remark 3.4 We can change condition 3 above so that it does not depend on the 

particular F E H c that generated the data. In this case we require that 3 hold 

everywhere. Clearly, now Huber's functions ibc do not satisfy the assumption. We 

have to use a "smoothed" version ipc that coincides with ipc except on an arbitrary 

small neighbourhood around c and —c where ipc is continuously differentiable. 

Proof of Theorem 3.1: For i = 1 , . . . , n let rj = xi — jj,n and fi = X{ — jj,n. Note 

that the estimates pn, &n and pn satisfy 

They can also be written as a weighted average of the observations as follows: 

j=i 

(3.11) 

n 
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where 

Wi (An, C>„) = Ip ( (Zj - An) / £ „ ) / (Xj - An) , 

Vi (An, C>„) = p ( (Xi - / } „ ) / O n ) / ( n b (Xi - / } „ ) ) , 

and 

W,' (An, #n) = p' ( (iTj - An) / <?„)/ (Xj - / / „ ) . 

The idea is to show that the vector (ftn,an, An) G M 3 is the fixed point of a 

smooth function of means. Let f : R 3 - » K 3 be defined by 

where 

( dn(k,s)/gn(k,s) ^ 

shn (k, 

n (k, s ) j vn (k, s ) J u. 

dn(k,s) = (fc's) Xi> 
i=i 
n 

gn (k,s) = ^,s) ' 
t=i 
n 

^n (fc,s) = ^2vi(k,s) f i , 
i=l 
n 

u„ ( fc ,s ) = J^W- (fc,s)Xi , 
i=l 

and 

n 

i=l 
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The re-weighted representation of the estimates can be written as 

f (An, <5"„, An) = (An, O n , An)' • 

Now, perform a Taylor expansion o f f around the limiting values (/J, a, A)'- We have 

\ Pn J 

= f (p, o-, A) + V f (/x, a, A) 

^ An - P ^ 

<7n — a 

\ An - A / 

+ -Rn, (3.12) 

where G M 3 is the remainder term and V f (•) G R 3 x 3 is the matrix of partial 

derivatives of f. Each component of P„ is of the form •x!nHn-x.n, where | | x n | | = 

Op(\/y/n) and Hn is a Hessian matrix. We have \x.'nHnxn\ < \\Hnxn\\ | | x n | | < 

\\Hn\\ | | x n | | 2 . Each entry in Hn is a second derivative of a component of f. For 

example, if fi denotes the first coordinate of f, we have 

„ _ d% _ [ j E ^ ' f o ) 1] [ E ^ f o ) / r J + [ i EIU V (U)] 

x 

(ET=i^(rO/r0 2 

\ [ E L ^ (*)] [EIU ̂ 1 - [EIU (rO] [EHI ^ 

By Lemma 7.1 and assumption 3 we have | | / / n | | | |x n | | = o P ( l ) . Then, | x ^ i y n x n | = 

oP(\jyfn). Hence, | | P n | | = oP(l/y/n). 

To simplify the notation let 0n = (An, °n, /}„)' , and 0 = (//,cr,/2)'. Equation 

(3.12) becomes 

( d B - 6>) = [I - V f (0) ] - 1 Vn" (f (^) -9) +oP (1). (3.13) 

The rest of the proof consists of showing that the bootstrap distribution of the right-

hand side of (3.13) converges to the asymptotic distribution of y/n(0n - 0). Note 
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that the correction matrix in (3.13) has to be estimated. We wi l l first show that a 

consistent estimate of [I - Vf (0)]~\ namely [I - Vf (On)}'1, yields the coefficients 

an, bn and cn in (3.7). First note that 

^ au a i 2 0 ^ 

I - V f ( 0 n ) = 0 a 2 2 0 

^ 0 a 3 2 a 3 3 J 

The only entry that needs justification is a 2 3 = 0. Remember that an minimizes 

sn (t), t 6 M. It follows that for each i e K w e have 

d_ 
dt 

1 " 
-Y,P((Xi-t)/sn (t)) 

i=l 

hence 

l _ f , (Xj - t\ f-Sn (t) - (Xj - t) Sn (t) 
nttP \sn(t)J { Sn(tf o, (3-14) 

where s'n (t) denotes the derivative of sn (t). Because fln minimizes sn (t), we have 

sn (Pn) = 0, which together wi th (3.14) implies 

1 n 

-^2p'((xi -Pn)/o-n) = 0. 
i=l 

It is easy to verify that 

lJ2p((xi-~k)/s) d 
a 2 3 = M 

i=l 

1 1 

(k=jlN,S=Vn,k=jln) 
o ft 

i=l 

so that a 2 3 = 0. Hence, 

[ I - V f ( 0 „ ) ] - x = 

^ 1/an -au/ana22 0 ^ 

0 1/ a 2 2 0 

^ 0 - 0 3 2 / a 2 2 a 3 3 1/ 033 y 
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Because we are interested in the asymptotic behaviour of the first coordinate of 9n 

we only need the first row of [I — V f ( 0 n ) ] _ \ a n d hence we only need to calculate an , 

a22 and a\2. 

Simple calculations yield 

au = 

Ol2 

^22 

E ^ ' ( ^ ) ( ^ ) 
C=i^(2ie)/(£ie) 
1 v , ( Xi L~ln ^ f Xi L~Ln 

i=i 

It is easy to verify that (1 / an , — 0 1 2 / a u c ^ ) = (a„,6 n ) where a n and 6 n are the 

correction factors in (3.7). 

We now show that the bootstrap distribution of the right-hand side of (3.13) 

converges to the same distribution as the sequence 9n. First we show that f (9) — 9 

in (3.13) is a smooth function of means. It will then follow that we can bootstrap it 

to obtain an estimate of its distribution. Define the random vector Y (9) e R 5 by 

Y ( 0 ) = ( V ( ( X - A i ) / < 7 ) , tb((X-vL)/a)/(X-ri , 

p((X-p)/a) , p'((X-fl)/a) , p' {{X-p)la)/ (X -(,))' 

We have 

M Y W = £ F Y ( 0 ) = (O, # , & , ( ) , # ) , 
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where # stands for something different from zero, but otherwise irrelevant in the 

analysis that follows. Let g : R 5 ->• R 3 

g (xi,x2, x3, Xi,xb)= h (j, , -x3 , 1- A* J -
\X2 b x5 J 

Then g (/LtY(e)) — {Pi^iP) = Let Yj (0) be the corresponding vectors obtained 

with the observations Xj , z = 1 , . . . , n, and let Y n (0) be their sample mean. We have 

g(Y„(0))=f(0) . 

Hence 

[f (9) - 0} = [g (Y B (0)) - g (/xY(fl))] . 

B y Bickel and Freedman (1981), if g is smooth, we can bootstrap the last expression 

to obtain a consistent estimate of its asymptotic distribution. 

For any vector 0 let Y* (0) be the sample mean of the vectors Yn (0) obtained 

with a bootstrap sample x\,...,x*n. Because 0 is unknown and we want to esti

mate it wi th 0n, we st i l l have to show that y/n [Y* (0n) — Y n (0n)] is asymptotically 

equivalent to ^fn [Y„ (0) — /xY(e)] • 

Consider the metric d2 (Fi,F2) for distribution functions defined by 

d 2 ( F 1 , F 2 ) = i n f F [ ( X - Y ) 2 ] (3.15) 

where the infimum is taken over al l the possible joint distributions for the random 

vector (X, Y) such that its marginal laws are Fx and F2 respectively. This metric was 

introduced in Mallows (1972) and Tanaka (1973). For a detailed discussion see Bickel 

and Freedman (Section 8, 1981). d2 metrizes weak convergence in the following sense: 

d2 (Fa, F) ->• 0 iff F a ^ F and \imEFaX2 = EFX2 

a 
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where —? denotes weak convergence. Let Z\,..., Zn be i.i.d. random variables with 

common distribution function F. Let F^ denote the distribution function of 

^=Y{(Zi-E[Zl}). 

For any pair of distribution functions i* \ and F2, d2 satisfies d2 {F^, F^1) < d2 (F\, F2) 

(Bickel and Freedman, 1981). 

Let Gn be the empirical distribution function of the vectors yi{9n), i = 

1,..., n. Conditional on the first n observations, the distribution of 

v^[y; { 9 n ) - y n (dn)] 

is G^ • Let Z represent the asymptotic distribution of y/n[yn (0) — ii (0)]. In what 

follows we will show that 

d2 (G£\ Z) > 0 almost surely. 
n->oo 

Let Fn denote the distribution function of y/n [yn (0) — /u (0)] and F i 7 1 ^ the empirical 

distribution of \/n[yn (0) — yn (0)}. Following the notation in Bickel and Freedman 

(1981) we have that 

d2 (<#>, Z) < d2 ( G W , F „ n ) ) + d2 {Fin\ Z) < d2 (Gn, Fn) + d2 (F£\Z) . 

Bickel and Freedman show in their Theorem 2.1 that d2 (Fn

n\z) —>• 0 almost surely 

as n —> oo. Lemma 7.18 shows that d2 (Gn, Fn) —> 0 almost surely. We have shown 

that conditionally on the first n observations, as n goes to infinity, 

V^[rn(9n)-yn (9n)] 
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converges weakly to the same limit as y/n[yn (00) — n (Oo)]- To complete the proof 

note that the function g satisfies the regularity conditions required in Lemma 8.1 of 

Bickel and Freedman (1981), hence the above conclusion applies to g (y* (0n))- ' 

Remark 3.5 - If assumption 3 in the previous theorem does not hold, then the re

mainder term Rn in (3.12) does not necessarily satisfy ||-Rn|| = 0p (1/y/n)- The 

theorem is still valid, but the proof follows a different approach. Let f* (0) be the 

evaluation of f (0) with a bootstrap sample of the xi,...,xn. We can show that 

y/n[f* (0n) — 0n] in (3.13) is asymptotically normal. Let Sf be the asymptotic co-

variance matrix of the robust bootstrapped estimates. Let 

of y/n (£in ~ p)-

The following theorem shows that the bootstrap variance of the robust boot

strap estimates converges to the asymptotic variance. Note that this is not a conse

quence of the previous theorem. See Ghosh et al. (1984) for a counterexample. 

Theorem 3.2 - Convergence of the robust bootstrap variances - Assume the 

same regularity conditions as in Theorem 3.1. Then along almost all sample se

quences, 

where o2 is the asymptotic variance of the sequence y/n(pn ~ p), and var* denotes 

then it is easy to show that the element [ A ] (1,1) converges to the asymptotic variance 

n var {Pn ) ->• a 

the bootstrap variance. 
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Proof: To fix ideas we first consider the simple case of known scale. In this case (3.6) 

and (3.7) become (see also (1.6)) 

rc* - \ E i L i ^ f a * ~ An) Vn (pn - pn) = an === -j-i W / . r - r , 
E i = l V> fa* - Pn) [X* - pn) 

where 

Then we can write 

E L l ^ f a i - A n V f o i - A n ) 

^ ~ YsUViXi-Pn) • ( 3 - 1 6 ) 

Y* _ 
Vn ( / £ - An) = a n = an g (Fn*, Z„) , 

Z n 

where # (x, y) = x/ y, y* = ip (x* - pn) and z* = ip (x* - An) / (x* - pn). B y Bickel 

and Doksum (1977, page 52), conditionally on the first n observations, 

n var, (ft) = al ( \ ^ % + o ( 1 / n). 
(n E i = l Zi) 

The result now follows by replacing an wi th its value in (3.16) and taking the l imi t 

as n —y oo. The general proof follows the same lines, and it is based on the matrix 

representation used in the proof of Theorem 3.1 • 

3.4 Robustness properties 

In this section we study the robustness properties of the quantile estimates of the 

robust bootstrap. Let t G (0,1), and let qt be the t-th upper quantile of a statistic 

pn, that is, qt satisfies 

P [ An > qt ] = t • 
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Following Singh (1998) we define the upper breakdown point of a quantile estimate qt 

as the minimum proportion of asymmetric contamination that can drive it over any 

finite bound. Equivalently, it is the smallest proportion of arbitrarily large outliers in 

the original data set such that we expect the re-calculated estimate to be unbounded 

in at least t x 100 % of the bootstrap samples. 

It is easy to see that i f the breakdown point of jln is e*, the corresponding 

upper breakdown point of qt is the smallest 5 G [0,1] such that 

P ( Binomia l (n, 5) > [e*n] )>t, (3.17) 

where [x] denotes the smallest integer larger or equal to x. Lemma 7.17 shows that 

the function / (5) = P ( Binomia l (n, 5) > [e*n] ) is continuous and non-decreasing for 

8 G [0,1], and hence we can always find the upper breakdown point of qt as defined 

above. 

In the same paper Singh proves that i f we re-sample from the Winsorized 

data points, the resulting quantile estimates are asymptotically equivalent to those 

obtained by the classical bootstrap but have the highest possible breakdown point, 

namely, the minimum between 50% and the breakdown point of the robust estimate. 

There are two closely related scenarios in which the quantile estimates based 

on the robust bootstrap can break down. The first unfavourable situation is when 

the proportion of outliers in the original data is larger than the breakdown point of 

the estimate. In this case the estimate is already unreliable, and so are the inferences 

we derive from it. The second case is related to the number of outliers appearing in 

the bootstrap samples. Let r* be the expected proportion of bootstrap samples that 
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contain more outliers than the breakdown point of the estimate. In other words, we 

expect T* x 100% of the re-calculated fi*n's to be unreliable. The estimate qt may be 

severely affected by the outliers when r* > t. The following theorem summarizes this 

discussion. 

Theorem 3.3 - Breakdown point of the robust bootstrap quantiles for the 

location-scale model - Let xi,...xn be i.i.d. observations following model (2.1). 

Let 0 < t < 1/2 and let p,n be an MM-location estimate with breakdown point e*. The 

breakdown point of the t-th robust bootstrap quantile estimate qt is min (t 1/", e*). 

Proof: Not ing that a* in (3.5) satisfies 

1 „ (Vi ~ An 
P 

we see that <7* remains bounded for any bootstrap sample y*,... yn. 

Let x\",..., xn be a bootstrap sample. To simplify the notation, and without 

loss of generality, assume that x\,..., x*g., wi th 0 < g < n are points in the bootstrap 

sample that are not outliers. The robust bootstrap evaluation of An satisfies 

An * ~Pn = 
_ £ f [ ^ ( ^ ) / ( * * - A n ) ] < + E ; . + 1 [P ( ^ ) / (X? - An) 

£ f ^ ( ^ ) / (*? " An) + £ ; . + l * {^t)/ (X* ~ An) ' 

If we now take the l imit when the outliers x*.+1,... ,x*n approach infinity, we have 

, „ « v — • 0 , g* + l<i<n. 
[X* - fJLn) x*->oo 

and 

. • 1, g* + 1 < i < n. 
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As a result An * ~ An remains bounded as long as g* > 1. It is easy to see that the 

probability of obtaining a bootstrap sample with g* — 0, that is, where al l the points 

are outliers, is e n , where e is the proportion of outliers i n the original sample. Hence, 

to drive the i - th quantile out of bounds we should have e n > i , that is e > tlln. The 

proof is complete. • 

The previous theorem shows that the breakdown point of the i - th robust boot

strap quantile increases wi th the sample size and wi th the value of i . For example, i f 

the MM-est imate has a breakdown point of 50%, for any sample size n > 10 and any 

t > 0.001 the breakdown point of the i - th robust bootstrap quantile is 50%. 

Table 3.1 shows some classical and robust bootstrap quantile breakdown points 

for an M-locat ion estimate with breakdown point of 50%. The breakdown points of 

the robust bootstrap quantile estimates are calculated wi th the formula proved i n 

Theorem 3.3 above. The corresponding breakdown points for the classical bootstrap 

quantile estimates are calculated with formula (3.17). For example, the entry 0.22 for 

n = 10 and t = 0.01 means that i f there are at least 22% outliers (more than 2 outliers) 

in a sample of size 10, then the classical bootstrap estimate of q0.0i might be severely 

affected by the value of those outliers. Note that the breakdown point decreases as 

we move further out into the tails of the distribution of An, and it increases wi th the 

sample size. A s an example, for the same quantile <70.oi as before, i f the sample size 

is n — 20 the classical bootstrap quantile wi l l breakdown only when the proportion 

of outliers reaches 28%. It is intuitively clear that the lower breakdown points wi l l 
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Classical bootstrap Robust bootstrap 
n 90.05 9o.oi 90.005 90.001 90.05 90.01 90.005 9o.ooi 

5 0.19 0.11 0.08 0.05 0.50 0.40 0.35 0.25 
10 0.30 0.22 0.19 0.14 0.50 0.50 0.50 0.50 
20 0.35 0.28 0.26 0.21 0.50 0.50 0.50 0.50 
50 0.40 0.35 0.33 0.30 0.50 0.50 0.50 0.50 

Table 3.1: Comparison of breakdown points of classical and robust bootstrap quantile 
estimates for MM-loca t ion estimators 

be found further out into the tails of the distribution, as these quantiles are typically 

more difficult to estimate. Note that for n > 10 the breakdown of the robust bootstrap 

quantile estimates considered here have the highest attainable value, namely 50%. In 

this sense our method compares favourably with Singh's Winsorized bootstrap, which 

yields quantile estimates qt wi th breakdown point 50% for any n and t. 

3.5 Studentizing the robust bootstrap 

The basic idea behind the studentized bootstrap (both classical and robust) is as 

follows. Let Tn be a statistic such that y/n (Tn — p) —>• N (0, U2) and let U2 be 

a consistent estimate of U2. Under certain regularity conditions (see, for example, 

Ha l l , 1992) we have 

p ( v ^ ( T n - p ) / L > n < x ) - P ( y ^ ( T n * - A n ) / t > ; < x\ x) = Op ( r r 1 ) , (3.18) 

where U* denotes the re-calculated Un wi th the bootstrap samples, and P(-\X) de

notes the bootstrap distribution conditional on the sample X. Note that y/n (Tn — p ) / Un 
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is an asymptotically pivotal statistic. Under certain regularity conditions, the prop

erty of the bootstrap distribution stated in (3.18) holds when the statistic being 

bootstrapped is asymptotically pivotal (see Ha l l , 1992). 

On the other hand, if $ (•) denotes the standard normal cumulative distribution 

function we have 

P ( v ^ ( T n - fi)/Un <x)-$(x)=0 ( n - 1 / 2 ) . (3.19) 

When (3.18) holds we say that the bootstrap estimate of the distribution function of 

jln has a higher order of convergence than the one given by the normal asymptotic 

distribution. 

Because the robust bootstrap re-computes a non-pivotal statistic the resulting 

estimate of the distribution function of fin may not be more accurate than the one 

derived from its asymptotic normal distribution. To improve the accuracy of our 

distribution estimates we consider a studentized version of the robust bootstrap, in 

the same spirit as the bootstrap-^ confidence intervals (see Efron, 1979; Ha l l , 1992; 

DiCicc io and Efron, 1996). We wi l l refer to them as robust bootstrap-^ confidence 

intervals. 

Let / in, bn and /}„ be the MM-loca t ion , S-scale and S-location estimates, respec

tively. Under certain regularity conditions the vector ( / i n , an, jj,n)' has an asymptotic 

normal distribution. Let E = E (/i, cr, /2, F) denote the corresponding asymptotic co-

variance matrix in K 3 * 3 . Let E n be the empirical estimate of this matrix, that is 

E n = E (//„, & n , / i n , Fn) where Fn is the empirical distribution function of the sample. 

Following the same approach as in the proof of Theorem 3.1 it is easy but tedious to 
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see that along almost al l sample sequences we have 

\fn 

( a* ^ 
Mn 

N (o, E) , 

Pn 

\p*n J J 

for a certain matrix £ (p, cr, /2, F) G R 3 x 3 , where (pn,a*,pn) are the bootstrap re

calculations obtained from the re-weighted expressions in (3.11). A s before, let £ n = 

E (An, <5n, An, F„) be the empirical estimate of E . Let An — I — V f (An, on, An) be the 

estimated correction matrices used in the proof of Theorem 3.1 (see page 105 for the 

definitions). We can show that under certain regularity conditions, A n E n ^ n ~^ ^ 

almost surely. 

For a matrix C that is symmetric and definite positive, let C 1 / 2 be its unique 

square root. That is, we have C = C 1 / 2 [ C 1 / 2 ] ' . Let C " 1 / 2 be the inverse of C 1 / 2 . 

If we use classical studentized bootstrap on the vector (An, on, pn) we use En , 

the inverse of the square root of the estimate E n , as follows: 

/ , c * \ ( h \ 
Pn Pn 

n 

\Pn J 

where £ „ 1 / 2 c * denotes the evaluation of E n wi th the bootstrap samples, and (pc

n*, an

c, jx0*)' 

are the classical bootstrap re-calculated statistics. From Theorem 3.1 we know that 

( [jc* \ ( r, \ 

Pn Pn 

V An / V An / 

( A„ ^ ( Pn ^ 

at 

\ Pn j 
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where (fin, <r*, /}*)' are the robust bootstrap re-calculated statistics, and Xn ~ Yn 

means that both sequences have the same asymptotic distribution. Simple algebra 

yields E n = AnT,nA'n. Hence, E n 1 / 2 = E n ^ A " 1 . Based on these observations we 

propose to studentize our bootstrap as follows. Let E n 1 / 2 * and A~l* be bootstrap 

evaluations of E n 1 / 2 and A~l respectively. Let 

Pn 

\ P n ) 

1 u x 

On 

\ Pn ) 

(3.20) 

be the studentized robust bootstrap re-calculations of (fin, an, fj,n)'• If we transform 

e* in (3.20) with the covariance matrix estimate E ^ 2 calculated with the original 

data, we get a bootstrap sample of the joint distribution of (pn,&n, Pn)'• That is, if 

h* = E y 2 e * , we can use the first coordinate of these h* vectors to get our estimate 

for the asymptotic distribution of fin. 

Unfortunately, we were unable to prove that the proposed studentized robust 

bootstrap method achieves (3.18). The reason seems to be that the correction factor 

we apply to jx^* — pn is of order Op (1/ yjn). 

Numerical experiments show that the studentized robust bootstrap performs 

slightly better that the non-studentized robust bootstrap, but the difference does not 

seem to be of the order of magnitude suggested by (3.18) and (3.19). See Chapter 6 

for a proposal on how this could be improved. 
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3.6 Inference 

We consider two related approaches to performing statistical inference about the 

location parameter p. 

The first approach is to approximate the distribution of \fn (fin — /i) wi th its 

normal asymptotic distribution (see Theorem 2.6). If we proceed in this fashion, it 

is important to have a good estimate of the asymptotic variance V2 given in that 

Theorem. We wi l l then bui ld an asymptotic 1 — a confidence interval for /x of the 

form (/x„ — za/2 Vn, i±n + za/2 Vn), where Vn is an estimate of V, and za is the quantile 

that leaves area equal to a to its right under a standard normal curve. We can also 

wish to estimate V in order to assess the precision of the point estimate fin. In either 

case, it is of interest to have a reliable estimate of V. In Section 3.6.1 we compare 

the accuracy of four estimates Vn: the robust bootstrap ( R B ) , the classical bootstrap 

( C B ) , Singh's Winsorized bootstrap ( W B ) (Singh, 1998) and the empirical estimate 

(AV) based on the formula given in Theorem 2.6. The first three methods use the 

empirical variance of the re-calculated fx*'s to estimate V2 (see for example Davison 

and Hinkley, 1997, page 16). The difference among them lies in the way in which the 

re-computed fin's are obtained. See Section 3.6.1 for a description of the W B method. 

The second approach is based on estimating the distribution of \fn (fin — /x) 

without using Theorem 2.6. In this case we focus in constructing confidence intervals 

for fj, of the form ( Z i _ Q / 2 , Za/2), where Z„ satisfies l i m ^ o o P [ y/n (fin — (j,) > Z„] = 

rj, for r\ G [0,1]. We can use bootstrap methods to obtain such estimates. The basic 
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idea (see for example Davison and Hinkley, 1997, page 18) is to use the empirical 

distribution of the re-calculated p*n 's to obtain estimated quantiles Zn. Note that with 

this method we do not use the symmetry assumption that underlies the asymptotic 

normal approximation in the previous approach. To estimate these quantiles we 

considered the studentized classical bootstrap (see Davison and Hinkley, 1997, page 

29), the studentized robust bootstrap and the Winsorized bootstrap (Singh, 1998). 

We have also studied the non-studentized classical and robust bootstrap, but the 

studentized methods performed better. Details and the results of our experiment are 

discussed in Section 3.6.2. 

In al l the simulation experiments we used an MM-loca t ion estimate wi th •01.345 

in Huber's family. The S-scale was calculated wi th the function pi.04086 in (2-14). 

This election yields an estimate pn that has 50% breakdown point and that is 95% 

efficient when the data is normally distributed. 

Remark 3.6 - Note that the correction coefficient bn in (3.7) 

EIU ^ {Ul *„)] E=l ? (fi/ &n) h i On] ' 

could potentially be unstable due to small values in the denominator. It is clear that, 

almost surely, 

,. , , , „ x , EF[ip'(u)u] 
h m & n = bO0(F) = b F [ ; 1, ' 

n->°o Ep [ip' (u)] Ep [pf (u) u] 

Lemma 7.20 gives a bound for b^ (F) for any distribution Fe in an e neighbourhood of 

the standard normal distribution, when ip = ipc belongs to Huber's family and p — pk 

given by (2.14). 
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In our simulation studies we used c = 1.345, b = 1/2 and k = 1.041, so that 

the previous lemma yields 

for e G (0,0.3). Hence we restricted bn G (—1.5,1.5). 

3.6.1 Asymptotic variance estimation 

In this section we compare the following estimates of the asymptotic variance V2 of 

the sequence fin: the classical bootstrap ( C B ) , the robust bootstrap ( R B ) , Singh's 

Winsorized bootstrap ( W B ) (Singh, 1998) and the empirical estimate based on the 

asymptotic formula ( A V ) . 

A s mentioned before, the three bootstrap-based estimates of V2 are the empiri

cal variance of the re-calculated /t*'s. They differ in the way in which the re-computed 

statistics are obtained. The last estimate AV of V2 is given by V2 = V (fin, on, Fn)2 

where V (/x, a, F) is given in (2.71). 

We now briefly describe Singh's Winsorized bootstrap (Singh, 1998). Let 

X\,... ,xn be the original sample. Let an be a robust scale estimate and jln a ro

bust location estimate calculated as in (2.12) with a function tpc from Huber's family 

(2.5). For a fixed constant h and a bootstrap sample x\,...,x*n define the Winsorized 
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bootstrap sample as follows 

n 

if |(a;J - fin)/on\ < h 

if (xl - Lin)/dn < -h 

fin + h a, n if (x\ - fln)/On > h. 

for i = 1 , . . . , n. Singh proposes to use h = 1.5 c where c is the constant used in ipc. 

The Winsorized bootstrap evaluation of / i j f * is the solution of 

We then estimate the asymptotic standard error V of jj,n by calculating the empirical 

standard deviation of the bootstrapped fi^^s. 

In this study we considered distributions in the family 

where $ denotes the standard normal cumulative distribution function. That is, 

100 x e per cent of the observations are outliers centered around 7. Other values for 

the center of the contamination yielded similar results. 

We needed to simulate observations of a random variable X wi th distribution 

function Fe given by (3.21). A realization of such a random variable can be eas

i ly generated in the following way. For each i = 1 , . . . , n let P>i ~ Binomia l (1, e), 

independent from each other. Then 

n 

£^((tf-£r)/*») = ° 
1=1 

Fe(x) = (l-e) $ ( x ) + e $ ( ( x - 7 ) / 0 . 1 ) , (3.21) 

(3.22) 

122 



where Zf ~ N (0,1) and Zf ~ N (7,0.1), both independent of 5*. When drawn in 

this fashion, every sample xx,..., xn w i l l contain a different number of outliers. This 

random proportion of outliers has expected value equal to e. 

We used samples of size 20, 30 and 50. The proportions e of contamination 

considered were 0.0, 0.1, 0.2 and 0.3. For each Fe we computed the correct asymptotic 

variance V2 (p, a, Fe) of the sequence pn (see Theorem 2.6). We then simulated 3,000 

samples from Fe and obtained the asymptotic variance estimates Vi, i = 1 , . . . , 3000 

wi th each of the four methods. We report the averages of the following two "loss 

functions", where V is the actual asymptotic standard deviation of pn when X ~ Ft: 

The quadratic measure (3.23) is more sensitive to over-estimation of V, but 

does not penalize under-estimation with the same intensity (intuitively: the worst 

because dt (V, V)/dq (V, V) -> 0 when V - 4 + 0 0 . 

Tables 3.2 and 3.3 provide detailed results of this Monte Carlo study. In Figures 

3.5 and 3.6 we summarize these results. We see that in al l cases there is a value e* 
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(3.23) 

and 

(3.24) 

under-estimation for V is V = 0 and hence there is an upper bound for dq (V, V) 

when V < V, while dq is unbounded for V > V). The logarithmic loss dt (3.24) 

penalizes under-estimation wi th more intensity because now di (V*, V) —7 +00 when 

Vi —r 0. W i t h this loss function over-estimation receives less weight than wi th dq 



such that for e < e* al l methods behave similarly, but when the proportion of outliers 

exceeds e* the robust bootstrap shows a clear advantage in performance. 

For example, with dq and n = 30, for e < 0.10 there is not much difference 

among the different methods. But when e > 0.20 there is a clear change in the 

pattern: the robust bootstrap remains relatively stable, the Winsorized bootstrap and 

the empirical variance grow notably faster and the classical bootstrap is completely 

unreliable. 

For n = 50 and dq the classical bootstrap breaks-down for e > 0.1 while 

the other three methods remain close to each other. When e > 0.20 we see that the 

robust bootstrap remains stable while the other methods break-down (the Winsorized 

bootstrap resulted the second best method in this study). 

W i t h d\ the differences in performance are smaller but the pattern is the same 

as wi th dq. Note that the robust bootstrap has a comparable average loss for values 

of e where most of the methods considered here remain close to each other. When 

the proportion of contamination is large and there is a clear differentiation in perfor

mances, the robust bootstrap is consistently the best method. 

This study illustrates the numerical stability of our method when the interest 

lies in estimating V2, the asymptotic variance of the sequence / t n . These results show 

that inference based on our method is more stable than that based on the other 

three proposals for high proportions of contamination, and at the same time, remains 

comparable for small proportions of outliers. The robust bootstrap is also much faster 
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E(yn/v-i) 

n e 
Robust 

Bootstrap 
Classical 

Bootstrap 
Winsorized 
Bootstrap 

Empi r ica l 
A V 

20 0.00 
0.10 
0.20 
0.30 

0.268 (0.993) 
3.258 (41.46) 
17.99 (88.02) 
10.17 (26.84) 

0.219 (0.475) 
33.27 (411.9) 
189.7 (632.3) 
89.81 (134.0) 

0.218 (0.464) 
2.908 (51.35) 
19.95 (115.9) 
11.83 (31.14) 

0.271 (1.120) 
3.256 (50.89) 
29.14 (189.6) 
18.92 (66.11) 

30 0.00 
0.10 
0.20 
0.30 

0.135 (0.268) 
1.304 (29.35) 
13.60 (114.1) 
17.94 (53.36) 

0.123 (0.230) 
9.798 (329.8) 
116.0 (595.7) 
124.1 (241.3) 

0.122 (0.221) 
1.505 (54.10) 
20.36 (191.2) 
38.63 (116.4) 

0.132 (0.261) 
1.418 (40.43) 
34.46 (456.0) 
76.22 (294.3) 

50 0.00 
0.10 
0.20 
0.30 

0.067 (0.112) 
0.233 (0.759) 
3.417 (38.15) 
12.34 (63.11) 

0.061 (0.094) 
0.361 (1.786) 
31.16 (366.3) 
95.15 (301.1) 

0.060 (0.093) 
0.203 (0.609) 
6.124 (161.3) 
40.62 (224.2) 

0.065 (0.114) 
0.215 (0.685) 
6.307 (161.7) 
122.3 (1012) 

Table 3.2: Comparison of asymptotic variance estimates - quadratic measure 

to compute than these alternatives. 

3.6.2 Coverage and lengths of confidence intervals 

In this study we compare the coverage and mean lengths of confidence intervals based 

on the following methods: studentized classical bootstrap (B-t), studentized robust 

bootstrap (RB-t ) , and Singh's Winsorized bootstrap ( W B ) . 

Let fin be an MM-loca t ion estimate and let on be the associated S-scale. The 

classical bootstrap-^ (B-t) method was implemented as described above wi th Tn = fin 

and Un = V (fin,an, Fn), where V (p, a, F) is given in Theorem 2.6. The robust 
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E(\og(vn/v)) 

n e 
Robust 

Bootstrap 
Classical 

Bootstrap 
Winsorized 
Bootstrap 

Empi r ica l 
A V 

20 0.00 
0.10 
0.20 
0.30 

0.198 (0.322) 
0.436 (0.863) 
1.130 (1.871) 
1.642 (1.730) 

0.177 (0.264) 
0.875 "(1.982) 
2.896 (4.091) 
3.696 (3.211) 

0.195 (0.301) 
0.390 (0.791) 
1.081 (1.902) 
1.809 (1.863) 

0.198 (0.327) 
0.415 (0.841) 
1.166 (2.075) 
1.907 (2.075) 

30 0.00 
0.10 
0.20 
0.30 

0.120 (0.187) 
0.279 (0.552) 
0.813 (1.570) 
1.559 (1.974) 

0.110 (0.171) 
0.418 (1.048) 
1.903 (3.314) 
3.556 (3.667) 

0.114 (0.182) 
0.245 (0.503) 
0.764 (1.693) 
1.922 (2.579) 

0.119 (0.186) 
0.269 (0.540) 
0.844 (1.858) 
2.096 (3.127) 

50 0.00 
0.10 
0.20 
0.30 

0.065 (0.094) 
0.143 (0.226) 
0.480 (0.900) 
1.049 (1.596) 

0.059 (0.085) 
0.166 (0.299) 
0.913 (1.921) 
2.570 (3.332) 

0.060 (0.087) 
0.134 (0.206) 
0.405 (0.897) 
1.257 (2.350) 

0.064 (0.093) 
0.139 (0.216) 
0.476 (0.967) 
1.364 (2.797) 

Table 3.3: Comparison of asymptotic variance estimates - logarithmic measure 
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bootstrap-^ was performed as discussed in Section 3.5. For a description of the W i n 

sorized bootstrap ( W B ) see Section 3.6.1. 

To construct 1 — a confidence intervals for LI we estimate the quantiles qt that 

satisfy 

l im P (qi-a/2 < \/n(ixn- LI)/Un < qa/2) = I - a. 

Let F* be the empirical distribution function of the re-computed y/n (A„ — Lin)/U* 

with each bootstrap-t method. A n estimate of qa is given by the solution q*a of 

F* (qa) = a. The confidence interval is 

^An — Qa/2 Un i An — Ql-a/2 ^ • 

Confidence intervals based on Singh's Winsorized bootstrap used the empirical 

distribution function of the recomputed estimates as an estimate of the cumulative 

distribution function of y/n (An — A 4 ) - If F^ denotes that estimate, then, for a G [0,1] 

the cn-th quantile estimate based on the Winsorized bootstrap q^Va solves F^ (qwa) ~ 

a. The interval is 

^An — Qw a/2 , An — Qw l-a/2 ^ • 

The tails of the distribution estimates obtained by the classical bootstrap are 

potentially unstable (see the discussion on page 86). We expect the robust bootstrap 

to show more clearly its advantage over the other methods when we estimate extreme 

quantiles (for example the quantile Qo.oos needed to bui ld a 99% confidence interval). 

We considered data generated by distribution functions Fe in (3.21) wi th e 

equal to 0.00, 0.10, 0.20 and 0.30 and n = 20, 30 and 50. For each combination 
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of n and e we generated 3,000 samples and constructed the confidence intervals as 

described above. Tables 3.4 and 3.5 show the results. We display the same results 

in Figures 3.7 to 3.12. For each sample size (20, 30 and 50) we plot the empirical 

coverage level on the x-axis and the the mean length on the y-axis. The labels 0 , 1 , 

2 and 3 correspond to 0%, 10%, 20% and 30% of outliers. The results corresponding 

to each method are joined by a line. The ideal trajectory wi l l stay near the 1 — a line 

without moving upward. 

A s expected we see that for larger proportions of contamination we obtain 

larger mean lengths. For n = 20 or 30 the studentized bootstrap confidence inter

vals are noticeably longer that the ones based on the other methods. We also note 

that the studentized bootstrap confidence intervals have smaller coverage levels than 

nominal. There is no important difference in the performance of the robust bootstrap 

compared with the Winsorized bootstrap, but the computational demands are signifi

cantly less for the robust bootstrap. We conclude that the robust bootstrap performs 

equivalently to other robust proposals and is faster to compute, so we recommend its 

use. 
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Studentized Studentized Winsorized 
n e robust bootstrap bootstrap bootstrap 
20 0.00 0.942 (1.01) 0.953 (1.09) 0.938 (0.91) 

0.10 0.950 (1.25) 0.931 (1.26) 0.937 (1.11) 
0.20 0.962 (1.74) 0.912 (1.87) 0.958 (1.49) 
0.30 0.970 (2.56) 0.940 (4.01) 0.972 (2.11) 

30 0.00 0.949 (0.79) 0.954 (0.81) 0.948 (0.74) 
0.10 0.958 (0.97) 0.933 (0.95) 0.950 (0.90) 
0.20 0.964 (1.28) 0.910 (1.20) 0.963 (1.18) 
0.30 0.971 (2.01) 0.919 (2.10) 0.971 (1.73) 

50 0.00 0.946 (0.59) 0.948 (0.59) 0.942 (0.57) 
0.10 0.958 (0.72) 0.948 (0.71) 0.958 (0.70) 
0.20 0.967 (0.94) 0.924 (0.88) 0.966 (0.91) 
0.30 0.980 (1.43) 0.908 (1.29) 0.982 (1.32) 

Table 3.4: Coverage and length of 95% confidence intervals for the location-scale 
model 

Studentized Studentized Winsorized 
n e robust bootstrap bootstrap bootstrap 
20 0.00 0.988 (1.43) 0.988 (1.60) 0.968 (1.12) 

0.10 0.991 (1.81) 0.986 (2.04) 0.983 (1.42) 
0.20 0.994 (2.52) 0.982 (4.55) 0.985 (1.90) 
0.30 0.998 (3.80) 0.990 (11.5) 0.995 (2.63) 

30 0.00 0.988 (1.08) 0.989 (1.12) 0.979 (0.93) 
0.10 0.993 (1.33) 0.976 (1.31) 0.981 (1.14) 
0.20 0.997 (1.77) 0.967 (1.67) 0.988 (1.50) 
0.30 0.999 (2.68) 0.978 (3.22) 0.995 (2.14) 

50 0.00 0.989 (0.80) 0.988 (0.80) 0.979 (0.73) 
0.10 0.992 (0.97) 0.988 (0.94) 0.991 (0.89) 
0.20 0.999 (1.27) 0.974 (1.16) 0.993 (1.16) 
0.30 0.999 (1.97) 0.978 (1.86) 0.997 (1.70) 

Table 3.5: Coverage and length of 99% confidence intervals for the location-scale 
model 
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Figure 3.5: Comparison of asymptotic variance estimates - quadratic measure 
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Figure 3.6: Comparison of asymptotic variance estimates - logarithmic measure 
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Sample size: 20 

o 

LO 
CO 

Robust bootstrap-t 
Bootstrap-t 
Winsorized bootstrap 

o 
CO 

Figure 3.7: Location-scale model 95% confidence intervals for n = 20 - Labels 0, 1, 2 
and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 

132 



Sample size: 30 

Figure 3.8: Location-scale model 95% confidence intervals for n = 30 - Labels 0, 1, 2 
and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 
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Sample size: 50 

Figure 3.9: Location-scale model 95% confidence intervals for n = 50 - Labels 0, 1, 2 
and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 
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Sample size: 20 
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Figure 3.10: Location-scale model 99% confidence intervals for n = 20 - Labels 0, 1, 
2 and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 
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Figure 3.11: Location-scale model 99% confidence intervals for n = 30 - Labels 0, 1, 
2 and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 
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Figure 3.12: Location-scale model 99% confidence intervals for n = 50 - Labels 
2 and 3 correspond to e = 0.0, 0.1, 0.2 and 0.3 respectively. 
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C h a p t e r 4 

G l o b a l a s y m p t o t i c p r o p e r t i e s o f 

r obus t es t imates for the l i nea r 

regress ion m o d e l 

In this chapter we extend the results of Chapter 2 to the linear regression model. 

We first describe the class of MM-regression estimates (Yohai, 1987) and discuss its 

robustness properties when the data are generated by a distribution belonging to 

the e-contamination neighbourhood of a central distribution H0. This gross-error 

neighbourhood allows for contamination both in the errors and in the predictor vari

ables (see (4.10)). We show that under certain regularity conditions the S-scale, S-

regression and the MM-regression estimates are consistent for any distr ibution i n this 

neighbourhood. We also show that wi th some additional regularity conditions, the S-
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and MM-regression estimates are asymptotically normal for arbitrary distributions in 

the neighbourhood. 

4.1 Definitions 

Consider the following linear regression model. Let yi,..., yn be n independent ob

servations satisfying 

yi = /3 0 Xj + CJ, i = l,...,n, (4.1) 

where /3 0 E W is the parameter of interest, Xj are n p-dimensional covariates, and 

the errors 6j are i . i .d . wi th mean zero and constant variance <72. We wi l l consider 

random covariates in (4.1). Asymptot ic theory for robust regression estimates wi th 

fixed explanatory variables has yet to be studied in detail. To our knowledge, only 

results for M-regression estimates (Yohai and Maronna, 1979), S-regression estimates 

(Davies, 1993) and GM-estimates (Wiens, 1996) have been published. The errors e, 

are assumed to be independent of the explanatory variables. We consider <7n, the 

dispersion parameter of the errors, a nuisance parameter. If the model (4.1) includes 

an intercept write Xj = ( l , z^ ) ' where Zj are the explanatory variables. Otherwise we 

have Xj = Zj . 

Robust regression estimates were first introduced by Huber (1973, 1981). Let 

ip : R —> R be odd, non-decreasing and bounded. The M-regression estimate is the 

solution /3n of the equation 
n 

^ V ( ( y i - x | i 9 B ) / a n ) x i = 0, (4.2) 
i=i 
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where an is a robust estimate of the scale of the residuals. If p is such that ip — p' 

then /3„ can be defined as 

n 

hn = arg min J ] p ((Vi - x\ 9)/an) . (4.3) 
i=l 

Note that because ip is non-decreasing the corresponding p is unbounded. These 

estimates have breakdown point 0 (see Definition 4.4) because the above equation 

does not take into account the leverage of the observations (see Weisberg, 1985, page 

111) to down-weight them. 

A generalization of the above class of estimates is given by the generalized 

M-estimates (GM-estimates). Let n : RP x R - » R satisfy: 

• for al l x G R p , n (x, •) is continuous except on a finite set C (x); 

• for each x G R p , n (x, •) is odd; 

• V (x, r) > 0 for x G R p and r > 0. 

The GM-regression estimate 0n is defined by 

n 

E 7 ? ^ ' ~ X i ^ n ) / ^ n ) ^ = 0. 

(see for instance H i l l , 1977; Krasker, 1980; Krasker and Welsch, 1982 and Hampel 

et al, 1986). A l l proposals for rj can be written as 77 (x, r) = co (x) , 0(rv(x)), for 

different choices of the weight functions u : W R+, ip : R -> R and v : Rp -> R+. 

For example, setting w (x) = u (x) = 1 we obtain Huber's estimates (4.2). If v (x) = 1 

we obtain Mallow's family 77 (x, r) = u (x) ^ (r). Maronna, Bustos and Yohai (1979) 

140 



showed that these estimates have breakdown point at most 1/ (p + 1) where p is the 

number of covariates i n the model, including the intercept i f present. 

Rousseeuw (1984) introduced the Least Median of Squares (LMS) estimate 

and the Least Tr immed Squares (LTS) estimates. These estimates minimize the 

median and the tr immed mean of the squared residuals respectively. The L M S has 

the highest achievable breakdown point, namely 50%, independently of the number 

of explanatory variables. Unfortunately, the L M S does not have a v/n-asymptotic 

distribution (Davies, 1990) and the L T S is computationally very demanding. 

Rousseeuw and Yohai (1984) introduced the class of S-regression estimates. 

They are defined as the set of coefficients /3n that minimizes an M-scale of the corre

sponding residuals (compare with Definition 2.6). 

Consider a loss function p : K —>• E_)_ that satisfies the following set of regularity 

conditions: 

R . l p (-u) = p (u) for al l u G R, and p (0) = 0; 

R.2 p is continuously differentiable; 

R.3 sup x p(a;) = 1; 

R.4 if p (u) < 1 and 0 < v < u then p(v) < p (u). 

Definition 4.1 - S-regression estimates Let p : M —>• satisfy conditions R.l to 

R.4 above. Let b € (0,1]. The S-regression estimate f3n solves 

Pn = a r S min on (/3) , 
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where an (8) satisfies 

lYjp((yi-x!i8)/dn{P)) = b. (4.4) 

The corresponding S-scale estimate on is 

an= in{pdn(8) = on(f3n) • (4-5) 

S-regression estimates have been shown to be asymptotically normal when the 

errors distribution is symmetric (Rousseeuw and Yohai, 1984). Unfortunately, for 

these estimates there is a trade-off between high breakdown point and high efficiency 

when the errors follow a standard normal distribution. The function p in the above 

definition can be chosen so that the resulting S-regression estimate is highly efficient, 

but this choice of p yields a poor breakdown point. If, on the other hand, we choose p 

to obtain a high breakdown point, the asymptotic efficiency of f3n decreases notably. 

Note that S-regression estimates are a special type of M-regression estimates 

with a bounded loss function p and a special scale estimate. Because of the mono-

tonicity of p and the inequality on < bn (8) for any 8 G W it is easy to see that 

and hence /3n minimizes 

where p is bounded (compare with (4.3)). In order to obtain simultaneously high 

breakdown point and high efficiency at the standard normal model, Yohai (1987) 

introduced the class of MM-regression estimates. 
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Definition 4.2 - MM-regression estimates Let p 0 : R ->• R+ and px : R ->• R+ 6e 

two functions satisfying conditions R.l to R.4 above and such that p\ (u) < po (̂ ) /or 

all u 6 R and s u p u e R p i (u) = s u p u e R p 0 (u). The MM-regression estimate is defined 

in the following three steps: 

• let f3n be a high-breakdown point estimate for (3; 

• let on be the M-scale estimate of the residuals based on $n. That is, on satisfies 

1 n 

-^2po((Vi -A~Pn)/on) = b; 
n t=l 

• the MM-estimate f3n is defined as any solution of 

n 
Yl Pl ( ̂  ~ X ' i & » ) /

 an) Xj = 0 

i=l 

withS(f3n) < S(j3n), where 

n 
S{B) = Y,Pl{{Vi-<P)l&n)-

i=l 

In particular, we will consider MM-estimates obtained with the steps described 

above when /3n is a S-regression estimate, and dn is the corresponding S-scale. Note 

that if po and p\ are continuously differentiable then the estimates (3n, (3n and an 

satisfy the following equations: 
n 

Y,p'l((yi-x'iPn)/Vn)Xi = 0, (4.7) 
i=l 
1 " 
- £ > ( f o - x ; = 6, (4.8) 
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and 

Y^Po({yi-x!iPn)/Vn)Xi = 0. (4.9) 
i=l 

This class of regression estimates simultaneously achieves high breakdown 

point and high asymptotic efficiency (see Yohai , 1987). Yohai (1987) also proves 

that, if the data follow model (4.1) and the sequence J3n is consistent to the true 

parameter 30, then an —>• a0 and / 3 n is also strongly consistent to 30. 

4.2 Robustness properties 

Let F0 be the distribution function of the errors e and let Go be the distribution 

function of the explanatory variables z in x (see model (4.1)). Let V be a set of 

distribution functions in W where p is the number of random components in the 

vector of covariates x. Let H0 the distribution of the pair (y,z). 

We model the presence of outliers in the data in such a way that both the re

sponse variable and the covariates can be affected. In other words, the contamination 

might upset both F0 and Go. Consider the following e-contamination neighbourhood 

of Ho 

ri€ = S^H EV : H = (l-e) H0 + eH*Y (4.10) 

where H* is arbitrary. Let po and pi be real functions satisfying the regularity con

ditions of Definition 4.2. Let b G (0,1/2]. For each 0 G W define the functional 
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a (H, 0) : V —> by the following equation 

Y-0'X 
EH 

Let cr : V ->• R. be 

Po = b. (4.11) 

<r(fT) = i£<r{H,0) . (4.12) 

The associated S-regression functional B : V —> W is 

0(#) = argmm<r(tf,0) . (4.13) 

Finally, let the functional of the MM-regression estimate 8 : V —» R p be defined by 

/3 (#) = arg inf EH P i 
<T{H) 

(4.14) 

Most asymptotic bias results for robust regression estimates have been estab

lished for the linear model without intercept, that is when x* = in (4.1). When we 

have a linear regression model through the origin, the definition of asymptotic bias 

for the parameters 8 is as follows. 

Definition 4.3 - Maximum asymptotic bias for models without intercept -

The maximum asymptotic bias of LI over Tit is given by 

B( C )= sup \\(B (H) - B (H0))' A (G0) (B (H) - B (H0))\\, (4.15) 

where Go is the distribution o /x in (4-1), A ( G o ) is an equivariant dispersion estimate, 

and H0 is the central distribution of the contamination neighbourhood %t. 
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For MM-regression estimates we have the following lower bound for B (e) (Berrendero 

Diaz, 1996; and Berrendero Diaz et al, 1998): 

B ( e ) > A ^ M B t M ) ^ / ^ ^ - u
 ( 4 ' 1 6 ) 

where 

and 

/•oo 
M s ) = / P(y/s) dF0(y) , 

Jo v 

The lower bound in (4.16) is an equality for small values of e (see Berrendero Diaz, 

1996). 

Definition 4 .4 - Asymptotic breakdown point Let B (e) be as in (4-15). The 

asymptotic breakdown point of 3 is 

e* = i n f | e : B (e) = oo J . (4.17) 

Yohai (1987) shows that i f 8n has breakdown point equal to 1/2, then the 

MM-regression estimate (3n also has e* = 1/2. Rousseeuw and Yohai (1984) show 

that the S-regression estimates have t* = 1/2 and hence the MM-regression estimates 

obtained with an ini t ia l S-regression estimate inherit this property. 

4.3 Asymptotic properties 

Under the central model H0 the sequence 3n is consistent to the true 30 in (4.1) 

(see Yohai , 1987). We also have that y/n~0n -3) is asymptotically normal wi th 
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covariance matrix 

S ( F 0 , G 0 , / 3 0 , c r 0 ) 

EFop[2(U/a0)/ [EpJKU/ao))' 

where U = Y - 8'0X and a0 = cr (H0) (see Yohai , 1987). 

i ? G 0 X X ' , (4-18) 

The asymptotic properties of these estimates when H € He and H ^ H0 are 

very difficult to study. In the next sections we obtain asymptotic results that hold 

for arbitrary distributions H in He. In particular, we show that with some additional 

regularity conditions the sequences f3n, dn and (3n are consistent, and that (3n is 

asymptotically normal. 

4.3.1 Consistency of the S-scale estimate 

In this section we wi l l show that the S-scale estimates (4.5) for the linear regression 

model are strongly consistent to their asymptotic value (4.12). We wi l l need the 

following regularity conditions on the function p and the explanatory variables 

R.5 s u p j p ' ( w ) | < oo; 

X . l P ( 0'X = 0 ) = 0 for al l 0 e W. 

Remark 4.1 It is not difficult to see that i f p belongs to Tukey's family (2.8) then 

it satisfies R.1-R.5 . 
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To simplify the notation, for each 0 EW and s > 0 let 

g(0,s) = Ep(^—p^j . (4.19) 

Recall that the S-scale estimate on satisfies an = infg on (0), where an (0) 

solves (4.4). Denote by Q, the underlying probability space, and let UJ E be an 

arbitrary event. In the statement of Theorem 4.1 below we add the argument u> to 

on (0) to explicit ly indicate that it is a random variable. 

The following theorem is the main result in this section. Let H E Tit be an 

arbitrary but fixed distribution. To simplify the notation, drop the argument H from 

CT{0,H) (see (4.11)). 

Theorem 4.1 Let p be a real function satisfying conditions R.1-R.5 and let X be a 

random vector in W that satisfies X. 1 above. Then 

i) for any e > 0 there exists K2 > 0 such that cr (0) — e < on (0, LO) < a (0) + e, 

a.s. uniformly in {0 : \\0\\ < K2}. That is, there exists a null set Ai such that 

for any e > 0 and to ^ AA, there exists no = no (e,u>) such that for any n > n 0 

«r(0) - e < on(0,u)) < <r(0) + e V 0 E {0 : ||0|| < K2} , 

where no does not depend on 0; 

ii) on —> cr almost surely. 

The following lemmas are needed for the proof of Theorem 4.1. 
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Unless explicit ly stated otherwise, we wi l l assume that the function p and the 

vector X satisfy conditions R.1-R.5 and X . l above. For a function / : RK —> K let 

/ (u) dP (u) , 

denote the integral of / over A c t f wi th respect to the measure P. 

Lemma 4.1 The function g(9,s) defined in (4-19) is continuous in 9 uniformly on 

s € (77, 00) for any rj > 0. 

Proof: F i x I > 0. Choose a bounded set K C W+1 such that PH [ (F, X ) e K] < c/4. 

Let a,i — s u p x £ £ | |x|| < 00 and let a2 — s u p u g R \p' {u)\ < 0 0 . Choose 5 = 8 (e) such 

that 0 < 8 < (en)/ (2ax a2), and \\0i - 92\\ < 8. Then we have 

g{9i,s) - g(92,s) < IA 
L 

Y - 9[X 
Y " 0 > 2 X ' dH (Y, X ) 

K
 P' \ {Gl " 02)'X dH ( y ' X ) 

< ||<9! - 9 2 \ \ - a i a 2 + e/2 

< e, 

+ e/2 

+ i/2 

for any s > rj. 

The next result shows that the scale functional cr (H, 0) defined in (4.11) wi th 

H G % e and 9 e W remains bounded away from zero and infinity i f 9 belongs to an 

arbitrary neighbourhood of 0 G W. 
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Lemma 4.2 Let a (H,0) be as in (4-11). For each arbitrary K > 0 and H G rie, 

there exist two constants S\ = Si (H, K) and S2 = S2 (H, K) such that 

0 < Sr < cr (H, 6) < S2 < 00 V ||0|| < K, (4.20) 

where \\-\\ is the Euclidean norm in W. 

P r o o f : F i x the distribution function H and the constant K. Consider the function 

/ (s) : E+ -r R+ defined by 

( Y — 0 ' X \ 
) = max q (0, s) . 

where g (0, s) is defined in (4.19). Note that for any 9 and S\ < s2 we have 

« E«p ( ^ ) ^ E»p ( ^ ) ; 

(ii) l i m s _ 0 0 £ : i ? p ( Z ^ ) = 0 . 

We wi l l now show that the above properties hold for / (s) as well. That / is non-

increasing follows immediately from the first inequality above. To simplify the nota

tion let K, = { 0 G W : \\0\\ < K}. Let e > 0 be arbitrary and fix a sufficiently small 

77 > 0. For each 0 G /C, let s (0) < 00 be such that 

\g(0, s)\ < e/4, V s > max(r7,s(0)) . 

Also for each 0 G K, define the set 

Ae = {0elC: \g(0,s)\ < e/4, V s > max(77,s(0)) }. . 
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We wi l l show that Ae is open. Note that 0 € Ae and hence is not empty. Let 0 £ AQ. 

B y the continuity of g, there exist a S = S (e, 0, rj) such that 

\\9-0\\<5 => \g{0,s) -g(0,s)\ < e/8 V s > r / . 

Hence, 0 G A whenever \\0 — 0\\ < 5 (e, 0, n), and e is fixed throughout the argument. 

Hence A$ is open. B y a standard compactness argument it follows that there exists 

a finite collection 0\, ..., 0k such that 

Take so > max (n, s (0X),..., s {0k))- Let s > s0. It is easy to see that for any 0 € K, 

we have \g(0,s)\ < e/4. Then, 

/ (s) = max g (0, s) < e/4 < e i f s > s 0 . 

We can find S2 = S2 {H, K) such that f (s) < b for s > S2. Hence, g (0, s) < b for al l 

0 € /C. Hence <r ( if , 0) < S2 for al l 0 e /C. 

The argument for the other inequality is simple. Note that for any fixed 0 E W 

we have lim s_> 0 g (0,s) = 1. Hence, l i m 3 ^ , 0 maxo^ g{0,s) > 1. The result follows by 

noting that lim s_> 0 maxegjt g (0, s) < 1 because p (u) < 1. • 

The following lemma shows that the infimum in the definition (4.12) for a can 

be taken inside a certain neighbourhood around 0 € W. 

Lemma 4.3 There exists Kx > 0 such that 

cr(H,0) <(T(H,0) V ||0|| > K U 
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and hence 

cr (H) = inf cr (H, 0) = inf a (H, 0) 

Proof: It is enough to show that for large ||0|| we have cr (H, 0) < cr (H, 0). Note that 

by the Dominated Convergence Theorem g (0, a (0)) —> 1 when ||0|| —r oo. Hence, 

given 0 < rj < 1 — b there exists K\ such that g (0, cr (0)) > b + n for al l 0 wi th 

||0|| > Kx. Hence, <r (0) > cr (0) for ||0|| > Kx. • 

Remark 4.2 Note that we can consider any other neighbourhood around 0 e W 

larger than the one given by the previous lemma. Specifically, let Kx be as in Lemma 

4.3 and let K2>K1. Then 

cr < inf a (0) < inf cr (0) = cr , 
_ | |9 | |< i i f2 ~ ||fl||<ffi 

and hence we have 

cr = inf a (0) for any Ko > K\. 

We now show that there exists a compact set where both a and an are attained 

almost surely. Recall that for each 0 £W, an (0) is defined in (4.4) by 

and that an = m{ge^P bn (0). 

Lemma 4.4 Let Kx be as in Lemma 4-3. Then there exists K2 > K\ such that if 

then P(An i.o.) = 0. 
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P r o o f : We wi l l first show that 

l im E inf p 
\W\>K 

= 1. (4.21) 

It is easy to see that for any y G R and s G R+ we have 

-\y\-M" 
l im p 

M—>oo 
7 ( | y | < M ) = l . (4.22) 

B y hypothesis and Lemma 7.4, for any e > 0 there exist a > 0 and C i , . . . , C S such 

that U-=i ^ D { 0 : ||0|| = 1} , and P [ inf f l e C i | 0 'X | > a] > 1 - e, for 1 < i < s. We 

have 

i n f p (?LZ**\ > i n f p f I L Z * ^ 7 [|0<X| > M ] 

\\e\\>L \ s J ~ \\e\\>Lr V * / 

— ̂ Lp(^^i[\~e'x\ > M/\\e\\]i[\Y\ < K] , 

where 0 = 0 / ||0||. Set L = M/a to obtain 

i n f inf , ( M ^ W x | > a ] / [ | y | < , K ] 
||»||>£ V * / ll«ll=l \ « / J II I 

- . ^ ? . i ? l ' , ( M T ^ ) / [ | , ' ' x | S a l / | | y | ^ 1 

> (1 - cT) min inf 7 [|0'x| > a] , 

by (4.22) for M large enough. Hence 

E 

y _ /3'"V 
inf p ( }I(\Y\<K) 

\\0\\>L V S * vi i — y 
> (1 - 6) E 

= (1-6)P 

>(1-S) ( 1 - 5 6 ) , 

™™*1\**\>«]II\Y\<IC\ 
inf |0'x| > a, V l < j < s 
sec; ' 1 -

which can be made as close to 1 as desired. Hence (4.21) holds. 
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We now show that for an arbitrary 0 € W, 5 > 0 we have 

£ff(|c>„(0) > S) < 2 e x p ( - n 7 ) for some 7 = 7 (<5) > 0 . (4.23) 

F i x 8 > 0 and 0 E R p . We know that there exists <50 = <50 (0, t5) > 0 such that 

(y _ \ 

and 

^<x(0) -<5 

B y Bernstein's Inequality (Lemma 7.6) we have 

, Y — 0 'X . 
Ep r <6-<$o. 

P(<7„ (0) - CT (0) < = p ( d n (0) < Cr (0) + (?) > P ^ £ p ( f ( 0 ) ^ ) < ^ 

> P 
1 7 1 

n — ' P U ( 0 ) + < V P U W + V i=i 
< S0/2 

> 1 - e x p ( - r a 7 i ) , 

for some 71 > 0. Similar ly we obtain 

P(an (0) - cr (0) > -5) = P(an (0) > o- (0) - <j) 

Vi - 0 'XJ \ 
> P 

n 

(0) + Sj 
- Ep y - 0 ' x 

(0) + 6j 
< 50/2 

> 1 - exp ( - n 7 2 ) , 

where 72 > 0. F ina l ly 

P(j(7N (0) - Cr (0)| > 5) < p(<7„ (0) - Cr (0) > <j) + P («7N (0) - <T (0) < - j ) 

< 2 e x p ( - n min (71,72)) . 

154 



Hence (4.23) holds wi th 7 = min (71,72). 

We wi l l show that if 

A"=UnA/"w-^(o)}' 
then P (An i.o.) = 0. Let 5X > 0 be arbitrary. Choose K2 > Kx such that 

E ( . j n f p ( ^ ^ ) ) > b + S l . 
e\\>K2

r \tr(0) + 5 
(4.24) 

We have 

K».!inV"w>M0)) 
>P( inf l £ J » - * * 

>i-p(1-± i „ f 

> b , a n (0) - cr (0) 

<b \ - P 

> 

nj^\\e\\>K2
r \ c r (0) + 5 

l - 2 e x p ( - n 7 ) - P ( - V inf p ( V i ~ ^ 
\nf^\\e\\>K2

 H \ 

< 8 

On (0) - Cr (0) 

<b) , 

> S 

kcr(0) + «Jy 

where 7 > 0 is given by (4.23) (set 6 = 0). Now note that by (4.24) and Bernstein's 

Inequality (Lemma 7.6) we have 

p(-izinf p(-
\n^\\0\\>K2 \, 

(0) + 5 
< b 

< P 
f^\\e\\>K2^ \(r(0) + 6 

< exp (—n 7 ' ) , 

><5i 

where 7' > 0. Hence P (An) < 3 exp (-n min (7,7')) and the result follows from the 

Borel-Cantel l i Lemma (Lemma 7.3). • 
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The following Lemma shows that cr (H, 0) in (4.11) is continuous as a function 

of 0. 

Lemma 4.5 Assume that the conditions oj Lemma 4-2 hold and that 

d 
ds g (0, s) < 0 V 0 e W V s > 0 . 

Then cr (0) is continuous in 0 and hence uniformly continuous if 0 e K,Q, where KQ 

is an arbitrary compact set in W. 

P r o o f : We adapt an argument in Mar t i n and Zamar (1993). F i x 5 > 0. Let S\ and S2 

as in Lemma 4.2 and let K\ as Lemma 4.3. Let KS = [Si, S2] and K , & = {\\0\\ < K2}. 

Let B — KS x KQ. Let <5o be given by 

8 
So = 5 min 

(0,s)<=B ds 9 {0,8) > 0. 

B y Lemma 4.1 there exists 7 > 0 such that 

6>i -0 2 | | < 7 \g(e1,a(62)-5)-g(e2,cr(e2)-5)\ < 50/4. 

Using the Mean Value Theorem we have 

g {01, cr (02) -S)-b>g(92,cr (02) - 5) - b So 

> S min 
(0,s)eB 

d_ 
ds 

9(0,s) 

Hence cr (Oi) > cr (02) — S. Similar ly we have 

g{Ou<r (62) + 5)-b<g (02, cr (02) + 5) - b + So 

< —S min 
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so that cr ( 0 x ) < cr ( 0 2 ) 4- 5. 

The following Lemma states that if s ^ cr (0) then Ep((Y — O'X)/ s) remains 

uniformly away from b when 0 belongs to an arbitrary compact set. 

Lemma 4.6 Let K, C W be an arbitrary compact set, let 8 > 0 be arbitrary and let b 

be as in the definition of the S-scale estimate. Then, there exists a positive constant 

e = e (/C, 5) such that 

( Y — 0 ' X \ 
M . r 1 <b~* V 0 G / C , 

and 

cr(0) + 5 

„ fY-0'X 
>b + e V 0 G / C . 

P r o o f : Follows easily from Lemma 4.2 and a Taylor expansion of first order, after 

noting that 

and 

A x = inf E 

A 2 = inf E 

, (Y-0'X\ (Y -O'X 

v{0)+5) \cr(0) + 6 

,(Y -e'x\ (Y -O'X 
cr(0)-8j \cr(0)-5 

> 0 , 

> 0 . 

Lemma 4.7 shows that the estimating equation is uniformly continuous in 0 

and s bounded away from zero, for n sufficiently large, almost surely. When needed 

in the proof, we wi l l explicit ly indicate that bn or on (0) are random variables by 

including the argument oo G fi, where fi denotes the underlying probability space. 
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Lemma 4.7 For each 0 e W, s > 0 and u e fl, let 

-fa \ 1 f (Vi (u) - e>yii (w) \ Pn(0,U),S) = - ^ p l g (4.25) 

and n > 0 be arbitrary. Then there exists a null set N such that for any e > 0 and 

UJ N there exist 6 = 5 ( M , e, n) > 0 and nQ = n 0 ( M , u) such that if | | 0 i — 02\\ < 5 

then 

\pn(0i,u,s) - pn(02,oj,s)\ < e Vn>n0(M,oj) V s > n. 

P r o o f : F i x e > 0 . Let K. C W+1 be a compact set such that PH [ (Y, X ) £ K] < e/8. 

Take away a null set such that for every remaining u the strong law of large numbers 

assures the existence of no (u) such that 

1 " 
- J ] / ( x i ( a ; ) ^ / C ) < e / 4 V n > n0 (OJ) 
n i=l 

Let ai = sup t p ' ( i ) < oo and let a2 = s u p x e A : | |x | | < oo. Using the Mean Value 

Theorem and R.3 we Have 

Pn (01, W) - Pn (02, W) 

i=l 
1 " 

Vi(u) - 0 i x { (u)\ _ (yt (to) - 0 2 X j (w) 
/ ( X i e / C ) + - V / ( x ^ / C ) 

i=l 

i=l 

„# / Vi M -0Xj{u))\ 1 , p | _ x . ( w ) ( ^ _ 0 2 ) 
5 IS 

I ( ^ (w) G /C) + e/4 

< | | 0 i - 0 2 | | o 2 - a i + e74. 

Hence, for almost al l a; 

Pn(0l,0j) - pn(02,Uj) < e, 
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if — 02\\ is sufficiently small, and n> n0 (e,ui). • 

We now show that pn(0,to,s) defined in (4.25) and Ep ((Y — 0'X.)/s) are 

uniformly close i f 0 belongs to an arbitrary compact set, for large n, almost surely. 

Lemma 4.8 Let K C W be an arbitrary compact set, let p, pn be as in Lemma 4-7, 

and let rj > 0 be arbitrary. There exists a null set M such that for any to £ M and 

e > 0 there exists no = n 0 (CJ , e) such that 

sup 
eeic 

pn (0,LJ,S) - Ep(0,s) <e V n > n 0 ( c j , e ) V s > n. 

P r o o f : Consider the same null M as in the proof of Lemma 4.7. B y Lemma 4.1 the 

function 

9(0,s) = E p { ^ ^ ^ 

is continuous in 0, uniformly on s > rj. B y Lemma 4.7 there exists 5 > 0 such that i f 

| | 0 i - 02\\ < S then > 

\pn(0l,U,s) - pn(02,LU,s)\ < 6 V U > H 0 (w, e) V s > f ) . 

Construct a finite collection of open balls B (0j,5) of radius 8 such that they cover 

K, and such that 

< e/3 V s > ? 7 , 
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for 0 G B (0j, 8). Such a collection exists by Lemma 4.1 and a standard compactness 

argument. Let 0 G fC be arbitrary. Then 0 G B (9j, 8) for a particular bal l . We have 

pn (9,LO,S) - Ep 
Y-9'X 

) s 

< pn (9,U,S) - pn (0j,U,S )\+ pn (9j,U,s) - Ep 

+ Ep 
) 

< e , (4.26) 
s 

if n is large enough, not depending on the particular 9 G W. 

We now prove the main result of this section. 

Proof of Theorem 4.1. (i): Let S\ as in Lemma 4.2. F i x 8 > 0 such that Si — 8 > 0. 

B y the previous lemmas there exist e > 0 such that Ep ((Y — 0 ' X ) / (cr (9) + 8)) < 

b - e for 9 G K. Also \pn (9,s) - Ep((Y - 0 ' X ) / s ) | < e/2 for al l s > S i - 8 and 

0 G /C, for n sufficiently large, almost surely. Note that for any 0 G K, we have 

o- (0) + <5 > Si - 8 and then 

so that on (0) < <T(9) + 8 for n large enough, almost surely. Similar ly we obtain 

on (0) > cr (0) — 8 for n large enough, almost surely. 

pn (0, cr (0) + 5) < Ep ((y - 0 ' X ) / (cr (0) + 8)) + e/2 

< 6 - e / 2 , 

(ii): This follows from (i) and Lemma 7.16. 
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4.3.2 Consistency of the S- and MM-regression estimates 

In this section we show that under certain regularity conditions the S- and M M -

regression estimates are consistent. Note that because both estimators minimize a 

loss measure, the following Theorem applies to both. 

T h e o r e m 4.2 Assume that p : R —>• R+ and X € R p satisfy conditions R.l to R.5 

and X.l above. Let g (6, s) be as in (4-19). Assume that an —¥ cr almost surely, and 

let /3n be defined by 

Let ~Q be 

If g (6, CT) has a unique minimum as a function of 0 6 R p , then /3n —>• /3 a.s. 

P r o o f : We wi l l first show that there exists L > 0 such that 

IhrT \\f3J < L a.s. 
7 1 — > 0 0 

Because on —> a almost surely, it is enough to show that for any o > 0 there exists 

L and r? = n(L) > 0 such that 

l im inf - V p (Vi ~ ° * l \ > b + n a.s. (4.27) 
n^oo \\e\\>L n ' V °~ J ~ 

1=1 ' 

The Dominated Convergence Theorem shows that for any o > 0, 

,. „ (\Y\-M\ 
hm Ep = 1. 4.28 

M^oo \ a J 
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B y Lemma 7.4 and because P (0 'X = 0) = 0 for al l 0 G W by hypothesis, there exist 

a > 0, 7 > 0 and a finite collection of compact sets C\,... ,CS in RP such that 

s 

\JCj D {OeW : ||0|| = 1} , 
i=i 

and 

P ( inf |0 'X| > a ) > 6 + 7 . (4.29) 

B y (4.28) we can find M and 77 > 0 such that 

(6 + 7) Ep(^Y\~M^j P^\Y\ <M^j >fe + 77. (4.30) 

Now we have 

inf - E ^ O ^ ^ U i n f 1E^f^-^) / ( l ^ l > M ) 7 ( | y i | < M ) l | 0 | | > L n f e V o- 7 \\e\\>Lnj^ \ a J 

> inf - V p f 1 ^ 1 " 1 ^ 1 ) n\0%\>M)I(\Vi\<M) , 
l | 0 | l > L n i = t \ CT / 

because \yi — 0'XJ| > |yj| — |0'XJ|. Hence 

inf l £ p ( « L Z « V ) > i n f I ^ p f M ^ ) / ( | 0 ' X i | > M ) / ( | y l | < M ) 

where 0= 0/\\0\\. Also note that if L > M/ a then {|0'x;| > M/ | |0| |} D {|0Xj| > a}, 

so that 

inf l±J*z**) > i n f l £>(M-» [ ) / ( | ^ | > o ) 

\\0\\>Lnj^H\ a J \m\=m^H\ a J 

> min inf — > p\ —• I (\0 X.A > a) 
~ i<j<s0eCj n j ^ \ o y v l ' - ' 

> min - Y inf p ~ M > | /( |0' X l | > a) . 
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Equation (4.27) now follows from (4.29), (4.30) and the Strong Law of Large Numbers. 

We now show that f3n-> J3 almost surely. Consider an arbitrary open neighbourhood 

B (ft) of f3 and the compact set 

/C = { 0 : | | 0 | | < L } nB0)c. 

B y Lemma 7.5 

a.s.. 

So, it is enough to show that there exists 7 > 0 and a\> CT such that 

The assumption on uniqueness of the minimum of the function g(0,cr), the Domi 

nated Convergence Theorem and a standard compactness argument yield CT\ > CT, 

7 > 0 and a finite family of sets C\,..., Cs such that 

s 

f]Ci D K = J0 : ||0|| < i } n B (f3)c , 
i=l 

and 

r p / r -0 'x \ i / /y - /3 'x \ \ 
E [ M . " \ - ^ - ) \ > - E { " { - ^ - ) ) + - 1 1 £ ! £ S -

Hence 

l im inf — p ( — — ) > min l im — inf p( — — j , 
n"Z^o e?e/C n*—?\ <Ti / l<j<s n->oo n BtCj V °~\ J 

t=l ' 1=1 

and the result follows from the Strong Law of Large Numbers. • 
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4.3.3 Asymptotic distribution of the MM-regression estimate 

The asymptotic distribution of these estimates for distributions belonging to (4.10) 

can be derived along the same lines we used in Section 2.3.6. In general the scale 

estimate on is not asymptotically independent of /3„. Nevertheless, provided the 

sequences Bn, Bn and an are consistent, if an is a S-scale, we can find the asymptotic 

distribution of y/n (f3n — 8). The proof of the following theorem is based on the same 

techniques used in the proof of Theorem 2.6 and is omitted here. 

Theorem 4.3 - Asymptotic normality - Assume that f3n A 8 (H), /3n A /3 (H), 

p 

and on —\ cr (H). Let F G He and let p0 and p\ be as in Definition 4-2. Assume that 

Po and p\ have third derivatives that are continuous and the following expected values 

exist: 
EH 

EH 

EH 

, (y-8'X\ (y-B'X 
Po 

ti(y-^\(y-0'X)X 

EH 

EH 

, EH Pi 

a 
y-B'x 

I X H 2 X 

and 

Then 

E H p 7 [ y — ^ ) ( y - B ' x ) x x ' 

The asymptotic variance-covariance matrix is given by the following. Let 

A = E H Pi 
n -1 

X X ' 

(4.32) 
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and 

E H 

b = ACT 

X 

E H 

S = A £ p , ^ ^ x ) x x , 

2AEH 

Po I I - b bb' 

p ; ( ? ^ ) „ ( £ z £ E , x b' (4.33) 

Note that the form of S is very involved, and hence the empirical estimate 

obtained by replacing H wi th Hn w i l l be numerically unstable. This w i l l have a 

negative impact on the quality of statistical inferences which are based on it. 
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C h a p t e r 5 

R o b u s t b o o t s t r a p for the l i nea r 

regress ion m o d e l 

In this chapter we extend the results of Chapter 3 to the linear regression model. We 

consider the problem of statistical inference based on robust regression estimates and 

describe the implementation of the robust bootstrap for this model. We illustrate 

its robustness properties with two real data sets. We show that under regularity 

conditions the robust bootstrap distribution estimate is consistent for the asymptotic 

distribution of the statistic of interest. We also study the breakdown point of the 

resulting quantile estimates and show that they improve upon the classical bootstrap 

quantile estimates. Final ly, we compare the finite sample coverage and mean length 

of confidence intervals built wi th the empirical asymptotic variance estimate and the 

robust bootstrap. 
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There are several results in the literature concerning the application of the 

bootstrap principle to this model (Efron, 1979; Freedman, 1981; W u , 1986; Efron and 

Tibshirani , 1993). Moreover, the bootstrapping of robust regression estimates has 

also been studied by Shorack (1982). 

As in the location-scale model, two difficulties arise when bootstrapping robust 

regression estimates. The first is related to the computational complexity of robust 

regression estimates. The second is a consequence of the presence of outliers in the 

data. 

Consider MM-regression estimates /3 n calculated wi th an in i t ia l S-estimate 8n 

and S-scale an (see Definitions 4.2 and 4.1 on pages 143 and 141 respectively). These 

estimates have desirable robustness properties but are not easy to calculate. When we 

bootstrap these estimates, for each bootstrap sample we have to solve a non-convex 

minimizat ion problem in W to determine 8n and the scale estimate an. Then.we 

have to find a local extreme of another non-convex function in R p to determine 3n. 

The number of bootstrap samples needed to obtain reliable distribution estimates 

naturally grows with the dimension of the statistic and hence makes the problem 

computationally even more expensive to solve. In the context of data-mining and 

other applications with extremely large data sets (both in the number of cases and 

the number of covariates) straightforward re-calculation of such robust estimates is 

rarely a feasible option. 

The presence of outliers i n the data can have an unduly large effect on the final 

distribution estimate. As described in Chapter 3 the reason lies in the re-sampling 
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scheme: in many bootstrap samples the proportion of outliers can be significantly 

higher than in the original data set. This may in turn produce extreme re-calculated 

estimates and affect the bootstrap distribution estimate. 

We wi l l show that wi th our method, each re-calculation only involves solving 

a linear system of equations. Hence there is a very important gain in speed, and 

consequently in feasibility. We also obtain more stable and robust quantile estimates 

than the classical bootstrap method. To quantify this property we extend Singh's 

concept of quantile breakdown point (Singh, 1998) to the linear regression model. 

To illustrate the magnitude of the gain in speed obtained wi th our method 

consider this simple example. We generated an artificial data set following model 

(4.1) with 3 = 0 wi th n = 50 and p = 5. We applied both the classical and 

robust bootstrap to an MM-regression estimate, with 10,000 bootstrap samples. The 

classical bootstrap took 2735 C P U seconds while our method used less than 7 C P U 

seconds. The computations were done wi th C code designed by the author and run on 

a d u a l - C P U Sun Sparc U l t r a 4 (each C P U a 296 Megahertz S U N W U l t r a S P A R C - I I ) 

with 1.1 Gigabytes of R A M memory and using SunOS 5.7. 

The rest of this chapter is organized as follows. Section 5.1 presents the method 

and the notation. Section 5.2 contains two examples that illustrate the use of our 

method. Sections 5.3 and 5.4 discuss its asymptotic and robustness properties respec

tively. Finally, Section 5.5 contains the results of a Monte Carlo study on the coverage 

and average mean of confidence intervals obtained wi th MM-regression estimates and 

different methods of estimating their distribution. 
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5.1 Definitions 

Let 0 / i , X i ) , . . . , (Vni x n ) be a random sample following model (4.1). We consider M M -

regression estimates wi th in i t ia l S-regression estimates and S-scales (see Definitions 

4.2 and 4.1). To simplify the notation let 3n be the in i t ia l S-regression estimate, an 

the associated S-scale estimate and let (3n be the final M M - r e g r e s s i o n estimate. We 

wi l l consider the case of random explanatory variables in detail, but briefly discuss 

the fixed design case in Remark 5.3 below. 

As discussed in Chapter 3, we are interested in making statistical inferences 

about the regression parameter 3. We can use the result of Theorem 4.3 on the 

asymptotic normality of the sequence -y/n(/3n — 3). To use this method we only have 

to estimate the asymptotic variance of J3n. The second option is to directly estimate 

the distribution function of \ /n ( /3 n — 3). We can then use this distribution estimate 

to approximate the quantiles needed to construct confidence intervals. 

We propose to use the following computer intensive method to generate a large 

number of re-calculated /3 n 's. These re-computed statistics can be used to estimate 

both the asymptotic covariance matrix and the distribution function of the statistics 

J3n. For the first objective we can use the empirical covariance matrix of the re-

calculated p „ ' s . To estimate the distribution function Fn of 3n we use the empirical 

distribution function of the re-computed statistics. In what follows we wi l l focus on 

this last problem. 

Theorem 4.3 shows that the asymptotic behaviour of the sequence J3n depends 
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on that of & n . Hence, to obtain an estimate of the distribution of Qn we take into 

account the behaviour of the scale estimate an. 

For each pair (y^ Xj) in the sample define the residuals associated wi th J3n and 

~8n: rt = yi — / 3 n Xj and f; = yt — / 3 n X j . First note that J3n and an can be represented 

as a weighted least squares fit. Similar ly to Chapter 3, define the weights U{ and 

as 

= p\ {n/an)/Ti 1 < i < n, 

Vi = p0(fi/an)/fi l < i < n . 
n o (5.1) 

Simple computations yield the following weighted average representation of equations 

(4.7) and (4.8): 

Pn E 
Lt=l 
n 

OJi Xi Xi 

i=l 
(5.2) 

(5.3) 
i=l 

Let (y*,x*), i = l , . . . , n b e a bootstrap sample from the observations. Define 

the random variables Bn and cr* by 

Pn 
n -1 

. i= l 
n 

^ *i Vi , (5.4) 

(5.5) 
i=i 

where OJ* = p\ {r*/an)/r*, v* = an p0 (f*/an)/ (n b f*), r* = y* - p'nx*, and f\ = 

y* - ~3nx\ for 1 < i < n. Note that J3n, an and @ n are not re-calculated from each 

bootstrap sample (y*, x | ) , i = 1 , . . . , n. 
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We now apply a linear correction to the estimates obtained in (5.4) and (5.5) 

and combine them. Intuitively the correction is needed to account for the loss in 

variability due to the fixed weights. Let 

XIp'l (ri/an,Xi)xi x-
i=l 

n 

X!uji Xi x*' 
i=l 

,i=l i=l 
1 1 

° " = ^ " n 6 51 ^'o (*V On) fi/On] . 

(5.6) 

(5.7) 

(5,8) 

t=i 
R* 

The robust bootstrap 3n — 3n is given by 

R* 
3n -3n= Mn (Pn ~ Pn) + <*n (K ~ On) , 

R e m a r k 5.1 - Computational Ease: Note that to recalculate 3n we do not solve 

(4.8) and (4.7). For each bootstrap sample we only solve the linear system of equations 

(5.4) and calculate the weighted average (5.5). The correction factors M n , d n and an 

arise from two linear systems and a weighted average respectively and are computed 

only once with the full sample. 

R e m a r k 5.2 - Robustness: For MM-regression estimates (3n wi th a re-descending 

score function p[ (i.e., p\ (r) = 0 for \r\ > c > 0), the weights uii give the method 

stability in the presence of outliers. Out ly ing points wi l l be associated with small 

weights in equations (5.2) and (5.3). Note that extreme outliers (those with an 

associated residual \rt\ > con) w i l l receive a zero weight, and hence wi l l have no effect 

at all on the recalculated coefficients. Note that the weights v* used in recalculating 

the scale are also decreasing in the absolute value of the residuals. This also makes 

the outlying points less influential in the recalculated a*. 

171 



R e m a r k 5.3 - Fixed design: In the case of a linear regression model with fixed design 

we propose to adapt our method as follows. The main difference lies in the re-sampling 

procedure, so that it best resembles the randomness of the model (Freedman, 1981). 

Let ej = y.j — i3nx.j, 1 < j < n be the residuals of the MM-est imate. The bootstrapped 

y*'s are 

where ej, 1 < i < n is a random sample from the residuals. Now (3n and <7* are 

defined by 

x< x< 
. 8 = 1 
71 

^ X i V i 

. 1=1 

= < (2/i* ~ Pn*i) 

(5.9) 

(5.10) 

i=l 

where u* = p[ (r*/an)/r*, v* = an p0 (f*/an)/[n b f*), r* = y* - (3nXi, and f* = 

y* — 3 n Xj for 1 < i < n. The correction factors M n , d n and an are defined as before, 

and so is f3n — (3n. See Chapter 6 for a discussion on future work regarding this case. 

5.2 Examples 

5.2.1 Body and Brain Weights 

Consider the brain and body weight of 28 animals published in Rousseeuw and Leroy 

(1987, page 57). The model considered in the literature is 

log ( B r a i n weight (g)) = a0 + /30 log ( B o d y weight (g)) + e; 
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where OJO £ R and /3Q G R are the parameters of interest and e are independent 

and identically distributed errors wi th mean zero and constant variance a2. We used 

an MM-regression estimate obtained with ip = p 4 6 8 5 in Tukey's family. The S-scale 

was obtained wi th pi.54764 also in Tukey's family. This choice yields an estimate 

with simultaneous 50% breakdown point and 95% efficiency if the data are normally 

distributed. Figure 5.1 contains a scatter plot of the transformed data with the least 

squares and MM-regression fits. The question of interest is whether larger brains 

are required to govern heavier bodies. In particular, the magnitude of the slope is 

relevant: a slope larger than 1 would indicate that the required brain weight increases 

faster than the body weight. O n the other hand, a slope smaller than 1 would indicate 

the opposite. We are interested on a confidence interval for the slope of this model. 

We obtained 10,000 bootstrap samples to re-calculate the estimates (&n,J3n). 
We used these re-computed estimates to approximate the distribution of the vector 

of parameters 

Vn ({&n,Pn)' ~ (aoiA))') , (5-11) 

in order to perform statistical inference on the parameters of interest (ao, A))- We 

used both the classical and robust bootstrap and concentrated on inferences for the 

slope /3o. Note that given the empirical distribution in R 2 of the re-computed (&*, /3*) 

we can use its projection on the /5-axis to obtain an estimate of the distribution of 

the (3 projection of (5.11). 

W i t h the classical bootstrap, the 99% confidence interval for /30 is (0.66,1.49). 

The p-value for the null hypothesis /30 < 1 is between 0.01 and 0.05. The robust 
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bootstrap yields the following 99% confidence interval for f30: (0.67,0.84). The p-

value for the same null hypothesis is p < 0.0001. 

The reason for this difference lies wi th the tails of the bootstrap distribution 

of the regression parameters. Three observations in this data set correspond to d i 

nosaurs and do not follow the same pattern as the other observations. A certain 

proportion of the bootstrap samples may contain enough outlying observations to 

breakdown the estimate. These samples can yield extreme values for the estimate 

that produce unduly large quantiles. The robust point estimate and the robust boot

strap re-calculated estimates down-weight these three observations and hence are less 

sensitive to them. 

In Figure 5.2 we show scatter plots of (/3* — J3N) for 1 < u < 10, 000, where /3* 

denotes either the classical or the robust bootstrap estimate for the u-th bootstrap 

sample. We see that the tails of the classical bootstrap estimate are highly influenced 

by the outliers present in the data. This causes the estimates for the 99.5% and 

0.5% quantiles to be highly inaccurate. The quantile estimates based on the robust 

bootstrap do not have this problem. 

5.2.2 Belgium International Phone Calls 

Consider the Belgium International Calls data set (see Rousseeuw and Yohai , 1984). 

These data consist of the number of international phone calls (in tens of millions) 

originating in Belgium between 1950 and 1973. From 1964 to 1969 the observations 
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Body Weight (g) - Log scale 

Figure 5.1: Least squares and robust regression fits to the Bra in and Body Weight 
data 
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(a) Classical bootstrap 
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(b) Robust bootstrap 

Figure 5.2: Classical and robust bootstrap distribution estimates for the Bra in and 
Body Weight data - 10,000 bootstrap samples 
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Parameter Method 95% Confidence Interval 
c*o Robust Bootstrap 

Classical Bootstrap 
( -10 .32 , -3 .20) 
(-17.74,0.35) 

Po Robust Bootstrap 
Classical Bootstrap 

(0.08,0.20) 
(0.00,0.28) 

Table 5.1: Belgium International Calls - Bootstrap and robust bootstrap 95% confi
dence intervals 

were mistakenly recorded. Instead of the number of calls, their total duration in 

minutes was registered. The figure for 1970 is partly contaminated; some calls were 

recorded wi th their duration, others were registered according to the old convention. 

The linear regression model considered in the literature is 

# Calls (in tens of millions) = a0 + Po Year + e , (5.12) 

where a0 and p0 are the parameters of interest, and the errors e are assumed to be 

independent and identically distributed with mean zero and unknown but constant 

variance cr2. The MM-regression estimate wi th an S-scale gives a0 = —5.23 and 

/30 = 0.11. Figure 5.3 displays the data with the robust and least squares fits. To 

obtain confidence intervals for the regression parameters 0 we use the classical and 

robust bootstrap. We performed 10,000 bootstrap re-calculations. Scatter plots of 

fiu — f3n for the robust bootstrap and of f3u — (3n for the classical bootstrap are 

presented in Figure 5.4. We clearly see that the robust bootstrap estimates are more 

stable. This is reflected in the length of the confidence intervals. Table 5.1 contains 

the lower and upper l imits of 95% confidence intervals for the slope and intercept 

calculated wi th both the classical and robust bootstrap. 
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V) c o 
E i n 
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Ui 
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Least Squares estimate 
MM-regression estimate 

50 55 60 65 70 

Year 

Figure 5.3: Least squares and robust regression fits to the Belgium International 
Phone Calls data 

Note that when we estimate the variability of the robust estimates with the 

robust bootstrap we conclude that the estimates of the regression coefficients are 

significantly different from zero at the 5% level. The artificial variabili ty introduced 

by the outliers in the classical bootstrap re-calculated BJs inflates the standard de

viation estimates. A s a consequence, if we use these standard deviation estimates 

we conclude that, at the 5% level, there is no significant linear relationship between 

the response and the predictor variable. The conclusion obtained wi th the robust 

bootstrap analysis is intuitively i n agreement wi th the linear trend observed in the 

scatter plot of the data (see Figure 5.3). 
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Figure 5.4: Comparison of classical and robust bootstrap distribution estimates for 
the Belgium International Phone Calls data - 10,000 bootstrap samples 
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5.3 Asymptotic properties 

The following theorem shows that the asymptotic distribution of the robust bootstrap 

is the same as that of the MM-regression estimator. 

Theorem 5.1 - Convergence of the robust bootstrap distribution - Let p0 

and pi be real functions as in Definition 4.2. Assume that they have continuous 

third derivatives. Let f3n be the MM-regression estimator, dn the S-scale and 0n the 

p 
associated S-regression estimator. Assume that they are consistent, that is: 0n —f 0, 

P p 
on —> o and 0n —> 0. If the following conditions hold: 

1. the following matrices exist and are finite: 

E[p[{r)/rXX']-\ E[p'Q(r)/rXX!}-\ E [p[ (r) X X ' ] , E [p[ (r) r X X ' ] , 

E [pi (r) X X ' ] , E [p'l (r) X X ' ] " 1 , E [pi (r) rX] , E [p'[ (r) r X ] ; 

2. E [p'0 (r) r] ^ 0 and finite, 

3. p'0 (it)/u, p\ (u)/u, (p'0 (u) — p'o (it) u)l i t 2 and (p[ (u) — p'[ (it) u)f u2 are con

tinuous; 

then along almost all sample sequences, conditional on the first n pairs, y/n (/3n — /3n) 

converges weakly, as n goes to infinity, to the same limit distribution as y/n (fin — 0). 

Remark 5.4 We refer to Remark 3.3 on page 102 to verify that assumption 3 above 

is satisfied for functions pd in Tukey's family (2.8). 
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P r o o f : First note that the estimates 0n, on and 0n satisfy the following equations 

i=i 

X » IT. 

i=i 

x, = 0 

= b 

n 

(K) 
x, = 0. 

i=l 

Simple calculations yield the following re-weighted version of the estimates 

where 

J3N = An (Jjn, <rn) v„ (pn, d>„) 

On = On Un (p\,,<5n) 

~0n = Bn (]}n, <rn) w n (&n, <7„) , 

A„ (p\,cr 

Vn O n a 

M n (62, O 

W „ (/32,cr 

Ui (0x,a 

Vi (02,a 

n 

1 " 
7 1 — ' 

i=l 
1 " 
-^2uji(01,a) ytXi, 

i=i 
n 

$3 ^ (02,a)fi, 
i=i 
1 " 

i=l 
1 " 
- J ^ W i (02io)yiXi, 

i=i 

P i (ri/a)/ri, 

Po(fi/o)/ (nbfi), 

(5.13) 
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and 

Equations (5.13) can be expressed as the fixed point of a conveniently chosen function. 

Consider f : R 2 P + 1 ->• R 2 P + 1 defined for 81 G RP, a G R and 82 G R P by 

f Anid^o)-1 v n ( / 3 l 5 a ) ^ 

f{81,o,82) = oun(82,o) 

y Bn(82o)~l W „ ( / 3 2 ,CT) . j 

To simplify the notation we do not explicitly indicate the dependence of f on n. We 

have 

Using the differentiability of po and p\ we can calculate a Taylor expansion of f about 

the l imi t ing values of the estimates (8, a, /3), 

( /9,<7,0)+Vf(S,<7,0) On — O + Rn, (5.14) 

where is the remainder term and Vf (•) G R ( 2 P + I ) X O + I ) J s t n e m a t r i x of partial 

derivatives, 

P 1 

a[A^vB]/a/3 a ^ v ^ / a a d[A-^ vnyd~8 

d[oun]/d8 d[oun]/do d[oun}/d~8 

d[B-l^n]/d8 d\B~lwn]/da d[B-^n]/d~8 
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Tedious but straightforward calculations show that each entry in Rn is a linear 

combination of quadratic forms x ' n Hn x n where x n = 0n — 0 or x „ = an — o or 

x n = 0n — 0. Note that | |x„ | | = Op ( 1 / \/n). The regularity conditions on p 0 and px 

and Lemma 7.1 show that \\Hn\\ = Op (1). We have | x ^ i J n x n | = oP ( 1 / V n ) - Hence 

1 1 ^ 1 1 = 0 , ( 1 / 0 1 ) in (5.14). 

To simplify the notation let r n = (J3n,on,J3n)' and r = (3,o-,J3)'. Equation 

(5.14) becomes 

v / ^ ( T „ - r ) = [ I - V f ( r ) ] - 1 v ^ [ f ( r ) - r ] + 0 p ( l ) . (5.15) 

We wi l l now show that the correction factors M „ , and d n in (5.6) and (5.7) are the 

corresponding first p rows of the estimate [I — V f ( r n ) ] _ 1 of the matr ix [I — V f ( r ) ] _ 1 

in (5.15). It is easy to see that I — V f ( r n ) has the following form 

I - V f ( r n ) = 

A V 

0 ••• 0 

0 ••• 0 

0 ••• 0 a 0 ••• 0 

0 ••• 0 

0 ••• 0 

w B 

where 

d d Q 

W = f B " _ 1 w " ] and B = 1- -^L- [B"1 w j . 
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That 

d 

- ~ - K ] = (o,...,o) 
dd 

follows from the fact that bn attains the minimum of the S-scale. 

Now note that the estimate of the correction factor in (5.15) has the following 

form: 

[I — V f (r n )] - l 

A-1 -A~lv/ a 

0 ••• 0 

0 ••• 0 

0 ••• 0 1/a 0 ••• 0 

0 ••• 0 

0 ••• 0 

-B~lw/a B-1 

(5.16) 

Note that in (5.15) we are only interested in the first p + 1 coordinates of r n 

(the remaining p correspond to the S-regression estimate). From [I - V f ( r n ) ] _ 1 in 

(5.16) we see that the last p coordinates o f f are not involved in determining the first 

p + 1 coordinates of rn — r . Hence, when we apply this method in practice we do 

not need to bootstrap & n . 

It also follows from (5.16) that we only need to calculate A, v and a. We need 

to find 

and 

d_ 
dd 

d_ 
do 

[ A n ( / 3 , c r r vn(d,o)] 

~An{a,o)-1 vn(0,o)] 
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One way to calculate them is to differentiate the vector an defined impl ic i t ly by 

A n (0, a) ocn (0, a) = v„ (0, a) . 

Drop the arguments (0, a) and the subscripts to simplify the notation. We differen

tiate on both sides of the equation 

9 r A i d 

c ^ [ A a ] = c ^ V -

Note that 

0 0 
dp[Aa] = Adpa + 

8 

I 

V 

( 4 A ) « ; ; feA)« 

AaT* + A' 
say. So 

8_ 

00 
a = A 8_ 

80 
v - A 

Simple calculations show that 

8 
80 

and 

P'i (rj/vn) ~ Pi' {ril on) n/ an , 
r? 

8 

00 

8 
i=l i=l 

= QpV ~ A + P" (Til °n*iA , 
i=l 

which yields 

8_ 

00 
a = A - l 

i=i 
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It follows that 

A = l - i k a 

1 " 

Gn — 

Then we have 

and 

A 1 = an I J ] Pi' to/ ff„) x i X; I A , (5.17) 

_A-1 y / a =

 b n °n E"=l Al ( Til On) X j X J ] 1 £ ? = 1 P i fal ^n) U/ dnXj 

EiLlPo to/On) ?V<Tn 

It is easy to see that M n in (5.6) is equal to (5.17) above, and that d n in (5.7) is 

- A ' 1 v/a in (5.18). 

We wi l l now show that the bootstrap distribution of y/n [f * (rn) — r„] con

verges to the same l imi t ing distribution as that of the sequence \/n[i* (r) — r]. 

First , note that 

la* a \ I A * - 1 , ,* a \ 

[r fan) - Tn] = 

Pn'Pn 
an ~ °n 

A * - 1
 V* - 8 

On Un - On 

\Pn~Pn J 

where * denotes the bootstrap version of these quantities. It is easy to see that 

n 
=5>ito7*n)x; + A ; ( j 9 B l a B ) pn 

i=l 

and 
n 

W*n(f3n,dn)=Y^Pofa/tn)x* + B n (/3 N ,<7 N ) ~Qn . 
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Then 

O* — On n 

\Pn-Pn ) 

On Un Or, (5.19) 

V B n E r = i P ' o ( ^ 7 / ^ ) x : j 

This last expression can be expressed as a function of means. Consider the function 

g : Wxp x W x W x Wxp x l M l p x l " x I P , 

g ( A , v , u, B , w ) = ( A \,u,B X w ) . 

Then (5.19) can be written as g ( A * , z * , u * , B * , w*) where A * , u*n and B * are as 

before, Zj = p\ (r*/&n) x*, and = p 0 ( f * / < 7 n ) x * for 1 < i < n. This function 

is differentiable (this can be seen by thinking it as a composition of differentiable 

functions). We have that the statistic we are bootstrapping is of the form 

g ( y n (T„)) - g (fi ( r n ) ) , 

where for 1 < i < n is a vector of the bootstrapped dimension and rn is a consistent 

estimate of the vector of parameters r. As in the proof of Theorem 3.1 we have to 

show that the asymptotic distribution of 

Vn(yn ( r „ ) - /X(T„)) (5.20) 

is the same as that of 

Vn(yn(r)-fi(r)) . (5.21) 

The proof of this last statement uses the same idea as that used in Theorem 3.1 

to prove the corresponding statement for the location-scale model. It is based on 

bounding the distance d2 (see Bickel and Freedman, 1981) between the distribution 
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functions of (5.20) and (5.21), using the fact that r n —>• r almost surely. Lemma 

8.1 of Bickel and Freedman (1981) and the regularity conditions of g show that the 

bootstrap distribution of g (yn (r„)) - g (/z (rn)) converges to the same l imi t as that 

of the sequence g(y„(r))-g(/i(r)). • 

5.4 Robustness properties 

We are also interested in the robustness properties of the quantile estimates of our 

robust bootstrap. Let t G (0,1), and let qt be the t-th upper quantile of a statistic 0n, 

that is, qt satisfies P [9n > qt] = t. A s in Section 3.4 we define the upper breakdown 

point (UB) of a bootstrap estimate qt as the smallest proportion of arbitrarily large 

outliers such that we expect qt to be driven above any bound in at least t x 100 % of 

the bootstrap samples. 

For the linear regression model we need an extra assumption. To fix ideas 

consider a linear regression model wi th a single explanatory variable (XJ G R) . We 

wi l l require that no two x's are equal. If the design is random then this event has 

probability one. If the data contain two observations at the same x the breakdown 

point of the robust bootstrap quantile estimates w i l l decrease. Intuitively this is due 

to the fact that in this case we would not need to introduce outliers in the sample 

to get an unbounded recalculated slope: a bootstrap sample consisting only of these 

vertically aligned points wi l l result in an arbitrarily large set of coefficients. The 

following definition can also be found in Rousseeuw and Leroy (1987). 
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Definition 5.1 - General position - We say that k points in W are in general 

position if no subset of sizep+1 of them determines an affine subspace of dimension 

p. In other words, for every subset x^,..., x* + 1 ; 1 < ij < k, ij ^ %i if j ^ I, there is 

no vector v 0 G W \ {0} and scalar a 6 l such that 

The main result of this section is the following theorem that establishes the 

breakdown point of the quantile estimates based on the robust bootstrap. 

Theorem 5.2 - Breakdown point of the robust bootstrap quantiles for the 

regression model - Let 0 / i , X i ) , . . . , (yn,^-n) E R p + 1 be a random sample following 

the linear model (4-1)• Assume that the explanatory variables x 1 ; x„ in W are in 

general position (see Definition 5.1). Let f3n be an MM-regression estimate and let t* 

be its breakdown point. Then the breakdown point of the t-th robust bootstrap quantile 

estimate of the regression parameters (3j, j = 1, . . . ,p is given by min (e*, e), where e 

is the smallest solution in 5 of the equation 

x i ;

v o = « for j = l,...,p+l. 

P [ Binomial (n, 1 6)<p]>t. 

The following lemma is needed for the proof of Theorem 5.2. 

Lemma 5.1 Let (ylt x x ) , . . . , (yn, x, •n ) be n > p points in W such that if 

(5.22) 

x; n 
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then X„X„ has full rank. For a given (yn+1,xn+1) let / 3 n + 1 be the least squares 

regression coefficients determined by the n + 1 points. There exists a finite constant 

K such that $n+i < K for anV (2/n+i)Xn+i) with \yn+\\ < c. (The constant K only 

depends on the first n points and on the constant c) 

Proof: We wi l l show that for any set of n > p points, the regression parameters f3n+1 

obtained when adding a new point ( y n + i , x n + 1 ) are bounded for any x n + 1 if yn+\ is 

bounded. Let X n e E n x p be the design matrix in (5.22). Note that X n has rank p 

by hypothesis. A s a consequence both (X'n X n ) and its inverse are positive definite. 

Let A be a non-singular matrix in Wxp and let x g f f . Use the following formula 

(see for example Seber (1984), page 519) 

(A + xx')"1 = A" 1 - A ^ x x ' A " 1 ( l + x ' A ^ x ) - 1 

to obtain 

0n+l = 
V x n + 1 x n + 1 

1 + x n + 1 V x n + 1 

V -
V x n + 1 x „ + 1 V 

1 + x n + l V X n + 1 

x n + l Vn+li 

where V = (X„X n ) 1 is positive definite and ( y n + i , x n + i ) is the new point to be 

added to the regression. To simplify the notation let u = x n + 1 , 

A = I 
Vuu' 

1 + u'Vu' 

The last equation can then be written as 

and B = V -
Vuu'V 

1 + u'Vu 

Pn+i = Aj9B + B u y n + 1 . 

First we wi l l show that every entry in A is bounded for ||u|| -> oo. The element 
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is given by 

A ( y ) - O y 1 + Z k i : i V k l U k U l 

Si,j -

It is easy to see (for example by dividing both the numerator and denominator by 

||u||2) that the denominator has the same order as the numerator, so that the fraction 

wi l l remain bounded as ||u|| —»• oo. Note that the denominator is bounded away from 

zero, so that the whole expression is bounded for any u. We now show that the r t h 

element of B u goes to zero as ||u|| —» oo. Note that 

V u 
B u 1 + u ' V u ' 

The r t h element is then 

1 + T/iJ
viJuiuj' 

Divide both numerator and denominator by | | u | | 2 and use that 

Hull 
< 1 for 1 < j < p, (5.23) 

to conclude that the denominator is bounded, and that the numerator goes to zero 

because (5.23) implies 

-V 0 for 1 < j < p. 

P r o o f o f T h e o r e m 5.2: Let (yu x :),. . . , (yn, xn) G W+1 be n observations fol

lowing model (4.1). We assume that xi , . . . ,x n G MP are in general position (see 
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Definition 5.1 above). This assumption guarantees that any subset of size p of them 

wi l l determine a bounded least squares estimate. 

We assume that there is a certain proportion of observations that do not nec

essarily follow the linear regression model (4.1). We wi l l show that any bootstrap 

sample that contains at least p points that are not outliers yields a bounded Qn . It 

follows that the only samples that can produce unbounded robust bootstrap coeffi

cients are those that contain at most p — 1 points that are not outliers. The robust 

~ R* 

bootstrap pn is given by 

P " f = M n (fa-^y + dn (0*n-&n) 
Note that the matrix M n and the vector d n are not re-calculated with each bootstrap 

sample, and as long as the robust regression estimate Qn does not breakdown, they 

remain bounded. It is also easy to see that <r* also remains bounded for any bootstrap 

sample. Hence, the problem becomes determining under which circumstances Bn can 

be driven beyond any finite bound. Recall that 

/3„ = * x*' 
1=1 

- 1 

E * * * 
x i Vi , 

i=i 

where the weights to* = p[ (r*/an)/r* are bounded. The above expression can be 

re-written as 
1 - 1 

i=i 
XI Vi* ' 
t=l 

where x V = y ^ x * and y* = y/ufy*. We consider the case of having at least p 

data points that are not outliers. It is enough to have a bound on the effect of one 

outlier and that that bound does not depend on the outlier. In what follows we show 
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how to obtain such a bound. To simplify the notation we use the same symbols x» 

and yi for the weighted points X ; and y;. 

Let (y i , X i ) , . . . , (y„, x „ ) , be a bootstrap sample of n > p good data points, and 

let ( y n + i , x n + i ) be an arbitrary outlier included in this sample. Let /3n be the M i s 

estimate based on the full data. Without loss of generality assume that 8n = 0 G W. 

The data can always be transformed to satisfy this assumption. In particular if 

yi = yi-p'nXi i = l , . . . , n , 

then the points (yi , x i ) , . . . , (y n , x n ) have a zero regression estimate. 

We now show that the outlier ( y n + 1 , x n + 1 ) wi l l only have an effect on /3 n + 1 for 

a bounded range of yn+i- Let c > 0 be the constant of the function ipc used for the 

MM-est imate in (4.7), and let o£ = sup crn be the largest possible value of an for a 

sample of size n. A n y point ( y n + i , x n + 1 ) such that | y n +i | > a+c wi l l not affect /3n 

and wi l l receive a null weight in the robust bootstrap re-calculations. Hence it is not 

possible to upset 3n+1 wi th this type of contamination. In what follows we consider 

the case | y n + i | < o+c. Lemma 5.1 gives a bound for the effect of ( y n + 1 , x n + i ) on 

3n+1. This bound only depends on the first n pairs. 

Given a bootstrap sample of size n , assume that the first k observations are 

"good" and the remaining n — k are arbitrary outliers. App ly ing Lemma 5.1 n — k 

times we see that the new 3n+i can only be modified by a finite amount. This amount 

depends on the k first observations of this bootstrap sample, but it does not depend 

on the values of the n—k outliers. Considering al l the possible bootstrap samples that 

contain at least p points that are not outliers we find a bound that only depends on 
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p n 
Robust Bootstrap 

90.005 90.025 90.05 

Classical Bootstrap 
90.005 90.025 90.05 

10 
1 20 

30 

0.500 0.500 0.500 
0.500 0.500 0.500 
0.500 0.500 0.500 

0.191 0.262 0.304 
0.257 0.315 0.347 
0.293 0.343 0.370 

10 
2 20 

30 

0.456 0.500 0.500 
0.500 0.500 0.500 
0.500 0.500 0.500 

0.128 0.187 0.222 
0.217 0.272 0.302 
0.265 0.313 0.339 

10 
5 20 

30 

0.191 0.262 0.304 
0.500 0.500 0.500 
0.500 0.500 0.500 

0.011 0.025 0.036 
0.114 0.154 0.177 
0.185 0.226 0.249 

20 
10 50 

100 

0.257 0.315 0.347 
0.500 0.500 0.500 
0.500 0.500 0.500 

0.005 0.012 0.018 
0.180 0.212 0.230 
0.294 0.322 0.336 

Table 5.2: Comparison of quantile upper breakdown points for MM-regression esti
mates wi th 50% breakdown point. 

the original data set. To drive the t-th. robust bootstrap quantile estimate above any 

bound we need to have at least t% of the bootstrap samples containing less than p 

"good" points. The proportion e of outliers in the original sample should then satisfy 

P [ B inomia l (n, 1 - e) < p ] > t. • 

The following table compares the breakdown point of the robust bootstrap 

quantile estimates with the equivalent classical bootstrap estimates. We considered an 

MM-regression estimate with 50% breakdown point and 95% efficiency when the data 

are normally distributed. We compared the quantiles needed to construct 90%, 95% 

and 99% confidence intervals for different sample sizes (n) and number of explanatory 

variables (p). Note that the only cases where the upper breakdown point for the 
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robust bootstrap quantiles is significantly smaller than the breakdown point of the 

regression estimate (50%) is for n = 10, p = 5, and for n = 20, p — 10. These 

cases are not of interest from a practical point of view due to the extremely large 

dimension of the model relative to the number of observations available. Also note 

that our upper breakdown points are significantly larger than those of the classical 

bootstrap quantiles estimate. 

5.5 Inference 

5.5.1 Empirical coverage levels of confidence intervals 

In this section we report the results of a Monte Carlo study on the finite sam

ple properties of confidence intervals for the parameters 3 in the linear regression 

model (4.1). We considered sample sizes n = 30, 50 and 100 wi th 2 and 5 ex

planatory variables. These independent variables included an intercept: x\ = 1, 

and Xi ~ Af(0,1) for i = 2,...,p. Finally, the errors followed the gross-error 

contamination model wi th distributions F€ = (1 — e) $ (x) 4- eV (x) where V (x) = 

0 .5$ ( (x - x0)/Q.l) + 0 .5$ ( (x + xo)/0.l) and $ (x) denotes the standard normal 

cumulative distribution function. We used e = 0.00, 0.10 and 0.20. The contamina

tion point XQ was set at 3, 4 and 10. We report the results obtained for xQ = 4, the 

others being very similar. 

We generated 5,000 data sets from the above distributions with e = 0.00, 
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0.10 and 0.20. We build 95% and 99% confidence intervals for the parameters of 

the model. We used MM-regression estimates obtained wi th ip = p 4 6 8 5 in Tukey's 

family. The S-scale was obtained wi th pi.54764 also in Tukey's family. This choice 

yields estimates with simultaneous 50% breakdown point and 95% efficiency when 

the data are normally distributed. 

We considered two methods to obtain confidence intervals for the regression 

coefficients. The first was the robust bootstrap as discussed above. We generated 
~ R* 

many re-calculated 0n — 0n and used the empirical distribution of each projection 

to obtain estimates of the distribution of ~ f ° r e a c n coordinate j = 1, . . . ,p. 

W i t h these distribution estimates we obtained the quantiles needed to bui ld the con

fidence intervals of interest. 

The second approach used the normal approximation (4.18) where we esti

mated the asymptotic variance with its empirical version £ = £ (Fn, Gn, f3n, cr n), 

where Fn is the empirical distribution of the observed errors and Gn is the empirical 

distribution of the observed design. 

Note that this estimate of the asymptotic variance is simpler (and hence nu

merically more stable) than the one given in Theorem 4.3 for an arbitrary distribution 

H. Because we know that the distribution generating the data is symmetric, we are 

confident that formula (4.18) is correct. Because of its numerical simplicity it is the 

best competitor to the robust bootstrap among (4.33) and (4.18). 

In this context the classical bootstrap demands so much computer time that 
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it becomes almost unfeasible; hence we did not include it in our study. 

Tables 5.3 and 5.4 tabulate the results for p = 2. Tables 5.5 and 5.6 contain 

the corresponding findings for p = 5. Figures 5.5, 5.6, 5.7 and 5.8 display part of the 

results in a graphical form. 

These pictures show at a glance that the levels obtained with the robust boot

strap are better than the ones yielded by the empirical asymptotic variance estimate. 

The difference in performance is more important for p = 5. B o t h methods are very 

close only for the case of n = 100 and e < 0.10 or for n = 50 and e = 0.00. The 

observed behaviour for the first scenario was expected because both methods are 

asymptotically equivalent, and hence behave similarly for large sample sizes. It is 

also reasonable not to observe large differences for e = 0.00 and moderate to large 

sample sizes, as the empirical asymptotic variance estimate is asymptotically correct 

when the errors follow the central model. Our method is more stable for smaller 

sample sizes, and yields more reasonable coverage levels for positive values of e. 
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n e Parameter Robust bootstrap Empir ica l A V 
30 0.00 Po 0.927 (0.748) 0.918 (0.720) 

P i 0.925 (0.796) 0.921 (0.739) 
0.10 Po 0.930 (0.953) 0.915 (0.720) 

P i 0.933 (1.057) 0.908 (0.892) 
0.20 Po 0.945 (1.408) 0.921 (1.215) 

P i 0.943 (1.550) 0.914 (1.247) 
50 0.00 Po 0.932 (0.572) 0.928 (0.562) 

Pi 0.928 (0.591) 0.935 (0.571) 
0.10 Po 0.938 (0.716) 0.930 (0.684) 

P i 0.939 (0.755) 0.926 (0.697) 
0.20 Po 0.953 (1.037) 0.938 (0.962) 

P i 0.950 (1.119) 0.925 (0.977) 
100 0.00 Po 0.943 (0.404) 0.942 (0.400) 

Pi 0.936 (0.410) 0.939 (0.404) 
0.10 Po 0.951 (0.501) 0.946 (0.490) 

P i 0.942 (0.514) 0.941 (0.495) 
0.20 Po 0.954 (0.713) 0.948 (0.690) 

P i 0.949 (0.742) 0.938 (0.695) 

Table 5.3: Average coverage and length of 5,000 95% confidence intervals for the 
linear regression model with p = 2 
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n e Parameter Robust bootstrap Empir ica l A V 
30 0.00 Po 0.975 (0.984) 0.972 (0.947) 

P i 0.974 (1.047) 0.972 (0.973) 
0.10 Po 0.979 (1.255) 0.973 (1.143) 

P i 0.977 (1.391) 0.970 (1.174) 
0.20 Po 0.984 (1.854) 0.977 (1.599) 

P i 0.980 (2.040) 0.966 (1.641) 
50 0.00 Po 0.980 (0.752) 0.979 (0.740) 

P i 0.976 (0.777) 0.981 (0.751) 
0.10 Po 0.984 (0.942) 0.982 (0.901) 

Pi 0.983 (0.994) 0.978 (0.917) 
0.20 Po 0.989 (1.365) 0.986 (1.266) 

Pi 0.989 (1.473) 0.977 (1.286) 
100 0.00 Po 0.986 (0.531) 0.986 (0.527) 

P i 0.984 (0.540) 0.987 (0.532) 
0.10 Po 0.989 (0.659) 0.987 (0.645) 

P i 0.984 (0.677) 0.985 (0.651) 
0.20 Po 0.991 (0.938) 0.989 (0.908) 

P i 0.990 (0.977) 0.983 (0.915) 

Table 5.4: Coverage and length of 5,000 99% confidence intervals for the linear 
gression model wi th p = 2 
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Table 5.5: Coverage and length of 5,000 95% confidence intervals for the linear 
gression model wi th p = 5 

n e Parameter Robust bootstrap Empir ica l A V 

30 0.00 Po 0.924 (1.018) 0.829 (0.684) 

Pi 0.920 (1.070) 0.833 (0.702) 

P2 0.921 (1.071) 0.835 (0.702) 

Pz 0.917 (1.077) 0.831 (0.701) 
PA 0.915 (1.060) 0.828 (0.702) 

30 0.10 Po 0.940 (1.248) 0.837 (0.780) 

Pi 0.936 (1.332) 0.835 (0.797) 
P2 0.932 (1.330) 0.829 (0.801) 

Pz 0.935 (1.328) 0.828 (0.798) 
PA 0.932 (1.337) 0.822 (0.800) 

30 0.20 Po 0.950 (1.917) 0.825 (1.058) 

Pi 0.930 (2.006) 0.809 (1.085) 

Pi 0.929 (1.983) 0.806 (1.082) 
Pz 0.935 (2.042) 0.812 (1.084) 

PA 0.936 (2.057) 0.808 (1.084) 
50 0.00 Po 0.946 (0.644) 0.912 (0.559) 

Pi 0.945 (0.669) 0.918 (0.567) 
P2 0.938 (0.671) 0.911 (0.567) 

Pz 0.938 (0.669) 0.906 (0.568) 
PA 0.940 (0.672) 0.911 (0.566) 

50 0.10 Po 0.957 (0.814) 0.912 (0.653) 

Pi 0.950 (0.851) 0.901 (0.664) 

Pi 0.952 (0.864) 0.895 (0.664) 

Pz 0.950 (0.858) 0.900 (0.663) 
PA 0.949 (0.848) 0.900 (0.664) 

50 0.20 Po 0.960 (1.306) 0.904 (0.930) 

Pi 0.951 (1.387) 0.877 (0.947) 
P2 0.952 (1.384) 0.880 (0.942) 

Pz 0.949 (1.366) 0.888 (0.944) 
continued on next page 
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continued from previous page 
n e Parameter Robust bootstrap Empi r ica l A V 

PA 0.955 (1.375) 0.890 (0.941) 
100 0.00 Po 0.944 (0.421) 0.935 (0.400) 

Pi 0.945 (0.428) 0.935 (0.402) 

P2 0.939 (0.427) 0.935 (0.403) 

Ps 0.948 (0.428) 0.939 (0.403) 

PA 0.941 (0.427) 0.938 (0.403) 
100 0.10 Po 0.954 (0.531) 0.932 (0.482) 

Pi 0.950 (0.544) 0.927 (0.486) 

P2 0.948 (0.546) 0.925 (0.485) 

Ps 0.950 (0.547) 0.927 (0.485) 

PA 0.950 (0.545) 0.926 (0.485) 
100 0.20 Po 0.960 (0.797) 0.935 (0.686) 

Pi 0.968 (0.828) 0.936 (0.692) 

P2 0.956 (0.832) 0.919 (0.691) 

Ps 0.960 (0.828) 0.916 (0.691) 

PA 0.957 (0.830) 0.919 (0.691) 
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Table 5.6: Coverage and length of 5,000 99% confidence intervals for the linear 
gression model wi th p = 5 

n e Parameter Robust bootstrap Empir ica l A V 

30 0.00 Po 0.967 (1.340) 0.911 (0.901) 

Pi 0.963 (1.408) 0.912 (0.924) 

P2 0.963 (1.410) 0.913 (0.923) 

Ps 0.963 (1.417) 0.907 (0.923) 

PA 0.963 (1.395) 0.908 (0.924) 
30 0.10 Po 0.979 (1.643) 0.923 (1.027) 

Pi 0.974 (1.753) 0.917 (1.049) 
P2 0.973 (1.751) 0.913 (1.054) 

Ps 0.973 (1.748) 0.910 (1.050) 
PA 0.971 (1.760) 0.908 (1.052) 

30 0.20 Po 0.983 (2.523) 0.917 (1.393) 

Pi • 0.973 (2.641) 0.895 (1.429) 

P2 0.973 (2.610) 0.901 (1.424) 

Ps 0.978 (2.688) 0.901 (1.427) 

PA 0.974 (2.707) 0.898 (1.427) 
50 0.00 Po 0.985 (0.847) 0.973 (0.735) 

Pi 0.984 (0.881) 0.971 (0.747) 

P2 0.983 (0.883) 0.970 (0.747) 

Ps 0.981 (0.880) 0.970 (0.748) 
PA 0.985 (0.885) 0.974 (0.745) 

50 0.10 Po 0.988 (1.072) 0.970 (0.860) 

Pi 0.986 (1.121) 0.965 (0.874) 

P2 0.987 (1.138) 0.963 (0.874) 

Ps 0.989 (1.130) 0.971 (0.873) 
PA 0.986 (1.116) 0.964 (0.874) 

50 0.20 Po 0.992 (1.719) 0.968 (1.224) 

Pi 0.990 (1.826) 0.954 (1.246) 
P2 0.987 (1.821) 0.949 (1.239) 

Ps 0.987 (1.798) 0.955 (1.242) 
continued on next page 
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continued from previous page 
n e Parameter Robust bootstrap Empir ica l A V 

PA 0.988 (1.810) 0.957 (1.238) 
100 0.00 Po 0.988 (0.555) 0.983 (0.526) 

Pi 0.986 (0.563) 0.986 (0.530) 
P2 0.984 (0.562) 0.982 (0.530) 

Ps 0.987 (0.564) 0.985 (0.530) 

PA 0.988 (0.562) 0.985 (0.531) 
100 0.10 Po 0.990 (0.699) 0.983 (0.635) 

Pi 0.989 (0.717) 0.981 (0.640) 
P2 0.988 (0.719) 0.981 (0.639) 

Ps 0.990 (0.720) 0.980 (0.639) 

PA 0.990 (0.718) 0.980 (0.638) 
100 0.20 Po 0.994 (1.050) 0.984 (0.903) 

Pi 0.993 (1.090) 0.982 (0.911) 

P2 0.990 (1.095) 0.978 (0.910) 

Ps 0.992 (1.090) 0.974 (0.910) 
PA 0.992 (1.093) 0.978 (0.910) 
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(a) n = 30 (b) n = 50 

(c) n = 100 

Figure 5.5: Average coverage of 95% confidence intervals for the linear regression 
model with p = 2. Solid triangles are levels of the confidence intervals for the intercept 
and the coefficient of X l calculated with the robust bootstrap; circles represent the 
corresponding levels for the confidence intervals obtained with the empirical asymp
totic variance estimate. Across the horizontal axis, the three groups correspond to 
e = 0.0, 0.1 and 0.2 respectively. The horizontal line indicates the nominal level. 
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(a) n = 30 (b) n = 50 

(c) n = 100 

Figure 5.6: Average coverage of 99% confidence intervals for the linear regression 
model with p = 2. Solid triangles are levels of the confidence intervals for the intercept 
and the coefficient of xx calculated with the robust bootstrap; circles represent the 
corresponding levels for the confidence intervals obtained with the empirical asymp
totic variance estimate. Across the horizontal axis, the three groups correspond to 
e = 0.0, 0.1 and 0.2 respectively. The horizontal line indicates the nominal level. 
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(a) n = 30 (b) n = 50 
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(c) n = 100 

Figure 5.7: Average coverage of 95% confidence intervals for the linear regression 
model wi th p = 5. Solid triangles are levels of the confidence intervals for the inter
cept and the coefficients of x 1 ; . . . ,x 4 calculated with the robust bootstrap; circles 
represent the corresponding levels for the confidence intervals obtained wi th the em
pirical asymptotic variance estimate. Across the horizontal axis, the three groups 
correspond to e = 0.0, 0.1 and 0.2 respectively. The horizontal line indicates the 
nominal level. 

206 



o o ° o ° 

0.0 0.1 0.2 0.0 0.1 0.2 
EPSILON 

(a) n = 30 (b) n = 50 

(c) n = 100 

Figure 5.8: Average coverage of 99% confidence intervals for the linear regression 
model with p = 5. Solid triangles are levels of the confidence intervals for the inter
cept and the coefficients of x x,... ,x4 calculated wi th the robust bootstrap; circles 
represent the corresponding levels for the confidence intervals obtained wi th the em
pirical asymptotic variance estimate. Across the horizontal axis, the three groups 
correspond to e = 0.0, 0.1 and 0.2 respectively. The horizontal line indicates the 
nominal level. 
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Chapter 6 

Conclusion 

This chapter contains an outline of the results obtained in the thesis, the problems 

that we encountered, and the directions we foresee for future work. 

• Global asymptotic properties of robust estimates: 

• We established the consistency and asymptotic normality of robust loca

tion and regression estimates for an arbitrary distribution function in the 

contamination neighbourhood. Under additional regularity conditions, we 

showed that the consistency and asymptotic normality of the robust esti

mates for the location model hold uniformly on the contamination neigh

borhood for certain proportions of contamination. There seems to be a 

trade-off between the breakdown point of the estimate and the size of the 

neighbourhood where it is uniformly consistent. 
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• It is desirable to find regularity conditions on the loss function p that wi l l 

ensure a unique minimum of the functional that defines the estimate for 

any distribution in the contamination neighbourhood. 

• It remains to study whether the asymptotic properties of the robust re

gression estimates hold uniformly on the contamination neighborhood. We 

conjecture that this is the case and we anticipate some technical difficulties 

due to the multivariate nature of the problem. We also expect that the 

required regularity conditions on the function p w i l l be more strict than 

those found for the location model. 

Maximum asymptotic bias calculation for location estimates: 

• As a byproduct of our computations regarding the uniform consistency 

of the S-location estimate (see Section 2.3.3), we derived a method to 

determine the maximum asymptotic bias for location estimates calculated 

with a re-descending function ijj. To our knowledge there are no results 

in the literature regarding the maximum asymptotic bias of this type of 

estimates. 

A stable and feasible computer intensive inference method: 

• We introduced a new computer intensive method to perform statistical 

inference based on robust estimates. Th i s method, which we call the robust 

bootstrap, can in principle be used on any statistical model where residuals 

are well defined. We studied its theoretical and practical properties when 

it is applied it to estimate the variability and the sampling distribution 
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of robust estimates for the location and regression models. We found 

that the robust bootstrap is computationally simpler than the classical 

bootstrap and that it is more stable when the data are contaminated. In 

particular, it yields estimates of the quantiles of the distribution of the 

location and regression estimators that have a higher breakdown point 

than those obtained from the classical bootstrap. 

• Robust regression estimates for the linear model wi th fixed design remain 

to be studied in detail. We expect the robust bootstrap to apply as de

scribed in Section 3.5. Note that i f the design is fixed then the contami

nation model does not contemplate outliers in the covariates. Hence, we 

can use a M-regression estimate with a monotone function ip. This change 

may modify the robustness properties of the quantile estimates. 

• We have not been able to show that the Studentized robust bootstrap 

converges faster than Op(l/ y/n). Our proof seems to fail because the 

correction factor is of that order. A possible solution is to perform a 

second order Taylor expansion when deriving the correction factor for the 

robust bootstrap. This deserves further study. 

• We are interested in extending the robust bootstrap to estimators that are 

defined by estimating equations of the form 

n 

( y t , X i , d n > i > n ) = 0, 

i=l 

where yi are the response variables, X j are vectors of covariates, 0n is 

the estimator of interest and vn is an estimator of nuisance parameters. 
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We expect the robust bootstrap to be computationally simpler than the 

classical bootstrap. Its robustness properties (stability and breakdown 

point of the quantile estimates) wi l l depend on the form of the functions 

9i-

• It is also of interest to determine whether the convergence of the distribu

tion of the robust bootstrap holds uniformly on the contamination neigh

bourhood. If this is the case we wi l l have an estimation method for the 

sampling distribution of the estimate of interest that is uniformly close to 

its target. This would be a very interesting result to obtain. 
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Chapter 7 

Appendix - Auxiliary results 

This chapter contains auxiliary results used throughout this thesis. Proofs are pre

sented for those that could not be found in the literature. 

Auxiliary results found in the literature 

Definition 7.1 - Big O in probability : Let an, n = 1, . . . be a sequence of real 

numbers and let Xn,n = 1, . . . be a sequence of random variables. We say that 

Xn = 0P (an) if 

> k = 0 

That is, the sequence \ Xn/an\ is bounded in probability. 

Definition 7.2 - Small o in probability: Let an,n = 1 , . . . be a sequence of real 
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numbers and let Xn,n = 1, . . . be a sequence of random variables. We say that 

Xn = oP(an) t/V<5 > 0 

l im P 
n—>oo 

X„ 
> 6 = 0. 

That is, the sequence \Xn/an\ converges to zero in probability. 

It is easy to see that the following three implications hold 

Xn = 0P(l), Yn = oP(l) Xn + Yn = 0P(l), 

Xn = 0P(l), Yn = Op(l) => XnxYn = 0P(l), 

and 

(7.1) 

(7.2) 

Xn = 0 P ( l ) , Yn = oP(l) X n x Y n = o P ( l ) . (7.3) 

Remark 7.1 - The above definition of Op (an) is equivalent to the following def

init ion, also found in the literature (see Davison and Hinkley, 1997, page 39): A 

sequence of random variables Xn is said to be Op (an) if, for each e > 0 we have 

l i m ^ o o P (\Xn/an\ > e) — p, a constant. It is clear that our first definition implies 

the latter. To see the other implication first note that p = p(e) above is a non-

increasing function of e > 0. This is a consequence of the following inequality that 

holds for each n G N 

Xn 

> 6 2 < P 
Xn 

> ei ei < e 2 • 

We wi l l now show that l im e _ > 0 0 p(e ) = 0. Because for any e we have p(e) > 0 it is 

enough to show that we cannot have p (e) > p > 0 for some fixed p. If such a p existed 
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p > e > p - 6 V e > 0 . 

we would have that for any 8 > 0 there exists a n0 6 N such that for any n > n 0 , 

1 Xn 

Because for each fixed n 6 N the left hand side converges to zero as e increases, this 

is a contradiction. We conclude that p (e) -> 0 as e goes to infinity. Hence both 

definitions of Op (an) are equivalent. 

Definition 7.3 - Infinitely often - Let An be a sequence of subsets of a probability 

space ft. The event {An infinitely often} is defined by 

oo oo 

{An infinitely often} = An. 
m=l n=m 

We will also write {An i.o.} 

Lemma 7.1 - Serfling - (Serfling, 1980, page 253) - Let X\,..., Xn be a sequence 

of independent identically distributed random variables and let g (x,t) : R x R —>• R be 

continuous in t uniformly on x G R. Let 6n be a sequence of random variables such 
P 

that 9n y 9, a constant, then 
n—too 

- J 2 9 (Xu 9n) E[g (X, 9)}. (7.4) 
71. 1 n — V r * " i n • 1 

a s 
If 6n — & then (7.4) holds a.s. as well. 

n->oo 

Lemma 7.2 - Bernstein - (Chow and Teicher, 1988, page 111) Let Sn = YA=IXI 

where Xi are independent random variables with E (Xi) = 0, E (X?) = of. Let 

sn = X ) " = 1 of > 0. Assume that E \Xi\k < (k\/2) of ck~2 for k > 2 and 0 < c < oo, 

then 

P l s » > i | S e x p G«rT^)) ' *>°- <7-5> 
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The condition E \Xi\k < (k\/2) of ck 2 holds if, for example, P [\Xi\ < c] = 1. 

Theorem 7.1 - Berry-Esseen for i.i.d. random variables - (Chow and Teicher, 

1988, page 305) If {Xn,n > 1} are i.i.d. random variables with EXi = 0, EX2 = o2, 

E\Xi\2+5 = 7 2 + < 5 < oo for some S £ (0,1], Sn = Y!i=iXi and $ is the standard 

normal distribution function, then there exists a universal constant c$ such that 

s u p \ P { S n < xon1'2} - $ (a)I < • 
xeR n 1 

Lemma 7.3 - Borel-Cantelli (see for example Chung, 1974, page 73) Let {An}nen 

be a sequence of events. Then 

n 

^2P(Ai) < oo P(Ani.o.) = 0. 
i=l 

Lemma 7.4 - Lemma 3.4 in Yohai (1985) - If P (|0'X| > 0) > A for all 0 E W, 

then there exist 4> > 0, 5 > 0, 7 > 0 and a finite collection of compact sets Ci,..., Cs 

such that 

| J d D {0 e W : \\0\\ = 1} 
i=i 

and 

P ( inf |0'X| > cA ) > A + 7 . 

Lemma 7.5 - Lemma 4.2 in Yohai (1985) - Let g : E f c xRh -^R be continuous and 

let Q be a probability measure on Rk such that for some 6 > 0 we have 

Er sup M z , 7 ) | 
! l7-7ol l<* 

< OO . 
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Let 7 N be a sequence of estimates in Rk such that 7 N —>• 7 0 almost surely. Then if 

Z i , . . . ,zn are independent identically distributed random variables in R f c with distri

bution Q, we have 

Auxiliary results not found in the literature 

The following lemma is an immediate consequence of Lemma 7.2. For completeness 

we state and prove it here. 

L e m m a 7.6 Assume that Xi for i = 1 , . . . , n are independent random variables with 

zero mean such that there exists a constant c with P (\Xi\ < c) = 1. Let Xn = 

£ Ei=i Xi- Then, for any 5 > 0 we have 

P r o o f : Let of = V (Xi), s2

n = £ " = 1 of, and Sn = £?=1 Xt. B y Lemma 7.2 we have 

P(\Xn\>5)=P(Xn>5)+P(Xn<-8) 

= P(Sn>n6) + P(Sn < -nS) 

a.s. 

P(\Xn > 5) < 2 exp(—717) for some 7 = 7 (c, 5) > 0 . 
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and because si < nc2 we have 

~ 2 e X p t -n2(J+c5) ) = 2 e x P ( ~ " 7 ) 

where 7 = 7 (c, 5). 

L e m m a 7.7 Ze£ p : K —>• R + be a continuous real function such that there exists a 

finite constant c with p (u) = 1 for \u\ > c. Let t G T and s G <5, where T and S are 

bounded real intervals, with inf {s G <S} > 0. Then the function 

f (u, t,s) = p (^-p-^j > ueR, t e T s e S 

is continuous in s and t uniformly in u. In other words, for any e > 0, there exist 

6t > 0 and Ss > 0 such that 

\s1-s2\<Ss, \h-t2\<6t => | / (u, t\, S\) — f (u, t2, s2)\ < e, Vw G M . 

P r o o f : The idea is to show that there exists a closed and bounded interval U such 

that for any ti, t2 G T , S i , S2 G <S we have 

"{^r)="{^r}' (7'6) 

whereas for u G U we wi l l use a standard e-5 argument. B y hypothesis we have 

t < t < t and s < s < s. Consider u > i + s c. It is clear that, for any t < i and 

s < s we have (u — t)/s > c. Hence (7.6) holds. Similarly, for u < t — sc we have 

that for any t > t and s > s we have (u — t)/s < —c and (7.6) holds as well. So, 
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U = [t — sc , t + s c]. In U p is uniformly continuous and hence it is enough to bound 

\u-ti u — t2\ 
Sl s2 

I i |S2 - S i | | t 2 Si - * i s2\ , , \s2 - Si \u\ h J = \u\ 
Si s 2 Sl s 2 Sl s 2 

. , , i | S 2 - S i | |t 2 - <l| , „ \S2 ~ S i | | s 2 - S i | |*2 - *11 ^ , 
+ l*2| 1- s 2 < Ku V t h J 5 — < 5, Sl s 2 Sl s 2 

if |si — s2| and |*2 — * i | are sufficiently small [Ku = sup : u E 

L e m m a 7.8 / / 

<K, V t e R , V s G / Q , VFeHe, 

then 7 (F, *, s) is continuous in s uniformly in * and F , i.e., /o r any e > 0, there 

exists 6 > 0 independent of t and F such that 

| s i - s 2 | <cT | 7 ( F , * , s i ) - 7 ( F , * , s 2 ) | < e, V* e R, VF E %e. 

P r o o f : A Taylor expansion yields 

fx-t\ fx-t 

where Si < s < s2. Hence, 

si J \ s 2 

= — Ep 
s 

< F i 
X - * \ / X - * 

PI : -P Sl S 2 

. . K |si - s2| 
|Si - S 2 < • < 6 

if |si — s2| < s e/K. Note that by hypothesis K does not depend on * or F. 

L e m m a 7.9 If p belongs to Tukey's family andrle is a contamination neighbourhood 

around the standard normal distribution, then Lemma 7.8 holds. 
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P r o o f : Note that pd (u) u > 0. Hence we have to find a uniform bound for 

It is enough to bound 

/

a 1 2 
-u2 ( l — u 2 ) <f> (t + s u) du, 

-d " 

and 

^ V (1 - « 2 ) 2 dH(t + su). 
J-d " 

The first integral is bounded because </> is- Also note that 

f \u2 ( l . - u 2 ) 2 d H ( t + < K\ f dH(t + su) 
J-d a v ' d J _ d 

= ^K dH{x)<-K. 
d Jt-sd d 

Lemma 7.10 If p(x,t,a) is continuous in t, then, for fixed x and a we have 

inf p (x, t, o) 
teB(t0) B(t0)\{t0} 

> p(x,t0,o), 

where B (t0) is an open ball around t0. If, in addition, p(x,t,o) is bounded, we 

inf p (X, t, o) 
tSB(to) B(to)\{t0} 

> EFp{X,t0,o) 

P r o o f : F i x e > 0. B y continuity there exists 8 = 5 (x, o, t0) > 0 such that 

t-t0\<5 =>• \p(x,t,o) - p(x,t0,o-)\ < e. 
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Hence, p (x, t,o) < p (x, to, o) + e for al l t in a sufficiently small neighbourhood B (t0) 

of to- Immediately we obtain 

Similar ly we have 

inf p (x, t, a) < p (x, t0, a) + e. 
t£B(to) 

inf p (x, t,a)>p (x, t0,o)- e, 

and the proof of the first claim is complete. The second claim is a consequence of the 

Dominated Convergence Theorem. • 

Lemma 7.11 Let x x , . . . , xn be i.i.d. random variables, Xi ~ F. If p satisfies the con

ditions of Lemma 7.7 and on —>• cr a.s. [F], then for any to and bounded neighbourhood 

B (t0) we have 

1 n 

- V ] inf p (xu t', on) EF 

n ^—' t'eB(t0) n^oo 
inf p(X,t',cr) 

t 'eB(io) 
(7.7) 

P r o o f : B y Lemma 7.1 it is enough to show that the function 

f(x,o) = inf p(x,t',o) 

t ££>(to) 

is continuous in o uniformly in x. F i x e > 0. The proof of Lemma 7.7 shows that 

there exists 8 > 0 such that i f Isi — s 2 | < 8 then 
x — t x — t 

< e, if \ox - CT2| < 8, yt e B (to), Vx e R, 

where A denotes the completion of A. Note that 8 does not depend on t (although it 

does depend on B (to)). We have 

' x — t , x — f 
<P[ I + e-

S2 
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It follows then that in f t 6 B ( t 0 ) P ( T T ) - m^teB(t0) P ( 1 7 ) + e - The same argument 

can be applied to the other inequality to obtain 

inf p ( -—-
t€B(to) \ Si 

inf p 
teB(to) \ S 2 

x — t 

for al l x. Hence (7.7) holds. 

L e m m a 7.12 Let Xn and Yn, n = 1,... be two sequences of random variables such 

that Xn = 0P (1) and Yn = 0P (1). Then 

X, 
Yn + oP (1) Yn 

- + oP(l) 

P r o o f : The result follows immediately from (7.1)-(7.3) and 

Xn Xn -Xn O p (1) 
Yn + 0 P (1) Yn (Yn + O p (1)) Yn 

The following lemma is an elemental result. We state and prove it here for 

completeness of the presentation. 

L e m m a 7.13 Let f : R —> K be a continuous function. If l im| . r |_ ) . 0 0 / (x) = 0, then f 

is uniformly continuous in R. 

P r o o f : Let e > 0. Choose K (e) such that i f |x | > K, \ f (x)\ < e/4. For the compact 

set < K} choose 5 = 5 (K) such that i f \u — v\ < 5, \u\ < K, \v\ < K then 

\f(u)-f(v)\ < e/4. Note that \f (±K)\ < e/4. To see that \f (K)\ < e/4, take 
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a sequence xn \ K, wi th |x„ | > K and use the continuity of / to conclude that 

|/ (K)\ = lim„ | / (xn)\ < e/4 because \ f (xn)\ < e/4 for al l n G N . Now, take any two 

real numbers x, y such that \x - y\ < 5. If |x | < K and \y\ < K then | / (x) - f (y)\ < 

e / 4 < e . If both | z | > K and \y\ > K, then |/(x) - f (y)\ < \f (x)\ + \f (y)\ < e/2 < e. 

If M < K and \y\ > K, then \f (x) - f (y)\ < \f (x) - f (K)\ + \f (K) - f (y)\ < 

The following lemma is an elemental result. We state and prove it here for 

completeness of the presentation. 

L e m m a 7.14 Assume that the sequence of random variables Xn, n G N converges in 

probability to the random variable X. Then Xn = Op (1). 

P r o o f : Let 5 > 0 be arbitrary. 

e/4 + e/2 < e. 
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L e m m a 7.15 - U n i f o r m S l u t z k y - Assume that Xn (9) is a sequence of random 

variables indexed by a parameter 9 G 0 . Assume that 

sup sup ' ( x n (0 ) < x ) - p ( * ( 0 ) < x ) + 0, 

and that 

P(X{9)<X + 77) — j p(x (9) < x ) (7.8) 

uniformly on x e E and 9 € 6 . Let an (9) be a sequence of real random variables 

indexed by the same set 0 , such that for any 8 > 0 

Then, 

sup sup 

supP(\an {9) - a(9)\ > 8) >0. 
()(zQ V / n—too 

P(an (9) Xn (9) < x ) - P[a (9) X (9) < x ) -> 0. 

P r o o f : To simplify the notation we wi l l write Xn, an, X and a instead of Xn (9), 

an (9), X (9) and a (9) respectively. Let 8 > 0 be arbitrary. Note that 

P (Xn an < x) < P (\an — a\ > 8) + P (Xn an < x, \an - a\ < 8) = 

= P (\an - a\ > 8) + P (Xn an < x , \an - a\ < 8) < 

< P (\an -a\>8) + P(Xn< xj {a - 8)) . 

Let 

and 

uN(9,8) = P(\an -a\ > 8) , 

tn (9) = sup p(xn{e)<x)-p(x(e)<x) 
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Note that if c > 0 then for any b G R we have b < c+\b — c\. Hence we have 

P (Xn an<x)< un (9,5) + tn (9) + P (X < xf (a - 8)) 

Similar ly we have 

P(Xn > x/an) <P(\an-a\ > 5) + P(Xn > x/(a + 5)) . 

It follows that 

P(Xn < x/ On) > P (Xn < x/(a + 5))-P(\an-a\>5) . 

Now the inequality b > c — \b — c\ implies 

P(Xn< x/ an) > P (X < x/ (a + 6)) - tn(9) - un(9,6) . 

Let e > 0, choose n 0 = n 0 (e) large enough such that for any 9, \tn (9)\ < e, for al l 

n > n 0 . Choose 8 > 0 such that 

and 

P (X < xj (a + 5)) - P (X < x/ a) 

P(X < x/(a-8))-P(X < x/a) < e, 

for al l 9 e 6 and x G R. For this 5 = 8(e) choose ni = nx (8) = ni (e) such that for 

all n > ni we have s u p 0 6 0 \un (9,8)\ < e. It follows that i f n > m a x ( n 0 (e) , n i (e)) 

then 

P(Xn < x/an)-P(X < x/a) < 3e , 

for al l 9 G 0 and.x G 
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C o r o l l a r y 7.1 Assume that Xn (9) is a sequence of random variables indexed by a 

parameter 9 € 6 . Assume that 

sup sup 
0e@ x £ R 

P(xn{9) < x ) - p ( x < x ) + 0, 

and that X is a continuous random variable with bounded density function. Let an {9) 

be a sequence of real random variables indexed by the same set Q, such that for any 

8 > 0 

supP(\an(9) - a(9)\ > s) • 0 . 
geQ V / n->oo 

Then, 

sup sup 
8e@ xeR 

>(an (9) Xn (9) < x ) - P(a{9) X < x ) -> 0 . 

P r o o f : The result follows immediately from Lemma 7.15 by noting that (7.8) is 

satisfied. • 

L e m m a 7.16 Assume that fn : E —>• M is a sequence of real functions that converges 

uniformly to g : R —t R on a set K. Let an be the sequence of infimum of fn on K, 

i.e. 

an = inf / „ (x). 

and let b = i n f l 6 £ g (x). Then an > b. 
n—¥oo 

P r o o f : Assume b > —oo (the case b = —oo can be treated along the same lines). F i x 

e > 0. Let n0 (e) be such that for al l n > n0 (e) we have 

\fn(x)-g(x)\<e, V x G / C . 
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We have 

an < In (x) < g (x) + e, V x G JC. (7.9) 

It follows that an < b + e. To prove it, assume that an > b + e, i.e. an — e > b. B y 

the definition of an, there must exist xg such that g (xg) < an — e, which contradicts 

(7.9). In the same way, we can show that b - e < fn(x) for a l l x e JC, and hence 

L e m m a 7.17 Let n > 1 and 0 < k < n be integers. Then the function 

g(S) = P( B inomia l (n, S) > k ) 

for 5 G [0,1] satisfies: g (0) = 0, g (1) = 1; g is continuous and non-decreasing. 

P r o o f : That g (6) is continuous, g (0) = 0, and g (1) = 1 is immediate. We now 

prove its monotonicity. Firs t assume that k > 1. We wi l l show that h (6) = 1 — g (5) 

is non-increasing. We have 

b — e < an. Final ly, we have that for n > no (e), |a. b\ < e. 

Then 

k-l 
h' (6) = £ i t ? - 1 (1 - 5) n—i {n - i) 6{ (1 - 6) n—i—l = a — b. 

% 

where 
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and 

b = E ( n ) (n - o s i (! - < 5 ) n _ i _ 1 = E ( n ) i 5 i ~ l (! - > 
i=o ^ i ' i ' 

where the last equality follows from 

Then, 

n \ / n 
( n - t ) = + 

71 

Ji'(cJ) = a - 6 = - A ; ( ) J * " 1 (1 - J ) " - * < 0 V(5G[0 ,1 ] 
k 

and the proof is complete for k > 1. If = 1 

h(5)=P( B inomia l (n, eJ) = 0 ) = (1 - 5 ) n , 

which is clearly decreasing for 5 € [0,1]. F ina l ly i f k = 0 

h(5) = P( B inomia l (n , o~) < 0 ) = 0 V 5 e [0,1]. 

Consider the metric d2 (F, G) for distribution functions defined by 

d\ (F, G) = inf E [(X - Y)2] (7.10) 

where the infimum is taken over al l the possible distributions of the random vector 

(X, Y) such that its marginal laws are F and G respectively. This metric was intro

duced in Mallows (1972) and Tanaka (1973). For a detailed discussion see Bickel and 
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Freedman, Section 8 (1981). d2 metrizes weak convergence in the following sense: 

d2 (Fa, F) -)• 0 iff Fa —> F and \ixaEFaX2 = EFX2 

a 

W where denotes weak convergence. 

Lemma 7.18 Let . . . , X n be independent and identically distributed random vec

tors on W. Let 6n = 0n ( X i , . . . X n ) be a statistic in W such that 

0n ^ ôo> 

to some vector 6^ G W almost surely. Let h (x, t) : W x R ^ W be a continuous 

function such that 

||h(X,0)|| 2 < g(X) Wee, with E [g (X)] < oo. 

Let the random variables Y j and Zj be 

Z{ = h (Xi, floo) = h (Xu bn) \<i<n. 

If Gn is the empirical cumulative distribution function of the Yi, and Fn the corre

sponding empirical cumulative distribution of the Z{, then we have 

l im d2 (Gn,Fn) = 0 a.s. 

P r o o f : Because d2 in (7.10) is the infimum over al l the joint distribution functions 

with the bootstrapped marginals, an upper bound is given by any joint distribution 

such that its marginals coincide with the distributions of X and Y. In particular 

consider the distribution in R p x W that assigns mass l / n to each of the "pairs" 
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(h(Xj,0) ,h(Xj,0oo)) . Choose an arbitrary e. Let X be a random vector wi th the 

same distribution of the XjS. Let I A (X) be the indicator function of the set A, i.e. 

I A ( X ) = 1 4=> X G A and 1^ ( X ) = 0 otherwise. We know that there exists a 

compact set JC = K. (e) C W such that 

2E[IKc ( X ) g ( X ) ] < c / 2 . 

For this set /C (e) there exists a positive number 5 = S (e, /C) such that 

| | h ( X ^ 1 ) - h ( X , - 9 2 ) | | 2 < 6 / 2 

if X G /C and \6\ — 92\ < S (e, K). F i x a; G fl (the probability space) such that 9n {OJ) 

converges to 9^. Almost al l OJ satisfy this. There exists a ni = ni (to, 5) such that 

V n > ni 

dn(u)-9oo\ <5/2 . 

O n the other hand, for a fixed set /C there exists an integer n 2 = n 2 (e, OJ, K) such 

that for n > n 2 

IJ^lKc ( X , ) g ( X O < e/2 . 

Take n > max (n i , n 2 ) . We have 

d\{Fn,Gn) < h ( x i , 0 ) - h ( X i , 0 o o ) 
i=l 

< ^ E e / 2 + e/2 

< e . 
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L e m m a 7.19 Let o(F,t) be as in (2.23). For any Kx > 0, there exists K2 = 

K2 (Kx) > 0 such that o (F, t) > Kx, for all \t\ > K2, for all F G He. 

P r o o f : Let Ft = (1 — e) $ + St where St is a point mass distribution function at t. 

Then o (Ft, t) satisfies (1 - e) E^p((X -t)/a (Ft, t)) = b. Hence, for any F <E Ut we 

have 

EFp ((X - t)l o (Ft, t)) = (1 - e) E*p ((X - t)/o (Ft, t)) 

+ eEHp((X-t)/o(Ft,t)) = 

b + eEHp((X-t)/o(Ft,t))>b. 

It follows that o (F, t) > a (Ft, t). Also, 

l im (1 - c) E^p ((X - t)/Kx) = (1 - e) > b, 
|t|->oo 

(because p ( ± o o ) = 1). Hence, there exists K2 such that for al l \t\ > K2, 

(l-e)E9p((X-t)/K1)>b. 

Hence o (Ft, t) > Kx for \t\ > K2. It follows that 

o (F, t)>o (Ft, t) > Kx for \t\ > K2, V F G U€. 

L e m m a 7.20 Let e G (0,1/2) be a fixed number, and let F€ be a distribution function 

of the form Fe = (1 — e) $ + e H, where $ denotes the standard normal distribution 

function and H is an arbitrary distribution function. Let ipc be a function from 
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Huber's family (see 2.5), pk be as in (2.14) and let b = E& (pk). Then 

EFM{U) U] 
• £ F . [ # ( « ) ] EFAP'M U] 

where Z ~ $. 

< (1 - ef 2 [2$ (c) - 1] [b-P(\Z\>k)Y 

P r o o f : Firs t note that for Fe and any real function h 

EFe [h (u)} = (1 - e) E* [h (u)] + eEH[h (u)]. 

Also note that ipc satisfies 

ib'c (u) u = 
u/ c i f |u | < c 

0 i f Id > c 

Hence 

| £ F . [ # ( « ) « ] ! = 
l rc 

(1 - e) - / u(f)(u) du + eEH [ip'c (u) u] 
c J—c 

= e | E H [ # ( « ) « ] I 

because f° u</) (u) du = 0 and | ^ (it) tt| < 1. 

(7.11) 

To control the denominator we wi l l find upper bounds for EFe [ip'c (u)] and 

Epc [p'k (u) u]. First note that 

ib'c (u) > 0, VM EFC [€ (u)] > (1 - 6) (u)] 

= ( l - e ) ( 2 < D ( c ) - l ) . (7.12) 
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Let pk be a function of the family described in (2.14). Then 

{ 2{u/kf i f | u | < f c 

0 if |u | > k 

and then 

EFMM u]>(l-e)E*[ffk(u) u] 

= 2 ( 1 - 6 ) (b-P(\Z\>k)), (7.13) 

where Z denotes a random variable with a standard normal distribution. The latter 

equality is due to the fact that by hypothesis b satisfies 

/

k p—k poo 

(u/kf (j){u) + / (f){u)du+l (p(u)du 
•k J—oo Jk 

= E*[p'k(u) u]/2 + P(\Z\>k). 

The result now follows from (7.11), (7.12) and (7.13). • 
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