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Abstract

A nonlinear generalisation of Principal Component Analysis (PCA), denoted Nonlinear
Principal Component Analysis (NLPCA), is introduced and applied to the analysis of
climate data. This method is implemented using a 5-layer feed-forward neural network
introduced originally in the chemical engineering literature. The method is described
and details of its implementation are addressed. It is found empirically that NLPCA
partitions variance in the same fashion as does PCA, that is, that the sum of the total
variance of the NLPCA approximation with the total variance of the residual from the
original data is equal to the total variance of the original data. An important distinction
is drawn between a modal P-dimensional NLPCA analysis, in which P successive 1D
approximations are determined iteratively so that the approximation is the sum of P
nonlinear functions of one variable, and a nonmodal analysis, in which the P-dimensional
NLPCA approximation is determined as a nonlinear non-additive function of P variables.
Nonlinear Principal Component Analysis is first applied to a data set sampled from
the Lorenz attractor. It is found that the NLPCA approximations are much more repre-
sentative of the data than are the corresponding PCA approximations. In particular, the
1D and 2D NLPCA approximations explain 76% and 99.5% of the total variance, respec-
tively, in contrast to 60% and 95% explained by the 1D and 2D PCA approximations.
When applied to a data set consisting of monthly-averaged tropical Pacific Ocean sea
surface temperatures (SST), the modal 1D NLPCA approximation describes average vari-
ability associated with the El Nifio/Southern Oscillation (ENSO) phenomenon, as does |
the 1D PCA approximation. The NLPCA approximation, however, characterises the

asymmetry in spatial pattern of SST anomalies between average warm and cold events




(manifested in the skewness of the distribution) in a manner that the PCA approxi-
mation cannot. The second NLPCA mode of SST is found to characterise differences
in ENSO variability between individual events, and in particular is consistent with the
celebrated 1977 “regime shift”. A 2D nonmodal NLPCA approximation is determined,
the interpretation of which is complicated by the fact that a secondary feature extraction
problem has to be carried out to interpret the results. It is found that this approximation
contains much the same information as that provided by the modal analysis. A modal
NLPC analysis of tropical Indo-Pacific sea level pressure (SLP) finds that the first mode
describes average ENSO variability in this field, and also characterises an asymmetry in
SLP fields between average warm and cold events. No robust nonlinear mode beyond the
first could be found.

Nonlinear Principal Component Analysis is used to find the optimal .nonlinear approx-
imation to SLP data produced by a 1001 year integration of the Canadian Centre for
Climate Modelling and Analysis (CCCma) coupled general circulation model (CGCM1).
This approximation’s associated time series is strongly bimodal and partitions the data
into two distinct regimes. The first and more persistent regime describes a standing os-
cillation whose signature in the mid-troposphere is alternating amplification and atten-
uation of the climatological ridge over Northern Europe. The second and more episodic
regime describes mid-tropospheric split-flow south of Greenland. Essentially the same
structure is found in the 1D NLPCA approximation of the 500mb height field itself. In
a 500 year integration with atmospheric CO, at four times pre-industrial concentrations,
the occupation statistics of these preferred modes of variability change, such that the
episodic split-flow regime occurs less frequently while the standing oscillation regime

occurs more frequently.

Finally, a generalisation of Kramer’s NLPCA using a 7-layer autoassociative neural




network is introduced to address the inability of Kramer’s original network to find P-
dimensional structure topologically different from the unit cube in RF. The example of

an ellipse is considered, and it is shown that the approximation produced by the 7-layer

network is a substantial improvement over that produced by the 5-layer network.
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Chapter 1

Introduction

Early work in the field of climate variability involved the consideration of climatic vari-
ables averaged over very large spatial and temporal scales. These variables could in
consequence be represented in phase spaces of a small number of dimensions. However,
the range of spatial and temporal scales under consideration has broadened substantially
over the last few decades, so that data sets considered in contemporary research may
involve phase spaces with hundreds to thousands of dimensions. While this refinement
of scales allows consideration of a richer class of physical phenomena, it also confounds
attempts at reaching an holistic understanding of the data under consideration. A typ-
ical modern climatic dataset is overwhelming in the amount of information it contains,
so statistical techniques to distill massive multivariate datasets down to a phase space of
smaller dimension, characterising the essential information contained in the data, are of
great importance. In other words, it is necessary to develop methods to extract the signal
from noise in climate data. These methods may be described as belonging to the gen-
eral class of feature eztraction problems, which attempt to characterise lower-dimensional
structure in large multivariate datasets.

One of these feature extraction methods, Principal Component Analysis (PCA),
also known as Empirical Orthogonal Function (EOF) analysis, has been widely used
in oceanography and meteorology since its introduction to these fields by Lorenz (1956).
PCA is an objective technique used to detect and characterise optimal lower-dimensional

linear structure in a multivariate data set, and it is one of the most important methods



Chapter 1. Introduction | 2

in the geostatistician’s multivariate statistics tool-box. Consequently, it has been well-
studied, and standard references exiét describing the method and its implementation
(Preisendorfer, 1988; Wilks, 1995; von Storch and Zwiers, 1999). Its applications include
reduction of data dimensionality for data interpretation (e.g. Barnston and Livezey, 1987;
Miller et al., 1997) and for forecasting (e.g. Barnston and Ropelewski, 1992; Tangang et
al., 1998). Furthermore, the connection between the results of PCA, which are statistical
in nature, and the underlying dynamics of the system under consideration are understood
in some detail (North, 1984; Mo and Ghil, 1987).

By construction, PCA finds a lower-dimensional hyperplane which optimally charac-
terises the data, such that the sum of squares of orthogonal deviations of the data points
from the hyperplane is minimised. If the structure of the data is inherently linear (for
example, if the underlying distribution is Gaussian), then PCA is an optimal feature ex-
traction algorithm; however, if the data contain nonlinear lower-dimensional structure, it
will not be detectable by PCA. An example of a data set with nonlinear low-dimensional

structure is the noisy parabola
X(tn) = (ta, t2)" + €(tn) (1.1)

where €(t,) is a 2D iid A(0, £?) noise process. Underlying this 2D data set is a 1D
parabolic curve. Because this curve cannot be described by a single straight line, a 1D
PCA approximation would be unable to characterise this underlying 1D structure.

In the early 1990s, a neural—networkAbased generalisation of PCA to the nonlinear fea-
ture extraction problem was introduced in the chemical engineering literature by Kramer
(1991), who referred to the resulting technique as Nonlinear Principal Component Anal-
ysis (NLPCA). Another solution to this problem, coming from the statistics community,
was put forward independently by Hastie and Stuetzle (1989), who named their method
Principal Curves and Surfaces (PCS). Recently, Malthouse (1998) demonstrated that



N

Chapter 1. Introduction 3

NLPCA and PCS are closely related, and are, for a broad class of situations, essen-
tially the same. Kramer’s NLPCA has been applied to problems in chemical engineering
(Kramer, 1991; Dong and McAvoy, 1996), psychology (Fotheringhame and Baddeley,
1997; Takane, 1998), dynamical systems theory (Kirby and Miranda, 1994; Kirby and
Miranda, 1999), biomedical signal processing (Stamkopoulos et al., 1998), satellite remote
sensing (Del Frate and Schiavon, 1999), and image compression (De Mers and Cottrell,
1993), but apart from a single unpublished report by Sengupta and Boyle (1995), the
results of which were equivocal, it has not been applied to the large multivariate datasets
common 1n oceanic and atmospheric sciences.

The object of this thesis is to investigate the application of NLPCA to climatic data
sets. A brief review of-PCA and a description of NLPCA are given in Chapter 2. As
well, Chapter 2 contains a discussion of subtleties in the implementation of NLPCA. In
particular, it addresses the problem of éverﬁtting and presents the approach adopted for
its avoidance. in Chapter 3, NLPCA is first applied to a synthetic data set sampled
from the Lorenz attractor (Lorenz, 1963). Synthetic data are used to develop intuition
about the implementation of NLPCA and its results. As well, the addition of noise to
this synthetic data allows an investigation of the ability of this statistical tool to extract
structure from noisy data. The application of NLPCA to actual climate data is inves-
tigated first in Chapter 4, in which the low-dimensional nonlinear structure of tropical
Pacific Ocean sea surface temperatures (SST) and tropical Indo-Pacific sea level pressure
(SLP) is investigated. Chapter 5 contains the results of an analysis of Northern Hemi-
sphere extratropical SLP and 500mb geopotential height from the Canadian Centre for
Climate Modelling and Analysis (CCCma) coupled general circulation model (GCM).
Chapter 6 discusses a generalisation of Kramer’s NLPCA to a 7-layer autoassociative

neural network, which can solve a broader class of feature extraction problems than can
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the original 5-layer network. Conclusions are presented in Chapter 7. Appendix A de-
scribes feed-forward neural networks and Appendix B briefly introduces Principal Curves.

Appendix C discusses the symmetric and antisymmetric components of composites, an

1dea introduced in Chapter 4.




Chapter 2

Nonlinear Principal Component Analysis: Theory and Implementation

2.1 Introduction

Both traditional Principal Component Analysis (PCA) and Nonlinear Principal Compo-
nent Analysis (NLPCA) are examples of feature extraction problems, the goal of which
is to extract from multivariate data sets representative structures of lower dimension.
However, unlike PCA, NLPCA does not adfnit an analytic solution. Its implementation
involves the iterative solution of a variational problem, which must be approached with
care. This chapter presents PCA and NLPCA as feature extraction problems, and then

addresses the methodolqu adopted for the implementation of NLPCA.

2.2 Feature Extraction Problems

Denote by X(t,) € RM a typical meteorological or oceanographic data set, where

n € (1,..., N) labels observation times and the individual components of the vector X(¢,)
correspond to individual observing stations. It is usually the case that the field values
at different stations do not evolve independently in time, that is, that the temporal
variability of X(¢,) includes contributions from large-scale, spatially-coherent features.
In such a circumstance, the data will not be scattered evenly through the M-dimensional

phase space of stations, but will tend to cluster around lower-dimensional surfaces; it is

then appropriate to describe X(¢,) by the model:
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X(ta) = (Fose)(X(ta)) +en

~

= X(tn) + €n (2.1)

The function s¢ : RM - RP 1 <P < M pafameterises a manifold of dimensionality
lower than that of X(¢,), f : ®F — RM is a smooth map from this manifold to the
original space, and the ¢, are residuals. The estimation of s¢ and f from the data X(¢,),
subject to an optimality criterion such as minimising the sum of squares of the residuals,

1s an example of a feature extraction problem: given a noisy data set X(t,), it is desired

to retrieve the signal X(t,) = (f o s¢)(X(t,)). Doing so, the M-dimensionality of X(tn)
is treated as being in a sense only superficial, as the signal of interest lives on a P-
dimensional manifold embedded in RM. Because once f and s¢ have been found, it is
no longer necessary no longer need to work with the signal in ¥ and can concentrate
instead on the signal in RF, feature extraction can also be thought of as reduction of
data dimensionality.

The method of feature extraction most common in the atmospheric and oceanic sci-
ences is Principal Component Analysis (PCA), which optimally extracts linear features
from the data. However, if the underlying structure of the data is nonlinear, traditional
PCA is suboptimal in characterising this lower-dimensional structure. This deficiency of
PCA motivates the definition of Nonlinear Principal Component Analysis (NLPCA). In
this section, I provide-a brief review of PCA and demonstrate how it generalises naturally

to a nonlinear method. I then discuss the NLPCA method in detail.

2.2.1 Principal Component Analysis

Traditional PCA can be formulated variationally as a special case of the feature-extraction

problem, in which the data X(¢,) (assumed, without loss of generality, to have zero mean
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in time) is fit to the linear P-dimensional model:

X(tn) = 3 (X(tn)-er)er + € (2.2)

k=1

for vectors e, € M e, - e; = di; such that the sum of squares of the residuals:
J=<||X-X|]*> (2.3)

is a minimum, where angle brackets denote a sample time average. The vector ey is
the kth Empirical Orthogonal Function (EOF) and thé projection of X(¢,) on e is
the kth Principal Component (PC). The product of the kth EOF with the kth PC
defines a vector time series usually referred to as the kth PC mode. The P-dimensional
PCA approximation X(tn) to X(t,) lives on the P-dimensional hyperplane that passes
optimally through the middle of the data (von Storch and Zwiers, 1999). Principal
Component Analysis has the variance partitioning property:

M M R M R

> var(X;) =Y var(X;) + Y var(X; — X, (2.4)

i=1 i=1 i=1
so it is sensible to say that X(t,) “explains” a certain fraction of the variance of X(t,). In
particular, X(tn) = (X(t») - e1)e; is the one-dimensional linear approximation to X(¢,)
which explains the highest percentage of the variance. The fraction of variance explained
by X(t,) is a non-decreasing function of the approximation dimension P; increasing the
dimensionality of the PCA approximation increases its fidelity to the original data.

Principal Component Analysis is usually thought of in terms of the eigenstructure of

the data covariance matrix C =< XX7 >. In fact, the vectors e are eigenvectors of C

corresponding to the P largest eigenvalues:
Cek.: /\kek (25)

where A; > Ay > ... > Ap. This fact follows from the minimisation of (2.3) subject to the

constraint that the vectors e; are normalised. While this eigenanalysis approach is the




Chapter 2. Nonlinear Principal Component Analysis: Theory and Implementation 8

standard approach to calculating the e, it has no analogue in the nonlinear generalisation
to be considered. The variational formulation of PCA (from which follows its relation to
the eigenstructure of the covariance matrix) is emphasised because it generalises naturally
to the nonlinear feature extraction problem.

Note that the PCA approximation X(tn) to X(t,) is the composition of two functions:

1. a projection function sp : RM — RF:

st(X(t)) = (X(tn)er, ., X(tn)-ep)T

= IIX(t,) (2.6)
where II is the P x M matrix whose kth row is the vector e, and

2. an expansion function f : RF — RM:

f(s¢) = I7s¢ | (2.7)

Thus, the PCA approximation X(tn) to X(t,) is given by

X(tn) = (Fose)(X(tn))
= O7(IIX(t,))

= (ITM)X(t,) (2.8)

In the language of LeBlanc and Tibshirani (1994), the projection function characterises
the dimension reduction aspect of PCA, and the expansion function characterises its
function approzimation aspect. In traditional PCA, both the projection and expansion
functions are linear. This method is thus optimal if the feature to be extracted is well-
characterised by a set of orthogonal, straight axes: that is, if the data cloud is cigar-

shaped (e.g. Gaussian). But what if the data cloud is ring-like, or bowed? In such cases

?

there is a clear lower-dimensional structure to the data, but not one which is linear,
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and thus can not be extracted by traditional PCA. This motivates the definition of a
generalised, nonlinear PCA. |

The generalisation of PCA to NLPCA can also be motivated by the following obser-
vation. The 1D PCA approximation X(tn) to X(¢,) is separable in terms of its spatial
and temporal structure. That is, X(tn) is the product of a function of time, X(t,) - ei,

with a function of space, e;:
X(t,) = (X(t,) - e1) ey ' (2.9)

In consequence, this approximation can only describe standing variability in the data set,
that is, a fixed spatial pattern with an amplitude that varies as a function of time. There
1s no a priori reason to believe that the optimal 1D approximation to a climatic data set
is a standing oscillation, but that is all PCA can produce. As shall be seen in Chapters
4 and 5, by moving to NLPCA, 1D approximations to climatic data sets which are not

standing oscillations may be obtained.

2.2.2 Nonlinear Principal Component Analysis

To circumvent the limitations of linearity inherent in the PCA model (2.2), Kramer (1991)
introduced a nonlinear generalisation that solved the general feature extraction problem
described by the model (2.1), where f and s¢ are allowed to be nonlinear functions. Given
data X(t,) € RM, the problem is to estimate functions s; : R®¥ — RF and f : RF — RM,

where P < M, such that the approximation
X (1) = (f 0 57) (X (t) (210)

to X(¢,,) passes through the middle of the data, ie, such that the sum of squared residuals,

J =< ||X(ta) — X(ta)||? > (2.11)
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Input Bolt;;eer;eck Output
layer layer
Encoding Decoding
layer layer

3RM~_>33P_> iRM

Figure 2:1: The 5-layer feed-forward autoassociative neural network used to perform

NLPCA.

is a minimum. Called Nonlinear Principal Component Analysis (NLPCA), Kramer im-
plemented his solution using a 5-layer feed-forward neural network. Neural networks are
nonlinear, nonparametric statistical tools for function estimation. They are described in
detail in Appendix A. _

Figure 2.1 shows the architecture of the 5-layer network used to extract the 1D
NLPCA approximation to the data set X(t,) € R¥; this network is unusual in that

the third layer contains only a single neuron. This third layer as is referred to as the bot-

tleneck layer. The first (input) and fifth (output) layers each contain M neurons. Layers
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2 and 4 are called respectively the encoding and decoding layers; they contain L neurons,
the transfer functions of which are hyperbolic tangents. The transfer functions of the
bottleneck and output layers are linear. As input, the network is presented the vector
X(tn) for each time t,; the corresponding network output is denoted N (X(t,)). The
weights and biases are adjusted (“trained”), using a conjugate gradient algorithm (Press

et al., 1992) until the sum of squared differences between input and output:
J =< ||X(t,) = N(X(t)|]? > ’ (2.12)

is minimised (subject to certain robustness criteria discussed in the next section). Because
the network is trained to approximate as closely as possible the input data itself, it is
said to be autoassociative. It was proved by Sanger (1989) that if the transfer functions
of the neurons in the second and fourth layers are linear, the resulting network performs
classical PCA, such that the output of the bottleneck layer is the time series s¢(t,) of
equation (2.6) (up to a normalisation factor).

Now consider the manner by which this network solves the feature extraction problem
for P = 1. The first three layers, considered alone, form a map from R to R, and the
last three layers alone form a map from R to RM. All five layers together are simply
the composition of these two maps. Because the bottleneck layer contains only a single
neuron, the network must compress the input down to a single one-dimensional time series
before it produces its final M-dimensional output. Once the network has been trained,
the output A'(X(t,)) is the optimal one-dimensional approximation to X(¢,), embedded
in RM. As is discussed in Appendix A, it is known frc;m a result due to Cybenko (1989)
that if L is sufficiently large, then the first three layers can approximate any continuous
sy, and the last 3 layers any continuous f, to arbitrary accuracy. Thus, the network

illustrated in Figure 2.1 should be able to recover optimally, in a least-squares sense,

any one-dimensional nonlinear structure present in X(¢,) for which the projection and
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expansion functions are continuous. It is not required that the encoding and decoding
layers each have the same number of neurons, but the numbers are fixed to be the same
50 as to have only one free parameter in the model architecture. That the network must
be composed of (at least) 5 layers follows from the fact that each of the functions s¢ and
f requires a network with (at least) 3 layers for its approximation. The composition f o s¢
of the two must then have at least 5 layers, as one layer is shared.

The network illustrated in Figure 2.1 will extract the optimal one-dimensional curve
characterising X(t,). To uncover higher-dimensional structure, the number of neurons in
the bottleneck layer can be increased. For example, if two neurons are used, the network
will determine the optimal two-dimensional characterisation (by continuous functions) of
X(tvn). In general, a P-dimensional NLPCA approximation to X(¢,) can be obtained by
setting to P the number of neurons in the bottleneck layer.

Another solution to the general feature extraction problem was introduced indepen-
dently by Hastie and Stuetzle (1989). Their method, termed Principal Curves and Sur-
faces (PCS), is described in Appendix B. Principal Curves and Surfaces is based on a
rather different set of ideas than NLPCA. In practice, however, because both minimise
the sum of squared errors (2.11), the two methods both boil down to iterative solutions
to the variational formulation of a feature extraction problem. In fact, Malthouse (1998)
argued that NLPCA and PCS are quite similar for a broad class of feature extraction
problems. A primary difference between NLPCA and PCS is that in the former the pro-
Jjection function sy is constrained to be continuous, while in the latter it may have a finite
number of discontinuities. Although here I will investigate the use of Kramer’s NLPCA,
because its implementation is straightforward, PCS has a stronger theoretical underpin-
ning. In Chapter 6 a generalisation of Kramer’s NLPCA that can model discontinuous

projection and expansion functions is introduced, and is thus closer to PCS.

As noted by LeBlanc and Tibshirani (1994), Hastie and Stuetzle’s PCS partitions
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variance in the same fashion as does traditional PCA: if X(tn) 1s the PCS approximation

to X(t,), then
M M ) M )
D ovar(X;) =Y var(X;) + > var(X; — X). (2.13)
i=1 =1

=1

As with PCA, it is therefore sensible to describe a PCS approximation as explaining a
certain fraction of variance in the original dataset. From the close relationship between
NLPCA and PCS demonstrated by Malthouse (1998), it is tempting to hypothesise that
NLPCA also partitions variance in such a fashion. While I am not aware of a rigorous
proof of this result, this partitioning of variance in fact occurs in all of the examples I
have considered, and in the following discussion it shall be assumed that equation (2.13)
holds for X(t,) the NLPCA approximation to X(tn).

Yet a third nonlinear generalisation of PCA was introduced by Oja and Karhunen
(1993) and by Oja (1997), in which the map s is allowed to be nonlinear while f remains
linear. Such a generalisation can be carried out using a two-layer recursive neural network.
Because only the projection function is nonlinear, this approach is distinct from the class
of feature extraction problems addressed by Kramer’s NLPCA and Hastie and Stuezle’s
PCS.

Because the traditional PCA model has the additive structure (2.2), the optimal
linear P-dimensional substructure of X(t,) can be found all at once, or mode by mode;
both methods yield the same result. In the iterative approach, the first mode X(l)(tn) of
X(t,) is calculated from the entire data set, and then the second mode is calculated from
the residual X(t,) — X(1)(t,), taking advantage of the fact that the second PC mode of
X(t,) is the first PC mode of this residual. The two approaches are equivalent for PCA

because the most general linear function of P variables has the additive structure:

P
g(uy, uz, ..., up) = Zaiui. (2.14)
=1

They are generally distinct, however, for NLPCA, as an arbitrary smooth function f of
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P variables cannot be decomposed as a sum of smooth functions of one variable. That
is, in general

Flur,ug, . up) # fi(ur) + fo(ua) + ... + fr(up) (2.15)

for some functions fi, fs,..., fp: f cannot usually be written as a Generalised Additive
Model (Hastie and Tibshirani, 1990). The iterative approach will be referred to as a modal
analysis, and to the all-at-once approach as nonmodal. Naturally enough, in a modal
analysis, each 1D approximation will be referred to as a mode, and ordered in terms of
decreasing fraction of variance explained. I will compare both the modal and nonmodal
approaches in this thesis. Theoretically, the nonmodal P-dimensional approximation
should be superior to the modal approximation, because it is drawn from a broader class
of functions, although the modal analysis is more amenable to interpretation. Of course,
a general P—dimeﬁsional analysis could involve both modal and nonmodal decompositions
at various stages; such mixed modal/nonmodal analyses will not be considered here.
Malthouse (1998) pointed out two limitations of NLPCA as formulated by Kramer
(1991). First, Kramer’s NLPCA is unable to characterise low-dimensional structure
which is self-intersecting. Because the projection sy must be discontinuous for a self-
intersecting surface, there will be open neighbourhoods in R that are mapped by s¢
into non-open neighbourhoods in RF. Consider the example of a circle in R2. It is a 1D
surface, a natural parameterisation of which is the interval 6 € [0,2x], with the points
§ = 0 and 6 = 2r identified (S* topology). Clearly, for any small €, there will exist an
open neighbourhood on the circle which maps onto the non-open set
[0,¢) U (27 _ €,2w]. This limitation of Kramer’s NLPCA is not of great importance

to the analysis of climate data, as precisely cyclic variability is not characteristic of

climatic systems. An exception is perhaps the annual cycle, but it is typically removed
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from climate data before analysis. The limitation can be removed by moving to a 7-
layer neural network, which can approximate discontinuous projection and expansion
functions. This issue is addressed in Chapter 6.

The second limitation of Kramer’s NLPCA highlighted by Malthouse is that the
parameterisation s¢ of the NLPCA approximation is only determined up to an arbi-
trary homeomorphism (i.e., a continuous, one-to-one, and onto function with a contin-
uous inverse). That is, for an arbitrary homeomorphism g : R — R, the time series
g(se(X(tn))) is also an acceptable parameterisation of the surface, because
fosg = (fog™)o(gose). This degeneracy is a potentially serious complication in
the interpretation of the time series produced by the bottleneck layer of Kramer’s net-
work.

Based on the results presented in this thesis, it is apparent that this degeneracy is
not problematic in a modal NLPC analysis. Homeomorphisms from R to R are functions
which can only stretch and compress (locally or globally), or translate globally, and thus
do not radically change the information present in the time series s¢(X(¢,)). The time
series arising from the modal analyses in Chapters 4 and 5 are amenable to natural
interpretation in terms of familiar phenomena in the systems under consideration.

This degeneracy is.substantially~more significant in the case of a nonmodal analysis,
because homeomorphiéms from RF to RF for P > 1 can include rotations as well as dila-
tions and compressions. Generally, the time series produced by the P different neurons in
the bottleneck layer will thus not be independent, or even uncorrelated, because of mix-
ing induced by this arbitrary rotation. Any P-dimensional surface can be parameterised
by a set of independent variables ~;, ¢ = 1,..., P. Determining such a set from the set
of P time series §;(t,) determined empirically by NLPCA is another problem of feature

extraction in the space of the variables parameterising the surface. In principle, PCA

or modal NLPCA can be used to calculate the v;(¢,). An example of such an approach
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is considered in Chapter 5. The fact that nonmodal NLPCA leads to a second feature
extraction problem reduces its utility, despite its aesthetic appeal.

Another common generalisation of PCA is Rotated Principal Component Analysis
(RPCA; Richman, 1986). As was pointed out by Buell (1975,1979), because PCA is
designed to maximise the global variance explained by the leading mode, and because
successive modes are constrained to have orthogonal spatial patterns, its results can be
strongly affe(;ted by the shape of the data domain. Rotated PCA addresses this problem
by modifying the cost function (2.3) to include a “simple structure criterion” so that the
resulting approximation strikes a compromise between maximising its explained variance
and minimising its spatial scale. In doing so, either the orthogonality of the spatial
patterns, the uncorrelatedness of the time series, or both, must be sacrificed.

Rotated PCA and NLPCA are both generalisations of PCA, but they address sub-
stantially different issues. Rotated PCA allows the detection of localised variability in the
data, but still variability that is linear. Consequently, 1D RPCA approximations share
with 1D PCA approximations the problem that they can only describe standing variabil-
ity. On the other hand, NLPCA is concerned with detecting and characterising nonlinear
structure in data sets. The general 1D NLPCA approximation cannot be expressed as a
separable function of space and time éuch as (2.9), so it is able to describe variability more
general than standing oscillations.‘. Because of the lack of a “simple structure criterion”
in the cost function (2.11), NLPCA also maximises global variance, and its results will
presumably suffer to some degree from the same sensitivity to domain boundaries that
PCA does. However, this problem is presumably less serious with NLPCA because of the
absence of orthogonality constraints betweén different modes. In fact, such constraints
cannot be naturally formulated for the nonlinear approximations. A further generalisa-
tion of NLPCA to encourage regionalisation of the approximation could be introduced

by modifying the cost function (2.11) to include a simple structure criterion. Such a
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generalisation, while an interesting direction for future research, is beyond the scope of

the present study.

2.3 Implementation of NLPCA

Neural networks are powerful tools for function approximation. Given input and target
data sets u(t,) and v(¢,), n = 1,..., N, a neural network, denoted by N, can be trained
until M (u(t,)) is an arbitrarily good approximation to v(t,), if the number of neurons
in the hidden layer is sufficiently large. That is, a network can always be built so that

the total sum of squared errors
< |[v(tn) = N(ulta))I* > (2.16)

is as small as desired. Another important property of the neural network is that it
generalises, that is, that given new data u(twy+1),v(¢n41), the network error on these

data is about the same size as the errors over the training set:
Iv(tns1) = N(ultn))|P ~< [Iv(ta) = M(u(ta))I]* > . (2.17)

The two goals of minimising network error and maximising its ability to generalise are
often incompatible, and a subtle balance must be struck between the two. This situation

arises, for example, in the case when u(t,) and v(t,) are of the form

u(t,) = z(tn) + e (2.18)

V(tn) = £(a(ta)) +n (2.19)

where €, and 7, are noise terms, and it is desired that A learn the deterministic relation-
ship f between u(t,) and v(¢,). In such a case, care must be taken to avoid allowing the
network to fit the noise as well. If AV is trained until it maps particular details of a given

realisation of u(t,) into those of a given realisation of v(¢,), and thus will not generalise,
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the network has overfit. An overfit network is not truly representative of the structure
underlying a data set. The avoidance of overfitting by neural networks is a primary issue
in their implementation (Finnoff et al., 1993; Yuval, 1999).

To avoid overfitting, a simple technique called early stopping has been used. Because
the neural network is nonlinear in the model parameters, they must be determined iter-
atively in a process referred to as training. In early stopping, the training is terminated
before the error function is minimised, according to a well-defined stopping criterion.
In essence, the idea behind early stopping is that the training is allowed to continue
sufficiently long to fit the structure underlying the data, but not long enough to fit the
noise. The strategy employed was to hold aside a fraction of the data points, selected
randomly, in a validation set not used to train the network. While network training
proceeded, the network performance on the validation set was monitored, and training
was stopped when this performance began to degrade, or after a fixed large number of
iterations, whichever came first.

The use of early stopping along with the deterministic conjugate gradient algorithm
to minimise the error function confers on thé training results a degree of sensitivity to
the network parameters (the weights and biases) used to initialise the iterative training
procedure. This sensitivity is exacerbated by the possible existence of multiple minima in
the error function (2.11). To address this problem, an ensemble of training runs starting
from different, randomly chosen, initial parameter values was carried out for each analysis
performed. The training results from these runs were examined, and those members of
the ensemble for which the final error over the validation set was greater than that over
the training set were discarded. The remainiﬂg members of the ensemble are referred to
as candidate models.

The number of neurons L in the encoding and decoding layers determines the class

of functions that sy and f can take. As L increases, there is more flexibility in the
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forms of s¢ and f, but the model also has more parameters, implying both that the
error surface becomes more complicated and that the parameters are less constrained by
data. Consequently, for L large, the scatter among the candidate models can be large,
as measured by the normalised mean square distance (NMSD). The NMSD between
approximations X{l}(tn) and f({z}(tn) is defined as

<X - XOYP >

NMSD =
<X >

(2.20)

This statistic was introduced in Monahan (1999), in which it was found that NLPCA
approximations for which the NMSD was less than about 2% were essentially indistin-
guishable. In the end, the number L of neurons used in the encoding and decoding layers
was the maximum such that the NMSD between NLPCA approximations to X(¢,) in
the candidate model set was less than 5%. This threshold value of NMSD was chosen
on the basis of experience and intuition; there is no existing rigorous sampling theory
for this test statistic. In other words, for any given analysis, the value of L used in the
NLPCA network is the largest that produces a robust set of candidate models. The early
stopping technique ensures that the NLPCA approximation is robust to the introduction
of new data, and the existence of a set of similar candidate models (as measured by
NMSD) ensures that the approximation is robust with respect to the initial parameter
values used in the training.

Finally, once a maximal L was determined and a set of candidate models obtained,
the model selected as “the” NLPCA approximation was the one with the highest Fraction

of Explained Variance (FEV):
D
< [IX]* >

which is a meaningful statistic because NLPCA partitions variance as described in equa-

FEV (2.21)

tion (2.13). Alternately, the candidate model selected was that which minimised the
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Fraction of Unezplained Variance (FUV):
FUV=1-FEV (2.22)

Typically, the FEV differed little between candidate models.

2.4 Dynamical Significance of Low-Dimensional Approximations

The lower-dimensional approximations obtained by feature extraction methods are sta-
tistical in nature. A natural question concerns the relation they bear to the dynamics of
the system under investigation.

North (1984) considered the dynamical system

Lp(x,t) = {(x,1) | (2.23)

where L is a space-time linear differential operator and {(x,t) represents stochastic forc-
ing, and concluded that the EOFs of v¥(x,t) coincide with its dynamical modes if and
only if the operator L is normal (i.e. it commutes with its adjoint) and the noise ( is

white in space. and stationary in time:

B(((x1,t1)( (32, t2)) = g(ltr — ta[)8(x1 — x2) (2.24)

where g(7) is a lag autocovariance function. These requirements greatly restrict the class
of dynamical systems for which the connection between the statistics and dynamics is
clear-cut, as it does not even include the geophysically-relevant class of linear models for
which non-modal variance growth is important (Penland and Sardeshmukh, 1995; Farrell
and loannou, 1996; Whitaker and Sardeshmukh, 1998).

Mo and Ghil (1987) attempted to assess the connection between the results of EOF

analysis and the dynamics of the system under consideration in the context of nonlinear

dynamics. They concluded that, “the dynamical interpretation of EOF's is their pointin
; 8
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from the time mean to the most populated regions of the system’s phase space”. If the
distribution of the system in phase space is Gaussian, then this direction will lie along
the distribution’s principal axis. On the other hand, if the distribution is not Gaussian,
but is characterised by an inhomogeneous density with a small number of local extrema
corresponding to preferred regimes of behaviour (associated, e.g., with slow manifolds of
the dynamics (Ghil and Childress, 1987)), then the leading EOFs will characterise the
distribution of these extrema. -

Unlike PCA, NLPCA approximations are not characterised by unique “directions”
through phase space, but rather by curved surfaces. Interpretation of the results of an
NLPC analysis must then be couched in rather different terms than that of PCA. A
natural interpretation, using the language of ‘dynamical systems theory is that NLPCA
approximations characterise the attractor of the system under consideration, as was noted
by Kirby and Miranda (1994). Many naturally occurring systems possess a stable attrac-
tor, which is a manifold typically of smaller dimension than the Cartesian phase space in
which it must be embedded to preclude spurious self-intersections (Ott, 1993). These at-
tractors are generally complicatéd surfaces of non-integer dimension; only in very special
cases are they planar. Because PCA produces an orthogonal coordinate system in the
phase space, it can at best eliminate the degrees of freedom in the data associated with
noise, thereby producing an embedding space for the attractor. Nonlinear PCA, however,
can characterise the curved structures associated with these attractors (zilfhough it is re-
stricted to approximations of integer dimension), and produce what Kirby and Miranda
denote the “optimal coordinates” of the system. The results of NLPCA are thus best
considered as characterising the underlying attractor of the system under consideration,

as will be illustrated in the following Chapter when an NLPCA approximation of the

Lorenz attractor is constructed. The estimation of the attractor underlying a data set
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provides insight into the governing physics. Knowledge of the dominant forms of vari-
ability in the data can act as a guide to reductionism, helping to develop mechanistic

models of the system under investigation, which then provide insight into the underlying

dynamics.




Chapter 3

Nonlinear Principal Component Analysis of the Lorenz Attractor

3.1 Introduction

As a preliminary investigation into the implementation of NLPCA, consider a synthetic
data set consisting of a set of points sampled from the Lorenz attractor (Lorenz, 1963).
This familiar object is the attractor on which (as t — co) live solutions x(¢) of the system

of coupled nonlinear ODEs

T, = —0x1+ 0z, (3.1)
Ty = —I1T3z+TT — Ty (3.2)
T3 = x,z3— bz, (3.3)

with parameter values » = 28,b = 8/3, and ¢ = 10. Synthetic data is used to test the
NLPCA method because

e by adding random noise to the signal x(t), the sensitivity of the method to noise

level can be tested, and

¢ the structure of the Lorenz attractor is well-known, and of sufficiently low dimension

that visualisation of results is straightforward.

Figure 3.1 displays the projections of the Lorenz attractor (as determined by numerical
integration of equations (3.1)-(3.3)) on the (21, z;), (2, z3), and (z3, 1) planes. It turns

out that the Lorenz attractor is fractal, with a box-counting dimension of about 2.04

23
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Figure 3.1: The Lorenz attractor, projected on the (z;,z3), (z3, 2), and (z2,z;) planes.
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(Berliner, 1992). However, inspection of the butterfly-shaped attractor indicates that
a one-dimensional U-shaped curve passing through the centres of the two lobes should
explain a substantial fraction of the variance.

To produce a dataset of size similar to that typically encountered in climate appli-
cations (e.g. 600 points in length, corresponding to 50 years of monthly data), the data
displayed in Figure 3.1 were subsampled at uniform intervals in time to produce a 3D
time series 584 points in length, to be denoted z(t,). The subsampled data set is dis-
played in Figure 3.2. Clearly, it retains the gross structure of the original attractor. To

investigate the effects of noise on the NLPCA results, constructed the datasets

X(tn) = 2(ta) + 7e(ts) (3.4
were constructed, where €(t,) is a 584-point 3D series of Gaussian iid random deviates
with zero mean and unit standard deviation, and 7 is a tunable parameter for the noise

level. This noise is added in an effort to model measurement error; the stochasticity is

not intrinsic to the dynamics.

3.2 Model Building

The early stopping algorithm described in the previous chapter was used to carry out
the NLPC analysis of the Lorenz data. A validation set containing 30% of the data
points was set aside, and network performance over this set was monitored as training
progressed. Training was stopped when this validation set error started to increase, or

after 500 iterations, whichever was the first to occur.

3.3 Results

The 1D PCA approximation to x(t,) when n = 0 is displayed in Figure 3.3; it is a

straight line passing through the centres of the two lobes of the attractor, and explains
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60% of the variance of x(t,). Figure 3.4 displays the 1D NLPCA approximation to
x(t,). As anticipated, it is a U-shaped curve passing through the middle of the data.
This curve explains 76% of the variance, an improvement of 16% over the PCA results.
Clearly, the 1D NLPCA approximation is substantially closer to x(¢,) than is the 1D
PCA approximation. The network used to perform the NLPCA had 3 input and output
neurons for z;, z,, and z3, 1 bottleneck neuron, and L = 3 neurons in the encoding
and decoding layers. Experimentation indicated that the NLPCA results improved using
L = 3 over using L = 2 (ie, the former had a smaller FUV than the latter), but that for
L > 3, the results did not improve. Turning now to the issue of robustness of results, the
NMSD between 6 different 1D NLPCA curves (not shown) varies between 0.5% and 2%.
These curves differ only in small details, and agree in their essential structure with the
curve shown in Figure 3.4. Thus, the 1D NLPCA approximation to x(¢,) displayed in
Figure 3.4 is a robust result that improves substantially over the 1D PCA approximation.

Figures 3.3 and 3.4 illustrate the strength of NLPCA relative to PCA. It can be
proven analytically (Liicke, 1976) that z3 is uncorrelated with #; and z,. Consequently,

the covariance matrix takes on the form

'y Ty O
P'=1]Ty Tpn O ) (3.5)
0 0 T

where I';; = I'y; because the covariance matrix is symmetric. One eigenvector of T' thus
lies along the 3 axis while the other two span the z;,z; plane. One of the latter appears
as the leading PCA approximation displayed in Figure 3.3. In the PCA description of
the Lorenz attractor, variability along z3 appears in a separate mode from variability in
the z,z, plane. However, while variability along 23 is uncorrelated with variability in
the z;z, plane, it is clear upon inspection of Figure 3.2 that these are not independent

modes of variability. Indeed, large values of |z;| are associated with large values of 3.
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represent the original data points, the open circles represent points of the approximation.
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The 1D NLPCA approximation characterises this dependence between #; and 3, while
also describing the covariability of z; and z, described by the 1D PCA approximation.
The power of NLPCA is that it can characterise covariability between variables that are
uncorrelated, but not independent, which PCA cannot.

Figure 3.5 displays the 2D PCA approximation of the data x(¢,) when = 0; this
surface explains 95% of the variance. The 2D PCA approximation is a flat sheet that
characterises the structure of the data as projected in the (z;, ms)l and (z,, z3) planes well
but fails to reproduce the structure seen in the projection on the (z;, z;) plane. In Figure
3.6, the result of a 2D nonmodal NLPCA of x(,,) is shown. This surface explains 99.5% of
the variance, implying an order of magnitude reduction in FUV as compared to the PCA .
result. The network used to perform the NLPCA had 2 neurons in the bottleneck layer
and L = 6 neurons in thé encodiﬁg and decoding layers. It was found that decreasing L
below 6 also decreased the fraction of variance explained, and increasing it above L = 6
had little effect upon the results. The 2D nonmodal NLPCA result is highly robust: a
sample of 4 NLPCA models (not shown) has NMSD between curves of at most 0.1%.
As with the 1D example considered above, the NLPCA approximation is a substantially
better approximation to the original data set than is the PCA approximation.

Consider now a dataset x(t,) obtained from equation (3.4) with 7 = 2.0. The 1D
PCA approximation to x(t,) (not shown) explains 59% of the variance. The 1D NLPCA
approximation (Figure 3.7), explains 74% of the variance. The curve in Figure 3.7 is very
similar to that shown in Figure 3.4 for the = 0 case; the two-lobed structure of the
data is still manifest at a noise level of = 2.0, and the NLPCA is able to recover it.
Addressing again the issue of robustness of results, 6 different NLPCA approximations
to x(t,) wére found to have NMSD varying from 0.5% to 3%. These 6 curves agree in
their essential details, although the set displays more variability between members than

did the corresponding set for n = 0. Figure 3.8 shows the results of a 2D nonmodal
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NLPCA performed on this data set. This explains 97.4% of the variance, in contrast to
the 2D PCA approximation (not shown), which explains 94.2%. Thus, the FUV of the
2D nonmodal NLPCA approximation is about half that of the 2D PCA approximation.
These results too are robust; the NMSD between different 2D nonmodal NLPCA models
was about 0.2%. The 2D nonmodal NLPCA approximation is again an improvement
over the 2D PCA approximation, but not by such a substantial margin as was the case
when 7 = 0. The noise-free Lorenz attractor is very nearly two-dimensional, so the 2D
nonmodal NLPCA was able to account for almost all of the variance. The addition of
noise acted to smear out this fine fractal structure and made the data cloud more 3
dimensional. The 2D NLPCA applied to this quasi-3D structure could not produce as
close an analogue as was the case when 7 = 0.

At a noise strength of = 5.0, the data set x(¢,) still has a discernible two-lobed
structure, but it is substantially obscured. The 1D PCA approximation (not shown)
explains 54% of the variance, whereas the 1D NLPCA approximation (shown in Figure
3.9) explains 65%. Again, the 1D NLPCA approximation to x(t,) is qualitatively similar
to that obtained in the noise-free case (Figure 3.4). The 5 =0 and = 5.0 1D NLPCA
approximations differ at the ends of the curves. Presumably, the structure represented
in the former is somewhat washed out by noise in the latter. Four different NLPCA
curves for the data obtained with n = 5.0 share their gross features, but differ fairly
substantially in detail. In this case, the NMSD between curves varies between 5% and
10%. The 2D nonmodal NLPCA approximation to these data (not shown) explains 90%
of the variance, only slightly more than the 2D PCA approximation, which explains 88%
of the variance.

Finally, at a noise level of 7 = 10.0 the two-lobed structure of x(t,) is no longer

obvious, and the data cloud appears as a fairly homogeneous, vaguely ellipsoidal blob.

The results of NLPCA by this noise level are no longer robust, tending to be asymmetric,
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Figure 3.8: As in Figure 3.7, but with the 2D nonmodal NLPCA approximation of the

Lorenz data with noise level n = 2.0.
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Figure 3.9: As in Figure 3.7, for Lorenz data with noise level = 5.0.
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convoluted curves. At this noise level, then, NLPCA seems no longer to be a useful
technique for characterising low-dimensional nonlinear structure of the data set, precisely

because the addition of noise has destroyed this structure.

3.4 Conclusion

The results contained in this chapter demonstrate that NLPCA is able to produce low-
dimensional approximations to multivariate data sets that are more representative of the
data than the corresponding PCA approximations. The 1D NLPCA approximation to a
data set sampled from the Lorenz attractor explains 76% of the variance, in contrast to
60% explained by the 1D PCA approximation, and characterises the two-lobed structure
of the data. A 2D nonmodal NLPCA approximation explains 99.5% of the variance,

where the 2D PCA approximation explains 95%. As the box-counting dimension of the

- attractor from which the data is sampled is 2.04, the 2D nonlinear approximation is able

to capture almost the entire structure of the data; because the attractor is embedded in
R?, the 2D PCA approximation cannot do this. With the addition of Gaussian noise of
small to moderate strength to the data, NLPCA remains superior to PCA in its ability
to detect low-dimensional structure. As the noise level increases, the improvement of
NLPCA over PCA decreases, until eventually the noise dominates the signal and NLPCA
cannot improve upon PCA. Table 3.1 presents a summary of these results.
Consideration of synthetic data was useful because it is of low dimension and easily
visualised, and because the sensitivity of the results of NLPCA to noise level can be as-
sessed through manipulation of the strength of the noise. Real climate data sets however
are of a high dimensionality and of a fixed noise level, and it is the potential of NLPCA to
produce robust, enlightening approximations to climate data that determines the utility

of the method. The analysis of such data sets is the subject of the next two Chapters.
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1D 2D
PCA | NLPCA | PCA | NLPCA~
n=0]| 60 76 95 99.5
n=2| 59 74 94.2 97.4
n=>5| 54 65 88 90

Table 3.1: Percentages of variance explained by the 1D and 2D NLPCA approximations
to the Lorenz data for the three noise levels 5 considered.




Chapter 4

Nonlinear Principal Component Analysis of Tropical Indo-Pacific Sea

Surface Temperature and Sea Level Pressure

4.1 Introduction

Interannual variability of the Earth’s climate system is dominated by the tropical Pacific
basin-wide phenomenon known as El Nifio and the Southern Oscillation (ENSO) (Phi-
lander, 1990). This phenomenon is characterised by alternating periods of anomalously
warm or cold water in the eastern equatorial Pacific, alternately weakening or strength-
ening the zonal sea surface temperature (SST) gradient across the Pacific ocean. These
phases of the phenomenon are referred to respectively as El Nifio and La Nifia. Associated
with these changes in SST are pronounced changes in the zonal gradient of thermocline
depth and sea surface height. In the atmosphere, El Nifio (La Nifia) events are associated
with a slackening (strengthening) of the zonally-oriented Walker circulation, implying a
reduction (increase) in wind stress applied to the ocean surface associated with the east-
erly Trade Winds, and an eastward (westward) shift in the region of deep convection.
Variability of the Walker circulation manifests itself as an east-west dipolar fluctuation in
sea level pressure (SLP) known as the Southern Oscillation. As was originally described
by Bjerknes (1969), these changes in atmospheric circulation feed back on the ocean and
reinforce the original SST anomalies. In the late 1980’s, a mechanism was proposed for

the transition between El Nifio and La Nifia events that invoked the dynamics of oceanic

39
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baroclinic waves in the so-called “equatorial waveguide” (Suarez and Schopf, 1988; Bat-
tisti and Hirst, 1989). Denoted the “delayed oscillator” mechanism, this has become
the dominant paradigm for the negative feedback that terminates ENSO events (Battisti
and Sarachik, 1995),. ENSO vériability is aperiodic, with power primarily in the 4-7 year
bandv(Tangang et al., 1998). Models invc;ked to explain the aperiodicity of the variability
range from the stochastic forcing of a linear system (Penland, 1996) to low-dimensional
dynamics of a chaotic system (Jin et ai, 1996); the actual character of ENSO dynamics is
still a subject of some debate, although recent evidence favours the former of the above
models (Penland et al., 1999).

While the physical mechanisms producing ENSO are thought to be mainly confined
to the equatofial Pacific, its effects are global in scale (Philander, 1990; Trenberth et
al., 1998). In consequence, forecasts of ENSO variability have been attempted by a
number of researchers, and throughout the 1990s it has been the paradigmatic problem
of climate prediction (Barnston et al., 1994; Barnston et al., 1999). ENSO dynamics has
quite certainly been the most intensively studied problem in climate physics for the last
decade. ENSO variability is often diagnosed from observations using linear statistical
tools, in particular PCA; the dominant ENSO signal in tropical Pacific SST and SLP is
usually identified with the leading PCA approximation to these data sets.

In this chapter, NLPCA is applied to climatic data sets relevant to ENSO variabil-
ity: tropical Pacific Ocean sea surface temperature and tropical Indo-Pacific sea level
pressure. In the case of SST, NLPCA is able to produce one- and two-dimensional ap-
proximations that are of greater fidelity to the original data than the corresponding one-
and two-dimensional PCA approximations. In particular, the 1D SST NLPCA describes
ENSO variability in a manner that characterises the asymmetry in spatial distribution of

temperature anomalies between El Nifio and La Nifia events, which are treated symmet-

rically in the 1D PCA approximation. The improvement of the NLPCA approximations
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over PCA are more modest, but still notable, in the case of SLP.

In Chapter 3, I considered the application of NLPCA to synthetic data sets of suf-
ficiently low dimension, and of sufficiently low noise level, that their underlying low-
dimensional structure was manifest. Nonlinear PCA was able to recover this structure,
even in the presence of moderate noise levels. Fundamentally, however, NLPCA is only
of practical use in climate research if it is able to robustly characterise low-dimensional
structure in real data sets arising from the climate system, and improve upon the results
obtained by traditional linear methods. I show here that this is indeed the case, and

thereby demonstrate the potential utility of NLPCA in the analysis of climatic data sets.

4.2 Data and Model Building

The SST data considered consist of monthly-averaged NOAA sea surface temperatures
for the tropical Pacific Ocean. The data are on a 2° x 2° grid from 195 to 19N, and
from 125E to 69W, and span the period from January 1950 to December 1998. This
data set was produced using the PCA-based interpolation method developed by Smith
et al. (1996). A climatological annual cycle was calculated by averaging the data for
each calendar month, and monthly SST anomalies (SSTA) were defined relative to this
annual cycle.

The SLP data were COADS monthly-averaged sea level pressure (SLP) over the
tropical Indo-Pacific area (Woodruff et al., 1987 ) on a 2° x 2° grid from 27S to 19N,
and from 31E to 67W, covering the period from January 1950 to December 1998. The
annual cycle was removed in the same fashion as for the SST data to produce sea level

pressure anomalies (SLPA). The SLPA field was then smoothed in time using a 3-month

running mean filter and a 1-2-1 filter in each spatial direction.
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In the analysis of both the SSTA and SLPA data, the early stopping algorithm de-
scribed in the previous chapter was used. In all analyses, 20% of the data was held aside
in a validation set, for which network performance was monitored as training proceeded.
Training was stopﬁed when this performance began to degrade, or after 5000 iterations,

whichever came first. It was found that increasing the maximum number of iterations

beyond 5000 did not affect the results of the analysis.

4.3 Tropical Pacific Sea Surface Temperature

To render the NLPCA problem tractable, the SSTA data set was pre-processed by pro-
Jecting it on the space of its first 10 EOF modes {ex}12,, in which 91.4% of the total
varia.ncé is contained. Doing so takes advantage of the data compression aspect of PCA,
which is a feature distinct from feature extraction, for which NLPCA shall be used. Such
pre-processing of data to reduce the problem to a manageable size is common in rotated
PCA (Barnston and Livezy, 1987) and in statistical forecasting (Barnston, 1994; Tangang
et al., 1998). The first 3 EOF spatial patterns of SSTA are displayed in Figure 4.1; these
explain, respectively, 57.6%, 10.9%, and 6.8% of the total SSTA variance. A scatterplot
of the two leading principal component time series is shown in Figure 4.2. It can also
be considered to be a plot of the projection of the data into the plane spanned by the
first two SSTA EOF modes. The time series corresponding to these two PCA modes are
uncorrelated, but they are clearly not independent; the distribution of the data appears
to be markedly non-Gaussian. Indeed, Figure 4.2 indicates that there is an inverted
U-shape underlying the data, such that both strongly positive and negative values of
the first PCA time series are associated with negative values of the second. Physically,
this coupling of the PC1 and PC2 time series describes the fact that the most positive

SST anomalies during an average El Nifio event lie closer to the eastern boundary of the
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are dashed.
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Pacific than do the coldest anomalies during an average La Nina event. I shall return to
this point later.

Consider first a modal NLPCA decomposition of this SSTA data. Mode 1, found using
a network with L = 4 nodes in the encoding and decoding layers and a single neuron in
the bottleneck layer, explains 69.1% of the variance in the 10-dimensional EOF space, and
thus 63.3% of the variance in the total SSTA data, as compared to 57.6% explained by the
1D PCA approximation. Four candidate models were obtained from an ensemble of 20;
these models differed with NMSD of at most 1%. Projections of the first NLPCA mode
onto the subspaces spanned by the SSTA EOF's (ey, e5), (e2, €3), (e, es), and (ey, ey, €3)
are shown in Figure 4.3 (a)-(d), respectively. All four projections are shown because
it is difficult to understand the structure of the NLPCA approximation from a single
projection. This difficulty is particularly evident in Figure 4.3(b): the curve, viewed
edge-on, appears to be self-intersecting, when in fact the other projections demonstrate
this is not the case. Figure 4.3(a) indicates that NLPCA mode 1 characterises the U-
shaped structure discussed in the previous paragraph; NLPCA mode 1 is primarily a
mixture of PCA modes 1 and 2. Associated with this mode is the standardised time

series
Sf(X(tn))— < 8¢ >
< (sp— < sp >)2 >/’

&1 (tn =

(4.1)

corresponding to the output of the single neuron in the bottleneck layer. A plot of a;(t,)
appears in Figure 4.4(a). This time series bears a strong resemblance to the Nifio 3.4
time series (defined as the average SSTA over a box from 7S to 7N, and from 119W to
171W) displayed in Figure 4.4(b); the correlation coefficient between the two series is
0.88.

In contrast to PCA, no single spatial pattern is associated with any given NLPCA
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Figure 4.4: (a) Plot of a;(t,) = s#(X(t,)), the standardised time series associated with
SSTA NLPCA mode 1. (b) Plot of the Nifio 3.4 index normalised to unit variance.
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‘mode. The approximation f(, however, provides a sequence of patterns that can be visu-
alised cinematographically. This cinematographic interpretation is implicit in traditional
PCA: the 1D PCA approximation X(tn) = (e, - X(t,))e; describes the evolution in time
of a standing oscillation. This oscillation has a fixed spatial structure with an amplitude
that varies in time. The more general approximation X(tn) = (fos¢)(X(tn)), with s¢ and
f nonlinear, is not so constrained, and can characterise more complex lower-dimensional
variability. There is no a priorireason to expect the optimal 1D approximation to a spa-
tial field to be a sfanding wave - but standing waves are the only such approximations
that traditional PCA can produce. The power of NLPCA lies in its ability to characterise
more general lower-dimensional structure.

Figure 4.5 displays maps characterising the first NLPCA mode X(l) corresponding to
values of the time series @y = —3.5,—1.5,—0.75, —0.25,0.25,0.75,1.5,3.5. These values
were chosen to provide a representative sample of spatial structures associated with
the NLPCA approximation. Clearly, NLPCA mode 1 describes the evolution of average
ENSO évents, in contrast with PCA mode 1, which describes only the standing oscillation
associated with average ENSO variability. This difference between NLPCA and PCA
modes 1 results from the spatial asymmetry between the average warm and cold phases
of ENSO. In particular, warm events described by NLPCA mode 1 display the strongest
anomalies near the Peruvian coast, whereas the cold events are strongest near 150W.
This asym'metry in the evolution of NLPCA mode 1 arises because NLPCA mode 1
mixes PCA modes 1 and 2: for both El Nifio and La Nifia events, the PCA mode 2
spatial map (Figure 4.v1(b)) enters into the NLPCA mode 1 approximation with the
same (negative) sign.

This spatial asymmetry between average El Nino and La Nifia events is manifest in a

composite study. Figure 4.6(a) is a composite of NDJ (November, December, January)




Chapter 4. NLPCA of Tropical Indo-Pacific SST and SLP 49

(b)
. . — —
15Nt 15N-' ’ U ) \
\
10N 1ON; _ . ..
5N 5N} PR N
0 0. 0 Hon [ r _ PN
58: SS: ~
108'l7 108-0 \\
» A 1 * \
155 8 < - = Ay 158 s, - . {
150E 180E 150W 120W 90W 150E 180E 150W 120W 90W
(c) (d)
15Nt 15N I
1ON; ‘ L 10N
5N LI b 5N
Ot o ! - ofta..
5[ N ' 5[
10S¥, ' NN . 10S¥ R
T N R L sy
° = / AN 9

150E  180E 150W 120W 90W 150E 180E 150W 120W 90W
(e) (f)

15N} 15N/
1ON; 1ON;
SN 5Nt

Oy, Oty .
5s»"°%\\@\ 5sf°m\
10S§ . i 10S¥f. k)
158% o, 153% .

150E 180E 150W 120W 90W 150E 180E 150W 120W 90W

(9) (h)

15N 15N |
10N 10N
5N 5N

0t Oty
58 F 58S N :
10S ¥ 108, °
155 , 158% W o

. : . . . ' s r ) . )
150E 180E 150W 120W 90W 150E 180E 150W 120W 90W

Figure 4.5: Sequence of spatial maps characterising SSTA NLPCA mode 1 for (a)
ar = =35 (b) ey = =15 (c) oy = =75 (d) s = —.25 (€) oy = .25 (f) @; = 0.75
(g) a1 = 1.5 (h) a; = 3.5. Contour interval: 0.5°C.




Chapter 4. NLPCA of Tropical Indo-Pacific SST and SLP 50

averaged SSTA for those years in which the NDJ Nifio 3.4 index is greater than one
standard deviation above the long-term average; Figure 4.6(b) is the same for those NDJ
for which Nifio 3.4 is less than one standard deviation below the long-term average.
This averaging period was used for the composites because NDJ displays the largest
variance of all 3-month seasons. These two maps correspond to the SSTA patterns of
an average El Nino and an average La Niﬁa, respectively. Note that, consistent with
the maps corresponding to the 1D NLPCA approximation (Figure 4.5), the largest SST
anomalies tend to be loca’éed in the central Pacific during average La Nina events and
in the eastern Pacific during average El Nifio events. This asymmetry in the composite
fields was previously noted by Hoerling et al. (1997). The symmetric component of the
composite El Nifio and La Nifia maps, as defined in Appendix B, is displayed in Figure
4.6(c). This map, which in a rough sense characterises the pattern in the composifes that
is related nonlinearly to the Nifio 3.4 time series, bears a strong resemblance to SST EOF
mode 2 (Figure 4.1(b)). In fact, the spatial correlation between the two maps is -0.90.
The antisymmetric component of the composite (not shown) bears a strong resemblance
to EOF 1, the pattern correlation between these two maps is 0.975. Thus, PCA mode 1
may be interpreted as characterising the component of average ENSO behaviour that is
antisymmetric between average El Nifio and La Nifia events. By mixing EOF modes 1
and 2, NLPCA mode 1 is able to characterise the spatial asymmetry between average El
Nifio and La Nifia events. The bias of SST toward warm anomalies in the eastern part of
the basin and toward cold anomalies in the western and central parts is also evident in
the study of Burgers and Stephenson (1999) , who calculate the skewness of the observed
SSTA distribution. It is interesting to note the striking similarity between their map of
the spatial distribution of skewness (their Figure 3(a)) and the symmetric component of
the SSTA composite displayed in Figure 4.6(c).

A final comparison of the 1D NLPCA and 1D PCA approximations is given in Figures
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4.7 (a)-(c), which show respectively maps of the pointwise correlation between the orig-
inal SSTA data and the 1D NLPCA approximation, the pointwise correlation between
SSTA and the 1D PCA approximation, and the difference between these two pointwise
correlations. The two approximations are equally well correlated with the original data
over the eastern-central half of the Pacific Ocean, except near the Ecuadorian coast,
where the NLPCA correlations are somewhat higher than those of PCA. In the west-
ern Pacific, and in particular in the neighbourhood of the EOF mode 1 zero line, the
1D NLPCA approximation displays greater fidelity to the original data, as measured by
pointwise correlation, than does the 1D PCA approximation.

Now consider SSTA NLPCA mode 2, which was calculated using a network containing
L = 3 neurons in the encoding and decoding layers. Figure 4.8 displays mode 2 projected
onto the subspaces spanned by SSTA EOF's (ey, e;), (€2, e3), (€1, €3), and (e, ez, e3). The
5 candidate models from an ensemble of 20 trials differed from each other with NMSD
always less than 4%. NLPCA mode 2 explains 11.1% of the variance in the original SSTA
data. The associated standardised time series, a(t,) is shown in Figure 4.9. Interestingly,
the correlation coefficient between a;(t,) and a(t,) is —0.06; the two time series are
uncorrelated. Figure 4.10 displays maps of SSTA NLPCA mode 2, X(Z), corresponding
to ay = —4,-1,-0.25,0,0.15,0.25,0.3,0.35,0.4,0.5,0.75,1.5. These values of ay were
selected to present a representative sample of maps describing NLPCA mode 2. When
ay 1s strongly negative, SSTA NLPCA mode 2 is characterised by negative anomalies
in the central and western Pacific and positive anomalies in the eastern Pacific. As a,
increases through zero, the anomalies decrease in magnitude, while the positive anomalies
in the eastern part of the basin become increasingly concentrated in the equatorial region.
Eventually, the region of positive SSTA breaks off from the coast of South America and
migrates into the central Pacific. As a, increases further, the SSTA pattern becomes

the opposite of that for a, near zero, with positive anomalies in the central and western
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Pacific and negative anomalies in the east. Finally, for a; near the extreme positive
part of its range, SSTA NLPCA mode 2 is characterised by negative anomalies along the
equator, extending to the dateline, with positive anomalies throughout the rest of the
basin. Because the anomalies are often concentrated along the equator, it is reasonable
to associate this mode with certain aspects of ENSO variability not captured by NLPCA
mode 1. Indeed, it is interesting to note from Figure 4.4 that NLPCA mode 2 is more
active in the later part of the record than in the earlier. The two strong minima in ay(t,)
coincide with the decay phases of the large El Nifio events of 1982/83 and 1997/98,
describing the lingering patches of warm water in the eastern tropical Pacific observed
during these periods. Two of the three weaker minima in the more active period are
associated with the peaks of the La Nifia events of 1985/85 and 1988/89. Indeed, the cold
anomalies during La Nifias in the later period are somewhat stronger, more concentrated
in the central Pacific Ocean, and weaker in the eastern Pacific Ocean than La Nifia events
in the earlier part of the record, as indicated by a composite analysis (Figure 4.11). A
number of studies have noted a shift in ENSO variability in 1977 (see, e.g., Wang, 1995).
The apparent nonstationarity of as(t,) is consistent with a shift at this time, although
the precise timing of the shift in a,(¢,) is not obvious. The 1977 shift is in fact manifest
in SSTA NLPCA mode 1 time series a;(t,) (Figure 4.4); the time series is biased toward
negative extrema before 1977 and toward positive extrema after 1977. It should however
be noted that this shift may simply be an artifact of the technique used to reconstruct
the gridded SST data set.

Thus, the first mode of the modal NLPCA decomposition of tropical Pacific SSTA
describes the average variability associated with the ENSO phenomenon, and nicely
characterises the asymmetry in spatial structure between average El Nifio and La Nifa
events. The second mode characterises the difference in evolution between different ENSO

events, and in particular, displays a nonstationarity consistent with the observed “regime
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shift” in ENSO variability.

Plots of a 2D nonmodal NLPCA approximation of the SSTA data (ie, using 2 neu-
rons in the bottleneck layer), projected in the subspaces spanned by SSTA EOFs (ey, e3),
(e2,e3), (e1,e3), and (ey, ey, e3), are shown in Figure 4.12 (a)-(d). The associated net-
work used L = 6 neurons in the encoding and decoding layers, and the NMSD between
candidate models (8 out of an ensemble of 20) varied between 1% and 3%. The 2D
nonmodal NLPCA approximation explains 79.0% of the variance in the truncated data
set, and thus 72.2% of the variance of the original data. The time series corresponding
to the output of the bottleneck layers, denoted (81,8:)(tn) = s¢(X(%.)), are shown in
Figure 4.13. These two time series are highly. correlated with each other (r = -.835) and
with the Nifio 3.4 index (r; = —.879 and r, = .889, respectively). Because the 2D non-
modal NLPCA depends on 2 parameters, 8; and 3,, it is difficult to visualise the results
using a sequence of maps as was doné with the modal NLPCA in Figures 4.5 and 4.10.
Figures 4.14(a) and (b) display maps of the pointwise correlation coefficient between the
SSTA data and the 2D PCA and 2D nonmodal NLPCA approximations, respectively.
The 2D nonmodal NLPCA approximation produces higher correlations than the 2D PCA
approximation in the central equatorial, western, and southeastern Pacific, and slightly
lower correlations in thé eastern equatorial Pacific.

It is worth considering the time series f3:(t,) and Bi(t,) in more detail. As was
discussed in Chapter 2; the parameterisation s¢(X(t,)) of the P-dimensional surface
determined by NLPCA is only defined up to an arbitrary homeomorphism (i.e., a contin-
uous, one-to-one, and onto function with continuous inverse). That is, for an arbitrary
homeomorphism g : RF — RF, the time series g(s¢(X(¢,))) is also an acceptable pa-
rameterisation of the surface, because f o s¢ = (f o g7!) o (g o s¢). In particular, for

)8

any homeomorphism g : %% — R2, (g1(¢s), g2(tn)) = g(Bi(tn), B2(t)) parameterises the

surface found by 2D nonmodal NLPCA. Which parameterisation is determined by the
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NLPCA algorithm is a matter of chance. This degeneracy complicates the interpretation
of the time series determined by nonmodal NLPCA. In particular, the time series Bi(tn)
need not be independent, or even uncorrelated.

‘Determining a set of P independent variables 7; parameterising the surface from the
set of P time series 3;(t,) determined empirically by NLPCA is another problem of feature
extraction, in the space of the variables parameterising the surface. Therefore, PCA or
modal NLPCA can be used to calculate the v;(t,). In the case at hand, inspection of the
scatterplot of B,(t,) with B,(t») indicated that PCA was appropriate for the separation
of the correlated time series 31(t,) and Bs(t,) into two ‘uncorrelated time series Y1(tn)
and 73(¢,). The homeomorphism g is thus simply a linear function. The first PCA mode
explained 92.7% of the variance in B-space, and the associated time series (not shown)
describes average ENSO variability. Its correlation coefficient with the Nifio 3.4 time
series is 0.92 and with ay(t,) is 0.87. The second PCA mode explains the remaining
7.3% of the variance in B-space,-:cmd the associated time series v,(t,) (not shown) is
rather similar to ay(t,). The two time series have a correlation of 0.7, and in particular
Y3(t,) displays the same shift in activity from the pre-1977 to the post-1977 period
as does as(t,), with the same prominent peaks appearing in both time series. The
parameterisation (31(t,),B2(f,)) thus contains essentially the same information as the
two time series a;(t,) and as(t,). The fact that an extra step of processing is required to
allow interpretation of the time series produced by nonmodalh NLPCA indicates a distinct
advantage of modal over nonmodal NLPCA.

Figure 4.15 displays the 2D modal approximation to the SSTA data, obtained by
adding the two 1D modal approximations obtained before, projected in SSTA EOF sub-
spaces (e1,e;), (e, e3), (er,e3), and (e;, ez, e3). Because of the variance-partitioning
property of NLPCA, the fraction of variance explained by this approximation is the sum

of the fractions explained by the two 1D modal approximations, i.e., 74.4%, which is
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slightly greater than that obtained with the 2D nonmodal approximation. This approx-
imation differs in detail from the nonmodal approximation displayed in Figure 4.12, but
the two agree broadly in their general features. Figure 4.14(c) displays a map of the
pointwise correlation coefficient between the 2D modal NLPCA approximation and the
original SSTA data; correlations are somewhat higher than those of the 2D vnonmodal
approximation in the western Pacific ocean and somewhat lower in the eastern equatorial
Pacific, but by and large the differences between the two pointwise correlation maps are
small.

Note that while in principle one would expect a 2D nonmodal NLPCA approximation
to be superior to a 2D modal NLPCA approximation, because it should have access to a
broader class of functions, in the case of SSTA the former explains 72.2% of the variance
while the latter explains 74.4%. In fact, the model corresponding to the modal NLPCA
had 13% rﬁore free parameters than that corresponding to the nonmodal NLPCA. It
seems that this difference allowed the modal model more flexibility than the nonmodal,
leading to the slight improvement in the fraction of variance explained.

Thus, in both 1D and 2D, and for both modal and nonmodal approaches, NLPCA
produces approximations of greater fidelity to the tropical Pacific SSTA than does PCA.
In particular, both the 1D PCA and the 1D NLPCA approximations describe “average”
ENSO variability, but the 1D modal NLPCA approximation was able to characterise the
spatial asymmetry between average El Nifio and La Niﬁa.events in a fashion that 1D

PCA cannot.

4.4 Tropical Indo-Pacific Sea Level Pressure

As was done with the SSTA data, the SLPA data was preprocessed by projecting it onto

the space spanned by its 10 leading EOF modes, which together explain 60% of the total
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variance in the data. Figure 4.16 displays maps of the three leading SLPA EOF modes,
which explain 24.2%, 10.7%, and 6.0% of the total variance, respectively.

Figure 4.17 displays the 1D NLPCA approximation of the SLPA data projected on the
subspaces spanned by SLPA EOFs (ey, e;), (e3,€3), (e1,e3), and (e;, ez, e3). This curve
was obtained using a network with L = 2 neurons in the encoding and decoding layers;
the NMSD between the 8 candidate models from an ensemble of 50 ranged between 0.1%
and 0.3%. The 1D NLPCA approximation explains 27.0% of the total variance in the
SLPA data, a slight improvement over the fraction of variance explained by the 1D PCA
approximation. Figures 4.18(a) and (b) display respectively a plot of ay(t,), the time
series associated with the 1D NLPCA approximation, and the Southern Oscillation Index
(SOI), calculated by subtracting the SLPA at Darwin, Australia (131E,12S) from that
at Tahiti (149W,17S) (see Figure 4.16(a)), and then applying a 5-month running average
smoother. The two time series bear a strong resemblance to each other on interannual
and longer timescales; their correlation coefficient is 0.72. The 1D modal NLPCA approx-
imation thus seems to describe ENSO variability in the SLPA field. This association is
reinforced by inspection of the sequence of maps X for a; = -3,-2,-1,-0.5,0,0.5,1,2
(Figure 4.19). This sequence of spatial patterns describes the east-west SLPA dipole as-
sociated with average Southern Oscillation variability. Figure 4.20 displays composites of
SLPA averaged over those DJF (December, January, February) periods in which the SOI
was less than 1 standard deviation below the long-term average (Figure 4.20(a)) or was
more than one standard deviation above the long-term average (Figure 4.20(b)). This
3-month period was selected because of all 3-month seasons in the record, it displayed the
greatest variance. Figures 4.20(a) and 4.20(b) represent “average” El Nifo and La Nifia
patterns, respectively. Clearly, the maps in Figure 4.19 for a; < 0 correspond to the El
Nifio composite and those for a; > 0 correspond to the La Nifia composite. Comparison

of Figures (4.19) and (4.20) indicates that the 1D NLPCA approximation characterises
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the asymmetry in SLPA pattern between average El Nifio and La Nifia events, partic-
ularly in the eastern half of the domain. Figure 4.21 displays the spatial structure of
the pointwise correlation coeflicient between SLPA and the 1D NLPCA approximation
(Figure 4.21(a)), and the 1D PCA approximation (Figure 4.21(b)). As was the case in
the previous section, the 1D SLPA NLPCA approximation produces higher correlations
than the 1D PCA approxirﬁatidn particularly around nodal lines of the latter.

In calculating the second mode of the modal NLPCA decomposition of the SLPA
data, it was determined that only for L = 1 neuron in the encoding and decoding layers
could robust results be obtained. Neural-network based NLPCA can only find nonlinear
structure if there are two or more neurons in the encoding and decoding layers. Thus,
the optimal 1D characterisation of the residual data, obtained by subtracting from the
original SLPA data the 1D NLPCA approximation, is a straight line. The 1D NLPCA
approximation of the residual data coincides with the 1D PCA approximation of these
data, and hence no lower-dimensional nonlinear structures can be found in these residuals.
Our calculation (not shown) shows that NLPCA mode 2 explains 15.9% of the variance
of the original data. The spatial pattern and associated time series are shown in Figure
4.22. In fact, SLPA NLPCA mode 2 bears a strong resemblance to SLPA PCA mode 2;
the correlation coefficient between the two time series is 0.96 and the pattern correlation
between the associated spatial patterns is 0.93. The similarity between the two is not
surprising, as SLPA NLPCA mode 1 does not differ substantially from SLPA PCA mode
1. The results of a 2D nonmodal NLPCA of the SLPA data (not shown) did not yield
particularly interesting results.

Thus, apart from a weakly nonlinear 1D NLPCA approximation corresponding to

average ENSO variability and characterising a slight asymmetry between average El Nifio

and La Nifia events, the robust low-dimensional structure of the SLPA data is linear.
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Figure 4.22: SLPA NLPCA mode 2 (a) Spatial pattern (not normalised, units are hPa)
and (b) time series (normalised to unit variance).
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4.5 Conclusions

Application of NLPCA to two data sets of climatic significance, namely tropical Pacific
sea surface temperatures and tropical Indo-Pacific sea level pressure, has demonstrated
that NLPCA is able to robustly produce one- and two-dimensional approximations that
are superior to the corresponding approximations produced by PCA. The improvement
1s particularly striking in the case of SST: variability in this field is dominated by ENSO,
the avérage‘manifestatio‘n of which is asjmmetric betﬁeen average El Nifio and La Nifia
phases. As PCA is constrained to produce 1D approximations which are standing oscil-
lations with fixed spatial pattern, it is unable to characterise this asymmetry. On the
other hand, the 1D NLPCA approxima.tion, by mixing PCA modes 1 and 2, is able to
capture this difference in SST structure between average El Nifio and La Nifia episodes.

Figures 4.12 and 4.15 display, respectively, 2D nonmodal and modal NLPCA approx-
imations to the SST dataa These are seen tlo be rather similar in structure. Inspection
of the time s;eries B1(t) and ﬂz.(tn) parémeteriéing the 2D nonmodal NLPCA approx-
imation highlights the importance of the fact, pointed out by Malthouse (1998), that
NLPCA produces time series that are unique only up to an arbitrary homeomorphism.
The time series B1(t.) and B2(t,) were strongly correlated, and therefore contain substan-
tial overlap in the information they convey. A second feature analysis problem, solved
using traditional PCA, was then used to untangle 8 (t,) and B,(t,). The resulting time
series bore strong similarities to the time series a;(t,) and as(t,) corresponding to the
first two modes of the modal NLPC analysis. This result further strengthens the in-
terpretation that the modal and nonmodal analyses are producing essentially the same
approximation. The fact that the use of nonmodal NLPCA required the solution of a
subsidiary feature extraction problem to interpret the time series produced illustrates a

deficiency of nonmodal NLPCA, as compared to modal.
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variability in this field, producing a somewhat better approximation to the original data
than that produced by PCA and characterising the asymmetry in SLPA between av-
erage El Nifio and La Nifia episodes. The differences between the NLPCA and PCA
approximations for SLP are less striking than was the case with SST, indicating that the
low-dimensional structure of SLP is more linear than SST. Indeed, no nonlinear mode be-
yond the first could robustly be found in the data, indicating that either SLP variability

in the tropical Indo-Pacific region is very nearly linear, or that any nonlinear structure

1s too subtle to detect within existing records.

The first modal NLPCA approximation to the SLP data describes average ENSO




Chapter 5

Nonlinear Principal Component Analysis of Northern Hemisphere

Atmospheric Circulation Data

5.1 Introduction

Low-frequency, large-scale coherent variability in the Northern Hemisphere midlatitude
circulation has been a subject of considerable interest in climate research over the last few
decades. It is typically characterised in terms of spatially-fixed, temporally fluctuating
anomaly patterns modifying the climatological mean circulation. Some of these patterns
are zonally localised, such as the Pacific-North America (PNA) pattern (Wallace and
Gutzler, 1981), a chain of alternating positive and negative geopotential height anoma-
lies in the mid-troposphere extending from the subtropical North Pacific Ocean over
North America, following a great circle route; and the North Atlantic Oscillation (NAO; -
van Loon and Rogers, 1978; Hurrell, 1995), a dipolar pattern with geopotential height
anomalies of opposite sign over Iceland and the Azores. Other patterns are more zonal
in structure, such as the Arctic Oscillation (AO; Thompson and Wallace, 19‘98) and the

Antarctic Oscillation (AAO; Gong and Wang, 1999). These are approximately zonally-
symmetric patterns of variability with anomalies of opposite sign over the polar region
and the midlatitudes, for the Northern and Southern Hemisphere, respectively. The
connections between these different patterns of variability (e.g. Deser, 1999), and their
dynamical origin - in particular their maintenance by lower boundary forcing or internal'

dynamics (see, e.g., Feldstein and Lee, 1996; Corti et al, 1997; Trenberth et al, 1998)
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- are areas of active research. These characteristic patterns of atmospheric variability
have historically been diagnosed using correlation analysis (Wallace and Gutzler, 1981;
Hsu and Lin, 1992), PCA (Kushnir and Wallace, 1989; Thompson and Wallace, 1998),
combined PCA (Baldwin and Dunkerton, 1999; CPCA, also known as extended EQF
analysis, is defined by Bretherton et al., 1992), canonical correlation analysis (Perlwitz
and Graf, 1995), and rotated PCA (Barnston and Livezey, 1987). All of these methods
are linear and produce spatial and temporal patterns that describe standing oscillations.

Recently, the Arctic Oscillation (AO) has been of particular interest. The AO was
defined by Thompson and Wallace (1998) as the leading PCA mode of monthly aver-
aged November through April Northern Hemisphere SLPA north of 20°. The AO spatial
pattern, derived from the Trenberth and Paolino SLP data set (1980), is displayed in
Figure 5.1. The canonical AO structure is roughly zonally-symmetric, with anomalies of
opposite sign in the polar region and the midlatitudes. Deviations from zonal symmetry
are characterised by a wavenumber two pattern reflecting land-ocean contrasts. In par-
ticular, the dipole pattern in SLP over the North Atlantic strongly resembles the surface
signature of the NAO. The AO diagnosed using PCA on the Trenberth and Paolino data
set strongly resembles that obtained by Thompson and Wallace (1998), who found the
AO and NAO time series to be highly correlated (r-= 0.69). This point was consid-
ered further by Deser (1999), who considered the extent to which coherent variability in
Northern Hemisphere circulation is really hemispheric in extent, and suggested that in
fact the AO should be termed the “Arctic-Atlantic Oscillation”.

The AO is strongly equivalent barotropic in structure, with coherent variability
throughout the troposphere and into the lower stratosphere (Perlwitz and Graf, 1995;
Thompson and Wallace, 1998, 1999a; Baldwin and Dunkerton, 1999). Interest in the

AO has been particularly strong in recent yeai‘s because of its potential as a sensitive
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Figure 5.1: Spatial structure of the leading EOF pattern from observed SLP. Contour
intervals are 1 hPa (...,-1.5,-0.5,0.5,1.5,...).



Chapter 5. NLPCA of Northern Hemisphere Atmospheric Circulation Data 80

barometer of climate change. Thompson et al. (1999b) noted the similarity in struc-
ture between the spatial pattern of the AO and of recent trends in SLP in the Northern
Hemisphere. They suggested that the climate change signal is manifesting itself as a sec-
ular shift toward the positive phase of the AO (strong polar vortex) superimposed upon
monthly timescale AO fluctuations. Indeed, in modelling studies, Shindell et al. (1999,
using the Goddard Institute for Space Sciences (GISS) atmospheric GCM) and Fyfe et al.
(1999, using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled
GCM) found a pronounced trend in the AO signal as greenhouse gases were increased.
However, the physical mechanism for this behaviour remains controversial, as Shindell
et al. found that only with a full stratosphere would their model produce an AO trend
under increasing greenhouse forcing, while Fyfe et al. were able to produce this result
using an atmospheric model with a poorly-resolved stratosphere.

In this chapter, the results of an NLPC analysis of fields characterising the Northern
Hemisphere circulation will be considered, using data from the CCCma coupled GCM.
The results will demonstrate that NLPCA is able to detect and characterise regime
behaviour in multivariate data sets. Consideration of these regimes will throw some light
on the controversiesv concerning the relationship between the AO and the NAO discussed

above.

5.2 Data and Model Building

The data analysed in this chapter comes from two integrations of the CCCma coupled cli-
mate model (CGCM1): a 1001-year control integration with atmospheric carbon dioxide
(CO3) at pre-industrial levels and a 500-year stabilisation integration with atmospheric
CO2 concentrations at four times pre-industrial level, corresponding to predicted CO,

levels in 2100. Use of model data rather than observations allows the investigation of
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potential changes in the atmospheric variability associated with increased atmospheric
CO; concentrations. The fields considered are monthly-averaged Northern Hemisphere
sea level pressure and 500mb geopotential height (Zs00) from 20°N to 90°N, over the
extended winter period from November though April. Both fields are on a Gaussian
grid with 3.75° resolution in the zonal and meridional directions. The CCCma CGCM1
model and its climate are described in Flato et al. (1999). The atmospheric component
is a T32 spectral primitive equation model with 9 unequally spaced lev_els (McFarlane et
al., 1992). The ocean component is a global primitive equation gfid-point model with
1.875° resolution and 29 vertical levels. It is based on the Geophysical Fluid Dynam-
ics Laboratory (GFDL) Modular Ocean Model (MOM) 1.1 (Pacanowski et al., 1993).
The leading EOF of this coupled model displays spatially and temporally realistic AO
behaviour (Fyfe et al., 1999).

For both the SLP and Zsqo fields, monthly anomalies (SLPA and Zsg0A, respectively)
were computed by subtracting the climatological annual cycle. Fields were weighted by
the square root of the cosine of the latitude before calculation of the EOFs to account
for the poleward concentration of gridpoints on the Gaussian grid. NLPC analysis of
SLPA and Zgo0A data was carried out using the early stopping algorithm described in
Chapter 2. In all analyses, 20% of the data was held aside in a validation set, for which
network performance was monitored as training proceeded. Training was stopped when
this performance began to degrade, or after 20000 iterations, whichever came first. It
was found that increasing the maximum number of iterations beyond 20000 did not affect

the results of the analysis.
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5.3 Analysis of GCM Sea Level Pressure

As was done with the tropical SLPA and SSTA data in the previous chapter, the northern
hemisphere SLPA and Zsq0A were projected onto the spaces of their first 10 EOF modes,
in which 85% and 76% of the variance are respectively contained. The first four EOF
patterns of SLPA and ZsgoA are displayed in Figures 5.2 and 5.3, respectively. The map
displayed in Figure 5.2(a) is the spatial pattern of the canonical Arctic Oscillation in the
CCCma model (Fyfe et al., 1999). .‘

Figure 5.4 displays a scatterplot of the SLPA data projected in the plane spanned
by the leading two EOFs, overlaid with a histogram-based estimate of the marginal
probability density function (PDF) of these data in this space. The PDF displays a
marked deviation from Gaussian structure in the form of a pronounced lobe in the lower-
right quadrant. Figure 5.5 displays the estimate of the PDF along with the 1D NLPCA
approximation X(tn) to these data. The NLPCA approximation was found using a
network with I = 2 neurons in the encoding and decoding layers. This approximation
was obtained from an ensemble of 5 networks, of which 3 were candidate models differing
from each other with an NMSD of at most 1%. The approximation, which explains 26.5%
of the total variance (in contrast to 24% explained by the leading PCA approximation),
is thus robust. Note that X(t,) has a piecewise-linear structure, composed of three
branches. The associated standardised time series

afty) = X)) = <5y >

(< (85— <85 >) >/
along with a histogram estimate of the PDF of a(t,), are displayed in Figure 5.6. The dis-

(5.1)

tribution of af(t,) is strongly bimodal, demonstrating the existence of two well-separated
regimes in which the NLPCA approximation resides. Each of the three branches of X(tn)

corresponds to a feature in the PDF of a(t,): the upper branch (hereafter referred to

as Branch 1) is associated with the larger of the two peaks, the lower branch (hereafter
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Figure 5.2: Spatial structure of the leading four EOF patterns from CCCma SLPA: (a)
EOF 1, (b) EOF 2, (c) EOF 3, (d) EOF 4. These patterns explain 23.7%, 10.6%, 8.5%,

and 6.5% of the variance in SLP, respectively. Negative contours are dashed. Contour
intervals are 1 hPa (..., -1.5, -0.5, 0.5, ...).
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Figure 5.3: Spatial structure of the leading four EOF patterns from CCCma ZsgoA: (a)
EOF 1, (b) EOF 2, (c) EOF 3, (d) EOF 4. These patterns explain 19.6%, 12.5%, 9.3%,
and 8.2% of the variance in Zsq, respectively. Negative contours are dashed. Contour
intervals are 10 m (..., -15, -5, 5, ...).
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Figure 5.4: Scatterplot of the leading two SLPA PC time series, overlaid with a histogram
estimate of the corresponding marginal probability density function. Contour intervals
are 5 x 107%,1.5 x 1073,3 x 1073,6 x 1073,1 x 1072,2 x 1072,3 x 10~2. The histogram
bin size is 25 hPa in both directions.



Chapter 5. NLPCA of Northern Hemisphere Atmospheric Circulation Data 86

200 T T T T T

150

100

50

PC2 (hPa)
(o]
3

-100

-150 - -

-200 i i [ | 1
-300 -200 -100 0 100 200 300

PC1 (hPa)

Figure 5.5: 1D NLPCA approximation X of SLPA projected in the space of the first two
SLPA EOFs (open circles), overlaying histogram estimate of SLPA PDF as in Figure 5.4.
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Figure 5.6: Plot of the 1D SLPA NLPCA time series a(t,) (left) and the associated
histogram estimate of the PDF (right). '
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referred to as Branch 2) is associated with the érﬁaﬂer peak, and the intermediate branch
is associated with the minimum of the PDF of a between the two peaks, and is rarely
visited. The approximation X(tn) is in Branch 1 for 84% of the months and in Branch 2
for 13%. An inspection of a(t,) indicates that variability on X(t,) consists of oscillatory
motion along Branch 1 with occasional episodic excursions to Branch 2, on which the
approximation rarely resides longer than a month or two.

Figure 5.7 is the same as Figure 5.5 but with the estimated PDF's of the populations
corresponding to the upper and lower branches plotted separately. The PDF of the
population projecting onto Branch 1 is seen to be nearly Gaussian, with a major axis
nearly parallel to Branch 1. Branch 2 also runs through the middle of its associated PDF.
The overlap of the two PDFs is an artifact of the coarse binning used in their estimation.

As was discussed in the previous Chapter, NLPCA differs from PCA in that the 1D
approximation produced by NLPCA does not correspond to a unique spatial pattern, but
in fact to a sequence of maps. In Chapter 4, these maps were presented at representative
points along the curve X(tn). In this chapter, a somewhat different methodology for
producing maps corresponding to the NLPCA approximation is adopted. Because the
features of interest involve atmospheric circulation data at different altitudes, based on
an approximation calculated using data at a single altitude, instead representative points
along the approximation X(tn) are selected and composite the original data over all times
that the approximation resides in the neighbourhoods of these points. A comparison
of the two methods for the field from which the NLPCA approximation was derived
demonstrates that the resulting maps are essentially identical, as expected since the
NLPCA approximation is constrained to run through the “middle” of the data.

Figure 5.8 displays composites of SLPA over neighbourhoods in a of width 0.4, cen-

tred at intervals of 0.4 from —3.1 to 1.3. Variability along Branch 1 is exemplified by_
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Figure 5.7: As in Figure 5.5, but with the PDFs of the populations corresponding to
Branch 1 (solid contours) and Branch 2 (dashed contours) plotted separately, and with
a bin size of 20 hPa.




(-1.7,-1.3); N=62 (-1.3,-0.9); N=58

Figure 5.8: Composites of SLPA over characteristic ranges of a. These ranges are in-
dicated in parentheses below the maps, along with the number N of maps used in the
composite. Contour interval is 2 hPa (...,-3,-1,1,3,...). Continued on next page.




(0.7,1.1); N=822

Figure 5.8: Continued.
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composites (h) and (k) in Figure 5.8. These two maps display patterns of SLP anoma-
lies that differ in sign and magnitude, but not in spatial pattern, consistent with the
interpretation of Branch 1 variability as describing a standing oscillation. The anomalies
associated with this oscillation are of opposite sign over the polar cap and the midlat-
itudes, with a polar local extremum over northern Eurasia and small local midlatitude
extrema over the west Mediterranean and the north Pacific. This pattern resembles that
of the canonical AO as diagnosed by EOF analysis, but with eastward shifted polar and
Mediterranean centres of action. Indeed, the correlation between the AO time series (ie,

the leading SLPA PC) and a(t,), over those times when the approximation is on Branch
1, is -0.96.

Characteristic SLPA anomalies associated with Branch 2 are illustrated in Figure
5.8(c). This map shares certain features with the anomaly patterns displayed in Figures
5.8(h) and 5.8(k), in particular anomalies of opposite sign over the polar cap and the
midlatitudes. However, the polar extremum in Figure 5.8(c) is shifted to a location over
Iceland, the Atlantic midlatitude extremum is centred over the Azores, and anomalies
over the midlatitude Pacific ocean are weak. This map resembles strongly the SLPA
signature of the negative phase of the North Atlantic Oscillation. Note also that the
anomaly pattern of opposite sign to that in Figure 5.8(c) does not appear on Branch 2,
in contrast to what was observed along Branch 1. Variability along Branch 2 does not
describe an oscillation, but episodic excursions to a single-phased, strongly anomalous
circulation.

Figures 5.9 and 5.10 display respectively composites of the CCCma modelled Zsg0A
and Zsoo fields over the same intervals in a(¢,) used to célculate the composites in Figure
5.8.  The patterns displayed in Figure 5.9 demonstrate that the anomalous circulations

are strongly equivalent barotropic, with a slight westward phase tilt with height. The

midlatitude Zso0 anomalies are slightly stronger relative to the polar anomalies than is
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Figure 5.9: As with Figure 5.8, but for composites of Zsqo anomalies. The contour interval

is 20 m (...,-30,-10,10,30,...).
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Figure 5.9: Continued.
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Figure 5.10: As with Figure 5.8, but for composites of Zsg0. The 5300 and 5500 m

contours are in bold. Contour interval is 50 m.
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Figure 5.10: Continued.




Chapter 5. NLPCA of Northern Hemisphere Atmospheric Circulation Data 97

the case with SLPA. Examination of the Zsq field is illuminating. Figures 5.10 (h)-(k)
indicate that the mid-tropospheri¢c manifestation of variability along Branch 1 consists
of an alternating amplification and attenuation of the climatological ridge over Europe.
Figure 5.10(c) demonstrates that Branch 2 describes, on average, an amplified climato-
logical ridge over western North America and flow split around a local anticyclone over
southern Greenland. Again, the mid-tropospheric composites associated with X(tn) de-
scribe two markedly different modes of atmospheric circulation: a standing oscillation in
the strength of the climatological ridge over North Europe (Branch 1), and episodic split
flow events over Greenland (Branch 2).

Figure 5.11 displays maps of the geographical distribution of variance and skewness
of SLP, for both the observations and the CCCma model output. The skewness, s, of a

random variable z is the ratio

<({z—<z>)>
Tl (a- <z >) > (5.2)

and is a measure of the asymmetry of the distribution of z about its mean. For both
the modelled and observed SLP, the variance is greater in the polar latitudes than in the
midlatitudes, and displays a broad extremum from southern Greenland to northeastern
Eurasia, with a second extremum over the North Pacific. The Pacific centre is substan-
tially stronger in observations than in the model results. The broad local extremum in
the variance of GCM SLP corresponds precisely to the polar centre of action in SLP
EOF 1 (Figure 5.2(a)), and its west and east flanks correspond to the polar centres of
action of Branches 1 and 2 of the NLPCA approximation X(tn). The leading EOF pat-
tern of SLP is in a way a compromise between the circulation anomalies described by
Branches 1 and 2. The broad extremum in variance results from the separate occurrence

of two circulation regimes, and the PCA approximation, being linear, must attempt to

characterise both modes of variability simultaneously.
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Figure 5.11: Maps of spatial distribution of variance of SLP from (a) CCCma GCM and
(b) observations (contour interval 10 (hPa)?), and skewness of SLP from (c) CCCma
GCM and (d) observations (contour interval 0.2).
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There is broad agreement between observed and modelled skewness; it is seen that
both are generally characterised by negative values in the midlatitudes and positive val-
ues in polar latitudes, as was found by Nakamura and Wallace (1991) and by Holzer
(1996). As well, both observed and modelled SLP skewness has a local maximum over
Greenland and a local minimum over the midlatitude North Atlantic Ocean. In ob-
servations, the Greenland maximum is weaker than that of the modelled SLP, and the
North Atlantic miﬁimum is shifted northwestward of the corresponding minimum in the
modelled SLP. As well, the modelled skewness over northern Eurasia is weaker than in
observations, and the North Pacific extremum evident in observations is shifted to over
Alaska. Note however that éofne of these apparent differences may in fact be an artifact
of poor observational data coverage north of 70N, as is discussed further in section 5.6.

In their observational study of the geographical distribution of skewness in North-
ern Hemisphere tropospheric circulation, Nakamura and Wallace (1991) suggested that,
“Large skewness at a particular location might be indicative of a juxtaposition of two
flow regimes: one which prevails most of the time and another which occurs relatively

»

infrequently and is thus characterised by large anomalies.” This is in fact the situation

seen to prevail in the NLPCA approximation X(tn) of SLPA. The dipole in skewness over
the North Atlantic arises because of the regular occupation of Branch 1 and the episodic
occupation of Branch 2. The negative extremum in skewness over the Atlantic Ocean

west of Africa, which corresponds to the southern, negative centre of action of Branch 2

events, is displaced somewhat southward because skewness tends to be enhanced where

the variance of the field is low, as is clear from equation (5.2).
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5.4 Analysis of GCM 500mb Heights.

In Figure 5.12 are displayed histogram estimates of the 2D marginal distributions of the
ZsooA field PCs (PCL1,PC2), (PC1,PC3), (PC2,PC3), and (PC1,PC4). The marginal
distribution of PCl and PC2 is closer to Gaussian than is the corresponding SLPA
- distribution, although PC1 is clearly skewed. In the ZsgoA field, marked deviations from
Gaussianity are most evident in the marginal distributions of PC1 with PC3 and of PC1
with PC4. Figures 5.12(b) and (d) demonstrate the existence of substantial non-Gaussian
structure in the Zs00A data. All other 2D marginal distributions do not appear to differ
strongly from being Gaussian.

Thé 1D NLPCA approximation to the Zso data is displayed in Figure 5.13, projected
in the spaces spanned by Zs;e0A EOFs (e, e;), (e1,€3), (e2,e3), and (e, es, e3). This
approximation explains 23.9% of the variance in the data, in contrast to 19.6% explained
by the first PCA approximation. Note that unlike the corresponding SLPA approximation
it projects strongly onto EOF's other than the leading two. The NLPCA approximation is
constructed based on the joint distribution of the data in the 10-dimensional embedding
space, and because it has non-negligible projections on EOFs beyond the first two, it
is not particularly useful to compare the 2D marginal distributions presented in Figure
5.12 with the projections of the approximation in these planes. Thus, no equivalent of
Figure 5.7 is presented. The 1D NLPCA Z;y0A approximation is similar to that of the
SLPA in that it is composed of three branches. As well, the corresponding standardised
time series a(t,) and its histogram (displayed in Figure 5.14) display a strikingly bimodal
character. As was the case with the 1D SLPA NLPCA approximation, one branch of

X(tn) corresponds to the larger peak of the distribution of a(t,), a second to the smaller

peak, and the third branch to the rarely-visited region in between. The system spends

78% of all months in the branch corresponding to the larger peak, 19% in the branch
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Figure 5.12: Histogram estimates of 2D marginal PDFs of Zs00A PCs (a)(PC1, PC2),
(b)(PC1, PC3), (c)(PC2,PC3), and (d)(PC1,PC4). The contour intervals are as in
Figure 5.4. Bin sizes are 2500 m.
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corresponding to the smaller peak, and 3% in the intermediate branch. An inspection of
the time series a(t,) indicates that variability in the approximation is characterised by
oscillatory motion along the more populated branch, with episodic excursions to the less
populated branch.

Figure 5.15 displays composites of Zs0oA over times associated with neighbourhoods
in a of width 0.375, centred at intervals of 0.375 from -2.9 to 1.6. Inspection of these.
composites indicates that the branch of variability associated with the larger of the two
peaks in the PDF of a(t,) corresponds to essentially a standing oscillation (Figures 5.15
(h)-(1), especially (h) and (k)). This oscillation is characterised by anomalies with a
strong wavenumber four signal in midlatitudes and a wave number two signal in higher
latitudes. The circulation anomalies over the eastern North Pacific and North America
display a PNA-like structure, and those over Eurasia resemble the Scandinavia pattern
described in Bell and Halpert (1995). The structure of this oscillation in midlatitudes
bears a striking similarity to that observed in the 500 mb field of the leading mode of
the combined EOF analysis carried out by Baldwin and Dunkerton (1999), although the
signal in the polar regions is rather different.

Variability along the branch associated with the smaller of the two peaks is illustrated
in Figures 5.15 (a)-(d). Unlike the branch associated with the larger peak, anomalies
along this branch are of a single phase, with highs over the polar region and lows over
the midlatitudes. A local maximum in the anomaly field over the polar region is located
over Southern Greenland, with a local negative extremum in midlatitudes over the Azores.
This structure is strongly reminiscent of the negative phase of the NAO.

A comparison of the composites presented in Figure 5.15 with those given in Figure

5.9, and of the time series presented in Figures 5.14 and 5.6, demonstrates that the 1D

- NLPCA approximations of SLPA and Zzo0A describe essentially the same mode of vari-

ability. The circulation anomalies plotted in Figure 5.9(b)-(d) bear a striking resemblance
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(-1.775,-1.4); N=367

(~1.4,-1.025); N=97 (~1.025,-0.65); N=59

Figure 5.15: As in Figure 5.9, but for Zso0A composited over characteristic ranges
of a associated with the 1D Zs00A NLPCA approximation. Contour interval is 20m
(...,-30,-10,10,30,...). Continued on next page.
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(-0.65,-0.275); N=88

(0.475,0.85); N=1842

(0.85,1.225); N=600 (1.225,1.6); N=34

Figure 5.15: Continued.
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to those plotted in Figure 5..>15(b)-(d). Similarly, the polar and Eurasian sectors of the
standing oscillation as diagnosed from the analysis of SLPA (Figure 5.9 (h) and (k)) are
essentially the same as those diagnosed from the analysis of ZsooA (Figure 5.15(h) and
(k)). The more and less populated regimes of circulation in the Zs00A field are referred
to as the oscillatory and split-flow regimes, respectively. This characterisation will be
borne out by the composites of Zsgo to be presented later.

The two approximations do not correspond exactly. The Zsp0A approximation is in
the less-populated regime 19% of the time, in contrast to 13% for the SLPA.approxi-
mation. The corresponding numbers for the branch describing the standing oscillation
are 78% and 84%. The split-flow regime is more frequently occupied in the ZzooA ap-
proximation than in the SLPA. Figure 5.16 displays a scatterplot of the time series a(t,)
corresponding to the SLPA and ZsgpoA approximations. The correlation coefficient be-
tween these two time series is 0.81. Typically the approximations are simultaneously
both in either the oscillatory or split-flow regimes. For a small number of months, the
SLPA approximation is in the split-flow regime while the ZsgoA approximation is in the
oscillatory regime, but more commonly when the two approximations differ it is because
the SLPA approximation is in the oscillatory regime when the Zso0A approximation is
in the split-flow regime. This is a reflection of the fact that the split-flow regime is more
frequently occupied in the Zzo0A approximétion than in the SLPA approximation.

This difference in occupation statistics has little effect on the composites character-
ising the split-flow branch. However, the standing oscillation diagnosed from the Zgsp0A
data is more hemispheric in extent than is that from the SLPA data. Note in particular
the presence in the Zs0oA approximation of a local extremum in the height anomalies over
western Canada and Alaska of the same sign as the anomalies over the pole, and local

extrema of the opposite sign over the central North Pacific and eastern North America

which together comprise a wavetrain reminiscent of the PNA pattern. These extrema do
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Figure 5.16: Scatterplot of the time series a(t,) corresponding to the 1D SLPA and Zs0A
NLPCA approximations.
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not occur in the composites corresponding to the 1D SLPA NLPCA approximation.

Figure 5.17 presents the geographical distribution of variance and skewness of the
CCCma modelled Zzp0A field. These maps show the same sort of structure as those
for the modelled SLP: the variance displays a general increase with latitude, and the
skewness is generally negative in midlatitudes and positive in the polar region. As well,
the standard deviation and skewness of Zzp0A display local extrema in much the same
locations as SLPA, but with a considerably stronger signal in the North Pacific. As
was the case with SLPA, both the skewness and variance maps are consistent with the
two-regime structure of the NLPCA approximation of ZzgoA.

Composites of the total Zsoo field are given in Figure 5.18. The composites on the
split-flow branch of the Zs00A approximation do not differ subgtantially from those based
on the SLPA analysis. The split-flow branch of the 1D Zsp0A NLPCA approximation is
seen indeed to describe split flow over Greenland and an enhanced ridge over Western
Canada. Variability along the oscillatory branch of the Zsp0A approximation describes
alternating amplification and attenuation of the climatological ridges over both Europe
and North Amefica, in contrast to variability along the SLPA approximation, which was
concentrated iﬁ the European sector.

" Finally, Figure 5.19 displays composites of SLPA based on the 1D Zsp0A NLPCA
approximation.  As was the case with the Zso0A and Zsqo fields, the composites of
SLPA over characteristic ranges of the time series a(t,) corresponding to the ZggoA
approximation are more hemispheric in extent than was the case with the corresponding
composites based on the SLPA approximation. In particular, there is enhanced variability
over western Canada, corresponding to an amplified wavenumber 2 contribution to the
anomaly field.

Thus, a 1D NLPCA analysis of a second field from the CCCMA coupled GCM, viz

Northern Hemisphere wintertime 500mb geopotential height anomalies, produces results
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Figure 5.17: Maps of variance (a) and skewness (b) of CCCma modelled Zs00. Contour
interval in (a) is 500 m? and in (b) is 0.2.
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(=1.4,-1.025); N=97 ’ (-1.025,-0.65); N=59

Figure 5.18: As with Figure 5.15, but for composites of Zs0. The 5300 and 5500 m

contours are in bold. Contour interval is 50 m.
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(0.85,1.225); N=600 (1.225,1.6); N=34

Figure 5.18: Continued.
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{c) (d)

(-2.15,-1.775); N=442 (~1.775,~1.4); N=367

(~1.4,-1.025); N=97 (-1.025,-0.65); N=59

Figure 5.19: As in Figure 5.15, but for SLPA. Contour interval is 2 hPa (...,-3,-1,1,3,...).
Continued on next page.
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(0.85,1.225); N=600 (1.225,1.6); N=34

Figure 5.19: Continued.
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that are very similar to those produced by the analysis of the SLPA field, providing strong
evidence that this structure is a robust feature of the data. The structures diagnosed
in the two fields are not exactly the same: the Zso0A approximation anomaly fields are
more hemispheric in extent than those of the SLPA approximation, and the split-flow

branch is occupied more frequently.

5.5 Analysis of GCM SLP in a 4xCO; Integration

A plot of the histogram estimate of the 2D marginal PDF of SLPA from the GCM
integration with CO, concentrations at four times the pre-industrial level, in the space
of the leading two control integration EOFs, is presented in Figure 5.20, along with the
corresponding 1D NLPCA approximation. The NLPCA approximation explains 31.4%
of the variance of the data, in contrast to 29.8% explained by the first PCA mode. The
most striking aspect of this PDF is the fact that it appears to be much more Gaussian
than the corresponding PDF for the control integration (Figure 5.4). In particular, the
PDF of the 4xCO; integration lacks the bulge in the lower-right quadrant associated
with the split-flow branch of the control integration 1D NLPCA approximation. That
the structure of the data is now much more nearly Gaussian is reflected in the structure of
the 1D NLPCA approximation displayed in Figure 5.20. This approximation is no longer
branched, but is a slightly curved line lying nearly along the major axis of the marginal
distribution. The corresponding time series (Figure 5.21) is unimodal. Note that the
NLPCA approximation of the SLPA in the 4xCO, integration lies along what was the
oscillatory branch of the SLPA NLPCA approximation from the control integration.
Figure 5.22 displays composites of the 1D 4xCO, SLPA NLPCA approximation over

characteristic ranges of the (standardised) time series a(t,). The variability illustrated

in Figure 5.22 is not precisely that of a standing oscillation; the composites over the
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Figure 5.20: Histogram estimate of the marginal probability density function (con-
tours) of SLPA from the GCM integration with CO;, concentrations at four times the
pre-industrial value, in the space of the leading two control integration SLPA PCA modes,
overlaid with the corresponding 1D NLPCA approximation (open circles). Contour in-
tervals are 5 x 107%,1.5 x 1073,3 x 1073,6 x 1072,1 x 1072,2 x 1072,3 x 1072, The
histogram bin size is 25 hPa in both directions.
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Figure 5.21: Plot of the 1D NLPCA SLPA time series a(t,) (left) and the associated
histogram estimate of the PDF (right) for the GCM integration with CO; concentration
at four times the pre-industrial level.
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(-4.5,-3.6); N=5

(-2.7,-1.8); N=71

(~1.8,-0.9); N=344 (-0.9,0); N=1075

Figure 5.22: As in Figure 5.8, but for SLPA in the GCM integration at four times the
pre-industrial CO, concentration. Contour interval is 2 hPa (...,-3,-1,1,3,...). Continued
on next page.
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(3.6,4.5); N=7 (4.5,5.4); N=3

Figure 5.22: Continued.
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tails of a accentuate strongly positive anomalies over the northeast Pacific and northern
Siberia, respectively. Note, however, that the approximation is in a state between Figures
5.22(e) and (h) 93% of the time, over which range the structure is essentially that of a
standing oscillation. Note also that the structure of this oscillation is very similar to
that of the oscillatory branch of the 1D NLPCA approximation of SLPA in the control
integration, with a slightly enhanced North Pacific centre of action. | Thus, the dominant
mode of nonlinear variability in SLPA under quadrupled CO; is only weakly nonlinear
and strongly resembles the oscillatory regime of SLPA variability under pre-industrial
CO, concentrations.

Palmer (1999) has suggested, based on experiments with simple low-dimensional non-
linear systems, that the response of the climate system to external perturbations (e.g.
increased atmospheric CO,) will not be a change in the structure of dominant circulation
regimes, but rather in their occupation frequencies. Our results are broadly consistent
with this hypothesis. Under quadrupled COs,, the oscillatory regime of SLPA variability
becomes more frequently occupied at the expense of the split-flow regime. In fact, the
latter almost disappears entirely.

Our results are consistent as well with those of Ulbrich and Christoph (1999), who
found that the ECHAM4+4-OPYC3 coupled GCM predicted a sy;tematic northeastward
shift of the centres of action of the NAO with an increase in atmospheric CO,. The
NAO as diagnosed using linear statistical tools is seen in the light of the 1D control
SLPA NLPCA approximation as a compromise between Branch 1 and Branch 2 vari-
ability. As the split-flow branch becomes depopulated with increasing atmospheric COs,
the compromise will increasingly favour the anomaly patterns characteristic of the os-
cillatory branch. This change would manifest itself in a regional analysis as a secular

northeastward shift of the centres of action of the NAO.

Figure 5.23 displays maps of the variance and skewness of the SLPA field in the 4x CO,
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integration. The variance displays local extrema over Northern Russia and Southern
Alaska; both of these locations correspond to centres of action in the range of a over
which the 1D NLPCA approximation is effectively a standing oscillation. The skewness
is strongly positive over the Northeast Pacific and over European Russia. Inspection
of the composites displayed in Figure 5.22 indicates that the NLPCA approximation is
consistent with this distribution of skewness. For strongly negative values of a(t,), there
are strong positive SLP anomalies centred south of Alaska that are not counterbalanced
by similar negative anomalies for large positive a(t,). Similarly, for strongly positive
a(ty), strong positive SLP anomalies occur over Northern Russia that do not have a
negativé counterpart for large negative values of a. Thus, the 1D NLPCA approximation
characterises the gross features of both the skewness and the variance of the 4xCOQ,
SLPA data. Note that while the tails in the distribution of a(t,) do not contribute
substantially to the variance, the structure of which is dominated by variability near
the mean of «(t,), they are manifest in the spatial structure of the skewness. Note as
well that because skewness involves a compromise between the second and third order
moments, its extrema are shifted somewhat southward of the centres of action in the
composite towards latitudes of lower variance.

Thus, in the CCCMA coupled GCM, the quadrupling of the atmospheric concentra-
tion of CO; results not so much in a change in the structures of atmospheric variability,
but in a change in their occupation frequencies, consistent with the hypothesis of Palmer
(1999). The split-flow branch of the 1D control SLPA approximation is depopulated in

the 4xCO, run, while the oscillatory regime remains largely unchanged.
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Figure 5.23: (a) Variance (contour interval 10 (hPa)?) and (b) skewness (contour interval
0.2) of SLPA from GCM integration with quadrupled atmospheric CO,.
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5.6 Conclusions

In this chapter the NLPC analysis of sea level pressure anomaly data and 500mb geopo-
tential height anomaly data from the Canadian Centre for Climate Modelling and Anal-
ysis coupled GCM have been considered. It was found that for data from a control
integration at pre-industrial CO, concentrations, in both the SLPA and the ZsqA fields,
the 1D NLPCA approximation was composed of three branches, and the corresponding
time series was bimodal. The most frequently occupied branch describes the oscillatory
amplification or attenuation of the climatological ridges over Europe, for the SLPA ap-
proximation, and over both Europe and North America for the Zs50A approximation.
The less populated branch is occupied episodically, and strongly resembles the nega-
tive phase of the North Atlantic Oscillation. Mid-tropospheric circulation patterns in
this regime are associated with split flow over southern Greenland. The fact that the
independently-determined 1D NLPCA approximations found for SLPA and Zs0A are
very similar provides strong evidence that these approximations represent actual struc-
ture in the data.

An analysis of SLPA data from a GCM integration with CO, levels at four times the.
pre-industrial concentrations indicated that the characteristic regimes of low-frequency
variability did not change in structure, but in occupation frequency, as was suggested by
Palmer (1999). The oscillatory regime became increasingly populated at the expense of
the split-flow regime, which in fact became so depopulated that the branched structure
of the NLPCA approximation disappeared.

In all cases, it was seen that the 1D NLPCA approximation describes coherent
hemispheric-scale atmospheric variability that is consistent with both the geographical
distribution of variance and of skewness. In the case of the control run integrations, the

strong skewness in the region of the NAO is associated with the fact that variability is
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dominated by Gaussian oscillations with episodic excufsions to a single strong anomaly
pattern. This mechanism for the origin of skewness has been suggested in the literature
by Nakamura and Wallace (1991).

NLPC analyses were also carried out on a Southern Hemisphere SLPA data set from
the CCCma coupled GCM and on the Trenberth and Paolino Northern Hemisphere SLPA
data set (1980). In neither case could robust 1D NLPCA approximations be found that
differed from the 1D PCA approximation. In the case of the Southern Hemisphere GCM
SLPA, this result is likely because of the strong zonal symmetry of the lower boundary,
which is not as favourable to the formation of geographically-fixed circulation anomalies
as is the Northern Hemisphere, with its strong topography and land-sea contrast. There
are two possible reasons for the failure to detect strong nonlinear structure in the Tren-
berth and Paolino SLPA data. The first is simply that such structure is not there, and
that the structure of the data is predominantly linear. The second is that the structure
is there, but cannot be found because the records are short and data are of very poor
quality in the polar regions, precisely the latitudes in which the nonlinear structure found
in the GCM data is strongest. In fact, no data are reported on the latitude circles 75°N

and 85°N or at the pole. A future study will consider the analysis of NCEP reanalysis

data, which does not suffer from this deficiency in geographical coverage.




Chapter 6

Seven-Layer Networks for Discontinuous Projection and Expansion

Functions

6.1 Introduction

Kramer’s NLPCA allows the estimation of continuous functions s; and f such that
X(ta) = (F 0 5)(X(tn)) (6.1)

is the optimal (in the least-squares sense) approximation to X(¢,) by a continuous curve
or surface. As was pointed out by Kirby and Miranda (1996) and by Malthouse (1998),
and discussed in Chapter 2, the restriction to continuity of the projection and expan-
sion maps precludes the detection and characterisation by NLPCA of P-dimensional
structures not topologically equivalent to the unit cube in RF. The simplest example

tlustrating this problem arises in the NLPC analysis of the unit circle embedded in R2,
S = {(cost,sint);t € [0,2m)}. (6.2)

The topology of the manifold parameterising this structure is S*; the corresponding map
sy : R? — R is discontinuous, because for any 0 < ¢ << 1 there will be a small open
neighbourhood D on the circle about the point (1,0) such that s¢(D) = [0, €)U(2m —¢, 27).
There is no continuous map between the circle and the unit interval in R, because they are
topologically inequivalent. Thus, NLPCA as formulated by Kramer cannot characterise
the low-dimensional structure underlying a self-intersecting curve or surface. On the

other hand, if the functions in (6.1) are allowed to be discontinuous, then there exists
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a class of parameter manifolds topologically inequivalent to the unit cube in R¥ such
that the projection and expansion functions of an NLPCA approximation X(tn) can be
approximated. This class includes topologies such as the circle (S*) and torus (S* ® S*?)
but excludes the sphere (S?). Because the parameterisation of the sphere is degenerate
at the poles, it cannot be expressed as a simple discontinuous function from R? — R2.

Given enough neurons in its single hidden layer, a three-layer feed-forward neural
network with M input neurons and P output neurons can approximate to arbitrary ac-
curacy any continuous function from R to R¥. Such a network generally does a poor job
approximating a discontinuous function between these spaces. If, however, the number
of hidden layers is increased to two, each with nonlinear transfer functions, the network
is much better able to approximate a discontinuous function. This fact suggests the
generalisation of Kramer’s 5-layer network to a 7-layer network, with two encoding and
two decoding layers. In such a netwbrk, the first four layers approximate the (potentially
discontinuous) function s¢ : ¥ +» RP and the last four layers the (potentially discon-
tinuous) function f : R — RM; the 7-layer network is just the composition of these
two functions. This chapter demonstrates that in fact a 4-layer neural network is better
able to approximate a discontinuous function than is a 3-layer network, and investigates
the application of the generalised 7-layer network to the NLPC analysis of an ellipse
embedded in R2.

6.2 Neural Network Approximations to Discontinuous Functions

- To demonstrate the superior ability of a 4-layer neural network to approximate a discon-

tinuous function relative to that of a 3-layer network, consider the N-point data sets:

X(tn) = (cos2nty,sin2nty,)
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Y t,+05 L/N <t, <05 63)
t,~05 05<t,<]1 '

where t, = 1/N,2/N,...,1 The map g relating X(¢,) and Y (¢,) is discontinuous at
tn = 0.5; it is displayed in Figure 6.1. The functional relationship between X(t,) and
Y (tn) (with N = 1000) is modelled using two different feed-forward neural networks. The
first, denoted NN1, has a single hidden layer with 13 neurons, and the second, NN2, has
two hidden layers with 5 neurons in each. Hyperbolic tangents were used as the transfer
functions in each of the hidden layers. The number of network parameters in NN1 and
NN2 is 53 and 51 respectively. Each network was trained for 10000 iterations, starting
from randomly-determined initial weights and biases. Because the data are noise-free,
early-stopping was not employed in the training process.

Figures 6.2(a) and (b) display respectively the approximations to Y(¢,) produced
by neural networks NN1 and NN2. Note that NN2 is much better able to represent the
discontinuity in the relationship between X(t,) and Y (¢,) than is NN1. The network NN1
spreads the discontinuity out over a number of points, and introduces Gibbs oscillations
in its vicinity. The point of discontinuity is much better represented by NN2: the width
over which the discontinuity is spread is substantially reduced, and the Gibbs oscillations
are suppressed. This difference is not a result of differences in initial weights between the
two cases, as an ensemble of independently trained networks (not shown) demonstrates
that for both NN1 and NN2 the approximations are independent of initial parameter
values. Nor is the improvement a reflection of the number of parameters in the model,
as NN1 and NN2 hé\}e essentially the same number of parameters. Thus, NN2 is better

able to approximate discontinuous functions than is NN1 because of differences in their

architecture.
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Figure 6.1: Plot of Y (¢,) (diamonds) and X(t,) (open circles) as defined by equation
(6.3) with N = 50.
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Figure 6.2: Neural network approximations of the functional relationship between data

sets X(t,) and Y (t,) defined in equation (6.3): (a) network with one hidden layer, (b)
network with two hidden layers.
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6.3 T7-Layer NLPCA Network

The improved ability of a 4-layer neural network over a 3-layer network to approximate
discontinuous functions suggests that NLPCA carried out using a 7-layer network should
be better able than that using a 5-layer network to approximate structures whose projec-
tion and expansion functions are discontinuous. In this section, this hypothesis is tested

through consideration of the 1D NLPCA approximation of an ellipse in the plane:

-1
X(tn) = (0.5cos 2nt,,0.7sin 2nt,) t, = nN (6.4)

forn=1,...,N — 1, where N = 550. As in the previous section, because these data are
noise-free, no early stopping was used in constructing the model.

Figure 6.3 displays the NLPCA approximation X(tn) and the time series
a(tn) = s§(X(tn)) obtained using a 5-layer autoassociative neural network with L = 13
nodes in the mapping and demapping layer. Convergence to this approximation was
extremely slow; the results shown are from a run in which 108 iterations were carried
out in the training. As was discussed in Malthouse (1998), the approximation f((tn)
displays high fidelity to the original data throughout the bulk of the domain (the FUV
is 1.2 x 1072), but fails entirely over a range of points centred near (0.5,0.2). This set of
points corresponds to the neighbourhood of the point at which the ideal projection and
expansion functions are discontinuous because the topology of the manifold parameter-
ising the curve is S'. Note that the position of this point is arbitrary, and is determined
randomly by the initial network parameters. The time series a(t,) is unable to repre-
sent this discontinuity, displaying precisely the same overshoot as was observed in Figure
6.2(a). Because of the restriction of s; and f to the space of continuous functions, the
5-layer autoassociative network cannot accurately approximate the ellipse.

On the other hand, Figure 6.4 displays the NLPCA approximation X(tn) and the cor-

responding time series a(t,) = s;(X(t,)) obtained using a 7-layer autoassociative neural
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Figure 6.3: Results of 1D NLPC analysis of an ellipse using a 5-layer autoassocia-
tive neural network: (a) NLPCA approximation X(t,), (b) associated time series
a(tn) = s4(X(ta)) (note scale on y-axis is arbitrary).
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network with 5 hidden neurons in each of the two mapping and demapping layers. As
was the case with the 5-layer network, this network was trained for 108 iterations. This
approximation displays great fidelity to the original data throughout the domain (the
FUV is 2.4 x 107°), except for a rather small interval centred near (-0.5,-0.1). Again, this
region corresponds to the neighbourhood of the point in which the ideal mapping and
demapping functions are discontinuous; note that it is much smaller than the correspond-
ing region obtained using a 5-layer network. As well, the FUV of the approximation from
the 7-layer network is two orders of magnitude smaller than that of the approximation
from the 5-layer network. The time series a(t,) from the 7-layer network is a much bet-
ter approximation of the discontinuous projection map than was that obtained from the
5-layer network.

The 5-layer autoassociative neural network considered above é:ontained 107 param-
eters, while the 7-layer network contained 103. Thus, the superior" performance of the
7-layer network is not due to its having a larger number of parameters. Both networks
were trained for the same number of iterations. Other training runs (not shown) display
the same superiority of the 7-layer network to the 5-layer network; this result is insensi-
tive to the choice of initial model parameters. Thus, the 7-layer network is superior to
the 5-layer network because of differences in architecture; the presence of two mapping
and demapping layers allows the network to approximate a broader class of projection

and expansion functions than that open to Kramer’s original network.

6.4 Conclusions

It has been demonstrated that a 7-layer generalisation of Kramer’s 5-layer network, in

which two mapping and demapping layers are used, displays a marked superiority in its

ability to model low-dimensional structure whose corresponding projection and expansion
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functions are discontinuous. This superiority was shown through the NLPC analysis of an
ellipse in the plane, whose projection and expansion functions are discontinuous because
of the S! topology of the manifold parameterising the ellipse.

Another solution to this problem was presented By Kirby and Miranda (1996), who
introduced the concept of “circular nodes” in neural networks. Because standard nodes
in neural networks map to the real line, Kirby and Miranda noted that such nodes are
unable to encode “angular” information. In other words, they cannot map continuously
to a space with S! topology. Kirby and Miranda introduced the idea of coupling pairs
of nodes such that their output is constrained to fall on the unit circle. These coupled
nodes can be treated as a single abstract node that can encode angular information. This
coupling requires modification of the backpropagation algorithm (Appendix A); such a
modification is presented by Kirby and Miranda.

There are two problems with Kirby and Miranda’s approach. First, the method is
somewhat difficult to implement, as it requires a modification of the backpropagation
algorithm and thus cannot be carried out using a regular, commercial neural network
package. Second, the use of circular nodes presumes the existence of periodic structure
in the data. The 7-layer network presented here has néither of these difficulties. However,
Kirby and Miranda’s method allows an exact characterisation of maps to S*, whereas
the 7-layer generalisation of Kramer’s network produces only approximations. It is not
clear that this lack of exactness is a problem in practice, as neural networks can only
ever produce approximate models to data.

Few large-scale climatic phenomena display the strict periodicity of the data set con-
sidered in this section. Climate variability is much more irregular, and examples of
strictly periodic limit cycles are rare. Examples of periodic variability include the sea-

sonal cycle (including annual and higher harmonics), the tides, and the diurnal cycle;

all of these are periodic because .they arise from external, astronomical forcings which
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are strongly periodic. These signals are of well-known frequency, as are their harmonics
arising from through nonlinear rectification (Huang and Sardeshmukh, 1999). If the an-
nual cycle and its harmonics are stationary in time, they can be removed from the data
using harmonic analysis. If stationarity does not obtain, more complicated techniques
such as wavelét analysis could be used instead. Thus, the inability of Kramer’s 5-layer
autoassociative neural network to model strictly periodic variability is not expected to
be a significant liability in the analysis of climate data. The fact that this problem can
be addressed by generalising Kramer’s network is an interesting theoretical result. In

practice, its application will probably be limited to data thought to have been generated

by a highly periodic system.




Chapter 7

Summary and Conclusions

7.1 Summary

Principal component analysis is a tool of great utility in the analysis of climate data. The
phase space of a typical climatic data set has a dimensionality in the range from hundreds
to thousands, which makes straightforward visualisation impossible. PCA finds the or-
dered set of axes in the phase space which provides the most efficient linear description
of the data, in that the projection of the data into the space spanned by the first P axes
is the optimal P-dimensional linear approximation to the data (in a least-squares sense).
It is thus a tremendously useful algorithm for the reduction of data dimensionality.
There is, however, no a priori reason to believe that any lower-dimensional structure
underlying a multivariate dataset is linear, in that it is optimally described by a set of
orthogonal axes. Indeed, it is a basic result of the theory of dynamical systems that if

the dynamical system

x(t) = F(x(t)) (7.1)

x(0) = xo (7.2)

possesses a K-dimensional stable attractor I' (where K is not necessarily an integer),
then in general the description of the manifold I' by a set of Cartesian coordinates (ie,
orthogonal coordinate axes) requires the dimension of the embedding space to be at
least 2K + 1. PCA can determine an appropriate embedding space for a general low-

dimensional structure, but it cannot provide the most efficient description of this surface.

136
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In an effort to circumvent this limitation of PCA, Kramer (1991) introduced a nonlin-
ear generalisation of PCA, which he denoted Nonlinear Principal Component Analysis.
Implemented using a 5-layer feed-forward neural network, NLPCA attempts to find func-
tions s¢ : RM — RP and f : RF +— RM such that the approximation
X(tn) = (f o s¢)(X(t,)) is the optimal P-dimensional nonlinear approximation to the
M-dimensional data set X(t,), in a least-squares sense. If the functions sy and f are
constrained to be linear, this approach reduces to PCA. This thesis presents the first
systematic application of NLPCA to the analysis of climate data. A summary of the

results follows.

1. The similarities and differences between PCA and NLPCA were discussed. Both
PCA and NLPCA can be characterised as variational problems for detecting lower-
dimensional structure in multivariate data sets: PCA finds linear structure, NLPCA
can find more general nonlinear structure. The P-dimensional PCA approximation
to a data set is the sum of its first P one-dimensional approximations; in NLPCA,
the situation is more complicated. A single P-dimensional surface determined us-
ing an autoassociative neural network with P neurons in the bottleneck layer is
said to be a nonmodal approximation, while the sum of the first P one-dimensional
approximations is said to be a modal approximation; these two approaches are gen-
erally distinct. A degeneracy in the parameterisation of the surface determined by
a P-dimensional nonmodal NLPCA complicates interpretation of the parameteri-
sation for P > 2, and generally requires the consideration of a secondary feature
extraction problem; thus, modal NLPCA for the analysis of real climate data is
preferred. Both 1D PCA and NLPCA modes correspond to a single time series,

however, unlike PCA, a 1D NLPCA mode does not have a unique spatial pattern.

In fact, the approximation is characterised by a sequence of spatial patterns, which
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may be visualised cinematographically. Both PCA and NLPCA partition variance
in that the sum of the total variance of a P-dimensional approximation with the
total variance of the residual equals the variance of the original data. This result

can be proved for PCA, but so far remains an empirical result for NLPCA.

2. Implementation of NLPCA was considered in some detail. The NLPCA algorithm
is carried out using a 5-layer autoassociative feed-forward neural network model.
Because NLPCA involves the solution of a nonlinear variational problem, no ana-
lytic formula for the solution exists, and iterative function minimisation procedures
must be used. This minimisation process is referred to as “training”. An issue
of primary importance is the avoidance of overfitting; an NLPCA approximation
should robustly characterise lower-dimensional structure in the data. Overfitting
was avoided through the use of an early stopping technique in which a randomly-
selected portion of the original data is set aside and not used to fit the model
parameters. The performance of the model over this withheld data set is moni-
tored as training progresses; if the model performance over this validation set is
inferior to the performance over the training data, the model is discarded. An
ensemble of models is constructed, each of which satisfy the robustness criteria
described above. These are referred to as the “candidate models”. The number of
neurons in the encoding and decoding layers of the autoassociative network and the
number of iterations used to train the model are adjusted until a sufficient number
of similar candidate models is obtained, at which point a representative member is

extracted and said to be the NLPCA approximation to the data.

3. A preliminary investigation of NLPCA was carried out using data sampled from

the Lorenz attractor, to which random noise was added. It was found that at

low to moderate noise levels NLPCA was able to produce robust approximations
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that were more characteristic of the data, and explained higher percentages of the
variance, than were those produced by PCA. In the limit of no noise, the 1D NLPCA
approximation explained 76% of the total variance while the corresponding PCA
approximation explained 60%. The NLPCA mode was able to describe covariability
between two uncorrelated but dependent variables, which PCA cannot do. A 2D
nonmodal NLPCA approximation explained 99.5% of the variance, while the 2D
PCA approximation explained 95%. As the noise level increased, the improvement
of NLPCA over PCA decreased, in terms of the percentage of variance explained.
At high noise levels, in which the structure of the Lorenz data was entirely obscured,

NLPCA could not produce robust approximations that differed from those obtained
by PCA.

4. A tropical Pacific Ocean sea sﬁrface temperature data set was analysed by NLPCA.
The 1D NLPCA approximation to these data describes average ENSO variability.
Unlike the 1D PCA approximation, which also describes average ENSO variabil-
ity, the 1D NLPCA approximation is able to characterise the asymmetry in SST
spatial patterns between average El Nifio and La Nifia events. The distribution of
SST is skewed toward positive anomalies in the eastern Pacific and toward nega-
tive anomalies in the western Pacific, and the 1D NLPCA approximation is able
to characterise this distribution of skewness. The second NLPCA mode is also
related to ENSO, and seems to characterise differences between individual events.
It 1s particularly active in the period after 1977, a time which has been noted in
a number of studies as corresponding to a shift in ENSO variability. A 2D non-

modal NLPCA approximation to the SST was also determined. A secondary PCA

analysis in the 2D space of variables parameterising this surface indicated that the
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variability described by this approximation contains essentially the same informa-
tion as the first two NLPCA modes. An NLPC analysis of tropical Indo-Pacific
sea level pressure was also carried out. The first mode was found to correspond
to the ENSO signal in SLP, and characterised asymmetries in the SLP between
El Ninio and La Nifia events. No robust nonlinear structure could be detected in
. the residuals from the first NLPCA mode; within the constraints imposed by the
quantity of data available, SLP variability is linear beyond the first NLPCA mode.

5. The first NLPCA mode of monthly-averaged Northern Hemisphere SLPA from the
Canadian Centre for Climate Modelling and Analysis coupled GCM was found to
partition the data into two distinct populations. The 1D NLPCA approximation
had a three-branched structure, and the distribution associated time series was
strongly bimodal. One branch (Branch 1), associated with the larger peak of the
distribution of the time series, corresponded to a standing oscillation with anomalies
of opposite sign over the polar region and the midlatitudes, strongly resembling the
Arctic Oscillation. Most of the data projected onto this branch. A second branch
(Branch 2), which corresponded to the smaller peak of the time series PDF, was
only occupied episodically, and strongly resembled the negative phase of the North
Atlantic Oscillation. The Branch 1 signal in 500 mb geopotential height composites
(based on the SLPA analysis) described alternating amplification and attenuation
of the climatological ridge over Europe, while Branch 2 described strongly split
flow over Greenland. An analysis of the SLP skewness indicates that there are
strong positive and negative local extrema in skewness in the same locations as the
positive and negative extrema of the Branch 2 anomaly patterns. These extrema

in skewness thus seem to arise because of the combination of a standing oscillation

displaying Gaussian variability with episodic occurrences of a strongly anomalous
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circulation, a possibility that has been suggested by other authors in the past.

An NLPC analysis of the 500mb height anomaly field itself resulted in a branched
approximation that was very similar to that obtained from the SLPA field; the
primary difference between the two is that the former corresponds to anomaly fields
that are somewhat more hemispheric in extent. Thus, the two-regime structure

identified using NLPCA appears to be equivalent barotropic in nature.

Finally, the results of an analysis of SLPA from a GCM run with CO; concentra-
tions at four times the pre-industrial levels indicated that the oscillatory branch
of the control NLPCA approximation was largely unchanged but that the split-
flow branch was substantially depopulated. This behaviour is consistent with the
suggestion by Palmer (1999) that the climate response to greenhouse forcing will
not be changes in the structure of characteristic circulation regimes, but in their

occupation frequencies.

6. Because Kramer’s 5-layer autoassociative neural network can only find continu-
ous projection and expansion functions, a 7-layer generalisation was suggested for
the analysis of data sets where the expansion and projection functions are discon-
tinuous. Such a data set is an ellipse, because the manifold parameterising the
low-dimensional approﬁmation is topologically different than the unit interval. It
was found that the NLPCA approximation produced by a 7-layer autoassociative
neural network was substantially better than that produced by a 5-layer network,
because the former was much better able to approximate discontinuous projection
and expansion functions. It was demonstrated that this improvement was due to

the different architectures of the two networks, and not to a difference in the number

of model parameters.
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7.2 Conclusions

Nonlinear Principal Component Analysis has been demonstrated to be a useful tool for
the analysis of climate data. Where PCA characterises the variance in a multivariate data
set, NLPCA 1is able to also characterise higher order moments of variability. This thesis
has introduced NLPCA to the study of climate data, but there remains work to be done.
The model building procedures described in Chapter 2 retain an element of subjectivity.
It would be useful to develop an automated, objective technique for building NLPCA
approximations; such a methodology could perhaps use a sophisticated regularisation
technique such as Generalised Cross Validation (Yuval, 1999). Useful generalisations of
NLPCA might also be developed through modifications of the cost function to include
constraints on the approximation. An example would be a simple structure constraint of
the form used in rotated PCA analysis (Richman,1986). A second modification of the cost
function to ensure self-consistency of the NLPCA model is suggested in Rico-Martinez et
al. (1996). Kirby and Miranda (1999) suggest a number of other possible constraints. As
well, NLPCA could be used in a nonlinear generalisation of Singular Systems Analysis
(SSA), which is simply PCA applied to a time series expressed in delay coordinate space
(Broomhead and King, 1986; von Storch and Zwiers,1999). Finally, analytic demonstra-
tions of features of NLPCA discovered empirically, such as the partitioning of variance,
are lacking.

The analysis of large multivariate datasets, either observations or GCM output, is
an important activity for the understanding of climate variability. Nonlinear Principal
Component Analysis will not replace traditional PCA, because it is more difficult to
implement. However, I' believe that NLPCA may well become an important addition

to the geophysical statistician’s toolbox, and will provide important insight into the
geophy ) P 1Y g

variability of the climate system.




Appendix A

Neural Networks

As is described in detail by Bishop (1995) and by Hsieh and Tang (1998), a feed-forward
neural network is a non-parametric statistical model used to estimate (generally nonlin-
ear) functional relations between two data sets, X(¢,) € R° and Z(t,) € RT. The neural
network is composed of a series of parallel layers, each of which contains a number of
processing elements, or neurons, such that the output of the-ith layer is used as input to

the (¢ + 1)th. If y(-i) is the output of the jth neuron of the 7th layer, then

J

yl(:+1 oli+1) (ng;jl ) (1+1)) (A.1)

is the output of the kth neuron of the (¢ + 1)th layer. The elements of the arrays ngl)

are referred to as the weights, and those of the vectors b,(:H) as the biases. The transfer
function characterising the (i -+ 1)th layer is denoted ¢(i+%); it may be linear or nonlinear.
The first, or input layer, receives the values of the data presented to the network; its
transfer function is simply the identity map oy : ¢ — . The famous flexibility of
neural networks comes from the use of nonlinear transfer functions (typically hyperbolic
tangents) in some or all of the remaining layérs. An important result due to Cybenko
(1989) is that a 3-layer neural network with S input neurons, hyperbolic tangent transfer

functions in the second layer and linear transfer functions in the third layer of T' neurons

can approximate to arbitrary accuracy any continuous function from R5 to RZ, if the

number of neurons in the second layer is sufficiently large.
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Hidden
Input layer layer Output layer

Figure A.1: Diagrammatic representation of neural network with input data X and
output data Z.

Neural networks are often represented diagrammatically, with open circles represent-
ing the neurons and straight lines the weights, as is illustrated in Figure A.1. These
diagrams are meant to be suggestive of biological neuronal systems, reflecting the origin
of neural network theory in the context of artificial intelligence research.

Feed—fbrWard neural networks as described above are fit to data, or trained, as follows.
Suppose it is desired to fit the data X(t,) € R® to the data Z(t,) € RT. Denoting the
network as N, the weights and biases (referred to collectively as u) are adjusted until

the cost function

J=<||Z - NX;p)|? > (A.2)
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" is minimised. That is, parameters Emin are determined such that

oJ

.0:
a'uiu=u

(A.3)
min
for each parameter p;. In the above, the angle brackets < . > denote averaging over
time and ||.|| denotes the L?-norm. For a network in which all transfer functions o(?)
are linear, equation (A.3) can be expressed as a simple matrix equation which admits
an aﬁalytic solution, and the approach simply reduces to multivariate regression. When
the transfer functions are nonlinear, equation (A.3) does not reduce to a simple matrix
eciuation, and the cost function J must be minimised numerically.
The minimisation of the cost function was carried out using a conjugate-gradient
algorithm (Press et al., 1992). At each step of this algorithm, the gradient of J with
respect to the parameters over which it is being minimised must be evaluated. It is easy

to show that for an /-layer neural network,

oJ

—Bw(fr) =-2< eja'(I)(sg-I))y,(cI_l) > (A.4)
ik
where
sg-i) = Zwl(;)y,(i_l) + b;i), . (A.5)
!
c(tn) = Z(tn) — N (X(t2); 1) (A.6)

and the prime represents differentiation. Thus, the gradient of the cost function with
respect to the weights of the output layer can be evaluated exactly at every step of the
minimisation algorithm. The same is tfue for the gradient of J with respect to the biases
of the output layer.

Furthermore, it can be shown that

oJ

—
6w§.k 2

= =2 [ ar s uf Gl (A7)
l
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and
oJ 0y (1) _i(I- _ 1-1) s(I-2); .(I-2)y. (I-3
G~ <; [ZI: 1" D uigd DG w7 oAy ) (A)
7
Note that in the expression for the derivatives of J with respect to the weights at the
(z — 1)th layer, quantities used in the calculation of the derivative with respect to the
weights of the ith layer appear (in the square brackets). An efficient algorithm for the

evaluation of the gradient of J then is to calculate the quantities:

& = G (ald) (A9)

dg.I_l) _ Zdl(I)wl(;)o_l(I—l)(sgI_l)) (A].O)
i

42 = S dif {0 g1-2) 12 (A.11)
4

and so forth, up to dgl). The gradient of J with respect to the weights is simply then
given by

0J (3),,(~1)
5a0 —2 (d{yf~1) (A.12)
J

Similar equations hold for the gradient of J with respect to the biases. This algorithm for
evaluating the gradient of the cost function with respect to the neural network parameters

is referred to as backpropagation. Note that backpropagation allows the exact evaluation

of the gradient at each step of the conjugate gradient algorithm.




Appendix B

Principal Curves and Surfaces

First consider Principal Curves, which are the 1D version of PCS. Following Hastie and
Stuetzle (1989), let X be a random vector in RM, the distribution of which, denoted by
h, has finite second moments. As usual, assume E(X) = 0, without loss of generality.
Let the map f : ® — RM be C*, unit speed (that is, ||f’|| = 1), and non-self-intersecting
(that is, Ay # Ay = f(Ay) # £(A2)). The projection function s; : R¥ — R is defined such
that

s¢(x) = sup{) : |lx — £(N)[| = inf ||x — £()ll}. (B.1)

That is, of those A such that f(A) are the points closest to x, s¢(x) is the largest. Hastie
and Stuetzle defined f to be self-consistent if the expectation value of all the points

projecting onto a certain point on the curve f is that point itself, ie, if

where Ex(.) denotes expectation over the distribution h. If f is self-consistent, then it is
a principal curve. Hastie and Stuetzle proved that if f is constrained to be linear, and if
it is self-consistent, then it is a principal component. Furthermore, in the space of curves
through the data, a principal curve is a critical point of the distance function, in the
following sense. Let f be a principal curve and g be an arbitrary smooth function from

R to M, and define f; = f + tg. Defining the distance function

d(x, ;) = |lx — fi(s 2 (x))Il (B.3)
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and D?(h,f;) = End*(X,f;), then

d
— D?(h, f; = B.4
ZDt)| =0 (B.4)

Equation (B.4) is a formal expression of the idea that the principal curve passes through
the “middle” of the data, and is the clearest point of connection between PCS and
NLPCA.

A very useful fact pointed out by LeBlanc and Tibshirani (1994) is that principal
curves partition variance such that

M M M
3 var(X;) = 3 var(f(s/ (X)) + 3 var(X; — £i(s,(X)) (8.5)
=1 Jj=1 j=1
It is therefore sensible to describe the principal curve f as explaining a certain fraction
of the variance of the random vector X.

The construction of principal curves presented above presupposes knowledge of the
distribution A of the random vector X; this is not usually known for real data sets.
Hastie and Stuezle present an iterative algorithm, involving the use of locally-weighted
running-lines smoothers, to determine the principal curve of a data set.

Hastie and Stuetzle denoted the generalisation of principal curves to two dimensions
as principal surfaces. As with principal curves, given a two-dimensional surface f € R?,
a projection index sy : RM™ — R? is defined such that s¢(x) is the point on f closest to
x; f is a principal surface if

B(Xls/(X) = A) = £(3) (B.6)

Hastie and Stuetzle did not discuss principal surfaces in much detail; they did mention
‘that preliminary numerical investigations indicated that principal surfaces share many
properties with principal curves. Principal surfaces can be further generalised to surfaces

of dimensionality higher than two; LeBlanc and Tibshirani (1994) constructed a piecewise

linear generalisation they denoted adaptive principal surfaces.
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Hastie and Stuetzle provided rigorous proofs of PCS results for only the 1D case, al-
though LeBlanc and Tibshirani (1994) and Malthouse (1998) consider higher-dimensional
generalisations.

A hybrid approach to NLPCA using both Kramer’s autoassociative neural network
and PCS has been proposed by Dong and McAvoy (1995). Their method involved a
preliminary pre-processing of the data by PCS, followed by an NLPC analysis of the pro-
cessed data. The logic behind this approach was that PCS possesses a better theoretical
grounding than does Kramer’s NLPCA, but does not produce a simple model of the data
in that when presented with a new data point, there is no simple algorithm to deter-
mine its PCS approximation. Kramer’s NLPCA, on the other hand, does produce such
a model of the data. Dong and McAvoy recognised that by combining the two methods,

the benefits of both can be realised. However, this approach is more cumbersome than

Kramer’s NLPCA alone, and was thus not implemented in this work.




Appendix C

Symmetric and Anti-symmetric Components of Composites

Consider a spatial field Y(¢,),n = 1, ..., N, which is composited using a time series X (%,)

as follows. Two subsets of time, t{*) and {7, are defined by

(Y = {ta: X(t,) > ¢} (C.1)
(5} = {ta: X(ta) < —c} (C.2)

where c is some threshold: in our case, it is one standard deviation of X (¢,). The positive
and negative composites of Y(¢,), Y*) and Y(-), are simply defined as the respective
averages over {t{")} and {t(-)}:
YH = <Y >, (C.3)
YO = <Y > (C.4)
Maps of Y) and Y(-), where Y(t,) is SSTA and X(t,) is the NDJ-averaged Nifio 3.4

index are shown in Figures 4.6(a) and (b), respectively. In general, the spatial patterns

of Y(*) and Y(-) differ by more than a sign.

It is desired to determine the symmetric and anti-symmetric (under a change of sign
in X(t,)) components of Y(*) and Y(-). To address this question, assume the minimal

nonlinear model for the dependence of Y(¢,) on X (¢,):
Y(t,) = a® + aWX(t,) + a® X (t,)? + €, (C.5)
where €, 1s a vector noise process, assumed to satisfy

<e>=<e>=<e>_=0 (C.6)

150
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The validity of this approximation depends both on the validity of the model (C.5) and
on the length of the records, {t,}, {t{t)}, and {t{7)}. It can be assumed without loss of

generality that both Y(¢,) and X (¢,) are zero-centred in time. This implies that
0=a®+a® < x%> (C.7)
and so the model can be rewritten as
Y(t,) = ab X (t,) + a®(X(t.)*— < X2 >) + €n (C.8)

The vector al!) is the field pattern anti-symmetric under a change of sign in X, while
a(?® is the field pattern symmetric under such a change of sign. They will be referred to,
respectively, as the anti-symmetric and symmetric components of the composite.

Clearly, by the definition of the composite maps,

Y(+) = a(l) <X >4 +a(2)(< X2 >+ — < X2 >) (Cg)

YO = all < X > 4a®P(< X2 > - < X2 >) (C.10)

This is a linear equation which can easily be solved to yield:

a® = DI[(<X?>_ - < X?>)YH - (< X2 >, — < X?>)YD)] (C.11)
a® — DY -<X>_Y®ir<cXx>, Y(—)] (C.12)

where
D=<X>(<X?>_—<X?>)-<X>_(<X¥'>, —<X?*>) (C.13)

Figure 4.6(c) displays a(®) for tropical Pacific SSTA composited according to the Nifio
3.4 index. A map of al!) (not shown) looks very much like SSTA EOF mode 1 (Figure

4.6(a)); the spatial correlation between these is 0.975.
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Hoerling et al. (1997) considered the linear combinations Y(+) — Y (=) and Y(+) 4 Y(-)
and denoted them the linear and nonlinear responses of Y to X, respectively. The above
analysis shows this identification is appropriate only in the special case that < X >_=
— <X >4 and < X? >_=< X? >,. This is certainly not true in general, although for
the case they considered, in which X (t,) was an SST index similar to Nifio 3.4, it is a
fairly good approximation.

In principle, one could use the technique described above to fit the more general model
K .
Y(t.) = > a®X(t,)* + e, (C.14)

k=0

by stratifying the data into K + 1 subsets. Presumably, however, as K increases, so does

the sampling variability associated with decreasing validity of approximations (C.6).
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