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Abstract 

Existing criteria for evaluating the adequacy of a predictive model are 

model-based (e.g. AIC, BIC, MSPE) or empirical (e.g. PRESS and other 

cross-validation type criteria). We introduce a new class of "mongrel" criteria 

for on-line prediction that evaluates candidate predictors based on both model 

information and past empirical performance. Simulation results showed that 

the mongrel procedure produced more accurate predictions than the standard 

Bayes procedure for small sample sizes. This improvement was observed over 

a wide range of data-generators for the problem of variable selection in normal 

linear models. 
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Chapter 1 

Introduction 

This dissertation describes a new approach to on-line prediction in the pres­

ence of model uncertainty. Here, a prediction, or forecast - we use the two 

terms interchangeably - is a statement about the outcome of an as yet unob­

served random variable. The term "on-line" indicates that we are predicting 

a sequence Y = (Yi, Y" 2 , . . . ) wherein the prediction for the outcome Yn+i, is 

made at time-point n using only the information that is available at that time. 

The term "model uncertainty" means that we have a collection of models (i.e. 

parametric families) M = {Mek : 0k 6 Qk,k € JC} as candidates for the 

distribution of Y . Each Mgk generates it's own candidate predictor Yk>n+i 

for Yn+\. However, because of model uncertainty, we require a criterion for 

evaluating the worth of each model in order to obtain the prediction that will 

be used, either by choosing one model from or averaging over the models in 

Ai. In existing literature, the criteria for evaluating the candidate models can 

be classified into one of two main types. We label them "model-based" and 

"empirical". 

The value of a model-based criterion depends the structure of an as-

1 



siimed probability model. This dependence typically manifests as a measure 

of fit of the data to this model. For instance, a likelihood or an expected risk 

of the predictor computed conditionally on this model and the data would be 

model-based. In general, two different models will generate a different values 

for the criterion even if both models had generated the same sequence of pre­

dictions in the past. Well-known examples of model-based criteria used for 

model choice include the Akaike Information Criterion (AIC) and variants on 

it such as the Bayes Information Criterion (BIC). These criteria are computed 

as minus two times the maximized log-likelihood plus a penalty term that de­

pends on the number of fitted parameters in the model and sample size. For 

model averaging, the most active research area currently is in Bayesian model 

averaging wherein the adequacy of a model is judged on it's posterior probabil­

ity. Recent references include Raftery et al (1997), Clyde (1999), Hoeting et al 

(1999). One criticism of these criteria is that they essentially measure the fit of 

the data to the model rather than evaluate the expected accuracy of the cur­

rent prediction. To overcome this limitation, we can use a (decision-theoretic) 

risk criterion instead. Here, the risk Pi(Yk,n+i) of candidate predictor Yk,n+u 

assuming model i is true and conditional on the data, is evaluated for each i in 

turn. The value of the criterion is taken to be the average risk J2i &iPi(Yk,n+i) 

where a* is the weight assigned to model i. However, whichever of these model-

based criteria is used, all of them can be criticized on the basis that they do 

not consider the past predictive performance of the candidate models. 

In contrast, an empirical criterion assesses the worth of a candidate 

model strictly on its observed predictive performance. That is, the worth of 

the predictor Ykj from model k is given by a loss function L(Ykj,Yj) that 

depends only on the observed values of Ykj and Yj. A l l other information 

is ignored. Thus if two models had generated the same set of predictions, 
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the value of the empirical criterion would be the same for both models re-

garless of their underlying structure. The paradigmatic empirical approach 

in non-sequential settings is "leave-one-out" cross-validation. Here, individual 

observations Yj are omitted one at a time and Ykj is obtained from fitting the 

model using the remaining data. The criterion for assessing model k is the 

total Tfc = J2j L(Yk,j, Yj)- A smaller value of Tk indicates a better model. For 

squared error loss this criterion is the well-known predicted residual sum of 

squares, or PRESS, statistic (Allen, 1974). In a sequential setting, the predic­

tion at a given time-point must be issued without knowledge of later data and 

hence the PRESS criterion is artificial. Dawid (1984) suggested that an appro­

priate modification is to base the criterion on the sequence of one-step ahead 

prediction losses L(Yk>n+i, Yn+i) that already have been incurred where the 

forecast Yk,n+\ is based on only data known at time-point n. Subsequent work 

by Dawid and others (e.g., Dawid 1992, Sellier-Moiseiwitsch and Dawid 1993, 

Skouras 1996) developed the asymptotic theory underlying this "prequential 

approach" to forecasting. 

The empirical approach has several attractive features. Consider, for 

example, two sequences of on-line forecasts for the next-day maximum tem­

perature where one of the sequences was generated by a meteorologist's sta­

tistical model and the other sequence was generated by an old man based on 

"the feel in his bones". The performance of these two sequences would be 

non-comparable using a model-based approach since no model is available for 

the old man's sequence. But this comparison is easy to make using an em­

pirical approach; simply define the criterion as Y,j L(Yk}j,Yj), say. While the 

model-free nature of an empirical criterion allows for comparison of arbitrary 

forecasting procedures, we do not view this property as an advantage necessar­

ily. Indeed, we will indicate shortly why it is a disadvantage in small samples. 
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Instead, we feel that the most attractive feature of an empirical criterion is 

that it provides an evaluation based directly on past predictive performance 

and we seek to preserve this feature in our new approach. 

Initially, our work was motivated by the possibility that judicious use of 

the observed one-step ahead losses might allow for better predictions in small-

samples while retaining the desirable asymptotic properties. The intuition is 

that losses incurred early in the sequence are likely to have less bearing on the 

quality of a candidate predictor than losses later in the sequence. Early on, 

the models are poorly estimated and therefore yield less precise information 

about performance. Dawid (1992) recognized this possibility and omitted the 

losses from early time-points in his simulations when computing the total loss. 

We, however, were interested specifically in such early losses since our focus 

was on small-sample performance. 

Through simulations, we investigated the influence of early losses in 

ad hoc fashion by downweighting the earlier losses when computing the total 

loss, that is, rather than using £ " = 1 L(Ykji, Yi) as the criterion when predicting 

for time-point n + 1, we used J2i=iWiL(Yk>i,Y) where the weights satisfied 

Wi < Wi+\. Some weighting choices we considered were: (1) tUj = i and 

(2) Wi — 0 if i < n/2, Wi = 1 if n/2 < i < n. Many of our choices yielded 

statistically significant improvements over using the simple total loss. However 

the magnitude of the improvement seemed small. Typically the reduction in 

the squared error prediction loss was around 0.5%. 

We felt that there were two major limitations to this initial approach. 

First, by taking a purely empirical view, we were left without a probabilistic 

framework. This meant we could not quantify the relative importance of resid­

uals at different time-points and thus could not determine optimal weighting 

strategies. Second, the initial specification of candidate models and prior be-
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liefs about their plausibility represented information that may not have been 

used fully by looking only at the incurred losses. This information would be 

particularly valuable early in the sequence when little data has accumulated. 

Hence, we concluded that a purely empirical approach was not suitable for 

evaluating candidate models in small samples. 

In Chapter 2, we describe a novel approach that combines aspects of 

both the model-based and the empirical approaches: we assume a probability 

framework for computing an expected risk but the expectation is computed 

conditional on a statistic S„ that reflects the observed predictive performance of 

the candidate models rather than conditional on the data values. To emphasize 

the dual aspects of the approach, we give the label "mongrel risk" to the 

resulting criteria. Examples of S„ that reflect empirical performance include 

past losses L(Yk,u Y), or past "predictuals" Yi — Yktt (the residuals that would 

arise from using the predictions from model k), from the candidate models. 

Different choices for S n generate different members in the class of mongrel risk 

criteria. The task is to determine good strategies for selecting S„ at any given 

time-point. A simple strategy is to set S n equal to the last, say, n/2 losses 

or predictuals always. But such a rule may be too naive as it ignores both 

information intrinsic to the model structure and supplied by the data. More 

sophisticated strategies, which we label as "global", would incorporate model 

and covariate information but does not use the outcomes of the response Y(„) 

in selecting S„. If a strategy also uses the outcomes of Y(„) to select S n , we call 

it "adaptive". In adaptive selection, we define a "meta-risk" for assessing the 

adequacy of each candidate S„. We describe two examples of such meta-risks: 

a minimax meta-risk and a weighted average meta-risk. 

In Chapter 3, we apply the mongrel risk criterion to prediction based 

on normal linear models. Explicit formulae for computing the mongrel risk 
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are given for the class S„ = U T Y ( n ) + c where U and c do not depend on 

Y( n )j that is, Sn is affine in the response vector. This class of S n includes 

past predictuals. We illustrate the implementation of the approach using a 

simulation study which uses naive choices of S„. We observed that setting S„ 

equal to a few recent predictuals resulted in more accurate predictions than 

the Bayes procedure (obtained by setting S n = Y( n )) in small samples for 

many but not all data-generating models. 

We investigate the adaptive selection of S„ for small-samples in Chapter 

4. Specifically, we seek the optimal number of predictuals to include in S n . We 

argue that adaptive selection maximizes the improvement in predictive accu­

racy. We implemented both the minimax and the weighted average versions of 

the meta-risk based on the simulated data used in Chapter 3. Our simulation 

results showed that in a model averaging context, the minimax meta-risk crite­

rion produced more accurate predictions than the Bayes procedure uniformly 

over all of the scenarios tested. Moreover, the magnitude of the improvement 

was substantially greater than that seen in Chapter 3 where global choices of 

S n were used. 

In Chapter 5, we use robustness considerations to suggest global strate­

gies. Unfortunately, these strategies are difficult to implement since the com­

putations require integration over the distribution of Y ( n + 1 ) that are not 

tractable typically. We implemented one strategy for selecting S n in our sim­

ulation study by approximating the needed quantities. Our results indicated 

that the performance of this strategy beat out the Bayes strategy in many 

scenarios but also lost badly in a few cases. 

The asymptotic theory for S„ is developed in Chapter 6. We character­

ize the sub-class of affine S n that will yield asymptotic consistency of model 

weights. This consistency condition ensures that if one of the candidate mod-
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els is true then as n —> oo, the predictor from the true model will always be 

chosen (in a model choice approach) or that the weight assigned to the true 

model tends to 1 (in a model averaging approach). 

In Chapter 7, we discuss additional simulation results that support the 

use of the mongrel procedure. In addition, we indicate areas of current and 

future work. 
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Chapter 2 

Mongrel Risk 

Let Y = (Yi,Y2,...) be the sequence of random variables that is to be pre­

dicted. At each time point n, we must issue a prediction concerning the value 

of Yn+l. 

To aid us in constructing the prediction for time point n + 1, typically 

the following information is available: 

1. a p-vector of covariates X n + i whose elements may be related to Yn+i, 

2. the outcomes and covariates already observed up to time point n, i.e., 

Y ( n ) = ( F i , . . . , Yn) and X ( „ ) , the n x p matrix with row i equal to X j , 

3. prior information about the structure, which we call the model, that 

describes the probabilistic dependence of the outcomes on the covariates 

and the set of unknown parameters 6 that indexes the model, and 

4. prior distributions on the values of the unknown 9. 

When the model posited in 3. is uncertain, we often entertain a collec­

tion of candidate models M = {M6k : 6k € 0^, k G JC}. Each candidate model 
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k is assigned a prior probability akfi that reflects the plausibility that it is the 

true model. We say that model k is true if it contains the true distribution of 

Y and no sub-model (still in M) of model k contains this distribution. For 

each model k, we can proceed in a variety of ways to obtain a function of the 

observed data which we will use as the point prediction of Yn+i. If the loss 

function L(a, y n+i) describes the loss incurred by predicting using the value 

a = a(Y(„)) when Yn+\ = yn+\ obtains, the Bayes predictor Yk<n+\, conditional 

on model k being true, is the value of a minimizing the posterior risk, i.e., 

Yk,n+i = a rgminE M Y ( n ) I / (a , Yn+1) (2.1) 

Here, Efc|s indicates the conditional expectation given a statistic S assuming 

model k, marginalized with respect to the unknown parameters, is true. That 

is, if we let T be a minimal extension of S to Y ( „ + 1 ) , then for any function 

0 (Y( n + i ) ) , 

E*| S <7(Y ( n + 1 ) ) = J 9{y{n+i))p(y(n+i)\0k,S)p{ek\S)dekdt (2.2) 

where p(-) denotes the appropriate conditional density and dt represents inte­

gration over the sigma-field generated by T. Analogously, the notations C f c |s 

and Vfc|s will indicate the covariance and variance operators respectively. 

Each candidate model generates a forecast but we must give a single 

forecast that will be used. This problem is usually solved either by choosing 

one of the candidate forecasts or by using the forecast generated from a mixture 

over the candidate models. We use the term "model choice" to describe the 

first approach and the term "model averaging" for the second. 

To implement a model choice strategy, we require a criterion to assess 

the risk of the forecast derived from each candidate model. If model k were 
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true, the posterior risk of using Yk,n+i is 

Pk{Yk,n+V, Y ( N ) ) = Ek\Y(n)L{Yktn+i, Yn+i). (2.3) 

But because the true model is uncertain, we should also consider the posterior 

risk of using Yk>n+i when a different candidate model i / k is true. That is, 

we also consider 

Pi{Yk,n+i; Y ( „ ) ) = ~Ei\Y(n)L(Ykin+i,Yn+i). (2.4) 

In the Bayes decision approach, the overall assessment of risk for each 

candidate forecast is given by the weighted average over the collection of pos­

terior risks that would be incurred by this forecast under different true models. 

That is, the adequacy of the predictor YktTl+i would be the average posterior 

risk 

p{Yk,n+l, Y ( n ) ) = Y;ai(Y(n))pi(Yk ,n+li ~Y(n) ) (2-5) 
ieK. 

where the model weights are 

a I ( Y ( N ) ) = P ( M I | Y ( N ) ) 1 (2.6) 

i.e., CVJ(Y(„)) is the posterior probability that model i is true. 

Based on the criterion p ( Y f c i n + 1 ; Y ( N ) ) , the best choice for the predictor 

of Yn+i is Yk*,n+i where k* satisfies 

k* = axgminp(Y f c n + 1 ; Y ( N ) ) . (2.7) 

For the special case of squared error loss, k* is the index of the model with 

the highest posterior probability, i.e., (2.7) reduces to 

k* = axgmaxdjfe(Y(N)). (2.8) 
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In the case of a model averaging strategy, the Bayes decision approach 

is to construct the predictive mixture distribution for Yn+i given by 

|̂v(B) = E a i ( Y w ) ^ | Y w (2-9) 
ieic 

where i * i | Y ( n ) is the posterior distribution of Yn+i given Y ( n ) assuming model 

i is true and the weight o i j ( Y ( n ) ) is determined as in (2.6), the same as for 

choice strategies. (Here, the subscript rn refers to the mixture rather than a 

candidate model.) The risk of using a = a(Y( n ) ) to forecast Yn+\ under the 

mixture is 

p ( a ; Y ( n ) ) = E m | Y ( n ) L ( a , y n + 1 ) (2.10) 

= £ a i ( Y ( n ) ) A ( a , Y ( n ) ) (2.11) 
i€K 

and the optimal forecast is now 

Ym,n+i = a igminp(a ; Y ( n ) ) . (2.12) 

For the special case of squared error loss, (2.12) reduces to 

Ym,n+l = Y ak(Y(n))Yk,n+\- (2-13) 
keic 

We wi l l refer to the solution defined by (2.1) through (2.13) as the Bayes 

procedure (for model choice or model averaging, as appropriate). 

The problem with the Bayes procedure is that none of the assessments 

of risk it uses reflect the true risk. First , the evaluation of Pi(-) assumes 

a distribution for Y ( n + i ) obtained by averaging over the distribution of the 

parameters whereas the true parameter values are fixed numbers which almost 

certainly do not equal those implied in the averaging. The Bayesian's position 

is that this averaging represents the best that one can do according to the rules 
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of probability. However this does not make the assessed risk true. Moreover, 

since only one of the models can in fact be true, at least some of the risks 

Pi(-) are based on an incorrect model. These observations raise two issues: (i) 

Are these risk assessments valid? and (ii) Can the criteria for assessing risk 

be modified to produce better predictors? As to (i), it is clear that we cannot 

avoid making some "incorrect" assessments of risk since the true distribution is 

unknown. So pending a better resolution we must be satisfied with the process 

of weighting the risks or the models according to beliefs about the merit of 

each model as a reasonable means to handle the model uncertainty. This 

procedure is no different than what we use to handle parameter uncertainty in 

the strictly parametric case. However, we answer (ii) by showing that better 

predictors can be obtained by changing the way we calculate « j ( - ) and pi(-). 

To put our proposed approach in context, let S n = S n (Y( n ) ) be any 

statistic and consider generalizing the Bayes decision procedure by replacing 

occurences of Y(„) by S„ in (2.4) through (2.13). The choice for S n need not 

be the same for each instance. We let S" and S£ denote the choices used when 

evaluating ai(-) and Pi{-), respectively. (More generally, we are free to choose 

a different S n for every instance of Y ( n ) . For example, the choice of S£ in 

(2.6) could be different for «i(S") than for av(S").) Our thesis is that better 

predictors can be obtained by choosing and/or S£ to be different from Y ( n ) . 

In this more general framework, the formula for the weights becomes 

Oi(SZ) = P(M, |S : n 
a (2.14) 

For a choice strategy, equations (2.4), (2.5), and (2.7) become 

(2.15) 

(2.16) 
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r = a rgnmj5 (n , B + 1 ;S« ,S£) . (2.17) 

If the loss is squared error and S£ = Y ( n ) , then it can easily be shown that 

(2.17) reduces to 

A:* = argmaaa i(SS). (2.18) 

For averaging strategies, (2.9) through (2.12) become 

Fm\S^n = I > i ( S M | S £ > (2.19) 

p(a;S£,S£) = E m | S s , s , L ( a , Yn+1), (2.20) 

y m, n + 1 = argminp(a ;S£ ,S£) . (2.21) 

For squared error loss (2.13) becomes 

Ym,n+l = £ a*(S£)Efc|Sp Y„+i. (2.22) 
keK 

When S£ = Y(„), the expectations in (2.22) are posterior means and so (2.22) 
further reduces to 

W i = E t t * ( S n ) V ' (2-23) 
The collection (2.14) through (2.23) defines a new class of risk cri­

teria, indexed by the choice of a pair of cr-fields (S£,S£), for obtaining a 

predictor Yk*tTl+i (model choice) or Fm,n+i (model averaging). We will use 

Yn+X = F„+i(S£, S£) to refer to a predictor of either form {Yk*>n+1 or 
^m,n+l)-

We conjecture that suitable choices for S£ and S£ are vectors of statistics that 

reflect how well each of the candidate models have performed in predicting 

earlier data points. Such choices of S° and S£ motivate the following defini­

tions. 

Definition 2.1 The mongrel risk of the predictor Yn+\ when model i is true 

is 

Pi{Yn+l-S£) = Eils?iL(Yn+1, Yn+l). (2.24) 
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Defini t ion 2.2 The average mongrel risk of the predictor Yn+X is 

j 5 (y n + 1 ;SS ,S£) = ^ ( S S t o f o + i l S S ) . (2.25) 
ieic 

The label "mongrel" is intended to reflect the hybridization of a model-

based framework wi th empirical performance. The Bayes criterion is a special 

case in which we set S" = S£ = Y(n). 

The losses L(Ykj; Yj) from previous time-points j that would have been 

incurred had the predictor Ykj been used are natural candidates for statistics 

to be included in S° or S£. The following statistics are of particular interest 

and so we name them specifically. 

Defini t ion 2.3 The predictual resulting from using the predictor Ykj to pre­

dict Yj is 

Rk,j =Yj — Yjfcj. (2.26) 

(The index k in the predictuals or the losses need not be the same as 

the index for the model that is under evaluation). B y choosing S£ and/or S£ 

of this form and conditioning on them, we obtain predictors that are functions 

of the actual performance of the candidate models rather than simply on data 

values. 

It is not obvious which predictuals or losses should be included and one 

of our main goals is to find good choices for (S", S£). We wi l l focus on using 

predictuals rather than losses for two reasons. The pragmatic reason is that 

in the normal linear models with which we wi l l be working, predictuals (more 

generally, any affine functions of Y(n)) allow us to evaluate the risks in (2.14) 

through (2.23) analytically. The conceptual reason is that losses, typically, do 

not distinguish between the bias and variance aspects in the error and this 

information may be relevant to assessing the quality of the candidates. 
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Since it is intuitively reasonable to expect that more recent predict­

uals contain more information (if only because recently fitted models are more 

stable), we prefer the inclusion of more recent predictuals in (S°, S£). There­

fore, we wi l l consider only collections of predictuals wherein the inclusion of a 

predictual from time-point j implies that the predictuals from all time-points 

greater than j are also included. Note that the special case of using the pre­

dictuals from all past time-points is equivalent to using the Bayes procedure 

since the a-field generated by al l predictuals and the a-field generated by the 

data are equivalent. (The value of Y i can be recovered from the predictual at 

the first time-point. A t any time-point n > 1, the value of Yn can be recovered 

given the n-th predictual and Y ( n _ X ) . B y induction, Y(„) can be recovered 

from the set of all past predictuals.) 

The formulae (2.14) through (2.23) serve as a means for obtaining the 

predictor for a given choice of (S",S£) but say nothing about what (S°,S£) 

to use. (This step is unnecessary in the Bayes approach since in that case 

S° = S£ = Y ( n ) always.) One simple specification for (S°,S£) is to use 

always, say, only the n/2 (or some other pre-specified function of n) most 

recent predictuals when predicting for time-point n. This "naive" specification 

does not consider the structure of the underlying models or the observed data. 

In Chapter 3, we w i l l see that this choice often yields better predictions than 

those obtained using the Bayes procedure but does not do so consistently. 

A more sophisticated selection procedure could take into account the model 

structure and the covariate values X ( n ) but not the outcomes of Y ( n ) . This 

"global" approach, discussed in Chapter 5, is difficult to implement because the 

computations require an integration over the distribution of Y( n +i ) that is not 

tractable typically. However, we place less importance on the global approach 

because we believe that to obtain the greatest improvement, (S°, S£) must be 
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chosen adaptively, that is, rather than using the same ( S ° , S £ ) regardless of 

the outcomes of Y ( n ) , a different ( S ° , S £ ) is chosen for each sequence. The 

reasons for this belief will be developed more fully in Chapter 4. For now, we 

describe only the basic mathematical framework. 

In order to compare different (S", S£)'s, we need to assess the adequacy 

of each ( S « , S £ ) . 

D e f i n i t i o n 2.4 The meta-risk o / ( S " , S £ ) is a number that assesses the ade-

quacyof(S%,Stt. 

The optimal ( S ° , S £ ) minimizes this meta-risk. 

There are two ways of interpreting meta-risk. The first way involves 

noting that any given ( S ° , S £ ) determines completely Yn+i. Thus, it seems 

reasonable that the meta-risk should be computed conditional on that choice of 

Yn+i. In this case, potential definitions for the meta-risk include the maximum 

risk of Yn+\ over different true models 

p v ( S £ , S £ ; T £ ) = m a x P j ( F n + 1 ; T £ ) , (2.27) 

or the weighted average risk of Yn+i over different true models 

p + ( S « , S £ ; T £ , T £ ) = ^al(T-)pi(Yn+l;T^ (2.28) 

i 

where we have introduced the statistics T° and T £ to emphasize that these 

statistics, which are used to evaluate ( S ° , S £ ) , are distinct from the statistics 

( S £ , S £ ) , which are used to evaluate the candidate predictors. Taking T £ = S" 

and T £ = S £ would be natural because it would mean that we are using the 

same model weights and the same mongrel risks in both deriving and assessing 

Yn+i. However, we are not constrained to do so. Note that the dependence on 

(S", S £ ) is implicit to the construction of F n + 1 . 
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The second way of interpreting the meta-risk takes the view that the 

choice of (S£, S£) precedes consideration of how the predictor is subsequently 

obtained for the selected ( S " , S£). Thus, the meta-risk should reflect the risk of 

different candidate predictors that might arise (as opposed to does arise) from 

using ( S ° , S£) . This type of assessment is straightforward in the model choice 

context. For example, we could define the meta-risk as, say, the maximum 

average mongrel risk over candidate predictors 

p v ( S £ , S £ ) = m a x p ( l \ n + 1 ;S£ , S a (2.29) 
k 

or the weighted average of the average mongrel risk over candidate predictors 

^ v ( S : , S : ; T : ) ^ a 1 ( T : ) f c 1 ; S : , S : ) . (2.30) 

k 

Again, it would be natural, but not necessary, to take T " = S " . Unfortunately, 

the analog to (2.29) or (2.30) in model averaging is not obvious. The class 

of "candidate predictors" in model averaging is the space of all functions of 

( S ° , S£) . This class is problematic because of its large size and there does not 

appear to be a natural restriction. 

We w i l l use the first interpretation of meta-risk, in part because it is 

simpler to compute, but also because we find the second one odd in giving 

weight to the risk of a candidate predictor when it is known that that predictor 

wi l l not be used. 
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Chapter 3 

Application to Normal Linear 

Models 

In this chapter, we derive the computational formulae needed to implement the 

criteria defined in (2.14) through (2.20) in the context of normal linear models. 

The candidate models are subset regression models. For expository simplicity, 

we will use the symbol S n in statements that are applicable to both S° and 

S£. Except where noted, in this chapter and for the remainder of thesis, we 

assume that S„ is a J = J{n) vector obtained as an affine transformation of 

Y(„), i.e., 

S n = U T ( Y ( n ) + c ) , (3.1) 

where the n x J matrix U and the n-vector c do not depend on Y(n). With­

out loss of generality, we can assume that U is of full rank; if it is not, we 

simply remove linearly dependent rows until it is full rank. Ultimately, we are 

interested in S n only for the a-field it generates. Choices for Sn that satisfy 

(3.1) include the special cases where S n is a constant, S n = Y(n), and S„ is 

a vector of past predictuals. The inclusion of past predictuals in this group 
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follows from the fact that Bayes predictors in linear models are affine in Y ( „ ) . 

The manner in which predictuals impact mongrel risk assessments can 

be rather subtle. So we will provide some basic results in order to develop 

an intuitive understanding. We conclude the chapter by presenting simulation 

results for some simple forms of S n. Our primary intent here is to illustrate 

the procedure; the identification of "good" choices for S n is taken up in the 

subsequent chapters. 

3.1 Notation 

We consider a collection of subset regression models of the form 

Y ( n ) | X ( n ) , & ~ A / - (x ( n ) D f c &,a 2 l ) (3.2) 

as candidate models where Dk is a p x pk matrix that "picks out" the pk 

covariates associated with model k. For simplicity, assume that a 2 is known. 

The parameter vector, Bk, is assumed to have a prior distribution irk given by 

pk~M(bk,rk). (3.3) 

For notational convenience, let 

Zfc,(n) = X ( n ) D j t . (3.4) 

Then the marginal density for Y ( n ) after mixing over the prior is J\f (ukjn, ^ktn) 

where 

Vktn = Zfci(n)bfc (3.5) 

$k,n = o2l + Zfc)(„)rfcZ^(n). (3.6) 

For each model k and given data Y ( n ) at time n, the Bayes rule with respect 

to 7Tjt and under squared error loss is 

19 



• for estimating Bk: 

J3k = arg ininEjfc iY^) (Bk - a ) 2 

= Efc|Y (n )/?fc 

= C * , n * f c , n Y ( n ) + (bk - C k , n ^ n Z k t { n ) b k ) (3.7) 

where Cki7l — TkZT^ is the covariance between Bk and Y ( n ) . 

• for predicting Yn+i. 

Yfc,n+1 = Zl>n+1Pk 

= Zr ,n+lCfc,n*fc,nY( n) + Z £ n + 1 (bfc - C f c ) n*^Z f c ] ( r l)bfc) 

= U fc ,n+l Y (n) + (Zfc,n+1 - U f c ^ Z ^ ) ) bfc (3.8) 

where 

Ufc,n+1 = Zfc^+iCfc^fcjj (3.9) 

can be recognized as (marginalized with respect to fik) the covariance of 

Yn+i and Y ( n ) multiplied by the inverse of the variance of Y ( n ) . 

The Bayes predictors YktTl+1 arising from considering different models 

will constitute the collection of candidate forecasts. 

The predictual arising from using Yk<n+i, the predictor from model k, 

to predict Yn+i is 

Rk,n+1 = Yn+i — Y/c,n+l 

= Yn+i - u J ] 7 i + 1 Y ( n ) - (Zkjn+i - u^ n + 1 Z f c i ( n )) bk 

= u*kTn+i (Y(n+l) ~ Zfc>(„+i)bfc) (3.10) 

where u*k

T

n+l = ( -u^ n + 1 , l ) . 
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Given data up to time-point n, it can be useful to express the predictuals 

for all time points less than n in terms of the full data set (Y(„), Z f c j( n)), i.e., 

we write the predictual from time-point j as 

Rk,j = u£ j (Y( n ) - Z fc](n)b fcj (3-11) 

where u£j = (u£j, 0 , . . . , 0). The difference between (3.10) and (3.11) is purely 

notational. However, when S n is composed of predictuals only, the matrix U 

in (3.1) is easy to contruct if the predictuals are in the form (3.11); simply set 

each row in U to be with the desired choice of k and j. 

When model i is true, Rk,n+\ is normally distributed with mean and 

variance given by, respectively, 

Ej-ftfej = u°k

Tj (Zi^n)bi — Zk:(n)bkJ (3.12) 

ViRkJ = ufj%,nu°kij. (3.13) 

3.2 Formulae for Choice and Weighting Strate­

gies 

To implement the criteria (2.14) through (2.20), we require explicit formulae 

for c*j(S"), Pi(Yktn+i, S£) and F^. Since S n is affine in Y(„), these formu­

lae can be obtained in a straightforward manner using the properties of the 

multivariate normal distribution. If model i is assumed to be true, then S n is 

distributed as a Af(pi, £j) with mean and variance 

Hi = U T Z t , ( n ) b t + U T c , (3.14) 

= a 2 U T U + U r Z , i W r , Z j ( n ) U . (3.15) 
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Then the mongrel risk of the predictor Yk,n+i is 

Pi(Yfc > n+i;S£) = EllSPnRl>n+1 

+ ( E , i i f c ) r i + 1 + Hfc.iEr1 (Sp

n - /ii)) 2 (3.16) 

where the covariance between the predictual Rk,n+i and S£ is 

H f c ) i = Ci(Rk,n+1, S£) = Dl^i>nU (3.17) 

and 

Dk,i = ^"^Zi^^riZ^+x - ^^Zfc^^TfcZfc^+i. (3.18) 

The predictive distribution under model i conditional on S£ is given by, 

^ | S S ~ ^ , T 0 (3.19) 

where 

A = EiisP^+x 

= z£B+1b, + Z ^ . r . Z ^ U E - 1 (S£ - M l ) , (3.20) 

T i = VjispYn+x 

= ° 2 + z ^ n + 1 r j Z i ] n + x - z^„ + 1 r i z^ ( n ) uE~ 1 u T Zj ) ( n ) r jZj i „ + 1 

= * 2 + Z j n + 1 ( r r 1 + a - X w U ^ U ) " 1 ^ ) ) - 1
 Z i > B + 1.(3.21) 

The model weights a i (S£) are obtained using Bayes theorem which 

yields 

<*(SZ) = ^'°mfc(S5aV (3-22) 
Efca*,om*( sS) 

where a i ) 0 denotes the prior weight given to model i and 

m,(S*) = (2 7 r) J / 2 |E J | - 1 / 2 exp [-\(Sa

n - ^f^1^ - M l)} (3-23) 

is the marginal density of S" when model i is true. 
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3.3 Some Intuition 

It is worthwhile at this point to develop some intuition as to how past pre­

dictuals represent information. The key point is that predictuals are relevant 

only when model uncertainty is present. Indeed, in Corollary 3.1 below, we see 

that when a single model is taken to be true a priori, the assessed quality of 

the predictor from this model does not depend on any affine function of Y ( N ) . 

One important notion relevant to choosing S£ and S£ is risk-sufficiency. 

Def ini t ion 3.1 (a) A a-field S£ is risk-sufficient for a i / a i ( S £ ) = OJJ(Y(„)) for 

every i. (b) A a-field S£ is risk-sufficient for p if pi(Yk,n+1; S£) = pi(Yk,n+l; Y ( N ) ) 

for every pair (k,i). 

In taking a mongrel risk approach, we need to avoid choosing a pair (S" ,S£) 

that is risk-sufficient since then our procedure devolves to the Bayes procedure 

that we are trying to beat. The following Lemma can be useful for verifying 

risk-sufficiency of a given S£. 

L e m m a 3.1 pi(Ykin+i;S^) = Pi(YktJl+x\Y(N)) •<=>• at least one of the follow­

ing holds: 

(i) Ekii = 0, 

(ii) rank(U) = n, or 

(iii) Dk>i lies in the column space of U , i.e., there exists a vector d such 

Dk,i = U d . 

Proof The sufficiency of condition (i) is obvious from inspection of (3.16). If 

condition (i) does not hold, we need Ap = pi(YktTl+1; S£) - Pi(Yktn+1; Y ( N ) ) = 0. 
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Let Xk,i = C j ( i ? f c ) T l + 1 , Y ( n ) ) . Applying (3.16) and simplifying, we obtain 

Ap = - E ^ E " 1 - ^ + (EiRk>n+1 + S f c i j E t

_ 1 ( S ^ - //0) 

= £ £ ^ ( 1 - P)£> f c l i + c ( Y ( n ) - !/0 r(I - P)£>fc,i (3.24) 

where 

P = U ( U T * i U ) - 1 U T * i (3.25) 

is a projection matrix onto the column space of U and c = E ; / 4 ! n + i + (Y( n) — 

ui)T(I + P)Dkti. Clearly A , = 0 iff 

(I - P)Dkii = 0. (3.26) 

Since rank(U) = n implies I — P = 0, condition (ii) is sufficient. Otherwise, 

we need the null space of I — P to contain Dk>i. But the null space of I — P is 

equal to the column space of U and hence we need Dkj to lie in the column 

space of U . This is condition (iii). | 

As an example consider that, conditional on a given model i, the min­

imal sufficient statistic for the parameter is Z ^ n ) V f ~ * Y ( n ) . This suggests 

that a natural candidate for risk-sufficiency (for p) in a collection of K models 

is S£ = U T Y ( n ) where U = [ ^ n Z U n ) | • • • | ^ ^ n Z ^ ( n ) ) . Indeed, by taking 

components of d to be 0 or of the form r^Zi^+i , it is clear from (3.18) that 

this U can generate any Dktki for any choice of k and k'. This shows that 

S £ is risk-sufficient. Note that Lemma 3.1 also suggests that risk-sufficiency 

is a weaker notion of sufficiency than parametric sufficiency. If we have, say, 

only two candidate models, then we can obtain one-dimensional risk-sufficient 

statistic simply by setting U = Dkj. Moreover, this choice can be made ir­

respective of the number of parameters in the models. This result contrasts 
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with parametric sufficiency where the minimal sufficient statistic usually has 

dimension equal to the number of parameters. (This phenomena may also 

explain what's happening in Lemma 3.2 below where only a few predictuals 

is needed to get risk-sufficiency.) This observation leads us to conjecture that 

given K candidate models, it should be possible to construct a K — 1 dimen­

sional risk-sufficient statistic. 

Corollary 3.1 The risk pk(Yktn+i, S£) is constant in S£. 

Proof Setting i = k in (3.17), (3.18) gives Ektk = 0 and the result follows 

from condition (i) in Lemma 3.1. | 

This result is not surprising really. Conditional on a fixed model, the 

Bayes predictor is the optimal predictor so the corresponding predictual must 

be uncorrelated with any affine function of Y ( n ) . (Otherwise one can con­

struct a better predictor and thereby contradict the optimality of the Bayes 

predictor.) 

The characterization of risk-sufficiency for a is more complicated and we 

are unable to provide a simple test for general choices of S£ and S£. However, 

for our purposes, we are more concerned with the behaviour of S" and S£ that 

are comprised of predictuals. In our computational work, we have established 

that when model i is true, the mongrel risk of the predictor from a different 

model, k say, can depend nontrivially on the past predictuals generated by 

model i or model k, that is, 

Fact 3.1 Suppose model i is true and let S" and S£ each consist of a set of 

past predictuals generated by model i. Then in general, 

Pl(Yktn+l]S^^Pl(Yktn+l]0). (3.27) 
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Thus, our mongrel risk procedure indeed generates predictions that are 

different from the Bayes procedure. But our computational results also in­

dicate that care must be exercised to ensure that we do not choose a set of 

risk-sufficient predictuals. 

Fact 3.2 Suppose k and k! are a pair of nested models where model k con­

tains p additional predictors. Let S% and S£ each consist of the p most recent 

predictuals from each model. Then 

Pk(Xk',n+i] S£) = Pk(Yk',n+u Y ( n ) ) , (3.28) 

pk,(Yk,!n+1;Sp

n) = pk,(Yk,tn+1;Y{n)), (3.29) 

and 

c*i(S£) = ai(Yin)) for both i = k,k' (3.30) 

That is, this choice of S° and S£ is risk-sufficient. 

These results also suggest that predictive risk assessments using pre­

dictuals have a Markov property; which of two models is better is determined 

by only the most recent predictual(s) from each model. It can also be shown 

that including predictuals from only the larger model has no impact on any 

of the risk assessments. The combination of these two facts suggests that we 

include only the predictuals from the smaller model. This is what we do in all 

of our simulations. 

3.4 A Simulation Example 

Through simulation we assessed the forecasting performance for several choices 

of (S°, S£). Data sequences of length forty were randomly generated according 
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to the model 

Yn = 70 + 7 l * l , n + l2X2,n + Cn (3.31) 

where Xi,n, X2tTl, tn were all independent standard normal variables. We fixed 

7o = 1 and 71 = 0.8, but varied the value of 72 to be 0, 0.2, or 0.4 in different 

simulations. 

We feel that these three choices for 72 cover a large enough range for 

testing our methodology. With unit variances for X2<n and en, the correlation 

between Y and X2, conditional on Xx, is 72/1 /1 4- j2. When 72 = 0.4, this 

correlation is ~ 0.37, a reasonably strong association. We assume that any 

stronger association typically would have been evident, or at least suspected, 

prior to the analysis. Consequently, there would have been no doubt that 

such a covariate should be included in all of the candidate models, i.e., such a 

covariate would not be subject to our predictor selection procedures. 

The collection of candidate models contained two models: 

• Model 1 (the "reduced model"): containing the intercept and Xx only, 

i.e., 

Yn = p* + p*Xhn + en (3.32) 

• Model 2 (the "full" model"): containing the intercept and both X\ and 

X2, i.e., 

y„ = A> + PiXi,n + P2X2,n + en. (3.33) 

For prior distributions on the parameters, we assumed that (/?Q, f3{) ~ Af((l, 0.8), I) 

and (Po,Pi,P2) ~ j V ( ( l , 0 .8 ,0 .2) , I). We considered three choices for the a2j0, 

the prior probability of Model 2: 0.2, 0.5, and 0.8. Hence a total of 9 sce­

narios (3 choices for 72 x 3 choices for a2fi) were considered. The number of 

sequences used in each scenario was m — 5000. 
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In all of the simulations presented here, we set S£ = Y ( n ) . The choices 

for S° were 

• R i (the most recent predictual from Model 1) 

• R 5 (the most recent 5 predictuals from Model 1) 

• R/j (the most recent half of (i.e., n/2, rounded down) predictuals from 

Model 1) 

• R n = Y( n ) (all past predictuals = full data). 

3.4.1 Model Averaging 

Figures 3.1 to 3.9 plot the results from taking a model averaging approach. 

The top panel in each page plots of the mean squared prediction error 
-i m 

M S P E = - £ ( y n + 1 - F n + 1 ) 2 (3.34) 
m i-l 

incurred by using each specified choice of S". The second panel from the top 

shows the average weight that was assigned to the full model. The standard 

which we are trying to beat is the Bayes procedure in which S" = Y( n ) (labeled 

'a2ff' in the plots). The bottom two panels compare the difference in M S P E 

between the Bayes procedure and the choice S" = R/j ('a2hf') or the choice 

S" = R 5 ('a25f'). On these two plots, a curve lying above zero indicates that 

our mongrel approach, 'a2hf or la25f, is beating out the Bayes procedure. 

To facilitate comparison across different plots, we classified the perfor­

mance of 'a2hf relative to 'a2ff' into the groups shown in Table 3.1. Table 3.2 

summarizes the results of this classification in 3 time intervals: 10 to 20, 20 to 

30, and 30 to 40. 
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For small n, the mongrel strategy = Rh performed no worse and in 

most scenarios better than the Bayes strategy. The magnitude of the improve­

ment decreased as the length of the sequence increased. When n is large and 

72 = 0.4, the mongrel strategy performed worse than the Bayes strategy. 

At this point, one could question whether the better performance by the 

mongrel strategies is coincidental. That is, could a mongrel strategy be doing 

better because it gives higher weight to the "right" model than does the Bayes 

strategy just by chance? Figure 3.4 suggests that this is not the case. Here, the 

true model has 72 = 0. So a strategy that gives greater weight to the reduced 

model on average ought to perform better than one that gives less weight to 

the reduced model. We see in the second panel that the mongrel strategies 

('a2hf and 'a25f') both give less weight to the reduced model than does the 

Bayes strategy so, on average, the mongrel strategies are at a disadvantage 

with respect to giving high weight to the right model. Yet, from the third 

and fourth panels, we see that the mongrel strategies are beating the Bayes 

strategy. This suggests that the mongrel strategies are more intelligent. 

The results for model averaging are qualitatively very similar to the 

results for model choice. Once again the mongrel strategy is no worse and 

sometimes better than the Bayes strategy for small n. Also, the mongrel 

strategy is worse when n is large and 72 = 0.4. In general, the mongrel 

strategy beats the Bayes strategy in more scenarios and by a greater degree 

than was seen in the model choice approach. 

The same counter-intuitive phenomenom seen in the choice approach 

occurs here. When 72 = 0, the mongrel procedures on average give less weight 

to the reduced model (the true model) than the Bayes strategy and yet tend 

to perform better early in the sequence. 
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3.4.2 Model Choice 

Figures 3.10 to 3.18 plot the results from taking a model choice approach. The 

panels contain the same information as in the model choice results except that 

the second panel now shows the proportion of times that the full model was 

selected. Table 3.3 summarizes these plots. 

The results for model choice are qualitatively very similar to the results 

for model averaging. Once again the mongrel strategy is never worse and 

sometimes better than the Bayes strategy for small n. Also, the mongrel 

strategy is worse when n is large and 72 = 0.4. In general, the difference in 

performance between the mongrel strategies beats the Bayes strategy in the 

model choice approach was smaller than what was observed in model averaging. 

The intelligent behaviour of mongrel strategies that was seen in the 

model averaging approach manifests here as well. When 72 = 0, the mongrel 

procedures on average choose the reduced model (the true model) less often 

than the Bayes strategy and yet tend to perform better (early in the sequence). 

3.4.3 Summary 

The simulation results presented here provide some evidence that taking a 

mongrel risk approach often beats out the Bayes procedure, particularly at 

early time points. The advantange gained here, using simple choices for the 

mongrel risk criteria, decreased as time progressed and, when 72 = 0.4 became 

a disadvantage. Moreover, the magnitude of the gains was relatively small. 

However, these choices were only intended to illustrate of the technique. In 

the next chapter, we show that larger and more lasting gains can be obtained 

by optimizing the choice of ( S " , S £ ) . 
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Table 3.1: Key for comparing the mongrel procedures to the Bayes procedure. 

MSPE(Bayes) - MSPE(mongrel) 
+++ > 0.02 
++ between 0.01 and 0.02 
+ between 0 and 0.01 
0 no clear difference 
- between 0 and —0.01 

— between -0.01 and -0.02 
< -0.02 

Table 3.2: Summary comparison of the naive mongrel averaging strategy with 
S" = Hh to the Bayes strategy (S° = Y(n)). 

n 
r 2 ^2,0 72 10 to 20 20 to 30 30 to 40 

0 0 0 0 
0.2 0.2 

0.4 
++ 
0 

+ 0 

i 0 ++ + + 
0.5 0.2 ++ + + 

0.4 ++ 0 — 
0 + + + 

0.8 0.2 ++ ++ ++ 
0.4 ++ + 0 
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Table 3.3: Summary comparison of the naive mongrel choice strategy with 
S£ = Rh to the Bayes strategy (S° = Y ( n ) ) . 

n 
r 2 0:2,0 72 10 to 20 20 to 30 30 to 40 

0 0 0 0 
0.2 0.2 ++ + + 

0.4 0 - — 
i 0 ++ + + 

0.5 0.2 ++ 0 0 
0.4 0 — 
0 0 0 0 

0.8 0.2 0 0 + 
0.4 0 0 -
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 3.1: Performance of naive averaging strategies: a2fi = 0.2, 72 = 0. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

10 20 30 
_ : 

40 
l 

Time 

Figure 3.2: Performance of naive averaging strategies: a 2 ) 0 = 0.2, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

Figure 3.3: Performance of naive averaging strategies: a 2, 0 = 0.2, 72 = 0.4. 
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Figure 3.4: Performance of naive averaging strategies: a2>0 = 0.2, j2 = 0. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 3.5: Performance of naive averaging strategies: a 2 ) 0 = 0.5, 72 = 0.2. 
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Figure 3.8: Performance of naive averaging strategies: a 2 , 0 = 0.8, 72 = 0.2. 
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Figure 3.9: Performance of naive averaging strategies: a 2 ] 0 = 0.8, 72 = 0.4. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,l,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

10 20 
_ J 

30 
I 

40 
l 

Figure 3.10: Performance of naive choice strategies: a 2 ) 0 = 0.2, 72 = 0. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

Time 

Figure 3.11: Performance of naive choice strategies: a 2 ] 0 = 0.2, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.5 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

"i i i 1 r 
0 10 20 30 40 

J 1 I I L_ 

c2ff 
c2hf 
c25f 

- - - c21f 

c2ff 
c2hf 
c25f 

- - - c21f 
^ 

"i 1 1 1 r 
0 10 20 30 40 

Mean 
SE 

- r -

10 20 30 40 

Time 

igure 3.13: Performance of naive choice strategies: a2y0 — 0.2, 72 = 0. 
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Figure 3.14: Performance of naive choice strategies: a 2 , 0 = 0.5, 72 = 0.2. 
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Figure 3.15: Performance of naive choice strategies: a 2 j 0 = 0.5, 72 = 0.4. 
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Figure 3.16: Performance of naive choice strategies: a2,0 = 0.8, 72 = 0. 
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Time 

Figure 3.17: Performance of naive choice strategies: a 2, 0 = 0.8, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model: 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

Time 

Figure 3.18: Performance of naive choice strategies: a 2 , 0 = 0.8, 72 = 0.4. 
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Chapter 4 

Finite Samples: Adaptive 

Selection 

We classify the methods for choosing (S°, S£) as either global or adaptive. In 

a global method, the choice is made without regard to the past outcomes Y( n). 

In contrast, an adaptive method selects a different (S°, S£) for each sequence 

based on Y(n). The reason for classifying in this way is to differentiate between 

methods according to whether the method uses past predictive performance. 

Note that a choice of (S", S£) that depends on X(„) is considered to be global 

in this classification scheme. 

We conjecture that adaptive methods yield better results than global 

methods. The intuition is that using all of the data, i.e., setting S° = S£ = 

Y( n), provides the most accurate risk assessments for the 'typical' sequence 

but generates misleading assessments in other sequences. An adaptive method 

identifies and compensates for the misleading results by conditioning on past 

predictive performance. 

To implement an adaptive selection method, we must specify a meta-
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risk criterion, such as given by (2.27) or (2.28), that is to be used to evaluate 

each choice of (S", S£). We will use the simulation results from the framework 

described in Chapter 3 to help illustrate the method. As in Chapter 3, we set 

S£ = Y( n ) and vary the choice for S". Here, we optimize the choice over the 

class S" G { R j : J = 0 , 1 , . . . , n}. The index J represents the number of most 

recent predictuals from the reduced model that are included in S°. Recall that 

if we take J = n, then the optimal choice corresponds to that from the Bayes 

procedure. 

The intuition underlying the meta-risks p v and p+ is seen most easily 

by considering meta-risk profiles. 

Defin i t ion 4.1 The meta-risk profile assuming model % is true, is the collec­

tion of meta-risks pi(Yn+i;T^) generated by varying (S",S£). 

Thus, in our simulation framework, the meta-risk profile under a given 

model for predicting Yn+X contains the n+1 points corresponding to (S°, Sn) = 

(R j , Y( n ) ) , J = 0 , 1 , . . . , n. Figure 4.1 displays graphically the meta-risk pro­

files as a function of J for each of the first 12 simulated sequences of data. The 

value being predicted here is Yw. The prediction Yn+X was generated using 

an averaging strategy and we have set T£ = S". In this particular scenario, 

72 = 0.4 in the data-generator. The solid curve connects points in the meta-

risk profile assuming the big model true the dashed curve connects points in 

the meta-risk profile assuming the small model is true. 

In specifying a meta-risk criterion, we must consider the values on both 

these curves since the true model is unknown. On average, we expect that 

meta-risks computed conditional on more predictuals (larger J) tend to be 

more accurate. But, for the reasons discussed in Chapter 2, none of these 

meta-risks is the true risk so it cannot be argued that conditioning on full 
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data ( J = n) is necessarily optimal. Instead, we should feel free to use fewer 

predictuals in S° if the resulting predictor is perceived to have more desirable 

characteristics. For example, if we find that the meta-risk of the predictor 

based on full data, say J = 10, is large under one of the models, call it k, but 

the meta-risk of the predictor based on J = 9 is (relatively) small under all of 

the models, then we might prefer to select J — 9 to avoid the large meta-risk 

that would be incurred if in fact model k was true. 

There are a variety of reasonable ways of reducing the meta-risk profiles 

to a choice of J . If for each J , we take the maximum of the meta-risks over all 

of the models, we get the maximum meta-risk criterion p v described by (2.28). 

Then, we obtain a "minimax" strategy by choosing the number of predictuals 

in S£ to be 

JmM = a rgmjnp v (Rj , Y ( n ) ; T £ ) (4.1) 

= a rgminmaxp f c (y n + i (R j , Y ( n ) ) , T £ ) . (4.2) 

(Note that in contrast to a standard risk function plot in which the parameter 

appears along the horizontal axis, the meta-risk profile plot places the elements 

in the decision space, i.e., the choices for S", on this axis.) Alternatively, if 

for each J , we average the values over all of the models using weights aj(T"), 

we get the weighted average meta-risk criterion p + described by (2.28). Then 

we obtain a "minimum-weighted-average" strategy by choosing the number of 

predictuals in S" to be 

JmWA = a r g m i n p + ( R J , Y { n ) ; T ^ , T ^ ) (4.3) 

= a r g m i n ^ a ^ T ^ p ^ y ^ ^ R ^ Y ^ ) , ^ ) . (4.4) 
J k 

Additional strategies are discussed later in this chapter. 
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In Figure 4.1, the points in the weighted average meta-risk profile, with 

T£ = S£, are connected by the dotted curve. Let to denote the panel 

in the i-tb. row and j-th column. We observe that for the five sequences in 

[1,2], [2,1], [2,2], [4,3], and [5,3] the maximum meta-risk at each J corresponds 

to the big model and that the minimum over these maxima appears to occur 

when J = 9, that is, when S" is equivalent to the full data. In contrast, 

for the sequence in, say, [1,1] the meta-risk profiles cross and the minimum 

of the maxima appears to occur when J = 6. The weighted average meta-

risk profiles exhibit similar patterns; the minimum is achieved with J = 9 for 

the sequences in [2,1], [2,3], and [3,3] but with J < 9 in all the remaining 

sequences. We conjecture that when the minimum meta-risk is achieved with 

J < 9, the predictor based on the minimizing S" is less sensitive to model 

mis-specification than the Bayes predictor (for which J = 9). The general 

pattern seems to be that the meta-risk profile under the big model tends to 

decrease as J increases, whereas the profile under the small model remains 

fairly flat for all J or increases as J increases. 

The meta-risk profiles for the choice Tp

n = Y(n) (see Figure 4.2 are 

somewhat different in that the profile under the big model does not tend to 

decrease but rather remains relatively flat or increases slightly with J. The 

profile under the small model behaves in much the same way as when T£ = . 

The difference in behaviour for the profile under the big model results in much 

different values of J M M -

To assess how often the minimum was achieved for each value of J , we 

constructed histograms at time-points n = 10, 25, and 40. These histograms 

are shown in the first column of Figure 4.3 for a minimax strategy with T£ = 

S". The last bin in each histogram represents the proportion of times that 

full data was selected for S". For this particular scenario, we see that the 
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modal choice was full data, but that the choices are spread over a very wide 

range with a tendency to picking a large number of predictuals. The second 

column in Figure 4.3 shows the histograms for when T £ = Y ( „ ) . In this 

case, the modal choice is to use no predictuals and the tendency is to select a 

smaller number of predictuals. These histograms will be seen to be useful for 

explaining the characteristics of different strategies; we defer further discussion 

to the following sections. We will discuss the results from taking a model 

averaging approach in detail and only comment briefly on the model choice 

approach. The reason is that we are able to implement the needed computation 

for model averaging but not for model choice. 

4.1 Model Averaging 

Through simulations, we first examined the performance of the "minimax" and 

"minimum-weighted-average" strategies from a model averaging approach. Be­

cause the results suggested deficiencies in the mWA strategies, we subsequently 

also considered two modified strategies which we label "Bayes-near-minimum" 

and "Bayes-factor-decisive". We look at the performance of each of the four 

strategies in turn. 

4.1.1 Minimax meta-risk 

Figures 4.4 through 4.12 show the performance obtained by using a mini­

max (mM) meta-risk strategy (see (4.2)). The M S P E obtained using the two 

strategies ( T £ , T £ ) = ( S « , S « ) (labeled 'a2xxmM') and ( T « , T £ ) = ( S « , Y ( n ) ) 

('a2xfmM') are shown in the top panel. For comparison, we have also plot­

ted the M S P E obtained by the Bayes strategy ('a2ff') and, for reference, the 
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M S P E that would have been obtained had the full model ('big') or the reduced 

model ('small') been used at all times. The second panel from the top shows 

the average weight given to the big model. The third and fourth panels show 

the difference in M S P E between the Bayes strategy and each of the two mWA 

strategies. Positive values in these two plots indicate that the mWA strategy 

is better than the Bayes strategy. 

The most important feature of 'a2xxmM' is that it never performs 

worse and often performs substantially better than Bayes. The performance 

of 'a2xfmM' is generally similar to 'a2xxmM'. However, 'a2xfmM' performs 

slightly worse than Bayes when 72 = 0 and 0:2,0 is 0.2 or 0.5. This loss is 

mitigated somewhat in that the size of the gain, when present, tends to be 

substantially greater than the gain seen for 'a2xxmM'. Both m M strategies ex­

hibit greatest improvement early in the sequence. Tables 4.1 and 4.2 summa­

rize the comparison of the Bayes strategy to the 'a2xxmM' and the 'a2xfmM' 

strategies, respectively, over all of the scenarios. 

The similarity in performance is rather surprising since the histograms 

of J M M (e.g. Figure 4.3) are radically different. Whereas 'a2xxmM' tends to 

pick all of the data or nearly all of the data, 'a2xfmM' tends to use none or 

nearly none of the data. At present, we do not have a good explanation for 

this difference. 

4.1.2 Minimum-weighted-average meta-risk 

Figures 4.13 through 4.21 show the performance obtained by using a minimum-

weighted-average strategy (see (4.4). The M S P E obtained using the two 

strategies (T° T£) = (S»,S°) (labeled 'a2xxwa') and (T£,T£) = ( S « , Y ( n ) ) 

('a2xfwa') are shown in the top panel. For comparison, we have also plot-
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ted the M S P E obtained by the Bayes strategy ('a2ff') and, for reference, the 

M S P E that would have been obtained had the full model ('big') or the reduced 

model ('small') been used at all times. 

The second panel from the top shows the average weight given to the big 

model. The third and fourth panels show the difference in M S P E between the 

Bayes strategy and each of the two mWA strategies. Positive values in these 

two plots indicate that the mWA strategy is better than the Bayes strategy. 

Early in the sequence, the 'a2xxwa' strategy beat the Bayes strategy 

substantially in 6 of the 9 scenarios, was slightly better in 1 scenario, was 

slightly worse in the scenario with 72 = 0.4 and a2,0 — 0.5, and substantially 

worse in the scenario with 72 = 0.4 and a2,0 = 0.8 As time increased, the 

performance of 'a2xxwa' relative to Bayes decreased in every scenario. The 

trend was consistent in every scenario. By time-point 40, 'a2xxwa' beat Bayes 

substantially in only 1 scenario. In all 3 scenarios where 72 = 0.4, 'a2xxwa' 

was substantially worse. In the remaining 5 scenarios, 'a2xxwa' was slightly 

better in three of them, about the same in one, and slightly worse in one. 

The 'a2xfwa' strategy performed similarly to the 'a2xxwa' strategy 

when 72 = 0. But for most of the other cases, 'a2xfwa' performed worse 

than 'a2xxwa'. Generally, 'a2xfwa' behaved more like Bayes than 'a2xxwa' 

did, that is, while the differences in performance between 'a2xxwa' and Bayes 

were often large the differences between 'a2xfwa' and Bayes were relatively 

smaller. Table 4.3 (4.4) summarizes the comparisons of the Bayes strategy 

with the 'a2xxwa' ('a2xfwa') strategy for all of the figures. 

In general, the performance of the mWA strategies appears to deteri­

orate as 72 increases. Additionally, the problem seems to be enhanced when 

a 2 , 0 is small. We conjecture that using only some of the predictuals to update 

the model weights inhibits the identification of when the big model is true and 
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this identification is needed for avoiding bias. This conjecture is supported 

by the plots of the mean posterior weight assigned to the big model (second 

panel). When 72 = 0.4, a 2 ) 0 increases relatively rapidly for the Bayes strategy 

as data accumulates but not for the mWA strategies. 

The mWA strategies behave oppositely to the m M strategies in that 

while mWA strategies work better when 72 is small the m M strategies work 

better when 72 is large. 

4.1.3 Bayes-near-minimum meta-risk 

Because averaging generally is considered a good way of handling model un­

certainty, we thought that it would be nice if the minimum-weighted-average 

meta-risk strategy could be "patched up" to perform well even when 72 is 

large. In a large proportion of the sequences, the average meta-risk profile 

often dropped to its minimum p m i n = p+(Yn+1(RJmWA, Y ( n ) ) ; T ° , T£) once a 

small number of predictuals was included in S" and then remained at relatively 

flat for all larger J . If we take the view that a small difference between p m ; n 

and the meta-risk ps = p+(Y„+i(R n, Y( n)); T", T£) for the full data (Bayes) 

procedure is not important, then we might want to default to using the full 

data rather than the number of predictuals corresponding to the minimum 

risk. That is, the number of predictuals to include in S ° is 

for a suitable cut-off value c. We call this the "Bayes-near-minimum" (BNM) 

strategy. 

Tables 4.5 and 4.6 summarize the results for B N M strategies with T£ = 

S" and T£ = Y( n ) , respectively. (We have not included the Figures that 

(4.5) 
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would be analogous to Figures 4.13 through 4.21 due to length considerations.) 

The cut-off value was c = 1.05. While this approach managed to reduce the 

magnitude of the poor performance when 72 = 0.4, it did not eliminate it 

completely. Moreover, it also tended to reduce the size of the gains. Hence, 

we did not pursue this modification believing it to be ineffective. 

This approach yielded another interesting fact. The given cut-off re­

sulted in over 95% of the predictions, typical across all scenarios, being based 

on using all of the data. Yet, the differences in performance between the 

Bayes strategy and the N M strategies were sometimes nearly as large as those 

between the Bayes strategy and the mWA strategies. This result provides fur­

ther evidence that a small proportion of the sequences generates much of the 

differences in performance (for better or for worse). 

4.1.4 Bayes-factor-decisive meta-risk 

Another way of assessing whether to default to the full data is to use the Bayes 

factor (BF) of the small model with respect to the big model, say. The idea 

here is similar to "Occam's window" - a model that has little support from 

the data (indicated by a small Bayes factor) ought to be viewed as discredited 

and discarded from consideration. Since we think that, on average, mongrel 

criteria give a less precise measure than the Bayes criterion for the true risk, 

we ought to avoid use of the mongrel criteria when we have confidence in the 

Bayes criterion (which we assume is reflected in a sufficiently large or small 

BF) . Hence, the number of predictuals to include in S" is 

n if B F > c or B F < 1/c 

o.w. 
(4.6) 
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for some cut-off value c. We call this the "Bayes-factor-decisive" (BFD) strat­

egy-

Tables 4.7 and 4.8 summarize the results for B F D strategies with T£ = 

S° and T n = Y ( n ) , respectively. (Again, we have not included the Figures 

that would be analogous to Figures 4.13 through 4.21 due to length consider­

ations.) The cut-off Bayes factor was c = 4. Overall, the B F D strategies were 

not successful in improving on the mWA strategies. The modification more 

often reduced the gains than reduced the losses seen originally in the mWA 

strategies. 

4.2 Model Choice 

Unfortunately, we are unable to optimize meta-risk when using model choice 

approach because the meta-risks cannot be evaluated in closed form. Specifi­

cally, Yn+i takes the value Y i , n + i if Y( n ) is in the set Si — {p (Y 1 ) I l + 1 ; S", S n ) < 

p(y 2 ,n+i; S£,S£)} or the value Y2>n+i if Y( n ) is in the complement, <S2, of Si. 

Hence the meta-risk is 

ft(yB+1; T n ) = E i | T { . £ ( y n + 1 - YwfXSk (4.7) 
k 

where XA is the indicator of the set A. The integral in (4.7) is not tractable 

analytically. 

4.3 Relationship between mWA and mM meta-

risk 

A standard result in estimation theory is that, typically, the minimax deci­

sion is equivalent to the Bayes decision under a least favourable prior on the 
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parameter. A natural question to ask is whether the m M meta-risk choice 

of ( S " , S £ ) is equivalent to the mWA meta-risk choice. The following result 

shows the m M and mWA procedures are equivalent only in a trivial case. 

L e m m a 4.1 Let 

TT* = argmax m i n i V ^ f c + i ; T n ) (4-8) 
n (Sn>Sn) k 

where TT = (TTI, ..., TTK) is a probability on the model space. That is, TT* is 

a least favourable prior. Then the mM and m WA meta-risks yield the same 

choice for (S", S n ) (almost surely in Y^) iffVk, 

ak(Ta

n) = TT*k. (4.9) 

Proof The problem can be viewed as a finite zero-sum game in which the 

choice of ( S £ , S £ ) represents the decision to be made and the model space 

is the parameter space. Then the Minimax Theorem (Berger, p. 345; 1985) 

applies so that the game has value 

V = inf suP5>*p f c(rn + 1;Tn) = sup inf Y,*kPk(Yn+l; T£) (4.10) 
s n fc w s fc 

where the infimum is over all randomized choices of ( S ° , S n ) and the supremum 

is over all probabilities on the model space. By Lemma 1 (Berger, p.318; 1985), 

the value of the game can also be expressed as 

V = , s L n L 8 U P * & + i ; T S ) = inf . E ^ A + i j T S ) . (4.11) 

Finally, the infimums and supremums can be replaced by minima and maxima 

since both the model and decision spaces are finite and therefore closed, so we 

have 

, c

m i

c

np N " \ A X p k ; T ^ = m a x ^ S nkPk (Yn+i; T£). (4.12) 
(S",S n ) * (Sg,S n ) 
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The choice of (S",S£) on the L.H.S. of (4.12) corresponds to the choice ob­

tained using the m M strategy. The choice of (S£, S£) on the R.H.S. of (4.12) 

will correspond to the choice obtained using the mWA strategy iff Vfc, ak(T%) = 

<• I 

However, since 7r£ is constant in T", it is clear that (4.9) is possible 

only if T" is held constant for all v. We are primarily interested in the case 

where T" varies with (S",S£) and so in general the results we obtain using 

the minimax meta-risk are not equivalent to the results obtained using the 

minimum weighted average meta-risk for any such choice of T£. 

4.4 Discussion 

At first glance, some of the differences in behaviour of these strategies seem 

natural while others seem counterintuitive. The results suggest that the mM 

strategies are more robust than the WA strategies. Whereas 'a2xxmM' never 

performs worse than Bayes and 'a2xfmM' at most performs slightly worse 

than Bayes, both 'a2xxwa' and 'a2xfwa' perform much worse than Bayes when 

72 = 0.4. This result agrees with the usual sense in which minimax strategies 

are robust. On the other hand, weighted averaging strategies are expected to 

perform better overall. This does not seem to occur here - the gains from the 

mM strategies appear to exceed those seen for the WA strategies in general. 

A partial explanation may be that the optimization over the meta-risk 

is not intended to generate an optimal predictor directly but merely to decide 

on a good (S£,S£) on which the optimal predictor will then be computed. 

In this case, the most desirable property of (S",S£) is that it minimizes the 

chance that our subsequent choice of a predictor will be poor because it derives 
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from a bad model. That is, minimizing meta-risk is inherently a robustness 

issue and that may be why the mM meta-risks generate better results. 

A comparison of strategies using T £ = S £ to T £ = Y(„) shows a clear 

pattern. For all four methods of selecting the optimal value of J , the choice 

T £ = S " generated more accurate predictions in nearly all of the scenarios. 

This pattern would be expected if our reasoning for the advantages of using 

mongrel risk is correct, i.e., we get better assessments of risk by conditioning 

on empirical performance rather than the raw data. However, this is only a 

conjecture at this time. 

Note that if the choices for and S £ are varied independently of each 

other, then we would have n2 potential choices for ( S " , S £ ) since each of the 

two statistics can range from 0 up to n — 1 predictuals. We have not optimized 

over all n 2 choices for two reasons. First, the expectations in the meta-risks 

(2.27) or (2.28) can be evaluated analytically only when t r ( S ° ) C CT(T£). (SO 

that the weights ak(S") can be taken outside the expectation E J | T P ) . In gen­

eral, T £ is not set to be equivalent to the full data so some choices of S " cannot 

be handled. The second reason is that we wish to dissociate the effects due 

to varying S " from the effects due to varying S £ . We have examined only the 

impact of varying S £ because this situation was easiest to implement compu­

tationally. The case with S £ varied requires additional computational effort 

and has been left for future investigation. 

63 



Table 4.1: Summary comparison of the m M mongrel averaging strategy with 
T £ = S ° to the Bayes strategy. 

n 
r 2 72 10 to 20 20 to 30 30 to 40 

0 + 0 0 
0.2 0.2 + 0 0 

0.4 + + + 
i 0 ++ + 0 

0.5 0.2 ++ + + 
0.4 +++ ++ + 
0 ++ ++ + 

0.8 0.2 +++ ++ ++ 
0.4 +++ ++ + 

Table 4.2: Summary comparison of the mM mongrel averaging strategy with 
T £ = Y ( n ) to the Bayes strategy. 

n 
r 2 «2,o 72 10 to 20 20 to 30 30 to 40 

0 - - -
0.2 0.2 ++ ++ ++ 

0.4 +++ +++ +++ 
i 0 0 - -

0.5 0.2 ++ ++ ++ 
0.4 +++ +++ +++ 
0 ++ ++ + 

0.8 0.2 +++ ++ ++ 
0.4 +++ ++ + 
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Table 4.3: Summary comparison of the mWA mongrel averaging strategy with 
( T ° T£) = (S«, S«) to the Bayes strategy. 

n 
r 2 ^2 ,0 72 10 to 20 20 to 30 30 to 40 

0 ++ + + 
0.2 0.2 + 0 -

0.4 — 
i 0 +++ ++ + 

0.5 0.2 ++ + 0 
0.4 -
0 +++ ++ ++ 

0.8 0.2 +++ ++ + 
0.4 ++ 

Table 4.4: Summary comparison of the mWA mongrel averaging strategy with 
(T£, T£) = (S*, Y ( n ) ) to the Bayes strategy. 

n 
r 2 ^2 ,0 72 10 to 20 20 to 30 30 to 40 

0.2 
0 

0.2 
0.4 

++ 
+ 

+ 
0 

+ 

i 
0.5 

0 
0.2 
0.4 

++ 
0 

+ + 

0.8 
0 

0.2 
0.4 

0 
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Table 4.5: Summary comparison of the B N M mongrel averaging strategy with 
i ' Jn) to the Bayes strategy. 

n 
r 2 72 10 to 20 20 to 30 30 to 40 

0 ++ + + 
0.2 0.2 ++ + 0 

0.4 — 
i 0 ++ ++ + 

0.5 0.2 ++ 0 0 
0.4 0 — 
0 ++ + + 

0.8 0.2 ++ + 0 
0.4 ++ - -

Table 4.6: Summary comparison of the B N M mongrel averaging strategy with 
(T° T£) = (S£, Y ( n ) ) to the Bayes strategy. 

n 
r 2 «2,0 72 10 to 20 20 to 30 30 to 40 

0 ++ + + 
0.2 0.2 ++ + 0 

0.4 — 
i 0 + • + + 

0.5 0.2 0 - 0 
0.4 - — — 
0 0 0 0 

0.8 0.2 0 0 0 
0.4 0 0 0 
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Table 4.7: Summary comparison of the B F D mongrel averaging strategy with 
( T S , T B ) = (S«,SS) to the Bayes strategy. 

n 
r 2 0*2,0 72 10 to 20 20 to 30 30 to 40 

0 + + + 
0.2 0.2 0 - — 

0.4 
i 0 ++ ++ + 

0.5 0.2 0 0 -
0.4 — 
0 ++ ++ + 

0.8 0.2 ++ + + 
0.4 0 — — 

Table 4.8: Summary comparison of the B F D mongrel averaging strategy with 
(T° T£) = (S£, Y ( n ) ) to the Bayes strategy. 

n 
r 2 Ot-2,0 72 10 to 20 20 to 30 30 to 40 

0.2 
0 

0.2 
0.4 

+ 
0 

+ + 

i 
0.5 

0 
0.2 
0.4 

++ 
0 

++ 
0 

+ 

0.8 
0 

0.2 
0.4 

— -

+ 

0 
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Meta-risk profiles of sample sequences - a2xx 

Figure 4.1: Meta-risk profiles for the first 12 sequences from an averaging 
strategy with T£ = T£ = S£: a 2 , 0 = 0.2, 7 2 = 0. The solid (dashed) curve 
assumes the full (reduced) model is true. The dotted curve is a weighted 
average. 
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Meta-risk profiles of sample sequences - a2xf 

00 

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 

J (= # of predictuals in S) J (= # of predictuals in S) J (= # of predictuals in S) 

Figure 4.2: Meta-risk profiles for the first 12 sequences from an averaging 
strategy with T £ = T£ = S£: a2<0 = 0.2, 72 = 0. The solid (dashed) curve 
assumes the full (reduced) model is true. The dotted curve is a weighted 
average. 
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Frequency of selecting given # of predictuals - a2**mM 

a2xxmM a2xfmM 

0 1 2 3 4 5 6 7 8 All 

# of predictuals in S 
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Figure 4.3: Histograms of the number of predictuals to include in S£ that 
was selected by the minimax meta-risk procedure with T£ = S": a 2 j 0 = 0.2, 
72 = 0. 
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a2ff 
a2xxmM 
a2xfmM 
big 
small 

# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.4: Performance of mM averaging strategies: a 2 ] 0 = 0.2, 72 = 0. 
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a2ff 
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a2xfmM 
big 
small 

# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.5: Performance of mM averaging strategies: a 2 , 0 = 0.2, 72 = 0.2. 
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a2ff 
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a2xfmM 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model •• 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(l,l,1) 

•prior for small model: 
mean = (1,0.8) 
.sd = diag(1-,1) • 
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Figure 4.6: Performance of mM averaging strategies: a2fi = 0.2, 72 = 0.4. 
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a2ff 
a2xxmM 
a2xfmM 
big 
small 

# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.5 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.7: Performance of mM averaging strategies: a 2 i 0 = 0.5, 72 = 0. 
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a2ff 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model •• 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,l,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.8: Performance of mM averaging strategies: a 2, 0 = 0.5, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

•prior.for small model: 
mean = (-1,0.8) 
sd = diag(1,1) 
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Figure 4.9: Performance of mM averaging strategies: a 2 , 0 = 0.5, 72 = 0.4. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.8 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.10: Performance of mM averaging strategies: a 2 ) 0 = 0.8, 72 = 0. 
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Figure 4.11: Performance of m M averaging strategies: a^0 = 0.8, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model: 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 
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Figure 4.12: Performance of mM averaging strategies: a2t0 = 0.8, 72 = 0.4. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.2 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.13: Performance of mWA averaging strategies: a 2 , 0 = 0.2, 72 = 0. 
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Figure 4.14: Performance of mWA averaging strategies: a2>0 = 0.2, j2 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.5 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(l,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.16: Performance of mWA averaging strategies: a2>0 = 0.5, 72 = 0. 

83 



a2ff 
a2xxwa 
a2xfwa 
big 
small 

# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.5 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

10 20 30 
l 

I 

40 

a2ff 
a2xxwa 
a2xfwa 
big 
small 

30 40 
i 

Mean 
SE 

10 20 
l 

30 
_ l 

40 

— Mean 
- SE 

10 20 

Time 

30 40 

Figure 4.17: Performance of mWA averaging strategies: a 2 j 0 — 0.5, 72 = 0.2. 

84 



# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
sd = (0,0,0) 

prior prob. on big model = 0.5 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

•prior.for small model: 
mean = (1;0.8) 
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Figure 4.18: Performance of mWA averaging strategies: a 2 ) 0 = 0.5, 72 = 0.4. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.8 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 4.19: Performance of mWA averaging strategies: a 2 ) 0 = 0.8, 72 = 0. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.8 
prior for big model: 

mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag{1,1) 
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Figure 4.20: Performance of mWA averaging strategies: a2,0 = 0.8, 72 = 0.2. 
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# of simulations = 5000 
true coefficient values: 

mean = (1,0.8,0.4) 
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mean = (1,0.8,0.4) 
sd = diag(1,1,1) 
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Figure 4.21: Performance of mWA averaging strategies: a 2 ] 0 = 0.8, 72 = 0.4. 
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Chapter 5 

Finite Samples: Global 

Selection 

The specification of a global selection of ( S ° , S n ) can be approached in a 

variety of ways. The basic principle that we assume here is that we hope to 

capture sufficient information to obtain an accurate assessment of risk but 

simultaneously we do not want the the assessment to be responsive to "bad 

data". 

For example, consider the selection of S n . Intuitively, as the size of 

the sigma field cr(Sn) increases, the risk assessment becomes evermore sen­

sitive to the data. Treating /9j(F f e )„ + 1; S n ) as a random variable and using 

ViPi(Yk,n+i \ S£) as a measure of the sensitivity, the following result formalizes 

this intuition. 

L e m m a 5.1 Let S n , T n be two statistics such that T n = #(S n), or equiva­

lent^, cr(T n) C o"(Sn). Then pi(Yk >n+i;T^) is not more sensitive to the data 

than pi(Yktn+1; S£), that is, 

yiPi(Yk>n+1; T B ) < V i f t ( n > B + 1 ; S B ) . (5.1) 
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Proof Iterating in the definition of pi we see 

V i P i ( n i n + 1 ; T n ) 

< 

since ViPi(Yk,n+1; S n) = V ^ E ^ , P i ( Y k t n + 1 ; S„) + EiVilTppi(Yk,n+1; S£). | 

This result suggests that the choice S n = Y( n) yields a mongrel risk that 

is maximally sensitive to the data, while the choice S n = 0 yields a minimally 

sensitive mongrel risk. In the case where S n is a collection of past predicted 

predictuals, the inclusion of more predictuals increases sensitivity. 

5.1 Closeness to the Bayes solution 

One type of robustness is that the risk criterion should be insensitive to in­

correctly specified models. We illustrate for the case of model choice with two 

candidate models. In choosing between the two models, we base our decision 

on the difference in our assessments of the risk of the predictors from the two 

models. The essential idea is that we would like this difference to be "close" 

to the true difference in risk irrespective of the data-generator. But because 

the data-generator is unknown, we use instead the posterior distributions from 

the Bayes procedure as surrogates. 

For two models indexed by k and k', we set the target for the difference 

in risks between the two models to be 

h = Pk(Yk,n+U Y(n)) - Pk(Yk',n+l', Y(n)) (5.2) 

90 



when model k is true, or 

&k> = Pk<(Yk,n+l, Y(„)) - Pfc'(Vfc',n+l') Y( n ) ) (5.3) 

when model is true. Meanwhile, we select (S°, S£) based on our assessment 

of the difference in average mongrel risk 

5 = p(Yk>n+1; S«, S£) - P{Yk,,n+l-S£, S£). (5.4) 

Ideally, we would like to select (S°, S£) such that 6 to be close to both Sk and 

If we are willing to weight the models according to numbers wk and wki, 

then we might try selecting (S°,S£) to minimize, say, 

wk{5-8k)2 + wk<(5-5k,)2 (5.5) 

(pointwise in Y( n ) ) , or, 

p = wkEk(6 - 6k)2 + wk,Ekl(5 - 8klf. (5.6) 

(The obvious choice for the weights would be io, = ajj(y(n))-) It can be shown 

that the minimum for (5.5) can be obtained by setting S" = S£ = Y( n ) so this 

criterion is not useful for selecting (S£, S^). The criterion (5.6) can be thought 

of as a robustness criterion. We are trying to select the (S",S£) that keeps 5 

close to both 5k and 5k< (in a weighted average sense) regardless of the value 

of Y( n ) that obtains. Unfortunately, the evaluation of the expectations in p 

are not tractable analytically and so the criterion is not easily implemented. 

We attempt to circumvent this problem by finding an approximation p to p 

on which we base our selection of (S£, S£). 
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5.1.1 Approximating (5.6) 

Note that both 5 — 8k and 6 — 5ki is a weighted sum of six mongrel risk terms 

which we can write as, for 5 — 5k say, 

6 
6 ~ <** = H K3r3 (5-7) 

i = i 

where Kj G { ± 1 , ±a ic (S£) , ±aki(S°)} is a weight and Tj is a mongrel risk 

Pi(-;-). In the normal case, rj can be evaluated using (3.12) through (3.16) 

and these yield expressions that are quadratic in S n . By substituting for S n 

by its function of Y( n ) these expressions can be written in the form 

r; = G + (7; + # Y ( B ) ) 2 (5-8) 

where Q and jj are numbers and 5j is a vector. 

L e m m a 5.2 Suppose the weights ai j(S") in (5.7) are replaced by their observed 

values a j ( s " ) . Then an approximation to ~Ek(5 — 5k)2 is given by 

2 
Ek = 2tr(A**A* f c)+411^111 + 8 ^ * ^ + 411̂ 111, 

+ (tr(A9k) + + 2i%Z + £ Kj(Q + yj)J (5.9) 

where £ = Y^jljKjbj, A = A A r , and A is the matrix with columns ,JKJ$J-

P r o o f Treating the Kj as numbers instead of random variables and applying 

(A7), we have 
r 

2>jrj = ( Y + b ) r A ( Y + b) + c (5.10) 

where b and c are defined in (A9) and (A10). Applying (A4) and (A5), we 

obtain 
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= 2 t r ( A * f c A * f c ) + 4||i/ f c + b | | i ^ A 

+ (tr(AVk)+ \\vk + m2

A + c)2 • 

The lemma follows from expanding the terms and applying the relation A b = 

£• I 

Thus, we can approximate p by 

p = wkEk + wk'Ek/, (5.11) 

and then the optimal choice for (S", S£) is 

(S°,S£)* = arg min p. (5.12) 

The computations in Lemma 5.2 can be can be avoided in special cases 

such as the following: 

Lemma 5.3 Suppose S£ = Y(n) and that the weights aij(S") in (5.7) are 

replaced by their observed values Oii(s"). Then the optimal choice for S° min­

imizes 

p = wkal,(s«)EkB4 + wk,a2{s«)Ek,B* (5.13) 

where B2 = ( Y f e > n + i - Yfc', n+i) 2-

P r o o f Expanding 5 — 5k using the definition of p with S£ = Y(n), we get 

5 — 6k = akpk(Yktn+i,y'(„)) + ak'Pk'(Yk,n+l \ Y ( n ) ) 

-{®kPk{Yk> 
i Y ( n ) ) + a*'Afe'(**',n+i; Y ( „ ) ) ) 

+Pk(Yk,n+l', Y ( n ) ) - Pfc(Vfc',n+i; Y ( n ) ) 

= aA:Pfc(Vfc,n+i; Y(„)) + ^/(pfc^Yfc'.n+i; Y(„)) + B2) 

,n-f l i Y ( n ) ) 

+Pfc(Tfc,„+i; Y ( n ) ) - (pfc(F/fc,n+i; Y ( n ) ) + B 2 ) 

= 2ak,B2 (5.14) 
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where the second equality follows from the property pk(Yk',n+i) — Pk(Yk,n+i) + 

(Xk,n+i — ^ f c ' , n + i ) 2 - Similarly, 8 — 5^ = — 2akB2. The Lemma then follows by 

treating the weights ak, ak' as numbers so that they can be taken outside the 

expectations in (5.6). | 

5 .1 .2 S i m u l a t i o n R e s u l t s 

We applied the approximation provided by (5.9) to optimize the choice for Jg, 

the number of predictuals to be included in S£. (The choice Jg = 0 was omitted 

in order to avoid certain additional computations not readily available.) We 

set S£ = Y ( n ) . We call this method of choosing (S£, S n ) the "ROB" strategy. 

(Note that the optimization is over choices of S n rather than S" as was the case 

in earlier chapters; the reason is that the needed computations for optimizing 

over were not readily available.) 

Figure 5.1 plots each of the two expectations in (5.11) and their weighted 

sum p as a function of Jg for each of the first 12 sequences at time-point 10 

from the scenario 72 = 0.2 and a2t0 = 0.5. The expectation with respect to the 

full model is much larger by than the one with respect to small model always. 

One possible explanation for these differences is that, intuitively, large models 

are more sensitive to data than small models. But we are uncertain whether 

this explanation can justify such dramatic differences or if there is an error 

in our computations. At this time, we have not been able to find any coding 

errors so we shall proceed on the assumption that the computations are correct 

but are subject to verification. 

The choice histogram for the scenario with 72 = 0.2 and 012,0 = 0.5 

(Figure 5.2) is bimodal and concentrates at the extremes, i.e., there was a 

tendency to use either very few or almost all of the predictuals. This shape 
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was observed all of the scenarios, albeit with different splits over the two 

extremes; typically, a larger value of 72 was associated with a greater chance 

that few predictuals would be selected. 

Figures 5.3 through 5.11 compare the performance of the ROB strategy 

based on model averaging (labeled 'a2robwa') relative to the Bayes strategy. 

Table 5.1 summarizes these comparisons for all of the scenarios. Figures 5.12 

through 5.20 compare the performance the the ROB strategy based on model 

choice (labeled 'c2robwa') relative to the Bayes strategy. Table 5.2 summarizes 

the comparisons for all of the scenarios. 

The performance of both the ROB averaging and choice strategies are 

similar in that the R O B strategy tends to do better than the Bayes strategy 

when 72 is small (0 or 0.2) but substantially worse when 72 = 0.4 and a2,o = 0.2 

or 0.5. Also, the performance of the ROB strategies relative to Bayes is greatest 

when n is small. 

5.2 Equalizing meta-risk 

Rather than focusing on robustness to model misspecification, we might focus 

instead on the robustness of the predictors F n + 1 ( S " , S£). One measure of the 

robustness of Y n + i (S£ , S£) is that its meta-risk should be relatively constant 

across candidate predictors in an averaged (over Y(„)) sense. This constancy 

property should hold regardless of which model is true. For instance, when 

there are only two candidate predictors, we might select the (S" ,S n ) that 

minimizes 

maxV* ( P l ( y n + 1 ; T n ) - p2(Yn+1;Tp

n).) (5.15) 

This criterion leads to a solution that conceptually is similar to an averaged 

(over Y( n)) version of the adaptive minimax criterion. The plots of the meta-
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risk profiles from Chapter 4 suggest that the minimax solution typically is 

found where the profile under the big model crosses the profile under the 

small model (if such a crossing occurs) or at the point where the two profiles 

are nearest to each other (if no crossing occurs). If these profiles reflected 

average (over Y( nj) rather than per-sequence properties, then these solutions 

would correspond typically to the locations where the minimum of (5.15) is 

achieved. 

Once again, the difficulty with implementing a criterion based on (5.15) 

is that the needed expectations cannot be evaluated simply. 

5.3 Discussion 

In both the previous and the current chapters, we have assumed that the same 

S£ is used in evaluating p f c(Y" f e ) n + 1; S£) for all i. However, it may be desirable 

to use a different S£ for each model depending on, say, its posterior weight. 

For example, suppose we are taking a model averaging approach and consider 

the possible influence of a model that is larger than the true model. The 

chance of obtaining a poor predictive distribution is relatively high since the 

predictive distribution would be quite sensitive to the data for this model. The 

sensitivity would be transferred to the mixture distribution and might result in 

a poor predictor. Hence, as the posterior weight of a model decreases, it may 

be beneficial to reduce the number of predictuals in S£ in order to limit the 

impact of data. Conversely, if the posterior weight increases we feel evermore 

certain that we have the correct model and so it may be beneficial to increase 

the number of predictuals in S„ to take more advantage of the data. 
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Table 5.1: Summary comparison of the R O B mongrel averaging strategy to 
the Bayes strategy. 

n 
r 2 0:2,0 72 10 to 20 20 to 30 30 to 40 

0 + + + 
0.2 0.2 ++ + + 

0.4 + -
i 0 ++ + + 

0.5 0.2 ++ ++ + 
0.4 +++ ++ 0 
0 + 0 -

0.8 0.2 ++ ++ ++ 
0.4 +++ ++ ++ 

Table 5.2: Summary comparison of the R O B mongrel choice strategy to the 
Bayes strategy. 

n 
r 2 0:2,0 72 10 to 20 20 to 30 30 to 40 

0 +++ ++ + 
0.2 0.2 ++ ++ + 

0.4 0 
1 0 +++ ++ + 

0.5 0.2 +++ ++ + 
0.4 — 

0 0 - -
0.8 0.2 0 + + 

0.4 0 + + 
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Figure 5.1: Robustness profiles as a function of the number of predictuals 
included in S£ for ROB strategy: a 2 ) 0 = 0.5, 72 = 0.2. 
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Figure 5.2: Histograms of the number of predictuals to include in S£ as selected 
by ROB strategy: a 2 ] 0 = 0.5, 72 = 0.2. 
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Time 

Figure 5.3: Performance of ROB averaging strategy: a2,0 = 0.2, 72 = 0. 
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# of simulations = 5000 

a2ff 
a2robwa 
big 
small 

true coefficient values: 
mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.2 

prior for big model: 
mean = (1,0.8,0.4) 
sd = diag(l,1,l) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 

I 
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Figure 5.4: Performance of ROB averaging strategy: a2,0 — 0.2, 72 = 0.2. 
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# of simulations = 5000 

Time 

Figure 5.5: Performance of ROB averaging strategy: a 2 > 0 = 0.2, 72 = 0.4. 
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Figure 5.6: Performance of ROB averaging strategy: a2,0 = 0.5, 72 = 0. 
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Figure 5.7: Performance of ROB averaging strategy: a 2 ] 0 = 0.5, 72 = 0.2. 
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Figure 5.8: Performance of ROB averaging strategy: a 2 , 0 = 0.5, 72 = 0.4. 
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Figure 5.9: Performance of ROB averaging strategy: a 2 , 0 = 0.8, 72 = 0. 
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# of simulations = 5000 

a2ff 
a2robwa 

- - big 
— small 

true coefficient values: 
mean = (1,0.8,0.2) 
sd = (0,0,0) 

prior prob. on big model = 0.8 

prior for big model: 
mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(l,1) 

Figure 5.10: Performance of ROB averaging strategy: a2,0 = 0.8, 72 = 0.2. 

107 



Figure 5.11: Performance of ROB averaging strategy: a 2 > 0 = 0.8, 72 = 0.4. 
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# of simulations = 5000 
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big 
small 

true coefficient values: 
mean = (1,0.8,0) 
sd = (0,0,0) 

prior prob. on big model = 0.2 

prior for big model: 
mean = (1,0.8,0.4) 
sd = diag(1,1,1) 

prior for small model: 
mean = (1,0.8) 
sd = diag(1,1) 
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Figure 5.12: Performance of ROB choice strategy: a 2 , 0 = 0.2, 72 = 0. 
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# of simulations = 5000 

true coefficient values: 
mean = (1,0.8,0.2) 
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Figure 5.14: Performance of ROB choice strategy: a 2, 0 = 0.2, 72 = 0.4. 
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Figure 5.15: Performance of ROB choice strategy: a 2 > 0 = 0.5, 72 = 0. 
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Figure 5.16: Performance of ROB choice strategy: a 2 , 0 = 0.5, 72 = 0.2. 
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prior for big model: 
mean = (1,0.8,0.4) 
sd = diag(1,1,1) 
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Figure 5.17: Performance of ROB choice strategy: a 2 , 0 = 0.5, 72 = 0.4. 
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Figure 5.18: Performance of ROB choice strategy: a 2 ] 0 = 0.8, 72 = 0. 
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Figure 5.19: Performance of ROB choice strategy: a 2 , 0 = 0.8, 72 = 0.2. 
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Figure 5.20: Performance of ROB choice strategy: a 2 , 0 = 0.8, 72 = 0.4. 
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C h a p t e r 6 

A s y m p t o t i c s 

In this chapter, we establish guidelines for ensuring that the conditioning 

statistics S£ and S n have good asymptotic properties. Once again the context 

will be a pair of normal linear models with S° and S n restricted to affine func­

tions of the response. We characterize the class of sequences that guarantee 

that the prediction generated by a model choice or averaging strategy will be 

asymptotically equivalent to the Bayes predictor from the true model. 

6.1 Consistency of Model Weights 

Regardless of whether a model choice or a model averaging approach is taken, 

we may wish to require that the model weights, ak, be consistently estimated, 

that is, if model k, say, were true, then we would like ak —> 1 (weakly or 

strongly) as more data become available. Otherwise, in the model choice 

approach, the components of the risk that are computed under the wrong 

model (which, as such, are suspect) continue to influence the overall assessment 

even asymptotically. In the model averaging context, consistent estimation of 

118 



ak ensures that the predictor is derived ultimately from only the correct model. 

We give a complete proof for weak convergence using Chebyshev's inequality 

and then outline a Wald-type proof for strong convergence. 

Let k, k' index normal linear models with model k' nested within model 

k. Partition the design matrix as Zk,(n) = (Zfc',(n) | Z) where Z consists of 

the p = Pk — Pk1 covariates that are present in model k but not in model k'. 

Suppose that Tk is block diagonal with respect to the partitioned parameter 

vector, i.e., 

We will establish conditions on U that yield consistent estimation of CKJ for 

i = k and i = k'. 

Let Aj(A), A m i n ( A ) , A m a x ( A ) denote respectively, the z-th, the mini­

mum, and the maximum eigenvalues of the matrix A . Let | |x | |^ = x T A x . For 

any non-negative definite matrices A and B of the same dimension, we write 

A < B iff | | x | | i < | |x| |^ for all vectors x. 

It will be useful to re-express (3.22) as 

MK) = n ^ M (6-2) 

where 

M = (6.3) 

is the ratio of the marginal densities for S° from the two models and to define 

- 2 log M = A - log D (6.4) 

where 

D = M = | E - 1 / 2 E , S - 1 / 2 | (6.5) 
2-> k' 
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A = | | S S - / i t f | £ - i - | | S « - / i f c (6.6) 

= WK ~ /**'IIE-I_S-I - 2(S n - p^f^1^ - pk) - \\pk, - /ifc|gj(fi.7) 

Denote the true parameter value by /30 = (/3*,/3) where /3 = 0 when 

model k' is true. Let 

Po = U TZ f c ]( n)/3 0 

- U T (zk,,(„)/?: + z )̂ (6.8) 

denote the expected value of S£ 

Applying (A4) to (6.6), 

E j A tr ( E ^ E , ) + | | P o - / ^ l l ' - ^ - J - [tr ( E ^ E . ) + \\p0 -
fc' fc' fc 1 fc 

= t r - S f c

 x Ei ) + ||/x0 - P f c / l ^ o - ^ | | | - i £ . s ^ i . (6.9) 

To obtain a bound on the variance of —2 log M , we apply the relation V(A + 

B) < 2(V(A) + VLB)) to (6.7) and then use (A5) to obtain 

V i A < 2 

= 4 

V i ( | | S n - pk>|g-i_s-i + Vi (2 (S n - pk)T^(pkl - MA;)) 
fc' k 

t r ((^fc'1 _ ^ f c 1 ) ^ ) 2 + 2\\Po - / i A . / | | ( S - i _ E - i ) E . ( s - . i _ s - i j 

(6.10) 

Lemma 6.1 TTie quantities \\p0 - /ifc||2 i , ||yu0 - and | | P f c/ - p,k\\t- i 
fc -^fc ^ / b 

are bounded irrespective of whether model k or model k' is true. 

P r o o f Substituting for E ^ 1 using (3.15) and applying (A3), 

\Po~Pk\W-i = | | / V - b f c | | Z T n S - i u T Z 

fc K,(n) fc 
< Wo - bfc||r-i. 

fc,(n) 

(6.11) 

The expression on the final line involves only constants and hence is bounded. 

The proofs for the other two quantities follow analogously. | 
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L e m m a 6.2 When model k' is true, \\LL0 — Pk'Wt-1 is bounded. 

P r o o f Making use of the fact that B = 0, substituting for EjT,1 using (3.6) and 

applying (A3), 

l l / / 0 - / i * ' l l ! - i = | | u T z f c , ( n ) ( ^ * - b r o i l s - ! 
k' k' 

< l l ^ - b f c H r - L (6.12) 

The expression on the last line involves only constants and hence is bounded. 

I 

L e m m a 6.3 Let G = E ^ , 1 / 2 U T Z = ( U r $ f c , U ) ~ 1 / 2 U T Z and let H = G f G T . 

The following are equivalent: 

(*) A m a x ( G T G ) oo (6.13) 

(ii) A m a x ( H ) - 4 oo (6.14) 

(m) t r (H)->oo . (6.15) 

P r o o f (i) (ii): Observe that A m i n ( f ) G G r < H < A m a x ( f ) G G T implies 

Amin(r') Amax 
( G G T ) < A m a x ( H ) < A m a x ( r ) A m a x ( G G T ) . The result then follows 

from the fact that the non-zero eigenvalues of A A r and A T A are equal for any 

matrix A . (ii) (iii): Obvious since H has at most p non-zero eigenvalues 

and tr (H) equals the sum of its eigenvalues. | 

Theorem 6.1 / / model k! is true, then a necessary and sufficient condition 

for a.k' —> 1 is that U satisfies (6.13). 

P r o o f Clearly, ak> ->• 1 ak -> 0 (-21ogM) ->• -oo . It is 

sufficient to show that D —> oo <̂=>- (6.13) holds while both E f c / A and "VVA 

are bounded irrespective of whether (6.13) holds. 
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Observe that 

E f c = Efci + U r Z f Z T U (6.16) 

implies D = |I + H | . Clearly, I + H has at most p eigenvalues greater than 

one and the remaining eigenvalues are equal to one. Since the determinant of 

a matrix equals the product of its eigenvalues, it follows that (1) D > 1, and 

(2) by Lemma 6.3 D -> oo (6.13) holds. 

Setting i = k! in (6.9) and simplifying, 

Ek,A = tr (I - £ f c - ,%) + ||MO - Vk>\\y - \\(io ~ ^ l l | - i E f c # E - i - (6-17) 

The first term in (6.17) is bounded since tr ( I - E ^ E ^ ) = tr (EK

 1 U T Z f Z T U ) = 

t r ( f 1 / 2 Z T U E f c 1 U T Z f 1 / 2 ) < t r ( f 1 / 2 f f 1 / 2 ) = p where the inequality follows 

from applying (A3) after substituting for E f c using (6.16). The second term is 

bounded by Lemma 6.2 and the third term is bounded by Lemma 6.1 since 

E f c/ < E f c implies \\LI0 - p f c | | 2 1 i , < \\LL0 - Mfcllsr1' 
k k' k fc 

Setting i = A;' in (6.10) and simplifying, 

W A < 4 t r [ ( ! - E f c ' % ) 2 ] + 2||// 0 - A**' 11 CE- 1—s^- 1 >s-1 (x:fc, — 1 ) 

(6.18) • II M2 

The first term is bounded since tr (A2) < (tr (A))2. Since ( E ^ - E ^ E ^ E ^ -

E^1) = E,T, 1 / 2(I - (I + H)" 1)E j t", 1 / 2 < E ^ 1 , applying Lemma 6.2 shows that 

the second term is bounded. Finally, the third term is bounded by Lemma 6.1 

and the fact E ^ < E f c . | 

Theorem 6.2 If model k is true, then (6.13) is a necessary condition for 

ak -¥ 1. 

P r o o f Since ak —>• 1 •<=>• (—21ogM) —> oo, it is sufficient to show that both 

E f c ( -21ogM) and V f c ( - 2 1 o g M ) are bounded when (6.13) fails to hold. This 
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task reduces to showing that both E f c A and VfcA are bounded since it has 

already been seen that log(D) is bounded if (6.13) fails to hold. So suppose 

(6.13) does not hold. 

Setting i = k in (6.9) and simplifying, we have 

E f c A = tr (H) + ||// 0 - ^ f e , | | | l E t S _ ! - ||/z0 - /Zfclg-i . (6.19) 

The first term is bounded by supposition and the third term is bounded 

according to Lemma 6.1. To show that the second term is bounded, let 

c = 1 + A m a x ( H ) and observe that E ^ E ^ , 1 = E^ 1 / 2 (I + H ) E ^ , 1 / 2 < cE*, 1. 

Then 

\\l*>o ~ ^ f c ' l l i r / E k S - 1 < c l l M o - A**'HE- 1 

fc' k fc' *:' 

= c||Z f c/ i ( n)(^* - bfc») + Z / ? | | u s - i u T 

k' 

< c\\Zk>,(n)(/3o - bfcOHus-iur + c|| Z / 3 | | u s - i u T 

k' Kr 

= - b v | | Z j ; I ( B ) U E 4 - / u r z t , i ( B ) + c | | ^ | | G r G 

< cll^-b^llr-.+cll^llGTG. (6.20) 

The second inequality follows from Cauchy-Schwarz and the third one from an 

application of (A3). Both of the terms in (6.21) are bounded by supposition. 

Setting i = k in (6.10) and simplifying, we have 

V f c A < 4 

< 4 

tr (H 2 ) + 2\\n0 - ̂ ' l l ' s - i ^ - i ^ ^ - i . s - i ) + IK' -

tr (H 2 ) + 2\\fi0 - ^ * ' | | E - i S t £ - i + \W ~ Pk\\l 2 
- i 
fc 

(6.21) 

where the last inequality follows from the fact (E^,1 - E f c

 1 )E f c (E f e , 1 - E/71) < 

E^EfcEfc, 1. A l l of the terms in in (6.21) are bounded by supposition or have 

already have been shown to be bounded. | 
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Theorem 6.3 If model k is true, then (6.13) together with the condition that 

A m a x ( G r G ) < # A m i n ( G r G ) (6.22) 

for all n and some constant K is sufficient for ak —> 1 • 

P r o o f It is sufficient to show that (6.13) and (6.22) together imply that 

E f c ( -21ogM) -> oo and V f c ( - 2 1 o g M ) / E ^ ( - 2 1 o g M ) -> 0 since Chebyshev's 

inequality then implies (—21ogM) —> oo. 

Clearly, from (6.19), 

E f c ( -21ogM) = t r ^ + l l / X o - A t f c ' l l 2 . - ! E t E - i - \\fi0 - »k\\l-i - log |I + H | 
k' k fc' k 

> I I ^ - ^ ' I I I - I ^ E - I (6.23) 
fc' " k' 

since tr (H) - log |I + H | = £ (Aj(H) - log(l + A {(H)) > 0. We now show that 

11 Mo — A t * 'H E - i s f c s - i increases at a rate of at least O ( A m i n ( ( G T G ) 2 ) ) . Since 

E^EfcSfc,1 = E^, 1 + E f c / U ^ f ^ U E f c , 1 , we have 

ll _ II2 •> ll _ l l 2 

11 Mo Mfe ' l ls -ZEuE-, 1 — H ^ 0 M f c ' l l s - i u ^ z f z ^ u s - , 1 

k' " k' fc' fc' 

= l l ^ l l z T ( i i ) U E - / / = H E - 1 / 2 U ^ Z „ , ( n ) + H ^ l l G T G f G ^ G 

- 2 ^ T Z f e ' , ( n ) E f c , 1 U T Z f G T G ^ . (6.24) 

The second term in (6.24) is at least O (XMIN((GTG)2)^ since 

H ^ l l G T G f G T G - ^min(r)||/3 | |(G TG) 2 

> A m i n ( f ) A m i n ( ( G r G ) 2 ) | | / 3 | | 2 . (6.25) 

In contrast, the first term in (6.24) increases at a rate of at most O ( A m j n ( G T G ) ) 

since 

I I A J I 7 T T T r - 1 / 2 H V - 1 / 2 T 7 T 7 — ^ m a x ( G f G T ) 11/3*11̂  T J „ _ i T r T / 

Zfc,(n) U Lfc' H i V U Z M » ) Z ,fc',(n) U 2 jfc' U Z «=' , (n) 

< A m a x ( r ) A m a x ( G : r G ) i : C ' 

< A m a x ( f ) ia m i n (G T G ) i r (6.26) 
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where condition (6.22) has been used in the last inequality. Hence the second 

term in (6.24) dominates the first term. By the Cauchy-Schwarz inequality, the 

the first term also dominates the third term. Therefore Efc(—21ogM) —>• oo 

at a rate of at least O ( A m i n ( ( G T G ) 2 ) ) . 

To show that Vfc(—21ogM) increases at arate of at most 0 ( A m i n ( ( G T G ) 2 ) , 

it is sufficient to show that the first term in (6.21) is at most 0 ( A m ; n ( ( G T G ) 2 ) 

since it has been shown already that the third term in (6.21) is bounded and 

that the second term is at most O ( A m i n ( ( G T G ) 2 ) ) . But tr (H 2 ) < (tr (H)) 2 < 

( A m a x ( f ) t r ( G T G ) ) 2 < ( A m a x ( f ) p A m a x ( G r G ) ) 2 < ( A m a x ( f ) p K \ m m ( G T G ) ) 2 

is clearly 0 ( A m i n ( ( G T G ) 2 ) ) . | 

We conjecture that an alternative simpler condition to (6.22) is that 

J > p since we believe this condition implies (6.22). (Clearly J > p is a 

necessary condition for (6.22) since otherwise G T G has a zero eigenvalue.) 

Another perhaps even more attractive alternative would be to remove (6.22) 

and instead impose a condition on ( Z ^ , ^ ) , Z ) directly. So long as G T G is full 

rank, the lower bound obtained in (6.25) obtains only for exceptional sequences 

of (Zfc'^n), Z ) . For typical sequences, the lower bound is 0 ( A m a x ( ( G r G ) 2 ) 

so if we exclude the exceptional sequences from consideration, no additional 

conditions need be added (beyond requiring G T G to be full rank). Condition 

(6.22) aside, Theorems 6.1 through 6.3 essentially state that weak consistency 

is characterized by whether or not U satisfies condition (6.13). 

The remaining material in this subsection gives a Wald-type argument 

that gives sufficient conditions for strong consistency. 

Conjecture 6.1 A sufficient condition for oti -4 1 a.s. when model i is true 

for both i — k and i — k' is that 

lim rank(U) ->• oo. (6.27) 
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Sketch of proof when model k true: Let Q,ki and £lk denote the parame­

ter spaces under models k' and k respectively. We need to show that (6.27) 

implies that for any e > 0, L = Pp0{M > e) —>• 0 when B0 6 Q,k but j30 g £lki. 

The density of S£ given the parameter value Bi under model i is 

P i = (27r)(-^ 2)|a 2U TU|- 1/2exp {~\\s{n) - U T Z , ( n ) A | | 2

( T 2 U r u ) - 1 } . (6.28) 

Let the pa denote the density Pi evaluated at the true parameter value B0. Let 

B((30, 8) denote the open ball centred at B0 with radius 8 such that B(B0,8) (1 

Q,k> = 0 and let BC(B0,8) denote its complement. 

Let Vi((3i) denote the prior density on Bi. Then 

fo vkt(8k/)Pk>d8ki 
M = *' (6 29) 

Snk Vk(Pk)Pkdf3k 

and 

L = P0o(M>e) 

< p f^PBc(MPk PQ \ 

- 0 O \ p 0 SB(Mvk{Pk)PkdBk ) 

( ^ { M P k > e _ n a \ + f t V k { p ) d 0 k < . 
V Po J \JB(p„,6) e J 

(6.30) 

The first inequality follows from recognizing that s u p B c ^ o ^ p k > supQ f c / p k = 

supnfc)Pfc' > Jnk,uk'{/3k')Pk'dBkl and SB^0,8)uk{Bk)pkdBk < Jnkvk(Bk)Pkd/3k. 

The second inequality follows from first using the relation E = (E C\ A) U 

(E n Ac) C A U (E n Ac) where E = {M > e} and 

and then applying the relation { x y > p } Pi {x < q) C {qy > p ) to E f l Ac and 

re-arranging terms. Now let W „ = A _ 1 / / 2 S ° where A = a 2 U T U . Then the 
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elements of W „ are independent normals with unit variance and hence pk as 

a function of W n is given by 

pk = ( 2 7 r ) - J / V 2 U r U | - V 2 e x P { - i | | w n - A - 1 / 2 U r Z f c ; ( n ) ^ | | 2 } 

= ( 2 7 r ) - ^ | a 2 U r U | - 1 / 2 e x p | - i f : ( ^ - f t ( / 3 f c ) ) 2 | (6.32) 

where Wi and gi((3k) are the z-th elements of w„ and A~1^2UTZk^n'j/3k respec­

tively. As a function of w„, the expression for pk is not a density due to the 

additional factor | a 2 U T U | _ 1 / 2 . However this factor appears for each instance 

of pk and cancel in each term in (6.30). Hence therein pk can be treated as a 

true density. If gi(Bk) were independent and identically distributed (i.i.d.) for 

all i , then as J —> oo, the first term of (6.30) converges to 0 by Wolfowitz's 

(1949) result and the second term is 0(1/J) by a result of Clarke and Barron 

(1990). Hence if these two results were extended to cover the case of indepen­

dent and not identically distributed (i.n.i.d.) data as arising in this problem, 

then the theorem is proved. The extension from i.i.d. to i.n.i.d. is usually 

routine although often tedious and involving many conditions. For example, 

Hoadley (1971) extends Wolfowitz's result by generalizing standard regularity 

conditions. The extension of the Clarke and Barron work is expected to be 

similar. | 

Sketch of proof when mode l k' t rue: Let B(80,81,82) denote an open rect­

angular neighborhood of B0 formed as the Cartesian product of B(j30,5\) and 

B(P0, $2) where B(B0,81) and B(B0,82) are open rectangular neighborhoods of 

B0 in the subspaces of By and /3 respectively. Let 81 (82) denote the length of 

each side of of the rectangle. Let v(B) denote the volume of the neighborhood 

B. Then 

v(B((30,8U 82)) = v(B({30,81))v(B(P0, <S2)). (6.33) 
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Suppose for the moment that V<5i, 62 there exists a sufficiently large N such 

that 

/ VkPkdBh > / VkPkdBk (6.34) 

for all n > N. Then for sufficiently large n, 

M = 

> 

Snk Vk(Pk)PkdBk 

1 fB(p0,5lt52) V(B(ZA))D^K' (6.35) 
v(B(B0,52))fB{,M2) <B£Xh))dpk-

As 5i and <52 go to 0, the integrals in the numerator and denominator of (6.35) 

both converge to pk(/30) and hence M —> oo. So the theorem is proved if it is 

shown that (6.27) implies (6.34). Roughly speaking, 6.34 is requiring that the 

density concentrates around B0 as n gets large. If we were dealing with i.i.d. 

observations then (6.27) would be sufficient so again the key is an extension 

to i.n.i.d. data. | 

For a model choice strategy, consistency of the model weights guarantees 

that the final prediction matches the Bayes predictor from the true model 

asymptotically. Roughly speaking, if model i is correct (and so —>• 1), then 

asymptotically p*{k; S £ ) « p(k; i, S £ ) and obviously p(k; i, S n ) is minimized by 

taking k = i. 

6.2 Conditional Predictive Distributions 

Consistency of model weights in a model averaging procedure does not guar­

antee that the final prediction matches the Bayes predictor from the correct 

model in general. In model averaging the final prediction is derived from 
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(when model i is true) whereas the Bayes predictive distribution is -Fi|Y { n )-

For point prediction, these two distributions will generate the same predictor 

asymptotically if and only if the means p(FI^SPI) and p(Fi\Y(n)) for the two 

distributions are equal asymptotically, i.e., 

A ^ M ^ ^ - M ^ s ^ ^ O . (6.36) 

A generalization of Lemma 3.1 provides one characterization of the solution 

to 6.36. 

Theorem 6.4 Asymptotically, the distributions F^SPN andFi\y(n) have the same 

mean iff the vector ^ ^ Z j ^ T i Z i ^ + i lies in the null space o / U . 

P r o o f Substituting in (6.36) using (3.8) and (3.20), and simplifying, we get 

A , = ( Y ( n ) - Z i , ( n ) b i ) r [ * r 1 - \J(\JT%V)-1\JT]Zi,{n)riZi,n+l 

= ( Y ( n ) - Z i ) ( n ) b 2 ) r ( I - P ) * r i z i i ( B ) r i Z i , n + 1 (6.37) 

where P is given by (3.25). By the argument used in the proof of Lemma 3.1, 

A ^ = 0 iff the condition in the statement of the theorem holds. | 
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C h a p t e r 7 

D i s c u s s i o n 

We have proposed a new class of criteria, the mongrel risk, for selecting on­

line predictors. The mongrel risk combines both model information and past 

empirical performance to evaluate the candidate predictors. The application of 

the mongrel risk requires a rule for selecting the conditioning statistic (S£, S„). 

The selection can be made in an adaptive or global approach. 

Our simulations show that an adaptive mongrel approach beats out the 

Bayes procedure uniformly over a wide range of data-generators in small sam­

ples. An analytic proof of this result would, of course, be desirable but it is 

unlikely to be obtainable given that the expressions needed to assess the per­

formance of a mongrel procedure cannot be evaluated analytically. Moreover, 

because we are dealing strictly with small sample performance, we cannot 

appeal to the approximation techniques that are often employed in proving 

asymptotic results. 

We believe that we have investigated a sufficient variety of simulation 

parameters to conclude that our results hold in enough generality to be com­

pelling. The choices for the coefficient, 72, of X2 cover a practically meaningful 
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range of values and the choices for the prior probability, a 2 , 0 on the full model 

span a range that seems reasonable for practical applications. 

We also investigated the impact of the choice of prior distributions on 

the parameters. For our main simulation work, we set the prior variances, 

T i & r 2 , on the regression parameters to be identity matrices because we 

felt that such values reflected the typical (mild to moderate) amount of prior 

information available in practice. In simulation results not presented here, the 

use of very weak priors (Ti = 251) gave qualitatively the same results. Our 

choice of prior means on the parameters may also seem fortuitous in that when 

72 is 0 or 0.4, one of the models will have prior means that completely match the 

data-generator. In practice, we would expect that neither of the prior means 

would match the means in the data-generator. Hence, we also conducted 

simulations in which a different set of coefficients for the data-generator was 

generated for each sequence randomly. That is, we used a random effects 

model for generating the data. The distribution of the random coefficients 

was normal with means equal to the values from the fixed coefficients model 

and 0.21 as the variance. Once again, we found that the results (not presented 

here) were qualitatively similar to what we found using the fixed coefficients 

model. 

As an alternative to using the M S P E (3.34), we evaluated the perfor­

mance of the naive mongrel strategies 'a2hf' and 'c2hf' using the difference in 

relative entropies 

AD = D(pr\\pB)-D{pr\\pM), (7.1) 

where pr is the true predictive density (from the data-generator), pB is the 

density from taking a Bayes strategy, and PM is the density from the mongrel 

strategy. We limited the investigation to scenarios with a i 2 ) 0 = 0.5 and 72 = 0, 
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0.2, or 0.4. The plots (not shown) of the AD in all three cases exhibited 

patterns very similar to their analogs under M S P E loss (the third panel in 

Figures 3.4, 3.5, 3.6 (model averaging) or 3.13, 3.14, 3.15 (model choice)). 

The mongrel strategies beat out or lost out to the Bayes strategy in the same 

scenarios and across roughly the same time intervals regardless of whether 

relative entropy or M S P E loss was used. These results suggest that the gains 

seen from taking a mongrel approach generalize to loss functions other than 

M S P E (though this claim is perhaps mitigated by the use of normal models 

for which relative entropy is closely related to squared error loss). 

Relative entropy can also be used to select (S", S n ) . Consider the case 

of model averaging. The candidate predictive distributions are of the form of 

the mixture distribution (2.19) for different choices of (S", S n ) . Let pm|(s«,s&) 

denote the density of the mixture distribution. The adequacy of p ( S ° , S n ) 

as a predictive distribution in relative entropy distance is £)(pr|bm|(sg,s£))-

We cannot use this measure to compare different choices of (S°,S£) because 

the true density px is unknown. Instead, we can compare them based on the 

relative entropy distance with respect to the posterior density Pi\YM of each 

candidate model, i.e., 

for each candidate model i. As in Chapter 4, we might summarize over all 

models by taking the maximum or taking a weighted average over the A 's . 

This leads to select (S£, S£) as 

A = £>(Pi|Y ( n )|bm|(Sg,S{; (7.2) 

S m M = arg min max D, 
(SS,S£) i 

(7.3) 

or 

SmWA = arg min V c ^ A 
(S2,S£) Y 

(7.4) 

132 



for a minimax or weighted average strategy (with weights Ui) respectively. The 

choice of predictive distribution is then given by p m | s m M

 o r P m | s m W A - I*1 general, 

Di cannot be evaluated analytically. However, it's evaluation requires only a 

one-dimensional integral so numerical integration is feasible. Relative entropy 

is generally viewed as a "natural" measure of loss so it may be preferred over 

squared error loss outside of normal models. 

Both practical and conceptual difficulties have limited our work to only 

two candidate models. On a practical level, the computational time required 

to complete a simulation increases roughly as the square of the number of can­

didate models so that going from two to three models would more than double 

the time needed. More importantly, we have yet to develop fully the idea of 

risk sufficiency so that it is unclear which predictuals should be considered 

for inclusion in (S", S£) . For instance, should we still use only the predictuals 

from the smallest model? a combination of predictuals from all but the largest 

model? or some entirely different set of predictuals? So long as ( S ° , S£) is not 

risk-sufficient, the generalization of most of our techniques to three or more 

models is straightforward. But based on our experience with two models, it 

seems not too difficult to unintentionally achieve risk-sufficiency. We view the 

development of a greater understanding of risk-sufficiency as important future 

work. 

Our arguments for why appropriate use of the mongrel risk criterion 

generates more accurate predictions than the Bayes procedure have been, for 

the most part, heuristic. Much additional work is needed to explain fully 

the properties of the mongrel procedure that give it the advantage. We are 

currently examining the results for individual sequences to identify the cir­

cumstances under which the mongrel approach is better. For example, Figure 

7.1 displays a histogram of the difference MSPE(a2ff) - MSPE(a2xfmM) in 
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performance between the Bayes averaging strategy (a2ff) and the minimax 

mongrel averaging strategy for the 5000 individual sequences. (The predic­

tions are for y 1 0 with simulation parameters 72 = 0.2 and a2y0 = 0.5.) The 

distribution is tightly concentrated about zero but nearly all of the large de­

viations are positive. Thus it appears that the mongrel and Bayes strategies 

typically perform about equally well, but in a small fraction of sequences the 

mongrel procedure performs much better. This result agrees well with our 

intuition that the mongrel approach is good at identifying the exceptional se­

quences where using all of the data produces misleading risk assessments. Our 

efforts in this area are ongoing. 
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MSPE(a2ff) - MSPE(a2xxmM) 

Figure 7.1: Distribution of MSPE(aff) - MSPE(a2xfmM) for predicting Yw 

with simulation parameters a2,0 = 0.5, 72 = 0.2. (Bottom panel displays the 
smaller frequency range on an expanded scale.) 
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Appendix 

A . 1 Let A and D be nonsingular matrices. Then 

( A + B D B T ) _ 1 = A - 1 - A - 1 B ( D - 1 + B r A _ 1 B ) _ 1 B r A _ 1 . (Al) 

Rearranging this equality and left and right multiplying by A , we obtain 

B ( D - 1 + B r A _ 1 B ) _ 1 B T + A ( A " 1 + B D B r ) _ 1 A = A (A2) 

so that, if A and D are p.d., then each term in (A2) is n.n.d. and hence 

B ( D " 1 + B T A - 1 B ) ~ 1 B r < A . (A3) 

A . 2 Let Y ~ jV(m, S). Then for any n.n.d. matrix A 

E ( Y T A Y ) = tr (AS) + m T A m , (A4) 

V ( Y r A Y ) = 2tr ( A S A S ) + 4 m r A S A m . (A5) 

Note that for any n.n.d. matrix B , t r ( B 2 ) = YJIUJ^IJ < HiUjhi^jj = 

( t r B ) 2 where is the i, j-th element of B . Setting B = A 1 / 2 S A 1 / 2 , we have 

t r ( A S A S ) = t r ( B 2 ) < ( t r B ) 2 = (tr A S ) 2 and hence 

V ( Y r A Y ) < 2(tr A S ) 2 + 4 m T A S A m . (A6) 
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A.3 Let pi = Ci+ (7* + 8fYy, where Ci, 7i are scalars and r5i5 Y are n-vectors. 

If r < n, then for any scalars i/j, 

£ ^ft = (Y + b) T A (Y + b) + c (A7) 
i=i 

where 

A = ^UiSiSf, (A8) 
i=l 

r 
b = A-J2nvrfi (A9) 

i=i 

c = E ^ ( C i + 7 ' ) - b r A b (A10) 
i=l 

and A~ is a generalized inverse of A. Note also that Ab = £ [ = 1 7^(5;. 
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