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A b s t r a c t 

The B-WISE (Bayesian regression With Interactions and Smooth Effects) method of 

regression modelling was designed to improve upon other flexible regression schemes 

in the areas of model interpretability and ease of implementation. B-WISE models 

have been shown to have good predictive performance, and performance can be even 

further improved with a natural Bayesian model averaging scheme. In this thesis 

I will outline some ways in which some of the constraints inherent in a B-WISE 

model can be relaxed, so that the technique can be used in more general situations 

and with even greater flexibility. It is shown that much of the interpretability of 

B-WISE models is retained and implementation is still relatively straightforward. 
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Chapter 1 

Introduction 

Often an adequate summary of the relationship between a response variable Y and 

predictor variables X = (X\,..., Xv) is provided by a model 

Y = f(Xu...,Xp) + e, var(e) = cr2, 

where e is usually normally distributed with mean 0. The ability to predict Y for 

an X yet to be observed is perhaps the most important aspect of a good model, 

but often interpretability is a competing aspect. Investigators often want a model 

which is indeed a summary, making important features of the relationship apparent 

without conveying the more minute details. Hastie and Tibshirani (1990) give a 

thorough treatment of additive models, which have the form 

p 
Y = a +E +e' var(e) = ct2' 

where / i , . . . , fp are unspecified smooth functions. The flexibility of the functions 

/ i , . . . , / p , coupled with the clarity and interpretability provided by the additive 

structure in (1.1), have made the additive model a standard tool for statistical 

analysis. Having obtained an additive model which adequately summarizes the 
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relationship between X and Y, an investigator can find in /j all of the model's 
information about the effect of Xi on the response Y. A scatterplot of Y against 
Xi, together with what Hastie and Tibshirani call the scatterplot smooth, / j , is one 
appealing way to represent this information and assess its quality. 

A large number of modelling schemes which go beyond additivity have 
been proposed for situations where the emphasis is on the predictive ability of 
f(X\,...,Xp). These include surface smoothers, regression trees, MARS, projec­
tion pursuit regression, neural networks, gaussian processes, to name a few. Any of 
these methods can perform well in terms of prediction, but seldom do they lead to 
models that are interpretable. In particular, given a good fit f(X\,... ,XP) it may 
be very difficult to elicit information about the effect of a particular predictor, yet 
at the same time the additive model may be too simplistic to be useful. 

Significant research has been done to take the simple additive model one 
step further towards predictive ability, by describing possible bivariate interactions 
in predictor variables. We can write this extended additive model as 

Y = Y/fl(Xl) + ^2gjk(Xj,Xk) + e, var(e) = a2, (1.2) 
i j<k 

where both the univariate and bivariate effect functions are unspecified. Note that 

model (1.2) retains much of the simplicity and transparency of the simple additive 

model. In particular, the estimated effect of a predictor X{ on the response can still 

be graphed, either as a curve in two dimensions as before, or a set of surfaces in 

three dimensions, depending on the number of bivariate interactions in which Xi is 

involved. In this thesis we develop some extensions to the B-WISE scheme originally 

proposed by Gustafson (2000). B-WISE is a loose acronym for Bayesian Regression 

With Interactions and Smooth Effects. In a Bayesian framework this scheme models 

data using the expanded additive model (1.2) and uses a novel structure for the 
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bivariate effect functions. Before giving a more thorough outline of the B-WISE 

method we describe cubic splines, which are fundamental to B-WISE, and we discuss 

briefly some of the more popular methods for multiple regression. 

1.1 Cubic Smoothing Splines and Cubic Regression 

Splines 

A scatterplot smooth is curve that to some extent summarizes the informa­

tion contained in a scatterplot. A curve that is too rough and overfits the data wil l 

not be useful as a summary, and it will perform poorly as a predictor for new ob­

servations. On the other hand, a curve that is too smooth may not contain enough 

information about local features or curvatures. Among all functions with two con­

tinuous derivatives, it seems that a function / which could minimize the penalized 

residual sum of squares, 

E(^-/(^))2 + A/{/"W}2̂  (!-3) 
i=i J 

where (x\,yi),..., (xn, yn) are the data points, would satisfy both features of a good 

summary. The first term in (1.3) ensures that / contains enough information, that 

it follows the data closely; the second term ensures that it is not overly rough. 

Quantifying the roughness of / as f ( /") 2 has intuitive appeal. If / is constant 

or linear then it has zero roughness. Green and Silverman (1994) tell us that a 

mechanical spline (e.g. a thin strip of wood) constrained to pass through a set of 

points will assume the shape of the function / which minimizes bending energy, 

a quantity which to first order is proportional to f / " 2 , provided the points are 

reasonably close to a straight line. Thus we have a loose physical interpretation for 

this quantification of roughness. 
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For the following discussion we assume the values of the predictor variable 

are ordered so that x\ < X2 • • • < xn and there are no ties. Green and Silverman 

also tell us that among all functions with two continuous derivatives, the function 

which minimizes (1.3) is the cubic smoothing spline. A cubic smoothing spline is 

made up of n — 1 cubic polynomials, one for each region [xi, Xi+i], i = 1,. • . , n — 1. 

The cubics are joined together in a smooth way by requiring that at each of the 

interior knots X2, • • •, the two cubics that join there must be equal in value and 

first and second derivatives. The second derivatives at the exterior knots x\ and 

xn are set to zero, making the spline a natural cubic spline (NCS). Outside of the 

exterior knots the NCS is linear. Wi th these constraints in place the minimizer g 

of (1.3) is found by solving an n x n linear system whose solution is the vector of 

spline values g = (g(x\),... ,g(xn))T. A NCS is fully specified given its vector of 

knot-point values. To see this, note that there are originally 4(n — 1) parameters 

to be specified. The constraints for smoothness number three for each of the n — 2 

interior knots, and the additional two requirements at the exterior knots bring the 

number of constraints to 3n — 4. Thus there are n free parameters to be determined 

by the n data points. 

While the cubic smoothing spline does minimize (1.3) and there is an ele­

gant algorithm available to solve the nxn linear system, yet there are difficulties in 

interpreting a curve that requires such a large number of parameters in its descrip­

tion. For our purposes a better smooth is the cubic regression spline, which utilizes 

a smaller number of knots, and thus requires that fewer parameters be estimated 

than the cubic smoothing spline. For simplicity we let the spline have m equally-

spaced knots t\ < ... < tm, and in our examples m is typically close to 7. From 

the many ways to specify a NCS we choose to parameterize in terms of the knot 
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values g .= {g{ti), • • • ,g{tm)), which seems to be most amenable to interpretation 

and specification of a prior distribution. Under this parameterization the values of 

the spline at arbitrary x = (xi,..., xn) can be expressed as 

= Zg, (1.4) 

where Z depends only on x and the knot locations. For the interested reader we close 
this section with details on the construction of Z, which is an essential procedure in 
the implementation of B-WISE. 

We need to define two matrices Q and R. Let hi = ij+i — ti for i — 1,..., n—1. 
The matrix Q is rn x (m — 2) with entries qij, i = l,...,m and j = 2,..., m — 1, 
given by 

for j = 2,..., m — 1, and all other entries are zero. The matrix R is (m — 2) x (m - 2) 
with entries r^, i and j running from 2 to m — 1, given by 

= ^ ( ^ i - i + ̂ i) for i = 2,... ,m - 1 

= ri+iti = ^hi for 2 = 2,..., m - 2, 

and all other entries are zero. Finally we let 7 be the vector with the m — 2 second 

derivative values g"{ti), i = 2,... ,m — 1. One of the main results in Green and 

Silverman is stated in the following theorem. 

The vectors g and 7 specify a natural cubic spline g if and only if 



If this condition is satisfied then the roughness penalty will satisfy 

J g"(t)2dt = 1
TR1 = g TQR- 1Q T. (1.5) 

(Note that R is invertible since it is strictly diagonal dominant and hence strictly 
positive-definite.) 

The theorem gives a useful relation between g and 7, as well as a computa­
tionally convenient expression for the roughness penalty. The reader can verify that 
the value of the cubic spline at t is given by 

(t - ti)gi+i + (ti+x - t)gi 
9(t) hi 

_I ( t_1 > ) ( 1,+ 1_ t ){(1 + ^ ) 7 > + 1 + (1 + ^ ) 7 , } 

for ti < t < ti+\, i = 1,..., n — 1. 

In vector notation, using the above theorem, this can be written as 

«(«) = 

where v is a vector with Vi = *, Vi+\ = ̂ j^, and all other components zero, 
and w is a vector with Wi = 1 + tl+^. *, = 1 + and all other components 
zero. Thus we have a construction for Z. 

1.2 Some M e t h o d s for M u l t i p l e Regression 

1.2.1 T h i n P l a t e S p l i n e s a n d Tenso r P r o d u c t S p l i n e s 

Thin plate splines and tensor product splines fall into a category of smoothers that 

Hastie and Tibshirani call "generic multivariate smoothers," which are basically 

generalizations of one-dimensional methods to higher dimensions. These methods 

are often useful for two or three dimensions, but in higher dimensions they lead 



to models that are difficult to interpret. A more fundamental problem with these 

methods has been called the "curse of dimensionality." Most smoothing methods 

rely on the concept of localness. The smoothed value of an observed response is 

determined mostly by points in a local neighbourhood of the response. But in high 

dimensions, local neighbourhoods are inherently sparse. For example, in a uniformly 

distributed data set of p predictors, a hypercube with sides that cover 10% of the 

range of each predictor will contain on average 0 .P of the points in the data set. This 

sparsity has prompted the development of other specialized methods that can deal 

more effectively with high dimensional data, but the generic multivariate smoothers 

can be useful in two or three dimensions. 

Thin plate splines are motivated by the generalization of the roughness mea­

sure r(f) = j {f"(t)Y dt to higher dimensions. The roughness measure for a bi­

variate function f{x,y) analogous to the above measure for a univariate function 

is 

Under this measure any plane in two dimensions has zero roughness. Green and 

Silverman note a physical interpretation similar to that for the univariate roughness 

measure. If an infinite elastic flat plate is deformed to the shape of the function 

ef for small e then the bending energy of the plate is to first order proportional to 

r(f). The minimizer of the penalized residual sum of squares, using this roughness 

measure, is a thin plate spline. We can generalize the roughness measure (1.6) to still 

higher dimensions, where again a thin plate spline minimizes the penalized residual 

sum of squares, but for clarity we limit our discussion to the two-dimensional case. 

To define a thin plate spline we first define a function 77(7-) as 

7 



Denote the points in the predictor space by tj = (xi,yi), i = 1,... , n, and let ||t| 

denote the usual Euclidean norm of t. Then a function g(t) is a thin plate spline 

on the data set t i , . . . , t„ if and only if g is of the form 

for some constants 6\,..., 6n, a\, 0 2 , 0 3 . We see that regression models based on thin 
plate splines are hardly interpretable, but in two and three dimensions they can at 
least be analysed graphically. 

Another, perhaps more natural, way to generalize univariate splines is by 
using tensor product splines. Following the discussion in Green and Silverman 
we consider the most useful case of two dimensions. The tensor product of two 
functions /(£) and g(u) is the function (/ <g> g)(t,u) = f(t)g(u). Now suppose we 
have a set of linearly independent functions {Sj1 : i = 1,..., q\} and another basis 
{ej2 : J2 = 1,.. • , c/2J- The tensor product of these two bases is the set of all linear 
combinations of tensor products of basis functions 

Let {ri,..., r m i } and {vi,..., vm2} be sequences such that the range of t is T = 

b~i; Tmi ], a n d the range of u is U = [vi, vm2 ]. A tensor product cubic spline is 

constructed by dividing up T x U into panels of the form [rr,rr+i] x [us,us+i]. 

Within each panel the function is the product of a cubic in t and a cubic in u, and 

at the joins between the panels the function is smooth. We omit the details, but 

suffice it to say that a large number of parameters must be estimated and, related 

to that issue, interpreting the function is difficult. 

n 
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1.2.2 Regression Trees 

Regression trees (Breiman, Friedman, Olshen and Stone 1984) carve up the predic­

tor space into disjoint and exhaustive rectangles, modelling the response Y within 

each rectangle as a constant. The method begins by finding the optimal splitting 

point among all splitting points among all predictors. The optimal split is the one 

which divides the space into two regions such that the within region variance is min­

imal. Then for each of the two subregions the process is repeated until convergence, 

where further splitting does not significantly improve the within region variance. A 

regression tree can be presented graphically as a binary tree, or mathematically as 

in 

/ ( X ) = J > / ( X e i ^ ) , 
i 

where the regions Ri are defined by the binary splits. There is no standard con­

vergence criterion in use, but one popular strategy is to build a large tree and then 

prune it to a smaller size using cross-validation. The final tree is the one which has 

the smallest estimated prediction error. 

The main drawback to regression trees is that they are discontinuous func­

tions of the predictor variables. This leads to less than optimal predictive ability in 

situations where the true underlying relationship between X and Y is continuous. 

Also, while small trees are often very interpretable for practitioners, larger trees 

can be puzzling. However the adaptive placement of the 'knots', or discontinuities, 

provides efficient use of the data since more parameters are estimated only where 

the data requires them. 
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1.2.3 M u l t i v a r i a t e A d a p t i v e R e g r e s s i o n S p l i n e s ( M A R S ) 

The recursive partitioning approach outlined above motivated the M A R S method­

ology proposed by Friedman (1991). Like regression trees M A R S uses adaptive 

knot placement, but produces a regression function that is continuous. Start­

ing with the initial basis function i?i(x) = 1, a search is made for the optimal 

splitting point among all splitting points among all predictors. That splitting 

point introduces a pair.of new basis functions, #2(x) = Bi(x)[+(xi — U)]+ and 

Bs(x) = B\{x)[— (xi — < t ) ] + , where X{ is the predictor being split, ti is the optimal 

splitting point, and [z]+ = max(0, z). Each iteration entails a search for the optimal 

splitting point for all of the basis functions present, and results in two new basis 

functions being introduced. The final regression function 

i 

is a continuous function of the predictor variables (since all the basis functions are 

continuous). The basis functions have the form 

£i(x) 
1, » = i 

IljLl^jiC^i/O'i) — * j i ) ] -H * = 2, 3, . . . 

where Sji is the sign of each factor, v(ji) is the index of the predictor in the jth factor 

of the ith basis function, tji is the splitting point, and J{ is the degree of interaction. 

We do not allow a predictor to occur more than once in a single basis function. As 

with regression trees, a popular strategy is to run the algorithm until a large number 

of basis functions have been formed, and then to delete the unimportant functions 

until some lack-of-fit measure is minimized. 

Denison, Mallick and Smith (1998) put M A R S in a Bayesian context by plac­

ing a prior distribution on the number k of basis functions present, and on the vector 
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$( k) — ..., ̂ fc), where = (ai, Ti,tu,su,..., tji, s ji) contains information that 

completely determines the ith basis function. The variable Tj is the "type" of the 

basis function, defined to be the indicator of which predictors occur in the basis 

function. They then simulate samples from the joint posterior distribution 

p(6^,k\y)cxp(k,9^,y) = p(k)p(9^\k)p(y\k,e^) 

using an M C M C method. The main strength in B M A R S over M A R S is this M C M C 

sampling scheme by which Bayesian model averaging can be employed. Emperi-

cal results have shown that Bayesian model averages obtained from the B M A R S 

algorithm have better predictive ability than good M A R S models. 

1.2.4 P r o j e c t i o n P u r s u i t R e g r e s s i o n 

Projection pursuit regression (Friedman and Stuetzle 1981) models are of the form 

K 

Y = ^ M a f X ) + e, 
k-l 

where aJX. is a one-dimensional projection of X and hk is an arbitrary smooth 

function. Because all of the smoothing is univariate there are no dimensionality 

problems. Interactions between predictor variables can be accounted for but are not 

easily understood from the functional form. In fact the functional form is not very 

enlightening at all for K > 1, but the judicious selection of projections does keep 

the number of parameters to a minimum. 

1.2.5 N e u r a l N e t w o r k s 

The simplest form of a neural network in the regression context can be written as 

Y = (/)0 + vhk$h (^ah + wihXij j + e, (1.7) 
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where <j>h is almost always the logistic function, and c/>n is a linear, logistic or thresh­
old function. The pictorial representation in Figure (1.1) is helpful. At each of the 
hidden nodes the inputs X\,..., Xp are multiplied by weights uiih and summed. The 
functions (ph are applied and the results are treated in the same way as inputs for 
the output node. The scheme originated in neuroscience as a model for electronic 
impulses in the brain. As such it is not a very realistic model, but as a nonlinear 
regression scheme it can be powerful. Besides model interpretability, which is basi­
cally nil, there are some complications in controlling the amount of fitting. Various 
suggestions have been made in the literature of neural networks for choosing the 
number of hidden nodes (which controls the amount of fitting). As with regression 
trees cross-validation is one possibility, but no procedure has been widely agreed 
upon. Variants of the simple model (1.7) may have more than one hidden layer 
and may incorporate "skip-layer" connections which link the input layer directly 
to the output. Parameter estimation is done in an iterative manner using Gauss-
Newton steps and can be time consuming. Neal (1996) put parameter estimation 
in a Bayesian framework, and also showed that a neural network converges to a 
Gaussian process as the number of hidden nodes approaches infinity. 

1.2.6 Gaussian Processes 

A Gaussian process can be used to define a prior distribution over functions of one 

or more input variables. Suppose we have a response variable t which depends on a p 

parameter input x. Denoting the repeats of t as ..., and the corresponding 

inputs as ..., x^ n\ a prior for the relationship between x and t is specified 

in terms of a covariance function Cov [ t ^ , ^ ] which depends on the inputs. For 
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example, 

Cov 
u=l 

is the covariance function for the simple regression model 

v 

u = l 

The covariance function 

Cov 
u = l 

where 77 and p u are hyperparameters, can be used to obtain a regression function 

based on arbitrary smooth functions. Letting C be the n x n matrix of values of 

the covariance function, it can be shown that the posterior predictive distribution 

of an unobserved t ( n + 1 ) is Gaussian with mean 

E = kTc-h 

and variance 

Var t(n+1)|t(1),...,tH = ^ - k T c - 1 k , 

where k is the vector of covariances between t^n+1^ and the n known targets, and 

v is the prior variance of *( n + 1 ) (given by Cov [ t ( n + 1 ) , t ( n + 1 ) ] ) . More details and 

illustrations can be found in Neal (1997). 

The main drawback to using Gaussian processes is that they become com­

putationally expensive as n increases. Memory requirements grow as n 2 and time 

requirements grow as n 3 , but Neal suggests Gaussian processes can handle data sets 

with up to a thousand cases with modest computational resources. 
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1.3 B-WISE 

B-WISE models a continuous response Y as a function of continuous predictors 

X\,..., Xp. For ease of interpretation we assume that the predictors have been 

rescaled so that 0 corresponds to a low value of the predictor and 1 corresponds 

to a high value. We assume the response Y is rescaled to have mean zero. Most 

variable selection techniques are aimed at deciding which of the p predictors should 

be included in the model and which should be excluded. In B-WISE, a predictor 

can be included as smooth effect, included as a linear effect, or excluded from the 

model. Thus a B-WISE model can be written as 

Y = a+YJfi{Xl)+ 93k{Xj,Xk) + e, (1.8) 

where e ~ N(0,a2), M indicates which predictors are included as main effects only 

and I indicates which predictors are involved in a bivariate interaction. A main 

effect function /j can be either linear, 

or smooth, 

where Si(x{) is a cubic regression spline constrained to be zero at the exterior knots 

0 and 1. 

The bivariate effect functions include a main effect for each variable, so a 

predictor involved in an interaction will appear only in the second summation of 

(1.8). Moreover a predictor may only appear once in (1.8), so that 'overlapping' in­

teractions, as when g±2 and gis are both included, are not allowed. Several proposals 
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have been made for the structure of nonparametric bivariate functions. One possi­

bility is to let gjk{xj,Xk) = gjk(xj)hjk(xk), where the two univariate functions are 

nonparametric (Cuzick 1993). The main drawback associated with this technique is 

that a large number of smooth functions must be estimated. Hastie and Tibshirani 

(1993) proposed varying-coefficient models, in which the univariate function for one 

of the predictors is nonparametric and acts as a coefficient for the other predictor. 

Thus fewer parameters need to be estimated and much flexibility is retained. 

In the B-WISE scheme, if two variables Xj and xk are both included as linear 

effects then their bivariate effect function gjk would be modelled as the usual 

gjk{xj,xk) = fyxj + j5kxk + j3jkXjXk. 

Under this structure the effect of one predictor can be viewed as a linear effect, with 

slope and intercept that depend on the value of the other predictor. For intuition 

into the effect of Xj we might plot gjk(xj,0) = /3jXj and gjk(xj, 1) = fik + {fij+fljk)xj 

on the same axes, with the understanding that the effect at an arbitrary xk is a linear 

interpolation, 

gjk(xj,xk) = (1 - xk)gjk{xj,0) + x k g j k ( x j , l ) . 

This is a useful feature, since it can be difficult for a picture of a surface in three 

dimensions to communicate information about a bivariate effect. B-WISE models 

retain this feature when Xj is include as a linear effect and xk is included as a smooth 

effect. In this case the bivariate effect function would be modelled.as 

gjk(xj,xk) = (3jXj + f3kxk + sk(xk) + PjkXjXk + Xjtjk(xk), 

where tjk(xk) is another cubic regression spline with exterior knots constrained to be 

zero. We could plot gjk(0,xk) = fikxk + sk(xk) and g j k { l , xk) = + {/3k + fyk)xk + 
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$k( xk) + tjki^k) on the same axis, with the understanding that the effect of xk at 

arbitrary values of Xj is a linear interpolation between the two smooth curves, 

9jk{xj,xk) = (1 - Xj)gjk{0,xk) +Xjgjk(l,xk). 

Alternatively we might plot the two linear functions gjk{xj,0) and gjk(xj, 1), but 

the interpolation for general values of xk is no longer linear. In the case where 

both predictors are included as smooth effects then their bivariate effect function is 

modelled as 

9jk(xj,xk) = BjXj + Sj(xj) + Bkxk + sk{xk) + 3jkXjXk + Xjtjk{xk) + xktkj(xj). 

In this situation we can plot the bivariate effect as a function of either variable while 

holding the other variable fixed. However, it would be prudent to plot more than 

just two curves since there is no linear interpolation interpretation. In all three 

cases for the bivariate effect function the surface is determined by the univariate 

functions at the edges of the unit square, thus facilitating interpretability and ease 

of computation. 

The aim of the B-WISE scheme is to rank all, or many, possible models 

according to their simplicity and predictive ability. This ranking is made possible by 

means of a Bayesian paradigm in which a posterior probability is calculated for each 

model. This probability then serves as a measure of a model's quality, in terms of the 

criteria emphasized under this scheme. We assume that Y\0,a2,X ~ N(A\0,a2I), 

where 0 is a parameter vector with an intercept, slope terms, and the values of the 

splines at the knot points. A\ is the design matrix for model A. We use a prior of 

the form p(9, cr2, A) = p(9\a2, X)p(a2)p(X), where p(a2) oc a~2, and p(X) is uniform 

on the model space A. For p(0\a2, A) we use the g-prior, 
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but in a slightly modified form that penalizes models according to their degree of 

roughness, r(f) = /'{/"'(t)}2dt. The modified g-prior makes use of a roughness 

matrix R such that 

vTRv = r{f), 

where v is the vector of spline values at the knot points (see equation 1.5). To 
penalize roughness we give v the prior distribution v ~ N{0, (/ci?)-1}, where k 

determines the strength of the roughness penalty. Now to quantify the roughness of 
an entire model we use the matrix R to construct an overall roughness matrix Rx 

that satisfies 

^ = Sr(.,) +i; r (" ) + r (" + "), (1.9) 
3 k 

where j ranges over smooth predictors involved in a main effect only, and k ranges 
over smooth predictors involved in an interaction. This is, in some sense, the sum 
of the average roughnesses of all the predictors. Here a predictor involved in an 
interaction has an average roughness that depends on its effect when the interacting 
variable is at a 'high' value and on its effect when the interacting variable is at a 
'low' value. One can verify that R\ is everywhere zero except for R on the diagonal 
blocks corresponding to the parameters for S j , R/2 on the diagonal blocks for ti, 

and R/2 on the off-diagonal blocks for the Si-U pairs. Then the final form of the 
prior is 

9\a2, A ~ N ^0, a2 + kRx 

where the hyperparameters c and k must be set in order for the prior to be specified 

completely. 

With the prior thus specified, the conditional (6\a2,X,y) is normally dis-
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tributed with mean 

1 + - ) AT

XAX + kRx 

nJ 
AT

xy, 

and variance a [(1 + c/n)AlAx + kR),}-1. The distribution of cr2|A, y is inverse 

gamma with shape parameter ra/2 and scale parameter {yT(I — Hx)y}/2, where 

1-1 
Hx = Ax[(l + ^)AT

xAx + kRx 

is the hat matrix for model A. The distribution of A|y is 

PWV) oc K ^ ^ A + ̂ AI1/2

 T ( J _ „ / 2 

| ( l + ^ ) ^ A + A ; i ? A | 1 / 2 

Note that (1.10) has some intuitive appeal. We can write yT(I — Hx)y as 

yT{I - Hx)y = {\\y - y A | | 2 + k6%Rx0x} + ^\\yx\\\ 

where yx = Hxy are the fitted values. The term in braces is just the penalized 

residual sum of squares. The other factor in (1.10) can be interpreted as a penalty 

for model complexity. In the simple case where k = 0 we have 

p{\\y) oc exp | - | l o g - y\\\2 + ^ I I ? A I I 2 ) - -ŷ los ( i + ^ ) } . 

where d(X) is the dimension of 6 under model A. Here we can easily see how the 

posterior probability involves a tradeoff between goodness of fit and the number of 

parameters in the model. 

1.4 Identifying M o d e l s W i t h H i g h Poster ior P r o b a b i l ­

i ty 

Given predictor variables Xi,...,Xp the collection of models of form (1.8) make up 

a model space A. When p is small it is possible to evaluate every model in A. For 
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larger p it may not be feasible to evaluate every model, yet there are techniques 

available for locating models with high posterior probabilities. George and McCul-

loch (1993) describe one such Markov chain Monte Carlo ( M C M C ) technique, and 

George and McCulloch (1997) give advice for fast model space exporation. For B-

WISE Gustafson proposes an M C M C inspired algorithm which makes use of the 

nonnormalized posterior probability (1.10). When this probability is available up to 

a normalizing constant the search algorithm need not contain the accept-reject step 

usually found in M C M C algorithms. To describe the B-WISE search algorithm we 

define a neighbourhood of a particular model to contain all models obtained by 

• including a predictor not already in the model 

• upgrading the linear effect of a predictor to a smooth effect 

• including an interaction between two variables present in the model and not 

already involved in interactions 

• downgrading the smooth effect of a predictor to a linear effect 

• removing a predictor included in the model as a linear effect 

• removing an interaction term 

• partner switching two interaction terms (eg. changing A x B and C x D 

interactions to A x C and B x D interactions. 

The algorithm begins by evaluating the nonnormalized posterior probability of all 

models in the neighbourhood of an initial model Ai chosen by the investigator. 

The nonnormalized probabilities are normalized relative to this neighbourhood and 

the next model A2 is chosen randomly from the neighbourhood according to these 
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probabilities. The same procedure is performed for A2, and is repeated until some 

convergence criterion is satisfied. Gustafson suggests that the algorithm has likely 

converged if it fails to find a model in 

A a = {A : p(A|y) > a^maxxpiXly)} (1.11) 

for t iterations in a row. The maximum in (1.11) is taken over all models evaluated 
by the algorithm so far, and Gustafson used a = 20 and t = 5. The model search 
algorithm is more fully detailed in Appendix A. 

Having performed a complete run of the algorithm we may find that a single 
best model will suit our purposes, or we may form a Bayesian model average using 
the Occam's window approach described in Raftery, Madigan and Hoeting (1997). 
Bayesian model averages are often found to have better predictive ability than a 
single best model, but in the B-WISE scheme dramatic improvements have not 
been seen. 
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Input layer Hidden layer(s) 

Figure 1.1: A pictorial representation of model (1.7). At node h of the hidden 
layer the inputs are multiplied by weights and summed. The result is inputted to a 
function whose value is then treated as an input to the next layer of the network. 
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Chapter 2 

Extensions to B-WISE 

There are at least two limitations of the B-WISE scheme as it stands. The first 

is that overlapping interactions are not permitted, so a given predictor variable 

can interact with at most one other. Yet in some studies a predictor variable may 

well interact with several other predictor variables. One example might be a study 

in human health with gender as a predictor variable. Here an investigator may 

well expect the gender variable to interact with every other predictor variable. The 

second limitation of B-WISE is also apparent in this example. As of yet no provision 

has been made for categorical predictor variables. In this section we discuss how B-

WISE can be extended to allow overlapping interactions and categorical predictors. 

2.1 Over lapping Interactions 

The model (1.8) has an appealing structure. To investigate the model's information 

about a particular predictor one need examine only one term of the model, which 

will be either a univariate function fi or a bivariate function gij. To incorporate 

overlapping interactions we must assume a different structure underlying (1.8). The 
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problem is that if both gij and gik appear in the model, there is no obvious place 

to put the main effect for predictor Xi, except perhaps in a separate main effect 

term This is the approach we take, so that the first summation in (1.8) contains 

the main effects for all the predictors in the model, and the second summation 

contains the bivariate interactions for any pairs of variables which interact. Thus, 

to investigate the model's information about a particular predictor, one must collect 

all of the terms involving that predictor. 

Wi th a predictor being able to interact with several others, there comes the 

question of how to quantify the roughness of a predictor's effect function. The 

old way is given by equation (1.9), where the roughness is given by r(s,) if Xi is 

not involved in any interactions, and by (r(sj) +r(si +ti))/2 ii Xi is involved in an 

interaction. We can build on this idea of averaging over the high and low levels of the 

interacting variable. If predictor Xi interacts with d other predictors Xj1,..., Xjd 

then there are 2d different high-low combinations over which to average. If we put 

all of the interaction splines into a vector T^ = ( i Z J 1 , . . . , Ujd) then we can write the 

roughness of the effect for Xi as 

2-dY,r(si + ITTi) 
I 

where I ranges over all vectors of length d with elements from {0,1}. This simplifies 

to the expression given for the non-overlapping case where d = 1. 

To specify the prior for the parameter vector 9 we need a matrix R\ that 

satisfies 

9 T R ^ D = £ J 2 - D I M ( T F C ) E^(^+/rT*)} > 
where k ranges over all predictors with smooth effects. Fortunately such an R\ is 

fairly easy to construct. If a predictor Xi interacts with d others then we put a 
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(d + 1) x (d + 1) block matrix into R\, each block being the roughness matrix R 

multiplied by a special factor. This special factor will be 1 in the upper left block, 

1/2 in the rest of the top row, left column and diagonal, and 1/4 in the remaining 

blocks. 

Example: To show that the above construction works we give an example where a 

smooth predictor X\ interacts with both X2 and X3. Let a be the parameter vector 

for the spline S i ( x i ) , b be the parameter vector for the spline £12(2:1) and c be the 

parameter vector for the spline £13(3:1). Then 

a R \R \R- a 

[aThTcT] RX b = [a T b T c r ] \R \R \R b 

c . \R \R hR _ c 

= 1 [aTRa + (a + b) T E(a + b) + (a + c)TR{& + c) 

+ (a + b + c) Ti?(a + b + c)] (2.1) 

= \ [r(si) + r ( a i + tl2) + r{Sl + tl3) + r{si + £12 + £13)], 

which is the average roughness of the effect function for X\. 

To show that the construction for R\ works in general, suppose Xi interacts 

with d = dim(Tj) other predictors and consider the form of equation (2.1). All 2d 

terms have an a Ti?a. When we divide by 2d in forming the average the result is that 

a ri?a has a coefficient of 1. Hence the entry in the upper left block of R\. There 

are three other kinds of terms found in equation (2.1): terms of the form x T i ? x 

where x is a spline other than a, terms of the form a T i l x (or x Ti?a), and terms 

of the form ~x.TRy where both x and y are splines other than a. Terms of the first 

kind come from a larger term (a +•••-(- x + •• • )TR(a. + -- - + X + -- -), and there 

are 2d~1 possibilities for the exact form of this term (there are d — 1 splines other 
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than x which are either present or absent from this larger term). Dividing by 2d in 

taking the average gives x Ti?x a coefficient of 2 d _ 1/2 d = 1/2. Hence the diagonal 

entries of R\. The same reasoning applies to a Ti?x (or x Ti?a), which explains the 

top row and left column of R\. Terms of the third kind come from a larger term 

(a+---+x + -- -+ yH )TR(SL + -- -+ x + -- - + y + -- -), and there are 2d~2 

possibilities for the exact form of this term. Dividing by 2d means the term x T i ? y 

has a coefficient of 1/4. Hence all the remaining blocks of R\. 

2.2 Categor ica l Variables 

Incorporating categorical variables into the B-WISE setup is fairly straightforward 

given the work done so far. The key assumption is that each predictor has an 

additive effect on the response variable, and that effect may depend on the values 

of several other predictors. We will keep equation (1) as our model equation and 

remain in the wider setting where overlapping interactions are allowed. 

If a categorical predictor X, has a main effect only, we write its effect function 

as 

fi(Xi) = Bi2I(Xi = xi2) H V BimI(Xi = xim), 

where xn,... ,Xim are the m mutually exclusive values which Xi can take. The 

effect of Xi being at level xn is now hidden in the intercept a of equation (1.8). 

Note that when Xi is a binary (0/1) categorical variable, we can take fi(X{) = faXi, 

as we do for continuous variables. 

As with all other types of interactions, when we allow a categorical predictor 

to interact with another predictor, we also include main effect functions for each of 

the variables involved in the interaction. These main effect functions have the same 
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form as they would if the same two predictors were in the model but did not interact 

with each other. Thus, allowing an interaction between two variables already in a 

model amounts to only a modest increase in the complexity of the design matrix. 

We need to consider three types of interactions in which a categorical predictor 

X{ may be involved: an interaction with a linear predictor, an interaction with a 

smooth predictor, and an interaction with another categorical predictor. 

If Xi interacts with a linear predictor Xj we code the bivariate effect function 

as 

gij{Xi, Xj) = I(Xi = Xi2){aj2 + fijiXj) H V I(Xi = xim)(a>jm + PjmXj). 

In this case the effect of Xi being at level xn is hidden in the intercept a and the 

main effect function fj(Xj). 

If categorical predictor Xi interacts with a smooth predictor Xj, one possi­

bility is to code the bivariate effect function as 

gij(Xi,Xj) = I(Xi = xi2)(aj2 + fijiXj + sj2(Xj)) H 

~^~I{Xi = %im){(Xjm "f" PjmXj + S j m ( - X j ' ) ) , 

but this causes complications when we try to measure the average roughness of the 

smooth predictor Xj. We return to this issue later. A better choice, perhaps, is to 

model the bivariate effect function as 

9ij(X{,Xj) = I(Xi = xi2)(aj2 + Pj2Xj) -\ V I(Xi = xim)(a>jm + fijmXj), 

so that the same spline (which would appear in the main effect function fj(Xj)) is 

used for each category, but the linear effect is allowed to vary. This is the approach 

we favoured, with the hope that under this model the savings in the number of 

parameters to be estimated would make up for any loss in flexibility. The roughness 
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matrix to be constructed under this approach is no different than that in the case 
where the categorical and smooth predictor do not interact, since there are no 
additional splines in the model to contribute to the model's roughness. 

In the final case, we may have Xi interacting with another categorical pre­
dictor Xj. In this case we model the bivariate effect function as 

m n 
9ij{X{,Xj) = ~^2^2jijI(Xi = xik,Xj = Xji), 

k=2 1=2 

m being the number of categories of Xi, and n being the number of categories of 
Xj. The effect when either of these predictors is in its first category shows up in 
the main effect functions. 

In extending B-WISE to allow categorical predictors, we have made provision 
for bivariate interactions between categorical and smooth predictors, but we have 
constrained the smooth predictor's effect function to use the same spline for each 
level of the categorical variable while allowing the linear piece to differ. We concede 
that important features of data could be missed under this modelling technique. In 
the remainder of this chapter we outline the construction of the roughness matrix 
R\ under the more flexible conditions where a smooth effect function for a predic­
tor is allowed to use a different spline term for each of an interacting categorical 
predictor's levels. We do this in such a way that 6R\0 may still be interpreted 
as the sum of the average roughnesses of all the predictors, and hence (1.10) re­
mains interpretable. Now suppose a smooth predictor X\ interacts with a number 
of other continuous predictors X2, • • •, X^+i and a number of categorical predictors 
W\,..., Wt with c i , . . . , Ct categories, respectively. For each of the 2d high-low com­
binations of the continuous predictors there are c\ • • • ct category combinations of 
the categorical predictors. We define the average roughness of X\ to be the average 
of the roughnesses of all 2 dc\ • • • ct effect functions for X\. Let Wi2,Wiz, • • • ,WiCi be 
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parameter vectors for the splines corresponding to the different levels of predictor 

W{. To build R\ we reconsider the form of equation (2.1). Each of the 2 d c i • • • cj 

terms would contain an aTRa, and dividing by the number of terms gives the upper 

left block of R\ a coefficient of 1. The diagonal blocks corresponding to continuous 

interacting variables will have a coefficient of ^, since there are 2 d _ 1 c i • • • ct terms of 

the form (a + .. . + x + .. .)TR(a + .. . + x + ...), where x is the spline corresponding to 

the high value of an interacting continuous predictor. In fact one can see fairly easily 

that all blocks corresponding to continuous predictors will have the same multipliers 

as before. Now, blocks on the diagonal corresponding to categorical predictor Wj 

will have a coefficient of ^ , since a term (a + ... + wij + . . .)TR(a + ... + Wij + ...) 

occurs 2 d c i • • • C i _ i C i + i • • • Q times. The same reasoning applies to the top row and 

left column blocks. Blocks off the diagonal corresponding to categorical variables 

W{ and Wj, i / j will have a coefficient of and blocks off the diagonal corre­

sponding to the same categorical predictor, eg. to the splines Wi2 and ^ 3 , wil l be 

zero. Lastly, blocks corresponding to categorical predictor Wi and a smooth predic­

tor will have a coefficient of 2 d _ 1 c i • • • Cj_iCi+i • • • Q. Obviously the computer code 

will have to be meticulous. This further increase in flexibility has good potential 

but of course the increase in the number of parameters requires a larger amount of 

data for estimation. 
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Chapter 3 

Examples 

3.1 Simulated D a t a 

Denison, Mallick and Smith (1998) tested BMARS on an example from Friedman 
(1991). Gustafson (2000) compared B-WISE with BMARS using the same example, 
and we will use it again to see if the extensions to B-WISE discussed above are 
helpful. The data consist of predictor variables X = (X\,..., Xp) simulated from a 
p-dimensional unit hypercube, and a response variable Y generated independently 
as Y\X ~ AT(/(X),CT 2), where 

/(x) = 10sin(7nEiiE2) + 20(x3 - 0.5)2 + 10x4 + 5rr5, 

and a 2 = 1. In one version of the problem (n,p) = (200,6) (one predictor having 

no relation to Y), and in another version (n,p) = (100,10) (five predictors having 

no relation to Y). Rather than simulate the data as prescribed above we use the 

data made available by Denison, Mallick and Smith, which is also the data that 

Gustafson analyzed. 

Gustafson found that in both versions of the problem B-WISE placed the 
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Table 3.1: Simulated data set with (n,p) — (200,6). The top five models found in 
one run of the model search algorithm. 

Model Posterior Probability 
S(Xx) <S 5 S(X2) + S{X3) + L ( X 4 ) + L{X5) 0.366 
six,) <s 5 S{X2) + S{X3) + S(Xi) + LiX5) 0.186 
SiX,) i 5 S(X2) + S(X3) + L{X4) + SiX5) 0.080 
six,) $ 5 S(X2) + S{X3) + L(X4) ® L(X5) 0.061 
six,) a 5 S{X2) + SiX3) + SiX4) + S(X5) 0.041 

highest posterior probability on the qualitatively correct model, that is, the model 

with smooth effects for X,, X2 and X3, linear effects for X4 and X$, and an inter­

action between X, and X2. Computational resources do not conveniently allow us 

to evaluate every model in the p = 6 case, let alone the p = 10 case, but on sev­

eral runs of the model search algorithm the qualitatively correct model was located 

and had the highest posterior probability of any model. Apparently the scheme 

penalizes model complexity in a way that prevents overfitting, and yet can describe 

fairly complicated data structures in detail. Table 3.1 lists the top five models found 

in one run of the model search algorithm, along with their posterior probabilities 

normalized relative to all models visited on that run. These are the same as the top 

five models found by Gustafson with the original B-WISE scheme. 

Table 3.2 lists the top five models for the problem involving 100 points and 10 

predictors. These models are not the same as the top five models in Gustafson, but 

the results there also show that X,o makes some contribution to predictive ability. 

We think the models listed in Table 3.2 represent a more compact cluster of models 

around the best model than those found by Gustafson. 

Figure 3.1 shows the univariate effects of the B-WISE best model and a 

B M A R S model average for the p = 6 case. By "univariate effect" we mean the func-
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Table 3.2: Simulated data set with (n,p) = (100,10). The top five models found in 
one run of the model search algorithm. 

Model Posterior 
Probability 

5 S{X2) + SiX3) + L(X 4) + L{X5) 0.112 
Six,) a 5 S(X2) + S(X3) + LiXt) + L(X5) + SiX,) <§ >L(X10) 0.105 
SiX,) $ § S(X 2) + 5(X 3) + L(X 4) + LiX5) + LiX,0) 0.055 
six,) <s S> S(X 2) + S(X3) + L(XA) ® S(X5) + SiX,) <g ) i(A-io) 0.046 
six,) a 5 S(X2) + SiX3) + SiXA) + L(X5) + SiX,) € ) i ( X 1 0 ) 0.045 

tion defined by holding all but one predictor variable constant in the fitted model. 

As such, a univariate effect can only be defined up to a vertical translation, since 

it is not clear what the intercept should be. The effects in Figure 3.1 have been 

vertically translated by eye so as to line up with the data. Much information re­

garding each of the fitted functions cannot be seen in the univariate effects, but the 

pictures do help to characterize the differences between the two regression methods. 

One apparent consequence of the model parsimony associated with B-WISE is that 

B-WISE curves are less flexible. The hyperparameters c and k are certainly deter­

mining factors here, and could be changed to make the univariate effects somewhat 

more dramatic than those shown in Figure 3.1. It is also interesting that even a 

BMARS model average has sharp bends. This could be due to a lack of diversity in 

the models that make up the average. 

Also of interest are the joint effect functions for X, and X2, shown in Figures 

3.2 and 3.3. Here again B-WISE is seen to produce a smoother, less flexible surface. 

Yet we will see in the next example that maintaining interpretable algebraic forms 

for models does not necessarily result in models with little predictive ability, as 

B-WISE can actually outperform BMARS in this respect. 
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Figure 3.1: The B-WISE univariate effects are shown with a lighter line, and the 
BMARS effects with a heavier line. Vertical translations are not of interest here; 
only the shapes of the curves are. 
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Figure 3.2: The B M A R S joint effect function for X\ and X2 seems to be quite 
flexible. 
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Figure 3.3: The B-WISE joint effect function for X\ and X2 is smoother than the 
corresponding BMARS function. 
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3.2 Abalone D a t a 

The data for this example are made available by the Department of Computer 

Science at the University of Toronto. Here 9 variables are recorded for each of 4177 

abalone (molluscs). Our goal is to predict the number of rings in each abalone 

rings plus 1.5). We treat the number of rings as a continuous variable, but in fact 

it has values on the integers ranging from 1 to 29. To facilitate comparison with 

regression methods that do not allow categorical variables we will for the present 

omit the "gender" variable, which classifies each abalone as either male, female, or 

infant. 

A n analysis of the residuals from a B-WISE fit to all of the data showed 

that a log transformation of the response gave better agreement with the constant 

variance assumption. Figures 3.4 and 3.5 show diagnostics for a B-WISE fit to all of 

the data, using a log transformation on the response. The assumption of constant 

variance is tenable, as is the assumption of normal errors. 

We performed a five-fold cross-validation, using roughly 4/5 of the data as 

a training set to fit a model and 1/5 of the data as a validation set to assess the 

model. Denoting the i-th observation of the validation set as (x*, y*), we assess the 

predictive ability of a model / using the root-mean-squared prediction error, 

where m is the number of points in the validation set. We terminated the B-WISE 

model search algorithm if for five consecutive iterations it failed to locate a model 

in A 2 , and we terminated the B M A R S algorithm after 20,000 iterations, following 

the recommendation of the B M A R S creators. 

using the other variables as predictors (the age in years is roughly the number of 
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predictor <5 predictor x6 

Figure 3.4: The assumption of constant variance is nearly satisfied, but some fun­
nelling occurs in the latter predictors. We are satisfied because of the simplicity of 
the log transformation. 
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Figure 3.6 shows that in all 5 splits of the data, the extended B-WISE method 

produced models with better predictive ability than the B-WISE method. Likewise, 

B-WISE models performed better than B M A R S model averages in all but one split 

where a B M A R S model average performed better than both extended B-WISE and 

B-WISE. Also shown are the results for the extended B-WISE method which include 

the "gender" categorical predictor variable. It is unfair to compare these results to 

those obtained by the other methods which use one less predictor, but this example 

does show the usefulness of an ability to incorporate categorical variables. 

We also note some differences between the B M A R S and the B-WISE algo­

rithms. While the B M A R S algorithm may step from one model to another more 

quickly than B-WISE, the difference is usually not enough to make the overall run­

ning time shorter. For this example 20,000 iterations of B M A R S translated into 

a computing time of about 11 hours per split of data. In contrast, the B-WISE 

algorithm converged in less than an hour for every split of data. 

We have found that a convenient way to represent B-WISE models is with 

an upper diagonal p x p matrix, where p is the number of possible predictors in the 

model. The diagonal elements can be either 0, 1 or 2. If the (i,i)-th element is 0 

then the ith predictor is excluded from the model, if 1 then it is included as a linear 

effect, and if 2 then it is included as a smooth effect. The off-diagonal elements can 

be either 0 or 1. If the (i,j)-th element is 0 then predictors i and j do not interact, 

and if 1 then they do interact. For example, in the fifth split of the abalone data, 
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Figure 3.6: Each line represents a particular split of the data. The extended IB-
WISE method has a lower RMSPE than both B-WISE and BMARS in four of the 
five splits. 
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the best B-WISE model found could be represented as the matrix 

( 2 1 0 1 0 0 0 

2 0 0 0 0 1 

1 0 0 0 0 

2 1 0 0 

2 0 1 

2 1 

2 V 

(3.1) 

Here we can immediately see that all predictors are included in the model. The 

interaction pairs are predictors 1 and 2, 1 and 4, 2 and 7, 4 and 5, 5 and 7, and 6 

and 7. The number of predictors is high enough that there is some sophistication 

required, but B-WISE models are certainly more accessible than those of other 

adaptive regression schemes. 

3.3 Census Hous ing Data 

The data for this example were collected as part of the 1990 US census, and are 

made available by the Computer Science Department at the University of Toronto. 

Here 16 features for each of 256 geographical regions are used to predict the median 

price of the houses in the region. The 16 predictor variables are 

1. total number of families in the region 

2. total number of households (HH's) 

3. percentage of black people 

4. percentage of people between 25-64 years of age 
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5. percentage of widowed females 

6. percentage of HH's with 1 person 

7. percentage of HH's with asian householder 

8. percentage of HH's with Hispanic householder 

9. percentage of HH's in which more then one non-relative lives 

10. percentage of HH's which are non-family with 2 or more people 

11. percentage of housing units (HU's) occupied 

12. percentage of occupied HU's which are owner-occupied 

13. percentage of vacant HU's which are not for rent, sale, migrant workers nor 

for seasonal, recreational or occasional use 

14. percentage of occupied HU's with white householder 

15. percentage of occupied HU's with householder not of Hispanic origin 

16. percentage of HU's with 1 to 4 rooms 

Before performing the regression analysis we applied a log transformation to 

the response variable and fourth-root transformations to the two count variables, 

predictors 1 and 2, to achieve distributions which were closer to Gaussian. The 

remaining predictors are proportions on [0,1], and since some are highly skewed 

towards one end of the interval, we applied a logit transformation to all of these 

predictors. There were some values at the endpoints of [0,1], so before applying 

the logit transformation we applied a small shrinkage towards 0.5. Figures 3.7 and 

3.8 show the plots of the response against predictors using the original data and 
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the transformed data, respectively. Predictor 15 is eliminated from the analysis 

because during the initial fit we found that this predictor was perfectly negatively 

correlated with predictor 8. From the description of each predictor this detail is 

not entirely obvious, but it becomes obvious upon attempting to run the model 

search algorithm. At this point we added a safety feature that keeps the algorithm 

from stepping through models for which A?A\ is non-invertible. In some cases 

this may occur because there are more parameters than data points, and in other 

cases because of linear dependence or near linear dependence between continuous 

predictor variables. Also, with several categorical predictors in the model there are 

often zero counts in some category combinations. If the right interaction is present 

this gives rise to a non-invertible A?A\. 
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Figure 3.7: Plots of median house price against each of the untransformed predictor 
variables. 
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Figure 3.8: Plots of the transformed response variable against each of the trans­
formed predictor variables. Some skewness in the predictors has been eliminated. 
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The best model found by the model search algorithm was 

\ 

1 1 

V 
Figure 3.9 shows that the assumption of normal errors is tenable, but the 

assumption of constant variance may be problematic. As it happens, about 14% of 

the responses take on the minimum response value of 14999, while almost all of the 

other response values are unique. Apparently a lower bound was imposed on the 

median house price when the data were recorded. 

It was hoped that the model structure (3.3) would give some insight into the 

underlying influences of the median house price, but because of the large number of 

predictors this seems to be an example in which the model structure can not shed 

much understanding on the problem. Indeed, trying to interpret the above model 
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Figure 3.9: The normality assumption is reasonable, but the assumption of constant 
variance is problematic. Apparently a lower bound was imposed on the median house 
price ie. values less than 14999 were recorded as 14999, which produced the line 
of data points at the left of the lower plot. There does not seem to be an obvious 
remedy for the situation. 
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would be putting too much faith in the B-WISE modelling scheme. Assuming 

there is some true underlying model that accounts for all systematic variation in 

the median house price, the most we can hope is that a good approximation to this 

model exists within the class of B-WISE models. There is certainly some error in the 

structure of any B-WISE model, and for that reason it may be prudent to average 

over several good models. A Bayesian model average is an average of several or all 

models in the model space, where each model is weighted by its posterior probability. 

For this example we constructed Bayesian model averages using only the models in 

A20 as this speeds up computation and reduces round-off error. Of course, the model 

weights were normalized relative to A2o-

We performed five-fold cross-validation and assessed predictive ability using 

RMSPE. In all five splits the model average had a lower RMSPE than the best 

single model though the gains were perhaps not dramatic. This could be because, 

as Gustafson suggested, the B-WISE models that make up the average are in some 

sense quite similar. 
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F i g u r e 3.10: RMSPE fo r t he f ive s p l i t s o f the census h o u s i n g d a t a . 
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Chapter 4 

C o n c l u s i o n a n d F u r t h e r W o r k 

B-WISE improves on many existing flexible regression schemes in the area of inter­

pretation by limiting the number of ways a predictor can enter the model, yet it 

allows enough flexibility to capture non-trivial features of data and has been shown 

to have excellent predictive ability. The interpretability comes mainly from the easy 

solicitation of univariate effects, even for predictors involved in an interaction. The 

flexibility is provided by cubic splines for the univariate effects and a structured ap­

proach to bivariate interactions. In this thesis we have implemented two important 

extensions to the original B-WISE introduced by Gustafson, but there are still other 

directions in which B-WISE could be extended. 

In our first example we hinted at some arbitrariness in the choice of the 

hyperparameters c and k. Gustafson provided a reasonable rationale for c = 1 and 

k = 0.1, but recommended some sensitivity analysis. Another option is to put a 

prior on these parameters. The main hurdle to using this approach would probably 

be choosing the prior distributions, and most likely we would lose the closed form for 

the model posterior probability (1.10). As a consequence, a full MCMC algorithm 
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(i.e. an algorithm with an accept-reject step) would be required for the model search. 

Because of these drawbacks we favour the simplicity of fixing the hyperparameters 

and perhaps tuning them after a sensitivity analysis. 

A vast number of data sets have a non-normally distributed response variable, 

in which case B-WISE cannot be used. But we think some of the ideas used in 

B-WISE would be useful for discrimination in the case of a binary response. As 

a starting point one could implement a deterministic, non-Bayesian version of the 

model search algorithm, which at each step moves towards the model which achieves 

the most separation 

D2 = (ix - X 2 ) T 5 " 1

0 , e d ( x 1 - x 2 ) 

between the two groups. A Bayesian implementation would take steps towards 

neighbouring models in accordance with the posterior probabilities of those mod­

els, and the model posterior probability would favour models which achieve large 

D2 and would penalize models according to their complexity. We think there are 

discrimination problems where the flexibility of B-WISE models would be useful. 

Currently the rate determining step in the software we have developed is the 

evaluation of A?A\, which has an operation count of 0(nq2), where q is the number 

of columns in the design matrix. This can easily be lowered to 0(nq) for many of 

the model evaluations in the search algorithm. Suppose we have calculated AQAQ 

for a certain model An, and then we form a new model Ai by adding a term to An, 

that is, inserting a column c into AQ = [Aa|v4(,]. Then the design matrix for Ai is 

[A a | c | a n d AfA, has the form 

( AT

aAb Ale AT

aAb 

AjA, = cTAa 
T C C eTAb 

\ AjAa AT

bc AlAb 
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Most of the entries in this matrix have already been calculated. The remaining 

entries can be calculated in 0(nq) steps. Clearly, models formed by deleting columns 

from AQ are even easier to compute. We suspect there are several places in the 

model search code where fast updating methods could be employed. Once a certain 

quantity has been calculated for a model, the corresponding quantity for a model in 

the immediate neighbourhoud might be a simple update to the information already 

obtained. 

51 



B i b l i o g r a p h y 

[1] Breiman, L . , J . Friedman, R. Olshen and C. Stone (1984). Classification and 

Regression Trees. Belmont, Calif.: Wadsworth, Inc. 

[2] Cuzick, J . (1993). Discussion of "Varying-coefficient Models" by T. J . Hastie 

and R. J . Tibshirani. Journal of the Royal Statistical Society, Series B, 55, 

757-796. 

[3] Denison, D. G. T., B . K . Mallick and A . F . M . Smith (1998). Bayesian M A R S . 

Statistics and Computing, 8, 337-346. 

[4] Friedman, J . (1991). Multivariate Adaptive Regression Splines (with discus­

sion). The Annals of Statistics, 19, 1-141. 

[5] Friedman, J . and W. Stuetzle (1981). Projection Pursuit Regression. Journal 

of the American Statistical Association, 76, 817-823. 

[6] George E . I. and R. McCulloch (1993). Variable Selection via Gibbs Sampling. 

Journal of the American Statistical Association, 88, 881-889. 

[7] George E . I. and R. McCulloch (1997). Approaches for Bayesian Variable Se­

lection, it Statistica Sinica, 7, 339-373. 

52 



[8] Green, P.J . and B . W . Silverman (1994). Nonparametric Regression and Gen­

eralized Linear Models. London: Chapman and Hall . 

[9] Gustafson, P. (2000). Bayesian Regression Modelling with Interactions and 

Smooth Effects. To appear in Journal of the American Statistical Association, 

95. 

[10] Hastie, T. J . and R. J . Tibshirani (1990). Generalized Additive Models. London: 

Chapman and Hall . 

[11] Hastie, T. J . and R. J . Tibshirani (1993). Varying-coefficient Models (with 

discussion). Journal of the Royal Statistical Society, Series B, 55, 757-796. 

[12] Neal, R. M . (1996). Bayesian Learning For Neural Networks. New York: 

Springer- Verlag. 

[13] Neal, R. M . (1997). Monte Carlo Implementation of Gaussian Process Models 

for Bayesian Regression and Classification. Technical Report 9702, Department 

of Statistics, University of Toronto. 

[14] Raftery, A . E . , D. M . Madigan and J . Hoeting (1997). Model Selection and 

Accounting for Model Uncertainty in Linear Regression Models. Journal of the 

American Statistical Association, 92, 179-191. 

53 



Appendix A 

D e t a i l s o f t h e M o d e l S e a r c h 

A l g o r i t h m 

In Section 1.4 we described an algorithm with which one can locate B-WISE models 

of high posterior probability. In this appendix we give a pseudocode for the software 

we developed. 

Before the model search begins, the program must read in from files all of the 

relevant data, including the n x p matrix X of predictor variables, the n x 1 vector y 

of responses, the spline structure (Z from equation (1.4)) for each of the continuous 

variables, the roughness matrix (the R used in the construction of Z), and the 

initial model (specified using a matrix, as in (3.1)). We found it more convenient 

to construct Z and R using the matrix friendly routines in Splus and then to store 

them in files, rather than to construct them with the same C program that performs 

the model search. Having acquired the relevant quantities the algorithm proceeds 

as follows. 

print "Model 1"; 
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print model; // here model i s the user-specified i n i t i a l model 

print "log of non-normalized posterior probability = "; 

bestlpp=designmatrix(model,p,X,y, Z,R,n,numknots); 

print bestlpp; 

The function designmatrix is the workhorse of the whole algorithm. It builds the 
design matrix A\ based on the specifications in model, and ultimately computes and 
returns the model posterior probability (1.10). 

stopflag=l; // the algorithm terminates i f stopflag reaches 5 
numvisits=l; // this i s the number of models v i s i t e d 
while(stopflag<5 and numvisits<=maxit) 

// maxit i s the maximum number of iterations allowed 
{ 

stopflag=stopflag+1; 
numnbhd=sizenbhd(model); 

// sizenbhd computes the number of models i n the nbhd of model 

modlist=list of a l l models i n neighbourhood of model; 
// In the loop below we w i l l compute the model posterior 
// for a l l of the models i n modlist. 

for(lp from 1 to numnbhd) 

{ 

curmodel=modlist[lp]; 
lookup curmodel i n modfile; 

i f found then lpplist[lp]=log post prob found i n modfile; 

else 

{ 
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/ / need to compute log post prob for curmodel and store i t i n modfile 

lpplist[ lp]=design_matrix(curmodel,p,X,y,Z,R,n,numknots); 

i f lpp l i s t [ lp]>best lpp then 

{ 

bes t lpp= lpp l i s t [ lp ] ; 

bestmodel=curmodel; 

pr in t "best so far = "; 

pr in t bestlpp; 

} 

i f l p p l i s t [ lp+l ]>best lpp- log (20.0) then stopf lag=0; 

/ / If a model i s found which has post prob greater then 57, of the 

/ / highest post prob then stopflag i s reset to 0 . 

write curmodel to modfile; 

write l p p l i s t [ l p ] to modfile; 

} 

} 

/ / Now we exponentiate and normalize the poster ior p r o b a b i l i t i e s 

/ / r e l a t i v e to the immediate neighbourhood. 

l p p l i s t = e x p ( l p p l i s t ) ; 

s=sum(lpplist); 

l p p l i s t = l p p l i s t / s ; 

draw=runi f (0,1) ; 

cumulative=0.0; 

f o r ( i from 1 to numnbhd) 

{ 
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cumulative=cumulative+lpplist[i] ; 

i f draw<=cumulative then 

{ 

temp=i; 

exi t for loop; 

} 

} 

p r i n t "Model "; 

numvisits=numvisits+l; 

p r i n t numvisits; 

model=modlist[temp]; 

pr in t model; 

pr in t "log of non-normalized poster ior probabi l i ty = "; 

pr in t log(s*lppl is t [ temp]); 

> 

pr int "The model with highest poster ior density was "; 

pr in t bestmodel; 

We have also written simpler programs to compute predicted or fitted values 

for a single B-WISE model and for a Bayesian model average which uses the modfile 

created by the model search algorithm to construct the average. 
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