
M o d e l s for t he D e v e l o p m e n t o f T u m o u r s i n 

N e u r o f i b r o m a t o s i s 2 

by 

Ryan R. Woods 

B.Sc, University of Guelph 1998 

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F 

Master of Science 

in 

T H E F A C U L T Y O F G R A D U A T E STUDIES 

(Department of Statistics) 

we accept this thesis as conforming 
to the required standard 

T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a 

June 2000 

© Ryan R. Woods, 2000 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of 

The University of British Columbia 
Vancouver, Canada 

Date 

DE-6 (2/88) 



Abstract 

Neurofibromatosis 2 (NF2) is a rare genetic disease that affects approximately 1 in 

40000 people, some of the characteristic features of this disease include the onset 

of multiple tumours on the cranial and spinal nerves, juvenile cataracts and hearing 

loss. Almost all affected individuals develop bilateral tumours of the Schwann cells 

that line the vestibular nerves; these tumours are called as vestibular schwannomas 

(VS). Evidence from molecular genetic studies has suggested that a "2-hit" hypoth

esis is appropriate for the development of VS in patients with NF2; that is to say 

that a tumour cell develops from a normal Schwann cell after the cell sustains two 

mutations to its genetic material. Several authors have proposed probabilistic mod

els for this process and have shown that such models are consistent with incidence 

data for several different types of cancer. 

We will discuss a selection of probabilistic models for a "2-hit" hypothesis 

and present the results from the fitting of such models to incidence data from NF2 

patients. Molecular evidence does not exclude the possibility that additional hits are 

necessary for the development of VS; we will discuss a "3-hit" model and compare 

the model's fit to both the data and to the fit of the "2-hit" models. Genotype-

phenotype correlations have been reported in patients with NF2 and thus a model 

that incorporates a patient's genotype is presented and discussed. Finally, a bivari

ate model is proposed to estimate the distributions of the ages at onset of both the 

first and second VS. 
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C h a p t e r 1 

Introduction 

The central objective of this thesis is to outline a selection of probabilistic models 

for the development of tumour cells and provide an application of such models to 

< data from patients with the disease neurofibromatosis 2 (NF2). In this chapter 

we will provide some background information about the genetic disease NF2. We 

will outline some of the terminology and genetic concepts that will be used and 

discussed throughout this thesis. Section 1.2 will provide an overview of the major 

contributions to mathematical models for carcinogenesis. A selection of these models 

will be used in this thesis in an application to data on NF2 patients; Section 1.3 will 

discuss our specific study objectives and discuss the general features of the models 

we are interested in applying to our data. Finally, a description of the datasets to 

be used in our study is given in Section 1.4. 

1.1 Neurofibromatosis 2 

Neurofibromatosis 2, also called Bilateral Acoustic Neurofibromatosis, is a rare ge

netic disease that affects approximately 1 in 40000 people. Al l NF2 patients bear 

some form of a mutation to the NF2 gene (italics are conventionally used to denote 

the name of the gene and Roman type for the name of the disease); this mutation 
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is present at birth in all NF2 patients. NF2 is a dominant disease. This means that 

it is caused by one mutant copy of the NF2 gene. People normally have two copies 

of every gene (except those on the sex chromosomes in males). People with NF2 

have one mutant and one normal copy of the NF2 gene in every cell of their bodies 

unless additional mutations have occurred in the process of tumorigenesis, as dis

cussed below. The NF2 gene is located on chromosome 22q and includes 17 exons. 

Characteristic features of NF2 include the onset of multiple tumours on the cranial 

and spinal nerves, juvenile cataracts, headaches and facial weakness. We will refer 

to the various disease features exhibited by a patient as the patient's phenotype. 

Almost all affected individuals develop bilateral tumours of the Schwann cells 

that line the vestibular nerve; such tumours are known as vestibular schwannomas 

(VS). The presence of one or more VSs can cause loss of balance, hearing loss and a 

ringing in the ears called tinnitus. These are typically the early symptoms of NF2, 

which often occur in an individual's teenage years or during their twenties. 

Approximately 50% of NF2 cases are new mutations; meaning that the af

fected person's parents did not have NF2. Additionally, a person with NF2 will 

have a 50% chance of passing on their mutated NF2 gene to any of their children. 

When performing statistical analyses on data from NF2 patients it is important to 

be able to distinguish the family member who first sought medical attention for their 

condition from the other family members; this family member is called the proband. 

In most statistical analyses probands and non-probands will be analyzed separately, 

particularly if the analyses require the use of information related to the age at onset 

of various features of the disease. The rationale for this is that once a proband has 

been brought to medical attention, other members of their family will be examined 

for features of the disease as well; even if they have not previously shown any of 

the early symptoms of NF2. These other members of the family may be monitored 

more closely to detect the onset of various features of NF2. This may include giving 

these family members MRI scans to detect the onset of tumours before they be-

2 



come symptomatic. Information recorded about the age at which features became 

apparent in the non-probands will tend to be biased towards earlier ages compared 

with this same information in the probands. Analyzing probands separately from 

the other members of the family is an attempt to prevent this potential bias from 

affecting the results of any analyses. 

There are several different general types of mutations of the NF2 gene that 

can occur. The three major classes of mutation types which seem to be well repre

sented in our NF2 datasets are: protein truncating mutations; missense mutations; 

and splice-site mutations. These three different mutation types differ from one an

other in the effect that they produce on the production of protein. More specific 

details related to these mutation types will appear in the glossary. We will use the 

term genotype to refer to the type of mutation of the NF2 gene borne by an individ

ual. This is somewhat different than the conventional definition of genotype found 

elsewhere in genetics; genotype more often refers to the entire genetic constitution 

of an organism. In statistical studies of NF2 patients it is of interest to examine the 

relationship between both the genotype and phenotype of the patients. Suggestions 

from both clinical and epidemiological studies, that certain types of mutations of the 

NF2 gene produce more severe disease features than others [5, 25], have motivated 

the study of genotype-phenotype relationships. 

Further details about NF2 can be found in the book by Friedman et al. [6]. 

1.2 Models for Carcinogenesis 

There have been many contributions to the development of mathematical and prob

abilistic models for human carcinogenesis. Such models have been used in the past 

to explain incidence rates for different cancers in populations, as well as to validate 

hypotheses about the genetic mechanisms that are responsible for tumour develop

ment. The common theme that is incorporated into most of these models is that a 

tumour cell is assumed to be the outcome of a sequence of irreversible events; these 
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events progressively transform normal tissue cells by some mechanism into tumour 

cells. A presentation of the main ideas and concepts related to many of these models 

is provided by Chu [2]; this reference provides a clear non-mathematical formulation 

of these models. A brief outline of some of these models is provided below. 

Perhaps the earliest of these models was the multistage model presented by 

Armitage and Doll [1]. The Armitage-Doll (AD) model described the transformation 

process of a normal tissue cell into a tumour cell. The transformation process is 

represented by a sequence of irreversible changes of state. The change from one 

state to another represents a cell moving from its present state to a state of further 

malignancy, until it eventually reaches the final stage; a malignant tumour cell which 

divides until it becomes a detectable cancer. The A D model has been used to explain 

the incidence rates of many adult human cancers. 

Knudson [12, 13, 8] proposed a two-stage model for cancer initiation to de

scribe the incidence of both sporadic and hereditary retinoblastoma. According to 

Knudson's model, a tissue cell is transformed into a tumour celf after sustaining 

two irreversible mutations. This model is often referred to as a "two-hit" model; 

where the term hit refers to the mutation of an allele in the cell. The first of 

these mutations is assumed to occur in one of two ways: in hereditary cases of the 

cancer, individuals inherit the first mutation; in non-hereditary, or sporadic cases, 

the first mutation occurs by chance. The second mutation is assumed to occur by 

chance in both groups. This two-mutation model also allows for the cell division of 

both normal tissue cells and cells that have already sustained a mutation; this is 

a necessary feature of a realistic model. Previously, the A D model had not taken 

into account the cellular kinetics of the tissue under study. Knudson's model was 

shown to be consistent with epidemiological data for retinoblastoma and subsequent 

genetic analyses have established the validity of this model in retinoblastoma and 

other forms of human cancers. Further details related to Knudson's model will be 

discussed in Chapter 2. 
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Moolgavkar and Venzon [18] introduced an important class of two-mutation 

models that have been used extensively in epidemiological research; we shall refer to 

these models as the M V models. These models, like Knudson's, also incorporated 

the cellular kinetics of the tissue into the model; the M V models however, allow for 

the division and death of both the normal tissue cells and cells that have already 

sustained mutations. A subclass of these models is able to incorporate an explicit 

functional form for the number of tissue cells present in the tissue as a function 

of age [19, 20, 21, 22]. This is a useful feature of the model as some tissues may 

grow rapidly during some stages of development and then remain at a fixed size 

thereafter; such growth patterns can be incorporated into the model by choosing an 

appropriate function for the the number of tissue cells as a function of age. These 

models have been shown to be consistent with epidemiological and experimental 

data for many different types of cancers [22]. The mathematical formulation of the 

model is also convenient to extend to a three-mutation model, and work has also 

been done to extend this model to a general number of mutations. Several authors 

have contributed to generalizing the M V models in various ways; many of these 

contributions are noted in the references. Details related to both the mathematical 

formulation and application of some of the M V models will appear in Chapter 3. 

In the subsequent section we will discuss our intent to use a selection of these 

models in an application to data collected on NF2 patients. A description.of the 

data that we intend to use will also follow. 

1.3 S t u d y ques t i ons to add ress 

The central objective of this thesis is to explore the appropriateness of a two-

mutation hypothesis for the development of VSs in patients with NF2. Our motiva

tion for this has come from molecular data that have suggested the appropriateness 

of such a model [6]. A two-mutation hypothesis for the development of VSs would 

imply that Schwann cells around the vestibular nerve must acquire two mutations in 
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some fashion in order to develop into tumour cells. Additionally, we are interested 

in exploring the suitability of a three-mutation hypothesis for the development of 

VSs. One reason for this is that molecular data do not rule out the possibility that 

a third mutation may contribute to the development of these tumours. As well, the 

development of certain cancers have previously been shown to be consistent with 

both two and three-mutation models. We intend to assess the appropriateness of the 

aforementioned hypotheses by fitting suitable probabilistic models to patient data; 

a more thorough discussion of these models appears below. 

Figure 1.1 is a depiction of a two-hit model for hereditary tumours; circles in 

this picture represent cells and the arrows between circles represent possible transi

tions from one type of cell to another. Greek letters along side the arrows represent 

the rates of transition between states; these will be described more thoroughly in 

subsequent sections. A cell that bears a single mutation is capable of division, 

death, or sustaining a second mutation; cells that have died or sustained the second 

mutation are not capable of returning to the single mutation state. Under such 

a model a tumour cell is any tissue cell that has sustained two mutations. This 

model is applicable to NF2 patients as all NF2 patients are born with a mutation to 

one NF2 allele and thus tumours associated with NF2 can be considered hereditary 

tumours. Figure 1.2 is a picture of a three-hit model for hereditary tumours. This 

model is identical to the two-hit model described above except that it contains an 

additional stage; cells that have sustained two mutations are now also capable of 

division, death, and acquiring a third mutation. A tumour cell is generated when a 

tissue cell acquires the third mutation. We will provide mathematical formulations 

for these models in Chapters 2 and 3 and describe the fitting of such models to NF2 

data and the results in Chapter 5. 

As a starting point, we will provide an outline of Knudson's two-hit model 

and apply this model to data from both sporadic and hereditary VS, the latter in 

patients with NF2. Knudson's model however, does not allow the incorporation of 
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genotype information into the model. Associations between patients' genotype and 

phenotype have been described in NF2 [5, 25] and thus we would like to develop a 

model capable of incorporating genotype information. The M V models described 

in the previous section appear to be capable of including this information. We will 

provide an outline of the mathematical formulation of these models and describe our 

approach to incorporating the genotype effects into these models. These models will 

be fit to patient data to assess the suitability of the two-mutation hypothesis and 

to examine the role of genotype in predicting the onset of VS in NF2 patients. We 

will also provide the mathematical details of a 3-hit model for the development of 

tumours in NF2 patients. This model will also be fit to data to assess the suitability 

of a three-mutation hypothesis. 

Previously, both Knudson's model and the M V models have been used to 

predict the incidence of the first tumour in a tissue of interest. Many tissue however 

are bilateral, or paired, and there may be interest in predicting the age at which 

a person develops tumours in each of the paired tissues. The vestibular nerve is 

a bilateral tissue and NF2 patients develop tumours of the Schwann cells along 

both the left and right vestibular nerves. We will present a model that is able to 

predict the age at which a patient develops both VSs under the assumption that two 

mutations are necessary for the development of a VS. This model will be presented 

mathematically in Chapter 4 and the results from fitting this model to data will 

appear in Chapter 5. 

Finally, we will provide some comments about how the fitting of these models 

could be simplified or improved as well as some other potentially interesting study 

questions that could be addressed using similar models. 

1.4 Description of the data 

It is quite difficult to acquire large NF2 data sets as a result of the low prevalence 

of the disease. This often necessitates combining data from many sources so that 
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enough patient data are available for statistical analyses. We are fortunate to have 

access to a reasonably large database of NF2 patient data; the information contained 

in this database is both clinical and molecular for many of the patients. Unfortu

nately, for some of our analyses we will still need to combine data from several 

published sources in order to have sufficient sample sizes for our analyses. Here we 

will provide a description of the data that will be used to fit our models. 

The large database available to us was provided by Dr. Gareth Evans, St. Mary's 

Hospital, Manchester, U.K.; we will henceforth refer to this database as the M U K 

(Manchester, U.K.) data. As of March 1, 2000, this database contains detailed clin

ical information on 349 NF2 patients. Information contained in the patient records 

includes ages at onset for several characteristic features of NF2, age at presentation 

of the first feature of NF2, age at last examination, proband status (yes/no), pres

ence or absence of several different types of tumours, laterality of VS, and many 

other variables. Al l of the aforementioned information relates to the phenotype of 

the patient; a subset of the patients also has genotype information recorded. 188 

patients from this dataset had their D N A sequenced to determine the type of their 

germline NF2 mutation. 

To be eligible for our study, patients had to be probands with bilateral VS 

with the age at onset of the first VS recorded. Using probands for our model fitting 

is an attempt to remove biases that may result from analyzing data that contain 

both probands and non-probands; this point was discussed previously in Section 1.1. 

The NIH diagnostic criteria (1997) for NF2 state that a person can be diagnosed 

with NF2 only if they satisfy one or more of the following: 

• Bilateral VS 

• Family history of NF2 and either: 

1) Unilateral VS at age less than 30 

2) Any two of the following: meningioma, glioma, schwannoma, juvenile 
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posterior subscapsular lenticular opacities/juvenile cortical cataract 

Probands by definition will not have a family history of NF2 and thus a proband 

will only be diagnosed with NF2 following the onset of both VSs. To ensure that 

the patients we are including in our analyses do in fact meet the NIH crtieria for 

NF2, we require that they have bilateral VS. The age at onset of the first VS will 

typically be the response variable for our analyses and thus all patients used in our 

analyses must have this variable known. In some cases a surrogate measure for this 

can be used in place of the age at onset of the first tumour and this will be further 

discussed below. In total, the M U K data contained 163 probands with bilateral VS 

and a recorded age at onset of first VS variable. 

In order to acquire enough patients with known genotype information we 

combined the M U K data with data from several other published sources. This 

database has been compiled and maintained by Dr. Mike Baser from Los Angeles, 

U.S.A.; we will refer to this as the FSS (from several sources) data set. A compli

cation with merging data from these various sources was that not all sources had 

recorded the age at onset of the first VS for the patients. Instead, several sources 

recorded the age at onset of hearing loss; this variable has often been used as a sur

rogate for the age at onset of the first VS as the presence of a VS typically results 

in a loss of hearing. Fortunately, all data sources had age at onset of hearing loss 

recorded for their patients and thus any analyses done using the FSS data will use 

this variable as the dependent variable. To see that age at onset of hearing loss is 

a suitable surrogate for the age at onset of the first VS one can refer to Figure 1.3. 

This figure shows both histograms and boxplots for the age at onset of the first VS 

and its proposed surrogate. Displays are provided for the age at onset of hearing 

loss from the patients from the M U K data, as well as for patients from the FSS data. 

The distributions displayed in this figure match one another very closely and suggest 

the appropriateness of our proposed surrogate measure for the age at onset of the 

first VS. The FSS data contained 167 patients that met our criteria for entrance 
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into the study. Of the 167 patients that were eligible for our study, 68 patients from 

the FSS data had identified mutation types; 40 of these patients had frameshift or 

nonsense mutations (which we will refer to as protein truncating mutations) and 28 

patients had other types of mutations. Figure 1.4 is a display of the distribution of 

the age at onset of hearing loss by mutation type. 

The M U K data had 144 probands with bilateral VS and age at hearing loss 

recorded. Two patients had not yet developed hearing loss and were omitted from 

any analyses using age at onset of hearing loss as the dependent variable. These 

patients could have been regarded as censored in our analyses however, given the 

small censoring rate we have chosen to remove them to avoid the need to apply 

methodology for censored data. The influence of two censored observations on our 

model fitting results would quite surely be negligible given the size of the dataset. 

It is useful to note that the 144 patients described above are in fact a subset of the 

FSS dataset. 

Finally, we will also employ a dataset of sporadic VS patients. These are 

patients that do not have NF2, but do have a unilateral VS. The data were provided 

by Frank Mirz, a researcher from Denmark, and were published in a study on the 

natural history of VSs [17]. This dataset contains the age at onset of the first VS 

for 72 patients affected by a unilateral VS. We will henceforth refer to this dataset 

as the SPOR data. Figure 1.5 shows histograms for the age at onset of the first VS 

in sporadic and NF2 cases of VS. The distributions are clearly different for the two 

groups; the onset of the VS occurs much earlier in patients with NF2 than it does 

in sporadic cases. 
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Figure 1.3: Simple descriptive summaries of the three data sets 

(a) Histogram for the age 
at onset of the first VS 
(MUK data) 

(b) Histogram for the age 
at onset of hearing loss 
(MUK data) 

(c) Histogram for the age 
at onset of hearing loss 
(FSS data) 

(d) Boxplot for the age 
at onset of the first VS 
(MUK data) 

(e) Boxplot for the age 
at onset of hearing loss 
(MUK data) 

(f) Boxplot for the age at 
onset of hearing loss (FSS 
data) 
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Figure 1.4: Histograms for the age at onset of hearing loss by mutation type (FSS 
data) 

40 
age at onset 

(a) Protein-truncating mutations 

40 
age at onset 

(b) Other identified mutation types 
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Figure 1.5: Histograms for the age at onset of the first VS 

o 
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age at onset 

(a) Sporadic cases of VS 

40 

age at onset 

(b) NF2 patients (MUK data) 
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C h a p t e r 2 

Knudson's Early Model 

Let H(t) and N(t) represent the fraction of undiagnosed cases of hereditary and 

nonhereditary VS at age t respectively. Recall, that hereditary cases of VS represent 

NF2 patients and sporadic cases of VS represent patients from the general population 

who do not have NF2. Hereditary cases will always develop VSs on both the left 

and right sides of their head; we refer to this condition as bilateral VS. Sporadic 

cases have only a single VS on one side of their head; it is assumed that either side 

of the head is equally likely to develop the tumour. We also assume that the two 

sides of the head develop tumours independently of each other. 

We will begin with a mathematical formulation of the model for hereditary 

cases of VS. Let m(t) be the mean number of tumours, that have developed in the 

interval [0, t], per individual from the hereditary cases. Our assumption that the two 

sides of the head are equally likely to develop a tumour suggests that the expected 

number of tumours that have developed prior to time t, on one side of the head, is 

m(t)/2. We assume no delay between the time when a mutation occurs and the time 

that the tumour is detected; this justifies the equivalence of the events {patient has 

k mutations} and {patient has k tumours} for our probability calculations. If we 

assume that the number of tumours on an individual follows a Poisson distribution 
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with mean m(t) then it is possible to calculate the following probabilities: 

Pr(one side of the head has no mutation in [0, t]) = exp{ w ^ j 

Pr(one side of the head has at least 1 mutation in [0, £]) = 1 — exp{ m ^ j 

Pr(patient has no mutation in [0, t\) = exp{—m(t)} 

Pr(patient has at least 1 mutation in [0, t]) = 1 — exp{—m(t)} 

Further, let us define M[t\, £2] to be the number of mutations that have occurred in 

the interval [£i,£2]; note that M [£ i ,£ 2 ] = mfo) —m(tx). An expression for H(t) can 

now be found using the aforementioned assumptions and definitions: 

H(t) — Pr(patient has M[0, t] = 0 | patient is eventually bilateral) 

_ Pr(both sides of head have M[0, t] = 0 and M[t, 00] > 1) 
Pr(both sides of head have M[0, 00] > 1) 

_ Pr(one side has M[0, t] = 0)2 Pr(bne side has M[t, 00] > l)2 

Pr(one side of head has M[0, 00] > l) 2 

e x p { - m ( £ ) } [ l - e x p { - ^ l + ^ } ] 2 

J l - e x p { - ^ } ]

2 

= [ ex P { -^}-exp{-^)} ] 2 

[ l - e x P { - ^ } ] 2 . 

The formulation of the model for sporadic cases of VS is similar to that of 

the hereditary cases. We define q(t) to be the mean number of tumours developed 

per person, prior to time t, for individuals from the sporadic population. Assuming 

a Poisson distribution for the random number of tumours per individual, as above, 

we arrive at the following expression for N(t): 

N,Q = exp{-g(*)> ~ exp{-g(oo)} ^ ^ _ q(t) 
1 — exp{—g(oo)} 9(00)' 

where the approximate equality is justified by considering that q(t) is much smaller 
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than 1; thus, 1 — exp{<7(£)} can be approximated by its first order Maclaurin ap

proximation q(t). 

In the formulation of the expressions for H(t) and N(t) we have allowed them 

to depend on t by allowing m(t) and q(t) to be age dependent; thus far we have not 

described how these functions will depend on age. We will now decribe Knudson's 

approach of relating the functions m(t) and q(t) to the number of cell divisions that 

have occurred in the tissue prior to age t. 

We must first make several assumptions about the tissue cells and their 

cellular kinetics. First, it is assumed that both normal tissue cells and cells that 

have already sustained a single mutation are capable of cell division. It is also 

necessary to assume that the mean number of cell divisions that have occurred prior 

to age t is equal in the hereditary and sporadic cases; we denote this quantity by a(t). 

We denote the number of tissue-specific cells present at time t to be b(t); where the 

initial number of cells present in the tissue is denoted by 6(0). Clearly, the number 

of tissue cells present at any time t would be equal to the number initially present 

in the tissue plus the number of cell divisions that have occurred prior to this time: 

b(t) = 6(0) + a(t). Letting t —> oo we obtain the number of tissue cells that will 

eventually be present in the tissue: 6(oo) = 6(0) + a(oo). We are now able to define 

a function d(t), which will represent the fraction of cell divisions that have occurred 

by time t, in the following fashion: 

. , m = a(t) = Kt) - 6(0) 
{ ) a(oo) 6(oo)-6(0)' 

In hereditary cases, the functions m(t) and d(t) are related by assuming that 

tumour cells arise by transformation of an intermediate cell at a constant mutation 

rate denoted by Li2\ the units for this rate are given as mutations per cell division. 

Thus we can express the mean number of tumours developed prior to time t as: 

m(t) = JJ,2 -a(t). The assumption that the mutation rate is constant with respect to 
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time leads immediately to the following result: 

M2 = 
m(t) m(oo) 
a(t) ' 
m(t) 

m(oo) 

a(oo) 

. a(t) 
a(oo) 

= d(t) 

<?> m(t) = d{t)m(oo). 

This relationship can now be substituted into our expression for H(t) given previ

ously to yield: 

Recall that for a tumour to develop in an individual from the general pop

ulation, two chance mutations are required: the first to transform a normal tissue 

cell into an intermediate cell, and the second to transform the intermediate cell into 

a tumour cell. The first and second mutations are assumed to occur at constant 

rates of LI\ and L12 respectively; again the units for the mutation rates are given in 

mutations per cell division. We define p(t) to be the mean number of mutations of 

normal tissue cells that have occurred prior to time t. Clearly p(t) can be expressed 

as: p(t) — [i\ • a(t). The quantity that we would like to relate to the number of 

cell divisions is in fact q(t), the number of mutations of intermediate cells that yield 

tumour cells. This quantity would simply be the product of the number of interme

diate cell divisions that have occurred by time t and the mutation rate Li2- If the 

number of intermediate cells present in the tissue are represented by 7(i), then the 

number of intermediate cell divisions that have occurred by time t would simply be 

I(t) —p(t). Thus, we yield the following expression: 

We will now outline Knudson's suggestion for a method of estimating the 

mean number of intermediate cells present at time t. We begin by partitioning the 

H(t) = 
- e x p { m ( 0 ° W } - e x p { - ^ } ] 2 

[ l - e x p { - ^ ) } ] 2 

(2.1) 

q(t) = Li2[I(t) -p(t)]=ii2[I(t)-liia(t)]. 
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interval [0, t] into n subintervals of length h: 

•
 n 

[0,t] = \J[n,Ti + h]. 

i=l 

Recalling the definition of p(t), we note that the mean number of mutations that 

produce intermediate cells from normal tissue cells in the ith subinterval is simply 

p(Ti + h) —p{T{). These intermediate cells will also divide and increase in number; it 

is assumed that the proportional increase in the number of intermediate cells from 

age Ti to age t is equal to this proportional increase in the normal tissue cells. The 

proportional increase in the number of intermediate cells from age Tj to age t is 

given by: 

b(t) _ a(t) + 6(0) 
b(n) ~ a(n) + 6(0)" 

A final expression for I(t) can now be obtained by computing the following integral: 

l(t) = l h a y P ( n + h)-p(n)b^lh 

= L p [ T ) W ) d T 

. Jo y)a(T) + b(0) 

= / i i [ a ( £ ) + 6 ( 0 ) ] l o g { a ( r ) + 6(0)} [ 

= /ix[a(t) + 6(0)]{ log{a(£) + 6(0)} - log{6(0)}}. 

Note that we have used the fact that a(0) = 0 in the final equality above; a reason

able assumption of course as a(0) represents the number of cell divisions that have 

occurred prior to age 0. Substituting this expression into our expression for q(t), 

and using the fact that for positive t, a(t) will be much larger than 6(0), we yield: 

q(t) = / / 2 { / x 1 [ a ( £ ) + 6 ( 0 ) ] { l o g { a ( £ ) + 6 ( 0 ) } - l o g { 6 ( 0 ) } } - M l a ( £ ) } 

~ /ii/i 2a(<)[log{^y} - 1 . 
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Substituting this expression into our expression for N(t), and recalling that d(t) = 

a(i)/a(oo), leads to: 

, q(t) N(t) 
q(oo) 

1 -
log] ) § } - > ] 

/ii/z2a(oo) log' 
f a(oo) 1 
1 &(o) J AJ 

1 - d(t) 

= l - d ( t ) 

rf(t) 

= 1 - d(t) 

h i w } -
log{<I(t)} 

l o 4w}-\ 
rf(t). (2.2) 

The result of the previous mathematical formulation is that both functions 

H(t) and N(t) are made to depend on t only through the function d(t). This function 

is a time-dependent parameter which can be estimated from the data at various time 

points. H(t) and N{t) also depend on two other quantities as well; values of m(oo) 

and a(oo)/6(0) can be selected prior to the analysis leaving the time-dependent 

parameter d(t) as the only unknown parameter to estimate from the data. 

Suppose we want to estimate the fraction of cell divisions that have occurred 

prior to k different times ti,...,tk- Suppose, additionally that we have and ns 

hereditary and sporadic cases respectively. We denote the observed ages at onset of 

VS in the hereditary group as if, these same ages in the sporadic group are 

denoted by if,...,** . To obtain an estimate of d(ti) (i = 1,...,/:), Hethcote et al. 

20 



suggested the minimization of the following function Q with respect to d(ti): 

O - WU^HlT) [ e * p { - « n - e x p { - ^ } ] V 
Q - wkM{HM j T T ^ p S j f ) 

where H(U) and N(ti) are estimated by the empirical survival functions: 

H(U) = — , j = l,...,nh, 
nh 

m) = j = i,...,n., 
ns. 

and Wh(ti) and Ws{ti) are weights used in the minimization; the values chosen for 

the weights are the number of undiagnosed hereditary and sporadic cases at time ti 

repectively. Thus, 

wh{u) = #{*J>*i}». i = i,...,«/,, 

Wa(U) = #{tsj>ti}, j = l,...,n8. 

The minimization described above can be quite easily be performed numeri

cally. The fit of the model can be assessed both by a chi-square goodness of fit test 

and also by examining plots of empirical and model predicted incidence curves for 

their agreement. These topics will be addressed further in Chapter 5. 
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C h a p t e r 3 

Multi-hit Models and a 

Maximum Likelihood Approach 

For the maximum likelihood approach to multi-hit models we derive the hazard 

function (also known as the hazard rate function) for the time to the generation of 

the first tumour cell. We assume that our tumour onset times follow this distri

bution and construct a likelihood in the customary fashion. There are two two-hit 

models presented below; the first model has a single parameter and a closed form 

maximum likelihood estimate can be obtained. The second two-hit model has sev

eral parameters and a more complicated expression for the hazard and thus the 

maximum likelihood estimation is carried out numerically; we provide the hazard 

function necessary to construct the likelihood. Similarly, for the three mutation 

model we derive the hazard function for the time to the first tumour and estimates 

of the model parameters are found numerically. A general approach to constructing 

the likelihood from a hazard function is also provided. The models presented in this 

chapter are models for the development of tumours in patients with NF2; this is an 

important point as it implies that cells in the tissue at risk have already sustained 

a single mutation. 
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3.1 N o t a t i o n 

Notation used throughout the remaining sections has been chosen to be consistent 

with the major references cited. Notation for variables, functions and parameters 

will be defined as these concepts are introduced. Figures 1.1 and 1.2 were depictions 

of the processes that we aim to model in this chapter and some simple notation 

was defined previously with respect to these figures; we will retain this notation 

throughout the thesis and we redefine it here for convenience. Some simple guidelines 

for notation are given below: 

• 6 will denote the parameter vector for the model under discussion. In most 

cases this vector will contain the growth, death, and mutation rates for the 

2-hit or 3-hit model, e.g. 9 = (a,{3,Li). 

• a will denote a growth rate or cell division rate for the tissue cells. 

• f3 will denote a death rate for the tissue cells. 

• LI will denote a mutation rate for the tissue cells. This represents the rate at 

which cells with 1 mutation transform into cells with 2 mutations (or the rate 

by which cells with 2 mutations transform into cells with 3 mutations). 

• h(t\0) will denote the hazard function for the random variable T (representing 

the time to the first tumour): 

= l i m P r ( t < r < i + A t | T >*,<>) 
v 1 ' At->o A i 

Additionally, f (t\0), S(t\6), and F(t\6) will be used to denote the density, 

survival, and distribution functions for T respectively. 

• ti will denote the realization of the random variable T for patient i. In our 

applications this will be the age at onset of the first VS or in some cases the 

age at onset of hearing loss. 
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In general all of the rate parameters could be subscripted to denote the stage of 

the model to which they belong (example: \i\ would represent the rate at which 

cells transform from normal tissue cells into cells with a single mutation; /42 would 

represent the rate at which cells with a single mutation transform into cells with 

two mutations, etc.). In our applications however, we will assume that rates of the 

same kind from different stages of the model are equal (i.e. m = ^2 = r1)-

3.2 2-hit Models 

There are two approaches to 2-hit models presented in subsequent sections. The 

two approaches differ in the assumptions about the growth and death of the tissue 

cells. The first model assumes that the tissue cells grow according to a deterministic 

process, and thus the number of cells present in the tissue at any given time t is 

given by a function X(t); additionally, it is assumed that there is a small chance 

that any of the cells mutate. The second model assumes that tissue cells divide, die 

and mutate according to a birth-death process and thus the number of tissue cells 

present at any time £ is a random variable X(t). I have used the same notation 

for both and have let the context of the discussion distinguish between the random 

variable X(t) and the deterministic function X(t). 

3.2.1 Deterministic growth of tissue 

If the tissue cells are assumed to grow according to a deterministic process then the 

generation of mutated cells can be modelled as a nonhomogeneous Poisson process. 

Let X(s) represent the number of tissue cells at time 5; note that these 

tissue cells have already sustained a single mutation in patients with NF2. Further, 

let Z{s) represent the number of tumour cells in the tissue at time s. These cells 

have sustained 2 mutations; one which has been inherited and the other which has 

occurred by chance. The mutation rate of the second chance mutation is assumed 

to be constant and is denoted by The mean number of tumour cells that have 
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developed by time £, E(Z(t)), is simply /j,X(s)ds. The number of tumour cells 

can be thought of as arising from a nonhomogeneous Poisson process with intensity 

fiX{t). 

Let T be the time to the generation of the first tumour cell. The time to the 

generation of the first tumour cell can be shown to have the following distribution 

function: 

F(t\9) = Pr(T < t) = 1 - Pr(T > t) = 1 - Pr(Z(t) = 0) 

= l-exp{-fj, f X(s)ds}, t>0. 
Jo 

The probability density function for the random variable T is obtained by differen

tiating the distribution function: 

f(t\0) = fiX(t)exp{-n [ X(s)ds}, t>0. 
Jo 

Hence the hazard function for the time to the first tumour cell, h(t\6), is simply: 

&\t\V) exp{-/i J 0 X(s)ds} 

The parameter vector 0 for this model contains only a single parameter; namely 

the mutation rate parameter fi as the growth and death of cells in the tissue are 

accounted for in the deterministic growth function for the tissue. A likelihood for 

the data can be constructed based on the distribution of the time to the onset of 

the tumour and a maximum likelihood estimate for the rate parameter fj, can easily 

be obtained. If the data consist of n individuals with onset times t-\,...,tn, the 

likelihood, L(0), is given by: 

The maximum likelihood estimate of the rate parameter /J, has a simple closed form 

solution given by: 

A = T - ^ — r (3-2) 

E?=i (tfXMds) 
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After having estimated this rate parameter it is possible to compute an estimate 

of the probability that an individual will develop a tumour before a given time t\ 
this is done by replacing \x by its estimate in the expression for the distribution 

function F(t\6) given above in equation (3.1). These estimates can be compared to 

an empirical distribution function for the data to assess the fit of the model. 

An asymptotic standard error for /}, based on the observed Fisher informa

tion, can be estimated by twice differentiating the log-likelihood 

3.2.2 Stochastic growth of tissue 

For this model, we assume that the tissue cells divide, die and mutate according to 

a birth-death process. We derive the hazard function for the time to first tumour 

starting from a single tissue cell: h(t\0). The hazard function for the time to first 

tumour starting from a tissue consisting of N cells would just be N • h(t\0) because 

of the assumption that the cells mutate independently of one another. Additional 

model assumptions and a derivation of the hazard function h(t\0) are provided 

below. 

The growth, death and mutation of the tissue cells are assumed to follow a 

process similar to a birth-death process. In a small interval of time At, a tissue cell 

may divide into two tissue cells with probability a At + o(At); die with probability 

f3At+o(At); divide into a normal tissue cell and a tumour cell with probability LiAt+ 

o(At); the probability of more than one such event occurring in this time interval 

is o(At). Additionally, we assume that a tumour arises from a single progenitor 

tumour cell and that the tissue cells mutate independently of one another. Mutations 

are assumed to occur during cell division; such a cell division will produce both a 

cell identical to the original progenitor and a cell that has sustained an additional 

mutation. This assumption is used in the derivation of the Kolmogorov forward 

equation below. 
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As previously, we define X(t) and Z(t) to be the number of tissue and tumour 

cells present in the tissue at time i respectively. Let </>(x,z;t) be the probability 

generating function for the number of tissue and tumour cells at time i starting 

with a single tissue cell initially. Thus, 

oo 

4>(x,z;t) = Piti,k);t)xjzk 

j,k=0 

where 

p((j, k);t) = Pr(X(i) = j, Z(t) = k\X(0) = 1, Z(0) = 0). 

Note that we assume: 

p((j, k);t) = 0 for j < 0 or k < 0. 

Our claim is that the hazard function for the time to the generation of the 

first tumour cell T , is given by the expression h(t\6) = — c/>'(l, 0; t)/</)(l, 0; i). To see 

this is true we make the following calculations: 

oo 

0(1,0; t) = J2 = 3, Z(t) = 0) = Pr(Z(t) = 0), (3.3) 
3=0 

and 

d(p(x,z;t) 

1 = 1,2=0 
#'(1,0;<) = 

- E 

at 

dPi(X{t)=j,Z(t)=0) dPr(Z(i) = 0) 
dt dt j=o 

P r ( Z ( i + At) = 0) - Pr(Z ( i ) = 0) . 

At->o A i 

PijZjt + Ai) = 0, Z(t) = 0) - Pr(Z(<) = 0) 
A«->o A i 

f P r ( Z ( i + Ai) = 0 | Z(t) = 0) - l j Pr(Z ( i ) = 0) 
= l i m i 

At-y0 At 

{ - Pr(Z(t + At) = 1 | Z(t) = 0)} Pr(Z(t) = 0) 
= l i m * : 

At->o A i 

- Pr(Z( ( ) = 0) lim - P r ( Z ( ' + A«) = l | Z W = 0) 
v w y At->o A i 

= ^ M M ^ " ^ ' ' " " " " ' , (3.4) 
At-»o A i 
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where this last line is justified using equation (3.3). Recall that T denotes the 

random time until the generation of the first tumour cell. Rearranging the result 

from equation (3.4) gives us the following result: 

which is the hazard function for the random variable T . 

We will now derive a closed form solution for the hazard function for this 

model. As we have just shown, this will require a solution for the probability 

generating function cp(x, z\ t) defined above. We begin by defining: 

p(j-jA.)((m,n); At) = Pr(X(t + At) = m , Z ( t + A t ) = n\X(t) =j,Z{t) = k). 

From the Chapman-Kolmogorov equations we yield: 

*(l,0;t) = lim 
At->0 

Pr(Z(t + A t ) = 1 | Z(t) = 0 ) 
A t 

Pr(t < T < t + At | T > t) 
At 

= lim 
At->0 

= h(t\0) 

p{{j, k);t + At) = P{j,k)({j, k); At) • p{{j, k);t) 

+P(j-i,fc)(0', k);At)-p({j-l,k);t) 

+P(j+i,fc)(O',*0;At) -p{(j+ l,k);t) 

+P(j,k-i){{J,k);At)-p{{j,k- l);t). 

We note that: 

P(j-\,k){{j\k); At) = (j - l ) a A t + o(At), 

P(j+i,k)((j,k);At) = (j + 1)0 At + o(At), 

P(j,k-i)((j,k);At) = j/iAt + o(At), 

P{j,k){{j, k)\ At) = (1 - jaAt - j/3At - jtiAt - o(At)). 
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The Kolmogorov forward differential equation can be obtained as: 

At->0 At 

= - j ( a + /3 + A»)-p((i,fe);*) + 0 ' - i ) « -p ( ( i - i , f c ) ; * ) 

+ (j + l)/3 • p((j + 1, k); t) + 3li • p((j, k - 1); t). 

We use this result to yield the following differential equation: 

dc/)(x,z;t) 
(j)'{x,z;t) = 

dt 
oo 

= £p'((j,A0;*)^ f c 

j,k=0 
oo 

= Yl [~j(a + i3 + ri)-p((j,k);t) 
j,k=0 
+(j - l)a • p((j - 1, k); t) + (j + 1)0 • p((j + 1, k);t) 

+Jri-P((j,k-I);t) xjzk 

LIXZ + ax2+f3-(a + (3 + n)x] ^ (3.5) 

with initial condition (f>(x, z; 0) = x. It is obvious that: 

<f>'(l,0;t) = a + /3-(a + l3 + n) 
d(/){l,0;t) _ _ d<p{l,0;t) 

dx ^ dx 

The previous differential equations would be useful for finding a general case solu

tion for cj)(x, z; t) and the computation of moments, however we are interested only 

in obtaining an expression for the hazard function h(t\6). Thus, we are interested 

ih computing only 0(1,0; t) and (j>'(l, 0; t). We have included these equations never

theless for completeness. Finding an expression for the hazard function is simplified 

by using an observation of Moolgavkar et al. [18]; specifically that <f)(x,z;t) can be 

shown to satisfy the following Riccati differential equation: 

<t>'{x,z;t) = acj>2{x,z;t) + [LIZ - (a + p + n)](f>(x,z;t) +[3. (3.6) 

This equation can be obtained by considering the integral equation solution for 
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(j)(x,z;t) given by Moolgavkar et al. [18]: 

4>(x, z;t) = zexp{ —K*} 

+ J ^a(j)2(x, z\ t — u) + (3 + Liz(p(x, z; t — u) exp{—nu}du 

= z exp {—«;*} 

+ J ^a(j)2(x,z;u) + l3 + Lizcj)(x,z;u) exp{—n(t — u)}du 

where K = (a + /3'•+ LI). Multiplying both sides of this equation by exp{«; i } and 

differentiating with respect to t yields: 

(j)'(x, z; t) exp{«;t} + c/)(x, z; t)K,exp{Kt} 

d_' r t 

dl 

+ — {/ /3exp{«;(i - u ) } d u | 

= — j / j^Q!02(:r, 2 ; u) + Lizcj)(x, z; u) exp{Ku}chzj 

= ^a<j)2(x,z]t) + /j,z$(x,z\t)^exp{Kt} + 0exp{Kt}. (3.7) 

Rearranging equation (3.7) and multiplying both sides of the equation by exp{-Ki} 

yields the following: 

(fi'(x, z; t) exp{«;t} = — cp(x, z; t)n exp{«;*} + / 3 e x p { « ; t } 

+ acj>2(x,z;t) + fj,z<f)(x, z; £)J exp{«; i } 

<=> <p'(x, z; t) — -<j)(x, z; t)n + /3 + |a</> 2(3;, z; *) + Liz<p(x, z; i)j 

<̂> 0'(z, 2 ; t) = a02(a;, z; *) + [liz - (a + /? + /i)j z; t) + l3 

which is the Riccati equation given in equation (3.6) (more details can be found in 

the appendix). Thus, evaluating this equation at x = 1 and z = 0 yields: 

</»'(!, 0;t) = a 0 2 ( l , O ; t ) - ( a + /3 + M )0(l ,O;i)+/3. 
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Rearranging this equation yields: 

3^(1,0;*) = , 

a0 2(l,O;*) - (a + /3 + /j)0(l,O;<) + 0 c 

90(1,0;*) 

(0(1,0;*) - Ci)(0(l,O;*) - C 2 ) ^ 

where C i < C 2 are distinct roots of the polynomial in q: 
a a 

The roots of this polynomial are easily obtained by applying the quadratic formula: 

Cl = 7r(a + 0 + n) - y/a2 - 2a0 + laii + 02 + 20n + n2, 
za Za 

c2 = —(a + /3 + M) + wVa2 ~ 2a0 + 2a/x + 02 + 20LI + \x2. (3.9) 

The differential equation given above in equation (3.8) can be integrated directly 

using partial fractions: 

f 30(1,0;t) /• 

7 (0(1,0;*)- 6-0(0(1,0;*) - C 2 ) i ^ 

1 r /• 30(1,0;*) /- 30(1,0;*) 1 f B 

Ci-C2\j 0 (1 ,0 ;* ) -Ci 7 0(1,0;*) - C 2 J y 

^ l o g { 0 ( l , 0 ; * ) - d } - l o g { 0 ( l , O ; * ) - C 2 } = a ( d - C 2 ) * + C 

V ; 1 - [Cexp{a(Ci -C 2 )*} ] ' 

where C is a constant to be determined by the initial condition of the differential 

equation 0(1,0; 0) = 1. Evaluating our solution for 0(1,0; *) above at * = 0 leads us 

to: 

0(i,o;o) = i nn=7r = i * c = r=£2 
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Thus our final solution for 0(1,0; t) is given by: 

0(1,0,t) = 
C i — c2 l 5 g e x p { a ( C 1 - C2)t) 

1 - "1-
1-E § e x p { a ( C i - C2)t\ 

(3.10) 

We can now substitute this into the Riccati equation given previously to obtain our 

final solution for the hazard function: 

0'(1,0; t) - «0 2 (1 ,0 ; t) + {a + (3 + /i)0(l, 0; t) - p 
h{t\0) = -

0(1,0;*) 0(1,0,*) 

= -a0(l,O,*) + (a + ^ + ^ ) - / 5 ( 0 ( l , O , £ ) ) - 1 . 

3.3 3-hit Model 

For this model, the tissue is assumed to grow deterministically. It is important 

to remember that tissue cells already bear a single mutation. Tissue cells mutate 

according to a random process to produce intermediate cells; an intermediate cell 

is a cell that has sustained two mutations. The growth, death and mutation of 

these intermediate cells are assumed to follow a birth-death process. Mutation of 

an intermediate cell results in a tumour cell; a tumour cell in this model is a cell 

that has sustained three mutations. 

A fully stochastic model could also be proposed here where the tissue cells 

are assumed to divide, mutate and die according to a birth-death process as well. 

The problem with such a model is that the mathematics become quite challenging 

and there is no solution in the literature for the hazard function from such a model. 

Several authors have proposed an approximate solution to a hazard function from 

a fully stochastic model; the assumptions necessary for the approximation however, 

are inappropriate for our application of the model to NF2 patients. The reason 

for this is that the approximation requires that the probability of tumour in the 

population of study be very small; in the study of many types of cancer in the 

general population such an assumption may be quite reasonable. The population 
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of NF2 patients however, have a very high probability of tumour and thus the 

application of the approximate hazard function would not be appropriate in the 

analysis of NF2 data. 

Again, we denote the number of tissue cells present at time s as X(s); note 

that X(s) is a deterministic function. In a small interval of time At, the prob

ability that an intermediate cell is generated by the mutation of a tissue cell is 

LiX(s)At + o(At). The probability that more than one intermediate cell is gener

ated in this fashion is o(At). The growth, death and mutation of the intermediate 

cells are assumed to follow a process similar to a birth-death process. Again, iii a 

small interval of time At, an intermediate cell divides into two intermediate cells 

with probability a At + o(At); dies with probability (3 At + o(At); divides into an 

intermediate cell and a tumour cell with probability LiAt + o(At); the probability of 

more than one such event occurring in this time interval is o(At). Additionally, we 

assume that a tumour arises from a single progenitor tumour cell and that the tissue 

cells mutate independently of one another. Mutations are assumed to occur during 

cell division; such a cell division will produce both a cell identical to the original 

progenitor and a cell that has sustained an additional mutation. This assumption 

is used in the derivation of the Kolmogorov forward equation below. 

We define Y(t) and Z(t) to be the number of intermediate and tumour cells 

present in the tissue at time t respectively. Let \T/(y, z;t) be the probability gener

ating function for the number of intermediate and tumour cells. Thus, 

oo 

j,k=0 

where 

p((j, k);t) = Pr(r (t) = j, Z(t) = k | y(0) = 0, Z(0) = 0). 

Note that it is assumed that: 

p((j, k);t) = 0 for j < 0 or k < 0. 
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We will now derive a closed form solution for the hazard function for this 

model. A n argument identical to that provided in Section 3.2.2 can be used to show 

that the hazard function is given by the expression — ̂ '(1,0; 0; t). Again, 

it is necessary for us to find the solution for the probability generating function 

*( l ,0; i ) . We must first define: 

P(j,fc)((m,n); Ai) = Pr(Y(t + At) =m,Z(t + At) = n | Y(t) = j,Z(t) = k). 

From the Chapman-Kolmogorov equations we obtain: 

p({j,k);t + At) = p{jik){{j,k);At)-p([j,k);t) 

+P(j-i,fc)(0',*); At) -p((j - l,fc);t) 

/fc)(ti, k); At) -p{{j + l, k);t) 

+P(j,k-i)(U, ky, At) • P({j, k - 1); t). 

We note that: 

P(i-i,fc)((j, At) = ( M X(t)At + o(At)) + ((j - l)aAt + o(At)), 

P(i+i,fc)((i, k); At) = (j + l)f3At + o(At), 

P(j,k-i)(U,k);At) - jfiAt + o(At), 

p{jjk)({j,k);At) = l-jaAt-j(3At-JnAt 

-fiX{t)At-o{At) 

The four equations given above arise as a result of the model assumptions. The 

first equality holds because if at the beginning of the short time interval there are 

j — 1 intermediate cells and k tumour cells, and at the end of the time interval 

there are j intermediate cells and k tumour cells, then a single intermediate cell has 

been produced in some fashion. This can occur by the mutation of a tissue cell or 

by the normal division of an existing intermediate cell. Consideration of these two 

events will lead directly to the stated probability. The second equality is obtained 

by considering that the reduction in the number of intermediate cells from j + 1 to 
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j can occur only if a current intermediate cell dies. The increase in the number of 

tumour cells from k — 1 to k occurs with the mutation of a current intermediate cell; 

this provides the motivation for the third equation. Recall that, such a mutation 

occurs during cell division and results in both an intermediate cell and a tumour 

cell; thus, the number of intermediate cells does not change with the occurrence 

of such an event. The final equality is justified by considering the probability that 

none of the aforementioned events takes place in the time interval. 

The Kolmogorov forward differential equation can be obtained as: 

AU,k);t) = i i m p ( ( ^ ) ^ + A : ) - ^ f c ) ; t ) 

Ai ->0 h 

= -j(a + /3 + LI)- p((j, k);t) - LiX(t) • p((j, k);t) 
+ (j - l)a • p((j - 1, k);t) + (j + \)P • p((j + 1, k);t) 

+LiX{t)-p((j-l,k);t)+JLi-p((j,k-iy,t). 

We use this result to yield the following differential equation: 

o o 

j,k=0 
o o 

= J2 [-Ha +13 + AO • p(ti>*) - »XV) • P((J> *) 
j,k=0 

+(j-l)a.p((j-l,k);t) + (j + l)p-p((j + l,ky,t) 

+LiX(t)-p((j - l,k);t)+jfi-p((j,k- l);i)]ŷ fc 

= (y-l)iiX(tMy,z;t) 
+ [pyz + ay2 + L3-(a + p + rfy] (3.11) 

with initial condition ^(y,z\0) — 1; an outline of the computations necesary to 

justify the final equality are provided in the appendix (following the bibliography). 
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This leads directly to the following expression for \I/'(1,0;£): 

*'(l ,0;t) = [a + P- (a + f3 + n) 

a*(i,o ; t) 
dy 

dy 

We can write the conditional expectation E [Y(t) \ Z(t) = 0] as: 

E [Y(t) | Z{t) = 0] = / * ( i , 0; 
ay 

Next, we easily derive: 

9*(l,0;t) dV(y,z;t) 

dy 9y j/=l,z=0 

= ^;V ' - 1 ^Pr(y(t)=i ,Z(t)=A;) 
j,fc=0 

y=l,*=0 

= £ j P r ( y ( < ) = i , Z ( * ) = 0 ) . 
3=0 

Now dividing both sides by ty(l,0;t) we get: 

a*(i,o ;<) 
7 *(l,0;t) = £ j P r ( y ( * ) = j \ Z ( * ) = 0)/*(l,0;t) 

oo 

= £ j P r ( y ( t ) = j , Z ( < ) = 0)/Pr(Z(t) 

j'=o 
oo 

= Y,JPr(Y(t)=j\Z(t) = 0) 
3=0 

= E\Y(t)\Z(t) = 0] 

Therefore, we can express the hazard function as: 

h(t\9) = -*'(l,0',t)/*{l,0;t) 

a*(l,0;t) 
A*' 

3y 
/ *(l,0;t) 

= A i-E[y(t)|Z(<) = 0]. 

Moolgavkar ei al. [20] showed that for this model: 

E[Y(t)\Z(t) = 0] = J*»X(S)exV{£ S[2a<f>(l,0;u) 

-(a + f3 + n)]du^ds, 
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where 0(1,0; u) is defined as previously in Section 3.2.2. The second integral in this 

expression is readily integrated: 
ft—a 
/ [2a0(l,O;u) - (a + p + Li)]du 

Jo 
ft — S 

= / 2a<f>(l,0;u)du - (a +p + n)(t-s) 

o f " C f i - g ^ e x p { q ( C 1 - C 2 ) M } ] j 

= 2 / j i - c , - - r . ^ <fa-(a + £ + /x)(*-a) 
./o 1 - —c 

rt—s 

^exp{a(Ci -C2)u} 

= 2 ^ S { a C 1 [ l - [ ^ e x p { a ( C 1 - C 2 ) U } " 

+«Ci [ j-=-^± exp{a(Ci - C2)u}] - aC2 [\^r exp{a(Ci - C2)u}] } 

x { l r=a J-77; -^rr}du-(a + P + Li)(t-s) 
1 1 - exp{a(Ci - C2)u) > 
rt-s [ _ a ( C l _ C 2 ) ] [ i ^ e X p { a ( C l - < 7 2 ) U } K 

= 2, < aCi , n 7— >du 
Jo 1 1 - j E g exp{a(Ci - C2)u) i 

-(a + p + Li){t - s) 
= 2aCiu q ' - 2 1 o g { l - — ^ e x p { a ( C i - C 2 ) u } } | q *-(a + + M)(i - S) 

C I 
C 2 

= 2aCi(t - a) - 21og{l - [—^exp{a(Ci - C2)(* - «)}} 

+21og{l - \^~} ~(a + P + (i)(t - s) 

• 1 - • k ^ L 

= 2aC 1 (t-s) + 21og{ — - j ^ } _ ( a + /3 + M ) ( t _ s ) 
L1 - exp{a(Ci - C2){t - s)} > 

= 9(B\t-s). 

Thus, the conditional expectation is given by the expression: 

E[Y(t)\Z{t) = 0] = f LiX(s)exp{g{0;t- s)}ds. 
Jo 

Substituting this result into the previous expression for the hazard function we 

obtain our final expression for the hazard function: 

h(t\0) = LI2[ X{s) exp{g{0; t - s)}ds, t > 0, 
Jo 

37 



where g(0;t - s) is given above and C\,C2 are defined as they were previously in 

equation (3.9). A deterministic function for the growth of the tissue can now be 

selected and the remaining integral in the expression for the hazard function can 

be calculated numerically. I have been using Romberg integration to integrate this 

function. 

3.3.1 Choice of Tissue Growth Function 

Both scaled logistic and Gompertz distribution functions have been used in the 

literature to model the growth of other tissues [18, 20] and thus these have been 

used as my starting point. Each of these families of distribution functions has several 

constants that must be chosen in order to get a curve that seems to reasonably fit 

the pattern we expect for the Schwann cell growth. Using a logistic distribution 

function with three constants to model the tissue growth would give the following 

form for X(s): 

, , ' K e x p j ^ } 

*<•> - 1+JP{Vr (3-12) 

A four-constant Gompertz disribution function would yield: 

X(s) = tf(l-exp{a(l-exp{&s}) + cs}). 

Although both of these families seem to be capable of capturing the shape of tissue 

growth that is expected from the biological information available to us, I have chosen 

to use only the logistic family given above. The three constants for this family allow 

us adequate flexibility to capture any shape of tissue growth that we desire for our 

modelling purposes. 

Choosing the three constants for the logistic family is quite straightforward. 

The K constant represents the number of cells that the tissue contains in an average 

adult; in all of our models we assume that the number of tissue cells approaches this 

constant after a certain age. The remaining constants in the growth function govern 

the shape of the curve and influence the rate of growth and the age at which the 
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tissue reaches its maximum size. We will use the notation logistic^, a, b) to refer a 

logistic growth function of the form given in (3.12); thus logistic(107, 5.0,0.8) would 

refer to a logistic growth function with K = 107, a = 5.0, and b = 0.8. 

Figure 3.1: Three growth functions to be used in model fitting 

0 10 20 30 40 

Age (years) 

Figure 3.1 is a plot of three different logistic growth functions similar to 

those that will be used for our data analysis. Al l three of these functions as

sume that the maximum number of Schwann cells in an adult tissue is 200000. 

The differences between these functions are the age at which the tissue reaches its 

maximum size as well as the rate of which the growth occurs. From the figure 

it is clear that the logistic(2 x 105,5.0,0.8) growth function corresponds to a tis

sue that achieves its maximum size when the individual is approximately age ten; 

the rate of growth is quite rapid which can be inferred by the steepness of the 

growth curve. The logistic(2 x 105, 8.0,0.8) growth function behaves similarly to 

the logistic(2 x 105,5.0,0.8) function in that one curve is essentially a horizontal 

shift of the other. The biological implications of the logistic(2 x 105,8.0,0.8) growth 
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function are that the tissue experiences a period of very slow growth for the first few 

years of development. This period is then followed by a spurt of rapid growth with 

the tissue reaching its maximum size at approximately age 14. The third growth 

function depicted in figure 3.1 assumes a more gradual rate of tissue growth than 

the previous growth functions. The logistic(2 x 105,8.5,1.3) function assumes that 

tissue growth is rather slow for the first few years of development, although at a 

slightly faster rate than the logistic(2 x 105, 8.0,0.8) function, and approaches its 

maximum size at about age 17. 

Unfortunately, our knowledge of the precise growth of the Schwann cells 

around the vestibular nerve is quite limited. From the limited information available 

to us, any of these functions could very well be a feasible growth function to model 

the growth of the tissue. The information that is perhaps most important for our 

modelling, namely the number of cells present in an adult tissue, is particularly 

difficult to obtain. We have estimated the upper bound on this quantity to be 

approximately 107; we are however unable to provide an assessment of the reliability 

of this estimate. We have therefore decided to fit our models using a variety of 

different growth functions and assess the sensitivity of the model fit and parameter 

estimates to the growth function selected. 

3.3.2 Likelihood Construction 

Given an expression for the hazard function h(t\6) we can express the density func

tion for the time to the onset of the first VS as: 

Jo > 

If our data consist of n individuals with onset times * i , and assuming that 

individuals are independent, the likelihood for the data can be written as a product 
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of density functions:] 

vr=i / " T^i JO 
The log-likelihood, 1(0), can then be written as: 

) 

The log-likelihood is then maximized with respect to 6 to obtain the maximum 

compute an estimate of the probability that a patient develops a tumour before a 

3.3.3 G e n o t y p e In fo rmat ion 

It may also be of interest to include information about the type of mutation that 

a patient has sustained to their NF2 gene into the model. We may wish to include 

this information in order to obtain probability predictions for individuals bearing 

a certain type of genetic mutation. The most obvious way of incorporating this 

information into the model is to allow the vector of parameters for the model to 

be different for patients with different types of mutations. Suppose a patient can 

have one of k different types of mutations and the vector of model parameters for 

an individual with mutation type j is denoted by Oj. Let mj denote the mutation 

type for patient i; thus, the data that are collected on patient i is the vector (ti, rrii) 

and patient z's contribution to the likelihood will be: 

likelihood estimate 0. Given this estimate of the parameter vector, it is possible to 

specific time t. A n estimate of this probability, F(t\0), is computed as follows: 

Jo 

o 
U > 0. 
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Additionally, let Dj be the set of patients in our data set with mutation type j. 

Then the likelihood for the data can be written as: 

k I „i{ 

= J] /»(ti |0j)exp{- j h{u\0j)du} 

<-l \i€Dj J° 

k \ A; 

n n e x p { - E E / Kv>\o3)}du. 

The log-likelihood can therefore be written as: 

k k i-

Wu Ok) = E E iog{/»(*iiOj)} - E E / ' 
j = i ieD^ j=i ieDj J o 

Again, estimates of the parameter vectors 0j (j = 1, ...,k) can be obtained 

by maximizing the log-likelihood with respect to the parameters. A n obvious concern 

with this approach is that allowing the model parameters to differ for each mutation 

type greatly increases the number of parameters that must be estimated from the 

data; for large data sets this might not be a serious concern. However, since NF2 

data sets are typically small and genotype information is often missing from the 

patient records, it is desirable to reduce the number of parameters to as few as are 

feasible. Constraints can be imposed to reduce the number of parameters and this 

is discussed in some detail below. 

Upon obtaining estimates of the model parameters Oj,j = 1 , k , it is pos

sible to estimate quantities of interest. The probability that an individual with 

mutation type j will develop a tumour by age i , F(t\0j), will be denoted by Fj(t) 

and can be estimated as: 

Fj(t) = 1 - e x p j - ^ h(u\dj)du}, t > 0. 

Additionally, we may also wish to compare different genotypes using these mutation 

models. Two genotypes could be compared by estimating the risk of developing a 
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tumour at a given age t for an individual with one genotype relative to the risk for 

an individual with another genotype. The risk of developing a tumour at age t for 

an individual with mutation type i relative to an individual with mutation type j 

is denoted by rij(t) and can be estimated as: 

r ^ T ) = a m . (3.i3) 

Clearly the estimates for the relative risks given in equation (3.13) have a dependence 

on t; this is interpretable as a patient's risk of developing a VS will change with 

their age. In general, the hazard functions used in equation (3.13) to estimate the 

relative risk need not be evaluated at the same age. As an example, suppose there 

is interest in comparing the risk of developing a VS for an individual with genotype 

i at age t, relative to an individual with genotype j at age 10, then this relative 

risk could be estimated by h(t\9i)/h(10\0j). For our analyses we will estimate the 

relative risks according to equation (3.13) by estimating the risk of developing a VS 

for an individual with one genotype at age t, relative to the risk of developing a VS 

for an individual with another genotype at the same age. 

Suppose the model under consideration has three rate parameters for each 

mutation type; these would be the growth, death, and mutation rates for the in

termediate cells. We can denote the parameter vector for the jth mutation type as 

Oj = (a^,L3^\n^) where l3^\ a,nd ii^ are the growth, death, and mutation 

rates respectively. The superscripts are used in place of subscripts to identify the 

mutation type as subscripts on these parameters are typically used in the litera

ture to denote the stage of the model under discussion. A constraint that can be 

employed to reduce the number of model parameters is lS^ = \i (j = 1 , k ) \ this 

would imply that the mutation rates for the chance mutations are equal for patients 

with different mutations of the NF2 gene. This model assumes that the type of 

mutation of the NF2 gene affects only the rates at which intermediate cells in the 

tissue divide and die. The number of parameters in the full and reduced models 

are 3k and 2k + 1 respectively, where k is the number of different mutation types in 
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the data set. Clearly, the necessity to reduce the number of model parameters will 

depend on both the number of mutation types to be considered in the analysis and 

more importantly on the interpretability of the constraint given above. 

Figure 3.2: Plots of relative risks versus age obtained from a 3-hit model with 
specifically chosen parameter values: 6\ = (a^\ L3^1\ M ^ ) = (1.73 x 10 _ 1,1.93 x 
10 _ 1,4.10 x 10 - 4 ) ; values for the components of 02 vary across the plots. 

ir 

(a) Assuming equal mutation and growth 
rates; plots vare labelled by the death rate 
used 

(b) Assuming equal mutation and death 
rates; plots are labelled by the growth rate 
used 

Figure 3.2 is an illustration of the estimated relative risks described above. 

The plots in this figure were produced by fixing the parameters of the 3-hit model 

to suitable values and plotting the relative risk as a function of age. For these plots 

the mutation rates for the two genotypes are assumed equal and the growth and 

death rates for the intermediate cells are allowed to differ across mutation types. In 

the left panel of the figure the growth rates for the two mutation types are assumed 
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to be equal and the relative risk is estimated, as a function of age, for a range of 

death rates. The plot suggests that individuals with mutation type 1 have a higher 

risk of developing a VS than do individuals with mutation type 2 when the death 

rate for their intermediate cells is lower than for individuals with the latter type of 

mutation; additionally, this relative risk increases as a function of age. This is quite 

reasonable as one would expect that when the intermediate cells die more quickly 

there would be fewer of them present in the tissue to sustain the final mutation and 

thus the likelihood of a tumour cell developing in the tissue would be smaller. The 

right panel of the figure shows a plot very similar to the plot from the left panel 

except that the death rates for the intermediate cells are assumed to be equal across 

the two genotypes and here the growth rates are allowed to vary across genotypes. 

Individuals with mutation type 1 clearly have a higher risk of developing a VS than 

individuals with mutation type 2 when the growth rate for their intermediate cells 

is higher than individuals bearing a mutation of the latter type; as previously this 

relative risk is an increasing function of age for the chosen parameter values. Again, 

this is quite reasonable as a more rapid growth of intermediate cells would imply 

that there are more cells present in the tissue that need only to acquire the final 

chance mutation to develop into tumour cells. It is possible to produce plots similar 

to these for various parameter vectors 6\ and 62; the plots included here were meant 

only as examples to illustrate the merits of using relative risks to summarize the 

models fit using genotype information. 
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C h a p t e r 4 

Estimating the Age at Onset of 

the Second VS 

Estimating the age at which a patient with NF2 will develop both the left and right 

VSs is also an interesting problem. Estimation of this quantity would require data 

related to both the onset of the left and right VSs; previously we have been concerned 

with only the age at onset of the first VS. A subset of the M U K data has information 

recorded on the onset of both VSs for 144 patients and are suitable for our modelling 

purposes. A n important note concerning these data is that the information recorded 

for each patient is the age at which these tumours were detected, not necessarily the 

age at onset for the two tumours; this point will be relevant in the interpretation of 

our estimates. 

The ages at which the right and left VSs develop are quite likely correlated on 

an individual and thus we choose to model these times as bivariate random variables. 

To allow for such dependence, we employ the the Kimeldorf and Sampson family 

of copulas [11, 10] and specify the margins using the appropriate multi-hit model. 

This model is sometimes called the Clayton-Oakes model [3, 24] and is often used 

to model bivariate survival data. 

(I) (r) 
Let T± and represent the ages at onset of the left and right VSs respec-
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tively for individual i. We assume that these two random variables have marginal 

distribution functions Ft and Fr respectively; the marginal densities are denoted by 

/ ; and fr. The notation C(u,v;S) is used to represent the Kimeldorf and Sampson 

family of copulas, with dependence parameter 5. The specific form of this family is 

given as: 

C{u,v;S) = {u-s + v-s - 1)~1/6, 0 < J < o o , 

where U and V are random variables with Uniform(0,l) marginal distributions. The 

joint density for U and V under such a model is given by: 

c{u,v;6) = (l + <J)[uu]~*_1 («~* + « - * - l ) - 2 ~ l l \ 0 < 8 < oo. 

Thus, we replace u and v in these expressions by Fi(t^) and Fr(t(r^) for our appli

cation. The joint density function of and can now be written as: 

f , , ( 0 , ( r h _ d2C(Fi(t^),Fr(t^);S) /dFt(t^) \ /dFr(t^)\ 
1 1 A ' j dFtdFr V dtW J\ m<r) ) 

= c i F ^ ^ r i t ^ S ) ^ ) ! ^ ) , 0 < 5 < o o . 

The marginal distributions for and are assumed to be identical; we 

will denote the hazard, density, and distribution functions for these random variables 

as h(t\6), f(t\6), and F(t\0) respectively. This assumption is justifiable as there is 

no reason to assume that a VS on one side of the head is more likely to develop by 

a certain age than a VS on the other side of the head. This assumption simplifies 

the expression for the joint density of and T ^ : 

h M l \ t { r ) ) = c(F(tW\0),F(t^\e);6)f(tU\O)f(t^\e) 

= (l + 5)(F(tW\0)~s+ F(t^\0)-5-iy2~1/S (4.1) 

x \F(t^e)F{t^9)VS~1f(t^0)f(t^\e), 0<6<oo. 

In the previous sections we derived an expression for the hazard function for 

the time until the onset of the first VS. The hazard function derived was the hazard 

for the entire tissue at risk of developing the VS; this tissue consisted of all of the 
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Schwann cells surrounding both the left and right vestibular nerves. In this section, 

the hazard function given in our expressions will denote the hazard function for the 

time until the generation of the first tumour cell in a single vestibular nerve; this 

hazard function will specify the marginal distribution of both and T^r\ The 

derivation of the hazard function proceeds identically to the derivation from the 

previous sections, except that the number of cells that are assumed to be initially 

present in the tissue are divided in half. Using previous results, and the relationships 

between the hazard, distribution, and density functions, we can reexpress the joint 

density from equation (4.1) in terms of this hazard function: 

rt ( j ) , -, -5-1 
h(s\0)ds \\ 

je{/,r} 

-1 + 
< - t U ) - - -<5-i - 2 - 1 / ( 5 

fl,r(t{l\t{r)) = U + <*) II [ l - e x p { - / h(s\0)ds}] 

J2 ( l - e x p { - / h(s\0)ds}) 
Ml,r} -J° 

xh(tW\0)h(tW\0)exp{- J h(s\0)ds} exp{-J h(s\0)ds} 

pt^ —5—1 
= {1 + 6) JJ [ l - e x p { - / h(s\d)ds}] 

x - 1 + ( l - e x p { - / * /i(s|6>)ds}) _ < 5]" 2 _ 1 / < 5 

je{i,r} J o 

je{i,r}Jo 

If our data consist of n patients, with observed onset times (t^\t^),(tn\tn^), 

then our log-likelihood is simply: 

1(0) = n\og(l + S)-(l + 6)J2 l o g { l - e x p { h ( s \ 0 ) d s } } 

i=lje{l,r} J° 
n /*'•"'' —5 

-(2 + l / a ) £ l o g { - l + J2 ( l - e x p { r h(8\0)ds}) } 

+E E iog{Mi?'V)}-E E T h °̂)ds- (4-2) 
i=l je{l,r) *=ije{/,r}' 
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The log-likelihood given in equation (4.2) can be maximized with respect 

to the parameters 0 and S to obtain parameter estimates. These estimates can 

be imputed into our expression for the bivariate distribution function of and 

T^r\ denoted by Fi>r(t^l\t^), to compute estimates of the probability that an 

individual will develop both tumours by a given age; note that Fiir(t^l\ t^r>) = 

C(F(t^\0),F(t^\0);5). A plot of F^(t~t) versus t can be constructed and com

pared to a plot of the empirical bivariate distribution function to assess the fit of the 

model. The bivariate empirical distribution function would be computed as follows: 

max(T^,T^ r )) < i} 
FE(t,t) = 

n n 

A n interesting feature of this model is that it allows us to estimate the 

association between the ages at onset of the left and right VSs. This association is 

characterized by the model parameter <5. Interpreting the magnitude of an estimate 

of this parameter will be discussed in Chapter 5 and further details can be found in 

[10]. 
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C h a p t e r 5 

Results 

5.1 Knudson's Model 

Knudson's model was fit using the age at onset of the first VS variable from both the 

M U K and SPOR datasets. The fitting of the model is fairly simple to implement 

and requires little computational effort. There is a single time-dependent parameter 

that must be estimated from the data at several pre-selected time points. The esti

mation is performed using a non-linear weighted least-squares procedure described 

previously in Chapter 2. Al l computations were performed using programs written 

in the C programming language. 

For our fitting eight time points were selected at which the model parameter 

would be estimated. Recall that the model parameter represents the fraction of cell 

divisions that have occurred prior to time t and is denoted by d(t). There are two 

other quantities that must be specified prior to the fitting of the model. These are 

the expected number of tumours eventually acquired by an NF2 patient, denoted by 

m(oo), and the ratio of the expected number of cell divisions in an individual's life 

to the number of Schwann cells originally present in the tissue; this latter quantity 

will be denoted by a(oo)/6(0). The results presented here have been generated using 

m(oo) = 2 and a(oo)/6(0) = 2 x 106. It is natural to specify the expected number of 
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tumours eventually acquired by an NF2 patient to be two as all NF2 patients used 

in our fitting have bilateral VS. The second quantity is more difficult to justify as 

we require some information about the number of cells present in the tissue and the 

number of cellular divisions that occur throughout an individual's life. The value 

chosen is identical to the value used by Hethcote and Knudson [8] in their application 

to retinoblastoma and is also consistent with the growth functions for the tissue that 

we assume in the next section. As well, the results obtained in the model fitting 

depend very little on the value chosen for this quantity. Hethcote and Knudson [8] 

report that for their application, estimates of d(t) change by less than 1% if any value 

between 105 and 108 is selected for a(oo)/6(0). Our experiences with perturbations 

of this quantity are consistent with those described by the aforementioned authors. 

Table 5.1 shows the time points that were selected for the estimation of the 

fraction of cell divisions and the resulting estimates. Note that estimates of the 

standard errors are not provided as the method of estimation does not suggest an 

obvious method for computing standard errors. These estimates can be imputed 

into equations (2.1) and (2.2) to yield estimates of the cumulative probability that 

an individual will develop a VS prior to a certain age; these estimates are computed 

for both NF2 and sporadic patients. A plot of these model estimated probabilities 

is given in Figure 5.1; plots of the empirical distribution functions have also been 

added to assess the fit of the model. Overall, the model fit appears to be adequate 

despite a few deviations between the observed and fitted incidence functions. The 

model tends to under-predict the incidence for NF2 patients for a range of ages 

(ages 35-60); it also over-predicts the incidence for the sporadic cases on a range of 

ages (ages 25-50). A chi-square goodness of fit test was used to test the adequacy 

of the model fit and suggested that there is some evidence of departure between 

the model and the data ( x l = 10.346, p-value = 0.066). To compute the test 

statistic, observed and expected incidences of VS were compared in several age 

intervals; intervals with observed or expected counts of less than five were combined 
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Figure 5.1: Plots of empirical and estimated probabilities from Knudson's model for 
both NF2 patients and sporadic cases 



Table 5.1: Estimates of the fraction of cell divisions d(t) at various time points from 
Knudson's model 

age (t) 0 10 18 26 34 , 42 50 58 66 oo 

d(t) 0 0.006 0.087 0.204 0.300 0.371 0.445 0.572 0.794 1 

for asymptotic considerations. These results have motivated us to further explore 

the two-mutation hypothesis with other models to see if results are consistent across 

different models. 

5.2 2-h i t M o d e l s 

5.2.1 Deterministic Tissue Growth 

The model fitting for the 2-hit model with deterministic growth of the tissue is quite 

simple. There is no need to employ a numerical routine to perform the maximization 

of the likelihood function given in equation (3.1), as a closed form expression for the 

mutation rate parameter exists. We have only to select a suitable growth function 

for the tissue and input this function into equation (3.2) to compute our estimate 

of the mutation rate. 

Three candidate growth functions were selected for the model fitting. These 

are the same three functions from the logistic family that are plotted in Figure 3.1. 

It is assumed in each case that the tissue originally contains 20 cells and after a cer

tain age reaches a constant size of 107 cells; as was discussed previously, the three 

growth functions differ from one another in the age at which the tissue reaches its 

maximum size and the rate at which the tissue grows. In computing the muta

tion rate estimate, there is a need to integrate the growth function several times, 

each time over a finite interval; these integrals have been computed numerically us

ing Romberg integration [16]. Al l computations were implemented using programs 

written in the C programming language. 
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The models were fit to both the age at onset of the first VS and age at onset 

of hearing loss variables from the Manchester data set, as well as the age at onset of 

hearing loss variable from the multi-source data set. Parameter estimates and esti

mated standard errors from the model fittings are summarized in Tables 5.2, 5.3, and 

5.4 for the age at onset of first VS (MUK), age at onset of hearing loss (MUK) and 

age at onset of hearing loss (FSS) respectively. The estimates for the mutation rates 

obtained using the three different growth functions are ordered identically across 

the three different data sets; specifically, the logistic(107, 5.0,0.8) growth function 

consistently yields the smallest rate estimate, while the logistic(107, 8.5,1.3) func

tion produces the highest estimate of the mutation rate for all three data sets. It 

is important to recognize that the magnitude of the mutation rate estimate for this 

model depends heavily on the number of tissue cells that are assumed to be present 

in the adult tissue. This is quite clear from the expression for the mutation rate esti

mate. If the number of tissue cells in an adult tissue was rescaled by a multiplicative 

factor of k then the estimate of the mutation rate would consequently be rescaled by 

a factor of l/k. Model fitted cumulative distribution functions for the age at onset 

random variable will not however be affected by rescaling the tissue growth function 

by a multiplicative factor. For example, models fit using the logistic(107,8.5,1.3) 

and logistic(105,8.5,1.3) growth functions will produce identical estimates of the 

cumulative distribution function despite having different estimates for the mutation 

rate. 

Estimates of the cumulative distribution functions obtained using the three 

different data sets are presented in Figures 5.2, 5.3 and 5.4. In each of these figures, 

the three estimated distribution functions, each obtained using a different growth 

function for the tissue, are plotted against the empirical distribution function. For 

all three data sets it is evident that models fit assuming logistic(107,8.0,0.8) and 

logistic(107, 8.5,1.3) growth functions yield very similar estimates of the cumula

tive distribution function. Additionally, these estimates are also more consistent 
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Table 5.2: Model fitting results for 2-hit model with deterministic tissue growth 
using M U K data 

Variable: Age at onset of the first VS 

Growth function: logistic(107,5.0,0.8) 
Parameter Estimate Estimated SE 

M 4.052 x 1 0 - 9 0.317 x 10~9 

value o f log-likelihood: -686.280 

Growth function: logistic(107,8.0,0.8) 
Parameter Estimate Estimated SE 

M 4.609 x 10"9 0.361 x 10"9 

value o f log-likelihood: -669.359 

Growth function: logistic(107,8.5,1.3) 
Parameter Estimate Estimated SE 

M 4.715 x IO" 9 0.369 x 10~9 

value o f log-likelihood: -665.474 

with the empirical distribution function than the estimate obtained assuming a 

logistic(107,5.0,0.8) model for the growth of the tissue. Overall, the fit of these 

simple one-parameter models to the empirical distribution functions is fair. In par

ticular, all three of the models tend to predict an earlier onset of the tumours than 

is reflected in our data. The explanation for the lack of model fit could be any of 

several things. One explanation could be that our assumed growth functions are all 

incorrect; this possibility is difficult to assess given our limited information on the 

growth of the tissue. Uncertainty in our assumptions on the growth of the tissue 

is one motivation for choosing a model where the parameters governing the growth 

of the tissue are estimated from the data. The 2-hit model with stochastic growth 

of the tissue discussed previously is an example of such a model. Results from the 

fitting of such a model will be discussed in the next section. 
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Table 5.3: Model fitting results for 2-hit model with deterministic tissue growth 
using M U K data 

Variable: Age at onset of hearing loss 

Growth function: logistic(107,5.0,0.8) 
Parameter Estimate Estimated SE 

A* 4.524 x 10~9 0.377 x 10~9 

value o f log-likelihood: -590.127 

Growth function: logistic(107,8.0,0.8) 
Parameter Estimate Estimated SE 

A* 5.228 x 1 0 - 9 0.436 x 10~9 

value o f log-likelihood: -573.221 

Growth function: logistic(107,8.5,1.3) 
Parameter Estimate Estimated SE 

A* 5.364 x IO" 9 0.447 x 10"9 

value o f log-likelihood: -569.611 

Table 5.4: Model fitting results for 2-hit model with deterministic tissue growth 
using FSS data 

Variable: Age at onset of hearing loss 

Growth function: logistic(107,5.0,0.8) 
Parameter Estimate Estimated SE 

A* 4.625 x 1 0 - 9 0.358 x I O - 9 

value o f log-likelihood: -685.683 

Growth function: logistic(107,8.0,0.8) 
Parameter Estimate Estimated SE 

A* 5.358 x IO" 9 0.415 x 10~9 

value o f log-likelihood: -669.483 

Growth function: logistic(107,8.5,1.3) 
Parameter Estimate Estimated SE 

A* 5.499 x 10~9 0.426 x IO" 9 

value o f log-likelihood: -662.696 
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Figure 5.2: Plots of empirical and model predicted probabilities for 2-hit model with 
deterministic growth of tissue; using age at onset of first VS (MUK data) " 

o 

Age (t) 
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Figure 5.3: Plots of empirical and model predicted probabilities for 2-hit model with 
deterministic growth of tissue; using age at onset of hearing loss (MUK data) 



Figure 5.4: Plots of empirical and model predicted probabilities for 2-hit model with 
deterministic growth of tissue; using age at onset of hearing loss (FSS data) 



5.2.2 Stochastic Tissue Growth 

Fitting the 2-hit model with stochastic tissue growth is more complicated than fitting 

the model from the previous section. One of the most obvious differences between 

these two models with respect to fitting, is that the parameters from the fully 

stochastic model do not have closed form maximum likelihood estimates; all three 

parameters must be estimated by a numerical routine. For this model, a likelihood 

for the data was constructed according to the method described in section 3.3.2 

by expressing the likelihood function in terms of the hazard function for the time 

to the first tumour cell. The log-likelihood was maximized using a Quasi-Newton 

routine [23] and all computations were implemented using programs written in C. 

All definite integrals in the expression for the likelihood were computed numerically 

using Romberg integration [16]. 

The growth and death of the tissue cells in this model are governed by a 

stochastic process and hence there is no need to select a growth function for the 

tissue. We do however need to select the number of cells initially present in the 

tissue, denoted previously by N. We have chosen to use N = 20 for our fitting; 

this is consistent with the number of tissue cells initially present for the model with 

deterministic growth of the tissue. Tables 5.5, 5.6 and 5.7 contain the parameter 

estimates and the estimated standard errors from the fitting of the model to the three 

data sets. Estimates of the model parameters are consistent in magnitude across 

the three data sets. The ordering of the growth, death and mutation rates is also 

consistent across the three data sets. Several different vectors of starting values were 

selected for the Quasi-Newton routine; most of these yielded consistent solutions. 

Several starting values resulted in the convergence to a local maximum; the value 

of the log-likelihood was used to discriminate between local and global maxima. 

The value of the log-likelihood evaluated at the maximum likelihood estimates of 

the model parameters is given in the aforementioned tables below the parameter 

estimates. 
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Table 5.5: Model fitting results for 2-hit model with stochastic tissue growth using 
M U K data 

Variable: Age at onset of the first VS 
Parameter Estimate Estimated SE 

a 4.214 x K T 1 1.010 x 10"1 

P 3.352 x K T 1 1.013 x 10 _ 1 

A* 3.154 x IO" 4 0.642 x 10~4 

value of log-likelihood -659.966 

Table 5.6: Model fitting results for 2-hit model with stochastic tissue growth using 
M U K data 

Variable: Age at onset of hearing loss 
Parameter Estimate Estimated SE 

a 
P 

4.999 x 10 _ 1 

4.009 x I O - 1 

3.250 x I O - 4 

1.209 x 10 _ 1 

1.112 x I O - 1 

0.714 x 10~4 

value o f log-likelihood: -568.175 

Table 5.7: Model fitting results for 2-hit model with stochastic tissue growth using 
FSS data 

Variable: Age at onset of hearing loss 
Parameter Estimate Estimated SE 

a 

A* 

4.844 x 10"1 . 
3.860 x IO" 1 

3.406 x IO" 4 

1.138 x IO" 1 

1.049 x IO" 1 

0.771 x 10~4 

value o f log-likelihood: -656.965 
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Upon obtaining estimates of the model parameters, it is possible to plot the 

estimate of the cumulative distribution function for the age at onset variable. A 

plot of the empirical distribution function can be compared to these model fitted 

cumulative distribution functions to assess the overall fit of the model. Figures 5.5, 

5.6 and 5.7 are plots of the fitted cumulative distribution function versus the empir

ical distribution function for the three data sets. The fit of this model is clearly an 

improvement over the model that assumes a deterministic function for the growth 

of the tissue. For all three data sets the model tends to over-predict the incidence 

of tumours at young ages (ages less than 15 years); this does not appear to be a 

serious concern however, as the model seems to fit reasonably well overall. 

As an additional check on the fit of the model, it is possible to simulate 

onset times from the fitted model and compare their distribution to that of our 

data. Simulating onset times from the fitted model, which we will denote by T*, 

can be done according to the following simple algorithm: 

• Recall that under our model F(T\0) = 1 — expj — h(s\0)ds^ ~ Uni-

form(0,l). 

• Generate a Uniform(0,l) random variable U*. 

• Set U* = 1 - expj- JQ h(s\0)ds^ and solve for the onset time T*. 

Although it would appear that simulating.onset times is quite a simple task, the final 

step in the algorithm does require the use of a numerical method to solve the given 

equality. I have used the bisection method for this and have found it to be quite 

successful. Using the bisection method for this requires that we bracket the onset 

time between two points; I chose to use the interval [0,100] and have encountered 

no difficulties with finding a sensible solution thus far. 

Samples of onset times were simulated from each of the three fitted models. 

The number of onset times simulated from each model was identical to the sample 

size of patients used to fit the model. Histograms of the simulated onset times and 
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of the actual data are presented in Figures 5.8, 5.9 and 5.10 for the three data sets. 

The histograms for the simulated onset times are quite similar in their distribution 

to the actual data for onset times greater than 20; the two distributions do however 

differ for onset times less than 20. Simulations from the fitted models generate a 

higher number of early onset times (onset times less than 10) than are represented 

in our data sets. The quartiles for the simulated data sets match the quartiles of 

the actual data very closely; in fact the medians for the simulated and actual times 

are identical for all three of the data sets. 

5.2.3 Genotype 

Patients used for the fitting of this model were stratified according to mutation type 

into one of two groups: patients with protein truncating mutations and patients 

with other known mutation type. The group of patients with protein truncating 

mutations includes the patients from our dataset with either frameshift or nonsense 

mutations; these types of mutations produce a similar effect on the protein product 

and thus have been grouped together. Our second stratum includes all other known 

mutation types from our dataset; this group will be less homogeneous than the 

protein truncating group with respect to the effects on protein product produced by 

different mutation types in this stratum. This stratification was chosen as a result 

of the small number of patients in our dataset with identified mutation type. For 

simplicity we will refer to the patients with truncating mutations as having genotype 

1 and patients with other types of mutations as having genotype 2. Two models 

were fit to the data: the first assuming that the mutation rate parameters for the' 

two genotypes were identical; and the second model allowing these mutation rate 

parameters to be different across the two genotypes. Both of these models were fit 

to the FSS data set on the age at onset of hearing loss variable. 

Parameter estimates and estimated standard errors from the five-parameter 

model are given in Table 5.8; the value of the log-likelihood evaluated at the maxi-
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Figure 5.5: Plots of empirical and model predicted probabilities from 2-hit model 
with stochastic tissue growth: Age at first VS data (MUK data) 

o 

Age (t) 
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Figure 5.6: Plots of empirical and model predicted probabilities from 2-hit model 
with stochastic tissue growth: Age at hearing loss data (MUK data) 



Figure 5.7: Plots of empirical and model predicted probabilities from 2-hit model 
with stochastic tissue growth: Age at hearing loss data (FSS data) 



Figure 5.8: Histograms of data versus model simulated values for Age at first VS 
(MUK data); sample size of 163 patients 

o 
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Age at onset 

(a) Histogram of actual onset times 

0 20 40 60 80 100 

Age at onset 

(b) Simulation from the fitted model 
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Figure 5.9: Histograms of data versus model simulated values for Age at Hearing 
loss (MUK data); sample size of 144 patients 

(a) Histogram of actual onset times 

(b) Simulation from the fitted model 
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1 

Figure 5.10: Histograms of data versus model simulated values for Age at Hearing 
loss (FSS data); sample size of 167 patients 
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(a) Histogram of actual onset times 
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Age at onset 

(b) Simulation from the fitted model 
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Table 5.8: Model fitting results for 2-hit model incorporating genotype information 
(common mutation rates for both genotypes) 

Variable: Age at onset of hearing loss 
Parameter Estimate Estimated SE 

10.231 x 10"1 0.829 x 10"1 

a& 5.341 x IO" 1 1.887 x IO" 1 

0(0 8.336 x I O ' 1 0.816 x 10"1 

4.339 x 10"1 1.788 x 10"1 

A* 2.272 x IO" 4 0.702 x I O - 4 

value of log-likelihood: -253.747 

Table 5.9: Model fitting results for 2-hit model incorporating genotype information 
(different mutation rates for both genotypes) 

Variable: Age at onset of hearing loss 
Parameter Estimate Estimated SE 

10.112 x 10"1 3.109 x IO" 1 

5.203 x 10"1 0.723 x IO" 1 

8.248 x 10 _ 1 2.906 x 10"1 

0(2) 4.208 x IO" 1 0.711 x 10 _ 1 

2.397 x 10~4 1.057 x IO" 4 

2.318 x 10~4 0.963 x 10~4 

value of log-likelihood: -253.755 

mum likelihood estimates is provided as well. Table 5.9 presents a similar summary 

of the parameter estimates and estimated standard errors from the six-parameter 

model. Note that the estimated model parameters are very similar for both models. 

In particular, the estimates for the mutation rates do not differ significantly across 

the different models. This supports our original intuition that the mutation rates for 

the two genotype groups should be equal. For both models, there are differences in 

in the estimates of the cell division and death rates across the two different genotype 

groups; the implications of this will be discussed below. 

Figure 5.11 is a plot of the estimated and empirical cumulative distribution 
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functions for both genotypes; the estimated cumulative distribution functions have 

been computed using the fitted five-parameter model. The overall fit of the model is 

good; the most obvious concern would be that the model over-predicts the incidence 

of tumours for patients with genotype 2 for ages less than 15; this departure might 

be explained by the small sample sizes. Assessment of the fit is somewhat difficult 

given that the sample sizes from each of the genotype groups were quite small; recall 

that the sample sizes were 40 and 28 for genotype group 1 and genotype group 2 

respectively. 95% confidence intervals for the empirical distribution function have 

been overlayed at ages 20 and 36 for both genotypes; these values were chosen only 

as examples. Figure 5.12 is an identical plot to that described above except that the 

estimated cumulative distribution functions have been computed using the fitted 

six-parameter model. This figure is almost indistinguishable from Figure 5.11; this 

is of course expected given the similarity in the parameter estimates given above. A 

likelihood ratio test confirmed that the addition of the extra mutation rate parameter 

did not result in a significantly better explanation of the data (xl = 0.016, p = 

0.899). 

There is a suggestion from the plots in Figures 5.11 and 5.12 that a patient's 

genotype affects the age at which they develop hearing loss (a surrogate for the age 

at onset of the first VS). Patients with protein truncating mutations clearly develop 

their hearing loss at an earlier age than patients with other mutation types. This 

observation is consistent with data from a previous study that observed NF2 patients 

with protein truncating mutations developing characteristic disease features at an 

earlier age than patients with spilce-site or missense mutations [7]. Although the 

six-parameter model allows the mutation rate parameters to differ across genotype 

groups, the estimates for the mutation rates are very similar for the two groups. This 

would suggest that the difference observed in the age at onset of hearing loss may 

be attributed to differences in the rates at which the pre-tumour cells divide and 

die across the two groups; this is a reasonable hypothesis to explain the differences 
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Figure 5.11: Plots of empirical and model predicted probabilities from genotype 
model with common mutation rates: Age at hearing loss data (FSS data) 



Figure 5.12: Plots of empirical and model predicted probabilities from genotype 
model with different mutation rates: Age at hearing loss data (FSS data) 



in the age at onset of hearing loss across the two genotype groups. 

A possible means of quantifying the differences in the cell division and death 

rates across genotypes might be the use of what Moolgavkar and Knudson [19] refer 

to as the 'growth advantage' of the pre-tumour cells. These authors explain that 

when the difference between the division rate and the death rate, a — fl, is positive, 

the pre-tumour cells are said to have a growth advantage; when this quantity is 

negative the pre-tumour cells are said to have a growth disadvantage. For genotype 

1 the difference between the division and death rates is estimated as 1.895 x 10 _ 1 , 

(based on the five-parameter model) indicating a growth advantage for the pre-

tumour cells; this same estimate for genotype 2 is 1.002 x 10 _ 1 , indicating a growth 

advantage as well. The growth advantage for genotype 1 is larger than it is for 

genotype 2 suggesting that the number of pre-tumour cells at risk of sustaining a 

chance mutation will likely be larger in patients with genotype 1 than in patients 

with genotype 2. This could perhaps explain the earlier age at onset of tumours 

in patients with protein truncating mutations. Moolgavkar and Knudson provide 

some interesting results related to the risk of tumour development in groups with 

different growth advantages using an approximate two-mutation model [19]. 
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5.2.4 Estimating the Age at Onset of the Second V S 

To fit the model for the age at onset of the second VS from Chapter 4 we must first 

specify the marginal distributions for the ages at onset of the left and right VSs. 

We stated previously that these two random variables are assumed to be identically 

distributed and discussed the justifications for this assumption. We have chosen 

to use the two-mutation model with stochastic growth of the tissue to specify the 

marginal distribution for the ages at onset of the left and right tumours. A discussion 

on the derivation of the hazard function for these random variables was provided in 

Chapter 4. We have only to specify the number of Schwann cells initially present 

around a single vestibular nerve. We have assumed this quantity to be 10 cells; this 

is consistent with our previous assumption that there were 20 cells initially present 

around both the left and right nerves. The log-likelihood given in equation (4.2) 

was maximized with respect to the model parameters using a Quasi-Newton routine; 

this was implemented using programs written in the C programming language. 

The model was fit to a subset of the M U K data; all 144 patients used for 

the fitting were probands with the ages at onset of both VSs recorded. Estimates of 

the four model parameters and their estimated standard errors are provided in Ta

ble 5.10; the value of the log-likelihood is also provided. The most striking estimate 

is the estimate of the dependence parameter 8. A n estimate of this magnitude for 

8 corresponds to a value for Kendall's Tau of greater than 0.90 [10]; this indicates 

an extremely strong dependence between the ages at onset of the two tumours. In-

terpretating this parameter is somewhat delicate; it is possible that the dependence 

between the onset times for the two tumours that we have estimated here is arti

ficial. For many individuals in our dataset, the ages at onset for the two tumours 

are recorded as the same age. The reason for this might be that many patients had 

already developed both tumours prior to their first examination. In this case the 

actual ages at onset are not really known and have been recorded as the first age 

that the patient was observed. The parameter estimate for 8 is still meaningful here 
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perhaps, but it represents a different association. In this case it would represent 

the dependence between the ages at detection by physician of the left and right 

tumours; this may still be meaningful information for clinicians. 

Table 5.10: Model fitting results for bilateral model using M U K data 

Variables: Ages at onset of left and right VS 
Parameter Estimate Estimated SE 

a 9.698 x 10~2 3.191 x 10~2 

P 3.820 x IO" 2 2.542 x IO" 2 

8.041 x 10"4 1.633 x IO" 4 

6 21.457 2.450 
value of log-likelihood: -910.492 

Figure 5.13 are plots of the empirical distribution functions for the ages at 

onset of the first and second VS; Figure 5.14 is a similar display for the model fitted 

distribution functions. It is clear from Figure 5.13 that the ages at onset for the left 

and right tumours are very similar for the patients in our data. A n inspection ot 

the data reveals that 122 of the 144 patients used in the fitting had both the left 

and right VSs present at the time of their first evaluation. There is slightly more 

separation between the model fitted distribution functions for the age at onset of the 

first and second tumours than is observed in the empirical distribution functions; 

the overall fit however, is quite reasonable. The distribution function for the age 

at onset of the second tumour estimated from the model is below the model fitted 

distribution function for the age at onset of the first tumour; this is the stochastic 

ordering that we would expect for these two distributions. Plots like the one shown 

in Figure 5.14 have an obvious value to physicians working with patients. Such plots 

would allow the clinician to explain the likely progression of disease for a patient 

with NF2 to the family of an affected individual. 
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Figure 5.13: Empirical distribution functions for the ages at onset of the first and 
second VS (MUK data) 



5.2.5 3-hit Models 

In order to fit the 3-hit model to our patient data we must first choose a deterministic 

function for the growth of the tissue at risk, similar to what was necessary for 

the deterministic 2-hit model. We will fit our models assuming two of the three 

growth functions previously used in the fitting of the deterministic 2-hit model; 

both the logistic(107,5.0,0.8),and logistic(107,8.5,1.3) will be employed. We will 

not display results from fitting the model assuming the third previously described 

growth function as our expectation is that they would be very similar to those 

obtained from assuming the logistic(107,8.5,1.3) growth pattern. We have also 

chosen to display results from fitting the model to a single dataset, rather than all 

three datasets; we have chosen to use the age at onset of the first VS data for all 3-hit 

analyses. Again, it is our expectation that the results would be reasonably consistent 

across all three datasets. Results obtained from varying the first parameter in the 

growth functions from 107 to 106 will be presented below as well to demonstrate the 

sensitivity of the results to the choice of this parameter. 

Tables 5.11 and 5.12 display the parameter estimates and the values of the 

log-likelihoods for the models fit assuming the logistic(107,5.0,0.8) and 

logistic(106,5.0,0.8) growth patterns respectively. Tables 5.13 and 5.14 are similar 

displays for the models fit assuming the logistic(107, 8.5,1.3) and logistic(106, 8.5,1.3) 

growth functions for the tissue. The values of the log-likelihoods for models fit as

suming the logistic(107,5.0,0.8) and logistic(106,5.0,0.8) are essentially identical; 

this despite the fact that the parameter estimates differ quite a lot across these 

two models. This is also true for the models fit assuming the logistic(107, 8.5,1.3) 

and logistic(106,8^5,1.3) growth functions, suggesting that the parameter estimates 

themselves are perhaps sensitive to the choice of the first parameter in the logistic 

growth functions; the value of the log-likelihood at the maximum likelihood esti

mate was not sensitive to the choice for this parameter value in our model fitting. 

This suggests that models fit assuming different growth functions could fit the data 
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Table 5.11: Model fitting results for 3-hit model using age at onset of the first VS 
(MUK Data); logistic(106,5,0.8) growth function 

Variable: Age at onset of the first VS 
Growth Function: logistic(106,5,0.8) 

Parameter Estimate Estimated SE 
a 
P 
M 

2.991 x 10"1 

3.175 x IO" 1 

5.594 x I O - 5 

0.183 x 10"1 

0.0929 x 10~x 

0.434 x 10~5 

value o f log-likelihood: -643.300 

equally well, however some models may produce parameter estimates that are more 

interpretable than those obtained from other models. This is somewhat of a concern 

for us, as we are not certain about the number of cells that are present in an adult 

tissue. 

Figures 5.15-5.18 are plots of the empirical and model estimated distribu

tion functions from the fitting of the four aforementioned 3-hit models. The model 

fit is quite good for all four models; in particular the models fit assuming the 

logistic^, 8.5,1.3), with K = 106 or 107, fit the data exceptionally well. The 

plots also support the claim cited above that models fit assuming different growth 

functions, for example growth functions that differ only in the first parameter, could 

fit the data equally well despite yielding different parameter estimates. The model 

estimated distribution functions from the fitting of the logistic(107,5.0,0.8) and 

logistic(106, 5.0,0.8) are indistinguishable from one another; this can also be said 

for the model estimated distribution functions produced assuming the 

logistic(107, 8.5,1.3) and logistic(106,8.5,1.3) growth functions. 

Fitting any of the 3-hit models described above to patient data is less straight

forward than the fitting of the 2-hit models described previously. Our experience 

has shown that the log-likelihoods for these models are quite flat and thus a very 

large sample is desired to facilitate the search for the maximum. The fitting was 

quite sensitive to the starting values used for the Quasi-Newton algorithm and con-
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Table 5.12: Model fitting results for 3-hit model using age at onset of the first VS 
(MUK Data); logistic(107,5,0.8) growth function 

Variable: Age at onset of the first VS 
Growth Function: logistic(107,5,0.8) 

Parameter Estimate Estimated SE 
a 
P 
A* 

6.815 x IO" 2 

7.003 x 10"1 

1.773 x 10~5 

0.00140 x 10"1 

0.0467 x I O - 1 

0.0615 x 10~5 

value of log-likelihooc : -643.301 

Table 5.13: Model fitting results for 3-hit model using age at onset of the first VS 
(MUK Data); logistic(106,8.5,1.3) growth function 

Variable: Age at onset of the first VS 
Growth Function: logistic(10e,8.5,1.3) 

Parameter Estimate Estimated SE 
a 3.825 x 10"1 0.0433 x 10"1 

P 4.447 x 10"1 0.294 x I O - 1 

A* 7.575 x 10~5 0.909 x 10~5 

value of log-likelihood -639.988 

Table 5.14: Model fitting results for 3-hit model using age at onset of the first VS 
(MUK Data); logistic(107,8.5,1.3) growth function 

Variable: Age at onset of the first VS 
Growth Function: logistic(107,8.5,1.3) 

Parameter Estimate Estimated SE 
a 6.004 x I O - 1 0.947 x I O - 1 

P 6.647 x I O - 1 0.744 x IO" 1 

V- 2.417 x 10~5 0.241 x 10~5 

value of log-likelihood -639.990 
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Figure 5.15: Plots of empirical and model predicted probabilities from 3-hit model 
assuming logistic(106,5,0.8) growth for the tissue; age at first VS data (MUK data) 

o 

Age (t) 
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Figure 5.16: Plots of empirical and model predicted probabilities from 3-hit model 
assuming logistic(107,5,0.8) growth for the tissue; age at first VS data (MUK data) 



Figure 5.17: Plots of empirical and model predicted probabilities from 3-hit model 
assuming logistic(106,8.5,1.3) growth for the tissue; age at first VS data (MUK data) 



Figure 5.18: Plots of empirical and model predicted probabilities from 3-hit model 
assuming logistic(107,8.5,1.3) growth for the tissue; age at first VS data (MUK data) 



vergence to a local maximum occurred for several starting values. Moolgavkar and 

Luebeck [21] reported that they found estimates of the growth and death rates to be 

unstable for such a model and suggested that greater stability might be obtained by 

re-parameterizing the model. We have not attempted to estimate model parameters 

under any alternative parameterizations at this point. 

5.2.6 Comparison of Several Models 

Several models have been presented in this thesis and results from the application of 

many of these models have appeared previously in this section. For a fixed dataset, 

it is natural to want to compare the fit of several models to the data to see if any 

one model provides a better fit than the others. In this section we will examine the 

fit of three of the models previously presented in this thesis, to the age at onset 

of the first VS variable from the M U K dataset; the three models will be the 2-hit 

model with deterministic tissue growth, 2-hit model with stochastic tissue growth 

and the 3-hit model. In particular, it is interesting to compare the fit of the 2-hit 

models with the 3-hit model, as this comparison is of biological importance. Such a 

comparison would allow us to examine which of the hypotheses for the development 

of tumour cells are most consistent with our data. 

Results for the 2-hit model with deterministic growth of the tissue and for the 

3-hit model will be presented here for the models that assume a logistic(107,8.5,1.3) 

growth function for the tissue. Table 5.15 is a summary of the log-likelihood values 

for the 3-hit model and for both the 2-hit model that assumes stochastic tissue 

growth and the 2-hit model that assumes deterministic tissue growth. The log-

likelihood is largest for the 3-hit model and smallest for the 2-hit model that assumes 

deterministic growth of the tissue. The 2-hit model that assumes a stochastic growth 

of the tissue has a slightly larger log-likelihood value than the 2-hit model with 

deterministic tissue growth. One might have expected this to occur prior to the 

model fitting, as the fully stochastic model allows the parameters that govern the 
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Table 5.15: Comparison of log-likelihood values for different models; using age at 
onset of the first VS data (MUK data) 

Variable: Age at onset of the first VS 
Model log-likelihood A 

2-hit (Deterministic tissue growth)* 
2-hit (Stochastic tissue growth) 

3-hit* 

-665.474 • 
-659.966 
-639.990 

4.715 x 10"9 

3.154 x I O - 4 

2.417 x 10"5 

'Assuming a logistic(107,8.5,1.3) growth function for the tissue 

growth and death of the tissue cells to be estimated from the data, whereas the 

deterministic model fixes these prior to the data analysis. It is interesting that the 

3-hit model has the largest log-likelihood value of the three models. This indicates 

that this model provides a better fit to the data than either of the 2-hit models; this 

suggests that the 3-hit hypothesis might be more appropriate for the development 

of tumour cells than the 2-hit hypothesis (under the assumption that our models 

adequately represent these hypotheses). It is worth noting that the comparison 

of the 3-hit model with the 2-hit model that assumes deterministic growth of the 

tissue should be made using results that were obtained assuming a common growth 

function for the tissue across the two models. 

Figure 5.19 is a plot of the empirical distribution function for the data against 

the three model-estimated cumulative distribution functions. The estimated distri

bution function for the 3-hit model follows the empirical distribution function more 

closely than the distribution functions estimated from either of the 2-hit models. In 

particular, the 3-hit model fits very well for ages less than 20 years where both of 

the 2-hit models were observed to depart from the data. Again, there is suggestion 

from the plots of the estimated distribution functions that the 3-hit hypothesis for 

the development of tumour cells is most consistent with our data. 

Although it is possible to compare the fit of several models to the data 

using log-likelihood values and plots, determining which hypothesis is the most 
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appropriate for the development of the tumour cells is still quite difficult. Our 

greatest concern is that the true growth function for the tissue is unknown to us 

and the results from both the 2-hit model with deterministic tissue growth, and the 

3-hit model, depend heavily on the function chosen for the analysis. The acquisition 

of more information about the growth of the Schwann cells would certainly improve 

our ability to compare the fit different models to the data. 

A n additional comparison to make might be to examine the magnitude of the 

estimated mutation rates from the three models described above. We have discussed 

previously that the mutation rate estimate for the 2-hit model with deterministic 

tissue growth depends directly on the value chosen for the number of cells in an 

adult tissue. The estimate for the mutation rate obtained from our fitting was 

4.715 x IO" 9 , which was considerably smaller than the estimate obtained from the 

model that assumes stochastic growth of the tissue (3.154 x 10 - 4 ) . We have not 

yet found a reference that suggests an appropriate value for this rate in patients 

with NF2 and thus comparing the rate estimates from the two models is difficult. 

Moolgavkar and Luebeck [21] reported mutation rate estimates in the range 3 x 1 0 - 8 

to 4.5 x 10~7 from their analysis of colon cancer data using a 2-hit model; there is 

little reason however, to expect the rate estimates obtained from our fitting of the 

models to NF2 data to match their estimates. These same authors [21] also reported 

mutation rate estimates from an analysis of colon cancer data using a 3-hit model 

in the range 4.8 x 1 0 - 6 to 2.6 x 10~5. The estimate of this rate from our analysis 

using the 3-hit model was 2.417 x 10 - 5 ; again, there is little reason for us to expect 

a similarity in the estimates from our fitting and theirs. Discriminating between 

potential models for our data using the rate estimates as a criterion could only 

be done if information was available on the expected order of magnitude for these 

mutation rates under the different hypotheses for the development of the tumour 

cells. 
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Figure 5.19: Comparison of the estimated cumulative distribution functions for 
several models with the empirical distribution function for the age at onset of the 
first VS data (MUK data) 
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Chapter 6 

Recommendations for Future 

Work 

Future work could be surely improved with the addition of more precise information 

about the tissue at risk of developing the tumours. In particular, the number of 

Schwann cells present in an adult tissue would be especially useful. We contacted 

several sources in an attempt to acquire such information and were unable to find 

the necessary information. We thank the individuals who took the time to reply 

to our queries related to this information. Knowledge of the periods at which the 

tissue undergoes spurts of growth would be useful as well. From our experiences, this 

information would not be as influential on the model fitting as would the number of 

cells in an adult tissue. 

The most obvious suggestion for improving the fit of the models incorpo

rating genotype information would be the acquisition of more patients with known 

mutation type. This would also allow us to make comparisons between more homo

geneous genotype groups. The models fit in this thesis had to partition the patients 

into only two genotype groups; it would be interesting to explore these models with 

more than two genotype groups (e.g. splice-site mutations, protein-truncating mu

tations, missense mutations, other mutations). 
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The fitting of the model for the onset of the second VS could be improved 

with the acquisition of longitudinal data on NF2 patients. This would provide better 

information about the precise ages at onset of the left and right VS. Obviously, it is 

unrealistic to assume that this information could be found on probands. Probands 

are quite likely only going to be observed after being brought to medical attention 

for their condition. In our data, the presenting symptom for most patients was loss 

of hearing; this suggests that probands are monitored only after the onset of at 

least one VS making it very difficult to acquire accurate ages at onset for the two 

tumours. One suggestion here might be to use data on non-probands in the fitting; 

one non-proband per family could be randomly chosen to avoid issues of familial 

dependence. Non-probands, as a result of their family history, might be monitored 

more closely for the onset of the first and second VS. Our data did not contain 

enough non-probands with the necessary information to make the suggested fitting 

possible. In an unpublished manuscript [4], Evans et al. reported a mean difference 

between the ages at onset of the first and second VS of 5 years in non-probands; their 

study however, featured only 11 non-probands. It is still interesting to compare this 

mean difference in onset times to the mean difference of 1.05 years computed from 

our proband data. There is certainly a difference in sample sizes here that inhibits 

formal comparison, but still perhaps a suggestion that information on non-probands 

may be more informative for our modelling purposes. 

The model fitting for the 3-hit model could perhaps be improved with the 

acquisition of more data. The likelihoods for the 3-hit models were quite flat and 

finding the global maximum was considerably more diffcult than it was with the 

2-hit models. This problem might be reduced if the sample size was sufficiently 

larger. As well, reparameterizations of the 2-hit and 3-hit models could be explored 

to see if there is an improvement in numerical stability of the estimates and their 

estimated standard errors. Moolgavkar and Luebeck [21] suggest parameterizing 

both the 2-hit and 3-hit models with the mutation rate //, the net cell division rate 
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a — /3, and the ratio of cell death to division /3/a. These authors claim that this 

parameterization yields estimates that are more stable than those obtained under 

the parameterization presented in this thesis. 
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Appendix A 

G e n e r a l S o l u t i o n o f t he R i c c a t i E q u a t i o n ( equa t i on (3.6)) 

Equation (3.5) is a partial differential equation of the form: 

which has general solution of the form g(u,v) = 0, where 

u(t, x,(f>) = a is the solution to Pdx = Qdt 

u(t, x, 0) = b is the solution to Pd<j) = Rdt. 

In our problem P — 1, R — 0 and Q{x, z) = —[fxxz + ax2 + /3 — (a + L3 + ii)x\-

Let s be the antiderivative of 1/Q with respect to x. Then Pdx = Q(x)dt 

becomes dx = Q(x)dt or s(x) = t + a. Pdcj) = Rdt becomes dcj) — 0 or <f> — b. 

Thus, the general solution is of the form g(s(x) —t,<f>) = 0. Applying the boundary 

condition (f)(x,z,0) = x at t = 0 we get g(s{x),x) = 0 or g(u,v) = u — s(v) or 

s{x) - t - s((j)) = 0. 

Differentiating this last expression with respect to t yields: 

- i = / , „ £ = [ « , ) , - ' ! . 

Rearranging this leads directly to ^ = —Q((j>) which is the Riccati equation (equa

tion (3.6)). 
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A d d i t i o n a l J u s t i f i c a t i o n for E q u a t i o n (3.11) 

Here we justify the expression for ty'(y,z;t) used in the derivation of the three-hit 

hazard function. Recall that: 

oo 

= Ylp'^,k);t)y^z k  

j,k=0 
oo 

= E [-•*(« + 0 + /*) • *)•; *) - • P(U, k);t) 
j,k=0 

+ (j - l)a-p((j - l,k);t) + (j + 1)(3 -p((j + l,k);t) 
+LiX(t) • p((j - 1, k);t) +jfi • p((j, k - l);t) } y*z k  

oo oo 

= E l-J(a + L3 + »)-p((j,k);t)]yiz k - £ LiX(t) • p((j,k);t)y>z k  

j,k=0 j,k=0 
oo 

+ J2(j-l)a.p((j-l,k);t)yizk  

j,k=o 
zk  + ^ ( j + l)/3-p((i + l , A ; ) ; ^ 

j,k=0 
oo 

+ £ vX(t)-p((j-l,k);t)yizk  

j,k=0 
oo 

+ Yl3'i-P(U,k-l);t)^zk (A.l) 
j,k=0 

Now we examine each term from the previous expression in more detail: 

oo oo 
E [-3(a + P + »)-p((J,k);t)}yiz k = -(a + j3 + M )y £ jp^k);^- 1 zk  

j,k=0 j,k=0 

d*(y,z',t) 
= -(a + j3 + Lt)y 

Y l*X(t) • p((j, k);t)yiz k = nX{t)V{y, z; t) 
j,k=o 

dy 
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J ] ( , ' - l ) a . p ( ( i - U ) ; t ) ^ = y 2 a J 3 ( j - l ) p ( ( j - l , * ) ; t ) ^ - V 
j,fc=0 j,fc=0 

#y 

j,fc=0 j,fc=0 

<9y 

j,fc=0 j,fc=0 

= WX(t)V(y,z;t) 

j,fc=0 j,fc=0 

^(y,g;*) 

Substituting these 6 expressions above into equation (A.l) we obtain the following: 

*'(y, z; t) = (y - l)A*X(t)tt(y, *; t) + [/iyz + ay2 + /3 - (a + 0 + 

which is the expression given previously in the derivation of the three-hit hazard 

function. 
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Appendix B 

G l o s s a r y 

allele alternative forms of a genetic locus; a single allele for each is inherited 
separately from each parent. 

autosome a chromosome not involved in sex determination. The human genome 

consists of 22 pairs of autosomes and the sex chromosomes. 

dominant allele the allele in a heterozygous state that determines the phenotype. 

exon the coding region of a gene. 

gene location on chromosome p=short arm, q=long arm; the location of a gene 

is often given by specifying the chromosome number and the letter representing 

the arm of the chromosome on which it is found. 

genotype the entire genetic constitution of an organism. Our definition will more 
specifically refer to alleles at a given locus. 

intron the area between coding regions of the gene [i.e. the regions between exons] 

locus position of a gene on a chromosome. 

meningioma a tumour on the coverings of the brain and spinal cord. 
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protein truncating mutation examples of such mutations include 

nonsense [premature stop codon from base-pair change], frameshift [bases involved 

not a multiple of three] and deletions; these mutations affect the D N A coding at a 

locus in that protein is not fully produced. 

splice site mutation a mutation between the exon and intron. 

missense mutation base-pair change such that there is a substitution of one 

amino acid for another. 

phenotype any genetically controlled, observable property of an organism. 

proband the first family member to be brought to medical attention for their 

condition or genetic disease. 

retinoblastoma a malignant tumour of the eye that arises in the retinal cells, 

usually occurring in children, with a frequency of 1 in 20000. Associated with a 

deletion on the long arm of chromosome 13 (13q). 

tinnitus a ringing of the ears. 

vestibular schwannoma a tumour of the Schwann cells that line the vestibular 

nerves. 
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